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ABSTRACT

ESSAYS ON DISCRETE MULTIVALUED TREATMENTS WITH ENDOGENEITY
AND HETEROGENEOUS COUNTERFACTUAL ERRORS

By

Ibrahim Kekec

This dissertation is composed of three chapters, and each one of them studies discrete

multivalued treatments with endogeneity and heterogeneous counterfactual errors. The first

chapter extends the investigations of average treatment effects (ATEs) in extensively-studied

binary treatments to those in discrete multivalued treatments with both endogeneity and

heterogeneous counterfactual errors and explores the behavior of control function (CF) and

instrumental variables (IV) methods in this framework. Specifically, I offer identification

strategies for the ATEs, suggest a consistent estimator for the ATEs, show the asymptotic

properties of CF parameter estimates, and derive a score test in order to draw inferences

about the ATEs and other parameters of interest. Moreover, using a Monte Carlo simulation

analysis, I compare CF method with widely used IV method in terms of asymptotic efficiency,

asymptotic unbiasedness, and consistency. Simulation results suggest that CF method can be

asymptotically up to 12% more efficient than IV method, and asymptotic bias in parameter

estimates of IV method can be as high as 43%. However, when misspecification is introduced,

simulation results favor IV method. For the empirical illustration, I apply ordinary least

squares (OLS), CF, IV, and nonparametric bound analysis to the estimation of how limited

English proficiency (LEP) influences wages of Hispanic workers in the USA. The data come

from the 1% Public Use Microdata Series of the 1990 US Census. Utilizing age at arrival

as an instrumental variable, both OLS and CF methods indicate that LEP on average

imposes a statistically significant wage penalty (up to 79% in some CF estimates) on Hispanic

community in the USA. IV method mostly produces insignificant results, and nonparametric

bound analysis provides uninformative lower bounds.



The second chapter incorporates a structure of correlated random coefficients (CRCs)

into the framework introduced in the first chapter. However, in this new setting with CRCs,

conventional IV method is suspected to be inconsistent for ATEs. In this chapter, I propose

a consistent CF estimation procedure for the ATEs and show the asymptotic properties of

CF parameter estimates. In addition, my Monte Carlo simulation analysis suggests that, in

the absence of misspecification, CF method is asymptotically unbiased and consistent (but

not necessarily more efficient). Whereas, IV method is generally asymptotically biased and

inconsistent. In the presence of misspecification, the simulation results show that both CF

and IV methods have biased estimates (more on CF estimates). With regard to efficiency,

the simulation findings show that none of the methods outperforms the other one clearly.

In the third chapter, I take the treatment model from the first chapter to a specific

linear high dimensional sparse setting where the high dimensional variables are irrelevant in

treatment choice given the instruments and appear only in the outcome equation. Using a

detailed simulation analysis, I examine the finite sample properties, model selection features,

and prediction capabilities of several machine learning (ML) methods and of the CF method

from the first chapter. To estimate the parameters of interest, I use four different ML

methods: LASSO; post partial-out LASSO of Belloni et al. (2012); post double selection

LASSO of Belloni, Chernozhukov, and Hansen (2014a); and double/debiased ML LASSO of

Chernozhukov et al. (2018). The most important simulation result is that, in the presence of

enough extra predictive variables that are ignorable in treatment selection and are from a set

of high dimensional predictors of outcome, more complicated LASSO-based methods result

in efficiency gains in ATE estimates over the simpler CF method although both LASSO-

based methods and the CF method perform more or less the same as far as finite sample bias

is concerned. As far as model selection goes, the simulations show that the double/debiased

ML LASSO both selects the most number of potential variables and correctly selects the most

number of variables with true nonzero impact on outcome in estimation. As to prediction,

the simulation results suggest that LASSO has the best prediction features.
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CHAPTER 1

IDENTIFICATION, ESTIMATION, AND INFERENCE FOR
MULTIVALUED ENDOGENOUS TREATMENT EFFECT MODELS: A

CONTROL FUNCTION APPROACH

1.1 Introduction

In the economics literature, a great deal of interest lies in the estimation of average treat-

ment effects (ATEs) since it gives economists a method to evaluate the effects of government

programs and policies, such as school voucher programs, the effects of personal choices, such

as higher education attendance, and the effects of many other institutional or personal de-

cisions. To quantify the interest, in 2020 so far even in the midst of Covid-19 pandemic, 9

articles related to ATEs were published in the journal Econometrica alone.

The economics literature in ATEs is fairly large. The golden standard for estimating

ATEs is through the use of randomized control trials or natural experiments for many

economists; however, these estimation methods are rare mostly due to financial restraints or

ethical problems (e.g., trying to assign some students into the control group against their

will while investigating the impact of a tutoring program on students’ academic achieve-

ments) associated with an experiment. For these (and other similar) reasons, economists

often use observational data and employ estimation methods that suit observational data.

Using observational data, there are three major methods in the ATE estimation arsenal of

an economist: methods employing ignorability, regression discontinuity designs, and instru-

mental variables (IV) and control function (CF) methods. Rosenbaum and Rubin (1983)

first used the ignorability assumption in the context of ATEs, and the assumption states

the independence of treatment variable and counterfactual outcomes given observed control

variables. With the help of this very assumption, the classical methods to estimate ATEs are

regression adjustment, propensity score, and matching. For those interested in further in-

formation on these methods, both Wooldridge (2010) and Cameron and Trivedi (2005) have
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their decent coverage. In certain cases where discontinuity of policy assignment is the direct

result of some ad hoc institutional regulation/rule, outcome differences between those who

are treated and those who are not can be indeed ascribed to treatment statuses. Regression

discontinuity designs pave its way for estimating ATEs at the discontinuity point in these

very cases. For more information on this method, see Hahn, Todd, and van der Klaauw

(2001); van der Klaauw (2002); and Imbens and Lemieux (2008).

When the treatment status is truly endogenous in ATE models, the usual ignorability

assumption fails. In such a case, the conventional methods to estimate ATEs such as regres-

sion adjustment or propensity score weighting proves ineffective. Among different estimation

methods, IV method is one of the most, if not the most, commonly used estimation methods

when treatment choice is endogenous. Angrist, Imbens, and Rubin (1996); Heckman (1997);

and Wooldridge (1997, 2003) are all useful for reference purposes and discuss the estimation

of ATEs using IV in detail. CF method where estimating equation gets augmented by the

addition of functions of all relevant observed covariates (inclusive of the endogenous treat-

ment variable) is an alternative in such endogenous setting, as well. Historically, CF method

dates back as early as 1970s. Heckman (1979) and Lee (1978) can be considered two exam-

ples of the early works where the idea behind the CF method was used; nevertheless, they

did not use the very words “control function.” while referring to their estimation methods.

Specifically, Heckman (1979) used the idea in order to take care of sample selection bias. The

switching regression model of Lee (1978) where union membership changes the wage equa-

tions for workers employed the idea to examine the relationship between the labor unions

and wage rates. For review purposes, Vella and Verbeek (1999) indeed give a good discussion

of CF method in a setting where binary treatment variable is endogenous and analyzes the

relationship between CF and IV methods. In addition, Wooldridge (2015) provides a very

comprehensive view of CF methods in both linear and nonlinear models with endogenous

explanatory variables and argues that CF methods are, in a complementary fashion, alter-

natives to traditional IV methods. Furthermore, ATE models are indeed part of program
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evaluation literature, so for an overview of standard methods and advances in the theoretical

aspects of program evaluation, see Imbens and Wooldridge (2009) and Abadie and Cattaneo

(2018).

When the treatment status takes on more than just two values, i.e. binary treatment

effect, economists step into the realm of multivalued treatment effects where the number of

treatments can be more than just two but finite. Seminal works in casual inference with

multivalued treatments were developed by Rubin (1978) and Robins (1989a, 1989b). Build-

ing on top of these works, Angrist and Imbens (1995) improved the casual inference with

multivalued treatments by both going beyond binary treatments and utilizing the concept

of counterfactuality in their IV analysis of the effect of schooling on earnings. Upon these

pioneering works, academic interest in ATEs seems to go on without any reduction in in-

tensity. Recent survey articles contain but not limited to Heckman and Vytlacil (2007a, ch.

70; 2007b, ch.71), Imbens and Wooldridge (2009), and Linden et al. (2016) specifically for

multivalued treatments under ignorability. In the ATE literature, the latent choice model

for treatment statuses in treatment effects is indeed a discrete choice model on which studies

have reached maturity. Besides survey articles (see, for example, Amemiya, 1981), there

are several textbooks and book chapters devoted to discrete choice analysis (a.k.a. qual-

itative response models). To name a few, see Daganzo (1979) specifically in multinomial

probit models, Ben-Akiva and Lerman (1985), Maddala (1986), McFadden (1984, ch. 24),

Amemiya (1985, ch. 9), Maddala and Flores-Lagunes (2001, ch. 17), Cameron and Trivedi

(2005, chs. 14 and 15), and Wooldridge (2010, chs. 15 and 16).

One of the first studies that utilize discrete choice models with multiple choices belongs

to the work of Dubin and McFadden (1984). In their paper, they studied the demand for

electricity by residences. To estimate the demand for electricity model, price and income

elasticities, appliance dummy variables that follow a discrete choice model were included in

their model. Since the theory of economics suggests that these dummy variables are endoge-

nous, Dubin and McFadden estimated the demand for electricity by IV and CF methods.
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In their final analysis, they obtained similar elasticities in magnitude from both estimation

methods.

Another paper in the subject comes from Bourguignon, Fournier, and Gurgand (2007).

In their survey paper, they presented the set of available methods when the multinomial

logit model (MNL) underlies the discrete choice model. The three approaches in their paper

were those studied by Lee (1983), Dubin and McFadden (1984), and Dahl (2002). After

having showed the advantages and disadvantages of these approaches, they then concluded

that Dubin and McFadden’s model and Dahl’s model were more efficient compared to other

specifications. In addition, Bourguignon, Fournier, and Gurgand (2007) improved the set of

methods at researchers’ disposal by allowing correlations between different choices.

In a binary treatment effect model with an endogenous treatment variable, if the coun-

terfactual errors are heterogeneous in the sense that they depend on treatment status, then

conventional IV estimation in general leads to inconsistent estimates including ATEs. For

example, Angrist (1991, p. 15) delineates the problems of estimating ATEs by IV method

while, at the same time, outlining functional form restrictions for the method to provide con-

sistent estimates of ATEs. He shows that IV method can lead to asymptotically biased and

inconsistent estimates of ATEs when the error term in the outcome equation interacts with

endogenous binary treatment. Similarly, Heckman and Robb (1985b, p. 196) portray when

IV method is appropriate to use for consistent estimation of ATEs in binary treatments and

state that standard IV method does not estimate ATEs consistently in a framework where

the error term of the estimating equation again contains components interacting with en-

dogenous binary treatment but CF method does. Wooldridge (1997, p. 131; 2003, p.191)

also mentions about this issue clearly. Since heterogeneous counterfactual errors result in

composite error terms including interactions with endogenous treatment, one can deduce that

consistent estimation of ATEs in multivalued treatments by IV method hinges on whether

the counterfactual errors are homogeneous.

In discrete ATE literature, most of the attention has been devoted to binary treatment
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models with endogeneity, which leaves behind an untapped area of research in discrete mul-

tivalued treatments with endogeneity. This chapter extends the investigations of ATEs in

binary treatments to those in discrete multivalued treatments with both endogeneity and

heterogeneous counterfactual errors and explores the behavior of both CF and instrumental

variables (IV) methods comparatively in this framework, which has not been examined to the

best of my knowledge and constitutes my main contribution to the literature. Specifically,

in this chapter, I offer identification strategies for the ATEs, suggest a consistent CF esti-

mator for the ATEs, show the asymptotic properties of CF parameter estimates, and derive

a score test in order to draw inferences about the ATEs and other parameters of interest in

a discrete multivalued treatment model with endogeneity and heterogeneous counterfactual

errors. I follow the latent choice model setup laid out by Dubin and McFadden (1984) for

the endogenous treatment variable. Under this setup, the endogenous treatment variable

follows a multinomial logit reduced form. This key observation enables me to calculate ex-

pectations of heterogeneous counterfactual errors conditional on all the exogenous variables

and the endogenous treatment variable, which plays a critical role in deriving the estimating

equation for CF method. I argue that CF method can be more efficient than IV method

when the counterfactual errors are homogeneous and that IV parameter estimates can suffer

from considerable biases when the counterfactual errors are heterogeneous. However, when

misspecification is introduced, my findings slightly favor IV method.

The rest of this chapter is organized as follows. In section 1.2, I introduce the model.

In section 1.3, I discuss identification strategies for the model. In section 1.4, I derive the

estimating equations for both CF and IV methods and propose procedures to estimate the

parameters of interest and ATEs for both methods. In section 1.5, I show the asymptotic

properties of CF estimates, propose a consistent estimator for the asymptotic variance matrix

of CF estimates, and show how a GMM framework can be set up for the main problem. In

section 1.6, I suggest a score test to draw inferences about ATEs and parameters of interest.

In section 1.7, I share some simulation results. In section 1.8, I apply ordinary least squares
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(OLS), CF, IV, and nonparametric bound analysis while estimating the impact of English

proficiency on wages of Hispanic workers in the USA. In section 1.9, I conclude. And, in

appendix A, I share the derivations, simulation tables, and empirical analysis tables that are

hidden from the main body of this chapter.

1.2 The Model

Consider the following model

yg = αg + xβg + ug

w∗g = zγg + ag, (1.1)

where yg is the gth counterfactual outcome variable, αg is the scalar coefficient in the counter-

factual outcome equation for yg, x ≡ (x1, x2, . . . , xl) is the 1× l vector of exogenous variables

in yg, βg is the l× 1 vector of slope coefficients in yg, ug is the counterfactual error in yg, w∗g

is the latent treatment variable that determines the choice of treatment status among G+ 1

alternative treatment statuses, z ≡ (z1, z2, . . . , zk) is the 1 × k vector of instruments that

includes a constant term in the choice equation for w∗g , γg is the k×1 vector of parameters in

w∗g , and ag is the scalar error term that is independently and identically Gumbel distributed

(i.i.d.) with location parameter µ = 0 and scale parameter β = 1 in w∗g for g = 0, 1, . . . , G.

Let w ∈ {0, 1, . . . , G} be the observed discrete multivalued endogenous treatment variable

whose values are determined by w∗g for g = 0, 1, . . . , G. One common interpretation of w∗g

is to think of it as the utility or satisfaction obtained from treatment status g. Let the

treatment statuses of w be exhaustive and mutually exclusive. Define binary treatment

status indicators, dg = 1[w = g] for g = 0, 1, . . . , G. So the binary treatment status indicator

dg is equal to one if the treatment status is equal to g and zero otherwise. This coupled with

the mutual exclusivity of treatment statuses implies that
∑G

g=0dg = 1. Define the 1×(G+1)

6



vector of treatment statuses d ≡ (d0, d1, . . . , dG). Let y be the observed outcome. Then, I

can write

y = d0y0 + d1y1 + · · ·+ dGyG, (1.2)

where yg is the gth counterfactual outcome for g = 0, 1, . . . G.

After having described the discrete multivalued endogenous treatment model above, I now

will make a series of assumptions that complete the model and that are used in estimation.

First, I assume that the rational economic agents choose the status of treatment from which

they receive the most satisfaction out of all possible treatment statuses. That is,

• Assumption 1.1 (A.1.1): One chooses treatment status g, i.e., w = g if and only if

w∗g ≥ w∗j ∀j 6= g for g, j = 0, 1, . . . , G.

Second, I assume that identification of the model in (1.1) and (1.2) is contributed by ex-

clusion of some (at least one) variables in the set of instruments z from the set of exogenous

variables in x. This exclusion restriction is encouraged for the estimation and identification

to be more convincing and reliable even though nonlinearity in estimation suffices for iden-

tification, especially when the exogenous variables in z vary enough in the sample. In the

literature, it is common that the set of exogenous variables in x is a proper subset of the set

of instruments z. That is, z includes all the variables in x and has at least one additional

variable that is not in x. The idea is that all of the characteristics influential in the outcome

are also expected to be critical in determining the treatment choice. For a concrete example

on this point, see Vella and Verbeek (1999, p. 473).

• Assumption 1.2 (A.1.2): Identification of the model described by (1.1) and (1.2) is

strengthened by exclusion of at least one variable in z from the set of variables in x.
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As shown by McFadden (1973), under the model in (1.1) and (1.2) the assumptions

made so far allow the treatment variable w to follow a multinomial logit model with choice

probabilities given as follows:

P (w = g|x, z) = P (w = g|z) = exp(zγg)/
G∑
r=0

exp(zγr), (1.3)

for g = 0, 1, . . . , G. The next assumption is essential to the CF estimation, which I describe

in section 1.4, since this assumption coupled with the multinomial logit specification of the

treatment variable w will enable me to form control function terms that account for the

endogeneity in w.

• Assumption 1.3 (A.1.3): E(ug|x, z, a) = E(ug|a) =
∑G

j=0ηg,jaj + [−
∑G

j=0ηg,jE(aj)],

where ug is the counterfactual error in yg, x is the 1× l vector of exogenous variables

in yg, z is the 1× k vector of instruments that includes a constant term in the choice

equation for w∗g , a ≡ (a0, a1, . . . , aG) is the 1×(G+1) vector of i.i.d. Gumbel distributed

errors aj with location parameter µ = 0 and scale parameter β = 1 in w∗j , ηg,j is the

scalar multiple of correlation coefficient between ug and aj, and E(aj) = 0.5772 is

Euler’s constant for j, g = 0, 1, . . . , G.

Bourguignon, Fournier, and Gurgand (2007) refers to A.1.3 as Dubin and McFadden’s

linearity assumption since the conditional expectation of counterfactual error ug given all

Gumbel distributed errors a is linear in a for g = 0, 1, . . . , G. A.1.3 also implies that, condi-

tional on a, x and z are redundant for the conditional expectation of ug. In other words, ug

is mean independent of x and z conditional on a.

Under all assumptions from A.1.1 through A.1.3, the model in (1.1) and (1.2) can be

consistently estimated by CF method. In section 1.4, I will propose a consistent estimator

for the ATEs in this discrete multivalued endogenous treatment model.
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1.2.1 The Model with ηg,j = ηj: A Special Case

This special case follows the initial model, so the basic setup and variables in (1.1) and

(1.2) are the same. However, in this special case, I modify the initial model by assuming that

ηg,j = ηj, g = 0, 1, . . . , G, which makes the main difference in this model. The assumptions

I made in this new model are pretty much the same as the ones in the initial model except

A.1.3 and are as follows:

• Assumption 1.1′ (A.1.1′): Same as A.1.1.

• Assumption 1.2′ (A.1.2′): Same as A.1.2.

• Assumption 1.3′ (A.1.3′): E(ug|x, z, a) = E(ug|a) =
∑G

j=0ηjaj + [−
∑G

j=0ηjE(aj)],

where ug is the counterfactual error in yg, x is the 1× l vector of exogenous variables

in yg, z is the 1× k vector of instruments that includes a constant term in the choice

equation for w∗g , a is the 1× (G+ 1) vector of i.i.d. Gumbel distributed errors aj with

location parameter µ = 0 and scale parameter β = 1 in w∗j , ηj is the fixed scalar

multiple of correlation coefficient between ug and aj, and E(aj) = 0.5772 is Euler’s

constant for j, g = 0, 1, . . . , G.

The last assumption, A.1.3′, now incorporates the special condition that ηg,j = ηjwhich

means that the correlation coefficient between ug and aj does not change as the treatment

status g changes, but is fixed at ηj. Because of this special condition, ug = u for g =

0, 1, . . . , G, which practically means that counterfactual errors ug’s are homogeneous across

treatment statuses.
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1.3 Identification

In plain words, identification in economics is the concept of uniquely determining some

population parameters in an econometric model from what can be observed in the name of

data. Unlike natural sciences, economists cannot control the conditions under which social

phenomena occur or change, and the data are produced by an unknown process. Hence,

an economist needs to formulate a model with its assumptions and restrictions in order to

simplify the complexity of the real world and understand the population of interest. If a

model is identified, then only a single set of parameter values must agree with the data under

the true model, and other parameter values must point to a different data.

The origins of econometric identification go as far back in time as late 1920s. Stock

and Trebbi (2003) argue that Wright (1928) was the pioneer in econometric identification

because he solved an identification problem in econometrics first. Apart from these studies,

Working (1925, 1927), Haavelmo (1943), Koopmans and Reiersøl (1950), Hurwicz (1950),

Koopmans, Rubin, and Leipnik (1950), Wald (1950), and Fisher (1966) give the earliest

examples of identification research in econometrics. For a complete review of the early

research in econometric identification and its formalization, see Duo (1993, ch. 4). Since the

early days in econometric identification, its literature has grown considerably and become

complicated but can be roughly divided into two: point identification and set identification

(a.k.a. partial identification).

Conventionally, when a parameter is identified, an economist means that it is point

identified, which is mainly because the research in point identification has started earlier

than in set identification. From a terminological point of view, Koopmans and Reiersøl

(1950), Hurwicz (1950), Fisher (1966) and Rothenberg (1971) give the first formal definitions

of point identification. Other recent definitions are available in Hsiao (1983), Bekker and

Wansbeek (2001), and Matzkin (2007). In line with Lewbel (2018), let say that θ is the

population parameter to be identified, φ is everything known about the population that

data can offer, and M is a model with a set of assumptions and restrictions on the set of
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possible values φ can take on. Then, singling out θ from φ given the model M establishes

the point identification of θ, which is an introductory and informal way of thinking about

point identification. In a similar but more informal fashion, Duo (1993, p. 95) describes the

process of point identification as “... essentializing the conditions under which a certain set

of values of structural parameters could be uniquely determined from the data among all the

permissible sets embodied in mathematically complete theoretical model ... ”.

As for set identification, in an intuitively simple way, Lewbel (2018, p. 65) describes it

as “... the analysis of situations where φ provides some information about parameter θ, but

not enough information to actually point identify θ ... ”. From an informal standpoint, the

true parameter θo is set identified if some other possible parameter values have the same

chance of creating the data in hand as does the true parameter value (terminologically, these

other possible parameter values are called observationally equivalent to θo and form the

identified set together with θo). And, if the identified set is only composed of θo, then point

identification of θo is the same as its set identification. Frisch (1934), Reiersøl (1941), and

Marschak and Andrews (1944) are among the first works on set identification. Manski (1990,

1995, 2003) also analyze the subject in great detail over the years. More recent definitions are

available in Matzkin (2007) and Chesher and Rosen (2017), and set identification has been

reviewed in Tamer (2010). Some researchers favor set identification over point identification

because, according to them, economic theory does not supply econometric models with

enough information for the point identification of model parameters, leading to sophisticated

tricks to obtain point identification. However, one downside of set identified models is that

estimation and inference in set identified parameters get rather more complicated than in

point identified parameters.

In two-stage models, the main identification strategy is generally based on either some

exclusion restrictions or functional form assumptions. Applied economists also prefer using

both exclusion restrictions and functional form assumptions at the very same time in order

to aid and strengthen identification in their models. In two-stage models, an exclusion
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restriction means the inclusion of an explanatory variable in the first stage equation that is

excluded from the second stage equation. There can also be exogenous variables that do not

appear in the first stage equation but are included only in the second stage equation, which

is expected to produce even more variation in the model for its parameters to be identified.

The economists who are in favor of exclusion restrictions argue that identification based

on functional form assumptions (a.k.a. identification by functional form) is fragile, especially

in empirical settings where the data do not have enough variation in key variables. Since

identification by functional form relies heavily on model assumptions which might not be true

in reality, it can greatly suffer from distributional misspecifications and exclusion restrictions

can be required for identification. For example, Keane (1992), Reilly (1996), Montmarquette,

Viennot-Briot, and Dagenais (2007), and Shen (2013) all use some exclusion restrictions as

their main identification strategy. For Olsen (1980) and Little (1985), the use of nonlinearities

in identification is even unappealing because identification by functional form is not only

weak but also causes high standard errors and unreliable estimates.

On the other hand, the economists who are in favor of functional form assumptions argue

that identification based on exclusion restrictions is hard to achieve, especially in empirical

settings where finding a true instrument that only affects the selection equation and that does

not appear in the equation of interest is not very realistic. For instance, Heckman (1978),

Heckman and Robb (1985a), Mendelsohn (1985), Schaffner (2002), and Lewbel (2012) all

employ the nonlinearities in exogenous variables for aiding identification. In the Monte

Carlo simulations of Leung and Yu (1996), they find evidence supporting the claim that

two-step models are reliable in the absence of exclusion restrictions given enough variation

in one of the exogenous variables in data. Wilde (2000) provide evidence in support of that

parameter identification does not require exclusion restrictions in a system of equations,

given each equation has at least one explanatory variable with enough variation. Given

the assumption of multivariate normal distribution, his multiple equation probit model is

identified without exclusion restrictions. Similarly, Escanciano et al. (2016) also have some

12



results that positively contribute to that identification by functional form is neither fragile

nor unreliable in a large class of two-stage models. In certain models, some economists even

show that identification of two-stage models is possible without exclusion restrictions, see,

for instance, Dong (2010)’s binary choice model. It is also common that some economists

use both exclusion restrictions and functional form assumptions for aiding identification in

their models, see Mocan and Tekin (2003) and Appelt (2015) for further comments.

In my main model given by (1.1), (1.2), A.1.1, A.1.2, and A.1.3; the identification argu-

ment is based on both exclusion restriction(s) as in A.1.2 and nonlinearity that describes the

relationship between the set of instruments z and the treatment variable w which follows a

multinomial logit model in z. Due to arguments stressing that it is hard to achieve identifi-

cation without imposing an exclusion restriction, I rely not only on the nonlinearity but also

on the exclusion restriction(s) in my model so as to come up with a stronger and improved

identification argument that appeases a wide range of economists.

1.4 Estimation

In multivalued treatment cases, ATEs depend on the choice of a base treatment group

out of all possible treatment groups. Upon the determination of the base treatment group,

ATEs can be defined as the expectation of the gain from the treatment received with respect

to the base treatment group. Note that there are G number of ATEs in my analysis since

there exist G+ 1 treatments. Let g = 0 be the base group in my analysis. Denote ATEg,0 as

the expected gain from treatment g with respect to the base treatment. In my model, under

A.1.1 through A.1.3, and the law of iterated expectations, ATEs will take the following form:

ATEg,0 = E(yg − y0)

= E (αg + xβg + ug − (α0 + xβ0 + u0))

= (αg − α0) + (E(x)) (βg − β0), (1.4)
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where the third equality uses E(ug) = 0 for g = 1, 2, . . . , G.

Then, a consistent estimator of ATEg,0 is

ÂTEg,0 = (α̂g − α̂0) + x̄(β̂g − β̂0), (1.5)

where α̂g, α̂0, β̂g, β̂0, and x̄= N−1
∑N

i=1xi are respectively consistent estimates for αg, α0,

βg, β0, and E(x). Note that when E(x) = 0, ATEg,0 simplifies to

ATEg,0 = (αg − α0). (1.6)

Then, a consistent estimate of ATEg,0 in (1.6) is

ÂTEg,0 = (α̂g − α̂0), (1.7)

which is simply the difference between the estimates α̂g and α̂0 for g = 1, 2, . . . , G.

1.4.1 IV Estimation

Consider the observed outcome:

y = d0y0 + d1y1 + . . .+ dGyG

=
G∑
j=0

djαj +
G∑
j=0

djxβj + u′, (1.8)

where u′ = d0u0+d1u1+· · ·+dGuG. Applying IV method on (1.8) requires instruments for the

binary treatment indicators dj since corr(dj, u′) is expected not to be zero for j = 0, 1, . . . , G.

One way to obtain instruments for dj is to model the treatment variable w as a discrete

multinomial logit model and to then use the predicted probabilities from this model as

instruments for dj for j = 0, 1, . . . , G. Hence, one can prescribe the following three-stage

procedure to estimate ATEs:
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Procedure 1.1

1. Estimate the predicted probabilities, Λ̂ji = exp(ziγ̂j)/
∑G

r=0exp(ziγ̂r), from a MNL of

wi on zi for j = 0, 1, . . . , G and i = 1, 2, . . . , N.

2. Estimate the parameters in (1.8) by IV method using instruments
(

Λ̂ji , Λ̂jixi

)
for (dji ,

djixi), j = 0, 1, . . . , G and i = 1, 2, . . . , N.

3. Plug parameter estimates from step 2 and sample average of x into (1.5), and estimate

ATEs.

An important remark to make here is that IV estimator described in Procedure 1.1 is

not a conventional IV estimator. It is in fact optimal (asymptotic variance minimizing) IV

estimator with optimal instruments (predicted probabilities from the MNL of w on z) under

homoskedasticity. Whether the error term u′ in (1.8) is homoskedastic is another question;

however, if it is, optimal IV estimator in Procedure 1.1 is asymptotically efficient over a

parametric family of conditional probabilities for w. For this reason, I prefer IV estimator

described in Procedure 1.1 over other IV estimators using different variations of instruments

that are functions of z. For an example of optimal IV estimator in an endogenous dummy

variable model, see Newey (1993, p. 430). For further discussion on optimal IV estimators,

see Newey and McFadden (1994, Section 5.4).

Procedures similar to Procedure 1.1 in models with binary endogenous treatment are

popular among the empirical economists relatively because of the straightforward imple-

mentation of IV method. For example, Robinson (1989) used a two-stage procedure where

he obtained a set of predicted probabilities from a probit specification for the endogenous

variable , i.e. union choice, at the first stage and used, at the second stage, that as instrument

for the union choice in his model to estimate the union wage differentials. Similarly, Puhani

and Weber (2007) calculated a set of predicted probabilities again from a probit specifica-

tion for the endogenous variable , i.e. age of school entry, at the first stage and used, at the
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second stage, that as instrument for the age of school entry in their model to explore how

the age of school entry influences educational outcomes. Examples in multivalued cases are

also numerous, see, for example, Ettner (1995 and 1996); Norton and Staiger (1994); Sloan,

Picone, Taylor Jr., and Chou (2001).

As pointed out by Chesher and Rosen (2013) and Lewbel, Dong, and Yang (2012), al-

though this IV approach is simple to apply and is popular in empirical work with binary

endogenous treatment, it is naive and results mostly in inconsistent IV estimates (and in-

consistent ATE estimates in my analysis thereof) since instruments used in Procedure 1.1

are expected to be correlated with u′. This IV method with instruments (all are nonlinear

functions of z) would most likely yield inconsistent estimates because dj is in u′ and is a

function of z for j = 0, 1, . . . , G.

Note that (1.8) must be reformulated so that one can estimate it using the canned software

packages such as STATA. This reformulation is needed because I include all of the binary

treatment indicators dg in (1.2), and the canned packages also include an intercept in the

first stage of the IV estimation although some allow for the exclusion of a constant term

in the second stage regression, e.g., STATA. Hence, in practice, the IV estimation of (1.8)

suffers from perfect multicollinearity and is not possible.

To fix this practical problem described above, lets drop one of the binary treatment

indicator variables, say dG but it could be another one, from (1.8). And then add a constant

term and the variables x into (1.8). Then, (1.8) can be equivalently written as

y = (
G−1∑
j=0

djα̃j + α̃G) + (
G−1∑
j=0

djxβ̃j + xβ̃G) + ũ′, (1.9)

where αg = α̃g + α̃G, βg = β̃g + β̃G, αG = α̃G, and βG = β̃G for g = 0, 1, . . . , G − 1. Under

this reformulation, ATEg,0 for g = 1, 2, . . . , G− 1 is

ATEg,0 = (α̃g − α̃0) + (E(x)) (β̃g − β̃0) (1.10)
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and for g = G

ATEG,0 = (−α̃0) + (E(x)) (−β̃0). (1.11)

Therefore, consistent estimates of ATEg,0 for g = 1, 2, . . . , G− 1 and ATEG,0 under this

reformulation are

ÂTEg,0 = (ˆ̃αg − ˆ̃α0) + x̄(
ˆ̃
βg − ˆ̃

β0) (1.12)

and

ÂTEG,0 = (− ˆ̃α0) + x̄(−ˆ̃
β0), (1.13)

where ˆ̃αg, ˆ̃α0,
ˆ̃
βg, and

ˆ̃
β0 are respectively the consistent estimates of α̃g, α̃0, β̃g, and β̃0 from

Procedure 1.1 applied on (1.9), and x is consistent estimate of E(x) just as in (1.5).

1.4.2 CF Estimation

CF estimation is more involved compared to the IV estimation in subsection 1.4.1. This

is because I first need to derive the estimating equation of CF method. This estimating

equation is based on the expectation of the observed outcome y conditional on the observed

variables (d,x, z), E(y|d,x, z). To prevent equation clutter, I collected all the derivations in

appendix A. Thus, for derivations, refer to appendix A. Having said that, (A.7) in appendix

A gives me the estimating equation of CF method because I can always write

y =
G∑
j=0

djαj +
G∑
k=0

dkxβk +

+
G∑
g=0

[−ηg,gdglog(Λg)] +
∑
g 6=0

dgηg,0M0 +
∑
g 6=1

dgηg,1M1 + · · ·+

+
∑
g 6=G

dgηg,GMG + ε, (1.14)
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where E(ε|d,x, z) = 0, Λj = exp(zγj)/
∑G

r=0exp(zγr), and Mj = Λjlog(Λj)/(1 − Λj) for

j = 0, 1, . . . , G. So I can prescribe the following three-stage estimation procedure to estimate

ATEs:

Procedure 1.2

1. Same as in Procedure 1.1.

2. Run the regression of yi on di0, di1,. . . , diG, di0xi, di1xi,. . . , diGxi, −d0ilog(Λ̂0i), −d1i

log(Λ̂1i), . . . , −dGilog(Λ̂Gi), d1iM̂0i , d2iM̂0i , . . . , dGiM̂0i , d0iM̂1i , d2iM̂1i , d3iM̂1i , . . . ,

dGiM̂1i , . . . , d0iM̂Gi , d1iM̂Gi , . . . , and dG−1iM̂Gi .

3. Same as in Procedure 1.1,

where Λ̂gi = exp(ziγ̂g)/
∑G

r=0exp(ziγ̂r) and M̂gi = Λ̂gilog(Λ̂gi)/(1 − Λ̂gi) for g = 0, 1, . . . , G

and i = 1, 2, . . . , N.

Unlike the estimates from IV method, CF method’s estimates are theoretically robust

to heterogeneity in ug at least from a consistency standpoint. Under A.1.1 through A.1.3,

CF method yields consistent estimates because the addition of the control function terms

renders dg exogenous in (1.14) for g = 0, 1, . . . , G.

1.4.3 The Model with ηg,j = ηj: Estimation

ATEs and their estimates are calculated just the same way as in the initial model. The

main estimation approaches are again IV and CF methods. Consider the observed outcome:

y = d0y0 + d1y1 + . . .+ dGyG

=
G∑
j=0

djαj +
G∑
j=0

djxβj + u′, (1.15)
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where u′ = d0u0 + d1u1 + · · · + dGuG. However, by A.1.3′, ug = u for g = 0, 1, . . . , G

(homogeneous counterfactual errors), and thereof u′ = u. (1.8) and (1.15) are practically the

same, so IV estimation (Procedure 1.1) can be used in this special model. However, I expect

that IV approach under the condition ηg,j = ηj would yield consistent estimates because the

error term u′ in (1.15) does not depend on the binary treatment status indicators dg but only

on ug = u. For practical purposes, the reformulation of (1.15) is just as the reformulation of

(1.8).

As before, the CF estimating equation is based on the expectation of the observed out-

come y conditional on the observed variables (d,x, z), E(y|d,x, z). To prevent equation

clutter, I again collected all the derivations in appendix A. Thus, for derivations, refer to

appendix A. In this special model with ηg,j = ηj, the estimating equation of CF method

gets simplified. As seen in (A.10) in appendix A, I can write the estimating equation of CF

method as follows:

y =
G∑
g=0

dgαj +
G∑
g=0

dgxβg +
G∑
g=0

ηgrg + ε, (1.16)

where rg = [(1− dg)Mg − dglog(Λg)] , Mg = Λglog(Λg)/(1−Λg), Λg = exp(zγg)/
∑G

r=0exp(zγr)

, and E(ε|d,x, z) = 0 for g = 0, 1, . . . , G. Then, I can prescribe the following three-stage

estimation procedure to estimate ATEs:

Procedure 1.2′

1. Estimate the predicted probabilities Λ̂gi from a MNL of wi on zi and then obtain r̂gi .

2. Run the regression of yi on d0i , d1i ,. . . , dGi , d0ixi, d1ixi,. . . , dGixi, r̂0i , r̂1i , . . . , r̂Gi .

3. Same as in Procedure 1.1,
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where r̂gi = [(1− dgi)M̂gi−dgilog(Λ̂gi)], M̂gi = Λ̂gilog(Λ̂gi)/(1 − Λ̂gi), and Λ̂gi = exp(ziγ̂g)/∑G
r=0exp(ziγ̂r) for g = 0, 1, . . . , G and i = 1, 2, . . . , N. Under A.1.1′, A.1.2′, and A.1.3′, CF

method yields consistent estimates because the addition of the control function terms, rg,

renders dg exogenous in (1.16) for g = 0, 1, . . . , G.

1.5 Asymptotic Normality Results

CF method is indeed a two-step M-estimator that solves the problem

min
θ∈Θ

N∑
i=1

(yi −m(Xi,v(di, zi, γ̂), θ))2/2, (1.17)

where γ̂ = (γ̂′0, γ̂
′
1, . . . , γ̂

′
G)′ is the (G+ 1)k×1 vector of

√
N − consistent and asymptotically

normal first stage conditional MLE (CMLE) estimates from the MNL of wi on zi for i =

1, 2, . . . , N. However, the first stage estimates does not have to be consistent as long as they

converge in plim, i.e., γ̂ p−→ γ∗ where γ∗ ∈ Γ ⊂ R(G+1)k. CMLE solves the problem

max
γ∈Γ

N∑
i=1

li(γ), (1.18)

where γ = (γ′0, γ
′
1, . . . , γ

′
G)′ is the (G+1)k×1 vector of parameters, and li(γ) ≡ log(f(wi|zi; γ)),

i.e., the conditional log likelihood for observation i, is given below

log(f(wi|zi, γ)) =
G∑
j=0

1[wi = j]log

(
exp(ziγj)/

G∑
r=0

exp(ziγr)

)
. (1.19)

To establish that first stage MLE estimates are
√
N − consistent and asymptotically

normal, I will rely on Proposition 7.6 in Hayashi (2000), Theorem 13.1 in Wooldridge (2010),

Proposition 7.9 in Hayashi (2000), and Theorem 13.2 in Wooldridge (2010). Theorem 1.1

(Th.1.1) below is just a combination of both the Proposition 7.6 and the Theorem 13.1 and

establishes the consistency of CMLE without a compact parameter space.
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• Theorem 1.1 (Th.1.1): Let {(wi, zi) : i = 1, 2, . . .} be a random sample with zi ∈

Z ⊂ Rk, wi ∈ W ⊂ R. Let Γ ⊂ R(G+1)k be the parameter set, and denote the

parametric model for the conditional density, p(· |z), as {f(· |z; γ) : z ∈ Z , γ ∈ Γ}.

Let l : W × Z × Γ → R be a real-valued function. Assume that (a) f(· |z; γ) is

a true density function with respect to the measure µ(dw) for all z and γ, so that
´

W
f(w|z)µ(dw) = 1,∀z ∈ Z holds; (b) for some γo ∈ Γ, po(· |z) = f(· |z; γo), ∀z ∈ Z ,

and the true parameter vector γo is the unique solution to max
γ∈Γ

E[li(γ)]; (c) γo is an

element of the interior of a convex parameter space Γ ; (d) for each γ ∈ Γ, l(· , γ) is a

Borel measurable function on W ×Z ; (e) for each (w, z) ∈ W ×Z , l(w, z, ·) is concave

in γ; and (f) |l(w, z, γ)| ≤ b(w, z), ∀γ ∈ Γ, where b(·, ·) is a nonnegative function on

W × Z such that E[b(w, z)] < ∞. Then there exist a solution to problem in (1.18),

the CMLE γ̂, and γ̂ p−→ γo.

In appendix A, I will verify the conditions stated in Th.1.1. For a generic consistency

proof of extremum estimators without compactness, see Theorem 2.7 in Newey and Mc-

Fadden (1994, p. 2133). Next, I will state Theorem 1.2 (Th.1.2) below, which is simply a

combination of both the Proposition 7.9 and the Theorem 13.2 and establishes the asymp-

totic normality of CMLE.

• Theorem 1.2 (Th.1.2): Let the definitions and conditions of Th.1.1 hold, and define

BF
o ≡ V ar[∇′γli(γo)]. Furthermore, assume that (a) γo is an element of the interior

of a parameter space Γ ;—i.e., γo ∈ int(Γ ); (b) for each (w, z) ∈ W × Z , l(w, z, ·)

is twice continuously differentiable on int(Γ ); (c) E[sFi (γo)] = 0 and −E[HF
i (γo)] =

V ar[sFi (γo)], where sFi (γ) ≡ ∇′γli(γ) and HF
i (γ) ≡ ∇γ[∇′γli(γ)]; (d) the elements of

∇γ[∇′γl(w, z, γ)] are bounded in absolute value by a function b(w, z), ∀γ ∈ Γ, where

b(·, ·) is a nonnegative function on W × Z such that E[b(w, z)] < ∞; and (e) AF
o ≡
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−E(∇γ[∇′γli(γo)]) is positive definite. Then

√
N(γ̂ − γo)

d−→ Normal(0, (AF
o )−1BF

o (AF
o )−1). (1.20)

Explicitly, the score of the log likelihood for observation i is as follows:

sFi (γ) ≡ ∇′γli(γ) =

(
∂li
∂γ0

(γ),
∂li
∂γ1

(γ), . . . ,
∂li
∂γG

(γ)

)
′, (1.21)

which is a (G + 1)k × 1 vector of partial derivatives of li(γ) with respect to parameters

in γ. The Hessian, HF
i (γ) ≡ ∇γ[∇′γli(γ)], for observation i is the (G + 1)k × (G + 1)k

matrix of second partial derivatives of li(γ) with respect to parameters in γ. Thus, using the

definitions in Th. 1.2, AF
o ≡ −E[HF

i (γo)], and BF
o ≡ V ar[sFi (γo)]. In appendix A, I show

that E[sFi (γo)] = 0 and AF
o = BF

o , which are used to reduce the variance expression in (1.20)

to the one in (1.22) below:

√
N(γ̂ − γo)

d−→ Normal(0, (AF
o )−1). (1.22)

See appendix A for the verification of the conditions stated in Th.1.2 and see Theorem

3.1 in Newey and McFadden (1994, p. 2143) for a generic proof of asymptotic normality

of extremum estimators. Now I can move to the second-stage of CF method, which is

basically OLS with generated regressors. To establish that second stage estimates are
√
N −

consistent and asymptotically normal, I use Theorem 1.3 (Th.1.3) and Theorem 1.4 (Th.1.4)

respectively. Th.1.3 below is based off Theorem 4.3 in Wooldridge (1994, p. 2653) and

establishes the consistency of CF method with a compact parameter space.

• Theorem 1.3 (Th.1.3): Let w = (y,X,v) be a random vector with w ∈ W ⊂ RM+1

and M = (l + G + 2)(G + 1). Let Θ ⊂ RM and Γ ⊂ R(G+1)k be the parameter sets.
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Let q(w, θ; γ) : W× Θ × Γ → R be a real-valued function. Let γ̂ be an estimator from

a preliminary estimation. Assume that (a) γ̂ p−→ γ∗ for some γ∗ ∈ Γ ; (b) for a given

γ∗ ∈ Γ, the true parameter vector θo is the unique solution to min
θ∈Θ

E[qi(θ; γ
∗)]; (c) the

parameter space Θ × Γ is compact; (d) for each (θ, γ) ∈ Θ × Γ, q(· , θ; γ) is a Borel

measurable function on W; (e) for each w ∈ W, q(w, ·; ·) is continuous function on Θ×Γ ;

and (f) E[|q(wi, θ; γ)|] < ∞ ∀(θ, γ) ∈ Θ × Γ. Then there exists a solution to problem

in (1.17), the CF estimator θ̂, and θ̂ p−→ θo.

Compared to Th.1.1, Th.1.3 replaces the convexity assumption on parameter space with

the compactness assumption and the concavity of the objective function with its continuity.

In appendix A, I will verify the conditions stated in Th.1.3. In addition, see Wooldridge

(1994, p. 2730) for a generic consistency proof of two-step M-estimators with compactness.

Before I move into the asymptotic normality result, I will introduce some notation. From

(1.17), we can see that q(w, θ; γ) for observation i in Th.1.3 is as follows:

qi(θ; γ) ≡ q(wi, θ; γ) ≡ (yi −m(Xi,v(di, zi, γ), θ))2/2, (1.23)

where mi(vi(γ), θ) ≡ m(Xi,v(di, zi, γ), θ) ≡ Xiδ + viλ, θ = (δ′, λ′)′ is the M × 1 vector

of parameters, Xi is the 1 × (l + 1)(G + 1) vector of regressors in (1.17), and vi is the

1× (G+ 1)(G+ 1) vector of generated regressors in (1.17). More explicitly,

Xi = ( d0i , · · · , dGi , d0ixi, · · · , dGixi )

vi = ( −d0ilog(Λ0i), · · · , −dGilog(ΛGi), d1iM0i , d2iM0i , · · · , dGiM0i ,

d0iM1i , d2iM1i , d3iM1i , · · · , dGiM1i , · · · , d0iMGi , d1iMGi , · · · ,

, dG−1iMGi), (1.24)

where Λgi = exp(ziγg)/
∑G

r=0exp(ziγr) and Mgi = Λgilog(Λgi)/(1 − Λgi) for g = 0, 1, . . . , G.

As one can expect, expressions such as Λ̂ji and M̂gi are just consistent estimates of Λgi and
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Mgi with γ̂g replacing γg in Λgi andMgi . Now, I will state Theorem 1.4 (Th.1.4) that is based

off Theorem 4.4 in Wooldridge (1994, p. 2655) and establishes the asymptotic normality of

CF method with a compact parameter space.

