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ABSTRACT

EXISTENCE OF MULTI-POINT BOUNDARY GREEN’S FUNCTION FOR CHORDAL
SCHRAMM-LOEWNER EVOLUTION (SLE)

By

Rami Fakhry

Schramm-Loewner evolution (SLE for short) is a one-parameter (k € (0,8)) family of random
fractal curves which grow in plane domains. For an SLE, curve ~ growing in a domain D,

and a single point 2y € D or € 9D, the Green’s function for v at zy is the limit

G(z) := lim r~*P[dist(z0,7y) < 7]

r—0+

for some suitable exponent o > 0, provided that the limit exists and is not trivial. The
Green’s function for SLE plays an central role in determining the Hausdorff dimension of
SLE, and proving the existence of Minkowski content of SLE.

The notion of (one-point) Green’s function easily extends to multi-point Green’s function.
Given n distinct points z1,...,2, € D or € 9D, the n-point Green’s function for the SLE,

curve v at (z1,..., 2,) is the limit
G(z1,...,2,) ;= lim Hr;aIF’[dist(zj,’y) <r;,1<j<n].

7150wy —01 2
Jj=1

In the thesis, we prove that the n-point Green’s function exists if v is a chordal SLE,
k€ (0,8), 0 =2—1,2,...,2, € D, and 9D is smooth near each z;. In addition, we prove
that the convergence is uniform over compact sets and the Green’s function is continuous.

We also give up-to-constant bounds for the Green’s function.



In memory of Rami Fakhry and dedicated to his family.
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CHAPTER 1

INTRODUCTION

The Schramm-Loewner evolution (SLE for short) is a one-parameter (k € (0,00)) family
of random fractal curves which grow in plane domains. It was defined in the seminal work
of Schramm [20] in 1999. Because of its close relation with two-dimensional lattice models,
Gaussian free field, and Liouville quantum gravity, SLE has attracted a lot of attention for
over two decades.

The geometric properties of an SLE, curve depends on the parameter k. When x > 8,
an SLE, curve visits every point in the domain (cf. [19]); when & € (0, 8), an SLE, curve has
Hausdorff dimension dy = 14 § (cf. [4]). There are several types of SLE. In this thesis we
focus on chordal SLE, which grows in a simply connected plane domain from one boundary
point to another boundary point. Suppose 7 is a chordal SLE, curve, x € (0, 8), in a domain

D, and zy € D. The Green’s function for v at 2 is the limit

G(z0) := lim r~*P[dist(zg,7) < 7] (1.1)

r—0t

for some suitable exponent o > 0 depending on « such that the limit exists and is not trivial,

i.e., lies in (0, 00). This notion easily extends to n-point Green’s function:

G(z1y...,2n) := lim Hr Pldist(z;,7) <7;,1 < j<mn], (1.2)

r1,.. ,rnHO+

where z1,..., 2, are distinct points in D, provided that the limit exists and is not trivial.
The term “Green’s function” is used for the following reasons. Recall the Laplacian
Green’s function Gp(z,w), z # w € D, for a planar domain D, which is characterized by

the following properties: for any w € D,
e Gp(-,w) is positive and harmonic on D \ {w}.

e As z — 0D, Gp(z,w) — 0.



e As z » w, Gp(z,w) = —=In|z — w| + O(1).

One important fact is

—Inr

-P*[dist(z, B[0, 7p]) <], (1.3)

r—0+t 27

where B is a planar Brownian motion started from w, and 7p is the exit time of D. Notice the

similarity between (1.1) and (1.3). The main difference between them is the normalization

—Inr

factor: one is r~¢ and the other is 5

Another important fact is: for any measurable set U C D,

E[|{t € [0,7p) : B, € U}|] = / Gz, w)dA(2). (1.4)
U
Here | - | stands for the Lebesgue measure on R, and A is the area.

It turns out that the correct exponent « is the co-dimension of the SLE curve, i.e.,
a=2—dy=2—(14+%) =1-%. The existence of a variation of Green’s function for chordal
SLE,, k € (0,8), was given in [5], where the conformal radius was used instead of Euclidean
distance. The existence of 2-point Green’s function was proved in [12] (again for conformal
radius instead of Euclidean distance) following a method initiated by Beffara [4]. In [8] the
authors showed that Green’s function as defined in (1.2) (using Euclidean distance) exists

for n = 1,2, and then used those Green’s functions to prove that

e an SLE, curve v can be parametrized by its dy-dimensional Minkowski content, i.e.,

for any ¢, < t,, the (1 + §)-dimensional Minkowski content of y[t1,2] is > — ¢;; and

e under such parametrization, for any measurable set U C D,

([t 1(t) € U}] = [ Gl2)dAG). (1.5)

U

The Minkowski content parametrization agrees with the natural parametrization introduced
earlier (cf. |11, 13]) The similarity between (1.4) and (1.5) further justifies the terminology

“Green’s function”.



In a series of papers (|17, 16]) the authors showed that the Green’s function of chordal
SLE exists for any n € N. In addition, they found convergence rate and modulus of continuity
of the Green’s functions, and provided up-to-constant sharp bounds for them.

If the reference point(s) is (are) on the boundary of the domain instead of the interior,
we may use (1.1) and (1.2) to define the one-point and n-point boundary Green’s function.
Again, if Kk > 8, the boundary Green’s function makes no sense for SLE, since it visits every
point on the boundary; if x € (0,8), the intersection of the SLE, curve with the boundary
has Hausdorff dimension d; = 2 — 2 ([3]), and so the reasonable choice of the exponent « is
a=1-d =3-1

Greg Lawler proved (cf. [6]) the existence of the 1- and 2-point (on the same side) bound-
ary Green’s function for chordal SLE, and used them to prove that the d;-dimensional
Minkowski content of the intersection of SLE, with the domain boundary exists. He also
obtained the exact formulas of these Green’s function up to some multiplicative constant.

We will use the exact formula of the one-point Green’s function:
G(z) =22, = #0, (1.6)

where ¢ > 0 is some (unknown) constant depending only on x. We will also use the con-
vergence rate of the one-point Green’s function (|6, Theorem 1]): there is some constant

C, p1 > 0 depending only on & such that for any z € R\ {0} and r € (0, |z]),
[P[dist(z,7) < e] = G(2)e?] < Cle/2])™. (1.7)

To the best of our knowledge, the existence of n-point boundary Green’s function for
n > 2 and the 2-point boundary Green’s function when the two reference points lie on
different sides of 0 has not been proved so far. The main goal of this thesis is to prove
this existence for all n € N without assuming that the reference points all lie on the same
side of 0. In addition we prove that the Green’s functions are continuous. We do not have
exact formulas of these functions, but find some sharp bounds for them in terms of simple

functions.



We will mainly follow the approach in [16]|, and apply the results from there as well as

from [6] and [17]. Below is our main result.

Theorem 1.1. Let x € (0,8) and a = 1. Let~ be an SLE, curve inH :={z € C:Imz >
0} from 0 to co. Let n € N and ¥, = {(z1,...,2,) € (R\ {0})" : z; # 2z, wheneverj # k}.
Then for any z = (z1,...,2n) € 2p, the limit G(z) in (1.2) exists and lies in (0, 00).
Moreover, the convergence in (1.2) is uniform on each compact subset of 3,, the function
G is continuous on ¥, and there is an explicit function F on ¥, (defined in (3.4)) with a

simple form such that G(z) < F(z), where the implicit constants depend only on k and n.

Our result will shed light on the study of multiple SLE. For example, if we condition
the chordal SLE, in Theorem 1.1 to pass through small discs centered at z2; < 25 < -++ <
zn € (0,00), and suitably take limits while sending the radii of the discs to zero, then we
should get an (n + 1)-SLE,; configuration in H with link pattern (0 <> 21521 > 22529 <>
23} .. .5 Zno1 <% Zn; 2y & 00), which is a collection of (n + 1) random curves (7o, ..., 7,) in H
such that ~; connects z; with z;41, where 2o := 0 and z,4; := oo, and when any n curves
among the (n + 1) curves are given, the last curve is a chordal SLE, curve in a connected
component of the complement of the given n curves in H. The n-point boundary Green’s
function is then closely related to the partition function associated to such multiple SLE.

Here are a few topics that we could study in the near future. We may consider “mixed”
multi-point Green’s functions for chordal SLE, where some reference points lie in the interior
of the domain, and some lie on the boundary. We expect that the Green’s functions still
exist, if 1 — £ is used as the exponent for interior points and % — 1 is used as the exponent for
boundary points. We may also work on other types of SLE such as radial SLE, which grows
from a boundary point to an interior point. The multi-point (interior) Green’s function for
radial SLE was proved to exist in [14]. The next natural objects to study are the boundary
and mixed multi-point Green’s function for radial SLE.

The rest of the thesis is organized in a straightforward fashion. In Chapter 2, we recall

symbols, notation and some basic results that are relevant to the thesis. Chapter 3 contains



the most technical part of the thesis, where we derive a number of important estimates. We

finish the proof of the main theorem in Chapter 4.



CHAPTER 2

PRELIMINARIES

2.1 Symbols and Notation

Let H={z € C:Imz > 0} be the open upper half plane. Given z; € C and S C C, we use
rad,, (S) to denote sup{|z — 20| : 2 € SU{z}}. We write N,, for {k € N : k < n}, where
N = {1,2,3,...} is the set of all positive integers. For a,b € R, we write a A b and a V b
respectively for min{a, b} and max{a,b}.

We fix x € (0,8) and set d =1+ % and o« = £ — 1. Throughout, a constant (such as «)
depends only on x and a variable n € N (number of points), unless otherwise specified. We
use X <Y or Y 2 X if there is a constant C' > 0 such that X < CY. We write X <Y if
X<YandY <X.

When a (deterministic or random) curve 7(t), ¢ > 0, is fixed in the context, we let
7s = inf({t > 0:7(t) € S} U{oo}). We write 770 for 7(...._.,<,}, and T3, for 73° = 7.3. So
another way to say that dist(zo,v) < ris 770 < co. We also write 73° for 7(...;>r)-

A crosscut in a domain D is an open simple curve in D, whose two ends approach to two
boundary points of D. When D is a simply connected domain, any crosscut p of D divides

D into two connected components.

