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ABSTRACT 

HARNESSING MACHINE LEARNING TECHNIQUES FOR LARGE-SCALE MAPPING OF 
INLAND AQUACULTURE WATERBODIES IN BANGLADESH   

 
By 

Hannah Ferriby 

Aquaculture in Bangladesh has grown dramatically in an unplanned manner in the past few 

decades, becoming a major contributor to the rural economy in many parts of the country. National 

systems for the collection of statistics have been unable to keep pace with these rapid changes, and 

more accurate, up to date information is needed to inform policymakers.  Using Sentinel-2 Top of 

Atmosphere Reflectance images within Google Earth Engine and ArcGIS platforms, we proposed 

six strategies for improving fishpond detection as the existing techniques seem unreliable. The 

study area is comprised of seven districts in south-west and south-central Bangladesh. The tested 

strategies include: 1) identification of the best period for image collection, 2) testing the buffer 

size for threshold optimization, 3) determining the best combination of image reducer and water-

identifying indices, 4) introduction of a convolution filter to enhance edge-detection, 5) evaluating 

the impact of ground-truthing data on machine learning algorithm training, and 6) identifying the 

best machine learning classifier. Each enhancement builds on the previous one to develop a 

comprehensive improvement strategy called the Enhanced Method for fishpond detection. We 

compared the results of each improvement strategy to the known ground-truthing fishponds as the 

metric of success. We compared the precision, recall, and F1 score for machine learning classifiers 

to determine the quality of results. Among the studied methods, the Classification and Regression 

Trees performed the best. Overall, the proposed strategies enhanced fishpond area detection in all 

districts within the study area. 
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1 INTRODUCTION 

There is an increasing importance placed on inland aquaculture and fisheries due to a growing 

demand for fish and a stagnating production in capture fishing (Ottinger et al., 2016). Fish is a 

main source of nutrients for many people around the world and especially in Bangladesh (Heck et 

al., 2010). The increase in demand for fish is expanding aquaculture, putting pressure on croplands 

necessary to produce rice, Bangladesh's primary food source, creating a tension for space that 

needs to be addressed (Yu et al., 2018; Hashem et al., 2014). Meanwhile, there are little to no 

studies on the current production and potential of aquaculture in Bangladesh to inform 

policymakers and researchers (Shamsuzzaman et al., 2017). 

Bangladesh was the fifth-highest aquaculture-producing country in the world (Subasinghe, 

2017). However, aquaculture in Bangladesh has evolved dramatically in the last thirty years 

(Hernandez et al., 2018). A few highlights of this period include: 1) the amount of fish produced 

skyrocketed with 94% of the production for Bangladeshi consumption, 2) the farmed fish market 

expanded from 124,000 tons to 2 million tons, and 3) the number of people involved in the 

aquaculture value chain tripled, and 4)  freshwater aquaculture production increased by 167% from 

2001 to 2017, surpassing capture fishery (Hernandez et al., 2018; Sattar, 2019). Therefore, there 

is a need to better understand this evolving industry.  

There are two primary methods for determining the extent of fishponds. The first method 

utilizes ground-truthing surveys. The surveys would provide accurate information on fishponds 

throughout the region of interest, but would be costly and time-consuming (Rhodes et al., 2015). 

The alternative to ground-truthing surveys is remote sensing to identify the specific locations in 

which aquaculture occurs. Remote sensing has been used to help with aquaculture management, 
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environmental monitoring, and aquaculture extent (Anand et al., 2020,  Ottinger et al., 2016). 

Remote sensing can analyze large areas in much less time than it would take to conduct a survey. 

However, due to the complexity and variety in types of aquacultural production in Bangladesh, 

identifying a reliable technique that can be applied for large-scale studies can be challenging as 

previous studies only focused on small regions (Hashem et al., 2014, Yu et al., 2020, Huda et al., 

2010).   

This study aims to identify bodies of water throughout the region of interest in Bangladesh 

and to determine if they are being used for aquaculture using satellite imagery. This process can 

lead to creating an aquaculture identification method that does not rely on ground-truthing surveys. 

The specific objectives of this study area to: 

 Identify the best methods for locating waterbodies throughout the study region. 

 Examine the existing methods for identifying fishponds and propose new strategies to 

improve the detection techniques.  

 Evaluate the extent of aquaculture productions throughout the region of interest.  
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2 LITERATURE REVIEW 

2.1 Global Aquaculture 

2.1.1 Capture Fisheries versus Aquaculture 

 Aquaculture is comprised of breeding, rearing, and harvesting of fish and aquatic products 

within freshwater, sea water, brackish water, or inland saline water (FAO, 2020c). Aquaculture 

can be divided into three main categories: marine, brackish, and freshwater (US Department of 

Commerce, n.d.). Aquaculture systems can also be divided into different farming styles: water-

based systems (e.g., cages and pens, onshore/offshore), land-based systems (e.g., rainfed ponds, 

irrigated or flow-through systems, tanks, and raceways), recycling systems (e.g., high control 

enclosed systems), and integrated farming systems (e.g., livestock-fish, agriculture, and fish dual-

use aquaculture and irrigation ponds) (Funge-Smith, Simon; Phillips, 2001). Capture fisheries 

encompass all the aquatic animals killed, caught, trapped or collected in freshwater, brackish 

water, and/or marine water (United Nations et al., 2003).  

Due to the accessibility of aquaculture, especially inland, its continual rise in production 

makes up for the decline in the availability of capture fisheries (Ottinger et al., 2018). Aquaculture 

contributed 42% of the global fish supply in 2012 and will eclipse capture fishery production by 

2030 (Lam, 2016). Despite the global rise in production from aquaculture, a large portion of the 

fish produced and traded in low-income regions still comes from capture fisheries (Thilsted et al., 

2016). Together, these two sectors support the livelihoods of 10-12% of the world population 

(Lam, 2016). Global food security, income distribution, and ecological sustainability all rely on 

the balance between capture fisheries and aquaculture (Lam, 2016). Figure 1 shows the trends in 

global aquaculture, both marine and inland, and capture fisheries, both marine and inland.  
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Figure 1. Global production in million tons of aquaculture and capture fisheries from 2000 to 
2018 (FAO, 2020c). 

2.1.2 Aquaculture by Water Type 

 There are three main types of environments used in aquaculture: freshwater (fishponds, 

fish pens, fish cages), brackish water (fishponds in coastal areas), and marine (fish cages or 

substrates) (FAO, 1989). Most of the world’s aquaculture occurs in freshwater systems (Ross et 

al., 2013). Inland aquaculture produces nearly double what marine aquaculture does. In 2016, 

inland aquaculture produced 51.4 million tons of product, while coastal produced 28.7 million 

tons, excluding aquatic mammals, crocodiles, alligators, and aquatic plants (FAO, 2018). The gap 

in fish production between inland and coastal (marine) aquaculture has been growing significantly 

each year (FAO, 2018). It is important to note that inland fisheries are more accessible to even the 

poorest of people (FAO, 2018). 

 Taking into account all aquatic organisms, freshwater, and marine habitats contribute 

nearly the same to global aquaculture production (FAO, 2014). In 2014, freshwater aquaculture 
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produced 46.3 million tons, while marine aquaculture produced 47.4 million (FAO, 2014). Table 

1 looks at the increasing trends in all aquaculture from 2010 to 2014.  

 

Table 1. Global aquaculture production in million tons of all aquatic organisms by environment 
type from 2010 to 2018 (FAO, 2020a).   

Environment 
Year 

2010 2012 2014 2016 2018 

Freshwater 35.4 38.9 43.6 47.1 50.4 

Brackishwater 5.4 6.4 7.6 8.7 8.6 

Marine 37.1 42.8 48.4 52.4 55.6 

 

2.1.3 Global Aquaculture Market 

 Global demand for fish, crustaceans, and mollusks is rising yearly (Ottinger et al., 2018). 

Global aquaculture in 2015 produced 106 million tons, worth approximately US$163 billion 

(Subasinghe, 2017). Aquaculture’s role in global fish production increased from 13% to 45% 

between 1990 and 2015 (Ottinger et al., 2018). According to the Food and Agriculture 

Organization of the United Nations (FAO), fish and fish production products, such as aquatic 

plants, sponges, fats and oils, are the most traded food goods in the world (Subasinghe, 2017). At 

least 75% of the global fish and fishery products are entering international markets (Subasinghe, 

2017). Aquaculture products contribute a critical role in the global food system, providing 

approximately 3 billion people with a minimum of 15% of their animal protein intake (Charles et 

al., 2010). 19.3 million people were involved in aquaculture during 2016, making it a substantial 

line of employment (FAO, 2018).  

 During the period between 1961 and 2013, the growth in the global supply of fish is larger 

than the rate of population growth for the same period (Ahmed et al., 2019). Fish consumption 
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increased per capita from 9.9 kg in the 1960s to 18.9 kg in 2010 (Ottinger et al., 2016). Despite 

this massive average growth, the growth in low-income food-deficit countries (LIFDCs) was much 

smaller, from 3.5 to 7.6 kg during the same period (Subasinghe, 2017). LIFDCs make up 15 of the 

21 countries with the highest per capita inland fish production (FAO, 2018). With a rapidly 

growing world population and an annual loss of 5-7 million ha of farmland, there is a pressure on 

aquaculture to fill the gap in food production (Ahmed et al., 2019).  

 Capture fisheries around the world see stagnating production, yet with growing population 

and demand, obtaining aquatic food is a major concern for global food security (Ottinger et al., 

2016). The current largest region of aquaculture production is Asia, followed distantly by the 

Americas, Europe, and Africa (Subasinghe, 2017). Table 2 breaks up global aquaculture 

production data from 2015 to the different regions of the world.  

 

Table 2. Aquaculture production in 2015 by region (adapted from Subasinghe 2017)  

Region 
Production  

(tons)  
Percentage of 

World Production 
Africa 1,772,391 2.3% 

America 3,273,376 4.3% 
Asia 68,432,034 89.4% 

Europe 2,875,159 3.8% 
Oceania 188,066 0.2% 

  
 

2.1.4 Aquaculture and the Environment 

 While the benefits to individual livelihoods and potentially global food security are great, 

aquaculture is a cause of environmental degradation and biodiversity loss (Ottinger et al., 2017). 

The environmental harm from aquaculture is due to the use of pesticides and other chemicals, as 

well as the discharging of untreated wastewater (Ottinger et al., 2017). Sustainability certification 

programs were created to address the negative environmental impacts and potentially increase 
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efficiency, but the programs were aimed at higher-value sectors (Charles et al., 2010). If 

aquaculture’s production keeps growing at its current pace, the environmental effects could be 

detrimental (Ahmed et al., 2019).  

2.2 Aquaculture in Bangladesh 

2.2.1 Aquaculture Output in Bangladesh 

 Aquaculture in Bangladesh has shifted dramatically in the last three decades (Hernandez 

et al., 2018). A few major changes occurred during that time period: the amount of fish produced 

skyrocketed with 94% of the production for domestic consumption, the farmed fish market grew 

from 124,000 tons to almost 2 million tons, and the number of people involved in the aquaculture 

value chain tripled  (Hernandez et al., 2018).  

 Bangladesh was the fifth-highest aquaculture producing country in the world in 2015 with 

2.1 million tons and a growth rate of 5.3% from the previous year (Subasinghe, 2017). Inland 

waters in Bangladesh alone produced over 1 million tons in 2015 (FAO, 2018). Aquaculture 

produced 55% of the country’s fish production in 2014 (Jahan et al., 2015). Freshwater aquaculture 

production increased by 167% from 2001 to 2017; surpassing capture fishery as the main source 

of fish in Bangladesh (Sattar, 2019). Figure 2 shows the change in aquaculture production in 

freshwater and brackishwater from 1980 to 2018.  
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Figure 2. Aquaculture production in Bangladesh by environment type from 1980 to 2018 (FAO, 

2020b) 

Fish makes up two-thirds of the animal protein consumed and one-quarter of the 

agricultural gross domestic product (GDP) of Bangladesh (Sattar, 2019). Approximately 12 

million people are connected with fisheries in Bangladesh, of which 1.4 million people are purely 

involved in fishery work (Shah, 2003).  

2.2.2 Aquaculture Types and Technologies 

 There are two types of aquaculture in Bangladesh: freshwater and coastal, with inland pond 

culture being the mainstay (Islam et al., 2019). Bangladesh has 4 million ha of inland open 

waterbodies (rivers, lakes, ponds) and 0.7 million ha of closed waterbodies (man-made ponds) 

(Sattar, 2019). Pond farming in Bangladesh produces carp, cichlids, and catfish, which contributes 

80% of the total recorded aquaculture in the country (Islam et al., 2019). Coastal aquaculture in 

Bangladesh is comprised of mostly shrimp and prawn farming in ghers (Islam et al., 2019).  
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 Integrating fishponds with crops have many advantages including increased 

diversification, intensification, improved natural resource efficiency, increased productivity, and 

increased sustainability (Karim & Little, 2018). That is why, pond aquaculture has experienced 

the fastest growth in Bangladesh (Rashid et al., 2019). There are approximately 1.3 million 

fishponds in Bangladesh, covering 0.151 million ha (FAO, 2020b). Of the 0.151 million ha, 55% 

is cultured, 29% is culturable, and 16% is unused (FAO, 2020b). Most of the waterbodies used for 

aquaculture are operated by a single individual and contain water year-round (Jahan et al., 2015). 

There are different waterbody types used in Bangladesh: homestead pond, gher, commercial pond, 

beel, and rice-fish plot (Jahan et al., 2015). The descriptions of these waterbodies are presented in 

Table 3. For simplification, all types of aquaculture waterbodies will be referred to as fishponds.  
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Table 3. Descriptions of the five different types of waterbodies used in aquaculture in Bangladesh, 
adapted from (Jahan et al., 2015). 

Aquaculture Waterbody Type Definition 

 

Homestead Pond 

A pond located near a homestead that is used for numerous 
domestic purposes. These are usually small in size. 

 

 

Gher 

A type of rice field in southern Bangladesh that is deepened 
to hold fish and/or crustaceans. The excess soil is used to 
created dykes around the pond that can also be used to grow 
crops. Rice is not necessarily grown concurrently with the 
fish.  

 

Commercial Pond A pond dedicated to the year-round production of fish. Most 
of the fish grown are sold.  

 

 

Beel 

These are formed in low-lying lands after floodwaters have 
recessed or after heavy rains. These ponds are large and can 
be made suitable for fish by enclosing it with dykes.   

 

 

Rice-Fish Plot 

A type of rice field in northern Bangladesh that is deepened to 
hold fish. The excess soil is used to create dykes to prevent 
fish from escaping. Rice is grown with fish or in consecutive 
seasons.  

 

2.3 Introduction to Remote Sensing 

Remote sensing is the acquisition and measurement of data on specific properties of 

phenomena, objects, or materials through the use of a recording device not in physical contact with 

what is being observed (Khorram et al., 2012). Remote sensing if often grouped with image 

processing (IP), geographic information systems (GIS), and Global Positioning System (GPS) to 

create geospatial science (Khorram et al., 2016). Remote sensing, in an environmental context, 



11 
 

involves sensors recording electromagnetic (EM) energy that emanates from the areas or objects 

being observed on Earth (Khorram et al., 2012). Remote sensing uses wavelengths along the 

electromagnetic spectrum to view targets. Remote sensing can be small-scale, individual projects 

looking only at one small section, to large-scale, remote sensing via planes or space-borne sensors. 

In the following sections, we will discuss the different EM spectrum sections that sensors use, 

different types of sensors, and the types of resolutions used to describe sensors.  

Space-borne sensors are broken up into three groups; visible, infrared, and microwave 

(JianCheng et al., 2012). Remote sensing in the visible wavelength range is commonly used for 

aerial photographs (Natural Resources Canada, 2015). Infrared remote sensing detects infrared 

radiation in the form of heat (CRISP & National University of Singapore, 2001). Microwave 

remote sensing relies on the different physical parameters that govern the microwave range to 

obtain new, useful data on targets (Woodhouse, 2017). All three are discussed further in sections 

1.4.1 to 1.4.3. Table 4 provides examples of active satellites and their sensor types.   
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Table 4. List of active space-borne platforms and their sensor types. 

Satellite Name Sensor Type(s) 

GeoEye-1 Optical - Panchromatic and multispectral 
imaging (1.5.2) (UCSB, 2020) 

WorldView-1 Optical - Panchromatic and multispectral 
imaging (1.5.2) (ESA, 2020d) 

ALOS-2 Radar - SAR (1.5.1) (JAXA, 2020) 

Landsat-8 Optical - Thermal infrared sensor, radiometer for 
imaging (USGS, 2020) 

CBERS-4 Optical - Panchromatic, multispectral imaging 
(both visual and infrared) (ESA, 2020a)  

Sentinel-1A/1B Radar - SAR (1.5.1) (ESA, 2020b) 

Terra Optical - Radiometer, spectroradiometer (NASA, 
2020c) 

 

There are two different modes of sensing: passive and active. Passive sensors measure the 

energy that is naturally available, while active sensors provide a source of energy for illumination 

of the target to be investigated (Natural Resources Canada, 2015). Lists of different passive and 

active sensors are in Table 5.  
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Table 5. List of different passive and active sensors (NASA EarthData, 2020). 

Type of Sensor Specific Sensor Description 

Active 

Laser altimeter Measures altitude from Earth’s surface using lidar 
 

Lidar Calculates distance by timing laser pulses to reflected 
light from pulses 
 

Radar Calculates distance by timing backscattered radiation 
from microwave radiation emissions 
 

Ranging Instrument Measures distance between sensor and target 
 

Scatterometer Uses radar to determine surface wind speed and 
direction 
 

Sounder Measures vertical distributions of atmospheric 
conditions (precipitation, temperature, humidity, cloud 
composition) 
 

Passive 

Accelerometer Measures acceleration (translational or angular) 
 

Hyperspectral 
Radiometer 

Detects narrow spectral bands in visible, near-infrared, 
and mid-infrared sections of electromagnetic spectrum 
 

Imaging Radiometer Provides two-dimensional array of pixels 
 

Radiometer Measures intensity of electromagnetic radiation in 
some bands within the spectrum 
 

Sounder Measures vertical distributions of atmospheric 
conditions (temperature, pressure, and composition) 
 

Spectrometer Measures and analyzes incident electromagnetic 
radiation  
 

Spectroradiometer Intensity of radiation in multiple wavelength bands 
 

 The data from remote sensing can be described by four types of resolution: spatial, spectral, 

temporal, and radiometric. Spatial resolution refers to the ground area captured by a single pixel 

in an image. Spectral resolution refers to a sensor’s ability to store and detect different wavelengths 

and is represented by the width of wavelength interval or number of spectral channels. The 

temporal resolution is the amount of time for a sensor to revisit the same geographic location. 
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Lastly, the radiometric resolution is the sensor sensitivity to brightness (Khorram et al., 2012). 

Table 6 lists examples of different active satellites with their spatial and temporal resolutions.  

Table 6. Examples of active satellites and their respective spatial resolution and sensor(s) 
(Ottinger et al., 2016). 

Satellite 
Name 

Spatial Resolution 
(m) 

Temporal Resolution 
(day) 

GeoEye-1 0.41 – 1.65  2.1 – 8.3  

WorldView-1 0.5 – 1.8  3.7  

ALOS-2 1 – 100   14  

Landsat-8 15 – 30   16  

CBERS-4 20 – 64  5  

Sentinel-1A/1B 5 – 80   12  

Terra 15 – 90  16  

 

2.4 Space-borne Sensors 

2.4.1 Visible Light Remote Sensing 

 Remote sensing using the visible light range in the EM spectrum mainly refers to satellite 

imagery. This is the simplest and oldest remote sensing technique. Images taken in the visible light 

range are variants of blue, green, and red light – just as human eyes do. Visible light images show 

the target the same way our eyes would (Natural Resources Canada, 2015). Objects that appear 

“whiter” have high albedo, meaning it reflects more radiation than “darker” objects (NSIDC, 

2020). Cloud cover and daytime hours can impact what the sensor is able to detect. Disaster 
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management, weather forecasting, urban planning, archeology, and environmental assessment are 

all examples of applications of satellite imagery (PBS, 2007).  

