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ABSTRACT 

NEW APPROACHES FOR STUDYING THE ARCHITECTURE OF URBAN TREES 

By 

Georgios Arseniou 

The study of the architecture of urban trees is important for the management of urban 

forests to optimize their ecological and socioeconomic services. Trees have a fractal-like 

architecture which is disrupted by competition for light. Therefore, studying the architecture of 

open-grown urban trees should provide a better understanding of the inherent fractal-like 

character of trees. Terrestrial Laser Scanning (TLS) technology provides detailed data of tree 

architecture. The main scope of this dissertation was to model the fractal-structural complexity of 

urban trees based on different fractal analysis methods in relation to their physiological and 

functional traits. 

In the second chapter of the dissertation, a variant of the "two-surface" method was used 

to estimate the fractal dimension of thousands of urban tree crowns from a publicly-available 

dataset across the USA. It was found that urban trees reduced their crown fractal dimension to 

reduce water loss through transpiration in hotter cities depending on the level of urbanization at 

smaller spatial scales. The functional group and the life-history traits of the studied urban trees 

significantly affected their crown fractal dimension in response to their growing environment.  

In the third chapter, forty-five trees of different deciduous species (Gleditsia triacanthos 

L., Quercus macrocarpa Michx., Metasequoia glyptostroboides Hu & W.C. Cheng) were laser 

scanned in leaf-on and -off conditions on the Michigan State University campus to study the role 

of leaves in the fractal-structural complexity of urban trees using the "box-dimension" (Db) 

metric. It was found that the presence of leaves significantly increased the Db metric of all study 



trees, and the contribution of leaves decreased as branch network complexity increased. The leaf-

on laser point clouds of the study trees were also virtually defoliated with a leaf-removal 

algorithm. It was found that the algorithmic leaf-removal caused biased estimates of the Db of the 

G. triacanthos and M. glyptostroboides trees. 

In the fourth chapter, the leaf-off laser point clouds of fifty-six urban trees of the 

aforementioned species were used to generate quantitative structural models (QSMs) to quantify 

their woody surface area (WSA) allometry. It was found that the variation in the above-ground 

WSA of the study trees related to their fractal dimension quantified with the Db metric and the 

distribution of "path" lengths from the tree base to every branch tip. It was also found that the 

urban trees allocated the largest portion of their WSA to their branches, which varied with 

branch order, branch-base diameter, and branch-base height. This study also showed a positive 

relationship between the WSA and the crown surface area of the urban trees. 

The fifth chapter included laser point clouds of thirty-one trees of deciduous and 

evergreen species that were sampled on the Michigan State University campus and the Harvard 

Forest in Petersham, MA, USA to model their above-ground woody biomass. QSMs were 

generated to estimate the total tree volume and component volumes of the study trees. Biomass 

estimates were produced by multiplying the TLS-based volumes with measurements of tree basic 

density from sample disks from stems and branches obtained after destructively sampling the 

trees, and also with published basic density values at species level. The leaves of the trees that 

were scanned in leaf-on condition were artificially removed before QSM generation. It was 

found that TLS technology can be used to produce reliable total and component biomass 

estimates of trees. The biomass estimates quality can be affected by the growing environment, 

the leaf condition of the laser-scanned trees and the basic density values that are used. 
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INTRODUCTION 
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1.1. Dissertation Scope and Objectives 

The main scope of this dissertation was to quantify the fractal- architectural complexity 

of urban trees based on different methods and metrics of fractal analysis and to better understand 

how their architectural complexity relates to their physiological and functional traits adapting 

them to the urban growing conditions. In order to achieve this goal, two main methods were 

employed: the "two-surface" method (Zeide and Pfeifer 1991) which requires data for the leaf 

area and the crown dimensions of trees, and the "box-counting" method (Da Silva et al. 2006) 

which requires laser point clouds of trees (see section 1.5). This dissertation also aimed to 

explore the accuracy of the Terrestrial Laser Scanning (TLS) technology to model urban tree 

architecture and allometry, specifically, the total above-ground woody surface area and woody 

biomass of urban trees which have important physiological and management implications (e.g., 

carbon balance and carbon stocks of trees; Kinerson 1975, Kim et al. 2007, MacFarlane 2015).  

The four objectives of this dissertation were the following: 

1. Understand how the fractal dimension of the crowns of communities of urban trees of 

many species varies at different spatial scales (local growing environment within cities, 

and between cities in different climatic regions); and explore how fractal dimension 

reflects the life-form and life-history traits of different tree species adapting them to the 

urban environment.  

2. Disentangle the two main components of the fractal-like character of trees i.e., the 

photosynthetic and non-photosynthetic parts; and quantify the role of foliage in the fractal 

dimension of urban trees in terms of structural complexity using TLS data. 

3. Quantify the total above-ground allometry of the woody surface area of urban trees and 

understand how it relates to their fractal-structural complexity using TLS data. 
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4. Evaluate the accuracy of TLS-based estimates of the above-ground biomass of urban 

trees compared to the accuracy of TLS-based estimates of the above-ground biomass of 

rural forest trees in different leaf conditions. 

 

1.2. Dissertation Outline 

Chapter 1 is the introductory chapter and it outlines the main scope and the objectives of 

the dissertation research.  Furthermore, it provides the overall theoretical background and the 

motivation for the dissertation research. The fundamental theories of tree architecture are 

described, the ecological services of urban trees are also described, and their architectural 

characteristics are explored in comparison to the architecture of rural forest trees. Finally, the 

technology of TLS, to study tree structure and important considerations for laser scanning trees, 

is described.   

Chapter 2 focuses on the first dissertation objective. More specifically, the fractal 

dimension of thousands of tree crowns of many different tree species, growing in different urban 

environments across the USA was estimated based on the "two-surface" method (Zeide and 

Pfeifer 1991). The tree data for this study was a publicly-available, urban tree dataset, published 

by McPherson et al. (2016). The analysis allowed for the study of the fractal dimension and the 

physiological responses of the trees to urban environments at different scales. The results 

provided a better understanding on how tree crown fractal dimension relates to balances between 

hydraulic- and light capture-related functions (e.g., drought and shade tolerance).  It was shown 

that trees reduced their fractal dimension at both whole-crown and leaf scales in order to reduce 

water loss in hotter cities and depending on the level of urbanization at smaller spatial scales. 

Different patterns of crown fractal dimension of urban trees in response to their growing 
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environment were observed, which were dependent on their functional group and life-history 

traits, i.e., needle-leaved versus broad-leaved species, and drought versus shade tolerance. 

Chapter 3 focuses on the second objective of the dissertation. Terrestrial laser scanning 

data was used to study the role of foliage in the structural complexity of urban trees. More 

specifically, forty-five trees of three deciduous species (Gleditsia triacanthos L., Quercus 

macrocarpa Michx., Metasequoia glyptostroboides Hu & W.C. Cheng) were sampled on the 

Michigan State University campus and were laser-scanned in both leaf-on and leaf-off 

conditions. The box-dimension (Db) metric, which is computed based on the "box-counting" 

method (Da Silva et al. 2006), was used to quantify the fractal dimension in terms of structural 

complexity of the leaf-on and leaf-off point clouds of the study trees. The leaf-on point clouds 

were also algorithmically defoliated to assess the effect of artificial leaf-removal on the 

estimated structural complexity. The study results showed that the presence of leaves 

significantly increased the Db metric of all study trees and the contribution of leaves decreased as 

branch network complexity increased. The leaf-removal algorithm caused biased estimates of the 

Db of the G. triacanthos and M. glyptostroboides trees, indicating that the shape and the type of 

leaves affects the performance of the algorithm, while the maximum branch order of the G. 

triacanthos trees was significantly related to the underestimation of their Db. 

Chapter 4 focuses on the third objective of the dissertation. Fifty-six trees of three species 

(Gleditsia triacanthos L., Quercus macrocarpa Michx., Metasequoia glyptostroboides Hu & 

W.C. Cheng) were sampled and laser-scanned on the Michigan State University campus in leaf-

off condition. The TLS point clouds were used to generate quantitative structural models of the 

study trees to quantify their woody surface area allometry, considering the anatomy and the 

physiology of urban trees. The study results showed that the variation in the woody surface area 
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of the main stem and branches of the trees related to the fractal dimension of tree architecture 

quantified with the Db metric and the distribution of "path" lengths from the tree base to every 

branch tip. It was also found that the urban trees allocated the largest portion of their total woody 

surface area to their branches and this varied with branch order, branch-base diameter, and 

branch-base height. Finally, this study showed a positive relationship between the woody surface 

area and the crown surface area of the urban trees, which has important implications for their 

carbon balance.  

Chapter 5 focuses on the fourth objective of the dissertation. In this study, thirty-one trees 

of deciduous and evergreen species were sampled and laser-scanned in urban and rural forest 

conditions. The TLS point clouds were used to generate quantitative structural models to 

estimate the total tree woody volume and component volumes (main stem and branches) of the 

study trees. The woody volume estimates were converted to biomass estimates by multiplying 

with estimates of tree basic density from sample disks from stems and branches obtained after 

scanning and felling the trees, and also by multiplying with published basic density values at the 

species level. Furthermore, the leaves of the trees of evergreen species and some deciduous 

species, scanned in leaf-on condition, were algorithmically removed before generating 

quantitative structural models; the effect of the leaf-removal algorithm on the biomass estimates 

was assessed. Total woody above-ground biomass, main stem and branch biomass were also 

computed from destructive sampling data, as reference values to compare to TLS-based values. 

The study results showed that TLS technology can be used to produce reliable total and 

component woody biomass estimates of trees and the quality of the estimates can depend on the 

growing environment (urban versus rural forest conditions), the leaf condition of the laser-

scanned trees and the basic density values that are used. 
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Chapter 6 provides a synthesis of all previous chapters of the dissertation. The analysis 

methods are evaluated to identify challenges and remaining knowledge gaps about the fractal-

like architecture of urban trees and the use of TLS data to study tree structural complexity and 

architecture. Prospects of future research investigations are also discussed.  

 

1.3. Tree Architecture: The Allometry of Trees Considering the Crowding 

Conditions 

Size-dependent variation of tree architecture is explained by allometric scaling laws of 

power form (West et al. 1999, Sileshi 2014). Trees allocate available resources to their different 

organs in a way that increases the uptake of the most limiting resource for their growth, implying 

that allocation is a partitioning process of trees. Allometry is the quantitative relationship 

between allocation and tree growth (Weiner 2004). According to MacFarlane (2015) the main 

theories that describe the architecture of trees as a result of their allometric growth are the 

following: the metabolic scaling theory (branches have a fractal-like architecture described by a 

general allometric scaling based on quarter-power allometric models; West et al. 1997, West et 

al. 1999), the pipe model theory (the cross-sectional area of stems is preserved when they 

bifurcate into branches and the vascular system of trees consists from active and inactive pipes 

whose surface area scales with their volume; Shinozaki et al. 1964, Chiba 1998), various 

allometric models that assume that tree form is significantly affected by the wind loads 

(McMahon 1973, Niklas 1995, Eloy 2011, Telewski 2012), and different models that account for 

hydraulic limitations which are an important force affecting the size and the hydraulic 

architecture of tall trees (Ryan and Yoder 1997, Niklas and Spatz 2004, Ryan et al. 2006).  



7 
 

Both the metabolic scaling theory and the pipe model theory assume that trees have an 

inherent fractal-like branching architecture (Noordwijk and Mulia 2002, Mäkelä and Valentine 

2006) based on fractal geometry principles (Mandelbrot 1983). However, tree branching 

networks are not perfect fractals because they lack self-similarity across all scales of branching 

hierarchy (Halley et al. 2004, Mäkelä and Valentine 2006, Malhi et al. 2018). According to 

MacFarlane et al. (2014) competition for light from neighboring trees significantly disrupts the 

inherent fractal character of trees growing in closed forest canopies.  

Trees adapt their allometric patterns to the various growing conditions, which makes 

them plastic. Plasticity is the ability of trees to change their inherent allometric trajectories due to 

environmental factors (e.g. competition for light), which implies that plasticity is the flexibility 

of a tree's genotype to support different phenotypes depending on biotic and abiotic factors 

(Weiner 2004). Trees can develop various degrees of plasticity depending on the crowding 

conditions they face from tree neighbors. According to Coomes and Grubb (1998) competition 

for light is asymmetric and light-demanding, fast-growing species tend to be less "branchy" in 

their juvenile growth stage, which affects their fractal-like architecture. It has been found that 

trees growing in open areas (e.g., open-grown urban trees) have larger crowns, and sharper trunk 

taper when compared to rural forest trees, that grow in closed canopies, indicating that open 

grown trees allocate more mass to their branches (Zhou et al. 2015). Lines et al. (2012) found 

that trees grow taller and have narrower crowns when they grow in closed canopies, compared to 

trees that grow in the open. Similarly, MacFarlane and Kane (2017) found that branch traits 

change under different crowding conditions and they suggest that urban open-grown trees tend to 

have a squat growth form and allocate the largest portion of their aboveground biomass to their 

branches, in order to resist the strong wind loads in urban settings.  
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Open-grown and forest-grown trees can also have different wood properties. More 

specifically, Zhou et al. (2011) observed that within the same geographic region the stem specific 

gravity of open grown trees was greater than the stem specific gravity of forest grown trees, 

while they did not observe a significant difference in branch specific gravity. However, 

MacFarlane (2020) found that trees of different species facing reduced competition from their 

neighbors had greater branch wood density compared to their main stem wood density. 

Considering all the above studies, it becomes apparent that urban open-grown and forest-grown 

trees can have fundamentally different allometric and architectural patterns which reflect 

different conditions of competition for light, mechanical loads (e.g., wind), and local growing 

environment in cities (e.g., paved-impermeable surfaces, buildings). 

 

1.4. Studying the Architecture of Urban Trees to Understand Their Ecological 

Services 

Urban forests sequester large amounts of atmospheric carbon dioxide and they provide 

several other important ecological services e.g., shade, temperature regulation, noise reduction, 

air pollutants uptake, biodiversity, pollination, water purification, energy savings for buildings 

etc. (Heisler 1986, McPherson et al. 1994, McPherson 1998, Nowak and Crane 2002, Casalegno 

et al. 2017). However, our understanding of these ecological services and particularly the carbon 

offset of urban forests on global scale remains limited (Tigges and Lakes 2017). There are 

several reasons for this knowledge gap: a lack of accurate and detailed data about the 

architecture of urban trees at large spatial and temporal scales, a shortage of robust models 

describing urban tree architecture, limited information about the effects of natural and human-
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induced disturbances on urban forest dynamics, and scarce information about the carbon that is 

stored in urban trees (Tigges and Lakes 2017).  

The architecture of urban trees can be studied based on the principles of fractal analysis. 

Urban trees should have more evident fractal-like architecture compared to rural forest trees due 

to the typically lower number, or complete absence of neighboring trees and competition for 

light (MacFarlane et al 2014). However, the growing conditions in cities can be significantly 

heterogeneous (Moran 1984, Kjelgren and Clark 1992, Iakovoglou et al. 2002, Lu et al. 2010, 

Jensen et al. 2012, Ferrini et al. 2014, Kostić et al. 2019), which affects the fractal dimension of 

urban trees (Arseniou and MacFarlane 2021). More specifically tree architecture in cities is 

affected by systematic tree pruning (Pavlis et al. 2008, Vogt et al. 2015), increased atmospheric 

temperatures and reduced water infiltration (Kjelgren and Clark 1992, Bourbia and Boucheriba 

2010, Nowak and Greenfield 2020), anthropogenic barriers to root and crown expansion (Krizek 

and Dubik 1987, Rhoades and Stipes 1999, Vogt et al. 2015), and heterogeneous soil properties 

(Iakovoglou et al. 2001, McHale et al. 2009). On the other hand, in urban areas there is a large 

availability of nutrients, and there are increased carbon dioxide emissions that usually enhance 

tree growth; the net effect of all these environmental factors combined is not well known yet 

(Gregg et al. 2003). It is expected that the fractal-like character of open-grown urban trees should 

be stronger compared to trees growing in closed-canopy forest conditions based on the 

hypotheses for the effect of competition for light on tree architecture (MacFarlane et al 2014, 

Arseniou et al. 2021).  
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1.5. Use of Laser Scanning Technology in Forest Measurements 

1.5.1. Laser Scanning Systems 

Remote sensing provides important technological tools that can be used to study the 

architecture of urban trees across several spatial and temporal scales, including laser 

scanning(Tigges and Lakes 2017).  Laser scanners are instruments that emit laser pulses and 

capture "point clouds" consisting of millions of three-dimensional points of the surrounding 

environment i.e., Light Detection and Ranging (LiDAR) data (Liang et al. 2016). Range 

measurements and precise angular measurements through the optical beam deflection mechanism 

of the laser instrument are needed to capture three-dimensional point coordinates (Liang et al. 

2016). There are different types of laser scanning systems depending on the platform that lasers 

are mounted e.g., spaceborne, airborne, Unmanned Aerial Vehicle (UAV), mobile, terrestrial 

(Calders et al. 2020). Terrestrial Laser Scanners (TLS) are mounted on a tripod and they create 

point clouds of trees by analyzing the returned energy of the emitted laser pulses as a function of 

either time (time-of-flight systems) or shift in the phase of the light wave of the emitted laser 

beam (phase-shift technology) (Calders et al 2015).  

Previous studies combined different types of remote sensing data to quantify important 

forest variables. For example, Jaakola et al. (2010) detected the heights of individual urban trees 

with a standard deviation of 30 cm by using an UAV on which they mounted two laser scanners, 

two cameras, a spectrometer and a GPS system. He et al. (2013) assessed the green biomass of 

urban forests in Beijing, China using LiDAR data and SPOT5 satellite images. The accuracy of 

the green biomass estimates based on their analysis was greater than 85% compared to ground 

truth data. According to Casalegno et al. (2017) the green-space in urban areas is very 

fragmented and spatially heterogeneous and this creates significant challenges in determining 
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urban forest cover and structure. However, they developed a method for assessing the urban tree 

cover and the associated volumetric properties by using waveform airborne LiDAR. Wilkes et al. 

(2018) suggest the use of multi-scale LiDAR for studying urban carbon densities. They found 

that TLS-based maximum height and projected crown area explained 93% of the variance in the 

volume of the trees in their study. Using airborne LiDAR they successfully detected single urban 

trees but they observed a significant underestimation in aboveground biomass. 

 

1.5.2. Considerations for Terrestrial Laser Scanning of Forest Trees at Plot Scale 

Terrestrial laser scanning (TLS) data have been systematically used in forest ecology 

since the early 2000s (Hackenberg et al. 2015b, Calders et al. 2020). According to Liang et al. 

(2016) there are three main methods for laser-scanning trees with TLS on plot level: single-scan, 

multi-scan and multi-single-scan. According to the single-scan method the terrestrial laser 

scanner is placed at the plot center and it captures only one full field of view scan, and thus trees 

are detected in a single-scan point cloud. This method is fast and easy but significant occlusion 

effects in the point clouds can occur because some parts of tree structure (e.g., branches) are 

shadowed by other tree parts or neighboring trees. The multi-scan method reduces occlusion 

problems by establishing several scan positions inside and outside the plots. Artificial reference 

targets are needed for registering the multiple scans. This method significantly decreases the 

occlusion effects but increases the time cost and complexity of scans. The multi-single-method 

combines characteristics of the aforementioned methods and several scans are captured inside 

and outside the plots but reference targets are not used. The multiple scans are registered at 

feature level, as individual trees are mapped in each scan, and they are used to merge the 

multiple scans. This method is simpler and faster than the multi-scan method (Liang et al. 2016).  
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According to Wilkes et al. (2017), the sampling density using TLS depends on the spatial 

extent that must be scanned, the vegetation density and complexity and the metrics that need to 

be computed. For example, stem location detection does not require large scan resolution and it 

can be extracted from less-dense sampling patterns. However, the extraction of metrics related to 

high order branches require dense sampling patterns. In general, a sampling grid 10x10 m 

suffices to capture good quality point clouds at plot level.  

 

1.5.3. Studying the Architecture of Individual Trees with the Use of Terrestrial 

Laser Scanning Technology 

TLS data, captured at single-tree scale from multiple directions (minimum three) using 

reference targets, usually provide the most detailed information needed to study tree architecture, 

because occlusion effects are significantly reduced, but with increased scanning time (Raumonen 

et al. 2013, Wilkes et al. 2017). If a large tree is laser scanned under a dense canopy, then six or 

more scans are needed, while the point cloud quality and the density of points might be 

significantly reduced when single trees are laser scanned at distances greater than 10 m (Wilkes 

et al. 2017). 

Different types of terrestrial laser scanners may differ in point density and accuracy 

(Jaakkola et al. 2010). Pueschel (2013) studied the effects of scanner parameters on the 

extraction of stems, and the estimation of stem diameter and stem volume of individual trees 

using a FARO Photon 120 terrestrial laser scanner. He found that scan resolution (i.e., angular 

step size) was the most important scanning parameter and is range dependent. Pueschel (2013) 

also suggested that we can optimize sampling efficiency by reducing scanning times (low scan 

resolution and high scan speed) without significant loss of accuracy and he concluded that 
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multiple scans for a single tree increase the estimation accuracy of diameter at breast height 

(DBH) and stem volume in the cost of time. Singh et al. (2015), argue that point density 

reduction through filtering and sub-sampling of point clouds, is a viable strategy for reducing 

computational costs of tree architecture modeling.  

Using TLS data, we can precisely model tree architecture, reduce the uncertainty of 

above ground biomass estimation, create new allometric equations that apply to large trees, and 

create distributions of tree characteristics (Calders et al. 2015). There are three main methods to 

create models of trees from point clouds: the meshing method, the skeletonization approach, and 

fitting geometric primitives (e.g., cylinders, spheres, cones) in laser point clouds (Bournez et al. 

2017). Fitting geometric primitives in point clouds is a common method for creating quantitative 

structure models (QSM) of trees. Cylinders have the best fit in point clouds and the generated 

QSMs can be very accurate (Bournez et al. 2017). This method preserves stem and branch 

topology and it provides information about the size, the location, the hierarchy and the 

orientation of the branching network of a tree (Raumonen et al. 2013, Kaasalainen et al. 2014, 

Hackenberg et al. 2015a, Bournez et al. 2017, Disney et al. 2018). There are different algorithms 

that produce QSMs. TreeQSM algorithm (Copyright (C) 2013-2017 Pasi Raumonen) segments 

the tree point clouds in sections before fitting cylinders (Raumonen et al. 2013) and the 

SimpleTree  algorithm (within the CompuTree platform) employs spheres to detect tree geometry 

and to extract tree skeleton and thickness before fitting cylinders (Hackenberg et al. 2015a).  

Creating QSMs of trees alleviates major challenges associated with the quantification of 

tree architecture from destructive measurements, such as limited sample sizes, restrictions in 

protected forests, insufficient spatial and temporal distribution of samples, omission of very large 

trees (Disney et al. 2018). However, there are also several sources of uncertainty related to tree 
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laser-scanning, and QSMs generation: occlusion effects, wind effects on point cloud quality, 

scanner characteristics (e.g., branches of the same or smaller diameter than the scanner footprint 

at a certain distance cannot be sufficiently captured), errors originating from the operators, and 

errors in point cloud registration (Disney et al. 2018). There are two components of the 

uncertainty associated with the QSM method. The stochastic component implies non-

deterministic processes for fitting geometric primitives in a point cloud and the systematic 

component relates to the assumptions inherent to each QSM algorithm e.g., the fitting of 

cylinders may overestimate woody volumes or woody surface areas due to local tapering of 

branches, especially as the branch size decreases. Malhi et al. (2018) determine some major 

challenges in estimating tree mass accurately from TLS data: extraction of high order branches, 

and the algorithmic classification and separation of woody and non-woody parts of scanned trees 

because QSMs cannot model foliage (Stovall et al. 2017). 

Although QSMs are currently considered to be the most robust method for estimating tree 

volume and architecture (Disney et al. 2018), there are also other methods to model trees from 

TLS data. Moskal and Zheng (2011) examined a point cloud slicing algorithm for processing 

TLS data and they derived allometric variables of urban trees. They demonstrated that some tree 

allometric variables (e.g., DBH, tree height) can be successfully derived from TLS data, however 

more research is needed for accurate estimation of tree volume. Hopkinson et al (2004), 

examined the use of TLS to semi-automatically derive basic allometric variables. They found a 

systematic underestimation of heights due to canopy shadow and suboptimal distribution of TLS 

sampling and that  timber volume estimates were within 7% of the estimates from conventional 

allometric models. Maas et al. (2008), developed a fully automatic point cloud processing 

approach to measure variables like tree height, DBH, and stem profile. Olschofsky et al. (2016), 
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developed an algorithm that estimates the biomass of branches with complex geometry based on 

TLS data, giving an accuracy of greater than 95% compared to reference biomass values.   
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Abstract 

The evolution of form and function of trees of diverse species has taken place over 

hundreds of millions of years, while urban environments are relatively new on an evolutionary 

time scale, representing a novel set of environmental constraints for trees to respond to.  It is 

important to understand how trees of different species, planted in these anthropogenically-

structured urban ecosystems, are responding to them. Many theories have been advanced to 

understand tree form and function, including several that suggest the fractal-like geometry of 

trees is a direct reflection of inherent and plastic morphological and physiological traits that 

govern tree growth and survival. In this research, we analyzed the "fractal dimension" of 

thousands of tree crowns of many different tree species, growing in different urban environments 

across the USA, to learn more about the nature of trees and their responses to urban 

environments at different scales.  Our results provide new insights regarding how tree crown 

fractal dimension relates to balances between hydraulic- and light capture-related functions (e.g., 

drought and shade tolerance).  Our findings indicate that trees exhibit reduced crown fractal 

dimension primarily to reduce water loss in hotter cities. More specifically, the intrinsic drought 

tolerance of the studied species arises from lower surface to volume ratios at both whole-crown 

and leaf scales, pre-adapting them to drought-stress in urban ecosystems. Needle-leaved species 

showed a clear tradeoff between optimizing the fractal dimension of their crowns for drought 

versus shade tolerance.  Broad-leaved species showed a fractal crown architecture that responded 

principally to inherent drought tolerance. Adjusting for the temperature of cities and intrinsic 

species effects, the fractal dimension of tree crowns was lower in more heavily urbanized areas 

(with greater paved area or buildings) and due to crowns conflicting with utility wires.  With 

expectations for more urbanization and generally hotter future climates, worldwide, our results 
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add new insights into the physiological ecology of trees in urban environments, which may help 

humans to provide more hospitable habitats for trees in urbanized areas and to make better 

decisions about tree selection in urban forest management.  

 

Keywords: functional traits, fractal dimension, tree physiology, urban ecology 

 

2.1. Introduction 

Tree species have inherent traits which constrain their form and function, but these traits 

are also plastic to some degree (Weiner 2004), to allow them to survive and reproduce in 

different types of environments.  On an evolutionary timescale, urban environments are new and 

represent a novel set of environmental constraints for trees to respond to.  While features like tall 

buildings or pavement may have natural analogs, like canyons or natural rock concretions, urban 

trees often experience very different life-histories than their rural counterparts. Urban trees are 

often planted, rather than naturally germinated, and usually have fewer tree neighbors, unlike 

trees growing in natural forests, and the number of neighbors of a tree has been shown to affect 

light availability and wind resistance (MacFarlane and Kane 2017). In urban areas, there are 

many factors that negatively affect tree growth: e.g., pollutants, compacted soil, barriers to roots 

due to paving and asphalt, and intensive pruning (Moran 1984, McHale et al. 2009, Troxel et al. 

2013, Ferrini et al. 2014). On the other hand, urban areas may supply larger availability of 

nutrients, warmer temperatures and increased carbon dioxide emissions, factors that usually 

enhance tree growth, so the net effect of all these factors combined is not well known (Gregg et 

al. 2003). Such differences between urban and natural environments make urban environments 

novel places to study the plasticity of tree species traits. 
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Many "fractal"-based theories have been advanced to understand tree form and function 

(e.g., pipe-model theory, Valentine 1985, Mäkelä and Valentine 2006; metabolic scaling theory, 

West et al. 1997). These theories suggest that the fractal-like geometry of trees is a direct 

reflection of both inherent and plastic morphological and physiological traits that govern tree 

growth and survival.  Indeed, there has been a rapid increase in the use of fractal methodologies 

to study organismal, population and even landscape-level ecological phenomena (Halley et al. 

2004).  In the case of trees, fractal geometry (Mandelbrot 1983) provides a way to explore the 

structural complexity of tree crowns (Seidel 2018).   

Crowns may be the ideal unit to study for understanding tree species functional-trait 

responses to environments. Crowns contain the leaves and branches, thus connecting key 

theories which unify our understanding of commonalties and differences in tree function. Among 

major theories, the "worldwide leaf economics spectrum" (Wright et al. 2004) suggests that tree 

species leaf traits are part of a continuum from fast versus slow responses to investments of 

energy and nutrients in leaves, and the WBE theory (West, Brown and Enquist 1997), which 

theorizes that plant vascular networks are "space-filling" fractal networks of branches.   

In theory, tree branches are fractal-like or self-similar across different scales (Noordwijk 

and Mulia 2002). Self-similarity in branching implies that any branching point looks the same 

whether we observe the first or the last tree branching point. However, self-similarity of branches 

does not hold true across all levels of a tree branching hierarchy (Malhi et al. 2018) and the 

departure of real tree branches from perfect symmetry has significant implications for tree 

hydraulic properties, mechanical stability, photosynthesis and metabolic scaling (Smith et al. 

2014). Therefore, it is important to understand what ecological factors influence the "realized" 

fractal dimension of trees.  
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Modern, urban environments can affect the expression of a tree’s fractal dimension. In 

particular, the lower number, or complete lack, of tree neighbors in urban environments, 

typically gives them an open-grown form, which might better allow them to express their 

inherent fractal branching architecture that should be otherwise expected to be disrupted when 

shaded or crowded by other trees (Mäkelä, A. and Sievänen 1992, MacFarlane et al. 2014). In 

this sense, studying the fractal dimension of tree crowns in urban ecosystems might reveal a 

purer signal of species functional-trait responses to environmental stimuli than might be detected 

in the presence of tree-to-tree competition. On the other hand, anthropogenic stressors (e.g., 

pruning) and structures (e.g., buildings) may have major impacts on tree growth and metabolism, 

which manifest in a different fractal architecture for the tree.  

Our study provides an understanding on how the regional- and local- scale growing 

environments of urban trees affect their fractal architecture, which has important management 

implications. We expect that the growing environment of an urban tree affects its socio-

ecological benefits (e.g., shading) by affecting its crown architecture, and studying this, we can 

inform arborists on how to better manage urban forests for optimizing their benefits. 

We analyzed the fractal dimension of tree crowns of many different tree species, growing 

in different urban environments, across the USA, to learn more about their responses to urban 

environments at different scales.  Our major questions were: 

 How does the fractal dimension of urban tree crowns reflect their life-form and 

life-history traits, as members of different species? 

 How do crown fractional-dimensional traits, expressed at the tree level, relate to 

functional traits at the leaf level? 
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 How does the fractal dimension of the crowns of communities of urban trees of 

many species vary between cities in different climatic regions? 

 What is the effect of the local growing environment within cities (e.g., urban land 

use) on the fractal dimension of tree crowns? 

