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ABSTRACT 

DATA INTEGRATION IN POPULATION AND COMMUNITY ECOLOGY USING 

HIERARCHICAL MODELING 

 

By 

 

Matthew T. Farr 

 

In this dissertation, I develop and apply methods for data integration using hierarchical 

modeling to estimate the status, trends, and demography of wildlife populations and 

communities. I use multi-level statistical and mathematical models to explicitly link observed 

data to latent ecological processes. By separately modeling observational and ecological 

processes, I can integrate multiple disparate data sources into a unified framework to estimate 

ecologically relevant population and community parameters, often in the context of wildlife 

conservation. In Chapter One, I apply a multispecies hierarchical distance sampling model to 

assess the effect of management actions on a carnivore community in the Masai Mara National 

Reserve, Kenya. I assess variation in species-level responses to passive management, resulting in 

human disturbance and apex predator declines. In Chapter Two, I develop an integrated 

distribution model that uses distance sampling and presence-only data to jointly estimate species 

abundance. I apply this model to a case study on black-backed jackals (Canis mesomelas) to 

evaluate the effects of anthropogenic disturbance on the distribution of jackals across the Masai 

Mara National Reserve. In Chapter Three, I evaluate status and trends of species in a forest 

dwelling duiker community using detection-nondetection data. I develop a multispecies dynamic 

N-occupancy model to estimate species-level abundance, demographic parameters, and quasi-

extinction probabilities. In Chapter Four, I create a spatiotemporal integrated model to estimate 

the effects of weather conditions on monarch butterflies (Danaus plexippus) during spring 

migration. Each chapter illustrates a unique application of data integration in wildlife ecology, 



 

 

either by combining data on multiple species to estimate population and community-level 

parameters or by combining disparate data sources on a single species to estimate demography 

and other population-level parameters. Data integration is a powerful framework that leverages 

all available information to address pressing conservation challenges. 
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INTRODUCTION 

 

Human population growth and resulting pervasiveness of anthropogenic disturbance have 

left no wilderness or natural place unscathed (Foley et al. 2005, Watson et al. 2018). 

Anthropogenic-induced declines of many wildlife species have led to extirpations and 

extinctions, and consequential losses of biodiversity can have dramatic effects on the remaining 

wildlife (Ceballos et al. 2015, Zipkin et al. 2020, IUCN 2021). The goal of conservation science 

and wildlife management is to reverse these alarming trends through strategic protection of 

threatened species and their critical habitats (Watson & Venter 2017, CBD 2020). Numerous 

obstacles obstruct biodiversity conservation, but one of the daunting hurdles limiting such 

global-scale efforts has been extensive gaps in data availability on species status and trends 

(Meyer et al. 2015, Conde et al. 2019). Throughout both terrestrial and aquatic biomes, locations 

of data collection are often biased because of socio-economic constraints (e.g., financial 

resources for data collection are tied to developed countries), creating spatial gaps in data 

availability (Meyer et al. 2015). The temporal extent of data is also restricted as long-term 

ecological monitoring programs have existed for less than a century (Magnuson 1990). 

Additionally, data are often collected for only a subset of species (e.g., charismatic, indicator, 

umbrella) within ecological communities while many threatened species are categorized as data 

deficient by the International Union for Conservation of Nature (Troudet et al. 2017, IUCN 

2021). Spatial, temporal, and species data gaps limit characterization of the status and trends of 

threatened populations (Conde et al. 2019).  

The growing threat to global biodiversity has prompted the establishment of many large-

scale monitoring programs to overcome data gaps in estimating the status and trends of 

threatened species (Magnuson 1990). Data digitalization and online repositories (e.g., iNaturalist, 
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GBIF, Map of Life) have exponentially increased data availability for addressing both basic 

ecological questions and those focused on conservation (Jetz et al. 2012, Chandler et al. 2017). 

However, variation in the species, ecosystems, and motivations in data being collected by 

monitoring programs and a lack of standardization in monitoring have led to a plethora of 

disjointed datasets, often containing different types (e.g., presence-only, presence-absence, 

count, capture-recapture), which can make analysis challenging (Miller et al. 2019, Saunders et 

al. 2019a, Isaac et al. 2020). Data quality, or the information content of a given data type, largely 

depends on how the data were collected and whether the observation process was designed to 

account for errors such as, imperfect detection or location biases (Miller et al. 2019). A tradeoff 

often exists between information content and data quantity where information-rich data has a 

high logistical cost (e.g., financial, effort, infrastructure). Lower information content data, such 

as that collected via opportunistic or ad libitum sampling, can be conducted with relative ease as 

there is no protocol or design. 

Quantitative ecologists have rapidly been developing methods to strategically integrate 

multiple data sources into a unified analysis to estimate population- and community-level 

parameters (Dorazio & Royle 2005, Dorazio et al. 2006, Zipkin et al. 2009, Zipkin et al. 2010, 

Rossman et al. 2016, Pacifici et al. 2017, Zipkin & Saunders 2018, Fletcher et al. 2019, Miller et 

al. 2019, Isaac et al. 2020). Data integration, which I broadly define as any quantitative analysis 

framework that combines multiple data sources to estimate a shared ecological process (e.g., 

abundance, demographic rates, covariate effects), can improve accuracy and precision of 

estimates over independent analyses of each data source (Zipkin et al. 2009, Zipkin & Saunders 

2018). Data integration may also enable estimation of parameters that would be unidentifiable in 
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an analysis of a single data source (Schaub & Abadi 2011, Dorazio et al. 2014) and/or resolve 

discrepancies among inferences based on disparate data sources (Saunders et al. 2019a). 

In my dissertation, I focus on a subset of data integration methods that use a hierarchical 

modeling framework to differentiate variation coming from the observation processes of one or 

more data sources and variation attributable to underlying ecological processes. This framework 

links the ecological parameter(s) of interest (e.g., abundance, survival) to the data by accounting 

for observation error, which may vary in structure or magnitude, among data sources (Pacifici et 

al. 2017, Zipkin & Saunders 2018, Fletcher et al. 2019, Miller et al. 2019, Isaac et al. 2020). I 

explore the utility of data integration within both community and population ecology by 

combining data from different species (i.e., multispecies models) and combining data of different 

types (single-species integrated models). Multispecies modeling uses a hierarchical framework to 

model the dynamics of multiple species simultaneously within a unified community analysis. 

Data from each species is of the same type, but observations and ecological parameters 

associated with each species are nested hierarchically within community-level components, 

allowing for variation among species within a common community (Dorazio & Royle 2005, 

Dorazio et al. 2006, Kéry & Royle 2009, Zipkin et al. 2009). Similar in its use of hierarchical 

statistical models, single-species integrated modeling combines data of different types within a 

unified analysis, specifying a separate observation process for each data type (Schaub & Abadi 

2011, Dorazio et al. 2014, Zipkin & Saunders 2018). Because different data types inform at least 

one common ecological parameter, the ecological process (e.g., population abundance, 

population dynamics) can be jointly estimated. Each chapter in my dissertation is a separate 

development and application of a hierarchical multispecies or single-species integrated model to 

make inferences about different taxa and ecological systems. 
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Modeling applications presented in Chapters One and Two occur within the Masai Mara 

National Reserve, Kenya. Data used for these chapters was collected by the Michigan State 

University Mara Hyena Project, which has been monitoring spotted hyena (Crocuta crocuta) in 

the Reserve for over 30 years. During this long-term study, the Mara Hyena Project has surveyed 

the larger carnivore community in the Reserve using a variety of techniques (Green 2015). In 

Chapter One, I develop a multispecies hierarchical model to evaluate the effect of management 

alternatives and resulting human disturbances on a carnivore community within the Reserve. By 

integrating data for multiple carnivore species, I find that passive management and high levels of 

human disturbance have variable effects on carnivore abundance. African lions (Leo panthera) 

are adversely affected, while other species like spotted hyena and black-backed jackals (Canis 

mesomelas) benefit from disturbance. Variation in species’ responses to disturbance could be 

driven by numerous processes, including direct mortality, competitive release, and habitat 

degradation. Although my goal was not to pinpoint explicit processes, my results indicate that 

passive management does not affect carnivores uniformly. By using a multispecies hierarchical 

model, I can both estimate abundance of rare and cryptic species that may have been discarded in 

analyses focused on single species, and characterize variation in the responses of multiple 

carnivores to human disturbance. 

In Chapter Two, I develop an integrated distribution model that combines distance 

sampling (higher information content) and presence-only (lower information content) data to 

generate spatially explicit estimates of species abundance. I use a simulation study to assess the 

data requirements of each type and verify that the model returns unbiased and precise estimates. I 

apply this model to a case study on black-backed jackals in the Reserve and find that black-

backed jackals are thriving in more disturbed regions near high human density. Despite its lower 
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information content and potential biases, presence-only data can improve the precision of 

estimating ecological patterns when used in conjunction with structured data. 

Chapter Three characterizes the regional distribution and dynamics of forest antelopes 

across Central and East Africa using detection-nondetection data from The Tropical Ecology 

Assessment and Monitoring Network. Recent methodological developments have expanded the 

capabilities of detection-nondetection data (e.g., camera trap data) to estimate both abundance 

and dynamics of wildlife populations (Rossman et al. 2016). I extended a single-species 

framework (dynamic N-occupancy model) for analyzing detection-nondetection data to 

simultaneously estimate demographic rates for multiple species in a community. This approach 

is particularly valuable in that it can characterize population dynamics for cryptic or rare species 

when detection-nondetection data may be the only available data type. Although many antelope 

species in this region are experiencing declines from habitat loss and poaching, my results 

suggest that the antelope populations were mostly stable and had low probabilities of extirpation 

over the next ten years. 

In Chapter Four, I explore spring migration patterns of the eastern monarch butterfly 

(Danaus plexippus), which ranges from Central Mexico to the Midwestern United States and 

Southeast Ontario, Canada. While population dynamics of this species are affected by a range of 

seasonal factors, recent studies suggest that environmental conditions during spring migration 

may be particularly important (Zipkin et al. 2012, Saunders et al. 2016, 2018b, Zylstra et al. 

2021). However, data deficiencies in spring limit our understanding of the processes affecting 

abundance during this critical stage of the migratory cycle. I developed a hierarchical model to 

integrate multiple types of unstructured opportunistic sightings of monarchs in the spring with 

structured data in early summer to characterize spatiotemporal variation in abundance on the 
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spring breeding grounds and assess the effects of spring climatic drivers. Using simulations, I 

assessed the ability of non-overlapping data to estimate abundance across spatiotemporal 

domains. When applying this integrated model to the eastern population of monarchs, I found 

that the effect of spring weather conditions on monarch abundance varies across its spring 

migration and early summer breeding grounds. These results demonstrate the potential for 

integrated models to circumvent data gaps during a species annual cycle. 

The variety of systems, taxa, data types, and corresponding analyses covered in my 

dissertation illustrates the utility of data integration in population and community ecology. The 

frameworks I develop have a broad range of applications because of their ability to produce 

unbiased and precise estimates by accounting for variation between species or data types. 

Whether it is a multispecies model or an integrated model, the hierarchy of observation and 

ecological process models allows for a seamless statistical and mathematical connection between 

whichever data sources are available and the target parameters of interest (e.g., abundance). Data 

integration is a powerful tool that can harness the wide range of data now available to help 

overcome knowledge gaps in promoting conservation of wildlife in the face of ongoing 

anthropogenic threats. 
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CHAPTER 1: Multispecies hierarchical modeling reveals variable responses of African 

carnivores to management alternatives 

 

Abstract 

Carnivore communities face unprecedented threats from humans. Yet, management 

regimes have variable effects on carnivores, where species may persist or decline in response to 

direct or indirect changes to the ecosystem. Using a hierarchical multispecies modeling 

approach, I examined the effects of alternative management regimes (i.e., active vs. passive 

enforcement of regulations) on carnivore abundances and group sizes at both species and 

community levels in the Masai Mara National Reserve, Kenya. Alternative management regimes 

have created a dichotomy in ecosystem conditions within the Reserve, where active enforcement 

of regulations maintains low levels of human disturbance in the Mara Triangle and passive 

enforcement of regulations in the Talek region permits multiple forms of human disturbance. My 

results demonstrate that these alternative management regimes have variable effects on 11 

observed carnivore species. As predicted, some species, such as African lions and bat-eared 

foxes, have higher population densities in the Mara Triangle, where regulations are actively 

enforced. Yet, other species, including black-backed jackals and spotted hyenas, have higher 

population densities in the Talek region where enforcement is passive. Multiple underlying 

mechanisms, including behavioral plasticity and competitive release, are likely causing higher 

black-backed jackals and spotted hyena densities in the disturbed Talek region. My multispecies 

modeling framework reveals that carnivores do not react to management regimes uniformly, 

shaping carnivore communities by differentially producing winning and losing species. Some 

carnivore species require active enforcement of regulations for effective conservation, while 
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others more readily adapt (and in some instances thrive in response) to lax management 

enforcement and resulting anthropogenic disturbance. Yet, high levels of human disturbance 

appear to be negatively affecting the majority of carnivores, with potential consequences that 

may permeate throughout the rest of the ecosystem. Community approaches to monitoring 

carnivores should be adopted as single species monitoring may overlook important intra-

community variability. 

 

Material from: Farr, M. T., Green, D. S., Holekamp, K. E., Roloff, G. J., & Zipkin, E. F. (2019). 

Multispecies hierarchical modeling reveals variable responses of African carnivores to 

management alternatives. Ecological Applications, e01845. 

 

For full text of this work, please go to: https://doi.org/10.1002/eap.1845 

  

https://doi.org/10.1002/eap.1845
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CHAPTER 2: Integrating distance sampling and presence-only data to estimate species 

abundance 

 

Abstract 

Integrated models combine multiple data types within a unified analysis to estimate 

species abundance and covariate effects. By sharing biological parameters, integrated models 

improve the accuracy and precision of estimates compared to separate analyses of individual data 

sets. I developed an integrated point process model to combine presence-only and distance 

sampling data for estimation of spatially explicit abundance patterns. Simulations across a range 

of parameter values demonstrate that my model can recover estimates of biological covariates, 

but parameter accuracy and precision varied with the quantity of each data type. I applied my 

model to a case study of black-backed jackals in the Masai Mara National Reserve, Kenya, to 

examine effects of spatially varying covariates on jackal abundance patterns. The model revealed 

that jackals were positively affected by anthropogenic disturbance on the landscape, with highest 

abundance estimated along the Reserve border near human activity. I found minimal effects of 

landscape cover, lion density, and distance to water source, suggesting that human use of the 

Reserve may be the biggest driver of jackal abundance patterns. My integrated model expands 

the scope of ecological inference by taking advantage of widely available presence-only data, 

while simultaneously leveraging richer, but typically limited, distance sampling data. 

 

Material from: Farr, M. T., Green, D. S., Holekamp, K. E., & Zipkin, E. F. (2021). Integrating 

distance sampling and presence-only data to estimate abundance. Ecology, e03204. 
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For full text of this work, please go to: https://doi.org/10.1002/ecy.3204 

  

https://doi.org/10.1002/ecy.3204
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CHAPTER 3: Quantifying the conservation status and trends of wildlife communities using 

detection-nondetection data 

 

Abstract 

Effective conservation often requires understanding species’ abundance patterns and 

demographic rates across space and time. Ideally, such knowledge should be available for whole 

communities, as variations in individual species’ demographic rates and responses to 

environmental factors provides critical information on optimal approaches to mitigate 

accelerating biodiversity loss. However, collecting the data necessary to simultaneously estimate 

abundance and demographic rates is often prohibitively time-intensive and expensive for 

communities of species. I developed a “multi-species dynamic N-occupancy model” that requires 

only detection-nondetection data (e.g., repeated presence-absence surveys) to estimate both the 

abundance and demographic rates of individual species over time as well as composite metrics of 

the whole community. Using data from a network of camera traps across tropical equatorial 

African national parks, I use my model to evaluate the statuses and trends of a forest-dwelling 

antelope community by estimating each species’ local population abundance, rates of recruitment 

(i.e., reproduction and immigration), and apparent survival probabilities. I paired my model’s 

results with a Bayesian population viability analysis to make mechanistic projections of species’ 

population sizes and quasi-extinction rates within each park out to 2030. Both retrospective and 

prospective analyses indicate that the antelope community is fairly stable in this region (although 

17% of populations/species-park combinations declined during the study period), with variations 

in population statuses and trends linked more closely to differences among national parks rather 

than differences in individual species’ life histories. While certain assumptions must be met that 

may prevent implementation on highly mobile or socially grouping species, in many situations 
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my modeling framework can estimate abundance, demographic rates, and extinction risks for 

entire communities using commonly collected detection-nondetection data. Such frameworks can 

be valuable to conservation efforts seeking to understand and abate biodiversity loss. 

Introduction 

Knowledge of the population size and demographic rates (e.g., survival, recruitment) of 

species in wildlife communities is often needed to quantify, and ultimately address, threats 

leading to biodiversity loss (Conde et al. 2019). Traditionally, estimates of species abundance 

and demographic rates have relied upon ‘marked data’ (e.g. capture-recapture data), in which 

individuals are identified and followed via tags, bands, genotypes, and/or phenotypes (Pollock et 

al. 1990). The expensive and labor-intensive monitoring needed to generate marked data often 

preclude collection beyond single species. Though single-species analyses based on marked data 

can provide robust inferences, they are often restricted to common or charismatic species 

(Troudet et al. 2017). Methods to extrapolate single-species inferences (e.g., umbrella, keystone, 

indicator) to unmonitored community members may miss important variations among species 

(Cushman et al. 2010, Runge et al. 2019). Yet, accelerating biodiversity loss demands diversified 

approaches to monitor multiple species simultaneously and whole communities when possible 

(Nicholson & Possingham 2006, Ceballos et al. 2015, Zipkin et al. 2020). Community-wide 

assessments can provide unique information about species and their variable responses to 

environmental factors, including disturbance (REF). 

While the need to scale up biodiversity assessments to community-levels is clear, the data 

to do so remain logistically challenging to obtain. Most community-wide data collection 

protocols rely on ‘unmarked data’ (e.g., presence-only, presence-absence, detection-

nondetection, count). Unmarked data do not require identification or recapture of individuals and 
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thus can be collected more easily than marked data for community-wide monitoring programs. 

Arguably the most ubiquitous unmarked data type is detection-nondetection data in which 

observers record the presence or absence of a species at a given time and place (MacKenzie et al. 

2017). A common approach to analyzing detection-nondetection data is occupancy modelling, 

which makes use of replicate sampling over short time frames to estimate species distributions 

and occurrence patterns while accounting for imperfect observation during sampling (MacKenzie 

et al. 2002). The advent of multi-species occupancy models (Dorazio & Royle 2005, Dorazio et 

al. 2006) has allowed for estimation of community occurrence processes and trends across space 

and time, driving discoveries in population biology, biodiversity loss, macrosystem processes, 

and community ecology among other areas (Kéry & Schaub 2012, MacKenzie et al. 2017, 

Devarajan et al. 2020). Yet without the ability to estimate demographic rates, traditional 

occupancy models have been restricted in their capacity to infer changes in population sizes and 

the underlying mechanisms driving trends. Recent development of the ‘dynamic N-occupancy 

model’ has expanded the use of unmarked data to jointly estimates population abundance and 

dynamics using detection-nondetection data for a single species (Rossman et al. 2016). This is 

done by decomposing changes in abundance into apparent survival and populations gains via 

recruitment (i.e., the combination of fecundity and immigration) using the biological process 

model developed by Dail and Madsen (2011) and capitalizing on the link between species 

detection probability and abundance developed by Royle and Nichols (2003).  

Here, I expand the single-species dynamic N-occupancy modeling framework to a multi-

species context, capable of estimating abundance and demographic rates for communities of 

related species using only detection-nondetection data. My ‘multi-species dynamic N-occupancy 

model’ can estimate community-level responses to environmental covariates while also capturing 
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species-specific variation in demographic rates and the effects of covariates. By linking 

individual responses via community-level distributions (Dorazio & Royle 2005, Dorazio et al. 

2006), my modeling framework provides abundance and demographic rate estimates for rarer 

species that otherwise would be unidentifiable using a single-species approach (Kéry & Royle 

2009, Zipkin et al. 2009, 2010). Scaling the single-species dynamic N-occupancy model to a 

multi-species context fills a needed gap in conservation ecology by creating a framework to 

explore the underlying mechanisms of community-wide population changes and biodiversity 

assessments. 

I apply the multi-species dynamic N-occupancy model to a case study of forest dwelling 

antelope species in tropical equatorial Africa. Despite growing concern for human induced 

biodiversity loss in the tropics (Bradshaw et al. 2009), tropical communities contain a 

disproportionate amount of data gaps worldwide (Collen et al. 2008, Meyer et al. 2015). Of the 

available data collection methods for communities, unmarked methods are typically the most 

feasible and as a result, are widely used in tropical regions (O’Brien 2008, Tobler et al. 2008). 

My target antelope community provides an ideal case study to demonstrate the untapped 

capabilities of unmarked data collected via remote camera trap surveys. Camera trap surveys 

provide one of the only suitable methods to monitor remote, forest dwelling terrestrial mammals. 

Limited information on demography is available for most of the species included in my analysis, 

despite intense environmental pressures. To evaluate the status, trends, and potential trajectory 

for this community across Central and East Africa, I apply the multi-species dynamic N-

occupancy model to estimate species-specific abundance and demographic rates. I then project 

each populations’ quasi-extinction (i.e., local extinction/extirpation) probability (i.e., likelihood 

that a population size falls below a viable threshold where extinction/extirpation is inevitable) 
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using Bayesian population viability analysis (BPVA; Kéry & Schaub 2012, Saunders et al. 

2018a, Saunders et al. 2021). Projecting species’ viabilities under potential future scenarios 

provides a method to quantify uncertainty in species extirpation in response to environmental 

drivers and is a useful metric to evaluate potential conservation actions targeted at both species 

and communities. My multi-species dynamic N-occupancy model thus provides a multifaceted 

approach to address a knowledge gap (abundance and vital rate estimates, species-specific and 

community-level estimates, population projections, and quasi-extinction probabilities) that 

occurs persistently throughout wildlife communities. 

Model 

The multi-species dynamic N-occupancy model uses detection-nondetection data to 

estimate abundance and demographic rates at both species and community levels by combining 

the N-occupancy modeling framework (Rossman et al. 2016) with the multi-species occupancy 

modeling framework (Dorazio & Royle 2005). The model estimates latent biological processes 

(i.e., abundance, apparent survival, reproduction/immigration) for individual species and 

accounts for imperfect detection during data collection via an observation process component. 

Species’ biological and observation processes are then linked with a hierarchical statistical 

structure (i.e. through shared distributions) to estimate community-level parameters in addition 

to the species-level parameters. This approach leverages information across species to improve 

precision of species-level parameters, especially for those species that were observed less 

frequently due to being either rare or elusive (Zipkin et al. 2009). 

