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ABSTRACT

SAFE CONTROL DESIGN FOR UNCERTAIN SYSTEMS

By

Zahra Marvi

This dissertation investigates the problem of safe control design for systems under model

and environmental uncertainty. Reinforcement learning (RL) provides an interactive learn-

ing framework in which the optimal controller is sequentially derived based on instantaneous

reward. Although powerful, safety consideration is a barrier to the wide deployment of RL

algorithms in practice. To overcome this problem, we proposed an iterative safe off-policy

RL algorithm. The cost function that encodes the designer’s objectives is augmented with

a control barrier function (CBF) to ensure safety and optimality. The proposed formulation

provides a look-ahead and proactive safety planning, in which the safety is planned and opti-

mized along with the performance to minimize the intervention with the optimal controller.

Extensive safety and stability analysis is provided and the proposed method is implemented

using the off-policy algorithm without requiring complete knowledge about the system dy-

namics. This line of research is then further extended to have a safety and stability guarantee

even during the data collection and exploration phases in which random noisy inputs are

applied to the system. However, satisfying the safety of actions when little is known about

the system dynamics is a daunting challenge. We present a novel RL scheme that ensures

the safety and stability of the linear systems during the exploration and exploitation phases.

This is obtained by having a concurrent model learning and control, in which an efficient

learning scheme is employed to prescribe the learning behavior. This characteristic is then

employed to apply only safe and stabilizing controllers to the system. First, the prescribed

errors are employed in a novel adaptive robustified control barrier function (AR-CBF) which

guarantees that the states of the system remain in the safe set even when the learning is in-

complete. Therefore, the noisy input in the exploratory data collection phase and the optimal

controller in the exploitation phase are minimally altered such that the AR-CBF criterion



is satisfied and, therefore, safety is guaranteed in both phases. It is shown that under the

proposed prescribed RL framework, the model learning error is a vanishing perturbation to

the original system. Therefore, a stability guarantee is also provided even in the exploration

when noisy random inputs are applied to the system. A learning-enabled barrier-certified

safe controllers for systems that operate in a shared and uncertain environment is then pre-

sented. A safety-aware loss function is defined and minimized to learn the uncertain and

unknown behavior of external agents that affect the safety of the system. The loss function is

defined based on safe set error, instead of the system model error, and is minimized for both

current samples as well as past samples stored in the memory to assure a fast and general-

izable learning algorithm for approximating the safe set. The proposed model learning and

CBF are then integrated together to form a learning-enabled zeroing CBF (L-ZCBF), which

employs the approximated trajectory information of the external agents provided by the

learned model but shrinks the safety boundary in case of an imminent safety violation using

instantaneous sensory observations. It is shown that the proposed L-ZCBF assures the safety

guarantees during learning and even in the face of inaccurate or simplified approximation of

external agents, which is crucial in highly interactive environments. Finally, the cooperative

capability of agents in a multi-agent environment is investigated for the sake of safety guar-

antee. CBFs and information-gap theory are integrated to have robust safe controllers for

multi-agent systems with different levels of measurement accuracy. A cooperative framework

for the construction of CBFs for every two agents is employed to maximize the horizon of

uncertainty under which the safety of the overall system is satisfied. The information-gap

theory is leveraged to determine the contribution and share of each agent in the construction

of CBFs. This results in the highest possible robustness against measurement uncertainty.

By employing the proposed approach in constructing CBF, a higher horizon of uncertainty

can be safely tolerated and even the failure of one agent in gathering accurate local data can

be compensated by cooperation between agents. The effectiveness of the proposed methods

is extensively examined in simulation results.
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Chapter1

Introduction and Literature Review

Safety-critical systems are the systems whose failure or malfunction can result in injury to

people, damage to the equipment or harm to the environment [1]. Being that said, most

control systems face instrumental or environmental limitations and thus are considered as

safety-critical systems. The limitations of the system itself include states constraints, such

as saturation of actuators, limited range of motion in a joint of a robotic arm, maximum

allowable speed of a vehicle, the relative portion of materials in a chemical process, and

so on. The environment in which the system is operating also imposes different types of

safety constraints on the system. For example, when the operating environment is shared

between different agents such as pick-and-place robotic arms in a factory, a multi-robot

system and autonomous driving, the collision should be avoided between the nearby agents.

In addition, the safety of human operators and nearby facilities must be guaranteed as well.

All these safety constraints need to be satisfied for a safe and reliable operation. The set

of states in which these safety constraints are satisfied are considered as the safe set. The

controller need to be designed accordingly to get the desired performance within the safe set

of the system to avoid safety violation. Moreover, conflicts can always arise between safety

and performance requirements, and, in a conflicting situation, safety objectives must always

be prioritized to the performance. For example, in the adaptive cruise control system, the

system’s performance level that can be achieved without safety violation in terms of reaching

the desired speed depends on the traffic situation and assuring a safe maneuver (maintaining
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a safe distance from the vehicle ahead) must be prioritized to the performance.

Specially, with the emerge of robotics and autonomous systems, which have a high level

of interactions with humans, and typically operate in a cluttered and uncertain environment;

it is crucial to design safe and smart controllers in the face of the model and environmental

uncertainty, which is the goal of this dissertation.

Reinforcement learning (RL) is an emerging framework in control systems that learns

the optimal controller for uncertain systems online in real time [2, 3, 4]. Although powerful,

assuring its safety is one of the main challenges to pave the way to widespread deployment

of RL in practice. RL algorithms typically consist of two phases of operation: exploration

and exploitation. In the former phase, random noisy inputs are applied to the system to

collect rich data. The collected data is used to learn improved control policies, followed

in the exploitation phase to gain more rewards. However, under uncertainty, little or no

knowledge of the system dynamics might be available, and therefore, RL agent faces the risk

of stability or safety violation. Satisfaction of these properties is very challenging since, on

one hand, noisy exploratory inputs must be applied to the system, and, on the other hand,

their consequences cannot be fully predicted because the complete knowledge of the system

dynamics is not known priori.

Different approaches are proposed in the literature to address the safe RL problem.

Safety in RL framework has been addressed in two general ways; one takes into account

the uncertainty of the reward and the other one deals with possible risks in the exploration

process [5]. In the former case, stochastic cost-to-go functions are considered and appropriate

risk measure functions are applied [6], while in the latter one, the learning agent is typically

provided with some external knowledge or advice for safe exploration [5],[7], [8]. While

applying risk measures on stochastic functions is a strong tool to deal with uncertainty,

it does not take into account the constraints on the system’s state and the control input.

Economists have studied this risk-aware approach because the goal is to obtain the highest

profit while the risk is the chance of loss which is inherent to the concept of profit. However,
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for many control systems that risk arises from state or input constraints such as collision

avoidance in multi-agent systems, forbidden states of a robotic arm, and safe autonomous

vehicles, this approach cannot be directly applied. Risk in the exploration process has been

addressed through learning simulators, using external advice and prior knowledge [9, 10].

However, all of these approaches need some prior knowledge about the risk or distance to

the risk. These approaches are applicable for cases such as the risky height of flight for an

airplane; but they are not constructive for applications that the information about dangerous

occasions is not available which is somehow inherent to the concept of risk.

[11] employs expert demonstration in a surgical robotic system which provides an area

with a high probability of safe task completion. The forward RL is then solved in this region

in conjunction with an area with a return route to this region based on the task completion

cost. [8] uses the idea of the escape route and backup, and therefore, in the face of a safety

crisis, a backup safe path is taken. To reduce the need for prior knowledge, which might

not be available, learning from data can be leveraged and combined with prior knowledge.

For example, in [12], two stages of learning are considered: in the first one, a rule-based

safeguard is employed. As more data become available, the rule-based safeguard is replaced

with a data-driven counterpart in the second stage. [13] identifies undesirable actions in a

set of previously learned tasks and uses transfer learning. In [14], a recovery RL algorithm

is proposed which employs the offline data to learn about unsafe zones. Then, a recovery

policy is employed which acts as a backup policy in the face of imminent risk. However, safe

offline data collection demands human supervision. In addition, in a hostile environment,

frequent alteration of policies might prevent reaching performance objectives.

A broad class of methods in safe RL are model-based and rely on information about

the system/environment or prediction of the risk. This includes shielding approaches based

on reachability [15], safety modules [16], or safety layers that adjust the policy to prevent

violation of safety. [17] employs risk state estimation module, which activates the safe policy

search module in the face of risk. Employing constrained Markov decision process, [18,

3



19] and safe region of attraction calculation [20] are other methods to tackle the safe RL

problem.

Reachability analysis has also been widely used to handle safety in the exploration pro-

cess by finding the set of initial states for which there is a control input that keeps the state

of the system within the safe feasible set despite disturbance [21]. Moreover, in the boundary

of the safe set, it needs to switch to a controller to push the state back into the safe region,

which can cause chattering. In [22], the Gaussian regression is used to learn the disturbance

and, also a term is added to the cost function to incorporate the risk within the learning

scheme. More relevant work in safety within the context of reachability can be found in

[23], [24]. [23] presented a safe control framework based on the Hamilton-Jacobi reachability

method for partially unknown systems. The safety problem is then defined as a differential

game between controller and disturbance. A Gaussian process is leveraged to learn about

the disturbance, and Bayesian analysis computes its bound. In [25], a safeguard layer is

incorporated using trajectory-parametrized reachable set analysis which is computed offline.

Although elegant, reachability-based approaches are computationally demanding. In addi-

tion, these methods are still model-based, and offline model-learning results in dependency

of safety to the accuracy of learning. In addition, by any change in the operation regime of

the system, offline learning needs to be re-initiated.

Control barrier function (CBF) is another widely used method to guarantee the safety of

the control systems [26, 27, 28, 29, 30, 31]. This includes adaptive cruise control problem in

[27, 28], safe control of robots [29, 32] and collision-free multi-agents systems [30, 33]. These

methods generally integrate CBFs and control Lyapunov functions and solve a point-wise

quadratic programming optimization problem to certify the safety and stability of a nominal

controller. CBFs are conceptually similar to Lyapunov functions and are used to ensure

forward invariance of a specific set. However, these methods require complete knowledge of

the system dynamics as well as the feasible set. therefore, it is not straightforward to integrate

it with an RL framework for which the knowledge of the system model is not required. In
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addition, for the systems that operate in uncertain environments, the safe or feasible set is

uncertain: safety criteria are affected by some external factors with possibly uncertain or

unknown behaviors which are not known a priori. For example, in autonomous vehicles,

the operation platform of vehicles is highly complicated and shared between autonomous,

semi-autonomous, and human driving vehicles and pedestrians. Therefore, it is necessary

to design a controller that can ensure the safety of the system despite the uncertainty in

the feasible set due to the existence of unknown external agents while reaching as much

performance as possible.

To account for uncertainties in designing safe controllers, several robust and adaptive

approaches are presented. In [34], the robustness of zeroing CBFs (ZCBFs) under model

perturbation is investigated. It is shown that the existence of ZCBF ensures the input-to-

state stability of the safe set under perturbations. However, external agents that affect the

safety of the ego system cannot be modeled as a perturbation. In [35], an adaptive CBF

(aCBF) is proposed to ensure safety despite parametric uncertainty. To reduce conservatism,

[36] proposed a robust aCBF (RaCBF), which guarantees forward invariance of a tightened

set within the safe set. However, in both approaches, the invariance criterion needs to be

satisfied for all values within the uncertain parameters that are not always known ahead

of time. In addition, the effect of external dynamics in the environment shared with the

ego-system can be completely modeled as neither parametric uncertainty nor disturbance.

In [37], uncertainties impacting CBFs are learned to design a safe controller for a wider class

of uncertainties. However, it is assumed that the CBF for the nominal system is a CBF for

the uncertain system, which is not always applicable. To partially compensate for the need

for full knowledge on dynamics, [32, 38] have proposed data-driven methods which use the

Gaussian process to learn about disturbance. [32] Uses learning to explore uncertain states to

expand and maximize the barrier-certified safe region by updating probabilistic parameters

and decreasing the variance of the disturbance Gaussian Model. Then, the least square

method is used to find the closest control input to the nominal input, which ensures safety.
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[38] uses a similar method to form the CBF by learning about the disturbance. It also takes

the optimality into account by finding the optimal control input by policy-gradient RL, which

is then combined with the control input obtained from CBF, which ensures safety. In both

of these works, a nominal model is needed to form the CBF constraint and the disturbance is

modeled by the Gaussian process, which is not always applicable. To ensure the convergence

on the original goal and to avoid the conflict between safety and performance, [39] uses an

iterative search algorithm using the sum-of-squares method to find the maximum region in

which safety and stabilization are compatible. In [29], sparse optimization is used to extract

the dynamical structure. The model and long-term reward are adaptively estimated, and

the learned model is used at each instant to provide required information on the dynamics

to ensure safety using the CBF method for non-stationary discrete-time control systems. RL

method for handling constrained states is proposed in [40], in which a non-quadratic function

is incorporated in the performance functional that becomes dominant in case of constraint

violation. In this method, safety is considered as a soft constraint. [41] incorporates state

and input constraints in RL framework using penalty function and barrier function (BF)-

based state transformation; however, the possible conflict between safety and stability is not

considered.

Model predictive control (MPC) is another suitable framework for handling state and in-

put constraints. In some MPC approaches, a barrier function (BF) is incorporated into the

cost function to convert a constrained optimization problem into an unconstrained optimiza-

tion problem, which provides a smooth transition of states within the feasible set [42], [43].

However, they only deal with state constraints imposing the condition that safe set must

contain the origin, while in practical applications, safety and performance/stability might

be in conflict, and safety must be prioritized. Our previous work [44] has extended those

approaches to a general safe set, capable of handling even complicated and nonlinear safety

criteria due to the interaction of different states. MPC-based approaches are mainly model

based, and since they are short-sighted, it is hard to guarantee the stability and feasibility
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of the solution in the presence of uncertainty.

In [45], path planning in uncertain and dense obstacles environment is investigated in

which a reachability set estimator of dynamic obstacles is employed to predict its threat. The

CBF-based method, in contrast, ensures safety without the need for finding the reachability

set, which is typically computationally demanding. Inverse RL is used in [46] to learn about

the reward function and, consequently, the behavior of the human agent in control of human-

robot systems. However, this line of work assumes that the human operators or external

agents choose their course of actions based on a perfectly rational framework that makes

optimal decisions with respect to a reward function, which might not coincide with reality

and is also computationally expensive.

1.1 Organization of the Dissertation

Based on the above elaborated problems, the brief contribution and organization of this

dissertation is as follows.

1. Chapter 2 presents a learning-based barrier-certified method to learn safe optimal con-

trollers that guarantee the operation of safety-critical systems within their safe regions

while providing optimal performance. The cost function that encodes the designer’s

objectives is augmented with a CBF to ensure safety and optimality. A damping

coefficient is incorporated into the CBF, which specifies the trade-off between safety

and optimality. The proposed formulation provides a look-ahead and proactive safety

planning and results in a smooth transition of states within the feasible set. That

is, instead of applying an optimal controller and intervening with it only if the safety

constraints are violated, the safety is planned and optimized along with the perfor-

mance to minimize the intervention with the optimal controller. It is shown that the

addition of the CBF into the cost function does not affect the stability and optimality

of the designed controller within the safe region. This formulation enables us to find
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the optimal safe solution iteratively. An off-policy RL algorithm is then employed to

find a safe optimal policy without requiring the complete knowledge about the system

dynamics while satisfying the safety constraints. The efficacy of the proposed safe RL

control design approach is demonstrated on the lane keeping as an automotive control

problem.

2. Satisfaction of safety and stability properties of RL algorithms has been a long-standing

challenge. These properties must be satisfied even during learning, for which explo-

ration is required to collect rich data. However, satisfying the safety of actions when

little is known about the system dynamics is a daunting challenge. After all, predict-

ing the consequence of RL actions requires knowing the system dynamics. Chapter 3

presents a novel RL scheme that ensures the safety and stability of the linear systems

during the exploration and exploitation phases. First, the system model is learned

for the sake of safety. That is, the update law is designed to assure that the actual

model’s safety properties are preserved by the learned model. Second, a fast and effi-

cient learning scheme is presented to ensure that the model learning error remains in a

prescribed bound with a desired convergence rate. This occurs because of the efficient

deployment of data from past experiences in an off-policy RL framework. Then, the

presented model and its prescribed errors are employed in a novel adaptive robustified

control barrier function (AR-CBF) which guarantees that states of the system remain

in the safe set even when the learning is incomplete. Therefore, the noisy input in

the exploratory data collection phase and the optimal controller in the exploitation

phase are minimally altered such that the AR-CBF criterion is satisfied, and therefore,

safety is guaranteed in both phases. It is shown that under the proposed prescribed

RL framework, the model learning error is a vanishing perturbation to the original

system. Therefore, a stability guarantee is also provided even in the exploration when

noisy random inputs are applied to the system.
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3. Chapter 4 presents learning-enabled barrier-certified safe controllers for systems that

operate in a shared environment for which multiple systems with uncertain dynamics

and behaviors interact. That is, safety constraints are imposed by not only the ego

system’s own physical limitations but also other systems operating nearby. Since the

model of the external agent is required to impose CBFs as safety constraints, a safety-

aware loss function is defined and minimized to learn the uncertain and unknown

behavior of external agents. More specifically, the loss function is defined based on

barrier function error, instead of the system model error, and is minimized for both

current samples as well as past samples stored in the memory to assure a fast and

generalizable learning algorithm for approximating the safe set. The proposed model

learning and CBF are then integrated together to form a learning-enabled zeroing CBF

(L-ZCBF), which employs the approximated trajectory information of the external

agents provided by the learned model but shrinks the safety boundary in case of an

imminent safety violation using instantaneous sensory observations. It is shown that

the proposed L-ZCBF assures safety guarantees during learning and even in the face

of inaccurate or simplified approximation of external agents, which is crucial in safety-

critical applications in highly interactive environments. The efficacy of the proposed

method is examined in a simulation of safe maneuver control of a vehicle in an urban

area.

4. Chapter 5 integrates the CBFs and information-gap theory to present robust safe con-

trollers for collision avoidance problem in multi-agent systems with different levels of

measurement accuracy. It is assumed that agents have uncertain and inaccurate mea-

surements about the relative distance to neighboring agents. A cooperative framework

for the construction of CBFs for every two agents is employed to avoid collision and

ensure the safety of the overall system. To maximize the horizon of uncertainty under

which the safety of the overall system is satisfied, the information-gap theory is lever-

aged to determine the contribution and share of each agent in the construction of CBFs.
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This results in the highest possible robustness against measurement uncertainty. It is

shown that the overall system can tolerate higher measurement uncertainty and safely

operate if the agent that is more confident about its measurement contributes more

to the construction of the CBF. By employing the proposed approach in constructing

CBF, the possible failure of one agent in gathering accurate local data can be com-

pensated by cooperation between agents. The effectiveness of the proposed method is

demonstrated via performing simulations for multi-robot systems.

5. Chapter 6 summarizes and concludes the dissertation and provides future research

directions.

The contributions of this dissertation are published in [44, 47, 48, 49, 50, 51, 52, 53].
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Chapter2

Safe Reinforcement Learning: A Con-

trol Barrier Function Optimization Ap-

proach

Contents of this chapter first appeared as [50] and have been reformatted to fit the

requirements of this dissertation.

2.1 Introduction

In this chapter, a safe RL scheme is proposed which is based on optimization of a cost

function that is augmented with a CBF candidate. The proposed approach is capable of

handling a pre-defined safe and feasible polytope set formed by state constraints and process

risk. RL algorithm is used to learn the optimal control policy that minimizes this augmented

cost function without requiring the complete knowledge about the system dynamics. It is

shown that sequential improvement of the controller ensures safety and stability within the

safe region. The main contribution is that the concept of the CBF is unified with an RL

scheme to bring together the best of two worlds, i.e, to guarantee safety in a data-driven

fashion. It also provides a look-ahead and proactive approach for safety planning for smooth

handling of a sudden danger. Although the idea of using BFs in the cost function has been

used in the context of MPC and dynamic programming, its main goal is to alter a constrained

optimization problem into an unconstrained optimization. However, the proposed approach
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here differs in the following aspects:

1. It addresses possible conflict between safety and performance and the safe set does not

necessarily contain the origin.

2. Off-policy RL is employed which allows to learn about an optimal safe policy that

minimizes the augmented cost while applying a safe and possibly conservative policy

to collect data during learning. This is because off-policy RL separates the target

policy (policy we learn about) from the behavior policy (policy we apply to the system

to collect data). Rigorous proofs are provided to show that sequential improvement of

the control policy provides optimality and guarantees safety. That is, the safety of the

optimal solution is verified.

3. To provide an optimal performance, instead of using a zeroing factor, a function is

considered as a CBF that rapidly damps to zero within a specific distance to the safety

boundary; this facilitates taking safety as a control objective not only as a constraint.

A parameter is incorporated in CBF which determines the relative importance of the

original control objectives to the safety.

2.1.1 Notations

The interior of set C is denoted as intC and ∂C stands for its boundary. Throughout the

paper, ∥·∥M denotes the weighted Euclidean norm of a vector i.e. ∥x∥M =
√
xTMx in which

M is a positive semi-definite matrix. U is the set of all admissible control inputs. C1 denotes

the set of continuously differentiable functions.

2.1.2 Organization of the Chapter

Background information, preliminaries and problem statement are given in Section 2. Safe

optimal control approach with safety and stability proofs are provided in Section 3. Section
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4 employs neural networks for estimation of optimal controller and value function using off-

policy RL algorithm. Section 5 shows the efficiency of the proposed method by providing

comprehensive simulation results and section 6 concludes the chapter.

2.2 Preliminaries

Consider a nonlinear system described by the following differential equation

ẋ = f(x) + g(x)u (2.1)

where x ∈ C ⊂ Rn and u ∈ U ⊂ Rm are the state of the system and the control input,

respectively. C represents the set of safe feasible states while U denotes the set of all

admissible inputs. Moreover, f(x) ∈ Rn is the drift dynamics and g(x) ∈ Rn×m is the input

dynamics. f(x) is C1 and f(0) = 0. It is also assumed that the system is stabilizable. Before

proceeding, the problem formulation and a short background are provided as follows.