2.4.2 Infrared Remote Sensing 

 The infrared region of the EM spectrum covers from 0.7 µm to 100 µm, making the range 

100 times larger than the visible portion. Infrared can be broken up into two different categories: 

reflected infrared and thermal or emitted infrared. The reflected infrared is used for remote sensing 

in ways very similar to the visible section. Reflected infrared covers 0.7 µm to 3.0 µm. Thermal 

infrared is essentially the radiation that is emitted from the target, or the Earth’s surface (Natural 

Resources Canada, 2015). The wavelength emitted depends on its temperature (CRISP & National 

University of Singapore, 2001). Clouds also emit and reflect infrared radiation, preventing 

satellites from obtaining data from the surface of the Earth (NSIDC, 2020).  

2.4.3 Microwave Remote Sensing 

 Microwave interactions are typically governed by different physical parameters than other 

wavelengths along the EM spectrum (Woodhouse, 2017). They range from 1mm to 1 m in length 

(Gade & Stoffelen, 2019). Microwave sensing can see through obstructive weather conditions 

(Ellowitz, 1992) and pass through the top layer of soil (Woodhouse, 2017) in a way that other 

wavelengths cannot due to their length. Thermal emission can also be observed by passive 

microwave sensors, meaning that they do not rely on background sources like the Sun 

(Woodhouse, 2017). Microwave sensors are very responsive to different forms of water. They are 

able to make observations on soil moisture, vegetation water content, and snow cover (JianCheng 

et al., 2012). Table 7 shows the different bands of microwave sensing that are used and their 

respective characteristics. When discussing microwave sensing, the band is used to describe the 

wave attributes.  
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Table 7. Frequently used microwave wavelength bands, frequency bands, and their common 
names (Gade & Stoffelen, 2019).  

Band Wavelength band (cm) Frequency band (GHz) 

L 15.0 - 30.0 1.0 - 2.0 

S 7.5 - 15.0 2.0 - 4.0 

C 3.8 - 7.5 4.0 - 8.0 

X 2.5 - 3.8 8.0 - 12.0 

Ku 1.6 - 2.5 12.0 - 18.5 

K 1.3 - 1.6 18.5 - 24.0 

Ka 0.8 - 1.3 24.0 - 40.0 

V 0.4 - 0.8 40.0 - 75.0 

W 0.3 - 0.4 75.0 - 110.0 

Common microwave sensors include radiometers (passive), altimeters, scatterometers, and 

synthetic aperture radar (SAR) (active). A few examples of satellites with microwave sensors 

include TerraSAR-X, ALOS/PALSAR, RADARSAT-2, and COSMO-SkyMed (JianCheng et al., 

2012).  

There are also disadvantages to microwave sensing, such as long antennas are needed to 

obtain spatial resolutions appropriate for large areas due to long microwave wavelengths 

(Woodhouse, 2017). Active microwave setups, such as SAR, tend to be the heaviest, largest, and 

most power-consuming Earth-observing satellites (Woodhouse, 2017).  

2.5 Remote Sensing for Aquaculture 

 Remote sensing has the potential to provide data for aquaculture management, including 

site selection, mapping (Anand et al., 2020), environmental monitoring, and aquaculture inventory 

(Ottinger et al., 2016). The first step to the outcomes above is using data from remote sensing to 

locate under-utilized waterbodies to promote aquaculture production (Anand et al., 2020). 
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Generally, three types of products are used for aquaculture structures detection: SAR imagery, 

medium-resolution multispectral imagery, and high- and very-high-resolution multispectral and 

panchromatic imagery (Ottinger et al., 2016). 

 There is a wide range of space-borne sensors and instruments that can be used for 

aquaculture observation. GeoEye-1 is the satellite with the lowest spatial resolution at 0.41 – 1.65 

m, followed by WorldView-1 and WorldView-2/3, which each have 0.5 and 1.8 m range, 

respectively. Some satellites, such as ALOS, Envisat, and ERS-1/2, would work for aquaculture 

observation, but lack the appropriate spatial resolution needed for small-scale details. These 

satellites have spatial resolutions of 30 – 1000 m (Ottinger et al., 2016).  

2.5.1 Synthetic Aperture Radar  

 SAR is a technique for creating fine-resolution images from a radar system (NASA, 

2020a). The term “synthetic” refers to the processing method of backscattered waves to improve 

the azimuthal resolution, which allows for smaller spatial resolutions (Woodhouse, 2017). The 

wavelength range for SAR is from a few to tens of centimeters (NASA, 2020a). The resolution of 

an imaging radar depends heavily on the antenna length; longer antennas provide finer resolution. 

This creates issues when using SAR on a satellite because an antenna would need to be kilometers 

long. To address this, the radar’s real aperture is synthetically enhanced by using the Doppler shift 

of the backscattered signal (Gade & Stoffelen, 2019). As the SAR moves along its path, it sweeps 

the antenna’s calculated length across the ground while continuously transmitting pulses and 

receiving the backscattered signal (NASA, 2020a). 

Both Figure 3 and Figure 4 depict the Doppler shift but as two different representations. 

At point “A” in Figure 3, the backscattered signal causes a positive Doppler shift at “a”, a zero 

Doppler shift at “b”, and a negative Doppler shift at “c”. This phenomenon can be referred to as 
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the Doppler History, which the end result of is a much longer aperture (Gade & Stoffelen, 2019). 

SAR systems use pulse compression, a technique where the echo of a pulse is matched with its 

original signal creating a shortened pulse of higher energy (Gade & Stoffelen, 2019). The graphical 

representation of this can be seen in Figure 4. Equation (1 shows how to calculate the beam size 

on the ground/target (NASA, 2020b): 

Distance to Target ×
Wavelength

Antenna Dimension
= Beam Width at Target (1)  

 

Figure 3. Illustration of the SAR Doppler technique (adapted from Gade & Stoffelen, 2019)). 
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Figure 4. SAR backscattered Doppler shift (adapted from Gade & Stoffelen, 2019)). 

 Spaceborne SAR systems will typically have a wavelength in the C or X bands. A SAR 

system sends either horizontally (H) or vertically (V) polarized pulses. They then receive either H 

or V polarized return signals. SAR systems are characterized by how they send and receive signals. 

For example, a SAR system that sends horizontally polarized signals and receives horizontally 

polarized signals would be named HH (Travaglia et al., 2004). There are three SAR acquisition 

modes: Stripmap, ScanSAR, and Spotlight (Gade & Stoffelen, 2019). Stripmap is the classic 

acquisition mode in which the radar stays at a constant angle. ScanSAR mode involves multiple 

parallel swaths being scanned by the radar, resulting in one wide swath. Lastly, spotlight mode 

continuously changes the direction of the radar so that a single spot on Earth’s surface is imaged 

for a longer time (Gade & Stoffelen, 2019).  

 The unique SAR system does have some complications. SAR images are impacted by 

noise, or speckling, created by constructive and destructive interference between the backscattered 

energy. This causes the value of the pixel to either increase or decrease, creating random bright 

and dark spots. It can be useful to apply speckle reducing procedures to better SAR images 

(Travaglia et al., 2004). 
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2.5.2 Multispectral and Panchromatic Imagery 

 Panchromatic images are taken using the UV (100 nm – 400 nm) and visible portions (400 

nm – 700 nm) of the EM spectrum (Natural Resources Canada, 2015). The resulting images are in 

black-and-white (Khorram et al., 2012). Multispectral imaging involves simultaneously imaging 

in multiple wavelength bands to analyze targets (Coffey, 2012). A multispectral system normally 

provides a mixture of visible, near infrared (NIRS), short-wave infrared (SWIR), mid-wave 

infrared (MWIER), and/or long-wave infrared (LWIR) bands (Coffey, 2012). Multispectral 

imaging can be thought of as layers of panchromatic images, where each layer corresponds to a 

specific portion of the EM spectrum (Khorram et al., 2012). A benefit of multispectral imagery is 

much less subjective than aerial photography due to the higher information content (Chu, 2020).  

2.6 Remote Sensing Water Indices for Small Waterbody Location 

 Inland waterbodies play a major role in contributing both food and livelihood security in 

rural areas (Anand et al., 2020). Small waterbodies include ponds, small lakes, low-order streams, 

ditches, and springs, but it is an ambiguous term, nonetheless. Ponds are standing waters varying 

from 2 to 5 ha in area and can be permanent or seasonal. Small lakes constitute standing water 

greater than 5 ha, but smaller than 100 ha (Biggs et al., 2017). There is no agreed-upon definition 

for a small stream, but the width of a small stream could vary from <3 to 6 m. Ditches are man-

made channels which typically (a) are horizontal, (b) have linear boundaries and often turn at right 

angles, and (c) show little influence of the natural landscape contours. Lastly, springs are fixed 

places where groundwater emerges to the surface (Biggs et al., 2017).  

 In order to discover impacts of the number and extent of ponds on climate variability, Al 

Sayah et al. (2020) researched the French Claise watershed. The study used LANDSAT images, 

varying in time, to derive a Normalized Difference Water Index (NDWI). An NDWI map is used 
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to find and delineate water surfaces on the visible green light and near-infrared radiations. NDWI 

maps are widespread and have been used in applications as fine as mapping swimming pools. The 

NDWI map that was created had an accuracy of 85.74% for pond count and 75% accuracy for 

pond spatial allocation. In addition to the NDWI, the land surface temperature (LST) index was 

extracted from each LANDSAT map to show how pond numbers impacted the climate of the 

region. An LST index can be used to study the temperature measured on Earth’s surface and is 

known for being one of the most suitable accurate indicators for studying climatic variabilities. 

The study reached the conclusion that pond-less zones had higher average temperatures than zones 

with ponds.  

In addition to NDWI, the Automated Water Extraction Index (AWEI), Modified 

Normalized Difference Water Index (MNDWI), and Water Ratio Index (WRI) (Zeng et al., 2019) 

are also widely used indices for detecting waterbodies. Each of these indices is a way of extracting 

or pinpointing water in a target area. Each index requires different bands of the EM spectrum. The 

AWEI is an index formulated to effectively eliminate all non-water pixels in an image and improve 

the accuracy by removing shadow pixels (Feyisa et al., 2014). The MNDWI is advantageous in 

using to reduce and potentially remove built-up land noise as well as pinpoint water. Because of 

this, it is suitable for extracting water in an area with a background dominated by built-up land 

areas (Xu, 2006). The WRI was created to compensate for water’s high reflectance in green and 

red bands compared to NIR and medium infrared (Gautam et al., 2015).  

 Anand et al. (2020) used high-resolution Cartosat 1 PAN and IRS ResourceSAT LISS IV 

merged imagery as well as Sentinel 2 Multi-Spectral Imagery to determine the Spatio-temporal 

water spread and effective water spread area for aquaculture in Chhattisgarh, India. The study used 

data from the years 2016 to 2018. The ortho-corrected images provided radiometric measurements 
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in top of atmosphere (TOA) reflectance. The study used an NDWI to create a Water Surface Area 

(WSA) map from each individual image. Equation (2) shows how the green (XGreen) and NIR (XNRI) 

bands of the Sentinel 2A/2B MSI images are used to create the NDWI (McFeeters, 1995, Gautam 

et al., 2015). Green and NIR were chosen because of how they highlight the difference between 

water and land. Aquatic vegetation within a waterbody is differentiated from water. This also can 

happen in silty waters.   

NDWI =  
𝑋ୋ୰ୣୣ୬ − 𝑋୍ୖ

𝑋ୋ୰ୣୣ୬ + 𝑋୍ୖ
 

 (2) 

To aggregate the NDWI water bitmaps, the study used Water Presence Frequency (WPF). 

The WPF is represented in Equation (3) where WPFj is WFP of jth pixels in a time period; Ij is jth 

pixel having water in the selected NDWI images; n is the number of images (Anand et al., 2020). 

The WPF values range from 0 to 100%, where below 66% WPF concluded dry bed area and over 

66% concluded water.  

WPF୨ =
∑ 𝐼୨

୬
୧ୀଵ

𝑛
∗ 100 

 (3) 

The satellite data (e.g., Cartostat 1 PAN, IRS ResourceSAT LISS IV, and Sentinel-2 MSI) 

provided an approach for establishing the number of small waterbodies required for a certain 

production potential in standard production conditions. The study first created a waterbody 

boundary layer vector file, chose the appropriate time interval (in this case June to September due 

to monsoons), then extracted the surface water using NDWI and WPF before generating a 

composite seasonal water surface area map. To obtain accuracy, the study used field verification. 

Chhattisgarh is a landlocked state in central India which has large numbers of waterbodies. The 

study mapped over 120,000 waterbodies, creating a total area of 202,000 ha. Of the waterbodies 
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mapped, 97% had an area less than 5 ha. The study concluded that the methods used could be 

replicated in other areas with poor in-situ data.  

 SAR data is beneficial in addition to other forms of remote sensing  (David Ballester-

Berman et al. 2018). The Travaglia et al. (2004) study used SAR data because of its all-weather 

capabilities and because the backscatter allows for identification and separation of features. The 

aim of the study was to map and inventory coastal aquaculture and fisheries in Lingayen Gulf, the 

Philippines, using data from ERS-2 and RADARSAT-1. The ERS-2 satellite has a quasi-polar 

orbit, meaning that the descending orbit is approximately opposite to the ascending orbit. The 

angle between the scanning directions of two ERS SAR images is 152.7 degrees. Rough water 

conditions cause the mean backscattering coefficient of fishponds to increase on C-band images 

acquired in VV polarization than in HH. The ERS SAR has VV polarization while the 

RADARSAT SAR has HH. Using both SAR systems, a more accurate image is created. An 

analysis of the two images identifies all features in the target area. The results of the SAR imaging 

were compared to a database of topographic maps to define the accuracy of the study. The 

comparison concluded the study had an accuracy of 95% for identifying fishponds. 

 Platforms like Google Earth Engine (GEE) make mapping aquaculture ponds on a national 

scale much more efficient (Duan, Li, Zhang, Chen, et al., 2020). Duan et al. (2020) integrated 

spectral, spatial characteristics and morphological operations to create a decision tree classifier. 

The decision tree was used to extract the aquaculture pond regions along the Chinese coastal zone 

with an accuracy of 96%. The data came from the Landsat 8 Surface Reflectance Tier 1 dataset 

from GEE. The decision tree classifier has five steps: creating boundaries of potential aquaculture 

pond regions, extraction of waterbodies, extraction of intensive ponds, extraction of extensive 

ponds, and post-processing. Understanding the typical environment for ponds, e.g., low-lying 
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planes of coastal areas, helps determine where potential aquaculture pond regions are. The AWEI 

distinguished between non-water and water range the low-lying coastal zones, extracting the large 

waterbodies (ocean, lakes, rivers, extensive ponds). Equation (4 shows how the AWEI is 

determined, where ρ represents the reflectance value of spectral bands of Landsat 8: band 3 (green), 

band 5 (NIR), band 6 (SWIR 1), and band 7 (SWIR 2) (Feyisa et al., 2014, Wicaksono & 

Wicaksono, 2019).  

AWEI୬sh = 4 ∗ (𝜌ୠୟ୬ୢଷ − 𝜌ୠୟ୬ୢ) − (0.25 ∗ 𝜌ୠୟ୬ୢହ + 2.75 ∗ 𝜌ୠୟ୬ୢ) (4) 

Feyisa et al. (2014) introduced an additional Equation (5 to the AWEI that removes shadow pixels 

that were not removed in the previous equation where band 1 refers to the blue section of the EM 

spectrum.  

AWEIsh = 𝜌ୠୟ୬ୢଵ + 2.5 ∗ 𝜌ୠୟ୬ୢଶ − 1.5 ∗ (𝜌ୠୟ୬ୢସ + 𝜌ୠୟ୬ୢହ) − 0.25 ∗ 𝜌ୠୟ୬ୢ  

 

(5) 

 To extract intensive aquaculture ponds and small waterbodies from what was identified by 

the AWEI, Duan et al. (2020) used an MNDWI proposed by Xu (2006). The MNDWI is shown in 

Equation (6, where the middle infrared (MIR) band replaces the NIR band.  

MNDWI =  
𝑋ୋ୰ୣୣ୬ − 𝑋୍ୖ

𝑋ୋ୰ୣୣ୬ + 𝑋୍ୖ
 

(6)  

 The MNDWI produces three results: water will have greater positive values than what the 

NDWI results in as it absorbs more MIR light than NIR, built-up land will have negative values, 

and vegetation and soil will have negative values as soil reflects MIR light more than NIR (Xu, 

2006).  

 The WRI depends on the spectral reflectance of the green, red, NIR, and MIR bands. 

Equation (7 shows the WRI equation (Mohsen et al., 2018). A WRI value greater than 1 represents 

water.  
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WRI =  
𝑋ୋ୰ୣୣ୬ + 𝑋ோௗ

𝑋ேூோ + 𝑋୍ୖ
 

 (7)  

 Mohsen et al. (2018) used a combination of the NDWI and WRI to extract water features 

from satellite images of Lake Burullus in Egypt. WRI requires the MIR band, a band that many 

satellites do not measure (Mukherjee & Samuel, 2016). The Mohsen et al. (2018) study did not 

report the accuracy of the methods but instead conducted a statistical analysis using the Mann-

Kendall test on whether Lake Burullus was decreasing in size from the year 1972 to 2015. Using 

the water data from the WRI and NDWI, Mohsen et al. (2018) concluded that the lake had lost 

approximately half of its surface area in the given time frame.  

 While each index mentioned does extract water data from a target area, they are not all the 

same. Choosing which index or indices to use depends on a few factors, including, but not limited 

to, what data is available, the topography of the target area, and the objective of the study. Each 

index requires different bands in the EM spectrum. If that data is not available for the specific 

target area, then a different index must be used. The AWEI is useful in areas where steep 

topographic changes can create shadows in the images but may not be needed in flat areas. The 

MNDWI is useful for eliminating noise in an image. Many studies either used the indices in tandem 

to create the best image or used multiple indices separately to compare the results of each.  

2.7 Remote Sensing Aquaculture Applications 

2.7.1 SAR Applications 

 Prasad et al. (2019) used SAR data from Sentinel-1 satellite to assess the coastal 

aquaculture in India from September 2014 to June 2017. The SAR instrument on Sentinel-1 

operates at a C-band frequency of 5.5 GHz. The study used all available VH polarized SAR data 

in the interferometric wide-swath (IW) mode and the ground range detected high-resolution 
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(GRDH) format. In the IW mode, three sub-swaths were captured using terrain observation with 

progressive scans SAR (TOPSAR). TOPSAR is a form of ScanSAR imaging where the antenna 

beam is switched cyclically between multiple adjacent sub-swaths to obtain data (ESA, 2020c). 

This Sentinel SAR method resulted in a swath width of 250 km and 5 m by 20 m spatial resolution.  

 Prasad et al. (2019) methods can be explained in five steps: preprocessing, calculation of a 

temporal median layer, topographic masking, segmentation, and spatial analysis. All data was 

obtained from the free and open-source Sentinel Application Platform (SNAP). Preprocessing 

involved removing thermal noise, converting intensity values, and correcting terrain distortions. 

The temporal median layer was calculated in the VH polarization at the pixel level. VH 

polarization was used because it is slightly better for differentiating land and water areas because 

of its more pronounced bimodal distribution of backscatter values. The temporal median layer was 

averaged over time, greatly diminishing speckle noise. Aquaculture and rice fields can be 

differentiated despite often having the same features because the aquaculture ponds will appear 

much darker in the temporal median layer because of their year-round water presence. The 

topographic masking excluded mountain areas and rough terrain since aquaculture typically occurs 

in flat environments. The target area was then broken into 11 approximately equal sub-regions for 

segmentation, then the Euclidian intensity pixel distance criterion was applied to see if two pixels 

belonged to the same segment. The final step involved using object-based image filtering with 

aquaculture pond characteristics inputs to identify ponds. After validating the results with 

reference datasets, the methods led to an accuracy of 97% for identifying aquaculture ponds.  

 Ottinger et al. (2017) used similar methods when using high-resolution Sentinel-1 SAR 

data to identify and map aquaculture ponds in China and Vietnam from September 2014 to 

September 2016. The target areas, more specifically, were the Mekong Delta, Red River Delta, 
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Pearl River Delta, and Yellow River Delta. High spatial resolution is needed for detecting certain 

pond features like embankments, levees, or dikes. The study also used Sentinel-1, but instead of 

data from both Sentinel-1A and -1B, Ottinger used Sentinel-1A dual-polarized (VV and VH) data 

in IW and Ground Range Detected High Resolution (GRDH). Sentinel-1B was not used because 

it finished its commissioning phase in September 2016. After in situ observations, more than 3000 

aquaculture ponds were identified in the target areas. These would be used to calculate accuracy 

of the computer identified ponds. Only ponds within 20 km of the shoreline were selected for 

sampling.  

