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ABSTRACT

MODELING (UN)BINDING KINETICS OF BIOLOGICALLY RELEVANT SYSTEMS
USING RESAMPLING OF ENSEMBLES BY VARIATION OPTIMIZATION

By

Thomas Dixon

Conventional drug design optimizes binding affinity when designing molecules to maxi-

mize efficacy. However, recent studies show that taking kinetics into account when designing

drugs is necessary in some systems where the drug efficacy does not correlate with binding

affinity, instead correlating with residence time (RT). To maximize the RT, knowledge of

the kinetic pathway is required, but not currently feasible to determine experimentally due

to the instability of the transition state. Molecular dynamics (MD) allows us to simulate

these pathways with atomic resolution. However, the rare events of interest often occur at

timescales as long as milliseconds to hours, and most MD trajectories are computationally

limited to the microsecond timescale. In this thesis we use a variant of the Weighted Ensem-

ble (WE) enhanced sampling algorithm, Resampling of Ensembles by Variation Optimization

(REVO), to overcome the limitations of MD. This approach is more computationally effi-

cient than conventional MD and does not alter the system’s Hamiltonian nor does it affect

the force field parameters used in simulation. We use REVO simulations to produce full

binding and unbinding trajectories of biologically relevant systems such as the unbinding of

a radioligand bound to Translocator Protein (18kDa) (TSPO), a potential drug target in the

treatment of neurodegenerative diseases. We validate these pathways by predicting kinetic

rate constants and binding free energies and comparing these results to experiment. Finally,

we developed new distance metrics that use experimental data to help guide simulations to

a desired conformation. We tested these new distance metrics using Hydrogen deuterium

exchange (HDX) data to form the ternary complex between a ligase-proteolysis-targeting

chimera (PROTAC) dimer and a target protein.
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CHAPTER 1

INTRODUCTION

1.1 Importance of Kinetics in Drug Design

Historically, ligand efficacy has been predicted by measuring the thermodynamics of lig-

and binding. Examples include measurements of the half maximal inhibitory concentration

(IC50), equilibrium dissociation, and the change in binding free energy (∆Gbind) [1, 2]. Al-

though the binding affinity has been successfully used to guide drug design, [3, 4, 5] these

experiments are conducted under closed equilibrium conditions. Living organisms do not

match these conditions as the body is in constant flux to maintain homeostasis. For example

the concentration of the ligand takes time to distribute throughout the body after a dose

is taken and does not necessarily ever reach equilibrium, as the body is also working to

metabolize and eliminate the ligand from the body. To address the above, Copeland has

suggested the key parameter to maximize the ligand efficacy should not be binding affinity,

but rather the residence time (RT), or the average time it takes for the ligand to unbind

from the target [2]. This motivates taking kinetics into consideration when developing new

drugs.

After a drug is administered, it is absorbed and distributed throughout the body. The

body then metabolizes and excretes the drug. When the first two processes are dominant,

the concentration of drug in the blood plasma increases and when metabolizing and excreting

the drug becomes dominant, the concentration decays (Figure 1.1 A). In order to observe a

therapeutic effect, the drug concentration must be above a minimum threshold, called the

minimum effective concentration. The amount of drug introduced into the body is bound

from above by the minimal toxic concentration, or the concentration where an organism

starts observing harmful effects by the drug. The range between these two thresholds makes

up the therapeutic window. The goal of drug design is to widen the therapeutic window and
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Figure 1.1: Amount of drug concentration in the blood stream over time. Panel A shows
this relationship on a linear scale. The effective minimum concentration is shown in blue
and the minimal toxic concentration is shown in red. Panel B shows the log of drug
concentration vs time after the maximum concentration has been reached. From the
semilog plot, we can determine the elimination rate from the slope.

maximize the amount of time that a given dose of a drug remains effective.

One method to maximize the time within the therapeutic window is to minimize the rate

of decay, i.e. increasing its half-life [6]. If a drug has a fast half-life then doses will either

need to be at higher concentrations, making it more likely that toxic effects are observed,

or be taken more frequently, which requires more effort on the part of the person taking

the medication. We can determine the half-life of our drug (τ1/2) by calculating the rate of

elimination (kelim), which is done by taking the log of the drug concentration in the blood

after the maximum concentration has been reached and calculating the slope of the semilog

plot [7] (Figure 1.1 B). The half-life is then calculated by the following relation:

τ1/2 =
log(2)

kelim
. (1.1)

However, there is often an observed time lag between the plasma concentration and the

observed therapeutic effect [8]. To take this delay into account it was hypothesized that the

drug took time to move from the blood into the tissue of interest and bind to the target

of interest [9, 10]. Several previous studies have linked the change in drug concentration
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and therapeutic effects with the (un)binding rate between the drug and the target protein

[11, 12, 13]. Pharmacokinetic-pharmacodynamic models have been developed that integrate

drug binding kinetics with thermodynamic information to predict drug activity [14]. These

models significantly improve the prediction in cases of long drug RTs as previous models

assumed the existence of a rapid equilibrium between drug and target and under predicted

drug activity in this scenario.

The optimization of ligand kinetic rates, also known as kinetics-orientated drug design,

has recently been gaining traction when designing new drugs [15, 16, 17]. This is due to

identifying systems where binding affinity does not correlate with drug efficacy, rather the

RT does.[18, 19, 20]. By developing drugs with longer RTs, we can ensure the therapeutic

effects of the drug are observed for longer periods of time.

1.2 Computational Methods to Determine Kinetics

We have established the importance of kinetics and RTs in drug design. There are several

methods to experimentally determine the kinetics from radioligand binding [21, 22], Surface

Plasmon Resonance (SPR) [23, 24] and florescence assays [25, 26, 27]. However, developing

drugs to optimize the ligand kinetics experimentally is difficult because we can not under-

stand the mechanism with which the (un)binding takes place. In particular, identifying the

transition state – the maximum free energy state along the unbinding pathway – is critical

to determine in order to develop drugs with longer RTs. Unfortunately, characterizing these

states experimentally is not feasible because the system is at this state for only an instant

during the unbinding event. Therefore, we turn to computational methods to help us inves-

tigate the kinetic pathways. In particular in this thesis we will use an algorithm which can

give us atomic resolution, molecular dynamics (MD), to observe these pathways.
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1.2.1 Molecular Dynamics

MD is a computational algorithm that simulates molecular interactions and motion at the

atomic level using classical mechanics [28]. First developed to study phase transitions using

hard spheres [29] and radiation damage [30], modern computing allows simulations to study

more complex phenomena such as molecular diffusion through biological membranes [31, 32],

DNA supercoiling [33], and stability of intermolecular conformations [16, 34, 35, 28]. The

MD algorithm works by first setting initial conditions of the system (atomic positions and

velocities). Then the net force on each atom (F ) is calculated by:

F (t) = −∇U(r(t)), (1.2)

where U is the potential energy for a set of atomic positions (r), at time t. For MD simula-

tions the force is in kcal
mol

, potential energy is in the units of kcal/mol, the positions are in Å,

and time is in fs.

The potential energy function and its associated parameters are determined by the force

field used in the simulation. This potential energy function includes terms for bonds, angles,

dihedrals between covalently bonded atoms, and non-bonded energies (electrostatics and

Lennard-Jones) for non-covalently bonded atom pairs (Figure 1.2). Some common force

fields used in biomolecular MD simulations are AMBER[36, 37, 38], CHARMM [39, 40], and

GROMOS [41].

After the force has been calculated, we then solve Newton’s equations to determine the

change in atomic positions
dr(t)

dt
= v(t), (1.3)

and change in atomic velocities (v)

d2r(t)

dt2
=
dv(t)

dt
=
F (t)

m
, (1.4)

over the time step. The mass, m, has units of grams/mol, and velocities are in Å/fs. Once

the changes are known, we update the positions and velocities for the atoms. We repeat this

4



Bond

+-

Angle

Dihedral

Van der Waals

Electrostatics

Figure 1.2: (Left) The equation to calculate potential energy of a molecular system. r is
the bond length. θ is the bond angle, φ is the dihedral angle and rij is the atomic distance
between atoms i and j. kr, kθ, and kφ are force constants. req, θeq, and φeq are equilibrium
positions. The n is multiplicity, γ is a phase shift to describe a periodic dihedral term. The
eij is the Lennard-Jones well depth and rm is the distance the potential reaches its
minimum. qi and qj are charges for atoms i and j and ε0 is the dielectric constant.
(Center) Each summation calculates a separate type of energy. (Right) A pictorial
representation of each type of energy. The parameters are defined by the molecular
dynamic force field. This figure is modified from Ref [42].

process as many times as necessary to observe the phenomenon of interest with statistical

significance.

The above formulation for MD simulations was designed to keep the energy of the system

constant. However, many biological experiments are not conducted under constant energy,

rather at constant temperature. To keep MD simulations at constant temperature, a thermo-

stat is required such as a Langevin thermostat using Langevin dynamics [43]. This algorithm

uses the above formulation for MD as explained above, but adds two additional terms:

F (t) = −∇U(r(t))− γmv(t) +
√

2mγkbTR(t), (1.5)

where γ is the friction coefficient in units of ps−1 and is generally set to 1, kb is the Boltzmann

constant in units of kcal
molK

, T is the absolute temperature in K, andR(t) is a Gaussian random

process centered at 0 and has the following properties:

〈R(t)〉 = 0, (1.6)
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〈R(t)R(t′)〉 = δ(t− t′), (1.7)

where δ is the Dirac delta function. The second term is designed to take energy out of the

system and damp the force [44]. The third term represents random thermal fluctuations

from small particles that can add energy back into the system [44]. The sum of these two

terms are what maintains the temperature of the simulation [45].

MD is an excellent tool to study the biological pathways of binding and unbinding,

create statistical ensembles to describe these events and make hypotheses that can be tested

experimentally. However, it is difficult to observe long timescale phenomena in simulation,

due to the discrepancy between the simulation time steps and the natural timescales with

which these events take place. MD time steps are constrained to 1-2 fs in order to capture

the fastest molecular motion (oscillation along covalent bonds). Typical ligand (un)binding

events take place in the millisecond to minute timescales. This means that it would take on

the order of 1015 time steps to simulate an event that is 1-2 seconds in real time.

Advancements in computing power and computer architecture have led to improvements

in MD simulation speed. Running simulations on supercomputers using graphics processing

unit (GPU)s have been able to simulate on the order of tens to hundreds of ns per day

[16, 34, 35, 46, 47]. The creation of specialized supercomputers, the Anton series, specifically

designed to run MD simulations can simulate on the order of µs per day[48, 49, 50]. In

another approach, the Pande lab used idle computing power from personal computers of

volunteers on the Folding@home network to simulate a comparable time scale [51]. However,

these improvements are still not enough to be able to reach the timescales to simulate

biological phenomena of interest.

1.2.2 Enhanced Sampling

MD simulations are able to model (un)binding events, but computational limitations prevent

these simulations from reaching the natural timescales to simulate rare events. Many en-

hanced sampling algorithms have been developed to overcome this limitation and simulate
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long timescale events. These can be put into three broad categories: parallel tempering,

modified potential energy, and trajectory parallelization enhanced sampling methods. All

these methods are capable of simulating long time events.

1.2.2.1 Parallel Tempering Methods

Parallel tempering[52] (also known as temperature replica exchange), aims to improve the

breadth of MD sampling by running several copies of the system ("replicas") at different

temperatures. After running for a given number of time steps, the energy is calculated

for each replica. Temperature swaps between systems are suggested the energy difference

between the swap is calculated by:

∆ = (βi − βj)(Ei − Ej), (1.8)

where Ei is the energy of the simulation at the conformation associated with temperature i

(Ti) and Ej is the energy of the simulation at the conformation associated with temperature

j (Tj). βi is defined as: 1
kbTi

, and βj is defined as 1
kbTj

respectively. The energy is in units

of kcal/mol and β has units of mol/kcal. It is worth noting that the relation Ti < Tj is

always true when calculating the energy difference, making the first term always positive. If

the temperature swap lowers the overall energy (∆ < 0) then the temperature swap occurs.

However, if ∆ is positive, then we can perform the temperature swap with a probability of

e−∆.

The idea behind parallel tempering is that it is easy to get trapped in local minima

in the free energy landscape at lower temperatures. However, by having simulations at

elevated temperatures, the simulation can more easily cross large energy barriers, then cool

the simulations down to explore this new region at the desired temperature.

In this category of enhanced sampling algorithms, the mechanism for (un)binding does

not need to be known before the simulation begins, nor is a reaction coordinate needed.

However, by allowing the simulations to heat and cool in such an unnatural way, it is difficult
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to generate the kinetics because when the trajectories swap energies, they are no longer

continuous[53]. Additionally, there can be poor mixing of hot and cold trajectories resulting

in an inaccurate landscape[54]. Finally, there needs to be an adequate number of energy levels

to make sure the probability distributions between the trajectories sufficiently overlap to

ensure a reasonable acceptance probability for trajectory swaps[55]. This can require several

different energy levels to ensure sufficient overlap prohibitively increasing the computational

cost.

1.2.2.2 Altered Potential Energy Methods

The altered potential energy category of enhanced sampling is a broad category, including but

not limited to metadynamics[56, 57, 58], umbrella sampling[59] and temperature accelerated

MD[60, 61], but all the algorithms bias the system along a small set of collective variable

(CV) to help cross energy barriers more easily. These algorithms bias the potential energy

by the following equation:

Usim = U + Ubias, (1.9)

where U is the unbiased potential energy and Ubias is the potential energy that is biasing

the simulations. However, the method-specific means of biasing the system is quite varied.

For example, in umbrella sampling the CV is divided into a series of independent windows

and a harmonic potential is added to the existing Hamiltonian; this helps flatten the energy

barriers in the window. MD simulations are then performed in each of the windows. Analysis

is performed using the Weighted Histogram Analysis Method (WHAM) [62, 63], which works

by combining data from all windows to obtain the original, unbiased free energy profile.

In contrast, in the metadynamics algorithm only one simulation is run over the entire

landscape. Each time the simulation visits a location along the CV, a Gaussian, centered at

that CV value is added to the Hamiltonian. As the simulation progresses, these Gaussians

accumulate and allow the simulation to gradually fill up the free energy basin the simulation

is stuck in, allowing it to cross energy barriers. A common analogy for this process is filling
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up the free energy landscape with sand. As basins fill with sand, it becomes easier for the

simulation to cross over a previously large energy barrier.

Similar to the parallel tempering algorithms, the altered potential methods make explor-

ing the free energy landscape easier. However, there are a couple of drawbacks in using these

methods. First is the need for a CV, which requires the prior knowledge about potentially

critical variables that lead to the biological phenomenon of interest[64]. These variables

are not trivial to determine and can lead to unphysical results if critical variables are not

included. Additionally, by adding the bias to the potential energy function, the bias needs

to be removed to calculate observables[56]. While there are ways to remove the bias and

approximate transition rates, this process assumes that the deposited bias did not affect the

dynamics at the transition state [65]. Finally, these simulations assume the system is in

equilibrium, which is not always justifiable in biomolecular systems.

1.2.2.3 Trajectory Parallelization Enhanced Sampling Methods

The two categories described above enhance sampling of the free energy landscape by altering

the Hamiltonian of the system being simulated. In the case of parallel tempering, the tem-

perature swaps make determining realistic pathways impossible due to the unrealistic energy

jumps between simulations. Additionally the altered potential energy methods require prior

knowledge to determine good collective variables to sample along. Here we discuss a group

of algorithms that do not change the Hamiltonian and thus do not bias the system, produce

continuous trajectories, and give us the ability to compute path dependent observables such

as kinetic rates.

Algorithms that fall into this category, such as milestoning[66, 67, 68], forward flux

sampling[69, 70] and weighted ensemble[71, 72, 73], use sampling over many parallel tra-

jectories to gain a full understanding of the energy landscape. Both the milestoning and

forward flux sampling algorithms construct a number of hypersurfaces that are arranged be-

tween two basins of interest. By simulating the flux from one hypersurface to another they
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get the local kinetics between the surfaces and then combine these local rates to determine

the global rate of transition between the basins. However to form these surfaces, prior infor-

mation is needed about the pathway to know how to construct them. In this thesis work, we

have used the weighted ensemble algorithm [71, 73], described in detail in the next section,

to simulate the unbinding and binding pathways because it has variants (developed in our

research group)[34, 35, 74] that do not require any prior information about how to get from

one basin to another.

1.2.3 Weighted Ensemble

The previous section described different algorithms to enhance the breadth of sampling

from MD simulations. Here we go into detail about the enhanced sampling algorithm we

use for all simulations in this thesis: weighted ensemble (WE). WE is a path sampling

algorithm that attempts to focus computational resources on the low-probability states that

are relevant to an observable or process of interest. An example of these states is the set

of "transition states", conformations corresponding to the highest point on the free energy

surface separating two basins, along an unbinding pathway. The original WE approach was

outlined in 1996 by Huber and Kim [71] to simulate Brownian motion between a product

and reactant basin. However, WE has been used to simulate a variety of processes from

protein folding [75], to ligand (un)binding [76, 77, 78, 16, 35, 34], large scale conformational

changes[79, 80, 81], ion permeation[72] and protein-protein binding[82, 83].

The WE algorithm has two distinct steps: dynamics and resampling, the combination of

these two steps is called a cycle. In the dynamics step, we have a set of simulations (called

walkers) that each have an associated statistical weight (w), which sum to 1. The walkers

undergo MD independently for a certain amount of simulation time (τ). After each walker

has completed the dynamics step, we perform resampling. In resampling we can perform

two operations on the walkers called merging and cloning. Merging involves taking two

walkers and choosing one to remain and one to kill. The survival probability of each walker
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is proportional to its weight. The weight of the surviving walker then increases by the weight

of the one that was killed. Cloning involves making exact replicas of a single walker. The

weight of the original walker is divided evenly among its clones.

In the original WE algorithm, resampling is performed using bins, which are subdivided

regions defined on a progress coordinate. Walkers are then cloned and merged in order to

achieve a constant number of walkers in each bin (M). If there are more than M walkers

in a bin, then we perform merging between these walkers in order to bring the number of

walkers back down. If a bin has fewer than M walkers, then clones are made in the bin

until we have the necessary number of walkers. This method increases the computational

cost of the simulation when new bins are found. Another issue of using the WE algorithm

when applied to simulating biologically relevant events, is that the dimensionality of these

processes is typically high, and the number of bins increases exponentially with the number

of dimensions[84]. This means that we would need to spend a lot of computational resources

to simulate these events.

1.2.4 Resampling of Ensembles by Variation Optimization

WE is able to simulate (un)binding pathways and calculate path dependent observables.

However, the algorithm divides the landscape into bins which guide the resampling. De-

termining a low dimensional set of CVs that sufficiently describes the pathway of interest

is not trival, especially when multiple pathways exist. Additionally, binning in high dimen-

sional spaces becomes exponentially more computationally expensive as more dimensions are

required to describe the pathway. Here we discuss a binless weighted ensemble algorithm de-

veloped by our research group: Resampling of Ensembles by Variation Optimization (REVO)

[35]. In the REVO algorithm, merging and cloning is guided by an objective function called

the trajectory variation (V). The variation is defined as:

V =
∑
i

Vi =
∑
i

∑
j

(
dij
d0

)α
φiφj, (1.10)
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where Vi is the trajectory variation contribution from walker i, dij is the distance between

walkers i and j, d0 is a characteristic distance used to normalize the variation when comparing

between different distance metrics and keep the distance term unitless, and φi is the novelty

term that describes the importance of individual walkers. REVO balances the exploration

(distance) term with the exploitation (novelty) term using α. In this thesis the novelty is

defined in terms of walker weights and can be mathematically described as:

φi = log(wi)− log
(pmin

100

)
, (1.11)

where wi is the weight of walker i and pmin is the minimum weight a walker is allowed to be.

pmin is generally set to 1 ∗ 10−12.

V is initially calculated and then walkers are proposed to be merged and cloned. The

walker that is proposed to be cloned (walker i) is the one that has the highest walker

trajectory variation, Vi, and whose cloned weight would be greater than pmin. A pair of

walkers (walkers j and k) are selected to clone based on minimizing the expected trajectory

variation loss (Vloss) which is defined as:

Vloss =
Vkwj + Vjwk
wj + wk

. (1.12)

For two walkers to be eligible for merging, they need to be within a distance cutoff of each

other, called the "merge distance", and the sum of their weights needs to be lower than the

maximum allowed weight (pmax), set to 0.1 for this thesis. Once these walkers are selected,

V is recalculated as though the merging and cloning operations have been performed. If

V increases, the merging and cloning operations are performed. This resampling process

repeats until V has been maximized. Once V is maximized, a new cycle begins and more

MD is performed.

1.2.5 Rate Calculations by Ensemble Splitting

WE is capable of directly calculating observables such as on and off-rates using a technique

called ensemble splitting[85, 86, 87, 88, 89]. Using this technique an equilibrium ensemble
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is split into two non-equilibrium ensembles and an unbound and bound basin are defined.

Starting trajectories from one basin, the rate between the two basins is computed as the flux

of trajectories between the two basins.

The on-rate is defined as:

kon =

∑
iw

B
i

CT
, (1.13)

where wBi is the weight of a walker that transitioned from the unbound basin into the bound

basin, C is the concentration of the ligand that is binding in unitsM of and T is the aggregate

simulation time in µs. The sum is over all walkers that transitioned.

Similarly the off-rate can be calculated by:

koff =

∑
iw

U
i

T
, (1.14)

where wUi is the weight of a walker that transitioned from the bound to unbound basin.

To determine the fluxes into each basin, two sets of simulations are run: a binding simula-

tion where trajectories are initialized in the unbound state and are terminated in the bound

state; and an unbinding simulation where trajectories are initialized in the bound state and

terminated in the unbound state. To achieve this, once a walker has crossed the termina-

tion boundary, it is reinitialized in the initial state by resetting its atomic conformation and

velocities. The walker’s weight however, is not affected.

1.2.6 Markov State Models

Although WE does a good job in sampling low-probability states and transitions, the rate of

convergence to the equilibrium probability distribution is slow and therefore, it can take a lot

of computational time to get adequate sampling of the space. An additional issue is the vast

amounts of data the simulation produces, which makes performing a quantitative analysis

expensive in terms of computer memory and disk space. Here we describe the formulation

of a Markov State Model (MSM), which uses the results from MD simulations to help build

a statistically robust and efficient model that can help solve the above issues.
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A MSM is a model that describes long timescale dynamics among a set of m macrostates

[90]. It is based on the Markovian assumption: that the model is a memoryless description

of an ergodic process[90, 91]. This means that the history of a trajectory does not affect

its dynamics, the evolution of a trajectory only depends on its current position. An ergodic

process implies that given infinite time any macrostate can be reached from any other state.

The evolution of a trajectory from one state to another is entirely described by a transition

matrix T .

To generate these macrostates, the results of the MD simulation are clustered together.

The issue with clustering the atomic positions directly is that the dimensionality of molecular

systems is large: it is equal to 3N , where N is the number of atoms, typically on the order

of 104 to 105. This makes the clustering a computationally expensive operation and can

overshadow important long timescale dynamics with many sources of noise. Therefore it is

common to reduce the dimensions of the system by dimension reduction algorithms such as

Principal Component Analysis (PCA) [92, 93] and Time-structure Independent Components

Analysis (TICA)[91, 92] in the construction of MSM. Additionally, the dimensions can be

reduced to a set of features that describe the pathway of interest[94]. Example features can

be atomic distances of a subset of atom pairs or dihedral angles. In this thesis, the MSMs did

not use TICA for dimension reduction but we did use sets of distances between key atoms

to featurize the space in Chapters 2 and 4, and we used PCA in Chapter 5. After the states

have been defined, T can be generated by counting the transitions between states that occur

for a specific lag time (τ).

From an initial probability distribution on the MSM, which we call p0, we can evolve the

system by applying T as follows:

p0T = pτ , (1.15)

where pτ is the probability distribution after time τ . Additionally we can evolve the simu-

lation by multiple time steps by:

p0T n = pnτ (1.16)
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where n is the number of lag times for which we are evolving the system. If the system

is Markovian and ergodic, then eventually the system no longer evolves when applying T

(i.e. when pnτ ≈ p(n+1)τ ) and the system reaches its stationary distribution. We define

this distribution as π. Mathematically π is an eigenvector of the transition matrix with a

corresponding eigenvalue of 1, which is the maximum eigenvalue. If the eigenvalues and

eigenvectors of T are sorted from the largest to the smallest eigenvalues, excluding the

eigenvalue equal to 1, the sorted eigenvectors correspond to dynamical motions in the MSM

and the larger the eigenvalue, the slower the motion.

From the MSM, we can determine the kinetics of going from one state to another by

determining the relaxation time of the model. The errors for determining kinetics from

MSMs come from discretization and spectral errors [90]. To minimize these errors one needs

to ensure that: i) features being used to cluster the trajectory data need to capture the

slow dynamical motions, ii) there are enough macrostates in the model to approximate the

dynamics, and iii) to use a large enough lag time. The third requirement is challenging as

longer lag times reduce the discretization error[90], but require longer MD simulations to

construct the MSM which might not be feasible. To determine an appropriate lag time it

is common to satisfy the Chapman-Kolmogorov test [95]. This test compares the relaxation

time with respect to the lag time, and is satisfied when the relaxation time is essentially

constant with respect to changes in the lag time.

1.3 Outline of Work

The overarching goal of this thesis is to apply molecular dynamics trajectories, guided by

weighted ensemble algorithms, to investigate (un)binding pathways for biologically relevant

systems. The specific goals are:

• Characterize pathways of host-guest (un)binding reactions.

• Estimate physical quantities such as binding and unbinding rates and binding free

energies.

15



• Develop methodologies to apply experimental results to guide simulations.

We first test the REVO algorithm using small host-guest systems in Chapter 2. The

host-guest systems is comprised of two small molecules that form a complex, the larger

of two is defined as the host and the smaller is the guest. These systems are used as

validation for our methodologies as they are simpler than biological systems. We determine

the unbinding and binding pathways from several different initial host-guest conformations.

We introduce the use of conformational space networks(CSNs) to visualize these pathways

in a graph visualization to help understand the complex pathways which the guest can

transition between the bound and unbound basins. From these simulations we calculate

the rates and from these the ∆Gbinding energies and compare the results to those previously

reported.

