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ABSTRACT 

THE TOXIC TRUTH: ENVIRONMENTAL JUSTICE AND ENVIRONMENTAL HEALTH 
OF MOTHERS AND CHILDREN IN MICHIGAN 

By 

Amanda Kreuze 

The Risk-Screening Environmental Indicators (RSEI) model estimates toxicity-weighted 

concentrations based on human health risks from modelled exposures to Toxic Release Inventory 

(TRI) chemicals. Numerous studies have reported on the inequitable distribution of TRI sites and 

pollutant exposures among minority and low-income populations, which may be leading to 

poorer health outcomes and contribute to health disparities. Population groups who are most 

susceptible to the untoward effects of pollutants are pregnant women and infants, with minority 

and poorer women at greatest risk. The goal of this research is to investigate maternal and infant 

health outcomes associated with TRI chemical exposures in Michigan from 2008-2017 from an 

environmental justice perspective using an ecosyndemic theoretical approach. The objectives of 

this research are: 1) To outline the ecosyndemic theoretical approach as a holistic lens by which 

to conceptualize maternal exposures to multiple toxic chemicals. 2) To investigate the spatial and 

temporal patterns and clusters of RSEI toxicity-weighted concentrations and the degree to which 

these human health risks are more elevated in minority and low-income communities. 3) 

Estimate the impact(s) of maternal exposure to RSEI toxicity-weighted concentrations on 

adverse birth outcomes, including lethal congenital anomalies, controlling for potential maternal 

level confounding variables. U.S. Census data was used to measure racial composition and 

poverty at the census tract level. The annual RSEI toxicity-weighted concentrations across 

census tracts were sub-divided into exposure quartiles and these were spatially and temporally 



 

 

 

assigned to each mother’s pregnancy. The analyses were conducted using geographic 

information systems (GIS) and spatial epidemiological methods including cluster detection 

techniques. This study found that building upon the ecosyndemic framework the urban areas of 

Detroit and Grand Rapids were found to contain 80% of the census tracts with the highest RSEI 

toxicity-weighted concentrations. African Americans, Hispanics and residents living near and 

below poverty were most likely to live in these census tracts. These inequities persisted over time 

for African Americans living in Detroit and Grand Rapids and more recently for Hispanics living 

in Detroit, demonstrating on-going and emerging environmental injustices. Mothers exposed to 

the highest RSEI quartiles were at higher odds of low birth weight and preterm birth controlling 

for other known risk factors. The interactions between exposures to highest RSEI quartile and 

other behavioral and medical risks exacerbated the likelihood of these adverse birth outcomes. 

Finally, space-time analysis revealed several areas in Michigan with persistent clusters of lethal 

congenital anomalies. Clusters in Detroit and Muskegon that were in part explained by proximity 

to RSEI toxicity-weighted concentration values requires further investigation. Based on the study 

findings, recommendations include increased monitoring of TRI sites, incentivize companies to 

reduce their use of highly toxic chemicals and add additional environmental justice evaluations 

when approving new industrial facilities and targeting areas for pollution reduction, particularly 

census tracts in the highest RSEI quartile where mothers are at greatest risk of adverse birth 

outcomes. Future research should investigate possible interaction and mediating effects between 

chemical exposures and maternal behavioral and medical factors, further investigate the clusters 

of lethal birth defects in Michigan and investigate the upstream forces that contribute to 

environmental injustices and adverse birth outcomes in Michigan.
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  INTRODUCTION TO THE DISSERTATION STUDY 

1.0. Introduction 

In 1984, one of the world’s worst industrial accidents occurred in Bhopal, India when the 

highly toxic chemical methyl isocyanate leaked from the Union Carbide Corporation’s pesticide 

plant (Jasanoff, 1988). The disaster claimed the lives of thousands of people and permanently 

injured or disabled thousands of others (U.S. EPA, 2021). Investigations into the disaster 

revealed inadequate safety regulations, insufficient employee training and limited medical and 

scientific information about the chemicals due to a lack of sharing by the company. All of these 

factors contributed to the accident and created challenges for recovery and relief 

operations (Broughton, 2005; Jasanoff, 1988). Following this event, activists from around the 

world called for right-to-know legislation that would make information about hazardous 

chemicals more accessible to ensure safe operations at hazardous facilities and allow 

communities to develop emergency action plans in the event of an accident (Jasanoff, 1988). In 

response, the United States enacted the Emergency Planning and Community Right-to-Know Act 

(EPCRA) of 1986 (U.S. EPA, 2021). The intent of the EPCRA of 1986 was to make information 

available about toxic chemicals to aid communities in the protection of public health, safety and 

the environment from chemical hazards (U.S. EPA, 2021a). The EPCRA created the Toxics 

Release Inventory (TRI), a database that makes information regarding the release, off-site 

transfer and management of toxic chemicals available for administrative and public uses (U.S. 

EPA, 2021). Reporting is required for facilities in certain industrial sectors that (a) have 10 or 

more full-time employees and (b) manufacture more than 25,000 pounds of TRI chemicals or use 

over 10,000 pounds of any TRI chemical in their operations (U.S. EPA, 2020). 
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Previous research indicates that certain population groups including minority and low-

income communities experience discriminatory citing practices of industrial facilities and waste 

sites and as a result, a disproportionate share of pollutant exposures (Ash, et al., 2009; Bullard, 

2002; Moseley, Perramond, Hapke, & Laris, 2014). Environmental health research has shown 

that exposure to certain pollutants can lead to various adverse health outcomes (Landrigan, 

Kimmel, Correa, & Eskenazi, 2004; Padula, et al., 2018). Thus, one of the Healthy People 2030 

objectives is to reduce the population’s exposure to environmental pollutants (U.S. HHS, 2020). 

The disproportionate pollution burdens are believed to be contributing to racial and ethnic, and 

geographic health disparities (Bagby, Martin, Chung, & Rajapakse, 2019). The Healthy People 

2030 objectives also address the social determinants of health, which refer to conditions of the 

environments in which people spend time that may also have an influence on health outcomes. 

The quality of the physical environment is one determinant of health (U.S. HHS, n.d.). 

Environmental factors, including air, water and soil pollution, radiation, noise, occupational 

risks, built environments, agricultural practices, anthropogenic changes to the climate and 

ecosystems, and behaviors related to one’s environment, contribute to an estimated 23 percent of 

global deaths and 22 percent of the global disease burden. Although the environmental burden of 

disease is higher in developing nations, pollutant exposures also represent a major health hazard 

to people living in developed nations (WHO, 2016). 

The extent to which exposure to environmental toxicants impact human health is not fully 

understood (Woodruff T. J., 2015). Researchers agree that our present understanding of human 

health risks from real-life chemical exposure is insufficient because it is largely based on the 

assessment of risks from only individual chemicals (Cory-Slechta, 2005; Woodruff T.J., 2015). 

Moreover, existing regulations are predominantly based on single-chemical assessments. 
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However, it is well understood that humans are exposed to multiple chemicals simultaneously 

(Cory-Slechta, 2005; Rokoff, et al., 2018; Kortenkamp & Faust, 2018). A growing body of 

research indicates that a lack of consideration for the combined effects from exposure to multiple 

chemicals and via multiple routes of exposure can lead to an underestimation of chemical risks in 

a population (Kortenkamp & Faust, 2018).   

Some research has examined multiple chemicals, but most has focused on assessing 

chemicals of the same class meaning they are structurally related, often sharing the same target 

site and thus are typically found to have primarily additive effects (the combined effect is equal 

to the sum of each chemical acting independently) (Cory-Slechta, 2005; OSHA, 2016). 

Additionally, limited information is available regarding the combined effects of chemicals in 

which humans are exposed to via multiple routes (ingestion, inhalation, dermal). Thus, more 

studies need to consider the potential interaction effects (additive, antagonistic, synergistic) from 

exposure to multiple chemicals that come from different sources and multiple exposure routes to 

reduce risk and prevent poor health outcomes (Cory-Slechta, 2005; Kienzler, Bopp, van der 

Linden, Berggren, & Worth, 2016; Kortenkamp & Faust, 2018; Rokoff, et al., 2018). 

Pregnant women and infants are of particular concern because they have a greater risk of 

experiencing health-related problems from pollutant exposures (U.S. HHS, 2020). Previous 

studies indicate women are often exposed to pollutants and that these environmental exposures 

during pregnancy may lead to adverse birth outcomes, which can have significant and lastly 

health effects for the infant (Anderson et al., 2003; Barker, 2006; CDC, 2019a). Biomonitoring 

studies indicate that people are exposed to multiple industrial chemicals throughout their lives, 

with initial exposures beginning before birth (Perera, et al., 2003; Institute of Medicine, 2014; 

Woodruff, 2015; Rokoff, et al., 2018; Wang, et al., 2018). Many of the chemicals pregnant 
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women are exposed to can cross the placenta, thereby exposing the developing fetus (Woodruff 

et al., 2011). Maternal exposures to environmental toxicants have previously been linked to 

several adverse birth outcomes (Landrigan, Kimmel, Correa, & Eskenazi, 2004; Ogneva-

Himmelberger, Dahlberg, Kelly, & Moore Simas, 2015; Padula, et al., 2018; Stieb, Chen, 

Eshoul, & Judek, 2012). Therefore, there remains a need to better understanding how multiple 

chemical exposures influence health, as the environment could be an important area for public 

health intervention (Woodruff, 2015). It is important research address scientific uncertainties 

regarding chemical exposures among pregnant women, who are known to experience multiple 

chemical exposures (Woodruff, Zota, & Schwartz, 2011). Additionally, it is important to set 

these injustices and chemical exposures within the broader scale structures and to examine 

synergies between chemicals and health conditions that may be worsening the health burden 

within a population. One source of potential multiple chemical exposures comes from Toxics 

Release Inventory (TRI) facilities, the largest group of emitting facilities in the United States 

(U.S. EPA, 2021). 

1.1. Background 

The United States experienced rapid economic growth during the nineteenth and early 

twentieth centuries (Wright, 1990). For example, the United States’ economy was smaller than 

both Britain’s and Frances’ economy in 1840 but by 1950 it was five times larger than Britain’s 

economy and about eight times larger than France’s economy (Davis, et al., 1972). The 

economic boom was largely due to industrial growth (Wright, 1990). The manufacturing sector 

was small in 1800, but by 1900 it accounted for one fourth of the national product and by 1950 it 

accounted for one third of the national product (Davis, et al., 1972). Together, Illinois, Indiana, 

Michigan, New York, Ohio, Pennsylvania, and Wisconsin were the thriving industrial areas that 
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produced a majority of goods purchased in North America (Cooke, 1995; High, 2003). This 

region became known as America’s industrial heartland because it was the center of industry and 

manufacturing in North America (McClelland, 2013). Prominent industries in this region 

included steel, automotive, chemical, and paper (Feldman & Heasley, 2007).  

1.1.1. American’s Industrial Heartland 

America’s industrial heartland (Figure 1-1) was situated near two crucial resources: raw 

materials and water. The region was centrally located between the iron ore deposits in Minnesota 

and Michigan’s Upper Peninsula and coal in the Appalachian Mountains (McClelland, 2013). 

Industries used water for the production and transportation of goods, so most industries located 

along prominent rivers including the Detroit and Ohio Rivers and the shores of the Great Lakes 

(Cooke, 1995; Feldman & Heasley, 2007; USGS, 2018).  

Figure 1-1: America’s Industrial Heartland. 
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As industries experienced rapid growth, urban areas did as well (Shaw, 2001). Together 

they led to widespread environmental pollution by the mid-twentieth century. Untreated wastes 

were often discharged directly into waterways and air pollutants were released at unregulated 

rates and concentrations (Feldman & Heasley, 2007). The Cuyahoga River in Ohio, for example, 

contained an array of industries who used the river for transportation, production and waste 

disposal. The river became so polluted that it caught fire at least thirteen times (Cooke, 1995; 

U.S. EPA, 2019). Air quality was also impacted. For example, the mill town of Donora, PA 

experienced a fatal air pollution disaster in 1948. The air pollutants from the town’s industries 

mixed with fog, creating an acid smog that lingered over the city for several days, causing severe 

respiratory and cardiovascular problems among half of the people in the town and killing 40 

residents (U.S. EPA, 2017). In addition, the Love Canal hazardous waste tragedy near Buffalo 

New York exposed the potential health hazards that toxic waste sites pose to humans (McElroy 

& Townsend, 1989). In response to the widespread pollution, states and the federal government 

began enacting environmental policies to help reduce air and water pollution to protect public 

health and the environment (U.S. EPA, 2017; U.S. EPA, 2019). Although the increased 

awareness of pollution and the subsequent health impacts spurred the environmental movement, 

it also prompted the “not in my backyard” (NIMBY) phenomenon which led to the citing of 

waste facilities in areas with the least political resistance, primarily minority and low-income 

areas. A longitudinal analysis of the 1950s - 1980s found that the discriminatory citing of these 

sites emerged in the 1970s (during the environmental movement) and strengthened during the 

1980s (following the love canal disaster) (Saha & Mohai, 2005). 

The urban landscape in the American Industrial heartland experienced dramatic changes 

in the last half of the twentieth century. The 1970s was a period of economic restructuring that 
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included a large movement of industries to the south and overseas as well as the transition from 

manufacturing to services (Shaw, 2001; Wilson & Wouters, 2003). These national and 

international economic changes impacted numerous American industries in such a way that 

spurred many to reduce their workforce, relocate to less expensive places or close (Wilson & 

Wouters, 2003). The industrial heartland was particularly devastated by the economic 

restructuring that took place in the last half of the twentieth century, as they were primary centers 

of industry. Additionally, many of the cities and towns located in this region relied on one 

industry or one employer (Cooke, 1995). As a result of job loss, many residents relocated away 

from the American Industrial heartland with a subsequent demographic shift as cities and towns 

experienced a declining number of residents, businesses and housing units (Dewar & Thomas, 

2013; Thompson, 1999). The region experienced the greatest reduction in real incomes as well as 

the highest business failure rates and unemployment rates in the nation (Cooke, 1995). As a 

result, the region’s name changed from the American Heartland to the American Rust Belt 

(High, 2003).  

1.1.2. Emergence of the Rust Belt 

The primary reasons for the emergence of Rust Belt cities included globalization, new 

technologies, decentralization of industries, suburbanization and various federal and state 

policies (Dewar & Thomas, 2013; Thompson, 1999; Sugrue, 1996). Many Rust Belt cities have 

lost significant portions of their population following the movement of people to other locations 

for work, causing many social and economic issues (Fasenfest, 2017) including racial tensions as 

further described below. Many cities are also described as shrinking cities, which are cities that 

have continued to experience population loss, economic decline and property abandonment over 

the past few decades (Audirac, 2018; Dewar & Thomas, 2013). As businesses and people 
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relocate out of a city, the tax base is reduced along with the number of available amenities, 

opportunities and resources (Thompson, 1999). Poverty and urban decline are two challenges 

shrinking cities in the Rust Belt face (Fasenfest, 2017).  

Cities and towns that shrink due to economic decline often lose a disproportionate share 

of their young and mobile populations. These population groups have a greater ability to relocate 

for new job opportunities (Rieniets, 2009). Economic restructuring therefore, has resulted in 

unequal impacts and likely increases family poverty (Nelson, 1998; Rieniets, 2009) with 

primarily upper-class and middle-class whites who had the ability to move out of the inner cities 

and into the suburbs, which left primarily African Americans and low-income groups within the 

deteriorating inner city where few jobs remained (Sugrue, 1996). African American and low-

income populations experienced greater burdens due to the combined effects of racial 

discrimination in social mobility and employment, racial residential segregation and 

concentrated poverty.  

1.1.3. Michigan Case Study  

Michigan’s early economic growth came from primary and secondary industry sector 

activities. The primary sector prospered first with prominent activities such as lumbering and 

mining, followed by the secondary sector including furniture making, paper and automobile 

manufacturing. Michigan’s population experienced rapid growth in response to economic 

opportunities as a result. However, during the economic restructuring in the 1970s, many 

manufacturing jobs were lost (Michigan Legislature, n.d.). Michigan struggled to recover 

economically, but over time the state was able to rebuild the economy through existing and new 

businesses. However, the necessity to attract investments through various means such as tax 

incentives in some cases drew in industries undesired elsewhere because their operations degrade 
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the environment and expose residents to harmful pollutants (Berglund, 2020). Legacy pollutants 

left behind in the water and soil from Michigan’s early manufacturing and industrial activity 

along with new pollutant emissions from current industries have raised human health concerns 

(Wattigney, et al., 2019; Berglund, 2020). These pollutants have been a prominent environmental 

justice issue in Michigan over the years. A recent spatial analysis of environmental justice in 

Michigan reported an inequitable distribution of environmental goods and harms based on both 

race and income (Grier, Mayor, & Zeuner, 2019). Three prior studies utilized TRI data to 

evaluate environmental justice in Michigan. Downey (1998) investigated TRI releases in relation 

to income and race across Michigan. Downey (2005) evaluated TRI facilities in relation to 

black/white income inequality, discriminatory siting practices and residential segregation in the 

Detroit metropolitan area. Downey (2006) examined residential proximity to TRI facilities and 

the estimated human health hazard associated with their releases in relation to several 

demographic characteristics such as race, ethnicity and income in the Detroit Metropolitan Area. 

To the authors’ knowledge, no studies have studied maternal exposures to modelled TRI releases 

in Michigan. 

1.2. Study Goal  

The goal of this dissertation research is to assess the likelihood of adverse birth outcomes 

including neonatal mortality due to lethal congenital anomalies for women living in Michigan in 

areas with elevated TRI emissions. This research will conceptualize and demonstrate the utility 

of investigating adverse birth outcomes using an ecosyndemic approach by which multiple TRI 

chemicals emitted into different types of media (i.e. air, water, land) are examined. A 

retrospective cross-sectional cohort study design (2008 to 2017) was used to examine the 

impacts of multiple chemical exposure on adverse birth outcomes, and spatial and temporal 
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patterns of lethal congenital anomalies. The research findings will be disseminated in peer-

reviewed journals and at conferences and used to inform environmental injustices and public 

health policies and health care practice in areas with TRI sites and elevated health risks from TRI 

chemical exposures.  

1.3. Study Objectives  

1. Utilize the ecosyndemic theoretical approach as a holistic lens by which to conceptualize 

maternal exposures to multiple chemicals and the potential synergies with behavioral and 

social factors.  

2. To investigate the spatial and temporal patterns and clusters of modelled human health 

risk from TRI releases and the degree to which these human health risks are more 

elevated in minority and low-income communities (environmental injustice). 

3. Estimate the impact(s) of maternal exposure to modelled TRI emissions on adverse birth 

outcomes, including lethal congenital anomalies controlling for known risk factors and 

potential maternal level confounding variables.  

1.4. Study Hypotheses  

Study 2: Toxics Release Inventory Chemical Hazards: Racial and Ethnic Disparities in 

Michigan, 2008-2017. 

H0: There will be clusters of elevated human health risks from TRI chemical exposures in 

areas with a higher density of TRI facilities. 

H01:  Human health risks from TRI chemical exposures will be higher in low-income 

communities than middle- and high-income communities and these geographic disparities 

may vary by the racial composition of the area. 
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H02: The processes by which environmental injustice are defined will vary by urban area and 

African American and Hispanic population groups.    

Study 3: Environmental Health Investigation of Toxic Release Inventory Chemicals on Maternal 

Health, Birth Outcomes and Neonatal Mortality in Michigan, 2008-2017.  

H01 Mothers exposed in high levels of health risks from TRI chemical exposures will be at 

increased odds of adverse birth outcomes and lethal congenital anomalies. 

H02 African American and Hispanic mothers will be at increased risk of exposure to health 

risks from TRI chemical exposures and these exposures will in part explain racial and 

ethnic disparities in adverse birth outcomes.  

This dissertation study follows the three-paper dissertation format. An introduction to the 

dissertation is provided in Chapter 1. Following is a discussion of the theoretical framework in 

Chapter 2. This dissertation builds on existing theory by applying an ecosyndemic theoretical 

approach to conceptualize the polluted environments in which some pregnant women live and 

how they may share synergistic effects with their social environment. Chapter 3 presents the 

approach by which TRI emissions will be studied, specifically using a model developed by the 

EPA called Risk Screening Environmental Indicators (RSEI) toxicity-weighted concentrations 

(hazard assessment) and the environmental justice analysis. Chapter 4 presents the maternal 

exposure to RSEI toxicity weighted concentration levels and its effect on adverse birth outcomes, 

including cluster detection of lethal birth defects. Finally, chapter 5 summarizes the results of the 

former chapters and provides recommendations for future research and concluding remarks. 
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  AN ECOSYNDEMIC APPROACH FOR ENVIRONMENTAL HEALTH 

JUSTICE STUDIES 

Abstract 

The quality of the physical environment in which people obtain life-sustaining resources is to a 

large extent, dependent upon regulatory policies and laws that govern toxic chemical emissions.  

Exposure to these toxicants, individually or synergistically, during critical windows of human 

growth and development can alter biology leading to congenital anomalies and/or diseases and 

conditions that prematurely reduce life expectancy. It is well documented that minority and low-

income populations experience a disproportionate share of pollutant exposures due to residencies 

in close proximity to industrial sites, which may be a factor contributing to population health 

disparities. The clustering of diseases associated with environmental changes, most notably 

climate-induced hazards, is referred to as an ecosyndemic. This paper extends the view of 

ecosyndemic theory by incorporating chemical contaminants as a frame by which to further 

evaluate human health risks. Further, ecosyndemic theory will be incorporated into the human 

ecology framework commonly used within the discipline of medical geography. Improving our 

understanding of the impacts of ecosyndemics on maternal and infant health will lead to the 

promotion of life-sustaining environmental policies and public health interventions. 
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2.0. Introduction 

Health disparities that exist between different racial and ethnic groups may be attributed 

to the quality of the local environments in which people live, work and spend time (Bryant, 

Worjoloh, Caughey, & Washington, 2010; Commission on Social Determinants of Health, 2008; 

Williams, 2012). Racial and ethnic health disparities have persisted for decades and cannot be 

explained by individual-level risk factors alone. The Centers for Disease Control and Prevention 

(CDC) (2020) reports that the prevalence of diabetes for Hispanic and non-Hispanic black adults 

is substantially higher compared to non-Hispanic whites (Rate Ratios (RR) 1.6 and 1.4, 

respectively). Similar racial and ethnic disparities are observed for hypertension among 

Hispanics (29.0), non-Hispanic blacks (42.4) and non-Hispanic whites (27.8); obesity among 

Hispanic women (43.7), non-Hispanic black women (56.9) and non-Hispanic white women 

(39.8); and chronic kidney disease among Hispanics (2.2), non-Hispanic blacks (3.2) compared 

to non-Hispanic whites (1.9) (CDC, 2020). Daw (2017) utilized the National Health Interview 

Survey (1997-2009) to investigate the weighted mean prevalence of these four comorbidities 

(diabetes, hypertension, obesity and chronic kidney disease) that co-occur for Hispanics (0.22%), 

non-Hispanic blacks (0.33%) and non-Hispanic whites (0.16%) and found that 21% of black-

white disparity in mortality hazard was explained by these four conditions. While these 

disparities are obvious and consistent across morbidities, comorbidities and premature mortality, 

the contribution(s) of the environment (physical, social and built) as causal underlying risk 

factors for these conditions requires further investigation (Daw, 2017).   

An important hypothesis underlying the spatial unevenness of environmental risks and 

health disparities is referred to as environmental racism, environmental classism and/or 

environmental injustice (Ash, et al., 2009; Bullard, 2002; Moseley, Perramond, Hapke, & Laris, 
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2014; Margai, 2010; U.S. EPA, 2018). The Environmental Protection Agency (EPA) defines 

environmental justice as: “the fair treatment and meaningful involvement of all people regardless 

of race, color, national origin, or income, with respect to the development, implementation, and 

enforcement of environmental laws, regulations, and policies. Fair treatment means no group of 

people should bear a disproportionate share of the negative environmental consequences 

resulting from industrial, governmental, and commercial operations or policies” (U.S. EPA, 

2018). The disproportionate impact of environmental hazards on people of color is referred to as 

environmental racism and the disproportionate impact of environmental hazards on low-

socioeconomic groups is referred to as environmental classism (Bryant & Mohai, 1992; Peña-

Parr, 2020). Environmental quality varies geographically. It has long been recognized that 

polluting industries and hazardous waste sites are more commonly located in communities 

comprised of low-income and minority residents (Bryant & Mohai, 1992; United Church of 

Christ, 1987; Lee, 2002). In addition to the location of these sites, studies have shown that low-

income and non-white population groups are burdened with a higher share of toxic exposures 

(Cutter, 1995; Lee, 2002). 

The environmental justice movement began in the United States around 1980 and was a 

merging of the civil rights and environmental movements (Moseley, Perramond, Hapke, & Laris, 

2014). The landmark case that sparked the environmental justice movement was in 1982 

involving the disposal of polychlorinated biphenyl (PCB) waste in Warren County, North 

Carolina. Liquid hazardous waste containing PCBs from the Ward Transformer Company had 

been illegally dumped along North Carolina roadways in 1978. When the state learned of the 

contamination, they initiated a plan to build a PCB landfill in Warren County where the 

contaminated soil would be taken. Warren County’s population at the time was 66% African 
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American. The local community responded with protests; however, their efforts were 

unsuccessful and the PCB landfill was built in proximity to those residents (McGurty, 2007). 

The subsequent landmark United Church of Christ’s Commission on Racial Justice 1987 

Toxic Waste and Race report shared findings from cross-sectional studies conducted to evaluate 

the locations of hazardous waste sites in relation to neighborhood demographics across the 

United States. The studies found associations between communities with a high composition of 

African American and Hispanic residents and residents of low socio-economic status and the 

locations of hazardous waste sites. Notably, race/ethnicity was the most significant variable 

associated with hazardous waste sites (United Church of Christ, 1987). In 1979 a hazardous 

waste landfill was sited approximately 3.5 miles from Kettleman City, California without 

notifying community residents, a requirement under California law (Cole, 1994). Half of the 

population lived below the poverty line, 95% were Hispanic, and 40% were monolingual 

Spanish speakers (Cole, 1994; Reimann, 2017). In the late 1980s the company sought approval 

to build a toxic waste incinerator at the landfill, again without notice to community residents. 

Once environmental organizations found out, they informed local residents. The incinerator was 

initially approved; however, the community took legal action and successfully had the decision 

overturned (Cole, 1994). Even so, community residents remain concerned about their proximity 

to the hazardous waste landfill as high rates of poor birth outcomes have been observed among 

residents (Reimann, 2017). 

Racial, ethnic and income disparities have also been identified in relation to the locations 

of Toxic Release Inventory (TRI) facilities, which manufacture, use and/or manage certain toxic 

chemicals (U.S. EPA, 2021). Downey (1998) studied TRI emissions in Michigan at the state 

level, for urban areas and for the Detroit Metropolitan Area (DMA). At the state level, TRI 
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emissions were positively correlated with income and percent black, with race a better predictor 

of TRI emissions than income. At the urban area level, TRI emissions were negatively correlated 

with income but were no longer correlated percent black in the linear regression analyses. Within 

urban areas, income was a better predictor of TRI emissions. For the DMA, TRI emissions were 

negatively correlated with income, but not with percent black in the linear regression analyses. 

Lastly, both urban areas and the DMA were analyzed using bivariate regression analyses which 

found that as TRI emission increased with percent black (Downey, 1998). Pastor et al. (2004) 

used TRI data, census data, and Geographic Information Systems (GIS) software to evaluate the 

demographics of census tracts with or near TRI facilities in California. The study concluded that 

people of color, most notably Hispanics, were disproportionately more likely to live in a census 

tract with or near a TRI facility (Pastor et al., 2004). Another study (Silva, Hubbard, & Schiller, 

2016) in Texas (1999-2006) found that a high number of firms reporting to the TRI database 

were also located in neighborhoods with a high percent of nonwhite residents. Census tracts with 

a higher percentage of nonwhite residents were at an increased likelihood of both already having 

an existing TRI reporting firm and having a new TRI reporting firm locate there, even after 

controlling for economic factors. Additionally, a TRI reporting firm was more likely to open in 

or relocate to a census tract that already had a TRI reporting firm and less likely to relocate out 

of that census tract later. The agglomeration of firms that released toxic chemicals within areas 

with high percentages of minorities exacerbated environmental justice and environmental health 

concerns (Silva, Hubbard, & Schiller, 2016) during this time. 

