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ABSTRACT

LEARNING WITH STRUCTURES

By

Yang Zhou

In this dissertation we discuss learning with structures, which appears frequently in both

machine learning theories and applications. First we review existing structure learning algo-

rithms, then we study several specifically interesting problems. The first problem we study

is the structure learning of dynamic systems. We investigate using dynamic Bayesian net-

works to reconstruct functional cortical networks from the spike trains of neurons. Next

we study structure learning from matrix factorization, which has been a popular research

area in recent years. We propose an efficient non-negative matrix factorization algorithm

which derives not only the membership assignments to the clusters but also the interaction

strengths among the clusters. Following that we study the hierarchical and grouped struc-

ture in regularization. We propose a novel regularizer called group lasso which introduces

competitions among variables in groups, and thus results in sparse solutions. Finally we

study the sparse structure in a novel problem of online feature selection, and propose an

online learning algorithm that only needs to sense a small number of attributes before the

reliable decision can be made.
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CHAPTER 1

Introduction

In this dissertation we discuss learning with structures, which appears frequently in both

machine learning theories and applications. Structures can be found in many study areas. In

biology, the gene regulatory network is a collection of DNAs in a cell. These DNAs interact

with each other indirectly through RNA and protein expression, and thereby governing

the rates at which the genes are transcribed into mRNA. In system neuroscience, numerous

functional neuroimaging studies suggest that cortical regions selectively couple to each other.

These interconnected regions orchestrate together and mediate perception, learning, sensory

and motor processing. It is essential to reconstruct this neural network in order to understand

the internal mechanism.

A large amount of research work has been devoted to structure learning and many models

and algorithms have been developed, including, for example, Bayesian networks, Gaussian

graphical models, Markov Random Field, group lasso regularization, etc. Despite significant

efforts made in learning with structures, there are a number of challenges remain to be

addressed:

• In many applications we are interested in the temporal effects in the dynamic structures.

Note that the term “dynamic” means that we are modeling a dynamic system, not

that the structure changes over time. For example, in functional neural networks, the

presynaptic and postsynaptic neurons are connected by channels that are capable of

passing electrical current, causing electric spiking (firing) in the presynaptic neuron

to influence, either excitatory or inhibitory, the spiking of the postsynaptic neuron.

Although this kind of dynamic structures are found in many applications, learning
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with dynamic structures is an area that is less studied.

• Many structures in our study are large-scale, leading to computational challenges with

the existing algorithms. For example, the gene regulatory networks may be consisted

of hundreds, thousands or even more DNAs. In order to study in the mechanism of

cortical networks we may have millions of neurons at proposal. However, most of the

existing algorithms are designed to handle either small or medium scale datasets. For

example, The Bayesian network learning algorithm can usually learn structures with a

few hundred nodes at most. The computational complexity grows exponentially with

the number of nodes, which hinders us from exploring the structures of large sets of

variables.

• Although the structure information often appears explicitly in many situations like

the conditional dependency in a Bayesian network which can be intuitively visualized

using a directed graph, it may be implicit sometimes and thus difficult to explore. Many

algorithms including group lasso and Composite Absolute Penalties (CAP) have been

proposed to exploit the information embedded in the group structure. However, these

algorithms are restricted to discovering positive correlations among the variables within

groups only. Specifically, they assume that if a few variables in a group are important,

then most of the variables in the same group should also be important. However, in

many real-world applications, we may come to the opposite observation, i.e., variables

in the same group exhibit negative correlations by competing with each other. For

instance, in visual object recognition, the signature visual patterns of different objects

tend to be negatively correlated, i.e., visual patterns valuable for recognizing one object

tent to be less useful for other objects. It remains a question of how to infer this kind

of negative correlations in implicit group structures.

• The sparse structure is tempting in many applications, one of such is online learning.

Most of the existing online learning algorithms have at least one weight for every

2



feature. Although some algorithms are proposed recently to introduce sparsity to the

model, they lack a hard constraint on the number of non-zero features, and thus need

access to the full information of the sample in each iteration. On the other hand,

sparse representation of the online learning model has many advantages. For example,

the time complexity and space complexity is significantly reduced. The constraints on

sparsity may also avoid the overfitting problem. In some applications the acquisition

of samples is costly, and thus the number of features available is limited by our budget.

This dissertation is devoted to tackling these challenges in learning with structures. Specif-

ically, this dissertation will present research work in the following topics: (i) Application of

dynamic structure learning in reconstructing cortical networks. (ii) Developing algorithms

for structure learning that can efficiently handle large scale data sets. (iii) Developing a new

kind of regularization mechanism for explicitly exploring the negative correlations in implicit

group structures. (iv) Developing new online feature selection algorithms with hard sparse

constraints on number of features.

The rest of this dissertation is organized as following. Chapter 2 gives a comprehen-

sive review of existing structure learning algorithms. In particular, structure learning of

probabilistic graphical models is given special attention since it is representative for many

structure learning problems, and this area has been well studies with many models and al-

gorithms developed. In Chapter 3, we discuss dynamic structure learning from time-series

or sequential data. We give a detailed introduction to Hidden Markov Models. As a typical

time-state model, it has been widely used in various engineering fields for several decades.

The extension of HMMs naturally lead to dynamic Bayesian networks. We study the appli-

cation of dynamic Bayesian networks to the reconstruction of functional cortical networks.

In Chapter 4, we study structure learning from matrix factorization, which has been a popu-

lar research area in recent years. An efficient non-negative matrix factorization algorithm is

proposed. Unlike the traditional matrix factorization methods for clustering, the proposed

algorithm not only derives the membership assignment to the clusters, but also computes the
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strength of interactions among the clusters. The proposed algorithm is applied to the recon-

struction of gene regulatory networks, and it shows superior performance in our experiments

compared to state-of-the-art algorithms. In Chapter 5 we study the implicit and indirect

structures resulted from regularization. We are particularly interested in the grouped and

hierarchical regularization, and we propose a novel exclusive lasso regularizer. Unlike the

group lasso which assumes positive correlations in the groups, namely, if one variable in a

group is believed to be important, then all variables in the group should be important, our

proposed exclusive lasso regularizer introduces competitions among variables in groups, re-

sulting in a sparse solution where the most prominent variable in a group stands out and the

others diminish. We apply this regularization to multi-task learning in our experiments, and

it show superior performance compared with other state-of-the-art algorithms. In Chapter 6,

we further investigate the sparse structure in online learning, specifically in a novel problem

of online feature selection. Most online learning studies assume that the learning has full

access to all input features. However, in many real world applications, it is expensive, either

computationally or money wise, to acquire and use all the input attributes. In this case it

is desirable to develop online learning algorithms that only need to sense a small number of

attributes before the reliable decision can be made. We make a first step towards solving

this problem, and develop theories and algorithms for sparse online feature selection. Specif-

ically, we develop the general algorithms for sparse online feature selection, and examine

their theoretic properties such as the upper and lower bounds for the regret bound. We

evaluate the proposed algorithms by extensive experiments on benchmark datasets.

4



CHAPTER 2

Learning with Structures: a

Comprehensive Review

In this chapter we review the existing models and algorithms for learning with structures.

An important family of structures are the probabilistic graphical models which combine

the graph theory and probability theory to give a multivariate statistical modeling. Many

graphical models have been developed so far, e.g., Bayesian networks, Gaussian graphical

models, Markov random fields, among others. The structure learning of probabilistic graph-

ical models has been well studied and many algorithms have been proposed. We will review

the two most popular approaches: constraint-based algorithms and score-based algorithms.

We will also review other structure learning algorithms for different models. These al-

gorithms can roughly be categorized into regression based approaches, matrix factorization

based approaches, group regularization based approaches, and hybrid methods.

2.1 Structure Learning of Probabilistic Graphical

Models

Probabilistic graphical models combine the graph theory and probability theory to give a

multivariate statistical modeling. They provide a unified description of uncertainty using

probability and complexity using the graphical model. Especially, graphical models provide

the following several useful properties:

• Graphical models provide a simple and intuitive interpretation of the structures of
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probabilistic models. On the other hand, they can be used to design and motivate new

models.

• Graphical models provide additional insights into the properties of the model, including

the conditional independence properties.

• Complex computations which are required to perform inference and learning in so-

phisticated models can be expressed in terms of graphical manipulations, in which the

underlying mathematical expressions are carried along implicitly.

The graphical models have been applied to a large number of fields, including bioinfor-

matics, social science, control theory, image processing, marketing analysis, among others.

However, structure learning for graphical models remains an open challenge, since one must

cope with a combinatorial search over the space of all possible structures.

2.1.1 Preliminaries

We will first define a set of notations which will be used in this chapter. We represent a graph

as G = 〈V,E〉 where V = {vi} is the set of nodes in the graph and each node corresponds

to a random variable xi ∈ X . E = {(vi, vj) : i 6= j} is the set of edges. In a directed graph,

if there is an edge Ei,j from vi to vj , then vi is a parent of node vj and vj is a child of node

vi. If there is no cycle in a directed graph, we call it a directed acyclic graph (DAG). The

number of nodes and number of edges in a graph are denoted by |V | and |E| respectively.

π(i) represent all the parents of node vi in a graph. U = {x1, · · · , xn} denotes the finite

set of discrete random variables where each variable xi may take on values from a finite

domain. V al(xi) denotes the set of values that variable xi may attain, and |xi| = |V al(xi)|

denotes the cardinality of this set. In probabilistic graphical network, the Markov blanket

∂vi [Pearl, 1988] of a node vi is defined to be the set of nodes in which each has an edge to

vi, i.e., all vj such that (vi, vj) ∈ E. The Markov assumption states that in a probabilistic

graphical network, every set of nodes in the network is conditionally independent of vi when

6



X2

X9

X1

Figure 2.1: An Ising model with 9 nodes.

conditioned on its Markov blanket ∂vi. Formally, for distinct nodes vi and vk,

P (vi|∂vi ∩ vk) = P (vi|∂vi)

The Markov blanket of a node gives a localized probabilistic interpretation of the node since

it identifies all the variables that shield off the node from the rest of the network, which means

that the Markov blanket of a node is the only information necessary to predict the behavior

of that node. A DAG G is an I-Map of a distribution P if all the Markov assumptions

implied by G are satisfied by P .

Theorem 2.1.1. (Factorization Theorem) If G is an I-Map of P , then

P (x1, · · · , xn) =
∏

i

P (xi|xπ(i))

According to this theorem, we can represent P in a compact way when G is sparse such

that the number of parameter needed is linear in the number of variables. This theorem is

true in the reverse direction.

The set X is d-separated from set Y given set Z if all paths from a node in X to a node

in Y are blocked given Z.

The graphical models can essentially be divided into two groups: directed graphical models

and undirected graphical models.
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2.1.2 Graphical Models

In this section we review some of the most commonly used graphical models.

Markov Random Field

AMarkov Random Field (MRF) is defined as a pairM = 〈G,Φ〉. Here G = 〈V,E〉 represents

an undirected graph, where V = {Vi} is the set of nodes, each of which corresponds to a

random variable in X ; E = {(Vi, Vj) : i 6= j} represents the set of undirected edges. The

existence of an edge {u, v} indicates the dependency of the random variable u and v. Φ

is a set of potential functions (also called factors or clique potentials) associated with the

maximal cliques in the graph G. Each potential function φc(·) has the domain of some

clique c in G, and is a mapping from possible joint assignments (to the elements of c) to

non-negative real values. A maximal clique of a graph is a fully connected sub-graph that can

not be further extended. We use C to represent the set of maximal cliques in the graph. φc

is the potential function for a maximal clique c ∈ C. The joint probability of a configuration

x of the variables V can be calculated as the normalized product of the potential function

over all the maximal cliques in G:

P (x) =

∏
c∈C φc(xc)∑

x′c
∏

c∈C φc(xc)

where xc represents the current configuration of variables in the maximal clique c, x′c repre-

sents any possible configuration of variable in the maximal clique c. In practice, a Markov

network is often conveniently expressed as a log-linear model, given by

P (x) =
exp

(∑
c∈C wcφc(xc)

)
∑

x∈X exp
(∑

c∈C wcφc(xc)
)

In the above equation, φc are feature functions from some subset of X to real values, wc are

weights which are to be determined from training samples. A log-linear model can provide

more compact representations for any distributions, especially when the variables have large

domains. This representation is also convenient in analysis because its negative log likelihood
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is convex. However, evaluating the likelihood or gradient of the likelihood of a model requires

inference in the model, which is generally computationally intractable due to the difficulty

in calculating the partitioning function.

The Ising model is a special case of Markov Random Field. It comes from statistical

physics, where each node represents the spin of a particle. In an Ising model, the graph is

a grid, so each edge is a clique. Each node in the Ising model takes binary values {0, 1}.

The parameters are θi representing the external field on particle i, and θij representing the

attraction between particles i and j. θij = 0 if i and j are not adjacent. The probability

distribution is:

p(x|θ) = exp


∑

i<j

θijxixj +
∑

i

θixi = −A(θ)




=
1

Z(θ)
exp


∑

i<j

θijxixj +
∑

i

θixi




where Z(θ) is the partition function.

Gaussian Graphical Model

A Gaussian Graphical Model (GGM) models the Gaussian property of multivariate in an

undirected graphical topology. Assuming that there are n variables and all variables are

normalized so that each of them follows a standard Gaussian distribution. We use X =

(x1, · · · ,xn) to represent the n× 1 column matrix. In a GGM, the variables X are assumed

to follow a multivariate Gaussian distribution with covariance matrix Σ,

P (X) =
1

(2π)
n
2 |Σ|

1
2

exp

(
−1
2
X⊤Σ−1X

)

In a Gaussian Graphical Model, the existence of an edge between two nodes indicates that

these two nodes are not conditionally independent given other nodes. Matrix Ω = Σ−1 is

the precision matrix. The non-zero elements in the precision matrix correspond to the edges

in the Gaussian Graphical Model.
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Bayesian Networks

The most commonly used directed probabilistic graphical model is Bayesian Network [Pearl,

1988], which is a compact graphical representation of joint distributions. A Bayesian Network

exploits the underlying conditional independencies in the domain, and compactly represent

a joint distribution over variables by taking advantages of the local conditional independence

structures. A Bayesian network B = 〈G,P 〉 is made of two components: a directed acyclic

graph (DAG) G whose nodes correspond to the random variables, and a set of conditional

probabilistic distributions (CPD), P (xi|xπ(i)), which describe the statistical relationship be-

tween each node i and its parents π(i). In a CPD, for any specific configuration of xπ(i), the

sum over all possible values of xi is 1:

∑

xi∈V al(xi)

P (xi|xπ(i)) = 1.

In the continuous case,

∫

xi∈V al(xi)
P (xi|xπ(i))dxi = 1

where P (xi|xπ(i)) is the conditional density function. The conditional independence as-

sumptions together with the CPDs uniquely determine a joint probability distribution via

the chain rule:

P (x1, · · · , xn) =
n∏

i=1

P (xi|xπ(i))

Other Graphical Models

Some other graphical models are briefly listed here.

• Dependency Networks: In [Heckerman et al., 2000], the authors proposed a prob-

abilistic graphical model named dependency networks, which can be considered as a
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Figure 2.2: A Bayesian network for detecting credit-card fraud. Arcs indicate the causal

relationship. The local conditional probability distributions associated with a node are

shown next to the node. The asterisk indicates any value for that variable.

combination of Bayesian network and Markov network. The graph of a dependency

network, unlike a Bayesian network, can be cyclic. The probability component of a

dependency network, like a Bayesian network, is a set of conditional distributions, one

for each node given its parents.

A dependency network is a pair 〈G,P 〉 where G is a cyclic directed graph and P is a set

of conditional probability distributions. The parents of nodes π(i) of node i correspond

to those variables that satisfy

p(xi|xπ(i)) = p(xi|xV \i)

In other words, a dependency network is simply a collection of conditional distribu-

tions that are defined and built separately. In a specific context of sparse normal

models, these would define a set of separate conditional linear regressions in which

xi is regressed to a small selected subset of other variables, each being determined

separately.
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The independencies in a dependency network are the same as those of a Markov network

with the same adjacencies. The authors proved that the Gibbs sampler applied to the

dependency network will yield a joint distribution for the domain. The applications

of dependency network include probabilistic inference, collaborative filtering and the

visualization of causal predictive relationships.

• Module Networks: In [Segal et al., 2003], the authors proposed a module networks

model for gene regulatory network construction. The basic structure is a Bayesian

network. Each regulatory module is a set of genes that are regulated in concert by a

shared regulation program that governs their behavior. A regulation program specifies

the behavior of the genes in the module as a function of the expression level of a small

set of regulators. By employing the Bayesian structure learning to the modules instead

of genes, this algorithm is able to reduce the computational complexity significantly.

In [Toh and Horimoto, 2002] the authors proposed a model with the similar idea, yet

they build a Gaussian Graphical Model instead of Bayesian networks, of module net-

works. In their study of the yeast (Saccharomyces cerevisiae) genes measured under 79

different conditions, the 2467 genes are first classified into 34 clusters by a hierarchical

clustering analysis [Horimoto and Toh, 2001]. Then the expression levels of the genes

in each cluster are averaged for each condition. The averaged expression profile data

of 34 clusters were subjected to GGM, and a partial correlation coefficient matrix was

obtained as a model of the genetic network.

• Probabilistic Relational Models: A probabilistic relational model [Friedman et al.,

1999a] is a probabilistic description of the relational models, like the models in rela-

tional databases. A relational model consists of a set of classes and a set of relations.

Each entity type is associated with a set of attributes. Each attribute takes on values

in some fixed domain of values. Each relation is typed. The probabilistic relational

model describes the relationships between entities and the properties of entities. The
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model consists of two components: the qualitative dependency structure which is a

DAG, and the parameters associated with it. The dependency structure is defined

by associating with each attribute and its parents, which is modeled as conditional

probabilities.

2.1.3 Network Topology

Two classes of network architectures are of special interest [Kitano, 2002]: the small world

networks [Watts and Strogatz, 1998] and scall-free power law networks [Barabasi and Albert,

1999]. Small world networks are characterized by high clustering coefficients and small

diameters. The clustering coefficient C(p) is defined as follows. Suppose that a vertex v has

kv neighbors; then at most kv(kv − 1)/2 edges can exist between them (this occurs when

every neighbor of v is connected to every other neighbor of v). Let Cv denote the fraction of

these allowable edges that actually exist, then the clustering coefficient C is defined as the

average of Cv over all v.

These properties reflect the existence of local building blocks together with long-range

connectivity. Most nodes in small world networks have approximately the same number of

links, and the degree distribution P (k) decays exponentially for large k. Compared to small

world networks, the scale-free power law networks have smaller clustering coefficients and

large diameters. Most nodes in the scale-free networks are connected to a few neighbors,

and only a small number of nodes, which is often called “hubs”, are connected to a large

number of nodes. This property is reflected by the power law for the degree distribution

P (k) ∼ k−v.

Previous studies have found that a number of network structures appear to have structures

between the small-world network and the scale-free network. In fact, these networks behave

more like hierarchical scale-free [Han et al., 2004, Jeong et al., 2000, Lukashin et al., 2003,

Basso et al., 2005, Bhan et al., 2002, Ravasz et al., 2002]. Nodes within the networks are first

grouped into modules, whose connectivity is more like the small worlds network. The grouped

13



modules are then connected into a large network, which follows the degree distribution that

is similar to that of the scale-free network.

2.1.4 Structure Learning of Graphical Models

There are three major approaches of existing structure learning methods: constraint-based

approaches, score-based approaches and regression-based approaches.

Constraint-based approaches first attempt to identify a set of conditional independence

properties, and then attempt to identify the network structure that best satisfies these con-

straints. The drawback with the constraints based approaches is that it is difficult to reliably

identify the conditional independence properties and to optimize the network structure [Mar-

garitis, 2003]. Plus, the constraints-based approaches lack an explicit objective function and

they do not try to directly find the globally optimal structure. So they do not fit in the

probabilistic framework.

Score-based approaches first define a score function indicating how well the network fits

the data, then search through the space of all possible structures to find the one that has

the optimal value for the score function. Problem with this approach is that it is intractable

to evaluate the score for all structures, so usually heuristics, like greedy search, are used to

find the sub-optimal structures.

Regression-based approaches are gaining popularity in recent years. Algorithms in this

category are essentially optimization problems which guarantees global optimum for the

objective function, and have better scalability.

2.2 Constraint-based Algorithms

The constraint-based approaches [Tsamardinos et al., 2006, Juliane and Korbinian, 2005,

Spirtes et al., 2001, Wille et al., 2004, Margaritis, 2003, Margaritis and Thrun, 1999] em-

ploy the conditional independence tests to first identify a set of conditional independence
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properties, and then attempts to identify the network structure that best satisfies these con-

straints. The two most popular constraint-based algorithm are the SGS algorithm and PC

algorithm [Tsamardinos et al., 2006], both of which tries to d-separate all the variable pairs

with all the possible conditional sets whose sizes are lower than a given threshold.

One problem with constraint-based approaches is that they are difficult to reliably identify

the conditional independence properties and to optimize the network structure [Margaritis,

2003]. The constraint-based approaches lack an explicit objective function and thus they do

not try to directly find the global structure with maximum likelihood. So they do not fit in

the probabilistic framework.

The SGS Algorithm

The SGS algorithm (named after Spirtes, Glymour and Scheines) is the most straightfor-

ward constraint-based approach for Bayesian network structure learning. It determines the

existence of an edge between every two node variables by conducting a number of indepen-

dence tests between them conditioned on all the possible subsets of other node variables.

The pseudo code of the SGS algorithm is listed in Algorithm 1. After slight modification,

SGS algorithm can be used to learn the structure of undirected graphical models (Markov

random fields).

The SGS algorithm requires that for each pair of variables adjacent in G, all possible

subsets of the remaining variables should be conditioned. Thus this algorithm is super-

exponential in the graph size (number of vertices) and thus unscalable. The SGS algorithm

rapidly becomes infeasible with the increase of the vertices even for sparse graphs. Besides the

computational issue, the SGS algorithm has problems of reliability when applied to sample

data, because determination of higher order conditional independence relations from sample

distribution is generally less reliable than is the determination of lower order independence

relations.
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Algorithm 1 SGS Algorithm

1: Build a complete undirected graph H on the vertex set V .

2: For each pair of vertices i and j, if there exists a subset S of V \ {i, j} such that i and j

are d-separated given S, remove the edge between i and j from G.

3: Let G′ be the undirected graph resulting from step 2. For each triple of vertices i, j and

k such that the pair i and j and the pair j and k are each adjacent in G′ (written as

i − j − k) but the pair i and k are not adjacent in G′, orient i − j − k as i → j ← k if

and only if there is no subset S of {j} ∪ V \ {i, j} that d-separate i and k.
4: repeat

5: If i→ j, j and k are adjacent, i and k are not adjacent, and there is no arrowhead at

j, then orient j − k as j → k.

6: If there is a directed path from i to j, and an edge between i and j, then orient i− j
as i→ j.

7: until no more edges can be oriented.

The PC Algorithm

The PC algorithm (named after Peter Spirtes and Clark Glymour) is a more efficient

constraint-based algorithm. It conducts independence tests between all the variable pairs

conditioned on the subsets of other node variables that are sorted by their sizes, from small

to large. The subsets whose sizes are larger than a given threshold are not considered. The

pseudo-code of the PC algorithm is given in Algorithm 2. We use N (i) to denote the adjacent

vertices to vertex i in a directed acyclic graph G.

The complexity of the PC algorithm for a graph G is bounded by the largest degree in G.

Suppose d is the maximal degree of any vertex and n is the number of vertices. In the worst

case the number of conditional independence tests required by the PC algorithm is bounded

by

2

(
n

2

) d∑

i=1

(
n− 1

i

)

The PC algorithm can be applied on graphs with hundreds of nodes. However, it is not

scalable if the number of nodes gets even larger.
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Algorithm 2 PC Algorithm

1: Build a complete undirected graph G on the vertex set V .

2: n = 0.

3: repeat

4: repeat

5: Select an ordered pair of vertices i and j that are adjacent in G such that N (i)\{j}
has cardinality greater than or equal to n, and a subset S of N (i)\{j} of cardinality
n, and if i and j are d-separated given S delete edge i− j from G and record S in

Sepset(i, j) and Sepset(j, i).

6: until all ordered pairs of adjacent variables i and j such that N (i)\{j}has cardinality
greater than or equal to n and all subsets S of N (i) \ {j}of cardinality n have been

tested for d-separation.

7: n = n + 1.

8: until for each ordered pair of adjacent vertices i and j, N (i) \ {j} is of cardinality less

than n.

