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ABSTRACT

BEAM-WAVE INTERACTION FOR A TERAHERTZ SOLID-STATE AMPLIFIER

By

Matthew Steven Hodek

The push of conventional electronic amplifier technologies into the deep submillimeter wave-

length and THz frequency ranges of the electromagnetic (EM) spectrum has been limited by

constraints on their fundamental physics of operation and fabrication limitations. At the same

time, optical amplifier technologies can only access this spectral region using inefficient frequency

down-conversion. This struggle for practical power amplifiers in the THz band will likely require

a new type of amplifier and has led to a desire for a solid-state beam-wave style amplifier using

semiconductor fabrication techniques.

While there has been considerable progress in creating transistors in the THz region [1], the

small size required to achieve the needed transit times and gate capacitances generally precludes

them from producing power above 1 mW. Vacuum electronic devices (VEDs), such as traveling

wave amplifiers (TWAs), have also shown great progress into this band [2]. A TWA is an example

of a beam-wave style device where gain is achieved by transferring energy from an electron beam

to an EM wave at electrically large length scales. However, as traditional TWAs are scaled to

higher frequencies, the shrinking wavelength makes fabrication of the corresponding interaction

circuit structures and miniscule beam tunnels increasingly difficult through micro-machining or

other subtractive metal shaping. Thus, combining the strengths of both these systems into a single

device has some merit. Solid-state TWAs have been attempted over many years without success

largely due to slow electron drift velocities resulting in beam equivalents that are unsuitable for

synchronization with EM slow-wave structures. One possible path towards a beam-wave style

THz solid-state amplifier is to couple to a plasma wave characterized by phase propagation much

faster than the electron velocity limited by scattering in a material, but this requires a substantial

redevelopment of the fundamental beam-wave interaction analysis.



Presented here is a novel analysis built upon the prior work on solid-state and VED TWAs with

a primary difference in the nature of the charge carrier behavior. In this work the electron beam,

which was previously described as bulk carriers in a semiconductor, is now formed with an un-gated

2D electron gas (2DEG). A freely propagating plasma wave is present in the dense 2DEG and

takes the place of the typical space charge wave present in VED devices. Example calculations

are compared to a generic VED TWA behavior and the basic performance of a realizable device

is analyzed through the use of a gallium nitride heterostructure material system and achievable

fabrication strategies. It is shown that the concept of a TWA using a 2DEG plasma wave is not

practical at best, and fundamentally flawed at worst. However, the understanding gained lays some

of the groundwork for other possible beam-wave interaction style amplifiers using a fast 2DEG

plasma wave.
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CHAPTER 1

PRACTICAL THz AMPLIFIERS: PHYSICAL CHALLENGES AND THE THz GAP

The use of the electromagnetic (EM) spectrum is ubiquitous in our current society. For over a

hundred years people have been experimenting with and subsequently using EM waves at different

frequencies to accomplish many technological achievements. RF and microwave frequencies

(roughly 1 kHz – 300 GHz) are commonly used for the communication of data and for sensing

applications like radar. Optical frequencies (roughly 3 THz - 100 PHz) spanning the ranges of

infrared, visible, and ultraviolet light have been used for centuries in too many ways to enumerate

here. In-between those two well-known regions of the EM spectrum is the terahertz (THz) Band.

The difficulties faced in working within this band, and thus its lack of development, has led to it

being called the THz Gap.

Many of the fundamental issues in working in the THz band come from the range of wavelengths

and wave energies involved. The free space wavelength at 1 THz is 300 µm, in silicon (Si) it is

closer to 25 µm. This is approaching the dimensions of common solid-state RF electronic devices

which pushes the limits of how they physically operate. At the same time, the wave energy of about

4 meV is sufficient to start interacting with low frequency crystal vibrational modes or molecular

states in materials. While these interactions provide a way to learn more about the materials (through

spectroscopy), they can also render commonly used semiconductor and dielectric materials to be

too lossy to be effectively used in the THz band.

There have been numerous attempts to create measurement systems in the THz range that have

leveraged the established expertise in electronic and optical hardware, and both have faced major

challenges. While the THz band is difficult to work within, there are many different applications that

are looking to it for answers. In many cases, the same reasons that make it difficult to work with are

in fact what make its use interesting. THz imaging is of growing interest in the medical community.

THz radiation is non-ionizing which means it doesn’t have the health impact that exists with X-rays.

By using THz radiation to image soft tissue, it has been shown to reveal detailed information that is
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inaccessible with other imaging methods. One modality is to use a 500 GHz reflected signal image

to differentiate the water content in soft tissue to highlight damaged or diseased areas [6].

As the vast field of semiconductor-based electronics continues to expand, more detailed infor-

mation is needed about how the materials involved behave as EM media when extended into the

THz Gap. THz-based spectroscopy has been shown as a way to probe certain material properties

and transient behaviors. It is possible to measure directly the frequency-dependent complex valued

transient conductivity using time resolved fast pulse THz spectroscopy [6]. Detailed information

about the basic physical properties of most semiconductors and dielectrics is sparse, unreliable, or

absent at THz frequencies.

Communications applications dominate the crowed RF spectrum and wireless communication

systems are requiring an increasing amount of bandwidth as their use expands. Whether it is a short

range terrestrial system, or space-based system, even a modest fractional bandwidth ( < 1%) at 1

THz can be a significant improvement over current technology. A 40 Gbit/s link has already been

shown [7], and systems with over 100 Gbit/s capabilities are being planned.

So there is certainly interest in THz systems for various applications. Several options exist

for uncontrolled, bright power sources in the THz band, but there is an absence of amplifiers

of intentional excitations. For many of these applications a THz amplifier that allows coherent

measurements in a small and affordable package is critical for their development. A coherent

measurement is one where both the amplitude and phase are quantified. The combination of these

two pieces of information allow the community to bring to bear advanced measurement techniques

that have been refined over several decades in the wireless communications field. By using these

techniques, the signal-to-noise ratio (SNR) can be reduced significantly to allow more sensitive

measurements [8]. In the case of wireless communications, the use of coherent systems also can

lead to using more complicated modulation schemes. The 40 Gbit/s data link mentioned above could

only use a basic on-off keying (OOK) modulation scheme since the THz source was non-coherent.

That data rate could be much higher with a coherent system that can use contemporary waveform

engineering, such as the popular quadrature amplitude modulation [7].
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CHAPTER 2

HIGH FREQUENCY AMPLIFIERS

2.1 Types of Amplifiers

Having established the need for a THz amplifier, the research problem will now be clearly defined.

In the most basic and ideal sense, an amplifier is a device that takes an electrical input signal and

outputs a congruent signal with a larger amplitude. In the RF/mmW field, typically the signal power

is increased, but this can be done via an increase in the signal voltage and/or current depending on

the needs of the system. Regardless of the implementation, the amplifier must be provided a source

of energy to increase the signal amplitude.

The earliest forms of electronic amplifiers were the ubiquitous vacuum tubes. These devices

take a DC stream of electrons boiled off a metal cathode and accelerates them through the vacuum

towards an anode with an applied DC voltage between these electrodes. A metal grid is positioned

in the middle that can be electrically charged with the time varying input signal. When the grid has a

negative charge it will repel the vacuum electrons, and prevent them from reaching the anode where

the output signal connection is made. In this fashion a simple vacuum tube acts much like a valve

turning on and off a stream of electrons with the application of an input voltage. There are many

variations of this basic concept, and they all fall into a category known as vacuum electronic devices

(VEDs). Solid-state electronics use transistors to implement the same principle of an electron valve,

but in a semiconducting material instead of a vacuum envelope. In a field effect transistor (FET) the

gate electrode repels or attracts a conducting channel between the source and drain contacts.

In both the vacuum tube or the transistor, the input signal modulates a stream of electrons. At

low frequencies, these devices can easily respond to input signal. As the frequency increases, more

parasitic effects come into play, and start to affect the performance of the device. It is generally the

case that these devices should be small compared to the wavelength of the signal being amplified.

This ensures that the entire grid of a tube or gate of a transistor is at the same voltage at any given
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time. This is known as the quasi-static approximation. The charging capacitance of the grid or gate,

i.e. how quickly the needed charges can be gathered to affect the electron stream, will also limit

how quickly the electron stream can be modulated. Both issues are generally dealt with by making

smaller devices (both vertically from gate to channel and horizontally from source to drain) as the

frequency of the signal is increased. This continual shrinking the device sizes has at least two major

issues. First, smaller devices become increasingly difficult to fabricate. The second is that drain

breakdown effects will limit the power handling capabilities of smaller devices and the dynamic

range of voltage waveforms.

Given the narrow-band nature of typical valve style vacuum tubes, or even klystrons, and an

increasing demand for bandwidth, a new type of vacuum electron device was envisioned in the

first half of the 20th century. Instead of having a single grid modulating the electron beam, this

device has a specially designed waveguide that is constructed to propagate the input signal along

the same axis as and in close proximity to the electron beam. A key feature of this waveguide is

that the propagation velocity of the RF wave is much slower than free space propagation to match

the electron beam velocity. As such, they are known as slow-wave structures (SWSs).While the

RF wave and electron beam are co-propagating down this structure, the wave and beam interact

through mutual electromagnetic forces. If this interaction structure is designed correctly, the kinetic

energy of the electron beam is transferred into the co-propagating RF signal. Haeff first published

about the possible interaction between an electron beam and a traveling RF wave in 1933. His

initial idea was for an electronic detector, but theorized that it could also be used as an amplifier.

Later, in 1940 Lindenblad made a VED that modulated the electron beam via a grid near the source,

and then generated an output signal by propagating that beam down the axis of a helix. The first

traveling wave amplifier (TWA) as they are known today, with both the electron bunching and the

wave growth due to propagation along the helix, was created by Kompfner in the early 1940’s [9].
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2.2 Pushing to Higher Frequencies

As with most RF devices, scaling a TWA to higher frequencies requires that the device dimensions

shrink proportionally to the wavelength in various fashions. The most obvious is the scaling of the

slow wave structure. If a helix waveguide is used, it is important that the slow wave wavelength

extends across several turns of the helix. For higher frequencies the helix will need to have a

higher number of turns per length and the transverse dimensions will also have to shrink to get the

desired phase velocity. Similar arguments can be made for the size of a coupled-cavity SWS. In

the THz range, these dimensions are pushing past what can be done with traditional machining

techniques. To deal with these small dimensions, new processes that have been largely developed

by the micro-electro-mechanical systems (MEMS) have been brought to bear on the problem. Even

these processes struggle to fabricate features sufficiently small to support operation above 0.8 THz

[6]. Worse, the practical issue of avoiding beam scrape in the vanishingly small beam tunnels of

these circuits is often too much to overcome for practical devices.

2.3 Comparison With Other Technologies

It is instructive to compare the physical challenges for extending to 1 THz across technical ap-

proaches. Currently there are multiple options for reaching 1 THz, some are based on lower

frequency electronics approaches, and some are based on optical techniques from higher frequen-

cies. In most cases the solutions can’t produce significant power with reasonable efficiencies in a

compact package. The following examples will quantify some of those aspects.

THz transistors have been a major goal of the DARPA THz Electronics program for more than

a decade. To maximize the performance of these devices, they use the semiconducting material

indium phosphide (InP) which has a very high mobility. With this material they have developed

scaled process to shrink the dimensions and boost high frequency performance. A record setting

transistor shown in [10] has 25nm gate width and can achieve an Fmax of 1.5 THz. The thing to

keep in mind with transistors, and amplifiers in general, is that to accurately reproduce modulated

signals the frequency limit of the device (Ft/Fmax for transistors) should be several times higher in
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frequency from the carrier to account for the harmonic content of the signal. The devices developed

by these programs have been successfully used in a terahertz monolithic integrated circuits (TMICs)

with operating frequencies in the 0.3-1 THz range. These TMICs are very compact with dimensions

on the mm scale for the entire chip, and have shown good integration into standard waveguide

packages [10]. The output power of these heavily scaled devices is not high enough for a transmitter

application. These TMICs will likely still play a critical role as low noise amplifiers and driver

amplifiers in coherent THz systems.

Lasers and photoconductive materials are currently the easiest way to generate THz signals with

benchtop systems for THz time domain spectroscopy (TDS) being commercially available. These

systems rely on the laser exciting a photo current in a semiconductor, typically low temperature

grown gallium arsenide (LT-GaAs), and use that current to radiate a THz signal. The THz generation

typically happens via two different methods. In a THz frequency-tunable system, two laser beams

that are offset by the THz frequency desired are directed to a wide bandwidth antenna pattern, such

as a spiral, on the LT-GaAs. A single frequency system can be implemented with a single laser

shining on a structure with a pattern matching the desired wavelength such as a grating. In both

cases, the laser generates pulses of electrons underneath the patterns and excites them to radiate

[6]. By carefully tuning the photo-conducting substrate, such systems have achieved up to 90 dB of

dynamic range [11]. This is significant for a non-coherent system, but it comes at the expense of a

large system and high cost with the use of a fiber laser.

Quantum Cascade Lasers (QCLs) are a source of THz radiation in a small package that have

garnered a lot of attention over the past 20 years. Based on a cascade of tuned quantum wells, a

QCL can produce watts of power in the 1-5 THz range. However, it still just a THz generator with a

very narrow bandwidth [6]. A QCL could potentially be used as local oscillator in a THz system,

but THz amplifiers would still be needed.
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2.4 Wave Style Amplifiers Using Solid-State Fabrication

As previously stated, it is becoming increasingly difficult to scale the traditional VEDs to higher

frequencies. It is also clear that traditional semiconductor devices are not going to be able to produce

the amounts of power needed in advanced systems. Hence, a merger of the two technologies is

proposed. The concept is to utilize semiconductor fabrication techniques and materials to produce a

device that has an extended beam-wave interaction producing amplification on an electrically large

length scale.