Racial disparities in air quality have also been observed. A 1992 study of air quality and 

demographics in the United States found that African Americans and Hispanics were more likely 

to live in counties that violated air quality standards for three or more criteria air pollutants 
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(Wernett & Nieves, 1992). Another study evaluated the TRI’s RSEI Scores (Ash, et al., 2009), a 

value based on the potential human health impacts from exposure to toxic chemicals released by 

the 10 most toxic TRI firms in the United States. Minority populations were found to have over 

half of the human health burden from these firms (Ash, et al., 2009). In addition, a 2018 study of 

particulate matter 2.5 micrometers or less in diameter (PM2.5) and particulate matter 10 

micrometers or less in diameter (PM10) exposures calculated burden ratios, the proportional 

burden of each sociodemographic subgroup to the overall population burden (with > 1 indicating 

higher subgroup burden). For PM2.5, the burden ratio was 1.54 for African Americans, 1.20 for 

Hispanics and 1.35 for people living below poverty. For PM10, the burden ratio was 1.49 for 

African Americans, 1.23 for Hispanics and 1.35 for people living below poverty (Mikati, 

Benson, Luben, Sacks, & Richmond-Bryant, 2018).  

Environmental factors are the primary causes of chronic diseases (Rappaport, 2012). 

Scientific evidence suggests that environmental exposures may increase the risk of developing 

several chronic diseases. For example, associations have been identified between tobacco smoke 

and ambient and household air pollution with asthma and Chronic Obstructive Pulmonary 

Disease (COPD); bisphenol A and persistent organic pollutants (POPs) with obesity; ambient air 

pollution, POPs, bisphenol, and phthalates with type II diabetes; tobacco smoke, ambient air 

pollution, POPs, and arsenic with hypertension; tobacco smoke, ambient and household air 

pollution, and POPs with cardiovascular disease; and ambient air pollution, POPs, arsenic, and 

many carcinogens with cancers (Sly, et al., 2016). Therefore, human exposure to environmental 

pollutants is one factor known to contribute to population-level health disparities (Bagby, Martin, 

Chung, & Rajapakse, 2019). 
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The presence of chronic diseases in pregnant women are of particular concern because 

they have been associated with several adverse outcomes that increase maternal, fetal and 

neonatal risks (Sly, et al., 2016; Yu, et al., 2017). A systemic review and meta-analysis of 

pregnancy in women with chronic hypertension concluded that women with this disease were at 

an increased relative risk (RR) of adverse outcomes, including superimposed pre-eclampsia 

(RR=7.7), caesarean section (RR=1.3), preterm delivery (RR=2.7), low birth weight (RR=2.7), 

neonatal intensive care unit (NICU) admission (RR=3.2) and perinatal death (RR=4.2) 

(Bramham, et al., 2014). A meta-analysis of pregnant women with pre-gestational diabetes also 

identified elevated odds of several adverse outcomes including preterm delivery (Odds Ratio 

(OR)=3.48), caesarean section (OR=3.52), NICU admission (OR=3.92) and neonatal 

hypoglycemia (OR=26.62) (Yu, et al., 2017). Therefore, both chronic diseases are associated 

with significant maternal and neonatal morbidity and mortality (Sly, et al., 2016; Yu, et al., 

2017).  

Medical geographers utilize the model of human ecology, which considers the 

interactions between humans and their environments, to study the interrelationships among 

people’s individual-level characteristics, behaviors and culture and the social and physical 

environments in which they live, work and spend time to explain geographic and racial and 

ethnic disparities in health status. This paper builds on the model of human ecology by 

introducing syndemic theory, a framework by which to model common risk factors in the 

environment that lead to synergies or co-occurring diseases within an affected population 

(Mendenhall, Kohrt, Norris, Ndetei, & Prabhakaran, 2017). Comorbid diseases within a 

population exacerbates the overall health burden (Singer M., 1994). Syndemic studies report on 

the influence of upstream (social, political and economic) forces, such as inequality, marginality, 
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and poverty, on the evolution of disease interactions resulting in clusters within populations 

(Bulled & Singer, 2016). Syndemic theory has been applied to studies of infectious and non-

infectious diseases and studies of health inequities (Singer, 1994; Freudenberg, Fahs, Galea, & 

Greenberg, 2006; Singer, 2010; Mendenhall et al., 2017; Tsai et al., 2017). Syndemic theory is 

also useful in identifying effective intervention strategies to address multiple diseases 

(Mendenhall, Kohrt, Norris, Ndetei, & Prabhakaran, 2017). While syndemic research has 

evolved out of the medical literature, there is a need to synthesize environmental risks that 

contribute to multiple diseases.  

2.1. Purpose of Study 

The purpose of this study is to advance the field of medical geography by incorporating 

ecosyndemic theory into the human ecology model. This study proposes the application of 

ecosyndemic theory for studies of environmental health justice in place-specific contexts. This 

paper focuses on the pollution landscape, a result of upstream structures, which creates 

conditions that lead to toxic exposures, which may lead to an array of common diseases in 

populations, herein referred to as an ecosyndemic. An understanding of the synergies between 

the structural and social setting, individual characteristics and behaviors and pollutants that lead 

to an increase in disease burden and environmental health injustices as a result of such structures 

can help to target environmental and medical interventions to alleviate the syndemic. A review 

of the syndemic literature is provided that leads to this paper’s presentation of the ecosyndemic.  

2.2. Building Blocks to Ecosyndemic Theory 

2.2.1. Syndemic Theory 

Wallace (1988) first introduced the concept of synergies in his evaluation of the 

synergistic patterns between urban decay, intravenous drug use and the diffusion of human 
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immunodeficiency virus (HIV) and acquired immunodeficiency disease (AIDS) in the Bronx, a 

borough of New York City, during the mid- to late- 1970s. As a result of economic restructuring 

in the early 1970s, the Bronx experienced a major economic decline as industries relocated 

oversees and to southern states in the country, resulting in high unemployment, which led to 

severe urban decay characterized by poverty and increased homelessness due to a short supply of 

low-income housing. This resulted in higher crime rates and increased drug use. In response to a 

city-wide declining economy and social and physical infrastructure, the Bronx implemented a 

policy called “planned shrinkage” which involved reducing budgets to fire departments, which 

led to fires in houses that were abandoned and further increased urban decay—a process that 

began with a few deteriorating structures and gradually over time it increased to large-scale 

abandonment (contagious urban decay). Wallace (1988) referred to this as a contagious process 

that continued to deteriorate the urban area. This process primarily occurred in overcrowded, 

poor and minority areas. Overcrowded areas were more susceptible to fire damage, which further 

worsened urban decay by encouraging landlord abandonment and out-migration of residents. 

Those experiencing forced migration were mostly poor and minority groups, who moved from 

the South-Central Bronx to the West and Northwest Bronx. Wallace (1988) explained how the 

housing destruction influenced the geography of drug use and AIDS. The areas with high 

concentrations of overcrowded housing units had high numbers of drug related deaths and the 

areas with the highest number of drug related deaths also had the highest numbers of AIDS 

deaths. The city’s “planned shrinkage” through fire service reductions exacerbated urban decay 

in the South Bronx which forced the migration of populations, including intravenous drug users 

who were predominantly concentrated in poor communities in the South-Central Bronx, into 
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surrounding areas. This then activated the geographic dispersion of HIV and subsequently AIDS 

throughout the Bronx (Wallace R., 1988). 

A follow-up paper by Wallace and Wallace (1990) used the term ‘synergies’ to describe 

the interactive features between planned shrinkage, contagious urban decay and social 

disintegration in New York City that contributed to the rise in HIV and decline in public health. 

Specifically, the city’s planned shrinkage worsened housing destruction and thus, overcrowding 

in largely poor and minority communities, which forced people to migrate to surrounding areas. 

When people migrated, they lost their community ties and social networks. The study found that 

rates of various health conditions, such as tuberculosis, salmonella, and gonorrhea were highest 

in areas with overcrowded housing. Drug use, homicide and suicide rates also rose. As disease 

burden increased, life expectancy fell. Furthermore, stressors imposed upon pregnant women 

increased the rates of low-birth weight resulting in infant mortality particularly among nonwhites 

(which spread from South Bronx to surrounding areas) increased during the process of 

contagious urban decay. Wallace and Wallace (1990) were innovative because they evaluated all 

of these health conditions and health indices together as synergies, resulting from contagious 

urban decay, rather than examining each condition separately. Doing so allowed for them to 

observe how the city’s housing destruction and the forced migration and community 

disintegration that followed resulted in severe impacts to public health and well-being in poor 

neighborhoods (Wallace and Wallace, 1990). 

Building upon this concept, medical anthropologist Merrill Singer (1994) introduced the 

term syndemics in the mid-1990s as the situation that occurs when large scale structures lead to 

and reinforce the clustering of diseases and disease interactions (Singer M., 2011; Tsai, 

Mendenhall, Trostle, & Kawachi, 2017). Singer (1994) discussed the synergies of AIDS among 
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the urban poor in the United States and offered a new perspective for social scientists conducing 

AIDS research. Singer recognized that the terms endemic and epidemic did not sufficiently 

characterize the health issues among the urban poor, which are strongly influenced by large-scale 

social, political, and economic factors. The term syndemics was introduced in order to better 

describe AIDS in terms of the broader health crisis among the urban poor. For example, poverty 

contributes to inadequate nutrition and chronic stress, which leads to a weakened immune 

system, which then increases one’s susceptibility to infection. In addition, broad scale socio-

economic conditions increase the likelihood of substance abuse among urban poor. Substance 

abuse increases one’s risk of HIV as well as other sexually transmitted infections through the 

sharing of needles, which weaken the immune system, resulting in a greater susceptibility of 

contracting other diseases. Singer showed how AIDS was a part of the inner-city syndemic, 

noting the strong interrelationships among structural conditions and health conditions and how it 

was leading to a greater health burden among the inner-city populations (Singer, 1994). 

Freudenberg et al. (2006) revisited how New York City’s 1975 political and fiscal crisis 

led to a syndemic among inner-city poor. In response to the fiscal crisis, the city decided to make 

cuts to city services, including health services and hospitals, addiction treatment resources and 

public safety. The city also increased taxes and transferred some responsibilities to the state 

government. Around this same time, federal funding for low-income housing was significantly 

reduced. The paper discussed how the policy decisions that were implemented in response to the 

economic and social issues and changes led to increased rates of tuberculosis, HIV infection and 

homicide in New York City (Freudenberg et al., 2006). 

Mendenhall et al. (2017) spoke to how syndemic theory can be used to understand and 

resolve health inequities, which are more common among low-income populations such as type 2 



 

 

 

23 

 

diabetes and its comorbidity with HIV in Kenya, tuberculosis in India and depression in South 

Africa. There are both contextual and biological factors that influence disease burdens. 

Socioeconomic and political conditions can lead to an adverse health condition among the 

population living within that setting, and the presence of one disease can make individuals more 

vulnerable to another disease. For example, Mendenhall et al. (2017) found that poverty 

increases the risk for depression and diabetes, depression and diabetes share biological 

interactions, and people with diabetes are at an increased risk for tuberculosis. The authors also 

note the difficulties in treating syndemics as health care generally focuses on treating specific 

conditions, so a patient’s diabetes and depression might not be considered together. The authors 

suggest medical care could be optimized if co-occurring diseases and their interactions were 

considered together and treatment for multiple diseases were integrated (Mendenhall et al., 

2017).  

Syndemic theory provides a biosocial framework for understanding disease and why they 

tend to cluster among particular populations by assessing the structural and upstream forces that 

induce these patterns (Singer, Bulled, Ostrach, & Mendenhall, 2017). It seeks to understand the 

dynamic interactions between individuals’ health conditions and individuals’ contextual settings, 

which lead to the occurrence of comorbid diseases within a population and to identify 

intervention strategies (Mendenhall, Kohrt, Norris, Ndetei, & Prabhakaran, 2017). A syndemic 

risk factor can be biological, physical, social, political, economic or environmental (Singer M., 

1994; Singer, Bulled, Ostrach, & Mendenhall, 2017). The risks factors can interact with one 

another and share synergistic relationships, and so communities with multiple risk factors are 

more inclined to have a higher burden of disease (Tsai et al., 2017). Syndemic investigation 
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focus on those risk factors that may be worsening the independent and combined health 

conditions within a population (Singer M., 1994; Singer, Bulled, Ostrach, & Mendenhall, 2017).  

2.2.2. Ecosyndemics  

There has been a growing recognition that ecosystems, influenced by humans in ways 

that generate both intentional and unintentional changes, can mediate the environment and 

human health relationship (Singer M., 2016). Ecosyndemics, which stems from syndemics with a 

focus on the environment emerged to fill this gap (Singer M., 2010). An ecosyndemic is 

characterized by disease clustering that occurs as a result of exposure to a set of environmental 

conditions and can be situated within broader socioeconomic contexts (Ramirez & Lee, 2019; 

Singer M., 2011b). It therefore offers a framework by which to assess disease clustering and 

cross-level interactions (e.g. individual behaviors within the context of environmental conditions 

and social structures), which are of public health importance (Singer M., 2011b). Since its 

introduction, ecosyndemic theory has mostly been used to study climate-induced hazards and 

human health, including infectious diseases, respiratory illness and psychological health (Singer 

M., 2010; Ramirez, Lee, & Grady, 2018; Ramirez & Lee, 2019; von Glascoe & Schwartz, 2019).  

Singer (2010) provided a theoretical discussion of how climate change is expected to lead 

to a substantial increase in syndemics. Increased global temperatures accelerate the metabolic 

rate of certain species, such as mosquitos, which requires the female mosquitoes to feed more 

frequently, thereby increasing the likelihood of vector-borne disease transmission. Increased 

temperatures and deterioration of the ozone layer can lead to greater ultraviolet-B radiation 

exposure and more frequent bouts of heat exhaustion. Heath exhaustion is a stressor among 

humans, which reduces individual’s ability to respond to diseases and may exacerbate the effect 

of current chronic conditions on health, in particular diseases associated with the heart and lungs. 
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Additionally, ultraviolet-B radiation can cause genetic changes in microorganisms that can lead 

to pathogen resistance. Singer (2010) therefore, concludes that climate change will have direct, 

indirect, and multiple impacts on human health. Singer argues that more studies are needed to 

examine more specifically why syndemics emerge, the interaction pathways between different 

diseases and health conditions, how climate change will directly and indirectly impact human 

health and how public health policies and programs can address these features of syndemics 

including the social conditions that foster them to improve public health (Singer, 2010). Singer 

(2013) further argues that anthropogenic environmental changes, such as those that contribute to 

global warming, can lead to an ecosyndemic such as respiratory disease comorbidities and 

disease interactions. Additionally, respiratory health ecosyndemics was placed in a social context 

to discuss the roles of humans in environmental degradation, the social structures driving and 

minimizing resistance to environmental degradation and populations expected to be most 

impacted, including those experiencing social inequalities and environmental injustices as 

discussed later in this paper. 

 Ramírez, Lee & Grady (2018) applied an ecosyndemic approach to evaluate cholera and 

other multi-infectious disease risks in Peru during the 1997 El Niño. The study used climate, 

social and epidemiological data to create an ecosyndemic index. Many areas of Peru suffered 

from cholera and multiple infectious disease outbreaks over several weeks during the period of 

El Niño and urbanization and disaster impacts were found to be correlated with the ecosyndemic 

index. Ecosyndemic risk and social vulnerability in Guatemala during the 2014-2016 El Niῇo 

were explored by Ramírez & Lee (2019) using GIS. An El Niño index, health data on infectious 

diseases and social vulnerability data were analyzed. The study identified clusters of infectious 

diseases associated with El Niño. Additionally, ecosyndemic risk increased with social 
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vulnerability. Ramírez & Lee (2020) offered important insights into the emergence of COVID-

19 in Latin America, a region already experiencing an ecosyndemic, and how COVID-19 

exacerbates the existing public health burden. They suggest COVID-19 be examined within the 

context of ecosyndemic vulnerability to best respond to the multi-infectious diseases that exist 

within the region. Tallman et al. (2020) investigated two development cases studies, a highway 

in Peru and a hydroelectric dam in Brazil, using an ecosyndemic framework. The health and 

well-being of community members in both case studies were influenced through ecological, 

social and biological processes that modified the conditions in a way that led to disease 

clustering. The authors suggest that synergistic diseases, such as psychologic stress, vector-borne 

illnesses and sexually transmitted infections, may emerge in communities undergoing large 

development projects.  

Von Glascoe & Schwartz (2019) discussed the respiratory syndemic occurring among 

immigrant children living in the San Joaquin Valley, CA. The study identified structural 

vulnerabilities, structural violence and ecosyndemics as creating the conditions that foster 

childhood asthma and other respiratory illnesses. Children in the San Joaquin Valley are exposed 

to multiple environmental hazards brought about through structural determinants that has created 

an environmental health injustice among this population, which is further exacerbated by social 

and structural factors such as inadequate access to health care (von Glascoe & Schwartz, 2019).  

Ecosyndemic theory offers a way to examine the environmental conditions that promote 

disease clustering and interactions, while also considering the broader socioeconomic structures 

(Singer, 2011b; Ecosyndemics, 2011b). It is an effective frame for identifying the upstream 

factors that are inducing environmental injustices and their subsequent adverse health outcomes, 

which can in turn highlight areas for intervention strategies (Mendenhall et al., 2017). Combined 



 

 

 

27 

 

with multi-level analysis, it can help investigate how exposures to multiple pollutants, a hazard 

ecosyndemic, stem from social, economic and political decisions and if exposure to multiple 

pollutants lead to an environmental health injustice ecosyndemic. This paper builds on the 

ecosyndemic theory, proposing its application be expanded from climate-induced hazards to 

environmental pollution hazards and how exposures vary between and within population groups 

to develop a richer theoretical framework for examining environmental health justice. In 

particular, the ecosyndemic framework provides an ideal structure by which to study health and 

medical geography. An example framework is provided in the section that follows. 

2.3. Ecosyndemic Application in Environmental Health Justice Studies 

Various methods have been used to study syndemics (Shikar et al, 2021). Here a 

framework to incorporate health and medical geography methods with the ecosyndemic 

theoretical approach through studies of environmental health justice using a human ecology 

framework is proposed. The research should (a) begin with an investigation of the environmental 

setting of the place that is of concern for human health. For example, the concern may be 

regarding pollution from TRI facilities, which could later be studies in relation to pregnancy 

health. Geographic methods and tools, such as GIS, can be employed to evaluate spatial and 

temporal patterns of TRI facility emissions and map rates of pregnancy risk factors and adverse 

birth outcomes. The research should next (b) set the polluted environment within the 

socioeconomic context of the place by investigate the overarching socioeconomic structures that 

led to the placement of the TRI facilities or the movement of residents into communities in 

proximity to those facilities, as well as an equity assessment. In this example, the pollution 

landscape may result from weak environmental regulations and limited oversight and 

enforcement by environmental agencies, which then allows industries to emit higher levels of 
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pollutants at the cost of environmental degradation. The industries take advantage of weak 

regulations and negotiable fines and oversight to maximize efficiency and economics over social 

responsibility. Finally, (c) the research should evaluate the overall health burden of the place. 

Exposure to environmental toxicants released by polluting industries may have direct impacts on 

maternal health and birth outcomes or may have indirect impacts by interacting with low 

socioeconomic conditions (e.g. moderating or mediating the effects of pollutants) on maternal 

and infant health (Padula, et al., 2018). For example, maternal exposure to the pollutants may 

directly increase the risk of adverse birth outcomes. In addition, living in poor areas that are 

highly polluted (moderator) may increase women’s risk of pregnancy risk factors, such as 

hypertension, which then acts as a mediator on birth outcomes (Grady, 2006; Grady & Ramírez, 

2008). Therefore, the polluted environment, driven by broader socioeconomic structures, may 

create an ecosyndemic among women though increased rates of pregnancy risk factors and 

adverse birth outcomes. The conceptual framework of an ecosyndemic as it applies to the above 

example is illustrated in Figure 2-1. 
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Figure 2-1: Environmental Health Justice Ecosyndemic Conceptual Framework 

 

 

With the ecosyndemic framework, the causes, drivers, and health consequences of the 

polluted landscape are identified. In this example, regulatory, political and economic structures 

are creating a setting that leads to a polluted landscape, which is subsequently influencing 

pregnancy health and leading to elevated rates of adverse birth outcomes in this area. 

Additionally, the social structures may be further exacerbating health consequences among low-

income mothers who may experience higher levels of pollution exposures, which this paper 

terms environmental health justice ecosyndemic. Therefore, the individual mothers are nested 

within the biophysical environment which is further nested within the social, economic and 

political structures of that place. The application of health and medical geography methods can 

build on ecosyndemic theory by offering improved understandings of factors influencing health 

outcomes which can lead to improve environmental regulatory and public health policies and 

practices which address the most important factors causing the ecosyndemic.  
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2.4. Conclusion 

 Ecosyndemic theory provides a framework by which to examine environmental 

conditions that lead to disease clustering, which often result from environmental and social 

injustices. This study builds on the existing frame of ecosyndemics by extending it from a largely 

narrow focus on climate-induced environmental changes to the environmental pollution 

landscape and chemical exposures that may lead to the clustering of diseases and greater health 

burdens. The theory ties together the environmental, social and biological contexts and multi- 

and cross-scale dynamics between and among these that influence human health. The case study 

depicted also described how ecosyndemic theory can be used to examine a syndemic at multiple 

levels, such as the environmental hazard (multiple pollutant exposures), the social environment 

and the outcome(s) (multiple health conditions). Ecosyndemics should be incorporated with the 

human ecology model in medical geography to investigate environmental health injustices to 

identify and improve understandings, which may reduce inequities and improve public health. 

Additionally, studies of ecosyndemics are already set in the context of place, core to geographic 

studies. Medical geographers can implement ecosyndemic theory to assess the disease burden of 

populations and subpopulations and evaluate the synergies between the structures, biophysical 

environment and health, and between the various health conditions. Ecosyndemics, therefore, 

advances the existing theoretical approaches used by health and medical geographers, offering 

new perspectives to better understand disease burdens and identify environmental health 

injustices. At the same time, the distinct perspectives and tools used by geographers can further 

advance the field of ecosyndemics to improve the health of those most disadvantaged. For 

example, geospatial technologies such as remote sensing and GIS can be used to identify and 

map environmental hazards and diseases, detect overlapping environmental and social hazards, 
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evaluate spatial and temporal patterns of diseases in populations and identify disease clustering 

and disease risk factors. 

Ecosyndemic theory presents an opportunity to build upon the theoretical approaches 

used by medical geographers and offers new perspectives for environment-human health 

research. The three steps in applying syndemic theory include: (1) examine the environmental 

setting of the place; (2) consider the polluted environment within the socioeconomic context by 

assessing the large-scale structures that led to the location of polluting industries or the 

movement of residents into communities with these facilities, as well as an equity assessment; 

and (3) assess the overall health burden of the place or related to a particular outcome (i.e. 

maternal health). For each step, the individual and contextual factors must be considered 

(Mendenhall et al., 2017). The application of syndemic theory can allow health and medical 

geographers to provide deeper understandings of health by examining synergies, identifying 

inequities and evaluating the overall health burden of a place. These are useful in identifying 

effective interventions to improve public health. The following chapter presents a hazard 

assessment of TRI sites in Michigan to identify places that contribute to potential human health 

risk disparities. 
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  HUMAN HEALTH RISKS FROM TOXICS RELEASE INVENTORY 

CHEMICAL HAZARDS: RACIAL AND ETHNIC DISPARITIES IN MICHIGAN, 

2008-2017 

Abstract 

The Risk-Screening Environmental Indicators model estimates toxicity-weighted concentrations 

based on human health risks from modelled exposures to Toxic Release Inventory (TRI) 

chemicals. The spatial and temporal relationships between census tract level toxicity-weighted 

concentrations and minority and low-income residents were investigated to address 

environmental injustices in Michigan. This study (1) examined the TRI facilities and chemicals 

emitted that contributed the most to elevated toxicity-weighted concentrations in Michigan; (2) 

mapped annual toxicity-weighted concentrations from 2008 to 2017; and (3) documented the 

racial and ethnic composition and income levels of residents living in tracts with exceedingly 

high toxicity-weighted concentrations using a bivariate Local Moran’s I. Findings indicate that 

80.1% of the highest toxicity-weighted concentration tracts were in the Detroit and Grand Rapids 

urban areas. African Americans, Hispanics and residents living near and below poverty were 

most likely to live in the highest toxicity-weighted concentration tracts. Though, race and 

ethnicity were more important than income. The urban-level proportion of African Americans 

living in these tracts persisted over time in Grand Rapids and Detroit, while the urban-level 

proportion of Hispanics living in these tracts increased over time in Detroit demonstrating an 

emergence of risk. These findings suggest that the two largest urban areas in Michigan may be 

experiencing environmental health justice ecosyndemics among these vulnerable population 

groups. 
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3.0. Introduction 

The Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 is a 

federal United States law that created the Toxic Release Inventory (TRI), a database that collects 

and reports on the release, management, and off-site transport of chemical toxicants for humans 

to be used administratively and for public health purposes. Reporting is mandatory for facilities 

in certain industrial sectors that have 10 or more full-time employees and manufacture more than 

25,000 pounds of TRI chemicals or use over 10,000 pounds of any TRI chemical in their 

operations (U.S. EPA, 2017a). Numerous studies show that TRI sites are inequitably distributed 

in high minority and low-income communities, whose exposures may contribute to poorer health 

outcomes and racial and ethnic health disparities (Ash, et al., 2009; Bullard, 2002; Moseley et 

al., 2014; Pastor et al., 2004; Ringquist, 2005; Silva et al., 2016) a phenomenon referred to as 

environmental injustice. The pollution exposures may interact with the social environment and 

individual factors which may contribute to the creation of an ecosyndemic among these minority 

and low-income populations more commonly exposed. Environmental justice studies generally 

support discriminatory citing theory, meaning that TRI facilities are likely to locate in high-

minority and poorer communities, rather than the move-in hypothesis, where minority or poorer 

people move into areas containing TRI facilities (Been and Gupta, 1997; Oakes et al., 1996; 

Pastor et al., 2016; Silva et al., 2016). While these and other studies have used TRI facility 

locations to estimate human chemical exposure (Choi et al., 2006; Legot et al., 2010; Pastor et 

al., 2004; Perlin et al., 1995) these studies utilize relatively simple spatial measurements. 

Examples of these traditional spatial measurements include the presence or absence of a TRI 

facility within a defined area, the measured distance between a TRI facility and a community or 

the use of a circular buffer around a TRI facility to capture the population within who is 
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potentially exposed. These approaches assume an equal output of the chemical hazard and/or an 

equal exposure among the people within proximity to the TRI facility (Conley, 2011). The use of 

area and distance measures and buffers can also lead to the Texas sharp-shooter effect and 

modifiable area unit problem (O'Sullivan and Unwin, 2010), thereby introducing types I and II 

error in individual and population exposure estimates.  

The Risk-Screening Environmental Indicators (RSEI) model was created by the United 

States Environmental Protection Agency (U.S. EPA) to address the limitations of distance-based 

measures, by creating a continuous index of RSEI toxicity-weighted concentrations and RSEI 

Scores (U.S. EPA, 2018a; Chakraborty et al., 2011; Ogneva-Himmelberger et al., 2015). RSEI 

toxicity-weighted concentrations incorporate information on stack dimensions and direct and 

fugitive air releases, direct water releases, transfers to publicly owned treatment works, on-site 

land releases and transfers to offsite incineration. They also include the type(s) of chemical(s) 

emitted, quantity released, the chemical(s) fate and transport through the environment, 

population-exposure pathways, dosage(s) of exposure and estimated chemical toxicity. Chemical 

toxicity is based on the route of exposure and the expected chronic human health impact(s) 

according to the age-sex structure of the population at the census-tract level (U.S. EPA, 2018a). 

Higher tract-level RSEI toxicity-weighted concentrations indicate higher toxicity risk from TRI 

chemical exposure. There are 33 chemical categories within which there are 767 chemicals 

incorporated into the calculation of RSEI toxicity-weighted concentrations (U.S. EPA, 2021). 