 The data for the Ottinger et al. (2017) study was also obtained from SNAP. The 

preprocessing included removal of thermal processing. After this, a radiometric calibration was 

performed, and then a terrain correction applied. Since many aquaculture ponds are enclosed, they 

have a very low backscatter value and distinct characteristics. To reduce speckling, the pixel-wise 

median was calculated, a process of comparing pixels to their surrounding pixels to remove 

outliers. Similarly to the previously discussed study, Ottinger et al. (2017) also calculated a 

temporal median image, terrain masking, and segmentation. However, unlike Prasad et al. (2019) 

Ottinger et al. (2017) performed an edge sharpening, finding that bilateral denoising and non-local 

means filter as the two best methods. Both methods successfully removed noise, but the non-local 

means filter did a better job of preserving detail. The average overall accuracy of their methods 

was 83%. 

 These two studies used similar methods and obtained high accurate results. The Prasad et 

al. (2019) study followed the Ottinger et al. (2017) study and had better results. Both studies looked 

at aquaculture in low-lying coastal areas, similar to the landscape in Bangladesh, which is the focus 

of our study.  
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2.7.2 Multispectral and Panchromatic Imaging Applications 

 An alternative to radar imaging is optical imaging, such as multispectral and/or 

panchromatic imaging. Virdis (2014) used high and very-high resolution panchromatic imaging, 

SPOT5 and Worldview-1 (both optical sensor satellites), and machine learning to detect shrimp 

farms in the Tam Giang-Cau Hai Lagoon in central Vietnam (70 km in length). To classify 

aquaculture shrimp farms, the study looked at panchromatic images from SPOT5 Level11A (5 m 

pixel size) and Worldview-1 Ortho-Ready Standard OR2A panchromatic images (0.5 m pixel 

size).  

 The data collected first went through a geometric correction and spatial accuracy 

assessment. The images then were cropped to fit the two areas of interest (AOIs), had contrast-

enhanced, and edge detection filtering. The study used a non-commercial software called SPRING 

to segment the image through clustering. The clusters were then compared to a previously created 

aquaculture reference database of the area to find accuracy. The SPOT5 images led to an accuracy 

of 84.7% and 93.2% for AOI1 and AOI2, respectively. The Worldview-1 images led to an accuracy 

of 90.6% band 95.7% for AOI1 and AOI2, respectively. The algorithm implemented through the 

SPRING software worked well with both SPOT5 and Worldview-1, especially in AOI2, where 

there was a higher contrast between ponds and embankments.  

 Zeng et al. (2019) used medium resolution multispectral images to extract aquaculture 

ponds from water surfaces around inland Liangzi Lake in China. The study took medium-

resolution multispectral image data from Landsat-5 (Thematic Mapper, TM) and Landsat-8 

(Operational Land Imager, OLI), as well as high-resolution observation data from GaoFen-1 

(World Field of View, WFV). The data was obtained via the United States Geological Survey 

(USGS) and the China Center for Resources Satellite Data and Application (CRESDA). All images 
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chosen had to be cloud-free and from December to January for minimal vegetation coverage. The 

water pixels were extracted using the MNDWI and the NDWI. These indices were chosen after 

calculating numerous indices and their accuracy for each data source. The MNDWI and NDWI 

had the best accuracy. The MNDWI was applied to the OLI and TM data, while the NDWI was 

applied to GaoFen-1 data. The water pixels were then separated into segments and geometrical 

features were calculated. The feature vectors formed were used as inputs to Support Vector 

Machine (SVM) classifier, an algorithm used for classification, regression, and outlier detection. 

The SVM classifier detected whether the water pixels were natural water surfaces or aquaculture. 

The results were validated from previously digitized and labeled water types in the area. The user 

accuracy ranged from 91.8% to 99.2% depending on the area of the lake (either eastern or western 

Liangzi Lake) and which image sensor. The lowest accuracy, 91.8% was the TM sensor in eastern 

Liangzi Lake. The highest accuracy was the OLI sensor in western Liangzi Lake. The methods 

used in this study can be applied to identify inland aquaculture ponds around the world. Landsat 

satellites have been collecting data since 1972, meaning the archives have great potential to 

monitor historic changes in inland lake environments.  

2.7.3 Table of Relevant Studies on SAR and Optical Remote Sensing 

 Table 8 lists relevant studies that utilized radar (SAR) and/or optical satellite 

imagery.  
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Table 8. List of relevant studies for fishpond detection using radar and optical satellite imagery. 

Product  References  Country  
Resolution  

Algorithm  Prediction accuracy  Software  
Spatial  Temporal  

Synthetic aperture radar (SAR)  

ERS-2 (C band VV 
polarization),   
Radarsat-1 (C band HH 
polarization)  

Travaglia et al., 2004 Philippines  12.5m (ERS-2)  
6.25m (Radarsat-1)  

Two images at 
different dates 
(ERS-2)  
A single image 
(Radarsat-1)  

Visual interpretation  95%  Source: ESA  
Preprocessing: ERDAS, ArcGIS  

Radarsat-1 (C band HH 
polarization)  (Liu et al., 2010) China  6m   

(raw 4.6x5.1m)  
Less than a month 
(three images total)  

Object-based (multi-temporal 
segmentation).   
Parameters: scale, color, and 
shape.  

83.1%  
kappa 0.81  

Preprocessing: Radar Analysis 
Package - PCI; ERDAS  
Processing: Definiens  

Sentinel-1A/ B (C band 
VV + VH polarization)  

 (Ottinger et al., 2017, 
2018) China, Vietnam  

10m (after 5x1 
multi-looking)  
(raw 5x20m)  
Ground Range 
Detected High 
Resolution (GRDH)  

Less than two weeks 
(66 to 192 scenes in 
a two-year period)  

Object-based mapping 
(temporal filtering, topographic 
masking, connected component 
segmentation)  

Overall 84% (ranging 
from 80% to 88%)  
kappa 0.68 (ranging 
from 0.59 to 0.77)  

Source: Sentinel Scientific Data 
Hub/Google Earth Engine  
Preprocessing: Sentinel 
Application Plattform (SNAP)  
Processing: GDAL tools, Orfeo 
Toolbox (OTB)  

Sentinel-1A/B Single 
Look Complex (SLC)  

(Ballester-Berman et al., 
2018) Spain, Norway  2.3x14m  One image per study 

site was used  
Unsupervised Wishart 
classification  Not reported  

Source: Alaska Satellite Facility's 
data portal  
Processing: Sentinel 
Application Platform (SNAP)  

TerraSAR-X,   
Sentinel-1B  (Dumitru et al., 2018) Albania, Greece  Not reported  Images for a single 

date were used  

Images are tiled into patches. A 
primitive feature vector is 
extracted from each patch. The 
patches are then clustered and 
classified using a Support 
Vector Machine classifier and 
predefined labels from optical 
imagery.  

From 80 to 95%  Not reported  
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Table 8 (cont’d) 

Product References Country 
Resolution 

Algorithm Prediction accuracy Software 
Spatial  Temporal  

Sentinel-1A/B (C band 
VH polarization)  (Prasad et al., 2019) India  10m  

Imagery collected 
for a two-year 
period  

Object-based mapping 
(temporal filtering, topographic 
masking, connected component 
segmentation)  

Overall 90%  

Source: Sentinel Scientific Data 
Hub/Google Earth Engine  
Preprocessing: Sentinel 
Application Plattform (SNAP)  
Processing: GDAL tools, Orfeo 
Toolbox (OTB)  

Optical  

Landsat 4 and 5 
imagery  (Kapetsky, 1987) Zimbabwe  1:250,000 scale  

Two images were 
employed (dry 
season, and end of 
rainy season)  

Visual interpretation  
43 (satellite) out of 
77 (aerial photos) 
(56%)  

Not reported  

IRS 1D (panchromatic 
images)  
SPOT (multi-spectral 
images)  

(De Graaf et al., 2000) Bangladesh  6m (IRS 1D)  
20m (SPOT)  

Two images at 
different dates  Visual interpretation  

65 to 75% of ponds 
larger than 1,000 m2 
are detected.  

Not reported  

CORONA 
(panchromatic),   
SPOT-3 (multispectral), 
ERS-1 (SAR),   
SIR-C (SAR),   
X SAR,   
Landsat 5 (multi-
spectral),   
IRS (panchromatic, 
multi-spectral)  

(Huda et al., 2010) Bangladesh  

CORONA (2m)  
SPOT-3 (1:50,000)  
ERS-1 (12.5m)   
SIR-C (30m)  
X SAR (25m)  
Landsat 5 (30m)  
IRS (6m, 23m)  

Up to two images of 
each platform along 
multiple years 
between 1972 and 
2003  

Visual interpretation  Not reported  Not reported  

SPOT5 Level1A, 
Worldview-1  (Virdis, 2014) Vietnam  5m (SPOT5)  

0.5m (Worldview)  
One image for each 
product  

Image segmentation 
using  basin-detection and 
region-growing techniques.   
  
Unsupervised clustering 
classification ISOSEG  

> 95%  SPRING  

Optical imagery  (Z. Yu, 2019) Bangladesh  Not reported  Not reported  
Algorithm incorporating 
spectral and spatial filtering on 
multi-temporal images.  

Not reported  Google Earth Engine  

IKONOS,   
Quickbird,   
Worldview-2, 
Worldview-3  

(Gusmawati et al., 2017) Indonesia  
0.5 - 1m 
(panchromatic)  
1.5 - 4m 
(multispectral)  

Images from 2000 to 
2015  Visual interpretation  > 80%  ArcGIS  
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Table 8 (cont’d)  

Product References Country 

Resolution 

Algorithm Prediction accuracy Software 
Spatial Temporal 

Sentinel-1A,  
Landsat 5/7/8 Surface 
Reflectance (Level 2)  

(Stiller et al., 2019) China  10m (Sentinel-1)  
30m (Landsat)  

66 to 174 scenes in a 
two-year period for 
Sentinel-1  
  
Yearly cloud-free 
image composites 
between 1984-2016 
using Landsat  

For Sentinel-1, same 
as Ottinger et al. (2018)  
For Landsat:  
1) Cloud and cloud shadow 
masking  
2) NDWI calculation  
3) Difference of 10th and 90th 
percentiles (to discard rice 
paddy fields)  
4) Set threshold for land-water 
separation (trial and error, 
visual interpretation)  
5) Comparison with Sentinel-1 
detected ponds, water 
proportion over time is 
obtained  
6) For each year, Sentinel-1 
fishponds that had at least 1/3 
of their surface are retained.  
7) False positives are detected 
using the Global Surface Water 
(GSW) raster dataset.  

Overall 89%  
kappa 0.78  Google Earth Engine  

Landsat 5/8, Gaofen-1 
Wide Field of View 
(WFV)  

(Zeng et al., 2019) China  30m (Landsat)  
16m (Gaofen)  

Up to three images 
from the end of 
December to 
January for each 
product  

Water surface extraction is 
performed using NDWI, 
MNDWI, AWEI, NDVI, WRI, 
NDMI. Thresholds are 
determined using the Otsu 
method (Otsu, 1979). The most 
accurate water and non-water 
binary image is selected.  
  
Water segments are obtained, 
and for each one, geometric 
features (area, regularity, 
perimeter) are determined based 
on boundary tracing and 
contour-based regularity and 
curvature computations.  
  
A SVM classifier incorporating 
the geometric features is used to 
separate aquaculture from 
natural water surfaces.  

Overall > 94%  
kappa > 0.8  

Source: USGS, China Center for 
Resources Satellite Data and 
Application  
Preprocessing: FLAASH tool in 
ENVI 5.3  
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Table 8 (cont’d) 

Product References Country 
Resolution 

Algorithm Prediction accuracy Software 

Spatial Temporal 

Landsat 5/7/8  (Ren et al., 2019) China  30m  
Images for 5 years 
between 1984 and 
2016  

Updating approach using visual 
interpretation and automatic 
classification based on water 
surface extraction with NDWI 
and object-based classification 
(parameters: scale, shape, and 
compactness).  

Overall > 87%  
kappa > 0.80  

Source: USGS  
Preprocessing: FLAASH tool in 
ENVI 5.0  
Processing: eCognition Developer 
8.64  

Sentinel-2A/B,   
Cartosat 1 PAN,   
IRS LISS IV  

(Anand et al., 2020) India  
10m (Sentinel-2)  
2.5m (Cartosat 1 
PAN + IRS LISS 
IV)  

Sentinel-2:   
Images for two time 
periods: February 
and May (selection 
based on agricultural 
operations).  
  
Cartosat-1 + IRS:  
A single merged 
image.  

Visual interpretation (2.5m 
data)  
  
Water surface extraction using 
NDWI (Sentinel-2)  

Not reported  
Source: Copernicus open access 
hub  
Processing: ArcGIS  

Landsat 5/8 Surface 
Reflectance Tier 1  

 (Duan, Li, Zhang, Liu, et 
al., 2020) China  30m  

Revisit time: 16 
days  
Seven-time slices 
from 1988 to 2018, 5 
year each, between 
April to October  

Decision-tree classifier:  
1) Non-water land elimination 
using a water extraction index   
2) Intensive aquaculture ponds 
extraction using the MNDWI 
and the 8-neighborhood 
Laplacian operator.  
3) Extensive aquaculture ponds 
identification using two shape 
indexes representing 
the regular shape of these 
ponds.  
4) Merging different pond 
types)  

Overall >91%  
kappa > 0.79  Google Earth Engine  

Landsat 5/7/8, Sentinel-
2A  (Al Sayah et al., 2020) France  30m (Landsat)  

10m (Sentinel-2A)  
Multiple images for 
October  NDWI 

Landsat:  
86% (pond count)  
75% (pond spatial 
allocation)  
Sentinel:  
93% (pound count)  
84% (pond spatial 
allocation)  

Source: USGS Earth Explorer 
(Landsat)  
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2.8 Basic Machine Learning and its Applications in Detecting Aquaculture Farms 

 Machine learning is computer algorithms for translating human ways of learning into 

machines (Faul, 2019). Machine learning is founded on the need for a computer to convert data 

examples into knowledge (Kubat, 2017). It is a field of computer science that studies techniques 

for obtaining results to complex issues that are difficult to solve using conventional programming 

methods. Machine learning algorithms have provided solutions to very complex problems, from 

internet searching to speech recognition (Rebala et al., 2019). Benefits to machine learning include 

a reduction in programming time, ability to customize and scale products, and complete 

“unprogrammable” tasks (Google, 2020). 

 Machine learning generally uses two different techniques: supervised learning and 

unsupervised learning. Supervised learning trains a model on known input and output data to 

predict future outputs by using classification and/or regression. Classification is a technique that 

predicts discrete responses, meaning that it categorizes input data (e.g., is a pond is a fishpond or 

not). Different classification algorithms include SVM, Discriminant Analysis, Naïve Bayes, and 

Nearest Neighbor. Regression is a supervised learning technique that predicts continuous 

responses (e.g., temperature changes). Examples of different regressions are Linear Regressions, 

Support Vector Regression, Ensemble Methods, Decision Trees, and Neural Networks. 

Unsupervised learning is a model that finds hidden patterns or structures in input dataset. This 

method uses clustering, a method of grouping data together based on certain similarities or 

patterns. Different types of clustering methods include k-Means, k-Medoids, Hierarchical, 

Gaussian Mixture, Neural Networks, and Hidden Markov Model (MathWorks, 2016d). Table 9 

and Table 10 describe some common supervised and unsupervised algorithms and when they are 

best used.  
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Table 9. Common supervised algorithms and their applications (MathWorks, 2016a). 

Algorithm Name Process Applications 

Logistic 
Regression 

Creates a model that predicts the 
probability of a binary event 

 Data is clearly separated by a 
single, linear boundary 

 Can be a baseline for more 
complex classifications 

k Nearest 
Neighbor (k-NN) 

Categorizes based on characteristics 
on nearest neighbors in a dataset 

 Establishes benchmark learning 
rules 

 Memory usage is not important 

 Prediction speed is less of a 
concern 

Support Vector 
Machine (SVM) 

Classifies through discovering linear 
decision boundary that separates all 
data points from one group to 
another 

 Data only has two classes 

 High-dimensional, nonlinearly 
separable data 

 Easy to interpret  

Neural Network Highly connected networks relate 
inputs to outputs 

 Modeling non-linear systems 

 Data is available in increments 

 If there is a possibility of 
unexpected change in input data 

 Model does not need to be 
easily interpreted 

Naïve Bayes Assumes presence of a certain 
feature is unrelated to the presence 
of another feature 

 Small datasets with many 
features 

 Easy to interpret 

 Model will encounter 
circumstances not covered in 
training data 
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Table 10. Common unsupervised algorithms and their applications (MathWorks, 2016b). 

Algorithm Name Process Applications 

k-Means Divides data into k number of 
mutually exclusive clusters 

 k is known 

 Fast clustering of large data sets 

k-Medoids Divides data into k number of 
mutually exclusive clusters, but 
cluster center must be a data point 

 k is known 

 Fast clustering of categorical 
data 

 Scales to large datasets 

Hierarchical Creates nested sets of clusters into a 
binary, hierarchical tree 

 Number of clusters unknown 

 Provides visualization for 
selection  

Self-Organizing 
Map 

Neural network that changes a 
dataset into a multidimensional map 

 Provides data visualized in 2D or 
3D 

 Deduces dimensionality of data 
by preserving the shape 

 

 Using machine learning occurs in steps. The first step is to access the proper data, then 

preprocess data (e.g., check for outliers or missing data points), derive certain features (i.e., turning 

raw data into information), train models using the features, iterate to find the best model, and then 

integrate the best model into a productive system (MathWorks, 2016c).  

Machine learning techniques such as SVM has been used extensively for remote sensing 

classification as a supervised method and can classify aquaculture ponds from natural water 

surfaces. For example, Zeng et al. (2019) used the SVM classifier algorithm to identify aquaculture 

farms in an inland lake in China. Geometric features, like perimeter, area, and contour-based 

regularity, are examples of input features into an SVM. The Zeng et al. (2019) study used 

geometric features from satellite images as training datasets. These datasets enabled the algorithm 

to pick out aquaculture ponds from natural surface water with an accuracy of at least 91.8%. In 
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addition to supervised classification, machine learning can be unsupervised, meaning without 

being presented a dataset with a known outcome. In SNAP there is the Wishart classifier, which 

has been used to identify differences in aquaculture structures within SAR imagery (Ballester-

Berman et al., 2018). WorldView-1 and SPOT5 imagery have been also used in partnership for 

fishpond classification using the unsupervised Isogeg classifier in the Spring software (Virdis, 

2014).  

 

2.9 Limitations of Remote Sensing Techniques in Detection of Small Waterbodies 

 Despite previous research, identifying small waterbodies or aquaculture ponds on a large 

scale using remote sensing data can be a very challenging task mostly due to:  

 There is no universal index to use for extracting water from an image (Zeng et al., 2019) 

 There are multiple machine learning algorithms could be used for a fishpond detection, but 

there is no grantee that any or all of them work for an area of interest (Virdis, 2014; Dumitru 

et al., 2018; David Ballester-Berman et al., 2018; Zeng et al., 2019) 

 Inland aquaculture comes in many different forms (Jahan et al., 2015). Because of this, 

there are no apparent geometric features to provide for an algorithm. Some aquaculture 

ponds like homestead ponds and beels form naturally with the shape of the land. Ghers and 

rice-fish plots are aquaculture coinciding with agriculture, meaning the shape of the pond 

will take the shape of the rice field it is built into.  

 There is no freely available high-resolution (< 5 m pixel size) imagery to improve current 

fishpond detection (Z. Yu et al., 2020).  
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2.10 Goals 

 There is currently a lack of understanding of the extent of aquaculture in Bangladesh. The 

goals of this thesis are to find appropriate remote sensing data, applying different manual and 

machine learning techniques to distinguish various aquaculture, and verify the manual and 

machine learning algorithms against ground-truthing. The result will be used to improve official 

statistics and to enhance the capacity for aquaculture production and regulations within 

Bangladesh. 
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3 HARNESSING MACHINE LEARNING TECHNIQUES FOR LARGE-SCALE 

MAPPING OF INLAND AQUACULTURE WATERBODIES IN BANGLADESH  

 

  3.1 Introduction  

Aquaculture (farming fish and other aquatic animals) is growing at an extremely rapid pace, 

increasing around 6.5 times, from 13 million tonnes to 85 million tonnes over the past thirty years 

(FAO, 2020c), and is forecast to continue growing rapidly in coming decades (Kobayashi et al., 

2015) Most of this growth has occurred in Asia, which accounts of 89% global aquaculture 

production (FAO, 2020c). Aquaculture farm expansion in Asia has been concentrated mainly in 

water abundant deltaic regions (Bernzen et al., 2021). The growth of aquaculture since the 1990s 

has been particularly rapid in Bangladesh, induced by demand caused by rising incomes, 

urbanization, a growing population, and declining supplies of fish from capture fisheries. This 

development has occurred in a largely unplanned and spontaneous way as farmers have converted 

rice paddies into fishponds that typically offer much higher returns than paddy cultivation (Belton 

et al., 2018). As a result, Bangladesh is now the 5th largest aquaculture producing country in the 

world (FAO, 2020c).  