The general idea of a solid-state TWA was introduced for very similar reasons in the early

1960’s, but for lower frequencies than we would presently like to consider. Using semiconductor

fabrication techniques allows for much smaller EM SWSs and electron beams than in the vacuum

case without the use of hot cathodes or bulky external magnets for beam control. Inherently being

an electrically large device, a solid-state TWA would not be limited to the small dimensions of

transistors and thus more gain and higher powers can be achieved. It is important to note that within

this context, a TWA refers specifically to a class of amplifiers that transfer DC kinetic energy of an

electron beam continuously to a co-propagating EM wave within a multi-wavelength interaction

region. The term TWA has been used loosely in the literature to describe other types of solid-state

amplifiers that use discrete parametric type gain devices. We consider parametric gain devices as

distinct from the physics associated with TWAs.

Early work on solid-state TWAs by Sumi suggested simply replacing the vacuum beam with

the conducting channel in semiconductor [12]. These concepts did not accurately include loss

mechanisms in the form of thermal velocity and electron collisions. Later Solymar introduced a

theory for a bulk semiconductor TWA device that included the previously missing semiconductor

transport effects [13]. Gover then used this derivation with the addition of a dielectric waveguide

for two further studies. One was in the collisionless regime such that ωτ >> 1 [14], and the other

was done in a collision dominated case ωτ < 1 [15]. For purposes of this discussion 1/τ is the

average collision frequency limiting the free electron mobility in the semiconductor and ω is the

angular frequency of the THz wave.
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The primary problems with the semiconductor TWA concept are the SWS feature sizes and

inadequate coupling between the SWS and the beam. One of the main points of Solymar’s paper is

that a strong coupling constant is needed to overcome the collisions and thermal velocity. Gover tries

to achieve this using his proposed dielectric waveguide, but what is not discussed are the relative

speeds of the EM wave in the waveguide and the electron velocity. The example Gover gives uses a

free space wavelength of 100 µm or around 3 THz. In his proposed waveguide of GaAs (εr ≈ 13)

the TM mode wavelength will be on the order of 40 µm, depending on the particular geometry. The

grating on the surface of the waveguide that forms the SWS matched to the electron velocity has

a pitch of only 0.06 µm. With the SWS pitch being much smaller than the EM wavelength, the

grating will only weakly interact with the propagating EM wave. In this thesis, the development of

a useful SWS is a key topic that is discussed in Chapter 5.

One possible path towards a beam-wave style THz solid-state amplifier is to couple to a wave

that is much faster than the electron velocity in the material, but this requires significant change

in the approach to deriving the interacting wave solution compared with traditional TWA theory

dating back to the 1950s. The first step is to use a different kind of electron beam. Based on theory

by Stern [16], and confirmed by experiment [17], it is known that a plasma wave in a dense gas of

electrons confined to two dimensions has a propagating plasma wave that may be appropriate for

this use. A key insight of this thesis is recognizing that the common electron channels in electron

devices that are confined in the third dimension provide these beam options with many advantages.

The following chapter will elaborate this concept in detail.

What is presented in Chapter 4 is a continuation of the prior work of Solymar with a primary

difference in the nature of the charge carrier behavior. In this work the electron beam, which

was previously described as bulk carriers in a semiconductor, is now formed with an un-gated

2D electron gas (2DEG). A freely propagating plasma wave is present in the dense 2DEG and

takes the place of the typical space charge wave present in VED devices as shown in Fig. 2.1. An

example calculation is compared to a generic VED TWA behavior. It is shown that the 2DEG

plasma wave limits any realization of the hypothetical device in the typical TWA mode of operation,
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Figure 2.1: A conceptual diagram of a solid-state beam-wave amplifier utilizing a 2DEG beam.

but in the elaboration of the design space it is also shown that it opens up new possibilities for other

beam-wave interaction style amplifiers.
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CHAPTER 3

TWO-DIMENSIONAL ELECTRON GASSES

3.1 A Brief Introduction to Semiconductor Transport

A little must be said on the properties of the 2DEG before going on to describe a theory for a

beam-wave style amplifier that would employ it. This begins with a basic understanding of electron

transport within semiconductor materials.

For a solid material to conduct electricity it needs electrons that are in states where they can freely

move among the atoms that form the solid and the crystal potential field seen by the conduction

electrons. As atoms are taken from isolation and forced closer together, their electron orbitals start

interacting and hybridizing into distinct energy bands. These energy bands represent the collection

of possible states within which electrons can exist. The tightly-bound core electrons of the atoms

preserve the chemical nature of the elements and contribute to the background potential, but the

physical extent of some of these extended bands extends between adjacent atoms, and allow for

electrons to freely move around the solid. These partially filled states are known as the conduction

bands. The lower energy bands of these extended states that are typically filled are known as valance

bands and do not contribute to conductivity. The forbidden region between these two energy bands

is known as the band gap [18].

Figure 3.1: Energy Contours for the parabolic energy approximation (left) and the first conduction
band of GaAs from EPM (right) within the irreducible wedge.
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The arrangement of the energy bands for a solid, collectively referred to as the band structure,

is calculated within the momentum space of the crystal. The regular crystalline structure of

semiconductors in real space causes a reciprocal structure in the electron momentum space, and

the smallest unit cell that can tile the entire momentum space is called the Brillouin zone. The

Brillouin zone can be further reduced in size using symmetry arguments into the irreducible wedge.

Shown in Fig. 3.1 are two numerical representations of the GaAs band structure in the irreducible

wedge for a zinc-blend crystal. The calculated band structure on the right was created using the

empirical pseudo-potential method, and is intended to reproduce many features of measured band

structures [19]. It is often useful to have a closed form representation of the band structure that can

be used in analytical models. Shown on the left in Fig. 3.1 is the band structure using the parabolic

bands approximation where the energy above the conduction band minimum is approximated as

E = ~2k2
2m∗

. This approximation uses the electron effective mass m∗ that allows the electron within

a crystal to be described as a pseudo-particle that obeys classical mechanics [20]. The parabolic

bands approximation can be used when the electron energy is low enough that most electrons are

within the lower curvature of the first conduction band. The theory derived in Chapter 4 does make

use of the parabolic approximation which allows the use of force equations and the effective mass

instead of including more complicated functions of the band structure.

As its name suggests, the density of states g(E) is a function that describes how many states

are available for electrons to occupy at a given energy within the band structure. The density of

states for the parabolic bands approximation can be written as g(E) = 4π(2m∗)3/2

h3

√
E. The ability

of a solid to conduct electrons is determined by which of these bands have electrons in them. The

probability of an electron to have the energy E at a given temperature is given by the Fermi-Dirac

Distribution function fF (E) = 1/
(

1− exp
(
E−Ef

KBT

))
. At T = 0 K, the Fermi function is a step

function at the Fermi Energy, Ef . In general the Fermi Energy is the point where there is a 50%

probability of being occupied by and electron. As the temperature rises, the tails of the Fermi

Function extend in both directions allowing for electrons with more energy. If this tail extends high

enough in energy, the electrons can transition to the conduction band and move about the solid. The
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density of electrons at a given energy is then given by n(e) = g(E)fF (E) [18].

What has been described thus far is the band structure and electron states at equilibrium. When

an external stimulus is applied, typically by applying a voltage or injecting carriers, the net effect is

that it moves the Fermi Energy relative to the energy bands and this changes the probable distribution

of electrons. This is the process by which a voltage applied to the gate of a transistor can turn

on or off the conduction channel below it. One of the primary differences between the electrical

properties of solids is the size of the band gap between the valance and conduction bands. In a metal

the gap can be non-existent with the conduction band overlapping the valence band. This ensures

that there will always be electrons in the conduction band. At the other end of the spectrum, the

band gap is very large in good insulators. A very large voltage is needed to excite an electron into

the conduction band. Between these two limits are the semiconductor materials. In these solids the

band gap exists, but is small enough that electrons can be promoted to the conduction band by an

external stimulus. This is why their conductivity can be controlled.

As an electron in the conduction band moves through a solid there are many interactions which

can affect its momentum. Simply put, the more an electron scatters or interacts, the lower its average

velocity will be. Most commonly the electrons see a scattering potential field from the charged ion

cores of the lattice. In these types of scattering events, the electron momentum can be transferred

to a quanta of lattice vibrations called a phonon. Another dominant scattering process is from the

ionized impurity elements introduced to change the number of electrons available. Most relevant

to this work, electrons can also scatter off other electrons. Since this is generally considered to be

an elastic process the electron energy is conserved, and the velocity is randomized. This will be

important later when the plasma wave is discussed. One way to quantify how much scattering is

occurring in a material is by its mobility. µ =
e0τ

m∗
, where eo is the unsigned unit electron charge, τ

is the average time between scattering events, and m∗ is the electron’s effective mass in the material.

When an electric field is applied along a conducting channel, the force will cause the charge

carriers to accelerate. The net force from the applied field and the randomization of the velocity

from scattering will result in a steady state current to flow through the material. This drift current
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(Jdrift) is a product of the electron mobility (µ), the electron number density (n), and the force on

the electron charges in an electric field (e0E), Jdrift = e0µnE [18].

3.2 Formation and Properties of 2DEGs

For the present purposes, the direct problem with the normal conduction channel created by a gate

voltage on a semiconductor is that the electron density is not high enough. Applying a higher

voltage to collect more electrons, would exceed the breakdown voltage of the gate dielectric before

the desired density is reached. The other way to get higher densities is to use a higher doping

concentration, but this greatly decreases the mobility through impurity scattering. To get the higher

densities needed, a two-dimensional electron gas (2DEG) which achieved high densities through

electrostatic confinement in the third dimension will be utilized.

A 2DEG is a collection of electrons in the conduction band that is confined to a very thin surface

in the semiconductor by a strong potential. This confining potential is created by manipulating

the band structure in some fashion as shown in Figure 3.2. The important quality of this potential

well is that it is deep enough to create quantum energy levels that confine the electrons into a

sheet at the interface. In practical terms, the depth of the narrow potential well must be extremely

large compared with the thermal energy at practical operating temperature, or KBT where KB

is the Boltzmann constant and T is the lattice temperature. For strong confining potentials, e.g,

>> 3KBT deep (KBT ∼ 25 meV at room temperature), the 2DEG is effectively confined quantum

mechanically to two dimensions of free motion. As alluded, two of the important properties of

the 2DEG we will later try to exploit are the increased electron mobility, and the higher electron

densities compared to regular semiconductor channels with three-dimensional diffusive scattering.

For this work we have chosen a gallium nitride (GaN) based 2DEG (this is explained later

in detail). In group III-nitride based systems there is a spontaneous polarization charge due to

the bond arrangements in the wurtzite crystal. A second larger band gap III-nitride is used as

the insulating material to form a barrier above the 2DEG, and the resulting potential notch is due

to the difference in polarization electric fields in the two materials that can be represented by an
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Figure 3.2: Conceptual diagrams of band structures that produce a 2DEG

interface sheet of polarization charges. It is common in GaN HEMTs to additionally produce a

piezoelectric response with a strained AlGaN barrier that further increases the confining potential.

The piezoelectric contribution is a natural result of the barrier material being epitaxial to the GaN

lattice, thus inducing pseudomorphic strain fields.

One of the most exploited properties of the 2DEG is its reduced scattering rate which leads to

an increase in the electron mobility. The reduction of scattering for all 2DEGs is mainly due to the

inability to scatter out of the 2DEG plane. This effectively cuts the normal scattering rate by a third

through phase space blocking of final states. In some systems there is also a reduction of scattering

because there are few defects in the 2D channel compared to a doped 3D channel in a silicon based

transistor. It is this property that forms the basis of the high electron mobility transistors (HEMTs)

which are the active devices around which almost all GaN electronics are implemented.

3.3 Plasma Waves in 2DEGs

The electrons in a 2DEG can be thought of as a plasma just like the electrons in a metal. As such,

their collective motion can be described as a plasma wave. We are specifically interested in what is

sometimes called the Langmuir wave in the plasma community. This wave is a result of a restoring

electric field being created by a displaced charge from the equilibrium distribution. Because this

electric field is in the direction of the propagation, and thus no magnetic field is generated, this

is why it is known as an electrostatic wave [21]. The wave can also be considered an oscillation

between the kinetic energy of a current and the potential energy of an increased electron density.
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Thus, in other contexts these same waves can also be referred to as electrokinetic waves [22].

In an infinite 3D plasma of interacting free electrons it can be shown that the dielectric tensor

only has components on the diagonal.

εii = 1−
ω2
p

ω2
(3.1)

where ωp is defined as the plasma frequency given by

ω2
p =

ne20
εm

. (3.2)

Considering that the electric field only has a component along the propagation direction, the plasma

wave equation simplifies to the following:

ω2

c2
ε(ω)E = 0. (3.3)

Given that the field is non-zero, this implies that ε (ω) = 0, and therefore the Langmuir wave

can only occur at the plasma frequency [23]. In a 2D system, the plasma dispersion changes. In

section 4.4 it is shown that it no longer has a single defined plasma frequency but rather results in a

dispersion of the following form:

ω2 =
e20n

2D
0

2εm∗
kz. (3.4)

3.4 Simulation of 2DEG Plasma Waves

One difficulty in designing a 2DEG plasma wave interaction is the present inability to simulate

them in the context of a useful device. There are several methods that can simulate certain aspects

of the problem, but none are able to provide a complete picture. The main difficulty is that these

devices will have two physical mechanisms with different length scales that need to interact in a

single simulation domain. The description of electromagnetic waves on the slow-wave circuit has a

discretization length scale set by the Courant-Friedrichs-Lewy condition C = a∆t/∆x ≤ Cmax.
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This sets a ratio of the discretization of the physical space and the time scale that prevents a signal

from traveling past the nearest mesh point in a single time step [24]. In practice this favors a spatial

grid around a small fraction of the wavelength or on the order of a µm at 1 THz. The electron

transport on the other hand requires a small spatial grid to resolve important electron interactions.

