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ABSTRACT

FAIRNESS IN SOCIAL NETWORK ANALYSIS: MEASURES AND ALGORITHMS

By

Farzan Masrour Shalmani

The use of machine learning in human subject-related tasks has resulted in growing concerns

about the inherent biases within such automated decision-making algorithms. In response to these

concerns, we are witnessing a growing body of literature that focuses on designing fairness-aware

machine learning algorithms. However, current fairness research is mostly limited to non-relational,

independent and identically-distributed (i.i.d) data. To overcome this limitation, this thesis aims to

develop fairness measures and algorithms for analyzing social networks, which is an important class

of relational data. In particular, this work investigates the challenges of ensuring fairness in link

prediction, node classification, and network sampling, which are three important network analysis

tasks. First, we develop a novel fairness-aware link prediction framework that combines adversarial

network representation learning with supervised link prediction based on network modularity

measure. We show that this approach promotes more diverse links and addresses the filter bubble

problem in social networks. Second, we investigate the node classification problem from a fairness

perspective. We introduce a novel yet intuitive measure known as fairness perception and provide an

axiomatic approach to analyze its properties. A fairness-aware classification algorithm is developed

to balance the trade-o� between maximizing accuracy and minimizing the perception of bias in

the classification decisions. Using a graph-theoretic framework, we present a theoretical bound on

the gap between the true positive rates for di�erent groups of individuals when fairness perception

is maximized. Finally, we investigate the network sampling problem from a fairness perspective.

Specifically, we propose a novel fairness-aware network sampling framework that combines the

structural preservability and group representativity objectives into a unified structure. We also

present a fair greedy sampling algorithm with bounded approximation guarantees.
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CHAPTER 1

INTRODUCTION

The transformative impact of machine learning on our daily lives is undeniable. Integration of

machine learning algorithms into decision making in various sectors such as healthcare [175, 18],

banking [103], and criminal justice system [15, 62] are becoming increasingly popular. Neverthe-

less, it has also resulted in growing concerns regarding the potential implicit bias in the decision

outcomes of these algorithms [11]. In particular, the output of these algorithms may discriminate

against particular subgroups in the population, as identified by their protected attributes such as

gender, race, or sexual orientation. For instance, a previous study [11] has suggested that the risk

assessment software used in courtrooms in Florida discriminates against African Americans. The

study found that black defendants were nearly twice more likely to be misclassified as higher risk for

recidivism than their white counterparts. In addition, discrimination in machine learning decisions

has been reported in other situations like hiring [42], credit scoring [2], and medical diagnosis

[101].

There have been concerted e�orts to address these concerns in recent years. However, despite

the increasing body of literature on quantifying fairness and developing fair machine learning

algorithms, existing studies are mostly limited to non-relational data, which assume that the data

instances are independent identically distributed (i.i.d). Relational data violates this assumption of

independence as the individual data instances can have direct relations with one another [51]. For

instance, there is a correlation among the underlying content or topics of two papers in a citation

network if one cites the other.

An important class of relational data is that of network data. Networks are powerful tools for

modeling interactions between entities in a complex system. Examples include the Internet as a

physical network of interconnected computing devices, social media platforms such as Facebook

for human communications, and gene regulatory networks in biochemical systems. Analyzing the

properties of these networks may provide useful insights into the underlying mechanism governing
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the behavior of the complex system. In particular, substantial progress has been made to address

fundamental questions such as: How are the links established in a network? How do communities

formed and sustained over time? To provide answers to these and many other network related ques-

tions, innovative algorithms have been developed to mine the rich and rapidly growing repositories

of network data.

This thesis focuses on developing fairness measures and algorithms for social networks. The

key research question of this thesis is as follows: How to develop a fairness-aware network analysis

framework? In other words, how to detect and mitigate bias in algorithmic decisions in network

data? In the rest of this chapter, I will first describe this challenge in more details and explain why

it is an important problem. I will then discuss the main contributions of this work and provide an

outline of the rest of the thesis.

1.1 Fairness in Network Analysis

Social network data have proliferated over the past decade. By 2016, 80% of all mobile owners

in the US have switched to smartphones, which is a 38% increase compared to just five years

before1. This means more online users, more online purchases, and more social networking apps.

Many of these apps employ machine learning algorithms, including network-based models, to

provide a variety of services to their customers. However, recent studies [10, 99] have shown that

these algorithms can be prone to biases. For example, Ali et al. [10] showed that the ad targeting

algorithms behind online digital advertising platforms such as Facebook have significant bias in

their advertisement delivery along gender and racial lines.

In order to address biases and discriminatory decisions in machine learning, the following

questions need to be answered: (1) How to objectively quantify whether an algorithmic decision

is fair/unfair? (2) How to design algorithms that will mitigate the unwarranted biases and prevent

discrimination against individuals or underrepresented groups? For i.i.d. data, researchers have

proposed several definitions of fairness that generally compare an algorithm’s performance on

1
https://www.freshbooks.com/blog/smartphone-revolution-small-businesses
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di�erent subgroups of the population. This allows us to answer questions such as “Is the minority

group more likely to be misclassified than the majority group?" by comparing the disparity in false

positive or false negative rates of classification models across di�erent groups. After quantifying

the fairness measure, the next step is to design algorithms that account for the fairness measure

along with other performance criteria (e.g., model accuracy).

While the same approach can be applied to relational data, answering these questions would

require more careful considerations in relational data since the link structure often embeds infor-

mation about the protected attribute. For example, individuals in a social network have a tendency

to form ties with other individuals of the same gender, race, age group, educational background,

etc., an e�ect known as the homophily principle in social network analysis. This may introduce

systematic bias in the network data, which in turn, a�ect the network analysis results For example

Karimi et al [83] have shown how homophily can influence the ranking of minorities in real-world

networks by restricting their ability to establish links with members of the majority group.

Previous research has also suggested that many fairness metrics are incompatible with each

other [92]. To illustrate the di�culty of this problem, consider the well-documented debate on

COMPAS, a risk assessment software for predicting recidivism among o�enders [173]. ProPublica

investigative journalists claimed that the COMPAS algorithm is racially biased due to the significant

disparity in false positive and false negative rates between black and white o�enders [11]. In

response to this analysis [47], Northpointe asserted that their COMPAS software is indeed fair

and that ProPublica analysis had ignored the fairness criteria used by their software. Specifically,

they showed that the risk score provided by COMPAS did not discriminate against blacks since

the likelihood of recidivism predicted by the software is the same regardless of the race of the

o�enders. Indeed, Kleinberg et al.[92] showed that it would be impossible to satisfy the diverse

fairness criteria simultaneously. The main takeaway conclusion here is that the notion of fairness

should be application and context dependent. Thus, one should focus on applying the notion of

fairness that makes the most sense for the problem domain at hand. This argument can be extended

to social network data. Since they violate the i.i.d assumption, one should consider defining fairness

3



measures that take into account the link structure of the network.

1.2 Thesis Contributions

This thesis aims to expand the study of fairness to the mining of network data. The network

mining tasks to be investigated in this study include link prediction, node classification, and network

sampling. Specifically, I will introduce novel fairness metrics for network data and develop learning

algorithms that connsider the trade-o� between fairness and utility of the models. The challenges

and contributions of this dissertation are summarized in the remainder of this section.

1.2.1 Metrics for Assessing Fairness in Network Data

As previously mentioned, the choice of fairness criteria should depend on the problem at hand.

In this dissertation, we introduced three novel fairness metrics depending on the application and

context of the network analysis task, i.e., whether it is at node-level, link-level, or subgraph-level.

The node-level fairness measure is applicable to node classification tasks while link-level fairness

measure can be applied to link prediction problems. The subgraph-level measure, on the other

hand, can be utilized for the network sampling problem.

Chapter 3 presents a new link-based network fairness metric, which is an adaptation of the

well-known network modularity measure. The modularity of a network is computed by comparing

its link density against that of a random network with similar degree distribution. The measure

is extended to account for homogeneity of the node pairs that form the links in the network.

Specifically, a network with a large proportion of its links between nodes with the same protected

attribute value will have a high modularity value while one with more diverse links will have a

lower modularity value. This measure can be utilized to promote more heterogeneous (diverse)

links, and thus, prevent reinforcing segregation in link-based recommender systems.

Chapter 4 introduces the proposed node-level metric known as network-centric fairness per-

ception. The idea here is that an individual’s perception of fairness should depend on his/her

expectation of the decision outcome. For example, if the individual expects a positive outcome
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and indeed receives a favorable decision from the algorithm, the individual will likely perceive the

decision to be fair. However, if a positive decision is expected yet a negative outcome is received,

the individual will likely perceive the decision as unfair. The question is, how do we determine the

expected outcome of an individual? In social comparison theory, the expected outcome depends

on members of the reference group to whom the individual identified with. For network data,

the reference group that helps shape an individual’s expectation is defined by the node’s local

neighborhood. For example, a node expects a positive outcome if all of its neighbors also receive

a positive decision outcome. The outcomes of neighboring nodes thus help to shape the expected

outcome, which in turn, can be used to compute the fairness perception of an individual node.

Chapter 6 introduces the proposed subgraph-level fairness metric known as max-min subgraph

fairness. It is based on the idea that fairness measure on a subgraph should be measured in terms of

its worst-case quality measure across all subgroups of the protected attribute. The metric is inspired

by the idea proposed in [118] for classification of i.i.d. data, which evaluates group fairness as

a minimax problem instead of the standard approach of measuring disparity in the outcomes for

di�erent groups. In this thesis, the proposed max-min subgraph fairness measure is used for the

network sampling problem.

1.2.2 Fairness-Aware Network Mining Tasks

After o�ering network fairness measures, the next challenge is to introduce fairness into network

analysis tasks without significantly sacrificing accuracy. In this section we discuss the main findings

concerning this challenge.

1.2.2.1 Fairness-Aware Link Prediction

Homophily, which is the tendency of individuals to form relations with others similar to them, is an

essential characteristic of many social networks. Homophily can give rise to network community

structure with potential discriminative consequences in some situations. For example, consider pro-

fessional networking sites. Certain professions, such as software engineering, are male-dominated
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and intensely segregated. This phenomenon, which is reflected in the network’s community struc-

ture, can adversely e�ected the employment opportunities of talented female engineers and other

minorities. Homophily can be quantified using the well-known network modularity (or assortative

mixing) measure.

As we discussed above, due to the homophily principle, current link prediction algorithms

are susceptible to promoting links that may increase the network’s segregation. To mitigate this

problem, we proposed two algorithmic solutions in Chapter 3. The first algorithm is a greedy

postprocessing approach that utilizes the proposed fairness criteria based on modularity measure.

This algorithm can be applied to the output of any link prediction algorithm, and a hyper-parameter

can specify the importance of accuracy versus fairness measure. The second algorithm is a

novel framework that combines adversarial network representation learning with supervised link

prediction. The architecture of the algorithm consists of three components: A generator that

learns node representations, a discriminator that tries to predict link types, and a link prediction

component for new link inference. Experimental results on several real-world datasets showed

the e�ectiveness of the proposed methods in reducing the predicted network’s modularity without

degrading prediction accuracy significantly.

1.2.2.2 Fairness-Aware Node Classification

The network-centric fairness perception measure described previously can be used as a criterion

for assessing fairness in node classification decisions. In Chapter 4, we presented a case study on a

peer-review network to show how fairness perception can be exploited to mislead individuals into

perceiving unfair algorithmic decisions as fair. In Chapter 5, we investigated this issue theoretically.

The main theoretical result of this work is finding an upper bound on true positive rate disparity, i.e.,

the gap between true positive rates for two distinct groups of the protected attribute, for a classifier

that maximizes fairness perception. This upper bound is a function of the network structure and

the distribution of nodes belonging to the protected groups in the network. When the upper bound

is small, we showed that maximizing fairness perception has a linear solution. In this case, fairness

6



perception will not only ensure that individuals are satisfied with the classification decision but

also guarantees fairness in terms of true positive rate parity. When the upper bound is large,

we proposed a novel multi-objective optimization algorithm to achieve a compromise between

maximizing fairness perception and minimizing the true positive rate disparity.

1.2.2.3 Fairness-Aware Network Sampling

Network sampling aims to achieve the following two objectives: (1) to preserve specific properties

of the original network. We refer to this objective as structural preservability. (2) to obtain

a representative subset of nodes. We will refer to this objective as group representativity. A

fair sample can be defined as a sample that satisfies both structural preservability and group

representativity. Chapter 6 shows how the proposed max-min subgraph fairness measure can be

used as a unifying framework that combines structural preservability and group representativity.

A greedy algorithm was proposed to generate a representative and preservative subgraph given

a target set of nodes. The algorithm utilizes a preservability measure based on the harmonic

mean node centrality measure. An approximation guarantee for the output of the proposed greedy

algorithm based on submodularity and curvature ratios is also presented. The proposed sampling

strategy can be also employed during the mini-batch training process of a graph convolutional

network (GCN) to generate an embedding of similar quality for each subgroup of the population.

1.3 Outline

The remainder of this thesis will be organized as follows: Chapter 2 discusses the related work

and provide a formal overview of the material related to this thesis. In Chapter 3, we move forward to

the main contribution of this thesis and discuss the filter bubble problem from a fairness perspective.

Chapters 4 and 5 are related to the fairness perception problem. While Chapter 4 mainly focused

on the introduction of the notion of fairness perception and its properties. Chapter 5 presents

the proposed algorithm to mitigate the perception bias. Chapter 6 investigates the fairness-aware

network sampling problem. Finally, Chapter 7 discusses the plans for future research directions on
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network analysis and fairness-aware machine learning.
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CHAPTER 2

LITERATURE REVIEW

This chapter has two goals. First, a formal overview of the material related to this work. Second,

a comprehensive and critical synthesis of the state of art works related to network mining. In

particular, we first introduce a formal definition of a network. Then we discuss the main network

mining tasks.

2.1 Networks

In this section, we first introduce basic concepts and definitions in the field. Then we discuss

some quantitative properties and theoretical ideas of graph theory necessary for the discussions in

the following chapters.

2.1.1 Basic Concepts and Definitions

A network is an abstract representation of real-world concepts focusing on entities and the interac-

tions between them. In math literature, a graph is a structure consisting of a set of objects and a

set of object pairs which indicates the relation between the objects. There is no di�erence between

a graph and a network, and in this work, we use these terms interchangeably. An information

network is a particular category of networks such that entities refer to a form of data. Example

of information network includes World Wide Web, online social networks and academic citation

networks. In this thesis, we mostly focus on attributed information networks, which can be defined

formally as follow:

Definition 1. An attributed network is a directed graph ⌧ =< + , ⇢ , � >, where + is the set of

nodes(vertices) in ⌧, ⇢ is the set of links(edge) between nodes in ⌧ where each element in this set

is a pair of nodes in + , and � is the corresponding node attributes matrix such that each row in �

represent the feature vector of nodes in + .
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A undirected attributed network is a special case of attributed network, where if (E8, E 9 ) 2 ⇢

then also (E 9 , E8) 2 ⇢ . An alternative way to represent a network is by using adjacency matrix.

The adjacency matrix A of network ⌧ is a = ⇥ =, = = |+ | , matrix with elements A8 9 such that

A8 9 =

8>>>><
>>>>:

1 if (E8, E 9 ) 2 E

0 otherwise
(2.1)

We also define immediate neighbors of node E8 as follow:

# (E8) = {E 9 | (E8, E 9 ) 2 E} (2.2)

Another notation we will use in the rest of this work is degree vector 3 2 R= for = = |+ |. where

38 = |# (E8) | =
’
9

A8 9 (2.3)

For directed networks the above equation defines the out degree vector and for indegree vector we

have

38 =
’
9

A 98 (2.4)

A walk on a network is a sequence of nodes E1, E2 . . . E: such that for any node E8 in the sequence

(E8, E8+1) 2 ⇢ . A trial in the network is a walk in which all links are distinct. A path is a trail

which all the nodes in the walk are distinct. A cycle is a non-empty trail such that the only repeated

nodes are the first and last nodes. Distance of node E8 from node E 9 is represents by 38BC (E8, E 9 ),

and it is equal to the length of the shortest path starting from node E8 and end in node E 9 .

A network is connected if there exist a path that connects every pair of nodes in the network. A

network is said to be aperiodic if there is no integer : > 1 that divides the length of every cycle of

the network.

2.1.2 Random Walk

A random walk is a sequence of nodes on a network generated by traversing network randomly. In

particular, if P represent the transition matrix such that P8 9 is the probability of reaching node E8
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from node E 9 such that for all E8 we have

’
9

P8 9 = 1

Then a random walk is the process of starting from a node in the network and traversing the

network according to the transition matrix P. One can define P = D�1A where D is the degree

diagonal matrix, D88 =
Õ
9
Aij.

Let ?(C) 2 R= represents the probability vector(distribution) of a random walk on a given

network where ?8 (C) is the probability of visiting node E8 at step t of random walk. ?(C) can be

expressed by the following recursive equation:

?(C + 1) = P>?(C) = (D�1A)
>
?(C) (2.5)

And the stationary distribution can be defined as follow

c = lim
C!1

?(C) (2.6)

By using fundamental theorem of markov chains [38], it can be shown that a random walk will

converge to a unique stationary distribution regardless of the choice of starting node if the network

is connected and aperiodic.

2.1.3 Network Measures and Metrics

In order to gain a better understanding of a network and capture particular feature of it one can

measure some useful quantities. In the following section we will introduce some useful measures

which will be apply in developing baseline algorithms and analysing networks in following chapters.

2.1.3.1 Network Centrality

When we are dealing with networks an important research question is "Which nodes in the network

are important or central one?" There is no unique answer to this question and many centrality

measures have been proposed [130]. Here we describe some of the most important centrality

measures.
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The simplest possible definition of importance of nodes in a network is degree size.

Definition 2. Degree Centrality ⇠
3

for a node E8 in a network is ⇠
3
(E8) = 38

For directed network one can define degree centrality base on indegree, outdegree, or summation

of both. The fact that degree centrality is a simple concept does not undermine it’s importance.

For instance, in social network users with high number of connections have more influence or more

prestige than those with less connections.

While number of connections is an important measure of centrality. A generalized version of it

is eigenvector centrality which incorporate the importance of the neighbors of a node.

Definition 3. Eigenvector Centrality ⇠4 for a node E8 in a network is

⇠4 (E8) =
1
_

’
9

A8 9⇠4 (E 9 )

⇠4 =
1
_

A>⇠4

(2.7)

where _ is some fixed constant.

If the graph be connected, by using Perron-Frobenius Theorem [184] we can show the eigen-

vector corresponding to the largest eigenvalue of adjacency matrix is equal to ⇠4.

One challenge with the eigenvector centrality is the fact that a high centrality node with high

degree pass high centrality to all its neighbors. However not everyone known by a well known

person is well known. To address this problem one solution is PageRank centrality.

Definition 4. PageRank centrality ⇠? for a node E8 in a network is

⇠? (E8) = U
’
9

A8 9
⇠? (E 9 )

3 9

+ V

⇠? = UA>D�1
⇠? + V1

(2.8)

Where 1 is a vector of all one. U and V are user specify scalar. In practice U < _ where _ is

the largest eigenvalue of the adjacency matrix of the network. For directed network 3 9 in the above

definition will be replaced by out degree and it should be nonzero.
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A completely di�erent path to measure a network nodes importance is closeness centrality.

This centrality measures the mean distance from a node to other nodes in the network. However,

this definition results in low value to more central nodes which is opposite of the behavior of other

centrality measures we defined above. A commonly approach is to consider the inverse of the mean

distance:

Definition 5. Closeness centrality ⇠2 for a node E8 in a network is

⇠2 (E8) =
=Õ

9
38BC (E8, E 9 )

(2.9)

Another centrality measure base on the pairwise distance is betweenness centrality. It is base

on the number of times a node lies on paths between other nodes.

Definition 6. Betweenness centrality ⇠
1

for a node E8 in a network is

⇠
1
(E8) =

’
9<8,:<8

=
8

9 :

=
9 :

(2.10)

where =8
9 :

is the number of shortest path from node E 9 to E
:

that pass thought node E8. = 9 : is

total number of shortest path from E 9 to E
:
.

2.1.3.2 Homophily and Assortative Mixing

Homophily [123, 100], which is the tendency of individuals to form relations with others similar to

them, is an important characteristic of many social networks. Such relationship can be quantified

using the well-known network modularity (or assortative mixing) measure [134, 133]. The measure,

which was originally developed for community detection in networks, is based on the idea that a

random graph is not expected to contain any clustering structure. Any community structure in a

given network can thus be validated by comparing its link density against its expected density if the

link structure of the network is completely random. The modularity measure is defined as follows

[134]:

& =
1

2<

’
8 9

⇣
�8 9 �

383 9

2<

⌘
X(28, 2 9 ) (2.11)
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where X(28, 2 9 ) is the Kronecker delta function, 28 is the community of node 8, and < is total

number of links. Intuitively, a network is said to be assortative if a significant portion of its links

are between nodes that belong to the same community.

2.2 Network Mining Tasks

In this section we will provide a comprehensive study of state of art works related to network

mining. We categorize the network mining related tasks into three groups: (1) Nodes oriented

tasks, (2) link oriented tasks, and (3) sampling and summarizing tasks.

2.2.1 Node Oriented Tasks

The first category of network mining are the tasks which focus on nodes and includes classification,

clustering and community detection, anomaly and spam detection, and ranking. In this section, we

review these tasks.

2.2.1.1 Classification

Node classification is a classic problem in network mining with applications ranging from online

social network and e-commerce to computational biology. In node classification problem we have

access to labels of a subset of nodes, and the task is to infer labels of the remaining nodes in the

network. Di�erent from traditional classification researches, because of none-IID nature of the

network data, node classification has received considerable attention. In network classification link

information can be combined by using label propagation [193, 168], logistic regression[115], and

graph regularization [192].

With recent progress in deep learning and neural network study, graph neural network also

gained a great deal of attention among researchers which results in novel deep models for solving

node classification. Deepwalk [144] is the first well known work in this group. Inspired by natural

language processing the DeepWalk method takes the output of multiple random walks on network

to learn a latent representations of nodes. Kipf and Welling[89] introduced graph convolutional
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networks (GCNs) which is a variant of convolutional neural networks operate directly on graphs.

Matthias et al, [55] introduced SplineCNN a novel convolution operator based on B-splines, that

makes the computation time independent from the kernel size. VeliÃkovi∆, et al. [164] present graph

attention networks (GATs), leveraging masked self-attentional layers to address the shortcomings

of prior methods based on graph convolutions or their approximations.

2.2.1.2 Clustering and Community Detection

The cluster or community structure property of network is an important feature of real networks,

which is based on the assumption that the network structure is consists of modules commonly called

communities or clusters and the goal of community detection or clustering algorithm is to partition

nodes into these components. There are a variety of community detection algorithms which

can roughly divided into two categories: Structural clustering and attributed network clustering.

The structural clustering methods only consider the network topology. Methods based on min-

cut problem [63] cut the network into several partitions and assume these partitions represent

communities. The size of the cut is the number of edges that are being cut. Methods based on

graph Laplacian [132] assume that similar nodes should be mapped closer. Quasi-clique detection

methods are based on extracting dense subgraph structures [3, 142]. Methods based on matrix

factorization [179] factorize the adjacency matrix into node embeddings. In contrast, Attributed

graph clustering takes into account both network topology and node side information [181, 25, 180].

More recently, there are methods developed for network clustering and community detection

using neural network models. Zhang et al., [190] proposed an adaptive graph convolution method

for network clustering that utilise high-order graph convolution to detect cluster structure. Pan,

et al.,[140] proposed adversarially regularized graph autoencoder (ARGA) for graph clustering

and other network mining tasks. Kipf et al., [90] proposed VGAE a framework for unsupervised

learning on graph-structured data based on the variational auto-encoder(VAE).
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2.2.1.3 Anomaly Detection

An anomaly is defined as an unusual activity exhibiting a di�erent behavior than others present

in the same structure [84]. In network setting one application of anomaly detection is network

intrusion detection, where have computers sending packets to each other, and the goal is to find

misbehaved nodes. Another application is detecting fake or compromised account in social net-

work. Network anomaly detection can be defined as the task of finding the network objects

(nodes/edges/substructures) that are rare and that di�er significantly from the majority of the

reference objects in the network [8].

