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ABSTRACT 
 

SENSOR AND SENSORLESS SPEED CONTROL OF PERMANENT MAGNET 
SYNCHRONOUS MOTOR USING EXTENDED HIGH-GAIN OBSERVER 

 
By 

 
Abdullah Ahmad Alfehaid 

 
Control of the speed as well as shaping the speed transient response of a surface-mounted 

Permanent Magnet Synchronous Motor (PMSM) is achieved using the method of feedback 

linearization and extended high-gain observer. To recover the performance of feedback 

linearization, an extended high-gain observer is utilized to estimate both the speed of the motor 

and the disturbance present in the system. The observer is designed based on a reduced model of 

the PMSM, which is realized through the application of singular perturbation theory. The motor 

parameters are assumed uncertain and we only assume knowledge of their nominal values. The 

external load torque is also assumed to be unknown and time-varying, but bounded. Stability 

analysis of the output feedback system is given. Experimental results confirm the performance 

and robustness of the proposed controller. We also compare our proposed control method to the 

cascaded Proportional Integral (PI) speed controller. Then, we show the extension of this control 

method to solve the problem of sensorless control of PMSMs. The proposed sensorless control 

method is a back-emf based control scheme. Therefore, we design a high-gain back-emf observer 

in the α-β coordinates. Next, we transform the model of the PMSM to the d-q coordinates, which 

is performed using the estimated position, and close the loop around the currents with relatively 

fast PI controllers. After that, we reduce the model of the PMSM and design a third order Q-PLL 

extended high-gain observer as well as the speed feedback controller. Then, we perform a 

rigorous stability analysis of the closed loop system. Finally, we show simulation and 

experimental results to verify performance and robustness of the proposed controller. 
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 CHAPTER 1

Introduction 

Permanent Magnet Synchronous Motors (PMSM) are increasingly used in industry and 

rapidly replacing induction and DC motors particularly in servo application such as CNC 

machines and robotic systems. PMSM are popular due to their efficiency, high power density, 

light weight, maintenance-free, and small size in comparison to DC and induction machines  [1]. 

There are mainly two types of PMSMs: the surface mounted permanent magnet machines 

and the interior magnet permanent magnet machines. The predominant difference between the 

two is in the construction of the rotor. The surface mounted PMSMs are built with magnets 

mounted on the surface of the rotor while the interior magnet PMSMs are built with magnets 

embedded in the rotor. This structural difference leads to different mathematical models and 

hence leads to different control approaches. Throughout this work, only the surface mounted 

PMSM will be considered. Figure  1.1 shows a cross-sectional view of a four pole surface 

mounted PMSM  [2]. 

PMSMs are not easy to control because they exhibit nonlinear dynamic behavior. The 

parameters of PMSMs are prone to temperature changes and variation in operating points, e.g the 

stator winding resistance can vary by as much as 200% of its nominal value and the rotor flux 

linkage can vary by as much as 20% of its nominal value  [3]. Moreover, the load torque in many 

industrial applications is unknown, which adds more complication to the control problem. 

Addressing these challenges require robust control techniques, which have led to a variety of 

control approaches that have been successfully applied. 
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Figure  1.1. Cross-sectional view of a surface mounted PMSM  [2]. 

High performance control of PMSM requires the Field Oriented Control (FOC) 

technique, which is realized by Park transformation. This transformation requires accurate 

knowledge of the rotor position of the motor and there are two main control techniques to 

achieve this transformation. The first control technique is using a position sensor and the second 

technique is controlling the motor without a position sensor, which is referred to as sensorless 

control. Typically, position sensors are employed to achieve FOC. However, there is an interest 

in eliminating the position sensor due to several factors that include cost, reduced wiring, which 

feeds noise to the system, increased reliability of the drive system, and size reduction. Therefore, 

it is sometimes desired to replace position sensors with mathematical tools that would achieve 

comparable results. By eliminating the position sensor, we introduce more complication to the 

problem of controlling the motor and thus sophisticated control methods are needed to design 

and analyze the controllers. 
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1.1 PMSM Control with Position Sensor 

In industry, Proportional Integral (PI) controllers have been largely used in motor drive 

systems  [4]. It is one of the simplest control techniques that offer good performance. However, 

PI controllers are not a good choice for speed control in applications where high performance 

and high precision are required. 

Sliding mode Control (SMC) is becoming popular in PMSM drives due to its robustness 

to parameter variations. However, in the presence of disturbance and system parameter variation, 

the gains of the SMC are increased to guarantee robustness. This causes the system to exhibit a 

phenomenon called chattering. Improvements to SMC have taken place to reduce chattering such 

as using reaching laws and disturbance estimators. In  [5] and  [6], reaching laws are used to 

decrease chattering but this causes reduction in SMC robustness near the sliding surface and also 

increases the reaching time. In  [6], an extended SM observer is used to estimate the disturbance 

and then cancel it in the control law. A key difference between this thesis and  [6] is that the 

thesis includes the position measurement in the closed loop analysis as opposed to assuming the 

speed is measured. Furthermore, the proposed control method in this thesis is capable of shaping 

the transient response, whereas the work presented in  [6] provides no means for shaping the 

transient response. 

Adaptive control has been used to control the speed of PMSM. In  [7], Model Reference 

Adaptive Control (MRAC) is used with disturbance estimator to avoid estimating each parameter 

of the motor separately. This work is similar to our work in two ways, 1) the disturbance is 

estimated and then canceled by the control law, 2) The transient response is shaped by the 

MRAC. However, our work is different in that we assume a time-varying non-vanishing 

disturbance that could depend on both states and time, and we do not assume that the speed is 
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directly measured. In  [7], the disturbance depends only on time and its derivative converges to 

zero as time tends to infinity. 

Feedback linearization has also been used to control the speed of PMSM. In  [8], feedback 

linearization is used with a PI controller to regulate the speed of PMSM. However, in real 

applications, feedback linearization, with or without PI controller, fails to shape the transient 

response in the presence of model uncertainty and unknown disturbance. Therefore, other tools 

must be used with feedback linearization to guarantee both stability and performance. In  [9] 

and  [10], feedback linearization is used with an extended observer to estimate speed and 

disturbance. Our work differs from  [9] and  [10] in that we reduce the model of the PMSM hence 

reducing the order of the observer. In comparison with  [9], we design the controller based on the 

nominal parameters, and we do not use a PI controller in the speed loop. The work presented 

in  [10] extends the observer with multiple states to estimate the disturbance while we extend the 

observer by only one state, thus requiring less computation. 

Other control methods have been applied in speed control of PMSM such as fuzzy logic 

control with disturbance estimation  [11] and  [12], and predictive functional control with 

disturbance estimation  [13]. Most of the recent work on PMSM control involves the use of 

disturbance estimation techniques to effectively increase the robustness of the control method. A 

wide range of different kinds of disturbance estimation techniques can be found in  [14] and  [15], 

and the references therein. 

1.2 Sensorless Control of PMSM 

In principle, there are two main approaches to sensorless position and speed estimation. 

The first approach is the fundamental excitation method where the back-EMF signals are 
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estimated and then position and speed information are extracted by different mathematical 

means  [16]- [26].The second approach is the signal injection method where high frequency 

signals, ideally much higher than the fundamental frequency, are injected in a predetermined 

fashion such that saliency features of the rotor are excited then exploited revealing estimates of 

position and speed  [28]- [30]. This method has also been successfully applied for initial rotor 

position detection  [31]. 

The major advantages of using the back-EMF method are its simplicity and it can easily 

be implemented on existing drive systems. However, a major drawback of this type is the loss of 

information at zero speed and signal corruption at very low speeds due to the smallness of signal 

to noise ration. On the other hand, the high frequency signal injection method typically works on 

all speed ranges unlike the back-EMF method. However, the disadvantages include induced 

vibration and acoustic noise, and increased power loss. Therefore, in  [29]- [30] the back-emf 

based control method is combined with the high frequency injection method for a wider range 

speed control. When these methods are combined, the back-emf based control method is used for 

intermediate to high speed while the high frequency injection method is used when the motor 

operates in low speeds. 

Our proposed controller uses the fundamental excitation method as a first step towards 

the estimation of position and speed of the rotor. To estimate the back-EMF signals, papers  [16] 

and  [17] use extended classical Luenberger observer,  [18] uses the steady state algebraic 

expressions in the d-q coordinates,  [19] and  [20] use nonlinear observers, and  [21]- [26] use 

sliding mode observers (SMO) with either reaching laws or low pass filters that are used to 

reduce chattering which adds complication to an already complex problem. We, on the other 

hand, estimate the back-EMF signals using extended high-gain observers in the α-β coordinates. 
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The high-gain observers are used to provide fast convergence rate. 

We use a Quadrature Phase Locked Loop (Q-PLL) to estimate position and speed of the 

rotor as well as the disturbance from the back-EMF signals as opposed to estimating the position 

and speed via the arctangent function as in  [19],  [21] and  [22], and the arccosine function as 

in  [25]. Our Q-PLL is different than the Q-PLL used in  [16]- [18],  [24], and  [26] in that we 

extend ours to estimate the disturbance while  [16]- [18],  [24], and  [26] only estimate position and 

speed. To our knowledge, it seems to us that our proposed controller is first to extend the Q-PLL 

to estimate the disturbance. 

In general, knowledge of the direction sign of the rotor’s speed is essential for the 

stability of the Q-PLLs when operating in the positive and negative speeds. Attempts have been 

reported to solve this problem in  [17] and  [26]. Paper  [17] uses a modified driving error signal 

yielding a sum-difference tangent function which risks division by zero when noise is present. 

Paper  [26] also modifies the error signal using the double angle trigonometric identity, which 

shrinks the potential attraction region of the Q-PLL by half. We, on the other hand, simply use 

the sign of the speed reference. 

Similar to  [22], we use feedback linearization. However, we use a Q-PLL extended high-

gain observer while  [22] uses the arc tangent function to drive the observer. Also, we reduced the 

model of the motor based on the singular perturbation theory yielding a more accurate model 

than just assuming the quadrature current reference signal equal to the true quadrature current as 

in  [22]. 

It can be seen that  [16]- [26] lack closed loop analysis of the proposed control methods. 

The problem of analyzing the stability of the closed loop is not an easy task but very important. 
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We provide nonlinear analysis of the closed loop system which is made possible because we 

purposely design our system to be a multi-time scale one. Thus, we are able to use singular 

perturbation theory to show exponential stability of the equilibrium point of the closed loop 

system. 

1.3 Mathematical Model of PMSM 

The mathematical model of a surface mount PMSM in the two-phase-equivalent stator 

frame of reference, the α-β coordinates, is as follows  [33]: 

 𝐿
𝑑𝑖ఈ

𝑑𝑡
= −𝑅𝑖ఈ + 𝑘௠𝜔 sin൫𝑛௣𝜃൯ + 𝑢ఈ (  1.1 ) 

 𝐿
𝑑𝑖ఉ

𝑑𝑡
= −𝑅𝑖ఉ − 𝑘௠𝜔 cos൫𝑛௣𝜃൯ + 𝑢ఉ (  1.2 ) 

 𝐽
𝑑𝜔

𝑑𝑡
= 𝑘௠൫−𝑖ఈ sin൫𝑛௣𝜃൯ + 𝑖ఉ cos൫𝑛௣𝜃൯൯ − 𝐵𝜔 − 𝑇௅ (  1.3 ) 

    
𝑑𝜃

𝑑𝑡
= 𝜔 (  1.4 ) 

where 𝑖ఈ and 𝑖ఉ are the two-phase equivalent stator currents, 𝑢ఈ and 𝑢ఉ are the two-phase 

equivalent stator voltages, 𝜔 is the mechanical rotor speed, 𝜃 is the rotor position, 𝑇௅ is the 

external load, 𝑅 is the stator winding resistance, 𝐿 is the stator inductance and it is defined to be 

the sum of the magnetizing inductance and the leakage inductance of the stator, 𝑛௣ is the number 

of pole pairs, 𝑘௠ is the rotor magnetic flux linkage, 𝐵 is the coefficient of viscous friction, and 𝐽 

is the moment of inertia of the rotor. 

The relationship between the three phase voltages and their two-phase-equivalent 

voltages is given by, 
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൥

𝑢ఈ

𝑢ఉ

𝑢଴

൩ = Υ ൥

𝑢௔

𝑢௕

𝑢௖

൩ 

where  𝑢௔, 𝑢௕, and 𝑢௖ are the three phase voltages, and 𝑢଴ is the zero-sequence voltage which is 

identically zero for a balanced three phase system. Also, Υ is the transformation matrix that 

relates the three phase components to their two phase equivalents and it is defined by 

Υ = ඨ
2

3

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1 −

1

2
−

1

2

0
√3

2
−

√3

2
1

√2

1

√2

1

√2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Similarly, the relationship between the three phase currents and their two-phase equivalent 

currents is governed by, 

቎

𝑖ఈ

𝑖ఉ

𝑖଴

቏ = 𝛶 ൥

𝑖௔

𝑖௕

𝑖௖

൩ 

where 𝑖௔, 𝑖௕, and 𝑖௖ are the three phase currents, and 𝑖଴ is the zero-sequence current which is 

identically zero for a balanced three phase system. 

The model of the PMSM shown above is highly nonlinear and is thus hard to control. 

However, it is much easier to control the motor in the rotor’s frame of reference, the d-q 

coordinates, which is a rotating frame of reference. Figure  1.2 shows the relationship between 

the stator and the rotor frame of references. From Figure  1.2, the transformation from the α-β 

coordinates to the d-q coordinates is achieved by the following relationship, 
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ቂ
𝑢ௗ

𝑢௤
ቃ = ቈ

cos൫𝑛௣𝜃൯ sin൫𝑛௣𝜃൯

− sin൫𝑛௣𝜃൯ cos൫𝑛௣𝜃൯
቉  ቂ

𝑢ఈ

𝑢ఉ
ቃ 

and 

൤
𝑖ௗ

𝑖௤
൨ = ቈ

cos൫𝑛௣𝜃൯ sin൫𝑛௣𝜃൯

− sin൫𝑛௣𝜃൯ cos൫𝑛௣𝜃൯
቉  ൤

𝑖ఈ

𝑖ఉ
൨ 

where 𝑢ௗ is the direct-axis input voltage, 𝑢௤ is the quadrature-axis input voltage, 𝑖ௗ is the direct-

axis current, and 𝑖௤ is the quadrature-axis current. Now, the system (  1.1 )-(  1.4 ) can be rewritten 

in the rotor’s frame of reference (d-q coordinates) as shown in (  1.5 )-(  1.8 ). 

 

Figure  1.2. Relationship between the stator and the rotor frame of references. 
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 𝐿
𝑑𝑖ௗ

𝑑𝑡
= −𝑅𝑖ௗ + 𝑛௣𝐿𝜔𝑖௤ + 𝑢ௗ (  1.5 ) 

 𝐿
𝑑𝑖௤

𝑑𝑡
= −𝑅𝑖௤ − 𝑛௣𝐿𝜔𝑖ௗ − 𝑘௠𝜔 + 𝑢௤ (  1.6 ) 

 𝐽
𝑑𝜔

𝑑𝑡
= 𝑘௠𝑖௤ − 𝐵𝜔 − 𝑇௅ (  1.7 ) 

    
𝑑𝜃

𝑑𝑡
= 𝜔 (  1.8 ) 

The mathematical model of the PMSM in the rotor’s frame of reference is still nonlinear; 

however, it is easier to control. Controlling the motor in this frame of reference is called Field 

Oriented Control (FOC) because stator currents are projected onto the rotor’s magnetic field. 

This transformation reveals a very important piece of information that 𝑖௤ is the only torque 

producing current as seen in (  1.7 ). Hence, the current 𝑖ௗ should be regulated to zero to increase 

the efficiency of the system. 

 The mathematical model of the PMSM is subject to practical constraints. The stator 

voltages and currents cannot exceed certain limits; that is, 

𝑢ௗ
ଶ + 𝑢௤

ଶ ≤ 𝑉௠௔௫
ଶ  

and 

𝑖ௗ
ଶ + 𝑖௤

ଶ ≤ 𝐼௠௔௫
ଶ 

where 𝑉௠௔௫ and 𝐼௠௔௫ are the maximum stator voltage and current, respectively. In practical 

settings, these constraints are imposed on the model by the electrical ratings of both the motor 

and the inverter that is used to drive the motor. It is very important not to violate these 
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limitations otherwise it would cause serious damage to the motor as well as to the inverter. 

Therefore, the controller design must account for these limitations. 

 The mathematical model of the PMSM possesses a very important feature. Typically, the 

electrical time constant is much smaller than the mechanical time constant. Subsequently, the 

electrical states are much faster than the mechanical states. Thus, the mathematical model of the 

PMSM is a two-time-scale system. It will be shown in the following chapters how singular 

perturbation theory can be utilized to take advantage of this feature in order to reduce the model 

of the PMSM. 

1.4 Preliminaries 

1.4.1 Performance Recovery of Feedback Linearization 

Consider the following single-input-single-output nonlinear system in the normal 

form [32]: 

 𝑥̇ = 𝐴𝑥 + 𝐵[𝑏(𝑥, 𝓌) + 𝑎(𝑥, 𝓌)𝑢], 𝑦 = 𝐶𝑥 (  1.9 ) 

where 𝑥 ∊ ℝ௡ is the state, 𝑢 ∊ ℝ is the control input, 𝑦 ∊ ℝ is the measured output, 𝓌 is the 

disturbance input and it belongs to a known compact set 𝒲 ⊂ ℝℓ, 𝑎(𝑥, 𝓌) ≥ 𝑎଴ > 0, and 𝐴, 𝐵, 

and 𝐶 are defined by 

𝐴 =

⎣
⎢
⎢
⎢
⎡
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 1
0 0 ⋯ ⋯ 0⎦

⎥
⎥
⎥
⎤

∊ ℝ௡×௡, 𝐵 =

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦

⎥
⎥
⎥
⎤

∊ ℝ௡ 

𝐶 = [1 0 ⋯ ⋯ 0] ∊ ℝଵ×௡ 
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The objective here is to design an output feedback controller that not only stabilizes the origin 

𝑥 = 0 but also drives the system trajectories to closely match that of a target system. A natural 

choice for the target system would be: 

𝑥̇⋆ = (𝐴 − 𝐵𝐾)𝑥⋆, 𝑦 = 𝐶𝑥⋆ 

where 𝐾 is chosen such that (𝐴 − 𝐵𝐾) is Hurwitz and 𝑥⋆ is the state of the target system whose 

trajectories meet the desired transient response. 

The control objective can be met using the method of feedback linearization. Let us first 

consider the case where all the state variables of the system are available for measurement and 

the functions 𝑎(𝑥, 𝓌) and 𝑏(𝑥, 𝓌) are exactly known; then via feedback linearization a state 

feedback control 𝑢 that achieves the objectives is given by 

𝑢 =
−𝑏(𝑥, 𝓌) − 𝐾𝑥

𝑎(𝑥, 𝓌)
 

In practice; however, this control input may not be implementable or it may not deliver 

satisfactory performance due to two problems. First, some states of the system may not be 

accessible for measurement; or simply, we choose not to measure them due to technical or 

economic reasons. Second, only the nominal models of 𝑎(·) and 𝑏(·) are known. To solve these 

problems and recover the performance of feedback linearization, extended state observers are 

usually utilized. In particular, the following extended high-gain observer is used: 

 

𝑥ො̇ = 𝐴𝑥ො + 𝐵ൣ𝜎ො + 𝑏෠(𝑥ො) + 𝑎ො(𝑥ො)𝑢൧ + ቂ
𝜌ଵ

𝜀
⋯

𝜌௡

𝜀௡
ቃ

்

(𝑦 − 𝐶𝑥ො) 

𝜎ො̇ =
𝜌௡ାଵ

𝜀௡ାଵ
(𝑦 − 𝐶𝑥ො) 

(  1.10 ) 
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where 𝑥ො is the estimate of 𝑥, 𝑎ො(𝑥) and 𝑏෠(𝑥) are nominal values of 𝑎(𝑥, 𝓌) and 𝑏(𝑥, 𝓌), 

respectively, 𝜎ො is the estimate of the disturbance 𝜎, defined by 

𝜎 =  𝑏(𝑥, 𝓌) − 𝑏෠(𝑥) + ൫𝑎(𝑥, 𝓌) − 𝑎ො(𝑥)൯𝑢, 

𝜀 > 0 is a small parameter, and 𝜌ଵ,.…, 𝜌௡ାଵ are constants chosen such that the polynomial 

𝑠௡ାଵ + 𝜌ଵ𝑠௡ + ⋯ + 𝜌௡ାଵ 

is Hurwitz. Under the assumption that 𝑎ො(𝑥ො) ≥ 𝑎଴ > 0, the control input 𝑢 can now be taken as: 

𝑢 =
−𝜎ො − 𝑏෠(𝑥ො) − 𝐾𝑥ො

𝑎ො(𝑥ො)
 

High-gain observers are known to exhibit peaking in the estimation variables which might lead 

to instability of the closed loop system  [34]. Therefore, to protect the system from the peaking 

phenomenon, the control law 𝑢 is saturated outside a compact set, that is, 

𝑢 = 𝑀𝑠𝑎𝑡 ቆ
−𝜎ො − 𝑏෠(𝑥ො) − 𝐾𝑥ො

𝑀𝑎ො(𝑥ො)
ቇ 

where 𝑠𝑎𝑡(∙) is the saturation function and it is defined as 𝑠𝑎𝑡(𝑧) = 𝑚𝑖𝑛{1, |𝑧|}𝑠𝑖𝑔𝑛(𝑧), and the 

saturation level 𝑀 is given by, 

𝑀 > max
௫∈ஐ೎,𝓌∈𝒲

ቤ
−𝑏(𝑥, 𝓌) + 𝐾𝑥

𝑎(𝑥, 𝓌)
ቤ 

where Ω௖ is a compact set given by, 

Ω௖ = {𝑥்𝑃𝑥 ≤ 𝑐} 
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and x୘Px is a Lyapunov function in which P = P୘ > 0 is the solution of the Lyapunov equation 

P(A − BK) + (A − BK)୘P = −Q for some Q = Q୘ > 0. The constant c can be chosen large 

enough such that any given compact subset of ℝ୬ is included in the interior of Ωୡ. Under this 

control law, it is shown in  [32] that the control law recovers the performance of feedback 

linearization in the presence of both model uncertainty and unknown disturbance. Moreover, the 

control law stabilizes the origin 𝑥 = 0 in the case when the disturbance is constant  

1.4.2 Quadrature Phase-Locked-Loop 

One of the tools that are used in back-EMF based sensorless control of PMSM is the Q-

PLL (Quadrature Phase-Locked-Loop) which we will use later in Chapter 3 when we expand our 

sensored case control method to the sensorless case. Therefore, in this context, a Q-PLL is used 

here as an observer to estimate the rotor’s position and speed of the PMSM. A Q-PLL is 

basically a feedback loop system that mainly consists of two parts. The first part is the error 

generator and the second part is the error compensator. Figure  1.3 shows the basic construction 

of the Q-PLL. 

In steady-state, the back-EMF signals of the PMSM in the alpha-beta coordinates are 

ideally sinusoidal signals having the same amplitude and frequency with a 90 degrees phase shift 

between them. For simplicity; let us assume that we have an online measurement of two 

sinusoidal signals and they are defined by 

 𝑥ఈ = sin൫𝜃(𝑡)൯  

 𝑥ఉ = − cos൫𝜃(𝑡)൯  
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where 𝜃(𝑡) is an unknown continuous time-varying function. The question here is there a way to 

estimate 𝜃(𝑡) and its time derivative 𝜃̇(𝑡) = 𝜔(𝑡)? Well, it turns out there are multiple ways to 

estimate 𝜃(𝑡) and 𝜔(𝑡) and one of these ways is using a Q-PLL. 

 

Figure  1.3. Q-PLL high-gain observer 

First, let us look at the error generator part in Figure  1.3 which is very simple but 

effective. The error generator makes use of the trigonometric identity 

sin(𝑥 − 𝑦) = sin(𝑥) cos(𝑦) − cos(𝑥) sin(𝑦) 

So, let 𝑒 be the generated error signal defined by 

𝑒 = 𝑥ఈ cos൫𝜃෠൯ + 𝑥ఉ sin൫𝜃෠൯ 

where 𝜃෠ is an estimate of 𝜃. By substituting 𝑥ఈ and 𝑥ఉ we arrive at 

𝑒 = sin(𝜃) cos൫𝜃෠൯ − cos(𝜃) sin൫𝜃෠൯ 

which simplifies to 
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𝑒 = sin൫𝜃 − 𝜃෠൯ 

It can be seen that we can control the error by steering 𝜃෠ which is accomplished by using a 

compensator. The compensator can be a simple one such as a PI controller. However, here, we 

will use a high-gain observer because it offers fast convergence rate that can be achieved with 

little tuning effort. The Q-PLL high-gain observer can be constructed as 

 𝑑𝜃෠

𝑑𝑡
= 𝜔ෝ +

𝜌ଵ

𝜀
𝑒 

 

 
𝑑𝜔ෝ

𝑑𝑡
=

𝜌ଶ

𝜀ଶ
𝑒  

that is 

 𝑑𝜃෠

𝑑𝑡
= 𝜔ෝ +

𝜌ଵ

𝜀
sin൫𝜃 − 𝜃෠൯ 

 

 
𝑑𝜔ෝ

𝑑𝑡
=

𝜌ଶ

𝜀ଶ
sin൫𝜃 − 𝜃෠൯  

where 𝜔ෝ is the estimate of 𝜔, 𝜌ଵ and 𝜌ଶ are positive constants, and 𝜀 is a small positive 

parameter that directly controls the speed of estimation. 