Observation process 

To estimate latent abundance, 𝑁𝑖,𝑗,𝑡, of species 𝑖 at a sampling site 𝑗 during year 𝑡, detection-

nondetection data, 𝑦𝑖,𝑗,𝑘,𝑡, are collected during 𝑘 = 1,2, … 𝐾 sampling replicates. I assume that 
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species abundance at a site 𝑗 is closed to changes within year 𝑡. Thus, the 𝐾 > 1 sampling 

replicates within a year allow us to estimate the probability that species 𝑖 was detected at site 𝑗 

during sampling replicate 𝑘 (𝑦𝑖,𝑗,𝑘,𝑡 = 1). I model the detection-nondetection data using a 

Bernoulli process: 

𝑦𝑖,𝑗,𝑘,𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖,𝑗,𝑘,𝑡), 

where 𝑝𝑖,𝑗,𝑘,𝑡 is the detection probability of species 𝑖 at site 𝑗 during replicate visit 𝑘 in year 𝑡. 

A nondetection of species 𝑖 can result from two separate processes: the species is truly absent at 

the site (i.e., latent abundance of species 𝑖 at site 𝑗 in year 𝑡 is zero, 𝑁𝑖,𝑗,𝑡 = 0) or because the 

species was present (𝑁𝑖,𝑗,𝑡 > 0) but no individuals were detected during sampling. Thus, 𝑝𝑖,𝑗,𝑘,𝑡 

can be defined as the probability that at least one of the 𝑁𝑖,𝑗,𝑡 individuals at the site was detected 

during the 𝑘th sampling event (Rossman et al. 2016, Royle & Nichols 2003): 

𝑝𝑖,𝑗,𝑘,𝑡 = 1 − (1 − 𝜃𝑖,𝑗,𝑘,𝑡)
𝑁𝑖,𝑗,𝑡

 

where 𝜃𝑖,𝑗,𝑘,𝑡 is the detection probability of an individual of species 𝑖 at site 𝑗 during replicate 

visit 𝑘 in year 𝑡. If there are no individuals at the site (𝑁𝑖,𝑗,𝑡 = 0), then the detection probability 

collapses to zero. Likewise, as latent abundance, 𝑁𝑖,𝑗,𝑡, increases, the overall detection 

probability, 𝑝𝑖,𝑗,𝑘,𝑡, of the species also increases because each individual has an independent 

probability of being detected, 𝜃𝑖,𝑗,𝑘,𝑡. Covariates can be added to 𝜃𝑖,𝑗,𝑘,𝑡 to account for variation in 

detection by species, site, replicate visit, and/or year using a logit-link function: 

𝑙𝑜𝑔𝑖𝑡 (𝜃𝑖,𝑗,𝑘,𝑡) =  𝛼0,𝑖 +  𝛼𝑣,𝑖 ∙ 𝑥𝑣,𝑗,𝑘,𝑡. 

Here, 𝛼0,𝑖 is the intercept for species 𝑖, or average detection probability of individuals on the 

logit scale while 𝛼𝑣,𝑖 is a vector (1,2, … , 𝑉) of parameter effects (𝛼1,𝑖, 𝛼2,𝑖, … , 𝛼𝑉,𝑖) for species 𝑖 
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of corresponding standardized covariates 𝑥𝑣,𝑗,𝑘,𝑡, which may change by sampling site, replicate 

visit, and/or year. 

Biological process 

The biological process model focuses on estimating abundance, 𝑁𝑖,𝑗,𝑡, for species 𝑖 across 

all 𝑗 sites in year 𝑡 using the approach developed by Dail and Madsen (2011). I assume that 

species abundance changes between years (i.e., from 𝑡 − 1 to 𝑡) through processes of survival 

and recruitment. In the first year for which data are available (i.e., 𝑡 = 1), I estimate abundance, 

𝑁𝑖,𝑗,1, using a Poisson distribution: 

𝑁𝑖,𝑗,1 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖,𝑗), 

where 𝜆𝑖,𝑗 is the expected abundance of species 𝑖 at site 𝑗 in the first year of sampling (Dail & 

Madsen 2011). I can model heterogeneity in initial abundance by adding covariates using a log-

link function: 

𝑙𝑜𝑔(𝜆𝑖,𝑗) = 𝛽0,𝑖 + 𝛽𝑣,𝑖 ∙ 𝑤𝑣,𝑗, 

where 𝛽0,𝑖 is the intercept (i.e., average initial abundance on the log scale) for species 𝑖 and 𝛽𝑣,𝑖 

is a vector (1,2, … , 𝑉) of parameter effects (𝛽1,𝑖, 𝛽2,𝑖 , … , 𝛽𝑉,𝑖 ) for standardized covariates 𝑤𝑣,𝑗. 

In subsequent years (𝑡 > 1), I assume that changes to latent abundance of species 𝑖 at site 

𝑗 occur via births-deaths and immigration-emigration processes (Dail & Madsen 2011) and are 

dependent on the population size during the previous year, 𝑡 − 1. I break this process into two 

components: 𝑆𝑖,𝑗,𝑡−1, the number of individuals of species 𝑖 that survive from year 𝑡 − 1 to 𝑡 and 

remain at site 𝑗, and 𝐺𝑖,𝑗,𝑡−1, the number of new individuals of species 𝑖 that are gained to site 𝑗 

via recruitment (reproduction and/or immigration) from year 𝑡 − 1 to 𝑡 (Dail & Madsen 2011, 

Rossman et al. 2016). Thus, total abundance in year 𝑡 > 1 is: 
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𝑁𝑖,𝑗,𝑡 = 𝑆𝑖,𝑗,𝑡−1 + 𝐺𝑖,𝑗,𝑡−1. 

I model the number of surviving individuals between 𝑡 − 1 and 𝑡 using a binomial distribution: 

𝑆𝑖,𝑗,𝑡−1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖,𝑗,𝑡−1, 𝜔𝑖,𝑗,𝑡−1), 

where 𝜔𝑖,𝑗,𝑡−1 is the apparent survival probability of each individual of species 𝑖 at site 𝑗 between 

𝑡 − 1 and 𝑡. Apparent survival is the product of true survival and site fidelity (i.e., the inverse of 

permanent emigration). I model the number of individuals of species 𝑖 gained into the population 

at site 𝑗 with a Poisson distribution: 

𝐺𝑖,𝑗,𝑡−1 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛾𝑖,𝑗,𝑡−1), 

where 𝛾𝑖,𝑗,𝑡−1 is the expected number of individuals gained at each site from reproduction and 

immigration. Provided there is sufficient available data, variation in apparent survival probability 

(𝜔𝑖,𝑗,𝑡−1) and the expected number of individuals gained to a site (𝛾𝑖,𝑗,𝑡−1) can be modeled with 

covariates that change by site and/or year using a logit-link function and a log-link function, 

respectively. 

Community component 

To link the species models at a community level, I assume that the species-level 

parameters (i.e., intercept and effect parameters on either logit- or log-link scales) in both the 

observation and biological process models are random effects drawn from a parameter-specific, 

community-level distribution shared across all species (Dorazio & Royle 2005, Dorazio et al. 

2006, Zipkin et al. 2009, Zipkin et al. 2010). For example, the intercept parameter for initial 

species abundance, 𝛽0,𝑖, is assumed to come from a normal distribution: 

𝛽0,𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽0
, 𝜎𝛽0

2 ), 

with a hyper-mean 𝜇𝛽0
 (i.e., representing average expected abundance across all species in the 

community) and hyper-variance 𝜎𝛽0

2  (i.e., representing the variation in initial expected abundance 
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across species). The random effects structure allows for information sharing across species 

within the community, improving parameter identifiability for species with low levels of data 

and increasing parameter precision for most other species (Kéry & Royle 2009, Zipkin et al. 

2009). In addition to estimating species-level biological and observational process parameters, 

the hierarchical structure of the model also produces estimates of community-level mean (e.g., 

𝜇𝛽0
) and variance (e.g., 𝜎𝛽0

2 ), which provide useful metrics for summarizing community 

dynamics. 

Application 

Study area and data collection 

My study encompasses a network of six national parks (Udzungwa Mountains National 

Park [UDZ], Tanzania; Volcanoes National Park [VNP] Rwanda; Bwindi Impenetrable Forest 

[BIF], Uganda; Nouabale-Ndoki National Park [NNNP], Republic of Congo; Korup National 

Park [KRP], Cameroon; and Nyungwe Forest National Park [NFNP], Rwanda) in the equatorial 

region of Central and East Africa between 2009 and 2019 (Table 3.1). Equatorial Africa has a 

tropical climate (i.e., wet and humid) and pronounced wet and dry seasons with annual rainfall in 

parks ranging from 1500 to over 5000 mm (Kingdon 2015, O’Brien et al. 2020). Vegetation in 

the region is determined by rainfall and elevation with the predominant habitats being lowland 

and montane rainforest that extend into forest mosaics further from the equator (Kingdon 2015). 

Elevation varies across parks with the lowest elevation near sea-level in KRP (92 - 463 m) and 

the highest elevation in VNP (2509 - 3884 m; O’Brien et al. 2020). Parks range in area from 342 

- 4000 km2 and are unfenced with varying human densities (0.5 - 386 humans/km2) along the 

edges. 



20 

 

I focused on a metacommunity of forest dwelling antelopes across the network of parks 

(Table 3.1; Johnston & Anthony 2012). I included 12 closely-related species in my analysis: suni 

(Nesotragus moschatus), bushbuck (Tragelaphus scriptus), sitatunga (Tragelaphus spekii), and 9 

species of duikers (Subfamily Cephalophinae; listed in Table 3.1). Predominately a browsing 

community, diet items for these species include fruit, flowers, and foliage with some species also 

eating grass (Kingdon 2015). This antelope metacommunity is geographically distributed across 

Sub-Saharan Africa, living in multiple forest types from lowland to alpine (Kingdon 2015), with 

each species range limited to only a subset of the parks in my study (Table 3.1). Forest 

fragmentation and resulting refugia during Pleistocene climate change is hypothesized to be 

responsible for the modern distribution of this community (Johnston & Anthony 2012). In the 

Anthropocene, humans are likely having the largest influence over the distribution and 

abundance patterns of this community. Antelopes are facing pervasive anthropogenic pressures 

including deforestation and poaching (Newing 2001), and the health, productivity, and 

persistence of their tropical rainforest habitat is threatened by climate change (Phillips et al. 

2009, Sullivan et al. 2020). Recent assessments of this antelope community conflict on species 

estimated stability (O’Brien et al. 2020), and minimal information on species abundance and 

demographic rates have prevented conclusive inference on the current status and future trajectory 

of this vulnerable community. 

To estimate community wide abundance and demographic rates, I collated data from the 

Tropical Ecology Assessment and Monitoring (TEAM) network. The TEAM network was 

developed for monitoring tropical species worldwide using a standardized camera trapping 

protocol (see TEAM Network 2011 a, b for detailed protocols). Camera traps were deployed in 

each park, and images were taken whenever an animal triggered a camera’s motion sensor. Each 
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park contained camera traps across 60 sites (except NFNP, which had 97 sites) that were 

sampled once per year for 30 consecutive days. The available years of data varied for parks, 

ranging from three for VNP to 11 for UDZ (Table 3.1). In post-processing of images, individual 

species were identified and aggregated into detection-nondetection histories based on 5-day 

sampling periods (replicates) for a maximum of six replicates per year. In cases where camera 

traps malfunctioned, we used the amount of time that the camera was functional as a covariate 

within my observation model to account for variation in detection due to decreased effort. 

Species were only evaluated at parks within their range; thus, I estimated the abundance and 

dynamics of 23 populations (i.e., species-park combinations; Table 3.1). 

Data analysis 

I described the detection probability of individuals, 𝜃𝑖,𝑗,𝑟,𝑘,𝑡, of each species 𝑖 at site 𝑗 in 

park 𝑟 during replicate 𝑘 in year 𝑡 using a logit-link: 

𝑙𝑜𝑔𝑖𝑡(𝜃𝑖,𝑗,𝑟,𝑘,𝑡) = 𝛼0,𝑖 + 𝛼1 ∙ 𝑑𝑎𝑦𝑠𝑗,𝑟,𝑘,𝑡, 

where 𝛼0,𝑖 is the species-specific intercept or detection probability of an individual during a 

sampling replicate when cameras were functional for the average amount of time (4.5 out of 5 

days). I added the covariate 𝑑𝑎𝑦𝑠𝑗,𝑟,𝑘,𝑡 (standardized to a mean of 0 and standard deviation of 1) 

to incorporate variation in the amount of time that a camera was functional at site 𝑗 at park 𝑟 

during replicate 𝑘 in year 𝑡, an effect that did not vary by species. 

For the biological process model, I used a log-link function to model species’ initial 

abundances across sites within parks: 

𝑙𝑜𝑔(𝜆𝑖,𝑟) = 𝜆0,𝑖 + 𝜀𝜆,𝑟. 
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The intercept, 𝜆0,𝑖, varies by species to account for differences in baseline abundance and a park-

level random effect (𝜀𝜆,𝑟) captures variation between parks. I similarly modeled species annual 

survival probabilities, 𝜔𝑖,𝑟, as:  

𝑙𝑜𝑔𝑖𝑡(𝜔𝑖,𝑟) = 𝜔0,𝑖 + 𝜀𝜔,𝑟, 

where 𝜔0,𝑖 is the baseline species-specific survival probability and 𝜀𝜔,𝑟 is a park-level random 

effect. During model development, I attempted to include environmental covariates in the models 

of initial abundance and the demographic parameters but large variations in covariate values 

between parks prevented meaningful inference and led to overly complex statistical structures 

(Appendix A). Further, many of the site-level (e.g., elevation, temperature, distance to edge) and 

park-level covariates were co-linear such that it was difficult to determine the important factors 

influencing species. As such, I settled on including random effects in my estimates of initial 

abundance and survival to account for species-specific and community-level comparisons 

between parks without subscribing improper mechanism to estimated differences. I modeled the 

expected number of individuals gained to a site, 𝛾𝑖 as: 

𝑙𝑜𝑔(𝛾𝑖) =  𝛾0,𝑖, 

using only a species-specific intercept, 𝛾0,𝑖, as I did not expect residual variation in gains at the 

park-level. I explored adding a park-level random effect but removed it due to poor convergence 

and lack of biological support. There is no evidence for differences in birth rates or sex ratios 

between parks, and immigration into sites is largely dictated by species’ territorial behavior (such 

that there is high site fidelity across all species, Kingdon 2015), which I assumed did not vary by 

park.  

To link the species models, I drew each species-specific parameter (𝛼0,𝑖, 𝜆0,𝑖, 𝜔0,𝑖, 𝛾0,𝑖) 

from separate community-level normal distributions with corresponding hyper-means and hyper-



23 

 

variances. I used the mean community-level estimate for apparent annual survival across all 

parks (𝜇𝜔0
) in combination with the park-level random effects on survival (𝜀𝜔,𝑟) to derive 

community-level apparent annual survival for each park (i.e., 𝜇𝜔0
+ 𝜀𝜔,𝑟). I also derived an 

index of annual population-level (i.e., species-park combination) abundance by summing across 

sites surveyed in a year. I report average abundance per site, 𝑁̂𝑖,𝑟,𝑡 =
∑ 𝑁𝑖,𝑗,𝑟,𝑡

𝐽𝑟,𝑡
𝑗=1

𝐽𝑟,𝑡
, rather than total 

abundance within a park to account for variations in sampling effort (i.e., number of sites 

surveyed per year, 𝐽𝑟,𝑡; Table 3.1). I calculated annual population growth rates for each 

population as: 𝑁̂𝑖,𝑟,𝑡 𝑁̂𝑖,𝑟,𝑡−1⁄ , and summarized across years by taking the geometric mean. 

I estimated parameters using a Bayesian framework via Nimble and R (de Valpine et al. 

2017, R Core Team 2020 Version 4.0.2). All hyper-parameters and other fixed effect parameters 

were given vague priors (Appendix B). I ran 5 MCMC chains each for 100,000 iterations with a 

burn-in of 75,000 and thinning of 25 providing 5,000 samples from the posterior distribution for 

each parameter. I assessed convergence using the Gelman Rubin diagnostic (Rhat < 1.2) in 

addition to visually examining the chains. 

Bayesian population viability analysis 

I projected the population of each species to 2030 using the estimated parameter values 

from my multi-species dynamic N-occupancy model and calculated quasi-extinction probabilities 

for each population using a BPVA. I selected 2030 as the target year as this projection timeframe 

captures the next window for the Convention on Biological Diversity’s updated Strategic Plan 

for Biodiversity (2021 - 2030; CBD 2020). I used a 50% decline in population abundance from 

2020 to 2030 as the threshold for quasi-extinction as this is the criteria for International Union 

for Conservation of Nature’s endangered species status (IUCN 2021): 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑁̂𝑖,𝑟,𝑡=2020 ∙



24 

 

0.5 where 𝑁̂𝑖,𝑟,𝑡=2020 is the posterior mean of park-level abundance in 2020. I calculate the quasi-

extinction probability as the proportion of MCMC iterations where the population (i.e., species-

park combination) abundance in 2030 was below the threshold: 𝑄𝑆𝐸𝑖,𝑟 = 𝑃𝑟(𝑁̂𝑖,𝑟,𝑡=2030 <

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) in which I defined extinction to be inevitable with probability > 0.95 (i.e., no 

overlap of the 𝑁̂𝑖,𝑟,𝑡=2030 95% CI with the threshold). I report population projections and quasi-

extinction probabilities only for populations with at least five years of data as estimates with a 

smaller temporal extent may be unreliable (Zipkin et al. 2014). I calculated the population 

projection estimates for the BPVA from a separate model run than the retrospective analysis 

(Appendix B), again using both Nimble and R (de Valpine et al. 2017, R Core Team 2020 

Version 4.0.2) with identical priors and MCMC settings. 

Results 

Population abundance and growth 

While estimates of population abundance and growth reveal that most of the antelope 

community was fairly stable over the study period (Figure 3.1, Appendix C Table C.1, C.2), four 

of the 23 populations (~17%) declined in abundance over the 11-year time frame (95% credible 

interval [CI] for growth rates were less than one). The four populations that had negative growth 

rates over the study period are: C. callipygus, C. dorsalis, P. monticola, C. silvicultor, all within 

the Nouabale-Ndoki National Park (NNNP). Eleven populations had stable population growth 

rates (95% CI for growth rates overlapped one) and eight populations increased in abundance 

(i.e., 95% CI above one). 

Demographic rates 

Though mean community-level annual apparent survival (𝜇𝜔0
; Figure 3.2A) across parks 

was estimated as 0.72 (CI 0.28, 0.96), there was large variation across species (𝜎𝜔0
 = 0.85 [CI 
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0.48, 1.52], logit-scale, Appendix C Table C3) and parks (𝜎𝜀𝑟,𝜔
 = 2.72 [CI 1.14, 6.50], logit 

scale, Appendix C Table C.4). The larger variation in survival across parks than across species 

(i.e., 𝜎𝜀𝑟,𝜔
> 𝜎𝜔0

) suggests that environmental and/or anthropogenic factors at the park-level may 

be contributing more to annual survival than species life history processes or species-specific 

responses to particular environmental factors within a park. Park-level estimates of survival 

(Figure 3.2A) for VNP (0.99 [CI 0.97, 0.99]), BIF (0.81 [CI 0.69, 0.91]), NFNP (0.77 [CI 0.56, 

0.92]), and UDZ (0.77 [CI 0.56, 0.89]) were higher than the community-level average, likely 

attributable to active and effective management enforcement (Oberosler et al 2020a, 2020b, 

O’Brien et al. 2020). Despite estimates of stable population growth rates of its three duiker 

populations (Figure 3.1), low survival within KRP (0.31 [CI 0.11, 0.52]; Figure 3.2A) may be 

attributable to hunting pressure as local extinction of other antelope species has likely already 

occurred there (Viquerat et al. 2012, O’Brien et al. 2020). However, C. silvicultor is at the edge 

of its geographic range in KRP (Kingdon 2015), which may also be contributing to its low 

survival in that park (0.54 [CI 0.27, 0.72]). Across species, C. dorsalis had the lowest average 

annual apparent survival probability (0.56 [CI 0.12, 0.92]) while C. silvicultor had the highest 

(0.90 [CI 0.51, 0.99]; Figure 3.2A). The mean number of individuals gained per species annually 

at sites across parks (𝜇𝛾0) was 0.24 (CI 0.10 - 0.56) with P. monticola having the highest 

estimated site-level recruitment (i.e., sum of immigration and fecundity; (1.48 [CI 1.11 - 1.87]) 

and T. spekii having the lowest (0.02 [CI 0.01 - 0.05]) (Figure 3.2B). 

Population viability 

None of the 18 populations with sufficient time-series for projections (i.e., four of six 

parks had at least five years of data) reached a quasi-extinction threshold severe enough to 

trigger IUCN endangered species status (i.e., 50% loss with nonoverlapping 95% CI), with all 
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populations having quasi-extinction probabilities of less than 0.25 (Figure 3.1; Appendix C Table 

C.5). Of the four populations within NNNP that were estimated to be declining, C. silvicultor 

and T. spekii had the highest quasi-extinction probabilities at 0.23 and 0.24, respectively 

(Appendix C Table C.5). While all local populations were at a low risk of extirpation over the 

next decade (assuming that current conditions hold), several populations in NNNP and BIF were 

projected to decline from 2021 to 2030 (bottom panels of Figure 3.3), suggesting that close 

monitoring is warranted and that management interventions may be needed to ensure persistence 

in the longer term. 

Discussion 

Achieving conservation targets for biodiversity requires quantifiable measures of the status, 

trends, and dynamics of populations at both species and community levels (Nicholson & 

Possingham 2006). Using an extensive continental-scale camera trapping network in Central and 

East Africa, my multi-species dynamic N-occupancy model estimated (1) stable population 

growth of the antelope community across national parks during my study period (2009-2019), (2) 

varying abundance and vital rates across community members and between populations of the 

same species, (3) differences in annual apparent survival of community members between 

national parks, and (4) low probabilities of quasi-extinction for the majority of populations over 

the next decade. These results resemble patterns seen in protected areas across equatorial Africa 

where effective conservation of species communities depend on the enforcement of regulations 

to prevent or mitigate disturbance (Farr et al. 2019, Oberosler et al 2020a, 2020b, O’Brien et al. 

2020). Here, I demonstrate the upper potential of detection-nondetection data to assess 

communities of species by developing an analytical framework to estimate population abundance 

and demographic rates of each community member within the parks they inhabit. The potential 
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of my modeling framework to support biodiversity conservation is underpinned by detection-

nondetection being the most ubiquitous data type for monitoring multiple species and the ability 

to quantify demographic rates and extinction risk for multiple species simultaneously. 

Contrary to the perception that unmarked data provides limited information relative to 

marked data, I was able to estimate community-wide population abundance and demographic 

rates by combining multi-species models (Dorazio & Royle 2005, Dorazio et al. 2006) with the 

single-species dynamic N-occupancy (Rossman et al. 2016). While there is great potential for 

this approach, multiple limitations may restrict my model’s application to certain data scenarios 

and species. Dynamic unmarked models need at least 3-5 years (i.e., time periods) of data for 

parameters to be identifiable but simulation results reveal that these models typically do not 

perform well with less than 5-10 years of sampling (Dail & Madsen 2011, Zipkin et al. 2014). 

Precision of estimates also depend on the number of sites sampled where too few survey 

locations can even lead to inaccuracies (Rossman et al. 2016). In my application of the multi-

species dynamic N-occupancy model, limited time series for certain populations prevented 

estimation of site-level variation using covariates or multi-scale processes across parks 

(Appendix A). Additionally, I was unable to propagate environmental stochasticity into my 

BPVA (such as in Saunders et al. 2018a) because random temporal effects were unidentifiable, 

likely leading to underestimation of uncertainty in my future projections. For some species life 

histories, the basic structure of the multi-species dynamic N-occupancy model may not be 

feasible. For example, highly mobile and non-territorial species may violate the geographic 

closure assumption (i.e., no immigration or emigration out of the site during replicate visits). 