Similar to clustering and community detection, network anomaly detection task can be divided

into (1) plain network and (2) attributed network anomaly detection. For the plain network a

common approach for detecting anomalous network objects is feature extraction[7, 71, 82, 66].

Basically, these approaches use the network structure to compute measures associated with the

nodes, edges, subgraphs and communities and use these measures to find anomalous entities. For

example, [7] proposed the oddball algorithm for finding anomalous nodes by extracting rules (power

laws) in density, weights, ranks and eigenvalues which govern the ego network of social network

users.

2.2.2 Link Oriented Tasks

The second category of network mining are the tasks which focus on links and relation and includes

link prediction and, Network alignment. In this section, we review these tasks.

2.2.2.1 Link prediction

Link prediction is a well studied problem in network studies [111, 9, 125, 119]. Given a network

⌧ = (+ , ⇢), let ⇢0 ⇢ ⇢ denote a set of observed links and ⇢ � ⇢0 denote a set of unobserved

links in the network, where |⇢
0
| < |⇢ |. The goal of link prediction is to accurately predict the

unobserved links from the partially observed network (+ , ⇢
0
). One of the major obstacle of link
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prediction problem is class imbalance. In real network the |⇢ | is significantly smaller than number

non existing links.

Various algorithms for link prediction have been developed over the past two decades. This

include simple algorithms that consider the pairwise similarities between nodes, where the similarity

is defined according to the network topology or social science theories [171]. This group of

algorithms includes as neighborhood based measures such as common neighbors [44] or Jaccard

coe�cient which calculates the portion of common neighbors for a given nodes pair. Another two

well known algorithms in this category are Adamic/Adar(Ad-Ad), a similar measure that assigns

less weight to more connected common neighbors, and preferential attachment (Pr-At)[128], which

sets the probability of a connection between two pair of such that it is correlated with the product

of the their degrees [131].

Another group of link prediction algorithms is based on global similarity measures. They are

defined based on the adjacency or Laplacian matrices of the network. Examples of this category

include: Path based methods [98, 137, 111] and random walk based methods [112, 111]. In

addition, probabilistic graphical models [34] and matrix factorization [152, 125] methods have also

been widely used to address the link prediction problem. Recent years have also witnessed the

emergence of deep neural network methods for the link prediction task [107, 108, 109, 160, 188].

Many of these algorithms however su�er from scalability issues due to training time requirement

for learning the hidden layers of their architecture [65].

The knowledge graph (KG) is a subgroup of network data structure that represents a semantic

network. The node represents a concept, and the edge represents a relation between two entities.

KG has gained attention in recent years and it has broad applications from in finance [59], to health

[149] and semantic search [177]. Link prediction task can be applied in KG to infer new relations

to complete the missing knowledge [172, 45, 191].
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2.2.2.2 Network Alignment

Work on network alignment can be generally classified into three approaches: (1) quadratic pro-

gramming, (2) IsoRank-based, and (3) graphlet-based.

In principle, network alignment can be formulated as an integer quadratic programming prob-

lem [13], which unfortunately is a computationally hard problem to solve. Various approximation

methods were proposed to overcome this problem. For example, Bayati et al.[13] employed a

message passing algorithm based on belief propagation while Klau [91] converted it into a linear

programming problem. Other binary relaxation approaches proposed include those by Koutra et

al. [95], Zhang and Tong [189] and Vogelstein et al. [165]

IsoRank by Singh et al. [154] is one of the most well-known network alignment algorithm.

IsoRank iteratively learns the alignment score between two nodes based on the scores of its

neighbors. It can be considered as the pioneer of a class of algorithms in the field. The main idea of

the IsoRank algorithm is similar to PageRank algorithm proposed by Page et al. [139]. PageRank

defined node similarity recursively in terms of the similarity of the node neighbors and IsoRank

utilized this idea by combining two networks using Kronecker product and calculate the alignment

index on that network. After IsoRank several improvement version has been presented. Variations

of IsoRank include the Liao et al. [110], to reduce computational cost and improve interpret-ability

of similarity scores. For instance, Kollias et al. [94] had significant improvements, in terms of

computational cost, interpret-ability of similarity scores, and nature of queries. In IsoRankN Liao

et al. [110] improved the performance of original IsoRank by utilizing iterative spectral clustering

algorithm. Another class of methods is known as GRAAL, which is based on graphlet degree

signature vectors. Graphlets are small connected non-isomorphic induced subgraphs of a large

network [?]. The first algorithm in this class was proposed by Kuchaiev et al. [96], which uses only

topological structure to match the networks.
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2.2.3 Representation Learning

Network representation learning is an important research problem as the latent features can be used

for various network mining tasks such as node classification, community detection, link prediction,

etc. The ultimate goal is to construct a set of features for the nodes that are comparable or better

than the hand engineered features defined by domain experts [14]. Motivated by the word2vec

algorithms [126, 127], using the analogy of representing a network as a document, this has inspired

a group of works focusing on representation learning of nodes in networks using random walk based

methods [65, 144, 159]. For example, DeepWalk [144] used an approximation of the full softmax

called the hierarchical softmax [126] for learning the node embedding whereas the node2vec [65]

algorithm uses an alternative method known as negative sampling [127]. This negative sampling

strategy was shown to produce better performance compared to the hierarchical softmax approach.

The previous methods consider only the link structure to learn the node representation. Since

the nodes of a network contain rich information, Yang et al. [178] showed the equivalence between

DeepWalk and matrix factorization and presented a framework that can incorporate node attributes

into the network representation learning process. Similarly, Huang et al. [74] proposed the Label-

informed Attributed Network Embedding (LANE) framework, which is capable of integrating both

the node attribute and label information with the graph structure to enhance the network embedding

process. Additionally, Kipf and Welling [89] proposed a semi-supervised convolutional neural

networks approach which operates directly on graphs and encodes both the local graph structure

as well as node attributes. This work was subsequently extended to an unsupervised learning

approach known as GAE in [90]. Closely related to GCN, Hamilton et al. [67] proposed an

inductive framework that is capable of learning node embeddings for previously unseen data.

There has been a growing interest in attention models for graphs recently and various techniques

have been proposed [164, 32, 54, 68] One of the benefits of attention mechanisms is that they allow

for dealing with variable sized inputs and allowing it to “focus on the most relevant parts of the

input to make decisions” [164]. Moreover, inspired by Generative Adversarial Network(GAN),

there are methods proposed recently for learning stable and robust graph representation. [169, 41]
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2.3 Fairness in Machine Learning

Quantifying fairness has been a subject of intense debate among AI and ML researchers in

recent years [16, 49, 69, 97]. Previous works are primarily focused on non-relational data and

can be classified into two types—individual-level or group-level fairness. Fairness definition at

individual level is based on the premise that similar people should be treated similarly. For example,

Dwork et al. [49] defined a task-specific metric based on a probabilistic distance measure between

individuals via a Lipschitz condition. The metric is used as constraints to optimize a fairness-aware

classifier. In contrast, the group-level approach quantifies fairness in terms of statistical measures

such as demographic parity, equalized odds [69] or balanced error rate [53] with respect to the

protected groups. The measures are typically computed from a confusion matrix [16] and are

used to ensure that the average performance do not vary significantly among di�erent groups of a

protected attribute.

Let . be the target variable of interest (true outcome) and - be a set of input features. Con-

ventional supervised learning algorithms are designed to predict the target outcome . from - by

learning a model 5 such that .̂ = 5 (-) is the predicted outcome. Existing fairness-aware methods

seeks to ensure that the predictions generated by the model will not discriminate against one or

more subgroups, defined by a protected attribute -? such as gender, race, or sexual orientation.

A widely used criterion for assessing fairness is demographic parity or statistical parity. De-

mographic parity constrains the output of classification problem to be independent of the protected

attribute. Particularly a predictor satisfies demographic parity if there is no correlation between

the protected feature and the output. Demographic parity has been used in number of papers

[113, 80, 78, 50, 24], which considers the degree of independence between the model output and

protected attribute. Assuming both the target outcome and protected attributes are binary-valued,

demographic parity seeks to achieve:

%(.̂ = 1|-?) = %(.̂ = 1)

In other words, demographic parity wants to equalize the positive decision across di�erent
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groups of the protected feature.

Another well known fairness criterion is equalized odds [69], which seeks to ensure that the

predictions are conditionally independent of the protected attribute given the true outcome:

%(.̂ = 1|-? = 0,. = H) = %(.̂ = 1|-? = 1,. = H),

If we consider . = 1 as advantaged outcome, such as job o�er or college admission. Then on can

relax the equalized odds to only consider non-discrimination within the advantaged outcome. This

relaxation is called equal opportunity [69] a predictor .̂ satisfies equal opportunity with respect to

protected attribute A and outcome Y, if

%(.̂ = 1|-? = 0,. = 1) = %(.̂ = 1|-? = 1,. = 1),

In addition to quantifying notion of fairness, there has been growing literature on developing

fairness-aware methods. Current methods can be divided into three categories. The first category

includes prepossessing algorithms [186, 113, 116] with the motivation that training data is the

main cause of bias in machine learning. Zemel et al. [186] introduced an optimization algorithm

to map data points into a new space to ensure membership in the protected group is lost. [113]

developed a variational autoencoder model for learning node representation that are invariant to

protected features while preserving as much of the information as possible. Madras and et al. [116]

connected group fairness concept to adversarial concept for learning fair representation.
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CHAPTER 3

LINK PREDICTION: FAIRNESS-AWARE PERSPECTIVE

In this chapter, we examine the filter bubble problem from the perspective of algorithm fairness

and introduce a dyadic-level fairness criterion based on network modularity measure. We show

how the criterion can be utilized as a postprocessing step to generate more heterogeneous links in

order to overcome the filter bubble problem. In addition, we also present a novel framework that

combines adversarial network representation learning with supervised link prediction to alleviate

the filter bubble problem.

3.1 Introduction

Online social networking sites have transformed the way individuals interact and share infor-

mation with each other. The wealth of social network data available also provide opportunities to

mine them for a variety of business applications. For example, businesses can learn about the users’

interests, sentiment, and online behavior by analyzing the social network data. The insights gained

from such analysis will help businesses to increase engagement with their existing customers or

connect with new customers. Despite its importance, recent studies have raised concerns about the

potential biases and unintended consequences that may arise from such automated analysis.

For example, link prediction methods [111, 9, 119, 120] are commonly employed by social

networking sites to encourage users to expand their social circles. “Suggested for you" on Instagram

and “People you may know" on LinkedIn are two example applications of such methods. However,

the rise of link prediction systems have led to an e�ect known as filter bubble [141], which is

the reinforced segregation and narrowing diversity of information exposed to online users. If left

unchecked, the filter bubble may introduce systematic biases in the network data and its subsequent

analysis. For instance, Hofstra et al. [72] examined the ethnic and gender diversity of social

relationships on Facebook and showed that those who have ample opportunities to befriend other

similar users often find themselves in highly segregated networks. This is due to the homophily
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principle [123], which is the tendency of individuals to form social ties with other similar individuals

in a network. As current algorithms are designed to promote links between similar users, their

suggested links may exacerbate the user segregation problem.

In addition to online social networks, the filter bubble problem is also prevalent in recommender

systems, which can be viewed as a link prediction task applied to a bipartite network of users and

items. A recent study by Nguyen et al. [135] concluded that recommender systems tend to expose

users to “slightly narrowing set of items over time." For example, in movie recommendation, movies

from a certain genre may only be recommended to users from a specific gender. By addressing the

filter bubble problem in network link prediction, the proposed method can potentially be used to

alleviate the filter bubble problem in other types of recommender systems.

This work examines the filter bubble problem for network link prediction from algorithm fairness

perspective. Specifically, we consider a link prediction algorithm to be unfair if it is biased towards

promoting certain types of links (e.g., those between users with similar gender or other protected

attributes). As a motivating example, consider the link prediction task on professional networking

sites. Certain professions, such as software engineering, tend to be dominated by men, a fact that

is likely to be reflected in the link structure of the professional network. As a result, the links

recommended by the site may reinforce this gender-based segregation and primarily recommend

links between individuals from the same gender while recommending comparatively fewer inter-

gender links. Though such a system may be able to achieve high link prediction accuracy, it may

unfairly disadvantage some users. For example, a female software engineer may be treated unfairly

as they are seldom recommended to other male software engineers.

Unfair practices due to the decisions generated by automated systems is a problem that has been

well-documented in many application domains, including criminal justice, mortgage lending, and

university admission. For example, Angwin et al. [11] warned about the potential biases against

African Americans in the software used to predict the risk score of defendants who would likely

re-o�end again while O’Neil [136] cautioned against the manipulative marketing tactics used by

for-profit colleges in online advertising that exploit vulnerable populations. These concerns have
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brought increasing scrutiny into the issue of fairness in machine learning algorithms. Despite their

growing research, existing works are primarily focused on independent and identically distributed

(i.i.d) data, and thus, may not be suitable for link analysis problems. For example, previous works

have considered the notion of fairness either at individual [49] or group [69, 53] level. In contrast,

this work examines the notion of fairness at a dyadic-level, based on the pairwise interactions

between users in a social network. Furthermore, previous approaches have considered fairness in

terms of the unjust decisions against members of a specific underrepresented (protected) group.

Instead, we consider fairness in terms of promoting inter-group connections in a network in order

to alleviate the filter bubble problem.

There are four major contributions of this work. First, we empirically assess the influence of

protected attributes such as gender on the link structure of a network by measuring the homophily

e�ect on several real-world network datasets. Second, we introduce modred as a fairness criterion

for network link prediction. The metric is inspired by the well-known modularity measure [134]

developed for network community detection. We consider the reduction in modularity measure as

a way to determine whether the links predicted by an algorithm may lead to further segregation

of the network. We then illustrate how the measure can be incorporated into a greedy algorithm

for postprocessing the results of current link prediction algorithms. Finally, we present a novel

Fairness-aware LInk Prediction (FLIP) framework that combines adversarial network representation

learning with supervised link prediction to mitigate the filter bubble problem.

3.2 Related Work

Link prediction is a well studied problem in network analysis with various algorithms been

developed over the past two decades [111, 9, 119]. This includes heuristics methods that consider

the pairwise similarities between nodes, where similarity is defined based on the network topology

[131, 111] or node features [39, 27]. The main benefit of these methods is their simplicity and the fact

that most of these approaches do not required training. Another class of link prediction methods

employ machine learning methods, such as those based on probabilistic graphical models [34],
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matrix factorization [152], and supervised classification [9, 167]. Despite their higher accuracy,

these methods often su�er from the class imbalance problem as the number of links in a network is

significantly fewer than the number of non-links. Recent years have also witnessed the emergence

of deep neural network methods for the link prediction task [108, 109, 160]. These methods have

been shown to achieve state of the art performance.

Social networks are increasingly personalizing their content using automated machine learning

techniques, which is a concern as the decisions may lead to adverse e�ects on the users. This is

due to the so-called “filter bubble" or “echo chamber" e�ect [72, 141] in which individuals are

increasingly isolated to consuming only information that conform to their own belief system. In

online social networks, the e�ect of filter bubble is exemplified by the recommendation decisions

generated using link prediction algorithms. As link prediction algorithms are commonly used to

encourage users to expand their networks, this may lead to adverse consequences such as segregation

of users [72, 135].

Quantifying fairness has been a subject of intense debate among AI and ML researchers in

recent years [16, 49, 69, 97]. Previous works are primarily focused on non-relational data and

can be classified into two types—individual-level or group-level fairness. Fairness definition at

individual level is based on the premise that similar people should be treated similarly. For example,

Dwork et al. [49] defined a task-specific metric based on a probabilistic distance measure between

individuals via a Lipschitz condition. The metric is used as constraints to optimize a fairness-aware

classifier. In contrast, the group-level approach quantifies fairness in terms of statistical measures

such as demographic parity, equalized odds [69] or balanced error rate [53] with respect to the

protected groups. The measures are typically computed from a confusion matrix [16] and are

used to ensure that the average performance do not vary significantly among di�erent groups of a

protected attribute.

In addition, there has been growing literature on developing fairness-aware methods. Current

methods can be divided into three categories. The first category includes prepossessing algorithms

[186, 113, 116] with the motivation that training data is the main cause of bias in machine learning.
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Zemel et al. [186] introduced an optimization algorithm to map data points into a new space to

ensure membership in the protected group is lost. [113] developed a variational autoencoder

model for learning node representation that are invariant to protected features while preserving as

much of the information as possible. Madras and et al. [116] connected group fairness concept to

adversarial concept for learning fair representation.

3.3 Fairness for Network Data

We first review the fairness criteria for i.i.d. data. Let . be the target variable of interest

(true outcome) and - be a set of input features. Conventional supervised learning algorithms are

designed to predict the target outcome . from - by learning a model 5 such that .̂ = 5 (-) is the

predicted outcome. Existing fairness-aware methods seeks to ensure that the predictions generated

by the model will not discriminate against one or more subgroups, defined by a protected attribute

-? 8 - such as gender, race, or sexual orientation.

A widely used criterion for assessing fairness is demographic parity [113, 80, 78, 50, 24], which

considers the degree of independence between the model output and protected attribute. Assuming

both the target outcome and protected attributes are binary-valued, demographic parity seeks to

achieve:

%(.̂ = 1|-?) = %(.̂ = 1)

Another well known fairness criterion is equalized odds [69], which seeks to ensure that the

predictions are conditionally independent of the protected attribute given the true outcome:

%(.̂ = 1|-? = 0,. = H) = %(.̂ = 1|-? = 1,. = H),

If we consider . = 1 as advantaged outcome, a special case for this criterion is known as equal

opportunity [69], which is defined as follows:

%(.̂ = 1|-? = 0,. = 1) = %(.̂ = 1|-? = 1,. = 1),
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3.3.1 Dyadic-level Fairness

In this work, we investigate the filter bubble problem from the perspective of algorithm fairness.

Specifically, a dyadic-level fairness criterion can be defined based on the protected group member-

ship of individuals participating in the links. Below, we consider two such criteria:

• Subgroup dyadic-level protection, where fairness is assessed in terms of how representative

each protected subgroup is in the formation of the links. For example, in applications

such as link-based recommender systems, the fairness criteria could be to ensure that the

recommended links do not favor certain subgroups in the population at the expense of other

subgroups.

• Mixed dyadic-level protection, where fairness is determined based on homogeneity of the

nodes involved in each link. Specifically, a link is considered to be an intra-group link if it

relates a pair of nodes with the same protected attribute values. Otherwise, it is known as an

inter-group link. To prevent e�ects such as filter bubble, inter-group or mixed links should

be favored to prevent segregation of the users.

In principle, the subgroup dyadic-level protected can be implemented using existing group-level

fairness criteria for i.i.d. data by applying them to the links instead of individual nodes in the

network. For mixed dyadic-level protected, we introduce the network modularity measure to be

described in the next section.

3.3.2 Network Modularity

Homophily [123, 100], which is the tendency of individuals to form relations with others similar to

them, is an important characteristic of many social networks. Such relationship can be quantified

using the well-known network modularity (or assortative mixing) measure [134, 133]. The measure,

which was originally developed for community detection in networks, is based on the idea that a

random graph is not expected to contain any clustering structure. Any community structure in a

given network can thus be validated by comparing its link density against its expected density if the

28



link structure of the network is completely random. The modularity measure is defined as follows

[134]:

& =
1

2<

’
8 9

⇣
�8 9 �

383 9

2<

⌘
X(28, 2 9 ) (3.1)

where � is the adjacency matrix representation of the network, X(28, 2 9 ) is the Kronecker delta

function, 28 is the community of node 8, 38 is its corresponding degree and < is total number of

links. Intuitively, a network is said to be assortative if a significant portion of its links are between

nodes that belong to the same community.

The modularity measure can be used to determine whether a network is unfair in terms of mixed

dyadic-level protection by replacing X(28, 2 9 ) in Equation (3.1) with X(-?8, -? 9 ), where -?8 is the

protected attribute value for node 8. The & value is thus influenced by only those pairs of nodes

belonging to the same protected class. Values of& close to one would indicate high unfairness due

to the strong alignment between the link structure and the protected attribute while values close to

zero indicate high fairness. For numeric-valued protected attributes such as age or income level, it

can be modified as follows:
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where

This is also known as assortativity coe�cient of the network.

To illustrate the use of modularity as a measure of unfairness, consider the networks shown in

Figure 3.1. The data correspond to friendship relations among freshman at a secondary school in

the Netherlands from 2003-2004 [155]. Using gender as protected attribute, the modularity value

for the first network shown in Figure 3.1(A) is equal to 0.3033 while the value for the second

network is 0.0179. Note that the network with higher modularity has more links between students

of the same gender compared to the one with lower value, and thus, is unfair from the perspective

of mixed dyadic-level protection.

Our proposed fairness-aware framework evaluates the reduction in the modularity measure to

determine whether the modified network obtained from the link prediction results is biased towards
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0.50.5

(a) Snapshot taken in 2003. Modularity = 0.3033.

0.50.5

(b) Snapshot taken in 2004. Modularity = 0.0179.

Figure 3.1: Snapshots of friendship relation among students at a Dutch school taken 2003 and 2004
along with their modularity values. The node color represents the student’s gender. Darker dashed
lines correspond to links between students of di�erent gender while the solid ones correspond to
links between students of the same gender.

creating more inter-group or intra-group links. Specifically, we define the following metric:

<>3A43 =
&ref �&pred

&ref
, (3.2)

where &ref is the modularity measure of a reference network (e.g., the ground truth network when

evaluating link prediction algorithms) and&pred is the modularity of the predicted network, i.e., the

network obtained by augmenting the predicted links to the original network. A positive <>3A43

30



value indicates that the link prediction algorithm predicts more inter-group links than the ground

truth network while a negative value suggests that the algorithm is predicting more intra-group

links than the ground truth network.

3.3.3 Greedy Post-Processing

One approach to promoting fairness in link prediction is to post-process the prediction results. To

this end, we propose a greedy algorithm for reducing modularity of the predicted network. It takes

as input a set of binarized link predictions, { §4GH} and calculates the change in modularity resulting

from flipping the prediction of each node pair. The change in modularity for flipping link §4GH is:

B2>A4( §4GH) = (�1)X( §4GH)
1

2<

⇣
� 1 +

3G + 3H � 1

2<

⌘
X(2G , 2H)+

1

4<2

⇣ ’
92⇠G , 9<H

3 9 +

’
82⇠H ,8<G

38

⌘
(3.3)

where the value of (�1)X( §4GH) is �1 if §4GH is 1 and +1 otherwise, 3G and 3H are the degrees of

nodes G and H respectively, 2G and 2H are the protected attribute values of node G and H respectively,

X(2G , 2H) is the delta function that returns 1 if G and H are the same protected attribute value and 0

otherwise, and ⇠G and ⇠H are the sets of nodes with the same protected attribute value as node G

and node H respectively. After computing this score for each predicted link we flip the edges with

the lowest scores. This is another approximation since the score for edge should be recomputed

after each edge is flipped due to changes in the value of 3G and 3H. The number of link predictions

to flip is a hyper-parameter that can be varied depending on the importance of accuracy versus

modularity.

3.4 Adversarial Learning for Fair Link Prediction

Consider an attributed network N = (+ , ⇢ , -), where + is the set of nodes, ⇢ ✓ + ⇥ + is the

set of links, and - 2 R|+ |⇥3 is a matrix corresponding to the set of attribute values associated with

the nodes in + . Assume - can be partitioned into submatrices [-? , -D], which correspond to the
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Figure 3.2: FLIP architecture

protected and unprotected features of the nodes. Our goal is to accurately infer new links in the

network without being biased against the formation of inter-group links.

Our proposed framework, known as FLIP (Fairness-aware LInk Prediction), employs an adver-

sarial learning approach to ensure that inter-group links are well-represented among the predicted

links. The framework consists of the following 3 components, as illustrated in Figure 3.2:

1. A generator, ⌧, that takes the attributed network as input and learns a representation ⌧ (D)

for each node D 2 + . We use DeepWalk [144] as the generator, though in principle, the

framework can be applied to other network representation learning methods.