9: For each triple of vertices i, j and k such that the pair i, j and the pair j, k are each

adjacent in G but the pair i, k are not adjacent in G, orient i − j − k as i → j ← k if

and only if j is not in Sepset(i, k).

10: repeat

11: If i→ j, j and k are adjacent, i and k are not adjacent, and there is no arrowhead at

j, then orient j − k as j → k.

12: If there is a directed path from i to j, and an edge between i and j, then orient i− j
as i→ j.

13: until no more edges can be oriented.

The GS Algorithm

Both the SGS and PC algorithm start from a complete graph. When the number of nodes

in the graph becomes very large, even PC algorithm will be intractable due to the large

combinatorial space.

In [Margaritis and Thrun, 1999], the authors proposed a Grow-Shrinkage (GS) algorithm

to address the large scale network structure learning problem by exploring the sparseness of

the graph. The GS algorithm uses two phases to estimate a superset of the Markov blanket

∂̂(j) for node j as in Algorithm 3. In the pseudo code, i↔S j denotes that node i and j are

dependent conditioned on set S.

Algorithm 3 includes two phases to estimate the Markov blanket. In the “grow” phase,

17



Algorithm 3 GS: Estimating the Markov Blanket

1: S ← Φ.

2: while ∃j ∈ V \ {i} such that j ↔S i do

3: S ← S ∪ {j}.
4: end while

5: while ∃j ∈ S such that j =S\{i} i do
6: S ← S \ {j}.
7: end while

8: ∂̂(i)← S

Algorithm 4 GS Algorithm

1: Compute Markov Blankets : for each vertex i ∈ V compute the Markov blanket ∂(i).

2: Compute Graph Structure: for all i ∈ V and j ∈ ∂(i), determine j to be a direct neighbor

of i if i and j are dependent given S for all S ⊆ T where T is the smaller of ∂(i) \ {j}
and ∂(j) \ {i}.

3: Orient Edges : for all i ∈ V and j ∈ ∂(i), orient j → i if there exists a variable

k ∈ ∂(i) \ {∂(j) ∪ {j}} such that j and k are dependent given S ∪ {i} for all S ⊆ U

where U is the smaller of ∂(j) \ {k} and ∂(k) \ {j}.
4: repeat

5: Compute the set of edges C = {i→ j such that i→ j is part of a cycle}.
6: Remove the edge in C that is part of the greatest number of cycles, and put it in R.

7: until there is no cycle exists in the graph.

8: Reverse Edges : Insert each edge from R in the graph, reversed.

9: Propagate Directions : for all i ∈ V and j ∈ ∂(i) such that neither j → i nor i → j,

execute the following rule until it no longer applies: if there exists a directed path from

i to j, orient i→ j.

variables are added to the Markov blanket ∂̂(j) sequentially using a forward feature selection

procedure, which often results in a superset of the real Markov blanket. In the “shrinkage”

phase, variables are deleted from the ∂̂(j) if they are independent from the target variable

conditioned on the subset of other variables in ∂̂(j). Given the estimated Markov blanket,

the algorithm then tries to identify both the parents and children for each variable as in

Algorithm 4.

In [Margaritis and Thrun, 1999], the authors further developed a randomized version of

the GS algorithm to handle the situation when (i) the Markov blanket is relatively large, (ii)

the number of training samples is small compared to the number of variables, or there are
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noises in the data.

In a sparse network in which the Markov blankets are small, the complexity of GS algorithm

is O(n2) where n is the number of nodes in the graph. Note that GS algorithm can be

used to learn undirected graphical structures (Markov Random Fields) after some minor

modifications.

2.3 Score-based Algorithms

Score-based approaches [Heckerman et al., 1995, Friedman et al., 1999b, Hartemink et al.,

2001] first posit a criterion by which a given Bayesian network structure can be evaluated

on a given dataset, then search through the space of all possible structures and tries to

identify the graph with the highest score. Most of the score-based approaches enforce sparsity

on the learned structure by penalizing the number of edges in the graph, which leads to

a non-convex optimization problem. Score-based approaches are typically based on well

established statistical principles such as Minimum Description Length (MDL) [Lam and

Bacchus, 1994, Friedman and Goldszmidt, 1996, Allen and Greiner, 2000] or the Bayesian

score. The Bayesian scoring approaches was first developed in [Cooper and Herskovits, 1992],

and then refined by the BDe score [Heckerman et al., 1995], which is now one the of best

known standards. These scores offer sound and well motivated model selection criteria for

Bayesian network structure.

The main problem with score based approaches is that their associated optimization prob-

lems are intractable, i.e., it is NP-hard to compute the optimal Bayesian network structure

using Bayesian scores [Chickering, 1996]. Recent researches have shown that for large sam-

ples, optimizing Bayesian network structure is NP-hard for all consistent scoring criteria

including MDL, BIC and the Bayesian scores [Chickering et al., 2004]. Since the score-based

approaches are not scalable for large graphs, they perform searches for the locally optimal

solutions in the combinatorial space of structures, and the local optimal solutions they find
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could be far away from the global optimal solutions, especially in the case when the number

of sample configurations is small compared to the number of nodes.

The space of candidate structures in scoring based approaches is typically restricted to

directed models (Bayesian networks) since the computation of typical score metrics involves

computing the normalization constant of the graphical model distribution, which is in-

tractable for general undirected models [Pollard, 1984]. Estimation of graph structures in

undirected models has thus largely been restricted to simple graph classes such as trees [Chow

et al., 1968], poly-trees [Chow et al., 1968] and hypertrees [Srebro, 2001].

2.3.1 Score Metrics

Score metrics are used to evaluate the goodness of a structure given a dataset. The most

commonly used scores include the Minimum Description Length (MDL), the BDe score, and

the Bayesian Information Criterion (BIC).

The MDL Score

The Minimum Description Length (MDL) principle [Rissanen, 1989] aims to minimize the

space used to store a model and the data to be encoded in the model. In the case of

learning a Bayesian network B which is composed of a graph G and the associated condi-

tional probabilities PB, the MDL criterion requires choosing a network that minimizes the

total description length of the network structure and the encoded data, which implies that

the learning procedure balances the complexity of the induced network with the degree of

accuracy with which the network represents the data.

Since the MDL score of a network is defined as the total description length, it needs to

describe the data U , the graph structure G and the conditional probability P for a Bayesian

network B = 〈G,P 〉.

To describe U , we need to store the number of variables n and the cardinality of each

variable xi. We can ignore the description length of U in the total description length since
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U is the same for all candidate networks.

To describe the DAG G, we need to store the parents π(i) of each variable xi. This

description includes the number of parents |π(i)| and the index of the set π(i) in some

enumeration of all
( n
|π(i)|

)
sets of this cardinality. Since the number of parents |π(i)| can be

encoded in logn bits, and the indices of all parents of node i can be encoded in log
( n
π(i)

)

bits, the description length of the graph structure G is

DLgraph(G) =
∑

i

(
log n+ log

(
n

|π(i)|

))
(2.1)

To describe the conditional probability P in the form of CPD, we need to store the param-

eters in each conditional probability table. The number of parameters used for the table

associated with xi is |π(i)|(|xi| − 1). The description length of these parameters depends on

the number of bits used for each numeric parameter. A usual choice is 1/2 logN [Friedman

and Goldszmidt, 1996]. So the description length for xi’s CPD is

DLtab(xi) =
1

2
|π(i)| (|xi| − 1) logN

To describe the encoding of the training data, we use the probability measure defined by the

network B to construct a Huffman code for the instances inD. In this code, the length of each

codeword depends on the probability of that instance. According to [Cover and Thomas,

1991], the optimal encoding length for instance xi can be approximated as − logPxi . So

the description length of the data is

DLdata(D|B) = −
N∑

i=1

logP (xi)

= −
∑

i

∑

xi,xπ(i)

#(xi,xπ(i)) logP (xi|xπ(i)).

In the above equation, (xi,xπ(i)) is a local configuration of variable xi and its parents,

#(xi,xπ(i)) is the number of the occurrence of this configuration in the training data. Thus

the encoding of the data can be decomposed as the sum of terms that are “local” to each

CPD, and each term only depends on the counts #(xi,xπ(i)).
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If P (xi|xπ(i)) is represented as a table, then the parameter values that minimize

DLdata(D|B) are θxi|xπ(i) = P̂ (xi|xπ(i)) [Friedman and Goldszmidt, 1998]. If we assign

parameters accordingly, then DLdata(D|B) can be rewritten in terms of conditional entropy

as N
∑

iH(xi|xπ(i)), where

H(X|Y ) = −
∑

x,y

P̂ (x, y) log P̂ (x|y)

is the conditional entropy of X given Y . The new formula provides an information-theoretic

interpretation to the representation of the data: it measures how many bits are necessary to

encode the values of xi once we know xπ(i).

Finally, by combining the description lengths above, we get the total description length of

a Bayesian network as

DL(G,D) = DLgraph(G) +
∑

i

DLtab(xi) +N
∑

i

H(xi|xπ(i)) (2.2)

The BDe Score

The Bayesian score for learning Bayesian networks can be derived from methods of Bayesian

statistics, one important example of which is BDe score [Cooper and Herskovits, 1992, Heck-

erman et al., 1995]. The BDe score is proportional to the posterior probability of the network

structure given the data. Let Gh denote the hypothesis that the underlying distribution sat-

isfies the independence relations encoded in G. Let ΘG represent the parameters for the

CPDs qualifying G. By Bayes rule, the posterior probability P (Gh|D) is

P (Gh|D) =
P (D|Gh)P (Gh)

P (D)

In the above equation, 1/P (D) is the same for all hypothesis, and thus we denote this

constant as α. The term P (D|Gh) is the probability given the network structure, and P (Gh)

is the prior probability of the network structure. They are computed as follows.

The prior over the network structures is addressed in several literatures. In [Heckerman

et al., 1995], this prior is chosen as P (Gh) ∝ α∆(G,G′), where ∆(G,G′) is the difference in
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edges between G and a prior network structure G′, and 0 < a < 1 is the penalty for each

edge. In [Friedman and Goldszmidt, 1998], this prior is set as P (Gh) ∝ 2
−DLgraph(G)

, where

DLgraph(G) is the description length of the network structure G, defined in Equation 2.1.

The evaluation of P (D|Gh) needs to consider all possible parameter assignments to G,

namely

P (D|Gh) =

∫
P (D|ΘG, G

h)P (ΘG|Gh)dΘG, (2.3)

where P (D|ΘG, G
h) is the probability of the data given the network structure and parame-

ters. P (ΘG|Gh) is the prior probability of the parameters. Under the assumption that each

distribution P (xi|xπ(i)) can be learned independently of all other distributions [Heckerman

et al., 1995], Equation 2.3 can be written as

P (D|Gh) =
∏

i

∏

π(i)

∫ ∏

xi

θ
N(xi,xπ(i))

i,π(i)
P (Θi,π(i)|Gh)dΘi,π(i).

Note that this decomposition is analogous to the decomposition in Equation 2.2. In [Heck-

erman et al., 1995], the author suggested that each multinomial distribution Θi,π(i) takes a

Dirichlet prior, such that

P (ΘX) = β
∏

x

θ
N ′x
x

where N ′x : x ∈ V al(X) is a set of hyper parameters, β is a normalization constant. Thus,

the probability of observing a sequence of values of X with counts N(x) is

∫ ∏

x

θ
N(x)
x P (ΘX |Gh)dΘX =

Γ(
∑

xN
′(x))

Γ(
∑

x(N
′
x +N(x)))

∏

x

Γ(N ′x +N(x))

Γ(N ′x)

where Γ(x) is the Gamma function defined as

Γ(x) =

∫ ∞

0
tx−te−tdt

The Gamma function has the following properties:

Γ(1) = 1

Γ(x+ 1) = xΓ(x)
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If we assign each Θi,π(i) a Dirichlet prior with hyperparameters N then

P (D|Gh) =
∏

i

∏

π(i)

Γ(
∑

iN
′
i,π(i)

)

Γ(
∑

iN
′
i,π(i)

+N(π(i)))

∏

xi

Γ(N ′
i,π(i)+N(i,π(i))

)

Γ(N ′
i,π(i)

)

Bayesian Information Criterion (BIC)

A natural criterion that can be used for model selection is the logarithm of the relative

posterior probability:

logP (D,G) = logP (G) + logP (D|G) (2.4)

Here the logarithm is used for mathematical convenience. An equivalent criterion that is

often used is:

log

(
P (G|D)

P (G0|D)

)
= log

(
P (G)

P (G0)

)
+ log

(
P (D|G)
P (D|G0)

)

The ratio P (D|G)/P (D|G0) in the above equation is called Bayes factor [Kass and Raftery,

1995]. Equation 2.4 consists of two components: the log prior of the structure and the log

posterior probability of the structure given the data. In the large-sample approximation we

drop the first term.

Let us examine the second term. It can be expressed by marginalizing all the assignments

of the parameters Θ of the network:

logP (D|G) = log

∫

Θ
P (D|G,Θ)P (Θ|G)dΘ (2.5)

In [Kass and Raftery, 1995], the authors proposed a Gaussian approximation for

P (Θ|D,G) ∝ P (D|Θ, G)P (Θ|G) for large amounts of data. Let

g(Θ) ≡ log(P (D|Θ, G)P (Θ|G))

We assume that Θ̃ is the maximum a posteriori (MAP) configuration of Θ for P (Θ|D,G),

which also maximizes g(Θ). Using the second degree Taylor series approximation of g(Θ) at

Θ̃:

g(Θ) ≈ g(Θ̃)− 1

2
(Θ− Θ̃)A(Θ− Θ̃)⊤
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Where A is the negative Hessian of g(Θ) at Θ̃. Thus we get

P (Θ|D,G) ∝ P (D|Θ, G)P (Θ, G)

≈ P (D|Θ̃, S)P (Θ̃|S) exp
(
1

2
(Θ− Θ̃)A(Θ− Θ̃)⊤

)
(2.6)

So we approximate P (Θ|D,G) as a multivariate Gaussian distribution. Plugging Equa-

tion 2.6 into Equation 2.5 and we get:

logP (D|G) ≈ logP (D|Θ̃, G) + logP (Θ̃|G) + d

2
log(2π)− 1

2
log |A| (2.7)

where d is the dimension of g(Θ). In our case it is the number of free parameters.

Equation 2.7 is called a Laplace approximation, which is a very accurate approximation

with relative error O(1/N) where N is the number of samples in D [Kass and Raftery, 1995].

However, the computation of |A| is a problem for large-dimension models. We can ap-

proximate it using only the diagonal elements of the Hessian A, in which case we assume

independencies among the parameters.

In asymptotic analysis, we get a simpler approximation of the Laplace approximation

in Equation 2.7 by retaining only the terms that increase with the number of samples N :

logP (D|Θ̃, G) increases linearly with N ; log |A| increases as d logN . And Θ̃ can be approx-

imated by the maximum likelihood configuration Θ̃. Thus we get

logP (D|G) ≈ P (D|Θ̃, S)− d

2
logN (2.8)

This approximation is called the Bayesian Information Criterion (BIC) [Schwarz, 1978].

Note that the BIC does not depend on the prior, which means we can use the approxi-

mation without assessing a prior. The BIC approximation can be intuitively explained: in

Equation 2.8 , logP (D|Θ̃, G) measures how well the parameterized structure predicts the

data, and (d/2 logN) penalizes the complexity of the structure. Compared to the Minimum

Description Length score defined in Equation 2.2, the BIC score is equivalent to the MDL

except term of the description length of the structure.
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2.3.2 Search for the Optimal Structure

Once the score is defined, the next task is to search in the structure space and find the

structure with the highest score. In general, this is an NP-hard problem [Chickering, 1996].

Note that one important property of the MDL score or the Bayesian score (when used

with a certain class of factorized priors such as the BDe priors) is the decomposability in

presence of complete data, i.e., the scoring functions we discussed earlier can be decomposed

in the following way:

Score(G : D) =
∑

i

Score(xi|xπ(i) : Nxi,xπ(i)
)

where Nxi,xπ(i)
is the number of occurrences of the configuration (xi,xπ(i)).

The decomposability of the scores is crucial for score-based learning of structures. When

searching the possible structures, whenever we make a modification in a local structure, we

can readily get the score of the new structure by re-evaluating the score at the modified local

structure, while the scores of the rest part of the structure remain unchanged.

Due to the large space of candidate structures, simple search would inevitably leads to

local maxima. To deal with this problem, many algorithms were proposed to constrain the

candidate structure space. Here they are listed as follows.

Search over Structure Space

The simplest search algorithm over the structure is the greedy hill-climbing search [Heck-

erman et al., 1995]. During the hill-climbing search, a series of modifications of the local

structures by adding, removing or reversing an edge are made, and the score of the new

structure is reevaluated after each modification. The modifications that increase the score

in each step is accepted. The pseudo-code of the hill-climbing search for Bayesian network

structure learning is listed in Algorithm 5.

Besides the hill-climbing search, many other heuristic searching methods have also been

used to learn the structures of Bayesian networks, including the simulated annealing [Chick-
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Algorithm 5 Hill-climbing search for structure learning

1: Initialize a structure G′.
2: repeat

3: Set G = G′.
4: Generate the acyclic graph set Neighbor(G) by adding, removing or reversing an edge

in graph G.

5: Choose from Neighbor(G) the one with the highest score and assign to G′.
6: until Convergence.

ering and Boutilier, 1996], best-first search [Russel and Norvig, 1995] and genetic search

[Larranaga et al., 1996].

A problem with the generic search procedures is that they do not exploit the knowledge

about the expected structure to be learned. As a result, they need to search through a

large space of candidate structures. For example, in the hill-climbing structure search in

Algorithm 5, the size of Neighbor(G) is O(n2) where n is the number of nodes in the

structure. So the algorithm needs to compute the scores of O(n2) candidate structures in

each update (the algorithm also need to check acyclicity of each candidate structure), which

renders the algorithm unscalable for large structures.

In [Friedman et al., 1999b], the authors proposed a Sparse Candidate Hill Climbing

(SCHC) algorithm to solve this problem. The SCHC algorithm first estimates the possible

candidate parent set for each variable and then use hill-climbing to search in the constrained

space. The structure returned by the search can be used in turn to estimate the possible

candidate parent set for each variable in the next step.

The key in SCHC is to estimate the possible parents for each node. Early works [Chow

et al., 1968, Sahami, 1996] use mutual information (see Appendix E) to determine if there

is an edge between two nodes:

I(X ; Y ) =
∑

x,y

P̂ (x, y) log
P̂ (x, y)

P̂ (x)P̂ (y)

where P̂ (·) is the observed frequencies in the dataset. A higher mutual information indicates

a stronger dependence between X and Y . Yet this measure is not suitable for determin-
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ing the existence of an edge between two nodes and essentially has problems because, for

example, it does not consider the information that we already learnt about the structure.

Instead, Friedman et al. [1999b] proposed two other metrics to evaluate the dependency of

two variables:

• The first metric is based on an alternative definition of mutual information. The mutual

information between X and Y is defined as the distance between the joint distribution

of P̂ (X, Y ) and the distribution P̂ (X)P̂ (Y ), which assumes the independency of the

two variables:

I(X ; Y ) = DKL

(
P̂ (X, Y )||P̂ (X)P̂ (Y )

)

where DKL(P ||Q) is the Kullback-Leibler divergence (see Appendix D). Under this

definition, the mutual information measures the error we introduce if we assume the

independence of X and Y . During each step of the search process, we already have

an estimation of the network B. To utilize this information, similarly, we measure the

discrepancy between the estimation PB(X, Y ) and the empirical estimation P̂ (X, Y )

as:

DKL(P (X)||Q(X)) =
∑

X

P (X) log
P (X)

Q(X)

One issue with this measure is that it requires to compute PB(Xi, Yi) for pairs of

variables. When learning networks over large number of variables this can be compu-

tationally expensive. However, one can easily approximate these probabilities by using

a simple sampling approach.

• The second measure utilizes the Markov property that each node is independent of

other nodes given its Markov blanket. First the conditional mutual information is

defined as:

I(X ; Y |Z) =
∑

Z

P̂ (Z)DKL(P̂ (X, Y |Z)||P̂ (X|Z)P̂ (Y |Z)).
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This metric measures the error that is introduced when assuming the conditional in-

dependence of X and Y given Z. Based upon this, another metric is defined as:

Mshield(Xi, Xj |B) = I(Xi;Xj|Xπ(i))

Note that using either of these two metrics for searching, at the beginning of the search,

i.e., B0 is an empty network, the measure is equivalent to I(X ; Y ). Later iterations will

incorporate the already estimated network structure in choosing the candidate parents.

Another problem with the hill-climbing algorithm is the stopping criteria for the search.

There are usually two types of stopping criteria:

• Score-based criterion: the search process terminates when Score(Bt) = Score(Bt−1).

In other words, the score of the network can no longer be increased by updating the

network from candidate network space.

• Candidate-based criterion: the search process terminates when Ct
i = Ct−1

i for all i,

that is, the candidate space of the network remains unchanged.

Since the score is a monotonically increasing bounded function, the score-based criterion

is guaranteed to stop. The candidate-based criterion might enter a loop with no ending, in

which case certain heuristics are needed to stop the search.

There are four problems with the SCHC algorithm. First, the estimation of the candidate

sets is not sound (i.e., may not identify the true set of parents), and it may take a number

of iterations to converge to an acceptable approximation of the true set of parents. Second,

the algorithm needs a pre-defined parameter k, the maximum number of parents allowed for

any node in the network. If k is underestimated, there is a risk of discovering a suboptimal

network. On the other hand, if k is overestimated, the algorithm will include unnecessary

parents in the search space, thus jeopardizing the efficiency of the algorithm. Third, as

already implied above, the parameter k imposes a uniform sparseness constraint on the

network, thus may sacrifice either efficiency or quality of the algorithm. A more efficient way
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to constrain the search space is the Max-Min Hill-Climbing (MMHC) algorithm [Tsamardinos

et al., 2006], a hybrid algorithm which will be explained in Section 2.8. The last problem

is that the constraint of the maximum number of parents k will conflict with the scale-free

networks due to the existence of hubs (this problem exists for any algorithm that imposes

this constraint).

Using the SCHC search, the number of candidate structures in each update is reduced

from O(n2) to O(n) where n is the number of nodes in the structure. Thus, the algorithm

is capable to learn large-scale structures with hundreds of nodes.

The hill-climbing search is usually applied with multiple restarts and tabu list [Cvijovica-

cute and Klinowski, 1995]. Multiple restarts are used to avoid local optima, and the tabu

list is used to record the path of the search so as to avoid loops and local minima.

To solve the problem of large candidate structure space and local optima, some other

algorithms are proposed which are briefly listed as follows.

• In [Moore and Wong, 2003], the authors proposed a search strategy based on a more

complex search operator called optimal reinsertion. In each optimal reinsertion, a

target node in the graph is picked and all arcs entering or exiting the target are deleted.

Then a globally optimal combination of in-arcs and out-arcs are found and reinserted

into the graph subject to some constraints. With the optimal reinsertion operation

defined, the search algorithm generates a random ordering of the nodes and applies

the operation to each node in the ordering in turn. This procedure is iterated, each

with a newly randomized ordering, until no change is made in a full pass. Finally,

a conventional hill-climbing is performed to relax the constraint of max number of

parents in the optimal reinsertion operator.

• In [Xiang et al., 1997], the authors state that with a class of domain models of prob-

abilistic dependency network, the optimal structure can not be learned through the

search procedures that modify a network structure one link at a time. For example,

given the XOR nodes there is no benefit in adding any one parent individually without
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the others and so single-link hill-climbing can make no meaningful progress. They pro-

pose a multi-link lookahead search for finding decomposable Markov Networks (DMN).

This algorithm iterates over a number of levels where at level i, the current network is

continually modified by the best set of i links until the entropy decrement fails to be

significant.

• Some algorithms identify the Markov blanket or parent sets by either using conditional

independency test, mutual information or regression, then use hill-climbing search over

this constrained candidate structure space [Tsamardinos et al., 2006, Schmidt and

Murphy, 2007]. These algorithms belong to the hybrid methods. Some of them are

listed in Section 2.8.

Search over Ordering Space

The acyclicity of the Bayesian network implies an ordering property of the structure such

that if we order the variables as 〈x1, · · · , xn〉, each node xi would have parents only from

the set {x1, · · · , xi−1}. Fundamental observations [Buntine, 1991, Cooper and Herskovits,

1992] have shown that given an ordering on the variables in the network, finding the highest-

scoring network consistent with the ordering is not NP-hard. Indeed, if the in-degree of each

node is bounded to k and all structures are assumed to have equal probability, then this task

can be accomplished in time O(nk) where n is the number of nodes in the structure.

