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ABSTRACT

COMPUTATIONAL FRAMEWORKS FOR INDEL-AWARE EVOLUTIONARY ANALYSIS
USING LARGE-SCALE GENOMIC SEQUENCE DATA

By

Wei Wang

With the development of sequencing techniques, genetic sequencing data has been extensively used

in evolutionary studies. The phylogenetic reconstruction problem, which is the reconstruction of

evolutionary history from biomolecular sequences, is a fundamental problem. The evolutionary

relationship between organisms is often represented by phylogeny, which is a tree or network

representation. The most widely-used approach for reconstructing phylogenies from sequencing

data involves two phases: multiple sequence alignment and phylogenetic reconstruction from the

aligned sequences. As the amount of biomolecular sequence data increases, it has become a major

challenge to develop efficient and accurate computational methods for phylogenetic analyses of

large-scale sequencing data. Due to the complexity of the phylogenetic reconstruction problem in

modern phylogenetic studies, the traditional sequence-based phylogenetic analysis methods involve

many over-simplified assumptions. In this thesis, we describe our contribution in relaxing some of

these over-simplified assumptions in the phylogenetic analysis.

Insertion and deletion events, referred to as indels, carry much phylogenetic information but are

often ignored in the reconstruction process of phylogenies. We take into account the indel uncer-

tainties in multiple phylogenetic analyses by applying resampling and re-estimation. Another over-

simplified assumption that we contributed to is adopted by many commonly used non-parametric

algorithms for the resampling of biomolecular sequences, all sites in an MSA are evolved inde-

pendently and identically distributed (i.i.d). Many evolution events, such as recombination and

hybridization, may produce intra-sequence and functional dependence in biomolecular sequences

that violate this assumption. We introduce SERES, a resampling algorithm for biomolecular se-

quences that can produce resampled replicates that preserve the intra-sequence dependence. We

describe the application of the SERES resampling and re-estimation approach to two classical



problems: the multiple sequence alignment support estimation and recombination-aware local

genealogical inference. We show that these two statistical inference problems greatly benefit

from the indel-aware resampling and re-estimation approach and the reservation of intra-sequence

dependence.

A major drawback of SERES is that it requires parameters to ensure the synchronization of

randomwalks on unaligned sequences. We introduce RAWR, a non-parametric resampling method

designed for phylogenetic tree support estimation that does not require extra parameters. We show

that the RAWR-based resampling and re-estimationmethod produces comparable or typically better

performance than the traditional bootstrap approach on the phylogenetic tree support estimation

problem.

We further relax the commonly used assumption of phylogeny. Evolutionary history is usually

considered as a tree structure. Evolutionary events that cause reticulated gene flow are ignored.

Previous studies show that alignment uncertainty greatly impacts downstream tree inference and

learning. However, there is little discussion about the impact of MSA uncertainties on the phylo-

genetic network reconstruction. We show evidence that the errors introduced in MSA estimation

decrease the accuracy of the inferred phylogenetic network, and an indel-aware reconstruction

method is needed for phylogenetic network analysis.

In this dissertation, we introduce our contribution to phylogenetic estimation using biomolecular

sequence data involving complex evolutionary histories, such as sequence insertion and deletion

processes and non-tree-like evolution.
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CHAPTER 1

INTRODUCTION

Phylogenetics is the study of evolutionary relationships. The evolutionary relationships are often

depicted by phylogeny, a graphical representation of the evolutionary history of a group of organisms

(taxa), such as genes or species. One of the most simple and widely used representations is the

phylogenetic tree, a directed acyclic graph. However, the true evolutionary history is not always

tree-like. A phylogenetic network can better depict the horizontal genetic material flow, such as

hybridization and recombination.

Phylogenies show the history of genetic information transmission and thus play an essential

role in interpreting information on many aspects of organisms, such as the structure and function

of genomics. The reconstructed phylogenies are used in numerous biological studies, such as gene

function prediction, protein structure prediction, drug discovery, vaccine development, and many

non-biological studies, such as computer security applications and linguistics studies.

Since phylogenetic reconstruction is an important and fundamental problem for biological stud-

ies, many methods have been developed for this problem [56, 37, 77, 157]. With the technological

advances in molecular biology and genomics, increasing amounts of biomolecular sequencing

data, such as DNA, RNA, and amino acid sequences, are available for accurate phylogenetic recon-

struction, and many of these computational methods infer evolutionary history from biomolecular

sequencing data.

A general phylogenetic reconstruction pipeline using sequence data consists of the following

steps. First, collect samples from a group of closely related species. Samples are processed and

sequenced by any selected sequencing technique, such as Sanger sequencing and next-generation

sequencing techniques. Sequence data is produced for several genes of interest. Then the sequence

data needs to go through a series of preprocessing steps, such as quality control, filtering, and

assembly. After preprocessing, there are two fundamental steps for the phylogenetic reconstruction,

Multiple Sequence Alignment (MSA) estimation, and phylogenetic inference.
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Figure 1.1: Darwin’s first evolutionary diagram, drawn in his Notebook in 1837.

The first step is Multiple Sequence Alignment (MSA) estimation. The phylogenetic analysis

has to be conducted on homologous sequences, which are characters that evolved from the same

ancestor. We discuss the MSA estimation problem in detail in Chapter 2. The MSA obtained in

the previous step is used as input for the phylogenetic reconstruction. There are many approaches

to phylogenetic tree and network reconstruction, which we discuss in detail in Chapter 2.

Phylogenetic reconstruction is an important step whose results greatly impact downstream

biological studies. However, the traditional sequence-based phylogenetic reconstruction methods

involve many over-simplified assumptions. In this thesis, we describe our contribution to relaxing

some of these over-simplified assumptions in phylogenetic analysis.
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Insertions and deletions, known as indels and represented by gaps in MSAs, carry much phy-

logenetic information but are frequently overlooked during the phylogeny reconstruction process.

Many previous studies have shown that phylogenetic information carried by indels helps infer phy-

logenies [127, 7, 86]. There are studies show that taking into account indels helps resolve some

deep branches in phylogenies [115, 119]. Traditional methods only utilize historical substitution

events to reconstruct phylogenetic trees. Moreover, these methods usually take the input MSA

for granted and ignore uncertainty in the MSA estimation. For the following reasons, indels are

either discarded or treated as missing values during the phylogenetic reconstruction process. Some

studies considered that indels were unreliable for phylogenetic reconstruction [46]. This viewpoint

was later proved to be incorrect [128]. Accurate estimation of indels can be very time-consuming.

Unlike substitution events, where sequence length is not affected, insertion and deletion events often

involve many sites, resulting in dependence among sites and changes in the sequence length. Fur-

thermore, multiple indels may overlap, which makes it even more challenging to obtain an accurate

estimation. Also, there is no uniform opinion on how to deal with indels in the phylogenetic

reconstruction yet.

Based on these challenges, it is important to determine the reliability of indels and take into

account the uncertainty of estimated MSAs during the phylogenetic analysis. Resampling and re-

estimation are often used in confidence interval estimation. Resampling is the process of drawing

samples from the original set of observations. It has been widely used in statistical support estima-

tion, especially those non-parametric approaches, such as the standard bootstrap [32] and jackknife

[140]. Non-parametric approaches do not require a particular model. However, these resampling

approaches usually assume that the observations are independent and identically distributed (i.i.d),

which is another over-simplified assumption that has been widely used in phylogenetic analysis.

This assumption does not always hold for biomolecular sequences. Many evolution events pro-

duce intra-sequence dependence and functional dependence in the biomolecular sequences that are

inconsistent with this assumption, such as recombination and hybridization.

Another over-simplified assumption that wewant to address is that the evolutionary relationships

3



are often simplified to a tree structure, and all reticulate gene flows are ignored. Though the

phylogenetic tree is the most widely used representation of the evolutionary history of a group of

taxa, the true evolutionary history is not always tree-like. Certain evolutionary processes, such

as horizontal gene transfer (HGT), hybridization, and recombination, involve reticulate gene flow

between two sibling taxa, which is better represented by a phylogenetic network. Previous research

has shown that the uncertainties in MSAs have an effect on downstream tree inference and learning

[153, 152]. However, there is little discussion about how the phylogenetic network is influenced

by MSA uncertainties.

In this thesis, we relax the widely used over-simplified assumptions introduced above. We

introduce new resampling algorithms for the resampling of biomolecular sequences. We take into

account the indel uncertainties in several phylogenetic analyses by applying the resampling and

re-estimation ofMSAs. Furthermore, we show that indel-aware phylogenetic analysis obtains better

accuracy than the traditional methods.

The rest of the dissertation is organized as follows. Chapter 2 provides background knowl-

edge about multiple sequence alignment and phylogenetic reconstruction. We introduce the basic

concepts of phylogenetic analysis and some of the widely used phylogenetic analysis methods.

In Chapter 3, we describe our work on a new sequential resampling algorithm, SERES, which

relaxes the over-simplified assumption made by the standard bootstrap approach [32] that all sites

in the alignments are evolved independently and identically distributed (i.i.d). We applied the

SERES resampling approach together with re-estimation to the MSA support estimation problem

and achieved comparable or better performance than the state-of-the-art methods. In Chapter 4, we

extend the SERES resampling and re-estimation procedure to another classical problem in computa-

tional biology and bioinformatics, recombination-aware local genealogical inference. The SERES

resampling approach produces local genealogies that greatly improve the topological accuracy.

In Chapter 5, we discuss the simplified version of the sequential resampling algorithm, RAWR,

which is designed for phylogenetic tree support estimation by resampling and re-estimation using

unaligned sequences. For the phylogenetic support estimation problem, the RAWR-based method
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outperformed the bootstrap method on almost all the simulation model conditions and the empirical

datasets, which indicates that the RAWR-based support estimate benefits from the indel uncertain-

ties of the input alignment. In Chapter 6, we discuss the application of the RAWR-based support

estimationmethod to the whole-genome sequencing dataset of Darwin’s finch fromLarmichhaney’s

study in 2015 [69]. In Chapter 7, we further relax the assumption of phylogenetic tree and introduce

a performance study on how MSA uncertainties impact the phylogenetic network inference. We

show evidence that the errors introduced in MSA estimation and gene tree estimation steps reduce

the accuracy of the inferred phylogenetic network, and an indel-aware reconstruction method is

needed for phylogenetic network analysis. Finally, we conclude in Chapter 8 with discussion of our

work and future research directions.
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CHAPTER 2

BACKGROUND

In this chapter, we briefly introduce the basic concepts that we use in the following chapters. First,

we introduce the definition of Multiple Sequence Alignments (MSA) in Section 2.1. We discuss the

sequence evolution models and MSA estimation methods in detail. Then we introduce phylogenies

in Section 2.2, which includes the definition of phylogenetic tree and phylogenetic network. We

further discuss two related conceptions: gene trees and species trees and their discordance in

Section 2.3. We also briefly introduce the coalescent model, which integrates the evolutionary

process of genes with species. Finally, we discuss the phylogenetic reconstruction methods in

Section 2.4 and method performance evaluation in Section 2.4.5.

2.1 Multiple Sequence Alignment

The genetic information encoded in DNA sequences is the biological foundation of life. Evolu-

tion and heredity ensure the changes and the continuation of all living species. With the development

of sequencing techniques, the cost of genome sequencing has dropped dramatically. Now we can

easily read the genomic information using various sequencing technologies [94] and get cheap,

large biomolecular sequence datasets. DNA sequences and other sequences derived from the DNA

sequences, such as RNA sequences and amino acid sequences, can be represented as one-dimension

arrays of characters.

Sequence alignment is a fundamental problem inmolecular biology. It is a problem of arranging

the sequences to identify regions of similarity. A set of sequences is considered to be unaligned if

they have different lengths. Biomolecular sequences are one-dimensional arrays over the alphabet

Σ. For DNA sequences, the alphabet Σ = �,), �, �. Due to historical insertions and deletions,

sequences that share evolutionary history can have different lengths.

The process of sequence alignment is to line up sequences andmaximize identical subsequences.

The order and the content of the DNA sequences cannot be changed. The only allowed operation
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is to add gaps (represented by "-") into the unaligned sequences, which represent gaps that are

created by the historical insertion and deletion events, which is referred to as indels. The characters

of different sequences are aligned into columns or sites by adding gaps in appropriate positions.

All characters in a column are assumed to derive from a common ancestral character. A multiple

sequence alignment (MSA) represents the evolutionary relationship among a set of unaligned

sequences. The alignment can be considered as a matrix, where each sequence is a row in the

matrix, and each column, or site, shows the sequence homology. Homologous are two characters

that are evolved from the same ancestral character. Such an evolutionary relationship is called

homology. An example is shown in Figure 2.2. Each column in the matrix corresponds to a

different character and all the characters evolve from the same tree.

There are two widely used summary statistics that measure the sequence divergence, the gap-

piness and the Normalized Hamming Distance (NHD). Insertion and deletion events in the evo-

lutionary history create gaps in the multiple sequence alignment. Gappiness is calculated by the

percentage gap characters in the multiple sequence alignment matrix. For a pairwise sequence

alignment, the classical Hamming Distance [50] is the number of sites in the alignment that contain

different characters, which can be considered as a nucleotide pair with two different nucleotides.

The hamming distance of multiple sequence alignment is the sum of the Hamming Distances of

all pairs of sequences contained in the multiple sequence alignment. The normalized Hamming

Distance (NHD) is the hamming distance normalized by the length of the sequence.

2.1.1 Sequence evolution

The evolution process is a series of changes in biomolecular sequences through multiple types

of mutations. Substitution, also known as point mutation, is one type of sequence mutation.

Substitution is the event that a single base changes into another base. Figure 2.1 shows an example

of the substitution process of a single character. This example includes two substitution events

along the phylogenetic tree. Note that, we can observe the sequences at leaf nodes, but not the

sequences at internal nodes and root nodes.
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Figure 2.1: Illustration of character evolution. Characters evolve on a tree. The branching structure
of the tree guides the mutation process. The red dots on the branches represent the substitution
events.

Another important sequence evolution process is insertion/deletion. They can make more

complicated changes to the genetic sequences. Insertions and deletions, also known as indels, are

the events that occur when genetic materials are inserted or deleted during the evolutionary process.

Insertion and deletion events can change the length of the sequences. The characters that used to

align in the same column will no longer align with each other. Compared with the evolutionary

process with only substitution events, the existence of indels makes it more challenge to identify

the homologous characters and their evolutionary relationship.

An example is shown in Figure 2.2. With the existence of insertion and deletion events, the

sequences at leaf nodes have different sequence lengths. The characters at the same position on the

sequences are no longer homologous. We will discuss the MSA algorithms in Section 2.1.2. These

methods reconstruct the homology relationships of the genetic sequence and produce an MSA, a

matrix in which each column contains only homologous characters.

Dashes in the alignment represent gaps created by the historical insertion and deletion events.

An example is shown in Figure 2.2c. The first two dashes in the second sequence are caused by a

single deletion event, labeled as a green dot on the tree in Figure 2.2a. Dashes in the fourth column

are caused by an insertion event, labeled as a yellow dot.
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(a) A tree of the sequence evolution.

(b) Unaligned sequences.

(c) Multiple Sequence Align-
ment (MSA).

Figure 2.2: An example of Multiple Sequence Alignment (MSA). (a) A tree shows the evolutionary
history of sequences. Evolutionary events make changes to the content of the observable sequences
at leaf nodes. (b) Sequences at the leaf nodes can be observed. The unaligned sequences form a
character matrix. (c) Multiple sequence alignments can be used to build a character matrix, each
column consists of characters that evolve from the same ancestral character.

Evolutionary models describe the substitution events on a single site of the biomolecular

sequence. Most evolutionary models assume that the sites evolve down a tree where nucleotide

substitutions under a Markov process and all sites evolve independently and identically (i.i.d). A

rooted tree) with edges annotated with substitution rate matrices describes the evolution of a single

site down the tree. Besides the model tree, ) , the model also requires a substitution rate matrix.

The substitution rate matrix " describes the probability of the parent state evolving into a child

state along an edge. The rate of base 8 changing to base 9 is represented by element "8 9 in the

substitution rate matrix " . For DNA sequences, the substitution rate matrix " is a 4 × 4 matrix.

0, 1, 2, 3, 4, 5 denote the relative rates that one base changes to another. The frequencies of the

bases A, T, C, G are represented by c�, c) , c� , c� respectively. The diagonal elements of M are

chosen to ensure that the sum of elements in the corresponding row equals zero. If for all pairs

of bases 8, 9 , "8 9 = " 98, the model is considered time-reversible. The most widely used sequence
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evolution models in phylogenetic analyses are time-reversible. The generalized time-reversible

model (GTR) [135] has a substitution rate matrix as follows.

" =

©­­­­­­­­«

−(0c� + 1c� + 2c) ) 0c� 1c� 2c)

0c� −(0c� + 3c� + 4c) ) 3c� 4c)

1c� 3c� −(3c� + 3c� + 5 c) ) 5 c)

2c) 4c) 5 c) −(2c) + 4c) + 5 c) )

ª®®®®®®®®¬
The Jukes-Cantor model [63] is the simplest substitution model, which is a subset of the GTR

model. The Jukes-Cantor model assumes that all base frequencies are equal, c� = c) = c� =

c� = 1
4 , and all substitution rates are equal, 0 = 1 = 2 = 3 = 4 = 5 = 1. The substitution rate

matrix of the Jukes-Cantor model shows as follows.

" =

©­­­­­­­­«

−3
4

1
4

1
4

1
4

1
4 −3

4
1
4

1
4

1
4

1
4 −3

4
1
4

1
4

1
4

1
4 −3

4

ª®®®®®®®®¬
To incorporate the rate heterogeneity across sites into the sequence evolution models. We can

multiply the substitution rate matrix with a rate drawn from Γ distribution. The combination of

the substitution model with the Γ model produces rate variation across sites [155]. For example,

GTR+Γ is the GTR model combined with the Γ model for rate variation.

2.1.2 Multiple Sequence Alignment Estimation

In computational biology, the estimation of multiple sequence alignments is one of the most funda-

mental problems. Multiple sequence alignment estimation is the initial step of many applications,

such as predicting the structure and function of proteins and phylogenetic reconstruction.

The following is a definition of a multiple sequence alignment problem. The input is a set

of unaligned sequences (. Add gaps in proper positions to align homologous characters, which
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are derived from a common ancestral character, into the same column. The output is a multiple

sequence alignment � that represents the true evolutionary history of (.

However, true evolutionary history is usually not available. The distance between the estimated

alignment and the true alignment is not able to be measured. Thus, the multiple sequence alignment

problem was simplified to an optimization problem that minimizes the differences between the

sequences in the alignment. One measurement of the sequence differences is the sum-of-pairs (SP)

criterion. The SP score is the number of mismatched nucleotide pairs in the MSA. The mismatched

pairs include pairs of two different non-gap characters and pairs of one non-gap character with one

gap character.

MSA estimation methods are generalized from the pairwise alignment. The estimation of MSA

that minimizes the SP score of other similar metrics has been demonstrated to be an NP-hard

problem [10, 144]. Many heuristic methods were designed for the estimation of multiple sequence

alignment to find a sub-optimal solution instead, such as progressive alignment methods [38].

Progressive alignment methods first build a guide tree based on the distance of sequences.

The pairwise sequence alignment is performed at the parent of two leaf nodes, then recursively

performed at internal nodes. The final MSA result will be created at the root, as shown in Figure

2.3. Clustal W [73], MUSCLE [29], MAFFT [64] and T-COFFEE [107] are a few examples of

progressive alignment methods.

Though progressive alignment has been widely used, there are some disadvantages associated

with this type of MSA estimation algorithm. First, the choice of the initial guide tree directly

influences the MSA result and the downstream analysis, such as phylogenetic inference. The

inferred phylogenetic trees are biased towards the initial guide tree by using such an MSA approach

[152]. Furthermore, distantly related sequences tend to be over aligned by progressive alignment

[85]. The insertion and deletion events are not evenly penalized in progressive alignment.

Many standardmetrics are designed for the quantitative measurement of the alignment methods’

performance. The performance measurement usually compares the reference alignment with the

estimated alignment. The SP-score is calculated by the percentage of all pairwise homologies in
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Figure 2.3: Progressive alignment algorithm. The progressive alignment algorithms take a set of
sequences as input and build a distance matrix for input sequences. Then a guide tree is estimated
based on the distance matrix and pairwise alignment is conducted at each internal node on the tree
from leaves to the root. This figure is reproduced from http://readiab.org/.

the reference alignment recovered in the estimated alignment. The modeler score is the percentage

of all pairwise homologies in the estimated alignment that are found in the reference tree. The

pairs score averages the SP-score and the modeler score to penalize false positive and false negative

homologies equally. TC score, which is the number of columns that are recovered entirely correctly

in the estimated alignment. The most commonly used measurement for the MSA estimation

problem is the SP-score. In the following studies, we used software called FastSP [160] to measure

the alignment accuracy.

2.2 Phylogenies

A phylogeny is a graphical representation that represents the evolutionary history of a group

of entities, such as genes and species, which are usually referred to as taxa. There are mainly two

types of phylogenies: phylogenetic trees and phylogenetic networks. In the following content, we

will discuss about these two types of phylogenies in detail.
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2.2.1 Phylogenetic Trees

One of the most simple and widely used representations is the phylogenetic tree, a directed acyclic

graph. A tree ) consists of a set of vertices + and edges � . The vertices + indicate a particular

taxon, and the edges � indicate evolutionary history. An internal node is a node that has a degree

greater than one. The taxon at an internal node represents the ancestral taxon of the descendent

taxa. A leaf node or terminal node has a degree of one, which represents an extant taxon. An

edge or branch represents the evolutionary relationship between two taxa it connects. The length

of the edge in a phylogenetic tree is called branch length, a non-negative number representing the

quantitative measurement of the evolutionary changes or evolutionary time between the two related

taxa. Trees without branch lengths attached are referred to as topologies.

A rooted tree has a root node EA ∈ + . The root node is the most recent common ancestor of

all taxa in this tree. This designation of root vertex allows us to associate ancestor-descendant

relationships to the vertices. For example, if a node � is located on the path from node � to root,

node � is considered an ancestor of node �, as illustrated in Figure 2.4a for examples. It usually

requires additional knowledge about the taxa included in the tree or molecular clock assumption to

root a phylogenetic tree. There are many different rooting methods. Some popular ones include

rooting a tree utilizing an outgroup taxon, and rooting a tree by estimating the time of speciation.

One method utilizes an outgroup taxon, which has a far more evolutionary relationship than all

other taxa under consideration. The other method roots a phylogenetic tree based on the estimated

time between speciation. This method can only be used if we assume that the evolution rate of

molecular data, which we use to reconstruct a phylogeny, is constant. However, this assumption is

often violated in real datasets. Unrooted trees have no such ancestor-descendant relationship. A

phylogenetic tree is considered a binary tree if all vertices have a degree of three. A phylogenetic

tree is called a polytomy if at least one internal node has a degree greater than three. Polytomies

represent unresolved evolutionary relationships.

Figure 2.4a shows an example of a rooted binary phylogenetic tree over six taxa, where the

direction of evolution is the direction from the root node to the leave nodes. The evolutionary
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(a) A rooted phylogenetic tree.
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(c) A polytomy tree.

Figure 2.4: An example of phylogenetic tree. (a) A rooted phylogenetic tree. +A is the root node.
Taxon � is an ancestor of taxon �. (b) The unrooted version of the same tree by removing the root
node +A . (c) An polytomy tree. Node � has a degree of four, which represents a polytomy node.

relationship among six taxa can be inferred from the tree. Figure 2.4b shows an unrooted version of

the phylogenetic tree of Figure 2.4a by removing the root node +A . Figure 2.4c shows an example

of a polytomy tree.
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A clade is a rooted subtree in a phylogenetic tree ) , defined by a node E in ) that roots the

clade. Taxa included in a clade have a closer evolutionary relationship with each other than the rest

of taxa in the same phylogenetic tree.

Bipartition is a similar conception as the clade in unrooted trees. A bipartition is defined by

edges. By removing an edge 4, the unrooted phylogenetic tree ) is split into two subtrees )1 and

)2, and the set of taxa is also split into two subsets. The leaf bipartition denotes {;1 |;2}, where

;1 ∪ ;2 is the complete set of leaves of ) .

A phylogeny does not necessarily need to be tree-like. In certain scenarios, more complex

representations such as phylogenetic networks fit better than the tree structure.

2.2.2 Phylogenetic Network

Though the phylogenetic tree is the most widely used representation of the evolutionary history of

a group of species, the true evolutionary history is not always tree-like. Certain evolutionary pro-

cesses, such as horizontal gene transfer (HGT), hybridization and recombination, involve reticulate

gene flow between two sibling taxa, which is better represented by a phylogenetic network. By

adding reticulation edges, we can better model the horizontal flow of genetic material.

A phylogenetic network # is a rooted, directed, acyclic graph (DAG) defined on a set of taxa (.

Vertices + of # is defined as + = {A} ∪+! ∪+) ∪+# , where

• 8=346(A) = 0 (A is the root of #);

• ∀E ∈ +! , 8=346(E) = 1 and >DC346(E) = 0 (+! are the external tree nodes or leaves of #);

• ∀E ∈ +) , 8=346(E) = 1 and >DC346(E) ≥ 2 (+) are the tree nodes of #);

• ∀E ∈ +# , 8=346(E) = 2 and >DC346(E) ≥ 1 (+# are the reticulation nodes of #);

� ⊆ + × + are the edges of network # . There are two types of edges, reticulation edges who

point to reticulation nodes, and tree edges who point to tree nodes. The leaves of the network

are bĳectively labeled by the elements of ( A phylogenetic network induces a set of trees, called
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Figure 2.5: An example phylogenetic network. (a). A phylogenetic network # , A is the root node, �
is a tree node, � is a reticulation node, and �, �, � are leaf nodes. The edge in red is a reticulation
edge. The tree )1 and )2 in (b) and (c) are the inducted trees of # .

induced trees. The induced trees are obtained by keeping only one reticulation edge for each

reticulation node in the network.

Figure 2.5 shows an example of a phylogenetic network # on taxa set ( = {�, �, �}. In the

network # , A is the root node with an indegree of 0. � is an example of a tree node with an indegree

of 1 and an outdegree of 2. � is an example of the reticulation node with an indegree of 2 and an

outdegree of 1. �, �, � are leaf nodes with an indegree of 1 and an outdegree of 2. The edge in

red is a reticulation edge that points to a reticulation node. Before the reticulation event, all taxa

evolved under a tree structure. Following the reticulation event, two lineages merge to form a new

lineage, with the genetic material of the new lineage inherited from either ancestral lineage, which

can be represented by two induced trees, )1 and )2, which are part of the network # .

2.3 Gene Trees and Species Trees

Phylogenetic trees can be used to represent evolutionary history for different types of entities.

Species and genes are two closely related entities that can be modeled by phylogenetic trees.

In a species phylogeny, each leaf node represents the entire population of a species. Each internal

node represents a speciation event, where the population of one species is split into subsequent

species through multiple mechanisms [19], such as allopatric speciation. In an allopatric speciation

event, a population is split into two populations due to geographical isolation. Each population then
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evolves independently until it becomes a new species. The succession of such speciation events

can be captured by a tree structure called the species tree. The genetic material of extant species

can help us identify ancient speciation events.

Gene phylogeny shows the evolution path of particular genes, which are short regions of the

genome across all involved species. Gene trees are not necessarily the same as the species tree or

other gene trees. For example, humans and chimpanzees have a closer evolutionary relationship

than humans with gorillas in some parts of the genome than in other parts [28]. The inconsistency

between gene trees and the differences between gene trees and the species tree is so-called gene

tree discordance or incongruence. Many evolutionary events, such as hybridization, horizontal

gene transfer, recombination, and gene duplication and loss, can influence genome evolution and

cause discordance among the evolutionary histories of genes and species [89, 23]. Some of those

evolutionary events can cause genes to have different phylogenies compared with the species tree,

but they do not contradict the tree-like structure of the species phylogeny. The other evolutionary

events may result in complex evolutionary histories, which is hard for tree structure at the species

level to depict.

The species tree representation is constructed based on the assumption that one species evolved

fromonly one ancestral species. Such an assumption is accurate formany cases of vertical evolution.