2. A discriminator, ⇡, that takes the representations for each pair of nodes produced by the

generator as input and attempts to predict if it is an intra-group or inter-group node pair. The

discriminator’s predicted probability that a pair of nodes has the same protected attribute

value is denoted as ⇡ (⌧ (*),⌧ (E))

3. A link prediction component, !, which tries to infer new links given node representation
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learned by the generator. The predicted probability that a link exists between a pair of vertices

is ! (⌧ (D),⌧ (E)).

To understand the rationale behind the framework, note that a good feature representation

learned by the generator will enable the link prediction component to infer correctly whether a

node pair is connected. If the link structure of the network is biased towards intra-group links,

so will the link prediction component as well as the generator. The discriminator plays the role

of an adversary who attempts to predict whether a node pair involves nodes from the same group

or from di�erent groups. By making the generator and discriminator to work against each other,

this would lead to a situation in which the generator produces a feature representation that is good

enough for link prediction yet unbiased enough to prevent the discriminator from inferring whether

it is an inter-group or intra-group node pair. In networks with homophily property, this will help to

discourage the prediction of intra-group links and promotes more inter-group links.

3.4.1 Discriminator

In recent years, adversarial networks have been used to achieve di�erent fairness criteria for

independent and identically distributed (i.i.d) data [17, 116]. The shared idea between these

methods is an adversarial component that attempts to predict the protected attribute value -D. A

naïve approach to achieving fairness in network data is to follow same path and design an adversarial

component that predicts the protected attribute of a node using the following entropy cost function:

�
⇡ = �

1
|+ |

’
D2+


-?D;>6( ĤD) + (1 � -?D) log(1 � ĤD)

�

Here ĤD = ⇡ (⌧ (D)) is the prediction of the discriminator of the binary protected value of node D.

However this will not necessarily result in mixed dyadic level protection because intra-group

links may still be favored in a homophilic network. To solve this challenge we propose the following
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adversarial loss:

�
⇡ = �

1
|T |

’
(D,E)2T


?DE;>6( ?̂DE)

+(1 � ?DE) log(1 � ?̂DE)
�

(3.4)

where T ✓ + ⇥ + is the set of node pairs in the training data, ?DE is the actual type of node pair

(D, E) with respect to a given protected attribute (i.e. intra-group vs inter-group) and ?̂DE is the

discriminator’s prediction. Instead of inferring the node’s protected attribute, the discriminator

receives a pair of node representations, which it passes to a two layer fully connected network with

leaky ReLU activation to determine the probability that it is an intra-group node pair.

3.4.2 Generator

In contrast to the original GAN framework proposed by [64] where the generator seeks to gen-

erate samples of data points that seem real, the generator in our framework tries to learn node

representation that will preserve important structural information of the network without implicit

usage of the protected attribute information. For the generator, we utilized DeepWalk [144] which

is a network representation learning method inspired by the Skip-gram [126] model from natural

language processing. DeepWalk consists of two steps: the first step is to extract sequences of nodes

from the network by performing a series of truncated random walks starting from each node in the

input network. In the second step, the node sequences generated from the random walk process are

used to learn the feature representation of each node. This is accomplished as follows. A sliding

window of width F scans the generated node sequences to generate all the node pairs (D, E) in

which node E appears in the sliding window centered at node D. A fully connected neural network

with a single hidden layer predicts the probability of the occurrence of node E given the one hot

encoding, D̄, of node D. Specifically, the network attempts to predict ?(E |D) for each D as follows:

p(E |D) ' 4G?( 5
0
(E)
>
5 (D))Õ

E
02+ 4G?( 5

0(E0)) 5 (D))
(3.5)
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where 5 (E) = ,Ē, 5 0(D) = /D̄, , is the weight matrix between the input and hidden layers of

the network, and / is the weight matrix between the hidden and output layers of the network.

The rows of matrix , are the node representations generated by the skip-gram model so we have

⌧ (D) = 5 (D).

The parameters of DeepWalk are trained using the maximum likelihood estimation approach,

with the following loss function:

�
(:8? = �

’
D2+

h
� ;>6(

’
E
02+

4G?( 5
0
(E
0
)
>
5 (D))

+

’
E
02⌦F (D)

4G?( 5
0
(E)
>
5 (D))

i

Here ⌦F (D) represent the set of all nodes that appears in the neighborhood of node D in the given

random walk sequence with window size of width F.

3.4.3 Link prediction

This component takes a pair of node embeddings as input to predict whether their nodes should

be linked or not. This is accomplished by adding a two-layer link prediction network to the GAN

model. During the training phase the link prediction component receives pairs of node embeddings

and concatenates them into a feature vector, which is then passed to a two-layer fully connected

network with leaky ReLU activation. The output of the network corresponds to the likelihood of a

link to exist between the node pair. Here we deployed the standard cross entropy cost function as

follows:

�
! = �

1
|T |

’
(D,E)2T


4DE;>6(4̂DE) + (1 � 4DE) log(1 � 4̂DE)

�
(3.6)

where 4̂DE is output of the link prediction component for node pair (D, E) and 4DE is the binary

ground truth link label.

Putting everything together, the overall loss function for the proposed framework is given as

follows:

�
⌧ = (1 � U)�(:8? � U�⇡ + V�

! (3.7)
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Table 3.1: The real social network data sets statistics

network #nodes #edges protected feature
Dutch school 26 221 gender

Facebook 1,034 26,749 gender
Google+ 4,938 547,923 gender

where V is a hyperparameter. The generator, discriminator, and link prediction network are all

trained end to end using Adam [88]. The generator and link prediction network are trained on

the same batches but every other batch is used to train the discriminator only so that training

alternates between updating the link predictor and generator together one one batch and updating

the discriminator on the next batch.

3.5 Experimental Evaluation

This section describes the experiments performed to evaluate the e�cacy of our proposed

methods to address the filter bubble problem in network link prediction.

3.5.1 Experiment Setup

We first discuss the experimental setup, including data sets, baselines and evaluation metrics used

in our experiment.

3.5.1.1 Datasets

We evaluated our methods on three real world social network data sets. Table 6.1 summarizes

the main properties of these data sets. The first data set is a Facebook ego network [106], which

contains 1,034 nodes, and 26,749 friendship links. The second data set is Google+, which has

4,938 nodes and more than 500,000 links. [106], The third data set is Dutch school network

[155], which corresponds to friendship relations among 26 freshmen at a secondary school in the

Netherlands. For all three datasets, we use gender as the protected attribute for inferring intra-group

and inter-group links.
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Table 3.2: Proximity based link prediction algorithms. For each node E, # (E) is the set of its
immediate neighbors.

Method Definition

Jaccard |# (D)\# (E) |

|# (D)[# (E) |

Adamic/Adar
Õ
G2# (D)\# (E)

1
;>6(3G)

Preferential attachment 3G3H

Table 3.3: Performance comparison of various link prediction algorithms on 3 real-world network
datasets.

Method Dutch school Facebook Google+
AUC <>3A43 AUC <>3A43 AUC <>3A43

Jac 0.650 +/- 0.000 -0.503 +/- 0.005 0.830 +/- 0.0 -0.149 +/- 0.037 0.793 +/- 0.0 0.093 +/- 0.03
Ad-Ad 0.657 +/- 0.001 -0.376 +/- 0.004 0.84 +/- 0.0 0.222 +/- 0.009 0.869 +/- 0.0 -0.305 +/- 0.001
Pr-At 0.602 +/- 0.002 0.443 +/- 0.002 0.807 +/- 0.0 0.46 +/- 0.001 0.905 +/- 0.0 -2.935 +/- 0.011
DW 0.529 +/- 0.007 -0.047 +/- 0.242 0.951 +/- 0.0 0.089 +/- 0.002 0.771 +/- 0.0 0.166 +/- 0.039

Jac+PEO 0.536 +/- 0.003 0.032 +/- 0.052 0.799 +/- 0.00 -0.557 +/- 0.235 0.750 +/- 0.0 3.47 +/- 0.048
Ad-Ad+PEO 0.527 +/- 0.002 -0.234 +/- 0.052 0.799 +/- 0.00 0.013 +/- 0.06 0.829 +/- 0.0 3.219 +/- 0.013
Pr-At+PEO 0.505 +/- 0.00 0.022 +/- 0.109 0.682 +/- 0.00 -0.21 +/- 0.227 0.858 +/- 0.0 3.854 +/- 0.154
DW+PEO 0.491 +/- 0.005 -0.121 +/- 0.213 0.949 +/- 0.0 0.014 +/- 0.02 0.735 +/- 0.0 3.55 +/- 2.652
Jac+GM 0.657 +/- 0.029 -0.218 +/- 0.084 0.842 +/- 0.00 0.661 +/- 0.05 0.74 +/- 0.0 0.966 +/- 0.04

Ad-Ad+GM 0.653 +/- 0.026 -0.211 +/- 0.088 0.842 +/- 0.00 0.661 +/- 0.05 0.818 +/- 0.0 1.369 +/- 0.038
Pr-At+GM 0.583 +/- 0.044 0.179 +/- 0.165 0.740 +/- 0.00 0.919 +/ 0.06 0.842 +/- 0.00 1.749 +/- 0.096
DW+GM 0.536 +/- 0.056 0.133 +/- 0.091 0.901 +/- 0.00 0.497 +/- 0.062 0.725 +/- 0.03 1.506 +/- 0.591

FLIP 0.658 +/- 0.004 0.359 +/- 0.009 0.86 +/- 0.00 0.348 +/- 0.004 0.857 +/- 0.0 0.207 +/- 0.009

3.5.1.2 Baseline Algorithms

We considered 4 state-of-art link prediction algorithms as baselines. Three of them are well known

classical proximity based methods which use neighborhoods structural information. The first

baseline is based on the well known Jaccard’s (Jac) coe�cient similarity metric which is deployed

in the context of network link prediction by calculating the portion of common neighbors for a

given nodes pair. The second baseline is Adamic/Adar(Ad-Ad), a similar measure that assigns less

weight to more connected common neighbors. The third proximity based algorithm is preferential

attachment (Pr-At)[128] which sets the probability of a connection between two pair of such that it

is correlated with the product of the their degrees [131]. Table 3.2 summarized the formal definition

of these algorithms. We also considered the more recent DeepWalk(DW) algorithm [144] which

learns 3-dimensional feature representations of nodes by simulating uniform random walks and

provides latent features for nodes at the first step and then, similar to proposed approach in [65],

we construct the edge embedding by applying binary Hadammard product operation to the given
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node pair and train a logistic regression to do link prediction. For evaluation, we use the settings

suggested in the original DW paper for both the DW baseline and the proposed method’s skip gram

model. These settings are: latent feature dimension (128), length of random walks(80), and number

of random walks(10) and window size(10) on all data sets.

We also consider a traditional fairness algorithm based on equalized odds which we use to

post-process our 4 baselines. As previously mentioned, imposing an equalized odds constraint on

the predictions of a model is a popular way of ensuring fair predictions. For our task, we use

a generalized version of equalized odds proposed in [145] to post-process each of the baseline

algorithm predictions. To make the generalized equalized odds constraint compatible to network

data setting we treat link type, intra-group versus inter-group, as each link’s binary protected

attribute. We refer to this post processing algorithm as (PEO).

3.5.1.3 Sampling process and training

A big challenge for link prediction algorithms is the sparsity of real world network data. In other

words, since the number of existing links are significantly smaller than non-existing links, training

a model which is not biased toward negative examples is di�cult. Given a graph # = (+ , ⇢ , -)

we generate a training set with equal number of negative and positive examples < #
0
, ⇢

+
, ⇢
�
>.

Here #0 is the remaining sub-graph after removing all sampled positive links, ⇢+, and ⇢� is a set

of randomly sampled non-links such that |⇢+
| = |⇢

�
|. Sampling positive links from # is random

with the restriction that #0 remains connected. For each data set we generating 10 examples of

< #
0
, ⇢

+
, ⇢
�
> by deleting 80% of all links in # . For FLIP and DW we learn node representations

by performing random walks on graph #0 and train the link prediction using 10% of the generated

positive and negative samples. For the other baselines we used all the 30% of ⇢+ and ⇢� for

calculating the proximity measures. We used remaining 70% for test.
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3.5.1.4 Evaluation Metric

We evaluate the quality of link predictions with two metrics, accuracy and the area under the ROC

curve (AUC) which represents the trade-o� between true and false positives with respect to di�erent

thresholds. For the fairness subgroup dyadic-level metric we consider modred measure given in

equation 3.2.

3.5.2 Experimental Results

In the following subsection we investigate the general performance of the proposed framework.

Due to a lack of space we provide extended experimental results, including parameter sensitivity

analysis of FLIP and a FLIP ablation study, in the supplementary file.

3.5.2.1 General Performance

We summarize our results for link prediction in Table 3.3. For FLIP we report the the result

for U = 0.1, V = 0.2, epochs=3. For greedy post-processing we chose to the flip the 3% of the

predictions that will most reduce the modularity. Based on these results we can make several

observations. First, there is generally a trade o� between AUC and <>3A43 so higher <>3A43

scores are only achievable by sacrificing accuracy.

Second, none of the baseline algorithms achieve consistently high<>3A43 scores. In particular,

equalized odds post-processing provides highly inconsistent gains in <>3A43 that are heavily

dependant on the data set. It provides significant gains on the Google+ data set, but on the Dutch

school data set it provides only moderate gains, and it is a moderate impediment on the Facebook

data set. However, greedy post-processing and FLIP always achieve strong <>3A43 measures and

provide a good balance between AUC and <>3A43. This is unsurprising since FLIP and greedy

post-processing were the only two techniques specifically designed for promoting fairness in link

prediction. This demonstrates the importance of developing algorithms tailored specifically for

network data and link prediction.
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Third, of all the baselines, preferential attachment generally does the best job of achieving good

accuracy and<>3A43. One possible explanation for this is that all other baselines make predictions

based on the neighborhood structure of nodes. In a network that is homophillic with respect to

a protected attribute, nodes with the same protected attribute value are likely to have similar

neighborhood structure. Since all of our networks are homophillic with respect to the protected

attribute, link prediction methods based on neighborhood structure are more likely to reinforce

the existing homophilly and create intra-group links. In contrast, preferential attachment ignores

the neighborhood structure of nodes when making predictions so it less a�ected by pre-existing

network homophilly.

3.6 Conclusions

This work presents novel fairness-aware methods to alleviate the filter bubble problem in network

link prediction. First, we present a fairness criterion based on network modularity measure to

determine whether inter-group links are well-represented in the predicted output of a link prediction

algorithm. We then consider two approaches to overcome the filter bubble problem—one based on

a greedy postprocessing approach using the modred measure while the other based on an adversarial

learning framework. Experimental results showed that the proposed methods are promising as they

can reduce modularity of the predicted network without degrading prediction accuracy significantly.
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CHAPTER 4

FAIRNESS PERCEPTION FROM A NETWORK-CENTRIC PERSPECTIVE

In this chapter, we investigate the issue of algorithmic fairness from a network-centric perspective.

Specifically, we introduce a novel yet intuitive function known as fairness perception and provide

an axiomatic approach to analyze its properties. Using a peer-review network as a case study,

we also examine its utility in terms of assessing the perception of fairness in paper acceptance

decisions. We show how the function can be extended to a group fairness metric known as fairness

visibility and demonstrate its relationship to demographic parity. We also discuss a potential pitfall

of the fairness visibility measure that can be exploited to mislead individuals into perceiving that

the algorithmic decisions are fair. We demonstrate how the problem can be alleviated by increasing

the local neighborhood size of the fairness perception function.

4.1 Introduction

The influence of machine learning is pervasive across numerous applications, from healthcare

and e-commerce to financial and criminal justice systems. Despite its utility, previous studies

have shown that the algorithmic decisions may contain unintended biases that discriminate against

certain groups of the population [11, 77, 37]. As a result, the challenge of removing biases from the

algorithmic decision-making process has gained significant attention in recent years. In particular,

various mathematical formulations of fairness have been proposed. For instance, group fairness

metrics such as demographic parity and equalized odds have been developed to assess the degree of

prejudice against certain protected groups in the population. While each metric has its own merits,

many of them are incompatible with each other [33, 58].

The group fairness metrics are designed to determine the level of equity among di�erent groups

of individuals who are harmed by or benefited from the algorithmic-driven decisions. However, the

consequences of an unfair decision may extend beyond those individuals who are directly impacted

by the decision. In fact, they may elicit negative responses from other individuals who identified
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Figure 4.1: An example illustration of fairness perception.

themselves to be in the same group as the a�ected individuals. For instance, hiring discrimination

against a qualified member from an underrepresented group not only a�ects the well being of

that individual, but will also have an adverse e�ect on other members of the underrepresented

group who observed such behavior. This example suggests that fairness assessment must take

into consideration the perception of other individuals who may not be directly impacted by the

algorithmic decisions [143, 153].

Fairness perception is rooted in the social comparison theory. For instance, equity theory [4]

argues that “humans do not base their satisfaction on what they receive but rather what they receive

in relation to what they think they should receive". The reaction of an individual to the outcome

of a decision process is based on the expectation of the individual and this expectation not only

depends on one’s own outcome but also the outcomes of other individuals they are aligned with,

which we refer to as the reference group. The choice of the reference group is typically influenced

by the similarity measure we use, e.g., we may compare ourselves to our co-workers, friends, and

family members. By observing the outcomes of other members in our reference group, this will

help shape our expectation about what should be considered a fair outcome.

In this paper, we examine the notion of fairness perception from a network analysis perspective.

Networks provide a natural way to represent individuals and their connections to other individuals

in the same reference group. For instance, Figure 4.1 shows a toy example of a network of students

applying for college admission to a prestigious university. In this network, two students are linked
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if they know each other. Suppose the admission committee of the college has decided to accept 3 of

the applicants, denoted as nodes with green check marks, and to reject the other 4 applicants. For

brevity, we assume all the students have similar qualifications. Consider the two students labeled

as 1 and 2, respectively. Although both applicants were rejected, their expectations for admission

and perceptions of fairness are very di�erent. Student 1 has a higher expectation of being admitted

compared to student 2 since all of his/her friends were accepted. Thus, the perception of fairness

for student 1 is di�erent than that for student 2.

This paper introduces the notion of network-centric fairness perception and illustrates its appli-

cation to peer review process. Peer evaluation of scientific work has a significant e�ect on scientific

advancement. However, similar to other systems designed by humans, it is potentially biased,

favoring certain groups of individuals (e.g., famous researchers from top institutions) [157, 162].

In this study, we show how the proposed function can be used to assess the perception of authors

about paper acceptance decisions. An axiomatic approach for analyzing the desirable properties

of fairness perception functions is also presented. We then extend our proposed function to a

group fairness measure known as fairness visibility and show its relationship to demographic parity

under certain mild assumptions. We also describe a potential pitfall of assessing fairness from

a local neighborhood perspective. Specifically, it can mislead individuals into thinking that the

decision-making process is fair even though the overall decisions are biased toward certain groups

of individuals. Finally, we show how to alleviate the problem by expanding the local neighborhood

size of the fairness perception function.

4.2 Quantifying Fairness Perception

Let ⌧ =< + , ⇢ , - > be an attributed network, where + is set of nodes, ⇢ ✓ + ⇥+ is the set of

links (edges), and - 2 R|+ |⇥3 is the feature matrix associated with the nodes. We further assume

that - = (-
(?)

, -
(D)

), where - (?) are the protected attributes and - (D) are the unprotected ones.

The set of links can also be represented by an adjacency matrix, �, where �8 9 = 1 if a link exists

between nodes 8 and 9 . Furthermore, we denote �: =
Œ
:

8=1 �, where �:
8 9

> 0 if there exists a path
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of length : between 8 and 9 , and 0 otherwise.

We also assume that each node E is associated with a target outcome, HE 2 {0, 1}. As an

example, in the context of peer review network, each node corresponds to a submitted paper and

links between papers are established if the two papers share the same authors or have authors

who had previously collaborated with each other. The outcome HE of a given paper E may indicate

whether the paper is acceptable or unacceptable based on the average ratings provided by reviewers.

We assume there exists a decision function ⌘ : + ! {0, 1} associated with each node in the

network. Let H be the hypothesis space of all decision functions. Our goal is to learn a decision

function ⌘ 2 H that is consistent with the set of outcomes. while satisfying some fairness criterion.

From the perspective of peer review network, the decision function ⌘ may refer to the final decision

whether to accept or reject the paper. The true positive and false positive rates of the binary decision

function, ⌘, can be computed as follows:

• True positive rate, TPR =
Õ
E
HE⌘(E)Õ
E
HE

• False positive rate, FPR =
Õ
E
(1�HE)⌘(E)Õ
E
HE

Our goal is to determine how the final decisions are perceived by the individual nodes in the

network. Do they feel that the decisions are biased toward nodes that belong to certain groups?

To answer this question, we assume each node E is associated with a fairness perception function,

5 (E, ⌘), given a decision function ⌘. The function provides a local, albeit myopic, view on

individual fairness of the nodes in a network.

4.2.1 Axioms for Fairness Perception

We first outline the desirable properties of the fairness perception function, 5 (E, ⌘), using the

following set of axioms. We assume each node E 2 + is associated with the following tuple,

(E.-? , E.-D, HE , # (E)), where E.-? denotes the value of its protected attribute, E.-D denotes the

value of its other (unprotected) attributes, HE denotes its target outcome, and # (E) denotes its
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X-neighborhood, which is defined as follows:

# (E) = {D | 9:  X : �:
DE

> 0}. (4.1)

For brevity, we assume X = 1, unless stated otherwise. Let ⌧A = (+A , ⇢A , -A ) be an ego-network

for node A, where +A = # (A) is the 1-neighborhood of A, ⇢A = {(8, 9) | 8, 9 2 # (A) and (8, 9) 2 ⇢}

and -A is the feature matrix associated with the attributes of the nodes in +A . We present a set of

axioms on the fairness perception function.

1. Locality axiom: If ⌘(E) = ⌘
0
(E) and 8D 2 # (E) : ⌘(D) = ⌘

0
(D), where ⌘, ⌘0 2 H , then

5 (E, ⌘) = 5 (E, ⌘
0
).

2. Monotonicity axiom: If ⌘(E) < ⌘
0
(E) and 8D 2 # (E) : ⌘(D) = ⌘

0
(D), where ⌘, ⌘0 2 H ,

then 5 (E, ⌘)  5 (E, ⌘
0
).

3. Neighborhood expectation axiom: If ⌘(E) = ⌘0(E) and 8D 2 # (E) : ⌘(D)  ⌘0(D), where

⌘, ⌘
0
2 H , then 5 (E, ⌘) � 5 (E, ⌘

0
).

4. Homogeneity axiom: Let ⌧D and ⌧E be the induced sub-graphs of +D = # (D) [ {D} and

+E = # (E) [ {E}, respectively. If ⌧D and ⌧E are isomorphic with respect to the decision

function ⌘, then 5 (D, ⌘) = 5 (E, ⌘).

For the last axiom, we say that a pair of networks, ⌧A = (+A , ⇢A , -A ) and ⌧B = (+B, ⇢B, -B), are

isomorphic with respect to the decision function ⌘ if there exists a bÚection function < : +A ! +B

such that:

• 8D 2 +A : ⌘(D) = ⌘(<(D)), HD = H
<(D) and -D = -

<(D) .

• 8(D1, D2) 2 ⇢A : (<(D1),<(D2)) 2 ⇢B

The locality axiom states that the perception of fairness for an individual depends on the decision

outcomes for other individuals in its neighborhood. As long as the outcomes for the node and its

neighborhood remains unchanged, the fairness perception function should remain the same. The
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monotonicity axiom suggests that the perception of fairness for an individual never decreases if

the decision changes in favor of the individual (assuming the decisions for its neighbors remain

unchanged). For example, if a previous decision on the paper was overturned (say from reject to

accept), then one should expect the fairness perception to improve (or at least stays the same). In

contrast, the neighborhood expectation axiom states that if the number of neighbors with favorable

decisions increases, then fairness perception decreases monotonically. This is because, if more

individuals in our reference group received favorable decisions, we expect the decision outcome

to be favorable for us as well. The increased expectation makes it less likely for us to perceive

the decision as fair if our paper is rejected. The fourth axiom ensures consistency of the fairness

perception function when applied to di�erent nodes in the network, The axiom states that if two

disparate nodes with similar neighborhoods receive the same decision outcomes, their perception

of fairness should be the same.

