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ABSTRACT 

USING THE “KITE” FRAMEWORK FOR UNDERSTANDING LANDSCAPE CHANGE AND 
IMPROVING EAST AFRICAN AGRICULTURAL SYSTEMS UNDER CLIMATE CHANGE 

By 

Dan Wanyama 

The Mount Elgon Ecosystem (MEE), an important hydrological and socio-economic area 

in East Africa, has exhibited significant landscape changes, driven by both natural factors and 

human activities, therefore leading to more frequent natural disasters (frequent and extended 

droughts, floods, and landslides). Yet, few studies have focused on the MEE socio-ecological 

system; no comprehensive knowledge exists of how humans and nature interact, at multiple 

scales, to drive ecosystem-wide landscape changes.  

This dissertation focuses on three interrelated questions: (1.) What is the nature and 

magnitude of change in MEE greenness for the period 2001-2018, and how is this change related 

to long-term trends and variability in MEE precipitation? (2.) How is ecological and environmental 

(eco-environmental) vulnerability distributed across the MEE, and what are the major factors 

driving these patterns? and (3.) How will the MEE landscape change in the future, and what 

opportunities exist for streamlining livelihood improvement and environmental conservation 

efforts? 

Study 1 characterized comprehensively, over multiple time scales, recent patterns and 

trends in MEE vegetation greening and browning. The MEE was found to exhibit significant 

variability in vegetation dynamics and precipitation regimes. There was persistent greening and 

browning at different time scales and this change was attributed to both natural factors (including 

changing precipitation) and anthropogenic factors (especially the vegetation-to-cropland 

conversion). The study also concluded that MEE precipitation had increased substantially in the 

post-2000 era, which influenced greening and browning patterns observed in the 2006-2010 

period. The integration of Mann–Kendall, Sen’s slope and bfast (breaks for additive season and 



 

 

trend) proved useful in comprehensively characterizing recent changes in vegetation greenness 

within the MEE.  

Study 2 examined eco-environmental vulnerability for the MEE using freely available 

remote sensing (RS), topographic, and socio-economic data. The study found that the majority of 

the MEE (comprising savannas, grasslands, and most of the agricultural land in Ugandan MEE) 

was moderately vulnerable based on the analysis methods and variables used. The eco-

environmental vulnerability index (EEVI) showed a marked increase in vulnerability with decrease 

in elevation. Eco-environmental vulnerability was strongly associated with multi-year variables 

based on precipitation, temperature, and population density. Moreover, precipitation distribution 

was changing especially in the wet season, thus adding another layer of risk for agriculture and 

ultimately for local community livelihoods. 

Study 3 simulated possible future land use changes in the MEE based on existing RS 

LULC products and a well-known land use change model. The study projected that agriculture 

will possibly expand from approximately 58% in 2001 to more than 64% in 2033 if current and 

future LULC transformation follows rates in 2001-2017. These new croplands will occur mostly 

around edges of the protected forest and zones of transition between mixed vegetation and 

existing croplands. Due to the unpredictable LULC transitions in the MEE, simulating forest-to-

cropland conversion was less accurate compared to mixed-to-cropland conversion.  

This research provides a more complete explanation of the underlying complex human-

environment interactions shaping the MEE landscape. This is the first study to comprehensively 

assess landscape dynamics at multiple scales (10-day, 16-day, monthly, seasonal, and 

household). It is also the first to define and assess at the annual scale, eco-environmental 

vulnerability as influenced by climate, topographic and socio-economic variables. In addition, by 

simulating future LULC change, this research provides the opportunity to quantify and anticipate 

possible LULC changes in the MEE. This research relies on publicly available RS and geospatial 

datasets and therefore analyses conducted here can easily be translated to other similar regions.  
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CHAPTER 1. INTRODUCTION 

1.1 Research Context 

The synergistic effects of rapid population increase, climate change and variability, 

economic development, and human activities have resulted in undesirable effects on the 

environment. Global environmental temperatures have increased, since the 20th century, causing 

significant changes in the global climate (Guo et al. 2019). As a result, precipitation has become 

more variable (Nguyen et al. 2018), animal and plant species loss has intensified, and frequencies 

and magnitudes of environmental hazards have increased (Guo et al. 2019). Further, in many 

parts of the world, populations and natural resource extraction have increased substantially, and 

the self-purification and restorative ability of ecosystems have declined, thus rendering both 

human and natural systems more fragile (Zhong-Wu et al. 2006; Nandy et al. 2015; Guo et al. 

2019). As such, during these climate change times, the world faces an unprecedented double 

challenge: “to eradicate hunger and poverty and to stabilize the global climate before it is too late” 

(FAO 2016). The big task, therefore, is to increase food production while fostering sustainability 

of Earth’s environmental systems (Atzberger 2013). 

Climate change and variability threatens food security globally (Nelson et al. 2009; FAO 

2016), but developing nations are more at risk due to poverty, their overdependence on local 

natural resources, inadequate capacity to adapt to change (Bryan et al. 2013; Kabubo-Mariara & 

Kabara 2015), low technological advancement (Mwendwa & Giliba 2012), and environmental 

stress (Norrington-Davies & Thornton 2011). These nations have large rural populations 

dependent on rainfed agriculture, extensive areas of low agricultural productivity, widespread 

poverty and high climatic risks (Vermeulen et al. 2012). These underlying characteristics are 

significant drivers of food insecurity in these nations. As populations increase, the need for more 

food also increases and this leads to the increased conversion of forests and natural vegetation 

to agriculture, pasture, and settlement (Government of Kenya 2009; Maitima et al. 2009). As a 

result, the proportion of agricultural land continues to increase while forests and other natural 
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vegetation shrink (Figure 1.1) – thus threatening important environmental processes. Besides, 

fluctuations in seasonal rainfall patterns and varying temperatures influence and sometimes 

diminish the suitability of land to produce certain crops – thus negatively influencing agricultural 

sustainability. For developing nations heavily reliant on rainfed agriculture, therefore, seeking to 

conserve natural resources while utilizing the resources to improve local livelihoods is a 

necessary but difficult undertaking.  

 

Figure 1.1. Total global agricultural and forest land between 1992 and 2015. The data used here was 

obtained from World Bank (accessed on April 17, 2019). 

East Africa depends heavily on rainfed agriculture which puts food security and rural 

livelihoods at risk (Guzha et al. 2018). Land holdings in this region are small and steadily declining 

over time (Maitima et al. 2009; Guzha et al. 2018). At the same time, populations have been fast 

increasing thus necessitating more food production while also navigating the effects of climate 

change in the area. Over recent decades, therefore, East Africa has witnessed significant 

landscape transformation due to both human and natural drivers (Vrieling et al. 2013; Landmann 

& Dubovyk 2014). Generally, natural vegetation has been converted to farmlands, grazing lands 

and human settlements (Maitima et al. 2009). This land use and land cover (LULC) transformation 

has, in part, fueled climate change and variability (e.g., warming temperatures and increasingly 
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variable precipitation (Ongoma & Chen 2017)) which have in turn diminished nature’s ability to 

support climate-dependent livelihoods (e.g., rainfed agriculture). Finding a common ground in 

which we can simultaneously conserve the natural environment and improve nature-dependent 

livelihoods is a matter of serious urgency in this region.   

The Mount Elgon Ecosystem (MEE) is a major water catchment tower supplying water to 

three major lakes in East Africa (Lake Turkana [Kenya], Lake Kyoga [Uganda] and Lake Victoria 

[Kenya, Uganda and Tanzania] (Petursson et al. 2013)). The MEE is dominated by croplands in 

most locations, mixed vegetation (primarily savanna, grasslands, and shrubs) in the northern 

portion, and the Afromontane forest. The high population growth and densities in the area have 

translated into need for more land for agriculture (Mugagga et al. 2012). Coupled with political 

interference and corruption among park and reserve staff, this need for more land has resulted in 

forest encroachment and deforestation especially on fertile areas found at high elevations 

(Muhweezi et al. 2007; Bamutaze et al. 2010; Mugagga et al. 2012; Nakakaawa et al. 2015; EAC 

et al. 2016). The changes in LULC have, in part, altered the functioning of the ecosystem 

(Muhweezi et al. 2007) and as a result, the mountain area has experienced more frequent 

landslides, prolonged droughts, flooding, and diminishing soil productivity (Nakakaawa et al. 

2015; EAC et al. 2016). Evidence of a changing climate has been reported (Myhren 2007) and 

this may be associated with the increased frequency of these  events. As such, the livelihoods of 

at least 2 million people (Petursson et al. 2013; Nakakaawa et al. 2015) are threatened. Yet, few 

studies have focused on the MEE socio-ecological system and therefore little is known about 

processes and human-environment interactions that shape the landscape. 

1.2 The Kite Framework 

Environmental benefits and impacts traverse scales – goods and services are provided at the 

local (e.g. food and water), regional (e.g. water catchment enhancement and natural hazard 

mitigation) and global (e.g. climate change mitigation and global biodiversity conservation) 

(Vedeld et al. 2016). Due to the multiscalar nature of conservation and livelihood improvement 
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efforts and the complex interactions within socio-ecosystems, insights from political ecology (PE) 

are invaluable in unearthing any hidden dynamics and finding ways for effective intervention. This 

dissertation is set within the ‘Kite’ framework (Campbell & Olson 1991), a PE framework that 

emphasizes the interactions between social processes and the physical environment across 

space and time. The framework is built on “perspectives that view society as an intervening 

variable between nature and resources” (p.13).  

 
 
 
 
 
 

 
 

A 

 

 
B  

Figure 1.2. The Kite framework showing (A) the four points (categorical variables) and (B) the various 

scales of interaction across time and space. Note that time becomes complicated and thus several time 

scales are considered and woven together to form a ‘braid of time’ (Campbell & Olson 1991). 

The framework has four categorical variables (political, economic, environmental, and 

social/cultural) of the human-environment interactions (Figure 1.3). To understand the coupled 

nature of human-environment systems, (Campbell & Olson 1991) propose that the above 
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conceptualization should be complemented by a structure that stresses the interactions among 

the categorical variables. These interactions have four characteristics: (i.) they occur at different 

scales; (ii.) they are shaped by time; (iii.) they are also shaped by space; and (iv.) their outcome 

is determined through the existing power structures. 

1.3 Existing Challenges 

1.3.1 Landscape Change Related to Human Activities and Natural Processes 

A few studies about landscape change have been conducted in the MEE, most of which 

relied on supervised classification and change detection techniques. In their study, Petursson et 

al. (2013) analyzed processes that led to deforestation within protected areas (PAs) in the 

transboundary MEE. This study found that it was challenging to correctly quantify LULC change, 

especially on the Kenyan side, due to the overlap between bamboo, plantation and Shamba 

system farms. Shamba system refers to a Kenyan government effort meant to convert native to 

plantation forests (originally) and to replant trees on harvested forest land (later) by allowing local 

communities to farm in protected areas while tending to the growing trees in their early stages of 

growth (Petursson et al. 2013). Other studies were conducted on relatively smaller spatial scales, 

mostly on the Ugandan side. Such studies have focused on the effect of LULC change on 

landslide occurrence (Mugagga et al. 2012), soil organic carbon, food security and climate change 

vulnerability (Barasa & Kakembo 2013), carbon stocks and climate variability (Mugagga et al. 

2015), among others. However, some of the studies have reported contradictory results especially 

about the nature and magnitude of LULC change within the agricultural land-use class. This may 

be due to the complex LULC orientation which causes the MEE to exhibit persistent and 

sometimes sudden landscape changes, thus complicating efforts to correctly characterize 

vegetation dynamics especially using traditional classification and change detection methods. 

More robust methods are therefore needed to comprehensively examine spatio-temporal 

landscape changes particularly for this constantly variable landscape. 
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Due to recent developments in Earth observation (EO) technologies, spatio-temporally 

contiguous remote sensing (RS) data have been collected and preprocessed. The increasing 

availability of ready-to-use data has made it possible to investigate landscape change more 

accurately and comprehensively in terms of other environmental processes, at multiple scales. 

For instance, there has been an uptick in the number of studies using vegetation indices (e.g., 

normalized difference vegetation index [NDVI], and enhanced vegetation index [EVI]) and 

modeled precipitation time series data (e.g., Climate Hazards group Infrared Precipitation with 

Stations [CHIRPS]) to characterize landscape change at finer scales. Analyses like these can 

circumvent issues reported in bitemporal image classification and change detection studies and 

have made it possible to disentangle nature- vs human-driven LULC change. Such analyses are 

lacking in the MEE, yet the complex human-environment interactions in the area are threatening 

major ecosystem processes and therefore rendering the MEE more vulnerable to the effects of 

climate change and further environmental change.  

1.3.2 Environmental Vulnerability Related to Social and Natural Factors 

The concept of vulnerability cross-cuts multiple disciplines (O’Brien et al. 2004) and is 

therefore viewed differently depending on context (Rama Rao et al. 2016) – making it challenging 

to measure. Vulnerability assessment is routine to many fields, which include livelihood 

vulnerability to hazards (Huong et al. (2019); Simane et al. (2016)), vulnerability to natural hazards 

(Han et al. (2019); Xiong et al. (2019)), vulnerability to climate change (Rama Rao et al. (2016); 

Torresan et al. (2012)), agricultural vulnerability (e.g. Aleksandrova et al. (2016); Baca et al. 

(2014); Parker et al. (2019)), groundwater (Duarte et al. 2015; Aydi 2018), and ecological and 

environmental (eco-environmental) vulnerability (Sahoo et al. 2016; He et al. 2018; Zhao et al. 

2018; Wei et al. 2020). Eco-environmental vulnerability is closely associated with risk of damage 

to the natural environment (Nandy et al. 2015). As such, eco-environmental vulnerability 

assessment (EEVA) has been conducted to comprehensively evaluate natural resource systems 
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that are impacted by both natural and anthropogenic activities (Fan et al. 2009). EEVA reveals 

pertinent information about environmental quality, thus it is a critical step towards better 

formulations of environmental protection frameworks (Sahoo et al. 2016). This can aid attainment 

of ecological sustainability and restoration and ensure better environmental and resource 

management (Nguyen et al. 2016). 

Previous studies related to EEVA in the MEE have mostly focused on landslide 

vulnerability in the Ugandan MEE.  The Ugandan MEE is particularly vulnerable to landslide 

hazards which have become more frequent over time (Mumba et al. 2016). Broeckx et al. (2019) 

recently assessed landslide susceptibility and mobility rates for the area using a combination of 

logistic regression and Monte Carlo simulations. The study concluded that topography 

significantly affects landslide susceptibility. They attributed the larger landslide mobilization rates 

correlating highly with higher landslide susceptibilities to higher landslide quantity rather than 

magnitude. Ratemo & Bamutaze (2017) integrated qualitative data with GIS to analyze risk 

elements and household vulnerability to landslides within Manafwa District in Uganda. This study 

found that 95% of the community was vulnerable to landslide hazards and that vulnerability was 

especially high in agricultural areas. In another study, landslide susceptibility was analyzed in 

terms of historical land use changes in eastern Uganda  (Mugagga et al. 2012). The study 

reported that the encroachment onto critical slopes of the ecosystem resulted in a series of 

landslides in the area. Thus far, only one EEVA-related study has been conducted on the Kenyan 

side of the MEE. Mwangi & Mutua (2015) assessed climate change vulnerability for Kenya in 

terms of its exposure, sensitivity, and adaptive capacity characteristics. This study found that the 

Kenyan MEE was either moderately or highly vulnerable. The MEE landscape exhibits significant 

variability thus motivating a more comprehensive spatio-temporal assessment of the complex 

interrelationships in the area. While EEVA is not new, such a systematic study has not been 

conducted in the MEE and therefore little is known about the general eco-environmental 

vulnerability, its spatial-temporal evolution, and variables contributing to the vulnerability. In 
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addition, land use change (LUC) models can provide important information about possible future 

LULC change trajectories. Such information is essential in policy- and decision-making aimed to 

simultaneously conserve the environment and improve nature-dependent livelihoods, reduce eco-

environmental vulnerability, and ultimately ensure sustainability of the socio-ecological system.   

1.3.3 Possible Future Landscape Changes in the MEE 

LUC modeling refers to the simulation of a socio-ecological system over space and time 

in a manner that relates to measured LULC change (Paegelow et al. 2013; Gibson et al. 2018). 

LUC models serve two purposes: to identify factors or proxies that explain LULC change and to 

predict possible future scenarios of LULC based on the factors (Overmars et al. 2003; Eastman 

& He 2020). Change analysis in these models is performed using historical LULC data to assess 

past LULC changes and transitions (Halmy et al. 2015). The transitions are then integrated with 

environmental variables to estimate future LULC changes (Pijanowski et al. 2002; Halmy et al. 

2015). Several LUC models have been developed including Cellular Automata (CA) (Vaz et al. 

2012), CA-Markov (Halmy et al. 2015; Huang et al. 2015; Lu et al. 2019; Aburas et al. 2021), 

logistic regression (Das et al. 2019) and model combinations (Shafizadeh-Moghadam et al. 2017; 

Gharaibeh et al. 2020). Example applications of LUC modeling are an assessment of the impact 

of future grassland cover change on catchment water and carbon fluxes in South Africa (Gibson 

et al. 2018), monitoring and predicting landscape dynamics within Iran’s Meighan Wetland and 

surrounding areas (Ansari & Golabi 2019), predicting growth and changes in urban areas 

(Shafizadeh Moghadam & Helbich 2013; Aburas et al. 2021), and assessing deforestation in 

Thailand (Waiyasusri & Wetchayont 2020), among others. LUC models provide information 

beyond traditional LULC change analyses, and therefore allow for future landscape changes to 

be anticipated and quantified.  

Two LUC modeling studies exist for the Ugandan MEE and none for the Kenyan side. The 

study by Mwanjalolo et al. (2018) found that subsistence agricultural land and protected 
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grasslands in Uganda experienced highest gains and that LULC patchiness was associated with 

the increasingly high demand for agriculture and settlement land. The expansion of agricultural 

land was also estimated to continue in 2040. J. Li et al. (2016) used an agent-based model (ABM) 

to analyze historical LULC change (1996-2013) and later simulated possible changes in 

agricultural land in Uganda under business-as-usual and deforestation scenarios. The study 

reported that agricultural land increased from 8.98 million ha in 1996 (37%) to 10.31 million ha in 

2013 (43%). Agriculture was projected to increase further in 2025 to 12.10 m ha (50%) and 12.39 

m ha (51%) in the business-as-usual and deforestation scenarios, respectively. The two studies 

were conducted at the national scale, meaning that localized environmental relationships and 

patterns were not emphasized. There is therefore need for an ecosystem-wide simulation of LULC 

change which will inform positive environmental conservation and livelihood improvement actions 

within the MEE. 

1.4 Approaches and Solutions  

This dissertation addresses the above challenges as follows.  

1.4.1 Purpose and Objectives 

This dissertation examines human-environment interactions and landscape change under 

climate change. The focus is on how nature- and human-related factors and practices interact to 

influence landscape dynamics, drive eco-environmental vulnerability, and eventually threaten 

nature-dependent livelihoods in the MEE. Chapters 2, 3 and 4 are interrelated studies addressing 

the following research questions: 

1.  What is the nature and magnitude of change in MEE greenness for the period 2001–

2018 and how is this change related to long-term trends and variability in MEE 

precipitation? (Chapter 2, Study 1)  

2. How is eco-environmental vulnerability distributed across the MEE, and what are the 

major factors driving these patterns? (Chapter 3, Study 2) 
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3. How will the MEE landscape change in the future, and what opportunities exist for 

streamlining livelihood improvement and environmental conservation efforts? 

(Chapter 4, Study 3) 

 

Figure 1.3. Conceptual framework used in this study. 

In this study, the MEE was considered an integrated system, and connections between 

natural factors and human activities were studied to shine light on the complex human-

environment dynamics and identify avenues for improving both livelihoods and nature. Analyses 

in this study were performed across multiple scales (10-day, 16-day, monthly, seasonal, annual, 

and farm-scale) – to comprehensively characterize processes in the highly variable MEE. This 

research is therefore a type of land change science (LCS) study embedded within a PE 

framework. While LCS aims to understand the changing human-environment interrelationships 

and the nature, magnitude and location of resultant LULC (Rindfuss et al. 2004), PE emphasizes 

that the interrelationships are dynamic across space and time (Campbell & Olson 1991). By using 
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the ‘Kite’ framework, the study reveals major factors influencing landscape change as well as their 

scale of influence in the highly dynamic MEE. Figure 1.2 shows the conceptual framework used 

in this study. 

1.4.2 Study 1: Landscape Change Related to Human and Natural Processes 

Study 1 characterized comprehensively, over multiple time scales, recent patterns and 

trends in MEE vegetation greening and browning. The study first assessed and quantified the 

nature and magnitude of change in greenness for the period 2001–2018. To disentangle nature- 

versus human-driven vegetation greening and browning, the study similarly characterized trends 

and variability in MEE precipitation for the period 1986-2018. It was argued here that (1) changes 

in climate have forced local communities in the MEE to expand croplands at the expense of the 

natural vegetation thus leading to deforestation and degradation; and (2) the high variability 

exhibited in the MEE landscape requires integration of both general and sequential time series 

analysis methods to be fully characterized.  

This study combined trend (Mann-Kendall and Sen’s slope) and breakpoint (bfast) 

analysis methods to comprehensively examine recent vegetation greening and browning in Mount 

Elgon at multiple time scales. The study used both 16-day NDVI composites from Moderate 

Resolution Imaging Spectroradiometer (MODIS) and 5-day CHIRPS precipitation data and 

attempted to disentangle nature- versus human-driven vegetation greening and browning. 

Inferences from a 2019 field study were valuable in explaining some of the observed patterns. 

Results from this study are multi-scale maps showing areas of persistent changes in greenness 

(deforestation, reforestation, or vegetation degradation) associated with human activities and/or 

natural processes.  

 

 

 



12 

 

1.4.3 Study 2: Environmental Vulnerability Related to Social and Natural Factors 

The second study examined eco-environmental vulnerability in the MEE using freely 

available RS, topographic and socio-economic data. This study sought to quantitatively examine 

spatio-temporal patterns and trends in eco-environmental vulnerability, and factors driving the 

high variability observed in the MEE landscape. This study hypothesized that being mountainous, 

environmental vulnerability in the MEE varied significantly over distances as short as 5-10 km and 

was influenced greatly by multiple factors.  

Eco-environmental vulnerability of the MEE was assessed using a novel combination of 

natural, environmental, and socio-economic data. With use of spatial principal components 

analysis (SPCA) within GIS, this study effectively integrated variables computed from RS data 

(NDVI), digital elevation models (DEM), climate (precipitation and temperature), and socio-

economic data (population density) to compute an eco-environmental vulnerability index (EEVI) 

for the MEE. The final EEVI was categorized into five qualitative classes indicative of potential, 

slight, light, moderate, and severe vulnerability. Temporal principal component analysis (TPCA) 

was also conducted to identify persistent changes in multi-year variables for the period 2001-

2018. Additionally, spatio-temporal changes in precipitation concentration in the MEE were 

assessed using the precipitation concentration index (PCI) – to provide insights into the significant 

contribution of precipitation to overall vulnerability of the MEE. Outputs from this study include 

maps showing levels of eco-environmental vulnerability for each year in 2001-2016, and 

significant changes in multi-year variables (precipitation, temperature, and population density). 

Ultimately, this study identified areas in the MEE where urgent action and the limited resources 

can be targeted.  

1.4.4 Study 3: Possible Future Landscape Changes in the MEE 

The goal of this study was to simulate possible future land use changes in the MEE based 

on existing RS LULC products and TerrSet’s Land Change Modeler (LCM) (Eastman 2016a; 
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Eastman 2016b). Here, the main objectives were (1) to forecast possible future LULC changes 

for the MEE using LCM; and (2) to assess the accuracy of the simulated LULC surfaces in relation 

to observed persistent changes in the MEE. It is argued that accelerated climate change and 

significant vegetation-to-cropland conversion have led to an unsystematic and rapidly changing 

landscape making it difficult to accurately characterize future LULC trajectories using historical 

change transitions.  

This study first combined data from GlobeLand30 and Regional Centre for Mapping of 

Resources for Development (RCMRD) to generate improved LULC data for 2001, 2009, and 

2017. The study then examined spatial and temporal distribution of LULC change and identified 

areas of major LULC changes in the periods 2001-2009 and 2001-2017. Projections to 2025 and 

2033 were developed to estimate how LULC will potentially change over time. Accuracy of the 

simulations (for 2017) was assessed first against the 2009 and 2017 LULC maps (to generate a 

map of hits, false alarms and misses), and then against greening and browning surfaces over the 

growing season for 2001-2018. Such a comprehensive analysis of future LULC changes can 

support decision- and policy-making efforts towards a conserved environment and improved local 

livelihoods. Figure 1.2 below shows the conceptual framework used in this study.  

1.4.5 Important Insights from the Field Study in the MEE 

RS technologies and geospatial analyses provide important opportunities for 

characterizing historical, present, and predicting future landscape change. However, geospatial 

analyses cannot tell the whole story, especially when dealing with highly dynamic landscapes. 

