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ABSTRACT

EXISTENCE OF MULTI-POINT BOUNDARY GREEN'S FUNCTION FOR CHORDAL
SCHRAMM-LOEWNER EVOLUTION (SLE)

By

Rami Fakhry

Schramm-Loewner evolution (SLE for short) is a one-parameter (κ ∈ (0, 8)) family of random

fractal curves which grow in plane domains. For an SLEκ curve γ growing in a domain D,

and a single point z0 ∈ D or ∈ ∂D, the Green's function for γ at z0 is the limit

G(z) := lim
r→0+

r−αP[dist(z0, γ) ≤ r]

for some suitable exponent α > 0, provided that the limit exists and is not trivial. The

Green's function for SLE plays an central role in determining the Hausdor� dimension of

SLE, and proving the existence of Minkowski content of SLE.

The notion of (one-point) Green's function easily extends to multi-point Green's function.

Given n distinct points z1, . . . , zn ∈ D or ∈ ∂D, the n-point Green's function for the SLEκ

curve γ at (z1, . . . , zn) is the limit

G(z1, . . . , zn) := lim
r1,...,rn→0+

n∏
j=1

r−α
j P[dist(zj, γ) ≤ rj, 1 ≤ j ≤ n].

In the thesis, we prove that the n-point Green's function exists if γ is a chordal SLE,

κ ∈ (0, 8), α = 8
κ
−1, z1, . . . , zn ∈ ∂D, and ∂D is smooth near each zj. In addition, we prove

that the convergence is uniform over compact sets and the Green's function is continuous.

We also give up-to-constant bounds for the Green's function.
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CHAPTER 1

INTRODUCTION

The Schramm-Loewner evolution (SLE for short) is a one-parameter (κ ∈ (0,∞)) family

of random fractal curves which grow in plane domains. It was de�ned in the seminal work

of Schramm [20] in 1999. Because of its close relation with two-dimensional lattice models,

Gaussian free �eld, and Liouville quantum gravity, SLE has attracted a lot of attention for

over two decades.

The geometric properties of an SLEκ curve depends on the parameter κ. When κ ≥ 8,

an SLEκ curve visits every point in the domain (cf. [19]); when κ ∈ (0, 8), an SLEκ curve has

Hausdor� dimension d0 = 1 + κ
8
(cf. [4]). There are several types of SLE. In this thesis we

focus on chordal SLE, which grows in a simply connected plane domain from one boundary

point to another boundary point. Suppose γ is a chordal SLEκ curve, κ ∈ (0, 8), in a domain

D, and z0 ∈ D. The Green's function for γ at z0 is the limit

G(z0) := lim
r→0+

r−αP[dist(z0, γ) ≤ r] (1.1)

for some suitable exponent α > 0 depending on κ such that the limit exists and is not trivial,

i.e., lies in (0,∞). This notion easily extends to n-point Green's function:

G(z1, . . . , zn) := lim
r1,...,rn→0+

n∏
j=1

r−α
j P[dist(zj, γ) ≤ rj, 1 ≤ j ≤ n], (1.2)

where z1, . . . , zn are distinct points in D, provided that the limit exists and is not trivial.

The term �Green's function� is used for the following reasons. Recall the Laplacian

Green's function GD(z, w), z ̸= w ∈ D, for a planar domain D, which is characterized by

the following properties: for any w ∈ D,

� GD(·, w) is positive and harmonic on D \ {w}.

� As z → ∂D, GD(z, w) → 0.
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� As z → w, GD(z, w) = − 1
2π

ln |z − w|+O(1).

One important fact is

G(z, w) = lim
r→0+

− ln r

2π
· Pw[dist(z,B[0, τD]) ≤ r], (1.3)

where B is a planar Brownian motion started from w, and τD is the exit time ofD. Notice the

similarity between (1.1) and (1.3). The main di�erence between them is the normalization

factor: one is r−α and the other is − ln r
2π

.

Another important fact is: for any measurable set U ⊂ D,

Ew[|{t ∈ [0, τD) : Bt ∈ U}|] =
∫
U

G(z, w)dA(z). (1.4)

Here | · | stands for the Lebesgue measure on R, and A is the area.

It turns out that the correct exponent α is the co-dimension of the SLE curve, i.e.,

α = 2−d0 = 2− (1+ κ
8
) = 1− κ

8
. The existence of a variation of Green's function for chordal

SLEκ, κ ∈ (0, 8), was given in [5], where the conformal radius was used instead of Euclidean

distance. The existence of 2-point Green's function was proved in [12] (again for conformal

radius instead of Euclidean distance) following a method initiated by Be�ara [4]. In [8] the

authors showed that Green's function as de�ned in (1.2) (using Euclidean distance) exists

for n = 1, 2, and then used those Green's functions to prove that

� an SLEκ curve γ can be parametrized by its d0-dimensional Minkowski content, i.e.,

for any t1 < t2, the (1 + κ
8
)-dimensional Minkowski content of γ[t1, t2] is t2 − t1; and

� under such parametrization, for any measurable set U ⊂ D,

E[|{t : γ(t) ∈ U}|] =
∫
U

G(z)dA(z). (1.5)

The Minkowski content parametrization agrees with the natural parametrization introduced

earlier (cf. [11, 13]) The similarity between (1.4) and (1.5) further justi�es the terminology

�Green's function�.
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In a series of papers ([17, 16]) the authors showed that the Green's function of chordal

SLE exists for any n ∈ N. In addition, they found convergence rate and modulus of continuity

of the Green's functions, and provided up-to-constant sharp bounds for them.

If the reference point(s) is (are) on the boundary of the domain instead of the interior,

we may use (1.1) and (1.2) to de�ne the one-point and n-point boundary Green's function.

Again, if κ ≥ 8, the boundary Green's function makes no sense for SLEκ since it visits every

point on the boundary; if κ ∈ (0, 8), the intersection of the SLEκ curve with the boundary

has Hausdor� dimension d1 = 2− 8
κ
([3]), and so the reasonable choice of the exponent α is

α = 1− d1 =
8
κ
− 1.

Greg Lawler proved (cf. [6]) the existence of the 1- and 2-point (on the same side) bound-

ary Green's function for chordal SLE, and used them to prove that the d1-dimensional

Minkowski content of the intersection of SLEκ with the domain boundary exists. He also

obtained the exact formulas of these Green's function up to some multiplicative constant.

We will use the exact formula of the one-point Green's function:

G(z) = ĉ|z|−α, z ̸= 0, (1.6)

where ĉ > 0 is some (unknown) constant depending only on κ. We will also use the con-

vergence rate of the one-point Green's function ([6, Theorem 1]): there is some constant

C, β1 > 0 depending only on κ such that for any z ∈ R \ {0} and r ∈ (0, |z|),

|P[dist(z, γ) ≤ ε]−G(z)εα| ≤ C(ε/|z|)α+β1 . (1.7)

To the best of our knowledge, the existence of n-point boundary Green's function for

n > 2 and the 2-point boundary Green's function when the two reference points lie on

di�erent sides of 0 has not been proved so far. The main goal of this thesis is to prove

this existence for all n ∈ N without assuming that the reference points all lie on the same

side of 0. In addition we prove that the Green's functions are continuous. We do not have

exact formulas of these functions, but �nd some sharp bounds for them in terms of simple

functions.
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We will mainly follow the approach in [16], and apply the results from there as well as

from [6] and [17]. Below is our main result.

Theorem 1.1. Let κ ∈ (0, 8) and α = 8
κ
−1. Let γ be an SLEκ curve in H := {z ∈ C : Im z >

0} from 0 to ∞. Let n ∈ N and Σn = {(z1, . . . , zn) ∈ (R \ {0})n : zj ̸= zk wheneverj ̸= k}.

Then for any z = (z1, . . . , zn) ∈ Σn, the limit G(z) in (1.2) exists and lies in (0,∞).

Moreover, the convergence in (1.2) is uniform on each compact subset of Σn, the function

G is continuous on Σn, and there is an explicit function F on Σn (de�ned in (3.4)) with a

simple form such that G(z) ≍ F (z), where the implicit constants depend only on κ and n.

Our result will shed light on the study of multiple SLE. For example, if we condition

the chordal SLEκ in Theorem 1.1 to pass through small discs centered at z1 < z2 < · · · <

zn ∈ (0,∞), and suitably take limits while sending the radii of the discs to zero, then we

should get an (n + 1)-SLEκ con�guration in H with link pattern (0 ↔ z1; z1 ↔ z2; z2 ↔

z3; . . . ; zn−1 ↔ zn; zn ↔ ∞), which is a collection of (n+ 1) random curves (γ0, . . . , γn) in H

such that γj connects zj with zj+1, where z0 := 0 and zn+1 := ∞, and when any n curves

among the (n + 1) curves are given, the last curve is a chordal SLEκ curve in a connected

component of the complement of the given n curves in H. The n-point boundary Green's

function is then closely related to the partition function associated to such multiple SLE.

Here are a few topics that we could study in the near future. We may consider �mixed�

multi-point Green's functions for chordal SLE, where some reference points lie in the interior

of the domain, and some lie on the boundary. We expect that the Green's functions still

exist, if 1− κ
8
is used as the exponent for interior points and 8

κ
−1 is used as the exponent for

boundary points. We may also work on other types of SLE such as radial SLE, which grows

from a boundary point to an interior point. The multi-point (interior) Green's function for

radial SLE was proved to exist in [14]. The next natural objects to study are the boundary

and mixed multi-point Green's function for radial SLE.

The rest of the thesis is organized in a straightforward fashion. In Chapter 2, we recall

symbols, notation and some basic results that are relevant to the thesis. Chapter 3 contains
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the most technical part of the thesis, where we derive a number of important estimates. We

�nish the proof of the main theorem in Chapter 4.
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CHAPTER 2

PRELIMINARIES

2.1 Symbols and Notation

Let H = {z ∈ C : Im z > 0} be the open upper half plane. Given z0 ∈ C and S ⊂ C, we use

radz0(S) to denote sup{|z − z0| : z ∈ S ∪ {z0}}. We write Nn for {k ∈ N : k ≤ n}, where

N = {1, 2, 3, . . . } is the set of all positive integers. For a, b ∈ R, we write a ∧ b and a ∨ b

respectively for min{a, b} and max{a, b}.

We �x κ ∈ (0, 8) and set d = 1 + κ
8
and α = 8

κ
− 1. Throughout, a constant (such as α)

depends only on κ and a variable n ∈ N (number of points), unless otherwise speci�ed. We

use X ≲ Y or Y ≳ X if there is a constant C > 0 such that X ≤ CY . We write X ≍ Y if

X ≲ Y and Y ≲ X.

When a (deterministic or random) curve γ(t), t ≥ 0, is �xed in the context, we let

τS = inf({t ≥ 0 : γ(t) ∈ S} ∪ {∞}). We write τ z0r for τ{z:|z−z0≤r}, and Tz0 for τ
z0
0 = τ{z0}. So

another way to say that dist(z0, γ) ≤ r is τ z0r < ∞. We also write τ∞R for τ{z:|z|≥R}.

A crosscut in a domain D is an open simple curve in D, whose two ends approach to two

boundary points of D. When D is a simply connected domain, any crosscut ρ of D divides

D into two connected components.

2.2 H-Hulls

A relatively closed bounded subset K of H is called an H-hull if H \K is simply connected.

The complement domain H \K is then called an H-domain. Given an H-hull K, we use gK

to denote the unique conformal map from H \K onto H that satis�es gK(z) = z +O(|z|−1)

as z → ∞. Let fK = g−1
K . The half-plane capacity of K is hcap(K) := limz→∞ z(gK(z)− z).

If K = ∅, then gK = fK = id, and hcap(K) = 0. Now suppose K ̸= ∅. Let aK = min(K∩R)

and bK = max(K ∩ R). Let Kdoub = K ∪ [aK , bK ] ∪ {z : z ∈ K}. By Schwarz re�ection
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principle, gK extends to a conformal map from C \Kdoub onto C \ [cK , dK ] for some cK <

dK ∈ R, and satis�es gK(z) = gK(z). In this thesis, we write SK for [cK , dK ]. In the case

K = ∅, we understand SK and [aK , bK ] as the empty set. Given two H-hulls K1 ⊂ K2, we

get another H-hull K2/K1 de�ned by K2/K1 = gK1(K2 \K1).

Example 2.1. For x0 ∈ R and r > 0, the set K := {z ∈ H : |z − x0| ≤ r} is an H-hull,

aK = x0 − r, bK = x0 + r, gK(z) = z + r2

z−x0
, hcap(K) = r2, and SK = [x0 − 2r, x0 + 2r].

Proposition 2.2. For any H-hull K, [aK , bK ] ⊂ SK. If K1 ⊂ K2 are two H-hulls, then

SK1 ⊂ SK2 and SK2/K1 ⊂ SK2.

Proof. This is [21, Lemmas 5.2 and 5.3].

Proposition 2.3. If a nonempty H-hull K satis�es that radx0(K) ≤ r for some x0 ∈ R and

r > 0, then hcap(K) ≤ r2, SK ⊂ [x0 − 2r, x0 + 2r], and

|gK(z)− z| ≤ 3r, z ∈ C \Kdoub. (2.1)

Moreover, for any z ∈ C with |z − x0| ≥ 5r, we have

|gK(z)− z| ≤ 2|z − x0|
( r

|z − x0|

)2

; (2.2)

|g′K(z)− 1| ≤ 5
( r

|z − x0|

)2

. (2.3)

Proof. This is [16, Lemmas 2.5 and 2.6].

