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ABSTRACT

DEEP CONVOLUTIONAL NETWORKS FOR MODELING GEO-SPATIO-TEMPORAL
RELATIONSHIPS AND EXTREMES

By

Tyler Wilson

Geo-spatio-temporal data are valuable for a broad range of applications including traffic forecast-

ing, weather prediction, detection of epidemic outbreaks, and crime monitoring. Data driven

approaches to these problems must address several fundamental challenges such as handling the

geo-spatio-temporal relationships and extreme events. Another recent technological shift has been

the success of deep learning especially in applications such as computer vision, speech recognition,

and natural language processing. In this work, we argue that deep learning is a promising approach

for many geo-spatio-temporal problems and highlight how it can be used to address the challenges

of modeling geo-spatio-temporal relationships and extremes. Though previous research has estab-

lished techniques for modeling spatio-temporal relationships, these approaches are often limited

to gridded spatial data with fixed-length feature vectors and considered only spatial relationships

among the features, while ignoring the relationships among model parameters.

We begin by describing how the spatial and temporal relationships for non-gridded spatial data

can be modeled simultaneously by coupling the graph convolutional network with a long short-

term memory (LSTM) network. Unlike previous research, our framework treats the adjacency

matrix associated with the spatial data as a model parameter that can be learned from data, with

constraints on its sparsity and rank to reduce the number of estimated parameters. Further, we

show that the learned adjacency matrix may reveal useful information about the dominant spatial

relationships that exist within the data. Second, we explore the varieties of spatial relationships that

may exist in a geo-spatial prediction task. Specifically, we distinguish between spatial relationships

among predictors and the spatial relationships among model parameters at different locations. We

demonstrate an approach for modeling spatial dependencies among model parameters using graph

convolution and provide guidance on when convolution of each type can be effectively applied. We



evaluate our proposed approach on a climate downscaling and weather prediction tasks. Next, we

introduce DeepGPD, a novel deep learning framework for predicting the distribution of geo-spatio-

temporal extreme events. We draw on research in extreme value theory and use the generalized

Pareto distribution (GPD) to model the distribution of excesses over a threshold. The GPD is

integrated into our deep learning framework to learn the distribution of future excess values while

incorporating the geo-spatio-temporal relationships present in the data. This requires a novel

reparameterization of the GPD to ensure that its constraints are satisfied by the outputs of the neural

network. We demonstrate the effectiveness of our proposed approach on a real-world precipitation

data set. DeepGPD also employs a deep set architecture to handle the variable-sized feature sets

corresponding to excess values from previous time steps as its predictors. Finally, we extend the

DeepGPD formulation to simultaneously predict the distribution of extreme events and accurately

infer their point estimates. Doing so requires modeling the full distribution of the data not just

its extreme values. We propose DEMM, a deep mixture model for modeling the distribution

of both excess and non-excess values. To ensure the point estimation of DEMM is a feasible

value, new constraints on the output of the neural network are introduced, which requires a new

reparameterization of the model parameters of the GPD. We conclude by discussing possibilities

for further research at the intersection of deep learning and geo-spatio-temporal data.
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CHAPTER 1

INTRODUCTION

In machine learning and data mining it is important for the algorithms we use to be suited for the

kind of data we are working with. One major class of data is geo-spatio-temporal data. As the name

suggests, this is geographic data where the spatial and temporal relationships between samples are

important. For example, spatio-temporal relationships are crucial for predicting the day to day

variations of weather as well as predicting the the behavior of extreme weather phenomena like

the track and intensity of a hurricane. Climatology has many examples of geo-spatio-temporal

tasks including climate downscaling, where the goal is to obtain future projections of the climate

at a fine scale from coarse scale forecasts generated by global or regional climate models. Other

important geo-spatio-temporal data sets include traffic, air quality, streamflow, and crime data. The

broad range of problems that fall under the umbrella of geo-spatio-temporal prediction make them

an important subject of study.

This chapter will be organized as follows: We begin by describing the key challenges of

geo-spatio-temporal data that will serve as the primary focus of this dissertation. Next, we will

briefly introduce deep learning and convolutional neural networks in Section 1.2 and motivate their

application to geo-spatio-temporal data. Finally, in Section 1.3, we will describe the contributions

of this thesis and describe its overall organization.