2.2 H-Hulls

A relatively closed bounded subset K of H is called an H-hull if H\ K is simply connected.
The complement domain H \ K is then called an H-domain. Given an H-hull K, we use gx
to denote the unique conformal map from H \ K onto H that satisfies gx(2) = 2z + O(|z|™1)
as z — 00. Let fx = gi'. The half-plane capacity of K is heap(K) := lim, o 2(gx (2) — 2).
If K =0, then gx = fx = id, and hcap(K) = 0. Now suppose K # (). Let ax = min(K NR)

and b = max(K NR). Let K% = K U [ag,bx] U{Z : 2 € K}. By Schwarz reflection



principle, gr extends to a conformal map from C\ K" onto C \ [ck, dk] for some cx <
di € R, and satisfies gx (Z) = gx(z). In this thesis, we write Sk for [cx,dx]. In the case
K = 0, we understand Sk and [ag, bk] as the empty set. Given two H-hulls K; C K, we
get another H-hull K,/K; defined by K3/ K7 = g, (Ks \ K7).

Example 2.1. For zp € R and r > 0, the set K := {z € H : |z — 29| < r} is an H-hull,

ag =x9—71,bxg = w0+ 71, gx(2) = 2 + r? hcap(K) = r?, and Sk = [zg — 2r, 7o + 2r].

z—xo’

Proposition 2.2. For any H-hull K, |ax,bx] C Sk. If K1 C Ky are two H-hulls, then

SK1 C SK2 and SK2/K1 C SK2~
Proof. This is [21, Lemmas 5.2 and 5.3|. O

Proposition 2.3. If a nonempty H-hull K satisfies that rad,,(K) < r for some xy € R and

r >0, then hcap(K) < r?, S C [xo — 2,z + 27|, and
lgr(2) — 2| <3r, z€C\ K%, (2.1)

Moreover, for any z € C with |z — x| > 5r, we have

r 2
ezl (—) .2
r 2
() =11 < 5( ) 2.3
Proof. This is [16, Lemmas 2.5 and 2.6]. O

Proposition 2.4. Let H be a nonempty H-hull, and H(H) denote the space of H-hulls,
which are subsets of H. Then H(H) is compact in the sense that any sequence (K,) in
H(H) contains a convergent subsequence (K,,) whose limit K is contained in H(H). Here

the convergence means that gk, —converges to gk locally uniformly in C \ Hdoub,

Proof. This is [21, Lemma 5.4]. O



2.3 Chordal Loewner Processes

Let U(t), 0 <t < T, be a real valued continuous function, where T' € (0, 0c0]. The chordal

Loewner equation driven by U is the equation

d(s) = = ()= = (2.4)

For every z € C, let 7/ denote the first time that the solution g.(z) blows up; when such time
does not exist, 77 is set to be co. Let Ky ={z € H: 7} <t}. Wecall g and K;, 0 <t <T,

the chordal Loewner maps and hulls, respectively, driven by U. It turns out that, for each

t €[0,7), K; is an H-hull, hcap(K;) = 2t, and g; = gx,.

Proposition 2.5. For any 0 <t < T,

{U:} = m Kiie/ K.
e€(0,7—t)
Proof. This a restatement of [9, Theorem 2.6]. O

Corollary 2.6. If for some H-hull H and ty € (0,T), K;, C H, then U, € Sy for0 <t <.

Proof. By Proposition 2.5, for every t € [0,t0), U; € [ax, /K, K, /x,), Which implies by
Proposition 2.2 that U; € SKtO/Kt - SKtO C Sy. By the continuity of U, we also have
U, € Su. ]

We call the maps Z; = ¢g; — U; the centered Loewner maps driven by U.

Proposition 2.7. Let b > a € [0,T). Suppose that rad,,(K,/K,) < r for some o € R and

r>0. Then |Zy(2) — Zy(2)| < Tr for any z € H\ K.

Proof. Let Uuyy = Usity Gat = Gare 0 g, and Koy = K, /K,y 0 <t < T —a. Tt is

straightforward to check that g,. and K. are respectively the chordal Loewner maps and



hulls driven by U,,.. By Corollary 2.6, U,, U, € Sk,,_,. By the assumption, rad,,(Kep—a) <

r. By Proposition 2.3, Sk C [zo — 21,29 + 2r]. Thus, |U, — Uy| < 4r. By Proposition

a;b—a

2.3, |gap—a(2z) — 2| < 3r for any z € E\Ka;b_a. So for any z € E\E, lga(2) — gu(2)| < 3r.

Since Z, = g, — U, and |U, — Up| < 4r, we get the conclusion. O

If there exists a function y(t), 0 < t < T, in H, such that for any ¢, H\ K, is the
unbounded connected component of H \ [0, ¢], we say that such 7 is the chordal Loewner
curve driven by U. Such v may not exist in general, but when it exists, it is determined

by U, and for each t € [0,T), g; ' and Z, ' extend continuously from H to H and satisfy
g0 ' (U) = Z7(0) = (1)

2.4 Chordal SLE

Let x > 0. Let B; be a standard Brownian motion. If the driving function is U; = \/kB;,
0 <t < oo, then the chordal Loewner curve driven by U exists, starts from 0 and ends
at oo (cf. [19]). Such curve is called a chordal SLE, trace or curve in H from 0 to oco. Its
geometric property depends on x: if k < 4, it is simple; if 4 < kK < 8, it is not simple and
not space-filling; if x > 8 it is space-filling (cf. [19]). The Hausdorff dimension of an SLE,
curve is min{1 + §,2} (cf. [19, 4]).

The definition of chordal SLE extends to general simply connected domains via confor-
mal maps. Let D be a simply connected domain with two distinct boundary points (more
precisely, prime ends) a,b. Let f be a conformal map from H onto D, which sends 0 and oo
respectively to a and b. Let v be a chordal SLE, curve in H from 0 to oo. Then f o~ is
called a chordal SLE,. curve in D from a to b.

A remarkable property of SLE is the Domain Markov Property (DMP). Suppose 7 is a
chordal SLE,, curve in H from 0 to oo, which generates the H-hulls K;, 0 <t < 0o, and a
filtration F = (F¢)i>0. Let 7 be a finite F-stopping time. Conditionally on F,, v(7 + -) has
the same law of a chordal SLE, curve in H \ K, from v(7) to oco. Equivalently, there is a

chordal SLE,, curve 5 in H from 0 to oo independent of F, such that v(r +t) = Z-'(§(¢)),



t > 0. Here Z, is the centered Loewner map at the time 7 that corresponds to ~, and its
inverse Z-! has been extended continuously to H.

We will also use the left-right symmetry and rescaling property of chordal SLE. Suppose ~
is a chordal SLE,, curve in H from 0 to co. The left-right symmetry states that, if f(z) = —Z
is the reflection about ‘R, then f oy has the same law as . This follows easily from that
(—+/kDBi) has the same law as (y/kB;). The rescaling property states that, for any ¢ > 0,
(cy(t)) has the same law as (vy(y/ct)). This follows easily from the rescaling property of the

Brownian motion.

2.5 Extremal Length

We will need some lemmas on extremal length, which is a nonnegative quantity A(I") asso-
ciated with a family I" of rectifiable curves (|1, Definition 4-1]). One remarkable property of
extremal length is its conformal invariance (|1, Section 4-1|), i.e., if every v € I is contained
in a domain , and f is a conformal map defined on Q, then A\(f(I')) = A(I'). We use
do(X,Y) to denote the extremal distance between X and Y in €, i.e., the extremal length of
the family of curves in (2 that connect X with Y. It is known that in the special case when (2
is a semi-annulus {z € H: R < |z —z| < Ro}, wherex € Rand Ry > Ry > 0, and X and YV
are the two boundary arcs {z € H: |z — z| = R;}, j = 1,2, then do(X,Y) = log(R2/Ry) /7
(|1, Section 4-2]). We will use the comparison principle (|1, Theorem 4-1]): if every v € T
contains a 7' € I, then A(I') > A(I”). Thus, if every curve in § connecting X with YV a
semi-annulus with radii Ry, Rs, then do(X,Y) > log(Ry/Ry)/m. We will also use the com-
position law (|1, Theorem 4-2|): if for j = 1,2, every ~; in a family I'; is contained in §;,
where (2; and {2, are disjoint open sets, and if every « in another family I" contains a 3, € I’y
and a o € I'y, then A\(I') > A(I'y) + A(I'g).

The following propositions are applications of Teichmiiller Theorem.

Proposition 2.8. Let Sy and Sy be a disjoint pair of connected closed subsets of H that

10



intersect R such that Sy is bounded and Sy is unbounded. Let z; € S;NR, j =1,2. Then

rad21 (Sl)

< 32¢ mH(5152),
|21 — 2| T

1A

Proof. For j = 1,2, let S§°"* be the union of S; and its reflection about R. By reflection
principle (|1, Exercise 4-1]), dg(S1,S2) = 2dc(S{, SfouP). Let r = rad.,(S1), L = |21 — 29
and R = L/r. From Teichmiiller Theorem (|1, Theorem 4-7]),

dC(S?OHb7 S;loub) < dC([_T7 0]7 [Lv OO)) = d(C([_LO]v [Rv OO)) = A(R)

From [1, Formula (4-21)|, we have

o~ (S1,52) _ ,—2mdc(SHO,S5oN) o —2mA(R) >, 1
= =~ 16(R+1)

Since 1 A % < HLR, we get the conclusion. O]

Proposition 2.9. Let D be an H-domain and S C H. Suppose that there are zop € R and
r >0 such that {|z — z0| =} N D has a connected component C,, which disconnect S from
oo. In other words, S lies in the bounded component of D\ C,. Let g be a conformal map

from D onto H such that lim, ., g(z)/z = 1. Then there is wy € R such that

rad,, (g(5)) < 4rad,,(5).

Proof. Since C, is a crosscut of D, and S lies in the bounded component of D \ C,, g(C,)
is a crosscut of g(D) = H, and ¢(5) lies in the bounded component of H \ g(C,). Let wy be
one endpoint of ¢(C,). Tt suffices to show that rad,,(¢g(C,)) < 4r. Let L = rad,,(K) and
Ly = |20 — wg|. Take a big number R > r+ L + L' and let Cp = {z € H : |z — 29| = R}.
Then S and Cp can be separated by the semi-annulus {z € H: r < |z — 9| < R} in D. By

the comparison principle and conformal invariance of extremal length,
1
4i(9(C:),9(Cr)) = d(Cr, Cr) = ~ log(R/r).

11



Let K be the H-hull H\ D. Then g — gk is a real constant. So we may assume that g = gx-.
By Proposition 2.3 again, g(C) is a crosscut of H with rad,, (¢(C)) < R+ L + Ly. Let
7" = rady, (¢(C;)) and R = R+ L + Lg. By comparison principle, reflection principle and

Teichmiiller Theorem,

du(9(C),9(Cr)) < du(g(Cr), {z € H: |z — wy| = R'})

= 2dc(9(Cr)* ™ {]z —wo| = R'}) < 2de([=1,0, {|2| = R'/r'} = 2M(R'/r").