RSEI Scores are calculated using the same modelling and exposure estimates as the RSEI 

toxicity-weighted concentrations, however, unlike the RSEI toxicity-weighted concentrations, 

the RSEI Scores incorporates the size of the population exposed—a population weight in its 

calculation.  
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The RSEI model has been used for studies of environmental justice (Abel et al., 2015; 

Ash et al., 2009; Lewis and Bennett, 2013; Shapiro, 2005). Abel et al. (2015) utilized the RSEI 

model in addition to socioeconomic and land use characteristics to define an environmental 

health risk-landscape at the census tract level in Seattle, Washington. Industrial air polluters with 

the greatest inhalation exposure risks were located in tracts of lower socioeconomic status, while 

lower inhalation exposure risks were identified in gentrified areas (Abel et al., 2015). Ash et al. 

(2009) utilized the Scores to identify the 10 most toxic TRI industries in the United States and 

found minority populations had the highest burden of chronic health risks associated with these 

facilities (Ash, et al., 2009). Lewis and Bennett (2013) utilized RSEI Scores and facility 

locations to identify areas in four New York counties, Niagara, Nassau, Kings, and Suffolk, 

which should be considered as environmental justice designations (Lewis and Bennett, 2013). 

Shapiro (2005) utilized the RSEI Scores to study racial and community level differences in 

chronic health risk in the United States between 1996 and 1998. This study found an overall 

decline in mean RSEI Scores (33.4 to 16.3) and a decline for sub-groups including Hispanics vs. 

non-Hispanics (-42.6%), Asians vs. non-Asians (-67.1%), and college-educated residents (-

40.0%). Mean RSEI Scores increased for African Americans vs. non-African Americans (49.8%) 

during the two-year study time period (Shapiro, 2005).   

While these four studies evaluated the RSEI Scores to document environmental injustice 

in their respective study locations, a different understanding of potential chronic health risks 

from TRI chemical exposures may be acquired by evaluating the RSEI toxicity-weighted 

concentrations, which do not adjust for population size and instead focus on the toxicity-risk 

from TRI chemical exposure. For example, an area may have a low RSEI Score but a high RSEI 

toxicity-weighted concentration if the population is small but exposed to either a highly toxic 
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chemical(s) or to a high volume of chemicals. Alternatively, an area may have a high RSEI Score 

but a low RSEI toxicity-weighted concentration because although the toxicity risks might be low, 

the population exposed is large. The relationship between the RSEI Score and RSEI toxicity-

weighted concentrations may vary along a continuum with the primary driver of differences 

being the population size. There is a need for further research utilizing the RSEI toxicity-

weighted concentrations to understand its effect on population groups within geographic areas, 

such as urban or rural that could not be captured by adjusting for overall population size.  

Previous cross-sectional studies also focused on one time period or compared changes 

between two years. There is also a need to investigate RSEI toxicity-weighted concentrations 

over longer time periods to evaluate change and to disentangle changes in toxicity levels vs. 

population composition changes. Additionally, none of the studies identified the top TRI 

chemicals in their study areas and only two (Ash et al., 2009; Lewis and Bennett, 2013) studies 

identified the top TRI facilities in their study areas. There remains a need to identify the top TRI 

facilities and TRI chemicals in Michigan to identify which facilities and chemicals contribute the 

most to elevated human health risks.  

3.1. Purpose of Study 

This research will (1) examine the TRI facilities and chemicals emitted that contributed 

the most to toxicity risks from TRI chemical exposures using the RSEI Scores in Michigan from 

2008 to 2017; (2) visualize the spatio-temporal patterns of annually reported RSEI toxicity-

weighted concentrations at the census tract level in Michigan from 2008 to 2017; and (3) identify 

tracts with high RSEI toxicity-weighted concentrations and investigate the racial and ethnic 

composition and income levels of people living in those tracts and how they change between two 

census time periods: 2008-2012 and 2013-2017. Michigan is studied because its urban areas are 
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highly segregated by race and prior studies have shown evidence of environmental injustice 

(Linc Up and Detroiters Working for Environmental Justice, 2019; Moody and Grady, 2017). 

This study will build on these previous studies by utilizing the RSEI toxicity-weighted 

concentrations to study geographic trends over time and in relation to population characteristics 

during two time periods in Michigan.  

3.0.Study Area 

Michigan is a Rust Belt state with 58,110 square miles of land area, 1,305 square miles of 

inland water, and 38,575 square miles of Great Lakes water (State of Michigan, 2019) (Figure 

3-1). Michigan is commonly known as the Great Lakes State because it borders four of the five 

Great Lakes, which together contain one fifth of the world’s supply of fresh surface water 

(Michigan Economic Development Corporation, 2021). The state has 83 counties on two 

peninsulas (Upper and Lower). Currently, the core industries in Michigan include advanced 

manufacturing, medical device technology, mobility and automotive manufacturing, professional 

and corporate services, tech, and engineering, design and development (Michigan Economic 

Development Coporation, 2021). To strengthen Michigan’s economy, the state established the 

Regional Prosperity Initiative in 2013 which identified and formed ten regions based on 

geography and economics. The Regional Prosperity Initiative encourages local partnerships 

between private, public, and non-profit groups to promote the economic prosperity of the state 

and to improve quality of life (Michigan Economic Development Corporation, 2021).  

Michigan is the 22nd largest state by area and the 10th most populous state in the United 

States (U.S. Census Bureau, 2020). Between 2000 and 2010 Michigan underwent a 0.55% 

decline in population, but then experienced a 1.04% increase in population between 2010 and 

2019 (U.S. Census Bureau, 2021). Although there was modest population growth, there are some 
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concerning trends. The state has had fewer births with a 3.19% decline in birth rates between 

2012 and 2019. The median age of those leaving the state is just under 30 years old. They also 

tend to be more educated (45% had a college degree). Overall, the natural increase rate fell by 

43.88% between 2012 and 2019 (Wilkinson, 2020).  

Figure 3-1: Michigan 

 

 

Michigan’s population is 74% non-Hispanic or Latino White, 14% non-Hispanic Black or 

African American and 5.3% Hispanic or Latino. The poverty rate is 13% and the percent of the 
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population under the age of 65 years that is without health insurance is 6.9% (U.S. Census 

Bureau, n.d.). Approximately 82% of Michigan residents live within a metropolitan area (Mack, 

2019) with Detroit and Grand Rapids the most populous cities in the state, respectively, yet their 

socioeconomic characteristics differ. Detroit’s population declined by 6.1% between 2010 and 

2019. Its median age is 34 years (U.S. Census Bureau, 2021). Fifteen percent of residents have a 

bachelor’s degree or higher; median household income is $30,894; the poverty rate is 35%; and 

9.6% of residents under the age of 65 years are without health insurance. In contrast, Grand 

Rapids grew by 6.9% between 2010 and 2019 (U.S. Census Bureau, n.d.). Its median age is 31 

years (U.S. Census Bureau, 2021) and 36% of residents have a bachelor’s degree or higher (U.S. 

Census Bureau, n.d.). The median household income is $50,103; 20.4% of residents live in 

poverty; and 9.5% of the population less 65 years old is without health insurance (U.S. Census 

Bureau, n.d.). 

Michigan’s numerous TRI facilities are dispersed throughout state (Figure 3-2). Although 

TRI chemicals are a concern for human health, no previous studies have investigated spatial or 

temporal patterns of modelled TRI chemical exposures risks in Michigan. This dissertation 

evaluates TRI chemicals in Michigan in relation to environmental justice and environmental 

health. 

Michigan is in the Midwest region of the United States (EPA Region 5) and its land is 

surrounded by 22 percent of the world’s fresh water (U.S. EPA, 2019a). There are eight large, 

urbanized areas (population ≥	200,000), including Ann Arbor, Detroit, Flint, Grand Rapids, 

Kalamazoo, Lansing, South Bend, and Toledo (State of Michigan, 2017). Michigan had 1,048 

TRI sites operating during 2008 to 2017 the study period.   
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Figure 3-2: TRI Sites in Michigan, 2008-2017 

 

 

The total population in 2017 was 9.973 million, a 0.26% decrease from 2008. During 

2008-2012, Michigan’s population was approximately 13.9% African American, 76.5% White, 

and 4.4% Hispanic or Latino. Based on the ratio of income to poverty level, 20.8% of the 

population lived near and below the poverty level (U.S. Census Bureau, 2012). Between 2008-

2012 and 2013-2017 there was a 2.1% decrease in African Americans, 1.3% decrease in Whites, 

9.1% increase in Hispanics or Latinos, and 0.7% decrease in the population living near and 
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below the poverty level (U.S. Census Bureau, 2017). In summary, there were minimal changes in 

the composition of the population excluding a slight increase in the Hispanic population over 

these two time periods. There was, however, substantial geographic variation in the composition 

of the population as further described below.   

3.2. Materials and Methods 

3.2.1. RSEI Toxicity-Weighted Concentration Data 

This study used the RSEI model developed by the U.S. EPA’s Office of Pollution 

Prevention and Toxics version 2.3.7. Based on the specific calculations for the toxicity weights, 

modeling for each type of release, and population information, the RSEI scores and RSEI 

toxicity-weighted concentrations are calculated as follows: 

RSEI Scores = Surrogate Dose × Toxicity Weight × Population 

RSEI toxicity-weighted concentrations = Surrogate Dose × Toxicity Weight 

The surrogate dose is the quantitative estimate of exposure potential. Surrogate dose estimates 

include data on pathway-specific chemical emissions, physicochemical properties and site-

specific characteristics, when available, to estimate ambient concentrations in the environmental 

medium in which the chemical was released. The surrogate dose is then estimated by combining 

the ambient concentration with human exposure assumptions and the age and sex structure of the 

exposed population. Toxicity weights are chemical specific and exposure-route specific. As the 

potential for a chemical to cause adverse chronic human health effects increases, the chemical 

toxicity weights increase. Population refers to the size of the potentially exposed population, 

derived from decennial census data (U.S. EPA, 2018b). 

RSEI Scores for the most toxic TRI facilities and TRI chemicals in Michigan were 

obtained from the EPA’s Easy RSEI Dashboard (U.S. EPA, 2019b). The chemicals with the five 
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highest RSEI Scores were available at the county level. RSEI toxicity-weighted concentrations 

are not available on the Easy RSEI Dashboard, rather they are provided in the aggregated 

microdata shapefiles. Aggregated microdata shapefiles for all census tracts in Michigan for the 

TRI Core01 chemical list for years 2008 through 2017 were retrieved from the Amazon Web 

Services server (http://abt-rsei.s3.amazonaws.com). The locations of TRI sites with modelled 

releases for the years 2008-2017 were obtained by linking the TRI facility list from the EPA’s 

Easy RSEI website (https://edap.epa.gov/public/extensions/EasyRSEI/EasyRSEI.html) with the 

facility data from EPA’s data dictionary webpage (https://www.epa.gov/rsei/rsei-data-dictionary-

facility-data) (U.S. EPA, 2019c, 2019c).  

3.2.2. Population and Geographic Data 

This study used the American Community Survey (ACS) census tract level 2012 and 

2017 5-year estimates (U.S. Census Bureau, 2012, 2017). The census tables downloaded include 

Hispanic or Latino origin by race (non-Hispanic African American, non-Hispanic White and 

Hispanic ethnicity) and ratio of income to poverty levels of which the percentage of near and 

below poverty levels in the population were studied. The geographic boundary files used in this 

study were obtained from the state of Michigan’s geographic information system (GIS) database, 

including the administrative boundaries of counties (n=83), adjusted urban areas (n=77) and 

cities (n=280) (State of Michigan, 2019). The adjusted urban areas were classified as large, 

urbanized areas (population ≥	200,000), small urbanized areas (population 50,000 to 199,999), 

small urban areas (population 5,000 to 49,999) and rural areas (population < 5,000). Census 

tracts did not fall uniformly within the urban boundaries; therefore, population weighted 

centroids were calculated using the census blocks aggregated to the census tract level to identify 

the census tracts whose population weighted centroids fell within these urban boundaries. The 
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Michigan shapefiles were projected using the NAD 1983 Michigan GeoRef (Meters) coordinate 

system.  

3.2.3. Analysis 

Knowing which facilities and chemicals contributed the most to higher toxicity risk from 

TRI chemical exposures is important for pollution reduction management. Therefore, the top five 

facilities and top five emitted chemicals, including their facility locations and concentrations, 

were identified for this study. To visualize the RSEI toxicity-weighted concentrations over space 

and time in Michigan, choropleth maps were created using census tracts and a quantile 

classification scheme with seven classes beginning with the 2008 base year from which all 

subsequent years followed, 2008 to 2017 in ArcGIS v. 10.6 (ESRI, 2020). 

To assess the spatial relationships between high RSEI toxicity-weighted concentration 

census tracts and racial, ethnic and near and below poverty groups, a bivariate spatial 

autocorrelation approach was used (GeoDa Software 1.14). The bivariate Local Moran’s I 

(Anselin, 2020) captures the relationship between the value of one variable at location #, %! (here, 

the RSEI toxicity-weighted concentration of a census tract) and the average of the neighboring 

values for another variable (here, the percent African American, or percent White or percent 

Hispanic to assess the relationship between risk exposures and vulnerability by race, or percent 

near and below poverty level to assess potential interactions with the social environment) -i.e., its 

spatial lag ∑ 'ij(j" . The statistic is the product of %! with the spatial lag of (! 	(#. +. −∑ 'ij(j" ), 

with both variables standardized, such that their means are zero and variances equal to one:  

I## = 0%i1'ij(j

"
, 

where '!" are the elements of the spatial weight matrix (a queen spatial weight matrix was 

applied). The Moran’s I value range from -1 to +1 where -1 indicates perfect dispersion, 0 
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indicates a random spatial pattern and +1 indicates perfect correlation. The output included 

census tracts with (1) high RSEI toxicity-weighted concentrations and high percentage of the 

race/ethnic and poverty variable of interest (High-High) and (2) low RSEI toxicity-weighted 

concentrations and a high percentage of the race/ethnic and poverty variable of interest (Low-

High). Scatterplots were also created to visualize these bivariate relationships. While many 

studies have used the Global and Local Moran’s I statistics for cross-sectional univariate 

analysis, this study utilized the bivariate Local Moran’s I to study these bivariate relationships 

and their changes between two time periods. 

Census tracts that were in the highest 5% for RSEI toxicity-weighted concentrations were 

identified and the percentage of racial and ethnic groups and percent near and below poverty 

within those tracts were queried. The highest 5% of RSEI toxicity-weighted concentrations 

consisted of 138 census tracts for each year of the study period x 10 years = 1,380 tracts. Since 

the top 5% of census tracts for RSEI toxicity-weighted concentrations were identified for each 

year of the study and then compiled for the study period, there were several duplicates (i.e. 

census tracts that were within the highest 5% for more than one year of the study) that were 

removed n=1,012 (73.3%), so each of these high census tracts were only included once. The final 

dataset contained n=368 tracts for analysis. These census tracts were then grouped according to 

their respective urban areas.  

Following the delineation of areas with high RSEI toxicity weighted concentrations and 

racial-ethnic groups and/or poverty levels the relative proportions of African Americans, Whites, 

Hispanic and residents living near and below poverty in high RSEI toxicity-weighted 

concentration tracts compared to the urban area as a whole, rate ratios were calculated by 

dividing the percent African American, White, Hispanic or percent near and below poverty at the 
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census tract level within an urban area by the percent African American, White, Hispanic and 

living near and below poverty of the urban area for both time periods, 2008-2012 and 2013-

2017. Those census tracks with rate ratios > 1.0 indicated a disproportionately higher toxicity 

risk from TRI chemical exposures and vice-versa rate ratios < 1.0 indicated a disproportionally 

lower toxicity risk from TRI chemical exposures. These findings in the context of environmental 

justice are interpreted below in Results. 

3.3. Results 

The five industrial sectors with the highest RSEI Scores for the state of Michigan were 

Chemicals, Transportation Equipment, Primary Metals, Miscellaneous Manufacturing, and 

Fabricated Metals, respectively (U.S. EPA, 2019b). During the study period, 186 chemicals were 

released, managed, or transported from TRI sites in Michigan. The five chemicals with the 

highest RSEI Scores were as follows: Chromium and chromium compounds, Ethylene oxide, 

Cobalt and cobalt compounds, Nickel and nickel compounds, and Benzene Table 3-1. The 10 

facilities with the highest RSEI Scores in Michigan during 2008 to 2017 are listed in  

Table 3-2. Four of the ten facilities with the highest RSEI Scores in Michigan were 

within the Detroit urban area and three were within the Grand Rapids urban area. The chemicals 

with the highest RSEI Scores in the Detroit urban area were: Arsenic and arsenic compounds, 

Asbestos, Benzene, Chromium and chromium compounds, Cobalt and cobalt compounds, 

Diisocyanates, Ethylene oxide, and Nickel and nickel compounds. The chemicals with the 

highest RSEI Scores in the Grand Rapids urban area were: Chromium and chromium 

compounds, Diisocyanates, Ethylene oxide, Formaldehyde, Nickel and nickel compounds, 

Polycyclic aromatic compounds, and Trichloroethylene. Air releases contributed the most to high 
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RSEI Scores followed next by water for the state and the Detroit and Grand Rapids urban areas 

(U.S. EPA, 2019b).  

Table 3-1. Highest Ranked Chemicals Released in Michigan by RSEI Scores, 2008-2017. 

Chemical Name RSEI Score 

Chromium and chromium compounds 78,147,984 

Ethylene oxide 69,895,544 

Cobalt and cobalt compounds 23,260,206 

Nickel and nickel compounds 7,037,140 

Benzene 3,652,431 

Arsenic and arsenic compounds 1,794,022 

Asbestos (friable) 1,509,981 

Diisocyanates 1,444,507 

Acrylonitrile 1,195,540 

Hydrazine 1,155,812 

Others 4,603,412 
Source: U.S. EPA, 2019b. The RSEI score is the result of modeled air and water emissions and off-site 
transfers of TRI chemicals; It evaluates the surrogate dose, toxicity weight, and the population. 

 

Table 3-2. Ten Highest Ranked Facilities in Michigan by RSEI Scores, 2008-2017. 

Facility City County Urban Area RSEI Score 
Medplast Medical Inc. Medplast 
Sterilization 

Grand Rapids Kent Grand Rapids 32,838,532 

Taminco Higher Amines Inc. Riverview Wayne Detroit 21,865,613 

Benteler Automotive Hagen Facility Grand Rapids Kent Grand Rapids 20,367,181 

Basf Corp Wyandotte Wayne Detroit 16,023,413 

Le Jones Co. LLC Menominee Menominee Menominee 13,426,293 

Cannon-Muskegon Muskegon Muskegon Muskegon 9,609,141 

Bosch Emissions Systems US Kentwood Kent Grand Rapids 7,575,774 

Oerlikon Metco (US) Troy Troy Oakland Detroit 7,307,117 

SMS Group Warren Workshop Warren Macomb Detroit 6,571,425 

Michigan Seamless Tube LLC South Lyon Oakland South Lyon-Howell 3,499,547 

Source: U.S. EPA, 2019b. The RSEI score is the result of modeled air and water emissions and off-site transfers of 
TRI chemicals; It evaluates the surrogate dose, toxicity weight, and the population. 
 

The census tract level RSEI toxicity-weighted concentrations in Michigan ranged from 0 

to > 3,400,000 (Table 3-3). The highest mean RSEI toxicity-weighted concentration was in 2008 

(13,406.79) and the lowest mean was in 2010 (5,228.82). The highest median RSEI toxicity-



 

 

 

47 

 

weighted concentration was in 2012 (3,886.09) and the lowest median was in 2014 (1,589.35). 

The highest maximum RSEI toxicity-weighted concentration was in 2008 (3,420,940) (U.S. 

EPA, 2017b). While the maximum RSEI toxicity-weighted concentration declined over the time 

period there were substantial changes between 2009-2011 and an increase between 2016 and 

2017.   

Table 3-3. RSEI Toxicity-Weighted Concentrations Across Census Tracts, by Year in Michigan, 
2008-2017. 

Year Mean Median Maximuma 
(%) Subsequent Year 

Annual Change in Mean 
2008 13,406.79 1,916.80 3,420,940 -- 

2009 11,523.73 2,301.89 2,744,550 -14.05 

2010 5,228.82 2,298.51 330,125 -54.63 

2011 8,068.03 2,298.61 1,125,370 54.30 

2012 11,513.27 3,886.09 949,897 42.70 

2013 7,492.71 2,288.06 728,732 -34.92 

2014 7,438.78 1,589.35 871,874 -0.72 

2015 7,844.55 2,315.09 895,976 5.45 

2016 7,124.89 2,553.37 840,140 -9.17 

2017 6,590.05 2,103.73 1,192,750 -7.51 
Source: U.S. EPA, 2017b. 
Note: The RSEI toxicity-weighted concentration is the result of modeled air and water emissions and off-site 
transfers of TRI chemicals; It evaluates the surrogate dose and toxicity weight.  
aAll minimum concentrations = 0. 
 

Figure 3-3 show the spatio-temporal changes in RSEI toxicity-weighted concentrations in 

Michigan from 2008 to 2017. The urban areas of Detroit, Muskegon, Marinette-Menominee, 

Midland, and South Bend consistently contained the highest RSEI toxicity-weighted 

concentrations during the study period, and the urban area of Grand Rapids contained high RSEI 

toxicity-weighted concentrations since 2011. 
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Figure 3-3. RSEI Toxicity-Weighted Concentrations by Census Tract, Michigan 2008-2017. 
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Census tracts in the highest 5% for RSEI toxicity-weighted concentrations across the 

study period were predominantly (96.6%) located in urban areas (n=1,333) (Figure 3-4). More 

specifically, 87.4% (n=1,206) in large, urbanized areas, 8.8% (n=121) in small, urbanized areas, 

0.4% (n=6) in small urban areas, 2.7% (n=37) overlapped both small urban and rural areas, and 

0.7% (n=10) in rural areas (State of Michigan, 2017). The Detroit, Grand Rapids, Marinette-

Menominee, and South Bend urban areas all contained one or more census tracts in the highest 

5% for RSEI toxicity-weighted concentrations during all ten years of the study period. The 

Midland urban area contained one or more census tracts in the highest 5% for RSEI toxicity-

weighted concentrations nine of the ten study years and the Muskegon urban area contained one 

or more census tracts in the highest 5% for RSEI toxicity-weighted concentrations eight of the 

ten study years (Table 3-4).  
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Figure 3-4: Michigan Census Tracts in the Highest 5% for RSEI Toxicity-Weighted 
Concentrations, 2008-2017 

 

 
  



 

 

 

51 

 

Table 3-4. Summary of Urban Areas with Census Tracts in the Highest 5% of RSEI Toxicity-
Weighted Concentrations in a year, 2008-2017. 

Urban Area 
Urban Area 
Classification+ 

No. years one 
or more 
census tracts 
in the top 5%  

No. different 
census tracts 
in the top 5%  

Cumulativea 
No. census 
tracts in the 
top 5% 

% total 
(cumulative)  

Detroit Large Urbanized 10 165 590 42.75 
Grand Rapids Large Urbanized 10 98 529 38.33  
Muskegon Small Urbanized 8 21 64 4.64  
Ann Arbor Large Urbanized 4 34 51 3.70  
Midland Small Urbanized  9 7 41 2.97 
Marinette-Menomineeb Rural & Small Urban 10 3 29 2.10 
South Bend Large Urbanized 10 3 22 1.59 
Lansing Large Urbanized 2 6 10 0.72 
Non-Urban Rural 3 7 10 0.72 
Marshall Small Urban 2 4 6 0.43 
South Lyon-Howell Small Urbanized 4 3 6 0.43 
Battle Creek Small Urbanized 2 5 5 0.36 
Hillsdaleb Rural & Small Urban 2 4 4 0.29 
Monroe Small Urbanized 1 3 4 0.29 
Kalamazoo Large Urbanized 3 1 3 0.22 
Whitehallb Rural & Small Urban 3 1 3 0.22 
Bay City Small Urbanized 1 1 1 0.07 
Coldwaterb Rural & Small Urban 1 1 1 0.07 
Toledo Large Urbanized 1 1 1 0.07 

Sources: U.S. EPA, 2017b; State of Michigan, 2019. 
Note: The RSEI toxicity-weighted concentration is the result of modeled air and water emissions and off-site 
transfers of TRI chemicals; It evaluates the surrogate dose and toxicity weight. +Urban Area Classifications are 
described as: “1 Rural Area; 2 Small Urban Area (5,000 to 49,999); 3 Small Urbanized Area (Population 50,000 to 
199,999); 4 Large Urbanized Area (Population 200,000 or More)" (State of Michigan, 2017).  
aThe cumulative number includes census tracts that were in the highest 5% of Toxicity-weighted concentrations in 
more than one year, therefore representing the total number of census tracts in the urban area for the duration of the 
study period. 
aContains one or more census tracts that falls within two classification, partly urban and partly rural. 

Nine urban areas had one or more census tract in the highest 5% for RSEI toxicity-

weighted concentrations during the study period. Between the two time periods, 2008-2012 and 

2013-2017, four urban areas experienced an increase (Ann Arbor, Battle Creek, Grand Rapids, 

and Marinette-Menominee), four urban areas experienced a decrease (South Lyon-Howell, 

Muskegon, Detroit, and Midland) and South Bend experienced no change in the number of 

census tracts in the highest 5% of RSEI toxicity-weighted concentrations. The Detroit (42.8%) 

and Grand Rapids (38.3%) urban areas contained 81.1% of the highest 5% census tracts for RSEI 
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toxicity-weighted concentrations. The Detroit and Grand Rapids urban areas contained higher 

densities of TRI sites as well as the most census tracts in the highest 5% for RSEI toxicity-

weighted concentrations than the other urban areas in the state. In general, the census tracts in the 

highest 5% for RSEI toxicity-weighted concentrations located in the Detroit urban area contained 

a higher density of TRI sites with few exceptions, such as along I-96 between the cities of 

Plymouth and Detroit, in and around Wayne and in the northeastern area of Detroit with TRI 

sites mostly concentrated along major roads. Taminco Higher Amines Inc is south of Detroit 

City in Riverview, Basf Corp is south of Detroit City in Wyandotte, Oerlikon MEtco (US) Troy 

is northwest of Detroit City in Troy and SMS Group Warren Workshop is north of Detroit City 

in Warren (data not shown). In the Grand Rapids urban area, the census tracts in the highest 5% 

for RSEI toxicity-weighted concentrations had a higher density of TRI sites compared to the rest 

of the Grand Rapids urban area. The TRI sites were concentrated along major roadways and the 

Grand River, primarily located within industrial complexes. Medplast is in the City of Grand 

Rapids, Bentelor Automotive Hagan Facility is south of the City of Grand Rapids in Wyoming, 

and Bosch Emissions Systems US is southeast of the City of Grand Rapid in Kentwood (data not 

shown).  

3.3.1. High RSEI and Population Characteristics  

The bivariate Local Moran’s I values ranged between -0.214 and 0.375 in the Detroit 

urban area and between -0.279 and 0.267 in the Grand Rapids urban area (Figures 3-11 to 3-18). 

For both urban areas, RSEI toxicity-weighted concentrations and percent White consistently 

showed a negative spatial autocorrelation, while RSEI toxicity-weighted concentrations and 

percent African American, percent Hispanic and percent living near and below poverty 

consistently showed a positive spatial autocorrelation. In the Detroit urban area, the correlation 
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between the highest RSEI toxicity-weighted concentrations and each of the demographic 

variables (percent White, African American, Hispanic and living near and below poverty) was 

higher in 2017 than in 2013, with a mix of increasing and decreasing trends between these years. 

The tracts with the highest RSEI toxicity-weighted concentrations also experienced a high 

percentage of Hispanics in the Detroit urban area during 2013-2017. In the Grand Rapids urban 

area, the correlation between high RSEI and African Americans, White and Hispanics were 

higher in 2013 than in 2017; however, the correlation between RSEI and White and RSEI and 

Hispanic decreased each year.  

In Detroit, there were some noticeable changes between 2013 and 2017. There were more 

census tracts with High-High spatial autocorrelation in 2017 than in 2013 for percent African 

American, Hispanic and near and below poverty, indicating increasing inequality over this 

period. The city of Pontiac experienced a notable shift between 2013 and 2017 containing High-

High census tracts for African Americans, Hispanics and near and below poverty in 2013, but it 

shifted to Low-High census tracts for African Americans, Hispanics and near and below poverty 

in 2017. There was some overlap between areas with a high percentage of African Americans, 

Hispanics and near and below poverty. There was very little overlap between areas with a high 

percentage of Whites, Hispanics and near and below poverty, but no overlap for Whites and 

African Americans.  