However, those evolutionary events involved in reticulation evolution may break the tree structure.

For example, hybridization events where a new species evolves as a result of hybridization between

two species [111]; horizontal gene transfer (HGT) events where genetic material can be obtained

from the environment or other sibling species [44, 11]. Under such scenarios, gene phylogenies

can still be represented by a tree structure, however, species phylogenies can not be a tree structure.

Species networks with reticulation edges are better form of species phylogeny with such gene tree

discordance. In such cases, gene phylogenies are still trees, but the species phylogeny is best

modeled as a network [101, 61].
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2.3.1 Coalescence

Before we introduce the concept of coalescence, let’s first introduce some related concepts.

Recombination is an evolutionary process in which individuals of current generations have

recombined the genomes of multiple individuals in previous generations. In this case, the ancestor

of the genetic materials may vary. When we move along on a particular chromosome with

recombination, the ancestors, where the genetic material is inherited, may switch for different

regions on the chromosome. As the accumulation of the recombination events, the chromosome is

divided into multiple regions, where sites in the same region share the same evolutionary history,

but the evolutionary process may vary from one region to another.

A coalescent gene, also known as a c-gene, is a continuous region on a genome where all sites

share the same evolutionary history and where there are no breakpoints caused by recombination

events [42, 27, 58]. Note that, the term "gene" usually refers to stretches inside the genome that

can be translated into proteins and perform certain functions, which is different from the definition

of coalescent gene. The coalescent gene is considered as the most basic unit of the genome for

phylogenetic analyses, where only a single evolutionary history is included.

The accumulation of recombinations results in the formation of multiple coalescent genes. The

evolutionary history of one coalescent gene is represented by one tree. Different coalescent genes

may have different evolutionary histories. This phenomenon can be mathematically described by

the coalescent process [66]. The coalescent process models the gene variances of a genealogy. This

process is easier to understand on the population level. It starts with two gene variants, which are

called alleles, of the present time, and then continuously traces back their parent alleles in previous

generations until we reach a point where the two alleles share the same ancestor. This point is

where the two alleles coalesce.

The coalescent model was first proposed by Kingman in 1982 [66]. This model is widely

used to estimate parameters such as the recombination rate, population size, and migration rates.

Kingman’s coalescent model assumes constant population size, random mating, a large enough

population, and no overlap generation. Under such assumptions, the number of generations, which
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is the time that two random alleles coalesce, is exponentially distributed [66]. Let )8 be the waiting

time for any two alleles from 8 sampled alleles be coalescent, and #4 be the population size, the

waiting time ) is calculated by following equations, when 8 = 2 :

)2(#4) ∼ exp(C;_ = 1
#4
) = 1

#4
4
− C
#4

More broadly:

)8 (#4) ∼ exp(C;_ =
( 8
2
)

#4
) =

( 8
2
)

#4
4
−C (

8
2)
#4

The coalescent history can be represented by An example is shown in Figure 2.6.

(a) The coalescent process. (b) The multi-species coalescent.

Figure 2.6: Illustration of coalescence and multi-species coalescence. (a) An illustration of the
coalescent process. Each row represents a generation. Generations have no overlap with each other.
The new generation is generated by randomly sampling from the previous generation. Each dot
represents a gene copy. The blue line represents the inheritance relationship, where one gene is
copied from an ancestor gene. Parents are selected at random. When populations are separated,
and gene copies only come from samples from the same population. A coalescence event is a point
when two lineages merge into a common ancestor. The coalescent process forms a lineage tree.

2.3.2 Multi-Species Coalescent (MSC) Model

In the previous section, we discussed the coalescent model under a single population. For phyloge-

netic analyses involving multiple species and multiple populations, the general framework can be
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extended to the Multi-Species Coalescent (MSC) model [114]. The MSC model tree is a species

tree with branch length represented by coalescent units. Each leaf node of the model tree represents

a population of species with fixed population size. Each branch represents one instance of the

Kingman coalescent process. Random mating happens between individuals within the same popu-

lation. At the internal nodes, where speciation events happen, the lineages that have not coalesced

yet in the child populations are moved to the parent population. The coalescent process continues

in the parent population. An example of the multi-species coalescent process is shown in Figure

2.6b.

The MSA model traces alleles back in time utilizing the following procedure. For three leaf

species, A, B, and C and their parent populations, as shown in Figure 2.6b. From each leaf species,

we sampled : different individuals. At the terminal branch leading to species A, we start with

:0 individuals at the bottom and trace back the Kingman coalescence for C0 generations, where

C0 is the length of the branch. During this time, some alleles coalesce, and some do not. At the

start of the branch, A0 denotes the remaining alleles that have not coalesced yet. Assume A0 ≤ :0,

then :0 − A0 coalescent events happened on this branch. A similar process also happens in species

B and C. Repeat this process on all branches until all the alleles coalesce into the root branch.

The MSC model assumes that the coalescent histories in different branches of the species tree are

independent. The coalescent history represents a gene tree that evolves inside the species tree. The

randomness of the coalescent process may result in different gene trees. Some gene trees may have

different topologies compared with the species tree. We will discuss the discordance between the

gene tree and species tree in the following section.

Incomplete Lineage Sorting (ILS) describes the discordance between gene trees and the species

tree. The multispecies coalescent process may result in various gene trees, as the example shown

in Figure 2.7

When tracing two lineages from sibling populations back in themultispecies coalescent process,

it is possible that two lineages do not coalesce before reaching the nearest ancestral population. If

these two lineages do not coalesce, they go further back in time to a deeper ancestral population.

20



(a) A cordant gene tree. (b) A discordance gene tree.

Figure 2.7: Illustration of deep coalescence. (a) Multi-species coalescence results in a gene tree
inside a species tree. In this example, the gene tree is concordant with the species tree in terms
of topology. During the process of coalescence, genes may separate before the species separate,
which is called deep coalescence. The most recent common ancestor (MRCA) of gene copies
sampled from species B and C is older than the speciation event of B and C. (b) Deep coalescence
with incomplete fixation of gene lineages in species lineages may cause discordance between the
gene trees and the species tree. In this example, the gene copies sampled from species A and B
coalescent first, which is different from the order speciation events.
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This scenario is called deep coalescence. In the deeper ancestral population, other lineages from

other species are also present. Under the random mating assumption, the gene lineages from other

species may coalesce with one of the sibling lineages before they coalesce with each other. In this

situation, gene trees become discordant with the species tree, and this scenario is called Incomplete

Lineage Sorting (ILS).

An example of ILS is shown in Figure 2.7b. In the ancestral population of species B and C, the

gene lineages from these two species do not coalesce. Both gene lineages go back to the deeper

ancestral population of species A, B, and C. In that deep ancestral population, the gene lineages

from species A and B coalesce first. Then it coalesces with the linage from C. This ILS results in a

gene tree where A and B are sibling species, which is different from the species tree, where B and

C are siblings.

Each species tree has a unique distribution of gene trees under the MSC model [24], and it can

be defined by a unique distribution of the true gene trees [24, 2]. The probability of observing a

particular gene tree topology can be calculated by random sampling of a set of gene trees from this

distribution. It is possible to infer the true species tree by sampling a sufficient number of gene

trees, despite the discordance between the gene trees and the species tree. Yet this is not an easy

problem to solve [22]. The most likely gene tree may be inconsistent with the species tree under

certain conditions. We will talk about this problem in detail in the following sections.

2.4 Phylogenetic Reconstruction

The sequencing data has been used for phylogeny reconstruction for decades [56, 77, 157].

Many different methods and models are designed for phylogenetic inference using sequencing data.

In the following content, we discuss the standard pipeline of phylogenetic reconstruction in detail.

2.4.1 Phylogenetic Tree Reconstruction of Single Gene

Modern phylogenetic analyses usually take molecular sequence data as input. The first step of the

phylogenetic analysis is to collect data from organisms of interest and sequence the samples to get
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genome data. High throughput sequencing technologies can read the whole genome or transcrip-

tome and produce short reads that can be later assembled into longer sequences by computational

methods [124]. The most frequently used biomolecular sequence data in phylogenetic analysis are

DNA and RNA sequences. Note that the RNA sequences constitute only a small portion of the

whole genome since the RNA sequences only contain the genetic materials of the coding genes.

The pipeline of phylogenetic tree inference of a single gene mainly consists of two steps:

multiple sequence alignment and phylogenetic tree inference. An illustration is shown in Figure

2.8.

Figure 2.8: An illustration of the phylogenetic tree pipeline for a single gene. First, homologous
sequences are selected and aligned. Then the phylogenetic tree is inferred based on the alignment
result. The figure is adapted from [33].

The phylogenetic reconstruction pipeline takes a set of unaligned sequences as input. First, the

sequences are aligned into MSA. Then the MSA estimated in the previous step is used as input for

the phylogenetic tree inference. Like many other data analysis pipelines, one problem with this

two-phase pipeline is that the quality of alignment estimated in the first step impacts the downstream

phylogenetic tree inference [15, 109, 85, 143, 78]. The basic concepts and estimation methods of

MSA are introduced in Section 2.1.

There are mainly four types of phylogenetic tree reconstruction methods, distance-based meth-

ods, Bayesian methods, Maximum Parsimony (MP) methods, and Maximum Likelihood (ML)

methods. These tree inference methods usually reconstruct the phylogenetic tree based on the

historical substitution events. The other more complicated evolutionary events are ignored, such as

insertions and deletions. Gaps in the input MSA are treated as missing values. Though the standard

version of these methods ignores other evolutionary events, it is possible to extend these methods
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to more complex evolutionary events.

One important conception of a statistical inference method is statistically consistent. A method

is considered statistically consistent when the inference value converges to the true value as the

amount of input data increases. Many statistically consistent methods have been developed for the

phylogenetic reconstruction. For example,*BEAST [44], MP-EST [124], and ASTRAL [151, 108]

are some of themostwidely used phylogenetic tree inferencemethods that are statistically consistent.

In the following content, we introduce four types of phylogenetic tree inference methods in

detail.

Distance-based methods infer the evolutionary relationship based on the distance between input

taxa. First, we construct a distance matrix that contains pairwise distances between all possible taxa

pairs. Then the distance-based methods utilize the distance matrix to reconstruct a phylogenetic

tree.

Bayesian methods calculate the posterior probability distribution of trees utilizing the prior

probability of a particular tree and the likelihood of the input data. Given the prior probability, the

likelihood of the data, and the correctness of the likelihood model, the posterior probability of a

particular tree is the probability of this tree being the true tree. Bayesian methods usually search

the tree space by utilizing the Markov Chain Monte Carlo (MCMC) algorithm.

Maximum Parsimony (MP) methods infer a phylogenetic tree by searching for the tree that best

explains the observed sequencing data with the minimum number of substitution events.

The search for the best tree with the lowest score in the entire tree space has been shown to be

NP-hard [20]. For datasets with a large number of taxa, heuristic search algorithms are used for the

tree search [134, 9, 41, 43]. Heuristic methods utilize the hill-climbing algorithm to approach the

best solution progressively, but there is no guarantee of the optimal solution.

MaximumLikelihood (ML)methods reconstruct a phylogenetic tree using the following criteria.

Given a sequence evolution model and a set of sequencing data, assume that the sequencing data

is generated under the evolution model and search for a tree with the maximum likelihood of

producing the observed sequencing data.
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Finding the ML tree is also proved to be NP-hard [117] as the MP tree. Therefore, many

heuristic algorithms have been developed. Instead of finding the ML tree, the heuristic algorithms

search for an approximation of the ML tree [37, 98, 112].

There are some widely usedML tree methods, such as PhyML [49], FastTree [112] and RAxML

[130].

2.4.2 Branch support

It is not an easy task to infer phylogenetic trees. Phylogenetic trees inferred by any phylogenetic

tree inference methods are expected to contain errors. However, we do not have access to the true

evolutionary history except in experiment settings [132]. Besides phylogenetic tree estimation, it is

also crucial to have a quantitative measurement for the confidence of the inferred tree and individual

branches in the inferred tree.

The posterior probability distribution of trees, which is by Bayesian methods, can be used as

tree support. For the other methods, the support of the inferred tree is usually calculated by the

bootstrap method [55, 36].

The bootstrap support estimation method first samples a sufficiently large number of replicate

datasets at random. Then trees are inferred for each bootstrap replicate, respectively. A sample

of the possible universe of the data that we could have observed is provided by the bootstrap

replicates. For each branch in the estimated tree, the frequency that this branch appears in the

bootstrap replicates is used as the branch support.

2.4.3 Phylogenetic Tree Reconstruction of Multiple Genes

In the previous section, we introduced the standard phylogenetic reconstruction pipeline for a single

gene. The limitations of such phylogenetic analysis are rather obvious. First, a single gene usually

contains a few hundred to thousand base pairs. Limited sites restrict the phylogenetic signals

carried by one gene. Another problem is that the gene tree topologies often disagree with the

species tree due to evolutionary events, such as hybridization and horizontal gene transfer. As
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(a) Pipeline of concatenation methods.

(b) Pipeline of summary-based methods.

(c) Pipeline of co-estimation methods.

Figure 2.9: An illustration of the phylogenetic tree pipeline for multiple genes. (a) Concatenation
methods first concatenate the alignments of genes into a supermatrix. Then the species tree is
inferred based on this super matrix. (b) Summary-based methods infer gene trees from the gene
alignments first. Then the species tree is inferred from all the gene trees. (c) Co-estimation methods
estimate gene trees and species trees simultaneously in a single statistical inference.

discussed in Section 2.3, the discordance between gene trees and the species tree is very common.

Even though we have a perfect computational method that can infer a completely correct gene tree

from given sequencing data, it is possible that the species tree has a different topology. Thus, it is

critical to comprehensively analyze multiple genes and integrate the overall gene tree distribution

when inferring the species tree. Phylogenetic reconstruction with multiple genes can potentially

produce a more accurate species tree due to increased input data and better estimation of the gene

tree distribution. There are mainly three types of multi-gene phylogenetic reconstruction pipelines:

concatenation, summary-based, and co-estimation methods. An illustration is shown in Figure 2.9.
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In the following content, we introduce these three types of multi-gene phylogenetic tree in-

ference pipelines in detail. Concatenation methods are the most basic multi-gene phylogenetic

reconstruction pipelines, where all the input sequencing data is simply concatenated into one su-

permatrix, and the phylogenetic tree is inferred based on this supermatrix. This method takes into

account the statistical power provided by the entire dataset. With the gene tree discordance, the

phylogenetic tree inferred from a single gene of a small set of concatenated genes has a higher

probability of disagreeing with the true species tree. In contrast, the concatenated analysis of a

sufficient number of genes ignores the conflicting signals shown in different genes and produces a

fully resolved species tree with maximum support [120]. For the concatenated analysis, we assume

that ILS is the only source of discordance between the true gene trees and the species tree.

Previous simulation studies showed that the concatenation method might give wrong species

trees with high support under this assumption [31, 72, 83, 68]. One reason that may cause the

wrong species tree is that the most frequent gene tree can have a different topology than the species

tree.

The summary-based methods usually take two steps in the phylogenetic tree inference. First,

gene trees are inferred independently. Then the gene trees are summarized to infer the species tree.

The idea of the summary-based phylogenetic tree reconstruction method comes from the fact that

the species tree can be uniquely defined by the probability distribution of gene trees under the MSC

model, which we introduced in detail in Section 2.3.2. We can calculate the gene tree distribution

by the sequencing data of a sufficiently large number of genes, then estimate the species tree using

the gene tree distribution under the MSC model.

One big challenge for the summary-based method is that the accuracy of the inferred gene trees

has a great impact on the downstream species tree inference. Hign estimation errors in the gene

trees, which are very common for many phylogenomic datasets, can result in reduced accuracy of

the inferred species tree [96, 97].

There are many summary-based methods that have been developed to infer species trees by

summarizing the gene trees. One of the early approaches uses maximum parsimony criteria on
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minimizing deep coalescence (MDC) [89, 90, 137, 162] to infer the species tree.

The main drawback of the summary-based method is that the gene trees are inferred indepen-

dently, which limits the available data for each gene tree inference. This problem can be solved by

inferring gene trees and the species tree at the same time. Such a method is called the co-estimation

method. Since the gene trees are not entirely independent from each other, co-estimation of all gene

trees and species tree is the best way to retain the dependence among genes during the phylogenetic

reconstruction process.

Co-estimation methods infer both gene trees and species tree in one statistical inference, which

ensures sufficient data for the inference of each gene tree and retains the dependence among genes.

Previous studies have shown that the gene trees inferred by the co-estimation methods have higher

accuracy than those inferred by the independent estimation [154, 6]. There are two widely used

co-estimation methods, BEST [82] and *BEAST [54]. Both methods conduct Bayesian inference

via the MCMC algorithm to simultaneously infer the probability distributions of all gene trees.

2.4.4 Phylogenetic Network Reconstruction

In previous sections, we introduced the phylogenetic reconstruction of trees from sequencing data.

The MSC model plays a critical role in modeling the gene tree discordance caused by ILS in

phylogenetic tree inference. As we introduced in the previous section, the reticulate evolutionary

relationship between closely related species requires phylogenetic reconstruction methods that

consider both ILS and reticulation events. The phylogenetic network has been proposed to represent

such a complicated evolutionary history [60, 61, 101, 21].

Similar to the phylogenetic tree, a phylogenetic network topology is also represented by a rooted,

directed, acyclic graph. The major difference between the phylogenetic tree and the network is that

the phylogenetic network allows reticulation edges that model the horizontal gene flow. Reticulation

edges represent gene flow between two sibling species or populations that exist in the same period

of time. The phylogenetic network describes the evolutionary history of species, and gene trees

grow within the species network.
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The MSC model has been used in the phylogenetic tree inference from sequencing data of

multiple genes. It has been extended to the phylogenetic network and is used for network inference

from multi-gene sequencing data [161, 158].

Many computational approaches are developed for the phylogenetic network reconstruction

from multiple genes, for example, the maximum parsimony method, the maximum likelihood

method, and the Bayesian inference method. We introduce these methods in detail in the following

content.

The Maximum Parsimony (MP) method searches for the best tree under the minimizing deep

coalescence (MDC) criterion [89]. The MDC criterion was first proposed for phylogenetic tree

reconstruction and then extended to the reconstruction of the phylogenetic network [90, 137]. The

MP method only considers the gene tree topologies. There are mainly two problems with the MP

method and the MDC criterion. One problem is that we cannot estimate parameters other than

the network topology under the MDC criterion. Another problem is that the MP method with the

MDC criterion is not statistically consistent, especially when short branches exist.

The Maximum Likelihood (ML) method was proposed to solve these two problems [159] with

the multispecies network coalescent model [158], which models the stochastic process of gene

trees growth in the branches of a phylogenetic network. The ML method searches for the optimal

phylogenetic network that maximizes the probability of observing given gene trees. Hill-climbing

heuristics can be applied to ML inference to improve search efficiency. The ML method can take

into account both gene tree topologies and branch lengths.

Other than the computational complexity, the ML method is easy to overfit on the input data.

The ML method tends to give a higher likelihood score to a more complicated network model [4].

For this reason, the ML method may generate a sub-optimal solution. This may not be a problem

for the phylogenetic tree reconstruction, but it is a big obstacle for the network inference. Different

from the inference of the phylogenetic tree, the phylogenetic network inference needs to determine

the number of reticulation events. However, ML inference prefers more complicated networks.

Networks with more reticulation edges will have a higher likelihood score. This makes the ML
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method not statistically consistent. Adding more reticulation edges to the true network increases

the likelihood. Thus, the number of reticulation events needs to be carefully chosen for the ML

inference.

The Bayesian inference method can reduce the model complexity by regularizing the prior

distribution. The bayesian method infers the posterior distribution of the network given a set of

rooted gene tree topologies. The reversible-jump Markov chain Monte Carlo (RJMCMC) is often

used for the Bayesian inference of the phylogenetic network.

2.4.5 Evaluation Metrics

We evaluate multiple methods through experiments in this dissertation. Both simulated and

empirical datasets are used in the experiments. In simulated experiments, we generate synthetic

data under sequence evolution models with various procedures, where the simulation process is

under control, and the ground truth is known. We apply multiple methods to estimate the MSA and

reconstruct the phylogeny. Since we have access to the ground truth, it is easy to measure the errors

in the phylogenetic reconstruction process. In empirical experiments, we use empirical datasets,

where the ground truth is often not available. Therefore, we evaluate the method performance using

hand-curated reference alignments and trees or prior knowledge from the previous studies.

Many metrics are developed to measure the similarity of two phylogenies. Here, we will

introduce some widely used metrics that measure the similarity between two given phylogenies.

Note that not all the measurements of tree similarity are symmetric. In the following content, we

compare a reference phylogeny to an estimated phylogeny of the same set of taxa.

2.4.5.1 Comparison of Phylogenetic Trees

Phylogenetic trees could be determined by a set of bipartitions. A bipartition is a unique split of

leaves generated by deleting one internal edge in one unrooted tree. By deleting the edge, the leave

nodes are split into two sets. Given an unrooted tree ) , each branch defines a bipartition of taxa.
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The bipartitions of ) is � ()) = c(4) : 4 ∈ � ()), where c(4) is the bipartition on the leaf set of )

produced by removing the internal edge 4 [147].

The False Negative (FN) rate is calculated by the proportion of bipartitions that are shown in

the reference tree but not in the estimated tree. This metric is also known as the missing branch

rate.

The False Positive (FP) rate is the opposite of the FN rate, which is calculated by the proportion

of bipartitions that appear in the estimated tree but not in the reference tree.

The Robinson-Foulds (RF) distance [116] is the total number of bipartitions that are different

between the reference tree and the estimated tree, which includes both false-positive bipartitions and

false-negative bipartitions. The Robinson-Foulds (RF) distance[116] of two unrooted phylogenetic

trees )1 and )2 is defined as

3 ()1, )2) = |� ()1)\� ()2) | + |� ()2)\� ()1) |

In the following sections, we use the normalized RF rate, which is the proportion of bipartitions

that are different between the two trees. The normalized RF rate is the mean of FN and FP rates.

The definition of the normalized RF rate shows as following.

3̃ ()1, )2) =
1
2
× ( |� ()1)\� ()2) |

� ()1)
+ |� ()2)\� ()1) |

� ()2)
)

The normalized RF rate ranges from 0 to 1. When two trees are identical, the distance equals 0. FN

rate, FP rate, and normalized RF rate are equal when the reference tree and the estimated tree are

bifurcating. RF distance is one of the most widely used metrics for tree similarity measurement.

However, when the reference tree is not bifurcating, it is inappropriate to use RN distance to

compare the reference tree and the estimated tree.

2.4.5.2 Comparison of Phylogenetic Networks

Before we introduce the distance measurement between two phylogenetic networks, let’s first

introduce some important concepts. For a phylogenetic network # , its reduced network #′ is
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obtained by applying the reduction procedure. The reduction procedure is described as follows.

Given a phylogenetic network # , use a single node ℎ to replace each maximal subtree C, which does

not include any network nodes. The replace node ℎ is treated as a symbolic leaf that represents

the subtree C. The equivalence mapping between two phylogenetic networks #1 and #2 is defined

that, for node D in #1 and node E in #2, two nodes are considered as equivalent if both nodes are

leaf nodes and share the same label, or both nodes have : children and D8 is equivalent to E8 for

1 ≤ 8 ≤ : .

The distance, which we refer to as reduction-based distance, measures the distance between two

phylogenetic networks based on their topologies. For two reduced phylogenetic networks #1 and

#2 can be calculated by the following equation.

3 (#1, #2) =
1
2
(

∑
E∈* (#1)

<0G{0, ^#1 (E) − ^#2 (E
′)} +

∑
E∈* (#2)

<0G{0, ^#2 (D) − ^#1 (D
′)})

E′ is a node in #2 that is equivalent to E in #1, similar for D′, where D′ is a node in #1 that is

equivalent to D in #2. ^#1 (E) refers to the number of nodes equivalent to E in network #1. ^#2 (E
′),

^#2 (D), and ^#1 (D
′) are defined similarly. [100]

The reduction-based distance is equivalent to the number of rooted sub-networks that appear in

one network but not in the other. The reduced distance is very sensitive to small perturbations like

the Robinson-Foulds distance.
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CHAPTER 3

SERES: THE SEQUENTIAL RESAMPLING AND ITS APPLICATION ONMULTIPLE
SEQUENCE ALIGNMENT SUPPORT ESTIMATION

3.1 Introduction

Resampling is the process of drawing samples from the original set of observations. The

resampling methods are widely used in computational biology and bioinformatics for statistical

support estimation, especially those non-parametric approaches, such as the standard bootstrap

[32] and jackknife [140]. Support estimation utilizing resampling techniques usually includes three

steps: drawing multiple resampled replicates from the original observation; performing inference

or analysis on each resampled replicate; and comparing results among replicates. The standard

bootstrap method, which we refer to as the bootstrap method in the following section, is a widely

used resamplingmethod for statistical support estimation. Thismethod independently draws objects

with replacements from a population.

The bootstrap approach does not require a particular model for the support estimation. However,

it assumes that the observations are independent and identically distributed (i.i.d). This assumption

does not always hold for biomolecular sequences. Many evolution events produce intra-sequence

dependence and functional dependence in biomolecular sequences that are inconsistent with this

assumption, such as recombination and hybridization.

To solve the dilemma of i.i.d assumption on the biomolecular sequences sampling, Landan and

Graur proposed the Heads-or-Tails (HoT) algorithm [70] for the support estimation of multiple

sequence alignment (MSA). The main idea of the HoT algorithm is that the statistical inference

or analysis of MSAs should not be affected by the direction of the input alignment. That means

the analysis result should be the same for the original alignment (head direction) and the reversed

alignment (tail direction).

The two resampled replicates of the HoT algorithm are the original alignment and the reversed
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alignment. However, for support estimation, hundreds of resampled replicates are needed. Some

follow-up studies proposed new support estimation algorithms that combined the idea of the HoT

with the perturbation of the parameters of the progressive MSA algorithms [71, 110, 126]. These

new algorithms show advanced performance in the support estimation of MSAs compared with

other state-of-the-art methods [65, 107].

In this study, we proposed a new non-parametric resampling approach called SERES, which is

short for "SEquential RESampling"[145] that maintains the key property needed for non-parametric

resampling, which is the neighbor preservation property. The neighbor preservation property

means any pair of bases that are neighbors in the original sequence will always be neighbors in

the resampled replicates. SERES utilized an improved format of the HoT algorithm, consecutive

random walk, which combined the HoT algorithm with the traditional bootstrap algorithm for the

resampling of the biomolecular sequences, so that we can resample many non-parametric replicates

that reserve the dependence within a sequence. To test the performance of the SERES resampling

method, we applied SERES to the problem of MSA support estimation. The SERES-based support

estimation performs comparably or better than the state-of-the-art methods GUIDANCE[110] and

GUIDANCE2[126].

3.2 Methods

The SERES resampling method combines the bootstrap method with the HoT algorithm. This

method preserves the dependence within the input sequences during the resampling process. The

neighboring sites are still neighbors in resampled replicates. The SERES method is capable of

producing sufficient resampled replicates for support estimation. SERES can take either aligned or

unaligned sequences as input for resampling purposes. Let us first introduce the SERES random

walk on the aligned sequences.
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3.2.1 SERES walks on aligned sequences

The SERES random walk is performed on a set of aligned sequences. The input alignment consists

of MSA sites, which is a column of aligned nucleotides. The random walk starts at a randomly

chosen site. The starting point is chosen uniformly at random from the input alignment. The

initial moving direction is also chosen uniformly at random. Then the random walk moves on the

input alignment in the initial direction. During each step of the random walk, the current site is

sampled to the resampled replicate, and the moving direction could reverse at random with the

reverse probability W. The direction certainly changes at the start and end of the input alignment.

The random walk ends when the resampled replicate reaches the length of the input alignment.

The SERES random walk could potentially introduce bias to the resampled replicates due to the

different reversal probabilities of the input alignment. The start and end sites of the input alignment

have a reversal probability of 1. But the other sites have a reverse probability of W. However,

for practical choices of walk length and reversal probability W sampling bias is expected to be

minimal. The detailed pseudocode for a non-parametric SERES walk on a fixed MSA is shown in

the Algorithm 3.1.