Search over the ordering space has some useful properties. First, the ordering space is

significantly smaller than the structure space: 2O(n logn) orderings versus 2Ω(n
2) structures

where n is the number of nodes in the structure [Robinson, 1973]. Second, each update in

the ordering search makes a more global modification to the current hypothesis and thus

has more chance to avoid local minima. Third, since the acyclicity is already implied in the

ordering, there is no need to perform acyclicity checks, which is potentially a costly operation

for large networks.

The main disadvantage of ordering-based search is the need to compute a large set of
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sufficient statistics ahead of time for each variable and each possible parent set. In the

discrete case, these statistics are simply the frequency counts of instantiations: #(xi,xπ(i))

for each xi ∈ V al(xi) and xπ(i) ∈ V al(xπ(i)). This cost would be very high if the number

of samples in the dataset is large. However, the cost can be reduced by using AD-tree data

structure [Moore and Lee, 1998], or by pruning out possible parents for each node using

SCHC [Friedman et al., 1999b], or by sampling a subset of the dataset randomly.

Here some algorithms that search through the ordering space are listed:

• The ordering-based search was first proposed in [Larranaga et al., 1996] which uses

a genetic algorithm search over the structures, and thus is very complex and not

applicable in practice.

• In [Friedman and Koller, 2003], the authors proposed to estimate the probability of

a structural feature (i.e., an edge) over the set of all orderings by using a Markov

Chain Monte Carlo (MCMC) algorithm to sample over the possible orderings. The

authors asserts that in the empirical study, different runs of MCMC over network

structure typically lead to very different estimates in the posterior probabilities over

network structure features, illustrating poor convergence to the stationary distribution.

By contrast, different runs of MCMC over orderings converge reliably to the same

estimates.

• In [Teyssier and Koller, 2005], the authors proposed a simple greedy local hill-climbing

with random restarts and a tabu list. First the score of an ordering is defined as

the score of the best network consistent with it. The algorithm starts with a random

ordering of the variables. In each iteration, a swap operation is performed on any two

adjacent variables in the ordering. Thus the branching factor for this swap operation is

O(n). The search stops at a local maximum when the ordering with the highest score

is found. The tabu list is used to prevent the algorithm from reversing a swap that was

executed recently in the search. Given an ordering, the algorithm then tries to find
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the best set of parents for each node using the Sparse Candidate algorithm followed

by exhaustive search.

• In [Koivisto, 2004, Singh and Moore, 2005], the authors proposed to use dynamic

programming to search for the optimal structure. The key in the dynamic programming

approach is the ordering ≺, and the marginal posterior probability of the feature f :

p(f | ≺) =
∑

≺
p(≺ |x)p(f |x,≺)

Unlike [Friedman and Koller, 2003] which uses MCMC to approximate the above value,

the dynamic programming approach does exact summation using the permutation

tree. Although this approach may find the exactly best structure, the complexity is

O(n2n+nk+1C(m)) where n is the number of variables, k is a constant in-degree, and

C(m) is the cost of computing a single local marginal conditional likelihood for m data

instances. The authors acknowledge that the algorithm is feasible only for n ≤ 26.

2.4 Regression-based Structure Learning

A large number of structure learning algorithms use regression based approaches. Approaches

in this category model the interactions among genes by a collection of linear equations, and

tried to fit the equations using the training data.

2.4.1 Regression Model

Given N data samples as (xi, yi) and pre-defined basis functions φ(·), the task of regression

is to find a set of weights w such that the basis functions give the best prediction of the

label yi from the input xi. The performance of the prediction is given by an loss function

ED(w). For example, in a linear regression,

ED(w) =
1

2

N∑

i=1

(
yi −w⊤φ(xi)

)2
(2.9)
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To avoid over-fitting, a regularizer is usually added to penalize the weights w. So the

regularized loss function is:

E(w) = ED(w) + λEW (w) (2.10)

The regularizer penalizes each element of w:

EW (w) =
M∑

j=1

αi‖wj‖q

When all αi’s are the same,

EW (w) = ‖wj‖q

where ‖ · ‖q is the Lq norm, λ is the regularization coefficient that controls the relative

importance of the data-dependent error and the regularization term. With different values

of q, the regularization term may give different results:

1. When q = 2, the regularizer is in the form of sum-of-squares

EW (w) =
1

2
w⊤w

This particular choice of regularizer is known in machine learning literature as weight

decay [Bishop, 2006] because in sequential learning algorithm, it encourages weight

values to decay towards zeros, unless supported by the data. In statistics, it provides

an example of a parameter shrinkage method because it shrinks parameter values

towards zero.

One advantage of the L2 regularizer is that it is rotationally invariant in the feature

space. To be specific, given a deterministic learning algorithm L, it is rotationally

invariant if, for any training set S, rotational matrix M and test example x, there

is L[S](x) = L[MS](Mx). More generally, if L is a stochastic learning algorithm so

that its predictions are random, it is rotationally invariant if, for any S, M and x, the
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prediction L[S](x) and L[MS](Mx) have the same distribution. A complete proof in

the case of logistic regression is given in [Ng, 2004].

This quadratic (L2) regularizer is convex, so if the loss function being optimized is also

a convex function of the weights, then the regularized loss has a single global optimum.

Moreover, if the loss function ED(w) is in quadratic form, then the minimizer of the

total error function has a closed form solution. Specifically, if the data-dependent error

ED(w) is the sum-of-squares error as in Equation 2.10, then setting the gradient with

respect to w to zero, then the solution is

w = (λI+ Φ⊤Φ)−1Φ⊤t

This regularizer is seen in ridge regression [Hoerl and Kennard, 2000], the support vec-

tor machine [Hoerl and Kennard, 2000, Schölkopf and Smola, 2002] and regularization

networks [Girosi et al., 1995].

2. q = 1 is called lasso regression in statistics [Tibshirani, 1996]. It has the property

that if λ is sufficiently large, then some of the coefficients wi are driven to zero, which

leads to a sparse model in which the corresponding basis functions play no role. To

see this, note that the minimization of Equation 2.10 is equivalent to minimizing the

unregularized sum-of-squares error subject to the constraint over the parameters:

argmin
w

1

2

N∑

i=1

(
yi −w⊤φ(xi)

)2
(2.11)

s. t.

M∑

j=1

‖wj‖q ≤ η (2.12)

The Lagrangian of Equation 2.11 gives Equation 2.10. The sparsity of the solution can

be seen from Figure 2.3. Theoretical study has also shown that lasso L1 regularization

may effectively avoid over-fitting. In [Dudk et al., 2004], it is shown that the density
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regularizer. 

Figure 2.3: Contours of the unregularized objective function (blue) along with the constraint

region (yellow) with L2 regularizer (left) and L1 regularizer. The lasso regression gives a

sparse solution. For interpretation of the references to color in this and all other figures, the

reader is referred to the electronic version of this dissertation.

estimation in log-linear models using L1 regularized likelihood has sample complexity

that grows only logarithmically in the number of features of the log-linear model; Ng

[2004] and Wainwright et al. [2006] show a similar result for L1 regularized logistic

regression respectively.

The asymptotic properties of Lasso-type estimates in regression have been studied in

detail in [Knight and Fu, 2000] for a fixed number of variables. Their results say that

the regularization parameter λ should decay for an increasing number of observations

at least as fast as N−1/2 to obtain N1/2-consistent estimate where N is the number

of observations.

3. If 00 ≡ 0 is defined, then the L0 regularization contributes a fixed penalty αi for each

weight wi 6= 0. If all αi are identical, then this is equivalent to setting a limit on the
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maximum number of non-zero weights. However, the L0 norm is not a convex function,

and this tends to make exact optimization of the objective function expensive.

In general, the Lq norm has parsimonious property (with some components being

exactly zero) for q ≤ 1, while the optimization problem is only convex for q ≥ 1. So

L1 regularizer occupies a unique position, as q = 1 is the only value of q such that the

optimization problem leads to a sparse solution, while the optimization problem is still

convex.

2.4.2 Structure Learning through Regression

Learning a graphical structure by regression is gaining popularity in recent years. The

algorithms proposed mainly differ in the choice of the objective loss functions. They are

listed in the following according to the different objectives they use.

Likelihood Objective

Methods in this category use the negative likelihood or log-likelihood of the data given the

parameters of the model as the objective loss function ED(·).

• In [In Lee et al., 2006], the authors proposed an L1 regularized structure learning

algorithm for Markov Random Field, specifically, in the framework of log-linear models.

Given a variable set X = {x1, · · · ,xn}, a log-linear model is defined in terms of a set

of feature functions fk(xk), each of which is a function that defines a numerical value

for each assignment xk to some subset xk ⊂ X . Given a set of feature functions

F = {fk}, the parameters of the log-linear model are weights θ = {θk : fk ∈ F}. The

overall distribution is defined as:

Pθ(x) =
1

Z(θ)
exp


∑

fk∈F
θkfk(x)



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where Z(θ) is a normalizer called partition function. Given an iid training dataset D,

the log-likelihood function is:

L(M,D) =
∑

fk∈F
θkfk(D −M logZ(θ) = θ⊤f(D)−M logZ(θ)

where fk(D) =
∑M

m=1 fk(xk[m]) is the sum of the feature values over the entire data

set, f(D) is the vector where all of these aggregate features have been arranged in the

same order as the parameter vector, and θ⊤f(D) is a vector dot-product operation. To

get a sparse MAP approximation of the parameters, a Laplacian parameter prior for

each feature fk is introduced such that

P (θk) =
βk
2

exp(−βk|θk|)

And finally the objective function is:

max
θ

θ⊤f(D)−M logZ(θ)−
∑

k

βk|θk|

Before solving this optimization problem to get the parameters, features should be

included into the model. Instead of including all features in advance, the authors use

grafting procedure [Perkins et al., 2003] and gain-based method [Pietra et al., 1997] to

introduce features into the model incrementally.

• In [Wainwright et al., 2006], the authors restricted to the Ising model, a special family

of MRF, defined as

p(x, θ) = exp


∑

s∈V
θsxs +

∑

(s,t)∈E
θstxsxt −Ψ(θ)




The logistic regression with L1-regularization that minimizing the negative log likeli-

hood is achieved by optimizing:

θ̂s,λ = argmin
θ∈Rp

(
1

n

n∑

i=1

(
log(1 + exp(θ⊤z(i,s)))− x(i)s θ⊤z(i,s)

)
+ λn‖θ\s‖1

)
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Dependency Objective

Algorithms in this category use linear regression to estimate the Markov blanket of each

node in a graph. Each node is considered dependent on nodes with nonzero weights in the

regression.

• In [Meinshausen and Bühlmann, 2006], the authors used linear regression with L1

regularization to estimate the neighbors of each node in a Gaussian graphical model:

θ̂i,λ = argmin
θ:θi=0

1

n
‖xi − θ⊤x‖22 + λ‖θ‖1

The authors discussed in detail the choice of regularizer weight λ, for which the cross-

validation choice is not the best under certain circumstances. For the solution, the

authors proposed an optimal choice of λ under certain assumptions with full proof.

• In [Fan, 2006], the authors proposed to learn GGMs from directed graphical models

using modified Lasso regression, which seems a promising method. The algorithm is

listed here in detail.

Given a GGM with variables x = [x1, · · · , xp]⊤ and the multivariate Gaussian distri-

bution with covariance matrix Σ:

P (x) =
1

(2π)p/2|Σ|1/2
exp

(
−1
2
x⊤Σ−1x

)

This joint probability can always be decomposed into the product of multiple condi-

tional probabilities:

P (x) =

p∏

i=1

P (xi|xi+1,··· ,p)

Since the joint probability in the GGM is a multivariate Gaussian distribution, each

conditional probability also follows Gaussian distribution. This implies that for any

GGM there is at least one DAG with the same joint distribution.
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Suppose that for a DAG there is a specific ordering of variables as 1, 2, · · · , p. Each

variable xi only has parents with indices larger than i. Let β denote the regression

coefficients andD denote the data. The posterior probability given the DAG parameter

β is

P (D|β) =
p∏

i=1

P (xi|x(i+1):p, β)

Suppose linear regression xi =
∑p

j=i+1 βjixj + ǫi where the error ǫi follows normal

distribution ǫi ∼ N(0, ψi), then

x = Γx+ ǫ

ǫ ∼ Np(0,Ψ)

where Γ is an upper triangular matrix, Γij = βji, i < j, ǫ = (ǫ1, · · · , ǫp)⊤ and Ψ =

diag(ψ1, · · · , ψp). Thus

x = (I − Γ)−1ǫ

So x follows a joint multivariate Gaussian distribution with covariance matrix and

precision matrix as:

Σ = (I − Γ)−1Ψ((I − Γ)−1)⊤

Ω = (I − Γ)⊤Ψ−1(I − Γ)

Wishart prior is assigned to the precision matrix Ω such that Ω ∼ Wp(δ, T ) with

δ degrees of freedom and diagonal scale matrix T = diag(θ1, · · · , θp). Each θi is a

positive hyper prior and satisfies

P (θi) =
λ

2
exp(
−λθi
2

)

Let βi = (β(i+1)i, · · · , βpi)⊤, and Ti represents the sub-matrix of T correspond-

ing to variables x(i+1):p. Then the associated prior for βi is P (βi|ψi, θ(i+1):p) =
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Np−1(0, Tiψi) [Geiger and Heckerman, 2002], thus:

P (βji|ψi, θj) = N(0, θjψi)

And the associated prior for ψi is

P (ψ−1i |θi) = Γ

(
δ + p− 1

2
,
θ−1i

2

)

where Γ(·) is the Gamma distribution. Like in [Figueiredo and Jain, 2001], the hyper

prior θ can be integrated out from prior distribution of βji and thus

P (βji|ψi) =

∫ ∞

0
P (βji|ψi, θj)P (θj)

=
1

2

(
λ

ψi

)
exp

(
−
( λ
ψi

)1
2 |βji|

)

Suppose there are K samples in the data D and xki is the i-th variable in the k-th

sample, then

P (βi|ψi, D) ∝ P (xix(i+1):p, βi, ψi)P (βi|ψi)

∝ exp

(∑
k(xki −

∑p
j=i+1 βjixkj)

2 +
√
λψi

∑p
j=i+1 |βji|

−ψi

)

and

P (ψ−1i |θi, βi, D) = Γ

(
δ + p− i+K

2
,
θ−1i +

∑
k(xki −

∑p
j=i+1 βjixkj)

2

2

)

The MAP estimation of βi is:

β̂i = argmin
∑

k


xki −

p∑

j=i+1

βjixkj




2

+
√
λψi

p∑

j=i+1

|βji|

β̂i is the solution of a Lasso regression.

The authors further proposed a Feature Vector Machine (FVM) which is an advance

to the the generalized Lasso regression (GLR) [Roth, 2004] which incorporates kernels,
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to learn the structure of undirected graphical models. The optimization problem is:

argmin
β

1

2

∑

p,q

βpβqK(fp, fq)

s.t.

∣∣∣∣∣
∑

p

βpK(fq, fp)−K(fq, y)

∣∣∣∣∣ ≤
λ

2
, ∀q

where K(fi, fj) = φ(fi)
⊤φ(fj) is the kernel function, φ(·) is the mapping, either linear

or non-linear, from original space to a higher dimensional space; fk is the k-th feature

vector, and y is the response vector from the training dataset.

System-identification Objective

Algorithms in this category [Arkin et al., 1998, Gardner et al., 2003, Glass and Kauffman,

1973, Gustafsson et al., 2003, McAdams and Arkin, 1998] get ideas from network identifica-

tion by multiple regression (NIR) It is derived from a branch of engineering called system

identification [Ljung, 1999], in which a model of the connections and functional relations

between elements in a network is inferred from measurements of system dynamics. The

entire system is modeled using a differential equation, then regression algorithms are used

to fit the parameters in this equation. We illustrate the key idea of this type of approaches

by using the algorithm in [Gustafsson et al., 2003] as an example.

Near a steady-state point (e.g., when gene expression does not change substantially over

time), the nonlinear system of the genes may be approximated to the first order by a linear

differential equation as:

dxti
dt

=

n∑

j=1

wijx
t
j + ǫi

where xti is the expression of gene i at time t. The network of the interaction can be inferred
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by minimizing the residual sum of squares with constraints on the coefficients:

argmin
wij

∑

t




n∑

j=1

wijx
t
j −

dxti
dt




2

s.t.
n∑

j=1

|wij| ≤ µi

Note that this is essentially a Lasso regression problem since the constraints added to the

Lagrangian is equivalent to L1 regularizers. Finally the adjancency matrix A of the network

is identified from the coefficients by

Aij =





0 if wji = 0

1 otherwise

One problem with this approach is when the number of samples is less than the number

of variables, the linear equation is undertermined. To solve this problem, D’haeseleer et al.

[1999] use non-linear interpolation to generate more data points to make the equation deter-

mined; Yeung et al. [2002] use singular value decomposition (SVD) to first decompose the

training data, and then constrain the interaction matrix by exploring the sparseness of the

interactions.

Precision Matrix Objective

In [Banerjee et al., 2006], the authors proposed a convex optimization algorithm for fitting

sparse Gaussian graphical model from precision matrix. Given a large-scale empirical dense

covariance matrix S of multivariate Gaussian data, the objective is to find a sparse approx-

imation of the precision matrix. Assuming X is the estimate of the precision matrix (the

inverse of the variance matrix). The optimization of the penalized maximum likelihood (ML)

is:

max
X≻0

log det(X)− Tr(SX)− ρ‖X‖1

The problem can be efficiently solved by Nesterovs method [Nesterov, 2005].
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MDL Objective

Methods in this category encode the parameters into the Minimum Description Length

(MDL) criterion, and tries to minimize the MDL with respect to the regularization or con-

straints.

• In [Schmidt and Murphy, 2007], the authors proposed a structure learning approach

which uses the L1 penalized regression with MDL as loss function to find the par-

ents/neighbors for each node, and then apply the score-based search to find the ap-

propriate structure for the given data set. The first step is the L1 variable selection to

find the parents/neighbors set of a node by solving:

θ̂
L1
j (U) = argmin

θ
NLL(j, U, θ) + λ‖θ‖1 (2.13)

where λ is the regularization parameter for the L1 norm of the parameter vector.

NLL(j, U, θ) is the negative log-likelihood of node j with parents π(j) and parameters

θ:

MDL(G) =

d∑

j=1

NLL(j, πj , θ̂
mle
j ) +

|θ̂mle
j |
2

logn (2.14)

NLL(j, π(j), θ) = −
N∑

i=1

logP (Xij|Xi,π(j), θ) (2.15)

where N is the number of samples in the dataset.

The L1 regularizer will generate a sparse solution with many parameters being zero.

The set of variables with non-zero values are set as the parents of each node. This

hybrid structure learning algorithm is further discussed in Section 2.8.

• In [Guo and Schuurmans, 2006], the authors proposed an interesting structure learning

algorithm for Bayesian Networks, which incorporates parameter estimation, feature

selection and variable ordering into one single convex optimization problem, leading

to a constrained regression problem. The parameters of the Bayesian network and the

44



variables selected are encoded in the MDL objective function which is to be minimized.

The topological properties of the Bayesian network (antisymmetricity, transitivity and

reflexivity) are encoded as the constraints of the optimization problem.

2.5 Clustering Based Structure Learning

The simplest structure learning method is through clustering. First the similarities of any

two variables are estimated, then any two sets of variables are linked if they meet certain

standards [Lukashin et al., 2003]. Here the similarity may take different measures, including

• Correlation [Eisen et al., 1998, Spellman et al., 1998, Iyer et al., 1999, Alizadeh et al.,

2000]

• Euclidean distance [Wen et al., 1998, Tamayo et al., 1999, Tavazoie et al., 1999]

• Mutual information (see Appendix E) [Butte and Kohane, 2000]

• Pearson correlation coefficient (see Appendix B) [Eisen et al., 1998]

• Self organizing map (SOM) [Törönen et al., 1999]

• Inner product [Alizadeh et al., 2000]

Using hierarchical clustering [Manning et al., 2008], the hierarchy structure can be pre-

sented at different scales. Figure 2.4 shows an example of hierarchical clustering of genes.

2.6 Matrix Factorization Based Structure Learning

Methods in this category use matrix factorization techniques to identify the interactions

between variables. The matrix factorization algorithms used include singular value decom-

position [Alter et al., 2000, D’haeseleer et al., 1999, Raychaudhuri et al., 2000], max-margin
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Figure 2.4: A structure of genes from hierarchical clustering. Figure excerpted from [Varma

and Simon, 2004].

matrix factorization [DeCoste, 2006, Rennie and Srebro, 2005, Srebro et al., 2005] and non-

negative matrix factorization [Badea and Tilivea, 2005, Paatero and Tapper, 1994, Hoyer and

Dayan, 2004, Lee and Seung, 2001, Shahnaz et al., 2006, Weinberger et al., 2005], network

component analysis (NCA) [Liao et al., 2003]. In Chapter 4 we will review the different ma-

trix factorization algorithms in detail, where we will also develop a knowledge-driven matrix

factorization (KMF) which is able to combine side information in the matrix factorization. It

not only derives the membership assignment to the clusters, but also computes the strength

of interactions among the clusters.
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2.7 Regularization Based Structure Learning

Although the structure information often appears explicitly in many situations like the con-

ditional dependency in a Bayesian network which can be manifested using a directed graph,

it may be implicit sometimes and thus difficult to explore. For example, a group of variables

show co-varying property in group lasso regularization, i.e., they either co-exist or diminish

together. Several algorithms including group lasso [Yuan and Lin, 2005] and Composite

Absolute Penalties (CAP) [Zhao et al., 2009] have been proposed to exploit the information

embedded in the group structure.

These grouped and hierarchical regularizations are mostly restricted to discovering positive

correlations among the variables within groups only. Specifically, they assume that if a few

variables in a group are important, then most of the variables in the same group should

also be important. However, in many real-world applications, we may come to the opposite

observation, i.e., variables in the same group exhibit negative correlations by competing

with each other. For instance, in visual object recognition, the signature visual patterns of

different objects tend to be negatively correlated, i.e., visual patterns useful for recognizing

one object tent to be useless for other objects.

In Chapter 5, we will review the existing regularization methods to derive implicit group

and hierarchical structures. We will also propose a new regularization which we call exclusive

lasso. Different from the group lasso regularizer, if one feature in a group is given a large

weight, the exclusive lasso regularizer tends to assign small or even zero weights to the other

features in the same group. We will present a theoretical analysis to verify the exclusive

nature of the proposed regularizer in detail.
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2.8 Hybrid Methods

Some algorithms perform the structure learning in a hybrid manner to combine multiple

structure learning methods. Here we list some examples.

• Max-min Hill-climbing (MMHC): In [Tsamardinos et al., 2006], the authors proposed a

Max-min Hill-climbing (MMHC) algorithm for structure learning of Bayesian networks.

The MMHC algorithm shares the similar idea as the Sparse Candidate Hill Climbing

(SCHC) algorithm. The MMHC algorithm works in two steps. In the first step,

the skeleton of the network is learned using a local discovery algorithm called Max-

Min Parents and Children (MMPC) to identify the parents and children of each node

through the conditional independency test, where the conditional sets are grown in

a greedy fashion. In this process, the Max-Min heuristic is used, which selects the

variables that maximize the minimum association with the target variable relative to

the candidate parents and children. In the second step, the greedy hill-climbing search

is performed within the constraint of the skeleton learned in the first step. Unlike the

SCHC algorithm, MMHC does not impose a maximum in-degree for each node.

• In [Schmidt and Murphy, 2007], the authors proposed a structure learning approach

which uses the L1 penalized regression to find the parents/neighbors for each node, and

then apply the score-based search. The first step is the L1 variable selection to find the

parents/neighbors set of a node. The regression algorithm is discussed in Section 2.4.2.

After the parent sets of all node are identified, a skeleton of the structure is created

using the ‘OR’ strategy [Meinshausen and Bühlmann, 2006]. This procedure is called

L1MB (L1-regularized Markov blanket). The L1MB is plugged into structure search

(MMHC) or ordering search [Teyssier and Koller, 2005]. In the application to MMHC,

L1MB replaces the Sparse Candidate procedure to identify potential parents. In the

application to ordering search in [Teyssier and Koller, 2005], given the ordering, L1MB
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replaces the SC and exhaustive search.
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CHAPTER 3

Inferring Functional Cortical

Networks Using Dynamic Bayesian

Networks

In this chapter, we discuss using dynamic Bayesian networks to identify functional cortical

connectivity from simultaneously recorded spike trains. We first introduce the background

of the research in this area, and then present our work on applying the dynamic Bayesian

network to reconstructing functional cortical networks. Experiments with various configu-

rations are conducted to verify the efficacy of DBN in recovering both linear and non-linear

neural activities.

