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ABSTRACT

TIME-DEPENDENT MODELING OF VOLCANO DEFORMATION IN ALASKA AND
TRANSIENT DETECTION USING MACHINE LEARNING METHODS

By
Xueming Xue

Geodetic observations provide a measure of surface deformation caused by underground
geophysical processes. GPS and INSAR are the most two widely used geodetic techniques, and are
often combined because of their complementary advantages. This dissertation presents several
methods and study cases to detect and model transient deformation recorded by GPS and INSAR
measurements.

A time-dependent inversion filter based on the unscented Kalman filter is developed to
combine INSAR and GPS measurements for volcano deformation modeling. The INSAR and GPS
data at Okmok since the 2008 eruption shows a shallow magma system to be sill-like structure at
~0.9 km and a Mogi source at ~3.2 km depth. The shallow sill structure was not seen before the
2008 eruption. Five inflation episodes have been observed from 2008 to 2019, each decaying
exponentially in time. A hydraulic model with the episodically increasing pressure of the deep
magma reservoir and increasing influx from deep to shallow sources volcano is discussed to
explain consecutive inflation events.

Most of the available INSAR and GPS data, including campaign GPS, continuous GPS,
single INSAR and InSAR times series, are used to recover the magma supply history of Akutan,
Makushin and Westdahl volcano over the past 20-25 years since the first geodetic measurements
were made there. The time-dependent volume changes show diverse temporal patterns across the

three volcanoes. A small residual velocity signal is extracted by comparing the estimated regional



velocity to the current block models. Two possible coupling models are tested to explain the
residual velocity signal as a result of slip deficit on the megathrust.

A sequence-to-sequence ML method is proposed to detect the transient signals in GPS time
series. The model is trained using synthetic data time series that are relatively short in length but
can be applied to time series of arbitrary length. The model is validated by being applied to some
real-world datasets containing transient signals with various characteristics. By decimating a time
series to a lower data rate to effectively compress time, the model is able to recognize long-duration
transients even when it has been trained only on short-duration transients. This indicates the

similarity in nature between the short and long transients.
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Chapter 1: Introduction

The Global Position System (GPS) and the Interferometric Synthetic Aperture Radar
(INSAR) are the two satellite-based techniques for measuring surface displacements that are widely
used for geodetic studies. GPS provides three-dimensional (east, north and vertical in a local
coordinate system) displacement measurements of in-situ ground monuments with high temporal
resolution (usually daily solutions). INSAR can provide displacement measurements with high
spatial resolution in the satellite line-of-sight (LOS) direction but at low temporal resolution. An

example of GPS time series and INSAR time series are shown in Figure 1.1.
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Figure 1.1. Example of GPS and InSAR time series. (left) GPS data at site OKSO located at south
flank of Okmok volcano. (right) INSAR data is from TerraSAR descending track 93 for Okmok

volcano.

INSAR time series are used more and more often together with GPS time series for

investigating how geophysical processes evolves in time (e.g. Bekaert et al., 2016; Henderson &



Pritchard, 2013). However, both GPS and InSAR time series can contain significant nuisance
signals that are not of interest (e.g. phase ramps, seasonal variations, common mode errors). There
has been a sustaining interest in the geodetic community in how to detect and model transient
deformation of interest in GPS and InSAR timeseries measurements, and there are two typical
strategies for this question.

One way is to directly model the timeseries time-dependently, such as the network
inversion filter (NIF) (Segall & Matthews, 1997). The NIF uses a stochastic description to describe
how a geophysical process evolves in time using the linear Kalman filter. The extended NIF (ENIF)
(McGuire & Segall, 2003), which is essentially based on the extended Kalman filter, was later
proposed for nonlinear estimation of the hyperparameters involved in the model, such as
smoothing wieghts. The NIF method has achieved great success in studying slow slip events for
the Cascadia region (e.g. Bartlow et al., 2014; Schmidt & Gao, 2010). The NIF is a sequential
estimator in what the modeling process ingests the observations epoch by epoch, providing an
evolving estimate of the geophysical parameters. It is more computational efficient compared to
the one-step least squares. In terms of volcano deformation modeling, the unscented Kalman filter
(UKF) (Julier & Uhlmann, 2004; Wan & Van Der Merwe, 2000) and the ensemble Kalman filter
(EnKF) (Evensen, 1994) have been adopted for nonlinear models (Fournier et al., 2009; Gregg &
Pettijohn, 2016). Instead of calculating the exact Jacobians of a nonlinear model, the UKF/EnKF
approximates the Jacobians using simulation results after passing a set of points selected randomly
or according to a certain rule. Therefore, they perform better than the NIF/ENIF for modeling
volcano deformation, as the volcanic models are often highly nonlinear.

One focus of this dissertation is to address two main questions using geodetic observations

on volcano deformation: what is the geometry of the magma plumbing system beneath a volcano



and how does the magma intrusion evolve over time? A different geometry of the magma plumbing
system will result in a different deformation pattern in space. The geometry of the magma body or
bodies that are being pressurized can be determined with INSAR data and GPS data from multiple
sites distributed across the volcano. The temporal evolution of the magma intrusion can be
measured by the relative volume change in time, which can be estimated using time series
observations. The time-dependent volume change can be then used to study the magma supply
dynamics based on more physics-based models.

In Chapter 2, I aim to expand the time-dependent inversion filter based on the UKF that
was first developed by (Fournier et al., 2009) for modeling volcano deformation. The original
method is able to utilize GPS observations only, here it is improved to be able to integrate INSAR
observations as well. I then apply the improved inversion filter to modeling the post-eruptive
deformation at Okmok volcano, Alaska, since 2008. By using this improved inversion filter, |
address discrepancies in the source depth inferred by GPS and InSAR individually (Freymueller
& Kaufman, 2010; Qu et al., 2015), and invert for time-dependent volume change estimates from
2008 to 2019. Based on volume change history, the volume deficit theory for forecasting the
eruption timing at Okmok and magma influx dynamics from deep to shallow sources are discussed.
This work has been published in Journal of Geophysical Research: Solid Earth
(doi:10.1029/2019JB017801).

Chapter 3 presents another work using the method proposed in Chapter 2, where | utilize
most of the available INSAR and GPS data to recover the magma supply history of the three active
volcanoes (i.e. Westdahl, Akutan and Makushin) in the esat-centeral Aleutian arc, Alaska, over
the 2025 years since the first geodetic measurements were made at each volcano. This study aims

to provide an overall picture of volume change over time by combining GPS and INSAR data that



were from different satellite missions or viewing geometries, or focused only on a specific time
window. Another goal of this work is to evaluate the subduction coupling effect in the east-central
Aleutians. The block motion of the Alaska Peninsula and eastern Aleutians is well known (Elliott
& Freymueller, 2020; Li et al., 2016), but not to the central part due to limited GPS observations
which are also affected by the large amount of transient volcanic deformation. With the volcano
deformation is well modeled, an accurate secular velocity for the region is determined and can be
used to evaluate the subduction coupling model. This work has been published in Geophysical
Research Letters (doi:10.1029/2020GL088388).

The alternative way to model time-dependent deformation is to detect and extract the
transient deformation first, and then the extracted transient deformation is then used for modeling
the physical model of the process involved. Proposed methods include principal component
analysis (Dong et al., 2006), Gaussian wavelet transform (Melbourne et al., 2005), sparse
estimation with template base functions (Riel et al., 2014), multichannel singular spectrum analysis
(Damian Walwer et al., 2016) and relative strength index (RSI) (Crowell et al., 2016). While the
former way, based on some kind of Kalman filter method, uses the time series data to estimate
parameters of a physical model, these methods are based on a pure mathematical decomposition
for transient signal detection, aiming to improve the signal-to-noise ratio by utilizing the spatial or
temporal correlation inherent to the time series. More recently, machine learning (ML) methods,
especially neural networks, are used as a data mining tool in many geophysical studies, such as
seismic phase picking (Ross et al., 2018; Zhu & Beroza, 2018), volcanic deformation detecting in
satellite images (Anantrasirichai et al., 2019), and slow slip events detecting in sea floor pressure

data (He et al., 2020), etc.



Inspired by the above ML application, Chapter 4 presents a sequence-to- sequence ML
model for transient detection based on long short-term memory (LSTM) cells, a special type of
recurrent neural network (RNN). In the previous ML applications for time series observations (e.g.
He et al., 2020; Zhu & Beroza, 2018), the common solution is to scan the time series through a
time window and then do the classification just using the data within that time window. This
solution seems not an efficient way as the neighboring time windows are using a lot of the same
data. Also it cannot take into account global information from the entire time series, which might
be more useful for the detection. In this work, | propose a sequence to sequence ML model which
scans through the entire time series only once, taking each data point as the input to output its
detection result. The methods for model training and parameter optimization are presented. The
model performance is evaluated through synthetic tests, and then validated on some real data.

Chapter 5 summarizes the major findings of this dissertation and discuss some works could

be explored for improving on this work.



Chapter 2: Modeling the post-eruptive deformation at Okmok based on the GPS and
INSAR timeseries: changes in the shallow magma storage system

2.1. Abstract

Based on the unscented Kalman filter (UKF), we develop a time-dependent inversion filter
combining GPS and InSAR time series observations for modeling volcano deformation. We use
the Variance Component Estimation method as a means to assign the relative weights for GPS and
INSAR data. Then we use the inversion filter to model the post-eruptive deformation at Okmok
volcano, Alaska. We find that a Mogi source at 3-4 km depth fits the INSAR data well, while the
best fit to the GPS data is an oblate spheroid source at about 2.5 km depth. Our final model consists
of a shallow sill at ~0.9 km and a Mogi source at ~3.2 km depth, which well fit both the GPS and
INSAR data simultaneously. We think the Mogi source obtained here is the same source account
for the pre-eruptive deformation. The shallow sill is a new structure that was not seen before the
2008 eruption. From 2008 to 2019, we have observed five inflation episodes, each of which decays
exponential in time. We find that the characteristic time scale of those inflation episodes decreases
with respect to time. The total volume change from the two sources is 0.068 km3, which recovers
50-60% of the volume decrease during the 2008 eruption.
2.2. Introduction

2.2.1. Okmok volcano and its recent eruptions

Okmok volcano is one of the most active volcanoes in the central Aleutian arc, Alaska.
Within the past century, significant eruptions occurred in 1945, 1958 and 1997 (Miller et al., 1998).
These events were all effusive eruptions originating from Cone A (Figure 2.1). The most recent
eruption occurred in 2008 from July 12 to late August. There are many differences between the

2008 eruption and the previous three events. First, the 2008 eruption opened a new cone,



Ahmanilix, close to Cone D but far from Cone A. Second, it was more phreatomagmatic rather
than effusive, indicating the 2008 eruption was involved with water to a great extent. Several
hundred million cubic meters of ash and tephra deposits were ejected during the eruption and
blanketed the whole caldera and part of the northeastern flank. Third, the size of the 2008 eruption
was bigger than the previous historical eruptions. It produced a minimum dense rock equivalent
volume of 0.17 km3 which is about three times larger than the volumes of the 1958 and 1997
eruptions (J. F. Larsen et al., 2015). The geodetic models also show the total magma volume
decrease during the 2008 eruption was 2~3 times larger than the volume decrease during the 1997

eruption (Lu et al., 2010).
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GPS sites used in our study are labelled.



Persistent ground deformation has also been observed between the eruptions at Okmok
volcano. (Fournier et al., 2009) inverted 6 years of continuous and campaign GPS data and found
a stable Mogi source at ~2.6 km depth. (Lu et al., 2010) analyzed 150 InNSAR images between the
1997 and the 2008 eruptions and found a Mogi source at ~3 km depth. (Biggs et al., 2010)analyzed
a combined dataset including more than 15 years of INSAR and continuous GPS measurement and
found that all pre-2008 data could be explained well by a single Mogi source at 3.4 km depth.
These studies, no matter what data are used, indicate that all the deformation before the 2008
eruption can be explained by a single Mogi source centered beneath the caldera at ~3 km depth.
As for the post-eruptive source model, (Freymueller & Kaufman, 2010) found that a shallower
source than the pre-eruptive source located at 1.9 km depth was best to interpret the co-eruptive
and early post-eruptive deformation based on GPS measurements. However, (Qu et al., 2015)
inverted the post-eruptive INSAR time series observations from 2008 to 2014 and found a source
at ~3.9 km depth, apparently twice as deep as the GPS estimated source. Although these two
studies focused on different time windows, the source locations they determined seem to be too
different, which prompts a further study to determine the source geometry for the post-eruptive
period.

