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ABSTRACT
NEW APPROACHES FOR STUDYING THE ARCHITECTURE OF URBAN TREES
By
Georgios Arseniou

The study othe architecture of urban trees is important for the management of urban
forests to optimizéhear ecological and socioecononservicesTrees have &actatlike
architecturevhich is disrupted by competition for lighth&refore, studying the architecture of
opengrown urban trees should provide a better understanding of the inherentlikactal
character of treeJ.errestrial Laser Scanning (TLSteology provides detailed datéatree
architectureThe main scope of this dissertation was to model the frattattural complexity of
urban trees based on different fractal analys¢hodsn relation to the physiological and
functional traits

In the second chapter of the dissertatiomaant of the "twesurface" method was used
to estimate the fractal dimension of thousands of urban tree crowns foailicly-available
dataseticross the USAt was found thatirbantrees reduced thearownfractal dimension to
reduce water losthrough transpiratiom hotter cities depending on the level of urbanization at
smaller spatial scales. The functional group and thénigory traits of the studied urban trees
significantly affected their crownrdctal dimension in response to their growing environment.

In the third chapterforty-five treesof different deciduous specieGSleditsia triacanthos
L., Quercus macrocarphlichx., Metasequoia glyptostroboidétu & W.C. Cheng) were laser
scannedn leafon and-off condtions on the Michigan State University campus to study the role
of leavesin thefractalstructural complexity of urban trees using thex-dimensiori (D)

metric It was found thathe presence of leaves significantly increased tfraéric of all study



trees, and the contribution of leaves decreased as branch network complexity increased. The leaf
onlaserpoint clouds of the study trees weisovirtually defoliatel with a leafremoval
algorithm.It was found that thalgorithmic lef-removalcaused biased estimatestoé Dy, of the
G. triacanthosandM. glyptostroboidesrees

In the fourthchapterthe leafoff laserpoint clouds of fiftysix urbantrees of the
aforementioned species were used to generate quantitative strocideds(QSMs)to quantify
their woody surface area (WSA) allometiywas found that the variation in the abayeund
WSA of the study trees related to their fractal dimension quantified with gheeDic and the
distribution of "path" lengths from theee base to every branch tip. It was also found that the
urban trees allocated the largest portion of t&®A to their branches, which varied with
branch order, branebase diameter, and branbhse height. This study also showed a positive
relationshipbetween th&/SA and the crown surface area of the urban trees.

The fifth chapteincludedlaserpoint clouds of thirtyone trees of deciduous and
evergreen species that were sampled on the Michigan State University campus and the Harvard
Forest in Petergtm, MA, USA to model their abowground woody biomass. QSMs were
generated to estimate the total tree volume and component volumes of the study trees. Biomass
estimates were produced by multiplying the Th&ed volumes with measurements of tree basic
dengty from sample disks from stems and branches obtaineddaf$émuctively samplinthe
trees, and also with published basic density values at speciesllegdéaves of the trees that
were scanned in lea@hn condition were artificially removed befo@SM generationlt was
foundthat TLS technology can be used to produce reliable total and component biomass
estimates of trees. Theomass estimates quality candféected by the growing environment,

the leaf condition of the lasecanned trees and thasic density values that are used.
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CHAPTER 1

INTRODUCTION



1.1 DissertationScope and jectives

The main scope of this dissertatiwasto quantify the fractalarchitecturacomplexity
of urban trees based on different methods and metrics of fractal analysis and to better understand
how theirarchitecturatomplexity relates to their physiological and functional traits adapting
them to the urban growing conditions. In order to achieve this yaaimain methods were
employed: the "twesurface” method (Zeide and Pfeifer 1991) which requires data for the lea
area and the crown dimensions of trees, and the-¢barting” method (Da Silva et al. 2006)
which requires laser point clouds of trésse section 1.5This dissertation also aimeal
explore the accuracy of the Terrestrial Laser Scanning (TLS) tldyntm model urban tree
architecture and allometry, specificaltile total aboveround woody surface area and woody
biomass ofuirbantrees which have important physiological and management implications (e.g.,
carbon balance and carbon stocks of tre@seftson 1975, Kim et al. 200MacFarlane 2015).

The four objectives of thidissertatiorwere the following:

1. Understand how the fractal dimension of the crowns of communitiedah trees of
many species varied different spatial scales (local growing environment within cities,
and between cities in different climatic regions); and explore how fractal dimension
reflects the lifeform and lifehistory traits of different tree species adapting them to the
urbanenvironment.

2. Disentangle the two main components of the fradtalcharacter of trees i.e., the
photosynthetic and nephotosynthetic parts; and quantify the role of foliage in the fractal
dimension of urban trees in terms of structural complexity uBit®)data.

3. Quantify the total abovground allometry of the woody surface area of urban trees and

understand how it relates to their fraes&iucturalcomplexity using TLS data.



4. Evaluate the accuracy of TH&sed estimates of the abay®und biomass afrban
trees compared to tleecuracy off LS-based estimates of the abeay®und biomass of

rural forestirees in different leatonditions.

1.2 Dissertation Outline

Chapter 1 is the introductochapter and it outlines the main scope and the objectives of
the dissertation research. Furthermore, it provides the overall theoretical background and the
motivation for the dissertation research. The fundamental theories of tree architecture are
descrbed, the ecological services of urliegesare also describednd their architectural
characteristics are explored in comparison to the architecture of rural foresFimedyg, the
technology of TLSto study tree structure and important considenatfor laser scanning trees
is described.

Chapter 2 focuses on the first dissertation objective. More specifically, the fractal
dimension of thousands of tree crowns of many different tree species, growing in different urban
environments across the USvas estimated based on the "taurface” method (Zeide and
Pfeifer 1991). The tree data for this study was a pubdighilable, urban tree dataset, published
by McPherson et a{2016). The analysis allowed for teidyof the fractal dimension and the
physiological responses of the trees to urban environments at different scales. The results
provided a better understanding on how tree crown fractal dimension relates to balances between
hydraulic and light captureelated functions (e.g., drought and ébaolerance). It was shown
that trees reduced their fractal dimension at both whi@e/n and leaf scales in order to reduce
water loss in hotter cities and dependimgthe level of urbanization amaller spatial scales.

Different patterns of crown fcéal dimension of urban trees in response to their growing



environment were observadhich were dependen their functional group and |Heistory
traits i.e., needldeaved versus broddaved species, and drought versus shade tolerance.

Chapter 3 foases on the second objective of the dissertation. Terrestrial laser scanning
data was used to study the role of foliage in the structural complexity of urban trees. More
specifically, fortyfive trees of three deciduous speci@se(itsia triacanthod.., Quercus
macrocarpaMichx., Metasequoia glyptostroboidét & W.C. Cheng) were sampled on the
Michigan State University campus and were lasm=mned in both leafn and leabff
conditions. The boxlimension (I3) metrig which is computed based on the "bmunting”
method (Da Silva et al. 2006yas used to quantify the fractal dimension in terms of structural
complexity of the leabn and leabff point clouds of the study trees. The keaf point clouds
were also algorithmically defoliated to assess tfexeof artificial leafremoval on the
estimated structural complexity. The study results showed that the presence of leaves
significantly increased theybnetric of all study trees and the contribution of leaves decreased as
branch network complexity ineased. The leakmoval algorithm caused biased estimatab®f
Dy of theG. triacanthosandM. glyptostroboidesrees indicating that the shape and the type of
leaves affects the performance of the algorithm, while the maximum branch ordeGof the
triacanthogtrees was significantly related to the underestimation of their D

Chapter 4 focuses on the third objective of the dissertation:-g$txtiyees of three species
(Gleditsia triacanthod.., Quercus macrocarp®lichx., Metasequoia glyptostroboidétu &
W.C. Cheng) were sampled and laseanned on the Michigan State University campus iR leaf
off condition. The TLS point clouds were used to generate quantitative structural models of the
study trees to quantify their woody surface area allometrysdering the anatomy and the

physiology of urban trees. The study results showed that the variation in the woody surface area



of the main stem and branches of the trees related to the fractal dimension of tree architecture
guantified with the Pmetric andhe distribution of "path" lengths from the tree base to every
branch tip. It was also found that the urban trees allocated the largest portion of their total woody
surface area to their branches and this varied with branch order, fv@selkliameter, and
branchbase height. Finally, this study showed a positive relationship between the woody surface
area and the crown surface area of the urban trees, which has important implications for their
carbon balance.

Chapter 5 focuses on the fourth objectivehef dissertation. In this study, thirone trees
of deciduous and evergreen species were sampled anddasered in urban and rural forest
conditions. The TLS point clouds were used to generate quantitative structural models to
estimate the total tree wdy volume and component volumes (main stem and branches) of the
study trees. The woody volume estimates were converted to biomass estimates by multiplying
with estimates of tree basic density from sample disks from stems and branches obtained after
scanning and felling the trees, and also by multiplying with published basic density values at the
species level. Furthermore, the leaves of the trees of evergreen species and some deciduous
speciesscanned in leabn condition were algorithmically removed bafe generating
guantitative structural modelthe effect of the leafemoval algorithm on the biomass estimates
was assessed. Total woody abgveund biomass, main stem and branch biomass were also
computed from destructive sampling data, as referedoewv# compare to TL-Based values.
The study results showed that TLS technology can be used to produce reliable total and
component woody biomass estimates of trees and the quality of the estimates can depend on the
growing environment (urban versus rui@est conditions), the leaf condition of the laser

scanned trees and the basic density values that are used.



Chapter 6 provides a synthesis of all previous chapters of the dissertation. The analysis
methods are evaluated to identify challenges and renggknowledge gaps about the fractal
like architecture of urban trees and the use of TLS data to study tree structural complexity and

architecture. Prospects of future research investigations are also discussed.

1.3. TreeArchitecture: The Allometry of TreesConsidering the Crowding

Conditions

Sizedependent variation of tree architecture is explained by allometric scaling laws of
power form (West et al. 1999, Sileshi 2014). Trees allocate available resources to their different
organs in a way that inaises the uptake of the most limiting resource for their growth, implying
that allocation is a partitioning process of trees. Allometry is the quantitative relationship
between allocation and tree growth (Weiner 2004). According to MacFarlane (2015) the mai
theories that describe the architecture of trees as a result of their allometric growth are the
following: the metabolic scaling theory (branches have a friiktabrchitecture described by a
general allometric scaling based on quapawer allometrianodels; West et al. 199West et
al. 1999), the pipe model theory (the crasstional area of stems is preserved when they
bifurcate into branches and the vascular system of trees consists from active and inactive pipes
whose surface area scales with their volume; Shinozaki #9864, Chiba 1998), various
allometric models that assume that tree form is significantly affected by the wind loads
(McMahon 1973, Niklas 1995, Eloy 2011, Telewski 2012), and different models that account for
hydraulic limitations which are an importdotce affecting the size and the hydraulic

architecture of tall trees (Ryan and Yoder 1997, Niklas and Spatz 2004, Ryan et al. 2006).



Both the metabolic scaling theory and the pipe model theory assume thabireem
inherentfractatlike branching araitecture (NoordwijkandMulia 2002, Makeléand Valentine
2006)based on fractajeometry principles (Mandelbrot 1983). However, tree branching
networks are not perfect fractals because they laclsseifarity acrossll scales of branching
hierarchy (H#ey et al. 2004, Mékeland Valentine 2006Vialhi et al. 2018)According to
MacFarlane et al. (2014) competition for light from neighboring trees significantly disrupts the
inherent fractal character of trees growing in closed forest canopies.

Trees adpt their allometric patterns to the various growing conditions, which makes
them plastic. Plasticity is the ability of trees to change their inherent allometric trajectories due to
environmental factors (e.g. competition for light), which implies thatiplasis the flexibility
of a tree's genotype to support different phenotypes depending on biotic and abiotic factors
(Weiner 2004). Trees can develop various degrees of plasticity depending on the crowding
conditions they face from tree neighbors. Acaogdo Coomes and Grubb (1998) competition
for light is asymmetric and lighdemandingfastgrowing species tend to be less "branchy"” in
their juvenile growth stagevhich affects their fractéike architecture. It has been found that
trees growing in opn areas (e.g., opgmown urban trees) have larger crowns, and sharper trunk
taperwhencompared to rural forest treekat grow in closed canopigadicating that open
grown trees allocate more mass to their branches (Zhou et al. 2015). Lines@t2)lf¢and
that trees grow taller and have narrower crowns when they grow in closed cacmpigared to
trees that grow in the open. Similarly, MacFarlane and Kane (2017) found that branch traits
change under different crowding conditions and they sudigasurban opegrown trees tend to
have a squat growth form and allocate the largest portion of their aboveground biomass to their

branchesin order to resist the strong wind loads in urban settings.



Opengrown and foresgrown trees can also haddferent wood properties. More
specifically, Zhou et al. (2011) observed that within the same geographic region the stem specific
gravity of open grown trees was greater than the stem specific gravity of forest grown trees,
while they did not observe agsiificant difference in branch specific gravity. However,
MacFarlane (2020) found that trees of different species facing reduced competition from their
neighbors had greater branch wood density compared to their main stem wood density.
Considering all th@bove studiest becomes apparent that urban ojgeown and foresgrown
trees can have fundamentally different allometric and architectural patterns which reflect
different conditions of competition for light, mechanical loads (e.g., wam},local graving

environment in cities (e.g., pav@dpermeable surfaces, buildings).

1.4.Studying the Architecture of Urban Trees to Understand Their Ecological

Services

Urban forests sequester large amounts of atmospheric carbon dioxide and they provide
severalther important ecological services e.g., shade, temperature regulation, noise reduction,
air pollutants uptake, biodiversity, pollination, water purification, energy savings for buildings
etc. (Heisler 198aylcPherson et al. 1994)cPherson 1998, Nowak drCrane 2002Casalegno
et al. 2017). However, our understanding of these ecological services and particularly the carbon
offset of urban forests on global scale remains limited (Tigges and Lakes 2017). There are
several reasons for this knowledge galack of accurate and detailed data about the
architecture of urban treaslarge spatial and temporal scalashortage of robust models

describing urban tree architecture, limited information about the effects of natural and human



induced disturbances amban forest dynamicandscarce information about the carbon that is
stored in urban trees (Tigges and Lakes 2017).

The architecture of urban trees can be studied based on the principles of fractal analysis.
Urban trees should have more evident fraltkal architecture compared to rural forest trees due
to the typically lower number, or complete absence of neighboring trees and competition for
light (MacFarlane et al 2014). However, the growing conditions in cities can be significantly
heterogeneous (btan 1984, Kjelgren and Clark 1992, lakovoglou et al. 2002t al. 2010,
Jensen et al. 2012, Ferril W D O .RVWLUO HW DO ZKLFK DIITHFWYV
urban trees (Arseniou and MacFarlane 2021). More specifically tree architeatiires is
affected by systematic tree pruning (Pavlis et al. 2008, Vogt et al. 2015), increased atmospheric
temperatures and reduced water infiltration (Kjelgren and Clark 1992, Bourbia and Boucheriba
2010 Nowak and Greenfield 2020), anthropogenicaieas to root and crown expansion (Krizek
and Dubik 1987, Rhoades and Stipes 1999, Vogt et al. 2015), and heterogeneous soil properties
(lakovoglou et al. 2001, McHale et al. 2009). On the other hand, in urban areas there is a large
availability of nutrients, and there are increased carbon dioxide emissions that usually enhance
tree growth; the net effect of all these environmental factors combined is not well known yet
(Gregg et al. 2003). It is expected that the fralital character of opegrown urbartrees should
be stronger compared to trees growing in clesatbpy forest conditions based on the
hypotheses for the effect of competition for light on tree architecture (MacFarlane et al 2014,

Arseniou et al. 2021).



1.5.Use of Laser Scanning €chnobgyin Forest Measurements

1.5.1. Laser Scanning pstems

Remote sensing provides important technological tools that can be used to study the
architecture of urban trees across several spatial and tempora| ischlesnglaser
scanning(Tigges and Lake®X7). Laser scanners are instruments that emit laser pulses and
capture "point clouds” consisting of millions of thh@dienensional points of the surrounding
environment i.e., Light Detection and Ranging (LIDAR) data (Liang et al. 2016). Range
measurementasnd precise angular measurements through the optical beam deflection mechanism
of the laser instrument are needed to capture-tiraensional point coordinates (Liang et al.
2016). There are different types of laser scanning systems depending onfthen et lasers
are mounted e.g., spaceborne, airborne, Unmanned Aerial Vehicle (UAV), mobile, terrestrial
(Calders et al. 2020). Terrestrial Laser Scanners (TLS) are mounted on a tripod and they create
point clouds of trees by analyzing the returned gynef the emitted laser pulses as a function of
either time (timeof-flight systems) or shift in the phase of the light wave of the emitted laser
beam (phassehift technology) (Calders et al 2015).

Previous studies combined different types of remote sgmkita to quantify important
forest variables. For example, Jaakola et al. (2010) detected the heights of individual urban trees
with a standard deviation of 30 cm by using an UAV on which they mounted two laser scanners,
two cameras, a spectrometer arf@dRS system. He et al. (2013) assessed the green biomass of
urban forests in Beijing, China using LIDAR data and SPOT?5 satellite images. The accuracy of
the green biomass estimates based on their analysis was greater than 85% compared to ground
truth dataAccording to Casalegno et al. (2017) the grepace in urban areas is very

fragmented and spatially heterogeneous and this creates significant challenges in determining
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urban forest cover and structure. However, they developed a method for assessibgritieee

cover and the associated volumetric properties by using waveform airborne LIDAR. Wilkes et al.
(2018) suggest the use of midtiale LIDAR for studying urban carbon densities. They found

that TLSbased maximum height and projected crown arelamau 93% of the variance in the
volume of the trees in their study. Using airborne LIDAR they successfully detected single urban

trees but they observed a significant underestimation in aboveground biomass.

1.5.2. Considerations forT errestrial LaserScanning of Forest Trees at Rot Scale

Terrestrial laser scanning (TLS) data have been systematically used in forest ecology
since the early 2000s (Hackenberg et al. 2015b, Calders et al. 2020). According to Liang et al.
(2016) there are three main methdéalslaserscanning trees with TLS on plot levsinglescan,
multi-scan and muksinglescan. According to the singkean method the terrestrial laser
scanner is placed at the plot center and it captures only one full field of vieyasdahus trees
are detected in a singian point cloud. This method is fast and easy but significant occlusion
effects in the point clouds can occur because some parts of tree structubegjectpes) are
shadowed by other tree parts or neighboring trees. The-snattimethod reduces occlusion
problems by establishing several scan positions inside and outside the plots. Artificial reference
targets are needed for registering the multiple scans. This method significantly decreases the
occlusion effectbut increasede time cost andomplexityof scans The multisinglemethod
combines characteristics of the aforementioned methods and several scans are captured inside
and outside the plots but reference targets are not used. The multiple scans are registered at
featue leve| as individual trees are mapped in each saad they are used to merge the

multiple scans. This method is simpler and faster than the-swalti method (Liang et al. 2016).
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According to Wilkes et al. (2017), the sampling density using TLS depamthe spatial
extent that must be scanned, the vegetation density and complexity and the metrics that need to
be computed. For example, stem location detection does not require large scan resolution and it
can be extracted from lesense sampling pattes. However, the extraction of metrics related to
high order branches require dense sampling patterns. In general, a sampling grid 10x10 m

suffices to capture good quality point clouds at plot level.

1.5.3.Studying the Architecture of Individual Trees with the Use of Terrestrial

LaserScanning Technology

TLS data captured at singlree scale from multiple directions (minimum three) using
reference targetsisually provide the most detailed information needed to study tree architecture
because occlusn effects are significantly reduced, mith increased scanning time (Raumonen
et al. 2013, Wilkes et al. 2017). Hargetree is laser scanned undatense canopyhen six or
more scans are needadhile the point cloud quality and the density of points might be
significantly reduced when single trees are laser scanned at distances greater than 10 m (Wilkes
et al. 2017).

Different types of terrestrial laser scanners may differ in point densitycaodeay
(Jaakkola et al. 2010). Pueschel (2013) studied the effects of scanner parameters on the
extraction of stems, and the estimation of stem diameter and stem volume of individual trees
using a FARO Photon 120 terrestrial laser scanner. He foundcratessolution (i.eangular
step size) was the most important scanning pararaetks range dependent. Pueschel (2013)
also suggestthat we can optimize sampling efficiency by reducing scanning times (low scan

resolution and high scan speed) withsighificant loss of accuracy and he concllitteat
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multiple scans for a single tree increase the estimation accuracy of diameter at breast height
(DBH) and stem volume in the cost of time. Singh et al. (2015), argue that point density
reduction through fiering and susampling of point clouds, is a viable strategy for reducing
computational costs of tree architecture modeling.

Using TLS datawe can precisely model tree architecture, reduce the uncertainty of
above ground biomass estimation, create newnatric equations that apply to large trees, and
create distributions of tree characteristics (Calders et al. 2015). There are three main methods to
create models of trees from point clouds: the meshing method, the skeletonization approach, and
fitting geometric primitives (e.g., cylinders, spheres, cones) in laser point clouds (Bournez et al.
2017). Fitting geometric primitives in point clouds is a common method for creating quantitative
structure models (QSM) of trees. Cylinders have the best fit mt ploiuds and the generated
QSMs can be very accurate (Bournez et al. 2017). This method preserves stem and branch
topology and it provides information about the size, the location, the hierarchy and the
orientation of the branching network of a tree (Raoen et al. 2013<aasalainen et al. 2014,
Hackenberg et al. 2015a, Bournez et al. 2017, Disney et al. 2018). There are different algorithms
that produce QSM9d.reeQSMalgorithm (Copyright (C) 2022017 Pasi Raumonen) segments
the tree point clouds in seahs before fitting cylinders (Raumonen et al. 2013) and the
SimpleTreealgorithm (within theCompuTreglatform) employs spheres to detect tree geometry
and to extract tree skeleton and thickness before fitting cylinders (Hackenberg et al. 2015a).

Creaing QSMs of trees alleviates major challenges associated with the quantification of
tree architecture from destructive measurements, such as limited sample sizes, restrictions in
protected forests, insufficient spatial and temporal distribution of sangpiession of very large

trees (Disney et al. 2018). However, there are also several sources of uncertainty related to tree
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laserscanning, and QSMs generation: occlusion effects, wind effects on point cloud quality,
scanner characteristics (e.g., branabfebie same or smaller diameter than the scanner footprint
at a certain distance cannot be sufficiently captured), errors originating from the operators, and
errors in point cloud registration (Disney et al. 2018). There are two components of the
uncertaitty associated with the QSM method. The stochastic component implies non
deterministic processes for fitting geometric primitives in a point cloud and the systematic
component relates to the assumptions inherent to each QSM algorithm e.g., the fitting of
cylinders may overestimate woody volumes or woody surface areas due to local tapering of
branches, especially as the branch size decreases. Malhi et al. (2018) determine some major
challenges in estimating tree mass accurately from TLS data: extractighafrder branches,

and the algorithmic classification and separation of woody anduvomay parts of scanned trees
because QSMs cannot model foliage (Stovall et al. 2017).

Although QSMs are currently considered to be the most robust method for estitresing
volume and architecture (Disney et al. 2Q18¢re are also other methods to model trees from
TLS data. Moskal and Zheng (2011) examined a point cloud slicing algorithm for processing
TLS data and they derived allometric variables of urban treey.ddmonstrated that some tree
allometric variables (e.g., DBH, tree height) can be successfully derived from TLS data, however
more research is needed for accurate estimation of tree volume. Hopkinson et al (2004),
examined the use of TLS to semitomatially derive basic allometric variables. They found a
systematic underestimation of heights due to canopy shadow and suboptimal distribution of TLS
samplingand thattimber volume estimates were within 7% of the estimates from conventional
allometric moded. Maas et al. (2008), developed a fully automatic point cloud processing

approach to measure variables like tree height, DBH, and stem profile. Olschofsky et al. (2016),
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developed an algorithm that estimates the biomass of branches with complex geaseztrgrb

TLS data giving anaccuracy of greater than 95% compared to reference biomass values.

15



LITERATURE CITED

16



LITERATURE CITED

Arseniou, GandMacFarlane, D.W. (2031Fractal dimension of tree crowegplains species
functionalttrait responses to urban environments at different scales. Ecological
Applications, DOI: 10.1002/EAP.2297.

Arseniou, G., MacFarlane, D.VEndSeidel, D. (202 Measuring the Contribution of Leaves to
the Structural ComplexityfdJrban Tree Crowns with Terrestrial Laser Scanning.
Remote Sensing 2021, 13, 2773. DOI: 10.3390/rs13142773.

Bourbia, FandBoucheriba, F. (20)0Impact of street design on urban microclimate for semi
arid climate (ConstantineRenewable Energy 35 (201343847.

Bournez, E., Landes, T., Saudreau, M., Kastendeu@ndMNajjar, G. (201Y. From TLS Point
Clouds to 3D Models of Trees: A Comparison of Existing Algorithms For 3D Tree
Reconstruction. The International Archives of the Photogramiieemote Sensing and
Spatial Information Sciences, Vol.XLIl, Part 2/W8lafplio, Greece, March 8, 2017.

Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S., Bentley, L.P., Chave, J.,
Danson, F.M., Demol, M., Disney, M., Gaulton, R., MbgrtS.M.K., Levick, S.R.,
Saarinen, N., Schaaf, C., Stovall, A., Terryn, L., WilkegrelVerbeeck, H. (2020
Terrestrial Laser Scanning in forest ecology: Expanding the horizon. Remote Sensing of
Environment 251 (2020112102.

Calders, K., Newnham, Gurt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D.,
Avitabile, V.,Disney, M.Il., Armston, AndKaasalainen, M. (20)5Nondestructive
estimates of abovground biomass using terrestrial laser scanning. Methods in Ecology
and Evolution Vol. 6 (@15), p. 198208.

Casalegno, S., Anderson, K., HancockaigiGaston, K.J. (201)7Improving models of urban
green space: from vegetation surface cover to volumetric survey, using waveform laser
scanning. Methods in Ecology and Evolution Vol.8 (20p714438452, doi:
10.1111/2044210X.12794.

Chiba, Y. (1998 Architectural analysis of relationship between biomass and aesmbased on
pipe model theoryEcological Modelling 108 (199819225.

Coomes, D.AandGrubb, P.J. (1998A comparison of 12 tree species of Amazonian caatinga
using growth rates in gaps and understorey, and allometric relationships. Functional
Ecology 12 (1998 p. 426- 435.

Disney, M.1., Vicari, M.B., Burt, A., Calders, K., Lewis, SL., RaumonergriWilkes, P.
(2018. Weighing trees with lasers: advances, challenges and opportunities. Interface
Focus 8: 20170048. http://dx.doi.org/10.1098/rsfs.2017.0048.

Eloy, C. (201). /HR Q D U G R f-ginmilatity, lAndWihdnduced stresses in trees. Physical
review letters 107, no. 25 (20)X:1258101.

17



Ferrini, F., Bussotti, F., Tattini, Mand Fini, A. (2014. Trees in the urban environment:
response mechanisms and benefits for the ecosystem should guide plant selection for
future plantingsAgrochimica Vol.58,N0.32014,DOI 10.12871/0021857201432.

Gregg, J.W., Jones, C.@dDawson, T.E. (2003Urbanization effects on tree growth in the
vicinity of New York City.Nature Vol.424 (2008 p.183186.

Hackenberg, J., Spiecker, H., Calders, K., Disney, &hdlRaumonen, P. (208h SimpleTree
An Efficient Open Source Tool to Build Tree Models from TLS Clokasests Vol. 6
(2015, p. 42454294.

Hackenberg, J., Wassenberg, M., Spieckegrid.Sun, D. (2015p Non Destructive Method for
Biomass Predictio@ombining TLS Derived Tree Volume and Wood Density. Forests
2015, 6, 1274.300. DOI:10.3390/f6041274.

Halley, J.M., S. Hartley,S., Kallimanis, A.S., Kunin, W.E., Lennon,ahdSgardelis, S.P.
(2004. Uses and abuses of fractal methodology in ecologgldgy Letters, (20047:
254271. DOI: 10.1111/j.1460248.2004.00568.x.

He, C., Convertino, M., Feng, ZndZhang S. (2013 Using LIDAR Data to Measure the 3D
Green Biomass of Beijing Urban Forest in China. PLoS ONE Vol)8&15920.
DOI:10.1371/jounal.pone.0075920.

Heisler, G.M. (198% Energy Savings with Treedournal of Arboriculture Vol.12,No.5 (1986
p.113125.

Hopkinson, C., Chasmer, L., YouRpw, C.andTreitz, P. (2004 Assessing forest metrics with
a groundbased scanning lidar. Cankar. Res. Vol. 34 (2004p. 573583.

lakovoglou, V., Burras, LandKipper, R. (200). Factors related to tree growth across urban
rural gradients in the Midwest, USA. Urban Ecosystems, 885,12001.

lakovoglou, V., Thompson, J.RAnd Burras, L. (2002 Characteristics of Trees According to
Community Population Level and by Land use in the U.S. Midwest. Journal of
Arboriculture 28(2: March 2002.

Jaakkola, A., Hyyppa, J., Kukko, A., Yu, X., Kaartinen, H., LehtomakiamiLin, Y. (2010. A
low-cost mdti-sensoral mobile mapping system and its feasibility for tree measurements.
ISPRS Journal of Photogrammetry and Remote Sensing 65)(208514522.

Jensen, R.R., HardIn, J&hdHardIn, A.J. (201 Estimating Urban Leaf Area Index (Lpbf
Individual Trees with Hyperspectral Data. Photogrammetric Enginearnid@Remote
Sensing Vol. 78, No. 5 (20),2pp. 495 504.

Kaasalainen, S., Krooks, A., Liski, J., Raumonen, P., Kaartinen, H., Kaasalainen, M., Puttonen,
E. Anttila, K.andMé&kipaa, R. (2014 Change Detection of Tree Biomass with
Terrestrial Laser Scanning and Quantitative Structure Modeling. Remote Sensing Vol. 6
(2019, p. 39063922.

18



Kim, M.H., Nakane. K., Lee, J.T., Bang, H&dNa, Y.E. (2007. Stem/branch maintenance
respiration of Japase red pine stanBorest ecology and managemei#t3(23),
pp.283290.

Kinerson, R.S. (1975Relationships between plant surface area and respiration in Loblolly pine.
Journal of Applied Ecology, Vol. 12, No. 3 (Dec., 19#%p. 965971.

Kjelgren, R.K.,andClark, J.R. (1992 Microclimates and Tree Growth in Three Urban Spaces.
J. Environ. Hort. 10(8139-145.

.RVWLUO 6 yXNDQRYLUO - 2UdddO¥O.m GGH Q RWXLIRIbhietric 0 O
Relations of Sycamore Mapl@d¢er pseudoplatanyignd its Red Leaf Cultiva’(
pseudoplatanus $ W U R S X U 8StdgdtXard Park Habitats of Novi Sad (Serbia,
Europg. Journal of Forestry 117(214427. DOI: 10.1093/jofore/fvy078.

Krizek, D.T.andDubik, S.P. (198) Influence of Water Stress and Ré&ged Root Volume on
Growth and Development of Urban Trees. Journal of Arboriculture 1&¢bruary
1987.

Liang, X., Kankare, V., Hyypp4, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H.,
Jaakkola, A., Guan, F., Holopainen, &hdVastaranta, M. (20)6Terrestrial laser
scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing
Vol. 115 (2019, p. 63#77.

Lines, E.R., Zavala, M.A., Purves, D.\AhdCoomes, D.A. (2012 Predictable changes in
aboveground allanetry of trees along gradients of temperature, aridity and competition.
Global Ecology and Biogeography, (Global Ecol. Biogeo@012 21, p. 10174.028.

Lu, JW.T., Svendsen, E.S., Campbell, L.K., Greenfeld, J., Braden, J., KingritlEalxa
RaymondN. (2010. Biological, social, and urban design factors affecting young street
tree mortality in New York City. Cities and the Environme{t): article 5, pp. 15.

Maas, H.G, Bienert, A., Scheller, &dKeane, E. (2008 Automatic forest inventorparameter
determination from terrestrial laser scanner data. International Journal of Remote Sensing
Vol. 29 (2008, p. 15791593.