1.1 Challenges

Geo-spatio-temporal data has a number of challenges that must be addressed in order for predictive

modeling techniques to be fruitfully applied. In this dissertation we focus primarily on two of these

challenges, namely, how to handle the geo-spatio-temporal relationships and extreme events.

One of the most important challenges when working with geo-spatio-temporal data is to accu-

rately model the relationships that exist within the data. According to Tobler’s first law of geography

“[E]verything is related to everything else, but near things are more related than distant things"
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[88]. In many geographic applications, the spatial dependencies may manifest itself in various

ways, as spatial relationships among predictors, spatial relationships between predictors and the

target variable, or spatial relationships between model parameters at different locations. The latter

is evidenced by the successful application of multi-task learning methods to various geospatial

prediction problems [66, 105]. The challenge here is to identify the type of spatial dependencies

that can be exploited to improve the performance of predictive models in a given application. In

particular, though geographic distance is commonly used to characterize geo-spatial relationships,

other factors often come into play depending on the application. For example, in weather prediction,

prevailing winds may have a significant impact on the relationship between two locations. Temporal

dependencies are another important aspect of geo-spatio-temporal relationships with factors such

as periodicity and autocorrelation that must be taken into consideration. A standard assumption in

machine learning is that data is independently and identically distributed (i.i.d.). As a result, many

common machine learning techniques will be inappropriate when applied to geo-spatio-temporal

data due to the importance of spatial and temporal autocorrelations. Another significant challenge

is that the geo-spatio-temporal relationships is not necessarily linear. Weather, for instance, is a

well known example of a non-linear system. Utilizing models that are capable of learning these

non-linear relationships will therefore be crucial.

The modeling of extreme events is the second major challenge to be investigated in this disserta-

tion. Many important phenomena in geo-spatio-temporal applications involve extreme events. As

an example, though accurate prediction of precipitation in any amount is valuable, extreme precip-

itation is especially important as it can cause flooding, which leads to severe property damage and

potentially the loss of human lives. Thus, models that accurately predict modest amount of rainfall,

e.g., scattered showers that occur in a given day, may not be as useful to stakeholders responsible

for planning municipal responses to flooding compared to models that accurately predict when

large amounts of rain will fall in a short time. This is a challenge since many predictive models

are designed to predict the conditional mean of a probability distribution and their predictions

will thus tend to underestimate the magnitude of extreme events which lie in the upper tail of the
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probability distribution being modeled. While there exists substantial research in the application of

linear models for modeling extreme values [22], these approaches often fail to fully account for the

complex non-linear relationships inherent in many geo-spatio-temporal applications. The model

for predicting extreme events must effectively capture the tail distribution of the forecasted variable

as well as the magnitude, frequency, and timing of the extreme events.

1.2 Deep Learning for Geo-spatio-temporal Data

Deep learning has gained wide-spread popularity particularly in applications such as computer vi-

sion and natural language processing over the last decade. The basic idea is to create complex, highly

non-linear, over-paramaterized functions through the composition of relatively simple functions like

affine transformations. An efficient approach to gradient descent called "back-propagation" can

then be used to optimize the parameters of the deep learning model. We argue that deep learning is

a promising tool for geo-spatio-temporal applications due to its demonstrated capacity for learning

highly complex, non-linear feature representation of the data.

Some of the most successful applications of deep learning have been to tasks with spatial

and temporal/sequential relationships. Computer vision problems, where deep learning has been

applied, require effective ways of modeling spatial relationships between pixels of an image.

Similarly, in natural language processing, modeling the sequential relationships between tokens in

text corpus is of the utmost importance and this is closely related to temporal modeling. Video data is

an example application of deep learning to spatio-temporal data in computer vision. More recently,

deep learning has also found success in a growing number of weather and climate prediction

problems [26, 66, 77, 80]. All this suggests that there is a strong further potential for deep

learning to be applied to geo-spatio-temporal problems. A second reason that deep learning

is a promising tool for working with geo-spatio-temporal data is that deep learning models are

capable of learning complex non-linear functions. In addition to empirical results demonstrating

the effectiveness of deep learning on highly non-linear problems, there are theoretical results

establishing that deep learning models are universal function approximators [41, 116]. Together,

3



the strong track record of deep learning in spatial and sequential applications and the effectiveness

of deep learning in modeling non-linear relationships makes it a promising technique for geo-

spatio-temporal applications.

