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ABSTRACT

THREE VARIATIONS ON JOHNSON-LINDENSTRAUSS MAPS FOR SUBMANIFOLDS OF
EUCLIDEAN SPACE VIA REACH

By

Arman Tavakoli

In this thesis we investigate 3 variations of the classical Johnson-Lindenstrauss (JL) maps. In one

direction we build on the earlier work of Wakin and Eftekhari (2015), by considering generalizations

to manifolds with boundary. In a second direction we extend the work of Noga Alon (2003) for

lower bounds for the final embedding dimension in JL maps. In the third direction, we consider

matrices with fast matrix-vector multiply and improve the run-time in the earlier work of Oymak,

Recht and Soltanolkotabi (2018), and Ailon and Liberty (2009).

This thesis is organized into 6 chapters. The three variations are discussed in chapters 4, 5 and

6. The variation for manifolds with boundary is presented in chapter 4. The lower bound problem

is discussed in chapter 5, and chapter 6 is regarding the run-time improvements. The first chapter is

an introduction to Johnson-Lindenstrauss maps. The second chapter is about a regularity parameter

called reach and geometrical estimates for manifolds. The third chapter is regarding two geometry

questions about reach that arise from the discussions in chapter 2.
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CHAPTER 1

INTRODUCTION

In this thesis we study different variations of Johnson-Lindenstrauss (JL) maps. A great source

for learning about such maps is the textbook of Roman Vershynin, High Dimensional Probability,

[35, Chapter 5]. The variations we consider are based on the theme of improving existing bounds

for JL maps, but they come in different flavors such as sufficient conditions, necessary conditions

or runtime time complexity bounds.

In this chapter we give an introduction to JL maps and discuss some of the tools that are used

in their construction.

1.1 Johnson-Lindenstrauss Maps

JL maps belong to the general field of dimension reduction (also known as dimensionality reduc-

tion). Informally, given 𝑇 as a subset of R𝑁 , a JL map associated to 𝑇 is a map that reduces 𝑁

while preserving the “geometry of 𝑇”, i.e. 𝐿 : R𝑁 → R𝑚 with 𝑚 < 𝑁 such that 𝑇 and 𝐿 (𝑇)

have the “same geometry”. There are many possible interpretations for a rigorous replacement for

preserving the geometry. Perhaps the most strict requirement would be to ask for preservation of

all pairwise Euclidean distances; that would mean for 𝑥, 𝑦 ∈ 𝑇 ,

| |𝐿 (𝑥 − 𝑦) | |2 = | |𝑥 − 𝑦 | |2 (1.1)

where | |.| |2 is the Euclidean norm. For an example one can consider 𝐿 to be the projection onto

the span of 𝑇 . If 𝑇 is a finite set, then its span is at most a |𝑇 |-dimensional subspace. If |𝑇 | < 𝑁 , 𝐿

would satisfy the above requirements and it would be the simplest example of a map that “preserves

the geometry” of 𝑇 while reducing its ambient dimension. In this example the final embedding

dimension is at most the number of points. With condition (1.1), this number is also necessary;

consider 𝑛 points with all the pairwise distances equal to 1. Such an arrangement can be embedded

intoR𝑁 for 𝑁 large enough, but it can not be found when the dimension is strictly less than 𝑛−1. For
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𝑛 = 3, 4 this is the familiar fact that an equilateral triangle doesn’t fit in R1 or a regular tetrahedron

doesn’t fit in R2. Relaxing (1.1) allows us to reduce the ambient dimension more.

One could be less strict and allow the map to distort the pairwise distances, but in a controlled

manner. In this way, given 0 < 𝜖 < 1 and 𝑥, 𝑦 ∈ 𝑇 we require

(1 − 𝜖) | |𝑥 − 𝑦 | | ≤ | |𝐿 (𝑥 − 𝑦) | | ≤ (1 + 𝜖) | |𝑥 − 𝑦 | |. (1.2)

Inequality (1.2) is known as the JL condition. In this sense, if we consider 𝑇 as a metric space

with the chordal metric, the JL map is a metric space embedding. With condition (1.2), we have a

celebrated theorem known as the Johnson-Lindenstrauss lemma.

Theorem 1.1.1. [35, Theorem 5.3.1] Let 𝑇 be a set of 𝑛 points in R𝑁 and 𝜖 > 0. Let 𝑃 be an

orthogonal projection onto a random 𝑚-dimensional subspace in R𝑁 selected uniformly in the

Grassmanian 𝐺𝑁,𝑚. Then there are universal constants 𝑐1, 𝑐2 such that if

𝑚 ≥ 𝑐1
log(𝑛)
𝜖2 . (1.3)

then with probability at least 1 − 2 exp(−𝑐2𝜖
2𝑚), the scaled projection

𝑄 =

√︂
𝑁

𝑚
𝑃

satisfies

(1 − 𝜖) | |𝑥 − 𝑦 | | ≤ | |𝑄(𝑥 − 𝑦) | | ≤ (1 + 𝜖) | |𝑥 − 𝑦 | |. (1.4)

The main tool for proving this theorem is the concentration of measure. In this proof technique

one estimates the expected length of a vector under all projections. One calculates the averaged

length of that vector when it is projected onto all possible directions. Then by the concentration of

measure, most projections do almost the same as the average, with a small probability for deviation.

Having obtained a failure probability for a single vector, we apply it
(𝑛
2
)

times to get an estimate

for all pairwise secants. We use the union bound to combine the the failure probabilities over the

different vectors and we get the claimed result.
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The bound (1.3) is logarithmic in the number of points. This is a improvement compared

to the discussion for (1.1) where we saw a linear bound. The price to pay for this logarithmic

improvement is to tolerate the 1
𝜖2 factor coming from the distortion 𝜖 . The break even point would

be 𝜖 =
√︃
𝑐1 log(𝑛)

𝑛
. As long as we allow 𝜖 to be larger that this threshold, the JL lemma offers a great

improvement.

The bound (1.3) is also independent of 𝑁 . This property makes the JL maps robust for applica-

tions in dimension reduction since it allows them to handle models that encode their data in spaces

with large 𝑁 .

A remarkable property of the above theorem is that it is possible to design the JL map before

knowing the data (the 𝑛 points). This property is known as being oblivious, and is essentially the

result of introducing probability and allowing for a controllable chance of failure. Since the expres-

sions for the probability only depend on the number of points, and not where they are, one can pick

a map from all the possible projections before we know the data, and with high probability (1.2)

would still be satisfied. The obliviousness makes this technique very useful and robust in appli-

cations since the dimension reduction technique becomes decoupled from the intricacies of the data.

The next step is to construct a JL map for infinite points. The theorem mentioned above depends

explicitly on the number of points. However it is possible to give a different variation, known as

the matrix deviation inequality [35, theorem 9.1.1], where the embedding dimension depends on

how the vectors are spread out in different directions, through a quantity called Gaussian width (we

will describe it below), or a variation of it called Gaussian complexity. The deviation inequality

also differs from the JL lemma discussed above because it works with Gaussian random matrices

instead of random projections. Informally given 𝑇 ⊂ R𝑁 , the matrix deviation inequality says that
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with high probability

| |𝐴𝑥 | | = E| |𝐴𝑥 | | + O(𝛾(𝑇)), for all 𝑥 ∈ 𝑇 (1.5)

where 𝐴 is a Gaussian random matrix, E is the expectation (average) operator and 𝛾(𝑇) is the

Gaussian complexity of 𝑇 . Conceptually (1.5) tells us that the length of a vector in a set 𝑇 after

its is mapped by a random a matrix A is, with a high chance, closer than O(𝛾(𝑇)) to the average

length. Compared to the earlier discussion about pairwise distances, this perspective is different

because we only consider individual vectors. To transition from one to the other, we form a set of

all pairwise secants and work with that set of vectors.

A quantitative version of the matrix deviation inequality, with tail bounds, is as follows.

Theorem 1.1.2. [35, theorem 9.1.1 and 9.1.8] Let 𝐴 be a 𝑚 × 𝑁 matrix whose rows 𝐴𝑖 are

independent isotropic and sub-Gaussian random vectors in R𝑁 . Let 𝐾 = max𝑖 | |𝐴𝑖 | |𝜓2 where 𝜓2 is

the sub-Gaussian norm. Let 𝑇 ⊂ R𝑁 with Gaussian width 𝜔(𝑇). Then there is a universal constant

𝐶 such that for 𝑢 ≥ 0, the probability of event

sup
𝑥∈𝑇

��| |𝐴𝑥 | | − √
𝑚 | |𝑥 | |

�� ≤ 𝐶𝐾2 [𝜔(𝑇) + 𝑢 rad(𝑇)] (1.6)

is at least 1 − 2 exp(−𝑢2).

Here rad(𝑇) is the radius of the smallest ball that can contain 𝑇 . Again in this theorem we

transition from earlier pairwise distances 𝑥 − 𝑦 in theorem 1.1.1 to individual vectors with 𝑥 only.

We note that all vectors of the form 𝑥−𝑦
| |𝑥−𝑦 | | are put into a set 𝑇 and theorem 1.1.2 is applied to this

set. The proof of this theorem is based on the generic chaining technique [35, chapter 9]. The

term
√
𝑚 | |𝑥 | | acts as the average E| |𝐴𝑥 | |. The right hand sides is the deviation from the mean. To

achieve a higher success probability, we must allow for a larger deviation.

If we have a choice over 𝑚, by dividing both sides of (1.6) by
√
𝑚 and choosing 𝑚 large enough

we can bound the deviation to an error 𝜖 of our choosing. In this sense, a large enough 𝑚 allows us

to construct an oblivious 𝐽𝐿 map for any set in terms of its Gaussian width.
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Now we discuss the Gaussian width. We present two ways to think about it. One way is

using probability and Gaussian random variables. The second way is geometrical, and doesn’t use

probability. Having the different view points allows us to switch from one to the other depending

on the application. The probabilistic definition is as follows.

Definition 1.1.3. [35, Definiiton 7.5.1] Let 𝑔 be a standard Gaussian random vector, 𝑔 ∼ 𝑁 (0, 𝐼𝑁 ).

The Gaussian width of a subset 𝑇 ⊂ R𝑁 is defined as

𝜔(𝑇) = E sup
𝑥∈𝑇

⟨𝑔, 𝑥⟩. (1.7)

With an absolute value E sup𝑥∈𝑇 |⟨𝑔, 𝑥⟩|, one gets the Gaussian complexity of T, denoted by

𝛾(𝑇). In general 𝜔(𝑇) ≤ 𝛾(𝑇) but if 𝑇 is origin-symmetric then 𝜔(𝑇) = 𝛾(𝑇).

To get an interpretation of how Gaussian width measures the width of a set, first we need the

concept of spherical width. Then we show how it relates to Gaussian width.

Definition 1.1.4. [35, Definition 7.5.5] The spherical width of a subset𝑇 ⊂ R𝑁 is defined as follows

where 𝜃 is a direction uniformly distributed in S𝑁−1, 𝜃 ∼ Unif(𝑆𝑁−1).

𝜔𝑠 (𝑇) = E sup
𝑥∈𝑇

⟨𝜃, 𝑥⟩ (1.8)

Figure 1.1 shows how width of a set in a particular direction is measured. When this directional

width is averaged over all possible directions we get the spherical width.

Figure 1.1: Two parallel hyper-planes containing a set determine its width in that direction. From
[35].

For a Gaussian random vector, one can consider its direction 𝜃 and length 𝑟 separately. Direction

𝜃 is uniformly distributed and decouples from 𝑟. Next we recall that the expected length of Gaussian
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random variable differs from
√
𝑁 by a universal constant, |E| |𝑔 | | −

√
𝑁 | ≤ 𝐶. This lets us relate the

Gaussian width to spherical width as follows.

(
√
𝑁 − 𝐶)𝜔𝑠 (𝑇) ≤ 𝜔(𝑇) ≤ (

√
𝑁 + 𝐶)𝜔𝑠 (𝑇) (1.9)

In this sense Gaussian width is the spherical width of a set scaled by
√
𝑁 , and spherical width has

a clear geometrical interpretation.

We give 4 examples of Gaussian widths that are often encountered in high dimensional proba-

bility, see [35, 7.5.8-7.5.10]. They are the 𝐿1 ball 𝐵𝑁1 , the 𝐿2 ball 𝐵𝑁2 , the 𝐿∞ ball 𝐵𝑁∞, and a set 𝑇

with 𝑛 points. We use 𝐶 for any universal constant.

𝐶1
√︁

log(𝑁) ≤ 𝜔(𝐵𝑛1) ≤ 𝐶2
√︁

log(𝑁) (1.10)

|𝜔(𝐵𝑁2 ) −
√
𝑁 | ≤ 𝐶 (1.11)

𝜔(𝐵𝑛∞) =
√︂

2
𝜋
𝑁 (1.12)

𝜔(𝑇) ≤ 𝐶
√︁

log(𝑛) diam(𝑇) (1.13)

Dividing the first three above expressions by
√
𝑁 gives us spherical width estimates for the

corresponding 𝐿𝑝 balls. One sees that the width of 𝐿2 ball is a constant as expected, while the

width of the 𝐿1 ball decreases to zero as
√︃

log(𝑁)
𝑁

while the width of the 𝐿∞ ball grows as
√
𝑁 .

With Gaussian width, theorem 1.1.2 lets us get JL maps for infinite sets. However one still

needs techniques for estimating the Gaussian width. In this thesis, we restrict our discussion to

compact smooth manifolds. To get a JL map for a compact manifold we need estimates for the

Gaussian width of its set of unit secants. The regularity provided by being a manifold allows us to

find explicit estimates and thus close the argument for JL maps of this class of objects. More about

this estimate is in section 2.6.

The key inequality that allows us to relate geometrical properties of a manifold to its Gaussian

width is called Dudley’s inequality [18, page 226]. For a universal constant 𝑐, one can relate
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covering number of set 𝑇 to its Gaussian width as follows.

𝜔(𝑇) ≤ 𝑐
∫ ∞

0

√︁
log(𝐶 (𝑇, 𝜖))𝑑𝜖 . (1.14)

Motivated by this inequality we calculate various covering numbers in chapter 2.

1.2 Fast Matrices

Having discussed random projections and Gaussian matrices for dimension reduction, the next step

would be to speed up the computation. For a𝑚×𝑁 matrix, the general matrix-vector multiplication

takes O(𝑚𝑁) operations. Since Gaussian matrices are densely populated with random variables

this is difficult to improve.

If instead we specialize to discrete Fourier matrices, one can use the Fast Fourier Transform

(FFT) algorithm. FFT allows for a O(𝑁 log(𝑁)) matrix-vector multiplication, for square matrices.

Therefore the Discrete Fourier Transform (DFT) matrices are ideal candidates for fast JL maps.

Other examples in this class are also the Welsh-Hadamard matrices. However for JL maps we need

short and wide matrices with 𝑚 ≤ 𝑁 . This will come from sub-sampling the Fourier matrix. Also

since Fourier matrices have a fast matrix-vector multiplication, one can do the full multiplication

and throw away the unwanted rows. Constructing JL maps from Fourier matrices requires a process

that we briefly describe below. Such an approach has been used before in earlier works. One

example is the work in [29] where the authors give a JL construction via Fourier matrices for an

arbitrary object in terms of its Gaussian width.

We use an indirect approach from the field of the Compressive Sensing (CS). This topic was

first discussed by Terence Tao and Emmanuel Candes in their seminal papers [11], [12] and [13].

([11] is the highest cited paper of Tao according to Google scholar at the time of writing). CS is a

large field; for our purposes we need three tools from it. First is the concept of Restricted Isometry

Property (RIP), second is an RIP estimate for discrete Fourier transform matrices (one can think

of RIP estimates as the fundamental theorems of CS), and third is a theorem called Krahmer-Ward

that transforms an RIP estimate to a JL theorem. Below we describe each step separately. If 𝐹 is a

DFT matrix, then the construction scheme is as follows.

7



√︂
𝑁

𝑚
(Sample m rows from 𝐹𝑁×𝑁 )︸                                        ︷︷                                        ︸

Restricted Isometry Property

©­­­­­«
±1

. . .

±1

ª®®®®®¬︸            ︷︷            ︸
Random Diagonal Matrix

The random diagonal matrix is used in the Krahmer-Ward theorem. We also note that there are

multiple conventions for normalizing a DFT matrix. Here we adopt the convention that the matrix

is unitary. If 𝜔 is the nth root of unity, 𝜔𝑁 = 1, then the matrix 𝐹 would be

𝐹 =
1
√
𝑁

©­­­­­­­­«

1 1 1 ... 1

1 𝜔 𝜔2 ... 𝜔𝑁−1

...

1 𝜔𝑁−1 𝜔2(𝑁−1) ... 𝜔(𝑁−1)2 .

ª®®®®®®®®¬
(1.15)

The first step is the Restricted Isometry Property. RIP is about how much a matrix distorts sparse

vectors. It is similar to the JL condition but it is restricted to sparse vectors. This property is

reported through pairs of numbers. In each pair, there is a sparsity level, 𝑠, and a deviation value 𝛿.

In short sometimes it is written as 𝛿𝑠. As a reminder, sparsity of a vector is the number of non-zero

components of that vectors, denoted by | |𝑥 | |0 where the zero comes from the lim𝑝→0 | |𝑥 | |𝑝. So if a

matrix 𝐴 possess the 𝛿𝑠 RIP then for all vectors 𝑥 that are 𝑠 or less sparse we simultaneously have

(1 − 𝛿𝑠) | |𝑥 | |2 ≤ ||𝐴𝑥 | |2 ≤ (1 + 𝛿𝑠) | |𝑥 | |2. (1.16)

Some authors put squares in the RIP condition as in (1− 𝛿𝑠) | |𝑥 | |2 ≤ ||𝐴𝑥 | |2 ≤ (1+ 𝛿𝑠) | |𝑥 | |2. These

definitions are equivalent up to scaling the 𝛿𝑠 by an absolute constant.

The second step is an RIP estimate for the discrete Fourier transform matrices. The estimate we

provide below is for the general family of orthonormal matrices with 𝑚 rows sampled uniformly in

an i.i.d fashion.
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Lemma 1.2.1. [29, Lemma 4.2], [18, theorem 12.32] Let 𝐹 ∈ R𝑁×𝑁 be an orthonormal matrix

obeying

𝐹∗𝐹 = 𝐼, max𝑖, 𝑗 |𝐹𝑖 𝑗 | ≤
𝐾
√
𝑁
. (1.17)

Define the random subsampled matrix 𝐻 ∈ R𝑚×𝑁 with i.i.d rows chosen uniformly at random from

the rows of 𝐹. Then the RIP(𝑠, 𝛿) holds for
√︃
𝑁
𝑚
𝐻 with probability at least 1 − 𝑒−𝜂 for all 𝛿 > 0 as

long as

𝑚 ≥ 𝐶𝐾2(1 + 𝜂) 𝑠 log4(𝑁)
𝛿2 . (1.18)

Some remarkable characteristics for the bound in (1.18) are that it is linear in 𝑠 and logarithmic

(to 4th power) in 𝑁 . It has an explicit dependence on the ambient dimension 𝑁; since 𝑁 could be

prohibitively large, improving the depence on 𝑁 in this bound has been an active area of research

in CS. For a recent improvement see [10].

The third step is a theorem that allows us to get a JL theorem for finite points from an RIP

estimate. This theorem is known as the Krahmer-Ward theorem; it takes a matrix with a RIP

estimate, 𝑛 points as data and applies a sequence of random reflections through the coordinate axes.

The result is a probabilistic theorem for a JL map with a controlled failure probability.

Theorem 1.2.2. (Krahmer-Ward) [18, theorem 9.36] Let 𝑥𝑖 be 𝑛 points in R𝑛. Let 𝜌, 𝜖 ∈ (0, 1).

Let 𝐴 ∈ R𝑚×𝑁 be a matrix where its restricted isometry constant for sparsity 2𝑠, i.e. 𝛿2𝑠, satisfies

𝛿2𝑠 ≤ 𝜖
4 for 𝑠 ≥ 16 log( 4𝑛

𝜌
). Let 𝐷 be a diagonal matrix with Rademacher random variables, i.e.

with uniform ±1 random variables, on the diagonal. Then with probability exceeding 1 − 𝜌 the

following holds simultaneously for all 𝑥𝑖.

(1 − 𝜖) | |𝑥𝑖 | |2 ≤ ||𝐴𝐷𝑥𝑖 | |2 ≤ (1 + 𝜖) | |𝑥𝑖 | |2. (1.19)

Combining the above 3 steps we get a JL map for finite points using DFT matrices. The benefit

of this approach is the computational speed. The cost to pay is a higher final dimension compared

9



to Gaussian or random projection matrices. In chapter 6, we show how one can combine the two

approaches and get the best of both worlds.
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CHAPTER 2

GEOMETRIC PROPERTIES OF REACH AND COVERING ESTIMATES

In this chapter we discuss geometrical estimates based on a regularity parameter known as reach.

The reader interested in only the JL applications can skip to further chapters and refer back as

necessary.

We provide 4 main theorems. These theorems provide us with the necessary geometrical tools

to construct our desired JL maps for manifolds. In theorem 2.1.7 we give a comprehensive list of

properties of reach. In theorem 2.2.6 we give an upper bound for covering numbers of a compact

manifold with boundary. We do so by first covering the boundary as an independent manifold. This

covers a collar of the boundary, after which we cover the interior. The method of proof is based on

Gunther’s volume comparison theorem and is restricted by the injectivity radius of the exponential

map in the interior of 𝑀 away from the boundary. In theorem 2.4.1 we provide a lower bound for

the covering numbers of a compact manifold. In theorem 2.5.2 we give a covering number bound

from above for the unit secants of a submanifold.

2.1 Reach and its Properties

Here we review the concept of reach for a submanifold of the Euclidean space and in theorem 2.1.7

provide a comprehensive list of its properties. Theorem 2.1.7 provides the main properties of reach

in a convenient and ready-to-use manner for application to geometric problems, and we hope it is

helpful for other researchers. We also discuss the case when the submanifold possibly possesses a

boundary, as is expected to be the case for manifold models in applications.

Reach is an extrinsic parameter that is defined based on how far one can move away from an

embedded submanifold while maintaining a unique closest point property. This parameter also

controls the extrinsic acceleration of unit speed geodesics. It has been used extensively as a regu-

larity parameter since 1959 when it was defined by Federer in [16]. A historical viewpoint of its
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development can be found in [34]. Some earlier results regarding reach can be found in [1], [8] and

[15]. In [1], the authors offer a probabilistic method for estimating the reach of a manifold. In [8]

the authors consider the intersection of a ball of small radius with a set of positive reach, and for

manifolds they estimate the angle between tangent spaces at different points in terms of reach. In

[15, theorem 2], the authors give a JL theorem for a closed manifold via reach.

Here, we begin by recalling the definition of reach and then we summarize its properties.

Definition 2.1.1. (Reach [16, definition 4.1]) For a closed subset of Euclidean space 𝐴 ⊂ R𝑛, the

reach 𝜏 is defined as

𝜏(𝐴) = sup{𝑡 ≥ 0
��∀𝑥 ∈ R𝑛 such that 𝑑 (𝑥, 𝐴) < 𝑡, 𝑥 has a unique closest point in 𝐴}.

The above definition is for closed subsets of R𝑛. When restricted to submanifolds, reach

depends in part on the second fundamental form of the embedding. However control of the second

fundamental form does not fully control reach as two sheets of the submanifold may come close

to each other. One can obtain an equivalent characterization of reach in terms of the injectivity

radius of the normal exponential map, defined below following [22, Section 8.1]. First we need the

concept of cut points for the normal exponential map.

Definition 2.1.2. (Cut point) Let 𝜉 be a line segment in R𝑛 meeting 𝑀 orthogonally at 𝑚 ∈ 𝑀 .

We say 𝑥 ∈ 𝜉 is cut point (cut-focal point) along 𝜉 provided distance from 𝑥 to 𝑀 is no longer

minimized along 𝜉 past 𝑥.

Definition 2.1.3. (Cut distance) Define the function 𝑒𝑐 : {(𝑝, 𝑢) | 𝑝 ∈ 𝑀, 𝑢 ∈ 𝑁𝑝𝑀, ∥𝑢∥ = 1} → R

such that

𝑒𝑐 (𝑝, 𝑢) = sup{𝑡 > 0 | distance(𝑝 + 𝑡𝑢, 𝑀) = 𝑡}.

In words, 𝑒𝑐 (𝑝, 𝑢) is the distance along direction 𝑢 starting orthogonal at 𝑝, past which the line

segment along 𝑢 stops being distance minimizing to 𝑀 .
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Definition 2.1.4. ( [22, Section 8.1]) The injectivity radius of the normal exponential map

𝑟inj(exp𝑁 ) (also known as minimal focal-cut distance) is inf{𝑒𝑐 (𝑝, 𝑢) | 𝑝 ∈ 𝑀, 𝑢 ∈ 𝑁𝑝𝑀, ∥𝑢∥ = 1}

When boundary is present, one must specify the criteria for normal vectors at the boundary. They

are defined as the ones that make an obtuse angle with inward pointing tangent vectors, following

[16, definition 4.4]. These vectors are normal to the boundary, when boundary is viewed as an

independent manifold, but only make obtuse angles with the manifold itself. Let 𝑝 ∈ 𝜕 (𝑀) ⊂ R𝑛

and 𝑣 ∈ 𝑇𝑝𝑀 that is inward pointing. Then 𝑢 ∈ R𝑛 is normal to 𝑀 at 𝑝 if 𝑢 • 𝑣 ≤ 0 for all such 𝑣.