• Theorem 1.4 (Th.1.4): Let the definitions and conditions of Th.1.3 hold. Further-

more, assume that (a) θo ∈ int(Θ) and γ∗ ∈ int(Γ ); (b)
√
N(γ̂ − γ∗) is bounded in

probability —i.e.,
√
N(γ̂ − γ∗) = Op(1); (c) for each (w, γ) ∈ W× Γ, q(w, ·; γ) is a twice

continuously differentiable on int(Θ); (d) for each θ ∈ Θ, s(·, θ; ·) ≡ ∇′θq(·, θ; ·) is con-

tinuously differentiable on int(Γ ); (e) for each (θ, γ) ∈ Θ×Γ, H(·, θ; γ) ≡ ∇θs(·, θ; γ) is

a Borel measurable function on W; (f) for each w ∈ W, H(w, ·; ·) is continuous on Θ× Γ ;

(g) E[‖ H(wi, θ; γ) ‖] <∞ ∀(θ, γ) ∈ Θ×Γ. (h) Ao ≡ E[H(wi, θo; γ
∗)] is positive definite;

(i) for each (θ, γ) ∈ Θ×Γ, ∇γs(·, θ; γ) is a Borel measurable function on W; (j) for each

w ∈ W,∇γs(w, ·; ·) is continuous on Θ×Γ ; (k) E[‖ ∇γs(wi, θ; γ) ‖] <∞ ∀(θ, γ) ∈ Θ×Γ ;

(l) E[si(θo; γ
∗)] = 0, E[(AF

∗ )−1sFi (γ∗)] = 0, and E[(AF
∗ )−1sFi (γ∗)s′i(θo; γ

∗)] = 0. Then,

√
N(θ̂ − θo)

d−→ Normal(0, (Ao)
−1Do(Ao)

−1), (1.25)

where Do = Bo+FoTo+T′oF
′
o+FoR

∗F′o, si(θo; γ
∗) ≡ ∇′θq(wi, θo; γ∗), Ao ≡ E[∇θsi(θo; γ

∗)] ≡

E[Hi(θo; γ
∗)], Bo ≡ E[si(θo; γ

∗)s′i(θo; γ
∗)], Fo ≡ E[∇γsi(θo; γ

∗)], To ≡ E[ri(γ
∗)s′i(θo; γ

∗)],

R∗ ≡ E[ri(γ
∗)r′i(γ

∗)], ri(γ
∗) = (AF

∗ )−1sFi (γ∗), and AF
∗ ≡ −E(∇γ[∇′γli(γ∗)]). For the deriva-

tion of asymptotic variance of
√
N(θ̂−θo), refer to the subchapter 12.4 in Wooldridge (2010)

or subsections 4.3 and 4.4 in Wooldridge (1994). See appendix A for the verification of the

conditions stated in Th.1.4 and see Wooldridge (1994, p. 2730) for a generic asymptotic

normality proof of two-step M-estimators with compactness. In appendix A, I also derive

the closed forms of the population matrices Ao, Bo, Fo, and R∗ and show E[ri(γ
∗)] = 0,

E[si(θo; γ
∗)] = 0, and To ≡ E[ri(γ

∗)s′i(θo; γ
∗)] = 0. Since To = 0, Do in the asymptotic

variance of
√
N(θ̂ − θo) in (1.25) simplifies to Bo + FoR

∗F′o.
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Let’s construct the following estimators for Ao, Bo, Fo, and R∗ :

Â = N−1

N∑
i=1

Hi(θ̂; γ̂), (1.26)

B̂ = N−1

N∑
i=1

si(θ̂; γ̂)s′i(θ̂; γ̂), (1.27)

F̂ = N−1

N∑
i=1

∇γsi(θ̂; γ̂), and (1.28)

R̂ = N−1

N∑
i=1

ri(γ̂)r′i(γ̂). (1.29)

Define D̂ ≡ B̂ + F̂R̂F̂′. Then, using the analogy principle and Lemma 1 in appendix

A, a consistent estimator for Avar
√
N(θ̂ − θo) is ˆAvar

√
N(θ̂ − θo) = (Â)−1D̂(Â)−1. The

asymptotic standard errors of CF estimates can be obtained from the matrix ˆAvar(θ̂) =

(Â)−1D̂(Â)−1/N.

1.5.1 Method of Moments Framework

In his paper, Newey (1984) showed that two-step estimators could be interpreted as

members of generalized method of moments (GMM) estimators for the purpose of obtain-

ing asymptotic variance matrix. This perspective not only provides consistent parameter

estimates but also yields consistent standard errors of parameter estimates. By jointly es-

timating all parameters in just one step, consistent standard errors are obtained without

deriving the asymptotic variance matrix of a two-step estimator. For this reason, GMM

estimation gives an alternative way to get consistent standard errors of the parameters in

CF regression. GMM estimation reduces down to method of moments estimation when the

number of moments is exactly equal to the number of parameters to be estimated, so I

technically utilize method of moments (MoM) in my analysis.
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In the first stage of CF method, γ̂ is the CMLE estimator solving

N∑
i=1

sFi (γ̂) = 0, (1.30)

where sFi (γ) = ∇′γ
∑G

j=01[wi = j]log
(
exp(ziγj)/

∑G
r=0exp(ziγr)

)
. In the second stage, θ̂ is a

OLS estimator solving

N∑
i=1

si(θ̂; γ̂) = 0, (1.31)

where si(θ̂; γ̂) = ∇′θ[yi −m(Xi,v(di, zi, γ̂), θ̂)]2/2. Newey (1984) proposes stacking the sum-

mands in these first order conditions into the unified function

g(θ, γ) =

 sF(γ)

s(θ; γ)

 (1.32)

and then applying MoM using the moment conditions E[g(θ, γ)] = 0 to obtain consistent

estimates for θ and γ, and valid asymptotic variance matrix of θ̂ and γ̂.

1.5.2 The Model with ηg,j = ηj: Asymptotics

The asymptotic properties of CF estimates can also be obtained using theorems used for

the initial model. For consistency and asymptotic normality of CMLE in the first stage, I

will still use Th.1.1 and Th.1.2. Th.1.3 and Th.1.4 will be almost the same as before except

now M = (l + 2)(G + 1) + 1. vi will be the 1 × (G + 1) vector of generated regressors.

More explicitly, vi = (r0i , r1i , . . . , rGi). Using Th.1.3 and Th.1.4 with these changes, the

asymptotic standard errors of CF estimates in this special case can still be obtained from

the matrix ˆAvar(θ̂) = (Â)−1D̂(Â)−1/N, where Â and D̂ are defined as in the initial model.

A MoM estimation in this case can be applied as described in subsection 1.5.1.

26



1.6 Hypothesis Testing

Economists often are interested in whether a particular research question is true or not,

i.e., does the limited English proficiency have an effect on the earnings of immigrant worker

population in the U.S.? To answer questions of this sort, economists set up a hypothesis test

with a null hypothesis H0, a statement often against the idea one would like to accept, an

alternative hypothesisH1, a statement one would like to show evidence for, and a test statistic

whose distribution can be calculated under H0. In this section, I will devise a hypothesis

testing framework with hypotheses expressed as a set of restrictions on model parameters

and will construct a test statistic based on the score test (a.k.a. Lagrange multiplier test) of

Rao (1948).

In my framework, I could also utilize the Wald statistic. However, I choose the score

statistic because the Wald statistic generally suffer from lack of invariance to how the non-

linear restrictions are constructed and, thereof, yield different hypothesis test results. In

addition, note that, due to the heterogenous error terms in my estimating equations, the

generalized information matrix equality (GIME) fails (i.e., the expected value of the outer

product of score function is not equal to a constant multiple of the expected value of the

Hessian function.) And, since GIME fails, the quasi-likelihood ratio statistic does not work

in my framework. For more on the drawbacks of the Wald statistic and the quasi-likelihood

ratio statistic, refer to section 7.4 of Hayashi (2000) and section 12.6 of Wooldridge (2010).

Following the notation and conditions used in subsection 4.6 of Wooldridge (1994), con-

sider the following null hypothesis

H0 : c(θo) = 0, (1.33)

where c(θ) is a Q × 1 vector function of the M × 1 vector θ, and some constraints may be

linear while the others are nonlinear. The constrained CF estimator θ̃ solves the problem

min
θ∈Θ

N∑
i=1

(yi −m(Xi,v(di, zi, γ̂), θ))2/2 s.t. c(θ) = 0, (1.34)
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where γ̂ is as in (1.17). In the assumption below, I will state some conditions on c(θ) and

on a mapping defined by the restrictions in H0. Even though it is not necessary to know the

explicit form of this mapping, it will help us establish the first order representation of θ̃.

• Assumption 1.4 (A.1.4): Assume that (a) Q ≤ M ; (b) c(·) is continuously differen-

tiable on int(Θ); (c) θo ∈ int(Θ) under H0; (d) C(θ) ≡ ∇θc(θ) is the Q×M gradient

of c(θ) with rank Q, and C(θo) is bounded in probability; (e) there exists a twice con-

tinuously differentiable mapping d : RM−Q → RM with θo = d(αo) under H0, where

αo is a (M −Q)× 1 vector in the interior of its compact parameter space A ⊂ RM−Q

under H0; and (f) D(α) ≡ ∇αd(α) is the M × (M − Q) gradient of d(α) with rank

M −Q at α = αo, and D(αo) is bounded in probability.

White (1994, p. 138) gives a famous example of where expressing restrictions in H0 as

θ = d(α) can be used in econometrics. In simultaneous systems of equations with overi-

dentifying restrictions, θ represents the parameters of the reduced form, and α corresponds

to the structural parameters, and d determines the relation between them. Hence, we can

intuitively think of the mapping d in a similar way. Furthermore, note that the estimator of

αo, α̃, solves the problem

min
α∈A

N∑
i=1

(yi −m(Xi,v(di, zi, γ̂),d(α)))2/2, (1.35)

and the constrained CF estimator θ̃ is equal to θ̃ ≡ d(α̃). Now, I will state Theorem 1.5

(Th.1.5) that offers the score test and the score statistic, the Lagrange multiplier (LM)

statistic. Th.1.5 is similar to the LM statistic in subsection 4.6 of Wooldridge (1994, p.

2668); however, into this theorem below, I also incorporate the adjustment to take into

consideration the estimation of the nuisance parameter γ∗ in (1.18).
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• Theorem 1.5 (Th.1.5): Let the definitions and conditions of Th.1.2, Th.1.4 and A.1.4

hold. Then underH0 : c(θo) = 0, (a)
(∑N

i=1 si(θ̃; γ̂)
)′

A−1
o C′o[CoA

−1
o DoA

−1
o C′o]

−1CoA
−1
o(∑N

i=1 si(θ̃; γ̂)
)
/N

d−→ χ2
Q and (b) the LM statistic LMN ≡

(∑N
i=1 si(θ̃; γ̂)

)′
Ã−1C̃′[C̃

Ã−1D̃Ã−1C̃′]−1C̃Ã−1
(∑N

i=1 si(θ̃; γ̂)
)
/N is asymptotically χ2

Q,

where si(θ̃; γ̂) is as in Th.1.4 but evaluated at (θ̃, γ̂), Ao and Do are as in Th.1.4, Co ≡ C(θo)

with C(θ) as in A.1.4, Ã = N−1
∑N

i=1 Hi(θ̃; γ̂) with Hi as in Th.1.4, C̃ = C(θ̃), D̃ = B̃ +

F̃R̂F̃′, B̃ = N−1
∑N

i=1 si(θ̃; γ̂)s′i(θ̃; γ̂), F̃ = N−1
∑N

i=1∇γsi(θ̃; γ̂), and R̂ = N−1
∑N

i=1 ri(γ̂)r′i(γ̂)

as in Th.1.4. See appendix A for the proof of Th.1.5.

1.6.1 The Model with ηg,j = ηj: Hypothesis Testing

After CF estimation when ηg,j = ηj, hypothesis testing can be conducted in the same

way as the initial model: Th.1.5 still holds. As noted before, nothing changes in terms of

both Th.1.1 and Th.1.2. As for Th.1.3 and Th.1.4, now M = (l+ 2)(G+ 1) + 1, and vi will

be the 1 × (G + 1) vector of generated regressors. More explicitly, vi = (r0i , r1i , . . . , rGi),

where rgi is as in subsection 1.4.3. Using Th.1.3, Th.1.4, and Th.1.5 with these changes,

LMN is still asymptotically χ2
Q.

1.7 Simulations

In this section, I present some simulation results that place CF and IV methods in

section 1.4 side by side and note differences and similarities in terms of their asymptotic

performances, specifically asymptotic efficiency, asymptotic unbiasedness, and consistency.

The setups for the main model in section 1.2 and for the special case model in subsection

1.2.1 are similar to each other; however, each setup varies a little as I change the distribution

of instrument in the latent variable equation and assume ηg,j = ηj for g, j = 0, 1, 2. For
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the sake of computational simplicity, I adopt a scheme in which there is only one covariate

in the counterfactual outcome equation, i.e., x = x and only one instrument in the latent

variable equation, i.e., z = z. In addition, the treatment variable w takes on only three

values, and each treatment group comprises at least about 30 percent for each simulation

setting. Lastly, I introduce misspecification into the main model by ignoring an instrument

in the latent variable equation and examine its consequences.

1.7.1 Data Generating Process

In my simulation analysis, I used five different data generating processes (DGPs); one

for the main model in section 1.2 with asymmetric instrument, one for the main model with

symmetric instrument, one for the special case model in subsection 1.2.1 with asymmetric

instrument, one for the special case model with symmetric instrument, and one for the main

model with asymmetric instrument and misspecification. The setup for the DGP of the main

model with asymmetric instrument is as follows:

w ∈ {0, 1, 2} ,

dg = 1[w = g], g ∈ {0, 1, 2} ,

ag ∼ Gumbel(0, 1), g ∈ {0, 1, 2} ,

γ0 = 1, γ1 = 5, and, γ2 = 9,

l0 = 1, l1 = 5, and, l2 = 3,

z = z ∼ χ2(2)− 2,

w∗g = lg + γgz + ag, g ∈ {0, 1, 2} ,
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w = g iff w∗g ≥ w∗j , ∀j 6= g and g, j ∈ {0, 1, 2} ,

eg ∼ N(0, 4), g ∈ {0, 1, 2} ,

η0,0 = 0.05, η0,1 = 0.10, and, η0,2 = 0.15,

η1,0 = 3.05, η1,1 = 3.10, and, η1,2 = 3.15,

η2,0 = 6.05, η2,1 = 6.10, and, η2,2 = 6.15,

ug =
∑2

j=0ηg,jaj + [−
∑2

j=0ηg,jE(aj)] + eg, g ∈ {0, 1, 2} ,

x = x ∼ N(0, 1),

α0 = 1, α1 = 2, and, α2 = 3,

β0 = 6, β1 = 7, and, β2 = 8,

yg = αg + xβg + ug, g ∈ {0, 1, 2} ,

and y = d0y0 + d1y1 + d2y2.

For the main model with symmetric instrument, the DGP setup is very similar to the

one above. However, I make the following modifications:

l0 = 1, l1 = 5.2, and, l2 = 2,

z = z ∼ N(0, 4),

η1,0 = 0.55, η1,1 = 0.60, and η1,2 = 0.65.

The setup for the DGP of the special case model with asymmetric instrument is as follows:
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w ∈ {0, 1, 2} ,

dg = 1[w = g], g ∈ {0, 1, 2} ,

ag ∼ Gumbel(0, 1), g ∈ {0, 1, 2} ,

γ0 = 1, γ1 = 5, and, γ2 = 9,

l0 = 1, l1 = 5, and, l2 = 3,

z = z ∼ χ2(2)− 2,

w∗g = lg + γgz + ag, g ∈ {0, 1, 2} ,

w = g iff w∗g ≥ w∗j , ∀j 6= g and g, j ∈ {0, 1, 2} ,

e ∼ N(0, 4),

η0 = 0.05, η1 = 3.05, and, η2 = 6.05,

ug = u =
∑2

j=0ηjaj + [−
∑2

j=0ηjE(aj)] + e, g ∈ {0, 1, 2} ,

x = x ∼ N(0, 1),

α0 = 1, α1 = 2, and, α2 = 3,

β0 = 6, β1 = 7, and, β2 = 8,

yg = αg + xβg + u, g ∈ {0, 1, 2} ,

and y = d0y0 + d1y1 + d2y2.

For the special case model with with symmetric instrument, the DGP setup is very similar

to the one with asymmetric instrument above. However, I make the following modifications:
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l0 = 1, l1 = 5.2, and, l2 = 2,

z = z ∼ N(0, 4),

η0 = 0.05, η1 = 0.55, and η2 = 6.05.

And lastly, for the main model with asymmetric instrument and misspecification in the

latent variable equation, the DGP setup is very similar to the one without misspecification.

However, I introduce an additional instrument in the latent variable equation and ignore it

from the MNL regression of treatment variable on instruments at the first stage. Hence, I

make the following modifications:

z = (z1, z2)′,

z1 ∼ χ2(2)− 2,

z2 ∼ χ2(2)− 2,

w∗g = lg + γgz1 + ϑgz2 + ag, g ∈ {0, 1, 2} ,

ϑ0 = γ1, ϑ1 = γ2, and ϑ2 = γ0,

where z1 and z2 are scalar instruments in the choice equation for w∗g , and ϑg is a scalar

parameter associated with z2 in w∗g for g ∈ {0, 1, 2} . Note that missing, say, z2 in w∗g is

practically like putting it into the i.i.d. Gumbel distributed error term ag, which creates the

new error term a′g = ϑgz2+ag in the latent treatment equation. However, this new error term

is not i.i.d. and is very likely not Gumbel distributed anymore, which violates the model

condition that the error term in the latent treatment equation is i.i.d. Gumbel distributed.

Once this model condition is infringed, w does not follow a MNL distribution and the CF

terms used in (1.14) or (1.16) are not correct, which leads to that E(ε|d,x, z) 6= 0 in (1.14)

and E(ε|d,x, z) 6= 0 in (1.16). In short, it is this model condition violation as a result of
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misspecification that creates huge biases on CF estimates as demonstrated in simulation

results later. This is interesting in its own right because, for several two-stage estimators,

similar misspecifications (i.e., excluding relevant instruments) of the first stage equation

(e.g., choice/selection equation) would not cause much of a bias on the second stage (e.g.,

outcome stage) parameter estimates. In this regard, the most prominent estimator is two-

stage least squares with excluded instruments, see McKenzie and McAleer (1994, p. 446) for

example. In addition, in a unified fashion, Pagan (1986) explores when two-stage estimators

are consistent and when they are not. In proposition 3.2 of this paper, he shows that two-

stage estimators based on a misspecified first stage equation result in consistent second stage

parameter estimates when the excluded (and included) instruments in the first stage are not

correlated with the included variables in the second stage. Even though this is the case in my

simulation study, my simulation results in this section below still suggest that CF estimates

have big biases under misspecification, which makes my results even more interesting.

Regarding the DGP setups, note that γg and lg both play a role in establishing the

percentage of each treatment group in simulations for g = 0, 1, 2. γg’s being distant from

each other enough are also critical to obtain strong first stage estimates. With γg’s be-

ing very close each other, one can easily run into identification problems in the first stage

estimation. Having ηg,j’s being far away from each other, especially ηg,j’s from different

treatment statuses, is also another critical point to create endogeneity in the main model for

g, j = 0, 1, 2. If ηg,j’s from different treatment statuses get closer and closer to each other, we

essentially get closer and closer to make the assumption that ηg,j = ηj, and endogeneity issue

in the main model gets attenuated or maybe nearly resolved as pointed out in subsection

1.4.3. The usage of instrument z whose distribution is either asymmetric or symmetric in

the latent variable equation is also important because, in endogenous binary treatment case,

Wooldridge (2008, p. 106; 2010, p. 947) argues that IV method can be consistent for ATEs

when the instrument is symmetrically distributed around zero. Hence, I include schemes in

simulations that take into consideration this possibility.
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1.7.2 Simulation Results

I present my simulation results in two parts: first, asymptotic efficiency outcomes and

second, asymptotic unbiasedness and consistency outcomes. The simulation results reported

in Tables A.1 through A.20 focus on comparing CF method with IV method in terms of

asymptotic efficiency, asymptotic unbiasedness and consistency.

In Tables A.1 through A.20, I report the Monte Carlo (M.C.) estimates for αg and

ATEh,0, bias in the M.C. estimate for ATEs, analytical standard errors for αg and ATEh,0

in CF method and uncorrected standard errors for αg and ATEh,0 in IV method (except

in Tables A.17 through A.20), bootstrapped standard errors (BS. SEs) and Monte Carlo

standard deviations (M.C. SDs) for αg and ATEh,0, and BS. SEs and M.C. SDs for standard

errors of αg and ATEh,0 for g = 0, 1, 2 and h = 1, 2. The analytical standard errors for αg

and ATEh,0 in CF method are calculated as in section 1.5. The uncorrected standard errors

for αg and ATEh,0 in IV method are directly obtained by following Procedure 1.1. And,

when ηg,j = ηj for j, g = 0, 1, 2, I do not even need to correct the standard errors for αg and

ATEh,0 in IV method, see appendix A for more detailed explanation. In simulations, I use

different sample sizes n = 1000, n = 2000, n = 5000 and n = 10000 for each DGP setup

with the number of M.C. and BS. iterations always equal to 10000.

As for the notation, in Tables A.1-A.20, α̂g is the parameter estimate for αg, ˆateh,0 is the

estimate for ATEh,0, and bias( ˆateh,0) is the bias in the estimate for ATEh,0 for g = 0, 1, 2

and h = 1, 2. Furthermore, se(α̂g) is the standard error of parameter estimate for αg and

se( ˆateh,0) is the standard error of the estimate for ATEh,0 for g = 0, 1, 2 and h = 1, 2. Since

these tables would require a considerable amount of space in the main body of the chapter,

I place all simulation tables of this chapter into appendix A.

At this point, it is also important to remember the true values for αg and ATEh,0 for

g = 0, 1, 2 and h = 1, 2 since I often refer them throughout this section. The true values are

respectively as follows:
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α0 = 1, α1 = 2, and, α2 = 3,

ATE1,0 = 1, and ATE2,0 = 2.

1.7.2.1 Asymptotic Efficiency Outcomes

First, using simulation results from Tables A.1 through A.4, I can check how close the

standard error estimator proposed in section 1.5 are to simulated results. In Table A.1,

analytical standard errors of CF parameter estimates are fairly close to BS. SEs and especially

to M.C. SDs of CF parameter estimates of both αg and ATEh,0 for g = 0, 1, 2 and h = 1, 2,

except the analytical standard errors of CF parameter estimates for α1 and ATE1,0 in Tables

A.1 through A.4 and those for α2 and ATE2,0 in Tables A.5 through A.8. As sample size

increases, the analytical standard errors get even closer to the BS. SEs and M.C. SDs, and all

shrink in magnitude considerably. For example, switching from sample size of 1000 to 10000,

the analytical standard error of α̂0 decreases by 73% from .2749 to .0745, the BS. SEs by

63% from .2106 to .0790, and M.C. SDs by 70% from .2543 to .0755. A very similar pattern

can be observed in Tables A.5 through A.16 as I change the distribution of instrument z

and/or assume ηg,j = ηj for g, j = 0, 1, 2. Hence, the analytical standard errors proposed in

section 1.5 seem to be working well and to well approximate the standard deviations of the

most CF parameter estimates. As a side note, the uncorrected standard errors of the IV

parameter estimates in Tables A.1 through A.8 when ηg,j 6= ηj are also not far away from

BS. SEs and M.C. SDs of IV estimates of both αg and ATEh,0. With increased sample size,

the uncorrected standard errors shrink in magnitude and get closer to the BS. SEs and M.C.

SDs of the IV estimates.

Second, from an efficiency standpoint, let’s first take into account the models with no

misspecification. At this point, it is wiser to consider Tables A.9 through A.16 since IV

method is inconsistent when ηg,j 6= ηj as indicated in Tables A.1 through A.8 with large

biases in αg and ATEh,0 for g = 0, 1, 2 and h = 1, 2. However, in Tables A.9 through A.16,
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neither CF method nor IV method has biases in parameter estimates. In Table A.9, the

simulation results show that the analytical standard errors, BS. SEs, and M.C. SDs of the

CF estimates are lower than the uncorrected standard errors, BS. SEs, and M.C. SDs of the

IV estimates, respectively. Similarly, BS. SEs and M.C. SDs of the standard errors of CF

estimates are also lower than those of the IV estimates. For instance, in Table A.9, the BS.

SE of the CF parameter estimate α̂0 is 4% lower than that of the IV estimate, and the M.C.

SD of the CF parameter estimate 5% lower. Furthermore, again in Table A.9, the BS. SE of

the standard error of CF parameter estimate α̂0 is 12% lower than that of the IV estimate,

and the M.C. SD of the standard error of CF parameter estimate 11% lower. This very alike

pattern is persistent in Tables A.10 through A.16 as I switch the distribution of instrument

z from asymmetric to symmetric and/or increase the sample size. As a result, when there is

no misspecification, the simulation results demonstrate that the CF method performs better

compared to the IV method from the perspective of efficiency: The results suggest that CF

method estimates the parameters of interest, ATEs, and their standard errors more precisely

than does IV method.

Now let’s look at the models with misspecification in Tables A.17 through A.20. When

sample size is 1000, the simulation results in regard to efficiency are very suggestive: IV

method has sharper estimates than does the CF method for all parameters of interest, ATEs,

and (almost all) their standard errors. For example, in Table A.17, the BS. SE of the IV

parameter estimate α̂1 is around 48% lower than that of the CF estimate, and the M.C. SD

of the IV parameter estimate about 66% lower. Moreover, again in Table A.17, the BS. SE

of the standard error of IV parameter estimate âte10 is about 29% lower than that of the

CF estimate, and the M.C. SD of the standard error of IV parameter estimate around 55%

lower. As the sample size goes up in Tables A.18 through A.20, the same pattern is still

observed in favor of IV method. And the BS. SEs and M.C. SDs of all estimates and of

the standard errors of all estimates get smaller. For instance, the BS. SE (M.C. SD) of the

IV parameter estimate α̂2 goes down from 1.4534 (1.1045) in Table A.17 to .3257 (.3336) in
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Table A.20. As a consequence, when there is misspecification, the simulation results show

that the IV method outperforms the CF method in terms of efficiency: The results suggest

that IV method estimates the parameters of interest, ATEs, and their standard errors more

precisely than does CF method, which is just the opposite of the findings when there is no

misspecification.

1.7.2.2 Asymptotic Unbiasedness and Consistency Outcomes

In a M.C. simulation, the average of parameter estimates over a specific number of iter-

ations (conventionally 10000) is the M.C. simulation estimate of the expected value of those

estimates. Therefore, if I repeat this M.C. simulation with a fixed number of iterations but

increasing sample size and the M.C. estimates get closer and closer to true parameter values

as the sample size increases, this would be suggestive of the asymptotic unbiasedness of the

estimator in question. In addition, if the standard errors of the parameter estimates get

smaller and smaller on top of their being closer and closer to true parameter values, this

would be indicative of the consistency of the estimator in question.

First, in Tables A.1 through A.4, the simulation results show that M.C. simulation esti-

mates from CF method of both αg and ATEh,0 are very close to the true values, whereas the

ones from IV method are not that close at all for g = 0, 1, 2 and h = 1, 2. For example, in Ta-

ble A.1, M.C. simulation estimates from IV method for α0, α1, and α2 are respectively 1.3394

(about 34% higher than the true value), 1.9078 (around 5% lower than the true value), and

2.9018 (around 3% lower than the true value) and are all off the true values, causing severe

biases in ATE estimates (about 43% lower in estimated ATE1,0 and 22% lower in estimated

ATE2,0.) On the other hand, M.C. simulation estimates from CF method of both αg and

ATEh,0 in Table A.1 are not off the true values at all with almost no biases. As the sample

size increases from Table A.1 to Table A.4, M.C. simulation estimates from IV method do

not improve on the biases; however, their BS. SEs and M.C. SDs get closer to zero just as
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those from CF method. A very similar pattern can also be seen in Tables A.5 through A.8 as

I switch the distribution of instrument z from asymmetric to symmetric and/or increase the

sample size. As a result, the simulation results indicate that CF method is asymptotically

unbiased and consistent while IV method is asymptotically biased and inconsistent, which

is supportive of the conjecture I made in subsection 1.4.1.

Second, in Tables A.9 through A.12 when ηg,j = ηj for g, j = 0, 1, 2, the simulation results

demonstrate that M.C. simulation estimates of αg and ATEh,0 from both CF method and

IV method are very close to the true values for g = 0, 1, 2 and h = 1, 2. For example, in

Table A.9, M.C. simulation estimates from both CF method and IV method for α0, α1, and

α2 are all accurate up to two decimal places with almost no biases in ATE estimates. As the

sample size increases from Table A.9 to Table A.12, M.C. simulation estimates from both

CF method and IV method continue keeping their accuracy with almost no bias, and their

BS. SEs and M.C. SDs shrink in size and get closer and closer to zero. This very pattern

is also seen in Tables A.13 through A.16 as I switch the distribution of instrument z from

asymmetric to symmetric and/or increase the sample size. As a conclusion, the simulation

results demonstrate that, when ηg,j = ηj, both CF method and IV method are asymptotically

unbiased and consistent, which corroborates another conjecture I made in subsection 1.4.3.

Under misspecification, the simulation results in Tables A.17 through A.20 indicate that

M.C. simulation estimates of αg and ATEh,0 from both CF method and IV method are off

the true values for g = 0, 1, 2 and h = 1, 2. For instance, in Table A.17, M.C. simulation

estimates from CF method for α0, α1, and α2 are respectively .9310 (about 7% lower than the

true value), 1.5886 (around 21% lower than the true value), and 4.4840 (around 50% higher

than the true value) and are all off the true values, causing severe biases in ATE estimates

(about 36% lower in estimated ATE1,0 and 78% higher in estimated ATE2,0.) As indicated

earlier, M.C. simulation estimates from IV method are also not close to the true values.

However, biases in its estimates are lower than those in the estimates of CF method except

in the estimates for α0 and ATE1,0. For example, in Table A.17, M.C. simulation estimates
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from IV method for α1, α2, and ATE2,0 are respectively 1.6833 (about 16% lower than the

true value), 3.0697 (around 2% higher than the true value), and 1.7553 (around 12% lower

than the true value) but these biases are all smaller than their counterparts from CF method.

As the sample size increases from Table A.17 to Table A.20, M.C. simulation estimates from

both IV and CF methods do not improve on the biases; however, their BS. SEs and M.C.

SDs get smaller. As a result, the simulation results indicate that, under misspecification,

CF method is asymptotically more biased compared to IV method, and both methods are

inconsistent.

1.8 Empirical Application

In this section, I illustrate the role of limited English proficiency (LEP) in determining

wages of Hispanic workers in the USA. To this end, I revisit the 1% Public Use Microdata

Series (PUMS) of the 1990 U.S. Census and utilize a subsample that is constructed from

data used by Gonzalez (2005). My aim is just to apply OLS, CF, IV, and nonparametric

bound analysis to the estimation of how LEP influences wages of Hispanic workers in the

USA and to make a comparison of their performances, not to offer a detailed or decisive

evaluation of the factors that explain wages of Hispanic workers in the USA.

1.8.1 Background on the Economics of Language Skills

As a result of the growth of international immigrant flows into the host destination coun-

tries after the Second World War, researchers started investigating the immigrant behavior

(e.g., how integrated the immigrants were with the members of their host society and what

factors were crucial to improve the immigrants’ integration period). As part of immigrant

adjustment time, among other things, economists regarded language abilities as a part of

human capital - for example, see Carliner (1981) and Grenier (1984) - and were interested
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in questions such as: Would investing in language acquisition result in higher wages for im-

migrants? If it would, how proficient should immigrants be in the destination language to

really benefit from higher wages? As in many other host destination countries where English

is the official language of communication, Hispanic workers’ deficiencies in English can lead

to negative consequences, particularly lower earnings, in the U.S. labor market. Previous

studies showed that Hispanic workers in the USA earn less than Non-Hispanic Whites due to

low levels of schooling (see Gwartney and Long, 1978), discrimination (see Reimers, 1983),

general assimilation problems for immigrants who were born outside the USA (see Borjas,

1985), and LEP (see McManus et al., 1983).

In general, the human earnings analyses are rooted in the human capital earnings func-

tion, and the earnings regressions out of this function include the natural logarithm of earn-

ings as its dependent variable and some other covariates such as education, experience (and

its square), marital status, ethnicity, duration in the destination, and destination language

proficiency. Early studies from 1980s used OLS to explore the impact of LEP on earnings

in the USA. McManus et al. (1983) found that LEP curtails the common wage increases

associated with schooling and experience and provided evidence for that Hispanic male work-

ers in skill occupations where wages are generally the highest earn less than their domestic

counterparts due to LEP. Reimers (1983) found that Puerto Ricans who do not speak and

understand English well have wage penalties of 20%. Grenier (1984) found that the effect

of LEP is a 14.6% decrease in wages, which explains that language attributes greatly ex-

plain the mean wage differential between Hispanics and non-Hispanics. Kossoudji (1988)

concluded that Hispanics suffer from the economic cost to LEP more than do Asians at

every skill level, with decreased earnings reaching up to 66% for sales workers and within-

occupational wage gap of 18.3% even in service industry. Tainer (1988) found that each unit

improvement in English speaking abilities of Hispanics leads to a 17.4% rise in their annual

earnings. Chiswick and Miller (2002) indicated that the foreigners who are born in non-

English speaking countries but fluent in English earn 14.4% more than those who are not
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fluent in English. Lewis (2011) found that there is a wage penalty of 17% for immigrants who

cannot speak English very well. Other studies around the globe also report similar findings

for other countries: Immigrants benefit from the destination language proficiency in term of

higher wages. Chiswick and Miller (1985) found that, in Australia, immigrants with poor

English skills have earnings 4.7% lower than those with good English skills. Carliner (1981)

showed that, in Montreal, Canada, immigrants who can speak neither English nor French

earn 36.3% lower than those can speak English monolingually. Dustmann (1994) pointed

out that, in Western Germany, male immigrants who speak German well or very well have

earnings 6.9% higher than earnings of those who speak German badly or not at all, creating

a considerable improvement in terms of the earnings position of male immigrants proficient

in German. Chiswick and Repetto (2000) reported that, in Israel, compared to immigrant

men who could not speak Hebrew at all, those who can speak Hebrew only increase their

earnings by 20.8%. Lastly, Leslie and Lindley (2001) found that, in the UK, male immigrants

who are fluent in English have a wage increase of 16.9% over those who have poor English

skills.

One weakness of the these early studies is that they do not offer a solution to ability

bias. It is probable that workers with higher innate ability are more likely to earn higher

wages, to invest in language capital, and to speak English (or another foreign language)

more proficiently than are workers with lower innate ability, which indicates that there may

be some correlation between English skills and unobserved innate ability. Since unobserved

innate ability is expected to affect both language skills and earnings, the OLS coefficient

estimates of language skills might be biased. The concern over this weakness of OLS naturally

made many researchers utilize alternative estimation methods such as IV while analyzing

the effect of language proficiency on earnings. Chiswick and Miller (1995) found that, in the

USA, the effect of language fluency on immigrant earnings goes up from 16.9% to 57.1% when

IV is used in place of OLS. Chiswick (1998) showed that, in Israel, the immigrants who speak

Hebrew on a daily basis as their only or primary language earn 35.08% (11%) higher than
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those who cannot when IV (OLS) method is adopted. Shields and Price (2002) noted that,

among male immigrants in the UK, fluency in English raises the mean occupational wage

by 16.5% (8.9%) when IV (OLS) method is used for estimation. Dustmann and van Soest

(2002) provided evidence for that, in Germany, the male immigrants with good or very good

German speaking abilities have a wage premium of 14% (5%) over those with intermediate

or poor German speaking abilities when IV (OLS) method is utilized. Budra and Swedberg

(2012) pointed out that, in Spain, the influence of Spanish fluency on the earnings of male

immigrants is about 27% based on a benchmark IV method, whereas OLS estimate is only

4.8%. Finally, Di Paolo and Raymond (2012) studied the immigrants in Catalonia, Spain,

and their IV (OLS) estimates indicated that the monthly earnings of individuals who speak

and write Catalans are about 18% (7.5%) higher than those who cannot.

Looking at the results of these studies above, one can argue that representative premiums

in immigrant earnings as a result of being fluent in host destination language are mostly be-

tween 5% (20%) and 20% (50%) based off OLS (IV). Hence, there is a considerable difference

between OLS and IV estimates for the earnings premium to host destination language profi-

ciency: the OLS estimates are usually smaller than the IV estimates, and can be considered

underestimates of the true values. The observation that IV estimates are usually larger than

OLS estimates is actually fairly common in the literature, and one possible explanation to

this phenomenon is the dominance of downward measurement error bias (e.g., misclassifi-

cation errors coming from self-reported language proficiency data) over upward unobserved

heterogeneity bias (e.g., innate ability common to both host destination language abilities

and immigrant earnings). For more on this, see Dustmann and van Soest (2002), Dustmann

and Fabbri (2003), Bleakley and Chin (2004), and Yao and van Ours (2015). Although the

majority of studies probing the impact of language abilities on immigrant earnings uses OLS

and IV approaches, some researchers employed different methods to shed more light on the

topic and to provide a new perspective with the help of recent developments in economet-

rics. For instance, Dustmann and van Soest (2001) estimated the earnings equation (e.g., a
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random effects panel data model) of male immigrants in Germany by maximum likelihood,

together with the equation for speaking proficiency (e.g., a random effects ordered probit

model) and found that speaking fluency among male immigrants in Germany can result

in a wage increase of 7.3 percentage points. Berman, Lang and Siniver (2003) used the

first-difference estimator in a fixed effects panel data framework while examining the effect

of language acquisition on earnings and found that the earnings of male immigrants from

the Soviet Union to Israel in 1994 who speak Hebrew very well are 23% higher than the

earnings of those who cannot speak Hebrew at all. Dustmann and Fabbri (2003) combined

a matching estimator based on the propensity score of being proficient in English with an

IV estimator, and their results showed that proficiency in English leads to 35.6% higher

incomes. In the spirit of Manski and Pepper (2000), Gonzalez (2005) utilized nonparametric

bounds to analyze the effects of LEP on wages for Hispanic workers in the USA, and con-

cluded that, on average, the wage premium from developing English proficiency from “not at

all” to “very well” is 39% under both monotone treatment response and monotone treatment

selection. Chiswick, Lee, and Miller (2005) used a first-difference inertia model to analyze

the earnings growth of adult male immigrants in Australia and found that male immigrants

with proficiency in English have 23.9% higher income growth compared to those who are

not proficient in English. Lastly, Aldashev, Gernandt, and Thomsen (2009) employed aug-

mented OLS to examine the results of better language skills on earnings for foreigners in

West Germany by jointly modeling self-selection in participation and employment decisions

(e.g., a double hurdle model) and self-selection in economic sector and occupation decisions

(e.g., a bivariate probit model). They pointed out that, among the high skilled foreigners,

the wage premium from speaking mainly German to their mother tongue is 26.9%. Overall,

estimation methods alternative to OLS and IV also yield wage premiums for immigrants

with proficiency in host destination language, going up to 39%. In conclusion, it is well

accepted in economics literature that improvement in host destination language abilities is

associated with increases in earnings among adult male immigrants.
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1.8.2 Data

The data source in my empirical analysis is the 1% Public Use Microdata Series (PUMS)

of the 1990 U.S. Census, and I utilize a subsample that is constructed from data used by

Gonzalez (2005). There are 13 variables and 82250 observations in her original dataset.

However, I kept only observations for individuals who reported a Hispanic first ancestry,

were between 16 and 64 years old in 1989, had at least the minimum hourly wage in 1990,

and worked at least 48 weeks and at least 40 hours per week in 1989. Since year of entry into

the USA is in intervals (e.g., between 1950 and 1959) for Hispanic immigrants, and age of

arrival into the USA is equal to age in 1989 minus the upper bound of year of entry into the

USA; some observations have negative values for age of arrival into the USA. After dropping

these observations from the dataset of Gonzalez (2005), the sample for my analysis has only

38779 observations.

As in many applications using Mincer earnings equation, my outcome variable is the

natural log of hourly wage where hourly wage is equal to wages or salary income in 1989

divided by the product of weeks worked last year and usual hours worked per week last

year. In 1990, the minimum hourly wage was $1.335 in natural log. I drop the observations

for individuals who earned less than the minimum hourly wage in 1990 and worked less

than 48 weeks and less than 40 hours per week in 1989 because these individuals are not

regular workers. There could be unobserved or observed factors that are specific to these

irregular workers, have an impact on their earnings, and I cannot control. This would

confound my estimates; however, dropping the observations for irregular workers eliminates

that possibility. The treatment data in Gonzalez (2005) are based off the answers to the

survey question on “ability to speak English”. Hence, it is a self-reported ordinal variable, and

this variable might suffer from measurement error, and thereof, misclassification of English

proficiency. Taking this deficiency of the treatment variable, I collapsed the original five-

category treatment variable (i.e., speaks only English at home; speaks English very well,

well; does not speak English well, at all) to a new three-category treatment variable: (1-not

45



well) does not speak English well and at all; (2-well) speaks English very well and well; and

(3-very well) speaks only English at home. The purpose behind this simple recategorization

of the English proficiency is to reduce possible measurement error problem in the treatment

variable, see Espenshade and Fu (1997), Dustmann and van Soest (2001), and Bleakley and

Chin (2004) for more on the benefits of combining language categories. Original employment

status variable in Gonzalez (2005) had six categories: civilian employed, at work; civilian

employed, with a job but not at work; unemployed; armed forces, at work; armed forces,

with a job but not at work; and not in labor force. In my analysis, I regrouped them into

three categories: employed, unemployed and not in labor force.

As indicated in previous subsection, the endogeneity problem in wage equation (i.e., the

possibility that workers with higher innate ability earn more and speak English better than do

workers with lower innate ability) led several economists to use IV method for investigating

the impact of English proficiency on immigrant earnings. One commonly used instrument for

English proficiency in the literature is immigrants’ age at arrival, see, for example, Bleakley

and Chin (2004), Bleakley and Chin (2010), Miranda and Zhu (2013), and Yao and van Ours

(2015). This choice of instrument is driven by scientific studies on language acquisition which

provide evidence for that young people’s (e.g., children’s) capacity to learn and use languages

is generally higher than older people’s (e.g., adults’). In conformity with this idea, Akresh

and Akresh (2011) showed that, for children of Hispanic immigrants, each additional year

spent in the USA leads to higher scores on the passage comprehension, applied problems,

and letter-word identification tests. On the other hand, age at arrival might not be a perfect

instrument for English proficiency because it is argued that immigrants who come to a host

destination country at a younger age might find it less costly to economically assimilate

and acculturate to the host country. For example, Gonzalez (2003) noted that Mexican and

Latin American immigrants who arrive at younger ages in the USA earn higher wages as a

result of completing more years of schooling. Moreover, the immigrant assimilation model

of Eckstein and Weiss (2004) supports the idea that age at arrival might have an effect on
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earnings through channels other than language: The model claims that immigrants learn

more about the host country labor market as they spend more time in the host country,

become better at implementing their human capital, and earn more. See Schaafsma and

Sweetman (2001) and Borjas (1985, 1995) for more on the relationship between immigrant

earnings and age at immigration, and economic assimilation of immigrants.

Despite some concerns over the quality of age at arrival as an instrument for language

fluency among immigrants, it is a fairly established and commonly used instrument in the

literature, and I believe the wide variety of control variables in my empirical analysis would

help to reduce these concerns to the minimum from a statistical point of view. Specifically,

in my analysis, I create a variable based off age at arrival in the USA that takes four possible

values: 0 (US born immigrants), 1 (arrived as a child-0 to 11 years old), 2 (arrived as a

teenager-12 to 17 years old), and 3 (arrived as an adult-18 or older). This new variable,

ordered by creation, is excluded from the second stage earnings equation and used only in

the first stage language proficiency equation. By running a multinomial logistic regression in

this very first stage, I obtain the predicted probabilities of being in one of the three English

speaking categories (i.e., very well, well, and not well), and these predicted probabilities are

used as instruments for English proficiency in the second stage earnings equation.

There are also several control variables available I use in my regressions. Previous studies

show that the effect of LEP may change as individuals’ characteristics (e.g., their profession,

education, etc...) vary. One such control variable is education that takes on values ranging

from 0 to 20 in my dataset, and Chiswick and Miller (2003) indicated that male immigrants in

Canada with more years of schooling gain relatively more in earnings from being proficient

in English compared to those with less years of schooling. Hence, it is possible that the

effect of LEP on earnings of Hispanic immigrants in the USA might differ, depending on

their education level. I also create dummy variables for region of birth based off ancestry

codes from 1% PUMS, 1990 US Census. In total, there are seven such dummies for US

born, Spanish, Mexican, Central American, South American, Puerto Rican, and Cuban
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Hispanics. I categorize all occupations into seven groups (i.e., managerial, technical, service,

repair, operators, agriculture and military) and create a dummy variable for each except

agriculture. Occupation variables may yield interesting results because Berman, Lang and

Siniver (2003) found that Hebrew fluency has higher effect on wages in the skilled occupations

than in the unskilled occupations. Potential experience in years is another control variable,

and McManus et al. (1983) suggested that English deficiency has wage penalties on earnings

of Hispanic men in the USA, where the penalties increase with potential experience. Gender

enters in my regressions as a dummy variable for female immigrants. Lastly, I divide workers

into fours groups based on worker class codes from 1% PUMS, 1990 US Census (i.e., employee

of a private for profit company, employee of a private for nonprofit organization, government

employee and others-mostly self-employed) and create a dummy variable for each except

others-mostly self-employed. For a compact version of variable descriptions used in my

analysis and summary statistics, see Table A.21 in appendix A.

Before moving to regression results, I look at some of the characteristics of Hispanics

in the sample and present, from a descriptive point of view, some interesting observations

I gather from Table A.22 available in appendix A. The biggest treatment group is those

Hispanic immigrants who speak English well, which comprises just about 61% of the whole

sample. The other two treatment groups (i.e., those who do not speak English well and

those who speak English very well) are about 20% of the sample each. The average of log

hourly wages is 2.18 and is more or less the same across all English proficiency levels with a

standard deviation of 0.5. In a descriptive sense, wages are increasing in English proficiency:

Hispanics who have a better command of English in speaking on average earn higher wages.

Hispanics who speak English better have more schooling: Average years of education increase

from 7.8 among Hispanics with deficiency in speaking English to 12.79 among Hispanics with

high proficiency in speaking English. Whereas, experience goes down in English proficiency:

Hispanics who mastered in speaking English tend to have less potential experience, with

23.35 years for those who do not speak English well to 15.92 years for those who speak
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English very well. In line with my expectations, the percentage of female Hispanics goes

up from 27.73% among those who do not speak English well to 37.79% among those who

speak English very well. Hispanics who speak English better are more prone to work in

high skilled occupations: the percentage of Hispanics working in managerial positions (as

operators) increases (decreases) from 3.61% (41.34%) for treatment 1 to 23.69% (16.86%)

for treatment 3. The percentage of Mexicans goes down from 62.23% among those who

do not speak English well to 55.57% among those who speak English very well. Hispanics

who have a better mastery in speaking English tend to suffer from unemployment less: the

unemployment rate of Hispanics among those who do not speak English well is 1.2 percentage

points higher than that among those who speak English very well. Finally, age is slightly

decreasing in English proficiency: Younger Hispanics are slightly more inclined to speak

English better.

1.8.3 Regression Results

First, I present the first stage regression findings for English speaking proficiency among

Hispanics. Second, I move to the estimates from the second stage regression for earnings

among Hispanics. Lastly, I share the results that come from nonparametric bound analysis.

However, before discussing these results, I have to admit that there are some limitations in

my analysis. One of them is that there may be a selection bias on my estimates because of

non-randomly selected sample, only considering those who are earning some income. An-

other limitation is that, just as I expect language proficiency causes to produce increases

in earnings, earning more (i.e., being able to save some money for language courses) could

reversely cause improvement in language skills, as well, which opens the door to the simul-

taneity problem. Yet another limitation is that self-reported language measures might suffer

from measurement errors that come from either individual respondents (i.e., exaggerating

their language skills for personal reasons) or interviewers (i.e., misclassifying respondents’
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language ability), which can create a degree of subjectivity in my English proficiency vari-

able. And lastly as pointed out previously, the validity of immigrants’ age at arrival as

an instrument for English fluency is argued, especially in immigrant assimilation models.