We can study the stability of this system using singular perturbation theory. Therefore, 

we make the following change of variables 

 
𝜂ଵ =

1

𝜀
൫𝜃 − 𝜃෠൯ 

 

 
𝜂ଶ = 𝜔 − 𝜔ෝ 

 

which leads to the following singularly perturbed system 

𝜀𝜂̇ = 𝐴𝜂 + 𝐵𝜓 + 𝜀𝐸𝜔̇ 
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where 𝜂 = ቂ
𝜂ଵ

𝜂ଶ
ቃ, 𝐴 = ൤

−𝜌ଵ𝛽 1
−𝜌ଶ𝛽 0

൨, 𝐵 = ቂ
𝜌ଵ

𝜌ଶ
ቃ, 𝜓 = − ቂ

ୱ୧୬(ఌఎభ)

ఌఎభ
− 𝛽ቃ 𝜂ଵ, and 𝐸 = ቂ

0
1

ቃ. 𝛽 > 0 is a 

constant chosen such that 

ቈ
sin(𝜀𝜂ଵ)

𝜀𝜂ଵ
− 𝛽቉ > 0 

With the assumption that 𝜔̇ is bounded by a constant independent of 𝜀, the boundary layer of this 

system is written as 

𝜀𝜂̇ = 𝐴𝜂 + 𝐵𝜓 

It can be easily verified by linearization that this boundary layer has an exponentially stable 

equilibrium point at the origin. We can further analyze the system using nonlinear tools which 

tells us more about the stability of the system away from the equilibrium point. Towards that 

end, we augment the output equation 𝑦 = 𝐶𝜂 where 𝐶 = [1 0 0] to the boundary layer. This 

boundary layer can now be represented as in Figure  1.4 which shows a negative feedback 

connection of the transfer function 

Γ(𝜀𝑠) =
𝜌ଵ(𝜀𝑠) + 𝜌ଶ

(𝜀𝑠)ଶ + 𝛽(𝜌ଵ(𝜀𝑠) + 𝜌ଶ)
 

and the nonlinearity 𝜓 which belongs to the sector [𝛽, ∞]. This system structure is a textbook 

example of how Popov’s criterion can be applied. The transfer function Γ(𝜀𝑠) is strictly positive 

real if and only if 𝜌ଵ, and 𝜌ଶ are chosen positive and the following inequality is satisfied 

𝛽𝜌ଵ
ଶ − 𝜌ଵ > 0 
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Figure  1.4. Block diagram of the boundary layer of the Q-PLL 

We Use the Kalman-Yakubovic-Popov lemma  [34], Lemma 6.3] to obtain a quadratic Lyapunov 

function; that is, 

 𝑉(𝜂) =
1

2
𝜂்𝑃𝜂  

where 𝑃 is the positive definite symmetric solution of the Kalman-Yakubovic-Popov equations 

 𝑃𝐴 + 𝐴்𝑃 = −𝑁்𝑁 − 𝜁𝑃  

 𝑃𝐵 = 𝐶்  

In which 𝜁 > 0. It can be shown that the time derivative of 𝑉 along the boundary layer satisfies 

𝜀𝑉̇(𝜂) ≤ −
1

2
𝜁𝜆௠௜௡(𝑃)‖𝜂‖ଶ 

which shows exponential stability of the boundary layer. Take  

 𝑊(𝜂) =
1

2
𝜂்𝑃𝜂  

for the full system which has a time derivative satisfying 
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𝜀𝑊̇(𝜂) ≤ −
1

2
𝜁𝜆௠௜௡(𝑃)‖𝜂‖ଶ + 𝜀𝜂்𝑃𝐸𝜔̇ ≤ −

1

2
𝜁𝜆௠௜௡(𝑃)‖𝜂‖ଶ + 𝜀𝑘‖𝜂‖ 

where 𝑘 is an upper bound of ‖𝑃𝐸‖|𝜔̇|. Hence, 

𝜀𝑊̇(𝜂) ≤ −
1

4
𝜁𝜆௠௜௡(𝑃)‖𝜂‖ଶ, ∀ ‖𝜂‖ ≥

4𝜀𝑘

𝜁𝜆௠௜௡(𝑃)
 

Consider the set 

Ω = ቄ𝑊 ≤
𝑐

𝜀ଶ
ቅ 

where 𝑐 > 0. Then, 

൜‖𝜂‖ଶ ≤
𝑐

𝜀ଶ𝜆௠௔௫(𝑃)
ൠ ⊂ ቄ𝑊 ≤

𝑐

𝜀ଶ
ቅ ⊂ ൜‖𝜂‖ଶ ≤

𝑐

𝜀ଶ𝜆௠௜௡(𝑃)
ൠ 

Therefore, Ω is positively invariant when 

𝑐

𝜀ଶ𝜆௠௔௫(𝑃)
≥ ൬

4𝜀𝑘

𝜁𝜆௠௜௡(𝑃)
൰

ଶ

 

which is true for sufficiently small 𝜀. Now, all trajectories starting in Ω stay in Ω for all future 

time. However, we want the trajectories to satisfy the sector condition which is satisfied for 

𝜃 − 𝜃෠ ≤ 𝛾 < 𝜋, where 𝛾 depends on 𝛽. Equivalently, |𝜂ଵ| <
ఊ

ఌ
 . The maximum of |𝜂ଵ| over Ω is 

given by 

ඨ
2𝑐

𝜀
ฮ[1 0]𝑃ିଵ/ଶ ฮ 

Therefore, choosing 𝑐 large enough to satisfy  
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ඨ
2𝑐

𝜀
ฮ[1 0]𝑃ିଵ/ଶ ฮ < 𝛾 

ensures that the sector condition is satisfied. Eventually, all trajectories starting in Ω will enter a 

set of the form 

Ωଵ = {𝑊 ≤ 𝜀ଶ𝑐ଵ} 

where 𝑐ଵ > 0. Ωଵ is positively invariant for 

𝜀ଶ𝑐ଵ

𝜆௠௔௫(𝑃)
≥ ൬

4𝜀𝑘

𝜁𝜆௠௜௡(𝑃)
൰

ଶ

 

which is satisfied by choosing 𝑐ଵ large enough. 

We should note that the previous discussion is only preliminary for readers who are not 

familiar with Q-PLLs. When Q-PLLs are used in sensorless control of PMSM, the back-EMF 

signals are first estimated then passed to the Q-PLL. Also, the back-EMF signals are ideally pure 

sinusoidal only in steady state. Therefore, during transient there will be other components 

involved from both the transient response of the PMSM subsystem and from the back-EMF 

observer which adds complication to the problem. 
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 CHAPTER 2

Up to this point, we have shown different types of control approaches that have been 

applied in the past to solve the problem of controlling the speed of PMSMs. We have also 

introduced and described the mathematical model of the PMSM. In this chapter we propose a 

new control method that solves the problem of controlling the speed of PMSMs with the use of a 

position sensor. First, we close the loop around the currents with relatively fast PI controllers. 

Then, we reduce the model of the PMSM and design a third order extended high-gain observer 

as well as the speed feedback controller. After that, we perform stability analysis of the closed 

loop system. Then, we show simulation and experimental results to verify the performance and 

robustness of the proposed controller. Finally, comparison between the proposed control method 

and the cascaded Proportional Integral (PI) speed controller is given based on experimental 

results. The new proposed control approach is based on the control technique that was described 

in section  1.4. 

Speed Control with a Position Sensor 

The goal is to design an output feedback controller that can achieve the following 

objectives: 

1) Regulating the speed of the PMSM to a reference signal 𝜔௥௘௙ in the presence of 

both bounded external load 𝑇௅ and parameters uncertainty. 

2) The ability to shape the transient response of the speed. 

The aforementioned objectives can be realized using the method described in  [32] with two 

different approaches. The first approach is a direct application of the method described in chapter 

1 and it is based on the complete model of the PMSM. The second approach is based on a 
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reduced mathematical model of the PMSM that is obtained by utilizing the singular perturbation 

method; consequently, requiring a lower order extended high-gain observer. In both cases the 

rotor position 𝜃 and the three phase currents 𝑖௔. 𝑖௕, and 𝑖௖ are measured, thus 𝑖ௗ and 𝑖௤ are 

known. 

2.1 Proposed Control Algorithm 

The proposed control algorithm consists of three main parts, fast inner current loops, 

speed and disturbance estimation using the measured position via an extended high-gain 

observer, and speed shaping and regulation via feedback linearization. The block diagram of the 

control algorithm is shown in Figure  2.1. The inner current loops will be designed purposely to 

be fast which will further increase the time scale separation between the electrical and 

mechanical subsystems. This allows the system to be reduced via singular perturbation theory. 

As a result, a reduced order extended high-gain observer is designed, which is easier to 

implement. 

2.1.1 Current Loops 

The fast current loops are made possible by the smallness of the electrical time constant 

𝜏௘ =
௅

ோ
 and the use of PI controllers for 𝑖ௗ and 𝑖௤. The current PI controllers are used here to 

provide means to regulate the currents and to further increase the time scale separation between 

the fast dynamics of the electrical subsystem and the mechanical subsystem. The design of the 

current PI controllers starts by defining the current tracking errors as: 
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abc

dq

3-Phase
Inverter

dq

abc

PWM
Controller

+-

+-

DC-Link

Extended High-gain 
Observer

-
-

PI

PI
Feedback 

Linerization

PMSM

Optical Encoder

Hall Effect 
Current Sensor

Estimated 
Disturbance

Hall Effect 
Current Sensor

𝑎

𝑏

𝑐

𝑞

𝑑

𝑑

𝑞

𝑑𝑟𝑒𝑓

𝑟𝑒𝑓 𝑞𝑟𝑒𝑓

𝑎

𝑏

𝑐

+-

 
Figure  2.1. Block diagram of the proposed control algorithm. 

 𝑒ௗ = 𝑖ௗೝ೐೑
− 𝑖ௗ (  2.1 ) 

 𝑒௤ = 𝑖௤ೝ೐೑
− 𝑖௤ (  2.2 ) 

where 𝑒ௗ and 𝑒௤ are the direct and quadrature current-tracking errors, respectively; 𝑖ௗೝ೐೑
 and 

𝑖௤ೝ೐೑
 are the direct and quadrature current reference signals, respectively. 𝑖ௗೝ೐೑

 is assumed 

constant. The control inputs 𝑢ௗ and 𝑢௤ are chosen as follows: 

 
𝑢ௗ = 𝑘௣𝑒ௗ + 𝑥ௗ 

𝑢௤ = 𝑘௣𝑒௤ + 𝑥௤ 
(  2.3 ) 

with 
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 𝑥ௗ = 𝑘௜ න 𝑒ௗ(𝑡́)𝑑𝑡́
௧

଴

 (  2.4 ) 

 𝑥௤ = 𝑘௜ න 𝑒௤(𝑡́)𝑑𝑡́
௧

଴

 (  2.5 ) 

where 𝑡́ is a dummy integration variable, 𝑘௣ is the proportional gain, 𝑘௜ is the integral gain, and 

𝑥ௗ and 𝑥௤ are the integrals of 𝑒ௗ and 𝑒௤, respectively. Substituting 𝑢ௗ and 𝑢௤ into (  1.5 ) and 

(  1.6 ) yields the following current tracking error equations: 

 𝜏
𝑑𝑒ௗ

𝑑𝑡
= −𝑒ௗ +

1

𝑅 + 𝑘௣
ቀ𝑅𝑖ௗೝ೐೑

 − 𝑥ௗቁ − 𝜏 ቂ𝑛௣𝜔 ቀ𝑖௤ೝ೐೑
− 𝑒௤ቁቃ (  2.6 ) 

 𝜏
𝑑𝑒௤

𝑑𝑡
= −𝑒௤ +

1

𝑅 + 𝑘௣
ቀ𝑅𝑖௤ೝ೐೑

+ 𝑘௠𝜔 − 𝑥௤ቁ + 𝜏 ቈ
𝑑𝑖௤ೝ೐೑

𝑑𝑡
+ 𝑛௣𝜔 ቀ𝑖ௗೝ೐೑

− 𝑒ௗቁ቉ (  2.7 ) 

where 𝜏 =
௅

ோା௞೛
 is the time constant of the current tracking errors. 𝜏 can be made much smaller 

than 𝜏௘ =
௅

ோ
 by increasing the proportional gain 𝑘௣ of the PI controller; and therefore increasing 

the time separation between the electrical and mechanical subsystems. This will help in reducing 

the model of the PMSM and thus reducing the order of the extended high-gain observer. 

2.1.2 PMSM Model Reduction 

By the proper choice of the current controller gains 𝑘௣ and 𝑘௜, 𝑒௜೏
 and 𝑒௜೜

 are made fast 

and they will reach quasi-steady-state much faster than other state variables in the system. This 

induces a two time scale system, with fast and slow dynamics, which gives us an advantage and 

invites the use of the singular perturbation method  [34] to reduce the model and then design the 

extended high-gain observer. 

The quasi-steady-state of the fast variables 𝑒௜೏
 and 𝑒௜೜

, obtained by setting 𝜏 = 0  in   

(  2.6 ) and (  2.7 ) is, 
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 𝑒ௗ =
1

𝑅 + 𝑘௣
ቀ𝑅𝑖ௗೝ೐೑

− 𝑥ௗቁ (  2.8 ) 

 𝑒௤ =
1

𝑅 + 𝑘௣
ቀ𝑅𝑖௤ೝ೐೑

+ 𝑘௠ 𝜔 − 𝑥௤ቁ (  2.9 ) 

Substitute (  2.2 ) into (  1.7 ) to obtain the equation: 

 
𝑑𝜔

𝑑𝑡
=

𝑘௠

𝐽
ቀ𝑖௤ೝ೐೑

− 𝑒௤ቁ −
𝐵

𝐽
𝜔 −

1

𝐽
𝑇௅ (  2.10 ) 

where 𝑖௤ೝ೐೑
 is viewed as the control input. Now, (  2.4 ), (  2.5 ), (  2.8 ), (  2.9 ), and (  2.10 ) are 

used to arrive at the following slow dynamics of the system: 

 
𝑑𝑥ௗ

𝑑𝑡
=

𝑘௜

𝑅 + 𝑘௣
ቀ𝑅𝑖ௗೝ೐೑

− 𝑥ௗቁ (  2.11 ) 

 
𝑑𝑥௤

𝑑𝑡
=

𝑘௜

𝑅 + 𝑘௣
ቀ𝑅𝑖௤ೝ೐೑

+ 𝑘௠ 𝜔 − 𝑥௤ቁ (  2.12 ) 

 
𝑑𝜔

𝑑𝑡
= 𝛼𝑖௤ೝ೐೑

− 𝛾𝜔 + 𝜇𝑥௤ −
1

𝐽
𝑇௅ (  2.13 ) 

where 𝛼 =
௞೘௞೛

௃൫ோା௞೛൯
  , 𝛾 =

௞೘
మ

௃൫ோା௞೛൯
+

஻

௃
 , 𝜇 =

௞೘

௃൫ோା௞೛൯
. 

2.1.3 Feedback Linearization under State Feedback 

The method of feedback linearization is used here to regulate the speed of the PMSM to a 

reference signal 𝜔௥௘௙. It also provides means to shape the transient response of the speed. The 

speed tracking error is defined as 

 𝑒ఠ = 𝜔௥௘௙ − 𝜔 (  2.14 ) 

where 𝜔௥௘௙ is the speed reference signal. Using (  2.13 ) and (  2.14 ) we obtain the following: 
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𝑑𝑒ఠ

𝑑𝑡
=

𝑑𝜔௥௘௙

𝑑𝑡
+ 𝛾𝜔௥௘௙ − 𝛼𝑖௤ೝ೐೑

− 𝛾𝑒ఠ − 𝜇𝑥௤ +
1

𝐽
𝑇௅ (  2.15 ) 

It is desired to match the transient response of the speed tracking error to that of the following 

target system 

 
𝑑𝑒ఠ

⋆

𝑑𝑡
= −𝑘ఠ𝑒ఠ

⋆ (  2.16 ) 

where 𝑘ఠ > 0. If the speed 𝜔 were available for measurement and the external load 𝑇௅ were 

exactly known, the state feedback control law that achieves the objectives would have been 

given by 

𝑖௤ೝ೐೑
=

1

𝛼
൤
𝑑𝜔௥௘௙

𝑑𝑡
+ 𝛾𝜔௥௘௙ + (𝑘ఠ − 𝛾)𝑒ఠ − 𝜇𝑥௤ +

1

𝐽
𝑇௅൨ 

          ≜ 𝜓ത ቆ𝑒ఠ, 𝑥௤ , 𝜔௥௘௙ ,
𝑑𝜔௥௘௙

𝑑𝑡
, 𝑇௅ቇ (  2.17 ) 

The closed-loop system formed of (  2.11 ), (  2.12 ), (  2.15 ), and (  2.17 ) is given by 

 𝜉̇ = 𝐴ଵ𝜉 (  2.18 ) 

where 𝜉 = ቂ𝑥ௗ − 𝑅𝑖ௗೝ೐೑
, 𝑥௤ − 𝑥̅௤ , 𝑒ఠቃ

்

, 𝑥̅௤ satisfies the equation 

𝑑𝑥̅௤

𝑑𝑡
=

𝑘௜

൫𝑅 + 𝑘௣൯
ቈ𝑅𝜓ത ቆ0, 𝑥̅௤ , 𝜔௥௘௙,

𝑑𝜔௥௘௙

𝑑𝑡
, 𝑇௅ቇ + 𝑘௠𝜔௥௘௙ − 𝑥̅௤቉ 

and 
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 𝐴ଵ =

⎣
⎢
⎢
⎢
⎢
⎡−

𝑘௜

𝑅 + 𝑘௣
0 0

0 −
𝑘௜

𝑘௣
−

𝑘௜

𝑘௠𝑘௣
ቆ𝑘௠

ଶ − 𝑅𝐽 ൬𝑘ఠ −
𝐵

𝐽
൰ቇ

0 0 −𝑘ఠ ⎦
⎥
⎥
⎥
⎥
⎤

 (  2.19 ) 

The matrix 𝐴ଵ is Hurwitz. 

2.1.4 Feedback Linearization under Output Feedback 

Since the external load 𝑇௅ is assumed unknown and only the nominal parameters of the 

PMSM are known, equation (  2.13 ) is rewritten as: 

 
𝑑𝜔

𝑑𝑡
= 𝛼ො𝑖௤ೝ೐೑

− 𝛾ො𝜔 + 𝜇̂𝑥௤ + 𝜎 (  2.20 ) 

where 𝛼ො, 𝛾ො and 𝜇̂ are the nominal values of 𝛼, 𝛾 and 𝜇, and 𝜎 is the disturbance, which is defined 

by 

𝜎 = (𝛼 − 𝛼ො)𝑖௤ೝ೐೑
− (𝛾 − 𝛾ො)𝜔 + (𝜇 − 𝜇̂)𝑥௤ −

1

𝐽
𝑇௅ 

The assumption here is that the rotor position is directly measured and the speed of the PMSM is 

not available for measurement. Therefore, the measured rotor position is used to drive an 

extended high-gain observer that estimates both the speed of the motor 𝜔 and the disturbance 𝜎. 

The extended high-gain observer, formed using (  1.8 ) and (  2.20 ), is given by 

 𝑑𝜃෠

𝑑𝑡
= 𝜔ෝ +

𝜌ଵ

𝜀
൫𝜃 − 𝜃෠൯ (  2.21 ) 

 
𝑑𝜔ෝ

𝑑𝑡
= 𝛼ො𝑖௤ೝ೐೑

− 𝛾ො𝜔ෝ + 𝜇̂𝑥௤ + 𝜎ො +
𝜌ଶ

𝜀ଶ
൫𝜃 − 𝜃෠൯ (  2.22 ) 

 
𝑑𝜎ො

𝑑𝑡
=

𝜌ଷ

𝜀ଷ
൫𝜃 − 𝜃෠൯ (  2.23 ) 
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where 𝜃෠, 𝜔ෝ, and 𝜎ො are the estimates of 𝜃, 𝜔, and 𝜎, respectively, 𝜌ଵ, 𝜌ଶ, and 𝜌ଷ are chosen such 

that 

 𝑠ଷ + 𝜌ଵ𝑠ଶ + 𝜌ଶ𝑠 + 𝜌ଷ = 0 (  2.24 ) 

is Hurwitz, and 𝜀 > 0 is a small parameter. If we have not used the singular perturbation method 

to reduce the model, the order of the extended high-gain observer would have been 4, which 

would be harder to implement. 

To formulate the output feedback controller, we need to rewrite the speed tracking error 

in its nominal form which can be obtained using (  2.14 ) and (  2.20 ) as 

𝑑𝑒ఠ

𝑑𝑡
=

𝑑𝜔௥௘௙

𝑑𝑡
+ 𝛾ො𝜔௥௘௙ − 𝛼ො𝑖௤ೝ೐೑

− 𝛾ො𝑒ఠ − 𝜇̂𝑥௤ − 𝜎 

Since the objective here is to drive the speed tracking error trajectory to match that of the target 

system (  2.16 ), the output feedback control law is taken as 

𝑖௤ೝ೐೑
=

1

𝛼ො
൤
𝑑𝜔௥௘௙

𝑑𝑡
+ 𝛾ො𝜔௥௘௙ + (𝑘ఠ − 𝛾ො)𝑒̂ఠ − 𝜇̂𝑥௤ − 𝜎ො൨ 

           ≜ 𝜓 ቆ𝑒̂ఠ, 𝑥௤ , 𝜎ො, 𝜔௥௘௙ ,
𝑑𝜔௥௘௙

𝑑𝑡
ቇ (  2.25 ) 

where 𝑒̂ఠ is the speed tracking error estimate, defined by 𝑒̂ఠ = 𝜔௥௘௙ − 𝜔ෝ. It can be verified that 

 𝜓 ቆ𝑒ఠ, 𝑥௤ , 𝜎, 𝜔௥௘௙ ,
𝑑𝜔௥௘௙

𝑑𝑡
ቇ = 𝜓ത ቆ𝑒ఠ , 𝑥௤ , 𝜔௥௘௙ ,

𝑑𝜔௥௘௙

𝑑𝑡
, 𝑇௅ቇ (  2.26 ) 

To protect the system from the peaking phenomenon of high-gain observers  [34],the control law 

(  2.25 ) is saturated outside the compact set Ωଵ = {𝑉ଵ = 𝜉்𝑃ଵ𝜉 ≤ 𝑐ଵ} where 𝑃ଵ = 𝑃ଵ
் > 0 is the 
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solution of the Lyapunov equation 𝑃ଵ𝐴ଵ + 𝐴ଵ
்𝑃ଵ = −𝑄ଵ for some 𝑄ଵ = 𝑄ଵ

் > 0, and 𝑐ଵ > 0 is 

chosen such that 𝜉(0) is in the interior of Ωଵ and 

 𝑚𝑎𝑥
కఢఆభ

ቤ𝜓ത ቆ𝑒ఠ, 𝑥௤ , 𝜔௥௘௙ ,
𝑑𝜔௥௘௙

𝑑𝑡
, 𝑇௅ቇቤ < 𝑖௤೘ೌೣ

 (  2.27 ) 

where 𝑖௤೘ೌೣ
 is the limit of ห𝑖௤ห. The above inequality is possible if 

ቤ𝜓ത ቆ0, 𝑥̅௤ , 𝜔௥௘௙ ,
𝑑𝜔௥௘௙

𝑑𝑡
, 𝑇௅ቇቤ < 𝑖௤೘ೌೣ

 

which restricts 𝜔௥௘௙, and 𝑇௅. The control law is then given by 

 𝑖௤ೝ೐೑
= 𝑀𝑠𝑎𝑡 ൮

𝜓 ൬𝑒̂ఠ , 𝑥௤ , 𝜎ො, 𝜔௥௘௙,
𝑑𝜔௥௘௙

𝑑𝑡
൰

𝑀
൲ (  2.28 ) 

where 𝑀 = 𝑖௤೘ೌೣ
. 

2.2 Closed Loop analysis 

Theorem 2.1: Consider the closed loop system formed of the PMSM model (  1.5 )-(  1.8 ), the PI 

current controllers (  2.3 ), the extended high-gain observer (  2.21 )-(  2.23 ), and the speed 

controller (  2.28 ). Assume that 

1) 𝜔௥௘௙, 
ௗఠೝ೐೑

ௗ௧
, and 

ௗమఠೝ೐೑

ௗ௧మ
 are bounded 

2) 𝑇௅ and 
ௗ்ಽ

ௗ௧
 are bounded 

3) ቚ
ఈିఈෝ

ఈෝ
ቚ < 1 
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4) 𝜉(0)  is in the interior of 𝛺ଵ and the initial states 𝑖ௗ(0), 𝑖௤(0), 𝜃෠(0), 𝜔ෝ(0), and 𝜎ො(0) are 

bounded. 

Then, there exist positive constants 𝜆ଵ and 𝜆ଶ such that for all 𝜀 ≤ 𝜆ଵ and 
ఛ

ఌ
≤ 𝜆ଶ,the trajectories 

of the closed loop system are bounded for all  𝑡 ≥ 0, and 

 |𝑒ఠ
⋆(𝑡) − 𝑒ఠ(𝑡)| → 0 as 𝜀 → 0 and 

ఛ

ఌ
→ 0 for all 𝑡 ≥ 0 (  2.29 ) 

Proof: The closed-loop system is represented as a three-time-scale singularly perturbed system. 

The state variables are taken as 

𝜉ଵ = 𝑥ௗ − 𝑅𝑖ௗೝ೐೑
 ,    𝜉ଶ = 𝑥௤ − 𝑥̅௤ ,    𝜉ଷ = 𝑒ఠ , 

𝜂ଵ =
ଵ

ఌమ
൫𝜃 − 𝜃෠൯ ,    𝜂ଶ =

ଵ

ఌ
(𝜔 − 𝜔ෝ) ,  

𝜂ଷ = (𝛼 − 𝛼ො)𝑀𝜙ఌ ൮
𝜓 ൬𝑒̂ఠ , 𝑥௤ , 𝜎ො, 𝜔௥௘௙,

𝑑𝜔௥௘௙

𝑑𝑡
൰

𝑀
൲ − (𝛾 − 𝛾ො)𝜔 + (𝜇 − 𝜇̂)𝑥௤ −

1

𝐽
𝑇௅ − 𝜎ො 

𝑧ଵ = 𝑖ௗ −
1

𝑅 + 𝑘௣
ቀ𝑘௣𝑖ௗೝ೐೑

+ 𝑥ௗቁ 

𝑧ଶ = 𝑖௤ −
1

𝑅 + 𝑘௣
൦𝑘௣𝑀𝜙ఌ ൮

𝜓 ൬𝑒̂ఠ , 𝑥௤ , 𝜎ො, 𝜔௥௘௙,
𝑑𝜔௥௘௙

𝑑𝑡
൰

𝑀
൲ − 𝑘௠ 𝜔 + 𝑥௤൪ 

𝜉 = ൥

𝜉ଵ

𝜉ଶ

𝜉ଷ

൩ , 𝜂 = ൥

𝜂ଵ

𝜂ଶ

𝜂ଷ

൩ , 𝑧 = ቂ
𝑧ଵ

𝑧ଶ
ቃ 

where 𝜙ఌ is an odd function defined by 
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𝜙ఌ(𝑦) =

⎩
⎪
⎨

⎪
⎧

𝑦                                            𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 1       

𝑦 +
𝑦 − 1

𝜀
−

𝑦ଶ − 1

2𝜀
         𝑓𝑜𝑟 1 ≤ 𝑦 ≤ 1 + 𝜀

1 +
𝜀

2
                                   𝑓𝑜𝑟 𝑦 ≥ 1 + 𝜀        

 

which is a continuously differentiable nondecreasing function with a locally Lipschitz derivative 

and bounded uniformly in 𝜀 on any bounded interval of 𝜀. Furthermore, the function 𝜙ఌ satisfies 

|𝑠𝑎𝑡(𝑦) − 𝜙ఌ(𝑦)| ≤
ఌ

ଶ
 and |𝜙ఌ

ᇱ(𝑦)| ≤ 1 ∀ 𝑦 𝜖 ℝ. 