Algorithm 3.1: SERES walk on aligned sequences
1: procedure SERESWalkOnAlignedSequences(�, W, numReplicates)

⊲ Input: MSA �, walk reversal probability W, number of SERES replicates numReplicates
⊲ Output: list of SERES replicates

2: replicates = <>
3: for 8 = 1 to numReplicates do
4: direction = (rand() > 0.5) ? +1 : −1 ⊲ Uniformly at random (UAR) choose direction (right vs. left)
5: 8 = b length(�) * rand() c + 1 ⊲ UAR draw from [1, length(�)]

⊲ rand() returns floating point number sampled UAR from [0, 1)
6: replicate = <>
7: while length(replicate) < length(�) do
8: replicate .= �8 ⊲ read �8 , which is the 8th character in alignment �

⊲ Alignment characters �8 are one-indexed
9: i+= direction
10: if (8 ≤ 0) or (8 > length(�)) or (rand() < W) then

⊲ Reflection of random walk
11: direction *= -1
12: if (8 ≤ 0) or (8 > length(�)) then
13: i+= direction * 2 ⊲ Always reflect at start/end of alignment �
14: replicates .= replicate
15: return(replicates)
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3.2.2 SERES walks on unaligned sequences

In previous section, we described the SERES randomwalk on the aligned sequences. For the aligned

sequences, all sequences have the same length. There is no need to worry about the inconsistency

of the randomwalk on the sequences. However, for the SERES resampling of unaligned sequences,

we needs to consider the synchronization among sequences.

We use a set of anchors to ensure synchronization. Anchors are highly conservative short

sequence regions. Sub-sequences in one anchor have high sequence similarity to each other. To

estimate anchors for the input unaligned sequences, the best practice is to utilize multiple MSA

estimation methods, and then select the most conservative short regions that appears in multiple

estimated MSA results. In practical, we found that the highly similar regions in a single estimated

alignment is sufficient to produce reasonable anchors.

The anchors are defined using following steps. First, estimate a guide MSA for the input

sequences. Thenwe useAverageNormalizedHammingDistance (ANHD) tomeasure the similarity

of all possible sequence segments of given anchor length. The indels in the estimated alignments

are considered as missing data. Finally, regions with the highest sequence similarity, represented

by the lowest ANHD, are selected as anchors. Indices of the unaligned sequences corresponding to

the start and end of each anchor are used as barriers. The start and end of the input sequences also

serve as barriers. The random walks perform between barriers similar to the random walk on the

alignment sequences. The change of direction only happens at the barriers with reverse probability

W. The direction certainly changes at the first and last barriers, which are the start and end of the

input sequence. The random walk stops when the longest resampled sequence has reached to the

length of the longest input sequence.

The application of SERES random walk on the unaligned sequences requires parametric MSA

estimation for anchor selection. Therefore, the overall process is considered as semi-parametric.

An illustrated example shows in Figure 3.1 on a 5-taxon unaligned sequence dataset. First, we

estimate an alignment for the input unaligned sequences. Then five anchors were selected based on

the sequence similarity. The anchors’ boundaries and the start and end of the input sequences are
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used as barriers. Finally, the SERES random walk performs on the input sequences with barriers.

The red arrows indicates the random walk paths. The dash line showed the reversal events. The

random walk reverses at each encountered barrier with probability W and reverses with certainty

at the start and end barriers of the input sequence. During the random walk, the sub-sequences

between previous barrier and current barrier are sampled to the replicate. The resampling procedure

ends when the resampled sequences reached the length criteria.

The pseudocode for SERES resampling of a set of unaligned sequences ( is shown inAlgorithms

3.2 through Algorithm 3.4.

Algorithm 3.2: SERES resampling of unaligned sequences
1: procedure SERESWalkOnUnalignedSequences((, W, numReplicates)

⊲ Input: set of unaligned sequences (, walk reversal probability W, number of SERES replicates numReplicates
⊲ Output: list of SERES replicates

2: replicates = <>
3: barriers = <>
4: �init = ObtainGuideAlignments(() ⊲ See Algorithm 3.3
5: Ψ = GetAnchorsFromGuideAlignments((, �init) ⊲ See Algorithm 3.3
6: AddTrivialBarriers(barriers)
7: for all (®0, ®1) Ψ do
8: barriers .= ®0 . ®1
9: for 8 = 1 to numReplicates do
10: replicates .= SERESWalkOnUnalignedSequences((, W, 8, barriers)
11: return(replicates)

12: static variable maxReplicateLengthFactor ⊲Maximum replicate length is factor of longest unaligned sequence length
13: procedure SERESWalkOnUnalignedSequences((, W, replicateNum, barriers)
14: direction = (rand() > 0.5) ? +1 : −1 ⊲ UAR choose direction (left vs. right)
15: i = b length(barriers) * rand() c + 1
16: replicate = <>
17: while maxLength(replicate) < maxLength(() * maxReplicateLengthFactor do ⊲ maxLength(() is length of longest

unaligned sequence in (
18: if ((8 == 1) and (direction == −1)) or ((8 == length(barriers)) and (direction == +1)) then ⊲ reflect at first or last

barrier
19: direction *= −1
20: AsynchronousReadBetweenAdjacentBarriers((, barriers, 8, direction, replicate) ⊲ read result passed by reference to

mutable object replicate
21: i += direction
22: if rand() < W then ⊲ change walk direction with probability W
23: direction *= −1
24: return(replicate)

25: procedure AsynchronousReadBetweenAdjacentBarriers((, barriers, 8, direction, replicate)
26: j = 8 + direction
27: for I = 8 to = do
28: replicate[I] .= (direction > 0) ? substr(S[I], barriers[8], barriers[ 9]) : reverse(substr(S[I], barriers[ 9] + 1, barriers[8] +

1)
⊲ substr(G, 8, 9) returns substring in index interval [8, 9) if 8 < 9 or empty string if 8 ≥ 9

29: return ⊲ read result passed by reference to mutable object replicate
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Algorithm 3.3: Obtain anchors
1: static variable " ⊲MSA methods " =< "1, "2, . . . >
2: procedure ObtainGuideAlignments(()
3: alignments = <>
4: for all (<) " do
5: alignments .= <(()
6: return(alignments)

7: procedure GetAnchorsFromGuideAlignments((, �init)
8: U = <>
9: V = <>
10: canonicalAlignment = �init [1] ⊲ anchors are indexed based on a fixed alignment in �init (WLOG chosen to be the first

alignment in �init)
11: �strict = GetStrictConsensusColumns(�init) ⊲ GetStrictConsensusColumns() returns column indices into first alignment

in canonicalAlignment
12: ®Ustrict = MergeAdjacentColumns(�init, �strict) ⊲ merges adjacent columns

⊲ returns array of ordered pairs (®G, ®H) where start indices ®G and end indices ®H are indexed based on canonicalAlignment
13: SortAnchors(®Ustrict, canonicalAlignment)
14: for I = 1 to length(®Ustrict) do
15: for 8 = 1 to = do
16: (®G, ®H) = ®Ustrict [I]
17: if substr(canonicalAlignment[8], ®G [8], ®H[8]) contains only indels then
18: U[8] [I] = LookupUnalignedSequenceIndex(

GetLastNonIndelIndexInPrefix(canonicalAlignment[8], G [8]))
19: V[8] [I] = U[8] [I]
20: else
21: U[8] [I] = LookupUnalignedSequenceIndex(

GetFirstNonIndelIndexInRange(canonicalAlignment[8], G [8], H[8] + 1))
22: V[8] [I] = LookupUnalignedSequenceIndex(

GetLastNonIndelIndexInRange(canonicalAlignment[8], G [8], H[8] + 1))
23: return(U, V)

24: procedure SortAnchors(®U, canonicalAlignment)
⊲ ®U is an array of ordered pairs (®G, ®H) where start indices ®G and end indices ®H are indexed based on canonicalAlignment

25: sort (ComputeModifiedHammingDistance(D, canonicalAlignment) <=> ComputeModifiedHammingDistance(E, canoni-
calAlignment)) ®U

⊲ perl sort syntax
⊲ See Algorithm 3.4

Algorithm 3.4: Modified Hamming distance calculation
1: procedure ComputeModifiedHammingDistance(D, �)
2: dist = 0
3: (®G, ®H) = D
4: for 8 = 1 to = do
5: for 9 = 8 + 1 to = do
6: dist += ComputeModifiedHammingDistancePair(substr(�[8],®G [8],®H[8]),

substr(�[ 9],®G [ 9],®H[ 9]))
7: return(dist /

(=
2
)
)

8: procedure ComputeModifiedHammingDistancePair(G, H)
9: alignedLength = length(G) ⊲ aligned sequences G and H have same length
10: matches = 0
11: for 8 = 1 to alignedLength do
12: if (G [8] != INDEL) and (H[8] != INDEL) and (x[i] == y[i]) then

⊲ homologies involving indels are penalized as mismatch
13: matches++
14: return(matches / alignedLength)
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(a) Estimate consensus alignment on input set of unaligned sequences.
s1 AGTCTGGACTATAATGAAAGCCGA
s2 AGTCTGGTATAATGAAAGCTGGTACGA
s3 AGTCTGTACTATAATGGAAGTGGGGACACGTGGACAGCCGA
s4 AGTCTGTACTATAATGCGACACGTGGATAGCCGA
s5 AGTCTGTACTATAATGGGAGGAAAGCCGA

s1
s2
s3
s4
s5

(b) Obtain anchors on consensus alignment. Barriers (dashed lines) 
     consist of anchor boundaries plus trivial start/end barriers.

(c) Choose an initial barrier and walk direction at random.
     Begin random walk (red arrow) from first barrier to neighboring barrier.
     As walk proceeds from one barrier to neighboring barrier, 
     sample unaligned sequences between barrier pairs.

s1
s2
s3
s4
s5

T
T
T
T
T

T A
T A
T A
T A
T A

Anchor
1

Anchor
2

Anchor
3

Anchor
4

Anchor
5

s1
s2
s3
s4
s5

Barriers (dashed lines)

(d) Random walk terminates when resampled sequences reach required length.

Resampled
sequences

Resampled
sequences

s1 TA
s2 TA
s3 TA
s4 TA
s5 TA

s1 TATAATGAAAGCCGAGCCGAAAGCC
s2 TATAATGAAAGCTGGTACGAGCATGGTCGAAAGCTGGTAC
s3 TATAATGGAAGTGGGGACACGTGGACAGCCGAGCCGACAGCC
s4 TATAATGCGACACGTGGATAGCCGAGCCGATAGCC
s5 TATAATGGGAGGAAAGCCGAGCCGAAAGCC

s1
s2
s3
s4
s5

Reversal
Reversal

Figure 3.1: An example of SERES resampling random walk on unaligned sequences. First, we
estimate an alignment for the input unaligned sequences. Then, a set of anchors with the highest
similarity is estimated using the estimated alignment. The anchors’ boundaries and the start and
end of the input sequences are used as barriers. Finally, the SERES random walk performs on
the input sequences with barriers. The random walk starts at a randomly selected barrier and
moves to a randomly selected direction to the next barrier. It reverses at each encountered barrier
with probability W and reverses with certainty at the start and end barriers of the input sequence.
During the random walk, the sub-sequences between the previous barrier and the current barrier
are sampled for the replicate. The resampling procedure ends when the resampled sequences reach
the length criteria.
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3.2.3 Performance study

In this study, we applied the SERES resampling approach to the MSA support estimation problem

and measured the performance of the SERES-based support estimation. The MSA support estima-

tion is used to quantify the confidence of the estimated MSA result. For an estimated alignment,

support values are inferred from multiple resampled replicates for each nucleotide-nucleotide ho-

mology in the estimated alignment. The support value indicates the confidence of the aligned

residue pair.

Many computational methods are designed to solve this problem, such as PSAR[65], TCS[18],

HoT[70], GUIDANCE[110] andGUIDANCE2[126]. Among those existingmethods, GUIDANCE,

which we refer to as GUIDANCE1 in the following section, and GUIDANCE2 are two state-of-

the-art methods for MSA support estimation. Both algorithms utilize the uncertainty of the guide

tree of the passive MSA methods. By using different guide trees for the passive MSA alignment,

multiple alternative MSAs are produced. Then those alternative MSAs are used to calculate the

support values for the residue pairs in the input MSA. In addition, GUIDANCE2 also generates

alternative MSAs by varying the gap penalty score and co-optimal MSA solution.

Both GUIDANCE1 and GUIDANCE2 use the standard bootstrap to generate alternative guide

trees. Our study adopted SERES to generate alternative guide trees for the passive MSA alignment.

First, we applied the SERES random walk on the input unaligned sequences to generate 100

resampled replicates. The reversal probability W = 0.5. Then, we realigned the sampled sequences

using MAFFT with default settings. We also investigated MSA estimation using ClustalW [88],

and FSA[12].

Each SERES replicate utilized a total of b :20c anchors with anchor size of 5 bp and a minimum

distance between neighboring anchors of 25 bp, where : is the length of the input alignment �.

The anchor parameters were selected according to our additional experiments on the impact of the

anchor parameter settings, where we found that the SERES-basedMSA support estimation is robust

to the selection of anchor numbers and anchor size. More details is included in Section 3.3.1.

The re-estimated alignments are used as alternative MSAs for the downstream steps of GUID-
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ANCE1 and GUIDANCE2.

To further explore the impact of the parameter choices, we conducted additional SERES-

based support estimation experiments with varied parameter settings. Each set of experiments

manipulated one parameter setting. The parameters include the number of anchors, anchor length,

or the method used to estimate the input MSA. Other than the selected manipulate parameter,

all the parameters used default settings for SERES-based support estimation. The number of

anchors was selected from the set {3, 5, 20, 50, 100}. Anchor length in bp was chosen from the set

{3, 5, 10, 30, 50}. Three different methods were used for estimating an input MSA: ClustalW [88],

MAFFT [64], and FSA [12].

3.2.4 Simulated Data

We simulated the datasets under 10 model conditions to comprehensively evaluate the performance

of the SERES-basedMSA support estimation with different levels of complexity of the evolutionary

processes. Model conditions for 10 taxa and 50 taxa are named from A to E, representing increases

in sequence diversity. Parameters of model conditions are shown in Table 3.1.

We used r8s version 1.7[123] to sample a random model tree under a birth-death process.

INDELible version 1.03[39] takes the model tree topology and simulates nucleotide sequences and

true alignment according to the guide trees under the General Time-Reversible (GTR) substitution

model. We used the simulation parameters from Liu et al. 2012 study[80]. The parameters of

the GTR substitution model[118] and the indel model comes from Liu et al. 2012 study[80]. The

length of the simulated sequences was 1000bp. This simulation process was repeated twenty times

independently to generate twenty replicates for each model condition. All the results were the

average of twenty replicates. The summary statistics of the simulated dataset are shown in Table

3.1. Additional summary statistics of estimated alignment produced by ClustalW and FSA shows

in Table 3.2.

To explore the impact of gap length distribution, our study also included 10-taxon model

conditions which utilized the long gap length distribution from the study of Liu et al. [80] instead
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Model Number Tree Insertion/deletion True align Est align
condition of taxa height probability NHD Gappiness length length SP-FN SP-FP
10.A 10 0.4 0.13 0.297 0.474 1965 1552 0.294 0.341
10.B 10 0.7 0.1 0.394 0.512 2165 1564 0.483 0.533
10.C 10 1 0.06 0.514 0.526 2163 1554 0.657 0.684
10.D 10 1.6 0.031 0.599 0.486 1874 1508 0.747 0.753
10.E 10 4.3 0.013 0.693 0.465 1849 1613 0.945 0.943
50.A 50 0.45 0.06 0.281 0.516 2044 1786 0.086 0.088
50.B 50 0.7 0.03 0.398 0.475 1936 1714 0.106 0.103
50.C 50 1 0.02 0.514 0.498 2048 1703 0.245 0.230
50.D 50 1.8 0.012 0.594 0.471 1945 1712 0.455 0.419
50.E 50 4.3 0.004 0.688 0.459 1890 2319 0.963 0.948

Table 3.1: Simulated datasets: parameter values and summary statistics. The simulation model
condition parameters consist of the number of taxa, model tree height, and insertion/deletion
probability. Each model condition corresponds to a distinct set of model parameter values. The
following table columns list average summary statistics for each model condition (= = 20). “NHD”
is the average normalized Hamming distance of a pair of aligned sequences in the true alignment.
“Gappiness” is the percentage of true alignment cells which consists of indels. “True align length” is
the length of the true alignment. “Est align length” is the length of theMAFFT-estimated alignment
[64] which was provided as input to the support estimation methods. “SP-FN” and “SP-FP” are
the proportion of homologies that appear in the true alignment but not in the MAFFT-estimated
alignment and vice versa, respectively.

of the medium gap length distribution that was used in the other datasets of our simulation study.

Parameter values and summary statistics for the long-gap-length model conditions are shown in

Table 3.5.

ClustalW
Model Est align

condition length SP-FN SP-FP
10.A 1208.5 0.497 0.556
10.B 1186.2 0.624 0.684
10.C 1144.8 0.711 0.754
10.D 1105.7 0.756 0.786
10.E 1060.1 0.896 0.906

FSA
Model Est align

condition length SP-FN SP-FP
10.A 2289.3 0.334 0.124
10.B 3418.5 0.585 0.164
10.C 4506.6 0.729 0.211
10.D 5000.9 0.800 0.223
10.E 6657.1 0.907 0.531

Table 3.2: Medium-gap-length model conditions: estimated alignment statistics. TheMSA support
estimation problem requires an input MSA. Our study included ClustalW [88] and FSA [12]
alignments to explore the impact of input alignment quality on downstream support estimation. The
following table columns list average statistics for estimated alignments on each model condition
(= = 20). “Est align length” is the estimated alignment length. “SP-FN” and “SP-FP” are the
proportion of homologies that appear in the true alignment but not in the estimated alignment and
vice versa, respectively.
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3.2.5 Empirical data

We used the empirical benchmarks from the Comparative RNA Web (CRW) site database [14]

to further test the performance of the SERES-based MSA support estimation. The CRW dataset

contains alignments of ribosomal RNA sequences, which covers a wide range of dataset size and

sequence divergence. The reference alignments included in the CRW dataset are produced by the

combination of automatic alignment software and intensive manual correction with information

of the secondary structure. The quality of the reference alignments include in the CRW are very

high. This benchmark dataset has been widely used in the evaluation and comparison of MSA

approaches. We selected 11 datasets from the CRW dataset with at most 250 sequences, including

primary 16S rRNA, primary 23S rRNA, primary intron and seed alignments. Preprocess of the

empirical datasets filtered sequences with greater or equal to 99% missing data. The summary

statistics of the empirical datasets are shown in Table 3.3.

Number Ref align Est align
Dataset of taxa NHD Gappiness length length SP-FN SP-FP
IGIA 110 0.606 0.915 10368 6675 0.734 0.784
IGIB 202 0.579 0.910 10633 7379 0.825 0.864
IGIC2 32 0.533 0.700 4243 3514 0.689 0.715
IGID 21 0.719 0.782 5061 3023 0.874 0.904
IGIE 249 0.451 0.838 2751 2775 0.393 0.376
IGIIA 174 0.668 0.814 6406 7005 0.816 0.800
PA23 142 0.293 0.267 3991 3552 0.078 0.077
PE23 117 0.300 0.612 9436 10083 0.202 0.213
PM23 102 0.361 0.797 10999 8803 0.262 0.288
SA16 132 0.212 0.205 1866 1673 0.031 0.028
SA23 144 0.304 0.460 4048 3678 0.077 0.081

Table 3.3: Empirical dataset summary statistics. The empirical study made use of reference
alignments (“Ref align”) from the CRW database [14]. The column description is identical to Table
3.1.

3.2.6 Performance Measure

We evaluate the performance of the MSA support estimation approaches by the receiver operating

characteristic (ROC) curves, precision-recall (PR) curves, and area under ROC curves (ROC-AUC)

and PR curves (PR-AUC). We focus on this application because the multiple sequence alignment

problem is considered to be a classical problem in computational biology and bioinformatics and
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MSAs are used as inputs for a variety of important computational problems throughout com-

putational biology and bioinformatics, such as phylogenetics analysis, proteomics, comparative

genomics, etc. It is well known that MSA quality has a major impact on downstream analysis

[71, 79, 80].

The MSA support estimation produces support value for each residue pair in estimated align-

ment. Both the ROC curve and the PR curve are produced with thresholds ranging from 0 to 1.

For each threshold, by comparing the support value with the threshold and whether the homology

appears in the true alignment, we divided the homologies in the estimated alignment into four

parts. True positive (TP) represents the number of residue pairs with support values greater than

or equal threshold and appear in the true alignment. False positive (FP) represents the number of

residue pairs with support value greater or equal to the threshold but not in the true alignment. True

negative (TN) represents the number of residue pairs with support values less than the threshold and

not true alignment. False negative (FN) represents the number of residue pairs with support value

less than the threshold but appear in the true alignment. The ROC curve, PR curve, ROC-AUC,

and PR-AUC were calculated by the scikit-learn Python library[136].

3.3 Result

3.3.1 Simulation study

For all the model conditions, the SERES-based support estimation method showed better PR-

AUC and ROC-AUC performances than the GUIDANCE1 and GUIDANCE2, two state-of-the-art

methods. The results of the simulation study are shown in Table 3.4. All the performance

improvements achieved by the SERES-based support estimation were statistically significant. The

p-values were calculated by the corrected pairwise t-test, or DeLong test [25], respectively, over

all replicate datasets on each model condition. Sequence divergence showed a strong impact on

the performance improvement achieved by the SERES-based method, although the SERES-based

support estimation method consistently outperformed the GUIDANCE1 and GUIDANCE2 using

the standard bootstrap resampling approach on all model conditions despite different dataset sizes
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and sequence divergence. The performance improvement increased as the sequence divergence

increased. For the 10-taxon and 50-taxon model conditions, the SERES-based method achieved

at most 3% improvement on the datasets with the least sequence divergence. The SERES-based

method improved the PR-AUC performance by 28% on the most divergent dataset in the simulation

study. Datasets with the highest sequence divergence are the most challenging datasets.

All methods showed degraded PR-AUC as the sequence divergence increased, which is con-

sistent with the previous GUIDANCE2 study [126]. While the SERES-based method’s PR-AUC

performance degraded slower than the original GUIDANCE1 and GUIDANCE2 using the boot-

strap resampling approach. The performance improvement achieved by the SERES+GUIDANCE1

method over GUIDANCE1 was generally greater and statistically more significant than the com-

parison between the SERES+GUIDANCE2 method and GUIDANCE2. On all model conditions,

the GUIDANCE2 produced better PR-AUC and ROC-AUC performance than the GUIDANCE1.

Another observation was that the PR-AUC differences were generally larger than the ROC-AUC

differences, especially on model conditions with higher sequence divergence.

The performance comparisons on the long-gap-length model conditions were mostly the same

as the medium-gap-length model conditions. The PR-AUC and ROC-AUC performances of the

two methods are shown in Table 3.5. Similar to previous findings, SERES+GUIDANCE2 con-

sistently produced significant improvements on both PR-AUC and ROC-AUC in comparison to

GUIDANCE2. The statistical significance was calculated by the corrected pairwise t-test or De-

Long test [25] across all 20 replicates for each model condition, respectively. Furthermore, as

sequence divergence increased, the PR-AUC improvement that SERES+GUIDANCE2 produced

relative to GUIDANCE2 tended to improve. When comparing medium-gap-length with corre-

sponding long-gap-length model condition pairs, for example, 10.A and 10.long.A, the PR-AUC

improvement of SERES+GUIDANCE2 over GUIDANCE2 was similar between the two types of

gap length distribution. The differences were less than 1%. A similar finding was observed for

ROC-AUC measurements. An exception is the comparison between 10.D and 10.long.D model

conditions. For the 10.long.D model condition, the PR-AUC performance improvement achieved
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PR-AUC(%) ROC-AUC(%)
Model
condition

GUID-
ANCE1

SERES+
GUID-
ANCE1

Pairwise t-test
corrected
q-value

GUID-
ANCE1

SERES+
GUID-
ANCE1

DeLong et al. test
corrected
q-value

10.A 88.74 91.17 5.4 × 10−7 80.22 85.57 < 10−10

10.B 82.21 86.26 1.5 × 10−6 84.83 88.66 < 10−10

10.C 76.23 83.49 1.9 × 10−4 86.98 91.23 < 10−10

10.D 74.65 85.81 1.9 × 10−4 88.55 93.72 < 10−10

10.E 42.61 59.20 3.1 × 10−4 82.24 87.40 < 10−10

50.A 98.22 98.92 5.3 × 10−10 83.09 90.64 < 10−10

50.B 97.84 98.69 2.8 × 10−9 82.85 90.39 < 10−10

50.C 95.08 96.80 5.6 × 10−8 85.54 90.64 < 10−10

50.D 90.79 95.75 5.3 × 10−6 88.89 94.56 < 10−10

50.E 62.47 79.14 8.0 × 10−10 91.02 93.23 < 10−10

PR-AUC(%) ROC-AUC(%)
Model
condition

GUID-
ANCE2

SERES+
GUID-
ANCE2

Pairwise t-test
corrected
q-value

GUID-
ANCE2

SERES+
GUID-
ANCE2

DeLong et al. test
corrected
q-value

10.A 92.55 93.33 7.4 × 10−6 87.17 88.34 < 10−10

10.B 88.08 89.31 8.4 × 10−4 89.45 90.56 < 10−10

10.C 84.28 86.86 3.1 × 10−4 91.36 92.88 < 10−10

10.D 86.03 88.75 1.9 × 10−4 93.34 94.69 < 10−10

10.E 51.17 62.30 1.3 × 10−3 86.00 88.28 < 10−10

50.A 98.98 99.14 5.3 × 10−6 91.17 92.50 < 10−10

50.B 98.79 98.96 1.5 × 10−6 91.24 92.44 < 10−10

50.C 96.86 97.45 3.2 × 10−7 90.81 92.31 < 10−10

50.D 94.04 96.23 1.5 × 10−5 92.67 95.09 < 10−10

50.E 72.61 81.47 1.5 × 10−8 92.94 94.22 < 10−10

Table 3.4: Support estimation method performance on simulated datasets. Results are shown for
simulated datasets. The top rows show AUC comparisons of GUIDANCE1 (“GUIDANCE1”)
vs. SERES combined with parametric techniques from GUIDANCE1 (“SERES+GUIDANCE1”),
Results AUC comparisons of GUIDANCE2 (“GUIDANCE2”) vs. SERES combined with para-
metric techniques from GUIDANCE2 (“SERES+GUIDANCE2”); the best AUC is shown in bold.
Corrected q-values are reported (= = 20) and all were significant (U = 0.05).

by the SERES-based method was larger than that seen in the 10.D model condition.

We also conducted additional experiments to study the impact of the MSA estimation method

choices. The experimentswere conducted by SERES+GUIDANCE2with alternativeMSAmethods

for estimating the input MSA. A direct performance comparison is shown in Table 3.6. The three

MSAmethods used in our study returned input alignmentswith different levels of quality. Compared

to the other ClustalW and MAFFT, input MSA estimated by FSA had a lower average SP-FP and

the best or close to best average SP-FN measurement. Detailed summary statistics are shown

in Table 3.2. Downstream support estimation PR-AUC reflected input alignment quality. In the

previous experiments, we found that the PR-AUC performance decreased as sequence divergence
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PR-AUC(%)
Model

condition GUIDANCE2 SERES+
GUIDANCE2

Pairwise t-test
corrected q-value

ROC-AUC(%)
Model

condition GUIDANCE2 SERES+
GUIDANCE2

DeLong et al. test
corrected q-value

10.long.A 89.99 90.99 < 10−10

10.long.B 91.84 93.02 < 10−10

10.long.C 93.14 94.59 < 10−10

10.long.D 93.89 96.13 < 10−10

10.long.E 92.62 94.38 < 10−10

Table 3.5: Support estimation method performance on long-gap-length model conditions. The
performance of GUIDANCE2 and SERES+GUIDANCE2 is compared across model conditions
10.long.A through 10.long.E (named in order of generally increasing sequence divergence). Ag-
gregate PR-AUC and ROC-AUC are reported across all replicate datasets in a model condition
(= = 20), and the best AUC for each model condition is shown in bold. Statistical significance
of PR-AUC or ROC-AUC differences was assessed using a one-tailed pairwise t-test or DeLong
test [25] test, respectively, and multiple test correction was performed using the method of [8].
Corrected q-values are reported (= = 20) and all were significant (U = 0.05).

increased. When using FSA-estimated alignments as input, the PR-AUCperformance reductionwas

smaller than that ofMAFFTandClustalW.ThePR-AUCandROC-AUCperformance improvements

obtained by SERES+GUIDANCE2 over GUIDANCE2were robust to the quality of input alignment

or choice of MSA estimation method. The SERES+GUIDANCE2 outperformed GUIDANCE2 on

both PR-AUC and ROC-AUC no matter annotating more accurate input alignments, such as FSA-

estimated alignments, or less accurate input alignments, such as alignments estimated by MAFFT

or ClustalW.

