
DETERMINATION OF THE EFFECTIVE THERMAL CONDUCTIVITY OF PACKED BEDS
OF MAGNESIUM-MANGANESE-OXIDE

By

Faezeh Masoomi

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Mechanical Engineering – Master of Science

2021



ABSTRACT

DETERMINATION OF THE EFFECTIVE THERMAL CONDUCTIVITY OF PACKED BEDS
OF MAGNESIUM-MANGANESE-OXIDE

By

Faezeh Masoomi

Magnesium-manganese-oxide redox materials have significant potential for thermochemical en-

ergy storage; however, the material high-temperature physical properties, in particular, its thermal

conductivity are critical for engineering storage devices.

In this thesis, the effective thermal conductivity of packed beds of magnesium-manganese-oxide

pellets is measured in the temperature range of 300 °C to 1300 °C with a 100 °C span using the

transient hot-probe method. The transient hot-probe method is a well-established technique to

determine the effective thermal conductivity of materials by measuring the transient temperature

response of a 1-D heat source with constant heat generation. In this thesis, a thin platinum wire

covered by a thin alumina sheet is used as both 1-D heat source, and the temperature measurement

device. A constant current is passed through the platinum wire emulating 1-D heat generation. Si-

multaneously, the electrical resistance of the wire is measured versus time by measuring the voltage

across the platinum wire. The wire temperature is calculated based on the wire’s temperature-

dependent resistance using a calibration curve established prior to the experiment. The effective

thermal conductivity is calculated by curve-fitting a conductivity-dependent model to the wire

temperature.

The effective thermal conductivity ranges from 0.46 to 1.64 (,<−1 −1), and increases signifi-

cantly with the temperature. The increase in thermal conductivity with temperature is primarily

attributed to thermal radiation. The experimental results are compared to a theoretical dual-porosity

model, showing good agreement.
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CHAPTER 1

INTRODUCTION

1.1 Energy storage Technologies

Renewable energy resources are a subject of interest worldwide due to their advantages over

fossil fuel, the primary energy resource in today’s energymarket. Renewable energy resources, such

as solar, wind, hydro, and biomass, are sustainable and abundant. Unlike fossil fuels, which take

millions of years to be formed, renewable resources do not deplete. Renewable energy resources

are better for the environment. They have no greenhouse gas emissions, the leading cause of global

warming, they also produce less waste, and they do not contaminate the environment. Furthermore,

renewable energy resources can bring economic benefits since they have lowmaintenance costs and

can generate electricity locally, lowering the electricity transfer costs, especially for remote areas.

Despite these advantages, renewable energies have difficulties finding their potential role in today’s

energy market. One of the drawbacks is the unpredictable nature of renewable energy resources

like solar and wind. The uncertainty associated with these resources requires higher electrical

grid flexibility, causing an increase in electricity prices. Electrical Storage Units (ESU) can be a

solution to this problem. They can store energy when renewable energy resource is available and

release it to the electrical grid when demand is high. Some of these technologies are introduced in

Table 1.1.

Table 1.1 summarizes relevant technologies for energy storage. Thermochemical storage is one

of the existing technologies for renewable energy storage. It uses reversible chemical reactions to

store thermal energy in the form of chemical compounds. In recent years many reactor concepts

and materials have been introduced to design a thermochemical unit [3, 4].

Randhir et al. [5] introduced magnesium-manganese-oxide as a promising material to be used

in thermochemical storage applications. Magnesium-manganese-oxide is a low-cost, abundant,

non-toxic material that uses air as the reacting gas, eliminating the need for a gas storage system.
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Pumped storage hydropower
(PSH)

Water is being pumped to a reservoir at a higher level during
off-peak. The energy is stored in the form of potential energy
and can be released by allowing the water to flow back to the
lower reservoir and rotating a turbine during peak time.

Compressed air energy stor-
age (CAES)

During peak-off, the air is compressed into the tanks using
a rotary compressor. The compressed air can be released to
a gas turbine to generate electricity from high-pressure air
during peak time.

Batteries
Batteries use chemical reactions to store and release energy.
Batteries can be used in distribution, off-grid, and short-term
storage.

Thermochemical storage
It uses a reversible chemical reaction to store energy. The
reversible chemical reaction can occur in high or low temper-
atures based on the nature of the chemical reaction.

Chemical hydrogen storage It uses hydrogen as the energy carrier to store electricity, for
example, through electrolysis.

Flywheels
Mechanical devices that store electricity in the form of rota-
tional energy. Slowing down these devices can provide bursts
of energy to the electrical grid.

Supercapacitors
Energy is stored in the form of electrostatic between two con-
ductive plates. This technology is used for short terms, pro-
ducing a short burst of power.

Superconducting magnetic
energy storage (SMES)

In this technology, electricity is stored in a magnetic field
with a direct current going into a super-conducting coil. The
resistance of superconducting material is almost zero, so the
energy can be stored for a long time.

Table 1.1: Existing technologies for energy storage

This material stores energy by undergoing a reversible chemical reaction at higher temperatures as

follows:

MgMnO2+�1 ⇒ MgMnO2+�2 +
�1 − �2

2
O2 (1.1)

In which �1 and �2 denote the excess oxygen in the material.

Randhir et al. [5] investigated the reactive stability of magnesium-manganese-oxide at high tem-

peratures (1000 < ) < 1500 °C) for three different molar ratios (Mn/Mg = 2/3, 1/1, and 2/1), and

shown than the material’s released and absorbed oxygen remains unchanged over 20 cycles, cycling

between 1200 and 1500 °C with an oxygen partial pressure of 0.2 atm. Based on these results,
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they concluded this material has excellent reactivity stability at higher temperatures. They also

measured the energy density of the material in temperatures 1000 to 1500 °C using a combination

of acid-solution calorimetry and drop calorimetry. They obtained the volumetric energy density

(chemical, phase change, and sensible) of Mn/Mg, for 2/3, 1/1, and 2/1 molar ratios cycles 1596,

1626, and 1654
(
MJ
m3

)
, respectively.

King et al. [6] investigated different methods to enhance thermochemical energy storage density

of magnesium-manganese-oxide. They varied the manganese to magnesium molar ratios, and they

found that the maximum energy density is at the 1/1 molar ratio. They also observed lowering the

oxygen partial pressure below atmospheric during thermal reduction enhances the thermochemical

energy storage density.

However, to design a thermochemical storage unit, the magnesium-manganese-oxide’s thermo-

physical properties need to be investigated. Randhir et al. [7] determined the oxidation kinetics of

porous magnesium-manganese-oxide pellets at high temperatures. The current thesis investigates

the effective thermal conductivity of a packed bed of magnesium-manganese oxide pellets. In the

following sections, different measurement techniques will be briefly introduced.

1.2 Thermal conductivity measurement techniques

Experimental approaches for measuring the effective thermal conductivity fall into two general

categories: transient and steady-state [8]. In the following sections these methods will be discussed.

1.2.1 Steady state methods

In this category of methods, a heat source in contact with the sample affects a temperature gradient

within the material at steady-state condition; the thermal conductivity can be calculated based on

the Fourier law.

The steady-state methods are analytically simple. However, there are significant drawbacks to these

methods. Achieving high accuracies with steady-state methods is challenging and requires rather

3



complex experimental setup due to temperature sensor uncertainties and parasitic heat loss [9].

Also, The long wait time to develop the steady-state condition makes it a less appealing candidate

for experiments with multiple measurements.