For 𝜉𝜖Ωଵ, the closed-loop system is described by 

   𝜉̇ = 𝐴ଵ𝜉 + 𝐸ଵ𝑧 + 𝐵ଵ𝑓ଵ(∙) + 𝜀𝐵ଶ𝑓ଶ(∙) (  2.30 ) 

 𝜀𝜂̇ = 𝐴ଶ𝜂 − 𝐵ଷ𝜌ଷΔ𝜂ଵ + 𝜀[𝐵ଷ𝑓ଷ(∙) + 𝐵ସ𝑓ସ(∙)] + 𝐵ସ𝑏𝑧ଶ (  2.31 ) 

 𝜏𝑧̇ = −𝑧 −  
𝜏

𝜀

𝜌ଷ

𝛼ො
𝜙ఌ

ᇱ(∙)𝐵ହ𝜂ଵ − 𝜀
𝑘௣

𝑅 + 𝑘௣
𝐵ହ𝑓ଶ(∙) + 𝜏𝑔(∙) (  2.32 ) 

where 𝐴ଵ is defined by (  2.19 ),  

𝐸ଵ = ൦

−𝑘௜ 0
0 −𝑘௜

0 −
௞೘

௃

൪,    𝐵ଵ =
ଵ

ோା௞೛
൦

0
𝑘௜𝑅

−
௞೘௞೛

௃

൪,    𝐵ଶ =
௞೛

ோା௞೛
቎

0
−𝑘௜

−
௞೘

௃

቏ 

𝐴ଶ = ൥

−𝜌ଵ 1 0
−𝜌ଶ 0 1
−𝜌ଷ 0 0

൩,    𝐵ଷ = ൥
0
0
1

൩,    𝐵ସ = ൥
0
1
0

൩, 𝐵ହ = ቂ
0
1

ቃ, 𝑏 =
௞೘

௃
, 

𝑔(∙) = ൤
𝑔ଵ(∙)

𝑔ଶ(∙)
൨, and Δ =

ఈିఈෝ

ఈෝ
𝜙ఌ

ᇱ ൭
ట൬௘̂ഘ,௫೜,ఙෝ,ఠೝ೐೑,

೏ഘೝ೐೑

೏೟
൰

ெ
൱. 

The functions 𝑓ଵ to 𝑓ସ and 𝑔ଵ and 𝑔ଶ are given in Appendix A. The functions 𝑓ଵ and 𝑓ଶ are 

globally bounded, and 𝑓ଵ vanishes at 𝜂 = 0. The functions 𝑓ଷ and 𝑔 satisfy a bound of the form 
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𝑘௔ + 𝑘௕‖𝜂‖ + 𝑘௖‖𝑧‖, while 𝑓ସ satisfies a bound of the form 𝑘௔ + 𝑘௕‖𝜂‖ where 𝑘௔, 𝑘௕, and 𝑘௖ 

are positive constants. 

For 𝜏 ≪ 𝜀 ≪ 1, The system (  2.30 )-(  2.32 ) is singularly perturbed with three-time-

scales. In the fastest time scale, the boundary layer model is 𝜏𝑧̇ = −𝑧, which is obtained by 

setting 
த

க
= 0, τ = 0, and 𝜀 = 0 on the right-hand side of (  2.32 ). The quasi-steady-state of this 

model is 𝑧 = 0. In the intermediate time scale, the boundary layer model is 

 𝜀𝜂̇ = 𝐴ଶ𝜂 − 𝐵ଷ𝜌ଷΔ𝜂ଵ (  2.33 ) 

which is obtained by setting ε = 0 and z = 0 on the right-hand side of the 𝜂̇-equation. This 

system can be represented as a negative feedback connection of the transfer function 

Γ(𝜀𝑠) =
𝜌ଷ

(𝜀𝑠)ଷ + 𝜌ଵ(𝜀𝑠)ଶ + 𝜌ଶ(𝜀𝑠) + 𝜌ଷ
 

and the time varying gain Δ(∙). Since ቚ
஑ି஑ෝ

஑ෝ
ቚ < 1 and |𝜙ఌ

ᇱ(∙)| ≤ 1, |Δ| < 1. Because the poles of 

the transfer function Γ(𝜀𝑠) are real and negative, maxఠ|Γ(𝑗𝜀𝜔)| ≤ 1. The circle criterion  [34] 

shows that the origin of (  2.33 ) is globally exponentially stable. By applying a loop 

transformation and using the Kalman-Yakubovich-Popov lemma  [34], Lemma 6.3] we obtain a 

quadratic Lyapunov function 𝑉ଶ(𝜂) = 𝜂்𝑃ଶ𝜂 whose derivative with respect to (  2.33 ) is 

bounded from above by − ቀ
ఒ

ఌ
ቁ 𝑉ଶ(𝜂) for some positive constant 𝜆, independent of 𝜀. In the 

slowest time scale, the slow model is 𝜉̇ = 𝐴ଵ𝜉, which is obtained by setting 𝜀 = 0 and 𝜂 = 0 on 

the right-hand side of (  2.30 ). 
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Consider the set 

Ω = Ωଵ × {𝑊(𝜂, 𝑧) ≤ 𝜀ଶ𝑐ଶ} 

where 𝑊(𝜂, 𝑧) = 𝜂்𝑃ଶ𝜂 +
ଵ

ଶ
𝑧்𝑧. Similar to arguments used in the analysis of high-gain 

observer  [34], it can be shown that, by choosing 𝑐ଶ > 0 large enough, the set Ω is positively 

invariant for sufficiently small 𝜀 and 
த

க
. This is done by showing that 𝑉̇ଵ < 0 on the boundary of 

Ωଵ, and 𝑊̇ < 0 on the boundary 𝑊(𝜂, 𝑧) = 𝜀ଶ𝑐ଶ. 

At the initial time, ൫𝜂(0), 𝑧(0)൯ could be outside the set {𝑊(𝜂, 𝑧) ≤ 𝜀ଶ𝑐ଶ} but would 

move rapidly toward the set and will reach it within an interval [0, 𝑇(𝜀)], where limఌ→଴ 𝑇(𝜀) =

0. Because the initial state 𝜉(0) is in the interior of Ωଵ, choosing 𝜀 small enough ensures 𝜉 does 

not leave Ωଵ, and by the end of this interval (𝜉, 𝜂, 𝑧) would be in the positively invariant set Ω. 

The limit (  2.29 ) follows from the continuous dependence of the solutions of differential 

equations on parameters  [34], Theorem 9.1] and exponential stability of the subsystem  

                                                                       𝜉̇ = 𝐴ଵ𝜉.                                                                   ∎ 

Theorem 2.2: Under the assumptions of Theorem 2.1, suppose 𝜔௥௘௙ and 𝑇௅ are constant. Then, 

there exist positive constants 𝜆ଷ and 𝜆ସ such that for 𝜀 < 𝜆ଷ and  
ఛ

ఌ
< 𝜆ସ,lim௧→ஶ 𝑒ఠ(𝑡) = 0. 

Proof: We have already shown in the proof of Theorem 2.1 that the trajectories of the system 

enter the positively invariant set Ω wherein ቛ
𝜂
𝑧

ቛ = 𝑂(𝜀). Inside Ω, the saturation is not active; 

hence 𝑀𝜙ఌ(𝜓/𝑀) = 𝑀𝑠𝑎𝑡(𝜓/𝑀) = 𝜓. When 𝜔௥௘௙ and 𝑇௅ are constant, it can be shown that the 

system has an equilibrium point at ൫𝜉̅, 𝜂̅, 𝑧̅൯, where 
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𝜉ଵ̅ = −
௅௡೛ఠೝ೐೑൫஻ఠೝ೐೑ା்ಽ൯

௞೘
, 𝜉ଶ̅ = 𝐿𝑛௣𝜔௥௘௙𝑖ௗೝ೐೑

, 𝜉ଷ̅ = 𝜂̅ଵ = 𝜂̅ଶ = 0, 𝜂̅ଷ =
ఛ௡೛௞೘ఠೝ೐೑௜೏ೝ೐೑

௃
, 

𝑧ଵ̅ =
ఛ௡೛ఠೝ೐೑൫஻ఠೝ೐೑ା்ಽ൯

௞೘
, and 𝑧ଶ̅ = −𝜏𝑛௣𝜔௥௘௙𝑖ௗೝ೐೑

. 

At this equilibrium point 𝑒ఠ = 𝜉ଷ = 0. We now show that the equilibrium point is exponentially 

stable and every trajectory in Ω converges to it as time tends to infinity. Towards that end, we 

shift the equilibrium point to the origin by the change of variables 

𝜉ሚ = 𝜉 − 𝜉̅,     𝜂෤ = 𝜂 − 𝜂̅,     𝑧̃ = 𝑧 − 𝑧̅ 

The transformed system is given by 

 𝜉ሚ̇ = 𝐴ଵ𝜉ሚ + 𝐸ଵ𝑧̃ + 𝐵ଵ𝑓ሚଵ(∙)  

 𝜀𝜂෤̇ = 𝐻𝜂෤ + 𝐵ସ𝑏𝑧̃ଶ + 𝜀ൣ𝐵ଷ𝑓ሚଷ(∙) + 𝐵ସ𝑓ሚସ(∙)൧  

 𝜏𝑧̇̃ = −𝑧̃ −  
𝜏

𝜀

𝜌ଷ

𝛼ො
𝐵ହ𝜂෤ଵ + 𝜏𝑔෤(∙)  

where 𝐻 = 𝐴ଶ − 𝜌ଷ ቀ
ఈିఈෝ

ఈෝ
ቁ 𝐵ଷ𝐶ଷ, in which 𝐶ଷ = [1 0 0]. As shown in the proof of Theorem 

2.1, 𝐻 is Hurwitz for ቚ
ఈିఈෝ

ఈෝ
ቚ < 1. The functions 𝑓ሚ and 𝑔෤ are obtained from 𝑓 and 𝑔 by subtracting 

their values at the equilibrium point. A composite Lyapunov function for this three-time-scale 

singularly perturbed system is taken as  

𝑉 = 𝜉ሚ்𝑃ଵ𝜉ሚ + 𝜂෤்𝑃ଷ𝜂෤ +
1

2
𝑧்̃𝑧̃ 

where 𝑃ଷ is the positive definite symmetric solution of the Lyapunov equation 

𝑃ଷ𝐻 + 𝐻்𝑃ଷ = −𝐼. 
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The time derivative of 𝑉 satisfies the inequality 

𝑉̇ ≤ − ቎

ฮ𝜉ሚฮ

‖𝜂෤‖

‖𝑧̃‖

቏

்

⎣
⎢
⎢
⎢
⎡

𝑘ଵ −𝑘ଶ −𝑘ଷ

−𝑘ଶ ൬
1

𝜀
− 𝑘ସ൰ − ൬𝑘ହ +

𝑘଺

𝜀
൰

−𝑘ଷ − ൬𝑘ହ +
𝑘଺

𝜀
൰ ൬

1

𝜏
− 𝑘଻൰ ⎦

⎥
⎥
⎥
⎤

 ቎

ฮ𝜉ሚฮ

‖𝜂෤‖

‖𝑧̃‖

቏ 

where 𝑘ଵ to 𝑘଻ are positive constants independent of 𝜏 and 𝜀. The matrix of this quadratic form is 

positive definite for sufficiently small ε and 
ఛ

ఌ
. Hence, the origin is exponentially stable. 

Moreover, the forgoing inequality is valid in Ω; hence all trajectories in Ω converge to the origin 

as t tends to infinity.                                                                                                                       ∎ 

2.3 Simulations and Experimental Results 

The performance of the proposed control method is evaluated through conducting various 

simulations and experiments under different conditions such as parameter variation and external 

load. The nominal parameters of the used surface mount PMSM are shown in Table 1. 

Three main sets of simulations and experiments have been conducted. The first set of 

simulations and experiments is carried out using the nominal parameters of the motor with no 

external load. In this set, we show the operation of the motor under a speed reference profile 

which includes speed reversal. The first set includes the use of three different values of the 

constant 𝑘ఠ, namely, 𝑘ఠ = 2.5, 𝑘ఠ = 5, and 𝑘ఠ = 10. The second set explores the effect of 

both uncertainty in the parameters and decreasing ε on the performance of the proposed control 

method. We achieve uncertainty in the parameters by varying the motor’s parameters in the 

controller. Finally, the third set investigates the effect of the external load and the influence of 

decreasing ε on the robustness of the control method. 
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Parameter Value 
Rated Voltage 200 VACL-L 
Rated Current 5.1 A 
Rated Torque 3.18 N.m 
Rated Speed 3000RPM 
Inductance 𝑳 4.47 mH 
Per Phase Winding Resistance 𝑹 0.835 Ω 
Torque Constant 𝒌𝒎 0.859  𝑉 · 𝑠 
Number of Pole Pairs 𝒏𝒑 4 

Viscosity Coefficient 𝑩 0.0011 
ே·௠·௦

௥௔ௗ
 

Moment of Inertia  𝑱 0.0036 𝐾𝑔 · 𝑚ଶ 
Table  2.1. Nominal parameters of the used PMSM. 

The PI controllers of the inner current loops are designed such that the currents 𝑖ௗ and 𝑖௤ 

are relatively fast. The proportional and integral gains of the PI current controllers that are found 

to satisfy the criterion above are: 𝑘௣ = 25, and 𝑘௜ = 1200. In all cases 𝑖ௗೝ೐೑
= 0. 

There are two aspects that must be taken into account when designing the parameter 𝜀 of 

the extended high-gain observer. First, the assumption 𝜏 ≪ 𝜀 ≪ 1 must hold. Second, 𝜀 should 

be chosen so that the best compromise between fast convergence and minimal noise 

amplification is achieved. With 𝜏 = 1.73 ∗ 10ିସ, the value of 𝜀 that satisfies both criteria was 

found to be 0.005. In addition, the roots of the polynomial (  2.24 ) of the extended high gain 

observer are all assigned at −1. Therefore, 𝜌ଵ = 3, 𝜌ଶ = 3, and 𝜌ଷ = 1. These parameters are 

used in both the simulation and the experiment. The simulations are all performed using 

MATLAB-Simulink. 

2.3.1 Experimental Setup 

The experiments were performed in the Electric Machines and Drives Laboratory 

(EMDL) at Michigan State University (MSU). Figure  2.2 shows the block diagram of the 
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experiment. The host computer is used to perform multiple functions such as, providing user 

interface, plotting measured quantities of interest in real-time, and building the proposed 

controller’s programs on LabVIEW. The host PC is also used to deploy the controller’s programs 

on the Target PC. The target PC uses the National Instruments’ real-time operating system 

(RTOS) to execute the controller’s programs in real-time. The target PC communicates with the 

inverter and the incremental encoder through the NI PCIe-7852R card which is a real-time 

multifunction Data Acquisition (DAQ) card. 

Two modules of the NI PCIe-7852R card are utilized in the experiment: 1)-the 16-bit 

Analog to Digital Converter (ADC) module, and the Field Programmable Gate Array (FPGA) 

module. The ADC is used to measure the phase currents, temperature of the IGPT’s that are used 

in the inverter, and the DC-link voltage. The FPGA, on the other hand, is used to interface the 

incremental encoder and provide switching signals to the inverter via a Pulse Width Modulation 

(PWM) controller circuit. The FPGA module on the NI PCIe-7852R runs on an on-board 40MHz 

oscillator. 

The incremental encoder, as shown in Figure  2.2, is connected to the shaft of the PMSM 

which is also directly connected to the Induction Motor. The connection between the PMSM and 

the induction motor is made with a jaw coupler that is cushioned with a rubber spider. Here, the 

induction motor is used to apply load on the PMSM to assess the proposed controller’s ability to 

cope with external disturbance. The induction motor is driven with a Texas Instruments’ RDK-

ACIM board. 
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Figure  2.2. Block diagram of the experimental setup. 
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The control algorithm is implemented with a 10𝑘𝐻𝑧 sampling frequency. The Hall Effect 

current sensors have a maximum bandwidth of 150kHz at -1db. The position of the motor’s shaft 

is measured with a 2500𝑃𝑃𝑅 incremental encoder. All the reported speeds from the experiment 

are estimated using a separate high-gain observer that is independent of the feedback loop. 

Figure  2.3 shows a picture of the experimental setup. 

 
Figure  2.3. Picture of the experimental setup. 

2.3.2 Simulation & Experiment I 

In this case, the nominal parameters, which are shown in Table  2.1, are used in the 

controller and no external load is applied to the motor. The motor in this case is at standstill 

when the following speed profile is applied  

𝜔௥௘௙ = 100𝑢(𝑡) − 200𝑢(𝑡 − 5) + 100𝑢(𝑡 − 10) 
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where 

𝑢(𝑡) = ቄ
0 𝑡 < 0
1 𝑡 ≥ 0

 

The speed profile is a series of steps that will show operation of the motor for different speed 

references including speed reversal. Even though Theorem 2.1 requires 𝜔௥௘௙ to be twice 

differentiable, the series of steps of 𝜔௥௘௙ can be viewed as a change of initial conditions. Figures 

2.4(a), 2.5(a), and 2.6(a) show the speed reference signal 𝜔௥௘௙, the desired target 𝜔⋆ = 𝜔௥௘௙ −

𝑒ఠ
⋆, and the speed of the motor from both the simulation and the experiment for the three values 

of 𝑘ఠ: 𝑘ఠ = 2.5, 𝑘ఠ = 5, and 𝑘ఠ = 10, respectively. It can be seen that the proposed control 

method was able to regulate the speed and shape the transient response of the speed to the 

desired trajectory.  It can also be seen that there is an excellent agreement between simulation 

and experimental results.  Figures 2.4(b), 2.5(b), and 2.6(b) show the deviation error between the 

target speed and the motor speed of the simulation and the experiment. These deviation errors 

further show the high performance property of the proposed control method. The results from 

simulation show a maximum of 0.2% deviation error during the transient period and a zero 

steady state error. On the other hand, the maximum experimental deviation error is about 4% 

during the transient period and less than 0.6% during the steady state. These simulations and 

experiments show the effectiveness of the proposed control method in regulating and shaping the 

transient response of the speed. 
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Figure  2.4. (a) Simulation and experimental speed of PMSM when 𝑘ఠ = 2.5 and using the 

nominal parameters, (b) Simulation and experimental speed deviation from target 
speed. 

 

Figure  2.5. (a) Simulation and experimental speed of PMSM when 𝑘ఠ = 5 and using the 
nominal parameters, (b) Simulation and experimental speed deviation from target 
speed. 
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Figure  2.6. (a) Simulation and experimental speed of PMSM when 𝑘ఠ = 10 and using the 
nominal parameters, (b) Simulation and experimental speed deviation from target 
speed. 

2.3.3 Simulation & Experiment II 

In this case, the effect of varying the nominal parameters on the proposed control method 

is investigated. In all experiments of this section, the PMSM is at full stop when a speed step 

reference of 100 𝑟𝑎𝑑/𝑠𝑒𝑐 is applied at 𝑡 = 0. Also, in all experiments the PMSM is not 

externally loaded. There are 18 experiments that have been conducted for this investigation and 

they are summarized in Table  2.2. 

Table  2.2 shows the maximum experimental transient deviation error for 𝑘ఠ = 5 and for 

two values of 𝜀. It can be seen from Table  2.2 that perturbing the winding resistance 𝑅 and the 

coefficient of viscous friction 𝐵 have minimum to no effect on the performance of the proposed 

control method when compared to the case when no parameters perturbation is present. On the 

other hand, decreasing the moment of inertia 𝐽 affects the performance of the proposed control 
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method the most while moderate effect is caused when the torque constant 𝑘௠ is perturbed. It 

can also be seen that when 𝜀 is decreased, the maximum transient deviation error is also 

decreased which has been predicted in Theorem 2.1. Figures 2.7 and 2.8 show samples of the 

speed when 𝐽 and 𝑘௠ are varied from their nominal values. 

Figures 2.7(a) and 2.8(b) show simulation and experimental results when the nominal 

value of the moment of inertia 𝐽 was decreased by 50% and the nominal value of the torque 

constant 𝑘௠ was increased by 25%, respectively. Both figures show the commanded speed, the 

desired target system, and the speed of the motor for 𝑘ఠ = 5 and 𝜀 = 0.005. In both cases, the 

proposed control method was able to regulate the speed, and to a great extent, shape the transient 

response to the desired trajectory despite parameter uncertainties. 

 
Figure  2.7. (a) Simulation and experimental speed of PMSM for 𝑘ఠ = 5 and when the moment 

of inertia 𝐽 is decreased by 50%, (b) Simulation and experimental speed deviation 
from target speed when the moment of inertia 𝐽 is decreased by 50%. 
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Figure  2.8. (a) Simulation and experimental speed of PMSM for 𝑘ఠ = 5 and when the torque 

constant 𝑘௠ is increased by 25%, (b) Simulation and experimental speed deviation 
from target speed when the torque constant 𝑘௠ is increased by 25%. 

Perturbation 
Maximum Experimental 

Transient Deviation Error 

𝑘௠ 𝐽 𝑅 𝐵 𝜀 = 0.01 𝜀 = 0.005 

0% 0% 0% 0% 2.07% 1.63% 

+25% 0% 0% 0% 3.7% 1.78% 

−25% 0% 0% 0% 3.11% 1.65% 

0% +50% 0% 0% 4.62% 2.61% 

0% −50% 0% 0% 9.13% 5.57% 

0% 0% +200% 0% 2.35% 1.70% 

0% 0% −100% 0% 2.26% 1.67% 

0% 0% 0% +50% 2.13% 1.71% 

0% 0% 0% −50% 2.18% 1.74% 

Table  2.2. Maximum Experimental Transient Deviation Error 

Figure 2.7(b) and 2.8(b) show the deviation error between the target speed and the motor 

speed for simulation and experimental results when the nominal value of the moment of inertia 𝐽 

was decreased by 50% and the nominal value of the torque constant 𝑘௠ was increased by 25%, 
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respectively. These deviation errors further show the high performance property of the proposed 

control method. The results from simulation show a maximum of 4.9% deviation error during 

the transient period while the maximum experimental deviation error from the target system is 

about 5.57% during the transient period. However, the experimental deviation error in the steady 

state is less than 0.5%. The maximum deviation error occur when the nominal value of the 

moment of inertia 𝐽 is decreased by 50%. 

It can also be observed that simulation and experimental results are very close to one 

another that they almost overlap. The deviation errors further show the extent of this agreement. 

The agreement between simulation and experimental results is a very important feature to have 

since it allows development and testing of the controller in simulation before testing it in real life 

applications. This also has the potential of replicating many circumstances that are otherwise 

impossible to do in real life or that they will cost money and resources. This experiment shows 

the effectiveness of the proposed control method in shaping the transient response and regulating 

the speed of the motor despite varying the parameters. 

2.3.4 Simulation & Experiment III 

This case investigates the effectiveness of the proposed control method when the PMSM 

is externally loaded. The PMSM, in this case, is regulated at a constant speed of 100 𝑟𝑎𝑑/𝑠𝑒𝑐. 

Then, a step of external load of about 2𝑁 ∙ 𝑚 was applied at t = 3s and removed at t = 7s. 

Figure 2.9(a) and (b) show the PMSM’s speed from the experiment before and after the external 

load was applied for 𝑘ఠ = 5 and 𝑘ఠ = 10, respectively. In addition, both plots show the effect 

of reducing  𝜀 on the performance of the proposed controller against the external disturbance. 
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It can be seen that at the moment the external load was applied the speed of the motor in 

all cases briefly dropped but recovered quickly and the speed is maintained at 100 𝑟𝑎𝑑/𝑠𝑒𝑐. At 

the moment the external load was applied; however, the cases where 𝜀 = 0.005 show a 

maximum speed loss of about 7% while the cases where 𝜀 = 0.01 show a maximum speed loss 

of about 15%. This result is expected since a smaller 𝜀 leads to a faster disturbance estimation 

and thus faster controller reaction. Similar behavior can also be observed at the moment when 

the external load was removed.  

This experiment shows the effectiveness of the proposed control method in the presence 

of external disturbance. The robustness of the proposed control method against external 

disturbance is due to estimating the disturbance and cancelling it in the control law. 

 
Figure  2.9. Speed of PMSM before and after the external load was applied. 
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2.4 Comparison with the PI Speed Controller 

2.4.1 Description of the PI Speed Controller 

Since this paper introduces a new method to control the speed of PMSMs, it is natural to 

compare it with the most widely used speed control method in industrial and commercial 

electrical drive systems.  

Nearly all speed control methods of electrical drive systems that are used currently in the 

industry utilize cascaded PI controllers  [36] [4]. There are several versions and variation of the 

cascaded PI speed control of electric motors that can be found in  [1],  [3],  [4], and  [36]. Here, we 

have chosen to compare our speed control method with the version that is presented in  [4] 

and  [36] since they are  most recent and both claimed that the control method that they have 

presented is the most used speed control method in electrical drive systems. The main difference 

between the version of the cascaded PI speed controller in  [4] and  [36], and the versions 

presented in  [1] and  [3] is that in  [4] and  [36] the cross coupling between the current equations is 

cancelled by using nonlinear feedback through the control inputs 𝑢ௗ and 𝑢௤ leaving the 

mathematical model of the PMSM linear. 

All of these references except  [36] assumed the speed is directly measured when 

presenting the cascaded PI controller and a speed observer was not discussed. In  [36] a speed 

estimator is described to have a position differentiator in series with a low-pass filter. Thus, the 

speed estimator constitutes a high-pass filter from the measured position to the estimated speed. 

Figure  2.10 shows the complete cascaded PI speed controller that is used here for comparison. 
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Figure  2.10. Block diagram of the PI speed controller. 

The development of the cascaded PI controller is straightforward. The direct and 

quadrature voltages are given by 

 𝑢ௗ = 𝑘௣𝑒ௗ + 𝑥ௗ − 𝑛௣𝐿𝜔ෝ𝑖௤  

 𝑢௤ = 𝑘௣𝑒௤ + 𝑥௤ + 𝑛௣𝐿𝜔ෝ𝑖ௗ + 𝑘௠𝜔ෝ  

where 𝑒ௗ, 𝑒௤, 𝑥ௗ, and 𝑥௤are defined as in (  2.1 ), (  2.2 ), (  2.4 ), and (  2.5 ), respectively. The 

quadrature current reference 𝑖௤ೝ೐೑
 is the output of the PI speed control loop and is given by 

𝑖௤ೝ೐೑
= ℎ௣൫𝜔௥௘௙ − 𝜔ෝ൯ + ℎ௜ න ቀ𝜔௥௘௙(𝑡́) − 𝜔ෝ(𝑡́)ቁ 𝑑𝑡́

௧

଴
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where ℎ௣ and ℎ௜ are the proportional and integral gains of the PI speed controller, respectively. 

Furthermore, the speed estimate 𝜔ෝ is defined by 

𝜔ෝ =
𝑠

ℎ௢𝑠 + 1
[𝜃] 

where ℎ௢ is the speed estimator time constant. It can be seen that decreasing ℎ௢ decreases the 

simultaneous speed estimation error but on the other hand increases quantization noise of the 

optical encoder. It should be noted that the decoupling of the current equations is exact only 

when the true parameters of the machine are accurately known. 

2.4.2 Experimental Setup and Tuning 

The performance of the proposed control method is further evaluated here by comparing 

it to the PI speed controller through two experiments. The first experiment is conducted to show 

the speed tracking ability of the proposed controller in comparison to the PI speed controller. The 

second experiment is performed to test the robustness of the proposed controller against external 

load in comparison to the PI speed controller. These experiments are exactly conducted for both 

controllers. This will allow us to draw a final conclusion about the performance of the proposed 

control method in comparison to the PI speed controller. The nominal parameters of the used 

surface-mounted PMSM are shown in Table  2.1. 

The PI controllers of the inner current loops are designed such that the currents 𝑖ௗ and 𝑖௤ 

are relatively fast. The proportional and integral gains of the PI current controllers that are found 

to satisfy the criterion above are: 𝑘௣ = 20, and 𝑘௜ = 2500. In all cases 𝑖ௗೝ೐೑
= 0. These values 

are used for both controllers. For the proposed controller, we choose 𝜀 = 0.001 and the roots of 
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the polynomial (  2.24 ) of the extended high gain observer are all assigned at −1. Therefore, 

𝜌ଵ = 3, 𝜌ଶ = 3, and 𝜌ଷ = 1. Also, we choose the gain 𝑘ఠ = 60. 

