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ABSTRACT 

CLARIFICATION AND IDENTIFICATION OF CAUSAL ESTIMANDS USING PRINCIPAL 

 STRATUM STRATEGY IN CLINICAL TRIALS WITH TWO ACTIVE TREATMENTS 

By 

Hanyue Li 

 The randomization process in clinical trials is disrupted with the existence of post-

randomization events or intercurrent events. The “gold-standard” intention-to-treat (ITT) estimand 

therefore loses its clinical relevance because it compares treatment assignments instead of actual 

received treatments. Alternative estimands need to be defined and identified to quantify the causal 

effect of treatments. In this dissertation, we focus on the intercurrent event of treatment 

nonadherence and identify the causal estimands in clinical trials with two active treatments.  

 We work under the Neyman-Rubin causal framework and the principal stratification 

framework. First, we propose a nonparametric approach which identifies the complier average 

causal effect (CACE) as the ratio of the ITT effect of treatment assignment on the outcome to the 

ITT effect of treatment assignment on the treatment received under the exclusion restriction, 

monotonicity, and no partial-compliers assumptions. We discuss violation of the identification 

assumptions and derive the corresponding bias formulas. Simulations with various degrees of 

assumption violations are conducted to evaluate the performance and sensitivity of the approach. 

The results show that the nonparametric approach can yield an unbiased estimator for CACE when 

sample size is 500 or above and the percentage of compliers is above or equal to 70%. In addition, 

increasing the number of compliers has the potential to reduce the bias to as close as zero.  

 Second, we propose a multisite design approach which identifies the CACE under the zero 

correlation assumption. We derive the bias formula when measurement errors and omitted 

variables exist. Simulations across various scenarios are conducted for the oracle, naïve, and 



bootstrap estimators. The results show that multisite design approach can yield an unbiased 

estimator if there are no measurement errors and omitted variables. Increasing the number of 

people in each site can reduce the bias because it reduces the variation of the measurement errors. 

Increasing the number of sites, on the other hand, does not make a significant impact on the bias.  

 We apply the two proposed approaches to the Sequenced Treatment Alternatives to Relieve 

Depression (STAR*D) data to identify the causal effects of the medication augmentation and the 

causal effects of the medication switching. We show that augmenting citalopram with sustained-

release bupropion is no better than augmenting citalopram with buspiron in terms of remission but 

has a higher response rate. Augmenting citalopram with sustained-release bupropion also reduces 

the 17-item Hamilton Rating Scale for Depression (HAM-D17) score greater than augmenting 

citalopram with buspiron. We also show that switching to extended-release venlafaxine has a 

slightly better performance compared switching to sustained-release bupropion in terms of 

remission, HAM-D17 scores at the end of the study, and reduction of HAM-D17 scores.  
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CHAPTER 1 

INTRODUCTION AND AIMS   

Different estimands correspond to different types of treatment effects and can address 

fundamentally different research questions. In practice, however, the choices of estimands are 

often implied through subsequent analyses, leading to a consequence that the estimands misalign 

with the study objectives (Rubin, 2005). The same issue arises in clinical trials with post-

randomization events. Clinical trials, usually randomized controlled trials (RCTs), are the 

foundation to provide valid estimates of the causal effects because randomization balances the 

observed and unobserved baseline confounding between treatment groups. To estimate the causal 

effects of treatments, the top-choice estimand is always the intention-to-treat (ITT) estimand. 

Nevertheless, with the existence of the post-randomization events such as loss to follow up or 

treatment nonadherence, the gold-standard ITT estimand is challenged as it merely compares the 

treatment assignments instead of the actual treatments taken, which loses clinical relevance and 

conflicts with the research question. 

 In 2010, the National Research Council (NRC) published a report on “Prevention and 

Treatment of Missing Data in Clinical Trials”, emphasizing the importance of clarifying estimands 

before trial design and analyses with a focus on missing data (National Research Council, 2010). 

Last year, beyond the discussion of missingness, the International Council for Harmonisation 

(ICH) finalized the draft addendum to its E9 guideline on “Estimands and Sensitivity Analysis in 

Clinical Trials”, further focusing on structuring a framework to define the estimand and clarifying 

the treatment effects of interest (ICH E9 working group, 2020). It is essential to have a clear 

understanding and description of the estimands and the causal effects of interest. Alternative 
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estimands besides ITT estimand, aiming at quantifying the causal effects of treatments, need to be 

considered for causal inference when post-randomization events exist. 

 In this dissertation, we will explore and clarify the potential causal estimands that can be 

defined in clinical trials with two active treatments when there exists treatment nonadherence and 

develop the identification strategies to estimate the corresponding causal effects. Our study is 

motivated by the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study which 

aims to evaluate the comparative effectiveness of various treatment options for participants with 

nonpsychotic major depressive disorder (MDD) who fail to have a satisfactory response to the 

first-line medication citalopram (Rush et al., 2004). Rush et al., (2006) compared treatment 

switching options: sustained-release bupropion (bupropion-SR), sertraline, or extended-release 

venlafaxine (venlafaxine-XR) and found insignificant differences among these treatments with 

respect to remission or response rates. Trivedi et al. (2006) and Bech et al. (2012) showed a slightly 

better performance of bupropion-SR than buspirone when comparing treatment augmentation 

options. These studies focused on the ITT estimand among two or more active treatments. Yet 

questions pertaining to nonadherence with treatments and what causal effects can be identified for 

which population remain to be discussed. 

 Nonadherence has been well recognized in the placebo-controlled trials and identification 

of the causal effects has been widely discussed (Angrist et al., 1996; Balke & Pearl, 1997; Imbens 

& Angrist, 1994; Imbens & Manski, 2004; Jiang et al., 2016; Little et al., 2009; Miratrix et al., 

2018; Yuan et al., 2018). The definition and identification becomes more complicated if the 

comparison occurs between two active treatments rather than between a treatment and a placebo. 

Roy et al. (2008) and Long et al. (2010) identified the CACE for trials with more than one active 

treatment. However, their identification was built on parametric models. Yuan et al. (2018) utilized 
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the nature of multisite design which automatically creates multiple instruments from the site-by-

treatment interactions, yet their study was essentially a placebo-controlled trial. We extend the 

methods by Angrist et al. (1996) and Yuan et al. (2018) to our two-active-treatments setting  and 

define CACE without assuming any parametric models. Specifically, we will point-identify our 

causal estimand of interest rather than partial-identification using bounds (Swanson et al., 2018). 

We will work under the potential outcome framework (Rubin, 1974; Splawa-Neyman et al., 1990) 

and the principal stratification framework (Frangakis & Rubin, 2002). Our specific aims are:    

Aim 1: Define and identify the causal estimand and develop the identification strategies for 

randomized controlled trials with two active treatments subject to treatment nonadherence. 

 Specific aim 1.1: Define the identification strategies to estimate the corresponding causal 

effect through a nonparametric approach.  

 Specific aim 1.2: Define the identification strategies to estimate the corresponding causal 

effect via a multisite design approach.  

Aim 2: Evaluate the performance of the estimand and assess its sensitivity when there are 

deviations from key identification assumptions through simulation studies. 

 Specific aim 2.1: Evaluate the performance and sensitivity of the estimand in the 

nonparametric approach when the exclusion restriction assumption or the two structural 

assumptions are violated through simulation studies. 

 Specific aim 2.2: Evaluate the performance and sensitivity of the estimand in the multisite 

design approach when the zero-correlation assumption is violated through simulation studies. 

Aim 3: Apply the two proposed approaches to the Sequenced Treatment Alternatives to Relieve 

Depression (STAR*D) trial to identify the causal effects of two medication augmentation options 

and the causal effects of two medication switching options. 
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CHAPTER 2 

BACKGROUND 

2.1 Neyman-Rubin Causal Model 

We work under the potential outcome framework, which is also known as the Neyman-Rubin 

Causal Model. For a unit, the causal effect of an action relative to the other is the difference 

between the outcome had the unit been assigned to one action and the outcome had the unit been 

assigned to the other action (Rubin, 1974). Each action of the unit corresponds to one potential 

outcome. However, only the potential outcome associated with the action taken is actually 

observed, whereas the other is not realized (Holland, 1986; Imbens & Rubin, 2015). Accordingly, 

we can never observe the causal effect of one action over the other at the unit level.  

 

Figure 2.1 Causal diagram for RCTs with binary actions and binary compliance status. 𝑍 is the 

randomly assigned treatment. 𝐴 is the actually taken treatment. 𝑌  is the observed outcome. 𝑈 

represents the confounding variables that are either observed or unobserved and affect both 𝐴 and 

𝑌. 

 

 Formally, consider a placebo-controlled RCT with binary actions and binary compliance 

status whose causal diagram is shown in Figure 2.1. For unit 𝑖, let 𝑍𝑖 be the treatment randomly 

assigned, 𝐴𝑖  be the treatment actually taken, 𝑌𝑖  be the observed outcome, and 𝑈𝑖  be the 

confounding variables that are either observed or unobserved and affect both 𝐴𝑖 and 𝑌𝑖. We denote 

𝑌𝑖(𝑎) as the potential outcome if the unit takes treatment 𝑎 where 𝑎 = 1 for treatment and 𝑎 = 0 
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for placebo. Similarly, we denote 𝐴𝑖(𝑧) as the potential treatment taken if the unit is assigned to 

treatment 𝑧, for 𝑧 𝜖 {0, 1}. Each unit has two potential outcomes 𝑌𝑖(1) and 𝑌𝑖(0), but only one of 

them can be observed. The individual causal effect of treatment is defined as 𝑌𝑖(1) − 𝑌𝑖(0), which 

is generally impossible to obtain (Hernán & Robins, 2019). As we aim to identify the causal effects 

for a population of interest, we must rely on multiple units to estimate the average causal effects. 

We define the average causal effects as the difference in average potential outcomes between units 

taking one treatment and the same units had they taken the other for a certain population, e.g., 

𝐸{𝑌(1) − 𝑌(0)}. 

 To make causal inferences and conclude causal relationships from samples with observed 

variables, we must estimate the outcomes that are not factual. Some general assumptions are 

needed under the potential outcome framework.  

 SUTVA (Stable Unit Treatment Value Assumption): The potential outcomes of one unit 

are not affected by the treatment status of other units and there is only one form or version 

of each treatment. 

 Consistency: The potential outcome that corresponds to the treatment taken is actually the 

observed outcome: 

𝑌𝑖 = 𝐴𝑖𝑌𝑖(1) + (1 − 𝐴𝑖)𝑌𝑖(0) 

 Exchangeability: The potential outcomes are independent of the treatment status given all 

confounding variables: 

(𝑌𝑖(1), 𝑌𝑖(0)) ⊥ 𝐴𝑖|𝑈𝑖 

 Positivity: The conditional probability of taking different treatments given the 

confounding variables must be greater than zero and less than one: 

0 < Pr(𝐴𝑖 = 𝑎|𝑈𝑖) < 1, 𝑤ℎ𝑒𝑟𝑒 𝑎 = 0,1 



6 
 

 Nonetheless, assumptions are not facts and they can be false. Sometimes we are not even 

able to test some assumptions from the knowledge at hand (Imbens & Rubin, 2015). If inferences 

are based on false assumptions, we cannot expect valid estimates.  

 

2.2 Principal Stratification Framework 

To identify and estimate the average causal effects in a certain population, we must ensure the 

comparison groups represent the same population. Instead of adjusting for the pretreatment 

variables, Balke and Pearl (1994) introduced the concept of “response variable” that substitutes 

the multi-dimensional pretreatment variables and divides the population into equivalent classes so 

that treatment groups within the same class are comparable. Frangakis and Rubin (2002) 

conceptualized the term “equivalence classes” as “principal strata” and proposed the principal 

stratification framework particularly targeting at post-treatment variables. Within their framework, 

units are cross-classified into different strata “based on their joint potential values of the post-

treatment variable under each of the treatments being compared” without introducing post-

treatment selection bias. The treatment effects within each stratum are thus indeed causal effects.  

 Applications using principal stratification abound in the literature. Consensus has been 

reached on the success of this framework for nonadherence issues in RCTs (Pearl, 2011; 

VanderWeele, 2011). For a placebo-controlled RCT with binary treatments and binary adherence, 

using notations in section 2.1, the population can be partitioned into four strata based on the pair 

of potential treatment taken under different treatment assignment, (𝐴𝑖(1), 𝐴𝑖(0)), as shown in 

Table 2.1.  
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Table 2.1 Principal strata classified by A(0) and A(1) for placebo-controlled RCTs. 

 

 
Z=0 

A(0)=0 A(0)=1 

Z=1 
A(1)=0 Never-taker Defier 

A(1)=1 Complier Always-taker 

         

 For those that never take the treatment whichever group they are assigned, i.e., (𝐴𝑖(1) =

0, 𝐴𝑖(0) = 0), they are defined as never-takers. Those that always take the treatment whichever 

group they are assigned, i.e., (𝐴𝑖(1) = 1, 𝐴𝑖(0) = 1), are referred to as always-takers. Compliers 

are defined as those who take the treatment if randomized to treatment and take the placebo if 

randomized to placebo (𝐴𝑖(1) = 1, 𝐴𝑖(0) = 0), and defiers are those always do the opposite to 

what they are assigned (𝐴𝑖(1) = 0, 𝐴𝑖(0) = 1). The subpopulations of never-takers, always-takers 

and defiers are referred to as noncompliers. After the classification, we can easily define any causal 

effect within a specific stratum. For example, the treatment effect in the complier stratum is called 

local average treatment effect (LATE) or complier average causal effect (CACE). As the principal 

strata are defined by the potential outcomes of the post-treatment variable and we can never 

observe all the potential outcomes simultaneously, it is impossible for us to know exactly which 

stratum a unit belongs to. Nonetheless, it is still critical to use principal stratification to define 

causal effects because it helps us clarify which causal quantity we can identify and it is the 

foundation for subsequent estimation and interpretation.   

    

2.3 Identification of Causal Estimands in RCTs with Treatment Nonadherence 

An estimand is “the target of estimation for a particular trial objective”. It asks the question “what 

is to be estimated?” (ICH E9 working group, 2020). Thus, an estimand can be of any form even 
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without a practical interpretation as long as it aligns with the scientific goals. In addition to 

corresponding to the research objectives, a causal estimand should also provide a reasonable 

causal interpretation. A fundamental attribute of a causal estimand, especially when the interest 

lies in estimating causal effects, is that it targets the same group of units (Frangakis & Rubin, 

2002). Researchers and scientists often use terms that involve causal implication such as 

“causation” or “causality” with extreme caution as it is usually easy to confuse “association” which 

can be an estimand, with “causation” which must be a causal estimand if it is the study objective.   

 In a RCT, the ITT estimand is a causal estimand because randomization ensures the 

comparison groups represent the same population. However, with the existence of treatment 

nonadherence, the ITT estimand fails to answer the correct research question if the causal effect 

of treatment rather than of assignment is of interest. The traditional per-protocol estimand and as-

treated estimand, on the other hand, take into account treatment nonadherence. By definition, the 

traditional per-protocol estimand only includes those who are “observed to follow their treatment 

assignment” and the as-treated estimand ignores treatment assignment and directly compares the 

actual treatments received (Shrier et al., 2014). These two estimands describe some particular 

treatment effects. However, we are hesitant to conclude they are causal estimands because we have 

limited information to envision what the participants in one group would have done if they had 

been in the other group. Specifically, since participants are no longer randomized, the treatment 

groups are not guaranteed to be comparable for the per-protocol estimand and as-treated estimand. 

Hence, these two estimands will not be included in our subsequent discussion.  

 We consider the simplest way to measure compliance in a RCT which is to dichotomize it 

as whether participants comply with their assigned treatment or not. For a placebo-controlled RCT 

with binary treatments and binary compliance, Angrist et al. (1996) point-identified the CACE 
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using instrumental variables (IV) without assuming any parametric models. Their identification 

was based on two critical assumptions: the exclusion restriction (ER) assumption and the 

monotonicity assumption. The ER assumption assumes that there is no direct effect of treatment 

assignment 𝑍 on outcome 𝑌. In other words, the effect of 𝑍 on 𝑌 can only go through the effect of 

treatment 𝐴 on 𝑌. The monotonicity assumption requires that assignment 𝑍 influences treatment 

𝐴 monotonically, i.e., there are no defiers (Imbens & Angrist, 1994). Under these two assumptions, 

Angrist et al. (1996) identified the CACE as the ratio of the ITT causal effect of 𝑍 on 𝑌 and the 

ITT causal effect of 𝑍 on 𝐴. Using the same logic of partitioning the population into four principal 

strata (Table 2.1), Imbens and Rubin (1997) proposed a Bayesian approach to infer the causal 

estimands of CACE and defier average causal effect (DACE) using EM and data augmentation 

algorithms for posterior maximum likelihood estimation. Their approach can relax the ER and 

monotonicity assumptions from the nonparametric IV approach. However, Imbens and Rubin 

(1997) also found that estimation for CACE can be more accurate compared to the nonparametric 

method if under these two assumptions. Both Little and Yau (1998) and Little et al. (2009) 

compared the traditional IV approach and the maximum likelihood (ML) estimation for CACE 

and argued that the model-based estimator was more efficient than the IV estimator, but was 

sensitive to model specification and required large sample size.  

 The identification and estimation of CACE has also been extensively studied in the 

presence of covariates. With covariates, some assumptions for identifying CACE can be satisfied, 

or removed. Hirano et al. (2000) extended the work of Imbens & Rubin (1997) by incorporating 

the covariates. They formulated separate ER assumptions for subgroups given covariates and 

examined the sensitivity to violations of different ERs. They claimed a weakly identified model 

without ERs which needed a more careful selection of likelihood function and prior distribution. 
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Instead of relying on choosing proper priors and likelihood functions, Jo (2002) explored the 

identifiability of CACE by relying on limited covariate information. Specifically, Jo (2002) 

modified the Bayesian approach of Imbens & Rubin (1997) by relaxing the ER assumption and 

adding two additional functional assumptions which were believed to be more reasonable and 

applicable in practice. Frangakis et al. (2002) expanded the identification problem associated with 

noncompliance to clustered data and proposed a Bayesian framework for the clustered 

encouragement design. Further, they used covariates to relax the ER assumption and predicted the 

principal strata defined by the potential compliance.  

 Hitherto, the discussion only involved placebo-controlled RCTs. Attention has been paid 

to RCTs with nonadherence beyond placebo-controlled RCTs as well. Roy et al. (2008) considered 

the identification of CACE in the setting with two active treatments. Without covariate 

information, they partially identified CACE by setting bounds under two more assumptions, one 

of which is the treatment access restriction assumption which disallows subjects in one treatment 

group to access the treatment in the other group. The other one is the modified monotonicity 

assumption which assumes that the probability of compliance of one treatment assignment group 

is higher for those who would comply to the other treatment assignment compared to those who 

would not. Based on the covariates, however, Roy et al. (2008) were able to model the marginal 

distributions of the compliance status and point-identify the CACE. Long et al. (2010) proposed a 

Bayesian approach following Imbens & Rubin (1997) for the RCTs with three treatment arms. 

Among the treatment arms, two are active treatments and the third one is the control arm. To 

reduce the number of principal strata, two extra assumptions were made as well. One of the 

assumptions is no access to the other treatment assumption as in Roy et al. (2008). The other one 

is a modified monotonicity assumption which assumes that subjects who comply with one 
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treatment would always comply with the other treatment. Under these assumptions, Long et al. 

(2010) modeled the principal compliance directly without incorporating covariates. Yuan et al. 

(2018) proposed a novel way to identify certain principal causal effects utilizing the features of a 

multisite design. They separated their control into two different types to identify their estimands 

of interest. Similarly, they imposed two structural assumptions to reduce the number of principal 

strata. Then they made a key assumption about the site-level zero correlation between the 

distribution of the principal strata and the principal causal effects. Under this strong assumption, 

they proved that the CACE can be identified. Yuan et al. (2018) also investigated the use of 

covariates to relax the above strong assumption and obtained a consistent estimator of CACE by 

conditioning on the covariates.  
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CHAPTER 3 

A NONPARAMETRIC APPROACH 

3.1 Study Setup and Causal Estimands 

In this section, we first describe our study setup, that is, a RCT with two active treatments subject 

to nonadherence, under the Neyman-Rubin potential outcome and principal stratification 

frameworks. We extend notations introduced in section 2.1. Here, the treatment assignment 𝑍𝑖 

takes values 1 and 2, with 1 for treatment 1 and 2 for treatment 2. There are therefore three possible 

values for the potential treatment received 𝐴𝑖(𝑧): 0, 1, and 2. Thus, given the three values of 𝐴𝑖(𝑧) 

under each treatment, we can define nine principal strata as shown in the 3×3 Table 3.1.  

 

Table 3.1 Principal strata classified by A(1) and A(2) for RCTs with two active treatments. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0 

1. Never-taker 

(NT) 

π1 

2. Defier 

(DF) 

π2 

3. Partial-2-complier 

(P2C) 

π3 

A(1)=1 

4. Partial-1-complier 

(P1C) 

π4 

5. Always-1-taker 

(A1T) 

π5 

6. Complier 

(COMP) 

π6 

A(1)=2 

7. Defier 

(DF) 

π7 

8. Defier 

(DF) 

π8 

9. Always-2-taker 

(A2T) 

π9 

         

 We number the table cells row by row and denote their corresponding probabilities as 𝜋𝑔, 

𝑔 = 1, 2, … , 9. Analogous to the 2×2 Table 2.1, we define never-takers (NT) and compliers 

(COMP) in the same way as in section 2.2. The always-takers for the placebo-controlled RCTs 

have now been separated into the always-1-takers (A1T) who always take treatment 1 regardless 

of which treatment they are assigned, and the always-2-takers (A2T) who always take treatment 2 
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regardless of which treatment they are assigned. We name those who comply with only one 

treatment but do not take anything if assigned to the other treatment as partial-compliers (PC). 

Among the partial compliers, we further differentiate those who only comply with treatment 1 but 

take nothing if assigned to treatment 2 as partial-1-compliers (P1C) and those vice versa as partial-

2-compliers (P2C). Finally, we call the subpopulations in the three remaining strata defiers (DF) 

as they do not show any systematically consistent preference but show contradictory actions to 

their own decisions. For example, for those with (𝐴𝑖(1) = 2, 𝐴𝑖(2) = 0), if assigned to treatment 

1 they choose to take treatment 2, but if assigned to treatment 2 they choose to taking nothing. It 

seems that they ordered their preference as nothing>treatment 2>treatment 1. However, if this is 

the case, they would take nothing if assigned to treatment 1 at the beginning. We further subdivide 

defiers into two categories. Based on their similarity in decision making for the treatment received, 

for those with (𝐴𝑖(1) = 0, 𝐴𝑖(2) = 1) or (𝐴𝑖(1) = 2, 𝐴𝑖(2) = 0), they are named as irrationalists 

(IR). For those with (𝐴𝑖(1) = 2, 𝐴𝑖(2) = 1), they are flip-floppers (FF).   

 Under the above setting, we next define our causal estimand of interest. For individual 𝑖, 

let 𝑌𝑖(𝑧, 𝐴𝑖(𝑧)) be the potential outcome if the individual is randomly assigned to treatment 𝑧 with 

𝑧 = 1 or 2. This two-index potential outcome can be simplified to the one-index potential outcome 

𝑌𝑖(𝑧) as they both depend solely on the values of 𝑧. However, the notation 𝑌𝑖(𝑧) might be confused 

with our previously defined potential outcome of treatment received 𝑌𝑖(𝑎). Thus, we will use 

𝑌𝑖(𝑧, 𝐴𝑖(𝑧)) to avoid confusion in subsequent sections and the one-index potential outcome will 

always represent the potential outcome under different treatment values 𝑎. It is worth mentioning 

that both 𝑌𝑖(𝑧, 𝐴𝑖(𝑧)) and 𝑌𝑖(𝑎) depends merely on the values of one variable, which is 𝑧 or 𝑎. 

There is another potential outcome 𝑌𝑖(𝑧, 𝑎) that depends on both values of 𝑧 and 𝑎. For example, 
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if the treatment assignment has a direct effect on the outcome, both variables 𝑍𝑖 and 𝐴𝑖 will have 

an impact on 𝑌𝑖 and the corresponding potential outcome will be 𝑌𝑖(𝑧, 𝑎).  

 We define the ITT effect comparing treatment assignment 2 with treatment assignment 1 

as 𝑌𝑖(2, 𝐴𝑖(2)) − 𝑌𝑖(1, 𝐴𝑖(1)) at the individual level and as 𝐸[𝑌𝑖(2, 𝐴𝑖(2)) − 𝑌𝑖(1, 𝐴𝑖(1))] at the 

population level. With nonadherence in our setting and aiming at identifying the causal effects of 

treatment received, the ITT estimand is clearly not the one we pursue. The average treatment effect 

(ATE) estimand compares the potential outcomes of treatment 2 and treatment 1,  i.e., 𝐸[𝑌𝑖(2) −

𝑌𝑖(1)] for the entire population. However, ATE is not readily identified without the strong constant 

effect assumption which assumes the causal effects are the same across individuals. Alternatively, 

we identify the average treatment effect for a specific principal stratum, the compliers, that is, we 

identify the average treatment effect for those who will always comply to the treatments to which 

they are randomly assigned. Thus, in our study setting, we aim at identifying the complier average 

causal effect, CACE.  