Aquaculture in Bangladesh has shifted dramatically from subsistence to commercial farming 

in the last three decades (Hernandez et al., 2018). During this time, the farmed fish market grew 

from 124,000 tons to 2.4 million tons, and the number of people involved in the aquaculture value 

chain tripled (Hernandez et al., 2018; Department of Fisheries, 2018). This dynamic growth has 

created a huge new industry that makes substantial contributions to the rural economy in many 

parts of the country, but the rapid emergence of the sector means that it performance is not well 

understood by policymakers and researchers (Jahan et al., 2015; Hernandez et al., 2018, Belton & 

Azad, 2012). Some observers contend that unplanned expansion of aquaculture is creating 
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competition for arable land necessary to produce rice, Bangladesh's primary food crop, creating 

pressures on limited space that need to be addressed (Yu et al., 2018; Hashem et al., 2014). 

Moreover, studies have suggested that national aquaculture statistics may not have kept pace with 

this rapid growth, meaning that production volumes might be underestimated (Belton & Azad, 

2012).  

Accurately determining the physical extent of aquaculture in Bangladesh can be approached 

in different ways. One is to conduct physical surveys. These would provide accurate information 

about the use of waterbodies throughout the region, but because of the large areas and populations 

involved, this approach would be highly resource-intensive (Rhodes et al., 2015). Using remote 

sensing to identify where aquaculture is occurring is an alternative approach with potential to 

provide data for aquaculture management, including site selection for potential farmers, mapping 

(Anand et al., 2020), environmental monitoring, and aquaculture inventory (Ottinger et al., 2016). 

Remote sensing is helpful for analyzing large areas and obtaining information quickly, but it is 

difficult to determine use from an identified body of water.  

Generally, three types of remote sensing products are used for aquaculture structure detection: 

synthetic-aperture radar (SAR) imagery, medium-resolution multispectral imagery, and high- and 

very-high-resolution multispectral imagery (Ottinger et al., 2016). SAR is a technique for creating 

fine-resolution images from a radar system (NASA, 2020a). The term “synthetic” refers to the 

processing method of backscattered waves to improve the azimuthal resolution, which allows for 

smaller spatial resolutions (Woodhouse, 2017). Multispectral imaging refers to sensors that can 

simultaneously capture many wavelength bands across the electromagnetic spectrum (Coffey, 

2012). Medium spatial resolutions refer to any images with pixel sizes of 10 to 30 m, whereas high 

and very high spatial resolutions refer to any images with pixel sizes of 30 cm to 5 m per pixel 
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(Earth Observing System, 2019). Ultimately, selecting a particular product mostly depends on 

trade-offs between cost, spatial resolution, temporal availability, and surface area coverage (Bello 

& Aina, 2014, Zoran et al., 2010).  

Some current methods for utilizing SAR imagery to identify aquaculture structures include 

object-based mapping in China, Vietnam (Ottinger et al., 2018), and India (Prasad et al., 2019) and 

Wishart classifiers applied to coastal regions of Spain and Norway (Ballester-Berman et al., 2018). 

However, filtering to remove speckle noise in SAR imagery negatively impacts its spatial 

resolution (Z. Yu et al., 2020). For medium-resolution optical imagery, the current methods 

include object-based mapping and classification along China’s coasts (Ren et al., 2019), utilizing 

the Normalized Difference Water Index (NDWI) to determine aquaculture value thresholds in 

Southern China (Stiller et al., 2019), and a combination of pixel selection and image segmentation 

to find aquaculture in northern Bangladesh (Z. Yu et al., 2020). Meanwhile, methods utilizing 

Landsat medium resolution  multi-spectral imagery (Ren et al., 2019) do not work for identifying 

small (approximately 0.002 km2) fishponds because of its 30 m spatial resolution. Finally, high-

resolution optical imagery can be resource-intensive and expensive; however, it has been used for 

visual aquaculture interpretation in India (Anand et al., 2020) and Indonesia (Gusmawati et al., 

2017).  

This study aims to identify bodies of water throughout the study region and determine if their 

use is for aquaculture. This can lead to the creation of an aquaculture pond identification method 

that does not rely on tedious surveys for information and can locate drastically different shapes 

and sizes of fishponds. However, what makes Bangladesh so different from previous studies is that 

there are many types of fishponds, all with different characteristics. ‘Commercial ponds’ (purpose-

built ponds producing fish exclusively for sale) and ‘homestead ponds’ (small multi-use backyard 
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ponds), usually contain water year-round but can vary considerably in size. Ghers (modified diked 

rice paddies), only contain water during certain months of the year and can vary widely in terms 

of size and extent of integration with field crops. Ghers can be as small as 0.002 km2 to as large as 

0.4 km2, and tend to not have a standard shape, instead following the topography. In the remainder 

of the paper for simplicity, we refer to homestead ponds, commercial ponds, and ghers using the 

catchall term ‘fishponds’, except when emphasizing salient differences between these waterbody 

types.  

Among the studied methods, the method outlined in Yu et al. (2020) was deemed to be the best 

fit for this study because 1) similar to this study, their method was also developed and tested in 

Bangladesh, although their research was conducted in the Natore district in northern Bangladesh, 

2) both studied regions fall in the same agroecological zone (Department of Agricultural 

Extension, 2021), 3) the logic behind their method is supported by open access code and can be 

easily implemented to other regions, and 4) inputs required for their method are free while using 

other methods rely on high- and very-high-resolution multispectral imagery can cost thousands of 

dollars. Therefore, in this study, we hypothesized that the Yu et al. (2020) method could be 

employed to achieve the research goal. Building on the Yu et al. (2020) method, first, we examined 

its performance within the study area and then proposes several improvement strategies to 1) 

enhance water detection specifically for small water bodies, 2) advance the edge detection for 

fishponds, and 3) achieve better fishpond classification.  
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3.2 Materials and Methods 

3.2.1 Study Area 

The study area is comprised of seven districts in southwest and south-central Bangladesh, with 

a total area of 17,385 km2 (Figure 5). These are Bagerhat, Barisal, Bhola, Gopalganj, Jessore, 

Khulna, and Satkhira. These districts were chosen because they are home to some of the highest 

concentrations of aquaculture farms in the country, including nearly all of Bangladesh’s shrimp 

and prawn farms (Department of Fisheries, 2018). The districts are also in the USAID Feed the 

Future (FtF) Zone of Influence meaning they are being targeted to ensure long-term economic 

sustainability in farming (Feed the Future, 2021).  

For this research, we focus on aquaculture in enclosed waterbodies (ponds and ghers), and 

exclude farming taking place in stocked natural waterbodies, pens, and cages (Department of 

Fisheries, 2018). The study region excludes the Sundarbans National Park in the southern parts of 

Satkhira, Khulna, and Bagerhat. The land use for the study region was calculated from data from 

GlobeLand30 (China Ministry of Natural Resources, 2020). The study region is made up of 62% 

cultivated land (9966 km2), 23% artificial surfaces (3661 km2), 13% water bodies (2136 km2), and 

2% wetlands (296 km2). Forest, shrubland, grassland, and bare land each encompass less than 1% 

of the total land use (Figure A1).  
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Figure 5. Study area is broken into seven individual districts. 

 The seven districts are primarily made up of cultivated land, artificial surfaces, water bodies, 

and wetlands (Table A1). Gopalganj, Bagerhat, and Jessore have the highest percentages of 

cultivated land (all over 65%). Satkhira has the highest percentage of water bodies at 39% - even 

higher than their cultivated land. Bhola is one of the few districts with wetlands as a land cover 

and has the highest percentage of wetlands with 13%.  

The study area falls into three different climate subregions: the south-eastern zone, south-

western zone, and south-central zone (Momtaz & Shameem, 2016). The south-eastern zone 

includes Bhola and the southern part of Barisal. This region sees high rainfall from May to 

September. Northern Barisal, Gopalganj, southern Khulna, and southern Satkhira fall within the 

south-central zone. This area has less rain on average than the south-eastern zone. The south-
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western zone is comprised of northern Khulna, northern Satkhira, and Jessore and has the lowest 

levels of rainfall on average out of the three zones (Bangladesh Meteorological Department, 2021). 

 The study area has four seasons throughout the year that are described as winter (December 

to February), pre-monsoon (March to May), monsoon (June to September), and post-monsoon 

(October and November) (Momtaz & Shameem, 2016). The heavy rainfall of the monsoon season 

makes it challenging to obtain could-free satellite images during that season. The districts within 

the study region see anywhere from 1200 mm to 2800 mm of rainfall during the monsoon season 

(Bangladesh Water Development Board, 2019). The south-eastern zone has a slightly longer rainy 

season with higher precipitation from May to September (Bangladesh Meteorological Department, 

2021).  

3.2.2 Overview of the Base Method 

As described in the Introduction section, the Yu et al. (2020) method was selected as a Base 

Method for detecting fishponds for the study area. In general, only a small number of changes 

(e.g., temporal and spatial extend of satellite imageries) to the original code were needed to fit the 

method for the study area. The Base Method comprises six main steps: data acquisition, water 

index calculation, initial mask, threshold optimization, majority vote, and fishpond identification 

(Figure 6).  
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Figure 6. Flowchart outlining the major steps of the Yu et al. (2020) for fishpond identification. 
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Step 1. Data Acquisition: The process starts with combining data from Sentinel-2 Level-1C (Top 

of Atmosphere Reflectance) from 1/1/2020 to 12/31/2020. The images are then filtered for cloud 

coverage, keeping only those images with less than 10% cloud pixels. We obtained 311 images 

for our study region during 2020 that include any image that covers any part of our study region. 

This is one of the major differences with the original Yu et al. (2020) study as they only obtained 

four images for their region of interest during the study period of 2016. In addition, the size of our 

study region is just under 33 times larger than the Yu et al. (2020) study area. During the 2020 

study period, no images were available between mid-June and the end of September due to the 

monsoon occurrence.  

Step 2. Water Index Calculation: To identify where water is located within the study area, three 

different water indexes were used. These indexes analyze different wavelengths of reflected light 

to determine the presence of water. Using the images left after the cloud filter, we calculated the 

three water indexes: the Normalized Difference Water Index (NDWI) (S. K. McFeeters, 1995), the 

Modified NDWI (MNDWI) (Xu, 2006), and the Automated Water Extraction Index with no 

shadow (AWEI) (Feyisa et al., 2014).  

Step 3. Initial Mask: Previous studies showed that MNDWI performed the best among the three 

water indices (Ji et al., 2009, Zhou et al., 2017, Jiang et al., 2014) and also recommended by Yu 

et al.  (2020) method; the mask is created from this index. The MNDWI is filtered by the ‘greater 

than’ function. If an MNDWI pixel value is greater than 0, the function returns a value of 1. The 

filtered MNDWI images are reduced into one image using the allNonZero reducer command in 

the Google Earth Engine (GEE). The reducer assigns the pixel values of 0 or 1 based on all values 

obtained from every image in the collection at a specific location. If every value at that pixel 

location was a non-zero, then the final image has a pixel value of 1 at that location. If there is even 
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one 0 value in any image at that location, then the final image has a pixel value of 0. This creates 

an initial binary mask that is converted to polygons. The polygons are enlarged with a buffer of 5 

pixels to capture values of pixels that surround bodies of water. The polygons are then rasterized, 

creating a new image called MNDWI Mask (MM). The MM is then applied to the NDWI, original 

MNDWI, and AWEI image collections.  

Step 4. Threshold Optimization: This initiates a process called Otsu Segmentation which optimizes 

the threshold between foreground and background in images (water and not-water) (Otsu, 1979). 

The segmentation process creates a histogram of values from the locations the MM provided. The 

histogram should be bimodal with a buffer of 5 pixels, the two modes being water and non-water. 

The threshold between the two modes is found using the sum of squares. The Otsu Segmentation 

process occurs within each index’s image collection separately.  

Step 5. Majority Vote: The optimized NDWI, MNDWI, and AWEI image collections after Otsu 

Segmentation are then reduced into three images (one for each index) using the allNonZero 

reducer. This creates three separate images that show where each water index identified water in 

every image during the time period. The three reduced index images are then reduced to one image 

through the Mode/Majority Vote method. The mode method sees what value is present at that pixel 

location most often and assigns the final image that value. The final combined image depicts where 

water is in the majority of indexes and also where water is located in every image. This image is 

then converted into polygons and these polygons are given object-based features (OBFs). The 

OBFs include the Iso-Perimetric Quotient, Solidity, Patch Fractal Dimensions, Convexity, and 

Square Pixel Metric. The Convexity, Solidity, and Path Fractal Dimensions describe basic 

geometric characteristics of the pond and how complex it may be (Jiao et al., 2012). The Iso-

Perimetric Quotient measures how similar an object is to compact shapes like circles (Q. Yu et al., 



49 
 

2006). Lastly, the Square Pixel Metric analysis for the shape convexity and is similar to the Iso-

Perimetric Quotient (Frohn, 2007).  

Step 6. Fishponds Detection: Two machine learning techniques are utilized following the Yu et al. 

(2020) recommendations: Classification and Regression Trees (CART) and Logistic Regression 

(LR). These two algorithms were run in R Studio utilizing the caret package (Kuhn, 2008). The 

algorithms are trained by analyzing the calculated OBFs of the ground-truthing data. The base 

method determined algorithm performance by using five-fold cross-validation.  

The Base Method used images from the GEE platform to determine what defined a 

fishpond visually. The fishponds were then manually digitized for their study area to train their 

algorithms. In addition, non-fishpond water bodies were identified by removing digitized lakes 

from the Tibetan Plateau.  

3.2.3 Proposed Improvements 

We identified Yu et al. (2020) method as having the most promising and applicable 

methods for our region of interest in southern Bangladesh, but with some modifications. From 

initial surveys, we found that many of the assumptions in the Yu et al. (2020) paper do not apply 

to the south-west and south-central regions of Bangladesh (Table 11).  
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Table 11. Base Method assumptions, shortcomings, and alternative approaches 

Base Method 
assumptions 

Shortcoming of the Base Method and 
alternative approach 

Improvement 
number 

Fishponds are filled with 
water year-round 

Some fishpond types in Bangladesh may dry 
out for a portion of the year (e.g., Homestead 
ponds). Other fishponds may be planted with 
rice for part of the year (e.g., Gher). Therefore, 
assuming all fishponds are filled with water all 
year is not correct. Instead of focusing on areas 
that have water for an entire year, we should 
focus on time periods when each type of 
fishpond holds water.   

1, 3 

Fishponds are 
surrounded by non-
water 

Bangladesh's landscape is very diverse, and in 
many areas, different types of land use can be 
found around fishponds such as trees, rice 
paddies, buildings. In some regions, fishponds 
are very close with very narrow boundaries (< 
10 m apart, which is the highest resolution of 
imageries used here). This assumption impacts 
the buffer size for the MM.  

2, 4 

Fishponds are easy to 
detect visually from 
images. Non-fishponds 
water bodies from 
another region were 
selected for algorithm 
training.  

There is a high probability that small fishponds 
cannot be detected correctly through visual 
observation of satellite imageries. The 
preferred method is to use ground-truthing 
fishpond collections from the study region that 
are diverse in size, shape, type, and 
surrounding areas.  

5 

CART and LR are the 
preferred machine 
learning techniques for 
this application 

Support Vector Machine and Random Forest 
are identified as promising methods (Maxwell 
et al., 2018) for differentiating between 
fishponds and non-fishponds classes. 

6 

 
In order to address these shortcomings, the following changes were proposed to improve the 

Base Method  (1) identify a period of time that all types of fishponds are filled with water, (2) 

modify the buffer size to improve differentiating fishponds from their surroundings, (3) change 

the image reducer and water index combination to enhance waterbody detection, (4) introduce a 

convolution filter for edge detection, (5) utilize Support Vector Machine (SVM) and Random 
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Forest (RF) as two additional machine learning techniques, and (6) utilize ground-truthing data for 

better algorithm training. 

Improvement 1: As described earlier, the shortcoming of the Base Method in assuming year-round 

fishponds impoundment is not valid in our study region as many fishponds are dried for a certain 

part of the year. In addition, using many images for the entire year for a large study area, such as 

the one here, can significantly increase the computational time or prohibit the implementation of 

the Base Method for a large study area.  

In order to address this shortcoming, we identified a period of time in which all types of 

fishponds are filled with water. For this period, two sets of analyses were performed. First using 

all images with less than 10% cloud cover over the span of one month. Secondly, in order to further 

reduce the computational needs for data processing in our large study region, a single image for 

each district during the month of interest was selected for the second set of analyses.   

Using images for a single month, relevant satellite images were obtained for the period of 

October 11th to November 13th of 2020 instead of the full year. Therefore, the total number of 

images was reduced from 311 for the whole year observation to 43 for one month observation. For 

the second scenario, one single day during the month was selected. Since our study area is very 

large compared to the Base Method, each district has a different day that falls between October 

11th and November 13th. The images chosen were based on visual inspection and clarity, such as 

cloud coverage and contrast between water and non-water. The days chosen for each district are 

October 13, 2020 for Barisal, October 28, 2020 for Bagerhat and Gopalganj, November 5, 2020 

for Jessore and Satkhira, and November 7, 2020 for Bhola and Khulna.  

Improvement 2: The Base Method assumes that fishponds are surrounded by non-water pixels, but 

this is not the case in some of the districts in our study region. The Satkhira and Khulna districts, 
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for example, have fishponds and agricultural fields that are very close together with dikes and 

buffers that are smaller than 10 m. We tested buffer sizes of 0, 1, 3, and 5 pixels to identify the 

best size as the buffer in the Base Method is a very important step in creating the MM. The MM is 

a binary raster that is one of the inputs into the Otsu Segmentation function. Where the MM has a 

value of 1, the Otsu Segmentation function creates a histogram of index values at those locations. 

The buffer selects an additional region around the areas where the MNDWI has identified water 

that is assumed to be land. The histogram created by Otsu should be bimodal, where one peak 

represents water and the other represents non-water. Having a bimodal histogram makes the 

threshold values from Otsu more accurate. The potential issue with a buffer of 5 pixels is that it 

assumes that the water bodies identified by MNDWI during the MM process are surrounded by 50 

m of land, trees, or buildings. This is not the case in many of the districts in our study region. In 

areas where aquaculture ponds are being used, they tend to be very close together, with only a dike 

separating them. Dikes are much smaller than 50 m; some are even smaller than the 10 m pixel 

that we can see. Fishponds surrounded by other water bodies could change the histogram from 

bimodal to unimodal since most pixels identified by the MM are water. We wanted to see if the 

buffer size impacts the histogram and threshold value from the Otsu Segmentation. If that threshold 

impacts how much water we identify and whether they have clear boundaries for a better 

classification.  

Improvement 3: The Base Method functions under the assumption that water is present in 

fishponds throughout the year and in every image. To implement this assumption, they utilize an 

all-or-nothing reducer called allNonZero and combine all three water index images. We know that 

some fishponds are drained for maintenance or may not be visible due to an imaging error (e.g., 

sensor issues, platform issues, or angle issues). With the all-or-nothing style of reducer, the Base 
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Method removes too many potential fishponds and under detects. Therefore, we tested an image 

reducer that would take the value of what is present in the majority of images instead of all.  

The allNonZero reducer in the Base Method labels final image pixels with a value of 0 (or 

non-water) if even one image does not have water at that location. This is a very strict reducer that 

eliminates too much water during the pre-processing and establishes a lower bound estimate. It 

does not take into account potential cloud interference or the periods of time when ponds may be 

dried or have rice within them. The allNonZero reducer is used two times in the Base Method. The 

first instance is in creating the MM when combining all the MNDWI images. The second instance 

is when combining the calculated index images into one summary image for each index (Step 5: 

Majority Vote). The first instance of the allNonZero reducer remains the same since we want very 

strict water locations to create the MM. As an improvement, we replaced the second instance of 

the allNonZero reducer with the Mode reducer. The Mode reducer, instead of requiring water to 

be present for every image requires that water be present for most of the images. The Mode reducer 

allows for more water pixels to be identified in the final classification.  