By [1, Formula 4-14], 2M (R'/r") = A((R'/r")* — 1). Thus, by the above displayed formulas
and [1, Formula (4-21)]

“log(R/r) < M(R/1')? 1) < 5 log(16(R'/1')?) = ~(4(R /7)),

So we get ' < 4(R'/R)r. Letting R — oo, we get R'/R — 1. So ' < 4r. O

2.6 Two-sided Chordal SLE

Suppose v is a chordal SLE, curve in H from 0 to oo, which generates the filtration F =
(Ft)i>0. Let P denote the law of v, and E denote the corresponding expectation. Let
z € R\ {0}. By (2.4) and the fact that U, = /kB; for some standard Brownian motion B,
up to 77, Z;(z) and g,(z) satisfy the following SDE and ODE:

2
dZy(z) = —v/kdB, + —— dt;
t(Z) \/E t + Zt(z> )

dgi(z) =2

0~z

By Itd’s formula (cf. [18]), we get the following continuous positive local martingale:

R ACINE

M, =, 0t ) 2.5
t(z) |Zt(2’)|a ’ —= <Tz7 ( )

which satisfies the SDE:

12



By Girsanov Theorem (cf. [18]), if we tilt the law P by the local martingale M.(z), we get a

new random curve 7, whose driving function U satisfies the SDE:

K—8

dﬁt — \/Edét +

dt,

Zi(z
where B is another standard Brownian motion, and Z’s are the centered Loewner maps
associated with 7. In fact, such 7 is a chordal SLE, (k — 8) curve (cf. [10]) in H started from
0, aimed at oo, with the force point located at z. Since x — 8 < § — 4, with probability 1, 5
ends at z (cf. [15]).

The above curve ¥ from 0 to z is the first arm of a two-sided chordal SLE, curve in H
from 0 to oo passing through z. Given this arm 7, the rest of the two-sided chordal SLE,
curve is a chordal SLE, curve from z to oo in the unbounded connected component of H\ 7.
We use P} to denote the law of such a two-sided chordal SLE, curve, and let EY denote the
corresponding expectation. For r > 0, we use P’ to denote the conditional law P[-|77 < o0],
i.e., the law of a chordal SLE, curve in H from 0 to oo conditioned to visit the disk with

radius 7 centered at z; and let E7 denote the corresponding expectation.

Proposition 2.10. Let z € R\ {0} and R € (0,|z]). Then IP% is absolutely continuous w.r.t.
P2 on Frz N {t}, < oo}, and the Radon-Nikodym derivative is uniformly bounded by some

constant C, € [1,00) depending only on k.

Proof. By symmetry we may assume z > 0. Let 7 = 75. By the construction of P (through

tilting P by M.(z)), we have

dP;|F-N{r < oo}
dP|F.N{r < o0}

M, (z).

By the definition of Pf,
dPE|F, N {r < oo} B 1
dP|F.N{r < oo}  Plr<oo]

Thus, it suffices to prove that M.(z) - P[7 < oo] is uniformly bounded. By (3.6), P[r <

] < (R/|z|)®. Since g, maps the simply connected domain Q := C\ (K" U (—o0,0])
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conformally onto C\ (—o0, bk, ], by Koebe’s 1/4 theorem,
197 (2)|-R = |g;(2)|-dist(z, 0) =< dist(g-(2), D(C\ (=00, bk ])) = |g-(2) —bx. | < Zi(2), (2.7)

where in the last step we used g,(z) > bg, > U,. Thus,

< lgi(2)*[=1" R |gi(2)|*R[* <
[Zi(2)|™ 2l [Zd=)]e

M. (z) - Pl < o0
[

Proposition 2.11. Let 2 € R\ {0} and 0 < r < n < [z]. Then P} restricted to F: is

*

*, and there is a constant 5 > 0 depending only on K

absolutely continuous with respect to P

such that

‘ og (%)‘ < (%)B, if r/m < 1/6. (2.8)

Proof. Recall the G(z) = ¢|z|~* defined by (1.6). Define Gy(2) = |Z/(2)|*Z:(z) if 77 > t; and

Gi(z) =01if 77 <t. Then
dPi’frg Y, - GT;(Z)

By the definition of P, we have

dPL|Fr: P17 < oo Foa
dP|F: — Plrp <oo]

Since P[77 < oo|F,z] = 0 implies that 77 < 77, which in turn implies that G:(2) = 0, by
the above two displayed formulas, P’ restricted to Frz 18 absolutely continuous with respect

to P, and
dP2|-FT§ Plr} < OO|‘FT§]/(GT§(Z)TQ)

dP;|F Pz < o] /(G(2)r®)
By (1.7) and Koebe’s distortion theorem, there are constants /3,6 > 0 such that, if r/n < 1/6,

then
log(P[r;7 < 00]/(G(2)r*)) S (r/|2])°, log(Plr; < 00| Fpa]/(Grz (2)r%)) < (r/n)”.

The above two displayed formulas together imply (2.8). H

14



CHAPTER 3

MAIN ESTIMATES

In this chapter, we will provide some useful estimates for the proof of the main theorem. We
use the notion and symbols in the previous chapter. We now define the function F(z1,. .., 2,)
that appeared in Theorem 1.1.

From now on, let dg =1+ § and o = % — 1. For y > 0, define P, on [0, 00) by

a—(2—dp) ,.2—do < 9
) T LY
Py(z) =

e, T >y.

For an (ordered) set of distinct points 2, ..., 2, € H\ {0}, we let 2y = 0 and define

yp=Tmzg, L= min {lz -zl Re= min {fz -z} 1<k<n (3.1)

Note that we have Ry <. For r,...,r, > 0, define

F(z1,o o251,y Th) = Yk . (3.2)
g Pyk(lk>
The following is [16, Formula (2.7)]. For any permutation o of {1,...,n},
F(z,.o 0 2nm1,000m) X F(2001), - - Zo(n); To(1)s - -5 To(n))- (3.3)

The following proposition combines [17, Theorem 1.1] (which gives the upper bound) and
[16, Theorem 4.3| (which gives the lower bound).

Proposition 3.1. Let zy, ..., 2, be distinct points on H\ {0}. Let Ry, ..., R, be defined by

(3.1). Letr; >0, 1 < j <n. Then for a chordal SLE, curve v in H from 0 to co, we have
2 . n Py.(r;) .
o Plr] <o0,1<j<n]Z Hj:l(l A 505)

Pyj (lj) ?

e P77 <00,1<j<n] 2 F(z1,...,20;71,...1), if 1; < R;, 1 < j <.
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Now suppose z1,. .., 2, are distinct points on R\ {0}. Then y, =0, 1 < k < n. So, the

l;yyi((;:)) in (3.2) simplifies to % Then we define
F(z1,...,20) = Hrk_o‘F(zl, e 2T ey ) = Hl,;o‘. (3.4)
k=1 k=1

This function is different from the F'(z1, ..., 2,) that appeared in [16], which was defined for

21, .., 2, € H. By (3.3), we have
F(Zl, ey Zn) = F(Zg(l), ey Zg(n)). (35)

A simple but useful special case of Proposition 3.1 is: when n =1 and z; € R\ {0}, we

have

P77t < oo] < (ri/]z]), 0<7r <]zl (3.6)

The estimate includes a lower bound and an upper bound. They first appeared in [2]. The
upper bound in (3.6) was called the boundary estimate in the literature.

From now on till the end of this chapter, P denotes the law of a chordal SLE, curve in
H from 0 to oo; for z € R\ {0} and r > 0, P” denotes the conditional law P[-|77 < oo], and
P? denotes the law of a two-sided chordal SLE, curve in H from 0 to oo passing through z.
When ~ follows some law above in the context, let U;, K; and g; be respectively the chordal
Loewner driving function, hulls and maps which correspond to v. Let Z; = g, — U; be the
centered Loewner maps, and let H; = H \ K;. For t > 0, let S;' be the set of prime ends of
H; that lie on the right side of v[0,t] or on [bg,, 00), and let S, be the set of prime ends of H,
that lie on the left side of [0, ¢] or on (—o0, ag,]. More precisely, S;t and S; are respectively

the images of [0, +00) and (—oo, 0] under 7, *.

Proposition 3.2. Let z,...,z, be distinct points in R\ {0}, where n > 2. Let Ry,..., R,

be defined by (3.1). Let rj € (0,R;/8), 1 < j < n. Then we have a constant 3 > 0 such that

16



for any ko € {2,...,n} and sy >0,

P72 < 7% < 00,2 < k < n;dist(zi,, 7[0,77]) < 50

’Iry

n

B
F(z,... Hra< )
’ e ! |Zk0 - z1| A |Zl€0|

J=1

Proof. This proposition is very similar to [16, Theorem 3.1]. The following estimate is [16,

Formula (A.14)]. For distinct points zy, ..., z, € H\ {0}, r; € (0, R;), 1 < j < n, and sy > 0,

iy oo 1 g <7 <1 S i) (B )
1 — <2 1

Let kg € {2,...,n} and = 55. Applying (3.3) to the above formula with a permutation

o of N,,, which sends 1 to ky and 2 to 1, we find that

zj : Zko 21 ko < 20 ’
]P[TT,J_]<OO71§]§”;TSO <7—7“2 <7_80 ]NF(Zla-.-yzn;Tla-.-ylrn)-(|Z Zl/\’Z |> .
ko - <1 k'(]

We then complete the proof by setting zq,...,z, € R\ {0}. H
Proposition 3.3. Let z; € R\{0} and 0 < s <r < RA|z|. On the event {77 < 7}, let &,
be the connected component of {|z — z1| = R} N H_ = with one endpoint being 2 +sign(z1) R;
otherwise let £, = 0. Let

TSR {V[T’S]mg"l‘_@}

Then

(i) If s >0, P [EX gl S (r/R)™.