Chapter 3 will expand on the work in Chapter 2. While the previous work used a correct

relationship to describe a macroscopic state in equilibrium, we introduce correction terms

to take into account a finite box volume, electrostatic interactions between the host and

guest, and the volume of the unbound basin. Additionally we investigate the effect the

Langevin dynamics friction coefficient has on the kinetics and ∆Gbinding with and without

the correction terms.

In Chapter 4, we increase the complexity to a membrane bound protein-ligand system

(Translocator protein (18 kDa)-PK-11195) (TSPO). This system has a significantly longer

unbinding RT which pushes the limits of the REVO algorithm. Additionally there is an

interest in developing specific ligands that target TSPO for possible treatments of neurode-

generative diseases. In this chapter we simulate the unbinding process for PK-11195 from 5

different starting poses and quantify two distinct unbinding pathways for PK-11195 disso-

ciation. We determine key residues that have strong interactions with PK-11195 along the

unbinding pathways. We computed unbinding rates similarly to Chapter 2 for each pose

however, we also constructed an MSM to verify these results. Finally we used committor

probabilities alongside the MSM to determine the transition state for unbinding.
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In Chapter 5, we investigate the binding process for a ternary complex comprised of a

ligase, a proteolysis-targeting chimera (PROTAC), and a target protein. This is a more com-

plicated process than previously explored in this thesis as we are trying to form a ternary

complex involving two proteins and a small linker molecule. Since REVO is naturally de-

signed to maximize the exploration of the landscape, we alter the resampling algorithm by

only cloning walkers that have sufficiently progressed toward the target state. Additionally,

we develop new distance metrics that take hydrogen deuterium exchange (HDX) experimen-

tal data to help drive the simulation to the bound state.

In Chapter 6 we take a high level look at the goals of this thesis and discuss the progress

and describe next steps for improvement.
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CHAPTER 2

PREDICTING LIGAND BINDING AFFINITY FOR THE SAMPL6
CHALLENGE FROM ON- AND OFF-RATES USING WEIGHTED

ENSEMBLES OF TRAJECTORIES

This work was published in Journal of Computer-Aided Molecular Design volume 13, pages

1001-1012 in 2018. The work is presented here as published except that the supplemental

figures are worked into the text.

2.1 Introduction

Binding affinity has long been seen as the crucial parameter for drug discovery, as it de-

termines the proportion of drug that is bound to a receptor in solution. A wide variety of

methods have emerged to predict both absolute and relative binding affinities, each with

its own domain of applicability, and tradeoff between efficiency and accuracy [96, 97]. The

SAMPL challenge is playing an important role to compare tools that predict affinities using

blind predictions [98]. Importantly, errors can arise from both the physical model used to

describe the system (e.g. forcefield, thermostat, dynamics engine), and from the sampling

methodology used. The SAMPLing challenge, described in this issue, thus serves an im-

portant role in comparing the accuracy of computational methods that all employ the same

physical model [99].

While the binding affinity is all that is needed to describe the action of a ligand at

equilibrium, the on (kon) and off-rates (koff) are necessary to model drug action in general

[2]. For instance, in many systems it has been observed that drug residence time (RT)

(RT = 1/koff) is the critical factor governing efficacy in living cells [18, 20, 19]. This is due to

the number of factors that drive the system out of equilibrium, such as drug metabolism and

elimination, the turnover of target protein, and the periodic nature of drug administration.

Although KD = koff/kon, and lower KD can be correlated to lower koff, this relationship is

governed by the free energy along the ligand binding pathway, particularly the ligand binding
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transition state, which is the highest point in free energy between the bound and unbound

states [100]. Though the binding rate has an upper bound of 109 M−1 s−1, which corresponds

to the “diffusion limit”, binding rates of ligands to the same target have been shown to vary

over 4 orders of magnitude, which disrupts the correlation between KD and koff [101].

Prediction of koff and kon is challenging, as they are not state functions: they depend

fundamentally on the transition path ensemble between the bound and unbound states.

Computational sampling of these transition paths is in general a great challenge for molecular

dynamics (MD) due to the long timescales of ligand binding and release, although in recent

years, a variety of enhanced sampling methods have rose up to meet this challenge [102]. The

trypsin-benzamidine system has served as a common benchmark application for enhanced

sampling methods such as Adaptive Multilevel Splitting [103], SEEKR [104], adaptive [105]

and traditional [106, 107] Markov state modeling, funnel metadynamics [108], as well as the

WExplore method developed by our group [109]. Recently these efforts have been expanded

to more challenging systems such as the unbinding of inhibitors from c-Src kinase [110] and

p38 MAP kinase [56] using metadynamics, and the unbinding of the TPPU ligand from

the target soluble epoxide hydrolase with WExplore [16]. The diversity of computational

approaches to handle long timescale ligand binding and release events is a promising sign

for the field, but comparison of methodologies is complicated – even for applications to the

same system – due to differences in forcefields, boundary conditions, and integrators.

As a step toward the robust comparison of different computational methods for simu-

lation of binding pathways, we participated in the SAMPLing challenge for the prediction

of binding affinities. The SAMPLing challenge required participants to compute free ener-

gies as a function of simulation time, to compare the convergence properties and relative

computational cost of different free energy calculation methods. Instead of computing free

energies through alchemical perturbation, here we achieve this by explicitly simulating the

binding and release processes, determining the absolute rates kon and koff, and computing
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the binding affinity as the ratio koff/kon. We calculate the binding free energy as follows:

∆G = kT ln

(
koff
C0kon

)
(2.1)

where kT = 0.597 kcal/mol corresponding to a temperature of 300 K and C0 is the reference

concentration of 1 mol/L. As we broadly sample unbinding pathways from multiple starting

points, we can also synthesize these results and examine how these poses are connected in

the binding network.

We efficiently determine unbinding and binding rates using a further developed variant of

the WExplore sampling method [84]. This is the first application of this new method, which

we call Reweighting of Ensembles by Variance Optimization (REVO). This new method

is also based in the weighted ensemble framework [71], where trajectories are merged and

cloned, but it is the first to completely eschew the idea of dividing a space into a set of sam-

pling regions (the possibility has previously been recognized however [73]). REVO instead

directs merging and cloning operations by maximizing a measure of variance that describes

the instantaneous spread of the ensemble of trajectories, which is described in the Methods

section below. We visualize our REVO simulations using a branching tree network diagram,

whose layout uses an energy function that takes into account the distances between the tra-

jectories. This allows for the easy visualization of the correlation of exit point ensembles

within a weighted ensemble simulation. We compare our binding affinities to computational

reference values, and observe that the affinities from REVO are systematically tighter than

the reference. We conclude the manuscript with a discussion of possible sources of error.

2.2 Methods

2.2.1 Host-guest systems

The host-guest systems were selected from the main SAMPL6 challenge. One system is

a cucurbit[8]uril (CB8) host [111, 112], using quinine as a guest ligand (Figure 2.1). The

host is a ring-shaped structure, with 8-fold rotational symmetry about the vertical axis,
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and two-fold symmetry about the horizontal axis. There are thus 16 symmetry-equivalent

atom mappings for this system. The second and third systems both use a Gibb deep cavity

cavitand, referred to as OA, as a host [113]. Here there is only 4-fold symmetry about the

vertical axis. Binding and release of two ligands is examined: 5-hexenoic acid and 4-methyl

pentanoic acid, referred to as OA-G3 and OA-G6, respectively. Both of these ligands carry

an explicit negative charge.
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CH       3       
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N       
HO       

O       
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OA-G3

OA-G6

-

-

Figure 2.1: Structure of the ligands used in this study. (Top) Quinine, referred to herein
as CB8-G3. (Middle) 5-hexenoic acid (deprotonated form), referred to herein as OA-G3.
(Bottom) 4-methyl pentanoic acid (deprotonated form), referred to here ohhh in as OA-G6.
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2.2.2 Dynamics Setup

The fifteen initial configurations (five for each host-guest system) were used as prepared by

the organizers of the SAMPLing challenge without modification (Figure 2.2-2.4). The two

OA systems had a cubic box with a box length of 45 Å solvated with 2586 water molecules,

and contained 12 sodium ions and 3 chloride ions to neutralize the system. The CB8 system

had a cubic box with a box length of 42.5 Å solvated with 2149 water molecules, and

contained 6 sodium ions and 6 chloride ions to neutralize the system. OpenMM v7.1.1 [114]

was used to run dynamics on the CUDA v8.0 platform. We use a Langevin integrator, with

a thermostat at 300 K, a friction coefficient of 1.0 ps−1, a Monte Carlo barostat to keep

pressure constant at 1 atm, and a time step of 2 fs. The non-bonded forces had a cutoff of

1 nm, and were calculated using partial mesh Ewald. The simulation temperature differs

slightly from that used to calculate the reference free energies (298.15 K), although we expect

the resulting differences in free energy will be negligible.

side

top

CB8-G3

Pose 0 Pose 1 Pose 2 Pose 3 Pose 4

Figure 2.2: Starting poses for CB8-G3. Side and top views are shown. Coloring for pose
indices is consistent with Figures 2.7, 2.8 and 2.9.
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top

OA-G3

Pose 0 Pose 1 Pose 2 Pose 3 Pose 4

Figure 2.3: Starting poses for OA-G3. Side and top views are shown. Coloring for pose
indices is consistent with Figures 2.7, 2.8 and 2.9.

side

top

OA-G6

Pose 0 Pose 1 Pose 2 Pose 3 Pose 4

Figure 2.4: Starting poses for OA-G6. Side and top views are shown. Coloring for pose
indices is consistent with Figures 2.7, 2.8 and 2.9.
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2.2.3 Reweighting of Ensembles by Variance Optimization

To encourage the sampling of rare events, we developed a method based on the weighted

ensemble (WE) framework [71] that we call “Reweighting of Ensembles by Variance Opti-

mization”, or REVO. WE methods use an ensemble of trajectories (called “walkers”) that are

each assigned a statistical weight, and enhance sampling through the introduction of cloning

and merging steps. Initially the weights of all the walkers are equal, and are defined as

1/Nwalk, where Nwalk is the total number of walkers. When walkers are cloned, their weight

is divided among the progeny. The cloned trajectories are identical replicas of the original,

with the same atomic positions and velocities. This is typically done in under-sampled re-

gions of space, in order to boost the probability of observing rare events in the simulation.

Walkers are also merged together, and their summed weight is given to the resulting merged

walker. In practice, merging walkers A and B is accomplished by choosing a survivor (walker

A is chosen with probability wA

wA+wB
), and discarding the other walker. Merging is typically

done in over-sampled regions, with walkers that can be seen as “redundant”. The trajectory

weights are only changed due to merging and cloning operations.

Previous applications of the weighted ensemble methods proceed by constructing a set of

sampling regions, determining their occupancies, and using cloning and merging operations

to make the occupancies as even as possible. In general, the free energy landscapes of interest

are inherently high-dimensional, which makes it difficult to construct an appropriate set of

regions. For this reason we were motivated to discard the notion of “regions” entirely, and

direct cloning and merging operations instead by the optimization of a variance measure, V :

V =
∑
i

Vi =
∑
i

∑
j

(
dij
d0

)α
φiφj, (2.2)

where the double sum is over all pairs of walkers, dij is some measure of distance between

walkers i and j, d0 is the characteristic distance, the exponent α is a parameter set here to

4, and φa is a weighting function for walker a:

φa = log

(
100wa
pmin

)
, (2.3)
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where wa is the weight of trajectory a, and pmin is the lowest probability attainable by a

walker, set here to be 10−12. The weighting function φ was designed to be largest for high

wa, and to smoothly decay to a low value as wa approaches pmin.

Run Dynamics

Calculate all-to-all 
distances

Calculate trajectory 
variance (Vold)

Calculate new trajectory 
variance (Vnew)

Perform clone + merge
Adjust weights

set Vold = Vnew

End clone + merge

Determine walkers that would 
be best to clone and merge

Clone: least central walker
Merge: most central walker 
(with its closest neighbor)

if Vnew > Vold else

Figure 2.5: The REVO algorithm. Each cycle begins by running an ensemble of walkers
forward in time using unbiased dynamics. The distances between the walkers are used to
calculate a variance (Eq. 2.2). In the resampling loop (blue), coupled cloning and merging
operations are proposed, and they are accepted only if they result in a higher V . If the
proposed V is lower, the resampling loop is terminated and dynamics are continued for the
next cycle.

The structure of the REVO “resampling” algorithm proceeds as follows (see also Fig. 2.5).

Eq. 2.2 is used to compute the variance function, and the walker with the highest (“H”) and

lowest (“L”) contributions to the variance are identified (e.g. with the highest and lowest Vi

values). The closest walker to “L” is identified, called “C”. A coupled cloning and merging

event is proposed, where “C” and “L” would be merged and “H” would be cloned. Eq. 2.2 is

again used to recompute the variance, and this coupled cloning and merging move is only

accepted if V increases. Further moves are proposed after recomputing “H”, “L” and “C”, and

the process continues until V decreases, and the move is rejected. This way, the algorithm

automatically determines the optimal number of cloning and merging events. In fact, if the
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system is already in an optimal configuration, no cloning and merging operations will take

place, and REVO will skip to the next dynamics step.

As in previous WExplore applications [16], a minimum and maximum walker weight was

enforced (pmin and pmax, respectively). Note that only walkers which will not violate the

walker probability boundaries (pmin and pmax) are eligible to be chosen as walkers “H”, “L”

and “C”. In these simulations, pmin = 10−12 and pmax = 10−1, following previous work[16].

This process is general to any dynamics engine, and to any form of the distance function

dij. Here we use two different distance functions to describe the unbinding and rebinding

processes. For unbinding, dUij is defined as the root mean square deviation (root mean square

deviation (RMSD)), in Å, of the guest ligand between structures i and j, after aligning to

the host. As mentioned in Section 2.2.1, there are multiple symmetry-equivalent mappings

of the host atoms. We thus compute this distance after alignment of j to each symmetry-

equivalent mapping of host i, and use the smallest such value as dUij. For rebinding, dRij is

computed using the RMSD of both i and j to the reference starting structure:

dRij =
∣∣1/dUi0 − 1/dUj0

∣∣ , (2.4)

where dUa0 is the distance from walker a to the reference structure. The difference between

the inverse of these two quantities is used to highlight differences between small values of

this quantity (e.g. between RMSD = 1.5 Å and RMSD = 2.0 Å).

2.2.4 Calculating rates by ensemble splitting

REVO, like other weighted ensemble methods, can calculate kinetic quantities on the fly,

through a technique we call “ensemble splitting” [85, 115] (also referred to as “tilting” [87], or

“coloring” [88, 116]). An equilibrium ensemble is split into two non-equilibrium ensembles by

defining two basins, in this case the “bound” basin and the “unbound” basin (Fig. 2.6). The

unbinding ensemble is defined as the set of trajectories that have most recently visited the

bound basin, and the rebinding ensemble is the set of trajectories that have most recently
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visited the unbound basin. The unbound basin is the set of structures where the closest

host-guest interatomic distance exceeds 10 Å, as in previous work[16]. The bound basin is

defined as the set of structures with guest RMSD < 1.0 Å, computed after aligning to the

host. Note that a sweep over symmetry-equivalent atom mappings of the host was again

conducted, so a binding event can be registered by binding to either the top or bottom of

the CB8 host, for example.

Binding trajectories

bound

bound

unbound

unboundUnbinding trajectories

Figure 2.6: Ensemble splitting. An equilibrium host-guest binding system is split into two
non-equilibrium ensembles for the calculation of on and off-rates. This is done by defining
“bound” and “unbound” basins (left and right of each ensemble). The “unbinding” ensemble
(top) is the set of trajectories that have most recently visited the bound basin. The
“binding” ensemble (bottom) is the set of trajectories that most recently visited the
unbound basin. The on and off-rates are directly computed using the time averaged
trajectory flux (φ̄b or φ̄u) between the ensembles.

In this work, REVO simulations are conducted explicitly either in the unbinding en-
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semble, or the rebinding ensemble. After each dynamics step, any walker that has exited

its ensemble (by entering the opposite basin) is identified. Its weight is recorded, and its

structure is “warped” back to the starting structure. The structure recorded before warping

is known as an exit point. When a walker “warps”, the atomic coordinates and velocities of

the trajectory return to the starting structure. The weight of a walker does not change as

a result of warping. In the unbinding ensemble, the starting structure is the initial bound

pose. In the rebinding ensemble, the starting structures are exit points that were generated

by the unbinding simulations.

As shown in Figure 2.6, the rates are simply calculated using the flux of trajectories

(sometimes referred to as the Hill relation [117, 88]) that leave the ensemble:

koff = φ̄u =

∑
iw

U
i

T
, (2.5)

kon =
φ̄b
C

=

∑
iw

R
i

CT
, (2.6)

where φ̄u and φ̄b are the unbinding and binding flux, T is the elapsed time, the sums are

over the set of exit points observed before time T , and C is the concentration of the ligand,

computed as 1/V where V is the box volume.

2.2.5 REVO simulation details

Unbinding REVO simulations were run for 2000 cycles, with 48 walkers run for ∆t = 20 ps

each cycle. The exit points registered after 1000 cycles were used to initialize the rebinding

REVO simulations. In some cases, fewer than 48 exit points were obtained at this point, and

the walkers were randomly cloned in order to create a full set of 48 walkers. The rebinding

REVO simulations were run for 200 cycles, with ∆t = 200 ps per cycle. Five simulations

were run for each ligand, one from each starting pose (see Figures 2.2-2.4 for starting poses).

In aggregate, we ran 1.92 µs for each of the unbinding and rebinding simulations, 3.84 µs

for each starting pose, or 57.6 µs over the entire set of results presented here.
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2.2.5.1 Note about CB8-G3-0 and CB8-G3-4

After the conclusion of the SAMPLing challenge we found an error in the weight normaliza-

tion procedure that was used to initialize the weights of the rebinding walkers when fewer

than 48 exit points were observed. This affected only two simulations: CB8-G3-0 and CB8-

G3-4, where only 5 and 7 exit points were observed, respectively, in the first 1000 cycles of

the unbinding simulation. Due to an error, the initial weights in these rebinding simulations

summed to a value greater than 1, and while this could be accounted for in the rate calcula-

tions, it was compounded by the fact that no walker in these simulations had a weight value

less than pmax = 0.1, and thus no cloning/merging moves could occur.

Surprisingly, this did not affect the calculation of the binding rate. Although the number

of binding events observed in CB8-G3-0 and CB8-G3-4 (32 and 25, respectively), was much

lower than the number observed in CB8-G3-1, CB8-G3-2 and CB8-G3-3 (289, 427 and 190),

the total amount of wegiht that exited was comparable (0.62, 0.43, 0.66, 0.14, 0.50, for

starting poses 0 through 4). This goes to show the downhill nature of binding in host-guest

systems, as confirmed by the almost diffusion-limited kon (see Table 3.1. The calculated

mean first passage time (MFPT) of binding for the CB8-G3 system was 91 ns, which is well

within the aggregate sampling time of each rebinding simulation (1.92 µs), again indicating

why a group of straight-forward trajectories was able to produce over two dozen binding

events each.

2.2.6 Visualization of trajectory trees

To visualize the correlation between exit points, we visualize REVO cloning events in a tree

graph, where each node represents a walker at a given time point and the edges indicate how

walkers are connected through time as can be seen in Figure 2.10. Each level (y-position)

on the tree represents walkers at the same time step. The initial horizontal placement (x-

position) of each node is a direct result of its parent’s position in the previous time step. If

no cloning events occurred for that walker, then the node is placed directly above its parent.
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If the parent was cloned, then the walkers are spread out in a fan pattern. Once the nodes

are initially placed, their x-positions are minimized with a steepest descent algorithm using

the following energy function:

E =
∑
i

[
b(xti − xt−1

i )2 + cwi(x
t
i)

2 +
∑
j

Erep
ij e

(xti−xtj)
2

ro

]
, (2.7)

where xti and xtj are the positions on the tree of walkers i and j at time t, xt−1
i is the position

of the parent at the previous time step, and wi is the walker weight obtained from the

simulation. The variables b, c, r0 are parameters set here to 0.01, 5 and 1000 respectively.

The first term causes the nodes to stay close to their parent’s position, allowing trajectories

to be visually tracked through the tree more easily. The second term encourages the higher

weight trajectories to stay close to x = 0. The third term is a pairwise repulsion term, which

gives the nodes a “radius” of r0, and is scaled by a repulsion energy (Erep
ij ) that takes into

account the molecular distance between the walkers in the simulation (dij):

Erep
ij = a ∗max(0, dij − d0), (2.8)

where a and d0 are parameters set here to 2.5 and 2.0. dij can refer to either dUij or dRij

when making trees of unbinding and rebinding simulations respectively. However, only trees

generated from unbinding simulations are shown here. The parameters for Eq. 2.7 were

selected to keep the branches generated by cloning events in the same region on the tree, as

well as to keep larger weighted walkers towards the center. It is important to note that this

energy minimization only affects the x-position of each node. The y-position is determined

by the time step and is not used in the steepest descent algorithm. The graphs were made

using NetworkX 2.2 library [118] and visualized using Gephi 0.9.2 [119].

2.2.7 Clustering and visualization of conformation space networks

All of the trajectory frames for the five starting poses of each system were clustered together

using the MSMBuilder 3.8.0 library [120]. The datasets were first featurized using a vector of
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host-guest distances for each system. These vectors contain 7056, 3128, and 3496 distances

for the CB8-G3, OA-G3 and OA-G6 systems, respectively. A k-centers clustering algorithm

was used to generate 1000 clusters using the featurized space and assign each frame of the

trajectories to a cluster. The clustering was done using the Canberra distance:

D(p,q) =
n∑
i=1

|pi − qi|
|pi|,+|qi|

(2.9)

where p and q are host-guest distance vectors from different frames and n is the total number

of distance pairs. A count matrix describing the cluster-cluster transitions was calculated.

This corresponds to a Markov state model with a lag-time equal to the cycle length ∆t = 20

ps.

We then construct Conformation Space Networks (CSNs) from the count matrices, which

are graphical models of the transition matrix, with a node representing each row, and edges

representing non-zero off-diagonal elements using CSNAnalysis [121]. Gephi 0.9.2 was used

to visualize the CSN. The size of each node is proportional to the statistical population of the

cluster. The smallest node was 20 times smaller than the largest node. The topology of the

network was determined using a force minimization algorithm, Force Atlas, included in Gephi

[122]. This algorithm includes repulsive forces for nodes that are not connected and attractive

forces proportional to the weight of the edges. The directed edge weights were values between

0.1 and 100 as determined by wij = 100pij where pij is the transition probability of cluster

i transitioning to cluster j. Undirected edge weights were then determined as the average

between the two directed edge weights. Force Atlas was applied twice, first without adjusting

for node sizes which enabled the nodes to overlap, and then a second minimization adjusted

for node size which prevented overlap. For visualization, all edge weights were given a

uniform value. A CSN of each system is shown in Figure 2.11.
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2.3 Results

2.3.1 Warped walkers

For each host-guest system we run both unbinding and rebinding REVO simulations orig-

inating from five different starting poses (Figure S1-S3), making 30 simulations total. All

of these REVO simulations generated a substantial number of warping events. In general

these are distributed across a wide range of weight values (Figure 2.7). For all systems it

is observed that rebinding can occur with very high probability walkers (p > 0.1), but that

unbinding occurs with much lower probability. Indeed it is the probability of the unbinding

warped walkers that largely governs differences in KD and koff between the systems. The

minimum weight that is achievable by a walker, pmin, was set to 10−12 in all cases. As shown

in Figure 2.7, this could be increased substantially (e.g. to 10−3) in the rebinding case to

avoid the propagation of low-weight trajectories that will not meaningfully contribute to the

binding flux.

The warping points for the unbinding simulation are shown in Figure 2.8, again using

color to indicate the starting pose. Although they exhibit some strong correlation within

a REVO run, together they comprise a broad distribution. For CB8-G3, both upward and

downward exit pathways are sampled with roughly equal frequency, whereas for the Octa-

Acid systems, the exit points are clustered towards the top of the cavitand.

2.3.2 Kinetics and free energies

The binding and unbinding rates are calculated using the sum of the weights of the warped

walkers, divided by the elapsed time (see “Calculating rates by ensemble splitting” in Meth-

ods). The binding rate is calculated by dividing the binding trajectory flux by the concen-

tration of the guest in mol/L, calculated as C = 1
NAV

, where V is the box volume. The

concentration ranged from 0.021 M for OA-G6 to 0.025 M for CB8-G3 and OA-G3, resulting

from unit cells with side-length ranging from 4.1 nm to 4.3 nm. Running estimates of kon
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Figure 2.7: Weights of warped walkers. Weights of warping events for the unbinding (top
row) and rebinding (bottom row) simulations. In both cases the points are colored
according to the index of the corresponding starting pose (0, blue; 1, red; 2, yellow; 3,
green; 4, brown).

Table 2.1: Pose-averaged rates and affinities
koff (s−1) MFPToff (s) kon (s−1 M−1) MFPTon (ns) ∆G (calc.) ∆G (ref.) [99] ∆G (exp.) [123]

CB8-G3 0.0012± 0.0003 860± 230 4.7± 0.8× 108 92± 16 −16.0± 0.2 −10.90± 0.16 −6.45± 0.06
OA-G3 160± 110 0.0064± 0.0044 1.2± 0.2× 109 36± 6 −9.5± 0.4 −6.70± 0.02 −5.18± 0.02
OA-G6 0.48± 0.11 2.1± 0.5 2.8± 1.0× 108 150± 50 −12.1± 0.3 −7.18± 0.05 −4.97± 0.02

and koff are shown individually for each REVO simulation in Figure 2.9, along with their

average, which is calculated by averaging the trajectory flux over the set of five simulations.

Large, upward jumps are observed in the rate curves whenever an exit point is recorded that

has a higher weight than was previously observed.

The final average rate values, as well as the corresponding mean first passage times, are

given in Table 2.1. The uncertainties of kon and koff (δon and δoff) are determined using the

standard error across the five trajectories. The uncertainties in the MFPT of binding and

unbinding are calculated as δon/Ck2
on and δoff/k2

off, respectively. Finally, the uncertainty in
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OA-G3

CB8-G3

OA-G6

Figure 2.8: Spatial distribution of warped walkers. Structures of warping events for the
unbinding simulations viewed from the front and back. Guest ligands are colored according
to the index of the corresponding starting pose (0, blue; 1, red; 2, yellow; 3, green; 4,
brown).