Convolutional neural networks is arguably one of the most popular deep learning models for

spatio-temporal applications. Standard convolutional neural networks can be used for modeling

spatial relationships [53], temporal/sequential relationships [5], and spatio-temporal relationships

[80] as long as the data has a gridded structure. For instance, images can be represented as

grids of pixels whereas time series with observations made at regular intervals can be treated as

1-dimensional gridded data sets. The central component of all convolutional neural networks is

the convolutional layer. In a 2-d spatial context, each convolutional layer consists of a collection of

small 2-dimensional grids of model parameters called filters. These filters compute the weighted

sums of small localized regions of the input grid. We can formally express the convolution operation

for a 2-d grid as follows:

𝑦𝑖, 𝑗 =

𝑘∑︁
𝑚=−∞

𝑘∑︁
𝑛=−∞

𝑓𝑚,𝑛𝑥𝑖−𝑚, 𝑗−𝑛 (1.1)

where 𝑥𝑖−𝑚, 𝑗−𝑛 is the element in row 𝑖−𝑚 and column 𝑗 −𝑛 of the input 2-d grid, 𝑦𝑖, 𝑗 is the element

in row 𝑖 and column 𝑗 of the grid output by the convolution operation, 𝑓𝑚,𝑛 is the element in the 𝑚

row and 𝑛 column of a 𝑘 × 𝑘 filter. By composing many of these simple convolution operations,

interleaved with other non-linear mathematical operations, it is possible to build convolutional

neural networks capable of modeling complex non-linear spatio-temporal relationships.

However, the geo-spatio-temporal modeling tasks raise some additional challenges for deep

learning. As described above, the traditional way of modeling spatial relationships with deep

learning is to use a convolutional neural network. This approach works well for images, where the

pixels are arranged into a regular grid. For geo-spatio-temporal data that is similar to image data

(e.g. satellite images or the output of climate model simulations with regular grids) these traditional

deep learning approaches will provide a good starting point. However, in other cases, the spatial

locations may not reside on a regularly spaced grid. For example, weather observations are often

made at weather stations scattered irregularly so modeling spatial relationships using ordinary
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gridded 2-d convolution is not an option. Furthermore, convolutional neural network is typically

used to capture spatial relationships among the input features. Applying convolutional neural

network to capture spatial relationship among model parameters, in a similar fashion as multi-task

learning, is an issue that has not been sufficiently explored in the literature. In addition, current

deep learning architectures are mostly designed for modeling typical scenarios instead of extreme

phenomena. Most of the research studying extreme values in data is done by statisticians using

relatively simple models [22]. Adapting deep learning architectures to extreme value prediction

remains an important but under-studied research area.

Interpretability is often a desirable property for a machine learning model. Though deep

learning models can achieve strong predictive performance, this is often inadequate if the resulting

model is not interpretable. Interpretability is important in part for demonstrating the reliability of

the learned model since users are more likely to trust a model that they can understand [75]. A

model that is uninterpretable but performs well on a given data set may simply capture spurious

patterns that do not generalize well to the rest of the sample space from which the data set was

drawn. By developing interpretable models, this allows for the domain experts to verify their

reliability. Interpretability is also key to helping domain experts understand the justification behind

the model’s predictions. By better understanding why the model is able to make high quality

predictions, there is a chance that the domain experts may develop new insights or generate new

hypothesis to test the phenomenon being studied.