(i) If s =0, PL[Efop] S (r/R)%.
Proof. (i) Assume that z; > 0 by the left-right symmetry of chordal SLE. Suppose ~ follows
the law P. Since x € (0,8), the probability that ~ visits {21 + 5,21 — 5,21 + R} is zero. We

now assume that v does not visit this set. Let 7 = inf({t > 77 : v(t) € &, } U {o0}). Then

7 is a stopping time, and E, sz = {7 < 7' < 00}. Let B, = {7 < 72'} € F,. By DMP
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of chordal SLE, conditionally on F, and the event FE., there is a random curve v following
the law P such that v(7 4+-) = Z-'07. Let D = {z e H\ K, : |2 — 1| < s}, D = Z,(D),

Z1 = Z;(z1) >0, and s = radz (D) > 0. On the event E., in order for E, ;. r to happen, we

need that v(r -+ -) visits D, which is equivalent to that 7 visits D. By (3.6),
PLEY o rlFr ] S (LA (71 /21))"
By Lemma 2.8 and conformal invariance of extremal length,

1A (/7)< e—ﬂdH((—OOﬁ],ﬁ) — ¢ ™du, (57.D)

Since S, can be separated from D in H, by the semi-annulus {s < |z — z;| < R}, by
the comparison principle of extremal length, dg_(S-, D) > log(R/s)/m. So by the above
two displayed formulas we get P[E; .| F;, E;] < (s/R)*, which together with P[E,] <
Plr7 < o] S (7/]21])* (the upper bound in (3.6)) implies that P[EY, z] S (r/]21])*(s/R)".
Combining this estimate with the lower bound in (3.6), i.e., P[72'] 2 (s/21)%, we get (i).
(ii) From Proposition 2.10 and (i), we get P} [Ef gl < (r/R)* for any s € (0,7). We

then complete the proof by sending s to 0F. O

Lemma 3.4. Let z1,...,2,, W1, ..., Wy, be distinct points in R\ {0}, where n > 1 and
m > 0. Suppose that all z; have the same sign o, € {+,—}, all wy have the same sign
ow € {+,—}, 0. # 0w, and both j — |z;| and k — |wg| are increasing. Let zp = wy = 0,
Znt1 = 0 00, aNd Wyp1 = 0y - 00. Let 75 € (0, (|2 — zj—1| AN |25 — 2j11])/2), 1 < j < n, and
sk € (0, (Jwg — wrr1| A Jwg —wi—1])/2), 1 <k <m. Let R> 2(|z,| V |wy|). Then
P[TEO<T:;<OO,1§j§TL;TEO<T;Zk<OO71§k§m]

n m

§<’Z—Rl|>aF(z1,...,zn,wl,...,wm)nrjo-‘-Hsg. (3.7)

j=1 k=1

Proof. By symmetry, we may assume that w,, < --- < w; <0< 2; < --- < 2,. Define F,
and F, such that F, = H?Zl |z; — zj—1|™% Fu = [y lwk — wi—1| ™, if m > 1; and F,, =1

if m = 0. Then we have F(zy,..., 2y, w1,...,wy) = F,F,.
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Let 7 = 73°. Let E denote the event in (3.7). Then E = E] N E, where

Bl =A{rg <17 AT, 1 <j<mtg <758 ATy, 1 <k<m} e F

75

Ey:={r7 <oo,1 <j<m7 F <oo,1 <k<m}

Suppose the event ET occurs. Let Z; = Z.(z), D; = {z € H, : |z — z| < r;}, D; =
Z.(Dj), and 7; = radgj(ﬁj), 1 <j<n. Let wy=Z;(wy), By ={2 € H; : |z — wi| < si},
E, = Z,(Ey), and 3, = radg, (E), 1 <k <m. Then @, < -+ <@ <0< 3 < -+ < Zp.

By DMP of chordal SLE, and Proposition 3.1,

~ n—1 ~
T « T (e
PE4F B S(1A 2) T (08 =)
|2l Jli[l 25l A 175 = 2l
s o M1 S @
-(1/\~—’”) : (1/\ S — ) . (3.8)

Wl /5 |we| A [wr — W]

Here we organize z;’s and wy’s by Zy, ..., 21, W, ..., w; when applying Proposition 3.1. In

the case that m = 0, the second line disappears.

By Proposition 2.8 and conformal invariance of extremal distance,

1A |;_J| < o~ mdu((=00,0],D;) _ e~ (S7.D5) 1 < < (3.9)

J
1A B ,TVJ:ZV | < e*ﬂdu-n([ng,OO)»ﬁj) — e*ﬂdHT([ZjH,OO)»Dj)’ 1<j<n-1; (3.10)

J T <+l

1A % < 6—7rdH([Ov+Oo)7Ek) — e—ﬂdHT(Si7Ek)’ 1<k<m (3.11)

k
1A % < o~ (=00, @kt 1],Br) _ e~ (Coowe il By) 1 < | < — 1. (3.12)

k — Wkt1

Since S, can be separated from D; in H; by {z € H: r; < |z — z;| < R — |2}, by

comparison principle of extremal distance,

_ 1 R — |z
N> R A}
i, (S5, D;) = —log ( - ).

which combined with (3.9) and that R > 2|z;| implies that

IN2L < 2L =<2 1<j<n. 3.13
BRIyl R STST (319)

~
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Figure 3.1: A figure for the proof of Lemma 3.4. This figure illustrates an application
of the comparison principle of extremal distance in the proof of Lemma 3.4. Here n = 3 and
m = 2. The curve v is stopped at the time 7 = 77°. Assume that the event E] occurs. To
bound the extremal distance dg_(Ds, S-) from below for example, we use the semi-annulus
(shaded region) Ay :={z € H:ry < |z — 22| < R —|22|} and the fact that any curve in H,
that connects the semi-circle 9Dy N H with the left side of [0, 7] or the real interval

(—00, 0] must cross As, i.e., contain a subpath in As connecting its two semi-circles. The
intersection of Ay with [0, 7| does not cause a problem in the application.

See Figure 3.1. Since [z;41,00) can be separated from D; in H, by {ze H:r; < |z — %] <

|zj4+1 — #;|}, by comparison principle of extremal distance,

1 .
dH}q?%H7OO%I%)Ei—Jog(Lﬁil__id)7
T T

which combined with (3.10) implies that

e T
~ ~ b
Zj — Zjal ™ [z — 2]

For 1 <j <n—1,since R — |z;| > |zj11] — |2j] = |zj41 — %], by (3.13) and (3.14),

1A 1<j<n-—1. (3.14)

N < j<j<p-1. (3.15)
2| AZj = Zjal ™ |z — 2
Similarly,
L L A P (3.16)

x| ~ R—|wy| ~ R’
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Nk <% <h<m—1 (3.17)
Wi Ay — Wig1| ™ [wipr — wy

Combining (3.8) with (3.13) (for j = n), (3.15), (3.16) (for k = m) and (3.17), we get

— m—1 o
PlEy|Fr, Bl S (Tn) H(ﬁ) < ) k:1(|wk_wk+l|>
<(G)relle I«
j=1 k=1

Here, if m = 0, the factors involving s, and s,, disappear; if m > 1, we used that R > |w;| in

the estimate. Since F(zq,..., 2y, w,...,wy,) = F,F,, taking expectation we get (3.7). O

Lemma 3.5. Suppose xy,...,xy, N > 1, are distinct points in R\ {0} that have the same
sign v € {+,—}, and j — |z;| is increasing. Let xyq1 =v-00. Let Rj = (|x; —xj1| Alx; —

zj_1])/2 and r; € (0,R;), 1 < j < N. Let vy € (0, |xg — z1|/2). Then

ri < <o <5 <05 (29) T (2 TG 2sy)” 009
§(|f§|>a<|xo—x1|> 1T (5 > (ﬁ)an(%ya‘ (3.19)

k=1

Proof. Assume all x;’s are positive by symmetry. Let P denote the RHS of (3.18) (depending
on zog,...,ry and 7o,...,rn). We write 7; for Tf;", 1 <7 < N. Let S} denote the set of
permutation o of {0,1,..., N} such that o(n) = 0. For each 0 € Sy, let E, = {7,0) <
To2) < - < To(n) < 00}. Then UaeSjV E, is the event in (3.18). To prove (3.18), it suffices
to show that, for any o € Sy, P[E,| < P.

Fixoe Sy. For0< k<N —1, let

Eg = {Tg < To) < o0 < Tok) < To(k+1) N T;a(k+1)} € fTa(k);
and let BEY, = E,. Then Ef D Ef D --- D E{, = E,. Let
S,={jn—-1>j>0"'n),o(j+1)<o(j)} (3.20)
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Figure 3.2: The first figure for the proof of Lemma 3.5. This figure illustrates a
situation in the proof of Lemma 3.5. Here n = 5, and the event E, happens, where
o=(912313). We have S, = {1,3,4} since 67'(5) = 1, 0(1) =5 > 3 = 0(2),
oc3)=4>1=0(4),0(4)=1>0=0(5), but 0(2) =3 <4 =0(3). We have S =
because the only index between o(2) and (1) is 4, and 07*(4) = 3 > 2. We have

Sg = {2, 3} because 2,3 lie between o(4) and o(3), and o7'(2),07%(3) < 3. We have
S = ) because there is no index that lies between o(5) and o(4).

For each j € S,, let
ST = {k o +1) < k < o(j), 0 (k) < j (3.21)

In plain words, S, is the set of index j > jo, where jo := o~ }(V), such that o(j + 1) < o(j);
and S7 is the set of index k, which lies strictly between o(j + 1) and o(j), such that the
disc {|z — xx| < i} was visited by v before {|z — 2,(j)| < ro(;)}. For example, jo and N —1
belong to S7. For j € S,, the set S¢ may or may not be empty. See Figure 3.2.

For 0 < j < N —1, let Qj:(L)a. For 1 < j < N, let Q;:(L)O‘. Let

lzj—j41] lzj—zj—1]
Qn = (25)*. Then P = Q - 15 QF -T1., Q- By (3.6),
P[Eg—l(]\/')] S ]P)[TN < OO] 5 QN (322)

We claim that, for any j € S,

PIET | Fr ) BT S Qo) :(j+1) H (QrQx); (3.23)
kesy
and
N-1 N
11 <Q§<j>Q:(j+1> ] @io: )) <[[e -Tl@- (3.24)
j€Ss kesy =0 11
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Note that (3.22,3.23,3.24) together imply that P[E,| = P[E?] < P.

We first prove (3.24). It suffices to show that

{0,....N=13c |J{ol(i + D}USY); (3.25)
JESs

{1,....N}c ||} usy). (3.26)
JESs

Let [ € {0,...,N — 1}. We consider several cases. Case 1. o !(I) < o7 '(N). Since
o71(0) = N, we have [ > 1. Since o(c7}(N)) = N > [ and o(N) = 0 < [, there exists
o (N) < jo < N — 1 such that o(jo) > > o(jo + 1). By (3.20,3.21) we have j, € S, and
l€S5. Case 2. 7'(I) > 07 '(N). Then o~ '(I) =1 > o~ *(N) since | # N. Consider two
subcases. Case 2.1. o(c71(l) — 1) > o(c7!(I)) = I. In this subcase, j; := o7 }([) —1 € S,
by (3.20), and o(j; + 1) = I. Case 2.2. o(c7*(l) = 1) < o(c7*(1)) = I. Since o(c7}(N)) =
N>1>0(c7*)—1) and 071 (N) < o7(1) — 1, there exists 0 (N) < jo < 07 !(I) — 2 such
that o(j2) > 1 > o(jo + 1). This implies that j, € S, and [ € S,. Thus, in all cases, there
is some j € S, such that [ € {o(j+ 1)} U S7. So we get (3.25).