Overall, the readers need to keep in mind these limitations of my analysis as I present my

results.

Tables A.23 and A.24 available in appendix A report the estimated parameters on His-

panic workers’ arrival age in the USA from a multinomial logit regression of English pro-

ficiency for several different models/specifications and their likelihood ratio chi square test

statistics of goodness of fit. In all the regressions, the outcome is a discrete variable of En-

glish proficiency that has three categories: Not well, well, and very well with not well being

the base outcome. The arrival age, critical predictor and instrumental variable included in

these first stage regressions but excluded from the second stage regressions, takes four values:

0 for US born, 1 for arrived as a child (0 to 11 years old), 2 for arrived as a teenager (12-17

years old) , and 3 for arrived as an adult (18 or older). As to the models/specifications, they

all use the same multinomial logit model but with different sets of predictors. Models 1 and

2 have only arrival age included. Model 3 controls for both arrival age and education. Model

4 contains arrival age, education, and gender. Models 3a (4a) has exactly the same variables

as Model 3 (4) except that arrival age is not included in Model 3a (4a). Model 5 controls

for arrival age, education, gender, and occupation. Model 6 includes arrival age, education,

gender, occupation, and ancestry. Model 7 contains arrival age, education, gender, occupa-

tion, ancestry, and employment status. Model 8 controls for arrival age, education, gender,

occupation, ancestry, employment status, and worker class, which is the full specification

regression. Lastly, Models 5a, 6a, 7a, and 8a have exactly the same variables as Models 5,

6, 7, and 8 respectively except that arrival age is not included in Models 5a, 6a, 7a, and

8a. We can think of Model 8 as a language proficiency equation and of its predictors as

the determinants of language proficiency. In all models, I use the whole sample with 38779

observations in it.
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Even though I have shared only the estimated parameters on arrival age, I can make

them available upon request. However, to mention a few of the other parameter estimates

(almost all of them statistically significant) from the full specification regression (Model 8),

one more year of schooling causes the odds ratio for speaking English very well to not well

to increase by about 34%, holding all other variables constant. In the USA, those Hispanic

immigrants working in high skill occupations such as managerial positions and in government

sector have a significantly higher probability to speak English better. The gender impact is

negative against my expectations but statistically insignificant for females: being a female is

associated with a little over 5% decrease in the odds ratio for speaking English very well to

not well to, ceteris paribus. However, this might be simply because of that female Hispanic

immigrants have lower incentives to learn English. In the USA, those Hispanic immigrants

from Mexico and Puerto Rico are more likely to speak English more fluently. This supports

the idea that immigrants can acquire speaking fluency by exposure to the host destination

language through their relatives and friends already working and living in the USA.

In IV method, it is necessary that instruments be significantly correlated with the en-

dogenous variable, English proficiency in my models. To check the quality of instruments,

there are a few empirical ways: significance of instruments in the model for the endogenous

variable, instruments’ contribution to the explanatory power of endogenous variable model,

and the Sargan overidentification test, see, for instance, Bound, Jaeger, and Baker (1995)

for more on instrument checks. I specifically use the first two ways to assess the quality

of the instrument, age at arrival, for the fluency in English. In all the models in Tables

A.23 and A.24, the estimates on age at arrival are statistically significant at the 1% level

and fairly stable for all English speaking categories, which is a positive indicator for the

instrument, age at arrival. Furthermore, when I look at the χ2 statistics, it is obvious that,

in all models, excluding age at arrival from the English proficiency equation results in a sig-

nificant reduction in the explanatory power of multinomial logistic regressions. Comparing

Model 8 to 8a in Table A.24, I see that adding age at arrival into the English proficiency
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equation increases the explanatory power of the English proficiency model by about 9.4%.

The improvements resulting from the inclusion of age at arrival in the explanatory power of

the English proficiency model are much higher in other regressions in Tables A.23 and A.24.

Hence, the instrument age at arrival passes the quality check in terms of its correlation with

English proficiency.

Now let’s consider the ATE results in Tables A.25 and A.26 available in appendix A that

report the estimated ATEs of English proficiency on log hourly wages among Hispanic im-

migrants in the USA and their standard errors in parentheses, so the dependent variable in

all the second stage regressions is log hourly wages. I use three different estimation methods

(i.e., CF, IV, and OLS) and several different specifications in order to compare the perfor-

mance of these estimation methods to each other. CF is the control function estimation

with control function terms in Procedure 1.2. IV is the instrumental variables estimation in

Procedure 1.1. Since English proficiency has three levels (i.e., not well, well, and very well),

I create binary English proficiency indicators for each level and label them ep1, ep2, and ep3

respectively. The ep2 − ep1 and ep3 − ep1 in Tables A.25 and A.26 denote the differences

between the corresponding estimates on binary English proficiency indicators and are simply

the estimated ATEs due to the usage of demeaned control variables in the models. In IV

regressions, I employ the predicted probabilities from the first stage regressions (e.g., those

probabilities from Model 1 in Table A.23) as instruments for the binary endogenous English

proficiency indicators (e.g., instruments in the IV regression under Model 1 in Table A.25).

As for the control variables in the models, Model 1 has no exogenous variables controlled

for. Model 2 introduces only potential experience that is totally excluded from the first stage

regressions. Model 3 controls for both potential experience and education. Model 4 includes

potential experience, education, and gender. Model 5 controls for potential experience, ed-

ucation, gender, and occupation. Model 6 contains potential experience, education, gender,

occupation, and ancestry. Model 7 includes potential experience, education, gender, occu-

pation, ancestry, and employment status. Lastly, Model 8 controls for potential experience,
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education, gender, occupation, ancestry, employment status, and worker class. The standard

errors in CF regressions come from the analytical formula in Th.1.4, and the standard errors

in IV regressions are bootstrapped. Model 8 in Table A.26 is the full specification model

and, thereof, can be thought as a earnings equation with its predictors as the determinants of

earnings. As in the first stage, in all models, I use the whole sample with 38779 observations

in it.

To avoid clutter in Tables A.25 and A.26 due to a large number of control variables used

in models, I have shared only the estimated ATEs in these tables. However, I can make

the full results available upon request. By discussing the results of regressions in Tables

A.25 and A.26 that relate English proficiency to earnings of immigrant Hispanics in the

USA, my goal is to be able to say something about whether deficiency in speaking English

negatively influences earnings for immigrant Hispanic workers in the USA, that is, whether

the average Hispanic immigrant who improves in its English speaking skills ends up with

a higher wage than it would have earned had he not improved its English speaking skills.

After controlling for experience and education variables in Model 3, CF estimates for ATEs

start getting smaller in size and significant. Especially after adding occupation, ancestry,

and employment status variables into the models one by one, CF estimates for ATEs shrink

in magnitude greatly and CF estimates for ep3−ep1 (the leap from speaking English not well

to very well) become all statistically significant, which indicates the significant contribution

of these control variables into the earnings models. OLS estimates are also very stable and

statistically significant in all models, and shrink in magnitude as I control for more and

more determinants of earnings. For example, CF estimates from Model 8 in Table A.26

reveal that the wage increase from speaking English not well to well is around 30% and 79%

from speaking English not well to very well. The same wage premiums from OLS are about

12% and 22% respectively. On the other hand, IV estimates do not perform well in these

earnings models of Tables A.25 and A.26. IV captures a positive effect of one treatment

(the leap from speaking English not well to well) on earnings but a negative effect of the
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other treatment (the leap from speaking English not well to very well) on earnings, which

is a conflicting result. The estimated ATEs from IV are also all insignificant in Models 6

through 8 which I am in favor of for the sake of a more complete earnings model because

Models 6 through 8 include extra control variables frequently used in the literature.

In Tables A.27 through A.32 available in appendix A, I also add the results from nonpara-

metric bound analysis in the sense of Manski and Pepper (2000). Assuming both monotone

treatment response (MTR) and monotone treatment selection (MTS), this nonparametric

bound analysis provides identification regions for the ATEs. When drawing conclusions

about the returns to English proficiency on log hourly wages among Hispanic immigrants

in the USA, the MTR assumption means that wages among Hispanic immigrants in the

USA increase as a function of English proficiency levels, ceteris paribus. On the other hand,

the MTS assumption states that these Hispanic immigrants with higher levels of English

proficiency have weakly higher mean wage functions than do those with lower levels of En-

glish proficiency. As shown in Manski and Pepper (2000) and Gonzalez (2005), combining

these MTR and MTS assumptions produce tighter identification regions with smaller upper

bounds on the returns to schooling and English proficiency. Hence, I follow their approach

and construct the upper and lower bounds of the estimated ATEs of English proficiency on

log hourly wages among Hispanic immigrants in the USA by using the combined MTR and

MTS assumptions. The MTR+MTS bounds in Tables A.27 through A.32 are calculated

based off the inequalities (21) in Manski and Pepper (2000). In these tables, I essentially

report the estimated ATEs of English proficiency on log hourly wages among Hispanic im-

migrants in the USA, their standard errors in parentheses (for CF, IV, and OLS estimates

only), the estimated nonparametric bounds for the ATEs, and their 95% confidence intervals

in brackets. As in Tables A.25 and A.26, the dependent variable is log hourly wages. I use

four different estimation methods (i.e., CF, IV, OLS, and nonparametric bounds) and the

full specification model (i.e., Model 8 in Table A.26) in order to compare the performance

of these estimation methods to each other. CF and IV estimations are as described in Pro-
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cedure 1.2 and Procedure 1.1, respectively. As in Table A.26, the ep2 − ep1 and ep3 − ep1 in

Tables A.27 and A.32 are simply the estimated ATEs due to the usage of demeaned control

variables in the models. Again, in IV regressions, I employ the predicted probabilities from

the first stage regressions (e.g., those probabilities from Model 8 in Table A.24) as instru-

ments for the binary endogenous English proficiency indicators (e.g., instruments in the IV

regression under Model 8 in Table A.26). As for the control variables in CF, IV, and OLS, I

control for potential experience, education, gender, occupation, ancestry, employment status,

and worker class. The standard errors in CF regressions come from the analytical formula

in Th.1.4, and the standard errors in IV regressions are bootstrapped. The 95% confidence

intervals are also bootstrapped. In Table A.27, I use the whole sample with 38779 observa-

tions in it. In Tables A.28, A.29, A.30, A.31, and A.32, I pay attention to the subsamples

of males, females, operators, repair workers, and service employees with 25568, 13211, 9622,

6209, and 5417 observations in them, respectively.

For the sake of tidiness in Tables A.27 through A.32, I have chosen to share only the

estimated ATEs in these tables. However, I can make the full results available upon request.

In Table A.27, CF estimate for ep2 − ep1 (.30 but statistically insignificant) is within the

estimated nonparametric bounds but CF estimate for ep3− ep1 (.79 and statistically signifi-

cant) is well over the bounds. OLS estimates are all statistically significant and well within

the estimated nonparametric bounds. However, the lower bound estimates are all zero and,

thereof, not informative in the sense that they do not narrow the expected lower bounds,

which are positive with respect to human capital theory. Specifically, the estimated bounds

for ep2 − ep1 are 0 and .32, and those for ep3 − ep1 0 and .43. These bounds in Table A.27,

nevertheless, suggest that the wage premiums from speaking English better is positive. IV

estimates do not perform well: They are all statistically insignificant in Table A.27.

In Tables A.28 through A.32, I investigate how the penalties imposed by LEP (or the gains

resulting from improvements in English proficiency) may vary across gender and occupation.

In Tables A.28 and A.29, the bounds on ATEs are similar for both men and women are
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relatively similar with a slightly higher upper bound for ep3 − ep1 among men. However,

this is not the case for CF and OLS estimates: They reveal that the wage premiums due

to improvements in English proficiency are considerably lower among women. For example,

CF estimates in Tables A.28 and A.29 show that the wage increase from speaking English

not well to well (not well to very well) among men is over 50% (84%) more than that among

women. The same applies to OLS findings, as well. Even though the upper bounds on

ep3 − ep1 are smaller than the point estimates of CF, the empirical results suggest that CF

estimates (and OLS estimates) detect the wage inequality between men and women.

In Tables A.30 through A.32, I looked at different occupations (i.e., operators, repair

workers, and service employees) and explored if heterogeneity in their use of language may

lead to differences in wage premiums due to speaking English better among Hispanic immi-

grants in the USA. All the results from CF, OLS, and the nonparametric bound analysis

imply that the wage gains due to improvements in English proficiency varies greatly across

occupations. For instance, in managerial and repair occupations, the highest wage increases

from speaking English not well to very well (137% and 114% by CF estimation, respectively)

are observed. Whereas, the lowest wage premium values from speaking English not well to

very well are attained in service occupation (34% by nonparametric upper bounds). The IV

estimates are all statistically insignificant.

Overall, only CF, OLS, and nonparametric bound analysis produce statistically signif-

icant results in line with the literature. CF estimates for ATEs are well above the OLS

estimates and generally outside the nonparametric bounds, which indicates that OLS esti-

mates might be biased downwards and that CF method overestimates, especially when the

size of treatment groups are imbalanced. However, as noted before, earlier studies provide

substantial evidence for this overestimation: Estimation methods that explore the effect of

English proficiency on earnings and control for endogeneity and measurement error produce

estimates greater in magnitude than does OLS. In addition, nonparametric bound analysis

has its own disadvantage: Its lower bound estimates for ATEs are always zero. Therefore,
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CF method I propose offers an attractive alternative estimation method to ATE literature

and outperforms IV in this empirical application.

1.9 Conclusion

In this chapter, I introduce an econometric model with a discrete multivalued endogenous

treatment variable and show how to consistently estimate ATEs by a three step estimation

procedure of CF method in such a model. In addition, I show the asymptotic distribution of

the CF estimates follows a normal distribution, and the CF estimates are
√
N − consistent.

I propose a consistent estimator for the asymptotic variance matrix of CF estimates, which

takes into consideration the nonlinear first stage estimation. Using GMM, I also indicate

how one can consistently estimate ATEs and obtain valid standard errors for the parame-

ters of interest. I offer a hypothesis testing framework with hypotheses expressed as a set

of restrictions on model parameters and construct a Lagrange multiplier statistic which is

asymptotically χ2.

I also demonstrate how CF method can be applied to one special case: the model with

fixed correlation between counterfactual error terms and latent model errors. As expected,

the asymptotic distribution of the CF estimates still follows a normal distribution, and the

CF estimates are still
√
N − consistent in this special case. A consistent estimator for

the asymptotic variance matrix of CF estimates in this case still follows the conventional

sandwich form, and the GMM solution follows the same structure proposed for the more

general case.

In my simulation analysis, I compare CF method with IV method. The simulation re-

sults suggest that, under no misspecification, CF method is asymptotically unbiased and

consistent and can be more efficient than IV method. Whereas, IV method is generally

asymptotically biased and inconsistent. Therefore, the simulation results also indicate that,

without misspecification, CF method consistently estimates ATEs while IV method often
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cannot. On the other hand, when the correlation between counterfactual error terms and

latent model errors is constant, i.e. when counterfactual errors are homogeneous, the sim-

ulation results indicate that, under no misspecification, both CF method and IV method

are asymptotically unbiased and consistent with CF method being slightly more efficient.

After introducing some misspecification, the simulation results show that IV method out-

performs CF method in terms of efficiency and that both CF and IV methods have biased

estimates. However, biases in IV estimates are generally lower than those in the estimates

of CF method.

In my empirical application, I illustrate the role of limited English proficiency (LEP) in

determining wages of Hispanic workers in the USA. Utilizing age at arrival as an instru-

mental variable, both OLS, CF, and nonparametric bound analysis indicate that LEP on

average imposes a statistically significant wage penalty on immigrant Hispanic workers in

the USA. In line with the existing literature, CF estimates are greater in magnitude than

the OLS estimates, and nonparametric bound analysis provides uninformative lower bounds.

IV estimates mostly produce insignificant results or results that are against expectations.

In future, it can be worth further researching CF method and its large sample properties in

a discrete multivalued endogenous treatment model with a nonlinear second stage (outcome)

equation. We can theoretically examine how the nonlinearity embedded in the first stage

(choice) equation can improve identification in a discrete multivalued endogenous treatment

model with weak instruments. Furthermore, under the current model, we can systematically

compare CF method to IV method in terms of their asymptotic efficiency when counterfactual

errors are homogeneous and can explore how to estimate the local average treatment effects

and quantile effects. Lastly, we can theoretically study the large sample properties of CF

and IV method in a high dimensional (i.e., settings where sample size is less than the number

of parameters to be estimated) discrete multivalued endogenous treatment model.
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CHAPTER 2

ESTIMATION AND INFERENCE FOR MULTIVALUED ENDOGENOUS
TREATMENT EFFECT MODELS WITH CORRELATED RANDOM

COEFFICIENTS

2.1 Introduction

When the parameter of interest in an economic model changes in a population, economists

turn to random coefficient (RC) models. For example, the effect of tutoring on exam perfor-

mance may be quite different across students: some students with decent exam preparation

under their belt can greatly benefit from tutoring, and for some students who are totally lost

in class tutoring can really be a waste of time and energy. The regression models capturing

this idea of RCs date back as early as 1950s. In the econometrics textbook of Klein (1953,

p. 216), he points out the lack of complexity in linear regression equations (especially those

with a limited number of covariates) using cross sectional data to decipher the differences

among people in their responses to outcomes. And then he suggests the usage of RC models

to take these differences truly into account. However, RC models came to the mainstream

economics with the work of Zellner (1969) on aggregation problem in models with random

coefficients, see Swamy and Tavlas (2001) for a broad summary of random coefficient models.

Swamy (1970) offers a consistent and an asymptotically efficient estimator for the mean of

RCs in a panel data setting and applies its theoretical findings to the analysis of annual gross

investment of firms. Using again panel data, Swamy and Mehta (1977) estimate the demand

model for liquid asset in which the effect of time deposits, demand deposits and savings,

and loan association share varies by both time and state in the USA (in addition to showing

the asymptotic properties of estimators for the mean of RCs and their variance-covariance

matrix.)

In nonlinear settings, Bjorklund and Moffitt (1987) generate a RC self-selection model for

the effect of some activities such as education, training, and unions on wages and apply their
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model to the government manpower training program in Sweden to show the heterogeneity in

wage gains to the program. Akin, Guilkey, and Sickles (1979) extend the ordered response

probit model to the RC probit model where the coefficients are allowed to be random in

the latent variable equation and examine family moving decisions using the Panel Study

of Income Dynamics survey data. As explained by Heckman and Robb (1985b, p. 173),

RC models also have links to switching regression models with which union/nonunion wage

gaps are estimated as surveyed in Lewis (1983) or college/high school wage differentials are

explored (among other things) as in Willis and Rosen (1979). RC models have been intensely

used in the human capital researches, giving informative insight into the understanding of, for

example, the relationship between economic earnings and schooling and how this relationship

varies across individuals. Becker and Chiswick (1966), Chiswick and Mincer (1972), and

Chiswick (1974, ch. 3), for instance, are influential researches on earnings function relating

personal earnings to schooling and other employment variables. Traditionally, it is generally

assumed in these researches that economic return changes across people but is independent

(or uncorrelated) of the level of schooling. Further examples over this come from Becker

(1967) and Mincer (1974, chs. 2 and 3), and they use models that are in line with this

assumption.

Correlated random coefficient (CRC) models come into play at occasions where re-

searchers would like to allow for at least some correlation between a RC of interest and

the variable of interest through some unobservables. As Wooldridge (2015, p. 430) men-

tions, CRC models can also allow for both heterogeneous treatment effects and self-selection

into treatment. Heckman and Vytlacil (1998) bring in the usage of CRC among economists

and specifically mention that CRC models compared to RC models can be more plausible

with empirical observations and economic theory by relaxing the assumption of no correla-

tion between the variable of interest and its rate of return, see Rosen (1977, p. 14 and 17)

for a summary of the relationship among schooling, ability, and earnings and the problems

associated with extracting the marginal effect of schooling on earnings. They develop the
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classic RC model as in Becker and Chiswick (1966) and turn that into a CRC model in which

some unmeasured ability/motivation factors (and observed characteristics) can influence the

return to schooling and can also be correlated with the level of schooling, creating the cor-

relation between a RC of interest and the variable of interest. Heckman and Vytlacil (1998)

use a two-step estimator of the average return to schooling in their wage equation whereas

Card (2001) (he summarizes different methods, inclusive of RC models, of causal modeling

of the return to education) and Meghir and Palme (2001) prefer using instrumental variables

(IV) method.

Contrary to the popularity of estimating ATE by IV method in continuous treatment ef-

fects (see, for example, Moffitt (1999) and Wooldridge (2003) for arguments on the grounds

of robustness), Wooldridge (2008) explains a case where IV estimation can produce inconsis-

tent estimates in the framework of CRC model with an endogenous binary treatment. This

is due to that, in a CRC model, the binary treatment variable and unobserved heterogeneity

factors in random coefficients are allowed to be correlated, and the binary treatment vari-

able interacts with the unobserved heterogeneity factors. In a CRC model with multiple

endogenous treatments, Wooldridge (2003, p. 191) points out that consistency condition

of conventional IV does not hold when treatment variables are discrete. In the presence

of heterogeneity and endogenous treatment, Heckman and Li (2004) also mention that tra-

ditional IV method fails to provide true average treatment effect (ATE) of schooling on

earnings and employ a semi-parametric method for estimating treatment effects. Hence, in

a CRC model with discrete endogenous multivalued treatments, conventional IV method is

generally expected to be inconsistent for ATEs because of the existence of CRCs (if there

are also heterogeneous counterfactual errors in the structural equation as in Chapter 1, then

inconsistency of IV can get even worse). Control function (CF) method naturally comes as

an alternative estimation method to IV. For instance, after pinpointing the drawbacks of

ordinary least squares (OLS) and IV methods, Gebel and Pfeiffer (2007) estimate average

returns to education in the West German labor market using CF method in a CRC setting.

61



In continuous treatment case, Amann and Klein (2012) use CF method to estimate the ATE

of tenure on hourly wages in Germany within a CRC framework, allowing heterogeneous

returns to tenure across individuals and feedback between these returns and tenure decision.

Unfortunately, in discrete treatment cases, CF method has received little to no attention

under the framework of CRC models.

In this chapter, I extend my work from Chapter 1 to CRC framework. I focus on esti-

mating ATEs in a discrete multivalued endogenous treatment model with CRCs and het-

erogeneous counterfactual errors and investigate the behavior of both CF and IV methods

comparatively in this setting. This has not been studied to the best of my knowledge and

is my main contribution to the literature. Specifically, in this chapter, I suggest a consistent

CF estimator for the ATEs and show the asymptotic properties of CF parameter estimates

in a discrete multivalued endogenous treatment model with CRCs and heterogeneous coun-

terfactual errors. Using a simulation analysis, I also claim that, without misspecification,

IV method is generally asymptotically biased and inconsistent to a great degree whereas

CF method is not. However, when misspecification is introduced, my simulation findings

suggest that IV method perform better than CF method when it comes to unbiasedness.

As for efficiency (with or without misspecification), the findings from simulations show that

neither IV method nor CF method is necessarily more efficient than the other.

The rest of this chapter is organized as follows. In section 2.2, I introduce the model.

In section 2.3, I derive the estimating equations for both CF and IV methods and propose

procedures to estimate the parameters of interest and ATEs for both methods. In section

2.4, I show the asymptotic properties of CF estimates, propose a consistent estimator for the

asymptotic variance matrix of CF estimates, and show how a GMM framework can be set

up for the main problem. In section 2.5, I share some simulation results. In section 2.6, I

conclude. And, in appendix B, I share the derivations and simulation tables that are hidden

from the main body of this chapter.
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2.2 The Model

Consider the following model with CRCs

yg = mg + xbg + ug

w∗g = zγg + ag, (2.1)

where yg is the gth counterfactual outcome variable, mg is the scalar random coefficient in the

counterfactual outcome equation for yg, x ≡ (x1, x2, . . . , xl) is the 1× l vector of exogenous

variables in yg, bg is the l×1 vector of slope random coefficients in yg, ug is the counterfactual

error in yg, w
∗
g is the latent treatment variable that determines the choice of treatment

status among G+ 1 alternative treatment statuses, z ≡ (z1, z2, . . . , zk) is the 1× k vector of

instruments that includes a constant term in the choice equation for w∗g , γg is the k×1 vector

of parameters in w∗g , and ag is the scalar error term that is independently and identically

Gumbel distributed (i.i.d.) with location parameter µ = 0 and scale parameter β = 1 in

w∗g for g = 0, 1, . . . , G. Note that (2.1) is almost the same as the counterfactual outcome

equation together with the choice equation from Chapter 1; however, here I incorporate

CRCs into the model.

As in Chapter 1, let w ∈ {0, 1, . . . , G} be the observed discrete multivalued endogenous

treatment variable whose values are determined by w∗g for g = 0, 1, . . . , G. One common

interpretation of w∗g is to think of it as the utility or satisfaction obtained from treatment

status g. Let the treatment statuses of w be exhaustive and mutually exclusive. Define binary

treatment status indicators, dg = 1[w = g] for g = 0, 1, . . . , G. So the binary treatment status

indicator dg is equal to one if the treatment status is equal to g and zero otherwise. This

coupled with the mutual exclusivity of treatment statuses implies that
∑G

g=0dg = 1. Define

the 1× (G+ 1) vector of treatment statuses d ≡ (d0, d1, . . . , dG).
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Let y be the observed outcome. Then, I can write

y = d0y0 + d1y1 + · · ·+ dGyG, (2.2)

where yg is the gth counterfactual outcome for g = 0, 1, . . . G.

After having described the discrete multivalued endogenous treatment model with CRCs

above, I now will make a series of assumptions that complete the model, and are used in

estimation. Notice that some of these assumptions will be the same as the ones used in

Chapter 1. First, I assume that the rational economic agents choose the status of treatment

from which they receive the most satisfaction out of all possible treatment statuses. That is,

• Assumption 2.1 (A.2.1): One chooses treatment status g, i.e., w = g if and only if

w∗g ≥ w∗j ∀j 6= g for g, j = 0, 1, . . . , G.

Second, I assume that identification of the model in (2.1) and (2.2) is contributed by ex-

clusion of some (at least one) variables in the set of instruments z from the set of exogenous

variables in x. This exclusion restriction is encouraged for the estimation and identification

to be more convincing and reliable even though nonlinearity in estimation suffices for iden-

tification, especially when the exogenous variables in z vary enough in the sample. The set

of exogenous variables in x can all be included in the set of instruments z.

• Assumption 2.2 (A.2.2): Identification of the model described by (2.1) and (2.2) is

strengthened by exclusion of at least one variable in z from the set of variables in x.

As in Chapter 1, the identification argument is based on both exclusion restriction(s)

and the above nonlinearity that describes the conditional probability of treatment status g
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as a function of the set of instruments z. In addition, as shown by McFadden (1973), under

the model in (2.1) and (2.2) the assumptions made so far allow the treatment variable w to

follow a multinomial logit model with choice probabilities given as follows:

P (w = g|x, z) = P (w = g|z) = exp(zγg)/
G∑
r=0

exp(zγr), (2.3)

for g = 0, 1, . . . , G. The next assumption is essential to the CF estimation, which I describe

in section 2.3, since this assumption coupled with the multinomial logit specification of the

treatment variable w will play a role in creating CF terms that account for the endogeneity

in w.

• Assumption 2.3 (A.2.3): E(ug|x, z, a) = E(ug|a) =
∑G

j=0ηg,jaj +[−
∑G

j=0ηg,jE(aj)],

where ug is the counterfactual error in yg, x is the 1× l vector of exogenous variables

in yg, z is the 1× k vector of instruments that includes a constant term in the choice

equation for w∗g , a ≡ (a0, a1, . . . , aG) is the 1×(G+1) vector of i.i.d. Gumbel distributed

errors aj with location parameter µ = 0 and scale parameter β = 1 in w∗j , ηg,j is the

scalar multiple of correlation coefficient between ug and aj, and E(aj) = 0.5772 is

Euler’s constant for j, g = 0, 1, . . . , G.

Bourguignon, Fournier, and Gurgand (2007) refers to A.2.3 as Dubin and McFadden’s

linearity assumption since the conditional expectation of counterfactual error ug given all

Gumbel distributed errors a is linear in a for g = 0, 1, . . . , G. A.2.3 also implies that, condi-

tional on a, x and z are redundant for the conditional expectation of ug. In other words, ug

is mean independent of x and z conditional on a. The next assumption puts exogeneity and

linearity restrictions on the structure of RCs in (2.1).
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• Assumption 2.4 (A.2.4): mg = ψog + xψg and bg = κog + Γgx
′+ vg are the random

coefficients in yg, where ψog is the scalar parameter in the random scalar coefficient

mg, x is the 1 × l vector of exogenous variables in yg, ψg is the l × 1 vector of slope

parameters in mg, κog is the l × 1 vector of parameters in the random vector of slope

coefficients bg, Γg is the l × l matrix of slope parameters in bg, and vg is the l × 1

vector of error terms with E(vg|x, z) = 0 in bg for g = 0, 1, . . . , G.

A.2.4 implies that E(mg|x, z) = E(mg|x) and E(bg|x, z) = E(bg|x) for g = 0, 1, . . . , G.

That is, both the scalar random coefficient mg in yg and the random vector of slope coeffi-

cients bg in yg are mean independent of z conditional on x. In addition, for convenience in

estimation, the RCs mg and bg are assumed to be linear in x. The conditional expectation

E(vg|x, z) = 0 might look a little restrictive; however, it still allows for possible correlation

between the treatment variable w and the random vector of slope coefficients bg, especially

in higher moments. The following assumption indeed establishes the existence of that ar-

bitrary correlation through error terms in w∗g but restricts its form, enabling the model to

incorporate CRCs.

• Assumption 2.5 (A.2.5): E(vg|x, z, a) = E(vg|a) = Pa′, where vg is the l×1 vector

of error terms with E(vg|x, z) = 0 in bg, a is the 1 × (G + 1) vector of i.i.d. Gumbel

distributed errors ag with location parameter µ = 0 and scale parameter β = 1 in w∗g ,

x is the 1× l vector of exogenous variables in yg, z is the 1× k vector of instruments

that includes a constant term in the choice equation for w∗g , and P is the l × (G + 1)

matrix of constant parameters for g = 0, 1, . . . , G.

By A.2.5 I impose that, conditional on a, x and z are redundant for the conditional

expectation of vg. In other words, vg is mean independent of x and z conditional on a.

66



Again, for convenience in estimation, the conditional expectation of vg is assumed to be

linear in a. In essence, A.2.5 is similar to A.2.3: just as A.2.3 formulates the endogeneity in

w, A.2.5 expresses the correlation between w and bg. In this regard, the constant parameters

in P can be interpreted as scalar multiple of correlation coefficients between vg and aj for

j, g = 0, 1, . . . , G. Just as A.2.3, A.2.5 is also central to the CF method in deriving the CF

estimating equation in section 2.3.

Under all assumptions from A.2.1 through A.2.5, the model in (2.1) and (2.2) can be

consistently estimated by CF method. In section 2.3, I will propose a consistent estimator

for the ATEs in this discrete multivalued endogenous treatment model with CRCs.

2.3 Estimation

The main theme of interest is again the estimation of ATEs in the discrete multivalued

endogenous treatment model with CRCs and heterogeneous counterfactual errors that is

described by (2.1) and (2.2) under the assumptions from A.2.1 through A.2.5. Following

the definitions from Chapter 1, denote ATEg,0 as the expected gain from treatment g with

respect to the base treatment g = 0 for g = 1, . . . , G. In my model, under A.2.1 through

A.2.4, and the law of iterated expectations, I can write

ATEg,0 = E(yg − y0)

= E (mg + xbg + ug − (m0 + xb0 + u0))

= (ψog − ψo0) + E(x) [(ψg + κog)− (ψ0 + κo0)] + E(x⊗ x)vec(Γg − Γ0),(2.4)

where vec(· ) is the column vectorization operator and vec(ABC) = (C ′ ⊗ A)vec(B) for

conformable matrices A, B, and C. Note that the last equality above uses E(vg|x, z) = 0 for

g = 1, . . . , G.

67



Then, using the analogy principle of Manski (1988, ch. 1), a consistent estimator of

ATEg,0 is

ÂTEg,0 = (ψ̂og − ψ̂o0) + x[( ̂ψg + κog)− ( ̂ψ0 + κo0)] + (x⊗ x)vec(Γ̂g − Γ̂0), (2.5)

where ψ̂og, ψ̂o0, ( ̂ψg + κog), ( ̂ψ0 + κo0), Γ̂g, Γ̂0, x̄= N−1
∑N

n=1xi, and x⊗ x= N−1
∑N

n=1xi⊗xi

are respectively consistent estimates for ψog, ψo0, (ψg + κog), (ψ0 + κo0), Γg, Γ0, E(x), and

E(x⊗ x) for g = 1, . . . , G. Here, it is important to reemphasize that by ( ̂ψg + κog), I mean

a consistent estimate for the sum (ψg + κog) not the sum of consistent estimates for ψg and

κog. Note that when there is only one exogenous variable (i.e., x = x) in yg with E(x) = 0

and E(x2) = 1, ATEg,0 simplifies to

ATEg,0 = (ψog − ψo0) + (Γg − Γ0). (2.6)

Then, a consistent estimate of ATEg,0 in (2.6) is

ÂTEg,0 = (ψ̂og − ψ̂o0) + (Γ̂g − Γ̂0), (2.7)

where ψ̂og, ψ̂o0, Γ̂g, and Γ̂0 are defined as in (2.5) for g = 1, 2, . . . , G. It is rather important

to state this simplification here because I use this version of ATEg,0 in (2.6), instead of the

one in (2.5), in my simulation analysis later in this chapter.
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2.3.1 IV Estimation

Consider the observed outcome

y = d0y0 + d1y1 + . . .+ dGyG

=
G∑
j=0

ψojdj +
G∑
j=0

djx(ψj + κoj) +
G∑
j=0

dj(x⊗ x)vecΓg + ε, (2.8)

where ε =
∑G

j=0djxvj+
∑G

j=0djuj. Applying IV method on (2.8) requires instruments for the

binary treatment indicators dj and x since both corr(dj, ε) and corr(xk, ε) are expected not

to be zero, where xk ∈ x and x ≡ (x1, x2, . . . , xl) for k = 1, 2, . . . , l and j = 0, 1, . . . , G. One

might think of z as instruments for x. And as to dj, one can model the treatment variable

w as a discrete multinomial logit model and then use the predicted probabilities from this

model as instruments for dj, j = 0, 1, . . . , G. Hence, one can prescribe the following three-

stage procedure to estimate ATEs:

Procedure 2.1

1. Estimate the predicted probabilities, Λ̂ji = exp(ziγ̂j)/
∑G

r=0exp(ziγ̂r), from a MNL of

wi on zi for j = 0, 1, . . . , G and i = 1, 2, . . . , N.

2. Estimate the parameters in (2.8) by IV method using instruments (Λ̂ji , Λ̂jizi, Λ̂ji(zi ⊗

zi)) for (dji , djixi, dji(xi ⊗ xi)), j = 0, 1, . . . , G and i = 1, 2, . . . , N.

3. Plug parameter estimates from step 2 and sample averages of x and x⊗ x into (2.5),

and estimate ATEs.

Procedures similar to Procedure 2.1 are not uncommon in economical applications, see,

for example, Puhani and Weber (2007); and Sloan, Picone, Taylor Jr., and Chou (2001).

Therefore, some economists can use conventional IV method in a discrete multivalued en-

dogenous treatment model with CRCs and heterogeneous counterfactual errors. However,
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conventional IV estimation of (2.8) is likely not to produce consistent parameter and ATE

estimates as pointed out by Wooldridge (2003, p. 191 and 2008, p. 98) and Card (2001, p.

1819). Conventional IV method generally fails because it is contaminated by the two differ-

ent sets of interaction terms in the error term ε of (2.8): djxvj and djuj for j = 0, 1, . . . , G.

The instruments used by conventional IV method (all are nonlinear functions of z) as in

Procedure 2.1 are expected to be correlated with ε through these interaction terms that are

correlated with z through dj for j = 0, 1, . . . , G. Also note that IV estimator described in Pro-

cedure 2.1 would be optimal IV estimator if ε were homoskedastic, following the discussion

in Chapter 1.

Just as in Chapter 1, to estimate (2.8) by IV method in canned software packages, one

need to reformulate it. To this end, lets drop one of the binary treatment indicator variables,

say dG, from (2.8). And then add a constant term, x, and x⊗ x into (2.8). Then, (2.8) can

be equivalently written as

y =

(
G−1∑
j=0

ψ̃ojdj + ψ̃oG

)
+

(
G−1∑
j=0

djx( ˜ψj + κoj) + x( ˜ψG + κoG)

)
+

+

(
G−1∑
j=0

dj(x⊗ x)vecΓ̃j + (x⊗ x)vecΓ̃G

)
+ ε̃, (2.9)

where ψoj = ψ̃oj+ψ̃oG, ψj+κoj = ( ˜ψj + κoj)+( ˜ψG + κoG), vecΓj = vecΓ̃j+vecΓ̃G, ψoG = ψ̃oG,

ψG+κoG = ( ˜ψG + κoG), and vecΓG = vecΓ̃G for j = 0, 1, . . . , G−1. Under this reformulation,

the ATEs are as follows:

ATEg,0 = (ψ̃og − ψ̃o0) + E(x)
[
( ˜ψg + κog)− ( ˜ψ0 + κo0)

]
+ E(x⊗ x)vec(Γ̃g − Γ̃0), (2.10)

for g = 1, 2, . . . , G− 1 and

ATEG,0 = (−ψ̃o0) + E(x)(− ˜ψ0 − κo0) + E(x⊗ x)vec(−Γ̃0) (2.11)

for g = G.
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Therefore, consistent estimates of ATEg,0 for g = 1, 2, . . . , G− 1 and ATEG,0 under this

reformulation are as follows:

ÂTEg,0 = (̂̃ψog − ̂̃ψo0) + x

[
(
̂̃
ψg + κog)− (

̂̃
ψ0 + κo0)

]
+ (x⊗ x)vec(

̂̃
Γg −

̂̃
Γ0), (2.12)

and

ÂTEG,0 = (−̂̃ψo0) + x(
̂− ˜ψ0 − κo0) + (x⊗ x)vec(−̂̃Γ0), (2.13)

where ̂̃ψog, ̂̃ψo0, (
̂̃
ψg + κog), (

̂̃
ψ0 + κo0),

̂̃
Γg, and

̂̃
Γ0 are respectively the consistent estimates

of ψ̃og, ψ̃o0, ( ˜ψg + κog), ( ˜ψ0 + κo0), Γ̃g, and Γ̃0 from Procedure 2.1 applied on (2.9), and x

and x⊗ x are consistent estimates of E(x) and E(x⊗ x) as defined in (2.5).

2.3.2 CF Estimation

To get rid of the endogeneity complications conventional IV faces as mentioned in sub-

section 2.3.1, CF estimation needs to find a closed form expression for E(ε|d,x, z) and then

to add that expression as a control variable (a.k.a. control function terms) back into (2.8).

Hence, compared to IV method, CF method is almost always more complex.

To prevent equation-clutter, I left the derivation of finding a closed form expression

for E(ε|d,x, z) (and of the estimating equation of CF method) to appendix B. Thus, for

derivations, refer to appendix B.

71



Having said that, (B.10) in appendix B gives me the estimating equation of CF method

because I can always write

y =
G∑
j=0

djψoj +
G∑
j=0

djx(ψj + κoj) +
G∑
j=0

dj(x⊗ x)vecΓj +

+

(
G∑
j=0

− ηj,jdjlog(Λj)

)
+
∑
j 6=0

djηj,0M0 +
∑
j 6=1

djηj,1M1 +

+ · · ·+
∑
j 6=G

djηj,GMG +

l,G∑
k=1,h=0

pk,h[
G∑
j=0

djxkE(ah|dj = 1,x, z)] + ξ, (2.14)

where E(ξ|d,x, z) = 0, Λj = exp(zγj)/
∑G

r=0exp(zγr), Mj = Λjlog(Λj)/(1− Λj), E(ah|dj =

1,x, z) =



−log(Λh) + E(ah) , h = j

Λjlog(Λj)

(1− Λj)
+ E(ah) , h 6= j

, and E(ah) = 0.5772 for h, j = 0, 1, . . . , G.

So I can prescribe the following three-stage procedure to estimate ATEs:

Procedure 2.2

1. Same as in Procedure 2.1.

2. Run the regression of yi on d0i , d1i ,. . . , dGi , d0ixi, d1ixi.. . . , dGixi, d0i(xi ⊗ xi), d1i

(xi ⊗ xi), . . . , dGi(xi ⊗ xi), −d0ilog(Λ̂0i), −d1ilog(Λ̂1i), . . . , −dGilog(Λ̂Gi), d1iM̂0i ,

d2iM̂0i , . . . , dGiM̂0i , d0iM̂1i , d2iM̂1i , d3iM̂1i , . . . , dGiM̂1i , . . . , d0iM̂Gi , d1iM̂Gi , . . . ,

dG−2iM̂Gi , dG−1iM̂Gi ,

G∑
j=0

djix1iÊ(a0|dj = 1,x, z)i,
G∑
j=0

djix1iÊ(a1|dj = 1,x, z)i, . . . ,

G∑
j=0

djix1iÊ(aG|dj = 1,x, z)i,
G∑
j=0

djix2i Ê(a0|dj = 1,x, z)i,
G∑
j=0

djix2iÊ(a1|dj = 1,x, z)i,

. . . ,
G∑
j=0

djix2iÊ(aG|dj = 1,x, z)i, . . . ,
G∑
j=0

djixliÊ(a0|dj = 1,x, z)i,
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G∑
j=0

djixliÊ(a1|dj = 1,x, z)i, . . . , and
G∑
j=0

djixliÊ(aG|dj = 1,x, z)i.

3. Same as in Procedure 2.1,

where Λ̂gi = exp(ziγ̂g)/
∑G

r=0exp(ziγ̂r), Ê(ag|dj = 1,x, z)i =



−log(Λ̂gi) + E(ag) , g = j

Λ̂jilog(Λ̂ji)

(1− Λ̂ji)
+ E(ag) , g 6= j

,

M̂gi = Λ̂gilog(Λ̂gi)/(1− Λ̂gi), and E(ag) = 0.5772 for g, j = 0, 1, . . . , G and i = 1, 2, . . . , N.

Notice that, unlike IV method, CF method is robust to two different sources of unobserved

heterogeneity in the model described by (2.1), (2.2) and the assumptions (from A.2.1 through

A.2.5): one coming from the counterfactual errors ug and the other from vg. Even though

the treatment variable w is endogenous and correlated with the random vector of slope

coefficients bg for g = 0, 1, . . . , G, under A.2.1 through A.2.5, CF method yields consistent

estimates. Owing to this advantage of CF method over IV method by using the very same

instruments z in CRC (and many other) models, some economists might consider CF method

a generalized form of IV method, see, for example, Card (2001, p. 1819) on this.

2.4 Asymptotic Normality Results

The asymptotic theory behind CF method is not much different from the one developed

in Chapter 1 because the estimating equation of CF method in (2.14) is still a two step M-

estimator with some additional generated regressors. As a result, this two step M-estimator

again solves the problem

min
θ∈Θ

N∑
i=1

(yi −m(Xi,v(di,xi, zi, γ̂), θ))2/2, (2.15)
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where γ̂ = (γ̂′0, γ̂
′
1, . . . , γ̂

′
G)′ is the (G+ 1)k×1 vector of

√
N − consistent and asymptotically

normal first stage conditional MLE (CMLE) estimates from the MNL of wi on zi for i =

1, 2, . . . , N. Technically, the first stage estimates does not have to be consistent as long as

they converge in plim, i.e., γ̂ p−→ γ∗ where γ∗ ∈ Γ ⊂ R(G+1)k. However, they are consistent

in this setting. CMLE solves the problem

max
γ∈Γ

N∑
i=1

li(γ), (2.16)

where γ = (γ′0, γ
′
1, . . . , γ

′
G)′ is the (G+1)k×1 vector of parameters, and li(γ) ≡ log(f(wi|zi; γ)),

(i.e., the conditional log likelihood for observation i) is given below

log(f(wi|zi, γ)) =
G∑
j=0

1[wi = j]log

(
exp(ziγj)/

G∑
r=0

exp(ziγr)

)
. (2.17)

This CMLE is exactly the same as the one used in Chapter 1. Therefore, to establish that

these first stage MLE estimates are
√
N−consistent, I will rely on Theorem 1.1 (Th.1.1) from

Chapter 1 which is restated below for readers’ convenience and establishes the consistency

of CMLE without compactness.

• Theorem 2.1 (Th.2.1): Let {(wi, zi) : i = 1, 2, . . .} be a random sample with zi ∈

Z ⊂ Rk, wi ∈ W ⊂ R. Let Γ ⊂ R(G+1)k be the parameter set, and denote the

parametric model for the conditional density, p(· |z), as {f(· |z; γ) : z ∈ Z , γ ∈ Γ}.

Let l : W × Z × Γ → R be a real-valued function. Assume that (a) f(· |z; γ) is

a true density function with respect to the measure µ(dw) for all z and γ, so that
´

W
f(w|z)µ(dw) = 1,∀z ∈ Z holds; (b) for some γo ∈ Γ, po(· |z) = f(· |z; γo), ∀z ∈ Z ,

and the true parameter vector γo is the unique solution to max
γ∈Γ

E[li(γ)]; (c) γo is an

element of the interior of a convex parameter space Γ ; (d) for each γ ∈ Γ, l(· , γ) is a

Borel measurable function on W ×Z ; (e) for each (w, z) ∈ W ×Z , l(w, z, ·) is concave

in γ; and (f) |l(w, z, γ)| ≤ b(w, z), ∀γ ∈ Γ, where b(·, ·) is a nonnegative function on
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W × Z such that E[b(w, z)] < ∞. Then there exist a solution to problem in (2.16),

the CMLE γ̂, and γ̂ p−→ γo.

For the verification of the conditions stated in Th.2.1, see appendix A. I also refer readers

to see Theorem 2.7 in Newey and McFadden (1994, p. 2133) for a generic consistency proof of

extremum estimators without compactness. To establish that these first stage MLE estimates

are asymptotically normal, I will use Theorem 1.2 (Th.1.2) from Chapter 1 which is restated

below for readers’ convenience.