Other assumptions related to demographic closure (i.e., no births or deaths between replicate 

visits within a year), independence of sites, independence of individual detections, and species 
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identification may lead to the necessary exclusion of some taxonomic groups (Royle & Nichols 

2003, Devarajan et al. 2020). Difficulty with parameter estimation may also occur for species 

that are very rarely detected. Though the multi-species framework theoretically allows for 

estimation of rare and elusive species (Zipkin et al. 2009), few observations of a species can lead 

to imprecise or unidentifiable estimates of species-specific parameters, especially in the context 

of a model that aims to estimate demography as well as abundance.  

My case study provided an initial demonstration of the multi-species dynamic N-occupancy 

model and is only a prelude to this framework’s full potential for conservation biology. Further 

applications of this approach can help explain variation in species statuses and trends by linking 

environmental drivers (covariates) to demographic rates. Such approaches can help elucidate the 

mechanistic reasons behind biodiversity loss and species declines by partitioning the effects of 

specific environmental factors on species’ survival and/or recruitment. Coupled with a Bayesian 

population viability analysis, extinction risk can be linked to future environmental scenarios 

related to projected climate changes and management interventions (Saunders et al. 2018a, 

Saunders et al. 2021). Evaluating extinction risks at community levels can provide a useful 

metric for potential biodiversity loss while explicitly incorporating uncertainty. Quantifying 

extinction uncertainty across species will improve the utility of global biodiversity indices for 

setting conservation targets (Watermeyer et al. 2020). The comparatively lower cost of collecting 

unmarked data, such as detection-nondetection data, has made these data types globally available 

for conservation assessments. Thus, models that can use such data to estimate not only metrics of 

population trends, but also demographic rates, are exceptionally valuable to inform global 

conservation priorities and ultimately, the effectiveness of conservation interventions. 
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Table 3.1  

National parks and basic data information used in my multi-species dynamic N-occupancy 

analysis of the antelope community including the number of years sampled, species observed, 

number of sampling sites, and the number of recorded presences across species. Species are 

numerically identified as follows: (1) Cephalophus callipygus (2) Cephalophus dorsalis (3) 

Cephalophus harveyi (4) Cephalophus leucogaster (5) Philantomba monticola (6) Nesotragus 

moschatus (7) Cephalophus nigrifrons (8) Cephalophus ogilbyi (9) Tragelaphus scriptus (10) 

Cephalophus spadix (11) Tragelaphus spekii (12) Cephalophus silvicultor. 

Park Country Years Species Sites Presences 

Korup NP 

(KRP) 
Cameroon 

2011 - 2015 

(𝑛 = 5) 

5,8,12 

(𝑛 = 3) 
60 1100 

Nouabale-Ndoki NP 

(NNNP) 

Republic of 

Congo 

2010 - 2016 

(𝑛 = 7) 

1,2,4,5,7,11,12 

(𝑛 = 7) 
60 5502 

Udzungwa NP 

(UDZ) 
Tanzania 

2009 - 2019 

(𝑛 = 11) 

3,6,9,10 

(𝑛 = 4) 
60 2970 

Bwindi NP 

(BIF) 
Uganda 

2010 - 2017 

(𝑛 = 8) 

7,9,11,12 

(𝑛 = 4) 
60 1551 

Nyungwe Forest NP 

(NFNP) 
Rwanda 

2014 - 2017 

(𝑛 = 4) 

7,9,12 

(𝑛 = 3) 
97 284 

Volcanoes NP 

(VNP) 
Rwanda 

2014 - 2016 

(𝑛 = 3) 

7,9 

(𝑛 = 2) 
60 1432 
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Figure 3.1 

Population density (i.e., abundance per site) of each species at each park across all years that a 

park was surveyed. Points show the mean abundance while the shaded area is the 95% credible 

interval around the mean. Estimates are only shown for parks and years during which sampling 

occurred and for species that were observed in each park. Each panel shows the trends for a 

specific park (labeled with the parks’ abbreviations) and species are each represented with a 

unique color. 
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Figure 3.2 

(A) Annual apparent survival probabilities for each species in the community across the network 

of parks (𝜔0,𝑖), mean survival probability at the community-level (𝜇𝜔0
; black coloring), and 

mean park-level survival probabilities for the entire community of species that reside in the park 

(𝜇𝜔0
+ 𝜀𝜔,𝑟; unique coloring). (B) Species-specific and community-level annual number of 

individuals gained (𝛾0,𝑖, 𝜇𝛾0
). (A,B) Boxplots show the mean, 50% credible intervals, and 95% 

credible intervals. The dashed-line separates the species-specific estimates from the community- 

and park-level estimates. 
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Figure 3.3 

Retrospective population density (i.e., abundance per site during study period) and projected 

population density (up to 2030) for each species within the four parks that were sampled for at 

least five years. Lines show mean estimated (solid) and projected (dashed) density while the 

shaded areas depict the 95% credible intervals. Estimates are shown from the initial sampling 

year for a given park until 2030 (with missing years interpolated for parks when data were 

unavailable). Each panel shows a different park, labeled with the parks’ abbreviations. Species 

are depicted with a unique color. 
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Figure 3.3 (cont’d) 
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CHAPTER 4: Overcoming data gaps using integrated modeling to estimate population 

abundance of a migratory species 

 

Abstract 

Effects of environmental or anthropogenic factors on migratory populations can carry 

over from one season and/or spatial location to another. However, identifying the mechanistic 

processes driving cross-seasonal effects on migratory species is difficult due to extensive 

spatiotemporal gaps in monitoring data. The continuous collection of opportunistic data by 

volunteer-based networks provides a solution to addressing these data gaps within migratory 

cycles. To estimate population abundance at broad spatiotemporal scales, I develop an integrated 

model that leverages unstructured data during seasons and spatial locations when structured 

monitoring is absent. I validate my approach through simulation and then apply the framework to 

estimate the population density of monarch butterflies throughout their spring migratory 

pathway. While climate conditions during the spring breeding seasons have been identified as a 

key driver of annual monarch population dynamics, this portion of the annual migration lacks 

structured survey data. Thus, I use my integrated model to combine all available data sources and 

reveal that vegetation and temperature conditions in eastern Texas affected the density of 

monarchs during their spring migration between 2016 and 2018. Not only do these results 

corroborate the hypothesized importance of spring migration conditions for monarchs, but they 

reveal a dynamic relationship between spring conditions and their effect on fine-scale population 

density. More broadly, this framework highlights the power of data integration for overcoming 

spatiotemporal gaps during the annual cycle of migratory species. 

Introduction 
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During the annual cycle of a species, their population may occupy only a subset of their 

range, which may vary across seasons (e.g., breeding, nonbreeding, migrating). Many threats to 

species (e.g., climate change, habitat loss) occur across broad spatiotemporal scales, but cross-

seasonal connections or carry-over effects, in which the cause of an observed effect at one season 

is linked to another (Norris 2005, Harrison et al. 2011), can complicate species conservation 

(Martin et al. 2007). Migratory species are among the most threatened species groups because of 

the challenges in enacting conservation at a given place and time when cross-seasonal 

connections regularly manifest between breeding grounds, nonbreeding grounds, and/or 

migratory pathways (Webster et al. 2002, Saunders et al. 2021, Zylstra et al. 2021). 

Parsing cross-seasonal connections into mechanistic processes requires data that span the 

spatiotemporal extent of a species annual cycle; however, structured data, which come from 

standardized monitoring programs, are often limited to spatiotemporal subsets of the migratory 

cycle (e.g., breeding grounds, non-breeding grounds) because of logistical constraints and 

elusive or cryptic behaviors that hamper data collection (Marra et al. 2015, Rushing et al. 2016). 

The continuous collection of unstructured data via volunteer-based networks (e.g., iNaturalist, 

eBird, GBIF, Map of Life) provides a means to fill in gaps from traditional data collection 

methods (Jetz et al 2012, Chandler et al. 2017). However, biases in unstructured data can impede 

the ability to develop meaningful inferences due to the lack of survey design (Dorazio 2014, 

Fithian et al. 2015).  

Integrated modeling, in which multiple data sources and types are analyzed in a single, 

unified framework, can be a useful tool to address these issues and model dynamics of migratory 

species (Pacifici et al. 2017, Zipkin & Saunders 2018, Fletcher et al. 2019, Miller et al. 2019, 

Isaac et al. 2020). This framework can overcome the limitations of structured (i.e., limited extent 
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and quantity) and unstructured (i.e., limited information content) data types to estimate 

abundance (Dorazio 2014, Farr et al. 2021). Integrated modeling has great potential for modeling 

migratory species abundance across their full annual cycle (Hostetler et al. 2015). Beyond 

estimating abundance, this framework can resolve discrepancies in estimated population trends 

from separate monitoring programs by linking seasonal dynamics within a species annual cycle 

(Saunders et al. 2019a) or be used to estimate ‘missing’ parameters that would be inestimable 

from independent analysis of each data source (Saunders et al. 2018a, Zipkin & Saunders 2018). 

Integrated models have also been used to evaluate the effects of environmental factors 

hypothesized to drive population trends across a species full annual cycle (Rushing et al. 2017, 

Rushing et al. 2021, Zylstra et al. 2021).  

Here, I develop an integrated model for a migratory species when both spatial and 

temporal data gaps exist within the annual cycle. I develop a point process model to describe 

spatiotemporal variation in abundance and use single-visit count data to identify baseline 

abundance. I then include spatiotemporal covariates and integrate opportunistic presence-only 

data to extend the analysis and estimate abundance during temporal portions of the annual cycle 

when single-visit count data are unavailable. I demonstrate the utility of this framework using a 

simulation study where abundance is estimated across space and time, despite limited structured 

sampling. I then apply our modeling framework to a case study of monarch butterflies, in which 

data integration over a species annual cycle may be the only means to address a pressing 

ecological question. 

The monarch butterfly has declined across its eastern North American range since the 

mid-1990s (Brower et al. 2012, Agrawal & Inamine 2018), and unfavorable climatic conditions 

are projected to further limit monarch population abundance (Zylstra et al. 2021). The eastern 
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North American population of monarchs has a unique, multi-generational migratory cycle. At the 

beginning of the year (January - February), adult monarchs that emerged during the previous 

year are residing in their overwintering grounds in central Mexico. In spring (March - April), 

monarchs migrate north to eastern Texas and Oklahoma where they locate milkweed host plants 

to deposit eggs. Individuals that successfully metamorphose become the first generation of the 

year and continue the migration north to the summer breeding grounds across the Midwestern 

U.S. and Ontario, Canada. Two to three more generations are produced during the summer (May 

- August) until the final generation of the year enters reproductive diapause and migrates south in 

the fall (September - October), back to the same overwintering grounds in central Mexico 

(arriving by mid-December).  

Multiple hypotheses have been proposed to explain the decline of monarchs in eastern 

North America (Thogmartin et al. 2017, Agrawal & Inamine 2018). Recent retrospective 

analyses demonstrate the importance of weather conditions during the spring breeding season 

and migratory pathway (Zipkin et al. 2012, Saunders et al. 2016, 2018b, Zylstra et al. 2021), 

highlighting a critical spatiotemporal window where population growth could either be inhibited 

or bolstered. Spring temperature and precipitation affect the recruitment of monarchs by 

impacting development and host plant resources (Zalucki 1982). Despite the importance of the 

spring migratory pathway for monarchs, structured survey data are only available in winter (non-

breeding) and summer breeding portions of their full annual cycle. I use my spatiotemporal 

integrated model to estimate monarch abundance and associated effects of environmental 

conditions during their spring migration, allowing for inference during an understudied stage of 

their migratory cycle. 

The Data 
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Structured data are those resulting from surveys that were designed with the parameter of 

interest (i.e., abundance) and target species in mind, while unstructured data are collected 

without a planned survey design or monitoring protocol. Structured data typically have high 

information content as they minimize sampling biases and are collected in ways that allow for 

the explicit estimation of observation error. However, significant logistical constraints often limit 

the quantity of structured data that can be collected. Without a planned design, unstructured data 

can be obtained more easily at large scales and thus tend to be of higher volume. However, 

unstructured data contain sampling biases and involve data collection methods that make it 

difficult to account for observation errors in analyses, leading to lower information content than 

structured data. 

Many survey designs (i.e., protocols to sample space and time) exist for structured count 

data. For simplicity, I consider single-visit surveys where the numbers of individuals are counted 

once within multiple spatial units (i.e., sites). Without replicate samples, single-visit surveys 

cannot account for imperfect detection leading to estimates of relative rather than absolute 

abundance (Knape & Korner-Nievergelt 2016). Presence-only data are the outcome of 

opportunistic, unstructured sampling where presences of the target species are recorded; 

however, the absence of the species at a given location is not recorded. Without this information, 

presence-only data cannot be used to estimate abundance without integration of structured data 

(Dorazio 2014, Farr et al. 2021). Presence-only data are also subject to sampling biases including 

nonrandom sampling and imperfect detection. 

The Model 

The purpose of our integrated model is to estimate population abundance during one or 

more seasons (henceforth notated as stage) of the annual migratory cycle when structured data 
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are limited. To estimate abundance, I use a point process to describe the distribution of 

individuals within a spatial domain 𝑆𝑡 (e.g., breeding range, non-breeding range, migratory 

pathways) occupied by the species during each stage 𝑡 = 1, … , 𝑇 within its annual cycle. As the 

spatial domain of the population may change over its annual cycle, I allow 𝑆𝑡 to vary at each 

stage. Point process models estimate the density of individuals at stage 𝑡 and point location 𝑠 

(𝑠 ∈ 𝑆𝑡) using an intensity (i.e., number of points per unit area) function, 𝜆𝑡(𝑠), where 𝑡 is 

discrete and 𝑠 is continuous. Population abundance at a given stage, 𝑁𝑡, is described as a random 

variable arising from a Poisson process, 𝑁𝑡~𝑃𝑜𝑖𝑠(Λt). Expected abundance, Λt, is calculated as 

the integral over the continuous domain 𝑆𝑡: Λ𝑡 = ∫ 𝜆𝑡(𝑠)𝑑𝑠
𝑆𝑡

. 

Spatial heterogeneity in population density 

To identify an estimate of abundance, I begin by modeling population density during a 

stage of the annual cycle where both structured and unstructured data exist; I refer to this as 

baseline population density and assume for simplicity, that this occurs at 𝑡 = 1. As population 

density varies over 𝑆𝑡 due to environmental or anthropogenic factors, I can model baseline 

population density, 𝜆𝑡=1(𝑠), with spatial covariates using an inhomogeneous point process, 

specifically a log-Gaussian Cox process (Møller et al. 1998): 

log(𝜆𝑡=1(𝑠)) = log(𝜆0) + 𝛽′𝑋𝑡=1(𝑠) + 𝜔(𝑠), eqn 1 

where 𝑋𝑡=1(𝑠) is a vector of covariates at location 𝑠 during the baseline stage, 𝛽′ is the vector of 

corresponding coefficients, and 𝜆0 is the baseline population density when covariates 𝑋 are at 

their mean values (standardized to mean of zero and standard deviation of 1). Both 𝜆𝑡=1(𝑠) and 

𝜆0 are on the log scale as their support ranges from 0 to ∞ while the support of covariates are ℝ. 

Spatial heterogeneity that is unaccounted for by covariates may be captured with a spatial 

random effect, 𝜔(𝑠). A Gaussian random field (GRF) is used to describe 𝜔(𝑠) within the log-
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Gaussian Cox process (Møller et al. 1998). The GRF is described using a multivariate normal 

distribution, 𝜔~𝑀𝑉𝑁(0, 𝜏𝑄) and implemented using a stochastic partial differential equation 

approximation via a triangulated spatial mesh (which may vary by stage) of 𝑘 = 1, … , 𝐾𝑡 nodes 

across 𝑆𝑡 (Simpson et al. 2016, Krainski et al. 2018). Here, 𝜏 is the precision hyperparameter, 

and 𝑄 is a matrix that describes the correlation structure across 𝑆𝑡. I specify correlations between 

locations in 𝑆𝑡 using a Matérn correlation function with scale parameter 𝜅 and fixed/constant 

smoothness parameter 𝑣 (Simpson et al. 2016, Krainski et al. 2018), which indicates that 

correlation among 𝜆𝑡(𝑠) values is driven by spatial proximity, with locations near one another 

having similar intensities. 

Temporal change in population density 

During subsequent stages of the annual cycle, 𝑡 = 2, … , 𝑇, population density will change 

because of demographic processes (i.e., mortality, recruitment, immigration, emigration) that are 

subject to spatiotemporally varying external factors. I extend eqn 1 to implicitly account for 

population change: 

log(𝜆𝑡(𝑠)) = log(𝜆0) + 𝛽′𝑋𝑡(𝑠) + 𝛿𝑡 + 𝜔(𝑠). eqn 2 

Here 𝑋𝑡(𝑠) is a vector of covariates for each subsequent stage. Population change not captured 

by fluctuations in covariate values is captured by 𝛿𝑡, which is the change (i.e., combined gains 

and losses) in mean population density between stages across 𝑆𝑡. 

Structured count data 

I assume counts, 𝐶𝑡𝑗, occur at set of sites (i.e., spatial locations) 𝑗 = 1, … , 𝐽 with an 

associated area 𝐷𝑗  where 𝐷1,…,𝐽 ⊂ 𝑆𝑡. Count data are also described with a log-Gaussian Cox 

process: 𝐶𝑡𝑗~𝑃𝑜𝑖𝑠 (∫ 𝜆𝑡(𝑠)𝑑𝑠
𝐷𝑗

). Count data and most structured data types cannot be used as 

direct measures of true latent abundance as there are naturally errors within the data collection 
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process. When counts are replicated, an observation process model can be included to account 

for imperfect detection (Royle 2004). However, for simplicity and similar to many structured 

monitoring programs (e.g., Breeding Bird Survey, Christmas Bird Count), I do not explicitly 

account for observation error, and use a single-visit count model which assumes constant 

detection probability over space and time to estimate relative abundance. As many count survey 

designs aggregate individual observations within a site (i.e., they do not include point location, 

𝑠𝑖, for each individual 𝑖), a change-of-support problem must be addressed (Pacifici et al. 2019). 

Given that the expected sum of Poisson random variables is equivalent to the sum of their means, 

I specify an area offset and approximate the integral over each site 𝑗 as: 𝐷𝑗𝜆̅𝑡𝑗 ≈ ∫ 𝜆𝑡(𝑠)𝑑𝑠
𝐷𝑗

. 

This assumes a homogenous process within each site (i.e., 𝜆̅𝑡𝑗 is the mean population density for 

𝐷𝑗) and a linear relationship between area and intensity (i.e., no density dependence). Counts at 

each stage 𝑡 and site 𝑗 can be modeled as: 𝐶𝑡𝑗~𝑃𝑜𝑖𝑠(𝐷𝑗𝜆̅𝑡𝑗), where log(𝜆̅𝑡𝑗) = log(𝜆0) +

𝛽′𝑋𝑡𝑗 + 𝛿𝑡 + 𝜔𝑗. Covariates, 𝑋𝑡𝑗, are summarized across each 𝐷𝑗 , and a projection matrix, 𝐴𝑘𝑗, is 

needed to interpolate the random effects, 𝜔𝑗, from each node 𝑘 in the spatial mesh to each site 𝑗 

(Krainski et al. 2018). The log-likelihood, ℓ𝐶(𝜆0, 𝛽, 𝛿𝑡, 𝜔), of the count data follows the classical 

Poisson log-likelihood. 

Unstructured presence-only data 

Presence-only data resulting from opportunistic sampling are modeled using a thinned 

log-Gaussian Cox process, 𝑌𝑡~𝑃𝑜𝑖𝑠 (∫ 𝜆𝑡(𝑠)𝑝𝑡(𝑠)𝑑𝑠
𝑆𝑡

), where 𝑌𝑡 is the number of presence-only 

observations for stage 𝑡 within spatial domain 𝑆𝑡 (Dorazio 2014, Farr et al. 2021). The thinning 

function, 𝑝𝑡(𝑠), represents the observation process that relates true population density at location 

𝑠, 𝜆𝑡(𝑠), to the presence-only data (i.e., the number of detections at location 𝑠). Imperfect 
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detection and sampling bias can be modeled within a linear predictor of 𝑝𝑡(𝑠) using a logit-link 

function, intercept (𝑝0), covariates (𝑊𝑡(𝑠)) and their effects (𝛼) that capture each of these 

observation processes (Dorazio 2014, Farr et al. 2021). 

The log-likelihood function for presence-only data is: 

ℓ𝑃𝑂(𝜆0, 𝛽, 𝛿𝑡, 𝜔, 𝑝0, 𝛼) = ∑ (− ∫
λ0∙exp(𝛽′𝑋𝑡(𝑠)+𝛿𝑡+𝜔(𝑠)+𝑝0+𝛼′𝑊𝑡(𝑠))

exp(𝑝0+𝛼′𝑊𝑡(𝑠))+1
𝑑𝑠

𝑆𝑡
+ ∑ (log(𝜆0) +

𝑌𝑡
𝑖=1

𝑇
𝑡=1

𝛿𝑡 + 𝛽′𝑋𝑡(𝑠𝑖) + 𝜔(𝑠𝑖) + 𝑝0 + 𝛼′𝑊𝑡(𝑠𝑖) − log(exp(𝑝0 + 𝛼′𝑊𝑡(𝑠𝑖)) + 1))).  eqn 3 

Within a single stage 𝑡, the log-likelihood can be decomposed in two parts. The first is the 

integral across domain 𝑆𝑡 for the thinned process. To approximate the integral over 𝑆𝑡, the 

thinned process is estimated at each of the mesh nodes 𝑘 specified above, and a weighted sum is 

calculated where the nodes are provided a spatial (i.e., area) weight 𝑤𝑘: 

∫ 𝜆(𝑠)𝑝(𝑠)𝑑𝑠
𝑆𝑡

≈ ∑ 𝑤𝑘𝜆𝑘𝑝𝑘
𝐾
𝑘=1 . eqn 4 

The second part of the log-likelihood is the contribution of all the presence-only observations 𝑖 =

1 … , 𝑌𝑡 at stage 𝑡 for each of the locations 𝑠𝑖. A projection matrix, 𝐴𝑘𝑖 is also needed to 

interpolate the random effects 𝜔𝑖 from each node 𝑘 to each presence-only observation 𝑖 at 

location 𝑠𝑖. The covariates, 𝑋𝑡 and 𝑊𝑡 need to be extracted for each node 𝑘 in addition to the 

presence-only locations 𝑠𝑖. 