 

3.2 Identification Strategies of the Causal Estimand 

In section 2.1, we reviewed several general assumptions to identify the causal effects. In this 

section, we carefully examine extensions of these assumptions to our study setting. First, we 

modify the consistency assumption that connects the observed variables with the potential 

variables. As we assign values 1 and 2 to our two treatments, the relationship between the observed 

𝐴𝑖  and the potential 𝐴𝑖(𝑧)  is then 𝐴𝑖 = 𝐴𝑖(1)(2 − 𝑍𝑖) + 𝐴𝑖(2)(𝑍𝑖 − 1) . Similarly, the 

relationship between the observed 𝑌𝑖  and the potential 𝑌𝑖(𝑎) becomes 𝑌𝑖 = 𝐴𝑖(2 − 𝐴𝑖)𝑌𝑖(1) +

1

2
𝐴𝑖(𝐴𝑖 − 1)𝑌𝑖(2) +

1

2
(𝐴𝑖 − 1)(𝐴𝑖 − 2)𝑌𝑖(0). Second, we modify the exchangeability assumption 

to include the three potential outcomes, that is, (𝑌𝑖(0), 𝑌𝑖(1), 𝑌𝑖(2)) ⊥ 𝐴𝑖  | 𝑈𝑖 . To find the 



15 
 

identification strategies for our causal estimand of interest, we make some additional assumptions 

as follows.  

Assumption I (Exclusion restriction, ER): There is no direct effect from 𝑍 to 𝑌, i.e., the effect 

of 𝑍 on 𝑌 can only go through the effect of 𝐴 on 𝑌, or 𝑌𝑖(𝑧, 𝐴𝑖(𝑧)) = 𝑌𝑖(𝐴𝑖(𝑧)) for 𝑧 = 1 or 2. 

Assumption II (Monotonicity or No defiers): There are no individuals with (𝐴𝑖(1) = 0, 𝐴𝑖(2) =

1), (𝐴𝑖(1) = 2, 𝐴𝑖(2) = 0), or (𝐴𝑖(1) = 2, 𝐴𝑖(2) = 2), i.e., π2 = π7 = π8 = 0. 

 Assumption II.a (No irrationalists): There are no individuals with (𝐴𝑖(1) = 0, 𝐴𝑖(2) =

1) or (𝐴𝑖(1) = 2, 𝐴𝑖(2) = 0), i.e., π2 = π7 = 0.  

 Assumption II.b (No flip-floppers): There are no individuals with (𝐴𝑖(1) = 2, 𝐴𝑖(2) =

1), i.e., π8 = 0.         

 The monotonicity assumption is plausible as we assume that when participants consent to 

enter a trial, it is less likely for them to completely disobey the treatment implementation procedure 

without showing any reasonable logic. We also separate the assumption into two sub-assumptions 

for our sensitivity discussion later. 

Assumption III (No partial-compliers): There are no individuals with (𝐴𝑖(1) = 0, 𝐴𝑖(2) = 2) 

or (𝐴𝑖(1) = 1, 𝐴𝑖(2) = 0), i.e., π3 = π4 = 0. 

 This assumption states that if participants choose to comply with one treatment, it is 

implausible that they choose to take nothing when assigned to the other treatment. It is more 

specific to the study environment. There is a possibility that it can be violated and it is not 

straightforward to justify it. We will discuss deviation from this assumption in section 3.3.3. 

 With the above assumptions, we now formulate the causal effect of 𝐴 on 𝑌. First, under 

the SUTVA, consistency and exclusion restriction assumptions, we establish a relationship 
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between the ITT effect of 𝑍 on 𝑌, i.e., 𝑌𝑖(2, 𝐴𝑖(2)) − 𝑌𝑖(1, 𝐴𝑖(1)) and the causal effect of 𝐴 on 𝑌 

at the individual level. That is,  

    𝑌𝑖(2, 𝐴𝑖(2)) – 𝑌𝑖(1, 𝐴𝑖(1))  

= 𝑌𝑖(𝐴𝑖(2)) – 𝑌𝑖(𝐴𝑖(1)) 

= [𝐴𝑖(2)(2 − 𝐴𝑖(2))𝑌𝑖(1) +
1

2
𝐴𝑖(2)(𝐴𝑖(2) − 1)𝑌𝑖(2) +

1

2
(𝐴𝑖(2) − 1)(𝐴𝑖(2) − 2)𝑌𝑖(0)]  

− [𝐴𝑖(1)(2 − 𝐴𝑖(1))𝑌𝑖(1) +
1

2
𝐴𝑖(1)(𝐴𝑖(1) − 1)𝑌𝑖(2) +

1

2
(𝐴𝑖(1) − 1)(𝐴𝑖(1) − 2)𝑌𝑖(0)]  

= −
1

2
(𝐴𝑖(2) − 𝐴𝑖(1))(𝑌𝑖(2) − 𝑌𝑖(1)) +

1

2
(𝐴𝑖(2) − 𝐴𝑖(1))(𝐴𝑖(2) + 𝐴𝑖(1))(𝑌𝑖(2) − 𝑌𝑖(1))  

+ (𝐴𝑖(2) − 𝐴𝑖(1))(
3

2
− 𝐴𝑖(2) − 𝐴𝑖(1))(𝑌𝑖(1) − 𝑌𝑖(0))                                                       (3.1) 

 The first equality of equation (3.1) holds under Assumption I which reduces the two-index 

potential outcome 𝑌𝑖(𝑧, 𝐴𝑖(𝑧)) to the one-index potential outcome 𝑌𝑖(𝐴𝑖(𝑧)) for 𝑧 = 1 or 2. The 

second equality follows the consistency assumption. Next, we can write down the average ITT 

effect by taking expectations to both the left- and right-hand sides of equation (3.1):  

     𝐸[𝑌𝑖(2, 𝐴𝑖(2)) – 𝑌𝑖(1, 𝐴𝑖(1))] 

= −
1

2
𝐸[(𝐴𝑖(2) − 𝐴𝑖(1))(𝑌𝑖(2) − 𝑌𝑖(1))]  

+ 
1

2
𝐸[(𝐴𝑖(2) − 𝐴𝑖(1))(𝐴𝑖(2) + 𝐴𝑖(1))(𝑌𝑖(2) + 𝑌𝑖(1))]  

+ 𝐸[(𝐴𝑖(2) − 𝐴𝑖(1))(
3

2
− 𝐴𝑖(2) − 𝐴𝑖(1))(𝑌𝑖(1) − 𝑌𝑖(0))]  

= [
1

2
𝐸(𝑌𝑖(2) − 𝑌𝑖(1)|𝐴𝑖(2) − 𝐴𝑖(1) = −1) −

1

2
𝐸(𝑌𝑖(2) − 𝑌𝑖(0)|𝐴𝑖(2) − 𝐴𝑖(1) = −1)  

− 
1

2
𝐸(𝑌𝑖(1) − 𝑌𝑖(0)|𝐴𝑖(2) − 𝐴𝑖(1) = −1)]𝑃𝑟(𝐴𝑖(2) − 𝐴𝑖(1) = −1)  

+ [−𝐸(𝑌(2) − 𝑌(1)|𝐴(2) − 𝐴(1) = 2) + 2𝐸(𝑌(2) − 𝑌(0)|𝐴(2) − 𝐴(1) = 2)  

− 𝐸(𝑌(1) − 𝑌(0)|𝐴(2) − 𝐴(1) = 2)]𝑃𝑟(𝐴(2) − 𝐴(1) = 2)  

+ [−
1

2
𝐸(𝑌𝑖(2) − 𝑌𝑖(1)|𝐴𝑖(2) − 𝐴𝑖(1) = 1) +

3

2
𝐸(𝑌𝑖(2) − 𝑌𝑖(0)|𝐴𝑖(2) − 𝐴𝑖(1) = 1)  
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− 
3

2
𝐸(𝑌𝑖(1) − 𝑌𝑖(0)|𝐴𝑖(2) − 𝐴𝑖(1) = 1)]𝑃𝑟(𝐴𝑖(2) − 𝐴𝑖(1) = 1)   

= 𝐸[𝑌𝑖(0) − 𝑌𝑖(1)|𝐴𝑖(2) − 𝐴𝑖(1) = −1] 𝑃𝑟(𝐴𝑖(2) − 𝐴𝑖(1) = −1)  

+ 𝐸[𝑌𝑖(2) − 𝑌𝑖(0)|𝐴𝑖(2) − 𝐴𝑖(1) = 2] 𝑃𝑟(𝐴𝑖(2) − 𝐴𝑖(1) = 2)  

+ 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐴𝑖(2) − 𝐴𝑖(1) = 1]𝑃𝑟(𝐴𝑖(2) − 𝐴𝑖(1) = 1)  

= 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐴𝑖(2) − 𝐴𝑖(1) = 1]𝑃𝑟(𝐴𝑖(2) − 𝐴𝑖(1) = 1)    (3.2)       

 The second equality in equation (3.2) holds under Assumption II and the last equality is 

true under Assumption III. Thus, with the two structural assumptions: Assumption II and III, we 

can reduce the nine principal strata to four, as shown in Table 3.2. Notice that, the right-hand side 

of equation (3.2) is a product of the complier average causal effect and the probability of 𝐴𝑖(2) −

𝐴𝑖(1) = 1. This probability is actually the average ITT effect of 𝑍 on 𝐴, i.e., 𝐸[𝐴𝑖(2) − 𝐴𝑖(1)], 

because 𝐴𝑖(2) − 𝐴𝑖(1) = 0 for NT, A1T and A2T. Therefore, we combine our findings into the 

following proposition. 

 

Table 3.2 Principal strata classified by A(1) and A(2) for RCTs with two active treatments under 

Assumption II, the monotonicity assumption, and Assumption III, the no partial-compliers 

assumption. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0 

1. Never-taker 

(NT) 

π1 

  

A(1)=1  

5. Always-1-taker 

(A1T) 

π5 

6. Complier 

(COMP) 

π6 

A(1)=2   

9. Always-2-taker 

(A2T) 

π9 
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Proposition I: For a RCT with two active treatments subject to nonadherence, the complier 

average causal effect (CACE) can be identified under Assumption I, II, and III as the ratio of the 

ITT effect of 𝑍 on 𝑌 to the ITT effect of 𝑍 on 𝐴:  

𝐶𝐴𝐶𝐸 = 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐴𝑖(2) − 𝐴𝑖(1) = 1] =
 𝐸[𝑌𝑖(2, 𝐴𝑖(2)) – 𝑌𝑖(1, 𝐴𝑖(1))]

𝐸[𝐴𝑖(2) − 𝐴𝑖(1)]
 

 To estimate CACE under Proposition I, we need therefore to estimate both the ITT effects 

of 𝑍 on  𝑌  and 𝑍 on  𝐴 . Due to randomization and consistency, the ITT effect of 𝑍 on  𝑌 , 

𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))] will be equal to 𝐸(𝑌𝑖|𝑍𝑖 = 2) − 𝐸(𝑌𝑖|𝑍𝑖 = 1). Then, we can use the 

sample average to unbiasedly estimate 𝐸(𝑌𝑖|𝑍𝑖 = 𝑧), 𝑧 = 1, 2, i.e., 

𝐼𝑇𝑇̂𝑦 =
∑ 𝑌𝑖𝑖𝜖{𝑖:𝑍𝑖=2}

𝑁2
−

∑ 𝑌𝑖𝑖𝜖{𝑖:𝑍𝑖=1}

𝑁1
 

where 𝑁𝑧 is the number of individuals that are assigned to treatment 𝑧 for 𝑧 = 1, 2. Similarly, the 

unbiased estimator for the ITT effect of 𝑍 on 𝐴 is 

𝐼𝑇𝑇̂𝑎 =
∑ 𝐴𝑖𝑖𝜖{𝑖:𝑍𝑖=2}

𝑁2
−

∑ 𝐴𝑖𝑖𝜖{𝑖:𝑍𝑖=1}

𝑁1
 

Thus, the estimated CACE is 

                                                 𝐶𝐴𝐶𝐸̂ =
𝐼𝑇𝑇𝑦̂

𝐼𝑇𝑇𝑎̂
=

∑ 𝑌𝑖𝑖𝜖{𝑖:𝑍𝑖=2}

𝑁2
−

∑ 𝑌𝑖𝑖𝜖{𝑖:𝑍𝑖=1}

𝑁1
∑ 𝐴𝑖𝑖𝜖{𝑖:𝑍𝑖=2}

𝑁2
−

∑ 𝐴𝑖𝑖𝜖{𝑖:𝑍𝑖=1}

𝑁1

                                   (3.3) 

 

3.3 Sensitivity of the Causal Estimand to Key Assumptions 

As our identification strategies for CACE rely on several assumptions, in this section, we discuss 

how violations of key assumptions affect our causal estimand of interest. In other words, when 

these assumptions are violated, what causal effect will we be estimating using equation (3.3)? We 

consider deviations from these assumptions one at a time. 
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3.3.1 Violation of Assumption I (Exclusion Restriction)  

Under the ER assumption, there will be no direct effect of treatment assignments on the outcomes. 

However, in some situations, the randomization may have an impact on the outcomes by 

stimulating other paths that go directly to the outcomes without passing through the treatment 

received. For example, in a behavioral trial, knowing which treatment arms they are assigned may 

change the participants’ lifestyle, e.g., their smoking status, their workout plan, etc., and 

subsequently affect the health outcomes of interest. Thus, we assess the sensitivity of our causal 

estimand to the violation of the ER assumption while maintaining all the other assumptions. We 

rewrite the average ITT effect without the ER assumption as  

     𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))] 

= 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃] 𝑃𝑟(𝐶𝑂𝑀𝑃)  

+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝑁𝑇] 𝑃𝑟(𝑁𝑇)  

+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐴1𝑇] 𝑃𝑟(𝐴1𝑇)  

+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐴2𝑇] 𝑃𝑟(𝐴2𝑇)     (3.4) 

 We let the direct effect of 𝑍 on 𝑌 be 𝐻𝑖 = 𝑌𝑖(2, 𝑎) − 𝑌𝑖(1, 𝑎) and the direct effect of 𝐴 on 

𝑌 be 𝐺𝑖 = 𝑌𝑖(𝑧, 2) − 𝑌𝑖(𝑧, 1). Then, for compliers, if we assume an additive effect of 𝑍 and 𝐴 on 

𝑌 (Angrist et al., 1996), equation (3.4) can be rewritten as 

    
𝐸[𝑌𝑖(2, 𝐴𝑖(2))–  𝑌(1, 𝐴𝑖(1))]

𝐸[𝐴𝑖(2) − 𝐴𝑖(1)]
 

=
𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))]

𝑃𝑟(𝐶𝑂𝑀𝑃)
 

= 𝐸[𝐺 + 𝐻|𝐶𝑂𝑀𝑃] + 𝐸[𝐻|𝑁𝑇]
𝑃𝑟(𝑁𝑇)

𝑃𝑟(𝐶𝑂𝑀𝑃)
+ 𝐸[𝐻|𝐴1𝑇]

𝑃𝑟(𝐴1𝑇)

𝑃𝑟(𝐶𝑂𝑀𝑃)
+ 𝐸[𝐻|𝐴2𝑇]

𝑃𝑟(𝐴2𝑇)

𝑃𝑟(𝐶𝑂𝑀𝑃)
  

= 𝐸[𝐺|𝐶𝑂𝑀𝑃] + 𝐸(𝐻|𝐶𝑂𝑀𝑃)
𝑃𝑟(𝐶𝑂𝑀𝑃)

𝑃𝑟(𝐶𝑂𝑀𝑃)
+ 𝐸[𝐻|𝑁𝑇]

𝑃𝑟(𝑁𝑇)

𝑃𝑟(𝐶𝑂𝑀𝑃)
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+ 𝐸[𝐻|𝐴1𝑇]
𝑃𝑟(𝐴1𝑇)

𝑃𝑟(𝐶𝑂𝑀𝑃)
+ 𝐸[𝐻|𝐴2𝑇]

𝑃𝑟(𝐴2𝑇)

𝑃𝑟(𝐶𝑂𝑀𝑃)
  

= 𝐶𝐴𝐶𝐸 +
𝐸(𝐻)

𝑃𝑟(𝐶𝑂𝑀𝑃)
                                                                                                               (3.5) 

 Note that the CACE in equation (3.5) is defined as follows which is different from the 

CACE when the ER assumption is satisfied.  

𝐶𝐴𝐶𝐸 =  𝐸[𝐺|𝐶𝑂𝑀𝑃] = 𝐸[𝑌𝑖(𝑧, 2) − 𝑌𝑖(𝑧, 1)|𝐶𝑂𝑀𝑃] 

    = 𝐸[𝑌𝑖(1, 2) − 𝑌𝑖(1, 1)] 

    = 𝐸[𝑌𝑖(2, 2) − 𝑌𝑖(2, 1)] 

 The ITT effect of 𝑍 on 𝐴 will remain equal to the probability of compliers because there is 

no change of the population composition when the ER assumption is violated. In other words, the 

population still contains the four subpopulations that are from strata 1, 5, 6, and 9. Either increasing 

the proportion of compliers or decreasing the direct effects of treatment assignments on the 

outcomes will reduce the bias, as shown in equation (3.5). 

 

3.3.2 Violation of Assumption II (Monotonicity) 

Two of the assumptions (II and III) needed to identify our causal estimand of interest are structural 

assumptions. Deviation from these assumptions will result in a change of the population 

composition. In this section, we investigate the violation of the first structural assumption, i.e., 

monotonicity. Specifically, we will look at violation of the no irrationalists assumption (II.a) which 

will add principal strata 2 and 7 into our population and violation of the no flip-floppers assumption 

(II.b) which will add principal stratum 8 into our population.  
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3.3.2.1 Violation of Assumption II.a (No Irrationalists)  

As the structure of the principal strata has changed (Table 3.3), the ITT effect of 𝑍 on 𝐴 is no 

longer equal to the proportion of compliers. For irrationalists, we refer to those with 

(𝐴(1) = 0, 𝐴(2) = 1)  as irrationalists 1 (IR1) and those with (𝐴(1) = 2, 𝐴(2) = 0)  as 

irrationalists 2 (IR2) for the subsequent formulation.  

 

Table 3.3 Principal strata classified by A(1) and A(2) for RCTs with two active treatments when  

Assumption II.a, the no irrationalists assumption, is violated. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0 

1. Never-taker 

(NT) 

π1 

2. Irrationalist 1 

(IR1) 

π2 

 

A(1)=1  

5. Always-1-taker 

(A1T) 

π5 

6. Complier 

(COMP) 

π6 

A(1)=2 

7. Irrationalist 2 

(IR2) 

π7 

 

9. Always-2-taker 

(A2T) 

π9 

 

The ITT effect of 𝑍 on 𝐴 becomes  

𝐸[𝐴𝑖(2) − 𝐴𝑖(1)] = (1 − 0) × 𝑃𝑟(𝐼𝑅1) + (0 − 2) × 𝑃𝑟(𝐼𝑅2) + (2 − 1) × 𝑃𝑟(𝐶𝑂𝑀𝑃)  

                                  = 𝑃𝑟(𝐼𝑅1) − 2𝑃𝑟(𝐼𝑅2) + 𝑃𝑟(𝐶𝑂𝑀𝑃) 

                                  = 𝑃𝑟(𝐶𝑂𝑀𝑃) − [2𝑃𝑟(𝐼𝑅2) − 𝑃𝑟(𝐼𝑅1)] 

Then, our nonparametric estimator becomes 

    
𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))]

𝐸[𝐴𝑖(2) − 𝐴𝑖(1)]
 

= 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐼𝑅1]
𝑃𝑟(𝐼𝑅1)

𝑃𝑟(𝐶𝑂𝑀𝑃)−[2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)]
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+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐼𝑅2]
𝑃𝑟(𝐼𝑅2)

𝑃𝑟(𝐶𝑂𝑀𝑃)−[2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)]
  

+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃] [1 +
2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)

𝑃𝑟(𝐶𝑂𝑀𝑃)−[2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)]
]  

= 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐼𝑅]
𝑃𝑟(𝐼𝑅)

𝑃𝑟(𝐶𝑂𝑀𝑃)−[2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)]
  

+ 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐶𝑂𝑀𝑃]  

+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃]
2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)

𝑃𝑟(𝐶𝑂𝑀𝑃)−[2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)]
  

= 𝐶𝐴𝐶𝐸 

+ 
𝑃𝑟(𝐼𝑅)

𝑃𝑟(𝐶𝑂𝑀𝑃)−[2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)]
𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐼𝑅]             

+ 
2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)

𝑃𝑟(𝐶𝑂𝑀𝑃)−[2𝑃𝑟(𝐼𝑅2)−𝑃𝑟(𝐼𝑅1)]
𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃]   (3.6) 

 The last two items of equation (3.6) consist of the bias which relates to both the principal 

strata proportions and the principal strata causal effects. Suppose the participants in the IR stata 

are symmetric, i.e., the proportions of IR1 and IR2 are the same. Then, under this symmetry in 

principal strata assumption for irrationalists, the bias from equation (3.6) can be simplified to  

𝐵𝑖𝑎𝑠 =
𝑃𝑟(𝐼𝑅1)

𝑃𝑟(𝐶𝑂𝑀𝑃)−𝑃𝑟(𝐼𝑅1)
×  

               {2𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐼𝑅] + 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃]}        (3.7) 

 The bias formula in equation (3.7) explicitly shows that bias from violation of the no-

irrationalists assumption will be inversely proportional to the relative proportion of compliers to 

irrationalists. Equation (3.7) also shows that the bias will always exist even if the ITT effect of 

irrationalists is zero as long as there are irrationalists in the population unless the ITT effect of 

irrationalists is exactly half of the opposite of the complier average causal effect (CACE). 
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3.3.2.2 Violation of Assumption II.b (No Flip-Floppers) 

The principal strata of the population after violating the no flip-floppers assumption are shown in 

Table 3.4. Similar as above, the ITT effect of 𝑍 on 𝐴 is 

𝐸[𝐴𝑖(2) − 𝐴𝑖(1)] = (2 − 1) × 𝑃𝑟(𝐶𝑂𝑀𝑃) + (1 − 2) × 𝑃𝑟(𝐹𝐹) = 𝑃𝑟(𝐶𝑂𝑀𝑃) − 𝑃𝑟(𝐹𝐹) 

Thus, the nonparametric estimator becomes 

    
𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))]

𝐸[𝐴𝑖(2) − 𝐴𝑖(1)]
 

= 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐶𝑂𝑀𝑃]
𝑃𝑟(𝐶𝑂𝑀𝑃)

𝑃𝑟(𝐶𝑂𝑀𝑃)−𝑃𝑟(𝐹𝐹)
 − 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐹𝐹]

𝑃𝑟(𝐹𝐹)

𝑃𝑟(𝐶𝑂𝑀𝑃)−𝑃𝑟(𝐹𝐹)
 

= 𝐶𝐴𝐶𝐸 +  𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐶𝑂𝑀𝑃]
𝑃𝑟(𝐹𝐹)

𝑃𝑟(𝐶𝑂𝑀𝑃)−𝑃𝑟(𝐹𝐹)
 − 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐹𝐹]

𝑃𝑟(𝐹𝐹)

𝑃𝑟(𝐶𝑂𝑀𝑃)−𝑃𝑟(𝐹𝐹)
 

= 𝐶𝐴𝐶𝐸 +
𝑃𝑟(𝐹𝐹)

𝑃𝑟(𝐶𝑂𝑀𝑃)−𝑃𝑟(𝐹𝐹)
{𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐶𝑂𝑀𝑃] − 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐹𝐹]}   (3.8) 

 

Table 3.4 Principal strata classified by A(1) and A(2) for RCTs with two active treatments when 

Assumption II.b, the no flip-floppers assumption, is violated. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0 

1. Never-taker 

(NT) 

π1 

  

A(1)=1  

5. Always-1-taker 

(A1T) 

π5 

6. Complier 

(COMP) 

π6 

A(1)=2  

8. Flip-floppers 

(FF) 

π8 

9. Always-2-taker 

(A2T) 

π9 

 

 The second item of equation (3.8)  forms the bias formula when the no flip-floppers 

assumption is violated. Similar implications can be found as for the irrationalists. Namely, the bias 

can be reduced if the relative proportion of compliers to flip-floppers increases. Only if there is no 
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variation in the causal effects of the treatment received for compliers and flip-floppers, that is, the 

causal effects of treatment received is constant across the principal strata, the bias will be zero. 