Ideally the confining potential that forms the 2DEG is resolved by the spatial grid to properly

account for the collisional environment. The Debye length of the 2DEG should also be resolved

to properly model the screened coulomb interaction that forms the plasma wave. Both of these

semiconductor effects would require spatial grids on the order of a nm. Satisfying all of these

conditions with a single discretization for a realistic device would require a large spatial grid and

a small time step that would require excessive computational resources. Another approach to the

discretization is to use two different spatial grids and time steps, but keeping those synchronized

and numerically stable is also a challenge.

One family of tools to consider are the codes currently used to simulate HEMTs. Common

commercial semiconductor device codes like Sentaurus [25] use fluid type transport models that

don’t include advanced material properties and scattering in a way that can capture the electron-

electron interaction needed for the plasma wave. Even more advanced codes such as Fermi

Kinetic Theory being developed by the Air Force Research Laboratory, that does include realistic

material effects, doesn’t time resolve the electron-electron scattering. Instead the scattering rates

are calculated by integrating over all the electron energies [26]. Monte Carlo codes can include

these scattering effects, and there have been simulations that show plasma wave behaviors [27][28] .

However, because they require very fine spatial grids (usually with dimensions in Angstroms) these

codes have difficulty simulating full transistors that are already small compared to the electrically

large TWA-style devices with RF circuits. It is also difficult to incorporate EM waves in Monte

Carlo codes due to the reasons outlined above so they typically capture only electrostatic field

distributions through Poisson’s equation.

From a plasma physics approach there are both fluid style codes and particle-in-cell (PIC) codes.

The simulation of choice for this problem would be a PIC model. While these codes can handle
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electron-electron collisions and full-wave EM adequately, they lack a natural way to reproduce

the other effects involved in semiconductor transport such as band structure and phonon collisions.

Simulations have been ongoing with the fluid style plasma code Vsim from Tech-X, and might

provide a starting point for a device design [29][30]. However, the simulations represent something

of an idealized situation. The boundaries on the 2DEG are discrete and perfectly reflecting, which

is not realistic. The electrokinetic oscillation of the plasma waves is also presupposed as more of an

EM boundary condition than a natural response of the collective electrons. While there is evidence

to support this type of behavior, it cannot represent how it may interact with other effects in the

solid. Therefore, designs for prototype devices and experimental test plans will need to take these

differences into account. This is discussed more in section 7.2
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CHAPTER 4

COUPLED-MODE THEORY OF A SEMICONDUCTOR 2DEG INTERACTION

4.1 Coupled-Mode Theory of TWAs

The basic operation of a TWA hinges on the phase velocity of an axial electric field component

propagating on a SWS to be near the electron velocity. Thus the EM wave and a perturbed wave on

the electron beam can interact to produce gain.

Pierce first derived an encompassing theory for VED TWAs that uses a system of equations

describing the mutual interactions between the electron beam transport and an EM wave propagating

on the SWS. This coupled mode theory uses these equations to form a dispersion relation for the

modes existing in the TWA interaction region. Pierce theory, as it is often referred to, is a first-order

(small-signal) linear response theory intended to describe the amplitude and phase velocity of the

coupled modes as they propagate along the beam-wave interaction structure [31].

Sumi [12] and then Solymar [13] extended this derivation beyond VEDs to instead include the

electron transport behavior in a semiconductor in place of the beam. The devices they and Gover

describe attempt to operate in a direct solid-state analog to the VED devices. These formulations

include a simplified form of the electron transport present in solid-state materials. There are some

notable differences from the transport in the VED case. The effective electron mass is used to

approximate the average electron interaction with the solid lattice as a quantum mechanical quasi-

particle that obeys classical mechanics (also known as the semi-classical approximation). A thermal

diffusion term is added that is sometimes represented as an average thermal velocity with random

direction. Electron collisions, mostly with the lattice via phonons, are also included by an average

collision time τ . These are rather basic approximations of these effects, and Solymar includes a

discussion about their applicability.

In traditional Pierce theory, the space charge term is often used to describe higher order

perturbations to the vacuum beam dispersion and takes the form of a constant QC term calculated
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for a particular SWS [32]. Here we will replace the bulk semiconductor carriers with a dense 2DEG.

Within this 2DEG a plasma oscillation more accurately describes the AC carrier motion rather than

the traditional space charge wave of VEDs. It is the 2D analog of solid-state plasmons [33] in 3D

systems. The 2DEG plasma wave can be described as oscillations between electrostatic potential

energy among the electrons in higher density regions and the AC kinetic energy of electrons in

higher current regions, which is similar to the space charge wave. There is some evidence to suggest

that the plasma wave and the space charge wave are the same wave in opposite limits of electron

density [34], but for this discussion it is preferred to differentiate between them. The important

difference is that the space charge wave phase velocity is near that of the DC electron velocity,

whereas in the 2DEG plasma wave the phase velocity of the collective oscillation can be very

different to that of the individual electrons. Further discussion of the relationship of these waves is

certainly warranted, but beyond the present scope.

To include this plasma wave mode to the traditional Pierce theory, the space-charge contribution

is not assumed to be a static perturbation, but instead is the main mode of coupling via the

electrostatic field of an oscillating sheet charge. This relationship for the coupled wave can then be

used to predict the small-signal behavior of the amplifier. This style of calculation using the VED

space-charge term to predict gain has been shown in [35] to be equivalent to the traditional use of

Pierce theory. In general, this implies that the EM wave phase velocity does not necessarily need to

be near the DC electron velocity. However, we will show why there are still some practical limits to

this in the operation of a TWA-type device.

4.2 Electron Transport Equation

One part of the coupled system is to describe the motion of the electrons under the influence

of an external force. This starts with the first two moments of Boltzmann Equation (BE) as are

typically used in semiconductor transport simulations within linear response theory. The derivation

of moments starting from the distribution function in phase space f(r,k, t) has been published

many times and can be found in [20], so it is not reproduced in full here. The salient feature of
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working in the moment expansion is the connection of the physical quantities density and velocity

are approximated by their averaged values 〈n〉 and 〈v〉 through

n(r, t) =

∫
f(r,k, t)dk (4.1)

and

〈v〉 =

∫
vf(r,k, t)dk∫
f(r,k, t)dk

=
j

n(r)
. (4.2)

The first two moments obtained by multiplying the Boltzmann transport equation by the zeroth and

first powers of momentum and integrating over all momentum space can be written as

∂

∂t
n+∇ · j = 0 (4.3)

and
∂

∂t
j +∇ ·W − n

〈
F

m∗

〉
= −1

τ
j. (4.4)

Here, n is the number density inside of a differential volume, and j is the particle flux across the

surface defining that volume. W is defined as Wij ≡ n〈vivj〉 = n〈vi〉〈vj〉+ n〈δviδvj〉, and m∗ is

the effective mass of the electron. For this small-signal case we will assume the mass is valuated at

the bottom of the lowest conduction band.

As shown in [20] the second term on the left of Eq. (4.4) can be expanded as the following

∇ ·W = ∇ · (n〈v〉〈v〉) +∇n ·w + n∇ ·w (4.5)

Using F = −e0E (no magnetic fields), and the previous expansion bring the first moment equation

to the form

∂

∂t
j +∇ · (n〈v〉〈v〉) +∇n ·w + n∇ ·w − n

〈
−e0
m∗

E

〉
= −1

τ
j. (4.6)

Here it is assumed that ∇ ·w = 0 based on diffusion being isotropic, and as stated above we define

total particle current j = n〈v〉. Using common definitions for mobility µ = τ e0
m∗

, and the diffusion

coefficient tensor D = τw results in the form of the drift-diffusion equation within which we will

apply wave perturbations:
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∂

∂t
j +

1

τ
j +∇ ·

(
jj

n

)
+
D

τ
∇n = −ne0

m∗
〈E〉 . (4.7)

Equations (4.3) and (4.7) are split into unperturbed (n0, j0, E0), and perturbed (n1, j1,E1)

quantities with dependences described in the following equations:

∂

∂t
n0 +∇ · j0 = 0 (4.8)

∂

∂t
j0 +

1

τ
j0 +∇ ·

(
j0j0
n0

)
+
D

τ
∇n0 = −n0e0

m∗
〈E0〉 (4.9)

and
∂

∂t
n1 +∇ · j1 = 0 (4.10)

∂

∂t
j1 +

1

τ
j1 +∇ ·

(
j1j0
n0

+
j0j1
n0

− n1
j0j0
n2
0

)
+
D

τ
∇n1 = −n1e0

m∗
〈E0〉 −

n0e0
m∗
〈E1〉 . (4.11)

The unperturbed quantities are in steady-state ∂
∂t
n0 = ∂

∂t
j0 = 0, this means from Eq. (4.8) that

∇ · j1 = 0. Eq. (4.9) simplifies to the drift-diffusion equation given by

1

τ
j0 +

D

τ
∇n0 = −n0e0

m∗
〈E0〉 . (4.12)

The third term in Eq. (4.11) can be expanded as follows:

∇ ·
(
j1j0
n0

+
j0j1
n0

− n1
j0j0
n2
0

)
= ∇ · (j1v0 + v0j1 − n1v0v0)

= j1 (∇ · v0) + v0 · ∇j1 + v0 (∇ · j1) + j1 · ∇v0 − n1∇ · v0v0 − v0v0 · ∇n1

= v0 · ∇j1 + v0 (∇ · j1)− v0v0 · ∇n1.

(4.13)

This uses the expansion∇ · (jv) = (∇ · v)j + (v · ∇)j found in [36]. The perturbed equations then

can be written as

∂

∂t
n1 +∇ · j1 = 0 (4.14)

and

∂

∂t
j1 +

1

τ
j1 + v0 · ∇j1 + v0 (∇ · j1)− v0v0 · ∇n1 +

D

τ
∇n1 = −n1e0

m∗
〈E0〉 −

n0e0
m∗
〈E1〉 . (4.15)
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The desired solution of this system would have propagating waves of the form ei(ωt−k·r) and

this wave will ultimately be oriented as propagation along the z-direction. Therefore, the time

derivatives and spatial derivatives can be replaced with iω and −ik, respectively. Eq. (4.14) can

then be rearranged to a useful form that is then substituted into Eq. (4.15).

n1 =
1

ω
k · j1 (4.16)

iωj1 +
1

τ
j1 + v0 · (−ik)j1 + v0 ((−ik) · j1)− v0v0 · (−ik)n1 +

D

τ
(−ik)(

1

ω
k · j1)

= −(
1

ω
k · j1)

e0
m∗
〈E0〉 −

n0e0
m∗
〈E1〉 (4.17)

Dividing the unperturbed Eq. (4.12) by n0, and assuming there is no spatial variation in the

unperturbed density such that∇n0 = 0 leads to an expression for 〈E0〉:

〈E0〉 = −m∗
τe0

v0. (4.18)

Substituting this result into (4.17), and simplifying results in

(
ω − i1

τ

)
j1−v0 ·kj1+

(
i

1

ωτ
− 1

)
v0 (k · j1)+

1

ω
v0v0 ·kk·j1−

D

τω
kk·j1 = i

n0e0
m∗
〈E1〉 . (4.19)

The electrons under consideration will be strongly confined to a single plane by the effective

polarization sheet charge that created the potential well for the 2DEG. They can further be confined

in another direction by etching the barrier sufficiently narrow to restrict their effective motion in

all but one direction. The practical channel width will be discussed later. The transport equation

can continue to be worked with only the z component with wave propagation of the form ei(ωt−kzz)

which results in

[
ω2 − iω

τ
− 2ωvz0kz + i

1

τ
vz0kz + v2z0k

2
z −

D

τ
k2z

]
jz1 = iωn2D

0

e0
m∗
〈Ez1〉 . (4.20)
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A slight rearrangement puts it into a form very similar to common VED TWA transport equations.

Since this is a 2D system, it can it can be integrated over the perpendicular direction to reflect that.

To make the meaning clearer the relation D
τ

= KBT
m∗

is also substituted.

[
(ω − kzvz0)2 +

i

τ
(kzvz0 − ω)− KBT

m∗
k2z

]
j2Dz1 = iωn2D

0

e0
m∗
〈Ez1〉 (4.21)

The first term within the brackets is the normal coupling to the DC beam velocity. The middle

complex term is a loss term due to collisions. The last term in the brackets represents the thermal

velocity. In plasma physics this can be referred to as the pressure term.

4.3 Slow Wave Structure Equation

The SWS is approximated as a lumped element model of a transmission line as Pierce has done.

This might seem overly simplified at first, but [37] shows that a lumped element model is directly

analogous to the field descriptions of actual RF waveguides. In reality, only a few basic properties

of the EM structure need to be known, and in many cases those can be calculated directly from

independent EM simulations of the circuit.

This part of the derivation starts with the discrete telegrapher’s equations with an added im-

pressed current from the beam. It is assumed that the impressed current is equal in magnitude to the

perturbed 2DEG current. In this case, we will not assume the transmission line to be lossless and

include the loss terms found in [38]. We are also guided by [38] in how to appropriately add the

extra current such that the end result agrees with previous derivations [31][39].