The Base Method combines images from all three water-identifying indexes together to 

create one final summary image. We assumed this muddles the shape and location of identified 

water bodies, decreasing the overall amount of detected water. To improve upon this, we tested 

four different index combinations to evaluate what performed best in each district. The 

combinations are the Base Method, AWEI individually, NDWI individually, and MNDWI 

individually. This test will show whether combining the three indexes negatively impacts the 

fishpond identification results or filters out likely non-fishpond water bodies.  

Improvement 4: Increasing the number of water pixels, whether from reducing the time frame, 

changing the buffer, or using the Mode reducer, will cause many water bodies to merge, forming 
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much larger polygons. This problem is exacerbated by the issue of dikes and other dividers 

commonly being less than 10 m wide, much smaller than the best resolution images that are used 

in this study. These large polygons have a much higher chance of being labeled as a non-fishpond 

by the classifier because of their size and odd shapes. To try to reduce the size of these polygons, 

we introduced a Laplacian 5×5 convolution filter to smooth the images (Gao et al., 2018). The 

convolution filter was applied to the best index or index combination image from Improvement 3 

of each district and enhances the differences between water and non-water. The convolution filter 

is used in ArcGIS Pro 2.4. We chose Laplacian 5×5 as the filter type since it visually performed 

better than the other filter types (e.g., Smoothing 3×3, Smoothing 5×5, Laplacian 3×3).  

After the convolution filter is used, we put the smoothed index image through Otsu 

Segmentation with the MM mask. The process follows the same as the previously improved Base 

Method. This improvement aims to provide the Otsu Segmentation process with a clearer index 

image than the one provided by the Base Method.  

Improvement 5: The Base Method assumes that fishponds are easy to detect visually from 

standard RGB images, but that may depend more on when the images were captured and what 

surrounds the fishpond. Many fishponds in Bangladesh are hard to detect visually because they 

are surrounded by trees or many rice paddies and they have different fishpond layouts. In the 

study region, four types of fishponds were identified that include gher with and without rice, 

commercial ponds, and homestead ponds. All four types of fishponds vary in average size, 

typical shape, and period with water, all highlighted in Table 12. Gher without rice is, on 

average, much larger than all the other fishpond types. Homestead ponds and gher without rice 

can have round and irregular shapes, whereas gher with rice and commercial ponds typically are 

rectangular. The period in which each of these fishpond types is filled with water varies as well. 
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Commercial and homestead ponds are typically permanent ponds that have water year-round. 

Gher can have water or not because of their design to cultivate both fish and crops throughout 

the year. All of these differences between fishpond types make it very difficult to locate a diverse 

range of fishponds visually from satellite images.  

Table 12. Average size, shape, and period with water for gher with and without rice, commercial 
ponds, and homestead ponds. 

Characteristic Gher with rice Gher without 
rice 

Commercial 
pond 

Homestead 
pond 

Average size (m2) 1620-2020 4047 1620 810 

Typical Shape Rectangular Rectangular, but 
could have 

curved edges 

Rectangular Round 

Period with water May - 
December 

February - 
December 

Year-round Year-round 

Predominant 
farming system 

Freshwater 
prawn, fish, 

rice, and 
vegetables 

Shrimp and fish Fish Fish 

 
 

The Base Method utilizes historical GEE images to visually find and trace fishponds. The 

traced fishponds are not directly used for training, but instead, they used the shape of the polygon 

of water identified at the traced locations through the Base Method for training. For their non-

fishpond data, they manually trace water bodies from a Tibetan plateau for algorithm training using 

the Joint Research Centre (JRC) Yearly Water Classification dataset that has 30-m spatial 

resolution (Pekel et al., 2016). Tibet is north of Bangladesh and has a very different elevation and 

climate.  

In comparison, for this study, we used 1,728 ground-truthing polygons provided by 

surveyors in Bangladesh to validate the Base Method's performance and the proposed 
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improvements. The ground-truthing data consists of 996 fishponds and 741 non-fishpond 

waterbodies (Table A2 and Figure A2). Using ground-truthing data additionally makes validation 

results reliable instead of trusting that the waterbody chosen visually was a fishpond or not. The 

ground-truthing data was created by manually drawing borders around the known fishponds and 

non-fishponds in GEE. This results in the training dataset having smoother edges than what the 

water identification process will be. This is because the water identification process takes the shape 

of pixel groupings that appear blocky with hard edges. For this simplification of shape to not 

impact the results, we used the ‘Simplify Polygon’ function in ArcGIS to simplify the polygons 

identified through Steps 1-4. 

Improvement 6: The two machine learning algorithms used in the Base Method are CART and LR 

due to their wide use and applications in addition of being transcribed into GEE. In addition to 

these algorithms, SVM and RF were identified as promising methods and also recommended by 

Maxwell et al. (2018), considering many factors such as training data, requirements, and 

computational cost.  SVM was selected because it is useful for finding an optimal boundary 

between two classes (Maxwell et al., 2018) and performs reliably when trained with a smaller 

dataset (Ramezan et al., 2019). RF is a larger combination of many decision trees and is easy to 

optimize, so it is reasonable to compare its results with the CART method (Shi & Yang, 2016).  

3.2.4 Evaluation Criteria for Comparing Fishpond Detection Algorithms   

To compare the performance of the different fishpond detection algorithms, we used 

several criteria, including:  

1) The number of ground-truthing fishponds that are correctly identified, 

2) The percentage of the ground-truthing area that is correctly identified by the classifier 

3) The number of fishponds classified,  
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4) The recall: Recall is the ratio of true positive fishponds to the total of all known 

fishponds, whether true positive or false negative (Equation (8)). 

5) The precision: Precision is the ratio of true positive fishponds to all identified 

fishponds, whether true positive or false positive (Equation (9)). 

6) The F1 score: The F1 score (Equation (10)) is the harmonic mean of the recall and 

precision and is used to provide a more insightful characteristic of performance than 

the arithmetic mean (Sasaki, 2007).  

The range for recall, precision, and F1 score is 0.0 to 1.0, with 1.0 being the highest score 

for all of them.    

Recall =
TP

TP + FN
 

(8) 

Precision =  
TP

TP + FP
 

(9) 

F1 score = 2 ×
Recall × Precision

Recall + Precision
 

(10) 

 

 To determine whether the proposed improvements significantly impacted the results, we 

compared the areas that are correctly identified between the Base Method and the proposed 

improvement method against the ground-truthing fishpond areas. The comparison was made using 

a confidence interval for the mean relative error between the identified area and the known ground-

truthing area (Abramowitz & Stegun, 1972).  
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3.3 Results and Discussion  

3.3.1 Base Method Performance Evaluation within the Study Area in Detecting Waterbodies 

and Fishponds 

 The performance of the Base Method was evaluated based on 1) how well it identified 

water bodies and 2) how well it classified those water bodies as fishponds. Figure 3 shows the 

percentage of the ground-truthing area that are correctly identified at pre-classifier (waterbody 

identification) and post-classifier (fishpond identification) stages. First, concerning detecting 

water areas within the known fishponds, the highest detection was in Bagerhat and had 9.4% of 

ground-truthing fishpond area overlap. The second highest was Gopalganj with 5.9%, but the rest 

of the districts saw less than 1% ground-truth fishpond area detection. Second, regarding the 

applicability of classifiers to differentiate between fishponds and non-fishponds, the LR method 

was identified more ground-truth fishponds correctly than CART. The performance post-classifier 

will always be the same or less than the waterbody identification since the classifiers are only 

applied to the areas identified as water. Bagerhat had the highest correct classification out of the 

seven districts. Most of the other districts had correct classifications under 1%, except Gopalganj 

had around 5% classification after the LR classifier (Table A3). The CART classification true 

positives were lower than the LR, with the highest being Bagerhat’s 5% ground-truth area 

identification. In Bagerhat, the Base Method using the LR classifier correctly identified 16 ground-

truthing fishponds out of 235 (9% of the total ground-truthing fishpond area) (Figure 7). Having 

said that, still the performance of the Base Method, even in the Bagerhat, is low. 
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Figure 7. Percentage of the ground-truthing area that were correctly identified as waterbodies, 
classified as fishpond using logistic regression method, and classified using the classification and 

regression trees method for different districts within the study area. 

 Meanwhile, the Bagerhat district is the only one of the seven in which the results are 

significant enough to visualize. Therefore, in Figure 8, we visually compared the performance of 

the classifiers that were used in the Base Method. While CART correctly identifies fewer ground-

truthing fishponds (Figure 8C), LR over-classifies water bodies as fishponds (Figure 8B). Also 

notable in Figure 8 are the large polygons that are identified as water and how those polygons are 

classified by LR and CART. LR tends to classify the large polygons as water, whereas CART is 

more conservative and classifies them as non-fishponds. The polygons are much larger than the 

ground-truthing fishponds in the area, and in some cases, overlap the ground-truthing fishponds. 

These large polygons make individual fishpond detection difficult since they typically encompass 

multiple fishponds or several agricultural lands (e.g., rice paddies).  
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Figure 8. Example of the Base Method results in Bagerhat. Orange polygons represent ground-
truthing fishponds. Blue polygons are classified as fishponds. Red polygons are classified as 

non-fishponds. (A) Ground-truthing fishponds. (B) Logistic Regression classification results. (C) 
Classification and Regression Trees classification results. (Centroid of the pictures above: 22° 

35' 59.4096" N, 89° 34' 57.414" E) 

 The threshold optimization (Step 4) was created to pinpoint the water bodies most likely 

to be fishponds. For the small study area that the Base Method was applied, this technique works 

very well, especially since the layout of their study area has clear divided water bodies. However, 

even broken into the seven districts in our study area, the pixel selection technique does not 

perform to the same standard. The underlying assumptions of the Base Method are not valid for 

our study area and must be adjusted to make accurate fishpond identification possible.  

 Overall, the Base Method is under-identifying water bodies before the classifier is even 

applied. In addition, the Base Method's performance in detecting fishponds is very low, the highest 

of all districts being 9%, and can be enhanced significantly. In the following sections, we will 

evaluate the effectiveness of proposed improvements on waterbody and fishpond detections in a 

very large and diverse study area.   
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3.3.2 Identifying the Best Period of Image Collection for Detecting Fishponds (Improvement 

1) 

 We tested one year, one month, and one day time periods for image collection to evaluate 

how the number of images impacts the threshold optimization results. The one year period 

combined information for 311 images while one month lowered the number of images to 43. These 

totals are for the study area as a whole and not for each specific district.  Table 13 compares the 

waterbody identification results from each time period. Rows 1, 3, and 5 highlight the ground-

truth fishpond area percentage identified and how it improves with the shorter time for every 

district. The district of Bhola performed the worst out of all districts with 0% water identification 

for both year and month periods and 3% for the day. The poor performance in Bhola could be 

explained by the low numbers of ground-truthing data (27 locations) we have for the district. 

Generally, the fewer ground-truthing fishponds we have, the harder it is to identify any of them 

specifically. Bagerhat had the best water identification during the one-month period with 52% of 

the ground-truthing fishpond area identified, but Jessore had the best performance in a single day 

with 91% area identification. The districts of Barisal, Gopalganj, Khulna, and Satkhira all saw 

significant improvement over the Base Method, but performed worse than the Bagerhat and Jessore 

values (Table A4-Table A10). All seven districts improved water identification when we changed 

the time period from a year to either a month or a day. The single-day images had the highest 

results out of the three periods.  
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Table 13. The percentage of ground-truthing fishponds area and total ground-truthing fishponds 
correctly identified in all districts using different lengths for image processing (i.e., the entire year, 
one month, one day).  

Period of 
image 

collection 

Performance 
criteria 

District 

Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 
One year Percentage of 

GT* fishpond 
area 

identified pre-
classifier 

9.4% 0.2% 0% 6% 1% 0.01% 0% 

GT* 
fishponds 
identified 

25 of 235 1 of 168 0 of 
27 

7 of 77 13 of 
113 

1 of 163 0 of 208 

One 
month 

Percentage of 
GT* fishpond 

area 
identified pre-

classifier 

52% 4.3% 0% 22% 44% 36% 66% 

GT* 
fishponds 
identified 

139 of 
235 

8 of 168 0 of 
27 

44 of 77 70 of 
113 

71 of 163 75 of 
208 

One Day Percentage of 
GT* fishpond 

area 
identified pre-

classifier 

67% 16.3% 3% 36% 91% 67% 85% 

GT* 
fishponds 
identified 

182 of 
235 

28 of 168 1 of 
27 

66 of 77 99 of 
113 

112 of 
163 

115 of 
208 

*Ground truthing 

Changing the period from the full 2020 year to just October 11 to November 13, 2020 

proved to be effective in identifying more water than the Base Method. The Base Method utilizes 

the allNonZero reducer in GEE to identify water that is present year-round. A longer time period 

means more images to compare and more chances for water to not be present. All districts saw an 

improvement in water detection from the Base Method and from the month period when using an 

image for one day. Figure 9 shows the drastic difference in water detection between the three 

periods, but also how small boundaries between ponds and agriculture can blend together to form 

large polygons. Figure 9 also compares a location in which we had good water detection, Jessore, 

to an area with very poor water detection, Bhola. The method performs much better when using a 
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shorter time frame with fewer images. The best period proved to be the single day. We do not 

expect that the day chosen will drastically impact results, but the image must have low cloud 

coverage (e.g., less than 10%) and it must be during a time period when we are fully confident 

fishponds contain water. Because of these guidelines and Bangladesh’s climate, we are only able 

to obtain a few images that fit these standards. To ensure that the best time period is a day, we used 

both single day and single month for Improvements #2 and #3.   
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Figure 9. Visual comparison of the three-time periods in southern Jessore and southern Bhola. 
(A) Jessore ground-truthing fishponds (orange). (B) Jessore ground-truthing fishponds and full  
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Figure 9 (cont’d)  
year water (red). (C) Jessore ground-truthing fishponds and one-month water (purple). (D) 

Jessore ground-truthing fishponds and single-day water (blue). (Centroid: 22° 57' 49.9248" N, 
89° 16' 46.3188" E). (E) Bhola ground-truthing fishponds (orange). (F) Bhola ground-truthing 

Fishponds and full year water (red). (G) Bhola ground-truthing Fishponds and one-month water 
(purple). (G) Bhola ground-truthing Fishponds and single-day water (blue). (Centroid: 22° 10' 

7.0464" N, 90° 41' 27.546" E) 
3.3.3 Testing the Buffer Size for Threshold Optimization (Improvement 2)  

The buffer size impacts the amount of water identified by the Threshold Optimization process. 

The larger the buffer, the more pixel values are included in determining the threshold value 

between water and non-water. Having the best possible threshold will significantly improve upon 

water and fishpond identification. We tested buffer sizes of 5, 3, 1, and 0 pixels within the MM for 

both single day and one month time periods. The water identification pre-classifier for Bagerhat 

with a buffer size of 5 was 67% for one day, but that dropped to 58% with a buffer size of 0 (Table 

A11). This was the same trend across all districts for both time frames except for Bhola (Table 

A11-Table A17). None of the attempted methods have resulted in any success in Bhola higher than 

the 3% of ground-truthing area identified pre-classifier achieved from the 5-pixel buffer for a 

single day. The results showed that the buffer of five pixels performed better than any other size 

buffer for both time periods.  

Figure 10 shows the histogram of NDWI values at the MM location for Khulna. The final 

results for each district are from using the Base Method, in which all three indices are combined. 

Khulna was chosen for the example since it had a noticeable change from the buffer size and 

NDWI is one of the most used water indices. Khulna saw a large decrease in ground-truth water 

identification from 67% to 59% when changing the 5-pixel buffer to 0-pixel for a single day. 

Khulna saw a similar decrease from 36% to 27% for 5-pixel to 0-pixel buffer for the month period. 

The histograms for 0- and 1-pixel buffers have large peaks between -0.2 and -0.1 that represent 

non-water pixels. As the buffer size increases, the second peak around 0.3 to 0.4 increases 
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considerably. With NDWI, it is commonly interpreted that values above 0.3 are water bodies and 

values between 0 and 0.3 may be water bodies (Stuart K. McFeeters, 2013). These histograms 

show that with the increased buffer size, water pixels become more prominent. The 5-pixel buffer 

may work best because it includes more pixels in total. The more pixels included in the histogram, 

the more reflective the histogram is to the land use in the district. Additionally, the 5-pixel buffer 

works better in districts with small fishpond boundaries because it provides more opportunities for 

endmember pixels, or pure water pixels, to be accounted for.  

 

Figure 10. NDWI reflectance values for MM in Khulna for a single-day image. Top left to 
bottom right: 0-pixel buffer, 1-pixel buffer, 3-pixel buffer, 5-pixel buffer 
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3.3.4 Determining the Combination of Image Reducer and Water-Identifying Index to 

Improve Waterbody and Fishpond Detection (Improvement 3) 

Both the image reducer and water-identifying indices impact the amount of water identified 

for classifying. The Base Method resulted in too few of the ground-truthing fishponds being 

identified. Therefore, we hypothesized that determining the best combination of image reducer and 

indices will significantly improve the overall detections. To increase the amount of water 

identified, we tested two image reducers (i.e., Modeand allNonZero) and four different water-

identifying index combinations (i.e., AWEI, MNDWI, NDWI, and combination of AWEI; 

MNDWI; and NDWI). The Mode reducer increased the area percentage of ground-fishponds 

identified for all districts (Table A18-Table A24) compared to the allNonZero reducer (Table A25-

Table A31). The exception to this is Bhola, in which most of the results were 0% except for the 

NDWI index in which the Mode reducer identified 7%.  

Figure 11 shows the comparison of the combined indexes, AWEI, MNDWI, and NDWI in 

correctly identifying the ground-truth fishpond areas for each district. The combination of all three 

indexes that represents the Base Method did not perform the best for any district. Figure 11 also 

shows that the MNDWI by itself also does not perform the best for any district (Table A32-Table 

A38).  
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Figure 11. Ground-truthing (GT) fishpond area identified pre-classifier per district for the 
combined index, only AWEI, only MNDWI, and only NDWI results using the single day images 

Testing the image reducer type proved again that the single day time period was one of the best 

improvements. Testing the Mode reducer on the month-long period resulted in less water 

identification than the single day (Table A18-Table A24), but more than the same period using the 

allNonZero reducer (Table A25-Table A31). Meanwhile, the Mode reducer did improve water 

identification, but since single-day images only have utilized one image, the reducer has no impact 

on its performance. 

3.3.5 Implementing Edge Detection with a Convolution Filter to Improve Fishpond Boundary 

Detection (Improvement 4) 

Considering the results from Improvement 1 through 3, the best combination of time of image 

collection, buffer size for the threshold optimization, and water index for each district was 

identified. Two major combinations are as follows: (1) single day, 5-pixel buffer, with AWEI index 

for Bagerhat, Gopalganj, Jessore, and Khulna and (2) single day, 5-pixel buffer, with NDWI index 

for Barisal, Bhola, and Satkhira (Table A39). Since the best combinations for every district entail 
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using the single day image, the reducer type is no longer relevant. A potential reason why MNDWI 

does not perform to the same standards as NDWI and AWEI is that MNDWI was created to mainly 

differentiate water from developed land (Wicaksono & Wicaksono, 2019), which is not the case 

within our study area. In fact, the majority of the representative fishponds (ground-truth) are not 

located near significant developed land. Our preliminary literature review also supported this 

assumption that is most likely the case with the majority of fishponds in the country.  