• Theorem 2.2 (Th.2.2): Let the definitions and conditions of Th.2.1 hold, and define

BF
o ≡ V ar[∇′γli(γo)]. Furthermore, assume that (a) γo is an element of the interior

of a parameter space Γ ;—i.e., γo ∈ int(Γ ); (b) for each (w, z) ∈ W × Z , l(w, z, ·)

is twice continuously differentiable on int(Γ ); (c) E[sFi (γo)] = 0 and −E[HF
i (γo)] =

V ar[sFi (γo)], where sFi (γ) ≡ ∇′γli(γ) and HF
i (γ) ≡ ∇γ[∇′γli(γ)]; (d) the elements of

∇γ[∇′γl(w, z, γ)] are bounded in absolute value by a function b(w, z), ∀γ ∈ Γ, where

b(·, ·) is a nonnegative function on W × Z such that E[b(w, z)] < ∞; and (e) AF
o ≡

−E(∇γ[∇′γli(γo)]) is positive definite. Then

√
N(γ̂ − γo)

d−→ Normal(0, (AF
o )−1BF

o (AF
o )−1). (2.18)

Explicitly, the score of the log likelihood for observation i is as follows:

sFi (γ) ≡ ∇′γli(γ) =

(
∂li
∂γ0

(γ),
∂li
∂γ1

(γ), . . . ,
∂li
∂γG

(γ)

)
′, (2.19)

which is a (G + 1)k × 1 vector of partial derivatives of li(γ) with respect to parameters

in γ. The Hessian, HF
i (γ) ≡ ∇γ[∇′γli(γ)], for observation i is the (G + 1)k × (G + 1)k

matrix of second partial derivatives of li(γ) with respect to parameters in γ. Thus, using the
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definitions in Th.2.2, AF
o ≡ −E[HF

i (γo)], and BF
o ≡ V ar[sFi (γo)]. In addition, E[sFi (γ)] = 0

and AF
o = BF

o , which are used to simplify the variance expression in (2.18), and see appendix

A for how to show these equalities. Using that E[sFi (γ)] = 0 and AF
o = BF

o , I can rewrite

(2.18) as below:

√
N(γ̂ − γo)

d−→ Normal(0, (AF
o )−1). (2.20)

For the verification of the conditions in Th.2.2, see appendix A. Theorem 3.1 in Newey

and McFadden (1994, p. 2143) is also helpful for a generic proof of asymptotic normality

of extremum estimators. The second stage of CF method is technically OLS with generated

regressors as in Chapter 1. For this reason, to establish that second stage estimates are
√
N − consistent, I will use a modified version of Theorem 1.3 (Th.1.3) from Chapter 1

which establishes the consistency of CF method with a compact parameter space.

• Theorem 2.3 (Th.2.3): Let w = (y,X,v) be a random vector with w ∈ W ⊂ RM+1 and

M = (l(l+ 1)/2 + 2l+G+ 2)(G+ 1). Let Θ ⊂ RM and Γ ⊂ R(G+1)k be the parameter

sets. Let q(w, θ, γ) : W× Θ × Γ → R be a real-valued function. Let γ̂ be an estimator

from a preliminary estimation. Assume that (a) γ̂ p−→ γ∗ for some γ∗ ∈ Γ ; (b) for a

given γ∗ ∈ Γ, the true parameter vector θo is the unique solution to min
θ∈Θ

E[qi(θ; γ
∗)];

(c) the parameter space Θ × Γ is compact; (d) for each (θ, γ) ∈ Θ × Γ, q(· , θ, γ) is a

Borel measurable function on W; (e) for each w ∈ W, q(w, ·, ·) is a continuous function

on Θ × Γ ; and (f)E[|q(wi, θ; γ)|] <∞ ∀(θ, γ) ∈ Θ × Γ. Then there exists a solution to

problem in (2.15), the CF estimator θ̂, and θ̂ p−→ θo.

For the verification of the conditions stated in Th.2.3, one can follow the steps taken

in appendix A. In addition, readers can benefit from Wooldridge (1994, p. 2730) for a

generic consistency proof of two-step M-estimators with compactness. Before I move into
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the asymptotic normality result, I have to introduce some notation. From problem (2.15),

we can see that q(w, θ, γ) in Th.2.3 is as follows:

qi(θ, γ) ≡ q(wi, θ, γ) ≡ (yi −m(Xi,v(di,xi, zi, γ), θ))2/2, (2.21)

where mi(vi(γ), θ) ≡ m(Xi,v(di,xi, zi, γ), θ) ≡ Xiδ + viλ is a real-valued scalar function,

θ = (δ′, λ′)′ is the M × 1 vector of parameters, Xi is the 1× (l(l+ 1)/2 + l+ 1)(G+ 1) vector

of regressors in (2.15), and vi is the 1× (l+G+ 1)(G+ 1) vector of generated regressors in

(2.15). More explicitly,

Xi = ( d0i , · · · , dGi , d0ixi, · · · , dGixi, d0i(xi ⊗ xi) · · · , dGi(xi ⊗ xi) )

vi = ( −d0ilog(Λ0i), · · · , −dGilog(ΛGi), d1iM0i , d2iM0i , · · · , dGiM0i ,

d0iM1i , d2iM1i , d3iM1i , · · · , dGiM1i , · · · , d0iMGi , d1iMGi , · · · ,

, dG−1iMGi ,
G∑
j=0

djix1iE(a0|dj = 1,x, z)i, · · · ,
G∑
j=0

djix1iE(aG|dj = 1,x, z)i,

G∑
j=0

djix2iE(a0|dj = 1,x, z)i, · · · ,
G∑
j=0

djix2iE(aG|dj = 1,x, z)i, · · · ,

G∑
j=0

djixliE(a0|dj = 1,x, z)i, · · · ,
G∑
j=0

djixliE(aG|dj = 1,x, z)i ), (2.22)

where Λgi = exp(ziγg)/
∑G

r=0exp(ziγr), E(ag|dj = 1,x, z)i =



−log(Λgi) + E(ag) , g = j

Λjilog(Λji)

(1− Λji)
+ E(ag) , g 6= j

,

Mgi = Λgi log(Λgi)/(1 − Λgi), and E(ag) = 0.5772 for g, j = 0, 1, . . . , G and i = 1, 2, . . . , N.

As one can expect, expressions such as Λ̂ji , M̂gi , and Ê(ag|dj = 1,x, z)i are just consistent

estimates of Λgi , Mgi , and E(ag|dj = 1,x, z)i with γ̂g replacing γg in Λgi , Mgi , and E(ag|dj =

1,x, z)i respectively. Now, I will state the theorem that is a modified version (in the sense
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that dimensions of X and v are different) of Theorem 1.4 (Th.1.4) from Chapter 1 and

establishes the asymptotic normality of CF method with a compact parameter space.

• Theorem 2.4 (Th.2.4): Let the definitions and conditions of Th.2.3 hold. Further-

more, assume that (a) θo ∈ int(Θ) and γ∗ ∈ int(Γ ); (b)
√
N(γ̂ − γ∗) is bounded in

probability —i.e.,
√
N(γ̂ − γ∗) = Op(1); (c) for each (w, γ) ∈ W× Γ, q(w, ·; γ) is a twice

continuously differentiable on int(Θ); (d) for each θ ∈ Θ, s(·, θ; ·) ≡ ∇′θq(·, θ; ·) is con-

tinuously differentiable on int(Γ ); (e) for each (θ, γ) ∈ Θ×Γ, H(·, θ; γ) ≡ ∇θs(·, θ; γ) is

a Borel measurable function on W; (f) for each w ∈ W, H(w, ·; ·) is continuous on Θ× Γ ;

(g) E[‖ H(wi, θ; γ) ‖] <∞ ∀(θ, γ) ∈ Θ×Γ. (h) Ao ≡ E[H(wi, θo; γ
∗)] is positive definite;

(i) for each (θ, γ) ∈ Θ×Γ, ∇γs(·, θ; γ) is a Borel measurable function on W; (j) for each

w ∈ W,∇γs(w, ·; ·) is continuous on Θ×Γ ; (k) E[‖ ∇γs(wi, θ; γ) ‖] <∞ ∀(θ, γ) ∈ Θ×Γ ;

(l) E[si(θo; γ
∗)] = 0, E[(AF

∗ )−1sFi (γ∗)] = 0, and E[(AF
∗ )−1sFi (γ∗)s′i(θo; γ

∗)] = 0. Then,

√
N(θ̂ − θo)

d−→ Normal(0, (Ao)
−1Do(Ao)

−1), (2.23)

where Do = Bo+FoTo+T′oF
′
o+FoR

∗F′o, si(θo; γ
∗) ≡ ∇′θq(wi, θo; γ∗), Ao ≡ E[∇θsi(θo; γ

∗)] ≡

E[Hi(θo; γ
∗)], Bo ≡ E[si(θo; γ

∗)s′i(θo; γ
∗)], Fo ≡ E[∇γsi(w, θo; γ

∗)], To ≡ E[ri(γ
∗)s′i(θo; γ

∗)],

R∗ ≡ E[ri(γ
∗)r′i(γ

∗)], ri(γ
∗) = (AF

∗ )−1sFi (γ∗), and AF
∗ ≡ −E(∇γ[∇′γli(γ∗)]). For the deriva-

tion of asymptotic variance of
√
N(θ̂−θo), refer to the subchapter 12.4 in Wooldridge (2010)

or subsections 4.3 and 4.4 in Wooldridge (1994). For the verification of the conditions stated

in Th.2.4, one can again follow the steps taken in appendix A. Readers can also benefit

from Wooldridge (1994, p. 2730) for a generic asymptotic normality proof of two-step M-

estimators with compactness. In addition, refer to appendix A for the derivation of the closed

forms of the population matrices Ao, Bo, Fo, and R∗ and for seeing that E[ri(γ
∗)] = 0,

E[si(θo; γ
∗)] = 0, and To ≡ E[ri(γ

∗)s′i(θo; γ
∗)] = 0. Since To = 0, Do in the asymptotic

variance of
√
N(θ̂ − θo) in (2.23) actually simplifies to Bo + FoR

∗F′o.
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Let’s construct the following estimators for Ao, Bo, Fo, and R∗ as in Chapter 1 as follows:

Â = N−1

N∑
i=1

−Hi(θ̂; γ̂), (2.24)

B̂ = N−1

N∑
i=1

si(θ̂; γ̂)s′i(θ̂; γ̂), (2.25)

F̂ = N−1

N∑
i=1

∇γsi(θ̂; γ̂), and (2.26)

R̂ = N−1

N∑
i=1

ri(γ̂)r′i(γ̂). (2.27)

Define D̂ ≡ B̂ + F̂R̂F̂′. Then, using the analogy principle and Lemma 1 in Chapter

1, a consistent estimator for Avar
√
N(θ̂ − θo) is ˆAvar

√
N(θ̂ − θo) = (Â)−1D̂(Â)−1. The

asymptotic standard errors of CF estimates can be obtained from the matrix ˆAvar(θ̂) =

(Â)−1D̂(Â)−1/N as usual or be bootstrapped.

2.4.1 Method of Moments Framework

Following the results from Newey (1984), Newey and McFadden (1994, p. 2132 and

2148), or Heckman, Tobias, and Vytlacil (2003), two-step estimators can be regarded as

members of generalized method of moments (GMM) estimators, and the asymptotic theory

for these estimators can be derived by stacking moment conditions. GMM estimators take

away the burden of deriving the asymptotic variance matrix of a two-step estimator and

thus provide an alternative way for inference in CF regression as well. Since the number of

moment conditions is the same as the number of parameters to be estimated in my analysis,

I technically use method of moments (MoM).

As in Chapter 1, in the first stage of CF method, γ̂ is the CMLE estimator solving

N∑
i=1

sFi (γ̂) = 0, (2.28)
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where sFi (γ) = ∇′γ
∑G

j=01[wi = j]log
(
exp(ziγj)/

∑G
r=0exp(ziγr)

)
. In the second stage, θ̂ is a

OLS estimator solving

N∑
i=1

si(θ̂; γ̂) = 0, (2.29)

where si(θ̂; γ̂) = ∇′θ[yi − m(Xi,v(di,xi, zi, γ̂), θ̂)]2/2. Newey (1984) proposes stacking the

summands in these first order conditions into the unified function

g(θ, γ) =

 sF(γ)

s(θ; γ)

 (2.30)

and then applying MoM using the moment conditions E[g(θ, γ)] = 0 to obtain consistent

estimates for θ and γ, and valid asymptotic variance matrix of θ̂ and γ̂. Using the GMM

results in the appendix of Heckman, Tobias, and Vytlacil (2003), one can also derive the

asymptotic distribution theory for the ATE estimators.

2.5 Simulations

In this section, I share some simulation results that compare and contrast the estimation

methods (i.e., CF and IV methods in section 2.3) and note what is different and similar

in terms of their asymptotic performances, specifically asymptotic efficiency, asymptotic

unbiasedness, and consistency. I will change the simulation setup for the model in section

2.2 as I change the distribution of instrument in the latent variable equation or introduce

misspecification into the model by ignoring an instrument in the latent variable equation. For

the sake of computational simplicity, I adopt a scheme in which there is only one covariate

in the counterfactual outcome equation (i.e., x = x) and only one instrument in the latent

variable equation (i.e., z = z). When examining the consequences of misspecification, there

are two instruments determining the latent treatment variable though. And lastly, the
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treatment variable w takes on only three values, and each treatment group comprises at

least about 30 percent for each simulation setting.

2.5.1 Data Generating Process

In my simulation analysis, I used four different data generating processes (DGPs): one

for the model in section 2.3 with asymmetric instrument, one for the model with symmetric

instrument, one for the model with asymmetric instrument and misspecification, and one for

the model with symmetric instrument and misspecification. The setup for the DGP of the

model in section 2.3 with asymmetric instrument is as follows:

w ∈ {0, 1, 2} ,

dg = 1[w = g], g ∈ {0, 1, 2} ,

ag ∼ Gumbel(0, 1), g ∈ {0, 1, 2} ,

γ0 = 1, γ1 = 5, and, γ2 = 9,

l0 = 1, l1 = 5, and, l2 = 3,

z = z ∼ χ2(2)− 2,

w∗g = lg + γgz + ag, g ∈ {0, 1, 2} ,

w = g iff w∗g ≥ w∗j , ∀j 6= g and g, j ∈ {0, 1, 2} ,

eg ∼ N(0, 1), g ∈ {0, 1, 2} ,

η0,0 = 0.05, η0,1 = 0.10, and η0,2 = 0.15,
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η1,0 = 4.05, η1,1 = 4.10, and η1,2 = 4.15,

η2,0 = 8.05, η2,1 = 8.10, and η2,2 = 8.15,

ug =
∑2

j=0ηg,jaj + [−
∑2

j=0ηg,jE(aj)] + eg, g ∈ {0, 1, 2} ,

x = x ∼ N(0, 1),

ψo0 = 1, ψo1 = 2, and ψo2 = 3,

ψ0 = 4, ψ1 = 5, and ψ2 = 6,

mg = ψog + xψg, g ∈ {0, 1, 2} ,

κo0 = 1, κo1 = 4, and κo2 = 7,

Γ0 = 4, Γ1 = 5, and Γ2 = 6,

p0 = 1, p1 = 2, and p2 = 3,

evg ∼ N(0, 1), g ∈ {0, 1, 2} ,

vg =
∑2

j=0pjaj + evg , g ∈ {0, 1, 2} ,

bg = κog + Γgx+ vg, g ∈ {0, 1, 2} ,

yg = mg + xbg + ug, g ∈ {0, 1, 2} ,

and y = d0y0 + d1y1 + d2y2.

82



For the model with symmetric instrument, the DGP setup is almost exactly the same as

the one above. However, I make some modifications on both the location parameters and

the distribution of instrument appearing in the latent variable equation as follows:

l0 = 1, l1 = 5.2, and, l2 = 2,

z = z ∼ N(0, 2).

For the model with asymmetric instrument and misspecification in the latent variable

equation, the DGP setup is very similar to the one without misspecification. However,

I introduce an additional instrument in the latent variable equation and ignore it from

the MNL regression of treatment variable on instruments at the first stage, thus creating

misspecification. In line with this, I make the following modifications to the DGP:

z = (z1, z2)′,

z1 ∼ χ2(2)− 2,

z2 ∼ χ2(2)− 2,

w∗g = lg + γgz1 + ϑgz2 + ag, g ∈ {0, 1, 2} ,

ϑ0 = γ1, ϑ1 = γ2, and ϑ2 = γ0,

where z1 and z2 are scalar instruments in the choice equation for w∗g (i.e., the latent variable

equation), and ϑg is a scalar parameter associated with z2 in w∗g for g = 0, 1, 2.

Lastly, for the model with symmetric instrument and misspecification in the latent vari-

able equation, the DGP setup is again very similar to the one without misspecification. I

make the following modifications to its DGP:
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z = (z1, z2)′,

z1 ∼ N(0, 2),

z2 ∼ N(0, 2),

l0 = 4.5, l1 = 4, and, l2 = 2,

w∗g = lg + γgz1 + ϑgz2 + ag, g ∈ {0, 1, 2} ,

ϑ0 = γ1, ϑ1 = γ2, and ϑ2 = γ0,

where z1, z2, and ϑg are defined just as in the model with asymmetric instrument and

misspecification in the latent variable equation.

As in Chapter 1, both γg and lg play a role in determining the percentage of each treatment

group in simulations for g = 0, 1, 2. Having γg’s being apart from each other enough is

also critical to obtain strong first stage estimates and to ward off identification problems

in the first stage estimation. To increase the effect of endogeneity in the model, having

ηg,j’s seperated from each other across treatment statuses is also another critical point for

g, j = 0, 1, 2. Following Wooldridge (2008, p. 106; 2010, p. 947), I also vary the distribution

of instrument z in order to see if its distribution can influence IV estimates for ATEs in

terms of consistency.

2.5.2 Simulation Results

I present my simulation results in two parts: first, asymptotic efficiency outcomes and

second, asymptotic unbiasedness and consistency outcomes. The simulation results reported

in Tables B.1 through B.16 aim for comparing CF method with IV method in terms of

asymptotic efficiency, asymptotic unbiasedness and consistency. The first eight tables belong
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to models without misspecification, whereas the last eight tables include results coming out

of models with misspecification.

In Tables B.1 through B.16, I report the Monte Carlo (M.C.) estimates for ψog, Γg, and

ATEh,0; bias in the M.C. estimate for ATEs; bootstrapped standard errors (BS. SEs) and

Monte Carlo standard deviations (M.C. SDs) for ψog, Γg, and ATEh,0; and BS. SEs and M.C.

SDs for standard errors of ψog, Γg, and ATEh,0 for g = 0, 1, 2 and h = 1, 2. In simulations, I

use different sample sizes (i.e., n = 1000, n = 2000, n = 5000 and n = 10000) for each DGP

setup with the number of M.C. and BS. iterations always equal to 10000. I also used some

trimming to remove outliers from my simulation analysis.

As for the notation, in Tables B.1-B.16, ψ̂og is the parameter estimate for ψog, Γ̂g is the

parameter estimate for Γg, ˆateh,0 is the estimate for ATEh,0, and bias( ˆateh,0) is the bias in

the estimate for ATEh,0 for g = 0, 1, 2 and h = 1, 2. Furthermore, se(ψ̂og) is the standard

error of parameter estimate for ψog, se(Γ̂g) is the standard error of parameter estimate for

Γg, and se( ˆateh,0) is the standard error of the estimate for ATEh,0 for g = 0, 1, 2 and h = 1, 2.

Since these tables would require a considerable amount of space in the main body of the

chapter, I place all simulation tables of this chapter into appendix B.

At this point, it is also important to remember the true values for ψog, Γg, and ATEh,0

for g = 0, 1, 2 and h = 1, 2 since I often refer them throughout this section. As pointed out

in section 2.3, since x ∼ N(0, 1), the true values are respectively as follows:

ψo0 = 1, ψo1 = 2, and, ψo2 = 3,

Γ0 = 4, Γ1 = 5, and, Γ2 = 6,

ATE1,0 = 2, and ATE2,0 = 4.

2.5.2.1 Asymptotic Efficiency Outcomes

From an efficiency standpoint, let’s first consider the models with no misspecification. In
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Table B.1, the simulation results show that BS. SEs and M.C. SDs of the CF estimates for

ψog (Γg) are almost always higher (lower) than BS. SEs and M.C. SDs of the counterpart

IV estimates, respectively. Similarly, BS. SEs and M.C. SDs of the standard errors of CF

estimates for ψog (Γg) are also almost always higher (lower) than than those of the IV

estimates. Furthermore, BS. SEs and M.C. SDs of the CF estimates for ATEg,0 are always

higher than BS. SEs and M.C. SDs of the counterpart IV estimates. For instance, in Table

B.1, the BS. SE of the CF parameter estimate for ψo1 (Γ1) is about 22% (22%) higher (lower)

than that of the IV estimate, and the M.C. SD of the CF parameter estimate 59% (32%)

higher (lower). Again in Table B.1, the BS. SE of the standard error of CF parameter

estimate for ψo1 (Γ1) is about 57% (43%) higher (lower) than that of the IV estimate, and

the M.C. SD of the standard error of CF parameter estimate 135% (57%) higher (lower).

Furthermore, the BS. SE of the CF parameter estimate for ATE1,0 is about 33% higher than

that of the IV estimate, and the M.C. SD of the CF parameter estimate 67% higher. A

very similar pattern is observed in Tables B.2 through B.8 as I switch the distribution of

instrument z from asymmetric to symmetric and/or increase the sample size but with higher

precision in estimates. As a result, when there is no misspecification, the simulation results

demonstrate that neither the CF method nor the IV method performs better compared to

the other method from the perspective of efficiency: The results suggest that CF method

estimates Γg and their standard errors more precisely than does IV method; however, IV

method estimates ψog, their standard errors, and ATEs more precisely than does CF method

for g = 0, 1, 2.

Now let’s take a look at the models with misspecification in Tables B.9 through B.16. In

Table B.9, the simulation results still provide evidence for that that BS. SEs and M.C. SDs

of the CF estimates for ψog (Γg) and ATEg,0 are almost always higher (lower) than BS. SEs

and M.C. SDs of the counterpart IV estimates, respectively. When it comes to BS. SEs and

M.C. SDs of the standard errors of estimates for Γg, the simulation results seem to favor CF

method: CF method has sharper estimates than does IV method. And from the dot plots
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of estimated parameters, it seems like the abundance of outliers in IV estimates play a role

in this observation, especially when the sample size is relatively small (i.e., N = 1000, 2000

) and even after some trimming. As for BS. SEs and M.C. SDs of the standard errors of

estimates for ψog, the simulation results are mixed. To give a few instances, in Table B.9,

the BS. SE of the CF parameter estimate for ψo1 (ATE1,0) is around 88% (51%) higher

than that of the IV estimate, and the M.C. SD of the CF parameter estimate 130% (126%)

higher. On the other hand, the BS. SE (the BS. SE of the standard error) of CF parameter

estimate for Γ2 is 22% (77%) lower than that of the IV estimate, and the M.C. SD (the

M.C. SD of the standard error) of CF parameter estimate 67% (97%) lower. A very similar

pattern is observed in Tables B.10 through B.16 as I switch the distribution of instrument z

from asymmetric to symmetric and/or increase the sample size but with higher precision in

estimates. For example, the M.C. SD of the CF parameter estimate for ψo0 (ATE2,0) is .3526

(1.9578) in Table B.13 which is around 72% (57%) lower than 1.2723 (4.5059), the same CF

estimate in Table B.9. As a result, when there is misspecification, the simulation results show

that the efficiency results resemble to those when there is no misspecification and no method

has a definite efficiency advantage over the other. The results indicate that CF method

estimates Γg and their standard errors more precisely than does IV method; whereas, IV

method estimates ψog and ATEs more precisely than does CF method for g = 0, 1, 2.

2.5.2.2 Asymptotic Unbiasedness and Consistency Outcomes

Using the asymptotic unbiasedness and consistency ideas from Chapter 1, let’s first take

a look at the results with no misspecification (e.g., those in Tables B.1 through B.8). In the

absence of misspecification, the simulation results show that M.C. simulation estimates from

CF method for both ψog and ATEh,0 are very close to the true values (even when sample is

relatively small), whereas the ones from IV method are not that close at all for g = 0, 1, 2 and

h = 1, 2. For example, in Table B.1, M.C. simulation estimates from IV method for ψo0, ψo1,
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and ψo2 are respectively 1.4465 (about 45% higher than the true value), 1.8806 (around 6%

lower than the true value), and 2.8735 (around 4% lower than the true value) and are all off

the true values, which causes severe biases in ATE estimates (about 28% lower in estimated

ATE1,0 and 14% lower in estimated ATE2,0) even though M.C. simulation estimates from

IV (and CF) method for Γ0, Γ1, and Γ2 are very close to the true values. On the other hand,

M.C. simulation estimates from CF method of both ψog and ATEh,0 in Table B.1 are not

off the true values at all with almost no biases. As the sample size increases from 1000 in

Table B.1 to 10000 in Table B.4, M.C. simulation estimates from IV method do not improve

on the biases; however, their BS. SEs and M.C. SDs get closer to zero just as those from

CF method. A very similar pattern can also be seen in Tables B.5 through B.8 as I switch

the distribution of instrument z from asymmetric to symmetric and/or increase the sample

size. As a result, the simulation results indicate that, in the absence of misspecification, CF

method is asymptotically unbiased and consistent while IV method is asymptotically biased

and inconsistent (except for Γg, g = 0, 1, 2), which is supportive of the conjecture I made in

subsection 2.3.1.

Here, I also need to mark that having unbiased and consistent estimates from IV method

for Γg is in contrast to my expectations in subsection 2.3.1 since they are the coefficient esti-

mates associated with the interaction terms dg(x2) for g = 0, 1, 2. I guess one reason behind

this result might be that the amount of exogenous variation coming from x2 overpowers the

endogeneity embedded in dg(x2), at least in my simulation analysis.

Under the presence of misspecification, the simulation results in Tables B.9 through B.16

indicate that M.C. simulation estimates for ψog and ATEh,0 from both CF method and IV

method are off the true values for g = 0, 1, 2 and h = 1, 2. For instance, in Table B.9, M.C.

simulation estimates from CF method for ψo0, ψo1, and ψo2 are respectively .9461 (about

5% lower than the true value), 1.5961 (around 20% lower than the true value), and 4.9293

(around 64% higher than the true value) and are all off the true values, which leads to

drastic biases in ATE estimates (about 19% lower in estimated ATE1,0 and 50% higher in
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estimated ATE2,0) even though M.C. simulation estimates from both IV and CF methods

for Γ0, Γ1, and Γ2 are again very close to the true values as in the case of no misspecification.

As noted before, M.C. simulation estimates from IV method are also not close to the true

values. However, there is a difference: Biases in the estimates from IV method are lower

than those in the estimates of CF method except in the estimates for ψo0 and ATE1,0. For

example, in Table B.9, M.C. simulation estimates from IV method for ψo2 and ATE2,0 are

respectively 3.0860 (around 3% higher than the true value) and 3.6704 (around 8% lower

than the true value) but these biases are all smaller than their counterparts from CF method,

64% and 50% respectively. As the sample size increases from Table B.10 to Table B.12,

M.C. simulation estimates from both IV and CF methods do not improve on the biases;

however, their BS. SEs and M.C. SDs get smaller. A very similar pattern can also be seen

in Tables B.13 through B.16 as I switch the distribution of instrument z from asymmetric to

symmetric and/or increase the sample size. Actually, the simulation results in Tables B.13

through B.16 suggest that IV method performs even better in terms of unbiasedness with

more biases only in the estimates for ψo0. As a result, the simulation results indicate that,

under misspecification, CF method is asymptotically more biased compared to IV method,

and both methods are inconsistent.

2.6 Conclusion

In this chapter, I introduce an econometric model with a discrete multivalued endogenous

treatment variable and CRCs and show how to consistently estimate ATEs by a three step

estimation procedure of CF method in such a model where the endogeneity problem is further

exacerbated compared to the one in the model without CRCs as in Chapter 1. Moreover,

I state that, based off the theorems developed in Chapter 1 and restated in this chapter,

the asymptotic distribution of the CF estimates follows a normal distribution, and the CF

estimates are
√
N − consistent. I propose a consistent estimator for the asymptotic variance
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matrix of CF estimates, which takes into consideration the nonlinear first stage estimation,

following the analogy principle as in Chapter 1. For those who do not like to go through

multistep estimation, I also express how one can consistently estimate ATEs and obtain valid

standard errors for the parameters of interest by using GMM.

In my simulation analysis, I compare CF method and IV method under various specifi-

cations with and without misspecification. In the absence of misspecification, the simulation

results suggest that CF method is asymptotically unbiased and consistent (but not neces-

sarily more efficient because, for some parameters, IV method provides sharper estimates

than CF method). Whereas, IV method is generally asymptotically biased and inconsistent,

which is more pronounced when the instrument is asymmetrically distributed. Therefore,

the simulation results point that, without misspecification, CF method can consistently es-

timate ATEs, while IV method cannot. In the presence of misspecification, the simulation

results show that both CF and IV methods have biased estimates. However, biases in IV es-

timates are generally lower than those in the estimates of CF method, which is more obvious

when the instrument is symmetrically distributed. With regard to efficiency, the findings

from simulations are mixed in the sense that none of the methods outperforms the other

one clearly. In addition, especially in the presence of misspecification, the simulation results

point that IV method can less precisely estimate the standard errors of standard errors when

sample size is relatively small.

All of the research ideas mentioned in the conclusion of Chapter 1 can be explored in a

discrete multivalued endogenous treatment model with CRCs, as well. In addition to these

research ideas though, it can be worth the time and effort to investigate the ways in which

we can extend the model in this chapter to the framework of panel data models. We can also

develop tests that measure the existence of CRCs and the degree of endogeneity attached

to them as in Heckman, Schmierer, and Urzua (2010). Furthermore, one can also examine

the possibility of devising a consistent IV method, i.e., a correction function approach as in

Wooldridge (2008), and its large sample properties for the model presented in this chapter.
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CHAPTER 3

ESTIMATION FOR MULTIVALUED ENDOGENOUS TREATMENT
EFFECT MODELS USING HIGH DIMENSIONAL METHODS: A

SIMULATION STUDY

3.1 Introduction

After the expansion of internet usage in early 2000s, digitization accelerated and pene-

trated all facets of society and science, including the field of economics. As described in Athey

and Luca (2019), many technology companies (e.g., Google, Apple, Facebook, Amazon, and

Microsoft) have been increasingly employing economists in order to address problems such

as individualized marketing and promotions, optimal pricing, auction platform design, and

intervention effects. The power of digitization combined with its absorption by technol-

ogy companies (and now rapidly by other traditional companies as well) also leads to new

opportunities for collaborations with academics (e.g., Golub Capital Social Impact Lab at

Stanford Graduate School of Business). As a result, in recent years, economists have been

making use of big data, which causes the rising popularity of machine learning (ML) tech-

niques in economics and the attempts to improve upon existing econometric approaches by

incorporating ML ideas.

The survey article of Donaldson and Storeygard (2016) summarizes several examples of

how ML methods are applied in development economics. Mullainathan and Spiess (2017)

provide a brief overview of the business-oriented prediction and classification problems (e.g.,

house valuation, industry classification, and hiring decision) in which ML methods are used.

There has been a decent usage of ML methods in policy determination and assignment in

economics too, see Athey (2018) for a review. Several econometric theory results for ML

methods with regard to estimation and inference have been established in research areas such

as treatment effects, structural models of consumer choice, panel data models, and model

selection. For instance, in randomized experiments, Chernozhukov et al. (2020) advance
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generic estimation and inference results for heterogeneous treatment effects that are valid

under the usage of various ML techniques such as boosted trees, ensemble methods, neural

networks, random forests, and regularized methods. Athey, Tibshirani, and Wager (2019)

develop generalized random forests that allow the estimation of any population quantities

identified in moment conditions as in generalized method of moments (GMM) method. Far-

rell, Liang, and Misra (2021) derive new rates of convergence for deep neural networks and

use these rates to develop semiparametric inference on parameters of interests. Iskhakov,

Rust, and Schjerning (2020) look at how ML can further contribute to structural economet-

rics. The application of ML methods in panel data models has received some attention from

economists, see, for example, Belloni et al. (2016); Kock (2016); Chernozhukov, Wuthrich,

and Zhu (2019); Semenova et al. (2021); and Athey et al. (2021). For more on the list of

economics research areas in which economists can benefit from the tools originated in the

ML literature, see Athey and Imbens (2019).

In recent years, there have been developments in high dimensional regularized models

applied to economics. As one of the earliest works in high dimensional regularized mod-

els, Belloni and Chernozhukov (2011a) present concepts related to high dimensional sparse

econometric models and their estimation using `1-regularized and post `1-regularized ML

methods, particularly least absolute shrinkage and selection operator (LASSO), in linear

and nonparametric settings. Technically, the ideas used in this paper go all the way back

to Belloni and Chernozhukov (2013)’s 2009 version available in arXiv.org. In these papers,

high dimensionality means that the number of parameters to be estimated in an economet-

ric model is more than sample size, and sparsity means that the number of covariates with

nonzero coefficients is in reality less than sample size and unknown. In a pioneering follow-

up work, Belloni, Chernozhukov, and Hansen (2011a) share inferential (and estimation)

results for linear instrumental variables (IV) model with many instruments and partially

linear models in high dimensional sparse setting. In another influential paper, Belloni and

Chernozhukov (2011b) develop regularized quantile regression in high dimensional sparse
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models, show the consistency of their estimator for this model, and evaluate its performance

by simulation. Later, Belloni, Chernozhukov, and Kato (2019) also establish new inference

methods for the parameters from `1-penalized quantile regression in high dimensional sparse

settings. For an early overview of estimation techniques and inference in high dimensional

models with a focus on model selection and LASSO methods, see Belloni, Chernozhukov,

and Hansen (2014b) and Chernozhukov, Hansen, and Spindler (2015a).

In the last decade, there are also some notable work in the casual and debiased estimation

of linear high dimensional models. For example, Belloni et al. (2012) employ LASSO to select

instruments, show the asymptotic properties of the linear IV estimator that is based on post

LASSO method dampening shrinkage bias associated with LASSO, and use partialled-out

variables for inference when instruments are weak. Belloni, Chernozhukov, and Wei (2016)

extend the results in this paper to generalized linear high dimensional regression models

with regular sparsity assumption. Belloni, Chernozhukov, and Hansen (2014a) introduce

a new estimation method called post double selection and provide uniformly valid post

selection inference for treatment effects in sparse high dimensional models. This method is

robust to imperfect selection of the controls and allows for non-Gaussian and heteroscedastic

disturbances too. Jointly using Neyman-orthogonal scores and crossfitting in Chernozhukov

et al. (2018), the authors propose residual-on-residual regression method to remove biases

associated with regularized ML methods off causal parameters of interest and construct valid

confidence intervals for these parameters. For more on debiased estimation and valid post

estimation inference results and applications, see Belloni et al. (2017); Chernozhukov et al.

(2017); Chernozhukov, Newey, and Singh (2021); and Athey, Imbens, and Wager (2018).

In the last couple of years, there is also some interest in high dimensional moment-based

regularized models and high dimensional models with measurement error. For more on these,

see, for example, Belloni et al. (2018a); Belloni et al. (2018b); Caner and Kock (2019); Bach

et al. (2020); and Belloni, Chernozhukov, and Kaul (2017); Chernozhukov, Wuthrich, and

Zhu (2018); Belloni, Kaul, and Rosenbaum (2019); and Chernozhukov et al. (2020).

93



In this chapter, I extend my work from Chapter 1 to a high dimensional sparse model

in a particular setting. Imagine that there exists an extra set of high dimensional variables.

And a low dimensional (and unknown) subset of these variables has an impact on the out-

come (so some of these variables are relevant in the outcome equation); however, all of these

high dimensional variables are totally ignorable (or redundant) to the decision to undertake

the treatment given some instruments in the selection equation, which is not unheard of

in experimental intervention studies. Long known as in Cochran (1957), the addition of

distinctly relevant variables into a regression often results in more precise estimation and

better prediction. For this reason, the inclusion of high dimensional variables in estimation

can potentially improve the efficiency and predictive power of the model in Chapter 1 with-

out jeopardizing its consistency results of interest when the high dimensional variables are

orthogonal to (or uncorrelated with) the variables of interest already included. However, the

high dimensionality of these extra variables requires the usage of estimation methods that

are capable of doing variable selection (especially needed if the sample size is also small)

among the extra set of high dimensional variables really influencing the outcome of interest

and that produce reliable inference results. Through a simulation analysis, this chapter aims

to guide economists in if (and which) LASSO-based inference and variable selection methods

would perform better than the control function (CF) estimator from Chapter 1 for discrete

multivalued endogenous treatments in a linear scalar outcome high dimensional sparse model

with heterogeneous counterfactual errors just described in previous sentences. I also allow for

non-Gaussian disturbances in my particular setting. To address endogeneity, I again use the

CF approach from Chapter 1: First, a multinomial logit model for the treatment decision in

a setting that is not high dimensional is estimated by maximum likelihood to construct CF

variables. Second, these CF variables are added into outcome equation in high dimensional

setting to be estimated by different ML methods.

For the parameter estimation in the outcome equation with high dimensional variables,

I specifically use four different ML methods: LASSO; post partial-out LASSO of Belloni et
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al. (2012); post double selection LASSO of Belloni, Chernozhukov, and Hansen (2014a);

and double/debiased ML LASSO of Chernozhukov et al. (2018). In my simulations, I also

include the CF method from Chapter 1 as a benchmark with the aim of comparing the

finite sample performances of these four LASSO-based ML methods to the CF’s. In the

comparison, I employ measures such as bias of ATE estimates, standard deviation of ATE

estimates, mean absolute prediction error, root mean square error (RMSE), mean number

of correctly selected covariates, and mean size of selected set of covariates. To the best of

my knowledge, this chapter is the first simulation-based comparative analysis of the LASSO-

based methods above in a discrete multivalued endogenous treatment model of linear high

dimensional sparse setting with heterogeneous counterfactual errors. The main simulation

finding in this setting is that, on top of being on par with the CF method in finite sample

bias ground, the LASSO-based methods can surpass the efficiency performance of the CF

method in ATE estimation if there exist enough extra predictive variables that are ignorable

in treatment selection among a set of high dimensional predictors of outcome.

The rest of this chapter is organized as follows. In section 3.2, I introduce the model. In

section 3.3, I summarize the ML methods and the procedure to estimate the parameters of

interest. In section 3.4, I share some simulation results. In section 3.5, I conclude. And, in

appendix C, I share simulation tables that are hidden from the main body of this chapter.

3.2 The Model

Consider the model from Chapter 1 augmented by the presence of high dimensional

variables

yg = αg + xβg + hδg + ug

w∗g = zγg + ag, (3.1)

where yg is the gth counterfactual outcome variable, αg is the scalar coefficient in the counter-
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factual outcome equation for yg, x ≡ (x1, x2, . . . , xl) is the 1× l vector of exogenous variables

in yg, βg is the l× 1 vector of slope coefficients associated with x in yg, h ≡ (h1, h2, . . . , hlh)

is the 1 × lh vector of high dimensional exogenous variables in yg, δg is the lh × 1 vector of

slope coefficients associated with h in yg, ug is the counterfactual error in yg, w∗g is the latent

treatment variable that determines the choice of treatment status among G + 1 alternative

treatment statuses, z ≡ (z1, z2, . . . , zk) is the 1 × k vector of instruments that includes a

constant term in the choice equation for w∗g , γg is the k × 1 vector of parameters in w∗g , and

ag is the scalar error term that is independently and identically Gumbel distributed (i.i.d.)

with location parameter µ = 0 and scale parameter β = 1 in w∗g for g = 0, 1, . . . , G. Here,

high dimensionality means that lh is bigger than the sample size N (i.e., lh > N) available

in estimation.

As in Chapter 1, let w ∈ {0, 1, . . . , G} be the observed discrete multivalued endogenous

treatment variable whose values are determined by w∗g that can be regarded as the utility or

satisfaction obtained from treatment status g for g = 0, 1, . . . , G. Let the treatment statuses

of w be exhaustive and mutually exclusive. Define binary treatment status indicators, dg =

1[w = g] for g = 0, 1, . . . , G. So the binary treatment status indicator dg is equal to one if the

treatment status is equal to g and zero otherwise. This coupled with the mutual exclusivity

of treatment statuses implies that
∑G

g=0dg = 1. Define the 1× (G + 1) vector of treatment

statuses d ≡ (d0, d1, . . . , dG). Let y be the observed outcome. Then, I can write

y = d0y0 + d1y1 + · · ·+ dGyG, (3.2)

where yg is the gth counterfactual outcome for g = 0, 1, . . . G.

After having described the discrete multivalued endogenous treatment model with het-

erogeneous counterfactual errors and high dimensional variables, I now will list a series of

assumptions some of which have also been made in Chapter 1 to further develop the model.

First, I assume that the rational economic agents choose the status of treatment from which

they receive the most satisfaction out of all possible treatment statuses. That is,
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• Assumption 3.1 (A.3.1): One chooses treatment status g, i.e., w = g if and only if

w∗g ≥ w∗j ∀j 6= g for g, j = 0, 1, . . . , G.

Second, I assume that identification of the model in (3.1) and (3.2) is aided by the

exclusion of some (at least one) variables in the set of instruments z from the set of exogenous

variables in x. The set of exogenous variables in x can all be included in the set of instruments

z.

• Assumption 3.2 (A.3.2): Identification of the model described by (3.1) and (3.2) is

strengthened by exclusion of at least one variable in z from the set of variables in x.

In economics, it is often the case that z includes all the variables in x. However, this is

not an absolute necessity in my model as long as the exclusion restriction above is satisfied.

Third, I make an assumption about the irrelevancy of h given the set of instruments z in

the gth choice equation for g = 0, 1, . . . G.

• Assumption 3.3 (A.3.3): D(w∗g |z,h) = D(w∗g |z) where D(· |· ) means conditional

distribution. That is, conditional on z, w∗g (and thereof w) is independent of h.

Conceptually, having variables, such as the ones in h, that appear only in the outcome

equation is standard in a randomized controlled trial (RCT) due to treatment selection (or

assignment)’s being totally random. For this reason, in RCTs, the propensity score for

treatment does not depend on any variables; whereas, the outcome of interest can depend on

some variables. Apart from RCTs, here is a framework where A.3.3 is reasonable. Suppose

an economist have an experimental intervention with exogenous instruments. In line with
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Vella and Verbeek (1999, p. 474) and Heckman (1990, p. 314), the experimental intervention

with exogenous instruments means that, using exogenous instruments, unobservables that

play a role in the treatment decision and that are correlated with the outcome of interest

have been taken into consideration. And further assume that this economist can create so

reliable and strong instruments z via surveys that these instruments include all necessary

observed information to make treatment decisions. Well then in this case, it is plausible

that the treatment variable w out of this intervention is related only to the instruments z

and is conditionally independent of other outcome-related (and maybe high dimensional)

observables h once z is controlled for.

It is also important to make the distinction between the set of variables in x and the set

of high dimensional variables h in the counterfactual outcome equation yg. x can be thought

as micro-level structural characteristics, and h as macro-level characteristics. To make the

difference between x and h clearer, consider the following example from development eco-

nomics similar to that in Danquah et al. (2021). Imagine that one studies how influential

household gender wage gap is on women’s empowerment, using survey data with limited

number of observations (but with a dense/high dimensional set of variables created based

on survey answers and outside data sources). In such a study, the dependent variable can

be the share of household assets owned by women. The treatment variable can be gender

wage gap at household level grouped in low, medium, and high levels of relative difference

between average male and female adult household members’ earnings. x can be exogenous

covariates such as household and family characteristics that affect the share of household

assets owned by women. On the other hand, h can be high dimensional regressors such as

occupation, sector, access to certain infrastructure and services, location, and social norms

that impacts the share of household assets owned by women.
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As a result, the model in (3.1) and (3.2) together with the assumptions made so far still

allows the treatment variable w to follow a multinomial logit model with choice probabilities

given as follows:

P (w = g|x,h, z) = P (w = g|z) = exp(zγg)/
G∑
r=0

exp(zγr), (3.3)

for g = 0, 1, . . . , G. See McFadden (1973) for a similar result without the high dimensional

variables h. The next assumption is the Dubin and McFadden’s linearity assumption com-

bined with the redundancy of x, h, and z for the expectation of ug conditional on a.

• Assumption 3.4 (A.3.4): E(ug|x,h, z, a) = E(ug|a) =
∑G

j=0ηg,jaj+[−
∑G

j=0ηg,jE(aj)],

where ug is the counterfactual error in yg, x is the 1× l vector of exogenous variables

in yg, h is the 1 × lh vector of high dimensional exogenous variables in yg, z is the

1×k vector of instruments that includes a constant term in the choice equation for w∗g ,

a ≡ (a0, a1, . . . , aG) is the 1× (G+ 1) vector of i.i.d. Gumbel distributed errors aj with

location parameter µ = 0 and scale parameter β = 1 in w∗j , ηg,j is the scalar multiple

of correlation coefficient between ug and aj, and E(aj) = 0.5772 is Euler’s constant for

j, g = 0, 1, . . . , G.

Using all the assumptions from A.3.1 through A.3.4, I create CF terms as derived in

Chapter 1 to deal with endogeneity in w. In section 3.3, I will introduce the ML methods I

employ to estimate the parameters of interest in (3.1).

3.3 Estimation

To eliminate the complications of endogeneity in w, I again rely on the idea of CF ap-

proach presented in Chapter 1. Referring back to appendix A, it is pretty straightforward
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to derive the estimating equation for the parameters of interest in (3.1): Just add h as an-

other conditioning variable into the equations in that section. Then, the baseline estimating

equation for the regressions augmented by the CF terms in this section is as below:

y =
G∑
j=0

djαj +
G∑
k=0

dkxβk +
G∑

m=0

dmhδm +

+
G∑
g=0

[−ηg,gdglog(Λg)] +
∑
g 6=0

dgηg,0M0 +
∑
g 6=1

dgηg,1M1 + · · ·+

+
∑
g 6=G

dgηg,GMG + e, (3.4)

where E(e|d,x,h, z) = 0, Λj = exp(zγj)/
∑G

r=0exp(zγr), and Mj = Λjlog(Λj)/(1 − Λj) for

j = 0, 1, . . . , G. Note that because of A.3.3, the high dimensional variables h are in fact not

needed for consistently estimating the partial effects αj (and thereof ATEs if E(x) = E(h) =

0) for j = 0, 1, . . . , G. Therefore, the CF estimator from Chapter 1 applied to (3.4) without

the terms
∑G

m=0dmhδm still purges endogeneity of the model and is still valid for producing

consistent partial effect estimates for αj. Before moving forward with the ML methods and

their procedures, let me make the following assumption regarding the sparsity in (3.4).

• Assumption 3.5 (A.3.5): A random sample {wi, zi, yi, xi, hi} of N observations

(i.e., i = 1, 2, . . . , N) is available for the treatment choice and the outcome equations.

The number of parameters in both γg and βg is way less than the sample size N (i.e.,

k << N and l << N). Suppose hδg = (h1δg1 + h2δg2) where h1 is the 1× lh1 vector of

exogenous variables in h associated with nonzero slope coefficients δg1 , and h2 is the

1 × lh2 vector of high dimensional (i.e., lh2 > N) exogenous variables in h associated

with zero slope coefficients δg2 . It is not known which variables in h belong to h1 or

h2. However, it is true that the number of nonzero slope coefficients in δg is way less

than the sample size N (i.e., lh1 << N , the sparsity condition) such that the number
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of coefficients to be estimated in (3.4), say p′, is in reality way less than the sample

size (i.e., p′ = (l + lh1 +G+ 2)(G+ 1) << N)).