There were over 80 experiment runs conducted to fine tune the cascaded PI speed 

controller. Only about 30% of these experiment runs were considered. The remaining 70% were 

discarded because they were too oscillatory, they have slow responses, or an unacceptable 

performance when an external load was applied. Only three pairs of the speed PI gains were 

selected out of the considered 30%. They were selected based on overshoot and disturbance 

rejection, so for example; out of all transient responses that have an overshoot ≤2% we selected 

the one that has the best disturbance rejection. A summary of the selected tuning gains are shown 

in Table  2.3. The estimator time constant ℎ௢=0.0032 was found to provide fast convergence and 

an acceptable noise amplification. 

Gain Pair # Overshoot % h୮ h୧ 
1 ≤2% 1 1 
2 ≤5% 1 10 
3 ≤10% 1 30 

Table  2.3. PI speed controller tuning parameters. 

2.4.3 Experimental Results 

2.4.3.1 Experiment I 

In this case, the nominal parameters, which are shown in Table 1, are used in the 

proposed controller and no external load is applied to the motor. The motor in this case is at 

standstill when the following speed profile is applied, 
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𝜔௥௘௙ =

⎩
⎪
⎨

⎪
⎧

1

2
𝑧ଵ𝑡ଶ                                𝑓𝑜𝑟   0 ≤ 𝑡 < 𝑡ଵ

𝑎௙𝑡 + 𝐶ଵ                           𝑓𝑜𝑟   𝑡ଵ ≤ 𝑡 < 𝑡ଶ

−
1

2
𝑧ଵ𝑡ଶ + 𝑧ଶ𝑡 + 𝐶ଶ     𝑓𝑜𝑟   𝑡ଶ ≤ 𝑡 < 𝑡ଷ

𝐶ଷ                                   𝑓𝑜𝑟   𝑡ଷ ≤ 𝑡         

 

where 𝑧ଵ = 310719, 𝑧ଶ = 21554, 𝑎௙ = 1554, 𝐶ଵ = −3.884, 𝐶ଶ = −647.6, 𝐶ଷ = 100, 

𝑡ଵ = 0.005, 𝑡ଶ = 0.0644, and 𝑡ଷ = 0.0694. The speed profile is designed to be relatively fast 

and the maximum required acceleration does not exceed the motor’s capability. 

Figure 2.11(a) shows the speed reference signal 𝜔௥௘௙, the speed of the motor 𝜔 when the 

proposed controller is used, and the speed of the motor 𝜔௉ூ when the cascaded PI controller is 

used with different pairs of PI gains. It can be seen that the proposed controller was able to 

control the speed of the motor to closely track the reference speed while the PI speed controller 

was not able to perform as well as the proposed controller. Figure 2.11(b) shows the speed 

tracking error between the speed reference 𝜔௥௘௙ and the motor speed for both controllers. This 

figure further shows the performance difference between the proposed controller and the 

cascaded PI speed controller. 
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Figure  2.11. (a) Experimental speed of PMSM, (b) Experimental speed deviation from reference 

speed. 

2.4.3.2 Experiment II 

This case investigates the effectiveness of both the proposed control method and the PI 

speed controller when the PMSM is externally loaded with a step disturbance as well as a time-

varying disturbance. The PMSM, in both of these case, is regulated at a constant speed of 100 

rad/sec. Then, the external load is applied. 

Figure 2.12(a) shows the speed of the motor 𝜔 when the proposed controller is used, and 

the speed of the motor 𝜔௉ூ when the PI speed controller is used with different pairs of PI gains 

when the load is applied to the PMSM. The load is a step of about 2𝑁 ∙ 𝑚 which was applied at 

t = 10s and removed at t = 20s. It can be seen that at the moment the load was applied, the 

speed of the motor in all cases dropped then recovered and the speed was maintained at 

100 𝑟𝑎𝑑/𝑠𝑒𝑐. This behavior is expected from the proposed controller because there is an 
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integral action that results when the proposed controller is used in the presence of constant 

disturbance which leads to zero steady state error. Similarly, the PI speed controller relies on the 

integrator part of the PI controller to yield zero steady state error. There is however difference in 

how much the speed drops at the moment the load was applied and also how fast the speed is 

recovered. One can see that the step disturbance caused the speed of the motor to drop about 

2.5% when the proposed controller is used while it caused the speed to drop about 5% when the 

PI speed controller is used. It can also be seen that the proposed controller was able to recover 

the speed relatively fast while the PI controller requires high integrator gain to achieve similar 

recovery time. Similar behavior was observed at the moment when the external load was 

removed which is shown in Figure 2.12(b). 

 
Figure  2.12. Speed of PMSM before and after the external load was applied. 
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Figure 2.13 shows the speed of the motor 𝜔 when the proposed controller is used, and the 

speed of the motor 𝜔௉ூ when the PI speed controller is used with different pairs of PI gains when 

a time-varying load is applied to the PMSM. The load is about 1 + 0.75 sin൫50 ∗ (𝑡 − 10)൯ 

which was applied at t = 10s. It can be seen that the proposed controller was able to keep the 

peak-to-peak steady state error less than 3.5rad/s  while the smallest peak-to-peak steady state 

error resulting from using the PI speed controller is about 5.5rad/s. 

Both experiments show the effectiveness of the proposed control method in the presence 

of external disturbance. The robustness of the proposed control method against external 

disturbance is due to estimating the disturbance and cancelling it in the control law. On the other 

hand, the PI speed controller’s robustness depends on dominating the effect of disturbance and 

thus requiring very high controller gains which affects the transient response. This poses a 

compromise between transient response and robustness against external load which does not 

exist in the proposed controller. 

 
Figure  2.13. Speed of PMSM when the time-varying external load was applied. 

2.5 Conclusion 

A high performance control method has been introduced to regulate and shape the 

transient response of the speed of a PMSM to match that of a target system. We use an extended 
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high-gain observer, which is driven by the measured rotor position, to estimate both the speed of 

the motor and the disturbance. Then, these estimates are used in a feedback linearization law to 

shape and regulate the speed of the motor. The extended high-gain observer is designed based on 

a reduced model of the system. The model is reduced by creating fast current loops which allow 

us to utilize singular perturbation theory. 

Performance and robustness of the proposed control method are confirmed by 

demonstrating extensive simulation and experimental results that includes different operating 

conditions. The results also show that there is a very close agreement between simulation and 

experimental data which is a very important aspect from the design point of view. It allows 

development and testing of the controller in simulation before testing it in real life applications. 

Finally, we have compared the performance of the proposed control method to the PI 

speed controller. The experimental results showed that the proposed control method is superior 

to the PI speed controller in three different ways. First, the PI speed controller required much 

more tuning effort than the proposed control method. Second, the proposed controller performed 

much better tracking a speed reference signal than the PI speed controller. Third, the proposed 

controller showed more robustness to external load than the PI speed controller. 
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  CHAPTER 3

 In Chapter 2, we have introduced a new method to control the speed of surface mount 

PMSMs. In this Chapter, we will show the extension of this control method to solve the problem 

of sensorless control of PMSMs. The proposed sensorless control method is a back-emf based 

control scheme. Therefore, we will first revisit the model of the PMSM in the α-β coordinates 

and identify the back-emf signals. Then, we will design the back-emf observer in the same 

coordinates. Next, we transform the model of the PMSM to the d-q coordinates, which is 

performed using the estimated position, and close the loop around the currents with relatively 

fast PI controllers. After that, we reduce the model of the PMSM and design a third order Q-PLL 

extended high-gain observer as well as the speed feedback controller. Then, we perform a 

rigorous stability analysis of the closed loop system. Finally, we show simulation and 

experimental results to verify performance and robustness of the proposed controller. 

Speed Control without a Position Sensor 

The goal is to design an output feedback controller that can achieve the following 

objectives: 

1) Regulating the speed of the PMSM to a reference signal 𝜔௥௘௙ using only current 

sensors without a position sensor, in the presence of both bounded external load 

𝑇௅ and parameters uncertainty. 

2) The ability to shape the transient response of the speed; when the absolute 

values of the motor and command speeds are above a certain value, to match 

that of a target system. 
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Since the proposed sensorless control method is back-emf based, let us rewrite the mathematical 

model of the PMSM to identify the induced EMF signals 

 𝐿
𝑑𝑖ఈ

𝑑𝑡
= −𝑅𝑖ఈ + 𝑉ఈ + 𝑢ఈ (  3.1 ) 

 𝐿
𝑑𝑖ఉ

𝑑𝑡
= −𝑅𝑖ఉ + 𝑉ఉ + 𝑢ఉ (  3.2 ) 

 𝐽
𝑑𝜔

𝑑𝑡
= 𝑘௠൫−𝑖ఈ sin൫𝑛௣𝜃൯ + 𝑖ఉ cos൫𝑛௣𝜃൯൯ − 𝐵𝜔 − 𝑇௅ (  3.3 ) 

    
𝑑𝜃

𝑑𝑡
= 𝜔 (  3.4 ) 

where 𝑉ఈ and 𝑉ఉ are the two-phase equivalent induced EMF signals, which are defined by 

 𝑉ఈ = 𝑘௠𝜔 sin൫𝑛௣𝜃൯     (  3.5 ) 

 𝑉ఉ = −𝑘௠𝜔 cos൫𝑛௣𝜃൯ (  3.6 ) 

The back-emf signals 𝑉ఈ and 𝑉ఉ appear explicitly in the mathematical model of the PMSM in the 

α-β coordinates. These signals can be considered as disturbance inputs into the current equations 

(  3.1 ) and (  3.2 ). The electric subsystem of the PMSM is in a standard structure that is suitable 

for a class of disturbance observers; especially extended high-gain observers, which can be 

directly used without complex manipulation of the equations. Therefore, this model will be used 

for the estimation of the back-emf signals as a first step towards the estimation of the position 

and speed of the motor. 

3.1 Proposed Control Algorithm 

As indicated above, our proposed control scheme is an extension of the control method 

that was introduced in Chapter 2 to the position sensorless case and it is a back-emf based 

control strategy. Figure  3.1 shows the block diagram of the proposed control scheme. 
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Figure  3.1. Block diagram of the proposed sensorless control algorithm. 

The measured currents are used to drive the back-emf extended high-gain observer. The 

estimated back-emf signals 𝜎ොఈ and 𝜎ොఉ are fed to a third order Q-PLL (Quadrature Phase Lock 

Loop) that is designed based on a reduced d-q model of the PMSM and formulated to operate as 

an extended high-gain observer. The Q-PLL estimates the position and the speed of the rotor as 

well as the disturbance that is present in the speed equation. The estimated position is then used 

to transform the currents 𝑖ఈ and 𝑖ఉ from the stationary α-β coordinates to the rotating d-q 

coordinates for the field oriented control technique. We close the loop around the d-q currents 

with PI controllers that are designed to be relatively fast. As a result, the time separation between 

the electric subsystem and the mechanical subsystem of the PMSM is increased. Thus, we induce 

a two-time scale system which facilitates the reduction of the system using singular perturbation 

theory. Finally, the estimated speed and the estimated disturbance are used in a feedback 
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linearization law to generate a control reference signal for the torque producing current 𝑖௤. 

Hence, the output feedback controller that would achieve the objectives is accomplished. 

3.1.1 Back-emf Extended High-Gain Observer 

The electrical subsystem of the mathematical model of the PMSM in the α-β coordinates 

(  3.1 ) and (  3.2 ) is used to design the back-emf extended high-gain observer. Before we proceed 

to design the back-emf observer, we first need to rewrite the electrical subsystem in the nominal 

form since we have assumed that the true parameters are not exactly known. Let 𝑅෠ and 𝐿෠ be 

respectively the nominal values of 𝑅 and 𝐿, then the nominal model of the electric subsystem 

takes the following form: 

 
𝑑𝑖ఈ

𝑑𝑡
= −

𝑅෠

𝐿෠
𝑖ఈ +

1

𝐿෠
𝑢ఈ + 𝜎ఈ (  3.7 ) 

 
𝑑𝑖ఉ

𝑑𝑡
= −

𝑅෠

𝐿෠
𝑖ఉ +

1

𝐿෠
𝑢ఉ + 𝜎ఉ (  3.8 ) 

where 𝜎ఈ and 𝜎ఉ are the disturbances, which are defined by 

 𝜎ఈ =
1

𝐿
𝑉ఈ − ቆ

𝑅

𝐿
−

𝑅෠

𝐿෠
ቇ 𝑖ఈ + ൬

1

𝐿
−

1

𝐿෠
൰ 𝑢ఈ (  3.9 ) 

 𝜎ఉ =
1

𝐿
𝑉ఉ − ቆ

𝑅

𝐿
−

𝑅෠

𝐿෠
ቇ 𝑖ఉ + ൬

1

𝐿
−

1

𝐿෠
൰ 𝑢ఉ (  3.10 ) 

The definition of the disturbances 𝜎ఈ and 𝜎ఉ include the back-emf signals as well as perturbation 

terms. The perturbation terms are present because of our assumption that we only know the 

nominal model of the system. The perturbation terms can be viewed as state dependent noise and 

their sizes depend on how close the nominal values 𝑅෠ and 𝐿෠ to the true values 𝑅 and 𝐿. 
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Now, the back-emf extended high–gain observer can be designed based on (  3.7 ) and 

(  3.8 ) as 

 
𝑑𝚤̂ఈ
𝑑𝑡

= −
𝑅෠

𝐿෠
𝚤̂ఈ +

1

𝐿෠
𝑢ఈ + 𝜎ොఈ +

ℎଵ

𝜇
(𝑖ఈ − 𝚤̂ఈ) (  3.11 ) 

 𝜎ො̇ఈ =
ℎଶ

𝜇ଶ
(𝑖ఈ − 𝚤̂ఈ) (  3.12 ) 

 
𝑑𝚤ఉ̂

𝑑𝑡
= −

𝑅෠

𝐿෠
𝚤ఉ̂ +

1

𝐿෠
𝑢ఉ + 𝜎ොఉ +

ℎଵ

𝜇
൫𝑖ఉ − 𝚤ఉ̂൯ (  3.13 ) 

 𝜎ො̇ఉ =
ℎଶ

𝜇ଶ
൫𝑖ఉ − 𝚤ఉ̂൯ (  3.14 ) 

where 𝚤̂ఈ and 𝚤ఉ̂ are respectively the estimates of 𝑖ఈ and 𝑖ఉ, and 𝜎ොఈ and 𝜎ොఉ are respectively the 

estimates of the disturbances 𝜎ఈ and 𝜎ఉ.The constants ℎଵ > 0 and ℎଶ > 0, and 𝜇 is a positive 

small parameter which satisfies the inequality 0 < 𝜇 ≪ 1. 

3.1.2 Current Loops 

Field oriented control requires that the mathematical model of the PMSM (  1.1 )-(  1.4 ) to 

be transformed from the stationary α-β coordinates to the rotating d-q coordinates. This 

transformation is achieved using the following Park transformation 

൤
𝑖ௗ

𝑖௤
൨ = 𝑇൫𝜃෠൯ ൤

𝑖ఈ

𝑖ఉ
൨, and ቂ

𝑢ௗ

𝑢௤
ቃ = 𝑇൫𝜃෠൯ ቂ

𝑢ఈ

𝑢ఉ
ቃ 

where 𝜃෠ is the estimated position, 𝑖ௗ and  𝑖௤ are respectively the estimates of the direct-axis and 

quadrature-axis currents, 𝑢ௗ and 𝑢௤ are respectively the direct-axis and the quadrature-axis input 

voltages, and 
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𝑇൫𝜃෠൯ = ቈ
cos൫𝑛௣𝜃෠൯ sin൫𝑛௣𝜃෠൯

− sin൫𝑛௣𝜃෠൯ cos൫𝑛௣𝜃෠൯
቉ 

is the Park transformation operator. This transformation is normally done using the position 𝜃 of 

the rotor as in Chapter 2. However, 𝜃 here is not available for measurement and we perform the 

transformation using the estimated position 𝜃෠. Therefore, the mathematical model of the PMSM 

in the estimated d-q coordinates, which is derived in Appendix B1, is given by 

 
𝑑𝑖ௗ

𝑑𝑡
= −

𝑅

𝐿
𝑖ௗ +

𝑘௠

𝐿
𝜔 sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ + 𝑛௣

𝑑𝜃෠

𝑑𝑡
𝑖௤ +

1

𝐿
𝑢ௗ (  3.15 ) 

 
𝑑𝑖௤

𝑑𝑡
= −

𝑅

𝐿
𝑖௤ −

𝑘௠

𝐿
𝜔 cos൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝑛௣

𝑑𝜃෠

𝑑𝑡
𝑖ௗ +

1

𝐿
𝑢௤ (  3.16 ) 

 
𝑑𝜔

𝑑𝑡
=

𝑘௠

𝐽
൫−𝑖ௗ sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ + 𝑖௤ cos൫𝑛௣ൣ𝜃 − 𝜃෠൧൯൯ −

𝐵

𝐽
𝜔 −

1

𝐽
𝑇௅ (  3.17 ) 

 
𝑑𝜃

𝑑𝑡
= 𝜔 (  3.18 ) 

Now, we close the loops around the electric subsystem (  3.15 ) and (  3.16 ) with relatively fast PI 

controllers. Define the current tracking errors as 

 𝑒ௗ = 𝑖ௗೝ೐೑
− 𝑖ௗ (  3.19 ) 

 𝑒௤ = 𝑖௤ೝ೐೑
− 𝑖௤ (  3.20 ) 

where 𝑒ௗ and 𝑒௤ are the direct and quadrature errors, 𝑖ௗೝ೐೑
 and 𝑖௤ೝ೐೑

 are the direct and quadrature 

current reference signals. We set 𝑖ௗೝ೐೑
= 0 since 𝑖ௗ does not produce torque. The control inputs 

𝑢ௗ and 𝑢௤ are taken as 
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𝑢ௗ = 𝑘௣𝑒ௗ + 𝑥ௗ 

𝑢௤ = 𝑘௣𝑒௤ + 𝑥௤ 
(  3.21 ) 

with 

 𝑥ௗ = 𝑘௜ න 𝑒ௗ(𝑡́)𝑑𝑡́
௧

଴

 (  3.22 ) 

 𝑥௤ = 𝑘௜ න 𝑒௤(𝑡́)𝑑𝑡́
௧

଴

 (  3.23 ) 

where 𝑡́ is a dummy integration variable, 𝑘௣ and 𝑘௜ are respectively the proportional and integral 

gains, and 𝑥ௗ and 𝑥௤ are the integrals of 𝑒ௗ and 𝑒௤, respectively. For convenience, 𝑘௣ and 𝑘௜ are 

taken to be the same for both the direct and quadrature current loops. Substituting 𝑢ௗ and 𝑢௤ into 

(  3.15 ) and (  3.16 ) and using (  3.19 ) and (  3.20 ) we obtain the following current tracking error 

dynamics: 

𝜏
𝑑𝑒ௗ

𝑑𝑡
= −𝑒ௗ +

1

𝑅 + 𝑘௣
ൣ−𝑘௠𝜔 sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝑥ௗ൧ − 𝜏𝑛௣

𝑑𝜃෠

𝑑𝑡
ቀ𝑖௤ೝ೐೑

− 𝑒௤ቁ (  3.24 ) 

𝜏
𝑑𝑒௤

𝑑𝑡
= −𝑒௤ +

1

𝑅 + 𝑘௣
ቂ𝑅𝑖௤ೝ೐೑

+ 𝑘௠𝜔 cos൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝑥௤ቃ 

                +𝜏 ቈ𝑛௣

𝑑𝜃෠

𝑑𝑡
ቀ𝑖ௗೝ೐೑

− 𝑒ௗቁ +
𝑑𝑖௤ೝ೐೑

𝑑𝑡
቉ 

(  3.25 ) 

where 𝜏 =
௅

ோା௞೛
 is the time constant of the current tracking errors; 𝜏 can be made small by 

increasing the proportional gain 𝑘௣ of the PI controllers. This will help increase the time 

separation between the electric and the mechanical subsystems of the PMSM. 
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3.1.3 Model Reduction 

As indicated above, by the smallness of 𝜏, the electric subsystem (  3.24 ) and (  3.25 ) is 

made faster than the mechanical subsystem. Therefore, 𝑒ௗ and 𝑒௤ will reach quasi-steady-state 

much faster than other state variables in the system. 

The quasi-steady-state values of 𝑒ௗ and 𝑒௤ are obtained by setting 𝜏 = 0 in (  3.24 ) and 

(  3.25 ), which yields 

 𝑒ௗതതത =
1

𝑅 + 𝑘௣
ൣ−𝑘௠𝜔 sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝑥ௗ൧               (  3.26 ) 

 𝑒௤തതത =
1

𝑅 + 𝑘௣
ቂ𝑅𝑖௤ೝ೐೑

+ 𝑘௠𝜔 cos൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝑥௤ቃ (  3.27 ) 

where 𝑒ௗതതത and 𝑒௤തതത are the quasi-steady-state of 𝑒ௗ and 𝑒௤, respectively. The model is reduced by 

substituting (  3.26 ) and (  3.27 ) into (  3.17 ) and into the differential form of (  3.22 ) and (  3.23 ), 

which yields 

 
𝑑𝑥ௗ

𝑑𝑡
=

𝑘௜

𝑅 + 𝑘௣
ൣ−𝑘௠𝜔 sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝑥ௗ൧ (  3.28 ) 

 
𝑑𝑥௤

𝑑𝑡
=

𝑘௜

𝑅 + 𝑘௣
ቂ𝑅𝑖௤ೝ೐೑

+ 𝑘௠𝜔 cos൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝑥௤ቃ (  3.29 ) 

 

𝑑𝜔

𝑑𝑡
= 𝛼ଵ ቂ𝑘௣𝑖௤ೝ೐೑

+ 𝑥௤ቃ cos൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝛼ଶ𝜔 

           −𝛼ଵ𝑥ௗ sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ −
1

𝐽
𝑇௅ 

(  3.30 ) 

where 𝛼ଵ =
௞೘

௃൫ோା௞೛൯
, and 𝛼ଶ =

௞೘
మ

௃൫ோା௞೛൯
+

஻

௃
. We view 𝑖௤ೝ೐೑

 as the control input for the speed 

equation (  3.30 ) and it will be used for the formulation of the feedback linearization law. 
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3.1.4 Q-PLL Extended High-Gain Observer 

Because we have assumed that only the nominal parameters of the PMSM are known and 

that the external load 𝑇௅ is unknown, we rewrite (  3.30 ) as 

 

𝑑𝜔

𝑑𝑡
= 𝛼ොଵ𝑘௣𝑖௤ೝ೐೑

+ 𝛼ොଵ𝑥௤ − 𝛼ොଶ𝜔 + 𝛼ଵൣ𝑐𝑜𝑠൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 1൧ ቂ𝑘௣𝑖௤ೝ೐೑
+ 𝑥௤ቃ 

−𝛼ଵ𝑥ௗ 𝑠𝑖𝑛൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ + 𝜎                                                               

(  3.31 ) 

where 𝛼ොଵ and 𝛼ොଶ are the nominal values of 𝛼ଵ and 𝛼ଶ, and 𝜎 is the disturbance that is defined by 

𝜎 = (𝛼ଵ − 𝛼ොଵ) ቂ𝑘௣𝑖௤ೝ೐೑
+ 𝑥௤ቃ − (𝛼ଶ − 𝛼ොଶ)𝜔 −

1

𝐽
𝑇௅ 

Equation (  3.31 ) with 𝜎 = 0 is identical to the equation that would have been obtained had 𝜃 

been known (i.e 𝜃 = 𝜃෠), there were no uncertainty in 𝛼ଵ and 𝛼ଶ, and there were no load 

disturbance 𝑇௅. 

Now, we design the Q-PLL extended high-gain observer based on (  3.18 ) and (  3.31 ) 

and driven by the estimated back-emf signals 𝜎ොఈ and 𝜎ොఉ. The observer is taken as 

 
𝑑𝜃෠

𝑑𝑡
= 𝜔ෝ +

𝜌ଵ

𝜀
𝑒 (  3.32 ) 

 
𝑑𝜔ෝ

𝑑𝑡
= 𝛼ොଵ𝑘௣𝑖௤ೝ೐೑

+ 𝛼ොଵ𝑥௤ − 𝛼ොଶ𝜔ෝ + 𝜎ො +
𝜌ଶ

𝜀ଶ
𝑒 (  3.33 ) 

 
𝑑𝜎ො

𝑑𝑡
=

𝜌ଷ

𝜀ଷ
𝑒 (  3.34 ) 

where 𝜔ෝ and 𝜎ො are respectively the estimates of 𝜔, and 𝜎, 𝜀 is a positive small parameter that is 

chosen such that 𝜏 ≪ 𝜀 ≪ 1, 𝜌ଵ, 𝜌ଶ, and 𝜌ଷ are positive constants, and 𝑒 is the driving error of 

the observer and it is constructed by 
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𝑒 =

⎩
⎪
⎨

⎪
⎧

𝐿෠

𝑛௣𝑘෠௠𝜔௥௘௙

ൣ𝜎ොఈ cos൫𝑛௣𝜃෠൯ + 𝜎ොఉ sin൫𝑛௣𝜃෠൯൧ 𝑓𝑜𝑟 ห𝜔௥௘௙ห > 𝜔௕

sign൫𝜔௥௘௙൯𝐿෠

𝑛௣𝑘෠௠𝛿
ൣ𝜎ොఈ cos൫𝑛௣𝜃෠൯ + 𝜎ොఉ sin൫𝑛௣𝜃෠൯൧ 𝑓𝑜𝑟 ห𝜔௥௘௙ห ≤ 𝜔௕

 

where 𝜔௕ is some positive constant that determines the speed at which the choice of 𝑒 is 

selected, 𝛿 is a positive number that is used to keep the gain of the observer under a certain limit, 

and 𝜔௥௘௙ is the speed reference signal. The purpose of dividing by 𝜔௥௘௙ is to normalize the 

driving error signal so the gain variation of the observer is minimized since the back-EMF 

signals are proportional to the speed of the rotor. 

In a very short time 𝑂(𝜇), within which 𝜎ොఈ and 𝜎ොఉ reach their quasi steady state and can 

be approximated by (  3.5 ) and (  3.6 ), respectively, when parameter uncertainty is neglected, 𝑒 

simplifies to 

𝑒 =

⎩
⎪
⎨

⎪
⎧

𝐿

𝑛௣𝑘௠𝜔௥௘௙
൤
𝑘௠

𝐿
𝜔 sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯൨ 𝑓𝑜𝑟 ห𝜔௥௘௙ห > 𝜔௕

sign൫𝜔௥௘௙൯𝐿

𝑛௣𝑘௠𝛿
൤
𝑘௠

𝐿
𝜔 sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯൨ 𝑓𝑜𝑟 ห𝜔௥௘௙ห ≤ 𝜔௕

 

Since the proposed controller is meant for controlling the speed of the motor in both positive and 

negative directions, the sign of the true rotor speed must be known for the stability of the Q-PLL. 

For this reason we multiply by sign൫𝜔௥௘௙൯. 