 

3.3.3 Violation of Assumption III (No Partial-Complier) 

We discuss the sensitivity of our causal estimand to the violation of the second structural 

assumption: no partial-compliers in this section. The structure of the principal strata is changed to 

Table 3.5. The ITT effect of 𝑍 on 𝐴 is  

 

𝐸[𝐴𝑖(2) − 𝐴𝑖(1)] = (2 − 0) × 𝑃𝑟(𝑃2𝐶) + (0 − 1) × 𝑃𝑟(𝑃1𝐶) + (2 − 1) × Pr(𝐶𝑂𝑀𝑃) 

                                  = 2𝑃𝑟(𝑃2𝐶) − 𝑃𝑟(𝑃1𝐶) + 𝑃𝑟(𝐶𝑂𝑀𝑃) 

The nonparametric estimator then becomes 

    
𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))]

𝐸[𝐴𝑖(2) − 𝐴𝑖(1)]
 

= 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝑃2𝐶]
𝑃𝑟(𝑃2𝐶)

2𝑃𝑟(𝑃2𝐶)−𝑃𝑟(𝑃1𝐶)+𝑃𝑟(𝐶𝑂𝑀𝑃)
  

+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝑃1𝐶]
𝑃𝑟(𝑃1𝐶)

2𝑃𝑟(𝑃2𝐶)−𝑃𝑟(𝑃1𝐶)+𝑃𝑟(𝐶𝑂𝑀𝑃)
  

+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃] [1 −
2 𝑃𝑟(𝑃2𝐶)−𝑃𝑟 (𝑃1𝐶)

2𝑃𝑟(𝑃2𝐶)−𝑃𝑟(𝑃1𝐶)+𝑃𝑟(𝐶𝑂𝑀𝑃)
]  

= 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝑃𝐶]
𝑃𝑟(𝑃𝐶)

2𝑃𝑟(𝑃2𝐶)−𝑃𝑟(𝑃1𝐶)+𝑃𝑟(𝐶𝑂𝑀𝑃)
  

+ 𝐸[𝑌𝑖(2) − 𝑌𝑖(1)|𝐶𝑂𝑀𝑃] 

+ 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃]
𝑃𝑟(𝑃1𝐶)−2𝑃𝑟 (𝑃2𝐶)

2𝑃𝑟(𝑃2𝐶)−𝑃𝑟(𝑃1𝐶)+𝑃𝑟(𝐶𝑂𝑀𝑃)
   

= 𝐶𝐴𝐶𝐸 

+
𝑃𝑟(𝑃𝐶)

2𝑃𝑟(𝑃2𝐶)−𝑃𝑟(𝑃1𝐶)+𝑃𝑟(𝐶𝑂𝑀𝑃)
𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝑃𝐶]  
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+ 
𝑃𝑟(𝑃1𝐶)−2𝑃𝑟 (𝑃2𝐶)

2𝑃𝑟(𝑃2𝐶)−𝑃𝑟(𝑃1𝐶)+𝑃𝑟(𝐶𝑂𝑀𝑃)
𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃]                                    (3.9)        

 We can derive the bias from the last two items of equation (3.9). Similarly, under the 

symmetry in principal strata assumption for partial-compliers, the proportion of partial-1-

compliers is identical to that of partial-2-compliers, the bias can be simplified to 

𝐵𝑖𝑎𝑠 =
𝑃𝑟(𝑃1𝐶)

𝑃𝑟(𝑃1𝐶)+𝑃𝑟(𝐶𝑂𝑀𝑃)
×  

               {2𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝑃𝐶] − 𝐸[𝑌𝑖(2, 𝐴𝑖(2))– 𝑌𝑖(1, 𝐴𝑖(1))|𝐶𝑂𝑀𝑃]}      (3.10)         

 Again, the bias will decrease as the relative proportion of compliers to partial-compliers 

increase. Even when the ITT effect of partial-compliers is zero, the estimator is still biased. Only 

if the ITT effect of partial-compliers is on average half of the complier average causal effect will 

the bias be zero.       

 

Table 3.5 Principal strata classified by A(1) and A(2) for RCTs with two active treatments when 

Assumption III, the no partial-compliers assumption, is violated. 
 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0 

1. Never-taker 

(NT) 

π1 

 

3. Partial-2-complier 

(P2C) 

π3 

A(1)=1 

4. Partial-1-complier 

(P1C) 

π4 

5. Always-1-taker 

(A1T) 

π5 

6. Complier 

(COMP) 

π6 

A(1)=2   

9. Always-2-taker 

(A2T) 

π9 
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3.4 Simulation Studies 

3.4.1 Simulation Setup 

In this section, we introduce a series of simulations to evaluate the performance and sensitivity of 

our nonparametric estimator in equation (3.3). The data generating process follows 5 steps: 

1) Generate the treatment assignment. We use a Bernoulli distribution with a probability of 0.5 

to generate the treatment assignment 𝑍𝑖 for individual 𝑖.  

2) Generate the nine principal strata. We use a multinomial distribution with nine pre-specified 

probabilities 𝜋1, 𝜋2, … , 𝜋9, where ∑ 𝜋𝑔 = 19
𝑔=1  to generate the principal strata 𝐺𝑖 for individual 𝑖.   

3) Obtain the observed treatment received. Given the principal strata 𝐺𝑖 generated in step 2),  

we can obtain the values of the potential treatment received (𝐴𝑖(1), 𝐴𝑖(2)) for individual  𝑖. 

Then, with the known treatment assignment 𝑍𝑖, the observed treatment received 𝐴𝑖 will be equal 

to 𝐴𝑖(1) if 𝑍𝑖 = 1 and 𝐴𝑖(2) if 𝑍𝑖 = 2. 

4) Generate the potential outcomes. We consider both the continuous outcomes and the binary 

outcomes. We generate the potential outcomes 𝑌𝑖(1, 𝐴𝑖(1)) and 𝑌𝑖(2, 𝐴𝑖(2)) separately.  

 a. For the continuous potential outcomes,  

     𝑌𝑖(1, 𝐴𝑖(1)) = 𝛼0 + 𝛼1𝑔1𝑖 + 𝛼2𝑔2𝑖 + 𝛼3𝑔3𝑖 + 𝛼4𝑔4𝑖 + 𝛼5𝑔5𝑖 + 𝛼6𝑔6𝑖 + 𝛼7𝑔7𝑖 + 𝛼8𝑔8𝑖 

                          + 𝛼9𝑔9𝑖 + 𝛿1𝑧𝐼𝑧𝑖 + 𝜖𝑖        

 𝑌𝑖(2, 𝐴𝑖(2)) = 𝛽0 + 𝛽1𝑔1𝑖 + 𝛽2𝑔2𝑖 + 𝛽3𝑔3𝑖 + 𝛽4𝑔4𝑖 + 𝛽5𝑔5𝑖 + 𝛽6𝑔6𝑖 + 𝛽7𝑔7𝑖 + 𝛽8𝑔8𝑖 

                     + 𝛽9𝑔9𝑖 + 𝛿2𝑧𝐼𝑧𝑖 + 𝜖𝑖 

where 𝑔𝑗𝑖  is an indicator variable with 𝑔𝑗𝑖 = 1  if individual 𝑖  is in stratum 𝑗  and 0 

otherwise. 𝐼𝑧𝑖 indicates the treatment assignment with 𝐼𝑧𝑖 = 1 if individual 𝑖 is assigned to 

treatment 1 and 0 if assigned to treatment 2. The one error term 𝜖𝑖, shared by the two 

counterfactuals, follows a standard normal distribution 𝑁(0, 1). 



27 
 

b. For the binary potential outcomes, 

𝑙𝑜𝑔𝑖𝑡(Pr (𝑌𝑖(1, 𝐴𝑖(1)) = 1)) = 𝛼0 + 𝛼1𝑔1𝑖 + 𝛼2𝑔2𝑖 + 𝛼3𝑔3𝑖 + 𝛼4𝑔4𝑖 + 𝛼5𝑔5𝑖 + 𝛼6𝑔6𝑖 

                                                       + 𝛼7𝑔7𝑖 + 𝛼8𝑔8𝑖 + 𝛼9𝑔9𝑖 + 𝛿1𝑧𝐼𝑧𝑖 

            𝑙𝑜𝑔𝑖𝑡(Pr (𝑌𝑖(2, 𝐴𝑖(2)) = 1)) = 𝛽0 + 𝛽1𝑔1𝑖 + 𝛽2𝑔2𝑖 + 𝛽3𝑔3𝑖 + 𝛽4𝑔4𝑖 + 𝛽5𝑔5𝑖 + 𝛽6𝑔6𝑖 

                                                            + 𝛽7𝑔7𝑖 + 𝛽8𝑔8𝑖 + 𝛽9𝑔9𝑖 + 𝛿2𝑧𝐼𝑧𝑖 

 where the definition of the notations are the same as the continuous case. 

5) Obtain the observed outcome. Given the treatment assignment 𝑍𝑖 and the potential outcomes 

𝑌𝑖(𝑧, 𝐴𝑖(𝑧)), 𝑧 = 1, 2 generated in step 4), the observed outcome 𝑌𝑖 will be 𝑌𝑖(1, 𝐴𝑖(1)) if 𝑍𝑖 = 1 

and 𝑌𝑖(2, 𝐴𝑖(2)) if 𝑍𝑖 = 2.  

 After all data are generated, we can then obtain the estimate of our causal estimand of 

interest from the sample quantities using equation (3.3). We run five sets of simulations for the 

five scenarios A to E for both the continuous outcomes and the binary outcomes. Scenario A is to 

evaluate the performance of the nonparametric estimator when all assumptions are met. Scenarios 

B to E are the sensitivity analysis when one of the assumptions described in section 3.2 is violated. 

We summarize the parameters used to generate the potential outcomes for each scenario in Table 

3.6. The true value of CACE is set to be 6 for the continuous case and is around 0.35 for the binary 

case. To simplify exposition, we call the irrationalists, flip-floppers, and partial-compliers violators 

as their existence is due to violations of a certain assumption. For each scenario, we vary the 

principal strata proportion of compliers from 50% to 75% with an increment of 5%. On the other 

hand, for scenarios B to E, we fix the total principal strata proportions for never-takers, always-1-

takers, and always-2-takers to be 20%. Then, the principal strata proportions of the violators will 

vary from 30% to 5% corresponding to the varying principal strata proportion of compliers. As a 

result, the relative proportions of compliers to violators will be increasing as the principal strata 
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proportion of compliers is increasing and the principal strata proportions of the violators are 

decreasing.  

 We consider various sample sizes with 𝑛 = 500, 1000 or 2000. As there are six principal 

strata proportions, three sample sizes, two types of outcomes and five scenarios, we will therefore 

run 6 × 3 × 2 × 5 = 180  sets of simulations in total each with 10000 iterations. In addition, 

within each iteration of the simulation, we draw 2000 bootstrap samples to calculate the bootstrap 

standard errors of our nonparametric estimator.  
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Table 3.6 Summary of the parameter values used to generate the potential outcomes for the 

nonparametric approach. Scenario A is when all assumptions are satisfied. Scenario B is when 

Assumption I, the exclusion restriction assumption, is violated. Scenario C is when Assumption 

II.a, the no irrationalists assumption, is violated. Scenario D is when Assumption II.b, the no flip-

floppers assumption, is violated. Scenario E is when Assumption III, the no partial-compliers 

assumption, is violated. 

 

 
Continuous Outcome Binary Outcome 

Scenario A B C D E A B C D E 

𝛼0 0 0 0 0 0 0 0 0 0 0 

𝛼1 -3 -3 -3 -3 -3 0.5 0.5 0.5 0.5 0.5 

𝛼2 0 0 -1 0 0 0 0 -2 0 0 

𝛼3 0 0 0 0 -1 0 0 0 0 -3 

𝛼4 0 0 0 0 7 0 0 0 0 0.2 

𝛼5 8 8 8 8 8 0.5 0.5 0.5 0.5 0.5 

𝛼6 4 4 4 4 4 -0.5 -0.5 -0.5 -0.5 -0.5 

𝛼7 0 0 5 0 0 0 0 0.3 0 0 

𝛼8 0 0 0 6 0 0 0 0 0.2 0 

𝛼9 12 12 12 12 12 0.5 0.5 0.5 0.5 0.5 

𝛽0 0 0 0 0 0 0 0 0 0 0 

𝛽1 -3 -3 -3 -3 -3 0.5 0.5 0.5 0.5 0.5 

𝛽2 0 0 3 0 0 0 0 -0.2 0 0 

𝛽3 0 0 0 0 10 0 0 0 0 0.3 

𝛽4 0 0 0 0 -1 0 0 0 0 -2 

𝛽5 8 8 8 8 8 0.5 0.5 0.5 0.5 0.5 

𝛽6 10 10 10 10 10 1 1 1 1 1 

𝛽7 0 0 -4 0 0 0 0 -3 0 0 

𝛽8 0 0 0 3 0 0 0 0 -0.8 0 

𝛽9 12 12 12 12 12 0.5 0.5 0.5 0.5 0.5 

𝛿1𝑧 0 -1 0 0 0 0 -0.5 0 0 0 

𝛿2𝑧 0 -2 0 0 0 0 -0.3 0 0 0 
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3.4.2 Performance Metrics 

We use the following metrics to evaluate the performance and sensitivity of our nonparametric 

estimator. 

1. Mean bias: the average of the difference between the estimated CACE and the true CACE, 

∑ (𝐶𝐴𝐶𝐸𝑖
̂ − 𝐶𝐴𝐶𝐸)10000

𝑖=1

10000
 

2. Percent bias (%): the average of the bias relative to the true CACE, 

∑ (𝐶𝐴𝐶𝐸𝑖
̂ − 𝐶𝐴𝐶𝐸)10000

𝑖=1

10000 × 𝐶𝐴𝐶𝐸
× 100 

3. Mean standard error: the average of the standard errors from each iteration of the simulations. 

∑ 𝑆𝐸(𝐶𝐴𝐶𝐸𝑖
̂ )10000

𝑖=1

10000
 

where each SE(𝐶𝐴𝐶𝐸̂) is estimated by 2000 bootstrapped samples within a simulation.  

4. Root mean squared error: the square root of the average of the squared bias, 

√∑ (𝐶𝐴𝐶𝐸𝑖
̂ − 𝐶𝐴𝐶𝐸)

210000
𝑖=1

10000
 

5. Standard error ratio: the ratio of the mean standard error to the standard deviation of the 10000 

estimated CACE 

6. Coverage rate (%):  the percent of the 95% confidence intervals that cover the true CACE. The 

95% confidence interval is calculated as 

(𝐶𝐴𝐶𝐸̂ − 1.96 × 𝑆𝐸, 𝐶𝐴𝐶𝐸̂ + 1.96 × 𝑆𝐸) 
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3.4.3 Results 

We present the results of scenarios A to E for the continuous outcomes here. Results for the binary 

outcomes show similar patterns and can be found in Appendix A.  

 

3.4.3.1 Performance Analysis 

The top two panels of Figure 3.1 report the mean bias and percent bias of the estimator. Our 

nonparametric method can yield slightly biased estimators for CACE as both the bias and percent 

bias approach to zero when 𝑛 = 500, 1000 𝑜𝑟 2000 . The estimators are less sensitive to the 

principal strata proportion of compliers when there is an adequate number of individuals in the 

sample. For example, when 𝑛 = 2000 , the estimators gather around the true CACE with 

approximately zero bias and percent bias for the various principal strata proportions of compliers. 

However, when 𝑛 = 500, the bias and percent bias are more scattered across the principal strata 

proportions of compliers. This is consistent with the results of mean standard errors that we discuss 

below. In addition, this pattern is as expected because the size of compliers will always be larger 

in a sample with higher percentage of compliers than in a sample of the same sample size but with 

lower percentage of compliers. As we are estimating the average treatment effect in compliers, the 

larger size of compliers will therefore produce relatively smaller bias.  

 

 

 

 

 

 

 



32 
 

 

Figure 3.1 Performance (top left: bias; top right: percent bias; middle left: mean standard error; 

middle right: root mean squared error; bottom left: standard error ratio; bottom right: coverage) of 

the nonparametric estimator across proportions of compliers for the continuous outcome when all 

assumptions are satisfied (scenario A). The blue square represents sample size 𝑛 = 500. The red 

circle represents sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000.  
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 Similar patterns are observed for the mean standard errors and root mean squared errors as 

shown in the middle two panels of Figure 3.1. The larger the sample size, the higher the principal 

strata proportion of compliers, the smaller the mean standard errors. We anticipate that the root 

mean squared errors will have the same pattern as the mean standard errors. That is, the larger the 

sample size, the larger the complier size, the smaller the root mean squared errors, the better the 

estimators. 

 We use the standard error ratios to compare the mean standard errors with the empirical 

standard errors of the estimator. The bottem left corner of Figure 3.1 shows that the standard error 

ratios are all roughly one, suggesting that the bootstrap standard errors of the nonparametric 

estimator can accurately estimate the empirical standard deviations of the estimated CACEs. The 

coverage rates, which are shown at the bottom right corner of Figure 3.1, are around 95% when 

𝑛 = 1000 𝑜𝑟 2000. However, they are inflated when 𝑛 = 500, especially for samples with lower 

principal strata proportions of compliers.  

 

3.4.3.2 Sensitivity Analysis 

From the bias formula derived in section 3.3 when violations of Assumption I, II, and III occur, in 

general, the bias will depend on the principal strata proportions as well as certain treatment effects 

including the direct effects of treatment assignments on the outcomes and the principal strata ITT 

effects. However, we will only focus on evaluating the consequnces from changes of the principal 

strata proportions because 1) the direct impact from violations of the assumptions is a change of 

the population composion; and 2) either the direct effects of treatment assignments or the principal 

strata ITT effects can be thought as inherent properties of the principal strata which will be a 

constant within a principal stratum. As a result, we will not be interested in  the magnitudes or 
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signs of the bias. We will, on the other hand, be interested in whether there will be some trends or 

patterns from the changes of the principal strata proportions.  

 We discuss the bias due to violation of ER separately from the bias due to the three types 

of violators because bias due to violation of ER is more sensitive to the specific values of the direct 

effects of treatment assignments. Although increasing the percentage of compliers in a sample will 

decrease the bias as shown in Figure 3.2, it will not approach to zero unless the direct effects of 

treatment assignments are closer to zero. However, as indicated in Figure 3.3, Figure 3.4, and 

Figure 3.5, the bias due to violations of the structural assumptions can be as close as zero if the 

relative proportion of compliers to violators is sufficiently large. Thus, we are able to minimize 

the bias due to the violators by maximizing the percentage of compliers and minimizing the 

percentage of violators.  

 Increasing sample size will not reduce the bias, but it will make the estimators more precise 

as shown in the standard error panels of Figure 3.2, Figure 3.3, Figure 3.4, and Figure 3.5. The 

standard errors will also be smaller when there are more compliers or less violators in the sample. 

The root mean squared errors show the performance of an estimator. Similar to the patterns of the 

bias and the mean standard errors, increasing the proportion of compliers or decreasing the 

proportions of violators will lower the root mean squared errors and make the estimators better. 
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Figure 3.2 Sensitivity (upper left: bias; upper right: percent bias; lower left: mean standard error; 

lower right: root mean squared error) of the nonparametric estimator across proportions of 

compliers for the continuous outcome when Assumption I, the exclusion restriction assumption, 

is violated (scenario B). The blue square represents sample size 𝑛 = 500. The red circle represents 

sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000.  
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Figure 3.3 Sensitivity (upper left: bias; upper right: percent bias; lower left: mean standard error; 

lower right: root mean squared error) of the nonparametric estimator across proportions of 

irrationalists for the continuous outcome when Assumption II.a, the no irrationalists assumption, 

is violated (scenario C). The blue square represents sample size 𝑛 = 500. The red circle represents 

sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000.  
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Figure 3.4 Sensitivity (upper left: bias; upper right: percent bias; lower left: mean standard error; 

lower right: root mean squared error) of the nonparametric estimator across proportions of flip-

floppers for the continuous outcome when Assumption II.b, the no flip-floppers assumption, is 

violated (scenario D). The blue square represents sample size 𝑛 = 500. The red circle represents 

sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000. 
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Figure 3.5 Sensitivity (upper left: bias; upper right: percent bias; lower left: mean standard error; 

lower right: root mean squared error) of the nonparametric estimator across proportions of partial-

compliers for the continuous outcome when Assumption III, the no partial-compliers assumption, 

is violated (scenario E). The blue square represents sample size 𝑛 = 500. The red circle represents 

sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000. 
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CHAPTER 4 

A MULTISITE DESIGN APPROACH 

The nonparametric approach identifies our causal estimand of interest by imposing several 

assumptions. In this chapter, we introduce a method based on the multisite design of a study. 

Different from the placebo-controlled trials that only has one endogenous variable, our study setup 

involves two endogenous variables because the treatment received 𝐴𝑖 can take three values: 0, 1, 

or 2. These two endogenous variables are the indicator variables generated from 𝐴𝑖. Namely, one 

indicates whether individual 𝑖  takes treatment 1 or not and the other indicates whether takes 

treatment 2 or not. With one single instrument, i.e., the treatment assignment 𝑍𝑖 and more than one 

endogenous variables, it is generally not possible to identify any causal effects without further 

considerations. 

 However, the identification of causal effects becomes possible in study settings with 

multiple sites even without looking for extra new instruments. If we assume that the casual 

structure will be the same across sites for a multisite study, multiple instruments are therefore 

generated from the site-by-instrument interactions. This idea has the potential to be used in 

research on causal effects. Raudenbush and Bloom (2015) underlined the importance of learning 

about the distribution of treatment effects through multisite trials. Reardon and Raudenbush (2013) 

derived assumptions required to identify the causal effects of multiple mediators using the site-by-

treatment instruments. Yuan et al. (2018) proposed a method similar to Reardon and Raudenbush 

(2013) and estimated the principal strata causal effects rather than causal effects of mediators in a 

placebo-controlled multisite trial. Our study is an extension to the approach by Yuan et al. (2018) 

as it involves two active treatments. It also differs from the approach by Reardon and Raudenbush 

(2013) although there are two mediators (the aforementioned two indicators) in our study. The 
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effects of the two mediators are from comparisons of either treatment 1 or treatments 2 versus 

taking nothing. Even if we can take the difference of these two effects to obtain the effect of 

treatment 2 versus treatment 1, it targets at a population that is not of our interest. We will discuss 

our method in more detail in the following sections.  

 

4.1 Identification Strategies of the Causal Estimand 

We divide the population into the same nine principal strata as described in section 3.1. To identify 

our causal estimand of interest CACE via the multisite design, we make an additional structural 

assumption.  

Assumption IV (No never-takers): There are no individuals with (𝐴𝑖(1) = 0, 𝐴𝑖(2) = 0), i.e., 

π1 = 0. 

 This assumption states that there are no participants who choose to take nothing or to not 

follow the protocol as required no matter which treatment they are assigned. It can be satisfied if 

we assume that participants are willing to take the treatment as required when they are eligible to 

enroll in a trial and sign the consent form.  

 Under Assumption II and Assumption IV, the nine principal strata are reduced to five, as 

shown in Table 4.1. Combined with Assumption I (Exclusion Restriction), the overall ITT effect 

of 𝑍 on 𝑌 in site 𝑘 is 

𝐼𝑇𝑇𝑦|𝑘 = 𝐼𝑇𝑇3|𝑘𝜋3|𝑘  +  𝐼𝑇𝑇4|𝑘𝜋4|𝑘  +  𝐼𝑇𝑇5|𝑘𝜋5|𝑘  +  𝐼𝑇𝑇6|𝑘𝜋6|𝑘  +  𝐼𝑇𝑇9|𝑘𝜋9|𝑘 

            = 𝐼𝑇𝑇3|𝑘𝜋3|𝑘  +  𝐼𝑇𝑇4|𝑘𝜋4|𝑘 +  𝐶𝐴𝐶𝐸𝑘𝜋6|𝑘                                                               (4.1) 

where ITTy|k = 𝐸(𝑌(2, 𝐴(2)) − 𝑌(1, 𝐴(1))|𝑆 = 𝑘)  with S  representing sites and 𝑘 = 1, … , K ; 

ITTg|k =  𝐸(𝑌(2, 𝐴(2)) − 𝑌(1, 𝐴(1))|𝐺 = 𝑔, 𝑆 = 𝑘) is the stratum-specific ITT effect of Z on Y 

in site k and the principal strata 𝑔, for 𝑔 = 3, 4, 5, 6, 9; and πg|k = Pr (𝐺 = 𝑔|𝑆 = 𝑘) is the site-
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specific principal stratum proportion for stratum 𝑔 in site 𝑘. The first equality of equation (4.1) is 

the decomposition of the overall ITT effect into the weighted stratum-specific ITT effects with 

weights equal to the principal strata proportions. The last equality is due to Assumption I under 

which 𝐼𝑇𝑇5|𝑘 = 𝐼𝑇𝑇9|𝑘 = 0.  