We hypothesized that the life-history functional traits (i.e., drought and shade tolerance), 

of different tree species with different leaf types (i.e. needle-leaved and broad-leaved), relate to 

the fractal dimension of their crowns. Species with higher drought tolerance should have lower 

fractal dimension in order to minimize heat gain and water loss through transpiration. A positive 

relationship is expected between the fractal dimension of tree crowns and their shade tolerance 

(Zeide and Pfeifer 1991). Furthermore, we expected that drought tolerant species with higher leaf 

mass per unit area have lower fractal dimension, in order to prevent excessive water loss through 

transpiration.  

The fractal dimension of the crowns of trees in urban forest communities should be 

affected by the climatic conditions of the cities in different regions, such as atmospheric drought 

responses, but should also be affected by the local growing environment within cities. Urban 

land-use must be an important factor, and more specifically, less developed areas (e.g., parks, 

vacant areas) should have a positive effect on the fractal dimensionality of urban trees. Tree 

crowns close to buildings should have lower fractal dimension, because buildings restrict tree 

crown expansion. Finally, we expected a negative effect of urban infrastructure (utility wires, in 

particular) on the fractal dimension of urban tree crowns, due to the pruning treatments enacted 

to reduce tree conflicts with urban structures. 
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2.2. Materials and Methods 

2.2.1. Urban Tree Data 

The main source of data for this study was an extensive, publicly-available, urban tree 

dataset, published by McPherson et al. (2016). To produce this dataset, the U.S. was divided into 

sixteen climatic zones and a reference city was selected within each zone. About twenty of the 

most abundant species were selected within each reference city. Trees were chosen based on a 

stratified random sampling design; approximately 5 to 10 trees of each species were randomly 

sampled within nine classes of stem diameter at breast height (DBH) (McPherson et al. 2016). 

Typical tree measurements were taken (e.g. DBH, total tree height, crown width), along with 

many other variables that helped describe each trees growing environment within cities (e.g., 

distance from a building, land-use).  However, the key aspect of the data that allowed for this 

study was that the data had independent measurements of leaf area and crown volume, which 

allowed for estimation of the fractal dimension of the crown of every tree (explained in the next 

section). Leaf area was estimated for every tree using a novel photographic method developed by 

Peper and McPherson (2003), and crown volume was estimated from individual measurements 

of crown dimensions and a geometric shape (e.g., cone, parabola) being assigned to each crown 

(McPherson et al. 2016). In total, we used data from 11,038 trees, of 80 species (66 broad-leaved 

species and 14 needle-leaved species), in 15 climatic regions, available for analysis from this 

database (see breakdown in Supplemental Files 2.1 and 2.2). 

We obtained regional scale climatic data (e.g. mean annual temperature) for different 

cities from U.S. Climate Data
1
 to characterize the climatic region that the trees were growing in, 

in terms of mean annual precipitation (MAP) and mean annual temperature (MAT). We used 

cooling degree days (CDD), which is the number of degrees that a day's average temperature is 

                                                           
1
 https://www.usclimatedata.com/climate/united-states/us 

https://www.usclimatedata.com/climate/united-states/us
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above 18.5° Celsius, summed over a year, as a third measure of the city’s climate, following 

McPherson et al. (2016), who considered CCD because it is used to quantify the demand for 

energy needed to cool buildings and relevant to the role of urban trees in cooling the 

environment of cities.  

From the McPherson et al. (2016) data, we selected three variables to account for the 

effect of local urban growing environments, within cities, which we hypothesized would affect 

tree crowns. The first was the distance of a tree from the nearest heated or air-conditioned 

building, a factor which had four levels: 1 = 0 to 8 m, 2 = 8.1 to 12 m, 3 = 12.1 to 18 m, 4 = 

>18.1 m. The second was crown conflicts with utility wires, where 0 = no wires are present in or 

around the crown and 1 = wires are present (this variable was rescaled to have only two levels 

based on the original factor levels from McPherson et al. 2016). The third factor was urban land-

use, which had four levels: 1 = single and multi-family residential, 2 = industrial, institutional 

and large or small commercial areas, 3 = park, vacant and other areas e.g. agricultural, 4 = 

transportation corridor (this variable was rescaled to have these four levels based on the original 

factor levels from McPherson et al. 2016).  

 

2.2.2. Measuring the Fractal Dimension of Tree Crowns 

There is some ambiguity in quantifying the fractal dimension of trees. Halley et al. (2004) 

noted that applying fractal values to natural objects is, in general, dependent on the method used. 

Even Mandelbrot (1983), who is credited with articulating fractal geometry, warned against the 

underlying ambiguity of a precise mathematical interpretation of fractal dimension (Halley et al. 

2004).  Due to this ambiguity, one can use different methods for quantifying the fractal 

dimension. For example, the "path-fraction" method quantifies to what extent a branch network 
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differs from an ideally self-similar branch network and it ranges between 0 and 1 (Smith et al. 

2014). The "box-dimension" method quantifies the structural complexity of trees based on 

fractal-analysis derived from laser scanning of the three-dimensional structure of the tree; it takes 

values between 1 and 3 (Seidel 2018).  

In this study, the fractal dimension of the urban trees was estimated using a variant of the 

"two-surface" method (Zeide and Gresham 1991, Zeide and Pfeifer 1991, Zeide 1998). The two-

surface-method assumes that the fractal dimension of a tree’s crown can be derived from the 

relationship between the total leaf area of a tree and the surface area of the convex hull that 

covers the crown, but also has a variant which uses crown volume instead of crown area (Zeide 

and Pfeifer 1991). The fractal dimension of a tree crown based on the latter method refers to the 

distribution of leaf surface area within a crown volume occupied by the leaves and branches.  

Due to the irregular distribution of "holes" in a tree’s crown volume (empty spaces within 

the crown volume), a crown cannot be simply treated as a two-dimensional surface or a three-

dimensional solid (Zeide 1998). Instead, it has a fractal dimension (unlike a Euclidean 

dimension) that exceeds its corresponding topological dimension (Zeide and Gresham 1991). 

This measure of fractal dimension takes values between 2 and 3. Fractal dimension equal to 2 

means that the foliage is distributed on the crown's periphery and the crown surface is a classic, 

flat Euclidean surface. As the fractal dimension increases (i.e. fractal dimension > 2), the crown 

surface becomes more fractal until the fractal dimension is equal to 3, when the foliar surface is 

evenly distributed within a given crown volume (Zeide and Pfeifer 1991, Zeide and Gresham 

1991).  
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The model (from Zeide and Pfeifer 1991) to estimate the fractal dimension of urban tree 

crowns is a power function: 

          
 

 
   ,   (eq. 2.1) 

where LA and Cvol are the leaf area and the crown volume of the trees, D is the fractal 

dimension of tree crowns, and   is the error term of the model. The normalization constant   

corresponds to the overall leaf density i.e. leaf area per unit crown volume (Zeide 1998), with D 

describing how leaf area – crown volume relationships change with increasing crown volume. 

To help visualize the meaning of D in this context, Fig. 2.1 shows a regression line 

relating LA to Cvol on a log-log scale, fitted to all 11,038 trees, along with other, hypothetical 

lines representing two theoretical values of D at the same a value. On a log-log scale, the slope 

of the line (D) shows the level of exponential increase in leaf area of a crown of a given volume.  

We can see (in Fig. 2.1) a high degree of variation from tree to tree in terms of LA at a given 

Cvol, with the underlying trend of D = 2.27 indicating a trend of leaf surface area more likely to 

be concentrated towards the periphery of the crown.   

An important assumption of the method is that the relationship between LA and Cvol is 

linear on the logarithmic scale, with no significant inflection points (Zeide and Pfeifer 1991). A 

second order polynomial regression that predicted leaf area from crown volume on the 

logarithmic scale was also fitted to the data and it was found that the second order term was not 

statistically significant (p= 0.1049; α = 0.05). Only the coefficient of the crown volume to the 

first power was statistically significant (shown in Fig. 2.1), which enabled us to validate the 

assumption and use the method for our study population.  
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Figure 2.1. The linear relationship between log(LA) and log(Cvol) for all trees in this 

study (blue solid line), based on log-linear regression of eq. 2.1 and two theoretical lines for D = 

2 (orange, dashed line) and D = 3 (purple, dotted line), respectively, holding coefficient a (in eq. 

2.1) at the same value estimated from the regression. 

 

2.2.3. Species Functional Trait Data 

We expected tree-to-tree variation in D to indicate physiological performance at the 

whole-tree level, in terms of light energy capture and water-use efficiency, so we determined a 

shade and drought tolerance value for each tree, based on the work of Niinemets and Valladares 

(2006), who produced numerical tolerance indices, ranging from 1 to 5, for 806 woody species in 

the temperate Northern Hemisphere (1 = very intolerant; 2 = intolerant; 3 = moderately tolerant; 

4 = tolerant; 5 = very tolerant).  We also determined the leaf mass per unit area (LMA) for the 

study trees, which has been linked to physiological performance of plants at the leaf level, in 

terms of photosynthetic and water-use efficiency (Roderick et al. 2000). LMA values were 

assigned to species based on publicly-available data produced from the work of Wright et al. 
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(2004, the "GLOPNET" dataset) for as many study tree species that data were available for (see 

Supplemental File 2.1).   

 

2.2.4. Statistical Analyses 

All statistical analyses for this study were done with custom coding and available 

packages written in the R software language (R Core Team 2015).  

We used a hierarchical, mixed-effects modeling approach, where fixed-effects 

coefficients were estimated using eq. 2.1, and all categorical variables related to the effects of 

species, climatic region and local urban growing environment on the fractal dimension were 

treated as random (grouping) effects; these random effects were included to help explain 

variation in the overall trend (Fig. 2.1). We looked at each of the major factors, species, climatic 

region and local environment, individually, and then at various combinations of models, all of 

which predicted leaf area as a power function of crown volume (eq. 2.1). Thus, the mixed-effects 

version of eq. 2.1 is written as: 

          
       

 
   ,   (eq. 2.2) 

where S, R and L are random effects that modify the coefficient D estimated for all urban 

trees, depending on their species, region and local urban environment, respectively.  The 

coefficient   (the intercept) varies in all models, but it is not modified by any random effect. The 

random effect of species (S) has 80 levels (i.e., 80 different species), given in Supplemental File 

2.1. The random effect of climatic region (R) has 15 levels, given in Supplemental File 2.2. It is 

important to note that the experimental design (of McPherson et al. 2016) selected only one city 

to represent each climatic region, so the effects of different climatic regions are confounded with 
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the effects of the reference city itself. Within-city local environmental effects (L) were described 

above in Section 2.1. 

When fitting models, assumptions of variance homoscedasticity, and error normality 

were checked by plotting the model residuals against the fitted values, and the Q-Q plots and the 

histograms of the model residuals. Eqs. 2.1 and 2.2 assumed a multiplicative error structure, 

which is additive on a log-log scale.  The best model was selected considering both the 

coefficient of determination (adjusted R
2
) and the Akaike Information Criterion (AIC). All 

relationships were quantified with the Pearson correlation coefficient and the significant 

relationships were evaluated at α = 5% level of significance.   

After the best-fit model (eq. 2.2) was developed, the fractal dimension (D) of urban tree 

crowns was determined for trees (based on their species, region and local environment) and 

related to drought and shade tolerance and LMA. The Standardized Major Axis Tests and the 

Routines R package (Warton et al. 2012) was used to conduct hypothesis tests regarding the 

slopes of the sub-population (S, R, or L) regression lines. Since crown and leaf traits are 

typically different between needle-leaved and broad-leaved tree species, we also refit some of the 

models to only trees of these "leaf types" (Supplemental File 2.1), in addition to fitting the 

models to all trees.   

Quantile regressions were also used in order to examine relationships at different 

quantiles of crown fractal dimension. The quantile regression is based on the minimization of the 

sum of the absolute values of the model residuals and it is very robust against outliers (Niinemets 

and Valladares 2006, Pretzsch et al 2015). 
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2.3. Results 

2.3.1. Influence of Species, Regional and Local Environments on Variation in 

Fractal Dimension 

The coefficients of the fixed and random effects of all models fitted to the data (listed in 

Table 2.1) can be found in Supplemental File 2.3. Species exhibited an important influence on 

the fractal dimension (D) of urban trees and the model with species effects was superior to the 

corresponding fixed-effects-only model (Table 2.1). The climatic region of the cities the trees 

were growing in was also an important variable influencing the D of trees and explained a 

slightly larger proportion of the variation than species. Together, species and region explained 

slightly more variation than either by themselves (Table 2.1). Local effects of the urban 

environment further helped explain an individual tree’s fractal dimension. The model with all 

three local effects included (Dist.build / Wire.Conf / Land.Use, in addition to Species and 

Region, Table 2.1) explained the most variation in D and had the lowest AIC. This latter model 

predicts an individual D for each tree depending on its species, region, and the three local 

environments within the city it’s growing in. 
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Table 2.1. Candidate models for eq. 2.2 including species (S), regional (R), or local (L) 

random effects influencing the fractal dimension (D), with the fixed-effects model, including 

none of these variables. Nested models are characterized by a "/", e.g., Species/Region/LandUse, 

meaning a tree was of a specific species, growing in a certain region in a certain land use within 

that city; distance from buildings (Dist.build), conflicts with wires (Wire.Conf), and land-use 

(Land.Use). Models are sorted by AIC. Best by each statistic in bold. 

 

Model  
Model-Form Adjusted 

R
2 

AIC 

values 

Fixed-effects only (eq. 2.1)           
 
 
    0.678 113847 

Species (eq. 2.2 with S only)            
   
 

    0.734 112592 

Region (eq. 2.2 with R only)          
 
   
 

 
   0.752 111853 

Species/Region (eq. 2.2 with S & R)           
     

 
    0.796 110864 

Species/Region/Land.Use  

(eq. 2.2 with S,R, & L)           
       

 
    0.807 99406 

Species/Region/Dist.build  

(eq. 2.2 with S, R, & L)           
       

 
    0.820 97873 

Species/Region/Wire.Conf  

(eq. 2.2 with S, R & L)           
       

 
    0.808 

 

93805 

 

Species/Region/Dist.build/Wire.Conf/

Land.Use (eq. 2.2 with S, R & L) 
          

       
 

    0.841 71963 

 

 

2.3.2. Species and Leaf Type Effects on D: Drought- and Shade-Tolerance and LMA  

Across all trees, the mean D was estimated to be 2.277 (see Table 2.2 and Fig. 2.1), with 

needle-leaved species (2.147) having a lower average D than broad-leaved species (2.290). There 

was also a greater variability in the estimated D for needle-leaved species, though there were 

many more broad-leaved species in the sample population.  Each of the three models (all trees, 

broad-leaved only and needle-leaved only) also had a different estimated minimum and 
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maximum D for the species included in the model (Table 2.2), which represents the smallest and 

largest estimated divergence of a species in that group from the mean trend. 

 

Table 2.2. Estimated fractal dimension of tree crowns (coefficient D) from eq. 2.2, with 

species-random effects, fitted for all trees and for broad- and needle-leaved trees, separately. The 

minimum and maximum D value, respectively, come from adding the largest and smallest (most 

negative) species-random effect to D.mean.  

 

Tree type no. species D.mean SE of D.mean D.min D.max 

All trees 80 2.277 0.021 2.092 2.719 

Broad-Leaved 66 2.290 0.022 2.124 2.487 

Needle-Leaved 14 2.147 0.088 1.843 2.588 

 

We hypothesized that the species with higher drought tolerance would have lower fractal 

dimensionality. When we examined this, the average D for trees of a species was found to be 

significantly, negatively correlated with the drought tolerance of the species (r = -0.46, p = 0.00, 

Fig. 2.2), across all cities and locations within cities. The negative relationship between D and 

drought tolerance was stronger for needle-leaved species (r = -0.74, p = 0.0027), than for broad-

leaved species (r = -0.47, p = 0.0000), such that needle-leaved species had a much lower D at 

higher drought tolerance levels (Fig. 2.2).   
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Figure 2.2. Mean fractal dimension of tree crowns for species as a function of species-

specific drought tolerance (1 = very intolerant; 2 = intolerant; 3 = moderately tolerant; 4 = 

tolerant; 5 = very tolerant). Data fitted to equation 2.2 with S only as a random effect (see Table 

2.1). 

 

The quantile regression for D predicted from drought tolerance indicated that species 

with lower drought tolerance are more elastic in their fractal dimension, meaning a wider range 

of D values at the same drought tolerance level, whereas species with higher drought tolerance 

had a smaller range of D values (Fig. 2.3). For all quantiles of D, the relationship between D and 

drought tolerance was negative and the strongest relationship was observed for the species at the 

highest quantile of D.  
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Figure 2.3. Quantile regressions for fractal dimension vs. drought tolerance (1 = very 

intolerant; 2 = intolerant; 3 = moderately tolerant; 4 = tolerant; 5 = very tolerant) at species level 

for 10 quantiles of D (i.e. from bottom to top 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 

95%). The line of 5% quantile is a nonsignificant regression. Fractal dimension was estimated 

from equation 2.2 with S only as a random effect (see Table 2.1). 

 

A positive relationship was also found between D and the shade tolerance of urban trees 

(r = 0.22, p = 0.05, Fig. 2.4), though the relationship was much weaker than that found for 

drought tolerance. When separating out needle- vs. broad-leaved species, a strong positive 

relationship was found between D and shade tolerance of urban needle-leaved trees (r = 0.84, p = 

0.00, Fig. 2.4). However, no significant relationship was found between D and shade tolerance of 

urban broadleaved trees (r = 0.1, p = 0.41, Fig. 2.4).  Quantile regressions showed no clear 

pattern of elasticity in D relative to shade tolerance. 
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Figure 2.4. Mean fractal dimension of tree crowns for species as a function of species-

specific shade tolerance (1 = very intolerant; 2 = intolerant; 3 = moderately tolerant; 4 = tolerant; 

5 = very tolerant). Data fitted to equation 2.2 with S only as a random effect (see Table 2.1). 

 

A negative relationship was found between D and the LMA of the urban trees (r = -0.5, p 

= 0.0008, Fig. 2.5).  Needle-leaved trees showed a stronger relationship (r = -0.82, p = 0.046, 

Fig. 2.5) than the corresponding relationship for broadleaved trees (r = -0.41, p = 0.012, Fig. 

2.5). Quantile regressions showed no discernible difference in the elasticity of D at low versus 

high LMA.  
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Figure 2.5. Mean fractal dimension of tree crowns for species as a function of species-

specific leaf mass per unit area (LMA). Data fitted to eq. 2.2 with S only as a random effect (see 

Table 2.1). 

 

2.3.3. Regional Climatic Effects on Fractal Dimension  

To examine the effects of climatic region on D, we computed the mean D for all trees of 

all species in each city-region and then regressed those values against key climatic variables 

describing each region (Supplemental File 2.2). We found D to be strongly related to the mean 

annual temperature (MAT) of the climatic regions (r = -0.58, p = 0.024, Fig. 2.6).  The 

relationship was negative, indicating that trees of a wide variety of species exhibited lower 

fractal dimensions, when growing in a city with a hotter climate. There was a similar negative 

relationship between the average D of trees and the cooling degree days (CDD) of each climatic 

region (r = -0.51, p = 0.05). MAP was not significantly correlated with tree average D.  
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Figure 2.6. Mean fractal dimension of tree crowns in a region plotted against the mean 

annual temperature (MAT) for that region (the abbreviated names of the regions are explained in 

Supplemental File 2.2). Data fitted to equation 2.2 with R only as a random effect (see Table 

2.1). 

 

2.3.4. Influence of Local Urban Environments on Fractal Dimension 

The local urban environmental effects (L in eq. 2.2) on the fractal dimension of tree 

crowns were interpreted by looking at the sign of the coefficients influencing D (see 

Supplemental File 2.3 for full details).  Trees that were in the first level of the Dist.build factor (0 

to 8 m distance from a building) exhibited a lower D (L has a negative effect on D), controlling 

for species and region.  The effect was positive in the other three classes (> 8 m away), which 

indicates that being relatively close to a building generally lowers a tree’s fractal dimension. 

Trees that had conflicts with utility wires had lower-than-average D values, and higher-than-

average values when no wires were present. Land use within a city showed positive effects on D 

when trees were growing in single and multi-family residential land uses, or in parks, vacant and 
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other areas. The other two land-use categories (industrial, institutional and large or small 

commercial areas, and transportation corridors) exhibited a negative effect on D. 

 

2.4. Discussion 

2.4.1. Drought and Shade Tolerance in Crown and Leaf Fractal Dimensions of 

Different Species 

A major finding of this study is that both the drought and shade tolerance of different 

species relates to the fractal dimension of their crowns. This indicates that species-specific crown 

architecture is part of an evolutionary strategy associated with tolerance of key environmental 

stressors, namely too much energy in the form of heat (causing water losses) or not enough due 

to shade.  Niinemets and Valladares (2006) noted that trees may not have the morphological and 

physiological characteristics that allow simultaneous tolerance to several environmental stresses 

and found negative correlations between the drought and shade tolerance values for different 

species.   

There appeared to be a clear tradeoff for the needle-leaved species we examined, with 

higher D for shade-tolerant species and lower D for drought-tolerant ones, while the D of broad-

leaved species appeared only to be influenced by species-specific drought tolerance. This 

suggests that urban trees, across the diverse city-regions we examined in the U.S., are adapting 

the dimensionality of their crowns to minimize heat gain or water loss, but inherent shade 

tolerance is having a smaller influence. This result makes sense given that lower tree densities in 

urban areas make trees less likely to be shaded by other trees (McHale et al. 2009, MacFarlane 

and Kane 2017), but more likely to experience drought (Close et al. 1996), than their (rural) 

forest-growing counterparts. 
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Our results provide new insights regarding how the fractal architecture of trees relates to 

balances between hydraulics and light capture (also noted by Smith et al. 2014).  Mäkelä and 

Valentine (2006) suggested that deviations from the WBE fractal-scaling model for trees, arise 

from the senescence of twigs inside the crown, as foliage expands towards the surface, where 

light can be more readily captured, leading to empty space in the interior of crown volume.  This 

suggests that shade from neighboring trees and shade from one’s own leaves (self-shading) 

should influence D, such that shade tolerance should be an important species characteristic 

determining D. A study by Zeide and Pfeifer (1991) also suggested a positive relationship 

between D and shade tolerance for coniferous species, which we also found here, but their study 

was before the advent of the numerical shade tolerance scale we employed here and a directly 

comparable numerical scale of drought tolerance (compliments of Niinemets and Valladares 

2006).   

Our results suggest that, for trees growing in urban environments, with fewer tree 

neighbors to cast shade, differences in D might be better explained by hydraulic limitations, 

because both broad and needle -leaved trees, showed a negative response in D to drought 

tolerance.  It is possible that these results could also apply to open-grown trees in general, where 

only tolerance to self-shading would be an issue, unlike in a natural forest, where shelf-shading 

is confounded with shading from other trees.   

Zeide and Gresham’s (1991) method of estimating D should produce values bounded 

between 2 and 3 (see Fig. 2.1), so it was notable that our model predicted a value < 2 for one 

species, Juniperus virginiana (D = 1.843, Table 2.2), a species with very higher drought 

tolerance (4.65 out of a maximum of 5).  This "out-of-bounds" value likely reflects statistical 

uncertainty in this method of estimating D (Zeide 1998), which reflects uncertainty from both the 
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method used to estimate tree leaf area and the method used to estimate crown volume, as well as 

model error. Seidel (2018) recently proposed a direct method to estimate D for trees, using 

terrestrial laser scanning technology, but showed values consistently lower than D = 2.  

However, Seidel’s method also includes the tree’s trunk below the crown, and it has been noted 

that trunk length does not scale with crown fractal dimensions (Mäkelä and Valentine 2006). 

Nonetheless, Zeide and Gresham’s (1991) method of estimated D proved a highly useful index 

of comparison in this study. It allowed us to quantify functional relationships between crown 

architecture and stress tolerance for a variety of tree species. 

One of the most interesting features of fractals is that the patterns reproduce themselves 

at different scales (Mandelbrot 1983).  While we understand that trees are not truly fractals, it 

was interesting that our results showed a similar, negative relationship between D and LMA, to 

that observed between D and drought resistance. We know that LMA is proportional to the 

inverse of leaf surface to volume ratio (Roderick et al. 2000), so a lower D, at the crown level, 

could be a direct consequence of a higher LMA at the leaf level.  Further analysis revealed a 

positive relationship between the drought tolerance of tree species and LMA (r = 0.67, p = 

0.0000), which were both estimated independently from each other (Niinemets and Valladares 

2006 and Wright et al 2004, respectively) in this study. Lower LMA implies thinner and larger 

leaves, which transpire more easily than smaller or thicker leaves as their local temperature 

increases, increasing water loss (Pallardy 2008). Conversely, higher LMA is associated with 

thicker leaf-blades and smaller cells with thicker walls, which allow leaves to continue 

functioning in arid and semi-arid regions (Wright et al 2004).  

Our analysis also revealed a negative relationship between shade tolerance of all tree 

species and LMA (r = -0.43, p = 0.0045), which may explain the positive relationship that was 
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found between D and species shade tolerance (r = 0.22, p = 0.05). According to Lusk and Warton 

(2007), and Lusk et al. (2010) a positive relationship is expected between species shade tolerance 

and LMA. However, Lusk and Warton (2007) concluded that this relationship can change 

depending on the tree ontogeny and the light environment; they found a negative relationship 

between shade tolerance and LMA of deciduous saplings. Overall, our results also support the 

premise that development of a fractal-like crown architecture in urban tree crowns is heavily 

influenced by water transportation as a limiting factor for photosynthesis (Smith et al. 2014). 

We expected greater drought resistance for needle-leaved trees compared to the 

broadleaved ones, given their higher LMA (Wright et al. 2004), as well as a wood anatomy that 

should increase resistance to drought cavitation (Markesteijn et al. 2011), e.g., thicker walled and 

shorter water-conducting tracheid elements for needle-leaved species (Sperry et al. 2006, 

Pallardy 2008).  Both a different branching architecture and different branch anatomy may help 

explain why needle-leaved species showed a strong differentiation in crown D over the range of 

drought tolerance examined (note the steep slope in Fig. 2.2).  This idea is supported by a study 

by Pittermann et al. (2012) who showed that the evolution of drought tolerance within the 

Cupressaceae family of gymnosperms occurred in response to Cenozoic climate change that 

favored the evolution of lower xylem-specific conductivity and imbricate needles over a higher 

xylem-specific conductivity and bilaterally-flattened needles; the former conferring greater 

drought resistance in hotter, arid environments at the expense of growth rate.  Our estimates of D 

at the crown-level appeared to capture this divergence; the highest value of D predicted by our 

three species-group models (Table 2.2) was D = 2.719 for Sequoia sempervirens, a species with 

bilaterally-flattened needles that evolved in once humid, warm climates, abundant during the 

Cretaceous and Paleocene. Whereas, the lowest D estimated was for Juniperus virginiana (see 
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Table 2.2 and above).  Pittermann et al. (2012) showed that slower-growing, imbricate-leaved 

Juniperus spp. evolved more recently, in response to the advent of cooler, drier woodland / 

grassland environments of the Eocene. 

The strong, opposite trend between D and shade tolerance that we observed for needle-

leaved species, supports the idea that drought-tolerant, needle-leaved species likely lose 

significant capacity to tolerate shade, as a result of adopting a crown architecture with a lower D. 

Niinemets and Valladares (2006) noted that shade-tolerant, drought-intolerant conifers (e.g., 

trees in the genera Abies, Picea, or Tsuga) are generally species of cool, temperate forests, where 

growing season length is similar for deciduous and evergreen species. In natural environments, 

these needle-leaved species may need a higher D, at the crown level, to capture the necessary 

light in competition with broad-leaved species, and in accordance with shorter growing seasons 

at higher latitudes. In the context of our results, this suggests that shade-tolerant, needle-leaved 

species, may have the highest intrinsic vulnerability to relatively droughty urban environments, 

where urban "heat island" effects and harsh rooting environments are likely influential, and 

shading from neighboring trees is of much lower importance. 

In the sections that follow, we discuss the environmental (extrinsic) effects on D, to 

contrast with, and further explain the intrinsic effects on D associated with species life history 

traits, discussed here.  
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2.4.2. Climatic Region Influences on Crown Architecture and Management 

Implications 

The negative relationship between the average D of all trees within each reference city 

and the mean annual temperature (MAT) of the reference city reinforces the notion that 

atmospheric drought responses are driving urban forest crown architecture.  Trees of the same 

species and across all species had a lower D when growing in a hotter city / region.  This was 

also seen in the relationship with CDD. According to McPherson et al. (2016), CCD is used to 

quantify the demand for energy needed to cool buildings. So, based on the negative relationship 

between CDD and D, trees are showing a reduced D, in cities where air conditioners are running 

more.  

Climatic regions with higher MAT are typically arid, with a larger vapor pressure deficit 

that drives water vapor movement from leaf stomata to the atmosphere. Trees growing in hotter 

regions should reduce their fractal dimension, where possible, in order to minimize transpiration 

costs; this could be adaptive or simply a consequence of leaf and shoot die back due to stress.  In 

urban areas, when trees are growing with reduced competition from other trees, they may have 

more flexibility to modify their crown shape to reduce D. We did not find the expected, opposite 

relationship with MAP (more rain increases D), but it is possible that precipitation is a more 

variable measure of the drought experienced by trees than MAT, rather than indicating that 

rainfall levels are not important to tree crown architecture.  Nonetheless, the fact that MAP and 

MAT for the cities (Supplemental File 2.2) were essentially uncorrelated (R² = 0.0049) indicates 

that the trees we studied were responding to a full range of climatic conditions from cool and dry 

to warm and wet, but responding mainly to temperature in terms of their D.  
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Another consideration is that urban forest communities do not undergo natural assembly 

processes, but rather are the result of anthropogenic structuring (sense Sattler et al. 2010). The 

above-mentioned negative relationship could be attributed to the tendency of arborists to plant 

drought-tolerant species in warmer regions. Indeed, the mean drought tolerance of all study trees 

within each climatic region, was significantly higher in cities with a higher MAT (r = 0.54, p = 

0.04). Further analysis showed that both MAT and mean drought tolerance of trees in a region 

together explained more variation in mean D than either them separately (VIF = 1.00 for both 

variables), indicating that both the nature of trees planted and the climate of the cities influenced 

D. Taken with the lower elasticity of  D relative to drought resistance (Fig. 2.3), this suggests 

that there is a limit to how far a tree of a given species can modify its crown architecture to adapt 

to the conditions of a hotter city, and that arborists are similarly limited in what species they can 

plant as urban conditions become hotter. This result has important implications for adapting 

urban forests to global warming.  

It is no coincidence that there were many more broad-leaved, deciduous species than 

needle-leaved, evergreen species in the extensive data base of U.S. city trees that we examined.  

One of the much-cited benefits of urban trees are the cooling effects of shade provided by broad-

leaved trees, who can also  provide heat-energy benefits, because they lose their leaves during 

the cooler, darker winters in the northern hemisphere, letting sunlight through the crown 

(McPherson et al 2018).  However, the negative relationship that we observed between the 

fractal dimension of urban trees and the cooling degree days (CDD) suggests that the amount of 

shade a tree can cast should be lower in hotter cities (lower D). It appears difficult to build a 

canopy architecture that can cast a deep shade while also trying to reduce D to reduce water loss. 