MacFarlane, D.WandKane, B. (201). Neighbour effects on tree architecture: functional trade
offs balancing crown competittness with wind resistance. Functional Ecology (2017
31, p. 16244636.

MacFarlane, D.W. (20)5A generalized tree component biomass model derived from principles
of variable allometry. Forest Ecology and Management Vol. 354 §2018355.

MacFarlaneD.W. (2020Q. Functional Relationships Between Branch and Stem Wood Density
for Temperate Tree Species in North America. Frontiers in Forests and Global Change
3:63. DOI: 10.3389/ffgc.2020.00063.

MacFarlane, D.W., Kuyah, S., Mulia, R., Dietz, J., MuthGriandNoordwijk, M.V. (2019.
Evaluating a noflestructive method for calibrating tree biomass equations derived from
tree branching architecture. Trees 28:807 (2014, DOI: 10.1007/s0046814-09932.

19



Makela, A.andValentine, H.T. (2006 Crown ratio influences allometric scaling in trees.
Ecology, 87(12, 2006, pp. 296R2972.

Malhi, Y., Jackson, T., Patrick Bentley, L., Lau, A., Shenkin, A., Herold, M., Calders, K.,
Bartholomeus, HandDisney, M.I. (2018. New perspectives on the ecojoof tree
structure and tree communities through terrestrial laser scanning. Interface Focus 8:
20170052.

Mandelbrot, B.B. (1988 The fractal geometry of nature. W. H. Freeman, New York.

McHale, M.R., Burke, I.C., Lefsky, M.A., Peper, PaddMcPhersonE.G. (2009. Urban forest
biomass estimates: is it important to use allometric relationships developed specifically
for urban trees? Urban Ecosystems (208 p. 954.13.

McMahon, T. (1973 Size and shape in biology. Science 179 (30¥20%:1204. DOI:
10.1126/science.179.4079.1201.

McPherson, E.G. (1998$ WPRVSKHULF FDUERQ GLR[LGH UHGXBWLRQ E\
Arboric 24 (4: p. 215223.

McPherson, E.G., Nowak, J.BndRowan, A. R., eds. (1994Chicago's urban forest ecosystem:
results ofthe Chicago Urban Forest Climate Project. Geeth. Rep.NEL86. Radnor,
PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment
Station: p.201.

Moran, M.A. (1984. Influence of Adjacent Land Use on Understory Vegetation of New York
Forests. Urban Ecology Vo.8 (1934.329340.

Moskal, L.M.andZheng, G. (2011 Retrieving Forest Inventory Variables with Terrestrial Laser
Scanning (TL$in Urban Heterogeneous ForeRemote Sensing Vol. 4 (2011p. 1:20.

Niklas, K.J. (1995 Sizedependent Allometry of Tree Height, Diameter and Trtaper.
Annals of Botany 75, p. 21227.

Niklas, K.J.andSpatz, H.C. (2004 Growth and hydraulic (not mechanifabnstraints govern
the scaling of tree height and mass. PNAS 101, p. 156663.

Noordwijk, V.M., andMulia, R. (2002. Functional branch analysis as tool for fractal scaling
above and belowground trees for their additive andadfitive propertiesEcdogical
Modeling Vol.149 (200, p. 4151.

Nowak, D.JandCrane, D.E. (2002 Carbon storage and sequestration by urban trees in the
USA. Environmental Pollution Vol.116 (200p. 381889.

Nowak, D.JandGreenfield, E.J. (2090The increase of impervious cover and decrease of tree
cover within urban areas globally (208®17. Urban ForestrandUrban Greening 49
(2020 126638.

20



Olschofsky, K., Mues, Vand Kohl, M. (201§. Operational assessment of ab@reund tree
volume andbiomass by terrestrial laser scanning. Computers and Electronics in
Agriculture Vol. 127 (2018 p. 699707.

Pavlis, M., Kane, B., Harris, J.RndSeiler, J.R. (2008 The Effects of Pruning on Drag and
Bending Moment of Shade TredgboricultureandUrban Forestry 2008. 34207 +
215.

Pueschel, P. (20)3The influence of scanner parameters on the extraction of tree metrics from
FARO Photon 120 terrestrial laser scans. ISPRS Journal of Photogrammetry and Remote
Sensing 78 (200)3p. 5868.

RaumonenP., Kaasalainen, M., Akerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M.,
Holopainen, M., Disney, M.landLewis, P.E. (2018 Fast automatic precision tree
models from terrestrial laser scanner data. Remote Sensing Vol. §,(@03520.

Rhoacs, R.WandStipes, R.J. (1999Growth of trees on the Virginia Tech campus in response
to various factors. Journal of Arboriculture 25, 2215.

Ryan M.G.andYoder B.J. (199). Hydraulic limits to tree height and tree growth. Bioscience
47, 235242,

Ryan M.G., Phillips NandBond B.J. (200§ The hydraulic limitation hypothesis revisited.
Plant, Cell and Environment (20089, 367881.

Shinozaki, K., Yoda, K., Hozumi, KandKira, T. (1964. A quantitative analysis of plant form
the pipe model theory.dndll. Japanese Journal of Ecology 14:805, p. 133139.

Sileshi, G.W. (2013 A critical review of forest biomass estimation models, common mistakes
and corrective measures. Forest Ecolagg Management 329 (2014. 237254.

Silva, D.D., Boudon, F., Godin, C. Puech, O., Smitrai@iSinoquet, H. (2006 A Critical
Appraisal of the Box Counting Method to Assess the Fractal Dimension of Tree Crowns.
Second International Symposium, ISVC 2006, France. Springer, vol. 4291),(2006
Lecture Notes in Computer Sciences, pp-76Q.

Singh, K.K., Chen, G., McCartel,B.andMeentemeyer, R.K. (20)5Effects of LIDAR point
density and landscape context on estimates of urban forest biomass. ISPRS Journal of
Photogrammetry and Remote Sensing 101 (241.5310322.

Stovall, A.E.L., Vorster, A.G., Anderson, R.S., Evdisia, P.H.andShugart, H.H. (201)7 Non-
destructive abovground biomass estimation of coniferous trees using terrestrial LIDAR.
Remote Sensing of Environment Vol.200 (20¥. 31#42.

Telewski, F.W. (201R Is windswept tree growth negative thigmotrop®&Plant Science 184
(2012 20+28. DOI:10.1016/j.plantsci.2011.12.001.

Tigges, JandLakes, T. (201). High resolution remote sensing for reducing uncertainties in
urban forest carbon offset life cycle assessments. Carbon Balance and Management
(2017 12:17,https://doi.orgl0.1186/s1302D17-0085..

21



TreeQSM, Version 2.3.@uantitative Structure Models of Single Trees from Laser Scanner
Data. Copyright (£20132017 Pasi Raumonen. Available at:
https://zenodo.org/record/844626#.Xvz_nW1KjlU

Vogt, J.M.,Watkins, S.L., Mincey, S.K., Patterson, MaBdFischer, B.C. (2015 Explaining
plantedtree survival and growth in urban neighborhoods: A saea@llogical approach
to studying recenthplanted trees in Indianapolis. Landscape and Urban Planning 136
(2015 130443.

Weiner J. (2004 Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology,
Evolution and Systematics, Vol. 6/4, pp. 2B01/5.

West, G.B., Brown, J.HandEnquist, B.J. (1997 A general model for the origin of allometric
scaling laws in biology. SCIENCE , vol. 276, (199ittp://www.sciencemag.org.

West, G.B., Brown, J.HandEnquist, B.J. (1999 The fourth dimension of life: Fractal geometry
and allometic scaling of organisms. Science 284:161/G79.

Wilkes, P., Disney, M., Boni Vicari, M., Calders, &dBurt, A. (201§. Estimating urban
above ground biomass with mu#itale LIDAR. Carbon Balance and Management (2018
13:10. https://doi.org/10.1186/s128B018-00980.

Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., Tanago, J.G., Bartholomeus, H., Brede, B.
and Herold, M. (2017. Data acquisition considerations for Terrestrial Laser Scanning of
forest plots. Remote Sensing of Environment 196 (R0171404.53.

Zeide, B.andPfeifer, P. (199 A Method for Estimation of Fractal Dimension of Tree Crowns.
Forest Science, Vol. 37, No 5, pp 1262365.

Zhou, X., Brandle, J.R., Awada, T.N., Schoeneberger, M.M., Martin, D.L., XiandTang, Z.
(2017). The use of forestierived specific gravity for the conversion of volume to
biomass for opegrown trees on agricultural land. Biomassl Bioenergy 35 ( 20)1
17211731.

Zhou, X., Schoeneberger, M.M., Brandle, J.R., Awada, T.N., Chu, J., Matrtin, ID,Ll., Li, Y.
andMize, C.W. (201%. Analyzing the Uncertainties in Use of ForeBerived Biomass
Equations for Opessrown Trees in Agricultural Land. For. Sci. (2083.(1):144461.

22


https://zenodo.org/record/844626#.Xvz_nW1KjIU

CHAPTER 2

FRACTAL DIMENSION OF TREE CROWNS EXPLAINS SPECIES FUNCTIONAL -

TRAIT RESPONSES TO URBAN ENVIRONMENTS AT DIFFERENT SCALES

Arseniou, G. and MacFarlane, D.W. (202@)actal dimension of tree crowns explains species
functionaltrait responses to urban environments at different scales. Ecological Applications,
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Abstract

The evolution of form and function of trees of diverse species has taken place over
hundreds of millions of years, while urban environments are relatively new on an evolutionary
time scale, representing a novel set of environmental constraints for trespdad to. It is
important to understand how trees of different species, planted inathiggepogenically
structured urban ecosystems, are responding to tidlamy theories have been advanced to
understand tree form and function, including severaldhggest the fractdike geometry of
trees is a direct reflection of inherent and plastic morphological and physiological traits that
govern tree growth and survival. this research, we analyzed the "fractal dimensafn"
thousands of tree crowns of madifferent tree species, growing in different urban environments
across the USA, to learn more about the nature of trees and their responses to urban
environments at different scales. Our results provide new insights regarding how tree crown
fractal dinmension relates to balances between hydraaiid light captureelated functions (e.qg.,
drought and shade tolerance). Our findings indicate that trees exhibit reduced crown fractal
dimension primarily to reduce water loss in hotter cities. More spdbyfitiae intrinsic drought
tolerance of the studied species arises from lower surface to volume ratios at botorawvale
and leaf scales, pradapting them to drougistress in urban ecosystems. Neddved species
showed a clear tradeoff between optimg the fractal dimension of their crowns for drought
versus shade tolerance. Brdadved species showed a fractal crown architecture that responded
principally to inherent drought tolerance. Adjusting for the temperature of cities and intrinsic
specis effects, the fractal dimension of tree crowns was lower in more heavily urbanized areas
(with greater paved area or buildings) and due to crowns conflicting with utility wires. With

expectations for more urbanization and generally hotter future clinvadelsiwide, our results
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add new insights into the physiological ecology of trees in urban environments, which may help
humans to provide more hospitable habitats for trees in urbanized areas and to make better

decisions about tree selection in urban foneanagement.

Keywords:functional traits, fractal dimension, tree physiology, urban ecology

2.1. Introduction

Tree species have inherent traits which constrain their form and function, but these traits
are also plastic to some degree (Weiner 2004lloav them to survive and reproduce in
different types of environments. On an evolutionary timescale, urban environments are new and
represent a novel set of environmental constraints for trees to respond to. While features like tall
buildings or pavemdmay have natural analogs, like canyons or natural rock concretions, urban
trees often experience very different {fiestories than their rural counterparts. Urban trees are
often planted, rather than naturally germinated, and usually have fewer glkbarsj unlike
trees growing in natural forests, and the number of neighbors of a tree has been shown to affect
light availability and wind resistance (MacFarlane and Kane 2017). In urban areas, there are
many factors that negatively affect tree growtly: ,gollutants, compacted soil, barriers to roots
due to paving and asphalt, and intensive pruning (Moran 1984, McHale et al. 2009, Troxel et al.
2013, Ferrini et al. 2014). On the other hand, urban areas may supply larger availability of
nutrients, warmetemperatures and increased carbon dioxide emissions, factors that usually
enhance tree growth, so the net effect of all these factors combined is not well known (Gregg et
al. 2003). Such differences between urban and natural environments make urbamemiso

novel places to study the plasticity of tree species traits.
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Many "fractal-based theories have been advanced to understand tree form and function
(e.g., pipemodel theory, Valentine 1985, Makela and Valentine 2006; metabolic scaling theory,
West etal. 1997). These theories suggest that the friikEageometry of trees is a direct
reflection of both inherent and plastic morphological and physiological traits that govern tree
growth and survival. Indeed, there has been a rapid increase in tfefnastal methodologies
to study organismal, population and even landséeye ecological phenomena (Halley et al.
2004). In the case of tredsctal geometryMandelbrot 1983) provides a way to explore the
structural complexity of tree crowns (Sdi2@18).

Crowns may be the ideal unit to study for understanding tree species funtitainal
responses to environments. Crowns contain the leaves and branches, thus connecting key
theories which unify our understanding of commonalties and differen¢e=ei funabn. Among
major theories, theworldwide leaf economics spectrtifWright et al. 2004) suggests that tree
species leaf traits are part of a continuum from fast versus slow responses to investments of
energy and nutrients in leaves, and the VWiB&ory (West, Brown and Enquist 1997), which
theorizes tht plant vascular networks are "spditieng” fractal networks of branches.

In theory, tree branches are fradiké or seltsimilar across different scales (Noordwijk
and Mulia 2002). Selsimilarity in branching implies that any branching point looks the same
whether we observe the first or the last tree branching point. Howevesimsgdirity of branches
does not hold true across all levels of a tree branching hierarchy (Malhi et al. B01B¢a
departure of real tree branches from perfect symmetry has significant implications for tree
hydraulic properties, mechanical stability, photosynthesis and metabolic scaling (Smith et al.
2014). Therefore, it is important to understand what ecolbfgictors influence the "realized"

fractal dimension of trees.
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particular, the lower number, or complete lack, of tree neighbors in urban environments,
typically givesthem an opegrown form, which might better allow them to express their
inherent fractal branching architecture that should be otherwise expected to be disrupted when
shaded or crowded by other trees (Makel&, A. and Sievanen 1992, MacFarlane et din2014).
this sense, studying the fractal dimension of tree crowns in urban ecosystems might reveal a
purer signal of species functioraait responses to environmental stimuli than might be detected
in the presence of tree-tree competition. On the other lthranthropogenic stressors (e.g.,
pruning) and structures (e.g., buildings) may have major impacts on tree growth and metabolism,
which manifest in a different fractal architecture for the tree.

Our study provides an understanding on how the regiandlocal scale growing
environments of urban trees affect their fractal architecture, which has important management
implications. We expect that the growing environment of an urban tree affects its socio
ecological benefits (e.g., shading) by affectingitswvn architecture, and studying this, we can
inform arborists on how to better manage urban forests for optimizing their benefits.

We analyzed the fractal dimension of tree crowns of many different tree species, growing
in different urban environmentsgrass the USA, to learn more about their responses to urban

environments at different scales. Our major questions were:

X How does the fractal dimension of urban tree crowns reflect thefolifie and
life-history traits, as members of different species?
X How do crown fractionatlimensional traits, expressed at the tree level, relate to

functional traits at the leaf level?
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X How does the fractal dimension of the crowns of communities of urban trees of
many species vary between cities in different climaticomresf?
X What is the effect of the local growing environment within cities (e.g., urban land

use) on the fractal dimension of tree crowns?

We hypothesized that the l#astory functional traits (i.e., drought and shade tolerance),
of different tree species thi different leaf types (i.e. needkeaved and broabtkaved), relate to
the fractal dimension of their crowns. Species with higher drought tolerance should have lower
fractal dimension in order to minimize heat gain and water loss through transpiragiositife
relationship is expected between the fractal dimension of tree crowns and their shade tolerance
(Zeide and Pfeifer 1991). Furthermore, we expected that drought tolerant species with higher leaf
mass per unit area have lower fractal dimensioordeer to prevent excessive water loss through

transpiration.

The fractal dimension of the crowns of trees in urban forest communities should be
affected by the climatic conditions of the cities in different regions, such as atmospheric drought
responsedyut should also be affected by the local growing environment within cities. Urban
land-use must be an important factor, and more specifically, less developed areas (e.g., parks,
vacant areas) should have a positive effect on the fractal dimensionalibaofttees. Tree
crowns close to buildings should have lower fractal dimension, because buildings restrict tree
crown expansion. Finally, we expected a negative effect of urban infrastructure (utility wires, in
particular) on the fractal dimension of urlda@e crowns, due to the pruning treatments enacted

to reduce tree conflicts with urban structures.
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2.2. Materials and Methods

2.2.1. Urban Tree Data

The main source of data for this study was an extensive, publieijable, urban tree
dataset, publisheldy McPherson et al. (2016). To produbestdataset, the U.S. was divided into
sixteen climatic zones and a reference city was selected within each zone. About twenty of the
most abundant species were selected within each reference city. Trees were chosen based on a
stratified random sampling sigin; approximately 5 to 10 trees of each species were randomly
sampled within nine classes of stem diameter at breast height (DBH) (McPherson et al. 2016).
Typical tree measurements were taken (e.g. DBH, total tree height, crown width), along with
many oher variables that helped describe each trees growing environment within cities (e.g.,
distance from a building, langse). However, the key aspect of the data that allowed for this
study was that the data had independent measurements of leaf areanaingotume, which
allowed for estimation of the fractal dimension of the crown of every tree (explained in the next
section). Leaf area was estimated for every tree using a novel photographic method developed by
Peper and McPherson (2003), and crown volwas estimated from individual measurements
of crown dimensions and a geometric shape (e.g., cone, parabola) being assigned to each crown
(McPherson et al. 2016). In total, we used data from 11,038 trees, of 80 species (d6aweadd
species and 14 needkaved species), in 15 climatic regions, available for analysis from this
database (see breakdowrSanpplemental Files 2.1 and 2.2

We obtained regional scale climatic data (e.g. mean annual temperature) for different
cities from U.S. Climate Datao characterize the climatic region that the trees were growing in,
in terms of mean annual precipitation (MAP) and mean annual temperature (MAT). We used

cooling degree days (CDD), which is the number of degrees that a day's average temperature is

! https://www.usclimatedata.com/climate/unitsdtes/us
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McPherson et al. (2016), who considered CCD because it is used to quantify the demand for

energy needed to cool buildings and relevant to the role of urban trees in coeling t

environment of cities.

From the McPherson et al. (2016) data, we selected three variables to account for the
effect of local urban growing environments, within cities, which we hypothesized would affect
tree crowns. The first was the distance of a fire® the nearest heated or-aonditioned
building, a factor which had four levels: 1 =0to 8 m,2=8.1t012m,3=12.1t0 18 m, 4 =
>18.1 m. The second was crown conflicts with utility wires, where 0 = no wires are present in or
around the crown antl= wires are present (this variable was rescaled to have only two levels
based on the original factor levels from McPherson et al. 2016). The third factor was urban land
use, which had four levels: 1 = single and miatnily residential, 2 = industriainstitutional
and large or small commercial areas, 3 = park, vacant and other areas e.g. agricultural, 4 =
transportation corridor (this variable was rescaled to have these four levels based on the original

factor levels from McPherson et al. 2016).

2.2.2. Measuring the Fractal Dimension of Tree Crowns

There is some ambiguity in quantifying the fractal dimension of trees. Halley et al. (2004)
noted that applying fractal values to natural objects is, in general, dependent on the method used.
Even Mandellbot (1983), who is credited with articulating fractal geometry, warned against the
underlying ambiguity of a precise mathematical interpretation of fractal dimension (Halley et al.
2004). Due to this ambiguity, one can use different methods for quantitiefracal

dimension. For example, the "pdittaction” method quantifies to whaixtent a branch network
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differs from an ideally sel§imilar branch network and it ranges between 0 and 1 (Smith et al.
2014). Thé'box-dimensioi methodquantifies the stretural complexity of trees based on
fractalanalysis derived from laser scanning of the titi@eensional structure of the tree; it takes
values between 4nd 3 (Seidel 2018).

In this study, the fractal dimension of the urban trees wiamaed using aariant of the
"two-surface"method (Zeide and Gresham 1991, Zeide and Pfeifer 1991, Zeide 1998). The two
surfacePHWKRG DVVXPHV WKDW WKH IUDFWDO GLPHQVLRQ RI D\
relationship between the total leaf area of a tree ansuttiace area of the convex hull that
covers the crown, but also has a variant which uses crown volume instead of crown area (Zeide
and Pfeifer 1991). The fractal dimension of a tree crown based on the latter method refers to the
distribution of leaf surfae area within a crown volume occupied by the leaves and branches.

Due tothe irregular distribution offoles LQ D WUHHYV FURZQ YROXPH HPS
the crown volume), a crown cannot be simply treated as-@itwensional surface or a three
dimensonal solid (Zeide 1998). Instead, it has a fractal dimension (unlike a Euclidean
dimension) that exceeds its corresponding topological dimension (Zeide and Gresham 1991).

This measure of fractal dimension takes values between 2 and 3. Fractal dimenaido 2q

means that the foliage is distributed on the crown's periphery and the crown surface is a classic,
flat Euclidean surface. As the fractal dimension increases (i.e. fractal dimension > 2), the crown
surface becomes more fractal until the fractaletision is equal to 3, when the foliar surface is
evenly distributed within a given crown volume (Zeide and Pfeifer 1991, Zeide and Gresham

1991).
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The model (from Zeidand Pfeifer 1991) to estimate the fractal dimension of urban tree

crowns is a power function:

L=0"Fre0Q (eq.2.1)

where LA and Cvol are the leaf area and the crown volume of the trees, D is the fractal
dimension of tree crowns, arfds the erroterm of the model. The normalization constant
corresponds to the overall leaf density i.e. leaf area per unit crown volume (Zeide 1998), with D
describing how leaf areacrown volume relationships change with increasing crown volume.

To help visualizehe meaning of D in this conteXig. 21 shows a regression line
relating LA to Cvol on a lodog scale, fitted to all 11,038 trees, along with other, hypothetical
lines representing two theoretical values of D at the savadue. On a lodog scale, tk slope
of the line (D) shows the level of exponential increase in leaf area of a crown of a given volume.
We can see (ifrig. 21) a high degree of variation from tree to tree in terms of LA at a given
Cvol, with the underlying trend of D = 2.27 indicadia trend of leaf surface area more likely to
be concentrated towards the periphery of the crown.

An important assumption of the method is that the relationship between LA ani Cvol
linear on the logarithmic scale, with no significant inflection points (Zeide and Pfeifer 1991). A
second order polynomial regression that predicted leaf area from crown volume on the
logarithmic scale was also fitted to the data and it was foundhaaecond order term was not
VWDWLVWLFDOO\ VLIJQLILFDQW S : 2Q0\ WKH FRt
first power was statistadly significant (shown irFig. 21), which enabled us to validate the

assumption and use the methoddar study population.
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Figure 2.1. The linear relationship between log(LA) and log(Cvol) for all trees in this
study (blue solid line), based on ligear regression of eq.1 and two theoretical lines for D =
2 (orange, dashed line) and D = 3 (purpletted line), respectively, holding coefficienfin eq.
2.1) at the same value estimated from the regression.

2.2.3. Species Functional Trait Data

We expected treto-tree variation in D to indicate physiological performance at the
whole-tree level, in terms of light energy capture and wassr efficiency, so we determined a
shade and drought tolerance value for each tree, based on the work ofdtsiaad Valladares
(2006), who produced numerical tolerance indices, ranging from 1 to 5, for 806 woody species in
the temperate Northern Hemisphere (1 = very intolerant; 2 = intolerant; 3 = moderately tolerant;
4 = tolerant; 5 = very tolerant)Ve alsodetermined the leaf mass per unit area (LMA) for the
study trees, which has been linked to physiological performance of plants at the leaf level, in

terms of photosynthetic and watgse efficiency (Roderick et al. 2000). LMA values were

assigned to speddased on publichgvailable data produced from the work of Wright et al.
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(2004, the "GLOPNET" dataset) for as many study tree speé@edata were available fore@s

Supplemental File 2)1

2.2.4. Statistical Analyses

All statistical analyses for ih study were done with custom coding and available
packages written in the sbftwarelanguage (R Core Team 2015).

We used a hierarchical, mixedfects modeling approach, where fixefflects
coefficients were estimated using @d., and all categoricalariables related to the effects of
species, climatic region and local urban growing environment on the fractal dimension were
treated as random (grouping) effects; these random effects were included to help explain
variation in the overall trend~(g. 21). We looked at each of the major factors, species, climatic
region and local environment, individually, and then at various combinations of models, all of
which predicted leaf area as a power function of crown volume (Bq.Thus, the mixeeffects

version of eq2.1 is written as:

L=0"FT AEQ (eq.2.2)

where S, R and L are random effects that modify the coefficient D estimated for all urban
trees, depending on their species, region and local urban environment, respetheely.
coefficient f(the intercept) varies in all models, but it is not modifigcaby random effect. The
random effect of species (S) has 80 levels (i.e., 80 diffsprTies), given in Supplemental File
2.1 The random effect of climatic region (R) has 15 levels, giv&upplemental File 2.3t is
important to note that the exjpaental design (of McPherson et al. 2016) selected only one city

to represent each climatic region, so the effects of different climatic regions are confounded with
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the effects of the reference city itself. Witkaity local environmental effects (L) wedescribed
above in Section 2.1.

When fitting models, assumptions of variance homoscedasticity, and error normality
were checked by plotting the model residuals against the fitted values, andtpéo@ and the
histograms of the model residuals. Eg&.and2.2 assumed a multiplicative error structure,
which is additive on a letpg scale. The best model was selected considering both the
coefficient of determinatiora@ljusted B and the Akaike Information Criterion (AICAMI
relationships were quafigd with the Pearson correlation coefficient and the significant
UHODWLRQVKLSV ZHUH HYDOXDWHG DW . OHYHO RI VLJQL]|

After the besfit model (&. 2.2) was developed, the fractal dimension (D) of urban tree
crowns was determined for trees (@a®n their species, region and local environment) and
related to drought and shade tolerance and LMA. The Standardized Major Axis Tests and the
Routines R package (Warton et al. 2012) was used to conduct hypothesis tests regarding the
slopes of the supopulation (S, R, or L) regression lines. Since crown and leaf traits are
typically different between needleaved and broatkaved tree species, we also refit some of the
models to only trees of theskedf type$ (Supplemental File 2)1in addition to fitting the
models to all trees.

Quantile regressions were also used in order to examine relationships at different
guantiles of crown fractal dimension. The quantile regression is based on the minimization of the
sum of the absolute tges of the model residuals and it is very robust against outliers (Niinemets

and Valladares 2006, Pretzsch et al 2015).
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2.3. Results

2.3.1. Influence of Species, Regial and Local Environments on \ariation in
Fractal Dimension

The coefficients of theied and random effects of all models fitted to the data (listed in
Table 2.) can be found isupplemental File 2.FBpecies exhibited an important influence on
the fractal dimension (D) of urban trees and the model with species effects was supegior to th
corresponding fixee@ffectsonly model Table 2.). The climatic region of the cities the trees
were growing in was also an important variable influencing the D of trees and explained a
slightly larger proportion of the variation than species. Togetipegies and region explained
slightly more variation than either by themselvE&alfle 2.}. Local effects of the urban
HQYLURQPHQW IXUWKHU KHOSHG H[SODLQ DQ LQGLYLGXDO W
three local effects included (Dist.buil#Vire.Conf / Land.Use, in addition to Species and
Region,Table 2.} explained the most variation in D and had the lowest AIC. This latter model
predicts an individual D for each tree depending on its species, region, and the three local

environments withinWKH FLW\ LWYV JURZLQJ LQ
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Table 2.1. Candidate models for ed.2 including species (S), regional (R), or local (L)
random effects influencing the fractal dimension (D), with the figtfdcts model, including
none of these variableNestednodek are characterized by &,"e.g., Species/Region/LandUse,
meaning a tree was of a specific spscigrowing in a certain regiam a certain land use within
that city; distance from buildings (Dist.build), conflicts with wires (Wire.Conf), and-tesed
(Land.Use). Models are sorted by AIC. Best by each statistic in bold.

ModelForm Adjusted | AIC
Model R? values
Fixed-effects only(eq.2.1) L=0" ﬁA EO 0.678 113847
Speciegeq.2.2 with S only) L=0 " ﬁ‘%\% EO 0.734 112592
Region(eq.2.2 with Ronly) L=0"~P7TAE0 0.752 111853
Species/Region (e@.2 with S& R) L =0~ BT Agg |0.796 110864
Species/Region/Land.Use L AwevsP
(€q.2.2 with S,R, & L) L=0-F 7 Ago [0.807 | 99406
Species/Region/Dist.build L A WVsP
(€q.22 with S, R, & L) L=0-F 7 Ago [0820 | 97873
Species/Region/Wire.Conf L AWVsP
(€q.22 with S, R & L) L=0-# 7 Ago|0808 | 93805
Species/Region/Dist.build/Wire.Conf e ?‘_>W’V>PA
Land.Useeq.2.2 with S, R & L) L=U 7 "EO0|084l 171963

2.3.2. Species and Leaf Typeftects on D:Drought- and Shade Tolerance and LMA

Across all trees, the mean D was estimated to be 2.27T¢bé=2.2andFig. 21), with
needleleaved species (2.147) having a lower average D than-teaadd species (2.290). There
was also a greater variability in the estimated D for neledieed species, though there were
many more broateaved species in the sample populati&lach of the three models (all trees,

broadleaved only and needleaved only) also had a different estimated minimum and
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maximum D for the species included in the model (Talg &hich represents the smallest and

largest estimated divergence of a spgm that group from the mean trend.

Table 22. Estimated fractal dimension of &e€rowns (coefficient D) from eg.2, with
speciesandom effects, fitted for all trees and for broadd needldeaved trees, separately. The
minimum and maximum D vady respectively, come from adding the largest and smallest (most
negative) speciesandom effect to D.mean.

Tree type no. species | D.mean SE of D.mean | D.min D.max
All trees 80 2.277 0.021 2.092 2.719
BroadLeaved |66 2.290 0.022 2.124 2.487
NeedleLeaved | 14 2.147 0.088 1.843 2.588

We hypothesized that the species with higher drought tolerance would have lower fractal
dimensionality. When we examined this, the average D for trees of a species was found to be
significantly, negatively correlated with the drought tolerance of theepécE-0.46, p = 0.00,

Fig. 2.2, across all cities and locations within cities. The negative relationship between D and
drought tolerance was stronger for neddkeved species (r 8.74, p = 0.0027), than for broad
leaved species (r6.47, p = 0.000), such that needleaved species had a much lower D at

higher drought tolerance leveBig. 2.9.
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Figure 2.2. Mean fractal dimension of tree crowns for species as a function of specie
specific drought tolerand@ = very intolerant; 2 intolerant; 3 = moderately tolerant; 4 =
tolerant; 5 = very tolerantpata fitted to equatio®.2 with S only as a random effect (s€able
2.0).

The guantileegression for D predicted from drought tolerance indicated that species
with lower drought tolerance are more elastic in their fractal dimension, meaning a wider range
of D values at the same drought tolerance level, whereas species with higher adrlevamte
had a smaller range of D valuésd. 2.3. For all quantiles of D, the relationship between D and
drought tolerance was negative and the strongest relationship was observed for the species at the

highest quantile of D.
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Figure 2.3. Quantileregressions for fractal dimension vs. drought tolerdhcevery
intolerant; 2 = intolerant; 3 = moderately tolerant; 4 = tolerant; 5 = very tolespecies level
for 10 quantile®f D (i.e. from bottom to top 5%, 15%, 25%, 35%, 45%, 55%, 65%, B5%,
95%). The line of 5% quantile is a nsignificant regressiorkractal dimension was estimated
from equatior2.2 with S only as a random effect (see Table.2.1

A positive relationship was also found between D and the shade tolerance of urban trees
(r=0.22, p = 0.05Fig. 2.9, though the relationship was much weaker than that found for
drought tolerance. When separating out neediebroadleaved species, a strong positive
relationship was found between D and shade tolerance of urban-tesadid trees (r = 0.84, p =
0.00,Fig. 2.9. However, no significant relationship was found between D and shade tolerance of
urban broadleaved trees (r = 0.1, p = OHg, 2.4. Quantile regressions showed no clear

pattern of elasticity in D relative to shade tolerance.
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Figure 2.4. Mean fractal dimension of tree crowns for species as a function a¢spec
specific shade toleran¢g = very intolerant; 2 = intolerant; 3 = moderately tolerant; 4 = tolerant;
5 = very tolerant)Data fitted to equatioR.2 with S aly as a random effecéée Table 2)1

A negative relationship was found between D and the LMA of the urban tree8.%;
= 0.0008Fig. 2.5. Needleleaved trees showed a stronger relationship-(.82, p = 0.046,
Fig. 2.5 than the corresponding relationship for broadleaved tree)(d %, p = 0.012Fig.
2.5). Quantile regressions showeddiscernibledifference in the elasticity of D at low versus

high LMA.
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Figure 2.5. Mean fractal dimension of tree crowns for species as a function of species
specific kaf mass per unit ar¢aMA). Data fitted to eq2.2 with S only as a random effect (see
Table 2.).