3.1 Introduction

Brain networks are of fundamental interest in system neuroscience. Numerous functional

neuroimaging studies suggest that the neural circuits are temporarily configured to mediate

perception, learning, sensory and motor processing [Winder et al., 2007, Koshino et al., 2005].

Understanding the highly-distributed nature of cortical information processing mechanisms

remains challenging despite these significant findings. An essential step towards understand-

ing how the brain orchestrates information processing is to uncover the topology of the neural

circuits. The temporal and spatial resolution of current neuroimaging techniques do not en-

able the investigation of the brain’s functional dynamics at the single cell level, and they
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do not enable the identification of causal relationships between multi-units across multiple

cortical regions.

Recent advances in the microfabrication of multi-electrode arrays (MAE) [Normann et al.,

1999, Wise et al., 2004] have enabled scrutinizing activities from cortical neurons at an

unprecedented scale, and greatly facilitated our ability to observe functional interactions of

cortical networks in awake and behaving animals. The abundant data generated calls for new

development of analytical tools that can infer the functional connectivity in these networks.

Such information can yield more insight into how these networks respond collectively to

dynamic complex stimuli, or to signify movement intention and execution through causal

interactions between the observed neurons referred to as the effective connectivity [Aertsen

et al., 1989]. Such tools can reveal more evidence in support of modern views suggesting that

multisensory integration occur early in the neocortex, as opposed to the more traditional

cognitive models of the sensory brain that contends higher level integration of unisensory

processing. They can also help identify plastic changes in cortical circuitry during learning

and memory [Martin and Morris, 2002] or post traumatic brain injury [Girgis et al., 2007].

3.2 Dynamic System Reconstruction

Sequential or time series data arises in many areas of science and engineering. Classical

approaches to analyze sequential data include linear models, such as ARIMA, ARMAX,

etc [Hamilton, 1994], or non-linear models, such as neural networks [Connor et al., 1994] or

decision trees [Meek et al., 2002]. N-gram models [Jelinek, 1997] and variable-length Markov

models [Ron et al., 1996] are frequently used for discrete data.

The classical methods suffer from several drawbacks. First, they make predictions of the

future based on only a finite window into the past. Second, it is difficult to incorporate

prior knowledge into the model. Third, the classical methods often have difficulties when

the system has multi-dimensional input/output.
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The state-space models try to solve these problems. In a state-space model, it is assumed

that there is a underlying hidden state of the world that generates the observations. The

hidden state evolves over time, possibly as a function of input. The state-space models

are superior to the classical time-series modeling approaches in many aspects [Durbin and

Koopman, 2001]. They overcome the problems mentioned above naturally.

One of the most commonly used state-space models is the Hidden Markov Model (HMM).

However, HMMs are limited to its expressive power. Dynamic Bayesian Networks (DBNs)

generalize HMMs by allowing the state space to be represented in factored form, instead

of as a single discrete random variable. DBNs also generalize HMMs by allowing arbitrary

probability distributions, not just (unimodal) linear-Gaussian. Besides the generality, DBNs

interpret the interactions of multi-variates using DAGs, leading to a natural expression of

the structures of the variables in the time-series background.

3.3 HMM and DBN

In this section, we first give a brief introduction to Hidden Markov Models followed by

dynamic Bayesian networks. We then compare these two models and explain why we choose

DBN for cortical network reconstruction.

3.3.1 Discrete Markov Process

In a discrete Markov process [Drake, 1967], the system belongs to one of a set of N distinct

states at any time. We use S1, S2, · · · , SN to denote these states. At regularly spaced

discrete times, the state of the system changes (possibly back to the same state) according

to a set of transition probabilities associated with the state. We use t = 1, 2, · · · to denote

the time instants at each state change, and use qt to denote the actual state at time t. The

state of the system at each time t can be described as a probabilistic model of the past states.

Specifically, for a discrete first order Markov chain, the probabilistic description involves only
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the current and the preceding state,

P (qt = Sj |Qt−1 = Si, qt−2 = Sk, · · · ) = P (qt = Sj |qt−1 = si)

We assume that the right-hand side of the above equation is independent of time, which

leads us to a set of state transition probabilities aij of changing from state Si to Sj :

aij = P (qt = Sj |qt−1 = Si), 1 ≤ i, j ≤ N

The state transition coefficients obey standard stochastic constraints:

aij ≥ 0

N∑

i=1

aij = 1

The above stochastic process can be called an observable Markov model since the output

of the process corresponds to the state of the system.

3.3.2 Hidden Markov Model

In a Hidden Markov Model (HMM) [Rabiner, 1989], the internal state of a system is not

directly observable. Instead, the observation Ot at time instant t comes from a set of M

distinct observation symbols denoted as V = {v1, v2, · · · , vM}, and follows the observation

symbol probability according to the state qt. Specifically, a HMM can be described using

the following elements:

• The number of distinct states N of the model. These states are denoted as S =

{S1, S2, · · · , SN} and they are hidden from the outside.

• The number of distinct observable symbols M . We denote the symbols as V =

{v1, v2, · · · , vM}. They correspond to the output of the system.

• The state transition probability distribution A = {aij}:

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N.
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Algorithm 6 The procedure of a HMM

1: Start the system with an initial state q1 = Si according to the initial state distribution

π.

2: repeat

3: Generate an observation Ot according to the symbol probability distribution bi(k) at

state si.

4: The system transits to a new state qt+1 = Sj according to the state transition proba-

bility distribution at state Si, i.e., aij.

5: Update time t← t+ 1

6: until t = T .

In a special case where each state does not reproduce itself, we have aij > 0 for all i, j.

• The observation probability distribution B = {bj(k)} where

bj(k) = P (Ot = vk|qt = Sj), 1 ≤ j ≤ N ; 1 ≤ k ≤M.

• The initial state distribution of the system π = {πi}:

πi = P (q1 = Si), 1 ≤ i ≤ N.

In all, a complete specification of a HMM includes two model parameters (N andM), spec-

ification of observation symbols, and the specification of the three probability distributions

A, B, and π. We use the compact notion

λ = (A,B, π)

to indicate a complete parameter set of a HMM.

Given the specifications, a HMM generates a sequence of observations according to the

procedure described in Algorithm 6.

3.3.3 Basic Usages of HMM

Given the Hidden Markov Model defined in Section 3.3.2, there are three basic problem of

interest that should be solved for the model to be useful in real-world applications:
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1. Given the observation sequence O = O1 · · ·OT and the model λ = (A,B, π), compute

the probability of the sequence given the model P (O|λ).

This is the evaluation problem, namely, given a HMM and a sequence of observations,

how to compute the probability that the observation is generated by the model. This

can also be seen as how well a model fits the observations.

Clearly we can enumerate all state transitions and sum up the corresponding observa-

tions, but the computation will be intractable using this method since the computa-

tional complexity will be O(2TNT ). A much more efficient method is the forward-

backward procedure [Baum and Sell, 1968]. The computation complexity of this

method is O(N2T ).

2. Given the observation sequence O = O1 · · ·OT and the model λ, infer a corresponding

state sequence Q = Q1 · · ·QT which best explains the observations. This can be solved

using a dynamic programming method called the Viterbi Algorithm [Forney, 1973].

3. Given an observation sequence O, adjust the model parameters λ = (A,B, π) to max-

imize P (O|λ). There is no analytical method to optimally estimate the model pa-

rameters. However, we can choose λ such that P (O|λ) is locally maximized using an

iterative procedure such as the Expectation-Maximization method [Dempster et al.,

1977] (also called the Baum-Welch method when specifically applied to HMMs [Baum

et al., 1970]) or using gradient techniques [Rabiner, 1989].

3.3.4 Limitations of HMM

Despite its versatility in many applications, Hidden Markov Models suffer from several lim-

itations:

• Interpretability: the parameters associated with HMMs are interpretable in so far as

they are clearly labeled as transition or emission probabilities, however, the states of

a HMM do not always have a clear interpretation, especially after training.
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• Factorization: in the standard definition, HMMs are fundamentally unfactored. If the

state of the system consists of a combination of factors, it can not be represented

concisely.

• Extensibility: HMMs are limited in their extensibility in that the main way to increase

their complexity is simply to increase the number of states. This can be unwieldy when

the overall state of the system is actually composed of a combination of separately

identifiable factors.

3.3.5 Dynamic Bayesian Network

A dynamic Bayesian network (DBN) [Dean and Kanazawa, 1990, Murphy, 2002] is an exten-

sion of Bayesian Network and Hidden Markov Model to model probability distributions of

random variables over time. Here we only consider discrete-time stochastic processes. Note

that the term dynamic means that we are modeling a dynamic system, not that the net-

work changes over time. In other words, the model is time-homogeneous, both the network

topology and the model parameters are time-invariant.

The topology of a DBN is defined as a directed acyclic graph (DAG), but we allow a node

to have an arc to itself. In this case the node is persistent. This is practically useful in some

situations, for example, to model the self-inhibitory or self-excitatory effect of neurons as

described later for the application of DBN.

The parameters of a DBN is defined as (B,A), where B defines the prior P (X1), and A

defines temporal conditional probability as:

P (Xt|Xt−1) =
N∏

i=1

P (Xi
t |π(Xi

t))

where Xi
t is the i-th node at time t, and π(Xi

i ) are the parents of variable Xi
t . Each node

is conditionally independent of other nodes given its parents. The conditional probability

distribution (CPD) may have various forms similar to those of Bayesian networks, but now

over time slices. Generally we assume that the model is a first-order Markov, i.e., the parents
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π(Xi
t) of a node i can either be in the same time slice or in the previous time slice. Higher

order Markov is sometimes used when we want to study the influence of variables over a

longer period.

The difference between DBN and HMM is that DBN represents the hidden states using

a set of random variables, i.e., it uses a distributed representation of state. In contrast, in

HMM, the state space consists of a single random variable. This gives us the advantage for

learning a DBN because many algorithms described in Section 2.1.4 are also applicable to

DBN. A detail description of learning DBN can be found in [Ghahramani, 1998].

DBN is also advantageous over HMM in the following aspects:

• Interpretability: Each variable in a DBN represents a specific concept.

• Factorization: The joint distribution of the variables in a DBN is factorized, leading

to the following benefits:

– Statistical efficiency: compared to an unfactored HMM with an equal number of

possible states, a DBN with factored state representation and sparse connections

between variables will require exponentially fewer parameters.

– Computational efficiency: depending on the exact graph topology, the reduction

in model parameters may be reflected in a reduction in running time.

• DBNs have precise and well-understood probabilistic semantics. The combination of

theoretical underpinning, expressiveness, and efficiency bode well for the future of

DBNs in many applications.

3.4 Experiments

We present the empirical study with the reconstruction of cortical network in this section to

verify the efficacy of DBNs. First we present the population model used in our experiments

to generate the spike trains. Then we give a brief introduction of a baseline algorithm
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which is frequently used in the study of this area. Finally we demonstrate the application of

dynamic Bayesian networks to reconstructing the functional neuronal circuits under various

configurations.

3.4.1 Population Model

Given the limited data that is available for evaluating algorithms for neuron network re-

construction, it is essential to develop a model that provides appropriate simulation for the

spike train data in which the ground truth is known. In this study, we follow [Truccolo et al.,

2005] by using multivariate point process models for data simulation. Specifically, we use a

variant of the generalized linear model (GLM) [Truccolo et al., 2005]. The firing probability

of a neuron at a certain time point is determined by both the background level of activity

and the spiking history of the neuron itself and its pre-synaptic neurons connected to it.

Consider a population with N neurons, a linear model of the conditional intensity function

λi(t|αi, Ht) of neuron i at time t is mathematically expressed as:

λt(t|αi, Ht)∆ =


exp

(
βi +

∑

j∈π(i)

Mij∑

m=1

αij(m∆)Sj(t−m∆)
)

 ·∆ (3.1)

where βi is the log of the background firing rate of neuron i, αij is the synaptic interaction,

excitatory or inhibitory, from neuron j to neuron i, π(i) is the set of pre-synaptic neurons

of neuron i, Ht is the spiking history divided into Mij non-overlapping windows each with

the bin width ∆. Sj(t−m∆) is the number of spikes fired by neuron j in time window m.

The spiking history interval of the interaction between neuron i and j is Mij ·∆.

To describe higher degree of non-linearity, a multiplication-based model is expressed as:

λt(t|αi, Ht)∆ =


exp

(
βi +

∏

j∈π(i)

Mij∑

m=1

αij(m∆)Sj(t−m∆)
)

 ·∆ (3.2)

The difference between Equation 3.1 and 3.2 is that the linear summation of the pre-

synaptic influences is replaced by a product. The latter is used to model the coincidence
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detection where the post-synaptic neuron fires only when its pre-synaptic neurons fire syn-

chronously.

To model the influence of excitatory post-synaptic potential and inhibitory post-synaptic

potential, we use the following exponential functions for synaptic coupling [Sprekeler et al.,

2007, Zhang and Carney, 2005]:

α±ij(t) =





0 if t < lij∆

±Aij exp
(
−3000(t− lij∆)/Mij

)
if t ≥ lij∆

(3.3)

where ± indicates excitatory/inhibitory interactions and Aij is the strength of the connection

between i and j, lij is the synaptic latency from neuron j to i. The decaying exponential

function in this model indicates that the influence of a spike from a pre-synaptic neuron

declines with time.

3.4.2 Granger Causality

We give a short introduction of Granger causality [Kamiński et al., 2001] here since it is

commonly used in analyzing neural data. It will be used in the experiment as a baseline to

compare with dynamic Bayesian networks in inferring non-linear interactions.

Granger causality assumes that if two neurons are connected, then the firing history of the

pre-synaptic neuron should help to linearly predict the firing occurrences of the post-synaptic

neuron [Seth, 2008]. In particular, the spike train of neuron Si at time t can be predicted

given its own history and the history of a pre-synaptic neuron Sj as:

Si(t) =
K∑

k=1

Aii(k)Si(t− k) +
K∑

k=1

Aij(k)Sj(t− k) + ǫi|j(t) (3.4)

whereK is the maximum number of lagged observations and Aij is the least square regression

coefficient when Sj is used to predict Si.

Neuron j is said to Granger cause neuron i if including Sj in the Equation 3.4 reduces the

variance of the prediction error. The strength of interaction from neuron j to i is measured
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by the Granger causality index (GCI) [Ganapathy et al., 2007] as:

GCI(i, j) = 1−
var(ǫi|j)
var(ǫi)

where ǫi is the prediction error when only the firing history of neuron i is considered in the

model. A CGI value of 0 indicates no causality. When the CGI is statistically significant,

neuron j is considered to influence the firing of neuron i in the model.

3.4.3 Experimental Settings

We simulated neuron spike trains using the point process model in Equation 3.1. For each

parameter setting, we generated 100 random networks each containing 10 neurons with

randomly generated connections. The pre-synaptic neurons were drawn from a uniform

distribution. Each neuron also has a self-inhibitory connection. The duration of the spike

trains is 1 minute with bin width of 3 ms.

We used the Bayesian Network Inference with Java Objects (BANJO) toolbox [Smith

et al., 2006] in our experiments. It is an open source DBN structure learning software. We

used the BDe score function and simulated annealing search.

We used the F-measure to evaluate the experimental performance. It is defined as the

harmonic mean of precision and recall:

precision =
# of correctly inferred connections

# of inferred connections

recall =
# of correctly inferred connections

# of connections in the network

F =
2× precision × recall

precision + recall

3.4.4 Experiments with Excitatory Connections

We thoroughly investigated the performance of DBN in inferring connections in the network

at different settings for the parameters in Equation 3.1 and 3.3. The synaptic latency lij is
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(a) (b)

(c) (d)

Figure 3.1: The performance of using DBN to infer neuron connections at fixed latencies.

(a) performance at different number of excitatory connections. (b) performance at different

firing history interval length. (c) performance at different inhibition/excitation ratio. (d)

performance at different background rate.

fixed at 3 ms for all neurons. This mimics direct connectivity that may exist in local popu-

lation rather than diffuse connections that may be observed across different parts of cortex.

Figure 3.1 shows the performance at different settings of the model parameters when the

DBN Markov lag is set to match the synaptic latency. Each point in the figure represents the

mean and standard deviation of the inference accuracy for 100 different network structures.

We first examined the performance as the number of pre-synaptic neurons varies from 1
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to 6 while fixing all other parameters. All connections here are excitatory with a history

interval of 180 ms. The connection strength Aij in Equation 3.3 is decreased as shown in

Figure 3.1(a) when the number of pre-synaptic neurons is increased in order to keep a stable

average firing rate in the range of 20 to 25 spikes per second and prevent unstable network

dynamics while the background rate of each neuron was set to 10 spikes per second. The

results in Figure 3.1(a) shows that DBN achieves 100% accuracy with a slight decline above

4 pre-synaptic connections. This decline can be attributed to the decrease in the synaptic

strength Aij , thereby reducing the influence of a pre-synaptic spike on the firing probability

of the post-synaptic neuron.

We also varied the history interval of the interaction by varying Mij and examined the

performance. Each neuron receives two excitatory connections of equal weights from two

neurons. The weights were adjusted in order to keep the average firing rate in the same

range for different settings of Mij as illustrated in Figure 3.1(b). Since the synaptic latency

is fixed among all neurons and is consistent with the DBN Markov lag used, we expected the

performance to be invariant to changes in the history interval length. This is confirmed in

Figure 3.1(b) as we observed the performance of DBN remain almost unchanged as history

interval is increased.

3.4.5 Experiments with Inhibitory Connections

We further examined the performance of using DBN to infer networks containing inhibitory

connections. When inhibitory connections exist, the inference of network becomes more

complicated, particularly for hyperexcitable neurons, due to the fact that the neuron’s spiking

pattern becomes very sparse. As a result, observing a spike event may contain a lot more

information in the presence of inhibitory connections with variable degrees of strength. In

our experiments, each neuron received two pre-synaptic connections: one excitatory and

one inhibitory. The excitatory synaptic strengths in Equation 3.3 were fixed at 2.5, while

those of the inhibitory connections were varied. We defined I/E ratio as the ratio of the
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cross-inhibitory to cross-excitatory synaptic strength and tested ratios at 0.25, 0.5, 1, 2 and

4 respectively. All other parameters were set same as above. Taking the self-inhibition

mechanism inherent in our model into account (Aii = −2.5), an I/E ratio of 4 corresponds

to a post-synaptic neuron with equal degrees of inhibition and excitation. Such neurons are

expected to exhibit homogeneous (Poisson-like) characteristics reminiscent of independent

firing. Figure 3.1(c) illustrates the inference accuracy with respect to the I/E ratio. For

ratios below 1, a neuron is effected more by the excitatory connection than by the cross-

inhibition connection. Therefore, the drop in performance observed suggests that DBN is

unable to detect the presence of weak inhibition in the presence of a strong excitation. This

can be attributed to the relatively insignificant effect of weak inhibitory input on the firing

characteristics of post-synaptic neurons conditioned on receiving strong excitation. When

the I/E ratio increases above 1, the accuracy rapidly gets closer to unity and does not

deteriorate even when the inhibitory connections are 4 times stronger than the excitatory

connections.

To interpret these results, we used the coefficient of variation (CV) of the inter-spike in-

terval (ISI) histograms (CV=std(ISI)/mean(ISI)) to quantify the variability in the firing

characteristics of post-synaptic neurons for variable I/E ratios. We hypothesized that if

weak inhibitory connections do not significantly influence the firing of these neurons, then

the CV should be close to those receiving pure excitation. Moreover, one would not expect

to see a sharp transition in CV characteristics for I/E values adjacent to purely-excitatory

connections. Figure 3.1(d) demonstrates that this is indeed the case. The average CV for

I/E ratios of 0.25 is not significantly different from that of purely excitatory connections.

This suggests that weak cross-inhibition did not result in strong effects on the post-synaptic

neurons’ firing characteristics, making it more difficult for DBN to detect this type of con-

nectivity. The CV monotonically increases as the I/E ratio increases, reaching an average of

1 (similar to that of an independent Poisson neuron) when cross-inhibition is on average 4

times stronger than excitation (I/E ratio = 4).
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We compared the performance of DBN to a related measure of connectivity, Partial Di-

rected Coherence (PDC), which has been proposed to study causal relationships between

signal sources at coarser resolution in EEG and fMRI data [Sameshima and Baccalá, 1999].

PDC is the frequency domain equivalence of Granger causality that is based on vector au-

toregressive models of certain order. A connection is inferred between a pair of neurons if the

PDC at any frequency exceeds a threshold of 0.1. For each network, PDC was applied using

models of orders 1 to 30. The accuracy shown by the dashed plot in Figure 3.1(c) represents

the maximum accuracy achieved across all model orders. As can be seen, DBN outperformed

PDC over the entire range of the I/E ratio, while exhibited similar performance around an

I/E ratio of 0.25. Closer examination of the networks inferred using PDC for I/E ratios

greater than 0.25 revealed that the deterioration in the PDC performance compared to the

DBN was due to its inability to detect most of the inhibitory connections, consistent with

previous findings with spectral coherence as well as Granger causality [Cadotte et al., 2008].

We also compared DBN with Generalized Linear Model (GLM) fit [Truccolo et al., 2005,

Czanner et al., 2008]. Ideally, GLM fit should yield the best result for our data since this is the

generative model we used in Equation 3.1. A maximum likelihood estimate of the coupling

function αij in Equation 3.3 for each neuron i is computed in terms of the spiking history of

all other neurons j within a certain window of length WGLM. Since our goal is to identify

the connections and not to estimate the coupling function, we post-processed the estimated

coupling functions such that a connection was inferred if the estimated coupling function was

larger/lower than a given threshold for excitatory/inhibitory connections, respectively, for 3

consecutive time slots while their p-values were significant. The spiking history considered

for fitting WGLM was set to 60 ms. The threshold was varied between 0 and ±1.5 and

the p-value between 0.1 and 0.0001. The dotted plot in Figure 3.1(c) shows the maximum

accuracy obtained across all thresholds and p-values. Superior performance of the GLM can

be seen compared to DBN at I/E ratios below 1, while comparable if not slightly inferior for

I/E ratios above 1. We note, however, that the GLM approach has a number of limitations:
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First, the performance is highly dependent on the choice of the fitting spiking history interval

WGLM. Second, the inference threshold and the p-values have to be carefully set to identify

the connections. Finally, the search time of GLM method was approximately 20 times that

of DBN to estimate the coupling functions for each 10-neuron population.

Finally, we examined the performance with respect to the background rate in Equation 3.1.

This may mimic variations in the afferent input current to the neuron, and increments in

this input when there is no coupling to other neurons known to impact the estimates of

correlation between their output spike trains [de La Rocha et al., 2007]. This is because the

correlation between a neuron pair can not be orthogonally separated from their firing rates,

thereby potentially leading to spurious connectivity inference [Amari, 2009]. Here we have 2

pre-synaptic connections per neuron, one excitatory and one inhibitory with the same firing

strength. Figure 3.1(d) shows that the inference accuracy was above 96% for background

rates higher than 5 spikes per second. Most remarkable is the ability of DBN to infer roughly

70% of the connections at background rates around 2 spikes per second, despite that neurons

are silent most of the time at this low rate.

3.4.6 Experiments with Non-linear Connections

We also find that the DBN model is especially effective in inferring non-linear connections.

We generated a spike train data set using the multiplicative integration model of the pre-

synaptic inputs given in Equation 3.2. Figure 3.2 shows a network in which neuron 3 acts

as a coincidence detector of neurons 1 and 2 spikes. The firing rate of neurons 1 and 2

was set to 30 Hz. The resulting firing rate of neuron 3 was observed to be about 4 Hz.

Despite the low firing rate of neuron 3, DBN was able to discover the causal relationships

between neurons 1 and 2 and neuron 3 as shown in Figure 3.2. When Granger causality was

applied to the same population, the average of GCI(3, 1) and GCI(3, 2) were 0.21, which

were statistically insignificant. This further confirms that linear inference algorithms lead to

erroneous conclusions when applied to highly non-linear situations.
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3.5 Conclusion

In this chapter we study the learning of structures from time-series or sequential data by

exploring DBNs. We demonstrated the use of DBNs in identifying the structures of neural

circuits from observed spike trains. DBN can identify direct synaptic connections between

distinct neuronal elements. It can also identify the direction of those connections. We applied

the method to probabilistic neuronal circuit models that mimic the stochastic variability

experimentally observed in the discharge pattern of cortical neurons. The experimental

results demonstrate the capability of DBN to identify direct connections in multiple networks

of various characteristics.
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Figure 3.2: (a) Network topology for the inhibitory feedback case. αij for each synaptic

connection is shown in the inserts beside each connection. (b) A 0.5 sec trace of the obtained

spike trains. (c) Network inferred using DBN.
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CHAPTER 4

Using Knowledge Driven Matrix

Factorization to Reconstruct Modular

Gene Regulatory Network

4.1 Introduction

Reconstructing gene regulatory network from the micro-array data is important for under-

standing the underlying mechanism behind cellular processes. A number of computational

methods have been developed or applied to automatically reconstruct gene networks from

gene expression data. Clustering methods, such as hierarchical clustering, K-means and

self-organizing map [Eisen et al., 1998], are commonly used to identify gene modules. The

main disadvantage of clustering methods is that they are unable to uncover the interaction

among different modules, which is crucial to the understanding of disease mechanisms. To

overcome this problem, several studies have proposed to integrate clustering methods with

structure learning algorithms. In [Toh and Horimoto, 2002], the authors combined a cluster-

ing method with the Graphical Gaussian Model (GGM) for module network reconstruction.