The latter notion could provide insight into the choices of species to be planted for adapting 
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urban ecosystems to climate change. As examples, in regions with arid and warm climate 

arborists could select drought tolerant species of lower D or they could water trees more often in 

order to maintain their hydraulic balance and develop crowns that can cast deeper shade. The 

latter implies higher water maintenance costs for managing a higher D in urban tree cover in 

hotter, drier regions. 

 

2.4.3. Local Growing Environments Influence Crown Architecture 

Environments within cities are heterogeneous and may present more- or less-challenging 

growing conditions than natural forest settings.  Urban trees are both nurtured by people and 

harmed by various edifices and anthropogenic processes that define urban ecosystems (Vogt et 

al. 2015).  In our study, the less-developed areas within cities (single or multi-family residential 

areas, parks, and vacant areas), had a positive effect on D, whereas the more developed ones had 

negative effects on D (these were industrial, institutional, commercial areas and transportation 

corridors). Since it has been suggested that fractal dimension relates to tree growth rate (Seidel 

2018), and we know that crown dieback relates to tree stress, we interpret such negative effects 

on D to represent reduced vigor for urban trees in more developed urban areas, after accounting 

for differences due to species and region.   

Other studies also indicate that family-residential areas or parks offer more favorable tree 

habitats than commercial-industrial areas and transportation corridors. According to Lu et al. 

(2010), trees planted in single and two-family residential areas had the lowest mortality rates, 

whereas street trees planted in industrial areas had the highest rates of mortality. It is possible 

that trees may receive more care, such as watering, in areas with family residential land-uses, so 

there may be a social-ecological component associated with tree survival and growth, depending 
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on the socio-demographic characteristics of local neighborhoods (Vogt et al. 2015).  Studies by 

Iakovoglou et al. (2001, 2002) showed that streets and commercial settings with high soil pH and 

high concentration of de-icing salts negatively affect tree growth compared to urban parks and 

residential areas. Other characteristics of  industrial areas that relate to reduced tree growth are 

restricted growing space, limited soil moisture, lack of nutrient balance and high evaporative 

levels (Iakovoglou et al 2001).  In general, paved surfaces in cities are associated with reduced 

tree growth because of soil compaction and reduced soil aeration, water deficit or excessiveness, 

increased local soil temperature, and excess of Na and CI ions (Krizek and Dubik 1987, 

Grabosky and Gilman 2004). A greater extent and spatial distribution of paved surfaces 

determines the corresponding level of negative impact on trees (Kostić et al. 2019). This can help 

explain why traffic volume has a negative effect on tree survival (Lu et al 2010).  These findings 

support the idea that more-developed urban areas are likely causing greater stress to trees, that is 

reflected in a lower value for D. 

Our analyses also showed that the D of urban tree crowns is typically lower whenever a 

tree is close to a building. Buildings may be regarded as anthropogenic barriers to tree crown 

expansion, which might explain the observed reduction in D.  Trees growing close to buildings 

may experience enhanced wind loads that can disrupt the architecture of the crown (Telewski et 

al. 1997). On the other hand, Bang et al. (2010) found that trees surrounded by buildings can be 

sheltered from wind and this can increase productivity. Ultimately, the relative wind load a tree 

receives is a complex function of building heights and street geometry (e.g. urban street canyon) 

and any adjacent trees, thus difficult to translate into a direct effect on D.  However, new 

approaches are being developed to simulate wind flows in urban areas, inside and above street 

canyons and over the roofs of buildings (Salim et al. 2015; Mohamed and Wood 2015). 
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Another consideration for buildings is to what extent they affect the temperatures 

experienced by trees.  While we have already seen that trees in hotter cities have a generally 

lower D, the local growing environment within a city may be relatively hotter or cooler. We 

could expect the local temperature close to buildings to be relatively higher, due to cooling and 

heating systems, and the fact that ground surfaces around buildings are typically paved. 

However, buildings also provide shade, which might cool trees off and benefit shade tolerant 

species, presumably those with intrinsically higher D.  

Kostić et al. (2019) argued in their study that street canyons were associated with the 

most stressful conditions for trees. Kjelgren and Clark (1992) found that direct solar radiation in 

a canyon was limited to four hours in the middle of summer, while the direct solar radiation in 

plaza sites was not inhibited and therefore the afternoon air temperature and vapor pressure 

deficits were greater in plaza sites. Bourbia and Boucheriba (2010) found that urban "canyons" 

can be 3-6 °C warmer than surrounding rural environments, which could negatively affect D. So, 

we expect that the distance of trees from buildings should affect the mechanisms of crown 

development, since buildings alter both the wind and sunlight environments. Collectively, these 

studies suggest that the heat and drought effects of being close to buildings might be much more 

important than any shading effect. 

Another important factor influencing the D of urban trees was the negative effect when 

they were growing in conflict with wires. We assume this negative effect is mainly an effect of 

pruning treatments to reduce these conflicts, such as raising, reduction and thinning (Pavlis et al. 

2008). Trees naturally self-prune as they grow, shedding unhealthy and non-productive branches 

and rearranging foliage to minimize self-shading of foliage (Pugnaire and Valladares 2007), 

which alters the fractal dimension of the trees vascular system (Mäkelä and Valentine 2006).  
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Natural (self) pruning likely restores a healthy balance of leaf area relative to water-conducting 

systems, but it is less clear how anthropogenic pruning may affect the long-term structure and 

physiology of urban trees (Fini et al. 2015).  Vogt et al. (2015) noted that pruning branches can 

remove photosynthetic (leaf) area and reduce growth rates, but correctly performed, can enhance 

tree growth and vigor. We expect that the negative effect on D observed in our study reflects a 

reduction in vigor, due to a likely prioritization of reducing wire conflicts over enhancing crown 

architecture for the tree’s benefit. "Topping", where pruning cuts are made in the middle of 

internodes to chop a tree back from wires, appears to have a particularly damaging effect; these 

cuts increase crown dieback, but also reduce the LMA of regenerating leaves (Fini et al. 2015); 

this likely leads to a lower drought resistance, based on our results. So, pruning, which is a 

regular part of urban forest management, might have positive or negative effects on D, but our 

results indicate that pruning to protect wires is having a net negative effect, on balance.  

 

2.5. Conclusions 

The evolution of the form and function of trees of diverse species has taken place over 

hundreds of millions of years, but trees have only had to adapt to structures like buildings, roads 

and sidewalks for millennia.  Many studies of human-tree interactions emphasize the many 

"ecosystem services" provided by trees to humans; urban forests provide e.g., temperature 

regulation, carbon dioxide sequestration, noise reduction, filtering of air pollutants, biodiversity, 

pollination, human health, recreation, water management, energy saving for buildings, aesthetics 

(Heisler 1986, McPherson et al. 1994, McPherson 1998, Nowak and Crane 2002, MacFarlane 

2007, Casalegno et al. 2017, Tigges and Lakes 2017). However, it is equally important to study 
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the reciprocal effects that our built environment has on the trees that we depend on. We conclude 

by summarizing our key findings in this regard. 

Species can differ in their functional traits (e.g. leaf traits) independently from the 

ecosystem or the biome where they grow (Reich et al 1997), so that when we put a tree into a 

novel environment it may or may not thrive.  Our main results show that drought-stress tolerant 

trees seem to be inherently better adapted to urban environments, which are likely hotter and 

with more restrictions in the rooting zone, than rural and wild places, in the same climatic region.  

Tree drought tolerance relates to the fractal dimension of both leaves and the whole crown, as 

expressed by LMA and D, respectively, in this study. Our results also suggest that shade 

tolerance, which is very important for succeeding in competition with other trees (e.g. the 

positive relationship between D and shade tolerance for coniferous species found by Zeide and 

Pfeifer 1991), is of much less importance in urban ecosystems, likely due to the much lower 

presence of tree neighbors.  Trees appear to have some plasticity in shaping the architecture of 

their crowns, to adapt to stresses in the urban environment, by lowering the fractal dimension of 

their crowns to reduce drought stress.  However, we also revealed that trees have an underlying 

inherent constraint in both their leaf type and their crown architecture, due to genetics, which 

limits their adaptability to urban ecosystems.     

With expectations for more urbanization and a generally hotter climate in a period of 

history that has been dubbed the "Anthropocene", our results add some new insights into the 

physiological ecology of trees in urban environments, which may help humans to provide more 

hospitable habitats for trees in urbanized areas and make better decisions about tree selection and 

climate change adaptation in urban forest management. 
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Abstract 

Trees have a fractal-like branching architecture that determines their structural 

complexity. We used terrestrial laser scanning technology to study the role of foliage in the 

structural complexity of urban trees. Forty-five trees of three deciduous species, Gleditsia 

triacanthos L., Quercus macrocarpa Michx., Metasequoia glyptostroboides Hu & W.C. Cheng, 

were sampled on the Michigan State University campus. We studied their structural complexity 

by calculating the box-dimension (Db) metric from point clouds generated for the trees using 

terrestrial laser scanning, during the leaf-on and -off conditions. Furthermore, we artificially 

defoliated the leaf-on point clouds by applying an algorithm that separates the foliage from the 

woody material of the trees, and then recalculated the Db metric. The Db of the leaf-on tree point 

clouds was significantly greater than the Db of the leaf-off point clouds across all species. 

Additionally, the leaf-removal algorithm introduced bias to the estimation of the leaf-removed 

Db of the G. triacanthos and M. glyptostroboides trees. The index capturing the contribution of 

leaves to the structural complexity of the study trees (the ratio of the Db of the leaf-on point 

clouds divided by the Db of the leaf-off point clouds minus one), was negatively correlated with 

branch surface area and different metrics of the length of paths through the branch network of the 

trees, indicating that the contribution of leaves decreases as branch network complexity 

increases. Underestimation of the Db of the G. triacanthos trees after the artificial leaf-removal 

was related to maximum branch order. These results enhance our understanding of tree structural 

complexity by disentangling the contribution of leaves from that of the woody structures. The 

study also highlighted important methodological considerations for studying tree structure, with 

and without leaves, from laser-derived point clouds. 
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3.1. Introduction 

Trees have an inherent fractal-like branching architecture (Noordwijk and Mulia 2002, 

Mäkelä and Valentine 2006) mirroring principles of fractal geometry (Mandelbrot 1983). 

However, tree branching networks are not perfect fractals, lacking self-similarity across all scales 

of the branching hierarchy (Halley et al. 2004, Mäkelä and Valentine 2006, Malhi et al. 2018). 

Nonetheless, major theories linking tree morphology to tree physiology (e.g., pipe-model 

theory, Shinozaki et al. 1964; metabolic scaling theory, West et al. 1997) and mechanical 

stability (e.g., resisting wind stress, Eloy 2011) have been advanced by assuming that the fractal-

like character of trees explains the structural complexity of their crowns (Seidel 2018) and how 

they grow to occupy space (Silva et al. 2006, Jonckheere et al. 2006). One of the main challenges 

in testing such theories are reliable ways to accurately measure the structural complexity of trees 

in a way that reflects the fractal dimension of tree crowns. 

The growing environment of a tree affects its crown architecture and competition for 

light from neighboring trees (Metz et al. 2013) significantly disrupts the inherent fractal-like 

character of trees growing in forest stands and plantations (MacFarlane et al. 2014, Eloy et al. 

2017). According to Seidel (2018) Douglas-fir trees growing in forest gaps had more complex 

crowns compared to trees of the same species growing in closed canopy conditions, and this 

implies that light regime significantly affects the fractal dimension of a tree, which negatively 

relates to competition (Dorji et al. 2019). Therefore, we expect that the typically lower number, 

or complete absence of, neighboring trees in cities should allow urban trees to better express 
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their inherent fractal character; this was an important reason to focus on urban open-grown trees 

in this study. Of course, cities have heterogeneous growing conditions (Moran 1984, Kjelgren 

and Clark 1992, Iakovoglou et al. 2002, Lu et al. 2010, Jensen et al. 2012, Ferrini et al. 2014, 

Kostić et al. 2019), characterized by anthropogenic barriers to root and crown expansion (Krizek 

and Dubik 1987, Rhoades and Stipes 1999, Vogt et al. 2015), systematic tree pruning (Pavlis et 

al. 2008, Vogt et al. 2015), increased atmospheric temperatures and reduced water infiltration 

(Kjelgren and Clark 1992, Bourbia and Boucheriba 2010, Nowak and Greenfield 2020), air 

pollutants (Gregg et al. 2003), and heterogeneous soil properties (Iakovoglou et al. 2001,  

McHale et al. 2009), which can affect the fractal dimension of tree crowns (Arseniou and 

MacFarlane 2021). Nonetheless, the inherent fractal-like character of open-grown trees should be 

more evident compared to trees growing in competition with other trees. 

Open-grown trees can be found both in urban and rural forest conditions, but for urban 

conditions there is a shortage of robust models. This limits our understanding of basic ecological 

services of urban forests (Tigges and Lakes 2017), despite the fact that urban trees provide a 

range of significant ecological services e.g., carbon storage (McPherson 1998, Nowak and Crane 

2002, MacFarlane 2009, McHale et al. 2009), air pollutant uptake (McPherson et al. 1994, 

Nowak 1996, Casalegno et al. 2017), water purification, pollination, biodiversity, and energy 

savings for buildings (Heisler 1986, Jensen et al. 2012, Casalegno et al. 2017, Kostić et al. 2019). 

In order to optimize the benefits of urban forests, we need to study the structure and function of 

trees in cities. For example, we know that the fractal dimension of tree crowns relates to their 

ability to tolerate shade (Zeide and Pfeifer 1991, Zeide and Gresham 1991), which affects the 

shading benefits of trees, as well as their ability to tolerate the drought and the heat of cities 

(Arseniou and MacFarlane, 2021).  
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New advances in terrestrial laser scanning (TLS) technology allow for accurate, direct 

measurements of the three-dimensional structure of trees (Malhi et al. 2018, Calders et al. 2020) 

and many studies have utilized TLS to quantify stem profiles and timber volume (Hopkinson et 

al. 2004, Maas et al. 2008, Moskal and Zheng 2011, Vonderach et al. 2012, Olschofsky et al. 

2016), leaf and crown attributes (Moorthy et al. 2010, Jung et al. 2011, Béland et al. 2014), and 

above-ground tree biomass (Kankare et al. 2013, Calders et al. 2015, Olagoke et al. 2016, Stovall 

et al. 2017, Tanhuanpää et al. 2017, Zheng et al. 2019). TLS creates "point clouds" of trees by 

emitting laser pulses and analyzing the returned energy as a function of either time (time-of-

flight systems) or shift in the phase of the light wave of the emitted laser beam (phase-shift 

technology) (Calders et al 2015, Liang et al. 2016). One way to generate data for analyzing the 

fractal-like character of tree branching networks from TLS point clouds is the generation of 

Quantitative Structure Models (QSMs), by fitting cylinders to a tree’s point cloud that preserve 

branch and stem topology (Raumonen et al. 2013, Kaasalainen et al. 2014, Hackenberg et al. 

2015, Bournez et al. 2017, Disney et al. 2018). Lau et al. (2019) generated QSMs of tropical 

trees to study the theoretical scaling exponents derived from the metabolic scaling theory (West 

et al. 1997) that describes the fractal-like structure of trees. 

Another approach is the "box-counting" method (Silva et al. 2006), which considers the 

number of boxes that are needed to encapsulate all points of a laser-scanned tree, as box size 

iteratively reduces. Seidel (2018) showed how the "box-dimension" metric can be calculated 

from the point cloud of a tree to describe its fractal dimension in terms of structural complexity. 

The box-dimension metric has no units and its possible values range between one and three. 

Trees with great crown complexity and "space-filling character" have box-dimension values 

closer to three, whereas box-dimension equal to one implies a perfectly cylindrical stem with no 
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branches, e.g., a dead tree (Seidel 2018). Box-dimension values smaller than one imply that the 

lower "cut-off" has not been properly defined because the mean distance between points is 

greater than the edge-length of the smallest box. Values of three (or greater) would imply that a 

tree is a solid cube which is not valid. The box-dimension is a more direct and simple way to 

measure the fractal-like character of a tree, because it lacks the assumptions and stochasticity 

inherent in QSMs, using only the raw point cloud data generated by TLS. 

Leaves increase uncertainty in the underlying branching architecture, because they 

occlude underlying branches and move more in the wind (Wilkes et al. 2017, Calders et al. 

2020). Davison et al. (2020) for example, showed how leaf phenology affects the estimation 

uncertainty of metrics of forest structural diversity when laser scanning data are used. "Leaf-off" 

laser scanning data can provide better estimates of crown architecture of deciduous tree species 

(Davison et al. 2020), because leaf occlusion effects are avoided.  

There are several studies that have explored how leaf-off and leaf-on airborne laser 

scanning data compare for the estimation of forest volume and other forest inventory attributes 

(Anderson and Bolstad 2013, Bouvier et al. 2015, Hawbaker et al. 2010, Villikka et al. 2012), 

but few, if any, have examined the effects of leaves on computation of fractal metrics of tree 

branching architecture. Perhaps more importantly, we lack a basic understanding regarding the 

role of foliage in the crown complexity of trees, which is fundamental to understanding how 

trees position their leaves and branches to maximize light capture and minimize self-shading 

(Zeide and Gresham 1991, Zeide and Pfeifer 1991, Zeide 1998), optimize crown architecture to 

improve water transport and resist drought (Arseniou and MacFarlane, 2021), and reduce wind 

stress (Eloy 2011, MacFarlane and Kane 2017, Jackson et al. 2019), which has been shown to be 
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affected by both, the increased drag of foliage (Vollsinger et al 2005, Antonarakis et al. 2008) 

and the uncertain effects of branches.  

Artificial leaf separation from the leaf-on point clouds of trees is a promising 

methodology. There are three main types of algorithms to separate the leaf from the woody 

material of laser point clouds of trees: (1) algorithms that use the geometry of laser points, (2) 

algorithms that consider the radiometric properties of the returned laser pulses, and (3) 

algorithms that combine the previous approaches (Vicari et al. 2019, Wang et al. 2018, Wang et 

al. 2019, Moorthy et al. 2020). The radiometric-based algorithms assume that the leaves and the 

woody material of trees have different intensity characteristics at the wavelength of the laser 

scanner, which depend on the laser scanning distance, the incidence angle and the technical 

characteristics of each instrument (Wang et al. 2019). However, the geometry-based algorithms 

consider only the 3D coordinates of the points of a laser-scanned tree based on supervised 

machine learning (Wang et al. 2017, Moorthy et al. 2020) or unsupervised classification methods 

(Vicari et al. 2019, Wang et al. 2019). In general, we still need a better understanding of the 

effect of these classification algorithms for leaf separation when studying tree architecture 

(Vicari et al. 2019). 

In this study, we used the box-dimension metric to quantify the crown complexity of 

three deciduous tree species in their leaf-on and leaf-off conditions. Furthermore, we artificially 

removed the leaves from the tree point clouds generated from leaf-on data, using the 

TLSeparation algorithm (Vicari 2017), and we computed the box-dimension metric for the leaf-

removed tree point clouds. The questions that we want to answer are the following: 

 How do the changes in leaf condition of deciduous tree species with different leaf 

types affect their crown complexity? 
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 How do differences in the contribution of leaves to the structural complexity of 

the study trees relate to the above-ground architecture of the trees? 

 What is the effect of artificial leaf-removal from the leaf-on tree point clouds on 

their estimated fractal dimension? Is there an error in estimating the fractal dimension of the tree 

point clouds after the artificial leaf- removal compared to the fractal dimension of the leaf-off 

point clouds of the same trees? 

 How does the potential error in estimating the fractal dimension of the tree point 

clouds due to the artificial leaf-removal relate to the branch architecture of trees?  

We hypothesized that the leaves of trees would significantly increase their fractal 

dimension in terms of crown complexity, because the irregular outline shape of leaves is fractal-

like (Borkowski 1999, Hartvigsen 2000, Backes and Bruno 2009), and the presence of foliage 

implies that more space is occupied by a tree and consequently more laser points are captured in 

its crown. So, a larger number of boxes is required to encapsulate all points of the laser-scanned 

tree, which results into greater value of the box-dimension metric (Seidel 2018, Seidel 2019b, 

Guzmán 2020). Furthermore, we hypothesized that differences in the contribution of leaves to 

tree structural complexity have ecological importance, because differences should relate to self-

shading of tree crowns (Sack et al. 2006), the shade tolerance of the tree species and the type and 

shape of the leaves (Abrams and Kubiske 1990, Arseniou and MacFarlane, 2021).  

We also hypothesized that errors in estimation of the box-dimension resulting from 

artificial leaf-removal, would relate to the type of leaf (broad vs. needle and compound vs. 

simple) and the order and the size of the branches of a tree, the latter of which because point 

cloud density can change across the branching network of a tree and leaf separation algorithms 

are sensitive to it (Vicari et al. 2019, Moorthy et al. 2020).  
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3.2. Materials and Methods 

3.2.1. Urban Tree Data 

Forty-five trees of three species, representing different tree functional types, were 

sampled on the Michigan State University campus: sixteen Gleditsia triacanthos L. (Honey 

locust) trees, which are compound-leaved, deciduous angiosperms, fifteen Quercus macrocarpa 

Michx. (Bur oak) trees, which are entire-leaved, deciduous angiosperms, and fourteen 

Metasequoia glyptostroboides Hu & W.C. Cheng (Dawn redwood) trees, which are needle-

leaved, deciduous gymnosperms (Fig. 3.1). The trees were selected to cover a large range of 

sizes within each species (see Table 3.1). 

The G. triacanthos and Q. macrocarpa trees were laser-scanned with leaves-on in July 

and August, 2019, and the M. glyptostroboides trees were laser-scanned with leaves-on in 

August, 2020 (see specific methods below). The same trees were also laser-scanned in leaves-off 

condition between January and March, 2020. Before re-scanning the study trees, we confirmed 

that none of them were pruned between the leaves-on and leaves-off scans by the Michigan State 

University arborists. Therefore, pruning did not cause any bias in the quantification of the crown 

complexity of the trees during the study period. Following this experimental design, any change 

in the crown complexity of the study urban trees between the leaves-on and leaves-off scans 

should be attributed only to changes in their foliage, not their branching architecture. Of course, 

tree-pruning prior to the study should have an effect on the crown architecture of the study trees, 

but it did not influence the changes in their crown complexity during the study period. 
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Figure 3.1. Sample of leaves of the species (A) G. triacanthos (B) Q. macrocarpa 

(C) M. glyptostroboides. 

 

3.2.2. Terrestrial Laser Scanning and Point Cloud Processing 

The FARO Focus
3D

 X 330 terrestrial laser scanner was used to scan the trees. This laser 

scanner operates with laser light of 1550 nm wavelength, typical beam divergence 0.19 mrad, 

and a range of 0.6 m - 330 m. In order to minimize occlusion effects in the point clouds, each 

individual tree was scanned at high resolution from a minimum of four different directions at 

different distances, and six reference target-spheres were placed around a laser-scanned tree to 

spatially reference all scans and create a single point cloud for each tree, following the field 

scanning protocols suggested by Wilkes et al. (2017). The first two scans were conducted in 

opposite directions, from distances that allowed the top of the focal tree to be clearly visible. The 

other two scans were also conducted in opposite directions (perpendicularly to the first two 

scans), but from a closer distance to the tree, to better capture its branching architecture and get 

closer views of the main stem. Two or three additional scans were conducted underneath the 
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crown of large trees with wide crowns in order to capture more dense point clouds of the 

branches. All laser scans were conducted when there was little or no wind. 

The software SCENE 2019.2 (FARO Technologies Inc., 2019.2) was used to spatially co-

register and noise-filter all scans in an automatic way. With the same software each tree was then 

manually separated from the point cloud of the urban site background. This process has been 

shown to be an accurate alternative to a fully automatic segmentation process (Seidel, 2019a).  

 

3.3. Leaf and Wood Classification of the Point Clouds 

The TLSeparation algorithm (Vicari 2017) was applied to the point clouds of the trees 

with their leaves-on. This algorithm separates points that belong to the woody components of the 

trees from points that belong to their foliage, based on unsupervised classification of geometric 

features (leaf and wood materials within the point cloud have different spatial arrangement) and 

"shortest-path" analysis, which facilitates detection of paths through the branching network 

(from tree base to branch tip) with high occurrence frequency (Vicari et al. 2019). This approach 

was used to generate a single point cloud for each tree containing only points classified as woody 

parts of the tree.  

 

3.4. Quantification of the Structural Complexity of Trees 

The box-dimension metric (Db), which is derived from fractal geometry principles 

(Mandelbrot 1983), was used to quantify the above-ground structural complexity (fractal 

dimension) of the trees (Seidel et al. 2019b) in three conditions: (1) leaf-on, (2) leaf-off and (3) 

after the leaves were artificially removed from the leaf-on point clouds. The box-dimension 
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equals the slope of the least-squares line when the logarithm of the number of boxes required to 

capture all points of a laser-scanned tree is regressed against the logarithm of the inverse of the 

size of a box relative to the size of the initial box which is the smallest box encapsulating the 

whole tree i.e. "upper cut-off" (Fig. 3.2, Seidel 2018, Seidel et al. 2019b). The intercept of the 

regression line describes the size of the crown of a tree (i.e. crown radius, Dorji et al. 2019). The 

size of the smallest box ("lower cut-off") was 10 cm in this study, and it was selected based on a 

very liberal estimate of the maximum distance between two neighboring laser points at any given 

location in the tree, because the "lower cut-off" must ensure that no box is empty due to missing 

data i.e. it fits in the "unsampled" space of a scanned tree. The algorithm written in Mathematica 

12.2 (Wolfram Research, Inc. 2020) for the computation of the Db metric is available in 

Supplemental File 3.1.  

 

Figure 3.2. (A) Illustration of the virtual boxes of different sizes that capture the 

leaf-on point cloud of a M. glyptostroboides tree. (B) Exemplary log-log plot for the 

computation of the box-dimension metric for the same tree. The slope of the regression line 

equals the box-dimension of the tree i.e. Db = 2.05. The 95% confidence interval has been 

plotted around the regression line. The number of boxes required to capture all points of the 

tree point cloud is denoted as N, the size of the length of each box is denoted as s, and the 

size of the length of the initial box that encapsulates the whole tree is denoted as s_initial. 
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3.5. The LCC Difference Index and Error Metric Computation 

The role of leaves in the above-ground structural complexity of the trees was quantified 

with the Leaf Complexity Contribution index:  

LCC =   
           

            
     ,   (eq. 3.1) ( 

where             is the box-dimension of the leaf-on point cloud of each study tree, and 

             is the box-dimension of the leaf-off point cloud of each study tree. If LCC = 0, the 

Db of the leaf-on and leaf-off point clouds of a tree are equal and there is no contribution of the 

leaves to the structural complexity of the tree. If LCC > 0, it means that the leaf-on Db of a tree is 

greater than the leaf-off Db of the tree, indicating that leaves increase tree structural complexity. 

Similarly, if LCC < 0, it means that the leaf-off  Db of a tree is greater than the leaf-on Db of the 

tree, indicating that leaves reduce structural complexity most likely because they occlude the 

woody components that are not adequately laser-scanned.  

The effect of the artificial leaf-removal using the TLSeparation algorithm on the 

structural complexity of each study tree was quantified with the percent relative error metric 

(Sileshi 2014, Burt et al. 2021): 

%RE = 
                          

          
 *100,           (eq. 3.2) ( 

where             is the Db of the point cloud of each study tree after the artificial leaf-

removal. 
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3.6. Computation of Other Structural Metrics of Trees 

We computed some additional metrics that characterize the structure of trees to test our 

hypotheses regarding how the LCC index and the %RE relate to the above-ground tree 

architecture. According to major theories of tree structural complexity (i.e. pipe-model theory, 

Shinozaki et al. 1964; metabolic scaling theory, West et al. 1997), the "pipes" of the vascular 

system of a tree connect the roots to the leaves, with a surface area that scales with their volume 

(Enquist 2002). Consequently, the structural complexity of the vascular structure of a tree 

depends on the length and diameter of its pipes (Enquist 2002, Price and Enquist 2006). 

Therefore, we expected that the LCC should relate to different metrics of the length of the paths 

from the base of a tree to each branch tip (e.g., the "path fraction" metric of Smith et al. 2014).  

The algorithm TreeQSM v.2.3.0 (Copyright (C) 2013-2017 Pasi Raumonen) was used to 

produce quantitative structure models (QSMs) from the leaf-off point clouds of the trees. 

TreeQSM includes two main steps: (1) the point cloud segmentation into stem and branches 

based on cover sets and (2) the reconstruction of the volume and the surface area of the segments 

with cylinders (Calders et al. 2015, Raumonen et al. 2015). The algorithm produced several 

QSMs for each tree point cloud based on a range of values for the minimum and maximum size 

of the cover sets and it finally determined the optimal QSM (Raumonen et al. 2013). Based on 

the parameters of the optimal QSM the algorithm produced 30 additional QSMs in order to 

estimate the variation of the modeled tree variables (e.g. woody surface area), because of the 

inherent stochasticity of the TreeQSM algorithm (Raumonen et al. 2013). The algorithm 

separated the main stem from the branches of a tree based on the following criteria: (i) the main 

stem extends near the top of a tree, (ii) it goes almost straight up, and (iii) it is not too curved 

which means that the ratio of the stem length to the stem base-tip distance, must be the minimum 
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among all candidate main stems; the branches were further categorized by branching order based 

on certain criteria for branch topology, branch length and branch base-tip distance (P. 

Raumonen, personal communication, June 2, 2020).  

From the optimal QSMs of the leaf-off point clouds of the study trees, their total woody 

surface area (the surface area outside of the bark tissues) was computed as the sum total surface 

area of the cylinders that were fitted to the point cloud of each tree. The total woody surface area 

of each tree was also separated into the main stem and the branch woody components. 

"Path lengths" (sense Smith et al. 2014) were also used to create alternative structural 

metrics of the trees. The lengths of all paths from the stem base of a tree to all branch tips were 

computed from the lengths of the QSM cylinders, whose topological structure is preserved in a 

QSM. The distribution of the path lengths for each tree was computed i.e. the quantiles of the 

path lengths (25
th

, 50
th

 and 75
th

 percentiles), as well as minimum, maximum and mean path 

lengths. Smith et al. (2014) showed that relative path length variation is an intrinsic element of 

tree branching architecture relating to tree hydraulic conductance, volume, mechanical stability 

and light interception. 

 

3.7. Statistical Analyses 

All statistical analyses for this study were done with custom coding and available 

packages written in the R software language (R Core Team 2015).  

Differences in the mean value of the Db of the trees for leaves-on versus -off, and leaves-

artificially removed versus -off, were evaluated with t-tests, for each species separately (G. 

triacanthos, Q. macrocarpa, and M. glyptostroboides), and for all species combined. T-tests 

were also used to evaluate differences in the mean value of the LCC index, %RE, and Db of leaf-
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on, leaf-off and leaf-"removed" tree point clouds between the study species. The "sma" function 

of the standardized major axis regression and testing routines ("smatr") R package (Warton et al. 

2012) was used to conduct hypothesis tests regarding the intercepts and the slopes of the species 

sub-population regression lines. In all statistical tests, significant differences were assessed at α = 

5 %. 

The relationships between the leaf-on, leaf-off, and leaf-artificially removed Db values, 

and the relationships of the LCC index and the %RE with the tree structural metrics (see section 

3.6) were analyzed using linear regression analysis and relationship strength was quantified with 

the Pearson correlation coefficient (r); statistical significance was assessed at α = 5 %. 