1.2.2 Transient Methods

The transient methods use temperature gradients generated by short-time heating of a 1-D heat

source embedded inside the medium to measure the effective thermal conductivity. The transient

methods fall into different categories based on various contact forms, for example, transient hot

strip, transient hot plane, or transient hot disk. The transient methods are used extensively due

to simplicity and the short wait time [8, 10, 11]. These methods have been proven to be the best

for investigating the thermal conductivity of liquids and gases. However, it has been popular with

solids as well, for example, in applications like geometrical features [12], nuclear pebble beds

[13],and porous materials [14].

The commercial hot probe, an instrument for in situmeasurements, is designed based on the transient

hot-wire method. However, recent works put more limitations on transient probe methods. A study

at the University of Plymouth has shown that commercial thermal probe measurements can only

be reliable for materials with thermal conductivity above 0.07
(
,

<°�

)
[15].

Based on the simplified analytical solution of the heat conduction equation, the temperature of a

1-D heat source with constant heat generation must increase linearly with logarithmic time after a

short period. The thermal conductivity of the material is calculated based on the slope of this linear

function. However, this curve can deviate from the linear shape due to boundary conditions, in-

homogeneity, or moisture content. Marmoret et al. [16] demonstrated that estimating the effective

thermal conductivity from the slope of the sigmoid curve will result in inaccurate estimations.
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CHAPTER 2

MATHEMATICAL MODELING

2.1 Introduction

Different models have been introduced to estimate the effective thermal conductivity of porous

media [17]. These models are introduced based on various parameters, such as porosity, texture,

and porous structure. Different modes of heat transfer can contribute to the effective thermal

conductivity of porousmaterials. For high-temperature applications, radiationwill play a significant

role in the effective thermal conductivity and needs to be considered in the modeling. For our

application, the overall effective thermal conductivity is assumed to have two major contributing

factors: conduction and radiation. The summation of these two components will make up the total

effective thermal conductivity.

:eff−model = :cond + :rad (2.1)

Multiple models need to be used at different modeling stages to accurately estimate the effective

thermal conductivity of the packed bed of magnesium-manganese-oxide pellets. As a well-accepted

approximation, a packed bed of pellets can be considered as a 1-D homogeneous porous system

[18]. Still, the magnesium-manganese-oxides pellets have an internal porous structure, so their

conductivity needs to be calculated prior to the packed bed. Also, since there is no experimental

data, the bulk material thermal conductivity of magnesium-manganese-oxide needs to be estimated

from its components. The bulk material thermal conductivity can be modeled using a dual-porosity

model [19], and a mixing rule as follows:

Step 1: Calculating the thermal conductivity of magnesium-manganese-oxide based on its com-

ponents, magnesium-oxide and manganese-oxide via a mixing rule.

Step 2: Calculating the effective thermal conductivity of a single pellet, considering the pellet

porosity and manganese-magnesium-oxide thermal conductivity from step 1, as the small scale.
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Step 3: Calculating the effective thermal conductivity of the packed bed of magnesium-manganese-

oxide pellets, considering the bed porosity and the effective thermal conductivity of a single pellet

from step 2, as the large scale.

Figure 2.1: Theoretical modeling of the effective thermal conductivity of the packed bed of
magnesium-manganese oxide pellets based on a dual-porosity method: Step 1 - Estimating the
magnesium-manganese-oxide thermal conductivity based on its components, magnesium-oxide,
and manganese-oxide, Step 2 - Estimating the effective thermal conductivity of a single pellet,
step 3 - Estimating the effective thermal conductivity of the packed bed of
magnesium-manganese-oxide pellet. Green blocks have known values from the literature, and the
gray blocks are estimated through modeling.

2.1.1 Conduction Models

Conduction is the dominant mode of heat transfer in porous materials at low to moderate tempera-

tures. The porous structure can significantly affect the heat transfer due to conduction. Numerous

models have been suggested to predict the effective thermal conductivity due to conduction. These

models come at different levels of complexity. In general, there is a trade-off between accuracy and
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simplicity. In the following part, a few of these models will be introduced:

1- Parallel conduction model: The maximum value of the effective thermal conductivity of a

two-phase system can be achieved when the solid and fluid phases are in parallel with the direction

of heat flow. In this case, the effective thermal conductivity is:

:cond = q: 5 + (1 − q):B (2.2)

In which :B is the thermal conductivity of solid, : 5 is the thermal conductivity of the fluid, and q

is the porosity.

2- Series conduction model: The minimum value of effective thermal conductivty of a two-phase

system can be achieved when the solid and fluid phases are normal to the direction of heat flow. In

this case, the effective thermal conductivity can be found as follows:

:cond =
:B: 5

q:B + (1 − q): 5
(2.3)

3- Geometric mean model: This model considers the random distribution of the solid and fluid

phases and estimates the effective thermal conductivity based on the weighted geometric mean of

the conductivity of phases as follows:

:cond = :
q

5
:

1−q
B (2.4)

4-Maxwell model: Maxwell used the potential theory to obtain the exact solution for thermal

conductivity of randomly distributed and non-interacting homogeneous solid spheres as follows

[20]:

:cond = : 5
2q: 5 + (3 − 2q):B
(3 − q): 5 + q:B

(2.5)

This model is only applicable when the porosity is large.

5- Krupiczka model: Krupiczka derived a general model for granular materials based on the

numerical solution of the effective thermal conductivity of a packed bed of long cylinders with

porosity of 0.215 and spheres in a cubic lattice with porosity of 0.476. Taking into account the

effect of porosity, he approximated these two solutions by the following general correlation:

:cond = : 5

(
:B

: 5

) (
0.28−0.757 log(q)−0.057 log

(
:B

: 5

))
(2.6)
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This correlation is valid for 0.215 < q < 0.476.

6- Zehner and Schlunder model: This model is based on a one-dimensional heat flow through a

packed bed of spherical particles. The effective thermal conductivity is estimated as follows:

:cond = : 5

(
1 − (1 − q)1/2 + 2(1 − q)1/2

1 −  #

(
(1 −  )#
(1 −  #)2

ln ( 1
 #
) − # + 1

2
− # − 1

1 −  #

))
(2.7)

in which

 =
: 5

:B
(2.8)

and

# = 1.25
(
1 − q
q

)10/9
(2.9)

7- Woodside and Messmer model: This model is suggested based on a combination of the series

and parallel distribution as follows:

:B =
0F:B: 5

:B (1 − 3F) + 3: 5
+ 2F: 5 (2.10)

in which,

2F = q − 0.03, (2.11)

0F = 1 − 2F , (2.12)

3F =
1 − q
0F

(2.13)

2.1.2 Radiation Model

The radiation component of the effective thermal conductivity can be calculated based on the

Rosseland diffusion approximation [21, 22], as follows:

:rad =
16=2f)3

3V
(2.14)

In which = is the refractive index of the medium, f is the Stefan-Boltzmann constant, and V is the

extinction coefficient. Extinction coefficients incorporates the specific radiation characteristics of
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the porous material in the radiation model. Hsu and Howel [23] proposed the following model to

predict the extinction coefficient of ceramic materials:

V = "
(1 − q)
3pore

(2.15)

In which " is a constant coefficient.

They used a guarded hot-plate test apparatus to determine the effective thermal conductivity and

radiative properties of partially stabilized zirconia (PS ZrO2). The constant " was set to 3 by Hsu

and Howell. Hendricks and Howell [21] determined absosrption and scattering coefficient as well

as scattering phase function of PS ZrO2 and oxide-bonded (OB) SiC porous materials, and noted

that the extinxtion correlates betterm when " is set to 4.4 for PS ZrO2, and 4.8 for OB SiC [24].

Zaversky et al. [25] used this correlation with " = 4.8 for their investigation of radiative heat

transfer in SiC foams as solar absorbers.