Let [ € {1,...,N}. We consider several cases. Case 1. o7 '(I) < o7'(N). Then [ <
N — 1. By Case 1 of the last paragraph, there exists jo € S, such that [ € 5. Case
2. o7 }1) > o7'(N). Consider two subcases. Case 2.1. o(c7'(l)) > o(c7}(l) +1). In
this subcase, j; := 07(l) € S, and | = o(j;). Case 2.2. | = (o7 (1)) < o(c™(l) + 1).
Since a(c7Y(l) + 1) > 1 > 0 = o(N), there exists o7'(I) + 1 < j, < N — 1 such that
o(ja) > 1> o(j2+1). This implies that j, € S, and [ € S7,. Thus, in all cases, there is some
j € Sy such that [ € {o(j)} US?. So we get (3.26). Combining (3.25,3.26) we get (3.24).

Finally, we prove (3.23). Fix j € S,. Let 7 = 7,(;). Suppose the event EY occurs. Let
W= To(jr1), D={2z € H: |z —w| <ry5in}, 0= Z(w), D = Z.(D), and 7 = radg(D).
By DMP of chordal SLE, and (3.6),

P(E]1 | Fr, B < Plogseny < ool B7] S (11 é) . (3.27)
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Figure 3.3: The second figure for the proof of Lemma 3.5. This figure illustrates an

application of the comparison principle of extremal distance in the proof of Lemma 3.5.

Here n = 4, and the event E, happens, where o = (323 ). We stop the curve at the

time 7 := 74. Then the next semi-disc to visit is D; = {z € H : |z — 21| < r;}. We know
that 1 € Sy, 0(1) =4, 0(2) = 1, and SY = {3}. The D, is separated from S- in H, by the
disjoint regions Ay, A;, AT and A;, among which A; and A, are semi-annuli, and A7 and
Zlg are subsets of two semi-annuli, which have the same center x5, same inner radius rs,
but different outer radii.

By Proposition 2.8 and conformal invariance of extremal distance,

1A ﬁ < e*ﬂdﬂ((*oo,o}f)) — ¢~ ™du, (57,D) (3.28)

Define semi-annuli

Aciy = {2 € H i roj) < |2 = 2oj)| <T0(n-1 — To(p|/2}:
Ay = {2 € B ro1) < [2 = Zogan| < |Togiayn = To(n/2};

Af:{zGH:T’k<’Z—$k‘<’$ki1_$k’/2}7 kGS]q.

For each k € 57, define lef to be the connected component of A,f N H, whose boundary

contains x £ 7. Then A, ), Asgjr1), sz and ﬁ;, k € S7, are mutually disjoint. See Figure

Dk
3.3. Since the event EY occurs, any curve in H, connecting D with S must contain a
subarc crossing Ay(j), a subarc crossing A,(j11), a subarc contained in A; crossing A; for

each k € S7, and a subarc contained in Z,; crossing A, for each k € S7. By the comparison
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principle and composition rule of extremal length, we know that

1 Lo(j) — Lo(j)— 1 Loy — Ty
des;,zngz—wog<| G) — 7oly) ”>_%_40g<| (1) u+n+ﬂ>
@ 275(j) T 2rs(jt1)

+= 2:1 (mk_x“”> =3 g (uk_xk”) (3.29)

kESU kGS”

Combining (3.27,3.28,3.29) we get (3.23). Then we get (3.18), which implies (3.19) because

|2k — 2p1] > Ri, 1 <k < N,and Ry = |ty —xn_1] < |zN]. [

Remark 3.6. By a slight modification of the above proof, we can obtain the following
estimate. Let zo,...,2n41, R1,..., Rn,70,...,7y be as in Lemma 3.5. Let I = [a, x| for
some a € (0,20), and 7., = Tyx[0,,)- Then
2 I : = Tj 2
Plr7 <7, <o0;1 < §N]§H<E>
j=1
To prove the estimate, we may use the same extremal length argument except that we do not
use a semi-annulus centered at xy because such a semi-annulus may not disconnect I x [0, 7]

from other z,’s in H,. So we have the same factor in the upper bound except for (

)a
Ia:1 Iol

Lemma 3.7. Let z;, 0 <j<n+1, w,, 0<k<m+1,7r;, 1<j<n, s, 1< k<m, be

as in Lemma 3.4. Now assume n > 2. Let jo € {2,...,n}. Let

Jjo—1 m—1
Q =lzjo-1 = 2| [ 125 = za 7 - Jwm| =+ T (Il A Jw = wiea]) =
j=1 k=1

n
il Mgy = 2w )™ T (25 = zimal Alzg = za) ™
Jj=jo+1
Here when m = 0, the |w,,|™® - Z:ll(|wk| A lwy — wii1])™* disappears; and when jo = n,

the [15_j,11(125 — 2j-1l A 25 — 2j41|) ™ disappears. Then we have

Plre < 77 < 00,5 € N\ {Jo}; Tl < TEF < o0,k € Nyl Qr%.HrO/.HSg. (3.30)
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Figure 3.4: A figure for the proof of Lemma 3.7. This figure illustrates the event E in
Lemma 3.7. Here n = 3, m = 2, and jy = 2. The curve ~y visits the five semi-discs centered
at 21, 22, 23, w1, we, among which the one centered at z, is first visited (at the time 7 = 7‘7'?22)
The parts of v before 7 and after 7 are respectively drawn in solid and dashed lines.

Proof. By symmetry, we may assume that w,, < --- <w; <0<z <---< 2z, Let 7 = Tffé’.

Let E denote the event in (3.30). See Figure 3.4. Let
Bl ={r <7t A7 :j €N\ {jo}} € Fr
By ={r7 <o00,j € Ny \ {lo}; 75 <00,1 <k <m}.
Then E'= E] N E#‘ By (36)7 ]P)[E:] S (Tjo/’ZjoDa‘
Suppose the event E7 occurs. Let z; = Z,(z;), D; = {z € H; : |z — 2| < rj}, 15]- =
Z.(D;), and 7; = radgn(lN)n), 1<j<n Letw,=2Z(wy), Bx ={z € H, : |z —wy| < s},
By, = Z.(Ey), and 5, = radg,, (Ep), 1 <k <m. Then @, < -+ <@ <0< 3 < -+ < Zp.

By DMP of chordal SLE,, and Proposition 3.1 and that £ = E] N Ey,

Jjo—1 ~ n ~
7,,' [0 7" [0
PE|F,, ET] < (1/\ 5 ) : (1/\%)
3-1;[1 1251 A 175 = 2] jzljll 125 = 21l
~ m—1 ~
Sm @ Sk «
.1/\~—> : (1/\ Sk ) 3.31
() 0 G —am (3:31)

Here when applying Proposition 3.1, we ordered the points z; and wy by

Zjos e o5 Rls Rhgtls -y Any Wiy - oo W1,
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and omit the factor (1 A

rjo

B |)a, which is bounded by 1.
J0

By Proposition 2.8 and conformal invariance of extremal length,

T
1A ==

e

< e_ﬂ-dH((_Oovo]vﬁj) — e_ﬂ-dHT (S;7D])
~ Y

1<i<jo—1;

(3.32)
1A ‘ik‘ < o mdul(0400) ) — o= (STED) ] < | < (3.33)
Wk
1A - TJN | < o~ mdu([Z41,00),05) _ p—mdp, ([74+1,00.05) 1 <j<jo—1; (3.34)
Z] — Zj_|_1
1Az i S eTERARD) — i (RSP, o 1< < (3.3))
Zj Zj—1
A
|ﬁ71€ - ﬁ;k;-&-1| ~

< —ndgz (=00, 11],Er) — e_ﬂ'dH-,—((_OOawIH—l]yEk)
b

1<k<m—1.  (3.36)
Since S and E,, are separated by the semi-annulus {z € H : s,,, < |2 — wp| < |wy|} in

|wm]

Sm

H,, we have dy, (S5, Ey,) > £ log(

), which together with (3.33) implies that
1A _Sm_

Sm
T R (T .

(3.37)
For 1 < j < jo — 2, since D; is separated from both S; and [z;41,00) by the semi-annulus

{zeH:r; <|z—2z| <|z; — 21|} in H,, we have

1
A1 (57, D)), dir (2341, +00), Dy) > — log (

|2 — 2j+1|)
T r; ’
which combined with (3.32,3.34) implies that
T N :<1/\g>\/<1/\~?j~ )5 L
2| A1z = Zjs EA 25 = Zjal/ ™|

: (3.38)
% = i
For j = jo — 1, we have a better estimate. Since D, _; is separated from both S~ and

2i,,00) by a disjoint pair of semi-annuli {z €e H: 7, 1 < |z — z;,_1| < |2zjo—1 — 2;,|/2} and
Jo Jo Jo Jo Jo

{zeH:rj <|z— 2| <l|2zj—1 — 2j,|/2}, we have

1
dp, (S5, Djy-1), du, ([2jy, +00), Djy-1) = %108;(

\Zjo—l - Zjo|

1 |2j0—1 — Zjs |
- 1 ( Jo Jo > ,
27”]'0—1 > + 7 o8 27“]'0 )
which combined with (3.32,3.34) implies that

1 /\ ’7\{7'071

Tjo—1 . "jo ‘
1Zjo—1l ANZjo—1 = Zjo| ™ |2jo—1 — 20| [2j0—1 — Zjo

(3.39)
27



For 1 <k <m — 1, since Ej is separated from S} by {z € H: s < |z — wi| < |wg|} in H,,
we get dy_ (S, Ey) >+ log(|w’“‘) Since Ej is separated from (—oo, wyy1] by {z € H : s <
|z — wi| < |wp — wia|} in Hy, we get dy, ((—o0, w1, Bx) > L1o g(le=enly - Thege two

25y,

lower bounds of extremal lengths combined with (3.33,3.36) imply that

Sk < Sk

1A (3.40)

|Wk| A [y — Wia] ™ |wi — wiga| A Jwg]

Suppose jo = n. Combining (3.31,3.37-3.40), we get

jo—1 m—
FLE| A5 |2jo—1 = Zjo] |0y | ]II |Zg ZJJrl’ II |wi — wk+1| A |wg

which together with P[ET] < (r),/|2,])* and zj,41 = oo implies (3.30) for jo = n.