2.2.2. Time-dependent inversion filters

It is always better to take advantage of time-series observations, which capture the temporal
evolution of the source model and then can help us understand the magma dynamics. The most
common way to utilize time series observations is through a time-dependent inversion filter.
Compared to least squares methods, inversion filters invert the time series of observations in a
sequential way and demand much less computational cost. There have been a lot of efforts made

to develop such techniques. The pioneering application in geodesy is the network inversion filter



(NIF), which is essentially a linear Kalman filter. The NIF was first proposed to study slow slip
sequences and has been successfully applied in many cases (Bartlow et al., 2014; Bekaert et al.,
2016; Segall & Matthews, 1997). The extended NIF is then developed to simultaneously estimate
the slip distribution and Laplacian smoothing factor based on the extended Kalman filter which
linearizes the system by calculating the Jacobians (McGuire & Segall, 2003). Although the
extended NIF can deal with nonlinear systems, there will be usually unpredictable errors when
linearizing highly nonlinear systems which are exactly the case for most volcanic source models.
Apparently, the NIFs are not suitable to invert for volcanic sources because the forward models of
volcano deformation are usually highly nonlinear. Another extension of the Kalman filter, called
the unscented Kalman filter (UKF), was later introduced to model volcano deformation by
(Fournier et al., 2009). They developed an inversion filter that was able to model GPS time series
and then recovered the kinemics of the volcanic source at Okmok volcano from 2004 to 2008.
Instead of calculating the exact Jacobians, the UKF approximates the Jacobians of the nonlinear
model by passing through a set of sigma point selected based on a method called the unscented
transformation (Julier & Uhlmann, 2004; Wan & Van Der Merwe, 2000). In this study, we will
extend the work of (Fournier et al., 2009) by making the UKF be able to combine GPS and INSAR
measurements. Readers should refer to (Fournier et al., 2009) or (Julier & Uhlmann, 2004) for
technical details about UKF.

(Gregg & Pettijohn, 2016) recently introduced a data assimilation framework for inverting
volcanic sources using Finite Element Models (FEMs) and the ensemble Kalman filter (EnKF).
Their method has been also demonstrated to be effective studying real datasets (Albright et al.,
2019; Zhan & Gregg, 2017). The EnKF does not calculate the Jacobians explicitly either. It

approximates the Jacobians of the nonlinear system using an ensemble of models, which are



sampled by the use of the Monte Carlo Markov Chain method. Both the UKF and EnKF will
perform well when the models are highly nonlinear, but we chose to use UKF in this work because
(Fournier et al., 2009) have demonstrated that it is effective for this kind of problem. In addition,
the UKF is more efficient when using simple models although both the UKF and EnKF can be
expected to perform well and give equivalent results. The number of sampling points used in the
UKF is 2n+1, where n is the number of unknown parameters, and thus for our problem with very
few parameters the number of samples required is small. When n becomes very large, the UKF
becomes less efficient than the EnKF because the number of models needed in the EnKF ensemble
is less dependent on the number of unknown parameters. (Gregg & Pettijohn, 2016) recommended
using between 50 to 200 models in the ensemble with the EnKF. Also, it requires a significant
convergence time although this should decrease as the number of models in the ensemble decreases.
We expect that the EnKF should perform better after reaching convergence for FEMs with a larger
number of parameters.
2.3. Data

2.3.1. GPS data

GPS measurements record the displacement of an in-situ monument in three dimensions
(east, north and up). The post-eruptive GPS network at Okmok volcano is composed of seven sites
(Figure 2.1). Among them, OKCE, OKSO and OKFG are continuous sites installed in 2002 and
OKNC was built in 2010 after the eruption (Figure 2.2a). OK13, OK31 and OK37 are temporary
sites surveyed for several months right after the eruption, and were resurveyed in the summer of
2010. Data availability in time is shown in Figure 2.2c. All the GPS data were processed based on

daily solutions and transformed into ITRF2008, using the approach of (Fu & Freymueller, 2012).
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Following (Fournier et al., 2009), we use weekly averaged positions and rescale the noise

covariance based on the short-term scatter. The scaling factor is 4.5.

(@) 0 OKCE OKNC OKsO
ug___r__-fz_—“_-; ________ [ 1] I = B,
%20 — g g O T e
w-40 w 2 o 2
2010 2012 2014 2016 2018 2010 2012 2014 2016 2018 2010 2012 2014 2016 2018
= 5 —
§ e il £ ~ a3
£ O e g O ——-—- —\;—.{
=
s " 2 s
2010 2012 2014 2016 2018 2010 2012 2014 2016 2018 2010 2012 2014 2016 2018
£
_ [ -
2010 2012 2014 2016 2018 2010 2012 2014 2016 2018 2010 2012 2014 2016 2018
Time (yr) Time (yr) Time (yr)
193 2008 71-201168 T116:201157-2014 77 (©)
" - 2008 eruption
e . . . ; . .
T93 -t " " 1 i
[+
< T116 1 [ " "
2
=| E222 1 " il
L E1156F i "
r OKSO - oo — -— i
OKNC r — -
= ——
o| OKCE —
o
Ol oka7| == 1 8
OK31 [ == !
- OK13 | mem ! 8
| . | .

i I i
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Time (yr)

Figure 2.2. (a) Baseline measurements from the three continuous sites OKCE, OKNC and OKSO
relative to the site OKFG. (b) Examples of the INSAR data from each track showing line-of-sight
displacements. Black arrow on the top-left panel is satellite azimuth and white arrow is satellite
look angle. (c) Data availability in time. Each bar represents a data point. The gray line separates
the GPS data into two parts. The data from 2008 to 2016 are used in the combination with INSAR
mainly to determine the source geometry, and the data after are used only for the volume change

estimation (see section 2.4).
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We use the baselines relative to OKFG instead of the absolute displacements. First, the
GPS network is not robust enough for the inversion filter to directly estimate regional velocity.
OKEFG is the only site located far from the caldera center and most of the signals recorded should
be non-volcanic deformation. By using the baseline observations, we avoid estimating the regional
velocity and can have a better constraint on the volcanic sources. Additionally, deeper deflation
were observed at OKFG during the first year after the eruption (Freymueller & Kaufman, 2010).
These deflation signals may reflect activities of deeper magma sources. It is not likely that we can
have a reliable estimation for that with our data. Using the baseline measurements also remove the
signals from potential much deep sources so that we can have stronger constraints on the shallow
sources which we will focus on in this paper.

Note that the GPS measurement equation (which will be later discussed in section 3.2)
when using baseline measurements should be written as dyseline = g (M) — gokrg (M), where g
is the forward model of a volcanic source model. The GPS measurements mentioned in the rest of
this paper refers to the baseline measurement relative to OKFG.

2.3.2. InSAR data

INSAR measurements record the displacement of a coherent pixel on the ground in the line-
of-sight direction to a remote sensing satellite. We use the INSAR data from Envisat ascending
track 222 (E222), Envisat descending track 115 (E115), TerraSAR ascending track 116 (T116),
and TerraSAR descending track 93 (T93) (Figure 2.2b). The Envisat data are available until 2010
and the TerraSAR data are available until 2014 (Figure 2.2c). The data were processed(Qu et al.,
2015), and readers are referred to that paper for details on satellite information and data processing.
We use their data, but mask out the INSAR coherent pixels inside the caldera (Figure 2.2b) because

we find that the INSAR data would be fit more poorly if those pixels are included, and there are
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systematic post-fit residuals inside the caldera. We infer that these residuals represent actual

surficial deformation related to the thick tephra deposits from the 2008 eruption (see section 2.7.1).

Table 2.1. Estimated parameters to construct the covariance matrix for INSAR images.

(R;rfﬁ(:;gaﬁ rene) Acquisition Time | Variance (mm?) Co(vr;a]::]a;;\ce Len%tkr:nicale

20090810 23.212 1.095 0.679

20090821 48.431 1.518 0.456

20090901 45.170 2.041 0.559

T93 20110806 151.107 4.104 0.714
(20080914) 20110817 189.402 4.838 0.964
20110908 108.336 2.607 0.679

20140901 354.503 24.856 0.919

20140912 340.063 21.716 0.865

20120917 27.800 2.173 0.687

20121009 34.559 2.338 0.633

20130711 31.879 1.287 0.694

T116 20130904 47.824 2.690 1.115
(20110702) 20140811 47.685 2.111 0.813
20140822 41.869 1.986 1.167

20140924 78.075 4.160 1.224

20141005 42.212 1.740 0.685

20090901 10.566 0.852 0.879

EI115 20100713 7.929 0.730 2.698
(20090623) 20100817 24.868 1.311 2.367
20100921 47.020 6.300 2.746

20090701 37.839 2.515 1.389

(20%!32120229) 20090805 33.327 2171 1,589
20091014 31.539 0.810 1.022
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Unlike GPS, the uncertainties of INSAR data are not directly given and it is not trivial to
include INSAR uncertainties in the time-dependent inversion filter. The INSAR uncertainties
describe the observation noise which are mainly caused by atmospheric delays and are spatially
correlated. They are assumed to follow a Gaussian distribution, with correlations between nearby
pixels so that the covariance matrix is fully populated instead of diagonal. Here we use the method
of sample semi-variogram and semi-covariogram to construct the variance-covariance matrix for
each interferogram (Lohman & Simons, 2005). First, we estimate a Mogi source and a linear phase
ramp for each original interferogram using least squares. The residuals should be mainly the errors.
We then carry out the error analysis on the residuals. The parameters for constructing the variance-
covariance matrix of each interferogram are listed in Table 2.1. Finally, we resample all the
interferograms using the quadtree method (Simons et al., 2002) and propagate the corresponding
variance-covariance matrix. These downsampled interferograms, with their variance-covariance
matrix, are used in any time-dependent inversions of this study.

2.4. Time-dependent inversion method
2.4.1. Volcanic source models

In this study, we use the analytical model which calculates the deformation from an
arbitrary oriented spheroid (P. F. Cervelli, 2013) but we simplify the model to make the inversions
more robust. First, we fix the dip to 90° to only estimate a vertical oriented spheroid source. In
this case, the strike becomes a dummy variable. Then, we estimate the ratio of the vertical to the
horizontal axis instead of the absolute semi-axes dimensions (a point source assumption), which
allows us to know the shape but not the actual size of the source. The point source assumption is

valid when the size of the source is small enough compared to its depth. For very shallow sources,
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the point source assumption would be incorrect. We have tested if the point source assumption is
valid when the source is estimated to be shallow enough.

The simplified model then determines a vertically oriented spheroid using five parameters:
location (east, north, vertical), volume change and axis ratio, This model is equivalent to a Mogi
source when the axis ratio equals to 1 (Mogi, 1958). When the ratio is larger than 1, the model is
a prolate spheroidal source (Yang et al., 1988). When the ratio is smaller than 1, the model is
equivalent to an oblate spheroidal source when the ratio is less than 1. When the ratio is much less
than 1 (e.g. 0.01), the model approximates a penny-shaped crack source or so called circular sill
(Fialko et al., 2001). We present the source strength in terms of volume change. This is an
interpretation that the pressure changes are due to increasing the volume of the reservoir by adding
new magma.

2.4.2. Nuisance parameters associated with the measurements

While always the same source parameters, different nuisance parameters will be estimated
for different types of data. For GPS data, an initial position for each component (east, north and
vertical) is estimated along with the volcanic source parameters. As we are using baseline
observations, we do not need to estimate a regional velocity or frame translation but we estimate
a common mode error for all GPS data. The source of common mode could be the partitioning
between OKFG and other sites due to the slab subduction, considering that OKFG is more than 10
km apart and is closer to the Aleutian trench.

For InSAR data, two types of nuisance parameters are estimated. One is the linear phase
ramp. As the phase ramps should not be correlated in time, they are estimated as white noise. The
other type of nuisance parameter is the initial volume change, which represents the volume change

at the reference acquisition time of each track. They are estimated as a constant. If more than one
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source is modeled in the UKF, an initial volume change will be estimated for each source. For the
sake of reducing the number of unknown parameters, the initial volume change parameters can be
shared by multiple INSAR timeseries if their starting times are same or very close (e.g. shorter than
one week). This is not vital but can help reduce the total number of unknown parameters, especially
when modeling multiple sources. In this study, we only estimate one set of initial volume change
parameter for both T93 and E222 as their reference acquisition times are in the same week.
Given one GPS timeseries and one INSAR timeseries, now we can write the state transition

equation with the process noise as below,

my | my_ Atk(?fn
o] | [es] [ s ]

C
dy [ = I do [,Qx= 0 | 1)
Ik 0 k1 l 52 J
VO 1 VO 0
where m is general source model parameters; c¢ is the common mode for all GPS
timeseries; d, is the initial position for each site; r is the linear phase ramp and Vj, is the reference

volume change for the INSAR timeseries; 1 is the identity matrix. The process noise deviation is

denoted as &. The corresponding measurement equation at a certain epoch can be written as below,

~ 1G(m, Vy, Xusar) + Lr InSAR 2 2)

dGPS ] G(m,XGps) +cCc+ dO] _ lGGPS eéPS
o €InSAR

dInSAR

where d is the data; € is the data noise deviation; x is the measurement location; Lr

represents a linear phase ramp where L = [I x!'SAR  xInSAR]. G js the forward model. The

scaling factor of the noise covariance matrix is ¢S for GPS data and ¢™SAR for InSAR data.
Other symbols are same as in equation (1).