It can be concluded that " is a material-specific parameter, and the exact value needs to be

investigated for each material. Determination of the extinct coefficient of the packed bed of

magnesium-manganese-oxide pellets is out of the scope of this thesis, so the radiation model is

investigated for different extinction coefficients (" = 4 − 10) to find the best match with our

experimental results.

2.2 Thermal conductivity of magnesium-manganese-oxide with zero poros-
ity

Since there is no empirical data, the thermal conductivity of magnesium-manganese-oxide is

estimated based on its components, magnesium-oxide, and manganese-oxide using a mixing rule.

In this step, we will consider zero porosity for the mixture of magnesium-oxide and manganese-

oxide, and we will refer to it as "MgMnO2" throughout the thesis.

The thermal conductivity of manganese-oxide and magnesium-oxide is estimated as a function of

temperature by curve-fitting to the experimental data, which is discussed in the following sections.
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�0 52.849
�1 -0.1641
�2 2.7056E-4
�3 -2.4997E-7
�4 1.2753E-10
�5 -3.2666E-14
�6 3.2900E-18

Table 2.1: Polynomial fitting coefficients to estimate magnesium-oxide thermal conductivity

2.2.1 Thermal conductivity of magnesium-oxide

In Figure 2.2, the empirical data for thermal conductivity of magnesium-oxide [1] are shown with

black dots. A 6-th order polynomial is fitted through the experimental data (shown by the dashed

line). The thermal conductivity of magnesium-oxide can be calculated as a function of temperature

as follows:

:MgO()) =
6∑
==0

�8)
8 (2.16)

The coefficient of this polynomial are given in Table 2.4.

2.2.2 Thermal conductivity of manganese-oxide

Similar to magnesium-oxide, the empirical data for manganese-oxide is obtained from Reference

[1]. Since the empirical data is limited to temperatures below 800 °C, the thermal conductivity

is extrapolated for temperatures higher than 800 °C. An exponential curve is fitted through the

empirical data to estimate the thermal conductivity of manganese-oxide, as follows:

:MnO()) = ? exp (@) (2.17)

Coefficients of this exponential fit are given in Table 2.4.

2.2.3 Thermal conductivity of magnesium-manganese-oxide

After calculating the thermal conductivity of magnesium-oxide and manganese-oxide in 100 °C

intervals, the thermal conductivity of MgMnO2 is estimated using the geometric mean model,
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Figure 2.2: Thermal conductivity of magnesium-oxide: A 6th order polynomial is fitted through
the empirical data [1], giving the magnesium oxide thermal conductivity as a function of
temperature.

? 4.1893
@ -6.734E-4

Table 2.2: Exponential fitting coefficients to estimate manganese-oxide thermal conductivity

assuming the random distribution of magnesium-oxide and manganese-oxide powders in the solid

mixing process. The geometric model is used as follows:

:MgMnO2 = :
Φ
MgO:

(1−Φ)
MnO (2.18)

In which Φ is the volume fraction of magnesium-oxide in the magnesium-manganese-oxide mix-

ture, equal to 0.460117. The calculated magnesium-manganese-oxide thermal conductivity versus

temperature is shown in Figure 2.4.

In this step, the porosity is assumed to be zero, and is replaced by the volume fraction of com-
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Figure 2.3: Thermal conductivity of manganese-oxide: An exponential curve is fitted through the
empirical data, giving the manganese-oxide thermal conductivity as a function of temperature. No
empirical data is found for temperatures over 800 °C, so the thermal conductivity in this region is
estimated by extrapolation. [1]

ponents. Since there is no void space in the mixed material, the only contributing mode of heat

transfer is conduction.

2.3 Effective thermal conductivity of a single pellet

After estimating the thermal conductivity of MgMnO2, the effective thermal conductivity of a

single porous pellet can be found as follows:

:pellet = :cond−pellet + :rad−pellet (2.19)

Considering the random structure of the porous, the geometrical mean model is used for the

conduction mode in the pellet as well.

:cond = :
qpellet
air :

(1−qpellet)
MgMnO2

(2.20)
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) (°C) :MgO :MnO :MgMnO2

0 52.6885 4.1893 13.4260
50 45.1292 4.0506 12.2776
100 38.7461 3.9165 11.2395
150 33.3789 3.7868 10.3054
200 28.8841 3.6614 9.4683
250 25.1337 3.5402 8.7215
300 22.0144 3.4230 8.0579
350 19.4262 3.3096 7.4703
400 17.2818 3.2001 6.9515
450 15.5051 2.8926 5.7340
500 14.0308 2.9917 6.0905
550 12.8029 2.8926 5.7340
600 11.7743 2.7968 5.4179
650 10.9058 2.7042 5.1360
700 10.1653 2.6147 4.8830
750 9.5271 2.5281 4.6541
800 8.9709 2.4444 4.4455
850 8.4815 2.3635 4.2542
900 8.0479 2.2852 4.0779
950 7.6629 2.2096 3.9152
1000 7.3223 2.1364 3.7650
1050 7.0242 2.0657 3.6272
1100 6.7692 1.9973 3.5018
1150 6.5591 1.9312 3.3891
1200 6.3970 1.8672 3.2900
1250 6.2867 1.8054 3.2050
1300 6.2324 1.7456 3.1347
1350 6.2384 1.6878 3.0796
1400 6.3089 1.6319 3.0398
1450 6.4474 1.5779 3.0150
1500 6.6570 1.5257 3.0045

Table 2.3: Estimated values of MgMnO2’s thermal conductivity based on a mean geometrical
model, and its components, magnesium-oxide and manganese-oxide
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Figure 2.4: Estimated thermal conductivity of magnesium-manganese oxide based on a
geometrical mean model versus temperature

In this equation, the thermal conductivity of MgMnO2 is calculated from the previous step, the

porosity of the pellet (qpellet) is equal to 0.264, and the thermal conductivity of air can be found by

the following equation:

:air =
2∑
==0

�8)
8 (2.21)

The radiation component is modeled using Rosseland diffusion approximation, as follows:

:rad =
16=2f)3

3Vpellet
(2.22)

In which:

Vpellet = "pellet
1 − qpellet
3pore−pellet

(2.23)

The radiation component is calculated with "pellet = 4 to maximize the effect of radiation. As

shown in Figure 4.5, evenwith the lowest coefficient, whichwill result in higher radiation effects, the
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Figure 2.5: Effective thermal conductivity of a single pellet versus temperature: As shown, the
radiation component does not affect the effective thermal conductivity of the pellet.

�0 2.4674E-2
�1 6.8601E-5
�2 1.2242E-8

Table 2.4: Polynomial fitting coefficients to estimate air thermal conductivity

radiation component has no role in the pellet’s effective thermal conductivity due to the microscale

size of porous (< 0.14%).