A.3.5 implies that, given the assumptions made earlier, the multinomial logit model of

w on z can be consistently estimated using the standard asymptotic theory. On the other

hand, since the variables associated with nonzero coefficients in h is not known, there are

potentially p = (l + lh + G + 2)(G + 1) variables in (3.4). And this number p, already

greater than N as assumed by A.3.5, can grow even further as the number of treatment

status increases. If one wants to take advantage of the variables in h while estimating, then

the high dimensionality in (3.4) creates a big estimation problem that cannot be handled

by low dimensional methods such as the CF estimator from Chapter 1 and that causes

the researchers to utilize other estimation methods designed for high dimensional and sparse

settings. Due to the sparsity condition made in A.3.5 and the linearity of (3.4) in parameters,

LASSO estimation method and its unbiased versions can be used to estimate the parameters

of interest in (3.4), e.g., the partial effects αj for j = 0, 1, . . . , G.

As suggested just above, one can benefit from the existence of the variables in h using

LASSO-based methods. Owing to the relevancy of the high dimensional variables in h

with the outcome variable y and the independence of treatment decision from h, estimating

(3.4) by using LASSO-based methods can improve the efficiency and predictive power of

the model over that by the CF estimator from Chapter 1 without dangering consistency.

For example, in low dimensional settings with randomly assigned treatment, Imbens and

Rubin (2015), Lin (2013), and Negi and Wooldridge (2021) all point out efficiency gains

out of adding extra variables into regression that are sufficiently predictive of the outcome.

Considering all these, with strong instruments z and h1 highly predictive of the outcome, it

can worthwhile from efficiency and prediction perspectives (and hopefully biaswise as well)

to estimate (3.4) by (at least one of) the LASSO-based methods which are more complicated

and more time-consuming than the CF estimator from Chapter 1. Now, I can describe the
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four LASSO-based methods I will use to estimate the parameters of interest in (3.4) under

all assumptions from A.3.1 through A.3.5.

3.3.1 LASSO Estimation

Developed by Tibshirani (1996), LASSO is a regularized regression method similar to

ridge regression that economists are familiar with and use when they want to decrease the

severity of multicollinearity among covariates at the expense of shrinking their coefficient

estimates using a penalty on coefficient sizes. Thus, LASSO and its variants are sometimes

also called shrinkage or penalized regression methods. In my model given by (3.1) and

(3.2) together with all assumptions from A.3.1 through A.3.5, LASSO estimator solves the

following problem

min
θ∈Θ

{
N∑
i=1

(yi −m(Xi,v(di, zi, γ̂), θ))2/2 + λ

p∑
j=1

|θj|

}
, (3.5)

wherem(Xi,v(di, zi, γ̂), θ) ≡ Xiϑ+vi(γ̂)ϕ is a real-valued scalar function, γ̂ = (γ̂′0, γ̂
′
1, . . . , γ̂

′
G)′

is the (G+ 1)k × 1 vector of
√
N − consistent and asymptotically normal first stage condi-

tional maximum likelihood estimates from the multinomial logit (MNL) regression of wi on

zi for i = 1, 2, . . . , N, θ = (θ1, θ2, . . . , θp) = (ϑ′, ϕ′)′ is the p × 1 vector of parameters, | · | is

absolute value operator,
∑p

j=1|θj| is `1 norm (a.k.a. `1 LASSO penalty), λ is the Lagrange

multiplier (a.k.a. the tuning parameter that determines the strength of the penalty), Xi is

the 1× (lh + l+ 1)(G+ 1) vector of regressors, and vi(γ̂) is the 1× (G+ 1)(G+ 1) vector of

generated regressors (actually all CF terms).
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More clearly,

Xi = ( d0i , d1i , · · · , dGi , d0ixi, d1ixi, · · · , dGixi, d0ihi, d1ihi, · · · , dGihi )

vi(γ̂) = ( −d0ilog(Λ̂0i), · · · , −dGilog(Λ̂Gi), d1iM̂0i , d2iM̂0i , · · · , dGiM̂0i , d0iM̂1i ,

d2iM̂1i , d3iM̂1i , · · · , dGiM̂1i , · · · , d0iM̂Gi , d1iM̂Gi , · · · ,

, dG−1iM̂Gi), (3.6)

where Λ̂gi = exp(ziγ̂g)/
∑G

r=0exp(ziγ̂r) and M̂gi = Λ̂gilog(Λ̂gi)/(1 − Λ̂gi) for g = 0, 1, . . . , G

and i = 1, 2, . . . , N.

Notice that LASSO estimator minimizes (3.5) only with respect to θ not with respect

to θ and λ together. Indeed, the minimization is done for given values of λ,so the tuning

parameter needs to be chosen before the minimization problem. One of the most frequent

approaches to choose λ is cross validation which typically runs LASSO (on the training set-

some portion of sample) using a candidate λ from a grid of λ values and selects the value

of λ to be used in the minimization problem by minimizing, say, the validation set (the

remaining portion of sample) prediction error. Also note that, as λ gets larger, `1 LASSO

penalty gets heavier (meaning more bias in coefficients) and the selected model gets sparser

(i.e., more coefficients are set exactly equal to zero). To learn more on shrinkage methods and

cross validation, see subchapters 3.4 and 7.10 in Hastie, Tibshirani, and Friedman (2009)

respectively. Another method to choose λ comes from the penalty level formula (12) in

Belloni, Chernozhukov, and Wang (2011, p.795). The formula is given below:

λ = c
√
NΦ−1(1− α/2p), (3.7)

where c=1.1, N is the sample size, Φ−1 is the inverse standard normal cumulative distribution

function, α=.05, and p is the number of potential variables in regression which is equal to lh

in my case. This method is especially designed for LASSO-based inference methods. It does
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not estimate the model several times for other values of λ from a grid of λ values, which

makes it much faster than cross validation. Compared to cross validation, LASSO-based

inference methods using (3.7) tend to better select the variables that have true nonzero

impact on the outcome. For these reason, I also prefer using (3.7) over cross validation in

this chapter.

Now, I can prescribe the following LASSO procedure to estimate the partial effects αj in

high dimensional and sparse setting for j = 0, 1, . . . , G :

Procedure 3.1

1. Estimate the predicted probabilities, Λ̂ji = exp(ziγ̂j)/
∑G

r=0exp(ziγ̂r), from a MNL of

wi on zi for j = 0, 1, . . . , G and i = 1, 2, . . . , N.

2. Run the LASSO regression of yi on Xi and vi(γ̂) with only djihi’s to be selected.

3. Obtain parameter estimates of dj’s from step 2,

where Xi and vi(γ̂) are defined as in (3.6) for j = 0, 1, . . . , G and i = 1, 2, . . . , N. Due

to the existence of generated regressors in the model, the standard errors and confidence

intervals associated with parameter estimates from LASSO unfortunately are not valid. For

this reason, I rely on Monte Carlo simulation to draw inference, which is also true for all the

other LASSO-based estimations below.

3.3.2 Post Partial-out LASSO Estimation

The main disadvantage of LASSO is that its parameter estimates are biased towards

zero after regularization by `1 penalty. Therefore, for inference purposes, researchers need

to handle the regularization bias. To this end, there have been several LASSO-based methods
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proposed by economists, and one of them is called post partial-out LASSO which is based

on Belloni et al. (2012). “Post” part simply means the application of linear regression to

the model selected by LASSO and alleviates biases in parameter estimates of LASSO due

to regularization. “Partial-out” part deals with endogenous covariates and the inclusion of

irrelevant variables (or the exclusion of relevant variables).

Belloni et al. (2012) imply that the score equations from the linear regression of an

partialled-out outcome on partialled-out covariates are immune to endogeneity and selection

mistakes. Here, the partialled-out outcome is the residual after running a linear regression of

the outcome on the LASSO-selected covariates, and similarly the partialled-out covariate is

the residual after running a linear regression of that covariate on the other LASSO-selected

covariates. Because of this partialling-out procedure, the post partial-out LASSO can be

called the post residual-on-residual LASSO with references to the conventional partialling-

out estimators

Adapting closely from Algorithm 1 given in Chernozhukov, Hansen, and Spindler (2015b),

the post partial-out LASSO procedure I can prescribe to estimate the partial effects in high

dimensional and sparse setting is as follows:

Procedure 3.2

1. Same as in Procedure 3.1.

2. Run a LASSO regression of dji on d0ixi, d1ixi.. . . , dGixi, d0ihi, d1ihi, . . . , dGihi, and

vi(γ̂), where only djih′is are to be selected, and djix′is and vi(γ̂) are forced to be included

in the selected controls. Let’s denote the selected controls by sdji for j = 0, 1, . . . , G.

3. Run a regression of dji on sdji . Let d̂ji be the residuals from this regression for j =

0, 1, . . . , G.

4. Let d̂i = (d̂0i , d̂1i , . . . , d̂Gi) be the collection of all the residuals from step 3.
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5. Run a LASSO regression of yi on d0ixi, d1ixi, . . . , dGixi, d0ihi, d1ihi, . . . , dGihi, and

vi(γ̂), where only djih′is are to be selected, and djix′is and vi(γ̂) are forced to be included

in the selected controls. Let’s denote the selected controls by syi .

6. Run a regression of yi on syi . Let ŷi be the residuals from this regression.

7. Run a regression of ŷi on d̂i.

8. Obtain parameter estimates of d̂ from step 7,

where vi(γ̂) is defined as in (3.6) for i = 1, 2, . . . , N.

3.3.3 Post Double Selection LASSO Estimation

Another method to lessen the regularization bias on parameters estimated by LASSO is

called post double selection LASSO given by Belloni, Chernozhukov, and Hansen (2014a).

Technically, the post double selection LASSO is a simplified version of the post partial-out

LASSO without partialling out outcome variable and other covariates. However, it is still

robust to imperfect selection of the covariates on top of reducing bias on parameter estimates.

“Post” part means the same as in the post partial-out LASSO. “Double selection” part, on the

other hand, means that covariates are selected for predicting both the variables of interest

and the outcome. This double selection of covariates to be included in the final estimating

equation is done with the purpose of strengthening the validity of inference results by adding

all the important and relevant variables that are correlated with the variables of interest and

the outcome.

In line with the estimation steps laid out in Belloni, Chernozhukov, and Hansen (2014a,

p. 610), the post double selection LASSO procedure I can prescribe to estimate the partial

effects in high dimensional and sparse setting is as follows:
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Procedure 3.3

1. Same as in Procedure 3.1.

2. Same as in Procedure 3.2.

3. Run a LASSO regression of yi on d0ixi, d1ixi, . . . , dGixi, d0ihi, d1ihi, . . . , dGihi, and

vi(γ̂), where only djih′is are to be selected, and djix′is and vi(γ̂) are forced to be included

in the selected controls. Let’s denote the selected controls by syi .

4. Let si ≡
{⋃G

j=0 sdji

}
∪ syi be the union of all the selected controls from steps 2 and 3.

5. Run a regression of yi on d0i , d1i , . . . , dGi , and si.

6. Obtain parameter estimates of dj’s from step 5,

where vi(γ̂) is defined as in (3.6) for j = 0, 1, . . . , G and i = 1, 2, . . . , N.

3.3.4 Double/Debiased ML LASSO Estimation

Lastly, I briefly go over double/debiased ML LASSO defined in great detail with its the-

oretical properties in Chernozhukov et al. (2018). The double/debiased ML LASSO is the

most complicated of all the LASSO estimation methods described in this section and can

be seen as the crossfit version of the post partial-out LASSO. To attenuate the effect of

regularization bias and overfitting bias on the parameters of interest, the double/debiased

ML LASSO uses two important techniques: Neyman-orthogonal moments/scores and cross-

fitting. For this reason, this new estimation method gets the name “double/debiased ML.”

Regularization bias is handled by orthogonalization obtained by both partialling out and

crossfitting, and crossfitting play a major role in overcoming bias induced by overfitting in

the double/debiased ML LASSO.
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Chernozhukov et al. (2018) defines two different double/debiased ML approaches. In

remark 3.1 of that article, the authors’ second approach DML2 is recommended over DML1

in many problems. For this reason, following definition 3.2 of double/debiased ML in Cher-

nozhukov et al. (2018, p. C23), the double/debiased ML LASSO procedure I can prescribe

to estimate the partial effects in high dimensional and sparse setting is as follows:

Procedure 3.4

1. Same as in Procedure 3.1.

2. Divide the sample of N into K equal-sized partitions randomly.

3. Let Ik be the set of observations in partition k and ICk ≡ {1, 2, . . . , N} \ Ik for k =

1, 2, . . . , K.

4. Run a LASSO regression of dji on d0ixi, d1ixi, . . . , dGixi, d0ihi, d1ihi, . . . , dGihi, and

vi(γ̂), where only djih′is are to be selected, and djix′is and vi(γ̂) are forced to be included

in the selected controls. Let’s denote the selected controls by sd,kji for j = 0, 1, . . . , G,

i ∈ ICk , and k = 1, 2, . . . , K.

5. Run a regression of dji on sd,kji , and let the parameter estimates from this regression be

ς̂d,kj for j = 0, 1, . . . , G, i ∈ ICk , and k = 1, 2, . . . , K.

6. Construct the residuals d̂ji =
(
dji − sd,kji ς̂

d,k
j

)
for j = 0, 1, . . . , G, i ∈ Ik, and k =

1, 2, . . . , K.

7. Let d̂i = (d̂0i , d̂1i , . . . , d̂Gi) be the collection of all the residuals from step 6 for i ∈ Ik

and k = 1, 2, . . . , K.

8. Run a LASSO regression of yi on d0ixi, d1ixi, . . . , dGixi, d0ihi, d1ihi, . . . , dGihi, and

vi(γ̂), where only djih
′
is are to be selected, and djix

′
is and vi(γ̂) are forced to be

included in the selected controls. Let’s denote the selected controls by sy,ki for i ∈ ICk

and k = 1, 2, . . . , K.
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9. Run a regression of yi on sy,ki , and let the parameter estimates from this regression be

ς̂y,k for i ∈ ICk and k = 1, 2, . . . , K.

10. Construct the residuals ŷi =
(
yi − sy,ki ς̂y,k

)
for i ∈ Ik and k = 1, 2, . . . , K.

11. Run a regression of ŷi on d̂i for i = 1, 2, . . . , N.

12. Obtain parameter estimates of d̂ from step 11,

where vi(γ̂) is defined as in (3.6). In a similar fashion portrayed in section 1.4 of Chapter 1,

ATEs in this chapter take the following form:

ATEg,0 = E(yg − y0)

= E (αg + xβg + hδg + ug − (α0 + xβ0 + hδ0 + u0))

= (αg − α0) + (E(x)) (βg − β0) + (E(h)) (δg − δ0), (3.8)

where the third equality uses E(ug) = 0 for g = 1, 2, . . . , G. Then, a consistent estimator of

ATEg,0 is

ÂTEg,0 = (α̂g − α̂0) + x̄(β̂g − β̂0) + h̄(δ̂g − δ̂0), (3.9)

where α̂g, α̂0, β̂g, β̂0, δ̂g, δ̂0, x̄= N−1
∑N

n=1xi, and h̄= N−1
∑N

n=1hi are respectively consistent

estimates for αg, α0, βg, β0, δg, δ0, E(x), and E(h).

One might think that, once the partial effects in high dimensional and sparse setting are

estimated using either one of Procedures 3.1− 3.4, ATEs can easily be obtained by plugging

the parameter estimates α̂g, α̂0, β̂g, β̂0, δ̂g, and δ̂0 into (3.9). However, this is not true due

to the fact that Procedures 3.1− 3.4 all provide debiased (and consistent) estimates only for

αg for g = 0, 1, . . . , G. The estimates for both βg and δg also need to debiased before using

them in (3.9) in order to overcome regularization biases on them owing to estimating high
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dimensional parameters by ML methods and to remove overfitting bias on them resulting

from using all observations while estimating high dimensional parameters and, afterwards,

parameters of interest. Orthogonalization (either done by partialling out the effect of high

dimensional variables from the variables of interest to obtain the orthogonalized variables

of interest or by doubly selecting high dimensional control variables that are useful for

predicting the variables of interest and the outcome variable or by both partialling out and

double selection) is used to get rid of regularization bias, and sample splitting to overcome

overfitting bias. Since x is low dimensional, the construction of the Neyman orthogonal scores

associated with x and sample splitting can be done, see, e.g., Example 2.1. in Chernozhukov

et al. (2018). However, when it comes to estimating δg debiasedly, there is a caveat: it is

high dimensional. And to the best of my knowledge, there has been no research that provides

results regarding consistent estimation of high dimensional parameters δg. Reasonably, when

consistent estimation of δg is not possible, one cannot make inference about these high

dimensional parameters either. On the other hand, inference results on low dimensional

parameters exist, see, e.g., Belloni, Chernozhukov, and Hansen (2014a, Theorem 2) and

Chernozhukov et al. (2018, Theorem 3.1 and Corollary 3.1). After all this discussion, there

are two cases in which ATEs can still be consistently estimated. First, when E(h) = 0 (or

when both E(x) = 0 and E(h) = 0, which is used in my simulations), ATEg,0 simplifies to

ATEg,0 = (αg − α0) + (E(x)) (βg − β0) (or ATEg,0 = (αg − α0) when both E(x) = 0 and

E(h) = 0) with one of its consistent estimates given by ÂTEg,0 = (α̂g − α̂0) + x̄(β̂g − β̂0)

(or ÂTEg,0 = (α̂g − α̂0) when both E(x) = 0 and E(h) = 0) for g = 1, 2, . . . , G. Second,

when δg is constant across all treatment statuses (e.g., δg = δ for g = 0, 1, . . . , G), then

again ATEg,0 = (αg − α0) + (E(x)) (βg − β0), and ÂTEg,0 defined above can be used for

consistent ATE estimates. Note that consistent estimation of ATEs is possible in these two

cases because ATEs do not depend on high dimensional parameters δg.
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3.4 Simulations

In this section, I report Monte Carlo simulation results that aim to compare and con-

trast mainly the finite sample performances of the estimation methods from section 3.3

(i.e., LASSO, post partial-out LASSO, post double selection LASSO, double/debiased ML

LASSO) and the CF method from Chapter 1. With respect to the measures of performance

comparison, I make use of bias of ATE estimates, standard deviation of ATE estimates,

mean absolute prediction error (MAPE), root mean square error (RMSE), mean number of

correctly selected variables (CSVs), and mean size of selected set of variables (SVs).

My simulation results come from the model introduced in section 3.2. However, I will

change the data generating process slightly for this model as I change the correlation structure

among the high dimensional variables in h and the sparsity condition (e.g., the number of

variables associated with nonzero parameters in h). For the sake of computational simplicity,

I adopt a scheme in which there is only one instrument in the latent variable equation (i.e.,

z = z), there is only one exogenous low dimensional (and distinct from z) variable in the

counterfactual outcome equation (i.e., x = x), and the treatment variable w takes on only

three values as always. In all simulations, the treatment is evenly spread among different

treatment statuses (i.e., each treatment status has at least about 30 percent of the sample

size).

3.4.1 Data Generating Process

In my simulation analysis, I used four different data generating processes (DGPs): one

for the model in section 3.3 with correlated variables in h = (h1, h2, . . . , h695) and moderate

sparsity (i.e., lh1 = 4), one for the model with correlated variables in h and high sparsity

(i.e., lh1 = 1),one for the model with uncorrelated variables in h and moderate sparsity, and

one for the model with uncorrelated variables in h and high sparsity. The setup for the DGP
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of the model in section 3.3 with correlated variables in h and moderate sparsity (i.e., h1 has

4 variables: h1, h2, h3, and h4) is as follows:

w ∈ {0, 1, 2} ,

dg = 1[w = g], g ∈ {0, 1, 2} ,

ag ∼ Gumbel(0, 1), g ∈ {0, 1, 2} ,

γ0 = 1, γ1 = 5, and, γ2 = 9,

l0 = 1, l1 = 4.5, and, l2 = 1.5,

z = z ∼ N(0, 2),

w∗g = lg + γgz + ag, g ∈ {0, 1, 2} ,

w = g iff w∗g ≥ w∗j , ∀j 6= g and g, j ∈ {0, 1, 2} ,

eg ∼ N(0, 1), g ∈ {0, 1, 2} ,

η0,0 = 0.05, η0,1 = 0.10, and η0,2 = 0.15,

η1,0 = 4.05, η1,1 = 4.10, and η1,2 = 4.15,

η2,0 = 8.05, η2,1 = 8.10, and η2,2 = 8.15,

ug =
∑2

j=0ηg,jaj + [−
∑2

j=0ηg,jE(aj)] + eg, g ∈ {0, 1, 2} ,

x = x ∼ N(0, 1),

h ∼ N(0,Σ) with elements Σr,c = (0.5)|r−c|, r, c ∈ {1, 2, . . . , 695} ,
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α0 = 1, α1 = 2, and, α2 = 3,

β0 = 6, β1 = 7, and, β2 = 8,

δ0,1 = 1, δ1,1 = 2, and, δ2,1 = 3,

δ0,2 = 2, δ1,2 = 3, and, δ2,2 = 4,

δ0,3 = 3, δ1,3 = 4, and, δ2,3 = 5,

δ0,4 = 4, δ1,4 = 5, and, δ2,4 = 6,

yg = αg + xβg + h1δg,1 + h2δg,2 + h3δg,3 + h4δg,4 + ug, g ∈ {0, 1, 2} ,

and y = d0y0 + d1y1 + d2y2.

For the model with correlated variables in h and high sparsity, I reduce the number of

variables associated with nonzero parameters in h from four to one (i.e., h1 has nonzero

coefficient only). This reduction in the dimension of h1 causes some of the parameters above

to be set equal to zero and some of the variables above in h1 to disappear from yg. Specifically,

δg,l will be zero for l = 2, 3, 4 and g = 0, 1, 2; and h2, h3, and h4 will be removed from yg. In

other words, the DGP of the model with correlated variables in h and high sparsity will be

almost exactly the same as the above DGP with the exception of the following modifications:

δ0,2 = 0, δ1,2 = 0, and, δ2,2 = 0,

δ0,3 = 0, δ1,3 = 0, and, δ2,3 = 0,

δ0,4 = 0, δ1,4 = 0, and, δ2,4 = 0,

yg = αg + xβg + h1δg,1 + ug, g ∈ {0, 1, 2} .
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For the model with uncorrelated variables in h and moderate sparsity, the DGP setup is

almost exactly the same as the one with correlated variables in h and moderate sparsity. The

only difference is that the variance-covariance matrix Σ now becomes a 695×695 identity

matrix, which is also the only difference between the DGPs of the model with uncorrelated

variables in h and high sparsity and the model with correlated variables in h and high

sparsity.

3.4.2 Simulation Results

I report my simulation results in Tables C.1 through C.16 in appendix C. My objective

out of these simulation examples is to compare the finite performances of several estima-

tion methods used in linear high dimensional sparse settings and of the CF method from

Chapter 1 (as a benchmark) in the presence of discrete multivalued endogenous treatment

and heterogeneous counterfactual errors. I have the expectation that, from an efficiency

perspective (hopefully biaswise and predictionwise too), it is worth running at least one of

the LASSO-based methods with the high dimensional variables in h which, due to the high

dimensional setting, are more involved and more time-consuming than my simpler estimator

from Chapter 1. And this expectation has roots in that some of the variables in h are pre-

dictive of the outcome and that h is irrelevant to the process of treatment choice. I present

my simulation results in two parts: first, bias and efficiency outcomes and second, prediction

and model selection outcomes.

In Tables C.1 through C.16, I report Monte Carlo estimates for ATEh,0, bias in the Monte

Carlo estimate for ATEs, Monte Carlo standard deviations (SDs) for ATEh,0, the mean

number of SVs in estimation, the mean number of CSVs in estimation, MAPE, and RMSE

for each of the estimation methods described earlier −specifically, LASSO, post partial-out

LASSO (PO), post double selection LASSO (DS), double/debiased ML LASSO (XPO), and

the CF method from Chapter 1) for h = 1, 2. In simulations, I use different small sample
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sizes n = 1000, n = 1250, n = 1500 and n = 2000 for each DGP setup. For each Monte

Carlo experiment, the number of iterations is always equal to 1000 due to the time-costliness

of estimating high dimensional models. I also use some trimming to remove outliers from

my simulation analysis.

Since the dimension lh of the variables in h that potentially (but the researcher does

not know for sure which one of these potential variables really have a nonzero effect on

the outcome) can have an effect on the outcome is always 695, p (the number of variables

included in the second stage estimating equations except the CF method from Chapter 1

that always has 15 variables in estimation) is always 2100. On the other hand, p′ (the

number of variables that would be included in the second stage estimating equations of

the LASSO-based inference methods of section 3.3 if the researcher knew exactly which

variables have a nonzero effect on the outcome) changes depending on lh1 , the number of

variables in h that have nonzero effect on the outcome. When lh1 = 4 (1) in the model,

p′ = 27 (18). Since I rely on a CF approach to deal with the endogeneity in the model

across all methods, I also know there are 15 variables (all the binary treatment indicators, x

interacted with these binary treatment indicators, and the CF terms: these are exactly all

the variables that the CF method from Chapter 1 uses) that must be included in the second

stage estimating equations. For this reason, the number of variables that are forced to be

included in each second stage estimation (denoted by f) is 15, which practically leaves the

methods to correctly select only 12 (3) variables when lh1 = 4(1) although there always exist

2085 variables to really select. Therefore, when calculating the total number of correctly

selected variables reported in Tables C.1-C.16, I consider only these 12 (3) variables when

lh1 = 4 (1). Whereas, when calculating the total number of selected variables in estimation,

I consider all the potential variables including f, totally 2100 of them.

As for the notation, in Tables C.1-C.16, âteh,0 is the estimate for ATEh,0, and bias(âteh,0)

is the bias in the estimate for ATEh,0 for h = 1, 2. Moreover, # of SV and # of CSV stand

for the number of selected variables (inclusive of f although they are not really selected) in
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the second stage and the number of correctly selected variables (not inclusive of f) in the

second stage, respectively. As for MAPE and RMSE, they mean mean absolute prediction

error in the second stage and root mean square error in the second stage, respectively. As

always, since these tables would require a considerable amount of space in the main body of

the chapter, I place all simulation tables of this chapter into appendix C.

At this point, it is also important to remember the true values for ATEh,0 for h = 1, 2 since

I often refer them throughout this section. They are respectively as follows: ATE1,0 = 1 and

ATE2,0 = 2. Besides this, the variables to be correctly selected when lh1 = 1 is as follows:

oracle1 = (dgh1) for g = 0, 1, 2. When lh1 = 4, this list grows into oracle4 = (dghm) for

g = 0, 1, 2 and m = 1, 2, 3, 4.

3.4.2.1 Bias and Efficiency Outcomes

First, let’s consider the results in the two benchmark cases: the one with correlated vari-

ables in h and lh1 being equal to 4 and the sparser one with exactly the same configurations

but lh1 being equal to 1. Starting with the first benchmark case (correlated variables in h

and lh1 being equal to 4) in Table C.1, the Monte Carlo simulation results show that there

are only small estimation biases for ATEh,0 in all estimation methods for h = 1, 2, and no

estimation method has a specific advantage over the other methods in terms of bias. This

observation is also in line with my expectation due to h totally ignorable in the process of

treatment choice and to CF terms taking care of endogeneity in all methods. For example,

in Table C.1, the simulation estimates from XPO method for ATE1,0 and ATE2,0 are respec-

tively 1.0574 (only about 5.7% higher than the true value) and 1.9784 (only around 1.1%

lower than the true value). Similarly, the same simulation estimates from the benchmark

CF method are respectively .9958 (a mere .4% lower than the true value) and 1.9666 (only

about 1.7% lower than the true value). Continuing to explore the first benchmark case in

Table C.1, the simulation results indicate that PO is the most efficient method with the
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lowest Monte Carlo standard deviations (SDs), and the CF and XPO are the least efficient

methods. ATE2,0 estimates from LASSO-based inference methods (except XPO) are sta-

tistically significant, whereas ATE1,0 estimates across all estimation methods are not. For

instance, in Table C.1, the SD of the DS parameter estimate for ATE1,0 (ATE2,0), which is

1.0467 (1.9936), is .8215 (1.0332). Again in line with my expectation, the simulation findings

point that the CF method produces less precise ATE estimates than do several LASSO-based

inference methods that select from h. To give an example, the SD of the PO (LASSO) pa-

rameter estimate for ATE1,0 is about 34% (29%) lower than that of the same CF parameter

estimate. As the sample size increases from 1000 in Table C.1 to 2000 in Table C.4, SDs go

down across all methods; however, there is no particular improvement on parameter biases

which are still small. Even ATE1,0 estimates (except those coming from the CF method)

become statistically significant when N = 2000. The other patterns observed in Table C.1

are also seen in Tables C.2 through C.4, and all these patterns in Tables C.1 through C.4

outlined in this paragraph constitute the patterns of the first benchmark case.

Second, as I increase the sparsity by moving from lh1 being equal to 4 to 1 in Tables

C.5 through C.8, I step into the second benchmark behaviors of the methods. In terms

of parameter biases, the simulation findings do not change: All the estimation methods

still have finite sample biases (but small) on ATE estimates. As for efficiency, SDs of ATE

estimates from the CF method go down compared to the first benchmark results, and all

estimation methods (except XPO) start producing results more or less at the same statistical

significance levels for each ATE estimate. In a way, SDs of ATE estimates converge to each

other. I expect this convergence in SDs, and it is mainly due to running regression with

less variables in h that really are predictive of the outcome, which implies one should not

expect much efficiency gain out of utilizing LASSO-based inference methods over the CF

method with only one extra predictive variable in h. To give an example, the SD of CF

parameter estimate for ATE1,0 in Table C.1 goes down from 1.2182 to .8194 in Table C.5

which is not much different from the SD of LASSO (PO) parameter estimate for ATE1,0,
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.8211 (.8169). On top of these observations, the patterns from the first benchmark case are

also traced when lh1 = 1, too: PO is still the most efficient method (slightly though due to

convergence in SDs), the CF and XPO are still the least efficient methods (only with trifling

margins this time), all ATE2,0 estimates (except those in XPO) are statistically significant,

ATE1,0 estimates get statistically significant only when N = 2000, and SDs decrease across

all methods when N gets bigger with no change on ATE biases which are still small. All

these observations in Tables C.5 through C.8 outlined in this paragraph form the patterns

of the second benchmark case.

When I alter the correlation structure of the variables in h from high correlation to

no correlation, the simulation results of course reflect this change as seen in Tables C.9

through C.16. First, let’s start summing up the findings in Tables C.9 through C.12 when

the variables in h are uncorrelated and lh1 = 4. As before, the simulations point that all the

estimation methods have small biases on ATE estimates when N is small. As to efficiency,

the simulation results show that, compared to the first benchmark case, there is very trivial

increase in the SDs of ATE estimates from LASSO-based methods and a decrease in the

SDs of ATE estimates from the CF method. These changes in SDs are against the fact that

the degree of multicollinearity among the uncorrelated covariates in a regression is less than

that among the uncorrelated covariates in a regression, and less multicollinearity among

the regression covariates means more precision in parameter estimates. Besides these, the

patterns of the first benchmark case still apply in this case with uncorrelated variables in

h and lh1 being equal to 4. This is especially true when it comes to the efficiency gains of

LASSO-based methods over the CF method. For instance, the SD of DS parameter estimate

âte1,0 (âte2,0 ) is about 23% (10%) lower than that of the CF estimate. When Tables C.13

through C.16 are considered with uncorrelated variables in h and lh1 being equal to 1,

the simulation findings again reveal the existence of small ATE biases resulting from small

sample sizes. With regard to efficiency, compared to the case with uncorrelated variables

in h and lh1 being equal to 4, there is a drop in SDs across all estimation methods, which
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was not this apparent in the comparison of the models with uncorrelated variables in h but

varying lh1 . My explanation for this is that the number of variables included in regressions of

Tables C.13 through C.16 are less than that of Tables C.9 through C.12, which can be seen

from decreased number of SVs and results in less number of parameters to be estimated and

smaller SDs of ATE estimates. For example, the SD of LASSO (XPO) parameter estimate

âte1,0 reduces by about 12% (6%) from .9350 (.9276) in Table C.9 to .8221 (.8753) in Table

C.13. Compared to the second benchmark case, the simulations in Tables C.13 through C.16

provide more or less similar results: the patterns observed in the second benchmark case are

seen in Tables C.13 through C.16, as well. Specially, SDs of ATE estimates are close to each

other, so efficiency gains out of LASSO-based models are rather limited.

3.4.2.2 Prediction and Model Selection Outcomes

As in bias and efficiency outcomes, the two benchmark cases are still the same: the one

with correlated variables in h and lh1 being equal to 4 (the first benchmark) and the sparser

one with exactly the same configurations but lh1 being equal to 1 (the second benchmark).

Let’s start interpreting the simulation results from the first benchmark. In Table C.1, the

simulation outcomes suggest that XPO followed by DS and PO together has the most number

of both SVs and CSVs, and that LASSO selects the least number of variables. Note that

since I force all the variables to be included in the CF method, there is actually nothing

to select there. For this reason, the number of SVs and CSVs are always left blank for the

CF method. With regard to prediction, LASSO has the lowest prediction errors, and after

LASSO comes the CF method the second. XPO designed for inference is the worst predictor

of outcome variable according to the simulations. For example, in Table C.1, the number

of SVs from XPO (LASSO) is around 26.4 (25.9), and the number of CSVs from XPO (DS

and PO) is about 11.3 (10.9). In addition, still in Table C.1, the MAPE and RMSE of

LASSO (the CF method) are about 7.89 (11.53) and 12.41 (15.74) but the same figures from
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XPO are more or less 13.38 and 17.84. One of the most striking features of the simulation

results is that DS and PO methods are almost the same: exactly equal numbers of SVs and

CSVs, and almost equal MAPE and RMSE values. As the second stage sample size increases

from 1000 in Table C.1 to 2000 in Table C.4, the readers continue seeing similar prediction

and model selection patterns just with more SVs and CSVs. The LASSO-based methods

predict better with larger sample sizes (lower MAPE and RMSE values). On the contrary,

the prediction figures of the CF method slightly worsen (higher MAPE and RMSE values).

All these patterns in Tables C.1 through C.4 constitute the patterns of the first benchmark

case in terms of prediction and model selection.

Based off simulation outcomes in Tables C.5 through C.8, it can be claimed that increased

sparsity (lh1 being equal to 1 rather than 4) results in smaller numbers of SVs and CSVs

and that, compared to the first benchmark case, prediction improves in all methods. For

instance, the total number of SVs and CSVs (the MAPE and RMSE values) from PO in

Table C.4 are about 26.78 and 11.77 (13.29 and 17.74); in contrast, those from PO method

in Table C.8 are only around 16.88 and 1.88 (10.39 and 14.36). The other prediction and

model selection patterns from the first benchmark case are also seen in Tables C.5 through

C.8, which collectively forms the second benchmark behaviors of the estimators in reference

to prediction and model selection.

When the variables in h are uncorrelated as in Tables C.9 through C.12 rather than

correlated, the most conspicuous observations from the simulations are that, compared to

the first benchmark case, less variables are selected (and correctly selected) by all methods

and that prediction gets better across all models except LASSO. To give an example, the

total number of SVs and CSVs (the MAPE and RMSE values) from DS in Table C.3 are about

26.49 and 11.49 (13.29 and 17.74); in contrast, those from DS in Table C.11 are only around

24.39 and 9.39 (11.92 and 16.11). My explanation for the lesser number of variables selected

is that the methods tend not to choose the variables which could have been selected just

because of the presence of strong correlation among variables but in reality have zero effect
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on the outcome of interest. As far as better predictions are concerned in Tables C.9 through

C.12 compared to the first benchmark case, I think this is a natural consequence of estimating

sparser models. The other prediction and model selection patterns resemble those from the

first benchmark case. In Tables C.13 through C.16 with lh1 set equal to 1 in addition to

having uncorrelated variables in h, compared to the previous case with uncorrelated variables

in h and lh1 equal to 4, the simulation outcomes show that there are even lesser numbers

of SVs and CSVs across all methods and that prediction becomes better across all methods.

However, compared to the second benchmark case, the simulations indicate that both model

selection and prediction figures are extremely close to each other, which indirectly implies

that how sparse the model is might be more influential than the correlation structure of

the variables in h as far as model selection and prediction are concerned. And the other

prediction and model selection patterns are very much like the ones from the first benchmark

case.

3.5 Conclusion

In this chapter, I build on my work from Chapter 1 and take the econometric model with a

discrete multivalued endogenous treatment variable and heterogeneous counterfactual errors

to a linear high dimensional sparse setting where the number of parameters to be estimated

is way more than the sample size available for use but the number of variables with nonzero

effect on outcome is less than the sample size. Using the CF approach adopted from Chapter 1

to handle the problem of endogeneity in the model, I summarize four LASSO-based methods

coupled with detailed procedures to estimate partial effects and ATEs. Three of the LASSO-

based methods are XPO of Chernozhukov et al. (2018); DS of Belloni, Chernozhukov, and

Hansen (2014a); and PO of Belloni et al. (2012), which are all developed for providing better

inference results. The other LASSO-based method is simply LASSO itself, which is designed

for predicting better. To estimate the ATEs, I also use the CF method from Chapter
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1; however this method mainly functions as a benchmark in my Monte Carlo simulation

analysis.

Using this detailed simulation analysis (the first simulation-based comparative analysis

of the LASSO methods mentioned above in my setting), I compare and contrast the finite

sample properties, model selection features, and prediction capabilities of the LASSO-based

models for discrete multivalued endogenous treatments in a linear scalar outcome high di-

mensional sparse model with heterogeneous counterfactual errors. In my simulation analysis,

I specifically make use of measures such as bias of estimates, standard deviation of estimates,

MAPE, RMSE, mean number of CSVs, and mean number of SVs.

Overall, the simulation evidence suggests that none of the methods suffer from huge biases

in small samples and that all methods can reliably estimate ATEs in the presence of high

dimensional potential variables and under the threat of endogeneity when the finite sample

size is 2000. Increased sample sizes, how sparse the model truly is, and less correlation

among potential high dimensional variables all seem to have an impact on efficiency but

not on finite sample bias. The most important simulation result is that, in the presence of

enough extra predictive variables that are ignorable in treatment selection and are from a set

of high dimensional predictors of outcome, more complicated LASSO-based methods result in

efficiency gains in ATE estimates (more obvious in models with moderate sparsity) over the

simpler CF method although both LASSO-based methods and the CF method perform more

or less the same as far as finite sample bias is concerned. Among LASSO-based methods,

the simulations indicate that PO is often the most efficient method to use.

As far as model selection goes, the simulations show that XPO followed by both DS

and PO selects both the most number of potential variables to be used in estimation and

correctly selects the most number of variables with true nonzero impact on outcome in

estimation. As to prediction, the simulation results suggest that LASSO followed by CF

has the best prediction features with the lowest MAPE and RMSE numbers among all the

methods compared and that XPO has the least favorable prediction capabilities. Increase
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in sample size results in more variables to be included in estimation and to be correctly

selected in all methods. On the contrary, increase in sparsity and correlatedness among

potential variables cause just the opposite in all methods. Bigger sample sizes and high

sparsity also cause better prediction, especially in LASSO-based methods. Moreover, the

strength of correlation among potential variables is not as influential as sample size and

model sparsity in model selection and prediction. And lastly, the simulations reveal the

convergence of DS and PO in terms of their model selection and prediction results.

Concerning further research ideas that can flower out of this chapter, all of the research

ideas mentioned in the conclusion of Chapter 1 can of course be explored in the current high

dimensional sparse setting, too. Apart from these research ideas though, it would be also

very interesting and exciting to theoretically examine the asymptotic properties of XPO, DS,

and PO methods in high dimensional sparse models that use generated regressors and the

impact of these generated regressors on the asymptotic variance-covariance matrix of these

estimators.
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APPENDIX A

APPENDIX FOR CHAPTER 1

A.1 Chapter 1: Derivations in CF Method

To find E(y|d,x, z), note that I can write

E(y|d,x, z) = E(d0y0 + d1y1 + · · ·+ dGyG|d,x, z)

= d0E(y0|d,x, z) + d1E(y1|d,x, z) + · · ·+ dGE(yG|d,x, z)

= d0E(α0 + xβ0 + u0|d,x, z) + d0E(α1 + xβ1 + u1|d,x, z) + · · ·+

+dGE(αG + xβG + uG|d,x, z)

= d0α0 + d0xβ0 + d0E(u0|d,x, z) + d1α1 + d1xβ1 + d1E(u1|d,x, z) +

+ . . .+ dGαG + dGxβG + dGE(uG|d,x, z)

=
G∑
j=0

djαj +
G∑
k=0

dkxβk +
G∑
g=0

dgE(ug|d,x, z). (A.1)

Next, I need to derive E(ug|d,x, z). Under A.1.3 and the law of iterated expectations,

E(ug|d,x, z) = E(E(ug|d,x, z, a)|d,x, z)

= E(E(ug|x, z, a)|d,x, z) = E[
G∑
j=0

ηg,j(aj − E(aj))|d,x, z]

=
G∑
j=0

ηg,jE[(aj − E(aj))|d,x, z)]. (A.2)

In equations above, I use that d is completely determined by z and a together. Refer

to section 1.2 for seeing this where the main model is described. Hence, the expectation

conditional on d,x, z, a reduces down to the one conditional on x, z, a only.
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Then, using A.1.1, mutual exclusivity of binary treatment indicators, and the fact right

below for g = 0, 1, . . . , G :

E(ug|d,x, z) = d0E(ug|d0 = 1,x, z) + d1E(ug|d1 = 1,x, z) + . . .+

+dGE(ug|dG = 1,x, z), (A.3)

I can write E(y|d,x, z) as follows:

E(y|d,x, z) =
G∑
j=0

djαj +
G∑
k=0

dkxβk +
G∑
g=0

dg

G∑
j=0

ηg,jE[(aj − E(aj))|dg = 1,x, z]. (A.4)

To complete the derivation of the conditional expectation E(y|d,x, z), all I need is to

find a closed form expression for
∑G

g=0dg
∑G

j=0ηg,jE[(aj − E(aj))|dg = 1,x, z]. To do so, I

will utilize the work of Dubin and McFadden (1984). In their paper, they used the following

result:

E(aj − E(aj)|dg = 1,x, z) =



−log(Λj) , j = g

Λglog(Λg)

(1− Λg)
, j 6= g

, (A.5)

where Λg = exp(zγg)/
∑G

r=0exp(zγr), i.e., the MNL response probability for g, j = 0, 1, . . . , G.
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Using the above result, I have

G∑
g=0

dg

G∑
j=0

ηg,jE[(aj − E(aj))|dg = 1,x, z] =
G∑
g=0

dg

(
G∑
j=0

ηg,jE(aj − E(aj)|dg = 1,x, z)

)

=
G∑
g=0

dg

(
−ηg,glog(Λg) +

∑
h6=g

ηg,h
Λhlog(Λh)

(1− Λh)

)

=
G∑
g=0

dg

(
−ηg,glog(Λg) +

∑
h6=g

ηg,hMh

)

=
G∑
g=0

−ηg,gdglog(Λg) +
G∑
g=0

(
dg
∑
h6=g

ηg,hMh

)

=

(
G∑
g=0

−ηg,gdglog(Λg)

)
+

+d0 (η0,1M1 + η0,2M2 + · · ·+ η0,GMG) +

+d1 (η1,0M0 + η1,2M2 + η1,3M3 + · · ·+ η1,GMG)

...

+dG (ηG,0M0 + ηG,1M1 + · · ·+ ηG,G−1MG−1)

=

(
G∑
g=0

− ηg,gdglog(Λg)

)
+
∑
g 6=0

dgηg,0M0 +

+
∑
g 6=1

dgηg,1M1 + · · ·+
∑
g 6=G

dgηg,GMG, (A.6)

where Mg = Λglog(Λg)/(1− Λg) for g = 0, 1, . . . , G.

Finally, by combining (A.4) and (A.6), I can write the expectation of the observed out-

come y conditional on the observed variables (d,x, z) as follows:

E(y|d,x, z) =
G∑
j=0

djαj +
G∑
k=0

dkxβk +

+
G∑
g=0

[−ηg,gdglog(Λg)] +
∑
g 6=0

dgηg,0M0 +
∑
g 6=1

dgηg,1M1 + · · ·+

+
∑
g 6=G

dgηg,GMG, (A.7)
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where Λg and Mg are as in (A.5) and (A.6) for g = 0, 1, . . . , G.

A.2 Chapter 1: Derivations in CF Method-A Special Case

Upon the additional assumption that ηg,j = ηj and the results from the initial model, I

can write the conditional expectation E(y|d,x, z) as follows:

E(y|d,x, z) =
G∑
l=0

dlαl +
G∑
k=0

dkxβk +
G∑
g=0

dg

G∑
j=0

ηg,jE[(aj − E(aj))|dg = 1,x, z]

=
G∑
l=0

dlαl +
G∑
k=0

dkxβk +
G∑
g=0

dg

(
G∑
j=0

ηjE (aj − E(aj)|dg = 1,x, z)

)

=
G∑
l=0

dlαl +
G∑
k=0

dkxβk +
G∑
g=0

dg

(
−ηglog(Λg) +

G∑
h6=g

ηh
Λhlog(Λh)

(1− Λh)

)

=
G∑
l=0

dlαl +
G∑
k=0

dkxβk +
G∑
g=0

dg

(
−ηglog(Λg) +

G∑
h6=g

ηhMh

)
, (A.8)

where Λg and Mg are as in (A.5) and (A.6) for g = 0, 1, . . . , G.
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Note that I can further simplify the last sum of terms in (A.8) as follows:

G∑
g=0

dg[−ηglog(Λg) +
G∑
h6=g

ηhMh] = [
G∑
g=0

−ηgdglog(Λg)] +
G∑
g=0

[dg

G∑
h6=g

ηhMh]

= [
G∑
g=0

−ηgdglog(Λg)] + d0 (η1M1 + η2M2 + · · ·+ ηGMG)

+d1 (η0M0 + η2M2 + η3M3 + · · ·+ ηGMG)

...

+dG (η0M0 + η1M1 + · · ·+ ηG−1MG−1)

= [
G∑
g=0

− ηgdglog(Λg)] +
∑
g 6=0

dgη0M0 +
∑
g 6=1

dgη1M1 +

+ · · ·+
∑
g 6=G

dgηGMG

= [
G∑
g=0

− ηgdglog(Λg)] + ((1− d0)η0M0) + ((1− d1)η1M1)

+ · · ·+ ((1− dG)ηGMG)

= [
G∑
g=0

− ηgdglog(Λg)] +
G∑
g=0

(1− dg)ηgMg

=
G∑
g=0

[(1− dg)ηgMg − ηgdglog(Λg)]

=
G∑
g=0

ηg [(1− dg)Mg − dglog(Λg)] (A.9)

Thus, by combining (A.8) and (A.9), I can write the expectation of the observed outcome

y conditional on the observed variables (d,x, z) as follows:

E(y|d,x, z) =
G∑
l=0

dlαl +
G∑
k=0

dkxβk +
G∑
g=0

ηg [(1− dg)Mg − dglog(Λg)] , (A.10)

where Λg and Mg are as in (A.5) and (A.6) for g = 0, 1, . . . , G.
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A.3 Chapter 1: Derivations in Asymptotic Normality Results of CF
Estimates

Note that

sFi (γ) ≡



∂li
∂γ0

(γ)

∂li
∂γ1

(γ)

...