Spatiotemporal data integration 

Within our framework, structured data provide an anchor point for estimating the 

baseline population density, 𝜆0, which is unidentifiable in a standalone presence-only data 

analysis (Dorazio 2014, Farr et al. 2021). I assume that structured data exist at ≥ 1 stages 𝑡 within 

a species annual cycle, whereas unstructured data exist throughout the cycle, 𝑡 = 1, … , 𝑇 (i.e., 

structured data are more limited temporally than unstructured data). During a stage when both 
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data types simultaneously exist, the structured data can be used to estimate baseline population 

density, 𝜆0. Thus, data integration creates a link between unstructured data and population 

density, which can be used to estimate population density during subsequent stages, 𝑡 = 2, … , 𝑇, 

when structured data are unavailable. If structured data exist during other portions of the annual 

cycle, they can also be integrated during an additional stage 𝑡. The implicit assumptions of this 

framework are that changes in population density are explained by covariates or temporal 

deviations (i.e., main effects of each stage, 𝛿𝑡) from baseline density. Since unstructured data are 

used to estimate 𝛿𝑡, the relationship between unstructured data and population density is assumed 

to be constant over space and time, with the thinning rate accurately capturing changes in 

observation error. 

Joint likelihood 

To create the integrated model, a joint likelihood is formed by the product of the 

likelihoods of structured (e.g., count) and unstructured (e.g., presence-only) data: 

𝐿𝐼𝐷𝑀(𝜆0, 𝛽, 𝛿𝑡, 𝜔, 𝑝0, 𝛼) = 𝐿𝐶(𝜆0, 𝛽, 𝛿𝑡, 𝜔) ∙ 𝐿𝑃𝑂(𝜆0, 𝛽, 𝛿𝑡, 𝜔, 𝑝0, 𝛼) eqn 5 

The joint likelihood of the integrated distribution model assumes independence between data 

types. However, violations of this assumption are likely to have minimal impact on precision and 

accuracy of parameter estimation and associated uncertainty (Abadi et al. 2010, Fletcher et al. 

2019). 

Simulation Study 

Scenario 

The objective of our simulation study is to evaluate whether it is reasonable to assume a 

shared baseline population density between structured and unstructured data types during 

multiple spatiotemporal stages of abundance for a hypothetical target species. I devised a 
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scenario that was applicable to migratory species, like the eastern monarch butterfly population, 

which occupies non-overlapping geographic regions during different stages (e.g., breeding, non-

breeding, migrating) of their annual cycle. I established two stages, where each stage contained a 

spatially nonoverlapping domain, 𝑆1 or 𝑆2, of distinct size and shape (Figures 4.1A, B), with 𝑆1 ≈ 

36% larger than 𝑆2. Both unstructured and structured data were available during the first stage, 

while only unstructured data were available during the second stage. I simulated presence-only 

observations for the unstructured data and single-visit counts for the structured data. 

I specified 𝜆0 to yield an expected baseline mean abundance across both 𝑆1 and 𝑆2. To 

create a realistic scenario, I created an inhomogeneous point process via a single environmental 

covariate across both domains, 𝑋𝑡(𝑠), and unmeasured spatial heterogeneity, 𝜔(𝑠). I specified a 

single covariate effect 𝛽 that was constant between stages with unique covariate values, 𝑋𝑡(𝑠) 

for each stage (Figures 4.1A, B; Appendix D). The spatial random effect, 𝜔(𝑠), was simulated 

using a GRF with a Matérn correlation function and precision (𝜏), scale (𝜅), and smoothness, (𝑣; 

fixed at 𝑣 = 1; Appendix D) hyperparameters. I then simulated the location and number of 

individuals for each stage using a Poisson point process and the corresponding intensity function. 

I simulated presence-only data (i.e., observations of individuals) for both stages (Figures 

4.1C, D) where the thinning process incorporated effect 𝛼 and a single covariate, 𝑊(𝑠), 

representing sampling bias (simulated from a GRF). I standardized the covariate by subtracting 

the minimum value and dividing by the mean, which forced areas with low sampling intensity 

(i.e., lower covariate values) towards the intercept, 𝑝0. I set 𝑝0 = logit(0.01); thus, locations at 

the lower end of the covariate range represent low or no sampling effort (i.e., 𝑝𝑡 ≈ 0). The log-

likelihood was estimated using eqns 3 and 4. I simulated single-visit counts at 25 sites for stage 1 

(Figure 4.1C). I incorporated imperfect detection to mimic a realistic scenario. For each 
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individual within a given site, I simulated their detection probability using a random Bernoulli 

trial with a spatially homogenous probability of 0.90. Without repeated surveys, count data 

cannot be used to estimate absolute abundance; thus, in this simulation, our model could only 

estimate relative abundance. 

I simulated 1000 datasets and estimated population density along with relative abundance 

to evaluate our ability to leverage structured data over space and time. Fixed effect parameters 

(𝜆0, 𝛽, 𝛿, 𝜅, 𝜏, 𝑝0, 𝛼), along with covariates 𝑋𝑡(𝑠) and 𝑊(𝑠), were constant across simulations. 

The spatial random effects, 𝜔(𝑠), and individual locations changed between simulations. 

Parameters were estimated using R-INLA, Template Model Builder, and R (Lindgren & Rue 

2015, Kristensen et al. 2016, R Core Team 2020). To assess convergence (i.e., negative log 

likelihood is at a minimum), I checked that the absolute values of the final gradient for each 

parameter were near 0 and checked that the Hessian matrix was positive definite (Skaug & 

Fournier 2006). To assess performance, I calculated root-mean-squared error, bias, and percent 

relative bias for the mean estimate of each parameter. I also derived estimates of abundance and 

associated uncertainty to compare with true abundance. Finally, I estimated abundance for each 

of the 1000 simulated datasets based only on the presence-only data to compare with estimates 

from our integrated framework to assess the improvements in precision and bias as a result of 

integrating structured and unstructured datasets. 

Results 

Our integrated framework successfully identified baseline population density, 𝜆0, with 

lower bias (-2% relative bias) than the presence-only analysis (231% relative bias; Figure 4.1E; 

see Table D.1 Appendix D for full results). The slight error in our integrated analysis likely 

reflects that I cannot adjust for imperfect detection with single-visit counts. When structured data 
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were unavailable, it was impossible to identify the intercept parameter of an intensity function, as 

has been demonstrated previously (Dorazio 2014, Farr et al. 2021). Estimates of covariate effect, 

𝛽, were accurate using both frameworks, though more so using the integrated analysis (6% 

relative bias) relative to the presence-only analysis (10% relative bias; Figure 4.1E). These 

results were similar to those from other studies comparing integrated and presence-only analyses 

(Farr et al. 2021), and the small error in the integrated analysis was likely due to each domain, 𝑆1 

and 𝑆2, only capturing a portion of the covariate range (Figure 4.1). 

Unmeasured spatial variability, 𝜔(𝑠), was similarly estimated between the integrated and 

presence-only analyses. Hyperparameters, 𝜏 and 𝜅, were likely biased as 𝑆1 and 𝑆2 only captured 

a portion of the simulation GRF for 𝜔(𝑠) (Figure 4.1). Unmeasured population change, 𝛿, was 

estimated with slight error for both the integrated (28% relative bias) and presence-only analyses 

(32% error; Figure 4.1E). Using the estimated parameters, I predicted abundance across each 

stage of the annual cycle. The integrated model was also able to estimate abundance for stage 2, 

when structured data were unavailable, with low bias (3% relative bias; Figure 4.1F). Abundance 

was also estimated with low bias in stage 1 (-9% relative bias; Figure 4.1F). Overall, abundances 

were underestimated because single-visit counts do not account for imperfect detection. 

Alternatively, abundance was overestimated in each stage (both ≈ 1×108% relative bias) when 

using only the presence-only data due to its inability to estimate 𝜆0. 

Case Study 

Population monitoring 

The vast geographic range that monarchs inhabit during their annual migratory cycle 

make them difficult to monitor throughout the year. Structured monitoring occurs annually at the 

overwintering grounds in central Mexico and across the summer breeding grounds in the 
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Midwestern U.S. and Ontario, Canada. However, structured monitoring does not occur during 

the spring breeding season nor during the spring or fall migrations. With spring conditions 

potentially becoming less favorable for monarch recruitment (Zylstra et al. 2021), a deeper 

understanding of the mechanistic links between climate and monarch abundance may aid 

decision-making for this population of conservation concern. Fortunately, multiple volunteer-

based monitoring programs collect observations of adult monarchs in the late spring and early 

summer through unstructured, opportunistic sampling. Using our integrated framework, I 

leveraged these data to estimate abundance of monarchs during spring migration and assess the 

effects of weather conditions during this critical stage. 

Spatiotemporal stages 

Our analysis encompassed the spring migration of monarchs during 2016 - 2018. I 

focused on these three years because the availability of unstructured data during the spring 

migration has increased markedly in recent years (see www.journeynorth.org). Within a given 

year, I partitioned spring migration into three distinct spatiotemporal stages. I indexed years with 

𝑟 (𝑅 = 3) and use 𝑆𝑡 (𝑇 = 3) to denote each spatiotemporal stage during spring migration in a 

given year. The spatiotemporal stages were constant across years and defined similarly to 

previous studies (Saunders et al. 2019b, Zylstra et al. 2021). Our first stage, 𝑆1, encompassed 

eastern Texas and Oklahoma (93.5˚ W to 100˚ W, 25.8˚ N to 37˚ N) between 8 March and 4 

April. This stage was specified to encompass adult monarchs arriving from Mexico as they lay 

eggs that become the first generation of the year. The next stage, 𝑆2, covered the same spatial 

extent but occurred between 19 April and 2 May, which included the sightings of adults from the 

first generation of the year post-metamorphosis. The final stage, 𝑆3, captured these adults after 

they arrived on the summer breeding grounds, an area that spans the Midwestern U.S. and 
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Ontario, Canada (74.3˚ W to 97.2˚ W, 39.8˚ N to 49.4˚ N), during the early part of the summer 

breeding season (3 May to 6 June). Although monarchs disperse outside of this area during 

summer, I focused on the Midwest because the majority of individuals that arrive on the 

overwintering grounds in Mexico originate from this region (Flockhart et al. 2017). This 

spatiotemporal stage is also important as it contains both structured and unstructured data, while 

𝑆1 and 𝑆2 contain very few to no structured sampling data. 

Datasets 

I collated presence-only data on monarchs during spring and early summer from five 

unstructured monitoring programs: North American Butterfly Association’s Butterflies I’ve Seen 

program (BIS), iNaturalist, eButterfly, Butterflies and Moths of North America, and Journey 

North. These programs allow nonscientists to report butterfly sightings (e.g., date, location, 

species, count) to an online database that is then made available to scientists. From each 

program, I extracted monarch sightings (location and date) during our study period and specified 

them as individual points (i.e., a single presence). 

For structured monitoring data, I integrated single-visit counts from five separate 

programs. Unlike unstructured monitoring, variation in protocols exist between programs. The 

first program I used was North American Butterfly Association’s Fourth of July (NFJ) surveys. 

These structured surveys are conducted annually in summer, with optimal timing depending on 

local conditions, at specified sites throughout the summer breeding range. Volunteers survey 

areas within a 25-km diameter circle and record the number of adults butterflies observed, by 

species (Oberhauser et al. 2015). I summed monarch observations among volunteers during each 

survey, resulting in a single count for each site and year 𝐶𝑡𝑗. The other four monitoring programs 

were ‘Pollard walk’ surveys from state-level butterfly monitoring networks (BMNs) in Illinois, 
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Ohio, Iowa, and Michigan. Volunteers walked fixed transects and counted the number of adult 

butterflies observed. Unlike NFJ surveys, volunteers surveyed Pollard transects multiple times 

within a year; however, I only used the first replicate of the year to avoid pseudo-replication. As 

with NFJ surveys, I summarized monarch counts during each visit to a site. The majority of 

structured sampling existed during early summer, 𝑆3, with less than 5 structured counts occurring 

during late spring, 𝑆2, each year. 

Environmental covariates 

I included environmental covariates that are likely to influence monarch recruitment and 

abundance. Monarch larvae are obligate feeders on milkweed (Asclepias spp.; Pleasants & 

Oberhauser 2013); thus, milkweed availability is likely to drive monarch recruitment. Because 

data on milkweed distribution and abundance are lacking, I used normalized difference 

vegetation index (NDVI), a measure of landscape greenness, as a proxy for milkweed 

distribution during the spring and early summer (Flockhart et al. 2013, Lemoine 2015). 

Temperature is also vital to the recruitment of monarchs as it influences the rates of development 

and survival from eggs to adults (Zalucki 1982). I used the number of growing degree days 

(GDD) to describe thermal conditions across the spring migratory pathway (Zipkin et al. 2012, 

Saunders et al. 2016, 2018, Zylstra et al. 2021). GDD is the accumulation of temperature within 

a specific range (McMaster & Wilhelm 1997) that allows for monarch development. GDD values 

accumulated from a separate start date for each stage until the date each observation or survey 

occurred. To standardize for differences in days accumulated, I summarized GDD as the average 

daily GDD. For details about how NDVI and GDD variables were calculated for each 

observation, survey location, and mesh node, see Appendix E. 

Observation covariates 
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The amount of effort expended searching for monarchs on each structured survey was 

likely to affect the number of individuals observed. Because the area searched during each 

structured survey (e.g., length of each BMN transect or area of each NFJ survey) was not 

reported, I converted the number of person hours spent surveying into area sampled based on the 

average human walking speed (5-km/hr; Browning et al. 2006) and assuming that butterflies 

within 1-m of the observer were detected. For the presence-only data, I used two covariates in 

the thinning function to account for spatiotemporal variation in sampling intensity. First, I used 

the spatiotemporal density of non-monarch butterfly (superfamily Papilionoidea) observations in 

iNaturalist, assuming that areas of high-frequency butterfly observations correlate with high 

sampling intensity. I used human population density as another proxy for sampling intensity 

because the number of observers relates to the number of people in the surrounding area 

(Geldmann et al. 2016, Appendix E). 

Data analysis 

I used the integrated modeling framework described above with a few case-specific 

modifications. I selected a 100-m2 resolution for presence-only data, and converted the area 

offset to reflect this baseline resolution. In addition to the fixed effects describing population 

change between domains within a single annual cycle (𝛿𝑡), I included a fixed effect to capture 

population change between years (𝛾𝑟). I included an interaction between each environmental 

covariate and stage to capture any nonstationarity in climatic effects (Rollinson et al. 2021). I 

also specified the effect of observation covariates to vary by stage and year to account for 

changes in their effects on sampling effort. I added quadratic effects for both NDVI and averaged 

daily GDD to account for peaks in optimal climatic conditions. For simplicity, I show the 

updated eqn 2 here and specify the entire likelihood within TMB in Appendix E: 
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log(𝜆𝑡𝑟(𝑠)) = log(𝜆0) + 𝛽1,𝑡 ∙ 𝑁𝐷𝑉𝐼𝑡𝑟(𝑠) + 𝛽2,𝑡 ∙ 𝑁𝐷𝑉𝐼𝑡𝑟(𝑠)2 + 𝛽3,𝑡 ∙ 𝐺𝐷𝐷𝑡𝑟(𝑠) + 𝛽4,𝑡 ∙

𝐺𝐷𝐷𝑡𝑟(𝑠)2 + 𝛿𝑡 + 𝛾𝑟 + 𝜔(𝑠). eqn 6 

I use location 𝑠 above as a generic description, but I estimate population density within the 

likelihood at each 𝑠𝑖, node 𝑘, and site 𝑗 (Appendix E). 

Results 

Using our integrated model, I estimated monarch population density (i.e., relative 

density) during spring migration from 2016 - 2018 when structured data were limited. In each 

year, monarch density increased across each migratory stage respectively (Figure 4.2). Climatic 

conditions along the spring migratory pathway, particularly early in migration in Texas, had 

significant effects on the density of monarchs (Figure 4.3A). I identified nonlinear effects of both 

NDVI and averaged daily GDD during the spring and early summer (Figures 4.3B, C). The 

relationship between covariates and peak monarch density differed between the spring and 

summer, shifting from higher densities under moderately warm and highly vegetated conditions 

to higher densities under cooler and less vegetated conditions (Figures 4.3D-F). Densities were 

highest when conditions were near their spatiotemporal means of a given stage (during 2016 – 

2018) of NDVI and averaged daily GDD, except for early spring when expected density peaked 

above the mean NDVI (Figure 4.3D-F). The influence of vegetation and climatic conditions was 

also weaker during the early summer compared to spring (Figure 4.3A), with monarchs likely to 

be present over a wide range of conditions (Figures 4.2C, F, I, 4.3B, C, F). 

I assessed seasonal and yearly changes in monarch densities, rather than total abundance, 

as single-visit counts do not account for imperfect detection. Monarch densities increased over 

the course of spring migration each year, with the lowest densities during early spring migration 

(Figure 4.2). Increases in densities from spring to summer (Figures 4.2A, B, D, E, G, H) reflects 
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spring breeding and recruitment of individuals as monarchs peak in abundance during the 

summer (Zylstra et al. 2021). Abundance trends across years reflect similar patterns seen in the 

overwintering grounds during 2016 – 2018, with densities considerably higher in 2018 than in 

the previous two years (Table E.1 Appendix E). 

Discussion 

In this study, I developed an integrated model using a log-Gaussian Cox process that can 

estimate abundance during multiple seasons of a species’ annual cycle when structured data are 

sparse. The continuous collection of unstructured data in combination with the comparatively 

higher information content inherent to structured data improves inferences on migratory 

populations, as compared to independent analyses of either data source. By addressing data gaps 

through data integration across multiple stages of a species’ migratory or annual cycle, our 

modeling framework can be used to elucidate cross-seasonal connections between environmental 

factors and observed patterns in population abundance and/or dynamics. 

I demonstrate both the validity and merit of my framework through a simulation study 

and by directly estimating monarch population density throughout the spring migration when 

structured data are minimal. The spring migration has been identified as a critical stage for the 

eastern monarch population because of a potential cross-seasonal effect of spring climate on the 

long-term trends and annual variation in summer monarch abundance (Saunders et al. 2016, 

Saunders et al. 2018b, Zylstra et al. 2021). Our model corroborates these long-term analyses, 

despite the use of a different spatiotemporal resolution than has been used in previous work. The 

demonstrated effects of spring NDVI and averaged daily GDD on monarch densities suggest that 

spring conditions may drive recruitment rates of monarchs in spring, either directly (by 

influencing growth rates) or indirectly (by influencing the availability of milkweed). Similar to 
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previous studies (Saunders et al. 2016, Zylstra et al. 2021), monarch densities were highest when 

conditions were mild and near the spatiotemporal (space and year) average of a given stage. 

One of the novel findings from our analysis relates to nonstationarity of the effects of 

environmental conditions on monarch population densities (i.e., when mean effects or their 

covariance are not constant across space or time; Rollinson et al. 2021) in spring vs early 

summer, with a shift from peak densities under warmer and greener conditions vs. cooler and 

less vegetated conditions, respectively (Figure 3D-F). The initiative to understand cross-seasonal 

processes has unveiled the frequency of nonstationary effects over space and time within ecology 

(Rollinson et al. 2021). In our case study, I explicitly captured nonstationarity over time using a 

temporal interaction for the covariates and implicitly captured it over space as the spring and 

summer domains were spatially distinct. Given the point process foundation of our model, it can 

be adapted to situations when stationarity is violated by specifying more complex statistical 

structures (Jarzyna et al. 2014, Ingebrigtsen et al. 2014, Lindgren & Rue 2015, Krainski et al. 

2018). The ability to incorporate nonstationarity and spatial random effects into our framework 

helps maintain the assumption of a baseline population density by increasing the model’s 

flexibility in explaining spatiotemporal variation and dependences. 

Our integrated framework, which uses unstructured data to estimate population size 

during stages when structured data are unavailable, relies on one critical assumption: that the 

relationship between unstructured data and population density is constant over space and time, 

with the thinning rate accurately capturing changes in observation error. Thus, valid inferences 

rely on a model that properly accounts for the observation processes through which the data were 

collected. These observational covariates are critical to properly estimating both population 

density and the effect of the environmental covariates, and should be carefully examined. 
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Unstructured data use a thinned point process with relevant covariates; however, relevant 

covariates may be hard to identify or measure (Kéry & Royle 2020). The use of covariates to 

correct for sampling bias of presence-only observations is the subject of much debate (Troudet et 

al. 2017) and warrants further study (Kelling et al. 2019). I selected observation covariates 

following other presence-only analyses (Geldmann et al. 2016, Momeni-Dehaghi et al. 2021), 

but improper selection can lead to biased inferences (Ries et al. 2019, Wepprich 2019). Log-

Gaussian Cox processes may be a solution, as they are powerful tools to estimate spatiotemporal 

patterns in both ecological and observational processes and can be specified to improve 

estimation where spatial biases in sampling occur (Tang et al. 2021). Preferably, structured data 

should formally incorporate methods to account for error, such as imperfect detection. 

In addition to selecting relevant covariates to capture variation in observational and 

biological patterns, other choices made in the modeling process can affect inferences. Covariates 

must be summarized over space and time, and the scale at which summarizing occurs could 

influence our understanding of the effects of climate or other environmental factors on species 

populations. Emerging evidence from macrosystems ecology indicates that multi-scale 

connections may drive population patterns, and thus, the role of scale is critical in capturing 

cryptic yet important ecological processes (Fei et al. 2015). Inferences will also be affected by 

the unit of measurement (1-km2 vs 1×6-m2) for the area offset, which accounts for effort in terms 

of the area sampled by structured surveys. The weight (log likelihood values) of the presence 

only data source is determined by the spatial resolution of the model, which is indirectly set by 

the area offset unit of measurement. Finally, data weighting between structured and unstructured 

sources can be a concern when structured surveys are unable to anchor baseline density estimates 

by incorporating imperfect detection. I encourage future practitioners to conduct sensitivity 
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analyses to ensure that inference is invariant to these choices or choices are made with biological 

support. 

My spatiotemporal integrated model offers a powerful approach for estimating densities 

of migratory species that range over vast extents, as well as covariate effects on those densities. 

The spatial point process framework also allows for easy incorporation of techniques for 

addressing nonstationary processes, which is a growing issue in macrosystems research. Cross-

seasonal processes and data gaps are not only a challenge for migratory species. Thus, my 

modeling framework can be applied to other species or systems that would benefit from data 

integration to provide a complete picture of ecological processes operating across broad spatial 

ranges and the full annual cycle.  
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Figure 4.1 

Figure 1. (A-D) Visualization of my simulation study for the spatiotemporal integrated model 

with stage, domain 𝑆1 on the left (A, C) and stage, domain 𝑆2 on the right (B, D) with dashed 

lines indicating the extent of each domain. The top row (A, B) depicts true population abundance 

and distribution with black dots representing observations of individuals. The middle row (C, D) 

shows the data for each stage within each domain. (C) 𝑆1 contains presence-only data (white 

dots) and 25 sites (dashed circles) with single-visit counts (magnitude of counts are within 

dashed circles). (D) 𝑆2 contains only presence-only data. (A-D) Background gradient indicates 

the expected population density (individuals per unit area) for each domain and stage (A, C are 

the same [stage 1] and B, D are the same [stage 2]). (E, F) Simulation results showing bias 

(estimated minus true value) from each of the integrated and presence-only models. Bottom left 

(E) shows results for biases in estimates of the baseline population density (𝜆0), covariate effect 

(𝛽), and population change (𝛿). Bottom right (F) shows results for biases in estimates of 

abundance for each domain and stage.  
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Figure 4.1 (cont’d) 
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Figure 4.2 

Predicted population density of monarchs from 2016 to 2018 during their spring migration. 