2.3.3. Regional Climatic Effects on Fractal Dmension

To examine th effects of climatic region on D, we computed the mean D for all trees of
all species in each ciegion and then regressed those values against key climatic variables
describing each regiois(pplemental File 2)2We found D to be strongly related to the mean
annual temperature (MAT) of the climatic regions (058, p = 0.024Fig. 2.6. The
relationship was negative, indicating that trees of a wide variety of species exhibited lower
fractal dimensions, whegrowing in a city with a hotter climate. There was a similar negative
relationship between the average D of trees and the cooling degree days (CDD) of each climatic

region (r =-0.51, p = 0.05). MAP was not significantly correlated with tree average D.
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Figure 2.6. Mean fractal dimension of tree crowns in a region plotted against the mean
annual temperature (MAT) for that region (the abbreviated names of tbesege explained in

Supplemental File 2)2Data fitted to equatio.2 with R only as aandom effect (see Table
2.0).

2.3.4. Influence of Local Urban Ehvironments on Fractal Dimension

The local urba environmental effects (L in €8.2) on the fractal dimension of tree
crowns were interpreted by looking at the sign of the coefficientsiméing D (see
Supplemental File 2.8r full details). Trees that were in the first level of Bist.build factor (0
to 8 m distance from a building) exhibited a lower D (L has a negative effect on D), controlling
for species and region. The effect was positive in the other three classes (> 8 m away), which
indicates that being relatively close to a building genérallRZHUV D WUHHYV IUDFWDO
Trees that had conflicts with utility wires had lowkanaverage D values, and higktean
average values when no wires were present. Land use within a city showed positive effects on D

when trees were growing in sliegand multifamily residential land uses, or in parks, vacant and
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other areas. The other two lande categories (industrial, institutional and large or small

commercial areas, and transportation corridors) exhibited a negative effect on D.

24. Discusson

24.1. Drought and Shade Tolerance in Crown and Leaf Fractal Dimensions of
Different Species

A major finding of this study is that both the drought and shade tolerance of different
species relates to the fractal dimension of their crowns. This indibatespeciespecific crown
architecture is part of an evolutionary strategy associated with tolerance of key environmental
stressors, namely too much energy in the form of heat (causing water losses) or not enough due
to shade. Niinemets and Vallada(2806) noted that trees may not have the morphological and
physiological characteristics that allow simultaneous tolerance to several environmental stresses
and found negative correlations between the drought and shade tolerance values for different
specie.

There appeared to be a clear tradeoff for the ndedieed species we examined, with
higher D for shad¢olerant species and lower D for drougibierant ones, while the D of broad
leaved species appeared only to be influenced by spgmesfic draight tolerance. This
suggests that urban trees, across the diverseegigns we examined in the U.S., are adapting
the dimensionality of their crowns to minimize heat gain or water loss, but inherent shade
tolerance is having a smaller influence. TlEsult makes sense given that lower tree densities in
urban areas make trees less likely to be shaded by other trees (McHale et al. 2009, MacFarlane
and Kane 2017), but more likely to experience drought (Close et al. 1996), than their (rural)

forestgrowing counterparts.
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Our results provide new insights regarding how the fractal architecture of trees relates to
balances between hydraulics and light capture (also noted by Smith et al. 2014). Makela and
Valentine (2006) suggested that deviations from the W8&alscaling model for trees, arise
from the senescence of twigs inside the crown, as foliage expands towards the surface, where
light can be more readily captured, leading to empty space in the interior of crown volume. This
suggests that shade frotHlL JKERULQJ WUHHY DQG VKDGshatngdP RQHTV Rz
should influence D, such that shade tolerance should be an important species characteristic
determining D. A study by Zeide and Pfeifer (1991) also suggested a positive relationship
between Dand shade tolerance for coniferous species, which we also found here, but their study
was before the advent of the numerical shade tolerance scale we employed here and a directly
comparable numerical scale of drought tolerance (compliments of Niinemetabedares
2006).

Our results suggest that, for trees growing in urban environments, with fewer tree
neighbors to cast shade, differences in D might be better explained by hydraulic limitations,
because both broad and neetdaved trees, showed a néga response in D to drought
tolerance. It is possible that these results could also apply tegppen trees in general, where
only tolerance to selfhading would be an issue, unlike in a natural forest, wheresteding
is confounded with shadirfgom other trees.

=HLGH DQG *UHVKDPTV PHWKRG RI HVWLPDWLQJ ' VK
between 2 and 3 (sé&ég. 21), so it was notable that our model predicted a value < 2 for one
speciesJuniperus virginiangdD = 1.843, Table 2), aspecies with very higher drought
tolerance (4.65ut of a maximum of 5). Thiut-of-bounds value likely reflects statistical

uncertainty in this method of estimating D (Zeide 1998), which reflects uncertainty from both the
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method used to estimate tleaf area and the method used to estimate crown volume, as well as
model error. Seidel (2018) recently proposed a direct method to estimate D for trees, using
terrestrial laser scanning technology, but showed values consistently lower than D = 2.
However, HLGHOYfYVY PHWKRG DOVR LQFOXGHV WKH WUHHY{V WUXQ
that trunk length does not scale with crown fractal dimensions (Makela andin@al2006).
IRQHWKHOHVY =HLGH DQG *UHVKDPTYV RusefdlKnidex RI HV WL
of comparison in this study. It allowed us to quantify functional relationships between crown
architecture and stress tolerance for a variety of tree species.

One of the most interesting features of fractals is that the patterns reproduseltes
at different scales (Mandelbrot 1983). While we understand that trees are not truly fractals, it
was interesting that our results showed a similar, negative relationship between D and LMA, to
that observed between D and drought resistance. We tkadwMA is proportional to the
inverse of leaf surface to volume ratio (Roderick et al. 2000), so a lower D, at the crown level,
could be a direct consequence of a higher LMA at the leaf level. Further analysis revealed a
positive relationship betweehd drought tolerance of tree species and LMA (r = 0.67, p =
0.0000), which were both estimated independently from each other (Niinemets and Valladares
2006 and Wright et al 2004, respectively) in this study. Lower LMA implies thinner and larger
leaves, with transpire more easily than smaller or thicker leaves as their local temperature
increases, increasing water loss (Pallardy 2008). Conversely, higher LMA is associated with
thicker leafblades and smaller cells with thicker walls, which allow leavestdirtue
functioning in arid and senarid regions (Wright et al 2004).

Our analysis also revealed a negative relationship between shade tolerance of all tree

species and LMA (r =0.43, p = 0.0045), which may explain the positive relationship that was
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found between D and species shade tolerance (r = 0.22, p = 0.05). According to Lusk and Warton
(2007), and Lusk et al. (2010) a positive relationship is expected between species shade tolerance
and LMA. However, Lusk and Warton (2007) concluded that tiegionship can change
depending on the tree ontogeny and the light environment; they found a negative relationship
between shade tolerance and LMA of deciduous saplings. Overall, our results also support the
premise that development of a fradile crown architecture in urban tree crowns is heavily
influenced by water transportation as a limiting factor for photosynthesis (Smith et al. 2014).

We expected greater drought resistance for ndedied trees compared to the
broadleaved ones, given their hegiLMA (Wright et al. 2004), as well as a wood anatomy that
should increase resistance to drought cavitation (Markesteijn et al. 2011), e.qg., thicker walled and
shorter wateconducting tracheid elements for neeldlaved species (Sperry et al. 2006,
Pallady 2008). Both a different branching architecture and different branch anatomy may help
explain why needleaved species showed a strong differentiation in crown D over the range of
drought tolerance examined (note the steep slop&ir2.2. This icka is supported by a study
by Pittermann et al. (2012) who showed that the evolution of drought tolerance within the
Cupressaceae family of gymnosperms occurred in response to Cenozoic climate change that
favored the evolution of lower xylespecific conduativity and imbricate needles over a higher
xylem-specific conductivity and bilateraHffattened needles; the former conferring greater
drought resistance in hotter, arid environments at the expense of growth rate. Our estimates of D
at the crowHevel gopeared to capture this divergence; the highest value of D predicted by our
three speciegroup models (Table.2) was D = 2.719 foBequoia sempervirena species with
bilaterally-flattened needles that evolved in once humid, warm climates, abundary theri

Cretaceous and Paleocene. Whereas, the lowest D estimated Wwasierus virginiangsee
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Table 2.2and above). Pittermann et al. (2012) showed that sigvesving, imbricatdeaved
Juniperus sppevolved more recently, in response to the adekaboler, drier woodland /
grassland environments of the Eocene.

The strong, opposite trend between D and shade tolerance that we observed for needle
leaved species, supports the idea that dretadétant, needkdeaved species likely lose
significant c@acity to tolerate shade, as a result of adopting a crown architecture with a lower D.
Niinemets and Valladares (2006) noted that stiatkFant, droughintolerant conifers (e.g.,
trees in the generdbies Piceg or Tsugg are generally species of cotdmperate forests, where
growing season length is similar for deciduous and evergreen species. In natural environments,
these needkeaved species may need a higher D, at the crown level, to capture the necessary
light in competition with broadeaved speies, and in accordance with shorter growing seasons
at higher latitudes. In the context of our results, this suggests thattsterdat, needkdeaved
species, may have the highegtinsic vulnerability to relatively droughtyrban environments,
whereurban heat islanti effects and harsh rooting environments are likely influential, and
shading from neighboring trees is of much lower importance.

In the sections that follow, we discuss the environmental (extrinsic) effects on D, to
contrast with, and fither explain the intrinsic effects on D associated with species life history

traits, discussed here.
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24.2. Climatic Region Influences on Crown Architecture and Management

Implications

The negative relationship between the average D of all trees within each reference city
and the mean annual temperature (MAT) of the reference city reinforces the notion that
atmospheric drought responses are driving urban forest crown architectureof Theesame
species and across all species had a lower D when growing in a hotter city / region. This was
also seen in the relationship with CDD. According to McPherson et al. (2016), CCD is used to
guantify the demand for energy needed to cool buildiBgs based on the negative relationship
between CDD and D, trees are showing a reduced D, in cities where air conditioners are running
more.

Climatic regions with higher MAT are typically arid, with a larger vapor pressure deficit
that drives water vapanovement from leaf stomata to the atmosphere. Trees growing in hotter
regions should reduce their fractal dimension, where possible, in order to minimize transpiration
costs; this could be adaptive or simply a consequence of leaf and shoot die bacstichss.tdn
urban areas, when trees are growing with reduced competition from other trees, they may have
more flexibility to modify their crown shape to reduce D. We did not find the expected, opposite
relationship with MAP (more rain increases D), bus ipossible that precipitation is a more
variable measure of the drought experienced by trees than MAT, rather than indicating that
rainfall levels are not important to tree crown architecture. Nonetheless, the facAihatnd
MAT for the cities Suppkemental File 2.Pwere essentially uncorrelated (R2 = 0.0049) indicates
that the trees we studied were responding to a full range of climatic conditions from cool and dry

to warm and wet, but responding mainly to temperature in terms of their D.
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Another onsideration is that urban forest communities do not undergo natural assembly
processes, but rather are the result of anthropogenic structuring (sense Sattler et al. 2010). The
abovementioned negative relationship could be attributed to the tendendyooists to plant
droughttolerant species in warmer regions. Indeed, the mean drought tolerance of all study trees
within each climatic region, was significantly higher in cities with a higher MAT (r =0.54, p =
0.04). Further analysis showed that both M#&id mean drought tolerance of trees in a region
together explained more variation in mean D than either them separately (VIF = 1.00 for both
variables), indicating that both the nature of trees planted and the climate of the cities influenced
D. Taken wih the lower elasticity of D relative to drought resistarktg. (2.3, this suggests
that there is a limit to how far a tree of a given species can modify its crown architecture to adapt
to the conditions of a hotter city, and that arborists are simllaried in what species they can
plant as urban conditions become hotter. This result has important implications for adapting
urban forests to global warming.

It is no coincidence that there were many more bteaded, deciduous species than
needleleawed, evergreen species in the extensive data base of U.S. city trees that we examined.
One of the mucltited benefits of urban trees are the cooling effects of shade provided by broad
leaved trees, who can also provide Feragrgy benefits, because thegé their leaves during
the cooler, darker winters in the northern hemisphere, letting sunlight through the crown
(McPherson et al 2018). However, the negative relationship that we observed between the
fractal dimension of urban trees and the cooling@egiays (CDD) suggests that the amount of
shade a tree can cast should be lower in hotter cities (lower D). It appears difficult to build a
canopy architecture that can cast a deep shade while also trying to reduce D to reduce water loss.

The latter notiortould provide insight into the choices of species to be planted for adapting
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urban ecosystems to climate change. As examples, in regions with arid and warm climate
arborists could select drought tolerant species of lower D or they could water treesteroine o
order to maintain their hydraulic balance and develop crowns that can cast deepefishade
latter implies higher water maintenance costs for managing a higher D in urban tree cover in

hotter, drier regions.

2.4.3. Local Growing Environments Influence Crown Architecture

Environments within cities are heterogeneous and may presenteonégsschallenging
growing conditions than natural forest settings. Urban trees are both nurtured by people and
harmed by various edifices and anthropogenic processes that define wdgsterns (Vogt et
al. 2015). In our study, the ledsveloped areas within cities (single or médiinily residential
areas, parks, and vacant areas), had a positive effect on D, whereas the more developed ones had
negative effects on D (these were indiastinstitutional, commercial areas and transportation
corridors). Since it has been suggested that fractal dimension relates to tree growth rate (Seidel
2018), and we know that crown dieback relates to tree stress, we interpret such negative effects
on D to represent reduced vigor for urban trees in more developed urban areas, after accounting
for differences due to species and region.

Other studies also indicate that famiBsidential areas or parks offer more favorable tree
habitats than commerctatldustrial areas and transportation corridors. According to Lu et al.
(2010), trees planted in single and tfamily residential areas had the lowest mortality rates,
whereas street trees planted in industrial areas had the highest rates of mortaptysdtble
that trees may receive more care, such as watering, in areas with family residentigelsreb

there may be a soctakological component associated with tree survival and growth, depending
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on the sociademographic characteristics of locaighborhoods (Vogt et al. 2015). Studies by
lakovoglou et al. (2001, 2002) showed that streets and commercial settings with high soil pH and
high concentration of dieing salts negatively affect tree growth compared to urban parks and
residential area®ther characteristics of industrial areas that relate to reduced tree growth are
restricted growing space, limited soil moisture, lack of nutrient balance and high evaporative
levels (lakovoglou et al 2001). In general, paved surfaces in cities areassseath reduced

tree growth because of soil compaction and reduced soil aeration, water deficit or excessiveness,
increased local soil temperature, and excess of Na and Cl ions (Krizek and Dubik 1987,
Grabosky and Gilman 2004). A greater extent andaistribution of paved surfaces
GHWHUPLQHY WKH FRUUHVSRQGLQJ OHYHO RI QHJDWLYH LPS
explain why traffic volume has a negative effect on tree survival (Lu et al 20h@}se findings
support the idea thatare-developed urban areas are likely causing greater stress to trees, that is

reflected in a lower value for D.

Our analyses also showed that the D of urban tree crowns is typically lower whenever a
tree is close to a building. Buildings may be regardeahftsropogenic barriers to tree crown
expansion, which might explain the observed reduction in D. Trees growing close to buildings
may experience enhanced wind loads that can disrupt the architecture of the crown (Telewski et
al. 1997). On the other harBlang et al. (2010) found that trees surrounded by buildings can be
sheltered from wind and this can increase productiudlymately, the relative wind load a tree
receives is a complex function of building heights and street geometry (e.g. urbacastyeet
and any adjacent treabus difficult to translate into a direct effect on Blowever, new
approaches are being developed to simulate wind flows in urban areas, inside and above street

canyons and over the roofs of buildings (Salim et al. 20kdhdvhed andVood 2015).

52



Another consideration for buildings is to what extent they affect the temperatures
experienced by trees. While we have already seen that trees in hotter cities have a generally
lower D, the local growing environment within a city yri@e relatively hotter or cooler. We
could expect the local temperature close to buildings to be relatively higher, due to cooling and
heating systems, and the fact that ground surfaces around buildings are typically paved.
However, buildings also providdhade, which might cool trees off and benefit shade tolerant
species, presumably those with intrinsically higher D.

.RVWLUO HW DO DUJXHG LQ WKHLU VWXG\ WKDW VWU
most stressful conditions for trees. Kjelgren amarkC(1992) found that direct solar radiation in
a canyon was limited to four hours in the middle of summer, while the direct solar radiation in
plaza sites was not inhibited and therefore the afternoon air temperature and vapor pressure
deficits were gre@r in plaza sites. Bourbia and Boucheriba (2010) found that tidaayon$
can be 36 °C warmer than surrounding rural environments, which could negatively affect D. So,
we expect that the distance of trees from buildings should affect the mechanisms of crown
development, since buildings alter both the wind and sunlight envaatsmCollectively, these
studies suggest that the heat and drought effects of being close to buildings might be much more
important than any shading effect.

Another important factor influencing the D of urban trees was the negative effect when
they were gowing in conflict with wires. We assume this negative effect is mainly an effect of
pruning treatments to reduce these conflicts, such as raising, reduction and thinning (Pavlis et al.
2008). Trees naturally sghirune as they grow, shedding unhealthy motproductive branches
and rearranging foliage to minimize sstfading of foliage (Pugnaire and Valladares 2007),

which alters the fractal dimension of the trees vascular system (Mékeld and Valentine 2006).
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Natural (self) pruning likely restores a hibgi balance of leaf area relative to watenducting
systems, but it is less clear how anthropogenic pruning may affect theelomgtructure and
physiology of urban trees (Fini et al. 2015). Vogt et al. (2015) noted that pruning branches can
remove pbtosynthetic (leafarea and reduce growth rates, but correctly performed, can enhance
tree growth and vigor. We expect that the negative effect on D observed in our study reflects a
reduction in vigor, due to a likely prioritization of reducing wire citsl over enhancing crown
archtHFWXUH IRU WKH WU HwhgM pEUHIQYHuts We made §1$he @itldle of
internodes to chop a tree back from wires, appears to have a particularly damaging effect; these
cuts increase crown dieback, but alsduee the LMA of regenerating leaves (Fini et al. 2015);

this likely leads to a lower drought resistance, based on our results. So, pruning, which is a
regular part of urban forest management, might have positive or negative effects on D, but our

results imicate that pruning to protect wires is having a net negative effect, on balance.

2.5. Conclusions

The evolution of the form and function of trees of diverse species has taken place over
hundreds of millions of years, but trees have only had to adapttdures like buildings, roads
and sidewalks for millennia. Many studies of hurt@® nteractions emphasize the many
"ecosystem servicéprovided by trees to humans; urban forests provide e.g., temperature
regulation, carbon dioxide sequestrationisaageduction, filtering of air pollutants, biodiversity,
pollination, human health, recreation, water management, energy saving for buildings, aesthetics
(Heisler 1986, McPherson et al. 1994, McPherson 1998, Nowak and Crane 2002, MacFarlane

2007, Casalegnet al. 2017, Tigges and Lakes 2017). However, it is equally important to study
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the reciprocal effects that our built environment has on thetttaes/e depend on. We conclude
by summarizing our key findings in this regard.

Species can differ in theiufictional traits (e.g. leaf traits) independently from the
ecosystem or the biome where they grow (Reich et al 1997), so that when we put a tree into a
novel environment it may or may not thriv®ur main results show that drougdttess tolerant
trees sem to be inherently better adapted to urban environments, which are likely hotter and
with more restrictions in the rooting zone, than rural and wild places, in the same climatic region.
Tree drought tolerance relatesthe fractal dimension of both lees and the whole crown, as
expressed by LMA and D, respectively, in this study. Our results also suggest that shade
tolerance, which is very important for succeeding in competition with other trees (e.g. the
positive relationship between D and shade tolesdor coniferous species found by Zeide and
Pfeifer 1991), is of much less importance in urban ecosystems, likely due to the much lower
presence of tree neighbors. Trees appear to have some plasticity in shaping the architecture of
their crowns, to addpo stresses ithe urban environmeniy loweringthe fractal dimension of
their crowns to reduce drought stress. However, we also revbaligrees have an underlying
inherent constraint in both their leaf type and their crown architecture, dueeticgewhich
limits their adaptability to urban ecosystems.

With expectations for more urbanization and a generally hotter climate in a period of
history that has been dubbed tiAethropoceng, our results add some new insights into the
physiologicalecology of trees in urban environments, which may help humans to provide more
hospitable habitats for trees in urbanized areas and make better decisions about tree selection and

climate change adaptation in urban forest management.
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CHAPTER 3
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COMPLEXITY OF URBAN TREE CROWNS WITH TERRESTRIAL

LASER SCANNING
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Abstract

Trees have a fractdike branching architecture that determines their structural
complexity. We used terrestrial laser scanning technology to study the role of foliage in the
structural complexity of urban trees. Fofiye trees of three deciduous spegiBleditsia
triacanthosL., Quercus macrocarp®lichx., Metasequoia glyptostroboidétu & W.C. Cheng
were sampled on the Michigan State University campus. We studied their structural complexity
by calculating the boxlimension () metric from point clousl generated for the trees using
terrestrial laser scanning, during the leafand-off conditions. Furthermore, we artificially
defoliated the leabn point clouds by applying an algorithm that separates the foliage from the
woody material of the treesna then recalculated the,netric. The [ of the leafon tree point
clouds was significantly greater than theddthe leafoff point clouds across all species.
Additionally, the leafremoval algorithm introduced bias to the estimation of therkabvel
Dy, of theG. triacanthosandM. glyptostroboidesrees. The index capturing the contribution of
leaves to the structural complexity of the study trees (the ratio ofthétBe leafon point
clouds divided by the Pof the leafoff point clouds minusmme), was negatively correlated with
branch surface area and different metrics of the length of paths through the branch network of the
trees, indicating that the contribution of leaves decreases as branch network complexity
increases. Underestimation oétB, of theG. triacanthodrees after the artificial leaemoval
was related to maximum branch order. These results enhance our understanding of tree structural
complexity by disentangling the contribution of leaves from that of the woody structures. The
study also highlighted important methodological considerations for studying tree structure, with

and without leaves, from lasderived point clouds.
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3.1. Introduction

Trees have an inherent fraetédde branching architecture (Noordwijk and Mulia 2002,
Makela and Valentine 2006) mirroring principles of fractal geometry (Mandelbrot 1983).
However, tree branching networks are not perfect fractals, lackingisglérity across all scales
of the branching hierarchy (Halley et al. 2004, Malkeid Valentine 2006, Malkt al. 2018).
Nonetheless, major theories linking tree morphology toghssiology (e.g., pipenodel
theory,Shinozaki et al. 1964; metabolic scaling theory, West et al. 1997) and mechanical
stability (e.qg., resisting wind stress, Eloy 2011) have been advanced by assuming that the fractal
like character of trees explains theustural complexity of their crowns (Seidel 2018) and how
they grow to occupy space (Silva et al. 2006, Jonckheere et al. 2006). One of the main challenges
in testing such theories are reliable ways to accurately measure the structural complexity of trees
in a way that reflects the fractal dimension of tree crowns.

The growing environment of a tree affects its crown architecture and competition for
light from neighboring trees (Metz et al. 2013) significantly disrupts the inherent fli&etal
character ofrees growing in forest stands and plantations (MacFarlane et al. 2014, Eloy et al.
2017). According to Seidel (2018) Dougffistrees growing in forest gaps had more complex
crowns compared to trees of the same species growing in closed canopy ceralitibthis
implies that light regime significantly affects the fractal dimension of a tree, which negatively
relates to competition (Dorji et al. 2019). Therefore, we expect that the typically lower number,

or complete absence of, neighboring trees irxghould allow urban trees to better express
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their inherent fractal character; this was an important reason to focus on urbagr@perirees

in this study. Of course, cities have heterogeneous growing conditions (Moran 1984, Kjelgren
and Clark 1992, kovoglou et al. 2002,u et al. 2010, Jensen et al. 2012, Fereiral. 2014,
.RVWLUO HW DO FKDUDFWHUL]HG E\ DQWKURSRJHQLF EDU
and Dubik 1987, Rhoades and Stipes 1999, Vogt et al. 2015), systematic treg (fPanlis et

al. 2008, Vogt et al. 2015), increased atmospheric temperatures and reduced water infiltration
(Kjelgren and Clark 1992, Bourbia and Boucheriba 2010, Nowak and Greenfield 2020), air
pollutants (Gregg et al. 2003), and heterogeneous soiéprep (lakovoglou et al. 2001,

McHale et al. 2009), which can affect the fractal dimension of tree crowns (Arseniou and
MacFarlane 2021). Nonetheless, the inherent frdi&icharacter of opegrown trees should be
more evident compared to trees grogvin competition with other trees.

Opengrown trees can be found both in urban and rural forest conditions, but for urban
conditions there is a shortage of robust models. This limits our understanding of basic ecological
services of urban forests (Tiggewa_akes 2017), despite the fact that urban trees provide a
range of significant ecological services e.g., carbon storage (McPherson 1998, Nowak and Crane
2002, MacFarlane 2009, McHale et al. 2009), air pollutant uptake (McPherson et al. 1994,
Nowak 1996 Casalegno et al. 2017), water purification, pollination, biodiversity, and energy
VDYLQJV IRU EXLOGLQJYV +HLVOHU -HQVHQ HW DO &l
In order to optimize the benefits of urban forests, we need to studirticeure and function of
trees in cities. For example, we know that the fractal dimension of tree crowns relates to their
ability to tolerate shade (Zeide and Pfeifer 1991, Zeide and Gresham 1991), which affects the
shading benefits of trees, as well lasit ability to tolerate the drought and the heat of cities

(Arseniou and MacFarlane, 2021).
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New advances in terrestrial laser scanning (TLS) technology allow for accurate, direct
measurements of the thrdanensional structure of trees (Malhi et al. 20C8lders et al. 2020)
and many studies have utilized TLS to quantify stem profiles and timber volume (Hopkinson et
al. 2004, Maas et al. 2008, Moskal and Zheng 2011, Vonderach et al. 2012, Olschofsky et al.
2016), leaf and crown attributes (Moorthy et24110, Jung et al. 2011, Béland et al. 2014), and
aboveground tree biomass (Kankare et al. 2013, Calders et al. 2015, Olagok&0ébzbtovall
et al. 2017, Tanhuanpaa et al. 201fieg et al. 2019). TLS creates "point cloudktrees by
emitting lagr pulses and analyzing the returned energy as a function of either timeftime
flight systems) or shift in the phase of the light wave of the emitted laser beam$piase
technology) (Calders et al 2015, Liang et al. 2016). One way to generaterdatalzing the
fractatlike character of tree branching networks from TLS point clouds is the generation of
AXDQWLWDWLYH 6WUXFWXUH ORGHOV 460V E\ ILWWLQJ F\OL
branch and stem topology (Raumonen et al. 20B3asKlainen et al. 2014, Hackenberg et al.
2015, Bournez et al. 2017, Disney et al. 2018). Lau et al. (2019) generated QSMs of tropical
trees to study the theoretical scaling exponents derived from the metabolic scaling theory (West
et al. 1997) that destwes the fractalike structure of trees.

Another approach is the "babounting"method (Silva et al. 2006), which considers the
number of boxes that are needed to encapsulate all points of-adaseed tree, as box size
iteratively reducesSeidel (2018showed how the "begimensionmetric can be calculated
from the point cloud of a tree to describe its fractal dimension in terms of structural complexity.
The boxdimension metric has no units and its possible values range between one and three.
Trees vith great crown complexity and "spafiing character" have boxlimension values

closer to three, whereas bdiknension equal to one implies a perfectly cylindrical stem with no
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branches, e.g., a dead tree (Seidel 2018)-ddmension values smaller thane imply that the
lower "cutoff" has not been properly defined because the mean distance between points is
greater than the eddength of the smallest box. Values of three (or greater) would imply that a
tree is a solid cube which is not valid. The fbmension is a more direct and simple way to
measure the fractdike character of a tree, because it lacks the assumptions and stochasticity
inherent in QSMs, using only the raw point cloud data generated by TLS.

Leaves increase uncertainty in the unglag branching architecture, because they
occlude underlying branches and move more in the wind (Wilkes et al. 2017, Calders et al.
2020). Davison et al. (2020) for example, showed how leaf phenology affects the estimation
uncertainty of metrics of forestructural diversity whefaser scanning data are used. "Lefif
laser scanning data can provide better estimates of crown architecture of deciduous tree species
(Davison et al. 2020), because leaf occlusion effects are avoided.

There are several studi¢hat have explored how leaff and leafon airborne laser
scanning data compare for the estimation of forest volume and other forest inventory attributes
(Anderson and Bolstad 2013, Bouvier et al. 2015, Hawbaker et al. 2010, Villikka et al. 2012),
but few, if any, have examined the effects of leaves on computation of fractal metrics of tree
branching architecture. Perhaps more importantly, we lack a basic understanding regarding the
role of foliage in the crown complexity of trees, which is fundameatahtlerstanding how
trees position their leaves and branches to maximize light capture and minimizieaskiig
(Zeideand Gresham 199Zeideand Pfeifer 19917eide1998), optimize crown architecture to
improve water transport and resist drought (Arsersind MacFarlane, 2021), and reduce wind

stress (Eloy 2011, MacFarlane and Kane 2017, Jackson et al. 2019), which has been shown to be
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affected by both, the increased drag of foliage (Vollsinger et al 2005, Antonarakis et al. 2008)
and the uncertain effecof branches.

Artificial leaf separation from the leaf point clouds of trees is a promising
methodology. There are three main types of algorithms to separate the leaf from the woody
material of laser point clouds of trees: (1) algorithms that usgetbmetry of laser points, (2)
algorithms that consider the radiometric properties of the returned laser pulses, and (3)
algorithms that combine the previous approaches (Vicari et al. 2019, Wang et al. 2018, Wang et
al. 2019, Moorthy et al. 2020). The rathetricbased algorithms assume that the leaves and the
woody material of trees have different intensity characteristics at the wavelength of the laser
scanner, which depend on the laser scanning distance, the incidence angle and the technical
characterists of each instrument (Wang et al. 2019). However, the geoinassd algorithms
consider only the 3D coordinates of the points of a{asanned tree based on supervised
machine learning (Wang et al. 2017, Moorthy et al. 2020) or unsupervised cléssifinathods
(Vicari et al. 2019, Wang et al. 2019). In general, we still need a better understanding of the
effect of these classification algorithms for leaf separation when studying tree architecture
(Vicari et al. 2019).

In this study, we used the balkmension metric to quantify the crown complexity of
three deciduous tree species in their-@afnd leabff conditions. Furthermore, we artificially
removed the leaves from the tree point clouds generated fromoretdta, using the
TLSeparatioralgoiithm (Vicari 2017), and we computed the bdimnension metric for the leaf
removed tree point clouds. The questions that we want to answer are the following:

X How do the changdn leaf condition of deciduous tree species with different leaf

types affectheir crown complexity?
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X How do differences in the contribution of leaves to the structural complexity of
the study trees relate to the abareund architecture of the trees?

X What is the effect of artificial lea'emoval from the leabn tree point cloudsn
their estimated fractal dimension? Is there an error in estimating the fractal dimension of the tree
point clouds after the artificial leafemoval compared to the fractal dimension of the¢éhf
point clouds of the same trees?