The analysis of the closed loop system; which will be presented in section  3.2, shows that 

the simplified boundary layer of the Q-PLL extended high-gain observer can be represented as a 

negative feedback connection of the transfer function 
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Γ(𝜀𝑠) =

𝑘𝑚

𝑘ො𝑚

𝜔
𝜔௥௘௙

(𝜌ଵ(𝜀𝑠)ଶ + 𝜌ଶ(𝜀𝑠) + 𝜌ଷ)

(𝜀𝑠)ଷ +
𝑘𝑚

𝑘ො𝑚

𝜔
𝜔௥௘௙

𝛽(𝜌ଵ(𝜀𝑠)ଶ + 𝜌ଶ(𝜀𝑠) + 𝜌ଷ)
 

and the nonlinearity 

𝑆 = ቈ
𝑠𝑖𝑛൫𝑛௣ൣ𝜃 − 𝜃෠൧൯

𝑛௣ൣ𝜃 − 𝜃෠൧
− 𝛽቉ 

We use the circle criterion  [34] to show exponential stability of this boundary layer. As a result, 

the transfer function Γ(𝜀𝑠) is required to be SPR (Strictly Positive Real) and the nonlinearity 

𝑆 > 0 which are achieved by choosing positive constants 𝜌ଵ, 𝜌ଶ, and 𝜌ଷ to satisfy the following 

inequalities 

 

𝜌ଶ < 𝑎𝜌ଵ
ଶ 

𝜌ଷ ≤
𝜌ଶ

ଶ

2𝜌ଵ
 

𝑠𝑖𝑛൫𝑛௣ൣ𝜃 − 𝜃෠൧൯

𝑛௣ൣ𝜃 − 𝜃෠൧
> 𝛽 

(  3.35 ) 

where 𝑎 > 0 is a known lower bound of 𝛽
௞೘

௞෠ ೘

ఠ

ఠೝ೐೑
 with 𝛽 > 0. The inequalities (  3.35 ) are 

derived in Appendix B3. 

3.1.5 Feedback Linearization under State Feedback 

In this section we show the state feedback speed controller that stabilizes the slow 

subsystem (  3.28 )-(  3.30 ) and shapes the transient response. This state feedback assumes perfect 

knowledge of 𝜃, 𝜔 and 𝜎. Define the speed tracking error as 
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 𝑒ఠ = 𝜔௥௘௙ − 𝜔 (  3.36 ) 

The speed tracking error dynamics is found by taking the time derivative of (  3.36 ) and using 

(  3.31 ) which yields 

 
𝑑𝑒ఠ

𝑑𝑡
=

𝑑𝜔௥௘௙

𝑑𝑡
+ 𝛼ොଶ𝜔௥௘௙ − 𝛼ොଵ𝑘௣𝑖௤ೝ೐೑

− 𝛼ොଵ𝑥௤ − 𝛼ොଶ𝑒ఠ − 𝜎 (  3.37 ) 

We desire the transient response of the speed tracking error to match that of the following target 

system 

 
𝑑𝑒ఠ

⋆

𝑑𝑡
= −𝑘ఠ𝑒ఠ

⋆ (  3.38 ) 

where 𝑘ఠ > 0. The state feedback speed control law that achieves the objectives is given by 

𝑖௤ೝ೐೑
=

1

𝛼ොଵ𝑘௣
൤
𝑑𝜔௥௘௙

𝑑𝑡
+ 𝛼ොଶ𝜔௥௘௙ + (𝑘ఠ − 𝛼ොଶ)𝑒ఠ − 𝛼ොଵ𝑥௤ − 𝜎൨ 

 ≜ 𝜓 ቆ𝑒ఠ , 𝑥௤ , 𝜎, 𝜔௥௘௙,
𝑑𝜔௥௘௙

𝑑𝑡
ቇ (  3.39 ) 

With 𝜃 = 𝜃෠ the closed-loop system formed of (  3.28 ), (  3.29 ), (  3.37 ), and (  3.39 ) is given by 

 𝜉̇ = 𝐴ଵ𝜉 (  3.40 ) 

where 𝜉 = ൣ𝑥ௗ, 𝑥௤ − 𝑥̅௤ , 𝑒ఠ൧
்
, 𝑥̅௤ is the steady state value when 𝑒ఠ = 0 which satisfies the 

equation 

𝑑𝑥̅௤

𝑑𝑡
=

𝑘௜

൫𝑅 + 𝑘௣൯
ቈ𝑅𝜓 ቆ0, 𝑥̅௤ , 𝜎, 𝜔௥௘௙,

𝑑𝜔௥௘௙

𝑑𝑡
ቇ + 𝑘௠𝜔௥௘௙ − 𝑥̅௤቉ 

and 
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 𝐴ଵ =

⎣
⎢
⎢
⎢
⎢
⎡−

𝑘௜

𝑅 + 𝑘௣
0 0

0 −
𝑘௜

𝑘௣
−

𝑘௜

𝑘௠𝑘௣
ቆ𝑘௠

ଶ − 𝑅𝐽 ൬𝑘ఠ −
𝐵

𝐽
൰ቇ

0 0 −𝑘ఠ ⎦
⎥
⎥
⎥
⎥
⎤

 (  3.41 ) 

The matrix 𝐴ଵ is Hurwitz. 

3.1.6 Feedback Linearization under Output Feedback 

In this section, we derive the output feedback speed controller using the estimated speed 

and disturbance. The speed tracking error is obtained using (  3.31 ) and (  3.36 )  

 
𝑑𝑒ఠ

𝑑𝑡
=

𝑑𝜔௥௘௙

𝑑𝑡
+ 𝛼ොଶ𝜔௥௘௙ − 𝛼ොଵ𝑘௣𝑖௤ೝ೐೑

− 𝛼ොଵ𝑥௤ − 𝛼ොଶ𝑒ఠ − 𝜎 (  3.42 ) 

Since we desire the transient response of the speed tracking error to match (  3.38 ), the speed 

controller can be taken as 

𝑖௤ೝ೐೑
=

1

𝛼ොଵ𝑘௣
൤
𝑑𝜔௥௘௙

𝑑𝑡
+ 𝛼ොଶ𝜔௥௘௙ + (𝑘ఠ − 𝛼ොଶ)𝑒̂ఠ − 𝛼ොଵ𝑥௤ − 𝜎ො൨ 

 ≜ 𝜓 ቆ𝑒̂ఠ , 𝑥௤ , 𝜎ො, 𝜔௥௘௙,
𝑑𝜔௥௘௙

𝑑𝑡
ቇ (  3.43 ) 

where 𝑒̂ఠ = 𝜔௥௘௙ − 𝜔ෝ. 

The peaking phenomenon of the high-gain observer is suppressed by saturating the 

controller outside the compact set Ωଵ = {𝜉்𝑃ଵ𝜉 ≤ 𝑐ଵ} where 𝑃ଵ = 𝑃ଵ
் > 0 is the solution of the 

Lyapunov equation 𝑃ଵ𝐴ଵ + 𝐴ଵ
்𝑃ଵ = −𝑄ଵ for some 𝑄ଵ = 𝑄ଵ

் > 0, 𝑐ଵ > 0 is chosen such that 𝜉(0) 

is in the interior of Ωଵ and 
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 𝑚𝑎𝑥
కఢఆభ

ቤ𝜓 ቆ𝑒ఠ, 𝑥௤ , 𝜎, 𝜔௥௘௙ ,
𝑑𝜔௥௘௙

𝑑𝑡
ቇቤ < 𝑖௤೘ೌೣ

 (  3.44 ) 

where 𝑖௤೘ೌೣ
 is the limit of ห𝑖௤ห. The above inequality is possible if 

ቤ𝜓 ቆ0, 𝑥̅௤ , 𝜎, 𝜔௥௘௙,
𝑑𝜔௥௘௙

𝑑𝑡
ቇቤ < 𝑖௤೘ೌೣ

 

which restricts 𝜔௥௘௙, and 𝑇௅. The control law is then given by 

 𝑖௤ೝ೐೑
= 𝑀𝑠𝑎𝑡 ൮

𝜓 ൬𝑒̂ఠ , 𝑥௤ , 𝜎ො, 𝜔௥௘௙ ,
𝑑𝜔௥௘௙

𝑑𝑡
൰

𝑀
൲ (  3.45 ) 

where 𝑀 = 𝑖௤೘ೌೣ
. 

3.2 Closed Loop Analysis 

Analyzing the stability of the closed loop system of the proposed sensorless control is not 

an easy task because it is highly nonlinear and there are twelve states. However, since the system 

was designed to be a multi-time scale one, we will use the singular perturbation theory to study 

the stability of the closed loop system. To simplify the closed loop analysis, we will assume 

exact knowledge of the inductance 𝐿 and the resistance 𝑅. However, the effects of all parameter 

uncertainty will be investigated in the simulations and experiments part of this chapter. 

Theorem 3.1: Consider the closed loop system formed of the PMSM model (  3.1 )-(  3.4 ), the 

back-EMF extended high-gain observer (  3.11 )-(  3.14 ), the PI current controllers (  3.21 ), the 

Q-PLL extended high-gain observer (  3.32 )-(  3.34 ), and the speed controller(  3.45 ). Assume 

that 
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1) 𝜔௥௘௙, 
ௗఠೝ೐೑

ௗ௧
, and 

ௗమఠೝ೐೑

ௗ௧మ
 are bounded 

2) 𝑇௅ and 
ௗ்ಽ

ௗ௧
 are bounded 

3) ௞೘

௞෠ ೘

𝜔

𝜔𝑟𝑒𝑓
> 𝑎 > 0 

4) 
ଵ

ଶ
𝜁𝜆௠௜௡(𝑃ଶ) −

ఘయ௞೘ఒ೘ೌೣ(௉మ)ఠ

௞෠ ೘ఠ⋆
ቚ

௞೘

௞෠ ೘

௃መ

௃
− 1ቚ > 0 

5) 
௦௜௡൫௡೛ൣఏିఏ෡൧൯

௡೛ൣఏିఏ෡൧
> 𝛽 

6) 𝜉(0) is in the interior of 𝛺ଵ and the initial states 𝑖ఈ(0), 𝑖ఉ(0), 𝚤̂ఈ(0), 𝚤ఉ̂(0), 𝜎ොఈ(0), 

𝜎ොఉ(0), 𝜔ෝ(0), and 𝜎ො(0) are bounded 

Then, there exist positive constants 𝜆ଵ, 𝜆ଶ and 𝜆ଷ such that for 𝜀 < 𝜆ଵ, 
ఛ

ఌ
< 𝜆ଶ, and 

ఓ

ఌ
< 𝜆ଷ, the 

trajectories of the closed loop system are bounded for all  𝑡 ≥ 0, and 

 |𝑒ఠ
⋆(𝑡) − 𝑒ఠ(𝑡)| → 0 as 𝜀 → 0, 

ఛ

ఌ
→ 0, and 

ఓ

ఌ
→ 0 for all 𝑡 ≥ 0 (  3.46 ) 

Proof: The closed-loop system is represented as a three-time-scale singularly perturbed system. 

The state variables are taken as 

𝜉ଵ = 𝑥ௗ  ,   𝜉ଶ = 𝑥௤ − 𝑥̅௤  ,   𝜉ଷ = 𝑒ఠ ,   𝜂ଵ =
1

𝜀ଶ
൫𝜃 − 𝜃෠൯ −

1

𝜀ଶ𝑛௣
𝑠𝑖𝑛ିଵ ൬𝜇𝑛௣

ℎଵ

ℎଶ
𝜔൰ , 

𝜂ଶ =
1

𝜀
(𝜔 − 𝜔ෝ) , 

𝜂ଷ = (𝛼ଵ − 𝛼ොଵ) ቈ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ + 𝑥௤቉ − (𝛼ଶ − 𝛼ොଶ)𝜔 −

1

𝐽
𝑇௅ − 𝜎ො, 
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𝑧ఈ = −𝑖ఈ +
𝑘௠

𝑅 + 𝑘௣
𝜔 𝑠𝑖𝑛൫𝑛௣𝜃൯ +

1

𝑅 + 𝑘௣
ൣ𝑥ௗ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ − 𝑥௤ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯൧ 

          −
𝑘௣

𝑅 + 𝑘௣
𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯, 

𝑧ఉ = −𝑖ఉ −
𝑘௠

𝑅 + 𝑘௣
𝜔 𝑐𝑜𝑠൫𝑛௣𝜃൯ +

1

𝑅 + 𝑘௣
ൣ𝑥ௗ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑥௤ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯൧ 

           +
𝑘௣

𝑅 + 𝑘௣
𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯, 

𝑣ఈଵ =
1

𝜇

𝐿

𝜀ଶ𝑘௠

(𝑖ఈ − 𝚤̂ఈ),   𝑣ఈଶ =
𝐿

𝜀ଶ𝑘௠
൬

𝑘௠

𝐿
𝜔 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝜎ොఈ൰, 

𝑣ఉଵ =
1

𝜇

𝐿

𝜀ଶ𝑘௠
൫𝑖ఉ − 𝚤ఉ̂൯,   𝑣ఉଶ =

𝐿

𝜀ଶ𝑘௠
൬−

𝑘௠

𝐿
𝜔 𝑐𝑜𝑠൫𝑛௣𝜃൯ − 𝜎ොఉ൰, 

𝜉 = ൥

𝜉ଵ

𝜉ଶ

𝜉ଷ

൩ ,    𝜂 = ൥

𝜂ଵ

𝜂ଶ

𝜂ଷ

൩ ,    𝑧 = ቂ
𝑧ఈ

𝑧ఉ
ቃ ,    𝑣 = ൦

𝑣ఈଵ

𝑣ఈଶ

𝑣ఉଵ

𝑣ఉଶ

൪ 

where 𝜙ఌ is an odd function defined by 

𝜙ఌ(𝑦) =

⎩
⎪
⎨

⎪
⎧

𝑦                                            𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 1       

𝑦 +
𝑦 − 1

𝜀
−

𝑦ଶ − 1

2𝜀
         𝑓𝑜𝑟 1 ≤ 𝑦 ≤ 1 + 𝜀

1 +
𝜀

2
                                   𝑓𝑜𝑟 𝑦 ≥ 1 + 𝜀        

 

which is a continuously differentiable nondecreasing function with a locally Lipschitz derivative 

and bounded uniformly in 𝜀 on any bounded interval of 𝜀. Furthermore, the function 𝜙ఌ satisfies 

|𝑠𝑎𝑡(𝑦) − 𝜙ఌ(𝑦)| ≤
ఌ

ଶ
 and |𝜙ఌ

ᇱ(𝑦)| ≤ 1 ∀ 𝑦 𝜖 ℝ. 

For 𝜉𝜖Ωଵ, the closed-loop system is described by 

 𝜉̇ = 𝐴ଵ𝜉 + 𝑓ଵ(∙) + 𝜀𝑓ଶ(∙) (  3.47 ) 
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 𝜀𝜂̇ = 𝐴ଶ𝜂 + 𝐵ଵ𝑆ଵ + 𝐵ଶ𝑆ଶ + 𝑓ଷ(∙) +
𝜇

𝜀
𝑓ସ(∙) + 𝜀𝑓ହ(∙) + 𝜇𝑓଺(∙) (  3.48 ) 

 𝜏𝑧̇ = −𝑧 +  
𝜏

𝜀
𝑓଻(∙) + 𝜀𝑓 (∙) + 𝜏𝑓ଽ(∙) (  3.49 ) 

 𝜇𝑣̇ = 𝐴ଷ𝑣 +
𝑟ଶ𝑘௠

𝐽
𝐵ଷ𝑧 +

𝜇

𝜀
𝑓ଵ଴(∙) + 𝜀𝑓ଵଵ(∙) + 𝜇𝑓ଵଶ(∙) (  3.50 ) 

where 𝑟ଶ =
ఓ

ఌమ
, 𝐴ଵ is defined by (  3.41 ), 

𝐴ଶ =

⎣
⎢
⎢
⎢
⎢
⎡−𝛽

௞೘

௞෠ ೘

൫ఠೝ೐೑ିకయ൯

ఠೝ೐೑
𝜌ଵ 1 0

−𝛽
௞೘

௞෠ ೘

൫ఠೝ೐೑ିకయ൯

ఠೝ೐೑
𝜌ଶ 0 1

−𝛽
௞೘

௞෠ ೘

൫ఠೝ೐೑ିకయ൯

ఠೝ೐೑
𝜌ଷ 0 0

⎦
⎥
⎥
⎥
⎥
⎤

 ,   𝐴ଷ = ൦

−ℎଵ 1 0 0
−ℎଶ 0 0 0

0 0 −ℎଵ 1
0 0 −ℎଶ 0

൪ ,   𝐵ଵ =

⎣
⎢
⎢
⎢
⎢
⎡

௞೘

௞෠ ೘

൫ఠೝ೐೑ିకయ൯

ఠೝ೐೑
𝜌ଵ

௞೘

௞෠ ೘

൫ఠೝ೐೑ିకయ൯

ఠೝ೐೑
𝜌ଶ

௞೘

௞෠ ೘

൫ఠೝ೐೑ିకయ൯

ఠೝ೐೑
𝜌ଷ⎦

⎥
⎥
⎥
⎥
⎤

 ,  

𝐵ଶ = ൥
0
0
1

൩,   𝐵ଷ =

⎣
⎢
⎢
⎢
⎡

0 0

𝑠𝑖𝑛ଶ൫𝑛௣𝜃൯ −
ଵ

ଶ
𝑠𝑖𝑛൫2𝑛௣𝜃൯

0 0

−
ଵ

ଶ
𝑠𝑖𝑛൫2𝑛௣𝜃൯ 𝑐𝑜𝑠ଶ൫𝑛௣𝜃൯ ⎦

⎥
⎥
⎥
⎤

,   𝑆ଵ = − ൤
௦௜௡൫ఌమ௡೛ఎభ൯

ఌమ௡೛ఎభ
− 𝛽൨ 𝜂ଵ,  

𝑆ଶ = −
𝜌ଷ𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯

𝑘෠௠𝜔௥௘௙

൬
𝛼ଵ

𝛼ොଵ
− 1൰ 𝜙ఌ

ᇱ ቆ
𝜓(∙)̂

𝑀
ቇ

𝑠𝑖𝑛൫𝜀ଶ𝑛௣𝜂ଵ൯

𝜀ଶ𝑛௣
 

𝐴ଶ and 𝐴ଷ are Hurwitz matrices by design. The functions 𝑓ଵ(∙) to 𝑓ଵଶ(∙), which are given in 

Appendix B4, are bounded by 

‖𝑓ଵ(∙)‖ ≤ 𝑘௕‖𝑧‖ + 𝑘ௗ ,   ‖𝑓ଶ(∙)‖ ≤ 𝑘ௗ,   ‖𝑓ଷ(∙)‖ ≤ 𝑘௕‖𝑧‖ + 𝑘௔‖𝑣‖,   ‖𝑓ସ(∙)‖ ≤ 𝑘௕‖𝑧‖ + 𝑘ௗ, 

‖𝑓ହ(∙)‖ ≤ 𝑘௖‖𝜂‖ + 𝑘௕‖𝑧‖ + 𝑘௔‖𝑣‖ + 𝑘ௗ,   ‖𝑓଺(∙)‖ ≤
ఌ

ఓ
𝑘௖‖𝜂‖ +

ఌ

ఓ
𝑘ௗ, 

‖𝑓଻(∙)‖ ≤ 𝑘௖‖𝜂‖ + 𝑘௔‖𝑣‖ + 𝑘ௗ,   ‖𝑓 (∙)‖ ≤ 𝑘ௗ,   ‖𝑓ଽ(∙)‖ ≤ 𝑘ௗ + 𝑘௔‖𝑣‖ + 𝑘௖‖𝜂‖ + 𝑘௕‖𝑧‖, 

‖𝑓ଵ଴(∙)‖ ≤ 𝑘௖‖𝜂‖ + 𝑘௔‖𝑣‖ + 𝑘ௗ,   ‖𝑓ଵଵ(∙)‖ ≤ 𝜀𝑘௖‖𝜂‖ +
ఓ

ఌ
𝑘ௗ, 

‖𝑓ଵଶ(∙)‖ ≤ 𝑘௔‖𝑣‖ + 𝑘௕‖𝑧‖ + 𝑘௖‖𝜂‖ + 𝑘ௗ. 
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Moreover, 𝑓ଵ vanishes at 𝜇 = 0, 𝜂 = 0, and 𝑧 = 0 and 𝑓ଷ vanishes at 𝑧 = 0 and 𝑣 = 0. 

For 𝜏 ≪ 𝜀 ≪ 1, the system (  3.47 )-(  3.50 ) is singularly perturbed with three-time-scales. 

In the fastest time-scale, the boundary layer model is 

 𝜏𝑧̇ = −𝑧  

 𝜇𝑣̇ = 𝐴ଷ𝑣 +
𝑟ଶ𝑘௠

𝐽
𝐵ସ𝑧  

which is exponentially stable by design and it was obtained by setting 𝜇 = 0, τ = 0, 𝜀 = 0, 

ఓ

க
= 0, and 

ఛ

ఌ
= 0 on the right-hand side of (  3.49 ) and (  3.50 ). The quasi-steady-state of this 

model is 𝑧 = 0 and 𝑣 = 0. In the next time-scale, the boundary layer model is 

 𝜀𝜂̇ = 𝐴ଶ𝜂 + 𝐵ଵ𝑆ଵ + 𝐵ଶ𝑆ଶ (  3.51 ) 

which was obtained by setting 𝜇 = 0, 𝜀 = 0, 
ఓ

க
= 0, 𝑣 = 0, and 𝑧 = 0 on the right-hand side of 

(  3.48 ). This boundary layer has equilibrium points at 𝜂ଵ =
௠గ

ఌమ௡೛
 and 𝜂ଶ = 𝜂ଷ = 0 where 𝑚 𝜖 ℤ. 

For odd values of 𝑚, it can be easily shown by linearization that the corresponding equilibrium 

points of the boundary layer (  3.51 ) are unstable. For even values of 𝑚, however, it is sufficient 

to study the equilibrium point that corresponds to 𝑚 = 0, because not only does shifting the 

equilibrium point by 
௠గ

ఌమ௡೛
 leads to the same boundary layer but also to the same closed loop 

system. This is due to the fact that 𝜂ଵ only appears as an argument of the sine and cosine 

functions throughout the closed loop system. 

With 𝑚 = 0 and the output equation 𝑦 = 𝐶𝜂 where 𝐶 = [1 0 0], the boundary layer 

system (  3.51 ) can be represented as a negative feedback connection of the transfer function 
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Γ(𝜀𝑠) =

𝑘𝑚

𝑘ො𝑚

𝜔
𝜔⋆ (𝜌ଵ(𝜀𝑠)ଶ + 𝜌ଶ(𝜀𝑠) + 𝜌ଷ)

(𝜀𝑠)ଷ +
𝑘𝑚

𝑘ො𝑚

𝜔
𝜔⋆ 𝛽(𝜌ଵ(𝜀𝑠)ଶ + 𝜌ଶ(𝜀𝑠) + 𝜌ଷ)

 

and the nonlinearity 𝑆ଵ. The nonlinearity 𝐵ଶ𝑆ଶ is considered as disturbance to the boundary layer 

of 𝜂̇-equation. The transfer function Γ(𝜀𝑠) is strictly positive real if and only if 𝜌ଵ, 𝜌ଶ, and 𝜌ଷ are 

chosen positive and the following inequalities are satisfied 

𝜌ଶ < 𝑎𝜌ଵ
ଶ 

𝜌ଷ ≤
𝜌ଶ

ଶ

2𝜌ଵ
 

where 𝑎 > 0 is a known lower bound of 𝛽
௞೘

௞෠ ೘

ఠ

ఠೝ೐೑
 with 𝛽 > 0. The nonlinear function 𝑆ଵ belongs 

to the sector [𝛽, ∞] provided the following sector condition holds 

 
௦௜௡൫ఌమ௡೛ఎభ൯

ఌమ௡೛ఎభ
> 𝛽 or equivalently rewritten as 

௦௜௡൫௡೛ൣఏିఏ෡൧൯

௡೛ൣఏିఏ෡൧
> 𝛽 (  3.52 ) 

We use the circle criterion  [34] to show that the origin of the boundary layer of (  3.51 ) is 

exponentially stable. We Use the Kalman-Yakubovic-Popov lemma  [34], Lemma 6.3] to obtain a 

quadratic Lyapunov function; that is, 

 𝑉ଶ(𝜂) =
1

2
𝜂்𝑃ଶ𝜂 (  3.53 ) 

where 𝑃ଶ is the positive definite symmetric solution of the Kalman-Yakubovic-Popov equations 

 𝑃ଶ𝐴ଶ + 𝐴ଶ
்𝑃ଶ = −𝑁்𝑁 − 𝜁𝑃ଶ  

 𝑃ଶ𝐵ଵ = 𝐶்  
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where 𝜁 > 0. It can be shown that the time derivative of (  3.53 ) along the boundary layer (  3.51 ) 

satisfies 

𝜀𝑉̇ଶ(𝜂) ≤ − ቈ
1

2
𝜁𝜆௠௜௡(𝑃ଶ) −

𝜌ଷ𝑘௠𝜆௠௔௫(𝑃ଶ)𝜔

𝑘෠௠𝜔⋆
ቤ
𝑘௠

𝑘෠௠

𝐽መ

𝐽
− 1ቤ቉ ‖𝜂‖ଶ 

which shows exponential stability of the boundary layer (  3.51 ) provided that 

1

2
𝜁𝜆௠௜௡(𝑃ଶ) −

𝜌ଷ𝑘௠𝜆௠௔௫(𝑃ଶ)𝜔

𝑘෠௠𝜔⋆
ቤ
𝑘௠

𝑘෠௠

𝐽መ

𝐽
− 1ቤ > 0 

Finally, the slow subsystem reduces to 𝜉̇ = 𝐴ଵ𝜉 which is exponentially stable and was obtained 

by setting 𝜂 = 0, 𝑧 = 0, 𝜇 = 0, and 𝜀 = 0 in (  3.47 ). 

Consider the set 

Ω = Ωଵ × {𝑊(𝜂, 𝑧, 𝑣) < ℓଶ𝑐ଶ} 

where ℓ = max ቀ𝜀,
ఛ

ఌ
ቁ and 𝑊(𝜂, 𝑧, 𝑣) = 𝜂்𝑃ଶ𝜂 +

ଵ

ଶ
𝑧்𝑧 + 𝑟ଵ𝑣்𝑃ଷ𝑣 in which 𝑃ଷ = 𝑃ଷ

் > 0 is the 

solution of the Lyapunov equation 𝑃ଷ𝐴ଷ + 𝐴ଷ
்𝑃ଷ = −𝑄ଷ for some 𝑄ଷ = 𝑄ଷ

் > 0. Similar to 

arguments used in the analysis of high-gain observers  [34], it can be shown that, by choosing 

𝑐ଶ > 0 large enough, the set Ω is positively invariant for sufficiently small 𝜀, 
த

க
, and 

ஜ

க
. This is 

accomplished by showing that 𝑉̇ଵ < 0 on the boundary of Ωଵ, and 𝑊̇ < 0 on the boundary 

𝑊 = ℓଶ𝑐ଶ. 

At the initial time, ൫𝜂(0), 𝑣(0), 𝑧(0)൯ could be outside the set {𝑊(𝜂, 𝑧, 𝑣) < ℓଶ𝑐ଶ} but 

would move rapidly toward the set and will reach it within an interval [0, 𝑇(ℓ)], where 

limℓ→଴ 𝑇ଵ(ℓ) = 0. Since the initial states 𝜉(0) are in the interior of Ωଵ, choosing ℓ small enough 
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ensures 𝜉 does not leave Ωଵ, and by the end of this interval (𝜉, 𝜂, 𝑧, 𝑣) would be in the positively 

invariant set Ω. 