∆G is as follows:

δ∆G = kT

√(
δoff
koff

)2

+

(
δon
kon

)2

. (2.10)

The MFPT of unbinding demonstrate the power and scope of the REVO method: we

estimate that the CB8-G3 system has an average ligand RT of 860 seconds, and we obtain

multiple ligand release events for each of the five starting poses. In total, we used 9.6 µs of

sampling in the CB8-G3 unbinding ensemble, resulting in an acceleration factor of ≈ 9×107.

With koff and kon in hand, the binding affinity is calculated using Eq. 2.1. This bind-

ing affinity is compared to both the experimentally measured binding affinity [123], and
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a computational reference computed using alchemical free energy calculations with YANK

(see [99] for more details). As shown in Figure 2.9, the host-guest affinity calculated by the

rate ratio in REVO is systematically too tight when compared both the experimental and

reference values. This is possibly due to finite box size effects, which is discussed further in

the Discussion and Conclusions section.
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Figure 2.9: Predicted kinetics and free energies. The calculated free energies (top),
off-rates (middle), and on-rates (bottom) are shown as a function of simulation time for
each starting pose in each host-guest system. The curves are colored according to the index
of the starting pose as in Figures 2.7 and 2.8. The calculated binding free energies are
compared with experimental measurements (horizontal red line) [123], and the
computational reference (dashed black line) for each system.
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Moderate variation in kon and koff is observed across the sets of simulations for each host-

guest system, which contributes to some uncertainty in the predicted rates and affinities.

However, the average standard deviation in the log10 final rates (log 10(k)) is 0.28 for on-rates

and 0.56 for off-rates, both well under an order of magnitude. This compares very favorably

with recent studies using WExplore [102, 16], where rates from individual simulations varied

over several orders of magnitude.

2.3.3 Trajectory trees reveal correlation between exit points

Rates are derived from exit points, and while points from different starting poses are guar-

anteed to be independent, it is unclear how correlated the observations are within a given

REVO simulation. We can use a tree network to observe the entire set of merging and

cloning events that occur during a simulation, and to determine how closely related walkers

are to one another. Additionally, one can visualize the state of the walkers through coloring

the tree based on physical properties observed during the simulation, such as the solvent

accessible surface area (SASA) of the guest molecule, which can help evaluate how close the

guest is to unbinding from or rebinding to the host. Using this coloring, and how closely re-

lated walkers are to one another, we can visualize the correlation between a set of unbinding

or rebinding events.

Figure 2.11 shows a trajectory tree for the OA-G3-0 unbinding simulation. From the tree

it is clear that the majority of sampling time is spent sampling the bound state (dark green

structures). However, the top inset shows that this sampling is still very active, with outliers

being detected and cloned nearly every cycle, although the vast majority of these clones are

merged one or two cycles later, which implies that the outlying property corresponded to a

fast degree of freedom. The middle inset shows a breakout event that led to a series of exit

points. The vertical “branches” show individual trajectories. Termination of a branch with

high SASA (orange) correspond to exit points.

The OA-G3-0 simulation generated 966 exit points, 534 of which can be seen in Figure
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Figure 2.10: Trajectory trees show all cloning and merging events in a simulation. The
trajectory tree for the first 1329 cycles of the OA-G3-0 unbinding simulation is shown.
Each horizontal row in this tree represents a cycle, and the placement of all 48 nodes in the
row is determined by minimizing an energy function (see “Visualization of trajectory trees”
in Methods). SASA is used to color the nodes, with blue and dark green indicating bound
structures, and yellow to orange indicating unbound.
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2.10, which captures only the first 1329 cycles. From the tree it can be seen that many of

these exit points are correlated, as they were recently cloned from common ancestors. Using

the tree analysis one can observe that there are likely at least seven distinct groups of exit

points that can be treated as independent observations of unbinding pathways.

In the bottom inset we see a trajectory that demonstrates transient rebinding behavior.

That is, the SASA goes high (≈ 320, orange), to medium (≈ 160, light green), back to high

again. This behavior results from a transient, loose association with the exterior of the host

molecule.

2.3.4 Conformation space networks reveal connection between starting poses

Here we obtain combined estimates of kon, koff and KD by averaging the transition flux

from simulations with different starting poses, and in the case of the rebinding simulations,

different boundary conditions. This is only appropriate if the five starting poses are all part

of the same basin of attraction, and can interconvert on timescales much faster than the

unbinding process. If two poses form distinct basins of attraction, then we cannot expect

that the poses will have the same koff, kon, or KD. To examine the connectivity of starting

poses, we use the REVO trajectory segments to construct a Markov state model. We then

visualize CSNs to examine how the starting poses are connected, whether they are in the

same basin of attraction, and whether they share the same (un)binding pathways.

Figure 2.11 shows CSNs for the unbinding simulations of all three host-guest systems.

For both OA systems a large, densely-connected ensemble of bound states is observed. As

the entire set of host-guest distances was used to featurize our dataset, this heterogeneity

arises from motions of the flexible chemical groups on the bottom and around the rim of

the OA host molecule. Starting structure 3 in CB8-G3 is bound in the opposite orientation

from the others (see Figure 2.2), although the host-molecule is symmetric to inversion about

the horizontal plane. While this did not affect the kinetic measurements (which took into

account symmetry-equivalent atom mappings of the host), in the CSN it forms a distinct
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Figure 2.11: Conformation space networks for the unbinding simulations. Each node in a
CSN represents a cluster of host-guest structures. Edges in the networks connect clusters
that are seen to interconvert in the REVO simulations. The size of each node is
proportional to the number of times it was observed in the unbinding simulations. Nodes
are colored according to the solvent accessible surface area of the guest molecule, as shown
in the color-bars on the right. The clusters corresponding to the starting poses are labeled
in each network.
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basin from the other starting poses. This allows us to observe that the ligand cannot flip be-

tween these two structures inside the host, and instead converts between the two poses only

through the quasi-bound and unbound states (yellow and orange). Although here we con-

clude that all structures are part of the same (or symmetry-equivalent) fast-interconverting

bound ensemble, this type of analysis is useful to reveal the interconversion of binding poses,

and whether we should expect them to have the same calculated RTs.

2.4 Discussion

Although we obtained much information about the binding and release processes of these

host-guest systems, our predicted ∆G values were systematically lower than those of a ref-

erence calculation employing the same forcefield (average 4.2 kcal/mol). These reference

∆G values were themselves systematically lower than the experimentally calculated dissoci-

ation constants (average 2.7 kcal/mol), likely arising from inaccuracies in the forcefield. The

nature of the SAMPLing challenge gives us a unique opportunity to isolate these different

sources of error. Below we discuss different possible sources of error in light of the analyses

presented above.

In weighted ensemble simulations that calculate kinetic quantities, convergence is often

the first question. Here we devoted the same amount of sampling time to the binding and

unbinding processes (1.92 µs per system per starting pose). This is more than sufficient

to capture the binding process, which has a mean first passage time ranging from 36 to

160 ns. The unbinding process was much more challenging, and it is possible that longer

simulations would have captured higher weight walkers exiting from the bound state. This

would increase our koff estimates, and KD as well. Significantly extending the unbinding

simulations and monitoring their exit rates could provide additional insight.

We also have concerns related to the size of the simulation box. This was chosen to be

appropriate for standard alchemical free energy perturbations, and not for simulations of

full unbinding and binding pathways. A more accurate determination of the binding rate
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could be obtained with the Northrup-Allison-McCammon (NAM) method, which combines

the rate of first hitting points with a committor probability to determine the binding rate

[82]. Diffusion at long distances is typically efficiently simulated using Brownian dynamics.

This approach has been used successfully to determine binding rates with both the weighted

ensemble method [124, 83], and the SEEKR method (Simulation Enabled Estimation of

Kinetic Rates) [104].

An important point is that although the reference calculations were performed with the

same forcefield, the rates can sensitively depend on aspects of the forcefield that are not

relevant to alchemical measurements of the affinity. As an example, in OA-G3 unbinding

trajectory trees we observe long “tendrils” of unbound trajectories that are stuck in interme-

diate SASA values, where the guest ligand is bound to the outer surface of the host. The

strength of these interactions can significantly affect our calculations of koff, although they

will not affect the alchemical KD calculations.

In general, to successfully predict kon and koff will require optimizing the ligand forcefield

terms that govern interactions that occur along binding pathways. By analogy, it is known

that protein forcefields that are only trained on folded protein structures have difficulties

representing unfolded and intrinsically disordered structures. As a community we must take

care not to over-emphasize the ligand bound state in forcefield development. An exten-

sion of the SAMPL challenge to include the prediction of kinetic quantities would thus be

tremendously valuable to the development of both sampling methodologies and forcefields.
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CHAPTER 3

ON CALCULATING FREE ENERGY DIFFERENCES USING ENSEMBLES
OF TRANSITION PATHS

This work was done in collaboration with Robert Hall, a postbaccalaureate student working

in our research group. Robert ran simulations and performed analysis. I acted as a mentor

and co-advisor to help Robert analyze the simulations, make meaningful conclusions and

prepare the manuscript.

This work was published in Frontiers in Molecular Biosciences volume 6 page 106 in 2020.

The work is presented here as published except that the supplemental figures are worked

into the text.

3.1 Introduction

In recent years there is a growing appreciation for the utility of binding kinetics in the

prediction of drug efficacy [20, 125, 126, 127, 128, 2, 129, 130, 131, 132]. Pharmacokinetic

and pharmacodynamic models of drug activity in the body are inherently out of equilibrium:

a drug is administered, it is absorbed, distributed to different tissues, metabolized and

eliminated from the body. As such, kinetic constants of binding and release – beyond just

the equilibrium constants of binding – are required to model drug action when the timescales

of binding and release cannot be separated from the other competing processes [133]. The

relationship between molecular structure and the kinetics of binding (also called “structure-

kinetic relationships" or SKR) is complicated, as small changes to structure can change

kinetic constants by orders of magnitude [128]. It is important to note that changes in

kinetics are not always tied to changes in affinity [134], and that to accurately predict

changes in kinetics, models of the ligand-binding transition state are needed to estimate

transition-state stabilization or destabilization [135].

Computational methods that reveal structures of transition states and calculate binding
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(kon) and unbinding (koff) rate constants for real compounds are in their infancy, but are

quickly developing [102]. It is a tremendous challenge to obtain reliable values for these

quantities, as 1) they depend on the entire (un)binding pathway, not just its endpoints,

and 2) the timescales of ligand binding and release often exceed the capabilities of molec-

ular dynamics (MD) simulations by orders of magnitude. Specialized computing platforms

have been applied to generate continuous binding pathways [136], although the unbinding

process is typically beyond the reach of MD simulation for compounds beyond millimolar

drug fragments [130, 137]. Recent studies have used enhanced sampling methods in MD

to simulate ligand (un)binding pathways and determine mechanisms and rate constants kon

and koff [56, 110, 138, 101, 16, 139, 140, 141]. Some of these rate constants have shown

surprisingly good agreement with experiment – given the extraordinarily long timescales in-

volved – however these have the confounding uncertainty of force field accuracy [142, 143],

there is a possibility for fortuitous cancellation of error. Unfortunately, the computational

cost required to predict these quantities is typically massive [143], especially for large pro-

tein systems and ligands with extremely long residence times (RTs), precluding the study of

these events under a series of different simulation conditions (e.g. forcefields, water models,

polarizability).

In the field of biomolecular modeling, blind challenges – where a series of objectives are

released by the organizers, and participants entries are directly judged by their agreement

with experiment – have been useful catalysts for the development of predictive algorithms

[144, 145, 146, 147]. Although no blind challenge currently exists for the prediction of kon

and koff, we recently participated in the SAMPL6 SAMPLing challenge, which required

participants to compute free energies as a function of simulation time and to compare the

computational cost of different free energy calculation methods [148, 99, 74]. This challenge

allows sampling methods to be assessed independently of force field accuracy, as all entries

used the same initial coordinates, force field parameters and partial charges. Importantly,

the challenge makes use of very small model systems (host-guest) that require considerably
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less computational resources to simulate, which allowed us to efficiently simulate binding and

release for a number of systems, determine kon and koff, and predict values for the binding

free energy (∆G) that would then be compared to experimental observables, as well as results

from alchemical free energy perturbation methods [149, 150].

The binding free energy was determined as a function of rate constants:

∆G = −kBT ln

(
C0kon
koff

)
, (3.1)

where C0 is a reference concentration of 1 mol/L. In this chapter, we revisit this equation

in detail and explicitly examine the assumptions made when the rate constants used in Eq.

3.1 are computed through typical simulations with finite box-size and periodic boundary

conditions. In Section 3.3.1 we derive three correction terms that can be easily computed and

facilitate a better connection with both experiment and alchemical computational free energy

calculations. To examine questions of convergence, we reproduce our binding and unbinding

simulations with larger numbers of replicas and longer simulation times. We also explore

the effects of the Langevin integrator on the prediction of unbinding and binding rates;

in particular, how altering the friction coefficient (γ), defined in the Langevin integrator,

impacts the binding and release processes. Although γ does not appear in the internal

energy function, and hence cannot affect thermodynamic properties such as the binding

free energy, we examine whether lower friction coefficients can accelerate the convergence of

unbinding simulations.

3.2 Methods

3.2.1 Host-guest systems

The host-guest system utilized in this study is referred to as OA-G6 (Fig. 3.1), where the

host, octa acid (OA) is a Gibb deep cavity cavitand, referred to as an octa acid (OA [113].

OA forms a basket-like structure with 4-fold symmetry, functionalized with four benzoic-acid

substituents on the top rim of the basket and four more on the bottom. The guest ligand we
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study here is 4-methyl pentanoic acid (referred to as “G6”). This ligand harbors a negative

charge at the carboxyl end of the alkyl chain.

side top

H       3       C       

CH       3       

O       

O       
-

A B

Figure 3.1: (A) The initial pose for the OA-G6 system (side view: left, top view: right).
Note that some atoms from the host are removed in the side view for clarity. The carboxyl
oxygens are shown in sphere representation. (B) The chemical structure of the G6 ligand in
the deprotonated form.

3.2.2 Molecular dynamics

The OA-G6 configuration was obtained from the organizers of the SAMPLing challenge [148].

The system was solvated in a (roughly) cubic box with box length 4.28, 4.33 and 4.33 nm

in the x, y and z dimensions, respectively. The system provided had a total of 7976 atoms:

2586 water molecules to solvate the system, 12 sodium and 3 chloride ions to neutralize the

system, and the remaining atoms belonging to either the host or the guest. OpenMM v7.2.1

[114] was used to run dynamics with the CUDA v9.0.176 platform. A Monte Carlo barostat

is used to maintain a constant pressure of 1 atm. A time step of 2 fs was used across all

simulations.

We utilize the Langevin integrator, which uses a drag term and a noise term to account

for the friction of solvent molecules and high velocity collisions that perturb the system.

Langevin dynamics allows for the temperature to be controlled and can be used as a ther-

mostat; we run all dynamics here at 300 K. Our host-guest system follows the Langevin
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equation, shown below:

F (t) = −∇U(r(t))− γmv(t) +
√

2mγkbTR(t), (3.2)

where U(~r(t) is the particle interaction potential, ~R(t) is a random Gaussian noise term,

T is the temperature, kB is the Boltzmann constant, and γ is the friction coefficient. The

friction term plays two different roles here, both modulating the second “drag” term, and

the Gaussian noise. As γ approaches zero, the noise gets weaker and the dynamics becomes

more deterministic. Here we run binding and unbinding simulations with γ values of 1.0, 0.1

and 0.01 ps−1.

3.2.3 Reweighting of Ensembles by Variance Optimization

To generate an ensemble of ligand unbinding events, we need to employ enhanced sampling

as the timescale of ligand unbinding events in this system is prohibitively long: we found

in previous studies a mean first passage time of 2.1 s (Chapter 2), which is six orders of

magnitude longer than the reach of conventional MD sampling. In this work, we implement

the Resampling Ensembles by Variation Optimization (REVO) method, based on weighted

ensemble (WE) framework, to encourage the sampling of rare unbinding/rebinding events.

WE accelerates the sampling of rare events using an ensemble of trajectories that are each

assigned a statistical weight [71]. The ensemble is integrated forward in time in a parallel

fashion, and periodically “resampled” by cloning certain trajectories and merging others.

When a trajectory is cloned, its weight is divided amongst the clones, but the multiple

copies of the trajectory go on to evolve independently. By repeatedly cloning trajectories

that are in undersampled regions of space we can obtain statistics on very long-timescale

events using only short-timescale simulations.

The REVO was designed to efficiently perform cloning and merging operations on small

ensembles of trajectories that are evolving in high-dimensional spaces [35]. This is valuable

in situations where it is difficult to define one or two progress variables that capture the long-
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timescale events of interest. In REVO, coupled cloning and merging operations are proposed

(e.g. clone trajectory i, and merge trajectories j and k) and are accepted or rejected based

on an objective function called the “trajectory variation”:

V =
∑
i

Vi =
∑
i

∑
j

(dij/d0)αφiφj, (3.3)

where dij is the distance between trajectories i and j, α and d0 are parameters, and φx is a

function that measures the importance, or “novelty" of a trajectory x, which in our work here

is strictly a function of the weight of the trajectory: φi = logwi −C, where wi is the weight

of trajectory i and C is a constant. Trajectories with the highest Vi values in Eq. 3.3 are

chosen for cloning, and those with the lowest Vi are chosen for merging. More information

about the algorithm can be found in previous work [35].

We run separate simulations for the binding and unbinding processes. In our unbinding

simulations, the ligands start in the bound state and are terminated as they unbind. In the

rebinding simulations, the ligands start in the unbound state and are terminated as they

bind. The distance function (dij) we use in Eq. 3.3 is different for these two simulation

types. For the unbinding simulations, we superimpose the hosts from trajectories i and j,

and then compute the root mean square deviation (RMSD) between the guest molecules,

without any further alignment [77, 109],. As there is 4-fold symmetry in this system, we

perform the alignment four times (once for each symmetrically-equivalent mapping) and use

the smallest such distance as dij. For the rebinding simulations, we calculate the distance

to the native state for each trajectory (dnative(Xi)), which again takes into account the four

symmetry mappings, using the lowest such distance. The distance between trajectories i

and j is then calculated as dij = |1/dnative(Xi)− 1/dnative(Xj)|, where the inverse is used to

prioritize differences between small values of dnative.
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3.2.4 Calculating rates by ensemble splitting

A major advantage of the REVO method, much like other weighted ensemble methods, is

that it can calculate kinetic parameters in real time as the simulation progresses. This is

achieved by running separate simulations for the binding and unbinding processes, and in

each case, measuring the trajectory flux into the opposite basin [85, 86, 87, 88, 89]. The

unbound basin is defined as the set of structures where the closest host-guest interatomic

distance is > 1 nm, following previous work [77, 109, 16]. The bound basin is defined as

the set of structures where the guest RMSD (compared to the native structure) is < 0.1

nm after aligning to the host. Again, this RMSD measurement takes into account the four

symmetry-equivalent mappings of OA.

A B

Equilibrium

Unbinding ensemble

Binding ensemble

Figure 3.2: Splitting an equilibrium ensemble into two history-dependent ensembles using
basins. The bound and unbound basins are shown in grey and light orange, respectively.
The unbinding ensemble (B, top) contains all trajectories that last visited the bound basin,
which are shown in black. The binding ensemble (B, bottom, also referred to as the
“rebinding” ensemble) contains all trajectories that last visited the unbound basin, shown
in red. Simulations in a given ensemble are terminated once they reach the destination
basin and thus switch ensembles. The trajectory flux between ensembles is denoted by
φu→b and φb→u. The quantity πb refers to the probability of the entire top ensemble, and
the quantity fb denotes the probability of the bound basin within the unbinding ensemble.

In our studies, the binding and rebinding REVO simulations are conducted separately.

However, the methodology of obtaining on and off-rates is essentially the same. After each
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dynamics step, if a walker has entered the opposite basin, as described above, its weight is

recorded and its structure is “warped” back to the starting structure at the beginning of the

simulation. The atomic coordinates are set to the starting structure and the velocities are

reinitialized; however, the weight of the trajectory remains the same. Before the warping

event to the starting structure, the structure of the walker is recorded and is referred to

as an “exit point”. In our unbinding simulations, the initial starting structure is the initial

bound pose provided. In our rebinding simulations, the initial starting structure is chosen

from a set of exit points generated from the unbinding simulations. Therefore, the unbinding

analyses were performed prior to initialization and the subsequent running of our rebinding

simulations.

The off and on-rates are calculated by using the flux of trajectories into either the un-

bound or bound state respectively, and mathematically calculated by:

koff(t) =

∑
iwi
T

, (3.4)

kon(t) =

∑
iwi
CT

, (3.5)

where the sum is over the set of “warped” trajectories, T is the elapsed simulation time, and

C is the concentration of ligand, computed as 1/V where V is the box volume. The box

volume was approximately 80.2 nm3, corresponding to a concentration of ligand of 0.0207

M.

There are a few key differences between the REVO simulations discussed here and in

Chapter 2. For both the unbinding and rebinding simulations in this study, the total sim-

ulation time is 2.25 times longer compared to our previous study, as our current unbinding

and rebinding simulations were run for 4500 and 450 cycles, respectively. Additionally, ten

independent unbinding simulations were run for each of the four friction coefficients, whereas

our previous study only ran five independent simulations for each starting pose. However,

only five independent rebinding simulations were run for each of the coefficients, as we ob-

serve much less variation in the kon estimates. Finally, 48 walkers were used in both studies

49



and the time per cycle is consistent, where the unbinding simulations are 20 ps/cycle and

the rebinding simulations are 200 ps/cycle.

3.2.5 Calculating electrostatic interaction energies

The electrostatic energy between the host and guest molecules for use in the second correction

term was calculated as: Eint = 1
4πεw

QiQj

rij
where Qa is the partial charge of atom a used in the

force field during simulation. rij is the interatomic distance between atoms i and j calculated

by using the minimum image convention. εw = 6.88×10−10 F/m is the permittivity of water

at 300 K calculated by linear interpolation of the water dielectric constant at 298.15 and

303.15 K [151].

3.3 Results

3.3.1 Derivation of correction terms

The binding free energy can be calculated using the rate constants kon and koff as ∆G =

Gbound−Gunbound = −kT ln (KeqC0) = −kT ln
(
C0kon
koff

)
, where Keq is the binding equilibrium

constant, C0 is the reference concentration of 1 mol/L, k is Boltzmann’s constant and T is

the temperature in Kelvin. While this relationship is correct in the macroscopic limit, it

fails to account for the box size and the volume of the unbound state in finite simulation

environments with periodic boundary conditions. Here we derive a more accurate expression

for the binding free energy that accounts for the finite box size in a typical MD simulation.

Our starting point is an expression for Keq, which is valid for a dilute solution in ther-

modynamic equilibrium. We use the notation of Woo and Roux (see Eq. 4 from Ref. [152]):

Keq =

∫
bound d1

∫
dXe−βU∫

bulk d1δ(r1 − r∗1)
∫
dXe−βU

, (3.6)

where U is the internal energy of the system, β = 1/kT is the inverse temperature, r1 is the

center of mass of the ligand (referred to as a “guest" molecule) and r∗1 is an arbitrary position

of the guest in the bulk. Note that d1 integrates over the guest positions, and dX integrates
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over everything else: the host and the solvent degrees of freedom. Note also that Keq has

units of volume, as the delta function constraining the center of mass in the denominator

removes three spatial degrees of freedom.

Here we examine the calculation of free energies using rates determined from split en-

semble calculations (Fig. 3.2, see Section 3.2.4 for more details). We denote the probability

of these two ensembles as πb and πu, where πb + πu = 1, and:

πb
πu

=
φu→b
φb→u

, (3.7)

where φa→b is the time-averaged flux from the a ensemble to the b ensemble (i.e. across the

dotted lines in Fig. 3.2). The equilibrium probability of a position X can be obtained by

combining estimates from both ensembles:

p(X) = pu(X)πu + pb(X)πb, (3.8)

where pa(X) is the probability of conformation X in ensemble a, which is normalized such

that
∫
pa(X)dX = 1.

Let us define the bound state as the domain of the integral in the numerator of Eq. 3.6,

and the unbound state as a set of structures considered unbound in simulation (not the same

as the bulk state in Eq. 3.6). These states are shown as shaded regions in Fig. 3.2. The

ratio of the probabilities of these two states, at equilibrium, is given by:

pbound
punbound

=

∫
bound d1

∫
dXe−βU∫

unbound d1
∫
dXe−βU

, (3.9)

which can also be calculated in our ensemble splitting simulations:

pbound
punbound

=
πb
∫
bound pb(X)dX

πu
∫
unbound pu(X)dX

=
πbfb
πufu

, (3.10)

where fa is the probability of the basin state within ensemble a.

Expanding Eq. 3.6 we have:

Keq =

∫
bound d1

∫
dXe−βU∫

unbound d1
∫
dXe−βU

∫
unbound d1

∫
dXe−βU∫

bulk d1δ(r1 − r∗1)
∫
dXe−βU

=
πbfb
πufu

∫
unbound d1

∫
dXe−βU∫

bulk d1δ(r1 − r∗1)
∫
dXe−βU

. (3.11)
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The unbound state in simulation is far enough that the host and guest do not interact directly

through van der Waals interactions, although if both molecules carry an explicit charge –

as in the example considered here – there could still be significant host-guest electrostatic

interactions. To account for these, we introduce another intermediate state with an altered

energy function (U∗) which is the same as U except that it does not include electrostatic

interactions between the host and the guest:

Keq =
πbfb
πufu

∫
unbound d1

∫
dXe−βU∫

unbound d1
∫
dXe−βU∗

∫
unbound d1

∫
dXe−βU∗∫

bulk d1δ(r1 − r∗1)
∫
dXe−βU

(3.12)

=
πbfb
πufu

〈
eβEint

〉−1

unb

∫
unbound d1

∫
dXe−βU∗∫

bulk d1δ(r1 − r∗1)
∫
dXe−βU

. (3.13)

where Eint = U − U∗ and the subscript “unb" indicates an ensemble average over structures

in the unbound state obtained with the normal energy function U . Note the final step used

the relation: ∫
unbound d1

∫
dXe−βU∗∫

unbound d1
∫
dXe−βU

=

∫
unbound d1

∫
dXeβEinte−βU∫

unbound d1
∫
dXe−βU

=
〈
eβEint

〉
unb . (3.14)

We can now reasonably assume that the guest in the unbound state is non-interacting

with the host. This allows us to write e−βU as e−βUGe−βUHS , where UG are the terms in the

energy function that depend only on the coordinates of the guest, and UHS are terms that

only depend on the host and the solvent. We can then pull the integral
∫
dXe−βUHS out of

the numerator and denominator of the last term of Eq. 3.13:∫
unbound d1

∫
dXe−βU∗∫

bulk d1δ(r1 − r∗1)
∫
dXe−βU

=

∫
unbound d1e

−βUG∫
bulk d1δ(r1 − r∗1)e−βUG

. (3.15)

The bottom integral has the center of mass of the ligand fixed and is only over internal and

rotational degrees of freedom of the ligand. This can also be separated and removed from

the numerator, which simplifies the ratio to be the volume of the unbound state, defined as:

Vunbound =

∫
unbound d1e

−βUG∫
guest dG1e−βUG

=

∫
box

dRφu(R), (3.16)

where we use G1 to denote the internal and rotational degrees of freedom of the guest that

remain after specification of r1. The quantity φu(R) is the fraction of conformers with center
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of mass R that satisfy the unbound boundary conditions: here, that the guest atoms are all

farther than a cutoff distance of 1 nm away from the host. This integral can be calculated

by Monte Carlo, where a center of mass position and orientation of the ligand is randomly

generated, and the number of successful unbound conformers is recorded:

Vunbound = Vbox
Nunbound

Ntrials
. (3.17)

Note that for large boxes Vunbound ≈ Vbox.