Density values were calculated using parameter estimates and values of NDVI and daily GDD 

averaged across each stage at a given location and year. Population density was estimated and 

reported at a resolution of 100-m2. Rows and columns correspond to years and stages, 

respectively. 
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Figure 4.3 

Effects of NDVI and averaged daily GDD on monarch population density. Top left (A) is the 

parameter estimates (mean and 95% confidence intervals) for the linear and quadratic effects of 

NDVI and averaged daily GDD at each stage. Middle left (B, C) is the estimated marginal effects 

(mean and 95% confidence intervals) of NDVI (B) and averaged daily GDD (C) on monarch 

population density at each stage, respectively. Right column (D-F) is the marginal effect (mean) 

of both NDVI and averaged daily GDD on monarch population density for early spring (D), late 

spring (E), and early summer (F). Crosses indicate observed values between 2016 and 2018 and 

dashed lines indicate the observed mean values during 2016 - 2018. 
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Figure 4.3 (cont’d) 
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APPENDICES
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APPENDIX A: Additional application details 

For the multi-species dynamic N-occupancy model application, I assessed multiple 

anthropogenic and environmental factors hypothesized to affect the antelope community’s 

abundance and demographic rates. Though the final model did not contain covariates on the 

biological process, I describe the various covariates that I considered including and an 

explanation of why I refrained from including covariates in the final model. 

Anthropogenic covariates 

Humans may play a role in the spatial distributions and survival of antelope species 

within my target community as antelopes are often poached as part of the bushmeat trade 

(Newing 2001). I summarized multiple covariates as a proxy for hunting pressure because direct 

metrics were not available. I used human population density outside of parks and distance to 

edge as proxies for anthropogenic disturbance. Because human population density was either 

high (> 300 humans/km2) or low (< 35 humans/km2) at each park, I specified human density as 

a binary variable (i.e., 0 for low density [UDZ, NNNP, KRP] and 1 for high density [VNP, BIF, 

NFNP]). Distance to edge was used as a proxy for hunting pressure and other human 

disturbance. Distances were recorded from each camera trap site to the nearest accessible edge 

(e.g., public road, navigable river, park boundary adjacent to human land use). 

Environmental covariates 

Though previous research on tropical rainforest dwelling antelopes suggests neutral 

responses to weather conditions (O’Brien et al. 2020), ongoing climate change continues to be a 

concern for tropical rainforest (Phillips et al. 2009, Sullivan et al. 2020). I characterized local 

weather (i.e., rainfall) at the site-level to assess the potential influence of climate change on the 

antelope community. I hypothesized that climate may indirectly affect the population status and 
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trends of antelopes by altering forest productivity and resulting food availability (e.g., foliage, 

fruit). I used CHIRPS (Climate Hazards group Infrared Precipitation with Stations) annual 

precipitation values (mm), which combines satellite and station data to interpolate localized (i.e., 

0.05° resolution) rainfall (Funk et al. 2015). Antelope species within this community vary in 

their diet composition (i.e., percent of foliage, fruit, grass); thus, each species is tied to a different 

forest types and corresponding elevation range (Kingdon 2015). To capture this variation, I also 

evaluated a site-level elevation covariate. 

Model building 

To interpret multiple covariate effects, I standardized each covariate to have a mean of zero and 

standard deviation of one. For site-level covariates I standardized across all parks as 

standardizing within each park prevented meaningful inference. During model building I first 

constructed a null model. To determine a final model, I attempted to add covariates to 

abundance, survival, and gains using a forward selection approach (Saunders et al. 2019b, 2019c, 

Saunders et al. 2021). However, parameter unidentifiability prevented this approach from 

working as convergence (Rhat < 1.2) for many species-specific effects was not achievable. I 

hypothesize that large variation in covariate values across parks prevented accurate estimation of 

effects. Ideally, population-specific (i.e., interaction between a given covariate, species, and 

park) effects could account for this issue, but data volumes for many parks were constrained by 

short temporal extents (Table 3.1). I also ruled out scaling up site-level covariates (i.e., mean of a 

park) to the park-level as the low number of parks (i.e., six in total) did not allow covariates to 

accurately represent (i.e., proxy for true relationship) the anthropogenic or environmental process 

of interest. Ultimately, I settled on using park-level random effects on initial abundance and 

apparent survival. The high similarities between sites within a park and the large variations that I 
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observed with covariate values among parks led us to determine that park-level random effects 

were the most practical solution. 
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APPENDIX B: Nimble model code 

Nimble code to fit the ‘multi-species dynamic N-occupancy model’ for the antelope 

community across the network of TEAM sites within national parks between 2009-2019. Both 

the retrospective and projected analysis code are shown below. 

Definitions of constants 

nparks: number of national parks (6). 

Nspecs: number of species (12). 

parkS & parkE: indicates the parks where a species was observed (varies by species). 

nsite: number of sites within a park (varies by park). 

nstart & nend: indicates the years when a park was surveyed (varies by parks). 

nyears: number of years for projection corresponding to 2030 (22). 

nreps: number of replicates (6). 

 

Retrospective model code 

model.code <- nimbleCode({ 

 

#-Priors-# 

 

# Detection hyperparameters 

mu.a0 ~ dunif(0, 1) # Community-level intercept on probability scale 

mu.a0L <- logit(mu.a0) # Community-level intercept on logit scale 

tau.a0 ~ dgamma(0.1, 0.1) # Community-level precision 

 

# Effect of effort (days sampled) 

alpha1 ~ dnorm(0, 0.1) 

 

# Initial abundance hyperparameters 

mu.b0 ~ dnorm(0, 0.1) # Community-level intercept on log scale 

tau.b0 ~ dgamma(0.1, 0.1) # Community-level precision 

 

# Apparent survival hyperparameters 

mu.o0 ~ dunif(0, 1) # Community-level intercept on probability scale 

mu.o0L <- logit(mu.o0) # Community-level intercept on logit scale 

tau.o0 ~ dgamma(0.1, 0.1) # Community-level precision 

 

# Gains hyperparameters 

mu.g0 ~ dnorm(0, 0.1) # Community-level intercept on log scale 

tau.g0 ~ dgamma(0.1, 0.1) # Community-level precision 

 

# Precison of park-level random effect on initial abundance 

tau.eps.l ~ dgamma(0.1, 0.1) 

 

# Precison of park-level random effect on apparent survival 

tau.eps.o ~ dgamma(0.1, 0.1) 
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for(r in 1:nparks){ 

 

# Park-level random effect on initial abundance 

eps.l[r] ~ dnorm(0, tau.eps.l) 

 

# Park-level random effect on apparent survival 

eps.o[r] ~ dnorm(0, tau.eps.o) 

 

# Predicted community-level apparent survival for each park  

logit(park.surv[r]) <- mu.o0L + eps.o[r] 

 

} # End r 

 

for(i in 1:nspecs){ 

 

# Species-specific intercept on detection 

alpha0[i] ~ dnorm(mu.a0L, tau.a0) 

 

# Species-specific intercept on initial abundance 

beta0[i] ~ dnorm(mu.b0, tau.b0) 

 

# Species-specific intercept on apparent survival 

omega0[i] ~ dnorm(mu.o0L, tau.o0) 

 

# Species-specific intercept on gains 

gamma0[i] ~ dnorm(mu.g0, tau.g0) 

 

for(r in parkS[i]:parkE[i]){ 

 

# Predicted population-level apparent survival 

logit(pop.surv[r,i]) <- omega0[i] + eps.o[r] 

 

for(j in 1:nsite[r]){ 

 

# Linear predictor for initial abundance 

log(lambda[j,r,i]) <- beta0[i] + eps.l[r] 

 

# Initial abundance 

N[nstart[r],j,r,i] ~ dpois(lambda[j,r,i]) 

 

for(k in 1:nreps){ 

 

# Linear predictor for detection probability (in year 1) 

logit(r[k,nstart[r],j,r,i]) <- alpha0[i] + alpha1 * days[k,nstart[r],j,i] 

 

# Observation process (in year 1) 

y[k,nstart[r],j,r,i] ~ dbern(p[k,nstart[r],j,r,i]) 

 

# Site level detection (N-occupancy parameterization) (in year 1) 

p[k,nstart[r],j,r,i] <- 1 - pow((1 - r[k,nstart[r],j,r,i]), 

N[nstart[r],j,r,i]) 

 

} # End k 

 

for(t in (nstart[r]+1):nend[r]){ 

 

for(k in 1:nreps){ 
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# Linear predictor for detection probability (in year t+1) 

logit(r[k,t,j,r,i]) <- alpha0[i] + alpha1 * days[k,t,j,i] 

 

# Observation process (in year t+1) 

y[k,t,j,r,i] ~ dbern(p[k,t,j,r,i]) 

 

# Observation process (in year t+1) 

p[k,t,j,r,i] <- 1 - pow((1 - r[k,t,j,r,i]), N[t,j,r,i]) 

 

} # End k 

 

# Linear predictor for apparent survival 

logit(omega[t-1,j,r,i]) <- omega0[i] + eps.o[r] 

 

# Biological process 

N[t,j,r,i] <- S[t-1,j,r,i] + G[t-1,j,r,i] 

 

# Apparent survival 

S[t-1,j,r,i] ~ dbin(omega[t-1,j,r,i], N[t-1,j,r,i]) 

 

# Gains 

G[t-1,j,r,i] ~ dpois(gamma[t-1,j,r,i]) 

 

# Linear predictor for gains 

log(gamma[t-1,j,r,i]) <- gamma0[i] 

 

} # End t 

 

} # End j 

 

for(t in nstart[r]:nend[r]){ 

 

# Population (species-park) abundance per year  

Nhat[t,r,i] <- sum(N[t,1:nsite[r],r,i]) 

 

} # End t 

 

} # End r 

 

} # End s 

 

}) 

 

Prospective model code 

model.code <- nimbleCode({ 

 

#-Priors-# 

 

# Detection hyperparameters 

mu.a0 ~ dunif(0, 1) # Community-level intercept on probability scale 

mu.a0L <- logit(mu.a0) # Community-level intercept on logit scale 

tau.a0 ~ dgamma(0.1, 0.1) # Community-level precision 
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# Effect of effort (days sampled) 

alpha1 ~ dnorm(0, 0.1) 

 

# Initial abundance hyperparameters 

mu.b0 ~ dnorm(0, 0.1) # Community-level intercept on log scale 

tau.b0 ~ dgamma(0.1, 0.1) # Community-level precision 

 

# Apparent survival hyperparameters 

mu.o0 ~ dunif(0, 1) # Community-level intercept on probability scale 

mu.o0L <- logit(mu.o0) # Community-level intercept on logit scale 

tau.o0 ~ dgamma(0.1, 0.1) # Community-level precision 

 

# Gains hyperparameters 

mu.g0 ~ dnorm(0, 0.1) # Community-level intercept on log scale 

tau.g0 ~ dgamma(0.1, 0.1) # Community-level precision 

 

# Precison of park-level random effect on initial abundance 

tau.eps.l ~ dgamma(0.1, 0.1) 

 

# Precison of park-level random effect on apparent survival 

tau.eps.o ~ dgamma(0.1, 0.1) 

 

for(r in 1:nparks){ 

 

# Park-level random effect on initial abundance 

eps.l[r] ~ dnorm(0, tau.eps.l) 

 

# Park-level random effect on apparent survival 

eps.o[r] ~ dnorm(0, tau.eps.o) 

 

# Predicted community-level apparent survival for each park  

logit(park.surv[r]) <- mu.o0L + eps.o[r] 

 

} # End r 

 

for(i in 1:nspecs){ 

 

# Species-specific intercept on detection 

alpha0[i] ~ dnorm(mu.a0L, tau.a0) 

 

# Species-specific intercept on initial abundance 

beta0[i] ~ dnorm(mu.b0, tau.b0) 

 

# Species-specific intercept on apparent survival 

omega0[i] ~ dnorm(mu.o0L, tau.o0) 

 

# Species-specific intercept on gains 

gamma0[i] ~ dnorm(mu.g0, tau.g0) 

 

for(r in parkS[i]:parkE[i]){ 

 

# Predicted population-level apparent survival 

logit(pop.surv[r,i]) <- omega0[i] + eps.o[r] 

 

for(j in 1:nsite[r]){ 

 

# Linear predictor for initial abundance 
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log(lambda[j,r,i]) <- beta0[i] + eps.l[r] 

 

# Initial abundance 

N[nstart[r],j,r,i] ~ dpois(lambda[j,r,i]) 

 

for(k in 1:nreps){ 

 

# Linear predictor for detection probability (in year 1) 

logit(r[k,nstart[r],j,r,i]) <- alpha0[i] + alpha1 * days[k,nstart[r],j,i] 

 

# Observation process (in year 1) 

y[k,nstart[r],j,r,i] ~ dbern(p[k,nstart[r],j,r,i]) 

 

# Site level detection (N-occupancy parameterization) (in year 1) 

p[k,nstart[r],j,r,i] <- 1 - pow((1 - r[k,nstart[r],j,r,i]), 

N[nstart[r],j,r,i]) 

 

} # End k 

 

for(t in (nstart[r]+1):nend[r]){ 

 

for(k in 1:nreps){ 

 

# Linear predictor for detection probability (in year t+1) 

logit(r[k,t,j,r,i]) <- alpha0[i] + alpha1 * days[k,t,j,i] 

 

# Observation process (in year t+1) 

y[k,t,j,r,i] ~ dbern(p[k,t,j,r,i]) 

 

# Observation process (in year t+1) 

p[k,t,j,r,i] <- 1 - pow((1 - r[k,t,j,r,i]), N[t,j,r,i]) 

 

} # End k 

 

# Linear predictor for apparent survival 

logit(omega[t-1,j,r,i]) <- omega0[i] + eps.o[r] 

 

# Biological process 

N[t,j,r,i] <- S[t-1,j,r,i] + G[t-1,j,r,i] 

 

# Apparent survival 

S[t-1,j,r,i] ~ dbin(omega[t-1,j,r,i], N[t-1,j,r,i]) 

 

# Gains 

G[t-1,j,r,i] ~ dpois(gamma[t-1,j,r,i]) 

 

# Linear predictor for gains 

log(gamma[t-1,j,r,i]) <- gamma0[i] 

 

} # End t 

 

for(t in (nend[r]+1):nyears){ 

 

# Linear predictor for apparent survival 

logit(omega[t-1,j,r,i]) <- omega0[i] + eps.o[r] 

 

# Biological process 
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N[t,j,r,i] <- S[t-1,j,r,i] + G[t-1,j,r,i] 

 

# Apparent survival 

S[t-1,j,r,i] ~ dbin(omega[t-1,j,r,i], N[t-1,j,r,i]) 

 

# Gains 

G[t-1,j,r,i] ~ dpois(gamma[t-1,j,r,i]) 

 

# Linear predictor for gains 

log(gamma[t-1,j,r,i]) <- gamma0[i] 

 

} # End t 

 

} # End j 

 

for(t in nstart[r]:nyears){ 

 

# Population (species-park) abundance per year  

Nhat[t,r,i] <- sum(N[t,1:nsite[r],r,i]) 

 

} # End t 

 

} # End r 

 

} # End s 

 

}) 
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APPENDIX C: Model output 

Output from the multi-species dynamic N-occupancy model. For the retrospective 

analysis I provide estimates of annual population growth and population abundance during the 

study period. I also report species-specific, community-level, and park-level demographic rates. 

For the population projection and Bayesian viability analysis, I provide estimate of the quasi-

extinction probability of each population. 

Retrospective analysis 

Table C.1 

Mean annual population growth rates (i.e., geometric mean) with 95% credible intervals of each 

population (species-park combination) during the study period. 

National park Species Annual population growth 

rate 

UDZ C. harveyi 1.04 (CI 1.02, 1.06) 

UDZ N. moschatus 1.00 (CI 0.98, 1.02) 

UDZ T. scriptus 1.19 (CI 1.09, 1.26) 

UDZ C. spadix 1.01 (CI 0.98, 1.04) 

VNP C. nigrifrons 1.07 (CI 1.03, 1.10) 

VNP T. scriptus 1.01 (CI 0.99, 1.03) 

NFNP C. nigrifrons 1.41 (CI 1.29, 1.54) 

NFNP T. scriptus 1.41 (CI 0.91, 2.08) 

NFNP C. silvicultor 1.54 (CI 1.21, 1.94) 

BIF C. nigrifrons 1.08 (CI 1.06, 1.11) 

BIF T. scriptus 1.12 (CI 0.96, 1.29) 

BIF T. spekii 1.16 (CI 0.97, 1.36) 

BIF C. silvicultor 1.06 (CI 1.03, 1.09) 

NNNP C. callipygus 0.93 (CI 0.90, 0.95) 

NNNP C. dorsalis 0.96 (CI 0.93, 1.00) 

NNNP C. leucogaster 1.49 (CI 1.33, 1.69) 

NNNP P. monticola 0.92 (CI 0.90, 0.95) 

NNNP C. nigrifrons 1.07 (CI 0.89, 1.26) 

NNNP T. spekii 1.02 (CI 0.81, 1.23) 

NNNP C. silvicultor 0.94 (CI 0.91, 0.97) 

KRP P. monticola 1.03 (CI 0.98, 1.08) 

KRP C. ogilbyi 1.00 (CI 0.93, 1.07) 
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Table C1 (cont’d) 

KRP C. silvicultor 0.92 (CI 0.67, 1.19) 
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Table C.2 

Mean annual site-level abundance with 95% credible intervals of each population across the 

study period (including only the years sampled for each population/park combination). 

National park Species Year Site-level abundance 

KRP P. monticola 2011 1.49 (CI 1.28, 1.73) 

KRP P. monticola 2012 1.59 (CI 1.37, 1.83) 

KRP P. monticola 2013 2.02 (CI 1.77, 2.32) 

KRP P. monticola 2014 1.90 (CI 1.65, 2.18) 

KRP P. monticola 2015 1.68 (CI 1.43, 1.95) 

KRP C. ogilbyi 2011 1.24 (CI 0.97, 1.60) 

KRP C. ogilbyi 2012 1.17 (CI 0.92, 1.50) 

KRP C. ogilbyi 2013 1.30 (CI 1.05, 1.62) 

KRP C. ogilbyi 2014 1.23 (CI 0.97, 1.57) 

KRP C. ogilbyi 2015 1.23 (CI 0.95, 1.58) 

KRP C. silvicultor 2011 0.06 (CI 0.03, 0.12) 

KRP C. silvicultor 2012 0.06 (CI 0.05, 0.10) 

KRP C. silvicultor 2013 0.06 (CI 0.03, 0.10) 

KRP C. silvicultor 2014 0.05 (CI 0.03, 0.08) 

KRP C. silvicultor 2015 0.04 (CI 0.02, 0.10) 

NNNP C. callipygus 2010 4.69 (CI 3.87, 5.65) 

NNNP C. callipygus 2011 3.57 (CI 3.02, 4.23) 

NNNP C. callipygus 2012 2.92 (CI 2.47, 3.43) 

NNNP C. callipygus 2013 2.97 (CI 2.52, 3.48) 

NNNP C. callipygus 2014 3.05 (CI 2.57, 3.58) 

NNNP C. callipygus 2015 2.61 (CI 2.17, 3.10) 

NNNP C. callipygus 2016 2.94 (CI 2.45, 3.48) 

NNNP C. dorsalis 2010 2.10 (CI 1.75, 2.52) 

NNNP C. dorsalis 2011 1.69 (CI 1.42, 2.02) 

NNNP C. dorsalis 2012 1.75 (CI 1.47, 2.08) 

NNNP C. dorsalis 2013 1.90 (CI 1.63, 2.22) 

NNNP C. dorsalis 2014 1.71 (CI 1.45, 2.02) 

NNNP C. dorsalis 2015 1.57 (CI 1.30, 1.88) 

NNNP C. dorsalis 2016 1.69 (CI 1.40, 2.02) 

NNNP C. leucogaster 2010 0.01 (CI 0.00, 0.03) 

NNNP C. leucogaster 2011 0.04 (CI 0.00, 0.12) 

NNNP C. leucogaster 2012 0.14 (CI 0.07, 0.23) 

NNNP C. leucogaster 2013 0.25 (CI 0.18, 0.35) 

NNNP C. leucogaster 2014 0.28 (CI 0.20, 0.40) 

NNNP C. leucogaster 2015 0.23 (CI 0.13, 0.37) 

NNNP C. leucogaster 2016 0.23 (CI 0.13, 0.38) 
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Table C2 (cont’d) 

NNNP P. monticola 2010 6.21 (CI 5.32, 7.18) 

NNNP P. monticola 2011 4.70 (CI 4.10, 5.37) 

NNNP P. monticola 2012 4.19 (CI 3.67, 4.80) 

NNNP P. monticola 2013 4.19 (CI 3.68, 4.77) 

NNNP P. monticola 2014 4.19 (CI 3.68, 4.75) 

NNNP P. monticola 2015 3.59 (CI 3.10, 4.15) 

NNNP P. monticola 2016 3.78 (CI 3.28, 4.33) 

NNNP C. nigrifrons 2010 0.05 (CI 0.03, 0.08) 

NNNP C. nigrifrons 2011 0.01 (CI 0.00, 0.05) 

NNNP C. nigrifrons 2012 0.08 (CI 0.07, 0.10) 

NNNP C. nigrifrons 2013 0.01 (CI 0.00, 0.05) 

NNNP C. nigrifrons 2014 0.02 (CI 0.00, 0.05) 

NNNP C. nigrifrons 2015 0.05 (CI 0.02, 0.10) 

NNNP C. nigrifrons 2016 0.07 (CI 0.02, 0.15) 

NNNP T. spekii 2010 0.07 (CI 0.03, 0.18) 

NNNP T. spekii 2011 0.06 (CI 0.00, 0.15) 

NNNP T. spekii 2012 0.07 (CI 0.03, 0.15) 

NNNP T. spekii 2013 0.05 (CI 0.00, 0.15) 

NNNP T. spekii 2014 0.06 (CI 0.00, 0.15) 

NNNP T. spekii 2015 0.09 (CI 0.05, 0.18) 

NNNP T. spekii 2016 0.08 (CI 0.02, 0.18) 

NNNP C. silvicultor 2010 2.17 (CI 1.87, 2.52) 

NNNP C. silvicultor 2011 2.08 (CI 1.83, 2.37) 

NNNP C. silvicultor 2012 1.99 (CI 1.77, 2.23) 

NNNP C. silvicultor 2013 1.84 (CI 1.62, 2.08) 

NNNP C. silvicultor 2014 1.72 (CI 1.52, 1.97) 

NNNP C. silvicultor 2015 1.54 (CI 1.33, 1.77) 

NNNP C. silvicultor 2016 1.50 (CI 1.28, 1.73) 

UDZ C. harveyi 2009 1.96 (CI 1.68, 2.28) 

UDZ C. harveyi 2010 1.99 (CI 1.73, 2.30) 

UDZ C. harveyi 2011 2.12 (CI 1.85, 2.43) 

UDZ C. harveyi 2012 2.19 (CI 1.92, 2.52) 

UDZ C. harveyi 2013 2.31 (CI 2.03, 2.65) 

UDZ C. harveyi 2014 2.47 (CI 2.17, 2.83) 

UDZ C. harveyi 2015 2.54 (CI 2.22, 2.92) 

UDZ C. harveyi 2016 2.65 (CI 2.32, 3.03) 

UDZ C. harveyi 2017 2.77 (CI 2.43, 3.17) 

UDZ C. harveyi 2018 2.80 (CI 2.43, 3.23) 