2.4 Effective thermal conductivity of thepackedbedofmagnesium-manganese-
oxide pellets

After finding the pellet’s effective thermal conductivity, the same procedure is followed to

estimate the effective thermal conductivity of the packed bed of magnesium-manganese-oxide

pellets. In this case, the solid phase is the pellet, and the porosity of the bed is 0.369. The

effective thermal conductivity of the packed bed is estimated considering conduction and radiation
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) (°C) :MgMnO2 :air :cond−pellet :rad−pellet :eff−pellet

0 13.4260 0.0247 2.5452 0.0000 2.5452
50 12.2775 0.0281 2.4657 0.0000 2.4657
100 11.2395 0.0314 2.3800 0.0000 2.3801
150 10.3054 0.0347 2.2921 0.0000 2.2921
200 9.4683 0.0379 2.2045 0.0000 2.2045
250 8.7215 0.0411 2.1194 0.0000 2.1195
300 8.0579 0.0442 2.0382 0.0001 2.0382
350 7.4703 0.0472 1.9618 0.0001 1.9619
400 6.9515 0.0502 1.8908 0.0001 1.8909
450 6.4939 0.0531 1.8254 0.0001 1.8255
500 6.0905 0.0559 1.7654 0.0001 1.7656
550 5.7340 0.0587 1.7106 0.0002 1.7108
600 5.4179 0.0614 1.6605 0.0002 1.6607
650 5.1360 0.0641 1.6144 0.0002 1.6147
700 4.8830 0.0667 1.5719 0.0003 1.5722
750 4.6541 0.0692 1.5324 0.0003 1.5328
800 4.4455 0.0717 1.4954 0.0004 1.4958
850 4.2542 0.0741 1.4605 0.0004 1.4609
900 4.0779 0.0765 1.4275 0.0005 1.4280
950 3.9152 0.0788 1.3962 0.0006 1.3967
1000 3.7650 0.0810 1.3666 0.0006 1.3673
1050 3.6272 0.0832 1.3390 0.0007 1.3397
1100 3.5018 0.0853 1.3134 0.0008 1.3142
1150 3.3891 0.0874 1.2902 0.0009 1.2911
1200 3.2900 0.0894 1.2699 0.0010 1.2709
1250 3.2050 0.0913 1.2527 0.0011 1.2538
1300 3.1347 0.0932 1.2390 0.0012 1.2402
1350 3.0796 0.0950 1.2292 0.0013 1.2305
1400 3.0398 0.0967 1.2233 0.0014 1.2248
1450 3.0150 0.0984 1.2216 0.0016 1.2231
1500 3.0045 0.1000 1.2237 0.0017 1.2254

Table 2.5: Estimated values of a single pellet effective thermal conductivity and its components,
conduction, and radiation. The radiation component is calculated for "pellet = 4

16



components, as follows:

:bed = :cond−bed + :rad−bed (2.24)

The radiation component is calculated as follows:

:rad−bed =
16=2f)3

3Vbed
(2.25)

In which:

Vbed = "bed
1 − qbed
3pellet

(2.26)

The radiation component of the packed bed effective thermal conductivity is calculated for different

extinction coefficients ("bed = 4 − 10), and the results are shown in Table 2.6. As shown, the

radiation component is strongly dependent on the extinction coefficient in higher temperatures.

Unlike the pellet, the radiation component of the packed is growing rapidly and becomes prominent

in higher temperatures.

The conduction component is calculated for different models and the results are shown in Figure

2.6. In order to find the appropriate model for the conduction, the theoretical modeling results are

compared with our experimental results, which will be discussed in the following chapters. The

comparison is made at ) = 310°C, the lowest temperature that the measurements are done. The

lowest temperature is chosen to minimize the contribution of the radiation component to the packed

bed effective thermal conductivity. Since the radiation component has a minor role, the conduction

component is the dominant term in the packed bed effective thermal conductivity. The results of

different modelings and experimental measurements are shown in Table 2.7.

The assumptions of parallel and series models are not realistic for the packed bed structure, and the

predicted thermal conductivity is not close to the experimental results. However, these values are

calculated to have an upper and lower limit for the packed bed. The geometric model assumptions

are applicable to the packed bed. However, this model overpredicts the packed bed’s effective

thermal conductivity. The Krupiczka model is based on long cylindrical particles, which is close to

the packed bed structure. The porosity of the packed bed is within the suggested range of porosity

by the model, and it predicts the most comparative values to our experimental results. Due to
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) (°C) :rad−bed ("bed = 4) :rad−bed ("bed = 6) :rad−bed ("bed = 8)
0 0.0092 0.0062 0.0046
50 0.0153 0.0102 0.0077
100 0.0236 0.0158 0.0118
150 0.0345 0.0230 0.0172
200 0.0482 0.0321 0.0241
250 0.0651 0.0434 0.0326
300 0.0857 0.0571 0.0428
350 0.1101 0.0734 0.0550
400 0.1388 0.0925 0.0694
450 0.1721 0.1147 0.0860
500 0.2103 0.1402 0.1051
550 0.2538 0.1692 0.1269
600 0.3029 0.2019 0.1515
650 0.3580 0.2387 0.1790
700 0.4194 0.2796 0.2097
750 0.4874 0.3250 0.2437
800 0.5624 0.3750 0.2812
850 0.6448 0.4299 0.3223
900 0.7348 0.4899 0.3674
950 0.8328 0.5552 0.4164
1000 0.9392 0.6261 0.4696
1050 1.0543 0.7029 0.5271
1100 1.1784 0.7856 0.5892
1150 1.3119 0.8746 0.6559
1200 1.4551 0.9701 0.7275
1250 1.6083 1.0722 0.8042
1300 1.7720 1.1813 0.8860
1350 1.9464 1.2976 0.9732
1400 2.1319 1.4212 1.0659
1450 2.3288 1.5523 1.1644
1500 2.5375 1.6917 1.2687

Table 2.6: Radiation component of the packed bed effective thermal conductivity for different
extinction coefficients

) (°C) Parallel Series Geometric Krupiczka Exp 1 Exp 2 Exp 3

310 5.4835 0.0873 1.3284 0.3150 0.4644 0.4722 0.4879

Table 2.7: The comparison between different conduction models and experimental results of the
packed bed effective thermal conductivity

18



Figure 2.6: The conduction component of the packed bed’s effective thermal conductivity
calculated based on different models

these reasons, this model is chosen for the conduction component, even though it under-predicts the

packed bed’s effective thermal conductivity. This can be due to neglecting the radiation components

or the assumption that we made to model the thermal conductivity of MgMnO2.

This model is given as follows:

:cond−bed = :air

(
:pellet
:air

) (
0.28−0.757 log (qpellet)−0.057 log

(
:pellet
:air

))
(2.27)

The effective thermal conductivity of the packed is calculated for different radiation components

("bed = 4 − 10), and the results are shown in Figure 2.7. The rate of increase in the effective thermal

conductivity of the packed in our experimental results (Table 5.3, 5.4, and 5.5) best matches the

theoretical modeling when "bed = 6. The radiation component is calculated for "bed, is shown

in Table 2.8, along with the conduction component and the overall effective thermal conductivity

of the packed bed. These results are plotted in Figure 2.8, as it shows the conduction component

is the dominant mode for temperatures below 900 °C. This component stays relatively constant in
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Figure 2.7: Effective thermal conductivity of the packed bed of magnesium-manganese-oxide
pellets versus temperature for different extinction coefficients ("bed = 6).

higher temperatures while the radiation component overgrows, so we can conclude that the rate of

increase in the packed bed’s effective thermal conductivity is attributed to the radiation component.
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) (°C) :pellet :air :cond−bed :rad−bed :eff−bed