Insights from field studies have proven important as indigenous and historical accounts of LULC 

change in such a constantly variable landscape can be used to fill in gaps that may not be fully 

explained using RS and GIS alone. In this study, human-environment interactions in the MEE 

were characterized based in part on insights from a field study conducted in the MEE.  
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CHAPTER 2. PERSISTENT VEGETATION GREENING AND BROWNING TRENDS 
RELATED TO NATURAL AND HUMAN ACTIVITIES IN THE MOUNT ELGON 

ECOSYSTEM1 

2.1 Introduction 

Vegetation plays very important roles in ecosystem processes, including the mitigation of 

climate change effects (Gemitzi et al. 2019) and the regulation of land surface temperatures, 

carbon and energy cycles (Alavipanah et al. 2015; Ballantyne et al. 2017; Forzieri et al. 2018). At 

the same time, significant changes in terrestrial vegetation have been reported in the recent past 

(Landmann & Dubovyk 2014; Pan et al. 2018). Previous studies have concluded that these 

changes are driven by (1) slowly-changing natural processes, such as regional climate change 

(e.g., changes in temperature, precipitation, etc.), nitrogen disposition and increasing atmospheric 

CO2 concentrations (Zhu et al. 2016), and (2) more rapid anthropogenic activities, including land-

use and land-cover (LULC) change (e.g., deforestation (Olsson et al. 2005; Le Quéré et al. 2009), 

overcultivation and overgrazing (Olsson et al. 2005), afforestation, expanding green areas in cities 

(Gemitzi et al. 2019) among others). These processes do not operate in isolation (Zhu et al. 2016) 

but rather interact at multiple scales, with global-scale drivers interacting with processes at the 

regional and local scales (Mishra & Mainali 2017), thus making vegetation change dynamics a 

complex phenomenon to examine. Understanding vegetation dynamics has attracted substantial 

attention in the past years, specifically in the wake of climate change and variability (Fensholt et 

al. 2012). As such, knowledge of vegetation response to climate change is critically important in 

the effort to maintain the supported processes as well as the human livelihoods derived from them 

(Murthy & Bagchi 2018). Such an analysis has been difficult in the past, due in part to limited 

access to consistent data both in space and time. However, with recent developments in Earth 

observation (EO) technologies, spatio-temporally contiguous remote sensing (RS) data have 

 
1 This is an accepted manuscript of an article published by MDPI in Remote Sensing on 1 July 2020, 
available online at https://doi.org/10.3390/rs12132113. Reference: Wanyama D, Moore NJ, Dahlin KM. 
2020. Persistent vegetation greening and browning trends related to natural and human activities in the 
mount Elgon ecosystem. Remote Sens. 12(13).  
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been collected, making it possible to investigate vegetation dynamics accurately and 

comprehensively in terms of other environmental processes, at multiple scales.  

The Normalized Difference Vegetation Index (NDVI), which is the normalized sum of the 

difference in reflectance between near infrared and red bands, has extensively been used 

(Chamaille-Jammes et al. 2006; Mishra & Mainali 2017; Pan et al. 2018) as an indicator of 

photosynthetic activity and vegetation amount (Tucker 1979). Previous studies used this 

vegetation index (VI) to characterize vegetation processes such as productivity decline 

(Landmann & Dubovyk 2014), phenology (Verbesselt, Hyndman, Zeileis, et al. 2010; Vrieling et 

al. 2011) and greening and browning (Mishra & Mainali 2017; Guan et al. 2018; Murthy & Bagchi 

2018; Pan et al. 2018; Emmett et al. 2019; Gemitzi et al. 2019). Variability in NDVI generally 

follows patterns of climatic conditions, mainly precipitation (Malo & Nicholson 1990; Davenport & 

Nicholson 1993; Schmidt & Gitelson 2000; Fabricante et al. 2009; Fensholt et al. 2012). The 

NDVI–precipitation relationship is largely a strong positive one, particularly in locations where total 

annual precipitation is less than 1000 millimeters (Malo & Nicholson 1990; Davenport & Nicholson 

1993). This relationship is further compounded in space and time by site-specific factors such as 

existing LULC, vegetation structure and composition (Davenport & Nicholson 1993), topography 

(Mishra & Mainali 2017) and soil type (Farrar et al. 1994). As a result, vegetation greenness 

response to climate has shown significant spatial and temporal variability. For instance, 

contrasting natures and strengths of the NDVI–precipitation relationship have been reported: a 

strong linear relationship in the Sahel (Malo & Nicholson 1990) and a log-linear one in East Africa 

(Davenport & Nicholson 1993). In other studies, seasonal precipitation with different lag times 

was found to correlate strongly with NDVI (Davenport & Nicholson 1993; Chamaille-Jammes et 

al. 2006). This complexity implies that (i) results from a specific regional analysis are not 

transferable to another region; (ii) any slight spatial and/or temporal misspecification may lead to 

misleading results about vegetation greenness–precipitation relationships and patterns; and (iii) 
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 understanding vegetation change requires multiple images (time series, TS) as opposed to the 

extensively used traditional classification and change detection methods. 

East Africa depends heavily on rainfed agriculture, which puts food security and rural 

livelihoods at risk (Guzha et al. 2018). The importance of land in this region cannot be 

overemphasized (Guzha et al. 2018), yet land holdings are small and steadily declining (Maitima 

et al. 2009; Guzha et al. 2018). At the same time, populations have been increasing thus 

necessitating expansion of food production while also navigating the effects of climate change in 

the area. Over recent decades, therefore, East Africa has witnessed significant landscape 

transformation due to both human and natural drivers (Vrieling et al. 2013; Landmann & Dubovyk 

2014). Generally, natural vegetation has been converted to farmlands, grazing lands and human 

settlements (Maitima et al. 2009). This LULC transformation has been reported in the Mount Elgon 

ecosystem (MEE), a major water catchment tower supplying water to three major lakes in East 

Africa (Lake Turkana, Kenya, Lake Kyoga, Uganda and Lake Victoria, Kenya, Uganda and 

Tanzania (Petursson et al. 2013)). The MEE is dominated by croplands in most locations, mixed 

vegetation (primarily savanna, grasslands, and shrubs) in the northern portion and the 

Afromontane forest (Figure 2.1). The high population growth and densities in the area have 

translated into need for more land (Mugagga et al. 2012). Coupled with political interference and 

corruption among park and reserve staff, the need for more land has resulted in forest 

encroachment and deforestation as ecologically fragile land is cleared for agriculture and 

settlement (Muhweezi et al. 2007; Bamutaze et al. 2010; Mugagga et al. 2012; Nakakaawa et al. 

2015; EAC et al. 2016). The changes in LULC have, in part, altered the functioning of the 

ecosystem (Muhweezi et al. 2007) and, as a result, the mountain area has experienced more 

frequent landslides, prolonged droughts, and flooding (Nakakaawa et al. 2015; EAC et al. 2016).  
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Figure 2.1. Mount Elgon ecosystem (MEE) land-use and land-cover (LULC) in 2018. This map was created 

by reclassifying Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover data (MCD12Q1) 

created by the University of Maryland (Sulla-Menashe & Friedl 2018). Mixed vegetation includes savanna, 

grasslands, and shrubs. Cropland includes cropland and the cropland-vegetation mosaic classes. The 

black-gray line represents the boundary between Kenya and Uganda and the red triangle is Wagagai Peak, 

the highest point on Mount Elgon (4321 m above sea level). 

Evidence of a changing climate has been reported (Myhren 2007) and this may result in increased 

frequency of these events. As such, the livelihoods of at least 2 million people (Petursson et al. 

2013; Nakakaawa et al. 2015) are threatened. Despite this, the complex MEE landscape is 

currently understudied. A key study of LULC change was conducted by Petersson, Vedeld, and 

Sassen (Petursson et al. 2013) and employed institutional theory in analyzing processes that led 

to deforestation within protected areas (PAs) in the transboundary MEE. It was found that, 

especially on the Kenyan side, it was challenging to correctly quantify LULC change due to the 

overlap between bamboo, plantation and Shamba system farms. Other studies have been 
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conducted on relatively smaller spatial scales, mostly on the Ugandan side. Such studies have 

focused on the effect of LULC change on landslide occurrence (Mugagga et al. 2012), soil organic 

carbon, food security and climate change vulnerability (Barasa & Kakembo 2013), carbon stocks 

and climate variability (Mugagga et al. 2015) among others. However, some of the studies have 

reported contradictory results especially about the magnitude of LULC change within the 

agricultural land-use class. This may be due to the complex LULC orientation, which leads to 

persistent greening and browning in the MEE, thus making it difficult to correctly characterize 

vegetation dynamics especially using traditional classification and change detection methods. 

More robust methods are therefore needed, and TS analysis has been applied to 

comprehensively examine spatio-temporal landscape changes, particularly for constantly variable 

landscapes like the MEE. 

TS analysis of RS data has been used to characterize environmental phenomena by 

describing both trends and discrete change events (Gómez et al. 2016). In recent years, 

application of TS methods has increased and this has been driven by improved access to RS 

imagery (for instance, due to opening up of the Landsat archive in 2008 (Woodcock et al. 2008)), 

improvements in the integration of RS and GIS (Geographic Information Systems) and general 

advancements in computing power (Badjana et al. 2015). As such, analysis of LULC change, 

including vegetation greening and browning, has significantly evolved from the traditional 

bitemporal image analysis to using multiple and continuous observations. Common methods for 

TS analysis include Fourier analysis (Bradley et al. 2007; Hermance et al. 2007), principal 

components analysis, (Crist E.P. & Cicone R.C. 1984; Anyamba & Eastman 1996) and the Mann-

Kendall statistic (Mann 1945). The Mann-Kendall statistic has been used to identify the presence 

and nature of monotonic trends in vegetation time series (Mishra & Mainali 2017; Lamchin et al. 

2018; Pan et al. 2018). It is a non-parametric statistic; thus, data does not have to conform to any 

specific distribution (Khambhammettu 2005). Besides, Mann-Kendall compares relative 
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magnitudes of sample data instead of raw data values and therefore missing values are allowed 

in the analysis. The Mann-Kendall analysis is often followed by the Sen’s slope estimator (Sen 

1968), which quantifies the strength of the monotonic trends (Lamchin et al. 2018; Murthy & 

Bagchi 2018). The Sen’s slope estimator calculates the median of the set of slopes generated 

from Mann-Kendall (Sen 1968). Mann-Kendall and Sen’s slope have been found to be more 

robust for TS with outlying values as compared to parametric statistics like ordinary least squares 

(Murthy & Bagchi 2018). These two statistics identify and quantify any overall trends in a time 

series and are therefore well suited for examining vegetation greening and browning. Previous 

studies have successfully used these methods in assessing the consistency of greening and 

browning patterns across spatio-temporal scales in northern India (Murthy & Bagchi 2018) and 

assessing variability in greening and browning patterns caused by use of different RS imagery in 

the boreal forest of central Canada (Alcaraz-Segura et al. 2010). However, the assumption that 

the vegetation trend preserves its change rate throughout the period of study means that some 

greening and browning changes are masked (Pan et al. 2018). For instance, later greening in a 

consistently browning vegetation may not be detected using Mann-Kendall and Sen’s slope. To 

counter this issue, more TS decomposition methods have been proposed, including Breaks for 

Additive Season and Trend, bfast (Verbesselt, Hyndman, Zeileis, et al. 2010). Using bfast, even 

subtle changes in vegetation can be monitored. This algorithm has successfully been used in 

delineating anthropogenic, fire and elephant damage within forest ecosystems in Kenya (Morrison 

et al. 2018). Complementing Mann-Kendall and Sen’s slope with bfast can therefore be valuable 

in examining vegetation greening and browning trends, especially in a dynamic environment like 

the MEE. In such an analysis, the latter can be used to characterize changes detected by the 

former. Vegetation trends can then be characterized in more detail and this can be the basis for 

understanding effects of climate on terrestrial ecosystems (Pan et al. 2018) and the development 

of ultimate strategies for the sustainable management of ecosystems (Mishra & Mainali 2017). 
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The goal of this study was to characterize comprehensively, over multiple time scales, 

recent patterns and trends in MEE vegetation greening and browning. Here, the main objectives 

were; (1) to assess and quantify the nature and magnitude of change in MEE greenness for the 

period 2001–2018; and (2) to characterize trends and variability in MEE precipitation as a way to 

disentangle nature- versus human-driven vegetation greening and browning. It is hypothesized 

that (1) changes in climate have forced local communities in the MEE to expand croplands at the 

expense of the natural vegetation thus leading to deforestation and degradation; and (2) the high 

variability exhibited in the MEE landscape requires integration of both general (such as Mann-

Kendall and Sen’s slope) and sequential (such as bfast) TS analysis methods to be fully 

characterized. To achieve these goals, the study analyzed spatio-temporal trends and patterns in 

Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI (2001–2018) and Climate 

Hazards group Infrared Precipitation with Stations (CHIRPS) precipitation (1986–2018) at multiple 

temporal scales (dekadal (10-day), 16-day, seasonal), using an integration of Mann–Kendall, 

Sen’s slope and bfast algorithms. The study also incorporates inferences from a field study 

conducted in the MEE in 2019 to explain some of the vegetation change dynamics in the area. 

This analysis thus produces a more comprehensive characterization of vegetation dynamics in 

the MEE, which would not be possible using traditional classification and change detection 

methods. Results would help fill in some of the existing gaps in literature about nature and 

magnitude of LULC change and the stability of LULC in the MEE. Such a comprehensive 

description of MEE vegetation dynamics is an important first step to initiate dialogue aimed to 

instigate policy changes for simultaneously conserving the environment and improving livelihoods 

dependent on it. 

2.2 Study Area Description 

The MEE is located in western Kenya and eastern Uganda (Figures 2.1 and 2.2). The 

studied area covers approximately 15,000 km2 and extends from 1°37'42.82" N, 33°55'45.07" E 

and 0°42'15.76" N, 35°14'18.84" E. Mount Elgon is a solitary volcano and is among the oldest in 
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East Africa (Bamutaze et al. 2010; Mugagga et al. 2012). The highest point, Wagagai Peak, is 

4321 meters (Hamilton & Perrott 1981; Mugagga et al. 2012) and is found on the Ugandan side. 

This area rises from a plateau that lies 1850–2000 meters in the east and 1050 –1350 meters to 

the west with a caldera that extends 8 kilometers wide (Hamilton & Perrott 1981).  

 

Figure 2.2. Map of the MEE in eastern Uganda and western Kenya showing long-term (1986–2018) mean 

annual total precipitation (CHIRPS (Funk et al. 2015)). Generally, the driest parts are the grasslands in 

northeastern MEE. The study area is wettest in the south and around the mountain region. Major protected 

areas and towns are shown for reference. FR is shorthand for forest reserve, NR is national reserve, NP is 

national park, WS is wetland system and WR is wildlife reserve. 

Vegetation in this area is zoned by altitude and mountain forest, farmland and Afro-Alpine heath 

and moorland are the common land covers (Petursson et al. 2013). Declared a protected area in 
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1968 and 1992 in Kenya and Uganda, respectively (Anseeuw & Alden 2010; Nakakaawa et al. 

2015), Mount Elgon Forest, a montane rainforest (Doumenge et al. 1995), is home to many 

important indigenous tree species (Petursson et al. 2013).   

The MEE receives rainfall in a bimodal pattern (two rainy seasons) and, according to 

Mugagga, Kakembo and Buyinza (Mugagga et al. 2012), most of the rainfall is received between 

April and October on the Ugandan side (with mean annual amounts ranging from 1500 to 2000 

millimeters). The Kenyan side receives long rains between March and June and short rains 

between September and November—average annual rainfall ranging from 1400 to 1800 

millimeters (Okello et al. 2010; Musau et al. 2015). There is minimal temperature variation for the 

area—an average minimum of 15°C and a maximum of 23°C on the Ugandan side (Mugagga et 

al. 2012) and 14 and 24°C on the Kenyan side (Musau et al. 2015). However, temperatures and 

precipitation have a strong variation with changes in altitude (Petursson et al. 2013). 

2.3 Materials and Methods  

The present study integrated Mann–Kendall, Sen’s slope and bfast in the analysis of NDVI 

and precipitation trends to characterize recent greening and browning patterns and trends within 

the MEE.  

2.3.1 Data and Sources 

This study utilized the following datasets (Table 2.1) in the analysis of greening and 

browning trends in the MEE.  

2.3.1.1 MODIS NDVI and CHIRPS Precipitation 

This study used MODIS NDVI data in the TS analysis of spatio-temporal changes in MEE 

vegetation greenness signal. The 16-day NDVI composite MOD13Q1.V6 (Didan 2015) with a 

250-meter spatial resolution was obtained through AppEEARS 

(https://lpdaacsvc.cr.usgs.gov/appeears/) (AppEEARS Team 2019). Data for the period 2001–

2018 were used. While Landsat data (USGS) have a better spatial resolution and historical 
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coverage, and are therefore better suited for this study, they were limited by the many data gaps 

in the TS over the MEE due to persistent cloud cover and Landsat’s long (16-day) revisit time. As 

such, MODIS NDVI, which has previously been used successfully in similar studies in East Africa 

(Davenport & Nicholson 1993; Landmann & Dubovyk 2014; Hawinkel et al. 2016), was used in 

this study. This study also used CHIRPS precipitation data (Funk et al. 2015). These data have a 

spatial resolution of 5 kilometers and provide global daily and pentad records from 1981 to 

present. For this study, these data for the period 1986–2018 were obtained and preprocessed 

within Google Earth Engine (GEE) (Gorelick et al. 2017). It is worth noting here that there were 

no observation data to assess the accuracy of the CHIRPS dataset over the MEE. However, this 

dataset has been used extensively in similar studies (Georganos et al. 2017; Chen et al. 2018; 

Murthy & Bagchi 2018). Moreover, this dataset was recently validated (Muthoni et al. 2019) and 

the results showed that the CHIRPS data are reasonably accurate in estimating rainfall over east 

and south Africa.  

NDVI preprocessing involved quality assessment using the associated VI quality files. 

Pixels with low quality, high aerosol content, cloud cover and possible shadows were excluded 

during this exercise. NDVI and precipitation composites for specific time scales were then 

generated. First computed were mean NDVI TS during the wet season for the period 2001–2018. 

Here, imagery in April, May and June was used. The TS of mean NDVI for each 16-day period 

during the season were also created. As a result, there were generally two TS for each month 

and were labeled h1 and h2 for TS created from NDVI composites recorded roughly in the first 

and second half of the month, respectively. For precipitation, the TS of total amount over the wet 

season were computed for different periods; 1986–2018 (33 years); 1986–1996 (first 11 years); 

1997–2007 (median 11 years); 2008–2018 (last 11 years); 1986–2005 (first 20 years); 1999–

2018 (last 20 years); and 2001–2018 (18 years, similar to the NDVI TS length). While the present 

study was aimed at characterizing changes in vegetation greenness from 2001 to 2018, analysis 

of longer precipitation TS was necessary to understand any longer-term precipitation patterns in 
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the MEE that may influence the vegetation patterns. TS were also generated of total precipitation 

amounts for each dekad over the wet season. In this analysis, these dekads for the month of April 

were labelled April d1 (for dates 1–10), April d2 (for dates 11–20) and April d3 (for the rest of the 

month). The same nomenclature was used for dekad TS in May and June. These were used to 

assess nature and strength of relationship between vegetation greenness and precipitation 

variability over a shorter time scale, in which case results from dekad precipitation TS were 

compared to results from 16-day NDVI. The 16-day NDVI composites were used here due to 

unavailability of data to compute dekad NDVI composites. Finally, monthly precipitation 

composites were generated for the period 1986–2018, for use in analyzing breakpoints in MEE 

precipitation. 

2.3.1.2 Field-collected Data 

Environmental data from local communities and government officers within the MEE were 

collected using semi-structured interviews and direct observation in July–September 2019 (IRB 

Number: STUDY00002404). Most of the interviewees were from significantly changing 

landscapes (areas showing significant changes in vegetation greenness). The participants in this 

study were interviewed about perceptions of climate change and land-use change, and historical 

patterns of agriculture and land-use change. Interviews were conducted and written responses 

recorded using Qualtrics software (Qualtrics 2019). The fusion of such qualitative data with 

quantitative RS data is important because indigenous and historical accounts of LULC change in 

such a constantly variable landscape can be used to fill in gaps that may not be fully explained 

using RS and GIS alone. 
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Table 2.1. Description of original datasets used in the study. 

Dataset 
Spatial 

Resolution 
Temporal 
Resolution 

Duration Source 

MODIS 
MOD13Q1.V6 

250 m 16-day 
2001 – 
2018  

https://lpdaacsvc.cr.usgs.gov/appeears/  

CHIRPS 5 km 5-day 
1986 – 
2018  

https://earthengine.google.com/  

2.3.2 Methods 

This section describes the methods and analyses performed on NDVI and precipitation 

TS to identify areas and characterize patterns of vegetation greening and browning within the 

MEE. These two analyses were performed in R (R Core Team 2018) and trends were assessed 

at the 95% significance level. After analysis of monotonic trends in greenness and precipitation, 

it was necessary to perform breakpoint analysis on these time series, to detect any significant 

breaks within the data. These two types of analyses are described in more detail below. Figure 

2.3 highlights major methods used in this study. 

2.3.2.1 TS Analysis: Mann-Kendall and Sen’s Slope 

To analyze initial spatiotemporal changes in vegetation greening and browning trends in 

the MEE, the current study borrowed from methodologies presented by Landmann and Dubovyk 

(Landmann & Dubovyk 2014). However, since NDVI TS often do not meet assumptions for 

parametric analysis (Alcaraz-Segura et al. 2010), the current study used the nonparametric Mann-

Kendall test rather than linear regression. To calculate the Mann-Kendall test statistic, data values 

are evaluated as an ordered TS (Khambhammettu 2005) and each value is then compared to all 

subsequent values (Khambhammettu 2005; De Beurs & Henebry 2010). The Mann-Kendall S 

statistic is initially assumed to be 0 and a value of 1 is added to (subtracted from) the test statistic 

if the value of an observation is higher (lower) than that of the previous observation 

(Khambhammettu 2005; De Beurs & Henebry 2010). There is no change to the statistic if the 

values are equal. Equation 1 below shows the Mann-Kendall test equation. High positive and low 

negative values of S, respectively, indicate increasing and decreasing trends, but the strength of 

https://lpdaacsvc.cr.usgs.gov/appeears/
https://earthengine.google.com/
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the trend is statistically quantified by computing probability associated with S and the size of the 

data sample (Khambhammettu 2005).  

S = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 (1) 

where  𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑘)  = 1  if 𝑥𝑗 − 𝑥𝑘 > 0 

= 0  if 𝑥𝑗 − 𝑥𝑘 = 0 

= -1  if 𝑥𝑗 − 𝑥𝑘 < 0  Source: Khambhammettu (Khambhammettu 2005) 

The magnitude of the trends was quantified using Sen’s slope estimator (Sen 1968). 

These algorithms were used in this study first to characterize and quantify any general patterns 

in MEE greenness during the growing season (April, May, and June). The analysis then 

investigated more subtle changes in vegetation greenness over shorter (16-day) periods during 

the growing season. From these, areas of increasing (decreasing) greenness were mapped as 

areas of vegetation greening (browning).  

To disentangle changes due to human and natural forcings, monotonic trends were 

assessed in the precipitation TS and magnitude of the trends quantified. The analysis was 

performed on precipitation series at different temporal scales—based on the length of the time 

series (including 33-, 20-, 18- and 11-year periods) and TS resolution (including dekad totals, and 

general growing season totals). From these analyses, areas with significant positive (negative) 

precipitation trends were mapped as areas experiencing significant and consistent wetting 

(drying) over the analysis period. A cross examination of results from greenness and precipitation 

trend analysis was conducted to distinguish any human- from nature-driven vegetation greening 

and browning. Using available very-high-resolution imagery from Google Earth Pro (Google Earth 

Pro 2020), the nature of LULC conversion was ascertained. Besides, the statistics of LULC 

change (including greening, browning pixels) were calculated. 
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Figure 2.3. Flowchart of analysis methods used in the study. 

2.3.2.2 Breakpoint Analysis: bfast 

To further understand any temporal patterns in MEE greenness and precipitation, the bfast 

algorithm was applied using the ‘bfastSpatial’ package (http://www.loicdutrieux.net/bfastSpatial/). 

There exists a predictable annual cycle of greening an browning in vegetation, and these coincide 

with the occurrence of rainy and dry seasons (Morrison et al. 2018). bfast, created by (Verbesselt, 

Hyndman, Zeileis, et al. 2010) and (Verbesselt et al. 2012), creates a best-fit seasonal regression 

model with a trend component for the time series (Smith et al. 2019). This approach follows three 

main steps (i.) fitting a harmonic model based on a historical (‘stable’) period, (ii.) testing 

observations that follow the historical period for any structural breaks from the fitted model, and 
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(iii.) calculating the magnitude of change which is the median residual between observed and 

expected values in the monitoring period (DeVries et al. 2015; Morrison et al. 2018). While this 

approach has been applied on forested landscapes, the current study applied it to the whole of 

the MEE, whose LULC comprises forested, savanna, grassland, and cropland LULC (Figure 2.1). 