2.2.1 Problem Statement

The goal is to design a safe optimal control policy for the system (2.1). To take into account

optimality, an infinite horizon cost function is considered and is minimized along with the

trajectories of the system (2.1) and within a safe set. That is, the safe optimal control

problem is formulated as

min
u∈U

J(u, x) =

∫ ∞

t

r(x(τ), u(τ))dτ

s.t. (2.1), x(0) = x0, x ∈ C , (2.2)
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where the utility function r(x, u) is defined as

r(x, u) = Q(x) + uTRu (2.3)

where Q(x) is a positive-definite function and R is a symmetric positive-definite matrix

R = RT > 0. The set C is called the safe set inside which the system’s state must evolve

to assure a safe operation. The safe set is formed by operational inequality constraints of

the system such as actuator saturation of a robotic arm or unsafe region of exploration of a

mobile robot and it is mathematically defined as

C = {x|h(x) ≥ 0} (2.4)

where h(x) is a continuously differentiable function of x. Note that h(x) > 0 represents the

admissible state space that respects safety constraints. For example if −1 < x < 1, then

h(x) = [h1, h2] where h1 = 1− x and h2 = x+ 1.

In the absence of safety constraints, using (2.3) in the cost function J in (2.2), the optimal

value function is defined as [54]

V ∗(x) = min
u

∫ ∞

t

(Q(x) + uTRu)dτ (2.5)

Denoting the minimizer policy by u∗, the Hamiltonian function is defined as

H(x, u∗,∇V ) = r(x, u∗) + (∇V )T (f(x) + g(x)u∗) (2.6)

The right-hand side of (2.6) is the infinitesimal equivalent of (2.5) which is a nonlinear

Lyapunov equation. H = 0 forms the continuous-time (CT) Bellman equation and is used

for obtaining the optimal solution [54]. This framework, however, cannot guarantee safety.

One standard approach to design a safe control policy for system (2.1) utilizes the concept
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of CBFs. We will discuss it briefly in the following subsection.

2.2.2 Barrier Function

A BF is a function which is positive within a set and reaches infinity at the boundary of

this set. Moreover, the BF has a negative derivative in the vicinity of the boundary, and

thus, it never reaches infinity. In other words, if the initial state is within a set, existence

of the BF on that set guarantees its forward invariance. The BFs or barrier certificate

functions (BCFs) are defined and used to certify safety of dynamical systems and control

barrier functions (CBFs) is the terminology of the same concept for control systems. Under

this approach, the control input is designed to satisfy the properties of a CBF candidate.

The above mentioned properties of a CBF are formally defined as follows.

Definition 2.1. Class K Function.

A continuous function α : [0, a) → [0,∞) is a class K function if it is strictly increasing

and α(0) = 0 [55].

Definition 2.2. CBF Properties.

For the control system (2.1), the C1 function B : C → R is a CBF for the set (2.4), if

there exist locally Lipschitz class K functions α1, α2 and α3 such that [27]

1

α1(h(x))
≤B(x) ≤ 1

α2(h(x))
, ∀x ∈ intC (2.7)

Ḃ(x) ≤ α3(h(x)), ∀x ∈ intC (2.8)

Remark 2.1. The condition Ḃ < 0 also can be used instead of the CBF derivative condition

(2.8) in Definition 2.2. However, compared to (2.8), it could unnecessary shrink the sub-

levels even if they are within the desired set [26]. The condition (2.8) let Ḃ increase when it

is far from the boundary and makes it negative only in the vicinity of the boundary.
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Remark 2.2. The control input is designed by choosing a CBF candidate that satisfies

(2.7) and, then, (2.8) is imposed as an inequality constraint to the control problem. While

elegant, this framework does not consider the optimality of the solution and the complete

knowledge of the system dynamics is required to check if the condition (2.8) is satisfied,

because trajectory information ẋ appears in Ḃ = ∂B
∂x
ẋ. To obviate these requirements and

design an optimal safe control policy, RL will be integrated with the CBF concept in the

subsequent sections.

2.3 Safe Optimal Control Approach

We present a new formulation for designing a safe and optimal control input by integration

of CBF into performance (2.2). The proposed approach guarantees safety in case it has

a conflict with other control objectives, and in a safe condition, it guarantees an optimal

performance. This formulation enables us to learn an optimal safe policy in a data-driven

fashion using off-policy RL algorithm.

2.3.1 Safe Modified Formulation

To ensure safety, the cost-to-go function is augmented with a CBF term Bγ(x) and the

performance defined in (2.2) is modified to

min
u∈U

J(x, u) =

∫ ∞

t

(Q(x) + uTR(x)u+Bγ(x))dτ

s.t. (2.1), x(0) = x0 (2.9)

where Bγ(x) : C → R has the following properties.

Assumption 2.1. CBF Properties.

Bγ in (2.9) is a function with the following properties,

1. Bγ(x) > 0 ∀x ∈ C
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2. Bγ(x) → ∞ ∀x ∈ ∂C with ∂C as the boundary of the safe set C

3. Bγ(x) is monotonically decreasing ∀x ∈ C .

A coefficient γ is included in the CBF to specify the relative dominancy of the CBF to

the utility function. While any CBF function that satisfies Assumption 2.1 can be used, a

possible candidate is used in this chapter as follows

Bγ(x) = −log( γh(x)

γh(x) + 1
) (2.10)

The parameter γ determines how rapidly Bγ(x) damps as it gets further away from the

safety boundary. In other words, the coefficient γ trades-off between safety and optimality

by specifying the margin that safety dominates other control objectives.

Compared to (2.3) and (2.5), the augmented utility function and the augmented value

function are defined, respectively, as

ra(x, u) = Q(x) + uTRu+Bγ(x) (2.11)

and

V ∗
aug(x) = min

u

∫ ∞

t

(Q(x) + uTRu+Bγ(x))dτ (2.12)

Remark 2.3. In contrast to the condition (2.8), the new formulation does not impose any

conditions on the derivative of Bγ(x); the reason is that Bγ(x) is incorporated into the cost

function and in the vicinity of the safety boundary, Bγ(x) becomes the dominant term in

(2.12) and the optimal controller acts in a descent direction of Bγ(x). In other words, Ḃγ

implicitly becomes negative near the boundary in an optimal manner without imposing any

inequality constraints. Moreover, numerical methods for solving unconstrained optimization

problem are applicable. Finally, safety satisfaction over a long horizon plays an important
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role in performing anticipatory safe planning, and avoiding excessive intervention with the

optimal solution.

Before proceeding to the next section, some definitions and assumptions are given.

Definition 2.3. The set of safe inputs.

The set of safe inputs for the current state x is defined as

Uc = {u ∈ Rm|xu ∈ intC } (2.13)

where intC is the interior of the set defined in (2.4) and xu is the state of the system evolved

by the input u.

Definition 2.4. Admissible policy.

A control policy is said to be admissible for an optimal control problem if it stabilizes

the system (2.1) and its associated cost is bounded.

The following proposition shows that every admissible policy for the original optimization

problem (2.2) that satisfies the safety and state constraints, is an admissible policy for the

modified formulation (2.9).

Proposition 2.1. A control policy is admissible for the modified optimal control problem

(2.9), if and only if,

u ∈ U ∩ Uc

where U is the admissible control policy for the optimal control problem (2.2) and Uc is

defined in (2.13).

Proof. The cost function in (2.9) augments a utility function with a CBF. Therefore, to have

an admissible policy, in addition to r(x, u), Bγ(x) should also remain bounded. Since r(x, u)
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is bounded for u ∈ U , and Bγ remains within the safe set and is bounded for u ∈ Uc, as a

result, for the modified formulation, a policy results in a bounded cost function for (2.9) if

u ∈ U ∩ Uc (2.14)

On the other hand, since u ∈ U stabilizes the system (2.1) by definition, u ∈ U ∩ Uc also

stabilizes the system (2.1). This completes the proof.

The set of admissible inputs for (2.9) is now defined as

Ua = U ∩ Uc

Assumption 2.2. Strict interiority of the initial condition.

The initial condition of (2.1) belongs to the interior of C . That is,

x0 ∈ intC

Assumption 2.3. Existence of an admissible control input.

We assume the set of admissible inputs for (2.9) is non-empty, i.e., U ∩ Uc ̸= ∅ and for

any initial condition x0 satisfying Assumption 2.2, there exists a control policy u(x0) ∈ Ua.

Remark 2.4. Assumptions 2.1, 2.2, 2.3 are standard assumptions in safe control design.

More specifically, the function Bγ(x) in (2.10) actually satisfies Assumption 2.1. However,

besides the CBF in (2.10), any other CBF that satisfies this assumption would also be

acceptable. Assumptions 2.2 and 2.3 imply that the system must start from a safe initial

condition and that a feasible control input exists to keep the system in its safe set. If these

assumptions are not satisfied, then there is no hope to maintain the system safety using

any control strategy, and thus the system itself is ill-posed. Other assumptions are also
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made throughout the chapter such as Lipschitz continuity of the system or existence of value

functions, which are standard in optimal control literature, for example see [54].

The Hamiltonian function Hj (2.6) for the augmented utility function (2.11) and the

value function Wj is given as

Hj(x, uj,∇Wj) = ra(x, uj) + (∇Wj)
T (f + guj) (2.15)

Then, Hminj , i.e., the minimizer of Hj, is obtained by the control input

uj
∗ = −0.5R−1gT (x)∇Wj (2.16)

and is given by

Hminj = Hj(x, uj
∗,∇Wj) (2.17)

In the following subsections, RL is employed to solve the modified safe optimal formulation

(2.9), which iteratively estimates the value function and sequentially improves the control

input toward the optimal minimizer while not violating safety constraints.

2.3.2 Safety and Performance Analysis

We now present how the formulation (2.9) trades-off between safety and performance. In

this approach, safety is ensured while a desired performance is maintained within the safe

region. In addition, to improve safety robustness and avoid taking myopic safe actions, the

CBF acts as a safety measure along other control objectives to be optimized over time. As

a result, it provides a platform for safety planning and to specify the importance of safety

compared to other objectives. All of these goals should be achieved in an iterative method

while a closed-form solution to the value function is not available.

To prove the claims, a couple of theorems are presented. First, it is proved that the
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proposed approach guarantees the safety of the system. Second, the concept of safe region

is introduced. Finally, stability and optimality of the solution in the safe region are shown.

2.3.2.1 Safety Analysis

First, the existence of the value function is shown and, inspired by [56] the boundedness

of the CBF is demonstrated through sequential improvement of the controller, and, finally,

based on these results, the main theorem on guaranteeing safety is provided.

Lemma 2.1. Consider an admissible feedback control policy u1 ∈ Ua. If a time invariant

positive-definite function W ∈ C1 exists such that

∂W T

∂x
(f(x) + g(x)u1) +Q(x) +Bγ(x) + uT1Ru1 = 0 (2.18)

W (x0, u1) = J(x0, u1) (2.19)

then, W is the value function of the system for all t ∈ [0,∞), i.e.,

W (x, u) = J(x, u)

Proof. Assume W (x, u1) > 0 exists; since it is a continuously differentiable function, one has

W (x(t), u1)−W (x0, u1) =

∫ t

0

Ẇ (x(τ), u1)dτ

=

∫ t

0

∂W

∂x
(f + gu1)dτ (2.20)

Considering (2.9) and (2.11), one has

J(x(t), u1)− J(x0, u1) = −
∫ t

0

ra(x(τ), u1)dτ (2.21)
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Subtracting both sides of (2.21) from (2.20) yields

J(x(t), u1)−W (x(t), u1) =

∫ t

0

(−∂W
∂x

(f + gu1)− ra(x(τ), u1)) dτ + J(x0, u1)−W (x0, u1)

(2.22)

Considering (2.18) and (2.19) in (2.22) gives

J(x(t), u1)−W (x(t), u1) =

∫ t

0

ra(x(τ), u1)− ra(x(τ), u1)dτ = 0

Therefore, one has

J(x(t), u1) = W (x(t), u1)

which completes the proof.

Lemma 2.2. Consider positive-definite value functionsW (x, t, u1),W (x, t, u2), ...,W (x, t, ui)

abbreviated by W1,W2, ...,Wi which are associated with the sequence of admissible inputs

u1(x, t), u2(x, t), . . . , ui(x, t) ∈ Ua. If corresponding minimized Hamiltonian values defined

in (2.17) satisfy

Hmin1 ≤ Hmin2 ≤ ... ≤ Hmini (2.23)

then, the CBF candidate Bj
γ, 1 ≤ j ≤ i at each step of the sequence is bounded.

Proof. For any j and k such that 0 ≤ j ≤ k ≤ i, assume Hminj ≤ Hmink ; consider

Wk = Wj +Wd (2.24)
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where

Wd
∆
= Wd(x(t), uj)

then, by applying u∗k = −0.5R−1gT∇Wk, one has

Hmink = Q(x) +Bγ(x) +
1

4
∇W T

k gR
−1gT∇Wk +∇W T

k (f + g(−0.5R−1gT∇Wk))

Considering L(x) = Q(x) +Bγ(x), using (2.24), and doing some manipulations yield

Hmink = L(x) +∇W T
j f − 1

4
∇W T

j gR
−1gT∇Wj +∇W T

d f

− 1

4
∇W T

d gR
−1gT∇Wd −

1

2
∇W T

d gR
−1gT∇Wj

or equivalently

Hmink = Hminj +∇W T
d (f + gu∗j)− (u∗TdRu

∗
d)

Since Hmink −Hminj + u∗TdRu
∗
d ≥ 0, one has

dWd(x, uj)

dt
≥ 0

In addition, limt→∞Wd(x(t)) = 0. Therefore,

Wd ≤ 0

As a result,

Wk ≤ Wj
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Considering the sequence in (2.23) results in

W (x, t, u1) > W (x, t, u2) > ... > W (x, t, ui) (2.25)

In other words,

Wj < W1 ∀1 ≤ j ≤ i

From Lemma 2.1,

J(x(t), uj) < J(x(t), u1) ∀1 ≤ j ≤ i

Since J(x(t), uj) =
∫∞
t
ra(x(τ, uj))dτ is bounded and ra is positive definite, then, ra, and

as a result Bj
γ are bounded. This completes the proof that the CBF is bounded at each

sequence.

Theorem 2.1. Consider the optimization problem defined in (2.9) and let Assumptions 2.2

and 2.3 be satisfied. Then, the states of the system evolving through sequential improvement

of the control input (2.16) stay within the safe set and safety of the system is ensured for all

t > 0.

Proof. Lemma 2.2 shows that the performance function J(x, uj) and consequently the barrier

function Bγ
j remain bounded after each policy improvement step (2.16). On the other hand,

based on Assumption 2.1, the value of the CBF function Bγ
j becomes infinity only at the

boundary of the safe set . Therefore, since the barrier function remains bounded after every

iteration, it guarantees that the system states never reach the boundary of the safe set. This

in turn guarantees safety.

Remark 2.5. By using Lemma 2.1, Lemma 2.2 and subsequently Theorem 2.1, it is proved

that the safety of the control system is ensured for all t > 0 and 0 < γ <∞.
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2.3.2.2 Stability and Optimality Analysis

Although safety is assured in Theorem 2.1, since a term is added into the cost function, the

stability and performance of the system also need to be investigated. A desired safe controller

should prioritize safety in case of a conflict with the desired performance. However, it still

needs to ensure stability and demonstrate a good performance within the safe region. Feasible

set and safe region are defined as follows and stability and optimality proofs are then given.

Definition 2.5. Feasible set.

The intC defined in (2.4) is considered as the feasible set.

Definition 2.6. Safe region.

The safe region is defined based on the feasible set as

D = {x|x ∈ intC − β(x∗h, r0)}, x∗ ∈ D

where x∗h = {x|h(x) = 0} and β is the ball around the boundary with radius of r0 and x∗ is

the equilibrium point of the system assumed to be the origin.

The damping factor γ is chosen such that

Bγ(x)

Bγ(x) +Q(x)
≤ 0.5 ∀x ∈ D

Therefore, within the safe region, Q(x) is the dominant term in the optimization problem.

Remark 2.6. The safe region is the set containing the origin such that the CBF is not

dominant compared to Q(x).

Remark 2.7. The safe set might or might not contain the origin. However, as it is shown

in the previous section, safety is guaranteed either way. Here, the safe region is defined for

the condition that safety is not in conflict with the performance. Then, it is demonstrated

that under this condition, optimality is achieved and uniform stability is also guaranteed.
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Lemma 2.3. Assume that x = 0 is the equilibrium point of the system (2.1), and D ⊂ R

contains the origin. Let M : [0,∞)×D → R be a continuously differentiable function such

that

Λ1(x) ≤M(t, x) ≤ Λ2(x), (2.26)

∂M

∂t
+
∂M

∂x
(f(x) + gu) ≤ 0,∀t > 0, ∀x ∈ D (2.27)

where Λ1 and Λ2 are continuous positive-definite functions on D. Then, the origin is uni-

formly stable.

Proof. See [55] Theorem 4.8 page 151.

Theorem 2.2. The sequence of control inputs uj
∗ obtained by optimization over Hamiltonian

functions (2.15) associated with positive-definite value functionsWj and the augmented utility

function ra, uniformly stabilize the system within the safe region D.

Proof. Lemmas 2.1 and 2.2 prove that Wj(t, x) is positive definite and

0 < Wj(t, x) < W1(t, x), ∀1 ≤ j ≤ i (2.28)

where W1(t, x) is bounded and one can define positive-definite function Λ as

Λ(x) = max
t
W1(t, x) (2.29)

Thus, condition (2.26) is satisfied. Moreover, (2.25) proves that Wj is decreasing at each

sequence. Therefore, using results of Lemma 2.3, the control system (2.1) is uniformly

stable.

Remark 2.8. The CBF in (2.9) is included as a safety objective to ensure safety for any

value of 0 < γ <∞. Meanwhile, the trade-off bewteen Q(x) and Bγ(x) within the safe region

is specified by the coefficient γ; larger values of γ could speed up damping of Bγ(x) when
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it goes further away from the safety boundary and retaining the original utility function

r = Q(x) + uTRu, while smaller values of γ lead to more emphasis on safety and a more

conservative control design. The CBF candidate Bγ(x) = −log( γh(x)
γh(x)+1

) rapidly goes to zero,

for example for h(x) = 1 and γ = 5, Bγ(x) = 0.08. In other words, one may design γ

in the safe region such that Bγ(0) gets arbitrary close to zero, which means depending on

the application, optimality of the controller is achievable. This is proved in the following

theorem.

Theorem 2.3. Assume that the equilibrium point of the system is located at the origin.

Assume (2.9) has a minimizer in the safe region denoted by u∗. Then, by proper selection of

γ within the safe region, the minimum can get arbitrarily close to zero and,

lim
γh(x)→∞

ra(u
∗) = 0

Proof. For an arbitrary small value ϵ, define γ1 =
eϵ

h·(1−eϵ) . Then, for any γ ≥ γ1, one has

0 ≤ r(u∗) +Bγ(x
u∗) ≤ r(u∗) +Bγ1(x

u∗)

≤ r(u∗) + ϵ

In other words,

∀ϵ > 0 ∃γ s.t. Bγ(x) ≤ ϵ

For ϵ = 0 and a finite value of h(x), γ1 → ∞. Therefore, γh(x) → ∞; which completes

the proof showing that the minimum of augmented utility function converges to zero.

Remark 2.9. Based on Theorem 2.3, the optimal solution is feasible if h(x) has a finite

value and γ is selected properly.

Remark 2.10. From the theoretical perspective, the convergence of the proposed approach

to the origin within the safe region is guaranteed if γ is large enough. However, in practice,
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the value of γ depends on the physical system and we can achieve convergence with even

small values of γ for some systems. For example, in the lane changing problem in Section 5,

the states of the system have reached the origin with γ1 = 0.95 and γ2 = 2.

2.4 Algorithm for Safe Reinforcement Learning

In this section, an off-policy RL algorithm is presented to find a safe solution to the op-

timization problem (2.9). First, the off-policy RL algorithm is presented and then, neural

networks (NNs) are used to approximate its solution for systems with the lack of knowledge

about their dynamics.

2.4.1 Safe Off-policy Reinforcement Learning Algorithm

Off-policy RL is a policy iteration algorithm to find an optimal controller without requiring

the knowledge on the system dynamics [57, 58, 59]. This method uses two different policies,

called behavior policy and target policy. The behavior policy is a safe policy that is applied

to the system for gathering data and the target policy is a policy that is updated toward

the optimal policy using the collected data. Any available prior knowledge about the system

dynamics can be used to find a safe but possibly conservative behavior policy to ensure safety

during learning. The safety of optimal policy found by iterating on the target policy is also

guaranteed based on Theorem 2.1. The optimal safe policy is applied to the system once the

learning is finished. The details of the proposed off-policy RL algorithm is provided in the

following.

Considering the augmented cost function (2.9), its infinitesimal version is the Bellman

equation

0 = JTx ẋ+ ra +Bγ (2.30)
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where

J̇ =
∂J

∂x

∂x

∂t
= JTx ẋ (2.31)

In the off-policy approach, the dynamics (2.1) is rewritten to separate the behavior policy

and the target policy. This yields

ẋ = f(x) + g(x)ui + g(x)(u− ui) (2.32)

where ui is the target policy which is updated in the algorithm but not applied to the system;

while u is the behavior policy which is applied to the system to generate data for learning.