0 2.5452 0.0247 0.2426 0.0046 0.2472
50 2.4657 0.0281 0.2596 0.0077 0.2672
100 2.3801 0.0314 0.2742 0.0118 0.2860
150 2.2921 0.0347 0.2868 0.0172 0.3040
200 2.2045 0.0379 0.2976 0.0241 0.3217
250 2.1195 0.0411 0.3070 0.0326 0.3396
300 2.0383 0.0442 0.3152 0.0428 0.3580
350 1.9619 0.0472 0.3223 0.0550 0.3774
400 1.8909 0.0502 0.3287 0.0694 0.3980
450 1.8255 0.0531 0.3343 0.0860 0.4203
500 1.7656 0.0559 0.3393 0.1051 0.4445
550 1.7108 0.0587 0.3439 0.1269 0.4708
600 1.6607 0.0614 0.3481 0.1515 0.4996
650 1.6147 0.0641 0.3520 0.1790 0.5310
700 1.5722 0.0667 0.3555 0.2097 0.5652
750 1.5328 0.0692 0.3587 0.2437 0.6024
800 1.4958 0.0717 0.3616 0.2812 0.6428
850 1.4609 0.0741 0.3642 0.3224 0.6866
900 1.4280 0.0765 0.3665 0.3674 0.7339
950 1.3967 0.0788 0.3686 0.4164 0.7850
1000 1.3673 0.0810 0.3704 0.4696 0.8400
1050 1.3397 0.0832 0.3721 0.5271 0.8992
1100 1.3142 0.0853 0.3736 0.5892 0.9628
1150 1.2911 0.0873 0.3752 0.6559 1.0311
1200 1.2709 0.0894 0.3768 0.7275 1.1043
1250 1.2538 0.0913 0.3786 0.8042 1.1828
1300 1.2402 0.0932 0.3182 0.8860 1.2042
1350 1.2305 0.0950 0.3830 0.9732 1.3562
1400 1.2248 0.0967 0.3858 1.0659 1.4517
1450 1.2231 0.0984 0.3890 1.1644 1.5534
1500 1.2254 0.1000 0.3304 1.2687 1.5991

Table 2.8: Effective thermal conductivity of the packed bed of magnesium-manganese-oxide
pellets and its components, conduction, and radiation.
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Figure 2.8: Effective thermal conductivity of the packed bed of magnesium-manganese-oxide
pellet versus temperature, and its components, conduction, and radiation (for "bed = 6). As
shown in the figure, the radiation component grows rapidly with temperature and is the dominant
mode in higher temperatures.
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CHAPTER 3

TRANSIENT HOT-PROBE METHOD

3.1 Introduction

The transient hot-wire method is one of the most common and well-established methods for

measuring thermal conductivity [26]. This method uses the rate of temperature change of a 1-D heat

source embedded in the material to determine the effective thermal conductivity. This method has

been used widely due to its simplicity and adopted for measuring the effective thermal conductivity

of different materials [8].

Van der Held et al. [27, 28] developed an apparatus to determine the thermal conductivity of liquids

using transient methods. Blackwell [29] recognized inadequacies in the mathematical analysis of

the transient hot-wire method in some applications, as follows:

1- The assumption of line-source of heat, which is not generally valid, e.g., in geophysical applica-

tions.

2- Neglecting thermal contact resistance between the hot probe and the external medium.

3- Semi-empirical estimation of the minimum probe length to ensure radial flow conditions.

He revised the theory and the experimental method accordingly and proposed a modified transient

method to determine the thermal conductivity of insulating materials. He also derived a condition

for the minimum probe length to radius ratio to avoid significant errors due to axial heat losses [30].

Vos [2] discussed a few aspects of the transient hot-wire method, for example, the necessary con-

ditions to hold the linear relationship between the temperature rise of hot wire and ln(C). He also

defined an upper and a lower limit for the linear section. The temperature rise and ln(C) can deviate

from a linear due to different reasons. One of the reasons of deviation is the inhomogeneity of the

material. In this case, long-duration measurements are necessary to reflect the material’s average

thermal conductivity.

Jaeger [31] improved the hot-probe technique by measuring the temperature rise at a defined dis-
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tance from the linear heat source. Vries [32] extended this theory to the case of a homogeneous

probe of finite conductivity with a line source embedded in its center.

3.2 Theory

The three-dimensional, homogeneous differential equation of heat conduction in the cylindrical

coordinate system assuming constant properties is given by:

m2)

mA2 +
1
A

m)

mA
+ 1
A2
m2)

mq2 +
m2)

mI2
=

1
U

m)

mC
(3.1)

If the temperature is independent of I and q direction, the differential equation can be simplified to

the transient 1-D heat conduction differential equation as follows:

m2)

mA2 +
1
A

m)

mA
=

1
U

m)

mC
(3.2)

This equation can be solved for different boundary and initial conditions.

The external medium can be modeled as a 1-D infinite hollow cylinder with an inner diameter of

2'B, in which 'B is the outer diameter of the hot probe. The temperature of the external medium

can be found by solving the transient, 1-D heat conduction equation considering the following

boundary conditions.

1- Constant heat flux at A = 'B (due to the constant heat generation in the hot probe).

2- Infinite hollow cylinder (The external medium’s radius is much larger than the hot probe).

The general solution for the temperature distribution is given by [16]:

) (A, C) = &

4c:

ˆ C

C0

1
C − C0

exp

(
A2 + '2

B

4U(C − C0)

)
�0

(
A'B

2U(C − C0)

)
3C (3.3)

In which U is the thermal diffusivity, and �0 is the modified Bessel function of zero order.

Knowing the heat flux and the transient temperature at any point of the medium, the thermal

conductivity can be calculated by solving Equation 3.3. However, this equation has a complex

form, and further simplification can be done.

Marmoret et al.[16] used the following general solution to the transient, 1-D heat conduction
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Figure 3.1: A schematic of the external medium: the external medium is modeled as an infinite
hollow cylinder with constant heat flux at the inner boundary

equation to estimate the thermal conductivity as follows:

:)

&
= � (�>,Ω, �8) = 8Ω2

c3

ˆ ∞
0

1 − exp (−�>.G2)
G3Δ(G)

3G (3.4)

In which,

Δ(G) =
[
G�0(G) −

(
2Ω − G

2

�8

)
�1(G)

]2

+
[
G.0(G) −

(
2Ω − G

2

�8

)
.1(G)

]2

(3.5)

In this equation, �0 and �1 are the Bessel functions of the first kind of order 0 and 1, .0 and .1 are

Bessel functions of the second kind of order 0 and 1.

This solution is expressed in the form of three non-dimensionalized numbers: Biot number (�8),

Fourier number (�>), and Interia contrast (Ω). The contact resistance of the air conductance ('2)

is considered in the equation as well. These three dimensionless parameters are introduced in the

following paragraphs:

Biot number (�8): In general, the Biot number represents the ratio between thermal resistance by

conduction and thermal resistance by convection at the body’s surface. The Biot number smaller

than 0.1 implies that the heat conduction inside the body is much faster than the heat convection

outside, so the temperature gradient is negligible inside the body. In the hot probe application, the

Biot number can be calculated based on thermal conductivity (:), probe volume (+B), probe surface

25



(�B), and probe length (�B), as follows:

�8 =

+B/�B
:�B

1
��B

=
'B

:.'2
(3.6)

In which � is the conductance, the inverse of the contact resistance ('2).

Fourier number (�>): The Fourier number determines the ratio of the heat conducted through the

medium and the heat stored in the material and is defined as follows:

�> =
U.C

'2
B

(3.7)

Inertia contrast (Ω): Inertia contrast represents the ratio between the heat capacity of the material

((<) and the heat capacity of the probe ((B), which is equal to:

Ω =
(B

(<
=
c'2

B dB�B

(<
(3.8)

Knowing the temperature profile at the external surface of the hot probe, the three non-dimensionalized

numbers, �8, �>, and Ω, can be estimated by taking the inverse of the integral using optimization

methods. Subsequently, the contact resistance ('2), thermal conductivity (:), and thermal diffu-

sivity (U) can be calculated.

Marmoret et al. [16] demonstrated that this method accurately predicts the properties of glass wool.

However, the complex form of the general solution is a drawback for this analysis method.