Now, the limit  

|𝑒ఠ
⋆(𝑡) − 𝑒ఠ(𝑡)| → 0 as 𝜀 → 0, 

ఛ

ఌ
→ 0, and 

ఓ

ఌ
→ 0 for all 𝑡 ≥ 0 

follows from the continuous dependence of the solutions of differential equations on 

parameters  [34], Theorem 9.1] and exponential stability of the subsystems  

                   𝜉̇ = 𝐴ଵ𝜉, 𝜀𝜂̇ = 𝐴ଶ𝜂 + 𝐵ଵ𝑆ଵ + 𝐵ଶ𝑆ଶ, 𝜏𝑧̇ = −𝑧, and 𝜇𝑣̇ = 𝐴ଷ𝑣 +
௥మ௞೘

௃
𝐵ଷ𝑧.                ∎ 

3.3 Simulations and Experimental Results 

The proposed control method is tested in two ways to assess its performance and its 

feasibility in practical settings. Firstly, the closed loop system is tested in simulation using 

MATLAB Simulink. Secondly, the closed loop system is tested in an experiment for further 

validation of the control method. The experimental setup is exactly the same as what was 

described in Section  2.3.1. The position measurement is only used here for the purpose of 

comparison and is not used in any way or form in the feedback controller. Table  3.1 shows the 

nominal parameters of the used surface mount PMSM. 

For all simulations and experiments, the following controller parameters are used. 

However, we have to first determine a lower bound of 
௞೘

௞෠ ೘

ఠ

ఠೝ೐೑
 before we choose the controller 

parameters. According to  [3], 𝑘෠௠ can vary as much as 20%. Therefore, we set 
௞೘

௞෠ ೘
=

ହ

଺
. 

Additionally, we allow 𝜔 to vary around 𝜔௥௘௙ by 25% which sets 
ఠ

ఠೝ೐೑
=

ଷ

ସ
. We choose the 

parameters of the Q-PLL extended high-gain observer 𝜌ଵ =  3, 𝜌ଶ =  3, and 𝜌ଷ = 1, and they are  
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Parameter Value 
Rated Voltage 200 VACL-L 
Rated Current 5.1 A 
Rated Torque 3.18 N.m 
Rated Speed 3000RPM 
Inductance 𝑳 4.47 mH 
Per Phase Winding Resistance 𝑹 0.835 Ω 
Torque Constant 𝒌𝒎 0.41  𝑉 · 𝑠 
Number of Pole Pairs 𝒏𝒑 4 

Viscosity Coefficient 𝑩 0.0011 
ே·௠·௦

௥௔ௗ
 

Moment of Inertia  𝑱 0.0022 𝐾𝑔 · 𝑚ଶ 
Table  3.1. Nominal parameters of the used PMSM. 

chosen such that the linearized boundary layer of the Q-PLL extended high-gain observer with 

no parameters perturbation and 𝜔 = 𝜔௥௘௙ has negative real roots at −1. We also choose 

ห𝜃 − 𝜃෠ห ≤
గ

଼
. Now, 𝛽 is within the following inequality 

𝜌ଶ

𝑘௠

𝑘෠௠

𝜔
𝜔௥௘௙

𝜌ଵ
ଶ

< 𝛽 <
𝑠𝑖𝑛൫𝑛௣ൣ𝜃 − 𝜃෠൧൯

𝑛௣ൣ𝜃 − 𝜃෠൧
 

0.533 < 𝛽 < 0.637 

which was obtained using the inequalities (  3.35 ). The current transient response is needed to be 

relatively fast. Therefore, the proportional and integral gains of the PI current controllers are 

chosen as: 𝑘௣ = 25, and 𝑘௜ = 2500, respectively, which makes 𝜏 = 1.73 × 10ିସ. The 

parameters of the back-EMF observer are: ℎଵ = 2 and ℎଶ = 1, and they are chosen such that the 

matrix 𝐴ଷ has negative real eigenvalues at −1. In addition, with 𝜏 = 1.73 × 10ିସ, 𝜇 = 0.0001 

was found in the simulation and the experiment to provide relatively fast estimation of the back-

emf signals as well as providing low noise amplification. Once 𝜇 has been determined, 𝜀 =

0.0085 was found to have the best compromise between fast estimation of the Q-PLL variables 

and low noise amplification in both the simulation and experiment. Now, the ratios 
ఛ

ఌ
= 0.02 and 
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ఓ

ఌమ
= 1.38 are within the recommended values that are provided by Theorem 3.1. For fast speed 

error decay we choose 𝑘ఠ = 60. 

The speed profile that is used for both the simulations and the experiments is given by 

𝜔௥௘௙ =

⎩
⎪
⎨

⎪
⎧

1

2
𝑧ଵ𝑡ଶ                                𝑓𝑜𝑟   0 ≤ 𝑡 < 𝑡ଵ

𝑎௙𝑡 + 𝐶ଵ                           𝑓𝑜𝑟   𝑡ଵ ≤ 𝑡 < 𝑡ଶ

−
1

2
𝑧ଵ𝑡ଶ + 𝑧ଶ𝑡 + 𝐶ଶ     𝑓𝑜𝑟   𝑡ଶ ≤ 𝑡 < 𝑡ଷ

𝐶ଷ                                   𝑓𝑜𝑟   𝑡ଷ ≤ 𝑡         

 

where 𝑧ଵ = 310719, 𝑧ଶ = 21554, 𝑎௙ = 1554, 𝐶ଵ = −3.884, 𝐶ଶ = −647.6, 𝐶ଷ = 100, 

𝑡ଵ = 0.005, 𝑡ଶ = 0.0644, and 𝑡ଷ = 0.0694. The speed profile is designed to be relatively fast 

and the maximum required acceleration does not exceed the motor’s capability. Since this speed 

controller is not designed to operate in low speeds so the initial condition 𝜔௥௘௙(0) = 50
௥௔ௗ

௦
. The 

speed profile is designed to show that the proposed controller performs well with fast speed 

reference transitions. 

3.3.1 Simulations 

There are three simulation cases that will be shown and discussed. The first case of the 

simulations will be conducted using the nominal parameters of the motor and the speed reference 

profile 𝜔௥௘௙. This simulation is intended to show the response of the closed loop system using 

the controller parameters that we have come up with in the previous section. The second case 

will show the response of the closed loop system when the initial condition of the term 𝜃 − 𝜃෠ is 

set just under the edge of the sector. The third case will show the response of the closed loop 

system when an external load is applied. 
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3.3.1.1 First Simulation Case 

This simulation case will show the response of the closed loop system to the fast 

changing speed reference profile 𝜔௥௘௙. In this case the motor’s initial speed as well as the 

estimated speed are set to 50
௥௔ௗ

௦
. Then, 𝜔௥௘௙(𝑡) is applied at 𝑡 = 0.1. The nominal parameters in 

Table  3.1 are used. In addition, the motor in this case is not externally loaded. 

Figure  3.2(a) shows the speed reference profile 𝜔௥௘௙, the speed of the motor 𝜔, and the 

estimated speed of the motor 𝜔ෝ. It can be seen that, to a great extent, the speed trajectory of the 

motor under the proposed controller overlaps that of the speed profile 𝜔௥௘௙. This shows the high 

performance of the proposed control method to closely follow the reference speed. In addition, 

Figure  3.2(b) gives a closer look at how the speed trajectory of the motor under the proposed 

controller deviates from the speed reference. The maximum speed error is less than 0.7% and it 

occurs during transient. 

Figure  3.2(c) show the position estimation error. It can be seen that the maximum 

position estimation error is less than 2° during transient and less than 1.6° during steady state. 

This shows accurate position estimation which is needed for the use of field oriented control 

technique. 

3.3.1.2 Second Simulation Case 

This simulation case will show the response of the closed loop system when the initial 

position estimation error is large .In this case the motor’s initial speed, estimated speed, and 

reference speed are set to 100
௥௔ௗ

௦
. Also, the initial error between the position of the rotor and the 

estimated position is set to 𝜃(0) − 𝜃෠(0) =
ଽగ

଼଴
 which is just inside the border of the sector. The 
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nominal parameters in Table  3.1 are used. In addition, the motor in this case is not externally 

loaded. 

Figure  3.3(a) shows the speed reference profile 𝜔௥௘௙, the speed of the motor 𝜔, and the 

estimated speed of the motor 𝜔ෝ when 𝜃(0) − 𝜃෠(0) =
ଽగ

଼଴
. It can be seen that, initially, the speed 

trajectory of the motor as well as the speed estimation has deviated from each other and also 

deviated from the reference speed which is due to the initial position estimation error not being at 

its equilibrium point. However, the proposed controller was able to quickly close the gap 

between the motor’s speed and its estimate and also regulate the speed of the motor to the speed 

reference. Simultaneously, the proposed controller was also able to quickly bring the position 

estimation error down from 
ଽగ

଼଴
 to its equilibrium point which can be seen in Figure  3.3(c). 

3.3.1.3 Third Simulation Case 

This simulation case will show the response of the closed loop system when an external 

load is applied. In this case the motor’s initial speed, estimated speed, and reference speed are set 

to 100
௥௔ௗ

௦
. The nominal parameters in Table  3.1 are used. In addition, the motor in this cases is 

loaded with a step of external load of 2 𝑁. 𝑚 applied at 𝑡 = 0.3𝑠 and removed at 𝑡 = 0.7𝑠. This 

will test the robustness of the proposed control method against external loads. 

The speed trajectory of the motor under the proposed controller dropped about 12% 

when the external load was applied at t = 0.3s, which can be seen in Figures 3.2(a) and 3.2(b). 

Similar behavior can be observed at the moment when the external load is removed at 𝑡 = 0.7𝑠. 

The proposed controller was able to recover the speed quickly in both cases and that is due to 

estimating the disturbance and canceling it in the feedback. 
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Figure  3.2. (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure  3.3. (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure  3.4. (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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intended to show the response of the closed loop system to the fast changing speed reference 

profile 𝜔௥௘௙. The second experiment will show the response of the closed loop system when an 

external load is applied. The remaining experiments will be conducted to test the robustness of 

the proposed control method when the parameters of the motor are perturbed. 

3.3.2.1 First Experiment 

The first experiment will be conducted to test the proposed controller in practical settings. 

The speed of the motor in this case is brought to 50 
୰ୟୢ

ୱ
 using the position sensor. Then, the 

controller is switched to operate without the position sensor. This way the initial speed of the 

motor is 50 
୰ୟୢ

ୱ
. The speed profile 𝜔௥௘௙ is then applied at 𝑡 = 0.1. The nominal parameters in 

Table  3.1 are used. In addition, the motor in this case is not externally loaded. 

Figure  3.5 shows the results of this experiment. It can be seen in Figure  3.5(a) that an 

excellent transient response is achieved. In addition, the proposed controller was able to quickly 

regulate the speed after the transient period has passed. Figure  3.5(b) gives a closer look at how 

the speed trajectory of the motor under the proposed controller deviates from the speed 

reference. The maximum speed error is less than 5% and it occurs during transient. 

Figure  3.5(c) show the position estimation error. It can be seen that the maximum 

position estimation error is less than 4° during transient and less than 1.5° during steady state. 

This shows accurate position estimation which is needed for the use of field oriented control 

technique. 
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Figure  3.5. (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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𝜔௥௘௙, the speed of the motor 𝜔, and the estimated speed of the motor 𝜔ෝ when the load is applied 

and removed. It can be seen that the speed of the motor dropped about 12% once the motor is 

externally loaded at t = 0.2s. However, the proposed controller was able to overcome the 

external load and quickly recover the speed of the motor. Similar behavior can be observed when 

the load was removed at t = 0.8s. Figure 3.3(c) shows the position estimation error which shows 

a maximum deviation of about 4°. 

3.3.2.3 Third Experiment 

In this section we investigate the effects of perturbing the motor’s parameters on 

performance. We have conducted ten experiments each of which we perturbed a parameter at a 

time. The nominal motor parameters 𝐿, 𝐽, and 𝐵 are perturbed by ±25% while 𝑘௠ is perturbed 

by ±20%. The parameter 𝑅 is one time perturbed by setting it to zero and a second time 

perturbed by doubling its nominal value. The motor parameters are perturbed in the controller 

and not physical. Because of the number of the large number of figures associated with this 

section, we have moved the figures to Appendix B5. The motor in all of these cases is running at 

50 
୰ୟୢ

ୱ
 when the speed reference profile 𝜔௥௘௙ is applied at t = 0.1s. 

Overall, the resulting performance of the proposed control method is excellent given 

these extreme motor’s parameters perturbation. Looking at the figures in Appendix B5 one can 

see that some of the perturbed parameters have more effects on the performance than others. For 

example, decreasing 𝐽 by 25% caused about 10% speed error deviation during transient. 

Similarly, increasing 𝑘௠ by 20% resulted in a speed deviation error of about 7.5% during 

transient. On the other hand, perturbing 𝑅, 𝐵, and 𝐿 have an unnoticeable effect in comparison to 

the case where the nominal motor parameters were used. It is expected that perturbing 𝑅 would 
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not have a noticeable effect on perfornace because at moderate to high speed the term 𝑅𝑖ఈ and 

𝑅𝑖ఉ that appear in equations (  3.1 ) and (  3.2 ) respectively are negligible when compared to 

other terms in the equation. On the other hand, we expect a noticeable effect when 𝐽 and 𝑘௠ are 

perturbed because they appear as the coefficients of the speed control input 𝑖௤ೝ೐೑
 in the speed 

equation of the motor. Overall, given these extreme motor’s parameters perturbation, the 

resulting performance of the proposed control method is excellent. 

 
Figure  3.6. (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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3.4 Conclusion 

In this Chapter, a back-EMF based speed sensorless control of a PMSM has been 

presented. The back-EMF signals are estimated using two extended high gain observers that are 

designed in the α-β model of the PMSM. The back-EMF estimates are then fed to a Q-PLL that 

is designed based on a reduced model of the system and also made to operate as an extended 

high-gain observer. The Q-PLL estimates rotor position and speed, and also estimates the 

disturbance. The estimated rotor’s position is used for the field oriented control technique. On 

the other hand, the estimates of rotor speed and disturbance are used in a feedback linearization 

law to regulate speed of the motor. In the development of the proposed controller, we only 

assumed knowledge of the nominal parameters of the PMSM. Moreover, the external load is 

assumed to be time-varying and unknown but bounded. In addition, we have provided a 

nonlinear closed loop analysis of the output feedback controller. 

The control method was successfully tested in simulations and in experiments under 

multiple operating conditions. The results confirmed the high performance of the proposed 

output feedback controller despite the application of unknown external load and parameters 

uncertainty. 

There is, however, performance degradation in comparison to the sensor case that is 

presented in Chapter 2. The most noticeable performance degradation is that the proposed 

sensorless controller cannot reliably be used in low and zero speeds. This limitation is inherent to 

the back-EMF based sensorless control technique. Performance degradation can also be observed 

in other aspects. For example, one can compare between the robustness of the proposed sensor 

and sensorless cases against external load. Figure  2.12 shows that the speed dropped about 2.5% 

when the proposed sensor case was used and an external load of 2 N. m was applied. Figure  3.6, 



89 
 

on the other hand, shows that the speed dropped about 12% when the proposed sensorless case 

was used and the same external load was applied. In both cases the speed recovered to the 

reference speed but the proposed sensor case recovered faster. Note that 𝜀 = 0.001 was used in 

the sensor case while 𝜀 = 0.0085, which is much larger, was used in the sensorless case. When 

the position sensor is removed from the output feedback controller and replaced by the back-

EMF observer and the Q-PLL, 𝜀 cannot be reduced in practical settings as much as what was 

used in the sensor case to avoid noise amplification that would render the closed loop system 

unstable. In practice, noise is present in the current measurement which is directly used to drive 

the back-EMF observer and indirectly used in the Q-PLL. Therefore, in the sensorless case, we 

were only able to reduce 𝜀 to 0.0085 in the experiment and beyond which the system becomes 

unstable. On the other hand, in the sensor case, we were able to push 𝜀 to 0.001. This practical 

limitation of the sensorless case leads to degraded performance when compared to the sensor 

case. 

We would like to note that this proposed sensorless control method is our second attempt 

at solving the problem of sensorless control of PMSM. In our first attempt, we used a back-EMF 

based sensorless speed control technique which is the same technique that we used in the second 

attempt. The main difference between our first and second attempts is that in our first attempt we 

used algebraic expressions to estimate the back-EMF signals, while in our second attempt we 

used extended high-gain observers to estimate the back-EMF signals. The algebraic expressions; 

that were used for the estimation of the back-EMF signals, were obtained after reducing the α-β 

model of the PMSM using singular perturbation theory. The reduction of the α-β model was 

achieved by setting L = 0 and solving for the back-EMF signals which yielded the algebraic 

expressions. The consequence of this reduction is that for the equilibrium point of the closed 
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loop system to be exponentially stable 
୐

கమ
 must be sufficiently small which in some cases it might 

not be possible because L is a fixed parameter. Therefore, we have sought a second solution to 

the problem of sensorless speed control of PMSM such that it does have the limitation of 
୐

கమ
 

being sufficiently small. A detailed description, development, and simulation and experimental 

results of our first attempt can be found in  [35].  
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 CHAPTER 4

Future Work 

We have seen in the simulations and the experiments that the proposed sensorless 

controller was able to steer the motor’s speed to follow a fast changing reference speed. 

However, the proposed sensorless control method is designed to only operate in intermediate to 

high motor speeds and not for low speeds since the back-EMF signals become increasingly 

corrupted by noise as the motor’s speed approaches zero and eventually these signals vanish at 

zero speed. This is because the back-EMF signals are proportional to the speed of the rotor. In 

the experiment, we have attempted both operating the motor in very low speeds and reversing the 

speed of the motor but the system sometimes becomes unstable as the motor’s speed approaches 

zero. This result is not surprising for the back-EMF approach because it is unreliable for low and 

zero speeds. Therefore, in the future work, we will try combining a different sensorless control 

method with our proposed controller to deal with low and zero speeds. 

The signal injection method is a very reliable sensorless control approach that has been 

successfully implemented to control the motor in zero and low rotor speeds. The signal injection 

approach uses high frequency signals, ideally much higher than the fundamental frequency, that 

are injected in a predetermined fashion such that the saliency features of the rotor are excited 

then exploited revealing estimates of position and speed. This approach works very well in zero 

and low speeds, but, practically; it is limited by the speed of the inverter’s switches. This 

limitation puts a restriction on the frequency of the injected signal which imposes a rotor speed 

limit. In fact, there is a more restrictive factor on the frequency of the injected signal. As the 

switching frequency increases so does the heat of the inverter’s switches which might cause 
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damage to the switches. Therefore, the best solution to the problem of sensorless control of 

PMSM is to use both approaches, the signal injection method for zero and low motor speeds and 

the back-EMF method for intermediate to high motor speeds. 

It can be easily observed that combining two controllers in the same control scheme 

requires switching between the two controllers. The switching law should include a mechanism 

that prevents it from trapping itself switching back and forth between the two controllers. Such 

mechanism could be as simple as using two speed thresholds. When the speed of the motor is 

below the low threshold, the signal injection method is used to control the motor. On the other 

hand, when the speed of the motor is above the high threshold, the back-EMF method approach 

is used. For speeds that fall within the two thresholds, the current control method is kept 

unchanged. Hence, the two controllers must be designed such that both of them can reliably 

function in the speeds above and below the two thresholds. In addition, the transition from one 

controller to the other must be done in such a way that prevents unwanted observer behavior 

from occurring at and just after the moment of switching. Therefore, passing the current 

controller’s values of the estimated variables such as position and speed to the next controller 

should greatly smooth the transition. 

In addition, a very important piece to our future work is to evaluate our proposed 

sensorless speed controller against existing control method. Preferably, those control methods 

that are mostly used in the industry. It seems to us from some drives systems manufactures’ 

advertisements and catalogues that they primarily use a PI-based control scheme which is similar 

to the sensorless speed control method that is presented in  [16]. Therefore, in our future work we 

will compare our proposed sensorless speed controller with the sensorless speed control method 
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that is presented in  [16]. For a fair comparison, we will follow the same comparison steps as the 

comparison that we have done in chapter 2. 
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APPENDIX A 

 

Definition of Equations for Theorem 2.1 
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A.1 Definition of Functions 𝒇𝟏(∙) to 𝒇𝟒(∙), and 𝒈𝟏(∙) and 𝒈𝟐(∙) For the Closed-Loop 

Equations (  2.30 )-(  2.32 ) 

𝑓ଵ = 𝑀 ቈ𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ − 𝑠𝑎𝑡 ቆ

𝜓(∙)

𝑀
ቇ቉ 

𝑓ଶ =
𝑀

𝜀
ቈ𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ − 𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ቉ 

𝑓ଷ =
𝛼 − 𝛼ො

𝛼ො
Λ − ൭(𝛾 − 𝛾ො)

𝑘௠

𝐽
+ (𝜇 − 𝜇̂)൱ ቆ𝑧ଶ +

1

𝑅 + 𝑘௣
ቈ𝜉ଶ + 𝑥̅௤ + 𝑀𝑘௣𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ቇ 

         + ൭൤(𝛾 − 𝛾ො)
𝑘௠

𝐽
+ (𝜇 − 𝜇̂)൨

𝑘௠

𝑅 + 𝑘௣
+

𝐵

𝐽
(𝛾 − 𝛾ො)൱ ൫𝜔௥௘௙ − 𝜉ଷ൯ 

         +(𝜇 − 𝜇̂)𝑀𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ +

1

𝐽
(𝛾 − 𝛾ො)𝑇௅ −

1

𝐽

𝑑𝑇௅

𝑑𝑡
 

𝑓ସ = −
𝛼ො𝑀

𝜀
ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ − 𝛾ො𝜂ଶ 

𝑔ଵ = 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯ ቈ𝑧ଶ +
1

𝑅 + 𝑘௣
ቆ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ − 𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝜉ଶ + 𝑥̅௤ቇ቉ 

         +
𝑘௜

𝑅 + 𝑘௣
ቆ𝑧ଵ +

1

𝑅 + 𝑘௣
𝜉ଵቇ 

𝑔ଶ = −𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯ ቈ𝑧ଵ +
1

𝑅 + 𝑘௣
𝜉ଵ + 𝑖ௗೝ೐೑

቉ +
1

𝑅 + 𝑘௣
ቆ

𝑘௠
ଶ

𝐽
+ 𝑘௜ቇ 𝑧ଶ 

          −
𝑘௠

𝑅 + 𝑘௣
ቆ

𝑘௜

𝑅 + 𝑘௣
+ 𝛾ቇ ൫𝜔௥௘௙ − 𝜉ଷ൯ +

1

൫𝑅 + 𝑘௣൯
ଶ ቆ

𝑘௠
ଶ

𝐽
+ 𝑘௜ቇ ൫𝜉ଶ + 𝑥̅௤൯ 

          +
𝑘௣𝑀

൫𝑅 + 𝑘௣൯
ଶ ቆ

𝑘௠
ଶ

𝐽
+ 𝑘௜ቇ 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ −

𝑘௜𝑀

𝑅 + 𝑘௣
𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ −

𝑘௠

𝐽൫𝑅 + 𝑘௣൯
𝑇௅ 

         −
𝑘௣

𝛼ො൫𝑅 + 𝑘௣൯
Λ 

Where 𝜓(∙)̂ = 𝜓 ቀ𝑒̂ఠ, 𝑥௤ , 𝜎ො, 𝜔௥௘௙ ,
ௗఠೝ೐೑

ௗ௧
ቁ, 𝜓(∙) =  𝜓 ቀ𝑒ఠ , 𝑥௤ , 𝜎, 𝜔௥௘௙,

ௗఠೝ೐೑

ௗ௧
ቁ, and 

Λ = 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ቈ

𝑑ଶ𝜔௥௘௙

𝑑𝑡ଶ
+ 𝑘ఠ

𝑑𝜔௥௘௙

𝑑𝑡
+ 𝜇̂𝑧ଶ − 𝜇̂𝑀𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ 
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       + ൭
𝜇̂

𝑅 + 𝑘௣
− 𝜇(𝑘ఠ − 𝛾ො)൱ ൫𝜉ଶ + 𝑥̅௤൯ + ൭(𝑘ఠ − 𝛾ො)𝛾 −

𝜇̂𝑘௠

𝑅 + 𝑘௣
൱ ൫𝜔௥௘௙ − 𝜉ଷ൯ 

       −(𝑘ఠ − 𝛾ො) ൬𝜌ଶ𝜂ଵ + 𝛾ො𝜀𝜂ଶ − 𝜂ଷ −
1

𝐽
𝑇௅൰ − (𝑘ఠ − 𝛾ො)𝛼ො𝑀 ൭𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ൱ 

       + ቆ
𝜇̂𝑘௣

𝑅 + 𝑘௣
− (𝑘ఠ − 𝛾ො)𝛼ቇ 𝑀 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉. 
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APPENDIX B 

 

Derivation and Definition of Equations for Theorem 3.1 
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B1. Derivation of PMSM dq Model Using 𝑻൫𝜽෡൯ 

The transformation from the αβ-coordinates to the dq-coordinates is given by 

 ൤
𝑖ௗ

𝑖௤
൨ = 𝑇൫𝜃෠൯ ൤

𝑖ఈ

𝑖ఉ
൨ (B1.1) 

 ቂ
𝑢ௗ

𝑢௤
ቃ = 𝑇൫𝜃෠൯ ቂ

𝑢ఈ

𝑢ఉ
ቃ (B1.2) 

where 𝑇൫𝜃෠൯ = ቈ
cos൫𝑛௣𝜃෠൯ sin൫𝑛௣𝜃෠൯

− sin൫𝑛௣𝜃෠൯ cos൫𝑛௣𝜃෠൯
቉. First, we take the time derivative of 𝑖ௗ and 𝑖௤ to obtain 

 
𝑑𝑖ௗ

𝑑𝑡
=

𝑑𝑖ఈ

𝑑𝑡
cos൫𝑛௣𝜃෠൯ +

𝑑𝑖ఉ

𝑑𝑡
sin൫𝑛௣𝜃෠൯ + 𝑛௣𝜃෠̇ൣ−𝑖ఈ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑖ఉ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯൧ (B1.3) 

 
𝑑𝑖௤

𝑑𝑡
= −

𝑑𝑖ఈ

𝑑𝑡
sin൫𝑛௣𝜃෠൯ +

𝑑𝑖ఉ

𝑑𝑡
cos൫𝑛௣𝜃෠൯ − 𝑛௣𝜃෠̇ൣ𝑖ఈ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ + 𝑖ఉ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯൧ (B1.4) 

Substitute (  1.1 ) and (  1.2 ) for 
ௗ௜ഀ

ௗ௧
 and 

ௗ௜ഁ

ௗ௧
; respectively, in equations (B1.3) and (B1.4) to obtain 

 

𝑑𝑖ௗ

𝑑𝑡
= −

𝑅

𝐿
ൣ𝑖ఈ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ + 𝑖ఉ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯൧ +

𝑘௠

𝐿
𝜔ൣ𝑠𝑖𝑛൫𝑛௣𝜃൯ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ − 𝑐𝑜𝑠൫𝑛௣𝜃൯ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯൧ 

+𝑛௣𝜃෠̇ൣ−𝑖ఈ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑖ఉ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯൧ +
1

𝐿
ൣ𝑢ఈ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ + 𝑢ఉ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯൧ 

(B1.5) 

 

𝑑𝑖௤

𝑑𝑡
= −

𝑅

𝐿
ൣ−𝑖ఈ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑖ఉ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯൧ −

𝑘௠

𝐿
𝜔ൣ𝑠𝑖𝑛൫𝑛௣𝜃൯ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑐𝑜𝑠൫𝑛௣𝜃൯ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯൧ 

−𝑛௣𝜃෠̇ൣ𝑖ఈ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ + 𝑖ఉ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯൧ +
1

𝐿
ൣ−𝑢ఈ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑢ఉ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯൧ 

(B1.6) 

Now, using the definitions 

𝑖ௗ = 𝑖ఈ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ + 𝑖ఉ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯, 𝑖௤ = −𝑖ఈ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑖ఉ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ , 

𝑢ௗ = 𝑢ఈ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ + 𝑢ఉ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯, 𝑢௤ = −𝑢ఈ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑢ఉ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯, and the trigonometric 

sum-difference identities  

 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) − 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) = 𝑠𝑖𝑛(𝑥 − 𝑦) (B1.7) 
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 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) + 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) = 𝑐𝑜𝑠(𝑥 − 𝑦) (B1.8) 

equations (B1.5) and (B1.6) simplify to 

𝑑𝑖ௗ

𝑑𝑡
= −

𝑅

𝐿
𝑖ௗ +

𝑘௠

𝐿
𝜔 𝑠𝑖𝑛൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ + 𝑛௣𝜃෠̇𝑖௤ +

1

𝐿
𝑢ௗ 

𝑑𝑖௤

𝑑𝑡
= −

𝑅

𝐿
𝑖௤ −

𝑘௠

𝐿
𝜔 𝑐𝑜𝑠൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ − 𝑛௣𝜃෠̇𝑖ௗ +

1

𝐿
𝑢௤ 

The speed equation in the αβ-coordinates is given by  

 𝑑𝜔

𝑑𝑡
=

𝑘௠

𝐽
൫−𝑖ఈ sin൫𝑛௣𝜃൯ + 𝑖ఉ cos൫𝑛௣𝜃൯൯ −

𝐵

𝐽
𝜔 −

1

𝐽
𝑇௅ (B1.9) 

We can transform (B1.9) into the dq-coordinates by substituting 

𝑖ఈ = 𝑖ௗ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ − 𝑖௤ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ 

𝑖ఉ = 𝑖ௗ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑖௤ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯; 

which were obtained by solving (B1.1) for 𝑖ఈ and 𝑖ఉ, into (B1.9) to obtain 

 𝑑𝜔

𝑑𝑡
= −

𝑘௠

𝐽
ൣ𝑠𝑖𝑛൫𝑛௣𝜃൯ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯ − 𝑐𝑜𝑠൫𝑛௣𝜃൯ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯൧𝑖ௗ 

            +
𝑘௠

𝐽
ൣ𝑠𝑖𝑛൫𝑛௣𝜃൯ 𝑠𝑖𝑛൫𝑛௣𝜃෠൯ + 𝑐𝑜𝑠൫𝑛௣𝜃൯ 𝑐𝑜𝑠൫𝑛௣𝜃෠൯൧𝑖௤ −

𝐵

𝐽
𝜔 −

1

𝐽
𝑇௅ 

(B1.10) 

Now, equation (B1.10) can be simplified using the trigonometric sum-difference identities (B1.7) 

and (B1.8), which yields 

ௗఠ

ௗ௧
=

௞೘

௃
൫−𝑖ௗ sin൫𝑛௣ൣ𝜃 − 𝜃෠൧൯ + 𝑖௤ cos൫𝑛௣ൣ𝜃 − 𝜃෠൧൯൯ −

஻

௃
𝜔 −

ଵ

௃
𝑇௅. 