 

Table 4.1 Principal strata classified by A(1) and A(2) for RCTs with two active treatments under 

Assumption II, the monotonicity assumption, and Assumption IV, the no never-takers assumption. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0   

3. Partial-2-complier 

(P2C) 

π3 

A(1)=1 

4. Partial-1-complier 

(P1C) 

π4 

5. Always-1-taker 

(A1T) 

π5 

6. Complier 

(COMP) 

π6 

A(1)=2   

9. Always-2-taker 

(A2T) 

π9 

 

As our causal estimand of interest is the CACE for the entire population instead of the CACE for 

any site, equation (4.1) can be rewritten as 

 𝐼𝑇𝑇𝑦|𝑘 = 𝐼𝑇𝑇3|𝑘𝜋3|𝑘 + 𝐼𝑇𝑇4|𝑘𝜋4|𝑘 + 𝐶𝐴𝐶𝐸𝑘𝜋6|𝑘 

             = 𝐼𝑇𝑇3𝜋3|𝑘 + 𝐼𝑇𝑇4𝜋4|𝑘 + 𝐶𝐴𝐶𝐸𝜋6|𝑘 

             + (𝐼𝑇𝑇3|𝑘 − 𝐼𝑇𝑇3)𝜋3|𝑘 + (𝐼𝑇𝑇4|𝑘 − 𝐼𝑇𝑇4)𝜋4|𝑘 + (𝐶𝐴𝐶𝐸𝑘 − 𝐶𝐴𝐶𝐸)𝜋6|𝑘 

             = 𝐼𝑇𝑇3𝜋3|𝑘 + 𝐼𝑇𝑇4𝜋4|𝑘 + 𝐶𝐴𝐶𝐸𝜋6|𝑘 + 𝜖𝑘  (4.2) 

where 𝜖𝑘 = (𝐼𝑇𝑇3|𝑘 − 𝐼𝑇𝑇3)𝜋3|𝑘 + (𝐼𝑇𝑇4|𝑘 − 𝐼𝑇𝑇4)𝜋4|𝑘 + (𝐶𝐴𝐶𝐸𝑘 − 𝐶𝐴𝐶𝐸)𝜋6|𝑘 ; 𝐼𝑇𝑇3 , 𝐼𝑇𝑇4 

and 𝐶𝐴𝐶𝐸  are the population principal strata causal effects for principal strata 3, 4, and 6 

respectively, i.e., 𝐼𝑇𝑇3 = 𝐸(𝐼𝑇𝑇3|𝑘), 𝐼𝑇𝑇4 = 𝐸(𝐼𝑇𝑇4|𝑘), and 𝐶𝐴𝐶𝐸 = 𝐸(𝐶𝐴𝐶𝐸𝑘).  
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 Equation (4.2) shows a form of multiple linear regression with site-specific ITT effect 

𝐼𝑇𝑇𝑦|𝑘  as the outcome, site-specific principal strata proportions 𝜋3|𝑘 , 𝜋4|𝑘  and 𝜋6|𝑘  as the 

regressors , and 𝜖𝑘 as the error term. As we have K sites, we will have K such equations. We can 

envision our multisite study setup as follows: suppose we draw K sites from an infinite number of 

sites, we assume that the site-level parameters 𝐐 = (𝐼𝑇𝑇3|𝑘 𝐼𝑇𝑇4|𝑘 𝐶𝐴𝐶𝐸𝑘 𝜋3|𝑘 𝜋4|𝑘 𝜋6|𝑘)
′
  are 

independent and  identically distributed and follow a distribution with the population-level 

parameters 𝐌 = (𝐼𝑇𝑇3 𝐼𝑇𝑇4 𝐶𝐴𝐶𝐸 𝜋3 𝜋4 𝜋6)′  as the mean vector and a 6 × 6  variance-

covariance matrix 𝜮 whose element σij denotes the covariance between ith and jth element of 𝐐. 

Given this setup, there is one more assumption needed to identify the CACE using a multiple linear 

regression. That is, the error term 𝜖𝑘 is required to be uncorrelated with the regressors 𝜋3|𝑘, 𝜋4|𝑘, 

and 𝜋6|𝑘  and has a mean of zero. Specifically, if 𝑐𝑜𝑣(𝜋3|𝑘, 𝜖𝑘) = 𝑐𝑜𝑣(𝜋4|𝑘, 𝜖𝑘) = 𝑐𝑜𝑣(𝜋6|𝑘,

𝜖𝑘) = 0 and E(𝜖𝑘) = 0, we can identify the population CACE as the coefficient of 𝜋6|𝑘 in the 

multiple linear regression. A sufficient condition of this requirement yields the following 

assumption.  

Assumption V (Zero correlation): The site-specific principal strata proportions are uncorrelated 

with the site-specific principal strata causal effects. Specifically, 

𝐶𝑜𝑣(𝜋3|𝑘, 𝐼𝑇𝑇3|𝑘) =  𝐶𝑜𝑣(𝜋3|𝑘, 𝐼𝑇𝑇4|𝑘) = 𝐶𝑜𝑣(𝜋3|𝑘, 𝐶𝐴𝐶𝐸𝑘) = 0, 

𝐶𝑜𝑣(𝜋4|𝑘, 𝐼𝑇𝑇3|𝑘) =  𝐶𝑜𝑣(𝜋4|𝑘, 𝐼𝑇𝑇4|𝑘) = 𝐶𝑜𝑣(𝜋4|𝑘, 𝐶𝐴𝐶𝐸𝑘) = 0, 

𝐶𝑜𝑣(𝜋6|𝑘, 𝐼𝑇𝑇3|𝑘) =  𝐶𝑜𝑣(𝜋6|𝑘, 𝐼𝑇𝑇4|𝑘) = 𝐶𝑜𝑣(𝜋6|𝑘, 𝐶𝐴𝐶𝐸𝑘) = 0. 

Assumption V implies that the expected value of the error term 𝜖𝑘 is  

𝐸(𝜖𝑘) = 𝐸 ((𝐼𝑇𝑇3|𝑘 − 𝐼𝑇𝑇3)𝜋3|𝑘 + (𝐼𝑇𝑇4|𝑘 − 𝐼𝑇𝑇4)𝜋4|𝑘 + (𝐶𝐴𝐶𝐸𝑘 − 𝐶𝐴𝐶𝐸)𝜋6|𝑘)  

           = 𝐸(𝐼𝑇𝑇3|𝑘𝜋3|𝑘) + 𝐸(𝐼𝑇𝑇4|𝑘𝜋4|𝑘) + 𝐸(𝐶𝐴𝐶𝐸𝑘𝜋6|𝑘) 
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           − 𝐼𝑇𝑇3𝐸(𝜋3|𝑘) − 𝐼𝑇𝑇4𝐸(𝜋4|𝑘) − 𝐸(𝜋6|𝑘)𝐶𝐴𝐶𝐸 

           = 𝑐𝑜𝑣(𝜋3|𝑘, 𝐼𝑇𝑇3|𝑘) + 𝐸(𝜋3|𝑘)𝐸(𝐼𝑇𝑇3|𝑘) 

           + 𝑐𝑜𝑣(𝜋4|𝑘, 𝐼𝑇𝑇4|𝑘) + 𝐸(𝜋4|𝑘)𝐸(𝐼𝑇𝑇4|𝑘) 

           + 𝑐𝑜𝑣(𝜋6|𝑘, 𝐶𝐴𝐶𝐸𝑘) + 𝐸(𝜋6|𝑘)𝐸(𝐶𝐴𝐶𝐸𝑘) 

           − 𝐼𝑇𝑇3𝐸(𝜋3|𝑘) − 𝐼𝑇𝑇4𝐸(𝜋4|𝑘) −  𝐸(𝜋6|𝑘)𝐶𝐴𝐶𝐸 

           = 0 

 Likewise, Assumption V also implies that 𝑐𝑜𝑣(𝜋3|𝑘, 𝜖𝑘) = 𝑐𝑜𝑣(𝜋4|𝑘, 𝜖𝑘) = 𝑐𝑜𝑣(𝜋6|𝑘,

𝜖𝑘) = 0. We provide the proof for 𝑐𝑜𝑣(𝜋3|𝑘, 𝜖𝑘) = 0 below. The same logic applies to the other 

two conditions 𝑐𝑜𝑣(𝜋4|𝑘, 𝜖𝑘) = 0 and 𝑐𝑜𝑣(𝜋6|𝑘, 𝜖𝑘) = 0. 

𝑐𝑜𝑣(𝜋3|𝑘, 𝜖𝑘) = 𝑐𝑜𝑣(𝜋3|𝑘, (𝐼𝑇𝑇3|𝑘 − 𝐼𝑇𝑇3)𝜋3|𝑘 + (𝐼𝑇𝑇4|𝑘 − 𝐼𝑇𝑇4)𝜋4|𝑘  

                       + (𝐶𝐴𝐶𝐸𝑘 − 𝐶𝐴𝐶𝐸)𝜋6|𝑘) 

                       = 𝑐𝑜𝑣(𝜋3|𝑘, 𝐼𝑇𝑇3|𝑘𝜋3|𝑘) + 𝑐𝑜𝑣(𝜋3|𝑘, 𝐼𝑇𝑇4|𝑘𝜋4|𝑘) + 𝑐𝑜𝑣(𝜋3|𝑘, 𝐶𝐴𝐶𝐸𝑘𝜋6|𝑘) 

                       − 𝐼𝑇𝑇3𝑐𝑜𝑣(𝜋3|𝑘 , 𝜋3|𝑘) − 𝐼𝑇𝑇4𝑐𝑜𝑣(𝜋3|𝑘 , 𝜋4|𝑘) − 𝐶𝐴𝐶𝐸𝑐𝑜𝑣(𝜋3|𝑘, 𝜋6|𝑘) 

                       = 𝐸(𝜋3|𝑘
2 𝐼𝑇𝑇3|𝑘) − 𝐸(𝜋3|𝑘)𝐸(𝐼𝑇𝑇3|𝑘𝜋3|𝑘) 

                       + 𝐸(𝜋3|𝑘𝐼𝑇𝑇4|𝑘𝜋4|𝑘) − 𝐸(𝜋3|𝑘)𝐸(𝐼𝑇𝑇4|𝑘𝜋4|𝑘) 

                       + 𝐸(𝜋3|𝑘𝐶𝐴𝐶𝐸𝑘𝜋6|𝑘) − 𝐸(𝜋3|𝑘)𝐸(𝐶𝐴𝐶𝐸𝑘𝜋6|𝑘) 

                       − 𝐼𝑇𝑇3𝑣𝑎𝑟(𝜋3|𝑘) − 𝐼𝑇𝑇4𝑐𝑜𝑣(𝜋3|𝑘, 𝜋4|𝑘) − 𝐶𝐴𝐶𝐸𝑐𝑜𝑣(𝜋3|𝑘, 𝜋6|𝑘) 

                       = 𝐸(𝜋3|𝑘
2 )𝐸(𝐼𝑇𝑇3|𝑘) − 𝐸(𝜋3|𝑘) (𝑐𝑜𝑣(𝜋3|𝑘, 𝐼𝑇𝑇3|𝑘) + 𝐸(𝐼𝑇𝑇3|𝑘)𝐸(𝜋3|𝑘)) 

                       + 𝐸(𝜋3|𝑘𝜋4|𝑘)𝐸(𝐼𝑇𝑇4|𝑘) − 𝐸(𝜋3|𝑘) (𝑐𝑜𝑣(𝜋4|𝑘, 𝐼𝑇𝑇4|𝑘) + 𝐸(𝐼𝑇𝑇4|𝑘)𝐸(𝜋4|𝑘))  

                       + 𝐸(𝜋3|𝑘𝜋6|𝑘)𝐸(𝐶𝐴𝐶𝐸𝑘) − 𝐸(𝜋3|𝑘) (𝑐𝑜𝑣(𝜋6|𝑘, 𝐶𝐴𝐶𝐸𝑘) + 𝐸(𝐶𝐴𝐶𝐸𝑘)𝐸(𝜋6|𝑘)) 

                       − 𝐼𝑇𝑇3𝑣𝑎𝑟(𝜋3|𝑘) − 𝐼𝑇𝑇4𝑐𝑜𝑣(𝜋3|𝑘, 𝜋4|𝑘) − 𝐶𝐴𝐶𝐸𝑐𝑜𝑣(𝜋3|𝑘, 𝜋6|𝑘)            
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                       = 𝐸(𝐼𝑇𝑇3|𝑘) (𝐸(𝜋3|𝑘
2 ) − 𝐸(𝜋3|𝑘)

2
) 

                       + 𝐸(𝐼𝑇𝑇4|𝑘) (𝐸(𝜋3|𝑘𝜋4|𝑘) − 𝐸(𝜋3|𝑘)𝐸(𝜋4|𝑘)) 

                       + 𝐸(𝐶𝐴𝐶𝐸𝑘)(𝐸(𝜋3|𝑘𝜋6|𝑘) − 𝐸(𝜋3|𝑘)𝐸(𝜋6|𝑘)) 

                       − 𝐼𝑇𝑇3𝑣𝑎𝑟(𝜋3|𝑘) − 𝐼𝑇𝑇4𝑐𝑜𝑣(𝜋3|𝑘, 𝜋4|𝑘) − 𝐶𝐴𝐶𝐸𝑐𝑜𝑣(𝜋3|𝑘, 𝜋6|𝑘) 

                       = 0 

 Assumption V is a nontrivial assumption and may not be empirically verifiable. We will 

explore the sensitivity of this assumption through simulation studies in section 4.4. Combining all 

the assumptions mentioned above results in Proposition II.   

Proposition II: For a RCT with two active treatments subject to nonadherence, the complier 

average causal effect (CACE) can be identified under Assumption I, II, IV, and V via a multisite 

design. 

 

4.2 Estimation of the Causal Estimand  

To identify CACE using equation (4.2) , it requires us to first identify the proportions of 

individuals in principal strata 3, 4, and 6 for each site, i.e., π3|k,  π4|k, and π6|k. In other words, 

we need to identify which principal stratum each individual belongs to in site 𝑘. As the principal 

strata are determined by the potential treatment received A(Z) and it is impossible to observe both 

A(1) and A(2) for one individual simultaneously, thus it is impossible to determine to which 

principal stratum an individual belongs. We can, however, estimate these proportions by using the 

observed quantities. As the observed treatment assignment Z takes two values and the observed 

treatment receipt A takes three values, there are in total six possible Z and 𝐴 combinations that we 

can observe. These six combinations are mixtures of the five principal strata shown in Table 4.1. 
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We can therefore estimate the principal strata proportions through the proportions of the observed 

combinations.  

 Let pa|zk = Pr (𝐴 = 𝑎|𝑍 = 𝑧, 𝑆 = 𝑘) be the probabilities of the six observed combinations 

in site 𝑘  where a = 0,1,2; z = 1,2; and ∑ 𝑝𝑎|𝑧𝑘𝑎=0,1,2 = 1 . We can calculate pa|zk  by simply 

taking the ratio of Na|zk and Nz|k where Na|zk is the number of individuals that are assigned to 

treatment z and take treatment a in site 𝑘; Nz|k is the total number of individuals that are assigned 

to treatment 𝑧 in site 𝑘. Then, we can immediately estimate π3|k,  π4|k, π5|k and π9|k from p0|1k, 

p0|2k, p1|2k and p2|1k as follows 

𝜋̂3|𝑘 = p0|1k =
N0|1k

N1|k
, 

 𝜋̂4|𝑘 = p0|2k =
N0|2k

N2|k
, 

𝜋̂5|𝑘 = p1|2k =
N1|2k

N2|k
, 

 𝜋̂9|𝑘 = p2|1k =
N2|1k

N1|k
, 

because randomization ensures that the principal strata proportions are the same across treatment 

arms. Take estimating the proportion of partial-2-compliers (π3|k) as an example. First, under 

Assumptions II and IV, we believe that those who are assigned to treatment 1 and take nothing are 

all partial-2-compliers. Then, we obtain the proportion of partial-2-compliers from those who are 

assigned to treatment 1 for site k, which is p0|1k. Due to randomization, the proportion of partial-

2-compliers in the entire population will be equal to the proportion of partial-2-compliers in each 

treatment assignment arm of the site, i.e., Pr(𝐴𝑖(1) = 0, 𝐴𝑖(2) = 2|𝑆 = 𝑘) = Pr(𝐴𝑖(1) =

0, 𝐴𝑖(2) = 2|𝑆 = 𝑘, 𝑍𝑖 = 𝑧) for 𝑧 = 1, 2. Therefore, we can estimate π3|k from p0|1k for site 𝑘. 

Similarly, to estimate the proportion of compliers, we first observe those who are assigned to 
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treatment 2 and also take treatment 2 and calculate this quantity as p2|2k =
N2|2k

N2|k
. These individuals 

are a mixture of partial-2-compliers (principal stratum 3), compliers (principal stratum 6) and 

always-2-takers (principal stratum 9). As we have obtained 𝜋̂3|𝑘  and 𝜋̂9|𝑘 , the proportion of 

compliers is estimated by 

𝜋̂6|𝑘 = p2|2k − 𝜋̂3|𝑘 − 𝜋̂9|𝑘 = p2|2k − p0|1k − p2|1k =
N2|2k

N2|k
−

N0|1k

N1|k
−

N2|1k

N1|k
 

This formula also provides a way of falsifying Assumption IV. Specifically, if we use the above 

formula to derive the estimated population principal stratum proportion 𝜋̂6, there is a chance that 

𝜋̂6 can be negative, therefore enabling us to falsify Assumption IV if needed. 

 After identifying the principal strata proportions, we also need to identify the ITT effect of 

𝑍  on 𝑌 for each site 𝑘 . We know that 𝐼𝑇𝑇𝑦|𝑘 = 𝐸(𝑌(2, 𝐴(2)) − 𝑌(1, 𝐴(1))|𝑆 = 𝑘) =

𝐸(𝑌|𝑍 = 2, 𝑆 = 𝑘) − 𝐸(𝑌|𝑍 = 1, 𝑆 = 𝑘) where the second equality is due to randomization and 

consistency. Then, we can use the sample average to estimate 𝐸(𝑌|𝑍 = 𝑧, 𝑆 = 𝑘), 𝑧 = 1,2: 

𝐼𝑇𝑇̂𝑦|𝑘 =
∑ 𝑌𝑖|𝑘𝑖𝜖{𝑖:𝑍𝑖=2}

𝑁2|𝑘
−

∑ 𝑌𝑖|𝑘𝑖𝜖{𝑖:𝑍𝑖=1}

𝑁1|𝑘
 

where 𝑌𝑖|𝑘 is the observed outcome for individual 𝑖 in site 𝑘. With the estimated ITT effects and 

the estimated principal strata proportions, we can use equation (4.3)  to identify our causal 

estimand of interest via a multiple linear regression, that is,  

 𝐼𝑇𝑇̂𝑦|𝑘 =  𝐼𝑇𝑇3𝜋̂3|𝑘 + 𝐼𝑇𝑇4𝜋̂4|𝑘 + 𝐶𝐴𝐶𝐸𝜋̂6|𝑘 + 𝜖𝑘̂  (4.3) 

 

4.3 The Problems of Omitted Variables and Measurement Errors 

As our multisite design approach relies on Assumption V, the zero correlation assumption, 

violation of this assumption will result in bias in the estimates, which is the so-called omitted-
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variable bias. In addition, because we use the estimated site-specific principal strata proportions 

and the estimated site-specific ITT effects to identify CACE rather than the true principal strata 

proportions and the true ITT effect, the measurement errors in these quantities will also bias the 

estimates. For exposition, we explore the issues of measurement errors and omitted variables in 

matrix format in this section.   

 Generally, consider the true model  

𝒀 = 𝑿𝜽 + 𝑼𝜸 + 𝝐 

where 𝒀 = (𝑌1 ⋯ 𝑌𝑛)′ is a 𝑛 × 1 column vector of the true outcomes; 𝑿 = (

𝑋11 … 𝑋1𝑝

⋮ ⋱ ⋮
𝑋𝑛1 … 𝑋𝑛𝑝

) 

is a 𝑛 × 𝑝 matrix of the regressors; 𝑼 = (

𝑈11 … 𝑈1𝑞

⋮ ⋱ ⋮
𝑈𝑛1 … 𝑈𝑛𝑞

) is a 𝑛 × 𝑞 matrix of the unobserved 

confounding variables that are correlated with some or all components of 𝑿; 𝜽 = (𝜃1 ⋯ 𝜃𝑝)′ 

is a 𝑝 × 1 column vector for the coefficients of 𝑿; 𝜸 = (𝛾1 ⋯ 𝛾𝑞)′ is a 𝑞 × 1 column vector 

for the coefficients of 𝑼; and 𝝐 = (𝜖1 ⋯ 𝜖𝑛)′ is a 𝑛 × 1 column vector of the error terms that 

follow a standard normal distribution and are independent of 𝑿 and 𝑼. Now, let 𝑽 be the  observed 

outcome vector that measures 𝒀 with classic measurement error 𝜹, i.e., 𝑽 = 𝒀 + 𝜹, where 𝜹 =

(𝛿1 ⋯ 𝛿𝑛)′ is a 𝑛 × 1 column vector representing the measurement errors in 𝑽 and assumed to 

be independent of 𝒀. Similarly, let 𝑾 be the observed regressors matrix that measures 𝑿 with 

classic measurement errors 𝒆 , i.e., 𝑾 = 𝑿 + 𝒆 , where 𝒆 = (

𝑒11 … 𝑒1𝑝

⋮ ⋱ ⋮
𝑒𝑛1 … 𝑒𝑛𝑝

) is a 𝑛 × 𝑝  matrix 

representing the measurement errors in 𝑾  and assumed to be independent of 𝑿 . Due to the 

unobserved confounding variables (the omitted variables) and the measurement errors in both 

outcomes and regressors, the actual regression model becomes 
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𝑽 = 𝑾𝜽∗ + 𝝐∗ 

Thus, the ordinary least square (OLS) estimator of 𝜽∗ is 

𝜽∗̂ = (𝑾′𝑾)−1𝑾′𝑽 

     = (𝑾′𝑾)−1𝑾′(𝒀 + 𝜹) 

     = (𝑾′𝑾)−1𝑾′(𝑿𝜽 + 𝑼𝜸 + 𝝐 + 𝜹) 

     = (𝑾′𝑾)−1𝑾′𝑿𝜽 + (𝑾′𝑾)−1𝑾′𝑼𝜸 + (𝑾′𝑾)−1𝑾′(𝝐 + 𝜹) (4.4) 

Taking expectation of equation (4.4), we have 

𝐸(𝜽∗̂) = 𝐸 (𝐸(𝜽∗̂|𝑾)) 

           = 𝐸(𝐸((𝑾′𝑾)−1𝑾′𝑿𝜽 + (𝑾′𝑾)−1𝑾′𝑼𝜸 + (𝑾′𝑾)−1𝑾′(𝝐 + 𝜹)|𝑾)) 

           = 𝐸(𝐸((𝑾′𝑾)−1𝑾′(𝑾 − 𝒆)𝜽|𝑾)) + 𝐸(𝐸((𝑾′𝑾)−1𝑾′𝑼𝜸|𝑾)) 

           + 𝐸(𝐸((𝑾′𝑾)−1𝑾′(𝝐 + 𝜹)|𝑾)) 

           = 𝜽 − 𝐸(𝐸((𝑾′𝑾)−1𝑾′𝒆𝜽|𝑾)) + 𝐸(𝐸((𝑾′𝑾)−1𝑾′𝑼𝜸|𝑾)) 

           = 𝜽 + 𝐸((𝑾′𝑾)−1𝑾′𝑼𝜸 − (𝑾′𝑾)−1𝑾′𝒆𝜽) 

           = 𝜽 + 𝐸((𝑾′𝑾)−1(𝑾′𝑼𝜸 − 𝑾′𝒆𝜽)) 

           = 𝜽 + 𝐸((𝑾′𝑾)−1((𝑿 + 𝒆)′𝑼𝜸 − (𝑿 + 𝒆)′𝒆𝜽)) 

           = 𝜽 + 𝐸((𝑾′𝑾)−1(𝑿′𝑼𝜸 − 𝒆′𝒆𝜽))  (4.5) 

 The last item of the third equality equals to zero because the conditional expectations of 𝝐 

and 𝜹 are zero. The last equality holds because 𝒆 is independent of 𝑼 and 𝑿. Thus, we can derive 

the bias formula from equation (4.5) when there is omitted variables as well as measurement 

errors in regressors and outcomes. That is 

 Bias = 𝐸(𝜽∗̂) − 𝜽 = 𝐸((𝑾′𝑾)−1(𝑿′𝑼𝜸 − 𝒆′𝒆𝜽)) (4.6) 
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 To apply the general bias formula in equation (4.6)  into our study setting, first we 

transform the notations in section 4.1 into matrix format. Let 𝝅 = (

𝜋3|1 𝜋4|1 𝜋6|1

⋮ ⋮ ⋮
𝜋3|𝐾 𝜋4|𝐾 𝜋6|𝐾

) be the 

𝐾 × 3 matrix representing the true principal strata proportions and the population principal strata 

causal effects vector 𝜷 = (𝐼𝑇𝑇3 𝐼𝑇𝑇4 𝐶𝐴𝐶𝐸)′ is the coefficients of 𝝅. Correspondingly, 𝝅̂ =

(

𝜋̂3|1 𝜋̂4|1 𝜋̂6|1

⋮ ⋮ ⋮
𝜋̂3|𝐾 𝜋̂4|𝐾 𝜋̂6|𝐾

)  will be the 𝐾 × 3  matrix for the estimated principal strata proportions. 