 

3.8. Results 

3.8.1. Structural Complexity of Leaf-on Versus Leaf-off Tree Point Clouds 

The data show that the study trees varied widely in size (DBH and height) and structural 

complexity (Table 3.1). There was significant difference between the mean Db of the leaf-on tree 

point clouds of the G. triacanthos (GLTR) and Q. macrocarpa (QUMA) species (p = 0.0194). 

However, no significant difference was found between the mean Db of the leaf-on tree point 

clouds of the G. triacanthos (GLTR) and M. glyptostroboides (MEGL) trees (p > 5%), and also 

for the MEGL and QUMA trees (p > 5%). Significant differences were found between the mean 

Db values of the leaf-off tree point clouds of QUMA and MEGL trees (p = 0.0335), GLTR and 

QUMA trees (p < 0.001), and MEGL and GLTR trees (p = 0.041).  
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Table 3.1. Summary statistics resulting from different measurements of tree size and 

structural complexity. 

Summary Statistics All trees 
Gleditsia 

triacanthos 

Quercus 

macrocarpa 

Metasequoia 

glyptostroboides 

no. trees 45 16 15 14 

DBH (cm) 

(mean [min, max]) 
54.1 [15, 122.2] 52.9 [18.4, 72.8] 58.8 [29, 83.8] 50.5 [15, 122.2] 

Height (m) 

(mean [min, max]) 
13.8 [4.4, 24.1] 12.5 [10.4, 18.4] 15.8 [9.1, 21.3] 13.1 [4.4, 24.1] 

WSA (m
2
) 

(mean [min, max]) 

204.2 [29.9, 

467.0] 

265.4 [65.2, 

408.6] 

225.4 [60.4, 

467.0] 

111.5 [29.9, 

250.2] 

Stem WSA (m
2
)
 

(mean [min, max]) 
 13 [2.1, 44.6] 11.4 [4.1, 20.1] 16.2 [4.7, 30.3] 11.4 [2.1, 44.6] 

Branch WSA (m
2
) 

(mean [min max]) 

191.2 [27.7, 

436.7] 

253.9 [61.2, 

395.5] 

209.2 [55.7, 

436.7] 

100.1 [27.7, 

231.8] 

Db-leaf.on 

(mean [min, max]) 
2.06 [1.89, 2.23] 2.09 [1.89, 2.20] 2.03 [1.91, 2.11] 2.07 [1.94, 2.23] 

Db-leaf.off 

(mean [min, max]) 
1.97 [1.82, 2.11] 2.02 [1.84, 2.11] 1.92 [1.82, 2.04] 1.97 [1.84, 2.1] 

Db- leaf.rm 

(mean [min, max]) 
1.9 [1.76, 2.14] 1.84 [1.76, 2.0] 1.93 [1.83, 2.03] 1.93 [1.8, 2.14] 

LCC index 

(mean [min, max]) 

0.04633 

[0.00064, 

0.16394] 

0.03273 [0.01371, 

0.0762] 

0.05867 

[0.00667, 

0.10883] 

0.04864 [0.00064, 

0.16394] 

%RE 

 (mean [min, max]) 

5.55 [0.17, 

14.64] 
8.91 [1.07, 14.64] 2.43 [0.17, 5.46] 5.06 [0.92, 11.53] 

Mean Path length 

(m) (mean [min, 

max]) 

12.9 [3.7, 23.9] 14.8 [9.5, 22.0] 14 [6.9, 23.9] 

 

9.5 [3.7, 18.6] 

 

Max. Path length 

(m) (mean [min, 

max]) 

22.8 [6.5, 42.7] 24.8 [17.3, 37.5] 24.9 [12.3, 42.7] 18.3 [6.5, 35.8] 

25
th

 % Path length 

(mean [min, max]) 
10.9 [3, 20.6] 13.2 [7.7, 18.1] 11.7 [5.4, 20.6] 7.4 [3, 14.9] 

# of branch orders 

(median [min, max]) 
5 [1, 11] 5 [1, 11] 5 [1, 10] 4 [1, 9] 

 

 

T-tests showed that the mean Db of the leaf-on tree point clouds was significantly greater 

than the mean Db of the leaf-off tree point clouds (Fig. 3.3) across all study tree species 

combined (p < 0.001), and for each species separately (GLTR: p = 0.0145; QUMA: p < 0.001; 

MEGL: p = 0.003). Positive relationships were found between the leaf-on and the leaf-off Db 
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values of the trees across all species combined (Pearson's r = 0.72, p < 0.001) and for the GLTR 

(Pearson's r = 0.91, p < 0.001) and QUMA species (Pearson's r = 0.6, p = 0.019) (Fig. 3.4). The 

relationship between the leaf-on and the leaf-off Db values for the MEGL trees was not 

significant (Pearson's r = 0.52, p = 0.055), however, all data points were above the 1:1 line 

indicating that the Db of the MEGL leaf-on point clouds was clearly greater than the Db of the 

MEGL leaf-off point clouds, except one tree with LCC index close to zero (LCC = 0.00064) 

(Fig. 3.4 D).  

The LCC index ranged between 0.00064 and 0.16394 across all trees combined (see 

Table 3.1), indicating a significant reduction in the structural complexity of deciduous tree 

crowns when leaves are shed. The mean LCC index value was significantly different between 

GLTR (mean LCCGLTR = 0.03273 ) and QUMA (mean LCCQUMA = 0.05867) trees (p = 0.0261). 

However, the mean LCC index value was not significantly different between QUMA and MEGL 

(mean LCCMEGL = 0.04864) trees (p = 0.4559), and between GLTR and MEGL trees (p = 0.181).  
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Figure 3.3. Crown complexity quantified with the box-dimension (Db) metric of the 

(A) leaf-on, (B) leaf-off, and (C) leaf-removed point clouds of a G. triacanthos tree (first 

row), a Q. Macrocarpa tree (second row), and a M. glyptostroboides tree (third row). The 

leaf-off and leaf-removed tree point clouds have been artificially colored with brown color. 
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Figure 3.4. Relationship between the leaf-on and leaf-off box-dimension values 

across all study tree species combined, and for each species separately with 95 % confidence 

interval around the regression lines. The black dashed line is the 1:1 line. 

 

The LCC index was negatively correlated with the branch woody surface area of the 

study trees (Pearson's r = -0.4, p = 0.0061), but it was not correlated with their stem woody 

surface area (p = 0.16) (Fig. 3.5). The "outlier" MEGL data- point in Fig. 3.5 (top-left) did not 

drive the observed relationship, because the pattern did not change after the removal of this data-

point.  
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. 

Figure 3.5. Relationship between the LCC index and the branch woody surface area of 

the trees with 95% confidence interval around the regression line. The three species M. 

glyptostroboides (MEGL), G. triacanthos (GLTR), and Q. macrocarpa (QUMA) have been 

plotted with different colors and symbols. 

 

Finally, the LCC index was negatively correlated with different path length variables i.e. 

mean path length (Pearson's r = -0.4, p = 0.0068), maximum path length (Pearson's r = -0.44, p = 

0.0025), and the 25
th

 percentile of path lengths (Pearson's r = -0.41, p = 0.0051) (Fig. 3.6). The 

"outlier" MEGL data-point in Fig. 3.6 (top-left in each graph) did not drive the observed 

relationships, because the patterns did not change after the removal of this data point. 
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Figure 3.6. Relationships between the LCC index and different path length variables 

with 95% confidence interval around the regression lines. The three species M. 

glyptostroboides (MEGL), G. triacanthos (GLTR), and Q. macrocarpa (QUMA) have been 

plotted with different colors and symbols. 

 

3.8.2. Box-dimension of Leaf-off Versus Leaf-removed Tree Point Clouds 

Significant differences were found between the mean Db values of the tree point-clouds 

after the artificial leaf-removal for QUMA and GLTR trees (p = 0.001), and GLTR and MEGL 

trees (p = 0.0105), but no significant difference was found between the mean Db of the MEGL 

and QUMA trees after the artificial leaf-removal (p = 0.9662). 

T-tests showed that the mean Db of the leaf-off tree point clouds was significantly greater 

than the mean Db of the leaf-removed tree point clouds across all study tree species combined (p 

< 0.001), and for the GLTR trees (p < 0.001). No significant difference was found between the 

mean Db of the leaf-off and leaf-removed point clouds for the QUMA trees (p = 0.6382), and the 

MEGL trees (p = 0.1622). Furthermore, the leaf-removed and the leaf-off Db values of the 

QUMA trees were positively correlated (Pearson's r = 0.65, p = 0.0082), but no significant 
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relationship was found between the leaf-removed and the leaf-off Db values across all study tree 

species combined (p > 5%), and for the GLTR and MEGL trees (p > 5%) (Fig. 3.7). The 

standardized major axis tests showed that the intercept and the slope of the regression line of the 

QUMA trees was not statistically different from the 0 and 1 values respectively. 

The mean Db of the leaf-on tree point clouds was significantly greater than the mean Db 

of the leaf-removed tree point clouds (Fig. 3.3), across all study tree species combined (p < 

0.001), and for each species separately (GLTR, QUMA, MEGL: p < 0.001). 

 

Figure 3.7. Relationship between the leaf-removed and leaf-off box-dimension values 

across all study tree species combined, and for each species separately with 95% confidence 

interval around the regression lines. The black dashed line is the 1:1 line. 

 

The mean %RE value was significantly different between GLTR (mean %REGLTR = 

8.91%) and MEGL (mean %REMEGL = 5.06%) trees (p = 0.0057), and between GLTR and 

QUMA (mean %REQUMA = 2.43%) trees (p < 0.001), and also between MEGL and QUMA trees 

(p = 0.0064).  
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 The %RE was positively correlated with the maximum branch order of the GLTR trees 

(Pearson's r = 0.53, p = 0.033), but it was not correlated with the maximum branch order of the 

QUMA and MEGL trees (p > 5%) (Fig. 3.8). 

  

Figure 3.8. Relationship between the % Relative Error (RE) and the maximum branch 

order of the trees with 95% confidence interval around the regression lines. The species M. 

glyptostroboides (MEGL), G. triacanthos (GLTR), and Q. macrocarpa (QUMA) have been 

plotted with different colors and symbols. 

 

3.9. Discussion 

3.9.1. Structural Complexity of Urban Trees 

This study measured the Db of the above-ground components of tree architecture (i.e., 

main stem, branching network and leaves) from TLS point clouds, to determine the above-

ground structural complexity of trees growing in urban areas. Db can help to understand how 

trees maximize resources uptake for their growth while maintaining their mechanical stability 
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(Seidel 2018, Seidel et al. 2019a, Seidel et al. 2019b). From an evolutionary perspective, trees 

have had to develop an "adaptive" geometry (Borchert and Slade 1981) to optimize light capture 

and minimize self-shading (Abrams and Kubiske 1990, Sack et al. 2006, Eloy et al. 2017), while 

balancing with other competing functions, such as maintaining mechanical stability (MacFarlane 

and Kane 2017) and resisting drought (Arseniou and MacFarlane 2021). Open-grown trees are 

relatively free from light competition, due to having fewer tree neighbors (MacFarlane and Kane 

2017), so they are more likely to be able to maximize their structural complexity and express 

their inherent fractal-like architecture than trees growing in forests or plantations (MacFarlane et 

al. 2014). The urban open-grown trees in this study were not directly influenced by shading from 

neighboring trees or from the buildings of relatively low height which were nearby to some of 

the trees. Db is sensitive to the external shape and the internal structure of trees (Seidel et al. 

2019a, Seidel et al. 2019b), so differences in Db can capture meaningful differences in tree 

architecture and physiological function. Therefore, it is important to consider what the maximum 

structural complexity could be. 

Seidel et al. (2019b) hypothesized that trees should have Db values significantly lower 

than 2.72, which is the Db of the Menger sponge (a mathematical object with the greatest surface 

to volume ratio, Menger 1926), assuming a tree would maximize its surface area for light capture 

and gas exchange, while minimizing building costs, in the absence of competition with other 

plants. In previous studies that quantified the above-ground complexity of trees growing in dense 

rural forest stands, leaf-on Db values were consistently lower than 2 (Seidel 2018, Seidel et al. 

2019a, Seidel et al. 2019b, Dorji et al. 2019, Guzmán et al. 2020, Saarinen et al. 2021).  In this 

study, the mean Db of the leaf-on tree point clouds was greater than 2 across all study tree 

species (see Table 3.1), indicating a possible structural difference between trees in rural versus 
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urban areas. However, rural forest trees growing in more open conditions and facing less 

competition for light (e.g., in forest gaps and in thinned forest stands), also had larger Db values 

(Seidel 2018, Dorji et al. 2019, Saarinen et al. 2021), in some cases exceeding 2 (Dorji et al. 

2021). This suggests a benefit to increasing Db with more light and fewer neighbors, but at some 

level the energy benefits from increased photosynthesis would be minimized due to high level of 

self-shading (Seidel et al. 2019b). This supports MacFarlane et al.’s (2014) assumption that trees 

growing in the open, without competition can more closely approach the theoretical maximum 

Db (as characterized in Seidel et al. 2019b). In this study, the maximum Db value observed was 

2.23, for a large specimen of M. glyptostroboides in the leaf-on condition (Table 3.1). So, even 

the largest, open-grown, urban trees in this study were well below the theoretical maximum of 

2.72. 

 

3.9.2. The Role of Leaves in the Structural Complexity of Deciduous Trees 

The urban trees studied here were deciduous species, characterized by distinct leaf 

phenological changes (i.e., leaf-on and leaf-off periods), which are typically affected by sharp 

photoperiodic and temperature changes (Lechowicz 1984, Fridley 2012). In general, the outline 

shape and the texture of leaves can have fractal-like patterns (Vlcek and Cheung 1986, 

Moraczewski and Borkowski 1997, Borkowski 1999, Hartvigsen 2000, Camarero et al. 2003, 

Backes and Bruno 2009, Jobin et al. 2012, Gazda 2013, Bayirli et al. 2014, Ianovici and Datcu 

2015), and thus, we expected that the presence of leaves can increase the total structural 

complexity of trees. Indeed, the study trees were shown to have statistically different structural 

complexity in the leaf-on and leaf-off periods (Fig. 3.4), because the presence of leaves implies 

greater dispersion of laser points in the leaf-on point clouds compared to the leaf-off point clouds 
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and more boxes are required to capture them, which results in greater value for the Db metric and 

greater structural complexity (Seidel 2018, Seidel et al. 2019b, Guzmán et al. 2020). In a 

previous study the difference between the Db of the leaf-on and leaf-off point clouds of forest-

grown trees was not significant (Guzmán et al. 2020). However, that study followed a mixed 

approach to generate leaf-off point clouds. More specifically, from the 76 leaf-off point clouds, 

only15 point clouds were captured during the leaf-off period and the rest leaf-off point clouds 

were created after manual segmentation of leaves from the leaf-on point clouds (Guzmán et al. 

2020).  

The magnitude of change in Db observed in this study was relatively small; the LCC 

index, ranged from 0.00064 to 0.16394 across all species combined, indicating that the largest 

portion of the total above-ground structural complexity of a tree comes from woody components 

e.g. branches. However, Db is constrained to have values between one and three, so a small 

change in its value can have significant physiological implications. Seidel et al. (2019b) found 

that the crown surface area divided by the woody volume of trees increased as a power function 

of leaf-on Db, so that, e.g., an increase of 0.2 units in leaf-on Db resulted in approximately 40 

units of increase in crown surface area relative to the woody volume of trees. Similarly, the 

results here in this study show that a small change in the crown complexity has important 

structural implications for urban trees. An increase of about 0.05 units in the LCC index was 

associated with approximately 400 m
2
 reduction in the branch woody surface area of the study 

trees (Fig. 3.5). Such a change could have important implications for the mechanical stability of 

trees, i.e. the branch woody surface area affects the bending moments due to wind drag 

(Vollsinger 2005, Pavlis et al. 2008, Gardiner et al. 2016), for the maintenance respiration of 

trees which relates to their woody surface area (Kinerson, 1975; Kramer and Kozlowski, 1979; 
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Yoneda, 1993; Bosc et al., 2003; Kim et al., 2007), and for solar radiation and rainfall 

interception (Weiskittel and McGuire 2006).  

Differences in the LCC index were related to other structural metrics of the trees, 

showing different changes in the Db value, with and without leaves, for different types of trees. 

The negative relationships with branch surface area and path length metrics indicate that larger 

trees, with larger and more "branchy" crowns, have a relatively smaller contribution of leaves to 

structural complexity (Figs. 3.5 and 3.6). These results can be interpreted within the framework 

of the pipe model theory (Shinozaki et al. 1964) and the West-Brown-Enquist or WBE model 

(West et al. 1997, West et al. 1999), which explain the fractal-like architecture of trees by 

assuming a vascular tree structure consisting from pipes (West et al. 1997). According to these 

theories as the size (i.e. woody surface area or length) of the pipes of the vascular system of a 

tree increases, the structural complexity of the woody skeleton of the tree also increases. 

Differences in species branching architecture and leaf structure could also explain some 

of the observed differences in leaf-on versus leaf-off Db values, because the fractal architecture 

of urban tree crowns is influenced by both crown and leaf shape (Arseniou and MacFarlane, 

2021). G. triacanthos trees had the smallest contribution of the leaves to the crown complexity 

(smallest LCC). According to Niinemets and Valladare (2006), G. triacanthos is the least shade 

tolerant of the three species studied (shade tolerance index for G. triacanthos = 1.61, Q. 

macrocarpa = 2.71, and M. glyptostroboides = 3). Species which are very shade tolerant 

distribute their leaves more evenly within their crown volume (Arseniou and MacFarlane 2021), 

whereas species that are less shade tolerant, e.g. G. triacanthos, have their leaves widely spaced 

mainly in the crown periphery, in order to increase crown porosity and reduce local self-shading 

(Sack et al. 2006). Furthermore, it has been suggested that inter-canopy variation of leaf traits is 
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predominantly affected by the exposure of leaves to light, which makes the sun leaves that are 

distributed in the crown periphery to be smaller, with greater leaf mass per unit area compared to 

the crown-interior leaves, in order to reduce water loss through transpiration (Abrams and 

Kubiske 1990, Sack et al. 2006). Therefore, the uneven distribution of leaves in the crown 

volume of the G. triacanthos trees, most of which are small sun leaves in the crown top, could 

explain why the contribution of leaves in the overall crown complexity was the smallest when 

compared to Q. macrocarpa and M. glyptostroboides trees. 

 

3.9.3. The Effect of the Leaf-separation Algorithm on the Structural Complexity of 

the Trees 

Very often, one is unable to laser-scan trees during the leaf-off conditions, either because 

they are evergreen or due to logistical constraints. Therefore, one of the goals of this study was 

to explore the effect of artificial leaf-removal from leaf-on point clouds. Separating the woody 

component from the foliage of tree point clouds using classification algorithms is a challenging 

task. Zhu et al. (2018), e.g., found a significant overestimation in the leaf area index of trees 

because of the woody material in tree point clouds.  

There are different algorithms and approaches to separate leaves from the woody 

structure of tree point clouds (Vicari et al. 2019, Wang et al. 2018, Wang et al. 2019, Moorthy et 

al. 2020), but there is no single best solution that fits for all point classification cases in forests 

(Moorthy et al. 2020). Some of the factors that influence the classification results are the 

following: heterogeneity of point cloud density, varying scanner configurations and scanning 

protocols (Moorthy et al. 2020). The TLSeparation algorithm, which was used here, does not 

depend on a specific scanner (Vicari et al. 2019), and we tried to minimize the occlusion effects 
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in the point clouds in this study by scanning each tree from multiple directions and distances at 

high scanning resolution, following the field scanning protocols suggested by Wilkes et al. 

(2017). The performance of leaf separation algorithms is significantly decreased by occlusion 

(Vicari et al. 2019), but explicit accounting of this error source is challenging because we don't 

have a complete control over it, and different types of error can be correlated (Burt et al. 2021).  

Errors in characterization of crown architecture should relate to leaf morphology 

(Moorthy et al. 2020). Wang et al. (2019) suggest that leaves are typically detected as simple, flat 

structures, and therefore, the oblong-leaf shape or the modular structure of compound leaves 

might confuse the classification algorithms. Indeed, our results indicate that the TLSeparation 

algorithm can be more accurate in identifying simple flat leaves, but had more difficulty 

separating twigs and fine branches from compound leaves. The Q. macrocarpa trees showed no 

statistical difference in Db of the leaf-off and leaf-removed point clouds and this species has 

simple leaves with a single flat and lobbed blade (or lamina) (Efroni et al. 2010), which is 

associated with important leaf physiological functions e.g. convection-heat dissipation, efficient 

light interception and reduced leaf hydraulic resistance (Camarero et al. 2003, Sack et al. 2006). 

The TLSeparation algorithm (Vicari 2017) appears to have miss-classified many points of the 

woody structure as leaves for G. triacanthos, which have compound leaves with a modular 

architecture because the leaf blade consists from several leaflets stemming from the leaf rachis 

(Champagne and Sinha 2004, Klingenberg et al. 2012). The TLSeparation algorithm added 

significant noise into characterizations of Db in M. glyptostroboides trees, which are deciduous 

gymnosperms, have oblong-shaped needles and branches that are either horizontal or curved 

upward (Ng and Smith 2020). We might expect the accuracy of the TLSeparation algorithm for 

needle-leaved trees to be lower compared to the classification accuracy of broad-leaved trees, 
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because needles are linear, and it is difficult to resolve an individual needle due to its small size 

and the dense foliage of conifers (Vicari et al. 2019, Wang et al. 2019). In a previous study, it 

was found that the artificial leaf-removal using a different leaf-separation algorithm (i.e. LeWoS 

algorithm) resulted into the underestimation of the total woody volume of trees in the generated 

QSMs, while only the stems and some large branches were detected in coniferous trees (Wang et 

al. 2019). 

As was originally hypothesized, the percent relative error in the estimated crown 

complexity of the G. triacanthos trees, after artificial leaf-removal, was related to the branching 

architecture of the trees. More specifically, trees of this species with higher maximum branch 

order had greater %RE values, indicating that the presence of more bifurcations (branching 

nodes) and smaller branches of higher order can reduce the accuracy of the TLSeparation 

algorithm to classify the leaves and the woody parts. Indeed, increased branch bifurcation and 

angulation result into increased occlusion in the point clouds of trees that reduces the accuracy of 

the leaf-classification algorithm (Wang et al. 2018); in a previous study the point density of 

woody structures decreased for higher branch orders and therefore many points were miss-

classified as leaves (Wang et al. 2019). The %RE values of the M. glyptostroboides, and Q. 

macrocarpa trees were not related to their maximum branch order, presumably because the leaf-

removal algorithm did not significantly affect the accuracy of the Db of the Q. macrocarpa and 

M. glyptostroboides trees on average according to the t-tests, although the Db of the M. 

glyptostroboides trees after the artificial leaf-removal was imprecise. 
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3.10. Conclusions 

This study used terrestrial laser scanning (TLS) to further refine our understanding of the 

above-ground structural complexity of urban trees by separating the effect of leaves from the 

effect of the woody skeleton. Differences in leaf on versus leaf-off structural complexity likely 

relate to different functional traits of trees for light capture optimization, reduction of self-

shading and mechanical stability. As such, this study provides evidence that differences in the 

contribution of leaves to tree structural complexity could be an important indicator of where the 

plant lies on a "structural economics spectrum (SES)", which explains species-structural 

diversity in terms of tree architectural traits along a spectrum balancing light interception, carbon 

allocation and mechanical stability (Verbeeck et al. 2019). However, more species belonging to 

different functional groups must be included in future studies in order to further examine 

differences in the LCC, or a similar index, as part of the SES. This study provided evidence, 

along with previous studies (Wang et al. 2019, Moorthy et al. 2020), that the accuracy of leaf-

separation algorithms is affected by the leaf shape and type, but also that bias in the estimation of 

the above-ground structural complexity of trees after the artificial leaf-removal depends on the 

branching architecture. 
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Abstract 

Urban forests are part of the global forest network, providing important benefits to human 

societies. Advances in remote-sensing technology can create detailed 3D images of trees, giving 

novel insights into tree structure and function. We used terrestrial laser scanning and quantitative 

structural models to provide comprehensive characterizations of the woody surface area 

allometry of urban trees and relate them to urban tree anatomy, physiology and structural 

complexity. Fifty-six trees of three species (Gleditsia triacanthos L., Quercus macrocarpa 

Michx., Metasequoia glyptostroboides Hu & W.C. Cheng) were sampled on the Michigan State 

University campus. Variation in surface area allocation to non-photosynthesizing components 

(main stem, branches) related to the fractal dimension of tree architecture, in terms of structural 

complexity (box-dimension metric) and the distribution of "path" lengths from the tree base to 

every branch tip. Total woody surface area increased with the box-dimension metric, but it was 

most strongly correlated with the 25
th

 percentile of path lengths. Urban trees mainly allocated 

woody surface area to branches, which changed with branch order, branch-base diameter, and 

branch-base height. The branch-to-stem area ratio differed among species and increased with the 

box-dimension metric. Finally, the woody surface area increased with the crown surface area of 

the study trees across all species combined and within each species. The results of this study 

provide novel data and new insights into the surface area properties of urban tree species and the 

links with structural complexity and constraints on tree morphology. 

Keywords: terrestrial laser scanning, woody surface area, crown surface area, urban 

ecology, Gleditsia triacanthos, Quercus macrocarpa, Metasequoia glyptostroboides 
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4.1. Introduction 

Urban trees provide a wide range of important ecosystem services, including temperature 

regulation, carbon storage, water purification, air pollutants uptake, biodiversity etc. (Heisler 

1986, McPherson et al. 1994, McPherson 1998, Nowak and Crane 2002, MacFarlane 2009, 

Pretzsch et al. 2015, Casalegno et al. 2017, Tigges and Lakes 2017). Trees in urban areas are 

growing under very different conditions than forest-grown counterparts and it is important to 

study their architecture and their physiological performance (Calfapierta et al. 2015) to increase 

our understanding of their adaptability to urban environments (Arseniou and MacFarlane 2021). 

The fundamental physiological processes of trees, including urban ones, include rates of 

respiration and photosynthesis, production efficiency, water balance, energy and gaseous 

exchange with the atmosphere, and leaching of nutrients from bark and leaves (Lambers et al. 

2008, Pallardy 2008); all of these have long been hypothesized to relate to tree surface area 

(Whittaker and Woodwell 1967). The role of the leaf area and the crown surface area in tree 

carbon balance, through photosynthesis and respiration, is well known (e.g., Lambers et al. 2008, 

Pallardy 2008, Lehnebach et al. 2018, Seidel 2019b, Zheng et al. 2019) and tree respiration rates, 

in particular, are closely related to their woody surface area (Kinerson 1975, Kramer and 

Kozlowski 1979, Yoneda 1993, Bosc et al. 2003, Kim et al. 2007). Furthermore, the woody 

surface area of trees and their bark structure create a rich web of bark-using organisms 

(MacFarlane and Luo 2009). Therefore, the detailed quantification of the surface area of the 

woody components of trees is necessary for understanding their physiological ecology. 

Whitaker and Woodwell (1967) published one of the earliest studies focused on tree 

surface area and highlighted the need to consider its relationship to tree structural complexity. 

Urban trees can have a very distinct above-ground architecture which can inform us about the 
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growth and functional limits of different tree species (Calders et al. 2020). Because competition 

for light (Metz et al. 2013) significantly reduces the structural complexity (i.e. inherent fractal 

character) of trees that grow in closed-forest conditions (MacFarlane et al. 2014, Eloy et al. 

2017, Seidel 2018, Dorji et al. 2019), we expect that urban trees should better express their 

fractal character, due to the typically lower number, or complete absence of neighboring trees in 

cities. Of course, the highly heterogeneous growing environment of urban trees can affect the 

structural complexity of their crowns (Arseniou and MacFarlane 2021), but, in general, more 

open-grown, urban trees should have more evident fractal complexity compared to trees growing 

in forest stands. Therefore, focusing on open-grown urban trees gives us the opportunity to study 

important aspects of tree allometry, such as the above-ground woody surface area, considering 

their distinct structural complexity.  

Woody surface areas, and particularly branch areas, have long proved difficult to measure 

(Weiskittel and McGuire 2006). Branch area has often been studied secondarily to leaf area 

estimation e.g., as a source of noise when trying to estimate leaf area index (e.g., Kucharik et al. 

1998). Direct methods of woody surface area quantification are highly laborious, requiring 

destructive sampling, where trees are cut up into components and the surface areas of various 

parts are measured (e.g., Weiskittel and McGuire 2006). This has led to the necessity of 

developing allometric equations to generalize from destructive sampling data (e.g., Halldin 1985, 

Baldwin et al. 1997, Damesin et al. 2002, Weiskittel and McGuire 2006), to be applied to 

standing trees via easily measured allometric variables (e.g., diameter at breast height, crown 

length, crown ratio). However, allometric equations have been previously found to significantly 

underestimate the total woody surface area of trees (Meir et al. 2017, Malhi et al. 2018). Also, 
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destructive sampling, which is required to build allometric equations, can be highly problematic 

in urban areas, due to the additional challenges and costs of safely removing urban trees.  

Many indirect methods of woody surface area estimation have been advanced. More 

specifically, different studies have utilized geometric approximations of stem, branch and crown 

shapes, branch surface area estimates from vertical photographs, multispectral canopy imaging, 

woody surface area derivations from principles of the pipe model theory and the branch 

divarication theory, and combinations of the previous methods (Whittaker and Woodwell 1967, 

Yoneda et al. 1990, Jennings et al. 1990, Yoneda 1993, Weiskittel and McGuire 2006, Zou et al. 

2009, Inoue and Nishizono 2015). A major challenge for any of these methods is dealing with 

the structural complexity of trees (Whittaker and Woodwell 1967), which exhibits a fractal-like 

pattern (Seidel 2018) that is very common in ecology (Halley et al. 2004).  

According to the pipe model theory (Shinozaki et al. 1964) and the WBE model (West et 

al. 1997) trees have a fractal-like branching architecture which consists from a network of self-

similar branching shoots beginning at a central trunk and terminating in leaves at the ends of 

small twigs (Noordwijk and Mulia 2002, Mäkelä and Valentine 2006). Therefore, simple 

geometric representations of stem and branches to estimate woody surface areas are likely 

inadequate and inaccurate because they do not explicitly account for the structural (fractal) 

complexity of the woody skeleton of trees. However, recent advances in terrestrial laser scanning 

(TLS) provide new, non-destructive ways for quantifying the structural complexity of trees, 

including the prospect of directly measuring total tree surface area (Malhi et al. 2018). TLS 

instruments belong to active remote sensing and they emit laser pulses and capture "point 

clouds" of the surrounding environment by analyzing the returned energy as a function of either 

time (time-of-flight systems) or shift in the phase of the light wave of the emitted laser beam 
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(phase-shift technology), and by using precise angular measurements through optical beam 

deflection mechanisms (Calders et al. 2015, Liang et al. 2016). 