High RSEI toxicity-weighted concentrations and a high percentage of African Americans 

persisted between 2013-2017 in northeast and southwest Detroit, with expansion of high RSEI 

toxicity-weighted concentrations and a high percentage of African Americans into Detroit in 

2017. This expansion of high RSEI toxicity-weighted concentrations and a high percentage of 

African Americans also occurred in Romulus. There were low RSEI toxicity-weighted 
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concentrations and a high percentage of African Americans in northwest Detroit, Southfield and 

southwest Detroit bordering Gross Pointe. Pontiac historically had High-High spatial 

autocorrelation and over time lower RSEI toxicity-weighted concentrations. Additionally, high 

RSEI toxicity-weighted concentrations and a high percentage of African Americans extended 

into Auburn Hills over time. The findings suggest that while many African Americans are 

migrating away from areas with high RSEI toxicity-weighted concentrations in Detroit and 

Pontiac, the area with high RSEI toxicity-weighted concentrations and a high percentage of 

African Americans is also expanding within Detroit and Romulus. The relationship between high 

RSEI toxicity-weighted concentrations and a high percentage of African Americans is still 

largely within urban areas (Figure 3-5). 
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Figure 3-5. Bivariate Moran’s I: RSEI Toxicity-Weighted Concentrations and Percent African 
American, Detroit Urban Area, 2013-2017. 

 

 

There was persistent high RSEI toxicity-weighted concentrations and a high percentage 

of Whites in Warren and Royal Oak suburbs north of Detroit as well as in the Taylor and Lincoln 

Park suburbs southwest of Detroit. Over time there was an emergence of High-High spatial 

autocorrelation in Dearborn, Romulus, Canton and Westland. There was persistent low RSEI 

toxicity-weighted concentrations and a high percentage of Whites in Oakland and Macomb 

counties. Cities and townships with no spatial autocorrelation identified included Detroit, 

Southfield and Pontiac demonstrating the extreme racial and ethnic segregation in the Detroit 

Urban Area (Figure 3-6). 
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Figure 3-6. Bivariate Moran’s I: RSEI Toxicity-Weighted Concentrations and Percent White, 

Detroit Urban Area, 2013-2017. 

 

 

In the southeast portion of the Detroit Urban Area, high RSEI toxicity-weighted 

concentrations and a high percentage of Hispanics was identified, with movement toward 

southeast Detroit, Dearborn, Romulus and Flat Rock over time. Historically, there was also 

High-High spatial autocorrelation in Pontiac, but over time we observed reductions in RSE 

toxicity-weighted concentrations in the city. Low RSEI toxicity-weighted concentrations and a 

high percentage of Hispanics dominate the area to the west and north of Pontiac (Figure 3-7).  
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Figure 3-7. Bivariate Moran’s I: RSEI Toxicity-Weighted Concentrations and Percent Hispanic, 
Detroit Urban Area, 2013-2017. 
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 High RSEI toxicity-weighted concentrations and a higher percentage of residents below 

or near poverty were located along the border of the cities of Detroit and Warren and north-

central Detroit, and south of Detroit in River Rogue, Lincoln Park and Taylor. The western and 

eastern edges of Detroit and Gross Pointe experienced persistent low RSEI toxicity-weighted 

concentrations and a low percentage of residents living near and below poverty. Southern 

Detroit, northern Dearborn and parts of Inkster and Romulus historically contained Low-High 

spatial autocorrelations that shifted to High-High over time, whereas in Pontiac a shift from 

High-High to Low-High spatial autocorrelation was observed (Figure 3-8).  

 

Figure 3-8. Bivariate Moran’s I: RSEI Toxicity-Weighted Concentrations and Percent Near and 
Below Poverty, Detroit Urban Area, 2013-2017. 
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In Grand Rapids, the spatial pattern of census tracts with High-High and Low-High 

spatial autocorrelation were similar during 2013-2015. This spatial pattern changed in 2016 and 

remained similar in 2017. There were fewer census tracts with high RSEI toxicity-weighted 

concentrations and a high percentage of African American, Hispanic and residents near and 

below poverty in 2017 than in 2013; however, there was one more tract with high RSEI toxicity-

weighted concentrations and a high percentage of Whites in 2017, up from 2013. This is 

different than the pattern observed in Detroit. 

There was a notable shift in the southern part of Grand Rapids and the northeastern part 

of Wyoming between 2013 and 2017. This area had high RSEI toxicity-weighted concentrations 

and a higher percentage of African Americans, Hispanics and residents near and below poverty 

in 2013, but then had low RSEI toxicity-weighted concentrations for these same variables in 

2017. Persistently high RSEI toxicity-weighted concentrations and a high percentage of African 

Americans were observed in east Grand Rapids and Kentwood. South Grand Rapids and the 

suburbs just to the south of the city experienced a shift to low RSEI toxicity-weighted 

concentrations and a high percentage of African Americans in 2017 (Figure 3-9). 
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Figure 3-9. Bivariate Moran’s I: RSEI Toxicity-Weighted Concentrations and Percent African 
American, Grand Rapids Urban Area, 2013-2017. 

 

 

There were very few census tracts with a high percentage of Whites and high RSEI 

toxicity-weighted concentrations. The areas surrounding the City of Grand Rapids where whites 

largely live experienced low RSEI toxicity-weighted concentrations, with a few small pockets of 

persistent high RSEI toxicity-weighted concentrations and a high percentage of Whites in 

northeast and northwest Grand Rapids (Figure 3-10). 
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Figure 3-10. Bivariate Moran’s I: RSEI Toxicity-Weighted Concentrations and Percent White, 
Grand Rapids Urban Area, 2013-2017. 
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High RSEI toxicity-weighted concentrations and a high percentage of Hispanics persisted in the 

east-central area of Grand Rapids. There were a few tracts in Wyoming and Kentwood as well, 

but a reduction (low RSEI toxicity-weighted concentrations) was observed in these areas (Figure 

3-11). High RSEI toxicity-weighted concentrations and a high percentage of residents living 

below or near poverty were predominantly located in the City of Grand Rapids, but there were 

also a few tracts in east Wyoming and one tract in Kentwood, however, over time these High-

High tracts were only located in Grand Rapids. Areas with low RSEI toxicity-weighted 

concentrations and a high percentage of residents living below or near poverty were fairly 

dispersed across the urban area but were persistently located in Ottawa County and the cities of 

Walker, Grand Rapids, Wyoming and Kentwood (Figure 3-12).  
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Figure 3-11. Bivariate Moran’s I: RSEI Toxicity-Weighted Concentrations and Percent Hispanic, 
Grand Rapids Urban Area, 2013-2017. 
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Figure 3-12. Bivariate Moran’s I: RSEI Toxicity-Weighted Concentrations and Percent Near and 
Below Poverty, Grand Rapids Urban Area, 2013-2017. 
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3.3.2. Rate Ratios for the Two Time Periods 

The urban areas of Detroit, Grand Rapids, Muskegon, Menominee-Marinette, Midland 

and South Bend had consistently high RSEI toxicity-weighted concentrations. Rate ratios for 

populations living in census tracts in the highest 5% for RSEI toxicity-weighted concentrations 

during the study period varied (Table 3-5). During the 2008-2012 period, African Americans 

living in Monroe experienced the highest risk (Rate Ratio (RR)=3.38) followed by Ann Arbor 

(RR=2.9) and Muskegon (RR=2.1). Hispanics living in Lansing also experienced an increased 

risk (RR=2.84) followed by Detroit (RR=2.49). During the 2013-2017 period, the risk for 

African Americans living in Monroe fell out of the top 5% with declines also seen in Ann Arbor 

(RR=1.96) and Muskegon (RR=0.96). Hispanics living in Lansing also fell outside of the top 5% 

tracts however, those living in Detroit drastically increased Detroit (RR=4.26). In 2013-2017 

people living in the top 5% RSEI toxicity-weighted concentration tracts were also more likely to 

be poor; except in a greater percentage of non-poor living in high RSEI toxicity-weighted 

concentration tracts were observed in Kalamazoo and Muskegon. 
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Table 3-5. Percentage of Racial/Ethnic and Population Living Near and Below Poverty in 
Highest 5% Tracts for RSEI Toxicity-Weighted Concentrations Divided by Percentage of 
Racial/Ethnic and Population Living Near and Below Poverty by Urban Location by Time 

Period. 
Time Period Location African American White Hispanic Near and 

Below Poverty 

  Rate Ratio Rate Ratio Rate Ratio Rate Ratio 

2008-2012 

Ann Arbor 2.87 0.79 0.79 1.29 
Battle Creek 0.13 1.26 0.66 0.49 
Coldwater 0.00 1.09 0.08 0.82 
Detroit 0.50 1.16 2.49 0.98 
Grand Rapids 1.81 0.84 1.62 1.39 
Hillsdale 1.47 1.00 1.11 1.19 
Lansing 1.77 0.77 2.84 1.55 
Marinette-Menominee 1.28 1.02 1.28 1.13 
Marshall 1.01 1.01 1.01 1.00 
Midland 0.65 0.99 1.19 1.51 
Monroe 3.38 0.88 1.75 1.68 
Muskegon 2.10 0.81 1.06 1.37 
South Bend 1.46 0.97 1.44 1.31 
South Lyon-Howell 1.05 0.99 1.68 1.70 
Whitehall 0.74 1.04 0.91 0.75 

2013-2017 

Ann Arbor 1.96 0.88 1.29 1.26 
Battle Creek 1.24 0.91 0.95 1.28 
Bay City  1.67 0.96 1.69 1.49 
Detroit 0.83 0.89 4.26 1.42 
Grand Rapids 1.48 0.91 1.36 1.20 
Kalamazoo 1.43 1.00 1.01 0.74 
Marinette-
Menominee 1.29 1.01 1.14 1.19 

Midland 0.97 0.99 1.48 1.32 
Muskegon 0.92 1.06 1.03 0.85 
South Bend 1.44 1.00 0.35 1.51 
South Lyon-Howell 1.31 0.97 1.41 1.25 
Toledo 0.08 1.01 0.26 1.76 

Sources: U.S. EPA, 2017b; U.S. Census Bureau, 2012, 2017. The RSEI toxicity-weighted concentration is the result 
of modeled air and water emissions and off-site transfers of TRI chemicals; It evaluates the surrogate dose and 
toxicity weight. 
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3.4. Discussion 

The findings from this study offer new perspectives on the spatial and temporal burdens 

of RSEI scores and toxicity-weighted concentrations in Michigan. There was temporal variation 

in the mean, median and maximum RSEI toxicity-weighted concentrations during the study 

period. The results indicate that the highest toxicity risk from TRI chemical exposures were 

found in large and small urbanized areas, small urban areas, and rural areas. The study identified 

the urban areas of Detroit and Grand Rapids as potential areas of concern for environmental 

regulatory and public health agencies regarding exposure to TRI chemicals, as just over 80% of 

the census tracts in the highest 5% for toxicity risk from TRI chemical exposures were in these 

two urban areas across all years of the study period. Together these two urban areas contain a 

majority of the state’s population, jobs, and economic productivity (Public Sector Consultants 

and Metropolitan Policy Program at Brookings, 2016). 

Urban areas contained a higher density of TRI sites than rural areas in Michigan. This is 

consistent with the geographic distribution nationwide (Perlin et al., 1995; Wilson, et al., 2012). 

The highest density of TRI sites was located within the Detroit urban area, followed next by the 

Grand Rapid urban area. The Detroit and Grand Rapids urban areas contained higher densities of 

both TRI sites and the greatest number of census tracts in the highest 5% for RSEI toxicity-

weighted concentrations. There were a few exceptions, but overall, areas with higher densities of 

TRI sites contained census tracts in the highest 5% for RSEI toxicity-weighted concentrations in 

the Detroit urban area. In the Grand Rapids urban area, census tracts in the highest 5% for RSEI 

toxicity-weighted concentrations were in areas with a higher density of TRI sites. Although this 

was the general pattern observed across Michigan, there were also areas that had TRI sites and 

no tracts in the highest 5%, or that had tracts in the highest 5% and no TRI sites, reinforcing the 
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effectiveness of using modelled emission data rather than just presence or absence of a facility 

and/or distance-based measures.  

This study found positive spatial autocorrelation (clusters) between high RSEI toxicity-

weighted concentrations and percent African American, percent Hispanic and percent living near 

and below the poverty level. In general, African Americans living in tracts with high RSEI 

toxicity-weighted concentrations persisted over time. This finding supports the trend in lead 

emissions observed by Moody and Grady (2017), which reported the relocation of lead emitting 

facilities out of Black segregated neighborhoods in Pontiac and nearby areas and into 

neighborhoods with higher levels of Black segregation in and around southern Detroit, Dearborn, 

River Rough, and Ecorse. In Detroit, poor and minority communities appear to be experiencing 

an increasing share of elevated toxicity risk from TRI chemical exposures. Hispanic populations 

experienced the greatest increase over time with high RSEI toxicity-weighted concentrations as 

evidence of emerging trends over time. These findings demonstrate the persistent and emerging 

dynamics of environmental justice in Detroit. Additionally, the race/ethnicity variables had 

higher spatially correlation than the income variable. This is an important finding, though it is 

not the first study to report such a result (United Church of Christ, 1987).  

In the Grand Rapids urban area, a noticeable shift in spatial autocorrelation was observed 

in southern Grand Rapids and northeastern Wyoming. The Neighborhood Environmental Action 

Report (Linc Up and Detroiters Working for Environmental Justice, 2019) previously described 

environmental injustices in the southeastern neighborhoods of Grand Rapids, which was one of 

the areas this study found to have high RSEI toxicity-weighted concentrations and a high 

percentage of African American and Hispanic populations. The findings suggest that the Grand 

Rapids urban area became more, not entirely, equitable over time in terms of the share of RSEI 
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toxicity-weighted concentrations. This differs from Detroit where the environmental burden 

among the different population groups seems to have become more inequitable. This trend may 

in part be explained by changing population composition characteristics and urban structure. The 

City of Grand Rapids and the surrounding area has been one of the fastest growing regions in 

Michigan for the past several years. The Grand Rapids urban area experienced significant 

population growth between the 2012 and 2017 5-year ACS censuses compared to the only slight 

population growth in the Detroit urban area during this same period (Open Data Network, 2018). 

The key strengths of the study include: first, the use of the RSEI model, which (1) takes 

into account source-specific information regarding the chemical(s) release, evaluating the stack 

height, gas exit velocity, and the fate and transport of the chemical(s) by using site- and time-

specific atmospheric and groundwater models; (2) examines the annual amount of each chemical 

released per year and weights them by their toxicity; (3) the route and level of human exposure is 

considered; (4) offers an efficient and flexible way to evaluate environmental risks; (5) the model 

has been peer-reviewed and its’ methodology is transparent (U.S. EPA, 2018b). Second, 

choosing to investigate the RSEI toxicity-weighted concentrations rather than the RSEI Scores 

since they do not include a population weight by which to further study population composition 

in relation to urban and rural differences. Third, the study used two methods to evaluate 

environmental justice, including bivariate Local Moran’s I and rate ratios of RSEI toxicity-

weighted concentrations and the racial, ethnic, and poverty characteristics of census tracts and 

urban areas. This approach provided valuable insight into the share of toxicity risk from TRI 

chemical exposure within each urban area.  

This study is not without limitations. First, environmental justice areas were identified, 

but future research should investigate the TRI facilities and TRI chemicals emitted in these areas. 
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Second, Hispanics are a growing population in Michigan and were found to be living in census 

tracts with high RSEI toxicity-weighted concentrations. Therefore, the move-in hypothesis 

should be further explored for this population. The RSEI model also has limitations, including: 

first, TRI emissions are self-reported by the industries, so it is possible they are not accurate. De 

Marchi and Hamilton (2006) argue that facilities often under-report their emissions to the U.S. 

EPA to either minimize costs associated with measuring emissions and/or to wrongfully 

insinuate the facility has reduced their emission. Therefore, if facilities are regularly under-

reporting their chemical releases, the RSEI values are likely based on conservative estimates. 

Second, many industrial plants do not have to report their emissions of toxic chemicals because 

they fall under the minimum reporting threshold (Currie et al., 2015; U.S. EPA, 2018b). Third, it 

does not include information on mobile sources or Superfund (hazardous waste) sites, so not all 

sources of environmental risk are included. Fourth, sometimes the chemical group is reported 

rather than data on the specific type of chemical. In most instances, the model will assume the 

most toxic form of the chemical was released (U.S. EPA, 2017a). Finally, it assumes populations 

are continuous exposed throughout the year (Chakraborty et al., 2011; U.S. EPA, 2018b). 

3.5. Conclusion  

These findings extend ecosyndemic theory by demonstrating that an ecosyndemic can 

also occur at the environmental hazard level with multiple chronic pollution exposures, rather 

than just the health outcome level. This study suggests that a pollution ecosyndemic is present in 

Michigan’s Detroit and Grand Rapids urban areas. The TRI chemicals may have synergistic or 

interaction effects with one another along with the social environment as observed in the poverty 

relationships, as well as individual factors. 
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Overall, population groups experiencing a disproportionate share of elevated toxicity risk 

from TRI chemical exposures are African Americans, Hispanics and populations living near and 

below poverty in urban areas of Michigan. Notably, the spatial autocorrelation between census 

tract level demographics and RSEI toxicity-weighted concentrations was higher for race than for 

income. African Americans living in the Grand Rapids urban area and Detroit experienced 

persistent environmental injustice, while Hispanics living in the Detroit urban area experienced 

emerging environmental injustice, both trends important for the study of environmental justice. 

These vulnerable population groups are likely less able to change their conditions due to limited 

political influence and financial and mobility challenges. Moseley (2014) identifies economic, 

sociopolitical, and racial factors as general reasons for the distribution of environmental hazards 

and environmental benefits. Therefore, the structural setting in has predisposition minority and 

low-income populations to experience inequitable pollutant exposures which may have 

synergistic and interacting effects that further harm human health, further exacerbating 

environmental and health equity concerns. 

The TRI facilities and the TRI chemicals released, managed, or transferred from these 

facilities should be investigated in the areas where environmental injustices were identified. In 

particular, the companies contributing the most to human health risk from TRI chemical 

exposures, Medplast Medical Inc. Medplast Sterilization, Taminco Higher Amines Inc., Benteler 

Automotive Hagen Facility, Basf Corp, Le Jones Co. LLC, Cannon-Muskegon, Bosch Emissions 

Systems US, Oerlikon Metco (US) Troy, SMS Group Warren Workshop and Michigan Seamless 

Tube LLC., respectively, should be monitored closely and incentivized to reduce their release of 

toxic chemicals into the environment. Future research in Michigan should investigate the results 

from this study in relation to other U.S. EPA environmental indicators and environmental justice 
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indexes; and compare the discriminatory citing hypothesis with the move-in hypothesis for 

Hispanic populations who were identified as experiencing disproportionate burdens from toxicity 

risk from TRI chemical exposures. Future environmental justice research should also use the 

RSEI model to study exposure risks among populations in other states.  
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  ENVIRONMENTAL HEALTH INVESTIGATION OF TOXIC RELEASE 

INVENTORY CHEMICALS ON MATERNAL HEALTH, BIRTH OUTCOMES AND 

NEONATAL MORTALITY IN MICHIGAN, 2008-2017 

Abstract 

Pregnant women in the United States are at risk of multiple chemical exposures, many of which 

have been linked to adverse health outcomes among women and their babies. This study 

examined maternal exposure to modelled Toxic Release Inventory (TRI) chemicals on adverse 

birth outcomes, including lethal congenital anomalies, in Michigan. During the 2008-2017 study 

period, Michigan TRI facilities released a combined 186 different toxic chemicals into the air, 

waterways and on land. The Risk-Screening Environmental Indicators (RSEI) model, which 

includes the type of chemical release, quantity and toxicity of the chemical, fate and transport 

through the environment, the route of exposure and dose of exposure to produce health risk-

related values, and geospatial technologies were used to define maternal exposure at place of 

residence. Logistic regression models were implemented to estimate the odds of low birth weight 

and preterm birth among mothers with varying exposures, while controlling for potential 

confounding variables. Space-time scan statistics were used to examine the spatial and temporal 

distribution of lethal congenital anomalies in Michigan. The study found a statistically 

significant association between higher RSEI exposure quartiles and an increased odds of low 

birth weight and preterm birth. Several important interactions with the RSEI exposure quartiles 

were identified, including smoking, age, gestational hypertension and premature rupture of the 

membranes, which exacerbated the RSEI effects on birth outcomes. The results of the space-time 

analysis identified statistically significant clusters of lethal congenital anomalies in the urban 

areas of Detroit, Ann Arbor, Lansing and Holland, and in the area encompassing Gladwin, 
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Arenac and Bay Counties. Further analysis indicated that maternal exposure to elevated RSEI 

toxicity-weighted concentrations may in part be a contributing factor to these clusters. The 

findings from this research inform environmental regulatory and public health policies and health 

care practice in areas with elevated RSEI levels from TRI sites. 
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4.0. Introduction 

Research indicates that people are exposed to multiple industrial chemicals throughout 

their lives, with initial exposures beginning before birth (Institute of Medicine;, 2014; Woodruff, 

2015). Exposure to certain chemicals can increase an individual’s risk of an adverse health 

outcome and depends on the (a) type of chemical, (b) dose of exposure, (c) duration of exposure, 

(d) frequency of exposure, (e) stage of the life course at time of exposure, and (f) underlying 

health status  (ATSDR, n.d.). Extrinsic factors (i.e. environmental exposures) may interact with 

intrinsic factors (i.e. biological factors) to negatively impact health (American College of 

Obstetricians and Gynecologists [ACOG], 2013).  

Several studies (National Cancer Institute, 2010; Sutton, Perron, Giudice, & Woodruff, 

2011; Woodruff, Zota, & Schwartz, 2011) indicate that both preconception and prenatal 

exposure can have a significant adverse impact on one’s reproductive and developmental health 

throughout their life. Impacts include adverse birth outcomes, birth defects, childhood and adult 

cancers, reproductive functions, and cognitive, neurological and reproductive development 

(ACOG, 2013). Improving birth outcomes is an important research focus because they can have 

significant and lastly effects. Adverse birth outcomes increase infants’ risk of both short-term 

and long-term morbidity and mortality (Anderson et al., 2003; Barker, 2006; CDC, 2019a). For 

example, birth defects, low birth weight, and premature birth are the leading causes of infant 

mortality in the United States (CDC, 2019b). Adverse birth outcomes have also been linked to 

various health and developmental problems (Anderson, Doyle, FRACP, & Victorian Infant 

Collaborative Study Group, 2003; Barker, 2006). In addition, early-life exposures may make 

individuals more vulnerable to future insults by reducing their ability to respond (Bellinger, 

Matthews-Bellinger, & Kordas, 2016; Cory-Slechta, 2005). It is understood that these outcomes 
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can result from environmental exposures (Padula, et al., 2018; Porpora, et al., 2019; Ritz, et al., 

2002; Stieb, Chen, Eshoul, & Judek, 2012). 

4.1. Background 

4.1.1. Environmental Health Assessment of Birth Outcomes 

Women in the United States are likely exposed to multiple chemicals during pregnancy 

(Wang, et al., 2018; Woodruff et al., 2011). A biomonitoring study by Wang et al. (2018) 

evaluated environmental organic acids among a diverse group of pregnant women (n=75) in San 

Francisco. The databased included 696 environmental organic acids. Maternal serum at the time 

of delivery was collected and analyzed. An average of 56 environmental organic acids were 

detected in maternal serum samples (Wang, et al., 2018). Additionally, a study by Woodruff et 

al. (2011) which used blood, serum, and urine samples among a representative sample of women 

across the United States drawn from the National Health and Nutrition Examination Study 

(NHANES) 2003-2004 detected multiple industrial chemicals among 99-100 percent of the 

pregnant women (n=238). A total of 43 chemical analytes in various chemical classes were 

detected. Some of the chemicals identified are banned substances such as bisphenol A (BPA), 

dichlorodiphenyltrichloroethane (DDT), polybrominated diphenyl ethers (PBDEs) and 

polychlorinated biphenyls (PCBs). Some chemicals persist in bodies for long periods of time. 

Chemicals that are banned may be removed from certain products but are allowed in other 

products. Many chemicals are known to cross the placenta and have been linked to adverse 

reproductive and developmental outcomes (Woodruff et al., 2011). In addition, other studies 

(described in more detail below) examining maternal exposure to chemicals and their birth 

outcomes have detected multiple chemicals in nearly all the study participants (Perera, et al., 

2003; Rokoff, et al., 2018). 
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Various toxicants can be transferred from the mother to her fetus via the placenta 

(Landrigan et al., 2004). Embryos and fetuses are more sensitive and more vulnerable to 

environmental toxicants because they have different exposure pathways and physiologies than 

adults (Landrigan et al., 2004; Perera et al., 2003; TENDR, 2016). Fetuses are undergoing rapid 

growth and development with many organs and systems in various stages of development. 

Disruption can lead to improper development and increase the risk of acquiring a chronic disease 

later in life due to this alteration and because they have more years of life for a disease to 

develop than adults (Landrigan et al., 2004). Additionally, prenatal exposures may result in near-

term risks such as miscarriages, stillbirths, low birth weight, birth defects and other health 

deficits (ATSDR, 2014).  

Previous studies have linked prenatal exposures to environmental agents to a number of 

adverse health outcomes, such as spontaneous abortion, low birth weight (infant born < 2,500 

grams), preterm birth (infant born < 37 weeks gestation), intellectual disabilities, mental 

retardation and behavioral disorders (Landrigan, Kimmel, Correa, & Eskenazi, 2004; Ogneva-

Himmelberger, Dahlberg, Kelly, & Moore Simas, 2015; Padula, et al., 2018; Stieb, Chen, 

Eshoul, & Judek, 2012). These adverse outcomes are especially likely if there is a lack of high- 

quality health care to address the exposure(s). Although some scientific evidence exists, most 

studies have focused on criteria air pollutants rather than toxic chemicals emitted from industrial 

facilities. One source of toxic chemicals are Toxic Release Inventory (TRI) sites, which have 

been less studied. The TRI was created under the Emergency Planning and Community Right-to-

Know Act (EPCRA) of 1986. Certain industries are required to report to the EPA if 

they have 10 or more full-time employees and manufacture more than 25,000 pounds of TRI 

chemicals or use over 10,000 pounds of any TRI chemical in their operations (EPA 
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[Environmental Protection Agency], 2017a). The TRI collects data from these facilities on the 

release, management and off-site transport of toxic chemicals. Reporting is mandatory for 

facilities in certain industrial sectors that have 10 or more full-time employees and manufacture 

more than 25,000 pounds of TRI chemicals or use over 10,000 pounds of any TRI chemical in 

their operations (EPA, 2017). Maternal and neonatal health investigations of estimated prenatal 

exposures to TRI chemicals and maternal proximity to TRI facilities are discussed next. 

An investigation of fugitive and stack air releases of developmental toxins and 

nondevelopment toxins from TRI facilities in relation to infant health at the county level in the 

United States found that an additional one thousand pounds per square mile of all toxins would 

reduce gestation by 0.115 weeks and birth weight by 1.47 grams and increase infant mortality by 

1.06. The effects were stronger when evaluating air releases of developmental toxins only, as one 

thousand pounds per square mile of developmental toxins would reduce gestation by 0.0247 

weeks and 2.86 grams and increase infant mortality by 2.49. These seemingly modest effects are 

quite sizeable when considered in terms of probability. Maternal age, race, ethnicity, education, 

smoking, alcohol, infant sex and year and county fixed effects were controlled for in the study 

(Currie & Schmieder, 2009).  

Maternal residential proximity to TRI facilities on conotruncal heart defects among their 

children in Texas was evaluated using a case-control study design. The study calculated odds 

ratios using logistic regression, while controlling for maternal age, race/ethnicity, education and 

maternal and paternal occupational exposures. Only a small association was identified between 

women living within 1 mile of a TRI facility and conotruncal heart defects (aOR= 1.10, 95% CI 

= 0.91, 1.33) (Langlois, et al., 2009).  
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Agarwal, Banternghansa, & Bui (2010) analyzed TRI releases on infant and fetal 

mortality rates at the county level in the U.S. The study controlled for two criteria air 

pollutants, particulate matter 10 micrometers or less in diameter (PM10) and ozone, as well as 

maternal age, race of the parents, education, marital status, smoking, alcohol and the level of 

prenatal care. When aggregated TRI releases were analyzed, no significant association was 

found. When TRI releases were analyzed by environmental medium, air releases had 

a statistically significant effect on infant mortality rates (0.0214 and 0.0213 without PM10 and 

ozone, respectively). Of these air releases, carcinogenic chemicals had the greatest adverse effect 

on infant mortality (Agarwal, Banternghansa, & Bui, 2010).  