Integrating from both sides of (2.31) and considering (2.30) and (2.32) yield

J i(x(t))− J i(x(t− T )) = −
∫ t

t−T
(Q(x) +Bγ(x))dτ −

∫ t

t−T
uiTRuidτ +

∫ t

t−T
(J iTx g(x)(u− ui))dτ

(2.33)

The control input ui is updated by optimizing over the Hamiltonian function

ui+1 = −0.5R−1gTJ ix (2.34)

Substituting gTJ ix term in (2.33) using (2.34) yields the off-policy Bellman equation

J i(x(t))− J i(x(t− T )) = −
∫ t

t−T
(Q(x) +Bγ(x))dτ −

∫ t

t−T
uiTRuidτ

−2

∫ t

t−T
(u(i+1)TR(u− ui))dτ (2.35)

In the off-policy Bellman equation (2.35), both control policy (i.e. ui+1) and value function

(i.e. J i) are updated simultaneously for a given target policy ui using collected data by

applying the behavior policy u.
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Remark 2.11. Compared to on-policy method that improves the same policy that is applied

to the system, the off-policy RL algorithm is a data-efficient method in which the learning

agent evaluates as many policies as required without even applying them to the system using

only a set of collected data. Being able to evaluate possibly unsafe policies without even

applying them to the system is of vital importance for safety-critical systems.

Lemma 2.4. Off-policy Bellman equation (2.35) is equivalent to the Bellman equation (2.30)

and both have the same update law (2.34).

Proof. Equations (2.30) - (2.35) demonstrate that off-policy Bellman equation is obtained by

manipulating Bellman equation (2.30) and update law (2.34). Interchangeably, the Bellman

equation can be obtained using (2.35). By dividing both sides of (2.35) by T and taking the

limit from both sides, one has

lim
T→0

J i(x(t))− J i(x(t− T ))

T

− lim
T→0

−
∫ t
t−T (Q(x) +Bγ(x))dτ −

∫ t
t−T u

iTRuidτ − 2
∫ t
t−T (u

(i+1)TR(u− ui))dτ

T
= 0

By using L’Hopital’s rule, one has

J̇ i(x(t)) + (Q(x) +Bγ(x) + uiTRui + 2ui+1R(u− ui)) = 0

using (2.31) and (2.32), one has

Jx
iT (f(x) + g(x)ui + g(x)(u− ui)) +Q(x) +Bγ(x) + uiTRui + 2ui+1R(u− ui) = 0

Then, using (2.34), one has

Jx
iT (f(x) + g(x)ui + g(x)(u− ui)) +Q(x) +Bγ(x) + uiTRui − Jx

iTg(x)(u− ui) = 0

which is equivalent to the Bellman equation (2.30). This completes the proof.
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2.4.2 Neural Network Approximation of Safe RL Algorithm

In this section, the solution to the off-policy RL algorithm is learned using an actor-critic

structure which does not require knowledge of the system dynamics. The critic network

estimates the value function J i and the actor network represents the control input ui+1 as

follows

Ĵ i(x) = Ŵ iΦ(x) (2.36)

ûi+1(x) = P̂ iΨ(x) (2.37)

where Φ = [Φ1 Φ2 ... ΦlΦ ] ∈ RlΦ and Ψ = [Ψ1 Ψ2 ... ΨlΨ ] ∈ RlΨ are the suitable activation

functions for critic and actor networks with lΦ and lΨ neurons, respectively; in addition,

Ŵ i ∈ RlΦ and P̂ i ∈ Rm×lΨ are the weight vectors. Note that ui+1 in (2.34) is estimated

by a NN as (2.37) and no knowledge about the system dynamics is required. We define

vi = [vi1 ..., vim] = u − ui and define the error on off-policy Bellman equation (2.35) using

(2.36) and (2.37) [58],

ei(t) = Ŵ iT (Φ(x(t)))− Ŵ iT (Φ(x(t− T )))−
∫ t

t−T
(−Q(x)−Bγ(x)− uiTRui)dτ

+2
m∑
j=1

ρj

∫ t

t−T
(P̂ iT

j Ψ(x(t))vij)dτ (2.38)

where ρj is the j
th diagonal element of R and P̂ iT

j is the jth column of P̂ iT . The least squares

method is used to obtain the minimum of Bellman approximation error (2.38). In doing so,

(2.38) is rewritten in regression form as

yi(t) + ei(t) = Ŵt
iT
h(t) (2.39)
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in which Ŵt

i
is a matrix composed of weight vectors as

Ŵt
iT

= [Ŵ iT , P̂ iT
1 , . . . , P̂ iT

m ]

and hi(t) is

hi(t) =



Φ(x(t))− Φ(x(t− T ))

2ρ1
∫ t
t−T (Ψ(x(t))vi1)dτ

...

2ρm
∫ t
t−T (Ψ(x(t))vim)dτ


(2.40)

and yi(t) is

yi(t) =

∫ t

t−T
(−Q(x)−Bγ(x)− uiTRui)dτ (2.41)

We collect the state and input data at N points at the time interval T to solve (2.39) for

Ŵt
iT
. Let the collected information be saved in matrices H i and Y i as

H i = [hi(t1) , . . . , h
i(tN)]

Y i = [yi(t1) , . . . , y
i(tN)]

T

Therefore,the least-square equation is

Ŵt

iT
H i = Y i (2.42)

and its solution is

Ŵt
iT

= (H iH iT )−1H iY i (2.43)
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Equation (2.43) has a solution if

N > l1 +ml2 (2.44)

Remark 2.12. The CBF is the dominant term in the vicinity of the risky area, while it

rapidly damps as gets further away from the safety boundary. As a result, for having a

reliable training, one needs to collect samples from both the safe region and the region in

vicinity of the safety boundary in which the CBF comes to play.

Remark 2.13. The off-policy RL algorithm provides an optimal and safe solution to the

optimization problem defined in (2.9). This is because, the off-policy RL algorithm applies

a safe (possibly conservative) policy to the system while learning about an optimal and safe

policy. Only the behavior policy requires partial knowledge of the dynamics and the learning

process is model free.

Theorem 2.4. Algorithm 1 converges to a safe optimal solution.

Proof. Algorithm 1 iterates on the off-policy Bellman equation (2.35) with update law (2.34).

According to Lemma 2.4, the off-policy Bellman (2.35) is equivalent to Bellman equation

(2.30) with the same update law (2.34). On the other hand, it is shown in Lemma 2.2 that

the value function obtained by iterating on the Bellman equation is monotonically decreasing

and bounded. Therefore, Algorithm 1 converges to the optimal solution.

Remark 2.14. Note that the behavior policy is assumed to be an exploratory policy and

provides rich data for learning, i.e., the collected data guarantees that the least-square equa-

tion (2.42) has a feasible solution. Under this condition, similar to [59], it can be shown that

at each iteration of Algorithm 1, the controller’s weights converge to their desired values,

which in turns results in an admissible policy that makes the system stable and the value

function bounded. Boundedness of the value function guarantees safety at each iteration.
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Algorithm 1 Safe Off-policy RL

1: Initialize actor and critic networks (2.36), (2.37).
2: procedure Data Collection
3: Employ the initial noisy stabilizing control policy u ∈ Ua as (2.14) until (2.44) is

satisfied. This input must bring the system in vicinity of the risky area as well for
reliable learning.

4: end procedure
5: procedure Find an optimal solution by reusing the collected data
6: For all t = t1, ..., tN , given u

i, obtain matrices hi(t) and yi(t) as (2.40), (2.41).
7: Find NNs weights using (2.43), update J i and uj+1 in (2.36), (2.37).
8: Stop if a stopping criterion is met, otherwise set i = i+ 1 and go to 5.
9: end procedure

2.5 Simulation Results

The efficiency of the proposed method is examined in lane keeping problem for an au-

tonomous vehicle. This problem aims to keep the car centered in the lane in spite of possible

curvature of the road. In addition to this regulation objective, there is a safety objective

which specifies the maximum allowable lateral displacement of the car according to the width

of the road. The linear tire-force model and constant longitudinal speed is considered [28].

More details on system model and its formulation can be found in [60].

The state model of the system is given as



ẏ

v̇

ϕ̇

ψ̇


=



0 1 vl0 0

0 −Cf+Cr
Mvl0

0
bCr−aCf
Mvl0

− vl0

0 0 0 1

0
bCr−aCf
Izvl0

0 0





y

v

ϕ

ψ


+



0

Cf
M

0

a
Cf
Iz


u+



0

0

−1

0


d

where y and v are the lateral displacement and its velocity, respectively, while ymax and ymin

show the maximum and the minimum allowable displacement from the center of the road.

ϕ is the error yaw angle and ψ is its derivative. u is the steering angle, while d is the desired

yaw rate obtained from the curvature of the road as d = vl0
Rr
; vl0 is the longitudinal speed

and Rr is the road radius of curvature. M is the total mass of the car and Iz is its moment
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of inertia with respect to the center of the mass. Cr and Cf are stiffness parameters of tire.

Finally, a and b show the distance of front and rear tires to the center of the mass. The

value of parameters used in simulation are given in Table 4.1. To have a unified notation,

the states of the system are denoted by x = [x1, x2, x3, x4]
T = [y, v, ϕ, ψ]T

The modified formulation (2.9) is employed with the following utility function,

ra(x, u) = xTQx+ uTRu− log(
γ1(x1 − ymin)

γ1(x1 − ymin) + 1
)− log(

γ2(−x1 + ymax)

γ2(−x1 + ymax) + 1
)

where Q, R, γ1, γ2 are design parameters. The activation functions for critic and actor

networks are considered respectively, as

Φ(x) = [x21 x
2
2 x

2
3 x

2
4 x1x2 x1x3, x1x4 x2x3 x2x4 x3x4 (x1 − ymax) x1

4]

Ψ(x) = [x1 x2 x3 x4]
T

Then, these networks are trained using off-policy Algorithm 1.

Critic and actor networks should be trained in the safe states as well as close to the

risky states. So, the learned network is reliable in recognizing risk. After six iterations, the

learning process is completed. The lateral displacement of the car is shown in Figure 2.1

with and without incorporation of the CBF. As it can be seen after learning, the states of

the system have stayed within the safe region and have not exceeded the limits. Trajectories

of other states of the system are given in Figure 2.2, which are converged to the origin. The

actor weights and critic weights are shown in Figures 2.3 and 2.4, respectively. The graphs

with different ranges have been separated.

2.6 Conclusion

In this chapter, a safe off-policy RL scheme is proposed which trades-off between safety

and performance. This method guarantees and plans for the safety by incorporation of a
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Table 2.1: Simulation Parameters
Parameter Value Parameter Value

M 1650 Kg |Rr| 0 → 0.1
Iz 2315.3 m2.Kg ymax, ymin 0.45, -0.45 m
v0 27.7 m/s Q 2× In×n
Cf 133000 N/rad R 1
Cr 98800 N/rad γ1, γ2 0.95, 2
a 1.11 m b 1.59 m
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Figure 2.1: Lateral displacement with and without CBF
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CBF term into the cost function and forming an augmented value function. Using iterative

approximation of the augmented value function, the application of CBF is extended to a

data-driven approach. Rigorous proof of safety is presented. The notion of safety region is

introduced for the case of no conflict between safety and performance and proof of stability

and optimality in the safe region is derived accordingly.
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Chapter3

Reinforcement Learning based Control

Design with Safety and Stability Guar-

antees During Exploration

Contents of this chapter first appeared as [53] and have been reformatted to fit the

requirements of this dissertation.

3.1 Introduction

Proper learning-based algorithms require satisfaction of the persistence of excitation (PE)

condition. The PE condition is typically satisfied by applying noisy inputs to the system to

excite all its dynamical modes. Since this noise is random and arbitrary, it might result in

violation of safety. All methods mentioned in Chapter 1 need information about the system

dynamics, environment or human supervision for safe exploratory data collection.

This chapter proposes a novel off-policy RL algorithm with prescribed learning perfor-

mance with safety and stability guarantees during exploration and exploitation phases. To

the best of our knowledge, it is the first time that safety and stability guarantees of the

system during the excitation of the system in the presence of noisy input is ensured without

any external knowledge about the risk, dynamics or environment. The schematic of the

presented idea is depicted in Figure 3.1 as two main interconnected modules: i) a prescribed

learning method with verifiable PE condition. ii) a robustified safe control design. In the first
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module, experience replay-based safe model learning along with an off-policy RL algorithm

are employed to present a framework to specify conditions under which the learning can

be prescribed and how the data quality affects it. This method is capable of guaranteeing

the exponential convergence of the learning error to zero with a prescribed bound that can

be considered as a vanishing perturbation term to the nominal system, enabling stabilizing

controller design. The outcome of the first module is then employed in designing a novel

adaptive robustified control barrier function (AR-CBF). AR-CBF benefits from learning to

compensate for uncertainties without being overly conservative and accounts for estimation

error to guarantee safety despite learning inaccuracy. Any policy that satisfies this criterion

assures the safe performance of the system. Since AR-CBF criterion is built based upon

the current approximation of the dynamics, it can ensure safety during learning. The safe

and stabilizing input obtained in the robustified design module is employed to collect more

safe exploratory data. This collected data is then repetitively used to update the approxi-

mation of the dynamics and find the optimal target policy. The relationship between these

two modules is reciprocal. The proposed learning approach provides a better description

about the behavior of model learning error and its bound without excess conservatism, and

the robustified design module enables deriving a noisy random and yet safe and stabilizing

controller for further data collection. As the learning improves, the AR-CBF converges to

the nominal CBF exponentially fast and provides more room for taking safe actions. When

the optimal target policy is found, it is minimally altered to respect AR-CBF and safely

applied to the system. Therefore, even if the system model is not perfectly approximated,

the safe and optimal target policy can be successfully found and be applied to the system.

In a nutshell, the contributions of the chapter are as follows.

1. Proposing a learning-enabled safe model-free RL framework with safety and stability

guarantee during data collection, exploration, and exploitation without external advice.

2. Integrating efficient RL with prescribed learning and verifiable PE condition in con-

junction with a robustified formulation.
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Figure 3.1: Overview of the proposed approach

3. Employing prescribed performance in the stability analysis based on perturbation the-

ory.

4. Presenting a novel AR-CBF for safe control of uncertain systems with safety verification

during learning.

3.1.1 Organization of the chapter

Section II is allocated for problem statement. Background information on CBFs and RL tech-

niques is presented in Section III. The robustified safety and stability design using experience

replay method is given in Section IV. Section V represents the proposed barrier-certified off-

policy RL algorithm. Section IV represents the simulation results and Section V concludes

the chapter.

3.2 Problem Statement

Consider a continuous-time linear system as

ẋ = Ax+Bu (3.1)

where x ∈ Rn is the system state and u ∈ Rm is the control input. It is assumed that the

system is stabilizable.
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Assumption 3.1. The dynamics and input matrices A ∈ Rn×n and B ∈ Rn×m are unknown.

Moreover, their initial approximations Â0 and B̂0 can be chosen arbitrarily within the set

{(Â0, B̂0)|(Â0, B̂0)is stabilizable)}.

The control objective is to design u to optimize a performance function while assuring

satisfaction of safety specifications. The safety objective is to ensure that, as the system’s

states evolve according to (3.1), they never leave a safe set C , i.e.,

x(t) ∈ C ,∀t ≥ 0

where the safe set is formed using a safety criterion as

C = {x|h(x) ≥ 0} (3.2)

where h(x) : Rn → R is a smooth function.

The performance objective encodes the quality of the control solution in achieving a goal.

For the optimal stabilizing problem, the long-term cost function is typically chosen as

J =

∫ ∞

0

(xTQx+ uTRu)dτ (3.3)

where Q = QT is a positive semi-definite matrix, while R = RT is a positive definite matrix.

It is assumed that (A,Q
1
2 ) is observable.

Remark 3.1. Safety and performance can be in conflict and the performance level that can

be achieved safely depends on the uncertainty level. Therefore, possible conflicts between

safety and performance is considered in the proposed framework. When conflicts arise, the

safety satisfaction is prioritized by imposing it as a hard constraint while the performance is

considered as a soft constraint.
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Therefore, the controller is in the form of

u = −Kx+ δ (3.4)

where u∗ = −Kx is the optimal controller obtained by minimizing (3.3) without considering

safety constraints, while δ is the safety modifier added to the optimal feedback policy to

certify the safety of the system while minimally altering its actions. In case of no conflict

between safety and performance, δ = 0.

Finding the optimal control policy for uncertain systems is not directly possible and

demands iterative approaches to approximate the optimal controller and the value function

using neural networks (NNs). This, however, does not account for the safety of the system.

Safety and stability guarantees are especially challenging at the beginning, as the collection

of rich data for training NNs is required. This chapter presents a method with safety and

stability guarantee in data collection, exploration, and exploitation phases.

3.3 Background

In this section, the background on CBFs and off-policy RL algorithm are briefly reviewed.

3.3.1 Control Barrier Functions

CBFs provide conditions for the control input that restricts the trajectories of the system to

evolve in a pre-defined safe set by ensuring forward invariance of the set. Thus, by starting

initially within the safe set and designing the controller to respect the CBF conditions, the

safety of the system is guaranteed. Zeroing CBF as one major form of CBFs is formally

defined as follows.

Definition 3.1. A continuous function α : (−b, a) → (−∞,∞) with a, b > 0 is an extended

class K function, if it is strictly increasing and α(0) = 0 [55, 34]. ■
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Definition 3.2. Considering the dynamical system (3.1) and the set C ⊂ Rn (3.2) defined

using a C1 function h(x), if there exists a locally Lipschitz extended class K function α

such that

sup
u∈U

[
∂h

∂x
A+

∂h

∂x
Bu+ α(h(x))] ≥ 0, ∀x ∈ D (3.5)

then, the function h(x) is a ZCBF on D with C ⊆ D ⊂ Rn [28]. ■

The set of safe control inputs for h(x) is formed accordingly as

Um(x) = {u ∈ U |∂h
∂x
A+

∂h

∂x
Bu+ α(h(x)) ≥ 0}

Ensuring the forward invarinace of a set using ZCBFs is the result of the following theorem.

Theorem 3.1. Given dynamical system (3.1) and the set C ⊆ D (3.2) defined for a C1

function h(x), if h is a ZCBF on D , any Lipschitz continuous controller {u : D → R|u ∈

Um(x)} renders the set C forward invariant.

Proof. See [28].

Remark 3.2. Note that complete knowledge of the system dynamics, i.e., A and B matrices

are required to guarantee (3.5). To obviate these requirements, a novel robustified CBF is

proposed, which accounts for a non-conservative bound of error as well.

3.3.2 Adaptive Optimal Control Design

Having A and B known for the system (3.1), the optimal value function for the objective

function (3.3) in the form of [54]

V (x) = xTPx (3.6)
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where P is the solution of well-known algebraic Riccati equation (ARE)

ATP + PA+Q− PBR−1BTP = 0 (3.7)

which is quadratic in P . To sidestep the difficulty of solving quadratic equations, the Bellman

equation is iteratively solved. Considering (3.3) and (3.6), the Bellman equation is formed

as

x(t+ δt)TPx(t+ δt)− x(t)TPx(t) =

∫ t+δt

t

(xTQx+ uTRu)dτ (3.8)

To iteratively solve the Bellman equation, and by havingK0 ∈ Rm×n as a stabilizing feedback

gain matrix, the Lyapunov equation is formed

(A−BKk)
TPk + Pk(A−BKk) +Q+Kk

TRKk = 0 (3.9)

where Pk = Pk
T is the solution of (3.9) and is positive definite. Then, Kk is recursively

defined as

Kk = R−1BTPk−1, k = 1, 2, ... (3.10)

Then, one achieves the following properties:

1) A−BKk is Hurwitz

2)P ∗ ≤ Pk+1 ≤ Pk

3)limk→∞Kk = K∗, limk→∞ Pk = P ∗

where P ∗ is the solution of ARE (3.7) and K∗ is the optimal feedback gain. Therefore, the

solution of ARE is approximated by iteratively solving (3.9) which is linear with respect to

Pk.

However, A,B are needed in (3.10). To overcome this issue, [57] proposed online strategy
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to solve (3.9) when the system is fully unknown. The system (3.1) is re-written as

ẋ = Akx+B(Kkx+ u) (3.11)

where Ak = A−BKk. Then, using (3.9), (3.10) and (3.11), the off-policy Bellman equation

is formed

x(t+ δt)TPkx(t+ δt)− x(t)TPkx(t)

=

∫ t+δt

t

[xT (Ak
TPk + PkAk)x+ 2(u+Kkx)

TBTPkx]dτ

= −
∫ t+δt

t

xTQkxdτ + 2

∫ t+δt

t

(u+Kkx)
TRKk+1xdτ (3.12)

where Qk = Q + Kk
TRKk. (3.12) is equivalent to the on-policy Bellman equation (3.8).

However, this method does not consider safety of the system. In this chapter, a novel

method to certify the safety of this algorithm is proposed.

3.4 Robustified Safety and Stability using Experience

Replay Learning

In an off-policy algorithm, the behavior policy is applied to the system to collect data. A

NN is assigned to learn about the dynamics of the system which its weights are updated by

means of replaying the past experiences. After applying a few initial policies, a mild rank

condition is satisfied which ensures in continuation of dynamics approximation, the learning

error exponentially fast converges to zero with a predefined rate. This prescribed behavior

of the learning error along the current rough approximation of the system is employed in

design of robustified safe and stabilizing controller which is then integrated to the off-policy

learner for safe data acquisition.

In this section, the experience replay approximation and the prescribed behavior of the
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learning error is presented. It is shown that using this learning platform, the learning error

is a vanishing perturbation to the system and condition for having a stabilizing controller is

derived. Finally, a novel non-conservative robustified CBF is presented which ensures safety

during learning.