In [Segal et al., 2003], a Bayesian framework is presented to integrate a clustering method

with Bayesian network learning. A disadvantage with these approaches is that they rely

solely on gene expression data, which are noisy, in the analysis. Furthermore, as revealed by

several studies [Husmeier, 2003, Yu et al., 2004], structure learning methods tend to perform

poorly when the number of experimental conditions is significantly smaller than the number
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of genes.

In the past, a large number of studies have been devoted to exploiting prior knowledge for

gene network reconstruction to alleviate the problem that expression data are often sparse

and noisy [Bar-Joseph et al., 2003, Berman et al., 2002, Hartemink et al., 2002, Ideker

et al., 2001, Ihmels et al., 2002, Pilpel et al., 2001, Li and Yang, 2004]. A typical approach

is to construct a Bayesian prior for the directed arcs in the Bayesian network using the

prior knowledge of regulator-regulatee relationships that are derived from other data such as

location analysis data and protein interaction data. A problem with this type of approach

is that it is often difficult to extend them to incorporate the co-regulation relationships

that can be easily derived from the GO database. This is a shortcoming with Bayesian

network analysis especially for mammalian systems, where interaction data are not as readily

available, whereas GO information are. Therefore, developing a framework of knowledge

driven analysis with high-throughput data that effectively exploits the prior knowledge of co-

regulation relationships from GO could enhance the robustness of the network reconstruction

from gene expression data.

The key challenge with using GO for network reconstruction is that the co-regulation

relationships derived from GO may be noisy and inaccurate. In this paper, we propose

a framework for gene modular network reconstruction based on the Knowledge driven

Matrix Factorization (KMF) that is able to effectively exploit the prior knowledge derived

from GO. The key features of the proposed framework are

• It derives both the gene modules and their interaction from a combination of expression

data and the GO database,

• It incorporates the prior knowledge of co-regulation relationships into network recon-

struction via matrix regularization,

• It presents an efficient learning algorithm that combines the techniques of non-negative

matrix factorization and semi-definite programming.
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It is important to note that although our framework is closely related to other algorithms

for matrix factorization (e.g., non-negative matrix factorization), they differ significantly

in both their computational methods and goals. First, unlike the existing algorithms for

matrix factorization that are designed either for clustering or for dimensionality reduction,

our framework aims to learn a module network structure from gene expression data. Second,

unlike other matrix factorization algorithms that solely depend on iterative algorithms for

optimization, the proposed framework exploits both convex and non-convex optimization

strategies for finding the optimal network structure.

4.2 Matrix Factorization

Matrix factorization is a unifying theme in numerical linear algebra. A wide variety of

matrix factorization algorithms have been developed, including LU decomposition, QR fac-

torization, spectral decomposition, singular value decomposition (SVD), etc. [Meyer, 2000]

These algorithms provide a numerical platform for matrix operations such as solving linear

systems, spectral decomposition, subspace identification and statistical data analysis.

Recent work in machine learning has focused on matrix factorization that directly target

some of the special features of statistical data analysis. In particular, non-negative matrix

factorization (NMF) [Lee and Seung, 1999, 2001] and maximum margin matrix factorization

(MMMF) [Srebro et al., 2005] have been popular in recent years. Non-negative matrix

factorization focuses on the analysis of data matrices whose elements are non-negative which

is common in statistical data sets. It yields non-negative factors which is advantageous

for interpretation. Maximum margin matrix factorization uses low-norm factorization and is

strongly connected with large-margin linear discrimination. It has been shown to be effective

in collaborative filtering [Rennie and Srebro, 2005].
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4.2.1 Non-negative Matrix Factorization and Extensions

For a non-negative n×m matrix V , the non-negative matrix factorization (NMF) [Lee and

Seung, 1999, 2001] aims to find non-negative matrix factors W and H such that:

V ≈ WH (4.1)

Where W is an n× r matrix and H is r ×m. Usually r is set to be smaller than n and m,

such that the ranks of W and H are smaller than that of the original matrix V , leading to

the compression of the original data matrix.

Equation 4.1 can be written column by column as V∗k ≈ WH∗k where V∗k and H∗k are

the corresponding column k of V and H , which means each data vector V∗k is approximated

by a linear combination of the columns of W . In other words, the columns of W contain a

basis for the linear approximation of the data V .

In [Lee and Seung, 2001], the authors proposed two cost functions to measure the distance

between two functions A and B. One measure is the square of the Euclidean distance,

‖A− B‖2 =
∑

ij

(Aij − Bij)
2 (4.2)

Another measure is

D(A||B) =
∑

ij

(
Aij log

Aij

Bij
− Aij +Bij

)
(4.3)

which is equivalent to Kullback-Leibler divergence, or relative entropy, when
∑

ij Aij =
∑

ij Bij = 1. Both measures are non-negative and vanishes if and only if A = B.

Non-negative matrix factorization has been used in dimensionality reduction [Hoyer and

Dayan, 2004], classification [Sha et al., 2007].
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Divergence Dφ φ α β Reference

‖A− BC‖2F 1
2x

2 0 0 Lee and Seung [1999, 2001]

‖A− BC‖2F 1
2x

2 0 λ1⊤C1 Hoyer [2002]

‖W⊙
(A−BC)‖2F 1

2x
2 0 0 Paatero and Tapper [1994]

KL(A,BC) x log x− x 0 0 Lee and Seung [2001]

KL(A,WBC) x log x− x 0 0 Guillamet et al. [2001]

KL(A,BC) x log x− x c11
⊤B⊤B1 −c2‖C‖2F Feng et al. [2002]

Dφ(A,W1BCW2) φ(x) α(B) β(C) Dhillon and Sra [2005]

Table 4.1: Variations of NMF algorithms with different divergence measures. Revised from

Dhillon and Sra [2005].

Extensions of Non-negative Matrix Factorization

• The general form of non-negative matrix factorization, i.e., to approximate a non-

negative matrix A using the product of two non-negative matrices B and C, is:

min
B,C≥0

Dφ(BC,A) + α(B) + β(C) (4.4)

min
B,C≥0

Dφ(A,BC) + α(B) + β(C) (4.5)

The function α(·) and β(·) are penalty functions which enforce regularization or other

constraints on B and C, and Dφ is the Bregman divergence (see Appendix C).

Variations from Equation 4.5 and 4.5 lead to many NMF algorithms, some of which are

briefly list in Table 4.1. In the table, KL(x, y) denotes the generalized KL divergence:

KL(x, y) =
∑

i

xi log
xi
yi
− xi + yi

• In [Hoyer and Dayan, 2004], the authors extend NMF to explicitly control sparse-

ness. The authors argue that this my discover parts-based representations that are
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qualitatively better than those given by basic NMF. Their algorithm is defined as:

argmin
W∈Rn×r+ ,H∈Rr×m+

‖V −WH‖2F

s.t. sparseness(wi) = Sw, ∀i

sparseness(hi) = Sh, ∀i

where wi is the i-th column of W , hi is the i-th row of H , and sparseness(·) is defined

as:

sparseness(x) =

√
n− (

∑ |xi|)/
√∑

x2i√
n− 1

• In [Ding et al., 2008], the authors extend NMF to semi-NMF and convex-NMF. The

data matrix X is allowed to have mixed signs when factored as

X ≈ FG⊤

The semi-NMF is motivated from the perspective of clustering. Suppose we do K-

means clustering on X and obtain cluster centroids F = (f1, · · · , fk). G is the cluster

indicators such that gik = 1 if xi belongs to cluster ck and gik = 0 otherwise. Then

the K-means clustering objective function is

J =
n∑

i=1

K∑

k=1

gikgik‖xi − fk‖2 = ‖X − FG‖2F

The optimization problem can be relaxed by allowing gij to range over (0, 1) or (0,∞),

leading to the form of semi-KMF.

The convex-NMF imposes a constraint on the basis vectors F = (f1, · · · , fk) such that

they lie within the convex hull of X , namely:

fℓ = w1ℓx1 + · · ·wnℓxn = Xwℓ, or F = XW.

Thus the data matrix X is factored as:

X ≈ XWG⊤
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where W and G are both non-negative matrices. As indicated in [Ding et al., 2008],

convex-NMF tends to generate very sparse factors W and G.

4.2.2 Maximum-Margin Matrix Factorization

Given a matrix of binary labels, Y ∈ {±1}n×m, the Maximum-Margin Matrix Factoriza-

tion [Srebro et al., 2005] seeks to approximate it using a matrix X , while minimizing the

trade-off between the trace norm of X and its hinge-loss relative to Y :

argmin
X∈Rn×m

‖X‖Σ + c
∑

ij

max(0, 1− YijXij) (4.6)

Lemma 4.2.1. ‖X‖Σ = minX=UV ′ ‖U‖F ‖V ‖F = minX=UV ′
1
2(‖U‖2F + ‖V ‖2F ).

Lemma 4.2.2. For any X ∈ R
n×m and t ∈ R, ‖X‖Σ ≤ t iff there exists A ∈ R

n×n and

B ∈ R
m×m such that [ A X

X ′ B ] < 0 and tr(A) + tr(B) ≤ 2t.

The proof of Lemma 4.2.2 can be found in [Srebro et al., 2005].

Using Lemma 4.2.2, Equation 4.6 can be written as:

argmin
A,B

1

2
(tr(A) + tr(B)) + c

∑

ij

ξij (4.7)

s.t.

[
A X

X ′ B

]
< 0,

yijXij ≥ 1− ξij ,

ξij ≥ 0

The dual of the above problem is:

argmax
Q

∑

ij

Qij (4.8)

s.t.

[
I (−Q⊗ Y )

(−Q⊗ Y )′ I

]
< 0,

0 ≤ Qij ≤ c
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which is equivalent to

argmax
Q

∑

ij

Qij (4.9)

s.t. ‖Q⊗ Y ‖2 ≤ 1,

0 ≤ Qij ≤ c

Maximum-Margin Matrix Factorization has been used in collaborative filtering [Srebro

et al., 2005].

4.2.3 Limitations with Existing Matrix Factorization Methods

Although many algorithms have been proposed for matrix factorization and these algo-

rithms have been used in many applications, there are a number of challenges remain to be

addressed:

• A major problem with matrix factorization is the computational cost of the related

optimization problem. Since the matrix factorization problems mentioned above do not

have closed form solution, iterative updating methods are used to find the solutions.

And usually the algorithms require many iterations to reach convergence. This hinders

matrix factorization from been used with large-scale datasets.

• Due to the greedy nature of the iterative updating methods, no global optimum is

guaranteed. Instead these algorithms only lead to local optima, which make these

algorithms have low numerical stability.

• An important parameter in the matrix factorization is the dimension of the resulting

low rank matrix. When matrix factorization is used for clustering, this parameter cor-

responds to the number of clusters. As previous studies suggested [Tibshirani et al.,

2001], this parameter has significant influences on the stability of the solutions. How-

ever, it has not been well addressed in existing matrix factorization studies.
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• Although matrix factorization algorithms have been used in structure learning prob-

lems like gene regulatory network reconstruction [Carmona-Saez et al., 2006, Dueck

et al., 2005, Schachtner et al., 2008], they are often limited in the expression power in

the following aspects:

– The existing matrix factorization algorithms are limited to using only one infor-

mation source. However, in some applications we my wish to combine multiple

information sources for more robust solutions. In the study of reconstructing gene

regulatory networks, it has been shown that expression profile of a transcription

factor and its regulated genes do not often show obvious correlation while the reg-

ulated genes often show strong correlation among themselves, which may result

in poor network reconstruction result given sparse micro-array data [Husmeier,

2003].

– In reconstructing gene networks, we are interested not only in the gene mod-

ules that are co-regulated, but also in the interactions among the modules. The

existing matrix factorization algorithms are unable to infer this information.

– The existing matrix factorization algorithms are limited in embedding the net-

work topology in inferring the structures. As revealed by previous studies [Bhan

et al., 2002, Jeong et al., 2000], the structure of many gene networks appears to

be hierarchical and scale-free. In particular, genes are first clustered into mod-

ules, and the gene modules are then connected by scale-free networks. The most

important feature of a scale-free network is that most nodes in the network are

connected to a few neighbors, and only a small number of nodes, which is often

called “hubs”, are connected to a large number of nodes. Compared to other

network structures, a scale-free network has a very skewed degree distribution,

and therefore a relatively smaller number of edges [Barabasi and Albert, 1999].

This fact implies that the network structure matrix C should be a sparse matrix

of which most elements are small or close to zero.
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In the following sections, we address the above limitations by proposing a knowledge driven

matrix factorization (KMF) framework for reconstructing modular gene networks. In KMF,

gene expression data is initially used to estimate the correlation matrix. The gene modules

and the interactions among the modules are derived by factorizing the correlation matrix.

The prior knowledge in GO is integrated into matrix factorization to help identify the gene

modules. An alternating optimization algorithm is presented to efficiently find the solu-

tion. Experiments show that our algorithm performs significantly better in identifying gene

modules than several state-of-the-art algorithms, and the interactions among the modules

uncovered by our algorithm are proved to be biologically meaningful.

4.3 A Framework for Knowledge Driven Matrix Fac-

torization (KMF)

The following terminology and notations will be used throughout the rest of this chapter.

Let m be the number of experimental conditions, and xi = (xi1, xi2, . . . , xim) ∈ R
m be

the expression levels of the ith gene measured under m conditions. Let n be the number

of genes, and X = (x1,x2, . . . ,xn) include the expression levels of all n genes. Given the

expression data, we can estimate the pairwise correlation between any two genes. A number

of statistical correlation metrics can be used for this purpose, such as Pearson correlation,

mutual information, and chi-square statistics [Yang and Pedersen, 1997]. The computation

results in a symmetric matrix W = [wij]n×n where wij measures the correlation between

gene xi and xj .

The main idea behind the knowledge driven matrix factorization framework is to compute

the network structure by factorizing the correlation matrix W into the matrices for gene

modules (i.e., the module matrix) and the module network structure (i.e., the network ma-

trix). We denote by M the module matrix, of which element Mij represents the confidence

of assigning the ith gene to the jth module. We denote by C the network matrix, of which
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element Cij represents the interaction strength between module i and module j. Note that

the computational problem addressed here is fundamentally different from the problems ad-

dressed by the previous studies of matrix factorization [Lee and Seung, 2001] that mainly

focused on dimensionality reduction and data clustering.

To determine the gene modules (i.e., M) and their network structure (i.e., C), we consider

the following three criteria when formulating the framework of knowledge driven matrix

factorization for hierarchical module network reconstruction:

1. The module matrix M and the network structure matrix C should be combined to

accurately reproduce the correlation matrix W . This is based on the assumption that

gene correlation information can essentially be explained by the gene modules and their

interaction.

2. The module matrix M is expected to be consistent with the prior knowledge collected

from Gene Ontology. In particular, two genes that bear a large similarity in gene

functions as described in GO are likely to be assigned into the same module.

3. The network structure matrix C is expected to be consistent with the hierarchical

scale-free structure of gene networks. As suggested in [Barabasi and Albert, 1999], a

network with hierarchical scale-free structure tends to have a small number of linkages

in total. We thus expect matrix C to be a sparse matrix with most of its elements

being small and close to zero.

In the following subsections, we will first discuss how to capture the above three criteria

in formulating the objective function, followed by the description of the full framework.

4.3.1 Matrix Reconstruction Error

Before discussing the reconstruction error, we need to first describe how to approximate the

gene correlation matrix W by the gene modules and the module network. We assume that

the correlation between two genes xi and xj arises because of the interaction between the two
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modules that are associated with the two genes. Hence, variable Wij can be approximated

by
∑

a,bMiaMjbCab where Mia and Mjb represent the association of genes to gene modules

and Cab represent the interaction between modules a and b. In the form of matrices, the

above idea is summarized as to approximate W by the product M × C ×M⊤. We denote

by ld(W,M,C) the matrix reconstruction error between W and M × C ×M⊤.

A number of measurements have been proposed to calculate the matrix reconstruction

error. One general approach is to measure the norm of the difference between W and the

reproduced matrixMCM⊤, i.e., ld(W,M,C) = ‖W−MCM⊤‖. Two types of matrix norms

used in measuring the reconstruction errors are the entry-wise norms (e.g, Frobenius norm)

and the induced norms (e.g., spectral norm). The key difference between these two types

of norms is that the entry-wise norms measure the error by the entry-wise mismatch, while

the induced norm measures the mismatch between two matrices by the difference in their

eigenspetra. Here we adopt the Frobenius norm,

ld(W,MCMT ) = ||W −MCM⊤||2F

=
n∑

i,j=1

(Wij − [MCMT ]ij)
2

4.3.2 Consistency with the Prior Knowledge from GO

Second, we exploit the prior knowledge from GO to regularize the solution ofM . We encode

the information within GO by a similarity matrix S, where Sij ≥ 0 represents the similarity

between two genes in their biological functions [Jin et al., 2006]. Furthermore we create

a normalized combinatorial graph Laplacian L from the similarity matrix S. Then the

disagreement between gene modules and collected gene information from GO is measured

by lm(M,L) = tr(MLM⊤). To better understand this quantity, we expand lm(M,L) as

follows:

tr(MLM⊤) =
N∑

i,j=1

Sij

(
∑

z

(Miz −Mjz)
2

)
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Note that term Sij measures the similarity between gene i and j in gene functions described in

GO, and term
∑

z(Miz−Mjz)
2 measures the difference in module memberships between two

genes. Hence, the product of the two terms essentially indicates the disagreement between

M and the gene information from GO. By minimizing this disagreement, we ensure that the

gene modules are consistent with the prior information of genes.

4.3.3 Gene Module Network with Hierarchical Scale-free Struc-

ture

As revealed by previous studies [Bhan et al., 2002, Jeong et al., 2000], the structure of many

gene networks appears to be hierarchical and scale-free. In particular, genes are first clustered

into modules, and the gene modules are then connected by scale-free networks. The most

important feature of a scale-free network is that most nodes in the network are connected

to a few neighbors, and only a small number of nodes, which is often called “hubs”, are

connected to a large number of nodes. Compared to other network structures, a scale-free

network has a very skewed degree distribution, and therefore a relatively smaller number of

edges [Barabasi and Albert, 1999]. This fact implies that the network structure matrix C

should be a sparse matrix of which most elements are small or close to zero. Thus, to ensure

a scale-free network structure, we regularize the sparsity of matrix C by term lc(C) = ‖C‖2F .
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4.3.4 Matrix Factorization Framework for Hierarchical Module

Network Reconstruction

Combining the measurements for the above three criteria, we have the final formulation for

finding the optimal M and C, i.e.,

min
M,C

ld(W,M,C) + αlm(M,L) + βlc(C)

s. t. C � 0

Cii = 1, i = 1, 2, . . . , n

Cij ≥ 0, i, j = 1, 2, . . . , r

Mij ≥ 0, i, j = 1, 2, . . . , n (4.10)

where parameter α and β weight the contribution of terms lm and lc respectively. The

constraint C � 0 ensures that the interaction among modules complies with the triangular

inequality, i.e., if module i has strong interactions with both module j and module k, then

module j and k are also expected to have strong interactions. Unlike the Bayesian net-

work based structure learning that require solving a discrete optimization problem, (4.10) is

an optimization problem of continuous variables and therefore can usually be solved more

efficiently than Bayesian network.

4.4 Solving the Constrained Matrix Factorization

We solve the above optimization problem through alternating optimization. It alters the

process of optimizingM with fixed C and the process of optimizing C with fixedM iteratively

till the solution converges to a local optimum. We describe these two processes as follows:
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Optimize M by fixing C: The related optimization problem is:

argmin
M∈Rn×r

Fm(M) = ‖W −MCM⊤‖2F + αtr(M⊤LM)

s. t. Mij ≥ 0, i, j = 1, 2, . . . , n

To find an optimal solution for M , we propose the following bound optimization algorithm.

Let M̃ represent the solution of the previous iteration, and our goal is to find a solution of

M for the current iteration. First, we consider bounding the first term in Fm(M) by the

following expression:


Wi,j −

r∑

k,l=1

Mi,kMj,lCk,l




2

=


Wi,j −

[M̃CM̃⊤]i,j
[M̃CM̃⊤]i,j

r∑

k,l=1

M̃i,kM̃j,lCk,l

M̃i,kM̃j,lCk,l
Mi,kMj,lCk,l




2

≤
r∑

k,l=1

M̃i,kM̃j,lCk,l

[M̃CM̃⊤]i,j

(
Wi,j − [M̃CM̃⊤]i,j

Mi,kMj,lCk,l

M̃i,kM̃j,lCk,l

)2

≤ W 2
i,j +

1

2

r∑

k,l=1

[M̃CM̃⊤]i,jM̃i,kM̃j,lCk,l



[
Mi,k

M̃i,k

]4
+

[
Mj,l

M̃j,l

]4


−2
r∑

k,l=1

Wi,jM̃i,kM̃j,lCk,l(logMi,k − log M̃i,k + logMj,l − log M̃j,l + 1)

We then upper bound the second term in Fm(M), i.e., Si,j(Mi,k −Mj,k)
2, such that:

Sij(Mik −Mjk)
2

= SijM
2
ik + SijM

2
jk − 2SijMikMjk

≤ SijM
2
ik + SijM

2
jk − 2SijM̃ikM̃jk

(
log

Mik

M̃ik

+ log
Mjk

M̃ik

+ 1

)

Taking the derivative of Fm(M) with respect to Mi,k, we have

∂Fm(M)

∂Mi,k
= 4

[
Mi,k

M̃i,k

]3
[M̃CM̃⊤M̃C]i,k − 4

M̃i,k

Mi,k
[WM̃C]i,k

+4αMi,kDi − 4α
M̃i,k

Mi,k
[SM̃ ]i,k
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where Di is the degree of the ith gene and is defined before.

By setting the derivative to be zero, we have

[
Mik

M̃ik

]4
[M̃CM̃⊤M̃C]ik + α

[
Mik

M̃ik

]2
M̃ikDi

−α[SM̃ ]ik − [WM̃C]ik = 0

where Di =
∑n

k=1 Sik is the degree of the ith gene. Thus we have the optimal solution for

M as following:

Mik = M̃ik


 2cik

bik +
√
b2ik + 4aikcik




1
2

(4.11)

where

aik = [M̃CM̃⊤M̃C]ik

bik = αM̃ikDi

cik = α[SM̃ ]ik + [WM̃C]ik

Optimize C by fixing M : This corresponds to the following optimization problem:

argmin
C∈Sr

Fc(C) = ‖W −MCM⊤‖2F + β‖C‖2F
s. t. Cii = 1, i = 1, 2, . . . , r

Cij ≥ 0, i, j = 1, 2, . . . , r

C � 0

We expand the objective function Fc(C) as follows:

Fc(C) = tr(WW⊤)− 2tr(WMCM⊤) + tr(MCM⊤MCM⊤) + βtr(CC⊤)

We then introduce auxiliary variable B and slack variables η, ξ as following

B =M⊤MC, η ≥∑r
i,j=1BijBji, ξ ≥

r∑

i,j=1

C2
ij
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Finally, the optimization problem becomes:

argmin
C∈Sr

η + βξ − 2tr(M⊤WMC)

s. t. Cii = 1, i = 1, 2, . . . , r

Cij ≥ 0, i, j = 1, 2, . . . , r

C � 0

η ≥
r∑

i,j=1

BijBji, B =M⊤MC

ξ ≥
r∑

i,j=1

C2
ij (4.12)

This optimization problem can be solved effectively using semi-definite programming tech-

nique.