Thus, the measurement error matrix 𝒆 becomes 𝒆 = 𝝅̂ − 𝝅. We still use the notation 𝑼 for the 

unobserved site-level covariates with 𝜸 as its coefficient vector, and the dimensions of  𝑼 is 𝐾 ×

1. With these notations, plugging 𝝅̂ for 𝑾 and 𝝅 for 𝑿 into equation (4.6), we have 

 Bias = E((𝝅̂′𝝅̂)−1(𝛑′𝐔𝛄 − 𝒆′𝒆𝜽))  (4.7) 

for our multisite study. This formula implies that the bias will not only depend on the variance of 

𝝅̂ which is the sum of the variance of 𝛑 and the variance of 𝒆 but also on the covariance between 

𝛑  and 𝑼 . Specifically, the bias will be impacted by the variance of the true principal strata 

proportions, the variance of the measurement errors in estimating the true principal strata 

proportions, as well as the covariance between the true principal strata proportions and the 

unobserved site-level covariates. These implications will be explored through our simulations. 

 

4.4 Simulation Studies 

4.4.1 Simulation Setup 

We design a two-stage data generating process for our simulations. For the site-level data, we use 

a truncated multivariate normal distribution with mean vector 𝒎 =   (0.05 0.05 0.5)′  and 
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variance-covariance matrix 𝚪 = (
0.01

−0.0025 0.01
−0.0025 −0.0025 0.01

)  to generate the site-specific 

principal strata proportions of partial-2-compliers, partial-1-compliers and compliers, i.e.,  

𝜋3|𝑘, 𝜋4|𝑘, and 𝜋6|𝑘 for 𝐾 sites. We truncate the three principal proportions with a lower limit 𝑳 =

(0.01 0.01 0.1)′  and a upper limit 𝑼 = (0.15 0.15 0.7)′ . With the generated 

𝜋3|𝑘, 𝜋4|𝑘, and 𝜋6|𝑘 , we then draw 𝜋5|𝑘 for always-1-takers from a uniform distribution (0, 1 −

𝜋3|𝑘 − 𝜋4|𝑘 − 𝜋6|𝑘 ) and calculate 𝜋9|𝑘  for always-2-takers from 1 − 𝜋3|𝑘 − 𝜋4|𝑘 − 𝜋6|𝑘 − 𝜋5|𝑘 . 

For the number of sites 𝐾, we consider three different values for our simulations, that is, 𝐾 = 50, 

100, or 200.  

 Given the site-level quantities, we next generate the individual-level data for each site. First, 

we need to determine the site size of each site, that is, the number of individuals in a site. Although 

site sizes usually vary by sites in practice, we explore both situations where the site size is fixed 

or varies across sites. We consider the fixed site size as a simple and special case for the real world 

and look at three values: 25, 50, or 100 individuals for every site. For varied site size, we use a 

Poisson distribution with 𝜆 = 10 to generate the site size for each site and scale it by 5. Then, with 

the known site size, we generate the principal stratum 𝐺𝑖  for each individual 𝑖. Specifically, we 

first generated a variable 𝑇  from a uniform distribution 𝑈(0, 1) . Then, we use 𝑇  to inverse 

transform a multinomial distribution with probabilities 𝜋𝑔|𝑘, 𝑔 = 3,4,5,6,9  for the principal 

stratum 𝐺𝑖 . We use the same variable 𝑇  to inverse transform a binomial distribution for an 

individual-level covariate 𝑈𝑖 which will therefore be correlated with the principal stratum 𝐺𝑖. We 

aggregate 𝑈𝑖 to obtain a site-level covariate 𝑈𝑠 for later use. 

 For the treatment assignment status 𝑍𝑖, we use a Bernoulli distribution with a probability 

of 0.5 to generate the two active randomization arms. Thus, given 𝐺𝑖 and 𝑍𝑖, we can obtain the 
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observed treatment received 𝐴𝑖  in the same way as we did in Step 3) of the nonparametric 

simulation setup. 

 To better represent the real world, we generate our potential outcomes 

(𝑌𝑖(1, 𝐴𝑖(1)), 𝑌(2, 𝐴𝑖(2))) for each individual through random effect models. Specifically, for 

the continuous outcomes, we use the formula  

𝑌𝑖(1, 𝐴𝑖(1)) = 𝛼3𝑔3𝑖 + 𝛼4𝑔4𝑖 + 𝛼6𝑔6𝑖 + 𝜆𝑈𝑠 + 𝜖𝑏 + 𝜖𝑤𝑖 

      𝑌𝑖(2, 𝐴𝑖(2)) = 𝑌𝑖(1, 𝐴𝑖(1)) + 𝛽3𝑔3𝑖 + 𝛽4𝑔4𝑖 + 𝛽6𝑔6𝑖 + 𝛾𝑈𝑠 

where 𝑔𝑗𝑖 is an indicator with 𝑔𝑗𝑖 = 1 if individual 𝑖 is in principal stratum 𝑗 and 0 otherwise. 𝜖𝑏 

is generated at the site level and represents the between-site variation whereas 𝜖𝑤𝑖 is an individual-

level random error which is also known as the within-site variation. Both 𝜖𝑏 and 𝜖𝑤𝑖  follow a 

standard normal distribution 𝑁(0,1). 𝑈𝑠 is the site-level covariate that we generated previously. 

Now, it shows clearly that 𝑈𝑠 is a confounding variable that is associated with both the site-level 

principal strata proportions and the potential outcomes.  Similarly, we generate the binary potential 

outcomes from a logistic regression: 

     𝑙𝑜𝑔𝑖𝑡(Pr(𝑌𝑖(1, 𝐴(1)) = 1)) = 𝛼3𝑔3 + 𝛼4𝑔4 + 𝛼6𝑔6 + 𝜆𝑈𝑠 + 𝜖𝑏  

𝑙𝑜𝑔𝑖𝑡(Pr(𝑌𝑖(2, 𝐴(2)) = 1)) =  𝑙𝑜𝑔𝑖𝑡(Pr(𝑌𝑖(1, 𝐴(1)) = 1)) + 𝛽3𝑔3 + 𝛽4𝑔4 + 𝛽6𝑔6 + 𝛾𝑈𝑠 

With the treatment assignment status 𝑍𝑖 and the potential outcomes generated above, the observed 

outcome 𝑌𝑖 will be equal to 𝑌𝑖(𝑧, 𝐴𝑖(𝑧)) if z=1 or 2.  

 After all data are generated, we can use the multiple linear regression to obtain the estimate 

of our causal estimand of interest. As discussed in section 4.3, our estimator may be biased when 

measurement errors and omitted variables exist. We investigate these problems by considering 

three types of estimators: oracle, naïve and bootstrap. The oracle estimator uses the true principal 

strata proportions π3|𝑘, π4|𝑘 and π6|𝑘 to fit the multiple linear regression in equation (4.2). The 
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naïve estimator is obtained by fitting the regression in equation (4.3) using the estimated principal 

strata proportions. We also include a bootstrap estimator whose estimate is the average of the naïve 

estimates from resampling the site-level quantities. We use the estimated ITT effects 𝐼𝑇𝑇̂𝑦|𝑘 as the 

outcome of the multiple linear regression for all three estimators for consistency as measurement 

errors in regressors rather than outcomes are our major concern. For varied site size, we fit both 

the unweighted and weighted regression. Three types of weights are considered: site size, within-

site variation, and complier size per site.  

 

Table 4.2 Summary of the parameter values used to generate the potential outcomes for the 

multisite design approach. 

 

Analysis 

Outcome 

Type 

Parameters 

𝛼3 𝛼4 𝛼6 𝛽3 𝛽4 𝛽6 𝜆 𝛾 

Performance  

Analysis 

Continuous -3 -4 -2 8 -7 6 0 0 

Binary -3 -1 -1 4 -3 1.51 0 0 

Sensitivity  

Analysis 

Continuous -3 -4 -2 8 -7 6 2 1 or -1 

Binary -3 -1 -1 4 -3 1.51 2 1 or -1 

 

 We conduct two analyses for both the continuous outcomes and the binary outcomes. One 

is the performance analysis that evaluates the performance of our estimators when all assumptions 

required for the identification of the causal estimand are met. The other one is the sensitivity 

analysis when Assumption V is violated. We set the true values of CACE to be 6 for the continuous 

case and 0.3 for the binary case. Parameter values that are used for simulating the data are the same 

for the fixed site size and the varied site size. We summarize these values in Table 4.2. For the 

performance analysis, we set 𝜆 = 𝛾 = 0 because in this way no confounding variable 𝑈𝑠 exists 
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and Assumption V is therefore satisfied. For sensitivity analysis, we fix 𝜆 to be 2 but vary the sign 

of 𝛾 as 𝛾 plays a role in the bias formula as in equation (4.7). For each scenario, we repeat our 

simulation 10000 times. 

 

4.4.2 Results 

We discuss the performance and sensitivity of our estimator using the same performance metrics 

that are described in section 3.4.2. We only display the results for the continuous outcomes here. 

Results for the binary outcomes are similar (see Appendix B). For fixed site size, we consider nine 

scenarios based on the combinations of number of sites and site sizes. For varied site size, there 

are twelve scenarios based on the combinations of types of weights (including unweighted) and 

number of sites.  

 

4.4.2.1 Performance Analysis 

Figure 4.1 includes the bias, percent bias, mean standard errors, root mean squared errors, ratios 

of mean standard errors and empirical standard errors, and coverage rates for samples with fixed 

site size. In each panel, the dotted lines represent the nine scenarios. For example, label “s=50, 

n=25” indicates that the scenario has 50 sites and 25 individuals in each site. The top two panels 

of Figure 4.1 show that the oracle estimator is unbiased across all scenarios. This is as expected as 

the OLS estimator is unbiased when there are no omitted variables as well as no measurement 

errors in the regressors. The naïve estimator and the bootstrap estimator are slightly biased due to 

the measurement errors, which can be explained by equation (4.7). As there is no omitted variable 

issue in the performance analysis, the term 𝛑′𝐔𝜸  will not exist. Then, the bias will only be 

associated with the variance of the true principal strata proportions and the variance of the 
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measurement errors. Specifically, the bias will decrease as the variance of the measurement errors 

decreases whereas it will increase as the variance of the regressors decreases. This pattern is 

reflected in our results. In Figure 4.1, we observe that the bias becomes smaller when we increase 

the site size given a fixed number of sites. This is because the estimated principal strata proportions 

will be closer to the true proportions when the site size becomes larger. As a result, the variance 

of the measurement errors will become smaller. We expect an increase in the bias if the number of 

sites increases while the site size is controlled. However, it seems that this pattern is not significant 

especially for larger site sizes. For example, the percent bias looks almost the same when the site 

size is 100, ranging from -0.86% when 𝑠 = 50 to -0.89% when 𝑠 = 200 for the naïve estimator. 

This is reasonable because 50 is a relatively big enough sample size for the linear regression, 

further increasing the sample size will not make a significant difference in reducing the dispersion 

of the true principal strata proportions.   
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Figure 4.1 Performance (top left: bias; top right: percent bias; middle left: mean standard error; 

middle right: root mean squared error; bottom left: standard error ratio; bottom right: coverage) of 

the multisite design estimator across the nine scenarios based on number of sites 𝑠 and site sizes 𝑛 

for the continuous outcome when site size is fixed. For example, label “s=50, n=25” indicates that 

the scenario has 50 sites and 25 individuals in each site. The blue square represents the oracle 

estimator which uses the true principal strata proportions π3|𝑘, π4|𝑘 and π6|𝑘 to fit the multiple 

linear regression. The red circle represents the naïve estimator which uses the estimated principal 

strata proportions 𝜋̂3|𝑘 , 𝜋̂4|𝑘 and 𝜋̂6|𝑘  to fit the multiple linear regression. The green triangle 

represents the bootstrap estimator which is the average of the naïve estimates after resampling the 

site-level quantities.  
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 A clear pattern can be observed for the mean standard errors of the three estimators. 

Namely, the estimators become more precise as the number of sites and the site size increases. One 

interesting finding is that the mean standard errors of the oracle estimator is always bigger than 

that of the naïve or the bootstrap estimator when the number of sites and the site size is fixed. This 

is plausible because the variance of the OLS estimator will be inversely related to the variance of 

the regressors holding everything else constant. As the variability in regressors is minimal when 

estimating the oracle estimator compared to the other two estimators, the mean standard errors of 

the oracle estimator will as a result be the largest among the three estimators within the same 

scenario. The root mean squared errors have a similar pattern as the mean standard errors across 

scenarios. The more sites, the bigger the site size, the smaller the root mean squared errors of the 

estimators. 

 The mean standard errors of the naïve and the bootstrap estimators are close to the standard 

deviation of the estimated CACE as the standard error ratios for these two estimators lie around 

one as shown at the lower left corner of Figure 4.1. On the other hand, the mean standard errors of 

the oracle estimator slightly overestimate the empirical standard errors. This suggests that the mean 

standard errors of the oracle estimator may be a little conservative, which is consistent with the 

implications found for the mean standard errors. The lower right corner of Figure 4.1 shows the 

coverage rates for the three estimators. The oracle estimator has a higher coverage rate that is 

around 96% across the nine scenarios than the other two estimators. Neither the naïve estimator 

nor the bootstrap estimator can provide valid coverage rates for the effect of interest. The coverage 

rates of these two estimators move away from 95% as the number of sites increases given the site 

size, and move towards 95% as the site size increases given the number of sites.  
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 Similar findings for the varied site size are shown in Figure 4.2. As in Figure 4.1, the dotted 

lines represent the twelve scenarios for the varied site size with UN standing for unweighted, SS 

for weighting by the site size, WV for weighting by the within-site variation and COMP for 

weighting by the number of compliers. For every type of weights, the oracle estimator is unbiased 

as expected. There is a slight and insignificant increase in the bias of the naïve estimator and the 

bootstrap estimator when there are more sites within each type of weights. Weighting by the 

within-site variation gives the largest bias among the four types of weights. This is explainable 

because weighting in this way compromises the variability of the estimated principal strata 

proportions and therefore results in larger bias.  

 The mean standard errors and the root mean squared errors of the three estimators for the 

varied site size show the same patterns as for the fixed site size. The mean standard errors of the 

naïve estimator and the bootstrap estimator are always similar to each other within each scenario 

for the same type of weights except when using the within-site variation as weights. In that case, 

the mean standard errors of the naïve estimator are smaller than those of the bootstrap estimator. 

This is also reflected in the standard error ratio panel of Figure 4.2. The smaller mean standard 

errors of the naïve estimator when weighting by the within-site variation results in a severe 

underestimate for the empirical standard errors, leading to coverage rates that are much lower than 

95%. In general, the coverage rates of the oracle estimator are around 95%, however, the coverage 

rates of the naïve estimator and the bootstrap estimator are all below 95% as they are biased due 

to measurement errors. 
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Figure 4.2 Performance (top left: bias; top right: percent bias; middle left: mean standard error; 

middle right: root mean squared error; bottom left: standard error ratio; bottom right: coverage) of 

the multisite design estimator across the twelve scenarios based on types of weights (UN: 

unweighted; SS: weight by site size; WV: weight by within-site variation; COMP: weight by 

number of compliers) and number of sites 𝑠 for the continuous outcome when site size is varied. 

The blue square represents the oracle estimator which uses the true principal strata proportions 

π3|𝑘 , π4|𝑘  and π6|𝑘  to fit the multiple linear regression. The red circle represents the naïve 

estimator which uses the estimated principal strata proportions 𝜋̂3|𝑘 , 𝜋̂4|𝑘 and 𝜋̂6|𝑘  to fit the 

multiple linear regression. The green triangle represents the bootstrap estimator which is the 

average of the naïve estimates after resampling the site-level quantities.  
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4.4.2.2 Sensitivity Analysis 

When there are omitted variables that are associated with the site-specific principal strata 

proportions and the site-specific principal strata ITT effects, Assumption V will be violated. For 

our simulations, we only include one omitted variable 𝑈𝑠 for simplicity. As shown in Equation 

(4.7), the bias will be affected by the product of the covariance between the omitted variable 𝑈𝑠 

and the principal strata proportions 𝝅 and the coefficient of the omitted variable 𝛾. Therefore, as 

our simulations have negative covariance between 𝑈𝑠 and 𝝅 for all scenarios, we consider two 

values for 𝛾 with opposite signs, i.e., 𝛾 = 1 or 𝛾 = −1, to see how our estimators perform when 

there is deviation from the zero correlation assumption. We compare three cases in Table 4.3 for 

the fixed site size and Table 4.4 for the varied site size with C1 referring to the case when 

Assumption V holds (𝜆 = 𝛾 = 0, reference case), C2 referring to the case when 𝜆 = 2  and 𝛾 = 1, 

and C3 referring to the case when 𝜆 = 2 and 𝛾 = −1. The results for the oracle estimator show 

the influence directly from violation of Assumption V. However, the results for the naïve estimator 

and the bootstrap estimator are more practical because they combine the impact of the two most 

frequently occurred situations in the practical setting, i.e., the influence from the omitted variable 

and the measurement errors in estimating the principal strata proportions.  
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Table 4.3 Sensitivity of the multisite design estimator across the nine scenarios based on number 

of sites and site sizes for the continuous outcome when site size is fixed if Assumption V, the zero 

correlation assumption, is violated. The oracle estimator uses the true principal strata proportions 

π3|𝑘, π4|𝑘 and π6|𝑘 to fit the multiple linear regression. The naïve estimator uses the estimated 

principal strata proportions 𝜋̂3|𝑘, 𝜋̂4|𝑘and 𝜋̂6|𝑘 to fit the multiple linear regression. The bootstrap 

estimator is the average of the naïve estimates after resampling the site-level quantities. For each 

of these three estimators, we consider three cases. C1 is the reference case with 𝜆 = 𝛾 = 0 

indicating that Assumption V is satisfied. C2 refers to the case when 𝜆 = 2  and 𝛾 = 1 indicating 

that Assumption V is violated and the coefficient of the unobserved confounding is 𝛾 = 1. C3 

refers to the case when 𝜆 = 2  and 𝛾 = −1  indicating that Assumption V is violated and the 

coefficient of the unobserved confounding is 𝛾 = −1. 

 

 

 

Measure 

# of 

Sites 

Site 

Size 

Oracle Naïve Bootstrap 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

Bias 

(× 100) 

 

50 

25 0.17 -0.69 0.70 -0.18 -3.06 -1.82 -0.17 -3.05 -1.82 

50 -0.12 -0.63 0.62 -0.1 -2.48 -1.30 -0.09 -2.48 -1.30 

100 -0.00 -0.57 0.58 -0.05 -1.85 -0.73 -0.05 -1.85 -0.72 

100 

25 0.45 -0.69 0.70 -0.19 -3.06 -1.82 -0.18 -3.06 -1.82 

50 -0.22 -0.63 0.62 -0.10 -2.47 -1.29 -0.10 -2.47 -1.28 

100 -0.12 -0.58 0.57 -0.05 -1.85 -0.73 -0.05 -1.85 -0.73 

200 

25 -0.16 -0.69 0.71 -0.19 -3.06 -1.82 -0.19 -3.06 -1.82 

50 -0.11 -0.63 0.62 -0.10 -2.47 -1.29 -0.10 -2.47 -1.29 

100 -0.06 -0.57 0.58 -0.05 -1.85 -0.73 -0.05 -1.85 -0.73 

Percent 

Bias 

(%) 

 

50 

25 0.03 -10.7 12.7 -3.0 -47.1 -33.1 -2.9 -47.0 -33.0 

50 -0.02 -9.7 11.3 -1.6 -38.2 -23.6 -1.6 -38.1 -23.6 

100 0.00 -8.8 10.5 -0.9 -28.5 -13.2 -0.8 -28.4 -13.1 

100 

25 0.07 -10.6 12.7 -3.1 -47.1 -33.1 -3.0 -47.1 -33.1 

50 -0.04 -9.7 11.4 -1.7 -38.0 -23.4 -1.6 -38.0 -23.3 

100 -0.02 -8.9 10.4 -0.9 -28.5 -13.3 -0.9 -28.5 -13.3 

200 

25 -0.03 -10.6 12.8 -3.2 -47.1 -33.1 -3.1 -47.1 -33.1 

50 -0.02 -9.7 11.3 -1.7 -38.0 -23.4 -1.7 -38.0 -23.4 

100 -0.01 -8.8 10.5 -0.9 -28.5 -13.3 -0.9 -28.5 -13.3 

Standard 

Error 

 

50 

25 0.46 1.14 1.14 0.30 0.60 0.63 0.29 0.61 0.63 

50 0.37 0.92 0.92 0.26 0.56 0.58 0.25 0.56 0.58 

100 0.29 0.71 0.71 0.22 0.49 0.50 0.21 0.50 0.51 

100 

25 0.32 0.80 0.80 0.21 0.42 0.44 0.20 0.42 0.44 

50 0.26 0.64 0.64 0.18 0.39 0.40 0.18 0.39 0.40 

100 0.21 0.49 0.49 0.15 0.34 0.35 0.15 0.34 0.35 

200 

25 0.23 0.56 0.56 0.15 0.29 0.31 0.14 0.29 0.31 

50 0.18 0.45 0.45 0.13 0.27 0.28 0.12 0.27 0.28 

100 0.14 0.34 0.34 0.11 0.24 0.24 0.11 0.24 0.24 
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Table 4.3 (cont’d) 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Root 

Mean 

Squared 

Error 

 

50 

 

25 0.42 1.32 1.32 0.35 3.12 1.93 0.34 3.11 1.93 

50 0.34 1.12 1.11 0.27 2.54 1.42 0.27 2.54 1.42 

100 0.28 0.92 0.92 0.22 1.92 0.89 0.22 1.91 0.88 

100 

 

25 0.29 1.03 1.04 0.28 3.09 1.87 0.27 3.08 1.87 

50 0.24 0.89 0.89 0.21 2.50 1.35 0.20 2.50 1.35 

100 0.19 0.76 0.75 0.16 1.89 0.81 0.16 1.88 0.81 

200 

 

25 0.21 0.87 0.89 0.24 3.07 1.85 0.24 3.07 1.85 

50 0.17 0.77 0.76 0.16 2.48 1.32 0.16 2.48 1.32 

100 0.14 0.67 0.67 0.12 1.87 0.77 0.12 1.87 0.77 
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Table 4.4 Sensitivity of the multisite design estimator across the twelve scenarios based on types 

of weights (UN: unweighted; SS: weight by site size; WV: weight by within-site variation; COMP: 

weight by number of compliers) and number of sites for the continuous outcome when site size is 

varied if Assumption V, the zero correlation assumption, is violated. The oracle estimator uses the 

true principal strata proportions π3|𝑘, π4|𝑘 and π6|𝑘 to fit the multiple linear regression. The naïve 

estimator uses the estimated principal strata proportions 𝜋̂3|𝑘 , 𝜋̂4|𝑘 and 𝜋̂6|𝑘  to fit the multiple 

linear regression. The bootstrap estimator is the average of the naïve estimates after resampling 

the site-level quantities. For each of these three estimators, we consider three cases. C1 is the 

reference case with 𝜆 = 𝛾 = 0 indicating that Assumption V is satisfied. C2 refers to the case 

when 𝜆 = 2  and 𝛾 = 1  indicating that Assumption V is violated and the coefficient of the 

unobserved confounding is 𝛾 = 1. C3 refers to the case when 𝜆 = 2  and 𝛾 = −1 indicating that 

Assumption V is violated and the coefficient of the unobserved confounding is 𝛾 = −1. 