This was prompted by the unique LULC orientation in the MEE that makes it difficult to detect 

LULC changes via satellite image change detection analysis (Petursson et al. 2013). bfast 

breakpoint analysis can sequentially monitor vegetation change on a yearly basis, thus making it 

a suitable method for assessing changes in such LULC.  

The models used in this part of the study were parameterized based primarily on the study 

by DeVries et al. (DeVries et al. 2015). First, the time series was divided into historical and 

monitoring periods. A minimum of two years for the historical period is recommended when using 

MODIS 16-day data (Verbesselt et al. 2012; Morrison et al. 2018). In this study, therefore, the 

period 2001–2004 was used as the initial historical period and was assumed to be generally stable 

before the start of the monitoring period. First-, second- and third-order harmonic models were fit 

on the NDVI data, the results were assessed, and the first-order model was finally selected as 

the suitable instance to use. The single-order model has been used previously with the 

assumption that vegetation phenology generally follows a similar trend (DeVries et al. 2015):  

𝑦𝑡 = 𝛼 +  𝛾 sin(
2𝜋𝑡

𝑓
+ 𝛿) + 휀𝑡  (2) 

where yt  dependent variable  

t  independent variable  

f temporal frequency  

α model intercept 

γ  model amplitude 

δ model phase 

ɛt  error term 
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As in the study by (DeVries et al. 2015), the trend component was excluded from the time series 

to reduce chances of yielding false breakpoints.  

The change magnitude was calculated as the median of the residuals in the monitoring 

period. The median is thought of as a conservative measure, unlike the sum, that minimizes the 

chances of getting inflated magnitudes and therefore false breakpoints (DeVries et al. 2015). 

However, increasing the number of observations before and after a change event, by including 

long monitoring periods, yielded very high magnitudes and unrealistically numerous breakpoints. 

As such, this study elected to use sequential non-overlapping one-year-a-time monitoring periods. 

Here, the TS was trimmed to include the historical period plus one-year monitoring period. For 

monitoring the period from January to December 2005, for example, the TS for January 2001 to 

December 2005 was used, and the monitoring period was set to start in January 2005. This 

sequential monitoring approach is illustrated in DeVries et al. (DeVries et al. 2015). The approach 

is advantageous as it enables the assessment of subtle changes in vegetation within the MEE, 

especially alternating degradation and restoration that would go undetected using other methods. 

The default values for h, the minimal segment size between potentially detected breaks in the 

trend model given as a fraction relative to the sample size (Morrison et al. 2018), were used in 

this study. 

Breakpoint analysis was also performed on the monthly total precipitation TS. The analysis 

was performed on both 1986–2018 and 2001–2018 time series, to understand any longer-term 

patterns as well as recent changes in the precipitation. Here, the third-order harmonic model with 

the trend term was the best fit. While there was no direct application on record of bfast for 

precipitation breakpoint analysis, it is noted that the algorithm can be used for this purpose 

(Verbesselt et al.; Verbesselt, Hyndman, Newnham, et al. 2010). 

 

 



30 

 

2.3.3 Validation of Results  

A hybrid validation of analysis results was performed in this study. The collection of 

reference data borrowed from the methodology used previously by Landmann and Dubovyk 

(Landmann & Dubovyk 2014). The seasonal greening and browning map from Mann-Kendall and 

Sen’s slope analysis (Figure 2.4) was linked to very-high-resolution imagery in Google Earth Pro 

and both qualitative and quantitative accuracy assessment of the results was performed. 

Locations of greening, browning and no change were investigated by visually interpreting 

historical imagery in Google Earth Pro. The selection of these testing points was based on the 

minimum size of detectable change (at least 250 m, the size of a MODIS NDVI pixel) and the 

availability of sufficient imagery to interpret change. As such, only locations with very-high-

resolution imagery in one of the three initial and final years (2001–2003, 2016–2018, respectively) 

were used. By visually assessing historical imagery spanning these periods, vegetation change, 

or lack thereof, could be observed. A total of 153 visually interpreted points (51 browned, 50 

greened and 52 no change) were used. Greenness change in pixels at these locations was first 

recorded. The seasonal greening and browning map from Mann-Kendall and Sen’s slope analysis 

(Figure 2.4) was also reclassified into greened, browned and no change classes. The testing 

points were then compared to the reclassified raster and accuracy measures including overall, 

producer’s, and user’s accuracies were calculated. The final points were locations with pixels that 

indicated highly discernible change (like deforestation, reforestation etc.).  

It was challenging to evaluate sequentially monitored vegetation change since it was not 

possible to gather testing points due to many temporal gaps in images in Google Earth Pro. In 

most instances, one can rarely find images for successive years, thus making it difficult to validate 

year-to-year change results. Since the bfast algorithm detects even subtle changes in vegetation 

greenness, changes could not be discerned with high confidence and therefore calculating 

accuracy assessment statistics would be misleading due to inconsistencies in testing data (Foody 
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2002). As such, these results were only visually and qualitatively assessed, and a general trend 

of change in the pixels was interpreted rather than year-to-year change. Evaluating such time 

series results has been found to be challenging previously (Kennedy et al. 2010; Gómez et al. 

2016). In this study, inferences drawn from the field interviews were also qualitatively incorporated 

in this exercise to explain some of the trends detectable in both trend and breakpoint analyses. 

2.4 Results 

This study highlights and characterizes, using the Mann–Kendall, Sen’s slope and bfast 

algorithms, recent vegetation greening and browning trends and patterns in the MEE at multiple 

time scales. The results highlight portions of the MEE that experienced persistent and significant 

changes in vegetation greenness, as indicated by changing NDVI. The results from similar 

analyses of precipitation TS are also presented and, together, attempt to disentangle nature- from 

human-driven changes observed over the MEE landscape. 

2.4.1 Trend Analysis Results 

2.4.1.1 Persistent Vegetation Greening and Browning in the MEE 

Greening (browning) was defined as any significant increase (decrease) in NDVI as shown 

by either Kendall τ (Mann-Kendall and Sen’s slope) or the magnitude of change (bfast). The 

results indicate various greening and browning patterns during the growing season (Figure 2.4) 

and near-half month (Figure 2.5) periods. During the growing season, greenness significantly 

increased in approximately 27% (3400 km2) of the study area. Here, NDVI increased at rates up 

to 0.025 per year. These locations were concentrated mostly within croplands, grasslands, and 

savanna (Figure 2.1).  
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Figure 2.4. Map of significant changed (greened and browned) locations during the growing season. Slope 

values (Kendall τ), indicative of magnitude of change per time step, are shown here. White pixels indicate 

no significant change. 

Significant browning was also evident, with NDVI in more than 1400 km2 (about 11% of the total 

area) decreasing by up to 0.035 per year over the analysis period. These areas were mostly 

located in the southwestern part of the MEE in Uganda. This location includes the Namatala 

wetland, which has experienced intensive conversion to agriculture and settlement in the past 

years (Ministry of Water and Environment Uganda 2016). Browning was also evident in other 

locations around the Mount Elgon ecotone and elsewhere in the MEE. Based on our visual 
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assessment, most of these corresponded to areas where deforestation occurred over the analysis 

period. No significant trends were found in the rest of the MEE (62%, 7800 km2). 

 

Figure 2.5. Greening and browning trends in the Normalized Difference Vegetation Index (NDVI) for every 

16-day period in the months of April, May and June for 18 years (2001–2018). 

Analysis of greening and browning trends in NDVI for every 16-day period in the months 

of April, May and June showed similar patterns; most browning occurred in the southwestern MEE 

and greening elsewhere. Most of the changed areas experienced greening and browning at rates 

of up to 0.03 and -0.04, respectively. The highest proportions of land where greening occurred 
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was found in the month of May, especially the May h1 period, in which about 20% (2400 km2) of 

the MEE experienced significant greening (Figure 2.5). Greenness increased in more than 1600 

km2 (13%) of the study area during May h2. More greening was experienced in the June h2 and 

April h2 (9% of MEE greened during both periods). The greatest proportion of browned areas was 

observed in June h1, where about 600 km2 (5%) of the MEE experienced vegetation greenness 

decline (Figure 2.5E). Most of the land within the MEE did not experience any significant change 

during these 16-day periods.  

2.4.1.2 Precipitation Variability in the MEE 

The test for monotonic trends in precipitation revealed various patterns of consistently 

increasing (wetting) and decreasing (drying) precipitation within the MEE (Figure 2.6). Most of the 

areas experienced increased precipitation over the years and only negligible proportions of the 

study area became drier. The greatest proportions of land during which consistently wetter 

conditions prevailed include 1999–2018, 1986–2018 and 2001–2018 (82%, 58% and 38%, 

respectively). The areas experiencing change covered approximately 10,300, 7200 and 4800 

km2, respectively. These periods also showed the greatest magnitude of change in precipitation 

amount. Here, precipitation increased by at least 13, 4, and 5 mm per year for 1999–2018, 1986–

2018 and 2001–2018 periods. In addition, about 27% of the MEE also experienced wetter 

conditions during 2008–2018. 

There were very small portions of the MEE with wetter conditions during the earlier years 

in the analysis; 1.61% of land (200 km2) recorded wetter conditions in 1986–1996 while there was 

no significant increase in precipitation during the 1986–2005 and 1997–2007 periods. 

Consistently drier conditions were observed in two time periods (1986–1996 and 1986–2005). 

However, only negligible proportions of land (up to about 2%) experienced this change, although 

at substantial magnitudes of up to 9 mm per year. Different spatial patterns existed from 2000; 

significantly increasing precipitation in 2008–2018 was observed mostly on the Ugandan side, 
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 and the mountain forest and wetland reserves seemed to be excluded (Figure 2.6B). In 2001–

2018, the changed pixels were mostly found within the mountain area, in the north and some 

areas in the west (Figure 2.6E). 

 

Figure 2.6. Maps of precipitation change for each analyzed time period. 

On the other hand, areas in the northeastern portion of the study area did not experience changes 

in precipitation during the 1986–2018 period (Figure 2.6F). Lastly, the 1999–2018 period had 
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significant increases in total seasonal precipitation with an exception of a few eastern and 

southeastern portions of the MEE (Figure 2.6D). Overall, there was an increase in precipitation 

for most areas in the study area, with an increasing magnitude of change, especially in the post-

2000 era.  

 

Figure 2.7. Significantly changed precipitation for dekads in the period 2008 to 2018. 

The trend analysis for each dekad in the growing season found that, based on rates of 

change, the 2008–2018 period recorded the highest change in precipitation in April d1 and May 

d1, at rates of up to 13 mm per yearly dekad, see Figure 2.7). Areas where this change was 

experienced were located mostly in western MEE. An increase in precipitation was also recorded 

in April d2 in 2001–2018, June d3 in 1986–1996 and June d3 in 2008–2018. Negative trends in 

MEE precipitation were also observed in some dekads, mostly in 1986–2005. During this period, 

precipitation decreased in April d1, May d2 and June d1, at the rate of up to 3 mm per annual 

dekad. 

Based on the proportions of land with significant change in precipitation, the study found 

that most of MEE precipitation significantly changed during May d1 in 1986–2018 (90%, 11,300 

km2) and May d1 in 1999–2018 (43%, 5400 km2, Figure 2.8). From these results, some patterns 

are clear. For the months of May and June, annual dekad precipitation increased significantly for 

all time periods, although at varying rates and proportions. Precipitation in most of the MEE was 
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more stable in the earlier years in the study (as in 1986–1996) or generally depicted significant 

and consistently drier conditions (as in 1986–2005). Based on these results and those in Figure 

2.6 above, it was necessary to conduct a breakpoint analysis to provide a better characterization 

of any specific spatio-temporal breaks in precipitation and greenness trends.  

 

Figure 2.8. Significantly changed precipitation for dekads in the period 1999 to 2018. 

2.4.2 Breakpoint Analysis Results: bfast 

While breakpoint analysis was performed for both 1986–2018 and 2001–2018 

precipitation TS, no significant breaks were found in the former. Therefore, results from 2001–

2018 are presented in this study.   

2.4.2.1 MEE Precipitation 

The breakpoint analysis in bfast revealed no significant breaks in MEE average mean total 

monthly precipitation. However, breakpoints monitored for each pixel from January 2005 revealed 

very interesting patterns. In most configurations, the analysis revealed significant breakpoints in 
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2006 and 2007 for most of the MEE. To reduce the influence of post-change detection 

observations on change magnitude, the same analysis was performed for the period 2001–2008, 

with 2001–2004 set as the historical period. Therefore, change maps and statistics provided are 

based on this adjusted analysis. Precipitation changed significantly in the two years, with about 

9800 km2 (66% of the area) and 4800 km2 (32%) of the MEE experiencing wetter conditions in 

2006 and 2007, respectively (Figure 2.9). Most of the breakpoints in 2006 were detected in the 

months of July–October, while a great proportion of changes in 2007 were detected in March and 

April. Similar wetter conditions were detected in some locations in the months of May and June 

for both years. No drier conditions were detected. The magnitude of precipitation change ranged 

from approximately 10 to 53 mm during the monitored period (Figure 2.10A) and the bfast models 

used could explain up to 70% of the variance in the precipitation breakpoints (Figure 2.10B). 

Precipitation was also monitored sequentially for the period 2005–2018 and no breakpoints were 

detected except for a few pixels in 2005–2007.    

 

Figure 2.9. Months when major breaks were detected in the precipitation time series (2001-2008) when 

the period 2005–2008 was monitored. 
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Figure 2.10. Adjusted R2 (greater than 0.5) and magnitude of change in the precipitation time series (2001–

2008) using 2005–2008 as the monitoring period. 

2.4.2.2 MEE Greenness 

The analysis of breakpoints revealed that some significant breaks existed in the NDVI time 

series for each year (2005–2018). Having been sequentially monitored, the results include, for 

each monitored year, months when the breakpoints were observed, the magnitude of change at 

the breakpoints, the length of historical data used and adjusted R2. In this analysis, only highly 

statistically significant changes (p <0.05) are reported. This decision was based on two reasons: 

(i.) There were no ground data for validating results from sequentially monitored bfast. To ensure 

that only accurate results are reported, breakpoints from models with less than 50% adjusted R2 

were excluded. Thus, only breakpoints from models with average to high explanatory power were 

reported. This 50% threshold has been used elsewhere by Landmann and Dubovyk (Landmann 

& Dubovyk 2014). (ii.) Vegetation greenness in the MEE showed significant interannual variability. 

As such, to ensure a long-enough historical period used by ‘bfastSpatial’, the study excluded any 

breakpoints from models using a historical period of less than two years. 
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Figure 2.11. bfast-detected greening and browning in the MEE. These are results from bfastSpatial using 

NDVI time series (2001–2018) while sequentially monitoring each year in 2005–2018. These maps show 

magnitudes of change for pixels with significant breakpoints. 

The ‘bfastSpatial’ model was able to detect changes in vegetation greenness, especially 

in the grasslands of the northeastern MEE (Figures 2.1 and 2.11). The observed changes could 
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be due to both natural factors (such as variability in precipitation) and/or human activities (for 

example, clearing of land for agriculture and settlement, deforestation for charcoal burning and 

construction etc.). The maximum magnitude of changes ranged from -0.24 and 0.21, thus 

indicating only subtle changes in the MEE vegetation. The breakpoints were detected in each of 

the years, but most of them were observed in 2013, 2007 and 2010 (greening) and 2009 and 

2017 (browning), as shown in Figure 2.11. Overall, there were more areas where significant 

greening trends were detected compared to browning, with about 17% of the MEE (about 2500 

km2) and 10% (about 1500 km2) showing greening and browning, respectively, over the 

monitoring period. These represent annual greening and browning rates of about 1.2% and 0.7%, 

respectively.  

 

Figure 2.12. Proportions of greening and browning areas in the MEE. These are results from bfastSpatial 

using NDVI time series (2001–2018) while sequentially monitoring each year in 2005–2018. The graphs 

show the total area of land that experienced greening and browning for each monitored year. 

Based on the yearly changes, differentiated greening and browning patterns were 

observed during the monitoring period. Cumulatively, the greatest proportion of land with changed 

greenness was in 2013 in which significant breakpoints were observed in approximately 13% of 
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the MEE (approximately 1850 km2). This was followed by 2009 (1350 km2), 2007 (1200 km2) and 

2010 (650 km2) (Figure 2.12). For 2013, 2010 and 2007, the majority (over 95%) of the changed 

locations experienced greening. The year 2009 recorded browning in over 99% of the changed 

locations. 

2.4.2.3 MEE Greenness vs Precipitation 

There was an increase in precipitation in 2006 compared to previous years (Figure 2.13). 

There followed a steady decrease in 2007–2009 and finally an increase in 2010. Similar changes 

were observed in greenness during the five years. First, there was greening at most breakpoints 

in 2007 following the significant wetting in 2006. Significant browning followed, most of which 

occurred in 2009. This was also observable in an aspatial bfast breakpoint analysis performed on 

MEE mean NDVI, in which a sudden increase in NDVI was observed towards the end of 2006, 

followed by a consistently reducing trend until 2009/2010, in which another sudden increase was 

found (Figure 2.14). No significant breakpoints were found from a similar analysis using mean 

MEE precipitation. However, results from ‘bfastSpatial’ indicate that most of the MEE had very 

significant increases in precipitation in the second half of 2006 and the first half of 2007. Therefore, 

the corresponding changes in vegetation greenness can be attributed to this change in 

precipitation. 

 

Figure 2.13. Violin plot of average total annual precipitation in the MEE. The red box highlights the period 

2006–2010. 
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Figure 2.14. bfast mean 16-day NDVI time series decomposition (2001–2018). Breakpoints in trend were 

found between 2006 and 2010. 

The significant and extensive browning observable mostly in 2009 (Figure 2.11) may be 

explained in terms of vegetation regaining its ‘normal’ greenness levels following sudden greening 

due to an above-normal precipitation. However, no significant breaks were found in precipitation 

around 2013, the year with the highest proportion of land with detected change in vegetation 

greenness. Thus, such browning and greening trends can be explained with regards to other 

factors, including temperature and anthropogenic activities that may have altered vegetation 

greenness during the monitoring period. The ‘bfastSpatial’ model did not find any significant 

breakpoints, in precipitation TS, in 2012. This may be due to the unstable historical data prior to 

the monitoring period. However, the violin plot (Figure 2.13) indicates that this year had some of 

the highest precipitation recordings. As such, there is a high chance that the greening following 

in 2013 was influenced by this increase in precipitation.  

A visual inspection of these results in Google Earth Pro indicates that the subtle changes 

are indicative of various LULC changes. There was evidence of human settlement being 

introduced into the grasslands in the northeastern MEE. Information gathered from the field 

corroborates this finding and further explains the implications for landscape greenness. Inhabited 
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by nomadic pastoralist communities, this part of the MEE is susceptible to degradation, especially 

when these communities move, driven by rainfall patterns, to settle within the grasslands. Based 

on fieldwork and data from Google Earth Pro, reduced natural vegetation and tree density were 

evident in these locations. In other instances, the new inhabitants converted natural vegetation to 

agriculture and, although this would result in environmental degradation, some planted crops were 

greener than the natural vegetation, and, therefore, these areas were shown to exhibit greening 

trends. In other locations outside of the grasslands, visible greening trends were indicative of 

some afforestation practices. Data from the field revealed that this kind of greening was driven by 

the cultivation of evergreen early maturing blue gum (Eucalyptus globulus) tree species, 

sometimes together with and other times in the place of the maize crop. This was especially 

common in the eastern and southeastern parts of the domain and parts of Uganda.  

2.4.3 Accuracy Assessment  

Validation of Man-Kendall and Sen’s slope results revealed an overall accuracy of 98.04% 

and user’s accuracies of 100%, 98% and 96.2% for browned, greened, and unchanged locations, 

respectively (Table 2). Producer’s accuracies of 98% (for both browned and greened locations) 

and 98.1% (no change) were also obtained. The visual inspection of bfast results using Google 

Earth Pro also revealed that most of the detected subtle changes occurred. However, no more 

detailed information like year of change could be discerned due to the lack of available high-

resolution imagery.  

Table 2.2. Mann-Kendall and Sen's slope accuracy assessment statistics. 

 Browned Greened No change User’s Accuracy 

Browned 50 0 0 100 

Greened 0 49 1 98 

No change 1 1 51 96.2 

Producer’s Accuracy 98 98 98.1  

 

Overall Accuracy 
   

 

98.04 
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2.5 Discussion 

2.5.1 Precipitation and Vegetation Change in the MEE 

Climate change continues to affect economies in most developing nations, especially 

those relying heavily on natural processes for their livelihoods. Agriculture remains the backbone 

of many of these nations (Salami et al. 2010; FEWS Net 2013; NAAIAP & KARI 2014; Getachew 

Tesfaye Ayehu 2015; UNEP 2015; Wanyama 2017; Wanyama et al. 2019), yet agriculture’s 

vulnerability to climate change effects cannot be contested. Climate-related natural hazards, 

including extensive flooding, extended droughts (Kotikot et al. 2018), landslides (Mugagga et al. 

2012) among others, have significantly impacted agricultural production and endangered lives. 

The frequency of these events shows an increasing trend (C. Li et al. 2016; Ayugi et al. 2020), 

thus trapping many agriculture-dependent communities in an unending struggle for survival. 

Therefore, existing food insecurity in these developing nations can be attributed to their 

overreliance on rainfed agriculture (Kotikot et al. 2018). Moreover, the high population growth and 

densities in these nations and elsewhere have translated into need for more agricultural land 

(Mugagga et al. 2012). Coupled with political interference and corruption among forest park and 

reserve staff, this need for more land has resulted in forest encroachment and deforestation as 

ecologically fragile land is cleared for agriculture and settlement (Muhweezi et al. 2007; Bamutaze 

et al. 2010; Mugagga et al. 2012; Nakakaawa et al. 2015; EAC et al. 2016). Therefore, 

understanding the major drivers of landscape change is an important first step to inform better 

decisions to simultaneously conserve the natural environment and improve the livelihoods 

dependent on it. First, being able to separate nature- from human-induced landscape changes 

would be valuable in this endeavor. 

Changes in the landscape occur at varying rates and magnitudes across space and time, 

from very subtle tree damages to forest clearings (Morrison et al. 2018). In this study, two major 

forms of landscape change – browning (areas of declining vegetation) and greening (areas of 
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increasing vegetation) (Murthy & Bagchi 2018) – were studied. The results show that MEE 

greenness exhibited substantial variability, and some form of the greening and browning change 

was recorded each year. As expected, these changes varied by scale, with the highest 

proportions of greened and browned locations observed over the growing season rather than any 

of the individual 16-day periods. Importantly, there was a lot of activity in areas bordering the 

mountain forest, as expected. Clearly, both greening and browning trends were observable, 

particularly on the Kenya side. Significant deforestation occurred as a result of encroaching fertile 

land on the high slopes of the mountain, for agriculture and settlement (examples in Figure 2.15). 

This finding has been reported in previous studies (Mugagga et al. 2012; Petursson et al. 2013).  

 

Figure 2.15. Some of the greened and browned areas identified by Mann-Kendall and Sen's slope. Images 

A, B and C indicate the conversion of natural vegetation (mostly forest) to cropland and settlement. Image 

D indicates afforestation. Source: Google Earth Pro (Google Earth Pro 2020). 
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The Shamba system, thought of as a win-win arrangement, enabled local communities to farm in 

protected areas while tending to the growing trees in their early stages of growth (Petursson et 

al. 2013). This was a government effort originally meant to convert native to plantation forests and 

later to replant trees on harvested forest land. However, the Shamba system farms overlap with 

plantation forest and bamboo vegetation thus making it more difficult to conclusively identify, 

characterize and quantify the nature and magnitude of LULC change, especially by the use of 

traditional classification and change detection methods (Petursson et al. 2013). The significant 

and consistent browning in the southwestern MEE are attributed to the conversion of the 

Namatala wetland to agriculture (mostly paddy rice farming) and settlement (due to the growth of 

Mbale town) (Ministry of Water and Environment Uganda 2016). Since the early 2000s, 80–90% 

of this wetland has been converted. The wetland area is an Important Bird Area (IBA) (BirdLife 

International) and therefore the reported LULC conversion caused many nature–human and 

human–human conflicts, including, respectively, bird poisoning and competition among people to 

own and utilize the wetland. 