In summary, the iterative optimization algorithm to solve problem 4.10 can be formulated

as following:

Step 1 Randomly initialize M subject to the constraints in (4.11)

Step 2 Compute C by (4.12) using the M initialized in step 1

Step 3 Until convergence, do

1. Fix C, update M using Equation (4.11)

2. Fix M , update C using Equation (4.12)

4.4.1 Determining Parameters α and β

The regularizer parameter α and β significantly affect the outcome of the proposed algorithm:

α balances the information from GO against the information from gene expression data, and

β controls the sparseness of the interaction matrix C. Here we use the stability analysis to

determine the value of α and β. The basic assumption of stability analysis is that if the

parameters are set properly, then then algorithm runs with different random initialization
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should result in more or less similar results [Tibshirani et al., 2001]. We run our algorithm

multiple times with a given setting of α and β, then evaluate each result to all other results

using the evaluation metric defined in the next section, then we calculate the standard

deviation of all these evaluation metrics. α and β are tuned to minimize this standard

deviation.

4.5 Experimental Results and Discussion

Our experiments are designed to evaluate our proposed knowledge driven matrix factorization

framework in reconstructing modular gene regulatory network, particularly in identifying

gene modules and uncovering the interactions among gene modules.

4.5.1 Datasets

Two datasets are used in our experiments:

• Gene expression data of yeast cell cycle system: The gene expression data for 104 genes

involved in yeast cell cycle were obtained from the Yeast Cell Cycle Analysis Project

(http://genome-www.stanford.edu/cellcycle/data/rawdata/). These genes were

divided into six groups based on their peak expression in the different phases of the

cell cycle and the transcription factors that regulate them [Spellman et al., 1998].

• Gene expression data of liver cell system: Gene expression data was obtained for

HepG2 cells exposed to free fatty acids (FFAs) and tumor necrosis factor (TNF-α) [Sri-

vastava and Chan, 2007]. Gene expression data were obtained for 15 different condi-

tions. The original data consisted of 19458 genes. The analysis of variance (ANOVA)

was applied to the entire list of genes with P < 0.01 to compare the effect of treatment

(e.g. FFA or TNF-α) and to determine whether a treatment had a significant effect.

The expression levels of 830 genes were found to be significant due to either TNF-α or

FFA [Li et al., 2007] and this subset of genes are further analyzed in our experiment.
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4.5.2 Evaluation of KMF on Yeast Cell Cycle Data

In this study, we focus on evaluating the capability of KMF in identifying gene modules

because the interaction information among gene modules is not available. We compared the

gene modules identified by KMF and three other baseline algorithms to the ground truth

which includes six groups defined by [Spellman et al., 1998]. The three algorithms used as

baseline algorithms in our study to identify the gene modules in the yeast cell cycle genes

include 1) Bayesian Module network in Genomica [Segal et al., 2003], 2) Probabilistic Spectral

Clustering (PSC) [Jin et al., 2005], and 3) Sparse Matrix Factorization (SMF) [Badea and

Tilivea, 2005]. Bayesian Module network in Genomica was chosen since it had used the yeast

cell cycle genes to identify gene modules. PSC was chosen since it had been proved to be

one of the state-of-the-art clustering algorithms. We evaluated three settings when applying

PSC to identify the gene modules. In the first two settings, either the gene expression data or

GO is used to construct the similarity matrix before applying PSC. In the third setting, the

two similarity matrices based on gene expression and GO are combined linearly. SMF was

chosen since it had been shown to identify gene modules using a non-negative factorization

algorithm that combines gene expression data and transcription factor binding data. To

obtain the cluster membership of the genes, we set a threshold on the membership matrix

M . A natural choice for the threshold is 1/r where r is the number of clusters. The same

method was applied to PSC and SMF to determine the binary cluster memberships.

As shown in Figure 4.1, we can see that KMF is more effective in capturing the structure of

the gene clusters compared to the other algorithms. Comparing 4.1(a) and 4.1(b) in Figure

4.1, we can see that KMF captured well clusters 3, 4, 5, 6 and part of cluster 1. In contrast,

the other algorithms captured fewer clusters. For example, PSC using both expression and

GO captured clusters 3, 4 and 6. Interestingly, Genomica, which is based only on expression

data, captured clusters 1, 5 and 6.

To quantitatively evaluate the performance of the algorithms in our experiment, we use
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.1: Visualization of the clustering results. In each subfigure, the horizontal axis

represents the cluster IDs and the vertical axis represents the genes. From (b) to (g), the

seven subfigures show the distribution of the genes for each analysis as compared to the

manually assigned genes in the original 6 groups in (a) [Spellman et al., 1998]. The clusters

are generated by KMF (b), Genomica (c), PSC using the expression data (d), GO (e), and

their combination (f), and SMF (g). For better visualization and comparison, each gene was

assigned to only one cluster in the figure.

the Pairwise F-measure (PWF1) metric [Liu et al., 2007]. Let U be the set of gene pairs that

share at least one cluster in the experiment, and T be the set of gene pairs that actually

share at least one cluster, PWF1 is defined as

precision =
|U ∩ T |
|U |

recall =
|U ∩ T |
|T |

PWF1 =
2× precision× recall

precision + recall

where | · | is cardinality operator on a set. The precision measures the accuracy in identifying

co-regulated genes, and the recall measures the percentage of co-regulated genes that are

correctly identified, where we assume that the genes within an original group [Spellman

et al., 1998] were co-regulated. PWF1 combines these two factors by their harmonic mean.
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Algorithm PWF1(mean±std)
KMF 0.625±0.007
Genomica 0.473

PSC (expression) 0.446±0.057
PSC (GO) 0.386±0.020
PSC (expression+GO) 0.571±0.013
SMF (expression+binding) 0.413±0.118

Table 4.2: PWF1 measure of the experimental results on the Yeast cell cycle dataset. Each

algorithm except Genomica (which does not need initialization at the beginning of execution)

was executed 10 times with different random initializations, and the mean and standard

deviation of PWF1 from 10 runs are calculated.

Table 4.2 shows the PWF1 measure of different algorithms on the Yeast cell cycle data.

We can see from the results that KMF outperformed the other algorithms significantly. Note

that KMF performed better than PSC using the combination of GO and gene expression

data. This suggests that KMF is more effective in exploiting prior knowledge than PSC. In

addition, KMF also showed a lower standard deviation on the PWF1 over multiple runs. This

suggested that KMF performed robustly by utilizing the GO information to Guinney2007de

the modular network reconstruction from gene expression data.

4.5.3 Application to Identifying Gene Modules and Modular net-

work in Liver Cells

We also applied KMF to gene expression data obtained from liver cells where the main

objective was to identify the interactions between the modules.

In our experiments we manually set the number of clusters to be 30 according to the

suggestions of biologists. We found that for most identified gene modules, genes with similar

functions were enriched in their own separate modules/gene groups. For example, 7 out of

the 11 genes in a module encode the 5 of the 6 enzymes involved in the TCA cycle, see

Figure 4.2. Similarly, one module consisted primarily of NADH dehydrogenases and one
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module consisted of the genes involved in the metabolism of ATP. 7 out of the 18 genes in

a module encode different sub-complexes of cytochrome-c oxidase (complex IV). In general,

most of the gene-groups could be assigned a particular function/process based upon the list

of genes enriched in them. We only give a few examples above to illustrate the function

enrichment of gene modules. We also note that a common practice in evaluating function

enrichment by GO can not be applied here since we already utilize GO for the identification

of gene modules and their interaction. The full list of gene clusters is available online at

http://www.chems.msu.edu/groups/chan/genecluster.xls.

Next, we examined if KMF is able to correctly uncover the interaction among different

modules by looking into the C matrix whose coefficients indicate the strengths of interactions,

which is analogous to a correlation matrix. After sorting out the significantly higher values

in C matrix, we found that module complex III, complex IV, complex I, complex V and

TCA and complex II are closely connected as shown in Figure 4.3. From the aspect of

molecular biology, most of the proteins in these modules are located in the mitochondria or

on the mitochondria membrane, and these modules are indeed biologically connected. The

modules of TCA cycle, electron transport chain (ETC) complex I, complex III, complex

IV, and ATP synthase are related to energy production in the mitochondria, which are

often referred to as intracellular powerhouse because they produce most of the energy used

by the cell. The production of energy in the mitochondria is accomplished by two closely

linked metabolic processes, the TCA cycle and oxidative phosphorylation. The TCA cycle

converts carbohydrates, lipids, and amino acids into ATP and energy rich molecules, such

as NADH. Oxidative phosphorylation generates ATP through the ETC consisting of five

protein complexes embedded in the inner membrane of the mitochondria including complex

I (NADH dehydrogenase), complex II (succinate dehydrogenase of the TCA cycle), complex

III (cytochrome-c reductase), complex IV (cytochrome-c oxidase), and complex V (ATP

synthase). Thus, Figure 4.3 show a biological network involved in the production of energy in

mitochondria reconstructed by KMF. For many other modules, their interaction is relatively
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Module 29

S-adenosylmethionine decarboxylase 1 (AMD1)

isocitrate dehydrogenase 3 (NAD+) alpha (IDH3A)

fumarate hydratase (FH)

ornithine decarboxylase 1 (ODC1)

ornithine decarboxylase antizyme 1 (OAZ1)

S-adenosylmethionine decarboxylase 1 (AMD1)

citrate synthase (CS) (N67639)

citrate synthase (CS) (AA416759)

succinate dehydrogenase complex, subunit C

succinate-CoA ligase, GDP-forming, alpha subunit

(SUCLG1)

succinate-CoA ligase, GDP-forming, beta subunit

Figure 4.2: An example of the functional modules identified by KMF. Left: KMF uncovered

TCA cycle. 5 out of 6 enzymes involved in TAC cycle were found in module 29. Right: TCA

genes were enhanced in Module 29.

weak according C matrix, and therefore their biological meaning is rather unclear from our

study.

Therefore, KMF is able to identify highly enriched gene modules with distinct cellular

functions and the interactions between the modules. In summary, KMF is an approach

that can be applied to uncover pathways specific to a phenotype and potentially be used

to elucidate mechanisms involved in diseases by integrating gene expression and a priori
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Complex III and Michochondria

Complex IVTCA Complex I

ATP synthase

0.657 0.752

0.655 0.653

0.747

Figure 4.3: KMF uncovered the connections between energy production modules of TCA,

Complex I, III, IV and V. Numbers on the edges are the interaction strengths between the

modules from the interaction matrix (C matrix).

knowledge.

4.6 Conclusion

A novel framework is presented in this chapter to meet the challenging problem of recon-

structing gene networks from multiple information sources. The advantage of our proposed

framework is that it derives both the gene modules and their interactions in a unified frame-

work of matrix factorization, and it incorporates the prior knowledge of co-regulation rela-

tionships from GO information into the network reconstruction process. We also present an

efficient algorithm to solve the related optimization problem. Experiments show that the

proposed framework performs significantly better in identifying gene modules than several

state-of-the-art algorithms, and the interactions among modules uncovered by our algorithm

are proved to be biologically meaningful.
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CHAPTER 5

Exclusive Lasso for Multi-task

Feature Selection

In this chapter we discuss learning grouped and hierarchical structures using regularization.

Although the structure information often appears explicitly in many situations like the

conditional dependency in a Bayesian network which can be visualized using a directed

graph, it may be implicit sometimes and thus difficult to explore. For example, a group of

variables show co-varying property in group lasso regularization, i.e., they either co-exist or

diminish together. Several algorithms including group Lasso [Yuan and Lin, 2005], hierar-

chical penalization [Szafranski et al., 2007] and Composite Absolute Penalties (CAP) [Zhao

et al., 2009] have been proposed to exploit this kind of hidden structures within groups.

These group and hierarchical regularizations are mostly restricted to discover positive

correlations among the variables within groups. Specifically, they assume that if a few

variables in a group are important, then most of the variables in the same group should

also be important. However, in many real-world applications, we may come to the opposite

observation, i.e., variables in the same group exhibit negative correlations by competing

with each other. For instance, in visual object recognition, the signature visual patterns of

different objects tend to be negatively correlated, i.e., visual patterns useful for recognizing

one object tent to be useless for other objects.

To address the problem of discovering negative correlations within groups, we propose

a new regularization which we call exclusive lasso. Different from the existing grouped

regularizer, if one feature in a group is given a large weight, the exclusive lasso regularizer
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tends to assign small or even zero weights to the other features in the same group. We will

present a theoretical analysis to verify the exclusive nature of the proposed regularizer in

detail.

5.1 Grouped and Hierarchical Regularization

We briefly review the related work in grouped and hierarchical regularization.

5.1.1 Group Lasso

Group lasso [Yuan and Lin, 2005] has been studied extensively and applied to a number of

machine learning problems. It uses the L1 norm, which is theoretically proven to generate

sparse solutions [Tibshirani, 1996], to select groups of variables that are grouped by the L2

norm. Consider a linear regression setup where we have a continuous response Y ∈ R
n, an

n× p design matrix X and a parameter vector β ∈ R
p, the group lasso estimator is defined

as

β̂ = argmin
β

‖Y −Xβ‖22 + λ

G∑

g=1

‖βIg‖2

where Ig is the index set belonging to the g-th group of variables, g = 1, · · · , G. The group

lasso can be viewed as an intermediate between the L1 and L2 penalty. It is invariant under

(groupwise) orthogonal transformation like ridge regression.

5.1.2 Hierarchical Penalization

Szafranski et al. [2007] proposed a hierarchical penalization which uses shrinking coefficients

to transform the ridge-like penalty into a sparse penalizer. The model parameterized by β is

fitted by minimizing a different a differentiable loss function J(·), subject to a ridge penalty
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with adaptive coefficients that encourages sparseness among and within groups:

min
β,σ1,σ2

J(β) + λ
∑

ℓ

∑

m∈Gℓ

β2m√
σ1,lσ2,m

(5.1)

s.t.
∑

ℓ

dℓσ1,ℓ = 1, σ1,ℓ ≥ 0, 1 ≤ ℓ ≤ L

∑

m

σ2,m = 1, σ2,m ≥ 0, 1 ≤ m ≤ L

The Lagrange parameter λ controls the amount of shrinkage, and dℓ is the size of the group

ℓ. The constraints encourage sparseness in σ1,ℓ and σ2,m, which in turn induces sparseness

in βm.

In Equation 5.2, the groups Gℓ form a partition of I, and the hierarchy refers to the tree-

structure of the shrinking coefficients: σ2,m shrinks parameter βm, while σ1,ℓ shrinks the

parameters for group Gℓ. The minimizer of the problem equivalent to:

min
β

J(β) + λ


∑

ℓ

d
1/4
ℓ

( ∑

m∈Gℓ

|βm|4/3
)3/4




2

As we can see, this is a special case of the CAP regularizer. The parameter dℓ accounts for

the groups sizes. The inner L4/3 norm and the outer L1 norm form a mixed-norm penalty

that will be denoted L(4/3,1). The overall regularization generates sparse solutions at the

group level, with few leading coefficients within the selected groups.

5.1.3 Composite Absolute Penalties

Zhao et al. [2009] further extended the idea of group lasso and proposed a general Com-

posite Absolute Penalties (CAP) family, which allows for (i) different norms for combin-

ing variables within the same groups, and (ii) overlapping in variables between groups.

Let β = (β1, · · · , βp)⊤ be the p variables to be regularized. Given the grouping struc-

ture G = {Gk ⊂ {1, . . . , p}, k = 1, · · · , K}, and a vector of norm parameters γ =
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γk Regularizer

γk = 1 Lasso [Tibshirani, 1996]

γk = 4/3 Hierarchical Penalization [Szafranski et al., 2007]

γk = 2 Group Lasso [Yuan and Lin, 2005]

γk =∞ iCAP penalty [Zhao et al., 2009]

Table 5.1: Several regularizers can be seen as special cases of the CAP family when γ0 = 1

and γk takes different values.

(γ0, γ1, · · · , γK) ∈ R
K+1
+ , the regularizer TG,γ(β) is defined as follows

TG,γ(β) =
∑

k


 ∑

m∈Gk

|βm|γk



γ0/γk

Mixed-norms corresponds to groups defined as a partition of the set of variables. A CAP

may also rely on nested groups, G1 ⊂ G2 ⊂ · · · ⊂ GK , and γ0 = 1, in which case it

favors hierarchical selection, i.e., the selection of groups of variables in the predefined order

{I \GK}, {GL \GK−1}, · · · , {G2 \G1}, G1.

The CAP penalty in Equation 5.2 gives a very general family of regularizations. By

reviewing existing grouped and hierarchical regularizations, we find they all consider γ0 = 1

to enforce sparseness at the group level and identical norms ‖γk‖ at the parameter level, as

listed in Table 5.1.

In Table 5.1, the iCAP penalty limits the maximum magnitude of the coefficients within

groups.

Figure 5.1 gives a visualization of the admissible sets for various regularizers.

5.1.4 Limitations with Existing Group Regularizers

Although various regularizers have been proposed as reviewed above to infer implicit group

and hierarchical structures, these regularizers all assume the covarying property within

groups, i.e., a key assumption behind these regularizers is that if a few features in a group are
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ridge regression lasso group-lasso hierarchical penalization

Figure 5.1: Visualization of the admissible sets for various regularizers. Ridge regression:

β21 + β22 + β23 ≤ 1. Lasso: |β1| + |β2| + |β3| ≤ 1. Group lasso: 2(β21 + β22)
1
2 + |β3| ≤ 1.

Hierarchical penalization: 2
1
4 (|β1|

4
3 + |β2|

4
3 )

3
4 + |β3| ≤ 1.

important, then most of the features in the same group should also be important. However,

in many real-world applications, we may come to the opposite observation. Consider the

problem of multi-category document classification. The existing approaches for multi-task

feature selection usually assume a positive correlation among the categories, namely, when

one keyword is important for several categories, it is also expected to be important for the

other categories. This positive correlation is usually captured by a group lasso regularizer,

where a group is defined for every word w that includes the feature weights of all the cat-

egories for word w. However, when our objective is to differentiate the related categories,

we may expect a negative correlation among categories, namely, if word w is deemed to be

important for one category, it becomes less likely for w to be an important word for the

other categories. This kind of negative correlations appear in many real world applications.

Here we give two more examples:

• In visual object recognition, the signature visual patterns of different objects tend to

negatively correlated.

• In bioinformatics, many cellular processes share different signal pathways, leading to

negatively correlated features (i.e., genes).

It is clear that such a negative correlation structure violates the underlying modeling of

the existing group regularizers.
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5.2 Exclusive Lasso

In order to capture the implicit structure of negative correlation among variables, we propose

the exclusive lasso regularizer. Different from the grouped regularizer reviewed above, if one

feature in a group is given a large weight, the exclusive lasso regularizer tends to assign

small or even zero weights to the other features in the same group. We present a simple

analysis to verify the exclusive nature of the proposed regularizer. Based on the proposed

exclusive lasso regularizer, we present a framework for kernel-based multi-task learning. An

efficient algorithm is derived to solve the related optimization problem. Empirical studies

with document categorization verify that the proposed regularizer is effective for multi-task

feature selection.

Although exclusive lasso proposed in our work can also be viewed as a special case of

mixed norm and the general CAP family, this study is distinguished from the existing ones

in two aspects:

1. Unlike the previous studies that only emphasize the sparsity of solutions caused by

the regularization, our in depth analysis also reveals that the exclusive lasso is able to

introduce competitions among variables within the same group, which is a key property

for capturing the negative correlation among the tasks;

2. We apply the exclusive lasso regularization method to kernel based multi-task learning

problem. It results in a sophisticated min-max optimization problem that is beyond

the capability of the existing algorithms for group regularization. We present an effi-

cient algorithm for solving the related min-max optimization based on the subgradient

descent method.

Notations: We use index i for instances, j for features, and k for tasks. We use n to

denote the total number of instances, d for the number of features, and m for the number of

tasks.
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5.2.1 Multi-task Feature Selection

We introduce our exclusive lasso regularizer in the context of multi-task learning

(MTL) [Caruana, 1997]. Multi-task Learning has proven to be useful both theoretically [Bax-

ter, 2000, Ben-David and Schuller, 2003] and experimentally [Evgeniou et al., 2005, Jebara,

2004, Torralba et al., 2004]. Most MTL algorithms assume a positive correlation among

tasks. For example, Evgeniou et al. [2005], Bakker and Heskes [2003] assume that func-

tions for different tasks are similar to each other, and Baxter [2000], Ben-David and Schuller

[2003], Caruana [1997] assume a common representation of data that is shared by all the

tasks.

Guyon and Elisseeff [2003] classify feature selection methods into three types: filter, wrap-

per and embedded. Filters select subsets of variables as a pre-processing step, independently

of the chosen predictor; they are cheap but not very effective. Wrappers utilize the learning

machine of interest as a black box to score subsets of variable according to their predictive

power; they are good but very expensive. Embedded methods perform variable selection in

the process of training and are usually specific to given learning machines.

Many algorithms have been proposed for multi-task feature selection, an important prob-

lem in multi-task learning. Xiong et al. [2007] imposed an automatic relevance determination

prior on the hypothesis classes associated with individual tasks and regularized the variance

of the hypothesis parameters. Argyriou et al. [2006] and Obozinski et al. [2006] used the

L1,2 norm, similar to group lasso, for regularizing features of different tasks. It encourages

multiple predicators to have similar parameter sparsity patterns. Jebara [2004] introduced a

common vector of binary feature selection switches for all the tasks, and exploited the maxi-

mum entropy discrimination formulation to identify the most informative features as well as

the discriminant functions. Lee et al. [2007] introduced meta-features for feature selection

in related tasks. Guinney et al. [2007] utilized the gradient of the multiple related regression

functions over the tasks for dimension reduction and inference of dependencies both across
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tasks and specifically for each task. All the existing algorithms for multi-task feature selec-

tion assume a positive correlation among the tasks, and they aim to learn a common subset

of features for all the tasks. In contrast, our proposed exclusive lasso regularizer assumes a

negative correlation among tasks, and aims to introduce competition among variables within

the same group.

5.2.2 Multiple Kernel Learning

The proposed exclusive lasso regularizer will be also be used in the multiple kernel learn-

ing [Lanckriet et al., 2004] setting, which has been studied extensively in recent years [Lanck-

riet et al., 2004, Bach et al., 2004, Sonnenburg et al., 2006, Rakotomamonjy et al., 2007]. The

key idea of multiple kernel learning is to search for the best combination of multiple kernel

functions that will result in the optimal classification performance. A number of algorithms

have been developed for multiple kernel learning, including the SDP formulation [Lanckriet

et al., 2004], the QCQP formulation [Bach et al., 2004], the semi-infinite linear programming

approach [Sonnenburg et al., 2006], the subgradient approach [Rakotomamonjy et al., 2007],

and the level method [Xu et al., 2008]. In this paper, we apply the exclusive lasso to the

kernel based multiple task learning, in which the combination of multiple kernel functions is

learned simultaneously for all the tasks. We derive an efficient gradient-based algorithm to

solve the large-scale optimization problem related to the multi-task multiple kernel learning

problem.

5.2.3 Multi-Task Learning with Linear Classifiers

We consider a multi-task classification problem. Let D = {(xi, yi), i = 1, . . . , n} be the

training data, where xi ∈ R
d is the input pattern and yi = (y1i , . . . , y

m
i ) ∈ {−1,+1}m is

the assigned categories with yki = 1 if xi is assigned to category k and yki = −1 otherwise.

For simplicity, we assume a linear classifier fk(x) = β⊤k x where βk = (β1k, . . . , β
d
k) ∈ R

d is

the combination weights. We thus have the following optimization problem for multi-task
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learning:

min
β

1

2
V (β) + C

n∑

i=1

m∑

k=1

ℓ(yki , fk(xi)) (5.2)

where ℓ(z) is a loss function that measures the mismatch between yki and the predicted

value fk(xi). V (β) is a regularizer that controls the complexity of combination weights β.

We assume a competitive nature among the features shared by all the tasks, i.e., if a very

large weight is assigned to the jth feature for one task, we expect the weights for the same

feature to be small or even zero for the other tasks. To this end, we introduce the following

regularizer:

V (β) =
d∑

j=1

(
m∑

k=1

∣∣∣βjk
∣∣∣
)2

(5.3)

As indicated in the above expression, we introduce an L1 norm to combine the weights for

the same feature used by different tasks and an L2 norm to combine the weights of different

features together. Since L1 norm tends to achieve a sparse solution, the construction in V (β)

essentially introduces a competition among different tasks for the same feature. We refer to

the above regularizer as exclusive lasso. Using the exclusive lasso as a regularizer, we have

the overall optimization problem written as

min
β

1

2

d∑

j=1

( m∑

k=1

∣∣∣βjk
∣∣∣
)2

+ C
n∑

i=1

m∑

k=1

ℓ
(
yki , fk(xi)

)
(5.4)

An alternative approach to the regularizer shown above is to introduce a constraint for β:

min
β





n∑

i=1

m∑

k=1

l
(
yki , fk(xi)

)
:

√√√√√
d∑

j=1

(
m∑

k=1

∣∣∣βjk
∣∣∣
)2

≤ γ





(5.5)

where γ is a predefined constant.