 

 

 

Measure 

Type  

of  

Weight 

# of  

sites 

Oracle Naïve Bootstrap 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

Bias 

(× 100) 

UN 

50 0.50 -0.63 0.64 -0.10 -2.55 -1.36 -0.10 -2.54 -1.35 

100 0.08 -0.62 0.65 -0.11 -2.56 -1.37 -0.11 -2.55 -1.36 

200 -0.07 -0.64 0.63 -0.11 -2.57 -1.38 -0.11 -2.56 -1.37 

SS 

50 0.25 -0.62 0.63 -0.09 -2.46 -1.28 -0.09 -2.46 -1.28 

100 0.08 -0.62 0.63 -0.10 -2.46 -1.28 -0.10 -2.46 -1.28 

200 -0.03 -0.62 0.63 -0.10 -2.46 -1.28 -0.10 -2.46 -1.28 

WV 

50 0.75 -0.67 0.58 -0.15 -2.57 -1.40 -0.14 -2.56 -1.38 

100 0.04 -0.67 0.59 -0.17 -2.58 -1.40 -0.16 -2.57 -1.40 

200 -0.14 -0.69 0.57 -0.17 -2.59 -1.42 -0.17 -2.59 -1.4 

COMP 

50 0.19 -0.62 0.63 -0.07 -2.48 -1.30 -0.06 -2.48 -1.30 

100 0.11 -0.61 0.63 -0.07 -2.47 -1.30 -0.07 -2.47 -1.30 

200 -0.00 -0.62 0.62 -0.07 -2.48 -1.30 -0.07 -2.48 -1.30 

Percent 

Bias 

(%) 

UN 

50 0.08 -9.7 11.7 -1.7 -39.3 -24.8 -1.6 -39.1 -24.6 

100 0.01 -9.6 11.8 -1.8 -39.4 -24.9 -1.8 -39.3 -24.8 

200 -0.01 -9.8 11.5 -1.8 -39.5 -25.0 -1.8 -39.5 -25.0 

SS 

50 0.04 -9.6 11.4 -1.6 -37.9 -23.3 -1.5 -37.9 -23.3 

100 0.01 -9.5 11.5 -1.6 -37.8 -23.3 -1.6 -37.8 -23.2 

200 0.00 -9.6 11.4 -1.6 -37.9 -23.3 -1.6 -37.9 -23.3 

WV 

50 0.12 -10.4 10.6 -2.5 -39.6 -25.4 -2.3 -39.4 -25.2 

100 0.01 -10.3 10.8 -2.8 -39.7 -25.5 -2.6 -39.6 -25.4 

200 -0.02 -10.6 10.4 -2.8 -39.9 -25.7 -2.8 -39.8 -25.6 

COMP 

50 0.03 -9.5 11.4 -1.1 -38.1 -23.7 -1.0 -38.2 -23.7 

100 0.02 -9.4 11.5 -1.1 -38.1 -23.6 -1.1 -38.1 -23.6 

200 0.00 -9.7 11.3 -1.1 -38.1 -23.7 -1.1 -38.1 -23.7 
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Table 4.4 (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

Standard 

Error 

UN 

50 0.38 0.95 0.95 0.27 0.57 0.59 0.27 0.59 0.61 

100 0.27 0.66 0.66 0.19 0.39 0.41 0.19 0.41 0.42 

200 0.19 0.47 0.47 0.13 0.28 0.29 0.13 0.29 0.30 

SS 

50 0.37 0.92 0.92 0.26 0.56 0.58 0.25 0.57 0.58 

100 0.26 0.64 0.64 0.18 0.39 0.40 0.18 0.39 0.40 

200 0.18 0.45 0.45 0.13 0.27 0.28 0.12 0.27 0.28 

WV 

50 0.35 0.88 0.87 0.26 0.56 0.58 0.29 0.62 0.66 

100 0.24 0.61 0.60 0.18 0.39 0.41 0.21 0.44 0.47 

200 0.17 0.43 0.42 0.13 0.27 0.28 0.15 0.32 0.34 

COMP 

50 0.35 0.94 0.94 0.25 0.57 0.59 0.25 0.57 0.59 

100 0.25 0.65 0.65 0.17 0.39 0.41 0.17 0.40 0.41 

200 0.17 0.46 0.46 0.12 0.28 0.28 0.12 0.28 0.29 

Root 

Mean 

Squared 

Error 

UN 

50 0.37 1.16 1.16 0.29 2.62 1.50 0.29 2.61 1.49 

100 0.26 0.93 0.94 0.22 2.59 1.44 0.22 2.59 1.43 

200 0.18 0.80 0.79 0.17 2.58 1.41 0.17 2.58 1.41 

SS 

50 0.35 1.11 1.11 0.27 2.53 1.41 0.27 2.53 1.41 

100 0.24 0.89 0.90 0.20 2.49 1.34 0.20 2.49 1.34 

200 0.17 0.77 0.77 0.16 2.48 1.31 0.16 2.48 1.31 

WV 

50 0.34 1.15 1.09 0.35 2.66 1.57 0.34 2.64 1.54 

100 0.24 0.93 0.88 0.28 2.62 1.49 0.27 2.62 1.48 

200 0.17 0.82 0.73 0.23 2.61 1.46 0.23 2.61 1.46 

COMP 

50 0.34 1.13 1.13 0.26 2.54 1.43 0.26 2.55 1.43 

100 0.24 0.90 0.92 0.19 2.51 1.36 0.19 2.51 1.36 

200 0.17 0.77 0.78 0.14 2.49 1.33 0.14 2.49 1.33 
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 In Table 4.3 and Table 4.4, each row within a performance measure represents one scenario 

that is described in the previous section. The bias of the oracle estimator is all negative in C2 and 

all positive in C3. This is consistent with equation (4.7)  which becomes E((𝝅̂′𝝅̂)−1𝛑′𝐔𝛄) 

because there are no measurement errors for the oracle estimator. As the covariance is all negative 

in our simulations, the sign of the coefficient of the omitted variable dominates the direction of the 

bias. On the other hand, there are almost no differences on the mean standard errors if we change 

the sign of the coefficient of the omitted variable for the oracle estimator within each scenario for 

the fixed site size. This is also the case for the varied site size except those weighted by the within-

site variation which is reasonable as the variability has been taken into account.  

 When Assumption V is violated, for the naïve estimator and the bootstrap estimator, the 

bias formula in equation (4.7)  show that the bias is related to the difference of the scaled 

covariance between the omitted variable and the principal strata proportions and the scaled 

variance of the measurement errors. The scalars are the coefficient of the omitted variable and the 

population principal strata ITT effects, respectively. Because of this difference, in some 

circumstances the magnitude of the bias of the naïve estimator or the bootstrap estimator is not 

significantly larger than that of the oracle estimator within the same scenario for the same case. 

For example, in Table 4.3, when the number of sites is 50 and the site size is 100, the bias of the 

oracle estimator for C3 is 0.58 whereas the bias of the native estimator is -0.73 whose absolute 

value is not significantly bigger than that of the oracle estimator.  

 The mean standard errors of the naïve estimator and the bootstrap estimator are found to 

be smaller than those of the oracle estimator when there are omitted variables for both the fixed 

and varied site size, an identical finding as in the performance analysis. This is true because there 

is more variability in the estimated principal strata proportions than in the true principal strata 
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proportions for the naïve estimator and the bootstrap estimator, resulting in less variation in the 

distribution of the estimators. For the root mean squared errors, we find a consistent pattern for the 

three estimators across the three cases, that is, the larger the number of sites, the larger the number 

of individuals in each site, the smaller the root mean squared error, the better the estimators.  
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CHAPTER 5 

APPLICATION 

Major depressive disorder (MDD) is a common medical disorder and a serious public health 

concern. More than 300 million people worldwide suffer from depression, corresponding to 4.4% 

of the global population (World Health Organization, 2017). Women are more likely to live with 

depression than men with a prevalence of 5.1% and 3.6%, respectively. The economic burden of 

MDD has increased by 21.5% to $210.5 billion in 2010 compared to that in 2005 (Greenberg et 

al., 2015). As one of the leading causes of non-fatal health loss, depression contributes to 7.5% of 

years lived with disability (YLD) (James et al., 2018). Depression is also a leading cause of suicide 

deaths, costing approximately 800,000 lives every year. 

 To treat major depressive disorder, a variety of antidepressants are available (Frank et al., 

1996). Among these medications, the selective serotonin reuptake inhibitors (SSRIs), serotonin 

norepinephrine reuptake inhibitors (SNRIs), mirtazapine, and bupropion are often taken as the 

first-line treatments because they are safe, more tolerable and acceptable, less costly and have less 

toxicity (Gelenberg et al., 2010). The effectiveness of these antidepressants, between or within 

medication classes, is similar. However, approximately 50% of the depressed patients fail to 

respond to the initial treatments and only about 30% achieve full remission (Fava et al., 2003). 

Lack of remission to the first-line treatments will result in persistent disabilities and impaired 

quality of life. Thus, next-step treatments after initial failure to boost remission rates are often in 

demand.  

 The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial is a large-

scale, multicenter, multistep, real-world clinical trial of patients with nonpsychotic major 

depressive disorder. It aims to provide evidence for the optimal choice of the next-step treatments 
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for those who have an initial failure to the first-line antidepressant. Details of the study design is 

described elsewhere (Rush et al., 2004). In this chapter, we apply our proposed approaches to the 

STAR*D data at level 2 to identify the complier average causal effect (CACE) of treatment options 

when treatment nonadherence exists. Specifically, we focus on the antidepressant medications at 

level 2 for those who did not obtain a satisfactory response from citalopram (CIT), an SSRI 

antidepressant at level 1. Level 2 treatments include augmentation to the previous citalopram or 

switching to a different medication based on their acceptability. For those who chose the 

medication augmentation strategy, they were randomly assigned to receive one of the two 

treatment options: sustained-release bupropion (BUP) or buspirone (BUS). For those who chose 

the medication switching strategy, they were randomly assigned to receive one of the three 

treatment options: sustained-release BUP, sertraline (SER), or extended-release venlafaxine 

(VEN). Among these three switching options, we only consider sustained-release BUP and 

extended-release VEN for comparison in this dissertation because they belong to different 

medication classes from citalopram which may provide new indications. With the study setting, 

we define our estimand of interest, CACE, in terms of its following attributes (ICH E9 working 

group, 2020).  

Treatment. We compare treatment options within the medication augmentation and switching 

strategies separately. For the medication augmentation strategy, the treatments of interest are 

augmenting CIT with BUP (CIT+BUP) and augmenting CIT with BUS (CIT+BUS). For the 

medication switching strategy, the treatments of interest are BUP and VEN. 

Population. Our population of interest consists of those who always adhere to whichever treatment 

they would be assigned regardless of the assignment status, that is, the compliers defined by the 

potential treatment received under the principal stratification framework in Chapter 3.  
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Endpoint. The primary endpoint of interest is the remission of symptoms which is defined as a 

score of seven or less on the 17-item Hamilton Rating Scale for Depression (HAM-D17) at the end 

(12 weeks or longer) of level 2. We also consider secondary endpoints that are based on the HAM-

D17 scores. They are 1) total HAM-D17 scores at the end of level 2 which range from 0 to 52 with 

higher values indicating more severe depression; 2) reduction of HAM-D17 scores, i.e., (HAM-

D17 scores at the beginning of level 2 − HAM-D17 scores at the end of level 2); and 3) response 

which is defined as a 50% or more reduction of HAM-D17 scores at the end of level 2. 

Population-level summary. We use the potential outcome means under each treatment in our 

population of interest as the population-level summaries. 

Intercurrent Event. We are interested in the intercurrent event of treatment nonadherence in this 

study. Specifically, we consider a wide range of reasons for treatment nonadherence which are 

collected by the protocol deviation questionnaire and the study termination questionnaire. The 

reasons include 1) lack of efficacy; 2) unacceptable side effects; 3) committed suicide/suicide 

attempt; 4) developed general medical or surgical condition that required protocol to be stopped; 

5) developed symptoms requiring non-protocol treatment; 6) moved from the area; 7) found 

research too burdensome; 8) patient nonadherence to study procedures; and 9) patient 

nonadherence to study medications.  

 With the above attributes, we can clearly define our causal estimand of interest as the mean 

difference at week 12 or longer between the potential outcomes under each of the two active 

treatments for the principal stratum of compliers when treatment nonadherence exists. The 

corresponding treatment effect is therefore the CACE and we use the corresponding principal 

stratum strategy in the ICH E9 (R1) addendum to address the intercurrent event of treatment 

nonadherence.  
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5.1 Medication Augmentation:  CIT+BUP vs. CIT+BUS 

In STAR*D, randomization was stratified by clinical sites and preference stratum. After the initial 

failure of citalopram at level 1, 565 patients in 38 clinical sites accepted the medication 

augmentation strategy at level 2. Among these patients, 279 were randomly assigned to CIT+BUP 

and 286 were randomly assigned to CIT+BUS. Table 5.1 shows the characteristics of the patients 

at baseline or level 2 entry, all of which are balanced between the two treatment assignment groups 

except the length of illness which is defined as years from first episode to baseline of the study. 

Those assigned to CIT+BUP had a significantly shorter length of illness (15.2 years) than those 

assigned to CIT+BUS (17.7 years, 𝑃 = 0.02). Table 5.2 shows the observed treatment adherence 

by treatment assignment groups. Note that the treatment assignment 𝑍 takes two values with 1 

representing those assigned to CIT+BUP (𝑍 = 1) and 2 representing those assigned to CIT+BUS 

(𝑍 = 2). The treatment receipt 𝐴 takes three values with 1 representing receiving CIT+BUP (𝐴 =

1), 2 representing receiving CIT+BUS (𝐴 = 2) and 0 representing not taking any treatment as 

required.  We observe that 80% of the patients in the CIT+BUP assignment group adhered to what 

was assigned whereas in the CIT+BUS group 73% of the patients adhered to what was assigned. 

None of the patients in either group crossed over to receive treatment from the other group.  
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Table 5.1 Baseline and level 2 entry characteristics of the patients in the medication augmentation 

strategy. 

 

Characteristic 

CIT+BUP 

(N=279) 

CIT+BUS 

(N=286) 

Total 

(N=565) 

Setting  

    Primary care 94 (33.7) 95 (33.2) 189 (33.5) 

    Specialty care 185 (66.3) 191 (66.8) 376 (66.5) 

QIDS-C16 at level 2 entry 11.7±4.1 11.7±4.2 11.7±4.2 

Monthly household income 2287±2600 2366±3320 2327±2983 

Marital status  

    Never married 84 (30.1) 79 (27.7) 163 (28.9) 

    Married or cohabiting 112 (40.1) 117 (41.1) 229 (40.6) 

    Separated or divorced 73 (26.2) 85 (29.8) 158 (28.0) 

    Widowed 10 (3.6) 4 (1.4) 14 (2.5) 

Education   

    Less than high school 33 (11.8) 44 (15.4) 77 (13.7) 

    Less than college 178 (63.8) 183 (64.2) 361 (64.0) 

    College or above 68 (24.4) 58 (20.4) 126 (22.3) 

Employment status  

    Unemployed  111 (39.8) 125 (43.9) 236 (41.9) 

    Employed  160 (57.3) 147 (51.6) 307 (54.4) 

    Retired  8 (2.9) 13 (4.5) 21 (3.7) 

Insurance  

    Private insurance 130 (48.1) 142 (51.6) 272 (49.9) 

    Public insurance 35 (13.0) 36 (13.1) 71 (13.0) 

    No insurance 105 (38.9) 97 (35.3) 202 (37.1) 

Sex  

    Male    107 (38.4) 126 (44.1) 233 (41.2) 

    Female  172 (61.6) 160 (55.9) 332 (58.8) 

Age 41.3±12.8 42.0±12.6 41.6±12.7 

Race  

    White 221 (79.2) 220 (76.9) 441 (78.1) 

    Black/African American 48 (17.2) 47 (16.4) 95 (16.8) 

    Other 10 (3.6) 19 (6.7) 29 (5.1) 

Hispanic  

    No 243 (87.1) 245 (85.7) 488 (86.4) 

    Yes 36 (12.9) 41 (14.3) 77 (13.6) 

CIRS score 4.5±4.1 4.9±4.0 4.7±4.0 

Age at first MDE 26.1±14.4 24.3±13.6 25.2±14.0 

Length of illness 15.2±12.6 17.7±13.6 16.5±13.2 

Family history of MDD  

    No 131 (48.0) 138 (48.6) 269 (48.3) 

    Yes 142 (52.0) 146 (51.4) 288 (51.7) 
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Table 5.1 (cont’d) 

 

Suicide history  

    No 266 (97.4) 274 (96.8) 540 (97.1) 

    Yes 7 (2.6) 9 (3.2) 16 (2.9) 

SF-12 score  

    Physical 48.3±12.5 48.1±12.0 48.2±12.2 

    Mental  25.0±8.2 26.2±7.7 25.6±8.0 

WSAS score 25.8±8.1 25.6±9.1 25.7±8.6 

QLESQ score 37.1±12.9 39.3±14.2 38.2±13.6 
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5.1.1 Assessment of Assumptions 

In this section, we discuss the validity of the key assumptions used to identify CACE, that is, 

Assumptions I, II, and III for the nonparametric approach and Assumption V for the multisite 

design approach. Specifically, we evaluate whether these assumptions can be falsified for the 

augmentation strategy. For the nonparametric approach, it is straightforward that Assumption II, 

the monotonicity assumption, is satisfied because no crossover occurs in our data as shown in 

Table 5.2.  

 

Table 5.2 Observed treatment adherence in the medication augmentation strategy. 

 

 
Treatment Received (A) 

None 

(A = 0) 

CIT+BUP 

(A = 1) 

CIT+BUS 

(A = 2) 

Treatment Assigned (Z) 

CIT+BUP (Z = 1) 56 (20) 223 (80) 0 (0) 

CIT+BUS (Z = 2) 78 (27) 0 (0) 208 (73) 

 

If the treatment assignment has an effect on the outcomes of interest that is not through the 

treatment received, Assumption I, the exclusion restriction assumption will be violated. However, 

the exclusion restriction assumption can never be verified from the data because the potential 

outcomes cannot be observed at the same time. It can, on the other hand, be testable using available 

data (Angrist et al., 1996). To better represent the real world, STAR*D was designed not to blind 

the patients and the physicians who administered the drugs, but only blind the assessors  (Sinyor 

et al., 2010). It is likely that knowing the assigned treatment will have an effect on “experiencing” 

side effects and subsequently violate the exclusion restriction assumption. Table 5.3 shows the 

side effects in level 2 in the medication augmentation strategy. No significant difference was found 
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between those assigned to CIT+BUP and those assigned to CIT+BUS in terms of maximal 

frequency (𝜒2 = 0.87, 𝑃 = 0.99), maximal intensity (𝜒2 = 2.04, 𝑃 = 0.92), or maximal burden 

of side effects ( 𝜒2 = 12.0, 𝑃 = 0.06 ). Therefore, our data do not support the violation of 

Assumption I.  
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Table 5.3 Side effects in level 2 in the medication augmentation strategy. 

 

Characteristic 

CIT+BUP 

(N=279) 

CIT+BUS 

(N=286) 

Total 

(N=565) 

Maximal frequency of side effects in level 2  

    No side effects 55 (19.8) 59 (20.7) 114 (20.2) 

    10% of the time 44 (15.8) 47 (16.5) 91 (16.2) 

    25% of the time 47 (16.9) 49 (17.2) 96 (17.0) 

    50% of the time 47 (16.9) 52 (18.3) 99 (17.6) 

    75% of the time 31 (11.2) 28 (9.8) 59 (10.5) 

    90% of the time 19 (6.8) 16 (5.6) 35 (6.2) 

    All the time 35 (12.6) 35 (11.9) 69 (12.3) 

Maximal intensity of side effects in level 2  

    No side effects 55 (19.8) 58 (20.4) 113 (20.0) 

    Trivial 27 (9.7) 29 (10.2) 56 (10.0) 

    Mild 55 (19.8) 52 (18.3) 107 (19.0) 

    Moderate 61 (22.0) 60 (21.0) 121 (21.5) 

    Marked 44 (15.8) 52 (18.3) 96 (17.0) 

    Severe 27 (9.7) 29 (10.2) 56 (10.0) 

    Intolerable 9 (3.2) 5 (1.7) 14 (2.5) 

Maximal burden of side effects in level 2  

    No side effects 63 (22.7) 75 (26.3) 138 (24.5) 

    Minimal impairment 62 (22.3) 56 (19.7) 118 (21.0) 

    Mild impairment 65 (23.4) 52 (18.2) 117 (20.8) 

    Moderate impairment 50 (18.0) 55 (19.3) 105 (18.6) 

    Marked impairment 24 (8.6) 33 (11.6) 57 (10.1) 

    Severe impairment 8 (2.9) 14 (4.9) 22 (3.9) 

    Unable to function 6 (2.1) 0 (0.0) 6 (1.1) 
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In addition to satisfying Assumption II, the fact that the treatments are not crossed over in the 

medication augmentation strategy also provides evidence of the nonexistence of always-1-takers 

(strata 5) and always-2-takers (strata 9). Given this fact and that Assumption I is likely to hold, the 

population structure would become Table 5.4 if Assumption III, the no partial-compliers 

assumption is also satisfied for the nonparametric approach. We can therefore falsify Assumption 

III using the observed data.  

 

Table 5.4 Population structure when Assumptions I (exclusion restriction), Assumption II 

(monotonicity), and Assumption III (no partial-compliers) are satisfied for the nonparametric 

approach. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0 

1. Never-taker 

(NT) 

π1 

  

A(1)=1   

6. Complier 

(COMP) 

π6 

A(1)=2    

 

Specifically, following the discussion in section 4.2, we can estimate the proportion of never-takers 

𝜋1 in two ways. One is using the probability of those who were assigned to CIT+BUP but did not 

take it, i.e., Pr(𝐴 = 0|𝑍 = 1) for 𝜋1  and the other is using the probability of those who were 

assigned to CIT+BUS but did not take it, i.e., Pr(𝐴 = 0|𝑍 = 2) . Similarly, we can use the 

probability of those who were assigned to CIT+BUP and took it, i.e., Pr(𝐴 = 1|𝑍 = 1) or the 

probability of those who were assigned to CIT+BUS and took it, i.e., Pr(𝐴 = 2|𝑍 = 2) to estimate 
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the proportion of compliers 𝜋6 . If Assumption III holds, we expect that the two estimated 

probabilities for 𝜋1 to be equal and that the two estimated probabilities for 𝜋6 to be equal. That is, 

𝜋̂1 = Pr̂(𝐴 = 0|𝑍 = 1) = Pr̂(𝐴 = 0|𝑍 = 2) 

                                          𝜋̂6 = Pr̂(𝐴 = 1|𝑍 = 1) = Pr̂(𝐴 = 2|𝑍 = 2)                              (5.1) 

However, as shown in Table 5.2, the probability  Pr̂(𝐴 = 0|𝑍 = 1) = 0.2 differs significantly 

from the probability Pr̂(𝐴 = 0|𝑍 = 2) = 0.27 , and the probability Pr̂(𝐴 = 1|𝑍 = 1) = 0.8 

differs significantly from the probability Pr̂(𝐴 = 2|𝑍 = 2) = 0.73  ( 𝑧 =  −2.01, 𝑃 = 0.04 ). 

Therefore, there is a possibility that Assumption III is violated. We will give further discussions 

later in this chapter.  

 

Table 5.5 Population structure when Assumptions I (exclusion restriction), Assumption II 

(monotonicity), and IV (no never-takers) are satisfied for the multisite design approach. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0   

3. Partial-2-complier 

(P2C) 

π3 

A(1)=1 

4. Partial-1-complier 

(P1C) 

π4 

 

6. Complier 

(COMP) 

π6 

A(1)=2    

 

 For the multisite design approach, the population structure becomes Table 5.5 under 

Assumptions I, II, and IV in the medication augmentation strategy. We only evaluate Assumption 

V, the zero correlation assumption as it is the key to this approach. Specifically, Assumption V 

can be violated if there are site-level covariates that correlate to both the site-specific principal 
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strata proportions 𝜋3|𝑘, 𝜋4|𝑘, 𝜋6|𝑘 and the site-level ITT effects 𝐼𝑇𝑇𝑦|𝑘 for 𝑘 = 1, 2, … , 38. As we 

cannot observe 𝜋3|𝑘, 𝜋4|𝑘, 𝜋6|𝑘 and 𝐼𝑇𝑇𝑦|𝑘 directly, we will use the estimated quantities 𝜋̂3|𝑘, 𝜋̂4|𝑘, 

𝜋̂6|𝑘, and 𝐼𝑇𝑇̂𝑦|𝑘 instead. The site-level variable of clinical setting which indicates whether a site 

provides primary care or specialty care could be one such site-level covariate. Patients in the 

specialty care setting might be more compliant to their treatment and therefore have a larger 

proportion of compliers. However, our data do not provide evidence of association between 

clinical setting and 𝜋̂3|𝑘  (𝑡 = 0.7, 𝑃 = 0.49), 𝜋̂4|𝑘 (𝑡 = −0.18, 𝑃 = 0.86), 𝜋̂6|𝑘  (𝑡 = −0.29, 𝑃 =

0.77). We also consider aggregated variables from the individual-level data as the potential 

confounders including site-specific proportion of females, proportion of African Americans, 

average age, proportion of the unemployed, average household income, average years of schooling, 

proportion of married individuals, proportion of those with a family history with MDD, average 

physical health, average mental health, average quality of life, and average baseline medical 

conditions.  
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Figure 5.1 Linear regressions of site-specific estimated principal strata proportions 𝜋̂3|𝑘, 𝜋̂4|𝑘, 𝜋̂6|𝑘 

on the site-level aggregated covariates in the medication augmentation strategy.  
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Figure 5.1 shows the linear regressions of the estimated principal strata proportions 𝜋̂3|𝑘, 𝜋̂4|𝑘, 

𝜋̂6|𝑘 on each of the above aggregated variables. No significant association has been found for these 

covariates except the proportion of African Americans ( 𝜋̂3|𝑘: 𝑡 = 4.98, 𝑃 < 0.001; 𝜋̂4|𝑘: 𝑡 =

0.2, 𝑃 = 0.85; 𝜋̂6|𝑘: 𝑡 = −2.8, 𝑃 = 0.008). We further evaluate the association between the site-

level 𝐼𝑇𝑇̂𝑦|𝑘 of the four endpoints and proportion of African Americans through linear regressions 

and no significant association has been found for any of the endpoints. Therefore, our data seem 

to support the plausibility of Assumption V.  

 

5.1.2 Analysis 

Our primary and secondary endpoints are all based on the HAM-D17 scores at the end of level 2 

which have some missing data. Table 5.6 summarizes the reasons for missingness in the 

medication augmentation strategy. Overall, 61.3% of the patients missed the HAM-D17 scores due 

to loss to follow up or withdrawn consent. 19.1% of the patients are due to treatment nonadherence. 

32 (18.5%) patients exited level 2 before week 12. Even though the HAM-D17 scores of the last 

group were collected, we ignore these scores and treat them as missing because otherwise it will 

misalign with our causal estimand of interest that targets endpoints at week 12 or longer. We name 

the reason of this type of missingness as “inadequate stay in level 2”. There were also 2 (1.1%) 

patients who missed the HAM-D17 scores with no reasons.  
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Table 5.6 Reasons for missing HAM-D17 scores in the medication augmentation strategy. 