Putting this all together we have:

Keq =
πbfb
πufu

〈
eβEint

〉−1

unb Vunbound, (3.18)

which differs from the straightforward interpretation used in Chapter 2:

K0
eq =

πb
πu[L]

=
πb
πu
Vbox. (3.19)

Using ∆G = −kT ln(KeqC0), we have:

∆G = ∆G0 − kT ln

(
fb
fu

)
+ kT ln

〈
eβEint

〉
unb − kT ln

(
Vunbound
Vbox

)
, (3.20)

which explicitly shows ∆G as the sum of ∆G0 = −kT ln(K0
eqC0) and the three newly derived

correction terms. The first term will go to zero in the limit that the basin states are chosen to

represent the vast majority of the probability in both the binding and unbinding ensembles.

In other words, this term goes to zero when both fb and fu approach one. The second term

is likely to only be non-negligible in the case of explicitly charged host and guest molecules

and regardless would go to zero as the definition of the unbound state is moved to farther

and farther distances. The third term would also go to zero for large simulation boxes,

but in practice this is often not feasible due to computational constraints. Consequently,

Vunbound/Vbox could be much less than one, introducing a correction in the positive direction.

Below we calculate these three correction terms and apply them to free energy calculations.
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3.3.2 Extended trajectory ensembles with lower friction coefficients

In previous work, we used a Langevin integrator with a value of γ = 1 ps−1 for the friction

coefficient. As the simulations already have explicit solvent, this adds extra friction into the

system that is not physical. Here we investigate whether reducing γ to values less than one

will significantly affect our rate calculations. We thus run a set of trajectory ensembles at

multiple values of γ and extend each ensemble to be longer than those discussed in Chapter

3 to more fully examine questions of convergence.

As γ governs the coupling to the Langevin thermostat, we determine the minimum value

of γ where our target temperature (300 K) is maintained. We first ran a series of short simu-

lations (one 10 ns trajectory for each γ) and find that temperature control is completely lost

for friction coefficients less than γ = 0.001 (Figure 3.3A). We then ran longer simulations for

γ = 1, 0.1, 0.01 and 0.001, examining not only the mean temperature, but the probability of

significant temperature fluctuations, which could spur anomalous results in our ligand disso-

ciation simulations. Figure 3.3B shows the probability distribution of observed temperatures

over an ensemble of 240 trajectories run for 90 ns each. For γ = 0.01, 0.1 and 1 ps−1, the

temperature distribution is normally distributed around the mean (300 K) as seen by the

parabolic curves on a log scale. Temperature control is not fully maintained for γ = 0.001

ps−1, as shown by a rightward shift and slight widening of the parabolic distribution. We

thus restrict our analysis to three values of the friction coefficient: γ = 0.01, 0.1 and 1 ps−1.

We run both unbinding and rebinding REVO simulations for the OA-G6 system. For

unbinding, we ran 10 simulations for each of the three friction coefficients; for rebinding, we

ran 5 simulations for each coefficient, yielding a total of 30 simulations for unbinding and

15 simulations for rebinding. A set of binding and unbinding simulations were also run for

γ = 0.001 – despite the impaired temperature control – which are reported in Figure 3.5.

The estimates for the unbinding and binding fluxes are depicted in Figure 3.4, where each

curve represents an individual REVO simulation. The averages, illustrated with a bolded

line, are calculated by averaging the trajectory flux over the entire set of simulations for
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Figure 3.3: (A) Average temperatures observed in short simulations for different friction
coefficients (γ). (B) Probability distributions of observed temperatures from ensembles of
longer simulations with different γ.

that value of γ. The upward jumps on these plots indicate that an exit point was recorded

that has a higher weight than was previously observed. A set of binding and unbinding

simulations were also run for γ = 0.001 – despite the impaired temperature control – the

rates of which are depicted in Figure 3.5

By reducing γ to values less than 1, we observed no change in the binding rates, and

small changes to the unbinding rates which are on the border of significance. With regard

to unbinding rates, the two largest friction coefficients yielded the smallest error and similar

koff values, where γ = 1 yielded an average off-rate of 16.4 s−1 and γ = 0.1 yielded an off-rate

of 11.5 s−1. The off-rate increased by 10-fold for γ = 0.01, although this is mostly driven by

exit points observed in a single simulation. In our previous OA-G6 results using γ = 1, we

calculated an unbinding rate of 0.48 s−1 which slightly differs from the value calculated in this

study using γ = 1 (Table 3.1). Unbinding rates for γ = 0.001 ps−1 were approximately 1000-

fold higher, although these are known to be affected by a higher average temperature (SI).

Taking a closer look at the binding rates, we saw no discernible difference across the friction

coefficients. The binding rate was approximately 109 s−1 M−1, for all friction coefficients,

which was about 5-fold larger when compared to our previous study using γ = 1. For both
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Figure 3.4: Predicted on- (top) and off-rates (bottom) as a function of simulation time.
Each panel is labeled according to the friction coefficient used for that set of simulations.
The independent simulations are shown in shades of orange (kon) and blue (koff), and the
averages are depicted by bold black lines.

binding and unbinding rates we have more confidence in the results obtained here, as they

are based on more extensive simulation data.

Table 3.1: Binding and unbinding rates as a function of friction coefficient (γ). The
uncertainties shown use the standard error of the mean calculated from 5 and 10
independent REVO runs for binding and unbinding, respectively. The quantities from
Chapter 2 were obtained with 5 REVO runs that used different initial conformations, each
of which were 2000 cycles in length.

kon (108 M−1s−1) koff (s−1)
γ = 0.01 17± 1 122± 94
γ = 0.1 16± 2 22± 12
γ = 1 13± 1 16.4± 9.4
Chapter 5 (γ = 1) 2.8± 1.0 0.48± 0.11

For both the unbinding and rebinding simulations, across all friction coefficients, we
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Figure 3.5: Binding (top) and unbinding (bottom) fluxes for γ = 0.001 ps−1. Fluxes are
shown for each simulation individually. Parameters are the same as those used for higher γ
values in the main text. Average fluxes over the simulations are shown as thick black lines.

observed at least 1000 warping events (Figure 3.7). As expected, we observe that rebinding

occurs with a much higher probability when compared to unbinding, by several orders of

magnitude. The unbinding walker weights are limited at the low end by the minimum

walker probability (pmin), which is set to 10−12. The rebinding walker weights are limited at

the high end by the maximum walker probability (pmax), which is set to 10−1. respectively.

Figure 3.7 shows that the 10-fold larger unbinding rate for γ = 0.01 was largely due to a single

unbinding point in a single simulation, which underscores the sensitivity and uncertainty of

rate calculations using trajectory fluxes. Figure 3.6 shows unbinding fluxes for γ = 0.001,

which is known to have elevated temperatures. There we see a large number of high-weight
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unbinding events in two different simulations, leading to the 1000-fold increase in koff.
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Figure 3.6: Weights of warped walkers in unbinding (top) and binding (bottom) REVO
simulations for γ = 0.01, 0.1 and 1.0 ps −1. Each simulation is shown in a different color.

3.3.3 Free energy estimates, correction terms and comparison with previous
benchmarks

As the friction coefficient unevenly affected the rates of binding and unbinding, there was a

net effect on the binding free energies. As shown in Figure 3.8 and Table 3.2, the binding

free energy increases as the friction coefficient is lowered, independent of the free energy

correction terms derived in Section 3.3.1. Table 3.2 shows the free energies computed using

the averaged fluxes across all simulations at each γ value. For all friction coefficients, the

calculated free energy was always higher than that from our previous study (−12.1 kcal/mol;

red line), even for γ = 1, signifying that extending the simulation time aided in predicting

experimentally determined binding free energies.

The correction terms are calculated using data obtained from the simulations, but they

are mostly functions of geometric properties of the simulation box and boundary condi-
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Figure 3.7: Weights of warped walkers in unbinding (top) and binding (bottom) REVO
simulations for γ = 0.001 ps−1. Each simulation is shown in a different color. Parameters
are the same as those used for higher γ values in the main text.

Table 3.2: Raw (∆G0) and corrected (∆Gcorr) free energy values using simulation data
from three different friction coefficients. Values are in kcal/mol and uncertainties are
calculated using propagation of the standard error of the mean.

∆G0 (kcal/mol) ∆Gcorr (kcal/mol)
γ = 0.01 −9.83± 0.46 −7.11± 0.47
γ = 0.1 −10.78± 0.32 −8.06± 0.33
γ = 1 −10.85± 0.34 −8.13± 0.36

Chapter 2 (γ = 1) −12.1± 1.0 −9.38± 1.0

Comp. ref. [148] - −7.0± 0.1
Exp. [153] - −4.97± 0.02

tions, and are not expected to change as a function of γ. The first term, −kT ln fb/fu, was

calculated to be 0.74 ± 0.10 kcal/mol, with fb and fu taking on values of 0.157 and 0.54

59



respectively. As described in Section 3.3.1, fb is the probability of the being in the bound

basin given that you are in the unbinding ensemble, which is calculated using the sum of the

weights of trajectories in the bound basin, divided by the total sum of the weights of the

trajectories considered. The fb value in particular was lower than expected, indicating that

our definition of the bound state might be too restrictive, even though we did account for

all symmetry-equivalent conformations in our calculation of fb.

The second term, +kT ln
〈
eβEint

〉
unb, was calculated to be 1.64 ± 0.002 kcal/mol. This

was calculated by determining the electrostatic interaction energies (see Section 3.2.5) for

the set of unbound states observed in the rebinding simulations. The expectation value in

the correction term again accounted for trajectory weights and was computed using 71428

interaction energy measurements that were selected from the unbound ensemble. The uncer-

tainty was computed as the standard error of the mean of this set of energies. To calculate

the third correction term, −kT ln
(
Vunbound
Vbox

)
, we directly estimated Vunbound/Vbox using the

Monte Carlo procedure described in Section 3.3.1. The ratio was computed as 0.56± 0.0037

using five batches of 10000 trials each, where the uncertainty is the standard error of the

mean across the sets of trials.

Together these three terms sum to 2.72 kcal/mol, which is a significant correction to the

binding free energies computed here. Over half of this comes from the residual electrostatic

interaction energy between the host and the guest. Note that both the host and the guest

have negative charges, and the residual interaction between the two molecules is repulsive.

Turning this interaction off releases 1.64 kcal/mol of energy, which lowers the free energy

gap between the bound and unbound states. The corrected and uncorrected free energies are

shown as a function of γ in Figure 3.8. For γ ≥ 0.01 the calculated free energies are almost

equal to within standard error and the correction terms significantly reduce the error with

respect to the computational reference value [99, 148].
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Figure 3.8: Free energies as a function of friction coefficient. The dark blue line shows the
uncorrected free energies calculated at three different γ values. The light blue line shows
the corrected values, which are shifted upwards by 2.72 kcal/mol. The thin red line shows
the value reported in Chapter 2, which employed a friction coefficient of 1.0 ps−1 and used
a smaller dataset than is reported here. The black horizontal line shows the value of a
computational reference computed using alchemical perturbation, reported in Ref. [148].
The dashed grey line shows the experimental measurement, reported in Ref. [153].

3.4 Discussion and Conclusion

In this study, we sought to better connect the calculation of binding and unbinding rates

with the calculation of binding free energies. The rate calculations measured the microscopic

fluxes of trajectories from one basin to another. These fluxes can be visualized in an extended

history-dependent conformation space, where trajectories change their “color" based on which

basin (“bound” or “unbound”) they have most recently visited [85, 86, 87, 88, 89]. The ratio

of these rates gives a ratio of two populations: the trajectories that have most recently

visited the “bound” basin and the trajectories that have most recently visited the “unbound”

basin. The first correction term adjusts this ratio to instead only account for the probability

contained within the basins themselves and is particular to rates that are calculated using

this history-dependent formalism. The third term can be seen as a volume correction term,
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which is used to accurately account for the volume in the unbound state. This is done in

other approaches where restraints are used, such as umbrella sampling [154, 155, 156]. In

our case the unbound state cannot be easily approximated by a geometric object, such as

the volume of a spherical shell.

The second term accounts for residual interactions in the unbound ensemble. This could

be used by other approaches that directly determine free energy differences between bound

and unbound conformations, such as umbrella sampling. The conventional approach is to

define a simulation box that is large enough such that the interactions between the host and

guest are negligible in the unbound state. However, this can significantly increase the cost

of the simulation. It is worth noting that umbrella sampling results for this system (OA-G6)

obtained by Song et al. [156], −8.50 kcal/mol, were also below both the computational

benchmark and the experimental value. Their unbound state was defined as a 20 Å distance

between an atom in the guest and a dummy atom in the center of the host, which is roughly

comparable to our unbound basin of 10 Å of clearance between the host and the guest.

Assuming a similar value for the electrostatic correction term, it would have brought their

prediction to −6.86 kcal/mol, which is in line with the computational benchmarks [148].

The electrostatic term can also be viewed as a sort of “decoupling" between the host and

the guest, and it is warranted to discuss similarities and differences with similar procedures

in alchemical free energy methods. They are similar in that we are computing a free en-

ergy between two Hamiltonians, one in which an interaction is turned off. We could thus

use similar techniques for computing these free energy differences, such as thermodynamic

integration [157, 158], BAR [159], MBAR [150, 158], or MM/PBSA [160], although here we

effectively use a simple free energy perturbation (FEP) expression [161, 162]. The approaches

are different in that we are only considering ensembles of structures where the interactions

being turned off are relatively weak. We are assuming here – as is always the case with FEP

– that the conformational ensembles of both the host and the guest are highly overlapping

between the two Hamiltonians, which considerably simplifies the problem. We also note that
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although we employ electrostatic decoupling to compute free energies, our simulations still

reveal important information about the (un)binding kinetics and mechanism.

We also examined the role that the Langevin integrator plays in the prediction of kinetic

and thermodynamic quantities. In particular, we adjusted the friction coefficient (γ), defined

in the Langevin integrator, while maintaining the stability of temperature at 300 K. We did

not expect that altering the friction coefficient would have an impact on the calculation of

equilibrium quantities. As γ does not appear in the Hamiltonian of the system, it should not

affect the probability of a given microstate P (X), which is given by the Canonical probability

density exp(−βU(X)). While we did expect it to affect rates, we expected that these effects

would offset: that if unbinding was accelerated 10-fold, we would observe the binding process

to be sped up by the same factor. However, we observe that the on-rate was very stable

as a function of γ, while the off-rate changed slightly. One explanation is that unbinding is

much more rare event when compared to rebinding, and estimates of koff were not converged.

Lower friction coefficients could be accelerating sampling of these events and making it easier

to observe higher probability walkers unbind in our simulations.

Convergence is of utmost priority in weighted ensemble simulations that calculate kinetic

quantities. In our previous study, we hypothesized that it was possible that extending the

time of the unbinding simulations could capture more high weight walkers exiting from the

bound state. Indeed, we observe a higher unbinding flux in this study across all friction

coefficients. In Figure 3.4, we observe large upward jumps, for all γ values, even after 40

ns of simulation time per walker, which was sampling limit in our previous study. These

upward jumps, as previously described, signify that an exit point was recorded that has a

higher weight than previously observed. This highlights the challenges involved in accurate

determination of rate fluxes for rare events. It is worth noting that by using our correction

terms to account for small unbound volumes and persistent but small electrostatic interac-

tions in the unbound state, we can keep box sizes small, allowing for better convergence of

rate fluxes at fixed computational cost.
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Of course the binding free energy alone is still an important quantity for drug design

[163]. If one is only interested in the absolute binding free energy, calculating it through the

ratio of rates is needlessly complicated; free energy is a state function and thus only depends

on the endpoints of the binding pathway. The prediction of koff and kon themselves is

challenging, since they are not state functions: they depend on the transition path ensemble

between the bound and unbound state. Sampling of these physical pathways is a large

challenge for MD, largely due to the long timescales of the binding and release processes.

Ensuring that the ratio of rates is consistent with binding free energy calculations - as done

here - provides an additional, powerful consistency check. In particular, comparing to well-

converged computational benchmarks is more useful than experimental quantities, as we

avoid an additional layer of uncertainty associated with the force field used to describe the

system.
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CHAPTER 4

MEMBRANE-MEDIATED LIGAND UNBINDING OF THE PK-11195
LIGAND FROM TSPO

This work was published in the Biophysical Journal volume 120 pages 158-167 in 2021. The

work is presented here as published except that the supplemental figures are worked into the

text.

4.1 Introduction

The binding affinity of a ligand to its protein target has long been viewed as the key parameter

determining its efficacy. However, recent studies have shown that in some protein-ligand

systems residence time (RT) correlates more strongly with efficacy than binding affinity [2].

But unlike the binding affinity, RT is not a state function; it depends on the height of the

free energy barrier separating the bound and unbound states. In order to rationally design

ligands for longer RTs we need to understand the (un)binding mechanism and what molecular

interactions occur along the ligand (un)binding pathway.

Previous studies have shown that the Translocator protein (18 kDa) (TSPO) is one

such protein where RT is important for predicting efficacy [18]. TSPO is a well-conserved

membrane protein, being present in all kingdoms including prokaryotes as well as in the outer

mitochondrial membrane of eukaryotes [164]. TSPO has five transmembrane α-helices (TM1-

5) along with a small helical region in a 20-residue loop (hereafter denoted as the LP1 region)

connecting TM-1 and TM-2 on the cytosolic side (Fig. 4.1A). While in the membrane, TSPO

is largely found in a dimeric state [165]. To date, four different structures have been solved

for TSPO, for both bacterial [165, 166] and mammalian [167, 168] organisms the former by

X-Ray crystallography, the latter by nuclear magnetic resonance (nuclear magnetic resonance

(NMR)).

While the structure of TSPO have been solved, its function remains unknown. In humans,
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TSPO is highly expressed in steroidogenic tissues, consistent with the hypothesis that it

is involved in the regulation of cholesterol transport across the mitochondrial membrane.

Indeed, TSPO has been shown to have a high binding affinity for cholesterol [169]. There are

other studies linking it to apoptosis [170, 171] and cellular stress regulation in TSPO knockout

mice [172, 173], although evidence for this is mixed [174, 175]. Increased TSPO expression has

also been observed in cases of neurodegenerative diseases such as Alzheimer’s and Parkinson’s

diseases [176]. Relatedly, due to its high expression in areas of inflammation TSPO serves as

a biomarker for neurodegenerative disease and brain trauma, and radiolabeled ligands such

as [H3]-PK-11195, are commonly used in positron emission tomography (PET) scans [177].

PK-11195 is an isoquinoline carboxamide with no known therapeutic effect [175] and a RT

of 34 min in the human TSPO sequence [18, 178].

Molecular dynamics (MD) simulations have been previously performed using a bound

TSPO-PK-11195 complex. Researchers recently determined the unbinding pathway of PK-

11195 from a rat TSPOmodel generated from the Protein Data Bank (PDB) 2MGY structure

[139]. To generate unbinding paths they used a combination of random accelerated molec-

ular dynamics (RAMD) [179] and steered MD[180] and determined that PK-11195 unbinds

into the cytosol through the largely disordered LP1 region (Fig. 4.1A). Unfortunately, this

starting structure, determined by NMR, was significantly destabilized by the detergent used

in the purification [181, 182]. Also, the methods used to determine the unbinding pathway

RAMD have the potential to impart bias on the predicted (un)binding path. Another group

performed an induced-fit docking of PK-11195 using Glide [183] with a homology model

to resemble the mammalian (mouse) TSPO structure using the PDB 4UC1 Rhodobacter

sphaeroides structure. They simulated the TSPO-PK-11195 complex for 700 ns and did not

observe significant ligand displacement, which is expected due to the extremely long RT of

the TSPO-PK-11195 complex.

Here we study the unbinding mechanism for the TSPO-PK-11195 complex, using PDB

4UC1 as the TSPO starting structure [165] and using a weighted ensemble algorithm: Re-
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sampling Ensembles by Variation Optimization (REVO) to generate continuous unbinding

pathways without perturbing the underlying dynamics [35]. REVO has been previously

applied to study ligand unbinding on a series of host-guest systems (Chapter 2 and the

trypsin-benzamidine system [35]. In the next section we discuss the methodology used for

the simulations: the REVO resampling algorithm, the clustering algorithm used to make the

Markov State Model (MSM) and the conformational space networks (CSN)s representation,

and rate calculations. In the Results and Discussion we analyze pathways found for dissocia-

tion of PK-11195 from TSPO, residues which bound strongly to PK-11195 along the observed

pathways, and we compare RTs between different starting poses. We then summarize our

findings and discuss how they relate to existing research.

4.2 Materials and Methods

4.2.1 Protein Preparation

The initial TSPO dimer structure is comprised of chains A and B from PDB 4UC1[165]. This

x-ray crystal structure comes from the Rhodobacter sphaeroides with an A139T mutation

to resemble human TSPO. CHARMM-GUI membrane generator[184] was used to place the

TSPO complex into a membrane comprised of 174 phospholipids consisting of 53.4% phos-

phatidylcholine, 28.2% phosphatidylethanolamine, and 18.4% phosphatidylinositol lipids.

10268 TIP3 water molecules were inserted up to a cutoff of 10 Å from the complex and 121

potassium ions and 27 chloride ions were added to reach a salt concentration of 150 mM and

to neutralize the system. The system was placed into a rectangular box with dimensions

96.4 Å x 96.4 Å x 91.8 Å. The protein was simulated using the CHARMM36 forcefield [185]

and parameters for the PK-11195 ligand were obtained with CHARMM Generalized Force

Field (CGENFF) [39, 40].
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4.2.2 Docking

Six different PK-11195 poses were used in the simulations. Docking was carried out with

Extra Precision (XP) by using Schrödinger Glide[186]. The center of mass (COM) of PK-

11195 was placed at the COM of the bound Protoporphyrin IX in the chain A monomer

of TSPO protein from PDB 4UC1 without any constraints. The XP docking yielded four

poses (D1-D4) and the XP Gscores for the resultant poses can be seen in Fig 4.1B. A

homology model of PK-11195-bound TSPO (Pose R) was generated by Xia et al. as a Rosetta

comparative model of the mouse TSPO structure constructed using TSPO structures from

Mus musculus (PDB 2MGY[167]), R. sphaeroides (PDB 4UC1[165]), and Bacillus cereus

(PDB 4RYI [166]); more details found in Ref. [187]. The TSPO monomer bound to PK-

11195 from this model was then aligned to chain A of the 4UC1 structure using PyMol

1.7.2.1 [188], and the ligand coordinates from the D1 pose were changed to reflect the new

pose. The 4RYI pose was generated by X-Ray crystallography and the coordinates of the

PK-11195 ligand were added to the 4UC1 structure in the same way as pose R. The system’s

energy was minimized using a series of constraints with scripts provided by CHARMM-GUI

for all poses. The molecular structure for each pose is shown in Fig. 4.1B and pose view

diagrams are shown in Fig. 4.2.

4.2.3 Molecular Dynamics

All MD simulations were performed using OpenMM[114] v7.1.1. The time step for every

simulation was 2 fs. To enforce constant temperature and pressure, a Langevin heat bath

was used with a set temperature of 300K and a friction coefficient of 1 ps−1 was coupled to

a Monte Carlo barostat set to 1 atm and volume moves were attempted every 50 time steps.

The non-bonded forces were computed using the CutoffPeriodic function in OpenMM with

a cutoff of 10 Å. The atomic positions and velocities are saved every 15, 000 time steps, or

every 30 ps of simulation time, which is the resampling period (τ) used here.
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pose D1

pose D2
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Figure 4.1: TSPO-PK-11195 system. (A) Front view of the TSPO dimer in the membrane
with PK-11195 bound. (B) All six starting poses are shown from the side view, along the
inter-dimer axis. To compare poses, two moeities of PK-11195 are colored in black
(o-chlorophenyl) and magenta (1-methylpropyl), with the rest of the molecule colored
according to atom name. TM-2 is shown as transparent for clarity.

4.2.4 REVO Resampling

To observe long timescale unbinding of PK-11195, we used a variant of the weighted en-

semble algorithm: REVO[35]. In this algorithm, we perform unbiased MD simulation on 48

separate trajectories in a parallel fashion. Each of these trajectories (called "walkers") has
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Figure 4.2: Protein-ligand interaction plots for the six starting conformations. The red
suns indicate that the residue has a hydrophobic contact with PK-11195. The green dashed
lines show hydrogen bonds.
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a statistical weight (w) that governs the probability with which it contributes to statistical

observables. With periodicity τ , a resampling procedure is performed, where similar walkers

are merged together and unique walkers are cloned, as defined by a distance metric. During

cloning, weights are split, and during merging, weights are added, to ensure conservation of

probability.