X How does the potenti&lrror in estimating the fractal dimension of the tree point
clouds due to the artificial lea&émoval relate to the branch architecture of trees?

We hypothesized that the leaves of trees would significantly increase their fractal
dimension in terms of own complexity, because the irregular outline shape of leaves is {fractal
like (Borkowski 1999, Hartvigsen 2000, Backes and Bruno 2009), and the presence of foliage
implies that more space is occupied by a tree and consequently more laser points ackinapture
its crown. So, a larger number of boxes is required to encapsulate all points of tsedased
tree, which results into greater value of the-ddaxension metric (Seidel 2018, Seidel 2019b,
Guzman 2020). Furthermore, we hypothesized that diffegeimcthe contribution of leaves to
tree structural complexity have ecological importance, because differences should relate to self
shading of tree crowns (Sack et al. 2006), the shade tolerance of the tree species and the type and
shape of the leaves (Adoms and Kubiske 1990, Arseniou and MacFarlane, 2021).

We also hypothesized that errors in estimation of thedimension resulting from
artificial leafremoval, would relate to the type of leaf (broad vs. needle and compound vs.
simple) and the order drthe size of the branches of a tree, the latter of which because point
cloud density can change across the branching network of a tree and leaf separation algorithms

are sensitive to it (Vicari et al. 2019, Moorthy et al. 2020).
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3.2. Materials and Methods
3.2.1. Urban Tree Data

Forty-five trees of three species, representing different tree functional types, were
sampled on the Michigan State University campus: six@editsia triacanthod.. (Honey
locust) trees, which are compoulsdved, deciduous arggperms, fifteeiQuercus macrocarpa
Michx. (Bur oak) trees, which are entileaved, deciduous angiosperms, and fourteen
Metasequoia glyptostroboidétu & W.C. ChengDawn redwood) trees, which are needle
leaved, deciduous gymnospermrgy 3.1). The treesvere selected to cover a large range of
sizes within each species (Sesble 3.).

TheG. triacanthosandQ. macrocarpdrees were lasescanned with leavesn in July
and August, 2019, and tihé. glyptostroboidesrees were lasescanned with leavesn in
August, 2020 (see specific methods below). The same trees were alscéasexd in leavesft
condition between January and March, 2020. Befeseamning the study trees, we confirmed
that none of them wereaymed between the leavea and leavesff scans by the Michigan State
University arborists. Therefore, pruning did not cause any bias in the quantification of the crown
complexity of the trees during the study period. Following this experimental desigohange
in the crown complexity of the study urban trees between the leavasd leavesff scans
should be attributed only to changes in their foliage, not their branching architecture. Of course,
treepruning prior to the study should have an eftatthe crown architecture of the study trees,

but it did not influence the changes in their crown complexity during the study period.
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’ 1 , L 8 |
Figure 3.1 Sample of leaves of the species (A)triacanthogB) Q. macrocarpa
(C) M. glyptostroboides

3.2.2.Terrestrial Laser Scanning and Point Cloud Pocessing

The FARO Focu® X 330 terrestrial laser scanner was used to scan the trees. This laser
scanner operates with laser light of 1550 nm wavelength, typical beam divergence 0.19 mrad,
and a range of 0.6 ,RB330 m. In order to minimize occlusion effects in the point clouds, each
individual tree was scanned at high resolution from a minimum of four different directions at
different distances, and six reference tagdteres were placed around a lesmmnedree to
spatially reference all scans and create a single point cloud for each tree, following the field
scanning protocols suggested by Wilkes et al. (2017). The first two scans were conducted in
opposite directions, from distances that allowed the tdlpeofocal tree to be clearly visible. The

other two scans were also conducted in opposite directions (perpendicularly to the first two

scans), but from a closer distance to the tree, to better capture its branching architecture and get

closer views of th main stem. Two or three additional scans were conducted underneath the
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crown of large trees with wide crowns in order to capture more dense point clouds of the
branches. All laser scans were conducted when there was little or no wind.

The software SCENE019.2 (FARO Technologies Inc., 2019.2) was used to spatially co
register and noisélter all scans in an automatic way. With the same software each tree was then
manually separated from the point cloud of the urban site background. This process has been

shown to be an accurate alternative to a fully automatic segmentation process (Seidel, 2019a).

3.3. Leaf and Wood Classification of the Point @uds

TheTLSeparatioralgorithm (Vicari 2017) was applied to the point clouds of the trees
with their leaveson. This algorithm separates points that belong to the woody components of the
trees from points that belong to their foliage, based on unsupervised classification of geometric
features (leaf and wood materials within the point cloud haverdiit spatiahrrangement) and
"shortestpath"analysis, which facilitates detection of paths through the branching network
(from tree base to branch tip) with high occurrence frequency (Vicari et al. 2019). This approach
was used to generate a single point cloud fohegee containing only points classified as woody

parts of the tree.

3.4. Quantification of the Sru ctural Complexity of Trees

The boxdimension metric (B), which is derived from fractal geometry principles
(Mandelbrot 1983), was used to quantify theweground structural complexity (fractal
dimension) of the trees (Seidel et al. 2019b) in three conditions: (1Qrieé?) leafoff and (3)

after the leaves were artificially removed from the4@afpoint clouds. The bedimension
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equals the slope dfie leastsquares line when the logarithm of the number of boxes required to
capture all points of a lasscanned tree is regressed against the logarithm of the inverse of the
size of a box relative to the size of the initial box which is the smallesticapsulating the

whole tree i.e. "upper cudff" (Fig. 3.2 Seidel 2018, Seidel et al. 2019b). The intercept of the
regression line describes the size of the crown of a tree (i.e. crown radius, Dorji et al. 2019). The
size of the smallest box ("lower eaff") was 10 cm in this study, and it was selected based on a
very liberal estimate of the maximum distance between two neighboring laser points at any given
location in the tree, because the "lowerafit must ensure that no box is empty due tesing

data i.e. it fits in the "unsampledpace of a scanned tree. The algorithm written in Mathematica
12.2 (Wolfram Research, Inc. 2020) for the computation of fradiric is available in

Supplemental File 3.1
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Figure 3.2 (A) lllustration of the virtual boxes of different sizes that capture the
leaf-on point cloud of aM. glyptostroboidesree. (B) Exemplary lodpg plot for the
computation of the bedimension metric for the same tree. The slope of the regression line
equds the boxdimension of the tree i.e.,> 2.05. The 95% confidence interval has been
plotted around the regression line. The number of boxes required to capture all points of the
tree point cloud is denoted Bsthe size of the length of each box is dedaas s, and the
size of the length of the initial box that encapsulates the whole tree is densteaaitze.
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3.5. The LCC Difference hdex andError Metric C omputation

The role of leaves in the abegeound structural complexity of the trees was quantified

with the Leaf Complexity Contribution index:

(eq. 31)

where - :Z 1 7¢;is thebox-dimension of the leabn point cloud of each study tresnd
-:Z 1& " *isthe boxdimension of the leabff point cloud of each study tree. If LCC = 0, the

Dy, of the leafon and leabff point clouds of a tree are equal and there is no contribafitre
leaves to the structural complexity of the tree. If LCC > 0, it means that thendafof a tree is
greater than the leafff Dy, of the tree, indicating that leaves increase tree structural complexity.
Similarly, if LCC < 0, it means that the feaff Dy, of a tree is greater than the leaf D, of the
tree, indicating that leaves reduce structural complexity most likely because they occlude the
woody components that are not adequately fasanned.

The effect of the artificial leafemoval usig theTLSeparatioralgorithm on the
structural complexity of each study tree was quantified with the percent relative error metric

(Sileshi 2014, Burt et al. 2021):

Hy:jdind @ Hy:j dok;

0 =
#RE Hy:jdndd

*100, (eq.3.2

where -:Z £ ;isthe O, of the point cloud of each study tree after the artificia-leaf

removal.
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3.6. Computation of Other Sructural Metrics of Trees

We computed some additional metrics that characterize the structure of trees to test our
hypotheses regarding how th€C index and the %RE relate to the abgveund tree
architecture. According to major theories of tree structural complexity (i.enpiolel theory,
Shinozaki et al. 1964; metabolic scaling theory, West et al)1 8% "pipes’dbf the vascular
system ofa tree connect the roots to the leaves, with a surface area that scales with their volume
(Enquist 2002). Consequently, the structural complexity of the vascular structure of a tree
depends on the length and diameter of its pipes (Enquist 2002, Priea@uidt 2006).

Therefore, we expected that the LCC should relate to different metrics of the length of the paths
from the base of a trde each branch tip (e.g., the "path fractiométric of Smith et al. 2014).

The algorithmTreeQSMW.2.3.0 (CopyrightC) 20132017 Pasi Raumonen) was used to
produce quantitative structure models (QSMs) from thed&gjoint clouds of the trees.
TreeQSMncludes two main steps: (1) the point cloud segmentation into stem and branches
based on cover sets and (2) the rstttion of the volume and the surface area of the segments
with cylinders (Calders et al. 2015, Raumonen et al. 2015). The algorithm produced several
QSMs for each tree point cloud based on a range of values for the minimum and maximum size
of the coversets and it finally determined the optimal QSM (Raumonen et al. 2013). Based on
the parameters of the optimal QSM the algorithm produced 30 additional QSMs in order to
estimate the variation of the modeled tree variables (e.g. woody surface area), bettaise
inherent stochasticity of tiHEreeQSMalgorithm (Raumonen et al. 2013). The algorithm
separated the main stem from the branches of a tree based on the following criteria: (i) the main
stem extends near the top of a tree, (ii) it goes almost stegaighnd (iii) it is not too curved

which means that the ratio of the stem length to the sterrtipagistance, must be the minimum
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among all candidate main stems; the branches were further categorized by branching order based
on certain criteria for bras topology, branch length and branch biselistance (P.
Raumonen, personal communication, June 2, 2020).

From the optimal QSMs of the leaff point clouds of the study trees, their total woody
surface area (the surface area outside of the barkg)ssae computed as the sum total surface
area of the cylinders that were fitted to the point cloud of each tree. The total woody surface area
of each tree was also separated into the main stem and the branch woody components.

"Path lengths'(sense Smith &tl. 2014) were also used to create alternative structural
metrics of the trees. The lengths of all paths from the stem base of a tree to all branch tips were
computed from the lengths of the QSM cylinders, whose topological structure is preserved in a
QSM. The distribution of the path lengths for each tree was computed i.e. the quantiles of the
path lengths (28 50" and 75" percentiles), as well as minimum, maximum and mean path
lengths. Smith et al. (2014) showed that relative path length varia@gonimgrinsic element of
tree branching architecture relating to tree hydraulic conductance, volume, mechanical stability

and light interception.

3.7. Statistical Analyses

All statistical analyses for this study were done with custom coding and available
packages written in the R software language (R Core Team 2015).

Differences in the mean value of thg @ the trees for leavesn versusoff, and leaves
artificially removed versusoff, were evaluated withtests, for each species separat@y (
triacanthos Q. macrocarpaandM. glyptostroboides and for all species combined:itdsts

were also used to evaluate differences in the mean value of the LCC index, %RE patehD
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on, leafoff and leaf'removed" tree point clouds between the styascges. The "sma" function
of the standardized major axis regression and testing routines ("smatr") R package (Warton et al.
2012) was used to conduct hypothesis tests regarding the intercepts and the slopes of the species
subpopulation regression linesQ DOO VWDWLVWLFDO WHVWYV VLJQLILFDQ'
5 %.

The relationships between the leat, leafoff, and leafartificially removed [ values,
and the relationships of the LCC index and the %RE with the tigstilgal metrics (seeestion
3.6) were analyzed using linear regression analysis and relationship strength was quantified with

the Pearson correlation coefficieny; (statistical significance was assessedat %.

3.8. Results

3.8.1. Structural Complexity of Leaf-on VersusLeaf-off Tree Point Clouds

The data show that the study trees varied widely in size (DBH and heidrgjrantural
complexity Table 3.). There was significant difference between the meaof Bhe leafon tree
point clouds of th&. triacanthod GLTR) andQ. macrocarpgdQUMA) speciesf = 0.0194).
However, no significant difference was found between the mea the leafon tree point
clouds of theG. triacantho GLTR) andM. glyptostroboide$MEGL) trees p > 5%), and also
for the MEGL and QWA trees p > 5%). Significant differences were found between the mean
Dy, values of the leadff tree point clouds of QUMA anBEGL trees p = 0.0335), GLTR and

QUMA trees p < 0.001),and MEGL and GLTR treep§ 0.041).
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Table 3.1 Summary statisticeesulting from different measurements of tree size and
structural complexity.

Summary Statistici,  All trees (_Bled|t5|a Quercus Metasequqla
triacanthos macrocarpa | glyptostroboides
no. trees 45 16 15 14
DBH (cm) 1541115, 122.2] 52.9 [18.472.8] | 58.8 [29, 83.8]| 50.5 [15, 122.2]
(mean [min, max])
Height (m)

: 13.8 [4.4,24.1] 12.5[10.4, 18.4] 15.8[9.1, 21.3]| 13.1[4.4, 24.1]
(mean [min, max])

WSA () 204.2 [29.9, 265.4 [65.2, 225.4 [60.4, 111.5[29.9,
(mean [min, max]) 467.0] 408.6] 467.0] 250.9
2
Stem WSA) | 1315 1 a4.6]| 11.4[4.1, 20.1]| 16.2 [4.7, 30.3]| 11.4[2.1, 44.6]
(mean [min, max])
Branch WSA (m) | 191.2 [27.7, 253.9 [61.2, 209.2 [55.7, 100.1 [27.7,
(mean [min max]) 436.7] 395.5] 436.7] 231.8]

Db-leqf.on 2.06 [1.89, 2.23 2.09[1.89, 2.20] 2.03 [1.91, 2.11]| 2.07 [1.94, 2.23]
(mean [min, max])

Db-leqf.oﬁ 1.97[1.82,2.11 2.02[1.84,2.11]1.92[1.82, 2.04] 1.97 [1.84, 2.1]
(mean [min, max])

Dp-lealim |4 91176, 2.14] 1.84[1.76, 2.0]| 1.93 [1.83, 2.03 1.93[1.8, 2.14]
(mean [min, max])

LCC index 0-04633 1003273 [0.0137] 292887 |5 04864 [0.00061

. [0.00064, [0.00667,
(mean [min, max]) 0.16394] 0.0762] 0.10883] 0.16394]
%RE 5.55[0.17,

(mean [min, max] 14.64] 8.91[1.07, 14.64 2.43[0.17, 5.46/5.06 [0.92, 11.53

Mean Path length

(m) (mean [min, | 12.9[3.7, 23.9] 14.8 9.5, 22.0]| 14[6.9,23.9] | 9.5[3.7, 18.6]
max])

Max. Path length

(m) (mean [min, | 22.8 [6.5, 42.7] 24.8 [17.3, 37.5] 24.9 [12.3, 42.7| 18.3 [6.5, 35.8]
max])

25" % Path length

(mean [min, max])

# of branch ordery

(median [min, max]

10.9 [3, 20.6] | 13.2[7.7, 18.1] | 11.7 [5.4, 20.6] 7.4 [3, 14.9]

5[1, 11] 51, 11] 5[1, 10] 411, 9]

T-tests showed that the meapd the leafon tree point clouds was significantly greater
than the mean of the leafoff tree point cloudsKig. 3.3 across all study tree species
combined (p < 0.001), and for each species separately (QLF¥R:0145; QUMA:p < 0.001;
MEGL.: p = 0.003). Positive relationships were found between theole@nd the leabff Dy,
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values of the trees across all species combined (Pearso:g2,p < 0.001) and for the GLTR
(Pearson's = 0.91,p < 0.001) and QUMA species (Pearsarrs0.6,p = 0.019) Fig. 3.4. The
relationship between the leah and the leadff D, values br the MEGL trees was not
significant (Pearsonis= 0.52,p = 0.055), however, all data points were above the 1:1 line
indicating that the Pof the MEGL leafon point clouds was clearly greater than thetthe
MEGL leatoff point clouds, except oneete with LCC index close to zero (LCC = 0.00064)
(Fig. 3.4D).

The LCC index ranged between 0.00064 and 0.16394 across all trees combined (see
Table 3.}, indicating a significant reduction in the structural complexity of deciduous tree
crowns when leavesre shedThe mean LCC index value was significantly different between
GLTR (mean LCG.rr= 0.03273 andQUMA (mean LCGuwa = 0.05867) treep = 0.0261).
However, the mean LCC index value was not significantly different between QUMA and MEGL

(mean LCGyecL = 0.04864) treeg(= 0.4559), and between GLTR and MEGL trges 0.181).
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Figure 3.3 Crown complexity quantified with the badimension (I3) metric of the
(A) leaf-on, (B) leafoff, and (C) leafremoved point clouds of@. triacanthodree (first
row), aQ. Macrocarpatree (second row), and\. glyptostroboidesree (third row). The
leaf-off and leafremoved tree point clouds have been artificially colored with brown color.
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Figure 3.4 Relationship between the leaf and leabff box-dimension values
across all study tree species combined, and for each species separately with 95 % confidence
interval around the regression lines. The black dashed line is the 1:1 line.

The LCC index was negatively correlated with the branch woodgiarea of the
study trees (Pearsom's: -0.4,p = 0.0061), but it was not correlated with their stem woody
surface arego(= 0.16) Fig. 3.9. The "outlier" MEGL datapoint inFig. 3.5(top-left) did not
drive the observed relationship, because the pattern did not change after the removal of this data

point.
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Figure 3.5. Relationship between the LCC index and the branch woody surface area of
the trees with 95% confidence interval@and the regression line. The three spedes
glyptostroboide¢MEGL), G. triacantho GLTR), andQ. macrocarpgdQUMA) have been
plotted with different colors and symbols.

Finally, the LCC index was negatively correlated with different path length vesiakl
mean path length (Pearsons-0.4,p = 0.0068), maximum path length (Pearsorns0.44,p =
0.0025), and the J5percentile of path lengths (Pearsarts-0.41, p = 0.0051)Rig. 3.6. The
"outlier” MEGL datapoint inFig. 3.6(top-left in each graph) did not drive the observed

relationships, because the patterns did not change after the removal of this data point.
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Figure 3.6. Relationships between the LCC index and different path length variables
with 95% confidence interval around the regression lines. The three slgecies
glyptostroboideg§MEGL), G. triacantho§GLTR), andQ. macrocarpdQUMA) have been
plotted with differentolors and symbols.

3.8.2. Boxdimension of Leafoff Versus Leatremoved Tree Point Gouds

Significant differences were found between the meawalies of the tree poktiouds
after the artificial leafemoval for QUMA and5LTR trees p = 0.001), and GLTR and MEGL
trees p = 0.0105) but no significant difference was found between the nigaof the MEGL
and QUMA trees after the artificial leeémoval p = 0.9662).

T-tests showed that the meapd the leafoff tree point clouds wasgnificantly greater
thanthe mean Pof the leafremoved tree point clouds across all study tree species compined (
< 0.001), and for the GLTR tregz< 0.001). No significant difference was found between the
mean [ of the leafoff and leafremoved point clouds for the QUMA tregs< 0.6382), and the
MEGL trees p = 0.1622). Furthermore, the lea@moved and the leafff Dy, values of the

QUMA trees were positively correlated (Pearsorr9.65,p = 0.0082), but ngignificant
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relationship was found between the leafinoved and the lealff D, values across all study tree
species combineg & 5%), and for the GLTR and MEGL trees (p > 5%ig( 3.7). The
standardized major axis tests showed that the intercept aslbpeeof the regression line of the
QUMA trees was not statistically different from the 0 and 1 values respectively.

The mean Pof the leafon tree point clouds was significantly greater than the mgan D
of the leafremovedree point cloudsHig. 3.3, acrossall study tree species combingu(

0.001), and for each species separately (GLTR, QUMA, ME(1.0.001).

Figure 3.7. Relationship between the leemoved and leabff box-dimension values
across all study tree species combined, and for gaaties separately with 95% confidence
interval around the regression lines. The black dashed line is the 1:1 line.

The mean %RE value was significantly different between GLTR (meanspkE
8.91%) andMEGL (mean %Rkec. = 5.06%) trees p = 0.0057), and between GLTR and
QUMA (mean %Rguma = 2.43%) trees p < 0.001), and also between MEGL and QUMA trees

(p = 0.0064).
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The%REwas positively correlated with the maximum branch order of the GLTR trees
(Pearson's = 0.53,p = 0.033), but it vas not correlated with the maximum branch order of the

QUMA and MEGL trees (p > 5%F(g. 3.9.

Figure 3.8 Relationship between the % Relative Error (RE) and the maximum branch
order of the trees with 95% confidence interval around the regression lines. The Bpecies
glyptostroboide¢MEGL), G. triacantho GLTR), andQ. macrocarpgdQUMA) have been
plotted wih different colors and symbols.

3.9. Discussion
3.9.1. Structural Complexity of Urban Trees

This study measured theg, Df the aboveground components of tree architecture (i.e.,
main stem, branching network and leaves) from TLS point clouds, to determine the above
ground structural complexity of trees growing in urban aregsab help to understand how

trees maximize mources uptake for their growth while maintaining their mechanical stability
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(Seidel 2018, Seidel et al. 2019a, Seidel et al. 2019b). From an evolutionary perspeesve
have had to develop aadaptivé geometry (Borchert and Slade 1981) to optimigbticapture
and minimize sefshading (Abrams and Kubiske 1990, Sack et al. 2006, Eloy et al. 2017), while
balancing with other competing functions, such as maintaining mechanical stability (MacFarlane
and Kane 2017) and resisting drought (Arseniou andRddane 2021). Opegrown trees are
relatively free from light competition, due to having fewer tree neighbors (MacFarlane and Kane
2017), so they are more likely to be able to maximize their structural complexity and express
their inherent fractalike architecture than trees growing in forests or plantations (MacFarlane et
al. 2014). The urban oparown trees in this study were not directly influenced by shading from
neighboring trees or from the buildings of relatively low height which were nearloye of
the trees. Bis sensitive to the external shape and the internal structure of trees (Seidel et al.
2019a, Seidel et al. 2019b), so differencesygr@n capture meaningful differences in tree
architecture and physiological function. Therefores important to consider what the maximum
structural complexity could be.

Seidel et al. (2019b) hypothesized that trees should havalies significantly lower
than 2.72, which is the {df the Menger sponge (a mathematical object with the greatestesurfac
to volume ratio, Menger 1926), assuming a tree would maximize its surface area for light capture
and gas exchange, while minimizing building costs, in the absence of competition with other
plants. In previous studies that quantified the abgreeind comfexity of trees growing in dense
rural forest stands, le@in D, values were consistently lower than 2 (Seidel 2018, Seidel et al.
2019a, Seidel et al. 2019b, Dorji et al. 2019, Guzman et al. 2020, Saarinen et al. 2021). In this
study, the mean Jof theleaf-on tree point clouds was greater than 2 across all study tree

species (se€able 3.}, indicating a possible structural difference between trees in rural versus
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urban areas. However, rural forest trees growing in more open conditions and facing less

competition for light (e.g., in forest gaps and in thinned forest stands), also had lgavgdénds

(Seidel 2018, Dorji et al. 2019, Saarinen et al. 2021), in some cases exceeding 2 (Dorji et al.

2021). This suggests a benefit to increasiggvth more Ight and fewer neighbors, but at some

level the energy benefits from increased photosynthesis would be minimized due to high level of

self VKDGLQJ 6HLGHO HW DO E 7KLV VXSSRUWYVY ODF)DUOD
growing in the open, witbout competition can more closely approach the theoretical maximum

Dy, (as characterized in Seidel et al. 2019b). In this study, the maximwalu2 observed was

2.23, for a large specimen BE. glyptostroboides the leafon condition Table 3.). So, een

the largest, opegrown, urban trees in this study were well below the theoretical maximum of

2.72.

3.9.2. The Role of Leaves in the Structural Complexity of Deciduousdes

The urban trees studied here were deciduous species, characterized bylehs$tinct
phenological changes (i.e., leai and leaoff periods), which are typically affected by sharp
photoperiodic and temperature changes (Lechowicz 1984, Fridley 2012). In general, the outline
shape and the texture of leaves can have frakeapattens (Vicek and Cheung 1986,
Moraczewski and Borkowski 1997, Borkowski 1999, Hartvigsen 2000, Camarero et al. 2003,
Backes and Bruno 2009, Jobin et al. 2012, Gazda 2013, Bayirli et al. 2014, lanovici and Datcu
2015), and thus, we expected that the presehl@aves can increase the total structural
complexity of trees. Indeed, the study trees were shown to have statistically different structural
complexity in the leabn and leabff periods Fig. 3.4, because the presence of leaves implies

greater dispersn of laser points in the le@in point clouds compared to the ledf point clouds
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and more boxes are required to capture them, which results in greater value fpmidtei©and
greater structural complexity (Seidel 2018, Seidel et al. 2019b, Guzina&r2020). In a

previous study the difference between thebthe leafon and leabff point clouds of forest
grown trees was not significant (Guzman et al. 2020). However, that study followed a mixed
approach to generate leaff point clouds. More gecifically, from the 76 leabff point clouds,
only15 point clouds were captured during the-lei@fperiod and the rest leafff point clouds
were created after manual segmentation of leaves from therigadint clouds (Guzman et al.
2020).

The magnude of change in Pobserved in this study was relatively small; the LCC
index, ranged from 0.00064 to 0.16394 across all species combined, indicating that the largest
portion of the total abowvground structural complexity of a tree comes from woody corapts
e.g. branches. However, i3 constrained to have values between one and three, so a small
change in its value can have significant physiological implications. Seidel et al. (2019b) found
that the crown surface area divided by the woody volume ef irereased as a power function
of leafon D, so that, e.g., an increase of 0.2 units in-teaD, resulted in approximately 40
units of increase in crown surface area relative to the woody volume of trees. Similarly, the
results here in this study shdlat a small change in the crown complexity has important
structural implications for urban trees. An increase of about 0.05 units in the LCC index was
associated with approximately 403 raduction in the branch woody surface area ofthdy
trees Fig. 3.5. Such a change could have important implications for the mechanical stability of
trees, i.e. the branch woody surface area affects the bending moments due to wind drag
(Vollsinger 2005, Pavlis et al. 2008, Gardiner et al. 2016), for the mainterespesation of

trees which relates to their woody surface area (Kinerson, 1975; Kramer and Kozlowski, 1979;
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Yoneda, 1993; Bosc et al., 2003; Kim et al., 2007), and for solar radiation and rainfall
interception (Weiskittel and McGuire 2006).

Differences irthe LCC index were related to other structural metrics of the trees,
showing different changes in thg {alue, with and without leaves, for different types of trees.
The negative relationships with branch surface area and path length metrics indidatgeha
trees, with larger and more "branchy" crowns, have a relatively smaller contribution of leaves to
structural complexity (Figs3.5 and3.6). These results can li@erpreted within the framework
of the pipe model theory (Shinozaki et al. 1964) #nedwWestBrown-Enquist or WBE model
(West et al. 1997, West et al. 1999), which explain the fréik@ahrchitecture of trees by
assuming a vascular tree structure consisting from pipes (West et al. 1997). According to these
theories as the size (i.e. oy surface area or length) of the pipes of the vascular system of a
tree increases, the structural complexity of the woody skeleton of the tree also increases.

Differences in species branching architecture and leaf structure could also explain some
of theobserved differences in leah versus leadff D, values, because the fractal architecture
of urban tree crowns is influenced by both crown and leaf shape (Arseniou and MacFarlane,
2021).G. triacanthodrees had the smallest contribution of the leaves to the crown complexity
(smallest LCC). According to Niinemets and Valladare (20G6}riacanthoss the least shade
tolerant of the three species studied (shade tolerance indéx tfilacanthos= 1.61,Q.
macrocarpa= 2.71, andM. glyptostroboides 3). Species which are very shade tolerant
distribute their leaves more evenly within their crown volume (Arseniou and MacFarlane 2021),
whereas species that are less shade toleran etigacanthos havetheir leaves widely spaced
mainly in the crown periphery, in order to increase crown porosity and reduce locsiasdilig

(Sack et al. 2006). Furthermore, it has been suggested thatantgpy variation of leaf traits is
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predominantly affected by thexposure of leaves to light, which makes the sun leaves that are
distributed in the crown periphery to be smaller, with greater leaf mass per unit area compared to
the crowninterior leaves, in order to reduce water loss through transpiration (Abrams and
Kubiske 1990, Sack et al. 2006). Therefore, the uneven distribution of leaves in the crown
volume of theG. triacanthodrees, most of which are small sun leaves in the crown top, could
explain why the contribution of leaves in the overall crown complexty the smallest when

compared t@Q. macrocarpandM. glyptostroboidesrees.

3.9.3. The Effect of the Leakeparation Algorithm on the Structural Complexity of

the Trees

Very often, one is unable to lassran trees during the leaff conditions, either because
they are evergreen or due to logistical constraints. Therefore, one of the goals of this study was
to explore the effect of artificial lea&moval from leafon pant clouds. Separating the woody
component from the foliage of tree point clouds using classification algorithms is a challenging
task. Zhu et al. (2018), e.g., found a significant overestimation in the leaf area index of trees
because of the woody matdiiia tree point clouds.

There are different algorithms and approaches to separate leaves from the woody
structure of tree point clouds (Vicari et al. 2019, Wang et al. 2018, Wang et al. 2019, Moorthy et
al. 2020), but there is no single best solution titefor all point classification cases in forests
(Moorthy et al. 2020). Some of the factors that influence the classification results are the
following: heterogeneity of point cloud density, varying scanner configurations and scanning
protocols (Moorthyet al. 2020). Th@LSeparatioralgorithm, which was used here, does not

depend on a specific scanner (Vicari et al. 2019), and we tried to minimize the occlusion effects
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in the point clouds in this study by scanning each tree from multiple directiorstaces at
high scanning resolution, following the field scanning protocols suggested by Wilkes et al.
(2017). The performance of leaf separation algorithms is significantly decreased by occlusion
(Vicari et al. 2019), but explicit accounting of thisarsource is challenging because we don't
have a complete control over it, and different types of error can be correlated (Burt et al. 2021).
Errors in characterization of crown architecture should relate to leaf morphology
(Moorthy et al. 2020). Wang at. (2019) suggest that leaves are typically detected as simple, flat
structures, and therefore, the obldagf shape or the modular structure of compound leaves
might confuse the classification algorithms. Indeed, our results indicate tidtSeparaton
algorithm can be more accurate in identifying simple flat leaves, but had more difficulty
separating twigs and fine branches from compound leaveLQTimacrocarpdrees showed no
statistical difference in pof the leafoff and leafremoved point clods and this species has
simple leaves with a single flat and lobbed blade (or lamina) (Efroni et al. 2010), which is
associated with important leaf physiological functions e.g. convebhgan dissipation, efficient
light interception and reduced leaf hgdlic resistance (Camarero et al. 2003, Sack et al. 2006).
TheTLSeparatioralgorithm (Vicari 2017) appears to have mesgssified many points of the
woody structure as leaves Gt triacanthoswhich have compound leaves with a modular
architecture bease the leaf blade consists from several leaflets stemming from the leaf rachis
(Champagne and Sinha 2004, Klingenberg et al. 2012)TT8eparatioralgorithm added
significant noise into characterizations of i M. glyptostroboidesrees, which are detuous
gymnosperms, have oblorsfpaped needles and branches that are either horizontal or curved
upward (Ng and Smith 2020). We might expect the accuracy dil.tSeparatioralgorithm for

needleleaved trees to be lower compared to the classificationangof broadeaved trees,
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because needles are linear, and it is difficult to resolve an individual needle due to its small size
and the dense foliage of conifers (Vicari et al. 2019, Wang et al. 2019). In a previous study, it
was found that the artificidéaf-removal using a different leaeparation algorithm (i.€eWoS
algorithm) resulted into the underestimation of the total woody volume of trees in the generated
QSMs, while only the stems and some large branches were detected in coniferous trge=t (Wan
al. 2019).