Maternal residential proximity to the top 10 TRI polluters in Memphis, TN was evaluated 

in relation to cases of low birth weight and preterm birth. Maternal residence (n=369) was 

classified as ≤5 miles, 6-10 miles, >10 miles of the TRI sites. Logistic regression was used 

controlling for maternal age, education, marital status, employment, substance use (alcohol, 

drugs tobacco) and sexually transmitted diseases. Women living within 5 miles of two of the TRI 

sites were more likely to have a preterm birth (OR= 4.018, 95% CI 1.103, 14.643; OR= 2.667, 

95% CI 1.036, 6.862). No statistical association was observed between maternal proximity to 

TRI sites and low birth weight (Braud, Nouer, & Lamar, 2011).  

The spatiotemporal association between maternal residential proximity to select TRI 

facilities, 19 coke and steel production facilities, and their releases on birth outcomes was 

analyzed in Alabama. Covariates controlled for included maternal age, race, education, method 

of payment, parity and birth year. A small association was found between residential proximity 

(≤ 5.0 km) to the industrial facilities and preterm birth (OR= 1.05, 95% CI 1.01, 1.09). 

Additionally, high levels of VOC emissions were associated with low birth weight (OR= 1.17, 
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95% CI 1.06, 1.29) and the emission of metals were associated with preterm birth (OR= 1.07, 

95% CI 1.01, 1.14) (Porter, Kent, Su, Beck, & Gohlke, 2014).  

A case-control study estimated maternal residential exposure to chemicals released from 

TRI facilities in Texas using an emissions-weighted proximity model. The logistic regression 

analysis controlled for maternal age, race/ethnicity, education, infant sex, gestational weeks, 

birth year and the public health service region of maternal residence. Exposed pregnant women 

had a statistically higher risk when compared to unexposed pregnant women of having a low 

birth weight infant (aOR= 1.02-1.60). Further analysis was done on the ten TRI chemicals with 

the highest aORs, including: acetamide (aOR= 1.60, 95% CI 1.09, 2.34), p-phenylenediamine 

(aOR= 1.32, 95% CI 1.07,1.63), 2,2-dichloro-1,1,1- trifluoroethane (aOR= 1.21, 95% CI 1.10, 

1.34), 1,2- phenylenediamine (aOR= 1.20, 95% CI 1.02, 1.41), resmethrin (aOR= 1.14, 95% CI 

1.01, 1.30), toluene-2,6-diisocyanate (aOR= 1.14, 95% CI 1.02, 1.28), tributyltin methacrylate 

(aOR= 1.14, 95% CI 1.05, 1.23), propetamphos (aOR= 1.11, 95% CI 1.01, 1.23), 1,1,1-

trichloroethane (aOR= 1.10, 95% CI 1.05, 1.15) and creosote (aOR= 1.09, 95% CI 1.02, 1.16) 

(Gong, Lin, & Zhan, 2018).  

A study by Padula et al. (2018) used the California Communities Environmental Health 

Screening Tool, which evaluates 19 pollution and population indicators, including releases from 

TRI facilities to estimate pollution burden scores for census tracts to investigate associations 

between maternal environmental exposures and preterm birth in Fresno County, CA. The 

following variables were adjusted for in the logistic regression analysis: maternal age, 

race/ethnicity, education and form of payment. The results showed small, stable associations 

between maternal pollution burden scores and preterm birth (OR 1st quintile = 1.38, 95% CI 
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0.79, 2.40; OR 2nd quintile = 1.78, 95% CI 1.09, 2.88; OR 3rd quintile = 1.98, 95% CI 1.23, 3.19; 

OR 4th quintile = 1.98, 95% CI 1.23, 3.19) (Padula, et al., 2018).  

Studies evaluating maternal exposures to TRI releases on birth outcomes have primarily 

relied on distance-based measures, which can lead to inaccurate exposure estimates due to the 

modifiable area unit problem (Conley J. F., 2011; O'Sullivan & Unwin, 2010). To address this 

limitation, this study uses the EPA’s Risk-Screening Environmental Indicators (RSEI) model 

which models the release, management and transfer of 767 chemicals and 33 chemical 

categories (EPA, 2019b). One of the modelled outputs are RSEI toxicity-weighted 

concentrations. These values are based on stack and fugitive air releases, direct water releases, 

transfers to publicly owned treatment works and transfers to offsite incineration, considering 

multiple variables including: the type of emission, quantity of the chemical release, fate and 

transport through the environment, chemical toxicity, exposure pathways and dose of exposure. 

Exposure is estimated using the decennial census to geographically model the age-sex 

composition of the population and the toxicity chemicals is based on the route of exposure and 

the expected chronic human health impacts (EPA, 2018b). Higher RSEI toxicity-weighted 

concentrations indicated greater human health risks from TRI chemical exposures. The RSEI 

model has been used most commonly for environmental justice research, but it also has some 

limited use for studies of environmental health. Following is a review of studies that have used 

the RSEI model to evaluate health outcomes. 

Lucier et al. (2011) assessed school performance using proximity measures to TRI 

facilities and the RSEI toxicity-weighted concentrations as the primary exposures, controlling for 

school-level variables, including percentage of children receiving free school lunch, percentage 

of minority students, percentage of teachers with emergency credentials, attendance rates, 
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student-teacher ratios, and percentage of students with disabilities. Seven proximity measures 

were used, including whether or not a TRI facility was located within one mile of each school, 

the number of facilities within one, two and three miles of each school, distance from the 

centroid of the three facilities contributing the highest volume of toxic emissions to each school, 

distance from the centroid of the five nearby facilities with the highest RSEI toxicity scores to 

each school, and the RSEI toxicity-weighted concentrations. School performance was measured 

using annual standardized test results from the Louisiana Department of Education. The study 

created an elasticity model by which to reduce the heteroskedasticity and non-normality and the 

influence of the outliers, and multivariate regression models were estimated to study these 

relationships. The authors found that school performance scores decreased for schools located 

closest to TRI facilities, particularly those emitting chemicals identified as neurotoxins that are 

known to affect cognitive development. School performance scores also decreased, for schools 

located in areas with the highest RSEI toxicity-weighted concentrations.  

Moore and Hotchkiss (2016) used the RSEI model to evaluate the association between 

proximity to Hazardous Air Pollutants (HAPs) emitted from TRI facilities and respiratory 

diseases in hospitalized children aged 0 to 17 years at the Zip Code level in Tennessee, 

controlling for Zip Code level socioeconomic status. The study examined the spatial patterns of 

HAP emissions and observed Zip Codes with low total emissions but a high toxicity of emissions 

as well as Zip Codes with high total emissions but a low toxicity of emissions. The study also 

used generalized linear regression models to estimate these relationships with respiratory 

diseases. The study found statistically significant associations between HAP emissions and the 

incidence of respiratory disease among children in Tennessee (2.71% increase, 99% CI for any 

respiratory disease in Zip Codes with at least one TRI facility compared to Zip Codes with no 
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TRI facilities). Furthermore, one standard deviation increase in RSEI toxicity-weighted 

emissions had a greater marginal effect than one standard deviation increase in total emissions on 

any respiratory disease (total emissions: 0.183, NSR; toxicity-weighted emission: 0.243, NSR), 

chronic bronchitis (total emissions: 0.0120, 95% CI; toxicity-weighted emission: 0.0175, 99% 

CI) and asthma (total emission: -0.00309, NSR; toxicity-weighted emission: 0.0809, 95% CI). 

However, the positive association observed between total emissions and acute bronchitis and 

bronchiolitis (0.0992; 95% CI) was removed after considering the toxicity of the emissions (-

0.0198; NSR). These findings indicate the importance of considering the toxicity of chemicals 

emitted and not just the quantity of chemicals emitted (Moore & Hotchkiss, 2016). 

Ogneva-Himmelberger et al. (2015) investigated maternal exposure to hazardous air 

pollutants (HAPs) as measured by the RSEI model to estimate its impact on gestational age for 

mothers exposed in Worcester, MA. Singleton, live births (n=7,136) were stratified by 

race/ethnicity (non-Hispanic Black, non-Hispanic White, and Hispanic) and gestational age 

(weeks). Preterm birth (< 37 weeks of gestation) was the primary outcome, including very 

preterm (< 32 weeks) and extremely preterm (< 28 weeks). The RSEI scores at the census tract 

level were smoothed using a kernel density function in ArcGIS (v. 10.1). The births were 

spatially joined to the RSEI density output using the mother’s residential location at the time of 

the infant’s birth. The study created kernel density maps for each mother’s race, performed 

cluster analysis, and ran Monte-Carlo simulations to assess the statistical significance of the 

clusters. The study ran a Welch’s t-test and an ANOVA. The study found that when categorized 

by level of prematurity, preterm births were significantly associated with the RSEI hazard when 

considering all races together (F-statistic = 7.632, p value < 0.05), and for non-Hispanic white 

mothers (F-statistic = 4.207, p value < 0.05) and Hispanic mothers (F-statistic = 7.033, p value < 
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0.05) when evaluated separately (Ogneva-Himmelberger et al., 2015). Although the study 

evaluated birth outcomes, the study did not mention controlling for certain maternal 

characteristics which could lead to confounding. Also, the study used the RSEI hazard which 

does not include fate and transport modeling.  

Maternal exposures to toxic chemicals in their neighborhoods may influence birth 

outcomes, such as low birth weight, preterm birth, fetal growth and birth defects. There remains 

a gap in our understanding of TRI chemical exposures on birth outcomes. Therefore, this study 

used the RSEI model to evaluate census tract level RSEI toxicity-weighted concentrations on 

adverse birth outcomes. This was the first study to my knowledge to use the RSEI model to 

evaluate a health outcome in Michigan. Additionally, this study was the first to use the RSEI 

toxicity-weighted concentrations to evaluate maternal exposures and adverse birth outcomes. 

Although the RSEI scores have been used in prior studies to evaluate various health outcomes, 

this study chose not to include a population weight in its calculation because mothers only are 

studied and therefore, used the RSEI toxicity-weighted concentrations. 

4.2. Study Area 

Michigan is a state located in the Midwestern region of United States (State of Michigan, 

2019). Michigan is the 10th most populous state with an estimated 9.99 million residents in 2019 

(U.S. Census Bureau, 2020). The population density is 176.7 people per square mile (Duffin, 

2020). The three major industries in Michigan include manufacturing, tourism and agriculture 

(State of Michigan, 2019). Michigan had 1,048 TRI sites in operation between 2008 to 2017 

(Figure 4-1). A nation-wide assessment of modelled TRI releases and their potential chronic 

human health risks ranked Michigan 10th out of 57 U.S. states and territories (EPA, EasyRSEI, 
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2019). Michigan has elevated rates of low birth weight and preterm births and neonatal mortality 

when compared to the national average (CDC, 2018; United Health Foundation, 2020).  

Figure 4-1: Toxic Release Inventory Sites in Michigan, 2008-2017 
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4.3. Study Objectives 

The objective of this study is to estimate the effect of maternal exposure to RSEI toxicity-

weighted concentrations on the likelihood of adverse birth outcomes, including neonatal 

mortality from lethal congenital anomalies for women living in Michigan, 2008-2017. Direct and 

indirect relationships between RSEI toxicity-weighted concentrations and adverse birth 

outcomes or lethal congenital anomalies will be studied, controlling for potential confounding 

variables. The two hypotheses of the study are: 

H01 Mothers exposed in high RSEI exposure quartiles will be at increased odds of adverse 

birth outcomes (low birth weight and preterm birth) and lethal congenital anomalies. 

H02 African American and Hispanic mothers will be at increased risk of exposure to RSEI 

toxicity-weighted concentrations, and these exposures will in part explain racial and 

ethnic disparities in adverse birth outcomes.  

4.4. Study Design 

This study utilized a retrospective cross-sectional cohort study design (2008 to 2017) to 

investigate the impacts(s) of RSEI-Toxicity weighted concentrations on maternal health, adverse 

birth outcomes and congenital anomaly related infant mortality in Michigan. A description of the 

data and methods that will be used in this study follows. 

4.5. Data  

4.5.1. TRI Chemical Data 

The U.S. EPA’s Office of Pollution Prevention and Toxics developed the RSEI model. 

The model uses precise modeling for each type of chemical release, specific calculations for the 

chemical toxicity weights and population characteristics to calculate RSEI toxicity-weighted 
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concentrations for census tracts across the United States. The calculations for RSEI toxicity-

weighted concentrations are summarized below. 

RSEI toxicity-weighted concentrations = Surrogate Dose × Toxicity Weight 

Where surrogate dose is the estimate of human exposure potential which includes data on 

pathway-specific chemical emissions, physicochemical properties and site-specific 

characteristics, when available. These data are used to estimate the ambient chemical 

concentration in the environmental medium in which it was released. The surrogate does is then 

calculated by combining the ambient chemical concentration with human exposure assumptions 

for each chemical and the age and sex structure of the exposed population. Population refers to 

the size of the potentially exposed population, based on the 2010 decennial census. The toxicity 

weights are specific to each chemical and exposure-route. The chemical toxicity weight increases 

as the potential for that chemical to cause an adverse chronic human health effect increases. 

(U.S. EPA, 2018b).  

Aggregated microdata shapefiles containing the census tract level RSEI toxicity-weighted 

concentrations for the years 2008-2017 for Michigan were downloaded from the Amazon Web 

Services server (http://abt-rsei.s3.amazonaws.com). The TRI Core01 chemical list files were 

used. The geographic locations of TRI sites in operation during 2008-2017 with modelled 

releases were obtained from the EPA (U.S. EPA, 2019d, 2019c).   

4.5.2. Geographic Data 

This study used geographic boundary files retrieved from Michigan’s Geographic 

Information System (GIS) database, including counties (n=83), adjusted urban areas (n=77) and 

cities (n=280) (State of Michigan, 2019). The census tract was the primary unit of analysis 

(n=2,791). The NAD 1983 Michigan GeoRef (Meters) coordinate system was used. 
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4.5.3. Birth and Linked Infant Death Data 

The Michigan Department of Health and Human Services Vital Statistics infant birth and 

linked infant mortality records were used for this study. These individual records contain 

information on mothers and infants as further described below. Only live, singleton births among 

mothers who conceived from January 2008 to April 2016 and delivered between September 2008 

and December 2017 in Michigan were included in this study.  

The types of adverse birth outcomes assessed included low birth weight (newborns 

weighing < 2,500 grams) and preterm birth (infants born < 37 weeks of gestation) (Merck Sharp 

& Dohme Corp., 2019; WHO, 2006). Exclusion criteria consisted of births that occurred outside 

of Michigan (n=12,921), records with a missing address (n=23), births given by non-Michigan 

residents (n=631), non-singleton births (n=41,773) and births that occurred between January 1 

and June 2, 2008 (n=48,937) for which there was no exposure to assign. The mother’s address at 

the time of her infant’s birth was used as the place of her TRI chemical exposure risk as further 

described below.   

Potential confounding variables in the RSEI toxicity-weighted concentrations and 

adverse birth outcome relationship included: mother’s age in years as a dichotomous variable (> 

34=1, 25-34 years=0), educational attainment (high school diploma or GED=1, some college or 

college degree=0), pre-pregnancy body mass index (BMI) as a dichotomous variable (<18.5 

(underweight)=1, 18.5-24.9 (normal)=0), quality of prenatal care (inadequate=1, adequate or 

intermediate=0), smoked tobacco during pregnancy (yes=1), alcohol consumption during 

pregnancy (yes=1), maternal medical conditions including chronic hypertension (yes=1), 

gestational hypertension (yes=1), chronic diabetes (yes=1), vaginal bleeding (yes=1), premature 

rupture of the membranes (yes=1), uterine rupture (yes=1) and pregnancy complications short 
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labor (yes=1), marital status (married=0, all others=1), and residence (urban=1, non-urban=0). 

Infant characteristics that were controlled for include infant’s sex (female=1, male=0) and birth 

defects (yes=1). The lethal birth defects studied from the linked infant death file included cause 

of death.  

4.6. Methods 

4.6.1. Geocoding 

Maternal addresses were geocoded using the SAS software® (v. 9.4) street geocode 

procedure (https://support.sas.com/rnd/datavisualization/mapsonline/html/geocode.html). The 

street lookup data is the TIGER release ver. 15. The street files were obtained for the United 

States but queried for Michigan during the geocoding process. With this program, the mother’s 

addresses were geocoded to the appropriate address or defaulted to city or Zip Code centroids. 

Following the SAS software street geocoding procedure, the records that were unmatched or 

matched only to the Zip Code or city were then geocoded in GIS. Of the total birth records 

(n=1,134,485), 97.2% (n=1,102,706) geocoded to the street, 2.75% (n=31,185) geocoded to the 

Zip Code, 0.0004% geocoded to the city (n=5) and 0.05% (n=589) were not geocoded. The 

unmatched records were removed. The geocoded birth records were spatially joined to the census 

tract in which the mother resided at the time of her infant’s birth (n=1,133,896).  

4.6.2. Exposure Assessment 

To assign maternal exposures, the census tract RSEI toxicity-weighted concentrations 

were spatially joined to the individual birth records. Women who were pregnant during two 

calendar years were weighted according to their number of weeks’ gestation during each of those 

calendar years to assign them with an appropriate exposure. For example, mothers whose three 

trimesters of pregnancy fell within one calendar year were assigned one RSEI exposure value.  
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Mothers whose pregnancy spanned two calendar years were assigned the RSEI toxicity-weighted 

concentration of each of those years, weighted according to the number of weeks gestation 

during each of the calendar years, and assigned one RSEI exposure value based on this 

calculation. The RSEI exposure variable for all women was then recoded into exposure quartiles 

and each mother was grouped into their respective exposure quartile (1, 2, 3 or 4) for the year 

that she gave birth (Table 4-1). During the 2008-2017 period, 186 TRI chemicals were released 

in Michigan (EPA, EasyRSEI, 2019). Some of the chemicals are known developmental toxins, 

neurological toxins, developmental neurotoxins and teratogenic toxins (ATSDR, 2019).  

Table 4-1: RSEI Toxicity-Weighted Concentration Quartiles Assigned as Maternal Exposure, 

Michigan, 2008-2017. 

Quartile Range Percentile 

1 0 - 183.006 25 
2 183.007 - 1,426.249 50 
3 1,426.250 - 5,972.424  75 
4 5,972.425 - 252,571.00 100 

 

4.6.3. Sample Size and Power Calculations 

 The birth dataset used for this study included n=1,041,749 births over the 10-year period. 

Mothers were stratified by race and ethnicity, Non-Hispanic White (n=718,344), Non-Hispanic 

Black (n=197,478) and Hispanic (n=72,944). Figure 4-2a shows that for a Power=0.80 to 0.95 to 

detect and odds ratio (OR=1.01) the sample size required would range from 377,509 to 625,005 

which is an adequate sample size for Non-Hispanic White and Hispanic mothers. Figure 4-2b 

shows that for a Power=0.80 to 0.95 to detect and odds ratio (OR=1.03) the sample size required 

would range from 42,790 to 70,839 which is an adequate sample size for Non-Hispanic African 
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American mothers. As demonstrated, there is a sufficient sample size to detect small changes in 

the odds of adverse birth outcomes for the three groups of mothers in this study. 

Figure 4-2a: Sample Size and Power Calculation 

 

 

Figure 4-3b: Sample Size and Power Calculation 
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4.6.4. Descriptive Analysis 

Descriptive statistics were generated to assess the quality and structure of the birth and 

linked infant mortality records and maternal RSEI toxicity-weighted concentration exposure. 

Histograms, frequencies and univariate and bivariate analyses were conducted to assess the 

degree of correlation between variables. The birth data was also examined with the RESI 

modeled data to assess these bivariate relationships.  

4.6.5. Analytical Analysis 

Regression Models of Adverse Birth Outcomes 

Logistic regression models were estimated to determine the likelihood of low birth 

weight and preterm births among women exposed to varying levels of RSEI toxicity-weighted 

concentrations, while controlling for known risk factors. The covariates were selected based on 

known risk factors for each adverse birth outcome, while gauging the fit of the model. 

Additionally, the independent variable were tested for multicollinearity using both correlation 

coefficients and Variance Inflation Factor (VIF) values. These regression models were estimated 

using PROC Logistic in SAS software v 9.4 (SAS Institute Inc., 2016). Four models were 

constructed for each outcome, an overall model for all women and the three race/ethnicity-

stratified models.  

For a binary response, !, the birth outcome can take on two possible values (e.g., low 

birth weight=0, otherwise, low birth weight=1). If # is an explanatory variable and $ =

Pr(! = 1|#) is the probability to be modeled. The linear logistic model has the form:  

,-./0($) 	≡ log 6 !
"#!7 = 	8 + :"(;<=>?4A1) + :$(BC.D) + :%…… . . :& + G'  

Where 8 is the intercept low birth weight and :	are slope coefficients. The error term G' 

is assumed to be normally distributed with a mean=0.  
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>H(IJJ<) = >H K
!

1 − !
M = N + OP 

Where Y is the predicted probability of the outcome (i.e., low birth weight or preterm birth) and 

1-Y is the predicted probability of the other outcome (i.e., not low birth weight or not preterm 

birth). The output provided model fit statistics, including Akaike Information Criterion [AIC], R2 

and Chi-Square test statistic, as well as odds ratios (OR), 95% Confidence Intervals and 

associated p-values (SAS Institute, 2021).  

Cluster Analyses of Infant Deaths 

Space-time scan statistics available in SaTScan software package v 9.7 (Kulldorff, 2009) 

were used to analyze the geographic and temporal distribution of infant mortality attributable to 

birth defects in Michigan between 2008-2018 to establish if there were clusters of lethal birth 

defects and if those clusters could in part be explained by the RSEI toxicity-weighted 

concentrations of the census tract in which the infant was born (assuming maternal exposure in 

that tract). Clusters are reported when the observed number of infant deaths exceeds the expected 

number of infant deaths. Bernoulli and discrete Poisson models (Kulldorff, 1997) were used for 

space-time analyses of lethal birth defects. The Bernoulli model uses a case-control design. For 

this study, the cases were infant deaths attributable to lethal birth defects and the controls were 

infant deaths due to other causes. The probability of each infant outcome was assumed to be 

independent. For the Poisson model, the number of cases is assumed to be Poisson distributed. 

The method tests the null hypothesis which expects that the number of cases (i.e., lethal birth 

defects) is proportional to population size of the location (i.e., births in census tracts) (Kulldorff, 

1997; Kulldorff, 2021). For this study, the Poisson analysis included unadjusted and adjusted 

models. The adjusted model included the maximum RSEI toxicity-weighted concentration of the 

census tract as a covariate. Both the Bernoulli model and Poisson model calculate the relative 



 

 

 

94 

 

risk (RR) and the log-likelihood ratio from the number of observed and expected infant deaths 

for each location and size of the scanning window, and the statistical significance of the clusters 

are derived from Monte-Carlo (999) hypothesis testing (Kulldorff, 1997; Kulldorff, 2021). 

For both the Bernoulli and Poisson models, the infant mortality rate associated with birth 

defects for Michigan (25.7 per 1,000) was used to set the maximum cluster size (MDHHS, 

2021). The time periods of one and five years were used as the temporal parameters. Other 

cluster size parameters were explored, including 2k, 5k, 8k, and 10k circles. However, it was 

decided that using the infant mortality rate among infants with a birth defect in Michigan was 

conceptually more meaningful than using distance measures from census tract centroids. Even 

with the distance-based parameters, the clusters appeared in similar locations as with the rate-

based parameters, indicating persistence in these areas. To map the clusters of lethal defects for 

geographic visualization the clusters and their associated relative risks obtained from the output 

of the Bernoulli and Poisson models were input into ArcGIS v. 10.6 (ESRI, 2020) for 

visualization. “SaTScan™ is a trademark of Martin Kulldorff. The SaTScan™ software was 

developed under the joint auspices of (i) Martin Kulldorff, (ii) the National Cancer Institute, and 

(iii) Farzad Mostashari of the New York City Department of Health and Mental Hygiene” 

(Kulldorff, 2009).  

4.7. Results 

4.7.1. Descriptive Results 

The birth outcomes of interest in this study show the overall rate of low birth weight in 

Michigan was 6.5 per 100 live births and preterm birth was 9.9 per 100 live births (Table 4-2). 

Non-Hispanic Black women had the highest rates of low birth weight and preterm birth, 

followed next by preterm birth among Hispanic women. The lowest rates of low birth weight and 
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preterm birth are observed among non-Hispanic white women. Of the infant deaths for which 

there was a matching birth record, 6.2 per 100 were attributable to a birth defect. Non-Hispanic 

white women had the highest rates of lethal birth defects, followed by non-Hispanic black 

women.  

Table 4-2: Low Birth Weight, Preterm Birth and Lethal Birth Defect Rates1 Overall and 
Stratified by Race and Ethnicity, Michigan, 2008-2017. 

Race or Ethnicity Outcome Number Rate1 

All Women Low Birth Weight 68,094 6.5 
(n=1,041,749) Preterm Birth 102,921 9.9 

  Lethal Birth Defect 1,374 6.2 
Non-Hispanic White Low Birth Weight 36,807 5.1 
(n=718,344) Preterm Birth 60,048 8.4 

  Lethal Birth Defect 861 62.7 
Non-Hispanic Black Low Birth Weight 23,319 11.8 
(n=197,478) Preterm Birth 30,501 15.5 

  Lethal Birth Defect 329 23.9 
Hispanic  Low Birth Weight 4,234 5.8 
(n=72,944) Preterm Birth 7,537 10.4 

  Lethal Birth Defect 121 8.8 
    

1Rate per 100 live births 
 

The characteristics of mothers in this study are provided in Table 4-3. Just over half of 

the mothers (55%) were between the ages of 25-34 years old, one-third were less than 25 years 

old, and the smallest percentage of mothers were over the age of 34 years. Most of the mothers 

were non-Hispanic white, followed next by non-Hispanic black and finally Hispanic. Nearly 

60% of mothers either had some college experience or completed a college degree and 25.7% 

had a least a high school diploma or GED. Married mothers comprised almost 60% of all 

mothers in the study. Adequate or intermediate prenatal care was received by a vast majority of 

the mothers. Almost 17% of mothers smoked during their pregnancy and less than 1% consumed 

alcohol during their pregnancy. Slightly over 40% of mothers had a normal BMI, while about 
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25% were obese and less than 5% were underweight. Most (61.3%) of the mothers lived in an 

urban area rather than a rural area. 

Table 4-3: Descriptive Characteristics of Mothers in Michigan, 2008-2017. 

Variables Number Percent 

Age < 25 years old 327,716 31.5 
 25-34 years old 578,197 55.5 
 > 34 years old 135,815 13.0 

Race and Ethnicity Non-Hispanic White 718,344 69.0 
 Non-Hispanic Black 197,478 19.0 
 Hispanic 72,944 7.0 

Educational Attainment High School or GED 268,088 25.7 
 College (some or completed) 623,879 59.9 

Marital Status Currently Married 597,895 57.4 
 All Others 443,612 42.6 

Prenatal Care Adequate 708,515 68.0 
 Intermediate 229,042 22.0 
 Inadequate 90,879 8.7 

Smoked During 
Pregnancy 

Yes 174,715 16.8 
 No 862,115 82.8 

Alcohol During 
Pregnancy 

Yes 6,121 0.6 

  No 1,029,359 98.8 
Weight Underweight (BMI < 18.5) 35,160 3.4 

 Normal (BMI 18.4-24.9) 438,134 42.1 
  Obese (BMI >29.9) 265,758 25.5 

Urban-Rural Residence Urban 638,829 61.3 
  Non-Urban 402,915 38.7 

 

The maternal medical conditions of interest in this study show the rate of infections 

during pregnancy was the highest among mothers in Michigan (16.9 per 100). The rate of 

gestational hypertension (5.1 per 100) followed by pregnancy complications short labor was 4.8 

per 100 and next by premature rupture of the membranes with a rate of 4.2 per 100. Other 

important maternal medical conditions included chronic hypertension (1.4 per 100), vaginal 

bleeding (1.2 per 100), chronic diabetes (0.8 per 100) and uterine rupture (0.1 per 100). Refer to 
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Table 4-4. There are defined pathways by which each of these medical conditions may contribute 

to low birth weight or preterm birth. 

Table 4-4: Maternal Medical Conditions of Interest, Michigan, 2008-2017. 