Below we briefly describe the REVO method, focusing on the details of its application in

this work. More information on the algorithm can be found in previous work [35]. In REVO,

merging and cloning is done to maximize a variation function:

V =
∑
i

Vi =
∑
i

∑
j

(
dij
d0

)α
φiφj, (4.1)

where dij is the distance between walker i and walker j determined using a distance metric of

choice. For these simulations the distance metric used was the root mean square deviation

(RMSD) of the PK-11195 atoms between each walker, following alignment to a selection

of binding site atoms in TSPO. The exponent α is used to modulate the influence of the

distances in the variation calculation and was set to 4 for all simulations. d0 = 0.148 nm

is a characteristic distance used to make V dimensionless and to normalize the variance for

comparison between different distance metrics. φ is a novelty and here is defined as:

φi = log(wi)− log
(pmin

100

)
. (4.2)

The minimum weight, pmin, allowed during the simulation was 10−12. The walker that is

selected for cloning is the one that has the highest Vi and the resultant weight of the clones

is larger than pmin. The two walkers selected for merging are at most 2 Å away, have a

combined weight lower than the maximum allowed weight pmax = 0.1, and is the walker pair

j, k that minimizes the variation loss (Vloss) defined as:

Vloss =
Vjwk + Vkwj
wj + wk

. (4.3)

Once the walkers (i, j, k) are selected, the new variation is calculated: if it increases, then

these operations are performed and another (i, j, k) is proposed; if it decreases then resam-

pling for that cycle is terminated and a new cycle of MDis performed. Three simulations
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were run for each docked pose using 48 walkers and 1200 cycles, for 1.728 µs of simulation

time per simulation. In total each pose was simulated for 5.184 µs.

4.2.5 Boundary Conditions

The overall goal of the simulations was to determine the pathways along which PK-11195

can transition from the initial starting poses to an unbound state. During the simulations,

we defined PK-11195 as being unbound when the minimum distance between the ligand and

TSPO was at least 10 Å. When the ligand crossed this boundary, the weight is recorded and

the walker was "warped" back to the initial conformation. The structure recorded before

warping is known as an exit point. When the walker warps back, the atomic positions and

velocities are reset to their initial values before the simulation began. The walker weight

does not change as a result of warping.

4.2.6 Clustering and Network Layout

The trajectory frames of all 18 REVO runs were clustered together using the MSMBuilder

3.8.0 python library. The frames were featurized using a vector of atomic distances between

TSPO and PK-11195 atoms initially within 8 Å of each other from the 4RYI starting pose

for a total of 7527 distances. A k-centers clustering algorithm was used to generate 2000

clusters using the featurized space and each frame was assigned to a cluster. The clustering

was done using the Canberra distance metric. A count matrix describing the cluster-cluster

transitions was calculated for a lag time of 30 ps.

We then construct a CSNs from the count matrix, which is a graphical representation of

the transition matrix. Each node, representing each row of the transition, and the edges,

representing non-zero off diagonal elements of the transition matrix, were determined using

the CSNAnalysis package [121]. Gephi 0.9.2[119] was used to visualize the CSN. The size of

each node is proportional to the statistical population of the cluster. For visualization, the

smallest node was set to be 20 times smaller than the largest node. The layout of the network
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was determined using a force minimization algorithm, Force Atlas included in Gephi. The

algorithm repulses nodes that are not connected and attracts nodes that are connected via

an edge. The strength of the attractive force is proportional to the weight of the edges.

The directed edge weights were values between 0.1 and 100 as determined by wij = 100pij,

where pij is the transition probability of cluster i transitioning to cluster j. Unidirectional

edge weights were then determined using the average between the two directed edge weights.

Force Atlas was applied twice. The first minimization was done without adjusting for node

sizes, allowing the nodes to overlap. The second minimization adjusted for the node size and

prevented overlap. For visualization, all edges are shown with a uniform line weight.

4.2.7 Quantifying Unbinding Pathways

Upon analysis of the simulation results, the only unbinding pathways observed in our sim-

ulations were PK-11195 dissociating through pairs of transmembrane helices. We therefore

introduce the coordinate Qij which measures the minimum x-y distance from the COMof

PK-11195 to the line formed by the COMs of helices i and j to measure the dissociation

progress of PK-11195 into the membrane. Negative values indicate the COMof the ligand

is closer to the center of the helical bundle, and positive values indicate the COMis closer

to being fully dispersed in the membrane. All six poses had trajectories where PK-11195

traveled between transmembrane helices 1 and 2 and only pose R had trajectories where

PK-11195 went between transmembrane helices 2 and 5. For pose R analysis we separate

the conformations according to which value (Q12 or Q25) is largest. Projections onto a given

Q value will only use conformations for which that Q value is the largest.

4.2.8 Calculating Non-bonded Energies

We calculated the non-bonded interaction energies (Eint) by:

Eint = VLJ + VES, (4.4)
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where VLJ is the Lennard-Jones potential energy and VES is the potential energy from electro-

static interactions. The Lennard-Jones interactions were determined using a 12−6 potential

given as:

VLJ = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (4.5)

where r is the atomic distance between atoms, σ is the inter-atomic distance at which the

potential is 0, and ε is the depth of the potential well. To calculate σ and ε we used the

Lorentz-Berthelot combining rule. There was a hard cutoff distance of 10 Å when calculating

the Lennard-Jones potential. The electrostatic energy was calculated using:

VES =
1

4πε0

QiQj

rij
, (4.6)

where Qa is the charge of atom a, rij is the interatomic distance between atoms i and j,

ε0 = 8.854 ∗ 10−12 F
m

is the permittivity of free space in farads per meter. The specific σ, ε,

and Q, for each atom type was provided by CHARMM-36 parameter files obtained through

CHARMM-GUI. Two sets of non-bonded energies were calculated: between PK-11195 and

TSPO, and between PK-11195 and lipids in the membrane.

4.2.9 Calculating Off-Rates and Mean First Passage Times using Hill Relation

The rates are calculated using the flux of trajectories into the unbound basin, also known as

the Hill relation[117, 85, 88], defined as

koff =

∑
iwi
T

, (4.7)

where wi is the weight of the walker entering the unbound basin, and T is the total simulation

time. During the simulations the unbound basin was defined by the 10 Å boundary condition.

However, although many walkers had dissociated into the membrane, no walkers made it to

the boundary. Therefore, to obtain estimates of unbinding rates, after the simulations were

completed the unbound basin was redefined using a minimum distance of 5 Å as we found

negligible interaction energy between PK-11195 and TSPO at this distance (Fig. 4.3). In
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our simulations we observed a total of 2285 instances of trajectory crossings into the 5 Å

unbound basin. This is broken down by starting pose as follows: 4RYI (47), D1 (4), D2

(1804), D3 (278), D4 (152) and R (0). In our analysis, once a walker entered the unbound

basin, we ignored all future trajectories associated with that walker. This was done to

prevent double-counting of unbinding transitions. The mean first passage time (MFPT),

synonymous with the RT, was calculated as

MFPT =
1

koff
. (4.8)

The uncertainty of off-rates and MFPT for each pose is the standard error across each set

of simulations.
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Figure 4.3: The energy of non-bonded interactions between PK-11195 and TSPO as a
function of minimum distance between PK-11195 and TSPO.

4.2.10 Calculating Mean First Passage Times using Markov State Models

We create transition matrices, T (τ), for various lag times (τ) using the cluster identities

from the CSN and tracking walkers through merging and cloning operations in the REVO

resampler. We alter these matrices to include a probability sink for states that are unbound,

defined as when PK-11195 is at least 5 Å away from the TSPO dimer. We run a Markov
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chain simulation for a given starting pose and lag time by initializing a probability vector,

P , where all of the probability starts at the state of a given starting pose. To progress the

simulation we use the following: Pk = P0T (τ)k where P0 is the initial probability vector,

and Pk is the probability vector after k time steps. We continue the simulations until all

the probability accumulates in the unbound basin. We then calculate the MFPT using the

following formula:

MFPT = Σk(pk − pk−1)(
tk + tk−1

2
) (4.9)

where pk is the probability of being unbound at time step k and tk is the time associated

with time step k. We repeat this for all initial poses and lag times to determine MFPT as a

function of lag time.

4.2.11 Selecting Poses for Straightforward MD Simulations

To strengthen the accuracy of our Markov state model, we run straightforward simulations

at weak points in the network. To determine these weak points, we randomly multiplied the

elements of a row on the transition matrix with numbers drawn from a Gaussian distribution

with a mean (µ) at 1 with a standard deviation (σ) of 0.2 and we re-normalized the row after

perturbation. We rerun the Markov chain simulations to calculate the MFPT. To get a sense

of how consistently the cluster alters the MFPT, we randomly perturb the transition matrix

10 times independently. Weak points in the network are determined by the clusters whose

perturbations affect the MFPT the most, using the following formula: δMFPT/MFPT, where

δMFPT and MFPT are the standard deviation and average of the perturbed MFPT values,

respectively. For two poses, this ratio was greater than 0.2; we identified these clusters as

weak points and reran straightforward MD simulations from the highest weighted structure

in that cluster. From each weak point we launched 144 independent straightforward MD

simulations for a length of 500 cycles (15 ns). In addition we launched trajectories from

high lipid accessible surface area (LASA) clusters in the central unbound region and each

76



of the high-LASA states originating from pose R. In total we ran 10.8 µs of supplemental

trajectories to bolster our Markov state model.

4.3 Results

4.3.1 PK-11195 Unbinding Pathway

We comprehensively studied the TSPO-PK-11195 interaction landscape using a set of REVO

simulations initialized at six different starting poses (Fig. 4.1B), simulating 5.184 µs per pose.

After the simulations were completed, all frames were clustered together into a CSN shown

in Fig. 4.4, where each node represents a PK-11195 pose and the edges reveal which poses

interconvert in our simulations within a 30 ps lag time. All of the starting poses form a

connected network, though pose R is only connected via two low probability edges to the

pose 4RYI ensemble (Fig. 4.6). The 4RYI pose is similarly connected to pose D4, but is

also connected to the other docked poses via the high LASA clusters. It is worth noting

that both pose 4RYI and pose R were the only poses that were not designed for this specific

protein structure and were instead inserted from other protein structures after alignment.

Consistent with this fact, both of these regions in the CSN do not show accumulation of

probability into one or more high-probability states. Instead we observe a broader distribu-

tion among many low probability states indicating a lack of a local funneling in the energy

landscape. Interestingly, all of the docked poses (D1-D4) show at least one high-probability

state, although this is not necessarily at the initial docked pose itself, indicating that some

relaxation is required from the docked poses to reach the true local minima.

Contrary to what was observed in previous work [139], PK-11195 did not dissociate into

the solvent via the LP1 region: it instead dissociates into the membrane. The CSN shows

that all the poses, besides pose R, connect directly to the unbound states, shown in yellow

and orange, where PK-11195 is fully dissolved into the lipid membrane. In all of these

pathways, PK-11195 exits between TM-1 and TM-2. The pose R trajectories show two

different pathways that have a moderate LASA – one between TM-1 and TM-2 and another
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Figure 4.4: Combined CSN of all REVO simulations from each starting pose. Each node
in the network represents a cluster of ligand poses and is sized according to the cluster
weight. Nodes are connected by edges if the ligand poses are observed to interconvert in
the REVO trajectory segments. Nodes are colored according to the LASA. Starting poses
are marked in bold and transition state poses shown in Fig. 4.5D are marked in italics.
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Figure 4.5: Analysis of membrane-mediated exit paths. (A) The coordinate Qij is defined
as the x-y distance between the center of mass of PK-11195, shown as sticks and colored by
atom type, and the line that connects the centers of mass of helix i and helix j. LP1 is not
shown here for clarity. (B) The expectation values of the interaction energy between
PK-11195 and TSPO (blue) and between PK-11195 and the membrane (black) are shown
as a function of Q. In each case the solid line shows Q12 and the dashed line shows Q25.
The shaded region indicates the standard error over the ensemble of measurements at each
Q value. (C) Probability curves projected onto Q12 for simulations initialized in Pose D1
(blue) and D2 (orange). Q12 values of the starting structures are marked with (*). (D)
Poses from transition pathways with Q ≈ 0. These poses are also labeled in the CSN of
Fig. 4.4. Phe46 is shown in purple and Trp50 is shown in orange. (E) A set of poses along
the Q12 pathway colored from bound (red) to unbound (blue). Top view is shown on the
left and a front view is shown on the right. (F) The minimum PK-11195-TSPO distance
and the Q12 value is shown for each pose in panel (E). (G) The z COMposition as a
function of Q12. The red lines indicate the upper and lower bounds of the membrane as
defined by the maximum and minimum z coordinate of the lipid membrane.
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Figure 4.6: CSN networks indicating the clusters that were observed from each initial pose.
Red nodes indicate the simulations observed a TSPO-PK-11195 conformation that was
clustered into that node.

between TM-2 and TM-5 – where PK-11195 forms direct interactions with membrane lipids.

We introduce the coordinate Qij, which measures the minimum x-y distance from the

center of mass of the ligand to the line connecting the centers of mass of helix i and helix j

(Fig. 4.5A). Negative Q values indicate the ligand is within the helical bundle and positive

values indicate the ligand is outside the bundle. This provides a basis to compare between

different pathways and a means of obtaining general information about membrane-mediated

ligand unbinding pathways. Fig. 4.5B compares the TSPO-PK-11195 interaction energy

(Eint) with membrane-PK-11195 interaction energy. In the Q12 pathway (solid lines), PK-

11195 interacts more closely with the lipid membrane than TSPO after about 5 Å. For
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the Q25 pathway (dashed lines) this crossover occurs at 7.5 Å. The difference is due to

differences in the orientation of PK-11195 along the two pathways. Fig. 4.5D shows the

transition states labelled in Fig. 4.4 where the Q values are approximately equal to zero

along each dissociation pathway. We see that each structure is still heavily informed by

its starting pose, with very different PK-11195 orientations. Fig. 4.5C shows probability

distributions projected onto Q12 for starting poses D1 and D2. This shows that although

D1 started further backward on the unbinding pathway, the simulations discovered another

high-probability basin around Q12 = 0, which can also be seen by the high-probability states

around D1‡. A representative Q12 dissociation pathway is shown and analyzed in Fig. 4.5E

and 4.5F. Note that while the Q12 value increases steadily along the pathway, the minimum

distance between TSPO and PK-11195 (used to define the unbound state) rises rapidly only

as PK-11195 reaches a Q12 of about 15 Å. Additionally, we track the PK-11195 center of

mass as a function of Q12 (Fig. 4.5G). Once it gets fully dissociated into the membrane,

PK-11195 does not travel closer towards the solvent in either direction. Rather it interacts

strongly with the hydrophobic tails and remains at approximately the membrane midpoint

over the course of our simulations.

We also measure interaction energies between PK-11195 and individual residues for all

residues on TM1, TM2, TM5 and LP1 (Fig. 4.7-4.10). Early in both the Q12 and Q25

pathways, PK-11195 strongly interacts with aromatic residues Phe46 and Trp50 forming

π-π interactions. These aromatic residues with long side chains follow PK-11195 along the

unbinding pathway, which is observed by plotting the Q value of individual residues as a

function of Q-PK-11195 (Fig. 4.11 and Fig. 4.12). Interestingly, this phenomenon occurs for

smaller amino acid side chains as well: Gly22 and Pro47 both change Q value significantly

over the Q12 pathway, indicating significant distention of the helices during unbinding.

Finally, we investigated the similarity of the PK-11195 conformations within each cluster

with respect to the dihedral angles along four different rotatable bonds (see Fig. 4.13-4.15).

The standard deviation for all the angles is generally low (below 85 degrees), however there
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Figure 4.7: Expectation value for Eint as a function of Q12. The lines are colored by
residue. Only residues who have a minimum interaction energy below −3.5 kcal/mol are
shown. The standard error is shown in the lighter shaded regions.
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Figure 4.8: Expectation value for Eint as a function of Q25. The lines are colored by
residue. Only residues who have a minimum interaction energy below −3.5 kcal/mol are
shown. The standard error is shown in the lighter shaded regions.

are clusters in high LASA regions on the network that have a higher standard deviation.

This indicates that PK-11195 has more degrees of freedom when it comes to rotation when

it is within the membrane. However, when looking at the overall angle range for the network

clusters, there are several clusters with a high overall range, indicating that different ligand

conformations are occasionally being clustered together. In particular, rotatable bond 1
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Figure 4.9: The residues with the strongest non-bonded interactions with PK-11195 on the
Q12 pathway. This summarizes the curves in Fig. 4.7, plotting the minimum Eint against
the Q12 value for which this minimum value is observed. The colors indicate the region of
TSPO, blue for residues on TM-1 and black for residues on TM-2. Only residues with a
non-bonded energy below -3.5 kcal/mol are shown.
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Figure 4.10: The residues with the strongest non-bonded interactions with PK-11195 on
the Q12 pathway. This summarizes the curves in Fig. 4.8, plotting the minimum Eint
against the Q25 value for which this minimum value is observed. The colors indicate the
region of TSPO, red indicates residues on the LP1 loop, black for residues on TM-2 and
orange for residues on TM-5. Only residues with a non-bonded energy below −3.5
kcal/mol are shown.

has a range of 90 degrees or higher for most states, and rotatable bond 2 has a range over

150 degrees in the D1-D3, D4, and R basins as well as in the states where PK-11195 has
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Figure 4.11: Residues moving along with the ligand during dissociation. Expectation
values of Q12 for individual residues are shown as a function of the Q12 of PK-11195.
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Figure 4.12: Residues moving along with the ligand during dissociation. Expectation
values of Q25 for individual residues are shown as a function of the Q25 of PK-11195.

dissociated into the membrane. Therefore, it is likely that the distance metric, defined as a

set of atomic distances from PK-11195 to the TSPO binding site, is good at distinguishing the

PK-11195 location but not necessarily good at defining the internal coordinates of PK-11195.

It is thus possible that the clustering procedure introduced some unphysical connections and

the network should be seen as representing an upper bound of the connectivity between the

bound states.
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4.3.2 PK-11195 Rates and Residence Times

We directly estimate the unbinding rates (koff ) by summing the weights of the unbinding

trajectories and we calculate the MFPT by inverting the unbinding rate for each starting

pose (Fig. 4.16A). Pose D2 had a high unbinding flux and a predicted MFPT of less than

0.02 s, indicating a clear lack of stability with respect to the other poses. Poses D3 and D4

had predicted MFPTs of 2.6 and 4.1 minutes, respectively, still lower than the experimental

measurements; these estimates are likely to continue to decrease with further simulation

time. Poses 4RYI and D1 had MFPT estimates near or above the experimental MFPT (28

and 260 min, respectively). No unbinding events were observed for Pose R, implying an even

longer MFPT than 260 min.

One of the issues with performing simulations via weighted ensemble is ensuring the

simulations converge. A lack of convergence introduces additional uncertainty into koff and

MFPT calculations. To address this issue, we launch a set of Markov chain simulations using

the transition matrix that constructed the CSN. Due to the unphysical connections between

various clusters, we constructed pose-specific networks by only including states that were

visited by trajectories that were generated from a given starting pose. We again find that

the D2 pose has a low MFPT, though 2 orders of magnitude less than that calculated by

the Hill relation. Calculating the MFPT using the MSM showed that all poses besides D2

were on the same order of magnitude as the experimental RT, and were within an order of

magnitude of that determined by the Hill Relation. Since there were no trajectories starting

from pose R that entered the unbound basin, a MFPT could not be computed for this

starting pose without additional simulations.

The accuracy of the MFPT calculations however, assumes that the transition matrix

determined from the simulations has converged. To test for convergence, we run additional

straightforward simulations at the bottlenecks of the network and rerun the MFPT calcula-

tions by combining the old and new trajectory data. Two such bottlenecks were identifed:

the connections between pose R and pose 4RYI as well as between poses D2 and D4. In
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order to better sample the unbound state, we also ran straightforward MD simulations from

high-LASA poses in the Q12 and Q25 pathways that were seen by pose R as well as the most

probable state in the unbound basin. We then reclustered and remade the CSN network to

include the new frames (Fig. 4.17). Several connections were formed between pose 4RYI

and pose R, which also gained connections the other poses after reclustering. Additionally,

the most probable region in the network was once again the D1-D3 basin as determined by

the steady state probabilities of each state.

With the addition of the straightforward simulations, we recalculated the pose-specific

MFPTs from each starting pose. The new simulations did not show pose R progress enough

along the unbinding pathway to enter the unbound basin, and therefore we again could not

compute a RT for this pose. The MFPT for pose D2 increased by five orders of magnitude

in the new D2 MSM, but it is still the pose with the fastest unbinding pathway. This is

likely a result of reclustering after the addition of the new trajectories. Accordingly, when

we recalculate a new MSM that uses the new clusters but excludes the new trajectories from

the transition matrix, we find only an additional slight increase of the D2 MFPT from 0.13

to 0.16 minutes.

Poses 4RYI, D1, and D4 all had MFPTs on the same order of magnitude as the original

MSM simulations and D3 had an MFPT that was lower by a factor of ∼10. The lack of

change between the MFPT calculations for slow unbinding events indicates that the original

MSM had converged enough to produce a reliable estimation for those poses. In terms

of stability, D2 consistently has the fastest unbinding events and is consistently the most

unstable pose we simulated. Poses 4RYI, D1, D3, and D4 all have similar levels of stability,

as can be seen by their similar RTs. Due to the lack of unbinding events for pose R we can

not measure how stable it is in comparison to the other starting poses, but we can say that

starting in the pose R basin is more stable than the other poses we simulated.
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4.3.3 PK-11195 Transition State

Our final goal was to determine the location of the transition state along the unbinding

pathway. Fig 4.17B, shows the committor probability of each state in the final network.

The vast majority of the states have a near zero committor to the unbound state. Only

once PK-11195 is dissociated into the membrane does the committor probability begin to

significantly increase. We built an ensemble of transition states using the centroid structures

for the two nodes with committor probabilities between 0.4 and 0.6. In this way, we estimate

that the transition state – where the committor equals 0.5 – occurs when PK-11195 has

begun dissociating into the membrane and has reached a Q12 of ∼ 10 Å. For these states

we find that the non-bonded interaction energy between TSPO and PK-11195 is roughly −5

kcal/mol (compared to −45 kcal/mol in the bound state), whereas the interaction energy

between PK-11195 and the lipid membrane has increased to −40 kcal/mol at this Q12 (Fig.

4.5B).

To ensure that this result is not affected by any unphysical connections between bound

poses, we also calculated the committor probability for each state in the pose-specific net-

works (Figs. 4.18-4.22). We determined pose-specific transition states for each of the initial

poses that had unbinding events (e.g. all except pose R) and found that they were all located

in the membrane after PK-11195 had dissociated from TSPO. This confirms the results from

the committor probability analysis of the full network. Further, these transition states all

demonstrated a mix of direct PK-11195-TSPO interactions and PK-11195-lipid interactions.

Together these results suggest that the membrane presents a physical barrier that acts to

trap PK-11195 near TSPO and forms the rate-limiting step of PK-11195 dissociation into

the membrane.
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Figure 4.13: The average dihedral angles for the MSM states for four different rotatable
bonds on the PK-11195 ligand.
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Figure 4.14: The standard deviation of the dihedral angles for the MSM states for four
different rotatable bonds on the PK-11195 ligand.
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Figure 4.15: The range of the dihedral angles for the MSM states for four different
rotatable bonds on the PK-11195 ligand.
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Figure 4.16: (A) MFPT estimates using unbinding fluxes observed over the course of
REVO simulations. The light shaded area shows the standard error across the three
simulations conducted for each pose. (B) A bar graph of the final MFPTs comparing the
Hill Relation (green), MSM simulations before (grey), and after (black) the addition of new
straight forward MD simulations. Pose-specific MFPTs were computed from MSMs that
were built using only trajectories generated from that starting pose. Simulations starting
from pose R never entered the unbound basin and thus MFPTs could not be determined
by either method. The experimental MFPT of 34 min is shown as a dashed blue line in
each panel.
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Figure 4.17: Combined conformation space network of all REVO simulations from each
starting pose with the addition of frames from straightforward MD simulations, colored by
(A) LASA and (B) committor probability. Starting poses are marked in bold in panel A.
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Figure 4.18: An MSM network including both straight forward and REVO trajectories
colored by pose specific committor probability values calculated using trajectories
beginning in pose 4RYI. States that were not visited by these simulations are colored grey.
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Figure 4.19: An MSM network including both straight forward and REVO trajectories
colored by pose specific committor probability values calculated using trajectories
beginning in pose D1. States that were not visited by these simulations are colored grey.
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Figure 4.20: An MSM network including both straight forward and REVO trajectories
colored by pose specific committor probability values calculated using trajectories
beginning in pose D2. States that were not visited by these simulations are colored grey.

95



D3

Committor Probability (%)

0 05 001

Figure 4.21: An MSM network including both straight forward and REVO trajectories
colored by pose specific committor probability values calculated using trajectories
beginning in pose D3. States that were not visited by these simulations are colored grey.
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Figure 4.22: An MSM network including both straight forward and REVO trajectories
colored by pose specific committor probability values calculated using trajectories
beginning in pose D4. States that were not visited by these simulations are colored grey.
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4.4 Discussion and Conclusion

The results of our simulation show that from all six initial PK-11195 poses, using the R.

sphaeroides TSPO structure, the ligand dissociates into the membrane through the trans-

membrane helices. We found a pathway between TM1 and TM2 and a lower probability

pathway between TM2 and TM5. These pathways identify residues with which PK-11195

has high interaction energy. Among them are aromatic residues: Phe46 and Trp50 which

form π-π interactions with the ligand. The interactions with the Trp50 rings are also found

in different bound states. We note that the Trp50 residue happens to be highly conserved

across organisms of several species and kingdoms. These stabilizing interactions could lower

the barrier to entry for other TSPO ligands such as protoporphyrin-IX and heme, which are

also largely aromatic.

Previous results [139] using a different starting pose and TSPO structure showed PK-

11195 dissociating into the cytosol through the LP1 loop region. The TSPO structure

used in the previous study was built from a homology model based on the mouse NMR

TSPO structure and used the rat sequence, whereas our structure was determined from

X-Ray crystallography from R. sphaeroides TSPO. As mentioned in the Introduction, this

NMR structure was destabilized by the detergent used in the purification [181, 182], which

likely affected the homology model structure as well. This, in addition to the differences

in sequence, results in several key structural differences between the mouse (PDB 2MGY

[167]) and R. sphaeroides (PDB 4UC1 [165]) structures. TM1 in the mouse structure is

significantly longer and the top portion of the helix is at a drastically different angle than

the helix in the structure we used in our simulations. While the LP1 region is present in both

structures, the R. sphaeroides sequence has a small α-helix which in the mouse structure

is incorporated into TM1. Finally, the LP1 region in R. sphaeroides has several stabilizing

interactions [165] between non-bonded residues such as between Trp30-Met97, Asp32-Arg43

and Trp39-Gly141 that are not present in the mouse structure. This stabilization limits

the freedom of motion of the LP1 loop, sterically hindering PK-11195 from leaving via the
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LP1 pathway. In addition to TSPO structural differences, previous results were obtained

using a 2:1 POPC:cholesterol lipid bilayer, while our results used an approximately 2.9:1.6:1

mixture of POPC:POPE:POPI lipids. Cholesterol is known to bind to TSPO, although

known binding sites are not close to the TM1-TM2 pathway found here. Differences in lipid

composition could also affect membrane fluidity, which could impact the relative probabilities

of the LP1 and TM1-TM2 pathways. It will be an important goal of future work to parse

the relative impact of these differences (protein sequence, protein structure and membrane

composition) in determining ligand dissociation pathways.