Blackman [29] derived the approximated solution of the hot probe temperature at small- and large-

time. The large-time solution gives the temperature of the probe as a function of time, as follows:

Δ)< (C) ≈ � ln (C) + � + 1
C
{� ln (C) + �} (3.9)
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In which Δ)< is the temperature rise of the probe, C is time, and �, �, �, and � are constant

coefficients, which can be derived from the following equations:

� =
&

4c:
(3.10)

� = ln

(
4U
'2
B

)
− W + 2:'2

'B
(3.11)

� =

(
A2

2U

) [
1 −

(
<probe2?U

c'2
B :

)]
(3.12)

� =

(
A2

2U

) 
ln

(
4U
'2
B

)
− W + 1 −

[
ln

(
4U
A2

)
− W + 2:

'B�

]
<probe2?U

c'2
B !:


(3.13)

In which & is the probe power per length, : is the effective thermal conductivity, U is the thermal

diffusivity, 'B is the probe radius, W is Euler’s constant equal to 0.5772, <probe is the mass of the

probe, and �? is the specific heat capacity of the probe.

In large-time, terms related to � and � become insignificant, so Equation 3.9 can be simplified as

follows:

Δ)< =
&

4c:
ln (C) + �′ (3.14)

In which,

�′ =
&

4c:
� (3.15)

So the thermal conductivity can be derived as follows:

: =
&

4c () (Cmax) − ) (Cmin))
ln

(
Cmax
Cmin

)
(3.16)

As mentioned before, Blackman’s analysis is based on the long-time assumption, so a lower limit

on time needs to be considered for this analysis. This lower limit (Cmin) is associated with heating

the 1-D hot probe evenly and heat flux propagation in the external medium. In materials with

a non-homogeneous structure, the minimum time to reach the equilibrium state is higher than

homogeneous materials, to neglect the spatial effect of the external medium.

An upper limit on time (Cmax) is needed as well. Since the radius of the external medium is finite
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(even though it is much larger than the hot probe radius), the heat flux will eventually reach the

outer boundary and starts leaking out. Since the hot probe method is developed based on the

heat conduction of an infinite cylinder, this equation does not hold up when the heat reaches the

boundary.

Vos [2] suggested the following lower and upper limits for the time:

Cmin =
50'2

B

4U

Cmax =
0.63
4U

However, the ASTM standard [33] suggests considering the most linear part of the (Δ)< − ln C) plot

to calculate the thermal conductivity whenever the curve deviates from linearity.
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CHAPTER 4

EXPERIMENTAL METHODS

4.1 Material

Figure 4.5 shows a picture ofmagnesium-manganese-oxide pelletst. Themagnesium-manganese-

oxide pellets are synthesized by a solid-state mixing method followed by heat treatment. First, the

magnesium-oxide powder is mixed with manganese-oxide using a cement mixer. Cylindrical zir-

conia milling media is added to assist in the mixing process. Mixing takes about 3 to 4 hours. The

mixed powder is pelletized using an automatic pellet press (TDP 5 Desktop Tablet Press from LFA

machines).

When the mixing process is completed , the pressed pellets are heat treated in a box furnace. Heat

treatment is performed at 1500 °C for 24 hours followed by 4 hours at 1000 °C. The physical

properties of magnesium-manganese-oxides are listed in Table 4.1.

Figure 4.1: Magnesium-manganese-oxide pellets: These pellets are made by solid-state mixing of
the magnesium- and manganese-oxide followed by a heat-treatment process. The mixed powder is
added the mixed powder to an automatic pellet press.
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Diameter (mm) 3.7
Height (mm) 3
porosity 0.264
Porous diameter (mm) 0.0003

Table 4.1: Magnesium-manganese-oxide pellet’s physical properties

4.2 Experimental Setup

The experimental setup and hot probe are designed based on ASTM C1113 standard [34]. In a

commercial heating probe, the temperature measurement device is packed with the 1-D heat source.

But in this thesis, we used the platinum wire both as the heat generation source and the temperature

measurement device as it is suggested ASTM C1113 [34]. In the following section, the design of

the hot probe is explained.

4.2.1 Hot Probe

A 0.5 mm diameter platinum wire with 99.95% purity (SigmaAldrich), covered with a thin alumina

sheet, is used both as the hot probe and the temperature measurement device. Heat is generated by

passing a constant current through the platinum wire, and the platinum wire’s temperature is calcu-

lated by measuring the wire’s electrical resistance. The thin alumina sheet insulates the platinum’s

wire from to packed bed to prevent the electrical current leakage since magnesium-manganese-

oxide pellets are electrically conductive at higher temperatures.

Platinum is chosen as the wire material because of its advantageous properties. First, the platinum’s

melting temperature is very high (1768 °C), making it a perfect candidate for high-temperature

experiments; second, platinum is chemically stable and does not oxidize in higher temperatures; and

third, The electrical resistance of platinum is known to have high accuracy and can be represented

as a second-order polynomial of temperature. So, by knowing the wire’s electrical resistance, the

temperature can be calculated with high accuracy.

Two secondary platinum wires with the same purity are welded on both sides of the platinum wire’s
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center with a distance of 7.5 cm for voltage measurements. It is crucial to have the same material

for the secondary wires as the primary wire to avoid measurement errors due to the Seebeck effect.

The wire resistance can be calculated by measuring the voltage across the secondary wires and

dividing by the current passed through the primary wire. Even though this small portion is used for

the measurements, both primary and secondary wires are extended out of the furnace. The primary

platinum wire (the heat generation source) is extended to prevent melting and oxidation, and the

secondary wires are continued to avoid the Seebeck effect at elevated temperatures.

Figure 4.2: A picture of the hot probe: The primary platinum wire with a diameter of 0.5 mm is
covered by a thin alumina sheet (OD = 1.7 mm), and used both as the 1-D heat generation source
and the temperature measurement device. Two secondary platinum wires with the same purity are
welded across the center for voltage measurement. As shown, both primary and secondary wires
are extended out of the test container.

4.2.2 Test Apparatus

The experimental setup is designed based on ASTM C1113 standard [34]. Figure 4.3 shows a

schematic of the test apparatus.

The bed space is made by placing two low thermal conductive bricks with a distance of 15

cm. A small hole is placed at the center of one of the bricks to insert the hot probe. On the other

brick, a sector with an angle of 45° is removed to pack the pellets. After placing the hot probe at

the center of the bricks, alumina paste is applied to secure the hot probe’s location. After drying

the paste, the hot probe and the insulation bricks are slid into the test container (An alumina tube
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Figure 4.3: A schematic of test apparatus: A constant current generated by a DC power supply
passed through the primary platinum wire. The voltage across the shunt and the secondary
platinum wire is measured to calculate the current and the electrical resistance of the primary
wire. A B-type thermocouple is inserted inside the packed bed to measure the bed temperature.
Insulation materials are inserted outside of the insulation bricks to prevent heat loss from the ends.

with an inner diameter of 2 inches). The insulation material is packed outside of the insulation

brick without the empty sector to secure the bricks’ location. Then the packing of the pellets is

achieved by pouring and shaking. A B-type thermocouple is inserted inside the packed bed during

the packing process. After packing the bed, the insulation material is placed outside the second

insulation brick to prevent heat loss from the container’s end. Finally, the test container placed in a

tube furnace (Sentrotech, Model: STT-1600 °C-12) [35], to perform the calibration and experiment

process. The physical dimensions of the test setup are shown in Table 4.2.