Another challenge in applying deep learning to geo-spatio-temporal data is that in many ap-

plications the available data is inherently limited. Monthly climate data for a given location is

generated at a rate of 12 samples per year and there is nothing that can be done to increase this

rate. When dealing with the extreme events this problem is further exacerbated because extreme

events are, by definition, rare. Though this dearth of data will affect any data-driven approach, it is

especially worrisome when using deep learning since deep learning requires large amounts of data

to ensure adequate training and prevent model overfitting, given the large number of parameters to

be estimated from the training data.
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1.3 Thesis Contributions

This thesis focuses on the development of novel deep learning frameworks to address the challenges

described in the previous section, with particular attention paid to the ways deep learning can help

to model geo-spatio-temporal relationships and extreme values. Specifically, Chapters 3 and 4

will focus primarily on how deep learning can be used to model geo-spatio-temporal relationships

while Chapters 5 and 6 examine how deep learning can be used to predict extreme events in geo-

spatio-temporal data. A detailed summary of the thesis contributions is given in the subsections

below.

1.3.1 Modeling Geo-Spatio-Temporal Data with Hybrid Graph Convolution and LSTM

Chapter 3 proposes a deep learning architecture called the weighted graph convolutional LSTM

(WGC-LSTM) for geo-spatio-temporal prediction. At a high level, the goal of WGC-LSTM is

to take a sequence of observations of variables at a fixed set of locations and accurately predict

the value of one of those variables in the next time step. In order to make these predictions

the WGC-LSTM must model geo-spatio-temporal relationships but doing so requires addressing

several challenges. First, the relationships between locations where variables are observed are

difficult to characterize because the strength of relationships may be influenced by factors other

than distance. Second, variables are observed at irregularly spaced locations and not on a grid

so modeling spatial relationships using ordinary convolution is not an option. To address these

difficulties, a graph structure is imposed on the data, where different locations correspond to vertices

and their relationships correspond to edges. A graph convolutional LSTM is developed to generate

the spatio-temporal predictions. An adjacency matrix is necessary for the formulation of graph

convolution but rather than computing the entries of the adjacency matrix based on distance as pre-

processing step, we instead treat its entries as model parameters so that the relationships between

different locations can be inferred in a purely data-driven way. However, learning relationships

in this way can potentially introduce a number of parameters that is quadratic in the number of
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locations so we propose two different techniques for reducing overfitting. When applied to the

weather prediction problem, visualization of the resulting learned adjacency matrix shows that they

are consistent with climatological science, which suggests that the spatial relationships extracted

by WGC-LSTM may provide interpretable insights into the data.

1.3.2 Modeling Spatial Relationships among Model Parameters using Convolution

As previously established in Section 1.1, modeling spatial relationships is an important challenge

in geo-spatio-temporal applications, but typically only spatial relationships between predictor vari-

ables are considered. However, if each location is assigned its own predictive model, then it is

possible to consider spatial relationships between the model parameters at different locations as

well. The potential of modeling spatial relationships among model parameters has previously been

demonstrated in the context of multi-task learning [66, 105], and the effectiveness of graph con-

volution to model spatial relationships among predictors using WGC-LSTM raises the possibility

that it could be used to model spatial relationships among parameters as well. In Chapter 4 we

consider two research questions: First, can graph convolution be used to model spatial relationships

among model parameters, and if so, how? And second, when should we model spatial relationships

among model parameters and when should we model spatial relationships among predictors? In

Chapter 4 we answer these questions by proposing a graph convolution based framework capable of

modeling spatial relationships amond predictors, parameters, or both. In addition, we also provide

and validate advice on when modeling different spatial relationships will be useful.

1.3.3 Prediction of Tail Distribution in Geo-Spatio-Temporal Data

Predictive modeling of extreme events is crucial for many geo-spatio-temporal applications. In

Chapter 5, a novel framework called DeepGPD is presented to predict the tail distribution of a

target variable (e.g., precipitation) for a future time period. The distribution can be used to infer

various statistics about the future occurrence of extreme events such as their expected values,

quantiles, moments, and return period [21]. This is accomplished using a neural network to
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infer the parameters of the generalized Pareto distribution. The generalized Pareto distribution

is one of the most frequently utilized distributions within extreme value theory and governs the

distribution of excesses above a fixed threshold. The conjunction of deep learning and extreme

value theory has not been extensively studied and introduces some challenges – particularly around

the enforcement of constraints on extreme value distribution parameters. DeepGPD employs a

novel reparameterization trick to enforce these constraints. In addition, another challenge related

to extreme value modeling with deep learning is how to best utilize historical extreme events as

predictors. Conventional deep learning methods typically use vector-valued predictors. Since the

number of extreme events can vary over time, using historical extreme events as predictors requires

a way of modeling set-valued predictors. The proposed DeepGPD framework incorporates deep

set [111] to transform the set-valued predictors into fixed length vectors before they are integrated

into the learning algorithm.