There is interest in designing new TSPO ligands with longer RTs [18, 178]. The ligand

binding transition state is the rate-limiting step of ligand binding and release, which can

also be identified in simulations by a committor probability of 0.5 between the bound and

unbound basins. Here we find that the ligand binding transition state occurs when the ligand

has only minimal direct contact with TSPO, with a Q12 of ∼ 10 Å. In addition to details of

the bound state, this implies that TSPO ligand RT is primarily affected by properties related

to membrane permittivity and diffusivity, such as hydrophobicity. These results lead to the

hypothesis that the membrane composition could have a direct impact on ligand binding

kinetics of PK-11195.

This work also raises questions about membrane insertion and removal along ligand

binding paths. Additional REVO simulations with only PK-11195 and the lipid membrane

could reveal the membrane diffusion coefficient of PK-11195 as well as rate constants for

insertion and removal to form holistic models of membrane-mediated binding that stretch

from solvent to binding site. A larger question is how the presence of other proteins known to

interact with TSPO, such as voltage dependent ion channel (VDAC) [170] and cytochrome

P450s [189] affect the unbinding/binding and insertion/removal pathways. Cholesterol could

also affect the binding pathways of PK-11195, either by binding to TSPO and affecting a

conformational change, or through membrane fluidity, which could affect the (un)binding

rate of PK-11195 as it interacts with the membrane [190].
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Although it is exciting that our predicted RTs come so close to experimental quantities,

some caution should be exercised in making this comparison. First, it has been previously

shown that some simulations using traditional MD force fields do not produce reliable estima-

tions for RT [58]. However, we note that this result was mainly due to a lack of polarizability

in the force field and errors in parameters that overestimate the electrostatic interactions.

In our system, PK-11195 is uncharged and we do not expect these errors from the force field

to dramatically influence the RT. Another thing to note is the experimental MFPT reported

by Costa [18, 178] was determined using human TSPO while our simulations used the struc-

ture from R. sphaeroides containing a A139T mutation. While the mutation was designed

to mimic the human TSPO structure [165], the human and R. sphaeroides sequences have

low homology (30%) which could potentially result in different transition paths, transition

states and unbinding rates. Furthermore, these results emphasize that we should take care

to ensure consistency of the “unbound” state from simulation and experiment. In radioligand

displacement assays, any ligand pose that is not sterically blocking entry of the radiolabelled

competitor ligand would be considered “unbound” [191]. However, in surface plasmon reso-

nance, a ligand would still be considered bound until it dissociated from the detergent that is

bound to the chip along with TSPO. Our simulations show how differences in the definition

of the unbound state can lead to significant differences in RT, and could help rationalize

differences between experimental RTs obtained with different methods.
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CHAPTER 5

ATOMIC-RESOLUTION PREDICTION OF DEGRADER-MEDIATED
TERNARY COMPLEX STRUCTURES BY COMBINING MOLECULAR

SIMULATIONS WITH HYDROGEN DEUTERIUM EXCHANGE

The research conducted in this chapter was done in collaboration with Roivant Discovery. I

prepared, simulated and analyzed the REVO simulations and compared my results with other

methods. Roivant Discovery performed the crystallography, hydrogen deuterium exchange,

docking, and HREMD experiments and analyzed the HREMD experiments to construct the

free energy landscape.

This work is not yet published but is available on BioRxiv [192]. This chapter is an

excerpt from that work, presenting only what pertains to the REVO simulations. The

crystallography section denotes how the reference structure for the ACBI1 PROTAC was

determined and REVO attempts to replicate the warhead conformation from this structure.

The HDX experiments were used to determine what residues are protected from hydrogen-

deuterium exchange when the ternary complex was formed and we created a distance metric

used in REVO to maximize contacts between these residues. The I-RMSD of the bound

states from docking and REVO simulations were compared. The most probable states from

the REVO simulations were projected onto the free energy landscape constructed via the

HREMD simulations.

5.1 Introduction

Heterobifunctional degrader molecules are a class of ligands that induce proximity between

a target protein of interest (POI) and a E3 ubiquitin ligase, which can ultimately lead to

ubiquitination of the POI and its subsequent proteosomal degradation through a complex

machinery of proteins[193]. These degrader molecules provide the opportunity of a novel

therapeutic modality, single molecules induce catalytic turnover of the POI, and potentially

offer an avenue for modulation of targets traditionally labeled as undruggable by classical
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therapeutic strategies [194, 195, 196]. The subset of degrader molecules classified as het-

erobifunctionals, also known as proteolysis-targeting chimera (PROTAC) molecules, consist

of two separate moieties joined by a “linker”; the “warhead” binds to the and the “ligand”

binds to an E3 ligase such as Cereblon [197, 198, 199], cIAP [200], Keap1[201], and the von

Hippel-Lindau disease tumor suppressor (VHL) [202, 203, 204]. In each case it is the ability

of the warhead-linker-ligand degrader molecule to induce a ternary complex that is critical

for bridging the interaction between the POI and an E3 ligase (which can be the native or

non-native degradation partner for the POI).

The formation of the POI-degrader-E3 ternary complex is central to the targeted protein

degradation (TPD) process, but how the formation of the ternary structure impacts protein

degradation is still poorly understood, especially given the dynamic nature of the non-native

induced proximity complex[23]. X-ray crystallography, the primary experimental technique

for determining 3-dimensional structures of the ternary complex [205], provides a high res-

olution structure of a single conformational state, but a growing body of evidence suggests

that the dynamic nature of the ternary structure is integral to the binding cooperativity (the

term used to describe degree to which the binding affinity of ternary complexes are ther-

modynamically different than the binary counterparts) and degradation efficiency. A study

targeting the degradation of Burton Tyrosine Kinase by Cereblon found that optimal protein

removal was achieved through a molecule that induced a non-cooperative ternary complex,

demonstrating a disconnect between binding affinity and degradation efficiency[206]. Simi-

larly, Burton Tyrosine Kinase was also found to non-cooperatively interact with cIAP but

still led to high degradation efficiency[194]. Interestingly, NMR and crystallography revealed

a structural ensemble being sampled by this ternary complex, suggesting specific conforma-

tions could be responsible for efficient downstream ubiquitination[207]. In contrast, studies

with SMARCA2 and VHL found that more cooperative molecules led to higher degradation

efficiency[208]. Furthermore, analysis of the ternary structures revealed a high degree of

similarity despite the fact that the heterobifunctional molecules displayed different degrees
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of degradation efficiency[208], raising questions about relationship between static structural

representations of the the ternary complex and degradation efficiency. These findings and

others[209, 210, 211] suggest that degradation efficiency is more complex than can be un-

derstood through the thermodynamics of binding or static structural analysis. As such,

determining the dynamic ensemble of the ternary complex can reveal mechanistic insights

to facilitate the design of more effective degrader molecules, especially to understand the

relationship between linkers and degradation. [205, 208, 212, 213, 214].

Previous work to computationally predict ternary structures mostly consists of protein-

protein docking protocols, perhaps followed by refinement of the initial structures with molec-

ular dynamics (MD) simulations to assess the stability of the predicted models [208, 214,

215, 216, 217, 218]. However, these docking protocols fail to predict high-resolution struc-

tures (sub-2.0 Å) with high fidelity. That is, while protein-protein docking protocols have

shown some promise in generating structural models of ternary complexes with reasonable

resolution (often characterized as sub-10 Å root mean square deviation (RMSD) to an x-

ray structure), the best structures typically fall somewhere within a long list of possible

poses (often in the hundreds or thousands), demonstrating the challenge associated with the

selection of high-accuracy ternary structure models.

Here, we present an integrated workflow that combines solution-state biophysical tech-

niques with advanced MD simulations to produce atomic resolution structural ensembles

of the ternary complex. Hydrogen-deuterium exchange (HDX) protection data is used as

a collective variable (CV) in the MD simulation, enhancing both the speed and accuracy

of the computational predictions. Furthermore, HDX data is also used as constraints for

protein-protein docking when higher throughput and lower resolution models are sought,

such as when screening many degrader molecules.

We use the weighted ensemble (WE) approach to perform MD simulations at biologically

relevant timescales (from microseconds to milliseconds) across multiple graphics processing

units (from dozens to thousands of simultaneous GPUs). This approach allows for the speed
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and throughput needed to sample the conformational free energy landscape at a sufficient

level to generate robust, high accuracy predictions of the ternary complex structural ensem-

ble. WE utilizes an adaptive sampling procedure where an ensemble of unbiased trajectories

are iteratively simulated and analysed so that computational resources can be optimally

reallocated to regions of interest (e.g. unexplored regions of conformational phase space or

regions of interest based on data from HDX experiments). Trajectories in sparsely populated

regions (i.e. limited data for statistical thermodynamic calculations) are cloned in order to

enhance sampling and high-probability regions with sufficient data for computing statistical

thermodynamic quantities are merged so computational resources can be reallocated to the

sparsely populated regions [71]. The resampling is done such that the probability of the whole

simulation ensemble of “walkers” is tracked in a statistically rigorous manner [44, 76, 75, 219].

We modified a bin-less algorithm called Resampling Ensembles by Variation Optimization

(REVO) [35] to more efficiently sample ternary complex formation, which is implemented in

the open source software package wepy [34]. The work presented here relies on knowledge of

the binding pose of the warhead to the POI and that of the ligand to the E3 ligase, which are

typically known from prior experiments or can be generated with computational tools like

docking or shape-based alignment. Experimental HDX data is used to determine the level

at which residues are shielded from solvent upon ternary complex formation, as compared

to the binary complexes (POI plus degrader or E3 ligase plus degrader).

Our ultimate goal is to understand the structural and dynamic basis for differences in

degradation among a set of degrader molecules. Here, we focus on three different degrader

molecules of the BAF ATPase subunit SMARCA2 isoform 2 that recruit the E3 ligase VHL.

The binding affinities and cooperativity of ternary complex formation and the degradation

efficiency for these three degrader molecules are summarized in Table 5.1.

Ternary complex crystal structures of PROTAC 1 (Protein Data Bank (PDB) ID: 6HAY)

and PROTAC 2 (PDB ID: 6HAX) show slight variations in the interactions and orientation of

the proteins in the ternary structure. In addition, we obtain the crystal structure of the highly
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Table 5.1: Binding affinity (Kd), efficiencies (IC50, DC50), and cooperativity (α) of
PROTAC 1, PROTAC 2, and ACBI1 degraders. Ternary IC50 and binary (SMARCA2)
DC50 values are reported; the cooperativity is the ratio of binary over ternary IC50. Table
adapted from Farnaby et al. [208].

KVHL
d (nM) KSMARCA2

d (nM) IC50 (nM) DC50 (nM) α
PROTAC 1 98 ± 26 4500 ± 480 205 ± 15 300 12
PROTAC 2 100 ± 10 770 ± 51 45 ± 9 N/A 18

ACBI1 250 ± 64 1800 ± 980 26 ± 3 6/3.3 30

cooperative and more efficient degrader ACBI1 (PDB ID 7S4E from the work presented here)

(Section 5.3.1). A static analysis of these crystal structures does not explain the difference in

cooperativity and degradation of these heterobifunctional degrader molecules. To explain the

different degradation profiles of these molecules, we carry out MD simulations and solution

experiments, which reveal insights beyond what is defined by the crystal structure alone

(Section 5.3.2).

Our results show that by including experimental solution-phase HDX data into the REVO

simulations (REVO+HDX) we obtain improved throughput and accuracy of the ternary

structure predictions. Starting from unbound SMARCA2 and VHL structures, REVO+HDX

is able to produce structural models of ternary complexes with Interface-RMSD below 2 Å

from the experimental x-ray crystal structures (Section 5.3.3). Additionally, REVO+HDX

generates an ensemble of bound conformations spanning a free energy basin within 3 kcal/-

mol from the crystal structure (Section 5.3.5). These dynamic models describe an ensemble of

energetically viable structures that could be used to study multiple aspects of the targeted

protein degradation process, including binding kinetics, affinity, selectivity, cooperativity,

ubiquitination, and degradation. We make prospective ternary structure predictions of the

SMARCA2 isoform 1, ACBI1 and VHL:Elongin C:Elongin B, where SMARCA2 isoform 1

has a 17 amino acid extension compared to isoform 2. Our prediction reconciles the HDX

data showing interaction of the isoform 1 extension with a beta-strand from VHL.

We also introduce methodology to determine the conformational free energy landscapes of

these ternary complexes, which is the foundation for quantifying the populations of different
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conformational states. Starting from the crystal structures, we first sample conformations

using a HREMD simulation similar to solute tempering. From these simulations, we choose

structures as seeds to run 10,000 simulations on Folding@Home, totalling approximately 6 ms

of accumulated simulation time. We build a Markov State Model (MSM) [220] that identify

the most probable structures along with their conformational free energies and kinetics of

interconversion, all of which can be used to guide the design of novel degrader molecules.

5.2 Methods

5.2.1 Experimental Methods

5.2.1.1 Cloning, expression and purification of SMARCA2 and VHL/EloB/C

The SMARCA2 gene from Homo sapiens was custom-synthesized at Genscript with N-

terminal GST tag (Ciulli 2019 Nature ChemBio) and thrombin protease cleavage site. The

synthetic gene comprising the SMARCA2 (UniProt accession number P51531-1; residues

1373-1511) was cloned into pET28 vector to create plasmid pL-477. The second construct

of SMARCA2 with deletion 1400-1417 (UniProt accession number P51531-2) was created

as pL-478. For biotinylated SMARCA2, AVI-tag was gene synthesized at C-terminus of

pL-478 to create pL-479. The VHL gene from Homo sapiens was custom-synthesized with

N-terminal His6 tag [208] and thrombin protease cleavage site. The synthetic gene comprising

the VHL (UniProt accession number P40337; residues 54-213) was cloned into pET28 vector

to create plasmid pL-476. ElonginB and ElonginC gene from Homo sapiens was custom-

synthesized with AVI-tag at C-terminus of EloB [213]. The synthetic genes comprising the

EloB (UniProt accession number Q15370; residues 1-104) and EloC (UniProt accession num-

ber Q15369; residues 17-112) were cloned into pCDFDuet vector to create plasmid pL-474.

For protein structural study, AVI-tag was deleted in pL-474 to create pL-524.

For SMARCA2 protein expression, the plasmid was transformed into BL21(DE3) and

plated on Luria-Bertani (LB) medium containing 50 µg/ml kanamycin at 37 °C overnight.
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A single colony of BL21(DE3)/pL-477 or BL21(DE3)/pL-478 was inoculated into a 100-ml

culture of LB containing 50 µg/ml kanamycin and grown overnight at 37 °C. The overnight

culture was diluted to OD600=0.1 in 2 x 1-liter of Terrific Broth medium containing 50 µg/ml

kanamycin and grown at 37 °C with aeration to mid-logarithmic phase (OD600 = 1). The

culture was incubated on ice for 30 minutes and transferred to 16 °C. IPTG was then added to

a final concentration in each culture of 0.3 mM. After overnight induction at 16 °C, the cells

were harvested by centrifugation at 5,000 xg for 15 min at 4 °C. The frozen cell paste from 2

L of cell culture was suspended in 50 ml of Buffer A consisting of 50 mM HEPES (pH 7.5),

0.5 M NaCl, 5 mM DTT, 5% (v/v) glycerol, supplemented with 1 protease inhibitor cocktail

tablet (Roche Molecular Biochemical) per 50 ml buffer. Cells were disrupted by Avestin C3

at 20,000 psi twice at 4 ºC, and the crude extract was centrifuged at 39,000 xg (JA-17 rotor,

Beckman-Coulter) for 30 min at 4 ºC. Two ml Glutathione Sepharose 4 B (Cytiva) was added

into the supernatant and mixed at 4 ºC for 1 hour, washed with Buffer A and eluted with

20 mM reduced glutathione (Sigma). The protein concentration was measured by Bradford

assay, and GST-tag was cleaved by thrombin (1:100) at 4 ºC overnight during dialysis against

1 L of Buffer B (20 mM HEPES, pH 7.5, 150 mM NaCl, 1mM DTT). The sample was

concentrated to 3 ml and applied at a flow rate of 1.0 ml/min to a 120-ml Superdex 75 (HR

16/60) (Cytiva) pre-equilibrated with Buffer B. The fractions containing SMARCA2 were

pooled and concentrated by Amicon® Ultracel-3K (Millipore). The protein concentration

was determined by OD280 and characterized by SDS-PAGE analysis and analytical LC-MS.

The protein was stored at –80 ºC.

For VHL/EloB/C protein expression, the plasmids were co-transformed into BL21(DE3)

and plated on Luria-Bertani (LB) medium containing 50 µg/ml kanamycin and 50 µg/ml

streptomycin at 37 °C overnight. A single colony of BL21(DE3)/pL-476/474 or BL21(DE3)/pL-

476/524 was inoculated into a 100-ml culture of LB containing 50 µg/ml kanamycin and 50

µg/ml streptomycin and grown overnight at 37 °C. The overnight culture was diluted to

OD600=0.1 in 6 x 1-liter of Terrific Broth medium containing 50 µg/ml kanamycin and 50
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µg/ml streptomycin and grown at 37 °C with aeration to mid-logarithmic phase (OD600 =

1). The culture was incubated on ice for 30 minutes and transferred to 18 °C. IPTG was

then added to a final concentration of 0.3 mM in each culture. After overnight induction

at 18 °C, the cells were harvested by centrifugation at 5,000 g for 15 min at 4 °C. The

frozen cell paste from 6 L of cell culture was suspended in 150 ml of Buffer C consisting

of 50 mM HEPES (pH 7.5), 0.5 M NaCl, 10 mM imidazole, 1 mM TCEP, 5% (v/v) glyc-

erol, supplemented with 1 protease inhibitor cocktail tablet (Roche Molecular Biochemical)

per 50 ml buffer. Cells were disrupted by Avestin C3 at 20,000 psi twice at 4 ºC, and the

crude extract was centrifuged at 17000 g (JA-17 rotor, Beckman-Coulter) for 30 min at 4

ºC. Ten ml Ni Sepharose 6 FastFlow (Cytiva) was added into the supernatant and mixed

at 4 ºC for 1 hour, washed with Buffer C containing 25 mM imidazole and eluted with 300

mM imidazole. The protein concentration was measured by Bradford assay. For protein

crystallization, His-tag was cleaved by thrombin (1:100) at 4 ºC overnight during dialysis

against 1 L of Buffer D (20 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT). The sample

was concentrated to 3ml and applied at a flow rate of 1.0 ml/min to a 120-ml Superdex 75

(HR 16/60) (Cytiva) pre-equilibrated with Buffer D. The fractions containing VHL/EloB/C

were pooled and concentrated by Amicon® Ultracel-10K (Millipore). The protein concen-

tration was determined by OD280 and characterized by SDS-PAGE analysis and analytical

LC-MS. The protein was stored at –80 ºC. For the Surface plasmon resonance (SPR) assay,

10 mg VHL/EloB/C protein complex was incubated with BirA (1:20), 1 mM ATP and 0.5

mM Biotin and 10mM MgCl2 at 4 ºC overnight, removed free ATP and Biotin by 120-ml

Superdex 75 (HR 16/60) with the same procedure as above, and confirmed the biotinylation

by LC/MS.

5.2.1.2 Hydrogen Deuterium Exchange Mass Spectrometry

Our HDX analyses were performed as reported previously with minor modifications [221,

222, 223]. HDX experiments were performed using a protein stock at the initial concentra-
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tion of 200 µM of SMARCA2, VCB in the APO, binary (200 µM PROTAC ACBI1) and

ternary (200 µM PROTAC ACBI1) states in 50 mM HEPES, pH 7.4, 150 mM NaCl, 1 mM

TCEP, 2% DMSO in H2O. The protein samples were injected into the nanoACQUITY sys-

tem equipped with HDX technology for UPLC separation (Waters Corp. [224]) to generate

mapping experiments used to assess sequence coverage. Generated maps were used for all

subsequent exchange experiments. HDX was performed by diluting the initial 200 µM pro-

tein stock 13-fold with D2O (Cambridge Isotopes) containing buffer (10 mM phosphate, pD

7.4, 150 mM NaCl) and incubated at 10 °C for various time points (0.5, 5, 30 min). At the

designated time point, an aliquot from the exchanging experiment was sampled and diluted

1:13 into D2O quenching buffer containing (100 mM phosphate, pH 2.1, 50 mM NaCl, 3M

GuHCl) at 1 °C. The process was repeated at all time points, including for non-deuterated

samples in H2O-containing buffers. Quenched samples were injected into a 5-µm BEH 2.1 X

30-mm Enzymate-immobilized pepsin column (Waters Corp.) at 100 µl/min in 0.1% formic

acid at 10 °C and then incubated for 4.5 min for on-column digestion. Peptides were collected

at 0 °C on a C18 VanGuard trap column (1.7 µm X 30 mm) (Waters Corp.) for desalting

with 0.1% formic acid in H2O and then subsequently separated with an in-line 1.8µMHss

T3 C18 2.1 X 30-mm nanoACQUITY UPLC column (Waters Corp.) for a 10-min gradient

ranging from 0.1% formic acid to acetonitrile (7 min, 5–35%; 1 min, 35–85%; 2 min hold 85%

acetonitrile) at 40 µl/min at 0 °C. Fragments were mass-analyzed using the Synapt G2Si

ESL-Q-ToF mass spectrometer (Waters Corp.). Between injections, a pepsin-wash step was

performed to minimize peptide carryover. Mass and collision-induced dissociation in data-

independent acquisition mode (MSE) and ProteinLynx Global Server (PLGS) version 3.0

software (Waters Corp.) were used to identify the peptides in the non-deuterated mapping

experiments and analyzed in the same fashion as HDX experiments. Mapping experiments

generated from PLGS were imported into the DynamX version 3.0 (Waters Corp.) with

quality thresholds of MS1 signal intensity of 5000, maximum sequence length of 25 amino

acids, minimum products 2.0, minimum products per amino acid of 0.3, minimum PLGS
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score of 6.0. Automated results were inspected manually to ensure the corresponding m/z

and isotopic distributions at various charge states were assigned to the corresponding pep-

tides in all proteins (SMARCA2, VHL, ElonC, ElonB). DynamX was utilized to generate

the relative deuterium incorporation plots and HDX heat map for each peptide. The relative

deuterium uptake of common peptides was determined by subtracting the weighted-average

mass of the centroid of the non-deuterated control samples from the deuterated samples

at each time point. All experiments were made under the same experimental conditions

negating the need for back-exchange calculations but therefore are reported as relative [225].

All HDX experiments were performed twice, on 2 separate days, and a 98 and 95% con-

fidence limit of uncertainty was applied to calculate the mean relative deuterium uptake

of each data set. Mean relative deuterium uptake thresholds were calculated as described

previously [221, 222, 223]. Differences in deuterium uptake that exceeded the error of the

datasets were considered significant.

5.2.1.3 Structural Determination of SMARCA2:ACBI1:VHL Complex

Purified SMARCA2 and VCB in 50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT were

incubated in a 1:1:1 molar ratio with ACBI1 for 1 hour at room temperature. Incubated com-

plex was subsequently injected on to a Superdex 10/300 GL increase (Cytiva) pre-incubated

with 50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT, 2% DMSO at a rate of 0.5 mL/min

to separate any noncomplexed partners from the properly formed ternary complex. Eluted

fractions corresponding to the full ternary complex were gathered and spun concentrated to

14.5 mg/mL using an Amicon Ultrafree 10K NMWL Membrane Concentrator (Millipore).

Crystals were grown 1-3 µL hanging drops by varying the ratio of protein to mother liquor

from 0.5-2:0.5-2 respectively. Crystals were obtained in buffer consisting of 0.1 M HEPES,

pH 7.85, 13% PEG 3350, 0.2 M sodium formate incubated at 4 ◦C. Crystals grew within the

first 24 hours but remained at 4 ◦C for 5 days until they were harvested, cryo protected in an

equivalent buffer containing 20% glycerol and snap frozen in LN2. Diffraction data was col-
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lected at NSLS2 beamline FMX (λ=0.97932 Å) using an Eiger X 9M detector. Crystals were

found to be in the P 21 21 21 space group with unit cell dimensions of a= 80.14, b= 116.57, c=

122.23 Å, where α= β= γ=90◦. Crystal contained two copies of the SMARCA2:ACBI1:VCB

(VHL, ElonC, ElonB) complex within the asymmetric unit cell. The structure was solved

by performing molecular replacement with CCP4i2 [226] PHASER using PDB ID 6HAX as

the replacement model. MR was followed by iterative rounds of modeling (COOT [227]) and

refinement (REFMAC5 [228, 229, 230, 231, 232, 233, 234, 235, 236]) by standard methods

also within the CCP4i2 suite. Structures were refined to Rwork/RFreeof 23.7%/27.5%.

5.2.2 Computational Methods

5.2.2.1 Unbound System Preparation

In this chapter, we will be using weighted ensemble to predict the Probable global tran-

scription activator SNF2L2 (SMARCA2) and the VHL-PROTAC ternary complex for three

different PROTACS: ACBI1, PROTAC1, and PROTAC2. The ternary complexs for PRO-

TAC1 and PROTAC2 can be found in PDB 6HAY and PDB 6HAX respectively and ternary

complex for ACBI1 was solved in this chapter.

The simulation box of the unbound complex was solvated with explicit waters and counter

ions were added to neutralize the net charge of the system. The ACBI1 system has 24, 093

water molecules, 9 chlorine ions. The PROTAC 1 system has 21191 water molecules and 10

chlorine ions. The PROTAC 2 simulations has 31, 567 water atoms and 9 chlorine ions. We

used the Amber ff14SB force field for the proteins and TIP3 water model. All systems were

placed in rectangular boxes, with dimensions: 123 Å x 76 Å x 98 Å for the ACBI1 system

131Å x 84Å x 84Å for the PROTAC 1 system and 144Å x 89Å x 91Å for the PROTAC

2 system. We used Amber ff14SB force fields for the protein and a TIP3 water model.

The PROTAC molecular parameters were generated using in-house FFGEN/FFEngine tool.