After placing the test container in the tube furnace, the primary platinum wire is connected to
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Bed length (cm) 15
Container ID (in) 2
container length (cm) 46
platinum wire length (cm) 7.5
platinum wire diameter (mm) 0.5
Probe OD (mm) 1.7
Bed porosity 0.369

Table 4.2: Test setup dimension

Figure 4.4: Test container in the tube furnace: The thermocouple and voltage measurement wires
are connected to a LabJack T7 pro. Two compressed air tubes were installed outside the tube
furnace to promote the cooling process.

a DC power supply, with a shunt placed in series downstream of the platinum wire. The voltage

across the shunt and the platinum wire is measured by the data acquisition system. The current in

the circuit is calculated by measuring the voltage across the shunt, as follows:

� =
+shunt
'shunt

(4.1)
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And respectively, the resistance of the platinum wire is calculated as follows:

'wire =
+wire
�

(4.2)

Kipling [36] is used as the data acquisition software. The LabJack T7 pro’s precision is limited by

the recording frequency. For our experiment, the precision is far more important than frequency,

so the precision is set to the highest degree, and subsequently, the recording frequency is set to 2

Hz. This frequency is fast enough for our application.

4.3 Calibration

Calibration is conducted per C1113 standard [34]. The purpose of calibration is to find the

electrical resistance of the platinum wire as a function of temperature by fitting a second-order

polynomial to the experimental electrical resistance measurements. Calibration measurements are

performed in 100 °C intervals, starting from 300 °C and ending at 1300 °C. The following procedure

is followed for each measurement:

The furnace is ramped up from the initial temperature with a rate of 10 °C per minute. Once

the desired temperature is reached, the furnace is dwelled for 4 hours to stabilize temperature

throughout the packed bed. After stabilizing the temperature, a 0.05� current is passed through the

platinumwire. This current is low enough to ensure the wire’s temperature is not rising significantly

with respect to the packed bed. The voltage across the wire and the calibration shunt (100 Ω) is

recorded for 30 s. The wire’s electrical resistance is calculated and plotted versus the packed bed’s

temperature, measured by the B-type thermocouple. Once the wire resistance is calculated, the

setup is ready to move to the subsequent measurement.

After conducting the calibration procedure for all temperatures, a second-order polynomial is fitted

through the experimental measurements to obtain the calibration curve.
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Figure 4.5: A schematic of the calibration procedure for each measurement.

4.4 Test Method

Similar to the calibration procedure, the furnace is ramped up from the initial temperature to

reach the desired temperature with a rate of 10 °C per minute. Once the desired temperature is

reached, the furnace is dwelled for 4 hours to stabilize the temperature of the test section. After

keeping the furnace at a constant temperature for four hours, a constant current (3.8 to 4.2 �),

is passed through the platinum wire for 300 seconds. Unlike the calibration, this current is high

enough to raise the platinum wire’s temperature with respect to the packed bed. During this

period, the bed’s temperature, the voltage across the shunt, and the voltage across the platinum

wire are recorded, and the electrical resistance of the platinum wire is calculated based on the

voltage measurements. This procedure is repeated from 300 to 1300 °C in 100 °C intervals for

three experiments. An additional measurement at 1400 °C is done in experiment 3 as the final

measurement.
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Figure 4.6: A schematic of the experimental procedure
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Calibration

The platinum wire’s electrical resistance at different temperatures is shown in Table 5.1. A

second-order polynomial curve is fitted through the experimental data. The inverse of this curve

predicts the platinum wire’s temperature as a function of electrical resistance as follows:

)< = 01 + 02
√
03 + 04' (5.1)

The values of 01 to 04 are shown in Table 5.2.

The polynomial fitting has an '2 of 0.999978, showing the high accuracy of the calibration

process. The measured electrical resistance values are compared to the calculated resistance based

on the resistivity data from the literature [37], showing excellent agreement (Figure 5.1). The

calibration process was repeated three times at different stages of the experiment, resulting in

similar calibration curves.

) (°�) '(Ω)
314.26 0.082391
411.69 0.095537
510.28 0.108342
608.07 0.120451
704.28 0.132164
801.65 0.143497
900.21 0.154493
1000.92 0.165161
1095.94 0.175056
1191.87 0.184905
1288.40 0.193665

Table 5.1: The electrical resistance of the platinum wire at various temperatures measured in the
calibration process

37



01 3353.6170
02 -8.8508E-12
03 1.6495E+29
04 -5.7281E+29

Table 5.2: Calibration curve coefficients

Figure 5.1: Calibration Process: The experimental data are shown with black dots. A second-order
polynomial curve is fitted through the experimental data, displayed by the dashed line. The
experimental resistance data are compared to the calculated values based on the electrical
resistivity of platinum from the literature (shown in green dots), offering excellent agreement.

5.2 Experimental results

Once the data for each measurement is collected, the following steps are taken for data analysis.

First, the wire’s temperature is calculated based on the wire’s electrical resistance using the inverse

of the calibration curve. A sample figure of this procedure is shown in Figure 5.4. After calculating
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Figure 5.2: A schematic of data analysis steps to calculate the effective thermal conductivity of
packed bed of magnesium-manganese-oxide pellets

the wire’s temperature, the temperature rise can be derived by subtracting the temperature at C = 0

from wire’s temperature. Then temperature rise of the platinum wire is plotted versus ln(C), and

a straight line is fitted through the most linear segment of the curve. This segment was chosen by

maximizing '2 as suggested by ASTM standard [33]. Samples of these plots are shown in Figures

5.4 - 5.7. After fitting the straight line, the effective thermal conductivity of the packed bed is

calculated as follows:

:eff =
&

4c<
(5.2)

In which < is the slope of the linear curve, and & is the power of the platinum wire per length,

which can be calculated as follows:

& =
+wire�
;wire

(5.3)
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And ;wire is the length of the platinum wire.

This procedure is repeated for all of the measurements in three experiments. The results are shown

Figure 5.3: A sample plot of the platinum’s wire electrical resistance and the calculated wire’s
temperature versus time. Experiment 3 - ) = 300°C.

in Tables 5.3 - 5.5. The cells with green color have an '2 higher than 0.9998, in which the noise

level is low and have the highest level of accuracy. Two measurement in experiment 1 have an '2

lower than 0.999, which are ruled out due to the relatively high level of noise. As shown in the

Table 5.5, Experiment 3 has the highest '2 values and '2 and Cstart tend to decrease with increasing

temperature. The lower Cstart in higher temperatures is consistent with the lower limit introduced

by Vos [2]. As the effective thermal conductivity increases, less time is need for the material to

reach thermochemical equilibrium.

5.3 Uncertainty Analysis

In this section, the effect of Cstart on the effective thermal conductivity of the packed bed is

discussed. As mentioned before, for all of the measurements, Cstart is chosen by maximizing '2, as

suggested by ASTM standard [34], rather than the lower limit offered by Vos [2]. This is due to the
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) (°C) :eff Cstart '2

312.5 0.4644 81.5 0.9990
411.6 0.5296 55.0 0.9991
509.8 0.6097 55.0 0.9965
603.8 0.7240 55.0 0.9986
704.1 0.8152 55.0 0.9991
800.1 0.8470 20.5 0.9942
898.9 0.9534 45.0 0.9974
999.0 1.0021 16.5 0.9885
1092.7 1.2033 40.5 0.9974
1190.0 1.3410 25.0 0.9961
1287.5 1.3970 33.5 0.9814

Table 5.3: Experiment 1- The effective thermal conductivity of the packed bed of
magnesium-manganese oxide pellets measured in Experiment 1

) (°C) :eff Cstart '2

312.6 0.4722 73.7 0.9986
409.8 0.5536 66.8 0.9987
509.8 0.6403 60.4 0.9986
606.7 0.7483 54.6 0.9985
704.1 0.8152 33.6 0.9974
800.8 0.9415 60.5 0.9998
898.9 0.9995 54.8 0.9996
999.7 1.1113 45.0 0.9986
1097.3 1.2726 40.0 0.9995
1190.0 1.3911 33.5 0.9992
1295.2 1.4543 15.02 0.9967

Table 5.4: Experiment 2- The effective thermal conductivity of the packed bed of
magnesium-manganese oxide pellets measured in Experiment 2
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Figure 5.4: Temperature rise of the platinum wire versus ln(C). Experiment 3 - ) = 300°C

non-homogeneous structure of the packed bed; as non-homogeneous materials need a longer time

to reach the equilibrium state.