In the next step, we apply a Laplacian 5×5 convolution filter for edge detection to identify 

the best image combination for each district. The purpose of introducing edge detection is to begin 

with an enhanced image that highlights sharp differences in pixel values. The difference in pixel 

values shows where boundaries are located around different plots of land. The convolution filter 

emphasized the differences in the select index images to identify the boundaries around water. The 

spectrum of index values widens after the filter has been applied, allowing for differences to 

become more apparent numerically. For example, the original range of NDWI values in Barisal is 

-0.50 to 0.65. After using the filter, the range lengthens from -14.83 to 8.95. Visually, the filter 

highlights boundaries but does make many of the pixels become a very similar grey color (Figure 

12B).  
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Figure 12. NDWI image in western Barisal (A) before and (B) after the Laplacian 5×5 
convolution filter was applied (Centroid: 22° 51' 38.37" N, 90° 5' 53.28" E) 

 The results of applying the Laplacian 5×5 convolution filter were mixed; however, every 

district saw a large increase in the overall number of fishponds identified, with some now seeing 

over 100,000 fishponds (Table A40). Bagerhat, Bhola, Gopalganj, Jessore, and Khulna had all 

their ground-truthing fishponds identified before classification. Jessore performed the best with 

edge detection seeing all 113 ground-truthing fishponds and 91.5% of the area correctly identified 

before any classifier was used. Despite Jessore’s high performance, the water body identification 

pre-classifier decreased with adding edge-detection from 95% to 91.5%. Satkhira experienced a 

similar result from adding edge-detection with the ground-truth area identified decreasing from 

91% to 82%. Oppositely, Gopalganj, Barisal, and Bhola all increased their ground-truthing 

fishpond area identification at the pre-classifier stage from 54% to 68%, 26% to 58%, and 20% to 

57%, respectively. The same district divide was seen with the post-classifier results as well. Barisal 

and Bhola saw an increase in their post-classifier area identification for both LR and CART. The 

ground-truthing fishpond area percentage for Jessore decreased from 94.3% to 91.4% with LR and 

from 3% to 0% with CART using edge-detection. Satkhira saw a slight increase from 0.3% to 5% 

for the CART classifier, but its LR dropped from 93% to 56% ground-truth area identification.  
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3.3.6 Evaluating the Impact of Ground-Truthing Data on Machine Learning Training 

(Improvement 5) 

To train machine learning classifiers, the Base Method manually traced suspected 

fishponds from historical satellite images. The water bodies they traced may have only been 

representative of one type of fishpond because homestead ponds and gher with rice are very 

difficult to identify as fishponds. To improve the machine learning classifier training, we used 

detailed ground-truthing data for all four types of ponds described previously. In addition to this, 

we had ground-truthing data for non-fishpond water bodies that would provide juxtaposing 

training data. Table 14 compares the performance of the machine learning classifiers when they 

are trained with ground-truthing data versus historical imagery that was used in the Yu et al. 

(2020). The recall significantly increased from 0.538 to 0.989 for LR and from 0.495 to 0.827 for 

CART. This shows that the ground-truthing data is decreasing the number of false negatives. The 

precision score decreased from 0.788 for LR and 0.773 for CART to 0.594 and 0.738, respectively, 

when using the ground-truthing data for machine learning training. A decrease in precision implies 

an increase in the number of false positives. The increases in recall and F1 score show that utilizing 

ground-truthing data improves the performance of both the LR and CART classifiers, but the 

decrease in precision increases the number of false positives compared to the Base Method.  
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Table 14. Comparing statistics from Yu et al. (2020) machine learning training with historical 
imagery to our ground-truthing data training. 

Training method Performance 
Criteria 

Logistic Regression Classification and 
Regression Trees 

Yu et al. (2020) 
Historical imagery 

Precision 0.788 0.773 
Recall 0.538 0.495 
F1 Score 0.640 0.604 

Ground-truthing data  Precision 0.594 0.738 
Recall 0.898 0.827 
F1 Score 0.715 0.780 

 

3.3.7 Adding Random Forest and Support Vector Machine Classifiers to Determine the Best 

Classifier for the Data (Improvement 6) 

 In addition to LR and CART, RF and SVM are widely recognized classifiers and can be 

used for many different research applications that require the differentiation of two or more classes 

(Agmalaro et al., 2021), Yan et al., 2021, Iordache et al., 2020). To improve the classification 

results, we added RF and SVM since they are identified as promising classifiers (Maxwell et al., 

2018). Overall, the LR and SVM classifiers identified more ground-truthing fishponds both in 

terms of area percentage and total number than the CART and RF (Table A41 and Table A42). 

Figure 13 shows how the results of the RF and CART are similar to each other as well as how 

similar the results from LR and SVM are. The district with the best performance is Jessore, with 

both LR and SVM classifying 91% of the ground-truthing fishpond area and all 113 ground-

truthing fishponds correctly. Jessore is also where there is the most drastic difference in 

performance by classifiers was observed. This could be due to the predominant presence of large 

water polygons in Jessore. LR and SVM tend to classify the large polygons are fishponds, whereas 

RF and CART do not. The RF and CART classifiers in Jessore performed the worst out of any 

district with 3% ground-truthing fishpond area identification and 3 of 113 fishponds correctly 

identified. Introducing two additional classifier types yielded similar results to the Base Method.  



73 
 

  

Figure 13. Ground-truthing fishpond area percentage identified by each classifier type. 

Table 15 compares the precision, recall, and F1 scores for each of the four classifier types 

we used. The F1 scores are all very similar to each other, with the range from lowest value (0.706) 

to highest (0.780) being only 0.074. The LR recall and precision results are interesting because it 

has the worst precision, but the best recall meaning the LR is very good at preventing false 

negatives, but the worst at preventing false positives. RF has the exact opposite results with the 

highest precision and the lowest recall. Both LR and RF have lower F1 scores. CART and SVM 

fall between LR and RF for precision and recall, but because of their consistency, they have the 

two higher F1 scores. From these scores, we can conclude that LR is over-classifying fishponds 

and RF is under-classifying fishponds. When looking at the results in Figure 13, we can conclude 

that since SVM performed very similarly to LR, it must also be over-classifying. In addition, since 

RF typically identifies less than CART and RF under-classifies, CART can be the best final option. 
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Table 15. Comparing the training performance of the four classifiers on the validation ground-
truthing data.  

Performance 
Criteria 

Logistic 
Regression 

Classification and 
Regression Trees 

Random 
Forest 

Support Vector 
Machine 

Precision 0.594 0.738 0.784 0.720 

Recall 0.898 0.827 0.645 0.822 

F1 Score 0.715 0.780 0.706 0.768 

 

 The total number of classified fishponds for each district also supports the conclusion that 

CART is the best middle ground (Table A41 and Table A42). Figure 14 shows the classifier results 

from LR, CART, RF, and SVM in eastern Gopalganj as compared to the ground-truth fishponds 

in that location. Since the data shows that LR is over-classifying, we can conclude SVM must also 

be since SVM classifies 3 to 5 times as many fishponds as LR does. This conclusion is also backed 

by the fact that LR and SVM are very similar classifiers, so it is realistic that they would behave 

similarly (Zhang et al., 2003). The CART classifier numbers always fall below LR and above RF 

levels. This could also support our previous finding that CART provides the best classification out 

of the four.  
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Figure 14. Comparison example of classified fishponds in eastern Gopalganj using (A) Logistic 
Regression, (B) Classification and Regression Trees, (C) Random Forest, and (D) Support 

Vector Machine. Ground truthing fishponds are in orange and classified fishponds are in blue.  
(Centroid: 23° 0' 17.9136'' N, 90° 3' 46.8936'' E). 

3.3.8 The Overall Enhancement in Fishpond Detection as Results of the Proposed 

Improvements based on Medium-Resolution and High-Resolution Imagery 

 We calculated the mean relative error for four different scenarios to determine whether the 

six proposed improvements considerably enhanced the capability of the Base Method for detecting 

fishponds. The scenarios that are considered here are the Base Method before classification, the 

Enhanced Method (considering all improvements) before classification, the Base Method using 

LR, and the Enhanced Method using CART.  Table 16 outlines these statistics. The mean relative 

difference closest to 0 is the Enhanced Method without classifier (lower and upper limits of -34.4% 
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and -31.3%). This means that the Enhanced Method is regularly 31-34% under detecting the 

ground-truthing area. The other three scenarios had mean relative differences very close to -100%. 

The Enhanced Method CART mean relative difference was better than for the Base Method pre-

and post-LR. This shows that the Enhanced Method without classification considerably improves 

upon the Base Method water identification.  

Table 16. The lower and upper limits for the mean relative difference of the Based and Enhanced 
Methods performances before and after a machine learning classifier.  

Scenarios 
Mean relative difference 

Lower limit Upper limit 

Base Method before 
classifier 

-99.4% -98.5% 

Enhanced Method before 
classifier  

-34.4% -31.3% 

Base Method with Logistic 
Regression 

-99.7% -97.7% 

Enhanced Method with 
Classification and 
Regression Trees 

-91.5% -88.6% 

 

 Having access to high-resolution imagery can improve the results of the Enhanced Method 

significantly. A WorldView-2 image was obtained for an area of 45 km2 in Jamalnagar, Satkhira 

to analyze the performance of the Enhanced Method. The high-resolution image was used to 

identify the boundaries around all land plots and intersected those boundaries with the final 

Enhanced Method for Satkhira. Figure 15 compares the boundary identification from the 

WorldView-2 image, the Base Method water identification, the Enhanced Method water 

identification, and the intersect of the WorldView-2 boundaries and the Enhanced Method. We 

applied the CART classification to the intersect of WorldView-2 and the Enhanced Method to 

compare it to the Enhanced Method fishpond identification alone. There are 47 ground-truth 
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fishponds in this region. The Enhanced Method correctly identified 9 of the 47 whereas the 

intersect correctly identified 29 of the 47 fishponds. In addition, the area of fishponds correctly 

identified was doubled with the introduction of the high-resolution boundaries. The improvement 

in fishpond and area identification in one small region shows that having access to high-resolution 

imagery would refine the results of the Enhanced Method even further. In summary, using high-

resolution imagery would significantly improve boundary detection around fishponds and provide 

more accurate water locations.  

Figure 15. Impacts of high-resolution imagery in Jamalnagar, Satkhira. (A) High-resolution 
boundary identification, (B) Base Method water identification, (C) Enhanced Method water  

 

¯
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Figure 15 (cont’d) 
 identification, and (D) Intersect of Enhanced Method and high-resolution boundaries. (Centroid: 

22° 34' 57.6624'' N, 89° 12' 12.1536'' E) 
 

 

3.3.9 Land Use and Ground Truth Fishpond Characteristics to Explain Trends in Results 

 All seven districts within the study region are very different from each other. This makes 

creating one over-arching method very difficult. We looked at the land use surrounding the ground-

truth fishponds to see if there was a trend in districts that performed better/worse than others. To 

do this, we tested buffer sizes of 10 m, 50 m, and 100 m around ground-truth fishponds in each 

district separately (Table A43-Table A45). The predominant land use types in all districts were 

cultivated land, water bodies, and artificial surfaces. Bhola and Barisal had the lowest percentage 

of ground-truthing fishpond area identified before the machine learning classifier. These two 

districts had the highest percentage of artificial surfaces, with Bhola seeing 73% and Barisal having 

just under 50% with the 100 m buffer. All other districts had artificial surfaces as 26% or less of 

their land use at 100 m. Water and artificial surfaces may have very similar reflectance values 

(Worden & de Beurs, 2020). In this instance, since there was a very high percentage of artificial 

surfaces and a very low percentage of water, the indexes may be identifying artificial surfaces 

instead of water during Otsu Segmentation.   

 The median size ground-truthing fishpond also varied significantly by district (Table A46). 

The district with the smallest median size ground-truthing fishpond was Bhola (713 m2), followed 

by Barisal (833 m2), then Satkhira (1252 m2). All other districts had median ground-truthing 

fishponds larger than 2,200 m2. The combination of having the least and smallest ground-truthing 

fishponds may be why the improved methods performed the worst in Bhola. Barisal had more 
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ground truth fishponds with 168, but they were additionally much smaller than other districts. This 

could explain why the Enhanced Method performed worse in Barisal than other districts. 

3.4 Conclusion 

 Aquaculture is becoming increasingly more important in regions that relies heavily on fish 

for food, but capture fisheries are producing less and less. Identifying where aquaculture is 

occurring is critical in understanding the industry, how it operates, and the areas it can improve in. 

With this information, we can estimate total production, inform policy, or analyze trends in 

aquaculture locations.  

 This study showed that the approach taken for identifying fishponds must be tailored to the 

characteristics of the fishponds, the fishponds’ surrounding areas, and the satellite data being used. 

The best approach for this is to test the time period for image capture, the buffer size for image 

optimization with Otsu Segmentation, the combination of water-identifying indexes, the image 

reducer type, and the machine learning classifier type. Utilizing edge-detection techniques and 

high-resolution imageries can improve the overall waterbody detection. For south-west and south-

central Bangladesh, limiting the number of images for a specific time period results in an increased 

number of waterbodies detected. One reason for this is that additional errors can be introduced 

when combining multiple images together if an image does not capture the period with water. The 

buffer size for threshold optimization of water and non-water had an enormous impact on the 

results. The 5-pixel buffer performed the best for our study region. This proves that including more 

pixels in image thresholding results in better thresholds altogether, especially when the shape and 

size of the fishponds change throughout the year. Of the three water indices, NDWI and AWEI 

performed the best for the region, but this varies on location and land use/cover characteristics. 

The Mode reducer did allow for more waterbodies to be identified than the allNonZero image 
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reducer when working with more than one image for the study region. The image reducer type, in 

the end, did not matter for the Enhanced Method since one image is usually selected for fishpond 

detection. The training dataset for machine learning plays an important role in identifying the best 

classifier. Having diverse and representative ground-truthing fishponds will improve the machine 

learning classifiers.  

Some of the challenges that were observed in this study include 1) size of the study area: 

due to the size of the study area and the limitation of the GEE platform computational power, many 

of the tasks proposed in this study could not be executed for the entire region. One way to address 

this issue was to divide the study area into seven districts and apply various tasks separately for 

each district; 2) threshold optimization: in the original Base Method, one threshold value for water 

detection was obtained for the study region; however, our results showed that this approach does 

not work in a large region. Therefore, in this study, we optimized the threshold values based on 

the water index values at the district level. One alternative is to train the system based on the 

region's physiographical and climatological characteristics instead of its political boundaries. 

Using agroclimotological zone is one alternative but is not a good representation of the fishpond 

distribution and attributes; and 3) high-resolution imagery: Our study showed that using high-

resolution imagery can significantly improve the overall performance of the Enhanced Method in 

detecting fishponds. Having high-resolution imagery would be very beneficial in identifying the 

boundaries between fishponds and breaking up any large polygons. As the cost for high-resolution 

imagery decreases, these six strategies will become increasingly more useful and 4) rainy season: 

The rainy and monsoon season in Bangladesh is from June through mid-October. This limits the 

availability of high-quality images with low cloud coverage. In fact, our study showed that the 

viable images for this study are mainly available from January to May and October to December. 
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One solution can be the combined usage of SAR and optical imaging in identifying small 

waterbodies. Ultimately, verification of the Enhanced Method in other regions is crucial to 

examine the reliability of the proposed method.  
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4 OVERALL CONCLUSION 

 Aquaculture in Bangladesh is growing very rapidly and plays an important role in 

addressing agriculture and food security.  Therefore, mapping and classifying fishponds is 

essential for economic purposes and understanding how land use is changing. Better statistics on 

aquaculture come from two different methods: surveys or remote sensing. Surveys are time-

consuming and costly to be a viable option for the large-scale study. Meanwhile, utilizing remote 

sensing data can be a good alternative as it can cover a large area and can be implemented in a 

platform such as GEE that is available for free.  However, the products from remote sensing do 

not have the same accuracy as the survey and should be calibrated based on ground-truthing data.  

 The research found that the process used to identify fishponds must be specific to the region 

where it is applied, as the complexity of the region does not allow for the development of the 

universal fishpond detection algorithm. Therefore, we developed six strategies for identifying 

fishponds that can build off each other and can be applied broadly. The findings from each of these 

strategies are presented below: 

(1) When determining the best time-period for image identification, it was concluded that the 

fewer images analyzed, the higher the fishpond identification was. This relies on knowing 

when the typical fishpond has water and the climate of the region to determine the best 

single image to use.  

(2) To optimize the threshold between water and non-water, using a larger buffer size around 

waterbodies yielded higher fishpond identification.  

(3) Regardless of the region of study, several water-identifying indexes should be tested to 

determine whether a single index or combination of indices should be selected to detect 

existing waterbodies.  



83 
 

(4) In general, detecting fishpond shapes in Bangladesh can be challenging as the boundary 

widths around fishponds are generally smaller than the resolution of the optical imagery. 

Therefore, utilizing edge-detection techniques can increase the number of waterbodies 

identified and can be used to differentiate between land plots.  

(5) Performing a limited but targeted ground-truthing survey can help the overall performance 

of machine learning techniques.  

(6) Due to spatial and temporal variabilities of fishpond types and shapes in Bangladesh, not a 

single machine learning technique could be identified as the best. Therefore, it is 

recommended to test different machine learning classifiers to ensure the selection of the 

most robust technique for different regions (e.g., district).  
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5 FUTURE RESEARCH RECOMMENDATIONS 

 This research provided six strategies to improve fishpond identification in the south-west 

and south-central Bangladesh. However, due to the limitations of using medium-resolution 

imagery, the results cannot be further improved as the boundary of the fishponds in the region is 

smaller, in many cases, than the resolution of the satellite imagery.  Therefore, additional research 

should be mainly focused on fishpond boundary detection. Below, more specific recommendations 

are provided for future studies: 

 Apply the six improvement strategies in different Southeast Asian countries with similar 

fishpond prevalence as this study to evaluate the overall robustness of the proposed 

strategies.  

 Adjust the proposed improvement strategies with high-resolution imagery to better detect 

fishpond shapes and characteristics.  

 Explore the applicability of other satellite imagery and datasets as inputs to the proposed 

fishpond detection strategies. Among the existing imageries, SAR seems to be promising 

as it has been used for detecting waterbodies. In addition, the problem with cloudiness is 

not impacting the quality of the imagery as radar sensors can see through clouds.   

 Improve the threshold optimization through better identification of fishpond zones (e.g., 

land use/land cover) within a study area. As the utilized boundary for this study (i.e., 

district) does not capture the spatial variabilities of fishpond settings.  
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Figure A1.  Land use map of the study region (adapted from region (China Ministry of Natural 

Resources, 2020)) 
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Figure A2. Distribution of Ground Truthing Data locations by type. 
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Table A1. Land cover as percentage of area for each district within the study region (China 
Ministry of Natural Resources, 2020) 

 

Land Cover 
Percentage of area within each District 

Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 

Cultivated Land 69.9 60.7 52.5 84.1 67.4 56.0 38.2 

Forest 0 0.1 2.0 0 0 0 0 

Grass Land 0 0.1 1.0 0 0 0 0 

Shrub Land 0 0 0.3 0 0 0 0 

Wetland 0.4 0.7 13.3 0.1 0.2 0.4 0.1 

Water Body 6.3 9.2 7.0 2.2 3.0 22.6 39.0 
Artificial 
Surfaces 

23.4 29.1 23.8 13.6 29.4 21.0 22.7 

Bareland 0 0.1 0.1 0 0 0 0 
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Table A2. Numbers of ground-truthing data fishponds and non-fishponds by district.   

District Number of fishponds Number of non-fishponds 

Bagerhat 235 144 

Barisal 168 32 

Bhola 27 2 

Gopalganj 77 131 

Jessore 113 111 

Khulna 163 146 

Satkhira 208 175 
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Table A3. Base method comparison for all seven districts.  

District 
Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 

Classifier Type 
LR* CART** LR* CART** LR* CART** LR* CART** LR* CART** LR* CART** LR* CART** 

Percentage of 
GT*** fishpond 
area identified 
pre-classifier 

9% 9% 0.2%  
 

0.2% 
 

0% 0% 6% 6% 0.8% 0.8% 0% 0% 0% 0% 

 
GT*** fishponds 
identified pre- 
classification  

25 of 235 
25 of 
235 

1 of 168 1 of 168 0 of 27 0 of 27 7 of 77 7 of 77 13 of 113 
13 of 
113 

1 of 163 1 of 163 0 of 208 0 of 208 

Percentage of 
GT*** fishpond 
area identified 
post-classifier  9% 5% 0% 0% 0% 0% 6% 5% 0.5% 0.2% 0% 0% 0% 0% 

GT*** fishponds 
identified post- 
classification 

16 of 235 5 of 235 0 of 168 0 of 168 0 of 27 0 of 27 3 of 77 2 of 77 4 of 113 2 of 113 0 of 163 0 of 163 0 of 208 0 of 208 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A4. Time period comparison for Bagerhat.  

Time Frame Year Month Day 

Classifier Type LR* CART** LR* CART** LR* CART** 

Buffer Size 
5 5 5 5 5 5 

Percentage of GT*** 
fishpond area identified 
pre-classifier  

9% 9% 52% 52% 67% 67% 

GT*** fishponds 
identified pre- 
classification 

25 of 235 25 of 235 139 of 235 139 of 235 182 of 235 182 of 235 

Percentage of GT*** 
fishpond area identified 
post-classifier   

9% 5% 51% 19% 66% 16% 

GT*** fishponds 
identified post- 
classification 

16 of 235 5 of 235 117 of 235 49 of 235 159 of 235 51 of 235 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A5. Time period comparison for Barisal.  