The PROTACs began each simulation bound to the VHL protein with the goal to bind the
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VHL-PROTAC complex to SMARCA2.

5.2.2.2 Molecular Dynamics

All MD simulations were performed using OpenMM[114] v7.5.1. The time step for every

simulation was 2 fs. To enforce constant temperature and pressure, a Langevin heat bath

was used with a set temperature of 300K and a friction coefficient of 1 ps−1 was coupled to

a Monte Carlo barostat set to 1 atm and volume moves were attempted every 50 time steps.

The non-bonded forces were computed using the CutoffPeriodic function in OpenMM with

a cutoff of 10 Å. The atomic positions and velocities are saved every 10, 000 time steps, or

every 20 ps of simulation time, which is the resampling period (τ) used here. The degrader-

VHL complex was constrained to maintain the complex during the simulation by using a

OpenMM custom centroid force defined as:

Centroid Force = k ∗ (dist− edist)2, (5.1)

where the dist is the distance between the center of mass of PROTAC and the center of mass

of VHL and the edist is the distance between the center of mass of PROTAC and center of

mass of VHL of the crystal structure, and k is a constant set to 2 kcal/mol ∗ Å2.

5.2.2.3 Generating Bound Ensemble

The bound ternary complex was made using the same procedure as described in Section

5.2.2.1 The PROTAC1 system used PDB:HAY for its starting conformation, the PROTAC2

system used PDB:HAX as its initial conformation and the ACBI1 system used PDB:7S4E.

Straight forward MD was performed on the bound structures for 1µs each using the same

parameters as described in Section 5.2.2.2 without the constraining force between VHL and

the PROTAC. We then cluster the simulations into 25 cluster representatives using a vector

describing if two residues are within 4.5 Å of each other. These 25 cluster representatives

are the bound ensemble and will be used as reference structures for future calculations.
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5.2.2.4 REVO-epsilon Weighted Ensemble method

To observe binding of the VHL-PROTAC complex and SMARCA2 we apply a variant of

the weighted ensemble algorithm REVO. Each cycle of the REVO algorithm is comprised

of two parts: semi-independent MD trajectories performed in parallel and resampling. Each

of the MD trajectories (called "walkers") has a statistical weight (w) that contributes to

statistical observables. All simulations ran with 48 walkers. After a trajectory time of τ we

perform resampling. In resampling similar walkers are merged together and unique walkers

are cloned, as defined by a distance metric. During cloning, the weight is evenly divided

between the resultant clones and, when walkers are merged, the weights are combined to

ensure the conservation of probability.

We will describe the application of the REVO algorithm as it pertains to this study, but

a more detailed explanation can be found in previous works[35, 34] and in Chapters 2 and 4.

The goal of the REVO resampling algorithm is to maximize the variation function defined

as:

V =
∑
i

Vi =
∑
i

∑
j

(
dij
d0

)α
φiφj, (5.2)

where Vi is the walker variation, dij is the distance between walkers i and j determined using

a specific distance metric, d0 is the characteristic distance used to make the distance term

dimensionless, set to 0.148 for all simulations, the α is used to determine how influential the

distances are to the walker variation and was set to 6 for all the simulations. The novelty

terms φi and φj are defined as: φi = log(wi)−log
(
pmin

100

)
. The minimum weight, pmin, allowed

during the simulation was 10−50. The walker with the highest variance, Vi and when the

weights of the resultant clones would be larger than pmin, and is within distance ε of the

walker with the maximal progress towards binding of the ternary complex was proposed to

be cloned. The two walkers selected for merging were within a distance of 2 (̊A) and have a

combined weight larger than the maximal weight allowed, pmax, which was set to 0.1 for all
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REVO simulations. The merge pair also needed to minimize:

Vjwi − Viwj
wi + wj

, (5.3)

If the proposed merging and cloning operations increase the total variance of the simulation,

the operations are performed and we repeat this process until the variation can no longer be

increased. After resampling is complete, we begin a new cycle.

5.2.2.5 Distance Metrics

Three different distance metrics were used while simulating the PROTAC 2 system: Using the

warhead RMSD to the crystal structure, maximizing the contact strength between protected

residues identified by HDX data, and a linear combination of the warhead RMSD, contact

strength between HDX-protected residues, and the contact strength between SMARCA2 and

the degrader. The simulations for the other systems used the last distance metric exclusively.

To compute the warhead RMSD distance metric, we aligned to the binding site atoms on

SMARCA2, defined as atoms that were within 8 Å of the warhead in the crystal structure.

Then the RMSD was calculated between the warhead in each frame and the crystal structure.

The distance between a set of walkers i and j is defined as: d = | 1
RMSDi

− 1
RMSDj

|. The

contact strength is defined by determining the distances between residues. We calculate

the minimum distance between the residues and use the following to determine the contact

strength:

strength =
1

1 + e−k(r−r0)
, (5.4)

where k is the steepness of the curve, r is the minimum distance between any 2 residues and

r0 is the distance we want a contact strength of 0.5. We used 10 for k and 5 Å for r0. The

total contact strength was the sum of all residue-residue contact strengths. The distance

between walkers i and j was calculated by: d = |csi − csj| where cs is the contact strength

of a given walker.
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5.2.2.6 Ternary complex docking protocol

For the purpose of quick filtering through a large number of degrader designs, we take

advantage of the conventional restriction of molecular flexibility used in molecular docking

methods. Following [237, 217] (Methods 4 and 4b) and [216], we assume that high fidelity

structures of :warhead (i.e., SMARCA2 isoform 2:PROTAC binding moiety) and E3:ligand

(i.e., VHL:PROTAC binding moiety) are known and available to be used in protein–protein

docking. This docking of two proteins with bound PROTAC moieties is performed in the

absence of the linker. The conformations of linker are sampled independently with an in-

house developed protocol that uses implementation of fast quantum mechanical methods,

CREST [238, 239, 240]. Differently from the docking protocols described in [237, 217, 216],

we make use of the distance restraints derived either from the end-to-end distances of the

sampled conformations of linker, or from the HDX data. Thus, before running the protein-

protein docking, we generate an ensemble of conformers for linkers and calculate the values

of mean (x0) and standard deviation (sd) for the end-to-end distance. This information is

then used to set the distance restraints in the RosettaDock software [241, 242]:

f1(x) = (
x− x0

sd
)2, (5.5)

where x is the distance between a pair of atoms in a candidate docking pose (the pair of

atoms is specified as the attachment points of the linker to warhead and ligand).

When information about the protected residues is available from HDX experiments, we

used them to set up a set of additional distance restraints:

f2,i(x) =
1

1 + exp(−m · (x− x0))
− 0.5, (5.6)

where i is the index of a protected residue, x0 is the center of the sigmoid function and m is

its slope. As above, x0 value was set to be the mean end-to-end distance calculated over the

ensemble of linker conformers. The value of m was set to be 2.0 in all the performed docking

115



experiments. The type of RosettaDock-restraint is SiteConstraint, with specification of Cα

atom for each protected residue and the chain-ID of partnering protein (i.e., x in Eq.(5.6) is

the distance of Cα atom from the partnering protein). Thus, the total restraint-term used

in docking takes the form:

frestr(x) = w · (f1(x) +
∑
i

f2,i(x)), (5.7)

where w = 10 is the weight of this additional score function term.

RosettaDock implements a Monte Carlo-based multi-scale docking algorithm that sam-

ples both rigid-body orientation and side-chain conformations. The distance-based scoring

terms, Eq. (5.7), bias sampling towards those docking poses that are compatible with spec-

ified restraints. This allows to limit the number of output docking structures, as only those

ones that pass the Metropolis criterion with the additional term of Eq. (5.7) will be consid-

ered.

Once the docking poses are generated with RosettaDock, all the pre-generated conforma-

tions of the linker are structurally aligned onto each of the docking predictions [216]. Only

those structures that satisfy the RMS-threshold value of ≤ 0.3 Å are saved as PDB files.

All the docking predictions are re-ranked by the values of Rosetta Interface score (Isc). The

produced ternary structures are examined for clashes, minimized and submitted for further

investigations with MD methods.

5.2.2.7 HREMD simulation

The details of HREMD [243, 244] are shown in Figures 5.1 and 5.2, and Tables 5.2 and 5.3.

For all HREMD simulations, we chose the effective temperatures, T0 = 300 K and Tmax = 425

K such that the Hamiltonian scaling parameter, λ0 = 1.00 and λmin = 0.71 for the lowest and

the highest rank replicas respectively. The effective temperatures of intermediate replicas

are listed in Table 5.3. We estimated the number of replicas (n) in such a way that the

average exchange probabilities (p) between neighboring replicas were in the range of 0.3 to
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0.4. We used n=20 and n=24 for SMARCA2:degrader:VHL and SMARCA2:degrader:VCB

respectively. Each simulation was run for 0.5 µs/replica, and a snapshot of a complex was

saved every 5 ps (total 100,001 frames per replica). Finally, we performed all the analyses

on only the loREVOt rank replica that ran with original/unscaled Hamiltonian.

Figure 5.1: Potential energy of all replicas from HREMD simulation of Sys7. Left to right:
rank0 to rank19. A good overal between adjacent replicas suggests a sufficient number of
replicas were employed and also confirmed no phase transition took place during the
HREMD simulation.

We assessed the efficiency of sampling by observing (i) the values of p (Tables 5.2 and

5.3), (ii) a good overlap of histograms of potential energy between adjacent replicas ( Figure

5.1), and (iii) a mixing of exchange of coordinates across all the replicas (Figure 5.2).

5.2.2.8 Conformational free energy landscape determination

In order to quantify to the conformational free energy landscape, we performed dimension

reduction of our simulation trajectories using Principal Component Analysis (PCA). First,

the simulation trajectories were featurized by calculating interfacial residue contact distances.

Pairs of residues were identified as part of the interface if they passed within 5 Å of each other
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Figure 5.2: Effective temperature trajectories of replicas 0 (red), 5 (blue), 10 (green) and
19 (grey) from HREMD simulation of Sys7

.

during the simulation trajectory, where the distance between two residues was defined as the

distance between their closest heavy atoms. PCA was then used to identify the features that

contributed most to the variance by diagonalizing the covariance matrix; for each simulated

system, the number of features used in our analysis was chosen as that which explained at

least 95% of the variance.

After projecting the simulation data onto the resultant feature space, snapshots were

clustered using the k-means algorithm. The number of clusters k was chosen using the

“elbow-method”, i.e. by visually identifying the point at which the marginal effect of an ad-

ditional cluster was significantly reduced. In cases where no “elbow” could be unambiguously
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Table 5.2: Details of HREMD simulations. Protein complexes, number of atoms in a
simulation box, number of replicas used and the aggregate length of the simulations are
listed.

ID Complex # of atoms # of replicas Aggregate
length (µs)

Sys1 SMARCA2-iso1:ACBI1:VHL 116,254 20 10
Sys2 SMARCA2-iso1:ACBI1:VCB 220,573 24 12
Sys3 SMARCA2-iso2:ACBI1:VHL 117,256 20 10
Sys4 SMARCA2-iso2:ACBI1:VCB 234,724 24 12
Sys5 SMARCA2-iso2:PROTAC 1:VHL 137,347 20 10
Sys6 SMARCA2-iso1:PROTAC 2:VHL 69,696 20 10
Sys7 SMARCA2-iso2:PROTAC 2:VHL 68,820 20 10
Sys8 SMARCA2-iso2:PROTAC 2:VCB 119,082 24 12

identified, k was chosen to be the number of local maxima of the probability distribution in

the PCA feature space. Interestingly, the centroids determined by k-means approximately

coincided with such local maxima, consistent with the interpretation of the centroids as local

minima in the free energy landscape.

To prepare the Folding@home simulations, HREMD data was featurized with interface

distances and its dimensionality reduced with PCA as described above. The trajectory

was then clustered into 98 k-means states, whose cluster centers were selected as ’seeds’

for Folding@home massively parallel simulations. The simulation systems and parameters

were kept the same as for HREMD and loaded into OpenMM where they were energy

minimized and equilibrated for 5 ns in the NPT ensemble (T = 310 K, p = 1 atm) using

the openmmtools Langevin BAOAB integrator with 2 fs time step. 100 trajectories with

random starting velocities were then initialized on Folding@home for each of the seeds. The

final dataset consists of 9800 trajectories, 5.7 milliseconds of aggregate simulation time, and

650 ns median trajectory length. This dataset is made publicly available at:

https://console.cloud.google.com/storage/browser/paperdata.

For computational efficiency, the data was strided to 5 ns/frame, featurized with closest

heavy atom interface distances (as described above), and projected into Time-structure Inde-
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pendent Components Analysis (TICA) space at lag time 5 ns using commute mapping. The

dimensionality of the dataset was reduced to 339 dimensions, keeping the number of TICA

necessary to explain 95% of kinetic variance. The resulting TICA space was discretized into

1000 microstates using k-means. The MSM was then estimated from the resulting discretized

trajectories at lag time 50 ns using a minimum number of counts for ergodic trimming (i.e.

the ’mincount_connectivity’ argument in PyEMMA) of 4, as the default setting resulted

in a trapped state whose connectivity between simulation sub-ensembles starting from two

different seeds was observed only due to clustering noise. The validity of the MSM was

confirmed by plotting the populations from raw MDcounts vs. equilibrium populations from

the MSM, which is a useful test, especially when multiple seeds are used and the issue of

connectivity is paramount. A hidden Markov model (HMM) was then computed using 5

macrostates to coarse-grain the transition matrix.

5.2.2.9 Calculating Interface RMSD

The quality of the structures produced by the REVO simulations were judged based on the

similarity between the interface of the simulated SMARCA2-VHL complex to the bound

ensemble. The SMARCA2-VHL interface was defined as residues between the two proteins

with a maximum distance of 10 Å. The backbone of these residues are superimposed onto

the reference structure. The interface root mean square deviation (I-RMSD) is then defined

as the RMSD of Cα atoms between the simulated structure and the reference structures.

This calculation is calculated for every structure in the bound ensemble and the minimum

value is reported.
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Table 5.3: Details of HREMD simulations. Effective temperatures and average exchange
probabilities of neighboring replicas are listed.

ID Eff. temperature, Ti (K) Avg. exchange prob. (p)
Sys1 300, 306, 311, 317, 0.30, 0.30, 0.30, 0.29,

323, 329, 335, 341, 0.29, 0.29, 0.29, 0.30,
347, 354, 360, 367, 0.31, 0.29, 0.29, 0.31,
374, 381, 388, 395, 0.32, 0.31, 0.29, 0.31,
402, 410, 417, 425 0.29, 0.31, 0.33

Sys2 300, 305, 309, 314, 0.27, 0.29, 0.29, 0.32,
319, 324, 329, 334, 0.31, 0.29, 0.32, 0.32,
339, 344, 349, 354, 0.29, 0.39, 0.36, 0.29,
360, 365, 371, 377, 0.30, 0.30, 0.30, 0.30,
382, 388, 394, 400, 0.31, 0.31, 0.29, 0.31,
406, 412, 419, 425 0.31, 0.31, 0.34

Sys3 300, 306, 311, 317, 0.35, 0.31, 0.31, 0.29,
323, 329, 335, 341, 0.30, 0.32, 0.30, 0.32,
347, 354, 360, 367, 0.33, 0.34, 0.33, 0.35,
374, 381, 388, 395, 0.35, 0.35, 0.32, 0.34,
402, 410, 417, 425 0.33 0.35, 0.39

Sys4 300, 305, 309, 314, 0.37, 0.38, 0.30, 0.30,
319, 324, 329, 334, 0.39, 0.39, 0.30, 0.34,
339, 344, 349, 354, 0.30, 0.30, 0.31, 0.28,
360, 365, 371, 377, 0.37, 0.39, 0.39, 0.36,
382, 388, 394, 400, 0.38, 0.31, 0.31, 0.31,
406, 412, 419, 425 0.41, 0.32, 0.33

Sys5 300, 306, 311, 317, 0.31, 0.32, 0.33, 0.34,
323, 329, 335, 341, 0.31 0.35, 0.35, 0.30,
347, 354, 360, 367, 0.36, 0.32, 0.36, 0.36,
374, 381, 388, 395, 0.32, 0.31, 0.31, 0.35,
402, 410, 417, 425 0.35, 0.33, 0.38

Sys6 300, 306, 311, 317, 0.28, 0.27, 0.30, 0.28,
323, 329, 335, 341, 0.28 0.28, 0.29, 0.29,
347, 354, 360, 367, 0.30, 0.29, 0.31, 0.31,
374, 381, 388, 395, 0.31, 0.29, 0.30, 0.29,
402, 410, 417, 425 0.32, 0.32, 0.30

Sys7 300, 306, 311, 317, 0.29, 0.30, 0.30, 0.29,
323, 329, 335, 341, 0.31, 0.30, 0.29, 0.29,
347, 354, 360, 367, 0.32, 0.30, 0.34, 0.31,
374, 381, 388, 395, 0.30, 0.32, 0.31, 0.34,
402, 410, 417, 425 0.33, 0.34, 0.32

Sys8 300, 305, 309, 314, 0.26, 0.28, 0.30, 0.28,
319, 324, 329, 334, 0.34, 0.27, 0.34, 0.32,
339, 344, 349, 354, 0.25, 0.34, 0.32, 0.33,
360, 365, 371, 377, 0.31, 0.30, 0.31, 0.27,
382, 388, 394, 400, 0.23, 0.25, 0.32, 0.31,
406, 412, 419, 425 0.31, 0.29, 0.27
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5.3 Results

5.3.1 Degraders with different efficiency induce similar ternary complex struc-
tures in X-ray crystallography.

The ternary complexes of SMARCA2 isoform 2 and the VHL/ElonginC/ElonginB (VCB)

induced by different heterobifunctional degraders have been studied extensively [245, 208]. In

particular, PROTAC 1, PROTAC 2, and ACBI1 are three prominent degrader molecules that

induce a ternary SMARCA2 isoform 2:VCB complex and have quite different degradation

efficiencies (see Table 5.1). Whereas crystal structures of the ternary complexes induced

by PROTAC 1 (PDB ID: 6HAY) and PROTAC 2 (PDB ID: 6HAX) exist, none has been

reported to date for ACBI1, the most potent degrader among them. Thus, to study the effect

of different degraders on the ternary complex, we determined, as a first step, the structure

of SMARCA2 isoform 2:VHL liganded by ACBI1 via X-ray crystallography. The structure

was obtained using similar conditions as reported before (see Methods) [208] and solved by

molecular replacement to 2.25 Å in the highest resolution shell (Table 5.4), using 6HAX as

the search model (Figure 5.3a).

The degrader molecule bridges the induced interface, forming contacts with both proteins.

Importantly, the ligand induces “cooperative contacts” between several amino acids of the

two proteins, such as VCB:ARG69 and SMARCA2 isoform 2:PHE1463 (Figure 5.3 b,c).

SMARCA2 isoform 2:ASN1464 makes critical bivalent contacts to the aminopyridazine group

of ACBI1, positioning the terminal phenol group for pi stacking interactions with residues

PHE1409 and TYR1421 (Figure 5.3b,c).

On the VHL side of the interface, the interactions between TYR98 and ACBI1 are consis-

tent with those between the same residue and PROTAC 1 or PROTAC 2 (Figure 5.3b,c) [208].

The three degraders PROTAC 1, PROTAC 2, and ACBI1 bind to VHL in a near-identical

fashion as their superposition reveals, upon aligning the VHL protein (see Figure 5.3d).
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Table 5.4: Crystallographic table for protein crystal structure 7S4E
SMARCA2-iso2:ACBI1:VHL.

Data collection
Space Group P 21 21 21
Cell Dimension
a, b, c, (Å) 80.14, 116.57, 122.32
α, β, Ɣ (˚) 90, 90, 90
Resolution (Å) 2.25 (2.31-2.25)*
Rmerge 0.15
<I/𝛔I> 1.27*
Completeness (%) 99.9(37.89-2.25)
Redundancy 7.4

Refinement
Resolution (Å) 2.25
No. Reflections 52206
Rwork/Rmerge 21.9/25.9
No. Atoms 7356

Protein 7070
Ligand/Ions 196

Water 90
B factors

Mean B value 61.19
Ligand/Ions 57.66

Water 53.56
R.M.S deviations
Bond length (Å) 0.009
Bond angles (Å) 1.519

* Denotes values obtained for the highest-resolution shell.

Smarca 2BD: ACBi1 : 
VCB
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Figure 5.3: Ternary complex of SMARCA2 and VCB induced by ACBI1 shows structural
similarities with PROTAC 1 and PROTAC 2: a Overall perspective of SMARCA2 Isoform
2 (green) and VHL/ElonginC/ElonginB (grey) induced by degrader molecule ACBI1
(bright orange). b ACBI1-induced interface contacts between SMARCA2 and VCB. The
proteins are shown in space-filling, the colors are as in a, annotated residues are among
those that make the highest number of contacts (see c). c A contact map for the interface
of the crystal structure. The circle size reflects the number of atoms (including hydrogen
atoms) participating in interactions. d Superposition of 6HAY (purple), 6HAX (salmon),
7S4E (green) by aligning VHL (grey) shows varied conformations of the warheads of the
three degraders PROTAC 1, PROTAC 2, or ACBI1 (up to 1.7 Å) resulting in alterations of
SMARCA2 within the ternary complex.
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Nonetheless, the minor differences in the linker compositions, e.g. the ACBI1 linker has one

additional ether group compared to the PROTAC 2 linker, yields a slight 1.7 Å twist of

ACBI1 compared to the other two degraders, resulting in a subtle 5 Å “swing” of the protein

(Figure 5.3d).

Our results show that, despite the differences in the linker compositions, the protein-

protein interface induced by ACBI1 is structurally similar to that induced by PROTACs 1

or 2 [208]. Notwithstanding, the markedly different degradation efficiencies between these

degraders[208] suggest that the (dynamic) ensemble of ternary complex structures may be

fairly different among them. Consistent with other studies [207, 194], this implies that

“crystallographic snapshots” are not suitable to provide a holistic view of the ensemble of

all possible ternary complex structures in solution, but merely represent a subset of the

relevant conformations favored by crystallization [246]. Consequently, such X-ray structures

cannot fully capture the dynamic nature of the degrader-induced ternary complexes, which

ultimately determines their activities and degradation efficiencies [207, 194].

5.3.2 Hydrogen Deuterium Exchange Reveals Extended Protein-Protein Inter-
faces

In order to assess the impact of different degrader molecules on the dynamic nature of

the SMARCA2 isoform 2:VCB interactions, we performed hydrogen-deuterium exchange of

the respective APO, binary and ternary (complex) species, thus characterizing the protein-

protein interface in solution. This approach is a promising alternative to previous attempts

at characterizing degrader ternary complexes that employed multiple crystal structures [207],

nuclear magnetic resonance (NMR) [194]. Based on previously established protocols [221,

247, 223], and with the knowledge of binding constants for each of the three degraders,

complex formation was determined and each protein was also found to have a 100 % sequence

coverage (see 5.4) and stable deuterium exchange (see 5.5 and 5.6). To ascertain the degree

of protection from solvent in the binary or ternary complex, the residue-specific uptake of
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the APO or binary species was subtracted from that of the corresponding residues in the

binary or ternary state (referred to as Binary∆APO and Ternary∆Binary), respectively. The

results are summarized in difference plots that highlight the statistically significant (95% or

98% confidence interval) protection of distinct sites (see Figure 5.8a-d for the SMARCA2

isoform 2:VCB complex induced by ACBI). Importantly, protection during HDX arises due

to changes in the environment around the observed residues, which could be a result of direct

occlusion of solvent or conformational changes [225].

Figure 5.8a reveals that large regions of SMARCA2 isoform 2 become protected upon

ternary complex formation (see Ternary∆Binary difference plot). These stretches of pro-

tected residues, e.g. amino acids 1409-1422 and 1456-1470, overlap with the ligand bind-

ing site based on the ternary complex structure published in this work (7S4E) and those

published previously (6HAY, 6HAX), which confirms the similarity of the ternary complex

interface among the three degrader molecules discussed above. Additionally, there are also

stretches of protected amino acids, 1394-1407, that are too distant from the established

binding interface to result from complex formation (Figure 5.8a and f). Interestingly, the

Binary∆APO difference plot suggests that the SMARCA2 isoform 2-ligand binary complex

was unstable under our experimental conditions (the ligand concentration is close to the

dissociation constant), as there is no substantial difference between the HDX of SMARCA2

isoform 2 in presence and in absence of the ligand (Figure 5.8a and e).

On the VCB side of the interface, large regions of VHL, which resides at the direct

interface of the protein complex, are protected in the presence of the ligand as indicated

by the Binary∆APO difference plot (Figure 5.8b and e). The most protected residues in

the binary state are centered around amino acids 87-116, which include all 9 residues in the

ligand binding site of VHL. However, there is a large amount of protection across the entire

protein indicating the presence of a large allosteric network across the protein [248]. In the

presence of SMARCA2 isoform 2 (see Figure 5.8b, Ternary∆Binary difference plot), much

of the allosteric network due to ligand binding can be subtracted away leaving only the most
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Figure 5.4: Peptic coverage map of proteolyzed proteins SMARCA2, VHL, Elongin C and
Elongin B.
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Figure 5.5: Relative uptake heat map of HDX exchange data of all PROTAC molecules 1,
2 and ACBI1 bound to binary and Ternary State SMARCA2 isoform 2 bromo domain.

significantly protected residues due to ternary complex formation (Figure 5.8b and f). In

particular, residues 60-72, which house the critical interaction of ARG69 show significant

protection due to ternary complex formation (Figure 5.8b and f).

Additionally, we observe continued protection of residues 166-176 and residues 187-201 on

VHL (Figure 5.8b and f) as well as some regions on Elongin B and C that show protection

upon ternary complex formation (see Figure 5.8c and d). Although these sites are distal

from the binding interface, they spatially align with one another when mapped onto the

structure (Figure 5.8c) potentially uncovering a critical network of allosteric changes induced

by ACBI1.

These changes that are not observed in the snapshot provided by crystallography help

explain how this molecule vastly improves biological function, i.e., perhaps by changing the

orientation of the ligase to target lysine residues on SMARCA2 isoform 2, as suggested by

our simulations of the SMARCA2 isoform 2:VCB complex (see below).
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Figure 5.6: Relative uptake heat map of HDX exchange data of all PROTAC molecules 1,
2 and ACBI1 bound to binary and Ternary State VHL.
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Figure 5.7: Relative uptake heat map of HDX exchange data of all PROTAC molecules 1,
2 and ACBI1 bound to binary and Ternary State Elongin C.