Two measurements from experiment one are chosen to assess the effect of Cstart on the effective

thermal conductivity of the packed. The first measurement is ) = 700°C, with a maximum '2 of

0.9991, the highest achieved '2 in the set, and the second one is ) = 800°C with an '2 of 0.991,

showing relatively high levels of noise in the measurement. The plots for these measurements are

shown in Figures 5.8 - 5.11.

The effective thermal conductivity is calculated by choosing different ln (Cstart) for these two

measurements, and results are shown in Tables 5.6, and 5.7. For a better comparison, the results

are plotted in Figure 5.12. The red dot indicates the highest '2 achieved in the measurement. As

shown in Figure 5.12, the effective thermal conductivity increases rapidly with increasing Cstart

before the red dot. The effective thermal conductivity still continues to increase after the red dot,

but with a significantly lower rate. The error between the highest calculated thermal conductivity
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Figure 5.5: Temperature rise of the platinum wire versus ln(C). Experiment 3 - ) = 600°C

and the thermal conductivity with the highest '2 is three percent for ) = 700 °C, and seven percent

for ) = 800 °C. The seven percent is chosen as the uncertainty level for all measurements.

Although the effective thermal conductivity converged for both cases, the noisier measurement

achieved the highest '2 at a lower Cstart compared to the previous and subsequent temperature 5.3.

Choosing the lower Cstart results in underpredicting the effective thermal conductivity. So, it can be

concluded that the noise level of measurement is crucial for accurate results. Due to this fact, the

results of two measurements with '2s below 0.99, are discarded. The results of three experiments,

beside the mathematical modeling with "bed = 6 is shown in Figure.
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Figure 5.6: Temperature rise of the platinum wire versus ln(C). Experiment 3 - ) = 1000°C

Figure 5.7: Temperature rise of the platinum wire versus ln(C). Experiment 3 - ) = 1400°C
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) (°C) :eff Cstart '2

310.0 0.4879 122 0.9997
410.3 0.5796 90.1 0.9996
508.7 0.6403 81.5 0.9996
606.6 0.7589 67.0 0.9994
704.3 0.8707 60.5 0.9995
799.7 0.9534 49.5 0.9993
898.7 0.9988 33.5 0.9993
999.6 1.1302 30.0 0.9988
1097.6 1.1934 25.0 0.9995
1195.9 1.3663 22.5 0.9988
1294.6 1.5172 18.5 0.9978
1394.0 1.6430 11.5 0.9970

Table 5.5: Experiment 3- The effective thermal conductivity of the packed bed of
magnesium-manganese oxide pellets measured in Experiment 3
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ln (Cstart) Cstart(B) :eff '2

0.6935 2.0 0.6394 0.9608
1.0986 3.0 0.6556 0.9657
1.5041 4.5 0.6769 0.9729
2.0149 7.5 0.7098 0.9836
2.5257 12.5 0.7447 0.9922
3.0204 20.5 0.7747 0.9966
3.5116 33.5 0.7996 0.9986
4.0073 55.0 0.8188 0.9991
4.5034 90.5 0.8307 0.9986
5.0006 148.5 0.8406 0.9962
5.5013 245.0 0.8461 0.9550

Table 5.6: The effective thermal conductivity of the packed bed of magnesium-manganese-oxide
pellets for different Cstart - Experiment 1 - ) = 700°C

Figure 5.8: The temperature rise of the platinum wire versus ln(C) - Experiment 1 - ) = 700°C
with an '2 of 0.9991, the highest achieved '2 in the experiment set.
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Figure 5.9: The temperature rise of the platinum wire versus ln(C) - Experiment 1 - ) = 800°C
with an '2 of 0.9940, one the lowest achieved '2 in the experiment set.

ln (Cstart) Cstart(B) :eff '2

0.6932 2.0 0.6974 0.9605
1.0986 3.0 0.7163 0.9659
1.5041 4.5 0.7410 0.9737
2.0149 7.5 0.7777 0.9842
2.5257 12.5 0.8135 0.9907
3.0204 20.5 0.8470 0.9942
3.5116 33.5 0.8691 0.9938
4.0073 55.0 0.8813 0.9900
4.5034 90.5 0.8952 0.9805
5.0006 148.5 0.9061 0.9492
5.5013 245.0 0.8733 0.4359

Table 5.7: The effective thermal conductivity of the packed bed of magnesium-manganese-oxide
pellets for different Cstart - Experiment 1 - ) = 800°C
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Figure 5.10: The temperature rise of the platinum wire versus ln C - Experiment 1 - ) = 700°C

Figure 5.11: The temperature rise of the platinum wire versus ln C - Experiment 1 - ) = 800°C
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Figure 5.12: The effect of Cstart on calculation of the effective thermal conductivity of the packed
bed at ) = 700 °C and ) = 800 °C - Experiment 1
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Figure 5.13: The effective thermal conductivity of the packed bed of
magnesium-manganese-oxide pellets measured by a modified transient hot-probe method:
Experiments are done in three sets to ensure the repeatability of measurements. The experimental
results are compared to the theoretical modeling, and the result shows the best agreement when
"bed = 6.
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CHAPTER 6

CONCLUSION

In this thesis, a modified transient hot-wire method is used to determine the effective thermal

conductivity of the packed bed of magnesium-manganese-oxide pellets at various temperatures

(300-1400 °C with 100 °C intervals). The modified transient hot-wire is a simple and effective

method to measure effective thermal conductivity at higher temperatures. This method predicts

the thermal conductivity based on the linear segment of the temperature rise versus ln(C). The

experimental results show the effective thermal conductivity of the packed bed is strongly depen-

dent on the temperature, increasing from 0.45 to 1.64
(
,

<°�

)
in temperatures 300 to 1400 °C.

This increase in the effective thermal conductivity is primarily attributed to radiation. Experiments

are conducted in three sets to ensure repeatability, and the results of the three experiments were

consistent with each other.

Even though this method is mathematically simple, it is highly sensitive to the data noise level.

Experiments with a higher level of noise ('2 < 0.998) can result in underpredicting the effective

thermal conductivity, so having the highest level of accuracy in measurements is crucial for this

technique. The uncertainty is calculated by choosing different portions of the Δ) − ln(C) curve to

estimate the effective thermal conductivity.

The experimental results are compared to a dual-porosity model, estimating the effective thermal

conductivity at small-scale (magnesium-manganese-oxide pellet) and large-scale (packed bed).

The theoretical model consists of two terms, conduction and radiation. Krupiczka model is used

for the conduction component of the packed bed. The radiation component is estimated based on

the Rosseland diffusion approximation, using different extinction coefficients. The rate of increase

in the effective thermal conductivity of the packed bed is best matched when "bed = 6, which

is a coefficient in the extinction coefficient offered by Hsu and Howel [23]. The dual-porosity

model predicts lower values of the packed bed’s effective thermal conductivity compared to exper-

imental results. The underprediction can be due to several model assumptions. For example, the
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thermal conductivity of magnesium-manganese-oxide is estimated by a mixing model, while we

know magnesium-oxide and manganese-oxide chemically bond and form new compounds, such as

perovskites, during the solid mixing process. Furthermore, the thermal conductivity of manganese-

oxide has to be extrapolated for temperatures above 800 °C due to the lack of experimental data,

which may introduce errors for higher temperatures. Due to these shortcomings of theoretical

modeling, the experimental measurements are needed.
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