UDZ C. harveyi 2019 2.91 (CI 2.52, 3.35) 

UDZ N. moschatus 2009 0.91 (CI 0.73, 1.12) 

UDZ N. moschatus 2010 0.88 (CI 0.72, 1.07) 
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Table C2 (cont’d) 

UDZ N. moschatus 2011 0.86 (CI 0.70, 1.03) 

UDZ N. moschatus 2012 0.89 (CI 0.73, 1.07) 

UDZ N. moschatus 2013 1.02 (CI 0.88, 1.18) 

UDZ N. moschatus 2014 1.05 (CI 0.90, 1.22) 

UDZ N. moschatus 2015 1.02 (CI 0.87, 1.18) 

UDZ N. moschatus 2016 0.96 (CI 0.82, 1.12) 

UDZ N. moschatus 2017 0.95 (CI 0.80, 1.10) 

UDZ N. moschatus 2018 0.90 (CI 0.75, 1.07) 

UDZ N. moschatus 2019 0.91 (CI 0.75, 1.08) 

UDZ T. scriptus 2009 0.01 (CI 0.00, 0.05) 

UDZ T. scriptus 2010 0.06 (CI 0.05, 0.08) 

UDZ T. scriptus 2011 0.06 (CI 0.03, 0.10) 

UDZ T. scriptus 2012 0.13 (CI 0.12, 0.15) 

UDZ T. scriptus 2013 0.08 (CI 0.03, 0.13) 

UDZ T. scriptus 2014 0.11 (CI 0.07, 0.15) 

UDZ T. scriptus 2015 0.13 (CI 0.10, 0.17) 

UDZ T. scriptus 2016 0.12 (CI 0.08, 0.17) 

UDZ T. scriptus 2017 0.11 (CI 0.08, 0.15) 

UDZ T. scriptus 2018 0.10 (CI 0.07, 0.15) 

UDZ T. scriptus 2019 0.13 (CI 0.10, 0.17) 

UDZ C. spadix 2009 1.27 (CI 0.93, 1.67) 

UDZ C. spadix 2010 1.25 (CI 0.93, 1.63) 

UDZ C. spadix 2011 1.25 (CI 0.93, 1.63) 

UDZ C. spadix 2012 1.20 (CI 0.85, 1.60) 

UDZ C. spadix 2013 1.24 (CI 0.92, 1.63) 

UDZ C. spadix 2014 1.26 (CI 0.93, 1.67) 

UDZ C. spadix 2015 1.29 (CI 0.93, 1.70) 

UDZ C. spadix 2016 1.38 (CI 1.07, 1.78) 

UDZ C. spadix 2017 1.40 (CI 1.05, 1.80) 

UDZ C. spadix 2018 1.38 (CI 1.02, 1.82) 

UDZ C. spadix 2019 1.38 (CI 1.00, 1.83) 

BIF C. nigrifrons 2010 0.75 (CI 0.67, 0.85) 

BIF C. nigrifrons 2011 0.82 (CI 0.72, 0.93) 

BIF C. nigrifrons 2012 0.95 (CI 0.85, 1.08) 

BIF C. nigrifrons 2013 0.72 (CI 0.60, 0.85) 

BIF C. nigrifrons 2014 0.83 (CI 0.72, 0.95) 

BIF C. nigrifrons 2015 0.98 (CI 0.85, 1.12) 

BIF C. nigrifrons 2016 1.42 (CI 1.28, 1.57) 

BIF C. nigrifrons 2017 1.33 (CI 1.17, 1.50) 

BIF T. scriptus 2010 0.02 (CI 0.00, 0.07) 

BIF T. scriptus 2011 0.01 (CI 0.00, 0.03) 
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Table C2 (cont’d) 

BIF T. scriptus 2012 0.01 (CI 0.00, 0.03) 

BIF T. scriptus 2013 0.04 (CI 0.03, 0.07) 

BIF T. scriptus 2014 0.04 (CI 0.03, 0.07) 

BIF T. scriptus 2015 0.04 (CI 0.02, 0.07) 

BIF T. scriptus 2016 0.06 (CI 0.05, 0.08) 

BIF T. scriptus 2017 0.07 (CI 0.05, 0.10) 

BIF T. spekii 2010 0.04 (CI 0.02, 0.10) 

BIF T. spekii 2011 0.04 (CI 0.02, 0.12) 

BIF T. spekii 2012 0.05 (CI 0.02, 0.12) 

BIF T. spekii 2013 0.05 (CI 0.02, 0.13) 

BIF T. spekii 2014 0.06 (CI 0.02, 0.15) 

BIF T. spekii 2015 0.08 (CI 0.05, 0.17) 

BIF T. spekii 2016 0.09 (CI 0.05, 0.17) 

BIF T. spekii 2017 0.10 (CI 0.05, 0.20) 

BIF C. silvicultor 2010 1.02 (CI 0.88, 1.20) 

BIF C. silvicultor 2011 1.03 (CI 0.90, 1.18) 

BIF C. silvicultor 2012 1.06 (CI 0.92, 1.23) 

BIF C. silvicultor 2013 1.22 (CI 1.07, 1.38) 

BIF C. silvicultor 2014 1.42 (CI 1.27, 1.58) 

BIF C. silvicultor 2015 1.35 (CI 1.17, 1.53) 

BIF C. silvicultor 2016 1.44 (CI 1.27, 1.63) 

BIF C. silvicultor 2017 1.53 (CI 1.35, 1.73) 

NFNP C. nigrifrons 2014 0.29 (CI 0.25, 0.34) 

NFNP C. nigrifrons 2015 0.53 (CI 0.42, 0.64) 

NFNP C. nigrifrons 2016 0.65 (CI 0.52, 0.79) 

NFNP C. nigrifrons 2017 0.81 (CI 0.65, 0.99) 

NFNP T. scriptus 2014 0.02 (CI 0.00, 0.06) 

NFNP T. scriptus 2015 0.04 (CI 0.01, 0.08) 

NFNP T. scriptus 2016 0.05 (CI 0.02, 0.09) 

NFNP T. scriptus 2017 0.06 (CI 0.02, 0.10) 

NFNP C. silvicultor 2014 0.07 (CI 0.03, 0.11) 

NFNP C. silvicultor 2015 0.11 (CI 0.05, 0.18) 

NFNP C. silvicultor 2016 0.15 (CI 0.08, 0.24) 

NFNP C. silvicultor 2017 0.24 (CI 0.15, 0.34) 

VNP C. nigrifrons 2014 3.22 (CI 2.88, 3.62) 

VNP C. nigrifrons 2015 3.42 (CI 3.07, 3.83) 

VNP C. nigrifrons 2016 3.67 (CI 3.28, 4.08) 

VNP T. scriptus 2014 2.88 (CI 2.48, 3.32) 

VNP T. scriptus 2015 2.91 (CI 2.52, 3.32) 

VNP T. scriptus 2016 2.95 (CI 2.55, 3.37) 
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Table C.3 

Mean annual survival probability and gains with 95% credible intervals for each species across 

all parks. 

Species Annual apparent survival Gains 

C. callipygus 0.61 (CI 0.15, 0.94) 1.34 (CI 0.88, 1.95) 

C. dorsalis 0.56 (CI 0.12, 0.92) 0.92 (CI 0.67, 1.21) 

C. harveyi 0.88 (CI 0.43, 0.98) 0.36 (CI 0.24, 0.51) 

C. leucogaster 0.73 (CI 0.24, 0.96) 0.09 (CI 0.06, 0.15) 

P. monticola 0.67 (CI 0.18, 0.95) 1.48 (CI 1.11, 1.87) 

N. moschatus 0.83 (CI 0.32, 0.98) 0.14 (CI 0.09, 0.20) 

C. nigrifrons 0.66 (CI 0.17, 0.95) 0.22 (CI 0.18, 0.27) 

C. ogilbyi 0.89 (CI 0.44, 0.99) 0.57 (CI 0.36, 0.85) 

T. scriptus 0.66 (CI 0.16, 0.95) 0.03 (CI 0.02, 0.05) 

C. spadix 0.82 (CI 0.31, 0.98) 0.22 (CI 0.11, 0.37) 

T. spekii 0.73 (CI 0.19, 0.97) 0.02 (CI 0.01, 0.05) 

C. silvicultor 0.90 (CI 0.51, 0.99) 0.12 (CI 0.09, 0.16) 

Community-level 0.72 (CI 0.28, 0.96) 0.24 (CI 0.10, 0.56) 
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Table C.4 

Park-level mean annual survival probability with 95% credible intervals. 

National park Annual apparent survival 

UDZ 0.77 (CI 0.56, 0.89) 

VNP 0.99 (CI 0.97, 1.00) 

NFNP 0.77 (CI 0.56, 0.92) 

BIF 0.81 (CI 0.69, 0.91) 

NNNP 0.66 (CI 0.51, 0.80) 

KRP 0.31 (CI 0.11, 0.52) 
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Population projection 

Table C.5 

Quasi-extinction probability (for each of the 18 populations coming from parks with at least five 

years of data) for the projected window of 2020-2030. 

National park Species Quasi-extinction probability 

KRP P. monticola 0.00 

KRP C. ogilbyi 0.00 

KRP C. silvicultor 0.05 

NNNP C. callipygus 0.00 

NNNP C. dorsalis 0.00 

NNNP C. leucogaster 0.07 

NNNP P. monticola 0.00 

NNNP C. nigrifrons 0.00 

NNNP T. spekii 0.24 

NNNP C. silvicultor 0.23 

UDZ C. harveyi 0.00 

UDZ N. moschatus 0.01 

UDZ T. scriptus 0.24 

UDZ C. spadix 0.01 

BIF C. nigrifrons 0.04 

BIF T. scriptus 0.03 

BIF T. spekii 0.23 

BIF C. silvicultor 0.01 
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APPENDIX D: Simulation code, and output 

Simulation study script 

Attached here is the R script to run the simulation study. 

#-----------# 

#-Libraries-# 

#-----------# 

 

library(spatstat) 

library(RandomFields) 

library(INLA) 

library(rgeos) 

library(TMB) 

library(gridExtra) 

 

#-----------# 

#-Functions-# 

#-----------# 

 

#Function to create dual mesh (original code from Krainski et al. 2018) 

source("rDualMesh.R") 

 

#Logit function 

logit <- function(pp)  

{  

  log(pp) - log(1-pp)  

} 

 

#Inverse logit 

expit <- function(eta)  

{ 

  1/(1+exp(-eta)) 

} 
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#-------------------------# 

#-Spatio-temporal domains-# 

#-------------------------# 

 

#Full spatio-temporal extent 

win <- owin(c(0, 3), c(0, 3)) #Window 

loc.d <- 3 * cbind(c(0, 1, 1, 0, 0), c(0, 0, 1, 1, 0)) #Coordinates 

 

#Domain 1 

win1 <- owin(c(1, 2.75), c(0.25, 2)) 

 

#Domain 2 

win2 <- owin(c(0, 3), c(0, 3), poly = 

list(x=c(0.25,0.75,0.75,2.75,2.75,0.25), y=c(0.25,0.25,2.25,2.25,2.75,2.75))) 

 

#Number of pixels 

npix <- 300 

spatstat.options(npixel = npix) 

 

#Create triangulated mesh over domain 

mesh <- inla.mesh.2d(loc.domain = loc.d,  

                     offset = c(0.3, 1), 

                     max.edge = c(0.3, 0.7),  

                     cutoff = 0.05) 

 

# mesh1 <- inla.mesh.2d(boundary = inla.sp2segment(as(win1, 

"SpatialPolygons")), max.edge = 0.3, cutoff = 0.05) 

#  

# mesh2 <- inla.mesh.2d(boundary = inla.sp2segment(as(win2, 

"SpatialPolygons")), max.edge = 0.3, cutoff = 0.05) 

 

#X range of mesh 

x0 <- seq(min(mesh$loc[, 1]), max(mesh$loc[, 1]), length = npix) 
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#Y range of mesh 

y0 <- seq(min(mesh$loc[, 2]), max(mesh$loc[, 2]), length = npix) 

 

#Mesh window 

Mwin <- owin(c(min(x0), max(x0)), c(min(y0), max(y0))) 

 

#---------------# 

#-Simulate LGCP-# 

#---------------# 

 

#Parameters of intensity function 

beta <- c(6, 0.5) 

 

#Change in intensity 

delta <- c(0.5) 

 

#Parameters of thinning function 

alpha <- c(logit(0.01), 0.85) 

 

#Ecological covariate 

set.seed(100) 

RandomFields::RFoptions(spConform=FALSE) 

xcov1 <- RFsimulate(model = RMgauss(scale = 1.25), x = x0, y = y0, grid = 

TRUE) 

xcov2 <- xcov1 + RFsimulate(model = RMgauss(var = 0.5, scale = 9.5), x = x0, 

y = y0, grid = TRUE) 

x1 <- (xcov1 - mean(c(xcov1, xcov2))/sd(c(xcov1, xcov2))) 

x2 <- (xcov2 - mean(c(xcov1, xcov2))/sd(c(xcov1, xcov2))) 

 

#Thinning covariate 

pcov <- RFsimulate(model = RMgauss(scale = 1), x = x0, y = y0, grid = TRUE) 

pcov <- (pcov - min(pcov))/sd(pcov) 

set.seed(NULL) 
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#Range of Matern covaraince 

range <- 1.2 

#Scale of Matern covariance 

kappa <- sqrt(8)/range 

#Variance of Matern covaraince 

sigma2 <- 0.2 

#Precision of Matern covariance 

tau <- sqrt(4*pi*kappa*kappa*sigma2) 

#Smoothness of Matern covaraince 

nu <- 1 

 

#Simulate spatial covariance 

zcov <- RFsimulate(model = RMmatern(var = sigma2, scale = kappa, nu = nu), x 

= x0, y = y0, grid = TRUE) 

 

#Intensity function 

X1 <- as.im(x1, W = Mwin)[win] 

X2 <- as.im(x2, W = Mwin)[win] 

z <- as.im(zcov, W = Mwin)[win] 

 

lambda1 <- exp(beta[1] + beta[2] * X1 + z) 

lambda2 <- exp(beta[1] + delta[1] + beta[2] * X2 + z) 

 

#Format intensity function 

lambda1 <- as.im(lambda1, W=win) 

lambda2 <- as.im(lambda2, W=win) 

 

#Simulate LGCP 

PP1 <- rpoispp(lambda1)[win] 

PP2 <- rpoispp(lambda2)[win] 

 

#---------------------------------# 

#-Simulate opportunistic sampling-# 

#---------------------------------# 
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#Thinning function 

thin <- alpha[1] + alpha[2] * pcov 

thin <- expit(thin) 

 

#Format thinning function 

thin <- as.im(thin, W=Mwin)[win] 

 

#Latent observations 

Z1 <- rbinom(n = PP1$n, size = 1, prob = thin[PP1]) 

PO1 <- PP1[Z1==1] 

PO1 <- PO1[win1] 

 

Z2 <- rbinom(n = PP2$n, size = 1, prob = thin[PP2]) 

PO2 <- PP2[Z2==1] 

PO2 <- PO2[win2] 

 

#-----------------# 

#-Simulate counts-# 

#-----------------# 

 

#Number of counts 

ncount <- 25 

 

#Count locations 

u.loc <- expand.grid(seq(1 + 0.175, 2.75 - 0.175, 0.35), seq(0.25 + 0.175, 2 

- 0.175, 0.35)) 

 

#Latent abundance 

N <- NULL 

 

#Counts 

count <- rep(0, ncount) 
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#Covariate value @ location 

Cov <- NULL 

 

#Unit area 

unit.A <- NULL 

 

for(j in 1:ncount){ 

  unit <- disc(radius = 0.15, centre = as.numeric(u.loc[j,])) 

  count[j] <- PP1[unit]$n 

  count[j] <- rbinom(1, count[j], 0.9) 

  Cov[j] <- mean(as.im(x1, W=Mwin)[unit]) 

  unit.A[j] <- area(unit) 

} 

 

#Count dataframe 

countdf <- data.frame(count, Cov, unit.A, u.loc) 

 

#---------------# 

#-SPDE approach-# 

#---------------# 

 

#Update mesh 

mesh <- inla.mesh.2d(boundary = loc.d, max.edge = 0.3, cutoff = 0.05) 

 

#Create SPDE objects (Matern covariance) 

spde <- inla.spde2.matern(mesh) 

 

#Create dual mesh for weights 

dmesh <- book.mesh.dual(mesh) 

 

#Format location domain 

domain.polys <- Polygons(list(Polygon(loc.d)), '0') 

domainSP <- SpatialPolygons(list(domain.polys)) 
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#Weights of each node (area of dual mesh) 

weight <- sapply(1:length(dmesh), function(i) { 

  if (gIntersects(dmesh[i, ], domainSP)) 

    return(gArea(gIntersection(dmesh[i, ], domainSP))) 

  else return(0) 

}) 

 

rm(dmesh) 

 

#--------------# 

#-Compile Data-# 

#--------------# 

 

#Node index 

nodes <- mesh$n 

 

#Observation index 

nobs <- sum(PO1$n, PO2$n) 

ncount <- dim(countdf)[1] 

 

#Period index 

t_i <- rep(0:1, c(PO1$n, PO2$n)) 

t_n <- 2 

 

#Counts 

counts <- countdf$count 

 

#Area @ each count location 

Area <- countdf$unit.A 

 

#Covaraites @ nodes 

nloc <- as.ppp(mesh$loc[,1:2], W = Mwin) 
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nCov <- matrix(NA, nrow = nodes, ncol = t_n) 

nCov[,1] <- as.im(x1, W = Mwin)[nloc] 

nCov[,2] <- as.im(x2, W = Mwin)[nloc] 

nBias <- as.im(pcov, W = Mwin)[nloc] 

 

#Covariates @ obs 

Cov <- c(as.im(x1, W = Mwin)[PO1], 

         as.im(x2, W = Mwin)[PO2], 

         countdf$Cov) 

 

Bias <- c(as.im(pcov, W = Mwin)[PO1], 

          as.im(pcov, W = Mwin)[PO2]) 

 

#Location of obsevations 

locxy <- rbind(cbind(PO1$x, PO1$y)[,2:1], 

               cbind(PO2$x, PO2$y)[,2:1], 

               as.matrix(countdf[,4:5])) 

 

#Projection matrix of observations 

A <- as(inla.spde.make.A(mesh, locxy), "dgTMatrix") 

 

#------------# 

#-Prediction-# 

#------------# 

 

Grid <- as.matrix(expand.grid(seq(0.01,2.99,0.01), seq(0.01,2.99,0.01))) 

npred <- dim(Grid)[1] 

Apred <- as(inla.spde.make.A(mesh, Grid), "dgTMatrix") 

predX <- matrix(NA, ncol = t_n, nrow = npred) 

predX[,1] <- interp.im(X1, x = Grid[,1], y = Grid[,2]) 

predX[,2] <- interp.im(X2, x = Grid[,1], y = Grid[,2]) 

 

#------------------# 
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#-Integrated Model-# 

#------------------# 

 

#Compile TMB code (only once) 

compile("Simulation.cpp") 

 

#Load TMB code 

dyn.load(dynlib("Simulation")) 

 

#Compile data 

data <- list("nodes" = nodes, "nobs" = nobs, "ncount" = ncount, 

             "t_i" = t_i, "t_n" = t_n, 

             "weight" = weight, "area" = Area, "A" = A, "counts" = counts, 

             "nBias" = nBias, "nCov" = nCov, "Bias" = Bias, "Cov" = Cov, 

             "spde" = spde$param.inla[c("M0","M1","M2")], 

             "npred" = npred, "Apred" = Apred, "predX" = predX) 

 

#PHASE 1: Fit fixed effects 

#Parameters to estimate 

params <- list("beta0" = 0, "beta1" = 1, "delta1" = 1, 

               "alpha0" = logit(0.01), "alpha1" = 0,  

               "log_kappa" = log(sqrt(8)/range), "log_tau_O" = 1, 

               "omega" = rep(0, mesh$n)) 

 

#Define random effects 

random = c("omega") 

 

#Map 

map <- list( 

  "log_kappa" = as.factor(NA),  

  "log_tau_O" = as.factor(NA),  

  "omega" = factor(rep(NA, mesh$n))) 
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#Make AD objective function 

obj1 <- MakeADFun(data = data, parameters = params, random = random, map = 

map, DLL="Simulation") 

 

#Trace parameters 

obj1$env$tracepar <- TRUE 

 

#Minimize objective function 

opt1 <- nlminb(obj1$par, obj1$fn, obj1$gr) 

 

#Calculate standard deviations 

out1 <- sdreport(obj1) 

 

#PHASE 2: Fit random effects 

params <- list("beta0" = opt1$par[1], "beta1" = opt1$par[2], "delta1" = 

opt1$par[3], 

               "alpha0" = opt1$par[4], "alpha1" = opt1$par[5], 

               "log_kappa" = log(kappa), "log_tau_O" = 1, 

               "omega" = rep(0, mesh$n)) 

 

#Map 

map <- list( 

  "beta0" = as.factor(NA), 

  "beta1" = as.factor(NA), 

  "delta1" = as.factor(NA), 

  "alpha0" = as.factor(NA), 

  "alpha1" = as.factor(NA)) 

 

 

#Make AD objective function 

obj2 <- MakeADFun(data = data, parameters = params, random = random, map = 

map, DLL="Simulation") 

 

#Trace parameters 
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obj2$env$tracepar <- TRUE 

 

#Minimize objective function 

opt2 <- nlminb(obj2$par, obj2$fn, obj2$gr) 

 

#Calculate standard deviations 

out2 <- sdreport(obj2) 

 

#Store output 

 

output <- as.data.frame(round(cbind(Truth = c(beta, delta, alpha, PP1$n, 

PP2$n, kappa, tau),   

                                    

rbind(summary(out1)[!grepl("omega|sigma_O|tau_O|kappa", 

rownames(summary(out1))),],  

                                          summary(out2)[grepl("kappa|tau_O", 

rownames(summary(out2))),])), 

                 digits = 2)) 

colnames(output)[2:3] <- c("IM Estimate", "IM Std. Error") 

 

#---------------------# 

#-Presence-only model-# 

#---------------------# 

 

#Compile TMB code (only once) 

compile("Simulation_PO.cpp") 

 

#Load TMB code 

dyn.load(dynlib("Simulation_PO")) 

 

#Compile data 

data <- list("nodes" = nodes, "nobs" = nobs, "t_i" = t_i, "t_n" = t_n,  

             "weight" = weight, "A" = A[1:nobs,], 

             "nBias" = nBias, "nCov" = nCov, "Bias" = Bias, "Cov" = 

Cov[1:nobs], 

             "spde" = spde$param.inla[c("M0","M1","M2")], 
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             "npred" = npred, "Apred" = Apred, "predX" = predX) 

 

#PHASE 1: Fit fixed effects 

#Parameters to estimate 

params <- list("beta0" = 0, "beta1" = 1, "delta1" = 1, 

               "alpha0" = logit(0.01), "alpha1" = 0,  

               "log_kappa" = log(sqrt(8)/range), "log_tau_O" = 1, 

               "omega" = rep(0, mesh$n)) 

 

#Map 

map <- list( 

  "log_kappa" = as.factor(NA),  

  "log_tau_O" = as.factor(NA),  

  "omega" = factor(rep(NA, mesh$n))) 