As was originally hypothesized, the percent relative error in the estimated crown
complexity of theG. triacanthodrees, after artificial leafemoval, was related to the branching
architecture of the trees. More specifically, trees & siplecies with higher maximum branch
order had greater %RE values, indicating that the presence of more bifurcations (branching
nodes) and smaller branches of higher order can reduce the accuracYyldbéparation
algorithm to classify the leaves and theody parts. Indeed, increased branch bifurcation and
angulation result into increased occlusion in the point clouds of trees that reduces the accuracy of
the leafclassification algorithm (Wang et al. 2018); in a previous study the point density of
woodystructures decreased for higher branch orders and therefore many points were miss
classified as leaves (Wang et al. 2019). The %RE values bf.tglyptostroboidesandQ.
macrocarparees were not related to their maximum branch order, presumably because the leaf
removal algorithm did not significantly affect the accuracy of thefhe Q. macrocarpaand
M. glyptostroboidesrees on average according to thedts, although the »f theM.

glyptostroboidesrees after the artificial leakmoval was imprecise.
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3.10 Conclusions

This study used terrestrial laser scanning (TLS) to further refine our understanding of the
aboveground structural complexity of urban trees by sepagahe effect of leaves from the
effect of the woody skeleton. Differences in leaf on versusd#adtructural complexity likely
relate to different functional traits of trees for light capture optimization, reduction of self
shading and mechanical silétl. As such, this study provides evidence that differences in the
contribution of leaves to tree structural complexity could be an important indicator of where the
plant lies on a "structural economics spectrum (SES)", which explains speaiesiral
diversity in terms of tree architectural traits along a spectrum balancing light interception, carbon
allocation and mechanical stability (Verbeeck et al. 2019). However, more species belonging to
different functional groups must be included in future isith order to further examine
differences in the LCC, or a similar index, as part of the SES. This study provided evidence,
along with previous studies (Wang et al. 2019, Moorthy et al. 2020), that the accuracy of leaf
separation algorithms is affectey the leaf shape and type, but also that bias in the estimation of
the aboveground structural complexity of trees after the artificialdemhoval depends on the

branching architecture.
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CHAPTER 4
WOODY SURFACE AREA MEASUREMENTS WITH TERRESTRIAL LASER

SCANNING RELATE TO THE ANATOMICAL AND STRUCTURAL COMPLEXITY
OF URBAN TREES

Arseniou, G., MacFarlane, D.W. and Seidel, D. (30®4oody Surface Area Measurements w
Terrestrial Laser Scanning Relate to the Anatomical and Structural Complexity of Urban

Remote Sensing 2021, 13, 3153. DOI: 10.3390/rs13163153.
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Abstract

Urban forests are part of the global forest network, providing important benefits to human
societies. Advances in remegensing technology can create detailed 3D images of trees, giving
novel insights into tree structure and function. We used terrdss&l scanning and quantitative
structural models to provide comprehensive characterizations of the woody surface area
allometry of urban trees and relate them to urban tree anatomy, physiology and structural
complexity. Fiftysix trees of three specigSléditsia triacanthod.., Quercus macrocarpa
Michx., Metasequoia glyptostroboidétu & W.C. Cheng) were sampled on the Michigan State
University campus. Variation in surface area allocation teptwtosynthesizing components
(main stem, branches) relatedthe fractal dimension of tree architecture, in terms of structural
complexity (boxdimension retric) and the distribution opath' lengths from the tree base to
every branch tip. Total woody surface area increased with thdibwension metric, but it as
most strongly correlated with the"2Bercentile of path lengths. Urban trees mainly allocated
woody surface area to branches, which changed with branch order,-besgctiameter, and
branchbase height. The brantb-stem area ratio differed amongesies and increased with the
box-dimension metric. Finally, the woody surface area increased with the crown surface area of
the study trees across all species combined and within each species. The results of this study
provide novel data and new insigim$o the surface area properties of urban tree species and the

links with structural complexity and constraints on tree morphology.

Keywords terrestrial laser scanning, woody surface area, crown surface area, urban

ecology,Gleditsia triacanthosQuercusmacrocarpaMetasequoia glyptostroboides
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4.1. Introduction

Urban trees provide a wide range of important ecosystem services, including temperature
regulation, carbon storage, water purification, air pollutants uptake, biodiversity etc. (Heisle
1986, McPlerson et al. 1994, McPherson 1998, Nowak and Crane 2002, MacFarlane 2009,
Pretzsch et al. 2015, Casalegno et al. 2017, Tigges and 26kéfs Trees in urban areas are
growing under very different conditions than forgebwn counterparts and it is important to
study their architecture and their physiological performance (Calfapierta et al. 2015) to increase
our understanding of their gutability to urban environments (Arseniou and MacFarlane 2021).

The fundamental physiological processes of trees, including urban ones, include rates of
respiration and photosynthesis, production efficiency, water balance, energy and gaseous
exchange withihe atmosphere, and leaching of nutrients fb@rk and leaves (Lambers et al.

2008, Pallardy008); all of these have long been hypothesized to relate to treeesaréa
(Whittaker and Woodwell967). The role of the leaf area and the crown surfacdratese

carbon balance, through photosynthesis and respiration, is well known (e.g., Lambet808 a
Pallardy2008 Lehnebach et al. 2018gidel 2019b, Zheng et al. 2019) and tree respiration rates,
in particular, are closely related to ithe&oody surface area (Kinerson 1975, Kramer and
Kozlowski 1979, Yoneda 1993, Bosc et al. 20QBn et al.2007). Furthermore, the woody
surface area of trees and their bark structure create a rich web -afshaylorganisms

(MacFarlane and LuB009). Therefore hie detailed quantification of the surface area of the
woody components of trees is necessary for understanding their physiological ecology.

Whitaker and Woodwell (1967) published one of the earliest studies focused on tree
surface area and highlighted theed to consider its relationship to tree structural complexity.

Urban trees can have a very distinct abgr@und architecture which can inform us about the
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growth and functional limits of differg tree species (Calders et2020). Because cqpetition

for light (Metz et al2013) significantly reduces the structural complexity (i.e. inherent fractal
character) of trees that grow in clodedes conditions (MacFarlane et al. 2014, Eloy et al.

2017, Seidel 2018, Dorji et &019), we expect that urbareés should better express their

fractal character, due to the typically lower number, or complete absence of neighboring trees in
cities. Of course, the highly heterogeneous growing environment of urban trees can affect the
structural complexity of theicrowns (Arseniou and MacFarla@621), but, in general, more
opengrown, urban trees should have more evident fractal complexity compared to trees growing
in forest stands. Therefore, focusing on egeown urban trees gives us the opportunity to study
important aspects of tree allometry, such as the agowend woody surface area, considering

their distinct structural complexity.

Woody surface areas, and particularly branch areas, have long proved diffroethgare
(Weiskittel and McGuir@006). Branh area has often been studied secondarily to leaf area
estimation e.g., as a source of noise when trying to estimate éeahdex (e.g., Kucharik et al.
1998). Direct methods of woody surface area quantification are highly laborious, requiring
destructve sampling, where trees are cut up into components and the surface areas of various
parts are measutde.g., Weiskittel and McGuir2006). This has led to the necessity of
developing allometric equations to generalize from destructive sampling datdlédldin 1985
Baldwin et al. 1997, Damesin et al. 2002eiskittel and McGuie 2006), to be applied to
standing trees via easily measured allometric variables (e.g., diameter at breast height, crown
length, crown ratio). However, allometric equationsehbgen previously found to significantly

underestimate the total woody sudaarea of trees (Meir et al. 2017, Malhi et24118). Also,
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destructive sampling, which is required to build allometric equations, can be highly problematic
in urban areas, due the additional challenges and costs of safely removing urban trees.

Many indirect methods of woody surface area estimation have been advanced. More
specifically, different studies have utilized geometric approximations of stem, branch and crown
shapesbranch surface area estimates from vertical photographs, multispectral canopy imaging,
woody surface area derivations from principles of the pipe model theory and the branch
divarication theory, and combinations of the previmethods (Whittaker and Woo@\ 1967,
Yoneda et al199Q Jennings et al. 1990, Yoneda 199&iskittel and McGuire 2006, Zou et al.
2009, Inoue and Nishizor015). A major challenge for any of these methods is dealing with
the structural complexityfdrees (Whittaker and WoodwelB67), which exhibita fractatlike
pattern (Seide2018) that is very@mmon in ecology (Halley et &2004).

According to the pipenodel theory (Shinozaki et dl964)and the WBE model (West et
al. 1997) trees have a fractigdte branching architecterwhich consists from a network of self
similar branching shoots beginning at a central trunk and terminating in leaves at the ends of
small twigs (Noordwijk and Muli2002 Makela and Valentin006). Therefore, simple
geometric representations of stena &manches to estimate woody surface areas are likely
inadequate and inaccurate because they do not explicitly account for the structural (fractal)
complexity of the woody skeleton of trees. However, recent advances in terrestrial laser scanning
(TLS) provde new, nordestructive ways for quantifying the structural complexity of trees,
including the prospect of directly measuring tatae surface area (Malhi et 2018). TLS
instruments belong to active remote sensing and they emit laser pulses arel'paptt
clouds"of the surrounding environment by analyzing the returned energy as a function of either

time (timeof-flight systems) or shift in the phase of the light wave of the emitted laser beam
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(phaseshift technology), and by using precise angut@asurements through optical beam
deflection mechanisms (Ghdrs et al. 2015, Liang et 2016).

The aboveground structural complexity of trees can be directly quantified from TLS data
using the "boxdimension” () metric, also known as MinkowskBouligand dimension (Seidel
2018). The boxdimension metric is derived from fracggometry principles (Mandelbr@®83),
and it is a measure of plant material denaitg distribution (Seidel et #019a). The estimation
of the total woody surface areatofes from TLS data does not rely on biological assumptions
and itis relatively new (Malhi et aR018); for example Ma et al. (2016) used terrestrial laser
scanning data to compute the woody to total surface area ratio of trees, to estimate thea leaf ar
index. In general, TLS data have been previously used to mainly study other important aspects of
tree allometry and ecology e.g. stem density, stem profiletirabdr volume (Hopkinson et al.
2004, Maas et al. 2008, Moskal and Zheng 2Wbhderach eal. 2012, Olschofsky et &016),
leaf and enopy properties (Danson et al. 2007, Strahler et al. 2008, Hosoi and Omasa 2009, Polo
et al. 2009, Antonarakis et al. 2010, Moorthy et al. 2010, Béland et al. 2011, Jung et al. 2011,
Metz et al. 2013, Béland at. 2014, Li et al. 2017, Hu et al. 200cari et al. 2019), above
ground tree biomass awdrbon stocks (Vonderach et al. 2012, Kankare et al. 2013, Calders et
al. 2015, Stovall et al. 2017, Tanhuanpéaéa 2Gl7).

In this study, we used TLS technojop produce novel woody surface area data for
urban trees. The objectives of the study are the following: (i) to measure the totabatove:
woody surface area of urban trees of different species; (ii) to examine thegabawne woody
surface area atation into stems and branches of different size and position in tree crowns
(branch orders, branch bademeter and branch bakeight classes); (iii) to quantify the

relationship between tree woody surface area and their fistaiatural complexityi(e. the box
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dimension metric) and different Euclidean measures of tree architecture (i.e. metrics that account

for the length of all paths from the tree base to each branch tip, and crown surface area).

4.2. Materials and Methods
4.2.1. Urban Tree Data

We chose opegrown urban trees as our object of study, because we expected to get
better TLSbased measurements of tree attributes without occlusion from neighboring trees, but
also because we expected that the low, or complete absence of competititnedragighbors
in cities should allow trees to better express their inherent fractal character in terms of structural
complexity (MacFarlane et al. 2014, Eloy et al. 2017, Seidel 2018, Dorji et al. 2019).

Fifty-six trees, of three species, that repreddfgrent tree functional types were
sampled on the Michigan State University campusGlHtlitsia triacanthod.. trees Honey
locust compoundeaved, deciduous angiosperms),Qitercus macrocarp®ichx. trees Bur
oak entireleaved, deciduous angiospes), and 23Metasequoia glyptostroboidéts & W.C.
Cheng treesdjawn redwoogneedleleaved, deciduous gymnosperms). The trees were selected
to cover a large range of sizdsable 4.1 from 10.9 cm to 122.2 cm DBH). Since all species
were deciduous we wesedle to study their total woody surface area during thedtaferiod
(Fig. 4.7). Of particular interest wad. glyptostroboideswhichwas selected because we wanted
to study the structure of an urbgrown, needldeaved gymnosperm, that could be sth
(alive) in aleaf-off condition; it is difficult to get complete, nevccluded scans of the stems and
branches of needleaved eergreen species (Stovall et 2017).

Laser scanning of th®. triacanthosandQ. macrocarpdrees was accomplished, with

leaveson, in July and August 2019. Tiwe glyptostroboidesrees were scanned, with leayas
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in August 2020. The leadn tree point clouds allowed the estimation of the crown surface area of
the trees (see specific methods below). The same treesla@taserscanned in leabff

condition, in January, February and March 2020, in order to estimate their woody surface area
(see specific methods below). Beforesganning the study trees, we confirmed that they were

not pruned by the Michigan State Unisiy arborists between July 2019 and August 2020.

Following this experimental design, pruning did not impose any bias in the estimation of the
woody surface area and crown surface area of the study trees, during the study period. Of course,

past pruning eents could have affected the tree structure observed.

Figure 4.1. Leaf-off images of (A) &. triacanthodree, (B) aQ. macrocarpdree,
(C) aM. Glyptostroboidesree. All trees have been flagged with a padior tape.

4.2.2. Terrestrial LaserScanning and Point Cloud FPocessing

All trees were scanned with the FARO Focus3D X 330 terrestrial laser scanner, which
operates with laser light of 1550 nm wavelength, typical beam divergence 0.19 mrad, and range
0.6 m- 330 m. Each individual tree wasasmed with high resolution from a minimum of four
different directions and distances in order to minimize occlusion effects, and six referenee target

spheres were placed around each focal tree to spatially reference all scans and create a single
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point clow for each tree following the field scanning protocols suggested by Wilkes et al.
(2017). The first two scans of each tree were conducted in opposite directions from distances that
allowed the top of the tree to be clearly visible. The other two scancamdacted in opposite
directions (perpendicularly to the first two scans) from a closer distance to the focal tree to better
capture its branching architecture and get closer views of the main stem. For large trees with
complex crowns two or three additial scans were conducted below the tree crown to capture
more dense point clouds of the branches. All laser scans were conducted when there was little or
no wind.

Spatial ceregistration and noisgltering of all scans was automatically performed using
the software SCENE 2019.2 (FARO Technologies Inc., USA, 2019.2). Using the same software,
each tree was manually separated from the point cloud of the urban site background. This
process was judged as an accurate alternative to an agteegnhentation paess (Seidel

2019a).

4.2.3. Tree Reconstruction from Quantitative Structure Models

Quartitative Structure Models (QSMs; Raumonen et al. 2013, Kaasalainen et al. 2014,
Hackenberg et ak015 Boumez et al2017) describehe threedimensionakrchitecture of trees
E\ ILWWLQJ F\OLQGHUVY WR D WUHHYV SRLQW FORXG 460V SU
information about the size, the location, the hierarchy and the orientation of the branching
network; they are currently considered tale most robust method to model tree volume and
treearchitecture (Disney et &018).

Quantitative structure models (QSMs) were generated from theflgadint clouds of

the trees, with the algorithifreeQSMv.2.3.0 (Copyright (C) 2022017 Pasi Rauonen) (see
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example inFig. 4.2. There are two main steps for the tree reconstruction from a single point
cloud based on this algorithm. The first step is the point cloud segmentation into stem and
branches based on cover sets, and the second step irtbleidesonstruction of the volume and
the surface area of the segmenith cylinders (Calders et 015, Raumonen et al. 2015).
TreeQSMyenerated multiple QSMs for each tree point cloud based on different values for the
minimum and maximum size of thewer sets and it finally determined the optimal QSM for
each study tree (Raumonen et al. 2013). Based on the optimal QSM parameters the algorithm
produced 30 additional QSMs for each study tree in order to quantify the variation of the
modeled tree variab$, because of the inherent stochastic compondreeQSMRaumonen et
al. 2013).

The definition of the main stem of a tree accordingireeQSMs based on three criteria:
(1) the main stem extends near the top of a tree, (2) it goes almost stramind (), it is not too
curved which means that the ratio of the stem length to the stertifpdsstance, must be the
minimum among all candidate main stems (P. Raumonen, personal communication, 2 June
2020). After the main stem has been determined,i$teofder branches (i.e. branches attached
to the main stem) are defined based on the following criteria: they are the feetiedshg
candidates, with the ratio of the branch length over the branckipatistance to be less than
1.2, and the brandbasetip distance to be over 75% of the maximum. The branch
length/distance ratio will iteratively increase if no candidates with ratio equal to 1.2 exist. The
secondorder branches are attached to the-farster branches, and they include the candidates
with the longest branch basip distance. Branches of higher order are defined following the
same rules attached to the second, third, fourth order, etc. (P. Raumonen, personal

communication, 2 June 2020).
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4.2.4. TreeWoody Surface Area @mputation

From he optimal QSMs of the lealfff scans of the urban trees, their total woody surface
area (WSA, rf) was computed as the total surface area of the cylinders that were fitted to the
point cloud of each treé-{g. 4.9. Note: total "woody'surface area in thtudy is technically
the surface area outside of the bark tissues. Next, the total WSA of each tree was separated
between the main stem woody component and the branches woody component. The branch WSA
was further analyzed by branch order (there was armaniof eleven branching orders across
all species combined), by branbhse diameter classes of 1 cm size from the diameter of the
cylinder at the base of a branch (there were 48 classes across all species combined), and by
branchbase height classes ofrisize, based on the height from the base of a tree to the base
cylinder of a branch (there were 25 classes across all species combined; described in detail in the

results section).

Figure 4.2. (A) The leafoff point cloud of theG. triacanthodree fromFig. 4.1
(artificially colored with brown color)§) The QSM of the same tre€)(A closeup picture
of the generated QSM, composed of many cylinders fitted to the point cloud data. The colors
denote the different branching orders i.e. the ist@m is colored blue, the 1st order
branches are colored green, the 2nd order branches are colored red etc. Four facets have
been used to visualize the QSM cylinders.
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4.2.5.Computation of Other Tree Structural M etrics

We wanted to study how WSA relatemother published metrics of tree architectural
complexity. Smith et al. (20)4xamined a metric called the "path fractiowhich is the mean
length of all"paths"through the branching network, from the stem base to all branch tips,
divided by the maxnum path length. Path lengths are Euclidean metrics of tree structure and
they can be calculated from a QSM based on the lengths of the cylinders whose topological
hierarchy is preserved in a QSM. However, we did not simply use the QSM for each tree to
coPSXWH 6PLWK HW DO fV SDWK I UDFWLRQ EXW LQVWHDG ZH
distribution of path lengths, to take advantage of the rich data provided. This included the
quantiles of the path lengths 250" and 78' percentiles), as wellsaminimum, maximum,
mean and standard deviation of path lengths.

We computed the bedimension (3; Seidel2018), as a direct measure of abgveund
structural complexity, calculated directly from the leéffpoint cloud of each tree.jhas the
advantge of not having to apply a QSM to the data; it uses only the original tree point cloud.
The D, metrictakes into account the number of boxes that are needed to encapsulate all points of
a laserscannedree, and how the number of boxes varies with the dditthe box size to the
original box sizewhich is defined as the smallest box that encapsutheewhole tree (Seidel et
al. 2019b). The smallest box encapsulating the entire tree point cloud ist¢hbesb"upper cut
off", as it represents the laggt box applied to the tree for counting the number of consecutive
boxes needed. Consecutive boaksgays have half the edge length of the previous box so that
eight of them fit exactly in the initial box. The smallest {size among all boxes is the-sdled
"lower cutoff", and it was defined to be 10 cm in this stublig( 4.3A). It is a very liberal

estimate of the maximum distance between two neighboring laser points at any given location in
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the tree. The "lower cutff" must ensure that no virtuabk is considered empty only because it

fits in the "unsampled" space that was not reached by any laser beam of the laser scans. This

"unsampled" space may be the result of the diverging beams emitted from the scanner leaving

unscanned areas at greaterafhises to the scanner or simply due to occlusion effects in the tree.
Dy is equal to the slope of the leasjuares line when the logarithm of the number

of boxes is regressed against the logarithm of the inverse of the size of a box relativezi the

of the initial box (Seidel 201&eidel et al. 2019b}{g. 4.3B). Dy, which is unitless, takes

values between one and three. Values smaller than one are only possible if the "lenffér cut

has not been properly chosen (i.e. mean distance beteégboring points is greater than the

edgelength of the smallest box). Values of three (or greater) are not possible in reality, because

it would imply that a tree is a solid cube, alues close to but smaller than three imply trees

with greater crowrtomplexity and "spacélling character”, whereas, a perfectly cylindrical

stem without branches would have &jual to one (Seid@018). Boththe path fraction (Smith

et al.2014) and the P(Seidel2018) metrics are meant to capture the frackal natire of trees

(West et al. 1997, Noordwijk and Mulia 2002, Makela and Valentine 28@&bolic scaling

theory), which should explain portion of the variation in their WSA.

118



Figure 4.3. (A) lllustration of the virtual boxes of different sizes that captue
leaf-off point cloud of &G. tiacanthogree. 8) The loglog plot for the quantification of the
box-dimension metric for the same tree. The regression line slope is tfkrbemsion of
the tree i.e. P= 2.05.N is the number of boxes required tpture all points of the tree
point cloudy is the size of the length of each box, anihitial is the size of the length of
the initial box that encapsulates the whole tree. The 95% confidence interval has been
plotted around the regression line.

Finaly, the crown surface area of the study trees was computed as the convex hull from
the leafon laser points of a tree's crown using Heron's formula to quantify the triangles that
create the surface of this hull (Metz et al. 2013); in this study it reféhetphotosynthetically

active surfae area of a tree (Seidel et al. 2018heng et al. 2019).

4.2.6. Statistical Analyses

All statistical analyses for this study were done with custom coding and available
packages written in the $bftware language (R Core Te@2®15). Regression analysis was used
to relate the total WSA, and the branch to stem WSA, with the metrics of crown complexity and
tree architecture (see subsectb?.5). Correlation strengths were quantified with the Rears
correlation coefficientr( DQG WKH VWDWLVWLFDO VLJQLILFDQFH RI WKF

5 % level.

119



The total WSA of the trees was modeled as a power function of the metrics described in
the subsection 2.5 in order to explore the relatigm between WSA and these metrics. The
power function form was selected because it had a better fit to the data compared to the linear
model form and because power functions better describe the multiplicative processes of tree
allometry (e.g. WSA allomeyj, and tley are scaknvariant (Sileshk014). Species was added
in the candidate models as a random, grouping variable that influences the exponents of the
predictor variables.

The mixedeffects model is of the form:

L>0 @W([g:>WE ( (eq. 4.)

Where WSA is the total woody surface ared)(af the trees, b is the normalization
constant, [pis the boxdimension (unitlegs L is one of the path length metrics in meters that
were described previously, c is the scaling exponent parameter of tuenbenxsion (fixed
effect), d is the scaling exponent parameter of the path length metrics (fixed effect), and S is the
species mdom effect which is added in the candidate models to modify the ¢ and d parameters
and it has three levels (i.6. triacanthosQ. macrocarpaandM. glyptostroboides The error
term (0, has a multiplicative structure, which is additive on altogscde. Assumptions of
variance homoscedasticity and error normality were checked by plotting the model residuals
against the fitted values, and theQlots and the histognmes of the model residuals. The
"nlme" function of the linear and nonlinear mixed etfemodels ("nlmg"'R packageRinheiro
et al. 202) was used to fit models. The best models were selected considering both the

coefficient of determination (adjusted)Rind the Akaike Information Criterion (AIC).
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A oneway analysis of variance (ANOVAgst, with unequal variances, was used to
evaluate differences in the mean value of the branch to stem WSA ratio across the three species
combined (i.eG. triacanthos Q. macrocarpaandM. glyptostroboides A oneway ANOVA
test was also used to evaludtierences in mean WSA of branches per branch order, per
branchbase diameter class, and per brabake height class, across and within the above
mentioned species. For these tests the WSA of all branches belonging to different classes for
every studyree was considered. In all ANOVA tests the normality of the data in each group was
checked with®4 SORWY DQG VLJQLILFDQW GLIITHUHQFHYVY LQ JURXS
Finally, the coefficient of variation was used to quantify the uncertaintytimagsg total WSA

from the consecutive QSM reconstructions of the same point cloud of a tree.

4.3. Results
4.3.1. Estimated Total and Component Woody Surfacerdas

Basic tree measurements and surface areas computed for the study trees are shown in
Table4.1, along with other tree statistics (discussed later). The data show that trees varied widely

in their surface areas and other metrics of complexity.
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Table 4.1 Summary statistics resulting from different measurements of tree size and
structuralcomplexity. DBH = Diameter at Breast Height (cm), WSA = Woody Surface Area
(m?), CSA = Crown Surface Arean(), CV = Coefficient of Variation, = Box-

Dimension, SD = Standard Deviation (m), Min = Minimum (m), Max = Maximum (m).

Summary Statistiq  All trees Gled'tS'a Quercus Metasequqla
triacanthos macrocarpa | glyptostroboideg
no. trees 56 18 15 23
DBH (cm) 53.4[10.9, ./
(mean [min, max] 122.2] 53.4 [18.4, 72.8|58.8 [29.0, 83.449.8 [10.9, 122.2
Height (m)

, 13.8[3.8, 24.1/ 12.5[10.4, 18.4] 15.8 [9.1, 21.3| 13.6 [3.8, 24.1]
(mean [min, max]
CSA.leaf.on (M) | 611.9[78.3,| 663.9[203.6, | 747.8[172.9, 407 [78.3,

(mean [min, max] 1238.9] 1017.4] 1238.9] 1217.1]
Total WSA (nf) | 199.3[13.9,| 267.6[65.2, | 225.4[60.4,
(mean [min, max] 467.0] 408.6] 467.0] 128.9[13.9, 372
CV WSA 0.024 [0.005,{ 0.027 [0.007, | 0.024 [0.005,| 0.021 [0.007,
(mean [min, max] 0.07] 0.054] 0.047] 0.07]

Stem WSA (M) |15 =11 5 446 11.3[4.1, 20.1] 16,2 [4.7, 30.3] 11.0 [L.5, 44.6]
(mean [min, max]

Branch WSA (M) | 186.8[12.4, | 256.3[61.2, | 209.2[55.7, | 117.9[12.4,

(mean[min max]) 436.7] 395.5] 436.7] 352.9]
# of branch order
(median [min, 511, 11] 511, 11] 511, 10] 411, 9]
max])
Dy leaf.off (mean|  1.98 [1.82, |, 1311 84 2 11[1.92 [1.82, 2.04 1.99 [1.84, 2.15
[min, max]) 2.15]

Mean Path lengtl
(m) (mean [min,|12.4 [3.7, 23.9 14.6[9.5, 22] [14.0[6.9, 23.9] 9.8 [3.7, 23.8]
max])

Min Path length
(m) (mean [min,| 3.4[0.8,7.9]| 45[24,7.0] | 3.7[2.1,7.0]| 2.3[0.8,7.9]
max])

Max Path length
(m) (mean [min, [22.1 [6.5, 44.024.5 [17.3, 37.5[24.9 [12.3, 42.71 18.5[6.5, 44.0]
max])

SD Path length (n
(mean [min, max]
25" % Path lengtt
(mean [min, max]
50" % Path lengtt
(mean [min, max]
75" % Path lengtt
(mean [min, max]

3.1[1,69] | 28[251] | 3.6[156.1]| 29[1, 6.9]

10.4 [2.9, 20.6| 13[7.7,18.1] |11.7 [5.4, 20.6] 7.7 [2.9, 19.5]

12.5[3.6, 24.5 14.6[9.8, 23] |14.1[6.6, 24.1] 9.7 [3.6, 24.5]

14.4[4.4,28.7/16.1 [11.4, 25.1)16.5 [8.3, 28.7| 11.7 [4.4, 28]
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Branches comprised the greatest portion of WSA of the urban trees studiedntie to
the main stem woody surface area (BMS) ratio ranged between 4.3 and 38.6 with mean value of
16.3 across all study trees. ANOVA showed that mean BMS differed sigtijieemnong the
three species i.8. glyptostroboide$MEGL), G. triacantho GLTR) andQ. macrocarpa
(QUMA) (p < 0.001)G. triacanthoshad the highest mean BMS value compared to the trees of
the other two species: mean BM$ = 24.1, mean BM&ua = 13.4,and mean BM@ecL =
12.1. Furthermore, a strong positive relationship was found between the BMS ratio apd the D
metric of the trees (r = 0.6, p < 0.001).

The median branch order was five across all study tree species combined (range 1 to 11,
Table 4.}, with M. glyptostroboideshowing fewer branch orders than the two angiosperm
species (median 4, range 1 to 9). ANOVA showed that the branch woody surface area (BWSA)
significantly differed among the different branch orders across all study tree spedm@setbm
and within each species (p < 0.001). BWSA was mainly accumulated in lower branch orders and
the distribution of surface area was positively skewed (). 8econd and third order branches
supplied the greatest amount of BWSA across all studyspeeies combined, and fQx.
macrocarparees (Fig. 4 A, C). BWSA came mainly from second, third and fourth branch
orders inG. triacanthodrees (Fig. 44 B), and from lower order (first, second and thirdMn

glyptostroboidesrees (Fig. 4 D).
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Figure 4.4. Box-plots of branch woody surface area per branch order ad&psdl (
species combinedBj for G. triacanthodrees, C) Q. macrocarpdrees, andd) M.
glyptostroboidesrees.

Examination of BWSA by branch basal diametég( 4.9 indicated that the BWSA
followed a positive skewness, but with a somewhat bimodal distribution (except Mr the
glyptostroboidesrees). Mediunsized branches (between 4 and 11 cm base diameter
approximately) and large branches (more than 35 cm lasetbr approximately) accumulated
much of the BWSA, while small branches and twigs (less than 4 cm base diameter), though
numerous, accumulated a relatively small portion of the BWS@ @.5A - D). ANOVA
confirmed that the BWSA differed statisticallgnang the different branebase diameter classes
across all species combined and within each species (p < 0.001).

Some large trees showed very large branches, with a basal diameter greater than 35 cm
(Fig. 4.5. These "branches" were actually large forkghie stem, common to large,espgrown,

urban trees geFig. 4.7, which theTreeQSMalgorithm defined as branches. At a major fork,
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the QSM determines the longest, straightest stem to the top of the tree as main stem (see details

in the methods sectiabove), and calls the others branches.

Figure 4.5. Box-plots of branch woody surface area per braoa$e diameter class
across (A) all species combined, (B) rtriacanthodrees, (C)XQ. macrocarpdrees, and
(D) M. glyptostroboidesrees. The size of each class is 1 cm.

Because the topology of the trees is captured by the QSM, we were also able to examine
how surface area was distributed vertically in the trEes @.9. The BWSA differed
statistically (as assessed with ANOVA) amng the different branebhase height classes across all
study tree species combined and within each species (p < 0.001). Graphical ariglydi§) (
shows a parabolic distribution of relative BWSA for all study tree species combined peaking
near the midpint of the crown (0.5 on the y axisking. 4.6A). Relative BWSA peaked higher
up in the tree fo6. triacanthodrees Fig. 4.6B), about the midpoint fo@. macrocarpdrees

(Fig. 4.6C), and below the midpoint fdA. glyptostroboidesrees Fig. 4.6D).
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Figure 4.6. Relative vertical distribution (branch base height divided by total tree
height) of branch woody surface area (proportion of total branch are@))fall 6tudy trees,
(B) G. triacanthodrees, C) Q. macrocarpdrees, andl@) M. glyptostroboidesrees.
Horizontal dashed line is halfway up the tree.

4.3.2.Uncertainty Analysis of the Estimated Woody Surface feas

The coefficient of variation of the WSA of the trees indicated that the uncertainty due to
the consecutive QSM reconstructions of the same point cloud of a tree was on average 2.4% of
the mean WSA per tree across all study tree species combined, &hdrtheanthostrees had
the highest uncertainty (on average 2.7% of the mean WSA per éige,4.). The distribution
of the coefficient of variation of the WSA of the trees was positively skewed across all study tree
species combined and within each spe@and bimodal for th&. triacanthosandM.

glyptostroboidespeciesKig. 4.7A-D).
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Figure 4.7. Density plots of the coefficient of variation of the woody surface area (CV
WSA) for (A) all study trees,R) G. triacanthodrees, C) Q. macrocarpdrees, and (DM.
glyptostroboidesrees.