4.2.2 Proposed Network-Centric Fairness Perception

Definition 7 (Network-Centric Fairness Perception). Given a network ⌧ =< + , ⇢ , - > and a

decision function ⌘, the network-centric fairness perception function is defined as:

5 (E, ⌘) =

8>>>><
>>>>:

1 if E[⌘(E)]  ⌘(E)

0 otherwise

(4.2)

where E[⌘(E)] is the expected value of ⌘(E), which must satisfy the following properties:

1. If 8D 2 # (E) : ⌘(D) = ⌘0(D), then E[⌘(E)] = E[⌘0(E)].

2. If 8D 2 # (E) : ⌘(D)  ⌘0(D), then E[⌘(E)]  E[⌘0(E)].

3. Let ⌧D and ⌧E be the the induced sub-graphs based on the node sets +D = # (D) [ {D} and

+E = # (E) [ {E}, respectively. If ⌧D and ⌧E are isomorphic with respect to the decision

function ⌘, then E[⌘(E)] = E[⌘(D)].
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Our fairness perception function can thus be viewed as a local measure of individual fairness

for any given node E in a network. If the decision ⌘(E) is more favorable than expected, then E will

perceive the decision as fair. Furthermore, the expected value of the decision outcome, E[⌘(E)],

depends on the neighborhood of the node E.

Theorem 1. The network-centric fairness perception function given in Eqn. (4.2) satisfies the

locality, monotonicity, neighborhood expectation, and homogeneity axioms.

Proof : The locality and monotonicity properties are proven using the first property. Since

E[⌘(E)] remains unchanged when ⌘(D) = ⌘0(D) for all the nodes D in the neighborhood # (E), Eqn.

(4.2) suggests that 5 (E, ⌘) depends only on ⌘(E). If ⌘(E) = ⌘0(E), then 5 (E, ⌘) = 5
0
(E, ⌘), thereby

proving that the locality axiom holds. Similarly, if ⌘(E) < ⌘
0
(E), then 5 (E, ⌘)  5 (E, ⌘

0
), which

satisfies the monotonicity axiom. For the neighborhood expectation axiom, the second property

states that the expected value monotonically decreases when ⌘(D)  ⌘
0
(D) for all the nodes

D 2 # (E). Since E[⌘0(E)] is larger, then nodes that initially satisfy the inequality E[⌘(E)]  ⌘(E)

may no longer do so since ⌘0(E) = ⌘(E). Thus, 5 (E, ⌘) � 5 (E, ⌘
0
). Finally, we use the the third

property to prove the homogeneity axiom. Let ⌧D and ⌧E be the induced sub-graphs based on

node sets+D = # (D)[{D} and+E = # (E)[{E}, respectively. Since⌧D and⌧E are isomorphic with

respect to the decision function ⌘ and E[⌘(D)] = E[⌘(E)] holds due to the third property, therefore

5 (D, ⌘) = 5 (E, ⌘). ⇤

We consider the following neighborhood peer expectation approach to compute E[⌘(E)]:

E[⌘(E)] =
HE

:1

h ’
D2# (E)

HD⌘(D)

i
+

1 � HE
:0

h ’
D2# (E)

(1 � HD)⌘(D)
i
, (4.3)

where :0 =
Õ
D2# (E) (1�HD), :1 =

Õ
D2# (E) HD, and HD 2 {0, 1}. Note that if the target outcome

HE = 1, then E[⌘(E)] depends only on the first term (i.e., other nodes D in its neighborhood with

HD = 1). On the other hand, if HE = 0, then E[⌘(E)] depends only on the second term (i.e., other

nodes D in its neighborhood with HD = 0).

Intuitively, the neighborhood peer expectation considers the average decision of all its neighbors

with the same target outcome. For example, if HD denotes whether paper D is acceptable (based on
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its review ratings) and ⌘(D) is its decision for acceptance, then the expected value of ⌘(D) depends

on the average decision for other papers in its neighborhood (e.g., papers co-authored by one of

the authors or their collaborators) with the same degree of acceptability. Since the expectation is

a monotonically increasing function of ⌘(D) for its neighbors, it can be trivially shown that the

neighborhood peer expectation satisfies the first two properties given in Definition 1. The third

property holds since the bÚection function guarantees that the H and ⌘ values for the nodes in the

neighborhoods of D and E to be the same. Thus, their expected values, E[⌘(D)] and E[⌘(E)], will

also be the same.

4.3 Fairness Visibility

We now introduce fairness visibility, which extends the fairness perception function to a group

fairness measure.

Definition 8 (Fairness Visibility). Let +2 = {D | D 2 + , D.-? = 2}, i.e., the set of nodes belonging

to the protected attribute group 2. The fairness visibility of ⌘ for group 2 is defined as follows:

�+ (+2) =

Õ
E2+2

5 (E, ⌘)

|+2 |
(4.4)

Note that the fairness visibility for a given group 2 can be viewed as the average fairness

perception of all the nodes that belong to the protected group 2. For example, the group 2 may

refer to all the papers written by well-established authors in the peer review network. To determine

whether the decision function ⌘ is fair, we compare the fairness visibility for di�erent groups of

nodes using the definition below.

Definition 9 (Fairness Visibility Parity). The decision function ⌘ satisfies fairness visibility parity

for +2 and +
2
0 if

�+ (+2) = �+ (+20) (4.5)

For example, in a peer review network, we may categorize the papers into two groups, those

written by famous authors or those written by less established researchers. If the average fairness
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perception for both groups of papers are the same, then their fairness visibility parity holds. The

larger the disparity, the more biased are the decisions as perceived by the groups.

A standard approach for measuring group fairness is to compute demographic parity, which is

defined as follows:

Definition 10 (Demographic Parity). The decision function ⌘ satisfies demographic parity for +2

and +0
2

if

%(⌘(E) = 1 | E 2 +2) = %(⌘(E) = 1 | E 2 +
0
2
) (4.6)

Unlike fairness visibility parity, demographic parity is computed for non-relational data since

it ignores the neighborhood structure of a node. In the context of peer review network, each

probability term in Eqn. (4.6) corresponds to the acceptance rate of papers that belong to the

group 2 or 20. For brevity, we termed %(⌘(E) = 1|E 2 +2) as the acceptance probability for the

group+2. The theorem below illustrates the relationship between fairness visibility and acceptance

probability.

Theorem 2. Assuming the network graph is connected and the decision function ⌘ has non-zero true

positive and false positive rates, the fairness visibility of group+2, based on the neighborhood peer

expectation, converges to the acceptance probability for +2 as the X-neighborhood size increases.

Proof : Given a node E, note that # (E) ! + as the X-neighborhood expands since the network

graph is assumed to be connected. Furthermore, if the true positive and false positive rates

for ⌘ are non-zeros, then eventually E[⌘(E)] > 0,8E 2 + by expansion of X-neighborhood. It

follows that 5 (E, ⌘) = 1 if ⌘(E) = 1 and 5 (E, ⌘) = 0 if ⌘(E) = 0. Thus �+ (+2) converges to

%(⌘(E) = 1|E 2 +2). ⇤

Corollary 2.1. Given a connected network ⌧, the decision function ⌘ satisfies demographic parity

if and only if there exists a positive integer : such that for all X � : , fairness visibility parity holds

for ⌘ with the given X-neighborhood.
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Figure 4.2: The average rating distribution of submitted papers. The red line indicates the threshold
used for classifying papers as acceptable (H = 1) or unacceptable (H = 0).

4.4 Application to Peer Review Networks

This section presents a case study on the application of our proposed approach to a peer review

network dataset.

4.4.1 Data

We constructed a network from the peer review dataset collected for the ICLR 2020 conference from

the OpenReview.net website. Specifically, for each submitted paper, we gathered information

about its title, abstract, list of authors and their a�liations. In addition, the anonymized reviews

and acceptance decision for each reviewed paper are also available. For the ICLR 2020 conference,

the number of submitted papers is 2594. However, 382 of the submissions were withdrawn.

Our analysis is therefore restricted to only 2212 papers which had been reviewed. We use this

information to create a network that contains 2212 nodes, one for each peer-reviewed paper.

The total number of accepted papers, either as oral or poster presentation, is 687 while the
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Table 4.1: Summary distribution of acceptable and accepted papers for the ICLR 2020 conference.

Acceptability
H = 1 H = 0

Acceptance ⌘ = 1 589 98
Decision ⌘ = 0 117 1408

(a) All papers

Acceptability Acceptability
H = 1 H = 0 H = 1 H = 0

Acceptance ⌘ = 1 94 13 ⌘ = 1 495 85
Decision ⌘ = 0 12 153 ⌘ = 0 105 1255

(b) Famous authors (c) Non-famous authors

Acceptability Acceptability
H = 1 H = 0 H = 1 H = 0

Acceptance ⌘ = 1 190 34 ⌘ = 1 399 64
Decision ⌘ = 0 21 328 ⌘ = 0 96 1080

(d) Top institutions (e) Non-top institutions

number of rejected papers is 1525. Thus, the conference acceptance rate is around 31%. We use

the acceptance decision of each paper as the decision function ⌘ to evaluate fairness perception. We

consider the acceptability of a paper, in terms of its average review ratings, as the target outcome H.

Our assumption here is that the reviewers are rational-minded individuals, whose average ratings

given to a paper reflect the technical merits and acceptability level of the paper. Figure 4.2 shows

histograms of average review ratings for the accepted and rejected papers. Given that the number

of accepted papers is 687, we choose an acceptability threshold of 6 since it gives a number

of acceptable papers that has the closest match to the actual number of accepted papers. With

this threshold, all papers whose average ratings are larger than 5 are considered acceptable, i.e.,

H = 1. Table 4.1(a) shows a confusion matrix comparing the acceptability of the paper (H) and its

acceptance decision (⌘).

The total number of authors who had submitted papers to the conference was 6953. We were

able to extract authorship information for each paper, such as names and email addresses of the
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co-authors, a�liation, gender, and scholarid by prepossessing the the users profile page on the

OpenReview website. Based on this information we classified the submitted papers into groups

based on the following “protected" attributes:

• Famous author papers: If a paper includes one or more famous authors, its protected

attribute value is -? = 0, otherwise -? = 1. We consider the top 500 authors with highest

h-index according to Google scholar1 as famous authors. With this designation, 272 of the

submissions were classified as famous author papers.

• Top institution papers: If a paper has an author from a top-10 university according to the

csrankings.org website2, then it its protected attribute value is -? = 0, otherwise -? = 1.

We found 573 of the submitted papers have at least one author from a top institution.

A breakdown on the number of acceptable and accepted or rejected papers for each group is

shown in Tables 4.1(b)-(e). The results given in these tables are consistent with previous research,

which had suggested that conference paper acceptance decisions are generally biased in favor of

famous authors or papers written by authors from top institutions [157, 162]. In particular, the

results suggest that the chance for an acceptable paper to be accepted is significantly higher for

papers written by famous authors (88.7%) or authors from a top institution (90.1%) compared to

those written by non-famous authors (82.5%) or authors from lower ranked institutions (80.6%).

Papers by famous or top institution authors also have a higher chance of getting their unacceptable

papers accepted compared to those by non-famous authors or authors from lower ranked institutions,

as reflected by their higher false positive rates.

We use the co-authorship information extracted from the authors’ profile pages on OpenRe-

view.net to construct the links between the nodes in the network. We consider two papers are

linked if they share a common co-author or if the authors have collaborated in the past. Figures

4.3-(a) and 4.3-(b) show the degree distribution of the networks based on the famous author and

1
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=

label:machine_learning

2
http://csrankings.org/#/index?all

52



(a) Famous author (b) Top institution

Figure 4.3: Degree distribution of nodes in peer-review network.

top institution protected attributes. The results suggest that papers by famous authors or authors

from top institutions tend to have higher degree (on average) and a heavier tail in their distribution

compared to those written by non-famous authors or authors from lower ranked institutions.

4.4.2 Fairness Perception

We applied the proposed fairness perception function to the network and evaluated the proportion

of papers who perceived the paper acceptance decision to be fair or unfair. The results are shown

in Figure 4.4-(a) for the famous author protected attribute. Despite the fact that papers by famous

authors are generally favored (i.e., have higher true positive and false positive rates), the bar

chart shown in Figure 4.4-(a) suggests that the majority of them still perceived the decision to be

unfair. According to the fairness perception function, the main source of their discontent is the

unacceptable papers that were rejected (i.e., the blue bar), which they believe should have been

accepted. For papers by non-famous authors, Figure 4.4-(a) tells an opposite story as the majority

of them perceived the paper acceptance decisions to be fair. Although a significantly large number

of them still perceived the decision to reject their unacceptable papers as unfair (see the blue bar

for perceived unfair), the non-famous author papers are more amenable to accepting the decision

to reject their unacceptable papers (see the proportion of blue bar for perceived fair).

The preceding results show a potential pitfall of using the fairness perception function (with
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(a) Famous author

(b) Top institution

Figure 4.4: Assessment of network-centric fairness perception
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Figure 4.5: Comparison of E[⌘(E)] for rejected papers by famous and non-famous authors.

neighborhood size X = 1). Although the analysis of the confusion matrices given in Table 4.1

suggests that the decision is biased in favor of papers written by famous authors or top institutions,

the non-famous authors or those from non-top-tier institutions still perceived the decisions to be

fair! This can be explained as follows. Since our fairness perception function depends on the

computation of E[⌘(E)], we examine the distribution of E[⌘(E)] for rejected papers by famous and

non-famous authors. The results are shown in Figure 4.5. More than 40% of the rejected papers

by non-famous authors have an expected value close to 0 compared to around 10% of the rejected

papers by famous authors, Based on the definition given in Eqn. (4.2), the larger the proportion

of papers with E[⌘(E)] close to zero, the more likely they perceived the decision to be fair. One

possible explanation for the famous authors to have fewer proportion of papers with E[⌘(E)] close

to zero is due to the degree distribution of their nodes (see Figure 4.3). Since papers by famous

authors generally have a higher degree, this increases the number of nodes in their neighborhood,

which in turn, results in a higher expected value according to the formula used to compute the

neighborhood peer expectation. In contrast, many papers by non-famous authors have low degree

nodes, thus producing more nodes with low E[⌘(E)].
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4.4.3 Fairness Visibility

In this section, we will empirically evaluate the theoretical results for fairness visibility, which

provides a possible solution to alleviate the potential pitfall of using our fairness perception function.

For this experiment, we vary the X-neighborhood size from 1 to 5 and compute the corresponding

fairness visibility measure with respect to the protected attributes. The results are plotted in Figure

4.6.

For Figure 4.6-(a), observe that the fairness visibility of papers by famous authors are initially

lower than that for papers by non-famous authors when X = 1. This means that, on average, the

papers by famous authors have lower perceived fairness. As X increases, fairness visibility decreases

for both groups of papers. However, the rate of decrease is higher for papers by non-famous authors.

According to Theorem 2, under mild assumption, fairness visibility will converge to the acceptance

probability of each subgroup of the protected attribute when X increases. Since the acceptance

probability for -? = 0 (famous authors) is higher than that for -? = 1 (non-famous authors), the

fairness visibility for famous authors will be higher for larger values of the neighborhood size,

X. This provides a strategy to counter against the potential pitfall of using fairness perception by

expanding the neighborhood size X. Furthermore, it is worth noting that the peer review network

is not a connected graph. As a result, the fairness visibility does not converge exactly to the

acceptance probability for each group, which is 0.2989 (for non-famous authors) and 0.3933 (for

famous authors), when X is su�ciently large.

A similar observation can be made when analyzing the e�ect of increasing neighborhood size on

fairness visibility using top institution as protected attribute. As shown in Figure 4.6-(b), increasing

X leads to lower fairness visibility. However, with su�ciently large X, the fairness visibility for

papers by authors from top institutions is higher than that for papers by authors from lower ranked

institutions. By setting X = 2, the fairness visibility provides a good assessment on the true bias of

the paper acceptance decisions.
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(a) Famous author (b) Top institution

Figure 4.6: E�ect of neighborhood size on fairness visibility.

4.5 Conclusion

This paper presents a novel approach for algorithmic fairness in network data. Motivated by

the equity theory in social science, we introduced the concept of fairness perception as a local

formulation of fairness and quantified this notion through an axiomatic approach to analyze its

properties. We also showed how our proposed network-centric fairness perception function can be

extended to a group fairness measure known as fairness visibility. We provided theoretical analysis

to demonstrate its relationship to demographic parity. Using a peer-review network as case study,

we also examined its utility in terms of assessing the perception of fairness in paper acceptance

decisions. We also highlighted a potential pitfall of using fairness visibility measure as it can be

exploited to mislead individuals into perceiving that the algorithmic decisions are fair. Finally, we

show how to alleviate the problem by increasing the local neighborhood size.
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CHAPTER 5

MITIGATING PERCEPTION OF BIAS IN PEER-REVIEW DECISION MAKING

This chapter presents a novel recommendation algorithm that considers both the ratings provided

by the reviewers and the co-authorship network. Specifically, the proposed algorithm balances

the trade-o� between maximizing review ratings and minimizing the perception of bias in the

peer review decisions. Motivated by the work on fairness perception in previous chapter, we

provide theoretical bounds on the gap between the average rating for di�erent groups of individuals

when fairness perception is maximized. Finally, we demonstrate the e�ectiveness of the proposed

algorithm using open peer review data for a premier conference in machine learning.

5.1 Introduction

Peer review has an undeniable role in the academic advancement of scholars. It helps to assess

whether the quality of a submitted work merits acceptance for conference or journal publication.

It is also commonly used to evaluate grant proposals submitted for funding allocation. Despite

its benefits, similar to other subjective approaches, the peer review system su�ers from potential

biases among the reviewers [87]. For example, previous studies have suggested that conference

peer review systems tend to be biased in favor of papers written by prominent authors or authors

from well-known institutions [162]. In order to mitigate this problem, researchers have begun

investigating algorithmic-driven approaches to improve di�erent stages of the peer review process.

This includes learning to order the submissions for display during the reviewers’ bidding step [56],

matching the submission to appropriate reviewers during the reviewer assignment step [76], and

calibrating the scores provided by reviewers who have varying degrees of leniency [170].

Despite these e�orts, there are still concerns regarding fairness of the peer review decisions,

especially in top-tier computer science conferences, as the number of submissions has grown

significantly in recent years. The goal of this paper is to develop a recommendation algorithm that

identifies highly-rated papers for acceptance by learning a ranking function that takes into account

58



acceptability of the papers and fairness of the decision outcomes. Here, the notion of fairness

considers both disparity in the decision outcomes of similarly qualified papers by di�erent groups

of authors as well as the authors’ perception of fairness in the decisions.

The perception of fairness is important in peer review process as it a�ects credibility of the

conference or journal. In particular, if the decisions were viewed as favoring certain groups of

privileged individuals at the expense of others, this may discourage other authors from submitting

their work to the same venue again in the future. Despite its importance, quantifying and optimizing

the perceived fairness remains a challenge as most conference management systems do not provide

an option for authors to give their feedback regarding the fairness of the paper acceptance decisions.

While some conferences provide a rebuttal phase to solicit author’s feedback, this was often used

as a mechanism to clarify or respond to comments by reviewers.

This chapter is built on development of a fairness perception criteria in chapter four. However,

the fairness perception measure alone is insu�cient for two reasons. First, maximizing the measure

does not provide guarantees of global fainess for all groups of individuals since the criteria is

defined based on local neighborhood information only. This limitation was indeed noted in chapter

four, we showed that their measure may mislead individuals into perceiving the overall decisions to

be fair even though the decisions are still biased towards certain groups of individuals. Second, the

proposed fairness perception measure was designed for classification instead of recommendation

problems. It requires access to ground truth labels to train a model to predict the decision

outcome. For recommendation problems, this assumption is no longer valid, and thus, requires a

new formulation to define a continuous-valued score for ranking the papers.

In this chapter, we present a fairness-aware recommendation algorithm for mitigating the

perception of bias in peer reviews. Specifically, given an initial set of review ratings and a co-

authorship network, our goal is to provide a ranking of the papers based on a combination of

factors, including fairness perception and statistical parity, which is a measure of group-level

fairness. We examine how to improve recommendation of papers for acceptance by balancing

the trade-o� between maximizing fairness perception and minimizing statistical disparity between
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di�erent groups of individuals. Using a graph-theoretic approach, we provide theoretical bounds

on the gap in statistical parity of the decisions when fairness perception is maximized for all

the groups and show that the bounds are potentially large, depending on the network structure

and how the nodes belonging to the protected group are distributed in the network. A novel

multi-objective optimization algorithm is therefore proposed to overcome this problem. Finally, we

conducted extensive experiments on real-world data from a multi-year computer science conference

to demonstrate the e�ectiveness of our proposed algorithm in terms of the accuracy, fairness

perception, and statistical parity of its recommendations.

5.2 Related Work

Algorithmic fairness is an important topic that has attracted considerable interest in recent years

[16, 49, 69, 97]. Fairness can be defined at individual level as the absence of any prejudice or

favoritism towards an individual with certain characteristics in a decision-making task [124]. In

other words, similar people should be treated similarly [49]. For group fairness, the individuals are

divided into disjoint groups on the basis of their protected attribute values [16]. Given the decisions

made on individuals belonging to each group, a confusion matrix can be created from which fairness

metrics are computed to statistically compare the groups. If the decisions are fair, then the metrics

for di�erent groups are expected to be equal or close to each other [53, 69, 49, 53]. Examples of

group fairness metrics include demographic parity or statistical parity [49], equalized odds [69],

and calibration fairness [36], which have been used in previous studies [113, 80, 78, 50, 24] to

ensure the independence between the decision outcome (or risk score) and group membership of

the protected attribute. However, recent studies have shown that existing metrics are not always

compatible with each other [33, 58]. Kearns et al. [85] described another challenge known as

gerrymandering, in which a classifier may appear to be fair with respect to each protected attribute

separately, but not when defined jointly over multiple protected attributes. There have been several

recent attempts to address these limitations. For example, Hebert-Johnson et al. [70] introduced a

multi-calibration approach, which aims to guarantee the statistical fairness definitions would hold
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for an exponential or infinite class of groups defined by some class of functions with bounded

complexity.

In addition to defining fairness metrics, methods for de-biasing decision outcomes from machine

learning models have also been developed. As the input data itself is potentially biased, pre-

processing methods have been developed to alleviate this problem [186, 113, 116]. For example,

Louizos et al. [113] employed variational auto-encoders to learn a latent representation of the data

that is independent of sensitive attributes in the data. Similarly, Zemel et al. [186] presented an

algorithm for learning fair representation that preserves as much information as possible about the

original data except for the protected group membership information. However, these approaches

are mostly designed for independent and identically distributed (i.i.d.) data. To alleviate this

problem, in chapter three we introduced a dyadic-level fairness criterion based on a modified

network modularity measure and showed how it can be utilized for network link prediction tasks to

overcome the filter bubble problem.

The concept of fairness has also been extensively investigated in other fields such as social

science and criminal justice [143, 153]. These include studies that focus on understanding how

individuals perceive the notion of fairness. For example, Saxena et al. [151] investigated public

opinions on 3 fairness measures developed by computer science researchers and concluded that there

is a preference for calibration fairness. Lee and Baykal [102] also investigated users’ perception

on algorithmic fairness, though their results suggest that one-third of the participants felt the

algorithmic decisions to be unfair due to their failure to account for multiple concepts of fairness.

Ensuring fairness in peer review of scholarly research is important as it can have an adverse

a�ect on the quality of the decisions as well as reputation of the organization conducting the review

process (e.g., journals, conferences, or funding agencies). Recent years have witnessed growing

attempts to improve the di�erent stages of the peer review process. For example, Charlin and

Zemel [26] proposed an approach for automated reviewer assignment of conference papers known

as the Toronto paper matching system. Fiez et al.[56] argued that the ordering of conference papers

presented to reviewers for bidding has a significant impact on the number of bids received for each
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paper, which in turn, a�ects their quality of reviews. Other similar works focusing on improving

the reviewer assignment process include [158, 93]. A long-standing debate regarding peer review

process is whether to reveal the identities of the authors (single blind review) and reviewers (double

blind review). Tomkins et al. [162] conducted an experimental study by partitioning entire pool

of reviewers for a conference into single blind and double blind. They concluded that single

blind system tends to be biased in favor of papers authored by famous authors or those from top

institutions. However, a subsequent study by Stelmakh et al. [156] showed the limitations of the

test procedures used in [162] and designed an approach to overcome these limitations. Finally,

calibration of the reviewers scores is another research direction that has been pursued recently [170]

to account for the implicit biases in the ratings as some reviewers are more lenient or stringent than

others.