3.4.1 Experience Replay System Approximation

The system dynamics (3.1) can be written in the form of

ẋ = Wϕ(x, u) (3.13)

where W = [A,B] ∈ Rn×(n+m) and ϕ(x, u) = [x, u]T ∈ R(n+m)×1. The system dynamics

(3.13) is written as a compact linear form

ẋ = G(t)ψ (3.14)

where G(t) ≜ ϕ(x, u)T⊗In ∈ R(n)×(mn+n2) and ψ = vec(W ) ∈ R((n2+nm)×1). Let ψ̂ be a rough

estimation of ψ and ψ̃ = ψ − ψ̂ be the estimation error. The following filters are applied to

ẋ, G(t) in (3.14) and ϕ(x, u) in (3.13) in terms of σ, Ω and xs, respectively as

σ̇(t) = −βσ(t) + ẋ (3.15)

Ω̇(t) = −βΩ(t) +G(t) (3.16)

ẋs(t) = −βxs(t) + ϕ(x, u) (3.17)

where β > 0 is a design gain and Ω(0) = 0, xs(0) = 0. The filtered signal Ω in (3.16) can be

written using xs in (3.17) as

Ω(t) = xs
T ⊗ In
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The solution of (3.15), (3.16) and (3.17) are given, respectively as

σ(t) = e−βt
∫ t

0

eβτ ẋ(τ)dτ (3.18)

Ω(t) = e−βt
∫ t

0

eβτG(τ)dτ (3.19)

xs(t) = e−βt
∫ t

0

eβτϕ(x, u)dτ (3.20)

where σ ∈ Rn, Ω ∈ Rn×(mn+n2), and xs ∈ R(m+n). The system dynamics (3.13) can be

written using filtered signals as

σ(t) = Wxs (3.21)

Using (3.14), (3.18) and (3.19), one has

σ(t) = Ω(t)ψ (3.22)

From (3.18) and using integration by part, σ can be expressed in terms of known variables

x(t) and xs(t) as

σ(t) = x(t)− eβtx(0)− βxs(t) (3.23)

According to (3.22) and (3.23), the prediction error is defined as

e(t) = σ(t)− Ω(t)ψ̂(t) (3.24)

where ψ̂ is an estimation of ψ, and ψ̂ = vec(Ŵ ). In order to store and use the past data

in the update law, two memory stacks {σi}i=1:p, {Ωi}i=1:p are employed, which store the

values of σ(ti) and Ω(ti), respectively at each time instance ti. The prediction error at time
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constant ti is defined accordingly as

ei(t) = σi − Ωiψ̂(t) (3.25)

The following update law using the past stored data is then employed

˙̂
ψ = βψ1Ω

T (t)e(t) + βψ2

p∑
i=1

ΩT
iei(t) (3.26)

where βψ1 and βψ2 are positive scalar gains. This update law ensures exponential convergence

of ψ̂ to ψ under a rank condition and in the presence of enough stored data. This result if

formally represented as follows.

Lemma 3.1. [61] Considering the dynamics (3.26), if there exists p∗ such that for all p ≥ p∗,

for any sequence t1 <2< .... < tp,

rank([Ω1
T ,Ω2

T , ...,Ωp
T ]) = mn+ n2 (3.27)

Then, using the update law (3.26) ψ̂ converges to ψ exponentially fast with employing the

Lyapaunov function Vψ = 0.5ψ̃T ψ̃ and there exists a positive gain βψ12 such that

V̇x ≤ −2(βψ12)Vx (3.28)

Remark 3.3. In a nutshell, in experience-replay dynamics approximation, the regressor

form of the dynamics is derived and an update law which incorporates past stored data is

employed. By satisfaction of a rank condition (3.27), and considering (3.28) the learning

error exponentially fast converges to zero. In other words, after mn+ n2 number of samples

are collected fast convergence of error to zero is ensured with a prescribed rate.

Remark 3.4. The significance of this method in safe RL exploration is twofold. First,
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since the learning error exponentially converges to zero, the error term can be taken as a

vanishing perturbation to the approximated dynamics and therefore perturbation theory can

be employed to design a controller based on the approximated dynamics which guarantees

stability for the true dynamics. Second, an accurate bound of learning error can be derived.

This bound can be taken as a non-conservative worst case in formation of the novel robustified

CBF.

3.4.2 Stability Analysis

Stability analysis is performed based on control Lyapunov function (CLF). However, due

to uncertainty in the model, CLF is built based on the available approximated model and

its validity for the original system needs to be investigated. Having the experience replay

model learning enables designing stabilizing controllers for the true system based on the

approximated dynamics.

Theorem 3.2. Let x = 0 be an exponentially stable equilibrium point of the following closed

loop approximated system with stabilizing feedback gain k

ẋ = Âx− B̂kx (3.29)

Let V (x) = xTPx be the Lyapunov function for (3.29), where P is the solution to the

Lyapunov equation. Suppose that update law (3.26) is employed and (3.27) is satisfied.

Then the origin is exponentially stable for the original system (3.1).

Proof. By considering (3.14) in closed loop format and taking Âc = A− Bk where k is the

feedback gain, (3.1) can be written as

ẋ = Âcx+Gψ̃ (3.30)

Model learning error Gψ̃ = W̃ [x,−kx] which is equal to zero at the origin. Therefore, error
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term vanishes at the origin. Furthermore, satisfaction of (3.27) results in satisfaction of

(3.33). Therefore, one has

G(t)ψ̃ ≤ G(t)ψ̃(0)

Thus,

G(t)ψ̃ ≤ Ãc(0)x

Thus, the error term satisfies linear growth bound and there exists a coefficient γ such that

G(t)ψ̃ ≤ γ||x||

Therefore, the error term Gψ̃ is a vanishing perturbation to the approximated system ẋ =

Âcx.

Since Âc is Hurwitz and P = P T is the solution to the Lyapunov equation

PÂc + ÂTc P = −Q

Then, the quadratic Lyapunov function V = xTPx satisfies the following properties [55].

λmin(P )||x||2 ≤ V (x) ≤ λmax(P )||x||2

∂V

∂x
Âcx = −xTQx ≤ −λmin(Q)||x||2

||∂V
∂x

|| = ||2xTP || ≤ 2λmax(P )||x||

The derivative of V (x) along the trajectory of the original system (3.30) becomes

V̇ (x) =
∂V

∂x
Âcx+

∂V

∂x
Gψ̃
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which satisfies

V̇ (x) ≤ −λmin(Q)||x||2 + 2λmax(P )γ||x||2

Thus, if

γ ≤ λmin(Q)

2λmax(P )
(3.31)

Then, the origin of the original system (3.1) is exponentially stable. This completes the

proof.

In other words, by employing experience-replay model learning, the modeling error can

be taken as a vanishing perturbation to the approximated system, where the bound in (3.31)

depends on choice of Q. Hence, stability analysis for the approximated system is valid in

stability guarantee for the original system with proper design.

3.4.3 Adaptive Robustified CBF

The ARCBF condition is a stricter version of the CBF based on a rough estimation and

worst-case model-learning’s error which its satisfaction ensures the safety of the system.

Definition 3.3. Consider the dynamical system (3.13) and the set C ⊂ Rn (3.2) defined

using a C1 function h(x). Let there exist a locally Lipschitz extended class K function α

such that

sup
u∈U

[
∂h

∂x
G(t)ψ̂ − ||∂h

∂x
G(t)||a+ α(h(x))] ≥ 0, ∀x ∈ D (3.32)

where a is the bound of estimation error as ||ψ̃|| ≤ a. Then, the function h(x) is an ARCBF

on D with C ⊆ D ⊂ Rn. ■
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The set of safe control inputs for h(x) is formed accordingly as

Ur(x) = {u ∈ U |∂h
∂x
G(t)ψ̂ − ||∂h

∂x
G(t)||a+ α(h(x)) ≥ 0}

Ensuring the forward invariance of a set using ARCBF is presented in the following theorem.

Theorem 3.3. Consider dynamical system (3.1), and its compact form (3.14) with estima-

tion update law given by (3.26) and error bound of a as defined in Definition 3.3, and the set

C ⊆ D (3.2) defined for the C1 function h(x). If h is an ARCBF on D , then any Lipschitz

continuous controller {u : D → R|u ∈ Ur(x)} renders the set C forward invariant.

Proof. Considering (3.32), one has

∂h

∂x
G(t)ψ̂ − ||∂h

∂x
G(t)||a+ α(h(x)) ≤

∂h

∂x
G(t)ψ̂ − ||∂h

∂x
G(t)ψ̃||+ α(h(x)) ≤

∂h

∂x
G(t)ψ̂ +

∂h

∂x
G(t)ψ̃ + α(h(x))

Therefore,

∂h

∂x
G(t)ψ̂ − ||∂h

∂x
G(t)||a+ α(h(x)) ≤

∂h

∂x
G(t)ψ + α(h(x))

Since the left-hand side of above equation is positive, it ensures positiveness of its right-hand

side and therefore the original CBF.

∂h

∂x
(Ax+Bu) + α(h(x)) ≥ 0

Considering Theorem 3.1, the safety of the system is ensured. This completes the proof.

As seen above, in addition to the estimation of the dynamics, the bound of modeling
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error is employed in formation of ARCBF. Improper model learning and inaccurate worst-

case value of error result in conservatism of the controller. This issue is obviated using the

results of Lemma 3.1.

Considering (3.28) and comparison lemma, one has

Vx ≤ Vx(t0)e
−2(βψ12)(t−t0)

Therefore,

||ψ̃|| ≤ ||ψ̃(t0)||e−(βψ12)(t−t0) (3.33)

This gives an accurate bound of approximation error. By employing (3.33) in (3.32), the

ARCBF criterion becomes

[
∂h

∂x
G(t)ψ̂ − ||∂h

∂x
G(t)||||ψ̃(t0)||e−(βψ12)(t−t0)

+ α(h(x))] ≥ 0, ∀x ∈ D (3.34)

From Theorem 3.3, if the control policy satisfies (3.34), then the safety of the system is

ensured.

Remark 3.5. Note that the ARCBF provides an invariance safety criterion for the worst-

case uncertainty by incorporation of error bound, while experience-replay model learning

quantifies the exponential convergence rate of the error to zero. In other words, an accurate

bound of uncertainty is obtained that rapidly vanishes and results in convergence of ARCBF

to the original CBF.

Remark 3.6. While (3.27) is satisfied by applying mn + n2 safe initial actions, ARCBF is

formed and the rest of policies which are needed for data acquisition are chosen such that

(3.34) is satisfied. Therefore, off policy RL and model learning are safe without human

intervention.
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Remark 3.7. Since safety is certified after that rank condition (3.27) is satisfied, one might

consider ||ψ̃(0)|| + ϵ instead of ||ψ̃||(0) in (3.34), where ϵ > 0. This gives a room of safe

action for the initiation of model learning.

3.4.4 Safe and Stable Controller

Safety condition is encoded in (3.34), while quadratic CLF satisfying (3.31) ensures expo-

nential stability of the system. Therefore, to have safety and stability, any policy is first

minimally modified to satisfy these conditions through a quadratic programming optimiza-

tion [27].

min
u,ρ

||u− u∗||+ ||ρ||

s.t. (3.34),

V̇ < −λmin(Q)||x||2 + ρ. (3.35)

where V is the control Lyapunov function that encodes the performance objective which is

relaxed by factor ρ, while safety is applied as the hard constraint.

Remark 3.8. Quadratic programming formulation (3.35) is based on u; while considering

G(t) = [x, u]T ⊗ In, ||u|| appears in (3.34). Therefore, ||u|| = sgn(u)u is used, and thus

ARCBF criterion and and Lyapunov derivative condition incorporated in (3.35) are linear

with respect to control policy u and therefore it is a well-defined optimization problem to be

solved.

3.5 Barrier-certified Off-Policy Algorithm

In the off-policy RL, two policies are defined. The behavior policy which is applied to the

system to gather training data and target policy which is updated toward the optimal policy
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using training data. This method is superior in safety critical applications for a couple of

reasons. First, the target policy is updated without even being applied to the system. Second,

it is efficient and repetitively uses the same data and therefore it demands application of

less noisy inputs to the system. This method however faces safety risk at two stages. First,

at the beginning, where no model about the system is available and noisy behavior policy

is applied to the system and second when the learned target policy is applied to the system

which is not necessarily safe. Therefore, it is desired to make sure the safety and stability of

the system is preserved in the whole operation.

It is shown so far that by employing the experience replay dynamics approximation, any

behavior policy that stabilizes the approximated dynamics and satisfies (3.34) is safe and

stabilizing for the original system. The outcome of this robustified design is integrated into

off-policy RL in order to have a safe and stable data acquisition, exploration and exploitation.

Note that although the system is getting approximated for the sake of reduced conservatism

of controller, the controller does not need to wait until the identification is complete; rather,

the identification and off-policy controller are working at the same time.

For a given stabilizing Kk, (3.12) can be written in the matrix form [57]. To do so,

P̂ ∈ R 1
2
n×(n+1) and x̄ ∈ R 1

2
n×(n+1) are defined based on P ∈ Rn×n and x ∈ Rn, as

P̂ = [p11, 2p12, ..., 2p1n, p22, 2p23, ...2p(n−1),n, pnn]
T

x̄ = [x1
2, x1x2, ..., x1xn, x2

2, x2x3, ..., xn−1xn, xn
2]T

The matrix form of (3.12) is

Θk

 p̂k

vec(Kk+1)

 = Ξk (3.36)
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where Θk ∈ Rl×( 1
2
n(n+1)+mn), Ξk ∈ Rl are defined as

Θk = [δxx,−2Ixx(In ⊗Kk
TR)− 2Ixu(In ⊗R)]

Ξk = −Ixxvec(Qk)

In which for a positive integer l and time sequence 0 ≤ t0 < t1 < ... < tl

δxx = [x̄(t1)− x̄(t0), x̄(t2)− x̄(t1), ..., x̄(tl)− x̄(tl−1)]
T ,

Ixx = [

∫ t1

t0

x⊗ xdτ,

∫ t2

t1

x⊗ xdτ, ...,

∫ tl

tl−1

x⊗ xdτ ]T

Ixu = [

∫ t1

t0

x⊗ udτ,

∫ t2

t1

x⊗ udτ, ...,

∫ tl

tl−1

x⊗ udτ ]T

where δxx ∈ Rl× 1
2
n(n+1), Ixx ∈ Rl×n2

and Ixu ∈ Rl×mn. Note that if Θk is full rank, then

(3.36) can be uniquely solved. This criterion is employed for rich data collection.

Safe off-policy algorithm is achieved in the following three phases.

Safe and Stable Data Collection: In this phase a few safe policies are applied to satisfy

experience replay rank condition (3.27). The guaranteed prescribed behavior of the learning

error is employed in deriving the condition on safe and stabilizing controller. The noisy input

is modified accordingly and then is applied to the system for more safe data collection. The

AR-CBF and the system approximation enhances at each iteration by collection of more

data exponentially fast. Collection continues until it suffices for off-policy optimal controller

calculation.

Optimal Policy Approximation: In this phase, the safe collected data is repetitively used

at each target policy iteration toward the optimal controller.

Safe Target Policy Calculation: In this phase the optimal controller is minimally altered

to satisfy AR-CBF condition and then is safely applied to the system. Experience replay

approximation continues at each time instance by replaying the stored noisy input along the

current response of the system until it converges to true dynamics which is equivalent with
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convergence of AR-CBF to CBF.

More mathematical and detailed steps of the algorithm is represented in the following.

Algorithm 2 Safe and Stable Off-Policy RL

1: Initialization:
Initiate a NN for the dynamics (3.13) with stabilizing K0, set numerator k = 0.

2: procedure Safe and Stable Data Collection
3: Apply p initial policies until (3.27) is satisfied.
4: Update dynamics NN weights based on (3.26).
5: Form the quadratic Lyapunov function such that (3.31) is satisfied.
6: Form AR-CBF based on (3.34).
7: Form the noisy input u = K̂x+ e and modify it based on (3.35).
8: Go to the procedure ”Optimal Policy Approximation” if Θk is full rank in (3.36).

Otherwise, repeat the procedure until enough data for optimal policy approximation is
collected.

9: end procedure

10: procedure Optimal Policy Approximation
11: Solve Pk and Kk+1.
12: If ||Pk − Pk+1|| < ϵ then go to ”Safe Target Policy Calculation”, otherwise k = k + 1

and repeat the procedure.
13: end procedure

14: procedure Safe Target Policy Calculation
15: Minimally modify optimal controller u∗ using (3.35) and apply it to the system.
16: If dynamics approximation is not converged, use the outcome of the system along the

previous stored data to update dynamics NN.
17: Update AR-CBF based on the new approximation. Repeat procedure until control

objectives are met.
18: end procedure
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3.6 Simulation

3.6.1 Simulation Setup

Consider the following dynamical system

ẋ =

0 1

1 2

x+
 1

1.5

u (3.37)

where x = [x1, x2]. The safety set in which the states of the system should belong to is

defined as

C = {x| − a1 ≤ x1 ≤ a1,−a2 ≤ x2 ≤ a2} (3.38)

It is desired to ensure (3.38) is forward invariant. Thus, to certify the safety of the system

the following CBFs are defined

h1 = a1 − x1

h2 = x1 + a1

h3 = a2 − x2

h4 = x2 + a2

To form AR-CBF condition (3.34), single layer NNs are used to learn the system dynamics.

ˆ̇x =

ŵ1 ŵ2

ŵ4 ŵ5

x+
ŵ3

ŵ6

u
Which is updated using experiance replay update law (3.26) and after applying a few safe

initial condition until (3.27) is satisfied. The bound of learning error is obtained using (3.33)
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and denoted by w̄i for 1 ≤ i ≤ 6.

ARCBF criteria is formed accordingly based on (3.34) as

−ˆ̇x1 + α1h1 − ||w̄1x1|| − ||w̄2x2|| − ||w̄3||sgn(u)u ≥ 0

ˆ̇x1 + α2h2 − ||w̄1x1|| − ||w̄2x2|| − ||w̄3||sgn(u)u ≥ 0

−ˆ̇x2 + α3h3 − ||w̄4x1|| − ||w̄5x2|| − ||w̄6||sgn(u)u ≥ 0

ˆ̇x2 + α4h4 − ||w̄4x1|| − ||w̄5x2|| − ||w̄6||sgn(u)u ≥ 0 (3.39)

The noisy input in the form of (3.4) is modified in the (3.35) with (3.39) as a hard

inequality constraint and solution of linear quadratic programming (LQR) with Q = I, R = 1

which satisfies (3.31) as its soft equality constraint. The output is then applied to the

system for further data collection. The collected data is iteratively used for optimal policy

approximation which is then minimally modified using (3.35) for a safe and optimal operation

as Algorithm 2. The numerical details of simulation setup are given is Table 3.1.

3.6.2 Simulation Results and Discussion

The states of the system under the proposed RL controller is depicted in Figure 3.2 where the

safety boundary is shown with dashed red lines. To have a safe performance, the trajectory

of the system must stay between two lines. As can be seen in this figure, the safety and

stability of the system is preserved even at the beginning of the simulation where noisy input

is applied to the system.

To demonstrate the advantage of the proposed method, plain off-policy under the same

setup is applied to the system. With the same value of added noise, the system becomes

unstable in the data collection phase. To avoid instability of the system the value of noise is

manually reduced. Its result is shown in Figure 3.3. As can be seen in this figure, although

the stability of the system is satisfied by manual modification of the noise, the safety of the

system is violated.
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Remark 3.9. Comparison of Figures 3.2 and 3.3 reveals two significant advantages of the

proposed method. First of all, we ensure automatic stability guarantee during exploration.

This obviates the need of manual adjustment of noise to avoid instability. Second, we ensure

safety guarantee during the challenging phase of data collection which is not tractable to do

it manually.

The weight errors and their exponential bound is shown in Figure 3.4. As can be seen in

this figure, with replaying the past experiences, the behavior of the learning error is properly

prescribed and exponentially fast has converged to zero.

Remark 3.10. Considering the time scale of Figures 3.4 and (3.2) reveals that at early

stages of data collection, although the learning error is high, still, the safety of the system is

satisfied. As mentioned earlier, system’s dynamics is approximated along the operation of off-

policy controller and off-policy controller does not need to wait until system approximation

is finished. In other words, safety during learning is ensured.

The result of iterations toward optimal policy is shown in Figure 3.5. As can be seen

in this figure, Kk and Pk are successfully converged to their optimal values by repetitive

employment of safe collected data.

Table 3.1: Simulation Parameters

Parameter Value Parameter Value
α1, α2 40 Q I2×2

α3, α4 10 R 1
βψ1, βψ2 10 H [1,0; 0, 10]

w̄i, i = 1, 2, 4, 5 1.8e−0.5t F [1, -1]
w̄3 e−0.5t w̄6 0.5e−0.5t

a1 1 a2 1.4

3.7 Conclusion and Future Work

A barrier-certified safe RL framework with safety and stability guarantee in exploration and

exploitation phases is proposed. It is obtained my means of efficient learning with prescribed
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Figure 3.2: States of the system under the proposed framework

Figure 3.3: States of the system with plain off-policy with manual reduced noise
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Figure 3.4: NN Weight error

Figure 3.5: Convergence of Pk and Kk
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performance along a robutified safe and stabilizable controller throughout the algorithm in-

cluding the data collection phase. Experience replay-based model approximation is employed

which ensures the exponential convergence of the learning error to zero after a mild rank

condition is satisfied. This makes the learning error as a vanishing perturbation to the ap-

proximated model which facilitates designing stabilizing controller using the available rough

knowledge of the system. The accurate bound of error is then employed in formation of a

novel non-conservative AR-CBF which ensures safety during learning. AR-CBF and stabi-

lizing controller are integrated through quadratic programming and is used for further data

collection needed for off-policy iteration. The noisy input is modified accordingly to result

in safe and stable action. After collecting safe rich data, the optimal policy is approximated

and then again is certified using AR-CBF for safe exploitation. The efficacy of the proposed

method is demonstrated in simulation. Extension to nonlinear dynamics, considering the

effect of network reconstruction error are future directions of this line of research.

64



Chapter4

Barrier-certified Learning-enabled Safe

Control Design for Systems Operating

in Uncertain Environments

Contents of this chapter first appeared as [51] and have been reformatted to fit the

requirements of this dissertation.

4.1 Introduction

This chapter presents a method for designing a learning-enabled safe controller for systems

that must operate in environments that are shared with other agents with uncertain behav-

iors: The behaviors of surrounding agents affect the safe set and thus safe control design of

the ego system, which are unknown and uncontrollable from the ego system’s perspective.