As the time interval of INSAR time series can be large, (Bekaert et al., 2016) introduced

pseudo observations when integrating INSAR data into the NIF. In practice, it is also helpful to use
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pseudo observations for INSAR data in the UKF. The pseudo observations essentially provide
additional constraints on the initial/reference volume change and then help calibrate all the INSAR
data to the same time frame along with GPS data. (Bekaert et al., 2016) generated the pseudo
observations to be all zeros. We find that this may be robust for the linear inversion filters (i.e. the
network inversion filter), but may cause numerical instabilities for a nonlinear inversion filter (i.e.
the UKF). Here we generate INSAR pseudo observations from a normal distribution with zero
mean and very small deviation (e.g. 1e-6).

2.4.3. Initialization and hyperparameter tuning

An inappropriate prior or initialization could cause the divergence of the UKF. However,
based on extensive testing for this problem, it is not necessary to give a highly accurate prior
because a reasonable prior is easy to obtain, and a prior with uncertainty of a few kilometers for
the horizontal location and 1-2 km for the source depth ensured rapid convergence. In choosing
the sigma points for the UKF, we used hyperparameters determined by (Fournier et al., 2009),
which also worked well for the similar source models used in this study, and convergence of the
UKF was not sensitive to variations in these hyperparameters.

It is much more important to determine the optimal hyperparameters (i.e. 6,,, 8. and &,.)
that control the temporal smoothness of the corresponding unknown parameters. A larger
hyperparameter allows the parameter to change faster in time but could cause overfitting of noise
in the data. A smaller hyperparameter makes the parameter change slower but could cause
underfitting of the data. We find that the values of &, and &, for the nuisance parameters do not
impact much the final results, so we simply set §. = [10,10,10] (mm) and §. = [100,1,1] (mm,
mm/km, mm/km). The values of &,, for the source parameter plays a much more significant role

on the final estimates. There are two typical methods used to obtain the optimal hyperparameters:
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direct estimation (McGuire & Segall, 2003) and maximum likelihood estimation (Segall &
Matthews, 1997). Direct estimation is more compact and efficient but requires a denser and more
stable observation network to get a reliable result. When combining the GPS and InSAR
measurements, the direct estimation method is not very robust because the observation network is
dramatically changing whenever an INSAR image is available, unless the time interval of a INSAR
timeseries is comparable with GPS (e.g. weekly solution). Therefore, we choose the maximum
likelihood estimation to estimate the optimal values of §,, in our study.

2.4.4. Relative weights between datasets

Finally, when combining multiple datasets we apply a variance scaling on each dataset,
using the simplified Helmert Variance Component Estimation (HVCE) approach (Xu et al.,
2009)[Xu et al., 2009]. From equation (2), we expect the data noise to be statistically described by
the noise covariance matrix. In other words, the reduced chi-square of each dataset properly
weighted is expected to be equal to 1. The final scaling factor of each dataset are computed using
an iterative process, starting with equal scaling factors for all datasets. At each iteration, the scale
factor of the data covariance matrix for each dataset is the square root of the reduced chi-square,
based on the residuals of the data type.

O'j=1, ]:1

o; = ’vT_ Qv._ (3)
] jlnjl’ j>1

where j counts the iteration number; v is the residual for a given data type; n is the number
of data; and Q is the inverse of the noise covariance matrix for that data. The residuals of the jth

iteration, v;_, were calculated with o;_; being the scale factor and then a new scale factor g; is

calculated based on v;_;. The iteration stops when o; = g;_;.
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2.5. Time-dependent source models

In this section, we present the time-dependent source models that best fit the data in each
case (i.e. GPS only, InNSAR only, GPS and INSAR jointly). We also describe how to determine the
source geometry and the hyperparameters for each case. For the comparison with INSAR, we use
the GPS data before 2016 because we do not have INSAR data after then.

2.5.1. GPS only

For inverting the GPS data, we use the simplified spheroid model and estimate the axis
ratio. Following the general source model for pre-eruptive deformation, we tried to invert a single
Mogi source (the axis ratio is fixed to be 1). We found that a single Mogi source is not adequate
to fit the data because of two main reasons. (1) With different initializations, either OKCE or
OKNC will be underestimated. There are more than 10% of the signals in the vertical component
that are not captured, which is a large amount of signal considering the total magnitude of
deformation at these two sites. (2) There were unreasonable shifts in the estimates of source
location estimates when OKCE temporarily dropped out of the network in 2015, indicating that
the OKCE and OKNC data are best fit by two different Mogi sources.

The next step is to determine the hyperparameters. We first estimate the axis ratio as a
constant, which assumes the source shape does not change over time so that the corresponding
hyperparameter is set to zero. Then, we assume the hyperparameters of the source location are
same in the three components (east, north and depth). Hence, there are two hyperparameters to be
estimated - one for the source location and one for the volume change. We run a two-dimensional
grid search and obtain the likelihood contour (Figure 2.3a). The preferred model is given at around

(1e1.5,1e0.5). Another take away from the likelihood contour is that a moving source may be not
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necessary because the likelihood stays almost the same even with a very small location

hyperparameter (e.g. 0.1).
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Figure 2.3. Likelihood (-2L) contours as function of the hyperparameters for volume change and
source location (a) when using GPS data only and (b) when using INSAR data only. Star markers

represent the preferred model by maximum likelihood estimation.

Figure 2.4 shows the estimates of the best fitting model. We can see only small variations
less than 200 meters in all the components of the source location. This is consistent with the
maximum likelihood results that a relative stable source is indicated. On average, the source is
estimated to be in the center of the caldera at ~2.6 km below the sea level. It is notable that the
axis ratio is estimated to be ~0.5, which suggest an oblate spheroid source even taking into account
the uncertainty. This geometry is quite different from a Mogi source and represents a substantial
change in comparison to the pre-eruptive deformation pattern. The estimates of volume change

match the temporal features in the time series at OKCE and OKNC. Similar to the pre-eruptive
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model, the GPS data indicates that the post-eruptive model is spatially stable and the uplifts are

mainly due to the volume increase.
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Figure 2.4. Time-dependent source model based on the GPS data only. All parameters are allowed
to vary with time except for the ratio. The solid lines are the estimated values and the error bars
show 2c uncertainties. The reference point of the Cartesian coordinate is the geometric center of

the caldera. The volume change is assumed to be zero in the beginning.

2.5.2. InSAR only

We invert only a Mogi source for the INSAR data. In other words, we fix the axis ratio to
be 1. We first tried to model a simplified spheroid source as we did in the GPS-only inversion. The
experiments showed that different initializations return similar estimates and overall goodness of
fit and the estimated axis ratio is always close to the initial value. This indicates that the INSAR
data have poor constraints on the axis ratio because of lack of near field observations (i.e.

observations within the caldera region right above the volcanic sources).
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The same method as for the GPS data is used to determine the optimal hyperparameters.
According to the likelihood contour (Figure 2.3b), the preferred model is given at around
(1e2.2,1e0.5). Unlike with the GPS data, the INSAR data suggest a moving source because we do
obtain a worse model with a very small hyperparameter for source location.

Figure 2.5 shows the estimates of the best fitting model. The model shows that the source
moved to the south and to the east by about 1.5 km. This explains why the maximum likelihood
solution favors a moving source. Similar horizontal motions were found for this dataset by (Qu et
al., 2015) using a series of least squares inversions. In addition, the model shows a slow shallowing

of the source.
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Figure 2.5. Time-dependent source model based on the INSAR data only. The axis ratio is fixed to
be 1. The gray lines are the GPS estimates shown in Figure 2.4. The uncertainties of the GPS

estimates are small and not shown here.
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2.5.3. GPS and InSAR

It is obvious that the best fit models for the GPS and INSAR data are not reconciled when
inverting for a single volcanic source. Furthermore, we conduct some experiments showing that
one spheroid source cannot fit the GPS and INSAR at the same time because there are always
jumps in the estimates at the time of the INSAR data acquisitions. We can smooth down these
jumps by using smaller hyperparameters but the goodness of fit will be dramatically lower.

Recall the results of single inversions, the INSAR data suggests a Mogi source at 3~4 km
depth. The source at such depth is consistent with the source determined for the pre-eruptive period,
and it was commonly explained as a consistently replenished magma reservoir by previous studies
(Lu & Dazurisin, 2014), the post-eruptive source model should also consist of this structure. In
Figure 2.5, we compare the INSAR model with the GPS model. It is noticeable that the INSAR
model shows a deeper source than the GPS model, but with slightly smaller volume changes. As
a result, the INSAR model will most likely underpredict the GPS data, especially for OKCE. We
therefore speculate that there should be shallower sources to account for additional and more
localized deformation. Therefore, we propose a more complicated source geometry which consists
of a Mogi source and a sill source.

We use a circular sill to represent a thin layer of magma here because this geometry has
the fewest unknown parameters, but it could be a more complicated shape. Even though, it is still
much more difficult to model two sources with the data because of the tradeoffs between the source
parameters. We take several measures to decrease the degrees of freedom in this scenario. First,
we estimate the sill location to be constant rather than varying in time, which mitigates the trade-
off between the Mogi source location and the sill location so that we can better separate the two

sources. We think this is reasonable for two reasons: (1) we expect the shallow sill to be shallower
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than 2 km. At such a shallow depth, we think the sill should be a fairly stable structure in nature
and separated from the Mogi source; (2) the GPS data should contain more information from this
shallow sill and only small variations in time are observed in the location estimates from GPS
(Figure 2.4). Second, we run a series of inversions with the Mogi depth fixed ranging from 2.5 km
to 4.0 km. We find that the sill depth is coupled with the Mogi source depth.The best model with
minimum RMS value is obtained when the Mogi depth is fixed at ~3.2 km. In the final inversion,
we thus fix the Mogi depth to be 3250 m.

In terms of hyperparameters, we use same values for the sill as that for the spheroid source
in the GPS-only inversion and same values for the Mogi as that for the Mogi source in the INSAR-
only inversion. Note that the location hyperparameter only applies to the horizontal location of the
Mogi source since we fix the Mogi depth.

To assign the weights for each dataset, we use the HVCE method described in section 3.4.
Because the time intervals of the GPS and INSAR measurements are so different (weekly vs yearly),
here we rescale the data covariance based on the residuals of the complete filter run in time and
apply a single scaling factor to each dataset. The GPS scale factor is 1.12, indicating that the data
noise covariance for GPS is closely true. The scale factors for the T93, T116, E115 and E222
covariance are 1.89, 1.45, 1.77 and 2.12 respectively.

Figure 2.6 shows the estimated parameters of the sill source and the Mogi source. The
estimates of the Mogi source are similar to the INSAR model. The estimated sill is located to be
centered at 53.422 N and 168.123 W, southwest of the geometric center of the caldera, and at ~0.9
km below sea level. The GPS residuals indicates an overall adequate fit of the source model (Figure
2.9a). Considering the INSAR residuals on the volcano flanks outside the caldera region, the model

also provides a pretty good fit to the INSAR data (Figure 2.9b). We still calculate the INSAR
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residuals inside the caldera although we do not use these data. We can see that very large residuals
stand out inside the caldera. We believe this is not overfitting but actual deformation associated
with the new deposits ejected during the 2008 eruption. More discussions about it are in section

2.7.1.
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Figure 2.6. Time-dependent source model based on the GPS and INSAR data. (a) Estimates of the
deep Mogi source. All the parameters are allowed to vary with time except for the depth. (b)
Estimates of the shallow sill. All the parameters are estimated as constant except for the volume

change.
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Figure 2.7. Deformation caused by the Mogi source at (a) GPS sites, (¢) TS93 and (e) T116.
Deformation caused by the sill source at (b) GPS sites, (d) TS93 and (f) T116. Horizontal and
vertical GPS displacements are shown by black and red vectors, respectively. INSAR

displacements are shown in line-of-sight direction.

This model fit both GPS and InSAR data very well and also explains why the GPS and
INSAR data estimate two distinct sources: different coverages in space. The deformation caused
by the shallow sill is mainly restricted to inside the caldera, while the deep Mogi source produces
a long wavelength deformation pattern with comparable deformation inside and outside the caldera
(Figure 2.7). The total deformation is the superposition of these two patterns. All the GPS sites are
located inside the caldera or close to the caldera rim (Figure 2.1). It makes sense that the GPS-only
inversion returns an oblate spheroid source whose location and shape is in between a sill and a
Mogi source. The simulated experiments also support that the combination of a sill and a Mogi

source will produce similar deformation at where the GPS sits are. In contrast, the majority of the
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INSAR coherent pixels lie on the volcano flanks and very few pixels are inside the caldera (Figure
2.2). Thus, the InSAR data do not contain much information from the shallow sill source. It is
therefore not surprising that a single Mogi source is sufficient enough to fit the INSAR data.

2.6. Volume change from 2008 to 2019

Another goal of this study is to track the volume change history since after the 2008
eruption. Having the source geometry determined, we then include the GPS data through 2019.
From 2016 to 2019, the GPS data are from four continuous sites (OKNC, OKCE, OKSO and
OKFG). We fix the source location determined in section 2.3 (Figure 2.11) and estimate the total
volume change from both sources.