Time Frame Year Month Day 
Classifier Type LR* CART** LR* CART** LR* CART** 
Buffer Size 

5 5 5 5 5 5 

Percentage of GT*** 
fishpond area identified 
pre-classifier  

0.2% 0.2% 4% 4% 16% 16% 

GT*** fishponds 
identified pre- 
classification 1 of 168 1 of 168 8 of 168 8 of 168 28 of 168 28 of 168 

Percentage of GT*** 
fishpond area identified 
post-classifier   

0% 0% 4% 4% 13% 12% 

GT*** fishponds 
identified post- 
classification 

0 of 168 0 of 168 3 of 168 4 of 168 11 of 168 10 of 168 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 

 
 
 
 
  



93 
 

Table A6. Time period comparison for Bhola.  

Time Frame Year Month Day 

Classifier Type LR* CART** LR* CART** LR* CART** 

Buffer Size 
5 5 5 5 5 5 

Percentage of GT*** 
fishpond area identified 
pre-classifier  

0% 0% 0% 0% 3% 3% 

GT*** fishponds 
identified pre- 
classification 0 of 27 0 of 27 0 of 27 0 of 27 1 of 27 1 of 27 

Percentage of GT*** 
fishpond area identified 
post-classifier   

0% 0% 0% 0% 3% 3% 

GT*** fishponds 
identified post- 
classification 

0 of 27 0 of 27 0 of 27 0 of 27 1 of 27 1 of 27 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A7. Time period comparison for Gopaglanj.  

Time Frame Year Month Day 

Classifier Type LR* CART** LR* CART** LR* CART** 

Buffer Size 
5 5 5 5 5 5 

Percentage of GT*** 
fishpond area identified 
pre-classifier  

6% 6% 22% 22% 36% 36% 

GT*** fishponds 
identified pre- 
classification 7 of 77 7 of 77 44 of 77 44 of 77 66 of 77 66 of 77 

Percentage of GT*** 
fishpond area identified 
post-classifier   

6% 5% 19% 11% 30% 23% 

GT*** fishponds 
identified post- 
classification 

3 of 77 2 of 77 19 of 77 6 of 77 36 of 77 22 of 77 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A8. Time period comparison for Jessore.  

Time Frame Year Month Day 
Classifier Type LR* CART** LR* CART** LR* CART** 
Buffer Size 

5 5 5 5 5 5 

Percentage of GT*** 
fishpond area identified 
pre-classifier  

1% 1% 44% 44% 91% 91% 

GT*** fishponds 
identified pre- 
classification 13 of 113 13 of 113 70 of 113 70 of 113 99 of 113 99 of 113 

Percentage of GT*** 
fishpond area identified 
post-classifier   

0.5% 0.2% 43% 6% 91% 3% 

GT*** fishponds 
identified post- 
classification 

4 of 113 2 of 113 59 of 113 9 of 113 90 of 113 7 of 113 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A9. Time period comparison for Khulna.  

Time Frame Year Month Day 
Classifier Type LR* CART** LR* CART** LR* CART** 

Buffer Size 
5 5 5 5 5 5 

Percentage of GT*** 
fishpond area identified 
pre-classifier  

0% 0% 36% 36% 67% 67% 

GT*** fishponds 
identified pre- 
classification 

1 of 163 1 of 163 71 of 163 71 of 163 112 of 163 112 of 163 

Percentage of GT*** 
fishpond area identified 
post-classifier   

0% 0% 33% 9% 65% 5% 

GT*** fishponds 
identified post- 
classification 

0 of 163 0 of 163 60 of 163 19 of 163 95 of 163 15 of 163 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A10. Time period comparison for Satkhira.  

Time Frame Year Month Day 
Classifier Type LR* CART** LR* CART** LR* CART** 

Buffer Size 
5 5 5 5 5 5 

Percentage of GT*** 
fishpond area identified 
pre-classifier  

0% 0% 66% 66% 85% 85% 

GT*** fishponds 
identified pre- 
classification 0 of 208 0 of 208 75 of 208 75 of 208 115 of 208 115 of 208 

Percentage of GT*** 
fishpond area identified 
post-classifier   

0% 0% 66% 1% 84% 1% 

GT*** fishponds 
identified post- 
classification 

0 of 208 0 of 208 72 of 208 9 of 208 103 of 208 14 of 208 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A11. Buffer size comparison for Bagerhat for both month and single day.  

Time frame 
Month Month Month Month Day Day Day Day 

Classifier 
type LR* 

CART*

* LR* 
CART*

* LR* CART** LR* 
CART

** LR* CART** LR* CART** LR* CART** LR* CART** 
Buffer Size 

5 5 3 3 1 1 0 0 5 5 3 3 1 1 0 0 

Percentage 
of GT*** 
fishpond 
area 
identified 
pre-
classifier  

52% 52% 50% 50% 45% 45% 42% 42% 67% 67% 66% 66% 61% 61% 58% 58% 

GT*** 
fishponds 
identified 
pre- 
classificatio
n 

139 of 
235 

139 of 
235 

136 of 
235 

136 of 
235 

111 of 
235 

111 of 
235 

95 of 
235 

95 of 
235 

182 of 
235 

182 of 
235 

180 of 
235 

180 of 
235 

157 of 
235 

157 of 
235 

141 of 
235 

141 of 
235 

Percentage 
of GT*** 
fishpond 
area 
identified 
post-
classifier  

51% 19% 49% 17% 44% 0% 41% 13% 66% 16% 65% 15% 60% 13% 57% 15% 

GT*** 
fishponds 
identified 
post- 
classificatio
n 

117 of 
235 

49 of 
235 

107 of 
235 

48 of 
235 

87 of 
235 

0 of 235 
80 of 
235 

39 of 
235 

159 of 
235 

51 of 
235 

156 of 
235 

50 of 
235 

138 of 
235 

46 of 
235 

131 of 
235 

44 of 
235 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A12. Buffer size comparison for Barisal for both month and single day.  

Time frame 
Month Month Month Month Day Day Day Day 

Classifier 
type LR* 

CART*

* 
LR* 

CART*

* 
LR* CART** LR* 

CART
** 

LR* CART** LR* CART** LR* CART** LR* CART** 

Buffer Size 
5 5 3 3 1 1 0 0 5 5 3 3 1 1 0 0 

Percentage 
of GT*** 
fishpond 
area 
identified 
pre-
classifier  

4.3% 4.3% 3% 3% 1% 1% 1% 1% 16% 16% 13% 13% 10% 10% 6% 6% 

GT*** 
fishponds 
identified 
pre- 
classificati
on 

8 of 
168 

8 of 
168 

7 of 
168 

7 of 
168 

4 of 168 4 of 168 
2 of 
168 

2 of 
168 

28 of 
168 

28 of 
168 

22 of 
168 

22 of 
168 

12 of 
168 

12 of 
168 

8 of 
168 

8 of 
168 

Percentage 
of GT*** 
fishpond 
area 
identified 
post-
classifier   

4% 4% 2% 3% 1% 0% 0% 1% 13% 12% 12% 8% 9% 6% 5% 4% 

GT*** 
fishponds 
identified 
post- 
classificati
on 

3 of 
168 

4 of 
168 

3 of 
168 

4 of 
168 

1 of 168 0 of 168 
0 of 
168 

1 of 
168 

11 of 
168 

10 of 
168 

11 of 
168 

6 of 
168 

9 of 
168 

3 of 
168 

4 of 
168 

3 of 
168 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A13. Buffer size comparison for Bhola for both month and single day.  

Time frame 
Month Month Month Month Day Day Day Day 

Classifier 
type LR* 

CART*

* 
LR* 

CART*

* 
LR* CART** LR* 

CART
** 

LR* CART** LR* CART** LR* CART** LR* CART** 

Buffer Size 
5 5 3 3 1 1 0 0 5 5 3 3 1 1 0 0 

Percentage 
of GT*** 
fishpond 
area 
identified 
pre-
classifier  

0% 0% 0% 0% 0% 0% 0% 0% 3% 3% 1% 1% 0% 0% 0% 0% 

GT*** 
fishponds 
identified 
pre- 
classificatio
n 

0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 1 of 27 1 of 27 1 of 27 1 of 27 0 of 27 0 of 27 0 of 27 0 of 27 

Percentage 
of GT*** 
fishpond 
area 
identified 
post-
classifier   

0% 0% 0% 0% 0% 0% 0% 0% 3% 3% 0% 0% 0% 0% 0% 0% 

GT*** 
fishponds 
identified 
post- 
classificatio
n 

0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 1 of 27 1 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A14. Buffer size comparison for Gopalganj for both month and single day.  

Time frame 
Month Month Month Month Day Day Day Day 

Classifier 
type LR* 

CART
** 

LR* CART** LR* CART** LR* CART** LR* CART** LR* CART** LR* CART** LR* CART** 

Buffer Size 
5 5 3 3 1 1 0 0 5 5 3 3 1 1 0 0 

Percentage 
of GT*** 
fishpond 
area 
identified 
pre-classifier  

22% 22% 20% 20% 13% 13% 9% 9% 36% 36% 35% 35% 32% 32% 30% 30% 

GT*** 
fishponds 
identified 
pre- 
classification 

44 of 
77 

44 of 
77 

42 of 
77 

42 of 
77 

24 of 
77 

24 of 
77 

13 of 
77 

13 of 
77 

66 of 
77 

66 of 
77 

65 of 
77 

65 of 
77 

62 of 
77 

62 of 
77 

55 of 
77 

55 of 
77 

Percentage 
of GT*** 
fishpond 
area 
identified 
post-
classifier   

19% 11% 18% 13% 8% 0% 9% 6% 30% 23% 30% 23% 28% 21% 28% 18% 

GT*** 
fishponds 
identified 
post- 
classification 

19 of 
77 

6 of 
77 

19 of 
77 

9 of 77 8 of 77 0 of 77 7 of 77 3 of 77 
36 of 

77 
22 of 

77 
38 of 

77 
21 of 

77 
36 of 

77 
20 of 

77 
37 of 

77 
15 of 

77 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A15. Buffer size comparison for Jessore for both month and single day.  

Time 
frame Month Month Month Month Day Day Day Day 

Classifier 
type LR* 

CART*

* 
LR* 

CART*

* 
LR* 

CART*

* 
LR* 

CART*

* 
LR* 

CART*

* 
LR* 

CART*

* 
LR* 

CART*

* 
LR* 

CART*

* 
Buffer 
Size 5 5 3 3 1 1 0 0 5 5 3 3 1 1 0 0 

Percentag
e of GT*** 
fishpond 
area 
identified 
pre-
classifier  

44% 44% 38% 38% 22% 22% 18% 18% 91% 91% 91% 91% 89% 89% 86% 86% 

GT*** 
fishponds 
identified 
pre- 
classificat
ion 

70 of 
113 

70 of 
113 

62 of 
113 

62 of 
113 

43 of 
113 

43 of 
113 

35 of 
113 

35 of 
113 

99 of 
113 

99 of 
113 

97 of 
113 

97 of 
113 

91 of 
113 

91 of 
113 

90 of 
113 

90 of 
113 

Percentag
e of GT*** 
fishpond 
area 
identified 
post-
classifier   

43% 6% 37% 6% 21% 0% 17% 6% 91% 3% 90% 1% 88% 1% 86% 1% 

GT*** 
fishponds 
identified 
post- 
classificat
ion 

59 of 
113 

9 of 
113 

55 of 
113 

13 of 
113 

33 of 
113 

0 of 
113 

26 of 
113 

10 of 
113 

90 of 
113 

7 of 
113 

90 of 
113 

5 of 
113 

88 of 
113 

6 of 
113 

85 of 
113 

5 of 
113 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A16. Buffer size comparison for Khulna for both month and single day.  

Time 
frame Month Month Month Month Day Day Day Day 

Classifier 
type LR* 

CART*

* 
LR* 

CART*

* 
LR* 

CART*

* 
LR* 

CART*

* 
LR* CART** LR* CART** LR* CART** LR* 

CART*

* 

Buffer 
Size 5 5 3 3 1 1 0 0 5 5 3 3 1 1 0 0 

Percentag
e of 
GT*** 
fishpond 
area 
identified 
pre-
classifier  

36% 36% 32% 32% 29% 29% 27% 27% 67% 67% 66% 66% 62% 62% 59% 59% 

GT*** 
fishponds 
identified 
pre- 
classificat
ion 

71 of 
163 

71 of 
163 

66 of 
163 

66 of 
163 

60 of 
163 

60 of 
163 

58 of 
163 

58 of 
163 

112 of 
163 

112 of 
163 

110 of 
163 

110 of 
163 

103 of 
163 

103 of 
163 

98 of 
163 

98 of 
163 

Percentag
e of 
GT*** 
fishpond 
area 
identified 
post-
classifier   

33% 9% 30% 8% 27% 0% 0% 7% 65% 5% 65% 6% 61% 5% 56% 9% 

GT*** 
fishponds 
identified 
post- 
classificat
ion 

60 of 
163 

19 of 
163 

56 of 
163 

19 of 
163 

48 of 
163 

0 of 
163 

0 of 
163 

15 of 
163 

95 of 
163 

15 of 
163 

93 of 
163 

16 of 
163 

90 of 
163 

17 of 
163 

84 of 
163 

21 of 
163 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A17. Buffer size comparison for Satkhira for both month and single day.  

Time frame 
Month Month Month Month Day Day Day Day 

Classifier 
type LR* 

CART*

* 
LR* 

CART*

* 
LR* CART** LR* 

CART
** 

LR* CART** LR* CART** LR* CART** LR* 
CART*

* 

Buffer Size 
5 5 3 3 1 1 0 0 5 5 3 3 1 1 0 0 

Percentage 
of GT*** 
fishpond 
area 
identified 
pre-
classifier  

66% 66% 64% 64% 61% 61% 60% 60% 85% 85% 84% 84% 84% 84% 83% 83% 

GT*** 
fishponds 
identified 
pre- 
classificati
on 

75 of 
208 

75 of 
208 

73 of 
208 

73 of 
208 

69 of 
208 

69 of 
208 

67 of 
208 

67 of 
208 

115 of 
208 

115 of 
208 

108 of 
208 

108 of 
208 

101 of 
208 

101 of 
208 

94 of 
208 

94 of 
208 

Percentage 
of GT*** 
fishpond 
area 
identified 
post-
classifier   

66% 1% 64% 2% 61% 1% 60% 5% 84% 1% 84% 1% 83% 1% 83% 1% 

GT*** 
fishponds 
identified 
post- 
classificati
on 

72 of 
208 

9 of 
208 

69 of 
208 

9 of 
208 

65 of 
208 

7 of 208 
62 of 
208 

10 of 
208 

103 of 
208 

14 of 
208 

101 of 
208 

13 of 
208 

91 of 
208 

6 of 
208 

91 of 
208 

6 of 
208 

* Logistic Regression 

** Classification and Regression Trees 
***Ground truthing 
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Table A18. Mode reducer applied for one month period in Bagerhat comparing water-identifying index combinations.  

Index Type Combined AWEId MNDWIe NDWIf 

Classifier Type LR a CART b LR a CART b LR a CART b LR a CART b 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of GTc fishpond 
area identified pre-classifier  

64% 64% 74% 74% 57% 57% 62% 62% 

GTc fishponds identified pre- 
classification 

171 of 235 171 of 235 183 of 235 183 of 235 145 of 235 145 of 235 182 of 235 182 of 235 

Percentage of GTc fishpond 
area identified post-classifier   

63% 19% 73% 15% 56% 22% 60% 19% 

GTc fishponds identified post- 
classification 

141 of 235 59 of 235 174 of 235 37 of 235 129 of 235 57 of 235 142 of 235 51 of 235 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A19. Mode reducer applied for one month period in Barisal comparing water-identifying index combinations.  

Index Type Combined AWEId MNDWIe NDWIf 

Classifier Type LR a CART b LR a CART b LR a CART b LR a CART b 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of GTc fishpond 
area identified pre-classifier  

12% 12% 14% 14% 8% 8% 17% 17% 

GTc fishponds identified pre- 
classification 

 17 of 168  17 of 168 20 of 168 20 of 168  11 of 168  11 of 168  40 of 168  40 of 168 

Percentage of GTc fishpond 
area identified post-classifier   

11% 9% 13% 11% 8% 7% 13% 13% 

GTc fishponds identified post- 
classification 

12 of 168 6 of 168 15 of 168 10 of 168 7 of 168 5 of 168 14 of 168 13 of 168 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A20. Mode reducer applied for one month period in Bhola comparing water-identifying index combinations.  

Index Type Combined AWEId MNDWIe NDWIf 

Classifier Type LR a CART b LR a CART b LR a CART b LR a CART b 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of GTc fishpond 
area identified pre-classifier  

0% 0% 0% 0% 0% 0% 7% 7% 

GTc fishponds identified pre- 
classification 

0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 5 of 27 5 of 27 

Percentage of GTc fishpond 
area identified post-classifier   

0% 0% 0% 0% 0% 0% 0% 0% 

GTc fishponds identified post- 
classification 

0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A21. Mode reducer applied for one month period in Gopalganj comparing water-identifying index combinations.  

Index Type Combined AWEId MNDWIe NDWIf 

Classifier Type LR a CART b LR a CART b LR a CART b LR a CART b 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of GTc fishpond 
area identified pre-classifier  

30% 30% 48% 48% 14% 14% 33% 33% 

GTc fishponds identified 
pre- classification 

58 of 77 58 of 77 62 of 77 62 of 77 22 of 77 22 of 77 61 of 77 61 of 77 

Percentage of GTc fishpond 
area identified post-
classifier   

24% 19% 46% 30% 10% 9% 26% 20% 

GTc fishponds identified 
post- classification 

25 of 77 14 of 77 49 of 77 26 of 77 10 of 77 7of 77 26 of 77 16 of 77 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A22. Mode reducer applied for one month period in Jessore comparing water-identifying index combinations.  

Index Type Combined AWEId MNDWIe NDWIf 

Classifier Type LR a CART b LR a CART b LR a CART b LR a CART b 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of GTc 
fishpond area identified 
pre-classifier  

88% 88% 94% 94% 85% 85% 85% 85% 

GTc fishponds identified 
pre- classification 

95 of 113 95 of 113 98 of 113 98 of 113 87 of 113 87 of 113 98 of 113 98 of 113 

Percentage of GTc 
fishpond area identified 
post-classifier   

87% 1% 94% 3% 84% 0% 84% 3% 

GTc fishponds identified 
post- classification 

88 of 113 5 of 113 94 of 113 6 of 113 84 of 113 2 of 113 87 of 113 10 of 113 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A23. Mode reducer applied for one month period in Khulna comparing water-identifying index combinations.  

Index Type Combined AWEId MNDWIe NDWIf 

Classifier Type LR a CART b LR a CART b LR a CART b LR a CART b 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of GTc 
fishpond area identified 
pre-classifier  

65% 65% 69% 69% 61% 61% 64% 64% 

GTc fishponds identified 
pre- classification 

104 of 163 104 of 163 107 of 163 107 of 163 93 of 163 93 of 163 115 of 163 115 of 163 

Percentage of GTc 
fishpond area identified 
post-classifier   

64% 7% 67% 6% 60% 9% 62% 6% 

GTc fishponds identified 
post- classification 

93 of 163 18 of 163 96 of 163 17 of 163 88 of 163 21 of 163 94 of 163 14 of 163 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A24. Mode reducer applied for one month period in Satkhira comparing water-identifying index combinations.  

Index Type Combined AWEId MNDWIe NDWIf 

Classifier Type LR a CART b LR a  CART b LR a  CART b LR a  CART b 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of GTc fishpond 
area identified pre-classifier  

84% 84% 84% 84% 82% 82% 86% 86% 

GTc fishponds identified 
pre- classification 

100 of 208 100 of 208 102 of 208 102 of 208 93 of 208 93 of 208 126 of 208 126 of 208 

Percentage of GTc fishpond 
area identified post-
classifier   

83% 1% 83% 1% 82% 1% 86% 1% 

GTc fishponds identified 
post- classification 

92 of 208 6 of 208 95 of 208 9 of 208 88 of 208 6 of 208 112 of 208 6 of 208 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A25. allNonZero reducer applied for one month period in Bagerhat comparing water-identifying index combinations.  