This is in sharp contrast with existing safe control methods requiring complete knowledge

of the safe set. The uncertainty of the safe set caused by the uncertain behaviors of sur-

rounding agents makes safe control design much more challenging. Fast and sample-efficient

learning of uncertainties is of vital importance to avoid an overly conservative control design

(which can also result in infeasibility) or unsafe behavior. A slow model-learning approach

also avoids proactive safe control design, which can jeopardize the performance. Moreover,

and even more importantly, a naive model learning approach based on minimizing the mod-

eling error cannot account for safety even if the expected estimation error decreases over
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time; This is because different models with the same modeling errors might have different

characteristics in preserving the invariant behaviors of the actual system: Novel learning

algorithms are required to avoid misrepresentation of the safe set as much as possible.

The interaction between agents is formulated using two sets of decoupled differential

equations corresponding to the ego system and the risk-imposing external agent. A safety

criterion is defined as a function of both subsystems’ states. This is in sharp contrast with the

existing works, which only consider partial uncertainty in the system dynamics and define the

safety criterion solely based on the ego-system’s states. The proposed framework is far more

inclusive for safety-critical control scenarios where the agent operates in a cluttered uncertain

environment shared with other agents. Since the trajectory information is required to form

ZCBFs, the unknown external agent dynamics need to be learned. To make less conservative

decisions and avoid misrepresentation of the safe set, a safety-aware model-learning approach

that leverages safety-aware loss functions and the experience replay method is presented to

learn uncertain and unknown behavior of the external agent. More specifically, the loss

function is defined based on the barrier function error, instead of the system model error,

and is minimized for both current samples and past samples stored in the memory to assure

a fast and generalizable learning algorithm for approximating the safe set. Moreover, it

provides an easy-to-verify metric on collected data to assure learning of the actual safe set,

allowing to make more informative control decisions. Then, a learning-enabled ZCBF (L-

ZCBF) is presented that integrates the proposed safety-aware model learning and a novel

ZCBF to assure the safety of the ego system in the presence of uncertainty in the behavior

of its surrounding agents. Since ensuring forward invariance of the approximated safe set

does not necessarily ensure forward invariance of the actual safe set and strict safety might

be violated, L-ZCBF employs the approximated trajectory of external agent and also the

trajectory of ego-system, but shrinks the boundary of the safe set in case of an imminent

risk that can be predicted using observations of the states of the external agents. These

observations can be acquired using embedded sensors such as Light Detection and Ranging
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(LIDAR). Guaranteeing forward invariance of the intersection of the approximated safe set

and the actual safe set assures safety during learning and automatically shrinks the boundary

of the safe set to the extent that safety of the overall system is guaranteed despite uncertainty.

As learning enhances, this set expands to the actual safe set.

In a nutshell, the contributions of the chapter are as follows.

1. The problem of safe control design for systems operating in uncertain shared environ-

ments is formulated as two sets of decoupled dynamics with a safety criterion defined

as a function of both ego and external agent’s states to have a more inclusive scheme

for safety-critical systems operating in the cluttered environment.

2. A novel learning-enabled ZCBF is proposed, which is capable of safety guarantee during

learning of unknown dynamics.

3. The safety-aware model learning is proposed for rapid convergence of the approximated

safe set to the exact one.

4.1.1 Organization of the Chapter

Section 2 provides the problem statement as well as preliminaries and background informa-

tion. The main idea of learning-enabled ZCBFs for uncertain sets is presented in Section 3.

Section 4 represents the overall control framework and the proposed algorithm. Case study,

simulation results, and conclusion are given in Section 5, 6 and Section 7, respectively.

4.2 Problem Statement and Background

In this section, the safe control problem in the presence of external agents is stated, and

some background information on ZCBFs and safe control design is provided.
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4.2.1 Problem Statement

Consider the control system in the nonlinear affine form as

ẋ = f(x) + g(x)u (4.1)

where x ∈ X and u ∈ U are the states of the controlled system and the control input,

respectively. f(x) ∈ Rn is its drift dynamics and g(x) ∈ Rn×m is its input dynamics. f(x) is

C1 and f(0) = 0. It is assumed that the ego system is stabilizable and U is non-empty.

The goal is to ensure the safety of the control system (4.1) in a shared environment with

external agents with uncertain and unknown behaviors. The dynamics of the external agents

that affect the safety of (4.1) is given as

ż = f2(z) (4.2)

which is unknown and out of control of the ego system and z = [z1, ..., zp2 ] is the state vector

of external agents which can be measured in real-time by the ego system (e.g., measuring the

position of a leading vehicle using embedded sensors that measure the distance and relative

steering) and f2 ∈ Rp2 is assumed to be locally Lipschitz. Note that (4.2) does not need to

capture the complete dynamical behavior of external agents in the surrounding environment,

as it might require high-dimensional dynamics, which makes their learning computationally

intractable; rather, it concerns simplified dynamics that best captures the effect of external

agents on the safety of the ego system. For example, in urban driving, distance to other

agents and obstacles and how they are approaching the ego vehicle matter most when safety

is the main concern. The safety of the ego system is then formulated as a function of both

x and z, which is uncertain due to unknown dynamics of z.

It is desired to satisfy uncertain safety criteria which are impacted by states of the system

(4.1) and the external dynamics (4.2) and achieve stability and performance specifications
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as long as it is safe.

Control Objectives: The following objectives must be achieved for the system 4.1:

1. Assuring safety by guaranteeing that the following safety conditions are satisfied all

the time

li(x, z) ≥ 0, ∀1 ≤ i ≤ q

where li(x, z) > 0 is the ith element of the safety criteria which is a smooth function

describing a constraint on the system, and q is the total number of constraints.

2. Guaranteeing stability of the controlled system, i.e., x→ 0 as t→ ∞ in the case of no

conflict with safety.

The safe set is formed as the intersection of all the sets, each satisfying a safety constraint.

That is, the safe set is defined as

C = C1 ∩ C2... ∩ Cq (4.3)

where

Ci = {x|li(x, z) ≥ 0}, ∀1 ≤ i ≤ q (4.4)

Safety imposes hard constraints on the control design, while performance is a soft constraint

satisfied in the case of no conflict with safety.

Remark 4.1. Note that two sets of dynamics are considered in this framework in which (4.1)

represents the first one and is known, and (4.2) represents the second one and is assumed

to be uncertain and unknown. The safety set is represented as a function of both dynamics’

states (4.4). Therefore, even when the dynamics of the ego system is partially available,

this method is applicable since this unknown part is included in (4.2) which is learned.
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Therefore, this covers not only disturbances that can be learned by collecting data but also

a more general class of uncertainties in the environment and the ego-system dynamics.

4.2.2 Control Barrier Functions

Guaranteeing positive invariance of a set of states has broad applications in control system

design, such as control of constrained systems and region of attraction maximization. For a

dynamical system, positive invariance of a set means that inclusion of states in a specific set

at any time ensures the inclusion of states in that set in the future time. Extension of this

notion to control systems is called controlled positive invariance of a set, which guarantees

forward invariance of the set by designing a proper control input. One of the widely referred

theorems in the characterization of positive invariant sets is the Nagumo’s theorem [62, 63,

64]. This theorem is presented using the concept of the tangent cone of a set [65, 64].

Theorem 4.1. Nagumo’s Theorem.

Given a dynamical system ẋ = f(x) which has a globally unique solution for any initial

condition x0 ∈ X , let S ⊂ X be a closed set. Then, S is positively invariant if and only

if

f(x) ∈ TS (x), ∀x ∈ ∂S (4.5)

where ∂S is the boundary of the set S and TS (x) is the tangent cone to S .

Proof. See Theorem 3.1 in [63] and Theorem 4.7 in [64].

Remark 4.2. The Nagumo’s theorem implies that to have a positive (forward) invariant

set, ẋ should point inside the set at the boundary, or in the worst case, it should be tangent

to the boundary.

CBFs are used to ensure forward invariance of a specific set in a control system. ZCBF is

a positive function within a set and zero at its boundary and thus, having a zeroing derivative
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in the vicinity of the boundary prevents the states of the system from exceeding the limits.

Theretofore, forward invariance of the set is ensured while handling unbounded functions are

avoided [28]. Based on the definition of class K function in [55], extended class K function

is defined as follows.

Definition 4.1. A continuous function α : (−b, a) → (−∞,∞) with a, b > 0 is an extended

class K function, if it is strictly increasing and α(0) = 0 (Definition 1 in [34]).

■

Definition 4.2. ZCBF Properties.

For the control system (4.1) and a given set M ⊆ D ⊂ Rn defined as

M = {x|l(x) ≥ 0} (4.6)

the C1 function l : Rn → R is a ZCBF on the set D , if there exists an extended class K

function α such that

sup
u∈U

[Lf l(x) + Lgl(x)u+ α(l(x))] ≥ 0, ∀x ∈ D (4.7)

where Lf and Lg are Lie derivatives of l(x) along f and g, respectively, and

dl

dt
=
∂l

∂x
ẋ = Lf l(x) + Lgl(x)u

Then, the set of inputs that satisfy (4.7) is

Vzcbf = {u ∈ U |[Lf l(x) + Lgl(x)u+ α(l(x))] ≥ 0}, ∀x ∈ D

■

Lemma 4.1. For the given set M ⊆ D ⊂ Rn with function l; if l is a ZCBF on D , then,

any Lipschitz continuous controller u ∈ Vzcbf for the system (4.1) renders the set M forward
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invariant.

Proof. See Proposition 1 in [28].

In safety-critical control systems, the safe set is presented by M with a safety criterion

expressed by l(x) ≥ 0 as (4.6). By starting from a safe initial condition x0 ∈ M and selection

of a control input that satisfies (4.7), the system never leaves M and thus guaranteeing

safety. Despite the incredible power of ZCBFs in ensuring the safety of control systems, this

method faces a couple of challenges. First of all, to ensure the satisfaction of (4.7), complete

information about the dynamics of the system is needed. Second, the safety criteria and

the safe set are assumed to be certain and known. However, in many real scenarios, the

safe set is uncertain and affected by unknown external dynamics as described in (4.4). In

the following section, the application of ZCBFs to guarantee safety under uncertain safety

criteria in the presence of unknown external dynamics is investigated.

4.3 Learning-enabled ZCBF with Uncertain Sets

The system is considered to be operating in an environment that is shared with other agents.

These external agents impose safety consideration on the system, while their dynamics are

unknown and uncontrollable. This results in uncertainty in the environment and designing a

safe controller. Therefore, in this section, the L-ZCBF platform is presented to ensure safety

despite uncertainty in the behavior of external agents. The influential unknown dynamics

of the external agents are learned, and consequently, an L-ZCBF is formed that assures the

forward invariance of a set that is contained in the safe set, and its size becomes closer to

the size of the actual safe set as the learning progresses.
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4.3.1 Learning Safe Set Despite Uncertain Behaviors of External

Agents

In order to design a safe controller for (4.1) in the presence of uncertain external agents

in the environment, first, influential dynamics of external agents need to be approximated.

Considering the Lipschitz continuity assumption on f2 and the fact that any smooth function

within a compact set can be approximated by an NN [66], (4.2) is approximated as

ˆ̇z = ŴΦ(ẑ) (4.8)

where Ŵ is the estimated NN weights and Φ is its activation function. Then, considering

(4.4), the approximated safe set is defined as formed by

Ĉ = Ĉ1 ∩ Ĉ2... ∩ Ĉq

where

Ĉi = {x|li(x, ẑ) ≥ 0}, ∀1 ≤ i ≤ q (4.9)

where ẑ is the state of the approximated external dynamics represented in (4.8). Fig. 4.1

shows an example with both the actual safe set and its approximated one for a specific time.

As can be seen from Fig. 4.1(a), designing a controller based on the ZCBF (4.7) to ensure

the forward invariance of this approximated set Ĉ does not guarantee the forward invariance

of the actual safe set and safety boundary might be violated. On the other hand, while the

actual safe set can be formed based on the real-time measurement of the state of the external

agent z, its forward invariance requires knowing the entire trajectory of the external agent,

which is not available, and it is impossible to design (4.7) to make the actual safe set forward

invariant. However, as shown in Fig. 4.1(b), if the control input is designed to assure the
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Figure 4.1: (a): Ĉ invariant, ∂C violated (b): Cc invariant (c): Ĉ converges to C

forward invariance of the intersection of the actual safe set and its approximation, which is

contained in the actual safe set, the safety of the system is guaranteed. This shrinks the

boundary of the approximated safe set to assure that it is contained in the actual safe set.

Note that this set can be made forward invariant using (4.7) since the approximate knowledge

of the state trajectory of the external agent is available through (4.8). As learning progresses

and the external dynamics becomes more accurate, as shown in Fig. 4.1(c), the approximated

safe set becomes more accurate, and the system’s maneuverability improves. The faster the

external dynamics converges, the faster the intersection of the approximated safe set and

actual safe set expands which provides more room of safe maneuver of the ego system.

In order to shrink the boundary of the approximated safe set and assure that it is con-

tained in the actual safe set, the instantaneous sensory observations of the ego system from z

are used to form the actual safe set, and the intersection of the safe set and its approximation

is derived accordingly. Cc is defined as the intersection of C and Ĉ

Cc = Ĉ ∩ C (4.10)

Before presenting the proposed approach, the following assumptions are made.

Assumption 4.1. Strict interiority of the initial condition.

The initial condition of the system (4.1) belongs to the interior of the safe set C . That

is,

x0 ∈ intC

74



Assumption 4.2. The initial value of the approximated external dynamics ẑ satisfies

li(x0, ẑ0) > 0, ∀1 ≤ i ≤ q

Remark 4.3. Considering (4.3) and (4.9), Assumptions 4.1 and 4.2 imply that Cc = Ĉ ∩C

is non-empty.

Remark 4.4. Note that Assumptions 4.1 and 4.2 which state strict interiority of the initial

condition and also its approximation, respectively, are mild and reasonable because if the

initial condition is not safe, no controller can be designed to ensure safety in the future time.

Lemma 4.2. Consider Assumptions 4.1, 4.2, and the set Cl defined as

Cl = Cl1 ∩ Cl2... ∩ Clq

where

Cli = {x|min(li(x, z), li(x, ẑ)) ≥ 0}, ∀1 ≤ i ≤ q (4.11)

Then, Cl = Cc where Cc is defined in (4.10) as the intersection of sets C and Ĉ .

Proof. Given any x ∈ X and 1 ≤ i ≤ q, if x ∈ Cl, from (4.11), one has

li(x, z) ≥ min(li(x, z), li(x, ẑ)) ≥ 0 ⇒ x ∈ C

li(x, ẑ) ≥ min(li(x, z), li(x, ẑ)) ≥ 0 ⇒ x ∈ Ĉ

75



Therefore,

∀x ∈ Cl ⇒ x ∈ CC

which means

Cl ⊂ Cc (4.12)

On the other hands, if x ∈ Cc

li(x, z) ≥ 0, li(x, ẑ) ≥ 0

and therefore,

min(li(x, z), li(x, ẑ)) ≥ 0

which implies

Cc ⊂ Cl (4.13)

From (4.12) and (4.13), one has

Cc = Cl

The boundary of Cc is defined as

∂Cc = {x|min(li(x, z), li(x, ẑ)) = 0}, ∀1 ≤ i ≤ q
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Definition 4.3. Given the control system (4.1), the smooth function l = [l1, ...., lq] ∈ C1 is

L-ZCBF for the set Cc if for each 1 ≤ i ≤ q

sup
u∈U

{∂li
∂x
ẋ+

∂li
∂ẑ

ˆ̇z + α(min(li(x, z), li(x, ẑ)))} ≥ 0 (4.14)

Moreover, the set of inputs that satisfy L-ZCBF condition is

Uzcbf = {u ∈ U |
∂li
∂x
ẋ+

∂li
∂ẑ

ˆ̇z + α(min(l(x, z), l(x, ẑ))) ≥ 0,∀1 ≤ i ≤ q} (4.15)

where α is an extended class K funciton. ■

This definition is used to guarantee the safety of the system and forward invariance of

Cc using tangent cone of practical sets and the Nagumo’s theorem.

Definition 4.4. Practical Set (Definition 4.9 in [64])

Let O be an open set. Consider the set S1 ⊂ O defined by a set of inequalities in the

form of

S1 = {x|li(x) ≥ 0, i = 1, 2, ..., q}

where li is continuously differentiable function in O. The set S1 is said to be a practical set

if

1) For all x ∈ S1, there exists y such that

li(x) +∇T li(x)y > 0, ∀i = 1, 2, ..., q (4.16)

2) There exists a Lipschitz continuous vector field ψ(x) such that for all x ∈ ∂S1(x),

∇li(x)ψ(x) > 0 (4.17)
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■

For all x ∈ ∂S1, the tangent cone of the practical set is

TS1(x) = {y|∇T li(x)y ≥ 0,∀i ∈ S1Act(x)} (4.18)

where S1Act(x) is the set of active constraints, which is defined as

S1Act(x) = {x|li(x) = 0}

For more details, see [64].

Theorem 4.2. Given the control system (4.1) and the set Cc (4.10), any Lipschitz controller

u ∈ Uzcbf defined in (4.15) ensures safety criteria li(x, z) ≥ 0, ∀1 ≤ i ≤ q.

Proof. For each 1 ≤ i ≤ q, if li(x, z) ≥ li(x, ẑ), the L-ZCBF condition (4.14) becomes

∂li
∂x
ẋ+

∂li
∂ẑ

ˆ̇z + α(li(x, ẑ)) ≥ 0

From direct result of Lemma 4.1, li(x, ẑ) ≥ 0 and since li(x, z) ≥ li(x, ẑ), then li(x, z) ≥ 0.

In addition, existence of u ∈ Uzcbf implies that for all (x, ẑ) ∈ Cc

∇T li(x, ẑ)[ẋ, ˆ̇z] + α(l(x, ẑ))) ≥

∇T li(x, ẑ)[ẋ, ˆ̇z] + α(min(l(x, ẑ), l(x, z)))) ≥ 0

Therefore, (4.16) is satisfied. If li(x, z) < li(x, ẑ), then L-ZCBF (4.14) turns to

∂li
∂x
ẋ+

∂li
∂ẑ

ˆ̇z + α(li(x, z)) ≥ 0
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Thus, at the boundary of Cc in which li(x, z) → 0, one has

∂li
∂x
ẋ+

∂li
∂ẑ

ˆ̇z ≥ 0

In other words,

∇T li(x)[ẋ, ˆ̇z] > 0

Therefore, (4.17) is satisfied for all (x, ẑ) ∈ ∂Cc. Considering the definition of practical set

and from (4.18), [ẋ, ˆ̇z] is within the tangent cone of Cc (4.11) as

[ẋ, ˆ̇z] ∈ TCc(x, z)

This implies that if li(x, z) → 0, then (ẋ, ˙̂z) point inside the set at the boundary of Cc or

in the worst case is tangent to the boundary. According to the Nagumo’s Theorem, Cc is

forward invariant and since Cc ⊂ C , therefore, the approximated trajectories do not exceed

the boundary li(x, z) = 0 implying li(x, z) ≥ 0 for all t > 0. Since this proof is valid for all

1 ≤ i ≤ q, safety of the system is ensured. This completes the proof.

Corollary 4.1. Given the control system (4.1), L-ZCBF introduced in (4.14) renders the

intersection of the safe set and its approximation, Cc, forward invariant.

Proof. According to Theorem 4.2, boundary of the positive invariant set is shrunk to a

more conservative value that provides a bigger margin to the safety boundary. According to

Lemma 4.2, this forms the intersection of the safe set and its approximation. Therefore, the

introduced L-ZCBF renders Cc invariant indeed.

Remark 4.5. The proposed L-ZCBF assures that at least a conservative safe set remains

forward invariant, which guarantees safety. The conservativeness will be reduced next by

presenting a fast and data-efficient learning approach for modeling the external agent.
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Remark 4.6. It is shown that the external agent dynamics and, consequently, the unknown

safe set are approximated using NNs. However, these approximations alone cannot be relied

upon to ensure the forward invariance of the safe set. The reason is that the approximation

might not be perfect and lead to exceeding the safety limits, which is not acceptable for

safety-critical systems. Therefore, to design a more realistic and practical controller, the

system observations and the approximated external agents dynamics are also combined with

ZCBF.

Although the safety of the system can be guaranteed with an inaccurate model of the

external dynamics, as learning enhances, the intersection set Cc expands to the exact safe

set C and the system would be able to take less conservative control actions. In other words,

employing a proper learning approach that suits the application boosts the control system’s

performance. In the following subsection, the application of the experience replay method

is demonstrated in this problem to identify the dynamical behaviors of external agents.

This method provides a fast convergence of the network leading to the control system’s fast

response, which is crucial in safety-critical applications.

4.3.2 External Dynamics Identifier

The motivation behind learning about the dynamics of external agents is to provide the ego

system with a larger set of feasible actions and reduce the conservatism of the controller. In

other words, enhancing the approximation of the safe set has higher importance compared

to learning about the external agent states, and inspired by [67], an experience replay-based

method is proposed which updates the identifier weights to reduce the set approximation

error rather than the external state estimation error. Experience replay method uses recorded

and stored data in the update law and provides fast convergence and an easy-to-check and

verifiable the persistence of excitation (PE) condition, which is necessary to guarantee the

convergence of the identifier weights. In contrast, online checking of this condition is generally

difficult and even infeasible [67, 68, 69, 70].
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Considering (4.2) and (4.8), the external dynamics model is formulated into a filtered

regressor form

ż = WΦ(z) + ϵf (4.19)

where W and Φ are the weight matrix and the activation function, respectively. Also, ϵf is

the model approximation error.

To convert the dynamics into the regressor form, let Az be added to the both sides of

(4.19), where A = aIj×j, a > 0

ż = −Az +WΦ(z) + Az + ϵf (4.20)

Assumption 4.3. There exists a constant 0 < ϵf
∗ <∞ such that

∥ϵf (t)∥ ≤ ϵf
∗ (4.21)

Note that ϵf
∗ is unknown and depends on the quality of selected basis functions. If the

basis functions are chosen such that the unknown function dynamics is near the span of the

basis functions, this error will be small. Note also that the boundedness of reconstruction

error and its gradient are standard assumptions in neural network identification literature.