We explored different anchor parameter settings. The method performances using differing

choices for anchor length and numbers of anchors are shown in Figures 3.2 and Figure 3.3, respec-

tively. For different anchor lengths used for the SERES resampling, the SERES+GUIDANCE2

produced roughly similar PR-AUC and ROC-AUC performance. The average ROC-AUC difference

for different choices of anchor length was less than 0.01 for all model conditions. The largest PR-

AUC performance difference was 0.058 on the 10.E model condition. This PR-AUC difference is

considered very small compared to the PR-AUC improvement obtained by SERES+GUIDANCE2

over GUIDANCE2, which was 0.28 on the 10.E model condition. A similar outcome was seen

in experiments involving different choices for the number of anchors, except in the most divergent

47



PR-AUC(%)
ClustalW FSA

Model
condition

GUID-
ANCE2

SERES+
GUID-
ANCE2

Pairwise t-test
corrected
q-value

GUID-
ANCE2

SERES+
GUID-
ANCE2

Pairwise t-test
corrected
q-value

10.A 95.37 95.78 2.8 × 10−3 96.36 96.55 8.6 × 10−3

10.B 92.30 92.95 8.2 × 10−4 95.40 95.87 4.9 × 10−3

10.C 89.36 91.23 1.7 × 10−4 95.32 96.06 2.7 × 10−3

10.D 88.53 90.45 8.8 × 10−5 96.21 96.87 2.1 × 10−3

10.E 73.96 76.50 8.2 × 10−4 90.23 92.51 8.6 × 10−3

ROC-AUC(%)
ClustalW FSA

Model
condition

GUID-
ANCE2

SERES+
GUID-
ANCE2

DeLong et al. test
corrected
q-value

GUID-
ANCE2

SERES+
GUID-
ANCE2

DeLong et al. test
corrected
q-value

10.A 96.99 97.23 < 10−10 80.85 81.61 < 10−10

10.B 96.64 96.94 < 10−10 81.31 82.89 < 10−10

10.C 96.27 96.88 < 10−10 84.48 86.56 < 10−10

10.D 95.78 96.65 < 10−10 88.63 90.37 < 10−10

10.E 89.84 90.80 < 10−10 89.10 90.83 < 10−10

Table 3.6: SERES+GUIDANCE2 performance using alternative methods for estimating an input
MSA. Input MSAs in these experiments were estimated using either ClustalW [88] or FSA [12].
(MAFFT was used to estimate input MSAs throughout the rest of our study.) Results are shown for
model conditions 10.A through 10.E (named in order of generally increasing sequence divergence).
Otherwise, table layout and description are identical to Table 3.5.

10.E model condition, where an intermediate number of anchors yielded the best PR-AUC.

We compared the runtime of the GUIDANCE1 and GUIDANCE2 with or without the SERES

resampling and re-estimation, the SERES-basedmethod required slightlymore runtime on allmodel

conditions, usually a few minutes for the entire run. On average, all methods in the simulation

study completed analysis of each replicate dataset in less than half an hour and with less than 1 GiB

of main memory usage.

The average runtime of SERES+GUIDANCE1was longer thanGUIDANCE1 alone by 1minute

and 5 minutes on the 10-taxon and 50-taxon model conditions, respectively. The average runtime

of SERES+GUIDANCE2 was longer than GUIDANCE2 alone by at most 1.4 minutes and 6.5

minutes, respectively. The runtime shows in Figure 3.4.

For the average memory usage on 10-taxon and 50-taxon model conditions, SERES+ GUID-

ANCE1 used 0.016 GiB to 0.610 GiB more than GUIDANCE1 alone. A similar outcome was ob-

served when comparing SERES+GUIDANCE2 and GUIDANCE2, where SERES+GUIDANCE2

used 0.034 GiB and 0.871 GiB more memories than GUIDANCE2, respectively. The memory
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Figure 3.2: SERES+GUIDANCE2 performance using different choices for anchor length. Re-
sults are shown for five 10-taxon medium-gap-length model conditions (named 10.A through
10.E in order of generally increasing sequence divergence). We evaluated the performance of
SERES+GUIDANCE2 where anchor length in bp was either 3, 5, 10, 30, or 50. We calculated each
method’s precision-recall (PR) and receiver operating characteristic (ROC) curves. Performance is
evaluated based upon aggregate area under curve (AUC) across all replicates for a model condition
(= = 20).
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Figure 3.3: SERES+GUIDANCE2 performance using different choices for the number of anchors.
We evaluated the performance of SERES+GUIDANCE2 where the number of anchors used was
either 3, 5, 20, 50, or 100. Otherwise, figure layout and description are identical to Figure 3.2.

usage is shown in Figure 3.5.
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Figure 3.4: Runtime comparison of methods under study. (a) For each method, average runtime (h)
across all replicates in each simulation study model condition is reported (= = 20); standard error
bars are also shown. The 10-taxon model conditions 10.A through 10.E are shown in order from
left to right, followed by the 50-taxon model conditions similarly. (b) Method runtimes are shown
for each empirical study dataset. Datasets are arranged from left to right in order of increasing
dataset size as measured by number of taxa.

3.3.2 Empirical study

The SERES-based support estimation methods produced better performance on all empirical

datasets except for the IGIC2 dataset, where the GUIDANCE2 performed better than the SERES+

GUIDANCE2 method by 1.17% on PR-AUC and 2.12% on ROC-AUC.

Consistent with the simulation study, the SERES-based method achieved larger PR-AUC per-

formance improvements on datasets with higher sequence divergence. The PR-AUC improvements
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Figure 3.5: Memory usage comparison of methods under study. Memory usage is shown in GiB.
Otherwise, figure layout and description are identical to Supplementary Figure 3.4.

were less than 1% on seed and primary non-intronic datasets, which were datasets with less

ANHD and gappiness, refer to Table 3.3. For the intronic datasets, datasets with higher sequence

divergence, the PR-AUC improvements were as much as 13.87%.

Performance improvements of the SERES+GUIDANCE1 method over GUIDANCE1 were

relatively greater than that of the comparison between the SERES+GUIDANCE2 method and

GUIDANCE2, which is also consistent with the simulation study.

Finally, GUIDANCE2 consistently generated better performance than GUIDANCE1 on both

PR-AUC or ROC-AUC.

The runtime comparison between SERES+GUIDANCE2 and GUIDANCE2 showed larger
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PR-AUC(%) ROC-AUC(%)
Model
condition

GUID-
ANCE1

SERES+
GUID-
ANCE1

GUID-
ANCE1

SERES+
GUID-
ANCE1

IGIA 62.67 69.28 89.50 91.62
IGIB 73.60 87.47 94.49 97.39
IGIC2 72.67 75.36 82.25 83.87
IGID 63.74 76.30 95.10 96.73
IGIE 93.56 95.42 90.08 93.30
IGIIA 73.03 83.06 86.49 96.45
PA23 98.54 99.41 82.59 93.63
PE23 98.44 99.27 94.75 97.41
PM23 97.53 98.48 94.20 96.44
SA16 99.72 99.86 91.07 95.57
SA23 98.35 99.24 81.76 92.18

PR-AUC(%) ROC-AUC(%)
Model
condition

GUID-
ANCE2

SERES+
GUID-
ANCE2

GUID-
ANCE2

SERES+
GUID-
ANCE2

IGIA 67.4 68.49 91.38 91.94
IGIB 80.66 86.72 96.47 97.38
IGIC2 74.44 73.27 84.63 82.51
IGID 75.15 78.38 96.44 97.09
IGIE 94.6 95.44 91.84 93.49
IGIIA 78.16 85.09 94.50 96.82
PA23 99.24 99.53 91.48 94.88
PE23 99.07 99.34 96.72 97.63
PM23 98.68 98.85 96.93 97.28
SA16 99.88 99.91 96.22 97.22
SA23 99.04 99.33 89.93 93.18

Table 3.7: Empirical study results. Results are shown for empirical datasets. For each dataset and
pairwise method comparison. Table layout, and table description are otherwise identical to Table
3.4.

differences in the empirical datasets compared to the simulation study. SERES+GUIDANCE2

used at most 2.6 hours on the largest empirical datasets, which have 100-200 taxa. The variance of

the runtime difference between the two methods was also larger than that of the simulation study.

GUIDANCE2’s main memory usage was not consistently better than SERES+GUIDANCE2 on

the empirical datasets. These two methods had comparable memory usage across the empirical

datasets. The maximum difference between these two methods was 0.06 GiB. Similar runtime and

memory usage comparisons were observed for SERES+GUIDANCE1 and GUIDANCE1, with the

former having a maximum overhead relative to the latter of 4.2 hours and 0.07 GiB.
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3.4 Discussion

In both the simulation and the empirical studies, the utilization of the SERES resampling and

re-estimation promoted the MSA support estimation performance. According to the experiment

results, the performance improvement greatly benefited from the SERES resampling approach,

which can produce many distinct replicates and reserve the intra-sequence dependence.

Under all model conditions, the support estimation produced by GUIDANCE1 and GUID-

ANCE2 with the SERES resampling and re-estimation showed significant improvements in the PR-

AUC and ROC-AUC compared to the pipelines without the SERES resampling process. The main

difference for the comparison is the resampling approach, SERES, versus the standard bootstrap.

The results of the simulation study and the empirical study indicate that the SERES resampling

approach outperformed the standard bootstrap resampling method in the application of the MSA

support estimation. The SERSE resampling approach was designed to preserve the intra-sequence

dependence caused by the insertion and deletion processes and relax the assumption made by the

bootstrap resampling method that all the sites are independent and identically distributed.

The experiment results showed that the SERES+GUIDANCE1 method achieved greater PR-

AUC and ROC-AUC performance improvements over the GUIDANCE1 method than the compar-

ison between the SERES+GUIDANCE2 and GUIDANCE2. One reason is that in terms of AUC

performance, the GUIDANCE2 outperformed the GUIDANCE1. We used the SERES resam-

pling approach together with the support estimation framework of GUIDANCE1 or GUIDANCE2.

GUIDANCE2 already yielded very high PR-AUC and ROC-AUC on the simulation datasets and

empirical datasets, and it is hard for the SERES resampling approach to make large performance

improvements upon that.

The experiments on the empirical datasets generated similar results as the simulation study.

The non-intronic datasets have low ANHD and gappiness, which means they have low sequence

divergence. The intronic datasets have higher sequence divergence. Therefore, the methods’

performances on the non-intronic datasets were similar to low divergence model conditions, and

performances on the intronic datasets were similar to high divergence model conditions. The
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SERES-based support estimation methods consistently showed better performance than either

GUIDANCE1 or GUIDANCE2 alone for all the empirical datasets. The SERES-based methods

achieved larger performance improvements on the PR-AUC and ROC-AUC as the dataset became

more divergent and challenging to align. For small datasets with low sequence divergence, the

SERES resampling approach did not greatly improve the performance as on those challenging

datasets. One example is the IGIC2 datasets, where the SERES+GUIDANCE2 did not outperform

GUIDANCE2. IGIC2 was a small dataset, which is about an order of magnitude smaller than

other datasets. This dataset also has a lower ANHD and gappiness than the other intronic datasets.

Another small intronic dataset, IGID, has higher ANHD and gappiness compared to the IGIC2

dataset. When compared to the GUIDANCE2, the SERES-based support estimation yielded a

relatively small performance improvement of about 3.2%. Higher sequence divergence usually

means more challenges for statistical inferences and more inference errors. While the performance

of the SERES-based methods degraded much slower than the corresponding non-SERES methods

as the sequence divergence increased. The largest performance improvement was seen in the most

divergent model conditions and empirical datasets.

The combination of GUIDANCE1 and GUIDANCE2 with SERES-based resampling and re-

estimation usually leads to an increase in computational runtime in our study. The computational

runtime increased by a few minutes for the 10-taxon and 50-taxon simulated datasets and a few

hours for the larger empirical datasets with around 100-200 taxa. In the simulation study, the

SERES-based methods also required more memory than GUIDANCE1 and GUIDANCE2 alone.

The gap between the SERES-based methods and GUIDANCE1 and GUIDANCE2 decreased on the

larger empirical datasets with a few hundred taxa. Compared to GUIDANCE1 and GUIDANCE2,

the SERES-based methods include an additional MSA re-estimation step, occurring after SERES

random walk resampling. This additional step is likely the reason for the increased computational

cost.

Finally, we noticed that the combination of two different types of methods resulted in better per-

formance than either of these methods alone. This finding indicated that the resampling techniques
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are orthogonal to parametric alternatives, which is consistent with previous studies [110, 126].

3.5 Conclusions

In this study, we introduced a new non-parametric/semi-parametric resampling approach,

SERES, for the resampling of biomolecular sequence data. The SERES resampling approach

can produce many distinct resampling replicates while reserving the sequential dependence during

the resampling process. We applied the SERES resampling approach to a classical problem in

computational biology and bioinformatics, the MSA support estimation problem. We tested the

SERES-based support estimation on both simulated and empirical datasets. The SERES-based

method performed comparably or better than the state-of-the-art approaches.

For future research, there are several directions. Create a purely non-parametric resampling

approach based on the SERES method. The SERES algorithm in this study requires the estimation

of anchors to ensure the synchronization of the random walk on the unaligned input sequences.

Anchor estimation is a semi-parametric procedure that makes use of progressive multiple sequence

alignment algorithms. Therefore, the SERES resampling approach on the unaligned sequences

is also considered a semi-parametric approach. Non-parametric resampling procedure could be

obtained by replacing the anchor estimation in the SERES resampling process.

The SERES resampling approach could potentially be extended to perform the MSA estima-

tion since alternative homologies were produced during the SERES resampling and re-estimation

process. Many other problems can also make use of the SERES resampling approach, such as

protein structure prediction, read mapping, and assembly. Non-parametric resampling for support

estimation is widely used throughout science and engineering, and SERES resampling can also be

applied in research areas outside of computational biology and bioinformatics.
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CHAPTER 4

APPLICATION OF SERES RESAMPLING APPROACH TO ALIGNED SEQUENCES:
PHYLOGENETIC HMM INFERENCE AND LEARNING

4.1 Introduction

Besides estimation of the confidence intervals, the statistical resampling methods are also used

to produce perturbations for statistical inference and learning to improve the accuracy [13]. In this

study, we applied the SERES resampling algorithm on the aligned sequences for another classical

problem in computational biology and bioinformatics, recombination-aware local genealogical

inference.

We selected the recombination breakpoint detection problemmainly because the recombination

event is one of those evolutionary processes that creates sequence dependence. The sites involved

in the recombination share the same evolutionary history. The purpose of the recombination

breakpoints detection is to find the breakpoints where two neighboring regions have different local

genealogy topologies. Preservation and identification of intra-sequence dependence play crucial

roles in the recombination breakpoint detection problem. As introduced in the previous chapter, the

SERES resampling algorithm preserves the sequence dependence within the resampled replicates.

Thus, the SERES resampling approach has the ability to retain intra-sequence dependence caused

by the historical recombination events during its resampling process, which makes it a perfect fit

for this problem.

Traditionally, the phylogenetic tree is reconstructed under the assumption that all input MSA

sites share the same evolutionary history. However, due to the existence of recombination, this

assumption does not fit all conditions. Recombination is the process by which genetic materials are

transferred between different organisms. This process is an essential source of genetic diversity;

for example, disease-causing bacteria acquire resistance to antibiotics. This process also leads to

a mixture of genetic materials, where the local genealogies of the affected region are changed and
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are inconsistent with the evolutionary history of the other regions.

The Hidden Markov model was first adopted to describe evolutionary history by the study of

Hein [51], where the hidden states were used to represent the topologies of evolutionary history, and

the recombination event was interpreted as a transition between different states. McGuire extended

the ideas of Hein’s study to detect the local topologies changes caused by the recombination event

[92, 93]. The HMM model was combined into a likelihood framework where the maximum

likelihood method was used as part of Bayesian inference and the Markov chain was used to assign

a prior probability to the sequence of topologies along a sequence alignment.

There are many HMM-based methods for local genealogical inference [59, 150, 91, 81]. In this

study, We mainly focus on the recHMM [150] for the following reasons. RecHMM identifies local

genealogy by applying heuristic searches on the space of all possible partitions. This algorithm

is powerful in detecting local genealogy changes, especially when the regions that involve in

recombination are long and the dataset size is large. It reveals the most likely recombination

breakpoint locations with high accuracy and fewer requirements on parameter settings such as

window schemes. Another reason is that recHMM takes aligned sequences as input to annotating

mosaic genome structures, making it possible to combine the SERES resampling approach.

The recHMM algorithm utilizes a statistical model that combines a finite-sites substitution

model and a phylo-HMM to capture intra-sequence dependence due to recombination. An EM-

based approach is used to learn recHMM model parameters. [150] also applied a structural EM

heuristic [40] to automatically learn the set of local gene trees represented by the recHMM’s states.

In the simulation study, we compared the method performance of the recHMM method and the

combined method of the recHMM with the SERES resampling approach on local genealogies

inference. We also evaluated the combined method performance on an empirical HIV genome

sequence dataset.
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4.2 Methods

4.2.1 Standalone recHMM analysis

We first ran the recHMM alone to get a baseline performance on the local genealogy inference in

the simulation study.

Users need to assign a state size q for the HMM model of recHMM. In our simulation study,

we ran recHMM with the default setting, q = 3. For recHMM, gene trees with either different

topologies or branch lengths are considered different trees. In the structural EM used by [150],

HMM states are distinguished by both gene tree topologies and branch lengths. In Westesson’s

study, recHMM employed k independent optimization trials to avoid local optima and selected

the best trial under the maximum likelihood criterion. In our simulation study, we applied the

same strategy as in the original study of recHMM, where recHMM ran with k = 100 independent

optimization trials, and selected the best trail. We used the same posterior decoding algorithm

as used in the original study to perform statistical inference of local phylogenies [113]. Let �

be the set of all possible unrooted tree topologies on = taxa. The input alignment � contains =

sequences, each sequence comes from one taxon. The length of the input alignment is : , which

means there are : sites in �. The input alignment is assumed to contain recombined regions,

where the corresponding local genealogies are different from the other regions due to the historical

recombinations [52]. For each site 08, where 1 ≤ 8 ≤ : , in the input alignment �, recHMM outputs

the conditional probability for the gene tree 6 ∈ � correspond to each hidden state conditional on

all sites in � and the fitted HMM model.

4.2.2 The SERES+recHMM pipeline

To test the SERES resampling approach on the local genealogy inference problem, we combined

recHMM with the SERES random walk.

First, we ran SERES resampling on the input alignment � with a default reversal probability

W = 0.005. We also conducted additional experiments with alternative reversal probability W ∈
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{0, 0.01, 0.1}. We used the SERES random walk to generate ten resampled replicates for each

dataset in our study.

Then, we ran recHMM on each resampled replicate. To get a fair comparison, we restricted the

number of independent learning trials k used in the SERES-based pipeline. We ran recHMM on

each SERES replicate with k = 10. So for each dataset, the total number of independent learning

trials used in the SERES-based pipeline was equal to the number of independent learning trials

used by the standalone recHMM method. The recHMM generated posterior probabilities for each

site over q gene tree topologies.

For each site, the posterior probability distributions were aggregated across all the replicates

in which the site appeared. The aggregated distribution was then normalized to obtain a valid

probability distribution.

4.2.3 Simulated datasets

We used ms [57] to simulate the gene trees under the coalescent-with-recombination model with

either 4, 5, or 6 taxa. The recombination rate of the simulation is d ∈ {0.5, 1.0, 2.0} and the total

sequence length is 1 Kb per replicate. For each gene tree, we used Seq-Gen [48] to simulate the

sequences under the Jukes-Cantor substitution model [63]. The substitution rate is set to be \ ∈

{0.5, 1.0, 2.0}. The simulation procedures described above were repeated 30 times independently.

We got 30 replicate datasets for each model condition. We simulated datasets that covers a wide

range of recombination rates and mutation rates over 4, 5, or 6 taxa. The number of taxa are chosen

to test the scalability of the SERES resampling algorithm on the HMM inference. The number of

unique unrooted tree topologies for 4 taxa is 3. There are 15 unique unrooted tree topologies for 5

taxa, and this number increases to 105 for 6 taxa.

Summary statistics for the simulated datasets are shown in Table 4.1. We used the Robinson-

Foulds distance [116] to measure the topological accuracy of inferred gene trees compared with

the ground truth. The Robinson-Foulds distance is the proportion of bipartitions that appear in an

inferred gene tree but not in the true gene tree or vice versa.
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Number of Recombination Mutation # gene trees # gene trees ANHD ANHD
taxa rate d rate \ Avg SE Avg SE
4 0.5 0.5 3.4 1.4 0.359 0.080
4 0.5 1 3.0 1.2 0.498 0.101
4 0.5 2 3.0 1.2 0.620 0.086
4 1 0.5 4.1 1.7 0.344 0.102
4 1 1 4.1 1.7 0.495 0.105
4 1 2 4.1 1.7 0.625 0.079
4 2 0.5 5.6 2.4 0.321 0.091
4 2 1 5.6 2.4 0.462 0.103
4 2 2 5.6 2.4 0.581 0.094
5 0.5 0.5 3.100 1.165 0.331 0.093
5 0.5 1 3.200 1.137 0.464 0.083
5 0.5 2 3.200 1.137 0.585 0.068
5 1 0.5 4.700 1.917 0.357 0.085
5 1 1 4.700 1.917 0.492 0.063
5 1 2 4.700 1.917 0.608 0.044
5 2 0.5 6.367 2.834 0.331 0.078
5 2 1 6.367 2.834 0.467 0.083
5 2 2 6.367 2.834 0.587 0.062
6 0.5 0.5 3.167 1.293 0.336 0.088
6 0.5 1 3.300 1.159 0.439 0.077
6 0.5 2 3.300 1.159 0.554 0.072
6 1 0.5 4.667 2.134 0.304 0.082
6 1 1 4.667 2.134 0.435 0.079
6 1 2 4.667 2.134 0.554 0.064
6 2 0.5 6.100 2.587 0.312 0.079
6 2 1 6.100 2.587 0.448 0.085
6 2 2 6.100 2.587 0.565 0.068

Table 4.1: Simulated dataset statistics. The number of true gene trees and average normalized
Hamming distance (“ANHD”) are reported for simulated datasets from the simulation study; average
(“Avg”) and standard error (“SE”) are shown for all experimental replicates from each model
condition (= = 30).

4.2.4 Empirical datasets

Wealso re-analyzed anHIV dataset from the study of [150]. The dataset consisted of Indian samples

that were originally studied by [84]. The dataset was sub-sampled to include four sequences,

including the putatively recombinant sequence 95IN21301.

4.3 Results

4.3.1 Simulation study

We calculated the correlation between the inferred posterior probability of a gene tree topology 6

and the topological accuracy of 6 to measure the performance of the standalone method and the

SERES-based method. Table 4.2 shows the correlation results of the 4 taxa model conditions. For

all 4-taxon model conditions, the posterior probabilities produced by the SERES-based method
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are consistently better correlated with topological accuracy than the probabilities produced by

the standalone recHMM. The absolute correlation improvement was at least 0.203, where the

recombination rate d = 2 and the mutation rate \ = 1. The largest correlation improvement

was 0.305, where the recombination rate d = 1 and the mutation rate \ = 0.5. This correlation

improvement achieved by the SERES-based method is robust for all model conditions with various

mutation rates and recombination rates.

Then we compared the distributions of the posterior probability inferred by the standalone

recHMM and the SERES+recHMM method for the 4-taxon model conditions. Figure 4.1 shows

the distribution of the posterior probabilities inferred by recHMM alone. Figure 4.2 shows the

distribution of the posterior probabilities inferred by the SERES+recHMM method. In Figure

4.1 and Figure 4.2, "true class" refers to the true gene tree topologies used as guide trees for the

sequence simulation, and all the other gene tree topologies are labeled as "false class".

Ideally, the posterior probability of the true gene tree topologies should be 100%, and the

posterior probability of the other gene tree topologies should be 0%. The right-most blue bar is

the highest in Figure 4.2 for all the model conditions, which means the majority of the posterior

probabilities inferred by the SERES+recHMM for the true gene tree topologies were higher than

90%. However, in Figure 4.1, the right-most bar and the left-most bar are almost identical in height.

This means almost half of the posterior probabilities inferred by the standalone recHMM are less

than 10%.

An opposite trend was observed for the false class. The orange bar representing the highest

posterior probability inferences, which are 90% posterior probability or greater, was the second-

highest in Figure 4.1. In contrast, SERES+recHMM consistently returned fewer inferences in the

top decile of the posterior probability range. The SERES+recHMM-inferred posterior distribution

for the false class of per-site inferences was consistently shifted leftward compared to standalone

recHMM.

We saw a similar performance on the 5-taxon model conditions. In Table 4.3, the SERES+

recHMM inference had a stronger correlation with topological accuracy compared with the
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Figure 4.1: The posterior probability distribution inferred by the standalone recHMM method on
4-taxon model conditions. For each site, we split the local gene tree topologies into true class,
which contains the true gene tree topologies for the site, and false class’, which contains all other
gene tree topologies. For each class and each replicate dataset in a model condition, the inferred
posterior probabilities for gene trees at any site were binned into deciles; the resulting histogram
was normalized over all replicates in a model condition (= = 30). The normalized histograms for
the true and false classes are shown in blue and orange, respectively.
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Figure 4.2: Histogram of posterior probabilities inferred by SERES+recHMM method on 4-taxon
model conditions. Figure layout and description are otherwise identical to Figure 4.1.
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Number Recomb-
of ination Mutation recHMM SERES+recHMM
taxa rate d rate \ correlation correlation
4 0.5 0.5 -0.547 -0.830
4 0.5 1 -0.622 -0.866
4 0.5 2 -0.554 -0.799
4 1 0.5 -0.470 -0.775
4 1 1 -0.460 -0.742
4 1 2 -0.427 -0.677
4 2 0.5 -0.560 -0.855
4 2 1 -0.664 -0.867
4 2 2 -0.609 -0.837

Table 4.2: On 4-taxon model conditions, the posterior probabilities inferred by SERES+recHMM
were better correlated with topological accuracy compared with the standalone recHMM. For each
method, we calculated the Pearson correlation between the inferred posterior probability of a gene
tree 6 and the topological distance between 6 and the true gene tree of a site. Average correlation
for a method is calculated across all replicates in a model condition (= = 30).

recHMM inference for all model conditions.

The SERES+recHMM improved the correlation coefficients by at least 0.066 when the recom-

bination rate d = 1 and the mutation rate \ = 2. The largest correlation improvement was 0.155,

where the recombination rate d = 2 and the mutation rate \ = 0.5.

Number Recomb-
of ination Mutation recHMM SERES+recHMM
taxa rate d rate \ correlation correlation
5 0.5 0.5 -0.571 -0.692
5 0.5 1 -0.526 -0.676
5 0.5 2 -0.525 -0.651
5 1 0.5 -0.597 -0.675
5 1 1 -0.569 -0.678
5 1 2 -0.618 -0.684
5 2 0.5 -0.506 -0.661
5 2 1 -0.543 -0.665
5 2 2 -0.56 -0.648

Table 4.3: On 5-taxon model conditions, posterior probabilities inferred by the SERES+recHMM
had stronger correlation with topological accuracy compared with the posterior probabilities in-
ferred by the standalone recHMM. Otherwise, table layout and description are identical to Table
4.2.