4.3.3.Relationships Between Woody Surface Area and Metrics of Tree Architecture

and Structural Complexity

Significant, positive relationships were found between the WSA of the urban trees, and
the D, metric, and the different metrics that account for the length of all paths from the tree base
to each branch tipr@ble 4.2 Fig. 4.8A-H). The strongest positive relationship was found
between the WSA of the trees and th®& pbrcentile of path lengths3 H D U V-RO@BY,p'<
0.001,Fig. 4.8F). However, the relationships between the WSA and thep@fcentile of path
lengths, the mean path length, and th8 Bércentile of path lengths, were not very different
(Fig. 4.9. The best and most parsimongopredictors of WSAg(Q. 4.) were the combination of
the D, metric and the 2Bpercentile of path lengths with species effethle 4.3. The
correlation between theplinetric and the other predictor variables in each model of W3aAI¢

4.2) was noftstatistically significant (i.ep > 5 %).
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Table 4.2 Woody surface area models with the highest adjusfeth& lowest AIC
values among all candidate models fitted to the data. Tree woody surface area (WSA) was
modeled as a power function of different predietombinations€q. 4.3, including box
dimension () and various statistics of path length (L), mead the 28, 50", and 78’
percentiles of path lengths. The character "| spp" denotes that species was added as a random
effect, modifying the exponent of each predictor variable in the model. Best model by each
statistic is highlighted in bold.

Model Adjusted R AIC
WSA ~ Dy + Mean L | spp. 0 0.856 599.02
WSA~Dy, + 25" % L | spp. +0 0.863 595.49
WSA~Dp+50" %L | spp. +0 0.855 599.78
WSA~Dy+ 75" %L | spp. +0 0.852 601.38

Figure 4.8. Relationships between the woody surface argéheoftudy trees (WSA
in m?) and (A) the boxdimension metric, (BH) different path length metrics with 95%
confidence interval around the regression lines. The SpCode refers to the three species codes
i.e. M. glyptostroboide$MEGL), G. triacantho GLTR), andQ. macrocarpgdQUMA).
The three species are represented with different symbols and colors.

128



The WSA was positively correlated with the crown surface area across all study tree

species combined, and within each spedies @.9A-D, p < 0.001).

Figure 4.9. Relationships of the woody surface area (WSA fjnwith the crown surface
area (CSA in M) of (A) all study trees,K) G. triacanthogrees, C) Q. macrocarparees, and
(D) M. glyptostroboidesrees. The data points of the three speciessgesented with different
colors. The 95% confidence interval has been plotted around the regression lines.

4 4. Discussion
4.4.1. Advances in Urban Tree Surface Area khsurement

In this study, we used active remote sensing (TLS) to produce detailed WSA data for
urban trees. Measuring the total surface area of the woody parts of trees has been challenging in
the past with the only direct method via destructive sampling which leasgaeticularly
challenging and undesirable for large trees in urban areas. This study provided the first
comprehensive measurements of the total algppend WSA of urban trees with TLS, including

the relative surface area of branch versus stem WSA anglete vertical characterizations of
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BWSAs for branches of different size and order. TLS has become an important tool used to
guantify the threelimensional sticture of trees (Disney et al. 2018, Malhi e28118) and more
accurate measurements of treef@ace area may be the most important new advance in tree
measurements associated with this technology. Data from Mobile Laser Scanning (MLS) could
also be used to study the WSA of trees covering larger spatial scales if occlusion effects in the
point clows are not significant. Accordirtg Dorji et al. (2021) MLSlata can be used to study

the structural complexity of trees based on fractal analysis and quantified byrtredria.

With any new measurement system come new sources of uncertainty. Our field
procedure was designed to minimize occlusion effects in the tree point clouds by scanning the
study trees from multiple directions and distances (see subsé@&i@n This reducethe
estimation uncertainty due to cylinder size and cylinder fitting errors in the generated QSMs
(Calders et al. 2015). The uncertainty in the estimates due to the consecutive QSM
reconstructions of the same point cloud of a tree, comprised only apgrtadh of the estimated
WSA across all study trees combined. This was on average 2.4% of the mean WSA per tree
across all species combinelhple 4.}, while very few trees had coefficient of variation of their
WSA larger than 5%Hig. 4.7A-D). Thereforethe consecutive QSM reconstructions of a tree
provide precise WSA estimates. This does not mean that the QSMs do not introduce bias, such as
systematically overor under estimating surface areas of different parts of the trees, when
identifying them fom the point clouds.

Some large study trees had large branches with max QSMilzemeter greater than 35
cm. Diameter overestimation of large branches (i.e. larger than 40 cm) is usually quite small in
the QSMs generated by tflieeeQSM algorithnfP. Raumaen, personal communication, 4

March 2021), but parts of forked stems can also be interpreted as branches. In other studies
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where branches were destructively sampled, an underestimation of 6% in QS§iavaster

was found for branches, with actual bas@meter greater than 60 cm, while a diameter
underestimation of 8% was observed for branches with diameters between 20 cm and 60 cm
(Lau et al.2018,Lau et al. 2019). So, we are confident in the general accuracy of the BWSA

values produced in this study.

4.4.2. Relationships of the Woody Surface Area of Trees Explained bydjbr

Theories of Tree Structure (WBE Model and Pipe Model Theory)

It has been suggested that variation in branch area is related to the diameter of a branch
and its positn in the crowr(Baldwin et al. 1997, Weiskittel and McGui2z@06). It was found
here that medium and larg&zed branches (based on their bakaineter), of lower branching
orders, accumulated the largest portion of the total BWSA. This pattern can be interpreted in th
light of the pipemodel theory (Shinozaki et dl964)and the WBE model (West et al. 1997,
West et al1999), which connect tree structure with tree physiology. Both theories assume a
fractal branching architecture whose vascular structure is an asggnbltubes that taper from
base to tip; so larger, lowerder branches accumulate more conducting aneconducting
tubes over their length, resulting in greater cumulative veltimt scales with WSA (Enquist
2002). Similarly, Weiskittel and McGuirQ06), found that on average 82% of the total branch
surface area in Douglds (Pseudotsuga menziésiiees was allocated infsimary branches
(those attached to the main stem). However, Meir et al. (2017) found that small branches
significantly contributed to the WSA of trees growing in a tropical rainforest.

According to the models produced in this study, much of the varitithe non

photosynthetic surface areas of urban trees can be explained by a combination ef fractal
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structural complexity (quantified by the, hetric), and "hydraulicsize (quantified by the
Euclidean metric of the 35percentile of the path length®esSmih et al.2014), which are
constrained by the genetics of tree species.

Smith et al. (2014) defined the path fraction metric as the ratio of the mean path length to
the maximum path length from the tree base to each branch tip, in order to quantiit t
extent a real branch network differs from an ideally fractal branch network, such as that
described by the WBE theory. In this study, the path fraction was not significantly related to the
WSA of the trees, but as expected, significant relationsigpre found between the WSA and
various statistics from the distribution of path lengths. This suggests that the absolute mean,
variation and distribution of path lengths may better help to characterize surface area complexity
than the mearelative path kength (a.k.a. the path fraction of Smith et al. 2014). Weiskittel and
Maguire (2006) found that the WSA of Douglas(Pseudotsuga menzigsiiees increased with
crown length, which agrees with the positive relationship that was found in this anatys&siioe
the total WSA of the urban trees and th& pBrcentile of the path lengths, which is the
frequency of the shopath lengths that affects crown length.

The WSA of the studied urban trees was found to increase with theirdiketal
architectureas quantified by the Pmetric (Seidel et ak019b). Accordig to the WBE model
(West et al1997), this pattern implies efficient respiration rates and sufficient supply for energy
demanding units, e.g. leaves, chloroplasts (Price and Enquist 200Gjsédua inherent fractal
character of trees allows them to maximize the scaling of their external surface areas for gas
exchange with the atmosphere, while minimizing the internal vascular distances for transferring
and allocating the available resourceslifferentorgans and tissues (West et al. 1999, Enquist

2002, Price and Enqui2006).
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An important issue to consider, when analyzing the relationships between surface areas
and metrics of crown fractal complexity, is whether the observed patternsndoerded with
tree size (e.g. DBH, total tree height etc.). Theriatric is reported to be scale and isgee
independent (Seidel et al. 2019a, Seidel G19b), and therefore, we can use it to compare
trees of different size (Seidel &. 2019b).Further analysis showed that the relationship between
the total woody volume of the study urban trees computed from QSMs and etz was not
statistically significant (p > 5%), suggesting that both smaller and largleime trees can be
structurallycomplex. This could mean that architectural changes that occur through the ontogeny
of trees, e.g. development of higher order branches and altered stenctoretationships
(Seidel et al2019a), might explain more complex structures in larger tneese than their size,

per se

4.4.3. Anatomical and Physiological Implications of Surface Area lfocation

Patterns

The surface area distribution found for these urban trees and the theories described in the
previous sections have implications for understanding the anatomical structure and physiological
function of urban trees, and trees in general. This study enatti@ealy the computation of the
total WSA of trees, but also the analysis of its distribution into different components (stem and
branches).

As expected, the brangb-stem surface area ratio of the trees was found to increase with
their structural complety (as captured by thegDnetric), underscoring the contribution of
branching taccrown complexity (Seidel et @&2019b). This ratio was found to significantly differ

among the studied species, so, in this sense, it describes the resource allocation™décis
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different species to invest in increasing branch versus stem surface areas, as a functional
response to urban environments. The squat form of urban trees (i.e. a wide tree crown with a
short trunk) gives them mechanical stability against wind loadgies (MacFarlane and Kane
2017), andeflects the tendency of trees to allocate less resources to growing a taller main stem
as the crownhg conditions decrease (Weiner 2004, MacFarlane and R@hé). Makela (1997)
found that "branchiness" of Scgisme Pinus sylvestristrees (described as the ratio of total
branch crossectional area to stem surface area), increased as stand density decreased. So, this
pattern appears to hold for trees growing in both rural and urban areas. As such, the branch to
stem surdce area ratio could be an important component of the '{siiattural economics
spectrum, which explains speciestructural diversity in terms of tree architectural traits along a
spectrum balancing light interception, carbon allocation ancharecal stability (Verbeeck et
al., 2019).
WSA of trees relates to their respiration rates and captures broad maietenats
(Kinerson 1975, Kramer and Kozlowski 1979, Yoneda 1993, Bosc et al. 2003, Kin2@d3).
and crown surface area refers to phetosynthetically active surface of trees arartenergy
income (Seidel 20191Zheng et al. 2019). Therefore, the strong and positive relationship that
was observed between the two surface areas (across all study tree species combined and within
each pecies) implies that as the respiration rate of a tree increases, its production efficiency
should also increase in order to maintain sustainable growth. Otherwise, trees should lose vigor.
For trees in natural forests and plantations, the distributibnasiches and foliage is
heavily influenced by shading or sheltering from neighigptrees (MacFarlane and Kap@17),
but particularly the need to maintain a positive carbon balance in the leaves. Weiskittel and

McGuire (2006) showed that branch surfacea peaked a bit below the middle of the crowns of
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Douglasfir (Pseudotsuga menzi@sirees, because smaller branches near the top had

considerably less surface area, while large, lower branches, with greater surface area, tended to
dieback over time, duto a reduction in sustaining leaves on branches near the base of the

crown. Xu and Harrington (1998) found that sigminant trees in a plantation of Loblolly pine

(Pinus taedadistributed most of their foliage at the top third of their crowns. Theserps.

might be expected for trees of species which are less tolerant of shade; Niinemets and Valladares
(2006) produced numerical tolerance indices ranging from 1 to 5 (1 = very intolerant to 5 = very
tolerant) rankindg?inus taeda= 1.99 andPseudotsuga enziesii= 2.78.

The three urban tree species studied here showed a branch surface area vertical
GLVWULEXWLRQ LQYHUVHO\ FRUUHVSRQGLQJ WR 1LLQHPHWYV
indices, withGleditsia triacanthos 1.61,Quercus macrocarpa 2.71, andMetasequoia
glyptostroboides: 3.00, showing patterns of branch area peaking in the upigemiddle and
lower-mid crowns, respectivelyr(g. 4.9. This result was somewhat surprising, since these trees
were opergrown and not shaded by othiezes. This suggests that ssifading of leaves and
branches could be an important element of the branching architectyrerajrown trees
(Duursma et al2010) along with inherent stia tolerance (Zeide and Pfeife991), but also
suggests a mechanissther than maintaining positive carbon balance in leaves might be at play.

Another physiological explanation of this pattern of branch woody surface distribution
could be a need to counterbalance optimizing light energy capture with the need to eniheniz
surface area for heat gain due to incoming solar radiation, and water loss through transpiration. It
is well known that warm temperatures and h&lands in cities (Gregg et al. 2003, Bowler et al.

. RV W L2019)Wals®increased ratddeaf transpiration (Pallard¥008). Niinemets

DQG 9DOODGDUHTV DOVR SXEOLVKHG GURXJKW WROHUD!
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tolerance folGleditsia triacanthos 4.98,Quercus macrocarpa 3.85, andMetasequoia
glyptostroboides 2.38), slbwing that the more drougilerant the species, the more it
concentrated branch surface area toward the upper crowhigs€e9.

Niinemets and Valladare (2006) showed, over many species, that inherent traits of shade
and drought tolerance of speciesre often negatively correlated, so the above pattern was
expected. However, this study suggests that, at least for the case-gfropenurban trees,
building a branching architecture that optimizes drought tolerance may be a good explanation for
brant surface area distribution. It may be that hydraulic limitations are not only an important
force limiting the size and hydraulic archite@wf tall trees (Ryan and Yoder 1997, Ryan et al.
2006), but also for the branching architecture of any tree witogological water stress
exceeds their photosynthetic capacity. These findings have important implications for the
management of urban forests, particularly the selection of species for urban plantings, given
expected, continued increases in global tenaipees and urbanization.

While surface area data have long been avaifablieaves (Lindsey and Bassuk 1992,
Nowak 1996, Cutini et al. 1998, Reich 2001, Peper and McPherson 2003, McPherson et al. 2016,
Dettman and MacFarlane 2018, Chianucci e2@1.9), TLS, in combination with QSMs, can
now be used to quantify the surface area of the "woody skeleton" of trees, which plays a vital
role in gas exchange with the atmosphere. Tree respiration rates are closely réhaie S A
(Kramer and Kozlowskl979, Yoneda 1993&osc et al2003) because respiration of Ron
photosynthetic tissues mainly occurs in the cambial sheath and the living annual growing rings
arownd the dead heartwood (Kinersb®75). Nonetheless, Sprugel (1990) suggested that a forest
stand with high bole WSA doesn't necessarily have high rates of respiration, so there is still a

need to scale up from tree to stand to foilestl process modeling. Respiration still contributes
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a significant portion of uncertainty related to the carbodget and offset potential ofban

forests (Tigges and Lak@917). The type of data that was produced in this study could form the
basis to develop new process models that describe the carbon balance and growth of urban
forests under a changing climateéhich has been an important focus of forest mseaodeling

for decades (Makela 1997, Valentine etl&l99).

45. Conclusions

In this study, we demonstrated the use of TLS technology to produce detailed data that
guantify the total abovground WSA ofurban trees (first study objective) and we found that the
study trees varied widely in their WSA. Furthermore, based on TLS data we studied the
allocation patterns of WSA to different components of the woody skeleton of trees i.e. stem and
branches of difrent order, basdiameter and badeeight classes (second study objective), and
we found that the urban trees allocated their WSA mainly to branches, while branch order,
branchbase diameter, and brarbhse height influenced the observed allocation qatte

Measuring the WSA of trees with TLS is a rdestructive method that allows to
explicitly account for the abowground structurafractal complexity of trees, and it does not rely
on any biological assumptions fivsee architecture (Malhi et &018)in comparison to previous
methods that approximated branch and stem geometry or estimated WSAs from allometric
equations (Whittaker and Woodwell 1967, Halldin 1985, Yoneda et al. 1990, Jennings et al.
1990, Yoneda 1993, Baldwin et al. 1997, Weiskittel Biuduire 2006).

This study showed that WSA is a function of the abgraind fractalkstructural
complexity of trees, and their "hydraulisize quantified by different Euclidean metrics of path
lengths from the tree base to each branch tip (third studgtol®). The observed positive

relationship between the crown surface area and the woody surface area of the trees (third study
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objective) implies a physiological mechanism for maintaining a positive carbon balance at tree
scale. In general, the type oftdgroduced in this study describes tree surface allometry, and it
can be used to develop new or inform existing process models that quantify the growth and

productivity of urban forests.
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CHAPTER 5
ACCURACY DIFFERENCES IN ABOVE -GROUND WOODY BIOMASS ESTIMATION

WITH TERRESTRIAL LASER SCANNING FOR TREES IN URBAN AND RURAL
FORESTS IN DIFFERENT LEAF CONDITIONS
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Abstract

Forests in bothural and urbamreaslay a vital role in terrestrial carbon cyclirapd
tree carbon stockare directly related to their abegeound biomass (AGB). Traditional
allometric models fobiomass estimation of trees miagve important limitations due to limited
sample sizeandaninsufficient size range of sampled trees, aedtructive sampling to collect
data for building these allometric modeddime consuming and costly. In this stutlyirty-one
trees of decidumiand evergreen species were sampledrad and urban forest conditions.
Terrestrial Laser Scanning (TL®)as used to estimate tree volume {ol@structively from
guantitative structure models, in combination with estimates obasiedensity from samip
disks from stems and branches obtained after scanning and felling the trees, but also in
combination with published basic density valaethe species level. Total woody AGB, main
stem and branch biomass were also computed from destructive sampingsdatference
values to compare to TkLBased values. Evergreen and some deciduous trees were scanned in
the leafon condition, and thereforbe effect ofartificial leafremoval using a leaseparation
algorithm on thel LS-basedvoodybiomass estimatasasalsostudied. Stronggreementvas
found between th€LS-basedvoodyAGB, main stem and branch biomass and the reference
biomass data across all study trasmg basic density values from destructive measureraadts
published basic densityalues taconvert the TLSbased volume estimatestimmass. The
correlation between the THSased branch biomass estimates and reference biomass data was
stronger for the urban trees compared to the rural forest trees, most likely because they had fewer
treeneighbors to occlude parts of the branches in the laser point cldwespposite pattern was
found for the TLSbased biomass estimates of the main stem of the urban and rural forest trees.

TLS-based bmass estimates from leaff and leafremovedree wint clouds werén strong
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agreement with reference biomass daétas study shows that TLS data can be used to produce
reliable total and component biomass estimates of trees, however, differences in the quality of
the biomass estimates can ariseestejirg on the growing environment, the leaindition of the
laserscanned treesnd the basic density values that are uSédse results have important

implications forstudyingthe biomass and the carbdoaks of urban and rural forests.

Keywords:terrestral laser scanningjuantitative structure modelbshoveground
biomass, components biomass, urban trees, rural forestvii@as densityleaf wood

classification

5.1. Introduction

The total aboveground biomass (AGB, kg, ovalry basis) of trees, which is an
important element of the decistomaking in forest management goalicy (MacFarlane 2015),
is definedas the total dry mass (i.e., at 0% moisture content) allocated to tlamtvidead
tissues and organs of the abayreund treestructure (Kiikenbrink et al. 2021, Burt et al. 2021).
Accurate estimation of forest AGB plays a vital role in understanding the wide range of
ecological services of rural and urban forests (e.g., béosity, pollination, temperature
regulation, water purification and infiltratio@asalegno et al. 201Baker et al2019, Phillips et
al. 2019, Nowak and Greenfield 2028ind it is essential for studying terrestrial carbon
dynamics at different spatiatales and biomes (Stovall et al. 20F9r example, it has been
found that Amazonian forests store large amounts of carbon in-gbowed live vegetation

(approximately 5660 Pg of carbon), and this finding is based on the estimation of the-above
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groundbiomass of the Amazonian forests, considering that approximaté&iQ¥&of live plant

biomass is carbon content (Burt et al. 2021). Similarly, it has been found that urban trees store
large amounts of carbon in their abay®und biomass which can be ccengble to rural forest

carbon stocks (McPherson 1998), depending on the level of tree cover and impermeable surfaces
(MacFarlane 2009). However, there is still a lot of uncertainty regarding the carbon offsets of

rural forests at different spatial scaleedo lack of accurate and detailed tree biomass data, over
multiple spatial and temporal scales (Weiskittel et al. 2015). There is even more uncertainty for
urban forests, due to a paucity of data and models for estimation of urbangabord mass

(Tigges and Lakes 2017, Wilkes et al. 2018). Therefore, it is important to continue to develop

new data and models for tree AGB across many different growing environments.

Urban and rural forest trees can have very different growth and biomass allocation
pattens, because the lower tree abundance in urban areas compared to rural forests, is associated
with less competition for light, water and nutrients (McHale et al. 2009, MacFarlane and Kane
2017). Opergrown trees in cities may grow faster than their rused$t counterparts (Pretzsch
et al. 2015) despite the potential negative effects of urban environment (Arseniou and
MacFarlane 2021), and they have larger, more complex crowns, and sharper trunk taper in order
to resist the strong wind loads which are frexat under urban and opgrnown conditions
(Telewski et al. 1997, Bang et al. 20Mphamed and Wood 2015, Salim et al. 2015, Gardiner et
al. 2016). Opeigrown, urban trees allocate the largest portion of their AGB to their branches
(Zhou et al. 2015MacFarlane and Kane, 2017), whereas trees in rural forests and plantations are
narrower in crown diameter, and they allocate more mass to their stems (Weiner 2004, Lines et
al. 2012). Opemgrown urban trees and rural forest trees may also have very diffevediyw

structure. For example, Zhou et al. (2011) found that the trunk specific gravity of open grown
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trees was greater than the trunk specific gravity of forest grown trees in the same geographic
region. So, the significant allometric and structural difiees between urban and rural forest

trees should be considered when choosing methods to quantify their AGB.

The AGB of any tree, regardless its growing environment, can be directly measured only
by weighing the tree components (i.e., branches, stem&awekl), and measuring the portion of
the green biomass that is moisture after a tree has been harvested (Burt et al. 2021, Kikenbrink
et al. 2021). However, this method is time consuming and costly, and only a limited number of
trees can be destructivelgrapled (Calders et al. 2015, Weiskittel et al 2015). Therefore, the
total AGB of trees and their biomass components (mass of branches, main stem and leaves) are
usually estimated indirectly withallometric moded™- statistical models defining relationship
between tree biomass and commemlgasured tree variables (e.g., diameter at breast height
(DBH), total tree height, and crown dimensions; MacFarlane (2010, 2015), Ver Planck and
MacFarlane (2014, 2015), Radtke et al. 2017, Dettman and MacFarlanel20d8yer, AGB
estimation fromallometric moded has important challenges and limitations. Existing models are
usually limited to certain regions and species, and large trees are usually excluded from the
calibration datasets (Calders et al. 2015, Weisléttal. 2015, Stovall et al. 2018, Disney et al.
2019, Burt et al. 2021). Harvesting large numbers of sample trees needed &dldnédric
modek (Sileshi et al. 2014, Roxburgh et al. 2015) is particularly impractical in cities
(Kukenbrink et al. 2021and equations that have been created for rural forest trees cannot

directly be applied to urban trees (Lefsky and McHale 2008, McHale et al. 2009).

Terrestrial laser scanners (TLS) provide a-destructive way to quantify the
architecture and dimensidriaroperties (e.g., woody volume) of trees growing in rural forests

and urban environments, which can then be converted to AGB estimates (Calders et al. 2020).
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TLS are active remote sensing instruments that emit laser pulses and capture-the three
dimensioml structure of their surrounding environments by creating "point clouds" based on the
returned energy that is analyzed as a function of either time-@irfight systems) or shift in

the phase of the light wave of the emitted laser beam (jsmafseedinology), and by using

precise angular measurements through optical beam deflection mechanisms (Calders et al. 2015,
Liang et al. 2016). Modeling the architecture of trees based on TLS data can be achieved by
generating Quantitative Structure Models (QSRaumonen et al. 2013, Kaasalainen et al.
2014,Hackenberg et al., 2015a). QSMs are created by fitting geometric primitives (i.e.,
cylinders) to the thredimensional poinrtlouds of trees (Bournez et al. 2017), in a way that
preserves branch and stemdlmgy and provides information about the size, the location, the
hierarchy and the orientation of the branching network. QSMs can provide, accurate direct
estimates of the total abogeound volume of trees based on the volume of the fitted cylinders,
which can be converted to AGB when multiplied by estimates of tree density, typically wood
density (dry woody biomass at 0% moisture content divided by the green woody volume) (Burt
et al. 2021, Demol et al. 2021). Estimating tree AGB from TLS data doedyotrany

biological assumptions for tree architecture (Malhi et al. 2018) ualikenetric moded, but it is

a process with its own challenges (Olagoke et al. 2016, Disney et al. (2018, 2020)), whose
accuracy depends on (1) generating faghlity pointclouds, (2) assumptions and limitations of

the QSM and (3) representative estimates of the density of different parts of the trees.

Point cloud registration accuracy and quality depends on having unobstructed views of all
parts of the trees and is alséeated by weather conditions during laser scanning (e.g., branches
swaying due to wind) and the laser scanner technical properties, and any point cloud errors are

compounded by factors related to the QSM's quality (e.g. segmentation errors, cylinder fittin
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problems) (Calders et al. 2015, Disney et al. 2018). Malhi et al. (2018) determine some major
challenges in accurately estimating tree biomass from QSMs i.e., extraction of high order
branches, and classification of woody and-m@mody parts of scannetkes. There are currently

no QSM methods that can model foliage volume by fitting cylinders to the point cloud of trees
(Stovall et al. 2017) and the inclusion of points from leafy surfaces reduce the accuracy of the
reconstruction of the woody skeletontades (Burt et al. 2021). Therefore, the artificial {eaf
removal from the leabn point clouds of trees using leassification algorithms (Vicari et al.

2019, Wang et al. 2019, Moorthy et al. 2020) is required before QSMs generation. However, we
need aetter understanding of the effect of these classification algorithms on studying tree

structure (Vicari et al. 2019, Arseniou et al. 2021a).

Even with a higlkguality tree component volume estimate from TLS there is significant
variation in wood densitietween and within species and across different environments
(MacFarlane 2020, Demol et al. 2021, Burt et al. 2021), which can create bias in AGB estimates,
if the wrong density is applied. Published averaged values of wood density are available for
manyspecies (Chave et al. 2009, Miles and Smith 2009), but there haven't been many studies
that have tested the consequences of applying these for biomass estimation (e.g., MacFarlane

2015, Demol et al. 2021).

In this study, we used Tl-Based volume estimatasd estimates of withitree density
(both wood and bark) to model the woody AGB of thotye trees of needleaf evergreen and
broadleaf deciduous species that grow in rural forest and urban conditions. The objectives of the
study were: (i) to evaluatthe accuracy of the woody AGB and branch and stem biomass
estimates derived from a TH&sed approach by comparing to tree mass measurements from

destructively sampled trees; (ii) to assess the effect of wood density (from destructive
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measurements verspablished values) on the estimation accuracy of the total and components
woody biomass of trees from Th&ased woody volumes; (iii) to evaluate the use of TLS for

total and components woody biomass estimation of trees that grow in different environments o
a continuum of crowding conditions i.e. rural forest and urban growing conditions; (iv) to assess
the effect of the artificial leageparation from leabn point clouds on the total and components

woody biomass estimates of trees of brtead deciduousnd needldeaf evergreen tree species.

5.2. Materials and Methods

5.2.1. Tree Data

The basic experimental approach in this study was to identify groups of healthy trees,
with undamaged crowns, of different species and sizes, representing diffi@ctittnal groups
(broadleaf deciduous, and needbaf evergreen species) in different growing emwinents
(rural and urban settingghat could be destructively sampled after scanning. The rural forest
tree dataset consists of ten trees of two bteafldeciduous specieQuercus rubraandAcer
rubrum and ten trees of two needtaf evergreen specieg suga canadensandPinus
strobus These trees were all sampled at the Harvard Forest in Petersham, MA, USA. The urban
tree dataset consists ohteees of three broddaf deciduous specie®\cer rubrum, Acer
saccharum, Gleditsia triacathpand one tree of a need&af evergreen specie®inus nigra
The urban trees were all sampled on the Michigan State University campus, MI, USA. The trees

were selected to cover a large range of qizable 5.).
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Table 5.1.List of the study trees growing in different environmentg gUurbanforest
RF = rural forest), belonging to different functional groups (BD = bi#teafideciduous; NE =
needleleafevergreen), and having different leaf conditions during laser scanning (Oftefipaf
On = leafon). The variables DBH, Height, Total Woody AGB, Main Stem Biomass and Branch
Biomass are based oeference data from destructineeasurements.

Tree Growing Functional Leaf DBH | Height Total
Environment Group Condition (m) (m) Woody
AGB (kg)
A. rubrum UF BD Off 0.358 | 7.96 364.099
A. saccharun UF BD Off 0389 | 12.53 901.250
A. saccharun UF BD Off 0.478 | 13.99 | 1427.948
A. saccharum UF BD Off 0.523 | 12.66 | 2081.490
P.nigra UF NE On 0.549 | 14.57 | 2008.654
G triacanthos UF BD On 0577 | 15.79 | 3576.340
G.triacanthos UF BD On 0467 | 12.41 | 1538.288
G.triacanthos UF BD On 0457 | 12.68 | 1663.478
G triacanthos UF BD On 0.432 | 14.05 | 1853.480
G.triacanthos UF BD On 0429 | 11.67 | 1524.280
G.triacanthos UF BD On 0495 | 11.80 | 1769.792
T. canadensi RF NE On 0.401 | 24.45 708.264
P. strobus RF NE On 0.137 | 15.64 51.457
T. canadensi RF NE On 0231 | 17.65 181.305
P. strobus RF NE On 0.216 | 20.39 153.642
T. canadensi RF NE On 0.180 | 16.25 120.461
T. canadensig RF NE On 0.081| 8.63 12.201
P. strobus RF NE On 0.427 | 25.36 752.809
P. strobus RF NE On 0.257 | 20.54 | 208.891
P. strobus RF NE On 0.333| 24.60 | 472.288
Q. rubra RF BD Off 0.363 | 21.60 813.403
A. rubrum RF BD Off 0.287 | 22.74 387.375
T. canadensis RF NE On 0.345 | 24.45 529 965
Q. rubra RF BD Off 0.193 | 21.15 174.977
A. rubrum RF BD Off 0.076 | 11.00 17.721
A. rubrum RF BD Off 0.218 | 23.13 247.392
A. rubrum RF BD Off 0.119 | 13.44 57.312
A. rubrum RF BD Off 0.107 | 16.86 56.248
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Table 5.1 (cont'd)

Q. rubra RF BD Off 0.267 | 23.53 401.772
Q. rubra RF BD Off 0.503 | 24.11 | 1435.951
Q. rubra RF BD Off 0.323 | 22.16 648.207

5.2.2. Reference Tree Data
The reference tree data for the rural forest trees were collected during tbe fesiod
in August, 2017. The reference tree data for the urban trees of the ghatierum A.
saccarhurmandP. nigrawere collected during the leaff period in Janugt, 2018; and the
reference tree data for ti& triacanthogrees were collected during the leaf period in
August, 2019. A detailed description of all reference tree measurements is given in the following

sub-sections.

5.2.2.1. StandingTree Measuremats

Total standing tree heights were measured witith@ulse 360aser range finder and
the diameter at breast height (DBH) of trees (1.37 m above the ground) was measured with a
diameter tape to the nearest 0.25 centimeter. Crown width was measired/aitex [V
distance measuring HYLFH ILUVW DW WKH WUHHYYVY DSSUR[LPDWH ZL(
width measurement was taken at a 90° angle from the previous measurement.

Each tree was categorized in a canopy class representing crowding conditions in a
discrete scale i.e. open grown, dominanidominant, intermediate and overtopped (MacFarlane
DQG .DQH )JXUWKHUPRUH WKH "%+ RI DOn MBI KERULQJ

radius, and their distance to the focal study trees were measured to compute a competition index
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(see5.2.2.3) that quantifies the level of crowding that the study trees faced in a continuous scale

(MacFarlane and Kane, 2017).