Now suppose 2 < jo < n — 1. Let Ny = {jo+1,...,n}. For j € Ny n, let R; =
(Jzj—zj-1|A|zj—2;41]) /2. Foreach k = (kjo41, ..., kn) € (NU{0}) 6ol et Sy = {j € N(jo :
K; > 1}, and Ej, denote the event that 7 < oo and dist(z;, K;) > R;, for j € Ny \ Sks
and Rje % < dist(z;, K;) < R;e’™" for j € S.

We now bound P[Ey]. If Sy = 0, we use (3.6) to conclude that
P[E,] < Pl < 00] < (50/1250])"

Suppose Sy # 0. We express Sy = {j1 < --- < jn}. Let zy = z;,, 0 < s < N. By the

definition of Ej and Lemma 3.5, we have

PlEy] < ]P’[T:f_kst. <71 < 00,1 <s<NJ

T’JO
N 1—kj,
<< 7’]0 )aH(e ]‘5st>2 < ( > H e a‘]“
‘xl - x(]’ s=1 R]s |Z]O Z]O‘i’l‘ j=jo+1
Combining the two formulas, we conclude that, for any k € (NU {0})"Gon

P[Eﬂg( Lo )a f[ e~20k; (3.41)

|Zj0| N |Zjo - Zj0+1| j=jo+1

Suppose for some k = (kjo41,. .., k,), Ex N E, happens. We claim that

T < ] . .
<97 <
1A RN Jo+1<7<n. (3.42)
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Let j € Nj,n- First, (3.42) holds trivially if r; > R;e™". Suppose that r; < Rje~*. Then
D; can be disconnected from K, and (—oo, 2;_1] in H, by {z € H: r; < |2] < Rje " }. By

comparison principle of extremal distance, we have

Rje~ j))

T'j

dHT (KT U (—OO, Zj_l], D]) = — log (

which together with (3.35) implies (3.42). So the claim is proved.
Combining (3.31,3.37-3.42) and that R; = (|z; — zj_1| A |z — zj11])/2, we get

7”. (e}
P[E N E,] 5( jo ) ( )
E— D AT

2o

m—1 Jo—1

( ) I (=)
|wk—wk+1\/\|wk| Mz 2l

n

n
r; «a ) o
(|Z |/\|z»JO— , ) || (|2j — zj—1| A |25 — 2j3a]) 7 - ” ok
Jo Jjo

k=1

zonl i j=jo+1
Summing the inequality over k € (N U {0})tonl | we get (3.30). O
Lemma 3.8. Let n,m, jo, 20, -, 2jg, - - - s Znt1, aNd Wo, ..., Wit be as in Lemma 3.7. Here

the symbol z;, means that zj, is missing in the list. Let I be a compact real interval that lies
strictly between zj,_1 and zj,+1. Let Ly = dist(2jyx1,1) > 0. Here if jo = n, then Ly = oo
Let ri,...,Tjyy- .. Tn, and S1,..., Sy be as in Lemma 3.7 except that we now require that

T o1 < (|Zj0:|:1 — Zj0i2| A Li)/Q Let

Jjo—2 m—1
Q=L [ Iz — 2| - lw| ™ T [ (il A Jwr = wiqa])
j=1 k=1

n

(L AMzigrr = zigw2) ™ T (25 = 2l Alzg = zj2a) ™
J=Jjo+2

Here when m = 0, the |w,) = [0S (Jwil A |wye — wi1])~ disappears; and when jo = n, the

second line in the formula disappears. Let h € (Ly A L_)/2 and 7i = Trxjo]- Then

P[T}{<Tfj<oo,jENn\{j0};T,f<T;’f<oo,k€Nm]§Qha H Hsk (3.43)

jGNm\{Jo} k=1

Proof. The proof is similar to that of Lemma 3.7. The only essential difference is that now

we do not get an upper bound of P[r} < oc] using (3.6). By symmetry we assume that z;’s

29



are positive and wy’s are negative. Let 7 = 7/ and z;, = Rey(7). Then z;, is F,-measurable,
and zj,_1 < zj, < Zjg41-

Let E denote the event in (3.43). Then £ = E] N E4, where
ci=r <t AT ENG N\ Lok T < ToF AT 1<k <m} € Fr

By = {77 <00,j € N, \ {jo}; 7" < 00,1 < k <m}.

Suppose E7 occurs. Define z;, Dj, l~)j, T, Wk, B, Ek, Sk as in the previous proof. By DMP
of chordal SLE, and Proposition 3.1, we see that (3.31) also holds here.
The estimates (3.37,3.38,3.40) still hold here by the same extremal length argument.

Estimate (3.39) should be replaced by

1A ?’jo—l < rjo—lh rjo—lh
|Zj0—1| A |zj0—1 - zjo| ~ |Zj0—1 - Zj0|2 - L2

(3.44)

When jy, = n, combining (3.37,3.38,3.40,3.44) with (3.31), we get

jo—2 m—1

PiE ) S () () (=)

Taking expectation, we then get (3.43) in the case jo = n.

o
1 <|wk - wk+1| A |wk|>

Suppose 2 < jo < n — 1. Let R;, jo+2 < j < n, be as in the proof of Lemma 3.7. We
redefine R;, 11 = (|2jo11 — Zjor2| A Ly)/2. For each k = (kjo11,...,k,) € (NU{0})Non Tet
Ej, be defined as in the proof of Lemma 3.7 using the R;, jo + 1 < j < n defined here. By

Remark 3.6,
PE)S ] e (3.45)
Jj=jo+1

This inequality holds no matter whether all k;’s are zero or not. On the event Ej N E,, the

same extremal length argument shows that

Y <_1i ‘ < i<
1A|%_%}71’NRje_kj’ Jo+1<75<n. (3.46)
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Combining (3.31,3.37,3.38,3.40,3.44) with (3.45,3.46) we get

iena) () T (22 )" I1 ()

s o m—1 Sk o n
N L . . e—akj
<|wm|> ;!;[1 <|wk — Wit1| A |wk:|> j_ljo_[Jrl
Summing up the above inequality over k € (N U {0})NGonl | we get (3.43) for jo < n. O

Definition 3.9. Recall the >, n € N, defined in Theorem 1.1. For z € ¥, and jy € N,,,
we say that zj, is an innermost component of z if there is no k € N, \ {jo} such that z lies
strictly between 0 and zj,. An element z € 3, may have one or two innermost components.
For z = (#1,...,2,) € 3,, we define the inner distance of z by d(z) := min{|z; — 2| : 0 <

Jj <k <n}, where z5 := 0.

*

Lemma 3.10. Let z* = (z2f,...,2") € ¥,. Suppose that =z} is an innermost component of

T n

z*. Then for any € > 0, there are § € (0,d(z*)/3] and an H-hull H (depending on z* and €)

such that
e {zeH:|z—2| <30} CH;
o dist(zj’-‘,H) >36,2<j<n;and
o ifz€ X, andr € (0,00)" satisfy ||z — 2%||c <0 and ||1||cc < 9, then

]P)[KTfll ¢ Himll <777 <00,2<j<n]< 8HTJO-‘. (3.47)

j=1

Proof. For r = (r1,...,r,) € (0,00)", let P(r) =[["

j—1 ;- Fix a chordal SLE, curve 7 in H

from 0 to co. For z = (21,...,2,) € Xp, v = (r1,...,7,) € (0,00)", and S C H, let
EES:{Tfll <TT',Z]? <00,2<7 §n,KTfl1 ﬂS#@}

Then (3.47) can be rewritten as P[E7y, ;] < eP(r).
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By Lemma 3.4, there is a positive continuous functions F,, on X, such that, for any

z €3, and any r € (0,00)",

P[E= | < Fo(z2)RP(r), if |r]le < d(2)/2 and R > 2max{|z|}. (3.48)

ri{z€H:|z|> R}

By Proposition 3.2, for any 2 < k < n, there are a constant 5 > 0 and a positive continuous

function Fy on 3, such that, for any z € ¥, r € (0,00)", and r > 0,

P[E*

ri{z€H:|z—z,|<r}

] < Fu(2)r"P(r), if [lzfle < d(2)/8. (3.49)

Note that, if ||z — 2| < d(2")/4, then d(z) > d(z*)/2 and max{|z;|} < 2max{[z]]}.
By (3.48,3.49) and the continuity of F, and Fy, 2 < k < n, there are R > 4max{|z}|} and

r € (0,d(z*)/3) such that if ||z — 2*]| < d(2*)/4, and ||1||c < d(2*)/16, then

; €
P[E;{zeH:\Z|ZR}UUQ:2{zeH:|z—zk|§r}] < §P[f]-

We further assume that ||z — 2%l < r/2. Then {z € H: |z — 2| < r/2} C {z € H:

|z — zx| < r} for 2 < k < n, which implies by the above formula that

P[E2 ] < PR, if |r]lee < d(z7)/16. (3.50)

ri{z€H:|z|> RYUUy — o {z€H: | z— 2| <r/2} 2

Since R > 2max{|z|} and r < d(z*)/3, the semi-discs {z € H : |z — zj[ <7}, 1 < j < n,
are mutually disjoint, and are all contained in the semi-disc {z € H : |z| < R}.

By symmetry, we assume that z; > 0. We relabel the components of z* by 27, 1 < j <n/,
and wi, 1 <k <m/, wheren > 1, m’ > 0, and n'+m’ = n, such that w}, < --- <wj <0<
2y < --- < zf,. After relabeling, the symbol 2] still refers to the same point. Correspondingly,
we relabel the components of every z € ¥, and r € (0,00)" by z;, 1 < j < 7/, wy,
1<k<m| r;;1<j<n, and s, 1 <k <m' Itis clear that, if ||z — 2*|| < d(2%)/2,
then w,y < -+ <w; <0< 2z <- -+ < 2y, and so z; is an innermost component of z.