The telegrapher equations can be found by starting at Kirchhoff’s voltage and current laws

applied to an infinitesimal section of a transmission line represented by lumped elements, as shown

in Figure 4.1, which are given by

V (z, t)−R∆z I (z, t)− L ∆z
∂I (z, t)

∂t
− V (z + ∆z, t) = 0

V (z, t)− V (z + ∆z, t)

∆z
= R I (z.t) + L

∂I (z, t)

∂z

−∂V (z, t)

∂z
= R I (z, t) + L

∂I (z, t)

∂t
(4.22)
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Figure 4.1: Lumped element model of a transmission line.

and

I (z, t)−G∆zV (z + ∆z, t)− C∆z
∂V (z + ∆z, t)

∂t
− I (z + ∆z, t) = 0

−∂I (z, t)

∂z
= GV (z, t) + C

∂V (z, t)

∂t
. (4.23)

Letting I and V vary as ei(ωt−kcz) gives the traditional telegrapher’s equations:

∂V (z, t)

∂z
= − (R + iωL) I (z, t) (4.24)

∂I (z, t)

∂z
= − (G+ iωC)V (z, t) . (4.25)

Subsequent differentiation and substitution gives

∂2V (z, t)

∂z2
= (−ikc)2 V (z, t) = (R + iωL) (G+ iωC)V (z, t) (4.26)

∂2I (z, t)

∂z2
= (−ikc)2 I(z, t) = (R + iωL) (G+ iωC) I (z, t) (4.27)

whereby wave propagation is characterized by

(−ikc)2 = (R + iωL) (G+ iωC)

kc = −i
√

(R + iωL) (G+ iωC). (4.28)
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The choice of sign for the square root is taken such that if L = G = C = 0, kc = −i
√
R, and

e−ikz = e−i(−i
√
R)z = e−

√
Rz. So in the limit of the circuit being purely resistive, the signal decays

as it should. Substituting the assumed solution form into Eq. (4.24) results in

−ikcV0 = − (R + iωL) Io . (4.29)

The line impedance can be than be defined as

Zc =
V0
I0

=
(R + iωL)

ikc
=

(R + iωL)√
(R + iωL) (G+ iωC)

=

√
(R + iωL)√
(G+ iωC)

. (4.30)

These characteristic properties of the transmission line (kc and Zc)s generally depend on frequency.

In later chapters, EM simulations will be used to calculate the properties for particular SWSs of

interest and used in this coupled mode calculation.

To solve for the coupled mode, the beam current I1 is added in Kirchhoff’s current law for a

node on the SWS. This approximation is that the current of the beam is assumed to be so close to

the conductor in can be thought of as part of it (i.e. I + I1 are inducing the voltage on the SWS).

This is similar to multi-strand wire. This is also congruent to assuming that the beam induces a

current in the wire as Pierce does by adding the induced current to the opposite side of the equation,

and saying the induced current is the negative of the beam current. Within this framework, we have

the following:

I (z, t)+I1 (z, t)−G∆zV (z + ∆z, t)−C∆z
∂V (z + ∆z, t)

∂t
−I (z + ∆z, t)−I1 (z + ∆z, t) = 0

and

−∂I (z, t)

∂z
− ∂I1 (z, t)

∂z
= GV (z, t) + C

∂V (z, t)

∂t
. (4.31)

Using this new current equation with Eq. (4.24), and letting quantities vary as ei(ωt−kzz) results

in the following equations for the perturbed quantities. It is useful to note that this uses kz since this

is now the coupled mode in contrast the pure circuit mode above that uses kc.

−ikZV1 = − (R + iωL) I (4.32)
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and

−ikzI = − (G+ iωC)V1 + ikzI1. (4.33)

Substituting the former into the latter for I and rearranging leads to the result that

(
k2z + (R + iωL) (G+ iωC)

)
V1 = i (R + iωL) kzI1 . (4.34)

From the previous definitions for our transmission line we have

(R + iωL) (G+ iωC) = −k2c (4.35)

and

kcZc = −i
√

(R + iωL) (G+ iωC)

[√
(R + iωL)√
(G+ iωC)

]
= −i (R + iωL) (4.36)

which can be substituted into Eq. (4.34) to give

(
k2z − k2c

)
V1 = −kcZckzI1

V1 = − kcZckz
(k2z − k2c )

I1. (4.37)

The relation to the electric field component can then be found by differentiation as

Ez1,EM = −∂V1
∂z

=
kcZckz

(k2z − k2c )
(−ikz) I1 = −i kcZck

2
z

(k2z − k2c )
I1 . (4.38)

To put the current into the terms of the transport equation, define I1 = −e0wbj2Dz1 . Since it uses the

2D number density, wb is the width of the 2DEG beam with the result that

Ez1,EM = i
kcZck

2
z

(k2z − k2c )
e0wbj

2D
z1 . (4.39)

As mentioned, in this formulation transmission line loss is included which makes kc a complex

function of frequency. A more suitable form of this would be the commonly used

kc =
ω

vc(ω)
− iαc(ω) =

2π

λc(f)
− iαc(ω) (4.40)

where ω = 2πf is the angular frequency of interest, vc = λcf is the phase velocity of a wave on the

transmission line, and αc is the loss coefficient of the transmission line. Using this loss coefficient
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means that the field will decrease in magnitude as e−αcz. To calculate αc from EM simulations

of a SWS it is useful to relate it to the EM power loss. From the Poynting vector, the square of

the electric field integrated over a plane transverse to the waveguide is proportional to the power

flowing through that plane. If the waveguide does not change in cross-section between two points

along it, the integral of the fields will also be proportional at those two points.∫
E2(z2) · ds∫
E2(z1) · ds

=
P (z2)

P (z1)
(4.41)

E2
0e
−2αcz2

E2
0e
−2αcz1

=
P (z2)

P (z1)
(4.42)

Setting z1 = 0, z2 = l, P (z1) = Pin, P (z2) = Pin − Ploss

e−2αcl =
Pin − Ploss

Pin
(4.43)

αc =
−1

2l
ln

(
1− Ploss

Pin

)
(4.44)

Ploss includes losses in the dielectrics, and finite conductivity losses in the metals used. Pin is the RF

power that initially starts propagating on the SWS, and takes into account any mismatch reflections

from launching the slow EM wave. From these definitions, vc(ω) and αc(ω) for a particular SWS

can be calculated for EM simulations as shown in section 5.3.

4.4 2DEG Plasma Wave Equation

This section derives a mathematical description of the electrostatic field generated by the perturbed

2DEG, which is the electron beam in the proposed interaction structure. This will take the place of

the space-charge term in the traditional VED derivation. Let us consider the perturbed 2DEG sheet

charge density in the y − z plane: σ1 (y, z) = σ′1 e
−ikzz. This assumes the perturbation is along the

z-direction, or beam drift direction, and that the magnitude of that perturbation σ′1 is constant and

independent of the transverse y-direction. From Poisson’s equation, the resulting electric field from

this charge distribution is

E1 (r′) =
1

4πε

∫
ρ

r2
dV r̂ (4.45)
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where r̂ = r
r
. Evaluating the electric field at a position r′ = (x′, 0, 0) above 2DEG at time t=0

produces

E1 (x′, 0, 0) =

σ′1
4πε

∫∫∫ ∞
−∞

δ(x)
e−i(kzz+θ)

((x′ − x)2 + y2 + z2)
3
2

((x′ − x)x̂− yŷ − zẑ) dxdydz (4.46)

where θ accounts for a phase difference along the z-direction between the observation point, and

the density modulation.

E1 (x′, 0, 0) =
σ′1e
−iθ

4πε

∫ ∞
−∞

e−ikzz

{ ∫ ∞
−∞

(x′x̂− yŷ − zẑ)

(x′2 + y2 + z2)
3
2

dy

}
dz (4.47)

E1 (x′, 0, 0) =
σ′1e
−iθ

4πε

∫ ∞
−∞

e−ikzz
{

2x′

x′2 + z2
x̂− 2z

x′2 + z2
ẑ

}
dz (4.48)

E1 (x′, 0, 0) =
σ′1e
−iθ

2πε

∫ ∞
−∞

x′e−ikzz

x′2 + z2
x̂− ze−ikzz

x′2 + z2
ẑ dz (4.49)

E1 (x′, 0, 0) =
σ′1e
−iθ

2πε

[
πe−|kz ||x

′| x
′

|x′|
x̂+ iπe−|kz ||x

′| kz
|kz|

ẑ

]
(4.50)

E1 (x′, 0, 0) =
σ′1e
−iθ

2ε
e−|kz ||x

′| [sign (x′) x̂+ i sign (kz) ẑ] (4.51)

This analytic solution of the integral does assume kz to be real, but for this portion of the derivation

kz is explicitly real and the imaginary part is added in the full dispersion when collisions are added.

We are only interested at this time in the z component, and we can take the limit as x′ → 0. The

phase constant θ also needs to be equivalent to the original variation in z of the density, so

σ′1e
−iθ = σ′1 e

−ikzz = σ1 = −e0kz
ω

j2Dz1 (4.52)

Ez1,2DEG = −ie0 sign (kz) kz
2εω

j2Dz1 (4.53)

If this field term is then substituted into Eq. (4.21), the dispersion of the 2D plasma wave itself

can be found. To do this, remove the drift velocity component vz0 = 0, take it in the collisionless

regime such that 1/τ = 0, and remove thermal effects by setting T = 0.

[
(ω − kvz0)2 +

i

τ
(kvz0 − ω)− KBT

m∗
k2
]
j2Dz1 = iωn2D

0

e0
m∗

〈
−ie0 sign (k) k

2εω
j2Dz1

〉
(4.54)
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For this specific case, the variable k is used instead of kz because kz specifically refers to the

coupled mode solution. It should also be noted that k is strictly real for this derivation of the plasma

wave dispersion. The imaginary part of k would be included if 1/τ > 0. In a VED TWA the

corresponding space-charge term would result in a plasma frequency term ωp that is a constant. In

this case, the corresponding term is a function of k.

ω2
p,2D =

e20n
2D
0

2εm∗
k sign(k) (4.55)

This result matches the dispersion relation derived in [16]. Since the coupled-mode dispersion

being derived uses k as a solution variable, ωp,2D cannot be used in the coupled-mode dispersion.

Instead, it is useful to reformulate the plasma wave dispersion into kp as a function of ω. In this

form ω is an input to the plasma dispersion just as it will be for the coupled-mode dispersion.

This can then be simplified by using vp,2D ≡ ω
kp

, since again kp is strictly real. The sign(k) term

also explicitly refers to the real part of k which will become important when in the coupled-mode

dispersion kz is complex.

ω2

kp
= ωvp,2D =

e20n
2D
0

2εm∗
sign(Re(k)) (4.56)

4.5 Assembling the Coupled-Mode Dispersion Equation

The three key pieces of the system that are needed have been derived, and can now be assembled to

give the coupled-mode solutions of the beam-wave interaction structure. They are repeated below to

give a clear starting point for this derivation of a mode propagating with kz in terms of the perturbed

quantities indicated by the subscripts z1, the static beam velocity vz0, and the 2DEG carrier density

n2D
0 :

Transport Equation (4.21) confined to a 2D sheet:[
(ω − kzvz0)2 +

i

τ
(kzvz0 − ω)− KBT

m∗
k2z

]
j2Dz1 = iωn2D

0

e0
m∗
〈Ez1〉

Transmission Line (Circuit) Equation (4.39):

Ez1,EM = i
kcZck

2
z

(k2z − k2c )
e0wbj

2D
z1
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2DEG Plasma Wave Equation (4.53):

Ez1,2DEG = −ie0 sign (kz) kz
2εω

j2Dz1

The electric field in the transport equation will be comprised of the superposition of the 2DEG

plasma wave charge-induced field, and the EM circuit field. After substitution,[
(ω − kzvz0)2 +

i

τ
(kzvz0 − ω)− KBT

m∗
k2z

]
j2Dz1 = iωn2D

0

e0
m∗
〈Ez1,EM + Ez1,2DEG〉 (4.57)

which can be simplified in the following steps by[
(ω − kzvz0)2 +

i

τ
(kzvz0 − ω)− KBT

m∗
k2z

]
j2Dz1

= iωn2D
0

e0
m∗

[
i
kcZck

2
z

(k2z − k2c )
e0wbj

2D
z1 − i

e0 sign(Re(kz)) kz
2εω

j2Dz1

]

[
(ω − kzvz0)2 +

i

τ
(kzvz0 − ω)− KBT

m∗
k2z

]
= −ωn2D

0

e0
m∗

kcZck
2
z

(k2z − k2c )
e0wb + n2D

0

e0
m∗

e0 sign(Re(kz)) kz
2ε

[
(ω − kzvz0)2 +

i

τ
(kzvz0 − ω)− KBT

m∗
k2z −

e20n
2D
0

2εm∗
sign(Re(kz)))kz

] (
k2z − k2c

)
+ n2D

0

e0
m∗

Zce0wbkck
2
zω = 0 (4.58)

This is further simplified by introducing the coupling C3 and phase velocity vp,2D defined in (4.56)

to provide the final coupled mode dispersion:

C3 =
1

2
n2D
0

e0
m∗

Zce0wb (4.59)[
(ω − kzvz0)2 +

i

τ
(kzvz0 − ω)− KBT

m∗
k2z − ωvp,2Dkz

] (
k2z − k2c

)
+ 2C3kck

2
zω = 0. (4.60)

The roots of Eq. (4.60) are the coupled-mode dispersion relations of the beam-wave interaction

system within Pierce theory.
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CHAPTER 5

CREATING THE INTERACTION STRUCTURE

5.1 Overview of the Key Elements Required

The dispersion derived in the previous chapter intentionally uses abstract circuit equations and

material properties to represent the SWS and the interaction region behaviors. This makes it easier to

explore multiple configurations, as opposed to a full field solution that would need to be re-derived

for each SWS type. The goal of this chapter is to provide more physical details of the intended

interaction structure that can be included in the dispersion calculation. This not only increases

the general accuracy of the results, but also provides context for whether or not a particular set

of parameters is realistic. While these concepts are developed with a TWA in mind, they are also

applicable to other styles of coupled-mode beam-wave style amplifiers.