We also need the concept of focal points; this helps us describe the behavior where the distance

to the submanifold is equal to reach.

Definition 2.1.5. (Focal point, [22, section 8.1]) Let 𝑀 be a submanifold of R𝑛. A focal point of

𝑀 is a point 𝑥 ∈ R𝑛 such that the exponential map exp𝑁 of the normal bundle of 𝑀 , is singular

somewhere on exp−1
𝑁
(𝑥).

Definition 2.1.6. [22, section 8.1] Let 𝑒 𝑓 (𝑝, 𝑢) be the distance from 𝑝 ∈ 𝑀 to its first focal point

along the geodesic 𝑡 → exp𝑁 (𝑝, 𝑡𝑢). In other words, let 𝑒 𝑓 := {(𝑝, 𝑢) | 𝑝 ∈ 𝑀, 𝑢 ∈ 𝑀⊥
𝑝 , | |𝑢 | | =

1} → R be the function defined by

𝑒 𝑓 (𝑝, 𝑢) = inf{𝑡 > 0 | kernel(((exp𝑁 )∗)(𝑝,𝑡𝑢)) ≠ {0}}.

We are now ready to state the key properties of reach. In this approach we are in part following

the work of [1, proposition A.1]. We provide a survey of results that are scattered in the literature

and provide proofs where they can not be easily located elsewhere.

Theorem 2.1.7 (Properties of Reach). Let 𝑀 be a compact, smooth submanifold of R𝑛 possibly

with boundary. Let 𝜏 be the reach of 𝑀 . Let 𝑝, 𝑞 ∈ 𝑀 and 𝑥 ∈ R𝑁 . Then the following properties

hold.

1. All geodesics in 𝑀 are 𝐶1. In the interior of 𝑀 , they are smooth. At all points unit speed

geodesics have one-sided second derivatives. When switching from interior to boundary,

geodesics may bifurcate.
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2. The one sided second derivatives for unit speed geodesics are bounded above in norm by 1
𝜏
.

In particular in the interior of 𝑀 the norm of the second fundamental form of 𝑀 is bounded

by 1
𝜏
.

3. In the interior of 𝑀 , any sectional curvature 𝑘 satisfies −2
𝜏2 ≤ 𝑘 ≤ 1

𝜏2 .

4. (Federer Tubular Neighborhood Theorem) If the line segment 𝑝𝑥 is normal to 𝑀 at 𝑝, and

∥𝑝 − 𝑥∥ < 𝜏 then 𝑝 is the closest point to 𝑥 in 𝑀 .

5. If line segment 𝑝𝑞 is normal to 𝑀 at 𝑝 then ∥𝑝 − 𝑞∥ ≥ 2𝜏.

6. At distance exactly 𝜏 away from 𝑀 , either there is a focal point or there are two points

𝑝1, 𝑝2 ∈ 𝑀 and 𝑦 ∈ R𝑛 such that ∥𝑝1 − 𝑦∥ = ∥𝑝2 − 𝑦∥ = 𝜏 and the line segments 𝑝1𝑦 and

𝑝2𝑦 meet at 𝑦 at an angle of 𝜋; or both.

7. 𝜏 = 𝑟inj(exp𝑁 ).

8. 𝜏 > 0.

9. For 𝑝 ∈ 𝑀 , the injectivity radius at 𝑝 is at least min{𝑑𝑀 (𝑝, 𝜕𝑀), 𝜋𝜏} where 𝑑𝑀 (𝑝, 𝜕𝑀) is

the geodesic distance of 𝑝 to the boundary of 𝑀 . If there is no boundary, injectivity radius

is at least 𝜋𝜏.

For the next two properties, let 𝑑 and 𝑙 be the Euclidean and geodesic distances between 𝑝 and 𝑞

respectively.

10. 𝑙 − 𝑙2

2𝜏 ≤ 𝑑.

11. When restricted to 𝑑 ≤ 𝜏
2 , we further have 𝑙 ≤ 𝑑 + 2𝑑2

𝜏
.

For the last two properties, let 𝛾(𝑡) be a unit speed geodesic connecting 𝑝 to 𝑞. Let 𝑣 ∈ 𝑇𝑝𝑀

be ¤𝛾(0). Let 𝜙 be the angle between 𝑣 and the secant line connecting 𝑝 to 𝑞. Let 𝑤 ∈ 𝑇𝑝𝑀 be any

unit vector and 𝑤∗ ∈ 𝑇𝑞𝑀 its parallel transport via the connection on 𝑀 along 𝛾. Let 𝜃 be the

angle between 𝑤 and 𝑤∗ after they are parallel transported to the origin in R𝑛.
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12. 𝜃 ≤ 𝑙
𝜏
.

13. When restricted to 𝑑 ≤ 𝜏
2 , sin(𝜙) ≤ 𝑑

2𝜏 (1 + 2𝑑
𝜏
)2.

Proof. 1. See [3, theorem 1].

2. See [8, lemma 4] or [27, proposition 6.1]. In the case where a unit speed geodesic 𝛾(𝑡) is

part of the boundary, the only modification is that ¥𝛾(𝑡) is normal to the boundary and the same

argument applies.

3. This follows from item 2 above and Gauss’s equation [28, page 100, theorem 5].

4. See [16, theorem 4.8(12)] or [8, theorem 2].

5. By Federer’s tubular neighborhood theorem [8, section 3.1], for points on line segment 𝑝𝑞

with distance to 𝑝 less than 𝜏, 𝑝 is the closest point to them. Therefore 𝑞 is at least 𝜏 away from

the point that is 𝜏 away from 𝑝. This gives the claimed ∥𝑝 − 𝑞∥ ≥ 2𝜏.

6. See [33].

7. Let 𝑟 = 𝑟inj(exp𝑁 ). First we show 𝜏 ≤ 𝑟. For the sake of contradiction assume 𝑟 < 𝜏. Then

by definition of 𝑟, there is a normal line segment to 𝑀 that stops being distance minimizing pass

distance 𝑟 away from 𝑀 . But this contradicts Federer’s tubular neighborhood theorem, as such

normal line segments must remain distance minimizing up to distance 𝜏.

Next we show 𝜏 < 𝑟 is impossible and that is enough for obtaining 𝜏 = 𝑟. For contradiction,

assume 𝜏 < 𝑟. By item 6, at distance exactly 𝜏 away from 𝑀 there must be either a focal point

or two equal length line segments normal to 𝑀 and intersecting each other at angle of 𝜋. If there

is a focal point, it is known that past a focal point, geodesics stop being distance minimizing, see

[31, lemma 2.11]. Hence past a distance 𝜏, there is a normal line segment to 𝑀 that stops being

distance minimizing; but this contradicts the definition of 𝑟 because it guarantees they remain

distance minimizing up to distance 𝑟 away from 𝑀 .

In the case of two equal line segments, call them 𝑝1𝑦 and 𝑝2𝑦 with 𝑝1, 𝑝2 ∈ 𝑀 . Since they

meet at an angle of 𝜋, 𝑝1, 𝑦 and 𝑝2 are collinear; and since ∥𝑝1 − 𝑦∥ = ∥𝑝2 − 𝑦∥, 𝑝1𝑦 stops being
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distance minimizing past 𝑦. Again this contradicts the guarantee of being distance minimizing up

to distance 𝑟, showing 𝜏 < 𝑟 is impossible.

8. See [7, page 151, theorem 4].

9. By [4, theorem 3], in a manifold with boundary and reach 𝜏, two geodesics with the same

starting point must travel a distance of 𝜋𝜏 before they meet. Separately all sectional curvatures are

bounded above by 1
𝜏2 . Then by Klingenberg’s theorem [6, theorem 89], we get that the injectivity

radius is at least 𝜋𝜏. Since we take a minimum with the distance to the boundary, we are guaranteed

not to intersect it.

10. See [27, lemma 6.3].

11. For partial and complementary proofs see [27, lemma 6.3] and [15, lemma 7]. Here we

streamline the above arguments. Reversing 𝑙 − 𝑙2

2𝜏 ≤ 𝑑, one of

𝑙 ≤ 𝜏 − 𝜏
√︂

1 − 2𝑑
𝜏

or 𝑙 ≥ 𝜏 + 𝜏
√︂

1 − 2𝑑
𝜏

must hold. If the strict inequality 𝑑 < 𝜏
2 holds then 𝑙 = 𝜏 is impossible. We use this fact to

show when 𝑑 ≤ 𝜏
2 we must have 𝑙 ≤ 𝜏. From 𝑙 ≤ 𝜏, only 𝑙 ≤ 𝜏 − 𝜏

√︃
1 − 2𝑑

𝜏
remains, and using

1 −
√

1 − 𝑥 ≤ 𝑥+𝑥2

2 we get the claimed 𝑙 ≤ 𝑑 + 2𝑑2

𝜏
.

For the sake of contradiction assume 𝑑 ≤ 𝜏
2 and 𝜏 < 𝑙. Then 𝑆1 = {𝑎 ∈ 𝑀 | 𝑑𝑀 (𝑝, 𝑎) = 𝜏} is

not empty. Let 𝑞∗ be a minimizer for the Euclidean distance to 𝑝 in 𝑆1:

𝑞∗ = arg inf
𝑎∈𝑆1

∥𝑝 − 𝑎∥.

Then 𝑞∗ is also a minimizer for Euclidean distance to 𝑝 over 𝑆2 = {𝑎 ∈ 𝑀 | 𝑑𝑀 (𝑝, 𝑎) ≥ 𝜏}.

Because if there is a minimizer in the interior of 𝑆2 such as 𝑎, then line segment 𝑝𝑎 must be normal

to 𝑀 at 𝑎. Then ∥𝑝 − 𝑎∥ ≥ 2𝜏. But since 𝑎 is a minimizer, it holds that ∥𝑝 − 𝑎∥ ≤ ∥𝑝 − 𝑞∥ ≤ 𝜏
2

and that contradicts ∥𝑝 − 𝑎∥ ≥ 2𝜏.

Similarly 𝑞 can’t be a minimizer because it is in the interior of 𝑆2. So there is a strict inequality

∥𝑝 − 𝑞∗∥ < ∥𝑝 − 𝑞∥. But for ∥𝑝 − 𝑞∗∥ < 𝜏
2 , it is impossible to have 𝑑𝑀 (𝑝, 𝑞∗) = 𝜏 and this
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contradicts how 𝑞∗ was constructed.

12. See [8, lemma 6].

13. See figure 2.1. We have sin(𝜙) = ℎ
𝑑

where ℎ is the distance of 𝑞 to the line through 𝑝

with direction 𝑣. Since we are restricted to 𝑑 ≤ 𝜏
2 , using item 11, we have that 𝑙 ≤ 𝜏. Now

we bound ℎ. Let 𝜃 (𝑠) be the angle between 𝑣 and the tangent vector to the geodesic at distance

𝑠 along the geodesic, when viewed as vectors in R𝑁 . From item 12 we get that 𝜃 (𝑠) ≤ 𝑠
𝜏
.

The incremental height gain in the ℎ direction is at most sin(𝜃 (𝑠))𝑑𝑠. Therefore we obtain

ℎ ≤
∫ 𝑙

0 sin(𝜃 (𝑠))𝑑𝑠 ≤
∫ 𝑙

0 sin
(
𝑠
𝜏

)
𝑑𝑠 = 𝜏 − 𝜏 cos

(
𝑙
𝜏

)
≤ 𝑙2

2𝜏 ≤ 𝑑2

2𝜏

(
1 + 2𝑑

𝜏

)2
. Dividing by 𝑑 gives the

claimed result. ■

Figure 2.1: Two points with the geodesic and secant line between them. We bound the angle
between 𝑑 and 𝑉0 using 𝜏.

2.2 Covering Estimate from Above via Gunther’s Theorem

We first present a covering bound for closed manifolds. Since the boundary of a manifold is itself

a closed manifold, this argument is useful in the case the manifold has boundary.

First we need a lemma relating covering and packing numbers. For definitions of packing and

covering see [35, lemma 4.2.8].

Lemma 2.2.1. Let 𝑋 be a metric space with 𝐴 a subset of it. Then for any 0 < 𝜖 , the 𝜖-covering

number of 𝐴 is not greater than the 𝜖
2 -packing number of 𝐴.

𝐶 (𝜖) ≤ 𝑃( 𝜖
2
) (2.1)
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Proof. Start with a packing with balls of radius 𝜖
2 . Then enlargen the balls to radius 𝜖 . We

claim this is a covering. If not there is a point 𝑦 ∈ 𝐴 such that it is more than 𝜖 away from all the

centers of balls. Then a ball of radius 𝜖
2 centered at 𝑦 would be disjoint with the starting packing

balls and that contradicts the assumption that any packing is maximal.

Theorem 2.2.2. (Covering a Closed Manifold) Let 𝑀 ↩→ R𝑛 be a closed (compact, no boundary)

submanifold of R𝑛 of dimension 𝑑 ≥ 0. Let 𝜏 > 0 be the reach of 𝑀 , and 𝑉 denote the volume of

𝑀 , as induced by the embedding. When 𝑑 = 0, we use the counting measure for volume.

Then if 𝑑 = 0, 𝑉 balls are sufficient to cover 𝑀 .

If 𝑑 > 0, let 𝜔𝑑 denote the volume of the 𝑑-dimensional Euclidean ball of radius 1. Then for

0 < 𝜖 < 2
√

6𝜏, one can cover 𝑀 with at most 𝑉

𝜔𝑑 (1− 𝜖 2
24𝜏2 )𝑑−1 ( 𝜖2 )𝑑

𝑛-dimensional Euclidean balls of

radius 𝜖 with centers on 𝑀 .

Proof. The case of 𝑑 = 0 corresponds to isolated points and 1 ball per point is sufficient. So

assume 𝑑 > 0. The covering number with balls of radius 𝜖 is bounded above by the packing number

with radius 𝜖
2 , [35, lemma 4.2.8]. We claim each such packing ball contains a geodesic ball of

radius 𝜖
2 and the volume of the geodesic ball is at least 𝜔𝑑 (1 − 𝜖2

24𝜏2 )𝑑−1( 𝜖2 )
𝑑 . Since the packing

balls are disjoint, the claim implies the theorem immediately. For 𝑥 ∈ 𝑀 , 𝐵R𝑛 (𝑥, 𝜖2 ) contains the

geodesic ball 𝐵𝑀 (𝑥, 𝜖2 ) because the geodesic distance between two points of 𝑀 is not smaller than

the Euclidean distance between them. We will work with this geodesic ball.

To bound the volume of the geodesic ball from below, we use G¥unther’s volume comparison

theorem, see [19, page 169, theorem 3.101, part ii]. To use it, we need to bound the sectional

curvatures of 𝑀 from above, and ensure that the geodesic balls don’t touch the cut locus of their

center. From properties of reach 𝜏, theorem 2.1.7, all sectional curvatures of 𝑀 are bounded above

by 1
𝜏2 and the injectivity radius of 𝑀 is at least 𝜋𝜏. To avoid intersecting the cut locus, we need

𝜖
2 < 𝜋𝜏; this is satisfied by the assumption that 𝜖 < 2

√
6𝜏 (one could allow for a larger range of 𝜖 ,

see remark 2.2.3). By G¥unther’s theorem, the volume of the geodesic ball is at least the volume
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of a geodesic ball of radius 𝜖
2 in the simply connected model space of constant sectional curvature

1
𝜏2 , which is a sphere with radius 𝜏. Let 𝑉 1

𝜏2
( 𝜖2 ) denote this volume. It is explicitly given by the

formula (see [25]):

𝑉 1
𝜏2
( 𝜖
2
) = 2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝜖
2

0
𝑆 1

𝜏2
(𝑥)𝑑−1𝑑𝑥 (2.2)

where for 𝑘 > 0, 𝑆𝑘 (𝑥) = 1√
𝑘

sin(
√
𝑘𝑥). It follows that

2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝜖
2

0
𝑆 1

𝜏2
(𝑥)𝑑−1𝑑𝑥 =

2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝜖
2

0
(𝜏 sin( 𝑥

𝜏
))𝑑−1𝑑𝑥. (2.3)

Since sin(𝑥)
𝑥

is decreasing on [0, 𝜋], and 𝜖 < 2
√

6𝜏 < 2𝜋𝜏,

𝑉 1
𝜏2
( 𝜖
2
) ≥ 2𝜋𝑑/2

Γ( 𝑑2 )
(
sin( 𝜖2𝜏 )

𝜖
2𝜏

)𝑑−1 1
𝑑
( 𝜖
2
)𝑑 . (2.4)

Using 0 < 1 − 𝑥2

6 <
sin(𝑥)
𝑥

for 0 < 𝑥 <
√

6, 𝜔𝑑 = 𝜋𝑑/2

Γ( 𝑑2 +1) and Γ( 𝑑2 + 1) = Γ( 𝑑2 )
𝑑
2 we get

𝑉 1
𝜏2
( 𝜖
2
) ≥ 𝜔𝑑 (1 − 𝜖2

24𝜏2 )
𝑑−1( 𝜖

2
)𝑑 . (2.5)

■

Remark 2.2.3. In the proof of the theorem 2.2.2, we restricted the range of 𝜖 as 0 < 𝜖 < 2
√

6𝜏.

The reason is that 1 − 𝑥2

6 , which is the second order Taylor expansion of sin(𝑥)/𝑥, remains positive

in this range. One could work with the sinc(𝑥) function to have the larger range 0 < 𝜖 < 2𝜋𝜏, or

one could work with the 6th order Taylor expansion of sin(𝑥)/𝑥, which remains positive slightly

beyond 3 and we have 0 ≤ 𝑇6(𝑥) ≤ sinc(𝑥) on [0, 3]. However for the purposes of JL applications

such improvements only offer marginal benefits and hence for simplicity we state our bounds for

the second order expansion.

Next as an example we apply our theorem to S𝑑 . A standard estimate for covering S𝑑 with balls

centered on the sphere is ( 3
𝜖
)𝑑 , see [35, corollary 4.2.13]. Here we get (3.4

√
𝑑) 2.1𝑑

𝜖𝑑
. In the special

case of S𝑑 , there are more economical bounds on the order of O( 𝑑
1.5 log(𝑑)
𝜖𝑑

) ([9, theorem 6.8.1]),

but they apply only to S𝑑 , and not arbitrary manifolds.
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Corollary 2.2.4. For 0 < 𝜖 < 1 the standard S𝑑 ↩→ R𝑛 can be covered with at most (3.4
√
𝑑) 2.1𝑑

𝜖𝑑

Euclidean 𝑛-dimensional balls of radius 𝜖 .

Proof. By theorem 2.2.6, we need at most 𝑉𝑀

𝜔𝑑 (1− 𝜖 2
24𝜏2

𝑀

)𝑑−1 ( 𝜖2 )𝑑
. We have 𝜏 = 1, 𝑉𝑀 = 2𝜋

𝑑+1
2

Γ( 𝑑+1
2 ) ,

𝜔𝑑 =
𝜋
𝑑
2

Γ( 𝑑2 +1) , and 𝑉𝑀
𝜔𝑑

= 2
√
𝜋
Γ( 𝑑2 +1)
Γ( 𝑑+1

2 ) < 2
√
𝜋𝑑. In the last equation we used the Gautschi’s inequality

[20]. This leads to an upper bound of 2
√
𝜋𝑑 ( 24

23 )
𝑑−1 2𝑑

𝜖𝑑
≤ 3.4

√
𝑑 ( 2.1

𝜖
)𝑑 .

■

Next we focus on a covering estimate for a compact manifold with boundary. First we present

a lemma showing that the number of connected components of the boundary must be finite.

Lemma 2.2.5. Let 𝑀 be a compact connected embedded submanifold of R𝑛 with boundary 𝜕𝑀 .

Then 𝜕𝑀 has a finite number of connected components.

Proof. Assume not. Let 𝑝𝑖 ∈ 𝑀 be a sequence of points where each 𝑝𝑖 belongs to a different

component of 𝜕𝑀 . Since 𝑀 is compact, 𝑝𝑖 converge to a point 𝑝 ∈ 𝑀 , after passing to a

subsequence. Either 𝑝 is in interior of 𝑀 or it belongs to the boundary of 𝑀 . If 𝑝 is in the interior

there is an open neighborhood of 𝑝 in R𝑛 intersecting 𝑀 only in interior points. Since 𝑝𝑖 are

boundary points, this contradicts their convergence to 𝑝. If 𝑝 is in the 𝜕𝑀 , then it is in one of the

connected components such as 𝑗 . Again there is an open neighborhood of 𝑝 in R𝑛 intersecting 𝑀

only in points in component 𝑗 of boundary or interior points; this contradicts 𝑝𝑖 converging to 𝑝. ■

Using theorem 2.2.2 and lemma 2.2.5 we present a covering estimate for a manifold with

boundary.

Theorem 2.2.6. (Covering a Manifold with Boundary) Let 𝑀 ↩→ R𝑛 be a compact 𝑑-dimensional,

𝑑 ≥ 1, submanifold of R𝑛 with boundary. Let 𝜏𝑀 > 0 and 𝑉𝑀 be the reach and volume of 𝑀 . Let

𝜕𝑀 denote the boundary of 𝑀 as an independent submanifold of R𝑛 with 𝑉𝜕𝑀 as the volume of

𝜕𝑀 . Let 𝜏𝜕𝑖𝑀 > 0 be the reach of the 𝑖-th component of boundary of 𝑀 . Let 𝜏𝜕𝑀 = inf𝑖{𝜏𝜕𝑖𝑀}. Fix

0 < 𝜖 ≤ min{4
√

6𝜏𝜕𝑀 , 2
√

6𝜏𝑀}. Then for 𝑑 = 1, 𝑀 can be covered with 𝑉𝑀
𝜖

+ 𝑉𝜕𝑀 n-dimensional
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Euclidean balls of radius 𝜖 , where 𝑉𝜕𝑀 corresponds to the counting measure. For 𝑑 ≥ 2, 𝑀 can

be covered with 𝑉𝑀

𝜔𝑑 (1− 𝜖 2
24𝜏2

𝑀

)𝑑−1 ( 𝜖2 )𝑑
+ 𝑉𝜕𝑀

𝜔𝑑−1 (1− 𝜖 2
96𝜏2

𝜕𝑀

)𝑑−2 ( 𝜖4 )𝑑−1
many balls.

Proof. Consider two subsets of M, 𝑆1 = {𝑥 ∈ 𝑀 |𝑑𝑀 (𝑥, 𝜕𝑀) < 𝜖
2 } and 𝑆2 = 𝑀\𝑆1. We will

cover each region separately.

To cover 𝑆1 we cover 𝜕𝑀 with balls of radius 𝜖
2 , and then enlarge them to balls of radius 𝜖 . We

claim such balls cover 𝑆1. For each point 𝑥 ∈ 𝑆1, there is a point 𝑦 ∈ 𝜕𝑀 such that 𝑑𝑀 (𝑥, 𝑦) < 𝜖
2 .

Also 𝑑R𝑛 (𝑥, 𝑦) ≤ 𝑑𝑀 (𝑥, 𝑦) < 𝜖
2 . Since we have a 𝜖

2 covering of 𝜕𝑀 , center of one of the balls, 𝑜𝑖,

satisfies 𝑑R𝑛 (𝑜𝑖, 𝑦) < 𝜖
2 . Therefore 𝑑R𝑛 (𝑜𝑖, 𝑥) ≤ 𝑑R𝑛 (𝑜𝑖, 𝑦) + 𝑑R𝑛 (𝑦, 𝑥) < 𝜖 as claimed.

When 𝑑 = 1, the boundary is a collections of points, so 𝑉𝜕𝑀 is enough to cover the region 𝑆1.

For region 𝑆2, we pack it with balls of radius 𝜖
2 . Each Euclidean ball will overlap with the geodesic

ball of the same radius; for 𝑑 = 1 that is a curve of length 𝜖 . Since volume of 𝑆2 is at most 𝑉𝑀

and the packing balls are disjoint we can pack at most 𝑉
𝜖

balls. This gives our covering claim of
𝑉𝑀
𝜖

+𝑉𝜕𝑀 .

Now assume 𝑑 ≥ 2. We claim 𝑉𝜕𝑀

𝜔𝑑−1 (1− 𝜖 2
96𝜏2

𝜕𝑀

)𝑑−2 ( 𝜖4 )𝑑−1
balls of radius 𝜖

2 are enough to cover

𝜕𝑀 . To show this, we use theorem 2.2.2 which requires 𝜕𝑀 to be compact and without boundary.

Boundary of 𝑀 is compact since it is a closed subset of 𝑀; furthermore boundary of boundary of

a manifold is empty. Therefore by theorem 2.2.2 for 0 < 𝜖
2 ≤ 2

√
6𝜏𝜕𝑀 , 𝜕𝑀 can be covered with

𝑉𝜕𝑀

𝜔𝑑−1 (1− 𝜖 2
96𝜏2

𝜕𝑀

)𝑑−2 ( 𝜖4 )𝑑−1
n-dimensional balls of radius 𝜖

2 .