Proposition 2.4. Let H be a nonempty H-hull, and H(H) denote the space of H-hulls,

which are subsets of H. Then H(H) is compact in the sense that any sequence (Kn) in

H(H) contains a convergent subsequence (Knk
) whose limit K is contained in H(H). Here

the convergence means that gKnk
converges to gK locally uniformly in C \Hdoub.

Proof. This is [21, Lemma 5.4].
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2.3 Chordal Loewner Processes

Let U(t), 0 ≤ t < T , be a real valued continuous function, where T ∈ (0,∞]. The chordal

Loewner equation driven by U is the equation

∂tgt(z) =
2

gt(z)− Ut

, g0(z) = z. (2.4)

For every z ∈ C, let τ ∗z denote the �rst time that the solution g·(z) blows up; when such time

does not exist, τ ∗z is set to be ∞. Let Kt = {z ∈ H : τ ∗z ≤ t}. We call gt and Kt, 0 ≤ t < T ,

the chordal Loewner maps and hulls, respectively, driven by U . It turns out that, for each

t ∈ [0, T ), Kt is an H-hull, hcap(Kt) = 2t, and gt = gKt .

Proposition 2.5. For any 0 ≤ t < T ,

{Ut} =
⋂

ε∈(0,T−t)

Kt+ε/Kt.

Proof. This a restatement of [9, Theorem 2.6].

Corollary 2.6. If for some H-hull H and t0 ∈ (0, T ), Kt0 ⊂ H, then Ut ∈ SH for 0 ≤ t < t0.

Proof. By Proposition 2.5, for every t ∈ [0, t0), Ut ∈ [aKt0/Kt , bKt0/Kt ], which implies by

Proposition 2.2 that Ut ∈ SKt0/Kt ⊂ SKt0
⊂ SH . By the continuity of U , we also have

Ut0 ∈ SH .

We call the maps Zt = gt − Ut the centered Loewner maps driven by U .

Proposition 2.7. Let b > a ∈ [0, T ). Suppose that radx0(Kb/Ka) ≤ r for some x0 ∈ R and

r > 0. Then |Za(z)− Zb(z)| ≤ 7r for any z ∈ H \Kb.

Proof. Let Ua;t = Ua+t, ga;t = ga+t ◦ g−1
a , and Ka;t = Ka+t/Ka, 0 ≤ t < T − a. It is

straightforward to check that ga;· and Ka;· are respectively the chordal Loewner maps and
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hulls driven by Ua;·. By Corollary 2.6, Ua, Ub ∈ SKa;b−a
. By the assumption, radx0(Ka;b−a) ≤

r. By Proposition 2.3, SKa;b−a
⊂ [x0 − 2r, x0 + 2r]. Thus, |Ua − Ub| ≤ 4r. By Proposition

2.3, |ga;b−a(z)− z| ≤ 3r for any z ∈ H \Ka;b−a. So for any z ∈ H \Kb, |ga(z)− gb(z)| ≤ 3r.

Since Zt = gt − Ut, and |Ua − Ub| ≤ 4r, we get the conclusion.

If there exists a function γ(t), 0 ≤ t < T , in H, such that for any t, H \ Kt is the

unbounded connected component of H \ γ[0, t], we say that such γ is the chordal Loewner

curve driven by U . Such γ may not exist in general, but when it exists, it is determined

by U , and for each t ∈ [0, T ), g−1
t and Z−1

t extend continuously from H to H and satisfy

g−1
t (Ut) = Z−1

t (0) = γ(t).

2.4 Chordal SLE

Let κ > 0. Let Bt be a standard Brownian motion. If the driving function is Ut =
√
κBt,

0 ≤ t < ∞, then the chordal Loewner curve driven by U exists, starts from 0 and ends

at ∞ (cf. [19]). Such curve is called a chordal SLEκ trace or curve in H from 0 to ∞. Its

geometric property depends on κ: if κ ≤ 4, it is simple; if 4 < κ < 8, it is not simple and

not space-�lling; if κ ≥ 8, it is space-�lling (cf. [19]). The Hausdor� dimension of an SLEκ

curve is min{1 + κ
8
, 2} (cf. [19, 4]).

The de�nition of chordal SLE extends to general simply connected domains via confor-

mal maps. Let D be a simply connected domain with two distinct boundary points (more

precisely, prime ends) a, b. Let f be a conformal map from H onto D, which sends 0 and ∞

respectively to a and b. Let γ be a chordal SLEκ curve in H from 0 to ∞. Then f ◦ γ is

called a chordal SLEκ curve in D from a to b.

A remarkable property of SLE is the Domain Markov Property (DMP). Suppose γ is a

chordal SLEκ curve in H from 0 to ∞, which generates the H-hulls Kt, 0 ≤ t < ∞, and a

�ltration F = (Ft)t≥0. Let τ be a �nite F -stopping time. Conditionally on Fτ , γ(τ + ·) has

the same law of a chordal SLEκ curve in H \ Kτ from γ(τ) to ∞. Equivalently, there is a

chordal SLEκ curve γ̃ in H from 0 to ∞ independent of Fτ such that γ(τ + t) = Z−1
τ (γ̃(t)),
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t ≥ 0. Here Zτ is the centered Loewner map at the time τ that corresponds to γ, and its

inverse Z−1
τ has been extended continuously to H.

We will also use the left-right symmetry and rescaling property of chordal SLE. Suppose γ

is a chordal SLEκ curve in H from 0 to ∞. The left-right symmetry states that, if f(z) = −z

is the re�ection about iR, then f ◦ γ has the same law as γ. This follows easily from that

(−
√
κBt) has the same law as (

√
κBt). The rescaling property states that, for any c > 0,

(cγ(t)) has the same law as (γ(
√
ct)). This follows easily from the rescaling property of the

Brownian motion.

2.5 Extremal Length

We will need some lemmas on extremal length, which is a nonnegative quantity λ(Γ) asso-

ciated with a family Γ of recti�able curves ([1, De�nition 4-1]). One remarkable property of

extremal length is its conformal invariance ([1, Section 4-1]), i.e., if every γ ∈ Γ is contained

in a domain Ω, and f is a conformal map de�ned on Ω, then λ(f(Γ)) = λ(Γ). We use

dΩ(X, Y ) to denote the extremal distance between X and Y in Ω, i.e., the extremal length of

the family of curves in Ω that connect X with Y . It is known that in the special case when Ω

is a semi-annulus {z ∈ H : R1 < |z−x| < R2}, where x ∈ R and R1 > R1 > 0, and X and Y

are the two boundary arcs {z ∈ H : |z − x| = Rj}, j = 1, 2, then dΩ(X, Y ) = log(R2/R1)/π

([1, Section 4-2]). We will use the comparison principle ([1, Theorem 4-1]): if every γ ∈ Γ

contains a γ′ ∈ Γ′, then λ(Γ) ≥ λ(Γ′). Thus, if every curve in Ω connecting X with Y a

semi-annulus with radii R1, R2, then dΩ(X, Y ) ≥ log(R2/R1)/π. We will also use the com-

position law ([1, Theorem 4-2]): if for j = 1, 2, every γj in a family Γj is contained in Ωj,

where Ω1 and Ω2 are disjoint open sets, and if every γ in another family Γ contains a γ1 ∈ Γ1

and a γ2 ∈ Γ2, then λ(Γ) ≥ λ(Γ1) + λ(Γ2).

The following propositions are applications of Teichmüller Theorem.

Proposition 2.8. Let S1 and S2 be a disjoint pair of connected closed subsets of H that
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intersect R such that S1 is bounded and S2 is unbounded. Let zj ∈ Sj ∩ R, j = 1, 2. Then

1 ∧ radz1(S1)

|z1 − z2|
≤ 32e−πdH(S1,S2).

Proof. For j = 1, 2, let Sdoub
j be the union of Sj and its re�ection about R. By re�ection

principle ([1, Exercise 4-1]), dH(S1, S2) = 2dC(S
doub
1 , Sdoub

2 ). Let r = radz2(S1), L = |z1 − z2|

and R = L/r. From Teichmüller Theorem ([1, Theorem 4-7]),

dC(S
doub
1 , Sdoub

2 ) ≤ dC([−r, 0], [L,∞)) = dC([−1, 0], [R,∞)) = Λ(R).

From [1, Formula (4-21)], we have

e−πdH(S1,S2) = e−2πdC(S
doub
1 ,Sdoub

2 ) ≥ e−2πΛ(R) ≥ 1

16(R + 1)
.

Since 1 ∧ 1
R
≤ 2

1+R
, we get the conclusion.

Proposition 2.9. Let D be an H-domain and S ⊂ H. Suppose that there are z0 ∈ R and

r > 0 such that {|z − z0| = r} ∩D has a connected component Cr, which disconnect S from

∞. In other words, S lies in the bounded component of D \ Cr. Let g be a conformal map

from D onto H such that limz→∞ g(z)/z = 1. Then there is w0 ∈ R such that

radw0(g(S)) ≤ 4 radz0(S).

Proof. Since Cr is a crosscut of D, and S lies in the bounded component of D \ Cr, g(Cr)

is a crosscut of g(D) = H, and g(S) lies in the bounded component of H \ g(Cr). Let w0 be

one endpoint of g(Cr). It su�ces to show that radw0(g(Cr)) ≤ 4r. Let L = radz0(K) and

L0 = |z0 − w0|. Take a big number R > r + L + L′ and let CR = {z ∈ H : |z − z0| = R}.

Then S and CR can be separated by the semi-annulus {z ∈ H : r < |z − x0| < R} in D. By

the comparison principle and conformal invariance of extremal length,

dH(g(Cr), g(CR)) = dD(Cr, CR) ≥
1

π
log(R/r).

11



Let K be the H-hull H \D. Then g− gK is a real constant. So we may assume that g = gK .

By Proposition 2.3 again, g(C) is a crosscut of H with radw0(g(C)) ≤ R + L + L0. Let

r′ = radw0(g(Cr)) and R′ = R + L + L0. By comparison principle, re�ection principle and

Teichmüller Theorem,

dH(g(Cr), g(CR)) ≤ dH(g(Cr), {z ∈ H : |z − w0| = R′})

= 2dC(g(Cr)
doub, {|z − w0| = R′}) ≤ 2dC([−1, 0], {|z| = R′/r′} = 2M(R′/r′).

By [1, Formula 4-14], 2M(R′/r′) = Λ((R′/r′)2 − 1). Thus, by the above displayed formulas

and [1, Formula (4-21)]

1

π
log(R/r) ≤ Λ((R′/r′)2 − 1) ≤ 1

2π
log(16(R′/r′)2) =

1

π
(4(R′/r′)).

So we get r′ ≤ 4(R′/R)r. Letting R → ∞, we get R′/R → 1. So r′ ≤ 4r.

2.6 Two-sided Chordal SLE

Suppose γ is a chordal SLEκ curve in H from 0 to ∞, which generates the �ltration F =

(Ft)t≥0. Let P denote the law of γ, and E denote the corresponding expectation. Let

z ∈ R \ {0}. By (2.4) and the fact that Ut =
√
κBt for some standard Brownian motion Bt,

up to τ ∗z , Zt(z) and g′t(z) satisfy the following SDE and ODE:

dZt(z) = −
√
κdBt +

2

Zt(z)
dt;

dg′t(z)

g′t(z)
=

−2

Zt(z)2
dt.

By Itô's formula (cf. [18]), we get the following continuous positive local martingale:

Mt(z) :=
|g′t(z)|α|z|α

|Zt(z)|α
, 0 ≤ t < τ ∗z , (2.5)

which satis�es the SDE:

dMt(z)

Mt(z)
=

κ− 8√
κ

dBt

Zt(z)
. (2.6)

12



By Girsanov Theorem (cf. [18]), if we tilt the law P by the local martingale M·(z), we get a

new random curve γ̃, whose driving function Ũ satis�es the SDE:

dŨt =
√
κdB̃t +

κ− 8

Z̃t(z)
dt,

where B̃ is another standard Brownian motion, and Z̃t's are the centered Loewner maps

associated with γ̃. In fact, such γ̃ is a chordal SLEκ(κ− 8) curve (cf. [10]) in H started from

0, aimed at ∞, with the force point located at z. Since κ− 8 < κ
2
− 4, with probability 1, γ̃

ends at z (cf. [15]).

The above curve γ̃ from 0 to z is the �rst arm of a two-sided chordal SLEκ curve in H

from 0 to ∞ passing through z. Given this arm γ̃, the rest of the two-sided chordal SLEκ

curve is a chordal SLEκ curve from z to ∞ in the unbounded connected component of H\ γ̃.

We use P∗
z to denote the law of such a two-sided chordal SLEκ curve, and let E∗

z denote the

corresponding expectation. For r > 0, we use Pr
z to denote the conditional law P[·|τ zr < ∞],

i.e., the law of a chordal SLEκ curve in H from 0 to ∞ conditioned to visit the disk with

radius r centered at z; and let Er
z denote the corresponding expectation.

Proposition 2.10. Let z ∈ R\{0} and R ∈ (0, |z|). Then P∗
z is absolutely continuous w.r.t.

PR
z on FτzR

∩ {τ zR < ∞}, and the Radon-Nikodym derivative is uniformly bounded by some

constant Cκ ∈ [1,∞) depending only on κ.