Figure 2.8 shows the estimates of the total volume change. The kinematic volume changes
reveal five consecutive exponential inflation episodes from 2008 to 2019. Each inflation episode
begins with a rapid increase in volume and then slows down. We fit each of inflation episode using
an exponential decay, that is AV - (1 — exp (—t/7)), where the characteristic time scale T and
characteristic strength AV are the two parameters estimated for each episode. From the first to the
fifth inflation event, the characteristic time scale decreases from 1.5 to 0.3 year. From 2008-2019,
the total volume change is about 0.068 km3, of which 0.056 km3 is from the deep Mogi source
and 0.012 km3 from the shallow sill. The volume change ratio between the deep Mogi source and

the shallow sill source is about 5:1 through time.
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Figure 2.8. Total volume change from the sill and the Mogi source. The exponential fit and 95%
confidence are denoted by solid and dashed lines, respectively. The time scale t and characteristic

strength AV of each inflation event is shown in the figure.

2.7. Discussion

2.7.1. Subsidence within the caldera region

As shown in Figure 2.9b, the InSAR residuals within the caldera region are abnormally
large. To compare INSAR with GPS, we project three-dimensional GPS measurements at OKNC
and OKCE into the line-of-sight (LOS) directions (Figure 2.10).The GPS data show obvious faster
inflation than the surrounding INSAR measurements, especially at OKCE. We believe that the
OKNC and OKCE measurements accurately record volcanic deformation as they are both installed
on exposed solid rock. But most INSAR pixels inside the caldera are located on ground covered by

the 2008 tephra deposits. It appears that these pixels measured not only the volcanic deformation
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but also significant localized deformation related to the 2008 tephra deposits and loose materials

beneath that.
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Figure 2.9. (a) Residuals of the GPS time series. (b) Residuals of selected interferograms in Figure

2. The linear phase ramp of each interferogram has been removed. The estimated initial position

and the common mode has been removed for each time series.
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Figure 2.10. (a) OKCE monument viewed from Cone E looking NE toward the gates of the caldera
and Cone D. The 1997 lava flow is visible on the left. (b) OKNC monument viewed looking NNE
toward to Cone B which is visible to the right. The monument is installed in rock, which is covered
by ash from the 2008 deposit. (c-f) GPS timeseries projected into LOS direction in comparison
with the INSAR LOS timeseries. Random walks at the GPS sites and linear phase ramps have been

estimated and removed.

One of the possible causes is the self-compaction and erosion of new tephra deposits
produced by the 2008 eruption. The caldera and eastern flank was blanketed by thick fine-grained
tephra deposits. The thickest part is near the new cone exceeding 25-50 m thickness and thinning
to centimeters thickness to the east (J. F. Larsen et al., 2015). The unconsolidated tephra deposits
are subject to rapid compaction and are vulnerable to rapid remobilization by strong Aleutian rains
and runoff from snow melt; significant erosion was observed in the field in the first few years after

the eruption. From September 2008 to August 2010, the accumulation of sediments had enlarged
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the area of both intra-caldera lakes (J. F. Larsen et al., 2015). Another possible cause is continued
viscoelastic relaxation and thermo-elastic cooling from older flows that underlie the 2008 deposits.
Localized subsidence inside the caldera was also observed between the 1997 and 2008 eruptions
by (Lu et al., 2005) in the region where the historical flows were emplaced. They explained the
subsidence as the viscoelastic response of pre-1997 flows due to the loading of 1997 lava flow and
the thermo-elastic contraction of 1958 lava flow. These two processes can cause subsidence of
centimeters per year in the long term, and there is no reason that this deformation would have
stopped after the 2008 eruption. We infer that the InSAR residuals also include the viscoelastic
relaxation of the pre-2008 lava flows, especially the 1997 lava, due to loading of the newly
emplaced 2008 tephra deposits and the thermo-elastic contraction of the 1997 lava flow.

In summary, we think that the large residuals within the caldera in INSAR data are likely
sustained non-volcanic deformation, such as self-compaction and viscoelastic relaxation. This is
also the main reason why we masked out the INSAR pixels inside the caldera when doing the
inversions.

2.7.2. Shallow magma sources

A long-lived spherical source at 3 km depth has been widely identified beneath Okmok
volcano. It is likely that the Mogi source obtained in this study represents the same source that was
found before the 2008 eruption, because of their close depths (Figure 2.9). The shallow sill
obtained here is a new structure which was not seen in any pre-eruptive source models. To further
prove that this is a substantial difference, we apply our method to the 1997-2008 data set and
estimate a spheroidal source model instead of the Mogi source which is usually assumed in
previous studies. The best fit axis ratio is 1.1 which is very close to 1. This confirms the findings

of the earlier studies that a single Mogi source explained the pre-eruptive deformation.
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Figure 2.11. Geographic and depth map of the sources. The red star represents the Mogi source
and the red dashed circle (line) represents the sill source obtained by combining the GPS and
INSAR data. The blue circle is the spheroid source given by the GPS data. For comparison, the
black circle denotes the pre-eruptive source. The Mogi source determined by the INSAR data only

(section 2.5.2) is close to the Mogi source in the joint inversion (red star).

To test whether the differences of GPS dataset between the inter-eruptive and post-eruptive
period have an influence on the inversion results, we use a subset of the pre-eruptive GPS data
used in (Fournier et al., 2009). They are site OK13, OK31, OKSO, OKCE, OKCD and OKFG.
The network made by these six sites has very similar distribution as the network for the post-
eruptive period. We see the estimates using the subset of the data is almost identical to using the
full dataset but have little larger uncertainties. This proves that even though the sparsity of GPS
data for the post-eruptive period, the estimates should not be biased or incorrect. We use synthetic
INSAR data to test whether the absence of INSAR observations inside the caldera for the post-

eruptive period have an influence on the inversion results. We presume a Mogi source at 3 km
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depth, which is the estimated depth of the deep Mogi source is in the manuscript, centered in the
origin of the x-y coordinate with its volume change increasing exponentially over time. The
synthetic INSAR data are generated using the forward model of a Mogi source, a linear phase ramp
and random spatial correlated noise. The incidence and azimuth are set to 10° and 340°. We apply
our method to the synthetic data then to the data with the observations inside the caldera masked
out. We manage to recover the time-dependent source model in both cases but the uncertainties
are larger when using the masked data. This proves that we can still obtain the correct estimates
even without observations inside the caldera, and confirms that the change in the shallow system
found in our study is not because of differences in the spatial sampling between the pre-eruptive
and post-eruptive datasets.

Note that deflations of sill structures were inferred during the 2008 eruption. Using INSAR
measurements, (Lu & Dzurisin, 2010) found closing of a rectangular sill at ~0.5 km depth during
the 2008 eruption. They explained this structure as the extraction of groundwater related to the
phreatic nature of the 2008 eruption. The shallow sill we obtained might be the same structure
given the similarity in depths, but our results indicate that it is more likely a magma body or crystal
mush that was drained in 2008 and has been refilling after the 2008 eruption. Freymueller and
Kaufman (2010) proposed that some of the 2008 magma had been resident at a shallower depth
since before 1997, likely from an older pre-existing magma body that was more chemically
evolved (Larsen et al., 2013). The shallow sill source could represent the existing magma body
these authors mentioned, which was drained during the 2008 eruption. During the 1997 eruption,
Mann et al. (2002)also determined a collapsing sill at ~1.8 km depth along with a Mogi source for

the co-eruptive INSAR measurements.

33



We infer that Okmok’s shallow plumbing system is composed of a stable magma chamber
at about 3 km depth and some smaller magma storages at shallower depths. This is more in
agreement with the petrological constraints (Larsen et al., 2013). Additionally, we infer that some
of the shallow bodies are not fed during the inter-eruptive period, so are invisible from geodetic
measurements, until they are somehow connected to other sources (e.g. due to eruptions). Our
model supports that a shallow thin structure has become a part of the plumbing system and fed
since the 2008 eruption. Another scenario is that the shallow magma bodies may not be sustained
by the low pressure in the magma chamber after an eruption. For example, the sill found and
determined by Mann et al. (2002) during the 1997 eruption might fully collapse as a single Mogi
source was still able to well fit the data during the 1997-2008 period no matter what data type and
spatial coverage.

2.7.3. Magma supply dynamics

An exponential inflation can be explained by a simple hydraulic model made up by a single
shallow magmatic source fed by an infinite deep magma reservoir. If the deep magma reservoir is
at a constant pressure, the shallow source will inflate exponentially until the pressure difference
between the shallow source and deep reservoir vanishes (Pinel et al., 2010). Based on this hydraulic
model, our kinematic volume change indicates that 1) the pressure of the deep source may increase
episodically and 2) the influx from deep to shallow sources can increase with time at Okmok
volcano.

First, the pressure of deep source must not be constant in time, which breaks the pressure
balance between the shallow and deep sources. More specifically, we interpret that the pressure of
the deep source increases in episodic pulses so that each new inflation episode occurs as a result

of episodic magma supply into this deep source. Magma supply has been shown to be episodic not
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only at Okmok but also at other volcanoes. For example, before its 2010 eruption, repeated
episodes of magma intrusion and accumulation were found beneath Eyjafjallajokull, Iceland
(Sigmundsson et al., 2010). In the Aleutian arc, multiple episodic inflation events have been
observed at Akutan volcano from 2005 to 2017 (DeGrandpre et al., 2017; Ji et al., 2017). Episodic
inflation events are common at Kilauea volcano in Hawaii as well (Cervelli & Miklius, 2003); in
that case, episodic deflation-inflation events were interpreted to result from short-lived blockages
in the magma supply.

Second, the influx from deep to shallow sources must not be constant in time. Otherwise,
all the exponential inflating episodes should have the same time scale. As the exponential
relaxation time scale (t) is decreasing from earlier to later episodes, the influx should somehow
increase in time. According to (Lengliné et al., 2008), the influx or time scale is controlled by the
radius of the shallow source (a,) and width and depth of the conduit connected to the deep
reservoir (a, and H,). Particularly, t is proportional to a? and inversely proportional to af. This
means that a small change of these two parameters may change the time scale in a significant way.
In practice, we do not think a,- tends to be smaller in time. It is more likely that a increase in time,
which would lead to more magma being able to flow through the conduit per unit time and thus a
shorter time scale, but other parameter changes are possible. Alternative scenarios include the
development and clearing of blockages in the magma transport system (Cervelli & Miklius, 2003),
or the formation of additional conduits or dikes for each new pulse of magma from depth. Our
present geodetic data are not sensitive to these parameters which limits our ability to test these

alternate hypotheses.
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Figure 2.12. Conceptual model of the magma plumbing system at Okmok and dynamics of deep
magma sources. The shallow sill source is inferred to have provided some magma (likely the more
evolved component) for the 2008 eruption (Freymueller and Kaufman, 2010; Larsen et al., 2013)
but had not been connected to the main shallow magma body prior to the 2008 eruption. Based on
a hydraulic model (Lengliné et al., 2008), our results indicate that the pressure of the deep source

may be episodic and the magma influx from the deep to shallow source may increase over time.

2.7.4. How close is Okmok to the next eruption?

In the current cycle, the volume withdrawal during the 2008 eruption is estimated to be
0.14 km3 based on the INSAR measurements (Lu & Dzurisin, 2010) and 0.11 km3 based on the
GPS measurements (Freymueller & Kaufman, 2010) (the value was reported as 0.35 km3 in the
original paper but the scaling between the Mogi source strength and volume change was
accidentally applied twice; we reran the inversion using the same data and correct the value here).

By the beginning of 2019, we estimate that 0.068 km3 of magma has been added since the 2008

36



eruption, which is 50-60% of the volume withdrawn during the eruption. Considering the previous
eruptive cycle, the inter-eruptive volume increase from 1997 to 2008 was 85-100% of the 1997
eruption volume (Lu et al., 2010). This may imply the capacity of Okmok magma storage system
has a specific range, and an eruption will likely occur when the capacity is reached.

Additionally, the average inflation rate declined in time before the 1997 eruption and some
oscillations (including episodes of deflation) were observed during 2004 to 2008 (Fournier et al.,
2009; Lu et al., 2010). We have not yet seen deflationary features in the current cycle. It is unclear
whether these features can be regarded as potential precursors. Future data should help uncover
this question. However, kinematic models generally have a limited ability to forecast stability or
instability of the magma system. More insights may be obtained by the use of physics-based
models (Anderson & Segall, 2011), although those models have more degrees of freedom because
of more unknown parameters and requires caution in the basic understanding of the source
geometry before using them.

2.8. Conclusion

In this paper, we introduce a time-dependent inversion filter combining INSAR with GPS
for volcano deformation modeling. We model the post-eruptive deformation at Okmok volcano,
Alaska, based on the GPS and InSAR time series observations. We find that a Mogi source together
with a shallow sill are required to explain both the GPS and InSAR data at the same time. The
Mogi source determined here is close to the general pre-eruptive Mogi source which should
represent the long-lived magma body that already existed since before the 1997 eruption. The
shallow sill is likely an intrusion into a shallow space that was opened when an older, more evolved
magma body was partially drained by the 2008 eruption. We infer that the shallow plumbing

system of Okmok is more likely composed of multiple source at different depths. From the end of
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the 2008 eruption to 2019, the total volume increase is at least 50% of the 2008 volume decrease.
We have identified five inflation episodes, each of which has the form of an exponential decay.
The characteristic time scale of these inflation events is decreasing with time. We have not yet
observed any oscillatory features such as those observed before the 2008 eruption. These features
of the volume change curve may help us to understand more about eruptive cycle and unrest at
Okmok volcano.