To cover region 𝑆2, we instead pack it with balls of radius 𝜖
2 and centers in 𝑆2 to get an

upper bound. Since the centers are in 𝑆2, each ball will contain the geodesic ball of the same

radius, 𝐵𝑀 (𝑜𝑖, 𝜖2 ). The open geodesic ball 𝐵𝑀 (𝑜𝑖, 𝜖2 ) can not touch the boundary 𝜕𝑀 since its

center is at least 𝜖
2 geodesic distance away. The cut-locus of 𝑜𝑖 is either at least 𝜋𝜏𝑀 away in

the geodesic distance or at least the distance of 𝑜𝑖 to the boundary in geodesic distance; and for

0 < 𝜖
2 ≤

√
6𝜏𝑀 < 𝜋𝜏𝑀 the geodesic ball 𝐵𝑀 (𝑜𝑖, 𝜖2 ) does not touch the cut locus of 𝑜𝑖. By the volume

comparison in the (2.5), we have 0 < 𝜖 ≤ 2
√

6𝜏𝑀 the volume of the the geodesic ball 𝐵𝑀 (𝑜𝑖, 𝜖2 ) is

at least 𝜔𝑑 (1 − 𝜖2

24𝜏2 )𝑑−1( 𝜖2 )
𝑑 . Since in a packing such balls are disjoint, the total volume of such
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balls can not exceed 𝑉𝑀 and their number is at most 𝑉𝑀

𝜔𝑑 (1− 𝜖 2
24𝜏2

𝑀

)𝑑−1 ( 𝜖2 )𝑑
as claimed. ■

We apply our estimate to the standard d-dimensional closed ball 𝐵𝑑 as a manifold with boundary.

Corollary 2.2.7. Let 𝐵𝑑 ↩→ R𝑛 for 𝑛 ≥ 2 be the standard 𝑑 dimensional closed ball of radius 1.

Then to cover it with 𝑛-dimensional balls of radius 𝜖 for 0 < 𝜖 < 1, ( 2
𝜖
)𝑑 + 2𝜋( 4.05

𝜖
)𝑑−1 balls are

sufficient.

Proof. From theorem 2.2.6, we need at most 𝑉𝑀

𝜔𝑑 (1− 𝜖 2
24𝜏2

𝑀

)𝑑−1 ( 𝜖2 )𝑑
+ 𝑉𝜕𝑀

𝜔𝑑−1 (1− 𝜖 2
96𝜏2

𝜕𝑀

)𝑑−2 ( 𝜖4 )𝑑−1
balls.

The parameters are

𝑀 𝑉𝐵𝑑 𝜏𝐵𝑑 𝜕𝐵𝑑 𝑉𝑆𝑑−1 𝜏𝑆𝑑−1 𝜔𝑑 𝜔𝑑−1

𝐵𝑑 𝜋
𝑑
2

Γ( 𝑑2 +1) ∞ 𝑆𝑑−1 2 𝜋
𝑑+1

2

Γ( 𝑑+1
2 ) 1 𝑉𝐵𝑑 𝑉𝐵𝑑−1

Using 0 < 𝜖 < 1 we get, ( 2
𝜖
)𝑑 + 2𝜋 95

96 (
96
95

4
𝜖
)𝑑−1 < ( 2

𝜖
)𝑑 + 2𝜋( 4.05

𝜖
)𝑑−1.

■

2.3 Covering Estimate from Above Without Radius Restriction via Tubes

In this section we show it is possible to remove the restriction imposed on the covering numbers

by the injectivity radius in theorem 2.2.2. This is at the cost of an explicit dependence on the

ambient dimension. This dependence could be prohibitive when one is in spaces with extremely

high dimensions. For a covering radius larger than the diameter of a manifold, one expects the

covering number to be 1. Therefore one encounters 3 regimes for the covering radius: less than

the injectivity radius, larger than the injectivity radius but up to the diameter, and larger than the

diameter. Interpolating between these regimes is an interesting direction for further research. After

we derive our formula in this section, we will discuss this issue again in remark 2.3.3.

Proposition 2.3.1. Let 𝑀 ↩→ R𝑛 be a closed (compact, no boundary) submanifold of R𝑛 of

dimension 𝑑. Let 𝜏 > 0 be the reach of 𝑀 , and 𝑉 denote the volume of 𝑀 . Let 𝜔𝑑 denote the
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volume of the 𝑑-dimensional Euclidean ball of radius 1. Then for any 0 < 𝜖 , one can cover 𝑀 with
𝑉𝜔𝑛−𝑑 (1 + 𝜖

2𝜏 )
𝑑

𝜔𝑛 ( 𝜖2 )𝑑
𝑛-dimensional Euclidean balls of radius 𝜖 with centers on 𝑀 .

Remark. Compared to theorem 2.2.2, there is no upper bound on 𝜖 .

Proof. Instead of covering 𝑀 , we pack it with 𝑛-Euclidean ball of radius 𝜖
2 with centers on 𝑀 . All

such balls are within the tube of radius 𝜖
2 around 𝑀 . Since the balls are disjoint the number of balls

is bounded above by

Volume of Tube of radius 𝜖
2 around 𝑀

𝜔𝑛 ( 𝜖2 )𝑛
(2.6)

To establish the proposition, we need to show that

Volume of Tube of radius
𝜖

2
around 𝑀 ≤ 𝑉𝑀𝜔𝑛−𝑑 (

𝜖

2
)𝑛−𝑑 (1 + 𝜖

2𝜏
)𝑑 (2.7)

≤ 𝑉𝑀Vol(𝐵𝑛−𝑑 ( 𝜖
2
)) (1 + 𝜖

2𝜏
)𝑑 . (2.8)

For 𝜖 < 𝜏, the exact volume of this tube was found by Herman Weyl in [36] (see the textbook

of Gray [22] for a more detailed explanation). Lotz [26, theorem 3.1] gives an overestimate for the

volume of the tube for all values of 𝜖 as follows.

Let 𝑆 be the shape operator of 𝑀 defined via a local orthonormal frame 𝐸1, .., 𝐸𝑑 on 𝑀 and 𝑣

a unit normal vector to 𝑀

𝑆(𝑣)𝑖 𝑗 := 𝑆𝑣 (𝐸𝑖, 𝐸 𝑗 ) = ⟨∇𝐸𝑖
𝐸 𝑗 , 𝑣⟩ (2.9)

Let 𝜓𝑖 (𝑣) be defined using the characteristic polynomials of the shape operator 𝑆 as

det(Id − 𝑡𝑆(𝑣)) =
𝑑∑︁
𝑖=0

𝑡𝑖𝜓𝑖 (𝑣) (2.10)

Let 𝑆(𝑁𝑀) be the unit sphere bundle of the normal bundle of 𝑀 and define the volume form

𝜔𝑆(𝑁𝑀) via the Sasaki metric [32]. Define 𝐾𝑖 as

𝐾𝑖 :=
∫
𝑆(𝑁𝑀)

|𝜓𝑖 (𝑣) |𝜔𝑆(𝑁𝑀) (2.11)
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Then Lotz’s overestimate is give by

(Volume of Tube of radius
𝜖

2
around 𝑀) ≤ ( 𝜖

2
)𝑛−𝑑

𝑑∑︁
𝑖=0

𝐾𝑖

𝑛 − 𝑑 + 𝑖 (
𝜖

2
)𝑖 (2.12)

We have that 1
𝜏

is an upper bound for all eigenvalues of the shape operator. Since 𝜓𝑖 (𝑣) are the

coefficients of the characteristic polynomial of S(v), we have

|𝜓𝑖 (𝑣) | ≤
(
𝑑

𝑖

)
( 1
𝜏
)𝑖 (2.13)

𝐾𝑖 :=
∫
𝑆(𝑁𝑀)

|𝜓𝑖 (𝑣) |𝜔𝑆(𝑁𝑀) (2.14)

≤ vol(𝑆(𝑁𝑀))
(
𝑑

𝑖

)
( 1
𝜏
)𝑖 . (2.15)

where vol(𝑆(𝑁𝑀)) = vol(𝑀)vol(𝑆𝑛−𝑑−1). Therefore using (2.12) we get

(Volume of Tube of radius
𝜖

2
around 𝑀) ≤ vol(𝑀)vol(𝑆𝑛−𝑑−1) ( 𝜖

2
)𝑛−𝑑

𝑑∑︁
𝑖=0

(𝑑
𝑖

)
( 1
𝜏
)𝑖

𝑛 − 𝑑 + 𝑖 (
𝜖

2
)𝑖 (2.16)

Using vol(𝑆𝑛−𝑑−1) = (𝑛 − 𝑑)vol(𝐵𝑛−𝑑)

(Volume of Tube of radius
𝜖

2
around 𝑀) ≤ 𝑉𝑀Vol(𝐵𝑛−𝑑 ( 𝜖

2
))

𝑑∑︁
𝑖=0

𝑛 − 𝑑
𝑛 − 𝑑 + 𝑖

(
𝑑

𝑖

)
( 𝜖
2𝜏

)𝑖 (2.17)

≤ 𝑉𝑀Vol(𝐵𝑛−𝑑 ( 𝜖
2
)) (1 + 𝜖

2𝜏
)𝑑 (2.18)

as claimed. ■

Now we present a similar argument for when a boundary is present.

Proposition 2.3.2. (Via Tube Formula) Let 𝑀 ↩→ R𝑛 be a compact 𝑑-dimensional submanifold of

R𝑛 with boundary. Let 𝜏𝑀 > 0 be the reach of 𝑀\𝜕𝑀 , and 𝑉𝑀 denote the volume of 𝑀 . Let 𝜕𝑀

denote the boundary of 𝑀 as an independent submanifold of R𝑛. Let 𝜏𝜕𝑀 > 0 be the injectivity

radius of the normal exponential map of 𝜕𝑀 and let 𝑉𝜕𝑀 be the volume of 𝜕𝑀 . Let 𝜔𝑛 be volume

of the unit Euclidean 𝑛-dimensional ball. Then for all 0 < 𝜖 , 𝑀 can be covered with

𝑉𝑀
𝜔𝑛−𝑑
𝜔𝑛

( 1
𝜏𝑀

+ 2
𝜖
)𝑑 +𝑉𝜕𝑀 𝜔𝑛−𝑑+1

𝜔𝑛
( 1
𝜏𝜕𝑀

+ 2
𝜖
)𝑑−1 n-dimensional Euclidean balls of radius 𝜖 .

Proof. Instead of covering 𝑀 with Euclidean balls of radius 𝜖 , we pack it with balls of radius
𝜖
2 . We restrict the centers to be on 𝑀 . Any such ball is contained in the set of points of distance 𝜖

2
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from 𝑀 . We will bound this volume from above. Let 𝐴1 be the image of normal exponential map

of 𝑀\𝜕𝑀 with radius 𝜖
2 . Let 𝐴2 be the image of normal exponential map of 𝜕𝑀 with radius 𝜖

2 .

Volume of 𝐴 is bounded above by 𝑉𝑀Vol(𝐵𝑛−𝑑 ( 𝜖2 )) (1 + 𝜖
𝜏𝑀

)𝑑 . Volume of 𝐵 is bounded above by

𝑉𝜕𝑀Vol(𝐵𝑛−(𝑑−1) ( 𝜖2 )) (1+
𝜖
𝜏𝜕𝑀

)𝑑−1. Therefore the number of disjoint packing balls can be bounded

by dividing by the volume of a single ball.

num of balls ≤
𝑉𝑀Vol(𝐵𝑛−𝑑 ( 𝜖2 )) (1 + 𝜖

𝜏𝑀
)𝑑 +𝑉𝜕𝑀Vol(𝐵𝑛−(𝑑−1) ( 𝜖2 )) (1 + 𝜖

𝜏𝜕𝑀
)𝑑−1

𝜔𝑛 ( 𝜖2 )𝑛
(2.19)

≤ 𝑉𝑀
𝜔𝑛−𝑑
𝜔𝑛

(1 + 𝜖

2𝜏𝑀
)𝑑 1
( 𝜖2 )𝑑

+𝑉𝜕𝑀
𝜔𝑛−𝑑+1
𝜔𝑛

(1 + 𝜖

2𝜏𝜕𝑀
)𝑑−1 1

( 𝜖2 )𝑑−1 (2.20)

= 𝑉𝑀
𝜔𝑛−𝑑
𝜔𝑛

( 1
𝜏𝑀

+ 2
𝜖
)𝑑 +𝑉𝜕𝑀

𝜔𝑛−𝑑+1
𝜔𝑛

( 1
𝜏𝜕𝑀

+ 2
𝜖
)𝑑−1 (2.21)

Remark 2.3.3. The bound in proposition 2.3.2, which is based on overestimating the volume of a

tube around the manifold, is valid for all radii of covering balls. This is in contrast to the approach

using Gunther’s theorem where one is restricted by the injectivity radius of the manifold. However

the tube bounds depend on the ambient dimension 𝑛 while Gunther’s bound only depends on the

dimension of the manifold. This is because for small enough radii, one is close to the surface of the

manifold. However for large radii, one must account for the dimension of the ambient space. This

dependence on the ambient dimension is prohibitive specially when one is in spaces with extremely

large dimension.

We show the dependence on the ambient dimension with a calculation. Using the formula for

the volume of a Euclidean ball in dimension 𝑑, 𝜔𝑑 = 𝜋
𝑑
2

Γ( 𝑑2 +1) . One gets 𝜔𝑛−𝑑
𝜔𝑛

= 1
𝜋
𝑑
2

Γ( 𝑛2 +1)
Γ( 𝑛−𝑑2 +1) . In

particular if both 𝑛, 𝑑 are even and 𝑑 < 𝑛
2 ,

𝜔𝑛−𝑑
𝜔𝑛

=
1
𝜋

𝑑
2
(𝑛 − 𝑑

2
+ 1)...(𝑛

2
) ≥ 1

𝜋
𝑑
2
(𝑛 − 𝑑

2
+ 1) 𝑑

2 ≥ ( 𝑛
4𝜋

) 𝑑
2 .

One can consider the limit 𝜖 → ∞ in the formula
𝑉𝜔𝑛−𝑑 (1 + 𝜖

2𝜏 )
𝑑

𝜔𝑛 ( 𝜖2 )𝑑
from proposition 2.3.1. The

limit scales as (𝜔𝑛−𝑑
𝜔𝑛

) 𝑉
𝜏𝑑

. For a compact manifold, the covering number is 1 once 𝜖 > diameter(𝑀).

This difference is in part because in the overestimate we ignore the overlaps as the tube gets large.

Incorporating the overlaps in the covering bound is an interesting direction for future research.
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2.4 Covering Estimate from Below via Bishop’s Theorem

In this section we give lower bounds for covering numbers of a manifold. These bounds are used

in chapter 5 for discussing necessary conditions for JL maps.

Theorem 2.4.1. Let 𝑀 be a d-dimensional smooth submanifold of R𝑛 possibly with boundary, with

volume 𝑉 and reach 𝜏. Let 0 < 𝜖 ≤ 𝜏
2 , and 𝑟 = 𝜖 (1 + 2𝜖

𝜏
). Let 𝜔𝑑 = 𝜋𝑑/2

Γ( 𝑑2 +1) be the volume of

the standard unit 𝑑-ball. Then the covering number of 𝑀 with balls centered on 𝑀 and radius 𝜖

satisfies

𝑉

𝜔𝑑 (1 +
√

2𝑟
3𝜏 )𝑑−1𝑟𝑑

≤ 𝐶 (𝑀, 𝜖) .

Proof. We claim a single ball can cover at most a subset of 𝑀 with volume 𝜔𝑑 (1 +
√

2𝑟
3𝜏 )

𝑑−1𝑟𝑑 .

This claim immediately implies the theorem.

For two points 𝑝, 𝑞 ∈ 𝑀 with Euclidean distance 𝛿, geodesic distance 𝑙, and 𝛿 ≤ 𝜏
2 , one has

𝑙 ≤ 𝛿(1 + 2𝛿
𝜏
). Hence the intersection of 𝑀 and a Euclidean ball of radius 𝜖 centered on 𝑀 is

contained in a geodesic balls of radius 𝑟 = 𝜖 (1+ 2𝜖
𝜏
) with the same center provided 𝜖 ≤ 𝜏

2 . Therefore

it is sufficient to bound the volume of such a geodesic ball from above with 𝜔𝑑 (1 +
√

2𝑟
3𝜏 )

𝑑−1𝑟𝑑 .

We use Bishop’s volume comparison theorem [See [19], page 169, theorem 3.101, part i]. By

properties of reach, theorem 2.1.7, the injectivity radius of each point of 𝑀 is at least 𝜋𝜏, and

all sectional curves of 𝑀 are bounded below by −2
𝜏2 . Hence by Bishop’s theorem the volume of a

geodesic ball of radius 𝑟 in 𝑀 is bounded above by the volume of the geodesic ball of radius 𝑟 in

the simply connected space with constant sectional curvature −2
𝜏2 . Denote this volume by 𝑉−2

𝜏2
(𝑟); it

is given by the formula

𝑉−2
𝜏2
(𝑟) = 2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝑟

0
𝑆 −2

𝜏2
(𝑥)𝑑−1𝑑𝑥
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where 𝑆𝑘 (𝑥) = 1√
−𝑘

sinh(
√
−𝑘𝑥). Since sinh(𝑥)

𝑥
is increasing on 0 < 𝑥,

𝑉−2
𝜏2
(𝑟) = 2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝑟

0
𝑆 −2

𝜏2
(𝑥)𝑑−1𝑑𝑥

≤ 2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝑟

0
(
sinh(

√
2𝑥
𝜏
)

√
2𝑥
𝜏

)𝑑−1𝑥𝑑−1𝑑𝑥

≤ 2𝜋𝑑/2

Γ( 𝑑2 )
(
sinh(

√
2𝑟
𝜏
)

√
2𝑟
𝜏

)𝑑−1 𝑟
𝑑

𝑑
.

Here we use an approximation for sinh(𝑥)
𝑥

. Since 0 < 𝜖 ≤ 𝜏
2 , then 𝑟 = 𝜖 (1 + 2𝜖

𝜏
) ≤ 𝜏, and

√
2𝑟
𝜏

≤
√

2.

Using sinh(𝑥)
𝑥

≤ 1 + 𝑥
3 for 0 < 𝑥 ≤

√
2,

≤ 2𝜋𝑑/2

Γ( 𝑑2 )
(1 +

√
2𝑟

3𝜏
)𝑑−1 𝑟

𝑑

𝑑

= 𝜔𝑑 (1 +
√

2𝑟
3𝜏

)𝑑−1𝑟𝑑

■

Corollary 2.4.2. Let 𝑀 be a d-dimensional smooth submanifold of R𝑛 possibly with boundary,

with volume 𝑉 and reach 𝜏. Let 0 < 𝜖 ≤ 𝜏
2 . Let 𝜔𝑑 = 𝜋𝑑/2

Γ( 𝑑2 +1) be the volume of the standard 𝑑-ball.

Then the covering number of 𝑀 with balls centered on 𝑀 and radius 𝜖 satisfies

𝑉

𝜔𝑑 (3𝜖)𝑑
≤ 𝐶 (𝑀, 𝜖) .

Proof. We use the bound 𝑉

𝜔𝑑 (1+
√

2𝑟
3𝜏 )𝑑−1𝑟𝑑

≤ 𝐶 (𝑀, 𝜖). From 0 < 𝜖 ≤ 𝜏
2 , we simplify 𝑟 = 𝜖 (1+ 2𝜖

𝜏
)

to 𝑟 ≤ 2𝜖 and 𝑟 ≤ 𝜏. We get the factor of 3 from (1 +
√

2
3 )2 < 3. ■
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2.5 Covering Estimate from Above for the Unit Secants of a Submanifold

In this section we calculate a covering number for the unit secants generated by a compact subman-

ifold of the Euclidean space with boundary in terms of the covering numbers for the manifold. The

secants of a manifold have been studied previously in [24, section 3], [30, page 1323], [37, section

1] and [38, section 3]. In our approach here, we use the covering numbers to estimate the Gaussian

width of the set of unit secants.

We give a list of secants that form an 𝜖-net for the set of unit secants. The distance between

two unit secants is calculated by their distance on the unit sphere. The secants of 𝑀 are separated

into long and short secants; the long secants are compared to the secants generated by a net on the

manifold and the short secants are compared to tangent vectors anchored at the net points. The

technique of separating the cords into long and short have been previously used in [14, page 5],

[15, lemma 9], and [23, section 3].

For long secants, we have the following lemma.

Lemma 2.5.1. [14, lemma 4.1] Let 𝑝, 𝑝∗, 𝑞 and 𝑞∗ be 4 points in R𝑛. Let 0 < 𝑙 = | |𝑝 − 𝑞 | | and

| |𝑝 − 𝑝∗ | |, | |𝑞 − 𝑞∗ | | < 𝑑. Let 0 < 𝜖 < 1 and assume 4𝑑
𝑙
≤ 𝜖 . Then

| | 𝑝 − 𝑞
| |𝑝 − 𝑞 | | −

𝑝∗ − 𝑞∗
| |𝑝∗ − 𝑞∗ | | | | ≤ 𝜖 . (2.22)

We now present the covering argument for the unit secants. In the proof, we develop a lemma

for short secants similar to long ones.

Theorem 2.5.2. (Covering the unit secants) Let𝑀 ↩→ R𝑛 be a compact 𝑑-dimensional submanifold

of R𝑛 with boundary 𝜕𝑀 . Let 𝜏𝑀 be the reach of 𝑀 . Let 𝜏𝑖 be the reach of the 𝑖-th connected

component of 𝜕𝑀 as a submanifold of R𝑛. Let 𝜏 = inf𝑀,𝑖{𝜏𝑀 , 𝜏𝑖}. Let 𝑉𝑀 be the volume of 𝑀 and

𝑉𝜕𝑀 be the volume of 𝜕𝑀 . Let 𝑈 (𝑀 − 𝑀) = { 𝑝−𝑞
| |𝑝−𝑞 | | | 𝑝 ≠ 𝑞, 𝑝, 𝑞 ∈ 𝑀} be the set of unit secants

of 𝑀 , and let 𝑈 (𝑀 − 𝑀) be its closure. Fix 0 < 𝜖 < 1. Define 𝛼 =
𝑉𝑀
𝜔𝑑

( 41
𝜏
)𝑑 + 𝑉𝜕𝑀

𝜔𝑑−1
( 81
𝜏
)𝑑−1. Then

𝑈 (𝑀 − 𝑀) can be covered with
(
𝛼2

2 + 𝛼(2𝑑3𝑑−1)
)

1
𝜖4𝑑 n-dimensional Euclidean balls of radius 𝜖 .
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Proof. We give a list of unit vectors in R𝑛, count its elements, and prove that every element

of 𝑈 (𝑀 − 𝑀) is within 𝜖 distance of one of them. In this approach we follow [15]. The list is as

follows.

1. Consider a ( 𝜏𝜖2

20 )-net of points in 𝑀 . Include all the unit secant lines generated by pair of

these points in the list. If 𝜏 = ∞ then 1 point is sufficient for the net. (That is because infinite

reach corresponds to affine spaces and all secants can be compared to tangent vectors at one

point).

2. For each point in the above net, consider a ( 𝜖3 )-net for its unit tangent sphere. Include all

such unit vectors in the list. If an anchor point is in the boundary, there is a half unit sphere

for inward pointing vectors and we consider the unit 𝑆𝑑−1 as its extension.

We must show that the list above is an 𝜖-net for 𝑈 (𝑀 − 𝑀). To do so divide the secant lines

into a long and short set based on their length. The cut-off between long and short secants is 𝜏𝜖
5 . If

𝜏 = ∞ then all secants count as short.

Long Secants: For a long secant between 𝑝, 𝑞 ∈ 𝑀 , let 𝑝∗ and 𝑞∗ be the closest point to them

in the net on 𝑀 . Since 2( 𝜏𝜖2

20 ) <
𝜏𝜖
5 ≤ ||𝑝 − 𝑞 | |, we are guaranteed that 𝑝∗ and 𝑞∗ are distinct

points. By lemma 2.5.1 the distance between the unit secants of 𝑝 − 𝑞 and 𝑝∗ − 𝑞∗ is bounded by
4( 𝜏𝜖 2

20 )
| |𝑝−𝑞 | | ≤

( 𝜏𝜖 2
5 )

( 𝜏𝜖5 ) ≤ 𝜖 . Therefore all long secants are covered by the secants in item 1 above.

Short Secants: For a short secant, we first exchange it for the starting tangent direction for the

distance minimizing geodesic connecting its base points. Second, we exchange that tangent vector

for its parallel transport along the distance minimizing geodesic to the tangent space of the closest

point to the base point in the ( 𝜏𝜖2

20 )-net of 𝑀 . Third, we exchange the parallel transported vector for

one of the vectors in the item 2 above. In this process, we will incur 3 errors which we denote by

𝜖1, 𝜖2 and 𝜖3. We must show that 𝜖1 + 𝜖2 + 𝜖3 ≤ 𝜖 .

Exchanging a short secant for a tangent vector. Here we bound 𝜖1 by 𝜖
3 . Using theorem

2.1.7, the angle between the initial tangent vector and the secant satisfies sin(𝜙) ≤ 𝑑
2𝜏 (1 + 2𝑑

𝜏
)2.
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Because the cutoff for short secants is 𝜏𝜖
5 , substituting for 𝑑, sin(𝜙) ≤ 49𝜖

250 . Using 2 sin( 𝜙2 ) as the

distance on a unit sphere for 2 vectors with angle 𝜙,

𝜖1 = 2 sin( 𝜙
2
) < 3

2
sin(𝜙) ≤ 147𝜖

500
<
𝜖

3
.