Proof. By symmetry we may assume z > 0. Let τ = τ zR. By the construction of P∗
z (through

tilting P by M·(z)), we have

dP∗
z|Fτ ∩ {τ < ∞}

dP|Fτ ∩ {τ < ∞}
= Mτ (z).

By the de�nition of PR
z ,

dPR
z |Fτ ∩ {τ < ∞}

dP|Fτ ∩ {τ < ∞}
=

1

P[τ < ∞]
.

Thus, it su�ces to prove that Mτ (z) · P[τ < ∞] is uniformly bounded. By (3.6), P[τ <

∞] ≲ (R/|z|)α. Since gτ maps the simply connected domain Ω := C \ (Kdoub
τ ∪ (−∞, 0])

13



conformally onto C \ (−∞, bKτ ], by Koebe's 1/4 theorem,

|g′τ (z)|·R = |g′τ (z)|·dist(z, ∂Ω) ≍ dist(gτ (z), ∂(C\(−∞, bKτ ])) = |gτ (z)−bKτ | ≤ Zt(z), (2.7)

where in the last step we used gτ (z) > bKτ ≥ Uτ . Thus,

Mτ (z) · P[τ < ∞] ≲
|g′t(z)|α|z|α

|Zt(z)|α
Rα

|z|α
=

|g′t(z)|αR|α

|Zt(z)|α
≲ 1.

Proposition 2.11. Let z ∈ R \ {0} and 0 < r < η < |z|. Then Pr
z restricted to Fτzη is

absolutely continuous with respect to P∗
z, and there is a constant β > 0 depending only on κ

such that ∣∣∣ log (dPr
z|Fτzη

dP∗
z|Fτzη

)∣∣∣ ≲ (r
η

)β

, if r/η < 1/6. (2.8)

Proof. Recall the G(z) = ĉ|z|−α de�ned by (1.6). De�ne Gt(z) = |Z ′
t(z)|αZt(z) if τ

∗
z > t; and

Gt(z) = 0 if τ ∗z ≤ t. Then
dP∗

z|Fτzη

dP|Fτzη

= Mτzη (z) =
Gτzη (z)

G(z)
.

By the de�nition of Pr
z, we have

dPr
z|Fτzη

dP|Fτzη

=
P[τ zr < ∞|Fτηz ]

P[τ zr < ∞]
.

Since P[τ zr < ∞|Fτηz ] = 0 implies that τ ηz ≤ τ ∗z , which in turn implies that Gτzη (z) = 0, by

the above two displayed formulas, Pr
z restricted to Fτzη is absolutely continuous with respect

to P∗
z, and

dPr
z|Fτzη

dP∗
z|Fτzη

=
P[τ zr < ∞|Fτηz ]/(Gτzη (z)r

α)

P[τ zr < ∞]/(G(z)rα)
.

By (1.7) and Koebe's distortion theorem, there are constants β, δ > 0 such that, if r/η < 1/6,

then

log(P[τ zr < ∞]/(G(z)rα)) ≲ (r/|z|)β, log(P[τ zr < ∞|Fτηz ]/(Gτzη (z)r
α)) ≲ (r/η)β.

The above two displayed formulas together imply (2.8).
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CHAPTER 3

MAIN ESTIMATES

In this chapter, we will provide some useful estimates for the proof of the main theorem. We

use the notion and symbols in the previous chapter. We now de�ne the function F (z1, . . . , zn)

that appeared in Theorem 1.1.

From now on, let d0 = 1 + κ
8
and α = 8

κ
− 1. For y ≥ 0, de�ne Py on [0,∞) by

Py(x) =

 yα−(2−d0)x2−d0 , x ≤ y;

xα, x ≥ y.

For an (ordered) set of distinct points z1, . . . , zn ∈ H \ {0}, we let z0 = 0 and de�ne

yk = Im zk, lk = min
0≤j≤k−1

{|zk − zj|}, Rk = min
0≤j≤n,j ̸=k

{|zk − zj|}, 1 ≤ k ≤ n. (3.1)

Note that we have Rk ≤ lk. For r1, . . . , rn > 0, de�ne

F (z1, . . . , zn; r1, . . . , rn) =
n∏

k=1

Pyk(rk)

Pyk(lk)
. (3.2)

The following is [16, Formula (2.7)]. For any permutation σ of {1, . . . , n},

F (z1, . . . , zn; r1, . . . , rn) ≍ F (zσ(1), . . . , zσ(n); rσ(1), . . . , rσ(n)). (3.3)

The following proposition combines [17, Theorem 1.1] (which gives the upper bound) and

[16, Theorem 4.3] (which gives the lower bound).

Proposition 3.1. Let z1, . . . , zn be distinct points on H \ {0}. Let R1, . . . , Rn be de�ned by

(3.1). Let rj > 0, 1 ≤ j ≤ n. Then for a chordal SLEκ curve γ in H from 0 to ∞, we have

� P[τ zjrj < ∞, 1 ≤ j ≤ n] ≲
∏n

j=1(1 ∧
Pyj (rj)

Pyj (lj)
);

� P[τ zjrj < ∞, 1 ≤ j ≤ n] ≳ F (z1, . . . , zn; r1, . . . rn), if rj ≤ Rj, 1 ≤ j ≤ n.
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Now suppose z1, . . . , zn are distinct points on R \ {0}. Then yk = 0, 1 ≤ k ≤ n. So, the

Pyk
(rk)

Pyk
(lk)

in (3.2) simpli�es to
rαk
lαk
. Then we de�ne

F (z1, . . . , zn) =
n∏

k=1

r−α
k F (z1, . . . , zn; r1, . . . , rn) =

n∏
k=1

l−α
k . (3.4)

This function is di�erent from the F (z1, . . . , zn) that appeared in [16], which was de�ned for

z1, . . . , zn ∈ H. By (3.3), we have

F (z1, . . . , zn) ≍ F (zσ(1), . . . , zσ(n)). (3.5)

A simple but useful special case of Proposition 3.1 is: when n = 1 and z1 ∈ R \ {0}, we

have

P[τ z1r1 < ∞] ≍ (r1/|z1|)α, 0 < r < |z1|. (3.6)

The estimate includes a lower bound and an upper bound. They �rst appeared in [2]. The

upper bound in (3.6) was called the boundary estimate in the literature.

From now on till the end of this chapter, P denotes the law of a chordal SLEκ curve in

H from 0 to ∞; for z ∈ R \ {0} and r > 0, Pr
z denotes the conditional law P[·|τ zr < ∞], and

P∗
z denotes the law of a two-sided chordal SLEκ curve in H from 0 to ∞ passing through z.

When γ follows some law above in the context, let Ut, Kt and gt be respectively the chordal

Loewner driving function, hulls and maps which correspond to γ. Let Zt = gt − Ut be the

centered Loewner maps, and let Ht = H \Kt. For t ≥ 0, let S+
t be the set of prime ends of

Ht that lie on the right side of γ[0, t] or on [bKt ,∞), and let S−
t be the set of prime ends of Ht

that lie on the left side of γ[0, t] or on (−∞, aKt ]. More precisely, S+
t and S−

t are respectively

the images of [0,+∞) and (−∞, 0] under Z−1
t .

Proposition 3.2. Let z1, . . . , zn be distinct points in R \ {0}, where n ≥ 2. Let R1, . . . , Rn

be de�ned by (3.1). Let rj ∈ (0, Rj/8), 1 ≤ j ≤ n. Then we have a constant β > 0 such that
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for any k0 ∈ {2, . . . , n} and s0 ≥ 0,

P[τ z1r1 < τ zkrk < ∞, 2 ≤ k ≤ n; dist(zk0 , γ[0, τ
z1
r1
]) ≤ s0]

≲F (z1, . . . , zn)
n∏

j=1

rαj

( s0
|zk0 − z1| ∧ |zk0|

)β

.

Proof. This proposition is very similar to [16, Theorem 3.1]. The following estimate is [16,

Formula (A.14)]. For distinct points z1, . . . , zn ∈ H\{0}, rj ∈ (0, Rj), 1 ≤ j ≤ n, and s0 > 0,

P[τ zjrj < ∞, 1 ≤ j ≤ n; τ z1s0 < τ z2r2 < τ z1r1 ] ≲ F (z1, . . . , zn; r1, . . . , rn) ·
( s0
|z1 − z2| ∧ |z1|

) α
32n2

.

Let k0 ∈ {2, . . . , n} and β = α
32n2 . Applying (3.3) to the above formula with a permutation

σ of Nn, which sends 1 to k0 and 2 to 1, we �nd that

P[τ zjrj < ∞, 1 ≤ j ≤ n; τ
zk0
s0 < τ z1r2 < τ

zk0
s0 ] ≲ F (z1, . . . , zn; r1, . . . , rn) ·

( s0
|zk0 − z1| ∧ |zk0|

)β

.

We then complete the proof by setting z1, . . . , zn ∈ R \ {0}.

Proposition 3.3. Let z1 ∈ R\{0} and 0 ≤ s < r < R∧|z1|. On the event {τ z1r < τ ∗z1}, let ξ+

be the connected component of {|z− z1| = R}∩Hτ
z1
r

with one endpoint being z1 +sign(z1)R;

otherwise let ξ+ = ∅. Let

Er,s;R = {γ[τ z1r , τ z1s ] ∩ ξ+ = ∅}.

Then

(i) If s > 0, Ps
z1
[Ec

r,s;R] ≲ (r/R)α.

(ii) If s = 0, P∗
z1
[Ec

r,0;R] ≲ (r/R)α.

Proof. (i) Assume that z1 > 0 by the left-right symmetry of chordal SLE. Suppose γ follows

the law P. Since κ ∈ (0, 8), the probability that γ visits {z1 + s, z1 − s, z1 + R} is zero. We

now assume that γ does not visit this set. Let τ = inf({t ≥ τ z1r : γ(t) ∈ ξ+} ∪ {∞}). Then

τ is a stopping time, and Er,s;R = {τ < τ z1s < ∞}. Let Eτ = {τ < τ z1s } ∈ Fτ . By DMP
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of chordal SLE, conditionally on Fτ and the event Eτ , there is a random curve γ̃ following

the law P such that γ(τ + ·) = Z−1
τ ◦ γ̃. Let D = {z ∈ H \Kτ : |z − z1| ≤ s}, D̃ = Zτ (D),

z̃1 = Zτ (z1) > 0, and s̃ = radz̃1(D̃) > 0. On the event Eτ , in order for Er,s;R to happen, we

need that γ(τ + ·) visits D, which is equivalent to that γ̃ visits D̃. By (3.6),

P[Ec
r,s;R|Fτ , Eτ ] ≲ (1 ∧ (r̃1/z̃1))

α.

By Lemma 2.8 and conformal invariance of extremal length,

1 ∧ (r̃1/z̃1) ≲ e−πdH((−∞,0],D̃) = e−πdHτ (S
−
τ ,D).

Since S−
τ can be separated from D in Hτ by the semi-annulus {s < |z − z1| < R}, by

the comparison principle of extremal length, dHτ (S
−
τ , D) ≥ log(R/s)/π. So by the above

two displayed formulas we get P[Ec
r,s;R|Fτ , Eτ ] ≲ (s/R)α, which together with P[Eτ ] ≤

P[τ z1r < ∞] ≲ (r/|z1|)α (the upper bound in (3.6)) implies that P[Ec
r,s;R] ≲ (r/|z1|)α(s/R)α.

Combining this estimate with the lower bound in (3.6), i.e., P[τ z1s ] ≳ (s/z1)
α, we get (i).

(ii) From Proposition 2.10 and (i), we get P∗
z1
[Ec

r,s;R] ≲ (r/R)α for any s ∈ (0, r). We

then complete the proof by sending s to 0+.

Lemma 3.4. Let z1, . . . , zn, w1, . . . , wm be distinct points in R \ {0}, where n ≥ 1 and

m ≥ 0. Suppose that all zj have the same sign σz ∈ {+,−}, all wk have the same sign

σw ∈ {+,−}, σz ̸= σw, and both j 7→ |zj| and k 7→ |wk| are increasing. Let z0 = w0 = 0,

zn+1 = σz ·∞, and wm+1 = σw ·∞. Let rj ∈ (0, (|zj − zj−1| ∧ |zj − zj+1|)/2), 1 ≤ j ≤ n, and

sk ∈ (0, (|wk − wk+1| ∧ |wk − wk−1|)/2), 1 ≤ k ≤ m. Let R > 2(|zn| ∨ |wm|). Then

P[τ∞R < τ zjrj < ∞, 1 ≤ j ≤ n; τ∞R < τwk
sk

< ∞, 1 ≤ k ≤ m]

≲
( |z1|

R

)α

F (z1, . . . , zn, w1, . . . , wm)
n∏

j=1

rαj ·
m∏
k=1

sαk . (3.7)

Proof. By symmetry, we may assume that wm < · · · < w1 < 0 < z1 < · · · < zn. De�ne Fz

and Fw such that Fz =
∏n

j=1 |zj − zj−1|−α; Fw =
∏m

k=1 |wk − wk−1|−α, if m ≥ 1; and Fw = 1

if m = 0. Then we have F (z1, . . . , zn, w1, . . . , wm) = FzFw.
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Let τ = τ∞R . Let E denote the event in (3.7). Then E = Eτ
∗ ∩ E#, where

Eτ
∗ := {τ∞R < τ zjrj ∧ τ ∗zj , 1 ≤ j ≤ n; τ∞R < τwk

sk
∧ τ ∗wk

, 1 ≤ k ≤ m} ∈ Fτ ;

E# : = {τ zjrj < ∞, 1 ≤ j ≤ n; τwk
sk

< ∞, 1 ≤ k ≤ m}.