5.3 Preliminaries

This section formalizes our problem statement and reviews some of the fairness measures

available.

5.3.1 Problem Statement

Let ⌧ =< + , ⇢ , - > be an attributed network, where + is the set of nodes, ⇢ ✓ + ⇥ + is the set

of links, and - is the set of node attributes. For paper acceptance recommendation, we assume

each node is a paper, each link represents a co-authorship relation between two papers, and the

node attributes - = (-
(?)

, -
(D)

) is a combination of the protected attributes, - (?) , and other

attributes, - (D) . The protected attribute indicates whether the paper was written by well-known

researchers (famous authors) or authors from highly-ranked universities or research labs (top

institutions). If so, then - (?) = 0, otherwise - (?) = 1. Our rationale for using these criteria as

protected attribute is based on the results from chapter four and [162], suggesting that peer review

decisions tend to favor famous authors or those from well-known institutions. The attributes in - (D)

include the review ratings and other assessment criteria associated with each paper. We assume

62



there exists an evaluation function q : - (D)
E
! R such that BE = q(- (D)

E
) represents acceptability

of the paper E. For example, BE may correspond to the average reviewer ratings (or a weighted

average ratings based on the reviewers’ confidence) of a paper. In addition, we also consider a

kernel function,  : - (D)
⇥ -

(D)
! R+, which measures the similarity between a given pair of

papers. In this chapter, we use the following Gaussian radial basis function as our kernel function:

 (D, E) = exp
✓
�
kD�Ek

2

2f2

◆
, where f is a hyperparameter.

The co-authorship relation is established by examining whether two papers share the same

authors or have authors who had previously collaborated together in the past. Their links are

represented by an adjacency matrix, �, where �8 9 = 1 if papers 8 and 9 has a co-authorship relation

and 0 otherwise.

Definition 11 (Peer-review recommendation). Given a co-authorship network ⌧ =< + , ⇢ , - >,

the peer-review recommendation task is to learn a ranking function ⌘ : + ! [0, 1] based on the

link structure ⇢ and node attributes - = (-
(?)

, -
(D)

).

The output of the ranking function can assist decision makers (i.e., conference program chairs)

by providing an initial list of top-k highest-ranked papers recommended for acceptance. Our goal

is to provide accurate recommendation that minimizes implicit biases in the peer review decisions

while maximizing fairness perception of the authors. While the discussion presented in this chapter

focuses on peer review recommendation, in principle, the proposed approach is applicable to other

network-based recommendation systems [114, 30].

5.3.2 Fairness Measures

Quantifying the notion of fairness is one of the pillars of ethical machine learning. A widely used

criterion for assessing fairness is demographic parity or statistical parity (SP) [49]. Demographic

parity constrains the output of the classification problem to be independent of the protected attribute.

Particularly a predictor satisfies demographic parity if there is no correlation between the protected

feature and the output. In other words, demographic parity seeks to equalize the positive decision
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across di�erent groups of the protected feature. Assuming both the target outcome .̂ and protected

attributes are binary-valued, demographic parity can be formalized as follow:

%(.̂ = 1|- (?) = 0) = %(.̂ = 1|- (?) = 1) (5.1)

Another well-known fairness criterion is equalized odds [69], which seeks to ensure that

the predictions are conditionally independent of the protected attribute given the true outcome.

Suppose . = 1 is the advantaged outcome, such as job o�er or college admission. A classifier, .̂ ,

satisfies the equality of odds with respect to the protected attributed - (?) and binary outcome . if

both conditions below hold:

%(.̂ = 1|- (?) = 0,. = 1) = %(.̂ = 1|- (?) = 1,. = 1)

%(.̂ = 1|- (?) = 0,. = 0) = %(.̂ = 1|- (?) = 1,. = 0)

The former equation, also known as equal opportunity [69], refers to equality of true positive rates

for the two groups whereas the latter refers to equality of false positive rates.

5.4 Methodology

This section presents our approach for mitigating bias in peer review recommendation. We

first introduce the proposed neighborhood expectation function for recommendation problems and

then present a simple algorithm that maximizes fairness perception. We examine its impact on the

acceptance rates for di�erent groups and theoretically show that the gap in acceptance rates can

be potentially large, which motivates us to develop a multi-objective optimization algorithm that

balances the two criteria.

5.4.1 Proposed Expected Function

Instead of using Equation (4.3), which requires availability of the ground truth label H, we con-

sider the following approach to compute the neighborhood-based expectation E[⌘(E)] for our

recommendation algorithm:

E[⌘(E)] =

Õ
D2# (E) ⌘(D) (E, D)Õ
D2# (E)  (E, D)

(5.2)
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Intuitively, the expected value of ⌘ is computed based on the weighted average value of neighboring

nodes in the network, taking into account the node similarity values. Unlike chapter four, we

consider ⌘ as a continuous-valued ranking function instead of a binary decision function.

Lemma 3. The proposed expected value in Equation (5.2) is a well-behaved function, satisfying

properties P1-P3.

Proof. For the first property, since 8D 2 # (E) : ⌘(D) = ⌘0(D), therefore E[⌘(E)] = E[⌘0(E)] since

 is independent of the ranking function ⌘ in Equation (5.2). The second property holds given the

fact that the co-domain of the kernel function  is non-negative. Assuming 8D 2 # (E) : ⌘(D) 

⌘
0
(D), we have ’

D2# (E)

⌘(D) (E, D) 

’
D2# (E)

⌘
0
(D) (E, D)

The proof for property P2 follows since the denominator of the expected value in Equation (5.2)

is the same for ⌘ and ⌘0. The third property also holds based on the premise that the induced

subgraphs ⌧D and ⌧E are isomorphic with respect to h. This guarantees that the ⌘ and  values

for all the nodes the neighborhood of D and E are the same. As a consequence, E[⌘(D)] = E[⌘(E)],

which completes the proof. ⇤

5.4.2 Maximizing Fairness Perception

Let C = {⇠1, . . . ,⇠: } be the set of all connected components in G. The theorem below presents a

simple solution for the ranking function ⌘ that maximizes fairness perception.

Theorem 4. Given a ranking function ⌘ and a network ⌧ =< + , ⇢ , - >, the function achieves its

maximum fairness perception, i.e., 8E 2 + : 5 (E, ⌘) = 1, if and only if 8⇠ 2 C : ⌘(E) = ⌘(E0) for

all E, E0 2 ⇠.

Proof. If ⌘(E) is identical for all the nodes E in the same connected component, then according to

Definition 5.2, it is easy to see that8E : E[⌘(E)] = ⌘(E). As a result, the fairness perception function

5 (E, ⌘) = 1 for all E 2 ⇠. Since this property holds for all ⇠ 2 C, therefore 8E 2 + : 5 (E, ⌘) = 1.
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Next, we will show that if 8E 2 + : 5 (E, ⌘) = 1, then all the nodes E in the same connected

component must have the same value for ⌘(E). This is trivially satisfied if the connected component

has only one node. Thus, we consider the case for connected components with at least two nodes. By

contradiction, assume that fairness perception is maximized and there exists a connected component

⇠ 2 C containing nodes with di�erent rank values ⌘. Let ⇠<8= = {D 2 ⇠ |⌘(D) = <} where

< = <8={⌘(D) |D 2 ⇠}. Since the rank values are not uniform, there must exist a node D< 2 ⇠<8=

connected to another node E 2 ⇠ \ ⇠<8=, in which ⌘(D<) < ⌘(E). If there is no such a D< , then

⇠<8= must not be connected to ⇠ \⇠<8=, which cannot be true. Thus, 8E 2 # (D<) : ⌘(D<)  ⌘(E)

and there exist a neighboring node E 2 # (D<) such that ⌘(E) > ⌘(D<). Using the expected value

function defined in Equation (5.2), we have

E[⌘(D<)] =

Õ
E2# (D<) ⌘(E) (D< ,<)Õ
E2# (D<)  (D< , E)

>

Õ
E2# (D<) ⌘(D<) (D< , E)Õ

E2# (D<)  (D< , E)

= ⌘(D<)

Since ⌘(D<) < E[⌘(D<)], 5 (D< , ⌘) = 0, which contradicts the assertion that fairness perception is

maximized. Thus, the original assumption that the connected component has nodes with di�erent

rank values must be wrong. ⇤

Theorem 4 suggests a trivial solution for maximizing fairness perception is by assigning the

same rank value ⌘ to every node in a connected component. However, maximizing fairness

perception alone is insu�cient for several reasons. First, it does not guarantee good performance

as all the nodes (papers) in the same connected component have identical rank values irrespective

of their acceptability score B. Second, since fairness perception is an individual-level metric based

on local neighborhood features rather than global features, it does not guarantee similarly qualified

papers by di�erent groups of authors will be treated equally.

One way to measure equity across the di�erent groups is to apply a group-level fairness criterion

such as statistical parity (see Equation (5.1)), which was originally introduced for classification
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problems. Here, we propose the following weighted statistical disparity (WSD) metric to determine

the disparity in the average rank scores ⌘ of similarly qualified papers for the di�erent groups of

authors. Specifically, we first partition the acceptability scores of the papers into a set of  

ordinal values, B̂1 < B̂2 < · · · < B̂
 

. For example, if the average rating of a paper E ranges

between 0 to 10, then B̂8 may correspond to the rounded integer value of BE , A (BE) = B̂8. Let

⌫
( 9)

8
= {E 2 + | A (BE) = B̂8, -

(?)

E
= 9} denotes the set of papers with similar acceptability scores,

B̂8, and ⌘̄( 9)
8

= 1

|⌫
( 9)

8
|

Õ
E2⌫

( 9)

8

⌘(E) denotes the average rank ⌘ of such papers from protected group

-
(?) = 9 . The following equation is used to measure the weighted statistical disparity across the

di�erent groups:

�(⌘) =
1
 

 ’
8=1

B̂8

�
⌘̄
(0)
8
� ⌘̄

(1)
8

�2 (5.3)

Note that �(⌘) = 0 if the average rank of similarly qualified papers are identical for the di�erent

groups of the protected attribute. The measure also emphasizes on ensuring fairness in the

ranking of papers with higher acceptability scores since such papers are the ones more likely to

be recommended for acceptance. The theorem below illustrates the relationship between fairness

perception and the weighted statistical disparity measure.

Theorem 5. Given a ranking function ⌘ that maximizes fairness perception, i.e.,8E 2 + : 5 (E, ⌘) =

1, its weighted statistical disparity satisfies the following inequality: ^ ⇥ <0G
n
X
⇤
, 0
o
 �(⌘) 

^ ⇥ �⇤, where ^ := 1
 

Õ
 

8=1 B̂8,

X
⇤ = sign

⇣
(⌘

(0)
min � ⌘

(1)
max) (⌘

(0)
max � ⌘

(1)
min)

⌘

⇥min
n
(⌘

(0)
min � ⌘

(1)
max)

2
, (⌘

(0)
max � ⌘

(1)
min)

2
o
,

�⇤ = max
n
(⌘

(0)
min � ⌘

(1)
max)

2
, (⌘

(0)
max � ⌘

(1)
min)

2
o
.

Here, we have denoted ⌘( 9)min = min{⌘(E) | - (?)

E
= 9} and ⌘( 9)max = max{⌘(E) | - (?)

E
= 9}.

Proof. First, note that ⌘( 9)min  ⌘̄
( 9)

8
 ⌘

( 9)

max since

⌘̄
( 9)

8
=

1

|⌫
( 9)

8
|

’
E2⌫

( 9)

8

⌘(E) 
1

|⌫
( 9)

8
|

’
E2⌫

( 9)

8

⌘
( 9)

max = ⌘( 9)max
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⌘̄
( 9)

8
=

1

|⌫
( 9)

8
|

’
E2⌫

( 9)

8

⌘(E) �
1

|⌫
( 9)

8
|

’
E2⌫

( 9)

8

⌘
( 9)

min = ⌘( 9)min

Using these inequalities, it can be easily shown that

⌘
(0)
min � ⌘

(1)
max  ⌘̄

(0)
8
� ⌘̄

(1)
8
 ⌘

(0)
max � ⌘

(1)
min and

( ⌘̄
(0)
8
� ⌘̄

(1)
8

)
2
 max

n
(⌘

(0)
min � ⌘

(1)
max)

2
, (⌘

(0)
max � ⌘

(1)
min)

2
o

Replacing the above inequality into Equation (5.3) and using the definition of �⇤, we obtain the

following upper bound:

�(⌘) 
1
 

’
8

B̂8 max
n
(⌘

(0)
<8=
� ⌘

(1)
<0G

)
2
, (⌘

(0)
<0G
� ⌘

(1)
<8=

)
2
o

= ^ ⇥ �⇤

To obtain the lower bound for �(⌘), we use the following:

( ⌘̄
(0)
8
� ⌘̄

(1)
8

)
2
� sign

⇣
(⌘

(0)
min � ⌘

(1)
max) (⌘

(0)
max � ⌘

(1)
min)

⌘

⇥min
n
(⌘

(0)
min � ⌘

(1)
max)

2
, (⌘

(0)
max � ⌘

(1)
min)

2
o
= X⇤

If (⌘(0)min � ⌘
(1)
max) and (⌘

(0)
max � ⌘

(1)
min) have opposite signs, then X⇤ is negative. Since ( ⌘̄

(0)
8
� ⌘̄

(1)
8

)
2

is non-negative, we can obtain a tighter bound as follows:

( ⌘̄8
(0)
� ⌘̄8

(1)
)
2
� max

n
X
⇤
, 0
o

(5.4)

Replacing the above inequality into Equation (5.3) yields

�(⌘) �
1
 

’
8

B̂8 max
⇢
X
⇤
, 0
�
= ^ ⇥max

⇢
X
⇤
, 0
�

which completes the proof. ⇤

The preceding theorem shows that maximizing fairness perception does not guarantee parity in

the recommended decisions for di�erent groups. The latter also depends on the distribution of the

protected attribute values across the network, which is beyond the control of the decision-makers.

Thus, it would be desirable to find a compromise that considers the trade-o� between maximizing

fairness perception and minimizing the weighted statistical disparity. In the next section, we

describe our algorithm to achieve this balance.
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5.4.3 FPRank: Fair Peer Review Recommendation

This section presents FPRank, our proposed recommendation algorithm, which learns a ranking

function ⌘ that considers the acceptability scores of the papers and the trade-o� between maximizing

fairness perception and minimizing the weighted statistical disparity measure, �.

First, we re-write the expected value given in Equation (5.2) as E[⌘(E8)] =
Õ
9
,8 9 ⌘(E 9 ), where

, = ⇡
�1

( � �) and � denote a Hadamard product between the adjacency matrix � and the

kernel matrix  . ⇡ is a diagonal matrix, in which ⇡88 =
Õ
9
[ � �]8 9 . A trivial approach to

learn a ranking function that maximizes fairness perception is to solve ⌘ = ,⌘, or equivalently,

(, � �)⌘ = 0. The solution is obtained by finding the null space of the matrix, � �, which admits

the null vector ⌘ = 0 as its trivial solution. In addition to maximizing fairness perception, the

ranking function ⌘ should also match acceptability of the paper as given by B. In other words, the

rank of the paper should be high if its acceptability score is high. Thus, one of our objectives is

to minimize the discrepancy between B and ⌘. Furthermore, the ranking function ⌘ must also be

trained to minimize the weighted statistical disparity, �(⌘), to ensure it is not biased against certain

groups of nodes.

Putting everything together, the objective function to be solved by our framework is as follows:

argmin
⌘

| |B � ⌘| |
2
+ U�(⌘)2 + V | |I | |2 (5.5)

s.t. 88 :
’
9

,8 9 ⌘ 9  ⌘8 + I8, ⌘8 � 0, I8 � 0

I is a slack variable that relaxes the constraint for fairness perception to be equal to 1 for all

the nodes. The hyperparameters U and V control the tradeo� between matching ⌘ to the paper

acceptability scores, ensuring group parity, and minimizing the number of constraint violations.

During training, our algorithm finds the values of U and V that minimizes the power mean of

the three terms in the objective function1. The objective function can be solved using a standard

quadratic programming package such as CVX [46, 6].

1 The power mean for G1, . . . , G= is "? (G1, . . . , G=) =
⇣

1
=

Õ
=

8=1 G
?

8

⌘ 1
? where p is a hyper

parameter.
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Table 5.1: Summary statistics of submitted and accepted papers for the ICLR conference from
2017 to 2020.

Year # papers # Accepted % Top % Famous
papers Institution authors

2017 488 243 25% 22%
2018 402 229 33% 17%
2019 1419 502 27% 15%
2020 2212 687 26% 12%

5.5 Experimental Evaluation

This section describes the experiments performed to investigate the e�ectiveness of our fairness-

aware recommendation algorithm.

5.5.1 Experimental Setup

5.5.1.1 Data

We consider a multi-year peer review data from a major computer science conference (ICLR) for

our experiments. The dataset was scraped from the OpenReview.net website, which provides an

API to access the list of submitted papers as well as their meta-data, including reviews, comments,

and final decisions. Table 5.1 shows the summary statistics of the submitted and accepted papers

from 2017 to 2020. We extracted the authorship information for each paper, including the authors

names, a�liations, and scholarid. We also identified the email addresses of their co-authors by

preprocessing the authors’ profile pages on the OpenReview website. Similar to the approach

used in previous chapter, we categorized the submitted papers into di�erent groups based on the

values of two protected attributes—famous author papers and top institution papers. We used

Google Scholar to identify famous authors by examining the top-500 researchers with the highest

h-index scores2. Thus, if a paper includes one or more famous authors, then - (?)

author = 0, otherwise

-
(?)

author = 1. To identify the top institutions, we used the rank list provided by csrankings.org3. If

2
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=

label:machine_learning

3
http://csrankings.org/#/index?all
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a paper has an author from a top-10 highest ranked university, then - (?)

inst = 0, otherwise - (?)

inst = 1.

The co-authorship relation was established by combining the list of co-authorship information

provided on the user profile page on OpenReview website with the co-authorship information

gathered from the DBLP website4. We consider the acceptability score of a paper B in terms of its

average review ratings.

5.5.1.2 Baseline Algorithms

We compare our proposed FPRank method against the following baselines: (1) Calibrated equalized

odds postprocessing, CEP [145], which is a method for calibrating the classifier output scores to

ensures fairness in terms of equalized odds measure. We use a variation of the method to ensure

equality of false positive rates CEP (FPR). (2) Reject option classification, ROC [79], which is a

post-processing method that guarantees fairness in terms of statistical parity ROC (SPD) or equal

opportunity ROC (EOD). (3) FairTop-k [185], which is a fairness-aware ranking algorithm that

identifies a subset of k candidates from a large pool of candidates by selecting the best candidates

based on a ranked group fairness criterion. We use the implementation provided by AI Fairness

360 software5 for the CEP and ROC baselines. We also consider a variation of our method, Max

Perception, which maximizes only fairness perception and consistency with acceptability score B

without considering statistical parity (i.e., see Equation 5.6 without �(⌘) and the slack variables).

5.5.1.3 Evaluation Metrics

We consider the conference decision as the ground truth outcome and calculate the widely-used

average precision measure of each algorithm based on their recommended papers, i.e., 1
<

Õ
:
%@: ,

where< is the number of accepted papers and%@: is the precision based on the top-: recommended

papers. We also compute its overall fairness perception by taking the average fairness perception of

the papers, i.e., 1
|+ |

Õ
E2+ 5 (E, ⌘). The metric ranges between 0 and 1, with larger values suggest a

4
https://dblp.uni-trier.de/xml/

5
https://aif360.mybluemix.net
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Table 5.2: Average precision of various methods compared to the conference decisions (using top
institutions as protected attribute).

2017 2018 2019 2020
FPRank 0.9246 0.8333 0.7956 0.9093
Max Perception 0.6901 0.6979 0.4601 0.3063
ROC (SPD) 0.7687 0.7789 0.7830 0.7381
ROC (EOD) 0.7769 0.7794 0.7797 0.7611
CEP (FPR) 0.5606 0.6934 0.5074 0.6705
FairTop-k 0.9004 0.8288 0.8810 0.8464

Table 5.3: Average precision of the various methods compared to the conference decisions (using
famous authors as protected attribute).

2017 2018 2019 2020
FPRank 0.9262 0.8356 0.7956 0.9085
Max Perception 0.6901 0.6979 0.4601 0.3063
ROC (SPD) 0.7738 0.7575 0.7684 0.7467
ROC (EOD) 0.7769 0.7794 0.7797 0.7611
CEP (FPR) 0.5641 0.6976 0.5074 0.6705
FairTop-k 0.8971 0.8263 0.8790 0.8487

higher perception of fairness in the decision. Finally, we evaluate the weighted statistical disparity

of each method using Equation 5.3. To compute the metric, the acceptability scores B8 were

discretized into B̂8 by rounding the average review ratings to the nearest integer value.

5.5.2 Experimental Results

The first goal of our experiments is to compare the rankings generated by the di�erent methods

against the conference decisions. Table 5.2 summarizes the average precision of FPRank and

other baseline methods using top institution as protected attribute while Table 5.3 shows the

corresponding results using famous author as protected attribute. The results in both tables suggest

that FPRank outperforms all the baseline methods in 3 out of 4 years. Although its precision is

lower than FairTop-K in 2019, it outperforms FairTop-K in terms of average precision and other

fairness metrics to be described below in all other years. Observe that the Max Perception baseline

has a lower average precision than FPRank, which suggests that maximizing fairness perception

does not guarantee high quality recommendation.
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Table 5.4: Comparison of average fairness perception (using top institutions as protected attribute)

2017 2018 2019 2020
FPRank 0.8709 0.8682 0.7463 0.5023
Max Perception 0.9918 0.9577 0.8118 0.5054
ROC (SPD) 0.7766 0.8159 0.6758 0.5027
ROC (EOD) 0.8340 0.8159 0.6892 0.4973
CEP (FPR) 0.7889 0.8358 0.6723 0.4991
FairTop-k 0.8340 0.8184 0.6794 0.4986
Conference Decision 0.8135 0.8308 0.6963 0.5077

Table 5.5: Comparison of average fairness perception (using famous authors as protected attribute)

2017 2018 2019 2020
FPRank 0.8709 0.8607 0.7449 0.5023
Max Perception 0.9918 0.9577 0.8118 0.5054
ROC (SPD) 0.8094 0.8159 0.6737 0.4977
ROC (EOD) 0.8340 0.8159 0.6892 0.4973
CEP (FPR) 0.8197 0.8308 0.6723 0.4991
FairTop-k 0.8320 0.8134 0.6758 0.4973
Conference Decision 0.8135 0.8308 0.6963 0.5077

Next, we compare the average fairness perception of the di�erent methods. Table 5.4 sum-

marizes the results for top institution as protected attribute. Except for 2020, Max Perception

has the highest fairness perception, which is not surprising since the algorithm explicitly tries to

maximize the measure. FPRank has the second highest fairness perception values and consistently

outperforms other baseline methods including FairTop-K. Similar conclusions can be reached for

the results shown in Table 5.5 for famous authors as protected attribute. For 2020, it appears that

the original conference decision has the highest fairness perception, though it is quite close to other

methods and is lower than other years.