Parallel transport to an anchor point. Here we bound 𝜖2 by 𝜖
3 . Here we parallel transport an

initial geodesic tangent vector from the base point of the secant to an anchor point. Using theorem

2.1.7, 𝜃 ≤ 𝑙
𝜏
. The Euclidean distance to the closest net point is at most 𝑑 ≤ ( 𝜏𝜖2

20 ). We translate to

the geodesic distance using theorem 2.1.7, 𝑙 ≤ 𝑑 + 2𝑑2

𝜏
. It follows that using 𝜖 ≤ 1

𝜖2 = 2 sin( 𝜃
2
) ≤ 𝜃 ≤ 𝑙

𝜏
≤ 𝑑

𝜏
(1 + 2𝑑

𝜏
)2 ≤ 𝜖2

20
(1 + 𝜖

2

10
)2 <

𝜖

3
.

Here we had room to spare for obtaining the bound 𝜖
3 . However the cut-off of 𝜏𝜖

3 and 𝜏𝜖2

20 are

needed for the exchanging a short secant with a tangent vector and for handling the long secants.

Exchange with a preselected tangent vector: At the anchor point, we exchange the parallel

transported tangent vector with a vector in a net for the unit sphere at the anchor point. By choice

a ( 𝜖3 )-net is considered at the anchor point hence, 𝜖3 ≤ 𝜖
3 . Therefore together 𝜖1 + 𝜖2 + 𝜖3 ≤ 𝜖 .

It remains to count the number of unit vectors in the above list. For item 1, by theorem 2.2.6,

one can create a ( 𝜏𝜖2

20 )-net for 𝑀 with 𝐶 ( 𝜏𝜖2

20 ) when 𝐶 (𝜖) is defined as

𝐶 (𝜖) = 𝑉𝑀

𝜔𝑑 (1 − 𝜖2

24𝜏2
𝑀

)𝑑−1( 𝜖2 )𝑑
+ 𝑉𝜕𝑀

𝜔𝑑−1(1 − 𝜖2

96𝜏2
𝜕𝑀

)𝑑−2( 𝜖4 )𝑑−1
.

The number of unit secants generated by such points is bounded above by 1
2𝐶 (

𝜏𝜖2

20 )
2. For directions

in the list 2, the anchor points could be in the interior or in the boundary of 𝑀 . We consider the

tangent 𝑆𝑑−1 for the unit vectors for all of them; if an anchor point is in the boundary, there is a

half unit sphere for inward pointing vectors and we consider the unit 𝑆𝑑−1 as its extension. By [35,

corollary 4.2.13], each 𝑆𝑑−1 can be covered by ( 3
𝜖
)𝑑 unit vectors. Since there is a unit sphere for
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each point in the net from item 1, there are 𝐶 ( 𝜏𝜖2

20 ) (
3
𝜖
)𝑑 . Adding the two estimates together there

are at most 1
2𝐶 (

𝜏𝜖2

20 )
2 + 𝐶 ( 𝜏𝜖2

20 ) (
3
𝜖
)𝑑 unit vectors. This number is rather inconvenient and we will

simplify it. One has 𝐶 ( 𝜏𝜖2

20 )

𝐶 ( 𝜏𝜖
2

20
) = 𝑉𝑀

𝜔𝑑 (1 − ( 𝜏𝜖 2
20 )2

24𝜏2
𝑀

)𝑑−1( (
𝜏𝜖 2
20 )
2 )𝑑

+ 𝑉𝜕𝑀

𝜔𝑑−1(1 − ( 𝜏𝜖 2
20 )2

96𝜏2
𝜕𝑀

)𝑑−2( (
𝜏𝜖 2
20 )
4 )𝑑−1

.

We note 0 < 𝜖 ≤ 1, 𝜏 = min{𝜏𝑀 , 𝜏𝜕𝑀}, and

(2 × 20)𝑑

(1 − 𝜖4

(24) (202) )𝑑−1
≤ 40.005𝑑 < 41𝑑

(4 × 20)𝑑

(1 − 𝜖4

(96) (202) )𝑑−1
≤ 80.003𝑑 < 81𝑑 .

Define 𝛼 =
𝑉𝑀
𝜔𝑑

( 41
𝜏
)𝑑 + 𝑉𝜕𝑀

𝜔𝑑−1
( 81
𝜏
)𝑑−1. Then

𝐶 ( 𝜏𝜖
2

20
) ≤ 𝛼

𝜖2𝑑

Therefore we get the overall upper bound as

𝛼2

2
1
𝜖4𝑑 + ( 𝛼

𝜖2𝑑 ) (
3
𝜖
)𝑑 ≤

(
𝛼2

2
+ 𝛼3𝑑

)
1
𝜖4𝑑 .

■

For an example we apply our covering estimate to the standard 𝑆𝑑 as a corollary. We note that

the set of the unit secants of 𝑆𝑑 is equal to 𝑆𝑑 itself, hence there is redundancy as many pairs of

points achieve the same unit secant. It is an interesting geometry question to find submanifolds that

their secants avoid being parallel. In this direction there is the work on totally skew embeddings

[21]. Such submanifolds would be great candidates for benchmarking JL maps as their unit secants

is expected to be large.

Corollary 2.5.3. For covering the unit secants of 𝑆𝑑 ↩→ R𝑛, 14𝑑
√
𝑑412𝑑

𝜖4𝑑 balls of radius 𝜖 are sufficient.
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Proof. We calculate using theorem 2.5.2. We need
(
𝛼2

2 + 𝛼3𝑑
)

1
𝜖4𝑑 balls for 𝛼 =

𝑉𝑀
𝜔𝑑

( 41
𝜏
)𝑑 +

𝑉𝜕𝑀
𝜔𝑑−1

( 81
𝜏
)𝑑−1. We drop the boundary term since 𝑆𝑑 has no boundary. We have 𝜏 = 1, 𝑉𝑆𝑑 = 2 𝜋

𝑑+1
2

Γ( 𝑑+1
2 )

and 𝑉𝐵𝑑 = 𝜔𝑑 = 𝜋
𝑑
2

Γ( 𝑑2 +1) . Then 𝑉
𝑆𝑑

𝜔𝑑
= 2

√
𝜋
Γ( 𝑑2 +1)
Γ( 𝑑+1

2 ) ≤ 2
√
𝜋𝑑. Therefore 𝛼 ≤ 2

√
𝜋𝑑41𝑑 , and

𝛼2

2 + 𝛼3𝑑 ≤ 14𝑑
√
𝑑412𝑑 . ■
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2.6 Gaussian Width Estimate for Unit Secants From Above

Definition 2.6.1. Let 𝑔 be a standard Gaussian random variable in R𝑛. Define the Gaussian Width

of 𝑆 ⊂ R𝑛, 𝜔(𝑆), as follows.

𝜔(𝑆) = E sup
𝑥∈𝑆

⟨𝑔, 𝑥⟩ (2.23)

Theorem 2.6.2. (Via Gunther) Let 𝑀 ↩→ R𝑛 be a compact 𝑑-dimensional submanifold of R𝑛 with

boundary 𝜕𝑀 . Let 𝜏𝑀 be the reach of 𝑀 . Let 𝜏𝑖 be the reach of the 𝑖-th connected component of

𝜕𝑀 as a submanifold of R𝑛. Let 𝜏 = inf𝑀,𝑖{𝜏𝑀 , 𝜏𝑖}. Let 𝑉𝑀 be the volume of 𝑀 and 𝑉𝜕𝑀 be the

volume of 𝜕𝑀 . Let𝑈 (𝑀 −𝑀) = { 𝑝−𝑞
| |𝑝−𝑞 | | | 𝑝 ≠ 𝑞, 𝑝, 𝑞 ∈ 𝑀} be the set of unit secants of 𝑀 , and let

𝑈 (𝑀 − 𝑀) be its closure. Let Gaussian Width of𝑈 (𝑀 − 𝑀) be 𝜔(𝑈 (𝑀 − 𝑀)).

Define

𝛼 =
𝑉𝑀

𝜔𝑑
(41
𝜏
)𝑑 + 𝑉𝜕𝑀

𝜔𝑑−1
(81
𝜏
)𝑑−1 (2.24)

𝑐 = (𝛼
2

2
+ 3𝑑𝛼) (2.25)

Then

𝜔(𝑈 (𝑀 − 𝑀)) ≤ 4
√

2
√︁

log(𝑐) + 4𝑑 (2.26)

Proof. We use the covering number bounds in theorem 2.5.2 and Dudley’s inequality [18, page

226]. Let 𝐶 (𝜖) denote the covering number of 𝑈 (𝑀 − 𝑀) with n-dimensional Euclidean balls of

radius 𝜖 . We have that 𝐶 (𝜖) ≤ ( 𝛼2

2 + 2𝑑3𝑑𝛼) 1
𝜖4𝑑 for 0 < 𝜖 ≤ 1 and 𝐶 (𝜖) = 1 for 𝜖 > 1 because

𝑈 (𝑀 − 𝑀) is a subset of the 𝑆𝑛−1. Dudley’s inequality gives us

𝜔(𝑈 (𝑀 − 𝑀)) ≤ 4
√

2
∫ ∞

0

√︁
log(𝐶 (𝜖))𝑑𝜖 . (2.27)

Therefore

𝜔(𝑈 (𝑀 − 𝑀)) ≤ 4
√

2
∫ 1

0

√︂
log((𝛼

2

2
+ 2𝑑3𝑑𝛼) 1

𝜖4𝑑 )𝑑𝜖 . (2.28)

33



Let 𝑐 = ( 𝛼2

2 + 2𝑑3𝑑𝛼), then by Cauchy-Schwartz

𝜔(𝑈 (𝑀 − 𝑀)) ≤ 4
√

2
∫ 1

0

√︂
log(𝑐) + 4𝑑 log(1

𝜖
) (2.29)

≤ 4
√

2
√︁

log(𝑐)
∫ 1

0

√︄
1 + 4𝑑

log(𝑐) log(1
𝜖
) (2.30)

≤ 4
√

2
√︁

log(𝑐)

√︄∫ 1

0
1 + 4𝑑

log(𝑐) log(1
𝜖
). (2.31)

With the identity ∫ 1

0
1 + 𝑘 log(1

𝑥
)𝑑𝑥 = 1 − 𝑘 (𝑥 log(𝑥) − 𝑥)

��1
0 = 1 + 𝑘. (2.32)

We continue

𝜔(𝑈 (𝑀 − 𝑀)) ≤ 4
√

2
√︁

log(𝑐)

√︄
1 + 4𝑑

log(𝑐) (2.33)

≤ 4
√

2
√︁

log(𝑐) + 4𝑑 (2.34)

as required. ■
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CHAPTER 3

MORE ESTIMATES WITH REACH

3.1 Closed Submanifolds with Reach 1 and Minimum Volume

In the earlier covering estimates such as theorem 2.6.2 we encounter the ratio 𝑉

𝜏𝑑
for 𝑑 dimensional

manifolds. This ratio is scaling invariant and hence it is natural to ask if there is a minimum value

for it over closed manifolds. We will also encounter this ratio again in theorem 5.0.5 for a necessary

condition for JL maps. Therefore here we investigate if it has a lower bound.

In particular if we consider the case when 𝑑 = 1, and the manifold is topologically equivalent

to S1, and 𝜏 = 1, then the minimum of the ratio is just the minimum length of a closed curve with

reach one. Here we can show that for a closed 𝑑 dimensional manifold the minimum value of this

ratio is given by the volume of the standard S𝑑 . In section 3.2 we also consider the minimum value

of this ratio for a torus embedded in 3 dimensions, which has a topological constraint.

Proposition 3.1.1. Let 𝑀 ⊂ R𝑁 be a closed smooth d dimensional manifold of reach 1. Then the

volume of 𝑀 is at least Vol(S𝑑) which is the volume of the standard unit S𝑑 .

Proof. We present the proof in 4 steps.

1. The injectivity radius of a closed manifold of reach 𝜏 is at least 𝜋𝜏. So for 𝜏 = 1, the injectivy

radius is at least 𝜋. See theorem 2.1.7

2. Sectional curvatures of 𝑀 are all abounded above by 1
𝜏2 . For 𝜏 = 1, they are all bounded by

1.

3. Consider the geodesic ball of radius 𝜋 around an arbitrary point. Because the injectivity

radius is at least 𝜋, then we can apply Gunther’s volume comparison theorem. Then the volume

of the geodesic ball is at least the volume of the geodesic ball of radius 𝜋 in the space of uniform
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curvature one. The general formula is

𝑉 1
𝜏2
(𝑟) = 2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝑟

0
𝑆 1

𝜏2
(𝑥)𝑑−1𝑑𝑥

where 𝑆𝑘 (𝑥) = 1√
𝑘

sin(
√
𝑘𝑥) for 𝑘 > 0. So we can rewrite

2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝑟

0
𝑆 1

𝜏2
(𝑥)𝑑−1𝑑𝑥 =

2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝑟

0

(
𝜏 sin

( 𝑥
𝜏

))𝑑−1
𝑑𝑥.

Here we want 𝑟 = 𝜋 and 𝜏 = 1 so we get

𝑉 =
2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝜋

0
(sin (𝑥))𝑑−1 𝑑𝑥.

This is the formula for the volume of the 𝑑 sphere, as

Vol(S𝑑) = 2𝜋(𝑑+1)/2

Γ( 𝑑+1
2 )

. (3.1)

4. The volume of 𝑀 is at least the volume of the geodesic ball we found in the previous item. ■

By scaling we get the following more general bound.

Corollary 3.1.2. Let 𝑀 ⊂ R𝑁 be a closed smooth d dimensional manifold of reach 𝜏. Then the we

have

𝑉

𝜏𝑑
≥ Vol(S𝑑). (3.2)

Proof. We scale by a factor of 1
𝜏

so that 𝜏 becomes 1. However under the scaling the ratio
𝑉

𝜏𝑑
doesn’t change. After the scaling we have 𝑉new

1 ≥ Vol(S𝑑). Therefore the same is true before

scaling. ■

3.1.1 Codimension 1

In this subsection we give an alternative proof with the isoperimetric inequality for the lower bound

on the ratio 𝑉

𝜏𝑑
in the special case where 𝑑 = 𝑛 − 1 (codimension 1) and the manifold is closed.

In the case of equality in our bound, we get a rigidity statement coming from the isoperimetric

inequality. The difference with the previous discuss is in having a different method of proof and a

rigidity result in the case of equality.

36



Theorem 3.1.3. Let 𝑀 ⊂ R𝑛 be a codimension 1 closed submanifold of R𝑛. Assume the reach of

𝑀 is 1. Then the 𝑛 − 1-dimensional volume of 𝑀 is at least vol(S𝑛−1) where S𝑛−1 is the unit 𝑛 − 1

dimensional sphere. In the case of volume equality, 𝑀 is a rigid transformation of S𝑛−1.

Proof. Since 𝑀 is codimension 1 and is closed, its complement will have two connected

components. One of them is the inward component. Call it 𝐴. We give a lower bound for the

volume of 𝐴.

Since the reach of 𝑀 is 1, the principle curvatures of 𝑀 in all normal directions are bounded

above by 1, [27, Proposition 6.1]. Consider the parallel surface of distance 0 < 𝑡 < 1 in the inwards

normal direction. Let the shape operator of 𝑀 be 𝑆, then the change of volume formula is given by

det(𝐼 − 𝑡𝑆) and

det(𝐼 − 𝑡𝑆) ≥ (1 − 𝑡)𝑛−1. (3.3)

Therefore if 𝑉 is the (n-1)-dimensional volume of 𝑀 , the n-dimensional volume of 𝐴 is at least

𝑉

∫ 1

𝑡=0
(1 − 𝑡)𝑛−1𝑑𝑡 =

𝑉

𝑛
(3.4)

Now we apply the isoperimetric inequality to 𝐴 with 𝜕𝐴 = 𝑀 . Let 𝜔𝑛 be the volume of the unit

𝑛-ball.

𝑛(𝜔𝑛)
1
𝑛 vol𝑛 (𝐴)

𝑛−1
𝑛 ≤ vol𝑛−1(𝑀) (3.5)

𝑛(𝜔𝑛)
1
𝑛 (𝑉
𝑛
) 𝑛−1

𝑛 ≤ 𝑉 (3.6)

vol(S𝑛−1) = 𝑛𝜔𝑛 ≤ 𝑉. (3.7)

In the last line we used the fact that vol(S𝑛−1) = 𝑑
𝑑𝑟
|𝑟=1vol(𝑟𝐵𝑛). The equality case of the

isoperimetric inequality gives that 𝑀 is a rigid motion of S𝑛−1. ■

3.2 Torus in R3 with Reach 1 and Minimum Area

Here we consider the problem of minimizing the ratio 𝑉

𝜏𝑑
when 𝑑 = 2, 𝜏 = 1 for a smooth torus in

R3. In this special case there is a topological constraint of having genus 1 and therefore we expect
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the minimum to be more than the value 4𝜋 ≈ 13 given in section 3.1.

Our candidate torus for minimizing the ratio is the torus of revolution with larger radius 2 and

smaller radius 1. The reach of this torus is 1 and its surface area is 8𝜋2 = (2𝜋(2)) (2𝜋(1)) ≈ 79.

Here we offer two proofs for smaller lower bounds. The first proof is based on Loewner’s

systolic inequality [6, page 325] and gives a lower bound of 2
√

3𝜋2 ≈ 34. The second proof is

based on the isoperimetric inequality and gives a lower bound of 27/332/3𝜋5/3 ≈ 70.

Theorem 3.2.1. (Via systolic inequality) Let 𝑇 ⊂ R3 be a smooth embedded torus with reach 1.

Then the surface area of 𝑇 is at least 2
√

3𝜋2.

Proof. Consider the systole of 𝑇 (shortest non-contractible loop). It is necessarily a periodic

geodesic [6, page 326]. Since the reach of 𝑇 is 1, the external acceleration of the systole as a unit

speed geodesic is at most 1 in norm. Any closed curve with acceleration bounded by 1 has length

at least 2𝜋 [17]. Therefore our theorem follows from Loewner’s systolic inequality [6, page 325]

sys2
√

3
2

≤ 𝐴 (3.8)

(2𝜋)2
√

3
2

≤ 𝐴 (3.9)

2
√

3𝜋2 ≤ 𝐴. (3.10)

■

Theorem 3.2.2. (Via isoperimetric inequality) Let 𝑇 ⊂ R3 be a smooth embedded torus with reach

1. Then the surface area of 𝑇 is at least 27/332/3𝜋5/3 ≈ 70.

Proof. Since torus is an orientable 2 dimensional surface there is a well-defined outward and

inward normal direction.

Consider the parallel surface 𝑇𝑜𝑢𝑡 defined by moving in the outward direction by 1 − 𝜖 . 𝑇𝑜𝑢𝑡

is another smooth torus because reach of 𝑇 is 1. We get our bound by applying the isoperimetric

inequality to this surface.
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First we show the volume contained inside 𝑇𝑜𝑢𝑡 (i.e. the volume of the bounded component of

the complement of 𝑇𝑜𝑢𝑡) is at least 16𝜋2. Second we show that the surface area of 𝑇𝑜𝑢𝑡 is at most

twice the surface area of 𝑇 . Then we apply the isoperimetric inequality.

First we discuss the issue of volume of 𝑇𝑜𝑢𝑡 . Let 𝜖 ∈ (0, 1). Consider the surface Σ𝜖 , that is

obtained from 𝑇 by moving in the inward normal direction by a distance of 1 − 𝜖 . Then Σ𝜖 is a

smooth surface because the reach of 𝑇 is 1.

Consider the solid torus given by the filling the bounded component of the complement of Σ𝜖 .

This solid torus is a 3-manifold with boundary and its systole is a periodic geodesic [6, page 326].

Call this curve 𝑙𝜖 . We claim the reach of 𝑙𝜖 is at least 2− 𝜖 . Consider 𝑙𝜖 (𝑡) as a unit speed geodesic;

for a 𝑡0 if 𝑙𝜖 (𝑡0) is in the interior of solid bounded by Σ𝜖 , then the acceleration of 𝑙𝜖 (𝑡0) is zero

because R3 is flat. If 𝑙𝜖 (𝑡0) is on Σ𝜖 , the boundary of the solid torus, then the acceleration of 𝑙𝜖 (𝑡0)

is outward pointing, and since reach of 𝑇 is 1 and we moved another 1 − 𝜖 inside, we get that reach

of 𝑙𝜖 is at least 2 − 𝜖 . By [17, page 50], the length of 𝑙𝜖 is at least 2𝜋(2 − 𝜖).

The tube of radius 2 − 2𝜖 around 𝑙𝜖 is contained in the inside of 𝑇𝑜𝑢𝑡 . The volume of this tube

by [22, page 7] is at least 2(2 − 𝜖) (2 − 2𝜖)2𝜋2. Therefore the volume inside of 𝑇𝑜𝑢𝑡 is at least

2(2 − 2𝜖)3𝜋2.

Now we discuss the surface area of 𝑇𝑜𝑢𝑡 . Let 𝐻 and 𝐾 denote the mean and Gaussian curvature

for 𝑇 respectively. By the parallel surface area formula [22, page 8], we have

Area(𝑇𝑜𝑢𝑡) = Area(T) + (1 − 𝜖)
∫
𝑇

2𝐻 + (1 − 𝜖)2
∫
𝑇

𝐾 (3.11)

By the Gauss–Bonnet theorem
∫
𝑇
𝐾 = 0.

We claim
∫
𝑇

2𝐻 ≤ Area(𝑇). This is because the surface area of the parallel surface in the

inward direction, obtained by moving from 𝑇 in the inward direction by distance 𝑡, is given by

Area(T) − 𝑡
∫
𝑇

2𝐻. Since the reach of 𝑇 is 1, this area must remain positive up to 𝑡 = 1 which

implies
∫
𝑇

2𝐻 ≤ Area(𝑇). Returning to (3.11), we get that

Area(𝑇𝑜𝑢𝑡) ≤ (2 − 𝜖)Area(𝑇) (3.12)
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Now we apply the isoperimetric inequality to 𝑇𝑜𝑢𝑡 .

3Vol(𝑇𝑜𝑢𝑡)2/3(4
3
𝜋)1/3 ≤ Area(𝑇𝑜𝑢𝑡) (3.13)

3(2(2 − 2𝜖)3𝜋2)2/3(4
3
𝜋)1/3 ≤ (2 − 𝜖)Area(𝑇) (3.14)

Letting 𝜖 → 0 and simplifying we get

70 ≈ 27/332/3𝜋5/3 ≤ Area(𝑇). (3.15)

■

3.3 Doing Better than Reach in Covering Estimates

Our earlier covering estimate for a compact manifold was based on reach. We used Gunther’s

theorem for volume comparison and the main ingredient in that theorem is an upper bound on

sectional curvatures. For a compact manifold of reach 𝜏, 1
𝜏2 is a global bound on all sectional

curvatures. Since this bound is based on reach, it is sensitive to perturbations. A small bump on

the manifold could change the value of 𝜏 substantially; see figure 3.1. However for a covering

argument, one should be able to find a global estimate which is based on averaging a local estimate.

Figure 3.1: Reach is a global parameter. A bump on the surface of a manifold can change its reach,
and therefore reach is sensitive to local perturbations.

Consider the function 𝑘 : 𝑀 → R

𝑘 (𝑝) = max sectional curvature of 𝑀 at 𝑝 (3.16)

Since sectional curvatures at a point are defined in the space of all planes in 𝑇𝑝𝑀 , Grassmanian

𝐺𝑟 (2, 𝑑), and this space is compact then the max exists. Let 𝑘̃ , 𝑘
∼
,

⨏
𝑘 be the max, min and the
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average of 𝑘 over 𝑀 . In this notation
⨏

takes precedence, hence “
⨏
𝑘 + 𝑘̃” means “(

⨏
𝑘) + 𝑘̃”.