Suppose the event Eτ
∗ occurs. Let z̃j = Zτ (zj), Dj = {z ∈ Hτ : |z − zj| ≤ rj}, D̃j =

Zτ (Dj), and r̃j = radz̃j(D̃j), 1 ≤ j ≤ n. Let w̃k = Zτ (wk), Ek = {z ∈ Hτ : |z − wk| ≤ sk},

Ẽk = Zτ (Ek), and s̃k = radw̃k
(Ẽk), 1 ≤ k ≤ m. Then w̃m < · · · < w̃1 < 0 < z̃1 < · · · < z̃n.

By DMP of chordal SLEκ and Proposition 3.1,

P[E#|Fτ , E
τ
∗ ] ≲

(
1 ∧ r̃n

|z̃n|

)α

·
n−1∏
j=1

(
1 ∧ r̃j

|z̃j| ∧ |z̃j − z̃j+1|

)α

·
(
1 ∧ s̃m

|w̃m|

)α

·
m−1∏
k=1

(
1 ∧ s̃k

|w̃k| ∧ |w̃k − w̃k+1|

)α

. (3.8)

Here we organize z̃j's and w̃k's by z̃n, . . . , z̃1, w̃m, . . . , w̃1 when applying Proposition 3.1. In

the case that m = 0, the second line disappears.

By Proposition 2.8 and conformal invariance of extremal distance,

1 ∧ r̃j
|z̃j|

≲ e−πdH((−∞,0],D̃j) = e−πdHτ (S
−
τ ,Dj), 1 ≤ j ≤ n; (3.9)

1 ∧ r̃j
|z̃j − z̃j+1|

≲ e−πdH([z̃j+1,∞),D̃j) = e−πdHτ ([zj+1,∞),Dj), 1 ≤ j ≤ n− 1; (3.10)

1 ∧ s̃k
|w̃k|

≲ e−πdH([0,+∞),Ẽk) = e−πdHτ (S
+
τ ,Ek), 1 ≤ k ≤ m; (3.11)

1 ∧ s̃k
|w̃k − w̃k+1|

≲ e−πdH((−∞,w̃k+1],Ẽk) = e−πdHτ ((−∞,wk+1],Ek), 1 ≤ k ≤ m− 1. (3.12)

Since S−
τ can be separated from Dj in Hτ by {z ∈ H : rj < |z − zj| < R − |zj|}, by

comparison principle of extremal distance,

dHτ (S
−
τ , Dj) ≥

1

π
log

(R− |zj|
rj

)
,

which combined with (3.9) and that R > 2|zj| implies that

1 ∧ r̃j
|z̃j|

≲
rj

R− |zj|
≍ rj

R
, 1 ≤ j ≤ n. (3.13)
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Figure 3.1: A �gure for the proof of Lemma 3.4. This �gure illustrates an application
of the comparison principle of extremal distance in the proof of Lemma 3.4. Here n = 3 and
m = 2. The curve γ is stopped at the time τ = τ∞R . Assume that the event Eτ

∗ occurs. To
bound the extremal distance dHτ (D2, S

−
τ ) from below for example, we use the semi-annulus

(shaded region) A2 := {z ∈ H : r2 < |z − z2| < R− |z2|} and the fact that any curve in Hτ

that connects the semi-circle ∂D2 ∩H with the left side of γ[0, τ ] or the real interval
(−∞, 0] must cross A2, i.e., contain a subpath in A2 connecting its two semi-circles. The
intersection of A2 with γ[0, τ ] does not cause a problem in the application.

See Figure 3.1. Since [zj+1,∞) can be separated from Dj in Hτ by {z ∈ H : rj < |z − zj| <

|zj+1 − zj|}, by comparison principle of extremal distance,

dHτ ([zj+1,∞), Dj) ≥
1

π
log

( |zj+1 − zj|
rj

)
,

which combined with (3.10) implies that

1 ∧ r̃j
|z̃j − z̃j+1|

≲
rj

|zj+1 − zj|
, 1 ≤ j ≤ n− 1. (3.14)

For 1 ≤ j ≤ n− 1, since R− |zj| ≥ |zj+1| − |zj| = |zj+1 − zj|, by (3.13) and (3.14),

1 ∧ r̃j
|z̃j| ∧ |z̃j − z̃j+1|

≲
rj

|zj+1 − zj|
, 1 ≤ j ≤ n− 1. (3.15)

Similarly,

1 ∧ s̃k
|w̃k|

≲
sk

R− |wk|
≍ sk

R
, 1 ≤ k ≤ m; (3.16)
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1 ∧ s̃k
|w̃k| ∧ |w̃k − w̃k+1|

≲
sk

|wk+1 − wk|
, 1 ≤ k ≤ m− 1. (3.17)

Combining (3.8) with (3.13) (for j = n), (3.15), (3.16) (for k = m) and (3.17), we get

P[E#|Fτ , E
τ
∗ ] ≲

(rn
R

)α
n−1∏
j=1

( rj
|zj − zj+1|

)α

·
(sm
R

)α
m−1∏
k=1

( sk
|wk − wk+1|

)α

≤
( |z1|

R

)α

FzFw

n∏
j=1

rαj

m∏
k=1

sαk

Here, if m = 0, the factors involving sk and sm disappear; if m ≥ 1, we used that R ≥ |w1| in

the estimate. Since F (z1, . . . , zn, w1, . . . , wm) = FzFw, taking expectation we get (3.7).

Lemma 3.5. Suppose x0, . . . , xN , N ≥ 1, are distinct points in R \ {0} that have the same

sign ν ∈ {+,−}, and j 7→ |xj| is increasing. Let xN+1 = ν ·∞. Let Rj = (|xj −xj+1| ∧ |xj −

xj−1|)/2 and rj ∈ (0, Rj), 1 ≤ j ≤ N . Let r0 ∈ (0, |x0 − x1|/2). Then

P[τxj
rj

< τx0
r0

< ∞; 1 ≤ j ≤ N ] ≲
( rN
|xN |

)α
N−1∏
k=0

( rk
|xk − xk+1|

)α

·
N∏
k=1

( rk
|xk − xk−1|

)α

(3.18)

≲
( RN

|xN |

)α( r0
|x0 − x1|

)α
N∏
k=1

( rk
Rk

)2α

≤
( r0
|x0 − x1|

)α
N∏
k=1

( rk
Rk

)2α

. (3.19)

Proof. Assume all xj's are positive by symmetry. Let P denote the RHS of (3.18) (depending

on x0, . . . , xN and r0, . . . , rN). We write τj for τ
xj
rj , 1 ≤ j ≤ N . Let S∗

N denote the set of

permutation σ of {0, 1, . . . , N} such that σ(n) = 0. For each σ ∈ S∗
N , let Eσ = {τσ(0) <

τσ(2) < · · · < τσ(N) < ∞}. Then
⋃

σ∈S∗
N
Eσ is the event in (3.18). To prove (3.18), it su�ces

to show that, for any σ ∈ S∗
N , P[Eσ] ≲ P .

Fix σ ∈ S∗
N . For 0 ≤ k ≤ N − 1, let

Eσ
k = {τσ(0) < τσ(1) < · · · < τσ(k) < τσ(k+1) ∧ τ ∗xσ(k+1)

} ∈ Fτσ(k)
;

and let Eσ
N = Eσ. Then Eσ

0 ⊃ Eσ
1 ⊃ · · · ⊃ Eσ

N = Eσ. Let

Sσ = {j : n− 1 ≥ j ≥ σ−1(n), σ(j + 1) < σ(j)}. (3.20)
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Figure 3.2: The �rst �gure for the proof of Lemma 3.5. This �gure illustrates a
situation in the proof of Lemma 3.5. Here n = 5, and the event Eσ happens, where
σ =

(
0 1 2 3 4 5
2 5 3 4 1 0

)
. We have Sσ = {1, 3, 4} since σ−1(5) = 1, σ(1) = 5 > 3 = σ(2),

σ(3) = 4 > 1 = σ(4), σ(4) = 1 > 0 = σ(5), but σ(2) = 3 < 4 = σ(3). We have Sσ
1 = ∅

because the only index between σ(2) and σ(1) is 4, and σ−1(4) = 3 > 2. We have
Sσ
3 = {2, 3} because 2, 3 lie between σ(4) and σ(3), and σ−1(2), σ−2(3) < 3. We have

Sσ
4 = ∅ because there is no index that lies between σ(5) and σ(4).

For each j ∈ Sσ, let

Sσ
j = {k : σ(j + 1) < k < σ(j), σ−1(k) < j}. (3.21)

In plain words, Sσ is the set of index j ≥ j0, where j0 := σ−1(N), such that σ(j +1) < σ(j);

and Sσ
j is the set of index k, which lies strictly between σ(j + 1) and σ(j), such that the

disc {|z − xk| ≤ rk} was visited by γ before {|z − xσ(j)| ≤ rσ(j)}. For example, j0 and N − 1

belong to Sσ. For j ∈ Sσ, the set S
σ
j may or may not be empty. See Figure 3.2.

For 0 ≤ j ≤ N − 1, let Q+
j = (

2rj
|xj−xj+1|)

α. For 1 ≤ j ≤ N , let Q−
j = (

2rj
|xj−xj−1|)

α. Let

Qn = ( rN
|xN |)

α. Then P = QN ·
∏N−1

j=1 Q+
j ·

∏N
j=2Q

−
j . By (3.6),

P[Eσ
σ−1(N)] ≤ P[τN < ∞] ≲ QN . (3.22)

We claim that, for any j ∈ Sσ,

P[Eσ
j+1|Fτσ(j)

, Eσ
j ] ≲ Q−

σ(j)Q
+
σ(j+1)

∏
k∈Sσ

j

(Q+
k Q

−
k ); (3.23)

and ∏
j∈Sσ

(
Q−

σ(j)Q
+
σ(j+1)

∏
k∈Sσ

j

(Q+
k Q

−
k )
)
≤

N−1∏
l=0

Q+
l ·

N∏
l=1

Q−
l . (3.24)
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Note that (3.22,3.23,3.24) together imply that P[Eσ] = P[Eσ
n ] ≲ P .

We �rst prove (3.24). It su�ces to show that

{0, . . . , N − 1} ⊂
⋃
j∈Sσ

({σ(j + 1)} ∪ Sσ
j ); (3.25)

{1, . . . , N} ⊂
⋃
j∈Sσ

({σ(j)} ∪ Sσ
j ). (3.26)

Let l ∈ {0, . . . , N − 1}. We consider several cases. Case 1. σ−1(l) < σ−1(N). Since

σ−1(0) = N , we have l ≥ 1. Since σ(σ−1(N)) = N > l and σ(N) = 0 < l, there exists

σ−1(N) ≤ j0 ≤ N − 1 such that σ(j0) > l > σ(j0 + 1). By (3.20,3.21) we have j0 ∈ Sσ and

l ∈ Sσ
j0
. Case 2. σ−1(l) ≥ σ−1(N). Then σ−1(l) − 1 ≥ σ−1(N) since l ̸= N . Consider two

subcases. Case 2.1. σ(σ−1(l) − 1) > σ(σ−1(l)) = l. In this subcase, j1 := σ−1(l) − 1 ∈ Sσ

by (3.20), and σ(j1 + 1) = l. Case 2.2. σ(σ−1(l) − 1) < σ(σ−1(l)) = l. Since σ(σ−1(N)) =

N > l > σ(σ−1(l)− 1) and σ−1(N) ≤ σ−1(l)− 1, there exists σ−1(N) ≤ j2 ≤ σ−1(l)− 2 such

that σ(j2) > l > σ(j2 + 1). This implies that j2 ∈ Sσ and l ∈ Sσ
j2
. Thus, in all cases, there

is some j ∈ Sσ such that l ∈ {σ(j + 1)} ∪ Sσ
j . So we get (3.25).

Let l ∈ {1, . . . , N}. We consider several cases. Case 1. σ−1(l) < σ−1(N). Then l ≤

N − 1. By Case 1 of the last paragraph, there exists j0 ∈ Sσ such that l ∈ Sσ
j0
. Case

2. σ−1(l) ≥ σ−1(N). Consider two subcases. Case 2.1. σ(σ−1(l)) > σ(σ−1(l) + 1). In

this subcase, j1 := σ−1(l) ∈ Sσ and l = σ(j1). Case 2.2. l = σ(σ−1(l)) < σ(σ−1(l) + 1).

Since σ(σ−1(l) + 1) > l > 0 = σ(N), there exists σ−1(l) + 1 ≤ j2 ≤ N − 1 such that

σ(j2) > l > σ(j2+1). This implies that j2 ∈ Sσ and l ∈ Sσ
j2
. Thus, in all cases, there is some

j ∈ Sσ such that l ∈ {σ(j)} ∪ Sσ
j . So we get (3.26). Combining (3.25,3.26) we get (3.24).