Disentangling nature- from human-induced vegetation change is an important yet complex 

task. In this study, patterns of change in precipitation varied with the TS duration (33-, 11-, 20- 

and 18-years) and resolution (dekad, seasonal). Previous studies indicated that precipitation in 

the area exhibited significant temporal variability, with both positive (Muthoni et al. 2019) and 

negative (Wanyama 2017) trends observed over time. It can be inferred that precipitation had 

changed more (increased) over the period after 2000 than earlier. This implies that some of the 

vegetation greening and browning should be linked to this MEE wetting. This is true for the period 

2006–2010, where bfast reveals that greening and browning events in the MEE follow significant 

wetting and drying events. However, a visual interpretation of Mann-Kendall analysis maps for 

both MODIS NDVI and CHIRPS precipitation did not show much similarity. Besides, bfast did not 

reveal any breakpoints in precipitation around 2013, the year when most breakpoints in greenness 
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were detected. While this may be a fault in the bfast model used (because of, for instance, 

instability in historical data used), precipitation alone may not be a reliable predictor of vegetation 

change (Morrison et al. 2018). Davenport & Nicholson (1993) concluded that the NDVI–

precipitation relationship varies both spatially and temporally, is not linear, generally exhibits a 

three-month lag, and depends on underlying LULC types. Therefore, it is likely that these complex 

relationships were not well revealed in both analyses in this study. Besides, the observed 

greening and browning patterns may be driven by other climate factors (such as temperature), 

which were not examined in this study, due in part to data unavailability for the MEE. Moreover, 

the spatial scale mismatch between the CHIRPS and MODIS data makes more quantitative 

comparisons challenging. 

Visual inspections of the results from both analyses revealed the applicability of Mann-

Kendall and bfast methods in detecting changes in vegetation greenness. Most people in the MEE 

are small-scale farmers, owning sometimes less than an acre (0.4 hectares) of land. This 

represents less than 10 percent of the pixel size used (250 by 250-meter MODIS), meaning that 

some subtle land conversions were missed. The choice to use these data was necessitated by 

the frequent availability of MODIS NDVI data. The ability of Mann-Kendall and bfast in delineating 

areas of change in the MEE using this coarse imagery is important, as free finer RS imagery like 

Landsat is limited by both cloud cover across tropical regions and their coarse temporal 

resolutions. Looking forward, combining Sentinel-2 and Landsat imagery may help address this 

issue, but this will not resolve the problem for historical studies like this one. 

The use of Mann-Kendall and bfast algorithms proved to be a valuable integration. Mann-

Kendall performed well in mapping locations that had experienced significant change in the entire 

TS (2001–2018). Consistently greened and browned locations were mapped with high confidence 

(95% significance level) and similar patterns existed for both 16-day and average growing season 

periods: significant and consistent browning in southwestern MEE and greening elsewhere. The 
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best and most accurate results were obtained using average growing season NDVI TS. Here, 

browned locations (especially around mountain boundaries and southwestern MEE) and greening 

elsewhere were clearly demarcated. This indicates that the growing season period, rather than 

the shorter 16-day period, is the best temporal scale for monitoring vegetation change in the MEE. 

bfast on the other hand performed well in mapping changed greenness locations for sequentially 

monitored periods from 2005 to 2018. This part of the analysis revealed only subtle changes in 

vegetation greenness in most locations, indicative of vegetation degradation rather than 

deforestation (DeVries et al. 2015). Importantly, areas with breakpoints across multiple years 

were effectively identified, a finding that would likely be omitted if using traditional post-

classification change detection methods. These findings demonstrate that the process of 

vegetation greening and browning can be studied more thoroughly by fusing these two methods. 

Using Mann-Kendall and Sen’s Slope, one can assess and quantify monotonic trends in their TS 

to get the general picture in the series. This can be complimented with an assessment of the 

temporal occurrence of significant breaks in the series using bfast. Using this integrated approach, 

vegetation greening and browning can be fully characterized and understood to provide more 

information for better decision making. 

2.5.2 Sources of Uncertainty 

Due to a lack of ground precipitation measurements, the present study did not validate the 

CHIRPS data over the MEE. The GHCN data (Global Historical Climatology Network - Daily 

(GHCN-Daily) 2012) would potentially be used, but only one data point existed in the study area 

and was therefore deemed insufficient for this task. While this is a potential source of uncertainty, 

these data have been used extensively in similar studies. Moreover, CHIRPS data are based on 

ground station data since they are created through “smart interpolation" procedures that 

incorporate both satellite information and gauge data (Funk et al. 2015) thus making daily 

CHIRPS imprecise, and reliable only at dekad or higher aggregations. Validation of bfast results 
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was also not possible due to a similar lack of data. Frequent, high-resolution imagery was not 

freely available to download and process, and the study relied on imagery from Google Earth Pro 

which had a lot of spatial and temporal gaps. While no accuracy statistics were calculated for 

these results, the results were interpreted based in part on data collected from the MEE field 

study. 

2.6 Conclusions 

The MEE of eastern Uganda and western Kenya was found to exhibit significant variability 

in vegetation dynamics and precipitation regimes. This variability was attributed to the existing 

LULC orientation especially in eastern MEE and climate change and variability. As such, it is 

highly probable that analysis of only a few images to ascertain MEE landscape change would 

yield inconsistent results. In this study, greening and browning in the MEE was examined using 

both TS trend and breakpoint analysis methods. The MEE had experienced significant and 

persistent greening and browning at different time scales and this change was attributed to both 

natural factors (including changing precipitation) and anthropogenic factors (especially the 

vegetation-to-cropland conversion). The southwestern MEE had consistently browned due to the 

conversion of the Namatala swamp to paddy rice farming and settlement. A lot of activity was also 

observed around the mountain forest boundary as people encroached and converted the forest 

LULC to agriculture and settlement. There were breakpoints in the vegetation greenness TS, 

particularly in the savanna and grassland land covers in northeastern MEE. The breakpoints were 

detected in each of the monitored years (2005–2018), but most of them were observed in 2013, 

2007 and 2010 (greening) and 2009 and 2017 (browning). The study also concluded that MEE 

precipitation had significantly changed (increased) in the post-2000 era. More specifically, total 

precipitation significantly increased in 2006 and 2009–2010 with a consistently decreasing trend 

in between. We therefore concluded that these precipitation changes influenced significant 

greening and browning patterns observed in the same period. The greenness–precipitation 

relationship was weak in other periods as greening and browning changes were not strongly 
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influenced by changing precipitation. This may be attributed to the complex nature of the MEE 

landscape and/or the spatial and temporal scale mismatch between MODIS NDVI and CHIRPS 

precipitation data. The integration of Mann–Kendall, Sen’s slope and bfast proved useful in 

comprehensively characterizing recent changes in vegetation greenness within the MEE. Having 

a comprehensive description of vegetation change is an important first step, especially for such a 

variable landscape, to effect policy changes aimed at simultaneously conserving the environment 

and improving livelihoods that are dependent on it.2   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 This research was supported by funds from the 2019 and 2020 Graduate Office Fellowship (GOF) 
awarded by College of Social Science and Department of Geography, Environment, and Spatial Sciences 
at Michigan State University. It also received support from the 2020 Research Enhancement Award from 
The Graduate School at Michigan State University.  



52 

 

CHAPTER 3. QUANTITATIVE MULTI-FACTOR CHARACTERIZATION OF ECO-
ENVIRONMENTAL VULNERABILITY IN THE MOUNT ELGON ECOSYSTEM3 

3.1 Introduction 

The natural environment continues to experience pressures from many factors, including 

climate change, economic development and human activities (He et al. 2018). Global 

environmental temperatures have increased since the 20th century, causing significant changes 

in the global climate (Guo et al. 2019). As a result, significant precipitation impacts have been 

observed (Nguyen et al. 2018), animal and plant species loss has intensified, and frequencies 

and magnitudes of environmental hazards have increased (Guo et al. 2019). In many parts of the 

world, populations and natural resource extraction have increased substantially, and the 

restorative abilities of ecosystems (especially food systems) have declined, thus rendering both 

human and natural systems more fragile (Zhong-Wu et al. 2006; Nandy et al. 2015; Guo et al. 

2019).  The world faces an unprecedented double challenge: “to eradicate hunger and poverty 

and to stabilize the global climate before it is too late” (FAO 2016). The big task, therefore, is to 

increase food production while fostering sustainability of Earth’s environmental systems 

(Atzberger 2013). Assessing ecological and environmental (eco-environmental) vulnerability is 

key for examining ecological conditions; information drawn from vulnerability analysis can assist 

with targeted actions towards a sustainable environment and improved community livelihoods.  

Vulnerability is challenging to measure. Several definitions of vulnerability have been 

proposed and, as Simane, Zaitchik, and Foltz (2016) noted, any attempt to quantify vulnerability 

depends on the definition and metrics used. Kelly & Adger (2000) defined vulnerability as a 

combination of the capacity of a community to cope with, recover from, or adapt to any external 

stress exerted on their livelihoods. The International Panel on Climate Change (IPCC) defined 

 
3 This is an accepted manuscript of an article published by Taylor & Francis in GIScience & Remote Sensing 
on 10 November 2021 available at https://doi.org/10.1080/15481603.2021.2000351. Reference: Wanyama 
D, Kar B, Moore NJ. 2021. Quantitative multi-factor characterization of eco-environmental vulnerability in 
the Mount Elgon Ecosystem. GIScience & Remote Sensing. 

https://doi.org/10.1080/15481603.2021.2000351
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vulnerability, within the context of climate change, as the level of susceptibility to harmful effects 

caused by climate change (IPCC 2001). The IPCC further characterized a system’s vulnerability 

to a hazard as a function of the hazard’s characteristics (magnitude, rates of change) and the 

system’s exposure, sensitivity, and adaptive capacity. Thus, the concept of vulnerability cross-

cuts multiple disciplines (O’Brien et al. 2004) and is therefore viewed differently depending on 

context (Rama Rao et al. 2016). Vulnerability assessment is routine to many fields, which include 

livelihood vulnerability to hazards (Huong et al. (2019); Simane et al. (2016)), vulnerability to 

natural hazards (Han et al. (2019); Xiong et al. (2019)), vulnerability to climate change (Rama 

Rao et al. (2016); Torresan et al. (2012)), agricultural vulnerability (e.g. Aleksandrova et al. (2016); 

Baca et al. (2014); Parker et al. (2019)), groundwater (Duarte et al. 2015; Aydi 2018), and eco-

environmental vulnerability (Sahoo et al. 2016; He et al. 2018; Zhao et al. 2018; Wei et al. 2020). 

Eco-environmental vulnerability is closely associated with risk of damage to the natural 

environment (Nandy et al. 2015). As such, eco-environmental vulnerability assessment (EEVA) 

has been conducted to comprehensively evaluate natural resource systems that are impacted by 

both natural and anthropogenic activities (Fan et al. 2009). Many methods are used here, 

including fuzzy membership evaluation (Enea & Salemi 2001), analytical hierarchy process (AHP) 

(Wang et al. 2008; Nguyen et al. 2016; Liou et al. 2017; He et al. 2018; Venkatesh et al. 2020), 

entropy method (Zhao et al. 2018), spatial principal component analysis (SPCA) (Fan et al. 2009; 

Nandy et al. 2015; Wei et al. 2020), integrated approaches (e.g., multi-approach study and 

integration of environmental parameters (Teodoro et al. 2021), and combining pressure-state-

response (PSR) method with either PCA (Boori et al. 2021) or AHP (Zhang et al. 2021). Due to 

recent developments in Earth observation technologies, spatio-temporally contiguous data have 

been produced and used in many environmental assessments including EEVA. As such, most 

EEVA studies are similar in their reliance on remote sensing (RS) data from satellites (e.g., 

MODIS, Landsat, GIMMS, Sentinel). More recently, EEVA has been conducted using Synthetic 
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Aperture Radar (SAR) due to its ability to work in cloudy, rainy and foggy conditions (Ji & Cui 

2021) and Unmanned Aerial Vehicles (UAVs) (e.g., Teodoro et al. (2021). However, there is no 

rule of thumb as to how many variables should be used (Nguyen et al. 2016), and each EEVA 

study defines its variables based on contexts and available data. For instance, Venkatesh et al. 

(2020) and  Nguyen et al. (2016)  integrated 12 and 16 variables, respectively. In other studies, 

Liou et al. (2017) and Li et al. (2006) respectively used 12 and 9 variables in their EEVA studies. 

Commonly used variables in these studies include topography (elevation, slope, and aspect), 

vegetation variables (normalized difference vegetation index, normalized difference water index, 

land surface temperature) and some distance variables (distance to rivers and/or urban areas). 

EEVA reveals pertinent information about environmental quality, thus it is a critical step towards 

better formulations of environmental protection frameworks (Sahoo et al. 2016). This can aid 

attainment of ecological sustainability and restoration and ensure better environmental and 

resource management (Nguyen et al. 2016). 

East Africa’s highlands are significantly vulnerable. The East African region covers a wide 

range of ecological and climate regions exhibiting multiple land use and land cover (LULC) types 

and dynamics (Brink et al. 2014). People in this region rely heavily on rainfed agriculture, which, 

amid uncertainties in the climate system, threatens the region’s food security and rural livelihoods 

(Guzha et al. 2018). Land is therefore a critical resource (Guzha et al. 2018), yet land holdings in 

East Africa are small and declining steadily (Maitima et al. 2009; Guzha et al. 2018). Additionally, 

populations continue to surge, necessitating expansion of food production systems (Wanyama et 

al. 2020). As a result, significant LULC conversions (especially natural vegetation to croplands 

and settlement) have widely been reported in many parts of East Africa, including Nech Sar 

National Park (Fetene et al. 2016), the Bale Mountain region (Hailemariam et al. 2016) (both in 

Ethiopia), and the Mara River Basin in Kenya and Uganda (Mwangi et al. 2017). These LULC 

changes have been observed in the Mount Elgon ecosystem (MEE), a major water tower in Kenya 
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and Uganda. The MEE is primarily agricultural, with savanna, grassland, and Afromontane forest 

as dominant land covers (Wanyama et al. 2020). Here, agricultural land has the highest 

population densities approximating 1,000 people per km2  (Nakakaawa et al. 2015; Vlaeminck et 

al. 2016). The increasing fragmentation of small agricultural plots in the MEE signal mounting 

pressures on land and this has translated into increasing encroachment of ecologically fragile 

land (Nakileza & Nedala 2020) along with illegal access to protected areas (PAs) - for agriculture 

(Wanyama et al. 2020) and other extractive activities like timber production and charcoal burning 

(Mawa et al. 2020). This LULC change has, in part, modified local ecosystem functioning (Ongugo 

et al. 2017) which has resulted in more climate-related hazards (e.g., prolonged droughts, more 

frequent landslides and more extensive flooding (Nakakaawa et al. 2015; EAC et al. 2016)). 

Despite these trends, the broader eco-environmental vulnerability of the MEE has not been 

assessed comprehensively. 

Previous studies related to EEVA in the MEE have mostly focused on landslide 

vulnerability in the Ugandan MEE. The Ugandan MEE is particularly vulnerable to landslide 

hazards which have become more frequent over time (Mumba et al. 2016). Broeckx et al. (2019) 

recently assessed landslide susceptibility and mobility rates for the area using a combination of 

logistic regression and Monte Carlo simulations. The study concluded that topography 

significantly affects landslide susceptibility. They attributed the larger landslide mobilization rates 

correlating highly with higher landslide susceptibilities to higher landslide quantity rather than 

magnitude. Ratemo & Bamutaze (2017) integrated qualitative data with geographic information 

systems (GIS) in analyzing risk elements and household vulnerability to landslides within 

Manafwa District in Uganda. This study found that 95% of the community was vulnerable to 

landslide hazards and the vulnerability was especially high in agricultural areas. In another study, 

landslide susceptibility was analyzed in terms of historical land use changes in eastern Uganda  

(Mugagga et al. 2012). The study reported that the encroachment onto critical slopes of the 

ecosystem resulted in a series of landslides in the area.  
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The Kenyan side of the MEE has been minimally studied. Mwangi & Mutua (2015) 

assessed climate change vulnerability for Kenya in terms of its exposure, sensitivity, and adaptive 

capacity characteristics. This study found that the Kenyan MEE was either moderately or highly 

vulnerable. The MEE landscape exhibits significant variability with vegetation greenness increase 

and decrease observed each year (Wanyama et al. 2020). This variability is attributed to the 

MEE’s complex LULC orientation (Petursson et al. 2013), human activities (deforestation and 

forest degradation) and natural processes (changing climate regimes) (Wanyama et al. 2020), 

thus motivating a more comprehensive spatio-temporal assessment of the complex 

interrelationships in the area. While EEVA is not new, such a systematic study has not been 

conducted in the MEE. Besides, the current study does not focus on generation of eco-

environmental vulnerability index (EEVI) surfaces as the only component; rather, it also explores 

changes in the time series of the variables used in an effort to explain the observed changes in 

the annual EEVI. As such, the study presents a systematic approach for comprehensively 

characterizing the nature and magnitude of eco-environmental vulnerability as well as factors 

influencing it. 

This study assessed eco-environmental vulnerability for the MEE, a highly dynamic and 

significantly changing landscape. This study sought to quantitatively examine spatio-temporal 

patterns and trends in eco-environmental vulnerability, and factors driving the high variability 

observed in the MEE landscape. This study hypothesized that being mountainous, environmental 

vulnerability in the MEE varied significantly over distances as short as 5-10 km and was influenced 

greatly by multiple factors. Therefore, this study sought to answer the question: how is 

environmental vulnerability distributed across the MEE, and what are the major factors driving 

these patterns? To answer this question, the MEE was considered an integrated system, and its 

vulnerability was assessed using a novel combination of natural, environmental, and socio-

economic data. With use of SPCA within GIS, this study effectively integrated variables computed 
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 from remote sensing data (normalized difference vegetation index (NDVI)), digital elevation 

models (DEM), climate (precipitation and temperature), and socio-economic data (population 

density data) to compute an EEVI for the MEE. The final EEVI was categorized into five qualitative 

classes indicative of potential, slight, light, moderate, and severe vulnerability. This analysis 

highlighted the differentiated environmental vulnerability levels in the MEE and assessed, ranked, 

and identified areas where urgent action and the limited resources can be targeted. Additionally, 

spatio-temporal changes in precipitation concentration in the MEE were assessed using the 

precipitation concentration index (PCI). This was necessary to provide insights into the significant 

contribution of precipitation to overall vulnerability of the MEE. This analysis is a major step 

towards simultaneously conserving the natural environment and improving livelihoods that 

depend on it. 

3.2 Materials and Methods 

3.2.1 Study Area 

The current study was conducted in the MEE located in western Kenya and eastern 

Uganda (Figure 3.1). The area is approximately 15,000 km2 and extends from 1°37'42.82" N, 

33°55'45.07" E to 0°42'15.76" N, 35°14'18.84" E. The mountainous area rises from a plateau that 

lies about 1,850-2,000 meters above mean sea level (amsl) in the east and 1,050-1,350 meters 

amsl to the west (Hamilton & Perrott 1981). Its vegetation is zoned by altitude (Petursson et al. 

2013) and the montane Mount Elgon Forest (Doumenge et al. 1995) was gazetted in 1968 and 

1992 in Kenya and Uganda respectively (Anseeuw & Alden 2010; Nakakaawa et al. 2015). The 

area is home to many important indigenous tree species (Petursson et al. 2013) including giant 

groundsel (Senecio elgonensis) and Elgon olive (Olea hochstetteri) (Wasonga & Opiyo 2018). 

There are two rainy seasons in the MEE. Most of the rain falls between April and October on the 

Ugandan side (with annual averages of 1,500-2,000 millimeters) (Mugagga et al. 2012).  
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Figure 3.1. Map of the MEE in eastern Uganda and western Kenya. Elevation (meters amsl) and major 

protected areas are shown. Major towns are also shown for reference. It should be noted that FR is 

shorthand for forest reserve, NR is national reserve, NP is national park, WS is wetland system and WMA 

is wildlife management area. 

The Kenyan side receives “long rains” between March and June – averaging 1,400-1,800 

millimeters annually (Okello et al. 2010; Musau et al. 2015). The short rains, often received around 



59 

 

October-December, have become more erratic and largely unpredictable over time. There is 

marginal temperature variation for the area (15°C-23°C) on the Ugandan side (Mugagga et al. 

2012) and 14°C-24°C on the Kenyan side (Musau et al. 2015)). For mountainous regions like this, 

however, temperature and precipitation vary significantly with changes in altitude and relative 

location of windward and leeward sides of the mountain (see, for example, Van den Hende et al. 

(2021)).  

Significant interannual variability exists in the MEE landscape. This is attributed to various 

processes, including a substantial increase in post-2000’s precipitation, agricultural expansion 

(Wanyama et al. 2020) and complex LULC orientations (Petursson et al. 2013). In addition, the 

MEE is composed of various microecosystems, thus some places have favourable climates 

(especially on higher altitudes) while others do not (at lower altitudes) (Mumba et al. 2016). This 

variability therefore impacts MEE livelihoods which are also threatened by increasing natural 

hazards (e.g., floods, droughts, landslides) resulting from changing climate regimes. 

3.2.2 Data Sources 

This study uses daily precipitation records from CHIRPS (Climate Hazards group Infrared 

Precipitation with Stations) (Funk et al. 2015), monthly maximum temperature records from 

CHIRTS (Climate Hazards Center Infrared Temperature with Stations) (Funk et al. 2019), 16-day 

NDVI from Moderate Resolution Imaging Spectroradiometer (MODIS) (Didan 2015), annual 

population density data from WorldPop (WorldPop Project 2020), and Shuttle Radar Topography 

Mission (SRTM) DEM from United States Geological Service (United States Geological Service 

2000). CHIRPS data are available at 5 km spatial resolution and provide global daily and pentad 

records from 1981 to present. Daily records for the 1986-2018 period were obtained and 

preprocessed within Google Earth Engine (GEE) (Gorelick et al. 2017) and used to generate 

precipitation indices used in this study. CHIRTS data were created at the Climate Hazards Center 

(CHC) at University of California, Santa Barbara (Climate Hazards Center 2018), by blending 
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gridded thermal infrared data with station data to create a seamless, high resolution Tmax 

(maximum temperature) dataset that has been found to correlate very highly with observation 

data in the continent of Africa (Funk et al. 2019). This temperature dataset, for the 1986-2016 

period, was used to compute temperature variables necessary for assessing the eco-

environmental vulnerability of the MEE. NDVI data were obtained from MOD13Q1.V6, the 250-

meter, 16-day MODIS composite. This dataset, extending over the period 2001-2018, was 

obtained through AppEEARS, https://lpdaacsvc.cr.usgs.gov/appeears/ (AppEEARS Team 2019). 

The WorldPop population density dataset (WorldPop Project 2020) is available at 1 km spatial 

resolution (at the Equator) and 2000-2020 temporal coverage. This dataset, for the period 2001-

2018, was used to assess changes in population density and distribution within the MEE. The 

SRTM DEM data, available at 30-m spatial resolution, were downloaded from GEE (Gorelick et 

al. 2017) and used to assess the effect of topography on general eco-environmental vulnerability 

of the MEE. 

Table 3.1. Properties of datasets used in this study. 

Dataset Spatial 
Resolution 

Temporal 
Resolution 

Source 

Precipitation 5km 1986-2018  CHIRPSDaily (Funk et al. 2015) 

Temperature 5km 1986-2016  CHIRTSMax Monthly (Funk et al. 2019) 

SRTM DEM 30m 2000 United States Geological Service (United States 
Geological Service 2000)  

NDVI 250m 2001-2018 MODIS (Didan 2015) 

Population 
density 

1 km 2001-2018  WorldPop (WorldPop Project 2020) 

3.2.3 Generation and Justification of Variables Used  

The choice of criteria for evaluating vulnerability is crucial and one should identify criteria 

that are both representative and adaptable (Hou et al. 2015). Also, for easier interpretation, 

variables used in the EEVA should have a directly proportional relationship with eco-

environmental vulnerability. Since the environment is highly dynamic and significantly impacted 

by both natural processes (e.g., precipitation distribution, drought occurrence etc.) and human 

https://lpdaacsvc.cr.usgs.gov/appeears/
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impacts (e.g., deforestation, afforestation, agricultural practices etc.), a reliable EEVA should 

consider both natural and social system variables. In this study, eco-environmental vulnerability 

of the MEE was assessed using both agriculture- and general environment-related variables. 

These variables were selected based on literature (Nguyen et al. 2016; Sahoo et al. 2016; Simane 

et al. 2016; Parker et al. 2019), prior knowledge of the MEE, and insights from a 2019 field study 

in the area. Variables were selected to capture the effects of climate (precipitation and 

temperature), LULC change, population density and topography on the stability of an ecosystem 

that is heavily farmed, encroached and therefore experiencing significant interannual variability.  

All variables were normalized to range from 0 to 1 to allow for easier interpretation and comparison 

across variables. The variables were also resampled to 30-meter spatial resolution.  

While agriculture remains the mainstay for most of East Africa, its dependence on natural 

processes makes the sector highly vulnerable to the impacts of climate change and variability 

(Wanyama et al. 2019), thus influencing food insecurity in the region (Kotikot et al. 2018). The 

effect that variability in precipitation has on the stability of the region cannot be contested. 

Precipitation, combined with temperature, drives important ecosystem processes. Significant 

variability in precipitation will lead to ecological degradation which will disrupt nature-dependent 

systems and practices, like rain-fed agriculture. For instance, under RCP 4.5 and 8.5, the 2070s 

climate will drive significant changes in spatial distribution of maize cropping in Kenya (e.g., some 

currently suitable areas in Narok and Siaya counties will become unsuitable for currently grown 

maize cultivars, while currently unsuitable areas in Nakuru and Kericho will become suitable) 

(Kogo et al. 2019). This shift in suitability therefore means that maize will replace some higher-

value cash crops (e.g., tea in Kericho), thus amplifying the economic effects of climate change. 