We demonstrate that combining GPS and InSAR is crucial to understand the shallow
magma plumbing system of volcanoes. In the case of Okmok, the GPS data and the INSAR data
individually suggest two distinct sources. We would not be able to figure out the “Mogi+sill”
model without combining them. Besides, the INSAR time series techniques are getting more and
more popular in volcano geodetic studies, and the time interval of INSAR acquisitions is becoming
shorter and shorter with more InSAR sensors collecting data. There are high demands of an
efficient workflow to take full advantage of time series observations from both GPS and InSAR.
This paper presents a method for combing GPS and InSAR measurements to invert for the
kinematics of volcanic source models. As the basis of the method is a type of Kalman filter, it also

provides a means of a near real-time tool for volcano hazards monitoring.
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Chapter 3: 25-year history of volcano magma supply in the east-central Aleutian arc,
Alaska

3.1. Abstract

Using ~25 years of GPS and INSAR observations and the time-dependent inversion filter,
we invert for the volume change history of three active volcanoes in the east-central Alaska
Aleutian arc, and the secular velocity of the region. The inferred time-dependent volume change
shows 1) two exponentially decaying pulses followed by a nearly linear inflation period at
Westdahl volcano; 2) multiple episodic inflation events at Akutan volcano; 3) transient volcanic
inflation and long-term deflation signals at Makushin volcano. Comparing our regional velocity
estimates with recently published block models, we find a small signal that can be explained by
slip deficit on the megathrust, either from a shallow (<20 km depth) almost fully-locked zone or a
weakly locked zone confined to 25-50 km depth.
3.2. Introduction

The east-central Aleutian arc, Alaska, has several large, active volcanoes, including
Westdahl, Akutan and Makushin (Figure 3.1). All three volcanoes formed around the early
Pleistocene (Miller et al., 1998). Westdahl is a young glacier-capped shield volcano at the
southwest end of Unimak Island. Its edifice is 18 km in diameter, and is composed of a thick
sequence of pre-glacial basalt lava flows. Makushin volcano is located on Unalaska island west of
Unalaska/Dutch Harbor, the largest city in the Aleutian arc. It is a broad stratovolcano about 1800
m high and 16 km in basal diameter. Akutan volcano is located between Westdahl and Makushin.
It is a composite stratovolcano with a circular summit area about 2 km across located in the west-
central part of Akutan island. The most recent eruptions of all three volcanoes happened in the

early 1990s, producing mostly basaltic lava and volcaniclastic deposits (Miller et al., 1998).
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Figure 3.1. Tectonic setting of Aleutian arc, Alaska (inset) and topographic map of the study region
(black rectangle in inset map) which includes Westdahl, Akutan and Makushin volcanoes. The red
lines show the rigid blocks for Alaska Peninsula and eastern Aleutians from Elliott and
Freymueller (2020). The brown polygon outlines the 1957 earthquake aftershock zone (House et
al., 1981). The focal mechanism represents the 2003 M6.6 Unimak Island earthquake, which
happened 200 km east of Dutch harbor just outside the study region. The triangles show the

locations of the continuous (red) and campaign (blue) GPS sites. The red vectors denote the

average GPS velocity at the continuous sites, with the estimated regional velocity removed.
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Surface deformation accompanies the volcanic activities at all three volcanoes. Past studies
have used measurements of surface deformation (mainly by GPS and InSAR) to study the locations,
geometry and temporal evolution of their magma storage systems. At Westdahl volcano, Mann &
Freymueller (2003) found that a Mogi source at about 7 km depth could account for the inflation
from 1998 to 2001 recorded by a campaign GPS dataset. Lu et al. (2003) used INSAR to study the
period 1992-2000, finding that the rate of inflation seemed to decay exponentially with time.
Similarly, Gong et al. (2015) processed SAR data for 2006-2015 and also found that the time series
of volume change showed an exponential decay. For Makushin volcano, Lu et al. (2002) processed
several INSAR images from 1992 to 2000 and found pre-eruptive inflation before the 1995 eruption.
However, each of these studies focused only on a specific time window, and did not combine GPS
and InSAR data from different satellite missions or viewing geometries. Here, we will use most of
the available INSAR and GPS data to recover the magma supply history of the three volcanoes
over the 20-25 years since the first geodetic measurements were made there.

Besides volcanic activity, the GPS positions include the effects of block motion and
subduction. The Aleutian islands are moving in a trench parallel direction relative to the North
American plate, toward the southwest, on a microplate called the Peninsula block (Li et al., 2016).
The slip deficit on the subduction megathrust varies considerably along strike direction, with a
wide region of high slip deficit observed along the eastern part of Alaska peninsula (Li &
Freymueller, 2018), transitioning to a creep-dominated megathrust in the eastern Aleutians (Cross
& Freymueller, 2008). Given the long time span of the GPS data collection in the region, we can
make a more accurate estimation of the secular velocity for the eastern Aleutians than before, if
we model it together with the GPS data from the volcanoes. Furthermore, we can evaluate the

block models and the subduction coupling models.
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3.3. Data

We use GPS data from 78 sites listed in Table 3.2. Among them, 36 are continuous sites
of which 8 were established by the Alaska VVolcano Observatory (AVO) starting as early as 2002,
and the majority were established as part of the EarthScope Plate Boundary Observatory (PBO).
The other 42 sites are campaign sites that were surveyed episodically by the University of Alaska
Fairbanks/AVO, starting in 1997. The first campaign measurements in the Dutch Harbor area were
made in 1996 by another group (Aveé Lallemant & Oldow, 2000). Daily position solutions for the
GPS data were estimated in the ITRF2008 frame following the processing procedures described
by Fu & Freymueller (2012). We use the time series of weekly averaged position measurements
(by GPS week) for the purpose of reducing the computational time. The Westdahl data in the
winter were discarded because of large position excursions due to snow and ice accumulation on
the GPS antennas at several Westdahl sites. Winter data from the other volcanoes were not affected
by this problem.

On February 18, 2003, a magnitude Mw®6.6 earthquake occurred about 200 km ESE of
Akutan island. Based on the USGS focal mechanism (https://earthquake.usgs.gov/earthquakes/
eventpage/usp000brO1/moment-tensor), the earthquake ruptured a shallow part of the Alaska
subduction thrust. It should produce ENE-directed displacements across Akutan island as a thrust
earthquake. There are obvious offsets in the timeseries of sites AKLV and AKMO when the
earthquake happened. No other continuous sites had measurements right before and after the
earthquake. We estimated the coseismic displacements at AKLV and AKMO by detrending the
timeseries and compared the positions before and after the earthquake. Because the whole of
Akutan island is far to the epicenter, the displacements at AKLV and AKMO should be almost

same so we averaged their coseismic offsets as the final estimate, that is about 10 mm in the east
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component and -4 mm in the north component. However, these values are about twice as large as
the predicted offsets based on the USGS moment tensor solution. After many experiments of
adjusting the values of parameters such as epicentral location, dip, strike, etc., we found that the
simplest way to match the observations was to increase the seismic moment by a factor of 2.
Shifting the event to slightly closer location and using a slightly smaller scaling for the moment
would fit the data equally well, and also predicted the same displacement correction at all the sites
of interest. A factor of 2 in moment is equivalent to a magnitude difference of ~0.2, so this
correction is reasonable considering the uncertainty in seismic magnitude or moment estimates.
We then calculated the predictions at all the GPS site locations using the scaled point source
solution and corrected the time series observations for all sites, although the corrections are small
at Makushin and Westdahl. At Westdahl, the corrections make no detectable difference in our
inversion results, while for Makushin the removal of the earthquake displacements reduced the
estimated magnitude of the 2001-2004 inflation event at Makushin.

Lu et al. (2003) and Gong et al. (2015) processed the INSAR images/timeseries using
ERS1/2 and ENVISAT data for Westdahl volcano throughout the period of 1990s and 2000s. For
Makushin volcano, Lu et al. (2002) and Lu & Dzurisin (2014) processed the INSAR images using
ERS1/2 and ENVISAT data. We directly use these published INSAR data for our study in the form
of INSAR time series. Readers are referred to the original papers for details about data processing.
We do not use any InSAR data for Akutan volcano because the GPS network at Akutan has
consisted of 12 continuous sites distributed well across the whole island since 2005, which means
that the GPS data alone are able to provide good constraints on the deformation source parameters,

and long-term INSAR coherence was relatively poor.
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3.4. Method

Previous studies have shown that a spherical “Mogi” source is sufficient to model the
volcanic deformation at Westdahl and Makushin volcanoes (Gong et al., 2015; Lu et al., 2002,
2003; Mann & Freymueller, 2003). Akutan has a more complex magma plumbing system
(DeGrandpre et al., 2017; Wang et al., 2018). DeGrandpre et al. (2017) observed an asymmetry
in the displacement pattern at Akutan over certain time intervals, but they modeled velocities
relative to a specific PBO site, and implicitly assumed that the regional block velocity was equal
to the velocity of that site. That assumption does not match other observations from nearby islands,
but some asymmetry cannot be ruled out. They used spheroid/ellipsoid sources and found that the
best models, in terms of source geometry, for different time periods were different. Ji et al. (2017)
extracted the displacements during four major inflation events from 2005 to 2017 and used a Mogi
source to model those displacements. They removed a long-term trend from the data as the first
step of their analysis, so they modeled only a portion of the transient events (their de-trending also
removed some volcanic signal, as shown by DeGrandpre et al. (2017)). We tried to fit the Akutan
data using a spheroidal source and then compared the results with those using a Mogi source. We
used the same hyperparameter that controls the temporal smoothness of the volume change for
both cases. The overall reduced Chi-squared is 1.97 when using a Mogi source and 1.91 when
using a spheroid source, and the F test (Dzurisin et al., 2009) does not support the hypothesis that
a spheroid source provides a significantly better fit than a Mogi source. According to the results
from past studies, we think that the major inflation events at Akutan volcano can be explained well
by the overpressure of a Mogi-like source, while between these major events different source
geometries might fit the data better. One interpretation could be that different parts of the magma

system are activated during the major events and between them. However, the volume change
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caused by the activity between the major inflation events are very subtle and smaller in amplitude
than the inflation during events. Therefore, our model geometry estimate is dominated by the major
inflation events and we do not consider the complexity of the source geometry at Akutan for the
purpose of studying the volume change history here. In summary, we found a Mogi source is still
sufficient enough for studying the volume change history of Akutan volcano because the largest
inflation events were well described by a Mogi source.

Therefore, we assume Mogi sources that are not moving over time (i.e. the source location
is estimated as a constant in time) to represent the pressurized magma chamber producing the
surface deformation for all three volcanoes. Besides the location, the Mogi model features a source
strength parameter that combines volume and pressure change (inseparably). Delaney and
McTigue (1994) showed that this parameter can be related to the injection volume, which they
defined as the change in the volume of the walls of the magma reservoir, and this is the measure
of volume that we use for the rest of this paper. In the case of incompressible magma, this would
also be the volume (proportional to mass) of magma intruded into the shallow storage system from
greater depth, but we have no tight constraints on the magma compressibility at these volcanoes,
S0 we cannot convert injection volume to magma mass change without additional assumptions.

To invert the time series, we use a time-dependent non-linear inversion filter based on the
unscented Kalman filter (Xue et al., 2020). At each time step of the inversion filter, the source
parameters and their covariance (i.e. volcanic source locations and volume changes, and the
regional secular velocity relative to North America) are updated based on the new data and a state
transition matrix. The source location is estimated as constant in time, while the volume change
for each volcano is allowed to vary with time. The reference volume change is based on the earliest

measurement (GPS position or SAR image) for each volcano. The regional secular velocity
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parameter is assumed to apply to all volcanoes, and only the GPS data are sensitive to this
parameter. Other additional nuisance parameters are estimated for each data set as described in
section 2.4. A backward smoother is used to smooth the estimation after forward filtering.
3.5. Results

The estimated source parameters, including location and time-dependent volume change,
for all three volcanoes are shown in Figure 3.2. Westdahl volcano shows two distinct exponential
inflation episodes followed by linear inflation (Figure 3.2a). The first exponential inflation started
after the 1992 eruption and ended by 2001, when the second exponential inflation initiated.
Starting from 2007, the volume has increased almost linearly with time. Previous studies analyzed
shorter periods of time, and we can compare our results with the volume changes inferred over
those periods of time (colored lines drawn in Figure 3.2a). Our estimates provide more temporal
detail and continuity, but are overall consistent with the previous studies during each study’s period
of data. In our results we can clearly see the sudden change in the volume change rate in 2001 due
to the initiation of the second exponential inflation event, which was not clearly identified in any
of the previous studies as it started in the gap between the first two INSAR data sets (ERS-1/2 to
Envisat). Campaign GPS measurements across this time period help to constrain the onset of this
inflation event, but only when combined with the full time series of all data (including 2014-15
surveys of a few campaign sites). Mann & Freymueller (2003) only had a short time span (3 years,
1998-2001) of the campaign GPS data available, and while they correctly found an average
inflation rate that was faster than the late 1990s INSAR rate (Figure 3.2a), that data by itself could

not constrain the onset of the second exponential inflation event.
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Figure 3.2. Time-dependent volume change estimates with 2c uncertainties (error bars) for (a)
Westdahl, (b) Akutan and (c) Makushin. The gray curves or lines are fit to the estimates. Other
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Figure 3.2 (cont’d)

estimates of the location (longitude, latitude and depth in km) of the Mogi source for the
corresponding volcano. The uncertainties for the source location estimates are ~100 m in
horizontal and ~200 m in depth, except the depth for the Makushin source which is fixed to be 7

km.