Finally, we prove (3.23). Fix j ∈ Sσ. Let τ = τσ(j). Suppose the event Eσ
j occurs. Let

w = xσ(j+1), D = {z ∈ H : |z − w| ≤ rσ(j+1)}, w̃ = Zτ (w), D̃ = Zτ (D̃), and r̃ = radw̃(D̃).

By DMP of chordal SLEκ and (3.6),

P[Eσ
j+1|Fτ , E

σ
j ] ≤ P[τσ(j+1) < ∞|Fτ , E

σ
j ] ≲

(
1 ∧ r̃

|w̃|

)α

. (3.27)
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Figure 3.3: The second �gure for the proof of Lemma 3.5. This �gure illustrates an
application of the comparison principle of extremal distance in the proof of Lemma 3.5.
Here n = 4, and the event Eσ happens, where σ =

(
0 1 2 3 4
3 4 1 2 0

)
. We stop the curve at the

time τ := τ4. Then the next semi-disc to visit is D1 = {z ∈ H : |z − x1| ≤ r1}. We know
that 1 ∈ Sσ, σ(1) = 4, σ(2) = 1, and Sσ

1 = {3}. The D1 is separated from S−
τ in Hτ by the

disjoint regions A1, A4, Ã
+
3 and Ã−

3 , among which A1 and A4 are semi-annuli, and Ã+
3 and

Ã−
3 are subsets of two semi-annuli, which have the same center x3, same inner radius r3,

but di�erent outer radii.

By Proposition 2.8 and conformal invariance of extremal distance,

1 ∧ r̃

|w̃|
≲ e−πdH((−∞,0],D̃) = e−πdHτ (S

−
τ ,D). (3.28)

De�ne semi-annuli

Aσ(j) = {z ∈ H : rσ(j) < |z − xσ(j)| < |xσ(j)−1 − xσ(j)|/2};

Aσ(j+1) = {z ∈ H : rσ(j+1) < |z − xσ(j+1)| < |xσ(j+1)+1 − xσ(j+1)|/2};

A±
k = {z ∈ H : rk < |z − xk| < |xk±1 − xk|/2}, k ∈ Sσ

j .

For each k ∈ Sσ
j , de�ne Ã±

k to be the connected component of A±
k ∩ Hτ whose boundary

contains xk ± rk. Then Aσ(j), Aσ(j+1), Ã
+
k and Ã−

k , k ∈ Sσ
j , are mutually disjoint. See Figure

3.3. Since the event Eσ
j occurs, any curve in Hτ connecting D with S−

τ must contain a

subarc crossing Aσ(j), a subarc crossing Aσ(j+1), a subarc contained in Ã+
k crossing A+

k for

each k ∈ Sσ
j , and a subarc contained in Ã−

k crossing A−
k for each k ∈ Sσ

j . By the comparison
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principle and composition rule of extremal length, we know that

dHτ (S
−
τ , D) ≥ 1

π
log

( |xσ(j) − xσ(j)−1|
2rσ(j)

)
+

1

π
log

( |xσ(j+1) − xσ(j+1)+1|
2rσ(j+1)

)
+

1

π

∑
k∈Sσ

j

log
( |xk − xk+1|

2rk

)
+

1

π

∑
k∈Sσ

j

log
( |xk − xk−1|

2rk

)
. (3.29)

Combining (3.27,3.28,3.29) we get (3.23). Then we get (3.18), which implies (3.19) because

|xk − xk±1| ≥ Rk, 1 ≤ k ≤ N , and RN = |xN − xN−1| ≤ |xN |.

Remark 3.6. By a slight modi�cation of the above proof, we can obtain the following

estimate. Let x0, . . . , xN+1, R1, . . . , RN , r0, . . . , rN be as in Lemma 3.5. Let I = [a, x0] for

some a ∈ (0, x0), and τ Ir0 = τI×[0,r0]. Then

P[τ zjrj < τ Ir0 < ∞; 1 ≤ j ≤ N ] ≲
N∏
j=1

( rj
Rj

)2α

.

To prove the estimate, we may use the same extremal length argument except that we do not

use a semi-annulus centered at x0 because such a semi-annulus may not disconnect I× [0, r0]

from other xj's in Hτ . So we have the same factor in the upper bound except for ( r0
|x1−x0|)

α.

Lemma 3.7. Let zj, 0 ≤ j ≤ n + 1, wk, 0 ≤ k ≤ m + 1, rj, 1 ≤ j ≤ n, sk, 1 ≤ k ≤ m, be

as in Lemma 3.4. Now assume n ≥ 2. Let j0 ∈ {2, . . . , n}. Let

Q =|zj0−1 − zj0|−α ·
j0−1∏
j=1

|zj − zj+1|−α · |wm|−α ·
m−1∏
k=1

(|wk| ∧ |wk − wk+1|)−α

· (|zj0| ∧ |zj0 − zj0+1|)−α ·
n∏

j=j0+1

(|zj − zj−1| ∧ |zj − zj+1|)−α.

Here when m = 0, the |wm|−α ·
∏m−1

k=1 (|wk| ∧ |wk − wk+1|)−α disappears; and when j0 = n,

the
∏n

j=j0+1(|zj − zj−1| ∧ |zj − zj+1|)−α disappears. Then we have

P[τ zj0rj0
< τ zjrj < ∞, j ∈ Nn \ {j0}; τ

zj0
rj0

< τwk
sk

< ∞, k ∈ Nm] ≲ Qrαj0 ·
n∏

j=1

rαj ·
m∏
k=1

sαk . (3.30)
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Figure 3.4: A �gure for the proof of Lemma 3.7. This �gure illustrates the event E in
Lemma 3.7. Here n = 3, m = 2, and j0 = 2. The curve γ visits the �ve semi-discs centered
at z1, z2, z3, w1, w2, among which the one centered at z2 is �rst visited (at the time τ = τ z2r2 ).
The parts of γ before τ and after τ are respectively drawn in solid and dashed lines.

Proof. By symmetry, we may assume that wm < · · · < w1 < 0 < z1 < · · · < zn. Let τ = τ
zj0
rj0

.

Let E denote the event in (3.30). See Figure 3.4. Let

Eτ
∗ = {τ < τ zjrj ∧ τ ∗zj : j ∈ Nn \ {j0}} ∈ Fτ ;

E# = {τ zjrj < ∞, j ∈ Nn \ {j0}; τwk
sk

< ∞, 1 ≤ k ≤ m}.

Then E = Eτ
∗ ∩ E#. By (3.6), P[Eτ

∗ ] ≲ (rj0/|zj0|)α.

Suppose the event Eτ
∗ occurs. Let z̃j = Zτ (zj), Dj = {z ∈ Hτ : |z − zj| ≤ rj}, D̃j =

Zτ (Dj), and r̃j = radz̃n(D̃n), 1 ≤ j ≤ n. Let w̃k = Zτ (wk), Ek = {z ∈ Hτ : |z − wk| ≤ sk},

Ẽk = Zτ (Ek), and s̃k = radw̃m(Ẽm), 1 ≤ k ≤ m. Then w̃m < · · · < w̃1 < 0 < z̃1 < · · · < z̃n.

By DMP of chordal SLEκ and Proposition 3.1 and that E = Eτ
∗ ∩ E#,

P[E|Fτ , E
τ
∗ ] ≲

j0−1∏
j=1

(
1 ∧ r̃j

|z̃j| ∧ |z̃j − z̃j+1|

)α

·
n∏

j=j0+1

(
1 ∧ r̃j

|z̃j − z̃j−1|

)α

·
(
1 ∧ s̃m

|w̃m|

)α

·
m−1∏
k=1

(
1 ∧ s̃k

|w̃k| ∧ |w̃k − w̃k+1|

)α

. (3.31)

Here when applying Proposition 3.1, we ordered the points z̃j and w̃k by

z̃j0 , . . . , z̃1, z̃j0+1, . . . , z̃n, w̃m, . . . , w̃1,
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and omit the factor (1 ∧ r̃j0
|z̃j0 |

)α, which is bounded by 1.

By Proposition 2.8 and conformal invariance of extremal length,

1 ∧ r̃j
|z̃j|

≲ e−πdH((−∞,0],D̃j) = e−πdHτ (S
−
τ ,Dj), 1 ≤ j ≤ j0 − 1; (3.32)

1 ∧ s̃k
|w̃k|

≲ e−πdH([0,+∞),Ẽk) = e−πdHτ (S
+
τ ,Ek), 1 ≤ k ≤ m; (3.33)

1 ∧ r̃j
|z̃j − z̃j+1|

≲ e−πdH([z̃j+1,∞),D̃j) = e−πdHτ ([zj+1,∞),Dj), 1 ≤ j ≤ j0 − 1; (3.34)

1 ∧ r̃j
|z̃j − z̃j−1|

≲ e−πdH((−∞,z̃j−1],D̃j) = e−πdHτ (Kτ∪(−∞,zj−1],Dj), j0 + 1 ≤ j ≤ n; (3.35)

1 ∧ s̃k
|w̃k − w̃k+1|

≲ e−πdH((−∞,w̃k+1],Ẽk) = e−πdHτ ((−∞,wk+1],Ek), 1 ≤ k ≤ m− 1. (3.36)

Since S+
τ and Em are separated by the semi-annulus {z ∈ H : sm < |z − wm| < |wm|} in

Hτ , we have dHτ (S
+
τ , Em) ≥ 1

π
log( |wm|

sm
), which together with (3.33) implies that

1 ∧ s̃m
|w̃m|

≲
sm
|wm|

. (3.37)

For 1 ≤ j ≤ j0 − 2, since Dj is separated from both S−
τ and [zj+1,∞) by the semi-annulus

{z ∈ H : rj < |z − zj| < |zj − zj+1|} in Hτ , we have

dHτ (S
−
τ , Dj), dHτ ([zj+1,+∞), Dj) ≥

1

π
log

( |zj − zj+1|
rj

)
,

which combined with (3.32,3.34) implies that

1 ∧ r̃j
|z̃j| ∧ |z̃j − z̃j+1|

=
(
1 ∧ r̃j

|z̃j|

)
∨
(
1 ∧ r̃j

|z̃j − z̃j+1|

)
≲

rj
|zj − zj+1|

. (3.38)

For j = j0 − 1, we have a better estimate. Since Dj0−1 is separated from both S−
τ and

[zj0 ,∞) by a disjoint pair of semi-annuli {z ∈ H : rj0−1 < |z − zj0−1| < |zj0−1 − zj0|/2} and

{z ∈ H : rj0 < |z − zj0| < |zj0−1 − zj0|/2}, we have

dHτ (S
−
τ , Dj0−1), dHτ ([zj0 ,+∞), Dj0−1) ≥

1

π
log

( |zj0−1 − zj0|
2rj0−1

)
+

1

π
log

( |zj0−1 − zj0|
2rj0

)
)
,

which combined with (3.32,3.34) implies that

1 ∧ r̃j0−1

|z̃j0−1| ∧ |z̃j0−1 − z̃j0|
≲

rj0−1

|zj0−1 − zj0|
· rj0
|zj0−1 − zj0|

. (3.39)
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For 1 ≤ k ≤ m− 1, since Ek is separated from S+
τ by {z ∈ H : sk < |z − wk| < |wk|} in Hτ ,

we get dHτ (S
+
τ , Ek) ≥ 1

π
log( |wk|

2sk
). Since Ek is separated from (−∞, wk+1] by {z ∈ H : sk <

|z − wk| < |wk − wk+1|} in Hτ , we get dHτ ((−∞, wk+1], Ek) ≥ 1
π
log( |wk−wk+1|

2sk
). These two

lower bounds of extremal lengths combined with (3.33,3.36) imply that

1 ∧ s̃k
|w̃k| ∧ |w̃k − w̃k+1|

≲
sk

|wk − wk+1| ∧ |wk|
. (3.40)

Suppose j0 = n. Combining (3.31,3.37-3.40), we get

P[E|Fτ , E
τ
∗ ] ≲

( rj0
|zj0−1 − zj0|

)α( sm
|wm|

)α

·
j0−1∏
j=1

( rj
|zj − zj+1|

)α

·
m−1∏
k=1

( sk
|wk − wk+1| ∧ |wk|

)α

,

which together with P[Eτ
∗ ] ≲ (rj0/|zj0 |)α and zj0+1 = ∞ implies (3.30) for j0 = n.

Now suppose 2 ≤ j0 ≤ n − 1. Let N(j0,n] = {j0 + 1, . . . , n}. For j ∈ N(j0,n], let Rj =

(|zj−zj−1|∧|zj−zj+1|)/2. For each k = (kj0+1, . . . , kn) ∈ (N∪{0})N(j0,n] , let Sk = {j ∈ N(j0,n] :

Kj ≥ 1}, and Ek denote the event that τ < ∞ and dist(zj, Kτ ) ≥ Rj, for j ∈ N(j0,n] \ Sk,

and Rje
−kj ≤ dist(zj, Kτ ) < Rje

1−kj for j ∈ Sk.

We now bound P[Ek]. If Sk = ∅, we use (3.6) to conclude that

P[Ek] ≤ P[τ zj0r0 < ∞] ≲ (rj0/|zj0|)α.

Suppose Sk ̸= ∅. We express Sk = {j1 < · · · < jN}. Let xs = zjs , 0 ≤ s ≤ N . By the

de�nition of Ek and Lemma 3.5, we have

P[Ek] ≤ P[τxs

e1−kjsRjs

< τx0
rj0

< ∞, 1 ≤ s ≤ N ]

≲
( rj0
|x1 − x0|

)α
N∏
s=1

(e1−kjsRjs

Rjs

)2α

≲
( rj0
|zj0 − zj0+1|

)α
n∏

j=j0+1

e−2αkj .