∂li
∂γG

(γ)



=



[
∑
j 6=0

1[wi = j]
exp(ziγj)exp(ziγ0)z′i

−(
∑
i)

2Λji
] + 1[wi = 0]

exp(ziγ0)z′i
∑
i−exp(2ziγ0)z′i

(
∑
i)

2Λ0i

[
∑
j 6=1

1[wi = j]
exp(ziγj)exp(ziγ1)z′i

−(
∑
i)

2Λji
] + 1[wi = 1]

exp(ziγ1)z′i
∑
i−exp(2ziγ1)z′i

(
∑
i)

2Λ1i

...

[
∑
j 6=G

1[wi = j]
exp(ziγj)exp(ziγG)z′i

−(
∑
i)

2Λji
] + 1[wi = G]

exp(ziγG)z′i
∑
i−exp(2ziγG)z′i

(
∑
i)

2ΛGi



=



[
∑
j 6=0

1[wi = j](−Λ0i)z
′
i] + 1[wi = 0](z′i − Λ0iz

′
i)

[
∑
j 6=1

1[wi = j](−Λ1i)z
′
i] + 1[wi = 1](z′i − Λ1iz

′
i)

...

[
∑
j 6=G

1[wi = j](−ΛGi)z
′
i] + 1[wi = G](z′i − ΛGiz

′
i)


,

where li(γ) =
∑G

j=01[wi = j]log

(
exp(ziγj)/

G∑
r=0

exp(ziγr)

)
,
∑

i =
∑G

r=0exp(ziγr), and Λji =

exp(ziγj) /
∑G

r=0exp(ziγr) for j = 0, 1, . . . , G and i = 1, 2, . . . , N. From here, I can further
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simplify sFi (γ) as follows:

sFi (γ) =



[
G∑
j=0

1[wi = j](−Λ0i)z
′
i] + 1[wi = 0]z′i

[
G∑
j=1

1[wi = j](−Λ1i)z
′
i] + 1[wi = 1]z′i

...

[
G∑
j=G

1[wi = j](−ΛGi)z
′
i] + 1[wi = G]z′i



=



(−Λ0iz
′
i

G∑
j=0

1[wi = j]) + 1[wi = 0]z′i

(−Λ1iz
′
i

G∑
j=0

1[wi = j]) + 1[wi = 1]z′i

...

(−ΛGiz
′
i

G∑
j=0

1[wi = j]) + 1[wi = G]z′i



=



1[wi = 0]− Λ0i

1[wi = 1]− Λ1i

...

1[wi = G]− ΛGi


⊗

z′i, (A.11)

where Λji = exp(ziγj)/
∑G

r=0exp(ziγr) for j = 0, 1, . . . , G.

131



Then, using the law of iterated expectations and that wi follows a multinomial logit

reduced form under γ = γo, I have

E[sFi (γo)] = E(E[sFi (γo)|zi])

= E(



E(1[wi = 0]|zi)− Λ0i

E(1[wi = 1]|zi)− Λ1i

...

E(1[wi = G]|zi)− ΛGi


⊗

z′i)

= E(



Λ0i − Λ0i

Λ1i − Λ1i

...

ΛGi − ΛGi


⊗

z′i) = 0. (A.12)

Having showed that E[sFi (γo)] = 0, I will now show AF
o = BF

o . Since E[sFi (γo)] = 0,

BF
o ≡ V ar[sFi (γo)] = E[sFi (γo)s

F′
i (γo)]. Using (A.11) and the definition of binary treatment

indicator dg for g = 0, 1, . . . , G, I have the symmetric (G+ 1)k × (G+ 1)k matrix

sFi (γ)sF
′

i (γ) =



(d0i − Λ0i )
2z′izi (d0i − Λ0i )(d1i − Λ1i )z

′
izi · · · (d0i − Λ0i )(dGi − ΛGi )z

′
izi

(d1i − Λ1i )(d0i − Λ0i )z
′
izi (d1i − Λ1i )

2z′izi · · ·
...

...
...

. . .
...

(dGi − ΛGi )(d0i − Λ0i )z
′
izi · · · · · · (dGi − ΛGi )

2z′izi


, (A.13)

where dgi = 1[wi = g] for g = 0, 1, . . . , G.
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Now consider HF
i (γ) ≡ ∇γs

F
i (γ),

∇γsFi (γ) =



−e(ziγ0) ∑
i z

′
izi+e

(2ziγ0)z′izi
(
∑
i)

2

e(ziγ0)e(ziγ1)z′izi
(
∑
i)

2 · · · e(ziγ0)e(ziγG)z′izi
(
∑
i)

2

e(ziγ1)e(ziγ0)z′izi
(
∑
i)

2

−e(ziγ1) ∑
i z

′
izi+e

(2ziγ1)z′izi
(
∑
i)

2 · · ·
...

...
...

. . .
...

e(ziγG)e(ziγ0)z′izi
(
∑
i)

2 · · · · · · −e(ziγG) ∑
i z

′
izi+e

(2ziγG)z′izi
(
∑
i)

2



=



−Λ0i + (Λ0i)
2 Λ0iΛ1i · · · Λ0iΛGi

Λ1iΛ0i −Λ1i + (Λ1i)
2 · · ·

...
...

...
. . .

...

ΛGiΛ0i · · · · · · −ΛGi + (ΛGi)
2


⊗

z′izi, (A.14)

where
∑

i =
∑G

r=0exp(ziγr) and Λji = exp(ziγj)/
∑G

r=0exp(ziγr) for j = 0, 1, . . . , G and

i = 1, 2, . . . , N. As you can see, ∇γs
F
i (γ) is a symmetric (G + 1)k × (G + 1)k matrix. Note

that, using the law of iterated expectations and mutual exclusivity of binary treatment

indicators, under γ = γo I can write

E[(dgi − Λgi)
2z′izi|zi] = E[(dgi − 2dgiΛgi + (Λgi)

2)z′izi|zi]

= [Λgi − 2(Λgi)
2 + (Λgi)

2]z′izi

= [Λgi − (Λgi)
2]z′izi (A.15)

for g = 0, 1, . . . , G and

E[(dgi − Λgi)(dhi − Λhi)z
′
izi|zi] = E[(−dhiΛgi − dgiΛhi + ΛgiΛhi)z

′
izi|zi]

= [(−ΛhiΛgi − ΛgiΛhi + ΛgiΛhi)z
′
izi]

= [−ΛhiΛgiz
′
izi], (A.16)

where dgi = 1[wi = g] and Λji = exp(ziγj)/
∑G

r=0exp(ziγr) for ∀h 6= g and i = 1, 2, . . . , N. Us-

ing the results in (A.15) and (A.16), (A.13) and (A.14) together imply that −E[HF
i (γo)|zi] =
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E[sFi (γo)s
F′
i (γo)|zi], which is the conditional information matrix equality (CIME). By tak-

ing the expectation of CIME with respect to zi and using the law of iterated expecta-

tions, I obtain the unconditional information matrix equality (UIME), i.e., −E[HF
i (γo)] =

E[sFi (γo)s
F′
i (γo)]. Hence, AF

o = BF
o .

Now I will show the influence function representation of CMLE estimates, γ̂. Assuming

all the assumptions in Th.1.2 and using a mean value expansion of the first order condition∑N
i=1s

F
i (γ̂) = 0, I can write

N∑
i=1

sFi (γ̂) =
N∑
i=1

sFi (γo) +

(
N∑
i=1

HF
i (γ̈)

)
(γ̂ − γo), (A.17)

where γ̈ is the (G + 1) × 1 vector of parameter values between γ̂ and γo in Γ ⊂ R(G+1)k.

(A.17) and
∑N

i=1s
F
i (γ̂) = 0 together imply that

0 = N−1/2

N∑
i=1

sFi (γo) +

(
N−1

N∑
i=1

HF
i (γ̈)

)
√
N(γ̂ − γo). (A.18)

Now lets state a variant of Lemma 12.1 in Wooldridge (2010), which follows from Newey

and McFadden (1994).

• Lemma 1.1 (Lm.1.1): Suppose that γ̂ p−→ γo, and assume that ri(γ) satisfies the

same assumptions on li(γ) in Th.1.1. Then

N−1

N∑
i=1

ri(γ̂)
p−→ E[ri(γo)]. (A.19)

Assuming AF
o ≡ −E[HF

i (γo)] exists and is nonsingular, N−1
∑N

i=1H
F
i (γ̈) is nonsingular

with probability approaching 1 and
(
N−1

∑N
i=1H

F
i (γ̈)

)−1 p−→ (−AF
o )−1. Since E[sFi (γo)] = 0,

and sFi (γo) is iid random vectors, I can rewrite (A.18) as

√
N(γ̂ − γo) = (−AF

o )−1

[
−N−1/2

N∑
i=1

sFi (γo)

]
+ op(1), (A.20)
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where op(1) (little oh p one) means that if yn, a sequence of random variables, is op(1) then

yn
p−→ 0. From (A.20), I obtain the influence function representation of CMLE estimates as

follows:

√
N(γ̂ − γo) = N−1/2

N∑
i=1

ri(γo) + op(1), (A.21)

where ri(γo) ≡ (AF
o )−1sFi (γo).

To show E[ri(γ
∗)] = 0, we need to remember that E[sFi (γ∗)] = 0 from the first stage

CMLE estimation. Then,

E[ri(γ
∗)] = E[(AF

∗ )−1sFi (γ∗)] = (AF
∗ )−1E[sFi (γ∗)] = 0. (A.22)

Now, to show E[si(θo; γ
∗)] = 0, we assume the model for the expectation of y conditional

on X,v is correctly specified. Then,

E[si(θo; γ
∗)] = E (E[si(θo; γ

∗)|X,v])

= E (E[−∇′θmi(θo; γ
∗)(yi −mi(θo; γ

∗)|d,x, z])

= E (−∇′θmi(θo; γ
∗)(E[yi|d,x, z]−mi(θo; γ

∗))

= 0, (A.23)

where mi(θo; γ
∗) = m(Xi,v(di,xi, zi, γ

∗), θo) as in (1.17) and E[yi|d,x, z] = mi(θo; γ
∗), i.e.,

the conditional mean of yi is correctly specified. Now, I will derive the closed forms of the

expressions appearing in the asymptotic variance matrix of CF estimates. I start with the

score function, which is

si(θo; γ
∗) = −∇′θmi(θo; γ

∗)(yi −mi(θo; γ
∗)

= −

 X′i

v′i

 (yi − Xiδo − viλo). (A.24)
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Next, I continue with the expected values of the Hessian, of the outer product of the

score, and of the outer product of the influence function as below:

Ao = E[∇θ (−∇′θmi(θo; γ
∗)) (yi −mi(θo; γ

∗)) + (−∇′θmi(θo; γ
∗))∇θ (yi −mi(θo; γ

∗))]

= E {E[∇θ (−∇′θmi(θo; γ
∗)) (yi −mi(θo; γ

∗))|d,x, z]}+

+E {E[(−∇′θmi(θo; γ
∗))∇θ (yi −mi(θo; γ

∗)) |d,x, z]}

= E {∇θ (−∇′θmi(θo; γ
∗)) (E[yi|d,x, z]−mi(θo; γ

∗))}+

+E {E[(∇′θmi(θo; γ
∗))∇θmi(θo; γ

∗)|d,x, z]}

= E {E[(∇′θmi(θo; γ
∗))∇θmi(θo; γ

∗)|d,x, z]}

= E[∇′θmi(θo; γ
∗)∇θmi(θo; γ

∗)]

= E[

 X′i

v′i

( Xi vi

)
], (A.25)

Bo = E[

 X′i

v′i

 (yi − Xiδo − viλo)
2

(
Xi vi

)
], (A.26)

R∗ = E[(AF
∗ )−1sFi (γ∗)sF

′

i (γ∗)(AF
∗ )−1]

= {E[sFi (γ∗)sF
′

i (γ∗)]}−1

=


E[



(d0i − Λ∗0i)z
′
i

(d1i − Λ∗1i)z
′
i

...

(dGi − Λ∗Gi)z
′
i


((d0i − Λ∗0i)zi (d1i − Λ∗1i)zi · · · (dGi − Λ∗Gi)zi)

]



−1

,(A.27)

where Λ∗gi = exp(ziγ
∗
g)/
∑G

r=0exp(ziγ
∗
r ).
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Next, I continue with the expected value of the expression that represents the effect of

the sampling error in γ on the second stage and with the expected value of the product of

the score from the second stage estimation and the influence function as follows:

Fo = E[−∇γ (∇′θmi(θo; γ
∗)) (yi −mi(θo; γ

∗)) +∇′θmi(θo; γ
∗)∇γmi(θo; γ

∗)]

= E[−∇γ (∇′θmi(θo; γ
∗)) (yi −mi(θo; γ

∗)) +∇′θmi(θo; γ
∗)∇v′mi(θo; γ

∗)∇γv
′
i(γ
∗)]

= E {E[−∇γ (∇′θmi(θo; γ
∗)) (yi −mi(θo; γ

∗))|d,x, z]}+

+E {E[∇′θmi(θo; γ
∗)∇v′mi(θo; γ

∗)∇γv
′
i(γ
∗)|d,x, z]}

= E {−∇γ (∇′θmi(θo; γ
∗)) (E[yi|d,x, z]−mi(θo; γ

∗))}+

+E {E[∇′θmi(θo; γ
∗)∇v′mi(θo; γ

∗)∇γv
′
i(γ
∗)|d,x, z]}

= E {E[∇′θmi(θo; γ
∗)∇v′mi(θo; γ

∗)∇γv
′
i(γ
∗)|d,x, z]}

= E[∇′θmi(θo; γ
∗)∇v′mi(θo; γ

∗)∇γv
′
i(γ
∗)]

= E[

 X′i

v′i

λ′∇γv
′
i(γ
∗)] and (A.28)

To = E[ri(γ
∗)s′i(θo; γ

∗)]

= E[(AF
∗ )−1sFi (γ∗){−∇θmi(θo; γ

∗)(yi −mi(θo; γ
∗)}]

= E
(
E[(AF

∗ )−1sFi (γ∗){−∇θmi(θo; γ
∗)(yi −mi(θo; γ

∗)}|d,x, z]
)

= E
(
(AF
∗ )−1sFi (γ∗){−∇θmi(θo; γ

∗)(E[yi|d,x, z]−mi(θo; γ
∗)}
)

= 0. (A.29)

A.4 Chapter 1: Verification of the Conditions in Theorems 1.1-1.4

Conditions of Theorem 1.1. Condition (a) holds because under the model in (1.1) and

(1.2), A.1.1 and A.1.2 allow the discrete treatment variable w to follow a multinomial logit

model with choice probabilities P (w = g|z; γ) = exp(zγg)/
∑G

r=0exp(zγr) for g = 0, 1, . . . , G.
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Hence,
´

W
f(w|z)µ(dw) =

∑G
g=0P (w = g|z; γ) = 1, ∀z ∈ Z . For condition (b), since I

implicitly assume the parametric model f(· |z; γ) for the conditional density p(· |z) is cor-

rectly specified, then for some γo ∈ Γ, po(· |z) = f(· |z; γo), ∀z ∈ Z . Furthermore, assum-

ing
´

W
po(w|z)µ(dw) ≥

´
W
f(w|z)µ(dw),then the Kullback-Leibler information criterion in

Wooldridge (2010, p. 523) implies that E[li(γo)|zi] ≥ E[li(γ)|zi], ∀γ ∈ Γ. Consequently,

γo is a solution to max
γ∈Γ

E[li(γ)]. And if γo is identified, then it is the unique solution to

the maximization problem. As for condition (c), without any restrictions, Γ can be an

open ball with center 0 ∈ R(G+1)k and a very large radius. Since open balls are convex,

Γ is an open and convex parameter space. Then, γo ∈ Γ is in the interior of Γ since it

is an open ball. For condition (d), l(· , γ) =
∑G

j=01[w = j]log
(
exp(zγj)/

∑G
r=0exp(zγr)

)
,

which is simply the sum of the products of an indicator function and a logarithmic func-

tion. Therefore, if for each γ ∈ Γ the logarithmic function is Borel measurable on Z ,

then l(· , γ) is a Borel measurable function on W × Z . Since, for each γ ∈ Γ, exp(zγj)

is an exponential function of zγj and zγj is linear in z, exp(zγj) is continuous at z. As z

is an arbitrary element of Z , exp(zγj) is continuous on Z for j = 0, 1, . . . , G. Then, by

Theorem 15.6 of Bartle (1964), the multinomial logistic function exp(zγj)/
∑G

r=0exp(zγr)

is continuous on Z . As logarithmic functions are continuous, by Theorem 15.8 of Bar-

tle (1964), log
(
exp(zγj)/

∑G
r=0exp(zγr)

)
is continuous on Z . Hence, by Theorem 13.2 of

Billingsley (1995), for each γ ∈ Γ log
(
exp(zγj)/

∑G
r=0exp(zγr)

)
is Borel measurable on

Z and thereof l(· , γ) is a Borel measurable function on W × Z . As for condition (e), it

suffices to show that, for each (w, z) ∈ W × Z , the Hessian matrix HF(γ) ≡ ∇γs
F(γ) is

negative semidefinite or its negative is positive semidefinite, see Theorem 21.5 and Chapter

21 in Simon and Blume (1994) for more on concavity. Note that −∇γs
F(γ) = −Λ

⊗
z′z

is the Kronecker product of −Λ and z′z, where Λ is a (G + 1) × (G + 1) symmetric ma-

trix with −Λi + Λ2
i ’s on its diagonal and ΛmΛn’s off the diagonal for i,m, n = 0, 1, . . . , G

and m 6= n. −Λ is positive semidefinite because , by Equation 30 of Searle (1982), the

quadratic form x (−Λ) x′ =
∑G

i=0(Λi − Λ2
i )x

2
i − 2

∑G−1
i=0

∑G
j>ixixjΛiΛj for all nonzero row
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vector x′ ∈ RG+1. After some algebraic manipulation and that
∑G

i=0Λi = 1, x (−Λ) x′ =∑G
i=0Λi

(∑G
j 6=iΛj

)
x2
i − 2

∑G−1
i=0

∑G
j>ixixjΛiΛj =

∑G−1
i=0

∑G
j>iΛiΛj(x

2
i + x2

j) − 2xixjΛiΛj. But

the summand is the square of (
√

ΛiΛjxi −
√

ΛiΛjxj). Therefore, x (−Λ) x′ ≥ 0, and −Λ

is positive semidefinite as claimed. z′z is also positive semidefinite because x(z′z)x′ =

(zx′)′zx′ which is equal to the square of zx′. By Theorem 23.17 of Simon and Blume

(1994), all the eigenvalues of both −Λ and z′z are nonnegative. Then, by Proposition

2.45 of Dhrymes (2013), all the eigenvalues of −∇γs
F(γ) are nonnegative, too. Hence, by

Theorem 23.17 of Simon and Blume (1994) again, −∇γs
F(γ) is positive semidefinite, and

thereof, for each (w, z) ∈ W × Z , l(w, z, ·) is concave in γ. As to condition (f), consider

the first, second, and mixed partial derivatives of f(v) ≡ log
(
exp(vj)/

∑G
r=0exp(vr)

)
:

∂f(v)
∂vj

= 1 − exp(vj)/
∑
, ∂f(v)

∂vr
= −exp(vr)/

∑
, ∂2f(v)

∂v2j
= (exp(vj)/

∑
)(exp(vj)/

∑
−1),

∂2f(v)
∂v2r

= (exp(vr)/
∑

)(exp(vr)/
∑
−1), and ∂2f(v)

∂vr∂vj
= ∂2f(v)

∂vj∂vr
= (exp(vj)/

∑
)(exp(vr)/

∑
)

where
∑

=
∑G

r=0exp(vr), v = (v0, v1, . . . , vG)′ ∈ RG+1, j 6= r and j = 0, 1, . . . , G.

Note that all these derivatives are less than one in absolute value. By the Taylor’s The-

orem for functions from RG+1 to R (see Theorem 20.16 of Bartle (1964) for more on this)

f(v) can be expanded about 0 ∈ RG+1 such that f(v) = log(1/(G + 1)) +
∑G

j=0
∂f(0)
∂vj

vj +

(1/2!)
∑G

j=0
∂2f(v̄)

∂v2j
v2
j +

∑G−1
j=0

∑G
r>j

∂2f(v̄)
∂vj∂vr

vjvr where v̄ is a point on the line segment between

v and zero. Then, by the triangle inequality, |f(v)| ≤ |log(1/(G + 1))| +
∑G

j=0|
∂f(0)
∂vj
||vj| +

(1/2!)
∑G

j=0|
∂2f(v̄)

∂v2j
||v2

j |+
∑G−1

j=0

∑G
r>j|

∂2f(v̄)
∂vj∂vr

||vjvr|. Since all the derivatives are less than one in

absolute value, |f(v)| ≤ |log(1/(G+1))|+
∑G

j=0|vj|+(1/2!)
∑G

j=0|v2
j |+
∑G−1

j=0

∑G
r>j|vjvr|, ∀v ∈

RG+1. Now consider |l(w, z, γ)| ≤
∑G

j=0|1[w = j]||log
(
exp(zγj)/

∑G
r=0exp(zγr)

)
| by the tri-

angle inequality. Since |1[w = j]| ≤ 1, |l(w, z, γ)| ≤
∑G

j=0|log
(
exp(zγj)/

∑G
r=0exp(zγr)

)
|.

Using the upper bound for |f(v)| right above, the Cauchy–Schwarz inequality, and the tri-

angle inequality, |l(w, z, γ)| ≤ (G + 1)[|log(1/(G + 1))| +
∑G

j=0 ‖ z′ ‖‖ γj ‖ +(1/2!)
∑G

j=0 ‖

z′ ‖2‖ γj ‖2 +
∑G−1

j=0

∑G
r>j{

∑k
i=1

∑k
h=1|zizh||γji ||γrh|}] where ‖ · ‖ is the Euclidean norm.

Since Γ is an open ball with a fixed (but potentially very large) radius, there exists an

m ≡ (m′0,m
′
1, . . . ,m

′
G)′ ∈ Γ c ⊂ R(G+1)k where Γ c is the complement of Γ, mj ∈ Rk, and
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‖ mj ‖< ∞, for j = 0, 1, . . . , G such that for each ‖ γj ‖≤‖ mj ‖ . Furthermore, assuming

E|zizh| <∞ for i, h = 1, 2, . . . , k implies that E ‖ z′ ‖2<∞ and E ‖ z′ ‖<∞ by Jensen’s in-

equality. Then, setting b(w, z) ≡ (G+1)[|log(1/(G+1))|+
∑G

j=0 ‖ z′ ‖‖mj ‖ +(1/2!)
∑G

j=0 ‖

z′ ‖2‖mj ‖2 +
∑G−1

j=0

∑G
r>j{

∑k
i=1

∑k
h=1|zizh||mji ||mrh|}], |l(w, z, γ)| ≤ b(w, z), ∀γ ∈ Γ, where

b(·, ·) is a nonnegative function on W ×Z with E[b(w, z)] <∞.

Conditions of Theorem 1.2. Condition (a) holds because of condition (c) of Th.1.1.

For condition (b), since, for each (w, z) ∈ W × Z , exp(zγj) is an exponential function

of zγj and zγj is linear in γj, exp(zγj) is differentiable at γ ∈ int(Γ ). As γ is arbitrary,

exp(zγj) is differentiable on int(Γ ) for j = 0, 1, . . . , G. Then, by Theorem 20.8 of Bartle

(1964), the multinomial logistic function exp(zγj)/
∑G

r=0exp(zγr) is differentiable on int(Γ ).

As logarithmic functions are differentiable, by Theorem 20.9 of Bartle (1964), log(exp(zγj)/∑G
r=0exp(zγr)) is differentiable on int(Γ ). But l(w, z, ·) is simply the sum of the products

of an indicator function and this logarithmic function; therefore, for each (w, z) ∈ W ×Z ,

l(w, z, ·) is differentiable on int(Γ ). The transpose of the first derivative of l(w, z, ·) is sF(γ)

with elements (1[w = j]− Λj)zh where Λj = exp(zγj)/
∑G

r=0exp(zγr) for j = 0, 1, . . . , G and

h = 1, 2, . . . , k. But Λj is differentiable and 1[w = j] is an indicator function; hence for each

(w, z) ∈ W ×Z , each element of sF(γ) is differentiable on int(Γ ). For this reason, for each

(w, z) ∈ W ×Z , l(w, z, ·) is twice differentiable on int(Γ ). The second derivative of l(w, z, ·)

is HF(γ) with elements (−Λj + (Λj)
2)zizh and ΛmΛnzizh for j,m, n = 0, 1, . . . , G, m 6= n,

and i, h = 1, 2, . . . , k. Following the method used in checking condition (d) of Th.1.1, it is

obvious that for each (w, z) ∈ W ×Z , Λj and (Λj)
2 are continuous on int(Γ ). Consequently,

each element of HF(γ), and thereof HF(γ), is continuous by Theorem 15.6 of Bartle (1964).

For this reason, for each (w, z) ∈ W × Z , l(w, z, ·) is twice continuously differentiable

on int(Γ ). Condition (c) holds as shown in the previous subsection. As for Condition (d),

∇γ[∇′γl(w, z, γ)] = Λ
⊗

z′z, where Λ is a (G+1)×(G+1) symmetric matrix with −Λi+Λ2
i ’s

on its diagonal and ΛmΛn’s off the diagonal for i,m, n = 0, 1, . . . , G and m 6= n. By Exercise

6(a) of Laub (2005, p. 149), ‖ Λ
⊗

z′z ‖=‖ Λ ‖‖ z′z ‖, where ‖ · ‖ is the square root

140



of the sum of the squares of matrix elements. Since each element of Λ is less than one in

absolute value, ‖ Λ
⊗

z′z ‖< (G+1) ‖ z′z ‖ . Furthermore, assuming E(zizh)
2 <∞ for i, h =

1, 2, . . . , k implies that E ‖ z′z ‖<∞ by Jensen’s inequality. Then, setting b(w, z) ≡ (G+1) ‖

z′z ‖, the elements of ∇γ[∇′γl(w, z, γ)] are bounded in absolute value by b(w, z), ∀γ ∈ Γ,

where b(·, ·) is a nonnegative function on W ×Z such that E[b(w, z)] <∞. As to condition

(e), note that by condition (c) AF
o = E(sFi (γo)s

F′
i (γo)). Then, for all nonzero row vector

x′ ∈ R(G+1)k, the quadratic form xAF
o x′ = E(xsFi (γo)s

F′
i (γo)x

′) = E[
∑G

j=0

∑k
h=1{(1[w = j]−

Λj)zhxh,j}2] =
∑G

j=0

∑k
h=1E[(1[w = j] − Λj)

2z2
hx

2
h,j] =

∑G
j=0

∑k
h=1E[(1[w = j] − Λj)

2z2
h]x

2
h,j.

Since there is at least one xh,j 6= 0, xAF
o x′ > 0 assuming that E[(1[w = j]− Λj)

2z2
h] > 0 for

at least one j and h corresponding to that xh,j. Hence, AF
o is positive definite.

Conditions of Theorem 1.3. Condition (a) clearly holds due to Th.1.1 where γ̂ p−→ γo and

γo ∈ int(Γ ). As for condition (b), note that q(wi, θ; γ∗) ≡ (yi −m(Xi,v(di, zi, γ
∗), θ))2/2 =

[yi − (Xiδ + viλ)]2/2 = [yi − (hiθ)]
2/2 where hi = (Xi,vi) and θ = (δ′, λ′)′. Assuming

conditional expectation of yi is correctly specified, i.e., E(yi|d,x, z) = (hiθo), the conditional

mean identification principle of Hayashi (2000, p. 462-3) suggests thatmin
θ∈Θ

E[qi(θ; γ
∗)] occurs

uniquely at θo if hiθ 6= hiθo for all θ 6= θo. However, this condition is satisfied if and

only if h′ihi is nonsingular. To see why, let h′ihi be nonsingular and assume that ∃θ such

that θ 6= θo but hiθ = hiθo. Then, h′ihiθ = h′ihiθoand (h′ihi)
−1h′ihiθ = (h′ihi)

−1h′ihiθo,

which imply θ = θo. But this is a contradiction, so hiθ 6= hiθo for all θ 6= θo if h′ihi is

nonsingular. As a result, for any given γ∗ ∈ Γ, the true parameter vector θo is the unique

solution to min
θ∈Θ

E[qi(θ; γ
∗)]. For condition (c), let Θ be a closed ball with center 0 ∈ RM

and a very large radius rθ > 0, i.e., Θ ≡ B(0, rθ) = {η ∈ RM :‖ η ‖≤ rθ} ⊂ RM, and

Γ be another closed ball with center 0 ∈ R(G+1)k and a very large radius rγ > 0, i.e.,

Γ ≡ B(0, rγ) = {ζ ∈ R(G+1)k :‖ ζ ‖≤ rγ} ⊂ R(G+1)k. Since closed balls include all their

boundary points, and the distance between any two points in a closed ball cannot exceed

twice its radius, both Θ and Γ are compact parameter spaces by Theorem 9.3 of Bartle

(1964). Note that Θ×Γ is the Cartesian product of two compact spaces Θ and Γ. Then, by
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Theorem 4.2.17 of Dixmier (1984), the parameter space Θ × Γ is compact. As to condition

(d), q(w, θ; γ) = [y − (Xδ + vλ)]2/2, which is simply the square of a linear function in w.

For each γ ∈ Γ, X is Borel measurable because each element of X is either a simple binary

random variable or the product of a binary random variable and x, and thereof measurable,

see the third paragraph of Billingsley (1995, p. 182) and Theorem 3.33 of Davidson (1994)

for more on this. In addition, for each γ ∈ Γ, v is Borel measurable because each element of

v is either the product of a binary random variable and log(Λg) or the product of a binary

random variable and Mg where Λg = exp(zγg)/
∑G

r=0exp(zγr) and Mg = Λglog(Λg)/(1−Λg)

for g = 0, 1, . . . , G. By using the arguments in condition (d) of Th.1.1, it is clear that log(Λg)

and Mg are both measurable, so is v. Since, for each (θ, γ) ∈ Θ×Γ, y− (Xδ+ vλ) is a linear

function of w, y−(Xδ+vλ) is continuous at w. As w is an arbitrary element of W, y−(Xδ+vλ) is

continuous on W. As polynomial functions are continuous, by Theorems 15.6 and 15.8 of Bartle

(1964), [y− (Xδ+ vλ)]2/2 is continuous on W. Hence, by Theorem 13.2 of Billingsley (1995),

for each (θ, γ) ∈ Θ×Γ, q(· , θ, γ) is a Borel measurable function on W. For condition (e), define

t ≡ Xδ+vλ, so q(w, ·; ·) = [y−t]2/2. Note that, for each w ∈ W, q(w, ·; ·) is a quadratic function

of t which is linear in θ. Since quadratic functions are continuous and t is linear in θ, q(w, ·; ·)

is continuous at θ. As θ is an arbitrary element of Θ, for each w ∈ W, q(w, ·; ·) is continuous

on Θ× Γ. As for condition (f), note that q(wi, θ; γ) = [yi− (Xiδ+ viλ)]2/2 = [yi− (hiθ)]
2/2,

and yi = hiθo + εi where E(εi|d,x, z) = 0. Then, [yi − (hiθ)]
2/2 = [εi + hi(θo − θ)]2/2 =

[ε2
i + εihi(θo − θ) + {hi(θo − θ)}2]/2 = [ε2

i + εihi(θo − θ) + (θo − θ)′h′ihi(θo − θ)]/2. Since

|q(wi, θ; γ)| = q(wi, θ; γ) and E(εi|d,x, z) = 0, E[|q(wi, θ; γ)|] = E[{ε2
i + εihi(θo − θ) + (θo −

θ)′h′ihi(θo − θ)}/2] = {E(ε2
i ) + (θo − θ)′E(h′ihi)(θo − θ)}/2]. Assuming E(h′ihi) is positive

definite and E(ε2
i ) is finite, E[|q(wi, θ; γ)|] <∞ ∀(θ, γ) ∈ Θ × Γ.

Conditions of Theorem 1.4. Condition (a) holds if θo is not boundary point of Θ and γ∗ of

Γ. However, by Th.1.3, the parameter space Θ×Γ is compact, so both there is a possibility

that θo and γ∗ are boundary points. Assuming Θ (Γ ) is a closed ball with center 0 ∈ RM

(0 ∈ R(G+1)k) and a very large radius rθ > 0 (rγ > 0), this possibility can be very low
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though. Without evidence, I accept as true that θo ∈ int(Θ) and γ∗ ∈ int(Γ ). As for condi-

tion (b),
√
N(γ̂ − γo)

d−→ Normal(0, (AF
o )−1BF

o (AF
o )−1) in Th.1.2. Then, by setting γ∗ = γo

and by Lemma 4.5 of White (2001),
√
N(γ̂ − γ∗) = Op(1). For condition (c), since for each

(w, γ) ∈ W×Γ [y− (Xδ+ vλ)]2/2 is a quadratic function of y− (Xδ+ vλ) and y− (Xδ+ vλ)

is linear in θ = (δ′, λ′)′, [y − (Xδ + vλ)]2/2 is differentiable at θ ∈ int(Θ). As θ is arbitrary,

q(w, ·; γ) = [y−(Xδ+vλ)]2/2 is differentiable on int(Θ). The transpose of the first derivative

of q(w, ·; γ) is s(w, ·; γ) ≡ ∇′θq(w, ·; γ) = −
(

X v

)′
(y−Xδ−vλ). But (y−Xδ−vλ) is dif-

ferentiable and −
(

X v

)′
is just constant in θ. Hence for each (w, γ) ∈ W×Γ, each element

of s(w, ·; γ) is differentiable on int(Θ), and thereof, q(w, ·; γ) is twice differentiable on int(Θ).

The second derivative of q(w, ·; γ) is H(w, ·; γ) ≡ ∇θs(w, ·; γ) =

(
Xi vi

)′(
Xi vi

)
,

which is constant in θ. Consequently, it is obvious that for each (w, γ) ∈ W× Γ, H(w, ·; γ) is

continuous on int(Θ), and thereof, q(w, ·; γ) is twice continuously differentiable on int(Θ). As

to condition (d), note that for each θ ∈ Θ, s(·, θ; ·) ≡ ∇′θq(·, θ; ·) = −
(

X v

)′
(y−Xδ−vλ).

Only the variables in v depend on γ, so as long as v is differentiable on int(Γ ), s(·, θ; ·) is

differentiable on int(Γ ) by Theorem 20.8 of Bartle (1964). v has two types of variables:

−dglog(Λg) and dhMg, where dh is a binary random variable Λg = exp(zγg)/
∑G

r=0exp(zγr),

and Mg = Λglog(Λg)/(1−Λg) for h, g = 0, 1, . . . , G and h 6= g. From condition (b) of Th.1.2,

we know that both Λg = exp(zγg)/
∑G

r=0exp(zγr) and log (Λg) are differentiable on int(Γ )−

note that z is taken as given. Then, by Theorem 20.8 of Bartle (1964), Mg is also differ-

entiable on int(Γ ). Since each element of v is either −dglog(Λg) or dhMg, for each θ ∈ Θ,

v and thereof s(·, θ; ·), is differentiable on int(Γ ). The derivative (gradient) of s(·, θ; ·) with

respect to γ is ∇γs(·, θ; ·) = −

 0

∇γv
′

 (y −Xδ − vλ) +

 X′

v′

λ′(∇γv
′), where 0 is the

(l+1)(G+1)×(G+1)k zero vector and∇γv
′ is the (G+1)2×(G+1)k gradient vector. ∇γv

′ is

composed of four types of variables: −dg(1−Λg)z, dgΛhz, {dg[log(Λh)+1−Λh]Λhz}/(1−Λh),

and {dg[−Mh −Λh]Λiz}/(1−Λh), for h, g, i = 0, 1, . . . , G and h 6= g, i. Using the arguments

from condition (d) of Th.1.1, we know that both Λg and log (Λg) are continuous on int(Γ ).
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By Theorems 15.6 and 15.8 of Bartle (1964) and the continuity of logarithmic functions,

Mg is also continuous on int(Γ ). Using the same theorems and d′gs being a binary ran-

dom variable, each element of both ∇γv
′ and v is continuous. Therefore, it is clear that

∇γs(·, θ; ·), is continuous on int(Γ ). As a result, for each θ ∈ Θ, s(·, θ; ·) ≡ ∇′θq(·, θ; ·) is

continuously differentiable on int(Γ ). As for condition (e), note that for each (θ, γ) ∈ Θ×Γ,

H(·, θ; γ) =

(
X v

)′(
X v

)
. From condition (d) of Th.1.3, we know that both X

and v are Borel measurable functions on W. Since each element of H(·, θ; γ) is one of the

cross product of X and v, each element of H(·, θ; γ) is measurable by Theorem 3.33 of

Davidson (1994). Hence, for each (θ, γ) ∈ Θ × Γ, H(·, θ; γ) is a Borel measurable func-

tion on W. For condition (f), from condition (d) of Th.1.4, it is clear that v is continu-

ous on Γ. In addition, X is constant in θ and γ, so Xis continuous. But each element

of H(w, ·; ·) is one of the cross product of X and v, so each element is continuous by

Theorem 15.6 of Bartle (1964). For this reason, for each w ∈ W, H(w, ·; ·) is continu-

ous on Θ × Γ. As to condition (g), ‖ H(wi, θ; γ) ‖2=
∑(l+1)(G+1)

j=1

∑(l+1)(G+1)
h=1 (XjiXhi)

2 +∑(G+1)2

m=1

∑(G+1)2

n=1 (vmivni)
2 +2

∑(l+1)(G+1)
j=1

∑(G+1)2

n=1 (Xjivni)
2, where ‖ · ‖ is the Euclidean norm,

Xji is the jth element of Xi, and vmi is the mth element of vi. Hence, E[‖ H(wi, θ; γ) ‖2

] =
∑(l+1)(G+1)

j=1

∑(l+1)(G+1)
h=1 E(XjiXhi)

2 +
∑(G+1)2

m=1

∑(G+1)2

n=1 E(vmivni)
2 + 2

∑(l+1)(G+1)
j=1

∑(G+1)2

n=1

E(Xjivni)
2. But Xi contains only binary random variables and their products with x′tis.

Therefore, assuming E(xtixri)
2 < ∞ for t, r = 1, 2, . . . , l, E(XjiXhi)

2 < ∞ for j, h =

1, 2, . . . , (l+ 1)(G+ 1). In addition, note that vi contains only the product of binary random

variables with log(Λhi) and Mhi for h = 0, 1, . . . , G and i = 1, 2, . . . , N. But, from condition

(f) of Th.1.1, for each g ∈ {0, 1, . . . , G}, |log(Λgi)|2 ≤ [|log(1/(G + 1))| +
∑G

j=0 ‖ z′i ‖‖ γj ‖

+(1/2!)
∑G

j=0 ‖ z′i ‖2‖ γj ‖2 +
∑G−1

j=0

∑G
r>j{

∑k
t=1

∑k
h=1|ztizhi ||γjt ||γrh|}]2. Therefore, assuming

E(z4
ti
z4
hi

) <∞, E(z4
fi
z2
ti
z2
hi

) <∞, E[z2
ti
z2
hi

√
(
∑k

f=1z
2
fi

)|zlizmi |] <∞, E[z2
ti
z2
hi
z2
fi
|zlizmi|] <∞,

and E[z2
si
|ztizhi |

√
(
∑k

f=1z
2
fi

)|zlizmi |] < ∞ for f, h, l,m, s, t = 1, 2, . . . , k, E(log(Λgi))
4 < ∞.

Furthermore, Mhi = [Λhilog(Λhi)]/(1 − Λhi),and the first derivative of Mhiwith respect to

Λhi , ∂Mhi/∂Λhi = (1 − {Λhi − log(Λhi)})/(1 − Λhi)
2 < 0 since 0 < Λhi < 1. Note that
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limΛhi→0Mhi = 0 and limΛhi→1Mhi = −1 by L’Hôpital’s rule, so |Mhi | < 1, which implies

E(Mhi)
4 < ∞ and E(MhiMgi)

2 < ∞ ∀h, g ∈ {0, 1, . . . , G}. Since binary random variables

are mutually exclusive, it follows that E(vmivni)
2 < ∞ for m,n = 1, 2, . . . , (G + 1)2. In

addition, |xsilog(Λgi)|2 ≤ x2
si

[|log(1/(G+1))|+
∑G

j=0 ‖ z′i ‖‖ γj ‖ +(1/2!)
∑G

j=0 ‖ z′i ‖2‖ γj ‖2

+
∑G−1

j=0

∑G
r>j{

∑k
t=1

∑k
h=1|ztizhi||γjt||γrh|}]2 for s = 1, 2, . . . , l and g = 0, 1, . . . , G. Therefore,

assuming E[xsiztizhi ]
2 < ∞, E[x2

si

√
(
∑k

f=1z
2
fi

)|ztizhi|] < ∞, and E[x2
si
z2
fi
|ztizhi |] < ∞ for

f, h, t = 1, 2, . . . , k, E(Xjivni)
2 < ∞ for j = 1, 2, . . . , (l + 1)(G + 1), n = 1, 2, . . . , (G + 1)2,

and i = 1, 2, . . . , N . Since E(XjiXhi)
2 < ∞, E(vmivni)

2 < ∞, and E(Xjivni)
2 < ∞,

E[‖ H(wi, θ; γ) ‖] < ∞ ∀(θ, γ) ∈ Θ × Γ by Jensen’s inequality. As for condition (h),

Ao ≡ E[H(wi, θo; γ
∗)] = E[h′ihi], where hi = (Xi,vi). Then, for all nonzero row vector

u′ ∈ RM, the quadratic form uAou
′ = E(uh′ihiu

′) = E[
∑M

j=1{hjiuj}2] =
∑M

j=1E[{hjiuj}2] =∑M
j=1E[h2

ji
]u2
j . Since there is at least one uj 6= 0, uAou

′ > 0 assuming that E[h2
ji

] > 0 for

that jth variable in hi. Hence, Ao is positive definite. For condition (i), ∇γs(w, θ; γ) =

−

 0

∇γv
′

 (y − Xδ − vλ) +

 X′

v′

λ′(∇γv
′) and ∇γv

′ is composed of four types of

variables: −dg(1 − Λg)z, dgΛhz, {dg[log(Λh) + 1 − Λh]Λhz}/(1 − Λh), and {dg[−Mh −

Λh]Λiz}/(1 − Λh), for h, g, i = 0, 1, . . . , G and g, i 6= h as in condition (d). Using the

arguments from condition (d) of Th.1.1, we know that, for each (θ, γ) ∈ Θ × Γ, both Λg,

log (Λg) , and Mg are all continuous on W. Using Theorems 15.6 and 15.8 of Bartle (1964)

and d′gs being a binary random variable, each element of both ∇γv
′ and v is continu-

ous on W. Therefore, it is clear that, for each (θ, γ) ∈ Θ × Γ, ∇γs(·, θ; γ), is continuous

on W. Then, by Theorem 13.2 of Billingsley (1995), for each (θ, γ) ∈ Θ × Γ, ∇γs(·, θ; γ),

is a Borel measurable function on W. Condition (j) holds because of the very same ar-

guments utilized in condition (i): We just need to replace “for each (θ, γ) ∈ Θ × Γ”

by “for each w ∈ W” and “on W” by “on Θ × Γ.” As for condition (k), consider the Eu-

clidean norm of both
(

X v

)′
and (∇γv

′). ‖
(

X v

)′
‖2=

∑G
g=0d

2
g +
∑G

g=0

∑l
t=1d

2
gx

2
t +∑G

g=0d
2
glog

2(Λg)+
∑G

h=0

∑
g 6=hd

2
gM

2
h < (G+1)+(G+1)

∑l
t=1x

2
t+
∑G

g=0log
2(Λg)+G

∑G
h=0M

2
h <
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(G+1)2 +(G+1)
∑l

t=1x
2
t +
∑G

g=0log
2(Λg), where the first inequality is due to binary variables

d′gs, and the second inequality is due to that |Mh| < 1. Before bounding ‖ (∇γv
′) ‖2, define

f(Λh) ≡ [log(Λh)+1−Λh]Λh/(1−Λh), so ∂2f(Λh)/∂Λ2
h = [1/Λh−Λh+2log(Λh)]/(1−Λh)

3 > 0

where ∂[1/Λh−Λh+2log(Λh)]/∂Λh = −(Λh−1)2/Λ2
h < 0 and limΛh→1[1/Λh−Λh+2log(Λh)] =

0. Moreover, note that by L’Hôpital’s rule limΛh→1 f(Λh) = 0 and limΛh→0 f(Λh) = 0.

Since f(Λh) is convex on (0, 1) and f(1/2) ∼= −.1932, there must exist a real number

Λho ∈ (0, 1) at which f(Λh) achieves its finite minimum c ∈ R, which implies |f(Λh)| < c.