5.3.3 Efficient simulation of ternary complex formation using REVO Weighted
Ensemble simulations

We simulate the formation of a degrader ternary complex with the weighted ensemble path

sampling approach. This method has been employed before for tasks such as protein-protein

binding [249]. It is noteworthy, however, that the pre-defined CVs in the current simulations

are not informed by structural data about the ternary complex interface from X-ray crystal-

lography experiments. In particular, we employ the WE variant: REVO[35], which optimizes

an objective function called the trajectory variation (see Methods). Here we compare the

performance of the REVO algorithm with three different distance metrics: 1) differences in

the warhead RMSD, (RMSD between the target binding domain of the PROTAC between

the reference structure and a simulation frame, hereby called w-RMSD); 2) differences in

target-ligase contacts; 3) a weighted combination of metrics 1, 2, and the differences in con-

tacts between the target and the PROTAC for the PROTAC 2 system, hereby called the
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Figure 5.8: ACBI-induced ternary complex formation of SMARCA2 isoform 2:VCB leads
to protection of specific sites:a-d, SMARCA2 isoform 2(a), VHL(b), Elongin C(c), and
Elongin B(d) monitored for hydrogen-deuterium exchange over time. The difference plots
of each protein in the binary and ternary states are generated by subtracting the deuterium
exchange of like peptides of the APO or binary from the binary or ternary states (defined
as Binary∆APO and Ternary∆Binary), respectively. Regions that exchange significantly
less than the comparative state are depicted in blue (negative), whereas regions that
exchange significantly more appear in red (positive). The resultant difference plots of the
binary (e), or ternary complex (f) were mapped onto the structure 7S4E. The experiments
were repeated on 2 separate days.
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triple distance metric. The residues selected to compute the target-ligase contacts used in

distance metrics 2 and 3 were selected based on residues that showed increased protection

from hydrogen-deuterium exchange based on the HDX experiments. Between three and

seven REVO simulations are run for each distance metric on the SMARCA2-VHL-PROTAC

2 system, and a summary of their performance is given in Table 5.5.

Table 5.5: A summary of the performance of REVO simulations run with different distance
metrics. Each REVO simulation ran with 48 walkers. The number of binding events
(Nbinding) counts the barrier crossings into the bound state, defined using an I-RMSD
< 2.0 Å. The number of simulations with binding events (Sims. w/ binding) shows the
probability of binding success. The total simulation time (Sim. time) aggregates the length
of all trajectories in each REVO simulation.

Distance Metric Nbinding Sims. w/ binding Sim. time (µs)
W-RMSD 5327 6/7 13.44
Target-Ligase Contacts 5876 2/7 13.44
Triple 3278 6/7 12.5

Encouragingly, we observe a large number of binding events with all three distance metrics

examined here. The triple distance metric found the least number of binding events at 3278,

whereas the target-ligase contacts distance metric sees the most binding events (5876 binding

events).

We find that the low I-RMSDs are achieved early in the REVO simulations, with the

minimum I-RMSD reaching ∼2.5 Å and stabilizing after about 500 ns of aggregate simulation

time, whereas the vanilla MD simulation we ran plateaued at 10 Å after 1.35µs of simulation

(Figure 5.9a,b). When comparing between the distance metrics both w-RMSD and the triple

distance metrics were able to find sub-2 Å structures within an aggregate simulation time of

200 ns, whereas it took the target-ligase contacts distance metric 800 ns to find structures

of the same quality (Figure 5.9b). This indicates that using the degrader orientation to the

binding site may be required to quickly and consistently generate low I-RMSD structures.

Figure 5.10 shows an example of a structural prediction obtained for SMARCA2 isoform

2-PROTAC 2-VHL (PDB ID 6HAX [208]). The contact maps presented in Figure 5.10c

have been obtained by the Arpeggio software [250] applied to the ternary interfaces. Each
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point on the contact maps reflects the degree of interaction. As can be seen from both the

aligned prediction and co-crystallized structure (Figure 5.10d) and from the contact map

(panel (Figure 5.10c), the accuracy of prediction is very high.

We performed clustering on all structures produced by the 6HAX simulations by a k-

means clustering algorithm into 500 macrostates using the Cα − Cα distances on residues

determined from the HDX experiments. Low I-RMSD states all have low values of w-RMSD

(as expected) (Figure 5.9c). High free energy states have a large range of both I-RMSD

values. However, the low free energy states are coincidentally below 10 Å. Five of the lowest

free energy states have I-RMSD values below 3 Å.

Determining the I-RMSD of the ensemble is only possible when we have a crystal struc-

ture for the ternary complex. When trying to filter many possible degraders, it is not always

feasible to solve these structures for every compound. Therefore, we need to rely on other

physical quantities for predicting acceptable structures in such cases. We developed two

definitions of the bound ensemble for the REVO simulations: 1) Using w-RMSD below

2 Å and 2) Using w-RMSD below 2 Å and more than 30 residue-residue contacts between

the target and ligase residues that showed increased protection from hydrogen-deuterium

exchange obtained from the HDX experiments. The first definition was used on the simu-

lations where we used the warhead distance metric and the second definition was used for

the target-ligase contacts and triple distance metrics. Using these definitions of the bound

ensemble to filter our simulations, REVO simulations with and without HDX were able to

sample low I-RMSD regions (below 2 Å), and the probability distributions had peaks below

this I-RMSD threshold (Figure 5.11a). However, using the HDX data limited the bound

ensemble to a maximum I-RMSD of about 4 Å whereas not including the HDX data allowed

a broad bound distribution that had a maximum at 8 Å. Using this definition for the bound

ensemble, 43% of structures that met this criteria had I-RMSD values below 2 Å, whereas

the bound ensemble generated from REVO simulations not using HDX only selected con-

formations with an I-RMSD below 2 Å at 38% (Figure 5.11b). This definition of the bound
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Figure 5.9: Comparing the w-RMSD, number of target-ligase contacts, and triple distance
metrics (Linear combination of w-RMSD, target-ligase contacts and number of
target-PROTAC contacts). (a) The minimum I-RMSD over time during the simulation for
the triple distance metric. Each green line indicates one replica and the black line is the
average between all runs. The blue line is a straightforward MD simulation run on
Folding@home. (b) The minimum I-RMSD for each distance metric. (c) A scatter plot of
the free energy vs the I-RMSD after clustering the 6HAX simulations. The circles are
colored by w-RMSD. (d) The predicted binding rates for PROTAC 1 system (purple) and
the ACBI1 system (green). The black line is the experimental on-rate determined via SPR.

ensemble had 90% of structures below 3 Å I-RMSD for REVO+HDX simulations. However,

only 51% of structures in the REVO bound ensemble were below 3 Å. It is worth noting that

both the target-ligase contacts and triple distance metric both use HDX data to help guide

the simulations. However, the target-ligase contacts metric did not produce low w-RMSD

structures, the lowest being just below 6 Å and thus did not contribute the the bound ensem-

ble via this definition. Using this definition for the bound ensemble, we find that adding the

HDX data during REVO, we have a higher likelihood of finding structures at lower I-RMSD

compared to when we run simulations without HDX.
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PDB: 6HAX

REVO + HDX

Figure 5.10: Illustration of the representative prediction produced by REVO simulation
and its comparison to the co-crystallized structure (PDB ID: 6HAX) (a) predicted ternary
structure with I-RMSD=1.1 Å; (b) detail of the binding interface; (c) contact maps for the
interfaces of co-crystallized and predicted structures. The circle size reflects the number of
atoms (including hydrogens) participating in interactions; (d) structurally aligned
prediction (green) and co-crystallized structure (pink) with a detailed PROTAC 2
comparison shown.
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All the above analysis was done using the PROTAC 2 system. We also performed three

1.96 µs simulations for the PROTAC 1 and ACBI1 systems using the triple distance metric,

totaling 5.88 µs for each system. All the simulations for these two systems were able to

produce structures of quality I-RMSD, the lowest being 0.69 Å for PROTAC 1 and 0.47 Å

for ACBI1.

We next predict the on-rates on the three different PROTACs (Table 5.6) using the flux

into the bound state as defined when the state reaches an I-RMSD below 2 Å. For PROTAC

1 and ACBI1, our predicted rates are on the same order of magnitude as experiment (Fig-

ure 5.9d). For PROTAC 2, we were unable to experimentally determine the on-rate so we

simply report the rate predicted by simulation. However, for all three rates there were large

errors. This is due to the weighted ensemble algorithm being slow to converge. To obtain

better statistics, more simulation time is needed.

Table 5.6: Comparison of kon rates between simulation and experiment for the ACBI1
PROTAC 1, and PROTAC 2 systems. The experimental rate for PROTAC 2 has not been
determined yet.

PROTAC Predicted Rate (M−1s−1) Experimental Rate (M−1s−1)
ACBI1 3 ∗ 105 ± 2 ∗ 105 2.4 ∗ 105

PROTAC 1 10 ∗ 105 ± 8 ∗ 105 2.9 ∗ 105

PROTAC 2 2.2 ∗ 102 ± 1.7 ∗ 102 N/A

5.3.4 HDX improves prediction of ternary complex using docking

Molecular docking is a very popular method for high-throughput predictions of binding poses,

that follows a protocol of sampling, searching, and scoring these predictions. Considering

the computational cost of the REVO+HDX method described above, docking is a viable

alternative to the simulation approach in obtaining different conformations of the flexible

degrader ternary complexes in a less resource-intensive and more timely fashion.

To demonstrate the usefulness of HDX data for more accurate structural predictions,

we show that incorporating experimentally retrieved distance restraints into the docking

protocol significantly improve its sensitivity (see Figure 5.11). Importantly, unlike Zhang et
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al. [251], who derived restraints from chemical cross-linking experiments, or Eron [252], who

revised the post-sampling scoring, our approach imposes distance restraints based on the

statistics of the linker length in a degrader molecule – at the sampling stage (see Methods).

Figure 5.11a shows the improvement in docking predictions when augmented by HDX

data as the distribution of I-RMSDs (with respect to the crystal structure) for the top-100

predictions is shifted toward smaller values upon incorporating the experimentally derived

restraints (green compared to orange profile). In particular, when focusing on subsets of

highly accurate structure predictions, i.e., I-RMSD < 2 Å, 2.5 Å, or 3 Å (see Figure 5.11b),

for which, as described above, the improvement of REVO upon adding information from

HDX was measurable, the performance of the docking protocol is significantly improved.

Although REVO+HDX consistently outperforms the HDX-enhanced docking routine, it is

striking how strongly the incorporation of HDX data can boost the accuracy of this docking

protocol. Therefore, considering the significantly less computational cost of this approach

(75 CPU hours for 3 independent replicas) compared to the REVO method (300 A40 GPU

hours), docking, in combination with HDX, is a useful tool for the quick filtering of a large

number of degrader designs.

5.3.5 Conformational sampling of ternary complexes

Our HDX data suggest that the protein complexes studied here are dynamic and sample sev-

eral distinct bound conformations. We use HREMD simulations to identify these structures

and quantify the free energy landscape of these complexes. First, we perform PCA of the in-

terface distances observed in our HREMD simulations in order to reduce the dimensionality

of the simulation data. The probability distribution of the highest-variance features allow us

to measure a more easily interpretable free energy landscape from our simulation data than

would be possible otherwise. We find that the landscape of each protein complex contained

several local minima differing by only a few kcal/mol.

Using k-means clustering in the PCA feature space, we then identify distinct clusters
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Figure 5.11: Comparing the bound ensembles determined by docking and REVO
simulations with and without information from HDX for the PDB ID 6HAX ternary
complex. The REVO bound ensemble is defined as structures below a warhead RMSD of
2 Å and more than 30 contacts between the target and ligase interface. The docking bound
basin is defined as the 100 top structures as determined by Rosetta-scoring. (a) Probability
density function distributions of I-RMSD values for the bound ensembles. (b) The percent
of structures in the predicted bound ensembles below specific I-RMSD thresholds (2 Å,
2.5 Å, and 3 Å).
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Figure 5.12: Most populated structures of SMARCA2 bound to VHL with different
degrader molecules, identified by dimension reduction and clustering of HREMD simulation
data. (a-d) Colors of VHL and SMARCA2 represent HDX protection in the presence of
the degrader molecules relative to the situation in the absence of the degrader. The second
ranked structures of c PROTAC 2 and d isoform 1 SMARCA2 are displayed that support
HDX data, whereas the top three structures are included in Figure 5.13. Elongin B and
Elongin C are also included in panel d. e The top structures of ternary complexes are
compared after aligning VHL to illustrate conformational differences among top structures
of ternary complexes.
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Figure 5.13: Cluster centroids from the three highest populated structures of
SMARCA2-iso2 bound to VHL via (a) ACBI1, (b) PROTAC 1, and (c) PROTAC 2, along
with their populations. Less populated structures are omitted.

Figure 5.14: Free energy landscapes determined from PCA projections of SMARCA2-iso2
bound to VHL via (a) ACBI1, (b) PROTAC 1, and (c) PROTAC 2. Red points indicate
k-means centroids.
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of conformations. Cluster centers roughly correspond to local minima in the free energy

landscape, see Figure 5.14. The clusters identified by k-means are consistent with our HDX

protection data. Figure 5.12 shows that interface residues that were found to be protected

in HDX experiments are observed to interact in either the most populated or second most

populated cluster identified by k-means. Notably, this analysis shows that in the second

most populated structure of Iso1-ACBI1-VCB, the helix formed by the 17 residue extension

of isoform 1-SMARCA2 interacts with a beta sheet of VHL, Figure 5.12d, in accordance

with HDX experiments that found this beta sheet to be protected in presence of Iso1, but

not in the presence of Iso2. Similarly, highly populated structures of Iso2-ACBI1-VHL and

Iso2-PROTAC2-VHL show contact between residues that were observed to be protected in

HDX experiments with these PROTACs, but not with PROTAC 1, while the most populated

structure of PROTAC 1 does not show these contacts.

We selected 98 representative structures from HREMD data to use as initial configura-

tions for Folding@home (F@H) simulations of Iso2-PROTAC2-VHL. Each initial condition

was cloned 100 times and run for ∼ 650 ns, for a total of ∼ 6 ms of simulation data. These

independent MD trajectories provide the basis for fitting a MSM[253], which provides a full

thermodynamic and kinetic description of the system and allows for the prediction of ex-

perimental observables of interest [220]. First, we used time-lagged independent component

analysis (tICA) [254] to determine a projection of the underlying MD data. The distance

between points in the TICA feature space corresponds roughly to kinetic distance.

The MSM predicts a stationary probability distribution on TICA space that is in general

different from the empirical distribution of our simulation data. Interestingly, the MSM

predicts that the the crystal structure is 1.5 kcal/mol higher in free energy than the global

free energy minimum, while the bound structures obtained from our REVO simulations are

∼ 1.5− 3.5 kcal/mol above the global minimum, Figure 5.15a-c. The model also predicts a

metastable state with free energy 2.2 kcal/mol (Figure 5.15e).

This model is coarse-grained to obtain a five-state MSM, of which the following three
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Figure 5.15: a Conformational free energy landscape as a function of the first two TICA
features of SMARCA2-PROTAC2-VHL ternary complex inferred from a MSM. The
ensemble of bound states from REVO simulations is shown as blue points; the crystal
structure (PDB ID 6HAX) is shown as a red X. In this projection, states II and V are close
to state I. b Network diagram of the coarse-grained MSM calculated using a lag time of 50
ns, with the stationary probabilities associated with each state indicated. c mean first
passage time (MFPT) from one state in the MSM to another. Numbers indicate predicted
MFPTs in µs. d-e Comparison of the crystal structure (gray) with the lowest free energy
state (cyan) and a metastable state (orange) predicted by the MSM. Arrows indicate a
change of orientation relative to d.
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Figure 5.16: Contact maps from the (a) co-crystallized structure 6HAX ; (b) global
minimum state and (c) metastable state identified by our MSM.
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states are of particular interest: the global minimum state (or state I) with a stationary

probability of 0.63, the metastable state III with 0.10 probability, and state IV, to which

the experimental crystal structure can be assigned and which has a stationary probability

of 0.05. The global minimum state differs from the crystal structure 6HAX by an I-RMSD

of 3.6 Å, while the metastable state has an I-RMSD of 4.8 Å relative to the crystal struc-

ture. The global minimum state is stabilized by a large number of protein-protein contacts

(Figure 5.16). Contacts between VHL and PROTAC 2 are largely unchanged between the

metastable and global minimum states, likely due to the tight interaction between VHL and

the PROTAC. On the other hand, the metastable state lacks contacts between PROTAC

2 and ARG29, ASN90, and ILE96 of SMARCA2. The area of the binding interface was

substantially increased in both the metastable and global minimum states relative to the

crystal structure: the global minimum state had a buried surface area of 2962 Å2, compared

to 2800 Å2 for the metastable state and 2369 Å2 for the crystal structure.

5.4 Discussion

Ternary complex formation is a critical step in the process of targeted protein degradation.

However, studying the dynamic nature of ternary degrader complexes has posed challenges to

the field due to the size of the system, degrees of flexibility, timescales for biological motions,

and limited solution-phase experimental data. Here, we studied the structure and dynamics

of three different degrader molecules of SMARCA2 that have similar thermodynamic binding

profiles and crystal structure conformations but different degradation efficiencies. We solved

the crystal structure of the ternary complex bridged by ACBI1 (PDB ID: 7S4E), which re-

vealed a potential structural and dynamic aspect of the degradation profiles, which led to

a series of solution-phase experimental studies and MD simulations in an effort to explain

and predict the degradation profiles. HDX coupled with extensive MD simulations enabled

the generation of atomic resolution representations of the dynamic ensembles. We high-

lighted the conformational landscape of SMARCA2:PROTAC 2:VHL, for which we carried
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out 6 ms of accumulated simulation time using the Folding@home distributed supercom-

puter cluster. We propose an enhanced-seeding method that includes HREMD simulations

of the ternary complex, extraction of a modest number of seed structures (100 in the work

presented here), and independent simulations starting from each seed using Folding@home.

We applied TICA for dimensionality reduction and built a MSM to assess the conforma-

tional free energy landscape and transitions between low-energy states. We found that the

experimentally determined crystal structure is close to, but not coinciding with, the global

minimum in the free energy landscape, although it is within 2 kcal/mol from the global

minimum. By coarse-graining the MSM, we were able to identify five low-energy structures

that contain different protein-protein interfaces between SMARCA2 and VHL. A less com-

putationally costly solution was also explored, where we found that only 0.5 µs of lowest

rank/unbiased replica of HREMD (aggregate 12µs with 24 replicas) gave us a qualitatively

similar conformational landscape with the same global minimum, albeit a lower resolution

free energy surface. Thus, we proceeded to run HREMD on other systems of interest (PRO-

TAC 1, ACBI1, and isoform 1 of SMARCA2; see Table 5.2 for number of replicas used and

aggregate length for each system). Simulation analyses of the most probable structures for

each of these ternary complexes show that ACBI1 and PROTAC 1 have different orientations

of SMARCA2 relative to VHL, with PROTAC 2 sampling both orientations. We propose

that this sampling procedure can be replicated for other target and E3 ligase complexes,

since no target-specific information was used for the simulations in this work other than the

starting x-ray structure coordinates.

We then explored the prediction of the ternary complex itself, using the binary structures

of the known binding mode of the ligase ligand binding to VHL and warhead binding to

SMARCA2, which is typically known in advance of designing heterobifunctional degrader

molecules. We developed a protocol using REVO that is able to produce a 3-dimensional

structural ensemble of high accuracy structures using the RMSD to the bound pose of the

warhead as CV: we find structures less than 2Å I-RMSD within 2-3 kcal/mol from the most
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probable conformation of the ternary complex. The addition of experimental solution-phase

HDX protection factor data, which identifies residues that are most likely to be precluded

from solvent interactions in the context of the ternary structure, further increased the quality

of the predictions. Similarly, we discovered that HDX data can improve docking results,

although, overall docking has lower quality than the REVO simulations, likely due to the

minimal sampling of internal protein degrees of freedom and lack of explicit solvent. We made

publicly available all relevant simulation data and the source code for running REVO+HDX.

To further validate the REVO+HDX procedure, we performed a prospective prediction of

the ternary complex of isoform 1 SMARCA2, with a 17 amino acid extension, the structure

of which was previously unknown. Our ternary complex predictions suggest ways that the

SMARCA2 extension is interacting with a beta-strand from VHL, explaining the observed

HDX protection pattern. The REVO+HDX method provides an opportunity to visualize,

at an atomistic level, the molecular interactions that guide ternary structure formation for

complexes with previously known crystal structures. The ultimate goal is to uncover the

solution-phase structural ensembles adopted by the target ligase pair, which appear to ex-

tend beyond what is observed using conventional structure determination methods. This

information may provide a better representation of the factors that influence ternary com-

plex formation, ultimately leading to downstream ubiquitination. Moreover, knowledge of

critical atomic interactions provides a basis for alternative strategies to improve degrader

designs, such as modifying linkers to induce specific conformational ensembles of the ternary

complex that are associated with higher degradation. REVO+HDX is also able to recapit-

ulate experimental kon for ternary and binary complex formation.
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CHAPTER 6

SUMMARY OUTLOOK AND IMPACT

In section 1.3 we outline the goals of this thesis. Now we go back to these overall goals and

discuss the progress, what improvements can be made and the impact on the field in general.

The first goal of the thesis is to model and characterize the binding and unbinding events

for systems of interest, which was successful for all systems studied in this thesis. It is

worth noting however that the REVO algorithm was modified for each system. This is not

surprising as the complexity of the simulation goal increases the parameters and algorithm

might need to be optimized to be able to successfully simulate the desired phenomena.

In Chapters 2 and 4 we characterized these pathways with detailed Markov State Models

(MSM)s constructed from high dimensional data. For the TSPO system, we are able to

model multiple pathways between the bound and unbound states. We also were able to

identify key residues the ligand interacted with along these unbinding pathways.

While we were able to simulate (un)binding pathways, it is unlikely that we were able to

sample all likely pathways. To obtain a more complete picture of the (un)binding landscape

for a given force field we can:

• Run longer simulations.

• Run more replicate simulations.

• Optimize the REVO parameters.

• Use distance metrics that better represent the system.

• Run simulations with more walkers.

• Develop or utilize more efficient algorithms.
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Knowledge of the (un)binding pathway can help guide ligand design with more opti-

mal kinetic properties. In particular, the results from Chapter 4 suggest a new pathway

for PK-11195 unbinding through the membrane, where only dissociation into the solvent

was previously published. The pathway determined in this thesis indicates that altering

the lipophobicity of PK-11195 based compounds would affect the unbinding pathway and

could significantly alter the residence time (RT). Additionally, an Roivant Discovery is using

the results presented in Chapter 5 to design new proteolysis-targeting chimera (PROTAC)

molecules.

The second goal was to accurately predict observables, such as rate constants, RT and

∆Gbind that can be compared to experiments. It is difficult to determine if the rates were

accurate for the systems present in the SAMPL6 challenge as, to our knowledge, these

quantities have not been published. However, we do know the ∆Gbind. Using the conventional

definition for ∆Gbind we were off between 2.80 (OA-G4) and 5.10 (CB8-G3) kcal/mol from

experiment. After applying the correction factors and running additional simulations on the

OG-G6 system we were able to reduce the error to a maximum of 1.13 kcal/mol. Simulating

the binding and unbinding is not the most computationally efficient method to predict free

energy, but our simulations provide additional insight to the (un)binding mechanisms. The

rates calculated for TSPO are hard to compare against experiment because the only published

TSPO-PK-11195 unbinding rates are for the human protein, and we used a bacterial strain

from Rhodobacter sphaeroides in our simulations. However, multiple starting poses showed

unbinding rates within an order of magnitude over different rate calculation methods.

While we were able to predict kinetic rates, there are several sources of error. The first

is that the use of the WE algorithm leads to high variation between runs as this method

requires long simulations to be able to produce adequate sampling to confidently predict

rates. Additional there are errors associated with the force fields, which dictates the atomic

motion in these simulations which in turn affects the path dependent rate prediction. Finally

there is a potential inconsistency between the boundary conditions used in our work with
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those used in experiment to decide if a ligand is (un)bound. For example in radioligand

displacement assays, any ligand pose that is not sterically blocking entry of the radiolabelled

competitor ligand would be considered “unbound” [191]. This does not indicate that the

ligand has stopped interacting with the POI, merely that it is not blocking the radioligand

from binding. Therefore, caution should be used when comparing the kinetic rates between

different methods.

The final goal was to be able to use experimental data to help guide the REVO simulations

to simulate a rare event, in particular binding of protein-PROTAC dimer to the target

protein. When performing binding simulations, it is not always feasible to experimentally

determine the bound structure as a reference beforehand, especially if there is a large set of

ligand candidates. Furthermore, a particular crystal structure is not necessarily indicative of

the conformations a given complex will take in solution. We need other forms of experimental

data to help determine if the simulation has successfully discovered the bound basin. In

Chapter 5, we were able to use protected residues identified by hydrogen deuterium exchange

(HDX) experiments to predict which residues would be in contact in the ternary complex,

and developed distance metrics to guide the simulations to maximize those contacts and

compared this metric to a ligand root mean square deviation (RMSD) based distance metric.

Both distance metrics were able to simulate the ternary complex formation. However, the

simulations guided by HDX data had a higher probability of predicting bound structures

with lower I-RMSDs after filtering using features from docking and HDX experiments.

Implementing experimental results into simulations is not just limited to distance metrics

constructed in this thesis. Experimental data could also be helpful in designing a binning

scheme in WE simulations. In the case of HDX data, the number of contacts between a pro-

tein and ligand could be used in ligand (un)binding simulations. Additionally, experimental

data can be used to determine the CV being simulated along in potential energy biasing

simulations such as metadynamics.

This thesis set out to use MD simulations to help model potential (un)binding pathways of
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biologically relevant systems and test the validity of these pathways by predicting quantities

such as kinetics that can be compared to experiment, which we did successfully. We first

began with a test system to verify the REVO algorithm, and we were able to determine these

pathways and use the kinetics to accurately calculate the binding free energy. We then moved

to simulate the unbinding of PK-11195 from TSPO, an event that takes about 30 minutes

experimentally and were able to model it dissociating into the membrane and predicted RTs

that were on the same timescale as experiment. We finally simulated the formation of a

ternary complex between a VHL-PROTAC dimer and SMARCA2 and evaluated how well

different distance metrics were able to reach the bound state.
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