The above-ground structural complexity of trees can be directly quantified from TLS data 

using the "box-dimension" (Db) metric, also known as Minkowski - Bouligand dimension (Seidel 

2018). The box-dimension metric is derived from fractal geometry principles (Mandelbrot 1983), 

and it is a measure of plant material density and distribution (Seidel et al. 2019a). The estimation 

of the total woody surface area of trees from TLS data does not rely on biological assumptions 

and it is relatively new (Malhi et al. 2018); for example Ma et al. (2016) used terrestrial laser 

scanning data to compute the woody to total surface area ratio of trees, to estimate their leaf area 

index. In general, TLS data have been previously used to mainly study other important aspects of 

tree allometry and ecology e.g. stem density, stem profiles and timber volume (Hopkinson et al. 

2004, Maas et al. 2008, Moskal and Zheng 2011, Vonderach et al. 2012, Olschofsky et al. 2016), 

leaf and canopy properties (Danson et al. 2007, Strahler et al. 2008, Hosoi and Omasa 2009, Polo 

et al. 2009, Antonarakis et al. 2010, Moorthy et al. 2010, Béland et al. 2011, Jung et al. 2011, 

Metz et al. 2013, Béland et al. 2014, Li et al. 2017, Hu et al. 2018, Vicari et al. 2019), above-

ground tree biomass and carbon stocks (Vonderach et al. 2012, Kankare et al. 2013, Calders et 

al. 2015, Stovall et al. 2017, Tanhuanpää et al. 2017). 

In this study, we used TLS technology to produce novel woody surface area data for 

urban trees. The objectives of the study are the following: (i) to measure the total above-ground 

woody surface area of urban trees of different species; (ii) to examine the above-ground woody 

surface area allocation into stems and branches of different size and position in tree crowns 

(branch orders, branch base-diameter and branch base-height classes); (iii) to quantify the 

relationship between tree woody surface area and their fractal-structural complexity (i.e. the box-
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dimension metric) and different Euclidean measures of tree architecture (i.e. metrics that account 

for the length of all paths from the tree base to each branch tip, and crown surface area). 

 

4.2. Materials and Methods 

4.2.1. Urban Tree Data 

We chose open-grown urban trees as our object of study, because we expected to get 

better TLS-based measurements of tree attributes without occlusion from neighboring trees, but 

also because we expected that the low, or complete absence of competition from tree neighbors 

in cities should allow trees to better express their inherent fractal character in terms of structural 

complexity (MacFarlane et al. 2014, Eloy et al. 2017, Seidel 2018, Dorji et al. 2019).  

Fifty-six trees, of three species, that represent different tree functional types were 

sampled on the Michigan State University campus: 18 Gleditsia triacanthos L. trees (Honey 

locust; compound-leaved, deciduous angiosperms), 15 Quercus macrocarpa Michx. trees (Bur 

oak; entire-leaved, deciduous angiosperms), and 23 Metasequoia glyptostroboides Hu & W.C. 

Cheng trees (Dawn redwood; needle-leaved, deciduous gymnosperms). The trees were selected 

to cover a large range of sizes (Table 4.1, from 10.9 cm to 122.2 cm DBH). Since all species 

were deciduous we were able to study their total woody surface area during the leaf-off period 

(Fig. 4.1). Of particular interest was M. glyptostroboides, which was selected because we wanted 

to study the structure of an urban-grown, needle-leaved gymnosperm, that could be scanned 

(alive) in a leaf-off condition; it is difficult to get complete, non-occluded scans of the stems and 

branches of needle-leaved evergreen species (Stovall et al. 2017). 

Laser scanning of the G. triacanthos and Q. macrocarpa trees was accomplished, with 

leaves-on, in July and August 2019. The M. glyptostroboides trees were scanned, with leaves-on, 
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in August 2020. The leaf-on tree point clouds allowed the estimation of the crown surface area of 

the trees (see specific methods below). The same trees were also laser-scanned in leaf-off 

condition, in January, February and March 2020, in order to estimate their woody surface area 

(see specific methods below). Before re-scanning the study trees, we confirmed that they were 

not pruned by the Michigan State University arborists between July 2019 and August 2020. 

Following this experimental design, pruning did not impose any bias in the estimation of the 

woody surface area and crown surface area of the study trees, during the study period. Of course, 

past pruning events could have affected the tree structure observed.  

 

Figure 4.1. Leaf-off images of (A) a G. triacanthos tree, (B) a Q. macrocarpa tree, 

(C) a M. Glyptostroboides tree. All trees have been flagged with a pink-color tape. 

 

4.2.2. Terrestrial Laser Scanning and Point Cloud Processing 

All trees were scanned with the FARO Focus3D X 330 terrestrial laser scanner, which 

operates with laser light of 1550 nm wavelength, typical beam divergence 0.19 mrad, and range 

0.6 m - 330 m. Each individual tree was scanned with high resolution from a minimum of four 

different directions and distances in order to minimize occlusion effects, and six reference target-

spheres were placed around each focal tree to spatially reference all scans and create a single 
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point cloud for each tree following the field scanning protocols suggested by Wilkes et al. 

(2017). The first two scans of each tree were conducted in opposite directions from distances that 

allowed the top of the tree to be clearly visible. The other two scans were conducted in opposite 

directions (perpendicularly to the first two scans) from a closer distance to the focal tree to better 

capture its branching architecture and get closer views of the main stem. For large trees with 

complex crowns two or three additional scans were conducted below the tree crown to capture 

more dense point clouds of the branches. All laser scans were conducted when there was little or 

no wind.  

Spatial co-registration and noise-filtering of all scans was automatically performed using 

the software SCENE 2019.2 (FARO Technologies Inc., USA, 2019.2). Using the same software, 

each tree was manually separated from the point cloud of the urban site background. This 

process was judged as an accurate alternative to an automatic segmentation process (Seidel 

2019a).  

 

4.2.3. Tree Reconstruction from Quantitative Structure Models  

Quantitative Structure Models (QSMs; Raumonen et al. 2013, Kaasalainen et al. 2014, 

Hackenberg et al. 2015, Bournez et al. 2017) describe the three-dimensional architecture of trees 

by fitting cylinders to a tree’s point cloud. QSMs preserve branch and stem topology and provide 

information about the size, the location, the hierarchy and the orientation of the branching 

network; they are currently considered to be the most robust method to model tree volume and 

tree-architecture (Disney et al. 2018).  

Quantitative structure models (QSMs) were generated from the leaf-off point clouds of 

the trees, with the algorithm TreeQSM v.2.3.0 (Copyright (C) 2013-2017 Pasi Raumonen) (see 
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example in Fig. 4.2). There are two main steps for the tree reconstruction from a single point 

cloud based on this algorithm. The first step is the point cloud segmentation into stem and 

branches based on cover sets, and the second step includes the reconstruction of the volume and 

the surface area of the segments with cylinders (Calders et al. 2015, Raumonen et al. 2015). 

TreeQSM generated multiple QSMs for each tree point cloud based on different values for the 

minimum and maximum size of the cover sets and it finally determined the optimal QSM for 

each study tree (Raumonen et al. 2013). Based on the optimal QSM parameters the algorithm 

produced 30 additional QSMs for each study tree in order to quantify the variation of the 

modeled tree variables, because of the inherent stochastic component of TreeQSM (Raumonen et 

al. 2013). 

The definition of the main stem of a tree according to TreeQSM is based on three criteria: 

(1) the main stem extends near the top of a tree, (2) it goes almost straight up, and (3) it is not too 

curved which means that the ratio of the stem length to the stem base-tip distance, must be the 

minimum among all candidate main stems (P. Raumonen, personal communication, 2 June 

2020). After the main stem has been determined, the first-order branches (i.e. branches attached 

to the main stem) are defined based on the following criteria: they are the farthest-reaching 

candidates, with the ratio of the branch length over the branch base-tip distance to be less than 

1.2, and the branch base-tip distance to be over 75% of the maximum. The branch 

length/distance ratio will iteratively increase if no candidates with ratio equal to 1.2 exist. The 

second-order branches are attached to the first-order branches, and they include the candidates 

with the longest branch base-tip distance. Branches of higher order are defined following the 

same rules attached to the second, third, fourth order, etc. (P. Raumonen, personal 

communication, 2 June 2020). 
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4.2.4. Tree Woody Surface Area Computation 

From the optimal QSMs of the leaf-off scans of the urban trees, their total woody surface 

area (WSA, m
2
) was computed as the total surface area of the cylinders that were fitted to the 

point cloud of each tree (Fig. 4.2). Note: total "woody" surface area in this study is technically 

the surface area outside of the bark tissues. Next, the total WSA of each tree was separated 

between the main stem woody component and the branches woody component. The branch WSA 

was further analyzed by branch order (there was a maximum of eleven branching orders across 

all species combined), by branch-base diameter classes of 1 cm size from the diameter of the 

cylinder at the base of a branch (there were 48 classes across all species combined), and by 

branch-base height classes of 1 m size, based on the height from the base of a tree to the base 

cylinder of a branch (there were 25 classes across all species combined; described in detail in the 

results section).  

 

Figure 4.2. (A) The leaf-off point cloud of the G. triacanthos tree from Fig. 4.1. 

(artificially colored with brown color) (B) The QSM of the same tree. (C) A close-up picture 

of the generated QSM, composed of many cylinders fitted to the point cloud data. The colors 

denote the different branching orders i.e. the main stem is colored blue, the 1st order 

branches are colored green, the 2nd order branches are colored red etc. Four facets have 

been used to visualize the QSM cylinders. 
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4.2.5. Computation of Other Tree Structural Metrics  

We wanted to study how WSA related to other published metrics of tree architectural 

complexity. Smith et al. (2014) examined a metric called the "path fraction", which is the mean 

length of all "paths" through the branching network, from the stem base to all branch tips, 

divided by the maximum path length. Path lengths are Euclidean metrics of tree structure and 

they can be calculated from a QSM based on the lengths of the cylinders whose topological 

hierarchy is preserved in a QSM. However, we did not simply use the QSM for each tree to 

compute Smith et al.’s path fraction, but instead we looked at various statistics from the 

distribution of path lengths, to take advantage of the rich data provided. This included the 

quantiles of the path lengths (25
th

, 50
th

 and 75
th

 percentiles), as well as minimum, maximum, 

mean and standard deviation of path lengths.  

We computed the box-dimension (Db; Seidel 2018), as a direct measure of above-ground 

structural complexity, calculated directly from the leaf-off point cloud of each tree. Db has the 

advantage of not having to apply a QSM to the data; it uses only the original tree point cloud. 

The Db metric takes into account the number of boxes that are needed to encapsulate all points of 

a laser-scanned tree, and how the number of boxes varies with the ratio of the box size to the 

original box size, which is defined as the smallest box that encapsulates the whole tree (Seidel et 

al. 2019b). The smallest box encapsulating the entire tree point cloud is the so-called "upper cut-

off", as it represents the largest box applied to the tree for counting the number of consecutive 

boxes needed. Consecutive boxes always have half the edge length of the previous box so that 

eight of them fit exactly in the initial box. The smallest box-size among all boxes is the so-called 

"lower cut-off", and it was defined to be 10 cm in this study (Fig. 4.3 A). It is a very liberal 

estimate of the maximum distance between two neighboring laser points at any given location in 
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the tree. The "lower cut-off" must ensure that no virtual box is considered empty only because it 

fits in the "unsampled" space that was not reached by any laser beam of the laser scans. This 

"unsampled" space may be the result of the diverging beams emitted from the scanner leaving 

unscanned areas at greater distances to the scanner or simply due to occlusion effects in the tree. 

Db is equal to the slope of the least-squares line when the logarithm of the number 

of  boxes is regressed against the logarithm of the inverse of the size of a box relative to the size 

of the initial box (Seidel 2018, Seidel et al. 2019b) (Fig. 4.3 B). Db, which is unitless, takes 

values between one and three. Values smaller than one are only possible if the "lower cut-off" 

has not been properly chosen (i.e. mean distance between neighboring points is greater than the 

edge-length of the smallest box). Values of three (or greater) are not possible in reality, because 

it would imply that a tree is a solid cube. Db values close to but smaller than three imply trees 

with greater crown complexity and "space-filling character", whereas, a perfectly cylindrical 

stem without branches would have Db equal to one (Seidel 2018). Both the path fraction (Smith 

et al. 2014) and the Db (Seidel 2018) metrics are meant to capture the fractal-like nature of trees 

(West et al. 1997, Noordwijk and Mulia 2002, Mäkelä and Valentine 2006; metabolic scaling 

theory), which should explain portion of the variation in their WSA. 
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Figure 4.3. (A) Illustration of the virtual boxes of different sizes that capture the 

leaf-off point cloud of a G. tiacanthos tree. (B) The log-log plot for the quantification of the 

box-dimension metric for the same tree. The regression line slope is the box-dimension of 

the tree i.e. Db = 2.05. N is the number of boxes required to capture all points of the tree 

point cloud, r is the size of the length of each box, and r_initial is the size of the length of 

the initial box that encapsulates the whole tree. The 95% confidence interval has been 

plotted around the regression line. 

 

Finally, the crown surface area of the study trees was computed as the convex hull from 

the leaf-on laser points of a tree's crown using Heron's formula to quantify the triangles that 

create the surface of this hull (Metz et al. 2013); in this study it refers to the photosynthetically-

active surface area of a tree (Seidel et al. 2019b, Zheng et al. 2019).  

 

4.2.6. Statistical Analyses 

All statistical analyses for this study were done with custom coding and available 

packages written in the R software language (R Core Team 2015). Regression analysis was used 

to relate the total WSA, and the branch to stem WSA, with the metrics of crown complexity and 

tree architecture (see subsection 4.2.5). Correlation strengths were quantified with the Pearson 

correlation coefficient (r) and the statistical significance of the relationships was assessed at α = 

5 % level.   
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The total WSA of the trees was modeled as a power function of the metrics described in 

the subsection 2.5 in order to explore the relationship between WSA and these metrics. The 

power function form was selected because it had a better fit to the data compared to the linear 

model form and because power functions better describe the multiplicative processes of tree 

allometry (e.g. WSA allometry), and they are scale-invariant (Sileshi 2014). Species was added 

in the candidate models as a random, grouping variable that influences the exponents of the 

predictor variables.  

The mixed-effects model is of the form: 

 

 

 

Where WSA is the total woody surface area (m
2
) of the trees, b is the normalization 

constant, Db is the box-dimension (unitless), L is one of the path length metrics in meters that 

were described previously, c is the scaling exponent parameter of the box-dimension (fixed 

effect), d is the scaling exponent parameter of the path length metrics (fixed effect), and S is the 

species random effect which is added in the candidate models to modify the c and d parameters 

and it has three levels (i.e. G. triacanthos, Q. macrocarpa, and M. glyptostroboides). The error 

term (   has a multiplicative structure, which is additive on a log-log scale. Assumptions of 

variance homoscedasticity and error normality were checked by plotting the model residuals 

against the fitted values, and the Q-Q plots and the histograms of the model residuals. The 

"nlme" function of the linear and nonlinear mixed effects models ("nlme") R package (Pinheiro 

et al. 2021) was used to fit models. The best models were selected considering both the 

coefficient of determination (adjusted R
2
) and the Akaike Information Criterion (AIC).  

        
               ,                (eq. 4.1) ( 



121 
 

 A one-way analysis of variance (ANOVA) test, with unequal variances, was used to 

evaluate differences in the mean value of the branch to stem WSA ratio across the three species 

combined (i.e. G. triacanthos, Q. macrocarpa, and M. glyptostroboides). A one-way ANOVA 

test was also used to evaluate differences in mean WSA of branches per branch order, per 

branch-base diameter class, and per branch-base height class, across and within the above-

mentioned species. For these tests the WSA of all branches belonging to different classes for 

every study tree was considered. In all ANOVA tests the normality of the data in each group was 

checked with Q-Q plots, and significant differences in group means were assessed at α = 5 %. 

Finally, the coefficient of variation was used to quantify the uncertainty in estimating total WSA 

from the consecutive QSM reconstructions of the same point cloud of a tree. 

 

4.3. Results 

4.3.1. Estimated Total and Component Woody Surface Areas 

Basic tree measurements and surface areas computed for the study trees are shown in 

Table 4.1, along with other tree statistics (discussed later). The data show that trees varied widely 

in their surface areas and other metrics of complexity.   
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Table 4.1. Summary statistics resulting from different measurements of tree size and 

structural complexity. DBH = Diameter at Breast Height (cm), WSA = Woody Surface Area 

(m
2
), CSA = Crown Surface Area (m

2
), CV = Coefficient of Variation, Db = Box-

Dimension, SD = Standard Deviation (m), Min = Minimum (m), Max = Maximum (m). 

Summary Statistics All trees 
Gleditsia 

triacanthos 

Quercus 

macrocarpa 

Metasequoia 

glyptostroboides 

no. trees 56 18 15 23 

DBH (cm) 

(mean [min, max]) 

53.4 [10.9, 

122.2] 
53.4 [18.4, 72.8] 58.8 [29.0, 83.8] 49.8 [10.9, 122.2] 

Height (m) 

(mean [min, max]) 
13.8 [3.8, 24.1] 12.5 [10.4, 18.4] 15.8 [9.1, 21.3] 13.6 [3.8, 24.1] 

CSA.leaf.on (m
2
) 

(mean [min, max]) 

611.9 [78.3, 

1238.9] 

663.9 [203.6, 

1017.4] 

747.8 [172.9, 

1238.9] 

407 [78.3, 

1217.1] 

Total WSA (m
2
) 

(mean [min, max]) 

199.3 [13.9, 

467.0] 

267.6 [65.2, 

408.6] 

225.4 [60.4, 

467.0] 
128.9 [13.9, 372] 

CV WSA 

(mean [min, max]) 

0.024 [0.005, 

0.07] 

0.027 [0.007, 

0.054] 

0.024 [0.005, 

0.047] 

0.021 [0.007, 

0.07] 

Stem WSA (m
2
)
 

(mean [min, max]) 
12.5 [1.5, 44.6] 11.3 [4.1, 20.1] 16.2 [4.7, 30.3] 11.0 [1.5, 44.6] 

Branch WSA (m
2
) 

(mean [min max]) 

186.8 [12.4, 

436.7] 

256.3 [61.2, 

395.5] 

209.2 [55.7, 

436.7] 

117.9 [12.4, 

352.9] 

# of branch orders 

(median [min, 

max]) 

5 [1, 11] 5 [1, 11] 5 [1, 10] 4 [1, 9] 

Db leaf.off (mean 

[min, max]) 

1.98 [1.82, 

2.15] 
2.03 [1.84, 2.11] 1.92 [1.82, 2.04] 1.99 [1.84, 2.15] 

Mean Path length 

(m) (mean [min, 

max]) 

12.4 [3.7, 23.9] 14.6 [9.5, 22] 14.0 [6.9, 23.9] 9.8 [3.7, 23.8] 

Min Path length 

(m) (mean [min, 

max]) 

3.4 [0.8, 7.9] 4.5 [2.4, 7.0] 3.7 [2.1, 7.0] 2.3 [0.8, 7.9] 

Max Path length 

(m) (mean [min, 

max]) 

22.1 [6.5, 44.0] 24.5 [17.3, 37.5] 24.9 [12.3, 42.7] 18.5 [6.5, 44.0] 

SD Path length (m) 

(mean [min, max]) 
3.1 [1, 6.9] 2.8 [2, 5.1] 3.6 [1.5, 6.1] 2.9 [1, 6.9] 

25
th

 % Path length 

(mean [min, max]) 
10.4 [2.9, 20.6] 13 [7.7, 18.1] 11.7 [5.4, 20.6] 7.7 [2.9, 19.5] 

50
th

 % Path length 

(mean [min, max]) 
12.5 [3.6, 24.5] 14.6 [9.8, 23] 14.1 [6.6, 24.1] 9.7 [3.6, 24.5] 

75
th

 % Path length 

(mean [min, max]) 
14.4 [4.4, 28.7] 16.1 [11.4, 25.1] 16.5 [8.3, 28.7] 11.7 [4.4, 28] 
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Branches comprised the greatest portion of WSA of the urban trees studied; the branch to 

the main stem woody surface area (BMS) ratio ranged between 4.3 and 38.6 with mean value of 

16.3 across all study trees. ANOVA showed that mean BMS differed significantly among the 

three species i.e. M. glyptostroboides (MEGL), G. triacanthos (GLTR) and Q. macrocarpa 

(QUMA) (p < 0.001). G. triacanthos had the highest mean BMS value compared to the trees of 

the other two species: mean BMSGLTR = 24.1, mean BMSQUMA = 13.4, and mean BMSMEGL = 

12.1.  Furthermore, a strong positive relationship was found between the BMS ratio and the Db 

metric of the trees (r = 0.6, p < 0.001). 

The median branch order was five across all study tree species combined (range 1 to 11, 

Table 4.1), with M. glyptostroboides showing fewer branch orders than the two angiosperm 

species (median 4, range 1 to 9). ANOVA showed that the branch woody surface area (BWSA) 

significantly differed among the different branch orders across all study tree species combined 

and within each species (p < 0.001). BWSA was mainly accumulated in lower branch orders and 

the distribution of surface area was positively skewed (Fig. 4.4). Second and third order branches 

supplied the greatest amount of BWSA across all study tree species combined, and for Q. 

macrocarpa trees (Fig. 4.4 A, C). BWSA came mainly from second, third and fourth branch 

orders in G. triacanthos trees (Fig. 4.4 B), and from lower order (first, second and third) in M. 

glyptostroboides trees (Fig. 4.4 D). 
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Figure 4.4. Box-plots of branch woody surface area per branch order across (A) all 

species combined, (B) for G. triacanthos trees, (C) Q. macrocarpa trees, and (D) M. 

glyptostroboides trees. 

 

Examination of BWSA by branch basal diameter (Fig. 4.5) indicated that the BWSA 

followed a positive skewness, but with a somewhat bimodal distribution (except for the M. 

glyptostroboides trees).  Medium-sized branches (between 4 and 11 cm base diameter 

approximately) and large branches (more than 35 cm base diameter approximately) accumulated 

much of the BWSA, while small branches and twigs (less than 4 cm base diameter), though 

numerous, accumulated a relatively small portion of the BWSA (Fig. 4.5 A - D). ANOVA 

confirmed that the BWSA differed statistically among the different branch-base diameter classes 

across all species combined and within each species (p < 0.001).  

Some large trees showed very large branches, with a basal diameter greater than 35 cm 

(Fig. 4.5). These "branches" were actually large forks in the stem, common to large, open-grown, 

urban trees (see Fig. 4.1), which the TreeQSM algorithm defined as branches. At a major fork, 
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the QSM determines the longest, straightest stem to the top of the tree as main stem (see details 

in the methods section above), and calls the others branches. 

 

Figure 4.5. Box-plots of branch woody surface area per branch-base diameter class 

across (A) all species combined, (B) for G. triacanthos trees, (C) Q. macrocarpa trees, and 

(D) M. glyptostroboides trees. The size of each class is 1 cm. 

 

Because the topology of the trees is captured by the QSM, we were also able to examine 

how surface area was distributed vertically in the trees (Fig. 4.6). The BWSA differed 

statistically (as assessed with ANOVA) among the different branch-base height classes across all 

study tree species combined and within each species (p < 0.001). Graphical analysis (Fig. 4.6) 

shows a parabolic distribution of relative BWSA for all study tree species combined peaking 

near the midpoint of the crown (0.5 on the y axis in Fig. 4.6 A). Relative BWSA peaked higher 

up in the tree for G. triacanthos trees (Fig. 4.6 B), about the midpoint for Q. macrocarpa trees 

(Fig. 4.6 C), and below the midpoint for M. glyptostroboides trees (Fig. 4.6 D). 
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Figure 4.6. Relative vertical distribution (branch base height divided by total tree 

height) of branch woody surface area (proportion of total branch area) for (A) all study trees, 

(B) G. triacanthos trees, (C) Q. macrocarpa trees, and (D) M. glyptostroboides trees. 

Horizontal dashed line is halfway up the tree. 

 

4.3.2. Uncertainty Analysis of the Estimated Woody Surface Areas 

The coefficient of variation of the WSA of the trees indicated that the uncertainty due to 

the consecutive QSM reconstructions of the same point cloud of a tree was on average 2.4% of 

the mean WSA per tree across all study tree species combined, and the G. triacanthos trees had 

the highest uncertainty (on average 2.7% of the mean WSA per tree, Table 4.1). The distribution 

of the coefficient of variation of the WSA of the trees was positively skewed across all study tree 

species combined and within each species and bimodal for the G. triacanthos and M. 

glyptostroboides species (Fig. 4.7 A-D).  



127 
 

 

Figure 4.7. Density plots of the coefficient of variation of the woody surface area (CV 

WSA) for (A) all study trees, (B) G. triacanthos trees, (C) Q. macrocarpa trees, and (D) M. 

glyptostroboides trees. 

 

4.3.3. Relationships Between Woody Surface Area and Metrics of Tree Architecture 

and Structural Complexity 

Significant, positive relationships were found between the WSA of the urban trees, and 

the Db metric, and the different metrics that account for the length of all paths from the tree base 

to each branch tip (Table 4.2, Fig. 4.8 A-H). The strongest positive relationship was found 

between the WSA of the trees and the 25
th

 percentile of path lengths (Pearson’s r = 0.87, p < 

0.001, Fig. 4.8 F). However, the relationships between the WSA and the 25
th

 percentile of path 

lengths, the mean path length, and the 50
th

 percentile of path lengths, were not very different 

(Fig. 4.8). The best and most parsimonious predictors of WSA (eq. 4.1) were the combination of 

the Db metric and the 25
th

 percentile of path lengths with species effects (Table 4.2). The 

correlation between the Db metric and the other predictor variables in each model of WSA (Table 

4.2) was not statistically significant (i.e. p > 5 %). 
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Table 4.2. Woody surface area models with the highest adjusted R
2
 and lowest AIC 

values among all candidate models fitted to the data. Tree woody surface area (WSA) was 

modeled as a power function of different predictor-combinations (eq. 4.1), including box-

dimension (Db) and various statistics of path length (L), mean and the 25
th

, 50
th

, and 75
th

 

percentiles of path lengths. The character "| spp" denotes that species was added as a random 

effect, modifying the exponent of each predictor variable in the model. Best model by each 

statistic is highlighted in bold. 

Model Adjusted R
2 

AIC 

WSA ~ Db + Mean L | spp. +   0.856 599.02 

WSA ~ Db + 25
th

 % L | spp. +   0.863 595.49 

WSA ~ Db + 50
th

 % L | spp. +   0.855 599.78 

WSA ~ Db + 75
th

 % L | spp. +   0.852 601.38 

 

 

Figure 4.8. Relationships between the woody surface area of the study trees (WSA 

in m
2
) and (A) the box-dimension metric, (B-H) different path length metrics with 95% 

confidence interval around the regression lines. The SpCode refers to the three species codes 

i.e. M. glyptostroboides (MEGL), G. triacanthos (GLTR), and Q. macrocarpa (QUMA). 

The three species are represented with different symbols and colors. 
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The WSA was positively correlated with the crown surface area across all study tree 

species combined, and within each species (Fig. 4.9 A-D, p < 0.001). 

 

Figure 4.9. Relationships of the woody surface area (WSA in m
2
) with the crown surface 

area (CSA in m
2
) of (A) all study trees, (B) G. triacanthos trees, (C) Q. macrocarpa trees, and 

(D) M. glyptostroboides trees. The data points of the three species are represented with different 

colors. The 95% confidence interval has been plotted around the regression lines. 

 

4.4. Discussion 

4.4.1. Advances in Urban Tree Surface Area Measurement 

In this study, we used active remote sensing (TLS) to produce detailed WSA data for 

urban trees. Measuring the total surface area of the woody parts of trees has been challenging in 

the past with the only direct method via destructive sampling which has been particularly 

challenging and undesirable for large trees in urban areas. This study provided the first 

comprehensive measurements of the total above-ground WSA of urban trees with TLS, including 

the relative surface area of branch versus stem WSA and complete vertical characterizations of 



130 
 

BWSAs for branches of different size and order. TLS has become an important tool used to 

quantify the three-dimensional structure of trees (Disney et al. 2018, Malhi et al. 2018) and more 

accurate measurements of tree surface area may be the most important new advance in tree 

measurements associated with this technology. Data from Mobile Laser Scanning (MLS) could 

also be used to study the WSA of trees covering larger spatial scales if occlusion effects in the 

point clouds are not significant. According to Dorji et al. (2021) MLS data can be used to study 

the structural complexity of trees based on fractal analysis and quantified by the Db metric.  

With any new measurement system come new sources of uncertainty. Our field 

procedure was designed to minimize occlusion effects in the tree point clouds by scanning the 

study trees from multiple directions and distances (see subsection 4.2.2). This reduced the 

estimation uncertainty due to cylinder size and cylinder fitting errors in the generated QSMs 

(Calders et al. 2015). The uncertainty in the estimates due to the consecutive QSM 

reconstructions of the same point cloud of a tree, comprised only a small portion of the estimated 

WSA across all study trees combined. This was on average 2.4% of the mean WSA per tree 

across all species combined (Table 4.1), while very few trees had coefficient of variation of their 

WSA larger than 5% (Fig. 4.7 A-D). Therefore, the consecutive QSM reconstructions of a tree 

provide precise WSA estimates. This does not mean that the QSMs do not introduce bias, such as 

systematically over- or under- estimating surface areas of different parts of the trees, when 

identifying them from the point clouds. 

Some large study trees had large branches with max QSM base-diameter greater than 35 

cm. Diameter overestimation of large branches (i.e. larger than 40 cm) is usually quite small in 

the QSMs generated by the TreeQSM algorithm (P. Raumonen, personal communication, 4 

March 2021), but parts of forked stems can also be interpreted as branches. In other studies 
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where branches were destructively sampled, an underestimation of 6% in QSM base-diameter 

was found for branches, with actual base-diameter greater than 60 cm, while a diameter 

underestimation of 8% was observed for branches with diameters between 20 cm and 60 cm 

(Lau et al. 2018, Lau et al. 2019). So, we are confident in the general accuracy of the BWSA 

values produced in this study. 

 

4.4.2. Relationships of the Woody Surface Area of Trees Explained by Major 

Theories of Tree Structure (WBE Model and Pipe Model Theory) 

It has been suggested that variation in branch area is related to the diameter of a branch 

and its position in the crown (Baldwin et al. 1997, Weiskittel and McGuire 2006). It was found 

here that medium and large-sized branches (based on their basal-diameter), of lower branching 

orders, accumulated the largest portion of the total BWSA. This pattern can be interpreted in the 

light of the pipe model theory (Shinozaki et al. 1964) and the WBE model (West et al. 1997, 

West et al. 1999), which connect tree structure with tree physiology. Both theories assume a 

fractal branching architecture whose vascular structure is an assemblage of tubes that taper from 

base to tip; so larger, lower-order branches accumulate more conducting and non-conducting 

tubes over their length, resulting in greater cumulative volume that scales with WSA (Enquist 

2002). Similarly, Weiskittel and McGuire (2006), found that on average 82% of the total branch 

surface area in Douglas-fir (Pseudotsuga menziesii) trees was allocated into primary branches 

(those attached to the main stem). However, Meir et al. (2017) found that small branches 

significantly contributed to the WSA of trees growing in a tropical rainforest.  

According to the models produced in this study, much of the variation in the non-

photosynthetic surface areas of urban trees can be explained by a combination of fractal-



132 
 

structural complexity (quantified by the Db metric), and "hydraulic" size (quantified by the 

Euclidean metric of the 25
th

 percentile of the path lengths, see Smith et al. 2014), which are 

constrained by the genetics of tree species. 