 

Reasons for missing HAM-D17 scores 

CIT+BUP 

(N=85) 

CIT+BUS 

(N=88) 

Total 

(N=173) 

Lost to follow up/Withdrew consent  59 (69.4) 47 (53.4) 106 (61.3) 

Inadequate stay in level 2 10 (11.8) 22 (25.0) 32 (18.5) 

Treatment nonadherence 15 (17.6) 18 (20.5) 33 (19.1) 

Other 1 (1.2) 1 (1.1) 2 (1.1) 

 

 To deal with missingness, as suggested in the National Research Council (NRC) report, we 

chose the most commonly used mixed effects model repeated measures (MMRM) analysis which 

assumes the missing endpoints are missing at random (MAR) as our main analysis following the 

framework in Figure 1 of the ICH E9 (R1) addendum. (National Research Council, 2010; ICH E9 

working group, 2020) We included age, race, duration of level 2 treatment, and the 16-item Quick 

Inventory of Depressive Symptomatology-Clinician-Rated (QIDS-C16) scores at the beginning of 

level 2 in the MMRM analysis because these covariates differed significantly between those with 

and without missing endpoints. Next, we applied our proposed approaches within the MMRM 

analysis. Specifically, we estimated the potential outcome 𝑌𝑖(1, 𝐴(1)) for each patient in the 

sample by fitting a random effect model using patients who were randomly assigned to 𝑍 = 1 only. 

Then, we obtained 𝐸(𝑌𝑖(1, 𝐴(1)) by taking average of the fitted values. Similarly, we estimated 

𝐸(𝑌𝑖(2, 𝐴(2)) by taking average of the fitted values from a separate random effect model using 

patients who were randomly assigned to 𝑍 = 2 only. The marginal ITT effects of 𝑍 on 𝑌 for the 

nonparametric approach were calculated by subtracting the estimated 𝐸(𝑌𝑖(1, 𝐴(1)) from the 

estimated 𝐸(𝑌𝑖(2, 𝐴(2)). For the multisite design approach, we obtained the site-level marginal 

ITT effects of 𝑍 on 𝑌 by repeating the above steps for each site. We estimated the ITT effects of 

𝑍 on 𝐴 from the average values 𝐴 for each value of 𝑍 for the nonparametric approach and the site-
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specific principal strata proportions from the observed proportions of 𝐴 given 𝑍 for the multisite 

design approach. We bootstrapped 500 times to obtain the standard errors of our estimates. 

 The main analysis has the potential to overestimate the missing endpoints because the 

underlying MAR mechanism assumes that the missing endpoints and non-missing endpoints 

follow the same distribution. For placebo-controlled trials, overestimation of the missing endpoints 

will often result in exaggerated treatment effects (Mehrotra, 2019). To address this problem, 

Mehrotra et al. (2017) proposed an approach that was less in favor of the treatment group for the 

placebo-controlled trials and therefore provided an estimator that was less likely towards the 

direction of treatment efficacy. Their basic idea was to use the estimated overall mean of the 

placebo group from MMRM as the mean of the dropouts in the treatment group. Subsequently, 

they estimated the overall mean of the treatment group as a weighted sum of the estimated mean 

of the completers from MMRM and the estimated mean of the dropouts. The weights are the 

proportions of completers and dropouts in the treatment group respectively.  

 To evaluate the robustness of our estimators from the main analysis, we extend the 

approach in Mehrotra et al. (2017) to our setting with two active treatments and conduct three 

sensitivity analyses. Specifically, let 𝜇̂1 be the estimated overall mean in the CIT+BUP group 

obtained from MMRM discussed above, 𝜇̂2 be the estimated overall mean from MMRM in the 

CIT+BUS group, 𝑝1,𝑚𝑖𝑠𝑠 be the proportion of missing endpoints in the CIT+BUP group, 𝑝2,𝑚𝑖𝑠𝑠 

be the proportion of missing endpoints in the CIT+BUS group, and 𝜏̂𝑗 be the estimated ITT effect 

of 𝑍  on 𝑌  for sensitivity analysis 𝑗, 𝑗 = 1, 2, 3 . Sensitivity analysis 1 uses CIT+BUP as the 

reference group and re-estimates the overall mean of the CIT+BUS group, that is, 

                                                𝜇̂2,𝑛𝑒𝑤 = (1 − 𝑝2,𝑚𝑖𝑠𝑠)𝜇̂2 + 𝑝2,𝑚𝑖𝑠𝑠𝜇̂1                                   (5.2) 

𝜏̂1 = 𝜇̂2,𝑛𝑒𝑤 − 𝜇̂1 = (1 − 𝑝2,𝑚𝑖𝑠𝑠)(𝜇̂2 − 𝜇̂1) 
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Similarly, sensitivity analysis 2 uses CIT+BUS as the reference group and re-estimates the overall 

mean of the CIT+BUP group, that is, 

                                                 𝜇̂1,𝑛𝑒𝑤 = (1 − 𝑝1,𝑚𝑖𝑠𝑠)𝜇̂1 + 𝑝1,𝑚𝑖𝑠𝑠𝜇̂2                                   (5.3) 

𝜏̂2 = 𝜇̂2 − 𝜇̂1,𝑛𝑒𝑤 = (1 − 𝑝1,𝑚𝑖𝑠𝑠)(𝜇̂2 − 𝜇̂1) 

Sensitivity analysis 3 cross-references one group for the other and re-estimates the overall means 

for both groups, that is, 

                                                𝜇̂1,𝑛𝑒𝑤 = (1 − 𝑝1,𝑚𝑖𝑠𝑠)𝜇̂1 + 𝑝1,𝑚𝑖𝑠𝑠𝜇̂2                                    (5.4) 

𝜇̂2,𝑛𝑒𝑤 = (1 − 𝑝2,𝑚𝑖𝑠𝑠)𝜇̂2 + 𝑝2,𝑚𝑖𝑠𝑠𝜇̂1 

𝜏̂3 = 𝜇̂2,𝑛𝑒𝑤 − 𝜇̂1,𝑛𝑒𝑤 = (1 − 𝑝1,𝑚𝑖𝑠𝑠 − 𝑝2,𝑚𝑖𝑠𝑠)(𝜇̂2 − 𝜇̂1) 

Note that 𝜇̂2 − 𝜇̂1 is the estimated ITT effect of 𝑍 on 𝑌 for the main analysis. 

 

5.1.3 Results 

Figure 5.2 shows the estimated CACEs and their 95% confidence intervals for the primary 

endpoint of remission and the secondary endpoints of total HAM-D17 scores, reduction of HAM-

D17 scores, and response. In each panel, the solid horizontal line represents the null CACE. The 

dashed vertical line separates the nonparametric estimates on the left-hand side from the multisite 

design estimates on the right-hand side. For the multisite design approach, we list the results with 

different types of weights. For remission, all of the estimated CACEs are around zero and the 95% 

confidence intervals include zero; thus no significant differences of the two augmented 

medications are found in the main analysis and the sensitivity analyses. This aligns with existing 

findings of similar remission rates for these two groups although the target populations are not the 

same (Trivedi et al., 2006). Evidently, either augmenting CIT with BUP or augmenting CIT with 

BUS in the medication augmentation strategy is no better than the other one on remission.  
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Figure 5.2 Estimated complier average causal effects (CACEs) and their 95% confidence intervals 

for the primary endpoint and secondary endpoints in the medication augmentation strategy. In each 

panel, the horizontal solid line represents the null. The dashed vertical line separates the 

nonparametric estimates on the left-hand side from the multisite design estimates on the right-hand 

side. The blue square represents main analysis. The green circle represents sensitivity analysis 1. 

The red triangle represents sensitivity analysis 2. The orange diamond represents sensitivity 

analysis 3.  
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 The nonparametric approach provides significant estimates of CACE on the total HAM-

D17 scores at the end of level 2 as shown in the upper right panel of Figure 5.2. As larger HAM-

D17 scores indicate greater severity of depression, the positive estimated CACEs imply that the 

symptoms of those augmenting CIT with BUP are less severe at the end of level 2 than those 

augmenting CIT with BUS. This is also true for the multisite design approach, although no 

evidence of statistical significance is found except in sensitivity analysis 3 if unweighted or 

weighted by within-site variation. Given the definition of the reduction of HAM-D17 scores in the 

previous section, we are confident that a greater reduction of symptoms occurs in those augmenting 

CIT with BUP than those augmenting CIT with BUS because of the negative estimated CACEs 

across all analyses which is shown in the lower left panel of Figure 5.2. Besides, the multisite 

design approach also shows that the estimated CACEs are significant except in the main analysis 

if unweighted or weighted by site size. The estimated CACEs on response are significant in both 

the nonparametric approach and multisite design approach. In other words, the negative estimated 

CACEs indicate that those augmenting CIT with BUP have significantly higher response rates than 

those augmenting CIT with BUS. 

 Our findings in the main analysis are robust and can be justified from the three sensitivity 

analyses. In addition, Figure 5.2 also shows that the absolute values of the estimated CACEs in 

the main analysis are the largest and that those in sensitivity analysis 3 are the smallest on any 

endpoint in the nonparametric approach. This is as expected because the nonparametric estimates 

are ratios of the estimated ITT effects of 𝑍 on 𝑌 and ITT effects of 𝑍 on 𝐴, and the estimated ITT 

effects of 𝑍 on 𝑌 in sensitivity analyses are a portion of the estimated ITT effects of 𝑍 on 𝑌 in the 

main analysis as shown in equations (5.2), (5.3), or (5.4). The standard errors in the main analysis 

are always larger than those in sensitivity analysis 3 in both approaches. This is reasonable because 
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in sensitivity analysis 3 the estimated mean of the endpoints in either group is a mixture of the 

non-missing endpoints from both treatment groups, which could reduce the variations. The 

estimated CACEs of the reduction of HAM-D17 scores in the multisite design approach if weighted 

by within-site variation may look odd. This is because extreme weight is placed on one particular 

site whose proportion of missingness in treatment assignment group 1 (𝑍 = 1) happen to be zero. 

Therefore, the estimated ITT effects of 𝑍 on 𝑌 in sensitivity analysis 2 are the same as the main 

analysis, and the absolute values of the estimated ITT effects of 𝑍 on 𝑌 in the main analysis and 

sensitivity analysis 2 are larger than those in sensitivity analysis 1 and sensitivity analysis 3. 

 

5.2 Medication Switching: BUP vs. VEN 

For the 727 patients who failed to remit from citalopram and who accepted the medication 

switching strategy, 239 were randomly assigned to sustained-release bupropion (BUP), 238 were 

randomly assigned to sertraline (SER), and 250 were randomly assigned to extended-release 

venlafaxine (VEN). As we aim to find the optimal second-step treatment and sertraline falls into 

the same medication class SSRI as citalopram, we decided to only compare BUP and VEN for our 

subsequent analysis. As a result, our final sample contains 489 patients in 38 clinical sites. Table 

5.7 shows the characteristics of the patients at baseline or level 2 entry in the medication switching 

strategy.  
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Table 5.7 Baseline and level 2 entry characteristics of the patients in the medication switching 

strategy. 

 

Characteristic 

BUP 

(N=239) 

VEN 

(N=250) 

Total 

(N=489) 

Setting  

    Primary care 94 (39.3) 96 (38.4) 190 (38.9) 

    Specialty care 145 (60.7) 154 (61.6) 299 (61.1) 

QIDS-C16 at level 2 entry 14.1±4.6 14.1±4.6 14.1±4.6 

Monthly household income 2139±2737 2077±2258 2108±2508 

Marital status  

    Never married 69 (28.9) 63 (25.2) 132 (27.0) 

    Married or cohabiting 89 (37.2) 104 (41.6) 193 (39.5) 

    Separated or divorced 69 (28.9) 72 (28.8) 141 (28.8) 

    Widowed 12 (5.0) 11 (4.4) 23 (4.7) 

Education   

    Less than high school 25 (10.5) 27 (10.8) 52 (10.6) 

    Less than college 157 (65.7) 165 (66.0) 322 (65.9) 

    College or above 57 (23.8) 58 (23.2) 115 (23.5) 

Employment status  

    Unemployed  90 (37.8) 100 (40.0) 190 (38.9) 

    Employed  132 (55.5) 138 (55.2) 270 (55.3) 

    Retired  16 (6.7) 12 (4.8) 28 (5.8) 

Insurance  

    Private insurance 106 (44.5) 113 (46.9) 219 (45.7) 

    Public insurance 45 (18.9) 33 (13.7) 78 (16.3) 

    No insurance 87 (36.6) 95 (39.4) 182 (38.0) 

Sex  

    Male    103 (43.1) 90 (36.0) 193 (39.5) 

    Female  136 (56.9) 160 (64.0) 296 (60.5) 

Age 42.4±12.9 41.6±12.7 42.0±12.8 

Race  

    White 179 (74.9) 186 (74.4) 365 (74.6) 

    Black/African American 47 (19.7) 42 (16.8) 89 (18.2) 

    Other 13 (5.4) 22 (8.8) 35 (7.2) 

Hispanic  

    No 216 (90.4) 221 (88.4) 437 (89.4) 

    Yes 23 (9.6) 29 (11.6) 52 (10.6) 

CIRS score 5.1±4.2 5.2±4.1 5.2±4.2 

Age at first MDE 25.7±14.6 24.4±13.8 25.0±14.2 

Length of illness 16.6±13.6 17.3±13.6 17.0±13.6 

Family history of MDD  

    No 115 (48.5) 112 (45.7) 227 (47.1) 

    Yes 122 (51.5) 133 (54.3) 255 (52.9) 
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Table 5.7 (cont’d) 

 

Suicide history  

    No 226 (95.4) 237 (96.7) 463 (96.1) 

    Yes 11 (4.6) 8 (3.3) 19 (3.9) 

SF-12 score  

    Physical 46.7±12.4 47.1±12.3 46.9±12.3 

    Mental  25.8±8.5 26.0±7.7 25.9±8.1 

WSAS score 25.2±8.9 25.3±8.6 25.2±8.7 

QLESQ score 39.2±15.7 38.4±15.4 38.8±15.5 
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None of these characteristics are significantly different between the two treatment assignment 

groups. Table 5.8 shows the observed treatment adherence by treatment assignment groups for 

patients who accepted the medication switching strategy. For those assigned to BUP (𝑍 = 1), 33% 

did not take the treatment as required (𝐴 = 0) and 67% adhered to the treatment (𝐴 = 1). For those 

assigned to VEN (𝑍 = 2), 27% did not take the treatment as required (𝐴 = 0) and 73% adhered to 

the treatment (𝐴 = 2). Again, given the STAR*D design, none of the patients in each treatment 

assignment group crossed over to obtain the treatment from the other group.  

 

Table 5.8 Observed treatment adherence in the medication switching strategy. 

 

 
Treatment Received (A) 

None 

(A = 0) 

BUP 

(A = 1) 

VEN 

(A = 2) 

Treatment Assigned (Z) 

BUP (Z = 1) 79 (33) 160 (67) 0 (0) 

VEN (Z = 2) 67 (27) 0 (0) 183 (73) 

 

5.2.1 Assessment of Assumptions 

We examine the validity of key assumptions in identifying CACE for the medication switching 

strategy in this section. For the nonparametric approach, we test whether treatment assignment can 

affect the outcomes through side effects. Table 5.9 shows the side effects in level 2 in the 

medication switching strategy. No significant difference was found between those assigned to BUP 

and those assigned to VEN in terms of maximal frequency (𝜒2 = 11.2, 𝑃 = 0.08), maximal 

intensity (𝜒2 = 7.74, 𝑃 = 0.26), or maximal burden of side effects (𝜒2 = 8.5, 𝑃 = 0.2). Therefore, 

Assumption I cannot be falsified. Due to the design and criteria of STAR*D, Assumption II will 

hold directly as no crossover happens. Given Assumption I and II, if Assumption III holds, two 
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principal strata, which are the never-takers and the compliers, are left as shown in Table 5.4. We 

can then test Assumption III, the no partial-compliers assumption as we did in section 5.1.1. 

Specifically, we expect that the proportion of those assigned to BUP but did not take it did not 

differ significantly from the proportion of those assigned to VEN but did not take it and that the 

proportion of those assigned to BUP and took it did not differ significantly from the proportion of 

those assigned to VEN and took it. Even though Pr(𝐴 = 0|𝑍 = 1) = 0.33 is not identical to 

Pr(𝐴 = 0|𝑍 = 2) = 0.27, and Pr(𝐴 = 1|𝑍 = 1) = 0.67 is not identical to Pr(𝐴 = 2|𝑍 = 2) =

0.73 , these differences are not significant ( 𝑧 = 1.51, 𝑃 = 0.13 ). Therefore, we believe that 

Assumption III is likely satisfied.  
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Table 5.9 Side effects in level 2 in the medication switching strategy. 

 

 

 

 

 
 

Characteristic 

BUP 

(N=239) 

VEN 

(N=250) 

Total 

(N=489) 

Maximal frequency of side effects in level 2  

    No side effects 34 (14.2) 17 (6.8) 51 (10.4) 

    10% of the time 10 (4.2) 15 (6.0) 25 (5.1) 

    25% of the time 21 (8.8) 35 (14.0) 56 (11.4) 

    50% of the time 43 (18.0) 38 (15.2) 81 (16.6) 

    75% of the time 39 (16.3) 40 (16.0) 79 (16.2) 

    90% of the time 29 (12.1) 31 (12.4) 60 (12.3) 

    All the time 63 (26.4) 74 (29.6) 137 (28.0) 

Maximal intensity of side effects in level 2  

    No side effects 31 (13.0) 18 (7.2) 49 (10.0) 

    Trivial 5 (2.1) 7 (2.8) 12 (2.5) 

    Mild 21 (8.8) 31 (12.4) 52 (10.6) 

    Moderate 38 (15.9) 42 (16.8) 80 (16.4) 

    Marked 61 (25.5) 56 (22.4) 117 (23.9) 

    Severe 46 (19.2) 60 (24.0) 106 (21.7) 

    Intolerable 37 (15.5) 36 (14.4) 73 (14.9) 

Maximal burden of side effects in level 2  

    No side effects 34 (14.2) 25 (10.0) 59 (12.1) 

    Minimal impairment 27 (11.3) 16 (6.4) 43 (8.8) 

    Mild impairment 28 (11.7) 39 (15.6) 67 (13.7) 

    Moderate impairment 47 (19.7) 56 (22.4) 103 (21.0) 

    Marked impairment 50 (20.9) 64 (25.6) 114 (23.3) 

    Severe impairment 33 (13.8) 33 (13.2) 66 (13.5) 

    Unable to function 20 (8.4) 17 (6.8) 37 (7.6) 
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 We test Assumption V for the multisite design approach using the same set of site-level 

covariates as in section 5.1.1. The site-level covariate of clinical setting is not significantly 

associated with the site-specific estimated principal strata proportions 𝜋̂3|𝑘 (𝑡 = −1.08, 𝑃 = 0.29), 

𝜋̂4|𝑘 (𝑡 = −0.87, 𝑃 = 0.39), 𝜋̂6|𝑘 (𝑡 = 0.95, 𝑃 = 0.35). Figure 5.3 shows the linear regression of 

the estimated principal strata proportions 𝜋̂3|𝑘, 𝜋̂4|𝑘, 𝜋̂6|𝑘 on each of the aggregated variables. No 

significant association has been found for these covariates except the proportion of African 

Americans ( 𝜋̂3|𝑘: 𝑡 = 0.69, 𝑃 = 0.5; 𝜋̂4|𝑘: 𝑡 = 2.1, 𝑃 = 0.04; 𝜋̂6|𝑘: 𝑡 = −2.0, 𝑃 = 0.05 ), the 

proportion of family history with MDD ( 𝜋̂3|𝑘: 𝑡 = 2.92, 𝑃 = 0.006; 𝜋̂4|𝑘: 𝑡 = −0.19, 𝑃 =

0.85; 𝜋̂6|𝑘: 𝑡 = −1.37, 𝑃 = 0.18 ), and the mean quality of life ( 𝜋̂3|𝑘: 𝑡 = −2.62, 𝑃 =

0.01; 𝜋̂4|𝑘: 𝑡 = −2.68, 𝑃 = 0.01; 𝜋̂6|𝑘: 𝑡 = 2.9, 𝑃 = 0.006). We further evaluate the association 

between the site-level 𝐼𝑇𝑇̂𝑦|𝑘  of the four endpoints and these three covariates through linear 

regressions and no significant association has been found for any of the endpoints. Therefore, 

neither the site-level variable of clinical setting nor the various aggregated variables confound the 

associations between the estimated site-specific principal strata proportions and the estimated site-

level ITT effects. We cannot falsify Assumption V using our data.  
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Figure 5.3 Linear regressions of site-specific estimated principal strata proportions 𝜋̂3|𝑘, 𝜋̂4|𝑘, 𝜋̂6|𝑘 

on the site-level aggregated covariates in the medication switching strategy. 
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5.2.2 Results 

In the medication switching strategy, 186 out of 489 patients who were either randomly assigned 

to BUP or VEN missed their HAM-D17 scores. Out of these patients, 56.5% are due to loss to 

follow up or withdrawn consent and 20.4% are due to inadequate stay in level 2, as shown in Table 

5.10. 39 (21.0%) patients missed their endpoints due to treatment nonadherence. There were 4 

(2.1%) patients whose HAM-D17 scores were missing with no reasons reported.  

 

Table 5.10 Reasons for missing HAM-D17 scores in the medication switching strategy. 

 

Reasons for missing HAM-D17 scores 

BUP 

(N=94) 

VEN 

(N=92) 

Total 

(N=186) 

Lost to follow up/Withdrew consent  49 (52.1) 56 (60.9) 105 (56.5) 

Inadequate stay in level 2 22 (23.4) 16 (17.4) 38 (20.4) 

Treatment nonadherence 20 (21.3) 19 (20.6) 39 (21.0) 

Other 3 (3.2) 1 (1.1) 4 (2.1) 

 

 We also conduct the main analysis and three sensitivity analyses for the medication 

switching strategy. We use covariates that differ significantly between those with and without 

missing endpoints in the MMRM analysis. Specifically, we use QIDS-C16 scores at the beginning 

of level 2, education and duration of level 2 treatment for the endpoints of remission and total 

HAM-D17 scores and QIDS-C16 scores at the beginning of level 2 and duration of level 2 treatment 

for the endpoints of change of HAM-D17 scores and response. As shown in Figure 5.4, our results 

provide some clinical implications even though no statistical significance of the estimates of 

CACE is found on any of the endpoints. The estimated CACEs on remission are all above or almost 

zero. The total HAM-D17 scores at the end of level 2 for those switching to VEN are no bigger 

than those switching to BUP given the non-positive estimated CACEs. The estimated CACEs on 
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reduction of HAM-D17 scores are non-negative, suggesting that a greater or equal reduction 

happens after switching to VEN compared to switching to BUP. We do not show the results on 

response in Figure 5.3 because the random effects models on response do not converge. Our 

findings are robust in all analyses with main analysis having the widest confidence intervals and 

sensitivity analysis 3 the narrowest. 
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Figure 5.4 Estimated complier average causal effects (CACEs) and their 95% confidence intervals 

for the primary endpoint and secondary endpoints in the medication switching strategy. In each 

panel, the horizontal solid line represents the null. The dashed vertical line separates the 

nonparametric estimates on the left-hand side from the multisite design estimates on the right-hand 

side. The blue square represents main analysis. The green circle represents sensitivity analysis 1. 

The red triangle represents sensitivity analysis 2. The orange diamond represents sensitivity 

analysis 3.  
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5.3 Discussion 

With the observed treatment adherence proportions in each treatment assignment group and the 

population structure, the population principal strata proportions can be estimated. Specifically, in 

the medication augmentation strategy, combining Table 5.2 with Table 5.4, 20 to 27 percent of the 

population are never-takers whereas the rest 73 to 80 percent are compliers for the nonparametric 

approach. For the multisite design approach in this strategy, with Table 5.2 and Table 5.5, the 

estimated proportion of partial-1-compliers is 0.27, the estimated proportion of partial-2-compliers 

is 0.2, and the estimated proportion of compliers is 0.53 (0.8 − 0.27 = 0.73 − 0.2 = 0.53). 

Similarly, in the medication switching strategy, for the nonparametric approach, the estimated 

proportion of never-takers ranges from 0.27 to 0.33 and the estimated proportion of compliers 

ranges from 0.67 to 0.73 given Table 5.8 and Table 5.4. For the multisite design in this strategy, 

the estimated proportions of partial-2-compliers, partial-1-compliers and compliers are 0.33, 0.27 

and 0.4 (0.67 − 0.27 = 0.73 − 0.33 = 0.4) respectively given Table 5.8 and Table 5.5. 

 The above proportions are estimated assuming all assumptions required in the 

nonparametric and multisite design approaches are satisfied. However, as mentioned in section 

5.1.1, it is likely that Assumption III, the no partial-compliers assumption, is violated for the 

nonparametric approach in the medication augmentation strategy. We revisit this problem here. 