5.2.2.2.Destructive Measurements for Green Wights

After felling, the main stem of the tree was determined from the cut bottom to the tree's
top. At any fork in the main stem, the largest and straightest stem was followed; this was
repeated all the way to the topthe tree. All other stems connected to the main stem were
defined as branches.

After the branches were separated, the main stem was cut at 1.37 meters, 2.44 meters, and
then at 1.22 meters intervals. The green (fresh) weight of all sections was tmmedevith a
crane scale. Disks of thickness approximately 5 cm were cut from the top of the 0.15 meters
height mark (stump height), at 1.37 meters above the ground (breast height) and the top of every
section of 1.22 meters length. The green weight o €ésk (including bark) was measured in
the field and the diameters insidmnd outsidebark were measured in two perpendicular
directions on the disks, as well as four measures of disk thickness in four expaaigd
locations on perpendicular direati® (all measures to the nearest 0.1 cm). These disks were used
to compute the basic density of each section of the tree's main stehiR(2e2).

Branch measurements followed different protocols for trees of Headdnd needieaf
species. Startingt ghe base of a tree of a brekeaf species and working upward, first order
branches (branches attached directly to the main stem) were systematically cut from the main
stem. Each branch was measured for basal diameter (bd), and it was classified assithé"
EUDQFK EG FP RU VLPSO\ D EUDQFK EG - FP JRU HY

basal diameter, the linear length, its status (live or dead) and its position on the main stem were
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recorded. Branches were further separated ancheeigsing the crane scale, with second and
higher order portions of a branch with leaves. After weighing the total green weight of a branch,
the leaves and the attached twigs were clipped from the branch. The leaves and small twigs were
then weighed sepasdy for each branch and their weight was subtracted from the total green
weight of a branch. One disk was removed from thegettion of each branch and weighed
green and disk measurements were taken (as above) to compute disk green volume; these were
used to compute variation in branch basic density. Small branches with bd < 2.5 cm were
counted, their status (live or dead) was recorded, and weighed in a pile. A sample of small
branches were weighed green in the field and taken back to the laboratorytier
measurements.
For trees of needlleaf species, the first order branches are generally smaller and more
numerous than those in trees of brdeaf species. So, for these species, the trunk was divided
into 1.22 m sections, starting at the base of the tree, and alhbsawere removed from each
section and weighed green in the field. Live and dead branches were weighed separately in each
section and a whorl of the three closest branches was selected from the middle of each
measurement section to represent branchdmirsection of the tree. The basal diameter, length
and status (live or dead) of all branches in the whorl were measured and one dead and two live
branches were selected for laboratory analysis to determine moisture content and basic density.
Regardlessfospecies, "miscellaneous” branches (branches founded on the ground that
clearly belonged to the felled tree and whose location on the tree could not be determined) were
pooled together and weighed in a third pile. Because the location of these brarlbdscia

was unknown and they varied in size, it was difficult to subsample this mixed material, and thus,
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the dryweight/greenweight ratio for these branches was calculated as the weighted average of

all branches in a tree (sB&.2.3).

5.2.2.3. Meastements and Computations in the laboratory

Disks and samples from the main stem and branches were taken to the laboratory for
additional analysis. The bark of each disk was peeled as close to "green" condition as possible
and the greeiomass of the woodnd bark components was weighed separately. Finally, the
bark and wood components of all disks were edeed at 105 °C for 48 hours until reaching
ovendry biomass which was weighed and recorded. The following computations include both
the wood and thedsk components of a disk.

The moisture content of each disk (;, 4 ;Was computed from the following equation:

_KIz i2Hlz i
bg i Kl[az_ia = (eq.5.1)

where 4 4is the green weight of a disk in kg, and y, 4 is its dry weight in kg.

The dry biomassf the measurement section of the main stem or branch from which a
disk was sampled was computed from the following equation:

gecargml  bgdl  qcargml (eq.5.2)

where  4cargi#sithe dry weight of the section in kg, and ¢4, gisithe green weight
of the section in kg measured in the field.

The total AGB (excluding the foliage) of a tree was computed by adding together the dry
weight of all sections of the main stem and branches of the tree.

The basic density of each sampleskdi |, 4 4in g/cnt) included both bark and wood

tissues and it was computed from the following equation:
_Hlz i
bgq’1K_ZZZ_i§ (e9.5.3)
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where 4 qis the greefvolume of the disk (in cf) computed from the laboratory
measured dimensions of the disk whose shape was assumed cylindrical. The basic density values
of the disks were extrapolated to the section of the main stem or branch from which they were
sampled.

The basic density of the mmastem of a tree including both bark and wood tissues was
computed as the weighted average of the basic density values of the stem sections, and the basic
density of all branches of a tree including both bark and wood tissues was computed as the
weightedaverage of the basic density values of the branch sections. Weights were based on the
crosssectional area of the disk.

Finally, the competition that each rural foremtd urbarforest tree in this study faced
from its neighboring trees was computed, lbseawe expected that the uncertainty of izSed
biomass estimates will increase with competition strength due to crowding causing occlusion

effects in the laser point clouds. The competition index was computed as follows:

@>D

Cl= Alg Al fgz,r (eq.5.4)

wheren is the number of the study treesL,V WKH QXPEHU RI WKH WUHH QHL
DBH around each study tresvithin a radius of 7.3 m, s thediameter at breast height of
each tree neighbgy S thediameter at breast height of each study itr@ead <+ ¢is the
distancan metersbetween a study treend its tree neighbgr This is a distanceependent
competition index which assumes that smaller trees are more sensitive than largerheees to t

competition effects from their tree neighbors (Canham et al. 2004).
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5.2.3. Terrestrial Laser Scanning of Trees and Point CloudmBcessing

All urban trees were lasacanned with the FARO FoclsX 330 terrestrial laser scanner
(FARO Technologies Inc., Lake Mary, FL, USA). T@etriacanthodrees were lasescanned
during the leabn period in July, 2019. The rest urban trees of the other species were laser
scanned during the leaff period in November, 2017. The FARO Foéli& 330 terrestrial
laser scanner operates with laser light of 1550 nm wavelength, typical beam divergence 0.19
mrad, a range of 0.6 B30 m and it captures single return laser scanning data (Calders et al.

2020).

Each indvidual urban tree was scanned at high resolution from a minimum of four
different directions at different distances, in order to minimize occlusion effects in the captured
point clouds. The first two scans were conducted in opposite directions, froncdsthat
allowed for a clear sighting of the top of the focal tree. The other two scans were also conducted
in opposite directions (at a 90° angle from the first two scans), but from a closer distance to the
tree, to better capture its stem and its brangcharchitecture. Two or three additional scans were
conducted right below the crown of large trees with wide crowns in order to capture more dense
point clouds of the branches. Windy conditions were avoided during the laser scans. For the
spatial registrgon of all scans of a focal urban tree and the generation of a single point cloud, six
reference targetipheres were placed around the tree, following the field scanning protocols
suggested by Wilkes et al. (2017). The software SCENE 2019.2 (FARO Tegiesdiac., Lake
Mary, FL, USA, 2019.2) was used to spatiallyregister and filter all scans in an automatic
way. Finally, using the same software each tree was manually segmented from the point cloud of
the background site. This process has been shob an accurate alternative to a fully

automatic segmentation process (Seidel, 2019).
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Rural forest trees were lasstanned during the leaff period in April, 2017 using a
RIEGL VZ-400 laser scanner. This laser scanner operates with laser light afirh550
wavelength, nominal beam divergence 0.35 mrad, pulse repetition rate 300 kHz, and it captures
multiple return laser scanning data (Calders et al. 2015, Calders et al. 2020). The trees in Harvard
Forest were scanned across two plots: the 50m x 50m noi(lp trees, 48 scans) and the 20m
x 20m North plot (4 trees, 9 scans). Retroreflective targets were used to guidedbestration
of individual scans in RISCAN PRO. Trees were extracted tnebsegBurt et al. 2019)

followed by visual quality control.

TheTLSeparatioralgorithm (Vicari 2017) was used to separate and artificially remove
leaves from the point clouds of trees of evergreen spetiesfadensis’. strobusP. nigra),
and deciduous species that werenseal during the leadn period G. triacantho3. The
TLSeparatioralgorithm employs unsupervised classification of geometric features because leaf
and wood materials within a point cloud have different spatial arrangement, and "ghattiést
analysis to ehance the detection of paths through the branching network of a tree with high
occurrence frequency (Vicari et al. 2019). After the lgm®nts of the woody structure of the
trees were separated from the Igseints that belong to their foliage, a siagloint cloud was
created for each tree that consisted only from points classified as belonging to the woody

structure.

QSMs were generated from the ledif and leafremoved pointlouds of the study trees
(Fig. 51) using the algorithmreeQSMW.2.3.0 (®pyright (C) 20132017 Raumonen P.). There
are two main steps in tiigeeQSMalgorithm: (i) the point cloud segmentation into stem and
branches based on cover sets, and (ii) the reconstruction of the volume and the surface area of the

segments with cylinds (Calders et al. 201Raumonen et al. 2015)reeQSMalgorithm

164



generates multiple QSMs for each tree with varying parameter sets for the minimum and
maximum size of the cover sets whose generation is random during the point cloud segmentation
process aahit selects the optimal QSM (Raumonen et al. 2013). Therefore, the generated QSMs
can be slightly different even using the same input parameters (Calders et al. 2015). Based on the
optimal QSM parameter combination the algorithm produced 30 additionas@Sdider to

estimate the variation of the estimated tree variables (e.g. volumes), due to the inherent

stochastic component of the algorithm (Raumonen et al. 2013).

In TreeQSMhe main stem of a tree is separated from its branches following these
criteria: (i) the main stem extends near the top of a tree, (ii) it goes straight up, and (iii) it is not
too curved (the ratio of the stem length to the stem-thipaghstance, must be the minimum

among all candidate main stems) (Raumonen P., personal comtimmidane 2, 2020).

From the optimal QSMs of the leaff and leafremoved point clouds of the study trees,
their total woody volume (including bark tissues) was computed as the sum total volume of all
cylinders that were fitted to the point cloud ofeet (see closap inFig. 5.1C). The total woody
volume of a tree was further separated into the main stem and the branch volume components.
These component volumes were converted to biomass by multiplying with the basic density
values of the main stem and branches, which were cothfrota the disks removed during
destructive sampling (sée2.2.3). Furthermore, published values of bark and wood density at
species level (Miles and Smith 2009) were applied to convert the main stem and branches TLS
based volumes to biomass. Miles andt8r{2009) published specific gravity values for the
wood and bark tissues (bark and wood density relative to the density of water at temperature 4.0°

C) together with percentage of bark volume for several tree species in North America. Finally,

165



the totalwoody AGB of a tree was computed by adding together the component biomass values

of the tree.

Figure 5.1. (A) The leafoff point cloud of an urbaA. rubrumtree. (B) The generated
QSM of the tree. (C) A closep picture of the generated QSM, consisted from several cylinders
fitted to the point cloud of the tree. The colors denote the different branching orders i.e. the main
stem is colored blue, thé'brde branches are colored green, thédder branches are colored
red etcFour facets have been used to visualize the QSM cylinders.

5.2.4. Comparison between TLSbased Biomass Estimates and Reference Biomass

M easurements

All statistical analyses were denvith custom coding and available packages written in

the R software language (R Core Team 2015).

The level of agreement between the Th&ed woody AGB and component biomass
estimates with the reference biomass values from the destructive measureasensintified
with the concordance correlation coefficie@@CC (Lin 1989), which takes values betwegn
(complete discordance) and 1 (complete concordance) (Calders et al. 2015, Gonzalez de Tanago
et al. 2018). The Pearson correlation coefficientas used to quantify the relationship between

the absolute errors of the TH#ised biomass estimates and the reference biomass values, and to
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guantify the relationship between the relative errors in-bhSed biomass estimates and the

competition index. Thetatistical significance of all relationships was assessed &t %.

Furthermore, different error metrics were computed to assess the quality of the TLS

based biomass estimates (Calders et al. 2015, Fan et al. 2020, Burt et al. 2021):

X the error foreeh tree:0= <‘efeepyF <‘ofeeo.qy (eq.55)

x the relative error for each treRE =————— (eq.5.6)
Fgmk _q6
X the mean relative error across all trees (YWRE% :—|5 ~{9@5 §100%
(eq.5.7)

X the root mean square error that refers to the ovacallracy across all

trees:

RMSE = § Al BE (eq.5.8)

VWL +100% (eq.5.9)

04H =
X CVRMSE)Y =2t

In the above equations (e@s5-5.9), «<‘e f &p\is the TLSbased woody AGB or
component biomass of the main stem and branches of a tree;, ‘th¢ « ¢ . is the AGB or
component biomass from the reference measurements of a¢reef * ¢ .. |is the mean
value of it, CV(RMSE)% is the % coefficient of variation of the RMSE, n represents the total

number of trees and the index i refers to each indiVidea.

The accuracy of the Tl-Based woody AGB and component biomass estimates was
evaluated for the urban versus the rural forest trees, and for thaffleafsus the leafemoved

point clouds of the studied trees. In order to better understand ov8based woody AGB
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estimates of the studied trees were affected by the group that a tree belonged to, we fitted the

following linear mixedeffects model:

xpvk g SE LT 0 o E B (eq.5.10)

where #) $ 4 is the total abowground biomass (kg) of the study trees from TLS data,

v ¢ #8 the total abowground biomass (kg) of the trees based on reference data from
destructive measuremenks,s the intercepth; is the slope of the relationship abhé&nd Hare
the nested random effects that modify the intercept ansldpe i.e. L representke leaf
condition of the tree point clouds (leaff versus leafemoved), and H represents the growing
environment of the trees (urban versus rural forest growingogrmuent). The error termR has
an additive structure and it is normally distributed. Assumptions of variance homoscedasticity
and error normality were checked by plotting the model residuals against the fitted values, and
the QQ plots and the histogranof the model residuals. E§10 without the nested random
effects L and H becomessimple linear function between Tifaised woody AGB and reference

AGB values i.e., fixeeeffects model :  ypw ,2E ,s U o B (eq.5.11)

The accuracy comparisons of the Fh&sed biomass estimates of urban and rural forest
trees with leabff and leafremoved point clouds were based on the combination of woody
volumes from TLS data with reference wood density values from destructive nmeasts®nly

(i.e. publishedasicdensity values were not appliedthese comparisohs

Finally, the coefficient of variation was used to quantify the uncertainty in estimating
total woody AGB and components biomass from the consecutive QSM reconstrottioms

same point cloud of a tree.

168



5.3. Results

5.3.1. Uncertainty in Estimated Woody Biomass from Multiple QSM

Reconstructions

The coefficient of variation of the estimated total woody AGB, main stem biomass, and
branch biomass of the study treedicated that the uncertainty due to the consecutive QSM
reconstructions of the same point cloud of a tree was on average 4.3%, 3.1% and 6.3% of the
mean woody AGB, mean stem biomass, and mean branch biomass respectively across all study
trees combined. Ae distribution of the coefficient of variation of the woody AGB and main stem
biomass of the trees was positively skewed, but it showed a more uniform pattern for the branch

biomass of the treefig. 5.9.

Figure 5.2. Density plots of the coefficienf @ariation of (A) the total woody AGB, (B)
the main stem biomass, and (C) the branch biomass of the study trees, based on multiple QSM
reconstructions from the same point clouds of the trees.
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5.3.2. AGB andComponents Biomasg\cross all Study Trees

Biomass estimates from the Tifased approach were strongly correlated with the
biomass measurements from destructive reference data using both reference and published basic
density values for the total woody AGB of the trees, the biomass of their maineste the

biomass of their branches (see CCTable5.2, andFig. 5.3.

Figure 5.3. Regression lines between the Fh&sed biomass (kg) and the reference
biomass (kg) of the study trees for their total woody AGB, their main stem biomass and their
branch biomass. The 95% confidence interval has been plotted around the regressionlines, an
the black dashed line is the 1:1 line. The different colors represent the different sources for basic
density values, and the rural forest trees and urban trees are represented with different symbols.

It was also found that the exponential relationdl@pween the total woody AGB of the
study trees and their diameter at breast height (DBH) was similar based on reference biomass

data and TLShased biomass data with reference and published basic density values (confidence
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intervals significantly overlap)nderestimation bias of total woody AGB was greatest for large

DBH trees using published basic density valikeg. 5.4).

Figure 5.4. Relationship between the total woody AGB of the study trees and their
diameter at breast height (DBH) based on reference biomass data abddddsbiomass data
with reference and published basic density values. The 95% confidence interval has bekn plotte
around the fitted lines. The different colors represent the different sources for biomass values,
and the rural forest trees and urban trees are represented with different symbols.

The statistical metrics that were computed to assess the performdheelaSbased

biomass estimates across all study trees are given in 3able
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Table 5.2. Statistical metrics to assess the performance ot@ds®d biomass estimates

across all study trees.

With reference basic density values With published basidensity values
Metric Total Main stem| Branch Total Main stem| Branch
woody biomass | biomass | woody biomass | biomass
AGB AGB
Mean
Relative 24.5 13.8 124.1 26.3 14.1 107.7
Error (%)
RMSE (kg) 147.743 114.973 167.434 244.846 133.144 194.127
CV(RMSE)%| 17.52 30.92 35.52 29.04 35.8 41.19
CCC 0.982 0.909 0.961 0.947 0.878 0.941

The absolute errors of TkBased total woody AGB, and branch biomass using the
reference basic density values were not significantly related with the reference woody AGB, and
branch biomass valuep ¥ 0.05), whereas the absolute errors of Fl&8ed main stem biomass
increased with the refereno®ain stembiomass values (Pearson's 0.54,p = 0.0019). The
absolute errors of the TkBased total woody AGB, main stem biomass and branch biomass
using published basic density values increased with the reference biomass values (Pearson's

0.75,p<0.001;r =0.62,p< 0.001;r = 0.61,p < 0.0QL respectively).

5.3.3. Growing Environment and Leafcondition Factors Affecting the Accuracy of

TLS-basedBiomass Etimates

The results of the fixedffects model of the TL-Based woody AGB being modeled as a
linear function of the reference AGB values)(5.11) showed strong explanation power (adj. R
= 0.927), and the mixeeffects model (edb.10) which includes the nested random effects L and
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H had stronger explanation power (adj./R0.986). The results of the mixedfects model (eq.

5.10) showed that L and H were not confounded and they explained about the same portion of
the variation in TLSbased woody AGB after they were included compared to the-&Kedts

model. More specifically, the random effect L (leaf conditions-téa¥ersus leafremoved

point clouds) explained 45.9% of the 5.9% difference in the explained variation did48l

woody AGB between the fixeeffects and mixeeffects models. The random effect H (growing
environment: urban versus rural forest conditions)arpd 42.4% of the 5.9% difference in the
explained variation of TL®ased woody AGB between the fixeffects and mixeeffects

models.

5.3.3.1. AGB and Components Biomass for Urban and Ruraldfest Trees

As it was expected the competition strength tha study trees faced affected the
accuracy of TLSbased biomass estimates, while urban egremvn trees faced less competition
from neighboring trees compared to the rural forest trees of dominaswnuimant, intermediate
and overtopped canopy clas¢€able 5.3 and Fig5.5). More specifically a positive relationship
was observed between the relative error in-blaSed branch woody biomass of the study trees
and the competition index (Pearsans0.38,p = 0.033; Fig5.5). However, no significant
relationship was observed between the competition index and the relative errorshaseds

woody AGB and main stem biomass of the study trees.
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Figure 5.5. Relationship between the relative error (RE) in branch woody bioimass
TLS data and the competition index (CI) of the trees. Urban and rural forest trees have been
plotted with different colors and symbols. The 95% confidence interval has been plotted around
the regression line.

Table 5.3. Competition index (Cl) values per canopy class of the study trees

Tree canopy class Cl (mean [min, max])
Opengrown 0.03[0.01, 0.05]
Dominant 0.81[0.62, 0.99]
Co-dominant 0.97 [0.39, 1.34]
Intermediate 1.54 [0.87, 2.94]
Overtopped 3.49 [1.73, 5.61]

Strong positive correlations were found between the biomass estimates from TLS data

and the biomass measurements from reference data for the total woody AGB, the main stem
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biomass, and the branch biomass of the ruraktarees and the urban trees respectively (see

CCC inTable 5.4 andFig. 5.9.

Figure 5.6. Relationship between the Tti&ased biomass (kg) and the reference biomass
(kg) of the study trees for their total woody AGB, their main stem biomass and their branch
biomass. Urban and rural forest trees with-&&fand leafremoved point clouds havedie
plotted with different colors and symbols. The 95% confidence interval has been plotted around
the regression lines, and the black dashed line is the 1:1 line.

The statistical metrics that were computed to assess the performance of thasedS

biomass estimates for rural forest and urban trees are giVeabia 5.4

175



Table 54. Statistical metrics to assess the performance ot@ds®d biomass estimates
for rural forest and urban trees, and trees with-¢éafand leafremoved point clouds.

Rural forest trees Urban trees
Metric Total Main Branch Total Main Branch
woody stem biomass | woody stem biomass
AGB biomass AGB biomass
Mean
Relative 36.2 8.7 184.7 3.2 23 14.1

Error (%)
RMSE (kg) | 109.02 43.741 | 99.147 | 199.764 | 183.777 | 247.250

CV(RMSE)%| 29.34 15.38 113.77 11.75 34.61 21.13

CCC 0.953 0.987 0.623 0.959 0.62 0.891
Trees with leabff point clouds Trees with leafemoved point
clouds
Metric Total Main Branch Total Main Branch
woody stem biomass | woody stem biomass
AGB biomass AGB biomass
Mean
Relative 14.9 14.4 93.1 324 13.2 149.7

Error (%)
RMSE (kg) 47.26 111.693 | 108.349 | 194.846 | 117.605 | 203.601

CV(RMSE)% 7.34 31.3 37.73 19.34 30.6 32.68

CCC 0.997 0.926 0.968 0.976 0.892 0.955

It was also found based on both TLS and reference data that the rural forest trees

allocated more biomass to their main stem compared to their branches, whereas, the urban trees

showed th@pposite biomass allocation pattern.
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5.3.3.2. AGB and Components Biomass of Leadff and Leaf-removed Tree Point

Clouds

Strong positive correlations were found between the biomass estimates from TLS data
and the biomass measurements from reference data for the total woody AGB, the main stem
biomass, and the branch biomass of trees withd#afnd leafremoved point clouds

respectively (see CCC imable 5.4 andFig. 5.7).

Figure 5.7. Relationship between the Tti&ased biomass (kg) and the reference biomass
(kg) of the study trees for their total woody AGB, their main stem biomass and their branch
biomass. Trees with |&€a&ff and leafremoved point clouds that grow in urban and rural forest
conditions have been plotted with different colors and symbols. The 95% confidence interval has
been plotted around the regression lines, and the black dashed line is the 1:1 line.
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The statistical metrics that were computed to assess the performance of thasedS

biomass estimates for trees with ledif and leafremoved point clouds are givenTiable 5.4

54. Discussion

Terrestrial laser scanning (TLS) data have been systaityaused in forest ecology
since the early 2000s (Hopkinson et al. 2004, Hackenberg et al. 2015b, Calders et al. 2020). To
the best of our knowledge, this is one of the few studies that aims to evaluate and compare the
total TLS-based woody AGB and corapents biomass estimates accuracy for trees growing in
fundamentally different environments reflecting different crowding conditions (urban and rural
forest conditions), and in different leaf conditions (leafand leaff). Previous studies have
mostlyfocused in studying the total AGB and woody volume of trees growing either in rural
forest or in urban conditions (Polo et al. 2009, Moskal and Zheng 2011, Holopainen et al. 2011,
Vonderach et al. 2012, Kankare et al. 2013, Calders et al. 2015, Olscbb#dk2016, Rahman
et al. 2017, Stovall et al. 2017, Tanhuanp&é et al. 2017, Burt et al. 2021), while other studies
focused in studying the crown architecture (Moorthy et al. 2010, Jung et al. 2011, Metz et al.
2013), the stem profile (Maas et al. 20G8)d the woody surface area of trees (Arseniou et al.

2021b).

The main results of the study are discussed in the following subsections according to the
different factors affecting the accuracy of Fbh8sed biomass estimates that were revealed in
this studyi.e., overall accuracy of TL-:Based biomass estimates, the influence of the type of

basic density that is used, influence of inherent QSM stochasticity, influence of growing
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environment (urban versus rural forest environments), influence of leaf cosditahoff

versus leabn which requires artificial lealemoval).

5.4.1 Overall Accuracy of TLSbased Biomass Etimates

The overall accuracy of AGB across all study trees with the use of reference basic density
values (see CV(RMSE)%, Tal#e?), was comparable to the overall AGB accuracy that has
been reported by Calders et al. (2015) i.e. CV(RMSE) = 16.1%, and Olagoke et al. (2016) i.e.
%RMSE = 13.5%. AGB estimation from QSMs can be within 10% of the measured biomass
from destructive samplindata (Wilkes et al. 2018). The error analysis across all study trees
showed that the overall accuracy of the Ti&sed main stem biomass estimates was higher
compared to the overall accuracy of the branch biomass estimates (see error metrics in Table
5.2). This result was expected because the reconstruction of branches in QSMs is challenging
(Disney et al. 2018). The size of smaller branches is usually overestimated from TLS data
(Momo Takoudjou et al. 2018, Disney 2019), while braside underestimatioof 8% from
QSMs has been found for branches with base diameters between 20 cm and 60 cm, and an
underestimation of 6% has been found for branches withdaseeter greater than 60 cm (Lau

et al. 2018, Lau et al. 2019a)

5.4.2. Influence of Measured ¥rsusPublished Values of Basic Tree Bnsity

The wood density of trees is very variable because it relates to their mechanical

properties (Telewski 2012), their hydraulic conductance (Markesteijn et al. 2011) and their
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environmental and evolutionary strategiPssney et al. 2018). However, published averaged

values of wood density for different tree species (Chave et al. 2009, Miles and Smith 2009) are
also available because wood density is phylogenetically preserved (MacFarlane 2020).
Therefore, it is importéarto account for the uncertainty in THfised biomass estimates due to

the type of basic density that is used, which combines the density of the wood and bark tissues of

trees.

The strong agreement between the l8ed estimates of total woody AGB, msiem
biomass, branch biomass and the reference biomass data from destructive measurements across
all study trees using both reference and published basic density values indicates that TLS
technology provides a precise method for estimating tree woody &sofhlis result was also
supported byhe relationship between the total woody AGB of the study trees and their diameter
at breast height (DBH) which was very similar whether the AGB values came from QSM
estimates (with reference and published basic dewslties) or reference biomass data because

the fitted lines and their confidence intervals significantly overlapped.

The regression lines of TEBased woody AGB, main stem biomass and branch biomass
were mainly below the 1:1 line using both referencemiished basic density values. The
reference basic density values should be unbiased, which implies that the observed
underestimation in TL®ased AGB and branch biomass of large trees is most likely due to
underestimation of their volume from the QSMartRermore, all TLSased biomass estimates
using published basic density values were less accurate compared to thasBdSestimates
using reference basic density estimates (see CV(RMSE)%, Fapl&imilarly previous studies
have showed that Tl-Basel woody AGB estimates using published speesrage wood

density values were less accurate compared telbidsed woody AGB estimates using direct
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wood density measurements at tree scale (Burt et al. 2021, Demol et al. 2021), and Takoudjou et
al. (2020) eported 10% bias in Tl-Based woody AGB estimates with the use of published

wood density values due to the vertical gradients in wood density at tree scale.

According toMacFarlane (2020) the branch to stem wood density ratio significantly
varied among tres of different canopy positions and with less competitiotigbt the branch
wood density was relatively higher. This could explain the observed underestimation in the TLS
based AGB and branch biomass mostly for large urban trees when published hsisyovdéuies
were used (Fige.3 A, 5.3C, and5.4) i.e., the large opegrown urban trees had denser
branches compared to the published basic density values which are based on wood and bark

density measurements of the main stem of trees of different species (Miles and Smith 2009).

When evaluating thencertainty in TLSbased biomass estimates considering the basic
density values that are used it is important to understand how the biomass estimation errors
change with tree size. The absolute errors of-baSed AGB, and branch biomass using
reference bas density values did not relate with the reference AGB and branch biomass values,
which indicates that the overall error in the Th&ed woody AGB and branch biomass using
reference basic density values is independent of tree size and it is mainly emolom
Similarly, the error of TLSbased total woody AGB using basic density values from destructive
measurements was independent of tree size in previous studies (Calders et al. 2015, Burt et al.
2021). However, the combination of Tifased woody volumaesith published basic density
values generated absolute errors of woody AGB, main stem and branch biomass, which
increased with tree siz&onzalez de Tanago et al. (2018) also found that the error irb@t&d

woody AGB increased with tree size when psiidid basic wood density values were used.
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Similarly, Burt et al. (2021) showed that the error in woody AGB estimates from allometric

models that included published basic wood density values increased with tree size.

In general, the use of reliable rdedructive estimates of tree basic density at species or
tree level is important for obtaining accurate Fh&sed biomass estimates. In previous studies
corrective models were created based on literdiased wood specific gravity values and
variables of tk size and structure of trees to estimatelzeel volume averageeighted wood
specific gravity (Sagang et al. 20I&koudjou et al. 2020), which is approach that can be
followed for calibrating specieaverage basic density values for trees inotariregions. Future
advances inxay tomography (Van den Bulcke et al. 2019) are expected to significantly
contribute in the nowlestructive estimation of accurate basic density values at tree level.
Therefore, reliable TL®ased biomass estimates of indual trees may still be possible when
reference basic density values from destructive measurements are not available depending the
guality of the produced QSMs, and the size of the tig@s.is important for studying the AGB
of trees in urban areamdprotected forests where tree harvesting to build allometric models is
not applicablgLefsky and McHale 2008 alders et al. 2020, Kukenbrink et al. 2021). In
previous studies, AGB estimates from allometric models based on TLS data were more accurate
compared to biomass estimates from traditional and regional allometric models (Holopainen et
al. 2011, Kankare et al. 2013, Zheng et al. 2019, Stovall et al. 2018, Wilkes et al. 2018, Lau et al.

2019b, Kukenbrink et al. 2021).
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5.4.3. Influence of QSM $chasticity

According to Disney et al. (2018) there is an inherent stochastic component in tree
volume estimation from QSMs due to some Hdl@terministic procedures for fitting geometric
primitives (e.g. cylinders) to the point cloud of a tree. Heregy anklatively small portion of the
total uncertainty of the mean woody AGB, main stem and branch biomass of the study trees was
due to the multiple QSM reconstructions, which implies that the reconstruction method of the
TreeQSMalgorithm is robust. Theoefficient of variation of the branch biomass of the trees was
the largest compared to the woody AGB and main stem biomass, indicating that the
reconstruction of the branches of a tree is relatively more variable compared to the main stem

reconstruction;his is most likely related to the size of the branches (Disney et al. 2018).

5.4.4 Influence of Urban Versus Rural Environments on TLS-basedBiomass

Accuracy

Strong agreement was found between the-baSed estimates of total woody AGB,
main stem biomas branch biomass and the reference biomass data from destructive
measurements for both urban and rural forest trees. Calders et al. (2015) and Gonzalez de
Tanago et al. (2018) also found strong correlations between the total woody AGB of rural forest
trees from TLS and reference data (concordance correlation coefficients were 0.98 and 0.95,
respectively). Momo Takoudjou et al. (2018) compared the total woody volume and the
component volumes of stumps, stems and crowns of rural forest trees from TL3tllata w
reference woody volume data and they found that theldds®d volume estimates were very

precise and accurate (adf Values greater than 0.98) and the they also reported adklu
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equal to 0.97 for tree AGB. Fewer studies have focused orb&E&8 biomass estimation for
urban trees. A recent study by Kiikenbrink et al. (2021) reported adjlie equal to 0.95 for

the TLSbased woody AGB of urban trees compared to reference AGB data.