The purpose of the interaction region in general is to put the EM wave to be amplified into close

proximity to the beam such that they can strongly interact with each other. There are a variety of

ways to create this interaction region, so they need to be quantified in some manner.

One of the most important goals of the interaction structure is guiding the slow EM wave to

phase match with the beam charge perturbation. These two waves need to travel at approximately

the same speed in order for there to be a meaningful transfer of energy, i.e. power gain. One of

the main struggles of the solid-state TWA is indeed getting the EM wave slow enough for this

interaction to be useful and realistic.

The strength of the interaction can be quantified using what Pierce calls the interaction

impedance, defined in Eq. (5.3), that replaces the previous generic circuit definition of Zc in

the SWS field equation. Achieving an adequate coupling is certainly another main priority in

amplifier design. The strength of the coupling in the final analysis is directly controlling the gain of

the device, but it is also competing with losses from both the electron transport (collisions, thermal

velocity, etc.) and the EM propagation (dielectric, metal, and radiation losses). In this chapter, the
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EM loss will also be discussed, but the inclusion of transport loss and the determination of whether

a parameter set will produce gain will be covered in the following chapter.

There is also the matter of being able to measure and use the device once it is fabricated. This

primarily entails including well-matched input and output ports at each end of the SWS that can

be connected in some fashion to test equipment. As will be shown, some SWS types are more

amenable to this than others.

5.2 Semiconductor Material Properties and Choices

There are two different groups of materials that need to be considered in building the interaction

structure. One type or group of materials will serve as the conductor and dielectrics of the SWS.

The main interest in these is low loss and a somewhat suitable dielectric constant. These will be

discussed in the context of the SWS in a following sections. Considered here are the other group of

materials, semiconductor heterostructures, that are responsible for forming the 2DEG beam. The

general concept of how 2DEGs are formed was discussed in Chapter 3, but now a suitable material

system can be chosen with properties needed for a beam-wave amplifier. At present the focus will

be on a TWA-style device with the EM wave synchronized to the plasma wave, and changes to these

requirements will be discussed as the analysis progresses.

This research is focused on designing a power amplifier in the THz band and as such GaN

has been chosen to provide the 2DEG. This is not to say other materials cannot be used to make

amplifiers of this style, but the reasons outlined below indicate GaN being the best material for this

application.

One crucial requirement is that the plasma wave phase velocity needs to be an appreciable

fraction of the speed of light so that a matching SWS can be realistically constructed. From Eq.

(4.56) the phase velocity of a 2DEG plasma wave is

vp,2D =
e20n

2D
0

2εm∗ω
sign(Re(k)) (5.1)

As shown in [16] and [40], the phase velocity of a capacitive 2DEG due to a metal layer (such as a
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gate) being nearby, is

vp,2D,C =
e20n

2D
0

2εm∗
dcap (5.2)

where dcap is the distance of the metal from the 2DEG. In order for a gate to maintain electrostatic

control of a 2DEG, dcap would have to be small, thus resulting in a slower phase velocity. For this

reason, an ungated (normally on) 2DEG is chosen. This concept also happens to be the fundamental

feature of depletion-mode GaN HEMTs which form the basis of nearly all modern GaN transistor

amplifiers. Another key reason to use an ungated 2DEG is to remove the metal gate electrodes from

the exact region where the circuit must interact with the beam.

Another key influence on the phase velocity is the 2DEG density. A GaN 2DEG number density

of free electrons can be in excess of 2 × 1013cm−2, which equates to a phase velocity of around

1/10th the speed of light (c) in the THz band. Ungated InP and GaAs systems cannot support such

large densities, and the resulting slower phase velocity would make the SWS design more difficult.

While c/10 is slow compared to the phase velocity in VEDs, it is orders of magnitude faster than

the average electron velocity in any semiconductor. As stated above, this is why the 2DEG plasma

wave is the dominant charge effect desired in the 2DEG TWA concept.

Now that a suitable plasma wave can be formed, it needs to propagate far enough along the

interaction structure to adequately couple with the SWS. For this to happen, the frequency of

oscillation needs to be larger than the electron collision frequency. Thus it requires a material with

a high electron mobility due to modest scattering rates. While InP and GaAs have a larger mobility

than GaN (due in large part to their comparatively small electron effective masses), their lower

densities would only work at lower frequencies where traditional VEDs are likely to perform better.

It is this combination of high density and reasonably high mobility that makes the GaN 2DEG

attractive for this device.

The ideal material system will also have an appropriate velocity saturation curve to achieve

maximum gain and output power. As part of the previous remark on the collision frequency, the

device must operate in the linear region of the electron velocity versus applied electric field curve. In

most materials, this curve saturates when phonon collisions begin to be dominated by spontaneous
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Figure 5.1: Velocity versus field curves for different semiconductors [3]. ©2001 IEEE

phonon emission scattering (energy transfer from the electrons to the lattice), and the associated

collision frequency drastically rises. While staying in the linear region, it is desirable to operate the

proposed device at a higher DC bias to increase the power available to produce gain. Fig 5.1 shows

that GaN has a high saturation velocity and the linear operation region in excess of 200 kV/cm.

At these higher DC bias conditions, the 2DEG system will need to be capable of supporting

the high current density that will be created. Typically the confinement of a 2DEG in the third

dimension is about 2-4 nm, but with a large current they can spread out to behave more three

dimensional and the mobility will drop with the increased scattering. GaN HEMTs have already

shown support for current densities of ∼ 1A/mm, and we believe we can achieve meaningful gain

within that limit.

For this work commercially fabricated GaN on SiC wafers were procured from IQE. Leveraging

their expertise, a heterostructure was design to produce a nominal 2DEG density of 2× 1013 cm−2.

The cross-section of the wafer stack is shown in Fig. 5.2. Table 5.1 shows the electron density
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Figure 5.2: A diagram of the wafer stack procured for device fabrication.

Table 5.1: Measured Electron Density [×1013 cm−2]

Wafer ID Avg Max Min Std Dev
DH0143-06-EV 2.032 2.133 1.973 0.05180
DU0156-04-EV 2.019 2.067 1.973 0.03456
GP0247-02-EV 2.078 2.131 2.013 0.03784
HK0157-06-EV 2.055 2.111 1.983 0.04048
HK0157-16-EV 1.990 2.065 1.931 0.03948

for these wafers measured using a contactless Hall-effect Lehighton system confirming a highly

uniform 2DEG.

5.3 Interaction Structure Details

In order to add more realistic detail to the dispersion calculation in the previous chapter, a few

EM quantities can be calculated for a specific SWS configuration. In a way, this is similar to the

extraction process that is done in RF circuit design. In both cases, scalar quantities as a function of

frequency are generated from 3D geometry that are then used in lower dimensional calculations. The

primary values to quantify for the SWS are the wavelength of the resulting axial field, the interaction

impedance, and the EM power loss. More details of particular structures will be compared in a

following section, here the quantities to compare are established. For all of the simulations in this

section, the EM simulator HFSS which is a part of Ansys Electronics Desktop is used.
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Figure 5.3: The axial field is plotted for a range of frequencies, and the wavelength is tabulated.

Wavelength of Slow EM Wave

The primary purpose of the SWS is to create an axial field that has a phase velocity slower than

would normally exist on a typical waveguide. While HFSS could simulate a time domain velocity,

it is easier (and perhaps cleaner) to determine the wavelength in a steady-state frequency domain

simulation. The axial electric field is plotted for a range of frequencies in Fig. 5.3. HFSS can then

internally calculate the period in space, i.e. the wavelength λc. This can then be included in kc as

shown in Eq. 4.40.

Interaction Impedance

In Section 4.3, the term Zc is originally given as the impedance of the transmission line used in the

SWS. In the perturbed case with the beam, this term can be adapted to quantify the strength of the

interaction between the beam and the SWS. Pierce called it the interaction impedance [31]. It is

defined as

Zc =
v2c |Ez1|2

8π2f 2PRF
, (5.3)
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Figure 5.4: The quantities used to calculate the interaction impedance as a function of frequency.

where |Ez1| is the magnitude of the axial electric field that interacts with the 2DEG, and vc is the

phase velocity of the axial field propagating down the SWS. PRF is the RF power used to excite the

SWS. The interaction impedance is then a measure of how much axial field the electron beam will

experience per wavelength normalized to the power on the SWS. Each of these quantities used is

calculated in HFSS as a function of frequency as shown in Fig. 5.4.

In most cases for a modal type simulation within HFSS, the input power is given as a way to

normalize the fields. This input power could be used directly in Zc, but it might not be very accurate.

Using the input power ignores and possible mismatches in the way the SWS is fed. For this reason,

the simulations are done using the best match possible. For instance, with the V-meander described

in the next section the relative width of the microstrip lines that feed and form the SWS determines

their impedance match as shown in Fig. 5.5. The power is also calculated using the Poynting vector

on the transverse mid-plane of the SWS. As shown in Fig. 5.4, there is a slight variation in power,

and this is used to more accurately normalize the field quantities also used in Zc.

Extracting an accurate and meaningful axial field strength is the most difficult part of calculating

Zc. If care is not taken the quality of the mesh can play a role, but the mesh refinement process in

HFSS generally does a sufficiently good job of this. The difficulty is that of impedance mismatches

and wave reflections. Measuring the power as was described previously only represents an average
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Figure 5.5: Parametric sweep of the line width for a V-meander to maximize the transmitted power
and provide the best match.

effect of the mismatch. The fields themselves vary in space and phase within the SWS, so a way of

averaging them is needed. More precisely, the average of the maximum field strength is desired.

This quantity within HFSS is referred to as the complex magnitude of the field that is shown in Fig.

5.6. The complex magnitude of the quantity is simply the maximum field value at a position in

space over all phases. Even though the mismatch was minimized, there is still some variation of the

complex magnitude of the axial field due to reflected waves beating with the forward wave. The

complex magnitude for each frequency is averaged over the length of the SWS to help smooth out

these mismatch reflections.

EM Power Loss

In section 4.4 a complex propagation constant was used for the SWS to allow the inclusion of EM

losses within the structure. To do this the imaginary loss coefficient αc needs to be calculated for

realistic geometries and material properties. HFSS does support finite conductivity metals and

dielectric loss tangents within the EM simulation. The values used within these simulations are
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Figure 5.6: For a single frequency, the axial electric field for various phases is plotted with dashed
lines. The complex magnitude of the axial field is shown and is the maximum field value over all
phases.

Figure 5.7: The maximum, average, and minimum values of the complex magnitude of the axial
field is computed over the length of the interaction region for each frequency.
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shown in Table 5.2. The direct method for finding αc would be to fit a curve to the field decay,

as this is what the term explicitly represents. However, it is more convenient to calculate it from

the power loss of the SWS through Eq. (4.43). The Ploss should be calculated by an integral over

the surface and volume loss densities, and Pin is the integral of the Poynting vector normal to a

plane near the start of the SWS. These calculated values should be used instead of the s-parameters

provided by HFSS because the loss can be calculated specifically for the SWS section and not have

it include the feed structures or any mismatch losses. The loss within the feed lines is still important

in the measurement context, but it should not be included in the dispersion calculation where it is in

direct competition with gain production.

The exponential fit to the field decay shown in Fig. 5.8 gives a value for αc of 46 cm−1. The

transmitted power loss for the same 180 µm SWS was 0.78 W, resulting in αc = 42 cm−1. While

the error in those numbers does include some simple numerical noise, there is actually a subtle

difference between the two calculations. Measuring the dissipated power as a surface loss integral

is at best a representation of the meaning of αc that can be extracted from this type of simulation.

The field decay, as well as calculating the Poynting power decay, will be close to the exponential

loss but are a summation of all waves traveling on the SWS and not just the main forward wave of

interest. Certainly any reflected wave will also go into the surface loss calculation, but the effect

there should be much smaller.

While it is known that metal loss becomes significant in the THz band, there is not yet enough

information to conclude whether it will overwhelm any gain present in the interaction. In the

following section, more detailed simulations regarding loss are given for particular SWS geometries.

In the following chapter, that will also be used to compute the overall gain of a structure.

HFSS Model Details

The aforementioned quantities have been calculated in two separate HFSS models for the same

geometry. The axial wavelength, the axial field strength, and the RF power are calculated first in

one lossless model, and then the αc coefficient is calculated in a second model with material losses.
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Figure 5.8: Axial field as a function of distance on a SWS with a conductivity of 5× 108 S/m
showing the field decay.

Table 5.2: Dielectric Material Properties

Material Relative Dielectric Loss Tangent Ref.
Si 11.7 1.5e-5 [41]

GaN 9.6 5.2e-4 [42]
SiC 9.6 1.5e-3 [41]

SiO2 3.8 4.87e-3 [41]
BCB 2.45 1e-2 [43]

Table 5.3: High Frequency Metal Conductivity

Metal Meas Freq [THz] Conductivity [S/m] Ref.
Gold 1.0 1.5e7-2e7 [44] [45]

Copper 0.85 2e7-5e7 [46]
Brass 0.6 1.5e6-6e6 [47]

Aluminum 1.0 3.8e7 [48]
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Calculating the wavelength requires several periods of the axial field be present on the SWS at

one time, and so it requires more cells of the SWS geometry. This also gives a larger region to

average the field strength to minimize the impact of numerical discretization noise and mismatch

beat patterns. When calculating the loss coefficient, a long SWS can dissipate almost all of the

available power which will introduce noise into the data. Thus the second lossy model typically

has a fewer number of SWS cells. Ideally, a length that dissipates somewhere between 30-70% of

the input power would be best. It is also known that the metal loss accounts for at least 95% of the

power dissipation in a given SWS, so often dielectric losses are not included.