The violation of Assumption III may result from two situations which are shown in Table 5.11 and 

Table 5.12. In situation 1, the existence of partial-1-compliers violates Assumption III whereas no 

partial-2-compliers exist. Therefore, given the observed treatment adherence proportions, the 

estimated principal strata proportions of never-takers, partial-1-compliers and compliers are 0.2, 

0.07 and 0.73 respectively.  

   

 



97 
 

Table 5.11 Population structure when Assumption III (no partial-compliers) is violated for the 

nonparametric approach in the medication augmentation strategy: situation 1. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0 𝜋̂1 = 0.2   

A(1)=1 𝜋̂4 = 0.07  𝜋̂6 = 0.73 

A(1)=2    

 

Situation 2 has the same population structure as the multisite design approach. Both partial-1-

compiers and partial-2-compliers exist in this situation which violates Assumption III. Therefore, 

the estimated principal strata proportions of partial-2-compliers, partial-1-compliers and compliers 

are 0.2, 0.27 and 0.53 respectively.  

 

Table 5.12 Population structure when Assumption III (no partial-compliers) is violated for the 

nonparametric approach in the medication augmentation strategy: situation 2. 

 

 
Z=2 

A(2)=0 A(2)=1 A(2)=2 

Z=1 

A(1)=0   𝜋̂3 = 0.2 

A(1)=1 𝜋̂4 = 0.27  𝜋̂6 = 0.53 

A(1)=2    
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With the estimated proportions of partial-compliers, we can then apply equation (3.9) in chapter 

3 to examine the estimators. Specifically, if we assume the ITT effects of 𝑍  on 𝑌  in partial-

compliers are the same as in compliers and plug in the estimated proportions, the nonparametric 

estimators for situation 1 and situation 2 become, 

                 Situation 1: 
𝐸[𝑌𝑖(2,𝐴𝑖(2))– 𝑌𝑖(1,𝐴𝑖(1))]

𝐸[𝐴𝑖(2)−𝐴𝑖(1)]
= 𝐶𝐴𝐶𝐸 + 0.21 ∗ 𝐶𝐴𝐶𝐸 = 1.21 ∗ 𝐶𝐴𝐶𝐸 

                 Situation 2: 
𝐸[𝑌𝑖(2,𝐴𝑖(2))– 𝑌𝑖(1,𝐴𝑖(1))]

𝐸[𝐴𝑖(2)−𝐴𝑖(1)]
= 𝐶𝐴𝐶𝐸 + 0.52 ∗ 𝐶𝐴𝐶𝐸 = 1.52 ∗ 𝐶𝐴𝐶𝐸. 

It is therefore evident that the nonparametric estimators in both situations overestimate the CACE. 

Our results also resonate with this evidence. Figure 5.2 shows that our nonparametric estimates for 

any endpoints are much farther away from the null than the multisite design estimates. 

 Even though the zero correlation assumptions of the multisite design approach are likely 

satisfied by our data, the estimators are still biased because of the measurement errors in estimating 

the principal strata proportions. Specifically, since Assumption V, the zero correlation assumption 

is likely satisfied by our data, the term 𝛑′𝐔𝛄 in bias formula (4.7) will not exist. The bias due to 

measurement errors is then negatively proportional to the true CACE with the proportion less than 

1 because it is the ratio of the variance of measurement errors and the variance of the estimated 

principal strata proportions. With the negative bias, the multisite design approach will therefore 

underestimate the CACE.  

 Our analyses provide several meaningful implications. Augmenting citalopram with 

sustained-release bupropion for remission is no better than augmenting citalopram with buspirone, 

as indicated by the approximately zero estimated CACE. The estimated CACE on the total HAM-

D17 score ranges from 0.16 to 2.4 from the main analysis, suggesting that the total HAM-D17 score 

at the end of level 2 if augmenting citalopram with sustained-release bupropion is 0.16 to 2.4 

smaller than that if augmenting citalopram with buspirone. Similarly, augmenting citalopram with 
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sustained-release bupropion reduce the HAM-D17 score 0.58 to 2.1 more than augmenting 

citalopram with buspirone. The response rate if augmenting citalopram with sustained-release 

bupropion is significantly higher by 4% to 8% than if augmenting citalopram with buspirone. 

Switching to extended-release venlafaxine and switching to sustained-release bupropion will have 

similar effects because none of the analyses for any of the four endpoints show significant 

difference. 

 Our analyses address the previous criticisms of the STAR*D findings summarized in Pigott 

(2015). First, corresponding to the first criticism on page 2 of Pigott (2015), instead of using the 

self-report 16-item Quick Inventory of Depressive Symptomatology (QIDS-SR16) scores that may 

introduce bias, our primary and secondary endpoints are all based on the HAM-D17 scores which 

are collected by the blinded research outcomes assessors. Second, Pigott (2015) criticized the 

exclusion of patients with missing exit HAM-D17 scores or classification of these patients as 

nonremitters in previous reports (Rush, Trivedi, Wisniewski, Nierenberg, et al., 2006; Rush, 

Trivedi, Wisniewski, Stewart, et al., 2006; Trivedi et al., 2006). Our main analysis does not exclude 

any patients and uses the mixed effects models repeated measures approach for the missing 

endpoints problem. Our main analysis may be criticized by Pigott as in his third argument because 

the MMRM method implicitly assumes that the missing endpoints and non-missing endpoints 

follow the same distribution. We address this criticism by adopting three sensitivity analyses which 

are described in section 5.1.2. Our results from the sensitivity analyses are consistent with the 

results in the main analysis.   
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CHAPTER 6 

DISCUSSION AND FUTURE WORK 

In this dissertation, we consider treatment nonadherence in randomized controlled trials with two 

active treatments. We employ the Neyman-Rubin causal framework and the principal stratification 

framework to explore an alternative causal estimand to the intention to treat (ITT) estimand. With 

treatment nonadherence, the ITT estimand identifies the causal effect of assignment instead of the 

causal effect of treatment, which therefore loses clinical relevance. To identify the causal effect of 

treatment, previous work has largely focused on the placebo-controlled trials. For example, Angrist 

et al. (1996) identified the complier average causal effects (CACE) under the exclusion restriction 

assumption and the monotonicity assumption. Yuan et al. (2018) identified the CACE under a 

multisite design. However, little attention has been placed on randomized controlled trials with 

two active treatments when treatment nonadherence exists. The identification of the causal 

estimand becomes complicated in such setting because the population is more diverse than that in 

the placebo-controlled trial. Therefore, we clarify and define the identification strategies for the 

CACE.  

 Our proposed nonparametric approach identifies the complier average causal effect as the 

ratio of the ITT effect of treatment assignment 𝑍 on the outcome 𝑌 to the ITT effect of treatment 

assignment 𝑍 on the treatment received 𝐴 under the exclusion restriction, monotonicity, and no 

partial-compliers assumptions. We also derive the bias formula and evaluate the performance of 

the estimator if one of the aforementioned assumptions is violated. Our simulations show that the 

nonparametric approach can yield a slightly biased estimator for CACE. However, when sample 

size is 500 or above, the nonparametric estimator becomes unbiased when the percentage of 
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compliers is above or equal to 70%. In addition, increasing the number of compliers has the 

potential to reduce the bias to as close as zero when there is deviation from the assumptions.  

 Our second approach identifies the complier average causal effect via a multisite design 

under the zero correlation assumption. Under this assumption our simulations show that this 

approach can yield an unbiased estimator if there are no measurement errors. We derive the bias 

formula for the situations where measurement errors exist and the zero-correlation assumption is 

violated. We find that increasing the number of people in each site can reduce the bias because it 

reduces the variation of the measurement errors. Increasing the number of sites, on the other hand, 

does not make a significant impact on the bias.  

 Our study can provide several meaningful insights. First, we identify the causal estimand 

for the causal effects of treatment, which is clinically relevant and meaningful. Second, we 

explicitly clarify the underlying assumptions needed to identify our causal estimand of interest. 

This can help researchers better understand and interpret their results. Third, our derived bias 

formulas allow researchers to discover potential factors that can result in the bias. Besides, 

researchers can also improve their study design before conducting any studies based on the bias 

formulas. Fourth, our results from the nonparametric approach provide evidence for researchers to 

take measures and increase the adherence rates of participants in a sample. Fifth, our results from 

the multisite design approach provide evidence for researchers to increase enrollment in each site 

of the studies. Sixth, our approaches can be extended to any studies that involve a valid 

instrumental variable and unmeasured confounding and all the above implications can be applied.  

 Although we make suggestions on increasing the number of compliers based on the 

nonparametric approach, one limitation of our study is that we cannot identify the complier 

population in practice. However, we can model the compliance status from observed covariates 
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and predict an individual’s compliance status instead (Roy et al., 2008). Next, one consequence of 

the non-identifiability of the principal strata is that the measurement errors in estimating the 

principal strata proportions in our multisite design approach are unavoidable. Therefore, one 

direction of the future work can be to address the bias issue resulting from the measurement errors. 

For example, we can substitute a random effects model for the multiple linear regression model 

used in equation (4.2) to take into account the variations and reduce the bias due to measurement 

errors (Reardon et al., 2014; Bloom et al., 2017). Another limitation of our study is that the zero 

correlation assumption used in the multisite design approach is a rather strong assumption and 

cannot be verified empirically. Future work can be done to incorporate covariates into this 

assumption and relax it to be a conditional assumption  (Yuan et al., 2018). Both approaches in 

our study make point-identification of the complier average causal effects. To justify the findings, 

we can also extend our work by introducing bounds for our estimators in the future. Finally, we 

can extend our study setting to three active treatments, four active treatments, etc. and make 

pairwise comparisons. For example, in a RCT with three active treatments, the population can be 

divided into 4 × 4 = 16 principal strata based on the potential treatment received. We can then 

identify the causal estimand from any pair of the three treatments by making additional 

assumptions.  
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APPENDIX A  

Results of the Binary Outcomes for the Nonparametric Approach 

 

Figure A.1 Performance (top left: bias; top right: percent bias; middle left: mean standard error; 

middle right: root mean squared error; bottom left: standard error ratio; bottom right: coverage) of 

the nonparametric estimator across proportions of compliers for the binary outcome when all 

assumptions are satisfied (scenario A). The blue square represents sample size 𝑛 = 500. The red 

circle represents sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000.  
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Figure A.2 Sensitivity (upper left: bias; upper right: percent bias; lower left: mean standard error; 

lower right: root mean squared error) of the nonparametric estimator across proportions of 

compliers for the binary outcome when Assumption I, the exclusion restriction assumption, is 

violated (scenario B). The blue square represents sample size 𝑛 = 500. The red circle represents 

sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000.   
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Figure A.3 Sensitivity (upper left: bias; upper right: percent bias; lower left: mean standard error; 

lower right: root mean squared error) of the nonparametric estimator across proportions of 

irrationalists for the binary outcome when Assumption II.a, the no irrationalists assumption, is 

violated (scenario C). The blue square represents sample size 𝑛 = 500. The red circle represents 

sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000.  
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Figure A.4 Sensitivity (upper left: bias; upper right: percent bias; lower left: mean standard error; 

lower right: root mean squared error) of the nonparametric estimator across proportions of flip-

floppers for the binary outcome when Assumption II.b, the no flip-floppers assumption, is violated 

(scenario D). The blue square represents sample size 𝑛 = 500. The red circle represents sample 

size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000. 
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Figure A.5 Sensitivity (upper left: bias; upper right: percent bias; lower left: mean standard error; 

lower right: root mean squared error) of the nonparametric estimator across proportions of partial-

compliers for the continuous outcome when Assumption III, the no partial-compliers assumption, 

is violated (scenario E). The blue square represents sample size 𝑛 = 500. The red circle represents 

sample size 𝑛 = 1000. The green triangle represents sample size 𝑛 = 2000. 
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APPENDIX B  

Results of the Binary Outcomes for the Multisite Design Approach 

 

Figure B.1 Performance (top left: bias; top right: percent bias; middle left: mean standard error; 

middle right: root mean squared error; bottom left: standard error ratio; bottom right: coverage) of 

the multisite design estimator across the nine scenarios based on number of sites 𝑠 and site sizes 𝑛 

for the binary outcome when site size is fixed. For example, label “s=50, n=25” indicates that the 

scenario has 50 sites and 25 individuals in each site. The blue square represents the oracle estimator 

which uses the true principal strata proportions π3|𝑘 , π4|𝑘  and π6|𝑘  to fit the multiple linear 

regression. The red circle represents the naïve estimator which uses the estimated principal strata 

proportions 𝜋̂3|𝑘, 𝜋̂4|𝑘and 𝜋̂6|𝑘 to fit the multiple linear regression. The green triangle represents 

the bootstrap estimator which is the average of the naïve estimates after resampling the site-level 

quantities. 
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Figure B.2 Performance (top left: bias; top right: percent bias; middle left: mean standard error; 

middle right: root mean squared error; bottom left: standard error ratio; bottom right: coverage) of 

the multisite design estimator across the twelve scenarios based on types of weights (UN: 

unweighted; SS: weight by site size; WV: weight by within-site variation; COMP: weight by 

number of compliers) and number of sites 𝑠 for the binary outcome when site size is varied. The 

blue square represents the oracle estimator which uses the true principal strata proportions π3|𝑘, 

π4|𝑘 and π6|𝑘 to fit the multiple linear regression. The red circle represents the naïve estimator 

which uses the estimated principal strata proportions 𝜋̂3|𝑘, 𝜋̂4|𝑘and 𝜋̂6|𝑘 to fit the multiple linear 

regression. The green triangle represents the bootstrap estimator which is the average of the naïve 

estimates after resampling the site-level quantities.  
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Table B.1 Sensitivity of the multisite design estimator across the nine scenarios based on number 

of sites and site sizes for the binary outcome when site size is fixed if Assumption V, the zero 

correlation assumption, is violated. The oracle estimator uses the true principal strata proportions 

π3|𝑘, π4|𝑘 and π6|𝑘 to fit the multiple linear regression. The naïve estimator uses the estimated 

principal strata proportions 𝜋̂3|𝑘, 𝜋̂4|𝑘and 𝜋̂6|𝑘 to fit the multiple linear regression. The bootstrap 

estimator is the average of the naïve estimates after resampling the site-level quantities. For each 

of these three estimators, we consider three cases. C1 is the reference case with 𝜆 = 𝛾 = 0 

indicating that Assumption V is satisfied. C2 refers to the case when 𝜆 = 2  and 𝛾 = 1 indicating 

that Assumption V is violated and the coefficient of the unobserved confounding is 𝛾 = 1. C3 

refers to the case when 𝜆 = 2  and 𝛾 = −1  indicating that Assumption V is violated and the 

coefficient of the unobserved confounding is 𝛾 = −1. 

 

 

Measure 

# of 

Sites 

Site 

Size 

Oracle Naïve Bootstrap 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

Bias 

(× 100) 

 

50 

25 0.13 -8.1 13.2 -1.4 -19.3 -0.64 -1.4 -19.3 -0.60 

50 0.14 -8.1 11.9 -0.90 -16.6 1.8 -0.87 -16.6 1.9 

100 0.01 -8.1 11.0 -0.62 -14.0 4.2 -0.60 -14.0 4.2 

100 

25 0.04 -7.9 13.5 -1.5 -19.1 -0.38 -1.5 -19.1 -0.35 

50 0.00 -8.1 12.0 -0.94 -16.7 1.8 -0.94 -16.7 1.8 

100 0.01 -8.2 10.9 -0.64 -14.2 4.1 -0.63 -14.2 4.1 

200 

25 -0.01 -8.0 13.3 -1.55 -19.1 -0.51 -1.5 -19.1 -0.49 

50 0.00 -8.0 12.0 -0.97 -16.7 1.8 -0.97 -16.7 1.8 

100 0.00 -8.2 10.8 -0.65 -14.2 4.0 -0.65 -14.2 4.0 

Percent 

Bias 

(%) 

 

50 

25 0.42 -23.6 66.2 -4.7 -56.3 -3.2 -4.5 -56.2 -3.0 

50 0.47 -23.4 60.0 -3.0 -48.3 9.2 -2.9 -48.2 9.3 

100 0.05 -23.4 55.2 -2.0 -40.6 21.0 -2.0 -40.6 21.1 

100 

25 0.14 -23.1 67.8 -4.9 -55.8 -1.9 -4.9 -55.7 -1.8 

50 -0.01 -23.4 60.5 -3.1 -48.4 9.1 -3.1 -48.4 9.1 

100 0.05 -23.8 55.0 -2.1 -41.1 20.5 -2.1 -41.1 20.5 

200 

25 -0.04 -23.2 67.0 -5.1 -55.8 -2.5 -5.1 -55.7 -2.5 

50 0.00 -23.3 60.2 -3.2 -48.6 8.8 -3.2 -48.5 8.8 

100 -0.01 -23.9 54.5 -2.2 -41.2 20.2 -2.2 -41.2 20.2 

Standard 

Error 

 

50 

25 0.09 0.21 0.21 0.07 0.15 0.15 0.07 0.15 0.15 

50 0.07 0.19 0.17 0.06 0.15 0.14 0.06 0.15 0.14 

100 0.06 0.17 0.14 0.05 0.14 0.12 0.05 0.14 0.12 

100 

25 0.06 0.15 0.15 0.05 0.11 0.11 0.05 0.10 0.10 

50 0.05 0.13 0.12 0.04 0.10 0.09 0.04 0.10 0.09 

100 0.04 0.12 0.10 0.04 0.10 0.08 0.04 0.10 0.08 

200 

25 0.04 0.10 0.10 0.03 0.07 0.07 0.03 0.07 0.07 

50 0.04 0.09 0.08 0.03 0.07 0.07 0.03 0.07 0.07 

100 0.03 0.08 0.07 0.02 0.06 0.06 0.02 0.07 0.06 
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Table B.1 (cont’d) 

 

  

Root 

Mean 

Square 

Error 

 

50 

25 0.09 0.23 0.25 0.07 0.25 0.15 0.07 0.25 0.15 

50 0.07 0.2 0.21 0.06 0.22 0.14 0.06 0.22 0.14 

100 0.06 0.19 0.18 0.05 0.20 0.12 0.05 0.20 0.13 

100 

25 0.06 0.17 0.20 0.05 0.22 0.11 0.05 0.22 0.11 

50 0.05 0.15 0.17 0.04 0.20 0.10 0.04 0.20 0.10 

100 0.04 0.14 0.15 0.04 0.17 0.09 0.04 0.17 0.10 

200 

25 0.04 0.13 0.17 0.04 0.20 0.07 0.04 0.20 0.07 

50 0.04 0.12 0.15 0.03 0.18 0.07 0.03 0.18 0.07 

100 0.03 0.12 0.13 0.03 0.16 0.07 0.03 0.16 0.07 
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Table B.2 Sensitivity of the multisite design estimator across the twelve scenarios based on types 

of weights (UN: unweighted; SS: weight by site size; WV: weight by within-site variation; COMP: 

weight by number of compliers) and number of sites for the binary outcome when site size is varied 

if Assumption V, the zero correlation assumption, is violated. The oracle estimator uses the true 

principal strata proportions π3|𝑘 , π4|𝑘  and π6|𝑘  to fit the multiple linear regression. The naïve 

estimator uses the estimated principal strata proportions 𝜋̂3|𝑘 , 𝜋̂4|𝑘 and 𝜋̂6|𝑘  to fit the multiple 

linear regression. The bootstrap estimator is the average of the naïve estimates after resampling 

the site-level quantities. For each of these three estimators, we consider three cases. C1 is the 

reference case with 𝜆 = 𝛾 = 0 indicating that Assumption V is satisfied. C2 refers to the case 

when 𝜆 = 2  and 𝛾 = 1  indicating that Assumption V is violated and the coefficient of the 

unobserved confounding is 𝛾 = 1. C3 refers to the case when 𝜆 = 2  and 𝛾 = −1 indicating that 

Assumption V is violated and the coefficient of the unobserved confounding is 𝛾 = −1. 

 

 

 

 

 

Measure 

Type  

of  

Weight 

# of  

sites 

Oracle Naïve Bootstrap 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

Bias 

(× 100) 

UN 

50 -0.03 -8.0 12.1 -1.1 -17.2 1.3 -1.1 -17.2 1.4 

100 0.06 -8.0 12.2 -0.97 -17.0 1.6 -0.96 -17.0 1.6 

200 0.04 -8.03 12.2 -1.1 -17.1 1.4 -1.0 -17.1 1.5 

SS 

50 0.01 -8.0 11.9 -0.99 -16.8 1.7 -0.97 -16.8 1.7 

100 0.05 -8.0 11.9 -0.92 -16.7 1.9 -0.91 -16.7 1.9 

200 0.04 -8.0 12.0 -0.98 -16.7 1.8 -0.97 -16.7 1.8 

WV 

50 -0.03 -9.8 9.3 -3.9 -18.5 -0.59 -3.6 -18.4 -0.29 

100 -0.03 -9.9 9.0 -3.9 -18.4 -0.57 -3.8 -18.3 -0.37 

200 -0.03 -10.0 8.8 -4.1 -18.4 -0.86 -4.0 -18.4 -0.73 

COMP 

50 0.02 -7.9 11.9 -0.82 -16.8 1.5 -0.81 -16.9 1.5 

100 0.06 -8.0 11.9 -0.75 -16.7 1.8 -0.74 -16.7 1.8 

200 0.03 -8.0 12.0 -0.81 -16.8 1.7 -0.81 -16.8 1.7 

Percent 

Bias 

(%) 

UN 

50 -0.09 -23.2 60.7 -3.6 -49.8 6.8 -3.5 -49.7 6.9 

100 0.20 -23.2 61.3 -3.2 -49.4 8.0 -3.2 -49.3 8.0 

200 0.13 -23.3 61.5 -3.5 -49.7 7.2 -3.5 -49.7 7.3 

SS 

50 0.02 -23.3 59.9 -3.3 -48.8 8.5 -3.2 -48.8 8.5 

100 0.18 -23.4 60.0 -3.1 -48.3 9.4 -3.0 -48.4 9.4 

200 0.15 -23.3 60.5 -3.2 -48.5 9.1 -3.2 -48.5 9.1 

WV 

50 -10.0 -28.5 46.9 -13.0 -53.7 -3.0 -12.0 -53.3 -1.4 

100 -10.1 -28.7 45.3 -13.0 -53.4 -2.9 -12.5 -53.2 -1.9 

200 -10.6 -28.9 44.5 -13.6 -53.5 -4.3 -13.3 -53.4 -3.7 

COMP 

50 0.06 -22.9 60.0 -2.7 -48.8 7.8 -2.7 -48.9 7.7 

100 0.21 -23.3 60.0 -2.5 -48.6 8.9 -2.5 -48.6 8.9 

200 0.10 -23.3 60.2 -2.7 -48.7 8.5 -2.7 -48.7 8.5 
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Table B.2 (cont’d) 

 

Standard 

Error 

UN 

50 0.07 0.19 0.18 0.06 0.15 0.14 0.06 0.15 0.14 

100 0.05 0.13 0.12 0.04 0.10 0.10 0.04 0.10 0.10 

200 0.04 0.09 0.09 0.03 0.07 0.07 0.03 0.07 0.07 

SS 

50 0.07 0.19 0.17 0.06 0.15 0.14 0.06 0.15 0.14 

100 0.05 0.13 0.12 0.04 0.10 0.09 0.04 0.10 0.09 

200 0.04 0.09 0.08 0.03 0.07 0.07 0.03 0.07 0.07 

WV 

50 0.07 0.19 0.17 0.06 0.15 0.13 0.06 0.16 0.14 

100 0.05 0.13 0.12 0.04 0.10 0.09 0.04 0.12 0.10 

200 0.04 0.09 0.08 0.03 0.07 0.06 0.03 0.08 0.07 

COMP 

50 0.07 0.20 0.18 0.06 0.15 0.14 0.06 0.15 0.14 

100 0.05 0.14 0.12 0.04 0.10 0.10 0.04 0.11 0.10 

200 0.03 0.10 0.09 0.03 0.07 0.07 0.03 0.07 0.07 

Root 

Mean 

Squared 

Error 

UN 

50 0.08 0.21 0.22 0.06 0.23 0.15 0.06 0.23 0.15 

100 0.05 0.16 0.18 0.04 0.20 0.10 0.04 0.20 0.10 

200 0.04 0.12 0.15 0.03 0.19 0.07 0.03 0.19 0.07 

SS 

50 0.07 0.21 0.21 0.06 0.22 0.14 0.06 0.22 0.14 

100 0.05 0.15 0.17 0.04 0.20 0.10 0.04 0.20 0.10 

200 0.04 0.12 0.15 0.03 0.18 0.07 0.03 0.18 0.07 

WV 

50 0.09 0.25 0.21 0.08 0.25 0.14 0.07 0.25 0.14 

100 0.07 0.19 0.16 0.06 0.22 0.10 0.06 0.22 0.10 

200 0.05 0.15 0.13 0.05 0.20 0.07 0.05 0.20 0.07 

COMP 

50 0.08 0.22 0.22 0.06 0.23 0.14 0.06 0.23 0.14 

100 0.05 0.16 0.17 0.04 0.20 0.10 0.04 0.20 0.10 

200 0.04 0.13 0.15 0.03 0.18 0.07 0.03 0.18 0.07 
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