Similar to the 4-taxon and 5-taxon dataset comparisons, the SERES+recHMM’s inference was

more strongly correlated with topological accuracy across all 6-taxon model conditions when

compared to standalone recHMM (Table 4.4). However, compared with the 4-taxon and 5-taxon

datasets, the correlation coefficients for both methods were generally weaker. Moreover, the

absolute improvement in the correlation achieved by SERES+recHMM was more negligible as
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well.

The comparison of the posterior probability was the same for the false class. For the false

class of inferences, the posterior probability distributions inferred by SERES+recHMMwere more

strongly shifted leftward than recHMM, despite the fact that posterior probabilities of the false class

of inferences were more than double of the inferences in the 4-taxon and 5-taxon experiments.

However, a different outcome was observed for the true class of per-site inferences. For the true

class, the posterior probability distributions inferred by the SERES+recHMM were more diffuse

than recHMM rather than a rightward shift. One reason for this observation is that when the number

of sequences involved in the HMM inference and learning increased, the computational complexity

increased dramatically.

Number Recomb-
of ination Mutation recHMM SERES+recHMM
taxa rate d rate \ correlation correlation
6 0.5 0.5 -0.3312 -0.494
6 0.5 1 -0.251 -0.457
6 0.5 2 -0.360 -0.472
6 1 0.5 -0.376 -0.486
6 1 1 -0.469 -0.473
6 1 2 -0.507 -0.535
6 2 0.5 -0.382 -0.506
6 2 1 -0.504 -0.515
6 2 2 -0.455 -0.554

Table 4.4: On 6-taxon model conditions, posterior probabilities inferred using SERES+recHMM
were more highly correlated with topological accuracy compared to standalone recHMM. Other-
wise, table layout and description are identical to Table 4.2.

We also conducted additional experiments to evaluate the impact of key method parameters.

The results are shown in Table 4.5. By comparing the inference accuracy of recHMM versus

SERES+recHMM with different SERES reversal probability W, we found that the performance

improvement achieved by SERES+recHMM over the standalone recHMMwas robust to the choice

of reversal probability W, as long as the chosen value was not too high. Reasonable choices are

equivalent to reversal breakpoints separated by an average of at least 100 bp of sequence length. The

results are consistent with the original motivation for sequence-aware resampling and re-estimation.

[145].

We tested the impact of the HMM state space size q too. The results are shown in Table 4.6.
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Figure 4.3: Distribution of posterior probabilities inferred by standalone recHMM method on
6-taxon model conditions. Figure layout and description are otherwise identical to Figure 4.1.

There are approximately 3 to 6 distinct true gene tree topologies in each simulated sequence. For

the recHMM, using an HMM state space size q larger than the number of local gene tree topologies,

the inferred results were easily overfitting. This finding is consistent with the original study of

recHMM [150].

The average runtime for the two methods was roughly comparable, and neither method consis-

tently ran faster than the other one. We observed low memory usage (less than 100 MiB) for both

methods throughout our study.
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Figure 4.4: Distribution of posterior probabilities inferred by SERES+recHMMmethod on 6-taxon
model conditions. Figure layout and description are otherwise identical to Figure 4.1.

4.3.2 Empirical study

Figure 4.5 shows the posterior probability distribution obtained by the SERES+recHMM method.

The breakpoints refer to positions where the blue topology and the orange topology are switched.

The SERES+recHMM results recovered five breakpoints that had been described in both Lole’s

study and Westesson’s study [84, 150], which are located at 6402 bp, 6969 bp, 7073 bp, 9431

bp, and 9585 bp on the input alignment. The posterior probability distribution inferred by the
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Number of Recombination Mutation recHMM SERES+recHMM
taxa rate d rate \ No W W = 0 W = 0.005 W = 0.01 W = 0.1
4 0.5 0.5 -0.614 -0.851 -0.842 -0.854 -0.679
4 0.5 1 -0.670 -0.868 -0.869 -0.847 -0.697
4 0.5 2 -0.651 -0.875 -0.840 -0.876 -0.700
4 1 0.5 -0.554 -0.873 -0.867 -0.888 -0.681
4 1 1 -0.506 -0.803 -0.798 -0.782 -0.575
4 1 2 -0.539 -0.760 -0.725 -0.748 -0.551
4 2 0.5 -0.651 -0.818 -0.844 -0.833 -0.664
4 2 1 -0.756 -0.841 -0.865 -0.845 -0.663
4 2 2 -0.667 -0.851 -0.867 -0.838 -0.676
5 0.5 0.5 -0.571 -0.732 -0.692 -0.673 -0.605
5 0.5 1 -0.526 -0.699 -0.676 -0.679 -0.601
5 0.5 2 -0.525 -0.689 -0.651 -0.662 -0.577
5 1 0.5 -0.597 -0.690 -0.675 -0.654 -0.591
5 1 1 -0.569 -0.705 -0.678 -0.669 -0.601
5 1 2 -0.618 -0.693 -0.684 -0.671 -0.593
5 2 0.5 -0.506 -0.669 -0.661 -0.629 -0.595
5 2 1 -0.547 -0.677 -0.665 -0.638 -0.572
5 2 2 -0.560 -0.675 -0.648 -0.653 -0.573
6 0.5 0.5 -0.489 -0.597 -0.573 -0.549 -0.465
6 0.5 1 -0.343 -0.591 -0.533 -0.533 -0.446
6 0.5 2 -0.374 -0.565 -0.537 -0.557 -0.44
6 1 0.5 -0.314 -0.609 -0.568 -0.556 -0.471
6 1 1 -0.375 -0.608 -0.568 -0.530 -0.453
6 1 2 -0.331 -0.607 -0.589 -0.548 -0.466
6 2 0.5 -0.511 -0.582 -0.558 -0.547 -0.477
6 2 1 -0.498 -0.606 -0.564 -0.556 -0.475
6 2 2 -0.528 -0.610 -0.584 -0.566 -0.509

Table 4.5: The comparison among different reversal probabilities W on 4-, 5- and 6-taxon model
conditions. The methods utilize models with q = 3 to infer a posterior probability distribution over
gene tree topologies. For each method’s inference, we calculated the Pearson correlation between
the inferred posterior probability for a gene tree 6 and the topological distance between 6 and the
true evolutionary history of a site (i.e., the true local gene tree). The averages are reported across
all = replicates in a model condition (= = 30).

SERES+recHMM method clearly showed inference uncertainty in the first few hundred bp of the

input alignment.

The study of Westesson [150] also reported two additional breakpoints at 4328 bp and 4401 bp

that were not described in the study of Lole [84]. The standalone recHMM found local topology

switches in the region of 4000 bp to 4200 bp. However, the SERES-based method results in more

uncertainty in the corresponding regions.

Inconsistencies exist between the posterior probability distribution inferred by the standalone

recHMM and the SERES+recHMM. Some local topology changes found by the standalone

recHMM were not supported by the SERES+recHMM analysis, for example, the region from

6000 to 6500 bp.
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Number of States Recombination Mutation recHMM SERES+recHMM
q rate d rate \ correlation correlation
3 0.5 0.5 -0.571 -0.692
3 0.5 1 -0.526 -0.676
3 0.5 2 -0.525 -0.651
3 1 0.5 -0.597 -0.675
3 1 1 -0.569 -0.678
3 1 2 -0.618 -0.684
3 2 0.5 -0.506 -0.661
3 2 1 -0.543 -0.665
3 2 2 -0.56 -0.648
10 0.5 0.5 -0.546 -0.681
10 0.5 1 -0.563 -0.671
10 0.5 2 -0.555 -0.66
10 1 0.5 -0.563 -0.677
10 1 1 -0.54 -0.674
10 1 2 -0.534 -0.661
10 2 0.5 -0.433 -0.639
10 2 1 -0.464 -0.651
10 2 2 -0.533 -0.651
15 0.5 0.5 -0.446 -0.685
15 0.5 1 -0.458 -0.685
15 0.5 2 -0.487 -0.655
15 1 0.5 -0.501 -0.679
15 1 1 -0.472 -0.671
15 1 2 -0.501 -0.657
15 2 0.5 -0.388 -0.648
15 2 1 -0.426 -0.652
15 2 2 -0.456 -0.645

Table 4.6: The comparison among different number of states q on 5-taxon model conditions.
The methods utilize models with W = 0.005 to infer a posterior probability distribution over gene
tree topologies. For each method’s inference, we calculated the Pearson correlation between the
inferred posterior probability for a gene tree 6 and the topological distance between 6 and the true
evolutionary history of a site (i.e., the true local gene tree). The averages are reported across all =
replicates in a model condition (= = 30).

Finally, for the gene tree topology, the posterior probability inferred by SERES+recHMM was

generally lower than the standalone recHMM. One example is shown in the region located between

5000 and 8000 bp. The SERES+recHMM inferred almost zero probability for the green topology

within this region, whereas the recHMM inferred a highly variable probability.

The SERES-based recHMM detected local genealogy changes in the HIV dataset, which is

consistent with the previous studies [84, 150]. These pieces of evidence suggested that the sequence

95IN21301 is recombinant.

70



Rec Mut Runtime (h) Memory (GiB)
# of rate rate SERES+ SERES+
seq d \ recHMM recHMM recHMM recHMM
4 0.5 0.5 1.788 1.731 0.055 0.055
4 0.5 1 1.951 1.838 0.055 0.055
4 0.5 2 1.852 1.944 0.055 0.055
4 1 0.5 1.958 1.868 0.055 0.055
4 1 1 1.935 1.674 0.055 0.055
4 1 2 1.919 1.672 0.055 0.055
4 2 0.5 1.712 1.878 0.055 0.055
4 2 1 1.676 1.887 0.055 0.055
4 2 2 2.199 1.852 0.055 0.055
5 0.5 0.5 2.907 3.001 0.056 0.056
5 0.5 1 3.168 3.030 0.056 0.056
5 0.5 2 3.973 3.139 0.056 0.056
5 1 0.5 3.417 3.468 0.056 0.056
5 1 1 3.164 3.153 0.056 0.056
5 1 2 3.258 2.968 0.056 0.056
5 2 0.5 3.651 2.971 0.056 0.056
5 2 1 3.849 3.253 0.056 0.056
5 2 2 3.109 3.100 0.056 0.056
6 0.5 0.5 5.542 4.959 0.058 0.058
6 0.5 1 4.969 4.748 0.058 0.058
6 0.5 2 4.715 5.353 0.058 0.058
6 1 0.5 5.652 5.423 0.058 0.058
6 1 1 5.471 5.529 0.058 0.058
6 1 2 4.398 5.314 0.058 0.058
6 2 0.5 4.819 6.177 0.059 0.058
6 2 1 4.271 5.136 0.058 0.058
6 2 2 4.221 5.056 0.058 0.058

Table 4.7: The runtime and memory usage information for standalone recHMM and
SERES+recHMM methods on simulation study model conditions. Model conditions were pa-
rameterized by the number of sequences, recombination rate d, and mutation rate \. Both methods
utilize models with q = 3 and W = 0.005 to infer a posterior probability distribution over gene
tree topologies. Average runtime in hours and peak memory usage in GiB are reported across all
replicates in a model condition (= = 30).

4.4 Discussion

To evaluate to what extent the posterior probability inferred by each method reflects the topo-

logical accuracy, we compared the method performances of the standalone recHMM method and

the combined SERES+recHMM method. The correlation between the inferred per-site posterior

probability for a gene tree topology 6 and the topological accuracy of 6 asmeasured by theRobinson-

Foulds distance between 6 and the true gene tree topology for a site was used to assess method

performance. Across all the simulation model conditions, the posterior probabilities inferred by the

SERES+recHMMmethod had a consistently better correlation with topological accuracy compared

to standalone recHMM. The improved performance obtained by combining recHMM inferencewith
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Figure 4.5: Posterior probability distribution of local gene tree topologies inferred by standalone
recHMM versus SERES+recHMM method on Indian HIV-1 dataset. We re-analyzed a subset
of the Indian HIV-1 genome dataset that was published by [84]; [150] re-analyzed the original
dataset using recHMM. Our re-analysis compared local gene tree probabilities computed using
standalone recHMM posterior decoding (top panel) versus SERES+recHMM posterior decoding
(bottom panel). The plots show posterior decoding probabilities (y-axis) versus genome coordinate
(x-axis). Local gene tree probabilities are colored based on the three possible unrooted topologies
for the four-taxon dataset (shown in either blue, orange, or green).

SERES resampling and re-estimation was robust to a wide range of mutation and recombination

rates.

We also compared the inferred posterior probability distributions produced by these two meth-

ods. We found that the standalone recHMM method produced a similar posterior probability

distribution for both true classes and false classes. The SERES+recHMM method produced more

distinguishable posterior probability distributions for the true classes and false classes.

We attribute these findings to two factors. First, the application of the SERES resampling and

re-estimation appears to be conducive to the improved inference of true gene tree topologies. The

SERES resampling approach has the ability to retain the sequence dependence in the input alignment

to the resampled replicates. And, the intra-sequence dependence among sites provides additional

information on the historical evolutionary events, especially those that caused the dependence.

The local genealogy inference greatly benefited from the SERES resampling and re-estimation

process. Second, the SERES resampling algorithm reveals uncertainties in the inference of local
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genealogy. Incorrect inferences for the gene tree topologies were less repeatable. The posterior

probability distribution of the false class was leftward shifted consistently for all model conditions

of the simulated datasets, which indicates that the SERES resampling and re-estimation process

produced a consistently low posterior probability for those incorrect local genealogy topologies.

Even for the larger dataset with 6 taxa, where solution space was an order of magnitude larger than

that of the 4-taxon and 5-taxon datasets, the SERES+recHMM method produced consistently low

posterior probabilities for those incorrect gene tree topologies.

Although the SERES+recHMM produced low posterior probabilities for the false class over all

model conditions, it returned diffused posterior probability distribution for the true class when the

dataset size was large, which indicates that uncertainties included in the inference of true gene tree

topology were also reflected in the posterior probabilities when the dataset size increased. This

result may be caused by the increased computational complexity of HMM learning optimization

as the number of input sequences increases. It is likely that conservatively limiting SERES-based

re-estimation to 10 learning iterations is insufficient for the larger model conditions in our study.

More intensive learning optimization may yield improved re-estimation and a greater performance

benefit from augmenting recHMM with SERES.

Additional experiments thatwe performed to evaluate how the choice of the parameters impacted

the method performance indicated that the performance advantage returned by SERES+recHMM

over standalone recHMM was robust to the choice of reversal probability W. The results are

consistent with the original motivation for sequence-aware resampling and re-estimation. We

noted the correspondence between an Ath order Markov process and a SERES random walk with

a reversal probability W. For W = 0.5, a first-order Markov process suffices; for W < 0.5, higher-

order Markovian processes are needed to capture sequential dependence. Essentially, smaller W

values mean that longer-distance sequential dependence is retained. Our results suggest that there

is a certain threshold. When passing that threshold, longer-distance sequential dependence is

critical to the performance of resampling and re-estimation for sequence-based inference problems.

Experiments with alternative settings for the HMM state space size showed SERES+recHMM’s
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performance was relatively robust to overfitting, as compared to standalone recHMM analysis.

4.5 Conclusions

This study introduced the application of SERES random walks on aligned sequences and

showed SERES as a data perturbation technique to improve statistical inference and learning. The

simulation experiments showed that the combination of the The SERES resampling approach with

the recHMM achieved great improvement in the local genealogy inferences. The empirical study

on the HIV genome sequence dataset confirmed the breakpoints detected in the previous studies

[84, 150]. The SERES resampling approach achieved great success on recombination detection

and local genealogical inference problems. SERES resampling and re-estimation may prove to be

similarly beneficial in ancestral recombination inference problems other than local genealogical

inference, such as recombination rate estimation [133], recombination hotspot or coldspot detection

[99, 5], etc.
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CHAPTER 5

PHYLOGENETIC SUPPORT ESTIMATIONWITH THE RANDOMWALK
RESAMPLING APPROACH

5.1 Introduction

In modern phylogenetic studies, the true evolutionary history is usually not available for anal-

ysis. Phylogenies are generally inferred by statistical methods. Therefore, it is critical to evaluate

the reproducibility of the inferred phylogenies. In 1985, Felsenstein proposed a standard bootstrap

approach to estimate the confidence intervals for an input phylogeny [36]. This bootstrap method

takes a set of sequence alignmentss as input. Then this method generates bootstrap replicates

by sampling sites from the input alignment at random with replacements. Alignment sites are

considered independently and identically distributed (i.i.d). Phylogenies are inferred for all boot-

strap replicates. Given an annotation phylogeny, the bootstrap support of the internal edges of

the annotation phylogeny is calculated. The support value is the proportion of the re-estimated

phylogenies that contain the same internal edge. Bootstrap support estimation has become the

de facto standard for assessing reproducibility in phylogenetics and phylogenomics analysis. This

method has been used in almost all modern phylogenetic studies to show the confidence of the

involved phylogenies. This makes Felsenstein’s ground-breaking work one of the most cited works

in history. Felsenstein’s 1985 paper has become the 41st most cited in all of science, according to

the survey of [141], which has been cited over 44,000 times.

Many alternative computational algorithms can be used for the purposes of phylogenetic support

estimation. For example, non-parametric resampling approaches such as the jackknife [140]; the

MSA confidence measurement approaches such as GUIDANCE1 [71, 110], GUIDANCE2 [126],

PSAR [65], T-COFFEE [107], and Divvier [1]); parametric MSA resampling or filtering methods

applied to the problem of phylogenetic support estimation (e.g., TCS [18], Gblocks [17], and Trimal

[16], and Bayesian posterior probability methods [156]). However, these alternative methods are
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not widely used due to limitations such as parametric models and specific application scenarios.

In this study, we proposed a new non-parametric resampling approach, RAWR, which is short

for "RAndom Walk Resampling." The RAWR resampling method is a simplified version of the

SERES resampling approach described in previous sections. The SERES algorithm is a semi-

parametric algorithm for the application of unaligned sequences that requires anchor estimation for

synchronization purposes. This increases the method complexity by adding extra parameters such

as anchor length, count, and sequence similarity measurement. The RAWR resampling approach

does not require anchor estimation. This new algorithm is designed for the phylogenetic support

estimation problem by resampling and re-estimation using unaligned sequences. The RAWR-

based phylogenetic support estimation shows comparable or typically better performance than the

traditional bootstrap support estimation approach.

5.2 Methods

The computational problem of the phylogenetic support estimation is described below. The

inputs contain an MSA � and a phylogenetic tree ) . The MSA � is estimated using MSA method

5 , and the phylogenetic tree ) = (+, �) is estimated using the phylogenetic inference method 6 on

the MSA �. The output is a set of confidence values ranging from 0 to 1 for all bipartitions split by

internal edges in 4 ∈ � .

5.2.1 RAWR-based Phylogenetic Support Estimation

The RAWR-based phylogenetic support estimation takes an estimated MSA � and a phylogenetic

tree ) = (+, �). The problem output consists of confidence interval estimates for each bipartitions

defined by non-leaf edge 4 ∈ � .

The estimated MSA � is inferred from the unaligned sequences ( by the MSA method 5 . First,

the RAWR resampling approach generates sequence replicates from the input MSA �.

The RAWR resampling approach also utilizes the random walk to conduct the resampling

process, similar to the SERESmethod. The randomwalk starts with a randomly selected start point
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and a randomly selected direction. The random walk moves along the input alignment in the initial

direction. All sites located on the trace of the random walk are sampled to the resampled replicate.

The RAWR algorithm does not require estimation of the anchors to ensure synchronization

during the random walk, where the random walk only changes its direction at the barriers, which

are sites located at the start and end of anchors, with reverse probability W. The RAWR resampling

approach simplifies this setting and uses all sites of the input estimated MSA � as barriers. The

random walk certainly changes direction when encountering the first and last sites. The reverse

probability is set to W elsewhere. The random walk procedure ends once the sampled replicate

reaches the desired length. The details of this resampling procedure are described in Algorithm

5.1.

Algorithm 5.1: RAWR phylogenetic support estimation
1: procedure RAWRSupport(�, ) , 5 (), 6(), W, :A )

⊲ Input: MSA �, phylogenetic tree ) , MSA method 5 (),
⊲ phylogenetic tree estimation method 6(), reversal probability W,

⊲ number of replicates :A
⊲ Output: phylogenetic support estimates n

2: reestimates = <>
3: for 8 = 1 to :A do
4: -8 = resampleRAWRReplicate(�)
5: reestimates .= 6( 5 (-8))
6: for all non-leaf edge 4 in ) do
7: n (4) = proportion of )8 in list reestimates

that display bipartition corresponding to 4
8: return(n)

9: procedure resampleRAWRReplicate(�,W)
10: . = <>
11: select 8 ∈ [1, |�|] and walkDirection uniformly at random
12: while !converged(. ,�) do
13: . .= �[8] ⊲ add 8th column of � to .
14: if reversal(W) | | (8 == 1 && walkDirection is left)
15: | | (8 == |�| && walkDirection is right) then
16: reverse(walkDirection)
17: 8 = next column index after 8 in walkDirection order
18: return(unalign(. )) ⊲ unalign(. ) drops indels from .

19: procedure converged(. ,�)
20: return(length(. ) ≥ length(�))

⊲ Sequence-length-based convergence criterion requires
⊲ number of resampled sites ≥ input MSA length

In this study, we set the length of the resampled replicate to be equal to the length of �. Other

ending criteria are also feasible for the random walk, for example, statistical criteria based on the

random walk procedure. The indels are removed from the sampled alignment to produce a set of
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unaligned sequences. Each round of the random walk procedure produces a resampled replicate

which consists of a set of unaligned sequences. The random walk process is repeated multiple

times independently to obtain a set of resampled replicates.

The two-phase methods for phylogenetic inference are widely used in systematic studies. First,

the MSA is estimated for the unaligned sequence. Then the estimated MSA is used to infer

the phylogenetic tree. We used MAFFT version 7.222 [64] with default settings for the MSA

re-estimation. The MAFFT [64] is one of the most accurate MSA estimation methods. We also

explored the choice ofMSA estimationmethods, including ClustalW [88], and FSA[12]. Moreover,

it is proved to result in good accuracy in the following phylogenetic inference [79, 80]. The summary

statistics for the estimated MSAs are shown in Table 5.3. The phylogenetic tree was inferred from

the re-estimated MSA by RAxML version 8.2.11 [130] under the GTR+Γ model with maximum

likelihood criteria [118, 155, 142].

The phylogenetic support values are calculated for all internal branches of the input phylogenetic

tree. The support value of the internal branch 4 ∈ � is the fraction of the re-estimated trees that

contain the same internal branch 4. In this study, the default setting of W was 1 × 10−1. We also

explored other reverse probability, W ∈ {1 × 10−3, 1 × 10−2, 2 × 10−2, 5 × 10−2, 1 × 10−1, 2 ×

10−1, 3× 10−1}. For each experiment, RAWR was conducted to generate 100 resampled replicates

for each input dataset.

An illustrated example shows in Figures 5.1, where the RAWR random walk is applied on a

8-taxon dataset. Then an alignment is generated based on the RAWR replicate and a tree is inferred

from the estimated alignment.

5.2.2 Bootstrap Phylogenetic Support Estimation.

We performed the bootstrap analysis using the RAxML version 8.2.11. The bootstrap was imple-

mented in the RAxML software. The bootstrap support estimation first generates 100 bootstrap

replicates from the input MSA. Then the phylogenetic tree was re-estimated for the bootstrap repli-

cate. The support values of the internal branches are calculated using the same process as the
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Figure 5.1: An illustrated example of RAWR resampling and re-estimation. The first step of
the RAWR-based phylogenetic support estimation is sequence resampling. A random walk is
performed on the input MSA. MSA sites are resampled during the random walk. The indels are
removed from the resampled sites to produce a resampled replicate. Then, MSA is re-estimated
from the resampled sequence. Finally, a phylogenetic tree is re-estimated using the re-estimated
MSA as input. The dashed lines in the first and second subplots show the reversal breakpoints.

RAWR-based phylogenetic support estimation process.

5.2.3 Additional Performance Study

We explored different parameter settings, such as the choice of the MSA estimation method, for the

RAWR-based support estimation method. We explored alternativeMSAmethods for the estimation

and re-estimation of MSAs. We used ClustalW in the performance study to explore the impact

of alignment quality on downstream phylogenetic inference and support estimation. We selected

ClustalW because it is one of the most widely used MSA methods in computational biology and

bioinformatics. For our experiments, we used ClustalW version 2.1 with default settings. The

detailed summary statistics of the ClustalW-estimated MSAs are shown in Table 5.1.
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ClustalW alignment
Model

condition length SP-FN SP-FP RAxML(ClustalW)
nRF

10.A 1216 0.670 0.747 0.207
10.B 1236 0.726 0.809 0.236
10.C 1184 0.835 0.889 0.379
10.D 1171 0.828 0.874 0.500
10.E 1163 0.901 0.926 0.650

Table 5.1: Summary statistics for ClustalW-estimated alignments and RAxML(ClustalW) trees on
10-taxon model conditions. Table layout and description are otherwise identical to Table 5.3.

To better evaluate the performance of the RAWR-based support estimation method, we applied

the RAWR resampling approach to model conditions with different parameter settings of the

insertion/deletionmodel. We conducted a simulation experiment using additional model conditions

from the original study of the SERES resampling algorithm [145] where we utilized the long gap

length distribution from the study of Liu et al. [80], rather than the medium gap length distribution

used elsewhere in our simulation study. The simulation and experimental procedures were exactly

the same across all model conditions in our simulation study. The model parameters and summary

statistics of model conditions using the long gap length distribution are listed in Table 5.2.

True alignment MAFFT alignment
Model

condition
Model
tree

height

Insertion
deletion
rate

ANHD Gapiness Length Length SP-FN SP-FP

10.long.A 0.4 0.13 0.276 0.440 1804.8 1433.7 0.272 0.315
10.long.B 0.7 0.1 0.363 0.481 1926.7 1447.8 0.381 0.426
10.long.C 1 0.06 0.455 0.456 1853.5 1413.3 0.510 0.537
10.long.D 1.6 0.031 0.542 0.432 1754.1 1403.1 0.725 0.729
10.long.E 4.3 0.013 0.660 0.445 1811.0 1560.1 0.899 0.897

Table 5.2: Long-gap-length model conditions: parameter values and summary statistics. Our
simulation study included additional 10-taxon model conditions that utilized the long gap length
distribution from the study of 2012 study of Liu et al. [80]. The model parameters consisted
of model tree height and insertion/deletion probability, and each model condition corresponds
to a distinct set of model parameter values. The long-gap-length model conditions are named
10.long.A through 10.long.E in order of generally increasing sequence divergence. The following
table columns list average summary statistics for each model condition (= = 20). “NHD” is
the average normalized Hamming distance of a pair of aligned sequences in the true alignment.
“Gappiness” is the percentage of true alignment cells which consists of indels. “True align length” is
the length of the true alignment. “Est align length” is the length of theMAFFT-estimated alignment
[64] which was provided as input to the support estimation methods. “SP-FN” and “SP-FP” are
the proportion of homologies that appear in the true alignment but not in the MAFFT-estimated
alignment and vice versa, respectively. The table and caption are reproduced from the original
study of the SERES resampling algorithm [145].
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We mainly compared the method performance of the RAWR-based support estimation method

and the bootstrap method. There are many other well-designed methods for the problem of phy-

logenetic tree support estimation. Alternatives include other non-parametric resampling methods

such as the jackknife [140] and parametric resampling [147, 37], such as MSA-specific confidence

measures and other alignment-oblivious phylogenetic support estimation methods. Alternatives

have also been proposed for the last step of the phylogenetic support calculation. For example, the

transfer bootstrap expectation (TBE) method [74], which pairs bootstrap resampling of MSAs and

phylogenetic tree re-estimation with an alternative support calculation. We conducted experiments

using one of the MSA-specific confidence measures, GUIDANCE2, and parametric resampling

to perform the support estimation of phylogenetic trees. We also compared the RAWR-based

support estimation performance with the alRT, one of the alignment-oblivious phylogenetic sup-

port estimation methods. Finally, we compared the method performance of the RAWR+TBE and

bootstrap+TBE support estimations.