B2. Derivation of the Equilibrium Point 

The closed loop system is given by 

       𝑥̇ௗ = −𝑘௜𝑖ௗ 
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       𝑥̇௤ = 𝑘௜ ቆ
1

𝑘௣𝛼ଵ
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝛼ଵ𝑥௤ − 𝜎ො൧ − 𝑖௤ቇ 

       𝜔̇ =
𝑘௠

𝐽
൫−𝑖ௗ sin൫𝑛௣𝜃෨൯ + 𝑖௤ cos൫𝑛௣𝜃෨൯൯ −

𝐵

𝐽
𝜔 −

1

𝐽
𝑇௅ 

       𝜃෨̇ = 𝜔 − 𝜔ෝ −
𝜌ଵ𝐿

𝜀𝑛௣𝑘෠௠𝜔⋆
𝜎ොௗ 

       𝜔ෝ̇ = 𝑘ఠ𝜔௥௘௙ − 𝑘ఠ𝜔ෝ +
𝜌ଶ𝐿

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
𝜎ොௗ 

       𝜎ො̇ =
𝜌ଷ𝐿

𝜀ଷ𝑛௣𝑘෠௠𝜔⋆
𝜎ොௗ 

𝜏
𝑑𝑖ௗ

𝑑𝑡
= −𝑖ௗ +

𝑘௠

𝑅 + 𝑘௣
𝜔 𝑠𝑖𝑛൫𝑛௣𝜃෨൯ +

1

𝑅 + 𝑘௣
𝑥ௗ + 𝜏𝑛௣𝜔ෝ𝑖௤ +

𝜏𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ𝑖௤ 

𝜏
𝑑𝑖௤

𝑑𝑡
= −𝑖௤ +

𝐽

𝑘௠
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝜎ො൧ −

𝑘௠

𝑅 + 𝑘௣
𝜔 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ 

               −𝜏 ቈ𝑛௣𝜔ෝ +
𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ቉ 𝑖ௗ 

       𝚤̂̇ௗ = −
𝑅

𝐿
𝚤̂ௗ −

𝑘௣

𝐿
𝑖ௗ +

1

𝐿
𝑥ௗ + 𝜎ොௗ +

ℎଵ

𝜇
(𝑖ௗ − 𝚤̂ௗ) + 𝑛௣𝜔ෝ𝚤̂௤ +

𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ𝚤̂௤ 

       𝚤̂̇௤ = −
𝑅

𝐿
𝚤̂௤ −

𝑘௣

𝐿
𝑖௤ +

1

𝐿𝛼ଵ
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝜎ො൧ + 𝜎ො௤ +

ℎଵ

𝜇
൫𝑖௤ − 𝚤̂௤൯ − 𝑛௣𝜔ෝ𝚤̂ௗ 

                −
𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ𝚤̂ௗ 

       𝜎ො̇ௗ =
ℎଶ

𝜇ଶ
(𝑖ௗ − 𝚤̂ௗ) + 𝑛௣𝜔ෝ𝜎ො௤ +

𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ𝜎ො௤  

       𝜎ො̇௤ =
ℎଶ

𝜇ଶ
൫𝑖௤ − 𝚤̂௤൯ − 𝑛௣𝜔ෝ𝜎ොௗ −

𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ

ଶ 

Set the time derivatives to 0 

 0 = −𝑘௜𝑖ௗ (B2.1) 

 0 = 𝑘௜ ቆ
1

𝑘௣𝛼ଵ
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝛼ଵ𝑥௤ − 𝜎ො൧ − 𝑖௤ቇ (B2.2) 
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 0 =
𝑘௠

𝐽
൫−𝑖ௗ sin൫𝑛௣𝜃෨൯ + 𝑖௤ cos൫𝑛௣𝜃෨൯൯ −

𝐵

𝐽
𝜔 −

1

𝐽
𝑇௅ (B2.3) 

 0 = 𝜔 − 𝜔ෝ −
𝜌ଵ𝐿

𝜀𝑛௣𝑘෠௠𝜔⋆
𝜎ොௗ (B2.4) 

 0 = 𝑘ఠ𝜔௥௘௙ − 𝑘ఠ𝜔ෝ +
𝜌ଶ𝐿

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
𝜎ොௗ (B2.5) 

 0 =
𝜌ଷ𝐿

𝜀ଷ𝑛௣𝑘෠௠𝜔⋆
𝜎ොௗ (B2.6) 

 0 = −𝑖ௗ +
𝑘௠

𝑅 + 𝑘௣
𝜔 𝑠𝑖𝑛൫𝑛௣𝜃෨൯ +

1

𝑅 + 𝑘௣
𝑥ௗ + 𝜏𝑛௣𝜔ෝ𝑖௤ +

𝜏𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ𝑖௤ (B2.7) 

 

0 = −𝑖௤ +
𝐽

𝑘௠
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝜎ො൧ −

𝑘௠

𝑅 + 𝑘௣
𝜔 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ 

−𝜏 ቈ𝑛௣𝜔ෝ +
𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ቉ 𝑖ௗ 

(B2.8) 

 0 = −
𝑅

𝐿
𝚤̂ௗ −

𝑘௣

𝐿
𝑖ௗ +

1

𝐿
𝑥ௗ + 𝜎ොௗ +

ℎଵ

𝜇
(𝑖ௗ − 𝚤̂ௗ) + 𝑛௣𝜔ෝ𝚤̂௤ +

𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ𝚤̂௤ (B2.9) 

 

0 = −
𝑅

𝐿
𝚤̂௤ −

𝑘௣

𝐿
𝑖௤ +

1

𝐿𝛼ଵ
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝜎ො൧ + 𝜎ො௤ +

ℎଵ

𝜇
൫𝑖௤ − 𝚤̂௤൯ 

−𝑛௣𝜔ෝ𝚤̂ௗ −
𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ𝚤̂ௗ 

(B2.10) 

 0 =
ℎଶ

𝜇ଶ
(𝑖ௗ − 𝚤̂ௗ) + 𝑛௣𝜔ෝ𝜎ො௤ +

𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ𝜎ො௤  (B2.11) 

 0 =
ℎଶ

𝜇ଶ
൫𝑖௤ − 𝚤̂௤൯ − 𝑛௣𝜔ෝ𝜎ොௗ −

𝜌ଵ𝐿

𝜀𝑘෠௠𝜔⋆
𝜎ොௗ

ଶ (B2.12) 

It can be seen from (B2.1) and (B2.6) that 𝑖ௗ = 𝜎ොௗ = 0, therefore set 𝑖ௗ = 0 and 𝜎ොௗ = 0 

 0 =
1

𝑘௣𝛼ଵ
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝛼ଵ𝑥௤ − 𝜎ො൧ − 𝑖௤ (B2.13) 

 0 = 𝑘௠𝑖௤ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ − 𝐵𝜔 − 𝑇௅ (B2.14) 

 0 = 𝜔 − 𝜔ෝ (B2.15) 

 0 = 𝜔௥௘௙ − 𝜔ෝ (B2.16) 

 0 = 𝑘௠𝜔 𝑠𝑖𝑛൫𝑛௣𝜃෨൯ + 𝑥ௗ + 𝐿𝑛௣𝜔ෝ𝑖௤ (B2.17) 
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 0 = −𝑖௤ +
𝐽

𝑘௠
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝜎ො൧ −

𝑘௠

𝑅 + 𝑘௣
𝜔 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ (B2.18) 

 0 = − ൬
𝑅

𝐿
+

ℎଵ

𝜇
൰ 𝚤̂ௗ +

1

𝐿
𝑥ௗ + 𝑛௣𝜔ෝ𝚤̂௤ (B2.19) 

 
0 = −

𝑅

𝐿
𝚤̂௤ −

𝑘௣

𝐿
𝑖௤ +

1

𝐿𝛼ଵ
ൣ𝑘ఠ𝜔௥௘௙ − (𝑘ఠ − 𝛼ଶ)𝜔ෝ − 𝜎ො൧ + 𝜎ො௤ +

ℎଵ

𝜇
൫𝑖௤ − 𝚤̂௤൯ 

−𝑛௣𝜔ෝ𝚤̂ௗ 

(B2.20) 

 0 = −
ℎଶ

𝜇ଶ
𝚤̂ௗ + 𝑛௣𝜔ෝ𝜎ො௤ (B2.21) 

 0 =
ℎଶ

𝜇ଶ
൫𝑖௤ − 𝚤̂௤൯ (B2.22) 

It can be seen from (B2.14) and (B2.22) that 𝑖௤ = 𝚤̂௤ =
஻ఠೝ೐೑ା்ಽ

௞೘ ௖௢௦൫௡೛ఏ෩൯
, and from (B2.15) and 

(B2.16) that 𝜔 = 𝜔ෝ = 𝜔௥௘௙, therefore set 𝚤̂௤ = 𝑖௤, 𝜔 = 𝜔௥௘௙, and 𝜔ෝ = 𝜔௥௘௙ 

 
0 =

1

𝑘௣𝛼ଵ
ൣ𝛼ଶ𝜔௥௘௙ − 𝛼ଵ𝑥௤ − 𝜎ො൧ − 𝑖௤ 

(B2.23) 

 0 = 𝑘௠𝜔௥௘௙ 𝑠𝑖𝑛൫𝑛௣𝜃෨൯ + 𝑥ௗ + 𝐿𝑛௣𝜔௥௘௙𝑖௤ (B2.24) 

 
0 = −𝑖௤ +

𝐽

𝑘௠
ൣ𝛼ଶ𝜔௥௘௙ − 𝜎ො൧ −

𝑘௠

𝑅 + 𝑘௣
𝜔௥௘௙ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ 

(B2.25) 

 
0 = − ൬

𝑅

𝐿
+

ℎଵ

𝜇
൰ 𝚤̂ௗ +

1

𝐿
𝑥ௗ + 𝑛௣𝜔௥௘௙𝑖௤ 

(B2.26) 

 
0 = −

𝑅 + 𝑘௣

𝐿
𝑖௤ +

1

𝐿𝛼ଵ
ൣ𝛼ଶ𝜔௥௘௙ − 𝜎ො൧ + 𝜎ො௤ − 𝑛௣𝜔௥௘௙𝚤̂ௗ 

(B2.27) 

 
0 = −

ℎଶ

𝜇ଶ
𝚤̂ௗ + 𝑛௣𝜔௥௘௙𝜎ො௤ 

(B2.28) 

Solving (B2.24) for 𝑥ௗ yields 𝑥ௗ = −𝑘௠𝜔௥௘௙ 𝑠𝑖𝑛൫𝑛௣𝜃෨൯ − 𝐿𝑛௣𝜔௥௘௙𝑖௤, and solving (B2.25) for 𝜎ො 

gives 𝜎ො = −
௞೘

௃
𝑖௤ + 𝛼ଶ𝜔௥௘௙ −

௞೘
మ

௃൫ோା௞೛൯
𝜔௥௘௙ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ = −

௞೘

௃
𝑖௤ + ൣ𝛼ଶ − 𝑘௠𝛼ଵ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯൧𝜔௥௘௙; 

therefore, set 𝑥ௗ = −𝑘௠𝜔௥௘௙ 𝑠𝑖𝑛൫𝑛௣𝜃෨൯ − 𝐿𝑛௣𝜔௥௘௙𝑖௤, and 𝜎ො = −
௞೘

௃
𝑖௤ + ൣ𝛼ଶ − 𝑘௠𝛼ଵ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯൧𝜔௥௘௙ 

 0 = −𝑥௤ + 𝑘௠𝜔௥௘௙ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ + 𝑅𝑖௤ (B2.29) 
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0 = − ൬

𝑅

𝐿
+

ℎଵ

𝜇
൰ 𝚤̂ௗ −

𝑘௠𝜔௥௘௙

𝐿
𝑠𝑖𝑛൫𝑛௣𝜃෨൯ 

(B2.30) 

 0 = 𝑘௠𝜔௥௘௙ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ + 𝐿𝜎ො௤ − 𝑛௣𝐿𝜔௥௘௙𝚤ௗ̂ (B2.31) 

 
0 = −

ℎଶ

𝜇ଶ
𝚤̂ௗ + 𝑛௣𝜔௥௘௙𝜎ො௤ 

(B2.32) 

Now, solving (B2.29) for 𝑥௤ gives us 𝑥௤ = 𝑅𝑖௤ + 𝑘௠𝜔௥௘௙ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯, and solving (B2.30) for 𝚤̂ௗ 

we obtain 𝚤̂ௗ = −
ఓ௞೘ఠೝ೐೑

ఓோା௅௛భ
𝑠𝑖𝑛൫𝑛௣𝜃෨൯. Substituting 𝚤̂ௗ into (B2.32) and solving for 𝜎ො௤ we arrive at 

𝜎ො௤ = −
௞೘௛మ

ఓ௡೛(ఓோା௅௛భ)
𝑠𝑖𝑛൫𝑛௣𝜃෨൯. Finally, substitute both 𝚤̂ௗ and 𝜎ො௤ into (B2.31) to arrive at  

0 = 𝜔௥௘௙ 𝑐𝑜𝑠൫𝑛௣𝜃෨൯ +
𝐿ൣ𝜇ଶ𝑛௣

ଶ𝜔௥௘௙
ଶ − ℎଶ൧

𝜇𝑛௣(𝜇𝑅 + 𝐿ℎଵ)
𝑠𝑖𝑛൫𝑛௣𝜃෨൯ 

rearranging to obtain 

𝑠𝑖𝑛൫𝑛௣𝜃෨൯

𝑐𝑜𝑠൫𝑛௣𝜃෨൯
= 𝑡𝑎𝑛൫𝑛௣𝜃෨൯ = −

𝜇(𝜇𝑅 + 𝐿ℎଵ)𝑛௣𝜔௥௘௙

𝐿ൣ𝜇ଶ𝑛௣
ଶ𝜔௥௘௙

ଶ − ℎଶ൧
 

and solving for 𝜃෨ yields 

𝜃෨ =
1

𝑛௣
𝑡𝑎𝑛ିଵ ቈ−

𝜇(𝜇𝑅 + 𝐿ℎଵ)𝑛௣𝜔௥௘௙

𝐿൫𝜇ଶ𝑛௣
ଶ𝜔௥௘௙

ଶ − ℎଶ൯
቉ 

In summary, the equilibrium points are given by 

𝚤௤̅ = 𝚤̂௤̅ =
𝐵𝜔௥௘௙ + 𝑇௅

𝑘௠ 𝑐𝑜𝑠 ቀ𝑛௣𝜃෨̅ቁ
 

𝑥̅ௗ = −𝑘௠𝜔௥௘௙ 𝑠𝑖𝑛 ቀ𝑛௣𝜃෨̅ቁ − 𝑛௣𝐿𝜔௥௘௙𝚤௤̅ 

𝑥̅௤ = 𝑅𝚤௤̅ + 𝑘௠𝜔௥௘௙ 𝑐𝑜𝑠 ቀ𝑛௣𝜃෨̅ቁ 

𝜔ഥ = 𝜔௥௘௙ 
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𝜃෨̅ =
1

𝑛௣
𝑎𝑟𝑐𝑡𝑎𝑛 ቈ−

𝜇(𝜇𝑅 + 𝐿ℎଵ)𝑛௣𝜔௥௘௙

𝐿൫𝜇ଶ𝑛௣
ଶ𝜔௥௘௙

ଶ − ℎଶ൯
቉ 

𝜔ෝഥ = 𝜔௥௘௙ 

𝜎ොത = −
𝑘௠

𝐽
𝚤௤̅ + ቂ𝛼ଶ − 𝑘௠𝛼ଵ 𝑐𝑜𝑠 ቀ𝑛௣𝜃෨̅ቁቃ 𝜔௥௘௙ 

𝚤ௗ̅ = 0 

𝚤̂ௗ̅ = −
𝜇𝑘௠𝜔௥௘௙

𝜇𝑅 + 𝐿ℎଵ
𝑠𝑖𝑛 ቀ𝑛௣𝜃෨̅ቁ 

𝜎ොതௗ = 0 

𝜎ොത௤ = −
𝑘௠ℎଶ

𝜇𝑛௣(𝜇𝑅 + 𝐿ℎଵ)
𝑠𝑖𝑛 ቀ𝑛௣𝜃෨̅ቁ 

where 𝜃෨̅, 𝚤௤̅, 𝚤̂௤̅, 𝑥̅ௗ, 𝑥̅௤, 𝜔ഥ, 𝜔ෝഥ, 𝜎ොത, 𝚤ௗ̅, 𝚤̂ௗ̅, 𝜎ොതௗ, and 𝜎ොത௤ are the equilibrium values of 𝜃෨, 𝑖௤, 𝚤̂௤, 𝑥ௗ, 𝑥௤, 

𝜔, 𝜔ෝ, 𝜎ො, 𝑖ௗ, 𝚤̂ௗ, 𝜎ොௗ, and 𝜎ො௤; respectively. The 𝑠𝑖𝑛 ቀ𝑛௣𝜃෨̅ቁ and 𝑐𝑜𝑠 ቀ𝑛௣𝜃෨̅ቁ satisfy 

𝑠𝑖𝑛 ቀ𝑛௣𝜃෨̅ቁ =
ି

ഋ(ഋೃశಽ೓భ)೙೛ഘೝ೐೑

ಽቀഋమ೙೛
మഘೝ೐೑

మష೓మቁ

ඨଵାቈ
ഋ(ഋೃశಽ೓భ)೙೛ഘೝ೐೑

ಽቀഋమ೙೛
మഘೝ೐೑

మష೓మቁ
቉

మ
, and 𝑐𝑜𝑠 ቀ𝑛௣𝜃෨̅ቁ =

ଵ

ඨଵାቈ
ഋ(ഋೃశಽ೓భ)೙೛ഘೝ೐೑

ಽቀഋమ೙೛
మഘೝ೐೑

మష೓మቁ
቉

మ
 

and they were obtained using the following trigonometric identities 

𝑠𝑖𝑛(𝑡𝑎𝑛ିଵ(𝑥)) =
௫

√ଵା௫మ
 and 𝑐𝑜𝑠ଶ(𝑥) + 𝑠𝑖𝑛ଶ(𝑥) = 1. 
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B3. Derivation of the inequalities in (  3.35 ) 

The transfer function  

Γ(𝑠) =

𝑘௠

𝑘෠௠

𝜔
𝜔௥௘௙

(𝜌ଵ𝑠ଶ + 𝜌ଶ𝑠 + 𝜌ଷ)

𝑠ଷ +
𝑘௠

𝑘෠௠

𝜔
𝜔௥௘௙

𝛽(𝜌ଵ𝑠ଶ + 𝜌ଶ𝑠 + 𝜌ଷ)
=

𝛾ଵ𝑠ଶ + 𝛾ଶ𝑠 + 𝛾ଷ

𝑠ଷ + 𝛽𝛾ଵ𝑠ଶ + 𝛽𝛾ଶ𝑠 + 𝛽𝛾ଷ
 

where 𝛽 > 0, 𝛾ଵ =
௞೘

௞෠ ೘

ఠ

ఠೝ೐೑
𝜌ଵ, 𝛾ଶ =

௞೘

௞෠ ೘

ఠ

ఠೝ೐೑
𝜌ଶ, 𝛾ଷ =

௞೘

௞෠ ೘

ఠ

ఠೝ೐೑
𝜌ଷ, is Strictly Positive Real (SPR) if 

and only if 

1) Γ(𝑠) is Hurwitz 

2) ℜ{Γ(𝑗𝜔)} > 0, ∀ 𝜔 ∈ [0, ∞) 

3) Γ(𝑠) > 0 or lim
𝜔 → ∞

ωଶℜ{Γ(𝑗𝜔)} > 0 

The first condition can be checked using Routh-Hurwitz criterion. The Routh’s tabulation of the 

characteristic equation of Γ(𝑠) is given by 

𝑠ଷ 1 𝛽𝛾ଶ 

𝑠ଶ 𝛽𝛾ଵ 𝛽𝛾ଷ 

𝑠ଵ 
𝛽ଶ𝛾ଵ𝛾ଶ − 𝛽𝛾ଷ

𝛽𝛾ଵ
 0 

𝑠଴ 𝛽𝛾ଷ 0 

Table B3.1 Routh’s tabulation of the characteristic equation. 

So, for Γ(𝑠) to be Hurwitz we need to satisfy the following inequalities 
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𝛽𝛾ଵ > 0 

𝛽𝛾ଷ > 0 

𝛽ଶ𝛾ଵ𝛾ଶ − 𝛽𝛾ଷ

𝛽𝛾ଵ
= 𝛽𝛾ଶ −

𝛾ଷ

𝛾ଵ
> 0 

For the second condition, we need ℜ{Γ(𝑗𝜔)} > 0, ∀ 𝜔 ∈ [0, ∞); that is, 

ℜ ቊ
𝛾ଵ(𝑗𝜔)ଶ + 𝛾ଶ(𝑗𝜔) + 𝛾ଷ

(𝑗𝜔)ଷ + 𝛽𝛾ଵ(𝑗𝜔)ଶ + 𝛽𝛾ଶ(𝑗𝜔) + 𝛽𝛾ଷ
ቋ > 0 

ℜ ቊ
(𝛾ଷ − 𝛾ଵ𝜔ଶ) + 𝑗𝛾ଶ𝜔

𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ) + 𝑗(𝛽𝛾ଶ𝜔 − 𝜔ଷ)
ቋ > 0 

ℜ ቊ
(𝛾ଷ − 𝛾ଵ𝜔ଶ) + 𝑗𝛾ଶ𝜔

𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ) + 𝑗(𝛽𝛾ଶ𝜔 − 𝜔ଷ)
×

𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ) − 𝑗(𝛽𝛾ଶ𝜔 − 𝜔ଷ)

𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ) − 𝑗(𝛽𝛾ଶ𝜔 − 𝜔ଷ)
ቋ > 0 

ℜ ቊ
[𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ)(𝛾ଷ − 𝛾ଵ𝜔ଶ) + 𝛾ଶ(𝛽𝛾ଶ𝜔 − 𝜔ଷ)𝜔] + 𝑗[𝛽𝛾ଶ(𝛾ଷ − 𝛾ଵ𝜔ଶ)𝜔 − (𝛾ଷ − 𝛾ଵ𝜔ଶ)(𝛽𝛾ଶ𝜔 − 𝜔ଷ)]

[𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ)]ଶ + [𝛽𝛾ଶ𝜔 − 𝜔ଷ]ଶ
ቋ > 0 

The real part is given by 

𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ)(𝛾ଷ − 𝛾ଵ𝜔ଶ) + 𝛾ଶ(𝛽𝛾ଶ𝜔 − 𝜔ଷ)𝜔

[𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ)]ଶ + [𝛽𝛾ଶ𝜔 − 𝜔ଷ]ଶ
> 0 

which is rewritten as 

(𝛽𝛾ଵ
ଶ − 𝛾ଶ)𝜔ସ + 𝛽(𝛾ଶ

ଶ − 2𝛾ଵ𝛾ଷ)𝜔ଶ + 𝛽𝛾ଷ
ଶ

[𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ)]ଶ + [𝛽𝛾ଶ𝜔 − 𝜔ଷ]ଶ
> 0 

To satisfy the inequality we need 

𝛽𝛾ଵ
ଶ − 𝛾ଶ ≥ 0 
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𝛾ଶ
ଶ − 2𝛾ଵ𝛾ଷ ≥ 0 

For the third condition, we have 

lim
𝜔 → ∞

ωଶℜ{Γ(𝑗𝜔)} > 0 

lim
𝜔 → ∞

 ωଶ ቆ
(𝛽𝛾ଵ

ଶ − 𝛾ଶ)𝜔ସ + 𝛽(𝛾ଶ
ଶ − 2𝛾ଵ𝛾ଷ)𝜔ଶ + 𝛽𝛾ଷ

ଶ

[𝛽(𝛾ଷ − 𝛾ଵ𝜔ଶ)]ଶ + [𝛽𝛾ଶ𝜔 − 𝜔ଷ]ଶ
ቇ > 0 

lim
𝜔 → ∞

 ቆ
(𝛽𝛾ଵ

ଶ − 𝛾ଶ)𝜔଺ + 𝛽(𝛾ଶ
ଶ − 2𝛾ଵ𝛾ଷ)𝜔ସ + 𝛽𝛾ଷ

ଶ𝜔ଶ

𝜔଺ + 𝛽(𝛽𝛾ଵ
ଶ − 2𝛾ଶ)𝜔ସ + 𝛽ଶ(𝛾ଶ

ଶ − 2𝛾ଵ𝛾ଷ)𝜔ଶ + 𝛽ଶ𝛾ଷ
ଶ

ቇ > 0 

which yields 

𝛽𝛾ଵ
ଶ − 𝛾ଶ > 0 

So, in total, there are five conditions to satisfy and they are 

𝛽𝛾ଵ > 0 

𝛽𝛾ଷ > 0 

𝛽𝛾ଶ −
𝛾ଷ

𝛾ଵ
> 0 

𝛾ଶ
ଶ − 2𝛾ଵ𝛾ଷ ≥ 0 

𝛽𝛾ଵ
ଶ − 𝛾ଶ > 0 

Let 𝛾ଵ =
௔

ఉ
, 𝛾ଶ =

௕

ఉ
, and 𝛾ଷ =

௖

ఉ
; then the inequalities reduce to 

𝑎 > 0 
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𝑐 > 0 

𝑏 −
𝑐

𝑎
> 0 ⟹ 𝑏 >

𝑐

𝑎
 

𝑏ଶ − 2𝑎𝑐 ≥ 0 ⟹ 𝑏ଶ ≥ 2𝑎𝑐 

𝑎ଶ − 𝑏 > 0 ⟹ 𝑏 < 𝑎ଶ 

Let 𝑏ଵ(𝑎, 𝑐) =
௖

௔
, 𝑏ଶ(𝑎, 𝑐) = √2𝑎𝑐, and 𝑏ଷ(𝑎, 𝑐) = 𝑎ଶ. Figure B3.1 shows the plot of 𝑏ଵ, 𝑏ଶ, and 

𝑏ଷ that is used to determine the valid values of 𝑎 and 𝑐. 