Finally we compare the performance of the various methods in terms of their group fairness met-

ric, weighted statistical disparity. Tables 5.6 and 5.7 summarize the results using top institution and

famous author, respectively, as the protected attribute. Observe that FPRank consistently achieves

weighted statistical disparity values close to 0 in all years, which suggests that its recommendation

is not biased against one of the protected groups. These results support our claim that FPRank

can achieve high average precision in its recommendation while balancing the trade-o� between
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Table 5.6: Comparison of weighted statistical disparity (using top institutions as protected attribute)

2017 2018 2019 2020
FPRank 0.0657 0.0049 0.0040 0.0000
Max Perception 0.3707 0.1831 0.0165 0.0003
ROC (SPD) 0.3619 0.1649 0.0065 0.0101
ROC (EOD) 0.3466 0.1637 0.0009 0.0000
CEP (FPR) 0.6164 0.1637 0.0000 0.0001
FairTop-k 0.3459 0.1644 0.0040 0.0001
Conference Decision 0.3464 0.0110 0.0012 0.0023

Table 5.7: Comparison of weighted statistical disparity (using famous authors as protected attribute)

2017 2018 2019 2020
FPRank 0.0709 0.0391 0.0044 0.0000
Max Perception 0.2835 0.1798 0.0557 0.0004
ROC (SPD) 0.2375 0.1753 0.0102 0.0103
ROC (EOD) 0.1825 0.1638 0.0002 0.0000
CEP (FPR) 0.7653 0.1637 0.0002 0.0001
FairTop-k 0.1834 0.1639 0.0038 0.0001
Conference Decision 0.1851 0.0040 0.0009 0.0009

maximizing fairness perception and minimizing the weighted statistical disparity of the di�erent

groups.

5.6 Conclusions

This chapter presents a novel fairness-aware peer review recommendation algorithm called

FPRank that considers a multi-objective criteria based on acceptability scores, fairness perception,

and weighted statistical disparity, to generate its recommendation for paper acceptance. We also

provide theoretical analysis to show that maximizing fairness perception alone is insu�cient as it

may lead to bias in terms of the group fairness criteria. Finally, we successfully demonstrate the

e�ectiveness of FPRank in terms of balancing the competing requirements using open review data

from a major conference in machine learning.
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CHAPTER 6

FAIR GRAPH SAMPLING

This chapter investigates the problem of network sampling from a fairness perspective. First

we propose a novel fairness-aware network sampling framework that combines the structural

preservability and group representativity objectives into a unified structure. Next we developed a

fair greedy sampling algorithm which aims to satisfies both objectives. We also provide a theoretical

approximation guarantee bound for the proposed method.

6.1 Introduction

Networks are powerful tools for modeling interactions between entities in a complex social

system. The digital revolution has provided a unique opportunity to collect significant amount of

information related to such systems. For example, the number of smartphone users has grown

by 40% from 2016 to 2021, reaching up to 3.8 billion people [163]. The pervasiveness of such

technology means more social network users, more online purchases, more user-generated content,

and consequently, more massive networks. Executing even simple algorithms on such a massive

network can be very expensive. In addition to computational complexity, many online social

networks are not entirely visible due to privacy concerns, and are accessible only via crawling or

(a) The Original Network (b) An Structural Preservative Sam-
ple

(c) A Group Representative Sample

Figure 6.1: An example illustration of di�erent sampling objective.
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through the use of APIs. However, such access is often limited due to restrictions on the number of

queries or rate limits imposed by the data providers [1]. This makes accessing the whole network

extensively hard or near impossible.

One way to address the above challenges is by using network sampling. Sampling can be used

to extract a subset of the nodes and links of the network for subsequent analysis tasks. For example,

the sampled network can be used for e�cient training of sophisticated deep learning models such

as graph convolutional networks (GCN) or for network visualization purposes. Furthermore, it can

be utilized as an e�cient way to collect data with a limited budget.

The most common sampling objective is to preserve specific topological properties of the

original network, which will be referred to as structural preservability in this chapter. In graph

sampling literature, many network topological measures have been used to characterize structural

preservability. These properties can be generally categorized into two groups: (1) vector properties

such as the distribution of node degrees, clustering coe�cients, and eigenvalues, and (2) scalar

properties such as average degree, network diameter, and average clustering coe�cient. The

former can be assessed using probabilistic distance measures such as Kullback–Leibler divergence

and Kolmogorov-Smirnov statistic whereas the latter can be measured using measures such as

normalized root mean square error (NRMSE) [73].

Besides their link structure, many networks can also be characterized by properties of their

node attributes. The sampling objective can therefore be expressed in terms of representativeness

of their node attribute values [73], which will be referred to herein as group representativity. The

node attributes used to define the groups are known as protected attributes (e.g., gender, race, age

group, etc). Group representativity can be formalized as the ratio of nodes from each subgroup in

the sampled subgraph to the original network. Figure 6.1 shows a toy example to illustrate the two

potentially conflicting sampling objectives. The network in Figure 6.1(a) has 11 nodes with the red

and blue colors representing their group memberships. Observe that there are two major clusters

in the network, one involving the nodes labeled 0-4 while the other involving nodes 5-10. Figure

6.1(b) illustrates a structurally preservable network sample that maintains the clustering structure

76



but is not group representative as it includes mostly nodes from the blue subgroup, with only one

node from the red subgroup. On the other hand, Figure 6.1(c) illustrates a group representative

sample that is not structurally preservable since it contains nodes primarily from one of the two

clusters.

Similar to other machine learning tasks, existing network sampling algorithms are not imper-

vious to biases against certain demographic groups of the social network. Given its broad range of

applications, the importance of fair network sampling cannot be overly emphasized. If the sampled

network is biased, this will adversely a�ect the results of downstream mining tasks. For example,

Wagner et al. [166] showed that uninformed sampling may lead to biased estimation of node

centrality values and unfair ranking of nodes from minority groups in a social network. They also

proposed a metric based on the idea that an ideal sample should not “systematically rank nodes of

one group higher and nodes of the other group lower than expected." However, the authors did not

present any new sampling method to overcome the limitations of existing algorithms.

The main challenge in fair network sampling is how to combine the structural preservability and

group representativity objectives in a principled way and to design an algorithm that optimizes for

both. In this chapter, we develop an approach that measures structural preservability by comparing

the centrality measures of the nodes in the sampled network compared to their values in the original

network. The fairness of the sampled network, which corresponds to our group representativity

measure, is then defined by a max-min subgroup fairness criterion [118] based on the worst-case

structural preservability value among all the subgroups of the protected attribute. We have also

developed a greedy algorithm to obtain an approximate solution for the max-min subgroup fairness

criterion. A systematic evaluation of the proposed sampling algorithm was performed on various

real-world social network data to empirically compare its e�ectiveness relative to other baseline

methods.
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6.2 Related Work

Previous methods for network sampling can be categorized as random node selection (RN),

random edge selection (RE), or traversal-based sampling methods. In the first case, the RN sampling

algorithm will select a subset of the nodes, while maintaining all the edges among the selected

nodes. The sampled nodes are selected according to some structural preservability criteria, e.g.,

in terms of their node degree, PageRank value [138], or other node centrality measures. In the

second case, the sampling algorithm will select a subset of the edges to create the subgraph. The

RE sampling process can be done by randomly choosing the edge or by randomly choosing a

node first before selecting an edge incident to the node [104]. Finally, a traversal-based sampling

algorithm starts from an initial set of nodes (and/ or edges) and expands the sample based on

their connectivity to the nodes in the current sample. This method includes random walk based

sampling [174, 122, 148], snowball sampling [57] (which is similar to breadth-first search with the

di�erence in that it only expands a fixed number of neighbors), forest fire sampling [105] (which

is a probabilistic version of snowball sampling), and Markov chain Monte Carlo methods (e.g., the

Metropolis-Hastings [75, 61] algorithm).

Graph sampling methods can be utilised in training graph neural networks (GNN). For example,

Hamilton et al. [67] proposed a method for generating node representation by sampling and aggre-

gating features from a node’s local neighborhood. Ying et al. [183] combines random walks and

graph convolutions to generate node representations. Chen et al.[28] proposed a sampling scheme

in the reformulation of the loss and the gradient whereas Zou et al.[194] proposed layer-dependent

importance sampling. Alternative graph sampling methods have been proposed in [31, 187, 35].

These sampling approaches are designed for e�cient training of graph neural networks, instead of

preserving the topological properties and group representativity of the network, which is the focus

of this chapter.

Fairness in machine learning has received considerable attention in recent years [16, 49, 69, 97].

Prior works have mainly focused on classification tasks and can be categorized into individual and

group-level fairness. Individual-level fairness was developed based on the proposition that similar
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people should be treated similarly. An example of such an approach is by Dwork et al. [49]

that defines a metric based on probabilistic distance measure between individuals with Lipschitz

condition. Fairness from a group-level perspective was developed based on the idea that members of

di�erent demographic groups such as race and gender should be treated equally. These approaches

would quantify fairness in terms of statistical measures [16] such as statistical parity [49], equalized

odds [69], and balanced error rate [53].

There are growing interests to the problem of fairness in network mining tasks [121, 147, 23,

81, 40]. Rahman et al. [147] proposed Fairwalk, a fairness-aware embedding method based on

node2vec. Buyl and De Bie [23] proposed a Bayesian method for learning debiased embeddings by

using a biased prior. Kanget al. [81] presented a definition of individual fairness for graph mining

and three algorithms for debiasing the input graph, debiasing the learning model and debiasing the

output results. Dai and Wang [40] proposed debiasing framework for GNNs whereas Masrour et

al. [121] introduced a fairness metric based on a network modularity measure and utilized it for

link prediction tasks in network mining to alleviate the filter bubble problem in social networks.

6.3 Preliminaries

Let ⌧ =< + , ⇢ , - > be an attributed network, where + is the set of nodes, ⇢ ✓ + ⇥+ is the set

of links, and - 2 R|+ |⇥3 is the feature matrix associated with the nodes in the network. We assume

- can be partitioned into two groups - = (-
(?)

, -
(D)

), where - (?) denote the protected attributes

and - (D) denote the unprotected ones. Let {%1, . . . , % } be the partitions of the nodes in + based

on the values of the protected attribute - (?) , where  is the number of distinct combination of its

values.

Given a pair of networks, ⌧1 =< +1, ⇢1, -1 > and ⌧2 =< +2, ⇢2, -2 >, we say that ⌧1 is a

subgraph of ⌧2, denoted as ⌧1 ✓ ⌧2, if +1 ✓ +2 and ⇢1 ✓ ⇢2. If ⇢1 includes all the links in ⌧2

that have endpoints in +2, then ⌧1 is an induced subgraph of ⌧2. We denote the set of all possible

induced subgraphs of size = of a graph ⌧ as G=. For brevity, we consider only undirected networks

in this study, though the ideas can be extended to directed networks.
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Definition 12 (Network Sampling). Given an attributed network ⌧ =< + , ⇢ , - > and a sample

size n, the task of network sampling is to extract an induced subgraph ⌧⇤
B
=< +⇤

B
, ⇢
⇤
B
, -
⇤
B
> with n

nodes that maximizes the following objective function o : G= ! R+.

⌧
⇤
B
= argmax

⌧B2G=o(⌧B) (6.1)

This chapter focuses on designing a network sampling algorithm that satisfies both structural

preservability and group representativity requirements. The former requires comparing the topo-

logical properties of the sampled graph against the original network while the latter evaluates how

representative the sample is with respect to di�erent subgroups, as defined by the node attributes.

We will discuss in detail the proposed objective function to achieve this goal in the next section.

6.3.1 Network Sampling as Subset Selection Problem

The network sampling problem can be formulated as a subset selection problem, which is defined

as the task of finding a subset � from a set ( that maximizes an objective function 5 : 2( ! R+

such that |�|  =. Network sampling is a form of subset selection problem where ( is the set

of nodes in the network. Besides network sampling, there are other machine learning tasks, such

as feature subset selection, that can also be formulated as a subset selection problem. However,

due to its exponential search space, it has been shown that the subset selection problem is usually

NP-hard[43].

Many algorithms have been developed to find a polynomial-time approximation solution for

this problem. These algorithms can be generally categorized into two groups—convex relaxation

and greedy algorithms [146]. Convex relaxation methods would replace the non-convex subset size

constraint with convex constraints [161, 195]. In contrast, greedy algorithms would start from an

empty set and iteratively select an element from the set + to be added in a way that maximizes

the objective function [60, 43]. For submodular objective functions, the greedy algorithms are

guaranteed to find a reasonably good approximation to the optimal solution. Specifically, a function
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5 is submodular if and only if:

5 (� [ ⌫) + 5 (� \ ⌫)  5 (�) + 5 (⌫) (6.2)

for all subsets �, ⌫ ✓ + . If 5 is a monotone, submodular, non-negative function on 2+ , then the

greedy algorithm will provide a solution within 1� 1
4

approximation of the optimum solution [129].

If the function does not have submodular property, the greedy algorithms may perform poorly.

Nevertheless, there is a class of non-submodular functions that has received considerable attention

recently. Bian et al. [19] provided an approximation of the bounds for greedy maximization of

nondecreasing set functions. Their bound was defined in terms of the (generalized) curvature and

submodularity ratio of the function. Chen et al. [29] showed that a randomized version of the greedy

algorithm achieves an approximation ratio of (1+ 1
W
)
�2 for weakly submodular maximization subject

to a general matroid constraint, where W is a parameter measuring the distance from submodularity.

6.4 Proposed Sampling Framework

Our goal is to design a network sampling framework that considers both structural preservability

and group representativity objectives. In this section we first introduced the proposed node-

level sampling measure for structural preservability of the sample. We then describe our group

representativity objective, which measures fairness in the sampled network in terms of the worst-

case structural preservability measure for di�erent groups of the protected attribute. The criteria

will be employed by our proposed greedy algorithm to be described in Section 6.5.

6.4.1 Node-level Sampling Measure

Since the protected attribute is an individual-level feature defined for each node, a natural starting

point for measuring a sample’s goodness in terms of preserving the topological properties of a

network is at the individual node level. More specifically, node centrality [130] has been widely

used as a measure of the importance of the nodes in a network. By comparing the centrality values

of all the nodes in the sampled graph to their corresponding values in the original network, the

structural preservability of a sample can therefore be evaluated.
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Definition 13 (Centrality Ratio). Given a network ⌧ =< + , ⇢ , - > and a subgraph ⌧B, then the

centrality ratio ` for a node v in ⌧B is

`(E,⌧B) =
⇠ (E,⌧B)

⇠ (E,⌧)
(6.3)

where ⇠ corresponds to a node centrality measure.

One potential caveat of using Equation (6.3) is that it assumes the entire network is available in

order to compute its denominator. If the sampling algorithm is restricted to have access only to the

sampled network (e.g., while crawling the network) instead of full access to the entire network, we

may relax the preceding definition to the following equation instead:

˜̀(E,⌧B) ⇡ ⇠ (E,⌧B) (6.4)

The relaxed measure is often used during sampling by most algorithms whereas the true centrality

ratio (Equation (6.3)) is used when evaluating the performance of the sampling algorithm. Note

that there are numerous centrality measures that have been introduced in the literature [130]. In

this chapter, we consider the harmonic centrality [22] as our node centrality measure. Harmonic

centrality of a node D to a graph ⌧ is defined as the sum of the inverse of the shortest path distance,

3
⌧
(D, G), between D to all other nodes G in ⌧:

� (D,⌧) ⌘

’
G2+\{D}

� (D, G) =
’

G2+\{D}

1
3
⌧
(D, G)

(6.5)

Note that although the discussion in this chapter focuses on harmonic centrality, our proposed

framework is applicable to other centrality measures as well. We choose harmonic centrality as

our measure for several reasons. First, unlike other centrality measures such as closeness and

betweenness, which are restricted to connected networks, harmonic distance is applicable to both

connected and disconnected networks. This is because if 3
⌧
(D, G) = 1, then the corresponding

element in the sum given in Equation (6.5) will be zero. Also, the measure is intuitive as it

considers the relative influence of the nodes in a network by giving higher weights to nodes that

are closer to D than those located further away. The strength of using harmonic distance compared
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to other centrality measures was recently demonstrated in [22], where the authors presented an

axiomatic approach to evaluate the various centrality measures according to a set of fundamental

properties a good centrality measure should exhibit. They showed that only harmonic centrality

measure satisfies all the axioms, which makes it an excellent measure for arbitrary networks [21].

For example, the authors showed that harmonic centrality is one of only two centrality measures

(besides PageRank) that is strictly rank monotone, i.e., adding a new edge to a node will not demote

its rank relative to other lower-ranked nodes in the network.

Furthermore, the following lemma shows two additional properties of the harmonic centrality

when used as he structural preservability measure (see Equation (6.4) by a sampling algorithm.

Lemma 6. The harmonic centrality satisfies the following properties:

1. ˜̀(E,⌧B) = 0, if E 8 +B.

2. ˜̀(E,⌧1)  ˜̀(E,⌧2) 8E 2 +1, if ⌧1 ✓ ⌧2.

where ˜̀(E,⌧B) = � (E,⌧B).

Proof : For the first property, it is easy to show that ˜̀(E,⌧B) = 0 for E 8 +B since 8D 2 +B :

3
⌧
(E, D) = 1) � (E, D) = 0. To prove the second property, let⌧1 = (+1, ⇢1) and⌧2 = (+2, ⇢2).

If ⌧1 ✓ ⌧2 then 8E, D 2 +1 : 3
⌧1

(E, D) � 3
⌧2

(E, D). As a result,

8E, D 2 +1 :
1

3
⌧1

(E, D)


1
3
⌧2

(E, D)
.

Since +1 ✓ +2, it is easy to show that � (E,⌧1)  � (E,⌧2), 8E 2 +1. Thus, the second property

holds for Equation (6.4). ⇤

6.4.2 Fairness-aware Network Sampling Objective

To address the challenge of combining structural preservability with group representativity, we

introduce a max-min subgraph fairness criterion, which is inspired by the idea of the minimax

Pareto fairness concept proposed in [118] for satisfying group fairness. Specifically, our max-min
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subgraph fairness criterion evaluates the average centrality value for each group of the protected

attribute and uses its worse group performance (i.e., group with minimum average centrality value)

as its fairness measure.

Let {%1, %2, · · · , % } be a partitioning of the nodes in a network ⌧ based on their membership

according to the protected attribute -
(?) . For each group %8, we define the following group

centrality ratio as follows:

Definition 14 (Group Centrality Ratio). Given a network ⌧ =< + , ⇢ , - > and centrality ratio `,

the group centrality ratio for the node group %8 is

f8 (⌧B) =
1
|%8 |

’
D2%

8

`(D,⌧B) (6.6)

For sampling algorithms without full access to the entire network, we may replace ` by ˜̀ in the

above definition.

Definition 15 (Subgraph Fairness Criterion). Given a network sample ⌧B =< +B, ⇢B, -B >, node

groups {%1, %2, · · · , % }, and a group centrality ratio functionf, we define the following subgraph

fairness measure:

o
5 08A

(⌧B) = min
18 

{f8 (⌧B)} (6.7)

Our network sampling goal is to maximize the fairness criterion defined in Equation (6.7). Replacing

the measure into the objective function in Equation (6.1), our fairness-aware sampling objective is:

⌧
⇤
B
= argmax

⌧B2G= min
8

(f8 (⌧B)) (6.8)

Lemma 7. If ˜̀ satisfies the properties stated in Lemma 6, then the fair network sampling measure,

o
5 08A

, is a monotonically nondecreasing function.

Proof : Let f<8= (⌧B) = min18 (f
)

8
). In order to show f

<8= is a monotonically nonde-

creasing function, we have to show that f<8= (⌧1)  f
<8=

(⌧2) if ⌧1 ✓ ⌧2. Since ˜̀ satisfies the

second property in Lemma 6 and f)
8

is a summation over `, therefore f)
8

must be a monotonically
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nondecreasing function for all 1  8   . Furthermore, as f<8= is the minimum value of f)
8

over

8, it must also be monotonically nondecreasing, which completes the proof. ⇤

6.5 Proposed Greedy Fair Network Sampling Algorithm

This section describes our proposed greedy sampling algorithm for fair network sampling,

which is designed to provide an approximate solution to the sampling objective given in (6.8).

6.5.1 Greedy Algorithm for Max-min Subgraph Fairness

We propose the following greedy algorithm for the max-min subgraph fairness problem. Our

greedy algorithm is based on the following notion of marginal gain of a set of nodes � ⇢ + .

Definition 16 (Marginal Gain). Given a network ⌧ = (+ , ⇢), a subgraph ⌧B = (+B, ⇢B), and a set

of nodes � ⇢ + \+B, the marginal gain X<8= (.) of adding set � ⇢ + to ⌧B is

X
<8=

(�|⌧B) = f<8= (⌧B [ �) � f<8= (⌧B) (6.9)

where f<8= (⌧B) = min18 {f
)

8
(⌧B)}.

A greedy algorithm can be developed to optimize (6.7) by incrementally adding a node E into

the sample ⌧B in a way that maximizes the marginal gain. However, computing the harmonic

centrality can be expensive when the sampled graph is large. To improve its e�ciency, we present

the following fast implementation of our greedy algorithm based on a reference set of target nodes.

Definition 17 (Target Set). Given a network ⌧ =< + , ⇢ , - >, where + = [ 
8=1%8, the target set

) = {)1, . . . ,): } is a set of node subsets such that )8 ⇢ %8, for 1  8   .

We will use the target set to compute the following approximate group centrality ratio: f̃8 (⌧B) =

1
|)
8
|

Õ
D2)

8

`(D,⌧B) for each group and compute the marginal gain in Equation (6.9) using the

approximate group centrality ratio instead. Thus, our greedy algorithm will start from the initial,

induced subgraph of the target set ) , and then, iteratively expands the subgraph by selecting a

node from the candidate set j(⌧B) that maximizes the marginal gain. The candidate set j(⌧B)

85



corresponds to all immediate neighbors of the nodes +B in + \ +B. Note that the target set ) may

correspond to the initial seed nodes of the sampling algorithm or a subset of nodes that must be

included in the network sample (e.g., nodes with high degrees or other important nodes as specified

by user).

Algorithm 1 Greedy Fair Network Sampling (GFNS)
Input: graph G, sample size n, and target set T.
⌧0  Induced-subgraph(T).
for t = 1 to = � 1 do
j {D | (D, E) 2 ⌧, D 2 + \+

C�1, E 2 +C�1}

E
⇤
 argmax

E2jX
<8=

(E |⌧
C�1)

⌧C  Induced-subgraph(⌧
C�1 [ {E

⇤
})

end for
Output: ⌧C

6.5.2 Theoretical Bounds on Greedy Approximation

Unfortunately, the min-max subgraph fairness criterion is not a submodular function. However, as

shown in Lemma 7, it is a monotonically nondecreasing function. This allows us to use the result

of [19] to obtain a theoretical bound on the greedy approximated solution. Before providing the

main theorem, we first need to introduce some definitions.

Definition 18 (Greedy Submodularity Ratio [19]). The greedy submodularity ratio of a function f

is the largest scalar W such that

’
D2�\⌧ (C)

X(D |⌧
(C)
) � WX(�|⌧

(C)
), 8|�| = =, C = 0, . . . = � 1

Remark. For a non-decreasing f or f<8= functions, W 2 [0, 1].

Definition 19 (Greedy curvature [19]). The greedy curvature is the smallest scalar U

X(EC |⌧
(C�1)

[ �) � (1 � U)X(EC |⌧C),8|�| = =
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Theorem 8. Let f be the group centrality measure defined in Equation (6.6) and X<8= (·) be the

marginal gain with greedy submodularity ratio and greedy curvature defined in Definitions 18

and 19, respectively. The proposed greedy fair network sampling algorithm has the following

approximation guarantee

f() ,⌧
( )

) �
1
U

h
1 �

⇣
 � UW

 

⌘
 
i
f() ,⌧

⇤
) �

1
U

(1 � 4�UW)f() ,⌧⇤)

where ⌧ ( ) is the output of the greedy algorithm and ⌧⇤ is the optimum solution.

The proof of the theorem can be shown using Lemma 7 of this chapter and Theorem 1 of [19].

6.6 Experimental Evaluation

This section describes the experiments performed to evaluate the e�cacy of our proposed

methods fair network sampling algorithm.

6.6.1 Experiment Setup

6.6.1.1 Datasets

We evaluated our methods on four real-world datasets as summarized in Table 6.1. The first

dataset corresponds to the Facebook ego-network of friendship relation [106]. The second dataset

corresponds to a social network from tagged.com [52]. The third dataset is the German credit[48]

data, where the nodes represent clients and links between nodes are created based on similarity

of the clients’ credit accounts [5]. Finally, the fourth dataset corresponds to the Credit Default

data [182], where the nodes are credit applicants and the links are created based on similarity of

the applicants [5]. Gender is chosen as the protected attribute for the first 3 datasets whereas age is

the protected attribute for the last dataset.