Combining the two formulas, we conclude that, for any k ∈ (N ∪ {0})N(j0,n]

P[Ek] ≲
( rj0
|zj0| ∧ |zj0 − zj0+1|

)α
n∏

j=j0+1

e−2αkj . (3.41)

Suppose for some k = (kj0+1, . . . , kn), Ek ∩ E∗ happens. We claim that

1 ∧ r̃j
|z̃j − z̃j−1|

≲
rj

Rje−kj
, j0 + 1 ≤ j ≤ n. (3.42)
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Let j ∈ N(j0,n]. First, (3.42) holds trivially if rj ≥ Rje
−kj . Suppose that rj < Rje

−kj . Then

Dj can be disconnected from Kτ and (−∞, zj−1] in Hτ by {z ∈ H : rj < |z| < Rje
−kj}. By

comparison principle of extremal distance, we have

dHτ (Kτ ∪ (−∞, zj−1], Dj) ≥
1

π
log

(Rje
−kj

rj

)
,

which together with (3.35) implies (3.42). So the claim is proved.

Combining (3.31,3.37-3.42) and that Rj = (|zj − zj−1| ∧ |zj − zj+1|)/2, we get

P[E ∩ Ek] ≲
( rj0
|zj0 − zj0−1|

)α( sm
|wm|

)α

·
m−1∏
k=1

( sk
|wk − wk+1| ∧ |wk|

)α

·
j0−1∏
j=1

( rj
|zj − zj+1|

)α

·
( rj0
|zj0| ∧ |zj0 − zj0+1|

)α
n∏

j=j0+1

(|zj − zj−1| ∧ |zj − zj+1|)−α ·
n∏

j=j0+1

e−αkj .

Summing the inequality over k ∈ (N ∪ {0})N(j0,n] , we get (3.30).

Lemma 3.8. Let n,m, j0, z0, . . . , ẑj0 , . . . , zn+1, and w0, . . . , wm+1 be as in Lemma 3.7. Here

the symbol ẑj0 means that zj0 is missing in the list. Let I be a compact real interval that lies

strictly between zj0−1 and zj0+1. Let L± = dist(zj0±1, I) > 0. Here if j0 = n, then L+ = ∞.

Let r1, . . . , r̂j0 , . . . , rn, and s1, . . . , sm be as in Lemma 3.7 except that we now require that

rj0±1 < (|zj0±1 − zj0±2| ∧ L±)/2. Let

Q =L−2α
−

j0−2∏
j=1

|zj − zj+1| · |wm|−α

m−1∏
k=1

(|wk| ∧ |wk − wk+1|)−α

· (L+ ∧ |zj0+1 − zj0+2|)−α

n∏
j=j0+2

(|zj − zj+1| ∧ |zj − zj−1|)−α.

Here when m = 0, the |wm|−α
∏m−1

k=1 (|wk| ∧ |wk −wk+1|)−α disappears; and when j0 = n, the

second line in the formula disappears. Let h ∈ (L+ ∧ L−)/2 and τ Ih = τI×[0,h]. Then

P[τ Ih < τ zjrj < ∞, j ∈ Nn \ {j0}; τ Ih < τwk
sk

< ∞, k ∈ Nm] ≲ Qhα
∏

j∈Nm\{j0}

rαj ·
m∏
k=1

sαk . (3.43)

Proof. The proof is similar to that of Lemma 3.7. The only essential di�erence is that now

we do not get an upper bound of P[τ Ih < ∞] using (3.6). By symmetry we assume that zj's
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are positive and wk's are negative. Let τ = τ Ih and zj0 = Re γ(τ). Then zj0 is Fτ -measurable,

and zj0−1 < zj0 < zj0+1.

Let E denote the event in (3.43). Then E = Eτ
∗ ∩ E#, where

Eτ
∗ := {τ < τ zjrj ∧ τ ∗zj , j ∈ Nn \ {j0}; τ < τwk

sk
∧ τ ∗wk

, 1 ≤ k ≤ m} ∈ Fτ ;

E# := {τ zjrj < ∞, j ∈ Nn \ {j0}; τwk
sk

< ∞, 1 ≤ k ≤ m}.

Suppose Eτ
∗ occurs. De�ne z̃j, Dj, D̃j, r̃j, w̃k, Ek, Ẽk, s̃k as in the previous proof. By DMP

of chordal SLEκ and Proposition 3.1, we see that (3.31) also holds here.

The estimates (3.37,3.38,3.40) still hold here by the same extremal length argument.

Estimate (3.39) should be replaced by

1 ∧ r̃j0−1

|z̃j0−1| ∧ |z̃j0−1 − z̃j0|
≲

rj0−1h

|zj0−1 − zj0|2
≤ rj0−1h

L2
−

. (3.44)

When j0 = n, combining (3.37,3.38,3.40,3.44) with (3.31), we get

P[E#|Fτ , E
τ
∗ ] ≲

(hrj0−1

L2
−

)α( sm
|wm|

)α

·
j0−2∏
j=1

( rj
|zj − zj+1|

)α

·
m−1∏
k=1

( sk
|wk − wk+1| ∧ |wk|

)α

Taking expectation, we then get (3.43) in the case j0 = n.

Suppose 2 ≤ j0 ≤ n − 1. Let Rj, j0 + 2 ≤ j ≤ n, be as in the proof of Lemma 3.7. We

rede�ne Rj0+1 = (|zj0+1 − zj0+2| ∧ L+)/2. For each k = (kj0+1, . . . , kn) ∈ (N ∪ {0})N(j0,n] , let

Ek be de�ned as in the proof of Lemma 3.7 using the Rj, j0 + 1 ≤ j ≤ n de�ned here. By

Remark 3.6,

P[Ek] ≲
n∏

j=j0+1

e−2αkj . (3.45)

This inequality holds no matter whether all kj's are zero or not. On the event Ek ∩ E∗, the

same extremal length argument shows that

1 ∧ r̃j
|z̃j − z̃j−1|

≲
rj

Rje−kj
, j0 + 1 ≤ j ≤ n. (3.46)
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Combining (3.31,3.37,3.38,3.40,3.44) with (3.45,3.46) we get

P[E ∩ Ek] ≲
(hrj0−1

L2
−

)α
j0−2∏
j=1

( rj
|zj − zj+1|

)α

·
n∏

j=j0+1

( rj
Rj

)α

·
( sm
|wm|

)α

·
m−1∏
k=1

( sk
|wk − wk+1| ∧ |wk|

)α

·
n∏

j=j0+1

e−αkj

Summing up the above inequality over k ∈ (N ∪ {0})N(j0,n] , we get (3.43) for j0 < n.

De�nition 3.9. Recall the Σn, n ∈ N, de�ned in Theorem 1.1. For z ∈ Σn and j0 ∈ Nn,

we say that zj0 is an innermost component of z if there is no k ∈ Nn \ {j0} such that zk lies

strictly between 0 and zj0 . An element z ∈ Σn may have one or two innermost components.

For z = (z1, . . . , zn) ∈ Σn, we de�ne the inner distance of z by d(z) := min{|zj − zk| : 0 ≤

j < k ≤ n}, where z0 := 0.

Lemma 3.10. Let z∗ = (z∗1 , . . . , z
∗
n) ∈ Σn. Suppose that z∗1 is an innermost component of

z∗. Then for any ε > 0, there are δ ∈ (0, d(z∗)/3] and an H-hull H (depending on z∗ and ε)

such that

� {z ∈ H : |z − z∗1 | ≤ 3δ} ⊂ H;

� dist(z∗j , H) ≥ 3δ, 2 ≤ j ≤ n; and

� if z ∈ Σn and r ∈ (0,∞)n satisfy ∥z − z∗∥∞ ≤ δ and ∥r∥∞ ≤ δ, then

P[Kτ
z1
r1

̸⊂ H; τ z1r1 < τ zjrj < ∞, 2 ≤ j ≤ n] < ε

n∏
j=1

rαj . (3.47)

Proof. For r = (r1, . . . , rn) ∈ (0,∞)n, let P (r) =
∏n

j=1 rj. Fix a chordal SLEκ curve γ in H

from 0 to ∞. For z = (z1, . . . , zn) ∈ Σn, r = (r1, . . . , rn) ∈ (0,∞)n, and S ⊂ H, let

Ez
r;S = {τ z1r1 < τ zjrj < ∞, 2 ≤ j ≤ n;Kτ

z1
r1

∩ S ̸= ∅}.

Then (3.47) can be rewritten as P[Ez
r;H\H ] < εP (r).
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By Lemma 3.4, there is a positive continuous functions F∞ on Σn such that, for any

z ∈ Σn and any r ∈ (0,∞)n,

P[Ez
r;{z∈H:|z|≥R}] ≤ F∞(z)R−αP (r), if ∥r∥∞ < d(z)/2 and R ≥ 2max{|zk|}. (3.48)

By Proposition 3.2, for any 2 ≤ k ≤ n, there are a constant β > 0 and a positive continuous

function Fk on Σn such that, for any z ∈ Σn, r ∈ (0,∞)n, and r > 0,

P[Ez
r;{z∈H:|z−zk|≤r}] ≤ Fk(z)r

βP (r), if ∥r∥∞ < d(z)/8. (3.49)

Note that, if ∥z − z∗∥∞ ≤ d(z∗)/4, then d(z) ≥ d(z∗)/2 and max{|zj|} ≤ 2max{|z∗j |}.

By (3.48,3.49) and the continuity of F∞ and Fk, 2 ≤ k ≤ n, there are R > 4max{|z∗k|} and

r ∈ (0, d(z∗)/3) such that if ∥z − z∗∥∞ ≤ d(z∗)/4, and ∥r∥∞ < d(z∗)/16, then

P[Ez
r;{z∈H:|z|≥R}∪

⋃n
k=2{z∈H:|z−zk|≤r}] <

ε

2
P [r].

We further assume that ∥z − z∗∥∞ ≤ r/2. Then {z ∈ H : |z − z∗k| ≤ r/2} ⊂ {z ∈ H :

|z − zk| ≤ r} for 2 ≤ k ≤ n, which implies by the above formula that

P[Ez
r;{z∈H:|z|≥R}∪

⋃n
k=2{z∈H:|z−z∗k|≤r/2}] <

ε

2
P [r], if ∥r∥∞ < d(z∗)/16. (3.50)

Since R > 2max{|zk|} and r < d(z∗)/3, the semi-discs {z ∈ H : |z − z∗j | ≤ r}, 1 ≤ j ≤ n,

are mutually disjoint, and are all contained in the semi-disc {z ∈ H : |z| ≤ R}.

By symmetry, we assume that z∗1 > 0. We relabel the components of z∗ by z∗j , 1 ≤ j ≤ n′,

and w∗
k, 1 ≤ k ≤ m′, where n′ ≥ 1, m′ ≥ 0, and n′+m′ = n, such that w∗

m′ < · · · < w∗
1 < 0 <

z∗1 < · · · < z∗n′ . After relabeling, the symbol z∗1 still refers to the same point. Correspondingly,

we relabel the components of every z ∈ Σn and r ∈ (0,∞)n by zj, 1 ≤ j ≤ n′, wk,

1 ≤ k ≤ m′, rj, 1 ≤ j ≤ n′, and sk, 1 ≤ k ≤ m′. It is clear that, if ∥z − z∗∥∞ < d(z∗)/2,

then wm′ < · · · < w1 < 0 < z1 < · · · < zn′ , and so z1 is an innermost component of z.

De�ne compact intervals Ij, 2 ≤ j ≤ n, and Jk, 1 ≤ k ≤ m, as follows. If n′ = 1,

we do not de�ne Ij's. If n′ ≥ 2, let In′ = [z∗n′ + r/2, R], and Ij = [z∗j + r/2, z∗j+1 − r/2],
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2 ≤ j ≤ n′ − 1. If m = 0, we do not de�ne Jk's. If m ≥ 1, let Jm′ = [−R,w∗
m′ − r/2], and

Jk = [w∗
k+1 + r/2, w∗

k − r/2], 1 ≤ k ≤ m′ − 1.

If ∥z − z∗∥∞ ≤ r/4, then the distance from every component of z to every interval Ij or

Jk is at least r/4. By Lemma 3.8, there are continuous functions FIj , 2 ≤ j ≤ n′, and FJk ,

1 ≤ k ≤ m′, de�ned on the set of z ∈ Σn with ∥z−z∗∥∞ ≤ r/4, such that, if ∥z−z∗∥∞ ≤ r/4,

∥r∥∞ < r/8, and h < r/8, then for each 2 ≤ j ≤ n′ and 1 ≤ k ≤ m′,

P[Ez
r;Ij×[0,h]] < FIj(z)h

αP (r), P[Ez
r;Jk×[0,h]] < FJk(z)h

αP (r).

Thus, there is h > 0 such that, if ∥z − z∗∥∞ ≤ r/4 and ∥r∥∞ ≤ r/8, then

P[Ez
r;Ij×[0,h]],P[E

z
r;Jk×[0,h]] <

ε

2n
P (r), 2 ≤ j ≤ n′, 1 ≤ k ≤ m′. (3.51)

Let

H = {z ∈ H : |z| ≤ R} \
n′⋃
j=2

({|z − z∗j | ≤ r} ∪ Ij × [0, h]) \
m′⋃
k=1

({|z − w∗
k| ≤ r} ∪ Jk × [0, h]).