Time frame Month Month Month Month 

Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 

Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 

Buffer Size 5 5 5 5 5 5 5 5 
Percentage of 
GTc fishpond 
area identified 
pre-classifier  

52% 52% 60% 60% 48% 48% 52% 52% 

GTc fishponds 
identified pre- 
classification 139 of 235 139 of 235 156 of 235 156 of 235 122 of 235 122 of 235 157 of 235 

157 of 
235 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

51% 19% 60% 14% 47% 18% 50% 14% 

GT c fishponds 
identified post- 
classification 

117 of 235 49 of 235 134 of 235 46 of 235 108 of 235 50 of 235 115 of 235 49 of 235 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A26. allNonZero reducer applied for one month period in Barisal comparing water-identifying index combinations.  

Time frame Month Month Month Month 

Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 

Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of 
GTc fishpond 
area identified 
pre-classifier  

4.3% 4.3% 6% 6% 3% 3% 6% 6% 

GTc fishponds 
identified pre- 
classification 8 of 168  8 of 168  10 of 168  10 of 168  6 of 168  6 of 168  18 of 168  18 of 168 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

4% 4% 6% 5% 2% 2% 4% 5% 

GT c fishponds 
identified post- 
classification 

3 of 168 4 of 168 5 of 168 4 of 168 3 of 168 3 of 168 5 of 168 6 of 168 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A27. allNonZero reducer applied for one month period in Bhola comparing water-identifying index combinations. 

Time frame Month Month Month Month 

Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 

Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of 
GTc fishpond 
area identified 
pre-classifier  

0% 0% 0% 0% 0% 0% 0% 0% 

GTc fishponds 
identified pre- 
classification 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

0% 0% 0% 0% 0% 0% 0% 0% 

GT c fishponds 
identified post- 
classification 

0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 0 of 27 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A28. allNonZero reducer applied for one month period in Gopalganj comparing water-identifying index combinations. 

Time frame Month Month Month Month 

Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 

Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of 
GTc fishpond 
area identified 
pre-classifier  

22% 22% 38% 38% 10% 10% 25% 25% 

GTc fishponds 
identified pre- 
classification  44 of 77  44 of 77  56 of 77  56 of 77  14 of 77  14 of 77  53 of 77  53 of 77 

Percentage of 
GTc fishpond 
area identified 
post-classifier   

19% 11% 35% 26% 7% 3% 21% 16% 

GT c fishponds 
identified post- 
classification 

19 of 77 6 of 77 38 of 77 24 of 77 8 of 77 3 of 77 22 of 77 12 of 77 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A29. allNonZero reducer applied for one month period in Jessore comparing water-identifying index combinations. 

Time frame Month Month Month Month 

Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 

Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of 
GTc fishpond 
area identified 
pre-classifier  

44% 44% 53% 53% 24% 24% 66% 66% 

GTc fishponds 
identified pre- 
classification 70 of 113 70 of 113 74 of 113 74 of 113 41 of 113 41 of 113 86 of 113 86 of 113 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

42.8% 6% 52.3% 10% 23.0% 4% 65.1% 10% 

GT c fishponds 
identified post- 
classification 

59 of 113 9 of 113 71 of 113 9 of 113 38 of 113 10 of 113 74 of 113 12 of 113 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A30. allNonZero reducer applied for one month period in Khulna comparing water-identifying index combinations. 

Time frame Month Month Month Month 

Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 

Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of 
GTc fishpond 
area identified 
pre-classifier  

36% 36% 43% 43% 33% 33% 31% 31% 

GTc fishponds 
identified pre- 
classification  71 of 163  71 of 163  79 of 163  79 of 163  67 of 163  67 of 163 64 of 163 64 of 163 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

33% 9% 42% 43% 32% 8% 28% 10% 

GT c fishponds 
identified post- 
classification 

60 of 163 19 of 163 69 of 163 79 of 163 62 of 163 21 of 163 47 of 163 17 of 163 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A31. allNonZero reducer applied for one month period in Satkhira comparing water-identifying index combinations. 

Time frame Month Month Month Month 

Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 

Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 

Buffer Size 5 5 5 5 5 5 5 5 

Percentage of 
GTc fishpond 
area identified 
pre-classifier  

66% 66% 69% 69% 63% 63% 62% 62% 

GTc fishponds 
identified pre- 
classification 75 of 208 75 of 208 75 of 208 75 of 208 73 of 208 73 of 208 80 of 208 80 of 208 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

66% 1% 69% 3% 63% 1% 61% 2% 

GT c fishponds 
identified post- 
classification 

72 of 208 9 of 208 72 of 208 6 of 208 70 of 208 8 of 208 72 of 208 9 of 208 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A32. Water-identifying index combination comparison for Bagerhat using single day time period.  

Time frame Day Day Day Day 
Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 
Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 
Buffer Size 5 5 5 5 5 5 5 5 
Percentage of 
GTc fishpond 
area identified 
pre-classifier  

67% 67% 76% 76% 62% 62% 67% 67% 

GTc fishponds 
identified pre- 
classification 182 of 235 182 of 235 190 of 235 190 of 235 155 of 235 155 of 235 197 of 235 197 of 235 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

66% 16% 76% 13% 61% 16% 65% 16% 

GT c fishponds 
identified 
post- 
classification 

159 of 235 51 of 235 181 of 235 30 of 235 138 of 235 50 of 235 164 of 235 54 of 235 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A33. Water-identifying index combination comparison for Barisal using single day time period. 

Time frame Day Day Day Day 
Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 
Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 
Buffer Size 5 5 5 5 5 5 5 5 
Percentage of 
GTc fishpond 
area identified 
pre-classifier  

16.3% 16.3% 19% 19% 11% 11% 26% 26% 

GTc fishponds 
identified pre- 
classification 28 of 168 28 of 168  28 of 168  28 of 168  12 of 168  12 of 168  61 of 168  61 of 168 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

13% 12% 15% 15% 10% 6% 20% 17% 

GT c fishponds 
identified 
post- 
classification 

11 of 168 10 of 168 13 of 168 12 of 168 8 of 168 3 of 168 21 of 168 16 of 168 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A34. Water-identifying index combination comparison for Bhola using single day time period. 

Time frame Day Day Day Day 
Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 
Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 
Buffer Size 5 5 5 5 5 5 5 5 
Percentage of 
GTc fishpond 
area identified 
pre-classifier  

3% 3% 3% 3% 0% 0% 20% 20% 

GTc fishponds 
identified pre- 
classification 1 of 27 1 of 27 2 of 27 2 of 27 0 of 27 0 of 27 10 of 27 10 of 27 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

3% 3% 3% 0% 0% 0% 12% 9% 

GT c fishponds 
identified post- 
classification 

1 of 27 1 of 27 1 of 27 0 of 27 0 of 27 0 of 27 4 of 27 3 of 27 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A35. Water-identifying index combination comparison for Gopalganj using single day time period. 

Time frame Day Day Day Day 
Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 
Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 
Buffer Size 5 5 5 5 5 5 5 5 
Percentage of 
GTc fishpond 
area identified 
pre-classifier  

36% 36% 54% 54% 21% 21% 38% 38% 

GTc fishponds 
identified pre- 
classification 66 of 77 66 of 77  67 of 77  67 of 77 38 of 77 38 of 77 69 of 77 69 of 77 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

30% 23% 50% 28% 15% 15% 31% 23% 

GT c fishponds 
identified 
post- 
classification 

36 of 77 22 of 77 56 of 77 26 of 77 20 of 77 13 of 77 37 of 77 22 of 77 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 

  



123 
 

Table A36. Water-identifying index combination comparison for Jessore using single day time period. 

Time frame Day Day Day Day 
Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 
Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 
Buffer Size 5 5 5 5 5 5 5 5 
Percentage of 
GTc fishpond 
area identified 
pre-classifier  

91.2% 91% 95% 95% 90% 90% 88% 88% 

GTc fishponds 
identified pre- 
classification 99 of 113 99 of 113 102 of 113 102 of 113 91 of 113 91 of 113 103 of 113 103 of 113 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

90.7% 3% 94.3% 3% 89.8% 2% 87.6% 4% 

GT c fishponds 
identified post- 
classification 

90 of 113 7 of 113 95 of 113 7 of 113 89 of 113 5 of 113 92 of 113 7 of 113 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A37. Water-identifying index combination comparison for Khulna using single day time period. 

Time frame Day Day Day Day 
Index Type Combined Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 
Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 
Buffer Size 5 5 5 5 5 5 5 5 
Percentage of 
GTc fishpond 
area identified 
pre-classifier  

67% 67% 74% 74% 63% 63% 67% 67% 

GTc fishponds 
identified pre- 
classification 112 of 163 112 of 163  117 of 163  117 of 163  103 of 163  103 of 163  122 of 163  122 of 163 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

65% 5% 73% 6% 62% 5% 56% 7% 

GT c fishponds 
identified post- 
classification 

95 of 163 15 of 163 109 of 163 19 of 163 94 of 163 15 of 163 88 of 163 18 of 163 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A38. Water-identifying index combination comparison for Satkhira using single day time period. 

Time frame Day Day Day Day 
Index Type Combin

ed 
Combined AWEId AWEId MNDWIe MNDWIe NDWIf NDWIf 

Classifier type LRa CARTb LRa CARTb LRa CARTb LRa CARTb 
Buffer Size 5 5 5 5 5 5 5 5 
Percentage of 
GTc fishpond 
area identified 
pre-classifier  

85% 85% 84% 84% 84% 84% 91% 91% 

GTc fishponds 
identified pre- 
classification 

115 of 
208 

115 of 208 114 of 208 114 of 208 100 of 208 100 of 208 159 of 208 159 of 208 

Percentage of 
GT c fishpond 
area identified 
post-classifier   

84% 1% 84% 2% 84% 1% 91% 0% 

GT c 
fishponds 
identified 
post- 
classification 

103 of 
208 

14 of 208 103 of 208 14 of 208 93 of 208 6 of 208 133 of 208 6 of 208 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Modified Normalized Difference Water Index 
f  Normalized Difference Water Index 
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Table A39. Best results of the index tests for each of the seven districts.  

District Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 

Water Index AWEId NDWIe NDWIe AWEId AWEId AWEId NDWIe 

Image date 10/28/2020 10/13/2020 11/7/2020 10/28/2020 11/5/2020 11/7/2020 11/5/2020 

Classifier 
Type LRa CARTb LRa CARTb LRa CARTb LRa LRa CARTb LRa CARTb LRa CARTb LRa 

Buffer Size 5  5  0  0  5  5  5  5  5  5  5  5  5  5  

Percentage of 
GTc Fishpond 
area identified 
pre-classifier 

76% 76% 26% 26% 20% 20% 54% 54% 95% 95% 74% 74% 91% 91% 

GT c 

Fishponds 
Identified 

190 of 
235 

190 of 
235 

61 of 
168 

61 of 
168 

10 of 
27 

10 of 
27 

67 of 
77 

67 of 
77 

102 of 
113 

102 of 
113 

117 of 
163 

117 of 
163 

159 of 
208 

159 of 
208 

Percentage of 
GTc Fishpond 
area identified 
post-classifier 

76% 13% 20% 17% 12% 9% 50% 28% 94.3% 3% 73% 6% 91% 0.3% 

GTc Fishponds 
Identified 
After 
Classification 

181 of 
235 

30 of 235 
21 of 
168 

16 of 
168 

4 of 27 3 of 27 
56 of 

77 
26 of 

77 
95 of 113 7 of 113 

109 of 
163 

19 of 163 
133 of 

208 
6 of 208 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Normalized Difference Water Index 
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Table A40. Results from adding the Laplacian 5×5 convolution filter for each district. 

District Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 

Water Index  AWEId  NDWIe  NDWIe  AWEId  AWEId  AWEId  NDWIe 

Image date 10/28/2020 10/13/2020 11/7/2020 10/28/2020 11/5/2020 11/7/2020 11/5/2020 

Classifier Type LRa CARTb LRa CARTb LRa CARTb LRa CARTb LRa CARTb LRa CARTb LRa CARTb 

Buffer Size 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

Percentage of GTc 

Fishpond area 
identified pre-
classifier 

76% 76% 58% 58% 57% 57% 68% 68% 91.5% 91% 78% 78% 82% 82% 

GT c Fishponds 
Identified 

235 of 
235 

235 of 
235 

160 of 
168 

160 of 
168 

27 of 
27 

27 of 
27 

77 of 
77 

77 of 
77 

113 of 
113 

113 of 
113 

163 of 
163 

163 of 
163 

206 of 
208 

206 of 
208 

Percentage of GTc 

Fishpond area 
identified post-
classifier 

25% 2% 44% 37% 43% 33% 19% 3% 91.4% 0% 56% 1% 56% 5% 

GTc Fishponds 
Identified After 
Classification 

131 of 
235 

40 of 235 90 of 168 83 of 168 16 of 
27 

14 of 
27 

30 of 
77 

10 of 
77 

113 of 
113 

3 of 113 134 of 
163 

239 of 
163 

138 of 
208 

56 of 
208 

# of Hits 131 40 90 83 16 14 30 10 113 3 134 23 138 56 

# of Classified 
Fishponds 

94794 66043 219955 185758 115902 98263 47046 33129 123786 83825 97045 66392 155887 126110 

# of GTc Fishponds 235 235 168 168 27 27 77 77 113 113 163 163 208 208 

a Logistic Regression 

b Classification and Regression Trees 
c Ground truthing 
d Automated Water Extraction Index 
e Normalized Difference Water Index 
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Table A41. Comparison of LR, CART, RF, and SVM results when applied to ground-truthing fishpond data for Bagerhat, Barisal, 
Bhola, and Gopalganj during one day with that district’s best performing water-identifying index. 

 
District Bagerhat Barisal  Bhola  Gopalganj  
Water Index AWEIf NDWIg NDWIg AWEIf 

Image Date 10/28/2020 10/13/2020  11/7/2020  10/28/2020  
Classifier Type LRa CARTb RFc SVMd LRa CARTb RFc SVMd LRa CARTb RFc SVM

d 
LRa CART

b 
RFc SVMd 

Buffer Size 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

Percentage of GTe 

Fishpond area 
identified pre-
classifier 

76% 76% 76% 76% 58% 58% 58% 58% 57% 57% 57% 57% 68% 68% 68% 68% 

GTe Fishponds 
Identified 

235 of 
235 

235 of 
235 

235 of 
235 

235 of 
235 

 160 of 
168 

 160 of 
168 

 160 of 
168 

 160 of 
168 

27 of 
27 

27 of 
27 

27 of 
27 

27 of 
27 

 77 of 
77 

 77 of 
77 

 77 of 
77 

 77 of 
77 

Percentage of GTe 
Fishpond area 
identified post-
classifier 

25% 2% 2% 26% 44% 37% 35% 42% 43% 33% 33% 41% 19% 3% 3% 20% 

GTe Fishponds 
Identified Post-
Classifier 

131 of 
235 

40 of 
235 

37 of 
235 

153 of 
235 

90 of 
168 

83 of 
168 

76 of 
168 

103 of 
168 

16 of 
27 

14 of 
27 

14 of 
27 

17 of 
27 

30 of 
77 

10 of 
77 

10 of 
77 

38 of 
77 

# of Hits 131 40 37 153 90 83 76 103 16 14 14 17 30 10 10 38 

 
# of Classified 
Fishponds 

 
94794 

 
66043 

 
58466 

 
426858 

 
219955 

 
185758 

 
154127 

 
666932 

 
115902 

 
98263 

 
80723 

 
446448 

 
47046 

 
33129 

 
28794 

 
24344

1 
 
# of GTe Fishponds 

 
235 

 
235 

 
235 

 
235 

 
168 

 
168 

 
168 

 
168 

 
27 

 
27 

 
27 

 
27 

 
77 

 
77 

 
77 

 
77 

a Logistic Regression 

b Classification and Regression Trees 
c Random Forest 
dSupport Vector Machine 
e Ground truthing 
f Automated Water Extraction Index 
g Normalized Difference Water Index 
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Table A42. Comparison of LR, CART, RF, and SVM results when applied to ground-truthing fishpond data for Jessore, Khulna, and 
Satkhira during one day with that district’s best performing water-identifying index. 

 
District Jessore  Khulna Satkhira  
Water 
Index 

AWEIf AWEIf NDWIg 

Image 
Date 

11/5/2020  11/7/2020  11/5/2020  

Classifier 
Type 

LRa CARTb RFc SVMd LRa CARTb RFc SVMd LRa CARTb RFc SVMd 

Buffer 
Size 

5 5 5 5 5 5 5 5 5 5 5 5 

Percentage 
of GTe 
Fishpond 
area 
identified 
pre-
classifier 

91.5% 91% 91.5% 91% 78% 78% 78% 78% 82% 82% 82% 82% 

 
GTe 
Fishponds 
Identified 

 
113 of 113 

 
113 of 113 

 
113 of 113 

 
113 of 113 

  
163 of 163 

  
163 of 163 

  
163 of 163 

  
163 of 163 

 
206 of 208 

 
206 of 208 

 
206 of 208 

 
206 of 208 

 
Percentage 
of GTe 
Fishpond 
area 
identified 
post-
classifier 

 
91.4% 

 
0% 

 
0.3% 

 
91% 

 
56% 

 
1% 

 
1% 

 
56% 

 
56% 

 
5% 

 
4% 

 
56% 

 
GTe 
Fishponds 
Identified 
Post-
Classifier 

 
113 of 113 

 
3 of 113 

 
3 of 113 

 
113 of 113 

 
134 of 163 

 
23 of 163 

 
23 of 163 

 
136 of 163 

 
138 of 208 

 
56 of 208 

 
51 of 208 

 
147 of 208 

 
# of Hits 

 
113 

 
3 

 
3 

 
113 

 
134 

 
23 

 
23 

 
136 

 
138 

 
56 

 
51 

 
147 
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a Logistic Regression 

b Classification and Regression Trees 
c Random Forest 
d Support Vector Machine 
e Ground truthing 
f Automated Water Extraction Index 
g Normalized Difference Water Index 

  

Table A42 (cont’d) 
 
# of 
Classified 
Fishponds 

 
123786 

 
83825 

 
74365 

 
667161 

 
97045 

 
66392 

 
58987 

 
477444 

 
155887 

 
126110 

 
104324 

 
389366 

 
# of GTe 

Fishponds 

 
113 

 
113 

 
113 

 
113 

 
163 

 
163 

 
163 

 
163 

 
208 

 
208 

 
208 

 
208 
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Table A43. Land use as percent of total area for 10-meter buffer around ground truth fishpond locations for each district. 

 

Land Use 
District 

Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 

Cultivated Land 79 46 21 67 90 63 6 
Forest 0 0 0 0 0 0 0 
Grass Land 0 0 0 0 0 0 0 
Shrub Land 0 0 0 0 0 0 0 
Wetland 0 0 0 0 0 0 0 
Water Body 8 0 0 0 1 19 82 
Artificial Surfaces 13 54 79 33 9 18 12 
Bareland 0 0 0 0 0 0 0 
Unknown 0 0 0 0 0 0 0 
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Table A44. Land use as percent of total area for 50-meter buffer around ground truth fishpond locations for each district. 

 

Land Use 
District 

Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 

Cultivated Land 80 46 26 68 86 61 10 
Forest 0 0 0 0 0 0 0 
Grass Land 0 0 0 0 0 0 0 
Shrub Land 0 0 0 0 0 0 0 
Wetland 0 0 0 0 0 0 0 
Water Body 7 0 0 0 1 16 69 
Artificial Surfaces 13 54 74 32 13 23 21 
Bareland 0 0 0 0 0 0 0 
Unknown 0 0 0 0 0 0 0 
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Table A45. Land use as percent of total area for 100-meter buffer around ground truth fishpond locations for each district. 

 

Land Use 
District 

Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 

Cultivated Land 78 50.4 27 71 82 59 12 
Forest 0 0 0 0 0 0 0 
Grass Land 0 0 0 0 0 0 0 
Shrub Land 0 0 0 0 0 0 0 
Wetland 0 0 0 0 0 0 0 
Water Body 7 0.1 0 0 2 15 63 
Artificial Surfaces 15 49.5 73 29 16 26 25 
Bareland 0 0 0 0 0 0 0 
Unknown 0 0 0 0 0 0 0 
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Table A46. Median ground truth fishpond size for each district. 

 

Statistic District 

Bagerhat Barisal Bhola Gopalganj Jessore Khulna Satkhira 
Median Ground 
truth fishpond size 
(m2) 

2503 833 713 2237 3169 2972 1252 
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