Even with some projected increases in precipitation, the agricultural sector is unlikely to benefit 

because of other unfavourable aspects (e.g., timing and spacing of rainfall) (Bryan et al. 2013). 

In response to diminishing yields, and exacerbated by substantially increasing populations, many 
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 people have expanded land under agriculture, often at the expense of natural vegetation (Maitima 

et al. 2009; Wanyama et al. 2020). Thus, variability in precipitation, coupled with significant 

warming trends, poses a substantial threat to the sustainability of both the environment and 

agricultural sector. In this study, eco-environmental vulnerability related to precipitation variability 

was assessed. Three precipitation variables were computed from daily records, including number 

of dry days (NDD), number of extreme events (NXE) and precipitation Z-scores during the growing 

season. Here, a dry day was defined as any day, between April 1 and June 30 (AMJ), when total 

precipitation amount was less than or equal to 2 mm. NDD was used to assess the influence of 

water shortage that occurs within the growing season, thus having negative influence on crop 

growth and yield. Therefore, the higher the NDD, the more vulnerable the area is. An extreme 

event was defined as any day within AMJ when precipitation exceeded 20 mm. NXE was used to 

evaluate the occurrence of extreme rainfall events within the growing seasons, events that likely 

induce flooding that destroys crops, property, and lives. The higher the NXE, the higher the 

vulnerability of the area. These two variables were defined following Haghtalab et al. (2019, 2020). 

Precipitation Z-scores were calculated by first computing total precipitation amounts for AMJ for 

each year from 1986 to 2018 and calculating a long-term mean (LTM) and standard deviation 

(LTSD). Then, the LTM was subtracted from each year’s total precipitation and the result divided 

by the LTSD (Equation 1). 1986-2018 was used because the same period was used in the 

preceding study in the MEE (Wanyama et al. 2020), but also because 34 years are enough for an 

accurate estimation of climatology (Winkler et al. 2018). 

𝑍𝑎 =
𝑋𝑎−𝐿𝑇𝑀

𝐿𝑇𝑆𝐷
                                 (1) 

where 𝑍𝑎 is the Z-score for year a; 𝑋𝑎 is the AMJ total precipitation amount for year a; LTM is 

the long-term mean; and LTSD is the long-term standard deviation.    
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Precipitation Z-score was specifically meant to detect drying patterns in MEE precipitation, 

so all values with positive Z-scores were set to 0. To establish a directly proportional relationship 

with eco-environmental vulnerability, values were transformed to absolute non-negative values. 

As such, highest values were indicative of highest eco-environmental vulnerability. 

Persistent warming has been reported in East Africa since 1960s (Githui 2008; Ongoma 

& Chen 2017; Musau et al. 2018) with a warming of 1.5-2.0 °C observed over the past 5 decades 

(Daron 2014). These high temperatures result in higher evapotranspiration rates (Seneviratne et 

al. 2012; Wanyama et al. 2019; Ayugi et al. 2020) and this has been linked to an observed or 

projected increase in frequency and intensity of droughts (Nguvava et al. 2019; Ayugi et al. 2020). 

Since the majority of the MEE depends heavily on rain-fed agriculture, such warming and 

intensified droughts have adverse impacts on farming practices and ultimately on local livelihoods. 

For example, higher evaporation reduces the amount of water available to the crops (Wanyama 

et al. 2019) and higher temperatures accelerate crop growth leading to lower yields due to 

reduced gap-filling (Hatfield & Prueger 2015). Therefore, to characterize the influence of the 

warming on eco-environmental stability, temperature Z-scores were calculated in a similar fashion 

as precipitation Z-scores above. However, the temperature data spanned 1986-2016 (CHIRTS 

data are currently available until 2016) and temperature means over AMJ were calculated. Since 

this variable was meant to detect warming patterns in MEE temperatures, all negative Z-scores 

were set to 0. As such, the highest values indicate locations of highest vulnerability. 

Vegetation coverage and population changes are both important factors influencing eco-

environmental processes. LULC change (driven by, among other factors, increasing populations 

and a changing climate) has far-reaching impacts ranging from ecological, physical and 

socioeconomic effects (Pellikka et al. 2013) (for instance, see Salazar et al. (2015), Feddema et 

al. (2005), Turner II et al. (2007), and Mugagga et al. (2015)). These changes can alter land-

atmosphere interactions, hence modifying local and global climates. In heavily agricultural areas 
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with consistently increasing populations like the MEE, such changes present a significant threat 

to both the environment and people’s livelihoods. In this study, changes in vegetation greenness 

were assessed using NDVI anomalies (deviations from LTM). First, AMJ seasonal means were 

calculated for each year (2001-2016). Then, anomalies were generated for each year using the 

‘anomalize’ function in the ‘remote’ package in R (Appelhans et al. 2016). Since this variable was 

used to assess the effect of generally decreasing greenness due to major activities (like 

deforestation) and subtle changes (like vegetation degradation), all positive anomalies were set 

to zero. Values were then transformed to absolute (non-negative) values to establish a directly 

proportional relationship with eco-environmental vulnerability. Therefore, locations with little or no 

tree cover will have to cope with higher eco-environmental vulnerability compared to highly 

vegetated areas like forests.  

Assessing changes in population was necessary in this study because many studies have 

linked population growth to major LULC changes (Metzger et al. 2006; Wu & Zhang 2012; Ayuyo 

& Sweta 2014) that greatly influence eco-environmental stability. For instance, regions with 

quickly increasing populations have experienced significant expansion of land under agriculture 

and settlement as communities strive to increase food production. Also, sparsely populated areas 

like savannas and grasslands generally experience less anthropogenic interference and are 

therefore more stable compared to overpopulated areas. In this study, several population density 

variables were generated and assessed; ultimately, raw values were found suitable. The 

existence of extreme values (mainly in urban areas) affected distribution of values in less densely 

populated areas, and therefore, population distribution patterns were hardly detectable. For this 

reason, a cutoff value was explored. To find outliers for each year, we used the ‘boxplot.stats’ 

function in ‘grDevices’ package (R Core Team 2016). Here, we computed boxplot statistics 

(minimum, lower quartile, median, upper quartile, and maximum values) and returned values of 

data points less than (greater than) the minimum (maximum). From these, we selected the 
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minimum value to create a series of “minimum extreme values” for 2001-2018, and the cutoff was 

calculated as the median value from this series. All pixel values greater than the cutoff were then 

set to this value (Equation 2). This variable was used to assess the contribution of population 

density to eco-environmental vulnerability of the MEE.   

IF POPn > CUTOFF, then POPn = CUTOFF, else PASS            (2) 

where 𝑃𝑂𝑃𝑛 is the population density for year n; 𝐶𝑈𝑇𝑂𝐹𝐹 is the cutoff value; and PASS means 

“do nothing”.  

Eco-environmental vulnerability is also strongly influenced by topographic variables (e.g., 

elevation, slope, and slope aspect). These variables play an important role in defining landscape 

conditions and determining the features of the land surface (e.g., potential for natural hazards, 

incoming solar radiation and LULC types (Eliasson et al. 2010; Nguyen & Liou 2019)). Elevation 

greatly influences regional climate regimes, evapotranspiration, and soils (Nguyen et al. 2016). 

Temperatures decrease with increase in altitude and some locations receive more rainfall than 

others, depending on their orientation relative to the mountain. Slope, on the other hand, 

influences various physical processes. For instance, magnitude of slope and general ‘hilliness’ of 

an area influence rainfall amounts received. Slope also influences soil erosion and landslides, 

with steeper slopes posing a higher risk for occurrence. Due in part to its topographic orientation, 

the MEE consists of various microecosystems, with higher altitudes generally exhibiting 

favourable climates compared to lower altitude areas (Mumba et al. 2016). Thus, two topographic 

variables (elevation and slope) were used to assess the effect of topography on eco-

environmental vulnerability. For elevation, a cutoff value was first obtained at the 90th percentile. 

Higher values were then set to this cutoff (like population density above) since these generally 

represented stable mountain locations unpopulated by humans. Percent slope was also 

calculated, and values higher than 30 percent were excluded, because slopes higher than this 
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generally limit access and diminish land suitability for some socio-economic activities (e.g., maize 

farming) (Wang 2015; Wanyama et al. 2019).  

3.2.4 Methods  

This section describes the methods and analyses performed to characterize patterns of 

eco-environmental vulnerability in the MEE. The analyses included computing EEVI, assessing 

spatio-temporal patterns of change in multi-year variables, and characterizing precipitation 

concentration in the MEE. These analyses were performed in R (R Core Team 2018).  

3.2.4.1 Spatial Principal Components Analysis 

To compute an EEVI for the MEE, this study implemented principal components analysis 

(PCA), which has been applied in various studies (Li et al. 2006; Hou et al. 2015; Zou & Yoshino 

2017). PCA reduces the dimensionality of data, increasing interpretability while minimizing loss 

of information (Pearson 1901). It linearly transforms original variables into a set of uncorrelated 

variables (called principal components, PCs), thus making it one of the simplest dimensionality 

reduction techniques (Jolliffe 1990). PCA can be expressed as follows: 

𝑌 =  𝑛1𝑥1 + 𝑛2𝑥2 + 𝑛3𝑥3 + 𝑛m𝑥m           (3) 

where Y is the PC score; n is the component loading; x is the measured value of a variable; and 

m is the total number of variables (Hou et al. 2015). 

The importance of a PC is ranked, denoted by eigenvalues, based on the amount of variance it 

captures in the original data (Hou et al. 2015; Zou & Yoshino 2017). For spatial data, SPCA is 

used and the technique transforms attributes in a multiband spatial dataset into a new multivariate 

space whose axes are rotated with respect to the original space (Hou et al. 2015; Zou & Yoshino 

2017).  

SPCA was used in this study to decompose climate, topography, population density and 

vegetation greenness variables to generate annual EEVI for the MEE (for 2001-2016). SPCA was 
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a suitable method since there was no clear understanding of the nature of patterns within these 

variables (Hou et al. 2015). The ‘rasterPCA’ function in the ‘RStoolbox’ package (Leutner et al. 

2019) in R statistical software was used. SPCA results were assessed and for each year, the first 

five PCs were retained to compute EEVI using the equation below.  

𝐸𝐸𝑉𝐼𝑖 =  𝑛1𝑃𝐶1 + 𝑛2𝑃𝐶2 + 𝑛3𝑃𝐶3 +  𝑛4𝑃𝐶4  +  𝑛5𝑃𝐶5            (4) 

where 𝐸𝐸𝑉𝐼𝑖 is the eco-environmental vulnerability index for year i; 𝑃𝐶1 is the first principal 

component; and 𝑛1 is the contribution ratio of the first principal component (Hou et al. 2015). 

The computed EEVI surfaces were reclassified into five qualitative groups indicative of 

different levels of eco-environmental vulnerability in the MEE. The equal interval classification 

scheme was applied, although other data classification schemes were explored. The scheme is 

useful when the objective is to put emphasis on the amount of an attribute value relative to another 

value (Torresan et al. 2012). Therefore, this method allowed for comparison of EEVI across years. 

This classification scheme has previously been used in similar studies (Torresan et al. 2012; 

Žurovec et al. 2017; Parker et al. 2019). Table 2 shows class ranges used in this study. 

Table 3.2. Value ranges for different levels of eco-environmental vulnerability in the MEE. 

Class Range 

Potential 0.383 - 0.586 

Slight   0.181 - 0.383 

Light   -0.022 - 0.181   

Moderate -0.225 - -0.022   

Severe -0.427 - -0.225 

PCA was also performed on each of the original temporal series of NDVI, temperature, 

precipitation, and population density variables. This temporal PCA (TPCA) was necessary to 

identify persistent patterns of change in each variable over time. To do this, time series rasters of 

these variables (2001-2018 for precipitation, NDVI and population density, and 2001-2016 for 

temperature) were used, and only PCs explaining more than 1% of the variance were considered 

significant. 
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3.2.4.2 Precipitation Concentration Index 

Given that significant changes in precipitation have been reported previously, especially 

post-2000 (Wanyama et al. 2020), this study assessed spatio-temporal changes in distribution of 

MEE precipitation over 34 years (1986-2018). Monthly precipitation totals for this period were 

used to compute the PCI (Oliver 1980; De Luis et al. 2011). PCI was preferred in this study 

because it is a powerful measure of precipitation distribution over time (De Luis et al. 2011).  The 

index was calculated on two scales: annual and supra-seasonal. The supra-seasonal ranges were 

defined generally as wet (January-June) and dry (July-December). The annual and supra-

seasonal PCI were computed according to Equations 5 and 6, respectively.  

PCI𝑎𝑛𝑛𝑢𝑎𝑙 =
∑ 𝑝𝑖

212
𝑖=1

(∑ 𝑝𝑖
12
𝑖=1 )

2 ∗ 100            (5) 

PCI𝑠𝑢𝑝𝑟𝑎𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 =
∑ 𝑝𝑖

26
𝑖=1

(∑ 𝑝𝑖
6
𝑖=1 )

2 ∗ 50            (6) 

where 𝑝𝑖 is the monthly precipitation in month i (De Luis et al. 2011).  

PCI values range from 8.3 (uniform precipitation concentration) to 100 (irregular 

precipitation distribution) with increasing values denoting an increased monthly precipitation 

concentration (Oliver 1980). Oliver (1980) proposed that, on the annual and supra-seasonal 

scales, PCI values less than 10 indicate uniform precipitation distribution (lowest precipitation 

concentration), values between 11 and 20 show a seasonal distribution while values greater than 

20 denote an irregular distribution. In this study, the PCI was used to show that distribution of 

MEE precipitation has significantly changed over time. As such, the Mann-Whitney U test, a non-

parametric test, was applied to assess the statistical difference in precipitation concentration 

between the first 11 years (1986-1996) and last 11 years (2008-2018). The 11-year periods were 

used here because they were used in a previous study for the same study area (Wanyama et al. 

 2020). Such statistical comparison has been performed in previous studies (De Luis et al. 2011; 

Kibret et al. 2019). PCI change results were assessed at the 95 percent significance level.  



69 

 

3.3 Results 

This study characterizes, using SPCA, TPCA and PCI, patterns of eco-environmental 

vulnerability in the MEE. The results highlight levels of eco-environmental vulnerability and areas 

of persistent changes in precipitation, NDVI, and population density. Results from PCI analysis 

are also presented and, together, attempt to comprehensively characterize eco-environmental 

vulnerability and the variability observed over the MEE. 

3.3.1 Eco-environmental Vulnerability  

3.3.1.1 SPCA Results 

The first five PCs were retained to compute EEVI in this study. Together, these PCs 

explained more than 95% of the variance in the original eight variables included in the study. An 

example of the breakdown of variable loadings is shown in Tables 3, 4 and 5 for 2001, 2008 and 

2016, respectively. Figures 3.2 and 3.3 show the five PCs in 2001 and 2016.  

Table 3.3. Loadings for the first five PCs in 2001. Note that major loadings for each PC are shown in bold.  

Variable PC1 PC2 PC3 PC4 PC5 

Elevation 0.842 0.051 0.430 0.316 0.005 

Slope 0.457 -0.185 -0.860 -0.014 -0.128 

Precipitation Z-scores 0.018 0.002 0.004 0.057 0.000 

Temperature Z-scores 0.000 0.000 0.000 0.000 0.000 

Number of dry days 0.155 0.174 0.157 -0.661 -0.676 

Number of extreme events 0.232 -0.137 0.063 -0.677 0.676 

NDVI -0.045 -0.072 -0.030 0.037 0.163 

Population density -0.046 -0.953 0.212 -0.006 -0.207 
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Table 3.4. Loadings for the first five PCs in 2008. Note that major loadings for each PC are shown in bold.  

Variable PC1 PC2 PC3 PC4 PC5 

Elevation 0.841 0.013 0.322 0.280 0.241 

Slope 0.449 -0.101 -0.777 -0.425 -0.007 

Precipitation Z-scores 0.084 -0.099 0.423 -0.703 0.252 

Temperature Z-scores -0.103 0.091 -0.039 -0.177 -0.159 

Number of dry days 0.110 0.139 0.324 -0.426 -0.517 

Number of extreme events 0.241 -0.060 0.029 0.183 -0.763 

NDVI 0.003 0.019 -0.002 -0.005 0.001 

Population density -0.052 -0.974 0.083 0.031 -0.063 

Table 3.5. Loadings for the first five PCs in 2016. Note that major loadings for each PC are shown in bold.  

Variable PC1 PC2 PC3 PC4 PC5 

Elevation 0.849 0.055 0.451 0.251 0.064 

Slope 0.461 0.107 -0.878 0.010 -0.072 

Precipitation Z-

scores 

0.000 0.000 0.000 0.000 0.000 

Temperature Z-

scores 

-0.000 0.002 0.002 -0.004 0.009 

Number of dry days 0.012 -0.055 0.082 0.006 -0.973 

Number of extreme 

events 

0.223 0.057 0.113 -0.966 0.000 

NDVI 0.072 0.005 0.045 0.038 -0.204 

Population density -0.110 0.989 0.068 0.041 -0.049 

The amount of variance captured by each PC varied over time, and generally, the first PC 

averagely accounted for about 50%. This PC was heavily loaded on elevation, slope and NXE 

variables. The second PC, which explained about 25% of the variance, was loaded mostly on 

population density. Notice that the loading for this PC shifts between positive and negative (Tables 

3, 4 and 5), thus introducing the visible changes in distribution of the PC values over the years 

(e.g., compare Figures 3.2B and 3.3B). The third PC (approximately 10% of variance) was mostly 
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a linear function of slope and elevation, as well as climate variables in some years (see Table 4). 

Loadings of the fourth and fifth PCs exhibited major changes from year to year, but climate 

variables (NXE and NDD) together with elevation were common components. These two PCs 

explained about 10% of the variance in the original data. 

 

Figure 3.2. The first five PCs used to compute EEVI for 2001. 
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Figure 3.3. The first five PCs used to compute EEVI for 2016. It should be noted that the scale in this figure 

is same as in Figure 3.2. 

3.3.1.2 Eco-environmental Vulnerability Index 

In this study, eco-environmental vulnerability was defined as the risk of damage to the 

natural environment (Nandy et al. 2015). As such, this study was conducted to evaluate the 

natural resource system affected by both natural and human activities within the MEE. Results 

show that 38% of the MEE (5,700 km2) is moderately vulnerable (Figure 3.4). These areas are 

mostly grasslands and agricultural land in the northwestern and western parts of the MEE, 

respectively. Highest proportions of this vulnerability level were observed in 2005 (52%), 2008 

(50%), 2001 (47%), 2012 (45%) and 2014 (43%) when most of the savannas were also 

moderately vulnerable. The second highest proportion of the MEE was lightly vulnerable, and 

these areas majorly included areas in the southeastern MEE, which are primarily composed of 

mixed land uses (cropland, shrubland, grassland). This vulnerability class was the most static of 
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all, as no major changes in proportion and locations were observed across the 16-year period 

(with percent proportions ranging from 24 to 29%). 

 

Figure 3.4. EEVI for each year from 2001 to 2016. Notice that eco-environmental vulnerability varies over 

time, but persistent patterns exist in space. EEVI increases with decrease in elevation. 

There was generally an equal proportion of land in the severe and potential vulnerability 

classes (both averaging 12% (1,800 km2) over the 16 years). High elevation (>2,000 m amsl) 

locations on the Afromontane forest constituted the slight vulnerability class, and these generally 
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 remained stationary throughout the study period. On the other hand, savannas in northern MEE 

represented most of the land under the severe class, although some agricultural lands in eastern 

MEE were also found in this class, especially during 2001, 2003, 2008, 2012 and 2014. Some of 

the high elevation areas of Mount Elgon fell into the smallest class (proportions ranging from <1 

percent to about 8%). Land under this class was highest in 2001, 2012 and 2008 (1,200 km2, 

1,200 km2and 1,000 km2, respectively) and least in 2009, 2011 and 2013 (approximately 20 km2, 

30 km2 and 30 km2, respectively). It is worth mentioning that the proportion of land under the 

potential and moderate vulnerability classes exhibited a generally decreasing trend over time 

(Figure 3.5A and D), while a positive trend was observed in the slight, light, and severe 

vulnerability classes (Figure 3.5B, C, and E). 

 

Figure 3.5. Percent proportion of land under each EEVI class from 2001 to 2016. The red lines represent 

fitted linear trends for each series. 
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3.3.1.3 TPCA Results  

Results from decomposing the temperature time series (2001-2016) are not provided 

because no significant patterns in MEE temperatures were found. For precipitation time series 

(2001-2018), each of the first three PCs explained more than 1% of the variance. PC1 revealed 

the general spatial distribution of precipitation in the MEE (Figure 3.6A). Savanna and grasslands 

in northeastern MEE are the driest while the Afromontane forest and parts of southern MEE are 

the wettest. The second and third PCs (Figures 3.6B and C) showed varying trends in precipitation 

possibly related to topography. Such persistent changes in precipitation may be responsible for 

major changes in eco-environmental vulnerability over the years (Figure 3.4).  

 

Figure 3.6. Important PCs obtained from the precipitation time series (2001-2018) using TPCA. 

The first two PCs from the NDVI time series (2001-2018) decomposition contained 

important information. PC1 captured the distribution of major LULCs in the MEE (Figure 3.7A). 

Here, the Afromontane forest in central MEE, savanna and grasslands in north and northeast, 

and agricultural land were all identified. Equally interesting is PC2 (Figure 3.7B) which delineated 

locations of major greening (in the northern MEE and high elevation areas of the mountain) and 

browning (especially in southwestern MEE and the edges of the mountain forest). Results from 

decomposing the population density time series (2001-2018) revealed the general distribution of 

the population in the MEE (Figure 3.7C). Here, urban centers and other highly populated areas 
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(mostly agricultural lands) were identified. Least populated areas were found in most of the 

savannas and grasslands as well as high elevations. 

 

Figure 3.7. The first two PCs from NDVI time series (A and B) and the first from population density time 

series (C). 

3.3.2 Precipitation Concentration in the MEE  

Assessment of PCI over the dry period yielded only a few locations in southwestern MEE with 

significantly different precipitation concentration between 1986-1996 (first 11 years) and 2008-

2018 (last 11 years). This result is not provided in this study. Figure 3.8 shows locations where 

PCI values for 2008-2018 were greater than 1986-1996 for both the annual (Figure 3.8A) and wet 

season (Figure 3.8B) periods. In these locations, there is a more than likely probability (p<0.05) 

that precipitation concentration was greater in the later period than the previous. This is especially 

true for western MEE (on the annual scale) and the west-to-northeastern stretch of the MEE (for 

the wet season).  
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Figure 3.8. Locations where precipitation concentration in last 11 years (2008-2018) was significantly 

(p<0.05) greater than the first 11 years (1986-1996). 

3.4 Discussion 

3.4.1 Eco-environmental Vulnerability in the MEE  

Climate change continues to affect most developing nations, especially those relying on 

rainfed agriculture (Wanyama et al. 2020). The vulnerability of the agriculture sector is worsened 

by the intensifying and more frequent natural disasters coupled with significant environmental 

change. In the MEE, a largely agricultural area, populations have increased to approximately 

1,000 people per km2 in some areas (Nakakaawa et al. 2015; Vlaeminck et al. 2016). Here, farm 

sizes are consistently shrinking as populations increase, and this signals mounting pressure on 

land (Nakakaawa et al. 2015; McKinney & Wright 2021). The need to increase food production 

has fueled encroachment on ecologically fragile land (Nakileza & Nedala 2020) and illegal access 

to PAs (McKinney & Wright 2021). As a result, this LULC change has, in part, modified local 

ecosystem functioning (Omwenga et al. 2019), intensified climate-related hazards (Nakakaawa 

et al. 2015; EAC et al. 2016) and introduced and/or increased significant interannual variability 

(Wanyama et al. 2020). Moreover, precipitation concentration is amplifying notably in the wet 

season (Figure 3.8), thus adding another layer of risk for agriculture and ultimately for local 
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community livelihoods. These complex human-environment interactions in the MEE therefore 

underpin the region’s eco-environmental vulnerability. Yet characterizing this vulnerability is 

marred by the absence of data at appropriate spatial and temporal scales and inadequacies in 

practical methodologies. 

Representing vulnerability as a single index provides important information about the 

degree of vulnerability, and helps identify most vulnerable regions (Žurovec et al. 2017) where 

action can be targeted. Outputs from these analyses are maps which generally reflect the kind of 

datasets and methods used, as well as decisions about data aggregation, variable weighting and 

resolution of the analysis (Abson et al. 2012). PCA has commonly been used in these studies, 

especially when no prior knowledge exists about patterns in the variables (Hou et al. 2015). PCA 

doesn’t weight original variables; rather, it provides relative vulnerability relating to how individual 

drivers of vulnerability co-vary in space (Abson et al. 2012; Defne et al. 2020). It is therefore a 

good source of information about how multiple variables interact, aggregate and affect a given 

location (Defne et al. 2020). This is important, as human-environment systems are known to have 

complex interactions and therefore intricate interrelationships among biophysical and socio-

political factors. By aggregating these variables into a single vulnerability index, therefore, 

locations experiencing highest cumulative vulnerability can be delineated. This does not mean 

that important underlying information about the variables is lost; policymakers can assess the 

retained PCs and identify, based on their knowledge, drivers or types of vulnerability that are most 

important in their context (Abson et al. 2012). 