 

#Make AD objective function 

obj3 <- MakeADFun(data = data, parameters = params, random = random, map = 

map, DLL="Simulation_PO") 

 

#Trace parameters 

obj3$env$tracepar <- TRUE 

 

#Minimize objective function 

opt3 <- nlminb(obj3$par, obj3$fn, obj3$gr) 

 

#Calculate standard deviations 

out3 <- sdreport(obj3) 

 

params <- list("beta0" = opt1$par[1], "beta1" = opt1$par[2], "delta1" = 

opt1$par[3], 

               "alpha0" = opt1$par[4], "alpha1" = opt1$par[5], 

               "log_kappa" = log(sqrt(8)/range), "log_tau_O" = 1, 

               "omega" = rep(0, mesh$n)) 
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#Map 

map <- list( 

  "beta0" = as.factor(NA), 

  "beta1" = as.factor(NA), 

  "delta1" = as.factor(NA), 

  "alpha0" = as.factor(NA), 

  "alpha1" = as.factor(NA)) 

 

#Define random effects 

random = c("omega") 

 

#Make AD objective function 

obj4 <- MakeADFun(data = data, parameters = params, map = map, random = 

random, DLL="Simulation_PO") 

 

#Trace parameters 

obj4$env$tracepar <- TRUE 

 

#Minimize objective function 

opt4 <- nlminb(obj4$par, obj4$fn, obj4$gr) 

 

#Calculate standard deviations 

out4 <- sdreport(obj4) 

 

#Store output 

 

output <- merge(output,   

                

as.data.frame(round(rbind(summary(out3)[!grepl("omega|sigma_O|tau_O|kappa", 

rownames(summary(out3))),], 

                                          summary(out4)[grepl("kappa|tau_O", 

rownames(summary(out4))),]), digits = 2)), 

                by='row.names', all=TRUE) 

 

colnames(output)[5:6] <- c("PO Estimate", "PO Std. Error") 
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output$Row.names[7:8] <- c("N[1]", "N[2]") 

rownames(output) <- output$Row.names 

output <- output[,-1] 

 

convergence <- data.frame("pdHess" = c(out1$pdHess, out2$pdHess, out3$pdHess, 

out4$pdHess), 

                          "grd.size" = c(all(abs(out1$gradient.fixed) < 

0.01), 

                                         all(abs(out2$gradient.fixed) < 

0.01), 

                                         all(abs(out3$gradient.fixed) < 

0.01), 

                                         all(abs(out4$gradient.fixed) < 

0.01))) 

rownames(convergence) <- c("IM_fixed", "IM_random", "PO_fixed", "PO_random") 

 

out <- list(output, convergence) 

 

message("finished") 

 

#-----------# 

#-Save file-# 

#-----------# 

 

ID <- length(list.files("./Output/")) + 1 

save(out, file = paste("./Output/output", ID, ".Rds", sep="")) 

 

tmp <- list(summary(out1), summary(out2), summary(out3), summary(out4)) 

save(tmp, file = "tmp_out.Rds") 
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Template Model Builder code for simulation 

#include <TMB.hpp> 

// Integrated Log Gaussian Cox Process 

template <class Type> 

Type objective_function<Type>::operator() () 

{ 

   

  // objective function -- joint negative log-likelihood 

  using namespace R_inla; 

  using namespace density; 

  using namespace Eigen; 

   

  // DATA // 

   

  // Indices 

  DATA_INTEGER( nodes );  // Number of nodes  

  DATA_INTEGER( nobs );   // Number of presence-only observations 

  DATA_INTEGER( ncount ); // Number of structured sampling sites 

  DATA_INTEGER( t_n );    // Number of stages 

  DATA_IVECTOR( t_i );    // Stage ID for data 

   

  // Projection & weight data 

  DATA_VECTOR( weight );   // Node weight 

  DATA_VECTOR( area );     // Area sweept for counts 

  DATA_SPARSE_MATRIX( A ); // Projection matrix 

   

  // Count dataset 

  DATA_VECTOR( counts ); // Number of counts per site 

   

  // Covaraite dataset 

  DATA_VECTOR( nBias ); //Sampling bias @ nodes 

  DATA_MATRIX( nCov );  //Environmental covariate @ nodes 
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  DATA_VECTOR( Bias ); //Sampling bias @ observations 

  DATA_VECTOR( Cov ); //Environmental covariate @ data 

   

  // SPDE objects 

  DATA_STRUCT(spde,spde_t); // Sparse matrix for Matern covariance structure 

   

  // Prediction 

  DATA_INTEGER( npred );        // Number of pixels for prediction 

  DATA_MATRIX( predX );         // Environmental covariate for prediction 

  DATA_SPARSE_MATRIX( Apred );  // Projection matrix for prediction 

   

  // PARAMETERS // 

   

  // Fixed effects 

  PARAMETER( beta0 );     // Baseline population density 

  PARAMETER( beta1 );     // Effect of environmental covariate 

  PARAMETER( delta1 );    // Effect of stage (population change) 

  PARAMETER( alpha0 );    // Thinning function intercept 

  PARAMETER( alpha1 );    // Effect of sampling bias 

  PARAMETER( log_kappa ); // Scale parameter of Matern covariance 

  PARAMETER( log_tau_O ); // Precision parameter of Matern covariance 

   

  // Random effects 

  PARAMETER_VECTOR( omega ); // Spatial random effect 

   

  // Population density at each stage 

  vector<Type> beta(t_n); 

  beta(0) = beta0; 

  beta(1) = beta0 + delta1; 

 

  // Derived parameters 

  Type kappa = exp(log_kappa); 

  Type tau_O = exp(log_tau_O); 
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  Type range = sqrt(8)/kappa; 

  Type sigma_O = 1/sqrt(4*PI*tau_O*tau_O*kappa*kappa); 

   

  vector<Type> jnll_comp(4); 

  jnll_comp.setZero(); 

   

  // Probability of random effects 

  SparseMatrix<Type> Q = Q_spde(spde,kappa); // Matern covariance (see R_inla 

namespace) 

  jnll_comp(0) += GMRF(Q)( omega ); 

   

  // Holding values 

  vector<Type> Omega(nodes); 

  vector<Type> omg(nobs + ncount); 

   

  // Transform GMRFs 

  for(int k=0; k<nodes; k++){ 

    Omega(k) = omega(k) / tau_O; 

  } 

   

  // Project GMRFs 

  omg = A * Omega; // Project omega to points 

   

  // Intensity function @ nodes 

  for(int t=0; t<t_n; t++){ 

    for(int k=0; k<nodes; k++){ 

      jnll_comp(1) += weight(k) * exp(alpha0 + alpha1 * nBias(k) + beta(t) + 

beta1 * nCov(k,t)+ Omega(k)) / (exp(alpha0 + alpha1 * nBias(k)) + 1); // 

Integration nodes 

    } 

  } 

   

  // Intensity function @ presence-only data 

  for(int i=0; i<nobs; i++){ 
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    jnll_comp(2) -= alpha0 + alpha1 * Bias(i) + beta(t_i(i)) + beta1 * Cov(i) 

+ omg(i) - log(exp(alpha0 + alpha1 * Bias(i)) + 1); // Observation points 

  } 

   

  // Intensity function @ counts 

  vector<Type> lambda(ncount); 

  for(int j=0; j<ncount; j++){ 

    lambda(j) = area(j) * exp(beta0 + beta1 * Cov(j+nobs) + omg(j+nobs)); 

    jnll_comp(3) -= dpois(counts(j), lambda(j), true); 

  } 

   

  // Prediction 

  vector<Type> predO(npred); 

  predO = Apred * Omega; 

   

  vector<Type> pred(t_n); 

  vector<Type> Npred(t_n); 

   

  for(int t=0; t<t_n; t++){ 

    for(int g=0; g<npred; g++){ 

      pred(t) += exp(beta(t) + beta1 * predX(g,t) + predO(g)); 

    } 

    Npred(t) = pred(t)/npred * 9; 

  } 

   

   

  // Joint NLL 

  Type jnll = jnll_comp.sum(); 

   

  // Reporting 

  REPORT( kappa ); 

  REPORT( tau_O ); 

  REPORT( sigma_O ); 

  REPORT( range ); 
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  REPORT( Npred ); 

  ADREPORT( Npred ); 

  ADREPORT( kappa ); 

  ADREPORT( tau_O ); 

  ADREPORT( sigma_O ); 

   

  REPORT( jnll_comp ); 

  REPORT( jnll ); 

   

  return jnll; 

} 
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Simulation output 

Table D.1 

The root mean squared error and percent relative bias (median, lower and upper quantiles) of 

each estimated parameter compared to the true simulated value for both the integrated (I) and 

presence-only (PO) analyses. 

Parameters Model RMSE Percent relative bias 

𝑝0 
I 1.50 30.22 (22.39, 38.04) 

PO 13.57 332.72 (67.39, 353.97) 

𝛼 
I 0.16 3.53 (-9.41, 16.47) 

PO 0.16 2.35 (-10.59, 14.12) 

𝜆0 
I 0.45 -2.08 (-7.00, 2.67) 

PO 12.25 231.00 (28.54, 244.50) 

𝛽 
I 0.22 6.00 (-24.00, 36.00) 

PO 0.20 10.00 (-12.00, 36.00) 

𝛿 
I 0.34 28.00 (-10.00, 68.00) 

PO 0.35 32.00 (-10.00, 72.00) 

log (κ) 
I 0.20 19.77 (9.30, 27.91) 

PO 0.16 -15.12 (-23.26, -6.98) 

𝜎 
I 0.61 300.00 (260.00, 340.00) 

PO 0.81 400.00 (365.00, 440.00) 

𝑁1 
I 697.47 -9.40 (-15.18, 3.40) 

PO 1.41E+10 1.22×108 (382.41, 2.61×108) 

𝑁2 
I 1662.19 3.41 (-8.29, 18.27) 

PO 2.47E+10 1.35×108 (384.12, 3.23×108) 
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APPENDIX E: Case study details, code, and output 

Covariate descriptions 

I provide some details on the summary of covariates for the case study. I acquired NDVI values 

from Terra Moderate Resolution Imaging Spectroradiometer (MODIS v.006) Vegetation Indices 

(MOD13A2) at a spatial resolution of 1-km2 and a temporal resolution of 16 days (Didan 2015). 

At each presence-only location, 𝑠𝑖, and at each single-visit site, 𝐷𝑗 , I extracted the mean NDVI 

value within a 10-km radius circle centered on each location during the appropriate 16-day 

window. 

Temperature is also vital to the recruitment of monarchs as it influences the rates of development 

and survival from eggs to adults. I used the number of growing degree days (GDD) to describe 

the thermal conditions across the spring migratory pathway. GDD is the accumulation of 

temperature within a physiological threshold for development (McMaster & Wilhelm 1997). The 

GDD value accumulated for a given location is approximated as: 

𝐺𝐷𝐷 = ∑ {

𝑇𝑚𝑖𝑛    𝑖𝑓 𝑇̅𝑛 < 𝑇𝑚𝑖𝑛

     𝑇̅𝑛 − 𝑇𝑚𝑖𝑛    𝑖𝑓 𝑇𝑚𝑖𝑛 ≤ 𝑇̅𝑛 ≤ 𝑇𝑚𝑎𝑥

 𝑇𝑚𝑎𝑥    𝑖𝑓 𝑇𝑚𝑎𝑥 <  𝑇̅𝑛

𝑁
𝑛=1   

where 𝑇̅𝑛 is the average temperature of a day 𝑛, 𝑇𝑚𝑖𝑛 is the minimum temperature threshold (i.e., 

11.5°C for monarchs), 𝑇𝑚𝑎𝑥 is the maximum temperature threshold (i.e., 33°C for monarchs), 

and 𝑁 is the number of days accumulated since 𝑛 = 1. For my purposes I set 𝑛 = 1 to be 7 days 

prior to the start of each stage. Average daily temperatures were obtained from Daymet 

(Thornton et al. 2020), which interpolates temperature values across North America at a 1 km2 

resolution. Since observations could have different number of days accumulated, 𝑁, depending 

on when they were seen during a given stage, I averaged GDD values to be averaged daily GDD 

by dividing by 𝑁. 
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I used two covariates to correct for sampling biases. I used the number of other butterfly 

observations within the superfamily Papilionoidea amalgamated from the various presence-only 

data sources used within the study. Other butterfly observations are correlated with where 

butterfly observers sample in space. I also used population density (CIESIN 2018) to correct for 

sampling bias as high human abundance is correlated with higher number of observers 

(Geldmann et al. 2016). This metric has also been used to correct for presence-only monarch 

data in another study (Momeni-Dehaghi et al. 2021). 

Case study script 

Attached here is the R script to run the case study analysis on monarch butterflies. 

#-----------# 

#-Libraries-# 

#-----------# 

 

library(tidyverse) 

library(sf) 

library(INLA) 

library(TMB) 

 

#Function to create dual mesh (original code from Krainski et al. 2018) 

source("~/Monarchs/DataAnalysis/rDualMesh.R") 

 

#-----------# 

#-Load data-# 

#-----------# 

 

#Spring domain 

domain_sp <- 

st_read("~/Monarchs/DataFormatting/BaseData/Domain/Domain_Spring.shp") 

 

#Summer domain 

domain_su <- 

st_read("~/Monarchs/DataFormatting/BaseData/Domain/Domain_Summer.shp") 

 

#Monarch data 

load(file = "~/Monarchs/DataFormatting/FormattedData.Rdata") 

 

#Mesh node data 

load(file = '~/Monarchs/DataFormatting/FormattedNodeData.Rdata') 

 

#-------------# 

#-Format data-# 

#-------------# 

 

#Geographic projection 
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prj <- "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +x_0=0 

+y_0=0 +ellps=GRS80 +datum=NAD83 +units=km +no_defs" 

 

#Set projection 

domain_sp <- st_transform(domain_sp, crs = st_crs(prj)) 

domain_su <- st_transform(domain_su, crs = st_crs(prj)) 

 

#Spring domain boundary 

domain_sp_seg <- inla.sp2segment(as(domain_sp, "Spatial")) 

 

#Summer domain boundary 

domain_su_seg <- inla.sp2segment(as(domain_su, "Spatial")) 

 

 

#Construct triangulated mesh 

mesh <- list() 

 

mesh[[1]] <- inla.mesh.2d(boundary=domain_sp_seg, 

                          max.edge = 75, 

                          cutoff=30) 

 

mesh[[2]] <- inla.mesh.2d(boundary=domain_sp_seg, 

                          max.edge = 75, 

                          cutoff=30) 

 

mesh[[3]] <- inla.mesh.2d(boundary=domain_su_seg, 

                          max.edge = 75, 

                          cutoff = 30) 

 

#Create SPDE objects (Matern covariance structure) 

spde1 <- inla.spde2.matern(mesh[[1]]) 

spde2 <- inla.spde2.matern(mesh[[2]]) 

spde3 <- inla.spde2.matern(mesh[[3]]) 

 

#Create dual mesh for weights (see Krainski et al. 2018) 

dmesh1 <- book.mesh.dual(mesh[[1]]) 

dmesh1 <- st_as_sf(dmesh1) 

st_crs(dmesh1) <- st_crs(domain_sp) 

 

dmesh2 <- book.mesh.dual(mesh[[2]]) 

dmesh2 <- st_as_sf(dmesh2) 

st_crs(dmesh2) <- st_crs(domain_sp) 

 

dmesh3 <- book.mesh.dual(mesh[[3]]) 

dmesh3 <- st_as_sf(dmesh3) 

st_crs(dmesh3) <- st_crs(domain_su) 

 

#Weights of each node (area of dual mesh) 

weight1 <- sapply(1:dim(dmesh1)[1], function(i) { 

  if (st_intersects(dmesh1[i,], domain_sp, sparse = FALSE)) 

    return(st_area(st_intersection(dmesh1[i,], domain_sp))) 

  else return(0) 

}) 

 

weight2 <- sapply(1:dim(dmesh2)[1], function(i) { 

  if (st_intersects(dmesh2[i,], domain_sp, sparse = FALSE)) 

    return(st_area(st_intersection(dmesh2[i,], domain_sp))) 
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  else return(0) 

}) 

 

weight3 <- sapply(1:dim(dmesh3)[1], function(i) { 

  if (st_intersects(dmesh3[i,], domain_su, sparse = FALSE)) 

    return(st_area(st_intersection(dmesh3[i,], domain_su))) 

  else return(0) 

}) 

 

#Projection matrix of observations to nodes 

A1 <- as(inla.spde.make.A(mesh[[1]], st_coordinates(Data %>% filter(period == 

1))), "dgTMatrix") 

A2 <- as(inla.spde.make.A(mesh[[2]], st_coordinates(Data %>% filter(period == 

2))), "dgTMatrix") 

A3 <- as(inla.spde.make.A(mesh[[3]], st_coordinates(Data %>% filter(period == 

3))), "dgTMatrix") 

 

#--------------# 

#-Compile data-# 

#--------------# 

 

#Number of years 

t_n <- Data %>% summarize(out = n_distinct(yr)) %>% select(out) %>% .$out 

 

#Number of stages 

p_n <- Data %>% summarize(out = n_distinct(period)) %>% select(out) %>% .$out 

 

#Number of nodes in early spring 

nodes1 <- mesh[[1]]$n 

 

#Number of nodes in late spring 

nodes2 <- mesh[[2]]$n 

 

#Number of nodes in early summer 

nodes3 <- mesh[[3]]$n 

 

#Number of nodes across stages and years 

nodes <- as.integer(t_n*(nodes1 + nodes2 + nodes3)) 

 

#MOVE TO NODE FORMATTING 

NodeDF$period <- as.factor(rep(1:3, c(nodes1 * 3, nodes2 * 3, nodes3 * 3))) 

 

#Year-stage identifier for nodes 

tp_k <- as.integer(fct_cross(NodeDF$period, NodeDF$Year)) - 1 

 

#Stage identifier for nodes 

p_k <- as.integer(NodeDF$period) - 1 

 

#Number of presence-only observations 

nobs <- dim(Data %>% filter(type == "obs"))[1] 

 

#Number of presence-only observations in early spring 

nobs1 <- dim(Data %>% filter(type == "obs" & period == 1))[1] 

 

#Number of presence-only observations in late spring 

nobs2 <- dim(Data %>% filter(type == "obs" & period == 2))[1] 
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#Number of presence-only observations in early summer 

nobs3 <- dim(Data %>% filter(type == "obs" & period == 3))[1] 

 

#Number of single-visit sites 

ncount <- dim(Data %>% filter(type == "count"))[1] 

 

#Number of single-visit sites in early spring 

ncount1 <- dim(Data %>% filter(type == "count" & period == 1))[1] 

 

#Number of single-visit sites in late spring 

ncount2 <- dim(Data %>% filter(type == "count" & period == 2))[1] 

 

#Number of single-visit sites in early summer 

ncount3 <- dim(Data %>% filter(type == "count" & period == 3))[1] 

 

#Single-visit counts @ each site 

counts <- as.numeric(Data %>% filter(type == "count") %>% select(count) %>% 

.$count) 

 

#Year-stage identifier for data 

tp_i <- as.integer(fct_cross(as.factor(Data$period), as.factor(Data$yr))) - 1 

#CHECK THIS 

 

#Stage identifier for data 

p_i <- as.integer(as.factor(Data$period)) - 1 

 

#Weight of each node @ 100 m^2 

weight <- rep(c(weight1, weight2, weight3), t_n) * 1e4 

 

#Area/effort offset 

area <- as.numeric(Data %>% filter(type == "count") %>% select(effort) %>% 

.$effort) 

 

#Covert to 100 m^2 

area <- area*6*1000*1e-2 

 

#Observation covariates 

Data <- Data %>% mutate(daysaccum = as.numeric(as.Date(paste0(yr, "-", 

mo_day)) -  

                                                 as.Date(paste0(yr, 

ifelse(period == 1, "-03-01", 

                                                                           

ifelse(period == 2, "-03-22", "-04-26"))))) + 1, 

                        gdd.avg = gdd2/daysaccum) 

 

#Normalized Difference Vegetation Index @ data 

NDVI <- Data$NDVI 

 

#Averaged daily growing degree days @ data 

GDD <- Data$gdd.avg 

 

#Number of other butterfly observations @ data 

Bias <- as.numeric(Data %>% filter(type == "obs") %>% select(Bias) %>% 

.$Bias) 

 

#Population density @ data 



105 

 

PopD <- as.numeric(Data %>% filter(type == "obs") %>% select(PopD) %>% 

.$PopD) 

 

 

#Node covariates 

NodeDF <- NodeDF %>% mutate(daysaccum = ifelse(period == 1, 35, 42), 

                            gdd.avg = gdd2/daysaccum) 

 

#Normalized Difference Vegetation Index @ nodes 

nNDVI <- NodeDF$NDVI 

 

#Averaged daily growing degree days @ nodes 

nGDD <- NodeDF$gdd.avg 

 

#Number of other butterfly observations @ nodes 

nBias <- NodeDF$Bias 

 

#Population density @ nodes 

nPopD <- NodeDF$PopD 

 

#Scale covaraites for both data & nodes 

tmp1 <- (NDVI - mean(c(NDVI, nNDVI)))/sd(c(NDVI, nNDVI)) 

tmp2 <- (GDD - mean(c(GDD, nGDD)))/sd(c(GDD, nGDD)) 

tmp3 <- (Bias - mean(c(Bias, nBias)))/sd(c(Bias, nBias)) 

tmp4 <- (PopD - mean(c(PopD, nPopD)))/sd(c(PopD, nPopD)) 

 

tmp5 <- (nNDVI - mean(c(NDVI, nNDVI)))/sd(c(NDVI, nNDVI)) 

tmp6 <- (nGDD - mean(c(GDD, nGDD)))/sd(c(GDD, nGDD)) 

tmp7 <- (nBias - mean(c(Bias, nBias)))/sd(c(Bias, nBias)) 

tmp8 <- (nPopD - mean(c(PopD, nPopD)))/sd(c(PopD, nPopD)) 

 

NDVI <- tmp1 

GDD <- tmp2 

Bias <- tmp3 

PopD <- tmp4 

 

nNDVI <- tmp5 

nGDD <- tmp6 

nBias <- tmp7 

nPopD <- tmp8 

 

#--------------# 

#-Optimize nll-# 

#--------------# 

 

#Compile TMB code (only once) 

# compile("./DataAnalysis/IntegratedModel_Final.cpp") 

 

#Load TMB code 

dyn.load(dynlib("./DataAnalysis/IntegratedModel_Final")) 

 

#PHASE 1: Fit fixed effects 

 

#Compile data for TMB 

data <- list("nodes1" = nodes1, "nodes2" = nodes2, "nodes3" = nodes3, 

             "nobs1" = nobs1, "nobs2" = nobs2, "nobs3" = nobs3,  
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             "ncount" = ncount, "ncount1" = ncount1, "ncount2" = ncount2, 

"ncount3" = ncount3, 

             "counts" = counts, 

             "t_n" = t_n, "p_n" = p_n, "tp_k" = tp_k, "tp_i" = tp_i, "p_i" = 

p_i, "p_k" = p_k, 

             "weight" = weight, "area" = area, 

             "A1" = A1, "spde1" = spde1$param.inla[c("M0","M1","M2")], 

             "A2" = A2, "spde2" = spde2$param.inla[c("M0","M1","M2")], 

             "A3" = A3, "spde3" = spde3$param.inla[c("M0","M1","M2")], 

             "nBias" = nBias, "nPopD" = nPopD, 

             "nNDVI" = nNDVI, "nGDD" = nGDD,  

             "Bias" = Bias, "PopD" = PopD, 

             "NDVI" = NDVI, "GDD" = GDD) 