 

Figure B3.1 Plot of the functions 𝑏ଵ, 𝑏ଶ, and 𝑏ଷ. 

It can be seen from Figure B3.1 that the inequalities are valid beyond the intersection 𝑏ଶ = 𝑏ଷ; 

that is, √2𝑎𝑐 = 𝑎ଶ ⟹ 𝑐 =
ଵ

ଶ
𝑎ଷ. Now, 𝑎, 𝑏, and 𝑐 can be chosen according to the following 

𝑎 > 0 

0 < 𝑐 <
1

2
𝑎ଷ 

Intersection 
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√2𝑎𝑐 ≤ 𝑏 < 𝑎ଶ 

Substitute back 𝑎 =
௞೘

௞෠ ೘

ఠ

ఠೝ೐
𝛽𝜌ଵ,  𝑏 =

௞೘

௞෠ ೘

ఠ

ఠೝ೐೑
𝛽𝜌ଶ, and 𝑐 =

௞೘

௞෠ ೘

ఠ

ఠೝ೐೑
𝛽𝜌ଷ; then we arrive at the 

following inequalities 

𝛽
𝑘௠

𝑘෠௠

𝜔

𝜔⋆
𝜌ଵ > 0 

0 < 𝜌ଷ <
1

2
𝛽ଶ ቆ

𝑘௠

𝑘෠௠

𝜔

𝜔⋆
ቇ

ଶ

𝜌ଵ
ଷ 

ඥ2𝜌ଵ𝜌ଷ ≤ 𝜌ଶ < 𝛽
𝑘௠

𝑘෠௠

𝜔

𝜔⋆
𝜌ଵ

ଶ 

which reduce to 

𝜌ଶ < 𝑎𝜌ଵ
ଶ 

𝜌ଷ ≤
𝜌ଶ

ଶ

2𝜌ଵ
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B4. Definition of Functions 𝒇𝟏(∙) to 𝒇𝟏𝟐(∙) For the Closed-Loop Equations (  3.47 )-(  3.50 ) 

𝑓ଵ(∙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

𝑘௜𝑘௠

𝑅 + 𝑘௣

൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑘௜𝑧ఈ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑘௜𝑧ఉ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ

−𝑘௜𝑧ఈ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑘௜𝑧ఉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ +
𝑘௜𝑅𝑀

𝑅 + 𝑘௣

ቈ𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ − 𝑠𝑎𝑡 ቆ

𝜓ത(∙)

𝑀
ቇ቉ −

𝑘௜𝑘௠

𝑅 + 𝑘௣

ቂ1 − 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁቃ ൫𝜔௥௘௙ − 𝜉ଷ൯

𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −
𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ − 𝛼ଵ𝑘௣𝑀 ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝑠𝑎𝑡 ቆ

𝜓ത(∙)

𝑀
ቇ቉ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + ቂ1 − 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁቃ ൤(𝑘ఠ − 𝛼ଶ)𝜉ଷ + 𝛼ଶ𝜔௥௘௙ + 𝜔̇௥௘௙ +

1

𝐽
𝑇௅൨

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑓ଶ(∙) =
𝑀𝑘௣

𝜀൫𝑅 + 𝑘௣൯

⎣
⎢
⎢
⎢
⎢
⎡

0

𝑘௜ ቈ𝑠𝑎𝑡 ቆ
𝜓(∙̂)

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉

𝑘௠

𝐽
ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ

⎦
⎥
⎥
⎥
⎥
⎤

 

𝑓ଷ(∙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜌ଵ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ

𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ +

𝜌ଶ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ

𝜌ଷ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቈ1 + ൬

𝛼ଵ

𝛼ොଵ

− 1൰ 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ቉ ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑓ସ(∙) =

⎣
⎢
⎢
⎢
⎢
⎡−

ℎଵ

ℎଶඨ1 − ቆ𝜇𝑛௣
ℎଵ
ℎଶ

൫𝜔௥௘௙ − 𝑒ఠ൯ቇ

ଶ
ቆ−𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ +

𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

1

𝐽
𝑇௅ቇ

0
0 ⎦

⎥
⎥
⎥
⎥
⎤

 

𝑓ହ(∙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜀𝜌ଵ𝑟ଶ𝑘௠ℎଵ

𝑘෠௠𝜔⋆ℎଶ

ቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ

𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ

𝜀ଶ𝑛௣

𝜀 ቈ
𝜌ଶ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ − 𝛼ଵ𝜉ଵ቉

𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ

𝜀ଶ𝑛௣

− 𝛼ොଶ𝜂ଶ −
𝛼ොଵ𝑘௣𝑀

𝜀
ቈ𝑠𝑎𝑡 ቆ

𝜓(∙̂)

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ +

𝛼ଵ

𝜀
ൣ𝑐𝑜𝑠൫𝜀ଶ𝑛௣𝜂ଵ൯ − 1൧ ቈ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉

𝑓ହ௔ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑓ହ௔ =
𝜌ଷ𝑟ଶ𝑘௠ℎଵ

𝜀𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈ1 + ൬
𝛼ଵ

𝛼ොଵ

− 1൰ 𝜙ఌ
ᇱ ቆ

𝜓(∙̂)

𝑀
ቇ቉ ቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ 

          −
𝛼ଵ − 𝛼ොଵ

𝛼ොଵ

(𝑘ఠ − 𝛼ොଶ)𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ቆ

𝜌ଶ𝑘௠

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝜂ଷ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ ቈ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉ቇ 

         −
𝛼ଵ − 𝛼ොଵ

𝛼ොଵ

(𝑘ఠ − 𝛼ොଶ)𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ቆ−

𝜌ଶ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝜀𝛼ොଶ𝜂ଶ + 𝛼ොଵ𝑘௣𝑀 ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ −

1

𝐽
𝑇௅ቇ 

         −
𝛼ଵ − 𝛼ොଵ

𝛼ොଵ

(𝑘ఠ − 𝛼ොଶ)𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ቆ−

𝜌ଶ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉ቇ 

         +(𝛼ଵ − 𝛼ොଵ) ቈ1 − 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ቉ ൭−

𝑘௜

𝑅 + 𝑘௣

൫𝜉ଶ + 𝑥̅௤൯ +
𝑘௜𝑘௠

𝑅 + 𝑘௣

൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝑘௜𝑧ఈ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑘௜𝑧ఉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑘௜𝑀𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ −

𝑘௜𝑘௣𝑀

𝑅 + 𝑘௣

𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ൱ 

         −(𝛼ଶ − 𝛼ොଶ) ቆ−𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ +
𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

1

𝐽
𝑇௅ ቇ 

         +
𝛼ଵ − 𝛼ොଵ

𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ൣ𝜔̈௥௘௙ + 𝑘ఠ𝜔̇௥௘௙൧ −

1

𝐽
𝑇̇௅  

𝑓଺(∙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−
𝜌ଵ𝑟ଶ𝑛௣𝑘௠ℎଵ

ଶ

𝑘෠௠𝜔⋆ℎଶ
ଶ ൫𝜔௥௘௙ − 𝜉ଷ൯

ଷ
𝑠𝑖𝑛൫𝜀ଶ𝑛௣𝜂ଵ൯ −

𝜌ଵ𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯

𝜇𝑘෠௠𝜔⋆

⎣
⎢
⎢
⎡

1 − ඩ1 − ൭𝜇𝑛௣

ℎଵ

ℎଶ

൫𝜔௥௘௙ − 𝑒ఠ൯൱

ଶ

⎦
⎥
⎥
⎤

ቈ
𝑟ଶℎଵ

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠൫𝜀ଶ𝑛௣𝜂ଵ൯ −
𝑠𝑖𝑛൫𝜀ଶ𝑛௣𝜂ଵ൯

𝜀ଶ𝑛௣

቉

𝑓଺௔

ቈ1 + ൬
𝛼ଵ

𝛼ොଵ

− 1൰ 𝜙ఌ
ᇱ ቆ

𝜓(∙̂)

𝑀
ቇ቉

⎝

⎛−
𝜌ଶ𝑟ଶ𝑛௣𝑘௠ℎଵ

ଶ

𝑘෠௠𝜔⋆ℎଶ
ଶ ൫𝜔௥௘௙ − 𝜉ଷ൯

ଷ
𝑠𝑖𝑛൫𝜀ଶ𝑛௣𝜂ଵ൯ −

𝜌ଷ𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯

𝜇𝑘෠௠𝜔⋆

⎣
⎢
⎢
⎡

1 − ඩ1 − ൭𝜇𝑛௣

ℎଵ

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯൱

ଶ

⎦
⎥
⎥
⎤

ቈ
𝑟ଶℎଵ

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠൫𝜀ଶ𝑛௣𝜂ଵ൯ −
𝑠𝑖𝑛൫𝜀ଶ𝑛௣𝜂ଵ൯

𝜀ଶ𝑛௣

቉

⎠

⎞

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑓଺௔ = −
𝑛௣ℎଵ

ℎଶ

ቆ
𝜌ଶ𝑟ଶ𝑘௠ℎଵ

𝑘෠௠𝜔⋆ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯
ଶ

+ 𝛼ଵ ቈ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉ቇ ൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛൫𝜀ଶ𝑛௣𝜂ଵ൯ 

           −
1

𝜇

⎣
⎢
⎢
⎡

1 − ඩ1 − ൭𝜇𝑛௣

ℎଵ

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯൱

ଶ

⎦
⎥
⎥
⎤

ቆ
𝜌ଶ𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯

𝑘෠௠𝜔⋆
ቈ
𝑟ଶℎଵ

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠൫𝜀ଶ𝑛௣𝜂ଵ൯ −
𝑠𝑖𝑛൫𝜀ଶ𝑛௣𝜂ଵ൯

𝜀ଶ𝑛௣

቉ + 𝛼ଵ ቈ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉ 𝑐𝑜𝑠൫𝜀ଶ𝑛௣𝜂ଵ൯ቇ 

𝑓଻(∙) =
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙̂)

𝑀
ቇ ቎

𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ

− 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ
቏ ቆ

𝜌ଷ𝑘௠

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

𝜌ଷ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ 

             −
𝜌ଷ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉ቇ 

𝑓 (∙) =
𝑘௣𝑀

𝜀൫𝑅 + 𝑘௣൯
቎

𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ

− 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ
቏ ቈ𝑠𝑎𝑡 ቆ

𝜓(∙̂)

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ 

𝑓ଽ(∙) = ൤
𝑓ଽ௔(∙)
𝑓ଽ௕(∙)

൨ 

𝑓ଽ௔ (∙) =
𝑘௠

𝑅 + 𝑘௣

ቆ−𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ +
𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

                +
1

𝑅 + 𝑘௣

ቆ−
𝑘௜

𝑅 + 𝑘௣

𝜉ଵ −
𝑘௜𝑘௠

𝑅 + 𝑘௣

൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑘௜𝑧ఈ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑘௜𝑧ఉ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቇ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 
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                −
1

𝑅 + 𝑘௣

ቈ1 − 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ቉ ൭−

𝑘௜

𝑅 + 𝑘௣

ቂ൫𝜉ଶ + 𝑥̅௤൯ − 𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁቃ − 𝑘௜ ቂ𝑧ఈ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − 𝑧ఉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝑘௜𝑀𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ −

𝑘௜𝑘௣𝑀

𝑅 + 𝑘௣

𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ൱ 

                                   ∗ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                +
𝑛௣

𝑅 + 𝑘௣

ቈ−𝜉ଵ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − ቈ൫𝜉ଶ + 𝑥̅௤൯ + 𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ቉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ቉ 

                               ∗ ቈ𝜔௥௘௙ − 𝜉ଷ − 𝜀𝜂ଶ +
𝜌ଵ𝑘௠

𝜀𝑛௣𝑘෠௠𝜔⋆
൬൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝜀ଶ ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ൰቉ 

                +
𝑛௣

𝑅 + 𝑘௣

ቈ−𝜉ଵ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − ቈ൫𝜉ଶ + 𝑥̅௤൯ + 𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ቉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ቉ 

                               ∗ ቎−
𝜀𝜌ଵ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉቏ 

                +
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ

𝜌ଶ𝑘௠

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝜂ଷ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ ቈ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉ቇ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                +
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝜀𝛼ොଶ𝜂ଶ + 𝛼ොଵ𝑘௣𝑀 ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙̂)

𝑀
ቇ቉ −

1

𝐽
𝑇௅ቇ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                +
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉ቇ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                +
𝑛௣𝑘௠

𝑅 + 𝑘௣

൫𝜔௥௘௙ − 𝜉ଷ൯
ଶ

𝑐𝑜𝑠൫𝑛௣𝜃൯ −
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ൣ𝜔̈௥௘௙ + 𝑘ఠ𝜔̇௥௘௙൧ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

𝑓ଽ௕(∙) = −
𝑘௠

𝑅 + 𝑘௣

ቆ−𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ +
𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙̂)

𝑀
ቇ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

1

𝐽
𝑇௅ቇ 𝑐𝑜𝑠൫𝑛௣𝜃൯ 

                 +
1

𝑅 + 𝑘௣

ቆ−
𝑘௜

𝑅 + 𝑘௣

𝜉ଵ −
𝑘௜𝑘௠

𝑅 + 𝑘௣

൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑘௜𝑧ఈ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑘௜𝑧ఉ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቇ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                 +
1

𝑅 + 𝑘௣

ቈ1 − 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ቉ ൭−

𝑘௜

𝑅 + 𝑘௣

ቂ൫𝜉ଶ + 𝑥̅௤൯ − 𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁቃ − 𝑘௜ ቂ𝑧ఈ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − 𝑧ఉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝑘௜𝑀𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ −

𝑘௜𝑘௣𝑀

𝑅 + 𝑘௣

𝜙ఌ ቆ
𝜓(∙̂)

𝑀
ቇ൱ 

                                  ∗ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                 +
𝑛௣

𝑅 + 𝑘௣

ቈ𝜉ଵ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − ቈ൫𝜉ଶ + 𝑥̅௤൯ + 𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙̂)

𝑀
ቇ቉ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ቉ 

                                  ∗ ቈ𝜔௥௘௙ − 𝜉ଷ − 𝜀𝜂ଶ +
𝜌ଵ𝑘௠

𝜀𝑛௣𝑘෠௠𝜔⋆
൬൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝜀ଶ ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ൰቉ 

                 +
𝑛௣

𝑅 + 𝑘௣

ቈ𝜉ଵ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − ቈ൫𝜉ଶ + 𝑥̅௤൯ + 𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙̂)

𝑀
ቇ቉ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ቉ 

                                  ∗ ቎−
𝜀𝜌ଵ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝑒ఠ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉቏ 

                 −
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙̂)

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ

𝜌ଶ𝑘௠

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝜂ଷ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ ቈ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉ቇ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                 −
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙̂)

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝜀𝛼ොଶ𝜂ଶ + 𝛼ොଵ𝑘௣𝑀 ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙̂)

𝑀
ቇ቉ −

1

𝐽
𝑇௅ቇ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                 −
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙̂)

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉ቇ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

                 +
𝑛௣𝑘௠

𝑅 + 𝑘௣

൫𝜔௥௘௙ − 𝜉ଷ൯
ଶ

𝑠𝑖𝑛൫𝑛௣𝜃൯ +
1

൫𝑅 + 𝑘௣൯𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ൣ𝜔̈௥௘௙ + 𝑘ఠ𝜔̇௥௘௙൧ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ 

𝑓ଵ଴(∙) =

⎣
⎢
⎢
⎢
⎡

𝑠𝑖𝑛൫𝑛௣𝜃൯

ℎଵ 𝑠𝑖𝑛൫𝑛௣𝜃൯

− 𝑐𝑜𝑠൫𝑛௣𝜃൯

−ℎଵ 𝑐𝑜𝑠൫𝑛௣𝜃൯⎦
⎥
⎥
⎥
⎤

𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ቆ

𝜌ଷ𝑘௠

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

𝜌ଷ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ 

                                                                                     −
𝜌ଷ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉ቇ 

 𝑓ଵଵ(∙) =
1

𝜀
⎣
⎢
⎢
⎡

0
− 𝑠𝑖𝑛൫𝑛௣𝜃൯

0
𝑐𝑜𝑠൫𝑛௣𝜃൯ ⎦

⎥
⎥
⎤

2𝑟ଶ 𝑠𝑖𝑛ଶ ቆ
1

2
𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቇ ൥൭𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ൱ + 𝑟ଶ𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ൩ 

𝑓ଵଶ(∙) =

⎣
⎢
⎢
⎢
⎡

𝑓ଵଶೌ
(∙)

 𝑓ଵଶ್
(∙)

𝑓ଵଶ೎
(∙)

𝑓ଵଶ೏
(∙)⎦

⎥
⎥
⎥
⎤

 

𝑓ଵଶ௔ (∙) = −𝜇
𝑅

𝐿
ቈ𝑣ఈଵ +

𝑟ଶ

ℎଶ

ቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛൫𝑛௣𝜃൯ −

𝑟ଶ𝑛௣

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯
ଶ

𝑐𝑜𝑠൫𝑛௣𝜃൯቉ 

                  −
𝑟ଶ𝛼ଵ

ℎଶ

ቈ1 − 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ቉ ൭−

𝑘௜

𝑅 + 𝑘௣

ቂ൫𝜉ଶ + 𝑥̅௤൯ − 𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁቃ − 𝑘௜ ቂ𝑧ఈ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − 𝑧ఉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝑘௜𝑀𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ −

𝑘௜𝑘௣𝑀

𝑅 + 𝑘௣

𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ൱ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

                  +
𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ

𝜌ଶ𝑘௠

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝜂ଷ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ ቈ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙̂)

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉ቇ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

                  +
𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝜀𝛼ොଶ𝜂ଶ + 𝛼ොଵ𝑘௣𝑀 ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

                  +
𝜇𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉ቇ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

                  +
𝑟ଶ

ℎଶ

ൣ𝛼ଶ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 2𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ ቆ−𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ +
𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙̂)

𝑀
ቇ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

1

𝐽
𝑇௅ቇ 

                  −
𝑛௣𝑟ଶ

ℎଶ

ቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ ൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠൫𝑛௣𝜃൯ +

𝑛௣
ଶ𝑟ଶ

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯
ଷ

𝑠𝑖𝑛൫𝑛௣𝜃൯ −
𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ ൣ𝜔̈௥௘௙ + 𝑘ఠ𝜔̇௥௘௙൧ 𝑠𝑖𝑛൫𝑛௣𝜃൯ +

𝑟ଶ

𝐽ℎଶ

𝑇௅ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

𝑓ଵଶ (∙) = −
𝑟ଶ𝛼ଵℎଵ

ℎଶ

ቈ1 − 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ቉ ൭−

𝑘௜

𝑅 + 𝑘௣

ቂ൫𝜉ଶ + 𝑥̅௤൯ − 𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁቃ − 𝑘௜ ቂ𝑧ఈ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − 𝑧ఉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝑘௜𝑀𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ −

𝑘௜𝑘௣𝑀

𝑅 + 𝑘௣

𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ൱ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

                  +
𝑟ଶ𝛼ଵℎଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ

𝜌ଶ𝑘௠

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝜂ଷ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ ቈ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙̂)

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉ቇ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

                  +
𝑟ଶ𝛼ଵℎଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝜀𝛼ොଶ𝜂ଶ + 𝛼ොଵ𝑘௣𝑀 ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 
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                  +
𝑟ଶ𝛼ଵℎଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉ቇ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

               +
𝑟ଶℎଵ

ℎଶ

ൣ𝛼ଶ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 2𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ ቆ−𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ +
𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

1

𝐽
𝑇௅ ቇ 

                  −
𝑛௣𝑟ଶℎଵ

ℎଶ

ቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ ൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠൫𝑛௣𝜃൯ +

𝑛௣
ଶ𝑟ଶℎଵ

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯
ଷ

𝑠𝑖𝑛൫𝑛௣𝜃൯ −
𝑟ଶ𝛼ଵℎଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙̂)

𝑀
ቇ ൣ𝜔̈௥௘௙ + 𝑘ఠ𝜔̇௥௘௙൧ 𝑠𝑖𝑛൫𝑛௣𝜃൯ +

𝑟ଶℎଵ

𝐽ℎଶ

𝑇௅ 𝑠𝑖𝑛൫𝑛௣𝜃൯ 

𝑓ଵଶ (∙) = −
𝑅

𝐿
ቈ𝑣ఉଵ −

𝑟ଶ

ℎଶ

ቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ቇ 𝑐𝑜𝑠൫𝑛௣𝜃൯ +

𝑟ଶ𝑛௣

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯
ଶ

𝑠𝑖𝑛൫𝑛௣𝜃൯቉ 

                  +
𝑟ଶ𝛼ଵ

ℎଶ

ቈ1 − 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ቉ ൭−

𝑘௜

𝑅 + 𝑘௣

ቂ൫𝜉ଶ + 𝑥̅௤൯ − 𝑘௠൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁቃ − 𝑘௜ ቂ𝑧ఈ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ − 𝑧ఉ 𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝑘௜𝑀𝑠𝑎𝑡 ቆ
𝜓(∙)̂

𝑀
ቇ −

𝑘௜𝑘௣𝑀

𝑅 + 𝑘௣

𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ൱ 𝑐𝑜𝑠൫𝑛௣𝜃൯ 

                  −
𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ

𝜌ଶ𝑘௠

𝜀ଶ𝑛௣𝑘෠௠𝜔⋆
൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝜂ଷ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ ቈ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙̂)

𝑀
ቇ + ൫𝜉ଶ + 𝑥̅௤൯቉ቇ 𝑐𝑜𝑠൫𝑛௣𝜃൯ 

                  −
𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑘௠

𝑛௣𝑘෠௠𝜔⋆
ቂ𝑣ఈଶ𝑐𝑜𝑠 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁ + 𝑣ఉଶ 𝑠𝑖𝑛 ቀ𝑛௣൫𝜃 − 𝜀ଶ(𝜂ଵ + 𝜂̌ଵ)൯ቁቃ + 𝜀𝛼ොଶ𝜂ଶ + 𝛼ොଵ𝑘௣𝑀 ቈ𝑠𝑎𝑡 ቆ

𝜓(∙)̂

𝑀
ቇ − 𝜙ఌ ቆ

𝜓(∙)̂

𝑀
ቇ቉ −

1

𝐽
𝑇௅ ቇ 𝑐𝑜𝑠൫𝑛௣𝜃൯ 

                  −
𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ (𝑘ఠ − 𝛼ොଶ) ቆ−

𝜌ଶ𝑟ଶ𝑘௠ℎଵ

𝑛௣𝑘෠௠𝜔⋆ℎଶ

ቈቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯

ଶ
𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ቉ቇ 𝑐𝑜𝑠൫𝑛௣𝜃൯ 

                  −
𝑟ଶ

ℎଶ

ൣ𝛼ଶ 𝑐𝑜𝑠൫𝑛௣𝜃൯ + 2𝑛௣൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛൫𝑛௣𝜃൯൧ ቆ−𝛼ଵ𝜉ଵ 𝑠𝑖𝑛 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ + 𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ +
𝑘௠

𝐽
ൣ𝑧ఈ 𝑠𝑖𝑛൫𝑛௣𝜃൯ − 𝑧ఉ 𝑐𝑜𝑠൫𝑛௣𝜃൯൧ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ

𝜓(∙̂)

𝑀
ቇ 𝑐𝑜𝑠 ቀ𝜀ଶ𝑛௣(𝜂ଵ + 𝜂̌ଵ)ቁ −

1

𝐽
𝑇௅ ቇ 

                  −
𝑛௣𝑟ଶ

ℎଶ

ቆ𝛼ଵ൫𝜉ଶ + 𝑥̅௤൯ − 𝛼ଶ൫𝜔௥௘௙ − 𝜉ଷ൯ + 𝛼ଵ𝑘௣𝑀𝜙ఌ ቆ
𝜓(∙)̂

𝑀
ቇ −

1

𝐽
𝑇௅ ቇ ൫𝜔௥௘௙ − 𝜉ଷ൯ 𝑠𝑖𝑛൫𝑛௣𝜃൯ +

𝑛௣
ଶ𝑟ଶ

ℎଶ

൫𝜔௥௘௙ − 𝜉ଷ൯
ଷ

𝑠𝑖𝑛൫𝑛௣𝜃൯ +
𝑟ଶ𝛼ଵ

ℎଶ𝛼ොଵ

𝜙ఌ
ᇱ ቆ

𝜓(∙̂)

𝑀
ቇ ൣ𝜔̈௥௘௙ + 𝑘ఠ𝜔̇௥௘௙൧ 𝑐𝑜𝑠൫𝑛௣𝜃൯ −

𝑟ଶ

𝐽ℎଶ

𝑇௅ 𝑐𝑜𝑠൫𝑛௣𝜃൯ 

𝑓ଵଶௗ(∙) =
𝑟ଶ𝛼ଵℎଵ

ℎଶ

ቈ1 − 𝜙ఌ
ᇱ ቆ

𝜓(∙)̂

𝑀
ቇ቉ ൭−

𝑘௜

𝑅 + 𝑘௣
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B5. Parameters Perturbation Figures 

We investigated the robustness of the proposed controller to the effect of parameter 

perturbation. The following figures show the experimental results of this investigation. 

 
Figure B5.1 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.2 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.3 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.4 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.5 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.6 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.7 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.8 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.9 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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Figure B5.10 (a) Reference speed, speed of PMSM, and estimated speed, (b) Speed error from 

reference speed and speed estimation error, (c) Position estimation error. 
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