The present study found that majority of the MEE (comprising savannas, grasslands, and 

most of the agricultural land in Ugandan MEE) was moderately vulnerable based on the analysis 

methods and variables used. A majority of the savannas and grasslands were severely 

vulnerable, and this has also been reported elsewhere by Jiang et al. (2018). Eco-environmental 

vulnerability also varies in time with increases in the ‘slight’, ‘light’ and ‘severe’ categories. This 
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temporal dependence means that eco-environmental vulnerability is a function of multiple local 

factors, often operating at a range of space and time scales. This dynamism constrains the validity 

of vulnerability scores to specific scales (Aretano et al. 2015). The temporal variability in eco-

environmental vulnerability over the 2001-2016 period was related to multi-year variables derived 

from precipitation (NDD, NXE, precipitation Z-scores), temperature (temperature Z-scores) and 

population density. Therefore, it can be inferred that the MEE will continue to experience 

significant interannual variability in eco-environmental vulnerability as the climate system changes 

and populations increase particularly in the northwestern part of the domain (Figure 3.4). It should 

also be noted that, being mountainous, topographic variables (elevation and slope) also had a 

substantial influence on the vulnerability of the MEE - with EEVI markedly increasing with 

decrease in elevation. Previous studies have also found that topographic characteristics and 

precipitation significantly influence eco-environmental vulnerability (Nguyen et al. 2016; Jiang et 

al. 2018; Li et al. 2021). 

Atzberger (2013) stated that, under climate change, society is tasked with increasing food 

production while fostering sustainability of Earth’s environmental systems. Results from this study 

are aimed at steering action towards achieving this goal in the MEE, by providing policymakers 

and development practitioners with valuable and comprehensive knowledge of the varying levels 

of eco-environmental vulnerability in the MEE and identifying areas that require immediate 

conservational attention. As seen over the years, savannas and grasslands are mostly severely 

or moderately vulnerable. This is not shocking, as these areas (i) are increasingly being inhabited 

by humans who introduce major LULC changes (e.g., natural vegetation to agriculture) (Wanyama 

et al. 2020), (ii) receive the least amounts of rainfall (Figure 3.6A), and (iii) are uncharacteristically 

warming over time. The erratic rainfall in these areas means that rainfed agriculture is not a 

reliable source of livelihood and the increasing temperatures make pastoralism a risky venture. 

Most agricultural areas in the west and southwestern MEE exhibit moderate eco-environmental 



80 

 

 vulnerability. This may be driven by a significantly changing and/or varying climate, although the 

intensifying human activities in these areas are also to blame. For instance, the expansion of land 

under agriculture at the expense of natural vegetation has a long-term effect of modifying 

ecosystem processes and accelerating climate change and variability. These areas include some 

of the most populated areas in rural Africa - meaning that majority of the MEE population is 

substantially vulnerable to climate change and related environmental change, and that this 

vulnerability is likely to rise with rising populations. 

Despite its socio-ecological importance and the complex human-environment interactions 

influencing its stability, the MEE has been understudied. This is due in part to the acute data 

inadequacies in this area and the rest of East Africa. In some cases, data (e.g., from national 

census) are available but only at mismatched spatial and temporal scales and/or in aspatial 

formats that limit their usage. Through recent developments in Earth observation technologies 

and modeling techniques, valuable spatio-temporally contiguous data have been produced and 

are now being accessed freely and used to conduct important environmental assessments 

including EEVA. This study leverages globally available multi-decadal data (MODIS NDVI, 

CHIRPS, CHIRTS, and WorldPop) and open-source software (R and GEE) to assess eco-

environmental vulnerability. This is a demonstration that this analysis can easily be translated to 

regions with similar characteristics (e.g., other mixed forest and agriculture landscapes like the 

Mau Complex in Kenya, Mount Kilimanjaro in Tanzania, among others). Additionally, using these 

datasets enables important ecosystem properties like EEVI to be characterized and monitored 

over time, thus ensuring better planning and decision making for environmental conservation and 

local livelihood improvement.  

This study found that areas surrounding PAs are at great risk of deforestation and forest 

degradation (e.g., see Figure 3.7B), corroborating results by Wanyama et al. (2020). MEE PAs 

have also been influenced by activities such as overexploitation of forest resources by logging 
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companies and post-independence political changes, mainly due to institutional deficiencies 

(Petursson & Vedeld 2017). This result shows that there is a spatial structure to eco-

environmental vulnerability, and this is key as it can inform policymakers about factors driving 

ecosystem vulnerability in the MEE. The amplifying precipitation concentration (Figure 3.8) also 

means that the MEE climate is significantly changing and consequently diminishing MEE’s ability 

to support rainfed agriculture, a major source of livelihood for majority of the local population. 

Conservation of this ecosystem is therefore imperative, and this study recommends that areas in 

the moderate and severe vulnerability classes should especially be targeted. To achieve this, 

policies aimed at protecting PAs and other natural lands should be better enforced. One such way 

is the adoption of the bottom-up approach in which local community members’ opinions are 

considered in conservation and resource management decision making. As Tadesse et al. (2017) 

note, this approach is key to mobilizing local community participation in conservation of common-

pool natural resources. The approach provides a great avenue to (i) gather important indigenous 

knowledge systems from the people, (ii) boost ownership and garner the support of communities, 

and (iii) ultimately ensure successful implementation of projects and policies. Gashu & Aminu 

(2019) concluded that natural resource management is impossible without proper involvement of 

local communities. The study also found that EEVI is significantly driven by human activities either 

directly (e.g., increasing populations, clearing forests for agriculture) or indirectly (e.g., changing 

precipitation patterns due to deforestation). Therefore, acknowledging that people are major 

players in this ecosystem is an important step towards simultaneously conserving the 

environment and improving livelihoods. Against this background, this study recommends that 

positive behavior change should be encouraged and funded among local communities. This 

includes adopting lifestyles and habits that foster more sustainable use of natural resources. 

Efforts aimed at curbing the widespread conversion of natural vegetation to croplands and 

settlement are especially encouraged. On the same account, the role of natural vegetation in 

regulating the local climate system should be emphasized.   
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3.4.2 Sources of Uncertainty  

There is no rule of thumb as to how many variables should be used in EEVA (Nguyen et 

al. 2016), and each study defines its variables based on contexts and available data. Data 

unavailability is a widely known problem in East Africa. Due to this shortcoming, data used in this 

study were available at multiple and mostly very coarse spatial resolutions: the DEM was obtained 

at 30 m, population density at 1 km and CHIRPS and CHIRTS at 4 km. This scale mismatch 

introduced some uncertainties in the EEVA results. Additionally, the present study would have 

benefited from census data for Kenya and Uganda. From these, more specific demographic 

variables associated with eco-environmental vulnerability would have been computed and 

incorporated in the study to produce a more detailed picture of eco-environmental vulnerability. 

However, the census is conducted once every 10 years in these countries and therefore would 

mismatch the temporal scale of analysis (annual) used in this study. It is also worth noting that 

even this decadal data was not available. In its place, population density data from WorldPop, 

which have been used in previous studies in Africa (Kibret et al. 2019; McNally et al. 2019; Helman 

& Zaitchik 2020), were used. Further, the study design and interpretation of the results were based 

in part on prior knowledge of the MEE, and insights from a 2019 field study in the area. 

3.5 Conclusions 

The present study found that the majority of the MEE (comprising savannas, grasslands, 

and most of the agricultural land in Ugandan MEE) was moderately vulnerable based on the 

analysis methods and variables used. EEVI showed a marked increase in vulnerability with 

decrease in elevation. EEVI is most severe in the savannas of the northwestern part of the 

domain. Savannas and grasslands constituted the majority of the severe vulnerability class. Eco-

environmental vulnerability varied from year to year, indicating that it is a function of multiple 

factors operating at numerous scales (local to coarse scale). Eco-environmental vulnerability in 

the MEE is strongly associated with multi-year variables based on precipitation, temperature, and 
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population density. With fast increasing populations and intensifying climate change and 

variability, eco-environmental vulnerability in the MEE will continue to experience significant 

interannual variability. Moreover, precipitation concentration is amplifying especially in the wet 

season, thus adding another layer of risk for agriculture and ultimately for local community 

livelihoods.  

To achieve sustainability in the MEE ecosystem and the livelihoods it supports, areas in 

the moderate and severe vulnerability classes need prioritized conservation. It is recommended 

that environmental conservation policies be implemented and enforced in these areas by adopting 

the bottom-up approach in which local community members’ opinions are incorporated in decision 

making. In addition, more data must be collected and used.  Communities can be encouraged to 

adopt lifestyles and habits that foster more sustainable use of natural resources, and international 

donors can use this information to target conservation activities.4 
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CHAPTER 4. SIMULATION OF FUTURE LAND USE CHANGE IN A DATA-SCARCE 

BUT RAPIDLY CHANGING MOUNT ELGON ECOSYSTEM5 

4.1 Introduction 

Land use and land cover (LULC) changes have been recognized both locally and globally 

as important factors driving anthropogenic changes in the environment (Guan et al. 2011; Mishra 

& Rai 2016; Gibson et al. 2018; Hasan et al. 2020). Since the last ice age, about 75% of natural 

vegetation has been altered due to human activities (Ellis & Ramankutty 2008; Uddin et al. 2015). 

Anthropogenic landscape modification is therefore not a new phenomenon, but rates, intensity 

and extents of these changes have been the highest in recent decades (Ellis 2007). For instance, 

it is estimated that about 420 million hectares of forested areas have been lost via conversion to 

other LULC types since 1990s alone (FAO & UNEP 2020). This LULC change is influenced greatly 

by fast increasing populations (Metzger et al. 2006), exacerbated by effects of climate change 

and/or variability, which have increased demand for more food, water and shelter (Foley et al. 

2005), and therefore necessitated rapid expansion of agricultural, pastural and urban lands (Foley 

et al. 2005; Lambin & Meyfroidt 2011). LULC changes have been linked to various ecological, 

socioeconomic impacts (Pellikka et al. 2013) including regional climate modifications (Salazar et 

al. 2015) such as cooling temperatures (for instance, Feddema et al. (2007)) and decreasing 

precipitation (for example, see Turner II et al. (2007)). The changes have also been associated 

with declines in biodiversity (Foley et al. 2005; Newbold et al. 2015) due to habitat fragmentation 

and loss (Halmy et al. 2015), and diminishing ecosystems’ regulatory functioning such as carbon 

sinks (e.g. Mugagga et al. (2015)), among other effects. Persistent LULC changes can alter land-

atmosphere interactions thereby modifying local and global climates. Coupled with a significantly 

changing climate, LULC changes threaten major ecological processes (e.g., biodiversity 

conservation) and socio-economic practices (e.g., rainfed agriculture). Thus, a comprehensive 

 
5 This is an unpublished manuscript. Reference: Wanyama D, Moore NJ, Bunting EL. 2021. In Preparation. 
Simulation of future land use change in a data-scarce but rapidly changing Mount Elgon Ecosystem. 
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understanding of historical, present, and future changes in LULC is necessary for planning and 

implementing programs aiming to simultaneously conserve the natural environment and improve 

local livelihoods and processes dependent on it. 

East Africa’s highlands are significantly vulnerable to the effects of climate change and 

variability. Here, ‘short rains’ have become highly variable and unpredictable with time. Further, 

‘long rains’ have shown significant within-season shifts, and more extreme natural events (e.g., 

droughts, floods, and landslides) have become more common. On the other hand, land is a critical 

resource in this region (Guzha et al. 2018) as a majority of the inhabitants derive their livelihoods 

from subsistence agriculture. Yet land holdings per household have steadily reduced over time 

(Maitima et al. 2009; Guzha et al. 2018). Thus, the heavy reliance on rainfed agriculture in East 

Africa continues to threaten the region’s food security and rural livelihoods (Guzha et al. 2018; 

Wanyama et al. 2020). Additionally, the fast increasing populations have necessitated expansion 

of food production systems (Wanyama et al. 2020) and as a result, significant LULC changes 

(particularly loss of natural vegetation to cultivated land and settlement) have widely been 

reported in many parts of East Africa (Fetene et al. 2016; Hailemariam et al. 2016; Mwangi et al. 

2017).  

The Mount Elgon ecosystem (MEE), a major water catchment area in western Kenya and 

eastern Uganda has experienced similar LULC changes. The MEE is dominated by agricultural 

land, savanna, grassland, and an Afromontane forest (Wanyama et al. 2020). Cultivated areas in 

the MEE are among the highly populated areas in rural Africa, approximating 1,000 people per 

km2 (Nakakaawa et al. 2015; Vlaeminck et al. 2016). Existing extractive activities like charcoal 

burning and timber production (Mawa et al. 2020), increasing encroachment of ecologically fragile 

land on the high slopes of the mountain (Nakileza & Nedala 2020), and illegal access and 

cultivation of protected areas (PAs) (Wanyama et al. 2020) all point to the mounting pressure on 

land resources in the MEE. Deforestation and degradation of natural vegetation have been 
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blamed for the intensifying occurrence of climate-related natural hazards (for instance, prolonged 

droughts, more frequent landslides and more extensive flooding (Nakakaawa et al. 2015; EAC et 

al. 2016)) which have threatened lives and property and diminished the ecological and 

environmental (eco-environmental) stability of the area (Wanyama et al. 2021). The MEE 

landscape is known to be highly variable, with observed greening and browning patterns across 

multiple temporal scales primarily related to the significant increases in post-2000 precipitation 

and agricultural expansion (Wanyama et al. 2020). Long-term trends over the growing season 

(April-May-June, AMJ) generally show deforestation and reforestation at the edges of the 

protected forest while land degradation has been detected (especially in the savannas and 

grasslands) over shorter-term periods. Such dynamics make it difficult to accurately estimate 

future LULC changes for better land use planning and conservation. Remote sensing (RS) and 

Geographic Information Systems (GIS) have been invaluable tools in such analyses.  

RS and GIS are important tools in conservation and management of natural resources. 

The use of RS data has increased significantly over the last decade due to the opening of the 

Landsat archive (Woodcock et al. 2008; Morrison et al. 2018), the launching of the higher-

resolution Sentinel satellites, and significant improvements in geospatial data analysis methods. 

Satellite RS poses several advantages including the ability to collect and provide spatiotemporal 

data in a manner that is timely and cost-effective to the user. On the other hand, GIS allows for 

efficient handling and manipulation of this ‘big data’ to provide important information for policy and 

decision-making. This is especially important for highly variable landscapes like the MEE, 

because analyses of LULC change for these areas require large amounts of data at fine spatial 

and temporal scales (e.g., 30 m and daily, respectively). Satellite RS data and GIS capabilities 

are key in land use change (LUC) models that comprehensively characterize historical and current 

LULC changes and predict future LULC changes. 
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LUC modeling refers to the simulation of a socio-ecological system over space and time 

in a manner that relates to measured LULC change (Paegelow et al. 2013; Gibson et al. 2018). 

LUC models serve two purposes: to identify factors or proxies that explain LULC change and to 

predict possible future scenarios of LULC based on the factors (Overmars et al. 2003; Eastman 

& He 2020). Change analysis in these models is performed using historical LULC data to 

determine patterns, transitions and past LULC changes (Halmy et al. 2015). The transitions are 

then integrated with environmental variables to estimate future LULC changes (Pijanowski et al. 

2002; Halmy et al. 2015). Several LUC models have been developed including Cellular Automata 

(CA) (Vaz et al. 2012), CA-Markov (Halmy et al. 2015; Huang et al. 2015; Lu et al. 2019; Aburas 

et al. 2021), logistic regression (Das et al. 2019) and model combinations (Shafizadeh-Moghadam 

et al. 2017; Gharaibeh et al. 2020). Example applications of LUC modeling include; an 

assessment of the impact of future grassland cover change on catchment water and carbon fluxes 

in South Africa (Gibson et al. 2018), monitoring and predicting landscape dynamics within Iran’s  

Meighan Wetland and surrounding areas (Ansari & Golabi 2019), predicting growth and changes 

in urban areas (Shafizadeh Moghadam & Helbich 2013; Aburas et al. 2021), and assessing 

deforestation in Thailand (Waiyasusri & Wetchayont 2020), among others. LUC models provide 

information beyond traditional LULC change analyses, and therefore allow for better policy- and 

decision-making that is necessary to simultaneously conserve the natural environment and 

improve local livelihoods and processes dependent on the natural environment. The complex 

MEE landscape is currently understudied and LULC change prediction has only been done on 

the Ugandan side. Two LUC modeling studies exist for the Ugandan MEE and none for the 

Kenyan side. The study by Mwanjalolo et al. (2018) found that subsistence agricultural land and 

protected grasslands in Uganda experienced highest gains and that LULC patchiness was 

associated with the increasingly high demand for agriculture and settlement land. The expansion 

of agricultural land was also estimated to continue in 2040. J. Li et al. (2016) used an agent-based 

model (ABM) to analyze historical LULC change (1996-2013) and later simulated possible 
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changes in agricultural land in Uganda under business-as-usual and deforestation scenarios. The 

study reported that agricultural land increased from 8.98 million ha in 1996 (37%) to 10.31 million 

ha in 2013 (43%). Agriculture was projected to increase further in 2025 to 12.10 m ha (50%) and 

12.39 m ha (51%) in the business-as-usual and deforestation scenarios, respectively. The two 

studies were conducted at the national scale, meaning that localized environmental relationships 

and patterns were not emphasized. There is therefore need for an ecosystem-wide simulation of 

LULC change which will inform positive environmental conservation and livelihood improvement 

actions within the MEE. 

The goal of this study was to simulate possible future land use changes in the MEE based 

on existing remote sensing LULC products and TerrSet’s Land Change Modeler (LCM). Here, the 

main objectives were (1) to forecast possible future LULC changes for the MEE using LCM; and 

(2) to assess the accuracy of the simulated LULC surfaces in relation to observed persistent 

changes in the MEE. It is argued that accelerated climate change and significant vegetation-to-

cropland conversion have led to an unpredictable and rapidly changing landscape making it 

difficult to accurately characterize future LULC trajectories using historical change transitions. The 

present study first combined data from GlobeLand30 and Regional Centre for Mapping of 

Resources for Development (RCMRD) to generate improved LULC data for 2001, 2009, and 

2017. The study then examined spatial and temporal distribution of LULC change and identified 

areas of major LULC changes in the periods 2001-2009 and 2001-2017. Projections to 2025 and 

2033 were then developed to estimate how LULC will potentially change over time. Accuracy of 

the simulations (for 2017) was assessed first against the 2009 and 2017 LULC maps, and then 

against greening and browning surfaces over the growing season for 2001-2018. Such a 

comprehensive analysis of future LULC changes can support decision- and policy-making efforts 

towards a conserved environment and improved local livelihoods. 

 



89 

 

4.2 Materials and Methods 

4.2.1 Study Area 

The MEE covers approximately 15,000 km2 in western Kenya and eastern Uganda (Figure 

4.1). This mountainous area extends from 1°37'43" N, 33°55'45" E to 0°42'16" N, 35°14'19" E. 

The Mount Elgon Forest was classified as a montane forest (Doumenge et al. 1995) and was 

designated as a protected area in 1992 and 1968 in Uganda and Kenya, respectively (Anseeuw 

& Alden 2010; Nakakaawa et al. 2015). Rainfall in the MEE is bimodal with most of the rain (“long 

rains”) falling in March-June (Kenyan side)  and April-October (Ugandan side) (Okello et al. 2010; 

Mugagga et al. 2012; Musau et al. 2015). “Short rains” often fall around October-December, but 

these have become very unpredictable over the years. While marginal temperature and 

precipitation variation exists in the MEE, these weather elements vary significantly with changes 

in altitude and relative location of windward and leeward sides of the mountain.  

The MEE landscape exhibits significant variability due in part to the large increase in post-

2000’s precipitation, significant conversion of natural vegetation to cropland (Wanyama et al. 

2020) and complex orientation of LULC in the area (Petursson et al. 2013). As a result, eco-

environmental vulnerability in this area varies significantly as well (moderately or severely 

vulnerable in the savannas, grasslands, and some agricultural areas) (Wanyama et al. 2021). 

Higher altitude areas of the MEE are known to have more favorable growing conditions compared 

to lower altitudes (Mumba et al. 2016), thus explaining the increasing encroachment of higher 

elevation areas by local communities. 
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Figure 4.1. The Mount Elgon Ecosystem (MEE) in eastern Uganda and western Kenya. Elevation (meters 

amsl) and major protected areas are shown. Major towns are also shown for reference. FR is forest reserve, 

NR is national reserve, NP is national park, WS is wetland system and WMA is wildlife management area. 

4.2.2 Data Sources, Pre-processing, and Variable Generation 

This study used LULC products from GlobeLand30 and RCMRD to generate improved 

LULC data used in LCM simulations. The GlobeLand30 data (Jun et al. 2014; Liao et al. 2014) 

for 2000, 2010 and 2020 were acquired through the GlobeLand30 website (Chinese Ministry of 
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Natural Resources 2019). These data are available at 30-meter spatial resolution and initially 

contain 10 land cover classes. The data for 2010 and 2020 have respectively been found to be 

approximately 84% and 86% accurate (Chinese Ministry of Natural Resources 2019). The 

RCMRD LULC data (RCMRD 2020) was obtained from RCMRD’s  Eastern and Southern Africa 

Land Cover Viewer. This dataset contains annual LULC data for the period 2000-2017 for eastern 

and southern African nations. The data were developed from Landsat time series using the 

Continuous Change Detection and Classification (CCDC) algorithm in Google Earth Engine 

(GEE) (Gorelick et al. 2017). Initial LULC classes (forest land, grassland, cropland, wetlands, 

settlement, and other land) in these data corresponded with International Panel on Climate 

Change (IPCC) categories necessary for reporting greenhouse gas emissions (Iversen et al. 

2014).  

RCMRD’s LULC data for 2001, 2009 and 2017 were used together with GlobeLand30 

data to generate an improved LULC dataset for 2001, 2009, and 2017. First, LULC classes for 

the two datasets were reclassified to include only forest, mixed vegetation, wetland, cropland, 

urban, and open grassland classes. Mixed vegetation composed of savannas and grasslands 

while grasslands found near the mountain top were mapped as open grasslands. The RCMRD 

data was passed through a majority filter twice, to approximate the level of detail in the 

GlobeLand30 data. To assess the accuracy of these two datasets, the accuracy of the 2017 (for 

RCMRD LULC) and 2020 (for GlobeLand30) datasets was assessed. Here, reference points were 

first generated through visual interpretation of high-resolution imagery in Google Earth Pro 

(Google Earth Pro 2020) for the period 2017-2020. A total of 346 validation points (101 for forest, 

86 for mixed vegetation, 13 for wetlands, 96 for cropland, 16 for urban areas, and 34 for open 

grasslands) were randomly generated in this exercise. These validation points were compared to 

the reclassified rasters and producer’s and user’s accuracy measures for each LULC class were 

calculated. The accuracy statistics for each LULC class in GlobeLand30 were then compared with 

those in the RCMRD classes. In addition, the spatial distribution of each LULC class was 
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assessed visually to identify areas that were correctly (or incorrectly) classified. From these, most 

accurately classified areas were selected from each of the two LULC datasets and mosaicked to 

generate an improved LULC dataset for 2017. As a result, the final LULC dataset composed of 

cropland, forest (around the mountain), wetlands and urban classes from GlobeLand30 and mixed 

vegetation and open grassland from the RCMRD data. LULC datasets for 2001 and 2009 were 

similarly generated. The accuracy of these fused datasets was iteratively compared to historical 

imagery in Google Earth Pro and manually improved where necessary. This was done especially 

for cropland and urban classes in the 2001 LULC data. The final dataset in 2017 was also 

compared with the 346 validation points to generate accuracy assessment statistics reported in 

this study. Final LULC data for 2001 and 2009 were used in LCM to respectively represent 

baseline LULC conditions and to compute LULC transition potentials. The LULC surface in 2017 

was used to validate LCM simulations for that year.  

Table 4.1. Datasets used in the present study. 

Dataset Spatial Resolution Years Source 

LULC data 30 m 2001, 2009, 
2017 

Regional Centre for Mapping of Resources for 
Development (RCMRD 2020) 

LULC data 30 m 2000, 2010, 
2020 

GlobeLand30 (Chinese Ministry of Natural 
Resources 2019) 

Precipitation 5 km 1986-2018  CHIRPS (Funk et al. 2015) 

SRTM DEM 30 m 2000 United States Geological Service (United States 
Geological Service 2000)  

Rivers - - DIVA-GIS and World Resources Institute (DIVA-
GIS; World Resources Institute) 

Variables representing drivers of LULC change were obtained from multiple sources. 