The GUIDANCE2 [126] is one of these methods that was originally developed for the estima-

tion of confidence intervals of multiple sequence alignments. GUIDANCE2 combines the HoT

algorithm with altering parameters used in progressive MSA estimation methods, such as guide

tree and gap penalties, to generate parametric resampling techniques. In our experiment, we ran

GUIDANCE2 with default settings. For each dataset, GUIDANCE2 was used to resample 100

replicates, and re-estimation was performed on each resampled replicate using an identical proce-

dure as in the RAWR and bootstrap analyses. We calculated the phylogenetic tree support using the

RAxML software with the same command as used in other simulation experiments in our study.

Although the HoT algorithm was initially designed for MSAs, and GUIDANCE2 was originally

developed for MSA confidence interval placement, it is natural to consider the impact of MSA

quality on downstream phylogenetic inference. As we demonstrate in the performance study, a new

application of these parametric and semi-parametric techniques beyond their originally intended

use can bring value.

We used the aLRT [3] implementation in PhyML version 3.0 [49] to run two aLRT analy-
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ses. First, We ran a parametric aLRT support analysis under the general time reversible (GTR)

nucleotide substitution model [135], where a phylogenetic tree topology was estimated alongside

GTR substitution model parameters and branch lengths. The second analysis is that, we ran a

fixed-topology analysis, where the fixed topology consisted of the annotation topology that was

estimated by RAxML. The fixed-topology analysis included estimation of branch lengths and GTR

substitution rates/frequencies using PhyML.

TBE [74] was run using the same annotation MSA, annotation tree, and re-estimated trees

as in the rest of our performance study. Re-estimated trees were generated by either bootstrap

resampling and re-estimation or RAWR resampling and re-estimation. The equivalent inputs

enable a comparison across TBE and other methods in our study. The TBE analyses were run using

Booster v. 0.1.2.

Since the RAWR random walk is continuous for each replicate, the random walk can be

concentrated in a narrow region. In this scenario, sites outside the narrow region covered by the

random walk were ignored in the statistical inference involving RAWR resampling. We proposed

and evaluated an alternative random-walk-based phylogenetic support estimation procedure to help

the RAWR random walk better explore the input alignment. The alternative procedure replaced

random reversals in the RAWR resampling procedure with random teleportation. The details of

this new support estimation algorithm shows in Algorithm 5.2. For this reason, we refer to the

alternative method as "RAWR+teleport."

Algorithm 5.2: RAWR+teleport resampling procedure
1: procedure resampleWithRAWR+Teleport(�,W)
2: . = <>
3: select 8 ∈ [1, |�|] and walkDirection uniformly at random
4: while !converged(. ,�) do

5: . .= �[8] ⊲ add 8th column of � to .
6: if teleport(W) then ⊲ Biased coin flip with bias W
7: select 8 ∈ [1, |�|] and walkDirection uniformly at random
8: else
9: if (8 == 1 && walkDirection is left) | | (8 == |�| && walkDirection is right) then
10: reverse(walkDirection)
11: 8 = next column index after 8 in walkDirection order
12: return(unalign(. )) ⊲ unalign(. ) drops indels from .

82



5.2.4 Simulated datasets

We utilized the same model conditions and the simulation datasets used in the previous studies

[145, 80] for the simulation dataset. The simulated datasets cover a wide range of dataset sizes and

evolutionary divergence.

The simulation process of the benchmark datasets is described as follows. For the 10-taxon and

50-taxon datasets, the INDELible version 1.03 [39] was used to sample non-ultrametric trees. The

branch lengths were sampled randomly within the range of 0 and 1. For the 100-taxon datasets,

r8s version 1.7 [123] was used to sample random birth-death model trees. The sampled ultrametric

model trees were deviated using the procedure described in the study by Roshan et al. [102]. The

deviation factor 2 = 2.0. All model trees were rescaled to the specified tree height ℎ described in the

corresponding model conditions. The nucleotide sequences were simulated along the model trees

under the general time-reversible (GTR) model of substitution and the insertion/deletion model

[39]. Details about the GTR model and insertion/deletion models are described in Chapter 2. The

base frequency and substitution rate parameters were obtained from the 2012 study by Liu et al.

[80]. The root sequence length was set to be 1kb.

INDELible version 1.03 was used to simulate nucleotide sequences for the 10-taxon and 50-

taxon model conditions. ROSE was used to simulate nucleotide sequences for the 100-taxon

model conditions with the indel model described in Liu’s 2012 study [80] with a medium gap

length distribution. The above simulation process was repeated 20 times independently to produce

multiple replicate datasets. The model parameters and summary statistics of the simulated datasets

are shown in Table 5.3.

5.2.5 Empirical datasets

We used the empirical benchmark dataset from the Comparative RNA Website (CRW) database

(www.rna.icmb.utexas.edu) [14]. The CRW rRNA datasets [14] contain sequence alignments that

were generated based on structural information and intensive manual correction. This benchmark

dataset has been widely used in the evaluation and comparison of MSA approaches. We estimated
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True alignment MAFFT alignment
Model

condition
Number

of
taxa

Model
tree

height

Insertion
deletion
rate

ANHD Gapiness Length Length SP-FN SP-FP RAxML
nRF

10.A 10 0.47 0.13 0.380 0.591 2466 1543 0.566 0.629 0.186
10.B 10 0.7 0.1 0.479 0.618 2691 1602 0.687 0.750 0.243
10.C 10 1.2 0.06 0.591 0.645 2832 1588 0.811 0.850 0.443
10.D 10 2 0.031 0.642 0.591 2490 1583 0.815 0.841 0.464
10.E 10 4.4 0.013 0.696 0.578 2390 1623 0.904 0.913 0.664
50.A 50 0.45 0.06 0.415 0.667 3070 2053 0.340 0.336 0.084
50.B 50 0.73 0.03 0.513 0.603 2525 1834 0.451 0.431 0.146
50.C 50 1.2 0.02 0.598 0.620 2646 1950 0.731 0.704 0.322
50.D 50 2 0.012 0.667 0.629 2720 2171 0.902 0.881 0.517
50.E 50 4.3 0.005 0.715 0.591 2474 2385 0.974 0.965 0.755
100.A 100 4 1 × 10−5 0.454 0.331 1682 1533 0.054 0.046 0.075
100.B 100 7 1 × 10−5 0.540 0.439 2263 1861 0.209 0.176 0.119
100.C 100 15 5 × 10−5 0.646 0.571 2317 2418 0.680 0.603 0.470
100.D 100 25 2 × 10−5 0.683 0.634 1837 2799 0.899 0.853 0.607
100.E 100 20 4 × 10−5 0.672 0.614 2487 2701 0.848 0.796 0.661

Table 5.3: Model condition parameters and summary statistics of the simulation datasets. Model
condition parameters consisted of the number of taxa, tree height, and insertion/deletion probability.
The model conditions are named from A to E to represent increasing evolutionary divergence.
The average summary statistics are reported for the true alignments, and the MAFFT-estimated
alignments over = replicate datasets (= = 20). “ANHD” is the average normalized Hamming
distance of a pair of aligned sequences in anMSA, “Gappiness” is the proportion of anMSAmatrix
that consists of indels, “length” is the number of MSA columns, and “SP-FN” and “SP-FP” are the
proportions of residue pairs that appear in the true alignment but not in the estimated alignment
or vice versa, respectively. The average normalized Robinson-Foulds distance ( “nRF”) between
the model tree and the RAxML(MAFFT)-inferred tree is also reported over = replicate datasets
(= = 20).

MLE trees from the reference alignment. The RAWR-based phylogenetic support estimation and

the bootstrap phylogenetic support estimation were conducted on the empirical benchmark dataset

using the same command as in the simulation study. Simulation studies and empirical benchmarking

were designed to focus on non-coding DNA sequence evolution. Therefore, we selected the intronic

rRNA datasets with a range of evolutionary divergence and dataset size to perform the empirical

experiments for consistency purposes. Sequences with more than 99% missing data were filtered

from the analysis. The summary statistics of the empirical datasets are shown in Table 5.4.

5.2.6 Performance measurement.

We used the precision-recall (PR) curve and the area under the PR curve (PR-AUC) to evaluate

the performance of both phylogenetic support estimation methods. For the following reasons, we
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Reference alignment MAFFT alignment

Dataset Number
of taxa ANHD Gapiness Length Length SP-FN SP-FP RAxML

nRF
IGIA 110 0.606 0.915 10368 6065 0.732 0.780 0.645
IGIB 202 0.579 0.910 10633 7070 0.825 0.863 0.678
IGIC2 32 0.533 0.700 4243 3530 0.691 0.716 0.517
IGID 21 0.719 0.782 5061 3063 0.874 0.905 0.778
IGIE 249 0.451 0.838 2751 2847 0.406 0.389 0.585
IGIIA 174 0.668 0.814 6406 6945 0.817 0.800 0.450

Table 5.4: Summary statistics of empirical datasets. Summary statistic calculations and descriptions
identical to Table 5.3.

selected the PR curve and its area, PR-AUC, to measure the method performance rather than the

Receiver Operating Characteristic (ROC) curve and the area beneath it, ROC-AUC. Although the

ROC curve is one of the most commonly used statistics for evaluating the performance of binary-

response statistical inferences, it can be misleading when the proportions of bipartitions that appear

in or not in the true phylogeny are very imbalanced [121]. The precision is sensitive to the imbalance

of the dataset. This makes the PR curve a more accurate measurement of the imbalanced dataset.

The PR curve is calculated on thresholds ranges from 0 to 1. A confusion matrix is calculated for

each threshold based on the model prediction and the ground truth. The support values estimated

by the phylogenetic support estimation methods serve as the model predictions. The phylogenetic

support estimation methods generate support values for bipartitions, which is a unique split of the

leaf set defined by the internal branches of a given annotation phylogeny. In both simulation studies

and empirical study, the annotation phylogenies are inferred from the simulated sequences.

The labels indicating whether a bipartition appears in the model tree were generated by the

comparison of the inferred tree and the model/reference tree. The bipartitions that appear in the

model tree/reference tree are represented by 1, and the other branches are represented by 0.

True positives (TP) consist of bipartitions of the estimated tree that have support values greater

than or equal to a given threshold and appear in the reference tree. False positives (FP) consist of

bipartitions of the estimated tree that have support value greater than or equal to a given threshold

but do not appear in the reference tree. False negatives (FN) consist of bipartitions of the estimated

tree that have support less than a given threshold but appear in the reference tree. True negatives

(TN) consist of bipartitions of the estimated tree that have support less than a given threshold and
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do not appear in the reference tree. The PR curve plots the recall versus the precision of each

threshold. The recall is calculated by |TP|
|TP|+|FN| . And the precision is calculated by |TP|

|TP|+|FP| . We

used custom scripts, and the scikit-learn Python library [136] to calculate the curves and AUC

quantities.

We also compared the runtime and peak memory usage for these two phylogenetic support

estimation methods. All experiments were conducted on computing facilities in the Michigan

State University High-Performance Computing Center. We used compute nodes in the intel16-k80

cluster, each with a 2.4 GHz 14-core Intel Xeon E5-2680v4 processor.

5.3 Results

5.3.1 Simulation Study

5.3.1.1 Performance comparison of RAWR versus bootstrap.

The PR-AUC results of both methods on the simulation datasets are shown in Table 5.5. The

RAWR-based approach produces comparable or better PR-AUC results than the bootstrap method

on all simulation datasets. We conducted pairwise t-tests with Benjamini Hochberg correction [8]

with = = 20 and U = 0.05. The results show that the improvements achieved by the RAWR-based

approach were statistically significant for all model conditions except for two 100-taxon model

conditions with the lowest sequence divergence. The performance of the two phylogenetic support

estimation approaches was comparable on these two 100-taxon model conditions.

The PR-AUC improvement achieved by the RAWR-based approach increases as the sequence

divergence grows. The PR-AUC improvement grew from 0.045 to 0.246 for the 10.A model

condition to 10.E model condition, 0.009 to 0.334 for the 50.A model condition to 50.E model

condition, and -0.004 to 0.291 for the 100.A to 100.E model condition. This finding indicates that

the RAWR support estimates show better performance on more challenging datasets.

The largest PR-AUC improvements of the RAWR-based approaches over the bootstrap approach

were 0.334 and 0.160, respectively. The average PR-AUC improvements were 0.136 and 0.039,
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respectively. One possible reason is that the RAWR-based support estimation approaches conduct

re-estimation for both MSAs and phylogenetic trees. While the bootstrap support estimation only

includes the re-estimation of phylogenetic trees. The bootstrap resampling process breaks the

intra-sequence dependence, and the bootstrap replicates lose the sequence homology and cannot

produce meaningful alignments.

PR-AUC
Model

condition Bootstrap RAWR-reduced RAWR Corrected
q-value

10.A 0.951 0.989 0.996 8.2 × 10−3

10.B 0.920 0.978 0.990 4.2 × 10−3

10.C 0.784 0.927 0.977 4.2 × 10−3

10.D 0.822 0.950 0.968 4.2 × 10−3

10.E 0.679 0.976 0.925 1.5 × 10−4

50.A 0.988 0.993 0.997 4.3 × 10−3

50.B 0.970 0.990 0.994 5.4 × 10−4

50.C 0.900 0.980 0.989 4.9 × 10−6

50.D 0.798 0.981 0.988 < 10−10

50.E 0.663 0.990 0.997 < 10−10

100.A 0.997 0.990 0.993 < 10−10

100.B 0.990 0.986 0.991 < 10−10

100.C 0.828 0.971 0.982 7.2 × 10−9

100.D 0.735 0.973 0.983 < 10−10

100.E 0.695 0.975 0.986 < 10−10

Table 5.5: PR-AUC performances on the simulation datasets. The PR-AUC are aggregated over =
replicate datasets for a model condition (= = 20). Statistical significance of PR-AUC differences
between RAWR and bootstrap were evaluated using a one-tailed pairwise t-test and a multiple test
correction was performed using the method of [8]. Corrected q-values are reported (= = 20).

The runtime and peak memory usage for all methods are shown in Figure 5.2. Compared to

the bootstrap method, the RAWR-based support estimation methods require one extra step: re-

estimation of the resampled replicates. This additional step greatly increased the runtime of the

RAWR-based approaches. The runtimes of all the methods were relatively short for the 10-taxon

model conditions, which usually takes less than an hour. As the taxa number and the sequence

divergence increased, the runtime increased by an order of magnitude. For the 50-taxon model

conditions, the most time-consuming method, the GUIDANCE2 method, took over 10 hours for all

five model conditions. For the 100-taxon model condition with the highest sequence divergence,

the support estimation procedure costs half a day to multiple days. The runtime increase was mainly

caused by the increase in the computational complexity of MSA estimation and phylogenetic tree
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Figure 5.2: Runtime and memory usage of the phylogenetic support estimation methods on sim-
ulation datasets. The top row includes average runtime usage for each model condition in the
simulated study. The y-axis shows runtime in hours and is in log-scale. The left, middle right
subplots represent 10-taxon, 50-taxon, and 100-taxon model conditions respectively. The bottom
row includes average memory usage for each model condition in the simulated study. The y-axis
shows runtime peak memory usage in GiB. The left, middle right subplots represent 10-taxon,
50-taxon, and 100-taxon model conditions respectively. The average runtime or peak memory
usage were calculated across all replicate datasets in the model condition (= = 20).

For the peak memory usage, the bootstrap method used the least amount of memory compared

to the other methods, which is similar to the quantitative comparison of the runtime. The differences

in the peak memory usage among all the support estimation methods were relatively small. The

peak memory usage of the support estimation methods was usually about a few hundred MiB.

However, according to the previous studies [80, 95] and the computational difficulty in this study,

we expect that as the dataset size increases, thememory limitationswill quickly become a significant

bottleneck.

Overall, the simulation study experiments indicate that the RAWR-based support estimation ap-
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proach improves performance compared with the widely-used bootstrap support estimationmethod.

This improvement requires additional time and memory usage compared to a standard bootstrap

analysis.

5.3.1.2 RAWR support estimation using reduced resampling replication.

In the simulation study, we included a reduced RAWR-based support estimation method, which we

refer to as the "RAWR-reduced" method in the following. For the reduced RAWR-based method,

we used an order of magnitude fewer resampled replicates compared with the regular RAWR-based

method analysis and the bootstrap method. The standard RAWR-based method or the bootstrap

method requires 100 resampled replicates, and the reduced RAWR-based approach conducts the

support estimation with 10 resampled replicates.

Though the resampled replicates were reduced by an order of magnitude, the RAWR-reduced

method produced comparable or better performance than the bootstrap method. Like the standard

RAWRmethod, the RAWR-reduced method achieved greater PR-AUC improvements under model

conditions with a large dataset size or higher sequence divergence. In comparing the PR-AUC of

the RAWR-reduced method to the regular RAWR method, there was an average improvement of

0.007 across all model conditions, which is shown in Table 5.5.

The RAWR-reduced method used slightly more runtime than the bootstrap method on all model

conditions and less runtime than the regular RAWR method. The RAWR-reduced method used

similar peak memory usage compared to the regular RAWR method. The RAWR-reduced method

uses much less runtime and comparable peak memory by reducing the resampled replicates, but

the performance is comparable or even better than the regular RAWR method.

5.3.1.3 Results of Additional Performance Study

As in other performance studies of MSA and phylogenetic tree estimation from unaligned sequence

inputs [79, 80], we found that MAFFT generally produced more accurate alignments than ClustalW

on the 10-taxon model conditions, although this accuracy improvement did not translate directly to
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PR-AUC
Model

condition MAFFT ClustalW

10.A 0.996 0.997
10.B 0.990 0.991
10.C 0.977 0.988
10.D 0.968 0.992
10.E 0.925 0.964

Table 5.6: RAWR support estimation using alternative estimation/re-estimation methods. We
compared RAWR support estimation using two different estimation/re-estimation methods: either
MAFFT and RAxML(MAFFT) or ClustalW and RAxML(ClustalW). For each of the two methods,
aggregate PR-AUC is shown across all replicate datasets of each model condition (= = 20).

more accurate downstream phylogenetic inference. The details of the alignment summary statistics

refer to Table 5.3 and Table 5.1.

Despite the alignment accuracy, RAWR returned comparable PR-AUC regardless of which of

the two MSA methods were used on the 10.A and 10.B model conditions. On the more divergent

10.C through 10.E model conditions, when using ClustalW for estimation and re-estimation of

the MSA, RAWR improved the PR-AUC performance by 0.011, 0.024, and 0.039 comparing

to that used MAFFT. The results are shown in Table 5.6. Our finding suggests that RAWR

support estimation is robust to the quality of the annotation MSA. Furthermore, this result suggests

that neighbor-preserving random walks may yield better support estimates where computational

problems are more challenging, and estimation uncertainty is greater.

For the experiments where we used alternative choices for reversal probability W for the RAWR

support estimation, on each 10-taxon model condition except for the 10.C model condition, RAWR

returned similar PR-AUC as the reversal probability W was increased from 0.001 up until a critical

threshold. PR-AUC then dropped as W increased past the threshold (Table 5.7). The exact threshold

varied somewhat across model conditions. More generally, we observed a range of RAWR W

settings that returned the highest PR-AUC, where the range typically crossed one to two orders of

magnitude.

For the experiments on long-gap-length model conditions, similar performance outcomes were

observed compared to the medium-gap-length simulations in the rest of our simulation study.

The RAWR method produced a comparable or better PR-AUC than bootstrap. The improvement
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Reversal probability W
Model

condition 1 × 10−3 1 × 10−2 2 × 10−2 5 × 10−2 1 × 10−1 2 × 10−1 3 × 10−1

10.A 0.997 0.998 0.998 0.996 0.994 0.986 0.980
10.B 0.994 0.990 0.991 0.990 0.987 0.985 0.977
10.C 0.942 0.941 0.950 0.977 0.968 0.957 0.901
10.D 0.977 0.982 0.978 0.95 0.944 0.935 0.934
10.E 0.969 0.978 0.971 0.983 0.929 0.923 0.922

Table 5.7: Simulation study: RAWR support estimation using different choices for reversal prob-
ability W. Aggregate PR-AUC is reported across all replicate datasets of each 10-taxon model
condition (= = 20).

PR-AUC
Model

condition Bootstrap RAWR

10.long.A 0.997 0.997
10.long.B 0.992 0.994
10.long.C 0.904 0.937
10.long.D 0.829 0.949
10.long.E 0.552 0.788

Table 5.8: PR-AUC comparison of bootstrap and RAWR methods on 10-taxon long-gap-
length model conditions. MAFFT and RAxML(MAFFT) were used to perform MSA and tree
estimation/re-estimation, respectively. Each method’s PR-AUC is reported as an aggregate across
all replicate datasets for a model condition (= = 20).

achieved by the RAWR method was as much as 0.236. The RAWR-based method achieved

a larger PR-AUC advantage on model conditions with greater evolutionary divergence. Both

methods returned slightly lower PR-AUC for the long-gap-length model conditions compared to

the medium-gap-length model conditions. But the PR-AUC improvements obtained by the RAWR-

based support estimation method over the bootstrap method were largely unaffected by the gap

length distribution used for simulation. This suggests that RAWR’s performance is robust to

increasing dependence between neighboring sites due to longer insertions and deletion events.

For the PR-AUC comparisons of aLRT and RAWR-based methods on simulated datasets, the

RAWR-based support estimation method consistently produced a better PR-AUC than the aLRT

methods over all model conditions in the simulation study. The results are shown in Tables

5.9. Furthermore, as the sequence divergence increases, the PR-AUC improvement of the RAWR

support estimation method tended to increase. The original aLRT method was proposed to address

the high computational cost of the standard phylogenetic bootstrap method, which requires re-

estimation of multiple bootstrap replicates. The computational efficiency of the LRT method
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PR-AUC
Model

condition
aLRT with

free topology
aLRT with

fixed topology RAWR

10.A 0.952 0.939 0.996
10.B 0.884 0.884 0.990
10.C 0.722 0.745 0.977
10.D 0.757 0.784 0.968
10.E 0.631 0.621 0.925
50.A 0.979 0.980 0.997
50.B 0.960 0.961 0.994
50.C 0.870 0.876 0.989
50.D 0.711 0.710 0.988
50.E 0.548 0.556 0.997
100.A 0.986 0.987 0.993
100.B 0.976 0.969 0.991
100.C 0.775 0.773 0.982
100.D 0.663 0.670 0.983
100.E 0.592 0.593 0.986

Table 5.9: PR-AUC comparison of aLRT and RAWRmethods for phylogenetic support estimation.
We used PhyML [49] to run two types of aLRT analyses: (1) support estimation or a free tree
topology that was also estimated as part of the analysis, and (2) support estimation for a RAxML-
inferred tree topology. The latter methodology for obtaining an annotation tree is identical to the
approach used in all other experiments in our study, and its PR-AUC performance is therefore
directly comparable to other simulation study experiments. Table layout and description are
otherwise identical to Table 5.8.

is obtained using statistical approximations that represent a potential tradeoff in terms of type

I/II error. Our findings support these observations, as the PR-AUC achieved by both the aLRT

methods also underperformed the traditional bootstrap support estimation. We note one critical

difference between our study and the study of Anisimova and Gascuel [3]. Our study provided

estimated annotationMSAs as input to phylogenetic support estimation methods, whereas the study

of Anisimova and Gascuel utilized the true alignments. The relative performance comparisons of

aLRT and RAWR can be attributed in part to the major impact of MSA quality on downstream

phylogenetic and phylogenetic support estimation.

In the PR-AUC comparisons of the TBE and RAWRmethods on simulated datasets, the RAWR

method consistently outperformed the original TBE method [74] over all model conditions in our

simulation study. One exception was the least divergent 100-taxon model condition, where both

methods returned comparable PR-AUC. The PR-AUC comparisons of the TBE and RAWRmethods

are shown in Table 5.10.

TBE support calculation is downstream of input data resampling. The original TBE support
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estimation method utilized standard bootstrap resampling, which we refer to as TBE+bootstrap.

As noted in the original study of TBE [74], the orthogonality of these two problems allows other

resampling techniques to be easily replaced. Thus, we included a third method that joined TBE sup-

port calculation with RAWR resampling, which we refer to as TBE+RAWR. TBE+RAWR returned

comparable or improved PR-AUC compared to TBE+bootstrap, and the largest improvements were

obtained on the most divergent model conditions.

However, neither of the TBEmethods outperformed standard RAWR support estimation, which

uses a traditional binary test for the presence or absence of bipartition to calculate phylogenetic

support. We also did not observe PR-AUC comparisons that suggested a type I/II error advantage for

the original TBE method over traditional phylogenetic bootstrap support estimation. Our findings

differ from the original study of the TBE method [74], which we attribute to the following factors.

As noted above, a major difference between the two studies is MSA quality: the former utilizes

estimated MSAs, and the latter utilizes true MSAs. Furthermore, Lemoine et al. [74] noted that,

by definition of the bipartition transfer distance, TBE support is always greater than or equal to

traditional bootstrap support for a given set of inputs. Based on our findings, we conjecture that an

optimistic support measure is beneficial for addressing type II errors but could be counterproductive

for type I errors.

Among other important assumptions, for example, treating indels as missing data or an addi-

tional state, theoretical guarantees about TBE and phylogenetic bootstrap support implicitly assume

that input sequences are aligned without error. However, incorrect sequence homology and other

misalignments will require a different set of theoretical and applied considerations. Our experi-

ments suggest that sequence-aware resampling and re-estimation have an important role to play in

phylogenetic support estimation.

We also compared the performance of RAWR versus GUIDANCE2, a state-of-the-art purpose-

built fully parametric method for placing confidence intervals on estimated multiple sequence

alignments. The application of an MSA confidence assessment method like GUIDANCE2 to the

downstream task of phylogenetic support estimation differs from its original intended purpose.
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PR-AUC
Model

condition
TBE with

bootstrap resampling
TBE with

RAWR resampling RAWR

10.A 0.943 0.982 0.996
10.B 0.913 0.959 0.990
10.C 0.773 0.894 0.977
10.D 0.823 0.924 0.968
10.E 0.670 0.869 0.925
50.A 0.986 0.983 0.997
50.B 0.965 0.967 0.994
50.C 0.888 0.943 0.989
50.D 0.785 0.950 0.988
50.E 0.655 0.968 0.997
100.A 0.995 0.984 0.993
100.B 0.985 0.962 0.991
100.C 0.806 0.922 0.982
100.D 0.722 0.934 0.983
100.E 0.680 0.930 0.986

Table 5.10: PR-AUC comparison of TBE with bootstrap resampling, TBE with RAWR resam-
pling, and RAWR. TBE was used to estimate phylogenetic support using two different resampling
approaches: either (1) standard bootstrap resampling, which corresponds to the method originally
proposed and studied by Lemoine et al. [74], or (2) RAWR resampling. The former is denoted
“TBE with bootstrap resampling”, and the latter is denoted “TBE with RAWR resampling”. For
comparison purposes, RAWR resampling and re-estimation was also run as a third method (denoted
“RAWR”), and we used the same methodology as elsewhere in our study (i.e., using a standard
branch presence/absence calculation to assess phylogenetic support).

However, we note that GUIDANCE2 incorporates standard bootstrap resampling as a first step,

and subsequent steps focus on guide tree re-estimation and other re-estimation tasks as part of

progressive MSA re-estimation. For this reason, GUIDANCE2 can be seen as an adaptation of the

standard bootstrap to MSA and tree re-estimation.

The performance comparison between RAWR and GUIDANCE2 was qualitatively similar

to that of RAWR and bootstrap. RAWR returned comparable or better PR-AUC compared to

GUIDANCE2 on the simulated datasets, and RAWR’s PR-AUC advantage over GUIDANCE2

tended to grow as model conditions grew larger and more divergent. The results show in Table

5.11). GUIDANCE2 was the slowest method overall due to the complexity of its special-purpose

MSA re-estimation approach, and both GUIDANCE2 and RAWR required more main memory

compared to bootstrap.

Finally, we note that GUIDANCE2 is purpose-built for MSA re-estimation, whereas bootstrap

and RAWR are general-purpose non-parametric resampling methods, both resample an MSA
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PR-AUC
Model

condition GUIDANCE2 RAWR

10.A 0.989 0.996
10.B 0.983 0.990
10.C 0.921 0.977
10.D 0.939 0.968
10.E 0.997 0.997
50.B 0.994 0.994
50.C 0.975 0.989
50.D 0.942 0.988
50.E 0.837 0.997
100.A 0.988 0.993
100.B 0.993 0.991
100.C 0.939 0.982
100.D 0.894 0.983
100.E 0.881 0.986

Table 5.11: PR-AUC comparison of GUIDANCE2 and RAWR phylogenetic support estimation
methods. MAFFT and RAxML(MAFFT) were used to perform MSA and tree estimation/re-
estimation, respectively. We report each method’s aggregate PR-AUC across all replicate datasets
for a model condition (= = 20).