See Figure 3.5. Then H is an H-hull, which contains {z ∈ H : |z−z∗1 | ≤ r}, and the distance

from each of z∗2 , . . . , z
∗
n′ and w∗

1, . . . , w
∗
m′ to H is at least r. Combining (3.50) and (3.51), we

get P[Ez
r;H\H ] < εP (r) if ∥z − z∗∥∞ ≤ r/4, and ∥r∥∞ ≤ r/16. So we �nd that (3.47) holds

for such H and δ := r/16.
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Figure 3.5: A �gure for the proof of Lemma 3.10. This �gure illustrates the
construction of the H-hull H in the proof of Lemma 3.10 in the case that n′ = 3 and
m′ = 2. The H-hull H (the shaded region) is obtained by removing small discs of radius r
centered at z2, z3, w1, w2 and 4 rectangles with real interval bases and height h from the big
semi-disc {z ∈ H : |z| ≤ R}.
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CHAPTER 4

PROOF OF THE MAIN THEOREM

We will �nish the proof of Theorem 1.1 in this chapter. Recall that P denotes the law of a

chordal SLEκ curve in H from 0 to ∞; and for z ∈ R \ {0} and r > 0, P∗
z denotes the law

of a two-sided chordal SLEκ curve in H from 0 to ∞ passing through z, and Pr
z denotes the

conditional law P[·|τ zr < ∞].

We will use an induction on n. By (1.7), Theorem 1.1 holds for n = 1. Let n ≥

2. We make the induction hypothesis that Theorem 1.1 holds for n − 1. For any w =

(w1, . . . , wn−1) ∈ Σn−1 (De�nition and s = (s1, . . . , sn−1) ∈ (0,∞)n−1, we de�ne

G(w, s) = P[τwj
sj

< ∞, 1 ≤ j ≤ n]. (4.1)

By the induction hypothesis, lims1,...,sn−1→0+
∏n−1

j=1 s
−α
j G(w, s) = G(w).

Given a chordal Loewner curve γ with the corresponding centered Loewner maps Zt's,

we de�ne a family of functions Gγ
t , t ≥ 0, on Σn−1 associated with γ by

Gγ
t (z2, . . . , zn) =


∏n

j=2 |Z ′
t(zj)|αG(Zt(z2), . . . , Zt(zn)), if t < τ ∗zj , 2 ≤ j ≤ n;

0, otherwise.
(4.2)

When γ is a random Loewner curve, Gγ
t are random functions. We use E∗

z1
[GTz1

(·)] to denote

the expectation of Gγ
t (·) when γ follows the law P∗

z1
, and t = Tz1 .

Following the approach in [12], we will prove that for any 1 ≤ j0 ≤ n and z =

(z1, . . . , zn) ∈ Σn, the following limit exists and is �nite:

Gj0(z) := lim
r1,...,rn→0+

n∏
j=1

r−α
j P[τ zj0rj0

< τ zkrk < ∞,∀k ∈ Nn \ {j0}]. (4.3)

It is clear that if the above limit exists and is �nite for any 1 ≤ j0 ≤ n, then the same is

true for the limit in (1.2), and we have

G(z) =
n∑

j=1

Gj(z). (4.4)

In this chapter we will prove the following theorem.
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Theorem 4.1. Given the induction hypothesis, for any 1 ≤ j0 ≤ n, the limit in (4.3)

converges uniformly on any compact subset of Σn, and the limit function Gj0 is continuous

on Σn. Moreover, we have

Gj0(z1, . . . , zn) = G(zj0)E∗
zj0

[GTzj0
(z1, . . . , ẑj0 , . . . , zn)], (4.5)

where the symbol ẑj0 means that zj0 is omitted in the list from z1 to zn.

It is clear that all statements of Theorem 1.1 in the induction step except for G ≍ F

follow from Theorem 4.1 and (4.4). When we have the existence of G on Σn, the statement

G ≍ F then follows immediately from Proposition 3.1 by sending r1, . . . , rn to 0+.

After proving Theorem 4.1, we get a local martingale related to the Green's function.

Corollary 4.2. For any �xed z = (z1, . . . , zn) ∈ Σn, the process t 7→ Gγ
t (z) associated with a

chordal SLEκ curve γ in H from 0 to ∞ is a local martingale up to τ := min{τ ∗zj , 1 ≤ j ≤ n}.

Proof. Fix z = (z1, . . . , zn) ∈ Σn and let Mt = Gγ
t (z). It su�ces to prove that for any

H-hull K, whose closure does not contain any of z1, . . . , zn, M·∧TK
is a martingale, where

TK := inf{t > 0 : γ[0, t] ̸⊂ K}. The reason is that τ is the supremum of all such TK . To

prove that M·∧TK
is a martingale, we pick a small r > 0, and consider the martingale

M
(r)
t := r−nαP[τ zjr < ∞, 1 ≤ j ≤ n|Ft].

By Theorem 4.1, DMP of chordal SLE and Koebe's distortion theorem, we have M
(r)
t → Mt

on [0, τ) as r → 0+. We claim that the convergence is uniform on [0, TK ]. To see this, we

apply Proposition 2.4 to conclude that there exist an H-hull H and a < b ∈ (0,∞) such that

(Zt(z1), . . . , Zt(zn)) ∈ H and a ≤ |Z ′
t(zj)| ≤ b, 1 ≤ j ≤ n, for any t ∈ [0, TK ]. So we get the

uniform convergence of M
(r)
t → Mt over [0, TK ] by the uniform convergence of the n-point

Green's function on the H-hull in H. So the claim is proved, which then implies that M·∧TK

is a martingale, as desired.

Remark 4.3. We may write Mt =
∏n

j=1 |g′t(zj)|αG(gt(z1)−Ut, . . . , gt(zn)−Ut). If we know

that G is C2, then using Itô's formula and Loewner's equation (2.4), one can easily get the
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following second order PDE for G:

κ

2

( n∑
j=1

∂zj

)2

G+
n∑

j=1

∂zj
2

zj
·G+ α

n∑
j=1

−2

z2j
·G = 0.

Since the PDE does not depend on the order of points, it is also satis�ed by the unordered

Green's function G.

We expect that the smoothness of G can be proved by Hörmander's theorem because the

di�erential operator in the above displayed formula satis�es Hörmander's condition.

The rest part of the thesis is devoted to the proof of Theorem 4.1. By symmetry it

su�ces to work on the case j0 = 1. We will �rst prove in Section 4.1 the existence of G1 as

well as the uniform convergence on compact subsets of Σn, and then prove in Section 4.2 the

continuity of G1.

4.1 Existence

In this section, we work on the inductive step to prove the existence of the limit in (4.3)

with j0 = 1. We now de�ne G1 on Σn using (4.5) instead of (4.3). In order to prove that the

limit in (4.3) converges uniformly on each compact subset of Σn, it su�ces to show that, for

any z∗ = (z∗1 , . . . , z
∗
n) ∈ Σn and ε > 0, there exists δ > 0 such that if z = (z1, . . . , zn) ∈ Σn

and r = (r1, . . . , rn) ∈ (0,∞)n satisfy that ∥z − z∗∥∞ < δ and ∥r∥∞ < δ, then

|
n∏

j=1

r−α
j P[τ z1r1 < τ zjrj < ∞, 2 ≤ j ≤ n]−G1(z1, . . . , zn)| < ε. (4.6)

Fix z∗ = (z∗1 , . . . , z
∗
n) ∈ Σn and ε > 0. Recall De�nition 3.9. Let d∗ = d(z∗). Let

z = (z1, . . . , zn) ∈ Σn satisfy ∥z − z∗∥∞ < d∗/2. First suppose z∗1 is not an innermost

component of z∗. Then z1 is not an innermost component of z. Then there is k0 ∈ {2, . . . , n}

such that zk0 lies strictly between 0 and z1. Under the law P∗
z1
, we have τ ∗zk0

≤ Tz1 , and so

GTz1
(z2, . . . , zn) = 0, which implies that G1(z) = 0. On the other hand, by Lemma 3.7,

lim
r1,...,rn→0+

n∏
j=1

r−α
j P[τ z1r1 < τ zkrk < ∞, 2 ≤ k ≤ n] = 0,
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and the convergence is uniform in some neighborhood of z∗. So we have (4.6) if z∗1 is not an

innermost component of z∗. From now on, we assume that z∗1 is an innermost component of

z∗. By symmetry we assume that z∗1 > 0.

Let z = (z1, . . . , zn) ∈ Σn and r = (r1, . . . , rn) ∈ (0,∞)n. Suppose ∥z − z∗∥∞ < d∗/4

and ∥r∥∞ < d∗/4. Then the discs {|z − zj| ≤ rj}, 1 ≤ j ≤ n, are mutually disjoint. Let Er

denote the event {τ z1r1 < τ
zj
rj < ∞, 2 ≤ j ≤ n}. We will transform the rescaled probability∏n

j=1 r
−α
j P[Er] into G1(z) (de�ned by (4.5)) in a number of steps. In each step we get an

error term, and have an upper bound of the error term.

We de�ne some good events depending on z. For any r > 0 and H-hull H, let Er;H denote

the event that Kτ
z1
r

⊂ H. For R > r > s ≥ 0, let Er,s;R be the event that γ[τ z1r , τ z1s ] does not

intersect the connected component of {z ∈ H : |z − z1| = R} ∩Hτ
z1
r

which has z1 +R as an

endpoint.

In the following, we useX
e
≈ Y to denote the approximation relation |X−Y | = e, and call

e the error term. Let z′ = (z2, . . . , zn), r
′ = (r2, . . . , rn), and Er′ = {τ zjrj < ∞, 2 ≤ j ≤ n}.

For some H-hull H to be determined we use the following approximation relations:

P[Er]
e∗1≈ P[Er ∩ Er1;H ] = P[τ z1r1 < ∞] · Er1

z1
[1Er1;H

P[Er′ |Fτ
z1
r1
]]

e∗2≈rα1G(z1)Er1
z1
[1Er1;H

P[Er′ |Fτ
z1
r1
]]

e∗3≈ G(z1)Er1
z1
[1Er1;H

Gτ
z1
r1
(z′)]

n∏
k=1

rαk .

We write G(r, ·) for Gτ
z1
r
. For some η2 > η1 > r1 to be determined, we further use the

following approximation relations:

G(z1)Er1
z1
[1Er1;H

G(r1, z
′)]

e4≈ G(z1)Er1
z1
[1Er1;H

∩Eη1,r1;η2
G(r1, z

′)]

e5≈G(z1)Er1
z1
[1Eη1;H

∩Eη1,r1;η2
G(r1, z

′)]
e6≈ G(z1)Er1

z1
[1Eη1;H

∩Eη1,r1;η2
G(η1, z

′)]

e7≈G(z1)Er1
z1
[1Eη1;H

G(η1, z
′)]

e8≈ G(z1)E∗
z1
[1Eη1;H

G(η1, z
′)]

e9≈G(z1)E∗
z1
[1Eη1;H

∩Eη1,0;η2
G(η1, z

′)]
e10≈ G(z1)E∗

z1
[1Eη1;H

∩Eη1,0;η2
G(0, z′)]

e11≈G(z1)E∗
z1
[1E0;H∩Eη1,0;η2

G(0, z′)]
e12≈ G(z1)E∗

z1
[1E0;H

G(0, z′)]

e13≈G(z1)E∗
z1
[G(0, z′)] = G(z).
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Let ej = e∗j/
∏n

k=1 rk, j = 1, 2, 3. Then

∣∣∣ n∏
k=1

r−α
k P[Er]−G(z)

∣∣∣ ≤ 12∑
j=1

ej. (4.7)

Let τ = τ z1r1 , Dj = {z ∈ Hτ : |z − zj| ≤ rj}, z̃j = Zτ (zj), D̃j = Zτ (Dj), r̃
+
j = radz̃j(D̃j)

and r̃−j = dist(z̃j, ∂D̃j ∩ H), 2 ≤ j ≤ n. Let z̃′ = (z̃2, . . . , z̃n) and r̃′± = (r̃±2 , . . . , r̃
±
n ). By

Koebe distortion theorem, for any 2 ≤ j ≤ n, if rj < dist(zj, Kτ ),

|Z ′
τ (zj)|rj

(1 + rj/ dist(zj, Kτ ))2
≤ r̃−j ≤ r̃+j ≤ |Z ′

τ (zj)|rj
(1− rj/ dist(zj, Kτ ))2

. (4.8)

By DMP of chordal SLE and (4.1),

G(z̃′, r̃′−) ≤ P[Er′ |Fτ , τ < τ zjrj , 2 ≤ j ≤ n] ≤ G(z̃′, r̃′+). (4.9)

Let Cκ ∈ [1,∞) be the constant in Proposition 2.10. By Lemma 3.10, there are a

nonemptyH-hullH and δH ∈ (0, d∗/3], such that {z ∈ H : |z−z∗1 | ≤ 3δH} ⊂ H, dist(zj, H) ≥

3δH , 2 ≤ j ≤ n, and whenever ∥z − z∗∥∞ ≤ δH and ∥r∥∞ ≤ δH , we have

n∏
j=1

r−α
j P[Ec

r1;H
∩ Er] <

ε

11Cκ

. (4.10)

From now on, we always assume that ∥z−z∗∥∞ < δH . ThenH ⊃ {z ∈ H : |z−z1| ≤ 2δH},

and dist(zj, H) ≥ 2δH , 2 ≤ j ≤ n. By (4.10), if ∥r∥∞ ≤ δH ,

e1 ≤
ε

11Cκ

.