Pentad (5-day) precipitation records from CHIRPS (Climate Hazards group Infrared Precipitation 

with Stations) (Funk et al. 2015) were used to generate variables related to precipitation variability. 

The CHIRPS data, available at 5 km spatial resolution, provide global daily and pentad records 

from 1981 to present. In this study, pentad records for the 1986-2018 period were obtained from 

GEE and used to compute long-term mean (LTM) and standard deviation (LTSD) for 1986-2018 

at both annual and seasonal (AMJ) scales. The 30 m Shuttle Radar Topography Mission (SRTM) 
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DEM dataset from United States Geological Service (United States Geological Service 2000) was 

downloaded from GEE. The DEM was used to generate topographic variables (elevation and 

slope) associated with LULC change in the MEE. Euclidean distance from rivers was computed 

using a major rivers datasets acquired from World Resources Institute (World Resources Institute) 

and DIVA-GIS (DIVA-GIS). More proximity variables included distance from urban areas (based 

on the urban LULC class in 2001) and distance from known anthropogenic disturbance (defined 

here as the distance from all pixels that converted to cropland in the 2001-2009 period). 

4.2.3 Land Use Change Modelling  

The current study used LCM in TerrSet (Eastman 2016a; Eastman 2016b) to simulate 

future LULC change in the MEE. This model generates LULC surfaces based on artificial neural 

networks (ANN), Markov chains, and transition potential maps obtained by training either logistic 

regression, modified K-nearest neighbor, or multilayer perceptron (MLP) algorithms (Eastman 

2016a). LCM does this in the following three stages.  

4.2.3.1 Change Analysis  

In this study, change analysis in LCM involved an evaluation of trends of change in LULC 

classes for three sets of years: 2001 – 2009, 2009 – 2017, and 2001 – 2017. Here, LCM provided 

important statistics (including gains and losses, net changes, and contributors of change in each 

LULC class). In addition, maps of transitions, gains and losses, LULC class exchanges, and 

persistence could be created. 

4.2.3.2 Transition Potential Modelling 

In this step, LCM identifies the potential of each pixel to transition by linking the LULC 

changes to underlying spatial drivers of change. By doing this, LCM groups LULC transitions 

based on driving factors that best explain each transition. Since this study was interested in the 

interaction among forest, mixed vegetation, and cropland classes which led to the observed 

increase (decrease) in cropland (forest and mixed vegetation), only cropland expansion from 
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forest and mixed vegetation was modelled (forest-to-cropland and mixed-to-cropland were 

grouped and modelled using the same driver variables – since both transitions result from the 

same underlying environmental interactions).  

In LCM, spatial driver variables can either be static (i.e., unchanging over the simulation 

period e.g., distance to rivers) or dynamic (i.e., changing over time e.g., proximity to current 

agricultural land). In this study, cropland expansion was modelled using a suite of topographic, 

climate, and proximity variables selected based on literature, prior knowledge of the MEE, and 

insights from the 2019 field study in the area. These variables included LTSD for both annual and 

AMJ periods (mm), distance from rivers (m), elevation (m amsl), slope (%), distance from 2001 

urban pixels (m), and distance from pixels that converted to cropland during the 2001-2009 period 

(m). All variables were set as static except for distance from 2001 urban pixels. 

The latest version of TerrSet (TerrSet2020) allows transition potentials to be modelled 

using MLP neural network, logistic regression, or SimWeight K-nearest neighbor algorithms. In 

this study, the MLP algorithm was used since it has been enhanced to work well without user 

intervention (Eastman 2016a). In addition, the MLP can model multiple transitions in a single sub-

model. Output from transition potential mapping is a map of levels of vulnerability for each pixel 

to transition (transition potentials) which is a necessary input in predicting future LULC change. 

In this study, two transition potential surfaces were generated, one using 2001-2009 transitions 

(M0109) and another using 2001-2017 transitions (M0117).  

4.2.3.2 Change prediction  

At this modelling stage, a future LULC change scenario is generated based on rates of 

change in historical LULC and transition potentials (Eastman 2016a). LULC predictions can be 

made for a specified year either through Markov chain analysis or other external models. Results 

include a hard prediction map (map showing spatial distribution of LULC classes) and a soft 

prediction (a map showing vulnerability of each pixel to change). Soft predictions are often 



95 

 

 preferred. In this study, simulations were generated for 2017 (using 2001-2009 transition 

potentials), and 2025 and 2033 (using both 2001-2009 and 2001-2017 transition potentials).  

4.2.4 Model Validation  

To assess validity of the model in simulating future LULC change in the MEE, accuracy of 

the prediction surface for 2017 was assessed in two ways. First, a 3-way cross tabulation was 

conducted between the 2009 map, the predicted LULC surface for 2017 and the real LULC 

surface for the same year. Output from this was a map of hits (pixels which changed as the model 

predicted), misses (pixels which changed although the model predicted no change) and false 

alarms (pixels that did not change although the model predicted change) (Eastman 2016a). 

Second, the hits, misses and false alarms surface was compared to a map of persistent greening 

and browning over the growing season (Figure 4 in Wanyama et al. (2020)) to identify any similar 

patterns.  

4.3 Results 

This study characterizes past and simulates future LULC change in the MEE based on 

existing remote sensing LULC products and LCM. The results highlight patterns of change 

especially in the forest, mixed vegetation, and cropland LULC classes as well as possible future 

LULC trajectories for 2025 and 2033. Results from validating improved and simulated LULC 

surfaces are also presented and, together, attempt to comprehensively characterize possible 

future LULC change in the MEE. 

4.3.1 Improved LULC Maps and Patterns of Change  

Accuracy assessment of the improved LULC dataset in 2017 found that the dataset was 

about 96.8% accurate overall with a Kappa statistic of 0.95. User’s and producer’s accuracy was 

above 90% except for the urban class. Most improved classes include wetland and urban and 

these were mostly misclassified in the RCMRD dataset. In the three periods, similar LULC 
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 compositions existed in the MEE. Dominant LULC classes included cropland, mixed vegetation, 

and forest (60%, 24% and 11% of the total area in 2017, see Figure 4.2).  

Table 4.2. Accuracy assessment statistics for the improved LULC dataset (A), RCMRD dataset in 2017 (B) 

and GlobeLand30 dataset in 2020 (C). Improved accuracies are underlined.  

LULC Forest Mixed 
vegetation 

Wetland Cropland Urban Open Grassland 

A. Improved LULC 

Users  97.1 96.6 92.9 95.7 100 100 

Producers 100 100 100 92.7 75 100 

B. RCMRD LULC (2017) 

Users 98.1 86.3 65 97.7 90.9 100 

Producers 100 95.3 100 89.6 62.5 85.3 

C. GlobeLand30 LULC (2020) 

Users 96.2 97.7 92.9 97.9 100 100 

Producers 99 97.7 100 97.9 93.8 91.2 

Forested areas were mostly located within protected areas (Figures 4.1 and 4.3). The 

open grasslands were located at high elevation areas of the MEE and generally remained 

unchanged over time, as expected (Figure 4.3). Mixed vegetation was found mostly in the north 

and northeastern parts of the domain. This study found that mixed vegetation persistently reduced 

across the years, decreasing from 390,000 ha (26%) in 2001 to 364,500 ha (24%) in 2017. Forest 

cover showed an increase in 2001-2009 (+0.3%) and a decrease in 2009-2017 (-0.9%). These 

decreases in forest and mixed vegetation were compensated mainly by significant gains in the 

cropland class (Figure 4.4). Over the 2001-2017 period, croplands expanded by 31,500 ha 

(+2.1%). More specifically, about 22,000 ha and 8,900 ha of mixed vegetation and forest 

respectively changed to cropland between 2001 and 2017. Over 2009-2017, more than 14,000 

ha of mixed vegetation and about 11,000 ha of forested areas were converted to cropland. The 

least change in cropland was observed in 2001-2009 in which only 6,000 ha of new croplands 

were identified (mostly from mixed vegetation).  

Distinct spatial patterns existed in the occurrence of change in the cropland class. Gains, 

losses, and net expansion in cropland were mostly observed within fringe areas of the protected 
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forest and transitional zones connecting existing mixed vegetation and cropland (see Figures 4.3 

and 4.4). These patterns were observed more in 2009-2017 and 2001-2017 periods compared to 

2001-2009. 

 

Figure 4.2. Improved LULC surfaces for 2001, 2009 and 2017. Figure D shows the percent proportion of 

each LULC class per year. 
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Figure 4.3. Gains and losses in the cropland class for the periods 2001-2009 (A), 2009-2017 (B) and 2001-

2017 (C). 

 

Figure 4.4. LULC classes that changed to cropland for 2001-2009 (A), 2009-2017 (B) and 2001-2017 (C). 

4.3.2 Transition Potential Modeling  

The MLP model used to compute transition potentials found that elevation, slope, and 

distance from cropland areas were the most important factors influencing LULC change in the 

MEE (see sensitivity analysis results from MLP in Appendix B). For example, a model for 

simulating LULC transitions in 2001-2009 using elevation (slope) alone achieved an accuracy rate 

of 63% (57%) and a skill measure of 0.51 (0.43). Using distance from 2001-2009 cropland areas 

as the only driver of LULC change, the MLP model achieved an accuracy of 48% and a skill 

measure of 0.31. The next influential drivers included distance from urban areas in 2001 and 

distance from rivers. LTSD at both annual and AMJ scales were the least important factors 
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influencing LULC change in the MEE. Similar results were found in modeling 2001-2017 

transitions, generally with lower accuracy rates and skill measures.  

 

Figure 4.5. Spatial drivers of LULC change used in final LCM models. It should be noted that distance from 

2001-2009 croplands (A) was used in M0109 while distance from 2001-2017 croplands (B) was used in 

M0117. 

Overall, the MLP models were highly skillful. The M0109 model achieved an accuracy rate 

of 92.8% and a skill measure of 0.9 in modeling transitions between 2001 and 2009. Slightly lower 

values were obtained for the M0117 model (an accuracy rate of 88% and a skill measure of 0.84). 

In terms of individual transitions, M0109 performed best in modeling persistence of both mixed 

vegetation and forest classes and transition of mixed to cropland (skill measures of 0.96, 0.88, 

and 0.94, respectively). The model was only averagely accurate in modeling forest to cropland 

transitions (skill measure of 0.68). There was an increase in accuracy when modeling forest to 
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cropland transitions using the M0117 model (skill measure of 0.72). However, this model’s 

accuracy was slightly reduced in modeling transitions from mixed vegetation to cropland (skill 

measure of 0.85). 

Outputs from LCM change prediction are maps showing both hard and soft prediction 

surfaces. Maps of future change in 2025 and 2033 are shown in Figure 4.7 (using M0109) and 

Figure 4.8 (using M0117). Greater LULC changes were observed when using 2001-2017 

transitions compared to 2001-2009 transitions. While using these transitions yielded a similar 

change in mixed vegetation (decrease), the two showed contrasting patterns in forest and 

cropland classes especially in the 2025 simulation. The M0109 model showed an increase in 

forest cover and a slight decrease in cropland while the LULC simulation from M0117 revealed a 

persistent decrease (increase) in forest (cropland). The two models yielded similar LULC patterns 

for 2033, but final proportions of each class were quite different. For instance, the final proportion 

of cropland in 2033 (Figure 4.6C) was 60.7% (using M0109) compared to 62.4% (using M0117). 

 

Figure 4.6. Proportion of major LULC classes observed in 2001, 2009, 2017 (solid lines), and simulated for 

2025 and 2033 using 2001-2009 and 2001-2017 transitions (dashed and dotted lines, respectively).  

Clear spatial patterns were observed in the distribution of LULC change vulnerability using 

both models. Areas around edges of the mountain and transitional zones between mixed 

vegetation and cropland (Figures 4.7A2, 4.7B2, 4.7C2, 4.7A2 and 4.7B2) had higher probabilities 
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for conversion. However, levels of this vulnerability were slightly higher when using M0117 

compared to M0109. The amount of forest land under threat was more in Kenya compared to 

Uganda especially using 2001-2017 transitions (Figures 4.8A2 and 4.8B2). On the other hand, 

the amount of mixed vegetation at risk was more on the Ugandan side. Most of the vulnerable 

areas were generally located within or near protected areas (Figures 4.1, 4.7 and 4.8). 

 

Figure 4.7. Predicted spatial distributions of LULC classes and change vulnerability for 2025 and 2033 

based on 2001-2009 LULC transitions. 
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Figure 4.8. Predicted spatial distributions of LULC classes and change vulnerability for 2025 and 2033 

based on 2001-2017 LULC transitions. 

The MEE landscape has been found to be dynamic as shown by its persistently greening 

and browning patterns especially during the growing season (Wanyama et al. 2020). The majority 

of this landscape either greened or browned over the 2001-2018 period, and these changes were 

related to both human activities (e.g., deforestation) and natural processes (e.g., significant 

increases in post-2000 precipitation). The M0109 simulation for 2017 was compared against 

Mann-Kendall and Sen’s Slope trends for the AMJ period over 2001-2018. Results indicated 

similar patterns of LULC change. For instance, LULC change was detected around forest fringe 

areas in both cases. Furthermore, more forest cover change was detected on the Kenyan side, 

and both analyses show that most of the LULC changes were experienced within or near 
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protected areas. It should be noted, however, that only 40% of the areas of LULC changes 

detected by M0109 were also found to have changed by Mann Kendall and Sen’s Slope. In 

addition, most of the greening and browning identified by Mann-Kendall and Sen’s Slope were 

not detectable using the M0109 model, indicating that LULC change analyses using only a few 

LULC images in time are not well suited for the variable MEE. 

 

Figure 4.9. Validation results for the 2017 simulation. (A.) Validation map for 2017 obtained by comparing 

the LCM prediction for 2017 with observation data for that year (Figure C). (B.) Areas with persistent 

greening and browning in NDVI during the 2001-2018 period (adapted from Wanyama et al. 2020). (C.) 

Areas of change detected in both (A) and (B). 

4.4 Discussion 

The conversion of natural vegetation to new cultivated land and settlement is a common 

LULC trend reported in Africa (Ordway et al. 2017; Arowolo & Deng 2018; Mwanjalolo et al. 2018; 

Rukundo et al. 2018). In the present study, agriculture was estimated to expand from 

approximately 58% in 2001 to more than 64% in 2033, at the cost of mixed vegetation and natural 

forests. This loss of natural vegetation has been associated with various environmental issues 

like biodiversity loss (Foley et al. 2005; Newbold et al. 2015), intensifying natural hazards (for 

example, prolonged droughts, more frequent landslides and more extensive flooding (Nakakaawa 

et al. 2015; EAC et al. 2016), changing and/or varying climates, and diminishing ecosystems’ 

regulatory functioning (e.g., carbon sequestration (Mugagga et al. 2015; Rukundo et al. 2018)), 

among others. LULC change has therefore been recognized as an important factor driving 

anthropogenic changes in the environment (Guan et al. 2011; Mishra & Rai 2016; Gibson et al. 
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 2018; Hasan et al. 2020). There has been an uptick in the number of studies dedicated to 

characterizing LULC change made possible by the increasing availability of improved satellite RS 

data and advancement in geospatial analysis methods and computational capabilities. The 

opening of the Landsat archive (Woodcock et al. 2008), the launching of more satellites like the 

Sentinel missions, and expansion of data storage and computer processing capabilities have 

made it possible for a more complete characterization of LULC change. This is especially 

important for highly variable landscapes, because analyses of LULC change for these areas 

require large amounts of data at fine spatial and temporal scales.  

In this study, LCM was implemented to characterize LULC change in the MEE and to 

simulate possible future scenarios of LULC based on identified environmental and social 

variables. LCM is an inductive model (Gibson et al. 2018), meaning that it seeks to statistically 

link observed LULC change to its potential driving factors (Overmars et al. 2007; Gibson et al. 

2018). LCM therefore uses historical LULC maps to assess past LULC changes and transitions 

(Halmy et al. 2015). The transitions are then integrated with environmental variables to estimate 

future LULC changes (Pijanowski et al. 2002; Halmy et al. 2015). Such a methodology is therefore 

prone to errors related to both algorithms and input data used (Gibson et al. 2018). The improved 

LULC data used in this study achieved an overall accuracy of 96.8% and a Kappa statistic of 0.95 

for 2017. All individual classes achieved accuracies greater than 90% except for the urban class. 

While these are great accuracy levels, data for 2001 and 2009 were not validated beyond visual 

comparisons against Google Earth Pro, and therefore caution should be taken when interpreting 

results from this study. 

LCM works under the assumption that rates of change are constant and therefore the 

relationship between LULC change and driving factors is constant too (Gibson et al. 2018). 

However, LULC change is influenced by complex processes that are associated with non-linear 

and dynamic human-environment interactions that can be difficult to characterize using models 
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 and variables (Kolb et al. 2013; Camacho Olmedo et al. 2015; Gibson et al. 2018). For 

significantly variable landscapes, this characteristic defies the assumption, and LUC models may 

yield unreliable LULC simulations. A comparison of LULC changes in the MEE revealed dissimilar 

rates of change between 2001-2009 and 2009-2017 (for instance, compare gains and losses in 

cropland in Figures 4.3A and B). Further, there was an increase in forest cover in 2001-2009 and 

a decrease in 2009-2017 and 2001-2017 (Figure 4.6A). These changes are attributed to various 

activities within the MEE, including the existence of the Shamba System on the Kenya side. The 

Shamba System enables local communities to farm in protected areas while tending to the 

growing trees in their early stages of growth (Petursson et al. 2013). This is the Kenyan 

government’s effort meant to accelerate native-to-plantation forest conversion (initially) and 

reafforestation (later). Other factors include changes in political regimes which may have the 

negative effects of increased instances of corruption among forest management staff, relaxed 

enforcement of forest protection legislations, and increased illegal access to and cultivation of 

PAs. Inferences from a 2019 field study in the area and prior analyses also revealed that the 

climate in the MEE has changed significantly over recent decades. Grasslands in the northeastern 

MEE have warmed significantly in recent years (Wanyama et al. 2021), and post-2000 

precipitation increased substantially – thus driving persistent greening and browning in the area 

(Wanyama et al. 2020). Such LULC complexities often manifest in LULC simulation results. For 

example, due to the unsystematic LULC transitions in the MEE, the M0109 model was highly 

accurate in modeling mixed-to-cropland conversion (skill measure of 0.94) and only averagely 

accurate for forest-to-cropland conversion (skill measure of 0.68). Additionally, validation of the 

2017 simulation revealed a lot of misses and false alarms compared to hits, majority of which 

were located at the edges of the forest. Further comparisons showed that most of the reported 

LULC changes were actual changes which could better be characterized by trend analysis 

methods like Mann-Kendall and Sen’s Slope, linear regression, among others. As such, decisions 

to use LUC models should involve an assessment of the kind of information that the models 
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provide against the uncertainties associated with them, especially when working with highly 

dynamic landscapes. In addition, an integration of these methods can provide a more 

comprehensive assessment of historical, present, and future LULC change.  

Rapid population growth continues to pressure food production systems. In the majority 

of the MEE, land is handed down to sons when they are ready to start their own families. Formal 

education is not emphasized in most of these areas, and therefore cases are high of early 

marriages resulting from youth dropping out of schools early. As such, land holdings generally 

reduce four- or five-fold every 15 years. Significantly varying climates, on the other hand, have 

led to diminishing land suitability for agricultural production. For parts of the MEE and many other 

places reliant on agriculture, this means an accelerated conversion of available forests and 

natural vegetation to cropland, which threatens the eco-environmental stability and ecosystem 

services provision. Yet, socio-economic systems in Kenya and Uganda are not efficient to allow 

for local farmers to sell their produce at a profit. Generally, the number of ‘middlemen’ increase 

substantially around harvesting times, and these people buy produce from farmers (when it is 

very cheap), store it, and resell it to the same farmers later (when it is very expensive). In the long 

term, these three aspects compound and leave local people trapped in an endless struggle to 

survive.  

Through LUC modeling, important information can be generated about factors or proxies 

that explain LULC change and possible future change trajectories (Overmars et al. 2003; Eastman 

& He 2020). Such information is necessary for better planning and policymaking. For example, 

the present study demonstrates that if business-as-usual persists into 2030s, croplands will 

possibly keep increasing while forests, savannas and grassland will continue to shrink. 

Policymakers should therefore focus on interventions aimed at making agriculture more 

sustainable, so that food production will be less detrimental to the sustainability of other land uses 

and land covers. First, sustainable intensification (SI) of agriculture is proposed as a possible win-
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win for both the local people and the environment. SI targets currently unimproved land and aims 

to optimize its use to produce more food per unit area of land while conserving the natural 

environment (Pretty 1997; Gunton et al. 2016; Struik & Kuyper 2017), thus negating the need to 

expand land under agriculture (Gunton et al. 2016; Struik & Kuyper 2017). There exist debates 

about the definition of SI and what it entails, with some arguing that the ‘sustainable’ nature of SI 

is only vaguely defined and that SI is not too different from current agricultural practices (Petersen 

& Snapp 2015). Others have proposed ecological intensification as a better option to guide 

agricultural systems management (Petersen & Snapp 2015; Gunton et al. 2016; Mungai et al. 

2020). SI has been demonstrated in parts of the Kenyan MEE with the involvement of One Acre 

Fund, a non-governmental organization that finances and trains local farmers on modern farming 

techniques (One Acre Fund). Crop diversification is another approach to increase food production 

without harming the environment. This involves growing more than one crop, to reduce the risk of 

crop failure especially during these climate change times. This framework also gives people a 

chance to test and switch to other crops that may do better in the ‘new’ climates, thus increasing 

production without expanding land under agriculture. The main challenge here is the lack of 

knowledge about the kind of crops that would do well in current climates. For this to be successful, 

therefore, there is need for systematic analyses such as land suitability for different crops (based 

on climate, soil, and topographic factors). 

The main limitation of this study was data availability. Precise multi-year LULC data for 

the MEE were not readily available and therefore this study used data obtained from an integration 

of LULC data from GlobeLand30 and RCMRD. While these datasets were thoroughly assessed 

against Google Earth Pro imagery and improved where necessary, some inaccuracies may have 

been undetected. However, the LULC data were interpreted in part based on prior knowledge of 

the MEE, and insights from prior studies (Wanyama et al. 2020; Wanyama et al. 2021) and the 

field study conducted in the MEE in 2019. Further, the 2017 LULC simulation was validated first 
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against the real LULC data for that year and then against a map of persistent greening and 

browning over AMJ during 2001-2018. Selection of explanatory variables used in this study was 

also based on insights from previous studies (Wanyama et al. 2020; Wanyama et al. 2021) which 

found that climate and topographic variables are important in the MEE. This, coupled with data 

unavailability, constrained the analysis to the seven explanatory variables. This study may 

therefore benefit from additional social variables This is important, as landscape change is 

significantly impacted by both environmental and social processes.  

4.5 Conclusions 

This study simulated possible future land use changes in the MEE based on existing 

remote sensing LULC products and LCM. The study projected that agriculture will possibly 

expand from approximately 58% in 2001 to more than 64% in 2033 if current and future LULC 

transformation follows rates in 2001-2017. These new croplands will occur mostly around edges 

of the protected forest and zones of transition between mixed vegetation and existing croplands. 

The vulnerability for land to be converted to agriculture was significantly influenced by elevation, 

slope, and distance from cropland areas. Due to the unsystematic LULC transitions in the MEE 

(associated with the Shamba System, political changes, and climate change, among others), 

simulating forest-to-cropland conversion was only averagely accurate compared to mixed-to-

cropland conversion. As such, decisions to use LUC models should involve an assessment of the 

kind of information that the models provide against the uncertainties associated with them, 

especially when working with highly dynamic landscapes. In addition, an integration of time series 

analysis methods (e.g., Mann-Kendall and Sen’s Slope) with LUC modeling can provide a more 

comprehensive assessment of historical, present, and future LULC change – which is necessary 

to instigate policy changes aimed at simultaneously conserving the environment and improving 

livelihoods that are dependent on the natural environment. 
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CHAPTER 5. IMPORTANT INSIGHTS FROM THE FIELD STUDY 

5.1 Introduction 

While RS and geospatial technologies provide an invaluable opportunity to study 

historical, present, and future landscape change, these tools fail to provide contextualized 

explanations of landscape change and other environmental processes. Data from field studies 

can be handy in filling these gaps – to provide a comprehensive characterization of landscape 

change and related human-environment interactions. This section therefore documents 

information about the field study conducted in 2019 in the MEE, whose insights were important in 

designing studies and explaining results presented in this dissertation. 

5.2 Field Study  

The field study conducted in July-September 2019 involved the administration of semi-

structured interviews to local community members and government officers working in the MEE. 