Define compact intervals [;, 2 < j < n, and Ji, 1 < k < m, as follows. If n’ = 1,

we do not define I’s. If n' > 2, let I,y = [z, +7/2,R], and [; = [z} +1/2,27,, — /2],
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2<j<n—1 If m=0, we do not define Ji’s. If m > 1, let J,, = [-R,w}, — r/2], and
J=wp +r/2,w; —r/2,, 1 <k<m/ - L

If ||z — 2*||oc < 7/4, then the distance from every component of z to every interval I; or
Ji, is at least r/4. By Lemma 3.8, there are continuous functions F7,, 2 < j < n', and F),,
1 <k < m/, defined on the set of z € ¥, with ||z —z"|| < r/4, such that, if ||z — 2| < 7/4,

|I7lloo < 7/8, and h < /8, then for each 2 < j <n’and 1 <k <m/,
PIEL wom] < Fi(2)h*P(r),  PEL, jon] < Fr(2)h*P(r).
Thus, there is h > 0 such that, if ||z — 2*||cc < 7/4 and ||7]| < 7/8, then

P[E*

3 ,
;1 %[0, ik P[E?ka[o wl < Z—P(t), 2<j<n, 1<k<m. (3.51)

n

Let

/

H={zecH: |z|<R}\U{|z—z|<r}U[><0h U{|z—wZ|§r}UJk><[O,h]).

7j=2
See Figure 3.5. Then H is an H-hull, which contains {z € H : |z — 27| < r}, and the distance
from each of 25,..., 2} and wi,...,w’, to H is at least r. Combining (3.50) and (3.51), we
get P[E mal <eP(r)if [z — 2"l < /4, and |[rfls < r/16. So we find that (3.47) holds

for such H and 0 := r/16. O
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uq

Figure 3.5: A figure for the proof of Lemma 3.10. This figure illustrates the
construction of the H-hull H in the proof of Lemma 3.10 in the case that n’ = 3 and

m’ = 2. The H-hull H (the shaded region) is obtained by removing small discs of radius r
centered at zp, 23, wy, wo and 4 rectangles with real interval bases and height h from the big
semi-disc {z € H : |z|] < R}.
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CHAPTER 4

PROOF OF THE MAIN THEOREM

We will finish the proof of Theorem 1.1 in this chapter. Recall that P denotes the law of a
chordal SLE, curve in H from 0 to oo; and for z € R\ {0} and r > 0, P denotes the law
of a two-sided chordal SLE,; curve in H from 0 to oo passing through z, and P, denotes the
conditional law P[-|77 < oc.

We will use an induction on n. By (1.7), Theorem 1.1 holds for n = 1. Let n >
2. We make the induction hypothesis that Theorem 1.1 holds for n — 1. For any w =

(wi, ..., wy_1) € Xp_1 (Definition and s = (sq,...,8,-1) € (0,00)" 1, we define
G(w,s) =P[r,7 <o0,1<j <nl. (4.1)

By the induction hypothesis, lim,, s 0+ H;L:_ll 5;G(w,s) = G(w).
Given a chordal Loewner curve v with the corresponding centered Loewner maps Z;’s,

we define a family of functions G}, ¢ > 0, on ¥,,_; associated with v by

[ [ Z{(z)G(Zi(22), - s Ze(20)), it <72,2<j<m
GZ(227...,zn): J

(4.2)
0, otherwise.

When + is a random Loewner curve, G/ are random functions. We use E} [G'7, (-)] to denote
the expectation of G} () when ~ follows the law P} , and t = T7,.

Following the approach in [12], we will prove that for any 1 < j, < n and z =

(z1,...,2,) € Xy, the following limit exists and is finite:
GP(z) = | dim [I7oPlre < 7 < 00,k € N, \ {Go}. (4.3)
""" n J:1

It is clear that if the above limit exists and is finite for any 1 < j; < n, then the same is

true for the limit in (1.2), and we have
G0 =Y ). (1.4
=1

In this chapter we will prove the following theorem.

35



Theorem 4.1. Given the induction hypothesis, for any 1 < jo < n, the limit in (4.8)
converges uniformly on any compact subset of ¥,,, and the limit function G’° is continuous

on X,. Moreover, we have

G(z21,. . 20) = G2 )EL (G, (21, Zigr 2], (4.5)

Jo
where the symbol Z;, means that z;, is omitted in the list from 2, to z,.

It is clear that all statements of Theorem 1.1 in the induction step except for G < F
follow from Theorem 4.1 and (4.4). When we have the existence of G on ¥,,, the statement
G =< F then follows immediately from Proposition 3.1 by sending ry,...,r, to 0.

After proving Theorem 4.1, we get a local martingale related to the Green’s function.

Corollary 4.2. For any fized z = (21, ..., 2,) € Xy, the process t — G} (z) associated with a

chordal SLE,; curve v in H from 0 to oo is a local martingale up to T := min{Tjj, 1<j<n}.

Proof. Fix z = (z1,...,2,) € %, and let M; = G}(z). Tt suffices to prove that for any
H-hull K, whose closure does not contain any of zi,...,2,, M.r, is a martingale, where
Ty = inf{t > 0: 4[0,#] ¢ K}. The reason is that 7 is the supremum of all such Txk. To

prove that M. 1. is a martingale, we pick a small » > 0, and consider the martingale
M) = Pl < 00,1 < j < n|F.

By Theorem 4.1, DMP of chordal SLE and Koebe’s distortion theorem, we have Mt(r) — M,
on [0,7) as 7 — 07. We claim that the convergence is uniform on [0,7k]. To see this, we
apply Proposition 2.4 to conclude that there exist an H-hull H and a < b € (0, 00) such that
(Zi(#1), ..., Zi(z,)) € H and a < |Z](2;)| < b, 1 < j <mn, for any t € [0,Tk]. So we get the

)

uniform convergence of Mt(r — M, over [0,Tk] by the uniform convergence of the n-point

Green’s function on the H-hull in H. So the claim is proved, which then implies that M. .7,

is a martingale, as desired. [

Remark 4.3. We may write M; = [[7_, |9:(2))|*G(g:(z1) = Us, .. ., ge(20) — Uy). If we know

that G is C?, then using It6’s formula and Loewner’s equation (2.4), one can easily get the
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following second order PDE for G:

(Zazj) G+Za l G+@Z—;- -

Since the PDE does not depend on the order of points, it is also satisfied by the unordered
Green’s function G.
We expect that the smoothness of GG can be proved by Héormander’s theorem because the

differential operator in the above displayed formula satisfies Hormander’s condition.

The rest part of the thesis is devoted to the proof of Theorem 4.1. By symmetry it
suffices to work on the case j, = 1. We will first prove in Section 4.1 the existence of G as
well as the uniform convergence on compact subsets of 3J,,, and then prove in Section 4.2 the

continuity of G*.

4.1 Existence

In this section, we work on the inductive step to prove the existence of the limit in (4.3)
with jo = 1. We now define G' on ¥, using (4.5) instead of (4.3). In order to prove that the
limit in (4.3) converges uniformly on each compact subset of ¥,,, it suffices to show that, for

any 2* = (zf,...,2%) € ¥, and £ > 0, there exists § > 0 such that if z = (z1,...,2,) € &,

and r = (ry,...,7r,) € (0,00)" satisfy that ||z — 2*[|ec < ¢ and ||1||oc <, then

n

|Hr]_ Plrj} <777 <o00,2<j<n]- G'z1,..., )| <e. (4.6)

Fix z* = (27,...,2}) € ¥, and ¢ > 0. Recall Definition 3.9. Let d* = d(z*). Let

’rn
z = (z1,...,20) € X, satisfy ||z — 2*[|oc < d*/2. First suppose z} is not an innermost
component of z*. Then z; is not an innermost component of z. Then there is ky € {2,...,n}

such that z, lies strictly between 0 and z;. Under the law [P}

*
%> we have Ty < T.,,, and so

Gr, (22, .., 2,) = 0, which implies that G'(z) = 0. On the other hand, by Lemma 3.7,

lim Hr;a T < Tk <00,2<k<n]=0,

Ty, —01 2
J:
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and the convergence is uniform in some neighborhood of z*. So we have (4.6) if z} is not an
innermost component of z*. From now on, we assume that z{ is an innermost component of
2. By symmetry we assume that 27 > 0.

Let z = (21,...,2,) € Sy and r = (r,...,7,) € (0,00)". Suppose ||z — 2%l < d*/4
and ||r|[c < d*/4. Then the discs {|z — z;| < r;}, 1 < j < n, are mutually disjoint. Let E,
denote the event {77! < 70 < 00,2 < j < n}. We will transform the rescaled probability

[T;_, r; “P[E,] into G'(2) (defined by (4.5)) in a number of steps. In each step we get an

error term, and have an upper bound of the error term.
We define some good events depending on z. For any » > 0 and H-hull H, let E,.;; denote

the event that K - C H. For R >r > 5 >0, let E, . be the event that v[77*, 7] does not

T 'S

intersect the connected component of {z € H : |z — 21| = R} N H_= which has z; + R as an
endpoint.

In the following, we use X ~ Y to denote the approximation relation | X —Y| = e, and call

e the error term. Let 2/ = (22,...,2,), 1’ = (ra,..., 1), and By = {7/ < 00,2 < j < n}.

For some H-hull H to be determined we use the following approximation relations:

e*

P|E,] = P[E, N Ey i) = P77} < oo] - EL (15, ,P[Ey|F 4]

T1 Trq

n
eX

RrG(21)EL (g, PIE|Fa]] = G(20)ER g, Goa (2] [ i

k=1
We write G(r,-) for G_=1. For some 7, > 11 > 11 to be determined, we further use the

following approximation relations:

G(2)ED g, ,G(r1,2)] 2 G(21)E} [1p G(r1,2)]

r1:HNEny ryimg

€5 r €6 r
%G(Zl )Ezi [1E771;HQE771,T1;U2 G(rl ) gl)] ~ G(Z:l)EZi [1En1;HmE7]1,T1;772 G(nl ) g’)]

RG(2)E 15, ,G(n.2)] = G(21)EL [1p, ,G(m, 2)]

€10

%G(ZQE;[lE G(m,2)] = G(z1)E; [1g G(0,2)]

n1;HNEn 05m9 n1sHOEny 09

€11

~ G(Zl)E; [1EO;HQE7]1,O;7]2 G(O7 zl)} eg G(Zl)E; [1EO;HG(O7 é/)]

€13

RG(21)EL[G(0,2)] = G(2).
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Let ej = e;/[[— 7k j = 1,2,3. Then

| f[r;ama -G < z ‘. “n)

Let 7 =72, D; = {z € H, : |z — 2| <1}, 3 = Z.(2), D; = Z.(D;), 7+ = radz, (D;)

71 ? ’7;7_
and 7 = dist(Z;,0D; NH), 2 < j < n. Let 2 = (%,...,%,) and 7, = (7F,...,7%). By

r'n

Koebe distortion theorem, for any 2 < j < n, if r; < dist(z;, K;),

|27 (2)|r I |27 (2)|r
T <r. . <rr< T . 4.8
(L+ i/ dist(z;, K))2 = 7 =9 = (1 —r;/ dist(z, K,))?2 (48)
By DMP of chordal SLE and (4.1),
G(Z,10) <PE.|Frm<77,2<j<n] <GE,T). (4.9)