6.6.1.2 Evaluation Metric

We evaluate the structural preservability of the sampling algorithm according to the following three

metrics:
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Table 6.1: Statistics of network data used for experiments.

Network #nodes #edges CC protected feature
Facebook 4,039 88234 0.6055 gender
Tagged 5,607,448 912,280,409 0.0005 gender
German 1,000 24,970 0.3801 gender
Credit 30,000 2,174,014 0.6466 Age

• Degree distribution distance (Ddist): Using the Kolmogorov-Smirnov statistic, we compare

degree distribution of the sampled network to that of the original network. It is a nonparamet-

ric test of equality between continuous, one-dimensional probability distributions. Following

[104], we simply use it to measure the distance between the two distributions as follow:

⇡38BC (⌧B) = sup
3

|�
(
(3) � � (3) |

where �
(

and � are cumulative distribution functions (CDFs) of degree distributions for the

sampled network and original network respectively.

• Clustering Coe�cient(X-CC): We compare the average clustering coe�cient of the sampled

graph and the original one.

X-CC =
��� 1
|+ |

’
E2+

_
⌧
(E)

g
⌧
(E)
�

1
|+B |

’
E2+B

_
⌧B

(E)

g
⌧B

(E)

���
where _

⌧
(E) is the number of triangles in ⌧ with E being one of the nodes. g

⌧
(E) is the

number of subgraphs in G with 2 links and 3 nodes, where one of the nodes is v and v is

connected to the other two nodes.

• Harmonic: the average centrality ratio efined based on Harmonic distance for all nodes in

the sampled graph. This measure will be between zero and one. Larger values are better.

For group representativity, we consider the following evaluation metrics:

• Normalized Cumulative Group Relevance (nCGR) [166]: measures the extent to which

the position of the nodes in the ranking of a sampled graph and the visibility of a protected
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group is preserved. To do this, the relevance of a node E in a given graph is defined as the

inverse of the node E’s rank, based on its degree, normalized by the rank sum of all nodes in

the network.

A4; (E) =
(A0=: (E))

�1Õ
D2+ A0=: (E)

The cumulative protected group relevance for the sampled graph is compared against the

original network as follows:

=⇠⌧'8 =

Õ
E2C>?: (⌧B)\%8

A4; (E) + nÕ
E2C>?: (⌧)\%

8

A4; (E) + n

where =⇠⌧'8 measures the extent to which the relevance of a protected group %8 is above

or below the expectation from the original network with respect to the top k nodes. Value

above 1 indicates the group is more relevant in the sampled graph compared to the original

network. Value less than 1 indicates that the group has become less relevant in the sampled

network. The hyperparameter n = 0.001 is used to avoid division by zero [166]. Here we

report the minority group nCGR and the closer value to 1 is considered to be better.

• min-f: The subgraph fairness criterion using the group centrality ratio defined in Equation

(6.6). Here in evaluation we consider all the nodes in the sampled subgraph when computing

f.

6.6.1.3 Baseline Sampling Algorithms

We consider following commonly studied sampling techniques

• Random Node: We consider two variations; the first variation which we refer to as NS,

randomly selects a subset ( of the nodes without considering their topology properties. The

second variation, NSD, randomly selects a subset ( of the nodes with probability proportional

to the node degree.
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• Breadth/Depth-first search BFS/ DFS: Both BFS and DFS are widely used for exploring

large networks. Both algorithms start from an initial set of nodes and iteratively expand the

sample based on their graph traversal strategy.

• Random Walk: RW starts with an initial set of seed nodes and expands the sample by

simulating a random walk on the network. Fair Random Walk (FRW) [147] is a variation of

the method to account for fairness. Instead of randomly selecting a node amongst all neighbors

as the next node, it first partitions the neighbors into groups based on their protected attributes

such that each group has the same probability of being chosen regardless of their sizes. A

random node from the chosen group is then selected as the next node to visit.

• Metropolis-Hastings Random Walk (MHRW): Metropolis-Hastings is a Markov Chain

Monte-Carlo (MCMC) technique for producing random samples from an arbitrary distri-

bution. The MHRW results in selecting a subset ( of nodes from a uniformly random

distribution.

In all of the above methods, after selecting a subset ( of nodes, we extract the induced subgraph

corresponding to the nodes in (.

6.6.2 Experimental Results

In the following subsections we investigate the performance of the proposed framework.

6.6.2.1 General Performance

In this subsection we investigate the performance of the proposed sampling methods on preserving

network properties. Tables 6.2, 6.3, 6.4, and 6.5 shows the result on all seven measures for the four

datasets. Based on the results, there is no single approach which perform better than other sampling

methods on all 4 datasets. Specifically, for the three structural perservability related measures the

GFNS perform relatively better than other baselines. Although the results may vary depending

on the dataset and evaluation metric the GFNS algorithm consistently appears in the top-2 in 9

90



Table 6.2: German credit Dataset

X-CC Ddist Harmonic nCGR min-f
NS 0.008+/-0.00 0.616+/-0.00 0.368+/-0.00 1.01+/-0.00 0.365+/-0.00

NSD 0.009+/-0.00 0.412+/-0.00 0.4 +/-0.00 1.018+/-0.00 0.398+/-0.00
DFS 0.008+/-0.00 0.586+/-0.00 0.372+/-0.00 1.011+/-0.00 0.369+/-0.00
BFS 0.027+/-0.000 0.333+/-0.00 0.409+/-0.00 1.018+/-0.00 0.408+/-0.00
RW 0.016+/-0.00 0.351+/-0.001 0.408+/-0.00 1.014+/-0.00 0.407+/-0.00

MHRW 0.008+/-0.00 0.355+/-0.001 0.405+/-0.00 1.008+/-0.00 0.401+/-0.00
FRW 0.011+/-0.00 0.357+/-0.001 0.406+/-0.00 1.014+/-0.00 0.405+/-0.00
GFNS 0.037+/-0.00 0.249+/-0.00 0.443+/-0.00 1.019+/-0.00 0.441+/-0.00

Table 6.3: Faecebook Dataset

X-CC Ddist Harmonic nCGR min-f
NS 0.177+/-0.002 0.659+/-0.001 0.015+/-0.00 1.039+/-0.00 0.014+/-0.00

NSD 0.077+/-0.00 0.224+/-0.001 0.079+/-0.00 1.018+/-0.00 0.078+/-0.00
DFS 0.02+/-0.00 0.538+/-0.00 0.024+/-0.00 1.025+/-0.00 0.023+/-0.00
BFS 0.105+/-0.00 0.308+/-0.00 0.109+/-0.00 1.007+/-0.00 0.109+/-0.00
RW 0.103+/-0.00 0.339+/-0.001 0.093+/-0.00 1.012+/-0.00 0.092+/-0.00

MHRW 0.041+/-0.00 0.192+/-0.005 0.145+/-0.00 1.013+/-0.00 0.144+/-0.00
FRW 0.096+/-0.00 0.341+/-0.002 0.089+/-0.00 1.012+/-0.00 0.087+/-0.00
GFNS 0.014+/-0.00 0.182+/-0.00 0.135+/-0.00 1.009+/-0.00 0.135+/-0.00

out of 12 settings, which shows the e�ectivness of the proposed method in preserving structural

properties of the graph.

For the sampling fairness evaluation, we consider the proposed criteria alongside nCGR as

the evaluation metrics. The last two columns in Tables 6.2, 6.3, 6.4, and 6.5 results. Similar to

structural preservability, The results indicate that no single approach performs better than other

sampling methods on all four datasets. The proposed greedy algorithm successfully achieves to be

among the top-2 in 6 out of 8 settings. On the Credit dataset, the performance of our algorithm on

both fairness criteria is the best. On the other three datasets, it has the best result in one of the two

fairness criteria.

6.6.2.2 Performance on Target Nodes

We first evaluate the performance of the sampling algorithms on target nodes. We ran each baseline

algorithm ten times, and plot the patterns. For the target set, we consider ten nodes, ten nodes
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Table 6.4: Credit Dataset

X-CC Ddist Harmonic nCGR min-f
NS 0.523+/-0.006 0.999+/-0.00 0.001+/-0.00 1.012+/-0.00 0.000+/-0.00

NSD 0.242+/-0.007 0.997+/-0.00 0.001+/-0.00 1.000+/-0.00 0.001+/-0.00
DFS 0.146+/-0.00 0.984+/-0.00 0.006+/-0.00 1.000+/-0.00 0.006+/-0.00
BFS 0.121+/-0.00 0.868+/-0.00 0.008+/-0.00 1.051+/-0.00 0.007+/-0.00
RW 0.019+/-0.00 0.808+/-0.00 0.007+/-0.00 1.017+/-0.00 0.007+/-0.00

MHRW 0.081+/-0.002 0.552+/-0.018 0.016+/-0.00 1.001+/-0.00 0.012+/-0.00
FRW 0.033+/-0.00 0.768+/-0.002 0.007+/-0.00 1.004+/-0.00 0.006+/-0.00
GFNS 0.145+/-0.00 0.182+/-0.00 0.026+/-0.00 1.000+/-0.00 0.015+/-0.00

Table 6.5: Tagged Dataset

X-CC Ddist Harmonic nCGR min-f
NS 0.001+/-0.00 0.398+/-0.00 0.217+/-0.12 2.052+/-0.00 0.208+/-0.12

NSD 0.001+/-0.00 0.105+/-0.003 0.012+/-0.001 1.951+/-0.00 0.01+/-0.00
DFS 0.001+/-0.00 0.298+/-0.00 0.026+/-0.00 1.048+/-0.00 0.107+/-0.00
BFS 0.001+/-0.00 0.193+/-0.00 0.115+/-0.00 1.072+/-0.00 0.113+/-0.00
RW 0.001+/-0.00 0.30+/-0.00 0.114+/-0.00 1.053 +/-0.00 0.106+/-0.00

MHRW 0.002+/-0.00 0.267+/-0.005 0.015+/-0.00 1.067+/-0.00 0.012+/-0.00
FRW 0.001+/-0.00 0.281+/-0.00 0.114+/-0.00 1.052+/-0.00 0.111+/-0.00
GFNS 0.001+/-0.00 0.082+/-0.00 0.079+/-0.00 1.040+/-0.00 0.068+/-0.00

from each gender. For the Facebook data, we consider nodes with the highest harmonic centrality

measure as the target set. For the Tagged network, we randomly selected five nodes from each

gender.

Figure 6.2 shows the value of ` for the ten target nodes on the Facebook dataset for the sample

size of 5% of the original network. Here we sorted the value of ` for each sampling method. We

notice that the GFNS outperform all the baseline method. For all ten nodes in the target set, the

value of ` defined based on Harmonic distance is higher for GFNS. This is what we expected, and

the experiment results agree with it. The second observation is that the BFS is performing better

than most of the baselines.

Table 6.6 for German credit network summarizes the performance of the algorithms based

on the average of proposed measure in equation 6.7 for di�erent sample sizes. The higher value

indicates better performance in preserving the structural properties of target nodes. It is transparent

that regardless of the sample size and network type, the proposed greedy algorithm outperforms

92



Figure 6.2: The proposed Harmonic measure values for the samples with 10 target nodes.

Table 6.6: The average node-level harmonic measure for German credit network .

100 200 400
NS 0.0617+/-0.0001 0.1629+/-0.0001 0.3639+/-0.0001

NSD 0.0841+/-0.0000 0.1900+/-0.0000 0.3984+/-0.0000
DFS 0.0765+/-0.0000 0.1651+/-0.0000 0.3672+/-0.0000
BFS 0.0985+/-0.0000 0.2033+/-0.0000 0.4211+/-0.0000
RW 0.0850+/-0.0000 0.2013+/-0.0000 0.4129+/-0.0000
FRW 0.0870+/-0.0000 0.1984+/-0.0000 0.4114+/-0.0000
GFNS 0.1147+/-0.0000 0.2259+/-0.0000 0.4396+/-0.0000

other sampling methods as expected. This result shows the proposed greedy sampling is successful

in achieving its objective.

6.7 Conclusion

This work presents a novel fairness-aware network sampling approach that combines the struc-

tural preservability and group representativity objectives into a unified learning framework. We
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introduced a new sugraph fairness criterion and developed a greedy fair network sampling algorithm

with well-grounded theoretical bounds on the greedy approximation. Finally, we experimentally

demonstrate the e�ectiveness of the proposed method on various real-world network data.
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CHAPTER 7

FUTURE WORK

The use of machine learning algorithms in daily life is pervasive and entrenched in our society.

Its vast application includes di�erent fields such as healthcare, criminal justice, advertisement and

recommender systems, banking and finance, dating and hiring, online social media. This broad

application creates a unique opportunity for machine learning researchers with new data sources,

problems, and challenges to address. Machine learning and data analysis can help us expand our

knowledge about the complex environment we live in and makes it more accessible and e�cient. It

also exposed to the social, cultural, and institutional biases that have been established in our society.

I want to continue my research in two directions. First, I would like to extend my research in

network analysis. Although network studies have played a central role in machine learning for quite

a while, there are still multiple challenges in this field. In the first part of this chapter, I explain

some of the related challenges that I would like to address in my research. Second, I would like to

expand my line research in fairness to explainability. During my research related to this thesis, I

realized that explainability and fairness are related, and explainability can play a significant role in

mitigating machine learning-generated biases. In the second part of this chapter, I will explain this

connection and some research ideas that I would like to investigate.

7.1 Network Analysis

I would like to extend my line of research on fairness-aware network analysis in the near future.

Many other problems in fairness network analysis are non-i.i.d problems and therefore call for an

approach similar to the ones that I have developed in my previous work. An interesting question

I would like to investigate is whether the network fairness measures that I have proposed can also

be applied to dynamic networks. This is not a straightforward question considering the fact that

static approach network centrality measures, such as PageRank, might be inappropriate in dynamic

settings [117]. An example of a fairness-aware dynamic problem on which I would like to work is
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the ranking node problem. This has essential applications in recommender systems and information

retrieval. While there is some recent work on fairness in the non-dynamic ranking node problem

[176], to the best of my knowledge, there is no work on the dynamic ranking node problem.

In addition to the fairness-aware network research track, I also found expanding the compu-

tational power of current network AI models beyond the message passing framework a critical

problem that I would like to investigate. I am interested in developing new network learning al-

gorithms that incorporate higher-order structural information about networks into the AI model. I

believe the harmonic-based measure for the sampling with an application on training graph convo-

lution networks has connections to the notion of graph moments discussed in [9] that I would like

to study more.

7.2 Fairness and Explainability in Machine Learning

The best way to quantify fairness remains an unresolved debates among experts. There are

strong criticisms against both individualistic and group level approaches for quantifying fairness.

For example, group level metrics fail to guarantee fairness for individuals and subgroups, whereas

individual fairness metrics typically rely on similarity measures. Therefore, experts have not

reached a consensus over a general similarity measure that would be appropriate for a wide range

of problems.

In response to this challenge, instead of developing a model that explicitly satisfies a notion of

fairness, I propose an indirect method that implicitly guarantees fairness. The proposed process,

which I refer to it as "democratization of fairness in machine learning," solicits judgments on the

fairness of the model’s decisions from users a�ected by these decisions. Maximizing the positive

feedbacks of users can indirectly result in the fairness of the model decision. Currently, fairness

in ML su�ers from a lack of direct conversation with users (subjects) a�ected by the model’s

decisions. The democratization of fairness in ML works to close this gap through two main steps.

The first step is to ensure that subjects understand the algorithm decision-making process. As

a result of this understanding, well-informed subjects can have more reliable judgments about
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algorithm decisions’ fairness. The second step is to update the model based on the feedback of the

well-informed subjects.

Step one in the democratization of fairness is related to the explainability topic. Fairness

and explainability concepts are intertwined, and explanations, which try to help human users

understand the functionality of the ML models, can be utilized to reach fairness in ML models [12].

Previous research has shown that the explanation of an algorithmic decision process can help detect

discrimination behavior[20]. For instance, counterfactual explanations ask questions like, “Had an

individual been of a di�erent protected status, would the model have treated them di�erently?”[20]

and then use the answer as a fairness measure. However, the kind of explanation depends on who

is the target of the explanation. In the future, I aim to understand how to utilize an explanation as a

tool for involving the subjects in the process of detecting discrimination.

Step two in the democratization of fairness is integrating the subjects’ feedback into the training

and updating of the model. There is a line of research in fairness in recent years using auditing for

detecting discrimination against subgroups of the population. In this body of research, auditors are

either an algorithm playing a zero-sum game against the model [86] or they are a group of experts

who have the required skillset to make a judgment [150]. However, none of this research considers

placing the users a�ected by the model decisions in the position of Auditor. I am interested in

expanding the idea of auditing to include these users.

97



BIBLIOGRAPHY

98



BIBLIOGRAPHY

[1] Developer agreement and policy – twitter developers | twitter developer platform.

[2] Goldman sachs’ misguided world cup predictions could provide clues to the apple card
controversy.

[3] Abello, J., Resende, M. G., and Sudarsky, S. Massive quasi-clique detection. In Latin
American symposium on theoretical informatics (2002), Springer, pp. 598–612.

[4] Adams, J. S. Inequity in social exchange. In Advances in experimental social psychology,
vol. 2. Elsevier, 1965, pp. 267–299.

[5] Agarwal, C., Lakkaraju*, H., and Zitnik*, M. Towards a unified framework for fair and
stable graph representation learning.

[6] Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S. A rewriting system for convex
optimization problems. Journal of Control and Decision 5, 1 (2018), 42–60.

[7] Akoglu, L., McGlohon, M., and Faloutsos, C. Oddball: Spotting anomalies in weighted
graphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (2010),
Springer, pp. 410–421.

[8] Akoglu, L., Tong, H., and Koutra, D. Graph based anomaly detection and description: a
survey. Data mining and knowledge discovery 29, 3 (2015), 626–688.

[9] Al Hasan, M., Chaoji, V., Salem, S., and Zaki, M. Link prediction using supervised learning.
In SDM06: workshop on link analysis, counter-terrorism and security (2006).

[10] Ali, M., Sapiezynski, P., Bogen, M., Korolova, A., Mislove, A., and Rieke, A. Discrimination
through optimization: How facebook’s ad delivery can lead to biased outcomes. Proceedings
of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–30.

[11] Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Machine bias. ProPublica, May 23
(2016).

[12] Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García,
S., Gil-López, S., Molina, D., Benjamins, R., et al. Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible ai. Information
Fusion 58 (2020), 82–115.

[13] Bayati, M., Gerritsen, M., Gleich, D. F., Saberi, A., and Wang, Y. Algorithms for large, sparse
network alignment problems. In Data Mining, 2009. ICDM’09. Ninth IEEE International
Conference on (2009), IEEE, pp. 705–710.

[14] Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence 35, 8 (2013),
1798–1828.

99



[15] Berk, R. Criminal justice forecasts of risk: A machine learning approach. Springer Science
& Business Media, 2012.

[16] Berk, R., Heidari, H., Jabbari, S., Kearns, M., and Roth, A. Fairness in criminal justice risk
assessments: The state of the art. Sociological Methods & Research (2018).

[17] Beutel, A., Chen, J., Zhao, Z., and Chi, E. H. Data decisions and theoretical implications
when adversarially learning fair representations. arXiv preprint arXiv:1707.00075 (2017).

[18] Bhardwaj, R., Nambiar, A. R., and Dutta, D. A study of machine learning in healthcare.
In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)
(2017), vol. 2, IEEE, pp. 236–241.

[19] Bian, A. A., Buhmann, J. M., Krause, A., and Tschiatschek, S. Guarantees for greedy
maximization of non-submodular functions with applications. In International conference
on machine learning (2017), PMLR, pp. 498–507.

[20] Black, E., Yeom, S., and Fredrikson, M. Fliptest: fairness testing via optimal transport. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020),
pp. 111–121.

[21] Boldi, P., Luongo, A., and Vigna, S. Rank monotonicity in centrality measures.

[22] Boldi, P., and Vigna, S. Axioms for centrality. Internet Mathematics 10, 3-4 (2014), 222–262.

[23] Buyl, M., and De Bie, T. Debayes: a bayesian method for debiasing network embeddings.
In International Conference on Machine Learning (2020), PMLR, pp. 1220–1229.

[24] Calders, T., Kamiran, F., and Pechenizkiy, M. Building classifiers with independency
constraints. In 2009 IEEE International Conference on Data Mining Workshops (2009).

[25] Chang, J., and Blei, D. Relational topic models for document networks. In Artificial
Intelligence and Statistics (2009), pp. 81–88.

[26] Charlin, L., and Zemel, R. The toronto paper matching system: an automated paper-reviewer
assignment system.

[27] Chen, J., Geyer, W., Dugan, C., Muller, M., and Guy, I. Make new friends, but keep the old:
recommending people on social networking sites. In SIGCHI (2009).

[28] Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247 (2018).

[29] Chen, L., Feldman, M., and Karbasi, A. Weakly submodular maximization beyond cardinal-
ity constraints: Does randomization help greedy? In International Conference on Machine
Learning (2018), PMLR, pp. 804–813.

[30] Chen, R., Hua, Q., Chang, Y.-S., Wang, B., Zhang, L., and Kong, X. A survey of collaborative
filtering-based recommender systems: From traditional methods to hybrid methods based
on social networks. IEEE Access 6 (2018), 64301–64320.

100



[31] Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. Cluster-gcn: An e�cient
algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(2019), pp. 257–266.

[32] Choi, E., Bahadori, M. T., Song, L., Stewart, W. F., and Sun, J. Gram: graph-based attention
model for healthcare representation learning. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2017), pp. 787–795.

[33] Chouldechova, A. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data 5, 2 (2017), 153–163.

[34] Clauset, A., Moore, C., and Newman, M. E. Hierarchical structure and the prediction of
missing links in networks. arXiv preprint arXiv:0811.0484 (2008).

[35] Cong, W., Forsati, R., Kandemir, M., and Mahdavi, M. Minimal variance sampling with
provable guarantees for fast training of graph neural networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020),
pp. 1393–1403.

[36] Corbett-Davies, S., and Goel, S. The measure and mismeasure of fairness: A critical review
of fair machine learning. arXiv preprint arXiv:1808.00023 (2018).

[37] Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., and Huq, A. Algorithmic decision
making and the cost of fairness. In SIGKDD (2017), ACM, pp. 797–806.

[38] Cramér, H., and Leadbetter, M. R. Stationary and related stochastic processes: Sample
function properties and their applications. Courier Corporation, 2013.

[39] Crandall, D. J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., and Kleinberg, J.
Inferring social ties from geographic coincidences. PNAS 107, 52 (2010), 22436–22441.

[40] Dai, E., and Wang, S. Say no to the discrimination: Learning fair graph neural networks
with limited sensitive attribute information. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining (2021), pp. 680–688.

[41] Dai, Q., Li, Q., Tang, J., and Wang, D. Adversarial network embedding. In Thirty-Second
AAAI Conference on Artificial Intelligence (2018).

[42] Dastin, J. Amazon scraps secret ai recruiting tool that showed bias against women, Oct 2018.

[43] Davis, G., Mallat, S., and Avellaneda, M. Adaptive greedy approximations. Constructive
approximation 13, 1 (1997), 57–98.

[44] De Sá, H. R., and Prudêncio, R. B. Supervised link prediction in weighted networks. In The
2011 international joint conference on neural networks (2011), IEEE, pp. 2281–2288.

[45] Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S. Convolutional 2d knowledge graph
embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence (2018).

101



[46] Diamond, S., and Boyd, S. Cvxpy: A python-embedded modeling language for convex
optimization. The Journal of Machine Learning Research 17, 1 (2016), 2909–2913.

[47] Dieterich, W., Mendoza, C., and Brennan, T. Compas risk scales: Demonstrating accuracy
equity and predictive parity. Northpoint Inc 7, 7.4 (2016), 1.

[48] Dua, C. Dheeru and gra�,“. UCI Machine Learning Repository,” UCI Machine Learning
Repository (2017).

[49] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. Fairness through awareness.
In Proceedings of the 3rd innovations in theoretical computer science conference (2012).