Akutan volcano has shown multiple episodic inflation events that have occurred
approximately every 2-3 years (Figure 3.2b). The inflation events in 2008, 2011, 2014 and 2016
already were identified by previous studies (DeGrandpre et al., 2017; Ji et al., 2017; Ji & Herring,
2011), and the estimated volume increase of each event is consistent with the previous results. We
also find two earlier events that happened in 2004 and 2006 when only the AVO continuous GPS
sites were operational and an inflation event that has been ongoing since 2019. Each of these
episodic inflation events can be fit by an exponential decay time history, and their time scales
range from 0.3-0.8 yr. Before 2002, only campaign data were available, but one or more inflation
events must have occurred between 1997 and 2002, although only the total inflation over that time
can be determined. The average rate of inflation over 1997-2002 was similar to that over the later
time period.

At Makushin volcano, the rapid inflation before the small explosive eruption in 1995 (Lu
etal., 2002) and a period of constant deflation from 2004 and 2009 (Lu & Dzurisin, 2014) are both
reproduced here (Figure 3.2c). In addition, our estimates indicate a period of deflation from 1996
to 2001 after the eruption. There is another inflation period from 2016-2018, and its volume
increase is similar to the 2001-2004 inflation but significantly smaller than the inflation before the

1995 eruption.

48



351 ]
® 30

£
q:)025- 0 .
Y @20 o

[&)] [ ]

c 20 :t ’k ®
e .Q*‘r\ ’ .. ..~ L4
o P4 .05 f [ 4
815‘ ~ Py Py e ©
= ¢ ® .‘. ‘.
S10F ®  Dbestfit \‘.OQ ®
o @ )
= ® o
g 5t o 5 ¢ i"‘

g -3o0
O 0f ® 30

| | | | L | | | | | | | |

-5
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
Year

Figure 3.3. Volume change estimates for Makushin volcano in the bestfit model and the models
when the east component of the regional velocity is fixed to the values deviated 1 or 3 times of the
estimation uncertainty from the original estimate in the paper. The two black boxes denote the
time windows that are affected by the parameter tradeoff between the regional velocity and volume

change because of a lack of INSAR or near-field GPS data.

Between the two deflating periods, there is period of inflation throughout 2001-2004
although there is a strong tradeoff between the east component of the regional block velocity and
the volume change estimate because of the poor distribution of the GPS sites at that time. Before
the three continuous sites (MAPS, MREP and MSWB) were installed at Makushin in 2011 and
2012, most of the GPS data were from campaign sites that were all located around Dutch Harbor,
well east of the volcano deformation source. One campaign site (MHAA), measured in 2003, 2011

and 2012, was located close to MAPS. Thus, there is a strong tradeoff between the estimates of
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the volume change and the regional block velocity (mostly in the east component). Specifically, it
is hard to tell whether an eastward motion trend in the GPS data from Dutch Harbor is due to a
volume increase of the magma storage or just part of the regional velocity. However, small time
variations can be seen in the east component time series of the longest-surveyed campaign site in
Dutch Harbor (DCH1) and in the AV09 and DUTC continuous sites. We assume that these
variations reflect changes in the volcanic source rather than tectonic transients, because a tectonic
transient would be expected to affect mainly the north component (the direction of the elastic slip
deficit signal, see Figure 3.4) while a volcanic signal would appear mainly in the east component.
To examine the impacts of this tradeoff and the uncertainties of the inferred regional velocity, we
inverted for the time-dependent volume change for Makushin volcano while fixing the regional
velocity to several alternate values corresponding to our best estimate of the regional velocity and
the +3c values. Figure 3.3 shows that the volume change estimates during the period of 2001-2004
and 2011-2012 are obviously affected by the regional velocity assumed. This is expected because
those are the two time periods when there was a time gap between separate INSAR stacks, and
when GPS data were only available from Dutch Harbor in the far field. Outside of those time
periods, the volume change estimates do not change substantially even if the regional block
velocity is perturbed because there are enough near-field continuous GPS data or INSAR data to
constrain the volcanic source parameters and break this parameter tradeoff. The main question we
want to answer here is whether the estimated inflation from 2001 to 2004 is realistic, or could it
just be an artifact of the data distribution? According to Figure 3.3, while the amount of the
inflation is sensitive to the regional velocity estimate, some volcanic inflation is always present in

all models.
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Our secular velocity estimation indicates that the study region is moving in a primarily
trench parallel direction with a rate of ~5 mm/yr (Figure 3.4). Compared with two previously
published block models (Elliott & Freymueller, 2020; Li & Freymueller, 2018) (Table 3.1), the
east component estimates all agree to within 0.2 mm/yr, but there is about a 2 mm/yr difference in
the north component between our estimate and the block model estimates (top left white inset in

Figure 3). We will discuss this more in section 3.6.2.

Table 3.1. Estimated regional velocities relative to North America in comparison with block model

estimates.
This study Lietal., (2018) Elliott et al., (2020)
East (mm/yr) -4.34 £ 0.35 -4.56 + 0.35 -4.47 £ 0.63
North (mm/yr) -0.52 £ 0.25 -2.02 +1.47 -3.23+2.38

3.6. Discussion

3.6.1. Magma Supply

Lu et al. (2007) has shown that the Aleutian volcanoes present diverse patterns of spatial
deformation. From our time-dependent volume change estimates, we can see the magma supply
dynamics are also different among the three volcanoes studied, despite their neighboring locations
(50-100 km). This diversity is also found in some other volcanic arc systems. For instance,
Henderson & Pritchard (2013) found significant variation in deformation rates from InSAR
observations throughout five volcanoes in the Central Andes Volcanic Zone. Similarly in
Kamchatka, different plumbing system geometries were inferred from seismic tomography

beneath three volcanoes located close together in an area of approximately 50 x 80 km (Koulakov
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etal., 2017). These findings reflect that the magmatic systems feeding arc volcanoes are generally
diverse in time and space.

Dzurisin and Poland (2019) stated that the magma supply rate is likely a primary control
on the eruptive behavior and hazards of Kilauea volcano. Variations in magma supply rate in
Aleutian volcanoes also have been observed in the past, as well as in this study. Lu et al. (2003)
used a simple model for the hydraulic connection between shallow and deep sources in the
presence of an initial pressure difference (e.g. Pinel et al., 2010) to explain the exponential decay
in magma supply rate at Westdahl volcano in the first several years after since the 1992 eruption.
In the context of that model, the inflation cycle is completed when the pressure difference has
decayed to zero. This model can explain only a single exponential decaying inflation (EDI) in the
volume change. However, both Westdahl and Akutan have experienced several EDIs so far (Figure
3.2). Multiple EDIs have also been observed at Okmok volcano, which is about 50 km southeast
to Makushin volcano, during its inter-eruptive periods (Fournier et al., 2009; D. Walwer et al.,
2019; Xue et al., 2020). Walwer et al. (2019) derived a model considering the viscosity gradient
in the vertical conduit and magma supply, that in certain condition can result in temporal variations
in the volume change. Their model requires the formation of a new shallower magma body for
each EDI. An alternative explanation is that the pressure of deep magma sources increase in a stair-
stepping way in time rather than being constant due to the arrival of discrete pulses of new magma
(Xue et al., 2020), and we favor this explanation. Besides the EDIs, it is also notable that Westdahl
transitioned to nearly linear inflation around 2007, although that could be an EDI with a very long
characteristic timescale. No matter which case, our results indicate changes of the magma supply
over time. Further work is needed to investigate whether and how these variations/changes relate

to eruptive hazards.
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Another measure to evaluate the volcano hazards is the total volume change recovered
from the previous eruption. Given that the total volume increase at Okmok between the 1997 to
2008 eruption was 85-100% to volume loss in the 1997 eruption, Lu et al. (2010) proposed that
the timing of next eruption of Okmok might be when the volume increase compensates for the
volume loss in the previous eruption. Among the three volcanoes in this study, Westdahl had an
eruption in 1992, and Lu et al. (2003) estimated the volume decrease of that eruption to be ~0.05
km3. However, the total volume change since then (~0.16 km3) is over 3 times larger than the co-
eruptive volume decrease. The 1995 eruption of Makushin was very small, and much smaller than
its pre-eruptive inflation or the volume changes observed since 1995. It is clear that a simple
“volume predictable” eruption threshold model does hold for these volcanoes. We cannot evaluate
Akutan at this point because there is no documented estimation on the volume loss of the shallow
magma storage for its last eruption.

There was a small explosive eruption at Makushin in 1995, and it was followed by a period
of deflation. Overall, the volume change history of Makushin reveals several inflation-deflation
patterns, in contrast with Akutan and Westdahl that are inflation dominated. We think these long-
term deflations in the absence of an eruption or intrusion are most likely a volume/pressure
decrease related either to degassing or cooling/crystallization (Lu & Dzurisin, 2014), and they are
not unigue in the Aleutians. Similar long-term deflation has also been observed at Fisher caldera,
located near Westdahl, and was explained to due to magma cooling and crystallization as well
(Mann & Freymueller, 2003), although that was at much shallower depth. Deflation of the magma
body inferred in this study at 7 km depth appears to have occurred after each intrusion, and the
inflation and deflation are of similar size. One possibility is that the inflation/deflation in this case

is mainly the result of changing gas pressure, with little new magma added. Another is that the
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deflation is associated with the movement of magma to a much shallower body (<< 7 km) that is
not easy to see with the geodetic data. Changes in very shallow magma storage could be mostly
invisible to our geodetic data because of the loss of INSAR coherence over the glacier cap and the
distance to the GPS stations (~10 km), which mean that there are no data very close to the summit.

3.6.2. Plate Motion and Slip Deficit on the Megathrust

As mentioned above, there is a ~2 mm/yr difference in the regional velocity (Figure 3.4)
between our estimate and those from two previous block modeling studies (Elliott & Freymueller,
2020; Li & Freymueller, 2018), and the difference is primarily perpendicular to the trench (our
estimate shows northward motion relative to the block models). Note that both block models are
mainly constrained by data from the Alaska Peninsula region, east of our study area. Therefore,
this difference could be due to elastic deformation from the slip deficit on the locked subduction
interface.

We first consider past slip deficit models (Cross & Freymueller, 2008), which assumed a
deep seismogenic zone extending from 25-50 km depth offshore of Dutch Harbor and creeping
zone near the trench, corresponding to the aftershock zone outline of the 1957 Mw8.6 Andreanof
Island earthquake at the eastern end of the rupture (see Figure 3.1, inset). However, the true extent
of the rupture zone for the 1957 earthquake has long been uncertain. Nicolsky et al. (2016) showed
that such a deep rupture could not explain the observed high tsunami runup on the Pacific coast of
Unalaska island, nor the tsunami arrivals at Dutch Harbor. Therefore, we also consider a model in
which there is only a shallow locked zone, starting at the trench and extending from 0-15 km depth,
which corresponds to the best-fitting model of Nicolsky et al. (2016).

We use a least squares method to estimate the slip deficit rate. We assume that the block

model estimates, constrained by nearby data but not including the sites affected by volcanic
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deformation, contain the regional block velocity only while our data also include elastic strain
from the slip deficit. The signal from the slip deficit is small at sites located along the volcanic arc
in any models and it is fairly uniform across the study region, so it is absorbed into our block
velocity estimate rather than biasing the volcanic source parameters. In this analysis, the
observations are velocity estimates from our study, and the block model based estimates of Li &
Freymueller (2018) and Elliott & Freymueller (2020), which are shown in Table 3.1. The two
block model estimates were based on data from nearby parts of the Peninsula block, so they are
independent from our estimated velocity. The key assumption in this inversion is that our estimate
contains both the block velocity itself and the effect from the slip deficit, while the two block
model estimates do not contain the slip deficit. The unknown parameters to be estimated are the
slip deficit rate on the assumed locked zone, and the velocity (east and north components) of the

rigid block. The relationship between the unknown parameters and the observations are given in

below,
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where d} and d} are the regional block velocity estimates from this study; d2 and d2 are
the estimates of (Li & Freymueller, 2018); d3 and d3 are the estimates of (Elliott & Freymueller,
2020); g. and g, is the Greens function for the velocity due to the slip deficit; v, and v,, are the
east and north components of the regional velocity based on the estimates from the three studies;
vis the slip deficit rate on the subduction. The coupling coefficient can be then calculated by

dividing v, by the relative rate of the plate motion (66 mm/yr).
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In the case of the deeper locked zone, we estimate the slip deficit rate to be 8.1 mm/yr,
which represents ~12 % of the convergence rate between the two plates. This value matches the
estimate given by Cross & Freymueller (2008). In the case of a shallow locked zone with the
deeper part of the interface creeping, the slip deficit rate is estimated to be 61.3 mm/yr, indicating
a highly locked zone. We favor the model with only a shallow locked zone, based on the recent
slip constraints for the 1957 earthquake determined by Nicolsky et al. (2016). However, because
our data are restricted to the volcanic arc far from the trench, and with a narrow trench-normal
aperture for the network, the two slip deficit models give equally good fits to the data. New
observations from sites closer to the trench, on the Pacific coast of the island or from seafloor

geodesy (Birgmann & Chadwell, 2014), will be required to distinguish between these two models.
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Figure 3.4. Two alternate plate coupling models: (a) slip deficit only at shallow depth (<15 km) or
(b) slip deficit only at 35-50 km. The dashed line outlines the Alaska trench. Slab contours are
shown in black lines, and the outline of the locked zone as a red rectangle with the slip deficit rate
given as a percentage of plate motion rate. The top left inset denotes the secular velocity from our

estimates (red), previous block models (green) and their difference (blue). The percentage number
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is the slip deficit rate relative to the convergent rate between the Pacific plate and Peninsula block

(6.6 cm/yr). The predicted deformation caused by the slip deficit is denoted as black vectors.