5.2.4 Understanding the Exclusive Lasso Regularizer

One of the fundamental questions is how the exclusive lasso regularizer introduces the com-

petition among different tasks for the same feature. To illustrate this point, we consider the
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following projection problem,

min
β∈G
|β − β̄|22 (5.6)

where β̄ is an existing solution and domain G is defined as

G =

{
β = (β1; . . . ; βm) : βk = (β1k , . . . , β

d
k) ∈ R

d,

k = 1, . . . , m,

√√√√√
d∑

j=1

(
m∑

k=1

∣∣∣βjk
∣∣∣
)2

≤ γ

}
(5.7)

The projection problem in (5.6) directly demonstrates how the domain G shapes a solution

β̄, which essentially illustrates the effect of the exclusive lasso regularizer. Projection is

an important operation that is used by many optimization algorithms (e.g., subgradient

descent). In addition, problems such as constrained least square regression can be cast into

a projection problem.

We first convert Equation 5.6 into a convex-concave problem,

min
β

max
λ≥0

|β − β̄|22 + 2λ




√√√√√
d∑

j=1

(
m∑

k=1

∣∣∣βjk
∣∣∣
)2

− γ


 (5.8)

The following proposition allows us to simplify the problem in Equation 5.8.

Proposition 1.

√√√√√
d∑

j=1

(
m∑

k=1

∣∣∣βjk
∣∣∣
)2

= max
α∈∆

α⊤β (5.9)

where domain ∆ is defined as

∆ =

{
α = (α1; . . . ;αm) : αk = (α1k, . . . , α

d
k) ∈ R

d,

k = 1, . . . , m,

d∑

j=1

max
1≤k≤m

|αjk| ≤ 1

}
(5.10)

Using the above proposition, we have the following lemma that simplifies Equation 5.8.
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Lemma 5.2.1. Problem 5.8 is equivalent to the following optimization problem

min
τ



2γ|τ |2 +

d∑

j=1

m∑

k=1

[|β̄jk| − τj ]
2
+



 (5.11)

where [x]+ = max(x, 0). The optimal solution of β is computed as

β
j
k = [β̄

j
k − τj ]+, j = 1, . . . , d, k = 1, . . . , m

Proof. Using the Proposition 1, we rewrite Equation 5.8 as

max
α∈∆

min
β
|β − β̄|22 + 2λ

(
α⊤β − γ

)

Taking the minimization over β, we have

max
α



−2λγ − |β̄ − λα|

2
2 :

d∑

j=1

max
1≤k≤m

[α
j
k]
2 ≤ 1





with β = β̄ − λα. Define τj = max
1≤k≤m

λ|αjk| and the above equation can be written as

min
τ,λ



2λγ +

d∑

j=1

m∑

k=1

[|β̄jk| − τj ]
2
+ : |τ |2 ≤ λ





or

min
τ



2γ|τ |2 +

d∑

j=1

m∑

k=1

[|β̄jk| − τj ]
2
+





As indicated by the above lemma, whenever β̄
j
k is smaller than threshold τj , we have β

j
k

become zero. The following proposition shows a necessary condition for β
j
k = 0.

Proposition 2. For any feature j, if
∑m

k=1

(
|β̄jk| − min

1≤k≤m
|β̄jk|

)
> γ, we have β

j
k = 0 if

β̄
j
k ≤

(∑m
k=1 |β̄

j
k| − γ

)
/m.

Proof. We consider the first order optimality condition for τ , i.e.,

γ
|τj |
|τ |2

+

m∑

k=1

[|β̄jk| − τj ]+∂τj [|β̄
j
k| − τj ]+ = 0
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where ∂xf(x) is the subgradient of function f(x). Notice that ∂τj [|β̄
j
k| − τj ]+ ∈ [−1, 0], and

is −1 when |β̄jk| < τj . Hence, the above optimality condition implies that

m∑

k=1

[|β̄jk| − τj ]+ ≤ γ
|τj |
|τ |2
≤ γ

Since [|β̄jk| − τj ]+ ≥ |β̄
j
k| − τj , we have

m∑

k=1

|β̄jk| − τj ≤ γ,

which leads to the result in the proposition.

As indicated in the above proposition, when some tasks take significantly smaller weights

for feature j than the other tasks, the regularizer will enforce the weights of feature j to be

zero for these tasks, leading to the competition of feature j among tasks. Parameter γ is

used to control the degree of domination. A large γ requires a large gap among the weights

for the same feature before the small weights can be reduced to zero; similarly, a small γ

allows us to reduce small weights to zero even when the gap among the weights for the same

feature is still small.

5.2.5 Multi-Task Learning with Kernel Classifiers

We extend the exclusive lasso discussed above to the kernel case. In particular, we consider

there are d kernels at our disposal, denoted byW = {W j ∈ R
n×n, j = 1, . . . , d}. We assume

that each kernel matrix in W is appropriately normalized (e.g., tr(W j) = 1). For each task

k, we assume that its kernel matrix, denoted by Kk, is a linear combination of the kernel

matrices in W, i.e.,

Kk =

d∑

j=1

λ
j
kW

j

where λk = (λ1k, . . . , λ
d
k) ∈ R

d
+ is the combination weights. For each individual task, the

learning of combination weights λk, often referred to as multiple kernel learning, is cast into
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the following optimization problem

min
λk∈Rd+

max
γk∈[0,C]n

{
γ⊤k 1− 1

2
(γk ◦ zk)⊤




d∑

j=1

W jλ
j
k


 (γk ◦ zk)

}
(5.12)

where zk = (yk1 , y
k
2 , . . . , y

k
n) and ◦ is the element-wise dot product. Similar to the linear case,

by assuming the exclusive nature among tasks in competing for kernels in W, we introduce

the exclusive lasso for regularizing the kernel weights λ = (λ1; . . . ;λm) assigned to different

tasks, leading to the following optimization problem:

min
λk∈Rd+

max
γk∈[0,C]n

m∑

k=1

(
γ⊤k 1− 1

2
(γk ◦ zk)⊤




d∑

j=1

W jλ
j
k


 (γk ◦ zk)

)

+
r

2

d∑

j=1

(
m∑

k=1

λ
j
k

)2

(5.13)

where r is a predefined parameter that weights the importance of the regularizer. The

following theorem shows the sparsity in the solution of λ and the competition among tasks

for kernels caused by the exclusive lasso regularizer.

Theorem 1. Provided the solution γ, for each kernel W j, we have λ
j
k > 0 only if

k = argmax
1≤k′≤m

(γk′ ◦ zk′)⊤W j(γk′ ◦ zk′)

This theorem follows directly from the result in Proposition 4, which will be stated later.

5.2.6 Algorithm

We focus on solving the problem in (5.13). A straightforward approach is the subgradient

method. Define

g(γ, λ) =
m∑

k=1


γ⊤k 1− 1

2
(γk ◦ zk)⊤




d∑

j=1

W jλ
j
k


 (γk ◦ zk)




+
r

2

d∑

j=1

(
m∑

k=1

λ
j
k

)2

(5.14)

f(γ) = min
λk∈Rd+

g(γ, λ) (5.15)
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Hence, the problem in (5.13) can be viewed as a maximization problem

γ = argmax
γk∈[0,C]n

f(γ)

We thus can apply the subgradient ascent approach to directly maximizing f(γ). In each

iteration of the subgradient ascent method, we compute the gradient of f(γ), denoted by

∇f(γ), and the new solution is obtained by moving the existing solution γ along the direction

of ∇f(γ), i.e.,

γ ← πG (γ + s∇f(γ))

where

G = {γ = (γ1; . . . ; γm) ∈ R
mn : γk ∈ [0, C]n, k = 1, . . . , m}

and πG(x) projects solution x onto the domain G. Evidently, there are two key parameters

that need to be computed efficiently, i.e., step size s and ∇f(γ). The following proposition

allows us to compute ∇f(γ), similar to [Xu et al., 2008].

Proposition 3. We have the gradient of f(γ) computed as

∇γk
f(γ) = 1−




d∑

j=1

λ
j
k

(
W j ◦ zkz⊤k

)

 γk (5.16)

where λ
j
k is the minimizer of g(γ, λ), i.e., λ = min

λk∈Rd+
g(γ, λ).

As indicated in the above proposition, to compute the gradient of f(γ), it is important to

efficiently compute λ that minimizes g(γ, λ). To this end, we rewrite g(γ, λ) to highlight its

dependency on λ:

g(γ, λ) = a−
m∑

k=1

d∑

j=1

b
j
kλ

j
k +

r

2

d∑

j=1

(
m∑

k=1

λ
j
k

)2

(5.17)

where

a =

m∑

k=1

γ⊤k 1, b
j
k =

1

2
(γk ◦ zk)⊤W j(γk ◦ zk) (5.18)
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In order to minimize g(γ, λ) with respect to λ, we define hj as

hj = −
m∑

k=1

b
j
kλ

j
k +

r

2

(
m∑

k=1

λ
j
k

)2

(5.19)

Since g(γ, λ) = a+
∑d

j=1 hj and each hj only involves variables λ
j
k, k = 1, . . . , m, we could

optimize hi separately. The following proposition gives the optimal solution that minimizes

hj .

Proposition 4. Assume b
j
k 6= b

j
k′ for any k 6= k′ and any j. The optimal λ

j
k, k = 1, . . . , m

that minimizes hj is

λ
j
k =





λ̄j k = argmax
1≤k′≤m

b
j
k′

0 otherwise

where λ̄j is computed as λ̄j = 1
r max
1≤k≤m

b
j
k.

Proof. For the sake of simplicity, we drop index j and consider a general problem as follows

min
λ∈Rm

+

−
m∑

k=1

bkλk +
r

2

(
m∑

k=1

λk

)2

We define λk = ηk + λ̄ and λ̄ =
∑m

k=1 λk/m. We therefore have ηk ≥ λ̄ and
∑m

k=1 ηk = 0.

Thus the original problem can be transformed into a problem of λ̄ and η, i.e.,

min
λ̄,η

rm2

2
λ̄2 −

m∑

k=1

bkηk − λ̄
m∑

k=1

bk

s. t. λ̄ ≥ 0,
m∑

k=1

ηk = 0, ηk ≥ −λ̄, k = 1, . . . , m

We consider the solution for η when λ̄ is fixed, which leads to the following linear program-

ming problem:

min
η
−

m∑

k=1

bkηk

s. t.

m∑

k=1

ηk = 0, ηk ≥ −λ̄, k = 1, . . . , m
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Since bk ≥ 0, it is clear that the optimal solution for the above linear programming problem

is

ηk =





(m− 1)λ̄ k = argmax
1≤k′≤m

bk′

−λ̄ otherwise

Using the solution for η, we have the following problem for λ̄

min
λ̄≥0

rm2

2
λ̄2 −mλ̄ max

1≤k≤m
bk

It is obvious that λ̄ = max
1≤k≤m

bk/(rm).

Note that Proposition 4 only addresses the situation when there is a unique element for

k = argmax1≤k′≤m b
j
k′ . Similar results can be easily derived when multiple elements tie

for the maximum value of b
j
k. This proposition clearly demonstrates the competition of

kernels among tasks resulting from the exclusive lasso regularizer. Using the result from

Proposition 4, we can efficiently compute the optimal λ for a given γ, which allows us to

efficiently compute the gradient of f(γ) in (5.16).

We determine the step size s by the backtracking line search [Boyd and Vandenberghe,

2004]. Finally, the duality gap is used to check the convergence. Given the solution λ∗ and

γ∗, the duality gap is defined as

δ = min
λk∈Rd+

g(γ∗, λ)− max
γk∈[0,C]n

g(γ, λ∗), (5.20)

where min
λ∈Rd+

g(γ∗, λ) can be computed efficiently using Proposition 4, and

maxγk∈[0,C]n g(γ, λ
∗) is solved by a kernel SVM.

5.3 Experiments

We evaluate the efficacy of the proposed exclusive lasso regularizer by multi-task feature

selection. We use the Yahoo dataset [Ueda and Saito, 2003] in our experiments. This multi-

topic web page categorization dataset was collected from 11 top-level categories (“Arts”,
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Dataset m N MaxNPI MinNPI

Arts 19 7441 1838 104

Business 17 11182 9723 110

Computers 23 12371 6559 108

Education 14 11817 3738 127

Entertainment 14 12691 3687 221

Health 14 9109 4703 114

Recreation 18 12797 2534 169

Reference 15 7929 3782 156

Science 22 6345 1548 102

Social 21 11914 5148 104

Society 21 14507 7193 113

Table 5.2: Metadata of the Yahoo data collection.

“Business”, “Computers”, etc.) in the “yahoo.com” domain. Each top-level category is fur-

ther divided into a number of second-level subcategories. Each subcategory is an individual

task in our multi-task classification algorithm. We preprocessed the datasets by removing

topics with less than 100 documents and documents with no topics. 300 keywords are se-

lected for each dataset based on their term frequency. After preprocessing, the number of

subcategories ranges from 14 to 23 for the 11 datasets, and the number of data samples

ranges from 6345 to 14507. Detailed statistics of the datasets can be found in Table 5.2.

By constructing a kernel for each individual keyword, we apply the proposed method for

kernel based multi-task task learning to document categorization. Throughout this study, a

linear kernel is used by all the methods and for all the experiments because it is proven to

be effective for document categorization.

5.3.1 Evaluation

We use the following two algorithms as baselines in our experiments to compare with the

proposed exclusive lasso algorithm:
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• SVM feature selection [Bradley and Mangasarian, 1998]. We train a linear SVM clas-

sifier for each category and select the features that have the largest absolute values in

their coefficients. We use this feature selection method instead of the L1 regularization

path [Zhu et al., 2003] because we want to be consistent with the approach used in our

proposed algorithm. Note that the SVM classifiers are trained independently in this

case, and therefore features are selected independently for each task.

• Multi-task Feature Learning (MTFL) [Argyriou et al., 2006]. MTFL assumed that the

functions ft for T all share a small set of features. It used the group lasso to jointly

penalize the features used by different tasks. It encourages multiple predicators to have

similar parameter sparsity patterns, and aims to learn a subset of features common to

all the tasks. Formally, MTFL aims to solve the following convex optimization problem

in the feature selection setting:

min
A∈Rd×t

T∑

t=1

m∑

i=1

L(yti, 〈at, xti〉) + γ‖A‖22,1

where m is the number of features and ‖A‖2,1 is the (2, 1)-norm of matrix A. It is

obtained by first computing the 2-norm of the (across the tasks) rows ai (corresponding

to feature i) of matrix A and then the 1-norm of the vector b(A) = (‖a1‖2, · · · , ‖ad‖2).

This norm combines the tasks and ensures that common features will be selected

across them. We use the hinge loss function for L(·) for the MTFL algorithm in our

experiments because our work follows directly the SVM framework.

To evaluate the efficacy of feature selection, we randomly sample 10 examples from each

subcategory for training and use the remaining documents for testing. We use a small

number of training examples because it is well known that in document categorization, with

sufficient numbers of training documents, any feature selection method works well. After

training the classification models, we choose the top features for each subcategory that have

the largest weights. An SVM classifier is constructed for each subcategory by using the

selected features, and its classification accuracy computed over the test documents is used
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to evaluate the efficacy of feature selection algorithms. The hypothesis is that the more

effective the feature selection algorithm is, the more accurate the SVM classifier will be.

The area under the receiver operating characteristic curve (AUC) is used in our study as

performance metric. We vary the number of selected features from one to ten, and repeat

each experiment ten times. The reported AUC for each dataset is averaged over ten random

trials.

The regularization constant C of SVM is set to be 10 for all the SVM classifiers in the

experiments according to our experience. The regularizer parameter r in Equation (5.13) is

set to be 1 in all the experiments. Note that we did not employ cross validation to determine

the parameters because of the small number of training samples.

5.3.2 Results

Figure 5.2 shows the average AUC of the 11 datasets of the Yahoo data collection for the

three feature selection methods in comparison. We observe that (i) the MTFL method

performs noticeably worse than the simple SVM based feature selection method, and (ii)

the proposed algorithm for multi-task feature selection outperforms the other two baseline

algorithms. This is not surprising given the topic structure in the Yahoo data collection. Al-

though documents within each dataset belong to a common topic and therefore are expected

to share many common terms, our goal is to classify documents in each dataset further into

subcategories. As a result, we need to select discriminative terms that are sufficient to dif-

ferentiate the subcategories, not the terms that are commonly shared among subcategories.

These discriminative terms are more likely to be discovered by the proposed exclusive lasso

algorithm since a discriminative term for a given subcategory is unlikely to be also discrim-

inative for another subcategory. Finally, we observed that the advantage of the proposed

algorithm over the other comparative methods tends to diminish as the selected number of

features is increased. This is indeed within our expectation, as any feature selection method

will work well if we aim to select most of the features.
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5.4 Conclusion

We introduce a new regularization which we call exclusive lasso in this chapter. We give

detailed theoretical analysis to illustrate that the proposed exclusive lasso regularizer is

able to introduce competitions among variables and thus generate sparse solutions. This

regularizer is applied to a multi-task feature selection setting and an efficient algorithm is

derived to solve the related optimization problem. Empirical study shows that our proposed

algorithm outperforms the baseline algorithms on benchmark datasets.
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Figure 5.2
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Figure 5.2: (cont’d) AUC of exclusive lasso (eLASSO), SVM feature selection and MTFL on

the 11 datasets of Yahoo data collection. The x axis is the number of selected features from

each category used in the testing phase, and the y axis is the corresponding AUC measure.

All performances are averaged for 10 runs each with a random sampling of training instances.
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CHAPTER 6

Sparse Online Feature Selection

In this chapter we further investigate the sparse structures, specifically in a problem setting

that we call online feature selection. Most online learning studies assume that the learning

has full access to all input features. However, in many real world applications, it is expensive,

either computationally or money wise to acquire and use all the input attributes. In this case

it is desirable to develop online learning algorithms that only need to sense a small number of

attributes before the reliable decision can be made. We develop theories and algorithms for

sparse online feature selection. Specifically, we design general algorithms for online feature

selection, and examine their theoretic properties such as upper and lower bounds for the

regret bound. We evaluate the proposed algorithms by experiments on benchmark datasets.

6.1 Introduction

Unlike batch mode learning where the goal is to learn a single statistical model with small

generalization error, online learning focuses on making sequential decisions that minimize the

overall regret/loss. Specifically, online learning is performed in a sequence of rounds. In each

round t, the algorithm observes an instance xt which is drawn from some predefined instance

domain X . The algorithm then predicts the binary label of the instance and then receives

the true label. The algorithm may use the new example (xt, yt) to improve its prediction

model for future rounds. The online algorithms make no assumption about how the sequence

of examples are generated, which is a key different from the batch model learning. The goal

of the algorithm is to make as many correct predictions as possible.

The online learning algorithm uses a hypothesis ft : X → R to generate the predictions
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, shown in red.

−2 −1 0 1 2
z

E(z)

Figure 6.1: Different loss functions: zero-one loss (black), hinge loss (black), square loss

(green) and logistic loss (red). The logistic loss is rescaled by a factor of 1/ ln(2) to pass

(0,1).

in each round t, where sgn(ft(xt)) is the prediction. We use a loss function ℓ(yt, ft(xt))

to evaluate the predictions of a hypothesis. The commonly used loss functions include the

following which are illustrated in Figure 6.1.

• Zero-one loss:

ℓ(y, f(x)) =





0 yf(x) > 0

1 otherwise

• Hinge loss:

ℓ(y, f(x)) = max(0, 1− yf(x))

• Square loss:

ℓ(y, f(x)) = (1− yf(x))2

• Logistic loss:

ℓ(y, f(x)) = ln(1 + exp(−yf(x)))

The objective of the online learning algorithm is to minimize the total loss
∑T

t=1 ℓ(yt, ft(xt)) in the long run.
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Algorithm 7 Perceptron Algorithm

1: Initialization

• w1 = 0

2: for t = 1, 2, . . . , T do

3: Receive xt
4: Make prediction sgn(x⊤t wt)

5: Receive yt
6: if ytx

⊤
t wt ≤ 0 then

7: wt+1 = wt + ηytxt
8: else

9: wt+1 = wt

10: end if

11: end for

The epic Rosenblatt’s Perceptron algorithm [Rosenblatt, 1958], despite of its simplicity,

has a nice error bound and works well in experiments. The algorithm is described in Algo-

rithm 7. The early study of online learning was focused on linear classification model, which

was later on extended to nonlinear classifier by using the kernel trick. Inspired by the success

of maximum margin classifiers, various algorithms have been proposed to incorporate classi-

fication margin into online learning. The connection between online learning and repetitive

game has also inspired numerous algorithms for online learning. Recent studies explored the

close relationship between online learning and optimization theories, particularly stochastic

approximation (e.t., stochastic gradient descent) and first order methods (e.g., subgradient

descent).

Since the debut of Perceptron over half a century ago, many algorithms have been proposed

for online learning [Cesa-Bianchi and Lugosi, 2006]. Despite the success, most online learning

studies assume that the learner has the full access to all input features. However, in many

real-world applications, objects are represented by thousands or even millions of features and

measure all input features can be computationally expensive. One example is visual object

recognition, for which the most popular approach is bag-of-words model (BoW). The BoW

model introduces the visual vocabulary, with each visual word in the vocabulary represent a

distinct visual pattern, and represents the visual content of images by histograms of visual
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words. In order to capture diverse visual patterns of objects, the BoW model often has to

introduce thousands even millions of visual words, leading to a high computational cost in

computing visual word histograms. Specifically, a sparse online learning model is desirable

for the following reasons:

• Space constraints: online algorithms are often applied to high dimensional data. As

a result, the model of the online learning algorithm itself might overflow the memory

and makes impossible to implement the algorithm.

• Test time constraints and computation: substantially reducing the number of features

may significantly reduce the computational time to evaluate new samples.

• Overfitting: it has been theoretically and experimentally proved [Vapnik et al., 1994]

that by regularizing the model and introducing sparsity, we can avoid the overfitting

problem and increase the accuracy of the model.

• Cost to acquire the data: sometimes acquiring the full knowledge of the examples is

costly. With limited budgets, it is desirable if we have a sparse model, as a result we

only need to acquire the features corresponding to the non-zero features in the model.

In this chapter, we focus on the online learning problems where objects are represented

by many attributes. Since it is expensive, either computationally or money wise, to acquire

all the input attributes of an object, it is therefore desirable to develop online learning

algorithms that only need to sense a small number of attributes before the reliable decision

can be made.

To address this challenge, we will investigate the following protocol of online learning:

Let x1, . . . ,xT be a sequence of input patterns received over the trials, where each xi ∈ R
d

is a vector of d dimension. In our study, we assume d is a very large number and for

computational efficiency we need to select a relatively small number of features for linear

classification. More specifically, in each trial t, the learner presents a classifier wt ∈ R
d that
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will be used to classify instance xt by a linear function sgn(w⊤t xt). Instead of using all the

features for classification, we require the classifier wt to have at most B non-zero elements

and consequently at most B features of xt will be used for classification. We refer to this

problem as online feature selection. Our goal is to design an effective strategy for online

feature selection that is able to make a small number of mistakes. Throughout the following

text, we assume |xt|2 ≤ 1, t = 1, . . . , T .

6.2 Related Work

It is worthwhile to note that the online feature selection defined above is a novel problem,

and is not yet addressed in any research work so far at the author’s awareness. It is related

to, but significantly different from several existing machine learning tasks:

• Batch mode feature selection: Unlike the batch model feature selection [Jain and

Zongker, 2002] that learns from a collection of training examples where all the input

features are provided, in every trial of online feature selection, only a small number of

input features are acquired, making it significantly more challenging problem.

• Sparse online learning: Sparse online learning aims to learn a statistical model that

only utilizes a small number of input features. Similar to batch mode feature selection,

sparse online learning assumes all the input features of training examples are provided.

Several sparse online learning algorithms are proposed recently. In [Langford et al.,

2009], the authors proposed an algorithm of truncated gradient descent. The basic idea

is that after the gradient decent step, the coefficients of the linear classifier are shrunk

by a small amount if its value is within certain threshold, and thus sparsity is achieved.

Recently in [Duchi and Singer, 2009] the authors proposed a framework for empirical

risk minimization with regularization called forward looking subgradients. The basic

idea is to solve a regularized optimization problem after every gradient-descent step.

Note that our work differs from these studies in that we impose a hard constraint on
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the number of non-zero elements in classifier w, while all the studies on sparse online

learning only have soft constraints on the sparsity of the classifier.

• Learning with missing features: Similar to online feature selection, in learning with

missing features [Ghahramani and Jordan, 1997], only part of features of training

examples are observed. However, unlike online feature selection where the learner

actively selects a subset of features for measuring, in learning with missing features,

the learner does not control which features to measure.