Again since 𝑀 is compact, all three exist. With respect to the covering estimates, the approach

with reach is based on 𝑘̃ ≤ 1
𝜏2 . Here we can show that in the asymptotic regime as the radius of

the covering goes to zero, one can use
2𝑑 𝑘̃

⨏
𝑘−(

⨏
𝑘)𝑘

∼
−(2𝑑−1) 𝑘̃ 𝑘

∼
𝑘̃+(2𝑑−1)

⨏
𝑘−2𝑑𝑘

∼
. When 𝑘 is not a constant function,

this quantity is strictly bounded by
⨏
𝑘 and 𝑘̃ and therefore it is an improvement over 𝑘̃ and 1

𝜏2 . We

show this with a calculation below:

0 < ( 𝑘̃ −
⨏
𝑘) ( 𝑘̃ − 𝑘

∼
) (3.17)

2𝑑 𝑘̃
⨏
𝑘 − 𝑘

∼

⨏
𝑘 − (2𝑑 − 1)𝑘

∼
𝑘̃ < (2𝑑 − 1) 𝑘̃

⨏
𝑘 + 𝑘̃2 − 2𝑑 𝑘̃ 𝑘

∼
(3.18)

2𝑑 𝑘̃
⨏
𝑘 − 𝑘

∼

⨏
𝑘 − (2𝑑 − 1) 𝑘̃ 𝑘

∼

𝑘̃ + (2𝑑 − 1)
⨏
𝑘 − 2𝑑𝑘

∼

< 𝑘̃, (3.19)

and

(
⨏
𝑘 − 𝑘̃) (

⨏
𝑘 − 𝑘

∼
) < 0 (3.20)

(2𝑑 − 1)
⨏ 2

𝑘 + 𝑘̃
⨏
𝑘 − 2𝑑𝑘

∼

⨏
𝑘 < 2𝑑 𝑘̃

⨏
𝑘 − 𝑘

∼

⨏
𝑘 − (2𝑑 − 1)𝑘

∼
𝑘̃ (3.21)

⨏
𝑘 <

2𝑑 𝑘̃
⨏
𝑘 − 𝑘

∼

⨏
𝑘 − (2𝑑 − 1) 𝑘̃ 𝑘

∼

𝑘̃ + (2𝑑 − 1)
⨏
𝑘 − 2𝑑𝑘

∼

, (3.22)

and therefore we can conclude

⨏
𝑘 <

2𝑑 𝑘̃
⨏
𝑘 − 𝑘

∼

⨏
𝑘 − (2𝑑 − 1) 𝑘̃ 𝑘

∼

𝑘̃ + (2𝑑 − 1)
⨏
𝑘 − 2𝑑𝑘

∼

< 𝑘̃. (3.23)

The averaged quantity comes from treating each packing ball separately. As usual we use the

packing-covering relationship to switch to a packing estimate. For each packing ball, we showed it

isolates a geodesic ball of some radius with a minimum volume. This minimum volume gives the

desired bound. Consider the supremum of all sectional curvatures only in that geodesic ball, then

the Gunther’s theorem still holds with this sectional curvature. We can average the values of max

sectional curvatures with one value per packing ball to get an averaged value. Now we show this

calculation. First we need a volume estimate lemma.
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Lemma 3.3.1. Let𝑀 be a simply connected d-dimensional manifold of constant sectional curvature

𝑘 ∈ R. Consider a geodesic ball of radius 𝑟 and volume 𝑉𝑘 (𝑟). Then for 𝑟 small enough we have

2𝜋𝑑/2

Γ( 𝑑2 )
( 𝑟
𝑑

𝑑
− 𝑘 (𝑑 − 1)

6(𝑑 + 2) 𝑟
𝑑+2) ≤ 𝑉𝑘 (𝑟). (3.24)

Proof. The volume of a ball of radius 𝑟 in a space form is

𝑉𝑘 (𝑟) =
2𝜋𝑑/2

Γ( 𝑑2 )

∫ 𝑟

0
𝑆𝑘 (𝑥)𝑑−1𝑑𝑥

where for 𝑘 ∈ R

𝑆𝑘 (𝑟) =



1√
𝑘

sin(
√
𝑘𝑟) 𝑘 > 0

𝑟 𝑘 = 0

1√
−𝑘

sinh(
√
−𝑘𝑟) 𝑘 < 0

(3.25)

For 𝑘 > 0

1
√
𝑘

sin(
√
𝑘𝑥) = 𝑥 − 𝑘𝑥3

6
+ 𝑘

2𝑥5

5!
+ ... (3.26)

and 𝑘 < 0

1
√
−𝑘

sinh(
√
−𝑘𝑥) = 𝑥 + (−𝑘)𝑥3

6
+ 𝑘

2𝑥5

5!
+ ... (3.27)

Therefore ∫ 𝑟

0
𝑆𝑘 (𝑥)𝑑−1𝑑𝑥 =

∫ 𝑟

0
(𝑥 − 𝑘𝑥3

6
+ ...)𝑑−1𝑑𝑥 (3.28)

=

∫ 𝑟

0
𝑥𝑑−1 +

(
(𝑑 − 1)

1

)
𝑥𝑑−2(−𝑘𝑥

3

6
) + ...𝑑𝑥 (3.29)

=
𝑟𝑑

𝑑
− 𝑘 (𝑑 − 1)

6(𝑑 + 2) 𝑟
𝑑+2 + ... (3.30)

The next term in the expansion is always positive so for a small enough 𝑟 we have

𝑟𝑑

𝑑
− 𝑘 (𝑑 − 1)

6(𝑑 + 2) 𝑟
𝑑+2 ≤

∫ 𝑟

0
𝑆𝑘 (𝑥)𝑑−1𝑑𝑥 (3.31)

■

Next we give a lemma about averaging.
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Lemma 3.3.2. Let 𝑀 be a closed orientable smooth Riemannian manifold of dimension d with

volume 𝑉 . Let 𝑘 : 𝑀 → R be the map that gives the maximum sectional curvature at each point.

Let 𝐵𝑖 (𝑥𝑖, 𝑟), 1 ≤ 𝑖 ≤ 𝑁 be disjoint closed geodesic balls of radius 𝑟 and centers 𝑥𝑖. Let 𝑘𝑖 be the

supremum of all sectional curvatures in 𝐵𝑖. Let 𝑘∗ =
∑
𝑘𝑖
𝑁

be the average of 𝑘𝑖. Then for 𝑟 small

enough we have

𝑁 ≤ 𝑉/
[
2𝜋𝑑/2

Γ( 𝑑2 )
( 𝑟
𝑑

𝑑
− 𝑘∗(𝑑 − 1)

6(𝑑 + 2) 𝑟
𝑑+2)

]
(3.32)

Proof. Let 𝑉𝑖 (𝑟) be the volume of ball 𝑖. Then
∑
𝑖 𝑉𝑖 (𝑟) ≤ 𝑉 . By the Gunther’s theorem we

have

2𝜋𝑑/2

Γ( 𝑑2 )
( 𝑟
𝑑

𝑑
− 𝑘𝑖 (𝑑 − 1)

6(𝑑 + 2) 𝑟
𝑑+2) ≤ 𝑉𝑖 (𝑟) (3.33)

Summing over the balls we get

𝑁∑︁
𝑖=1

2𝜋𝑑/2

Γ( 𝑑2 )
( 𝑟
𝑑

𝑑
− 𝑘𝑖 (𝑑 − 1)

6(𝑑 + 2) 𝑟
𝑑+2) ≤ 𝑉 (3.34)

𝑁

[
2𝜋𝑑/2

Γ( 𝑑2 )
( 𝑟
𝑑

𝑑
− 𝑘∗(𝑑 − 1)

6(𝑑 + 2) 𝑟
𝑑+2)

]
≤ 𝑉 (3.35)

which is our claim. ■

So based on the above lemma if we find an estimate for 𝑘∗ =
∑
𝑖
𝑘𝑖
𝑁

we can use sharper bound in

the packing estimates compared to the ones given by reach. In the asymptotic regime, as the radius

of packing balls goes to zero, a natural candidates for 𝑘∗ is 1
𝑉

∫
𝑀
𝑘 . But because of varying packing

density this is not necessary the case.

Because of varying density as in figure 3.2, it is possible that 1
𝑉

∫
𝑀
𝑘 deviates from 𝑘∗ =

∑ 𝑘𝑖
𝑁

.

However, if 𝐵𝑖 (𝑥𝑖, 𝑟) is a packing ball with center 𝑥𝑖 and 𝑣𝑖 is the Voronoi cell corresponding to the

𝐵𝑖, then

𝐵𝑖 (𝑥𝑖, 𝑟) ⊂ 𝑣𝑖 ⊂ 𝐵𝑖 (𝑥𝑖, 2𝑟) (3.36)

This property restricts the deviation of our average from the continuous average over the manifold.

We use this relation to obtain our bound
2𝑑 𝑘̃

⨏
𝑘−(

⨏
𝑘)𝑘

∼
−(2𝑑−1) 𝑘̃ 𝑘

∼
𝑘̃+(2𝑑−1)

⨏
𝑘−2𝑑𝑘

∼
.
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(a) A packing with varying density (b) Veronoi cells associated to a packing

(c) Voronoi cell contained in a doubled ball

Figure 3.2: Figure-a shows a packing with varying density. Figure-b shows the Veronoi cells
associated with a packing. Figure-c shows a Veronoi cell contained by a doubled packing ball.

Theorem 3.3.3. Let 𝑀 be a closed smooth Riemannian manifold with volume𝑉 . Let 𝐵𝑖
𝑗
(𝑥𝑖
𝑗
, 𝑟), 1 ≤

𝑗 ≤ 𝑁𝑖 be a packing of 𝑀 with geodesic balls of radius 𝑟𝑖 and centers 𝑥𝑖. Let 𝑝𝑖
𝑗
∈ 𝐵 𝑗

𝑖
be points

that are arbitrarily selected from each ball. Let 𝜎𝑖 be a probability measure obtained by placing a

mass of 1/𝑁𝑖 weight at 𝑝𝑖
𝑗
. Assume 𝑟𝑖 → 0 and 𝜎𝑖 converges weakly to 𝜎.

Let 𝑘 : 𝑀 → [𝑘
∼
, 𝑘̃] be the map that gives the maximum sectional curvature at each point.

Assume 𝑘 is a Lipschitz function. Let 𝑘̃ , 𝑘
∼

and
⨏
𝑘 be the max, min and the average of 𝑘 over 𝑀 .

Let 𝑘 𝑖
𝑗

:= 𝑘 (𝑝𝑖
𝑗
).

Let 𝜇 and 𝜇𝜎 be the push forward of measure induced by the volume form and 𝜎 on [𝑘
∼
, 𝑘̃] via

𝑘 . Assume 𝜇 and 𝜇𝜎 are absolutely continuous with respect to the Lebesgue measure.

If 𝑘 is not a constant function, then 𝑘
∼
<

⨏
𝑘 < 𝑘̃ and

lim sup
𝑟𝑖→0

∑𝑁𝑖

𝑗=1 𝑘
𝑖
𝑗

𝑁𝑖
≤

2𝑑 𝑘̃
⨏
𝑘 − (

⨏
𝑘)𝑘

∼
− (2𝑑 − 1) 𝑘̃ 𝑘

∼

𝑘̃ + (2𝑑 − 1)
⨏
𝑘 − 2𝑑𝑘

∼

. (3.37)
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Proof. We first fix 𝑖 and work with a single packing. Later we consider 𝑖 → ∞. We partition

𝑀 into Voronoi cells based on their distance to the center of the balls 𝑥𝑖
𝑗
. Define

𝑣𝑖𝑗 = {𝑝 ∈ 𝑀 |𝑑𝑔 (𝑝, 𝑥𝑖𝑗 ) < 𝑑𝑔 (𝑝, 𝑥𝑖𝑘 ) 𝑗 ≠ 𝑘} (3.38)

where 𝑑𝑔 is the geodesic distance. We assume the measure of the points that are equ-distant to two

of 𝑥𝑖
𝑗

is zero and we have

𝑉 =

𝑁𝑖∑︁
𝑗=1

|𝑣𝑖𝑗 | (3.39)

Since balls 𝐵𝑖
𝑗

are a packing of 𝑀 we have

𝐵𝑖𝑗 (𝑥𝑖𝑗 , 𝑟𝑖) ⊂ 𝑣𝑖𝑗 ⊂ 𝐵𝑖𝑗 (𝑥𝑖𝑗 , 2𝑟𝑖) (3.40)

For 𝑎, 𝑏 ∈ [𝑘
∼
, 𝑘̃], we count the number 𝑘 𝑖

𝑗
∈ [𝑎, 𝑏] from above and below using the 𝑣𝑖

𝑗
and 𝜇.

Let 𝑐 be the Lipschitz constant of 𝑘 .

For an upper bound, if 𝑘 𝑖
𝑗
∈ [𝑎, 𝑏], then ∀𝑥 ∈ 𝑣𝑖

𝑗
, 𝑎 − 4𝑟𝑖𝑐 ≤ 𝑘 (𝑥) ≤ 𝑏 + 4𝑟𝑖𝑐. Then

∪
𝑖:𝑘 𝑖

𝑗
∈[𝑎,𝑏]

𝑣𝑖𝑗 ⊂ {𝑝 |𝑎 − 4𝑟𝑖𝑐 ≤ 𝑘 (𝑝) ≤ 𝑏 + 4𝑟𝑖𝑐} (3.41)

Let 𝑉𝛼 (𝑟) be the volume of geodesic ball of radius 𝑟 in simply connected space of constant

sectional curvature 𝛼. By Gunther’s volume comparison theorem and relation ((3.40)), for 𝑟 small

enough we have

𝑉𝑏+4𝑟𝑐 (𝑟𝑖) ≤ |𝑣𝑖𝑗 | (3.42)

Since the Voronoi cells are disjoint, from equation ((3.41))

(#𝑘 𝑖𝑗 ∈ [𝑎, 𝑏]) ≤ 𝜇(𝑎 − 4𝑟𝑖𝑐, 𝑏 + 4𝑟𝑖𝑐)
𝑉𝑏+4𝑟𝑖𝑐 (𝑟)

(3.43)

where 𝜇(𝑎 − 4𝑟𝑖𝑐, 𝑏 + 4𝑟𝑖𝑐) = |{𝑝 : 𝑎 − 4𝑟𝑖𝑐 ≤ 𝑘 (𝑝) ≤ 𝑏 + 4𝑟𝑖𝑐}|.

For a lower bound, consider all Voronoi cells that intersect the set {𝑎+4𝑟𝑖𝑐 ≤ 𝑘 (𝑝) ≤ 𝑏−4𝑟𝑖𝑐}.

If 𝑟𝑖 < 𝑏−𝑎
8𝑐 this set is non-empty. For such Voronoi cells we have ∀𝑥 ∈ 𝑣𝑖

𝑗
, 𝑎 ≤ 𝑘 (𝑥) ≤ 𝑏 since 𝑣𝑖

𝑗

is contained in a ball of radius 2𝑟𝑖 and the 𝑘 𝑖
𝑗

from 𝑣𝑖
𝑗

satisfies 𝑘 𝑖
𝑗
∈ [𝑎, 𝑏]. Thus

{𝑝 |𝑎 + 4𝑟𝑖𝑐 ≤ 𝑘 (𝑝) ≤ 𝑏 − 4𝑟𝑖𝑐} ⊂ ∪
𝑗 :𝑘 𝑖

𝑗
∈[𝑎,𝑏]

𝑣𝑖𝑗 (3.44)
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Again let 𝑉𝛼 (𝑟) be the volume of geodesic ball of radius 𝑟 in simply connected space of constant

sectional curvature 𝛼. Using the Bishop-Gromov’s volume comparison theorem

|𝑣𝑖𝑗 | ≤ 𝑉𝑎 (2𝑟𝑖) (3.45)

Since the Voronoi cells are disjoint, from equation ((3.44))

𝜇(𝑎 + 4𝑟𝑖𝑐, 𝑏 − 4𝑟𝑖𝑐)
𝑉𝑎 (2𝑟𝑖)

≤ (#𝑘 𝑖𝑗 ∈ [𝑎, 𝑏]) (3.46)

Combining ((3.43)) and ((3.46)), we have

𝜇(𝑎 + 4𝑟𝑖𝑐, 𝑏 − 4𝑟𝑖𝑐)
𝑉𝑎 (2𝑟𝑖)

≤ (#𝑘 𝑖𝑗 ∈ [𝑎, 𝑏]) ≤ 𝜇(𝑎 − 4𝑟𝑖𝑐, 𝑏 + 4𝑟𝑖𝑐)
𝑉𝑏+4𝑟𝑖𝑐 (𝑟𝑖)

(3.47)

To get the proportion of 𝑘𝑖 ∈ [𝑎, 𝑏] we must divide by 𝑁𝑖. We divide the ((3.47)) for [𝑎, 𝑏] and

[𝑑, 𝑒] ⊂ [𝑘
∼
, 𝑘̃] to cancel the 𝑁𝑖 and get

𝑉𝑒+4𝑟𝑖𝑐 (𝑟𝑖)
𝑉𝑎 (2𝑟𝑖)

𝜇(𝑎 + 4𝑟𝑖𝑐, 𝑏 − 4𝑟𝑖𝑐)
𝜇(𝑑 − 4𝑟𝑖𝑐, 𝑒 + 4𝑟𝑖𝑐)

≤
(#𝑘 𝑖

𝑗
∈ [𝑎, 𝑏])

(#𝑘 𝑖
𝑗
∈ [𝑑, 𝑒])

≤ 𝑉𝑑 (2𝑟𝑖)
𝑉𝑏+4𝑟𝑖𝑐 (𝑟𝑖)

𝜇(𝑎 − 4𝑟𝑖𝑐, 𝑏 + 4𝑟𝑖𝑐)
𝜇(𝑑 + 4𝑟𝑖𝑐, 𝑒 − 4𝑟𝑖𝑐)

(3.48)

Note that since curvature terms are second order in the volume expansion

lim
𝑟→0

𝑉𝛼 (2𝑟)
𝑉𝛽 (𝑟)

= 2𝑑 (3.49)

Letting 𝑟𝑖 → 0 and using ((3.49)) in ((3.48)) we get

1
2𝑑
𝜇(𝑎, 𝑏)
𝜇(𝑑, 𝑒) ≤

(#𝑘 𝑖
𝑗
∈ [𝑎, 𝑏])

(#𝑘 𝑖
𝑗
∈ [𝑑, 𝑒])

≤ 2𝑑
𝜇(𝑎, 𝑏)
𝜇(𝑑, 𝑒) (3.50)

Let 𝑓 (𝑎) = 𝜎′(𝑎) and 𝑔(𝑘) = 𝜇′ (𝑘)
𝑉

. Note that 𝑔(𝑘) is a probability density on [𝑘
∼
, 𝑘̃]. Letting

𝑏 → 𝑎 and 𝑒 → 𝑑 and using convergence of 𝜎𝑖 → 𝜎, absolute continuity of 𝜎 and 𝜇,

1
2𝑑
𝑔(𝑎)
𝑔(𝑑) ≤ 𝑓 (𝑎)

𝑓 (𝑑) ≤ 2𝑑
𝑔(𝑎)
𝑔(𝑑) (3.51)

By assumption both 𝑓 (𝑘) and 𝑔(𝑘) are positive and continuous on [𝑘
∼
, 𝑘̃]. Therefore there are

constants 𝑐1 < 1 < 𝑐2 such that

𝑐1𝑔(𝑘) ≤ 𝑓 (𝑘) ≤ 𝑐2𝑔(𝑘) (3.52)
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Suppose 𝑓 (𝑘1) = 𝑐1𝑔(𝑘1) and 𝑓 (𝑘2) = 𝑐2𝑔(𝑘2) for some 𝑘1, 𝑘2. Using (3.51) with 𝑎 = 𝑘2 and

𝑑 = 𝑘1we get
1
2𝑑
𝑔(𝑘2)
𝑔(𝑘1)

≤ 𝑐2
𝑐1

𝑔(𝑘2)
𝑔(𝑘1)

≤ 2𝑑
𝑔(𝑘2)
𝑔(𝑘1)

(3.53)

which gives
𝑐1

2𝑑
≤ 𝑐2 ≤ 2𝑑𝑐1 (3.54)

Since 𝑐1 < 1 < 𝑐2
𝑐2

2𝑑
𝑔(𝑘) ≤ 𝑓 (𝑘) ≤ 𝑐2𝑔(𝑘) (3.55)

Now consider that both 𝑓 (𝑘) and 𝑔(𝑘) are probability densities on [𝑘
∼
, 𝑘̃]. Given the linear

constraints on 𝑓 (𝑘) given by condition (3.55), and
∫
𝑓 (𝑘) =

∫
𝑔(𝑘) = 1, from the simplex

algorithm, we can conclude that
∫
𝑘
𝑘 𝑓 (𝑘) is maximized when the inequalities in (3.55) are saturated

except possibility at one point such as 𝑘0 to transition between the two sides of (3.55). Therefore

consider

𝑓 (𝑘) =


𝑐2
2𝑑 𝑔(𝑘) if 𝑘 ≤ 𝑘0

𝑐2𝑔(𝑘) if 𝑘0 < 𝑘

(3.56)

Let
∫ 𝑘0
𝑘
∼
𝑔(𝑘) = 𝑎 and

∫ 𝑘̃

𝑘0
𝑔(𝑘) = 𝑏 with 𝑎, 𝑏 > 0, 𝑎 + 𝑏 = 1. Then from

∫ 𝑘̃

𝑘
∼
𝑓 (𝑘) = 1 we get

𝑐2
2𝑑 𝑎 + 𝑐2𝑏 = 1, and 𝑐2 = 2𝑑

𝑎+2𝑑𝑏 . Now we bound
∫
𝑘
𝑘 𝑓 (𝑘) from above in two ways.∫

𝑘

𝑘 𝑓 (𝑘) = 𝑐2

2𝑑

∫ 𝑘0

𝑘
∼

𝑘𝑔(𝑘) + 𝑐2

∫ 𝑘̃

𝑘0

𝑘𝑔(𝑘) (3.57)

=
𝑐2

2𝑑

∫ 𝑘̃

𝑘
∼

𝑘𝑔(𝑘) + 𝑐2(1 − 1
2𝑑

)
∫ 𝑘̃

𝑘0

𝑘𝑔(𝑘) (3.58)

≤ 𝑐2

2𝑑
⨏
𝑘 + 𝑐2(1 − 1

2𝑑 )𝑏𝑘̃ (3.59)

=
𝑐2

2𝑑
⨏
𝑘 + (1 − 𝑐2

2𝑑 ) 𝑘̃ A (3.60)
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where we use (1 − 1
2𝑑 )𝑐2𝑏 = (1 − 𝑐2

2𝑑 ). In another way,∫
𝑘

𝑘 𝑓 (𝑘) = 𝑐2

2𝑑

∫ 𝑘0

𝑘
∼

𝑘𝑔(𝑘) + 𝑐2

∫ 𝑘̃

𝑘0

𝑘𝑔(𝑘) (3.61)

= −𝑐2(1 − 1
2𝑑

)
∫ 𝑘0

𝑘
∼

𝑘𝑔(𝑘) + 𝑐2

∫ 𝑘̃

𝑘
∼

𝑘𝑔(𝑘) (3.62)

≤ −𝑐2(1 − 1
2𝑑

)𝑎𝑘
∼
+ 𝑐2

⨏
𝑘 (3.63)

= −(𝑐2 − 1)𝑘
∼
+ 𝑐2

⨏
𝑘 B (3.64)

where we used 𝑐2(1− 1
2𝑑 )𝑎 = 𝑐2 − 1. Hence

∫
𝑘
𝑘 𝑓 (𝑘) ≤ min{𝐴, 𝐵}. If we allow 𝑐2 to be a variable

then 𝐴 and 𝐵 are lines with positive and negative slopes respectively. Hence their intersection is

an upper bound for
∫
𝑘
𝑘 𝑓 (𝑘).

𝑐

2𝑑
⨏
𝑘 + (1 − 𝑐

2𝑑 ) 𝑘̃ = −(𝑐 − 1)𝑘
∼
+ 𝑐

⨏
𝑘 (3.65)

𝑐 =

𝑘̃ − 𝑘
∼

(1 − 1
2𝑑 )

⨏
𝑘 + 1

2𝑑 𝑘̃ − 𝑘∼
(3.66)

Substituting back into A or B, we get∫
𝑘

𝑘 𝑓 (𝑘) ≤
2𝑑 𝑘̃

⨏
𝑘 − (

⨏
𝑘)𝑘

∼
− (2𝑑 − 1) 𝑘̃ 𝑘

∼

𝑘̃ + (2𝑑 − 1)
⨏
𝑘 − 2𝑑𝑘

∼

(3.67)

■

Corollary 3.3.4. Let 𝑇 ⊂ R3 be a smooth torus. Let 𝐵𝑖 be packing balls of radius 𝑟 and let 𝑝𝑖 be

arbitrary points selected from 𝐵𝑖, and 𝑘 (𝑝𝑖) be the sectional curvature at 𝑝𝑖. Then

lim sup
𝑟→0

∑
𝑖 𝑘 (𝑝𝑖)
#{𝑘𝑖}

≤
−3𝑘̃ 𝑘

∼

𝑘̃ − 4𝑘
∼

(3.68)

Proof. We use the previous theorem with 𝑑 = 2. By Gauss-Bonnet theorem
⨏
𝑘 = 2 − 2𝑔 = 0,

and the claim follows. Note that in a torus in R3, the max and min of sectional curvatures are

respectively positive and negative. Hence our bound is a positive quantity. ■
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CHAPTER 4

SUFFICIENT CONDITIONS FOR JL MAPS OF MANIFOLDS

4.1 With sub-Gaussian Matrices (Variation 1)

In this section we improve on the work in [15, theorem 2]. In that work, a JL map is constructed for

a compact manifold via Gaussian matrices. The method is based on first finding an overestimate

for covering for the unit secants of a compact manifold based on its reach and volume, and second

using a chaining argument to get a JL map. The chaining method is based on using a sequence of

progressively denser 𝜖-nets and representing each point in the manifold as a branch in the tree of

𝜖-nets. [35, Chapter 8] provides a detailed explanation of this technique.

Here we improve on the previous work in two ways. First we allow the manifold to have

boundary. This generalization allows the JL map to apply to data models where the data terminates

at a boundary before it can wrap around and form a close manifold. Second we use the covering

numbers to calculate the Gaussian width of the unit secants of the manifold via Dudley’s inequality,

and then we apply the matrix deviation inequality to get JL maps for sub-Gaussian matrices. This

calculation streamlines and simplifies the generic chaining calculation in the earlier work. Our

main theorem in this section is theorem 4.1.7.

First we state the result in [15, theorem 2].

Theorem 4.1.1. [15, theorem 2] Let 𝑀 be a compact 𝑑-dimensional Riemannian submanifold of

R𝑁 with reach 𝜏 1 and volume 𝑉𝑀 . Conveniently assume that

𝑉𝑀

𝜏𝑑
≥ ( 21

2
√
𝑑
)𝑑 (4.1)

For 0 < 𝜖 ≤ 1
3 and 0 < 𝜌 < 1. Let Φ be a random 𝑚 × 𝑁 matrix populated with i.i.d zero mean

1In [15] the concept of condition number is used which is just the reciprocal of reach.
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Gaussian random variables with variance of 1/𝑚 with

𝑚 ≥ 18𝜖−2 max(24𝑑 + 2𝑑 log(
√
𝑑

𝜏𝜖2 ) + log(2𝑉2
𝑀), log( 8

𝜌
)). (4.2)

Then with probability at least 1 − 𝜌, for every pair of points 𝑥1, 𝑥2 ∈ 𝑀

(1 − 𝜖) | |𝑥1 − 𝑥2 | | ≤ | |Φ𝑥1 −Φ𝑥2 | | ≤ (1 + 𝜖) | |𝑥1 − 𝑥2 | |. (4.3)

Next we state the definitions for sub-Gaussian random variables, vectors and matrices, and then

we state the matrix deviation inequality.