1.3.4 Joint Modeling of Tail Distribution and Point Prediction of Geo-Spatio-Temporal Data

While knowing the future distribution of extreme events is useful, particularly for long-term

forecasts, there are numerous applications that require accurate point prediction at each future

time step (e.g., for short-term weather forecasting). However, making point predictions of a target

variable conditioned on the predictors cannot be accomplished based solely on the distribution of

extreme values. It requires knowledge of the entire conditional distribution of the target variable—

both the extreme and non-extreme values. In addition, when modeling extreme values as excesses

above a threshold, the choice of threshold effectively defines what should be considered an extreme

value. Unfortunately, finding the appropriate threshold for extreme events may vary depending on

the application and user requirement. This may result in scenarios where users may have a strong

predictive model but need to retrain it from scratch if they wish to consider another threshold.

The final contribution of this thesis is to extend the DeepGPD framework to account for these

challenges. Specifically, DeepGPD is extended to a mixture model formulation called DEMM with

the generalized Pareto distribution used as one of its components, thus enabling it to predict the
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full conditional distribution of the target variable. This full conditional distribution can then be

used as the basis for making point predictions by using the expected value (mean) of the mixture

model. However, this requires computing the mean of each of its components, including the mean

of the generalized Pareto distribution. Since the mean of the generalized Pareto distribution is only

defined when its shape parameter is less than 1, additional constraints on the generalized Pareto

distribution parameters are needed beyond those required for the DeepGPD. In addition, DEMM

also provides a method for altering the threshold defining extreme events at test time without having

to retrain the model.

1.3.5 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 reviews the background literature and

presents the relevant previous works related to this research. Chapter 3 introduces the WGC-LSTM

framework for modeling geo-spatio-temporal data, with application to weather prediction. Chapter

4 investigates the effectiveness of using of convolutional neural networks to capture different aspects

of spatial relationships, including dependencies among the features and the model parameters. In

Chapter 5, we will describe the DeepGPD framework for predicting the distribution of extreme

events, while Chapter 6 extends the framework to support point predictions, Finally, Chapter 7

presents the conclusions and directions for future work.

1.3.6 Publications

Some content in this dissertation was adapted from the following works:

• Tyler Wilson, Pang-Ning Tan, and Lifeng Luo. A Low Rank Weighted Graph Convolutional

Approach to Weather Prediction. In Proceedings of IEEE International Conference on Data

Mining (ICDM 2018), Singapore (2018).

• Tyler Wilson, Pang-Ning Tan, and Lifeng Luo, "Convolutional Methods for Predictive Mod-

eling of Geospatial Data". In Proceedings of the SIAM International Conference on Data
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Mining (SDM-2020), Cincinnati, OH (2020)

• Tyler Wilson, Pang-Ning Tan, Lifeng Luo. "DeepGPD: A Deep Learning Approach for

Modeling Geospatio-Temporal Extreme Events". To appear in Proceedings of 36th AAAI

Conference on Artificial Intelligence (AAAI-2022), Vancouver, Canada (2022).

• Tyler Wilson, Pang-Ning Tan, Lifeng Luo, Andrew McDonald, Asadullah Galib. "DEMM:

Deep Extreme Mixture Model", in preparation (2022).

When a dissertation chapter is adapted from prior work this will be indicated with a footnote in

that chapter’s introduction.
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CHAPTER 2

RELATED WORK

In this section we describe the current state of research in the application of deep learning to

geo-spatio-temporal data. Some of the most common applications domains of deep learning to

geo-spatio-temporal data include to weather forecasting [36], precipitation nowcasting [80] and

precipitation estimation [85, 86, 87], remote sensing [46, 68, 82, 113], climate downscaling [94],

and traffic forecasting [61, 62, 73, 106, 108, 110].