Smith et al. (2014) defined the path fraction metric as the ratio of the mean path length to 

the maximum path length from the tree base to each branch tip, in order to quantify to what 

extent a real branch network differs from an ideally fractal branch network, such as that 

described by the WBE theory. In this study, the path fraction was not significantly related to the 

WSA of the trees, but as expected, significant relationships were found between the WSA and 

various statistics from the distribution of path lengths. This suggests that the absolute mean, 

variation and distribution of path lengths may better help to characterize surface area complexity 

than the mean relative path length (a.k.a. the path fraction of Smith et al. 2014). Weiskittel and 

Maguire (2006) found that the WSA of Douglas-fir (Pseudotsuga menziesii) trees increased with 

crown length, which agrees with the positive relationship that was found in this analysis between 

the total WSA of the urban trees and the 25
th

 percentile of the path lengths, which is the 

frequency of the short-path lengths that affects crown length.  

The WSA of the studied urban trees was found to increase with their fractal-like 

architecture, as quantified by the Db metric (Seidel et al. 2019b). According to the WBE model 

(West et al. 1997), this pattern implies efficient respiration rates and sufficient supply for energy 

demanding units, e.g. leaves, chloroplasts (Price and Enquist 2006), because the inherent fractal 

character of trees allows them to maximize the scaling of their external surface areas for gas 

exchange with the atmosphere, while minimizing the internal vascular distances for transferring 

and allocating the available resources to different organs and tissues (West et al. 1999, Enquist 

2002, Price and Enquist 2006).  
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An important issue to consider, when analyzing the relationships between surface areas 

and metrics of crown fractal complexity, is whether the observed patterns are confounded with 

tree size (e.g. DBH, total tree height etc.). The Db metric is reported to be scale and tree-size 

independent (Seidel et al. 2019a, Seidel et al. 2019b), and therefore, we can use it to compare 

trees of different size (Seidel et al. 2019b). Further analysis showed that the relationship between 

the total woody volume of the study urban trees computed from QSMs and the Db metric was not 

statistically significant (p > 5%), suggesting that both smaller and larger -volume trees can be 

structurally complex. This could mean that architectural changes that occur through the ontogeny 

of trees, e.g. development of higher order branches and altered stem to branch relationships 

(Seidel et al. 2019a), might explain more complex structures in larger trees, more than their size, 

per se. 

 

4.4.3. Anatomical and Physiological Implications of Surface Area Allocation 

Patterns 

The surface area distribution found for these urban trees and the theories described in the 

previous sections have implications for understanding the anatomical structure and physiological 

function of urban trees, and trees in general. This study enabled not only the computation of the 

total WSA of trees, but also the analysis of its distribution into different components (stem and 

branches).  

As expected, the branch-to-stem surface area ratio of the trees was found to increase with 

their structural complexity (as captured by the Db metric), underscoring the contribution of 

branching to crown complexity (Seidel et al. 2019b). This ratio was found to significantly differ 

among the studied species, so, in this sense, it describes the resource allocation "decision" of 
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different species to invest in increasing branch versus stem surface areas, as a functional 

response to urban environments. The squat form of urban trees (i.e. a wide tree crown with a 

short trunk) gives them mechanical stability against wind loads in cities (MacFarlane and Kane 

2017), and reflects the tendency of trees to allocate less resources to growing a taller main stem 

as the crowding conditions decrease (Weiner 2004, MacFarlane and Kane 2017). Mäkelä (1997) 

found that "branchiness" of Scots pine (Pinus sylvestris) trees (described as the ratio of total 

branch cross-sectional area to stem surface area), increased as stand density decreased. So, this 

pattern appears to hold for trees growing in both rural and urban areas. As such, the branch to 

stem surface area ratio could be an important component of the plant "structural economics 

spectrum", which explains species-structural diversity in terms of tree architectural traits along a 

spectrum balancing light interception, carbon allocation and mechanical stability (Verbeeck et 

al., 2019). 

WSA of trees relates to their respiration rates and captures broad maintenance costs 

(Kinerson 1975, Kramer and Kozlowski 1979, Yoneda 1993, Bosc et al. 2003, Kim et al. 2007) 

and crown surface area refers to the photosynthetically active surface of trees and their energy 

income (Seidel 2019b, Zheng et al. 2019). Therefore, the strong and positive relationship that 

was observed between the two surface areas (across all study tree species combined and within 

each species) implies that as the respiration rate of a tree increases, its production efficiency 

should also increase in order to maintain sustainable growth. Otherwise, trees should lose vigor.  

For trees in natural forests and plantations, the distribution of branches and foliage is 

heavily influenced by shading or sheltering from neighboring trees (MacFarlane and Kane 2017), 

but particularly the need to maintain a positive carbon balance in the leaves. Weiskittel and 

McGuire (2006) showed that branch surface area peaked a bit below the middle of the crowns of 
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Douglas-fir (Pseudotsuga menziesii) trees, because smaller branches near the top had 

considerably less surface area, while large, lower branches, with greater surface area, tended to 

dieback over time, due to a reduction in sustaining leaves on branches near the base of the 

crown. Xu and Harrington (1998) found that sub-dominant trees in a plantation of Loblolly pine 

(Pinus taeda) distributed most of their foliage at the top third of their crowns. These patterns 

might be expected for trees of species which are less tolerant of shade; Niinemets and Valladares 

(2006) produced numerical tolerance indices ranging from 1 to 5 (1 = very intolerant to 5 = very 

tolerant) ranking Pinus taeda = 1.99 and Pseudotsuga menziesii = 2.78. 

The three urban tree species studied here showed a branch surface area vertical 

distribution inversely corresponding to Niinemets and Valladare’s (2006) shade tolerance 

indices, with Gleditsia triacanthos = 1.61, Quercus macrocarpa = 2.71, and Metasequoia 

glyptostroboides = 3.00, showing patterns of branch area peaking in the upper-mid, middle and 

lower-mid crowns, respectively (Fig. 4.6). This result was somewhat surprising, since these trees 

were open-grown and not shaded by other trees. This suggests that self-shading of leaves and 

branches could be an important element of the branching architecture of open-grown trees 

(Duursma et al. 2010) along with inherent shade tolerance (Zeide and Pfeifer 1991), but also 

suggests a mechanism other than maintaining positive carbon balance in leaves might be at play.    

Another physiological explanation of this pattern of branch woody surface distribution 

could be a need to counterbalance optimizing light energy capture with the need to minimize the 

surface area for heat gain due to incoming solar radiation, and water loss through transpiration. It 

is well known that warm temperatures and heat islands in cities (Gregg et al. 2003, Bowler et al. 

2010, Kostić et al. 2019) cause increased rates of leaf transpiration (Pallardy 2008). Niinemets 

and Valladare’s (2006) also published drought tolerance indices for the study species (drought 
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tolerance for Gleditsia triacanthos = 4.98, Quercus macrocarpa = 3.85, and Metasequoia 

glyptostroboides = 2.38), showing that the more drought-tolerant the species, the more it 

concentrated branch surface area toward the upper crown (see Fig. 4.6).  

Niinemets and Valladare (2006) showed, over many species, that inherent traits of shade 

and drought tolerance of species were often negatively correlated, so the above pattern was 

expected. However, this study suggests that, at least for the case of open-grown, urban trees, 

building a branching architecture that optimizes drought tolerance may be a good explanation for 

branch surface area distribution. It may be that hydraulic limitations are not only an important 

force limiting the size and hydraulic architecture of tall trees (Ryan and Yoder 1997, Ryan et al. 

2006), but also for the branching architecture of any tree whose physiological water stress 

exceeds their photosynthetic capacity. These findings have important implications for the 

management of urban forests, particularly the selection of species for urban plantings, given 

expected, continued increases in global temperatures and urbanization. 

While surface area data have long been available for leaves (Lindsey and Bassuk 1992, 

Nowak 1996, Cutini et al. 1998, Reich 2001, Peper and McPherson 2003, McPherson et al. 2016, 

Dettman and MacFarlane 2018, Chianucci et al. 2019), TLS, in combination with QSMs, can 

now be used to quantify the surface area of the "woody skeleton" of trees, which plays a vital 

role in gas exchange with the atmosphere. Tree respiration rates are closely related to their WSA 

(Kramer and Kozlowski 1979, Yoneda 1993, Bosc et al. 2003) because respiration of non-

photosynthetic tissues mainly occurs in the cambial sheath and the living annual growing rings 

around the dead heartwood (Kinerson 1975). Nonetheless, Sprugel (1990) suggested that a forest 

stand with high bole WSA doesn't necessarily have high rates of respiration, so there is still a 

need to scale up from tree to stand to forest -level process modeling. Respiration still contributes 
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a significant portion of uncertainty related to the carbon budget and offset potential of urban 

forests (Tigges and Lakes 2017). The type of data that was produced in this study could form the 

basis to develop new process models that describe the carbon balance and growth of urban 

forests under a changing climate, which has been an important focus of forest process modeling 

for decades (Mäkelä 1997, Valentine et al. 1999). 

4.5. Conclusions 

In this study, we demonstrated the use of TLS technology to produce detailed data that 

quantify the total above-ground WSA of urban trees (first study objective) and we found that the 

study trees varied widely in their WSA. Furthermore, based on TLS data we studied the 

allocation patterns of WSA to different components of the woody skeleton of trees i.e. stem and 

branches of different order, base-diameter and base-height classes (second study objective), and 

we found that the urban trees allocated their WSA mainly to branches, while branch order, 

branch-base diameter, and branch-base height influenced the observed allocation pattern. 

Measuring the WSA of trees with TLS is a non-destructive method that allows to 

explicitly account for the above-ground structural-fractal complexity of trees, and it does not rely 

on any biological assumptions for tree architecture (Malhi et al. 2018) in comparison to previous 

methods that approximated branch and stem geometry or estimated WSAs from allometric 

equations (Whittaker and Woodwell 1967, Halldin 1985, Yoneda et al. 1990, Jennings et al. 

1990, Yoneda 1993, Baldwin et al. 1997, Weiskittel and McGuire 2006).  

This study showed that WSA is a function of the above-ground fractal-structural 

complexity of trees, and their "hydraulic" size quantified by different Euclidean metrics of path 

lengths from the tree base to each branch tip (third study objective). The observed positive 

relationship between the crown surface area and the woody surface area of the trees (third study 
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objective) implies a physiological mechanism for maintaining a positive carbon balance at tree 

scale. In general, the type of data produced in this study describes tree surface allometry, and it 

can be used to develop new or inform existing process models that quantify the growth and 

productivity of urban forests. 
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CHAPTER 5  

 

ACCURACY DIFFERENCES IN ABOVE-GROUND WOODY BIOMASS ESTIMATION 

WITH TERRESTRIAL LASER SCANNING FOR TREES IN URBAN AND RURAL 

FORESTS IN DIFFERENT LEAF CONDITIONS 
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Abstract 

Forests in both rural and urban areas play a vital role in terrestrial carbon cycling, and 

tree carbon stocks are directly related to their above-ground biomass (AGB). Traditional 

allometric models for biomass estimation of trees may have important limitations due to limited 

sample sizes and an insufficient size range of sampled trees, and destructive sampling to collect 

data for building these allometric models is time consuming and costly. In this study, thirty-one 

trees of deciduous and evergreen species were sampled in rural and urban forest conditions. 

Terrestrial Laser Scanning (TLS) was used to estimate tree volume non-destructively from 

quantitative structure models, in combination with estimates of tree basic density from sample 

disks from stems and branches obtained after scanning and felling the trees, but also in 

combination with published basic density values at the species level. Total woody AGB, main 

stem and branch biomass were also computed from destructive sampling data, as reference 

values to compare to TLS-based values. Evergreen and some deciduous trees were scanned in 

the leaf-on condition, and therefore the effect of artificial leaf-removal using a leaf-separation 

algorithm on the TLS-based woody biomass estimates was also studied. Strong agreement was 

found between the TLS-based woody AGB, main stem and branch biomass and the reference 

biomass data across all study trees using basic density values from destructive measurements and 

published basic density values to convert the TLS-based volume estimates to biomass. The 

correlation between the TLS-based branch biomass estimates and reference biomass data was 

stronger for the urban trees compared to the rural forest trees, most likely because they had fewer 

tree neighbors to occlude parts of the branches in the laser point clouds. The opposite pattern was 

found for the TLS-based biomass estimates of the main stem of the urban and rural forest trees. 

TLS-based biomass estimates from leaf-off and leaf-removed tree point clouds were in strong 
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agreement with reference biomass data. This study shows that TLS data can be used to produce 

reliable total and component biomass estimates of trees, however, differences in the quality of 

the biomass estimates can arise depending on the growing environment, the leaf condition of the 

laser-scanned trees and the basic density values that are used. These results have important 

implications for studying the biomass and the carbon stocks of urban and rural forests. 

 

Keywords: terrestrial laser scanning, quantitative structure models, above-ground 

biomass, components biomass, urban trees, rural forest trees, wood density, leaf- wood 

classification 

 

5.1. Introduction 

The total above-ground biomass (AGB, kg, oven-dry basis) of trees, which is an 

important element of the decision-making in forest management and policy (MacFarlane 2015), 

is defined as the total dry mass (i.e., at 0% moisture content) allocated to the live and dead 

tissues and organs of the above-ground tree structure (Kükenbrink et al. 2021, Burt et al. 2021). 

Accurate estimation of forest AGB plays a vital role in understanding the wide range of 

ecological services of rural and urban forests (e.g., biodiversity, pollination, temperature 

regulation, water purification and infiltration; Casalegno et al. 2017, Baker et al. 2019, Phillips et 

al. 2019, Nowak and Greenfield 2020), and it is essential for studying terrestrial carbon 

dynamics at different spatial scales and biomes (Stovall et al. 2017). For example, it has been 

found that Amazonian forests store large amounts of carbon in above-ground live vegetation 

(approximately 50-60 Pg of carbon), and this finding is based on the estimation of the above-
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ground biomass of the Amazonian forests, considering that approximately 45-50% of live plant 

biomass is carbon content (Burt et al. 2021). Similarly, it has been found that urban trees store 

large amounts of carbon in their above-ground biomass which can be comparable to rural forest 

carbon stocks (McPherson 1998), depending on the level of tree cover and impermeable surfaces 

(MacFarlane 2009). However, there is still a lot of uncertainty regarding the carbon offsets of 

rural forests at different spatial scales due to lack of accurate and detailed tree biomass data, over 

multiple spatial and temporal scales (Weiskittel et al. 2015). There is even more uncertainty for 

urban forests, due to a paucity of data and models for estimation of urban above-ground mass 

(Tigges and Lakes 2017, Wilkes et al. 2018). Therefore, it is important to continue to develop 

new data and models for tree AGB across many different growing environments.  

Urban and rural forest trees can have very different growth and biomass allocation 

patterns, because the lower tree abundance in urban areas compared to rural forests, is associated 

with less competition for light, water and nutrients (McHale et al. 2009, MacFarlane and Kane 

2017). Open-grown trees in cities may grow faster than their rural forest counterparts (Pretzsch 

et al. 2015) despite the potential negative effects of urban environment (Arseniou and 

MacFarlane 2021), and they have larger, more complex crowns, and sharper trunk taper in order 

to resist the strong wind loads which are frequent under urban and open-grown conditions 

(Telewski et al. 1997, Bang et al. 2010, Mohamed and Wood 2015, Salim et al. 2015, Gardiner et 

al. 2016). Open-grown, urban trees allocate the largest portion of their AGB to their branches 

(Zhou et al. 2015, MacFarlane and Kane, 2017), whereas trees in rural forests and plantations are 

narrower in crown diameter, and they allocate more mass to their stems (Weiner 2004, Lines et 

al. 2012). Open-grown urban trees and rural forest trees may also have very different woody 

structure. For example, Zhou et al. (2011) found that the trunk specific gravity of open grown 
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trees was greater than the trunk specific gravity of forest grown trees in the same geographic 

region. So, the significant allometric and structural differences between urban and rural forest 

trees should be considered when choosing methods to quantify their AGB.  

The AGB of any tree, regardless its growing environment, can be directly measured only 

by weighing the tree components (i.e., branches, stems and leaves), and measuring the portion of 

the green biomass that is moisture after a tree has been harvested (Burt et al. 2021, Kükenbrink 

et al. 2021). However, this method is time consuming and costly, and only a limited number of 

trees can be destructively sampled (Calders et al. 2015, Weiskittel et al 2015). Therefore, the 

total AGB of trees and their biomass components (mass of branches, main stem and leaves) are 

usually estimated indirectly with "allometric models"- statistical models defining relationships 

between tree biomass and commonly-measured tree variables (e.g., diameter at breast height 

(DBH), total tree height, and crown dimensions; MacFarlane (2010, 2015), Ver Planck and 

MacFarlane (2014, 2015), Radtke et al. 2017, Dettman and MacFarlane 2018). However, AGB 

estimation from allometric models has important challenges and limitations. Existing models are 

usually limited to certain regions and species, and large trees are usually excluded from the 

calibration datasets (Calders et al. 2015, Weiskittel et al. 2015, Stovall et al. 2018, Disney et al. 

2019, Burt et al. 2021). Harvesting large numbers of sample trees needed to build allometric 

models (Sileshi et al. 2014, Roxburgh et al. 2015) is particularly impractical in cities 

(Kükenbrink et al. 2021), and equations that have been created for rural forest trees cannot 

directly be applied to urban trees (Lefsky and McHale 2008, McHale et al. 2009).  

Terrestrial laser scanners (TLS) provide a non-destructive way to quantify the 

architecture and dimensional properties (e.g., woody volume) of trees growing in rural forests 

and urban environments, which can then be converted to AGB estimates (Calders et al. 2020). 
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TLS are active remote sensing instruments that emit laser pulses and capture the three-

dimensional structure of their surrounding environments by creating "point clouds" based on the 

returned energy that is analyzed as a function of either time (time-of-flight systems) or shift in 

the phase of the light wave of the emitted laser beam (phase-shift technology), and by using 

precise angular measurements through optical beam deflection mechanisms (Calders et al. 2015, 

Liang et al. 2016). Modeling the architecture of trees based on TLS data can be achieved by 

generating Quantitative Structure Models (QSMs; Raumonen et al. 2013, Kaasalainen et al. 

2014, Hackenberg et al., 2015a).  QSMs are created by fitting geometric primitives (i.e., 

cylinders) to the three-dimensional point-clouds of trees (Bournez et al. 2017), in a way that 

preserves branch and stem topology and provides information about the size, the location, the 

hierarchy and the orientation of the branching network. QSMs can provide, accurate direct 

estimates of the total above-ground volume of trees based on the volume of the fitted cylinders, 

which can be converted to AGB when multiplied by estimates of tree density, typically wood 

density (dry woody biomass at 0% moisture content divided by the green woody volume) (Burt 

et al. 2021, Demol et al. 2021). Estimating tree AGB from TLS data does not rely on any 

biological assumptions for tree architecture (Malhi et al. 2018) unlike allometric models, but it is 

a process with its own challenges (Olagoke et al. 2016, Disney et al. (2018, 2020)), whose 

accuracy depends on (1) generating high-quality point clouds, (2) assumptions and limitations of 

the QSM and (3) representative estimates of the density of different parts of the trees.  

Point cloud registration accuracy and quality depends on having unobstructed views of all 

parts of the trees and is also affected by weather conditions during laser scanning (e.g., branches 

swaying due to wind) and the laser scanner technical properties, and any point cloud errors are 

compounded by factors related to the QSM's quality (e.g. segmentation errors, cylinder fitting 
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problems) (Calders et al. 2015, Disney et al. 2018). Malhi et al. (2018) determine some major 

challenges in accurately estimating tree biomass from QSMs i.e., extraction of high order 

branches, and classification of woody and non-woody parts of scanned trees. There are currently 

no QSM methods that can model foliage volume by fitting cylinders to the point cloud of trees 

(Stovall et al. 2017) and the inclusion of points from leafy surfaces reduce the accuracy of the 

reconstruction of the woody skeleton of trees (Burt et al. 2021). Therefore, the artificial leaf-

removal from the leaf-on point clouds of trees using leaf-classification algorithms (Vicari et al. 

2019, Wang et al. 2019, Moorthy et al. 2020) is required before QSMs generation. However, we 

need a better understanding of the effect of these classification algorithms on studying tree 

structure (Vicari et al. 2019, Arseniou et al. 2021a). 

 Even with a high-quality tree component volume estimate from TLS there is significant 

variation in wood density between and within species and across different environments 

(MacFarlane 2020, Demol et al. 2021, Burt et al. 2021), which can create bias in AGB estimates, 

if the wrong density is applied.  Published averaged values of wood density are available for 

many species (Chave et al. 2009, Miles and Smith 2009), but there haven't been many studies 

that have tested the consequences of applying these for biomass estimation (e.g., MacFarlane 

2015, Demol et al. 2021).  

In this study, we used TLS-based volume estimates and estimates of within-tree density 

(both wood and bark) to model the woody AGB of thirty-one trees of needle-leaf evergreen and 

broad-leaf deciduous species that grow in rural forest and urban conditions. The objectives of the 

study were: (i) to evaluate the accuracy of the woody AGB and branch and stem biomass 

estimates derived from a TLS-based approach by comparing to tree mass measurements from 

destructively sampled trees; (ii) to assess the effect of wood density (from destructive 
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measurements versus published values) on the estimation accuracy of the total and components 

woody biomass of trees from TLS-based woody volumes; (iii) to evaluate the use of TLS for 

total and components woody biomass estimation of trees that grow in different environments on 

a continuum of crowding conditions i.e. rural forest and urban growing conditions; (iv) to assess 

the effect of the artificial leaf-separation from leaf-on point clouds on the total and components 

woody biomass estimates of trees of broad-leaf deciduous and needle-leaf evergreen tree species. 

 

5.2. Materials and Methods 

5.2.1. Tree Data 

The basic experimental approach in this study was to identify groups of healthy trees, 

with undamaged crowns, of different species and sizes, representing different functional groups 

(broad-leaf deciduous, and needle-leaf evergreen species) in different growing environments 

(rural and urban settings), that could be destructively sampled after scanning. The rural forest 

tree dataset consists of ten trees of two broad-leaf deciduous species - Quercus rubra, and Acer 

rubrum, and ten trees of two needle-leaf evergreen species - Tsuga canadensis and Pinus 

strobus. These trees were all sampled at the Harvard Forest in Petersham, MA, USA. The urban 

tree dataset consists of ten trees of three broad-leaf deciduous species - Acer rubrum, Acer 

saccharum, Gleditsia triacathos, and one tree of a needle-leaf evergreen species - Pinus nigra. 

The urban trees were all sampled on the Michigan State University campus, MI, USA. The trees 

were selected to cover a large range of sizes (Table 5.1). 
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Table 5.1. List of the study trees growing in different environments (UF = urban forest; 

RF = rural forest), belonging to different functional groups (BD = broad-leaf deciduous; NE = 

needle-leaf evergreen), and having different leaf conditions during laser scanning (Off = leaf-off;  

On = leaf-on). The variables DBH, Height, Total Woody AGB, Main Stem Biomass and Branch 

Biomass are based on reference data from destructive measurements. 

Tree Growing 

Environment 

Functional 

Group 

Leaf 

Condition 

DBH 

(m) 

Height 

(m) 

Total 

Woody 

AGB (kg) 

A. rubrum UF BD Off 0.358 7.96 364.099 

A. saccharum UF BD Off 0.389 12.53 901.250 

A. saccharum UF BD Off 0.478 13.99 1427.948 

A. saccharum UF BD Off 0.523 12.66 2081.490 

P. nigra UF NE On 0.549 14.57 2008.654 

G.triacanthos UF BD On 0.577 15.79 3576.340 

G.triacanthos UF BD On 0.467 12.41 1538.288 

G.triacanthos UF BD On 0.457 12.68 1663.478 

G.triacanthos UF BD On 0.432 14.05 1853.480 

G.triacanthos UF BD On 0.429 11.67 1524.280 

G.triacanthos UF BD On 0.495 11.80 1769.792 

T. canadensis RF NE On 0.401 24.45 708.264 

P. strobus RF NE On 0.137 15.64 51.457 

T. canadensis RF NE On 0.231 17.65 181.305 

P. strobus RF NE On 0.216 20.39 153.642 

T. canadensis RF NE On 0.180 16.25 120.461 

T. canadensis RF NE On 0.081 8.63 12.201 

P. strobus RF NE On 0.427 25.36 752.809 

P. strobus RF NE On 0.257 20.54 208.891 

P. strobus RF NE On 0.333 24.60 472.288 

Q. rubra RF BD Off 0.363 21.60 813.403 

A. rubrum RF BD Off 0.287 22.74 387.375 

T. canadensis RF NE On 0.345 24.45 529.965 

Q. rubra RF BD Off 0.193 21.15 174.977 

A. rubrum RF BD Off 0.076 11.00 17.721 

A. rubrum RF BD Off 0.218 23.13 247.392 

A. rubrum RF BD Off 0.119 13.44 57.312 

A. rubrum RF BD Off 0.107 16.86 56.248 
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Table 5.1 (cont'd) 

Q. rubra RF BD Off 0.267 23.53 401.772 

Q. rubra RF BD Off 0.503 24.11 1435.951 

Q. rubra RF BD Off 0.323 22.16 648.207 

 

 

5.2.2. Reference Tree Data 

The reference tree data for the rural forest trees were collected during the leaf-on period 

in August, 2017. The reference tree data for the urban trees of the species A. rubrum, A. 

saccarhum and P. nigra were collected during the leaf-off period in January, 2018; and the 

reference tree data for the G. triacanthos trees were collected during the leaf-on period in 

August, 2019. A detailed description of all reference tree measurements is given in the following 

sub-sections.  

 

5.2.2.1. Standing Tree Measurements 

Total standing tree heights were measured with the TruPulse 360 laser range finder and 

the diameter at breast height (DBH) of trees (1.37 m above the ground) was measured with a 

diameter tape to the nearest 0.25 centimeter. Crown width was measured with a Vertex IV 

distance measuring device, first at the tree’s approximate widest point and then a second crown 

width measurement was taken at a 90° angle from the previous measurement.  

Each tree was categorized in a canopy class representing crowding conditions in a 

discrete scale i.e. open grown, dominant, co-dominant, intermediate and overtopped (MacFarlane 

and Kane, 2017). Furthermore, the DBH of all neighboring trees ≥ 10 cm DBH, within a 7.3 m 

radius, and their distance to the focal study trees were measured to compute a competition index 
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(see 5.2.2.3) that quantifies the level of crowding that the study trees faced in a continuous scale 

(MacFarlane and Kane, 2017).  

 

5.2.2.2. Destructive Measurements for Green Weights  

After felling, the main stem of the tree was determined from the cut bottom to the tree's 

top. At any fork in the main stem, the largest and straightest stem was followed; this was 

repeated all the way to the top of the tree. All other stems connected to the main stem were 

defined as branches. 

After the branches were separated, the main stem was cut at 1.37 meters, 2.44 meters, and 

then at 1.22 meters intervals. The green (fresh) weight of all sections was then measured with a 

crane scale. Disks of thickness approximately 5 cm were cut from the top of the 0.15 meters 

height mark (stump height), at 1.37 meters above the ground (breast height) and the top of every 

section of 1.22 meters length. The green weight of each disk (including bark) was measured in 

the field and the diameters inside- and outside- bark were measured in two perpendicular 

directions on the disks, as well as four measures of disk thickness in four equally-spaced 

locations on perpendicular directions (all measures to the nearest 0.1 cm). These disks were used 

to compute the basic density of each section of the tree's main stem (see 5.2.2.3).  

Branch measurements followed different protocols for trees of broad-leaf and needle-leaf 

species. Starting at the base of a tree of a broad-leaf species and working upward, first order 

branches (branches attached directly to the main stem) were systematically cut from the main 

stem. Each branch was measured for basal diameter (bd), and it was classified as either a "small" 

branch (bd < 2.5 cm) or simply a branch (bd ≥ 2.5 cm). For every branch with bd ≥ 2.5 cm, the 

basal diameter, the linear length, its status (live or dead) and its position on the main stem were 
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recorded. Branches were further separated and weighed using the crane scale, with second and 

higher order portions of a branch with leaves. After weighing the total green weight of a branch, 

the leaves and the attached twigs were clipped from the branch. The leaves and small twigs were 

then weighed separately for each branch and their weight was subtracted from the total green 

weight of a branch. One disk was removed from the mid-section of each branch and weighed 

green and disk measurements were taken (as above) to compute disk green volume; these were 

used to compute variation in branch basic density. Small branches with bd < 2.5 cm were 

counted, their status (live or dead) was recorded, and weighed in a pile. A sample of small 

branches were weighed green in the field and taken back to the laboratory for further 

measurements.  

For trees of needle-leaf species, the first order branches are generally smaller and more 

numerous than those in trees of broad-leaf species. So, for these species, the trunk was divided 

into 1.22 m sections, starting at the base of the tree, and all branches were removed from each 

section and weighed green in the field.  Live and dead branches were weighed separately in each 

section and a whorl of the three closest branches was selected from the middle of each 

measurement section to represent branches in that section of the tree. The basal diameter, length 

and status (live or dead) of all branches in the whorl were measured and one dead and two live 

branches were selected for laboratory analysis to determine moisture content and basic density.  

Regardless of species, "miscellaneous" branches (branches founded on the ground that 

clearly belonged to the felled tree and whose location on the tree could not be determined) were 

pooled together and weighed in a third pile. Because the location of these branches in the tree 

was unknown and they varied in size, it was difficult to subsample this mixed material, and thus, 
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the dry-weight/green-weight ratio for these branches was calculated as the weighted average of 

all branches in a tree (see 5.2.2.3). 

 

5.2.2.3. Measurements and Computations in the Laboratory 

Disks and samples from the main stem and branches were taken to the laboratory for 

additional analysis. The bark of each disk was peeled as close to "green" condition as possible 

and the green-biomass of the wood and bark components was weighed separately. Finally, the 

bark and wood components of all disks were oven-dried at 105 °C for 48 hours until reaching 

oven-dry biomass which was weighed and recorded. The following computations include both 

the wood and the bark components of a disk.  

The moisture content of each disk (        was computed from the following equation: 

      = 
                

      
,  (eq. 5.1) 

where        is the green weight of a disk in kg, and        is its dry weight in kg. 

The dry biomass of the measurement section of the main stem or branch from which a 

disk was sampled was computed from the following equation: 

         = (1-      )*          ,              (eq. 5.2) 

where            is the dry weight of the section in kg, and           is the green weight 

of the section in kg measured in the field.  

The total AGB (excluding the foliage) of a tree was computed by adding together the dry 

weight of all sections of the main stem and branches of the tree. 

The basic density of each sampled disk (       in g/cm
3
) included both bark and wood 

tissues and it was computed from the following equation: 

      = 
      

      
,                     (eq. 5.3) 
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where        is the green-volume of the disk (in cm
3
) computed from the laboratory-

measured dimensions of the disk whose shape was assumed cylindrical. The basic density values 

of the disks were extrapolated to the section of the main stem or branch from which they were 

sampled.  

The basic density of the main stem of a tree including both bark and wood tissues was 

computed as the weighted average of the basic density values of the stem sections, and the basic 

density of all branches of a tree including both bark and wood tissues was computed as the 

weighted average of the basic density values of the branch sections. Weights were based on the 

cross-sectional area of the disk. 