Variables Number Rate1 

Chronic Hypertension 14,104 1.4 

Gestational Hypertension 53,476 5.1 

Chronic Diabetes 7,896 0.8 

Vaginal Bleeding 12729 1.2 

Premature Rupture of the Membranes 44,023 4.2 

Uterine Rupture 1,071 0.1 

Pregnancy Complications Short Labor 49,529 4.8 

Infection(s) 176,480 16.9 
 1Per 100 women. 

 

When mothers are stratified by race and ethnicity, the percentage of those 35 years and 

older were similar among all mothers (Table 4-5). Non-Hispanic white women tended to have 

higher levels of education, with one-quarter having a high school diploma or GED as their 

highest level of education compared to just under 50% of non-Hispanic black mothers and 

Hispanic mothers with a high school diploma or GED as their highest level of education 

demonstrating large racial and ethnic disparities in education. Most (80.7%) non-Hispanic black 

women were unmarried, half (53.5%) of Hispanic women were unmarried, and one-third of non-

Hispanic white mothers were unmarried. Prenatal care varied, with nearly 7% of non-Hispanic 

white mothers receiving inadequate prenatal care, compared to 15% and 11% of non-Hispanic 

black and Hispanic mothers, respectively. Rates of smoking during pregnancy were highest 

among non-Hispanic white (18.5%) women followed closely by non-Hispanic black women 

(15.5%) and only 3.9% of Hispanic women smoked. Rates of alcohol consumption was similar 

among all mothers (< 1.0%). Of the women who were underweight, 9% were non-Hispanic black 

mothers and around 6% were non-Hispanic white and Hispanic mothers. Nearly all (92.8%) non-
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Hispanic black mothers, 69.6% of Hispanic mothers and half (50.8%) of non-Hispanic white 

mothers’ residence was in an urban area as compared to a rural area.  

Non-Hispanic white women had the highest rates of gestational hypertension (5.5%) 

vaginal bleeding (1.3%) premature rupture of membranes (4.3%), pregnancy complications due 

to short labor (5.0%) and infections (65.4%) compared to non-Hispanic black and Hispanic 

women although these differences did not appear to be statistically different. These medical 

conditions may be underreported among African American and Hispanic women though since 

they had higher rates of inadequate and intermediate prenatal care. Non-Hispanic black women 

had the highest rates of chronic hypertension (2.3%) and uterine rupture (0.4%) with an equal 

percentage of non-Hispanic black and Hispanic women reporting diabetes (1.0%). These racial 

and ethnic differences in maternal medical conditions and their contribution to low birth weight 

and premature birth are further studied below.  
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Table 4-5: Descriptive Statistics of Mothers by Race and Ethnicity for Important Risk Factors for 
Adverse Birth Outcomes, Michigan 2008-2017. 

Variable Race or Ethnicity Number Percent 

Age  Non-Hispanic White 97,489 18.5% 
(older maternal age >35 years) Non-Hispanic Black 18,895 19.0% 
  Hispanic 9,223 20.9% 
Educational Attainment Non-Hispanic White 167,256 25.9% 
(high school or GED only – no college) Non-Hispanic Black 69,955 45.7% 
  Hispanic 21,471 46.4% 
Marital Status Non-Hispanic White 235,708 32.8% 
(unmarried) Non-Hispanic Black 159,220 80.7% 
  Hispanic 39,055 53.5% 
Prenatal Care Non-Hispanic White 49,134 6.9% 
(inadequate) Non-Hispanic Black 28,828 15.1% 
  Hispanic 7,976 11.1% 
Smoked during Pregnancy Non-Hispanic White 132,743 18.5% 
(yes) Non-Hispanic Black 30,378 15.5% 
  Hispanic 2,854 3.9% 
Alcohol consumption Non-Hispanic White 4,274 0.6% 
(yes) Non-Hispanic Black 1,309 0.7% 
  Hispanic 354 0.5% 
Weight Non-Hispanic White 23,661 6.9% 
(underweight) Non-Hispanic Black 6,227 9.0% 
  Hispanic 1,861 6.4% 
Urban-Rural Residence Non-Hispanic White 364,896 50.8% 
(urban area) Non-Hispanic Black 183,193 92.8% 
  Hispanic 50,760 69.6% 
Chronic Hypertension Non-Hispanic White 8,621 1.2% 
(yes) Non-Hispanic Black 4,450 2.3% 
  Hispanic 622 0.9% 
Gestational Hypertension Non-Hispanic White 39,444 5.5% 
(yes) Non-Hispanic Black 9,215 4.7% 
  Hispanic 2,854 3.9% 
Chronic Diabetes Non-Hispanic White 4,670 0.7% 
(yes) Non-Hispanic Black 2,021 1.0% 
  Hispanic 714 1.0% 
Vaginal Bleeding Non-Hispanic White 9,465 1.3% 
(yes) Non-Hispanic Black 1,643 0.8% 
  Hispanic 809 1.1% 
Premature Rupture of the Membranes Non-Hispanic White 30,545 4.3% 
(yes) Non-Hispanic Black 8,122 4.2% 
  Hispanic 2,860 3.9% 
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Table 4-5 (cont’d)    
Uterine Rupture Non-Hispanic White 248 0.03% 
(yes) Non-Hispanic Black 718 0.4% 
  Hispanic 67 0.1% 
Pregnancy Complications Short Labor Non-Hispanic White 35,718 5.0% 
(yes) Non-Hispanic Black 7,698 4.0% 
  Hispanic 3,069 4.2% 
Infection(s) Non-Hispanic White 115,089 65.4% 
(yes) Non-Hispanic Black 43,290 24.6% 
  Hispanic 10,454 5.9% 

 

The percentage of male and female infants born in Michigan was evenly split as shown in  

Table 4-6. A little over half of the infants were male (51.2%). The percentage of infant 

deaths by sex was slightly higher among male infants (52.0%) than female infants. 

Table 4-6: Number and Percentage of Infants Born and Died by Sex, Michigan 2008-2017. 

Infant Sex 
  Infant Births   Infant Deaths 

  Number Percent   Number Percent 

Male  533,862 51.2  712 52.0 

Female   507,863 48.8   656 48.0 

 

4.7.2. Logistic Regression Results for Low Birth Weight 

The results from the logistic regression model for mothers overall are shown in  

Table 4-7. When RSEI exposure quartiles 2-4 were compared with the reference category 

exposure quartile 1, mothers exposed in quartiles 3 and 4 were at significantly increased odds of 

having a low birth weight infant. For mothers exposed in quartile 2 the odds of low birth weight 

was borderline (OR=1.024, 95% CI 0.998-1.051). However, for mothers exposed to quartiles 3 

and 4 the odds of low birth weight was significant for quartile 3 (OR=1.125, 95% CI 1.096-

1.154) and quartile 4 (OR=1.270, 95% CI 1.238-1.300) controlling for potential confounding and 

known risk factors for low birth weight as presented in the table. These findings show that with 
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increasing RSEI exposure, mothers are at increasing odds of having a low birth weight infant. 

The most important risk factor for low birth weight was inadequate prenatal care (OR=3.258, 

95% CI 3.171-3.347) followed by chronic diabetes (OR=1.729, 95% CI 1.597-1.871), a high 

school educational attainment (OR=1.680, 95% CI 1.634-1.728), unmarried (OR=1.653, 95% CI 

1.621-1.686), gestational hypertension (OR=1.426, 95% CI 1.297-1.568), alcohol consumption 

(OR=1.409, 95% CI 1.377-1.442) and smoked during pregnancy (OR=1.197, 95% CI 1.174-

1.221). These findings show that receiving health care during pregnancy to monitor behaviors 

and treat medical conditions is very important.   

Table 4-7: Logistic Regression Models for Low Birth Weight All Women, Michigan, 2008-2017. 

Final Logistic Regression Model Results 

Variable p-value 
Odds 
Ratio 

95% Wald 

Confidence Limits 

Exposure quartile 2 vs 1 <.0001 1.024 0.998 1.051 

Exposure quartile 3 vs 1 0.0048 1.125 1.096 1.154 

Exposure quartile 4 vs 1 <.0001 1.270 1.238 1.302 

Prenatal care 1 vs 0 <.0001 3.258 3.171 3.347 

Educational attainment 1 vs 0 <.0001 1.680 1.634 1.728 

Smoked 1 vs 0 <.0001 1.197 1.174 1.221 

Alcohol consumption 1 vs 0 <.0001 1.409 1.377 1.442 

Gestational hypertension 1 vs 0 <.0001 1.426 1.297 1.568 

Chronic diabetes 1 vs 0 <.0001 1.729 1.597 1.871 

Marital status 1 vs 0 <.0001 1.653 1.621 1.686 
N=873,347. R-Square = 0.0163 and adjusted R-Square = 0.0449. 

 

Importantly, when the race variable (black vs all other races) was added into the logistic 

regression models, the effects of the RSEI exposure (quartiles 1-4) on low birth weight was no 

longer significant, and so it appears that mother’s race and RSEI toxicity-weighted 

concentrations are correlated. In response to this finding, the logistic regression models were 
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stratified by mother’s race and ethnicity (non-Hispanic white, non-Hispanic black and Hispanic 

mothers). 

Non-Hispanic White Mothers: Low Birth Weight 

The results of the logistic regression model for low birth weight births among non-

Hispanic white women are shown in Table 4-8). When exposure quartiles 2-4 were compared to 

the reference category quartile 1, only quartile 4 was statistically significant. Non-Hispanic white 

mothers exposed to quartile 4 experienced an increased odds of giving birth to a low birth weight 

infant (OR=1.092, 95% CI 1.048-1.138). Since non-Hispanic white mothers had the highest rate 

of smoking and smoking is a strong risk factor for low birth weight, it was hypothesized that a 

synergistic effect of RSEI exposure*smoking might also exist to result in low birth weight. The 

interaction effect of exposure*smoking during pregnancy was also compared to the reference 

category of quartile 1 (women who did not smoke during pregnancy) and mothers exposed in 

quartiles 1, 2, and 4 were at a statistically significant higher odds of having a low birth weight 

infant with a rise in the odds of low birth weight for women exposed to quartile 4 OR=1.609 

(95% CI 1.507-1.718). Other risk factors included gestational hypertension (OR=3.37, 95% CI 

3.257-3.487), chronic hypertension (OR=3.070 95% CI 2.861-3.294), inadequate prenatal care 

was another important risk factor (OR=1.754 95% CI 1.686-1.825) followed by alcohol 

consumption during pregnancy (OR=1.519 95% CI 1.351-1.709), mothers with chronic diabetes 

(OR=1.426 95% CI 1.275-1.595), unmarried mothers (OR=1.354 95% CI 1.318-1.390), female 

infants compared to male infants (OR=1.202 95% CI 1.174-1.230), and mothers with a high 

school diploma or GED compared to mothers with a college degree or some college experience 

(OR=1.197 95% CI 1.165-1.229).  
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Table 4-8: Logistic Regression Models for Low Birth Weight, Non-Hispanic White Women, 
Michigan, 2008-2017. 

Model Results without the Interaction Term 

Variable p-value 
Odds 
Ratio 

95% Wald 

Confidence Limits 

Exposure quartile 2 vs 1 0.3051 0.998 0.967 1.029 

Exposure quartile 3 vs 1 0.0101 0.98 0.949 1.013 

Exposure quartile 4 vs 1 <.0001 1.055 1.019 1.092 

Prenatal care 1 vs 0 <.0001 1.754 1.685 1.824 

Educational attainment 1 vs 0 <.0001 1.197 1.165 1.229 

Smoked 1 vs 0 <.0001 1.676 1.628 1.725 

Alcohol consumption 1 vs 0 <.0001 1.519 1.35 1.709 

Chronic hypertension 1 vs 0 <.0001 3.067 2.858 3.291 

Gestational hypertension 1 vs 0 <.0001 3.367 3.254 3.483 

Chronic diabetes 1 vs 0 <.0001 1.425 1.274 1.593 

Marital status 1 vs 0 <.0001 1.351 1.316 1.388 

Infant sex 1 vs 0 <.0001 1.202 1.174 1.23 

Final Logistic Regression Model Results  

Exposure quartile 2 vs 1 0.5558 1.028 0.991 1.066 

Exposure quartile 3 vs 1 0.2665 1.021 0.983 1.06 

Exposure quartile 4 vs 1 <.0001 1.092 1.048 1.138 

Exposure quartile*Smoked 1 vs 0 <.0001 1.807 1.725 1.894 

Exposure quartile*Smoked 2 vs 0 <.0001 1.647 1.564 1.735 

Exposure quartile*Smoked 3 vs 0 0.1473 1.553 1.459 1.654 

Exposure quartile*Smoked 4 vs 0 0.0078 1.609 1.507 1.718 

Prenatal care 1 vs 0 <.0001 1.754 1.686 1.825 

Educational attainment 1 vs 0 <.0001 1.197 1.165 1.229 

Alcohol consumption 1 vs 0 <.0001 1.519 1.351 1.709 

Chronic hypertension 1 vs 0 <.0001 3.07 2.861 3.294 

Gestational hypertension 1 vs 0 <.0001 3.37 3.257 3.487 

Chronic diabetes 1 vs 0 <.0001 1.426 1.275 1.594 

Marital status 1 vs 0 <.0001 1.354 1.318 1.39 

Infant sex 1 vs 0 <.0001 1.202 1.174 1.23 
N=635,805, R-Square=0.0141 and adjusted R-Square=0.0445. 

 

 



 

 

 

104 

 

Non-Hispanic Black Mothers: Low Birth Weight 

Two logistic regression models were estimated for low birth weight births among non-

Hispanic black women. The results of both models are shown in Table 4-9. In model 1, when 

compared to the reference exposure quartile 1, only exposure quartile 4 was statistically 

significant. For non-Hispanic black mothers exposed in quartile 4 the odds of low birth weight 

was significant (OR=1.122, 95% CI 1.031-1.220) controlling for potential confounding and 

known risk factors listed in the table. The most important risk factor for low birth weight among 

non-Hispanic black women in model 1 was gestational hypertension (OR=3.883, 95% CI 3.570-

4.223) followed by chronic hypertension (OR=2.85, 95% CI 2.555-3.178), smoking (OR=1.546, 

95% CI 1.443-1.656), maternal infections (OR=1.417, 95% CI 1.330-1.509), inadequate prenatal 

care (OR=1.348, 95% CI 1.248-1.456), unmarried (OR=1.329, 95% CI 1.253-1.410), alcohol 

consumption (OR=1.314, 95% 0.982-1.758), older maternal age (OR=1.251, 95% CI 1.175-

1.333), female infants (OR=1.229, 95% CI 1.166-1.295), chronic diabetes (OR=1.216, 95% CI 

1.018-1.454) and an educational attainment of a high school education compared to some college 

or a college degree (OR=1.130, 95% CI 1.069-1.194).  

Since non-Hispanic black mothers are at increased risk of medical conditions with 

increasing age, it was hypothesized that a synergistic effect of RSEI exposure*increasing age 

might also exist to result in low birth weight. When the exposure quartiles were modeled as an 

interaction term with non-Hispanic black women of older age (>34 years) the interaction effect 

was statistically significant for quartile 3 (OR=1.141, 95% CI 1.030-1.264) and quartile 4 

(OR=1.376, 95% CI 1.261-1.502) when compared to the reference category of 0 (25-34 years). 

Thus, longer exposure to living in neighborhoods with higher RSEI scores appears to increase 

the odds of low birth weight for non-Hispanic black women. The most important risk factor for 
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low birth weight in this model was gestational hypertension (OR=3.888, 95% CI 3.574-4.229) 

followed by chronic hypertension (OR=2.837, 95% 2.544-3.164), smoking (OR=1.532, 95% CI 

1.430-1.641), maternal infections (OR=1.420, 95% CI 1.333-1.513), inadequate prenatal care 

(OR=1.350, 95% CI 1.250-1.458), unmarried (OR=1.326, 95% CI 1.250-1.406), alcohol 

consumption (OR=1.304, 95% CI 0.974-1.745), female infants (OR-1.229, 95% CI 1.167-1.295), 

chronic diabetes (OR=1.215, 95% CI 1.016-1.452) and mothers whose highest level of education 

was a high school diploma or GED compared to mothers with a college degree or some college 

experience (OR=1.129, 95% CI 1.068-1.193). Thus, while the interactions of quartiles 3 and 4 

with older maternal age increased the odds of low birth weight for non-Hispanic black women 

the risk factors for low birth weight remained relatively similar. 
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Table 4-9: Logistic Regression Models for Low Birth Weight, Non-Hispanic Black Women, 
Michigan, 2008-2017. 

Final Logistic Regression Model 1 Results 

Variable p-value 
Odds 
Ratio 

95% Wald 

Confidence Limits 

Exposure quartile 2 vs 1 0.3758 1.097 0.993 1.213 
Exposure quartile 3 vs 1 0.856 1.066 0.975 1.165 
Exposure quartile 4 vs 1 0.0239 1.122 1.031 1.220 
Prenatal care 1 vs 0 <.0001 1.348 1.248 1.456 
Older maternal age 1 vs 0 <.0001 1.251 1.175 1.333 
Educational attainment 1 vs 0 <.0001 1.130 1.069 1.194 
Smoked 1 vs 0 <.0001 1.546 1.443 1.656 
Alcohol consumption 1 vs 0 0.0663 1.314 0.982 1.758 
Chronic hypertension 1 vs 0 <.0001 2.850 2.555 3.178 
Gestational hypertension 1 vs 0 <.0001 3.883 3.570 4.223 
Chronic diabetes 1 vs 0 0.0313 1.216 1.018 1.454 
Maternal infection(s) 1 vs 0 <.0001 1.417 1.330 1.509 
Marital status 1 vs 0 <.0001 1.329 1.253 1.410 
Infant sex 1 vs 0 <.0001 1.229 1.166 1.295 

Final Logistic Regression Model 2 Results 

Exposure quartile*Older maternal age 1 0.3373 1.266 1.065 1.504 
Exposure quartile*Older maternal age 2 0.7473 1.157 0.994 1.347 
Exposure quartile*Older maternal age 3 0.4584 1.141 1.030 1.264 
Exposure quartile*Older maternal age 4 0.0003 1.376 1.261 1.502 
Prenatal care 1 vs 0 <.0001 1.350 1.250 1.458 
Educational attainment 1 vs 0 <.0001 1.129 1.068 1.193 
Smoked 1 vs 0 <.0001 1.532 1.430 1.641 
Alcohol consumption 1 vs 0 0.0741 1.304 0.974 1.745 
Chronic hypertension 1 vs 0 <.0001 2.837 2.544 3.164 
Gestational hypertension 1 vs 0 <.0001 3.888 3.574 4.229 
Chronic diabetes 1 vs 0 0.0324 1.215 1.016 1.452 
Maternal infection(s) 1 vs 0 <.0001 1.420 1.333 1.513 
Marital status 1 vs 0 <.0001 1.326 1.250 1.406 
Infant sex 1 vs 0 <.0001 1.229 1.167 1.295 

Model 1: N=53,394, R-Square=0.0289 and adjusted R-Square=0.0578. 
Model 2: N=60,023, R-Square=0.0290 and adjusted R-Square=0.0579. 
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Hispanic Women: Low Birth Weight 

The results of the logistic regression low birth weight model for Hispanic mothers are 

shown in Figure 4-10. When exposure quartiles 2-4 were compared to the reference group 

quartile 1, none were statistically significant, demonstrating that exposure to RSEI levels were 

not a significant risk factor for low birth weight for Hispanic women. Since Hispanic mothers 

have a high odds of gestational hypertension, it was hypothesized that a synergistic effect of 

RSEI exposure*gestational hypertension might also exist to result in low birth weight. However, 

the interaction term exposure*gestational hypertension when comparing quartiles 1-4 with the 

reference category 0 (no gestational hypertension), quartiles 1, 3, and 4 were statistically 

significant. Women with gestational hypertension in exposure quartiles 3 and 4 had an increasing 

odds of having a low birth weight infant (OR=4.968, 95% CI 3.575-6.903 and OR=5.018, 95% 

CI 3.773-6.674, respectively). Chronic hypertension was also an important risk factor for low 

birth weight (OR=3.592 95% CI 2.675-4.822), followed by smoking during pregnancy 

(OR=1.747, 95% CI 1.505-2.2027), inadequate prenatal care (OR=1.47, 95% CI 1.246-1.735), 

older maternal age (OR=1.272, 95% CI 1.122-1.441), having a high school diploma of GED 

compared to some college or a college degree (OR=1.201, 95% 1.077-1.338) and being 

unmarried (OR=1.192, 95% CI 1.066-1.333) were risk factor for low birth weight among 

Hispanic mothers. Interestingly, Hispanic women’s risk factors for low birth weight did not 

include other maternal medical conditions -e.g., diabetes and infections more commonly 

observed in non-Hispanic white and black women. 
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Table 4-10: Logistic Regression Models for Low Birth Weight, Hispanic Women, Michigan, 
2008-2017. 

Model Results without the Interaction Term 

Variable p-value 
Odds 
Ratio 

95% Wald 

Confidence Limits 

Exposure quartile 2 vs 1 0.2149 0.872 0.749 1.015 

Exposure quartile 3 vs 1 0.0866 0.848 0.722 0.995 

Exposure quartile 4 vs 1 0.1287 0.986 0.855 1.137 

Maternal age 1 vs 0 0.0002 1.272 1.123 1.442 

Prenatal care 1 vs 0 <.0001 1.466 1.242 1.73 

Educational attainment 1 vs 0 0.0009 1.202 1.078 1.339 

Smoked 1 vs 0 <.0001 1.745 1.503 2.025 

Chronic hypertension 1 vs 0 <.0001 3.588 2.672 4.817 

Gestational hypertension 1 vs 0 <.0001 4.806 4.127 5.598 

Marital status 1 vs 0 0.0019 1.193 1.067 1.335 

Final Logistic Regression Model Results 

Exposure quartile 2 vs 1 0.5634 0.915 0.776 1.078 

Exposure quartile 3 vs 1 0.0939 0.86 0.722 1.023 

Exposure quartile 4 vs 1 0.1898 1 0.858 1.166 

Exposure quartile*Gestational hypertension 1 vs 0 0.001 5.461 4.045 7.372 

Exposure quartile*Gestational hypertension 2 vs 0 0.4096 3.933 2.889 5.354 

Exposure quartile*Gestational hypertension 3 vs 0 0.0163 4.968 3.575 6.903 

Exposure quartile*Gestational hypertension 4 vs 0 0.0056 5.018 3.773 6.674 

Maternal age 1 vs 0 0.0002 1.272 1.122 1.441 

Prenatal care 1 vs 0 <.0001 1.47 1.246 1.735 

Educational attainment 1 vs 0 0.001 1.201 1.077 1.338 

Smoked 1 vs 0 <.0001 1.747 1.505 2.027 

Chronic hypertension 1 vs 0 <.0001 3.592 2.675 4.822 

Marital status 1 vs 0 0.0021 1.192 1.066 1.333 
N=27,681, R-Square=0.0174 and adjusted R-Square=0.0515. 

 

4.7.3. Logistic Regression Results for Preterm Birth 

All Women: Preterm Birth 

The logistic regression model results for preterm birth among all women are shown in 

Table 4-11. When compared to the reference category exposure quartile 1, exposure quartiles 2 
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and 4 were at significantly increased odds of having a preterm birth. Exposure quartile 2 had a 

slightly protective effect on mothers (OR=0.955, 95% CI 0.917-0.994), while mothers in 

exposure quartile 4 was at increased odds (OR=1.137, 95% CI 1.092-1.185) controlling for 

potential confounding and known risk factors as listed in the table. Since premature rupture of 

the membranes is an important risk factor of preterm birth, the interaction term 

exposure*premature rupture of the membranes was further evaluated. Quartiles 1-4 were 

compared to the reference category 0 (no premature rupture of the membranes). For mothers 

exposed to quartiles 1-4 who experienced premature rupture of the membranes the odds of 

preterm birth was significant with quartile 1 (OR=4.159, 95% CI 3.779-4.577), quartile 2 

(OR=4.077, 95% CI 3.749-4.433), quartile 3 (OR=3.670 95% CI 3.401-3.961) and quartile 4 

(OR=4.829, 95% CI 4.426-5.268) controlling for known risk factors as listed in the table. These 

findings show at quartiles 3 and 4 a synergistic effect between elevated RSEI toxicity-weighted 

concentration exposures and premature rupture of membranes, here important causes of preterm 

birth. Gestational hypertension was the next most important risk factor (OR=3.481, 95% CI 

2.997-4.043) followed by vaginal bleeding (OR=2.999, 95% CI 2.781-3.234), underweight 

mothers (OR=2.743 95% CI 2.596-2.897), uterine rupture (OR=2.398, 95% CI 1.648-3.489), 

smoking during pregnancy (OR=1.795, 95% CI 1.735-1.857), inadequate prenatal care 

(OR=1.574, 95% CI 1.504-1.648), chronic diabetes (OR=1.291, 95% CI 1.228-1.357) and lastly 

pregnancy complications short labor (OR=1.154, 95% CI 1.095-1.216). Like the logistic 

regression models for low birth weight, the exposure quartiles were not significant when the race 

variable (black vs all other races) was included in the model and so separate models for each 

racial and ethnic group of interest were also constructed.  
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Table 4-11: Logistic Regression Models for Preterm, All Women, Michigan, 2008-2017. 

Model Results without the Interaction Term 

Variable 
p-

value 
Odds 
Ratio 

95% Wald 

Confidence 
Limits 

Exposure quartile 2 vs 1 <.0001 0.953 0.917 0.99 

Exposure quartile 3 vs 1 0.0359 1.001 0.964 1.039 

Exposure quartile 4 vs 1 <.0001 1.154 1.111 1.2 

Prenatal care 1 vs 0 <.0001 1.575 1.505 1.649 

Smoked 1 vs 0 <.0001 1.795 1.735 1.857 

Underweight 1 vs 0 <.0001 1.291 1.228 1.357 

Gestational hypertension 1 vs 0 <.0001 2.746 2.599 2.901 

Chronic diabetes 1 vs 0 <.0001 3.48 2.996 4.042 

Vaginal bleeding 1 vs 0 <.0001 2.999 2.781 3.234 

Uterine rupture 1 vs 0 <.0001 2.384 1.638 3.469 

Complications in pregnancy short labor 1 vs 0 <.0001 1.153 1.094 1.215 

Premature rupture of the membranes 1 vs 0 <.0001 4.117 3.946 4.295 

Final Logistic Regression Model Results 

Exposure quartile 2 vs 1 <.0001 0.955 0.917 0.994 

Exposure quartile 3 vs 1 0.4329 1.015 0.976 1.056 

Exposure quartile 4 vs 1 <.0001 1.137 1.092 1.185 

Exposure quartile*Premature rupture of the membranes 1 vs 0 <.0001 4.159 3.779 4.577 

Exposure quartile*Premature rupture of the membranes 2 vs 0 <.0001 4.077 3.749 4.433 

Exposure quartile*Premature rupture of the membranes 3 vs 0 <.0001 3.67 3.401 3.961 

Exposure quartile*Premature rupture of the membranes 4 vs 0 <.0001 4.829 4.426 5.268 

Prenatal care 1 vs 0 <.0001 1.574 1.504 1.648 

Smoked 1 vs 0 <.0001 1.795 1.735 1.857 

Underweight 1 vs 0 <.0001 2.743 2.596 2.897 

Gestational hypertension 1 vs 0 <.0001 3.481 2.997 4.043 

Chronic diabetes 1 vs 0 <.0001 1.291 1.228 1.357 

Vaginal bleeding 1 vs 0 <.0001 2.999 2.781 3.234 

Uterine rupture 1 vs 0 <.0001 2.398 1.648 3.489 

Complications in pregnancy short labor 1 vs 0 <.0001 1.154 1.095 1.216 
N=305,825, R-Square=0.0238 and adjusted R-Square=0.0544. 