Let C, € [l,00) be the constant in Proposition 2.10. By Lemma 3.10, there are a
nonempty H-hull H and §y € (0,d*/3], such that {z € H : |z—2]| <30y} C H, dist(z;, H) >
30y, 2 < j <mn, and whenever ||z — 2*||cc <0y and ||7||cc < 05, we have

n

—Q C 8
[ PlE: . N E] < TR (4.10)

j=1

From now on, we always assume that ||z—2"|loc < 6. Then H D {z € H: [z—2z| < 20},

and dist(z;, H) > 26y, 2 < j < n. By (4.10), if ||7||ec < 0m,

e; <

11C,

Sending ry,...,r, to 07 in (4.10) and using Fatou’s lemma, estimates (4.8,4.9) and the

convergence of (n — 1)-point Green’s function, we get

T;O‘P[Trzll < OO} . ]EZ [1E$1;HG(T17§/)] S 11% , if 1 S 5]—]
By Proposition 2.10, if r| < dy,
—a z * £
r “Plr < oo - B [1E;;1;HG(7“1,§/)] < I
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Let 7y — 0%, From 7 “P[7]! < oo] = G(21), By .y — Ef.p, G(r1,2) — G(0,2) and Fatou’s

lemma, we get G(21)Ef [1g:  G(0,2')] < 17, which implies

< €
e —.
Y=
By Proposition 2.4, the set
Qp = {(gr(22) —u, ..., gr(2n) —u) : K € H(H),u € Su,|z; — 2j| < w2 < j <n}
is a compact subset of ¥, _1, and the set

Qu = {lgk(2)| : K € H(H),z € | [z} = 0u. 2} + 0ul}
j=2

is a compact subset of (0,00). Let £y = min{|wy| : w = (we,...,w,) € Qu,2 <k <n} > 0.
For a > 0, we write Z,(2') for (Z,z1(22), ..., Z.21(2n)), when all components are well defined.
We will use the fact that, on the event E,y, Z,(2') € Qy because Z s = 9K = Uz,
K, C H,and U= € Sngl C H by Corollary 2.6 and Proposition 2.2. Recall that we

assume that ||z — %] < dg. So we have
|Z,21(25)| > €, 2 <j <n, on the event E,p. (4.11)

By the continuity of (n — 1)-point Green’s function and the compactness of Qg and Qp, we
see that, for any a > 0, G(a,z’) is bounded by a constant depending only on x,n,z*, H, 0y
on the event E,. .

By (4.8,4.9), the compactness of Qy and @Qp, and Proposition 3.1, P[E£/|.7-"T511,ETI;H] is
bounded by H?:z r$ times some constant depending only on x,n,2* H,dy. By (1.7) and
the above bound, there are 3; € (0,00) depending only on x and C{ € (0,00) depending

only on k,n,z*, H, 0y such that, if r| < |z,
ey < CHpPT

Since the convergence of (n — 1)-point ordered Green’s function is uniform over compact

sets, by (4.8,4.9) and the compactness of Qy and Qp, we find that there is 6} € (0,0n)
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depending only on x,n, H, dy such that if ||r||. < &%, then

< g
[ —.
P11

Since G is continuous on ¥,,_1, by the compactness of Qg and Qg, G(a, 2’) is bounded by
some constant depending only on &, n,2*, H,dy on the event E, ;. Combining this fact for
a € {r1,m,0} with Proposition 3.3 and the boundedness of G(z1) (over [z] — dy, 2} + dul),

we find that there is C¥ € (0, 00) depending only on x,n,z*, H, §y such that

€4, €7, €9, €12 < 02[{(771/772)a-

Since H D {z e H: |z — 27| > 36}, if o < 20, then B .g N Ey 1o = Enin 0 Eyy vy,

and Em;H N E”]170§772 = EO;H N E77170§7727 which 1mp11es that
€5 = €11 = 0.

Combining Proposition 2.11 with the boundedness of G(z;1) and G(ny,z') on the event
E,,.i, we find that there are 3 > 0 depending only on x and C¥ € (0, 00) depending only

on k,n,z*, H,dy such that, if r; < /6,
es < C3' (r1/m)™.

Recall that

n

Gn2) = [[ 12 )l G(Z, (), Gr2) =[] 1205 ()1 - G2, ().

=2

Assume 1y < 26,. Then E,.p N Ey v1my = Eyw N Ey rim,, and on this common event,
Z, (&) Z,,(2) € Qu. Let Kn = K 2/K =, On the event Ey ., by Proposition 2.9,

?=rq

diam(Ka) < 819, and by Proposition 2.7, we have
1Z,, () = Z,,(2) ]| < 56n». (4.12)

From Ka = K.z /K 21 we know g5 = gy 0 g,z Let Za = gr, (- + Upz) = Upzr. Then
Zpw = ZnoZz and Z)(2) = gk, (-+Uzzr). By Proposition 2.5, U 1 € Ka. By Proposition
2.3, for z € H,

812

2
1Z(2) — 1] < 5<W> L if |2] > 40n,. (4.13)
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Let z; = Z 21(2), 2 < j < n. Then Z'. (z;) = Z\(%)) - Z'- (%), and by (4.11) [Z] >

1

£y on the event E, . Thus, if o < &y /40, then |Z)(z;) — 1] < 320m3/&%. Since
G is continuous on X, j, it is uniformly continuous on the compact set Qy. By (4.12),

G(Z,,(2) — G(Z,,(2)] — 0 uniformly as 7, — 0%. Combining these facts with the com-

pactness of Qg and the expressions of G(n,-) and G(ry, -), we find that, there is 6%, € (0, 0%)
depending only on x,n, z*, H,dg such that, if 7y < 6%, then

< —
€6, €1 .
67 O 11

We now explain how to choose the H and 7,7, in the approximation with errors from
e1 to ey3. First, we choose the H-hull A and 6z > 0 such that e;, e13 < 7 if [z — 2| < dn
and ||7|lc < 6m. We have the quantities C{, C CH ¢, 6% € (0,00) depending only on
K,n, 2" H, 6. Assume that ||z — 2%[|c < dg. If [|7|lec < 6%, then e3 < 5. Let 9o = d7.
Then we have eg,e10 < 3. Since 0 < 0y, we have 7y < 0y, and so e5s = e;; = 0. Let

m = (g/(11CH))/*n,. Then ey, e7,€9,€12 < . If r1 < (¢/(11CT))/%1, then e, < 5; and if

r < (e/(11C4)) /P2, then es < <. In conclusion, if ||z — 2*|| < 6y and

Izlloc < 0 A ((1125)1/52 ' (1122H>w ' 5/&) =0

then e; = e;; = 0 and all e;’s are bounded by /11, which then imply by (4.7) that (4.6)

holds. Thus, we get the existence of the limit in (4.3) with jo = 1 as well as the uniform

convergence on compact subsets of X,,.

4.2 Continuity

In this section, we prove the continuity of the function G on ¥,. We adopt the notation
in the previous section. By the rescaling property and left-right symmetry of SLE, for any
ce R\ {0}, z=(21,...,2,) € Xy, and r > 0,

Plrt <% <00,2 <k <n] =Plril <% <00,2<k <nl.
Multiplying both sides by »~"* and sending r to 07, we get by the existence of the limit in
(4.3) that G*(2) = |c|"*G'(cz). In particular, we have G'(2) = |z;| "G (1, 25/21, . . ., 20/ 21)-
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Thus, it suffices to prove that G*(1,-) is continuous on 3! |, which is the set of w € 3, ;

n—1

such that (1,w) € ,. Define G on X!_, such that G(w) = E:[Gr, (w)]. Then G*(1,w) =

G(1)G(w). So it suffices to prove that G is continuous on $._,. From the previous section,

G vanishes on the set of w which has at least one component lying in (0,1). Since such set

1
n—1

is open in X it suffices to prove the continuity of G at other points of 3! .

Fix w* = (w},...,w:) € X | such that w; & (0,1) for any 2 < k < n. Let wy = 0
and w; = 1. Let d* = min{|wj —wj|: 0 < j <k <n} > 0. Let € > 0. By the argument
of an upper bound of ej3 in the previous section, there are dy € (0,d*/3) and an H-hull
H, such that {z € H : [z — 1| < 30y} C H, dist(w}, H) > 30y, 2 < j < n, and for any
w = (wy,...,w,) € R" ! satisfying [|w — w*(|oc < 0, we have Ej[lg;  Gr(w)] < /3,

where Ey.p is the event that v[0,7}] C H. Suppose |w — w*||oc < dp, we use the following

approximation relations for such H:
Gl(w) = B;[Gr, (w)] & Bj[1p, G, (w)] R Bf[Lg, Gr, (w")] R B} [Gr, (w*)] = G(w").

We have known that e, e3 < £/3. It remains to bound es.

We write Z(w) = (Zr,(w2), ..., Zr,(wn)). Then Gr, (w) = [[7_y Z7, (w;)*G(Z(w)). As
w — w*, we have G(Z(w)) — G(Z(w*)) by the continuity of (n — 1)-point Green’s function,
and Zp, (w;) = Zz, (w}), 2 < j < n, which together imply that G, (w) — Gr, (w*). We now
show that the convergence is uniform (independent of the randomness) on the event Ey. ;. By
the previous section, on the event Fy.p, we have Z(w), Z(w*) € Qp, and Zy, (w;), Zr, (w]) €
Qu, 2 < j < n. By the compactness of g, on the event Ej.p, the random map Zr, is
equicontinuous (independent of the randomness) on [w; — dg, w; + 0y| for 2 < j < n. Thus,
as w — w*, Z(w) — Z(w*) uniformly on the event Ey. . Since G is uniformly continuous on
the compact set Qp, we get G(Z(w)) — G(Z(w*)) uniformly on the event Ey.p as w — w*.
By Koebe’s distortion theorem, for 2 < j < n, Zy, (w;) — Zz, (w}) uniformly on the event
Eomg as w — w*. Thus, G (w) — G (w*) uniformly on the event Eppy as w — w*. In

particular, there is 0% € (0,0y) such that if |w —w*||s < 0%, then |Gr, (w) — G, (w*)| < /3
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on the event Ey. g, which implies that es < /3. Thus, if ||w — w*|| < &y, then

|@(w)_é(w*)’§€1+€2+€3<§+§+§:€.

So we get the desired continuity of G at w*. The proof of the continuity of G on X" is thus

complete, and so is the proof of Theorem 4.1.
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