Definition 4.1.2. [35, section 2.5](sub-Gaussian Random Variable) A random variable 𝑋 is sub-

Gaussian if it satisfies

E exp(𝑋2/𝑎2) ≤ 2 (4.4)

for some positive constant 𝑎. The sub-Gaussian norm of 𝑋 denoted by | |𝑋 | |𝜓2 is defined as

| |𝑋 | |𝜓2 = inf{𝑡 > 0 : E exp(𝑋2/𝑡2) ≤ 2} (4.5)

Alternatively, a random variable is called sub-Gaussian if it satisfies

P{|𝑋 | ≥ 𝑡} ≤ 2 exp(−𝑐𝑡2/| |𝑋 | |2𝜓2
) (4.6)

for all 𝑡 ≥ 0 where 𝑐 > 0 is an absolute constant.

Definition 4.1.3. [35, definition 3.4.1](sub-Gaussian Random Vector) A random vector 𝑋 ∈ R𝑛 is

called sub-Gaussian if the one-dimensional marginals ⟨𝑋, 𝑥⟩ are sub-Gaussian random variables

for all 𝑥 ∈ R𝑛. The sub-Gaussian norm of 𝑋 is defined as

| |𝑋 | |𝜓2 = sup
𝑥∈𝑆𝑛−1

| |⟨𝑋, 𝑥⟩| |𝜓2 . (4.7)

Definition 4.1.4. [35, definition 3.4.1](sub-Gaussian Random Matrix) A random 𝑚 × 𝑛 matrix 𝐴

such that its rows 𝐴𝑖 are independent, isotropic and sub-Gaussian random vectors in R𝑛 is called

a sub-Gaussian random matrix.
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Theorem 4.1.5. [35, theorem 9.1.1 and 9.1.8] Let 𝐴 be 𝑚×𝑛 sub-Gaussian random matrix. Let 𝐴𝑖

be the rows of 𝐴 with 𝐾 = max | |𝐴𝑖 | |𝜓2 . Let 𝑇 ⊂ R𝑛 with Gaussian width 𝜔(𝑇). Then there exists

an absolute constant 𝐶 such that for any 𝑢 ≥ 0 the following statement holds with probability at

least 1 − 2 exp(−𝑢2).

sup
𝑥∈𝑇

��| |𝐴𝑥 | |2 − √
𝑚 | |𝑥 | |2

�� ≤ 𝐶𝐾2 [𝜔(𝑇) + 𝑢 · rad(𝑇)] .
■

We rewrite the matrix deviation inequality as lower bound for the number of rows of a sub-

Gaussian matrix.

Theorem 4.1.6. Let 𝑇 ⊂ S𝑛−1 ⊂ R𝑛 with Gaussian width 𝜔(𝑇). Let 0 < 𝜖, 𝜌 < 1. Let 𝐴 be a 𝑚 × 𝑛

sub-Gaussian random matrix with 𝐾 = max | |𝐴𝑖 | |𝜓2 . Then there exists a universal constant 𝐶 such

that if

𝐶2𝐾4
(
𝜔(𝑇) +

√︃
log( 2

1−𝜌 )
)2

𝜖2 ≤ 𝑚 (4.8)

then with probably at least 𝜌 the following expressions

(1 − 𝜖) | |𝑥 | | ≤ | | 1
√
𝑚
𝐴𝑥 | | ≤ (1 + 𝜖) | |𝑥 | |

holds simultaneously for all 𝑥 ∈ 𝑇 .

Proof. We use theorem 4.1.5. Since𝑇 ⊂ S𝑛−1, rad(𝑇) = 1. Inverting the probability expression

𝜌 = 1 − 2 exp(−𝑢2), we obtain 𝑢 =

√︃
log( 2

1−𝜌 ). To control the error, we need

𝐶𝐾2
√
𝑚

[𝜔(𝑇) + 𝑢] ≤ 𝜖

𝐶2𝐾4
(
𝜔(𝑇) +

√︃
log( 2

1−𝜌 )
)2

𝜖2 ≤ 𝑚.

This completes the proof. ■

Now we put our matrix deviation inequality and the Gaussian width upper bound calculation

together to a JL map for a compact manifold with boundary.
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Theorem 4.1.7. (JL Map of a Compact Submanifold of R𝑛 with Boundary via sub-Gaussian

Random Matrices) Let 𝑀 ↩→ R𝑛 be a compact 𝑑-dimensional submanifold of R𝑛 with boundary

𝜕𝑀 . Let 𝜏𝑀 be the reach of 𝑀 . Let 𝜏𝑖 be the reach of the 𝑖-th connected component of 𝜕𝑀 as a

submanifold of R𝑛. Let 𝜏 = inf𝑀,𝑖{𝜏𝑀 , 𝜏𝑖}. Let 𝑉𝑀 be the volume of 𝑀 and 𝑉𝜕𝑀 be the volume of

𝜕𝑀 . Define

𝛼 =
𝑉𝑀

𝜔𝑑
(41
𝜏
)𝑑 + 𝑉𝜕𝑀

𝜔𝑑−1
(81
𝜏
)𝑑−1 (4.9)

𝑐 = (𝛼
2

2
+ 𝑑3𝑑𝛼) (4.10)

𝜔∗ = 4
√

2
√︁

log(𝑐) + 4𝑑. (4.11)

Let 𝐴 be a 𝑚 × 𝑛 sub-Gaussian random matrix such that 𝐾 = max𝑖 | |𝐴𝑖 | |𝜓2 .

Let 0 < 𝜖, 𝜌 < 1. There exists a universal constant 𝐶 such that if 𝑚 satisfies

𝐶2𝐾4
(
𝜔∗ +

√︃
log( 2

1−𝜌 )
)2

𝜖2 ≤ 𝑚 (4.12)

then with probably at least 𝜌, the following bounds hold simultaneously for all 𝑥1, 𝑥2 ∈ 𝑀 ,

(1 − 𝜖) | |𝑥1 − 𝑥2 | | ≤ | |𝐴(𝑥1 − 𝑥2) | | ≤ (1 + 𝜖) | |𝑥1 − 𝑥2 | |. (4.13)

Proof. We use theorem 4.1.6. We know that 𝜔∗ is an upper bound for the Gaussian width of

𝑈 (𝑀). Since𝑈 (𝑀) is a subset of the unit sphere, we can apply theorem 4.1.6 and this immediately

gives the result. ■

Remark 4.1.8. We analyze the dependence of 𝑚 on 𝑑 while keeping the other variables fixed. If

one puts 𝑚 =
𝐶2𝐾4

(
𝜔(𝑇)+

√︃
log( 2

1−𝜌 )
)2

𝜖2 as the least sufficient value of 𝑚, then 𝑚 depends on 𝑑 with

order of 𝑂 (𝑑 log(𝑑)). We have 1
𝜔𝑑

=
Γ( 𝑑2 +1)

𝜋
𝑑
2

= 𝑂 (𝑑𝑑), 𝛼 =
𝑉𝑀
𝜔𝑑

( 41
𝜏
)𝑑 + 𝑉𝜕𝑀

𝜔𝑑−1
( 81
𝜏
)𝑑−1 = 𝑂 (𝑑𝑑), 𝑐 =

( 𝛼2

2 + 2𝑑3𝑑−1𝛼) = 𝑂 (𝑑2𝑑), and 𝜔(𝑀) = 4
√

2
√︁

log(𝑐) + 4𝑑 =
√︁

log(𝑂 (𝑑2𝑑) + 4𝑑 = 𝑂 (
√︁
𝑑 log(𝑑)).

Since 𝑚 =
𝐶2𝐾4

(
𝜔(𝑇)+

√︃
log( 2

1−𝜌 )
)2

𝜖2 , then 𝑚 = 𝑂 (𝑑 log(𝑑)).

Remark 4.1.9. Comparing our result to the work in [15, theorem 2], we have removed the mild

geometric condition on reach 𝑉

𝜏𝑑
≥ ( 21

2
√
𝑑
)𝑑 and can accommodate the presence of a boundary.
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However the dependence of the final dimension, 𝑚, on the dimension of the manifold, 𝑑, remains

𝑂 (𝑑 log(𝑑)).

4.2 With SORS Matrices

In this section we improve the work in [29], where a sufficient condition is given for finding JL

maps via SORS matrices in terms of Gaussian width of the target set. The method is base on

the Multi-Resolution Restricted Isometry Property (MRIP). Separately in the work of [10], an

improvement in RIP estimates for SORS matrices is presented. Here we combine the improved RIP

estimate with the MRIP framework and obtain an improved JL map for compact manifolds based

on the Gaussian width of their unit secants. Theorem 4.2.16 is our main theorem in this section.

We start with the definition of SORS matrices and some properties.

Definition 4.2.1. (SORS Matrix) Let 𝑀 denote a R𝑛×𝑛 orthogonal matrix (or C𝑛×𝑛 where some

authors use unitary matrices) obeying

𝑀∗𝑀 = 𝐼 and max
𝑖, 𝑗

|𝑀𝑖, 𝑗 | ≤
𝐾
√
𝑛

(4.14)

Let 𝐻 ∈ R𝑚×𝑛 be a random matrix created from selecting rows of 𝑀 in an i.i.d fashion. Let

𝐷 ∈ R𝑛×𝑛 be a random diagonal matrix with diagonal entries of ±1 of equal probability. Then

𝐴 =
√
𝑛𝐻𝐷 is a Subsampled Orthogonal with Random Sign (SORS) matrix with constant 𝐾 . Note

that 𝐾 ≥ 1 since 1 =
∑
𝑖 𝑀

2
𝑖 𝑗
≤ 𝑛( 𝐾√

𝑛
)2 = 𝐾2.

Definition 4.2.2. (RIP)[18, Prop 6.1] The sth restricted isometry constant 𝜖𝑠 of a matrix 𝐴 ∈ R𝑚×𝑁

is the smallest 𝜖 ≥ 0 such that for all 𝑠-sparse 𝑥 ∈ R𝑁

(1 − 𝜖) | |𝑥 | |2 ≤ ||𝐴𝑥 | |2 ≤ (1 + 𝜖) | |𝑥 | |2.

Proposition 4.2.3. [18, Prop 6.6] For matrix 𝐴, let 𝜖𝑠 be the 𝑠th restricted isometry constant of 𝐴.

Then for integers 1 ≤ 𝑠 ≤ 𝑡

𝜖𝑡 ≤
𝑡 − 𝑑
𝑠
𝜖2𝑠 +

𝑑

𝑠
𝜖𝑠, 𝑑 = gcd(𝑠, 𝑡).
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In particular since 𝜖𝑠 ≤ 𝜖2𝑠

𝜖𝑡 ≤
𝑡

𝑠
𝜖2𝑠 .

Notation 4.2.4. For a matrix 𝐴, if 𝜖𝑠 ≤ 𝜖 , then we say 𝐴 satisfies the RIP of order (𝑠, 𝜖).

Proposition 4.2.5. Let 𝑠 ∈ N, and 1 ≤ 𝑘 be a real number. Then

𝜖𝑠 ≤ 𝑘𝜖(2⌈ 𝑠
𝑘
⌉) .

Proof. From proposition 4.2.3, or [18, Prop 6.6], for 1 ≤ 𝑠 ≤ 𝑡, we have 𝜖𝑡 ≤ 𝑡
𝑠
𝜖2𝑠.

Since 1 ≤ 𝑘 and 𝑠 is an integer, 1 ≤ ⌈ 𝑠
𝑘
⌉ ≤ 𝑠, and hence 𝜖𝑠 ≤ 𝑠

⌈ 𝑠
𝑘
⌉ 𝜖(2⌈ 𝑠𝑘 ⌉) ≤ 𝑘𝜖(2⌈ 𝑠

𝑘
⌉) .

Definition 4.2.6. [29, definition 2.1](Extended Restricted Isometry Property (ERIP)) A matrix

𝐴 ∈ R𝑚×𝑁 satisfies the ERIP of order (𝑠, 𝜖) if every 𝑥 ∈ R𝑁 with | |𝑥 | |0 = 𝑠 satisfies��| |𝐴𝑥 | |2 − ||𝑥 | |2
�� ≤ max{𝜖, 𝜖2}| |𝑥 | |2

Remark 4.2.7. The above definition differs from the RIP when 1 < 𝜖 .

Definition 4.2.8. [29, definition 2.2] (Multiresolution Restricted Isometry Property (MRIP)) A

matrix 𝐴 ∈ R𝑚×𝑁 satisfies the MRIP with (𝑠, 𝜖) if it possesses the extended RIP for (2𝑙𝑠, 2𝑙/2𝜖) for

0 ≤ 𝑙 ≤ ⌊log2( 𝑁𝑠 )⌋.

Next we state an existing RIP estimate for SORS matrices from [18], followed by an improvement

from [10]. The improvement has one fewer log factor.

Theorem 4.2.9. (RIP for SORS matrices) [18, theorem 12.31]Let 𝐴 ∈ C𝑚×𝑁 be a SORS matrix

with constant 𝐾 ≥ 1. For 𝜖 ∈ (0, 1) if

𝑚 ≥ 𝐶𝐾2𝜖−2𝑠 log4(𝑁) (4.15)

then with probability at least 1 − 𝑁− log3 (𝑁) the restricted isometry constant of 1√
𝑚
𝐴 for sparsity 𝑠,

i.e 𝜖𝑠, satisfies 𝜖𝑠 ≤ 𝜖 . The constant 𝐶 > 0 is universal.

Now we present the improvement from [10].
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Theorem 4.2.10. [10, Thm 1.1] There exist absolute constants 𝜅, 𝑐0, 𝑐1 > 0 such that the following

holds. Let 𝑋1, ..., 𝑋𝑚 be independent copies of a random vector 𝑋 ∈ C𝑁 with bounded coordinates,

i.e. max1≤𝑖≤𝑁 |⟨𝑋, e𝑖⟩| ≤ 𝐾 for some 𝐾 > 0, where {𝑒𝑖}𝑁𝑖=1 is the standard basis of C𝑁 . Let

𝑇 ⊆ {𝑥 ∈ C𝑁 : ∥𝑥∥1 ≤
√
𝑠}, 𝜖 ∈ (0, 𝜅), and assume that

𝑚 ≥ 𝑐0𝐾
2𝜖−2𝑠 log(𝑒𝑁) log2

(
𝑠𝐾2/𝜖

)
.

Then with probability exceeding 1 − 2 exp
(
−𝜖2𝑚/(𝑠𝐾2)

)
,

sup
𝑦∈𝑇

����� 1
𝑚

𝑚∑︁
𝑖=1

|⟨𝑦, 𝑋𝑖⟩|2 − E|⟨𝑦, 𝑋⟩|2
����� ≤ 𝑐1𝜖

(
1 + sup

𝑦∈𝑇
E|⟨𝑦, 𝑋⟩|2

)
.

Approximate values of constants are 𝜅 ≈ 0.306, 𝑐0 ≈ 316792 and for 𝑐1 we have 𝑐1 = 492.

Corollary 4.2.11. (Adapted from [10, Thm 1.1]) There exists absolute constants, 𝑎0, 𝑎1, 𝑎2 > 0

such that the following holds for 𝜖 ∈ (0, 𝑎2]. Assume 𝐴 is a 𝑚 × 𝑁 SORS matrix with constant 𝐾

such that

𝑚 ≥ 𝑎0𝐾
2 𝑠

𝜖2 log(𝑒𝑁) log2
(
𝑎1𝑠𝐾

2

𝜖

)
,

then, with probability at least 1 − 2 exp(−𝜖2𝑚/(𝑎2
1𝑠𝐾

2)), for all 𝑠-sparse vectors 𝑥 ∈ R𝑛 we have

(1 − 𝜖)∥𝑥∥2 ≤




 1
√
𝑚
𝐴𝑥





2
≤ (1 + 𝜖)∥𝑥∥2.

Proof. Using theorem 4.2.10, we consider unit length vectors 𝑇 := {𝑥 ∈ C𝑁 with ∥𝑥∥2 = 1 and

∥𝑥∥1 ≤
√
𝑠}. Since 𝐴 is a SORS matrix, there is a unitaryC𝑁×𝑁 matrix𝑈 where 𝐴 is sampled from

√
𝑁𝑈. Let 𝑋 be a random vector uniformly distributed in the rows of

√
𝑁𝑈. Then we can apply

theorem 4.2.10 to 𝑋 . We have E|⟨𝑥, 𝑋⟩|2 = ∥𝑥∥2
2 = 1 and




 1√
𝑚
𝐴𝑥




2

2
= 1
𝑚

∑𝑚
𝑖=1 |⟨𝑥, 𝑋𝑖⟩|2. Thus

sup
𝑥∈𝑇

�����



 1
√
𝑚
𝐴𝑥





2

2
− ∥𝑥∥2

2

����� ≤ 2𝑐1𝜖 .

Changing constants to account for the extra 2𝑐1 factor accompanying the 𝜖 above gives the stated

bounds on the probability and 𝑚. The new constants and their approximate values are 𝑎0 =

𝑐0(2𝑐1)2 ≈ 3 × 1011, 𝑎1 = 2𝑐1 = 984, 𝑎2 = 2𝑐1𝜅 ≈ 301. ■
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In the next corollary, we remove the restriction on the size of 𝜖 in corollary 4.2.11. We also

introduce a parameter 𝜌 for more explicit control on the probability of success. Using 𝜌 we relate

the number of rows, 𝑚, to the success probability.

Corollary 4.2.12. Let 𝐴 be a𝑚×𝑁 SORS matrix with constant 𝐾 . Let 0 < 𝑠, 𝜖, 𝜌, with 𝑠 an integer

and 𝜖, 𝜌 real numbers. There exists absolute constants, 𝑎0, 𝑎1, 𝑎2 > 0 such that the following holds.

If 𝜖 ≤ 𝑎2, and

𝑚 ≥ 𝑎0𝐾
2 𝑠

𝜖2 log(𝑒𝑁) log2( 𝑎1𝑠𝐾
2

𝜖
) (1 + 𝜌) (4.16)

then with probability at least 1 − 2 exp
(
−𝑎0
𝑎2

1
log(𝑒𝑁) log2( 𝑎1𝑠𝐾

2

𝜖
) (1 + 𝜌)

)
, for all 𝑠-sparse vectors

𝑥 ∈ R𝑛 we have

(1 − 𝜖) | |𝑥 | |2 ≤ || 1
√
𝑚
𝐴𝑥 | |2 ≤ (1 + 𝜖) | |𝑥 | |2. (4.17)

If 𝜖 ≥ 𝑎2 and

𝑚 ≥ 𝑎0𝐾
2 2⌈𝑎2𝑠

𝜖
⌉

𝑎2
2

log(𝑒𝑁) log2(
𝑎1𝐾

22⌈𝑎2𝑠
𝜖
⌉

𝑎2
) (1 + 𝜌) (4.18)

then with probability at least 1 − 2 exp
(
−𝑎0
𝑎2

1
log(𝑒𝑁) log2( 𝑎12⌈ 𝑎2𝑠

𝜖
⌉𝐾2

𝑎2
) (1 + 𝜌)

)
, for all 𝑠-sparse

vectors 𝑥 ∈ R𝑛 we have

(1 − 𝜖) | |𝑥 | |2 ≤ || 1
√
𝑚
𝐴𝑥 | |2 ≤ (1 + 𝜖) | |𝑥 | |2.

Proof. The case of 𝜖 ≤ 𝑎2 is the same as before, with a simplified expression for probability. In

the simplification we plug in the expression for 𝑚 into the probability bound and simplify. For the

case of 𝜖 > 𝑎2, in the formula for 𝜖 ≤ 𝑎2 we put 𝜖 = 𝑎2 and 𝑠 = 2⌈𝑎2𝑠
𝜖
⌉. By proposition 4.2.5, from

RIP of order (2⌈𝑎2𝑠
𝜖
⌉, 𝑎2), putting 𝑘 = 𝜖

𝑎2
, we can get RIP of order (𝑠, 𝜖). In this process we need

𝑚 ≥ 𝑎0𝐾
2 2⌈𝑎2𝑠

𝜖
⌉

𝑎2
2

log(𝑒𝑁) log2(
𝑎1𝐾

22⌈𝑎2𝑠
𝜖
⌉

𝑎2
) (1 + 𝜌).

Substituting the value of 𝑚 in the probability bound, we get the claimed expression. ■

In the next corollary we combine the two regimes of 𝜖 into one expression.
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Corollary 4.2.13. There exist constants 𝑎0, 𝑎1, 𝑎2 such that for a SORS matrix 𝐴 of size 𝑚 × 𝑁

with constant 𝐾 , and positive integer 𝑠 and positive reals 𝜖 and 𝜌 the following holds. If

𝑚 ≥ 𝑎0𝐾
2( 1
𝜖2 + 2

𝑎2
2
)𝑠 log(𝑒𝑁) log2

(
(1
𝜖
+ 2
𝑎2

)𝑎1𝑠𝐾
2
)
(1 + 𝜌)

then the matrix 1√
𝑚
𝐴 satisfies the RIP condition for (𝑠, 𝜖) with probability at least

1 − 2 exp

(
−𝑎0

𝑎2
1

log(𝑒𝑁) log2( 𝑎1
𝑎2

) (1 + 𝜌)
)
.

Proof. We combine the two bounds (4.16) and (4.18) for 𝑚 from the cases of 𝜖 ≤ 𝑎2 and

𝜖 > 𝑎2 into a single bound. Similarly we combine the probability bounds into one expres-

sions. This final expression is independent of 𝑠 and 𝜖 and it relates to 𝑚 through the variable 𝜌.

For the 𝑚 bound, when 𝜖 ≥ 𝑎2 we used 2⌈ 𝑎2𝑆
𝜖

⌉
𝑎2

2
≤ 2𝑆

𝑎2
2
. For the probability bounds first note that

1 − exp(−𝑥) is an increasing function. Then when 𝜖 ≤ 𝑎2 we have 𝑎1𝑠𝐾
2

𝜖
≥ 𝑎1

𝑎2
, since 𝑠, 𝐾 ≥ 1.

When 𝜖 ≥ 𝑎2, then 𝑎1𝐾
22⌈ 𝑎2𝑠

𝜖
⌉

𝑎2
≥ 𝑎1

𝑎2
. ■

The focus of the next lemma is transitioning from RIP bounds to their multi-resolution (MRIP)

counterparts.

Proposition 4.2.14. Let 𝐴 be a 𝑚 × 𝑁 SORS matrix with constant 𝐾 . Let 𝑠 be a positive integer,

𝜖 < 1 and 𝜌 be positive reals. There exists absolute constants, 𝑎0, 𝑎1, 𝑎2 > 0 such that if

𝑚 ≥ 2𝑎0𝐾
2( 1
𝜖2 + 1

𝑎2
2
+ 1
𝑎3

2
)𝑠 log(𝑒𝑁) log2

(
2𝑎1𝑠𝐾

2( 1
𝜖2 + 1

𝑎2
+ 1
𝑎2

2
)
)
(1 + 𝜌) (4.19)

then 1√
𝑚
𝐴 satisfies the MRIP (𝑠, 𝜖) criteria with probability at least

1 − 2 exp

(
log(log(𝑁)) − 𝑎0

𝑎2
1

log(𝑒𝑁) log2( 𝑎1
𝑎2

) (1 + 𝜌)
)
.

Proof. The probability expression is simpler to obtain so we start with it. We take the expression

of probability from corollary 4.2.13, and apply it log 𝑁 times. In the definition of MRIP, given a

sparsity level 𝑠 and distortion 𝜖 , we need to get ERIP conditions of the form (2𝑖𝑠, 2 𝑖
2 𝜖) or (2𝑖𝑠, 2𝑖𝜖2)

for 𝑖 starting from 0 and continuing until 2𝑖𝑠 is larger than 𝑁 . Therefore there are at most log 𝑁

steps. Since the probability expression in corollary 4.2.13 is independent of 𝑠 and 𝜖 , we can use
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the same expression for different steps. Combining the failure probabilities by the union bound we

arrive at the expression

1 − 2 exp

(
log(log(𝑁)) − 𝑎0

𝑎2
1

log(𝑒𝑁) log2( 𝑎1
𝑎2

) (1 + 𝜌)
)
. (4.20)

Now with respect to 𝑚, we need to show that the given bound for 𝑚, (4.19), is large enough

for the different ERIP conditions required in the MRIP. Here we find it more convenient to return

to corollary 4.2.12. First we check the condition for the regime 𝜖 ≤ 𝑎2, over the different 𝑖 values

(𝑠, 𝜖) → (2𝑖𝑠, 2 𝑖
2 𝜖) when 2 𝑖

2 𝜖 ≤ 1.