 

Table 4-12 provides the results of the logistic regression model for non-Hispanic white 

mothers. Independently, smoking (OR=1.405, 95% CI 1.357-1.454) premature rupture of the 
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membranes (OR=4.350, 95% CI 4.177-4.531) were important risk factors for preterm birth 

among non-Hispanic white mothers. Consequently, the interactions exposure*smoked during 

pregnancy and exposure*premature rupture of the membranes quartiles were compared to the 

reference category 0 (no smoking during pregnancy and no premature rupture of the membranes, 

respectively). The odds ratio of preterm birth was significantly higher among non-Hispanic white 

mothers in the interaction exposure*smoked during pregnancy quartile 1 (OR=1.398, 95% CI 

1.324-1.476), interaction quartile 2 (OR=1.392, 95% CI 1.312-1.477), interaction quartile 3 

(OR=1.437, 95% CI 1.340-1.541) and interaction quartile 4 (OR=1.426, 95% CI 1.325-1.536) 

when controlling for all other covariates presented in the table. Smoking during pregnancy was 

consistently significant and positive by itself. For mothers in exposure*premature rupture of the 

membranes the odds of preterm birth was significant with quartile 1 (OR=4.485, 95% CI 4.142- 

4.857), with quartile 2 (OR=4.265, 95% CI 3.966-4.586), with quartile 3 (OR=3.939, 95% CI 

3.658-4.242) and with quartile 4 (OR=5.034, 95% CI 4.593-5.517) when controlling for potential 

confounders and known risk factors listed in the table. Without the interaction terms, the 

exposure quartiles by themselves were either not significant or only exposure quartile 3 was 

significant, but negative. In addition, several other factors were significantly associated with 

preterm birth among non-Hispanic white women. Uterine rupture was the second most important 

risk factor (OR=4.194, 95% CI 2.793-6.299) followed by chronic diabetes (OR=3.267, 95% CI 

2.966-3.598), vaginal bleeding (OR=3.233, 95% CI 3.009-3.474), gestational hypertension 

(OR=2.499, 95% CI 2.398-2.603), inadequate prenatal care (OR=1.395, 95% CI 1.382-1.466), 

older maternal age (OR=1.308, 95% CI 1.269-1.348), maternal infections (OR=1.271, 95% CI 

1.231-1.313), complications in pregnancy short labor (OR=1.242, 95% CI 1.176-1.312) and a 
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high school education or GED compared to some college or a college degree (OR=1.239, 95% 

CI 1.202-1.278).  
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Table 4-12: Logistic Regression Models for Preterm Birth, Non-Hispanic White Women, 
Michigan, 2008-2017. 

Model Results without the Interaction Term 

Variable 
p-

value 
Odds 
Ratio 

95% Wald 

Confidence 
Limits 

Exposure quartile 2 vs 1 0.9712 0.98 0.948 1.013 

Exposure quartile 3 vs 1 0.0035 0.95 0.918 0.983 

Exposure quartile 4 vs 1 0.3277 0.992 0.955 1.03 

Prenatal care 1 vs 0 <.0001 1.397 1.33 1.468 

Educational Attainment 1 vs 0 <.0001 1.237 1.199 1.275 

Maternal Age 1 vs 0 <.0001 1.31 1.271 1.349 

Smoked 1 vs 0 <.0001 1.405 1.357 1.454 

Gestational hypertension 1 vs 0 <.0001 2.5 2.399 2.604 

Chronic diabetes 1 vs 0 <.0001 3.263 2.963 3.593 

Vaginal Bleeding 1 vs 0 <.0001 3.232 3.008 3.473 

Uterine Rupture <.0001 4.172 2.778 6.267 

Complications in pregnancy short labor 1 vs 0 <.0001 1.242 1.176 1.312 

Premature rupture of the membranes 1 vs 0 <.0001 4.35 4.177 4.531 

Maternal Infection(s) 1 vs 0 <.0001 1.27 1.23 1.312 

Final Logistic Regression Model Results 

Exposure quartile*Smoked 1 vs 0 0.0166 1.398 1.324 1.476 

Exposure quartile*Smoked 2 vs 0 0.0374 1.392 1.312 1.477 

Exposure quartile*Smoked 3 vs 0 0.004 1.437 1.34 1.541 

Exposure quartile*Smoked 4 vs 0 0.0124 1.426 1.325 1.536 

Exposure quartile*Premature rupture of the membranes 1 vs 0 <.0001 4.485 4.142 4.857 

Exposure quartile*Premature rupture of the membranes 2 vs 0 <.0001 4.265 3.966 4.586 

Exposure quartile*Premature rupture of the membranes 3 vs 0 <.0001 3.939 3.658 4.242 

Exposure quartile*Premature rupture of the membranes 4 vs 0 <.0001 5.034 4.593 5.517 

Prenatal care 1 vs 0 <.0001 1.395 1.328 1.466 

Educational Attainment 1 vs 0 <.0001 1.239 1.202 1.278 

Maternal Age 1 vs 0 <.0001 1.308 1.269 1.348 

Gestational hypertension 1 vs 0 <.0001 2.499 2.398 2.603 

Chronic diabetes 1 vs 0 <.0001 3.267 2.966 3.598 

Vaginal Bleeding 1 vs 0 <.0001 3.233 3.009 3.474 

Uterine Rupture 1 vs 0 <.0001 4.194 2.793 6.299 

Complications in pregnancy short labor 1 vs 0 <.0001 1.242 1.176 1.312 
Maternal Infection(s) 1 vs 0 <.0001 1.271 1.231 1.313 

N=377,319, R-Square=0.0221 and adjusted R-Square=0.0537. 
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Non-Hispanic Black Women: Preterm Birth 

The results of the logistic regression model for preterm births among non-Hispanic black 

women are shown in Table 4-13. Quartile 4 exposure was significant for preterm birth 

(OR=1.188, 95% CI 1.023-1.378). Gestational hypertension and premature rupture of the 

membranes were important risk factors for non-Hispanic black women, so the interactions 

exposure*gestational hypertension and exposure*premature rupture of the membranes were 

included. Quartiles 1-4 were compared to the reference category quartile 0 (no gestational 

hypertension and no premature rupture of the membranes, respectively). An increased odds of 

preterm birth was observed among non-Hispanic black women in exposure*gestational 

hypertension quartile 3 (OR=3.688, 95% CI 2.747-4.951) and quartile 4 (OR=4.960, 95% CI 

3.810-6.456) while controlling for potential confounding and known risk factors of preterm birth 

as listed in the table. For non-Hispanic black mothers in the exposure*premature rupture of the 

membranes quartiles, only those in quartile 4 had a significantly increased odds of preterm birth 

(OR=4.960, 95% CI 3.810-6.456) controlling for other known covariates. Other important risk 

factors of preterm birth among non-Hispanic black mothers were identified, including chronic 

diabetes (OR=3.440, 95% CI 2.043-5.792), chronic hypertension (OR=3.384, 95% CI 2.444-

4.686), vaginal bleeding (OR=2.470, 95% CI 1.744-3.498), being underweight (OR=1.486, 95% 

CI 1.248-1.727), inadequate prenatal care (OR=1.408, 95% CI 1.225-1.619), older maternal age 

(OR=1.303, 95% CI 1.158-1.467), urban compared to rural residence (OR=1.298, 95% CI 1.086-

1.556), being unmarried (OR=1.286, 95% CI 1.160-1.427), smoking during pregnancy 

(OR=1.260, 95% CI 1.116-1.423), having obtained a high school education compared to some 

college or a college degree (OR=1.233, 95% CI 1.118-1.359) and maternal infections 

(OR=1.211, 95% CI 1.084-1.352).  
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Table 4-13: Logistic Regression Models for Preterm Birth, Non-Hispanic Black Women, 
Michigan, 2008-2017. 

Model Results without the Interaction Term 

Variable 
p-

value 
Odds 
Ratio 

95% Wald 

Confidence 
Limits 

Exposure quartile 2 vs 1 0.7297 1.072 0.901 1.276 

Exposure quartile 3 vs 1 0.6317 1.112 0.951 1.301 

Exposure quartile 4 vs 1 0.0207 1.188 1.023 1.378 

Prenatal care 1 vs 0 <.0001 1.405 1.222 1.615 

Educational attainment 1 vs 0 <.0001 1.233 1.118 1.359 

Maternal age 1 vs 0 <.0001 1.293 1.148 1.455 

Underweight 1 vs 0 <.0001 1.467 1.247 1.726 

Marital status 1 vs 0 <.0001 1.29 1.162 1.431 

Smoked 1 vs 0 0.0001 1.272 1.126 1.437 

Chronic hypertension 1 vs 0 <.0001 3.412 2.463 4.726 

Gestational hypertension 1 vs 0 <.0001 3.704 3.063 4.48 

Chronic diabetes 1 vs 0 <.0001 3.496 2.077 5.884 

Vaginal bleeding 1 vs 0 <.0001 2.515 1.777 3.56 

Premature rupture of the membranes 1 vs 0 <.0001 4.107 3.454 4.883 

Maternal infection(s) 1 vs 0 0.0009 1.206 1.079 1.347 

Urban-Rural Residence 1 vs 0 0.0139 1.256 1.047 1.506 

Final Logistic Regression Model Results 

Exposure quartile*Gestational hypertension 1 vs 0 0.927 2.766 1.569 4.875 

Exposure quartile*Gestational hypertension 2 vs 0 0.314 3.375 2.024 5.629 

Exposure quartile*Gestational hypertension 3 vs 0 0.033 3.688 2.747 4.951 

Exposure quartile*Gestational hypertension 4 vs 0 0.003 4.208 3.092 5.727 

Exposure quartile*Premature rupture of the membranes 1 vs 0 0.109 4.108 2.635 6.405 

Exposure quartile*Premature rupture of the membranes 2 vs 0 0.2 3.836 2.5 5.886 

Exposure quartile*Premature rupture of the membranes 3 vs 0 0.604 3.265 2.382 4.476 

Exposure quartile*Premature rupture of the membranes 4 vs 0 0 4.96 3.81 6.456 

Prenatal care 1 vs 0 <.0001 1.408 1.225 1.619 

Educational attainment 1 vs 0 <.0001 1.233 1.118 1.359 

Maternal age 1 vs 0 <.0001 1.303 1.158 1.467 

Underweight 1 vs 0 <.0001 1.468 1.248 1.727 

Marital status 1 vs 0 <.0001 1.286 1.16 1.427 

Smoked 1 vs 0 0 1.26 1.116 1.423 

Chronic hypertension 1 vs 0 <.0001 3.384 2.444 4.686 
Chronic diabetes 1 vs 0 <.0001 3.44 2.043 5.792 
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Table 4-13 (cont’d)     
Vaginal bleeding 1 vs 0 <.0001 2.47 1.744 3.498 
Maternal infection(s) 1 vs 0 0.001 1.211 1.084 1.352 
Urban-Rural Residence 1 vs 0 0.004 1.298 1.086 1.551 

 N=16,010, R-Square=0.0406 and adjusted R-Square=0.0724. 

 

Hispanic Women: Preterm Birth 

The results of the logistic regression model for Hispanic women are provided in Figure 4-

14. Notably, Hispanic mothers living in neighborhoods with increasing RESEI toxicity-weighted 

concentration exposures were not at significant odds of having a preterm birth.  The most 

important risk factor for preterm birth for Hispanic women was premature rupture of membranes 

(OR=4.403, 95% CI 3.85-5.034). In comparison with the reference group of exposure*premature 

rupture of the membranes quartile 0 (no premature rupture of the membranes), quartiles 1 and 4 

were statistically significant, while quartiles 2 and 3 were not. Mothers in exposure quartile 1 

and 4 who experienced premature rupture of the membranes had an increased odds of having a 

premature delivery (OR=4.730, 95% CI 3.530-6.338 and OR=6.073, 95% CI 4.872-7.570, 

respectively). Maternal medical conditions were important risk factors for preterm birth among 

Hispanic mothers, including gestational hypertension (OR=3.057, 95% CI 2.659-3.513), chronic 

hypertension (OR=2.558, 95% CI 1.963-3.333), vaginal bleeding (OR=2.431, 95% CI 1.866-

3.166), chronic diabetes (OR=2.143, 95% CI 1.634-2.81) and pregnancy complications short 

labor (OR=1.423, 95% CI 1.205-1.682). In addition, older maternal age (OR=1.298, 95% CI 

1.179-1.428), an educational attainment of a high school diploma or GED rather than some 

college or a college degree (OR=1.29, 95% CI 1.131-1.336), smoked during pregnancy 

(OR=1.161, 95% CI 1.019-1.322), inadequate prenatal care (OR=1.156, 95% CI 1.007-1.327) 

and being unmarried (OR=1.138, 95% CI 1.044-1.241) were also important risk factors.   



 

 

 

117 

 

Table 4-14: Logistic Regression Models for Preterm Birth, Hispanic Women, 

Michigan, 2008-2017. 

Model Results without the Interaction Term 

Variable p-value 
Odds 
Ratio 

95% Wald 

Confidence Limits 

Exposure quartile 2 vs 1 0.7508 0.988 0.88 1.111 

Exposure quartile 3 vs 1 0.1059 0.92 0.813 1.04 

Exposure quartile 4 vs 1 0.4127 1.004 0.898 1.123 

Prenatal care 1 vs 0 0.0278 1.167 1.017 1.34 

Educational attainment 1 vs 0 <.0001 1.233 1.134 1.34 

Maternal age 1 vs 0 <.0001 1.3 1.182 1.431 

Smoked 1 vs 0 0.0314 1.154 1.013 1.315 

Marital status 1 vs 0 0.0033 1.138 1.044 1.241 

Chronic hypertension 1 vs 0 <.0001 2.542 1.95 3.313 

Gestational hypertension 1 vs 0 <.0001 3.053 2.656 3.51 

Chronic diabetes 1 vs 0 <.0001 2.144 1.635 2.811 

Vaginal bleeding 1 vs 0 <.0001 2.416 1.855 3.148 

Complications in pregnancy short labor 1 vs 0 <.0001 1.423 1.204 1.681 

Premature rupture of the membranes 1 vs 0 <.0001 4.403 3.85 5.034 

Final Logistic Regression Model Results 

Exposure quartile*Premature rupture of the membranes 1 vs 0 0.0018 4.73 3.53 6.338 

Exposure quartile*Premature rupture of the membranes 2 vs 0 0.158 3.744 2.891 4.848 

Exposure quartile*Premature rupture of the membranes 3 vs 0 0.7367 3.056 2.292 4.074 

Exposure quartile*Premature rupture of the membranes 4 vs 0 <.0001 6.073 4.872 7.57 

Prenatal care 1 vs 0 0.0396 1.156 1.007 1.327 

Educational attainment 1 vs 0 <.0001 1.229 1.131 1.336 

Maternal age 1 vs 0 <.0001 1.298 1.179 1.428 

Smoked 1 vs 0 0.0245 1.161 1.019 1.322 

Marital status 1 vs 0 0.0032 1.138 1.044 1.241 

Chronic hypertension 1 vs 0 <.0001 2.558 1.963 3.333 

Gestational hypertension 1 vs 0 <.0001 3.057 2.659 3.513 

Chronic diabetes 1 vs 0 <.0001 2.143 1.634 2.81 

Vaginal bleeding 1 vs 0 <.0001 2.431 1.866 3.166 

Complications in pregnancy short labor 1 vs 0 <.0001 1.423 1.205 1.682 
 N=29,020, R-Square=0.0283 and adjusted R-Square=0.0603. 
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4.7.4. Space-Time Scan Statistics Results 

There were 1,374 reported lethal birth defects and 1,041,749 births for which there was a 

matching record from the cleaned and geocoded infant birth dataset of live, singleton births 

among mothers who lived in Michigan. The number of infant deaths attributable to a birth defect 

ranged between 104 to 172 per year. Looking at lethal birth defects by race and ethnicity, 63.1% 

were among non-Hispanic white women, 24.1% were among non-Hispanic black women and 

8.8% were among Hispanic women. Male infants accounted for 52%, while female infants 

accounted for 48% of the lethal birth defects. Of the lethal birth defects, 52.8% were among 

women living in large urbanized areas, 8.6% were among living in small urbanized areas, 0.6% 

were among women living in small urban areas and 38% were among women living in rural 

areas. 

Bernoulli Models 

Using a Bernoulli model with the time aggregation set at a minimum of five years, 36 

clusters of lethal congenital anomalies (herein referred to as infant deaths) were identified (refer 

to Figure 4-4 and Table 4-15). Five of these clusters were statistically significant. The significant 

clusters were in south Detroit, southwest Detroit and north Dearborn, south Ann Arbor urban 

area and north Milan, Dearborn, and north Holland urban area, respectively by significance level. 

In south Detroit, the observed number of infant deaths was 18 and the expected number was 0.46 

(Relative Risk (RR)=39.9). In southwest Detroit and north Dearborn, the observed number of 

infant deaths was 15 while the expected number was 1.40 (RR=10.8). In south Ann Arbor urban 

area and north Milan cluster, the observed number of infant deaths was 8 and the expected 

number was 0.56 (RR=14.4). In Dearborn, the observed number of infant deaths was 11 and the 

expected number was 1.51 (RR=7.4). In the north Holland urban area, the expected number of 
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infant deaths was 12 while the observed number was 1.95 (RR=6.2). The maximum RSEI 

toxicity-weighted concentrations of these census tracts during the years of these significant 

clusters were identified ranging between 5,481.71 and 26,551.90 with these elevated values high 

for both the earlier 5-year time period (2008-2013) and later 5-year time period (2014-2018); and 

the highest RSEI toxicity-weighted concentrations were within significant clusters in Detroit 

suggestive of persistent high exposures for women in Detroit. Other nonsignificant clusters 

where the observed number of infant deaths were greater than expected, but the difference 

between the observed and expected were not significantly different, were in the urban areas of 

Detroit and Ann Arbor as well as Flint, Saginaw, Lansing, Battle Creek, Kalamazoo, Grand 

Rapids, Holland and Muskegon, and in the non-urban areas located south of Lansing, in north 

Lenawee County, north of Midland in Gratiot, and east of Muskegon and northwest of Grand 

Rapids. The three non-significant clusters of infant deaths with the highest RSEI toxicity 

weighted concentrations were in Grand Rapids (clusters 6, 30) and Lansing (cluster 25).  
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Figure 4-4: SaTScan Bernoulli Model, 5-year Clusters, Michigan, 2008-2018. 
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Table 4-15: SaTScan Bernoulli Model Clusters of Lethal Birth Defects, 5-year Maximum, 
Michigan, 2008-2018. 

Cluster Year(s) Relative Risk 
Log-

Likelihood 
Ratio 

p-value 
Maximum RSEI 

Toxicity-Weighted 
Concentration 

1 2014 - 2018 39.9 49.2 <0.001 24522.30 
2 2008 - 2013 10.8 22.1 <0.001 20298.00 
3 2014 - 2018 14.4 13.9 0.002 7674.08 
4 2008 - 2013 7.4 12.5 0.009 26551.90 
5 2008 - 2013 6.2 11.8 0.013 5481.71 

6 2014 - 2018 19.2 10.1 0.103 94598.10 

7 2008 - 2013 3.6 10.1 0.107 67.53 

8 2008 - 2013 5.5 9.7 0.141 13.65 

9 2008 - 2013 2.1 9.4 0.182 12702.60 

10 2014 - 2018 26.7 9.4 0.201 6042.45 

11 2008 - 2013 7.1 7.7 0.638 3.28 

12 2008 - 2013 11.1 7.5 0.704 75547.40 

13 2008 - 2013 8.1 7.3 0.782 2.23 

14 2008 - 2013 10.1 7.1 0.847 18009.60 

15 2008 - 2013 14.4 7.0 0.872 346.57 

16 2008 - 2013 14.4 7.0 0.872 11062.60 

17 2014 - 2018 14.2 6.9 0.879 4052.84 

18 2008 - 2013 6.2 6.9 0.896 14513.70 

19 2014 - 2018 4.7 6.8 0.903 10989.30 

20 2014 - 2018 6.1 6.8 0.903 5040.08 

21 2008 - 2013 13.6 6.8 0.914 30614.50 

22 2014 - 2018 3.1 6.8 0.915 5602.06 

23 2008 - 2013 9.3 6.7 0.937 1587.36 

24 2008 - 2013 13.2 6.6 0.939 113.75 

25 2008 - 2013 3.7 6.4 0.967 4254.33 

26 2014 - 2018 12.2 6.3 0.971 12.91 

27 2014 - 2018 7.9 6.0 0.990 10232.50 

28 2008 - 2013 5.2 5.9 0.995 16413.20 

29 2008 - 2013 10.3 5.7 0.998 15295.90 

30 2014 - 2018 10.2 5.7 0.998 42464.00 

31 2008 - 2013 9.9 5.6 0.998 3991.79 

32 2014 - 2018 9.4 5.4 0.999 489.53 

33 2008 - 2013 9.3 5.4 0.999 4344.16 

34 2014 - 2018 9.2 5.3 0.999 4.81 

35 2008 - 2013 6.7 5.3 0.999 7528.22 

36 2014 - 2018 8.4 5.0 0.999 4678.86 
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Using a Bernoulli model with the time aggregation set at a minimum of one year, 

importantly 48 clusters were identified, of which fourteen were significant (refer to Figure 4-5 

and Table 4-16). The significant clusters were located in south Detroit, southwest Detroit, north 

Holland urban area, Dearborn, northwest Detroit, west Lansing urban area and just west of the 

urban area, south Ann Arbor urban area and just south of the urban area, north Lenawee County, 

east Detroit, northwest of Grand Rapids and east of Muskegon, northwest Detroit, Woodhaven, 

just west of Detroit, within the Detroit urban area, and northwest Detroit, listed in order of 

significance level. In south Detroit, the observed number of infant deaths was 18 while the 

expected number was 0.25 (RR=73.6). In southwest Detroit, the observed number of infant 

deaths was 13 and the expected number was 0.51 (RR=25.7). In the north Holland urban area, 

the number of observed infant deaths was 10 and the number of expected cases was 0.34 

(RR=29.6). In Dearborn, the number of observed infant deaths was 9 and the number expected 

was 0.25 (RR=35.8). In northwest Detroit, the number of observed infant deaths was 10 and the 

expected number was 0.63 (RR=16.1). In west Lansing just west of the capital area, the number 

of observed infant deaths was 11 while the number expected was 1.0 (RR=11.1). In the south 

Ann Arbor urban area and just south of the urban area, the number of observed infant deaths was 

8 and the number expected was 0.42 (RR=19.1). In north Lenawee County, the number of 

observed infant deaths was 4 and the number expected was 0.03 (RR=123.3). In east Detroit, the 

number of observed infant deaths was 4 and the number of expected was 0.04 (RR=109.0). In the 

area northwest of Grand Rapids and east of Muskegon, the number of observed infant deaths was 

9 while the number expected was 0.67 (RR=13.2). In northwest Detroit, the number of observed 

infant deaths was 8 and the number expected was 0.53 (RR=15.3). In Woodhaven, the number of 

observed infant deaths was 4 while the number expected was 0.05 (RR=85.9). In the area just 
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west of Detroit City, the number of observed infant deaths was 4 and the number of expected 

cases was 0.05 (RR=74.6). In northwest Detroit, the number of observed infant deaths was 10 

and the number of expected was 1.08 (RR=9.4). The maximum RSEI toxicity-weighted 

concentrations of these census tracts during the year(s) the significant clusters were detected 

ranged between 57.52 and 19,937.10 with clusters observed across the time periods, and slightly 

higher concentration after 2012. 

Other nonsignificant clusters were observed in the urban areas of Detroit, Ann Arbor, 

Flint, Saginaw, Midland, Lansing, Battle Creek, Kalamazoo, Grand Rapids, Holland and 

Muskegon, and in the non-urban areas located southwest of Lansing, in north Lenawee County, 

north of Midland in Gratiot, and east of Muskegon and northwest of Grand Rapids.  
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Figure 4-5: SaTScan Bernoulli Model, 1-year Clusters, Michigan, 2008-2017. 
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Table 4-16: SaTScan Bernoulli Model Clusters of Lethal Birth Defects, 1-year Maximum, 
Michigan, 2008-2018. 

Cluster Year(s) Relative Risk 
Log-

Likelihood 
Ratio 

p-value 
Maximum RSEI 

Toxicity-Weighted 
Concentration 

1 2014 - 2015 73.6 60.4 < 0.001 19937.10 

2 2011 - 2012 25.7 29.9 < 0.001 13950.70 

3 2009 29.6 24.4 < 0.001 4579.15 

4 2011 35.8 23.6 < 0.001 9862.20 

5 2012 16.1 18.5 < 0.001 10878.50 

6 2013 11.1 16.5 0.003 154.53 

7 2014 - 2016 19.1 16.1 0.005 4741.76 

8 2008 123.3 15.6 0.010 346.57 

9 2016 109.0 15.1 0.014 6042.45 

10 2011 13.2 14.9 0.018 57.52 

11 2012 15.3 14.4 0.022 12808.60 

12 2012 85.9 14.1 0.027 9664.38 

13 2009 74.6 13.5 0.046 10242.00 

14 2012 - 2014 9.4 13.5 0.047 9883.40 

15 2011 - 2013 16.5 13.1 0.061 13179.50 

16 2010 34.8 13.0 0.066 2.17 

17 2012 65.9 13.0 0.067 3991.79 

18 2008 34.1 12.9 0.078 398.08 

19 2010 63.0 12.8 0.084 1.01 

20 2013 63.0 12.8 0.084 100.62 

21 2016 56.7 12.4 0.131 33843.50 

22 2017 53.5 12.1 0.159 1179.28 

23 2014 52.5 12.1 0.174 2.72 

24 2013 51.5 12.0 0.183 6.64 

25 2010 - 2014 6.2 11.8 0.212 30049.70 

26 2015 45.7 11.5 0.273 38544.20 

27 2010 45.0 11.4 0.290 5590.89 

28 2015 43.6 11.3 0.320 5187.44 

29 2016 43.0 11.2 0.333 7914.84 

30 2015 40.5 11.0 0.392 4.66 

31 2010 40.5 11.0 0.392 7528.22 

32 2012 40.5 11.0 0.392 13714.90 

33 2013 - 2015 11.7 10.9 0.436 303.61 

34 2015 33.0 10.2 0.636 5.54 

35 2010 13.1 9.9 0.715 3696.32 

36 2012 - 2015 5.1 9.9 0.729 10654.10 

37 2008 28.3 9.6 0.812 5.09 
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Table 4-16 (cont’d)    

38 2016 27.5 9.5 0.840 522.59 

39 2010 26.7 9.4 0.867 3446.51 

40 2010 26.2 9.3 0.885 1331.57 

41 2016 25.3 9.1 0.915 123706.00 

42 2009 - 2013 5.6 9.0 0.932 13.65 

43 2013 - 2015 10.7 8.8 0.958 401.64 

44 2010 21.6 8.5 0.987 3.72 

45 2013 13.1 8.3 0.992 198.73 

46 2015 19.5 8.1 0.996 7631.74 

47 2008 12.7 8.1 0.996 2003.00 

48 2013 19.3 8.1 0.996 1753.37 
 

Poisson Models 

The unadjusted Poisson model that took into account the underlying number of births in 

the modeling parameters, set to a minimum time aggregation of five years identified eleven 

clusters, with one significant cluster (refer to Figure 4-6 and Table 4-17). The significant cluster 

was located north of Midland in Gladwin, Arenac and Bay Counties. The number of observed 

infant deaths was 11 and the number of expected cases was 1.71 (RR=6.5). Interestingly this 

cluster did not contain a high level of RSEI toxicity-weighted concentration (13.65). This 

significant cluster of infant deaths was observed during the earlier 5-year time period (2008-

2013). Other nonsignificant clusters were observed in the Detroit urban area, north Muskegon 

urban area including the area outside of the urban area to the west and northwest, south-central 

Michigan including nearly all the Battle Creek urban area and part of the urban areas of Jackson 

and Lansing, and the east-central region including all the Bay City urban area, most of the 

Saginaw urban area, and just the eastern edge of the Midland urban area. Alike the Bernoulli 

models, non-significant clusters of infant deaths were observed across both 5-year time 

periods—the earlier (2008-2013) and later (2014-2018). 
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Adjusting for the RSEI toxicity-weighted concentrations resulted in one, non-significant 

cluster. This one cluster was larger and located a bit north of the significant cluster in the 

unadjusted model with a decrease in RR=6.4 to RR=4.4 after adjustment. This decrease in RR 

after adjusting for RESI exposures suggests that maternal RSEI exposures may in part explain 

this cluster but because the level of RESI toxicity-weighted concentration was quite low this 

hypothesis vs. the movement farther north into rural areas will require further investigation.  

Figure 4-6: SaTScan Poisson Model, 5-year Clusters, Michigan, 2008-2017. 
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Table 4-17: SaTScan Poisson Model Clusters of Lethal Birth Defects, 5-year Maximum, 
Michigan, 2008-2018. 