Furthermore, using neural networks, the approximation guarantees are limited to a compact

set. Since for safety-critical systems, the safe set is generally compact, and the system must

not leave this set, therefore, approximation over a compact set is reasonable (Chapter 1 in

[66]).
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Lemma 4.3. Considering (4.20), Eq. (4.19) can be written as

z = Wh(z) + ad(z) + ϵ (4.22)

ḣ(z) = −ah(z) + Φ(z), h(0) = 0

ḋ(z) = −Ad(z) + z, d(0) = 0

where

h(z) =

∫ t

0

e−a(t−τ)Φ(z(τ))dτ

d(z) =

∫ t

0

e−A(t−τ)z(τ)dτ

ϵ(t) = e−Atz(0) +

∫ t

0

e−A(t−τ)ϵfdτ

Proof. See Lemma 1 in [67].

Consider identifying weight estimator as

ẑ(t) = Ŵ (t)h(z) + ad(z) (4.23)

where Ŵ (t) is the estimated value of the weight matrix W at time t. The state estimation

error is defined as

ez(t) = ẑ(t)− z(t) (4.24)

By considering (4.22), (4.23) and (4.24), one has the state estimation error as

ez(t) = Ŵ (t)h(z) + ad(z)−Wh(z)− ad(z)− ϵ
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which is simplified to

ez(t) = W̃ (t)h(z(t))− ϵ

where W̃ (t) = Ŵ (t) − W is the weight estimation error. The approximation of external

agents dynamics is needed to expand the approximated safe set to the exact one, which

reduces conservatism and provides more room of safe maneuver for the ego system. To

accelerate the convergence of the approximated safe set and its approximation, weights are

updated in a way to decrease set approximation error rather than the state estimation error.

Set approximation error is defined as

e(t) = l(x, ẑ)− l(x, z)

By using the Taylor expansion around (x, z) and some manipulations, one has

e(t) = ez(t)K(x, z) (4.25)

with

K(x, z) =

∂l(x, z)

∂z
+
∂2l(x, z)

2!∂z2
)ez(t) + ...+

∂q1+1l(x, z)

(q1 + 1)!∂zq1+1
)ez(t)

q1

where q1 is the maximum degree of z in l(x, z). The derivatives with the order of higher

than q1 + 1 are zero and eliminated from the Taylor expansion.

In experience replay method, recorded samples are used in the update law. Define the

state estimation error using the kth sample as

ez(tk) = ẑ(t, tk)− z(tk) (4.26)
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where

ẑ(t, tk) = Ŵ (t)h(z(tk)) + ad(z(tk)) (4.27)

Using (4.22) and (4.27), the error defined in (4.26) becomes

ez(tk) =

Ŵ (t)h(z(tk)) + ad(z(tk))−Wh(z(tk))− ad(z(tk))− ϵ(tk)

which further is simplified to

ez(tk) = W̃ (t)h(z(tk))− ϵ(tk) (4.28)

and the set estimation error at the kth sample is defined accordingly as

e(tk) = ez(tk)K(x(t), z(t))

The update law is then given as

˙̂
W (t) =− Γe(t)(h(z(t))K(x(t), z(t)))T

− Γ
P∑
k=1

e(tk)(h(z(tk))K(x(t), z(t)))T (4.29)

where P is the overall number of stored data and Γ is a positive-definite matrix which

determines the learning rate. Let the matrix of stored data be

Z = [h(z(t1), ..., h(z(tP )] (4.30)
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Then, the persistence of excitation condition is defined as

If h ∈ Ro1 , then rank(Z) = o1 (4.31)

Remark 4.7. Using the history of data in the experience replay approach makes learning

the safe set fast and data-efficient. This is of vital importance for safety-critical systems

operating in an uncertain environment since the learning phase and operation phase in these

systems are not separated. Therefore, control approaches with fast convergence capability

in the learning process make control of safety-critical systems more practical.

Remark 4.8. Adaptive optimal control schemes require a PE condition to ensure the suffi-

cient exploration of the state space. An exploratory signal consisting of sinusoids of varying

frequencies can be added to the control input to ensure PE qualitatively. Note that the

requirement of rank satisfaction is much less restrictive than the standard PE condition re-

quirement and is much easier to verify online. The exploratory noise can be removed as soon

as the rank condition is satisfied, which can be easily certified.

Theorem 4.3. Consider the model (4.19), the update law (4.29) and assume full rank of

the matrix Z in (4.30) 1) If there is no reconstruction error, i.e., ϵf = 0, then the set

approximation error (4.28) converges to zero exponentially fast. 2) If ϵf ̸= 0, then the set

estimation error is uniformly ultimately bounded (UUB), and the ultimate bound can be made

small by recording rich data in the history stack.

Proof. Let the Lyapunov function on weight error be as

VW = 0.5tr(W̃Γ−1W̃ )

By differentiating along the trajectory of (4.29) and considering the fact that
˙̂
W (t) = ˙̃W (t),

85



one has

V̇W = −tr(W̃ (t)[KT (t)hT (z(t))h(z(t))K(t))

+
P∑
k=1

(KT (t)hT (z(tk))h(z(tk))K(t)]W̃ T (t))

+ tr([ϵ(t)KT (t)hT (z(t)) +
P∑
k=1

ϵ(tk)K
T (t)hT (z(tk))]W̃

T (t) (4.32)

where K(t) stands for K(x(t), z(t)). Eq. (4.32) is simplified as

V̇W = −tr(W̃ (t)KT (t)[hT (z(t))h(z(t)))

+
P∑
k=1

(hT (z(tk))h(z(tk))]K(t)W̃ T (t))

+ tr([ϵ(t)KT (t)hT (z(t)) +
P∑
k=1

ϵ(tk)K
T (t)hT (z(tk))]W̃

T (t) (4.33)

If the rank condition on Z holds, then

P∑
k=1

(hT (z(tk))h(z(tk)) > 0

Therefore, for case of no reconstruction error, V̇W < 0 means that W̃ exponentially converges

to 0. This completes the first part of the proof. For the second part and under reconstruction

error, assume

B = KT (t)[hT (z(t))h(z(t))) +
P∑
k=1

(hT (z(tk))h(z(tk))]K(t) (4.34)

ϵn = ϵ(t)KT (t)hT (z(t)) +
P∑
k=1

ϵ(tk)K
T (t)hT (z(tk)) (4.35)
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Using (4.33), one has

if
∥∥∥W̃∥∥∥ ≥ ∥ϵn∥

λmin(B)
⇒ V̇w < 0 (4.36)

where λmin is the smallest eigen value of B defined in (4.34). Therefore, if ϵf = o, W̃

converges to zero exponentially fast and thus e(t) in (4.25) converges to zero exponentially

fast. According to (4.19), (4.21), (4.22), and (4.35), one has

∥ϵn∥ ≤ P + 1

a
(ϵf

∗)

where by proper selection of a as identifier design parameter, (4.36) is satisfied. For any

value of a, V̇w is negative outside of the following compact set

ω = {W̃ |
∥∥∥W̃∥∥∥ ≤ P + 1

aλmin(B)
(ϵf

∗)} (4.37)

Based on (4.25), e(t) will also remain bounded, and this completes the proof of the second

part of the theorem.

Remark 4.9. Note that the proposed set identification method provides exponential con-

vergence of the set approximation error to zero. This implies that there are times t1, t2, ...

during learning that set approximation error e(tk) = l(x(tk), ẑ(tk)) − l(x(tk), z(tk)) has

decreased i.e., e(tk+1) < e(tk). Considering the approximated safe set at this sequence

{x(tk)|l(x(tk), ẑ(tk)) ≥ 0} which is equivalent to the set {x(tk)|l(x(tk), z(tk)) ≥ −e(tk)} re-

veals that by decreasing the error, the approximated set gets closer to the exact safety set

C . Utilizing experience replay technique has at least two advantages: 1) it significantly

improves the decay rate of the approximation error and thus reduces the conservatism, and

2) it provides the ego system with an easy-to-verifiable metric to check if the approximated

safe set converges to the actual safe set.

Remark 4.10. Fast convergence of the model enables the control system to act in a less
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conservative manner leading to enhanced performance. Even in the case of an inaccurate

model with a non-zero reconstruction error, this method provides an acceptable performance

with a UUB weight estimation error.

4.4 Control Framework

The proposed control framework is demonstrated in Fig. 4.2. First, the control system

gathers data, e.g., distance from other agents in the environment collected by camera or

LIDAR sensor, by observing its surrounding environment. The observed data are labeled

as risky and safe, respectively. The safe data coming from the external agents that do not

impose any risk on the control system are removed from the collected data. Then, the risky

data representing external agents that can impose risk on the control system are applied to

identifier blocks that approximate the dynamics of risky external agents using the modified

experience replay method. Next, the state of the system and the output of identifier modules

are injected into the CBF block to form L-ZCBF constraints according to the strict safety

criterion. Finally, these L-ZCBF constraints govern the performance of the controller block,

and control action must satisfy L-ZCBF constraints. The combination of identifier networks

and the CBF block is called the guardian block.

The quadratic programming [27, 28] is employed to design the controller for this platform.

The performance objective is formulated as a soft inequality constraint on derivative of the

Lyapunov function. This constraint on the Lyapunov function and ZCBF constraint are

unified by imposing them as constraints of quadratic programming problem, which aims to

minimize a cost function. The cost function is a combination of the control input u and

the relaxation factor η which is considered in the performance objective to make it a soft

constraint. As a result, the minimum value of the control input, which satisfies safety is

obtained and the system gets close to desired performance as much as possible. ZCBF-based

quadratic programming is formulated as
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Figure 4.2: Control scheme

min
u,η

ut
THut + Fut

s.t. (4.14), V̇ < ρη. (4.38)

where ut = [u, η], H and F are the weight matrices, V is the Lyapunov function and ρ is the

coefficient of the relaxation factor η.

Remark 4.11. If optimal controller u∗ for performance objective is available, such as linear

quadratic regulator (LQR) solution in a linear control system, then, the Lyapunov inequality

in (4.38) can be replaced by equality u = u∗ + ρη.

The overall algorithm is given in Algorithm 3.

4.5 Case Study

The effectiveness of the proposed approach is verified here by designing a safe maneuver

controller for an autonomous vehicle in the presence of other vehicles on the road.
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Algorithm 3 Barrier-certified Learning-enabled Controller
1: Start with a safe initial condition x0 ∈ intC .
2: procedure
3: procedure Observation
4: Store states of previously observed agents zi, i ∈ 1, ..., ni with ni as the number of the

previously observed agents (store null if agent vanished).
5: Store states of new observed agents zni+j , j ∈ 1, ..., nj with nj as the number of the new

observed agents .
6: Go to ”Initial Safety Assessment”.
7: end procedure
8: procedure Initial Safety Assessment
9: Check states of previously observed agents zi, i ∈ 1, ..., ni. Store them if they are still

risky or null. Store null if they are safe.
10: Check states of new observed agents zni+j , j ∈ 1, ..., nj . Store if they are risky. Discard

if they are safe.
11: Go to ”Update”.
12: end procedure
13: procedure Update
14: If stored data corresponds from previously observed agents, go to ”Existing Agents”.
15: If stored data corresponds from new agents, go to ”New Agents”.
16: procedure Existing Agents
17: If stored data is null, discard corresponding identifier and L-ZCBF constraint.
18: If stored data is not null, update weights using (4.29).
19: end procedure
20: procedure New Agents
21: Initialize an identifier network Ŵni+j0 and safe initial approximation ẑni+j0 for each

new state j ∈ 1, ..., nj .
22: Form L-ZCBF constraint using (4.14) and incorporate it in quadratic programming

(4.38).
23: end procedure
24: Go to ”Quadratic Programming”.
25: end procedure
26: procedure Quadratic Programming
27: Solve the quadratic programming problem (4.38).
28: Apply the obtained controller to the system and update ni = ni + nj , nj = 0.
29: Go to ”Observation” and repeat until performance objectives are met.
30: end procedure
31: end procedure
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4.5.1 Control Scenario

Fig. 4.3 shows a safety-critical maneuver for autonomous vehicles in an urban area. The ego

vehicle, specified by its position (xe, ye), is traveling in the road, and the control objective

is to reach a pre-defined destination, which is marked in Fig. 4.3, in an optimal manner.

However, the road is shared with other vehicles with uncertain behaviors, and their objectives

might be in conflict with the ego vehicle desired objective. Vehicle (x1, y1) is traveling next

to the ego vehicle; although it is very close, it looks safe. Vehicle (x2, y2) was not previously

observable to the ego vehicle while it is now reaching the cross-section and might impose

risk on the ego vehicle passing the crossroad. Vehicle (x3, y3) is farther but, it is moving in

the same path as the ego vehicle and might impose risk on its maneuver in the future time.

These types of maneuver scenarios are practically challenging but so common in everyday

driving. This even becomes more challenging if instead of vehicles, bicycles or pedestrian

are in the road which add more unpredictability and complexity to the control scenario. To

elaborate on that, the effect of having an agent with a more complicated behavior instead

of vehicle three is investigated as well. The following section mathematically formulates this

scenario.

4.5.2 Mathematical Representation

The simple mass point model for vehicles is used [46].



ẋ

ẏ

ψ̇

v̇


=



v · cosψ

v · sinψ

v · us

ua − µ · v


where x, y are cartesian coordinate of the vehicle, v stands for vehicle’s velocity and ψ is the

heading angle of the vehicle. us is the steering angle and ua is acceleration. µ is the friction
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coefficient. For simplicity, the state vector is presented by X = [x y ψ v]. When moving in

a straight line with zero friction coefficient, the dynamics of the ego vehicle and vehicles 1

and 3 are simplified as a double integrator

ẏi
v̇i

 =

0 1

0 0


yi
vi

+

0
1

uai , i = e, 1, 3

and the dynamic of vehicle 2 is given as

ẋ2
v̇2

 =

0 1

0 0


x2
v2

+

0
1

ua2

Note that although the open-loop system is unstable, its controllability matrix is

0 1

1 0

,
which is full rank. Therefore, the system satisfies the stabilizability assumption, and there is

a control input to make the closed-loop system stable. As explained in Algorithm 3, after

gathering observation data, an initial safety assessment is required. In this scenario, using

distance to assess safety is not functional since vehicle one is close to the ego vehicle, but it

is safe. However, other vehicles are far from the ego vehicle, but they might impose risk on

it. Therefore, the minimum distance of surrounding agents to the center of the road that the

ego vehicle is moving along is considered for initial safety assessment and is named as the

minimum safe lateral distance rmin. In this scenario, rmin is in x-coordinate defined as xmin,

which is defined to be the lane width here and can be modified based on the application. As

a result, if surrounding agents are within this range, they will be considered risky. Therefore,

vehicle one is safe and will not be included in the loop as long as its lateral distance is in

the safe range. However, other agents are considered risky, and headway safety criteria are
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applied to the guardian block regarding them. Headway rule stated in [27, 71] is employed

D > ve/2

where ve is the ego vehicle speed, and D is the distance between two vehicles. Then, the

safety criteria for vehicles 2 and 3 in this scenario would be

l2(ye, y2) = y2 − ye − ve/2 > 0 when |x2 − xe| < xmin

l3(ye, y3) = y3 − ye − ve/2 > 0 (4.39)

This formulation shows that if any vehicle gets very close to the lane that the ego vehicle

is moving, then a minimum headway is required. Therefore, if the distance between the

ego vehicle and any other vehicle gets shorter, the ego vehicle should decline its velocity to

operate under these safety criteria.

The ego vehicle observes the identified external agents as black boxes in which only their

current states are measurable. Thus, the identifier NNs for vehicles 2 and 3 are defined as

˙̂y2 = Ŵ2ϕ3(y2)

˙̂y3 = Ŵ3ϕ3(y3)

The ego vehicle identifies the dynamics of vehicle 2 only in y coordinate because x is only

needed for initial assessment, and it is not included in the headway criterion.

One of the advantages of the proposed approach is that safety is ensured even with

inaccurate modeling of the external agents. Thus, to reduce computational cost and learning

time, simple single layer perceptron with polynomial activation functions are employed as

˙̂y2 = Ŵ2 · y2

˙̂y3 = Ŵ3 · y3 (4.40)
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Remark 4.12. Since vehicle 2 is crossing the lane, the corresponding identifier is activated

after it becomes observable for the ego vehicle. However, the corresponding L-ZCBF is

formed and incorporated in quadratic programming when it reaches the lane that the ego

vehicle is moving in. This setup can be adjusted based on the application. For example, one

might decide to design a more conservative controller and incorporate the L-ZCBF at the

time of observation.

L-ZCBFs are defined using (4.14) and (4.39) as

∂l2
∂ye

ẏe +
∂l2
∂ve

v̇e +
∂l2
∂ŷ2

ˆ̇y2 + α2(min(l2(ye, y2), l2(ye, ŷ2))) ≥ 0

∂l3
∂ye

ẏe +
∂l3
∂ve

v̇e +
∂l3
∂ŷ3

ˆ̇y3 + α3(min(l3(ye, y3), l3(ye, ŷ3))) ≥ 0

For the performance purposes, LQR problem is solved as mentioned in Remark 4.11. Then,

the overall controller is performed using Algorithm 3. The values of parameters used in the

simulation can be found in Table 4.1.

Table 4.1: Simulation Parameters

Parameter Value
Q I2×2

R 1
α2, α3 15
H,F, ρ I2×2, 0, 1
a 0.7

Ŵ20 -0.2

Ŵ30 0.1

4.6 Simulation Results

Simulation is performed for the aforementioned control scenario in three sub-scenarios.

First, an accurate network model with zero reconstruction error is employed which can
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Figure 4.3: Control scenario

converge to the exact vehicle model. In the second sub-scenario, an inaccurate model is used,

which cannot converge to the exact model. The third sub-scenario adds more complexity

by considering an agent with a more complicated behavior in front of the ego vehicle, which

the employed NN cannot accurately model. The purpose of using an inaccurate model is to

demonstrate the strength of the proposed approach in guaranteeing safety in case of modeling

error.

4.6.1 Zero Modeling Error Scenario

The network defined in (4.40) is assumed to be accurate without any reconstruction error, so

after learning its weights, it converges to the exact model. Fig. 4.4 shows the results, where

y as coordination of the ego vehicle and two risky vehicles 2, 3 are demonstrated. Without

loss of generality, the destination of the ego vehicle is assumed to be located at the origin.

The ego vehicle starts from its initial position, but a crossing vehicle is reaching, so the ego

vehicle slows down and proceeds in a smooth maneuver when the crossing vehicle passes.

After passing the crossroad, the ego vehicle faces another slow-moving vehicle in front of it;

as a result, it slows down to adapt to the flow of traffic. As can be seen in Fig. 4.4, because
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Figure 4.4: Position of vehicles in ’y’ coordinate (Scenario1)

of the presence of vehicle 3, the ego vehicle could not reach the destination; but, it reached

as close as possible while safety is still ensured. Fig. 4.5a shows the convergence of the

weights of networks. The LQR performance of the system in lack of safety considerations is

demonstrated in Fig. 4.5b. As can be seen in this figure, without safety consideration, the

ego vehicle would crash with either vehicle 2 or vehicle 3. To further clarify the advantage of

employing the proposed learning method, a simulation is conducted to compare the weight

convergence with and without using the past stored data in the update law as depicted in

Fig. 4.7. As seen in this figure, the network weight has a fast and exponential convergence

under the proposed method.

4.6.2 First Non-zero Modeling Error Scenario

In this sub-scenario, the same network as (4.40) is employed while vehicle 3 demonstrates

a different behavior as ẏ3 = a. In other words, the allocated network is not a proper one
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Figure 4.5: (a) NN weights (Scenario 1), (b) Optimal solution without CBF

for modeling the dynamics of vehicle 3. Fig. 4.6 shows the convergence of both networks’

weights. As can be seen, W3 could not converge. Fig. 4.8 shows the locations of the ego

vehicle and vehicles 2 and 3 in this scenario. Despite inaccurate modeling, the safety of the

system is ensured. The ego vehicle slows down to avoid crash with vehicle 2, and after that,

it accelerates to reach the destination. However, it has faced vehicle 3 and has adjusted its

velocity accordingly until it gets to the destination safely.

4.6.3 Second Non-zero Modeling Error Scenario

One of the big challenges of safe urban driving is unpredicted and hard-to-model dynamics

such as the jump of an animal to the road or human behavior. The proposed method is

functional in handling these unpredicted behaviors. To further analyze the result of employ-

ing this method, an agent with a more complicated dynamics is considered to be the only

risky agent which is moving in front of the ego vehicle with dynamics of

ẏ = 0.4t+ 1.2− 0.7 sin(2πy) + 0.1y (4.41)

The network (4.40) is employed for the identification of this dynamics, which has non-zero

reconstruction error. The network weight update is shown in Fig. 4.9 which could not

converge. The y-coordinate of both agents is shown in Fig. 4.10. As can be seen in this

figure, despite the complexity in the behavior of the external agent and the existence of
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Figure 4.6: NN Weights (Scenario 2)
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Figure 4.7: NN Weights with and without Experience replay

reconstruction error, the ego vehicle has a safe maneuver.

Remark 4.13. The purpose of this simulation is to demonstrate the capability of the method

for guaranteeing safety in case of facing an agent whose dynamics cannot be modeled using

pre-defined networks.

4.6.4 Discussion

The efficacy of the proposed method is examined in three different scenarios: 1) the assigned

NN properly captures the dynamics of the external agent, but safety and performance are in

conflict. It is shown that the agent has a safe maneuver during and after learning and gets

close to its destination as far as it is safe. 2) there exists a reconstruction error, and the as-
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Figure 4.8: Position of vehicles in ’y’ coordinate (Scenario2)

Figure 4.9: NN Weight (Scenario 3)
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Figure 4.10: Position of agents in ’y’ coordinate (Scenario 3)

signed NN cannot fully capture the dynamics of the external agents. It is shown that despite

this error, the ego-vehicle still maintains a safe maneuver. This is of significant applicability

since, in many real applications having an NN that fully captures the unknown dynamics is

not always possible or tractable therefore, usage of a simplified model is facilitated. 3) A

more complicated dynamical behavior in the presence of reconstruction error is considered

in this scenario. It is shown that despite complex dynamics, still the safety of the ego-vehicle

is ensured.