The error analysis revealed thihaé TLSbased woody AGB of thrural forest trees was
less accurate and had a greater CV(RMSE)% compared to the urban trees; and it was comparable
to the coefficient of variation of the root mean square error for the AGB of tropical trees
(CV(RMSE) = 28%) that was reported by GonzalezTanago et al. (2018). However, Calders et
al. (2015) studied the AGB of rural forest trees form TLS data and they reported CV(RMSE)%
equal to 16.1%, which is more comparable to the CV(RMSE)% of thebBk8d woody AGB
of the urban trees in this studyjomo Takoudjou et al. (2018) found that the % mean relative
error of the TLSbased woody AGB of rural forest trees was 23%, which is comparable to the
mean relative error of the TESased woody AGB of the rural trees in this study. According to
Kikenbrinket al. (2021) the RMSE of the TEH$&sed woody AGB of urban trees was 556 kg,
which is larger than the RMSE of the THb&sed woody AGB of the urban trees here, however
the CV(RMSE)% of the AGB which accounts for different tree sizes was not providedrin the
study. Vonderach et al. (2012) reported a bias in the total tree volume of urban trees ranging
betweenb5.1% and +14.3% based on a vekaked method for tree volume estimation from TLS
data.The CV(RMSE)% value of the Tl-Based branch biomass of thealuforest trees was
substantially larger compared to the urban trees, and it was mainly based on three trees of
needleleaf evergreen species (i'e.canadensiandP. strobu$ whose leaves were artificially
removed before the QSMs generation. Withoasththree trees, the CV(RMSE)% of the TLS

based branch biomass of the rural forest trees reduced to 60%.

184



The correlation between the Tifased branch biomass and the reference biomass values
was stronger for the urban trees compared to the rural fogest This pattern may be related to
less occlusion effects in the crown of the point clouds of the urban trees due to less tree density
compared to the study trees growing in forest conditions where the view of the laser scanner can
be obstructed by tHereground vegetation (Wilkes et al. 2017). Indeed, it was found that the
relative error in TLSbased branch biomass of the study trees increased with the competition
strength that they faced from their tree neighbors, while the urbargopem trees fawk
significantly less competition compared to the rural forest trees of different canopy classes.
Furthermore, the two groups of trees were scanned following different scanning patterns and
using different laser scanning systems, which both can affecu#igycpf the TLS data (Wilkes
et al. 2017). More specifically, the rural forest trees were scanned based on a scanning grid on
plot level, whereas, the urban trees were individually scanned at tree scale in order to further
reduce the occlusion effectstime tree crowns. We also need to notice that the performance of
the TLSbased branch biomass estimates of the urban trees wasdigttergh the trees in
Harvard erest were scanned with the Riegl RO laser scanner which typically captures good
guality point clouds of trees (with less noise) in dense forests, as it has greater maximum range
and it better resolves small branches compared to the FARO?R¢B80 terrestrial laser

scanner (Calders et al. 2020) that was used to scan the urban trees.

Theresults also showed that the Tb8sed stem biomass estimates of the urban trees
were less accurate compared to the main stem biomass estimates of the rural forest trees. In
general, urban trees tend to have wider crowns and less discrete main stenedaopaasl
forest trees which typically have a spindly main stem (MacFarlane and Kane, 2017). Therefore,

the detection of the main stem in the QSMs might have not aligned well with the "main” stem of
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the urban trees based on the reference data from ctestrmeasurements, which can explain

the observed lower accuracy of the Th&ed main stem biomass estimates for the urban trees.
This explanation is further supported by the opposite biomass allocation patterns of urban and
rural forest trees that wasund in this study. More specifically, the urban trees allocated more
biomass to their branches versus their main stem compared to the rural forest trees. This biomass
allocation "decision" of opegrown urban trees enhances their mechanical stabilitpstgai

strong wind loads in the complete absence or reduced competition for light from neighboring

trees (MacFarlane and Kane 2017). In a previous study, Tanhuanpaa et al. (2017) 1&p8fted

underestimation in stem biomass of urban trees from TLS data.

5.4.5. Influence of the Leafremoval Algorithm on TLS-based Biomass Acuracy

According to the model results the fixed effects model%dd.) explained most of the
variation in the TLSbased woody AGB of the study trees andléaé conditions (leabff versus
leaf-removed point clouds; €§.10) explained a substantial portion of the relatively small
residual variation. This explains the strong agreement betweé&rattadf and leafremoved
TLS-based biomass estimates and #ference biomass data. However, the total woody AGB
estimates from the lealfff point clouds were more accurate (see CV(RMSH)&hle 5.4. The
overall accuracy of the woody AGB estimates based on thedeaived point clouds was
comparable to the woody@B accuracy based on leafff point clouds in previous studies e.g.
CV(RMSE)% = 16.1% according to Calders et al. (2015). Momo Takoudjou et al. (2018)
performed a manual but still artificial leeémoval from the leabn point clouds in their study

and thg reported an agreement between Tz8ed woody AGB and reference biomass data (R
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= 0.97) which aligns with the agreement between the-Bas&:d woody AGB after the

algorithmic leafremoval and the reference woody AGB in this stuélg.(5.7A). However,

Momo Takoudjou et al. (2018) did not examine how the maautificial leafremoval process
affected the estimation of the main stem and the branch biomass of the trees. Our study also
showed that the overall accuracy of the Th&sed biomass of the maimist from the leabff

point clouds was very similar to the overall accuracy of the main stem biomass from-he leaf
removed point clouds, which was expected because thedpafation algorithm should not

affect the main stem of the trees. Similarly, theuaacy of the TLSbased branch biomass
estimates after the artificial leaémoval was comparable to the branch biomass estimates from

the leafoff point clouds (see CV(RMSE)%able 5.4.

The tree with the largest absolute error and underestimationSrbased AGB and
branch biomass was an urban tre&ofriacanthosspecies which had the largest woody AGB
and branch biomass and whose leaves were artificially removed (seB.Figand5.7 C). G.
triacanthostrees have compound leaves with modular architecture i.e. the leaf blade consists
from several leaflets stemming from the leaf rachis (Champagne and Sinh&ko@dnberg et
al. 2012). According to Wang et al. (2019) ksaparation algorithms typicaltietect leaves as
simple flat structures, which implies that the modular structure of compound leave$xof the
triacanthostrees may confuse the leséparation algorithms. Therefore, the leaf type of a tree
species can affect the quality of the artifi¢emf-removal results (Moorthy et al. 2020).
However, the TLSased biomass estimates of the @&striacanthogrees which were of
smaller size in terms of AGB and branch biomass were not significantly underestimated after the
artificial leafremoval. This could imply that the effect of leaf type on the performance of the

TLSeparatioralgorithmmay also depend on tree size in terms of branching complexity.
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Similarly, Arseniou et al. (2021a) found that the artificial fexhoval using th&LSeparation
algorithm introduced an underestimation of the frastalctural complexity of urban trees Gf
triacanthosspecies which increased with maximum branch order, while larger trees tend to have
higher branch orders (Seidel et al. 2019). In general, despitxistence of different algorithms

to separate leaves from the leaif point clouds of trees of needéaf and broadeaf species

(Stovall et al. 2017, Vicari et al. 2019, Wang et al. 2019, Moorthy et al. 2020), there is no best

approach that fits for Bleaf-wood classification cases in forest conditions (Moorthy et al. 2020).

55. Conclusions

The aboveground biomass of urban and rural forest trees is directly related to important
ecological and economic services of forests e.g. atmospheric caradedequestration, bio
fuels etc. Therefore, the accurate monitoring of the biomass of trees is essential. Terrestrial laser
scanning (TLS) is an active remote sensing technology which has been used to study the
architecture and biomass allocation pateshtrees (Liang et al. 2018) and it has been recently
added to the IPCC guidelines for national greenhouse gas inventories (Kukenbrink et al. 2021).
Furthermore, TLS allows to study the abayeund biomass in areas where tree harvesting is
not applical® or preferable i.e. protected forest areas and urban sites; while studying the biomass
allocation patterns of urban trees can inform us about the growth limits of different species
(Calders et al. 2020). This study demonstrates that TLS data providideralveground
biomass estimates of trees, whose quality can vary depending the basic density values that are
used, the growing environment of trees (i.e. urban versus rural forest growing conditions), and
their leaf conditions (i.e. leadff versus leaon which requires artificial lealemoval). The study

results have important implications for studying the biomass and the carbon stocks of forests,
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especially for trees in urban areas where there is a paucity of allometric models for tree biomass

estimaion (Tigges and Lakes 2017).
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6.1. Synthesis

6.1.1.Differences in Fractal Metrics for Characterizing Tree Architecture

The previous chapters have produced new knowledge about the architecture and the
fractalstructural complexity of trees in urban areakich gives us a deeper understanding of
their physiological responses to their growing environment. Fractal analysis (Mandelbrot 1983)
provides the fundamental theory and principles for analyzing tree architecture; however, there is
significant ambiguityegarding the methods and the metrics used to quantify the inherent fractal
like architecture of trees and their biological/ecological interpretation. More specifically, Halley
et al. (2004 noted that applying fractal values to natural objects is, iergérdependent on the
method used, and Mandelbrot (1983) warned against the underlying ambiguity of a precise
mathematical interpretation of fractal dimension (Halley et al. 2004).

The study of the seBimilar character of trees depends on the thexalathodels that are
used to quantify and interpret the fractal dimensiotmess. Niklas (1994) explaingldree
models following engineering design principles that dictate different scaling relations among
stem length, diameter and magh) elastic seHsimilarity, (2) stress sefsimilarity for self
loading of trees, an(B) geometric selsimilarity, when windloads are the main factor of tree
mechanics. In this dissertatidhe fractal dimension of urban treesmsquantified with the twe
surface method and the "boxdimension” metric () andinterpreted based on the metabolic
scaling theory (West et al. 1997, West et al. 1999)tlaegipemodeltheory (Shinozaki et al.
1964, Chiba 1998onsidering the biological scaling of the volume and surface area of the
different components of tree structufée twosurface method and tti®, metricare based on
different theoretical assumptions and they require different types of data to qusnfiigdtal

dimension of trees.
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The study presented in the first chapter used a variant of thestiace" method (Zeide
and Gresham 1991, Zeide and Pfeifer 1991, Zeide 1998) to quantify the fractal dimension of the
crowns of thousands of trees of seVepecies across different climatic regions in the United
States. The fractal dimension based on this method refersdesthbution of leaf surface area
within a crown volume occupied by the leaves and branches. This measure of fractal dimension
takesvalues between two and threge{de and Gresham 199The twosurface method
essentially includes the foliage of tree crowns, but it doesn't allow to explicitly account for the
contribution of the two main components of a tree's crown to its fractal siomethe branches
and the leaves. Therefore, in the third chapter of the dissertation TLS data of urban trees were
used to compute thepbnetric which quantifies their aboxground structural complexity (Silva
et al. 2006, Seidel 201,8h order to disemngle the contribution of leaves and the woody
skeleton of trees.

The D, metric has no units anoh contrast to the twgurface methadts possible values
range between one and three. These two methods not only provide metrics on different scales but
their interpretation is also different. More specifically, trees with greaibwn complexity and
"spacefilling character" have Pvalues closer to three, and 8qual to one implies a perfectly
cylindrical stem with no branches, e.g., a dead tree (S2d€l). However, the tweurface
method focuses on the distribution of foliage within crown volumefi@utial dimension equal
to two means that the foliage is distributed on the crown's periphery and the crown surface is a
classic, flat Euclidean surfac&ccording to the same method, as the fractal dimension increases
the crown surface becomes more fractal until the fractal dimension is equal to three, when the
foliar surface is evenly distributed within a given crown voluZeide and Pfeifer 1991, Zeide

and Gresham 1991). Benefiting from the inherent differences of the two methods, which requires
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more research to better understand why and how they differ (see 6.3), it was possible to answer
two important research questions of the disserta{iprHow theurban growing environment

and speciespecific effects affect the structure and function of trees at different 3caihe2)

what is the role of the photosynthesizing and-pbotosynthesizing components of trees in their

fractalstructural complexity

6.1.2. Urban Environmental Effects Versus Speciespecific Effects on Tree
Architecture and Physiology

Tree architecture is genetically controlled and environmentally altered (Seidel et al.
2019a), and it is important to understand how the-opiknvironment in cities affects tree
architecture. The study results in the second chapter indicated that trees exhibit reduced crown
fractal dimension mainly to reduce water loss through transpiration in hotter cities. Trees of
different species with diffent drought tolerance reduced their surface to volume ratios at both
whole-crown and leaf scales, paglapting them to drougistress in urban ecosystems; while
adjusting for the temperature of cities and intrinsic species effects, it was found thaemohg h
urbanized areas had a negative effect on trees' fractal dimension. Another important result was
that urban trees followed different patterns of structuring their frikatrowns based on their
life-history traits. More specifically, needleavel species showed a clear tradeoff between
optimizing the fractal dimension of their crowns for drought versus shade tolerance, whereas
broadleaved species showed a fractal crown architecture that responded principally to inherent
drought tolerance. Thesesults have significant management implications for urban forests,
because we can inform arborists how to better manage urban trees for optimizing their several

sociaecological benefite.g., shading, air pollutant uptake, energy saving for buildings,
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temperature regulation, carbon dioxide sequestration (Heisler M@88erson et al. 1994,
McPherson 1998\owak and Crane 2002, MacFarlane 2007, Casalegno et al. 2017, Tigges and
Lakes 2017), which all depend on the crown architecture of trees. Moracgibgiin regions
with arid and warm climaterborists could plant drought tolerant species of lower fractal
dimension or they could select less drought tolerant species with larger fractal dimension that can
cast deeper shad€he latter would require one frequent wateringwhich implieshigher water
maintenance costs.

A common pattern revealed in the second, third and fourth chapters of the dissertation is
the relationship between the fraesatuctural complexity of trees growing in urban areas and
their inherent functional traitspecificallydrought and shade tolerance. Chapter two showed that
very shade tolerant (and less drought tolerant) species distribute their leaves more evenly within
their crown volume, which helps to explain why the trefeGleditsia triacanthospecies in the
third chapter had the smallest contribution of leaves in their crown complexity compared to the
trees of the other two studied speci@si€¢rcus macrocarpa, Metasequoia glyptostroboides
According to Niinemets and Madares (2006)G. triacanthogs the least shade tolerant of all
studied species, which implies that their leaves are widely spaced mainly in the crpomn top
order to increase crown porosity and reduce localsseltling (Sack et al. 2006). The leaves
distributed in the crown periphery are "sun" leaves and they havegesdtmass per unit area
in order to reduce water loss through transpiration (Abrams and Kubiske 1990, Sack et al. 2006)
Thethe study in the second chapter showed a negativeoredhtp between leaf mass per unit
area and crown fractal dimension. Finally, chapter four showed thathseling of leaves and
branches and inherent shade tolerance could be an important element of the branching

architecture of opegrown trees (Duursmet al., 2010), because the three studied urban tree
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species indicated a branch surface area vertical distribution inversely corresponding to Niinemets

DQG 9DOODGDUHTV VKDGH WROHUDQFH LQGLFHYV

6.1.3.Photosynthetic Versus Norphotosynthetic Componerts of Urban Tree
Architecture

The contribution of photosynthesizing and ftotosynthesizing components of trees to
their aboveground structural complexity has implications for their carbalance through
photosynthetic and respiration efficiend§irferson 1975, Kim et al. 2007, Seidel 2019b, Zheng
et al. 2019). The Pmetric computed from leadn and leaff point clouds of deciduous urban
trees on Michigan State University cametpeddisentangle the different components of the
structural commxity of trees. Opegrown urban trees were chosen as objetstudy, because
it was expected better quality of THfsed measurements of tree attributes without occlusion
from neighboring trees, but also because the low, or complete absence of comfetititree
neighbors in cities should allow trees to better express their inherent fractal character in terms of
structural complexity (MacFarlane et al. 2014, Eloy et al. 2017, Seidel 2018, Dorji et al. 2019).
The study presented in the third chaptewvetd that the Pof the leafon tree point clouds was
significantly greater than the,df the leafoff point clouds across all speci@he index
capturing the contribution of leaves to the structural complexity of the study trees was negatively
correlatel with branch woody surface area and different metrics of the length of paths through
the branch network of the trees, indicating that the contribution of leaves decreases as branch
network complexity increases. These results have important implicatiosisiftying the fractal
structural complexity of trees in leah and leaoff conditions, because the presence of leaves

influences the modeled patterns of the fratka architecture of trees.
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6.1.4.Studying the Aboveground Allometry of the Woody Surface Area and Woody
Biomass of Urban Trees with TLS

The observed relationship between the woody surface area of the branches of the study
trees and the contribution of leaves to their abgneeind structural complexityndicated a
potential connection bewen the abovground woody surface area of trees and their structural
complexity, which aligns with research hypotheses in previous studies (Whitaker and Woodwell
1967) thiswas thoroughly studied in chapter folvfore specifically, it was found that thetal
woody surface area of the studied urban trees increased witl thetiic of their leafoff point
clouds, but it was most strongly correlated with th8 g&rcentile of path lengths from the tree
base to every branch tip. Furthermore, the samplaahurees mainly allocated woody surface
area to branches, which changed with branch order, bizasshdiameter, and branbhse
height, and the brandio-stem area ratio differed among the studied species and increased with
the O, metric. It was also fend that the woody surface area of the trees increased with their
crown surface area across all species combined and within each species, which implies a
physiological mechanism for maintaining a positive carbon balance at tree scale.

According toWeiskittel et al. (201pthere is still a lot of uncertainty regarding the carbon
offsets of rural forests at different spatial scatiege to lack of accurate and detailed tree biomass
data, over multiple spatial and temporal scales (Weiskittel et &).20his uncertainty
becomes stronger for trees growing in urban areas (Tigges and Lakes 2017, Wilkes et al. 2018).
Therefore, the study presented in the fifth chapter of the dissertation evaluated the accuracy of
TLS-based estimates of the abay®undbiomass of trees in different growing and leaf
conditions.The results of the study showed that Tih&ed total and component biomass

estimates of trees are reliable, and differences in the quality estenataected byhe
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growing environment, the léaondition of the lasescanned trees and the basic density values

that are used. These results are importangttatying the biomass of trees in urban aseab

protected forestsvhere tree harvesting to build allometric models is difficult to befjedti

(Lefsky and McHale 20087 alders et al. 2020, Kiuikenbrink et al. 2021). The hypothesis of TLS
based tree measurements of better quality in urban areas due to absent or reduced occlusion from
neighboring treeswhich was integral of the experimental iggsin chapters three and four, was
validated in the fifth chaptelt was shownthat the TLSbased branch biomass estimates

correlated more strongly with reference biomass data for the urban trees compared to the rural
forest treesand therelative erro in TLS-based branch woody biomass of the study trees

increased with the competition they faced.

6.1.5.Methodological Considerations for Studying Tree Architecture from Leafon
TLS Data

In chapters three and five the effect of the artificial-lemhovd on estimating the
structural complexity and the biomass of trees was studied. In both chaptEtS#maration
algorithm (Vicari 2017was used to algorithmically remove the leaves fromdeatree point
clouds and subsequently for each tree thenBtric and the total and components biomass were
estimated. In chapter thraewas found that the artificial leaeémoval introducetbias to the
leaf-removed B of theG. triacanthosandM. glyptostroboidesrees compared to the, Of the
leaf-off point clouds. Chapter five showed that the accuracy of thelddsed branch and stem
biomass estimates after the artificial keamoval was comparable to the branch and stem
biomass estimates for trees that were scanned woteabnditions, despite the lowaccuracy

(underestimation) of the Tl-Based woody AGB from leakmoved point clouds. The results of
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these two studies imply that the potential bias due to artificiakéabval can be stronger when

the fractalstructural complexity of leafemoved pait clouds is studied compared to their FLS
based biomass. The,inetric is computed directly from point clouds of trees, and therefore, the
missclassification of lasepoints as leaves due to the shape of leaves (Vicari et al. 2019, Wang
et al. 2019) anthe branching architecture of trees can introduce a significant bias tg the D
computation (see the results in chapter three). However, the accuracy-bb3e&d biomass
estimates also depends on the quality of the QSM volumes and the use of appropdate ba
density values. An explicit accounting of the error sources is challenging because we don't have
a complete control over them, and different types of errors can be correlated (Burt et alA2021).
previous study the artificial leaémoval using théeWoSalgorithm resulted in the

underestimation of the total woody volume of trees in the generated QSMs, while only the stems
and some large branches were detected in coniferous trees (Wang et al. 2019). In general, the
results of the artificial leafemova should be carefully examined and the effects on estimated

tree attributes should be further studied. We still need a better understanding of the effect of

classification algorithms for leaf separation when studying tree architecture (Vicari et al. 2019).

6.2.Accounting for Different Sources of Uncertainty in Studying Tree Achitecture
from TLS

It is important to account for the technical parameters of different laser scanners when we
analyze tree architecture from TLS data. Terrestrial laser scasuarshe surrounding
environment stepwise using a fast vertical mirror rotation and a slower horizontal instrument
rotation and systematic errors can occur due to imperfections in instrument manufacture and
assembleRotation axes are supposed to be miyuaithogonal and they should intersect at a

specific common point. However, these assumptions do not always hold true (Liang et al. 2016).
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Pueschel (2013) studied the effect of different technical characteristics of the FARO Photon 120
laser scanner oneiguality of scanned trees. More specifically he focused on the effects of
scanner resolution (the angular step size), scan sgeatu(ber of laser pulses per second),
and pulse duration (signal to noise ratio) on the detection of tree stems, artdrthgazsof tree
diameter and total tree volume. He found that the accuracy of stem detection, and the quality of
tree diameter and volume estimates were not significantly affected by the scan speed, and the
pulse duration. However, the scan resolutiondadnificant effect and its magnitude depended
on the range. Therefore, Pueschel (2@t?)cludes that higher scanning resolution is required at
larger distances from a focal tree.

According to Wilkes et al. (2017), the recommended distance for scgimaiividual
trees is less than 10 m and the recommended scan resolution is 0.04 degrees. The footprint size
of the scanner significantly affects the quality of the data. Branches of similar or smaller
diameter than the TLS footprint size at a given distaare not sufficiently captured in a point
cloud (Disney et al. 2018). This issue becomes more pronounced at the upper parts of tree
crowns due to larger occlusion, and due to larger distance from the scanner. The pulses that reach
the upper parts of theowns have larger footprint due the laser beam deflection (Disney et al.
2018). The current commercial laser scanners have footprint-Size2at 100 m range and
branches less than 5 cm diameter cannot be effectively captured at large distances{@isney
2018). Due to this issyghere is more uncertainty in volume estimation of smaller branbbées
this affects only a small portion of the total aboveground tree volume (Disney et al. 2018). In the
studies compiled in this dissertation, the FAROUEIEX 330 terrestrial laser scanner was used
to scan the study trees, and according to Calders et al. (2020) the technical characteristics of this

scanner allow for resolving small branches. All study trees were laser scanned from multiple

209



directions andlistances at high scanning resolution, following the field scanning protocols
suggested by Wilkes et al. (2017).

Another source of uncertainty originates from QSMs that has a stochastic and a
deterministic component (Disney et al. 2018, Malhi et al. 200t&).stochastic component refers
to nondeterministic processes for fitting geometric primitives in a point cloud and the systematic
component relates to the assumptions inherent to each QSM algorithm (Disney et al. 2018). In
chapters four and five it wdsund that the uncertainty due to the consecutive QSM
reconstructions of the same point cloud of a tree was a relatively small portion of the mean
aboveground woody surface area and woody biomass per tree across all study tree species
combined. This doesohmean that the QSMs do not introduce bias, such as systematicatly over
or under estimating surface areas and biomass of different parts of the trees. Finally, the
algorithmic leaf separation introduces an additional source of uncertainty (Malh2@18).
The results in chapter three provided new insights into the effects of the algorithmic leaf
separation on studying tree architecture (also see 6.1.5). According to Burt et al. (2021) an
explicit accounting of all different error sources is challagdecause we don't have a complete

control over them, and different types of error can be correlated.

6.3. Evaluation of theAnalysisMethods and Further Research @portunities

The underlying ambiguity inhereirt the methods used to study the fradites
architecture of treedHalley et al. 2004), makes it essential to reflect on the analysis methods in a
critical way to identify opportunities for future research that will deepen our understanding of the
structual complexity and architecture of trees. The variant of theswéace method that was
used in the second chapter provided significant results and new insights into the fractal

dimension of the crowns of thousands of trees of different species in rétatloair functional
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traits and stress tolerance. The publicly available dataset that was used in chapter two
(McPherson et al. 2016) haslependent measurements of leaf area and crown volume of the
trees, and the leaf area westimated for every treeing a novel photographic method

developed by Peper and McPherson (2003). The occluded portions of foliage when a
photographic method is used could imply conservative leaf area estimates. This hypothesis was
tested here by comparing leaf area estimates dligital image analysis and destructive
measurements for fiv8. triacanthodrees sampled on the Michigan State University campus,

and the analysis showed an underestimation of leaf area using the photographic method (see
Supplemental File 6)1However this comparison was based only on few trees of the same
species and similar crown structure and crown porosity. Therefore, further analysis is needed to
evaluate the accuracy of the photographic method (Peper and McPherson 2003) based on a large
sample odestructive measurements of trees of several species.

A different way to obtain leaf area estimates is from TLS data (Hosoi and Omasa 2009,
Béland et al. 2011, Béland et al. 2014), which is a more precise methodology. Future work can
focus on studying thieaf surface area and the leaf angle distribution (Stovall et al. 2021) of
urban trees from TLS data in order to better understand how different leaf properties affect the
structural complexity of the crown of opgnown trees. One of the main findingstive first
chapter was that adjusting for the temperature of cities and intrinsic species effects, the fractal
dimension of tree crowns was lower in more heavily urbanized areas (with greater paved area or
buildings) and due to crowns conflicting with uilwires. Data describing in more detail the
ecaphysiological local growing environment of trees (e.g. soil properties, seasonal variation of
the amount of light transmitted through a tree's crown) can deepen our understanding of the

crown fractal dimenisn dependency on the local growing environment of urban trees.
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The D, metric (leafon and-off) that was used in chapters three and four included both
the trunk and the crown of the study trees, and therefore it computes the totadjetowk
structuralcomplexity of trees compared to the tsarface method that includes only the crown
of trees. However, it has been noted that trunk length does not scale with crown fractal
dimensions (Makela and Valentine 2006). Therefareext research step is to exaehow the
removal of a tree's trunk below its crown affects the computation ofgtheeDic i.e., what is the
scale and the magnitude of the computed values and what is their biological interpretation.

As it was explained in section 6.1., the taurfa@ method and thB, metric derived
from the boxcounting method make different assumptions and they produce values of different
scales Further research is needed to explicitly compare fraita¢nsion values produced by the
two-surface method and ti, metric (leafon and-off) considering the functional traits of
different tree species. More specifically, a research question that remains to be answered is what
method of fractal analysis is more appropriate to be used to study different aspectsactdhe fr
like character of trees; how the fractal dimension values from different methods compare each
other and how they relate to the functional traits of different spexgesdrought and shade
tolerance, and the lifgistory strategies of different spes e.g., broadeaved deciduous and
needleleaved evergreen species.

Another question that remains to be answeredfhisit can be the maximum realized
fractatdimension of a tree considering not only the inherent differences of feabisis
methods but also the metabolic, hydraulic and mechanical constraints of tree architecture
(Abrams and Kubiske 1990, Sack et2106, Eloy et al. 2017, MacFarlane and Kane 2017,
Seidel et al. 2019ap small change in the fractal dimension of a tree can have important

physiological implications; for example in chapter three it was found that an increase of about
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0.05 units in the CC index was associated with approximately 46@eduction in the branch
woody surface area of the study tre&scording to Seidel et al. (2019b) trees should haye D
values significantly lower than 2.72, which is theddthe Menger sponge (Menger 1926
assuming a tree would maximize its surface area for light capture and gas exchange, while
minimizing building costs, in the absence of competition with other plants. In chapter three the
maximum [ value that was observed was 2.23, for a Idgglyptcstroboidedree in the leaf
on condition and the study also showed that the mgathe leafon tree point clouds was
greater than 2 across all study urban tree species, while previous studies repeae®leaf
values of trees growing in dense rui@est stands consistently lower than 2 (Seidel 2018, Seidel
et al. 2019a, Seidel et al. 2019b, Dorji et al. 2019, Guzman et al. 2020, Saarinen et al. 2021),
supporting the assumption that trees growing in the open, without competition can more closely
appoach the theoretical maximum fractal complexity (MacFarlane et al. ZDll8)data can be
used to further examine this assumption by comparing the allometric scaling exponents-of urban
open grown trees against the theoretical expectations from the mettading theory (West et
al. 1997), while a previous study showed that trees growing in dense tropical forests might not
follow the theoretical expectations for ssifilar branching architecture according to the
metabolic scaling theory (Lau et al. 2019

Chapters four and five showed important patterns of the woody surface area and biomass
allometry of trees. Some additional analysis in chapter four that included photograpbdt
oneside leaf area estimates (Peper and McPherson 2003) and woodgydtam the QSMs of
the study trees showed negative relationships between the ratio of the woody surface area, leaf
surface area and total surface area to the total woody volume of the trees, and different Euclidean

metrics of tree architecture (e.g., nraxim path length), but no statistically significant
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relationships were observed with thgrDetric of fractal complexity (se8upplemental File 6)2
These results imply that as trees increase the average distance from the ground to leaves (longer
hydraulicpathways), their total woody volume increases faster than the surface areas of their
woody organs and their leaves.

According to Smith et al. (2014) the hydraulic conductance of trees should reduce with
mean path length and the WBE model (West et al7)19¢hichsuggests that greater woody
volume implies more conducting elements, but also proportional surface areadiEses@ation
results suggest that reduced hydraulic conductivity over a longer branching network might come
from reduced evaporative faces (leaf stomata and stem lenticels) relative to the addition of
woody volume. However, pipmodel theory would suggest that much of the volume in larger
trees is dead and not conductive (Shinozaki et al. 1964). It has been found that the foliage mass
of a tree scales with its sapwood mass (Valentine 1985, Makela and Valentine 2006, Peng et al.
2010, Lehnebach et al. 2018), but the QSM woody volume estimates include both sapwood and
heartwood tissues, because the laser scanning method cannot see\WedhdW UHH TV VXUIDF
Therefore, it is also possible that the leaf area and living, conductive (sapwood) volume remain
in balance as the tree expands its branching network. Further research is needed to partition the
active and nosactive components of thveoody volumes of trees generated from QSMs through
new allometric models; and more precise estimates of leaf surface area can be derived from TLS
data (Béland et al. 2014).

The surface area data that were produced in chapter four can be used to develop new or
inform existing process models that quantify the growth and productivity of urban forests.
Similarly, one of the most promising findings in chapter five is that TLSaatde used to

produce reliable total and component biomass estimates of trees, which is infpodardying
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the AGB of trees in urban areasd protected forests where tree harvesting to build allometric
models is not applicablg.efsky and McHale 208, Calders et al. 2020, Kukenbrink et al. 2021).
Considering the current paucity of data and allometric models of the AGB of urban trees (Tigges
and Lakes 2017), further research is needed to produce new allometric models from TLS data
that predict the bimass of urban trees at different spatial scales which will enhance our

understanding afirban forestarbon budget

6.4. Conclusiors

Studying the aboveground fracttuctural complexity and architecture of trees is an
important element of the decisiomaking in forest management goalicy. Opengrown urban
trees are ideal objects for studying the fratka architecture of trees because of the reduced or
absent crowding conditions. This dissertatiesearclshowed that the fractéike character of
urban trees is affected by their growing environment at regional and local spatial scales, and it
relates to their functional and lHastory traits. Terrestrial laser scanning (TLS) data of urban
trees provided a deeper understanding of the architesftinees in general i.e., the role of the
different structural components of trees in their frastaictural complexity, and the allometry
of their aboveground woody surface area and woody biomass. Challenges and opportunities for
further research arigeom the inherent ambiguity of fractal analysis methods, the different
metrics that are usednd their biological interpretation. The quality of the TLS data and the
algorithms that are used to process them (e.qg., artificiatésadval) can significanglaffect the
guality of tree models depending on the aspect of tree architecture that is studied (e.qg., fractal
dimension, woody surface area and biomass). TLS data collected on trees of several species

growing in different environments (urban versus riwedsts), in combination with the
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anticipated future progress of TLS systems and algorithms will further enhance our

understanding of tree architecture.
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