More environmental data was collected via direct observation. Most of the interviewees were from 

significantly changing landscapes (areas showing significant changes in vegetation greenness, 

Figure 2.4). To identify specific areas to visit, random points were first generated (60 in 

significantly greened areas, 60 in significantly browned areas and 80 in areas of no significant 

change). Participants closest to a random point were selected for interviews. A total of 81 people 

were interviewed including 24 in the Ugandan MEE and 56 in the Kenyan MEE. Of these, 70 were 

local community members, while the rest were officers working in different government institutions 

e.g., Kenya Agricultural and Livestock Research Organization (KALRO), Kenya Plant Health 

Inspectorate Service (KEPHIS), Kenya Farmers Association (KFA), Kenya Forest Service (KFS), 

and Kenya Seed (Kitale and Bungoma). The participants in this study were interviewed about 

perceptions of climate change and land-use change, and historical patterns of agriculture and 

land-use change (see questionnaire in Appendix A). Interviews were conducted and written 

responses recorded using Qualtrics software (Qualtrics 2019).  
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5.3 Insights from the Field Study 

Changes in precipitation revealed by Mann-Kendall, Sen’s Slope and bfast were 

corroborated by results from the field. All interviewees reported perceptions that precipitation had 

significantly changed over the last decade. Key observations included delays in the start of the 

rainy season (reportedly by almost a month on average), increased precipitation intensities, 

increased occurrences of extended droughts, and flooding. These changes were directly linked 

to worsening agricultural practices and yields due to increased instances of failed germination, 

more pest attacks, drying of crops, and stunted crop growth. These perceptions are consistent 

with the observed changes. 

Greening and browning trends observed in grasslands in the northeastern MEE were 

related to the introduction of new human settlements in the area. Information gathered from the 

field supports this finding and further explains the implications for landscape greenness. Inhabited 

by nomadic pastoralist communities, this part of the MEE is susceptible to degradation, especially 

when these communities move, driven by rainfall patterns, to settle within the grasslands. There 

was evidence of reduced natural vegetation and tree density in these locations. The fieldwork 

also revealed that persistent greening observed in the grasslands was associated with conversion 

of natural vegetation to croplands (which are generally greener than grasslands). In other 

locations outside of the grasslands, visible greening trends were indicative of some afforestation 

practices. Data from the field revealed that this kind of greening was driven by the cultivation of 

evergreen early maturing blue gum (Eucalyptus globulus) tree species, sometimes together with 

and other times in the place of the maize crop. This was especially common in the eastern and 

southeastern parts of the domain and parts of Uganda.  

Variables influencing eco-environmental vulnerability were defined in part based on prior 

knowledge of the MEE and insights from the field study. Communities in the MEE rely heavily on 

rainfed agriculture, and therefore changes in environmental conditions (e.g., precipitation and 
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temperature) can significantly influence their livelihoods. The proportion of land under forest and 

natural vegetation is shrinking as populations increase. Against this basis, the eco-environmental 

vulnerability study incorporated climate and population variables in computing EEVI. Results 

indicated that savannas and grasslands are mostly severely or moderately vulnerable. The field 

study revealed that these areas (i) are increasingly being inhabited by humans who introduce 

major LULC changes (e.g., natural vegetation to agriculture), and (ii) are uncharacteristically 

warming over time. In addition, models for computing EEVI revealed that EEVI was significantly 

influenced by multi-year variables based on precipitation, temperature, and population density.  

By incorporating insights from the field with RS and GIS analyses presented in this study, 

this study ensures that landscape change and related human-environment interactions are 

comprehensively characterized, at multiple scales. Scales of analysis in this study included 10-

day, 16-day, monthly, seasonal, annual, and household scales. This approach therefore makes it 

possible to make policy recommendations at appropriate scales that would allow easier 

implementation of the recommendations. This is important, as successful implementation of 

environmental conservation and livelihood improvement plans heavily depends on scales at which 

environmental problems occur, and those at which action is recommended and implemented.  

5.4 Internal Review Board Determination  

On March 26, 2019, this study (IRB Number: STUDY00002404) was determined to be 

exempt under 45 CFR 46.104(d) 2(ii). Exempt studies do not need to be renewed. 
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CHAPTER 6. CONCLUSIONS 

6.1 Overall Contributions 

This LCS-PE study examines, across multiple scales (10-day, 16-day, monthly, seasonal, 

annual, and household), human-environment interactions and landscape change under climate 

change – to comprehensively characterize processes in the highly variable MEE. The focus is on 

how nature- and human-related factors and practices interact to influence landscape dynamics, 

drive eco-environmental vulnerability, and eventually threaten nature-dependent livelihoods in the 

MEE. Historical landscape change was comprehensively characterized, and possible future 

change was projected. Ultimately, this study seeks to identify avenues to simultaneously improve 

the agricultural system and livelihoods and enhance environmental conservation within the study 

area. 

6.1.1 Landscape Change Related to Human Activities and Natural Processes  

Study 1 characterized comprehensively, over multiple time scales, recent patterns and 

trends in MEE vegetation greening and browning. The study first assessed and quantified the 

nature and magnitude of change in greenness for the period 2001–2018. To disentangle nature- 

versus human-driven vegetation greening and browning, the study similarly characterized trends 

and variability in MEE precipitation for the period 1986-2018. The study combined trend (Mann-

Kendall and Sen’s slope) and breakpoint (bfast) analysis methods to comprehensively examine 

recent vegetation greening and browning in Mount Elgon at multiple time scales. The study used 

both 16-day NDVI composites from MODIS and 5-day CHIRPS precipitation data and attempted 

to disentangle nature- versus human-driven vegetation greening and browning.  

The MEE was found to exhibit significant variability in vegetation dynamics and 

precipitation regimes. This variability was attributed to the existing LULC orientation especially in 

eastern MEE and climate change and variability. As such, it is highly probable that analysis of 

only a few images to ascertain MEE landscape change would yield inconsistent results. The MEE 
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had experienced significant and persistent greening and browning at different time scales and 

this change was attributed to both natural factors (including changing precipitation) and 

anthropogenic factors (especially the vegetation-to-cropland conversion). The southwestern MEE 

had consistently browned due to the conversion of the Namatala swamp to paddy rice farming 

and settlement. A lot of activity was also observed around the mountain forest boundary as people 

encroached and converted the forest LULC to agriculture and settlement. There were breakpoints 

in the vegetation greenness TS, particularly in the savanna and grassland land covers in 

northeastern MEE. The breakpoints were detected in each of the monitored years (2005–2018), 

but most of them were observed in 2013, 2007 and 2010 (greening) and 2009 and 2017 

(browning). The study also concluded that MEE precipitation had significantly changed 

(increased) in the post-2000 era. More specifically, total precipitation significantly increased in 

2006 and 2009–2010 with a consistently decreasing trend in between. We therefore concluded 

that these precipitation changes influenced significant greening and browning patterns observed 

in the same period. The greenness–precipitation relationship was weak in other periods as 

greening and browning changes were not strongly influenced by changing precipitation. This may 

be attributed to the complex nature of the MEE landscape and/or the spatial and temporal scale 

mismatch between MODIS NDVI and CHIRPS precipitation data. The integration of Mann–

Kendall, Sen’s slope and bfast proved useful in comprehensively characterizing recent changes 

in vegetation greenness within the MEE. Having a comprehensive description of vegetation 

change is an important first step, especially for such a variable landscape, to effect policy changes 

aimed at simultaneously conserving the environment and improving livelihoods that are 

dependent on it. 

6.1.2 Study 2: Environmental Vulnerability Related to Social and Natural Factors 

The second study examined eco-environmental vulnerability for the MEE using freely 

available RS, topographic and socio-economic data. This study sought to quantitatively examine 



114 

 

spatio-temporal patterns and trends in eco-environmental vulnerability, and factors driving the 

high variability observed in the MEE landscape. The study found that the majority of the MEE 

(comprising savannas, grasslands, and most of the agricultural land in Ugandan MEE) was 

moderately vulnerable based on the analysis methods and variables used. EEVI showed a 

marked increase in vulnerability with decrease in elevation. EEVI is most severe in the savannas 

of the northwestern part of the domain. Savannas and grasslands constituted the majority of the 

severe vulnerability class. Eco-environmental vulnerability varied from year to year, indicating that 

it is a function of multiple factors operating at numerous scales (local to coarse scale). Eco-

environmental vulnerability in the MEE is strongly associated with multi-year variables based on 

precipitation, temperature, and population density. With fast increasing populations and 

intensifying climate change and variability, eco-environmental vulnerability in the MEE will 

continue to experience significant interannual variability. Moreover, precipitation concentration is 

amplifying especially in the wet season, thus adding another layer of risk for agriculture and 

ultimately for local community livelihoods.  

To achieve sustainability in the MEE ecosystem and the livelihoods it supports, areas in 

the moderate and severe vulnerability classes need prioritized conservation. It is recommended 

that environmental conservation policies be implemented and enforced in these areas by adopting 

the bottom-up approach in which local community members’ opinions are incorporated in decision 

making. In addition, more data must be collected and used. Communities can be encouraged to 

adopt lifestyles and habits that foster more sustainable use of natural resources, and international 

donors can use this information to target conservation activities. 

6.1.3 Study 3: Possible Future Landscape Changes in the MEE 

This study simulated possible future land use changes in the MEE based on existing RS 

LULC products and LCM. The study examined spatial and temporal distribution of LULC change 

and identified areas of major LULC changes in the periods 2001-2009 and 2001-2017. Projections 
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to 2025 and 2033 were then developed to estimate how LULC will potentially change over time. 

Accuracy of the simulations (for 2017) was assessed first against the 2009 and 2017 LULC maps, 

and then against greening and browning surfaces over the growing season for 2001-2018. The 

study projected that agriculture will possibly expand from approximately 58% in 2001 to more than 

64% in 2033 if current and future LULC transformation follows rates in 2001-2017. These new 

croplands will occur mostly around edges of the protected forest and zones of transition between 

mixed vegetation and existing croplands. The vulnerability for land to be converted to agriculture 

was significantly influenced by elevation, slope, and distance from cropland areas. Due to the 

unsystematic LULC transitions in the MEE (associated with the Shamba System, political 

changes, and climate change, among others), simulating forest-to-cropland conversion was only 

averagely accurate compared to mixed-to-cropland conversion. As such, decisions to use LUC 

models should involve an assessment of the kind of information that the models provide against 

the uncertainties associated with them, especially when working with highly dynamic landscapes. 

In addition, an integration of time series analysis methods (e.g., Mann-Kendall and Sen’s Slope) 

with LUC modeling can provide a more comprehensive assessment of historical, present, and 

future LULC change – which is necessary to instigate policy changes aimed at simultaneously 

conserving the environment and improving livelihoods that are dependent on the natural 

environment. 

6.2 Broader Contributions 

This dissertation integrates LCS-PE theories and methods from multiple disciplines to 

comprehensively analyze human-environment interactions that drive observed landscape 

changes in the MEE. This study is important in various ways. First, it provides a more complete 

explanation of the underlying complex human-environment interactions shaping the MEE 

landscape. This includes valuable knowledge about (i.) persistent patterns of vegetation greening 

and browning related to changing precipitation and human activities, (ii.) levels and factors 

influencing eco-environmental vulnerability of the area, and (iii.) possible future changes in LULC 
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in the MEE. Knowledge of the complexities within the MEE can inform identification of avenues 

for streamlining environmental conservation and livelihood improvement efforts in the area. For 

instance, past LULC conversions have occurred in areas around edges of PAs and forests. EEVI 

significantly increases with decrease in elevation, and this vulnerability is expected to worsen with 

intensifying impacts of climate change. Further, grasslands and savannas have been shown to 

be moderately or severely vulnerable. These areas are therefore recommended for prioritized 

conservation. In addition, land under agriculture is projected to keep expanding into 2040 if current 

and future LULC follows change transitions observed in the previous two decades. Refocusing 

efforts to produce more food more sustainably without further expansion of agricultural land is 

therefore recommended. 

6.3 Future Research Directions 

6.3.1 Vulnerability Envelope Mapping 

Future research will involve mapping the evolution of historical, present, and future 

environmental vulnerability in the MEE based on results from this dissertation. Areas of historical, 

present, and future greening and browning will be mapped and assessed against EEVI surfaces. 

This will establish whether persistence in greening and browning is associated with patterns of 

eco-environmental vulnerability. Further, these will be compared to future LULC change scenarios 

developed in this study – to evaluate how future vegetation change and eco-environmental 

vulnerability will coevolve, thus threatening the stability of the ecosystem and dependent 

livelihoods. This study will also factor in future climate change scenarios to develop a vulnerability 

envelope - to predict areas with highest eco-environmental vulnerability in future. Such an 

analysis can provide more information about the complex human-environment interactions in the 

MEE, and therefore aid in legislation of better environmental conservation and livelihood 

improvement policies. 
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6.3.2 Agent-based Modeling of Farmers Decisions  

An ABM will be developed to analyze the interrelations among farmers, other actors (e.g., 

businesses, government among other actors), and their immediate environment, how farmers 

make decisions on the extent and type of farming practice to adopt, and how these decisions 

shape the MEE agroecological landscape. The study will focus on how these interactions enable 

or restrict farmers from expanding land under agriculture hence driving landscape change and 

dynamics studied in this dissertation. Model inputs will include internal (including family 

characteristics and land ownership), external (such as government legislation, businesses, and 

local civil society organizations, CSOs) and natural factors (including variables used in eco-

environmental vulnerability and land use projections). Analysis at this fine scale will enable an 

exploration of cross-scale discrepancies in human-environment interactions in the highly dynamic 

MEE. 

6.4 Closing Remarks 

Fast-increasing populations and the resultant need for more land for agriculture and 

settlement are the primary drivers of landscape change in agroecosystems. As a result, persistent 

greening and browning trends are observed especially around protected areas. Such dynamics 

in vegetation greenness are detectable at multiple scales (e.g., 16-day, monthly, and seasonal), 

but can be characterized more comprehensively at the seasonal scale. Due to the high variability 

in these landscapes, such an analysis should integrate trend analysis and breakpoint detection 

methods as opposed to the use of only few images in time. Moreover, vegetation greenness is 

also delicately related to major changes in precipitation characteristics, a relationship that is 

complex and varying with site-specific factors (Malo & Nicholson 1990; Davenport & Nicholson 

1993; Farrar et al. 1994; Mishra & Mainali 2017). Forests and other natural vegetation are at risk 

of being lost to agriculture, and efforts should be made to make agriculture more sustainable – so 
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that food production can be increased while fostering sustainability of Earth’s environmental 

systems (Atzberger 2013). 

The representation of vulnerability as a single index is beneficial as it helps to identify 

areas of highest relative vulnerability – from an integration of multiple variables. Such information 

is important for better environmental conservation and livelihood improvement. PCA can be useful 

in such environmental vulnerability assessments: it evaluates how multiple variables interact, 

aggregate and affect a given location (Defne et al. 2020). This is important, as human-

environment systems are known to have complex interactions and therefore intricate 

interrelationships among biophysical and socio-political factors. By aggregating these variables 

into a single vulnerability index, therefore, locations experiencing highest cumulative vulnerability 

can be delineated. In addition to an aggregate index, vulnerability assessments should explore 

spatio-temporal trends in variables used in the index. This can give a clearer picture of how the 

vulnerability of an ecosystem has evolved over time and variables associated with this evolution.  
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Appendix A: Field Study Questionnaire 

Introduction 

The questions below will enable me to collect data about farmers’ interactions with each 
other, external stakeholders, and their environment in order to understand the various factors that 
influence natural-vegetation-to-cropland conversion and the impacts of such a change on crop 
yields. Here I will collect farmers and other stakeholders’ knowledge, perceptions, actions, and 
attitudes in their use of the natural environment to meet their livelihood needs under the changing 
weather and climate. Additionally, family demographics will be collected to understand the various 
factors that may necessitate the conversion of the natural vegetation into cropland and settlement. 

Please circle, fill the blanks or tables as applicable.  

Background prompts 
Qa. How long have you lived on your current farm? 

 0-5 years 6-10 years 11-20 years 21-30 years 30+ years 

Please 
choose one.  o  o  o  o  o  

 
Qb. What's your nationality? 

o Kenyan  

o Ugandan  

o Other  

Qc. If Other, please list your nationality below.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 

1. Family Demographics 

a. Name Code 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
b. Year of birth 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
c. Gender 

o Male  

o Female  

o Cannot answer  
d. Are you the household head? 

o Yes 

o No 
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What is your marital status? 

o Married 

o Divorced 

o Widowed 

o Separated 

o Never married 
 
f. What is your education level? 

o Less than high school  

o High school graduate  

o Some college  

o 2-year degree  

o 4-year degree  

o Professional degree  

o Doctorate 

g. What is your primary occupation? 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
h. Are you salaried? 

o Yes 

o No 
i. If yes, what is your net salary in local currency? 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
j. Are any of your children attending school? 

o Yes 

o No 

o NA 

k. If yes, how much are you paying for school tuition and fees per year? 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
l. Do you hold any leadership positions in the community? 

o Yes 

o No 
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m. If yes, list the position in the community below 
____________________________________________________________________________
____________________________________________________________________________ 
n. Using the scale below, indicate how much you are involved with your neighbors? 

 Far below 
average 

Moderately 
below 

average 

Slightly 
below 

average 

Average Slightly 
above 

average 

Moderately 
above 

average 

Far above 
average 

Click to 
write 

Statement 
1  

o  o  o  o  o  o  o  

 
o. Who is the major decision-maker in the household? Options include father, mother, children, 
any combination of these or other. 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 

2. Please provide information about your family resources 

Q2.1 Does your family own a phone(s)? 

o Yes 

o No 

Q2.1.1 If Yes, state how many phones you own.  
 1 2 3 4 5 6+ 

o Please 
choose 

one.  
o  o  o  o  o  o  

 
Q2.2 Does your family own a radio and/or television? 

o Yes  

o No  
Q2.2.1 If Yes, please state how many radio and/or television sets you have.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q2.3 Do you own any agricultural machinery? 

o Yes  

o No  

Q2.3.1 If Yes, please list the agricultural machinery you own. 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
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Q2.4 Do you own any oxen? 

o Yes  

o No  

Q2.4.1 If Yes, how many? 

 1-2 3-5 6-10 10+ 

Please 
pick 
one.  

o  o  o  o  

3. Land use and ownership 

Q3.1 What type of land tenure is practiced here? 

o Customary  

o Public  

o Private  

o Other  

Q3.1.1 If Other, please specify 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q3.2 How many acres of land do you own? 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q3.3 Did you lease out any land in the last growing season? 

o Yes  

o No  

Q3.3.1 If Yes, specify how many acres.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q3.4 Did you rent-in any land in the last growing season?  

o Yes  

o No  

Q3.4.1 If Yes, specify how many acres.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
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Q3.5 Did you grow any crop(s) during the previous long growing season? 

o Yes  

o No  

Q3.5.1 If you answered Yes, please specify the main crop? 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q3.6 Did you grow any crop(s) during the previous short growing season?  

o Yes  

o No  
 
Q3.6.1 If you answered Yes, please specify the main crop.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q3.7 Did you leave any land fallow? 

o Yes 

o No 
Q3.7.1 If you answered Yes, please state how many acres.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q3.8 Looking back at least 10 years, have you increased or reduced land under agriculture? 

o Increased 

o Reduced 
Q3.9 If reduced, what did you convert the land to and why? 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q3.10 If increased, which land uses were converted? 

o Forest 

o Shrub 

o Grassland 

o Bare land 

o Other 
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Q3.10.1 If Other, please specify. 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q3.11 Please explain reasons that necessitated expansion of land under agriculture.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 

4. Farm labor and sources 

Q4.1 What is the major source of your farm labor? 

o Family  

o Hired casual laborers  

o Family relatives  

o 2&3  

o Other  

Q4.1.1 If Other, please specify 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 

5. Farm credit and subsidy access 

Q5.1 Have you received any fertilizer subsidies in the past 3 years?  

o Yes  

o No  

Q5.1.1 If Yes, please list the year, amount (in Kg) and source. 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q5.2 Have you received any other agricultural subsidies in the past 3 years?  

o Yes  

o No  

Q5.2.1 If Yes, please list the year, amount and source.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
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Q5.3 Have you received any agricultural credit in the past 3 years?  

o Yes  

o No  

Q5.3.1 If Yes, please list the year, amount and source.  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q5.4 Compared to the past 5-10 years, how easy or difficult is it to access these resources? 

 Extremely 
easy 

Moderately 
easy 

Slightly 
easy 

Neither 
easy nor 
difficult 

Slightly 
difficult 

Moderately 
difficult 

Extremely 
difficult 

Click to 
write 
Statement 1  

o  o  o  o  o  o  o  

6. Income 

Q6.1 Do you consider your previous season’s yields to be below average, average or above 
average?  

o Below average  

o Average  

o Above average  

Q6.2 How much did you earn from agriculture (in local currency)?  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
___________________ 
Q6.3 Do you have any other income-generating activity, apart from agriculture? 

o Yes  

o No  

Q6.3.1 If Yes, please list them alongside the monthly wage.  
 Job type Monthly wage (in 

local currency) 
Is it a constant 
amount every 

month? 

How long have you 
been working (in 

years)? 

Click to write 
Statement 1  

    

Click to write 
Statement 2  
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7. Involvement in civil society organizations and other non-governmental groups 

Q7.1 Are you a member of any civil society organization (CSO) or any other groups? 

o Yes  

o No  

Q7.1.1 If yes, please list the services you receive from the organization. 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q7.2 Have you received any sort of training or sensitization about environmental conservation?  

o Yes  

o No  

Q7.2.1 If Yes, how has this influenced your agricultural practices?  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q7.3 Are you aware of any government legislation about local land use and access? 

o Yes  

o No  

Q7.3.1 If Yes, how have these influenced your agricultural practices? 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q7.4 Are there any agricultural extension officers who visit and advise you about agriculture and 
climate issues?  

o Yes  

o No 

Q7.4 Are there any agricultural extension officers who visit and advise you about agriculture and 
climate issues?  

o Yes  

o No 
Q7.4 Are there any agricultural extension officers who visit and advise you about agriculture and 
climate issues? 

o Yes 

o No 
Q7.4.1 If Yes, how many of such visits did you receive in the past growing season?  

o 1-2 
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o 3-5 

o 5+ 

8. Changes in the weather and climate 

Q8.1 Looking back 10 years, have you noticed any changes in rainfall patterns? 

o Yes  

o No  
 

Q8.1.1 If Yes, what changes have you observed?  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q8.2 How has the change in Q8.1.1 impacted your crop yields and agricultural practices?  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q8.3 How have you adapted to or mitigated the impacts of the change in Q8.1.1?  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
 
Q8.4 Looking back 10 years, have you noticed any changes in temperature? 

o Yes  

o No  

Q8.5.1 If Yes, what changes have you observed?  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q8.6 How has the change in Q8.5.1 impacted your crop yields and agricultural practices?  
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________ 
Q8.7 How have you adapted to or mitigated the impacts of the change in Q8.5.1?  
____________________________________________________________________________
____________________________________________________________________________ 
Q8.8 General comment about location's LULC/interviewee. 
____________________________________________________________________________
____________________________________________________________________________ 
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Appendix B: Sensitivity of Model to Forcing Independent Variables to be Constant 

Results from sensitivity analysis of explanatory variables used in the M0109 model are 
shown in Tables A2-A4. Table A1 represents the explanatory variables. 

Table A.1. Explanatory variables used in the M0109 model. 

Var. 1 Distance from 2001-2009 cropland areas 

Var. 2 AMJ_LTSD (mm) 

Var 3. Annual LTSD (mm) 

Var. 4 Distance from rivers (m) 

Var. 5 Elevation (m) 

Var. 6 Slope (%) 

Var. 7 Distance from 2001 urban areas (m) 

Table A.2. Forcing a single independent variable to be constant 

Model Accuracy (%) Skill measure Influence order 

With all variables 92.80 0.9041 N/A 

Var. 1 constant 64.43 0.5257 2 

Var. 2 constant 92.80 0.9041 6 

Var. 3 constant 92.80 0.9041 7 (least influential) 

Var. 4 constant 92.63 0.9018 5 

Var. 5 constant 59.00 0.4533 1 (most influential) 

Var. 6 constant 91.89 0.8918 3 

Var. 7 constant 92.50 0.9000 4 

Table A.3. Forcing all independent variables except one to be constant. 

Model Accuracy (%) Skill measure 

With all variables 92.80 0.9041 

All constant but Var. 1 48.07 0.3075 

All constant but Var. 2 15.92 -0.1211 

All constant but Var. 3 15.92 -0.1211 

All constant but Var. 4 38.76 0.1835 

All constant but Var. 5 63.24 0.5098 

All constant but Var. 6 57.03 0.4270 

All constant but Var. 7 43.72 0.2496 

Table A. 4. Backwards stepwise constant forcing. 

Model Variables included Accuracy (%) Skill measure 

With all variables All variables 92.80 0.9041 

Step 1: Var. [2] constant [1,3,4,5,6,7] 92.80 0.9041 

Step 2: var. [2,4] constant [1,3,5,6,7] 92.63 0.9018 

Step 3: Var. [2,4,7] constant [1,3,5,6] 92.06 0.8941 

Step 4: Var. [2,4,7,3] constant [1,5,6] 90.33 0.8710 

Step 5: Var. [2,4,7,3,6] constant [1,5] 87.41 0.8321 

Step 6: Var. [2,4,7,3,6,1] constant [5] 63.24 0.5098 
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