5.4 Types of Slow Wave Structures

Now that the important quantities for a SWS have been defined, several different geometries can be

explored and compared. All of the geometries presented here are possible to fabricate using current

semiconductor fabrication techniques without stressing them unrealistically. For the most part these

techniques favor stacked planer components with metal vias connecting them between layers. More

details about the actually techniques and the physical limits they impose on the SWS geometry will

be discussed in the following section on fabrication challenges.

Meander Microstrip

The primary SWS geometry that has been used within this study has been the microstrip meander line.

This was previously published as a possible SWS for a VED device [49]. The microstrip meander is

almost an ideal SWS for a solid-state beam-wave style amplifier due to it being completely planar

and because the microstrip is established in RFIC design. Simply put, it is a microstrip waveguide

that has connected lines going back and forth within the plane and transverse to the direction of

propagation. If the lines are phased properly the fringe fields of successive lines couple to create a

wave that travels much slower than modes of the normal microstrip. The meander line could be

considered a planar analogy to the helix SWS used in VEDs. Figs. 5.9 and 5.10 show the basic

geometry of the design. Because the microstrip lines were originally intended to be applied on top of
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Figure 5.9: Top view of the microstrip meander highlighting some of the key geometry parameters.

Figure 5.10: An end-view and isolated view of a microstrip meander showing the materials used in
the simulation.

a GaN wafer, the microstrips are shown inverted with the ground plane on top of the material stack.

In the section on fabrication recent techniques will be discussed that could alter this arrangement,

but it generally does not change the fundamental analysis.

An example SWS dispersion is shown in Fig. 5.12 along with the dispersion of a 2DEG

calculated using Eq. (4.56). The SWS dispersion was calculated using two simulation types within

HFSS. The driven modal solution is as described previously using a single tone frequency domain

solution with waveports. The eigenmode solution for the SWS uses a single cell of the meander,
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Figure 5.11: A single cell of a meander with periodic master/slave boundaries used for an eigen
solution to find higher order modes in the SWS dispersion.

as shown in Fig. 5.11. For that solution, periodic master/slave boundaries set the wavelength of

the mode through a prescribed phase shift, and the resulting mode frequencies are calculated. In

the dispersion plot, the fundamental interaction range is marked, as well as two other possible

interactions with the backwards wave, and a higher order mode. While these other interactions are

not currently used in the derived theory, it is important to consider them for fabricated devices. The

higher order modes of the forward-going wave can contribute to perturbations from the basic theory,

and are sometimes included in an equivalent QC term for the SWS [32]. The point at which the beam

dispersion intersects the backwards wave is generally more concerning. This interaction generally

produces a resonant feedback oscillation that is sometimes used intentionally as a backwards wave

oscillator (BWO).

In practice the microstrip line feeding the meander section is designed to be matched to 50 Ω.
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Figure 5.12: Simulated dispersion of a meander SWS with both driven and eigenmode solutions. A
theoretical 2DEG dispersion is overlaid to show the region of operation.

The line width of the meander can then be adjusted to minimize an impedance mismatch as shown

in Fig. 5.5. It is important to do this with no material losses in the EM model, as those will obscure

any mismatches. Fig. 5.13 and Fig. 5.14 show that a reasonable match over the intended band of

operation is feasible regardless of the length of the meander.

The largest drawback to the meander SWS is the metallic loss in the THz band. Fig. 5.15 shows

the surface loss density, which is proportional to the current density, is greatest along the inner

edges of the V-meander. The geometry of the meander can be altered in an attempt to reduce the

current density in two main ways. The effect of using a thicker metal is shown in Fig. 5.16. It

does reduce the loss by about 4% for doubling in thickness, however, this is not significant for the

thicknesses that would be possible to fabricate. Another modification was to round out the inner

corner of the V-meander with a fillet. This initially showed even larger reduction in loss with no

fabrication difficulty as seen in Fig. 5.17. However, the fillet effectively shortens the path length of

the meander, and thus reduces the axial field wavelength as shown in Fig. 5.18. When the width

of the meander was made larger to compensate, the net loss returned to roughly the original value.

This seems to imply that the sharp corner was not the main contribution to the metal loss, and that
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Figure 5.13: S11 of a microstrip meander with varying number of cells showing a reasonable match
to minimize any resonant effects within the SWS.

Figure 5.14: S21 of meander lines of different number of cells without material losses.
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Figure 5.15: The surface loss density for a V-meander microstrip. Much of the field loss is at the
edges of the metal lines that couple to the adjacent lines.

Figure 5.16: Metal surface loss for various metal thicknesses. Thick lines are unsurprisingly less
lossy, but are harder to fabricate reliably.

the edges themselves being in close proximity might play a role. Based on this hypothesis, another

variation called the U-meander was simulated shown in Fig. 5.19. This design has the central lines

of the meander parallel to each other to separate the lines as much as possible while still maintaining

the required pitch. This will spread out the loss on the metal surfaces. This improvement can be

seen in Fig. 5.24. The U-meander also provides a more uniform field over the width of the 2DEG

channel and less transverse fields. Both of these factors are desirable for optimizing performance of

devices.
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Figure 5.17: A fillet added to the inside edge of the meander to reduce current density at that
location. The plot shows loss as a function of fillet radius.

Figure 5.18: The fillet radius also effects the path length along the SWS, and therefore effects the
axial field wavelength.
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Figure 5.19: Another variation of the microstrip meander, called the U-meander, is aimed at reducing
current density and thus the metal losses in the meander.

Rectangular Helix

The helix is one of the most common SWSs used in TWAs. A true cylindrical symmetric helix

would be very challenging to fabricate on the desired scale, but an adaptation of it could be possible.

Shown in Fig. 5.20 and Fig. 5.21 is a model of such a rectangular helix using planar metal traces

and plated through vias. Since the metal traces are spread out slightly more, the metal losses shown

in Fig. 5.23 are less than those of the meander SWS. The axial electric field pattern seen in Fig.

5.22 show how the field is distributed along the helix. The higher dielectric constant of Si was

useful to manage the size of the meander line SWS, but with the rectangular helix, the transverse

dimensions are a bit smaller than might be useful. Ideally the SWS metals are far enough away

from the 2DEG such that they do not affect the dispersion of the plasma wave. In the example case,

the Si rectangular helix has a height of 3 µm and a width of 9 µm to achieve the desired 24 µm axial

field wavelength at 1 THz. This puts the metal traces only 1.5 µm away from the 2DEG. Another

helix was modeled using quartz crystal as the dielectric material that allows more space between

the metal and the 2DEG.

It should also quickly noted that the oscillating nature of the field strength, and thus Zc, seen in

Fig. 5.24 for both helix variations are due to mismatch reflections on the ports. A suitable coupling

structure to the rectangular helix has yet to be designed, and these simulations are done with a

rectangular wave port directly feeding the helix mode.
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Figure 5.20: End view down the axis of a rectangular helix in Si with a central layer of GaN with
the 2DEG.

Figure 5.21: Isometric view of a rectangular helix in Si.

Figure 5.22: Axial electric field pattern at 1THz for the example rectangular helix.
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Figure 5.23: Surface loss density on the metal lines and vias in the rectangular helix.

Dielectric Waveguide Grating

Comparison of SWS Types

Now that a few different types of SWSs have been presented, a comparison of their performance can

be made. Fig. 5.24 shows four of the calculated quantities as a function of frequency for 5 different

configurations. An effort was made to make the comparison between types as fair as possible.

The first quantity of comparison is the normalized phase velocity. For each case, a nominal

plasma wave velocity was calculated using Eq. (4.56). The relative permittivity used was an

average of GaN and that of the substrate (7 for quartz and 10.5 for Si). Each SWS was tuned to

approximately match the plasma velocity at 1 THz to help minimize the roll off of Zc, and thus

gain, at higher frequencies. It is desirable to have as flat of a dispersion as possible to increase the

bandwidth over which the resulting device has gain. In that regard the U-meander appears to be the

best.

There are a few observations to make about the axial field strength. The value indicated in

the legend of Fig. 5.24 is the between the SWS metal traces and the 2DEG layer. As would be

expected, the higher field values are closer to the metal, and so putting the 2DEG closer to them

would increase their effect. The V-meander with a 1.5 µm spacing does have a very similar field

strength as the Si helix with the same spacing. There are downsides to having the metal so close
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to the 2DEG. One is that the field is much more likely to have higher harmonic content that could

excite other plasma modes or simply reduce its efficiency. Another issue is that the presence of

metal around the beam is well-known to perturb the solution in VED devices, and is expected to do

the same here.

Another observation of the field strength can be made by comparing the 5 µm V-meander and

U-meander. The geometry and design of these two meanders is very similar except for how their

metal traces are arranged. Originally, the V-meander was thought to be superior since it seems to

concentrate the higher electric field towards the center of the meander where the 2DEG would be

placed. Even though the U-meander might not do that, it still consistently shows a higher field

at the 2DEG location. Another advantage to the U-meander in this comparison is that the field

will be much more consistent over the width of the 2DEG giving a much more well-behaved and

predictable behavior.

The interaction impedance is a combination of the field strength and the phase velocity by Eq.

(5.3). Since the quartz-based helix has a longer wavelength its interaction impedance is close to that

of the similar Si helix, even though it has a lower field strength.

The loss coefficient αc shows a large variation among the different geometries. It is expected

that the two V-meander geometries would have the same loss since the waveguide itself does not

change. The U-meander does indeed show a reduction of loss with the metal traces being uniformly

spaced to reduce current crowding at the edges. The helix configurations additionally furthers this

trend since in that geometry the nearest neighbor to a trace is a full pitch away compared to a half

pitch in the meanders, not including the trace width.

Choosing the best SWS to use from this information is not entirely obvious or trivial to quantify.

Ideally, a geometry with a high Zc and a low αc is desirable. By those merits alone, the two helix

configurations would be the likely design choice. However, those geometries are harder to couple

the RF signal into, and a design solution for that input coupling structure has not yet been attempted.

As such, any plan to fabricate these devices would likely involve both a helix and the U-meander.
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Figure 5.24: A comparison of the SWS properties. In this case, only the metal losses were included
in the calculation of αc as they are responsible for almost all the power dissipation. The field level
is normalized to 1 watt of input power.

5.5 Fabricating the Interaction Region

While a detailed analysis of the device fabrication is beyond the present scope, a high level discussion

is included as it will ultimately dictate what device can be realistically fabricated. Traditionally,

semiconductor devices are mostly composed of different layers of materials being added to or

subtracted from a stack (of materials) one layer at a time. Depending on the desired properties of the

layers, they are most often either grown epitaxially or deposited in bulk on top of the stack. Material

is removed by either chemically etching or mechanically abrading the material. These processes

tend to be very good at adding or removing materials in very slow controlled ways, or in faster

more coarse ways [50]. In several of the designs of the previous section, there are crystal silicon or

quartz layers on the order of 5-10 µm that would be difficult to achieve with the common processes.

It would take a long time to grow such a thick crystalline layer using epitaxy, faster deposition

techniques would lead to an amorphous solids with higher RF losses, and the thickness tolerance

for mechanically polishing a thicker layer is a sizable fraction of the desired value. The best way

these layers can be created is to use a membrane transfer process developed by a collaborator as
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Figure 5.25: An example process for transferring Si layers to form the dielectric stack.[4]

seen in [51].

An example of this process for the inverted meander line SWS is shown in Fig. 5.25. The Si

layers used for the waveguide dielectrics are taken from commercially produced silicon on insulator

(SOI) wafers and are then applied to the device stack with metal traces in between. This process

allows for a much more flexible stack fabrication for the different SWS configurations.

One of the important things that it allows is the possibility of moving the 2DEG off of the wafer

on which it was grown. An example of this can be seen in [51] where the 2DEG conduction channel

is shown to function normally even after being transferred. This will allow more complex SWS

arrangements like the Si or quartz rectangular helix shown previously. The 2DEG layer can be

transferred to a Si layer that forms the lower half of the helix interior, and the other Si half is applied

on top of it. This could also become critical in future developments discussed in Chapter 7 where

multiple SWSs might need to be constructed around a single 2DEG layer.

5.6 SWS Measurement Challenges

As with all simulations of experimental devices, there needs to be measurements to demonstrate

that the model results agree with reality. In this case, there are a number of quantities and behaviors

in the EM models that would need to be confirmed. These range from the basic measurement of

metal loss and dielectric permittivity, to the more difficult confirmation of the SWS dispersion. An

example of a full device ready for measurement is shown in Figs. 5.26 and 5.27. Here RF probe

pads, DC bias pads, and a microstrip inversion are included for an on-wafer measurement. Given the
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Figure 5.26: A top down view of a hypothetical test device. RF probe pads are on the east and west
side, with DC bias lines for the 2DEG on the north side.

Figure 5.27: An oblique angle view of the test structure showing the microstrip flip, and the meander
line above the 2DEG channel.

possibilities provided by the membrane transfer process in fabrication, several other configurations

can also be considered with the same types of measurements.

To do these measurements, a set of VNA extender heads would be used to extend the frequency

range of a VNA into the THz band. Extenders for the 0.75-1.1 THz band are available from Virginia
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Table 5.4: HFSS simulation of insertion loss at 1 THz due to metal conductivity for different
microstrip geometries matched to 50 Ω with air above the metal trace.