[50] Edwards, H., and Storkey, A. Censoring representations with an adversary. arXiv preprint
arXiv:1511.05897 (2015).

[51] Eldardiry, H., and Neville, J. A resampling technique for relational data graphs. In Proceed-
ings of the 2nd SNA workshop, 14th ACM SIGKDD conference on knowledge discovery and
data mining (2008).

[52] Fakhraei, S., Foulds, J., Shashanka, M., and Getoor, L. Collective spammer detection in
evolving multi-relational social networks. In SIGKDD (2015), ACM, pp. 1769–1778.

[53] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S.
Certifying and removing disparate impact. In SIGKDD (2015), ACM, pp. 259–268.

[54] Feng, J., Huang, M., Yang, Y., and Zhu, X. Gake: Graph aware knowledge embedding.
In Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers (2016), pp. 641–651.

[55] Fey, M., Eric Lenssen, J., Weichert, F., and Müller, H. Splinecnn: Fast geometric deep
learning with continuous b-spline kernels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2018), pp. 869–877.

[56] Fiez, T., Shah, N., and Ratli�, L. A super* algorithm to optimize paper bidding in peer
review. In Conference on Uncertainty in Artificial Intelligence (2020), PMLR, pp. 580–589.

[57] Frank, O., and SnÚders, T. Estimating the size of hidden populations using snowball
sampling. JOURNAL OF OFFICIAL STATISTICS-STOCKHOLM- 10 (1994), 53–53.

[58] Friedler, S. A., Scheidegger, C., and Venkatasubramanian, S. On the (im) possibility of
fairness. arXiv preprint arXiv:1609.07236 (2016).

[59] Fu, X., Ren, X., Mengshoel, O. J., and Wu, X. Stochastic optimization for market return
prediction using financial knowledge graph. In 2018 IEEE International Conference on Big
Knowledge (ICBK) (2018), IEEE, pp. 25–32.

[60] Gilbert, A. C., Muthukrishnan, S., and Strauss, M. J. Approximation of functions over
redundant dictionaries using coherence. In SODA (2003), Citeseer, pp. 243–252.

102



[61] Gjoka, M., Kurant, M., Butts, C. T., and Markopoulou, A. Walking in facebook: A case study
of unbiased sampling of osns. In 2010 Proceedings IEEE Infocom (2010), Ieee, pp. 1–9.

[62] Goel, S., Rao, J. M., and Shro�, R. Personalized risk assessments in the criminal justice
system. American Economic Review 106, 5 (2016), 119–23.

[63] Goldberg, A. V., and Tarjan, R. E. A new approach to the maximum-flow problem. Journal
of the ACM (JACM) 35, 4 (1988), 921–940.

[64] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. Generative adversarial nets. In NeurIPS (2014), pp. 2672–2680.

[65] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for networks. In Proc of
KDD (2016), pp. 855–864.

[66] Gupte, M., and Eliassi-Rad, T. Measuring tie strength in implicit social networks. In
Proceedings of the 4th Annual ACM Web Science Conference (2012), pp. 109–118.

[67] Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learning on large
graphs. In 31st Conf. on Neural Information Processing Systems (NIPS 2017) (2017).

[68] Han, X., Liu, Z., and Sun, M. Neural knowledge acquisition via mutual attention between
knowledge graph and text. In Thirty-Second AAAI Conference on Artificial Intelligence
(2018).

[69] Hardt, M., Price, E., Srebro, N., et al. Equality of opportunity in supervised learning. In
NeurIPS (2016), pp. 3315–3323.

[70] Hébert-Johnson, U., Kim, M. P., Reingold, O., and Rothblum, G. N. Calibration for the
(computationally-identifiable) masses. arXiv preprint arXiv:1711.08513 (2017).

[71] Henderson, K., Eliassi-Rad, T., Faloutsos, C., Akoglu, L., Li, L., Maruhashi, K., Prakash,
B. A., and Tong, H. Metric forensics: a multi-level approach for mining volatile graphs. In
Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining (2010), pp. 163–172.

[72] Hofstra, B., Corten, R., Van Tubergen, F., and Ellison, N. B. Sources of segregation in social
networks: A novel approach using facebook. American Sociological Review 82, 3 (2017),
625–656.

[73] Hu, P., and Lau, W. C. A survey and taxonomy of graph sampling. arXiv preprint
arXiv:1308.5865 (2013).

[74] Huang, X., Li, J., and Hu, X. Label informed attributed network embedding. In Proceedings
of the Tenth ACM International Conference on Web Search and Data Mining (2017), ACM,
pp. 731–739.

[75] Hübler, C., Kriegel, H.-P., Borgwardt, K., and Ghahramani, Z. Metropolis algorithms for
representative subgraph sampling. In 2008 Eighth IEEE International Conference on Data
Mining (2008), IEEE, pp. 283–292.

103



[76] Jecmen, S., Zhang, H., Liu, R., Shah, N. B., Conitzer, V., and Fang, F. Mitigating manipula-
tion in peer review via randomized reviewer assignments. arXiv preprint arXiv:2006.16437
(2020).

[77] Je�erson, B. J. Predictable policing: Predictive crime mapping and geographies of policing
and race. Annals of the American Association of Geographers 108, 1 (2018), 1–16.

[78] Johndrow, J. E., Lum, K., et al. An algorithm for removing sensitive information: application
to race-independent recidivism prediction. The Annals of Applied Statistics 13, 1 (2019),
189–220.

[79] Kamiran, F., Karim, A., and Zhang, X. Decision theory for discrimination-aware clas-
sification. In 2012 IEEE 12th International Conference on Data Mining (2012), IEEE,
pp. 924–929.

[80] Kamishima, T., Akaho, S., and Sakuma, J. Fairness-aware learning through regularization
approach. In ICDM Workshops (2011), IEEE, pp. 643–650.

[81] Kang, J., He, J., Maciejewski, R., and Tong, H. Inform: Individual fairness on graph mining.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (2020), pp. 379–389.

[82] Kang, U., Tsourakakis, C. E., Appel, A. P., Faloutsos, C., and Leskovec, J. Hadi: Mining
radii of large graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 5, 2
(2011), 1–24.

[83] Karimi, F., Génois, M., Wagner, C., Singer, P., and Strohmaier, M. Homophily influences
ranking of minorities in social networks. Scientific reports 8 (2018).

[84] Kaur, R., and Singh, S. A survey of data mining and social network analysis based anomaly
detection techniques. Egyptian informatics journal 17, 2 (2016), 199–216.

[85] Kearns, M., Neel, S., Roth, A., and Wu, Z. S. Preventing fairness gerrymandering: Auditing
and learning for subgroup fairness. arXiv preprint arXiv:1711.05144 (2017).

[86] Kearns, M., Neel, S., Roth, A., and Wu, Z. S. Preventing fairness gerrymandering: Auditing
and learning for subgroup fairness. In International Conference on Machine Learning (2018),
PMLR, pp. 2564–2572.

[87] Kelly, J., Sadeghieh, T., and Adeli, K. Peer review in scientific publications: benefits,
critiques, & a survival guide. EJIFCC 25, 3 (2014), 227.

[88] Kingma, D., and Ba, J. Adam: A method for stochastic optimization. In ICLR (2014).

[89] Kipf, T. N., and Welling, M. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016).

[90] Kipf, T. N., and Welling, M. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 (2016).

104



[91] Klau, G. W. A new graph-based method for pairwise global network alignment. BMC
bioinformatics 10, 1 (2009), S59.

[92] Kleinberg, J., Mullainathan, S., and Raghavan, M. Inherent trade-o�s in the fair determina-
tion of risk scores. arXiv preprint arXiv:1609.05807 (2016).

[93] Kobren, A., Saha, B., and McCallum, A. Paper matching with local fairness constraints. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (2019), pp. 1247–1257.

[94] Kollias, G., Mohammadi, S., and Grama, A. Network similarity decomposition (nsd): A fast
and scalable approach to network alignment. IEEE Transactions on Knowledge and Data
Engineering 24, 12 (2011), 2232–2243.

[95] Koutra, D., Tong, H., and Lubensky, D. Big-align: Fast bipartite graph alignment. In 2013
IEEE 13th International Conference on Data Mining (2013), IEEE, pp. 389–398.

[96] Kuchaiev, O., Milenkovi∆, T., Memi�evi∆, V., Hayes, W., and Pr�ulj, N. Topological network
alignment uncovers biological function and phylogeny. Journal of the Royal Society Interface
(2010), rsif20100063.

[97] Kusner, M. J., Loftus, J., Russell, C., and Silva, R. Counterfactual fairness. In NeurIPS
(2017), pp. 4066–4076.

[98] Lakshmi, T. J., and Bhavani, S. D. Link prediction in temporal heterogeneous networks. In
Pacific-Asia Workshop on Intelligence and Security Informatics (2017), Springer, pp. 83–98.

[99] Lambrecht, A., and Tucker, C. Algorithmic bias? an empirical study of apparent gender-
based discrimination in the display of stem career ads. Management Science 65, 7 (2019),
2966–2981.

[100] Laniado, D., Volkovich, Y., Kappler, K., and Kaltenbrunner, A. Gender homophily in online
dyadic and triadic relationships. EPJ Data Science 5, 1 (2016), 19.

[101] Lashbrook, A. Ai-driven dermatology could leave dark-skinned patients behind, Aug 2018.

[102] Lee, M. K., and Baykal, S. Algorithmic mediation in group decisions: Fairness perceptions
of algorithmically mediated vs. discussion-based social division. In Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social Computing (2017),
pp. 1035–1048.

[103] Leo, M., Sharma, S., and Maddulety, K. Machine learning in banking risk management: A
literature review. Risks 7, 1 (2019), 29.

[104] Leskovec, J., and Faloutsos, C. Sampling from large graphs. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining (2006),
pp. 631–636.

105



[105] Leskovec, J., Kleinberg, J., and Faloutsos, C. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining (2005), pp. 177–187.

[106] Leskovec, J., and Mcauley, J. J. Learning to discover social circles in ego networks. In
NeurIPS (2012), pp. 539–547.

[107] Li, K., Gao, J., Guo, S., Du, N., Li, X., and Zhang, A. Lrbm: A restricted boltzmann
machine based approach for representation learning on linked data. In Data Mining (ICDM),
2014 IEEE International Conference on (2014), IEEE, pp. 300–309.

[108] Li, X., Du, N., Li, H., Li, K., Gao, J., and Zhang, A. A deep learning approach to link
prediction in dynamic networks. In Proceedings of the 2014 SIAM International Conference
on Data Mining (2014), SIAM, pp. 289–297.

[109] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493 (2015).

[110] Liao, C.-S., Lu, K., Baym, M., Singh, R., and Berger, B. Isorankn: spectral methods for
global alignment of multiple protein networks. Bioinformatics 25, 12 (2009), i253–i258.

[111] Liben-Nowell, D., and Kleinberg, J. The link-prediction problem for social networks. journal
of the Association for Information Science and Technology 58, 7 (2007), 1019–1031.

[112] Lichtenwalter, R. N., Lussier, J. T., and Chawla, N. V. New perspectives and methods
in link prediction. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining (2010), pp. 243–252.

[113] Louizos, C., Swersky, K., Li, Y., Welling, M., and Zemel, R. The variational fair autoencoder.
arXiv preprint arXiv:1511.00830 (2015).

[114] Lu, J., Wu, D., Mao, M., Wang, W., and Zhang, G. Recommender system application
developments: a survey. Decision Support Systems 74 (2015), 12–32.

[115] Lu, Q., and Getoor, L. Link-based classification. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03) (2003), pp. 496–503.

[116] Madras, D., Creager, E., Pitassi, T., and Zemel, R. Learning adversarially fair and transferable
representations. arXiv preprint arXiv:1802.06309 (2018).

[117] Mariani, M. S., Medo, M., and Zhang, Y.-C. Ranking nodes in growing networks: When
pagerank fails. Scientific reports 5, 1 (2015), 1–10.

[118] Martinez, N., Bertran, M., and Sapiro, G. Minimax pareto fairness: A multi objective
perspective. In International Conference on Machine Learning (2020), PMLR, pp. 6755–
6764.

[119] Masrour, F., Barjesteh, I., Forsati, R., Esfahanian, A.-H., and Radha, H. Network completion
with node similarity: A matrix completion approach with provable guarantees. In Advances
in Social Networks Analysis and Mining (ASONAM), 2015 IEEE/ACM International Con-
ference on (2015), IEEE, pp. 302–307.

106



[120] Masrour, F., Tan, P.-N., Esfahanian, A.-H., and VanDam, C. Attributed network representa-
tion learning approaches for link prediction. In ASONAM (2018), IEEE, pp. 560–563.

[121] Masrour, F., Wilson, T., Yan, H., Tan, P.-N., and Esfahanian, A. Bursting the filter bubble:
Fairness-aware network link prediction. In Proceedings of the AAAI Conference on Artificial
Intelligence (2020), vol. 34, pp. 841–848.

[122] Massoulié, L., Le Merrer, E., Kermarrec, A.-M., and Ganesh, A. Peer counting and sampling
in overlay networks: random walk methods. In Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing (2006), pp. 123–132.

[123] McPherson, M., Smith-Lovin, L., and Cook, J. M. Birds of a feather: Homophily in social
networks. Annual review of sociology 27, 1 (2001), 415–444.

[124] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. A survey on bias and
fairness in machine learning. arXiv preprint arXiv:1908.09635 (2019).

[125] Menon, A., and Elkan, C. Link prediction via matrix factorization. Machine Learning and
Knowledge Discovery in Databases (2011), 437–452.

[126] Mikolov, T., Chen, K., Corrado, G., and Dean, J. E�cient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781 (2013).

[127] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed representa-
tions of words and phrases and their compositionality. In Advances in neural information
processing systems (2013), pp. 3111–3119.

[128] Mitzenmacher, M. A brief history of lognormal and power law distributions. In Proceedings
of the Allerton conference on communication, control, and computing (2001), pp. 182–191.

[129] Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming 14, 1 (1978), 265–
294.

[130] Newman, M. Networks: an introduction. Oxford university press, 2010.

[131] Newman, M. E. Clustering and preferential attachment in growing networks. Physical review
E 64, 2 (2001), 025102.

[132] Newman, M. E. Finding community structure in networks using the eigenvectors of matrices.
Physical review E 74, 3 (2006), 036104.

[133] Newman, M. E. Modularity and community structure in networks. PNAS 103, 23 (2006),
8577–8582.

[134] Newman, M. E., and Girvan, M. Finding and evaluating community structure in networks.
Physical review E 69, 2 (2004), 026113.

[135] Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L., and Konstan, J. A. Exploring the filter
bubble: the e�ect of using recommender systems on content diversity. In WWW (2014).

107



[136] O’Neil, C. Weapons of math destruction: How big data increases inequality and threatens
democracy. Broadway Books, 2017.

[137] Özcan, A., and Öfiüdücü, �. G. Multivariate temporal link prediction in evolving social
networks. In 2015 IEEE/ACIS 14th International Conference on Computer and Information
Science (ICIS) (2015), IEEE, pp. 185–190.

[138] Page, L. Method for node ranking in a linked database, Sept. 4 2001. US Patent 6,285,999.

[139] Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank citation ranking: Bringing
order to the web. Tech. rep., Stanford InfoLab, 1999.

[140] Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., and Zhang, C. Adversarially regularized graph
autoencoder for graph embedding. arXiv preprint arXiv:1802.04407 (2018).

[141] Pariser, E. The filter bubble: What the internet is hiding, 2012.

[142] Pattillo, J., Youssef, N., and Butenko, S. Clique relaxation models in social network analysis.
In Handbook of Optimization in Complex Networks. Springer, 2012, pp. 143–162.

[143] Peiró, J. M., Martínez-Tur, V., and Moliner, C. Perceived Fairness. Springer Netherlands,
Dordrecht, 2014, pp. 4693–4696.

[144] Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining (2014), pp. 701–710.

[145] Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., and Weinberger, K. Q. On fairness and
calibration. In NeurIPS (2017).

[146] Qian, C., Li, G., Feng, C., and Tang, K. Distributed pareto optimization for subset selection.
In ÒCAI (2018), pp. 1492–1498.

[147] Rahman, T. A., Surma, B., Backes, M., and Zhang, Y. Fairwalk: Towards fair graph
embedding. In ÒCAI (2019), pp. 3289–3295.

[148] Ribeiro, B., and Towsley, D. Estimating and sampling graphs with multidimensional random
walks. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement
(2010), pp. 390–403.

[149] Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., and Sontag, D. Learning a health
knowledge graph from electronic medical records. Scientific reports 7, 1 (2017), 1–11.

[150] Saleiro, P., Kuester, B., Hinkson, L., London, J., Stevens, A., Anisfeld, A., Rodolfa, K. T.,
and Ghani, R. Aequitas: A bias and fairness audit toolkit. arXiv preprint arXiv:1811.05577
(2018).

[151] Saxena, N., Huang, K., DeFilippis, E., Radanovic, G., Parkes, D., and Liu, Y. How do
fairness definitions fare? examining public attitudes towards algorithmic definitions of
fairness, 2018.

108



[152] Scripps, J., Tan, P.-N., Chen, F., and Esfahanian, A.-H. A matrix alignment approach for
link prediction. In Proc of ICPR (2008).

[153] Shulga, L., and Tanford, S. Measuring perceptions of fairness of loyalty program members.
Journal of Hospitality Marketing & Management 27, 3 (2018), 346–365.

[154] Singh, R., Xu, J., and Berger, B. Global alignment of multiple protein interaction networks
with application to functional orthology detection. Proceedings of the National Academy of
Sciences 105, 35 (2008), 12763–12768.

[155] SnÚders, T. A., Van de Bunt, G. G., and Steglich, C. E. Introduction to stochastic actor-based
models for network dynamics. Social networks 32, 1 (2010), 44–60.

[156] Stelmakh, I., Shah, N., and Singh, A. On testing for biases in peer review. In Advances in
Neural Information Processing Systems (2019), pp. 5286–5296.

[157] Stelmakh, I., Shah, N. B., and Singh, A. Peerreview4all: Fair and accurate reviewer
assignment in peer review. arXiv preprint arXiv:1806.06237 (2018).

[158] Stelmakh, I., Shah, N. B., and Singh, A. Peerreview4all: Fair and accurate reviewer
assignment in peer review. In Algorithmic Learning Theory (2019), PMLR, pp. 828–856.

[159] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. Line: Large-scale information
network embedding. In Proc of WWW (2015), pp. 1067–1077.

[160] Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. Learning deep representations for graph
clustering. In AAAI (2014), pp. 1293–1299.

[161] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[162] Tomkins, A., Zhang, M., and Heavlin, W. D. Reviewer bias in single-versus double-blind
peer review. Proceedings of the National Academy of Sciences 114, 48 (2017), 12708–12713.

[163] Turner, A. How many people have smartphones worldwide (sept 2021).

[164] VeliÃkovi∆, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017).

[165] Vogelstein, J. T., Conroy, J. M., Podrazik, L. J., Kratzer, S. G., Fishkind, D. E., Vogel-
stein, R. J., and Priebe, C. E. Fast inexact graph matching with applications in statistical
connectomics. CoRR, abs/1112.5507 (2011).

[166] Wagner, C., Singer, P., Karimi, F., Pfe�er, J., and Strohmaier, M. Sampling from social
networks with attributes. In Proceedings of the 26th International Conference on World
Wide Web (2017), pp. 1181–1190.

[167] Wang, D., Pedreschi, D., Song, C., Giannotti, F., and Barabasi, A.-L. Human mobility, social
ties, and link prediction. In SIGKDD (2011), Acm, pp. 1100–1108.

109



[168] Wang, F., and Zhang, C. Label propagation through linear neighborhoods. IEEE Transactions
on Knowledge and Data Engineering 20, 1 (2007), 55–67.

[169] Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., and Guo, M.
Graphgan: Graph representation learning with generative adversarial nets. In Thirty-second
AAAI conference on artificial intelligence (2018).

[170] Wang, J., and Shah, N. B. Your 2 is my 1, your 3 is my 9: Handling arbitrary miscalibrations
in ratings. arXiv preprint arXiv:1806.05085 (2018).

[171] Wang, P., Xu, B., Wu, Y., and Zhou, X. Link prediction in social networks: the state-of-the-
art. Science China Information Sciences 58, 1 (2015), 1–38.

[172] Wang, R., Li, B., Hu, S., Du, W., and Zhang, M. Knowledge graph embedding via graph
attenuated attention networks. IEEE Access (2019).

[173] Washington, A. L. How to argue with an algorithm: Lessons from the compas-propublica
debate. Colo. Tech. LJ 17 (2018), 131.

[174] Wei, W., Erenrich, J., and Selman, B. Towards e�cient sampling: Exploiting random walk
strategies. In AAAI (2004), vol. 4, pp. 670–676.

[175] Wiens, J., and Shenoy, E. S. Machine learning for healthcare: on the verge of a major shift
in healthcare epidemiology. Clinical Infectious Diseases 66, 1 (2018), 149–153.

[176] Xie, T., Ma, Y., Tong, H., Thai, M. T., and Maciejewski, R. Auditing the sensitivity
of graph-based ranking with visual analytics. IEEE Transactions on Visualization and
Computer Graphics (2020).

[177] Xiong, C., Power, R., and Callan, J. Explicit semantic ranking for academic search via
knowledge graph embedding. In Proceedings of the 26th international conference on world
wide web (2017), pp. 1271–1279.

[178] Yang, C., Liu, Z., Zhao, D., Sun, M., and Chang, E. Y. Network representation learning with
rich text information. In ÒCAI (2015), pp. 2111–2117.

[179] Yang, J., and Leskovec, J. Overlapping community detection at scale: a nonnegative matrix
factorization approach. In Proceedings of the sixth ACM international conference on Web
search and data mining (2013), pp. 587–596.

[180] Yang, J., McAuley, J., and Leskovec, J. Community detection in networks with node
attributes. In 2013 IEEE 13th International Conference on Data Mining (2013), IEEE,
pp. 1151–1156.

[181] Yang, T., Jin, R., Chi, Y., and Zhu, S. Combining link and content for community detection: a
discriminative approach. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining (2009), pp. 927–936.

110



[182] Yeh, I.-C., and Lien, C.-h. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications
36, 2 (2009), 2473–2480.

[183] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(2018), pp. 974–983.

[184] Zafarani, R., Abbasi, M. A., and Liu, H. Social media mining: an introduction. Cambridge
University Press, 2014.

[185] Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., and Baeza-Yates, R. Fa* ir: A
fair top-k ranking algorithm. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management (2017), pp. 1569–1578.

[186] Zemel, R., Wu, Y., Swersky, K., Pitassi, T., and Dwork, C. Learning fair representations. In
ICML (2013), pp. 325–333.

[187] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V. Graphsaint: Graph
sampling based inductive learning method. arXiv preprint arXiv:1907.04931 (2019).

[188] Zhai, S., and Zhang, Z. Dropout training of matrix factorization and autoencoder for link
prediction in sparse graphs. In Proceedings of the 2015 SIAM International Conference on
Data Mining (2015), SIAM, pp. 451–459.

[189] Zhang, S., and Tong, H. Final: Fast attributed network alignment. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(2016), ACM, pp. 1345–1354.

[190] Zhang, X., Liu, H., Li, Q., and Wu, X.-M. Attributed graph clustering via adaptive graph
convolution. arXiv preprint arXiv:1906.01210 (2019).

[191] Zhang, Y., Yao, Q., Dai, W., and Chen, L. Autokge: searching scoring functions for
knowledge graph embedding. arXiv preprint arXiv:1904.11682 (2019).

[192] Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. Learning with local and
global consistency. In Advances in neural information processing systems (2004), pp. 321–
328.

[193] Zhu, X., Ghahramani, Z., and La�erty, J. D. Semi-supervised learning using gaussian fields
and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03) (2003), pp. 912–919.

[194] Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q. Layer-dependent importance
sampling for training deep and large graph convolutional networks. In Advances in Neural
Information Processing Systems (2019), pp. 11249–11259.

[195] Zou, H., and Hastie, T. Regularization and variable selection via the elastic net. Journal of
the royal statistical society: series B (statistical methodology) 67, 2 (2005), 301–320.

111