Finally, the competition that each rural forest- and urban-forest tree in this study faced 

from its neighboring trees was computed, because we expected that the uncertainty of TLS-based 

biomass estimates will increase with competition strength due to crowding causing occlusion 

effects in the laser point clouds. The competition index was computed as follows: 

CI =   

    

    

      

 
   

 
   ,               (eq. 5.4) 

where n is the number of the study trees, s is the number of the tree neighbors ≥ 10 cm 

DBH around each study tree i within a radius of 7.3 m,      is the diameter at breast height of 

each tree neighbor j,      is the diameter at breast height of each study tree i, and        is the 

distance in meters between a study tree i and its tree neighbor j. This is a distance-dependent 

competition index which assumes that smaller trees are more sensitive than larger trees to the 

competition effects from their tree neighbors (Canham et al. 2004).  
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5.2.3. Terrestrial Laser Scanning of Trees and Point Cloud Processing 

All urban trees were laser-scanned with the FARO Focus
3D

 X 330 terrestrial laser scanner 

(FARO Technologies Inc., Lake Mary, FL, USA). The G. triacanthos trees were laser-scanned 

during the leaf-on period in July, 2019. The rest urban trees of the other species were laser-

scanned during the leaf-off period in November, 2017.  The FARO Focus
3D

 X 330 terrestrial 

laser scanner operates with laser light of 1550 nm wavelength, typical beam divergence 0.19 

mrad, a range of 0.6 m - 330 m and it captures single return laser scanning data (Calders et al. 

2020).  

Each individual urban tree was scanned at high resolution from a minimum of four 

different directions at different distances, in order to minimize occlusion effects in the captured 

point clouds. The first two scans were conducted in opposite directions, from distances that 

allowed for a clear sighting of the top of the focal tree. The other two scans were also conducted 

in opposite directions (at a 90° angle from the first two scans), but from a closer distance to the 

tree, to better capture its stem and its branching architecture. Two or three additional scans were 

conducted right below the crown of large trees with wide crowns in order to capture more dense 

point clouds of the branches. Windy conditions were avoided during the laser scans. For the 

spatial registration of all scans of a focal urban tree and the generation of a single point cloud, six 

reference target-spheres were placed around the tree, following the field scanning protocols 

suggested by Wilkes et al. (2017). The software SCENE 2019.2 (FARO Technologies Inc., Lake 

Mary, FL, USA, 2019.2) was used to spatially co-register and filter all scans in an automatic 

way. Finally, using the same software each tree was manually segmented from the point cloud of 

the background site. This process has been shown to be an accurate alternative to a fully 

automatic segmentation process (Seidel, 2019).  
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Rural forest trees were laser-scanned during the leaf-off period in April, 2017 using a 

RIEGL VZ-400 laser scanner. This laser scanner operates with laser light of 1550 nm 

wavelength, nominal beam divergence 0.35 mrad, pulse repetition rate 300 kHz, and it captures 

multiple return laser scanning data (Calders et al. 2015, Calders et al. 2020). The trees in Harvard 

Forest were scanned across two plots: the 50m x 50m main plot (16 trees, 48 scans) and the 20m 

x 20m North plot (4 trees, 9 scans). Retroreflective targets were used to guide the co-registration 

of individual scans in RiSCAN PRO. Trees were extracted with treeseg (Burt et al. 2019) 

followed by visual quality control. 

The TLSeparation algorithm (Vicari 2017) was used to separate and artificially remove 

leaves from the point clouds of trees of evergreen species (T. canadensis, P. strobus, P. nigra), 

and deciduous species that were scanned during the leaf-on period (G. triacanthos). The 

TLSeparation algorithm employs unsupervised classification of geometric features because leaf 

and wood materials within a point cloud have different spatial arrangement, and "shortest-path" 

analysis to enhance the detection of paths through the branching network of a tree with high 

occurrence frequency (Vicari et al. 2019). After the laser-points of the woody structure of the 

trees were separated from the laser-points that belong to their foliage, a single point cloud was 

created for each tree that consisted only from points classified as belonging to the woody 

structure. 

QSMs were generated from the leaf-off and leaf-removed point clouds of the study trees 

(Fig. 5.1) using the algorithm TreeQSM v.2.3.0 (Copyright (C) 2013-2017 Raumonen P.). There 

are two main steps in the TreeQSM algorithm: (i) the point cloud segmentation into stem and 

branches based on cover sets, and (ii) the reconstruction of the volume and the surface area of the 

segments with cylinders (Calders et al. 2015, Raumonen et al. 2015). TreeQSM algorithm 
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generates multiple QSMs for each tree with varying parameter sets for the minimum and 

maximum size of the cover sets whose generation is random during the point cloud segmentation 

process and it selects the optimal QSM (Raumonen et al. 2013). Therefore, the generated QSMs 

can be slightly different even using the same input parameters (Calders et al. 2015). Based on the 

optimal QSM parameter combination the algorithm produced 30 additional QSMs in order to 

estimate the variation of the estimated tree variables (e.g. volumes), due to the inherent 

stochastic component of the algorithm (Raumonen et al. 2013).  

In TreeQSM the main stem of a tree is separated from its branches following these 

criteria: (i) the main stem extends near the top of a tree, (ii) it goes straight up, and (iii) it is not 

too curved (the ratio of the stem length to the stem base-tip distance, must be the minimum 

among all candidate main stems) (Raumonen P., personal communication, June 2, 2020).  

From the optimal QSMs of the leaf-off and leaf-removed point clouds of the study trees, 

their total woody volume (including bark tissues) was computed as the sum total volume of all 

cylinders that were fitted to the point cloud of a tree (see close-up in Fig. 5.1 C). The total woody 

volume of a tree was further separated into the main stem and the branch volume components. 

These component volumes were converted to biomass by multiplying with the basic density 

values of the main stem and branches, which were computed from the disks removed during 

destructive sampling (see 5.2.2.3). Furthermore, published values of bark and wood density at 

species level (Miles and Smith 2009) were applied to convert the main stem and branches TLS-

based volumes to biomass. Miles and Smith (2009) published specific gravity values for the 

wood and bark tissues (bark and wood density relative to the density of water at temperature 4.0° 

C) together with percentage of bark volume for several tree species in North America. Finally, 
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the total woody AGB of a tree was computed by adding together the component biomass values 

of the tree. 

 

Figure 5.1. (A) The leaf-off point cloud of an urban A. rubrum tree. (B) The generated 

QSM of the tree. (C) A close-up picture of the generated QSM, consisted from several cylinders 

fitted to the point cloud of the tree. The colors denote the different branching orders i.e. the main 

stem is colored blue, the 1
st
 order branches are colored green, the 2

nd
 order branches are colored 

red etc. Four facets have been used to visualize the QSM cylinders. 

 

5.2.4. Comparison between TLS-based Biomass Estimates and Reference Biomass 

Measurements 

All statistical analyses were done with custom coding and available packages written in 

the R software language (R Core Team 2015).  

The level of agreement between the TLS-based woody AGB and component biomass 

estimates with the reference biomass values from the destructive measurements was quantified 

with the concordance correlation coefficient - CCC (Lin 1989), which takes values between -1 

(complete discordance) and 1 (complete concordance) (Calders et al. 2015, Gonzalez de Tanago 

et al. 2018). The Pearson correlation coefficient (r) was used to quantify the relationship between 

the absolute errors of the TLS-based biomass estimates and the reference biomass values, and to 
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quantify the relationship between the relative errors in TLS-based biomass estimates and the 

competition index. The statistical significance of all relationships was assessed at α = 5 %.  

Furthermore, different error metrics were computed to assess the quality of the TLS-

based biomass estimates (Calders et al. 2015, Fan et al. 2020, Burt et al. 2021):  

 the error for each tree: ε =                         (eq. 5.5) 

 the relative error for each tree: RE = 
    

          
 (eq. 5.6) 

 the mean relative error across all trees (%): MRE% = 
 

 
     

 
   *100%      

  (eq. 5.7) 

 the root mean square error that refers to the overall accuracy across all 

trees: 

RMSE =  
 

 
     

 
     (eq. 5.8) 

 CV(RMSE)% = 
    

               
*100% (eq. 5.9) 

In the above equations (eqs. 5.5-5.9),             is the TLS-based woody AGB or 

component biomass of the main stem and branches of a tree, the            is the AGB or 

component biomass from the reference measurements of a tree,                 is the mean 

value of it, CV(RMSE)% is the % coefficient of variation of the RMSE, n represents the total 

number of trees and the index i refers to each individual tree.  

The accuracy of the TLS-based woody AGB and component biomass estimates was 

evaluated for the urban versus the rural forest trees, and for the leaf-off versus the leaf-removed 

point clouds of the studied trees. In order to better understand how the TLS-based woody AGB 
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estimates of the studied trees were affected by the group that a tree belonged to, we fitted the 

following linear mixed-effects model: 

         
     

    
     

          ,                 (eq. 5.10) 

where        is the total above-ground biomass (kg) of the study trees from TLS data, 

       is the total above-ground biomass (kg) of the trees based on reference data from 

destructive measurements, b0 is the intercept, b1 is the slope of the relationship and L and H are 

the nested random effects that modify the intercept and the slope i.e. L represents the leaf 

condition of the tree point clouds (leaf-off versus leaf-removed), and H represents the growing 

environment of the trees (urban versus rural forest growing environment). The error term (   has 

an additive structure and it is normally distributed. Assumptions of variance homoscedasticity 

and error normality were checked by plotting the model residuals against the fitted values, and 

the Q-Q plots and the histograms of the model residuals. Eq. 5.10 without the nested random 

effects L and H becomes a simple linear function between TLS-based woody AGB and reference 

AGB values i.e., fixed-effects model :                        ,              (eq. 5.11) 

The accuracy comparisons of the TLS-based biomass estimates of urban and rural forest 

trees with leaf-off and leaf-removed point clouds were based on the combination of woody 

volumes from TLS data with reference wood density values from destructive measurements only 

(i.e. published basic density values were not applied in these comparisons). 

Finally, the coefficient of variation was used to quantify the uncertainty in estimating 

total woody AGB and components biomass from the consecutive QSM reconstructions of the 

same point cloud of a tree. 
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5.3. Results 

5.3.1. Uncertainty in Estimated Woody Biomass from Multiple QSM 

Reconstructions 

The coefficient of variation of the estimated total woody AGB, main stem biomass, and 

branch biomass of the study trees indicated that the uncertainty due to the consecutive QSM 

reconstructions of the same point cloud of a tree was on average 4.3%, 3.1% and 6.3% of the 

mean woody AGB, mean stem biomass, and mean branch biomass respectively across all study 

trees combined. The distribution of the coefficient of variation of the woody AGB and main stem 

biomass of the trees was positively skewed, but it showed a more uniform pattern for the branch 

biomass of the trees (Fig. 5.2). 

 

Figure 5.2. Density plots of the coefficient of variation of (A) the total woody AGB, (B) 

the main stem biomass, and (C) the branch biomass of the study trees, based on multiple QSM 

reconstructions from the same point clouds of the trees. 
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5.3.2.  AGB and Components Biomass Across all Study Trees 

Biomass estimates from the TLS-based approach were strongly correlated with the 

biomass measurements from destructive reference data using both reference and published basic 

density values for the total woody AGB of the trees, the biomass of their main stem, and the 

biomass of their branches (see CCC in Table 5.2, and Fig. 5.3).  

 

 

Figure 5.3. Regression lines between the TLS-based biomass (kg) and the reference 

biomass (kg) of the study trees for their total woody AGB, their main stem biomass and their 

branch biomass. The 95% confidence interval has been plotted around the regression lines, and 

the black dashed line is the 1:1 line. The different colors represent the different sources for basic 

density values, and the rural forest trees and urban trees are represented with different symbols. 

 

It was also found that the exponential relationship between the total woody AGB of the 

study trees and their diameter at breast height (DBH) was similar based on reference biomass 

data and TLS-based biomass data with reference and published basic density values (confidence 
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intervals significantly overlap). Underestimation bias of total woody AGB was greatest for large 

DBH trees using published basic density values (Fig. 5.4). 

 

Figure 5.4. Relationship between the total woody AGB of the study trees and their 

diameter at breast height (DBH) based on reference biomass data and TLS-based biomass data 

with reference and published basic density values. The 95% confidence interval has been plotted 

around the fitted lines. The different colors represent the different sources for biomass values, 

and the rural forest trees and urban trees are represented with different symbols. 

 

The statistical metrics that were computed to assess the performance of the TLS-based 

biomass estimates across all study trees are given in Table 5.2. 
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Table 5.2.  Statistical metrics to assess the performance of TLS-based biomass estimates 

across all study trees. 

 

With reference basic density values 
 

With published basic density values 
 

Metric Total 

woody 

AGB 

Main stem 

biomass 

Branch 

biomass 

Total 

woody 

AGB 

Main stem 

biomass 

Branch 

biomass 

Mean 

Relative 

Error (%) 

 

24.5 

 

13.8 

 

124.1  

 

26.3 

 

14.1 

 

107.7 

RMSE (kg) 147.743 114.973 167.434 244.846 133.144 194.127 

CV(RMSE)% 17.52 30.92 35.52 

 

29.04 35.8 41.19 

CCC 0.982 0.909 0.961 0.947 0.878 0.941 

 

The absolute errors of TLS-based total woody AGB, and branch biomass using the 

reference basic density values were not significantly related with the reference woody AGB, and 

branch biomass values (p > 0.05), whereas the absolute errors of TLS-based main stem biomass 

increased with the reference main stem biomass values (Pearson's r = 0.54, p = 0.0019). The 

absolute errors of the TLS-based total woody AGB, main stem biomass and branch biomass 

using published basic density values increased with the reference biomass values (Pearson's r = 

0.75, p < 0.001; r = 0.62, p < 0.001;  r = 0.61, p < 0.001 respectively). 

 

5.3.3. Growing Environment and Leaf-condition Factors Affecting the Accuracy of 

TLS-based Biomass Estimates 

The results of the fixed-effects model of the TLS-based woody AGB being modeled as a 

linear function of the reference AGB values (eq. 5.11) showed strong explanation power (adj. R
2
 

= 0.927), and the mixed-effects model (eq. 5.10) which includes the nested random effects L and 
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H had stronger explanation power (adj. R
2
 = 0.986). The results of the mixed-effects model (eq. 

5.10) showed that L and H were not confounded and they explained about the same portion of 

the variation in TLS-based woody AGB after they were included compared to the fixed-effects 

model. More specifically, the random effect L (leaf conditions: leaf-off versus leaf-removed 

point clouds) explained 45.9% of the 5.9% difference in the explained variation of TLS-based 

woody AGB between the fixed-effects and mixed-effects models. The random effect H (growing 

environment: urban versus rural forest conditions) explained 42.4% of the 5.9% difference in the 

explained variation of TLS-based woody AGB between the fixed-effects and mixed-effects 

models.  

 

5.3.3.1. AGB and Components Biomass for Urban and Rural Forest Trees 

As it was expected the competition strength that the study trees faced affected the 

accuracy of TLS-based biomass estimates, while urban open-grown trees faced less competition 

from neighboring trees compared to the rural forest trees of dominant, co-dominant, intermediate 

and overtopped canopy classes (Table 5.3, and Fig. 5.5). More specifically a positive relationship 

was observed between the relative error in TLS-based branch woody biomass of the study trees 

and the competition index (Pearson's r = 0.38, p = 0.033; Fig. 5.5). However, no significant 

relationship was observed between the competition index and the relative errors in TLS-based 

woody AGB and main stem biomass of the study trees.  
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Figure 5.5. Relationship between the relative error (RE) in branch woody biomass from 

TLS data and the competition index (CI) of the trees. Urban and rural forest trees have been 

plotted with different colors and symbols. The 95% confidence interval has been plotted around 

the regression line. 

 

Table 5.3.  Competition index (CI) values per canopy class of the study trees 

          Tree canopy class 
 

           CI (mean [min, max]) 

Open-grown 
 

0.03 [0.01, 0.05] 
 

Dominant 
 

0.81 [0.62, 0.99] 
 

Co-dominant 
 

0.97 [0.39, 1.34] 
 

Intermediate 
 

1.54 [0.87, 2.94] 
 

Overtopped 
 

3.49 [1.73, 5.61] 
 

 

Strong positive correlations were found between the biomass estimates from TLS data 

and the biomass measurements from reference data for the total woody AGB, the main stem 
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biomass, and the branch biomass of the rural forest trees and the urban trees respectively (see 

CCC in Table 5.4, and Fig. 5.6). 

 

 

Figure 5.6. Relationship between the TLS-based biomass (kg) and the reference biomass 

(kg) of the study trees for their total woody AGB, their main stem biomass and their branch 

biomass. Urban and rural forest trees with leaf-off and leaf-removed point clouds have been 

plotted with different colors and symbols. The 95% confidence interval has been plotted around 

the regression lines, and the black dashed line is the 1:1 line. 

 

The statistical metrics that were computed to assess the performance of the TLS-based 

biomass estimates for rural forest and urban trees are given in Table 5.4. 
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Table 5.4.  Statistical metrics to assess the performance of TLS-based biomass estimates 

for rural forest and urban trees, and trees with leaf-off  and leaf-removed point clouds. 

 

Rural forest trees 
 

 

Urban trees 
 

Metric Total 

woody 

AGB 

Main 

stem 

biomass 

Branch 

biomass 

Total 

woody 

AGB 

Main 

stem 

biomass 

Branch 

biomass 

Mean 

Relative 

Error (%) 

 

36.2 

 

8.7 

 

184.7 

 

3.2 

 

23 

 

14.1 

RMSE (kg) 

 

109.02   43.741 99.147 199.764 183.777 247.250 

CV(RMSE)% 29.34 15.38 113.77 11.75 34.61 21.13 

CCC 0.953 0.987 0.623 

 

0.959 0.62 0.891 

 

Trees with leaf-off point clouds 

 

Trees with leaf-removed point 

clouds 

Metric Total 

woody 

AGB 

Main 

stem 

biomass 

Branch 

biomass 

Total 

woody 

AGB 

Main 

stem 

biomass 

Branch 

biomass 

Mean 

Relative 

Error (%) 

 

14.9 

 

14.4 

 

93.1 

 

32.4 

 

13.2 

 

149.7 

 RMSE (kg) 

 

47.26 111.693 108.349 194.846 117.605 203.601 

CV(RMSE)% 7.34 31.3 37.73 19.34 30.6 32.68 

 

CCC 

 

0.997 

 

0.926 

 

0.968 

 

0.976 

 

0.892 

 

0.955 

 

It was also found based on both TLS and reference data that the rural forest trees 

allocated more biomass to their main stem compared to their branches, whereas, the urban trees 

showed the opposite biomass allocation pattern. 
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5.3.3.2.  AGB and Components Biomass of Leaf-off and Leaf-removed Tree Point 

Clouds 

Strong positive correlations were found between the biomass estimates from TLS data 

and the biomass measurements from reference data for the total woody AGB, the main stem 

biomass, and the branch biomass of trees with leaf-off and leaf-removed point clouds 

respectively (see CCC in Table 5.4, and Fig. 5.7). 

 

 

Figure 5.7. Relationship between the TLS-based biomass (kg) and the reference biomass 

(kg) of the study trees for their total woody AGB, their main stem biomass and their branch 

biomass. Trees with leaf-off and leaf-removed point clouds that grow in urban and rural forest 

conditions have been plotted with different colors and symbols. The 95% confidence interval has 

been plotted around the regression lines, and the black dashed line is the 1:1 line. 
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The statistical metrics that were computed to assess the performance of the TLS-based 

biomass estimates for trees with leaf-off and leaf-removed point clouds are given in Table 5.4. 

 

5.4. Discussion 

 Terrestrial laser scanning (TLS) data have been systematically used in forest ecology 

since the early 2000s (Hopkinson et al. 2004, Hackenberg et al. 2015b, Calders et al. 2020). To 

the best of our knowledge, this is one of the few studies that aims to evaluate and compare the 

total TLS-based woody AGB and components biomass estimates accuracy for trees growing in 

fundamentally different environments reflecting different crowding conditions (urban and rural 

forest conditions), and in different leaf conditions (leaf-on and leaf-off). Previous studies have 

mostly focused in studying the total AGB and woody volume of trees growing either in rural 

forest or in urban conditions (Polo et al. 2009, Moskal and Zheng 2011, Holopainen et al. 2011, 

Vonderach et al. 2012, Kankare et al. 2013, Calders et al. 2015, Olschofsky et al. 2016, Rahman 

et al. 2017, Stovall et al. 2017, Tanhuanpää et al. 2017, Burt et al. 2021), while other studies 

focused in studying the crown architecture (Moorthy et al. 2010, Jung et al. 2011, Metz et al. 

2013), the stem profile (Maas et al. 2008), and the woody surface area of trees (Arseniou et al. 

2021b).  

The main results of the study are discussed in the following subsections according to the 

different factors affecting the accuracy of TLS-based biomass estimates that were revealed in 

this study i.e., overall accuracy of TLS-based biomass estimates, the influence of the type of 

basic density that is used, influence of inherent QSM stochasticity, influence of growing 
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environment (urban versus rural forest environments), influence of leaf conditions (leaf-off 

versus leaf-on which requires artificial leaf-removal). 

 

5.4.1 Overall Accuracy of TLS-based Biomass Estimates  

The overall accuracy of AGB across all study trees with the use of reference basic density 

values  (see CV(RMSE)%, Table 5.2), was comparable to the overall AGB accuracy that has 

been reported by Calders et al. (2015) i.e. CV(RMSE) = 16.1%, and Olagoke et al. (2016) i.e. 

%RMSE = 13.5%. AGB estimation from QSMs can be within 10% of the measured biomass 

from destructive sampling data (Wilkes et al. 2018). The error analysis across all study trees 

showed that the overall accuracy of the TLS-based main stem biomass estimates was higher 

compared to the overall accuracy of the branch biomass estimates (see error metrics in Table 

5.2). This result was expected because the reconstruction of branches in QSMs is challenging 

(Disney et al. 2018). The size of smaller branches is usually overestimated from TLS data 

(Momo Takoudjou et al. 2018, Disney 2019), while branch-size underestimation of 8% from 

QSMs has been found for branches with base diameters between 20 cm and 60 cm, and an 

underestimation of 6% has been found for branches with base-diameter greater than 60 cm (Lau 

et al. 2018, Lau et al. 2019a) 

 

5.4.2. Influence of Measured Versus Published Values of Basic Tree Density 

The wood density of trees is very variable because it relates to their mechanical 

properties (Telewski 2012), their hydraulic conductance (Markesteijn et al. 2011) and their 
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environmental and evolutionary strategies (Disney et al. 2018). However, published averaged-

values of wood density for different tree species (Chave et al. 2009, Miles and Smith 2009) are 

also available because wood density is phylogenetically preserved (MacFarlane 2020). 

Therefore, it is important to account for the uncertainty in TLS-based biomass estimates due to 

the type of basic density that is used, which combines the density of the wood and bark tissues of 

trees.  

The strong agreement between the TLS-based estimates of total woody AGB, main stem 

biomass, branch biomass and the reference biomass data from destructive measurements across 

all study trees using both reference and published basic density values indicates that TLS 

technology provides a precise method for estimating tree woody biomass. This result was also 

supported by the relationship between the total woody AGB of the study trees and their diameter 

at breast height (DBH) which was very similar whether the AGB values came from QSM 

estimates (with reference and published basic density values) or reference biomass data because 

the fitted lines and their confidence intervals significantly overlapped. 

The regression lines of TLS-based woody AGB, main stem biomass and branch biomass 

were mainly below the 1:1 line using both reference and published basic density values. The 

reference basic density values should be unbiased, which implies that the observed 

underestimation in TLS-based AGB and branch biomass of large trees is most likely due to 

underestimation of their volume from the QSMs. Furthermore, all TLS-based biomass estimates 

using published basic density values were less accurate compared to the TLS-based estimates 

using reference basic density estimates (see CV(RMSE)%, Table 5.2). Similarly previous studies 

have showed that TLS-based woody AGB estimates using published species-average wood 

density values were less accurate compared to TLS-based woody AGB estimates using direct 
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wood density measurements at tree scale (Burt et al. 2021, Demol et al. 2021), and Takoudjou et 

al. (2020) reported 10% bias in TLS-based woody AGB estimates with the use of published 

wood density values due to the vertical gradients in wood density at tree scale. 

According to MacFarlane (2020) the branch to stem wood density ratio significantly 

varied among trees of different canopy positions and with less competition for light the branch 

wood density was relatively higher. This could explain the observed underestimation in the TLS-

based AGB and branch biomass mostly for large urban trees when published basic density values 

were used (Figs. 5.3 A, 5.3 C, and 5.4) i.e., the large open-grown urban trees had denser 

branches compared to the published basic density values which are based on wood and bark 

density measurements of the main stem of trees of different species (Miles and Smith 2009).  

When evaluating the uncertainty in TLS-based biomass estimates considering the basic 

density values that are used it is important to understand how the biomass estimation errors 

change with tree size. The absolute errors of TLS-based AGB, and branch biomass using 

reference basic density values did not relate with the reference AGB and branch biomass values, 

which indicates that the overall error in the TLS-based woody AGB and branch biomass using 

reference basic density values is independent of tree size and it is mainly random error. 

Similarly, the error of TLS-based total woody AGB using basic density values from destructive 

measurements was independent of tree size in previous studies (Calders et al. 2015, Burt et al. 

2021). However, the combination of TLS-based woody volumes with published basic density 

values generated absolute errors of woody AGB, main stem and branch biomass, which 

increased with tree size. Gonzalez de Tanago et al. (2018) also found that the error in TLS-based 

woody AGB increased with tree size when published basic wood density values were used. 
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Similarly, Burt et al. (2021) showed that the error in woody AGB estimates from allometric 

models that included published basic wood density values increased with tree size.  

In general, the use of reliable non-destructive estimates of tree basic density at species or 

tree level is important for obtaining accurate TLS-based biomass estimates. In previous studies 

corrective models were created based on literature-based wood specific gravity values and 

variables of the size and structure of trees to estimate tree-level volume average-weighted wood 

specific gravity (Sagang et al. 2018, Takoudjou et al. 2020), which is an approach that can be 

followed for calibrating species-average basic density values for trees in various regions. Future 

advances in x-ray tomography (Van den Bulcke et al. 2019) are expected to significantly 

contribute in the non-destructive estimation of accurate basic density values at tree level. 

Therefore, reliable TLS-based biomass estimates of individual trees may still be possible when 

reference basic density values from destructive measurements are not available depending the 

quality of the produced QSMs, and the size of the trees. This is important for studying the AGB 

of trees in urban areas and protected forests where tree harvesting to build allometric models is 

not applicable (Lefsky and McHale 2008, Calders et al. 2020, Kükenbrink et al. 2021). In 

previous studies, AGB estimates from allometric models based on TLS data were more accurate 

compared to biomass estimates from traditional and regional allometric models (Holopainen et 

al. 2011, Kankare et al. 2013, Zheng et al. 2019, Stovall et al. 2018, Wilkes et al. 2018, Lau et al. 

2019b, Kükenbrink et al. 2021). 
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5.4.3. Influence of QSM Stochasticity  

According to Disney et al. (2018) there is an inherent stochastic component in tree 

volume estimation from QSMs due to some non-deterministic procedures for fitting geometric 

primitives (e.g. cylinders) to the point cloud of a tree. Here, only a relatively small portion of the 

total uncertainty of the mean woody AGB, main stem and branch biomass of the study trees was 

due to the multiple QSM reconstructions, which implies that the reconstruction method of the 

TreeQSM algorithm is robust. The coefficient of variation of the branch biomass of the trees was 

the largest compared to the woody AGB and main stem biomass, indicating that the 

reconstruction of the branches of a tree is relatively more variable compared to the main stem 

reconstruction; this is most likely related to the size of the branches (Disney et al. 2018).  

 

5.4.4. Influence of Urban Versus Rural Environments on TLS-based Biomass 

Accuracy 

Strong agreement was found between the TLS-based estimates of total woody AGB, 

main stem biomass, branch biomass and the reference biomass data from destructive 

measurements for both urban and rural forest trees. Calders et al. (2015) and Gonzalez de 

Tanago et al. (2018) also found  strong correlations between the total woody AGB of rural forest 

trees from TLS and reference data (concordance correlation coefficients were 0.98 and 0.95, 

respectively). Momo Takoudjou et al. (2018) compared the total woody volume and the 

component volumes of stumps, stems and crowns of rural forest trees from TLS data with 

reference woody volume data and they found that the TLS-based volume estimates were very 

precise and accurate (adj. R
2
 values greater than 0.98) and the they also reported adj. R

2
 value 
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equal to 0.97 for tree AGB. Fewer studies have focused on TLS-based biomass estimation for 

urban trees. A recent study by Kükenbrink et al. (2021) reported adj. R
2
 value equal to 0.95 for 

the TLS-based woody AGB of urban trees compared to reference AGB data.  

The error analysis revealed that the TLS-based woody AGB of the rural forest trees was 

less accurate and had a greater CV(RMSE)% compared to the urban trees; and it was comparable 

to the coefficient of variation of the root mean square error for the AGB of tropical trees 

(CV(RMSE) = 28%) that was reported by Gonzalez de Tanago et al. (2018). However, Calders et 

al. (2015) studied the AGB of rural forest trees form TLS data and they reported CV(RMSE)% 

equal to 16.1%, which is more comparable to the CV(RMSE)% of the TLS-based woody AGB 

of the urban trees in this study. Momo Takoudjou et al. (2018) found that the % mean relative 

error of the TLS-based woody AGB of rural forest trees was 23%, which is comparable to the 

mean relative error of the TLS-based woody AGB of the rural trees in this study.  According to 

Kükenbrink et al. (2021) the RMSE of the TLS-based woody AGB of urban trees was 556 kg, 

which is larger than the RMSE of the TLS-based woody AGB of the urban trees here, however 

the CV(RMSE)% of the AGB which accounts for different tree sizes was not provided in their 

study. Vonderach et al. (2012) reported a bias in the total tree volume of urban trees ranging 

between -5.1% and +14.3% based on a voxel-based method for tree volume estimation from TLS 

data. The CV(RMSE)% value of the TLS-based branch biomass of the rural forest trees was 

substantially larger compared to the urban trees, and it was mainly based on three trees of 

needle-leaf evergreen species (i.e. T. canadensis and P. strobus) whose leaves were artificially 

removed before the QSMs generation. Without these three trees, the CV(RMSE)% of the TLS-

based branch biomass of the rural forest trees reduced to 60%.  
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The correlation between the TLS-based branch biomass and the reference biomass values 

was stronger for the urban trees compared to the rural forest trees. This pattern may be related to 

less occlusion effects in the crown of the point clouds of the urban trees due to less tree density 

compared to the study trees growing in forest conditions where the view of the laser scanner can 

be obstructed by the foreground vegetation (Wilkes et al. 2017). Indeed, it was found that the 

relative error in TLS-based branch biomass of the study trees increased with the competition 

strength that they faced from their tree neighbors, while the urban open-grown trees faced 

significantly less competition compared to the rural forest trees of different canopy classes. 