4.7 Conclusion and Future Work

In this chapter, a learning-enabled ZCBF controller for safety-critical systems under uncer-

tainty has been proposed. It has been proved that the proposed method is capable of ensuring

safety in complicated and uncertain environments in the presence of external agents with

unknown dynamics. It has been also demonstrated that safety during learning and even with

inaccurate modeling of external agents is guaranteed. As a result, this approach has pro-

vided a practical method in control scenarios that accurate modeling needs a great number
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of data and computationally expensive learning schemes while still un-predicted objects are

expected such as autonomous driving in an urban area. Meanwhile, having a better model

has enabled the controller to take a less conservative action and has resulted in a better per-

formance. To achieve this goal, a modified experience replay method has been proposed that

identifies the external agents dynamic to minimize the difference between the safe set and its

approximation. This method provides fast convergence and ensures a bounded error to the

exact model even with inaccurate modeling which are both crucial in safety-critical control

systems. Future work includes consideration of disturbance in the ego system’s dynamics

and extension to a robust framework. Furthermore, the reciprocal behavior of agents in the

environment can be considered.
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Chapter5

Robust Satisficing Cooperative Control

Barrier Functions for Multi-Robots Sys-

tems using Information-Gap Theory

Contents of this chapter first appeared as [52] and have been reformatted to fit the

requirements of this dissertation.

5.1 Introduction

Successful deployment of multi-robot and swarm systems demands safety guarantee of agents.

While a centralized control approach can be used to design safe controllers for all agents in

a swarm, the communication and computation complexity are expensive and do not scale

up with the size of the swarm. Therefore, it is desired to prevent collision in a distributed

manner using only local information exchange among agents, either explicitly through com-

munications or implicitly through internal sensors. However, this local information is not

certain and accurate due to imperfect communication, measurement errors, aging of sensors,

weather conditions, and even failure of the sensing system. As a result, the failure of one

agent in avoiding collision due to these uncertainties can lead to catastrophic failure of the

whole system. This necessitates taking the uncertainty on the local information into account

in any safe control design. In addition, it is desired to leverage the cooperative capability

of the swarm system in ensuring safety via sharing responsibility in avoiding collision and
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compensating for uncertainties as much as possible.

Common approaches for solving collision avoidance problems include conflict resolution

[72], model predictive control (MPC) [73], potential field function[74], geometric guidance

[75], and barrier function-based methods [33, 76, 77, 78]. Conflict resolution approaches,

such as reachability-based methods rely on the availability of trajectories of other agents to

find an obstacle-free route. MPC solves an optimization problem at every sample and ac-

counts for state and input constraints. Collision avoidance criteria are also represented as the

state constraint, and thus, MPC is employed to address this problem. In the potential field

approach, each agent follows the gradient of potentials from which the target is attracting

to and obstacles are repelling from. Geometric guidance methods such as collision cone [79]

and velocity obstacle [75] result in less computational cost than the MPC and the conflict

resolution approach. However, coping with sensors’ errors which directly affects the safety

criterion and thus the safety of the system and extension to decentralized safe frameworks

which only rely on local information rather than global functions, remain as challenges [77].

Control barrier function (CBF)-based methods prevent collision between agents by en-

suring the forward invariance of a safe set. This provides safety without neither the need for

computing a safe reachable set in reachability-based methods nor solving an online nonlinear

optimization for every instance of time in MPC-based methods, and, thus, is more computa-

tionally tractable. In addition, it can be applied to the control loop in a minimally invasive

manner, in the sense that a nominal (e.g., optimal) controller can be modified as little as

possible to ensure safety. Therefore, it is a versatile method that can be integrated into a

variety of control approaches [27, 50, 80]. This is superior to the collision avoidance methods,

which employ a secondary controller in the face of collision risk. This is because switching

between primary and secondary controllers can delay or even prevent safe task completion,

especially in a dense environment. In [34], the robustness of CBFs under model perturbation

is investigated and asymptotic stability of the safe set is established. In [81], a distributed

CBF-based approach is presented for multi-agent systems. This work is then extended in
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[33] and [76] to heterogeneous swarm systems in which the maximum acceleration of agents

is not equal, and the CBF is shared between agents based on their maximum acceleration.

In [82], each agent is modeled as an ellipsoid and a distributed CBF is used to ensure the

safety of a swarm system while disturbance and parametric uncertainty in gravity term of

Lagrangian dynamics is considered and estimated. However, in a distributed CBF approach,

which relies on the local information, measurement uncertainty (i.e., inaccuracy in the rela-

tive distance to other agents measured by the ego-agent) might jeopardize the safety of the

overall system, which is not considered in the existing distributed CBF methods. Therefore,

it is desired to investigate the effect of measurement uncertainty on the safe performance of

swarm systems. Considering a worst-case uncertainty limits the action of agents and results

in an overly conservative controller. Especially in a situation that error bound might be

substantial, unknown, and time-varying, the worst-case method might not be feasible at all.

In addition, when the measurement confidence of agents is not uniform, higher uncer-

tainty in one agent’s measurement might lead to catastrophic failure of the overall system;

therefore, agents need to cooperatively decide on their roles in ensuring pairwise safety. In

addition, sources of measurement uncertainty are not always known a priori. For example,

different weather and lighting conditions can alter the accuracy of the reading or make it

unreliable. Therefore, to tackle this issue, rather than considering the probabilistic model or

bound of the measurement error, we propose to use the cooperative capability of agents to

maximize the horizon of uncertainty under which the safety of the overall system is ensured.

When agents have different measurement confidences, the agents with higher certainty de-

cide to take more responsibility for ensuring the safety of the overall system. Even in an

extreme case that one agent fails in sensing, other agents can compensate by taking responsi-

bility for the safety guarantee. This is achieved by sharing CBFs using information-gap (IG)

theory to maximize the safe horizon of uncertainty between every two agents. IG theory is

a decision-making tool for prioritizing alternatives when neither the probabilistic distribu-

tion of uncertainty nor its worst case is available. The uncertainty in IG theory rather is
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modeled with an ambiguity set of possible outcomes with an unknown bound or uncertainty

horizon. The robust satisficing IG method takes action that results in the highest horizon

of uncertainty up to which a critical requirement is satisfied. IG theory is employed in var-

ious engineering problems [83, 84, 85, 86]. However, its application is less investigated in

conjunction with control theory.

In this chapter, a safe and robust satisficing control protocol is proposed for the multi-

agent collision avoidance problem in the presence of measurement uncertainty. In the pro-

posed approach, it is assumed that agents are unaware of their neighboring agents’ trajec-

tories, and only uncertain local measurement information about neighbors is available (e.g.,

through embedded sensors) in the sense that neither a probabilistic model of the uncertainty

nor its worst case is known. To maximize the robustness of the system to measurement

uncertainty and satisfy the safety of the overall system, the IG theory along with the CBF

approach is employed to determine the contribution of each agent in constructing shared

CBFs between agents. It is shown that based on the IG theory, agents with more certain

measurements must take more responsibility to ensure pairwise safety, and consequently, the

overall safety of the multi-agent system, as they are allowed to have more agile behaviors

and have more influence on the overall agility of the system. It is also shown that using the

proposed approach, agents with more accurate measurements can cooperatively compensate

for agents with less accurate measurements without sacrificing performance. In a nutshell,

the contributions of the chapter are as follows.

1. Accounting for the measurement uncertainty in a distributed multi-agent barrier cer-

tified control framework.

2. Employing the cooperative capability of agents for safety guarantee and compensating

for each other’s measurement inaccuracy.

3. Presenting a robust satisficing approach to maximize acceptable horizon of uncertainty

using information gap theory which enables a non-conservative robust design.
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5.1.1 Organization of the Chapter

Section II is allocated for problem overview and background information on CBFs and IG

theory. The problem statement and the proposed framework of robust-satisficing distributed

safe control are presented in Section III. Section IV represents the simulation results and

Section V concludes the chapter.

5.2 Problem Overview and Background

The problem overview and motivation are first presented in this section. Then, background

on CBFs and IG theory is provided.

5.2.1 Problem Overview

The controller for safety-critical multi-agent systems that share an environment must be

carefully designed to not only achieve their tasks but also satisfy coupled safety constraints.

Satisfying these coupled safety constraints under uncertainty (e.g., measurement uncertainty)

is challenging and without the agent’s collaboration (e.g., shared collision avoidance strat-

egy), might result in conservative control design and even infeasibility. To achieve this

cooperation in ensuring safety, CBFs and IG theory are integrated.

CBFs are employed to ensure forward invariance of the safe set. However, since the

trajectory information of involving states is needed in each pairwise CBF (i.e., dynamics of

each two agents, which collision should be avoided between them). Therefore, the pairwise

CBF is broken into two distributed CBFs in which each of them only relies on each agent’s

trajectory and local information. Satisfaction of distributed CBFs for each two agents in the

vicinity of each other results in collision avoidance between them. However, measurement

uncertainty leads to inaccuracy of distributed CBFs and, therefore collision. Considering

the worst-case uncertainty severely limits the action of agents and leads to the conservatism
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of the controller. In addition, the worst-case uncertainty is not always known. Therefore, as

the main contribution of this chapter, another approach to tackle this problem is employed.

Share of each agent in ensuring safety is determined in a cooperative manner using IG theory.

In other words, CBF is shared between agents such that the system tolerates the highest

horizon of uncertainty, while usage of uncertainty information is avoided in the formation

of CBFs, resulting in agile and non-conservative controllers. It is shown that agents with

more accurate measurements are able to compensate inaccuracy of other agents by taking

more responsibility in ensuring safety. The formulation of this method unfolds in subsequent

sections.

5.2.2 Background

In this section, the background on CBFs and IG theory is briefly provided. An affine non-

linear system is considered as

ẋ = f(x) + g(x)u (5.1)

where x ∈ Rn and u ∈ U ⊂ Rm are the state of the system and the control input, respec-

tively. It is assumed that f and g are locally Lipschitz and the equilibrium point of the

system is stabilizable.

5.2.2.1 Control Barrier Functions

CBFs are used to guarantee the forward invariance of a predefined set in a control system.

Zeroing CBF (ZCBF), as one major form of CBFs, is positive within a set of interest and

reaches zero at the set’s boundary. Imposing a proper condition on its derivative prevents

the system trajectories from passing the boundary of the set of interest, which guarantees

its forward invariance.

The safety criterion is represented as h(x) ≥ 0, where h(x) : Rn → R is a smooth
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function. The safe set is defined accordingly as

C = {x ∈ Rn|h(x) ≥ 0} (5.2)

Definition 5.1. [55, 34] A continuous function β : (−b, a) → (−∞,∞) with a, b > 0 is an

extended class K function, if it is strictly increasing and β(0) = 0 . ■

Definition 5.2. [28] Considering the dynamical system (5.1) and the set C ⊂ Rn (5.2)

defined using a h(x) ∈ C1 function, if there exists a locally Lipschitz extended class K

function β such that

sup
u∈U

[Lfh(x) + Lgh(x)u+ β(h(x))] ≥ 0, ∀x ∈ D (5.3)

then, the function h(x) is a ZCBF on domain of interest D with C ⊆ D ⊂ Rn. ■

The set of feasible control inputs for h(x) is formed accordingly as

Um(x) = {u ∈ U |Lfh(x) + Lgh(x)u+ β(h(x)) ≥ 0}

Ensuring the forward invarinace of a set using ZCBFs is the result of the following theorem.

Theorem 5.1. [28]. Given dynamical system (5.1) and the set C ⊆ D (5.2) defined for

h(x) ∈ C1, if h is a ZCBF on D , any Lipschitz continuous controller {u : D → R|u ∈ Um(x)}

renders the set C forward invariant.

Remark 5.1. Note that based on the definition of the safe set (5.2) and the ZCBF criterion

defined in (5.3), if the initial state of the system (5.1) is inside the safe set, i.e., the initial

condition x(0) satisfies h(x(0)) > 0, then even if h(x) decreases and the system’s trajectory

gets close to the safety boundary, since, the derivative of h(x(t)) is positive in the boundary,

i.e., Lfh(x)+Lgh(x)u ≥ 0, the value of h(x) starts increasing. This pushes back the systems’
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trajectories inside the safe set for which h(x(t)) > 0. Furthermore, β(h(x)) determines how

fast the states of the system can reach the safety boundary.

5.2.2.2 Information-Gap Theory

Uncertainty is typically modeled by either probability distribution or its worst case. However,

in a scenario in which the system changes over time and future variations in the condition is

poorly known in advance, a poor or overly-conservative controller might be induced. In such

scenarios, IG theory can be employed to drastically improve robustness and performance of

the system. Robust satisficing IG theory is a non-probabilistic decision making method that

prioritizes the choices to maximize robustness against uncertainty. First, an ambiguity set

is leveraged to model the uncertainty. Based on the application and the available knowledge

about the uncertain entity, different IG models can be employed such as hybrid IG model,

slope bound model, and Fourier bound model [83, 84]. Note that the horizon of uncertainty

in the ambiguity set is unknown.

To clarify this, assume that the parameter K is the entity of interest while limited

knowledge about it is available and let K̂ be a rough estimation of K, while the exact value

of deviation from the true value is unknown. The following fractional IG model can be used

as an ambiguity set

U(s, t) = {K
∣∣|K − K̂

ϕ(t)
| < s} (5.4)

where the parameter s is the horizon of uncertainty which is unknown. The true value of K

can deviate from the available estimation by at most ±s|ϕ(t)|. Note that 1
ϕ(t)

is considered as

the measurement confidence which is a rough measure on validity of the sensed or measured

data. The sensed data with higher measurement confidence is more reliable. Depending on

the application, there are different methods in the literature to quantify measurement con-

fidence such as sensor fusion-based methods [87, 88]. In the simplest form, with no external
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processing method to extract the reliability of measurement, measurement confidence is the

measurement accuracy of the instrument in which the manufacturer has provided. Mea-

surement confidence depends on the situation, the operating environment, and the accuracy

of the sensing equipment of agents. For example, a change in the weather condition and

the discrepancy between different sensors’ measurements of an agent result in less confident

measurements, and, therefore, the agent demands recommunication. An illustrative example

is provided in the subsequent section to clarify the basis for calculation and change of the

measurement confidence.

Note that IG approach is entirely different from the standard practice in robust control

for which the uncertainty bounds are known and the goal is to design a controller that

satisfies the system’s requirement within known uncertainty boundaries. Instead, the goal of

IG is to maximize the uncertainty horizon under which the system achieves its requirement.

All IG models including fractional-error model (5.4) have two properties of contraction and

nesting. Contraction property states that U(s) is a singleton when s = 0, while nesting

property means that increment in s makes U(s) more inclusive and

s2 < s1 =⇒ U(s2) ⊂ U(s1)

This reveals the importance of our desire to maximize the horizon of uncertainty. When

horizon of uncertainty gets bigger, the ambiguity set (5.4) expands and thus more uncertainty

will be tolerated.

5.3 Robust-Satisficing Control Barrier Function

This section presents the problem of collision-free and safe control of multi-agent systems

using CBF and IG theory in the presence of uncertainty in the agent’s local measurement

information. To cope with uncertainty, a robust satisficing approach is proposed to determine

the share of each agent in the CBF between each two agents to tolerate the highest horizon
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of uncertainty under which the pairwise safety is still ensured.

Considering the system model (5.1) and the uncertainty model (5.4) where the uncertain

entity h(x) is the relative distance between each pair of agents,

U(x, s, t) = {h(x)
∣∣|h(x)− ĥ(x)

ϕ(t)
| < s}

by determining the minimum performance requirement that must be satisfied, the IG safety

robustness is defined as

s∗(xc) = max
s

{s|( min
h(x)∈U(s,t)

h(x)) ≥ xc} (5.5)

where h(x) is used to represent safety requirement and xc is a critical value (which is 0 here)

from which h(x) should not exceed. Eq. (5.5) implies that our goal is to maximize the

horizon of uncertainty s∗ which in the worst case, the system requirement h ≥ 0 is satisfied.

Illustrative Example:

As mentioned earlier, the quantification of measurement confidence depends on the sys-

tem’s application and sensing capability. Thus, a variety of methods, such as sensor fusion

approaches, can be employed to examine the reliability of the sensed data. Here we provide

a simple example to clarify the concept further.

Assume the system is equipped with two different distance sensors, a laser scanner with

the measured value of dli, i = 1, ..., N , where N is the number of the nearby objects; and a

radar with the measured distance to the nearby objects of dri, i = 1, ..., N . To determine the

reliability of the sensed data dli, one might examine the norm of the discrepancy between

these two readings as

ϕi(t) = (||dli − dri||) + eli
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where eli is the nominal measurement error of the laser scanner. As the discrepancy between

two measurements increases, the measurement confidence 1
ϕi

decreases. On the other hand,

if this discrepancy is negligible, then the measurement confidence simplifies to 1
eli
. To have

a discrete index, one might define this function as

ϕi(t) = f(||dli − dri||) + eli

where

f(x) =

{ a1, if 0 < x < b1
...

ai, if bi−1 < x < bi

It will be shown later that agents need to recommunicate in case of a change in measurement

confidence. Therefore, by having a discrete index they only need to re-communicate if a

critical value of discrepancy is passed resulting in a reduced communication cost.

5.3.1 Problem Formulation

Consider a swarm system with N agents and index set of M = {1, ..., N}. Each agent is

modeled as a single integrator

ṗi(t) = ui(t), ∀i ∈ M (5.6)

For simplicity, in the rest of paper, pi(t) and ui(t) are written as pi and ui, respectively.

pi ∈ R2 is the position vector in the Cartesian space and ui ∈ R2 is the velocity of the agent

which is considered as the control input. It is desired to satisfy the following pairwise safety
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criterion for collision avoidance between each two agents i and j

∥∆pij∥ ≥ Ds, ∀i, j ∈ M , i ̸= j

where ∆pij = pi−pj is the relative position between agents i and j and Ds is the minimum

safe distance. The pairwise safety criterion hij between each two agents i and j is then

defined as

hij = ∥∆pij∥ −Ds ≥ 0, ∀i, j ∈ M , i ̸= j (5.7)

which specifies that the pairwise distances between agents should be kept above a critical

value Ds, resulting in collision avoidance. According to (5.7), the following pairwise safety

sets are formed

Cij = {(pi,pj)|hij ≥ 0}, ∀i, j ∈ M , i ̸= j (5.8)

The pairwise ZCBF constraint which ensures forward invariance of (5.8) and consequently,

their pairwise safety based on Theorem 5.1 and using (5.3) with taking β(hij) = αijhij is

∆pTij
||∆pij||

∆uij + αij(||∆pij|| −Ds) ≥ 0,

∀i, j ∈ M , i ̸= j (5.9)

where αij > 0 is a design parameter which determines how fast the trajectories of the system

can approach the safety boundary and ∆uij = ui−uj. The overall safety set is formed using

(5.8) as follows [33]

C =
∏
i∈M

{
⋂

j∈M ,j ̸=i

Cij} (5.10)
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This implies that in order to have a collision-free maneuver for the overall system, the collision

should be avoided between each two agents. This result is presented in the following theorem.

Lemma 5.1. [33]. The multi-agent system represented by M is safe and C in (5.10) is

forward invariant, if the control input u = [u1
T , ...,uN

T ]T satisfies all pairwise ZCBF con-

straints (5.9).

As can be seen in (5.9), the information about trajectories of both agents i and j is

needed in ZCBF inequality constraint. However, in reality, the exact trajectories of agents

are not available due to measurement inaccuracy or communication noise and sensor or

communication failure. As a result, alternative ZCBFs should be employed for which each

agent takes responsibility on ensuring safety based on its own trajectory information and

local uncertain measurements about the position of other agents.

5.3.2 Robust-satisficing Distributed CBF

In this subsection, the effect of measurement uncertainty in certifying the safety of the system

is investigated. Afterwards, the idea of distributing ZCBF constraints in order to achieve

highest robustness considering the measurement uncertainty is presented.

5.3.2.1 Distributed ZCBF

It is desired to guarantee safety of the overall system in a distributed network using only local

information. By considering the fact that CBF provides safe and admissible set of inputs

which can be divided into safe and admissible subsets, [33] and [76] propose to distribute

the pairwise ZCBF constraint (5.9) between agents i and j as follows

ZCBFi :
∆pTij

||∆pij||
ui + αi · (||∆pij|| −Ds) ≥ 0 (5.11)

ZCBFj :
−∆pTij
||∆pij||

uj + αj · (||∆pij|| −Ds) ≥ 0 (5.12)
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where

αi + αj = αij (5.13)

with αij as a design parameter set in advance to achieve a specific performance while safety

is ensured. ZCBFi and ZCBFj are ZCBF constraints that agent i and agent j follow based

on their local information. Thus, if each agent’s controller ui and uj are designed such that

(5.11) and (5.12) hold, then their summation, which is the pairwise ZCBF constraint (5.9),

is satisfied as well. In this formulation, each agent only needs its own trajectory and local

measurement information about the relative distance to surrounding agents to satisfy the

corresponding ZCBF constraint; therefore, a distributed implementation is feasible. Param-

eters αi and αj specify how the pairwise ZCBF constraint (5.9) is shared between agents.

The greater αi and therefore the faster αi · (||∆pij|| −Ds) gets close to zero, the faster the

derivative terms become positive, which pushes harder and faster the trajectory of the system

back into the safe set. In other words, the agent with greater allocated αi is allowed to have

a more agile maneuver. Since measurement uncertainty is inevitable and must be considered

when designing safe controllers, it is desired to determine a method for allocation of these

parameters to achieve the best possible robustness against measurement uncertainty. This

will be covered in the following subsection.

5.3.2.2 Robust-satisficing distributed ZCBF

In a distributed safe control framework, each agent relies on its own local measurement

information. However, measurement uncertainty and accuracy reduction due to aging of

sensors or uncertainty due to imperfect communication can affect the safety of the overall

system. Therefore, it is important to model and incorporate uncertainty in control design.