3.7. Conclusion

Using long-term GPS and InSAR measurements, we estimate the location and the time-
dependent volume change during the last ~25 years for the shallow magma storage beneath
Makushin, Akutan and Westdahl volcano in east-central Alaska Aleutian arc. The inferred volume
change history indicates that the magma supply dynamics of the three volcanoes are diverse: 1)
two exponentially decaying pulses followed by a nearly linear inflation period at Westdahl volcano;
2) multiple episodic inflation events at Akutan volcano; 3) transient volcanic inflation and long-
term deflation signals at Makushin volcano.

We also invert for the secular velocity for the study region and find a small (~2 mm/yr)
northward component relative to the velocity estimated from block models. We think this small
signal is likely due to elastic strain from slip deficit on the megathrust. Our preferred coupling
model is a shallow (0-15 km) nearly fully locked zone, although an alternate model with a low slip
deficit rate (~12% of the plate motion) on only a deeper locked zone at 35-50 km depth would also

fit the data.
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Table 3.2. GPS site locations.

Name Longitude Latitude Type
AC10 -164.887 54.523 continuous
AKGG -165.994 54.198 continuous
AKHB -165.734 54.104 campaign
AKLV -165.956 54.163 continuous
AKMO -166.012 54.09 continuous
AKPS -165.85 54.145 campaign
AKRB -166.071 54.129 continuous
AKSO -165.944 54.138 campaign
AKU -165.763 54.143 campaign
AKUA -165.606 54.144 campaign
AKUN -165.593 54.211 campaign
AMRG -166.043 54.067 campaign
AV06 -165.766 54.147 continuous
AVO07 -166.039 54.163 continuous
AV08 -166.028 54.136 continuous
AV10 -165.934 54.098 continuous
AV12 -165.898 54.211 continuous
AV13 -165.898 54.153 continuous
AV14 -165.842 54.119 continuous
AV15 -165.71 541 continuous
AV25 -164.779 54.53 continuous
AV26 -164.58 54.572 continuous
AV27 -164.723 54.492 continuous
AV29 -164.586 54.472 continuous
BROD -165.869 54,111 campaign
DCH1 -166.528 53.889 continuous
DT16 -166.531 53.874 campaign
DT19 -166.533 53.874 campaign
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Table 3.2 (cont’d)

DTOC -166.536 53.876 campaign
DUTC -166.548 53.905 continuous
FLOW -166.078 54.169 campaign
FTOP -165.99 54.116 campaign
GUNN -166.516 53.924 campaign
HSB -165.914 54.186 campaign
ILIU -166.485 53.852 campaign
LVA2 -166.016 54.164 campaign
MAPS -166.94 53.808 continuous
MHAA -166.939 53.808 campaign
MREP -166.748 53.81 continuous
MSWB -166.788 53.915 continuous
NFLW -166.035 54.184 campaign
OPEN -165.963 54.193 campaign
REF2 -166.097 54.114 campaign
ROTK -165.521 54.064 campaign
SBS2 -166.515 53.897 campaign
SCAP -164.745 54.398 campaign
UPMO -166.012 54.09 campaign
WEFC -164.545 54.613 campaign
WESE -164.542 54.538 campaign
WESN -164.581 54,571 campaign
WESP -164.683 54.558 campaign
WESS -164.724 54.479 campaign
WFAR -164.779 54.533 campaign
WHL -165.826 54.119 campaign
WPOG -164.746 54.596 campaign
WWLL -166.081 54.15 campaign
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Chapter 4: Single-station detection of transient deformation in GPS time series based on
machine learning methods

4.1. Abstract

The development of GPS networks within the past two decades has provided a large
volume of dense and continuous time series data, which brings up an opportunity but also a
challenge for utilizing the large volume of data. Inspired by recent studies on detection of transient
signals in geodetic time series data (e.g. seismic, sea floor pressure) using machine learning
methods, we present a simple model for transient detection based on a recurrent neural network
structure. Unlike most previous studies that are based on fixed time windows or metrics computed
from the time series, our model uses each single data point of the entire time series as input
sequentially and directly outputs the transient probability for all points in the time series. The
model is trained using synthetic data time series that are relatively short in length, but can be
applied to geodetic time series of arbitrary length, and could even be used in a real-time sequential
mode. We test and validate the model performance by applying it to a synthetic testing dataset and
a real-world dataset for the Cascadia region. For the latter dataset, our detection results are
consistent with previous studies on the slow slip events in the Cascadia region. We also test the
model on time series containing coseismic offsets and longer-term transients to test how its
performance degrades when it encounters data with different characteristics from the training data
sets.
4.2. Introduction

There has been a tremendous development in automated processing and open data from the
Global Positioning System (GPS). For example, the Nevada Geodetic Laboratory currently obtains

geodetic GPS data from more than 17,000 stations and updates the daily position coordinates of
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more than 10,000 stations every week (Blewitt et al., 2018). Such big datasets provide new
research opportunities for geophysical problems but also a challenge in terms of how to efficiently
extract signals of interested. In this case, we explore the detection of transient deformation due to
various geophysical processes.

During the past two decades, many methods have been proposed for detecting transient
deformation in GPS timeseries. Examples include but are not limited to methods built upon some
kind of Kalman filter (Bekaert et al., 2016; Ji et al., 2017), decomposition analysis (Dong et al.,
2006; Damian Walwer et al., 2016) or template matching (Riel etal., 2014). These methods usually
require a network of GPS stations for the spatial information to get better and more reliable results.

To obtain more flexibility, Crowell et al. (2016) proposed a single-station detection method
based on the Relative Strength Index (RSI). They used the RSI, an indicator of the divergence
from and beyond the norm of the time series, to calculate the transient probability of a data point
using a probabilistic approach. This single feature, the RSI value, was demonstrated to be simple
but efficient for detecting transient signals in GPS time series. One question would be whether or
there are more such metrics like the RSI value that could be used for the task, or if a machine
learning (ML) approach can be based directly on the time series values themselves.

More recently, machine learning methods have been used as a feature extraction tool for
data mining in many geophysical fields, such as phase picking in seismic waves (Ross et al., 2018;
Zhu & Beroza, 2018), volcanic deformation from satellite images (Anantrasirichai et al., 2018),
and transient detection in sea floor pressure data (He et al., 2020). In the above methods for time
series data, the common solution is to scan the time series through a time window and then do the

classification just using the data within that time window. This solution does not actually take the
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advantage of global information in the entire time, series which could be exceptionally useful for
classification.

In this manuscript, we present a ML model based on the recurrent neural network (RNN)
for transient detection in geodetic timeseries in a sequential manner. First, we introduce the
structure of our ML model as well as the training process. We then conduct some synthetic tests
to evaluate the model performance. Last, we validate our model by applying it to a real-world
dataset for the Cascadia region, and then test it against additional data with somewhat different
kinds of transient signals that are not appearing during the training process.

4.3. Methods

4.3.1. Synthetic data generation and labeling

We use synthetic data to train the model for two reasons. First, a large well-defined labeled
database for transient signals in the GPS time series is not accessible at this point. Besides, the
transient signals are rare in nature, which limits the total number of the positive samples we could
use for training. Second, the noise characteristics and the kinematics of most transient signals are
well known, so we can easily generate synthetic data that resembles the real-world data very
closely. Therefore, we can obtain as many close to realistic samples as we need for model training
using synthetic data.

The synthetic daily GPS time series consists of secular, seasonal, transient deformation,
and colored noise (Figure 4.1a). The secular signal is a linear trend over time. The seasonal signals
are a combination of an annual and a semi-annual sinusoid. For seasonal terms, we use the
interquartile ranges of seasonal model terms from the Scripps Orbit and Permanent Array Center
(SOPAC) archive for all western North America stations, 1630 stations in total. We consider three

types of noise that are commonly found in geodetic timeseries observations - white, flicker, and
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random walk noise. The amplitudes of each noise component are randomly sampled from the
interquartile ranges for Southern California stations (Langbein, 2008). The specific sample range
of noise and seasonal terms is the same as listed in the Table 2 of Crowell et al. (2016). Last, we
simulate the transient signal using an arctangent function described by three parameters - size,

timescale, and center.
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Figure 4.1. An example of (a) raw synthetic timeseries, (b) detrended synthetic timeseries and (c)

the labels for the timeseries.

The next step is to label the synthetic data. In general, the label of all data points within the
duration of a transient is set to 1, and otherwise 0 (Figure 4.1c). By doing so, the timing of a
transient is also determined. Additionally, we set a threshold for the minimal transient size only

above which we set the label to be 1. The reason for this is to build a clear decision boundary for
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the model to learn. Considering that a very small transient is just very close to a pure noisy data in
nature, it would be harmful for learning if they are labeled differently. In this study, we label the
data point to be 1 only when the signal-to-noise ratio is greater than 1 for the transient signal. In
other words, we are targeting to detect transients that have at least the same order of magnitude as
the noise level, equaling ~3 mm for the vertical and ~1 mm for the horizontal.

4.3.2. Model structure, training and prediction

Figure 4.2 shows the model structure. It first consists of a bi-directional long short-term
memory (LSTM) layer with 32 units and a dense layer with 16 units taking each data point in a
time series as input chronologically. We use a hyperbolic tangent activation function for the LSTM
layer and an ReLU (Rectified Linear Unit) activation function for the dense layer. This results in
9971 parameters in total. LSTM is a special type of RNN that solves the vanishing gradient
problem (Hochreiter & Schmidhuber, 1997), thus is the most suitable structure for long time series
analysis. The final output layer is a 1-unit dense layer with a sigmoidal activation function. The
model can be built more complicated, such as by increasing the units of LSTM layer, and still
trainable using more data, but we find that this simple structure already performs well.

The total binary cross entropy is used as the loss function, — Y. ,[y;log(p;) + (1 —
yi)log (1 — p;)], where y; and p; represent the true label and the predicted probability of each data
point from all training time series samples. We adopt the ADAM algorithm (Kingma & Ba, 2015)
to minimize the loss. We generated 10,000 timeseries, each with 500 epochs. Each synthetic
timeseries has a random number of transients from 0 to 8 (0 means the timeseries just includes
noise). The transient timescale ranges from 5 to 30 days, and is sampled uniformly during the data
generation. All the transients, if more than one, are randomly spread out without overlapping in

terms of their centers. The transient size is uniformly sampled up to 20 mm positive or negative.
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These parameters can be chosen differently for transient signals with different properties in other

cases, but were chosen here to be representative of short-term slow slip events.
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Figure 4.2. A diagram showing the structure and workflow of the ML model. Each input dn is a

data point of a timeseries. The bidirectional LSTM layer and the dense layer are used to extract

features. The final output gives the transient probabilities.

All the timeseries are then detrended and standard scaled between 0 and 1 (Figure 4.1b).
The scaling is helpful to speed up the training process and makes the model independent of the
noise level so that it can be applied to all three components of the GPS observations in the same
way. We use the same length of synthetic data to simplify the training process, because only cases
with the same length of input data can be trained in a single batch. However, the model does not
specify the length of the time series so it can be applied to timeseries of any lengths for prediction.
By storing the hidden states of the LSTM cells, the model cuold be used for unidirectional

prediction for a real-time data stream.
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The output of the model is the transient probability of the current data point, which is a
continuous number from 0 to 1. The higher the probability is, the more likely that the data point is
during a transient. A decision threshold is needed to convert continuous probability to discrete
labels (either 0 or 1). If the probability is greater than 0.5, the predicted label will be 1, and vice
versa. In the synthetic tests, we simply use the threshold of 0.5 to obtain the predicted label from
the predicted probability for computing the model performance metrics, although there are more
thorough ways to determine the threshold such as by using the ROC curve (Bradley, 1997). For
figures that involve model prediction results, we show the direct output from the model, that is the
probability.

4.4. Results

4.4.1. Testing on synthetic data

We consider two metrics to evaluate the model performance: precision and recall. Recall
represents the percentage of all detections that actually are transients, and precision represents the
percentage of all transients that are successfully detected. For both metrics, the higher the better.