Furthermore, the two groups of trees were scanned following different scanning patterns and 

using different laser scanning systems, which both can affect the quality of the TLS data (Wilkes 

et al. 2017). More specifically, the rural forest trees were scanned based on a scanning grid on 

plot level, whereas, the urban trees were individually scanned at tree scale in order to further 

reduce the occlusion effects in the tree crowns. We also need to notice that the performance of 

the TLS-based branch biomass estimates of the urban trees was better, although the trees in 

Harvard Forest were scanned with the Riegl VZ-400 laser scanner which typically captures good 

quality point clouds of trees (with less noise) in dense forests, as it has greater maximum range 

and it better resolves small branches compared to the FARO Focus
3D

 X 330 terrestrial laser 

scanner (Calders et al. 2020) that was used to scan the urban trees. 

The results also showed that the TLS-based stem biomass estimates of the urban trees 

were less accurate compared to the main stem biomass estimates of the rural forest trees. In 

general, urban trees tend to have wider crowns and less discrete main stem compared to rural 

forest trees which typically have a spindly main stem (MacFarlane and Kane, 2017). Therefore, 

the detection of the main stem in the QSMs might have not aligned well with the "main" stem of 
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the urban trees based on the reference data from destructive measurements, which can explain 

the observed lower accuracy of the TLS-based main stem biomass estimates for the urban trees. 

This explanation is further supported by the opposite biomass allocation patterns of urban and 

rural forest trees that was found in this study. More specifically, the urban trees allocated more 

biomass to their branches versus their main stem compared to the rural forest trees. This biomass 

allocation "decision" of open-grown urban trees enhances their mechanical stability against 

strong wind loads in the complete absence or reduced competition for light from neighboring 

trees (MacFarlane and Kane 2017). In a previous study, Tanhuanpää et al. (2017) reported -5.5% 

underestimation in stem biomass of urban trees from TLS data. 

 

5.4.5. Influence of the Leaf-removal Algorithm on TLS-based Biomass Accuracy 

According to the model results the fixed effects model (eq. 5.11) explained most of the 

variation in the TLS-based woody AGB of the study trees and the leaf conditions (leaf-off versus 

leaf-removed point clouds; eq. 5.10) explained a substantial portion of the relatively small 

residual variation. This explains the strong agreement between the leaf-off and leaf-removed 

TLS-based biomass estimates and the reference biomass data. However, the total woody AGB 

estimates from the leaf-off point clouds were more accurate (see CV(RMSE)%, Table 5.4). The 

overall accuracy of the woody AGB estimates based on the leaf-removed point clouds was 

comparable to the woody AGB accuracy based on leaf-off point clouds in previous studies e.g. 

CV(RMSE)% = 16.1% according to Calders et al. (2015). Momo Takoudjou et al. (2018) 

performed a manual but still artificial leaf-removal from the leaf-on point clouds in their study 

and they reported an agreement between TLS-based woody AGB and reference biomass data (R
2
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= 0.97) which aligns with the agreement between the TLS-based woody AGB after the 

algorithmic leaf-removal and the reference woody AGB in this study (Fig. 5.7 A). However, 

Momo Takoudjou et al. (2018) did not examine how the manual-artificial leaf-removal process 

affected the estimation of the main stem and the branch biomass of the trees. Our study also 

showed that the overall accuracy of the TLS-based biomass of the main stem from the leaf-off 

point clouds was very similar to the overall accuracy of the main stem biomass from the leaf-

removed point clouds, which was expected because the leaf-separation algorithm should not 

affect the main stem of the trees. Similarly, the accuracy of the TLS-based branch biomass 

estimates after the artificial leaf-removal was comparable to the branch biomass estimates from 

the leaf-off point clouds (see CV(RMSE)%, Table 5.4).  

The tree with the largest absolute error and underestimation in TLS-based AGB and 

branch biomass was an urban tree of G. triacanthos species which had the largest woody AGB 

and branch biomass and whose leaves were artificially removed (see Figs. 5.7 A and 5.7 C). G. 

triacanthos trees have compound leaves with modular architecture i.e. the leaf blade consists 

from several leaflets stemming from the leaf rachis (Champagne and Sinha 2004, Klingenberg et 

al. 2012). According to Wang et al. (2019) leaf-separation algorithms typically detect leaves as 

simple flat structures, which implies that the modular structure of compound leaves of the G. 

triacanthos trees may confuse the leaf-separation algorithms. Therefore, the leaf type of a tree 

species can affect the quality of the artificial leaf-removal results (Moorthy et al. 2020). 

However, the TLS-based biomass estimates of the rest G. triacanthos trees which were of 

smaller size in terms of AGB and branch biomass were not significantly underestimated after the 

artificial leaf-removal. This could imply that the effect of leaf type on the performance of the 

TLSeparation algorithm may also depend on tree size in terms of branching complexity. 
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Similarly, Arseniou et al. (2021a) found that the artificial leaf-removal using the TLSeparation 

algorithm introduced an underestimation of the fractal-structural complexity of urban trees of G. 

triacanthos species which increased with maximum branch order, while larger trees tend to have 

higher branch orders (Seidel et al. 2019). In general, despite the existence of different algorithms 

to separate leaves from the leaf-on point clouds of trees of needle-leaf and broad-leaf species 

(Stovall et al. 2017, Vicari et al. 2019, Wang et al. 2019, Moorthy et al. 2020), there is no best 

approach that fits for all leaf-wood classification cases in forest conditions (Moorthy et al. 2020). 

 

5.5. Conclusions 

The above-ground biomass of urban and rural forest trees is directly related to important 

ecological and economic services of forests e.g. atmospheric carbon dioxide sequestration, bio-

fuels etc. Therefore, the accurate monitoring of the biomass of trees is essential. Terrestrial laser 

scanning (TLS) is an active remote sensing technology which has been used to study the 

architecture and biomass allocation patterns of trees (Liang et al. 2018) and it has been recently 

added to the IPCC guidelines for national greenhouse gas inventories (Kükenbrink et al. 2021). 

Furthermore, TLS allows to study the above-ground biomass in areas where tree harvesting is 

not applicable or preferable i.e. protected forest areas and urban sites; while studying the biomass 

allocation patterns of urban trees can inform us about the growth limits of different species 

(Calders et al. 2020). This study demonstrates that TLS data provide reliable above-ground 

biomass estimates of trees, whose quality can vary depending the basic density values that are 

used, the growing environment of trees (i.e. urban versus rural forest growing conditions), and 

their leaf conditions (i.e. leaf-off versus leaf-on which requires artificial leaf-removal). The study 

results have important implications for studying the biomass and the carbon stocks of forests, 
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especially for trees in urban areas where there is a paucity of allometric models for tree biomass 

estimation (Tigges and Lakes 2017).  
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6.1. Synthesis 

6.1.1. Differences in Fractal Metrics for Characterizing Tree Architecture 

The previous chapters have produced new knowledge about the architecture and the 

fractal-structural complexity of trees in urban areas, which gives us a deeper understanding of 

their physiological responses to their growing environment. Fractal analysis (Mandelbrot 1983) 

provides the fundamental theory and principles for analyzing tree architecture; however, there is 

significant ambiguity regarding the methods and the metrics used to quantify the inherent fractal-

like architecture of trees and their biological/ecological interpretation. More specifically, Halley 

et al. (2004) noted that applying fractal values to natural objects is, in general, dependent on the 

method used, and Mandelbrot (1983) warned against the underlying ambiguity of a precise 

mathematical interpretation of fractal dimension (Halley et al. 2004).   

The study of the self-similar character of trees depends on the theoretical models that are 

used to quantify and interpret the fractal dimension of trees. Niklas (1994) explained three 

models following engineering design principles that dictate different scaling relations among 

stem length, diameter and mass: (1) elastic self-similarity, (2) stress self-similarity for self-

loading of trees, and (3) geometric self-similarity, when wind-loads are the main factor of tree 

mechanics. In this dissertation, the fractal dimension of urban trees was quantified with the two-

surface method and the "box-dimension" metric (Db) and interpreted based on the metabolic 

scaling theory (West et al. 1997, West et al. 1999) and the pipe-model theory (Shinozaki et al. 

1964, Chiba 1998), considering the biological scaling of the volume and surface area of the 

different components of tree structure. The two-surface method and the Db metric are based on 

different theoretical assumptions and they require different types of data to quantify the fractal 

dimension of trees.  
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The study presented in the first chapter used a variant of the "two-surface" method (Zeide 

and Gresham 1991, Zeide and Pfeifer 1991, Zeide 1998) to quantify the fractal dimension of the 

crowns of thousands of trees of several species across different climatic regions in the United 

States. The fractal dimension based on this method refers to the distribution of leaf surface area 

within a crown volume occupied by the leaves and branches. This measure of fractal dimension 

takes values between two and three (Zeide and Gresham 1991). The two-surface method 

essentially includes the foliage of tree crowns, but it doesn't allow to explicitly account for the 

contribution of the two main components of a tree's crown to its fractal dimension, the branches 

and the leaves. Therefore, in the third chapter of the dissertation TLS data of urban trees were 

used to compute the Db metric which quantifies their above-ground structural complexity (Silva 

et al. 2006, Seidel 2018), in order to disentangle the contribution of leaves and the woody 

skeleton of trees.  

The Db metric has no units and, in contrast to the two-surface method, its possible values 

range between one and three. These two methods not only provide metrics on different scales but 

their interpretation is also different. More specifically, trees with greater crown complexity and 

"space-filling character" have Db values closer to three, and Db equal to one implies a perfectly 

cylindrical stem with no branches, e.g., a dead tree (Seidel 2018). However, the two-surface 

method focuses on the distribution of foliage within crown volume and fractal dimension equal 

to two means that the foliage is distributed on the crown's periphery and the crown surface is a 

classic, flat Euclidean surface. According to the same method, as the fractal dimension increases 

the crown surface becomes more fractal until the fractal dimension is equal to three, when the 

foliar surface is evenly distributed within a given crown volume (Zeide and Pfeifer 1991, Zeide 

and Gresham 1991). Benefiting from the inherent differences of the two methods, which requires 
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more research to better understand why and how they differ (see 6.3), it was possible to answer 

two important research questions of the dissertation: (1) How the urban growing environment 

and species-specific effects affect the structure and function of trees at different scales?, and (2) 

what is the role of the photosynthesizing and non-photosynthesizing components of trees in their 

fractal-structural complexity? 

 

6.1.2. Urban Environmental Effects Versus Species-specific Effects on Tree 

Architecture and Physiology 

Tree architecture is genetically controlled and environmentally altered (Seidel et al. 

2019a), and it is important to understand how the built-up environment in cities affects tree 

architecture. The study results in the second chapter indicated that trees exhibit reduced crown 

fractal dimension mainly to reduce water loss through transpiration in hotter cities. Trees of 

different species with different drought tolerance reduced their surface to volume ratios at both 

whole-crown and leaf scales, pre-adapting them to drought-stress in urban ecosystems; while 

adjusting for the temperature of cities and intrinsic species effects, it was found that more heavily 

urbanized areas had a negative effect on trees' fractal dimension. Another important result was 

that urban trees followed different patterns of structuring their fractal-like crowns based on their 

life-history traits. More specifically, needle-leaved species showed a clear tradeoff between 

optimizing the fractal dimension of their crowns for drought versus shade tolerance, whereas 

broad-leaved species showed a fractal crown architecture that responded principally to inherent 

drought tolerance. These results have significant management implications for urban forests, 

because we can inform arborists how to better manage urban trees for optimizing their several 

socio-ecological benefits, e.g., shading, air pollutant uptake, energy saving for buildings, 
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temperature regulation, carbon dioxide sequestration (Heisler 1986, McPherson et al. 1994, 

McPherson 1998, Nowak and Crane 2002, MacFarlane 2007, Casalegno et al. 2017, Tigges and 

Lakes 2017), which all depend on the crown architecture of trees. More specifically, in regions 

with arid and warm climate, arborists could plant drought tolerant species of lower fractal 

dimension or they could select less drought tolerant species with larger fractal dimension that can 

cast deeper shade. The latter would require more frequent watering,  which implies higher water 

maintenance costs. 

A common pattern revealed in the second, third and fourth chapters of the dissertation is 

the relationship between the fractal-structural complexity of trees growing in urban areas and 

their inherent functional traits, specifically drought and shade tolerance. Chapter two showed that 

very shade tolerant (and less drought tolerant) species distribute their leaves more evenly within 

their crown volume, which helps to explain why the trees of Gleditsia triacanthos species in the 

third chapter had the smallest contribution of leaves in their crown complexity compared to the 

trees of the other two studied species (Quercus macrocarpa, Metasequoia glyptostroboides). 

According to Niinemets and Valladares (2006), G. triacanthos is the least shade tolerant of all 

studied species, which implies that their leaves are widely spaced mainly in the crown top, in 

order to increase crown porosity and reduce local self-shading (Sack et al. 2006). The leaves 

distributed in the crown periphery are "sun" leaves and they have greater leaf mass per unit area, 

in order to reduce water loss through transpiration (Abrams and Kubiske 1990, Sack et al. 2006).  

The the study in the second chapter showed a negative relationship between leaf mass per unit 

area and crown fractal dimension. Finally, chapter four showed that self-shading of leaves and 

branches and inherent shade tolerance could be an important element of the branching 

architecture of open-grown trees (Duursma et al., 2010), because the three studied urban tree 
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species indicated a branch surface area vertical distribution inversely corresponding to Niinemets 

and Valladare’s (2006) shade tolerance indices. 

 

6.1.3. Photosynthetic Versus Non-photosynthetic Components of Urban Tree 

Architecture 

The contribution of photosynthesizing and non-photosynthesizing components of trees to 

their above-ground structural complexity has implications for their carbon-balance through 

photosynthetic and respiration efficiency (Kinerson 1975, Kim et al. 2007, Seidel 2019b, Zheng 

et al. 2019). The Db metric computed from leaf-on and leaf-off point clouds of deciduous urban 

trees on Michigan State University campus helped disentangle the different components of the 

structural complexity of trees. Open-grown urban trees were chosen as objects of study, because 

it was expected better quality of TLS-based measurements of tree attributes without occlusion 

from neighboring trees, but also because the low, or complete absence of competition from tree 

neighbors in cities should allow trees to better express their inherent fractal character in terms of 

structural complexity (MacFarlane et al. 2014, Eloy et al. 2017, Seidel 2018, Dorji et al. 2019). 

The study presented in the third chapter showed that the Db of the leaf-on tree point clouds was 

significantly greater than the Db of the leaf-off point clouds across all species. The index 

capturing the contribution of leaves to the structural complexity of the study trees was negatively 

correlated with branch woody surface area and different metrics of the length of paths through 

the branch network of the trees, indicating that the contribution of leaves decreases as branch 

network complexity increases. These results have important implications for studying the fractal-

structural complexity of trees in leaf-on and leaf-off conditions, because the presence of leaves 

influences the modeled patterns of the fractal-like architecture of trees. 
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6.1.4. Studying the Above-ground Allometry of the Woody Surface Area and Woody 

Biomass of Urban Trees with TLS 

The observed relationship between the woody surface area of the branches of the study 

trees and the contribution of leaves to their above-ground structural complexity, indicated a 

potential connection between the above-ground woody surface area of trees and their structural 

complexity, which aligns with research hypotheses in previous studies (Whitaker and Woodwell 

1967); this was thoroughly studied in chapter four. More specifically, it was found that the total 

woody surface area of the studied urban trees increased with the Db metric of their leaf-off point 

clouds, but it was most strongly correlated with the 25
th

 percentile of path lengths from the tree 

base to every branch tip. Furthermore, the sampled urban trees mainly allocated woody surface 

area to branches, which changed with branch order, branch-base diameter, and branch-base 

height, and the branch-to-stem area ratio differed among the studied species and increased with 

the Db metric. It was also found that the woody surface area of the trees increased with their 

crown surface area across all species combined and within each species, which implies a 

physiological mechanism for maintaining a positive carbon balance at tree scale.  

According to Weiskittel et al. (2015) there is still a lot of uncertainty regarding the carbon 

offsets of rural forests at different spatial scales, due to lack of accurate and detailed tree biomass 

data, over multiple spatial and temporal scales (Weiskittel et al. 2015).  This  uncertainty 

becomes stronger for trees growing in urban areas (Tigges and Lakes 2017, Wilkes et al. 2018). 

Therefore, the study presented in the fifth chapter of the dissertation evaluated the accuracy of 

TLS-based estimates of the above-ground biomass of trees in different growing and leaf 

conditions. The results of the study showed that TLS-based total and component biomass 

estimates of trees are reliable, and differences in the quality estimates are affected by the 
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growing environment, the leaf condition of the laser-scanned trees and the basic density values 

that are used. These results are important for studying the biomass of trees in urban areas and 

protected forests, where tree harvesting to build allometric models is difficult to be justified 

(Lefsky and McHale 2008, Calders et al. 2020, Kükenbrink et al. 2021). The hypothesis of TLS-

based tree measurements of better quality in urban areas due to absent or reduced occlusion from 

neighboring trees, which was integral of the experimental design in chapters three and four, was 

validated in the fifth chapter. It was shown  that the TLS-based branch biomass estimates 

correlated more strongly with reference biomass data for the urban trees compared to the rural 

forest trees, and the relative error in TLS-based branch woody biomass of the study trees 

increased with the competition they faced. 

 

6.1.5. Methodological Considerations for Studying Tree Architecture from Leaf-on 

TLS Data 

In chapters three and five the effect of the artificial leaf-removal on estimating the 

structural complexity and the biomass of trees was studied. In both chapters the TLSeparation 

algorithm (Vicari 2017) was used to algorithmically remove the leaves from leaf-on tree point 

clouds and subsequently for each tree the Db metric and the total and components biomass were 

estimated. In chapter three, it was found that the artificial leaf-removal introduced bias to the 

leaf-removed Db of the G. triacanthos and M. glyptostroboides trees compared to the Db of the 

leaf-off point clouds. Chapter five showed that the accuracy of the TLS-based branch and stem 

biomass estimates after the artificial leaf-removal was comparable to the branch and stem 

biomass estimates for trees that were scanned in leaf-off conditions, despite the lower accuracy 

(underestimation) of the TLS-based woody AGB from leaf-removed point clouds. The results of 
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these two studies imply that the potential bias due to artificial leaf-removal can be stronger when 

the fractal-structural complexity of leaf-removed point clouds is studied compared to their TLS-

based biomass. The Db metric is computed directly from point clouds of trees, and therefore, the 

miss-classification of laser-points as leaves due to the shape of leaves (Vicari et al. 2019, Wang 

et al. 2019) and the branching architecture of trees can introduce a significant bias to the Db 

computation (see the results in chapter three). However, the accuracy of TLS-based biomass 

estimates also depends on the quality of the QSM volumes and the use of appropriate basic 

density values. An explicit accounting of the error sources is challenging because we don't have 

a complete control over them, and different types of errors can be correlated (Burt et al. 2021). A 

previous study the artificial leaf-removal using the LeWoS algorithm resulted in the 

underestimation of the total woody volume of trees in the generated QSMs, while only the stems 

and some large branches were detected in coniferous trees (Wang et al. 2019). In general, the 

results of the artificial leaf-removal should be carefully examined and the effects on estimated 

tree attributes should be further studied. We still need a better understanding of the effect of 

classification algorithms for leaf separation when studying tree architecture (Vicari et al. 2019). 

 

6.2. Accounting for Different Sources of Uncertainty in Studying Tree Architecture 

from TLS  

It is important to account for the technical parameters of different laser scanners when we 

analyze tree architecture from TLS data. Terrestrial laser scanners scan the surrounding 

environment stepwise using a fast vertical mirror rotation and a slower horizontal instrument 

rotation and systematic errors can occur due to imperfections in instrument manufacture and 

assemble. Rotation axes are supposed to be mutually orthogonal and they should intersect at a 

specific common point. However, these assumptions do not always hold true (Liang et al. 2016). 
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Pueschel (2013) studied the effect of different technical characteristics of the FARO Photon 120 

laser scanner on the quality of scanned trees. More specifically he focused on the effects of 

scanner resolution (the angular step size), scan speed (the number of laser pulses per second), 

and pulse duration (signal to noise ratio) on the detection of tree stems, and the estimation of tree 

diameter and total tree volume. He found that the accuracy of stem detection, and the quality of 

tree diameter and volume estimates were not significantly affected by the scan speed, and the 

pulse duration. However, the scan resolution had a significant effect and its magnitude depended 

on the range. Therefore, Pueschel (2012) concludes that higher scanning resolution is required at 

larger distances from a focal tree.  

 According to Wilkes et al. (2017), the recommended distance for scanning individual 

trees is less than 10 m and the recommended scan resolution is 0.04 degrees. The footprint size 

of the scanner significantly affects the quality of the data. Branches of similar or smaller 

diameter than the TLS footprint size at a given distance are not sufficiently captured in a point 

cloud (Disney et al. 2018). This issue becomes more pronounced at the upper parts of tree 

crowns due to larger occlusion, and due to larger distance from the scanner. The pulses that reach 

the upper parts of the crowns have larger footprint due the laser beam deflection (Disney et al. 

2018). The current commercial laser scanners have footprint size 2-5 cm at 100 m range and 

branches less than 5 cm diameter cannot be effectively captured at large distances (Disney et al. 

2018). Due to this issue, there is more uncertainty in volume estimation of smaller branches, but 

this affects only a small portion of the total aboveground tree volume (Disney et al. 2018). In the 

studies compiled in this dissertation, the FARO Focus
3D

 X 330 terrestrial laser scanner was used 

to scan the study trees, and according to Calders et al. (2020) the technical characteristics of this 

scanner allow for resolving small branches. All study trees were laser scanned from multiple 
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directions and distances at high scanning resolution, following the field scanning protocols 

suggested by Wilkes et al. (2017). 

Another source of uncertainty originates from QSMs that has a stochastic and a 

deterministic component (Disney et al. 2018, Malhi et al. 2018). The stochastic component refers 

to non-deterministic processes for fitting geometric primitives in a point cloud and the systematic 

component relates to the assumptions inherent to each QSM algorithm (Disney et al. 2018). In 

chapters four and five it was found that the uncertainty due to the consecutive QSM 

reconstructions of the same point cloud of a tree was a relatively small portion of the mean 

aboveground woody surface area and woody biomass per tree across all study tree species 

combined. This does not mean that the QSMs do not introduce bias, such as systematically over- 

or under- estimating surface areas and biomass of different parts of the trees. Finally, the 

algorithmic leaf separation introduces an additional source of uncertainty (Malhi et al. 2018). 

The results in chapter three provided new insights into the effects of the algorithmic leaf 

separation on studying tree architecture (also see 6.1.5). According to Burt et al. (2021) an 

explicit accounting of all different error sources is challenging because we don't have a complete 

control over them, and different types of error can be correlated. 

 

6.3. Evaluation of the Analysis Methods and Further Research Opportunities 

The underlying ambiguity inherent in the methods used to study the fractal-like 

architecture of trees (Halley et al. 2004), makes it essential to reflect on the analysis methods in a 

critical way to identify opportunities for future research that will deepen our understanding of the 

structural complexity and architecture of trees. The variant of the two-surface method that was 

used in the second chapter provided significant results and new insights into the fractal 

dimension of the crowns of thousands of trees of different species in relation to their functional 
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traits and stress tolerance. The publicly available dataset that was used in chapter two 

(McPherson et al. 2016) has independent measurements of leaf area and crown volume of the 

trees, and the leaf area was estimated for every tree using a novel photographic method 

developed by Peper and McPherson (2003). The occluded portions of foliage when a 

photographic method is used could imply conservative leaf area estimates. This hypothesis was 

tested here by comparing leaf area estimates from digital image analysis and destructive 

measurements for five G. triacanthos trees sampled on the Michigan State University campus, 

and the analysis showed an underestimation of leaf area using the photographic method (see 

Supplemental File 6.1). However, this comparison was based only on few trees of the same 

species and similar crown structure and crown porosity. Therefore, further analysis is needed to 

evaluate the accuracy of the photographic method (Peper and McPherson 2003) based on a large 

sample of destructive measurements of trees of several species.  

A different way to obtain leaf area estimates is from TLS data (Hosoi and Omasa 2009, 

Béland et al. 2011, Béland et al. 2014), which is a more precise methodology. Future work can 

focus on studying the leaf surface area and the leaf angle distribution (Stovall et al. 2021) of 

urban trees from TLS data in order to better understand how different leaf properties affect the 

structural complexity of the crown of open-grown trees. One of the main findings in the first 

chapter was that adjusting for the temperature of cities and intrinsic species effects, the fractal 

dimension of tree crowns was lower in more heavily urbanized areas (with greater paved area or 

buildings) and due to crowns conflicting with utility wires. Data describing in more detail the 

eco-physiological local growing environment of trees (e.g. soil properties, seasonal variation of 

the amount of light transmitted through a tree's crown) can deepen our understanding of the 

crown fractal dimension dependency on the local growing environment of urban trees. 
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The Db metric (leaf-on and -off) that was used in chapters three and four included both 

the trunk and the crown of the study trees, and therefore it computes the total above-ground 

structural complexity of trees compared to the two-surface method that includes only the crown 

of trees. However, it has been noted that trunk length does not scale with crown fractal 

dimensions (Mäkelä and Valentine 2006). Therefore, a next research step is to examine how the 

removal of a tree's trunk below its crown affects the computation of the Db metric i.e., what is the 

scale and the magnitude of the computed values and what is their biological interpretation.  

As it was explained in section 6.1., the two-surface method and the Db metric derived 

from the box-counting method make different assumptions and they produce values of different 

scales. Further research is needed to explicitly compare fractal-dimension values produced by the 

two-surface method and the Db metric (leaf-on and -off) considering the functional traits of 

different tree species. More specifically, a research question that remains to be answered is what 

method of fractal analysis is more appropriate to be used to study different aspects of the fractal-

like character of trees; how the fractal dimension values from different methods compare each 

other and how they relate to the functional traits of different species, e.g., drought and shade 

tolerance, and the life-history strategies of different species, e.g., broad-leaved deciduous and 

needle-leaved evergreen species.  

Another question that remains to be answered is: what can be the maximum realized 

fractal-dimension of a tree considering not only the inherent differences of fractal-analysis 

methods but also the metabolic, hydraulic and mechanical constraints of tree architecture 

(Abrams and Kubiske 1990, Sack et al. 2006, Eloy et al. 2017, MacFarlane and Kane 2017, 

Seidel et al. 2019a). A small change in the fractal dimension of a tree can have important 

physiological implications; for example in chapter three it was found that an increase of about 
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0.05 units in the LCC index was associated with approximately 400 m
2 

reduction in the branch 

woody surface area of the study trees. According to Seidel et al. (2019b) trees should have Db 

values significantly lower than 2.72, which is the Db of the Menger sponge (Menger 1926), 

assuming a tree would maximize its surface area for light capture and gas exchange, while 

minimizing building costs, in the absence of competition with other plants. In chapter three the 

maximum Db value that was observed was 2.23, for a large M. glyptostroboides tree in the leaf-

on condition and the study also showed that the mean Db of the leaf-on tree point clouds was 

greater than 2 across all study urban tree species, while previous studies reported leaf-on Db 

values of trees growing in dense rural forest stands consistently lower than 2 (Seidel 2018, Seidel 

et al. 2019a, Seidel et al. 2019b, Dorji et al. 2019, Guzmán et al. 2020, Saarinen et al. 2021), 

supporting the assumption that trees growing in the open, without competition can more closely 

approach the theoretical maximum fractal complexity (MacFarlane et al. 2014). TLS data can be 

used to further examine this assumption by comparing the allometric scaling exponents of urban-

open grown trees against the theoretical expectations from the metabolic scaling theory (West et 

al. 1997), while a previous study showed that trees growing in dense tropical forests might not 

follow the theoretical expectations for self-similar branching architecture according to the 

metabolic scaling theory (Lau et al. 2019).  

Chapters four and five showed important patterns of the woody surface area and biomass 

allometry of trees. Some additional analysis in chapter four that included photographic-based 

one-side leaf area estimates (Peper and McPherson 2003) and woody volumes from the QSMs of 

the study trees showed negative relationships between the ratio of the woody surface area, leaf 

surface area and total surface area to the total woody volume of the trees, and different Euclidean 

metrics of tree architecture (e.g., maximum path length), but no statistically significant 
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relationships were observed with the Db metric of fractal complexity (see Supplemental File 6.2). 

These results imply that as trees increase the average distance from the ground to leaves (longer 

hydraulic pathways), their total woody volume increases faster than the surface areas of their 

woody organs and their leaves.  

According to Smith et al. (2014) the hydraulic conductance of trees should reduce with 

mean path length and the WBE model (West et al. 1997), which suggests that greater woody 

volume implies more conducting elements, but also proportional surface area. These dissertation 

results suggest that reduced hydraulic conductivity over a longer branching network might come 

from reduced evaporative surfaces (leaf stomata and stem lenticels) relative to the addition of 

woody volume. However, pipe-model theory would suggest that much of the volume in larger 

trees is dead and not conductive (Shinozaki et al. 1964). It has been found that the foliage mass 

of a tree scales with its sapwood mass (Valentine 1985, Mäkelä and Valentine 2006, Peng et al. 

2010, Lehnebach et al. 2018), but the QSM woody volume estimates include both sapwood and 

heartwood tissues, because the laser scanning method cannot see beyond the tree’s surface.  

Therefore, it is also possible that the leaf area and living, conductive (sapwood) volume remain 

in balance as the tree expands its branching network. Further research is needed to partition the 

active and non-active components of the woody volumes of trees generated from QSMs through 

new allometric models; and more precise estimates of leaf surface area can be derived from TLS 

data (Béland et al. 2014).  

The surface area data that were produced in chapter four can be used to develop new or 

inform existing process models that quantify the growth and productivity of urban forests. 

Similarly, one of the most promising findings in chapter five is that TLS data can be used to 

produce reliable total and component biomass estimates of trees, which is important for studying 



215 
 

the AGB of trees in urban areas and protected forests where tree harvesting to build allometric 

models is not applicable (Lefsky and McHale 2008, Calders et al. 2020, Kükenbrink et al. 2021). 

Considering the current paucity of data and allometric models of the AGB of urban trees (Tigges 

and Lakes 2017), further research is needed to produce new allometric models from TLS data 

that predict the biomass of urban trees at different spatial scales which will enhance our 

understanding of urban forest carbon budgets. 

 

6.4. Conclusions 

Studying the aboveground fractal-structural complexity and architecture of trees is an 

important element of the decision-making in forest management and policy. Open-grown urban 

trees are ideal objects for studying the fractal-like architecture of trees because of the reduced or 

absent crowding conditions. This dissertation research showed that the fractal-like character of 

urban trees is affected by their growing environment at regional and local spatial scales, and it 

relates to their functional and life-history traits. Terrestrial laser scanning (TLS) data of urban 

trees provided a deeper understanding of the architecture of trees in general i.e., the role of the 

different structural components of trees in their fractal-structural complexity, and the allometry 

of their aboveground woody surface area and woody biomass. Challenges and opportunities for 

further research arise from the inherent ambiguity of fractal analysis methods, the different 

metrics that are used, and their biological interpretation. The quality of the TLS data and the 

algorithms that are used to process them (e.g., artificial leaf-removal) can significantly affect the 

quality of tree models depending on the aspect of tree architecture that is studied (e.g., fractal 

dimension, woody surface area and biomass). TLS data collected on trees of several species 

growing in different environments (urban versus rural forests), in combination with the 
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anticipated future progress of TLS systems and algorithms will further enhance our 

understanding of tree architecture. 
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