Similarly, define g(Λh) ≡ (−Mh − Λh)/(1− Λh) = −Λh[log(Λh) + 1− Λh]/(1− Λh)
2. Hence,

∂g(Λh)/∂Λh = [Λhlog(Λh)+ log(Λh)−2Λh+2]/(Λh−1)3. To show ∂g(Λh)/∂Λh > 0, consider

∂[Λhlog(Λh) + log(Λh)− 2Λh + 2]/∂Λh = log(Λh) + 1/Λh − 1 and ∂2[Λhlog(Λh) + log(Λh)−

2Λh + 2]/∂2Λh = 1/Λh(1 − 1/Λh) < 0, which implies that ∂[Λhlog(Λh) + log(Λh) − 2Λh +

2]/∂Λh is strictly decreasing. But limΛh→1 ∂[Λhlog(Λh) + log(Λh) − 2Λh + 2]/∂Λh = 0, so

∂[Λhlog(Λh) + log(Λh) − 2Λh + 2]/∂Λh > 0 and thereof [Λhlog(Λh) + log(Λh) − 2Λh + 2]

is strictly increasing. But limΛh→1[Λhlog(Λh) + log(Λh) − 2Λh + 2] = 0, so [Λhlog(Λh) +

log(Λh)− 2Λh + 2] < 0. This last strict inequality suggests that ∂g(Λh)/∂Λh > 0, and g(Λh)

is strictly increasing. But, by L’Hôpital’s rule, limΛh→1 g(Λh) = 1/2 and limΛh→0 g(Λh) =

0. As a result, |g(Λh)| < 1/2. Now consider ‖ (∇γv
′) ‖2=

∑G
g=0

∑k
t=1d

2
g(1 − Λg)

2z2
t +∑G

h=0

∑
g 6=h
∑k

t=1d
2
gΛ

2
hz

2
t +

∑G
h=0

∑
g 6=h
∑k

t=1d
2
g{[log(Λh) + 1 − Λh]Λh/(1 − Λh)}2z2

t +
∑G

h=0∑
g 6=h
∑

i 6=h
∑k

t=1d
2
g[(−Mh − Λh)/(1 − Λh)]

2Λ2
i z

2
t < (G + 1)2

∑k
t=1z

2
t + c2(G + 1)G

∑k
t=1z

2
t

+1/4(G + 1)G2
∑k

t=1z
2
t = (G + 1)[(G + 1) + c2G + G2/4]

∑k
t=1z

2
t , where the inequality

is due to that dg is binary, |Λg| < 1, |f(Λh)| < c, and |g(Λh)| < 1/2. Now consider

‖ ∇γs(wi, θ; γ) ‖≤‖

 0

∇γv
′

 ‖ |(y−Xδ−vλ)|+ ‖

 X′

v′

 ‖‖ λ′ ‖‖ (∇γv
′) ‖ by the trian-

gle inequality and Definition 7.45 and Example 7.46 of Laub (2005). By using the bounds

for ‖
(

X v

)′
‖2 and ‖ (∇γv

′) ‖2, ‖ ∇γs(wi, θ; γ) ‖<‖

 0

∇γv
′

 ‖ |(y − Xδ − vλ)|+ ‖

λ′ ‖ {[(G+ 1)2 + (G+ 1)
∑l

t=1x
2
t +
∑G

g=0log
2(Λg)][(G+ 1){(G+ 1) + c2G+G2/4}

∑k
t=1z

2
t ]}1/2.
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Also note that E(y − Xδ − vλ|d,x, z) = 0, so E(‖

 0

∇γv
′

 ‖ |(y − Xδ − vλ)|) = 0

by iterated law of expectations. Then, E[‖ ∇γs(wi, θ; γ) ‖] <‖ λ′ ‖ E{[(G + 1)2 + (G +

1)
∑l

t=1x
2
t +

∑G
g=0log

2(Λg)][(G + 1){(G + 1) + c2G + G2/4}
∑k

t=1z
2
t ]}1/2 ≤‖ λ′ ‖ {E([(G +

1)2 + (G + 1)
∑l

t=1x
2
t +

∑G
g=0log

2(Λg)][(G + 1){(G + 1) + c2G + G2/4}
∑k

t=1z
2
t ])}1/2, where

the last inequality is due to Jensen’s inequality. Assuming E[xszt]
2 < ∞, E[zlzmzt]

2 < ∞,

E[z2
l

√
(
∑k

f=1z
2
f )|zmzt|] < ∞, and E[z2

l z
2
f |zmzt|] < ∞ for s = 1, 2, . . . , l, and f, l,m, t =

1, 2, . . . , k, then E[‖ ∇γs(wi, θ; γ) ‖] < ∞ ∀(θ, γ) ∈ Θ × Γ. Condition (l) holds as shown in

the previous subsection.

A.5 Chapter 1: Proof of Theorem 1.5

As for (a), the LM statistic comes from the limiting distribution of N−1/2
∑N

i=1 si(θ̃; γ̂)

under H0. By Theorem 4.36 (Mean Value Theorem) of White (2001); Lm.1.1 in appendix

A with ri(θ) ≡ Hi(θ; γ̂) and li(θ) = qi(θ; γ) in Th.1.3, and assumptions in Th.1.3; and the

conditions of Th.1.4, N−1/2
∑N

i=1 si(θ̃; γ̂) can be expanded around θo as N−1/2
∑N

i=1 si(θ̃; γ̂) =

N−1/2
∑N

i=1 si(θo; γ̂)+Ao

√
N(θ̃−θo)+op(1) and N−1/2

∑N
i=1 si(θo; γ̂) around γo as N−1/2

∑N
i=1

si(θo; γ̂) = N−1/2
∑N

i=1 si(θo; γo) + Fo

√
N(γ̂ − γo) + op(1). Note that both Ao and Fo are

bounded in probability by conditions (g) and (k) of Th.1.4. We also know that a first-order

representation for
√
N(γ̂−γo) is available as in (A.21)− i.e.,

√
N(γ̂−γo) = N−1/2

∑N
i=1 ri(γo)+

op(1) where ri(γo) ≡ (AF
o )−1sFi (γo) as in Th.1.2. Hence, after some algebra and by Lemma

4.6 of White (2001), N−1/2
∑N

i=1 si(θo; γ̂) = N−1/2
∑N

i=1[si(θo; γo)+Fori(γo)]+op(1). Then, by

Lemma 3.2 of Wooldridge (2010), N−1/2
∑N

i=1 si(θ̃; γ̂) = N−1/2
∑N

i=1[si(θo; γo) + Fori(γo)] +

Ao

√
N(θ̃ − θo) + op(1). Note that the constrained estimation in (1.35) implies c(θ̃) ≡ 0

and, under H0, c(θo) = 0. By taking a mean value expansion of c(θ̃) around θo, c(θ̃) =

c(θo) + C(θ̈)(θ̃ − θo) where C(θ) ≡ ∇θc(θ) is the Q × M gradient of c(θ) with rank Q,

and θ̈ lies on the segment connecting θ̃ and θo. In addition, Th.1.2, Th.1.4, and A.1.4 all
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together enable
√
N(α̃ − αo) to be bounded in probability and α̃ to be consistent for αo in

the constrained estimation. Since θ = d(α),
√
N(θ̃ − θo) = D(α̈)

√
N(α̃ − αo) by a mean

value expansion of d(α̃) around αo, where α̈ lies on the segment connecting α̃ and αo. On

the other hand, D(α̈)
√
N(α̃ − αo) = D(αo)

√
N(α̃ − αo) + [D(α̈) − D(αo)]

√
N(α̃ − αo) =

D(αo)
√
N(α̃ − αo) + op(1) due to conditions (e) and (f) of A.1.4, α̃′s being consistent for

αo,
√
N(α̃ − αo)

′s being bounded in probability and Lemma 3.2 of Wooldridge (2010).

Hence,
√
N(θ̃ − θo) = D(αo)

√
N(α̃ − αo) + op(1), and

√
N(θ̃ − θo) is bounded in prob-

ability because of
√
N(α̃ − αo)

′s and D(αo)
′s being bounded in probability and Lemma

3.1 of Wooldridge (2010). Moreover, by conditions (c) of A.1.4 and α̃′s being consistent

for αo, C(θ̈)
p−→ C(θo). Then, under H0, 0 ≡

√
Nc(θ̃) =

√
Nc(θo) + C(θ̈)

√
N(θ̃ − θo) =

C(θ̈)
√
N(θ̃ − θo) = C(θo)

√
N(θ̃ − θo) + [C(θ̈) − C(θo)]

√
N(θ̃ − θo), where the last term

vanishes in probability due to that C(θ̈)
p−→ C(θo),

√
N(θ̃ − θo)

′s being bounded in prob-

ability, and Lemma 4.6 of White (2001). Therefore, 0 = C(θo)
√
N(θ̃ − θo) + op(1). Since

0 is also op(1), C(θo)
√
N(θ̃ − θo) = op(1). Going back to N−1/2

∑N
i=1 si(θ̃; γ̂) and multi-

plying it by CoA
−1
o , we have CoA

−1
o N−1/2

∑N
i=1 si(θ̃; γ̂) = CoA

−1
o N−1/2

∑N
i=1[si(θo; γo) +

Fori(γo)]+op(1) by Lemma 3.2 of Wooldridge (2010). Note that Th.1.4 implies E[si(θo; γo)+

Fori(γo)] = 0 and N−1/2
∑N

i=1[si(θo; γo) + Fori(γo)]
d−→ N(0,Do) where Do is as in Th.1.4.

Consequently, CoA
−1
o N−1/2

∑N
i=1[si(θo; γo) + Fori(γo)]

d−→ N(0,CoA
−1
o DoA

−1
o C′o) by Exam-

ple 4.12 of White (2001). Then, by Lemma 4.7 (Asymptotic Equivalence Lemma) of White

(2001), CoA
−1
o N−1/2

∑N
i=1 si(θ̃; γ̂)

d−→ N(0,CoA
−1
o DoA

−1
o C′o). Now take a look at the rank

of CoA
−1
o DoA

−1
o C′o which is a Q × Q matrix. Assuming that Do is positive definite (so it

has full rank− see Table 6.1 of Searle (1982, p.172) for more) and using Theorem A.1.3 of

Greene (2012, p.1038) and the first lemma of Searle (1982, p.206), A−1
o DoA

−1
o has full rank

and is positive definite. I will prove that CoA
−1
o DoA

−1
o C′o has full rank by contradiction.

Suppose CoA
−1
o DoA

−1
o C′o does not have full rank, i.e., CoA

−1
o DoA

−1
o C′ox

′ = 0 for some

nonzero row vector x′ ∈ RQ. Since CoA
−1
o DoA

−1
o C′o is symmetric, xCoA

−1
o DoA

−1
o C′ox

′ =

0, too. But A−1
o DoA

−1
o is positive definite so C′ox

′ must be equal to 0, which implies
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that x′ = 0 due to C′os having full rank by A.1.4. However, this is a contradiction and

then CoA
−1
o DoA

−1
o C′o has full rank, and thereof, is invertible. Hence, by spectral decom-

position (see Searle (1982, p.308) for more on this) and Example 4.12 of White (2001),

[CoA
−1
o DoA

−1
o C′o]

−1/2CoA
−1
o N−1/2

∑N
i=1 si(θ̃; γ̂)

d−→ N(0, IQ). Therefore, by Corollary 4.28 of

White (2001),
(∑N

i=1 si(θ̃; γ̂)
)′

A−1
o C′o[CoA

−1
o DoA

−1
o C′o]

−1CoA
−1
o

(∑N
i=1 si(θ̃; γ̂)

)
/N

d−→ χ2
Q.

As to (b), LMN ≡
(∑N

i=1 si(θ̃; γ̂)
)′

Ã−1C̃′[C̃Ã−1D̃Ã−1C̃′]−1C̃Ã−1
(∑N

i=1 si(θ̃; γ̂)
)
/N as in

Th.1.5. Under the assumptions made in Th.1.5 and A.1.4., Lm.1.1 in appendix A with ap-

propriate adjustments implies that Ã−1 p−→ A−1
o , C̃

p−→ Co, and D̃
p−→ Do. Then, it follows

from Lemma 4.7 of White (2001) that LMN
d−→ χ2

Q.

A.6 Chapter 1: Ignorability of Generated Instruments in IV Estima-
tion with ηg,j = ηj

In simple terms, generated instruments are instruments that are some functions of both

some exogenous variables and some first-stage estimator of parameters. The effect of the

first stage estimation on the second stage estimation has been studied fairly well, see, for

instance, Newey and McFadden (1994). In the framework of GMM estimation, they show

that ignoring the first stage estimation can cause inconsistent asymptotic variances for the

second step estimator. Wooldridge (2010) specifically gives some sufficient conditions under

which one can ignore the impact of generated instruments on the standard errors of IV

estimator.

Now, let us define the population counterparts of the generated instruments used in

Procedure 1.1

ĉ ≡ f(z, γ̂) ≡ (Λ̂0, · · · , Λ̂G, Λ̂0x, · · · , Λ̂Gx),

where ĉ is the 1×(l+1)(G+1) vector of generated instruments, f is a known function, z is the

1×k vector of instruments in the choice equation for w∗g , γ̂ = (γ̂′0, γ̂
′
1, . . . , γ̂

′
G)′ is the (G+1)k×1
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vector of
√
N − consistent and asymptotically normal first stage conditional MLE (CMLE)

estimates from the MNL of wi on zi for i = 1, 2, . . . , N, Λ̂j = exp(zγ̂j)/
∑G

r=0exp(zγ̂r)

for j = 0, 1, . . . , G, and x is the 1 × l vector of exogenous variables in yg. According to

Wooldridge (2010, p. 125),
√
N − consistent γ̂ and E[∇γf

′(z, γ)u] = 0, where by A.1.3′

ug = u for g = 0, 1, . . . , G (homogeneous counterfactual errors) and thereof u′ = u in (15),

are the two sufficient conditions of ignoring the first step estimation for inference. γ̂ used

in ĉ comes from the CMLE and is already
√
N − consistent, so I only need to see whether

E[∇γf
′(z, γ)u] is equal to zero or not. Note that, since z contains instruments and all the

variables in x are exogenous, I implicitly assume that E[u|x, z] = 0.

Consider the expected value of the gradient of the product of the function f ′ times

u, i.e., E[∇γf
′(z, γ)u] = E( ∇γΛ0u · · · ∇γΛGu ∇γΛ0xu · · · ∇γΛGxu )′. And this last

expectation is equal to the following matrix



E( e
(zγ0)z′

∑
−e(2zγ0)z′

(
∑

)2
u) E(−e

(zγ0)e(zγ1)z′

(
∑

)2
u) · · · E(−e

(zγ0)e(zγG)z′

(
∑

)2
u)

E(−e
(zγ1)e(zγ0)z′

(
∑

)2
u) E( e

(zγ1)z′
∑
−e(2zγ1)z′

(
∑

)2
u) · · · ...

...
... . . . ...

E(−e
(zγG)e(zγ0)z′

(
∑

)2
u) · · · · · · E( e

(zγG)z′
∑
−e(2zγG)z′

(
∑

)2
u)

E(x′ ⊗ e(zγ0)z′
∑
−e(2zγ0)z′

(
∑

)2
u) E(x′ ⊗ −e(zγ0)e(zγ1)z′

(
∑

)2
u) · · · E(x′ ⊗ −e(zγ0)e(zγG)z′

(
∑

)2
u)

E(x′ ⊗ −e(zγ1)e(zγ0)z′
(
∑

)2
u) E(x′ ⊗ e(zγ1)z′

∑
−e(2zγ1)z′

(
∑

)2
u) · · · ...

...
... . . . ...

E(x′ ⊗ −e(zγG)e(zγ0)z′

(
∑

)2
u) · · · · · · E(x′ ⊗ e(zγG)z′

∑
−e(2zγG)z′

(
∑

)2
u)



,

where
∑

=
∑G

r=0exp(zγr).
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Let’s take a closer look at the elements of the matrix above.

E(
e(zγj)z′

∑
−e(2zγj)z′

(
∑

)2
u) = E(E(

e(zγj)z′
∑
−e(2zγj)z′

(
∑

)2
u|x, z))

= E(
e(zγj)z′

∑
−e(2zγj)z′

(
∑

)2
E (u|x, z))

= 0

E(
−e(zγj)e(zγh)z′

(
∑

)2
u) = E(E(

−e(zγj)e(zγh)z′

(
∑

)2
u|x, z))

= E(
−e(zγj)e(zγh)z′

(
∑

)2
E (u|x, z))

= 0

E(x′ ⊗ e(zγj)z′
∑
−e(2zγj)z′

(
∑

)2
u) = E(E(x′ ⊗ e(zγj)z′

∑
−e(2zγj)z′

(
∑

)2
u|x, z))

= E(x′ ⊗ e(zγj)z′
∑
−e(2zγj)z′

(
∑

)2
E (u|x, z))

= 0

E(x′ ⊗ −e
(zγj)e(zγh)z′

(
∑

)2
u) = E(E(x′ ⊗ [

−e(zγj)e(zγh)z′

(
∑

)2
]u|x, z))

= E(x′ ⊗ −e
(zγj)e(zγh)z′

(
∑

)2
E (u|x, z))

= 0

for j, h = 0, 1, . . . , G and ∀h 6= j. Since each individual expectation is zero, the second

sufficiency condition (E[∇γf
′(z, γ)u] = 0) is also satisfied. Hence, the impact of generated

instruments in Procedure 1.1 on inference can indeed be ignored when the counterfactual

errors are homogeneous.
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A.7 Chapter 1: Tables-Simulations

Table A.1: Model without Correlated Random Coefficients but with Asymmetric Instrument,
N=1000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0042 .2749 .2106 .2543 1.3394 .2898 .1892 .2206
α̂1 1.9654 1.8970 .5777 .8593 1.9078 .6193 .5033 .5339
α̂2 2.9928 1.1659 .9383 1.0154 2.9018 .9465 .7928 .8391
âte10 .9612 1.9154 .6158 .8990 .5684 .8102 .6030 .6567
âte20 1.9885 1.1990 .9625 1.0479 1.5623 .9544 .7986 .8472

bias(âte10) -.0387 -.4315
bias(âte20) -.0114 -.4376
se(α̂0) .0136 .0298 .0171 .0235
se(α̂1) .0809 .2563 .0414 .0467
se(α̂2) .0555 .0726 .0409 .0493
se(âte10) .0794 .2549 .0499 .0562
se(âte20) .0541 .0711 .0385 .0461

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.2: Model without Correlated Random Coefficients but with Asymmetric Instrument,
N=2000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0050 .1693 .1915 .1727 1.3416 .1652 .1640 .1555
α̂1 1.9887 1.0914 .6707 .5983 1.9041 .3701 .3906 .3738
α̂2 3.0056 .6876 .7519 .7149 2.9052 .5850 .6161 .5917
âte10 .9837 1.1045 .6967 .6213 .5624 .4597 .4846 .4605
âte20 2.0006 .7082 .7757 .7345 1.5635 .5967 .6184 .5969

bias(âte10) -.0162 -.4375
bias(âte20) .0006 -.4364
se(α̂0) .0106 .0148 .0105 .0117
se(α̂1) .0945 .1298 .0238 .0231
se(α̂2) .0367 .0360 .0247 .0245
se(âte10) .0934 .1291 .0295 .0278
se(âte20) .0356 .0353 .0229 .0229

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.3: Model without Correlated Random Coefficients but with Asymmetric Instrument,
N=5000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 .9997 .0925 .1139 .1066 1.3371 .0902 .1061 .0973
α̂1 1.9890 .6551 .4360 .3783 1.9094 .2601 .2631 .2357
α̂2 2.9955 .4536 .4936 .4539 2.8963 .3803 .3954 .3759
âte10 .9892 .6617 .4515 .3937 .5722 .3132 .3260 .2904
âte20 1.9957 .4630 .5054 .4661 1.5591 .3828 .3954 .3784

bias(âte10) -.0107 -.4277
bias(âte20) -.0042 -.4408
se(α̂0) .0045 .0059 .0052 .0047
se(α̂1) .0274 .0540 .0134 .0093
se(α̂2) .0161 .0143 .0114 .0097
se(âte10) .0271 .0537 .0163 .0112
se(âte20) .0157 .0141 .0105 .0091

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.

154



Table A.4: Model without Correlated Random Coefficients but with Asymmetric Instrument,
N=10000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 .9998 .0745 .0790 .0755 1.3396 .0711 .0705 .0699
α̂1 1.9913 .5145 .2552 .2637 1.9095 .1820 .1672 .1664
α̂2 2.9999 .3137 .3313 .3152 2.9017 .2631 .2723 .2634
âte10 .9914 .5199 .2663 .2735 .5698 .2243 .2068 .2058
âte20 2.0001 .3224 .3406 .3228 1.5621 .2665 .2737 .2661

bias(âte10) -.0085 -.4301
bias(âte20) .0001 -.4378
se(α̂0) .0019 .0029 .0026 .0023
se(α̂1) .0111 .0268 .0048 .0046
se(α̂2) .0067 .0071 .0048 .0048
se(âte10) .0110 .0267 .0058 .0055
se(âte20) .0065 .0070 .0045 .0045

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.5: Model without Correlated Random Coefficients but with Symmetric Instrument,
N=1000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0005 .1586 .1141 .1228 .9727 .1387 .1128 .1199
α̂1 1.9931 .3323 .2339 .2663 2.3728 .3190 .3289 .3189
α̂2 2.9722 1.0310 .8305 .7607 2.6951 .8062 .6787 .6518
âte10 .9925 .3683 .2600 .2934 1.4001 .3949 .3847 .3801
âte20 1.9716 1.0431 .8383 .7699 1.7223 .8069 .6788 .6560

bias(âte10) -.0074 .4001
bias(âte20) -.0283 -.2776
se(α̂0) .0083 .0109 .0071 .0089
se(α̂1) .0184 .0467 .0429 .0464
se(α̂2) .0669 .0660 .0442 .0398
se(âte10) .0167 .0434 .0466 .0501
se(âte20) .0662 .0651 .0428 .0382

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.6: Model without Correlated Random Coefficients but with Symmetric Instrument,
N=2000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0004 .1137 .0888 .0858 .9717 .0981 .0880 .0843
α̂1 2.0001 .2493 .1767 .1886 2.3704 .2407 .2146 .2250
α̂2 2.9930 .7036 .5215 .5334 2.7053 .5367 .4519 .4593
âte10 .9997 .2742 .1970 .2072 1.3986 .2895 .2629 .2676
âte20 1.9926 .7127 .5293 .5408 1.7335 .5362 .4542 .4613

bias(âte10) -.0002 .3986
bias(âte20) -.0073 -.2664
se(α̂0) .0050 .0054 .0040 .0045
se(α̂1) .0147 .0241 .0214 .0233
se(α̂2) .0275 .0329 .0207 .0199
se(âte10) .0133 .0224 .0235 .0251
se(âte20) .0270 .0325 .0199 .0191

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.7: Model without Correlated Random Coefficients but with Symmetric Instrument,
N=5000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 .9991 .0676 .0558 .0543 .9721 .0596 .0539 .0530
α̂1 2.0000 .1540 .1244 .1172 2.3682 .1457 .1402 .1422
α̂2 2.9978 .4258 .3223 .3351 2.7100 .3362 .2804 .2865
âte10 1.0009 .1682 .1361 .1295 1.3961 .1752 .1682 .1696
âte20 1.9987 .4311 .3270 .3390 1.7379 .3366 .2821 .2882

bias(âte10) .0009 .3961
bias(âte20) -.0012 -.2620
se(α̂0) .0019 .0021 .0015 .0019
se(α̂1) .0084 .0098 .0098 .0094
se(α̂2) .0109 .0130 .0077 .0079
se(âte10) .0077 .0091 .0108 .0102
se(âte20) .0108 .0128 .0074 .0076

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.8: Model without Correlated Random Coefficients but with Symmetric Instrument,
N=10000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0002 .0482 .0383 .0377 .9722 .0426 .0372 .0374
α̂1 2.0001 .1088 .0812 .0823 2.3691 .1074 .0959 .1004
α̂2 3.0011 .3007 .2337 .2378 2.7116 .2401 .1990 .2024
âte10 .9999 .1191 .0892 .0900 1.3968 .1289 .1142 .1190
âte20 2.0009 .3046 .2367 .2403 1.7393 .2397 .2009 .2036

bias(âte10) -.0001 .3968
bias(âte20) .0009 -.2606
se(α̂0) .0009 .0010 .0007 .0009
se(α̂1) .0027 .0050 .0048 .0047
se(α̂2) .0059 .0065 .0039 .0040
se(âte10) .0025 .0046 .0050 .0050
se(âte20) .0058 .0064 .0037 .0038

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.

159



Table A.9: Model without Correlated Random Coefficients but with Asymmetric Instrument,
ηg,j = ηj, N=1000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0070 .5628 .5115 .5102 1.0089 .5760 .5334 .5343
α̂1 2.0070 .6340 .5617 .5897 2.0088 .7174 .5878 .6417
α̂2 3.0049 .5437 .5885 .5584 3.0042 .5483 .5948 .5619
âte10 1.0000 .9553 .8776 .8795 .9999 1.0526 .9223 .9477
âte20 1.9979 .7651 .7600 .7391 1.9953 .7720 .7769 .7592

bias(âte10) .0000 -.0001
bias(âte20) -.0020 -.0046
se(α̂0) .0285 .0290 .0325 .0326
se(α̂1) .0281 .0358 .0372 .0444
se(α̂2) .0413 .0345 .0422 .0350
se(âte10) .0384 .0450 .0497 .0537
se(âte20) .0339 .0303 .0351 .0317

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.10: Model without Correlated Random Coefficients but with Asymmetric Instru-
ment, ηg,j = ηj, N=2000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0012 .3857 .3539 .3606 1.0015 .3966 .3679 .3778
α̂1 1.9970 .3965 .4265 .4170 1.9983 .4486 .4706 .4529
α̂2 3.0074 .4024 .3917 .3948 3.0073 .4057 .3925 .3979
âte10 .9957 .6271 .6157 .6217 .9968 .6872 .6689 .6694
âte20 2.0062 .5426 .5191 .5220 2.0057 .5547 .5299 .5369

bias(âte10) -.0042 -.0031
bias(âte20) .0062 .0057
se(α̂0) .0122 .0143 .0141 .0160
se(α̂1) .0147 .0177 .0214 .0217
se(α̂2) .0148 .0173 .0153 .0176
se(âte10) .0178 .0220 .0247 .0260
se(âte20) .0128 .0148 .0135 .0154

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.11: Model without Correlated Random Coefficients but with Asymmetric Instru-
ment, ηg,j = ηj, N=5000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0023 .2267 .2362 .2277 1.0023 .2322 .2485 .2387
α̂1 1.9962 .2625 .2539 .2636 1.9967 .2851 .2781 .2862
α̂2 3.0002 .2572 .2407 .2493 3.0004 .2601 .2443 .2516
âte10 .9938 .3867 .3921 .3926 .9944 .4158 .4228 .4228
âte20 1.9979 .3351 .3290 .3295 1.9981 .3405 .3391 .3393

bias(âte10) -.0061 -.0055
bias(âte20) -.0020 -.0018
se(α̂0) .0073 .0058 .0082 .0064
se(α̂1) .0054 .0072 .0079 .0087
se(α̂2) .0056 .0069 .0059 .0070
se(âte10) .0086 .0089 .0111 .0104
se(âte20) .0061 .0059 .0066 .0061

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.12: Model without Correlated Random Coefficients but with Asymmetric Instru-
ment, ηg,j = ηj, N=10000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0028 .1613 .1559 .1610 1.0028 .1655 .1655 .1689
α̂1 1.9997 .1806 .1899 .1863 1.9998 .1959 .2085 .2022
α̂2 3.0013 .1754 .1749 .1763 3.0015 .1774 .1763 .1780
âte10 .9969 .2702 .2775 .2776 .9970 .2892 .3033 .2989
âte20 1.9985 .2323 .2307 .2330 1.9986 .2375 .2379 .2400

bias(âte10) -.0030 -.0029
bias(âte20) -.0014 -.0013
se(α̂0) .0024 .0028 .0031 .0032
se(α̂1) .0031 .0036 .0044 .0043
se(α̂2) .0034 .0034 .0035 .0034
se(âte10) .0036 .0044 .0052 .0051
se(âte20) .0028 .0029 .0031 .0030

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.13: Model without Correlated Random Coefficients but with Symmetric Instrument,
ηg,j = ηj, N=1000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0045 .5044 .4942 .4976 1.0045 .5108 .4992 .5033
α̂1 1.9959 .4345 .4461 .4584 1.9979 .4646 .4593 .5124
α̂2 3.0060 .4603 .4646 .4625 3.0047 .4632 .4666 .4675
âte10 .9913 .7033 .7182 .7240 .9934 .7343 .7294 .7755
âte20 2.0015 .6754 .6679 .6706 2.0002 .6816 .6728 .6788

bias(âte10) -.0086 -.0065
bias(âte20) .0015 .0002
se(α̂0) .0267 .0327 .0280 .0334
se(α̂1) .0249 .0264 .0271 .0362
se(α̂2) .0275 .0284 .0277 .0285
se(âte10) .0316 .0356 .0315 .0412
se(âte20) .0261 .0297 .0262 .0298

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.14: Model without Correlated Random Coefficients but with Symmetric Instrument,
ηg,j = ηj, N=2000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 .9997 .3357 .3363 .3515 1.0001 .3385 .3415 .3562
α̂1 2.0009 .3175 .3457 .3235 2.0028 .3449 .3886 .3618
α̂2 2.9995 .3211 .3197 .3266 2.9982 .3231 .3258 .3307
âte10 1.0011 .4914 .5093 .5111 1.0027 .5211 .5560 .5481
âte20 1.9997 .4594 .4590 .4733 1.9980 .4621 .4655 .4800

bias(âte10) .0011 .0027
bias(âte20) -.0002 -.0019
se(α̂0) .0134 .0164 .0139 .0168
se(α̂1) .0115 .0131 .0195 .0181
se(α̂2) .0112 .0141 .0117 .0141
se(âte10) .0155 .0179 .0203 .0206
se(âte20) .0117 .0145 .0120 .0146

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.15: Model without Correlated Random Coefficients but with Symmetric Instrument,
ηg,j = ηj, N=5000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 .9956 .2154 .2129 .2221 .9950 .2190 .2156 .2254
α̂1 1.9966 .2070 .2074 .2046 1.9984 .2319 .2313 .2287
α̂2 3.0023 .2052 .2018 .2065 3.0016 .2067 .2029 .2093
âte10 1.0009 .3188 .3165 .3229 1.0034 .3435 .3404 .3466
âte20 2.0066 .2938 .2883 .2991 2.0065 .2971 .2907 .3036

bias(âte10) .0009 .0034
bias(âte20) .0066 .0065
se(α̂0) .0050 .0064 .0053 .0066
se(α̂1) .0056 .0052 .0085 .0070
se(α̂2) .0048 .0055 .0049 .0055
se(âte10) .0058 .0070 .0083 .0080
se(âte20) .0047 .0057 .0048 .0057

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.16: Model without Correlated Random Coefficients but with Symmetric Instrument,
ηg,j = ηj, N=10000, and I=10000

CF Approach IV Approach
Estimate A. SE BS. SE M.C. SD Estimate U. SE BS. SE M.C. SD

α̂0 1.0015 .1617 .1532 .1570 1.0015 .1644 .1555 .1594
α̂1 1.9954 .1402 .1470 .1446 1.9957 .1579 .1680 .1617
α̂2 3.0019 .1474 .1521 .1460 3.0018 .1478 .1550 .1480
âte10 .9938 .2275 .2257 .2282 .9941 .2449 .2452 .2450
âte20 2.0004 .2167 .2117 .2114 2.0003 .2185 .2160 .2147

bias(âte10) -.0061 -.0058
bias(âte20) .0004 .0003
se(α̂0) .0034 .0032 .0035 .0033
se(α̂1) .0023 .0026 .0042 .0035
se(α̂2) .0032 .0027 .0032 .0028
se(âte10) .0034 .0035 .0045 .0040
se(âte20) .0031 .0028 .0032 .0029

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
A. SE= Analytical Standard Error. U. SE= Uncorrected Standard Error.
BS. SE=Bootstrapped Standard Error. M.C. SD= Monte Carlo Standard Deviation.
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Table A.17: Model without Correlated Random Coefficients but with Misspecification and
Asymmetric Instrument, N=1000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

α̂0 .9310 .6576 .7161 1.3118 .4491 .3495
α̂1 1.5886 .9572 1.2296 1.6833 .4969 .4129
α̂2 4.4840 2.2880 1.5690 3.0697 1.4534 1.1045
âte10 .6453 1.0073 1.2998 .3705 .7117 .5793
âte20 3.5647 2.7309 2.2873 1.7553 .7834 .6469

bias(âte10) -.3546 -.6294
bias(âte20) 1.5647 -.2446
se(α̂0) .0547 .1621 .1437 .0854
se(α̂1) .0575 .1642 .1364 .0856
se(α̂2) .3402 .2581 .3788 .1869
se(âte10) .0551 .1691 .2005 .1230
se(âte20) .2927 .3345 .1670 .0705

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table A.18: Model without Correlated Random Coefficients but with Misspecification and
Asymmetric Instrument, N=2000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

α̂0 .9210 .4811 .4993 1.3125 .2614 .2417
α̂1 1.6553 .9694 .8787 1.6767 .2865 .2868
α̂2 4.5738 1.2292 1.0925 3.0702 .7646 .7612
âte10 .7374 .9876 .9243 .3619 .4100 .3994
âte20 3.6540 1.6400 1.5774 1.7568 .4567 .4433

bias(âte10) -.2625 -.6380
bias(âte20) 1.6540 -.2431
se(α̂0) .0312 .0832 .0415 .0379
se(α̂1) .0451 .0814 .0372 .0385
se(α̂2) .1229 .1328 .0798 .0822
se(âte10) .0437 .0837 .0548 .0551
se(âte20) .1040 .1704 .0331 .0296

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table A.19: Model without Correlated Random Coefficients but with Misspecification and
Asymmetric Instrument, N=5000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

α̂0 .9144 .2755 .3160 1.3100 .1561 .1496
α̂1 1.6573 .5443 .5585 1.6850 .1895 .1782
α̂2 4.6245 .6799 .6815 3.0713 .4877 .4732
âte10 .7486 .5673 .5826 .3737 .2625 .2503
âte20 3.7099 .9235 .9838 1.7626 .2949 .2795

bias(âte10) -.2513 -.6262
bias(âte20) 1.7099 -.2373
se(α̂0) .0452 .0354 .0162 .0140
se(α̂1) .0181 .0326 .0156 .0144
se(α̂2) .0535 .0565 .0322 .0307
se(âte10) .0180 .0333 .0227 .0204
se(âte20) .0725 .0713 .0138 .0110

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table A.20: Model without Correlated Random Coefficients but with Misspecification and
Asymmetric Instrument, N=10000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

α̂0 .9127 .2037 .2218 1.3055 .1051 .1061
α̂1 1.6801 .4012 .3936 1.6925 .1219 .1256
α̂2 4.6405 .4644 .4835 3.0690 .3257 .3336
âte10 .7718 .4153 .4057 .3875 .1707 .1758
âte20 3.7286 .6497 .6953 1.7626 .1948 .1957

bias(âte10) -.2281 -.6124
bias(âte20) 1.7286 -.2373
se(α̂0) .0146 .0185 .0070 .0068
se(α̂1) .0097 .0160 .0067 .0070
se(α̂2) .0249 .0294 .0141 .0150
se(âte10) .0094 .0163 .0098 .0100
se(âte20) .0281 .0372 .0049 .0054

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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A.8 Chapter 1: Tables-Empirical Analysis

Table A.21: Variables Description and Summary Statistics, N=38779
Variable Mean S.D Min Max Description
hearnings 2.18 .50 1.34 4.62 Log of hourly earnings in 1989

ep 2.01 .62 1 3 English proficiency (not well, well, and very well)
oarrival 2.64 .69 0 3 Age at arrival (US born, 0 to 11 years old,12 to 17 years old,

and 18 or older)
educ 11.18 3.73 0 20 Number of years of education
exp 19.14 11.89 0 58 Number of years of potential experience

gender .34 .47 0 1 Dummy = 1 if female
managerial .16 .36 0 1 Dummy = 1 if in managerial or professional specialty

occupations
technical .25 .43 0 1 Dummy = 1 if in technical, sales or administrative support

occupations
service .13 .34 0 1 Dummy = 1 if in service occupations
repair .16 .36 0 1 Dummy = 1 if in precision production, craft or repair

occupations
operators .24 .43 0 1 Dummy = 1 if operators, fabricators or laborers
military .003 .05 0 1 Dummy = 1 if in military
usborn .01 .10 0 1 Dummy = 1 if born in the USA
spanish .11 .32 0 1 Dummy = 1 if from Spain
mexican .56 .49 0 1 Dummy = 1 if from Mexico
camerica .06 .23 0 1 Dummy = 1 if from Central America
samerica .05 .22 0 1 Dummy = 1 if from South America
puerto .07 .27 0 1 Dummy = 1 if from Puerto Rico
cuban .05 .22 0 1 Dummy = 1 if from Cuba
empu .02 .15 0 1 Dummy = 1 if unemployed
empnl .02 .15 0 1 Dummy = 1 if not in labor force
classp .78 .41 0 1 Dummy = 1 if working in private for profit company
classnp .04 .20 0 1 Dummy = 1 if working in private for nonprofit organization
classg .15 .36 0 1 Dummy = 1 if working in government
age 36.09 10.84 16 64 Years of age

Note: N=Sample Size. S.D=Standard Deviation.

172



Table A.22: English Proficiency, Earnings, and Other Characteristics
Treatment

1 2 3 Total
Number of observations 7248 23655 7876 38779
Percentage of observations 18.67 61.02 20.31 100
Average log wage (in dollars) 1.91 2.21 2.34 2.18
S.D .40 .49 .52 .50
Average education (in years) 7.80 11.68 12.79 11.18
Average experience (in years) 23.35 18.92 15.92 19.14
Females (in percentages) 27.73 34.76 37.79 34.06
Managerial positions (in percentages) 3.61 17.50 23.69 16.16
Operators (in percentages) 41.34 22.39 16.86 24.81
Mexican (in percentages) 62.23 55.64 55.57 56.86
Born outside USA (in percentages) 99.36 98.62 99.24 98.89
Unemployment rate 3.14 2.39 1.94 2.44
Age 36.63 36.41 34.64 36.09
Note: S.D=Standard Deviation.

Table A.23: Multinomial Logit Regressions of English Proficiency, N=38779
Model

English Proficiency 1 2 3 3a 4 4a
Well -.20*** -.20*** -.25*** - -.25*** -
Very Well .71*** .71*** .60*** - .60*** -
Arrival Age Yes Yes Yes - Yes -
Education - - Yes Yes Yes Yes
Gender - - - - Yes Yes
χ2 1452 1452 8905 7553 8927 7577
Change in χ2 (in percentages) - - +513 -15 +0.2 -15
Note: English proficiency has 3 levels: Not well, well, and very well with not well being
the base outcome in the all regressions. All numbers in the rows associated with treatment
levels indicate the estimated parameters on Hispanic workers’ arrival age in the USA.
The arrival age has four groups: US born, arrived as a child (0 to 11 years old), arrived
as a teenager (12-17 years old) , and arrived as an adult (18 or older). The predicted
probabilities from these first stage regressions are used as instruments for the binary
endogenous English proficiency indicators in the associated IV regressions of Table A.25.
The *** besides a number indicates statistical significance at the 1% level. χ2 is the
likelihood ratio chi square test statistic of goodness of fit. N=Sample Size.
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Table A.24: Multinomial Logit Regressions of English Proficiency (Continuing), N=38779
Model

English Proficiency 5 5a 6 6a 7 7a 8 8a
Well -.27*** - -.26*** - -.26*** - -.27*** -
Very Well .59*** - .51*** - .51*** - .50*** -
Arrival Age Yes - Yes - Yes - Yes -
Education Yes Yes Yes Yes Yes Yes Yes Yes
Gender Yes Yes Yes Yes Yes Yes Yes Yes
Occupation Yes Yes Yes Yes Yes Yes Yes Yes
Ancestry - - Yes Yes Yes Yes Yes Yes
Employment Status - - - - Yes Yes Yes Yes
Worker Class - - - - - - Yes Yes
χ2 10098 8747 12092 11038 12096 11044 12470 11401
Change in χ2 (in percentages) +13.1 -13.4 +19.7 -8.7 +0.03 -8.7 +3.1 -8.6
Note: English proficiency has 3 levels: Not well, well, and very well with not well being the base
outcome in the all regressions. All numbers in the rows associated with treatment levels indicate the
estimated parameters on Hispanic workers’ arrival age in the USA. The arrival age has four groups:
US born, arrived as a child (0 to 11 years old), arrived as a teenager (12-17 years old), and
arrived as an adult (18 or older). The predicted probabilities from these first stage regressions are
used as instruments for the binary endogenous English proficiency indicators in the associated IV
regressions of Table A.26. The *** besides a number indicates statistical significance at the 1% level.
χ2 is the likelihood ratio chi square test statistic of goodness of fit. N=Sample Size.
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Table A.25: Average Treatment Effects (ATEs) of English Proficiency on Log Hourly Wages,
N=38779

Estimation Method ATEs Model 1 Model 2 Model 3 Model 4
CF ep2 − ep1 3.59 -13.63 .30 .39

(10.28) (10.33) (.34) (.34)
ep3 − ep1 5.43 5.85 .83** 1.09***

(11.86) (11.89) (.40) (.40)
IV ep2 − ep1 .85*** .77*** .48*** .56***

(.05) (.07) (.05) (.05)
ep3 − ep1 .95*** .33** .08 .18***

(.05) (.16) (.05) (.05)
OLS ep2 − ep1 .29*** .32*** .14*** .15***

(.005) (.005) (.006) (.006)
ep3 − ep1 .43*** .48*** .26*** .27***

(.007) (.007) (.007) (.007)
Experience - Yes Yes Yes
Education - - Yes Yes
Gender - - - Yes
Note: The dependent variable in all regressions is log hourly wages.
English proficiency has 3 levels: Not well, well, and very well with binary
indicators ep1, ep2, and ep3 respectively. CF is control function
estimation with control function terms. IV is instrumental variables
estimation augmented with interactions of binary endogenous English
proficiency indicators and exogenous outcome variables. All exogenous
regressors are demeaned in all regressions. The numbers in parentheses
are the standard errors of ATE estimates. The standard errors in CF
regressions come from the analytical formula. The standard errors in
IV regressions are bootstrapped. The *** besides a number indicates
statistical significance at the 1% level and the ** at the 5% level.
N=Sample Size.
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Table A.26: Average Treatment Effects (ATEs) of English Proficiency on Log Hourly Wages
(Continuing), N=38779

Estimation Method ATEs Model 5 Model 6 Model 7 Model 8
CF ep2 − ep1 .34 .21 .18 .30

(.31) (.23) (.20) (.21)
ep3 − ep1 .67* .42* .38* .79***

(.36) (.24) (.22) (.24)
IV ep2 − ep1 .27*** .25 .24 .36

(.08) (2.63) (2.87) (1.32)
ep3 − ep1 -.04 -.43 -.47 -.37

(.08) (4.77) (6.49) (5.12)
OLS ep2 − ep1 .12*** .12*** .12*** .12***

(.005) (.005) (.005) (.005)
ep3 − ep1 .23*** .22*** .22*** .22***

(.007) (.007) (.007) (.007)
Experience Yes Yes Yes Yes
Education Yes Yes Yes Yes
Gender Yes Yes Yes Yes
Occupation Yes Yes Yes Yes
Ancestry - Yes Yes Yes
Employment Status - - Yes Yes
Worker Class - - - Yes
Note: The dependent variable in all regressions is log hourly wages.
English proficiency has 3 levels: Not well, well, and very well with binary
indicators ep1, ep2, and ep3 respectively. CF is control function
estimation with control function terms. IV is instrumental variables
estimation augmented with interactions of binary endogenous English
proficiency indicators and exogenous outcome variables. All exogenous
regressors are demeaned in all regressions. The numbers in parentheses
are the standard errors of ATE estimates. The standard errors in CF
regressions come from the analytical formula. The standard errors in
IV regressions are bootstrapped. The *** besides a number indicates
statistical significance at the 1% level and the * at the 10% level.
N=Sample Size.
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Table A.27: Average Treatment Effects (ATEs) of English Proficiency on Log Hourly Wages
with Bounds, N=38779

ATEs/Estimation Method CF IV OLS Lower Bound Upper Bound
ep2 − ep1 .30 .36 .12*** 0 .32

(.21) (1.32) (.005) [0, .33]
ep3 − ep1 .79*** -.37 .22*** 0 .43

(.24) (5.12) (.007) [0, .44]
Note: The dependent variable in all regressions is log hourly wages. English
proficiency has 3 levels: Not well, well, and very well with binary indicators ep1,
ep2, and ep3 respectively. CF is control function estimation with control
function terms. IV is instrumental variables estimation augmented with
interactions of binary endogenous English proficiency indicators and exogenous
outcome variables. Bounds are calculated based on the combined MTS and
MTR assumptions of Manski and Pepper (2000). The regressors and
instruments used in CF, IV, and OLS regressions are potential experience,
education, gender, occupation, ancestry, employment status, worker class, and
the predicted probabilities, respectively. All exogenous regressors are demeaned
in CF, IV, and OLS regressions. The numbers in parentheses are the standard
errors of ATE estimates. The standard errors in CF regressions come from the
analytical formula. The standard errors in IV regressions are bootstrapped. The
numbers in brackets are the lower and upper limits of the 95% bootstrap
confidence intervals. The *** besides a number indicates statistical significance
at the 1% level. N=Sample Size.
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Table A.28: Average Treatment Effects (ATEs) of English Proficiency on Log Hourly Wages
with Bounds, Only Male, N=25568

ATEs/Estimation Method CF IV OLS Lower Bound Upper Bound
ep2 − ep1 .33 .12 .13*** 0 .33

(.25) (1.17) (.007) [0, .35]
ep3 − ep1 .85*** -4.37 .24*** 0 .47

(.30) (3.50) (.009) [0, .49]
Note: The dependent variable in all regressions is log hourly wages. English
proficiency has 3 levels: Not well, well, and very well with binary indicators ep1,
ep2, and ep3 respectively. CF is control function estimation with control
function terms. IV is instrumental variables estimation augmented with
interactions of binary endogenous English proficiency indicators and exogenous
outcome variables. Bounds are calculated based on the combined MTS and
MTR assumptions of Manski and Pepper (2000). The regressors and
instruments used in CF, IV, and OLS regressions are potential experience,
education, gender, occupation, ancestry, employment status, worker class, and
the predicted probabilities, respectively. All exogenous regressors are demeaned
in CF, IV, and OLS regressions. The numbers in parentheses are the standard
errors of ATE estimates. The standard errors in CF regressions come from the
analytical formula. The standard errors in IV regressions are bootstrapped. The
numbers in brackets are the lower and upper limits of the 95% bootstrap
confidence intervals. The *** besides a number indicates statistical significance
at the 1% level. N=Sample Size.
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Table A.29: Average Treatment Effects (ATEs) of English Proficiency on Log Hourly Wages
with Bounds, Only Female, N=13211

ATEs/Estimation Method CF IV OLS Lower Bound Upper Bound
ep2 − ep1 .20 .06 .08*** 0 .32

(.37) (3.16) (.01) [0, .34]
ep3 − ep1 .46** -.36 .16*** 0 .40

(.22) (2.71) (.01) [0, .42]
Note: The dependent variable in all regressions is log hourly wages. English
proficiency has 3 levels: Not well, well, and very well with binary indicators ep1,
ep2, and ep3 respectively. CF is control function estimation with control
function terms. IV is instrumental variables estimation augmented with
interactions of binary endogenous English proficiency indicators and exogenous
outcome variables. Bounds are calculated based on the combined MTS and
MTR assumptions of Manski and Pepper (2000). The regressors and
instruments used in CF, IV, and OLS regressions are potential experience,
education, gender, occupation, ancestry, employment status, worker class, and
the predicted probabilities, respectively. All exogenous regressors are demeaned
in CF, IV, and OLS regressions. The numbers in parentheses are the standard
errors of ATE estimates. The standard errors in CF regressions come from the
analytical formula. The standard errors in IV regressions are bootstrapped. The
numbers in brackets are the lower and upper limits of the 95% bootstrap
confidence intervals. The *** besides a number indicates statistical significance
at the 1% level and the ** at the 5% level. N=Sample Size.
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Table A.30: Average Treatment Effects (ATEs) of English Proficiency on Log Hourly Wages
with Bounds, Only Operators, N=9622

ATEs/Estimation Method CF IV OLS Lower Bound Upper Bound
ep2 − ep1 .68 .28 .13*** 0 .22