𝑚 ≥ 𝑎0𝐾
2 𝑠

𝜖2 log(𝑒𝑁) log2( 𝑎1𝑠𝐾
2

𝜖
) (1 + 𝜌) → (4.21)

𝑚 ≥ 𝑎0𝐾
2 2𝑖𝑠
(2 𝑖

2 𝜖)2
log(𝑒𝑁) log2( 𝑎12𝑖𝑠𝐾2

(2 𝑖
2 𝜖)

) (1 + 𝜌) (4.22)

𝑚 ≥ 𝑎0𝐾
2 𝑠

𝜖2 log(𝑒𝑁) log2(2 𝑖
2
𝑎1𝑠𝐾

2

𝜖
) (1 + 𝜌) (4.23)

The transition from (2𝑖𝑠, 2 𝑖
2 𝜖) to (2𝑖𝑠, 2𝑖𝜖2) happens when for 𝜖 < 1,

2
𝑖
2 𝜖 = 1 → 2

𝑖
2 =

1
𝜖

(4.24)

So we get the bound for 𝑚 as

𝑚 ≥ 𝑎0𝐾
2 𝑠

𝜖2 log(𝑒𝑁) log2( 𝑎1𝑠𝐾
2

𝜖2 ) (1 + 𝜌). (4.25)

Now we plug-in (2𝑖𝑠, 2𝑖𝜖2) for the regime when 2𝑖𝜖2 > 1 to get

𝑚 ≥ 𝑎0𝐾
2 2𝑖𝑠
(2𝑖𝜖2)2 log(𝑒𝑁) log2( 𝑎12𝑖𝑠𝐾2

(2𝑖𝜖) ) (1 + 𝜌) (4.26)

≥ 𝑎0𝐾
2 𝑠

2𝑖𝜖4 log(𝑒𝑁) log2( 𝑎1𝑠𝐾
2

𝜖
) (1 + 𝜌) (4.27)

and this bound for 𝑚 get smaller as 𝑖 grows so we can just work with the earlier one in (4.25).

Now we work with the case for 𝜖 > 𝑎2. Again we plug in (2𝑖𝑠, 2 𝑖
2 𝜖) or (2𝑖𝑠, 2𝑖𝜖2), and look for a
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combined upper bound. First substitute (2𝑖𝑠, 2 𝑖
2 𝜖) into (4.18)

𝑚 ≥ 𝑎0𝐾
2 2⌈𝑎2𝑠

𝜖
⌉

𝑎2
2

log(𝑒𝑁) log2(
𝑎1𝐾

22⌈𝑎2𝑠
𝜖
⌉

𝑎2
) (1 + 𝜌) → (4.28)

𝑚 ≥ 𝑎0𝐾
2
2⌈𝑎22𝑖𝑠

2
𝑖
2 𝜖

⌉

𝑎2
2

log(𝑒𝑁) log2(
𝑎1𝐾

22⌈𝑎22𝑖𝑠
2
𝑖
2 𝜖

⌉

𝑎2
) (1 + 𝜌) (4.29)

𝑚 ≥ 𝑎0𝐾
2 2⌈𝑎22

𝑖
2 𝑠
𝜖

⌉
𝑎2

2
log(𝑒𝑁) log2(

𝑎1𝐾
22⌈𝑎22

𝑖
2 𝑠
𝜖

⌉
𝑎2

) (1 + 𝜌) (4.30)

Similar to above 2 𝑖
2 is at most 1

𝜖
when 2 𝑖

2 𝜖 ≤ 1 so we arrive at

𝑚 ≥ 𝑎0𝐾
2 2⌈𝑎2𝑠

𝜖2 ⌉
𝑎2

2
log(𝑒𝑁) log2(

𝑎1𝐾
22⌈𝑎2𝑠

𝜖2 ⌉
𝑎2

) (1 + 𝜌)

Next we try plugging in (2𝑖𝑠, 2𝑖𝜖2) and we arrive at

𝑚 ≥ 𝑎0𝐾
2
2⌈ 𝑎22𝑖𝑠

(2𝑖𝜖2)2 ⌉

𝑎2
2

log(𝑒𝑁) log2(
𝑎1𝐾

22⌈ 𝑎22𝑖𝑠
(2𝑖𝜖2)2 ⌉

𝑎2
) (1 + 𝜌) (4.31)

𝑚 ≥ 𝑎0𝐾
2
2⌈ 𝑎2𝑠

𝜖2 (2𝑖𝜖2) ⌉

𝑎2
2

log(𝑒𝑁) log2(
𝑎1𝐾

22⌈ 𝑎2𝑠
𝜖2 (2𝑖𝜖2) ⌉
𝑎2

) (1 + 𝜌). (4.32)

We note that in this case by assumption 2𝑖𝜖2 ≥ 1 so we can drop it and get a stricter lower bound

for 𝑚 as

𝑚 ≥ 𝑎0𝐾
2 2⌈𝑎2𝑠

𝜖2 ⌉
𝑎2

2
log(𝑒𝑁) log2(

𝑎1𝐾
22⌈𝑎2𝑠

𝜖2 ⌉
𝑎2

) (1 + 𝜌). (4.33)

So overall for 𝜖 ≤ 𝑎2 and 𝜖 > 𝑎2 we respectively need

𝑚 ≥ 𝑎0𝐾
2 𝑠

𝜖2 log(𝑒𝑁) log2( 𝑎1𝑠𝐾
2

𝜖2 ) (1 + 𝜌)

and

𝑚 ≥ 𝑎0𝐾
2 2⌈𝑎2𝑠

𝜖2 ⌉
𝑎2

2
log(𝑒𝑁) log2(

𝑎1𝐾
22⌈𝑎2𝑠

𝜖2 ⌉
𝑎2

) (1 + 𝜌). (4.34)

We can combine them both into one expression with as claimed in the proposition.

𝑚 ≥ 2𝑎0𝐾
2( 1
𝜖2 + 1

𝑎2
2
+ 1
𝑎3

2
)𝑠 log(𝑒𝑁) log2

(
2𝑎1𝑠𝐾

2( 1
𝜖2 + 1

𝑎2
+ 1
𝑎2

2
)
)
(1 + 𝜌). (4.35)
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where for 𝜖 > 𝑎2, we used ( 1
𝜖2 + 1

𝑎2
2
+ 1
𝑎3

2
)𝑠 ≥ 𝑠

𝑎3
2
+ 1
𝑎2

2
≥

⌈ 𝑎2𝑠
𝜖 2 ⌉
𝑎2

2
. ■

Having established the MRIP estimate for SORS matrices, we use the results of [29] to get a JL

map for compact manifolds. First we state the result in [29].

Theorem 4.2.15. Let 𝑇 ⊂ R𝑁 and suppose the matrix 𝐻 ∈ R𝑚×𝑁 obeys the multiresolution RIP

with sparsity and distortion levels

𝑠 = 150(1 + 𝜂), 𝛿 =
𝜖 rad(𝑇)

𝐶max(rad(𝑇), 𝜔(𝑇)) (4.36)

with 𝐶 > 0 an absolute constant. Then, for a diagonal matrix 𝐷 with an i.i.d random sign pattern

on the diagonal, the matrix 𝐴 = 𝐻𝐷 obeys

sup
𝑥∈𝑇

��| |𝐴𝑥 | |2 − ||𝑥 | |2
�� ≤ max(𝜖, 𝜖2).rad(𝑇)2 (4.37)

with probability at least 1 − exp(−𝜂). Here rad(𝑇) = sup𝑣∈𝑇 | |𝑣 | | is the maximum of the Euclidean

norm of points inside 𝑇 . ■

Now we use our proposition 4.2.14 with theorem 4.2.15.

Theorem 4.2.16. Let 𝑀 ↩→ R𝑁 be a compact 𝑑-dimensional submanifold of R𝑁 with boundary

𝜕𝑀 . Let 𝜏𝑀 be the reach of 𝑀 . Let 𝜏𝑖 be the reach of the 𝑖-th connected component of 𝜕𝑀 as a

submanifold of R𝑁 . Let 𝜏 = inf𝑀,𝑖{𝜏𝑀 , 𝜏𝑖}. Let 𝑉𝑀 be the volume of 𝑀 and 𝑉𝜕𝑀 be the volume of

𝜕𝑀 . Let𝑈 = 𝑈 (𝑀 −𝑀) = { 𝑝−𝑞
| |𝑝−𝑞 | | | 𝑝 ≠ 𝑞, 𝑝, 𝑞 ∈ 𝑀} be the set of unit secants of 𝑀 , and let𝑈 be

its closure. Let 𝜔(𝑈) be the Gaussian width of𝑈. Define

𝛼 =
𝑉𝑀

𝜔𝑑
(41
𝜏
)𝑑 + 𝑉𝜕𝑀

𝜔𝑑−1
(81
𝜏
)𝑑−1 (4.38)

𝑐 = (𝛼
2

2
+ 3𝑑𝛼) (4.39)

𝑤∗ = 4
√

2
√︁

log(𝑐) + 4𝑑 (4.40)

Let 𝜌, 𝜂 and 𝜖 be positive reals. Let 0 < 𝜖 < 1. Let 𝐴 be a SORS matrix of size 𝑚 ×𝑁 with constant

𝐾 .
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There exist absolute constants 𝑎0, 𝑎1, 𝑎2 and 𝐶 such that if

𝑚 ≥ 𝑎0𝐾
2 (𝐶𝑤∗2)

𝜖2 + 1
𝑎2

2
+ 1
𝑎3

2
) (1 + 𝜂) log(𝑒𝑁) log2

(
(1 + 𝜂)𝑎1𝐾

2 (𝐶𝑤∗2)
𝜖2 + 1

𝑎2
+ 1
𝑎2

2
)
)
(1 + 𝜌)

(4.41)

then for all 𝑥, 𝑦 ∈ 𝑀 we have ��∥𝐴(𝑥 − 𝑦)∥2 − ∥𝑥 − 𝑦∥2�� ≤ 𝜖 | |𝑥 − 𝑦 | |2 (4.42)

with probability

1 − exp(−𝜂) − 2 exp

(
log(log(𝑁)) − 𝑎0

𝑎2
1

log(𝑒𝑁) log2( 𝑎1
𝑎2

) (1 + 𝜌)
)
. (4.43)

Proof. We use proposition 4.2.14 with theorem 4.2.15. We consider 𝑈 (𝑀 − 𝑀) ⊂ 𝑆𝑁−1. We

have 𝑤∗ as an upper bound for the Gaussian width of 𝑈 (𝑀 − 𝑀). Therefore to get an 𝜖 JL map

for𝑈 (𝑀 − 𝑀) we need to establish 1√
𝑚
𝐴 has the MRIP property for (𝑠, 𝛿) where 𝑠 determines the

probability and 𝛿 = 𝜖 rad(𝑈 (𝑀−𝑀))
𝐶max(rad(𝑈 (𝑀−𝑀)),𝜔(𝑈 (𝑀−𝑀))) . We have rad(𝑈 (𝑀 − 𝑀)) = 1, and 𝑤∗ > 1, and

we get 𝛿 = 𝜖
𝐶𝑤∗ .

To get such an MRIP we need

𝑚 ≥ 2𝑎0𝐾
2( (𝐶𝑤∗)

2

𝜖2 + 1
𝑎2

2
+ 1
𝑎3

2
)150(1 + 𝜂) log(𝑒𝑁) log2

(
2𝑎1(150) (1 + 𝜂)𝐾2( (𝐶𝑤∗)

2

𝜖2 + 1
𝑎2

+ 1
𝑎2

2
)
)
(1 + 𝜌).

(4.44)

and the success probability is

1 − 2 exp

(
log(log(𝑁)) − 𝑎0

𝑎2
1

log(𝑒𝑁) log2( 𝑎1
𝑎2

) (1 + 𝜌)
)
. (4.45)

Going from MRIP to an 𝜖-JL map has a failure probability of its own as exp(−𝜂). Combining the

failure probabilities we arrive at

1 − exp(−𝜂) − 2 exp

(
log(log(𝑁)) − 𝑎0

𝑎2
1

log(𝑒𝑁) log2( 𝑎1
𝑎2

) (1 + 𝜌)
)
. (4.46)

■
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CHAPTER 5

NECESSARY CONDITIONS FOR JL MAPS OF MANIFOLDS (VARIATION 2)

In this section we give a necessary condition for existence of JL maps for compact manifolds.

Earlier work of Alon in [5, Theorem 9.3.] provides a necessary condition for a JL map of finite

points. Our work is a partial generalization of that bound to manifolds. Our method is based on

the Sudokov inequality [35, Theorem 7.4.1] which bounds the Gaussian width from below using

covering numbers. Complementing with Sudakov-Fernique’s comparison theorem [35, Def 7.2.11],

we control the reduction in the Gaussian width under the JL map. The image of the manifold under

the map must fit in the target space and comparison of the Gaussian widths of the unit sphere of the

target space with the Gaussian width of the manifold gives us the desired necessary condition. Our

main theorem in this section is 5.0.5. After that we consider a reduction from manifolds to finite

points, and compare our work to the lower bound in [5, Theorem 9.3.].

We start by reviewing the definitions and give estimates of the Gaussian width.

Definition 5.0.1. [35, Def 7.5.1] Let 𝑔 be a standard Gaussian random variable in R𝑛. Define the

Gaussian Width of 𝑇 ⊂ R𝑛, 𝜔(𝑇), as follows.

𝜔(𝑇) = E sup
𝑥∈𝑇

⟨𝑔, 𝑥⟩

Proposition 5.0.2. Let 𝐿 : R𝑛 → R𝑚 be a linear map, 𝑇 ⊂ R𝑛 with 𝑎 and 𝑏 positive reals such that

for 𝑥, 𝑦 ∈ 𝑇 , 𝑎 | |𝑥 − 𝑦 | | ≤ | |𝐿 (𝑥 − 𝑦) | | ≤ 𝑏 | |𝑥 − 𝑦 | |. Then 𝑎 𝜔(𝑇) ≤ 𝜔(𝐿 (𝑇)) ≤ 𝑏 𝜔(𝑇).

Proof. We use the Sudakov-Fernique’s comparison theorem [35, Def 7.2.11]. For 𝑡 ∈ 𝑇 , define

the Gaussian processes 𝐴𝑡 = 𝑎 ⟨𝑔𝑛, 𝑡⟩, 𝐵𝑡 = ⟨𝑔𝑚, 𝐿𝑡⟩, 𝐶𝑡 = 𝑏 ⟨𝑔𝑛, 𝑡⟩. For their increments we have

the estimates

E(𝐴𝑡1 − 𝐴𝑡2)2 = 𝑎2E(⟨𝑔𝑛, 𝑡1 − 𝑡2⟩)2 = 𝑎2 | |𝑡1 − 𝑡2 | |2 ≤

E(𝐵𝑡1 − 𝐵𝑡2)2 = E(⟨𝑔𝑚, 𝐿(𝑡1 − 𝑡2)⟩)2 = | |𝐿 (𝑡1 − 𝑡2) | |2 ≤

E(𝐶𝑡1 − 𝐶𝑡2)2 = 𝑏2E(⟨𝑔𝑛, 𝑡1 − 𝑡2⟩)2 = 𝑏2 | |𝑡1 − 𝑡2 | |2.
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By the comparison theoremE sup𝑡 𝐴𝑡 ≤ E sup𝑡 𝐵𝑡 ≤ E sup𝑡 𝐶𝑡 . This implies the result asE sup𝑡 𝐴𝑡 =

𝑎 E sup𝑡 ⟨𝑔𝑛, 𝑡⟩ = 𝑎𝜔(𝑇) with similar expressions for 𝐵𝑡 and 𝐶𝑡 . ■

The next proposition gives the necessary condition on the target dimension given the requirement

of the Gaussian widths.

Proposition 5.0.3. Let 𝑀 ⊂ R𝑛 have Gaussian width 𝜔(𝑀), and 𝐿 be a linear map from R𝑛 to R𝑚,

and 0 < 𝜖 < 1. Assume for all 𝑥, 𝑦 ∈ 𝑀

(1 − 𝜖) | |𝑥 − 𝑦 | | ≤ | |𝐿 (𝑥 − 𝑦) | | ≤ (1 + 𝜖) | |𝑥 − 𝑦 | |.

Then (
1
2
(1 − 𝜖
1 + 𝜖 )

𝜔(𝑀)
diam(𝑀)

)2
≤ 𝑚.

Proof. Consider the set 𝑀 − 𝑀 (defined as 𝑀 + (−𝑀)). By proposition 5.0.2,

(1 − 𝜖)𝜔(𝑀 − 𝑀) ≤ 𝜔(𝐿 (𝑀 − 𝑀))

We have 𝜔(𝑀 − 𝑀) = 1
2𝜔(𝑀) [35, proposition 7.5.2]. Image of 𝐿 (𝑀 − 𝑀) is contained in a

ball in R𝑚 with radius (1+ 𝜖) ( diam(𝑀)). Since𝜔(𝐵𝑚 (1)) =
√
𝑚 [35, 7.5.7], then by monotonicity

of Gaussian width and scaling 𝜔(𝐿 (𝑀 − 𝑀)) ≤ (1 + 𝜖)diam(𝑀)
√
𝑚. Then

(1 − 𝜖)1
2
𝜔(𝑀) = (1 − 𝜖)𝜔(𝑀 − 𝑀) ≤ 𝜔(𝐿 (𝑀 − 𝑀)) ≤ (1 + 𝜖) diam(𝑀)

√
𝑚.

■

In the next proposition we combine the Sudakov inequality with the lower covering estimates

in corollary 2.4.2. When we optimize the Sudakov inequality over the choice of covering radii, we

arrive at two possible regimes.

Proposition 5.0.4. Let 𝑀 be a d-dimensional smooth submanifold of R𝑛 possibly with boundary,

with volume𝑉 and reach 𝜏. Let 0 < 𝜖 ≤ 𝜏
2 . Let 𝜔𝑑 = 𝜋𝑑/2

Γ( 𝑑2 +1) be the volume of the unit d-ball. There

there is a universal constant 𝑐 such that, if 2
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 ≤ 𝜏 then
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𝑐

3

√︂
𝑑

2𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 ≤ 𝜔(𝑀).

If 𝜏 ≤ 2
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 then

𝑐
𝜏

2

√︄
log( 𝑉

𝜔𝑑 ( 3
2𝜏)𝑑

) ≤ 𝜔(𝑀).

Proof. We use Sudakov’s inequality [35, theorem 7.4.1].

𝑐𝜖
√︁

log(𝐶 (𝑀, 𝜖)) ≤ 𝜔(𝑀)

Sudakov’s inequality is valid for any radius 𝜖 . We further restrict to 𝜖 ≤ 𝜏
2 so we can use

𝑉

𝜔𝑑 (3𝜖)𝑑
≤ 𝐶 (𝑀, 𝜖), corollary 2.4.2. We obtain

𝑐𝜖

√︄
log( 𝑉

𝜔𝑑 (3𝜖)𝑑
) ≤ 𝜔(𝑀) (5.1)

Maximizing the left hand side with respect to 𝜖 , for the optimal 𝜖 = 𝜖∗, we obtain√︄
log( 𝑉

𝜔𝑑 (3𝜖)𝑑
) − 𝑑

2
√︃

log( 𝑉

𝜔𝑑 (3𝜖)𝑑
)
= 0

log(3𝜖∗) = 1
𝑑

log( 𝑉
𝜔𝑑

) − 1
2

𝜖∗ =
1

3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑

Using this optimal choice in equation (5.1),we get

𝑐

3

√︂
𝑑

2𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 ≤ 𝜔(𝑀).

If the optimal 𝜖∗ is forbidden because of 𝜖 ≤ 𝜏
2 , then we just use 𝜖 = 𝜏

2 . It gives the inequality

𝑐
𝜏

2

√︄
log( 𝑉

𝜔𝑑 ( 3
2𝜏)𝑑

) ≤ 𝜔(𝑀).

For a valid formula we must have

0 ≤ log( 𝑉

𝜔𝑑 ( 3
2𝜏)𝑑

)

1 ≤ 𝑉

𝜔𝑑 ( 3
2𝜏)𝑑

𝜏 ≤ 2
3
(𝑉
𝜔
) 1
𝑑 (5.2)
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Because we are considering the case where the optimal 𝜖∗ is forbidden, we have

𝜏

2
< 𝜖∗ =

1
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑

𝜏 <
2

3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑

This is enough for satisfying (5.2). ■

Now we put together the requirement on the target dimension of a JL map, with the geometric

properties of the manifold and its Gaussian width.

Theorem 5.0.5. Let 𝑀 ⊂ R𝑛 with Gaussian width 𝜔(𝑀), 𝐿 a linear map from R𝑛 to R𝑚, and

0 < 𝜖 < 1 and let 𝑐 represent multiple universal constants. Assume for all 𝑥, 𝑦 ∈ 𝑀

(1 − 𝜖) | |𝑥 − 𝑦 | | ≤ | |𝐿 (𝑥 − 𝑦) | | ≤ (1 + 𝜖) | |𝑥 − 𝑦 | |.

If 2
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 ≤ 𝜏 then

𝑐(1 − 𝜖
1 + 𝜖 )

2 𝑑

diam2(𝑀)
( 𝑉
𝜔𝑑

) 2
𝑑 ≤ 𝑚.

If 𝜏 ≤ 2
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 then

𝑐𝜏2(1 − 𝜖
1 + 𝜖 )

2 1
diam2(𝑀)

log( 𝑉

𝜔𝑑 ( 3
2𝜏)𝑑

) ≤ 𝑚.

Proof. We use proposition 5.0.3 and proposition 5.0.4. We have a lower bound for the

embedding dimension 𝑚 using the distortion 𝜖 and the Gaussian width of 𝑀 , 𝜔(𝑀). Then we have

a lower bound for the 𝜔(𝑀) using the covering numbers of 𝑀 . Putting the two together we get the

following.

If 2
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 ≤ 𝜏

2𝑐
3

√︂
𝑑

2𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 ≤ 𝜔(𝑀)(

1
2
(1 − 𝜖
1 + 𝜖 )

𝜔(𝑀)
diam(𝑀)

)2
≤ 𝑚

𝑐(1 − 𝜖
1 + 𝜖 )

2 𝑑

diam2(𝑀)
( 𝑉
𝜔𝑑

) 2
𝑑 ≤ 𝑚.
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If 𝜏 ≤ 2
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 then

𝑐
𝜏

2

√︄
log( 𝑉

𝜔𝑑 ( 3
2𝜏)𝑑

) ≤ 𝜔(𝑀)(
1
2
(1 − 𝜖
1 + 𝜖 )

𝜔(𝑀)
diam(𝑀)

)2
≤ 𝑚

𝑐𝜏2(1 − 𝜖
1 + 𝜖 )

2 1
diam2(𝑀)

log( 𝑉

𝜔𝑑 ( 3
2𝜏)𝑑

) ≤ 𝑚.

■

Standard Examples: We apply our theorem 5.0.5 to the standard examples of unit sphere 𝑆𝑑 and

unit ball 𝐵𝑑 as submanifold of R𝑁 .

Corollary 5.0.6.

For 𝐵𝑑 , the data is as follows.

𝑀 𝑉𝐵𝑑 𝜏𝐵𝑑 𝜔𝑑 diam(M)

𝐵𝑑 𝜋
𝑑
2

Γ( 𝑑2 +1) ∞ 𝑉𝐵𝑑 2

Since 𝜏 is infinite, we have

𝑐(1 − 𝜖
1 + 𝜖 )

2 𝑑

diam2(𝑀)
( 𝑉
𝜔𝑑

) 2
𝑑 ≤ 𝑚

𝑐(1 − 𝜖
1 + 𝜖 )

2𝑑 ≤ 𝑚

which agrees with our intuition that for a perfect, no distortion embedding of unit 𝐵𝑑 , target

dimension grows at least linearly in 𝑑.

■

Corollary 5.0.7.

For the unit S𝑑 the data is as follows.

𝑀 𝑉𝑆𝑑 𝜏𝑆𝑑 𝜔𝑑 diam(M)

𝑆𝑑 2 𝜋
𝑑+1

2

Γ( 𝑑+1
2 ) 1 𝜋

𝑑
2

Γ( 𝑑2 +1) 2
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We check the relation between reach and the other parameters to find that 𝜏 is big enough.

2
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 =

2
3
√
𝑒

(
2
√
𝜋
Γ( 𝑑2 + 1)
Γ( 𝑑+1

2 )

) 1
𝑑

Using lim
𝑑→∞

(
2
√
𝜋
Γ( 𝑑2 + 1)
Γ( 𝑑+1

2 )

) 1
𝑑

= 1, for large enough 𝑑 we have

2
3
√
𝑒
( 𝑉
𝜔𝑑

) 1
𝑑 < 𝜏 = 1.

So we get

𝑐(1 − 𝜖
1 + 𝜖 )

2 𝑑

diam2(𝑀)
( 𝑉
𝜔𝑑

) 2
𝑑 ≤ 𝑚

𝑐(1 − 𝜖
1 + 𝜖 )

2𝑑 ≤ 𝑚.

This gives a linear dependence on 𝑑 which agrees which our intuition that to embed 𝑆𝑑 without

distortion at least 𝑑 dimensions are needed. The reason is standard 𝑆𝑑 circumscribes 𝑑 + 2 points

that are equidistant from each other and such points need at least R𝑑+1 for an embedding.