Unadjusted Model 

Cluster Year(s) Relative Risk 
Log-

Likelihood 
Ratio 

p-value 
Maximum RSEI 

Toxicity-Weighted 
Concentration 

1 2008 - 2013 6.5 11.2 0.026 13.65 

2 2014 - 2018 13.0 9.8 0.128 24522.30 

3 2008 - 2013 2.2 8.8 0.288 25483.50 

4 2008 - 2013 2.1 8.5 0.365 12702.60 

5 2008 - 2013 2.1 8.5 0.369 0 

6 2008 - 2013 2.3 6.6 0.933 19772.20 

7 2008 - 2013 12.2 6.3 0.97 15295.90 

8 2008 - 2013 4.7 6.0 0.989 21141.40 

9 2008 - 2013 1.9 5.9 0.992 14415.50 

10 2008 - 2013 3.5 5.8 0.992 237.41 

11 2008 - 2013 2.0 5.7 0.996 1673.01 

Adjusted Model 

Cluster Year(s) Relative Risk 
Log-

Likelihood 
Ratio 

p-value 
Maximum RSEI 

Toxicity-Weighted 
Concentration 

1 2008 - 2013 4.4 7.7 0.424 0 

 

The unadjusted Poisson model set to a minimum one-year time aggregation identified 

thirteen clusters (Figure 4-7 and Table 4-18). Only one cluster was significant, which was in 

south Detroit. The number of observed cases was 6 while the number of expected cases was 0.20 

(RR=30.6). The maximum RSEI toxicity-weighted concentration during the years the significant 

cluster was detected (2014-2015) was 19,937.10. Other nonsignificant clusters were observed in 

the Detroit urban areas, north of Midland in Gladwin, Arenac and Bay Counties, east-central 

Michigan including the eastern parts of the urban areas of Bay City and Saginaw, Muskegon 

urban area, the area consisting of the western part of the Lansing urban area and the area just 

west of the urban area, in the western portion of the Grand Rapids urban area, and in the area 

east of Muskegon and north-west of Grand Rapids. When adjusting for the RSEI toxicity-
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weighted concentrations, only one cluster emerged, and it was not significant. This cluster 

identified with was smaller and located in southwest Muskegon and north Norton Shores where 

there was no significant cluster in the unadjusted model. 

Figure 4-7: SaTScan Poisson Model, 1-year Clusters, Michigan 2008-2017 
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Table 4-18: SaTScan Poisson Model Clusters of Lethal Birth Defects, 1-year Maximum, 
Michigan 2008-2018. 

Unadjusted Model 

Cluster Year(s) Relative Risk 
Log-

Likelihood 
Ratio 

p-value 
Maximum RSEI 

Toxicity-Weighted 
Concentration 

1 2014 - 2015 30.6 14.7 0.021 19937.10 
2 2012 - 2015 2.6 11.1 0.353 11548.40 
3 2009 - 2013 6.7 10.5 0.566 13.65 
4 2012 - 2015 2.7 9.8 0.763 20467.30 
5 2008 - 2010 3.6 9.5 0.835 3.27 
6 2012 - 2016 6.1 8.8 0.964 12107.00 
7 2013 - 2017 4.9 8.7 0.973 10989.30 
8 2013 8.3 8.7 0.979 154.53 
9 2011 - 2012 9.9 8.4 0.995 14442.00 
10 2008 13.4 8.4 0.995 2003.00 
11 2012 - 2015 2.5 8.2 0.997 13870.40 
12 2015 - 2017 2.7 8.0 0.999 6984.36 
13 2009 - 2012 3.9 8.0 0.999 67.53 

Adjusted Model 

Cluster Year(s) Relative Risk 
Log-

Likelihood 
Ratio 

p-value 
Maximum RSEI 

Toxicity-Weighted 
Concentration 

1 2008 - 2010 18.8 8.0 1.00 2.23 

 
 
4.8. Discussion 

Logistic Regression  

Higher RSEI exposure quartiles were significantly associated with an increased odds of 

low birth weight births in the analysis of all women, non-Hispanic white women and non-

Hispanic black women. Among non-Hispanic white women, the interaction term exposure 

quartile*smoked during pregnancy was more important than just the exposure quartiles by 

themselves. Similarly, the interaction term exposure quartile*older maternal age was more 

important than just the exposure quartiles by themselves for non-Hispanic black women. In the 

model for Hispanic women, the exposure quartiles were not significant by themselves, however 
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the interaction of the exposure quartiles and gestational hypertension were statistically 

significant and was the most important risk factor for having a low birth weight infant. These 

findings demonstrate that maternal exposure to increasing RSEI toxicity-weighted concentrations 

had independent and interactive effects such that synergies were observed between increasing 

RSEI exposure and smoking, older age and gestational hypertension. In addition, inadequate 

prenatal care had a notably high OR in the analysis of low birth weight among all women and 

both chronic and gestational hypertension contained high ORs in each of the low birth weight 

models, suggesting a consequence of women not receiving regular health care during pregnancy 

for the treatment of these conditions. Finally, women who were unmarried were at higher odds of 

low birth weight for all mothers demonstrating the potential need for additional family (social) 

support. Diabetes and alcohol usage were significant risk factors for low birth weight for non-

Hispanic white and black women, while older age and lower educational levels were significant 

risk factors for low birth weight for non-Hispanic black and Hispanic women. These findings 

provide targeted areas for intervention to improve maternal health and reduce low birth weight 

for new mothers in Michigan. 

RSEI exposure quartile 4 was significantly associated with an increased odds of preterm 

birth in the analysis of all women and premature rupture of membranes was the most important 

risk factor. However, the interaction effect of the exposure quartiles with premature rupture of 

the membranes among all women was associated with notably large odds ratios demonstrating a 

synergistic effect. For the race-stratified models, the exposure quartiles were significantly 

associated with a higher odds of preterm birth when combined with other risk factors as an 

interaction term. In the analysis of non-Hispanic white women, the interaction terms exposure 

quartiles 3 and 4*smoked during pregnancy and exposure quartile 4*premature rupture of the 
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membranes yielded high odds ratios. The interaction effects were greater than their individual 

effects on preterm birth. The analysis of non-Hispanic black women revealed that the interaction 

of exposure quartile 4*gestational hypertension and exposure quartile 4*premature rupture of the 

membranes was greater than their individual odds with preterm birth. Similarly, the exposure 

quartile 4*premature rupture of the membranes interaction term in the analysis of Hispanic 

women had higher Odds ratios than these variables individually. These findings across all 

women in general, and stratified by race and ethnicity in particular show that the highest quartile 

of RSEI toxicity-weighted concentration exposures exacerbates the effects of these maternal 

medical conditions on preterm birth. This suggests that addressing these maternal medical 

conditions without interventions that also protect women from toxicant chemical exposures may 

minimize improvements in these health outcomes and ultimately limit a reduction in preterm 

birth. Other maternal medical conditions that were significant for preterm birth across all 

mothers were gestational hypertension, chronic diabetes and vaginal bleeding. Of these, the odds 

associated with gestational hypertension were highest among non-Hispanic black and Hispanic 

women; the odds associated with chronic diabetes were highest among non-Hispanic black 

followed by non-Hispanic white and Hispanic women; and the odds associated with vaginal 

bleeding were highest among non-Hispanic white followed by non-Hispanic black and Hispanic 

women demonstrating the importance of addressing maternal medical conditions to reduce the 

incidence of preterm birth in Michigan. 

Non-Hispanic black mothers of older maternal age exposed in the highest quartile had an 

elevated risk of having a low birth weight baby compared to mothers of all ages, indicative of an 

ecosyndemic. The socio-economic structures along with the pollution environment may be 

wearing down these women, degrading their overall health and ability to respond to additional 
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insults and stressors, thereby influencing birth outcomes. This study also identified several 

important interaction effects between extrinsic and intrinsic factors, including between the RSEI 

exposure quartile 4 and maternal behavioral and medical conditions on low birth weight and 

preterm birth, also common with the presence of an ecosyndemic, which together have a greater 

adverse impact on birth outcomes than they do by themselves. 

The odds ratios for the RSEI exposure quartiles in this study were consistent with 

previous environmental health studies. One of these prior studies evaluated maternal residential 

proximity to industrial facilities, including TRI facilities, and their releases on low birth weight 

and preterm birth outcomes (Porter et al., 2014) and another study assessed pregnant women’s 

estimated TRI chemical exposure on low birth weight (Gong et al., 2018). While the odds ratios 

for the exposure quartiles were small, the interactive effects of the exposure with maternal 

behavioral characteristics (i.e., smoking) and medical conditions (i.e., gestational hypertension 

and premature rupture of the membranes) were large supporting these previous studies and also 

advancing this line of research to include synergistic effects of TRI emissions (here elevated 

RSEI toxicity-weighted concentration exposures and adverse birth outcomes). 

A previous study by Kezios et al. (2017) reported that maternal smoking and maternal 

exposure to PCB byproducts were found to increase the risk of low birth weight infants. These 

exposures together caused greater harm than individually (Kezios et al., 2017). Valavanidis at al. 

(2009) found that the negative effects of maternal exposure to air pollution on infant health were 

considerably larger among smokers than nonsmokers. The finding from this study compliments 

these two prior studies by showing an increased odds of adverse birth outcomes among the 

combined interaction of women living in the highest exposure quartile who smoked during 

pregnancy than the odds of adverse birth outcomes for these exposures independently. For non-



 

 

 

134 

 

Hispanic white women who lived in the highest RSEI quartile 4 and smoked during pregnancy 

and were at increased odds of low birth weight and preterm birth with a slightly stronger effect 

on low birth weight demonstrating the importance of continuing education about the harmful 

effects of smoking during pregnancy.  

Premature rupture of the membranes has been linked to environmental exposures in 

previous studies. Maternal exposure to air pollutants is the most well document, with 

associations identified between PM2.5, CO, SO2 and O3 exposure and premature rupture of the 

membranes (Pereira et al., 2015; Han et al., 2020; Wallace et al., 2016). In addition, a few 

studies reported that higher maternal lead levels increase the risk of premature rupture of the 

membranes (Falcón, Viñas, & Luna, 2003; Huang et al., 2018). The findings from these previous 

studies indicate the importance of improving maternal awareness of premature rupture of 

membranes to prevent the onset and improve its management if it is diagnosed. Education alone 

however, may not fully address the problem of premature rupture of membranes and future 

interventions should also address the neighborhoods of women experiencing high RSEI toxicity-

weighted concentration exposures. 

Hypertensive disorders of pregnancy contribute to maternal and neonatal morbidity and 

mortality (Kahn & Trasande, 2018). Previous studies have identified an increased risk of 

gestational hypertension among pregnant women exposed to air pollutants, including particulate 

matter, NOx, SO2, PAH and VOCs (Vinikoor-Imler et al., 2011; Zhu et al., 2017). The biological 

mechanisms thought to be underlying these associations are oxidative stress, epigenetic changes, 

endocrine disruption and abnormal placental vascularization (Kahn & Trasande, 2018). Although 

these studies suggest maternal exposure to air pollution may increase their risk of gestational 
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hypertension, there is a lack of research examining the mediating effects of gestational 

hypertension in the environmental exposure(s) and adverse birth outcomes relationships. 

Finally, inadequate prenatal care and lower educational levels were significant risk 

factors for low birth weight and preterm birth for all women in Michigan. Ensuring high quality 

education and access to preconceptual and prenatal health care will be ongoing important 

initiatives to improve maternal health and pregnancy outcomes in Michigan. 

Cluster Detection of Lethal Birth Defects 

Spatial scan statistics using SaTScan software has previously been used to study the 

spatial distribution of birth defects in Texas (Cech et al., 2008) and North Carolina (Root et al., 

2009). This was the first study to the author’s knowledge to investigate the spatial and temporal 

patterns of lethal birth defects in Michigan. Comparing the output of two different space-time 

scan statistics, a Bernoulli model and Poisson model, and two different time aggregations, this 

study showed that the clusters and elevated relative risk of lethal birth defects were identified in 

similar areas across Michigan. This comparison indicated areas with persistent clusters, 

affirming the need for closer consideration by public health departments.  

There was consistency in cluster locations between the two Bernoulli models. The 

significant clusters were identified in the urban areas of Detroit, Ann Arbor, Lansing and 

Holland using both one-year and five-year time aggregations. Many of the census tracts in these 

areas had high RSEI toxicity-weighted concentrations. An unadjusted and adjusted Poisson 

model was run for each of the same time aggregations. The Poisson models indicated a 

significant cluster in the Gladwin, Arenac and Bay County area with the five-year time 

aggregation and a significant cluster in south Detroit with the one-year time aggregation. The 

adjusted model included the RSEI toxicity-weighted concentration covariate, which removed all 
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but one cluster which was not significant in either model. This finding suggests that the RSEI 

toxicity-weighted concentrations may help explain some of the urban and also rural clusters of 

lethal defects across Michigan between 2008-2018. The strengths and limitations of the study are 

outlined below.  

Strengths 

A key strength of the study was the use of a the RSEI toxicity-weighted concentrations at 

the census tract level, which offered an improved estimate of maternal exposure to TRI emitted 

chemicals than previous studies. The RSEI model considers not only the quantity of the 

chemicals released, but also the quantity, their fate and transport through the environment, the 

route of exposure and dose of exposure. Second, the geocoding match rate of birth records was 

99% which is well over the minimum acceptable geocoding success rate (Cromley & 

McLafferty, 2002) so births lost to unmatched geocoding was not a major source of geographic 

bias in the state. Third, this study used a robust infant birth and linked infant dataset which 

included many individual-level variables, which allowed for a more comprehensive risk analysis 

able to detect small changes in effects of RSEI toxicity-weighted concentration exposures and 

other individual-level risk factors for low birth weight and preterm birth. Fourth, this study’s 

cluster detection method performed a sensitivity analysis by using two different models and two 

different time aggregations to evaluate the spatial and temporal distribution of lethal defects in 

Michigan.   

Limitations 

Although this study had individual-level birth records, it did not have individual-level 

toxicant data. Rather, an estimated pollution exposure level among pregnant women was derived 

from the RSEI toxicity-weighted model. This area-level (census tract) measure, however, was 



 

 

 

137 

 

modeled at the individual-level assuming all women living within a census tract in a given year 

were assumed to have the same exposure. Second, the RSEI model produces annual output so 

this study was unable to evaluate critical windows of exposure during trimesters of pregnancy or 

seasonal changes. While exposure bias may exist because of the two reasons above, this is the 

first study that has utilized a composite measure of multiple toxicants known to be risk factors 

for adverse birth outcomes and infant defects justifying the need to study the RESI toxicity-

weighted concentration data in relation to pregnancy outcomes. Third, women may have moved 

during their pregnancy or spent substantial amounts of times outside of their census tracts, which 

this study will not account for which may have also resulted in exposure bias. Fourth, the 

interaction terms modeled represent synergistic effects which conceptually was meaningful from 

an ecosyndemic perspective. Future research, however, should also model the mediating effects 

of maternal medical conditions in the RSEI toxicity-weighted concentration and adverse birth 

outcomes relationships. Lastly, the Bernoulli model does not allow for the adjustment for 

covariates which may be important risk factors of lethal defects. The space-time Poisson model 

on the other hand did allow for the adjustment of the RSEI toxicity-weighted concentrations. 

While this study detected where lethal birth defects are significantly elevated in Michigan and 

which of the clusters were in part explained by the RSEI toxicity-weighted concentration level, 

future research may model other covariates including interactions/synergies that may further 

explain underlying causes of birth defects that lead to infant mortality.   

4.9. Conclusions 

This study found small, yet significant increased odds of low birth weight in the logistic 

regression models that included all mothers, non-Hispanic white mothers and non-Hispanic black 

mothers exposed in higher RSEI exposure quartiles. Additionally, this study highlights the 
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importance of the interaction effects between RSEI exposure quartiles and several variables 

including maternal smoking during pregnancy among non-Hispanic white mothers, older 

maternal age among non-Hispanic black mothers and gestational hypertension among Hispanic 

mothers. The findings indicate the importance for pregnant women to receive health care during 

pregnancy, the prevention and control of gestational and chronic hypertension and a reduction in 

smoking during pregnancy. 

This study found small, yet a significantly higher odds of preterm birth in the logistic 

regression models for all mothers and non-Hispanic black mothers exposed in higher RSEI 

exposure quartiles. The results suggest the importance of maternal smoking cessation and the 

prevention and control of gestational hypertension, chronic diabetes, premature rupture of the 

membranes, vaginal bleeding and uterine rupture. This study also identified important interaction 

effects with the RSEI exposure quartiles including maternal smoking during pregnancy, 

premature rupture of the membranes and gestational hypertension. 

The space-time analysis identified persistent clusters of lethal birth defects during the 

study period. Areas with significant clustering of lethal birth defects included the urban areas of 

Detroit, Ann Arbor, Lansing, Holland and Muskegon, North Lenawee County and in the 

Gladwin, Arenac and Bay County area. In particularly, significant clustering was detected in 

south Detroit in all but one of the models, identifying it as an important area for further 

consideration. 

This research advances the field of environmental health through the examination of 

multiple toxic chemical exposures using a sophisticated human health risk screening model. Both 

have been limited in previous literature. The findings from this study provide additional insight 

on maternal exposure to TRI chemicals and adverse birth outcomes. The findings should be used 
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to inform environmental regulatory and public health policies and programs, particularly 

focusing on communities with high human health risks from modelled TRI chemical exposures, 

to improve birth outcomes among women living in these communities. Communities will also 

likely experience other types of health benefits also known to be influenced by environmental 

pollutants. In addition, this research builds upon our existing knowledge of health impacts 

associated with humans’ exposure to multiple chemicals for health care providers. The findings 

and recommendations hold the potential to have extensive benefits considering the numerous 

short-term and lifelong impacts that can be prevented with healthy birth outcomes. 

Future research should also incorporate other environmental hazards, such as ambient air 

pollutants, drinking water quality and hazardous waste sites, that may be contributing to adverse 

birth outcomes including lethal birth defects. Padula et al. (2018) noted that environmental 

exposures may contribute to or exacerbate pregnancy risk factors, such as hypertension. Future 

research should also assess the potential mediating effects of maternal medical conditions 

(chronic and gestational hypertension, chronic diabetes, premature rupture of the membranes and 

vaginal bleeding) in the RESI toxicity-weighted concentration and adverse birth outcome 

relationship. While changes in behavior that improve maternal health will always be important, 

this study highlighted the need to emphasize the need for reductions in toxic pollutant exposures 

on the environmental side and improvements in access to preconceptual and prenatal care on the 

prevention and treatment side. While maternal medical conditions may be treated by high quality 

health care, the continued presence of environmental exposures will perpetuate the problem. To 

improve maternal health in Michigan and reduce the incidence of low birth weight and preterm 

birth for all women this direction of research and practice should be encouraged.  
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Finally, to reduce racial and ethnic disparities in maternal health and low birth weight and 

preterm birth it will be even more important to address environmental toxic exposures because of 

the apparent clustering of non-Hispanic black women in high RSEI toxicity-weighted 

concentration neighborhoods—areas that generally also have a lack of available and accessible 

health care resources.    
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 DISCUSSION 

 This dissertation study offers a way to conceptualize and evaluate toxic chemical 

exposures in relation to environmental justice and environmental health using an environmental 

health justice ecosyndemic theoretical framework. Ecosyndemic theory suggests that the 

environmental conditions in which people spend time are influenced by and intersect with 

contextual and individual factors in ways that can lead to disease clustering within a population 

or a geographic area. This paper reveals that an ecosyndemic can occur at multiple levels. First, 

at the environmental level with multiple pollutant exposures at high levels in largely high 

minority and low-income populations; and second at the heath outcome level with multiple 

adverse health conditions, such maternal morbidity and poor birth outcomes. By incorporating 

ecosyndemic theory with the human ecology model, medical geographers can offer deeper 

understandings of environmental justice, environmental health and health equity. 

This dissertation study also analyzed TRI chemical concentrations to investigate 

environmental justice in Michigan. The EPA’s RSEI model was used to map the potential of 

human exposure to TRI toxic chemicals and socio-demographic characteristics of the population 

to evaluate the potential of human health risk across Michigan over time. H0 was generally 

supported, but there were a few exceptions. Much of the elevated human health risks from TRI 

chemical exposures were in areas with a higher density of TRI facilities, but there were also 

some areas with low health risk and a high density of TRI facilities and vice versa a few areas 

with high health risks and a low density of TRI facilities. The study concluded that census tracts 

with the highest RSEI toxicity-weighted concentrations were in the urban areas of Detroit and 

Grand Rapids. Population groups experiencing an elevated share of health risks from exposure to 

TRI chemicals were African American and Hispanic residents and people living near and below 
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the poverty level. Non-Hispanic African Americans living in the Grand Rapids and Detroit urban 

areas faced a persistent burden, whereas Hispanics living in the Detroit urban area experienced 

an emerging burden. Consequently, it is probable an ecosyndemic is occurring in the two largest 

urban areas of Michigan. Therefore, H01 and H02 were supported by the study findings. The 

multiple toxic chemicals in which residents, particularly minorities, are exposed may have 

synergistic and interacting effects at the societal and individual levels, accentuation 

environmental and health equity concerns. This study also further informs the debate of the 

discriminatory citing hypothesis with the move-in hypothesis for non-Hispanic black and 

Hispanic populations who were identified as experiencing disproportionate burdens from toxicity 

risk from TRI chemical exposures.  

 This dissertation study also included a retrospective, cross-sectional cohort study of 

mothers and their infants in Michigan (n=1,041,749) to evaluate TRI chemical exposure risks on 

maternal health, adverse birth outcomes and lethal defects attributable to congenital anomalies. 

Maternal addresses were geocoded and spatially joined with the RSEI toxicity-weighted 

concentrations to assign the exposure value. SAS 9.4 was used to run logistic regression analyses 

of low birth weight and preterm birth and SaTScan 9.7 was used to run space-time analyses of 

lethal birth defects. 

This study found that maternal exposure to increasing levels of RSEI toxicity-weighted 

concentrations whether non-Hispanic white or non-Hispanic black increased the odds of having a 

low birth weight or premature infant. Importantly, this finding was not observed for Hispanic 

women. However, the synergies by which RSEI levels impacted low birth weight specifically 

appeared to vary by each population group, with smoking having a greater RSEI synergistic 

effect for non-Hispanic white women, increasing age having a greater RSEI synergistic effect for 
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non-Hispanic black women and gestational diabetes having a greater RSEI synergistic effect for 

Hispanic women after controlling for potential confounding and known risk factors for low birth 

weight. Therefore, the study findings generally support H01 and H02. 

The study also found a statistically significant increased odds of preterm birth among all 

mothers and in the race-ethnicity stratified model for non-Hispanic black mothers exposed in 

higher RSEI quartiles. The synergies by which RSEI levels impacted preterm birth 

overwhelmingly supported gestational hypertension and premature rupture of membranes 

particularly in RSEI quartile 4 across all groups of women. While gestational hypertension and 

premature rupture of membranes are important independent risk factors for preterm birth, their 

synergistic effects in the presence of exposure to high RSEI levels is an extremely important area 

for future research. Future research should further study these RSEI and behavioral, demographic 

and medical synergies to reduce the incidence of low birth weight and preterm birth in Michigan 

and to inform other states across the country where RSEI data are also available.   

The spatial scan statistics results identified areas in Michigan with persistent clusters 

of infant mortality attributable to a birth defects. The areas with persistent statistically significant 

clusters included the urban areas of Detroit, Ann Arbor, Lansing and Holland and the 

Gladwin, Arenac and Bay County area. Notably, when using the Poisson space-time model, 

adjusting for the RSEI exposure quartiles removed all but one of the clusters, which was not 

significant, indicating that the exposure may be explaining in part, some of the clusters of lethal 

birth defects across Michigan during 2008-2018. Further analyses that control for maternal level 

risk factors in addition to the RSEI exposure is warranted. 

The study findings indicate women are exposed to multiple extrinsic and intrinsic 

stressors during their pregnancy, including environmental, medical and behavioral, which have 
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both individual and interaction effects that may influence birth outcomes. Contributing factors 

are related to both individual and large-scale factors which lead to toxic chemical exposures 

among pregnant women, influence women’s behavioral characteristics and effect women’s 

access to health care. The synergies between these factors increase the overall health burden 

among pregnant women and thereby influence birth outcomes, as explained by ecosyndemic 

theory. In the model for non-Hispanic black mothers for example, an increased odds of low birth 

weight was observed for older women, but not for younger women. This is possibly indicative of 

an ecosyndemic in which the large-scale structures and pollutant exposures may be degrading 

their overall health and reducing their ability to respond to insults over time, which may be the 

reason for higher odds of low birth weight among older but not younger non-Hispanic black 

mothers.  

These synergies in themselves however do not fully explain the racial and ethnic 

disparities in adverse birth outcomes in Michigan. However, when studies go beyond the 

epidemiology of population groups to include the geography of where populations live, work and 

play and are exposed it becomes clearer that non-Hispanic black and Hispanic women (and many 

non-Hispanic white women too, but not as many) reside in neighborhoods with elevated RSEI 

toxicity-weighted concentration levels and importantly, these levels will also vary within cities. 

Thus, while racial and ethnic disparities in adverse birth outcomes are not apparent within 

elevated RSEI neighborhoods because high RSEI exposures affects whoever is exposed; racial 

and ethnic disparities in adverse birth outcomes are observable across local areas with higher 

incidences in neighborhoods in RSEI quartile 4. Racial and ethnic disparities are therefore, 

largely linked to geography with higher levels of pollution and less available and accessible 

health care services, an underlying preface of environmental injustice.   
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 RECOMMENDATIONS 

A few different solutions can be implemented to reduce the impact of TRI chemicals on 

environmental disparities and health impacts in Michigan. First, the EPA and Michigan 

Department of Environment, Great Lakes & Energy should implement and improve the onsite 

use, management and disposal of TRI chemicals and increase the monitoring of TRI sites to 

ensure they are complying with the EPCRA to reduce toxic chemicals entering the environment 

resulting in potential exposures among the public, particularly in the top 5% census tracts. This 

strategy will ensure strict oversight of the industries to ensure accurate reporting and compliance 

with regulations in terms of toxic chemical emissions. Additionally, it would help to reduce air 

and water releases of toxic chemicals and better manage and control the fate of toxic chemicals 

in the environment through improved emissions and filtering mechanisms, thereby reducing the 

public’s exposure to these toxic chemicals.  

Second, the EPA and Michigan Department of Environment, Great Lakes & Energy 

should consider offering incentives for companies who reduce their use of highly toxic 

chemicals. Additionally, an improved set of considerations, including an environmental justice 

analysis, should be added to the review process of newly proposed TRI sites. The use of bivariate 

correlations between places with high RSEI toxicity-weighted concentrations and high poverty 

and high minority can be useful in the review process as well as in targeting areas for pollution 

reduction. 

Third, this was the first study to use the RSEI model in Michigan and the first study to 

use the RSEI toxicity-weighted concentrations to evaluate a health outcome, which has provided 

evidence that the RSEI model and methods are reliable and can be applied to research questions 

in other areas in the United States. Future research should use the RSEI model to study the share 



 

 

 

146 

 

of exposure risks and human health outcomes among populations in other states. Further 

conceptualization of research questions that evaluate the benefits and limitations of the RSEI 

score vs. toxicity-weighted concentrations is also warranted.  

Fourth, maternal health programs should focus on increasing the level of medical care 

mothers receive during pregnancy, improve preconception and pregnancy health through a 

reduction in the onset and control of hypertension and diabetes and reduce the number of women 

who smoke during pregnancy through maternal education and smoking cessation programs. In 

addition, future research should investigate interaction effects and possible mediating 

effects between environmental exposures and maternal behavioral and medical characteristics.  

Fifth, future research conducting cluster analyses to investigate maternal exposure to 

RSEI toxicity-weighted concentrations on birth defects should consider the inclusion 

of additional covariates to control for known risk factors of lethal birth defects and how these 

risk factors may be similar or vary across clusters detected in Michigan. Additionally, study 

findings should encourage public health departments to further investigate the 

areas where the persistent clusters of lethal birth defects were identified in this study.  

Sixth, future research should also seek to investigate the upstream forces that are leading 

to a pollution environment in which racial and ethnic minorities are experiencing an increased 

health burden and that lead to adverse birth outcomes, including interaction effects among 

maternal characteristics that also impact birth outcomes, to better understand this ecosyndemic 

and offer recommendations to improve the overall health of all Michigan residents.  

 These environmental and health solutions are targeted interventions to reduce 

environmental injustices and racial disparities in adverse birth outcomes, while improving the 

overall health of mothers and infants in Michigan.  
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