In this chapter, IG theory is employed to address the question of how to design distributed

ZCBFs which are capable of tolerating the highest horizon of uncertainty while avoiding
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collision.

It is assumed that agent i is capable of measuring instantaneous relative position of

surrounding agents. However, the local information of agent i about this relative position is

uncertain

∆p̂i = ∆pij + ei(t) (5.14)

where ∆p̂i is a rough estimation of agent i from ∆pij and the measurement error is denoted

by ei(t) which is unknown to the agent i. Therefore, an ambiguity set is employed instead,

to model measurement uncertainty

U(si, t) = {∆pij
∣∣||∆p̂i −∆pij

ϕi(t)
|| ≤ si} (5.15)

where si is the horizon of measurement uncertainty of agent i, and 1
ϕi(t)

indicates the con-

fidence of agent i from its measurement. Note that ∆pij,∆p̂i are vectors, and therefore,

radial and angular uncertainties are reflected in (5.15).

Assumption 5.1. The measurement error ei(t) is bounded as

||ei(t)
ϕi(t)

|| ≤ si

Note that in deeply uncertain scenarios, the exact value of error ei(t), is unknown.

In contrast with robust framework in which a known worst-case horizon of uncertainty

is respected, in here the goal is to make decisions that maximize the unknown horizon

of uncertainty and then the highest possible worst case is derived based on made robust

satisficing decisions.

Due to uncertainty, agents don’t have access to the exact value of ||∆pij||, instead they

have an uncertain measurement of it denoted by ||∆p̂i||, ||∆p̂j|| and thus each agent perceives
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safety criterion (5.7) differently as

hi = ||∆p̂i|| −Ds

hj = ||∆p̂j|| −Ds (5.16)

where hi and hj are the perception of agents i and j from safety criterion hij, respectively.

Note that in case of no measurement uncertainty hj = hi = hij = ||∆pij|| −Ds; however, in

the presence of measurement uncertainty, exact value of hij is not available to agents, and

this uncertainty is reflected in the perception of agents from safety criterion as (5.16).

The distributed ZCBF constraints with uncertain measurements become

ZCBF i :
∆p̂Ti
||∆p̂i||

ui + αi · (||∆p̂i|| −Ds) ≥ 0 (5.17)

ZCBF j :
−∆p̂Tj
||∆p̂j||

uj + αj · (||∆p̂j|| −Ds) ≥ 0 (5.18)

where ZCBF i and ZCBF j are uncertain interpretation of ZCBF i and ZCBF j, respec-

tively. The robust design of (5.17) and (5.18) to guarantee the safety criterion (5.7) is the

result of the following problem.

Problem 5.1. Consider the multi-agent system (5.6) and define the measurements ambi-

guity sets U(si, t) and U(sj, t) for agents i and j by (5.15). Consider the pairwise ZCBF

constraints (5.17) and (5.18). The goal is to distribute ZCBF constraint between agents i

and j by assigning αi and αj to design a robust safe control mechanism that maximizes the

uncertainty horizons in U(si, t) and U(sj, t) under which the system still remains safe.

The goal in Problem 5.1 can be achieved by solving the following max-min problem

(max
S

min
∆p̂i∈U(si,t),∆p̂j∈U(sj ,t)

[ZCBF i + ZCBF j]) ≥ 0 (5.19)

where Sij =
√
si · sj is the pairwise horizon of uncertainty based on each agent’s horizon of
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uncertainty. Having a uniform horizon of uncertainty in which si = sj is desired, because lack

of robustness in one agent affects the safety of the overall system. The inner minimization

in (5.19) gives the worst case of ZCBF constraint considering the ambiguity set (5.15). In

this scenario, positiveness of ZCBF constraint ensures safety of the system. It translates the

worst case to the smallest value of ZCBF constraint. The outer maximization term gives the

maximum horizon of uncertainty under which ZCBF constraint still remains positive.

Theorem 5.2. The highest horizon of uncertainty that guarantees uniform robustness for

all agents is obtained when the agility parameter αij is distributed between agents based on

their measurement confidence as

αi(t) = αij(1−
|ϕi(t)|

|ϕi(t)|+ |ϕj(t)|
)

αj(t) = αij(1−
|ϕj(t)|

|ϕi(t)|+ |ϕj(t)|
)

Proof. IG robustness is the highest horizon of uncertainty under which the safety of the

system is ensured. ZCBF i + ZCBF j in (5.19) based on the available uncertain measured

values is

ZCBF i + ZCBF j =

∆p̂Ti
||∆p̂i||

ui −
∆p̂Tj
||∆p̂j||

uj + αi(t)||∆p̂i||+ αj(t)||∆p̂j|| − αijDs (5.20)

Define the inner minimization problem in (5.19) as m(si, sj). That is,

m(si, sj) = min
∆p̂i∈U(si,t),∆p̂j∈U(sj ,t)

[ZCBF i + ZCBF j]

Note that m(si, sj) is the minimum value of (5.20) obtained when smallest values of ||∆p̂i||
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and ||∆p̂j|| within the ambiguity set (5.15) occurred, which using triangular inequality are

||∆p̂i|| = ||∆pij|| − |ϕi(t)||si|

||∆p̂j|| = ||∆pij|| − |ϕj(t)||sj| (5.21)

Therefore, by substituting (5.21) into (5.20) and some manipulations, one has

m(si, sj) =
∆p̂Ti
||∆p̂i||

ui −
∆p̂Tj
||∆p̂j||

uj

+ αij · (||∆pij|| −Ds)− αi(t)|ϕi(t)||sj| − αj(t)|ϕj(t)||si| (5.22)

Note that ∆p̂Ti
||∆p̂i||

ui =
∆pTij

||∆pij ||
ui cos θi, where θi is deviation on direction of ∆p̂i from ∆pij.

Since θi << 1 then cos θi ≈ 1 and therefore ∆p̂Ti
||∆p̂i||

ui =
∆pTij

||∆pij ||
ui. Considering (5.22), problem

(5.19) is simplified to

max
S

m(si, sj) ≥ 0 (5.23)

Since the coefficients corresponding to si and sj in (5.22) are negative, their maximum occurs

whenm(si, sj) = 0. Therefore, by denoting maximum of si and sj as si
∗ and sj

∗, respectively,

one has

(αi(t)|ϕi(t)|)si∗ + (αj(t)|ϕj(t)|)sj∗ =

∆p̂Ti
||∆p̂i||

ui −
∆p̂Tj
||∆p̂j||

uj + αij · (||∆pij|| −Ds) (5.24)

To maximize the pairwise horizon of the uncertainty previously defined as Sij =
√
si · sj, one
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must solve the following optimization problem

max
αi,αj

si
∗sj

∗

s.t. (5.24)

which is a maximization problem over multiplication of two parameters while a linear relation

exists between them. Therefore, by denoting the right-hand side of (5.24) by v, one has

si
∗ =

v

2αi(t)|ϕi(t)|
, sj

∗ =
v

2αj(t)|ϕj(t)|
(5.25)

In addition, it is desired to have a uniform robustness for all agents, i.e., si
∗ = sj

∗. That is,

αi(t)|ϕi(t)| = αj(t)|ϕj(t)| (5.26)

By considering (5.13) and (5.26), one has

αi(t) = αij(1−
|ϕi(t)|

|ϕi(t)|+ |ϕj(t)|
)

αj(t) = αij(1−
|ϕj(t)|

|ϕi(t)|+ |ϕj(t)|
) (5.27)

This completes the proof.

Equation (5.27) provides a rule to share the ZCBF constraint between two agents to

achieve the highest robustness against measurement uncertainty. Based on (5.27), the agent

with higher measurement confidence takes a higher responsibility in ensuring pairwise safety,

and behaves in an agile manner while the agent with lower confidence behaves conservatively

and this leads to higher overall robustness.

Remark 5.2. The proposed method employs the cooperative capability of agents to deal

with measurement uncertainty. It is also applicable to extreme cases. Assume that the
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sensing system of agent i fails, and the agent realizes this through the discrepancy between

measurements of two different sensors. This results in having very small measurement con-

fidence 1
ϕi(t)

. Therefore, according to (5.27), αi = 0 and αj = αij. This means that agent j

takes the whole responsibility in ensuring pairwise safety and compensates for the failure of

agent i. This example clarifies the advantage of the proposed method to handle rare failure

cases with infinity bound of uncertainty which cannot be obtained using worst-case analysis.

Remark 5.3. Note that even if agents share their positions through a communication net-

work, the uncertainty in the information needs to be considered because knowledge of agents

about their own positions might be drifted and also reliability and accuracy of communica-

tion network should be considered.

Remark 5.4. Note that the exact measurement error might be greater than ϕ(t) and mea-

surement confidence 1
ϕ(t)

is the best knowledge of agents on the reliability of their mea-

surements which does not affect the strict safety of the system as long as the horizon of

uncertainty is not exceeded. However, more accurate measurement confidence leads to a

more robust distribution of ZCBF constraint between them.

5.3.2.3 Discussion

The proposed approach can be extended to a more general dynamics. Assume that dynamics

of agents i, j with states of xi, xj are, respectively, modeled as ẋi = fi(xi) + gi(xi)ui and

ẋj = fj(xj)+gj(xj)uj with the safety criterion (5.7). Then, the distributed ZCBF conditions

similar to (5.11) and (5.12) are

ZCBFi :
∂hij
∂xi

(fi(xi) + gi(xi)ui) + αi · (hij) ≥ 0

ZCBFj :
∂hij
∂xj

(fj(xj) + gj(xj)uj) + αj · (hij) ≥ 0

Now, if
∂hij
∂xi

is only a function of xi and
∂hij
∂xj

is only a function of xj, then the distributed

ZCBFs are functions of each agent’s states and its local measurement. Therefore, by having
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an ambiguity set for ĥi and ĥj, one can form the uncertain interpretations of ZCBFs similarly

as (5.17) and (5.18); which is used in solving optimization Problem 1 and similar results apply.

However, if the partial derivative of hij with respect to xi and xj is a function of both states,

such as higher-order derivatives of norm functions, then it demands further calculations to

derive distributed formulation based on the agent state itself and the local measurement.

This generalized formulation is one of the future research directions.

5.3.3 Controller Design

Considering Figure 5.1, each agent is a graph node, and the measurement confidence of

agents is the edges of the graph. Each agent communicates with its surrounding agents at

the initiation time, and they exchange their measurement confidence through a bidirectional

communication graph. After that, distributed ZCBF constraints are formed and agents no

longer need to communicate and they rely on their own measurements until a change in

measurement confidence (e.g., the discrepancy in measured data obtained from two different

sensors) of an agent is observed or a new agent gets close to it. In this case, the agent would

re-communicate and reset the pairwise safety responsibility based on (5.27). Therefore, only

on an event that an agent’s measurement confidence changes, communication and change

of αi and αj is needed. Thus, αi and αj can be considered as piecewise constants that will

remain constant between two events.

Designing a controller for solving a safe and robust collision avoidance problem using the

proposed approach includes two loops: 1. an outer loop that determines the share of each

agent in the pairwise ZCBF constraints. 2. an inner loop that solves an optimization problem

to find a safe controller that satisfies the safety of the overall multi-agent system by imposing

the ZCBF constraint obtained from the outer loop while minimizing the intervention with

the optimal controller for each agent. Algorithm 4 shows the proposed approach.

Remark 5.5. Note that Algorithm 4 is simultaneously performed for each agent using its

own local information. Therefore the obtained control input for the overall multi-agents
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Algorithm 4 Safe and Robust Control Design for each Agent i

1: Initialization: Start with safe initial conditions for all agents.
2: procedure
3: Outer Loop Control Design. Use Theorem 5.2 to find the distributed pairwise

ZCBF constraints, i.e., the responsibility of each agent in ensuring pairwise safety for
each two agents in the vicinity of each other. The overall distributed ZCBF constraint
for each agent i is then formed as

ZCBFit = [ZCBF i1 ; ...;ZCBF iNi ]

where ZCBFil , l = {1, ..., Ni} is the pairwise ZCBF constraint between agent i and its
neighboring agent l and Ni is the number of neighbors of agent i.

4: Inner Loop Control Design. Use the matrix of distributed ZCBF constraints for
each agent obtained by the outer loop as a hard constraint on the control design and
solve an optimization problem that finds a safe controller which is robust to measurement
uncertainty and minimally invasive to the optimal controller found by the linear quadratic
regulator (LQR). This formulation integrates the LQR controller and ZCBF for each
agent using quadratic programming, inspired by [27]

ui
∗ = argmin

ui
∥ui − ûi∥

s.t. ZCBFit ≥ 0 (5.28)

where ûi is the nominal controller obtained from LQR and ui
∗ is the safe controller

which is the minimally altered version of ûi for agent i such that ZCBF constraints and
therefore safety is ensured. Note that the nominal controller ûi can be designed based
on any performance objective or any other control approach.

5: end procedure
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Figure 5.1: Graph Topology

system is

u∗ = [u1
∗,u2

∗, ...,uN
∗]

With initial communication between agents in the vicinity of each other, ZCBFs sharing

parameters are formed and the safe control input for each agent is obtained independently.

After initial communication, they only need to re-communicate if the measurement confi-

dence of one agent or the graph topology changes. In this condition, the agent informs its

surrounding agents and they compromise again on the share of ZCBF constraint and this

cycle continues. This provides a robust-satisficing distributed framework in which agents

rely on their local measurements. This is an efficient method in which only occasional com-

munication with surrounding agents is needed.

5.4 Simulation

Amulti-robot system with five agents with integrator dynamics as (5.6) is considered. Agents

are located around a circle with a radius of r = 3 and are supposed to get to the opposite

point on the circle in a safe and collision-free manner in the sense that a pre-defined min-

imum safety distance Ds = 0.3 is respected between every two agents. Agents are aware

of their destination and the LQR with Q,R = 1 is employed as the nominal controller for
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this task objective. Simulation is conducted in three different scenarios; 1) Agents have

accurate measurements and accurate distributed ZCBFs are employed and integrated into

the controller as (5.28). 2) Measurement uncertainty is considered and its results compared

to scenario (1) is investigated. 3) Measurement uncertainty is considered and the proposed

method using IG is employed to share ZCBF constraints between agents to maximize ro-

bustness against uncertainty. Simulation results are given in two subplots, Figures(a), are

trajectories of agents, in which their initial locations are depicted with triangle markers and

their desired positions are depicted with star markers. Trajectories of agents are shown with

dashed lines. Since this plot is given in x − y plane, to have a sense of their maneuvers

in time, the positions of agents in a time t1 are also shown with filled circles. Figures.(b)

demonstrate the pairwise distance ||∆pij|| between all agents from beginning to the end of

the simulation. The minimum safety distance Ds is shown with a horizontal line. To have a

safe maneuver, all pairwise distances should be higher than this minimum value.

Figure 5.2 depicts the result for the first scenario in which the measurement uncertainty

is not considered, and accurate ZCBFs are available and equally shared between agents.

Note that without the incorporation of ZCBFs, all agents would have crashed at the origin;

however, in a barrier-certified fashion, agents get close to each other, turn around and move

toward their desired positions. Figure 5.2 (b) demonstrates that pairwise distances have

always been higher than minimum distance, and the safety of the system is preserved.

In the second scenario, the measurement uncertainty is incorporated as well. By clockwise

numbering of agents in their initial positions, absolute measurement errors of agents 1, 2,

5 are 0.01. Measurement errors of agents 3 and 4 are considered 0.2 and 0.1, respectively.

Note that these are high values of error considering that the minimum safety distance is

0.3. The exact values of errors are not known to agents, and their ZCBFs deviate from

the actual value. The result of employing the same approach in the previous scenario and

equally distributing ZCBF constraints between agents without using info-gap is depicted

in Figure 5.3. As can be seen in this figure, agents approach the origin carelessly and
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measurement error causes safety violation. The last scenario employs the proposed method

to handle the measurement uncertainty. Measurement confidence of each agent is considered

to be proportional to the inverse of its error, and pairwise ZCBF constraints are shared

between agents using (5.27). The result is shown in Figure 5.4. As shown in Figure 5.4

(a), agents with higher confidence have more agile maneuvers and rapidly approach the

origin, turn around and move toward their desired positions. Agent 4, with the next high

measurement confidence, gives the right of way to agile agents while approaching the origin

faster than agent 3 and agent 3, which has the lowest measurement confidence, moves slowly

and conservatively until the path is clear. As it is shown in Figure 5.4 (b), the safety of

the system is ensured despite inaccurate ZCBFs due to the measurement error. Note that

measurement errors of agents 3 and 4 are significantly high and are 67 and 34 percent of the

minimum safety distance, respectively. Note that the exact value of errors and their horizon

are unknown to agents and the pairwise horizon of uncertainty based on each agent’s horizon

is Sij =
√
si · sj. Thus, considering agents 3 and 4, which have the highest measurement

uncertainty of 0.2 and 0.1, the pairwise uncertainty of at least 0.14 is safely tolerable. To

show the effectiveness of the method for different values of safety distances, simulation is

conducted for different values of Ds = 0.1, 0.3, 0.6, 1. The pairwise distances between every

two agents are depicted in Figure 5.5. As can be seen in this figure, the pairwise distances

are above the critical safety line, indicating that the task is accomplished safely. To better

show the maneuvers of agents, a time-lapse is also shown in Figure 5.6.

Remark 5.6. Note that the proposed approach has a couple of advantages compared to the

worst-case approach. First, in the worst-case approach, the information about the worst case

of the measurement error is needed, and inaccuracy in this information results in violation

of safety. Second, since the measurement error is high with respect to the minimum safety

distance (67 percent for one of the agents), even if the worst-case is exactly known, still

an overly conservative safety distance needs to be kept among agents which is not needed

for certain agents. In addition, it makes the overall system slow and conservative and
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Figure 5.2: (a) Agents’ trajectories, no measurement error (b) Corresponding ||∆pij||
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Figure 5.3: (a) Trajectories, measurement error without IG (b) Corresponding ||∆pij||

might result in the infeasibility of solution as well. Furthermore, the worst-case approach is

not capable of rare cases of failure. Finally, the cooperative capability of agents in safety

remains unused. However, in the proposed approach, non-conservative robustness against

measurement uncertainty and rare cases of failure is achieved by proper distribution of ZCBF

constraints between agents and giving them the benefit of cooperation for a safe maneuver.

5.5 Conclusion

In this chapter, designing safe controllers for collision-avoidance problem in multi-agent

systems in the presence of measurement uncertainty is considered, and a robust-satisficing
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CBF-based approach is proposed for safe cooperative maneuvers of agents. It is assumed that

neither the probabilistic model of measurement nor its worst-case uncertainty is available.

Then, IG theory is employed to achieve the best way of sharing safety in the sense of

robustness toward uncertainty. It is shown that the certainty of one agent’s measurement

can compensate for the lack of accuracy of other agents. The simulation results with five

agents in different scenarios are presented to show the performance of the proposed method.

Future work includes providing a method for deriving and employing local confidence levels,

which enables communication-free safety task assignment.
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Chapter6

Conclusion

In this dissertation, the safety of the systems using CBFs in the face of two major challenges

of uncertain system dynamics and uncertain environment is investigated. For the model un-

certainty, a novel RL framework is proposed which augments the performance cost function

with a barrier-type safety cost to form a safety-aware performance metric. It is shown that

the presented performance also assures stability of the learned solution when there is no con-

flict between safety and stability. It is also shown that safety is guaranteed during successive

approximation of control policies. A safe off-policy algorithm is employed to implement the

proposed method. Afterward, the challenging problem of safe exploration is tackled with

a barrier-certified safe RL framework which is obtained by means of efficient learning with

prescribed performance along with a robutified safe and stabilizable controller throughout

the algorithm including the data collection phase. Experience replay-based model approxi-

mation is employed, which ensures the exponential convergence of the learning error to zero

after a mild rank condition is satisfied. This makes the learning error a vanishing perturba-

tion to the approximated model, which facilitates designing stabilizing controller using the

available rough knowledge of the system. The accurate bound of error is then employed in

formation of a novel non-conservative AR-CBF which ensures safety during learning. AR-

CBF and stabilizing controller are integrated through quadratic programming and is used

for further data collection needed for off-policy iteration. The noisy input is modified ac-

cordingly to result in safe and stable action. After collecting safe rich data, the optimal
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policy is approximated and then again is certified using AR-CBF for safe exploitation.

Afterward, the impact of uncertainty in the operating environment of the system is in-

vestigated. A learning-enabled ZCBF controller for safety-critical systems under uncertainty

has been proposed. It has been proved that the proposed method is capable of ensuring

safety in complicated and uncertain environments in the presence of external agents with

unknown dynamics. It has been also demonstrated that safety during learning and even with

inaccurate modeling of external agents is guaranteed. As a result, this approach has pro-

vided a practical method in control scenarios that accurate modeling needs a great number

of data and computationally expensive learning schemes while still un-predicted objects are

expected such as autonomous driving in an urban area. Meanwhile, having a better model

has enabled the controller to take a less conservative action and has resulted in a better

performance. To achieve this goal, a modified experience replay method has been proposed

that identifies the external agents’ dynamic to minimize the difference between the safe set

and its approximation. This method provides fast convergence and ensures a bounded error

to the exact model even with inaccurate modeling, which are both crucial in safety-critical

control systems. Finally, the cooperative capability of multi-agent systems is employed for

robust safety guarantee in the presence of measurement uncertainty. A robust-satisficing

CBF-based approach is proposed for safe cooperative maneuvers of agents. It is assumed

that neither the probabilistic model of measurement nor its worst-case uncertainty is avail-

able. Then, information-gap theory is employed to determine the share of agents in safety

guarantee to achieve the highest robustness against uncertainty. It is shown that the cer-

tainty of one agent’s measurement can compensate for the lack of accuracy of other agents,

and even rare failure case of one agent can be compensated by others.

Future research direction includes the extension of safe exploratory RL framework to

nonlinear systems and further employment of nonlinear theory in characterizing the learning

behavior of learning-based controllers. It is also suggested to investigate the reciprocal

interaction of agents in a cluttered environment and develop safe cooperative methods in
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which conservatism is further reduced by efficient communication methodology.
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