■

Reduction to the case of finite points: Now we show that when we reduce to the zero-

dimensional case we recover the finite point case. Consider 𝑛 points in R𝑁 . There are at most
(𝑛
2
)

pair-wise secants. Normalizing them we get some points on the unit 𝑆𝑁−1. Call this set 𝑀 . We

apply Sudakov’s inequality to the set 𝑀 . The covering number with balls of radius 𝜖 for 𝜖 < 𝜏
2 is

exactly |𝑀 |. Using the counting measure we put 𝑉 = |𝑀 |. Then by Sudakov’s inequality for 𝜖 = 𝜏
2

we get

𝑐
𝜏

2
√︁

log(𝑉) ≤ 𝜔(𝑀)

𝑐
𝜏

2

√︂
log(𝑛(𝑛 − 1)

2
) ≤ 𝜔(𝑀)

𝑐
𝜏

4
√︁

log(𝑛) ≤ 𝜔(𝑀).
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Using proposition 5.0.3

(
1
2
(1 − 𝜖
1 + 𝜖 )

𝑐 𝜏4
√︁

log(𝑛)
diam(𝑀)

)2

≤
(
1
2
(1 − 𝜖
1 + 𝜖 )

𝜔(𝑀)
diam(𝑀)

)2
≤ 𝑚. (5.3)

For finite points the reach 𝜏 is equal to half of the smallest distance between the points and

diameter is the largest distance hence 𝜏
diam ≤ 1

2 . Therefore this term won’t push the lower bound

up enough to contradict the known upper bounds. Simplifying equation (5.3) we arrive at

𝑐( 𝜏

diam
)2(1 − 𝜖

1 + 𝜖 )
2 log(𝑛) ≤ 𝑚.

Comparing to the well known upper JL bound 𝑂 ( 1
𝜖2 ) log(𝑛), [35, Theorem 5.3.1], we see

that we recover the log(𝑛). A known lower bound for finite points from [5, Theorem 9.3.] is

𝑂 ( 1
𝜖2 log( 1

𝜖
) ) log(𝑛). Comparing to our bound, we have the same dependence on log(𝑛), however

our 𝜖 dependence of 1−𝜖
1+𝜖 is weaker than 1

𝜖2 log( 1
𝜖
) . ■
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CHAPTER 6

A JL ALGORITHM WITH 𝑁 log(log(𝑁)) RUN-TIME (VARIATION 3)

In this chapter we give an algorithm for computing a JL map with a 𝑁 log(log(𝑁)) run-time. This

approach improves on the work of Ailon and Liberty in [2] for fast JL maps. First we present the

algorithm for finite point sets, and after we upgrade it to the case of subspaces. Since we restrict the

discussion to finite points and subspaces, our bounds don’t directly involve the reach as a parameter.

Our algorithm is based on the divide and conquer approach, where we split a vector into pieces,

apply a common fast JL map to each piece, combine the outputs and apply a sub-Gaussian JL map at

the end. An schematic diagram for the algorithm in presented in figure 6.1. In this way we maintain

the best of two worlds: the run-time speed of fast JL maps and the optimal embedding dimension

of sub-Gaussian matrices. In lemma 6.0.1, we show the general framework for combining fast and

sub-Gaussian JL maps work together. Our main theorems are 6.1.5 for finite points and 6.2.5 for

the case of subspaces.

Although our theorems are stated for general matrices with fast matrix-vector multiply, Discrete

Fourier Transform (DFT) and Welsh-Hadamard matrices are prime examples of matrices that have

the fast runtimes.

Lemma 6.0.1. Let 𝜖 ∈
(
0, 1

3

)
, 𝑆 ⊂ C𝑁 be a set with 𝑛 points. Assume 𝑁 > 𝑚2

1 for integers𝑚1 ≥ 𝑚2

where 𝑚2
1 divides 𝑁 . Furthermore

1. Split every vector in 𝑆 into 𝑁/𝑚2
1 pieces each in C𝑚2

1 and obtain the set 𝑆′ ⊂ C
𝑚2

1 of

cardinality 𝑛𝑁/𝑚2
1.

2. Let A ∈ C𝑚1×𝑚2
1 be an 𝜖-JL map of 𝑆′ into C𝑚1 .

3. Suppose A has a fast matrix vector multiply so that Ay can be computed in𝑚2
1· 𝑓 (𝑚1) = 𝑜(𝑚3

1)-

time for all y ∈ C𝑚2
1 .
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Figure 6.1: A vector is split into pieces, each part is processed with a fast JL map, outputs are
combined and fed into a Gaussian JL map. The Gaussian maps have optimal dimensional reduction
while fast JL maps have better run-time. In this mixed approach, we combine the benefits of both
methods.

4. Let 𝑆′′ ⊂ C𝑁/𝑚1 be a set of 𝑛 points obtained by reshaping the 𝑁/𝑚2
1 pieces of each vector in

𝑆 back into a single vector after they’ve been mapped into C𝑚1 by A, and

5. Let B ∈ C𝑚2×𝑁/𝑚1 be any 𝜖-JL map of 𝑆′′ into C𝑚2 .

Then, 𝐿 (x) := B

©­­­­­«
𝐴

. . .

𝐴

ª®®®®®¬
will be a 3𝜖-JL map of 𝑆 ⊂ C𝑁 into C𝑚2 . Furthermore, 𝐿 can be

applied to any vector in just 𝑁 · 𝑓 (𝑚1)-time.

Proof. For 𝑥 ∈ 𝑆, let 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑁

𝑚2
1

be its pieces in 𝑆′. Let 𝑥′ ∈ 𝑆′′ be the concatenated vector
𝐴𝑥1

𝐴𝑥2
...


. Then ∥𝑥∥2 =

∑
𝑖∥𝑥𝑖∥2, ∥𝑥′∥2 =

∑
𝑖∥𝐴𝑥𝑖∥2, and

(1 − 𝜖)∥𝑥𝑖∥2 ≤ ∥𝐴𝑥𝑖∥2 ≤ (1 + 𝜖)∥𝑥𝑖∥2

(1 − 𝜖)∥𝑥′∥2 ≤ ∥𝐵𝑥′∥2 ≤ (1 + 𝜖)∥𝑥′∥2
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Therefore we get the claimed 3𝜖-JL map as follows

(1 − 3𝜖)∥𝑥∥2 ≤ (1 − 𝜖)2∥𝑥∥2 ≤ ∥𝐵𝑥′∥2 ≤ (1 + 𝜖)2∥𝑥∥2 ≤ (1 + 3𝜖)∥𝑥∥2.

For the time complexity, the number of required operations is

𝑁

𝑚2
1
(𝑚2

1 𝑓 (𝑚1)) + 𝑚2
𝑁

𝑚1
= O(𝑁 𝑓 (𝑚1)).

The first term is 𝑁

𝑚2
1

applications of matrix 𝐴, and the second term is a single application of

matrix 𝐵. ■

6.1 Case of Finite Points

In this section we review the the necessary theorems for JL maps for finite points via sub-Gaussian

matrices and SORS matrices. For sub-Gaussian matrices, the main tools are the matrix deviation

inequality and an upper bound on the Gaussian width of 𝑛 points. For the SORS matrices, we don’t

have an equivalent matrix deviation inequality, hence we go through an indirect approach. First

an RIP estimate is derived for the SORS matrices, and then one considers a sequence of random

reflections by the coordinate axes, a theorem known as the Krahmer-Ward, to get a JL map.

6.1.1 JL Maps for Finite Points via sub-Gaussian Matrices

We specialize the matrix deviation inequality to a finite point set and use the Gaussian width bound

for finite points.

Lemma 6.1.1. Let 𝑥𝑖 be 𝑛 points in R𝑁 . Let 0 < 𝜖, 𝜌 < 1. Let 𝐴 be a 𝑚 × 𝑁 sub-Gaussian random

matrix with 𝐾 = max | |𝐴𝑖 | |𝜓2 . Then there exists a universal constant 𝐶 such that if

𝑚 ≥ 𝐶2𝐾4𝜖−2 log(𝑛)
(
1 + log( 2

𝜌
)
)

(6.1)

then with probably at least 1 − 𝜌 the following expressions holds simultaneously for all 𝑥 ∈ 𝑇 .

(1 − 𝜖) | |𝑥 | |2 ≤ || 1
√
𝑚
𝐴𝑥 | |2 ≤ (1 + 𝜖) | |𝑥 | |2. (6.2)
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Proof. By normalizing the 𝑥𝑖 we can assume they are on the unit sphere. Next we use theorem

4.1.6 and we note that (6.2) is scaling invariant. If we let 𝑇 be the set of normalize 𝑥𝑖, then by [35,

lemma 7.5.10], we have

𝜔(𝑇) ≤ 𝐶
√︁

log(𝑛). (6.3)

Then using (6.1) and adjusting the constants we get the desired bound. To get the squares in (6.2),

we note that for 0 < 𝜖 < 1, 1 − 2𝜖 ≤ (1 − 𝜖)2 ≤ (1 + 𝜖)2 ≤ 1 + 3𝜖 .

6.1.2 JL Maps for Finite Points via SORS Matrices

We first review the Krahmer-Ward theorem that allows one to get a JL map for finite point via an

RIP estimate.

Theorem 6.1.2. (Krahmer-Ward) [18, theorem 9.36] Let 𝑥𝑖 be 𝑛 points in R𝑛. Let 𝜌, 𝜖 ∈ (0, 1).

Let 𝐴 ∈ R𝑚×𝑁 be a matrix where its restricted isometry constant for sparsity 2𝑠, i.e. 𝛿2𝑠, satisfies

𝛿2𝑠 ≤ 𝜖
4 for 𝑠 ≥ 16 log( 4𝑛

𝜌
). Let 𝐷 be a diagonal matrix with ±1 variables on the diagonal. Then

with probability exceeding 1 − 𝜌 the following holds simultaneously for all 𝑥𝑖.

(1 − 𝜖) | |𝑥𝑖 | |2 ≤ ||𝐴𝐷𝑥𝑖 | |2 ≤ (1 + 𝜖) | |𝑥𝑖 | |2. (6.4)

Here we present an RIP estimate for SORS matrices that we can pair with the Krahmer-Ward

theorem.

Theorem 6.1.3. (RIP for SORS Matrices) [18, theorem 12.31]Let 𝐴 ∈ C𝑚×𝑁 be a SORS matrix

with constant 𝐾 ≥ 1. Let 𝜖 ∈ (0, 1). There is a universal constant such that if

𝑚 ≥ 𝐶𝐾2𝜖−2𝑠 log4(𝑁) (6.5)

then with probability at least 1 − 𝑁− log3 (𝑁) the restricted isometry constant of 1√
𝑚
𝐴 for sparsity 𝑠,

𝛿𝑠, satisfies 𝛿𝑠 ≤ 𝜖 .

Finally we present a finite point JL map for the SORS matrices.

72



Proposition 6.1.4. Let 𝑥𝑖 be 𝑛 points in C𝑁 . Let 𝐴 ∈ C𝑚×𝑁 be a SORS matrix with constant 𝐾 .

There is a universal constant 𝐶 such that if

𝑚 ≥ 𝐶𝐾2𝜖−2 log( 𝑛
𝜌
) log4(𝑁), (6.6)

then with probability at least 1 − 𝜌 − 𝑁− log3 (𝑁)

(1 − 𝜖) | |𝑥𝑖 | |2 ≤ || 1
√
𝑚
𝐴𝐷𝑥𝑖 | |2 ≤ (1 + 𝜖) | |𝑥𝑖 | |2, (6.7)

where 𝐷 is a random diagonal matrix with ±1 on its diagonal with uniform distribution.

Proof. We combine theorems 6.1.2 and 6.1.3; using the union bound, we get the claimed success

probability. ■

6.1.3 Combining the Two Matrix Types

We combine the SORS and sub-Gaussian JL maps as in the scheme in lemma 6.0.1 to get our main

theorem for finite points.

Theorem 6.1.5. Let 𝑥𝑖 be 𝑛 points in R𝑛. Let 𝜖, 𝜌 ∈ (0, 1). Then with probability at least

1 − 𝜌1 − 𝜌2 − 𝑁− log3 (𝑁) , one can find a linear map 𝐿 : R𝑁 → R𝑚 such that

(1 − 𝜖) | |𝑥𝑖 | |2 ≤ ||𝐿𝑥𝑖 | |2 ≤ (1 + 𝜖) | |𝑥𝑖 | |2 (6.8)

𝑚 = O
(
log(𝑛)
𝜖2 (1 + log(2/𝜌2))

)
(6.9)

and a single 𝐿𝑥𝑖 can be computed with time complexity O
(
𝑁 log

(
𝜖−2 log( 𝑛𝑁

𝑝1
) log4(𝑁)

))
.

Proof. We follow the in the scheme in lemma 6.0.1. Hence we have 𝐴 and 𝐵 such that

𝐴 ∈ C𝑚1×𝑚2
1 and 𝐵 ∈ C𝑚2×𝑁/𝑚1 . The task is to find sufficient requirements for 𝑚1 and 𝑚2, where

𝑚1 will determine the runtime and 𝑚2 will determine the final embedding dimension.

First we determine 𝑚1. We need a 𝜖
3 -JL map for 𝑛𝑁

𝑚2
1

points from the SORS matrix 𝐴. For this

by proposition 6.1.4, we need

𝑚1 ≥ 𝐶𝐾2 9
𝜖2 log( 𝑛𝑁

𝑚2
1𝜌1

) log4(𝑁). (6.10)
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Removing the reference of 𝑚1 on the right hand side makes the required condition on 𝑚1 stricter,

hence it is sufficient to have

𝑚1 ≥ 𝐶𝐾2 9
𝜖2 log(𝑛𝑁

𝜌1
) log4(𝑁). (6.11)

The success probability is 1 − 𝜌1 − 𝑁− log3 (𝑁) . For 𝑚2, we need 𝐵 to be a 𝜖
3 -JL map of 𝑛 points .

Hence by lemma 6.1.1, we need

𝑚2 ≥ 𝐶2𝐾4 9
𝜖2 log(𝑛) (1 + log( 2

𝜌2
)) (6.12)

with success probability at least 1 − 𝜌2. So combining the two steps together and specializing to

DFT matrix that has a 𝑑 log(𝑑) runtime, we see that our algorithm has

Final embedding dimension: 𝑚2 = O
(
log(𝑛)
𝜖2 (1 + log(2/𝜌2))

)
(6.13)

Runtime : O(𝑁 log(𝑚1)) = O
(
𝑁 log

(
𝜖−2 log(𝑛𝑁

𝑝1
) log4(𝑁)

))
(6.14)

Success Probability: 1 − 𝜌1 − 𝜌2 − 𝑁− log3 (𝑁) . (6.15)

This finishes the proof. ■

6.2 Upgrade for Subspaces

In this section, we repeat the process as in the previous case, but here we change our theorems

so that we can get a JL embedding of a subspace. By the scaling invariance of the JL condition

(1 − 𝜖) | |𝑥 | | ≤ | |𝐿𝑥 | | ≤ (1 + 𝜖) | |𝑥𝑖 | |, we can reduce the subspace problem to its corresponding unit

sphere.

We have a theorem from [29, theorem 3.3] that provides a JL map for an arbitrary set in terms

of its Gaussian width. With this theorem we can get a JL embedding of a unit sphere in a subspace.

This theorem uses SORS matrices.
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6.2.1 SORS Matrices for Subspaces

Theorem 6.2.1. [29, theorem 3.3] Let 𝑇 ⊂ R𝑁 and suppose 𝐴 ∈ R𝑚×𝑁 is selected from a SORS

distribution with a constant 𝐾 . Then

sup
𝑥∈𝑇

| | |𝐴𝑥 | |2 − ||𝑥 | |2 | ≤ max{𝜖, 𝜖2}rad(𝑇)2 (6.16)

holds with probability at least 1 − 𝜌 as long as

𝑚 ≥ 𝐶𝐾2(1 + log( 2
𝜌
))2 log4(𝑁)

max(1, 𝜔
2 (𝑇)

rad(𝑇)2 )
𝜖2 . (6.17)

■

Now we specialize to a unit sphere of a subspace using an estimate for the Gaussian width of a

unit sphere.

Corollary 6.2.2. Let 𝑇 be a 𝑑 dimensional affine subspace of R𝑁 . Assume 𝐴 ∈ R𝑚×𝑁 is selected

from a SORS distribution with a constant 𝐾 . Suppose 0 < 𝜖, 𝜌 < 1 and

𝑚 ≥ 𝐶𝐾2(1 + log( 2
𝜌
))2 log4(𝑁) 𝑑

𝜖2 (6.18)

Then with probability at least 1 − 𝜌, the following holds for all 𝑥 ∈ 𝑇

(1 − 𝜖) | |𝑥 | |2 ≤ ||𝐴𝑥 | |2 ≤ (1 + 𝜖) | |𝑥 | |2. (6.19)

Proof. We use theorem 6.2.1. Since the equation (6.19) is scaling invariant, we can scale 𝑇 to

be a unit 𝑆𝑑−1. We have that the 𝜔(𝑆𝑑−1), the Gaussian width of 𝑆𝑑−1, is bounded above by
√
𝑑 +𝐶

for a universal constant [35, Example 7.5.7]. Using this fact and adjusting the constants the result

follows. ■

6.2.2 Sub-Gaussian Matrices for Subspaces

Now we state a JL theorem for subspace embeddings using sub-Gaussian matrices. The main tool

is the matrix deviation inequality [35, Chapter 9].
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Corollary 6.2.3. Let 𝑇 be a 𝑑-dimensional affine subspace of R𝑁 . Let 𝐴 be a 𝑚 × 𝑁 sub-Gaussian

random matrix with 𝐾 = max | |𝐴𝑖 | |𝜓2 . Suppose

𝑚 ≥ 𝐶𝐾4(1 + log( 2
𝜌
))2 𝑑

𝜖2 . (6.20)

Then with probability at least 1 − 𝜌, the following holds for all 𝑥 ∈ 𝑇

(1 − 𝜖) | |𝑥 | |2 ≤ ||𝐴𝑥 | |2 ≤ (1 + 𝜖) | |𝑥 | |2. (6.21)

Proof. We use theorem 4.1.6. Again since (6.21) is scaling invariant we can reduce to the unit

sphere. Since 𝜔(𝑆𝑑−1) ≤
√
𝑑 + 𝐶 for a universal constant, we get

𝑚 ≥
𝐶2𝐾4

(√
𝑑 + 𝐶 +

√︃
log( 2

𝜌
)
)2

𝜖2 (6.22)

adjusting the constants and using 3(𝑎2 + 𝑏2 + 𝑐2) ≥ (𝑎 + 𝑏 + 𝑐)2 gives the desired result. ■

6.2.3 Mixing the Matrix Types

We use the scheme in lemma 6.0.1 to combine the SORS and Gaussian matrices. We break the

vectors into smaller pieces, apply a fast JL map, recombine the pieces and then apply a sub-Gaussian

JL map.

To the prove the desired properties of our algorithm, we also need the to review the proposition

5.0.2 that lets us control the Gaussian width of a set after a JL map is applied to it.

Proposition 6.2.4. Let 𝐿 : R𝑛 → R𝑚 be a linear map, 𝑇 ⊂ R𝑛 with 𝑎 and 𝑏 positive reals such that

for 𝑥, 𝑦 ∈ 𝑇 , 𝑎 | |𝑥 − 𝑦 | | ≤ | |𝐿 (𝑥 − 𝑦) | | ≤ 𝑏 | |𝑥 − 𝑦 | |. Then 𝑎 𝜔(𝑇) ≤ 𝜔(𝐿 (𝑇)) ≤ 𝑏 𝜔(𝑇).

Now we are ready to present the proof of algorithm in the case of subspaces. The proof strategy

first uses the properties of SORS matrices for the pieces of an input vector, then we use proposition

6.2.4 to control the Gaussian width of the image of the set after the SORS matrix has been applied.

This in turn allows us to apply the matrix deviation inequality as the final step.
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Theorem 6.2.5. Let 𝑇 be a 𝑑-dimensional affine subspace of R𝑁 . Let 0 < 𝜖, 𝜌1, 𝜌2 < 1 such that

𝜌1 + 𝜌2 ≤ 1 and 𝐾 ≥ 1. Let 𝑚1 and 𝑚2 be integers such that

𝑚1 ≥ 𝐶𝐾2(1 + log( 2𝑁
𝜌1𝑚

2
1
))2 log4(𝑁) 𝑑

𝜖2 (6.23)

𝑚2 ≥
𝐶𝐾4(1 + 𝜖)2𝑑 (1 + log( 2

𝑝2
))

𝜖2 (6.24)

Then with probability at least 1 − 𝜌1 − 𝜌2 one can find a linear map 𝐿 : R𝑁 → R𝑚2 such that for

all 𝑥, 𝑦 ∈ 𝑇

(1 − 𝜖) | |𝑥 − 𝑦 | |2 ≤ ||𝐿 (𝑥 − 𝑦) | |2 ≤ (1 + 𝜖) | |𝑥 − 𝑦 | |2 (6.25)

Furthermore, for 𝑥 ∈ 𝑇 , the 𝐿𝑥 can be computed with a O
(
𝑁 log

(
𝐾2(1 + log( 2𝑁

𝜌1𝑚
2
1
))2 log4(𝑁) 𝑑

𝜖2

))
run-time.

Proof. Following the scheme in lemma 6.0.1, we have matrices 𝐴 and 𝐵 such that A ∈ C𝑚1×𝑚2
1

and B ∈ C𝑚2×𝑁/𝑚1 . Our goal is to find sufficient conditions on 𝑚1 and 𝑚2 to satisfy the required JL

properties.

The projection of 𝑇 onto a 𝑚2
1 dimensional subspace is another subspace of dimension at most

𝑑. The Gaussian width of the unit sphere in this subspace is bounded above by
√
𝑑 + 𝐶 for a

universal constant C. Now we apply corollary 6.2.2, for 𝜖
3 , 𝑁

𝑚2
1

different times since there are that

many different projections. Applying each with a success probability 1 − 𝜌1𝑚
2
1

𝑁
, and combining the

failure probabilities using the union bound we get the success probability of 1 − 𝜌1. Therefore we

need

𝑚1 ≥ 𝐶𝐾2(1 + log( 2𝑁
𝜌1𝑚

2
1
))2 log4(𝑁) 𝑑

𝜖2 . (6.26)

For a universal constant 𝐶, where 𝐾 is the constant associated to the SORS matrix 𝐴.

Now we consider the block diagonal matrix 𝐶 = diag(𝐴) where 𝐶 ∈ R
𝑁
𝑚1

×𝑁 . For any 𝑥 ∈ 𝑇 ,

since matrix 𝐴 distorts each individual projection of 𝑥 at must by 1 ± 𝜖 , then same is true for 𝑥.

Now we apply proposition 6.2.4 to the unit sphere of 𝑇 , call it 𝑈 (𝑇). Hence we can estimate the

Gaussian width of the image of𝑈 (𝑇) from above as 𝜔(𝐶 (𝑈 (𝑇))) ≤ (1 + 𝜖) (
√
𝑑 + 𝐶′).
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Now we can apply the matrix deviation inequality, theorem 4.1.5. With probability at least

1 − 𝑝2, we have

sup
𝑥∈𝐶 (𝑈 (𝑇))

��∥𝐵𝑥∥2 −
√
𝑚2∥𝑥∥2

�� ≤ 𝐶′𝐾2

[
𝑤(𝐶 (𝑈 (𝑇))) +

√︁
log(2/𝑝2) · sup

𝑥∈𝐶 (𝑈 (𝑆))
∥𝑥∥2

]
, (6.27)

sup
𝑥∈𝐶 (𝑈 (𝑇))

��∥𝐵𝑥∥2 −
√
𝑚2∥𝑥∥2

�� ≤ 𝐶′𝐾2
[
(1 + 𝜖) (

√
𝑑 + 𝐶′) +

√︁
log(2/𝑝2) · (1 + 𝜖)

]
. (6.28)

Rewriting, we get that for 𝑥 ∈ 𝐶 (𝑈 (𝑇))

∥𝑥∥2 −
𝐶′𝐾2(1 + 𝜖)

[
(
√
𝑑 + 𝐶′) +

√︁
log(2/𝑝2)

]
√
𝑚2

≤ ∥ 1
√
𝑚2
𝐵𝑥∥2

≤ ∥𝑥∥2 +
𝐶′𝐾2(1 + 𝜖)

[
(
√
𝑑 + 𝐶′) +

√︁
log(2/𝑝2)

]
√
𝑚2

.

Now Since 𝐶 is an 𝜖-JL map of a𝑈 (𝑇) we have that

1 − 𝜖 ≤ ∥𝑥∥2 ≤ 1 + 𝜖 .

Therefore we get

1 − 𝜖 −
𝐶′𝐾2(1 + 𝜖)

[
(
√
𝑑 + 𝐶′) +

√︁
log(2/𝑝2)

]
√
𝑚2

≤ ∥ 1
√
𝑚2
𝐵𝑥∥2

≤ 1 + 𝜖 +
𝐶′𝐾2(1 + 𝜖)

[
(
√
𝑑 + 𝐶′) +

√︁
log(2/𝑝2)

]
√
𝑚2

.

Finally as long as

𝑚2 ≥
𝐶′𝐾4(1 + 𝜖)2𝑑 (1 + log( 2

𝑝2
))

𝜖2 (6.29)

we get

1 − 2𝜖 ≤ ∥ 1
√
𝑚2
𝐵𝑥∥2 ≤ 1 + 2𝜖
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Adjusting the constants we get the desired bound. To summarize we have 3 estimates.

Final embedding dimension: 𝑚2 = O
(
𝐾4(1 + 𝜖)2𝑑 (1 + log( 2

𝑝2
))

𝜖2

)
. (6.30)

Runtime : O(𝑁 log(𝑚1)) = O
(
𝑁 log

(
𝐾2(1 + log( 2𝑁

𝜌𝑚2
1
))2 log4(𝑁) 𝑑

𝜖2

))
. (6.31)

Success Probability: 1 − 𝜌1 − 𝜌2. (6.32)
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