Configuration εr σ Diel T Metal T Micro W Ins Loss
[S/m] [µm] [µm] [µm] [dB/mm]

High Cond 2D 11.7 5e7 5 0 4.06 8.85
High Cond Thick 11.7 5e7 5 0.2 4.06 4.87
High Cond Thin 11.7 5e7 5 0.1 4.06 5.32
Med Cond Thick 11.7 2e7 5 0.2 4.06 7.49
Low Cond Thick 11.7 8e6 5 0.2 4.06 11.26

Low Diel 2.34 5e7 5 0.2 14.5 3.0
Low Thick Diel 11.7 8e6 10 0.2 29.3 1.61

Diodes Inc and have a dynamic range of at least 75 dB with an output power of -23 dBm [52].

These are paired with wafer probes appropriate for the frequency band such as GGB’s model 1100B

that have an insertion loss of about 10 dB per probe [53]. Expected losses of microstrip lines are

between 5-10 dB / mm at 1 THz, see Table 5.4, and the loss of the meander lines are about twice

those of a straight microstrip waveguide. So depending on how closely the probes can be spaced,

the insertion loss for testing a SWS geometry can easily be 50-60 dB. While this does reduce the

usable range of the extenders, it should still allow for measurements where features in the frequency

response are mainly of interest. The primary difficulty is whether we can still resolve the frequency

peaks such as those shown in 5.30. The extenders have a quoted magnitude stability of 0.5 dB which

is an appreciable fraction of the indicated peaks. It is possible that resolution can be improved with

averaging. It may also be possible to use phase information for the SWS dispersion. The extender

heads have a phase stability of 6 degrees which should be small enough to measure a difference in

phase shift for different length SWSs.

There is not much data available for material properties in the THz band, so a basic attempt at

confirming the values used should be made. The metal conductivity could easily be measured via

the insertion loss versus length of a simple thru line. In general, the dielectrics also add some loss,

but are much smaller than the metal losses as shown in table 5.5. Knowing the metal conductivity

more accurately will give a better indication of possible gain for a coupled device. The permittivity

of the dielectrics could also be measured using microstrip ring resonators of different sizes. The
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Table 5.5: HFSS simulations of insertion loss at 1 THz due to dielectric losses for different substrate
materials. Each microstrip geometry is matched to 50 Ω with air above the metal trace.

Material εr loss tangent Micro W Ins Loss
[µm] [dB/mm]

Si 11.7 1.4e-5 4.06 0.02
GaN (Wurtzite) 9.6 5.23e-4 5.0 0.10

HDPE 2.34 6.24e-4 13.8 0.08
SiC 9.6 1.54e-3 4.94 0.36

Fused Silica 3.84 4.87e-3 10.6 0.71
BCB 2.45 0.01 14.4 1.16

permittivity will not only affect the SWS dispersion, but the 2DEG plasma wave dispersion as well.

A small shift in this value will shift both dispersions in the same direction, so it is not expected to

be critical. However, it will again play a small role in the overall gain of the device because it will

change the interaction impedance.

The primary interest in measuring the SWS is to confirm the axial field dispersion. Because full

access to the field information is not possible, some other means is needed to connect the frequency

or wavelength response of the axial wave to an S-parameter. One way to do this is with a series of

resonant cavities as shown in Figs. 5.28 through 5.33. These use a short section of SWS as a cavity

and produces a local minima in the S11 or S21 response. The primary issue with this measurement

is that the minima are not very deep compared to the through losses as indicated by the dashed

line in Fig. 5.30. For the reflection style cavity, the relative widths of the feed microstrip and the

line within the SWS impacts the impedance match at that point. Any variation in this boundary

condition of the resonant SWS will shift the dispersion, and that is thought to be the primary reason

the mapped modes marked with x’s on the right in Fig. 5.31 do not line up perfectly with the long

SWS results. In an experiment, there will be some deviation from the nominal line width that will

affect this. The resulting error does not seem to be a large correction, and should not preclude a

beam-wave interaction in a fabricated device.

Another possible cold-test to measure the SWS dispersion is by measuring the phase shift as a

function of distance on the SWS. This would require measuring the two-port phase difference as a
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Figure 5.28: Two examples of resonant SWS cavities with different numbers of cells.

Figure 5.29: On the left the axial field within a cavity SWS is shown for two different resonant
modes indicated on the S11 plot shown on the right.
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Figure 5.30: Changing the number of cells in the SWS cavity shifts the resonant mode frequency,
and this can be used to measure the SWS dispersion. This simulation includes SWS loss, and so the
features are limited in magnitude making the measurement more difficult.

Figure 5.31: All of the S11 resonant features plotted for SWS with different numbers of cells
are shown on the right. Plotting those frequencies vs length of the SWS on the right shows the
dispersion compared to the predicted dispersion from a 30 cell non-resonant SWS.
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Figure 5.32: Using a second smaller section of a SWS shown in red is used as a resonant cavity
similar to how a ring resonator is used near a microstrip.

Figure 5.33: The S21 curves for different length resonator cavities with (bottom) and without (top)
metal losses.
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function of frequency for a series of SWS of different length. Each of the SWSs would have the

same geometry, and the included number of cells would change the length. For the simulated data

shown in Fig. 5.34, the phase shift for three frequencies is shown versus distance for a SWS with

2-10 cells with a 6 µm pitch. The slope is taken from a linear fit, and the wavelength is calculated

using the simple relationship:

−∆θ

360
=

∆L

λ
→ λ =

360

−slope
. (5.4)

The resulting dispersion curve is plotted in Fig. 5.35 both with and without losses. The ’direct

length’ dispersion curve in those plots is simulated as described in section 5.3 where the zero

crossings of the axial electric field along a line are directly calculated. In both the included plots, the

direct curve is taken from a lossless SWS simulation. The difference between the two slope derived

curves is due to the losses in the SWSs. While it is often ignored as a higher order perturbation, the

expansion of the propagation constant for the circuit modeled transmission line shows the affect

[37]. For a wave that travels as V (z) ∝ e−γz

γ =
√

(R + jωL)(G+ jωC) = jω
√
LC

√
1− j

(
R

ωL
+

G

ωC

)
− RG

ω2LC
. (5.5)

The last term in the expansion is often ignored, but in the THz band losses appear to be significant

enough to require it. It is still unclear what the losses will be in the fabricated device, but the change

in wavelength of a few microns should not be detrimental to a prototype design. In fact, if the phase

noise of the measurement is low enough, this might provide another way to cross-check the loss in

the material.

61



Figure 5.34: Fitting the phase shift as a function of SWS length to calculate the wavelength at
different frequencies.

Figure 5.35: The dispersion curves calculated using the slope of the phase shift for the same SWS
without loss (left) and with loss (right). For both plots the direct wavelength data is for a lossless
SWS.
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CHAPTER 6

NUMERICAL SOLUTIONS AND BEHAVIOR OF 2DEG BEAM-WAVE AMPLIFIER

6.1 TWA like behavior

Perhaps the easiest and most complete method to understand the coupled modes of the dispersion

equation is to plot the numerical solutions. By solving them numerically, solutions can be visualized

for both simplified, and complete dispersion relations. First a traditional vacuum TWA dispersion is

shown to introduce the plots that will be used. The following dispersion will be used that is found

in [39].

(k2z − k2c )[(kz − k0)2 − k2p] + 2C3k3ck0 = 0 (6.1)

Here, k0 = ω
v0

is the propagation of the DC electron velocity, and kp = ωp

v0
is due to a 3D plasma

frequency. The quantity C in this case is analogous to the definition presented earlier, but a value

of C = 0.1 that is normal in VED TWAs is used. It is common to use a space-charge term

q = 4QC =
k2p
k20C

2 . Following the distinction made earlier, any reference to space charge in this

analysis specifically refers to the VED behavior that is distinct from the 2DEG plasma wave behavior

even though they are being compared.

In [39], normalized values are introduced as follows. The parameter of non-synchronism

between the circuit velocity and electron velocity

b =
kc − k0
k0C

, (6.2)

the normalized change in amplitude

x =
Im(kc)

k0C
, (6.3)

and the normalized propagation constant

y =
k0 −Re(kz)

k0C
. (6.4)

63



In Fig. 6.1, both the raw and normalized solutions can be seen. Both plots are provided because

one or the other might be more useful depending on the particular conditions being calculated. In

the raw plot, β1 = Re(kc) = ω
vz

is equivalent to the reciprocal of the mode velocity. A solution

above the red line representing the beam is propagating slower than the beam. In the normalized

plot, the values of y that are below 0 are slower than the beam. The change in amplitude of the

mode as it propagates is given by β2 on the raw plot or x on the normalized plot. For β2 > 0 and

x > 0, the mode is growing as it travels down the interaction structure. The gain of a device of

length l can be calculated as

gain[dB] = 20 log10(e
β2l). (6.5)

Figure 6.1: The 3 forward coupled mode solutions for a traditional VED TWA. Raw solutions are
on the left, and normalized values on the right. The green dashed line indicates the optimal velocity
for gain.

In the case shown in Fig. 6.1, there is a small amount of space charge influence. In the traditional

Pierce variables 4QC ≈ 1 in this case, and the maximum value of x is at a slightly higher value

of b than the synchronous case (b=0). This is congruent with known TWA behavior, and can be

interpreted as the RF wave synchronizing with the slow space charge wave on the beam.
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Table 6.1: Example Parameters for Numerical Solution

Symbol Value Quantity

vz0 2e6 cm/s 2DEG DC beam velocity
vc 2e7− 3e7 cm/s SWS Circuit phase velocity
n2D
0 2e13 cm−2 2DEG density
µ 1200 cm2/(V · s) 2DEG mobility
wb 2− 6 µm Width of 2DEG sheet
Zc 1− 10 Ω SWS Circuit impedance
Lc 1000 µm SWS Circuit length
ε 10.5ε0 Material Permittivity

2DEG TWA Like Behavior

The 2DEG dispersion can be solved by expanding and then gathering Eq. (4.58) into a polynomial

of kz

k4z

(
v2z0 −

KBT

m∗

)
+ k3z

(
−sign(Re(kz))

e20n
2D
0

2εm∗
+ i

vz0
τ
− 2vz0ω

)
+

k2z

(
e20
m∗

wbZcn
2D
0 kcω +

KBT

m∗
k2c − v2z0k2c − i

ω

τ
+ ω2

)
+

kz

(
sign(Re(kz))

e20n
2D
0

2εm∗
k2c − i

vz0
τ
k2c + 2vz0k

2
cω

)
+ i

k2cω

τ
− k2cω2 = 0 (6.6)

This can be solved by a numerical root finding algorithm. For this work a simple python script was

used. Example input parameters are given in 6.1, but the values will vary greatly between plots

depending on the behavior being shown. Most plots show a list of parameters to the left that are

either input parameters or are calculated from them. For instance µ is an input parameter, and τ is

calculated. If the plot shows a variable sweep, the parameter list is reflective of the last value in the

sweep.

If the DC drift velocity of the 2DEG electrons is allowed to be larger than plasma wave velocity,

this system does appear to behave like a traditional TWA as shown in Fig. 6.2. In this case the drift

velocity v0 is much higher than possible in a semiconductor material, but it simply shows a general

behavior. Similar behavior can be shown for lower velocities, but those cases also involve highly

idealized parameters.
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Figure 6.2: The 3 forward coupled mode solutions for a 2DEG TWA. The 2D density is 2×1013 cm−2

resulting in a vp2D of 2× 107 m/s. The circuit velocity was set higher at vc = 2× 108 m/s.

Figure 6.3: A predicted helix response versus electron drift velocity (left), and the corresponding
frequency response of a device using EM simulated data for the SWS (right).

If the quantities from the SWS EM simulations discussed in Chapter 5 are used, the frequency

response of an idealized device can be calculated as shown in Fig. 6.3.

The gain versus frequency of the SWSs compared in Fig. 5.24 can now be calculated with the

2DEG coupled-mode dispersion using the inputs from the EM simulations. Fig. 6.4 shows that the

losses in the two meander line SWSs overcome any energy transfer to the EM wave and therefor

have no net gain. As is shown in Fig. 6.8 later, this might be improved by increasing the interaction
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Figure 6.4: The gain for several SWSs is calculated using the coupled-mode theory and input from
the EM simulations.

impedance.

One of the important behaviors of the VED TWA is that the maximum gain occurs when the drift

velocity is larger than the circuit velocity. For a sufficiently large space charge term that maximum

is shown to exist when kc = k0 + kp or in terms of velocities v0 = vc(1 + ωp/ω) [39]. This is to say

that the circuit wave is synchronizing with the slow space charge wave. Because of the difference in

the 2DEG dispersion, namely the inclusion of kz in the plasma term, it is difficult to derive a similar

statement about where the gain peak should be located in terms of the different velocities. It was

initially speculated that the max gain would happen when v0 = vc + vp, but this is not shown by the

numerical solutions in Fig. 6.5

Another suspicious behavior shown in the lower right plot in Fig. 6.5, is that the plasma velocity

shown by the dashed line labeled vp is larger than the drift velocity shown to produce gain. This

would seem to be incongruent with only slower plasma waves producing gain, but this particular

set of parameters also violates the small signal approximation since the plasma velocity (the AC

component) is on the order of the drift velocity (DC component). This particular behavior is

discussed further in section 6.3.
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Figure 6.5: A series of dispersion solutions are plotted for different electron densities that show
both peak gain, and where the expected peak in gain should be with the dotted line labeled vc + vp.