 

#Parameters to estimate 

params <- list("beta0" = 0,  

               "beta1" = rep(0,3), "beta2" = rep(0,3), 

               "beta3" = rep(0,3), "beta4" = rep(0,3), 

               "delta1" = 0, "delta2" = 0, 

               "gamma1" = 0, "gamma2" = 0, 

               "alpha0" = 0, "alpha1" = rep(0,9), "alpha2" = rep(0,9), 

               "log_kappa" = 0, "log_tau" = 1, 

               "omega1" = rep(0, nodes1), 

               "omega2" = rep(0, nodes2), 

               "omega3" = rep(0, nodes3)) 

 

#Hold random effects constant 

map <- list( 

  "log_kappa" = as.factor(NA), 

  "log_tau" = as.factor(NA), 

  "omega1" = factor(rep(NA, nodes1)), 

  "omega2" = factor(rep(NA, nodes2)), 

  "omega3" = factor(rep(NA, nodes3)) 

) 

 

#Random effects 

random <- c("omega1", "omega2", "omega3") 

 

#Make AD objective function 

obj1 <- MakeADFun(data = data, parameters = params, random = random, map = 

map, DLL="IntegratedModel_Final") 

 

#Trace parameters 

obj1$env$tracepar <- TRUE 

 

#Minimize objective function 

opt1 <- nlminb(obj1$par, obj1$fn, obj1$gr) 

 

#AIC 

2 * length(obj1$par) - 2 * (-1 * sum(obj1$report()$jnll_comp[3:12])) 

 

#Output 

out1 <- sdreport(obj1) 

summary(out1) 

 

#Extract parameter values 

beta0 <- out1$par.fixed[1] 
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beta1 <- out1$par.fixed[2:4] 

beta2 <- out1$par.fixed[5:7] 

beta3 <- out1$par.fixed[8:10] 

beta4 <- out1$par.fixed[11:13] 

delta1 <- out1$par.fixed[14] 

delta2 <- out1$par.fixed[15] 

gamma1 <- out1$par.fixed[16]  

gamma2 <- out1$par.fixed[17] 

 

#Expected population densities per stage and year 

beta <- NULL 

 

#2016 stage 1 (early spring) 

beta[1] <- beta0 + gamma1 + gamma2 + delta1 + delta2 

 

#2016 stage 2 (late spring) 

beta[2] <- beta0 + gamma1 + delta1 + delta2  

 

#2016 stage 3 (early summer) 

beta[3] <- beta0 + delta1 + delta2 

 

#2017 stage 1 (early spring) 

beta[4] <- beta0 + gamma1 + gamma2 + delta1  

 

#2017 stage 2 (late spring) 

beta[5] <- beta0 + gamma1 + delta1 

 

#2017 stage 3 (early summer) 

beta[6] <- beta0 + delta1 

 

#2018 stage 1 (early spring) 

beta[7] <- beta0 + gamma1 + gamma2 

 

#2018 stage 2 (late spring) 

beta[8] <- beta0 + gamma1 

 

#2018 stage 3 (early summer) 

beta[9] <- beta0 

 

#Compile output 

Output <- data.frame(year = factor(rep(2016:2018, each = 3)),  

                     period = factor(rep(1:3, 3)), 

                     mean.den = beta) 

Output$lower.den <- NA 

Output$upper.den <- NA 

 

#Profile confidence intervals 

Output[1,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% 

c("beta0","gamma1","gamma2","delta1","delta2")))) 

Output[2,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% c("beta0","gamma1","delta1","delta2")))) 

Output[3,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% c("beta0","delta1","delta2")))) 

Output[4,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% c("beta0","gamma1","gamma2","delta1")))) 



108 

 

Output[5,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% c("beta0","gamma1","delta1")))) 

Output[6,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% c("beta0","delta1")))) 

Output[7,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% c("beta0","gamma1","gamma2")))) 

Output[8,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% c("beta0","gamma1")))) 

Output[9,4:5] <- confint(tmbprofile(obj1, lincomb = 

as.numeric(names(obj1$par) %in% c("beta0")))) 

 

#PHASE 2: Fit random effects 

 

#Parameters to estimate 

params2 <- list("beta0" = beta0, "beta1" = beta1, 

                "beta2" = beta2, "beta3" = beta3, 

                "beta4" = beta4, 

                "delta1" = delta1, "delta2" = delta2, 

                "gamma1" = gamma1, "gamma2" = gamma2, 

                "alpha0" = out1$par.fixed[18],  

                "alpha1" = out1$par.fixed[19:27], 

                "alpha2" = out1$par.fixed[28:36], 

                "log_kappa" = 0, "log_tau" = 1,  

                "omega1" = rep(0, nodes1), "omega2" = rep(0, nodes2), 

"omega3" = rep(0, nodes3)) 

 

#Hold fixed effects constant 

map2 <- list( 

  "alpha0" = as.factor(NA),  

  "alpha1" = factor(rep(NA, 9)), 

  "alpha2" = factor(rep(NA, 9)), 

  "beta0" = as.factor(NA),  

  "beta1" = factor(rep(NA, 3)), 

  "beta2" = factor(rep(NA, 3)), 

  "beta3" = factor(rep(NA, 3)), 

  "beta4" = factor(rep(NA, 3)), 

  "delta1" =  as.factor(NA), 

  "delta2" = as.factor(NA), 

  "gamma1" = as.factor(NA), 

  "gamma2" = as.factor(NA) 

) 

 

#Make AD objective function 

obj2 <- MakeADFun(data = data, parameters = params2, map = map2, random = 

random, DLL="IntegratedModel_Final") 

 

#Trace parameters 

obj2$env$tracepar <- TRUE 

 

#Minimize objective function 

opt2 <- nlminb(obj2$par, obj2$fn, obj2$gr) 

 

#Output 

out2 <- sdreport(obj2) 

 

#Estimated parameter values 
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Effect <- data.frame(param = rep(c("beta1", "beta2", "beta3", "beta4"), each 

= 3), 

                     period = factor(rep(1:3, 4)), 

                     mean.den = c(beta1, beta2, beta3, beta4)) 

 

Effect$lower <- NA 

Effect$upper <- NA 

 

Effect[1,4:5] <- confint(tmbprofile(obj1, lincomb = c(0,1,rep(0,34)))) 

Effect[2,4:5] <- confint(tmbprofile(obj1, lincomb = c(0,0,1,rep(0,33)))) 

Effect[3,4:5] <- confint(tmbprofile(obj1, lincomb = c(0,0,0,1,rep(0,32)))) 

Effect[4,4:5] <- confint(tmbprofile(obj1, lincomb = c(0,0,0,0,1,rep(0,31)))) 

Effect[5,4:5] <- confint(tmbprofile(obj1, lincomb = 

c(0,0,0,0,0,1,rep(0,30)))) 

Effect[6,4:5] <- confint(tmbprofile(obj1, lincomb = c(rep(0,6),1,rep(0,29)))) 

Effect[7,4:5] <- confint(tmbprofile(obj1, lincomb = c(rep(0,7),1,rep(0,28)))) 

Effect[8,4:5] <- confint(tmbprofile(obj1, lincomb = c(rep(0,8),1,rep(0,27)))) 

Effect[9,4:5] <- confint(tmbprofile(obj1, lincomb = c(rep(0,9),1,rep(0,26)))) 

Effect[10,4:5] <- confint(tmbprofile(obj1, lincomb = 

c(rep(0,10),1,rep(0,25)))) 

Effect[11,4:5] <- confint(tmbprofile(obj1, lincomb = 

c(rep(0,11),1,rep(0,24)))) 

Effect[12,4:5] <- confint(tmbprofile(obj1, lincomb = 

c(rep(0,12),1,rep(0,23)))) 

 

Template Model Builder code for case study 

The TMB code to generate the objective function containing the negative log likelihood for 

optimization. 

#include <TMB.hpp> 

// Integrated Log Gaussian Cox Process 

template <class Type> 

Type objective_function<Type>::operator() () 

{ 

   

  // Objective function -- joint negative log-likelihood 

  using namespace R_inla; 

  using namespace density; 

  using namespace Eigen; 

   

  // Indices 

  DATA_INTEGER( nodes1 );  // Number of nodes in early spring 

  DATA_INTEGER( nodes2 );  // Number of nodes in late spring 

  DATA_INTEGER( nodes3 );  // Number of nodes in early summer 

  DATA_INTEGER( nobs1 );   // Number of presence-only observations in early 

spring 

  DATA_INTEGER( nobs2 );   // Number of presence-only observations in late 

spring 

  DATA_INTEGER( nobs3 );   // Number of presence-only observations in early 

summer 

  DATA_INTEGER( ncount );  // Number of structured sampling sites 

  DATA_INTEGER( ncount1 ); // Number of structured sampling sites in early 

spring 
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  DATA_INTEGER( ncount2 ); // Number of structured sampling sites in late 

spring 

  DATA_INTEGER( ncount3 ); // Number of structured sampling sites in early 

summer 

  DATA_INTEGER( t_n );     // Number of years 

  DATA_INTEGER( p_n );     // Number of stages 

  DATA_IVECTOR( tp_i );    // Index for year and stage combination for the 

data 

  DATA_IVECTOR( tp_k );    // Index for year and stage combination for the 

nodes 

  DATA_IVECTOR( p_i );     // Stage ID for the data 

  DATA_IVECTOR( p_k );     // Stage ID for the nodes 

   

  // Projection & weight data 

  DATA_VECTOR( weight );    // Node weight 

  DATA_VECTOR( area );      // Area sweept for counts 

  DATA_SPARSE_MATRIX( A1 ); // Projection matrix early spring 

  DATA_SPARSE_MATRIX( A2 ); // Projection matrix late spring 

  DATA_SPARSE_MATRIX( A3 ); // Projection matrix early summer 

   

  //Count data 

  DATA_VECTOR( counts ); // Number of counts per site 

   

  // Covaraite dataset 

  DATA_VECTOR( nBias ); // Number of other butterfly observations @ nodes 

  DATA_VECTOR( nPopD ); // Human population density @ nodes 

  DATA_VECTOR( nNDVI ); // NDVI @ nodes 

  DATA_VECTOR( nGDD );  // GDD @ nodes 

   

  DATA_VECTOR( Bias ); // Number of other butterfly observations @ data 

  DATA_VECTOR( PopD ); // Human population density @ data 

  DATA_VECTOR( NDVI ); // NDVI @ data 

  DATA_VECTOR( GDD );  // GDD @ data 

   

  // SPDE objects 

  DATA_STRUCT(spde1,spde_t); // Sparse matrix for Matern covariance structure 

in early spring 

  DATA_STRUCT(spde2,spde_t); // Sparse matrix for Matern covariance structure 

in late spring 

  DATA_STRUCT(spde3,spde_t); // Sparse matrix for Matern covariance structure 

in early summer 

   

  // Fixed effects 

  PARAMETER( beta0 );         // Baseline population density 

  PARAMETER_VECTOR( beta1 );  // Effect of NDVI 

  PARAMETER_VECTOR( beta2 );  // Quadratic effect of NDVI 

  PARAMETER_VECTOR( beta3 );  // Effect of GDD 

  PARAMETER_VECTOR( beta4 );  // Quadratic effect of GDD 

  PARAMETER( delta1 );        // Effect of 2016 

  PARAMETER( delta2 );        // Effect of 2017 

  PARAMETER( gamma1 );        // Effect of early spring 

  PARAMETER( gamma2 );        // Effect of late spring 

  PARAMETER( alpha0 );        // Thinning function intercept 

  PARAMETER_VECTOR( alpha1 ); // Effect of number of other butterfly 

observations 

  PARAMETER_VECTOR( alpha2 ); // Effect of human population density 

  PARAMETER( log_kappa );     // Scale parameter of Matern covariance 



111 

 

  PARAMETER( log_tau );       // Precision parameter of Matern covariance 

   

  // Random effects 

  PARAMETER_VECTOR( omega1 ); // Spatial random effect in early spring 

  PARAMETER_VECTOR( omega2 ); // Spatial random effect in late spring 

  PARAMETER_VECTOR( omega3 ); // Spatial random effect in early summer 

   

  // Population density at each stage and year 

  vector<Type> beta(t_n * p_n); 

  beta(0) = beta0 + gamma1 + gamma2 + delta1 + delta2; //2016 early spring 

  beta(1) = beta0 + gamma1 + delta1 + delta2;          //2016 late spring 

  beta(2) = beta0 + delta1 + delta2;                   //2016 early summer 

  beta(3) = beta0 + gamma1 + gamma2 + delta1;          //2017 early spring 

  beta(4) = beta0 + gamma1 + delta1;                   //2017 late spring 

  beta(5) = beta0 + delta1;                            //2017 early summer 

  beta(6) = beta0 + gamma1 + gamma2;                   //2018 early spring 

  beta(7) = beta0 + gamma1;                            //2018 late spring 

  beta(8) = beta0;                                     //2018 early summer 

   

  // Derived parameters for computational purposes 

  Type kappa = exp(log_kappa); 

  Type tau = exp(log_tau); 

  Type range = sqrt(8)/kappa; 

  Type sigma = 1/sqrt(4*PI*tau*tau*kappa*kappa); 

   

  vector<Type> jnll_comp(12); 

  jnll_comp.setZero(); 

   

  // Probability of random effects 

  SparseMatrix<Type> Q1 = Q_spde(spde1,kappa); 

  SparseMatrix<Type> Q2 = Q_spde(spde2,kappa); 

  SparseMatrix<Type> Q3 = Q_spde(spde3,kappa); 

  jnll_comp(0) += GMRF(Q1)( omega1 ); 

  jnll_comp(1) += GMRF(Q2)( omega2 ); 

  jnll_comp(2) += GMRF(Q3)( omega3 ); 

   

  // Holding values 

  vector<Type> Omega1(nodes1); 

  vector<Type> Omega2(nodes2); 

  vector<Type> Omega3(nodes3); 

   

  vector<Type> omg1(nobs1 + ncount1); 

  vector<Type> omg2(nobs2 + ncount2); 

  vector<Type> omg3(nobs3 + ncount3); 

   

  // Transform GMRFs 

   

  //Early spring 

  for(int k=0; k<nodes1; k++){ 

    Omega1(k) = omega1(k) / tau; 

  } 

  //Late spring 

  for(int k=0; k<nodes2; k++){ 

    Omega2(k) = omega2(k) / tau; 

  } 

  //Summer 

  for(int k=0; k<nodes3; k++){ 
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    Omega3(k) = omega3(k) / tau; 

  } 

   

  // Project GMRFs 

  omg1 = A1 * Omega1; 

  omg2 = A2 * Omega2; 

  omg3 = A3 * Omega3; 

   

   

  // Intensity function @ nodes 

  for(int t=0, j=0, i=nodes1*t_n, g=(nodes1+nodes2)*t_n; t<t_n; t++){ 

    for(int k=0; k<nodes1; k++, j++){ 

      jnll_comp(3) += weight(j) * exp(alpha0 + alpha1(tp_k(j)) * nBias(j) + 

alpha2(tp_k(j)) * nPopD(j) + beta(tp_k(j)) + beta1(p_k(j)) * nNDVI(j) + 

beta2(p_k(j)) * nNDVI(j) * nNDVI(j) + beta3(p_k(j)) * nGDD(j) + beta4(p_k(j)) 

* nGDD(j) * nGDD(j) + Omega1(k)) / (exp(alpha0 + alpha1(tp_k(j)) * nBias(j) + 

alpha2(tp_k(j)) * nPopD(j)) + 1); 

    } 

    for(int k=0; k<nodes2; k++, i++){ 

      jnll_comp(4) += weight(i) * exp(alpha0 + alpha1(tp_k(i)) * nBias(i) + 

alpha2(tp_k(i)) * nPopD(i) + beta(tp_k(i)) + beta1(p_k(i)) * nNDVI(i) + 

beta2(p_k(i)) * nNDVI(i) * nNDVI(i) + beta3(p_k(i)) * nGDD(i) + beta4(p_k(i)) 

* nGDD(i) * nGDD(i) + Omega2(k)) / (exp(alpha0 + alpha1(tp_k(i)) * nBias(i) + 

alpha2(tp_k(i)) * nPopD(i)) + 1); 

    } 

    for(int k=0; k<nodes3; k++, g++){ 

      jnll_comp(5) += weight(g) * exp(alpha0 + alpha1(tp_k(g)) * nBias(g) + 

alpha2(tp_k(g)) * nPopD(g) + beta(tp_k(g)) + beta1(p_k(g)) * nNDVI(g) + 

beta2(p_k(g)) * nNDVI(g) * nNDVI(g) + beta3(p_k(g)) * nGDD(g) + beta4(p_k(g)) 

* nGDD(g) * nGDD(g) + Omega3(k)) / (exp(alpha0 + alpha1(tp_k(g)) * nBias(g) + 

alpha2(tp_k(g)) * nPopD(g)) + 1); 

    } 

  } 

   

  // Intensity function @ presence-only observations 

  int h=0; 

  for(int i=0; i<nobs1; i++, h++){ 

    jnll_comp(6) -= alpha0 + alpha1(tp_i(h)) * Bias(h) + alpha2(tp_i(h)) * 

PopD(h) + beta(tp_i(h)) + beta1(p_i(h)) * NDVI(h) + beta2(p_i(h)) * NDVI(h) * 

NDVI(h) + beta3(p_i(h)) * GDD(h) + beta4(p_i(h)) * GDD(h) * GDD(h) + omg1(i) 

- log(exp(alpha0 + alpha1(tp_i(h)) * Bias(h) + alpha2(tp_i(h)) * PopD(h)) + 

1); 

  } 

   

  for(int i=0; i<nobs2; i++, h++){ 

    jnll_comp(7) -= alpha0 + alpha1(tp_i(h)) * Bias(h) + alpha2(tp_i(h)) * 

PopD(h) + beta(tp_i(h)) + beta1(p_i(h)) * NDVI(h) + beta2(p_i(h)) * NDVI(h) * 

NDVI(h) + beta3(p_i(h)) * GDD(h) + beta4(p_i(h)) * GDD(h) * GDD(h) + omg2(i) 

- log(exp(alpha0 + alpha1(tp_i(h)) * Bias(h) + alpha2(tp_i(h)) * PopD(h)) + 

1); 

  } 

   

  for(int i=0; i<nobs3; i++, h++){ 

    jnll_comp(8) -= alpha0 + alpha1(tp_i(h)) * Bias(h) + alpha2(tp_i(h)) * 

PopD(h) + beta(tp_i(h)) + beta1(p_i(h)) * NDVI(h) + beta2(p_i(h)) * NDVI(h) * 

NDVI(h) + beta3(p_i(h)) * GDD(h) + beta4(p_i(h)) * GDD(h) * GDD(h) + omg3(i) 
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- log(exp(alpha0 + alpha1(tp_i(h)) * Bias(h) + alpha2(tp_i(h)) * PopD(h)) + 

1); 

  } 

   

  // Intensity function @ structured sampling sites 

  vector<Type> lambda(ncount); 

  int f=0; 

  for(int i=0; i<ncount1; i++, h++, f++){ 

    lambda(f) = area(f) * exp(beta(tp_i(h)) + beta1(p_i(h)) * NDVI(h) + 

beta2(p_i(h)) * NDVI(h) * NDVI(h) + beta3(p_i(h)) * GDD(h) + beta4(p_i(h)) * 

GDD(h) * GDD(h) + omg1(i+nobs1)); 

    jnll_comp(9) -= dpois(counts(f), lambda(f), true); 

  } 

   

  for(int i=0; i<ncount2; i++, h++, f++){ 

    lambda(f) = area(f) * exp(beta(tp_i(h)) + beta1(p_i(h)) * NDVI(h) + 

beta2(p_i(h)) * NDVI(h) * NDVI(h) + beta3(p_i(h)) * GDD(h) + beta4(p_i(h)) * 

GDD(h) * GDD(h) + omg2(i+nobs2)); 

    jnll_comp(10) -= dpois(counts(f), lambda(f), true); 

  } 

   

  for(int i=0; i<ncount3; i++, h++, f++){ 

    lambda(f) = area(f) * exp(beta(tp_i(h)) + beta1(p_i(h)) * NDVI(h) + 

beta2(p_i(h)) * NDVI(h) * NDVI(h) + beta3(p_i(h)) * GDD(h) + beta4(p_i(h)) * 

GDD(h) * GDD(h) + omg3(i+nobs3)); 

    jnll_comp(11) -= dpois(counts(f), lambda(f), true); 

  } 

   

  // Joint NLL 

  Type jnll = jnll_comp.sum(); 

   

  // Reporting 

  REPORT( tau ); 

  REPORT( kappa ); 

  REPORT( sigma ); 

  ADREPORT( tau ); 

  ADREPORT( kappa ); 

  ADREPORT( sigma ); 

   

  REPORT( jnll_comp ); 

  REPORT( jnll ); 

   

  return jnll; 

} 
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Model output 

Table E.1 

Estimates (mean and 95% confidence intervals) of monarch population density per 100-m2 for 

each year and stage. 

Year Stage Population density per 100-m2 

2016 Early Spring 0.001 (CI 0.001, 0.002) 

2016 Late Spring 0.002 (CI 0.001, 0.002) 

2016 Early Summer 0.003 (CI 0.003, 0.004) 

2017 Early Spring 0.004 (CI 0.003, 0.005) 

2017 Late Spring 0.004 (CI 0.004, 0.006) 

2017 Early Summer 0.009 (CI 0.008, 0.011) 

2018 Early Spring 0.010 (CI 0.008, 0.012) 

2018 Late Spring 0.012 (CI 0.010, 0.015) 

2018 Early Summer 0.022 (CI 0.020, 0.025) 
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Table E.2 

Estimates (mean and 95% confidence intervals) of the effect of NDVI and averaged daily GDD 

per each stage on monarch population density on the log-scale. 

Covariate Stage Effect (log-scale) 

𝑁𝐷𝑉𝐼 Early Spring 0.22 (CI 0.09, 0.36) 

𝑁𝐷𝑉𝐼 Late Spring 1.87 (CI 1.63, 2.14) 

𝑁𝐷𝑉𝐼 Early Summer 0.41 (CI 0.30, 0.52) 

𝑁𝐷𝑉𝐼2 Early Spring 0.23 (CI 0.16, 0.29) 

𝑁𝐷𝑉𝐼2 Late Spring -1.62 (CI -1.87, -1.40) 

𝑁𝐷𝑉𝐼2 Early Summer -0.33 (CI -0.42, -0.24) 

𝐺𝐷𝐷 Early Spring 0.97 (CI 0.73, 1.23) 

𝐺𝐷𝐷 Late Spring 0.56 (CI 0.31, 0.82) 

𝐺𝐷𝐷 Early Summer 0.02 (CI -0.13, 0.17) 

𝐺𝐷𝐷2 Early Spring -1.17 (CI -0.13, 0.17) 

𝐺𝐷𝐷2 Late Spring -0.89 (CI -0.94, -0.67) 

𝐺𝐷𝐷2 Early Summer -0.09 (CI -0.21, 0.02) 
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