Model
Condition PR-AUC

10.A 0.998
10.B 0.99
10.C 0.978
10.D 0.966
10.E 0.964

Table 5.12: PR-AUC performance of RAWR+teleport on 10-taxon model conditions.

without utilizing an explicit parametric model. Despite this, RAWR was able to match or exceed

GUIDANCE2’s PR-AUC performance.

For the simulation study experiments with an alternative random walk resampling procedure,

the PR-AUC values returned by RAWR+teleport on the 10-taxon model conditions are shown in

Table 5.12. In terms of PR-AUC, RAWR+teleport had comparable performance to the standard

RAWRmethod. For themodel conditions in our experiment, downstream re-estimation and support

calculations may be relatively tolerant of discontinuities introduced by teleportation, at least relative

to related desynchronization injected by random reversals in a standard RAWR resampled replicate.

Further experimentation will help to clarify the tradeoffs between the different resampling methods.
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5.3.2 Empirical Study

5.3.2.1 Performance comparison of RAWR versus bootstrap.

We evaluated the RAWR-based methods versus the bootstrap methods based on their PR-AUC

on the empirical datasets, shown in Table 5.13. The RAWR method returned a similarly better

PR-AUC compared to the bootstrap method, which is consistent with the results of the simulation

study. The RAWR-based method outperformed the bootstrap method on all empirical datasets, and

the average improvement was 0.105. This result indicates that the RAWR-based support estimation

method can handle large datasets containing hundreds of sequences and still produce accurate

support estimations than the traditional bootstrap method.

There are some differences between the empirical study and the simulation study that are

worth noting. First, the reference trees do not equal the true evolutionary history. The reference

trees used in the empirical study were inferred from the reference alignment by the MLE method.

Although the reference alignments were aligned by an automatic method and manual correction,

and the alignments are very accurate, there is no guarantee that the reference alignments are true

alignments. While in the simulation study, the model trees and the true MSAs are the ground truth.

The model trees were used to guide the simulation of the sequence evolution. Secondly, the number

of empirical datasets is different from the number of simulation datasets. This is caused by the large

amount of effort required to curate reference alignments for empirical datasets. Finally, the intronic

rRNA datasets have similar summary statistics compared to the simulated datasets. However, the

intronic rRNA datasets are not exactly the same as the simulated datasets. The selected empirical

datasets involve secondary structure evolution, strong selective pressures, and other evolutionary

and biophysical constraints that are not considered in the simulation process in this study.

5.3.2.2 Results of Additional Performance Study

ThePR-AUCcomparisons of the aLRTandRAWRmethods on the empirical benchmarking datasets

were consistent with the simulation datasets. RAWR consistently returned PR-AUC improvements
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PR-AUC
Model

condition Bootstrap RAWR

IGIA 0.725 0.804
IGIB 0.629 0.695
IGIC2 0.778 0.957
IGID 0.670 0.884
IGIE 0.772 0.808
IGIIA 0.830 0.884

Table 5.13: PR-AUC performances on the emprircal datasets. PR-AUC comparison of bootstrap
and RAWR methods for phylogenetic support estimation. MAFFT and RAxML(MAFFT) were
used to perform MSA and tree estimation/re-estimation, respectively.

relative to both aLRT methods across all of the empirical benchmarking datasets. The results are

shown in Table 5.14.
PR-AUC

Dataset aLRT with
free topology

aLRT with
fixed topology RAWR

IGIA 0.6696 0.7094 0.7845
IGIB 0.4904 0.5515 0.8332
IGIC2 0.6368 0.7242 0.8808
IGID 0.7998 0.7299 0.8524
IGIE 0.6832 0.6864 0.8206
IGIIA 0.7774 0.8036 0.9053

Table 5.14: Empirical study: PR-AUC comparison of aLRT and RAWR methods on CRW bench-
marking datasets. Table layout and description are otherwise identical to Table 5.9.

The PR-AUC comparisons of the TBE and RAWR methods on the empirical benchmarking

datasets were also consistent with the simulated datasets. The RAWR-based support estimation

method consistently outperformed the original TBE method [74] across all empirical benchmarks.

The results are shown in Table 5.15).

PR-AUC

Dataset TBE with
bootstrap resampling

TBE with
RAWR resampling RAWR

IGIA 0.7100 0.7195 0.7845
IGIB 0.6194 0.7232 0.8332
IGIC2 0.7508 0.8559 0.8808
IGID 0.5915 0.8044 0.8524
IGIE 0.7235 0.7622 0.8206
IGIIA 0.8252 0.8524 0.9053

Table 5.15: PR-AUC comparison of TBE and RAWR methods on CRW benchmarking datasets.
Table layout and description are otherwise identical to Table 5.9.

The performance comparison between RAWR and GUIDANCE2 was similar on the empirical

datasets compared to the simulated datasets. TheRAWR-based support estimationmethod produced
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comparable or better PR-AUC compared to GUIDANCE2. The results are shown in Table 5.16,

RAWR outperformed GUIDANCE2 on all empirical benchmarks except for IGIB. The average

absolute difference between the two methods’ PR-AUC values was 0.055. This discrepancy may

be attributed to the relative difficulty that the IGIB dataset presents: the worst PR-AUC values in

our entire study were observed on this dataset. One primary factor for this outcome is the high

gappiness of the reference alignments for the IGIB and IGIA datasets, for example, the fraction

of the reference alignment that consists of indels, as compared to every other dataset in our study.

RAWR resampling of datasets with high gappiness may require additional safeguards to mitigate

desynchronization.

PR-AUC
Dataset GUIDANCE2 RAWR
IGIA 0.705 0.804
IGIB 0.737 0.695
IGIC2 0.874 0.957
IGID 0.740 0.884
IGIE 0.777 0.808
IGIIA 0.870 0.884

Table 5.16: PR-AUC comparison of GUIDANCE2 and RAWR methods for phylogenetic support
estimation. MAFFT and RAxML(MAFFT) were used to perform MSA and tree estimation/re-
estimation, respectively.

5.4 Discussion

The results of the simulation study and the empirical study indicate that the neighbor preser-

vation property plays a critical role in the phylogenetic support estimation. For the phylogenetic

support estimation problem, the regular RAWR-based method and the RAWR-reduced method

outperformed the bootstrap method on almost all the simulation model conditions and the empir-

ical datasets. The difference between the RAWR-based methods and the bootstrap method is that

the RAWR resampling approach produces the resampled replicates that retain the intra-sequence

dependence followed by the alignment re-estimation, while bootstrap replicates do not. Meaningful

sequence homology is retained in the RAWR replicates, which makes it possible to re-estimate

alignments from the RAWR replicates. Therefore, the phylogenetic trees are inferred from the re-

estimated alignments following the same two-phase pipeline and serve as a better data perturbation
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source for the phylogenetic support estimation.

Compared with the SERES resampling process, the RAWR resampling process is more similar

to the bootstrap method. There is no need for anchor estimation for synchronization purposes,

and the parameters involved in the anchor estimation steps are unnecessary. The random walk

procedure improved the HoT algorithm by producing many replicates with reverse orientation.

More replicates usually result in better performance when it comes to support estimation.

However, there are problems associated with the resampled replicates. First, synchronization

may be broken during the resampling process by frequent reversal of the direction. If true alignments

were accessible, all sites would be correctly aligned. In this case, breakpoints caused by the

direction change do not break the synchronization of the sequence homology. However, true

alignments are usually not available for analysis. Using estimated alignment, which contains

mismatches near the reversal breakpoints, the synchronization is interrupted during the resampling

process. This may impact the downstream re-estimation. A relatively low reversal probability

limits the number of unique resampled replicates. However, high reversal probability results

in more reversal breakpoints, which may break the synchronization due to the inaccuracy of the

estimated alignments. Our experiments show that the choice of reversal probability has little impact

on the downstream support estimates if we use a relatively low reversal probability. But the impact

of the choice of reversal probability is still worth noting.

Another problem with the RAWR resampling method is that a high reversal probability will

reduce the sequential dependence of the RAWR resampled replicates. To the extreme, the bootstrap

replicates do not take into account the sequential dependence. The RAWR resampling with W = 0

is equivalent to mirrored inputs but with a random start point, and reverse only at the start or end

of the input alignments. The RAWR resampling with W = 0.5 is a first-order Markovian process,

as discussed in [145]. The RAWR resampling with 0 < W < 0.5, where W is relatively small, the

resampled replicates contain more sequential dependence. According to our experiments on the

choice of reversal probability W, smaller reversal probabilities are likely to be more practical for

most applications.
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The resampled site distribution depends on the choice of reversal probability W. For an extreme

example, the RAWR resampling with W = 1 is equivalent to sampling a single site many times and

leads to a significant data loss. Even if we use a relatively small reversal probability, an individual

RAWR replicate can still be biased around the initial start position. Also, the RAWR random walk

certainly changes direction at the start and end of the input alignment, which can also introduce

RAWR resampling bias.

One solution to avoid the sampling bias is to sample a sufficiently large set of RAWR replicates

with a relatively small reversal probability and aggregate the statistical inference. The RAWR

start positions are chosen uniformly at random. We explored the sampling frequency of the input

alignment sites for the RAWR resampling and found that the results are consistent with the above

hypothesis. Therefore, the RAWR support estimation is less affected by the resampling bias since

many resampled RAWR replicates are re-estimated and aggregated into a single support estimation.

The bootstrap support estimation usually treats the input alignment as the true alignment and

does not consider the alignment errors. However, true alignments are not available in practice, and

the alignment errors are commonly found in the estimated alignments. The RAWR-based support

estimation benefits from the inaccuracy of the input alignment. The RAWR replicates serve as an

effective data augmentation source, which provides more alternative inference results for the MSA

and the tree estimation.

This study applies the RAWR resampling and re-estimation to sequence dependence due to

insertion and deletion processes. Below, we highlight other factors as part of future work. Many

other factors also lead to sequence dependence, which we do not take into account yet. The new

random walk resampling and re-estimation techniques paved the road toward solving the i.i.d.

assumptions in biomolecular sequence analysis and other topics. There is still more progress to be

made.

100



5.5 Conclusion

In this study, we introduced a new non-parametric resampling technique, RAWR.We applied the

RAWR resampling approach to a classical bioinformatics problem, phylogenetic support estimation.

We conducted experiments on both simulated and empirical datasets that covered a wide range of

dataset sizes and sequence divergence. The performance study showed that the RAWR-based

support estimation method produced comparable or better performance than the widely used

bootstrap support estimation method. At the same time, the RAWR-based support estimation

methods request longer runtime and memory usage due to the RAWR resampling and re-estimation

procedure. The tradeoff between accuracy and computational runtime and memory can be offset

by reducing the number of resampled replicates.

For future research, application-specified resampling and re-estimation can better utilize the

sequence dependence in biomolecular sequence analysis. For example, taking the structure infor-

mation into account for the resampling procedure. Another direction is applying the non-parametric

resampling that reserves the intra-sequence dependence to other biological analyses that require

biomolecular sequences as input or account for the sequential dependence. The non-parametric

resampling methods require fewer assumptions and are not restricted to a specific application.

Therefore, the RAWR resampling approach can be easily applied to other problems that deal with

sequencing data. One important example is the statistical inference of species trees under models

of sequence evolution that take into account the sequential dependence [139, 146].
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CHAPTER 6

AN APPLICATION OF RANDOMWALK RESAMPLING TO PHYLOGENOMIC
ANALYSIS OF DARWIN’S FINCHES

6.1 Introduction

We proposed the RAWR resampling algorithm to simplify the SERES random walk and serve

the phylogenetic support estimation problem. The RAWR-based method estimates the support of

phylogenetic trees by resampling and re-estimation using unaligned DNA sequences. The RAWR-

based phylogenetic support estimation shows comparable or typically better performance than the

traditional bootstrap support estimation approach.

In previous experiments, we tested the RAWR resampling and re-estimation phylogenetic

support estimation approach on single loci. Traditionally, phylogenetic inference and learning

assume that all sites of the input alignment evolve along the same tree, and many population-

level evolutionary events are ignored during the phylogenetic tree reconstruction.[34, 45]. Thus

phylogenetic tree reconstruction is often conducted on a single locus or a few loci. Such approaches

may work well on distantly related taxa. However, for closely related species, due to evolutionary

events such as incomplete lineage sorting (ILS) and horizontal gene flow, a phylogenetic tree

inferred from one or a few given loci may be inconsistent with the species tree. The inconsistent

gene tree topologies may be obtained across the entire genome[89, 106, 30].

As the costs of next-generation sequencing techniques drop, sequencing a large number of genes

or even whole genomes is feasible for phylogenetic inference and learning. Many computational

algorithms are designed for coalescent-based species tree inference, which takes multiple gene

trees as input and reconstructs the species tree with the presence of both ILS and horizontal gene

flow. The whole-genome sequencing dataset is challenging in both its size and the variance of

sequence divergence. In this study, we compared the RAWR-based support estimation method and

the standard bootstrap method on the whole-genome sequencing dataset of Darwin’s finch from
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Figure 6.1: Pictures of three Darwin’s finch species. (a) The small tree finch Camarhynchus
parvulus. (b) Themedium tree finchCamarhynchus pauper. (c) The large tree finchCamarhynchus
psittacula. All three species live on theGalapagos island of Floreana. Arrows indicate themigration
of two populations of C. psittacula from Isabela and Santa Cruz. Figure comes from [47].

Larmichhaney’s study in 2015 [69]. We also contributed an analysis pipeline for the phylogenetic

tree reconstruction and support estimation from the raw sequencing data.

6.2 Methods

6.2.1 Dataset

In this study, we reanalyzed the whole-genome sequencing data of Darwin’s finches that were

initially studied by Lamichhaney et al. 2015 study [69].

Lamichhaney’s study conducted phylogenetic analysis on the whole-genome sequencing data

of 120 individuals representing all of the Darwin’s finch species and two close relatives, in total

25 species. We randomly selected one sample for each species, resulting in a dataset with 25 sam-

ples (accession numbers SRR1607296, SRR1607504, SRR1607439, SRR1607359, SRR1607385,

SRR1607440, SRR1607547, SRR1607403, SRR1607458, SRR1607472, SRR1607551, SRR1607494,
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SRR1607399, SRR1607462, SRR1607343, SRR1607534, SRR1607406, SRR1607485, SRR1607508,

SRR1607543, SRR1607365, SRR1607420, SRR1607466, SRR1607529, and SRR1607480). We

downloaded the raw Illumina HiSeq2000 paired-end short read data from the NCBI SRA database

(accession number PRJNA263122 at http://www.ncbi.nlm.nih.gov/sra).

The Lamichhaney study used the reference genome of medium ground finchGeospiza fortis for

mapping and variance calling purposes. We used the same reference genome and gene annotations

in our analysis. The reference genome and annotation file were downloaded from the GigaDB

database (http://gigadb.org/dataset/100040).

6.2.2 Process of the raw sequencing data

Due to limitations in software and script availability, we explored an alternative process and analysis

pipeline for the phylogenetic tree reconstruction and support estimation of the whole-genome

sequencing raw data. After the raw NGS read data was downloaded, the raw data went through

NGS read mapping, quality filtering, variant calling, and phasing steps to obtain a multi-locus

sequence dataset. The details of the raw reads processing are described as below.

First, the paired-end raw reads of each sample were mapped to the reference genome using

BWA version 0.7.17 with default parameters [75]. Then the mapped results were filtered based on

the mapping quality and sorted by coordinate order using SAMtools [76]. We also used SAMtools

to conduct variant calling on the preprocessed data to identify variants. The variants include SNPs

and short indels polymorphisms. To obtain the haplotype sequences, those bi-allelic SNPs were

phased using fastPHASE version 1.4.8 [125]. The phased calls for bi-allelic SNPs were combined

with the genotypic data of homozygous multi-allelic SNPs and homozygous indel polymorphisms.

The heterozygous multi-allele SNPs and heterozygous indels, representing less than 1% of the input

data, were treated as missing data. In total, we got 28,507 scaffold sequences for each haplotype.

The gene annotation data provided with the reference genome include coordinate information

of locus corresponded to a gene, an intergenic region between annotated genes on a scaffold, or a

scaffold with no annotated genes. We extracted loci sequences based on the coordinate information
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of the gene annotations and the scaffold sequences produced in previous steps. Then we estimated

alignment for each locus using MAFFT version 7.222 [64] with default settings. Finally, estimated

alignments were filtered by the sequence length to achieve better efficiency. Very short alignments

will cause errors in the following tree inference analysis, while very long alignments will cost much

time for the resampling process. Alignments with the length between 30bp and 1.5Mb were used

in the following analysis. After filtering, we got 34,972 alignments for each haplotype. The final

multi-locus sequence dataset consisted of 13,321 loci corresponding to annotated genes, 15,275

loci corresponding to intergenic regions between annotated genes on a scaffold, and 6,376 loci

corresponding to scaffolds that lacked annotated genes.

6.2.3 Concatenated MLE phylogenetic tree inference

We concatenated multiple sequence alignments of all loci to produce a concatenated genomic

sequence alignment � for phylogenetic tree inference and support estimation. The 8th alignment

08 served as partition ?8 in the concatenated alignment and the following analyses. To obtain an

annotation phylogeny for the phylogenetic support estimation methods under study, we estimated

a species tree using maximum likelihood estimation (MLE) on the concatenated and partitioned

genomic sequence alignment �. The concatenated alignment � had a sequence length of multiple

orders of magnitude larger than the other datasets that we used in our previous studies. The RAxML

algorithm we used in previous studies was inefficient for such big, partitioned phylogenomic

datasets. Therefore, we utilized ExaML [67] to perform MLE phylogenetic tree inference. The

ExaML algorithm was designed for large-scale phylogenetic analyses by performing parallelized

computation on a high-performance computing cluster. First, we inferred an initial tree bymaximum

parsimony optimization using RAxML version 8.2.9 [131]. The start tree was used for ExaML’s

local search heuristics. Then the concatenated and partitioned alignment � were filtered only to

contain partitions where all four types of nucleotides. Partitions without full coverage of all types

of nucleotides will cause errors during the substitution model parameters inference process. The

filtered alignment was transformed into a binary file format by a dedicated parser component of
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ExaMLversion 3.0.21. The binary alignment file contains global data information such as alignment

length, data types, and partition boundaries, allowing each ExaML process to concurrently read

only those parts of the alignment on which it will be computing likelihoods and greatly improving

the computational efficiency. Then the ExaML version 3.0.21 was used to perform phylogenetic

MLE on the concatenated and partitioned alignment �.

6.2.4 Phylogenetic support estimation using bootstrap resampling.

Weused the standard bootstrapmethod to sample 100 bootstrap replicates from the concatenated and

partitioned genomic sequence alignment �. The bootstrap resampling method was implemented in

RAxML version 8.2.9. The bootstrap replicates were filtered only to contain partitions containing

all four types of nucleotides. We used ExaML to transform the filtered alignment into binary

format and used RAxML to infer an initial tree for each bootstrap replicate. Then, for each

bootstrap replicate, an MLE tree was inferred by the ExaML using the initial tree and binary file

as input. The software version and commands we used to perform phylogenetic MLE inference

were the same as for annotating tree estimation. The re-estimated trees of bootstrap replicates were

used to estimate phylogenetic bootstrap support for the annotation tree that we estimated using the

original concatenated and partitioned alignment �.

6.2.5 Phylogenetic support estimation using RAWR resampling.

We conducted the RAWR random walk on each partitioned alignment 08 of the original alignment

� with default reverse rate W = 1 × 10−1. For each estimated alignment 08, we used the RAWR

resampling approach to obtain 100 resampled replicates {18 9 } for 1 ≤ 9 ≤ 100.

To produce a single concatenated and partitioned alignment for each resampled replicate, we

concatenated estimated alignments {18 9 } across all partitions ?8 for one resampled replicate 9 ,

where 1 ≤ 9 ≤ 100. As in the bootstrap analyses, the concatenated alignments were filtered to

contain partitions that cover all four types of nucleotides. Phylogenetic re-estimation was conducted

on each RAWR replicate alignment with the same procedure and parameter settings as the bootstrap
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support estimation. The re-estimated RAWR trees were used to calculate support for the annotation

tree. We used Dendroscope [62] to visualize phylogenetic support estimates on the species tree.

6.3 Results and Discussion

We produced a phylogenetic tree for Darwin’s finches using the MLE phylogenetic tree infer-

ence method on the concatenated alignment of the whole-genome sequence data. The inferred

phylogenetic tree, which is shown in Figure 6.3, was topologically identical to the phylogenetic

tree provided by Lamichhaney’s study [69], which is shown in Figure 6.2, except for one single

internal branch in the tree of finches clade. The phylogenetic tree produced by the original study

showed that theC. pauper has a closer relationship withC. parvulus, and then the clade of these two

species coalescents with the other tree finch species. The species tree we got from ourMLE analysis

showed that instead of C. parvulus, C. pauper is genetically closer to the other three tree finch

species, C. psittacula, C. heliobates, and C. pallidus. This result indicates that the analysis pipeline

we used in our study produced a reasonable phylogenetic tree, which is mostly consistent with the

tree provided by the original study using the whole-genome sequencing data. The change in raw

sequencing data processing tools and pipelines did not impact the downstream phylogenetic tree

reconstruction, unlike the MSA estimation, where the choice of MSA methods greatly influences

the accuracy of downstream phylogenetic analysis.

The inconsistent tree finch clade did not mean that the phylogenetic tree inferred in this study

was wrong. We found that two support estimation methods produced different estimations for

this inconsistent clade. The supports produced by the RAWR-based method are shown in 6.4,

and the supports produced by the bootstrap method are shown in 6.3. The RAWR-based support

estimation approach produced lower support than the bootstrap method for the tree finch clade.

The RAWR-based support estimation approach yielded 46% support on the parent edge for the

clade of C. psittacula, C. heliobates, and C. pallidus, and 68% support on the parent edge of

C. psittacula, C. heliobates, C. pallidus, and C. pauper. However, the support produced by the

bootstrap method is 100% for the two internal branches mentioned above. The different support
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estimations produced by the two methods on the inconsistent clade indicate that there are more

uncertainties in the phylogenetic relationships of the tree finch species. Thus, it is more difficult

to obtain a confident inference from the sequencing data for this set of finch species. Furthermore,

our findings suggest that the RAWR resampling and re-estimation process aids in revealing the

uncertainties of the downstream phylogenetic tree reconstruction, particularly variances introduced

by MSA estimation. The bootstrap method is not sensitive to the influence of MSA quality

on the downstream phylogenetic reconstruction since the bootstrap replicates lose intra-sequence

dependence during the resampling process. Minor discrepancies were also noted in the non-sharp-

beaked ground finch clade, at most a 7% difference. Otherwise, both methods closely agreed on

estimated bipartition support in the rest of the species phylogeny, with an average support difference

of 0.6%.

The RAWR-based support estimation took a longer runtime than the standard bootstrap support

estimation method on the same multi-locus sequencing dataset because the RAWR-based method

requires an additional step than the bootstrap method: the re-estimation of the resampled replicate

sequences. This additional step significantly increased the runtime of the RAWR-based approaches.

This is consistent with our previous study on the single-locus dataset, where the runtime of the

RAWR-based support estimation was an order of magnitude longer than the bootstrap method.

Parallel computing can easily be applied to the re-estimation of resampled replicates to solve this

problem.

6.4 Conclusion

In this study, we reanalyzed the whole-genome sequencing data of Darwin’s finches that were

initially studied by Lamichhaney et al. 2015 study[69]. We explored the application of RAWR-

based support estimation on the multi-locus sequence dataset. We reproduced the phylogenetic

tree inference by concatenated MLE analysis. Though inferring phylogenetic relationships of

birds is often challenging because of frequent hybridization and rapid radiations (Grant and Grant

1992; Ericson et al. 2006), the reconstructed phylogeny shares an identical topology with the tree
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Figure 6.2: Phylogenetic tree of Darwin’s finch species and two close relatives reported in Lamich-
haney et al. 2015 study[69]. This phylogenetic tree was reproduced from the Figure 1 panel b
in Lamichhaney’s 2015 paper. The branch length were ignored and the tree was rescaled to an
ultrametric tree, where all the leaves have the same distance to the root. The color of the branches
and the species name represents the group that the species belongs to. We used the same color as
the original study, the purple, brown, cyan, red, green, blue and black color represent the group of
warbler finches, vegetarian finch, cocos finch, sharp-beaked ground finches, tree finches, all other
ground finches and the outgroups.
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Figure 6.3: The re-estimated phylogenetic tree for Darwin’s finch species and two close relatives
with supports estimated by the standard bootstrap method. We re-estimated a species tree using
maximum likelihood estimation (MLE) on the concatenated and partitioned genomic sequence
alignment of Darwin’s finch species and two close relatives. We estimated supports using the
standard bootstrap method, which is implemented by RAxML version 8.2.9. The branch length
were ignored and the tree was rescaled to an ultrametric tree. The color mapping is the same as
Figure 6.2.
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Figure 6.4: The re-estimated phylogenetic tree for Darwin’s finch species and two close relatives
with supports estimated by the RAWR-based support estimation method. We calculated supports
for the re-estimated phylogenetic tree using the RAWR-based support estimation method. The
annotated tree is the same tree as Figure 6.3. The branch length were ignored and the tree was
rescaled to an ultrametric tree. The color mapping is the same as Figure 6.2.
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reported in Lamichhaney’s study except for the tree finches. The only inconsistent internal branch

showed uncertainty about the evolutionary relationship of the C. pauper with the other tree finches.

The RAWR-based method produced low confidence intervals for this clade, which confirmed that

the phylogenetic relationships between tree finches were challenging to infer, and the upstream

MSA estimation process had a certain impact on the phylogenetic reconstruction. We performed

the bootstrap support estimation on Darwin’s finch dataset, and the bootstrap method returned

100% supports for the clade of the tree finches. This result indicates that the bootstrap method

is not sensitive enough to identify uncertain phylogenies caused by the MSA re-estimation. Our

experiment on the whole-genome sequencing data of Darwin’s finches confirmed that the neighbor

preservation property plays a critical role in the phylogenetic support estimation.

For future research, the RAWR-based support estimation can be applied to the analysis of many

other types of sequencing data. Transcriptome data has been used in diverse applications, including

phylogenetic inference and learning. Though the phylogenetic analysis using transcriptome data

is not well developed as the phylogenetic analysis of DNA and protein sequence, it has been

proved that the phylogenetic inference using transcriptome data could effectively reproduce previous

phylogenies, such as phylogeny of the genus Flaveria reconstructed by Lyu et al. [87] and the

phylogenetic analyses of Orchidaceae studied by Deng et al. [26]. The RAWR resampling

approach can be extended to phylogenetic studies with transcriptome data, where the phylogenetic

analysis can be associated with the evolution of gene expression, post-transcriptional modifications,

alternative splicing, and gene fusions.

112



CHAPTER 7

IMPACT OF MULTIPLE SEQUENCE ALIGNMENT ERROR ON THE
SUMMARY-BASED PHYLOGENETIC NETWORK RECONSTRUCTION

7.1 Introduction

The phylogenetic tree is the traditional model for studying the evolutionary history of a set of

organisms. The tree structure can effectively represent the relationship among a group of species or

genes. However, phylogenetic trees are unable to depict more complex evolutionary events, such as

horizontal gene transfer, hybridization, recombination, introgression, or gene duplication and loss.

In these scenarios, the genetic materials of some sites are not inherited vertically from the parents

but rather horizontally. Therefore, a more general structure, phylogenetic network, was proposed

to better represent the evolutionary relationship with reticulation events involved [61, 101].

Various computational methods are designed to reconstruct phylogenetic networks from large-

scale genomic sequence data, such as distance-based, maximum parsimony, and maximum likeli-

hood methods. Many of these methods have a two-phase pipeline similar to that of phylogenetic

tree inference. The first step is to estimation a set of gene trees from multiple sequence alignments

(MSAs) of multiple loci. The second step is to reconstruct the species phylogeny by gene trees. The

multiple sequence alignments from the loci are the very initial step of the phylogeny reconstruction.