6.2 Realistic Device Behavior

The difficulty faced in realistic situations is that the saturation drift velocity is several orders of

magnitude lower for known 2DEGs. In GaN for example, the saturation velocity is around 35 m/s.

If the device were to be operated in the linear region of the velocity vs field curve, this would limit

the DC velocity to around 105 m/s. For classical TWA style amplifier, the density of the 2DEG

would then need to be reduced such that the resulting plasma wave phase velocity was lower than

the DC drift velocity. The width of the 2DEG channel would also need to be narrowed to prevent

transverse modes. The resulting gain from such a device would be limited by the reduced current.

Other realities of the semiconductor device that need to be considered are the mobility of

the electrons in the 2DEG, and their temperature. In this context the primary contribution to the

mobility is the acoustic phonon collisions, and it is assumed to be the constant slope of the velocity
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Figure 6.6: The forward coupled-mode solutions for a 2DEG interaction with varying circuit loss
αc on the left, and 2DEG mobility µ on the right.

vs electric field curve. One of the main reasons for operating in the linear velocity range is to avoid

exciting optical phonons that are partially responsible for the velocity saturating. The mobility, or

the corresponding collision frequency, can be considered a loss term in the context of the plasma

wave propagation as it simply randomizes the electron velocity distribution. The effect of increasing

mobility can be seen in Fig. 6.6. The gain curve broadens and lowers as the mobility is decreased.

Also shown in Fig. 6.6 is the effect of EM loss on the SWS via the αc term.

The temperature of the electrons, or more directly their thermal velocity, also introduces a

similar loss to that mobility. Whereas the acoustic phonon collisions mainly randomize the direction

of a given velocity, the thermal energy adds an additional velocity in a random direction. The net

result for both is a loss of electrons contributing in phase with the plasma wave. One way in which

they differ is that the thermal velocity sets a lower bound on the velocity of the slow plasma wave as

seen in Fig. 6.7. The thermal velocity of the electrons at 77 K defined using 1
2
m∗v2th = KBT gives

vth ≈ 1× 105m/s, which is on the order of the drift velocity (regardless of the particular definition

for thermal velocity). This would prohibit a coupled plasma wave to grow over any appreciable

distance and provide gain.

One of the main concepts argued by Solymar [13], is that most of these losses can be overcome

with a large enough coupling impedance. Fig. 6.8 shows that a large value of Zc is needed to produce

gain with a realistic mobility and circuit loss. The quartz helix has a larger impedance-to-loss ratio
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Figure 6.7: Coupled-mode solutions with a realistic drift velocity showing the effect of temperature.

Figure 6.8: Gain for a realistic drift velocity device showing a large coupling impedance, Zc, is
needed to produce gain.

than any of the SWS studied, so it is the most likely to succeed. At a wavelength of around 30

µm, it has an impedance of about 30 Ω at 1 THz. Since Eq. (5.3) shows the impedance is inversely

proportional to the wavelength, the impedance should be smaller for the shorter wavelengths

associated with lower drift velocities.
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To summarize, even if the physical interaction of a 2DEG TWA is accepted, the physical realities

of the system would almost certainly preclude it from producing meaningful gain. The SWS would

need to have a very small pitch on the order of 10s of nm, and an impossibly high interaction

impedance for it to overcome circuit and mobility losses. Even if such a structure could be designed,

fabrication would be difficult with such small traces, and even then they would not be able to support

very much power leaving it short of the intended goal.

6.3 Energy Flow in a Coupled Systems

Thus far, this analysis of a solid-state TWA has included assumptions and implications that now need

to be discussed. Primarily, the assumption that the circuit velocity synchronizes with a perturbed

wave slower than the DC electron velocity. This is a basic assumption of TWA operation, and the

explanation is not always clearly given. This velocity relation is essential to TWAs because of how

they produce gain, or more precisely, how they transfer energy from the DC power source to the

RF signal wave. The most basic way to explain the energy transfer in a TWA is that incoming RF

signal perturbs the DC electron beam, the electrons that are slowed down by this interaction give

up some of their kinetic energy, and start propagating as part of a perturbed AC wave on the beam.

The RF wave is given energy by this ’slow space charge wave’, and in turn causes an even bigger

perturbation. The slow space charge wave can be thought of as a periodic slowing down of the

electrons such that the magnitude of the perturbed AC energy on the beam is negative. Thus the

RF wave and the slow space charge wave are the two coupled modes that are velocity matched and

grow together in the theory described in Chapter 4. The slow space charge wave grows in amplitude

by giving up energy. The total beam energy is the sum of the constant DC energy and the negative

AC energy, and this allows the transfer of the DC energy to the RF signal through the AC beam

perturbation to produce gain [54]. This use of the slow space charge wave to produce gain is the

core of all of the O-type VED amplifiers (TWAs, klystrons, resistive wall amplifiers, etc. ) [39].

They all rely on the slow space charge wave giving up AC energy from a DC source.

At the same time that the slow space charge wave is formed, there is also energy given from
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the RF wave to other electrons in the beam speeding them up. These electrons form the fast space

charge wave. However, the faster electrons are only gaining AC energy from the RF wave, they

cannot use any of their DC energy for this. These fast electrons cannot give the RF wave any more

AC energy than they have already been given from it. Thus the fast space charge wave does not

convert the DC kinetic energy into AC energy like the slow space charge wave does and cannot be

used in this manner to produce gain [54].

The preceding paragraphs are explicitly referring to the space charge waves in a VED TWA with

a sparse beam. In section 4.1, it was suggested that the 2DEG plasma waves are the same as space

charge waves in the limit of a dense beam. This then suggests that the above argument regarding

the energy of fast and slow space charge waves will hold true for a fast and slow plasma wave as

well. On a simplistic level, the same physical interactions are involved in both situations which

implies they should behave similarly in regards to energy transfer. However, there is one crucial

piece of evidence that at the very least suggests the exchange of energy does not happen with the

slow plasma wave. The VED space charge wave is intimately tied to the DC motion such that the

group velocity of the space charge wave is the DC beam velocity. While this is not a sufficient

reason to associate energy transfer due to the space charge wave with the DC velocity, it would

seem to be a necessary one. On the other hand, the plasma wave regardless of its velocity does not

have an association with the DC electron velocity. This is seen from the fact that the group velocity

of the plasma wave is not constant, nor equal to the DC velocity. In fact, the plasma wave exists

without any DC velocity at all. So it would seem that any energy content the plasma wave has does

not depend on the DC energy. So even if the plasma wave velocity is positioned in a way where it

should behave like a slow space charge wave, it is doubtful that it will do so since there is not any

fundamental change in the underlying behavior of the wave.

This leads to the natural question of why the coupled-mode theory predicted gain where it seems

to be nonphysical. It is most likely that one or more of the underlying assumptions in the setup

was violated. There has already been a demonstration of the relative velocities violating the small

signal approximation, i.e. the perturbed AC velocities are much smaller than the DC velocity. In a
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VED device, this does not generally need to be enforced rigorously due to the nature of the space

charge waves being an oscillation around the DC velocity. In the 2DEG plasma case however, the

plasma wave velocity is independent and therefore can be set to a wide range of values. Another,

subtler, violation is the unintentional decoupling of the DC energy from the AC energy as outlined

above. An adaptation of Chu’s power theorem [55] for the one dimensional linearized small signal

TWA system is derived in [54] showing the nature of the power in the VED space charge waves and

that the coupled mode TWA equations do in fact conserve energy despite being linearized. That

derivation justifies the comments about the space charge wave energy in the previous paragraph. A

similar derivation might be possible to show the nature of the 2DEG plasma wave energy in the

same type of system and indicate whether or not it can access the DC energy.

At this point, the concept of a TWA style solid-state device seems without a resolution given the

unfavorable energetics for producing gain. Even if the plasma wave could access the DC energy,

the other considerations of section 6.2 show that real gain is unlikely to be produced in physical

devices. However, the motivation for a beam-wave style amplifier still exists, and the TWA was just

the most well-known type to first be explored. Since it has been shown that the slow beam waves

are not viable options for a solid-state amplifier, a fast wave style device becomes the next avenue

of exploration. The fast plasma wave can easily approach velocities of the same magnitude as the

RF signals, and that makes coupling to them via a SWS much more tractable. The fast plasma wave

cannot use DC energy for amplification, so the problem now is how to configure a system to give

the fast plasma wave energy that can be transferred to the RF wave. A few examples of systems that

might be adapted to this use are discussed in the next chapter.
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CHAPTER 7

THE PATH TOWARDS 2DEG FAST WAVE AMPLIFIERS

This last chapter will summarize some of the ongoing and future work to be done along with the cold

SWS measurements discussed in Section 5.6. There are several open questions about solid-state

beam-wave interactions and there continues to be a desire for this style of amplifier.

7.1 Types of Fast Wave Amplifiers

For the fast plasma wave to be used in a beam-wave style amplifier as suggested at the conclusion

of the last chapter, it needs to have energy that can be transferred in some manner to the RF wave.

One possible style is a distributed parametric amplifier such as described in [54], and demon-

strated in [56]. This style uses nonlinear mixing on the beam to couple energy from a higher

frequency pumped space charge wave to a signal space charge wave. The main issue with this

technique is that there is an energy penalty if the space charge waves have a dispersion such that

their phase velocities are unequal [54]. As shown previously, the dispersion for the 2DEG plasma

waves would result in a difference in the phase velocity of the signal plasma wave and the higher

frequency pump plasma wave. The scale of this energy penalty has not yet been determined for the

2DEG beam device, so it is unknown whether this is feasible based solely on efficiency reasons.

Even if the energy transfer is favorable, incorporating a source of higher frequency pump power is

also an open topic. Integrated laser like sources would be ideal, but currently they lack the output

power likely needed.

Another family of amplifiers to consider are cross-field TWAs, sometimes referred to as linear

cross field amplifiers (CFA). In this style of amplifier, the energy used for gain comes from an

electron beam that is formed with a high electrostatic potential energy, and the beam is perturbed to

release that energy in phase with the incoming EM signal wave [39]. A typical CFA is in a ring

configuration like a magnetron, but a linear version such as found in [57] might work better with

semiconductor fabrication techniques. It is not yet clear whether a 2DEG plasma wave could be
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Figure 7.1: A diagram of a VED CFA (left), and the resulting electron motion (right).[5] ©1992
IEEE

generated and used in the exact same manor. However, there are other ways in which a 2DEG

plasma can be put into a higher energy state to be perturbed. It should be noted that there is a subtle

difference between this concept and the physics used for gain in semiconductor optical amplifiers

and lasers. In the optical amplifier case, individual excited electron states are directly producing

photons at the operating frequency. Whereas the CFA case does not depend on discrete energy

states matching the operating frequency, and there is a continuous exchange of energy from the

electron beam to the EM fields as in a TWA.

7.2 Beam-Wave Coupling Experiments

One of the key missing pieces in the development of this type of amplifier is a clear demonstration

of the coupling between a SWS and a 2DEG plasma wave. Some of the general difficulties of

performing experiments in this frequency band were covered in section 5.6. Presented here is a

more specific plan for experiments to show the beam-wave coupling. Both cold-test and coupling

experiments will likely proceed in the future as part of the same project that supported this thesis

since they share a lot of work in common.

Simulations for the coupled interaction between the SWS and 2DEG plasma wave are currently

done in VSim by Tech-X [29]. A collaborator created a VSim input file that includes the 2DEG

plasma wave behavior via a field updater in the finite different time domain solution [58]. This

setup does create a highly idealized and prescribed plasma response, but more importantly the

coupling experiments are intended to show that this is an appropriate starting point. A particle-in-
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Figure 7.2: An example simulation in VSim showing a 4 cell U-meander SWS exciting a 2DEG
above it. Plotted is the vertical component of the electric field.

cell (PIC) style simulation would be better in terms of letting the electrons just respond as they will

without assuming a particular reaction, but PIC simulations at high densities become difficult due to

super-particle representation issues.

Pictured in Fig. 7.2 is an example of a VSim result. A four cell U-meander geometry was

created in HFSS to have a good impedance match, and the geometry was exported. This structured

was meshed and imported into VSim as a perfectly conducting metal. The 2DEG layer can be seen

from the field discontinuity above the SWS. The SWS is excited on the left side by a sine wave

voltage. The longer wavelength of the microstrip can be seen to the left of the SWS, and the shorter

wavelength of the SWS is seen to excite a wave in the 2DEG above it.

One possible beam-wave coupling experiment is to look at the transmitted wave of the system

described above with a varying number of SWS cells. This would vary the length of interaction and

change the amount of power transferred between the 2DEG and the EM wave. This idea is based on

the mode coupling between microstrips used in quadrature couplers for instance shown in Fig. 7.3.

When the two mode couple, power oscillates between them as they travel. By changing the length

of the coupled interaction, the amount of power in each line can be changed. In Fig. 7.4, a proof of

concept model is shown to mimic the same behavior with coupled SWS. The SWS on the bottom

of that setup has a lower conductivity to mimic the losses in a 2DEG. A clear pattern can be seen

between the two curves in the included plot. The blue curve indicates just the normal SWS losses
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Figure 7.3: A broadside microstrip coupler model (ground planes not shown) in HFSS (left) with
the resulting transmitted power as a function of the coupler length (right).

without the 2DEG, and the red curve shows the type of energy exchange with the 2DEG. While

these differences are small, they might be measurable.
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Figure 7.4: A HFSS model for a pair of coupled SWSs. The upper meander (blue) has a typical
metal conductivity of 5e7 S/m. The lower (red) meander has a conductivity of 1e6 S/m to mimic the
decay constant for a 2DEG. The results show a clear exchange of energy oscillating as a function of
distance.
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