(.43) (10.41) (.009) [0, .24]
ep3 − ep1 1.37*** 1.87 .22*** 0 .30

(.56) (13.64) (.01) [0, .33]
Note: The dependent variable in all regressions is log hourly wages. English
proficiency has 3 levels: Not well, well, and very well with binary indicators ep1,
ep2, and ep3 respectively. CF is control function estimation with control
function terms. IV is instrumental variables estimation augmented with
interactions of binary endogenous English proficiency indicators and exogenous
outcome variables. Bounds are calculated based on the combined MTS and
MTR assumptions of Manski and Pepper (2000). The regressors and
instruments used in CF, IV, and OLS regressions are potential experience,
education, gender, occupation, ancestry, employment status, worker class, and
the predicted probabilities, respectively. All exogenous regressors are demeaned
in CF, IV, and OLS regressions. The numbers in parentheses are the standard
errors of ATE estimates. The standard errors in CF regressions come from the
analytical formula. The standard errors in IV regressions are bootstrapped. The
numbers in brackets are the lower and upper limits of the 95% bootstrap
confidence intervals. The *** besides a number indicates statistical significance
at the 1% level. N=Sample Size.
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Table A.31: Average Treatment Effects (ATEs) of English Proficiency on Log Hourly Wages
with Bounds, Only Repair, N=6209

ATEs/Estimation Method CF IV OLS Lower Bound Upper Bound
ep2 − ep1 .54 .14 .16*** 0 .27

(.52) (4.39) (.01) [0, .30]
ep3 − ep1 1.14* -.31 .28*** 0 .38

(.63) (6.30) (.01) [0, .42]
Note: The dependent variable in all regressions is log hourly wages. English
proficiency has 3 levels: Not well, well, and very well with binary indicators ep1,
ep2, and ep3 respectively. CF is control function estimation with control
function terms. IV is instrumental variables estimation augmented with
interactions of binary endogenous English proficiency indicators and exogenous
outcome variables. Bounds are calculated based on the combined MTS and
MTR assumptions of Manski and Pepper (2000). The regressors and
instruments used in CF, IV, and OLS regressions are potential experience,
education, gender, occupation, ancestry, employment status, worker class, and
the predicted probabilities, respectively. All exogenous regressors are demeaned
in CF, IV, and OLS regressions. The numbers in parentheses are the standard
errors of ATE estimates. The standard errors in CF regressions come from the
analytical formula. The standard errors in IV regressions are bootstrapped. The
numbers in brackets are the lower and upper limits of the 95% bootstrap
confidence intervals. The *** besides a number indicates statistical significance
at the 1% level and the * at the 10% level. N=Sample Size.
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Table A.32: Average Treatment Effects (ATEs) of English Proficiency on Log Hourly Wages
with Bounds, Only Service, N=5417

ATEs/Estimation Method CF IV OLS Lower Bound Upper Bound
ep2 − ep1 .21 .42 .09*** 0 .23

(.20) (7.15) (.01) [0, .25]
ep3 − ep1 .47** -.19 .18*** 0 .34

(.23) (4.53) (.01) [0, .38]
Note: The dependent variable in all regressions is log hourly wages. English
proficiency has 3 levels: Not well, well, and very well with binary indicators ep1,
ep2, and ep3 respectively. CF is control function estimation with control
function terms. IV is instrumental variables estimation augmented with
interactions of binary endogenous English proficiency indicators and exogenous
outcome variables. Bounds are calculated based on the combined MTS and
MTR assumptions of Manski and Pepper (2000). The regressors and
instruments used in CF, IV, and OLS regressions are potential experience,
education, gender, occupation, ancestry, employment status, worker class, and
the predicted probabilities, respectively. All exogenous regressors are demeaned
in CF, IV, and OLS regressions. The numbers in parentheses are the standard
errors of ATE estimates. The standard errors in CF regressions come from the
analytical formula. The standard errors in IV regressions are bootstrapped. The
numbers in brackets are the lower and upper limits of the 95% bootstrap
confidence intervals. The *** besides a number indicates statistical significance
at the 1% level and the ** at the 5% level. N=Sample Size.
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APPENDIX B

APPENDIX FOR CHAPTER 2

B.1 Chapter 2: Derivations in CF Method

The expectation of the observed outcome y conditional on the observed variables (d,x, z),

i.e., E(y|d,x, z), is obtained in a couple of steps as shown below. Note I can write

E(y|d,x, z) = E(d0y0 + d1y1 + · · ·+ dGyG|d,x, z)

= d0E(y0|d,x, z) + d1E(y1|d,x, z) + · · ·+ dGE(yG|d,x, z)

= d0E(m0 + xb0 + u0|d,x, z) + d1E(m1 + xb1 + u1|d,x, z) + · · ·+
+dGE(mG + xbG + uG|d,x, z)

= d0E(m0|d,x, z) + d0xE(b0|d,x, z) + d0E(u0|d,x, z) +

+d1E(m1|d,x, z) + d1xE(b1|d,x, z) + d1E(u1|d,x, z) +

+ . . .+ dGE(mG|d,x, z) + dGxE(bG|d,x, z) + dGE(uG|d,x, z)

= d0(ψo0 + xψ0) + d0xE(κo0 + Γ0x
′ + v0|d,x, z) + d0E(u0|d,x, z) +

+d1(ψo1 + xψ1) + d1xE(κo1 + Γ1x
′ + v1|d,x, z) + d1E(u1|d,x, z) +

+ · · ·+ dG(ψoG + xψG) + dGxE(κoG + ΓGx′ + vG|d,x, z) +

+dGE(uG|d,x, z)

= d0(ψo0 + xψ0) + d0x(κo0 + Γ0x
′ + E(v0|d,x, z)) + d0E(u0|d,x, z) +

+d1(ψo1 + xψ1) + d1x(κo1 + Γ1x
′ + E(v1|d,x, z)) + d1E(u1|d,x, z) +

+ · · ·+ dG(ψoG + xψG) + dGx(κoG + ΓGx′ + E(vG|d,x, z)) +

+dGE(uG|d,x, z)

=
G∑
j=0

djψoj +
G∑
j=0

djxψj +
G∑
j=0

djxκoj +
G∑
j=0

djxΓjx
′+

+
G∑
j=0

djxE(vj|d,x, z) +
G∑
j=0

djE(uj|d,x, z). (B.1)

183



Next, I need to derive E(uj|d,x, z) and E(vj|d,x, z). Under A.2.3, A.2.5 and the law of

iterated expectations,

E(uj|d,x, z) = E(E(uj|d,x, z, a)|d,x, z)

= E(E(uj|x, z, a)|d,x, z) = E[
G∑
g=0

ηj,g(ag − E(ag))|d,x, z]

=
G∑
g=0

ηj,gE[(ag − E(ag))|d,x, z)]. (B.2)

E(vj|d,x, z) = E(E(vj|d,x, z, a)|d,x, z)

= E(E(vj|x, z, a)|d,x, z) = E(Pa′|d,x, z) = PE(a′|d,x, z)

= PE(a′|d,x, z). (B.3)

In equations above, I use that d is completely determined by z and a together. Refer to

section 2.2 for seeing this where the main model is described. Hence, the expectation condi-

tional on d,x, z, a reduces down to the one conditional on x, z, a only. Using A.2.1, mutual

exclusivity of binary treatment indicators, and the facts right below for g = 0, 1, . . . , G:

E(a′|d,x, z) = d0E(a′|d0 = 1,x, z) + d1E(a′|d1 = 1,x, z) + . . .+

+dGE(a′|dG = 1,x, z) (B.4)

E(ug|d,x, z) = d0E(ug|d0 = 1,x, z) + d1E(ug|d1 = 1,x, z) + . . .+

+dGE(ug|dG = 1,x, z), (B.5)

I can write E(y|d,x, z) as follows:

E(y|d,x, z) =
G∑
j=0

djψoj +
G∑
j=0

djxψj +
G∑
j=0

djxκoj +
G∑
j=0

djxΓjx
′ +

+
G∑
j=0

djxPE(a′|dj = 1,x, z) +

+
G∑
j=0

dj

G∑
g=0

ηj,gE[(ag − E(ag))|dj = 1,x, z]. (B.6)
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To complete the derivation of the conditional expectation E(y|d,x, z), all I need is to find

closed form expressions for both
∑G

j=0djxPE(a′|dj = 1,x, z) and
∑G

j=0dj
∑G

g=0ηj,gE[(ag −

E(ag))|dj = 1,x, z]. I will start with the latter expression. At this point, it is crucial to

remember a result from the work of Dubin and McFadden (1984). In their paper, they used

the following result:

E(ag − E(ag)|dj = 1,x, z) =


−log(Λg) , g = j

Λjlog(Λj)

(1− Λj)
, g 6= j

, (B.7)

where Λg = exp(zγg)/
∑G

r=0exp(zγr), i.e., the MNL response probability for g, j = 0, 1, . . . , G.

Using the above result, I have

G∑
j=0

dj

G∑
g=0

ηj,gE[(ag − E(ag))|dj = 1,x, z] =
G∑
j=0

dj

(
G∑
g=0

ηj,gE(ag − E(ag)|dj = 1,x, z)

)

=
G∑
j=0

dj

(
−ηj,jlog(Λj) +

∑
h6=j

ηj,h
Λhlog(Λh)

(1− Λh)

)

=
G∑
j=0

dj

(
−ηj,jlog(Λj) +

∑
h6=j

ηj,hMh

)

=
G∑
j=0

−ηj,jdjlog(Λj) +
G∑
j=0

(
dj
∑
h6=j

ηj,hMh

)

=

(
G∑
j=0

−ηj,jdjlog(Λj)

)
+d0 (η0,1M1 + η0,2M2 + · · ·+ η0,GMG)

+d1 (η1,0M0 + η1,2M2 + η1,3M3 + · · ·+ η1,GMG)
...
+dG (ηG,0M0 + ηG,1M1 + · · ·+ ηG,G−1MG−1)
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Then, I have the following equality:

G∑
j=0

dj

G∑
g=0

ηj,gE[(ag − E(ag))|dj = 1,x, z] =

(
G∑
j=0

− ηj,jdjlog(Λj)

)
+
∑
j 6=0

djηj,0M0

+
∑
j 6=1

djηj,1M1

+ · · ·+
∑
j 6=G

djηj,GMG, (B.8)

where Mg = Λglog(Λg)/(1−Λg) for g = 0, 1, . . . , G. Now, I will derive the former expression

that CF method hinges on,
∑G

j=0djxPE(a′|dj = 1,x, z). Let the l × (G + 1) matrix of

parameters, P, have the following form:

P =



p1,0 p1,1 · · · p1,G

p2,0 p2,1 · · · p2,G

...
... . . . ...

pl,0 pl,1 · · · pl,G


lx(G+1).

Thus, I have

G∑
j=0

djxPE(a′|dj = 1,x, z) =
G∑
j=0

djx



G∑
h=0

p1,hE(ah|dj = 1,x, z)

G∑
h=0

p2,hE(ah|dj = 1,x, z)

...
G∑
h=0

pl,hE(ah|dj = 1,x, z)


=

G∑
j=0

[
G∑
h=0

p1,hdjx1E(ah|dj = 1,x, z) +

G∑
h=0

p2,hdjx2E(ah|dj = 1,x, z) +

+ · · ·+
G∑
h=0

pl,hdjxlE(ah|dj = 1,x, z)]
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Then, I have the following equality:

G∑
j=0

djxPE(a′|dj = 1,x, z) =
G∑
j=0

[(p1,0djx1E(a0|dj = 1,x, z) + · · ·+

+p1,Gdjx1E(aG|dj = 1,x, z)) +

+(p2,0djx2E(a0|dj = 1,x, z) + · · ·+
+p2,Gdjx2E(aG|dj = 1,x, z)) +
...
+(pl,0djxlE(a0|dj = 1,x, z) + · · ·+
+pl,GdjxlE(aG|dj = 1,x, z))]

= p1,0

G∑
j=0

djx1E(a0|dj = 1,x, z) + · · ·+

+p1,G

G∑
j=0

djx1E(aG|dj = 1,x, z) +

+p2,0

G∑
j=0

djx2E(a0|dj = 1,x, z) + · · ·+

+p2,G

G∑
j=0

djx2E(aG|dj = 1,x, z) +

...

+pl,0

G∑
j=0

djxlE(a0|dj = 1,x, z) + · · ·+

+pl,G

G∑
j=0

djxlE(aG|dj = 1,x, z)

=

l,G∑
k=1,h=0

pk,h

(
G∑
j=0

djxkE(ah|dj = 1,x, z)

)
, (B.9)

where E(ah|dj = 1,x, z) is as in (2.14) for k = 1, 2, . . . , l and h, j = 0, 1, . . . , G.
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By combining equations (B.6), (B.8), and (B.9), I can write the expectation of the ob-

served outcome y conditional on the observed variables (d,x, z) as follows:

E(y|d,x, z) =
G∑
j=0

djψoj +
G∑
j=0

djxψj +
G∑
j=0

djxκoj +
G∑
j=0

djxΓjx
′ +

+

(
G∑
j=0

− ηj,jdjlog(Λj)

)
+
∑
j 6=0

djηj,0M0 +
∑
j 6=1

djηj,1M1 +

+ · · ·+
∑
j 6=G

djηj,GMG +

+

l,G∑
k=1,h=0

pk,h

(
G∑
j=0

djxkE(ah|dj = 1,x, z)

)

=
G∑
j=0

djψoj +
G∑
j=0

djx(ψj + κoj) +
G∑
j=0

dj(x⊗ x)vecΓj +

+

(
G∑
j=0

− ηj,jdjlog(Λj)

)
+
∑
j 6=0

djηj,0M0 +
∑
j 6=1

djηj,1M1 +

+ · · ·+
∑
j 6=G

djηj,GMG +

+

l,G∑
k=1,h=0

pk,h

(
G∑
j=0

djxkE(ah|dj = 1,x, z)

)
, (B.10)

where Λj, Mj, and E(ah|dj = 1,x, z) are as in (2.14) for h, j = 0, 1, . . . , G; vec(· ) is the

column vectorization operator; vec(ABC) = (C ′⊗A)vec(B) for conformable matrices A, B,

and C; and vec(D) = D if and only if D is a one by one square matrix.
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B.2 Chapter 2: Tables-Simulations

Table B.1: Model with Correlated Random Coefficients and Asymmetric Instrument,
N=1000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9966 .4415 .6241 1.4465 .4882 .4743
ψ̂o1 1.9876 1.1375 1.5160 1.8806 .9356 .9522
ψ̂o2 2.9873 1.5026 1.6005 2.8735 1.3147 1.4189
Γ̂0 4.0006 .4631 .3825 4.0018 .5842 .5104
Γ̂1 4.9921 .4946 .5386 4.9997 .6364 .7890
Γ̂2 6.0035 .9609 .8968 6.0045 1.0026 .9493
âte10 1.9824 1.2580 1.6561 1.4319 .9489 .9999
âte20 3.9936 1.4499 1.5281 3.4297 1.1465 1.1986

bias(âte10) -.0175 -.5680
bias(âte20) -.0063 -.5702
se(ψ̂o0) .0451 .0998 .0587 .1086
se(ψ̂o1) .1323 .3922 .0834 .1666
se(ψ̂o2) .1012 .1372 .0962 .1195
se(Γ̂0) .0846 .0826 .1001 .1660
se(Γ̂1) .0682 .1232 .1197 .2831
se(Γ̂2) .2847 .1956 .3037 .2192
se(âte10) .1252 .3850 .0755 .1054
se(âte20) .0962 .1070 .3108 .3111

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.2: Model with Correlated Random Coefficients and Asymmetric Instrument,
N=2000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9984 .4606 .4343 1.4539 .3380 .3354
ψ̂o1 1.9788 1.2932 1.0743 1.8739 .8000 .6762
ψ̂o2 2.9758 1.1536 1.1198 2.8585 1.0442 .9905
Γ̂0 3.9980 .2806 .2704 3.9970 .3582 .3554
Γ̂1 5.0014 .5149 .3838 5.0072 .6448 .5441
Γ̂2 6.0034 .6197 .6247 6.0037 .6989 .6603
âte10 1.9837 1.4239 1.1759 1.4302 .7204 .6984
âte20 3.9827 1.1211 1.0674 3.4113 .8897 .8360

bias(âte10) -.0162 -.5697
bias(âte20) -.0172 -.5886
se(ψ̂o0) .0394 .0527 .0331 .0536
se(ψ̂o1) .1935 .2028 .0958 .0786
se(ψ̂o2) .0672 .0715 .0567 .0642
se(Γ̂0) .0386 .0494 .0587 .0832
se(Γ̂1) .1412 .0725 .1612 .1390
se(Γ̂2) .0873 .1101 .1078 .1220
se(âte10) .1925 .1983 .0446 .0486
se(âte20) .0591 .0531 .1260 .1658

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.3: Model with Correlated Random Coefficients and Asymmetric Instrument,
N=5000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9991 .2943 .2708 1.4524 .2536 .2120
ψ̂o1 1.9929 .7410 .6711 1.8796 .4351 .4225
ψ̂o2 2.9799 .7581 .7062 2.8625 .6654 .6292
Γ̂0 3.9989 .1703 .1712 4.0002 .2785 .2235
Γ̂1 4.9972 .2316 .2404 4.9989 .2817 .3393
Γ̂2 6.0019 .4364 .3886 6.0021 .4593 .4144
âte10 1.9920 .8080 .7314 1.4259 .4550 .4386
âte20 3.9837 .7243 .6704 3.4120 .5582 .5309

bias(âte10) -.0079 -.5740
bias(âte20) -.0162 -.5879
se(ψ̂o0) .0166 .0226 .0232 .0246
se(ψ̂o1) .0553 .0835 .0230 .0347
se(ψ̂o2) .0277 .0303 .0235 .0289
se(Γ̂0) .0128 .0234 .0419 .0367
se(Γ̂1) .0299 .0340 .0329 .0608
se(Γ̂2) .0401 .0505 .0451 .0562
se(âte10) .0487 .0817 .0205 .0189
se(âte20) .0214 .0213 .0578 .0768

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.4: Model with Correlated Random Coefficients and Asymmetric Instrument,
N=10000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9996 .2047 .1920 1.4527 .1563 .1507
ψ̂o1 2.0032 .4443 .4737 1.8782 .2873 .3000
ψ̂o2 2.9818 .5233 .5051 2.8677 .4609 .4467
Γ̂0 4.0007 .1480 .1212 3.9998 .1712 .1580
Γ̂1 4.9993 .1403 .1713 5.0036 .2339 .2392
Γ̂2 5.9993 .2952 .2764 5.9971 .3104 .2927
âte10 2.0022 .4839 .5173 1.4293 .3146 .3093
âte20 3.9807 .4874 .4759 3.4123 .3870 .3744

bias(âte10) .0022 -.5706
bias(âte20) -.0192 -.5876
se(ψ̂o0) .0133 .0124 .0105 .0129
se(ψ̂o1) .0182 .0429 .0115 .0177
se(ψ̂o2) .0160 .0160 .0123 .0155
se(Γ̂0) .0157 .0127 .0152 .0191
se(Γ̂1) .0092 .0185 .0253 .0321
se(Γ̂2) .0215 .0275 .0221 .0304
se(âte10) .0173 .0420 .0099 .0092
se(âte20) .0097 .0106 .0302 .0414

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.5: Model with Correlated Random Coefficients and Symmetric Instrument, N=1000,
and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 1.0048 .3626 .4217 1.1852 .3861 .4384
ψ̂o1 1.9784 1.0168 1.0007 2.0025 .7629 .8378
ψ̂o2 2.9972 1.7117 1.5230 2.8303 1.3924 1.3015
Γ̂0 3.9989 .3458 .4340 3.9994 .4091 .5091
Γ̂1 4.9947 .4341 .5159 5.0007 .5900 .6871
Γ̂2 5.9930 .7844 .8203 5.9953 .8397 .8670
âte10 1.9692 1.0704 1.1056 1.8184 .7862 .8484
âte20 3.9864 1.5429 1.4001 3.6409 1.1777 1.1125

bias(âte10) -.0307 -.1815
bias(âte20) -.0135 -.3590
se(ψ̂o0) .0319 .0710 .0410 .0940
se(ψ̂o1) .1121 .2218 .0784 .1220
se(ψ̂o2) .1380 .1235 .1060 .1021
se(Γ̂0) .0558 .0987 .0665 .1430
se(Γ̂1) .0825 .1166 .1733 .2103
se(Γ̂2) .1532 .1691 .1783 .1901
se(âte10) .1019 .2119 .0614 .0747
se(âte20) .1119 .0981 .2098 .2682

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.6: Model with Correlated Random Coefficients and Symmetric Instrument, N=2000,
and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9999 .2632 .3012 1.1856 .3106 .3119
ψ̂o1 1.9787 .7716 .7118 1.9991 .5969 .5887
ψ̂o2 2.9903 1.0527 1.0615 2.8146 .9205 .9192
Γ̂0 3.9979 .3050 .3080 3.9972 .3552 .3574
Γ̂1 5.0001 .3452 .3666 5.0026 .4424 .4791
Γ̂2 6.0027 .5958 .5686 6.0055 .6699 .6063
âte10 1.9810 .8465 .7882 1.8189 .6158 .5946
âte20 3.9952 .9880 .9801 3.6373 .7780 .7825

bias(âte10) -.0189 -.1810
bias(âte20) -.0047 -.3626
se(ψ̂o0) .0235 .0434 .0312 .0564
se(ψ̂o1) .0812 .1151 .0369 .0636
se(ψ̂o2) .0510 .0638 .0436 .0556
se(Γ̂0) .0550 .0595 .0656 .0818
se(Γ̂1) .0482 .0689 .0586 .1133
se(Γ̂2) .0731 .0954 .0815 .1060
se(âte10) .0784 .1097 .0377 .0361
se(âte20) .0440 .0479 .1054 .1525

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.7: Model with Correlated Random Coefficients and Symmetric Instrument, N=5000,
and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9999 .1771 .1919 1.1819 .1778 .1967
ψ̂o1 1.9967 .4387 .4444 2.0052 .3864 .3676
ψ̂o2 2.9915 .6408 .6680 2.8216 .5644 .5725
Γ̂0 4.0007 .1550 .1940 4.0008 .1780 .2239
Γ̂1 4.9971 .2730 .2300 5.0006 .3169 .2989
Γ̂2 6.0043 .3523 .3571 6.0028 .3806 .3797
âte10 1.9931 .5169 .4912 1.8230 .3802 .3730
âte20 3.9951 .6033 .6114 3.6416 .4891 .4848

bias(âte10) -.0068 -.1769
bias(âte20) -.0048 -.3583
se(ψ̂o0) .0082 .0215 .0102 .0263
se(ψ̂o1) .0319 .0493 .0181 .0285
se(ψ̂o2) .0204 .0268 .0203 .0244
se(Γ̂0) .0138 .0284 .0168 .0367
se(Γ̂1) .0262 .0320 .0304 .0508
se(Γ̂2) .0423 .0430 .0485 .0480
se(âte10) .0314 .0468 .0135 .0141
se(âte20) .0172 .0191 .0581 .0683

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.8: Model with Correlated Random Coefficients and Symmetric Instrument,
N=10000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 1.0000 .1395 .1352 1.1819 .1364 .1412
ψ̂o1 1.9957 .3210 .3159 2.0030 .2636 .2625
ψ̂o2 2.9998 .4701 .4757 2.8244 .4104 .4103
Γ̂0 4.0007 .1362 .1379 4.0010 .1491 .1599
Γ̂1 4.9976 .1701 .1634 4.9973 .2001 .2117
Γ̂2 5.9997 .2320 .2514 6.0004 .2445 .2679
âte10 1.9927 .3454 .3516 1.8174 .2581 .2628
âte20 3.9988 .4324 .4389 3.6418 .3480 .3512

bias(âte10) -.0072 -.1825
bias(âte20) -.0011 -.3581
se(ψ̂o0) .0143 .0126 .0102 .0150
se(ψ̂o1) .0210 .0260 .0088 .0143
se(ψ̂o2) .0107 .0141 .0095 .0131
se(Γ̂0) .0143 .0162 .0124 .0204
se(Γ̂1) .0142 .0175 .0144 .0264
se(Γ̂2) .0144 .0234 .0169 .0259
se(âte10) .0183 .0247 .0059 .0069
se(âte20) .0099 .0095 .0230 .0374

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.9: Model with Correlated Random Coefficients, Misspecification, Asymmetric In-
strument, N=1000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9461 1.1410 1.2723 1.4027 .4736 .5037
ψ̂o1 1.5961 2.0282 2.7527 1.6021 1.0796 1.1983
ψ̂o2 4.9293 2.8969 2.2047 3.0860 2.1529 2.1102
Γ̂0 4.0019 .3766 .2769 4.0088 1.1592 1.3138
Γ̂1 4.9902 .3993 .3731 4.9867 2.4190 2.9119
Γ̂2 5.9875 .8826 .5114 5.9920 1.1375 1.5279
âte10 1.6196 1.5444 2.0207 1.1407 1.0203 .8939
âte20 5.9849 4.5498 4.5059 3.6704 1.3177 1.0434

bias(âte10) -.3803 -.8592
bias(âte20) 1.9849 -.3295
se(ψ̂o0) .1203 .3022 .1654 .2450
se(ψ̂o1) .1422 .3879 .3317 .4835
se(ψ̂o2) .3846 .3618 .8319 1.6053
se(Γ̂0) .0749 .0556 1.7195 3.3484
se(Γ̂1) .0893 .0769 4.1807 6.9957
se(Γ̂2) .2508 .0931 1.0852 3.1281
se(âte10) .0918 .2787 .4833 .3081
se(âte20) .3983 .8435 1.4886 3.1142

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.10: Model with Correlated Random Coefficients, Misspecification, Asymmetric In-
strument, N=2000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9287 .8776 .9087 1.4031 .3142 .3414
ψ̂o1 1.5697 2.0558 1.9266 1.5992 .7486 .8057
ψ̂o2 5.0589 1.6261 1.5390 3.0892 1.2035 1.3993
Γ̂0 4.0001 .1551 .1987 4.0046 .6245 .8184
Γ̂1 4.9958 .3668 .2645 4.9881 2.5550 1.8173
Γ̂2 5.9928 .3897 .3578 5.9977 .8872 .9898
âte10 1.6532 1.4764 1.4045 1.1761 .6393 .5918
âte20 6.1530 3.0933 3.1422 3.6827 .6620 .6659

bias(âte10) -.3467 -.8238
bias(âte20) 2.1530 -.3172
se(ψ̂o0) .0745 .1603 .0533 .0912
se(ψ̂o1) .1144 .1968 .1379 .1830
se(ψ̂o2) .1617 .1897 .1586 .3747
se(Γ̂0) .0167 .0331 .2910 .8311
se(Γ̂1) .0389 .0448 1.2377 1.7261
se(Γ̂2) .0365 .0522 .3916 .7780
se(âte10) .0720 .1417 .1356 .1116
se(âte20) .2153 .4445 .2736 .6014

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.11: Model with Correlated Random Coefficients, Misspecification, Asymmetric In-
strument, N=5000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .8966 .4653 .5729 1.4067 .2315 .2000
ψ̂o1 1.5689 1.1492 1.2345 1.5912 .5330 .4752
ψ̂o2 5.1376 .8912 .9638 3.0910 .9123 .8222
Γ̂0 3.9991 .1160 .1266 3.9969 .7580 .4583
Γ̂1 4.9961 .1627 .1676 5.0041 1.5389 1.0147
Γ̂2 5.9979 .2006 .2263 5.9940 .7654 .5656
âte10 1.6626 .8186 .9052 1.1816 .3769 .3542
âte20 6.2447 1.6778 1.9784 3.6827 .4266 .3931

bias(âte10) -.3373 -.8183
bias(âte20) 2.2447 -.3172
se(ψ̂o0) .0613 .0715 .0600 .0291
se(ψ̂o1) .0417 .0786 .0981 .0583
se(ψ̂o2) .0696 .0827 .1465 .0885
se(Γ̂0) .0094 .0160 .4003 .1887
se(Γ̂1) .0121 .0211 .7224 .3914
se(Γ̂2) .0226 .0237 .3021 .1806
se(âte10) .0289 .0573 .0485 .0349
se(âte20) .1387 .1990 .2000 .1042

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.12: Model with Correlated Random Coefficients, Misspecification, Asymmetric In-
strument, N=10000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9182 .3991 .4102 1.4081 .1619 .1376
ψ̂o1 1.5635 .9078 .8644 1.5939 .3615 .3257
ψ̂o2 5.1640 .6609 .6831 3.0917 .6498 .5702
Γ̂0 3.9998 .0934 .0898 3.9976 .4809 .3100
Γ̂1 4.9986 .1156 .1189 5.0024 .9661 .6872
Γ̂2 5.9994 .1680 .1595 5.9973 .5499 .3867
âte10 1.6472 .6604 .6297 1.1786 .2635 .2438
âte20 6.2517 1.3442 1.4030 3.6831 .2873 .2768

bias(âte10) -.3527 -.8213
bias(âte20) 2.2517 -.3168
se(ψ̂o0) .0259 .0400 .0506 .0133
se(ψ̂o1) .0323 .0400 .0543 .0274
se(ψ̂o2) .0292 .0440 .0813 .0400
se(Γ̂0) .0090 .0089 .3922 .0808
se(Γ̂1) .0130 .0116 .4640 .1707
se(Γ̂2) .0197 .0128 .1716 .0805
se(âte10) .0207 .0296 .0277 .0162
se(âte20) .0716 .1129 .2243 .0420

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.13: Model with Correlated Random Coefficients, Misspecification, Symmetric In-
strument, N=1000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 1.0018 .3845 .3526 1.0872 .6492 .4221
ψ̂o1 1.6606 2.1580 2.1724 1.8613 .5639 .6317
ψ̂o2 3.2989 1.7881 1.9619 3.0133 1.4502 1.3144
Γ̂0 3.9996 .2767 .2475 3.9994 1.6010 .5225
Γ̂1 4.9916 .2989 .3493 5.0007 3.6601 2.0802
Γ̂2 5.9948 .5331 .4996 5.9950 2.8154 1.5871
âte10 1.6584 1.7267 1.7348 1.7727 .5862 .4716
âte20 4.2994 1.7651 1.9578 3.9298 .9728 .9005

bias(âte10) -.3415 -.2272
bias(âte20) .2994 -.0701
se(ψ̂o0) .0446 .0571 .2017 .1696
se(ψ̂o1) .2181 .3373 .2615 .2193
se(ψ̂o2) .1588 .3299 .7145 .4557
se(Γ̂0) .0402 .0484 .7055 .6112
se(Γ̂1) .0642 .0724 3.4152 3.7772
se(Γ̂2) .0713 .0944 2.3872 2.6757
se(âte10) .1761 .2670 .4531 .1380
se(âte20) .1537 .3287 .7081 .9806

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.14: Model with Correlated Random Coefficients, Misspecification, Symmetric In-
strument, N=2000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9960 .2807 .2514 1.0906 .3491 .2816
ψ̂o1 1.6299 1.5503 1.5333 1.8668 .6082 .4177
ψ̂o2 3.3335 1.5427 1.3816 3.0193 1.1811 .8750
Γ̂0 4.0002 .1557 .1768 3.9995 .4435 .3454
Γ̂1 4.9937 .2193 .2476 4.9937 1.9177 1.3231
Γ̂2 5.9928 .3564 .3531 5.9912 1.3576 1.0265
âte10 1.6279 1.2361 1.2241 1.7631 .3395 .3183
âte20 4.3370 1.5352 1.3837 3.9303 .7097 .6005

bias(âte10) -.3720 -.2368
bias(âte20) .3370 -.0696
se(ψ̂o0) .0261 .0304 .0185 .0608
se(ψ̂o1) .1602 .1750 .1178 .0888
se(ψ̂o2) .1080 .1676 .2395 .1691
se(Γ̂0) .0217 .0289 .0654 .1816
se(Γ̂1) .0273 .0419 .8022 1.0389
se(Γ̂2) .0493 .0530 .5274 .7355
se(âte10) .1264 .1392 .0463 .0530
se(âte20) .1035 .1672 .2598 .3569

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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Table B.15: Model with Correlated Random Coefficients, Misspecification, Symmetric In-
strument, N=5000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9968 .1632 .1606 1.0898 .1727 .1682
ψ̂o1 1.6423 .9970 .9633 1.8780 .2419 .2494
ψ̂o2 3.3268 .9881 .8717 3.0120 .5201 .5197
Γ̂0 4.0005 .1253 .1133 3.9986 .2132 .2023
Γ̂1 4.9984 .1355 .1565 5.0057 .6606 .7635
Γ̂2 5.9990 .2729 .2225 5.9934 .5288 .5934
âte10 1.6422 .7958 .7680 1.7818 .1913 .1873
âte20 4.3286 .9701 .8700 3.9251 .3747 .3623

bias(âte10) -.3577 -.2181
bias(âte20) .3286 -.0748
se(ψ̂o0) .0107 .0130 .0181 .0196
se(ψ̂o1) .0527 .0734 .0226 .0296
se(ψ̂o2) .0431 .0668 .0396 .0552
se(Γ̂0) .0201 .0138 .0436 .0497
se(Γ̂1) .0125 .0198 .1721 .2697
se(Γ̂2) .0214 .0241 .1081 .1931
se(âte10) .0420 .0585 .0169 .0170
se(âte20) .0426 .0668 .0600 .1171

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.

203



Table B.16: Model with Correlated Random Coefficients, Misspecification, Symmetric In-
strument, N=10000, and I=10000

CF Approach IV Approach
Estimate BS. SE M.C. SD Estimate BS. SE M.C. SD

ψ̂o0 .9956 .1190 .1134 1.0911 .1063 .1173
ψ̂o1 1.6620 .6463 .6849 1.8662 .1499 .1725
ψ̂o2 3.3391 .5993 .6144 3.0261 .3323 .3619
Γ̂0 4.0006 .0878 .0801 3.9990 .1280 .1401
Γ̂1 4.9986 .1270 .1105 5.0050 .4043 .5244
Γ̂2 5.9973 .1518 .1573 5.9919 .3469 .4090
âte10 1.6654 .5150 .5514 1.7798 .1150 .1315
âte20 4.3411 .6041 .6154 3.9312 .2490 .2519

bias(âte10) -.3345 -.2201
bias(âte20) .3411 -.0687
se(ψ̂o0) .0083 .0067 .0072 .0094
se(ψ̂o1) .0241 .0369 .0089 .0139
se(ψ̂o2) .0238 .0338 .0181 .0261
se(Γ̂0) .0100 .0076 .0141 .0230
se(Γ̂1) .0134 .0109 .0628 .1220
se(Γ̂2) .0144 .0131 .0502 .0884
se(âte10) .0189 .0294 .0059 .0079
se(âte20) .0239 .0339 .0353 .0564

Note: N=Sample Size. I=Number of Iteration.
CF= Control Function. IV= Instrumental Variable.
BS. SE=Bootstrapped Standard Error.
M.C. SD= Monte Carlo Standard Deviation.
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APPENDIX C

APPENDIX FOR CHAPTER 3

C.1 Chapter 3: Tables-Simulations

Table C.1: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
4, p = 2100, p′ = 27, f = 15, N=1000, Correlated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 1.0574 .8641 1.0467 .8215 1.0334 .8106 1.0308 .8678 .9958 1.2182
âte2,0 1.9784 1.5510 1.9936 1.0332 1.9716 1.0220 1.9777 1.0807 1.9666 1.3507

bias(âte1,0) .0574 .0467 .0334 .0308 -.0041
bias(âte2,0) -.0215 -.0063 -.0283 -.0222 -.0333
# of SV 26.375 25.941 25.941 25.942 -
# of CSV 11.300 10.933 10.933 10.932 -
MAPE 13.382 13.319 13.315 7.8851 11.533
RMSE 17.839 17.772 17.769 12.409 15.740

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.
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Table C.2: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
4, p = 2100, p′ = 27, f = 15, N=1250, Correlated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 1.0669 .7594 1.0240 .7177 1.0142 .7108 1.0105 .7260 1.0043 1.0938
âte2,0 2.0192 1.2388 2.0518 .9188 2.0335 .9109 2.0483 .9656 2.0742 1.2079

bias(âte1,0) .0669 .0240 .0142 .0105 .0043
bias(âte2,0) .0192 .0518 .0335 .0483 .0742
# of SV 26.602 26.254 26.254 26.253 -
# of CSV 11.533 11.245 11.245 11.244 -
MAPE 13.355 13.323 13.320 7.8101 11.552
RMSE 17.801 17.770 17.767 12.301 15.768

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.

Table C.3: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
4, p = 2100, p′ = 27, f = 15, N=1500, Correlated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 .9334 .7097 .9491 .6820 .9411 .6765 .9444 .6900 .9197 1.0111
âte2,0 1.9567 1.0555 1.9327 .8343 1.9180 .8277 1.9126 .8860 1.8759 1.1009

bias(âte1,0) -.0665 -.0508 -.0588 -.0555 -.0802
bias(âte2,0) -.0432 -.0672 -.0819 -.0873 -.1240
# of SV 26.777 26.491 26.491 26.484 -
# of CSV 11.713 11.487 11.487 11.482 -
MAPE 13.318 13.288 13.286 7.7574 11.561
RMSE 17.775 17.743 17.741 12.234 15.777

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.
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Table C.4: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
4, p = 2100, p′ = 27, f = 15, N=2000, Correlated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 .9457 .5676 .9594 .5536 .9531 .5498 .9575 .5750 .9473 .8948
âte2,0 1.9408 .8869 1.9617 .7436 1.9501 .7392 1.9634 .7578 1.9691 .9272

bias(âte1,0) -.0542 -.0405 -.0468 -.0424 -.0526
bias(âte2,0) -.0591 -.0382 -.0498 -.0365 -.0308
# of SV 26.964 26.776 26.776 26.773 -
# of CSV 11.893 11.773 11.773 11.772 -
MAPE 13.298 13.289 13.288 7.6724 11.574
RMSE 17.750 17.740 17.739 12.094 15.790

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.

Table C.5: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
1, p = 2100, p′ = 18, f = 15, N=1000, Correlated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 1.0687 .8674 1.0519 .8176 1.0485 .8169 1.0562 .8211 1.0581 .8194
âte2,0 1.9977 1.5211 1.9974 1.0195 1.9941 1.0182 1.9975 1.0214 1.9972 1.0232

bias(âte1,0) .0687 .0519 .0485 .0562 .0581
bias(âte2,0) -.0022 -.0025 -.0058 -.0024 -.0027
# of SV 16.214 16.101 16.101 16.099 -
# of CSV 1.1850 1.0990 1.0990 1.0980 -
MAPE 10.510 10.431 10.431 7.5310 7.6320
RMSE 14.473 14.402 14.401 11.861 11.879

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.
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Table C.6: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
1, p = 2100, p′ = 18, f = 15, N=1250, Correlated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 1.0589 .7473 1.0158 .7184 1.0134 .7183 1.0249 .7128 1.0255 .7146
âte2,0 2.0210 1.2399 2.0506 .9152 2.0479 .9143 2.0512 .9229 2.0509 .9273

bias(âte1,0) .0589 .0158 .0134 .0249 .0255
bias(âte2,0) .0210 .0506 .0479 .0512 .0509
# of SV 16.437 16.265 16.265 16.253 -
# of CSV 1.3973 1.2622 1.2622 1.2512 -
MAPE 10.471 10.430 10.430 7.5390 7.6456
RMSE 14.437 14.397 14.397 11.880 11.903

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.

Table C.7: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
1, p = 2100, p′ = 18, f = 15, N=1500, Correlated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 .9434 .7025 .9618 .6682 .9597 .6678 .9562 .6790 .9518 .6770
âte2,0 1.9527 1.0737 1.9273 .8452 1.9250 .8443 1.9293 .8445 1.9304 .8461

bias(âte1,0) -.0565 -.0381 -.0402 -.0437 -.0481
bias(âte2,0) -.0472 -.0726 -.0749 -.0706 -.0695
# of SV 16.645 16.415 16.415 16.411 -
# of CSV 1.6110 1.4170 1.4170 1.4100 -
MAPE 10.439 10.402 10.401 7.5440 7.6557
RMSE 14.425 14.388 14.388 11.900 11.928

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.

208



Table C.8: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
1, p = 2100, p′ = 18, f = 15, N=2000, Correlated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 .9440 .5737 .9475 .5489 .9461 .5483 .9580 .5714 .9619 .5794
âte2,0 1.9386 .8904 1.9605 .7466 1.9584 .7459 1.9601 .7510 1.9624 .7528

bias(âte1,0) -.0559 -.0524 -.0538 -.0419 -.0380
bias(âte2,0) -.0613 -.0394 -.0415 -.0398 -.0375
# of SV 17.159 16.878 16.878 16.869 -
# of CSV 2.1081 1.8798 1.8798 1.8748 -
MAPE 10.402 10.392 10.392 7.5283 7.6527
RMSE 14.373 14.364 14.364 11.873 11.914

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.

Table C.9: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors lh1 =
4, p = 2100, p′ = 27, f = 15, N=1000, Uncorrelated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 1.0801 .9276 1.0411 .8367 1.0288 .8295 1.0262 .9350 1.0364 1.0547
âte2,0 2.0061 1.6753 1.9714 1.0833 1.9552 1.0752 1.9766 1.1150 1.9921 1.2047

bias(âte1,0) .0801 .0411 .0288 .0262 .0364
bias(âte2,0) .0061 -.0285 -.0447 -.0233 -.0078
# of SV 23.417 22.871 22.871 22.852 -
# of CSV 8.3620 7.8676 7.8676 7.8525 -
MAPE 12.039 11.955 11.952 8.2623 9.9062
RMSE 16.212 16.131 16.129 12.934 13.892

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.
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Table C.10: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors
lh1 = 4, p = 2100, p′ = 27, f = 15, N=1250, Uncorrelated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 1.0771 .7486 1.0501 .7200 1.0400 .7146 .9985 .7692 .9787 .9376
âte2,0 2.0233 1.3014 2.0385 .9446 2.0241 .9383 2.0522 .9919 2.0675 1.0649

bias(âte1,0) .0771 .0501 .0400 -.0014 -.0212
bias(âte2,0) .0233 .0385 .0241 .0522 .0675
# of SV 24.240 23.755 23.755 23.743 -
# of CSV 9.2086 8.7572 8.7572 8.7472 -
MAPE 11.994 11.953 11.951 8.1502 9.9246
RMSE 16.165 16.123 16.121 12.790 13.919

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.

Table C.11: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors
lh1 = 4, p = 2100, p′ = 27, f = 15, N=1500, Uncorrelated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 .9513 .7127 .9561 .6839 .9485 .6792 .9310 .7240 .8889 .8623
âte2,0 1.9390 1.1272 1.9145 .8748 1.9025 .8694 1.9048 .9230 1.8970 .9896

bias(âte1,0) -.0486 -.0438 -.0514 -.0689 -.1110
bias(âte2,0) -.0609 -.0854 -.0974 -.0951 -.1029
# of SV 24.822 24.386 24.386 24.380 -
# of CSV 9.7933 9.3941 9.3941 9.3901 -
MAPE 11.958 11.924 11.922 8.0679 9.9344
RMSE 16.142 16.107 16.105 12.683 13.932

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.
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Table C.12: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors
lh1 = 4, p = 2100, p′ = 27, f = 15, N=2000, Uncorrelated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 .9425 .5692 .9549 .5548 .9486 .5513 .9611 .5879 .9554 .7198
âte2,0 1.9349 .9067 1.9520 .7481 1.9417 .7442 1.9643 .7734 1.9761 .8275

bias(âte1,0) -.0574 -.0450 -.0513 -.0388 -.0445
bias(âte2,0) -.0650 -.0479 -.0582 -.0356 -.0238
# of SV 25.809 25.480 25.480 25.482 -
# of CSV 10.788 10.485 10.485 10.484 -
MAPE 11.929 11.917 11.916 7.9188 9.9373
RMSE 16.103 16.093 16.092 12.459 13.933

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.

Table C.13: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors
lh1 = 1, p = 2100, p′ = 18, f = 15, N=1000, Uncorrelated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 1.0685 .8753 1.0493 .8199 1.0460 .8193 1.0591 .8221 1.0606 .8212
âte2,0 1.9907 1.5179 1.9988 1.0231 1.9957 1.0217 1.9971 1.0251 1.9966 1.0273

bias(âte1,0) .0685 .0493 .0460 .0591 .0606
bias(âte2,0) -.0092 -.0011 -.0042 -.0028 -.0033
# of SV 16.200 16.095 16.095 16.091 -
# of CSV 1.1831 1.0990 1.0990 1.0990 -
MAPE 10.509 10.431 10.431 7.5307 7.6317
RMSE 14.472 14.401 14.401 11.861 11.879

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.
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Table C.14: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors
lh1 = 1, p = 2100, p′ = 18, f = 15, N=1250, Uncorrelated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 1.0590 .7406 1.0176 .7175 1.0152 .7174 1.0279 .7110 1.0289 .7123
âte2,0 2.0256 1.2428 2.0513 .9137 2.0487 .9128 2.0518 .9219 2.0513 .9269

bias(âte1,0) .0590 .0176 .0152 .0279 .0289
bias(âte2,0) .0256 .0513 .0487 .0518 .0513
# of SV 16.410 16.261 16.261 16.250 -
# of CSV 1.3957 1.2625 1.2625 1.2555 -
MAPE 10.473 10.431 10.431 7.5405 7.6467
RMSE 14.439 14.399 14.398 11.883 11.905

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.

Table C.15: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors
lh1 = 1, p = 2100, p′ = 18, f = 15, N=1500, Uncorrelated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 .9475 .6968 .9581 .6682 .9560 .6678 .9536 .6782 .9501 .6764
âte2,0 1.9547 1.0812 1.9261 .8480 1.9239 .8471 1.9281 .8474 1.9297 .8499

bias(âte1,0) -.0524 -.0418 -.0439 -.0463 -.0498
bias(âte2,0) -.0452 -.0738 -.0760 -.0718 -.0702
# of SV 16.622 16.403 16.403 16.392 -
# of CSV 1.6078 1.4132 1.4132 1.4022 -
MAPE 10.440 10.403 10.402 7.5455 7.6566
RMSE 14.427 14.390 14.390 11.902 11.930

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.
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Table C.16: High Dimensional Sparse Model with Heterogeneous Counterfactual Errors
lh1 = 1, p = 2100, p′ = 18, f = 15, N=2000, Uncorrelated h, and I=1000

XPO DS PO LASSO CF
Est. SD Est. SD Est. SD Est. SD Est. SD

âte1,0 .9468 .5714 .9525 .5487 .9510 .5480 .9610 .5702 .9647 .5780
âte2,0 1.9378 .8879 1.9576 .7447 1.9556 .7439 1.9572 .7491 1.9606 .7528

bias(âte1,0) -.0531 -.0474 -.0489 -.0389 -.0352
bias(âte2,0) -.0621 -.0423 -.0443 -.0427 -.0393
# of SV 17.113 16.869 16.869 16.864 -
# of CSV 2.1043 1.8796 1.8796 1.8746 -
MAPE 10.401 10.390 10.390 7.5267 7.6523
RMSE 14.372 14.363 14.362 11.870 11.913

Note: lh1
= # of Nonzero Variables in h. p= # of Potential Variables. p′ = # of Variables with Nonzero

Coefficients. f= # of Forced Variables. N= Sample Size. I= # of Iterations. Est.=Estimate.
XPO= Cross Partial-Out Estimation. DS= Double Selection Estimation. PO= Partial-Out Estimation.
CF= OLS Using Only Forced Variables. SD= Monte Carlo Standard Deviation.
SV= # of Selected Variables. CSV= # of Correctly Selected Variables.
MAPE= Mean Absolute Prediction Error. RMSE= Root Mean Square Error.
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