• Budget online learning: Our work is also related to budget online learning [Cavallanti

et al., 2007, Dekel et al., 2008, Orabona et al., 2008] in that the number of support

vectors is bounded by a predefined number. A common strategy behind many budget

online learning algorithms is to remove the “oldest” support vector when the maximum

number of support vectors is reached. This simple strategy however is not applicable

to online feature selection, because in the case of linear kernel, the combination of

limited number of support vectors does not guarantee a sparse classifier.

• Finally, our work is closely related to the online learning algorithm that aims to learn

a classifier that performs as well as the best subset of experts [Warmuth and Kuzmin,

2006], which is in contrast to most online learning work on prediction with expert advice

that only compares to the best expert in the ensemble [Cesa-Bianchi and Lugosi, 2006].

Unlike the work [Warmuth and Kuzmin, 2006] where only positive weights are assigned

to individual experts, in our study, the weights assigned to individual features can be

both negative and positive, making it more flexible.

6.3 A Naive Approach

A naive approach for online feature selection is to modify the Perceptron algorithm. In

the t-th trial, when asked to make prediction, we will truncate the classifier wt by setting
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Algorithm 8 A Modified Perceptron for Online Feature Selection

1: Input

• B: the number of selected features

2: Initialization

• w1 = 0

3: for t = 1, 2, . . . , T do

4: Receive xt
5: Make prediction sgn(x⊤t w

B
t ) where wB

t is wt with everything but the B largest ele-

ments set to zero.

6: Receive yt
7: if ytx

⊤
t w

B
t ≤ 0 then

8: wt+1 = wt + ytxt
9: else

10: wt+1 = wt

11: end if

12: end for

everything but the B largest elements in wt to be zero. This truncated classifier, denoted by

wB
t , is then used to classify the received instance xt. Similar to the Perceptron algorithm,

when the instance is misclassified, we will update the classifier by adding the vector ytxt

where (xt, yt) is the misclassified training example. Algorithm 8 shows the pseudo code of

this approach.

Unfortunately, this simple approach does not work: it can not guarantee a decent bound

for mistakes. To see this, consider the case where the input pattern x can only take two

possible values, either wa or wb. For wa, we set its first B elements to be one and the

remaining elements to be zero. For wb, we set its B + 1 to 2B elements to be one and

the remaining elements to be zero. An instance x is assigned to the positive class (i.e.,

y = +1) when it is wa, and assigned to the negative class (i.e., y = −1) when it is wb.

Let (x1, y1), . . . , (x2T , y2T ) be a sequence of 2T examples, with x2k+1 = wa, y2k+1 = 1, k =

0, . . . , T − 1 and x2k = wb, y2k = −1, k = 1, . . . , T . It is clear that Algorithm 8 will always

make the mistake while a simple classifier that uses only two attributes (i.e., the first feature

and the B + 1 feature) will make almost no mistakes.
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6.4 L1 Projection for Online Feature Selection

One reason for the failure of Algorithm 9 is that although it selects the B largest elements

for prediction, it does not guarantee that the numerical values for the unselected attributes

are sufficiently small, which could potentially lead to many classification mistakes. We can

avoid this problem by exploring the sparsity property of L1 norm, given in the following

proposition.

Proposition 5. (from [Donoho, 2006]) For q > 1 and x ∈ R
d, we have

|x− xm|q ≤ ξq|x|1(m+ 1)1/q−1, m = 1, . . . , d

where ξq is a constant depending only on q and xm stands for the vector x with everything

but the m largest elements set to 0.

This proposition indicates that when a vector x lives in a L1 ball, most of its numerical

values are concentrated in its largest elements, and therefore removing the smallest elements

will result in a very small change to the original vector measured by the Lq norm. Thus, we

will enforce the classifier to be restricted to a L1 ball, i.e.,

∆R = {w ∈ R
d : |w|1 ≤ R} (6.1)

Based on this idea, algorithm 9 gives a method for online feature selection. The learner

maintains a linear classifier wt that has at most B non-zero elements. When a training

instance (xt, yt) is misclassified, the learner will update the classifier by first adding the

training instance ytxt to the existing classifier wt and then projecting it into the L1 ball

∆R. If the resulting classifier ŵt+1 has more than B non-zero elements, we will simply

keep the B elements in ŵt+1 with the largest absolute weights. The main computational

challenge in Algorithm 9 is step 8 that projects a vector into L1 ball ∆R. It requires solving

the following optimization problem

min
|x|1≤R

|x− a|22
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Algorithm 9 Online Feature Selection using L2 Norm

1: Input

• R: maximum L1 norm

• B: the number of selected features

2: Initialization

• w1 = 0

3: for t = 1, 2, . . . , T do

4: Receive xt
5: Make prediction sgn(w⊤t xt)
6: Receive yt
7: if ytw

⊤
t xt ≤ 0 then

8: ŵt+1 = π∆R
(wt + ytxt) where π∆R

(x) projects x into domain ∆R using L2 norm.

9: if |ŵt+1|0 > B then

10: wt+1 = ŵB
t+1 where ŵB

t+1 is vector ŵt+1 with everything but the B largest

elements set to be zero.

11: else

12: wt+1 = ŵt+1

13: end if

14: else

15: wt+1 = wt

16: end if

17: end for

where a is a given vector. The solution to the above optimization problem is given by

xi = [|ai| − λ]+sgn(ai), i = 1, . . . , d

where [x]+ = max(0, x). Dual variable λ ≥ 0 is either 0 if
∑

i=1 |ai| ≤ R or given by the

following nonlinear equation
d∑

i=1

[|ai| − λ]+ = R,

which can be solved efficiently using bisection search.

The following theorem gives the mistake bound for the Algorithm 9.

Theorem 2. After running Algorithm 9 over a sequence of training examples

(x1, y1), . . . , (xT , yT ) with |xt|2 ≤ 1, t ∈ [T ], we have the following the bound for the number
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of mistakes M made by Algorithm 9

M ≤ 1

1−
[
ξ22R

2

B + 4
ξ2R

2
√
B

]



min

w∈∆
|w|22 + 2

T∑

t=1

ℓ(yt,w
⊤xt)





Proof. Consider any trial t when the received training example (xt, yt) is misclassified. For

any classifier w ∈ ∆, we have

ℓ(ytw
⊤
t xt) ≤ ℓ(ytw

⊤xt) +
1

2
|w−wt|22 −

1

2
|w − ŵt+1|22 +

1

2
|xt|22

When the number of non-zero elements in ŵt+1 is more than B, we will generate wt+1

by only keeping the B largest elements in ŵt+1, which leads to an additional term (|w −

wt+1|22 − |w− ŵt+1|22)/2 on the right hand side of the above inequality. Using Proposition

1, we have

|w−wt+1|22 − |w− ŵt+1|22

= |wt+1 − ŵt+1|22 + 2(ŵt+1 −wt+1)
⊤(w − ŵt+1)

≤ ξ22R
2

B
+ 4

ξ2R
2

√
B

We thus have

ℓ(ytw
⊤
t xt)

≤ ℓ(ytw
⊤xt) +

1

2
|w −wt|22 −

1

2
|w− ŵt+1|22 +

1

2
+

1

2

(
ξ22R

2

B
+ 4

ξ2R
2

√
B

)

We complete the proof by adding up the inequalities of all trials and using the fact that

ℓ(ytw
⊤
t xt) ≥ 1 when ytw

⊤
t xt ≤ 0.

One limitation of Algorithm 9 is that according to Theorem 1, in order to give a meaningful

bound of mistakes, we should have R < O(B1/4), leading to a very small L1 ball for the

comparator w. We can improve Algorithm 9 by using L2K norm, instead of L2 norm, as

the potential function, where K ≥ 1 is an integer equal to or larger than 1. The overall idea

follows the framework of potential gradient descent approaches [Cesa-Bianchi and Lugosi,
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2006]. In this algorithm, we maintain two sets of solutions: ut ∈ R
d is a solution in the dual

space and wt ∈ R
d is a solution in the primary space. The mapping between solution ut

and wt are defined as follows:

ut = ∇Φ(wt), wt = ∇Φ∗(ut) (6.2)

where

Φ(x) =
1

2
|x|22K , Φ∗(x) =

1

2
|x|22K/[2K−1] (6.3)

For the convenience of presentation, we define

q = 2K/(2K − 1) (6.4)

and therefore Φ∗(x) = |x|2q/2. In each trial, we first make prediction using wt for the received

instance xt. When the prediction is incorrect, we update the solution in the dual space and

map it to the primary space by the transform ∇Φ∗. The mapped solution is projected into

the L1 ball and further truncated if the projected solution has more than B non-zero entries.

The final solution wt+1 will be mapped back to the dual space to generate the dual solution

ut+1. Algorithm 10 gives the detailed steps of this algorithm. One of the key steps is to

project solution into a L1 ball under the L2K norm. The solution is given by the following

optimization problem

min
|x|1≤R

|x− a|2K2K (6.5)

We have the following proposition for the solution to the optimization problem in (6.5).

Proposition 6. The optimal solution to Equation 6.5 is given by

xi = sgn(ai)[ai − λ1/(2K−1)]+

where dual variable λ ≥ 0 is either 0 or the solution to the following nonlinear inequality

d∑

i=1

[ai − λ1/(2K−1)]+ = R
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Proof. We first convert Equation (6.5) into a convex-concave optimization problem

max
|γ|∞≤λ,λ≥0

min
x

1

2K
|x− a|2K2K + γ⊤x− λR

By minimizing over x, we have

xi = ai − γ1/(2K−1)i , i = 1, . . . , d

Using the above solution, we simplify the convex-concave optimization problem into the

following maximization problem

max
λ,|γ|∞≤λ

d∑

i=1

{
−2K − 1

2K
γ
2K/(2K−1)
i + aiγi

}
− λR

By maximizing over γi with λ fixed, we have

γi = sgn(ai)min
(
λ, |ai|2K−1

)
, i = 1, . . . , d

Hence, the solution for xi becomes

xi = sgn(ai)
[
|ai| − λ1/(2K−1)

]
+

Finally, λ is given by the following nonlinear inequality

d∑

i=1

|xi| =
d∑

i=1

[
|ai| − λ1/(2K−1)

]
+
≤ R

We will first check if λ = 0 will satisfy the inequality. If not, we conduct bisection search to

find λ > 0.

We have the following theorem for the mistake bound when using L2K norm.

Theorem 3. After running Algorithm 10 over a sequence of training examples

(x1, y1), . . . , (xT , yT ) with |xt|2 ≤ 1, t ∈ [T ], we have the following bound for the number

of mistakes made by Algorithm 10

M ≤ 1

1−
[

ξ22KR2

B2−1/K + 4
ξ2KR2

B1−1/[2K]

]



min

w∈∆
|w|22K + 2

T∑

t=1

ℓ(ytw
⊤xt)





The proof is almost word-by-word copy of that for Theorem 1. Compared to Algorithm 9,

we only require R < O(B1/2−1/[4K]), which is close to O(
√
B) when K is sufficiently large.

125



Algorithm 10 Online Feature Selection using L2K Norm

1: Input

• R: maximum L1 norm

• B: the number of selected features

• K: norm used for potential function

2: Initialization

• u1 = w1 = 0

• Φ(x) = 1
2 |x|22K and Φ∗(x) = 1

2 |x|2q , where q = 2K/(2K − 1).

3: for t = 1, 2, . . . , T do

4: Receive xt
5: Make prediction sgn(w⊤t xt)
6: Receive yt
7: if ytw

⊤
t xt ≤ 0 then

8: ŵt+1 = πK∆R
(∇Φ∗(ut + ytxt)) where πK∆R

(x) projects x into domain ∆R using

L2K norm.

9: if |ŵt+1|0 > B then

10: wt+1 = ŵB
t+1 where ŵB

t+1 is vector ŵt+1 with everything but the B largest

elements set to be zero.

11: else

12: wt+1 = ŵt+1

13: end if

14: ut+1 = ∇Φ(wt+1)

15: else

16: wt+1 = wt, ut+1 = ut
17: end if

18: end for

6.5 Experiments

In this section we present the empirical studies of the proposed algorithms.

6.5.1 Datasets

We used two datasets in our experiments: 20 Newsgroup and Reuters dataset. Table 6.1

shows the information of the datasets we used.

• The 20 Newsgroup dataset is a collection of 20,000 messages collected from 20 different

Usenet newsgroups – 1000 messages from each of the 20 newsgroups were chosen,
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Name # Samples # Features

20news-autos 1978 8165

20news-space 1974 8165

reuters-money 1434 5180

reuters-acq 4738 5180

Table 6.1: Information of the 20 Newsgroup and Reuters datasets.

and the dataset was partitioned by the newsgroup name. We randomly chose group

“rec.autos” and “sci.space” in our experiments.

• The Reuters-21578 dataset is a standard text categorization benchmark containing

stories from Reuters news agency grouped into 135 classes. We randomly chose the

group “money-fx” and “acq” in our experiments.

All documents are TF-IDF weighted. For each category in a dataset, we use all documents

in this category as positive samples, and we sample the same amount documents from other

categories and use as negative samples. Thus the data is balanced for positive and negative

labels.

6.5.2 Experimental Results

For each of the four datasets, we randomly sample 90% of examples and apply Algorithm 9

for 100,000 iterations. We calculate the cumulative accuracy at the end of the horizon,

and we do the offline evaluation by applying the resulting classifier to the remaining 10%

examples. Two important parameters in Algorithm 9 are the number of features B and the

norm ball size R. We vary the value of these two parameters. For each setting of parameters,

we run the algorithm 5 times, each with a random sampling of training samples as well as

the input sequences. The performance of the 5 runs are averaged. Figure 6.2 and Figure 6.3

illustrates the online and offline performance on the respectively.
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Figure 6.2: Cumulative accuracy of Algorithm 6.2 at the end of horizon. The y axis represents

varying B values: number 1 to 7 corresponds to 20, 50, 100, 200, 500, 1000 and 2000

respectively. The x axis represents varying R values: number 1 to 7 corresponds to 5, 10,

20, 50, 100, 200 and 500 respectively.

The experimental results is consistent with our theoretical analysis. The performance of

the algorithm increases with increasing B and R both in the online evaluation and offline

evaluation.
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Figure 6.3: Offline evaluation using the model generated at the end of horizon from Algo-

rithm 6.2. The y axis represents varying B values: number 1 to 7 corresponds to 20, 50,

100, 200, 500, 1000 and 2000 respectively. The x axis represents varying R values: number

1 to 7 corresponds to 5, 10, 20, 50, 100, 200 and 500 respectively.

6.6 Conclusion

In this chapter, we continue our interests in sparse structures, specifically in online feature

selection. Despite the success of online learning algorithms, most studies assume that the

learning has full access to all input features. However, in many real world applications, it is

expensive, either computationally or money wise to acquire and use all the input attributes.

As a result, it is desirable to develop online learning algorithms that only need to sense a
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small number of attributes before the reliable decision can be made. We study the topic in

this area, and develop theories and algorithms for sparse online feature selection. Specifically,

we propose the general algorithms for online feature selection, and examine their theoretic

properties such as the regret bound and the upper and lower bounds for the regret bound.

We evaluate the proposed algorithms by experiments on benchmark datasets.
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CHAPTER 7

Conclusion

The learning of structures is an important topic in the field of machine learning as it finds

applications in numerous domains. The key contributions to this area that the author made

in this dissertation are following.

• Application of DBN for cortical network reconstruction: In Chapter 3, the

dynamic Bayesian networks is applied to identifying functional cortical networks from

simultaneously recorded spike trains. An empirical study with cortical network recon-

struction is presented to show the advantage of DBNs in comparison to the state-of-

the-art approaches. In particular, the experiments demonstrate the strong power of

DBN in inferring the topology of the networks with unknown latency and weak signals.

The author and his collaborators are among the first to apply DBN to cortical network

reconstruction.

• A novel KMF framework for gene regulatory network reconstruction: In

Chapter 4, a novel knowledge driven matrix factorization (KMF) framework is pre-

sented to meet the challenging problem of reconstructing gene networks from multiple

information sources. In KMF, gene expression data is initially used to estimate the

correlation matrix. The gene modules and the interactions among the modules are

derived by factorizing the correlation matrix. The prior knowledge in GO is integrated

into matrix factorization to help identify the gene modules. The advantage of pro-

posed framework is that it derives both the gene modules and their interactions in a

unified framework of matrix factorization, and it incorporates the prior knowledge of

co-regulation relationships from GO information into the network reconstruction pro-
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cess. An alternating optimization algorithm is presented to efficiently find the solution

of the related optimization problem. Experiments show that the proposed algorithm

performs significantly better in identifying gene modules than several state-of-the-art

algorithms, and the interactions among the modules uncovered by the algorithm are

proved to be biologically meaningful.

• A novel exclusive lasso regularization: In Chapter 5, a novel group regularization

called exclusive lasso is presented. Unlike the group lasso regularizer that assumes co-

varying variables in groups, the proposed exclusive lasso regularizer models the scenario

when variables in the same group compete with each other. Analysis is presented to

illustrate the properties of the proposed regularizer. A framework of kernel-based multi-

task feature selection algorithm based on the proposed exclusive lasso regularizer is also

proposed for the application of proposed regularizer. An efficient algorithm is derived

to solve the related optimization problem. Experiments with document categorization

show that the proposed approach outperforms state-of-the-art algorithms for multi-task

feature selection.

• First step for solving a novel problem of online feature selection: In Chapter 6,

the author further investigate the sparse structure in online learning, specifically in

online feature selection. Most online learning studies assume that the learning has full

access to all input features. However, in many real world applications, it is expensive,

either computationally or money wise to acquire and use all the input attributes.

In this case it is desirable to develop online learning algorithms that only need to

sense a small number of attributes before the reliable decision can be made. The

author proposed a new problem of online feature selection. In the first step towards

solving this problem, the author develops theories and algorithms for sparse online

feature selection. Specifically, some general algorithms for online feature selection are

developmed, and their theoretic properties such as the upper and lower bounds for the
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regret bound are examined. The efficacy of the proposed algorithms are also examined

by extensive experiments on benchmark datasets.

Learning with structures is a broad and interesting topic in the area of machine learning.

Besides the successful studies conducted in this dissertation, there are a number of chal-

lenging problems that deserve further investigation in the future. For example, given the

regulatory network, how to identify the important genes or miRNAs responsible for certain

diseases like cancers. This information would be important for understanding the cause of

the diseases as well as to design drugs and drug delivery for treating these diseases. An-

other example is the novel online feature selection problem proposed in Chapter 6. Although

the author made some first steps towards solving it, it remains to be a tough problem and

requires deeper investigation.
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APPENDIX A

Notations

Sets

R Real numbers

R
n Real n-vectors

R
m×n Real m× n matrices

R+,R++ Nonnegative, positive real numbers

S
n Symmetric n× n matrices

S
n
+, S

n
++ Symmetric positive semi-definite, positive definite, n× n matrices

Vectors and matrices

1 Vector with all components one

I Identity matrix

X⊤ Transpose of matrix X

tr(X) Trace of matrix X

rank(X) Rank of matrix X

Norms and distances

‖ · ‖ A norm

‖x‖2 Euclidean (or L2-) norm of vector x

‖X‖F Frobenius norm of matrix X

‖X‖tr Trace norm of matrix X

Generalized inequalities

x � y Componentwise inequality between vectors x and y

x ≺ y Strick componentwise inequality between vectors x and y

X � Y Matrix inequality between matrices X and Y

X ≺ Y Strict matrix inequality between matrices X and Y
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APPENDIX B

Pearson Correlation

Pearson correlation is obtained by dividing the covariance of the two variables by the product

of their standard deviations:

ρX,Y =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

where X and Y are two random variables, µX and µY are their expectations respectively,

σX and σY are their standard deviation respectively.

The Pearson correlation is defined only if both of the standard deviations are finite and

both of them are non-zero.

The value of Pearson correlation is in [−1, 1]. It is 1 in the case of an increasing linear

relationship, −1 in the case of a decreasing linear relationship, and some value between −1

and 1 in all other cases, indicating the degree of linear dependence between the two variables.

The closer the coefficient is to either −1 or 1, the stronger the correlation between the two

variables.
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APPENDIX C

Bregman Divergence

Let ϕ : S → R be a differentiable, strictly convex function of Legendre type (S ∈ R
d), then

the Bregman divergence Dϕ : S × relint(S)→ R is defined as

Dϕ(x,y) = ϕ(x)− ϕ(y)− (x− y)⊤∇ϕ(y)

Figure C.1 is an illustration of Bregman divergence.

y x

ϕ(z)= 1
2
z
T
z

h(z)

Dϕ(x,y)= 1
2
‖x−y‖2

Figure C.1: Squared Euclidean distance is a Bregman divergence.

Bregman divergence has the following properties:

• Non-negativity: Dϕ(x,y) ≥ 0 and equals 0 iff x = y.

• Convexity: Dϕ(x,y) is convex in its first argument, but not necessarily in the second

argument.

• Bregman divergence is not a metric (symmetry, triangle inequality do not hold).
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• Three point property generalizes the “Law of cosines”:

Dϕ(x,y) = Dϕ(x, z) +Dϕ(z,y)− (x− z)⊤ (∇ϕ(y)−∇ϕ(z))
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APPENDIX D

Kullback-Leibler Divergence

Given two probabilistic distributions ν and µ, the relative entropy of ν respect to µ, or the

Kullback-Leibler divergence of ν from µ, is

DKL(µ‖ν) = −Eµ

[
log

dν

dµ

]

where Eµ is the expectation with respect to µ. The Kullback-Leibler divergence is non-

negative, and it is zero iff µ = ν.

The Kullback-Leibler divergence can be interpreted as the expected extra message-length

per datum that must be communicated if a code that is optimal for a given (wrong) distri-

bution ν is used, compared to using a code based on the true distribution µ:

DKL(µ‖ν) = H(µ, ν)−H(µ)

where H(µ, ν) is the cross entropy of µ and ν, and H(µ) is the entropy of µ.
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APPENDIX E

Mutual Information

The mutual information of two discrete random variables X and Y is defined as:

I(X ; Y ) =

∫

Y

∫

X
p(x, y) log

(
p(x, y)

p(x) p(y)

)
dx dy,

where p(x, y) is the joint probability density function of X and Y , and p(x) and p(y) are the

marginal probability density functions of X and Y respectively.

Mutual information can be intuitively interpreted as the information that X and Y share.

Mutual information can be expressed using entropy as:

I(X ; Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y )

= H(X, Y )−H(X|Y )−H(Y |X)

Mutual information can also be expressed as a Kullback-Leibler divergence of the product

p(x) × p(y) of the marginal distributions of the two random variables X and Y from the

random variables’ joint distribution p(x, y):

I(X ; Y ) = DKL (p(x, y)‖p(x)p(y))
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Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol,

5(11), 2004. ISSN 1465-6914.

Ransom Winder, Carlos R. Cortes, James A. Reggia, and M. A. Tagamets. Functional

connectivity in fMRI: A modeling approach for estimation and for relating to local circuits.

NeuroImage, 34(3):1093 – 1107, 2007. ISSN 1053-8119.

K. D. Wise, D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi. Wireless implantable

microsystems: high-density electronic interfaces to the nervous system. Proceedings of the

IEEE, 92(1):76–97, 2004.

Y. Xiang, S. K. M. Wong, and N. Cercone. A “microscopic” study of minimum entropy

search in learning decomposable Markov networks. Mach. Learn., 26(1):65–92, 1997. ISSN

0885-6125.

Tao Xiong, Jinbo Bi, Bharat Rao, and Vladimir Cherkassky. Probabilistic joint feature

selection for multi-task learning. In SDM, 2007.

Zenglin Xu, Rong Jin, Irwin King, and Michael R. Lyu. An extended level method for

multiple kernel learning. In NIPS, 2008.

Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text catego-

rization. In Proc. Fourteenth Internation Conference on Machine Learning, pages 412–420,

1997.

M. K. Yeung, J. Tegnér, and J. J. Collins. Reverse engineering gene networks using singular

value decomposition and robust regression. Proc Natl Acad Sci U S A, 99(9):6163–6168,

April 2002. ISSN 0027-8424.

Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, and Erich Jarvis. Advances

to Bayesian network inference for generating causal networks from observational biological

data. Bioinformatics, 20:35943603, 2004.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68:49–67, 2005.

Xuedong Zhang and Laurel H. Carney. Response properties of an integrate-and-fire model

that receives subthreshold inputs. Neural Comput., 17(12):2571–2601, 2005. ISSN 0899-

7667.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and

hierarchical variable selection. Annals of Statistics, 37:3468–3497, 2009.

156



Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani. 1-norm support vector machines.

In Neural Information Processing Systems. MIT Press, 2003.

157