They are defined as follow:

Precision= Recall=

TP+FN’ TP+FP (5)

where TP, FP and FN represent the number of true positive, false positive, and false
negative. To illustrate how the model performance changes for detecting transients of different
sizes, we conduct a series of tests to obtain the precision and recall score as a function of offset
size. We first generate pure noise timeseries as described in section 4.3.1. Next, we add a transient
term function of size 1 mm at the 1-year mark in the time series. We then repeat the same procedure
but increasing the transient size up to 50 mm in 1 mm increments. A total of 10000 samples are

generated to test each size level. Note that in these tests, it will be a TP if there are any detections
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within the duration of a transient because in reality one detection is enough to correctly remodel
the timeseries. It will be a FN if there is no detection at all within the transient. Outside of the

transients, all data points are treated independently when counting the number of FP.
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Figure 4.3. (top) Precision and (bottom) recall curve as a function of transient size.

Figure 4.3 shows the score of precision and recall as a function of transient size. The noise
characteristics of the north and east components are similar, so we group them together as the
horizontal component. From the precision curve, we can see that the horizontal component starts
at a precision score of 0.1 when the offset size is 1 mm and rises to above 0.95 by about 3 mm.

The precision score of the vertical component takes longer to goes up above 0.95 when the
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transient size is about 8 mm, which is expected because of the larger noise level. After that, both
components have a precision score of above 0.95 with larger offsets.

The recall curve looks similar but slightly different. Starting at 1. mm, nearly zero transients
are correctly being detected in both components. In the horizontal, the score reaches to 1.0 by
about 5 mm and in the vertical by around 15 mm. That is, above those sizes, a detection is
guaranteed to occur. Combining with the results from the precision scores, we can conclude that,
in the horizontal (vertical), a transient larger than 3 (8) mm of size will be most likely being
detected although some false detections will persist, and we are more confident that the detection
is correct when the transient size rises up to 5 (15) mm. These testing results show that our ML
model could outperform the RSI method which was tested under similar conditions (Crowell et al.,
2016) for detecting transients of small sizes. It indicates that more features are extracted by the
ML model for make the decision.

4.4.2. Application to a real dataset

To validate our ML model in a practical way, we apply it to detecting transient events for
the Cascadia region. We use the same dataset that was used in (Crowell et al., 2016) because it has
been carefully preprocessed and is easy to obtain from the SOPAC archive
(ftp://garner.ucsd.edu/pub/timeseries/measures/ats/\WesternNorthAmerica/). The displacement
time series was detrended with all model terms including seasonal terms, coseismic offsets,
postseismic parameters, and nontectonic offsets primarily due to instrument or antenna changes.
Common mode errors were estimated using principal component analysis and removed. Therefore,
the data are assumed to contain only transient signals and noise. Readers should refer to (Crowell

et al., 2016) for a detailed description of the dataset and their processing workflow. Our model is
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not trained for the presence of significant volcanic deformation, so we exclude all stations nearby
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Figure 4.4. (top) The east component of displacement and predicted transient probabilities for

station ALBH on southern Vancouver Island. (bottom) Transient detections for all stations. Shown

are the transient probability greater than 0.5 in any of the three components (east, north, up).
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We filled data gaps with zeros to ensure a regular time interval but masked out those epochs
when predicting. As an example, we present the east component of displacement and the transient
probabilities derived by our ML model for station ALBH (Figure 4.4). Itis apparent that the spikes
in the transient probabilities coincide with the offsets that can been directly seen in the timeseries.
We want to point out that there are totally 4015 epochs for station ALBH and our ML model is
trained only using synthetic samples contained 500 epochs, which proves that a universal pattern
for transient detection has been learned by our model.

We followed the same process for all the stations. The transient probabilities that are
greater than 0.5 in any of the three components are shown in Figure 4 as a function of latitude and
time. It becomes apparent that some detections are coherent in space and time, representing the
well known slow slip event in the Cascadia region. The pattern and migration of these events are
consistent with those reported by (Michel et al., 2019; Schmidt & Gao, 2010), especially the
relatively larger ones in the northern part, such as the two events in 2011.

Last, we remodel each input time series using the ML detection results to separate the
average rate between slow slip events from the displacements in the slip events. Each time series
is remodeled as a linear combination of a constant at time zero, a velocity, and a set of Heaviside
step functions for each detection. If there is a data gap is longer than 1 year, we add a Heaviside
step function located in the center of the gap. Figure 4.5 shows the remodeled transient velocity
field, which is defined as the sum of all the step functions divided by the total duration of the time
series; this represents the contribution of all the transient events to the overall time series trend.
Overall, our result looks very similar to the RSI result, except some larger velocity toward to the

trench at the stations around latitude of 48° and 40°. This is likely because Crowell et al. (2016)
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had used a larger detection threshold of detection based on just white noise, so that some smaller

sizes of transients may were missed in their study.
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Figure 4.5. Transient velocity field, remodeled based on transient detections with probability
greater than 0.5, in the Cascadia from 2005 to 2016 from the results of (left) our ML model,

(middle) the RSI model and (right) their difference.

4.4.3. Testing on additional data that are “unseen” in the training data

In this section, we test how the model performs on some additional data under conditions
that are different from the training data set. These tests could help us understand what pattern has
been essentially learnt in the ML model.

First, we apply the model to the site AB48, which is located in Port Alexander, east of the
Gulf of Alaska. This station contains the coseismic and postseismic deformation from the 2013

Mw?7.5 Craig earthquake. The north component of the time series and the model prediction are
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shown in Figure 4.6a. The coseismic offset is identified as a very short duration transient. The
earthquake, as a special type of transient deformation, is super short and the offset size is greater
than 50 mm. Both are outside the range of the transient parameters used to generate the training
samples, but we can see the predictions identifies the earthquake and its correct timing. The
postseismic deformation that follows the earthquake is not detected as a transient, likely because
its timescale of variation is much longer than that of the training data.

Second, we test the site AC03 as an example that contains much longer transients. AC03
is located in Cook Inlet close to Homer, Alaska, and includes deformation due to multi-year slow
slip events (Li et al., 2016). Figure 4.6b shows the east component of the time series and the model
prediction for AC03. The model is not able to do the correct prediction using the original time
series. However, the model does the correct prediction after we uniformly decimate the time series
by selecting one out of every 20 epochs and then use the decimated time series as the input for
prediction; the resampling effectively compresses the time series in the time domain. From the
perspective of the model, the duration of the transient reduces from about 600 days to 30 days
which lays inside the training range. Because our model is trained without using any input
information about time, extending or compressing the time series in the time domain can allow the
model to detect transients of various durations. Because our model is trained without using any
input information about time, it has learned the pattern of transient motion, and this also suggests
that long-duration transients are similar enough to short-duration transients except for timescale.
Site ATW?2 is located in Upper Cook Inlet, Alaska, and contains even longer transient of about 5
years from 2009 to 2014. Again, we resample the time series by selecting one of every other 60th
epochs for the detection. The model successfully pick out the times of apparently accelerated

deformation during this long transient (Figure 4.6¢). Thus, resampling data to different degrees of
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time compression may be an effective approach for detecting transients of varying lengths.
Alternatively, this result suggests that it should be possible to train a model for a wider range of
transient event durations than used here, although that would require much more computational
time as the input training series would also have to be much longer.
4.5. Conclusion

We present a simple but efficient ML method for transient detection based on the LSTM
layer, a type of RNN. Our model takes each data point in a geodetic time series as input and directly
output its transient probability in a sequential way. Through synthetic tests, we have shown that
that our ML model is able to detect transients of smaller sizes compared with the RSI method
under the same noise level, benefiting from the feature extraction with the ML layers. We later
apply our model to a real-world dataset for detecting the slow slip events in the Cascadia region.
Our detection result is overall consistent with the previous studies, which validates the model
performance in a real study case as evidenced in the synthetic tests. The model successfully detects
coseismic offsets but does not detect postseismic transients. By resampling/decimating a time
series to a lower data rate to effectively compress time, the model is able to recognize long-duration

transients even when it has been trained only on short-duration transients.
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Figure 4.6. Test results for AB48, AC03 and ATW?2. For ACO03, the gray line in (b) is the prediction
results using the original time series as input and the yellow line shows the results using the

resampled time series.
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Chapter 5: Conclusion

To fully utilize INSAR time series with complementary GPS time series, | have introduced
an improved inversion filter for modeling the volcano deformation that is able to combine GPS
and InSAR. Using this improved inversion filter, | model the post-eruptive deformation at Okmok
volcano, Alaska, since 2008. By combining GPS and INSAR timeseries observations, | determine
the structure of the magma plumbing system should be a combination of a Mogi source and a
shallow sill to account for the volcanic deformation. While the Mogi source is close to the general
pre-eruptive Mogi source that should represent the long-lived magma body that already existed
since before the 1997 eruption, the shallow sill is likely an intrusion into a shallow space that was
opened when an older, more evolved magma body was partially drained during the 2008 eruption.
This work demonstrates that combining GPS and InSAR is crucial to understand the shallow
magma plumbing system at Okmok because the GPS data and the InSAR data individually suggest
two distinct sources and the final “Mogi+sill” model cannot be determined without using both data
sets. The inversion filter is also a very efficient tool to recover the volume change history. In total,
five inflation episodes are identified during the post-eruptive period at Okmok, each with the form
of an exponential decay. The total volume increase from the end of the 2008 eruption to 2019 is at
least 50% of the 2008 co-eruptive volume decrease.

Chapter 3 presents another work using the inversion filter. The location and the time-
dependent volume change of the shallow magma chamber are estimated for all three volcanoes in
east central Alaska Aleutian arc. The ~25 years volume change history shows two exponentially
decaying pulses followed by a nearly linear inflation period at Westdahl, multiple episodic
inflation events at Akutan, and transient volcanic inflation and long-term deflation signals at

Makushin. These results indicate that the magma supply dynamics of the three volcanoes are
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diverse even though they are close in distance. In addition, an accurate secular velocity is separated
from the large volcanic deformation for the study region using the inversion filter. A small (~2
mm/year) northward component is found for the volcanoes relative to the overall block velocities
estimated by the block models. This small signal is inferred to be due to the elastic strain from slip
deficit on the megathrust, and two coupling models are tested: 1) a shallow (0-15 km) nearly fully
locked zone, 2) a low slip deficit rate (~12% of the plate motion) on only a deeper locked zone at
35-50 km depth. Both models fit the data equally well, but the former model that was favored by
the tsunami simulation results (Nicolsky et al., 2016).

A single exponential inflation can be explained by a simple hydraulic model made up by a
single shallow magmatic source fed by an infinite deep magma reservoir (which means constant
influx) (e.g. Pinel et al., 2010), with an initial pressure difference between the two. The time-
dependent volume change of all four volcanoes studied here show multiple inflation events. These
results cannot be explained by a single pressure pulse or a steady flux from below, but require
multiple pulses of magma from depth. More specifically, the pressure of the deep source should
increase in episodic pulses so that each new inflation episode occurs as a result of episodic magma
supply into this deep source. We also see that the timescale of the inflation events at Okmok
decreases over time. This could be explained as the influx from deep to shallow sources increase
with time. A more thorough model is worthy of future work to fully explain the continuously
changing magma supplies.

The volume change deficit is considered to be an indicator for the timing of the next
eruption. The capacity of the magma storage system is assumed within a certain range, and an
eruption will likely occur if that capacity has been reached since the last eruption. At Okmok, in

the previous eruptive cycle, the inter-eruptive volume increase from 1997 to 2008 was 85-100%
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of the 1997 eruption volume (Lu et al., 2010). During the current cycle, an estimation of 0.068
km? of magma has been added to the shallow magma storage from 2008 to 2019, which is 50-60%
of the volume withdrawn during the 2008 eruption. The hypothesis of volume deficit can be further
validated using the inversion filter presented here and future observations.

In Chapter 4, | present a simple but efficient ML model for transient detection based on a
recurrent neural network with LSTM cells. Unlike previous studies, this new model sequentially
takes each data point in a time series as input only once, and directly output the transient probability
instead of adopting a sliding time window strategy. The model is trained on synthetic data of fixed
short length but can be applied to timeseries of any lengths for prediction. Synthetic tests have
shown that our ML model is able to detect transients of smaller sizes compared with the RSI
method under the same noise level. | then apply the model to a real-world dataset for detecting the
slow slip events in the Cascadia region. The detection result is overall consistent with the previous
studies. This validates the model performance in a real study case as evidenced in the synthetic
tests. The additional tests against completely unseen time series shows that the ML model does
generalize a pattern that is able to detect transients of varying characteristics.

The work of Chapter 4 can be directly expanded by training using real data instead of
synthetic data, although it may be difficult to obtain a real data set that is well labeled in a standard
way. Chapter 4 gives an application of the proposed ML method in geodetic data, but the method
can be easily transferred to studies on other types of time series observations with few
modifications. It would be interesting to see how the proposed method performs in the application
of, for example, seismic phase picking as the seismic data is considered to be a lager in size and

have higher frequencies compared with the geodetic data.
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