Sending r2, . . . , rn to 0+ in (4.10) and using Fatou's lemma, estimates (4.8,4.9) and the

convergence of (n− 1)-point Green's function, we get

r−α
1 P[τ z1r1 < ∞] · Er1

z1
[1Ec

r1;H
G(r1, z

′)] ≤ ε

11Cκ

, if r1 ≤ δH .

By Proposition 2.10, if r1 ≤ δH ,

r−α
1 P[τ z1r1 < ∞] · E∗

z1
[1Ec

r1;H
G(r1, z

′)] ≤ ε

11
.
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Let r1 → 0+. From r−α
1 P[τ z1r1 < ∞] → G(z1), E

c
r1;H

→ Ec
0;H , G(r1, z) → G(0, z) and Fatou's

lemma, we get G(z1)E∗
z1
[1Ec

0;H
G(0, z′)] ≤ ε

11
, which implies

e13 ≤
ε

11
.

By Proposition 2.4, the set

ΩH := {(gK(z2)− u, . . . , gK(zn)− u) : K ∈ H(H), u ∈ SH , |zj − z∗j | ≤ δH , 2 ≤ j ≤ n}

is a compact subset of Σn−1, and the set

QH := {|g′K(z)| : K ∈ H(H), z ∈
n⋃

j=2

[z∗j − δH , z
∗
j + δH ]}

is a compact subset of (0,∞). Let ξH = min{|wk| : w = (w2, . . . , wn) ∈ ΩH , 2 ≤ k ≤ n} > 0.

For a ≥ 0, we write Za(z
′) for (Zτ

z1
a
(z2), . . . , Zτ

z1
a
(zn)), when all components are well de�ned.

We will use the fact that, on the event Ea;H , Za(z
′) ∈ ΩH because Zτ

z1
a

= gK
τ
z1
a

− Uτ
z1
a
,

Kτ
z1
a

⊂ H, and Uτ
z1
a

∈ SK
τ
z1
a

⊂ H by Corollary 2.6 and Proposition 2.2. Recall that we

assume that ∥z − z∗∥∞ ≤ δH . So we have

|Zτ
z1
a
(zj)| ≥ ξH , 2 ≤ j ≤ n, on the event Ea;H . (4.11)

By the continuity of (n− 1)-point Green's function and the compactness of ΩH and QH , we

see that, for any a ≥ 0, G(a, z′) is bounded by a constant depending only on κ, n, z∗, H, δH

on the event Ea;H .

By (4.8,4.9), the compactness of ΩH and QH , and Proposition 3.1, P[Er′ |Fτ
z1
r1
, Er1;H ] is

bounded by
∏n

j=2 r
α
j times some constant depending only on κ, n, z∗, H, δH . By (1.7) and

the above bound, there are β1 ∈ (0,∞) depending only on κ and CH
1 ∈ (0,∞) depending

only on κ, n, z∗, H, δH such that, if r1 < |z1|,

e2 ≤ CH
1 rβ1

1 .

Since the convergence of (n− 1)-point ordered Green's function is uniform over compact

sets, by (4.8,4.9) and the compactness of ΩH and QH , we �nd that there is δ′H ∈ (0, δH)
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depending only on κ, n,H, δH such that if ∥r∥∞ ≤ δ′H , then

e3 <
ε

11
.

Since G is continuous on Σn−1, by the compactness of ΩH and QH , G(a, z′) is bounded by

some constant depending only on κ, n, z∗, H, δH on the event Ea;H . Combining this fact for

a ∈ {r1, η1, 0} with Proposition 3.3 and the boundedness of G(z1) (over [z
∗
1 − δH , z

∗
1 + δH ]),

we �nd that there is CH
2 ∈ (0,∞) depending only on κ, n, z∗, H, δH such that

e4, e7, e9, e12 ≤ CH
2 (η1/η2)

α.

Since H ⊃ {z ∈ H : |z − z∗1 | ≥ 3δH}, if η2 ≤ 2δH , then Er1;H ∩Eη1,r1;η2 = Eη1;H ∩Eη1,r1;η2

and Eη1;H ∩ Eη1,0;η2 = E0;H ∩ Eη1,0;η2 , which implies that

e5 = e11 = 0.

Combining Proposition 2.11 with the boundedness of G(z1) and G(η1, z
′) on the event

Eη1;H , we �nd that there are β2 > 0 depending only on κ and CH
3 ∈ (0,∞) depending only

on κ, n, z∗, H, δH such that, if r1 < η1/6,

e8 ≤ CH
3 (r1/η1)

β2 .

Recall that

G(η1, z
′) =

n∏
j=2

|Z ′
τ
z1
η1
(zj)|α ·G(Zη1

(z′)), G(r1, z
′) =

n∏
j=2

|Z ′
τ
z1
r1
(zj)|α ·G(Zr1

(z′)).

Assume η2 ≤ 2δh. Then Er1;H ∩ Eη1,r1;η2 = Eη1;H ∩ Eη1,r1;η2 , and on this common event,

Zη1
(z′), Zr1

(z′) ∈ ΩH . Let K∆ = Kτ
z1
r1
/Kτ

z1
η1
. On the event Eη1,r1;η2 , by Proposition 2.9,

diam(K∆) ≤ 8η2, and by Proposition 2.7, we have

∥Zη1
(z′)− Zr1

(z′)∥∞ ≤ 56η2. (4.12)

From K∆ = Kτ
z1
r1
/Kτ

z1
η1

we know gτz1r1
= gK∆

◦ gτz1η1
. Let Z∆ = gK∆

(· + Uτ
z1
η1
) − Uτ

z1
r1
. Then

Zτ
z1
r1

= Z∆ ◦Zτ
z1
η1

and Z ′
∆(z) = g′K∆

(·+Uτ
z1
η1
). By Proposition 2.5, Uτ

z1
η1

∈ K∆. By Proposition

2.3, for z ∈ H,

|Z ′
∆(z)− 1| ≤ 5

(8η2
|z|

)2

, if |z| ≥ 40η2. (4.13)
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Let z̃j = Zτ
z1
η1
(zj), 2 ≤ j ≤ n. Then Z ′

τ
z1
r1

(zj) = Z ′
∆(z̃j) · Z ′

τ
z1
η1

(zj), and by (4.11) |z̃j| ≥

ξH on the event Eη1;H . Thus, if η2 ≤ ξH/40, then |Z ′
∆(zj) − 1| ≤ 320η22/ξ

2
H . Since

G is continuous on Σn−1, it is uniformly continuous on the compact set ΩH . By (4.12),

|G(Zη1
(z′)) − G(Zr1

(z′)| → 0 uniformly as η2 → 0+. Combining these facts with the com-

pactness of QH and the expressions of G(η1, ·) and G(r1, ·), we �nd that, there is δ′′H ∈ (0, δ′H)

depending only on κ, n, z∗, H, δH such that, if η2 ≤ δ′′H , then

e6, e10 <
ε

11
.

We now explain how to choose the H and η1, η2 in the approximation with errors from

e1 to e13. First, we choose the H-hull H and δH > 0 such that e1, e13 ≤ ε
11

if ∥z− z∗∥∞ ≤ δH

and ∥r∥∞ ≤ δH . We have the quantities CH
1 , CH

2 , CH
3 , δ′H , δ

′′
H ∈ (0,∞) depending only on

κ, n, z∗, H, δH . Assume that ∥z − z∗∥∞ ≤ δH . If ∥r∥∞ ≤ δ′H , then e3 < ε
11
. Let η2 = δ′′H .

Then we have e6, e10 < ε
11
. Since δ′′H < δH , we have η2 < δH , and so e5 = e11 = 0. Let

η1 = (ε/(11CH
2 ))1/αη2. Then e4, e7, e9, e12 ≤ ε

11
. If r1 < (ε/(11CH

1 ))1/β1 , then e2 <
ε
11
; and if

r1 < (ε/(11CH
3 ))1/β2η1, then e8 <

ε
11
. In conclusion, if ∥z − z∗∥∞ ≤ δH and

∥r∥∞ < δ′H ∧
(( ε

11CH
3

)1/β2

·
( ε

11CH
2

)1/α

· δ′′H
)
=: δ,

then e5 = e11 = 0 and all ej's are bounded by ε/11, which then imply by (4.7) that (4.6)

holds. Thus, we get the existence of the limit in (4.3) with j0 = 1 as well as the uniform

convergence on compact subsets of Σn.

4.2 Continuity

In this section, we prove the continuity of the function G1 on Σn. We adopt the notation

in the previous section. By the rescaling property and left-right symmetry of SLE, for any

c ∈ R \ {0}, z = (z1, . . . , zn) ∈ Σn, and r > 0,

P[τ z1r < τ zkr < ∞, 2 ≤ k ≤ n] = P[τ cz1|c|r < τ czk|c|r < ∞, 2 ≤ k ≤ n].

Multiplying both sides by r−nα and sending r to 0+, we get by the existence of the limit in

(4.3) thatG1(z) = |c|nαG1(cz). In particular, we haveG1(z) = |z1|−nαG1(1, z2/z1, . . . , zn/z1).
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Thus, it su�ces to prove that G1(1, ·) is continuous on Σ1
n−1, which is the set of w ∈ Σn−1

such that (1, w) ∈ Σn. De�ne Ĝ on Σ1
n−1 such that Ĝ(w) = E∗

1[GT1(w)]. Then G1(1, w) =

G(1)Ĝ(w). So it su�ces to prove that Ĝ is continuous on Σ1
n−1. From the previous section,

Ĝ vanishes on the set of w which has at least one component lying in (0, 1). Since such set

is open in Σ1
n−1, it su�ces to prove the continuity of Ĝ at other points of Σ1

n−1.

Fix w∗ = (w∗
2, . . . , w

∗
n) ∈ Σ1

n−1 such that w∗
k ̸∈ (0, 1) for any 2 ≤ k ≤ n. Let w0 = 0

and w1 = 1. Let d∗ = min{|w∗
j − w∗

k| : 0 ≤ j < k ≤ n} > 0. Let ε > 0. By the argument

of an upper bound of e13 in the previous section, there are δH ∈ (0, d∗/3) and an H-hull

H, such that {z ∈ H : |z − 1| ≤ 3δH} ⊂ H, dist(w∗
j , H) ≥ 3δH , 2 ≤ j ≤ n, and for any

w = (w2, . . . , wn) ∈ Rn−1 satisfying ∥w − w∗∥∞ ≤ δH , we have E∗
1[1Ec

0;H
GT1(w)] < ε/3,

where E0;H is the event that γ[0, T1] ⊂ H. Suppose ∥w − w∗∥∞ ≤ δH , we use the following

approximation relations for such H:

Ĝ(w) = E∗
1[GT1(w)]

e1≈ E∗
1[1EH

GT1(w)]
e2≈ E∗

1[1EH
GT1(w

∗)]
e3≈ E∗

1[GT1(w
∗)] = Ĝ(w∗).

We have known that e1, e3 < ε/3. It remains to bound e2.

We write Z(w) = (ZT1(w2), . . . , ZT1(wn)). Then GT1(w) =
∏n

j=2 Z
′
T1
(wj)

αG(Z(w)). As

w → w∗, we have G(Z(w)) → G(Z(w∗)) by the continuity of (n− 1)-point Green's function,

and Z ′
T1
(wj) → Z ′

T1
(w∗

j ), 2 ≤ j ≤ n, which together imply that GT1(w) → GT1(w
∗). We now

show that the convergence is uniform (independent of the randomness) on the event E0;H . By

the previous section, on the event E0;H , we have Z(w), Z(w
∗) ∈ ΩH , and Z ′

T1
(wj), Z

′
T1
(w∗

j ) ∈

QH , 2 ≤ j ≤ n. By the compactness of QH , on the event E0;H , the random map ZT1 is

equicontinuous (independent of the randomness) on [wj − δH , wj + δH ] for 2 ≤ j ≤ n. Thus,

as w → w∗, Z(w) → Z(w∗) uniformly on the event E0;H . Since G is uniformly continuous on

the compact set ΩH , we get G(Z(w)) → G(Z(w∗)) uniformly on the event E0;H as w → w∗.

By Koebe's distortion theorem, for 2 ≤ j ≤ n, Z ′
T1
(wj) → Z ′

T1
(w∗

j ) uniformly on the event

E0;H as w → w∗. Thus, GT1(w) → GT1(w
∗) uniformly on the event E0;H as w → w∗. In

particular, there is δ′H ∈ (0, δH) such that if ∥w−w∗∥∞ ≤ δ′H , then |GT1(w)−GT1(w
∗)| < ε/3
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on the event E0;H , which implies that e2 < ε/3. Thus, if ∥w − w∗∥∞ ≤ δ′H , then

|Ĝ(w)− Ĝ(w∗)| ≤ e1 + e2 + e3 <
ε

3
+

ε

3
+

ε

3
= ε.

So we get the desired continuity of Ĝ at w∗. The proof of the continuity of G1 on Σn is thus

complete, and so is the proof of Theorem 4.1.
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