Previous studies show that the error introduced during the alignment estimation greatly impacts

the downstream tree inference and learning [153, 152]. However, there is little discussion about

the impact of MSA error on the phylogenetic network reconstruction.

Here we conducted a performance study to investigate how the MSA error impacts the recon-

struction of phylogenetic networks. We performed our study on both simulated datasets and two

benchmark datasets. The results show that the errors introduced into the sequence alignments

significantly impact the accuracy of the downstream phylogenetic network inference. This effect

becomes more pronounced as sequence divergence or taxa size increase.
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The study offers some critical insights into the quality of input MSAs and a new direction to

improve the accuracy of phylogenetic network reconstruction. The computational methods should

take into account the alignment error.

7.2 Methods

7.2.1 Simulated Dataset

We performed our simulation study on randomly selected model networks with one reticulation

event, following the simulation procedure of Hejase and Liu’s 2016 study [53]. Themodel networks

contain either four taxa or eight taxa. We simulated the sequence replicates through three main

steps: randomly sample the model network, simulate local genealogies under model networks,

simulate sequence evolution for each gene tree.

To simulate the model network, we started with a randomly sampled tree using r8s version

1.8.1 [123]. We scaled all the sampled trees to 1.0 to achieve better control of the divergence of

simulated sequences. Then we randomly chose a reticulation time C" , where C" ∈ [0.01, 0.25],

and two populations. One reticulation event was added at time C" between these two populations

with a randomly chosen direction. The reticulation event is shown as a directed edge on the tree,

representing the gene flow between two populations at time C" . Last, for rooting purposes, we

added one outgroup taxon to the model network at time 1.5.

We simulated the local evolutionary history of 1000 loci using ms [57] under the multi-species

coalescent model for each model network. The migration event occurs between time C" − 0.01 and

C" + 0.01 with a migration rate of 5.0.

Then, we applied INDELible v1.03 [39] to simulate the sequence evolution of each gene tree

from the previous step. We conducted the sequence simulation under the General Time-Reversible

(GTR) nucleotide substitution model [118]. We used the medium gap length distribution for the

insertion and deletion model. The parameters of the GTR model and the insertion and deletion

models come from the study of Liu et al. [80]. To obtain replicated datasets, we repeat this

simulation process independently 100 times for each model condition.
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The detailed statistical summary of the simulated dataset is listed in Table 7.1. The average nor-

malized Hamming distance (ANHD) represents the sequence divergence. The gappiness represents

the percentage of gaps in the true alignments.

Model Insertion/deletion Model phylogeny
condition rate height ANHD Gappiness

4.A 0.1 0.5 0.3146 0.3301
4.B 0.05 0.8 0.4212 0.2855
4.C 0.03 1.4 0.5417 0.2956
4.D 0.02 2.5 0.6388 0.3326
4.E 0.01 5 0.7053 0.3313
8.A 0.03 1 0.4468 0.2825
8.B 0.02 2 0.5844 0.3418
8.C 0.01 3 0.6454 0.2809
8.D 0.006 7 0.7153 0.3531
8.E 0.004 10 0.7270 0.3433

Table 7.1: Model parameters and summary statistics of the simulated datasets. The 4-taxon model
conditions are named 4.A through 4.E in order of increasing evolutionary divergence; the 8-taxon
model conditions are named 8.A through 8.E similarly. Additional model condition parameters
include the insertion/deletion rate and the model phylogeny height (seeMethods section for details).
Average normalizedHamming distance (“ANHD”) and the percentage of trueMSAcells that consist
of indels (“Gappiness”) are reported as an average for each model condition.

7.2.2 Simulation Experiments

We conducted two sets of experiments to investigate the impact of the MSA error on phylogenetic

network inference. Both sets of experiments took MSAs as input. The input alignments were either

the true alignments simulated under the local genealogies or the estimated alignments inferred from

simulated sequences. We used the true alignments as ground truth, which does not have alignment

errors. We aligned the simulated sequences using ClustalW version 2.1, MAFFT version 7.222,

and FSA version 1.15.9 [73, 64, 12], three widely used MSA methods. The estimated alignments

contain errors introduced by the alignment process. By comparing the signals of gene flow or the

accuracy of inferred phylogenies, we can learn the effects of alignment error on the phylogenetic

network reconstruction.
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Figure 7.1: Alignment error for MSA estimation methods of the simulated datasets. The MSA
methods in our study consisted of MAFFT, ClustalW, and FSA. We assessed MSA estimation error
based on type I and type II error: the former was assessed based on SP-FP proportion (“SPFP”),
which is the proportion of nucleotide-nucleotide homologies that appear in the estimated alignment
but not the true alignment, and the latter was assessed based on SP-FN proportion (“SPFN”), which
is the proportion of nucleotide-nucleotide homologies that appear in the true alignment but not the
estimated alignment. Average SPFN and SPFP are shown for each MSA method on each model
condition.
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The first set of experiments applied D-statistics on input MSAs to detect the gene flow signals.

D-statistics, or ABBA-BABA statistics, is a parsimony algorithm designed for gene flow detection

of closely related species. This method takes sequence alignments as input and calculates D-value

based on the numbers of ABBA and BABA sites, which represent two types of inconsistent local

genealogies with the species tree. Without significant gene flow, ABBA and BABA sites appear

in alignment with the same probability. Therefore, the expected D-value is 0 in this scenario.

However, if the D-value is significantly different from zero, two non-sibling species are closer

than their sibling species. Such D-values indicate that there is a significant difference between the

number of ABBA and BABA sites and that two non-sister species are more similar to each other

than expected. This is considered as a signal of gene flow.

The other set of experiments is to reconstruct phylogenetic network from the simulated se-

quences using summary-based algorithms. The state-of-the-art phylogenetic network reconstruc-

tion algorithms we used in this study are implemented in the PhyloNet software package [149, 138].

The phylogenetic network inference pipeline is similar to the phylogenetic tree inference

pipeline, which also applies two steps to the biomolecular sequences. The first step is to esti-

mate an MSA from the simulated sequences. and infer gene tree from the estimated MSA. The

summary-based inference methods take the inferred gene trees as input and reconstruct the network

from the sampled loci.

MSAs in the first pipeline stage consisted of either the true alignment or an estimated alignment

that was produced using the above procedure. Gene trees in the second pipeline stage consisted of

either the true gene trees or inferred gene trees that were obtained using the following procedure:

on either the true MSA or an estimated MSA, we ran FastTree version 2.1.11 [112] with default

settings. to perform maximum likelihood estimation of an unrooted gene tree under the GTR+Γ

model of nucleotide substitution [118, 35, 105], and rooted gene trees were obtained using outgroup

rooting. Since outgroups were used solely for rooting gene trees, the leaf edge to the outgroup

taxon was then pruned from each rooted gene tree. Finally, for each set of rooted gene trees – either

true gene trees, estimated gene trees that were obtained used MLE on true alignments, or estimated
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gene trees that were obtained using MLE on estimated alignments –

PhyloNet was used to perform summary-based network inference under one of three different

optimization criteria, model likelihood given gene tree topologies as input [160], model likelihood

given gene tree topologies and branch lengths as input [160], or pseudo-likelihood given gene tree

topologies as input [160]. We refer to the two summary-based inference methods as MLE, and

MPL. All two methods were run using default settings and version 3.6.0 of the PhyloNet software

package.

We measured the method performance using the topological errors of the inferred phylogenies

compared with the corresponding model phylogenies. We used the Robinson-Foulds distance

[116] between the inferred phylogeny and the model phylogeny to measure the topological error

of the inferred gene trees. The Robinson-Foulds distance was calculated by the the proportion

of bipartitions that appear in the inferred gene tree but not in the true tree or vice versa. We

used the metric proposed by Nakhleh’s 2019 study [100] to measure the inferred species networks’

topological error. The metric, which we refer to as the reduced distance in the following section, is

calculated on the set of reduced phylogenetic networks by the number of rooted subnetworks that

appear in the inferred network but not the model network or vice versa.

7.2.3 Empirical Datasets and Experiments

In our empirical study, we re-analyzed the datasets from two previous studies [148, 122]. The

mosquito dataset is the dataset used in the study of Wen et al. 2016[148] for adaptive introgression

in mosquitoes, which was sampled from the whole genome alignment of Fontaine et al. 2015 [103].

This dataset consists of mosquito genetic sequence data of six species and one outgroup taxon.

The mosquito dataset includes the following 6 species: Anopheles gambiae, Anopheles coluzzii,

Anopheles arabiensis, Anopheles quadriannulatus, Anopheles merus, and Anopheles melas, which

are represented by G, C, A, Q, R, and L, respectively in our analysis. Anopheles christyi serves as

the outgroup taxon. A total of 3019 loci are included.

The second dataset used in the empirical study was obtained from the study of Salichos and
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Rokas. [122]. This dataset contains genomic sequence data from 23 yeast species, 4435 loci in

total.

We used the same summary-based phylogenetic inference approach to reconstruct species

networks as the simulation study. We utilized three different MSA methods to estimate alignments

for each locus, for the purpose of obtaining estimated alignments of different quality. The MSA

methods we used are ClustalW version 2.1, MAFFT version 7.222, and FSA version 1.15.9 [73,

64, 12]. Then we used FastTree to infer unrooted gene tree for each locus based on the estimated

alignments of different quality. For the mosquito-6taxa dataset, the inferred gene trees were rooted

by removing the outgroup taxon. For yeast dataset, gene trees were rooted under the MDC criterion

using the species tree from Neafsey’s 2015 study and Salichos’s 2013 study [104, 122]. Finally,

we used the rooted gene trees as input to reconstruct a species network with A reticulations, where

A ∈ [0, 4]. The network was inferred using the MPL approach, which is implemented in PhyloNet

version 3.6.0.

7.3 Results

7.3.1 Simulation Study

7.3.1.1 D-statistics for gene flow detection

In the first set of experiments in the simulation study, we used the D-statistic analysis to detect

the gene flow from estimated alignments. A score obtained by D-statistic analysis, which is also

called D-value, that is significantly different from zero indicates gene flow between two taxa. A

larger absolute score means a stronger gene flow signal. We conducted D-statistics on sequences

derived from either model networks or model trees. For the simulation datasets generated from

tree-like model phylogenies, no gene flow was included. Such simulation datasets were considered

as the negative control group. Ideally, the D-value inferred from the sequences of the negative

control group should be close to zero, which means no gene flow was detected. The average scores

produced by the D-statistics on the true alignments were close to zero. These results indicated weak
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Figure 7.2: Gene flow detection using the D-statistic on simulated datasets. The left subplot shows
the D-statistic score distribution on simulated datasets with model networks. The right subplot
shows the D-statistic score distribution on simulated datasets with model trees. The D-statistic
values were calculated using MAFFT-estimated alignments, which refer to ”estiAln’, and true
alignments, which refer to ”trueAln”. Average D-statistic values are reported, and standard error
bars are shown over 20 replicates.

gene flow signals were detected for the true alignments of the negative control datasets. However,

the average score on the MAFFT-estimated alignments are the largest among all the groups of

simulated datasets. Gene flow signals detected from the estimated alignments of the negative

control datasets are even larger than the gene flow signals detected from the network datasets.

The simulation datasets derived from network-like model phylogenies contain gene flow signals,

which should result in D-values away from zero. As expected, the D-values of both estimated and

true alignments were larger than zero. However, the variance of the D-statistic scores tended to be

larger on estimated alignments than that of the corresponding true alignments, which means the

gene flow detected from the MAFFT-estimated alignments were stronger than that detected from

the true alignments.

7.3.1.2 Phylogenetic network inference

We calculated the topological errors of the inferred phylogenetic networks. The topological errors

were quantified by the reduction-based distance, which is also called reduced distance, between the
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inferred networks and the corresponding model networks. The reduced distance results from the

inferred phylogenetic networks of the simulated datasets are shown in Figure 7.3.

Generally, the species networks generated by the MLE network inference method from the

true alignments and the true gene trees were the most accurate. The estimated alignments and the

estimated gene trees produced the least accurate species networks. There are two exceptions, 4.A

and 8.A, two model conditions with the least sequence divergence. For these two model conditions,

all the species networks produced by the MLE inference method had comparable topological

accuracy.

The topological error difference between species networks inferred from different data sources

increased as the sequence divergence increased. For the three least divergent model conditions

of 4 taxa and 8 taxa, the MLE method with the true alignments and true gene trees produced

similar topological errors compared to the MLE method with true alignments and estimated gene

trees. However, for the two most divergent model conditions of 4 taxa and 8 taxa, the MLE

method with the true alignments and estimated gene trees returned higher topological error than

that using the true gene trees. The species networks inferred by the MLE method using estimated

alignments and estimated gene trees were generally less accurate than the other methods, especially

for the model conditions with higher sequence divergence. Also, the choice of the MSA method

had a minor impact on the topological accuracy of the downstream inferred phylogenetic networks.

Furthermore, the topological errors obtained on the 8-taxon model conditions were generally higher

than those obtained on the 4-taxon model conditions.

The comparisons amongMPLmethods with different alignments and gene trees were similar to

those of the MLE methods. The MPL method generally produced the most accurate phylogenetic

networks with true alignments and true gene trees produced, and the least accurate networks with

estimated alignments and estimated gene trees, except for the least divergent model conditions of 4

taxa and 8 taxa, where the MPL method produced similar topological errors despite the alignment

errors and gene tree errors.

TheMLEmethod usually produces more accurate species networks than theMPLmethod under

121



4.A 4.B 4.C 4.D 4.E
0

2

4

6

8

10

re
du

ce
dD

ist
an

ce

4taxa MLE

8.A 8.B 8.C 8.D 8.E

re
du

ce
dD

ist
an

ce

8taxa MLE

trueTree
trueAln
clustalwAln
mafftAln
fsaAln

Figure 7.3: Topological errors of MLE analysis on simulation datasets. The MLE method was
conducted on five different inputs: (1) true MSAs and true gene trees (”trueTree”), (2) true align-
ments and gene trees estimated using FastTree on the true alignments (”trueAln”), (3) ClustalW-
estimated alignments and gene trees estimated using FastTree on the ClustalW-estimated MSAs
(”clustalwAln”), (4) MAFFT-estimated alignments and gene trees estimated using FastTree on
MAFFT-estimated alignments (”mafftAln”), or (5) FSA-estimated alignments and gene trees esti-
mated using FastTree on FSA-estimated alignments (”fsaAln”). Topological error was measured
using the reduced distance [100]. Averages and standard error bars are shown for each model
condition in the simulation study (= = 20).
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Figure 7.4: Topological errors of MPL analysis on simulation datasets. Figure description and
layout are otherwise identical to Figure 7.3.

the same model condition. The MLE method utilizes the full model likelihood criterion, while

the MPL method uses a pseudolikelihood criterion, which approximates the full model likelihood

criterion [160, 129]. The MPL method is faster but less accurate than the MLE method.

The runtime and peak memory usage of the simulation study are shown in Figures 7.5 and

Figure 7.6. The MPL method consistently used less time and memory than the MLE method on
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Figure 7.5: Computational runtime requirements of summary-based species network inference
methods for simulation study. The runtime of the MPL and MLE methods on simulation datasets
is shown in hours. Averages and standard error bars are shown for each model condition over 20
replicates in the simulation study.

all model conditions. On the 8.E model condition, which has the highest sequence divergence,

the MLE method’s runtime reached almost 20 hours. However, large datasets are very common

for modern phylogenomic studies, where the datasets contain many dozens of genomic sequences.

The runtime of the MLE method has become a major bottleneck in its application. Our finding

is consistent with an earlier performance study [53]. The peak memory usage of both the MPL

and MLE methods was less than 800 MiB on all model conditions. Relative differences in peak

memory usage were smaller than runtime comparisons as well.

7.3.2 Empirical Study

For the mosquito dataset, we compared the topologies of estimated networks using different input

MSAs, including reference and estimated alignments estimated by ClustalW, MAFFT, or FSA. The

pairwise reduced distances between the inferred networks are shown in Table 7.2. We inferred

phylogenetic networkwith a single reticulation event from each set of input alignment. The networks

inferred from the ClustalW-estimated alignments and MAFFT-estimated alignments were identical

in topology compared to the networks inferred from the reference alignments. However, networks

inferred from the FSA-estimated alignments had different topologies compared to the networks
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Figure 7.6: Computational memory requirements of summary-based species network inference
methods of simulation study. The peak main memory usage of the MPL and MLE method on
simulation datasets shows in GiB. Figure description and layout are identical to Figure 7.5.

inferred from the other alignments.

As the reticulations increased, the networks becamemore complex, and the topological distance

between the differentmethods also increased. Therewas no identical network inferred fromdifferent

alignments with two or more reticulation events, and there was no clear trend in terms of the input

alignments. One important difference between the empirical study and the simulation studywas that

the reference alignments used in the empirical study were partially estimated by the computational

approaches, which is not the true alignment.

The yeast dataset showed similar results, except the reference alignments were not available.

The topological differences were lowest for the networks with a single reticulation event. As

the number of reticulations increased, the hypotheses became more complex, and topological

differences increased too. Aswith themosquito dataset, there were no clear trends in the topological

differences between the pairwise comparison of networks inferred using different input MSAs.

7.4 Discussion

The results of the simulation study and the empirical study indicate that the estimation error

greatly impacts the downstream phylogenetic network reconstruction. The estimation error intro-

duced to MSA and gene trees potentially create false positive gene flow signals. According to the
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1 ret. ClustalW MAFFT FSA Reference
ClustalW - 0 6 0
MAFFT - 6 0
FSA 6 - 6

Reference -
2 ret. ClustalW MAFFT FSA Reference

ClustalW - 5 7 9
MAFFT - 9 9
FSA - 7

Reference -
3 ret. ClustalW MAFFT FSA Reference

ClustalW - 11 6 10
MAFFT - 9 11
FSA - 8

Reference -
4 ret. ClustalW MAFFT FSA Reference

ClustalW - 13 9 15
MAFFT - 12 11
FSA - 13

Reference -

Table 7.2: Topological distance pairwise comparison of species networks inferred by MLE on
different MSAs of the mosquito dataset. We obtained the reference alignment from the original
study of [103]. The estimated alignments were generated by ClustalW, MAFFT, or FSA. We also
compared estimation of species networks with differnt reticulations, which represents different
model complexity. The MLE method was used to estimate species networks with at most 1, 2, 3,
or 4 reticulations (”ret.”). Topological distances [100] of pairwise comparison between estimated
networks were measured. Only upper triangular entries in the pairwise distance matrix are shown.

D-statistics study, the D-values inferred from the estimated alignments showed stronger gene flow

signals than those inferred from true alignments for both tree and network datasets. The MSA

estimation error enhanced the gene flow signals. The sequence alignment problem is to reconstruct

the homology of unaligned sequences. However, if homologous are not correctly aligned, the

evolutionary history resolved from such estimated alignments tells a different story.

As the dataset size of sequence divergence increases, the MSA estimation becomes more

challenging. More estimation errors are included in the estimated alignments of large datasets with

high sequence divergence. The dataset size and sequence divergence of sequences greatly impact

the accuracy of the inferred species network, which is proved by the simulation experiments.
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1 ret. ClustalW MAFFT FSA
ClustalW - 5 8
MAFFT - 4
FSA -
2 ret. ClustalW MAFFT FSA

ClustalW - 13 15
MAFFT - 15
FSA -
3 ret. ClustalW MAFFT FSA

ClustalW - 15 20
MAFFT - 22
FSA -
4 ret. ClustalW MAFFT FSA

ClustalW - 16 18
MAFFT - 21
FSA -

Table 7.3: Topological distance pairwise comparison of species networks inferred by MLE on
different MSAs of the yeast dataset. The MSAs were estimated using ClustalW, MAFFT, or FSA.
Table description and layout are identical to Table 7.2.

Other than the dataset size and sequence divergence, the choice of the MSA method also makes

an impact on the topological accuracy of the downstream inferred phylogenetic networks. Although,

the FSA method is considered to produce the most accurate MSA estimation. The species network

inferred from FSA-estimated alignments usually had the highest topological error. The alignments

estimated by ClustalW and MAFFT resulted in comparable topological errors. The FSA method

seeks for a global alignment with the minimum number of gap openings across the sequences.

Such optimization criterion makes minor impacts on the phylogenetic tree inference since the tree

reconstruction assumes that the substitution, insertion, and deletion events occur independently for

all sites. However, evolutionary events, such as recombination, hybridization, and horizontal gene

transfer, create dependence among sites. Incorrect indels are likely to contribute to false-positive

gene flow signals. Generally, the sequence alignment method reconstructs homology based on

historical substitution, insertion, and deletion events. More complicated evolutionary events are

often ignored. Based on our experiments, more sophisticated MSAmethods are needed to take into

account those evolutionary processes that result in reticulate gene flow.
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Similar to MSA estimation, errors introduced to estimated gene trees also impact the phylo-

genetic networks, especially under model conditions with high sequence divergence. When the

sequence divergence is low, the gene tree errors are less impactable for the network inference, which

indicate that less sequence divergence usually represents fewer evolutionary events. However, for

more challenging datasets, the estimation errors included in the estimated MSA accumulate into

the estimation of gene trees.

Another factor that influences the network inference is the number of reticulation hypotheses.

As the number of reticulations increased, the hypotheses became more complicated, and the search

space of phylogenetic network inference increased dramatically. Expanded search space creates a

major obstacle for network inference and possibly results in lower inference accuracy.

7.5 Conclusion

In this study, we investigate the impact of MSA quality on the inference of the phylogenetic

network. We compared networks inferred from either true alignments or estimated alignments with

either true gene trees or inferred gene trees from the input alignments. The networks inferred from

the true alignments and true gene trees were the most accurate, and the networks inferred from

the estimated alignments and estimated gene trees were the least accurate. The estimation errors

included in MSA greatly impacted the downstream phylogenetic network inference and learning.

Alignment estimation becomes more difficult as dataset size and sequence divergence increase. As

a consequence, the inferred networks were less accurate for larger and more divergent datasets.

Besides the MSA estimation errors, the choice of MSA estimation method and the errors

included in gene trees also affect the species network. The results are consistent across all model

conditions in the simulation study. The topological comparisons of the empirical datasets were also

consistent with the simulation study. The phylogenetic network reconstruction is also influenced

by the hypothesis of network complexity. As the network complexity increases, the search space

of the phylogenetic network also increases dramatically, which makes it harder to approach the

optimal solution.
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Current MSA estimation methods do not take into account the evolutionary processes that

produce reticulate gene flow, such as recombination and horizontal gene transfer. Thus, an advanced

computational method for MSA-aware phylogenetic network reconstruction is needed for better

accuracy. However, computational scalability is a big challenge for such a method. Due to the

complexity of the network inference problem, the computational methods that we used in our

study are already computationally intensive. For better network inferences, the network inference

problem of a large dataset can be divided into small problem sets, and parallel computing can be

used to improve the computational scalability.
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CHAPTER 8

CONCLUSIONS AND FUTUREWORK

In this dissertation, we addressed problems caused by some over-simplified assumptions in the phy-

logenetic analysis. Phylogenetic reconstruction is an important and fundamental problem for many

biological studies. More and more biomolecular sequencing data are available for phylogenetic

analyses as the technological advances in molecular biology and genomics. Due to the complexity

of the phylogenetic reconstruction problem, many over-simplified assumptions have been made

in modern phylogenetic studies. We combined the resampling and re-estimation procedures with

multiple phylogenetic analyses to utilize the phylogenetic information carried by indels, which are

often ignored in the traditional phylogenetic reconstruction. We proposed a new sequential resam-

pling algorithm, SERES, to address the assumption made by many widely used non-parametric

resampling algorithms that all sites of an alignment have evolved independently and identically

distributed (i.i.d). A biomolecular sequence resampling algorithm is proposed for the resampling

of biomolecular sequence data that counts for the sequence dependence. The SERES resampling

approach combines the standard bootstrap resampling algorithm with the form of a random walk,

which can produce many distinct resampling replicates while reserving the sequential dependence

during the resampling process. The SERES resampling approach outperformed the state-of-the-art

approaches, which utilize the bootstrap method, on a classical problem in computational biology

and bioinformatics, the MSA support estimation problem.

The SERES resampling approach has a wide range of applications for various types of data. We

introduced the application of SERES random walks on aligned sequences and showed SERES as a

data perturbation technique to improve statistical inference and learning. The combination of the

SERES resampling approach with the recHMM obtained great improvement in the local genealogy

inferences. This finding is confirmed by the breakpoint detection problem of the HIV genome

sequence dataset [84, 150]. SERES resampling and re-estimation may be similarly beneficial

in ancestral recombination inference problems other than local genealogical inference, such as
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recombination rate estimation [133], recombination hotspot or coldspot detection [99, 5], etc.

Due to the synchronization needs, the SERES algorithm is a semi-parametric algorithm when

applied to the unaligned sequences, which requires anchor estimation for synchronization purposes.

We introduced a new non-parametric resampling technique, RAWR. The RAWR resampling ap-

proach does not require additional parameters. We applied the RAWR resampling approach to

another classical bioinformatics problem, phylogenetic support estimation. The performance study

showed that the RAWR-based support estimation produced better performance than the widely used

bootstrap support estimation method, especially for sequences with higher divergence. This finding

is consistent with the SERES resampling approach to the MSA support estimation problem.

In this dissertation, we further relaxed the tree structure assumption of phylogenies and investi-

gated the impact ofMSAuncertainties on the phylogenetic network inference. Previous research has

shown that estimation errors in MSA have a great impact on downstream tree inference [153, 152].

We showed that theMSA estimation errors also affect the phylogenetic network reconstruction. The

accuracy of the inferred networks decreased as the accumulation of estimation errors of alignments

and gene trees. The impact of alignment errors on the topological accuracy grows as the sequence

divergence increases. The topological comparison results of the empirical datasets are consistent

with the simulation datasets, and they show that the network hypothesis complexity also impacts

the phylogenetic network inferences.

This dissertation mainly addressed problems caused by over-simplified assumptions that are

commonly used in the traditional phylogenetic analysis. We took into account the indels uncertain-

ties and the intra-sequence dependence for the analyses of large sequencing datasets in phylogenetic

studies, but many such challenges remain. We point out some directions for future work.

The SERES and RAWR resampling algorithms require few assumptions and are not restricted to

a specific application. It is easy to apply the new resampling algorithms to other evolutionary anal-

yses which require biomolecular sequences as input or accounting for the sequential dependence,

such as protein structure prediction, reads mapping, and assembly. One important application is the

statistical inference of species trees under models of sequence evolution that take into account the
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sequential dependence. Based on our performance study, theMSA quality has a great impact on the

phylogenetic network. An advanced computational method for MSA-aware phylogenetic network

reconstruction can utilize the RAWR resampling approach to produce phylogenetic networks with

better accuracy. However, computational scalability would be a major challenge for such a method

due to the complexity of the network inference problem. For the network inferences with the

sequence resampling algorithm, the original inference problem can be divided into small problem

sets. In this scenario, parallel computing can be applied to solve small problem sets parallelly

and improve computational scalability. Non-parametric resampling is also widely used throughout

science and engineering, and SERES/RAWR resampling can also be applied in research areas

outside of computational biology and bioinformatics.

In this dissertation, we discussed how does the new resampling algorithms deal with the

sequence dependence caused by historical insertion and deletion events. Many other factors also

lead to sequence dependence, whichwe do not take into account yet. The non-parametric resampling

algorithm can be extended to application-specified resampling and re-estimation. For example,

take the structure information into account for the resampling procedure. Such a resampling

algorithm can better utilize the sequence dependence caused by particular evolutionary events in

the biomolecular sequence analysis involved in those evolutionary events.

Since alternative homologous or bipartitions are produced during the resampling and re-

estimation process, the sequential resampling approach could potentially be extended to perform

the MSA estimation or phylogenetic inference. However, the optimization criterion and computa-

tional efficiency are two main challenges for such a method. In the study of RAWR resampling

and re-estimation in phylogenetic support estimation, we observed that the re-estimation process is

the bottleneck of computational runtime. Since the resampling and re-estimation processes of the

resampled replicates are independent to each other, parallel computing can be applied to boost the

computational efficiency of such methods.
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