One of the most important aspects of geo-spatio-temporal data is modeling the spatio-temporal

relationships and when deep learning is applied to geo-spatio-temporal data one of its most frequent

uses is to model spatio-temporal relationships. The way this is accomplished will be the focus

of our discussion here. We will start with a brief overview of research into deep learning with

special attention paid to the basic deep learning architectures used to model spatial, temporal, and

spatio-temporal relationships. We will then describe how these techniques are used and adapted

for geo-spatio-temporal data.

2.1 Deep Learning for Spatio-temporal Data

Deep learning [58] has gained considerable attention over the last several years due to its success

in artificial intelligence applications. Krizhevsky et al. [53] used a convolutional neural network

[59] to achieve state of the art performance on a large object recognition data set. After sparking

the resurgent interest in deep learning, convolutional neural networks have become one of the

most significant objects of study in the research and application of deep learning. The early

success of convolutional neural networks has been built upon with general purpose architectural

changes [38, 81, 84] as well as the development of new architecture to support a broader range of

applications including object detection [32], semantic segmentation [76], image generation [34],

and pose estimation [89].

The strength of convolutional neural networks lies in their ability to model the spatial relationship
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between the pixels of an image. We expect that nearby pixels in an image will be more closely related

to one another than pixels that are distant – a phenomenon known as "spatial auto-correlation".

A similar intuition motivates the application of convolutional neural networks to sequential and

temporal data where we use convolutional neural networks to model temporal auto-correlation.

Among the earliest instances of what we now call a convolutional neural network was a "time

delay neural network" applied to the problem of phoneme recognition [99]. Like modern deep

learning models it utilized 1-d convolution to model temporal relationships and was trained using

backpropagation. The use of convolutional neural networks to model temporal relationships has

continued to the present and recently in Bai et al. [5] the authors provide empirical evidence that

a properly designed convolutional architecture can outperform recurrent neural networks on tasks

which are often believed to be best suited for recurrent neural networks. Convolutional neural

networks have recently been used to model temporal relationships in applications including audio

generation [72], language modeling [45], and activity recognition in video.

Another family of deep learning models frequently used to model relationships in temporal

and sequential data is recurrent neural networks (RNNs). RNNs consist of recurrent cells with

an internal memory that is modified at each step in a time series using shared weights. Early

formulations of the recurrent neural network suffered from an exploding and vanishing gradient

problem which made them difficult to train. Hochreiter and Schmidhuber [40] addressed this

problem by introducing gates that regulate the modification of the internal memory and allow the

model to "remember" inputs from many time steps in the past. A variant of the long short-term

memory network called a "gated recurrent unit" [20] has also gained some popularity.

In recent work, modeling spatial and temporal relationships simultaneously is typically accom-

plished by using a convolutional neural network for modeling the spatial relationship and either a

recurrent neural network or convolutional neural network for modeling the temporal relationships.

An early example of using convolution to model both spatial and temporal relationships is Chen et

al. [16] which proposes a spatio-temporal deep belief network consisting of layers of convolutional

boltzman machines. The layers of their network alternate between layers performing spatial con-
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volution and those performing temporal convolutions so that the spatial and temporal relationships

are modeled in separate layers of their model. Alternatively, Tran et al. [90] and Ji et al. [43] use

3d convolution is used to model both spatial and temporal relationships simultaneously within each

layer of their network. While Tran et al. [93] use 3d convolution in lower layers to capture features

related to motion while higher layers alternate between spatial and temporal convolutions.

Rather than use convolution to model temporal relationships, some research uses recurrent

layers to model temporal relationships. Donahue et al. [27] combine CNNs and RNNs in a

straight-forward way. They first process each frame of a video with a convolutional neural network

and then feed the output feature vector produced at each frame as input into an LSTM so that the

modeling of spatial and temporal relationships happens at separate locations of the model. Shi et

al. [80] models spatio-temporal relationships by replacing every instance of matrix multiplication

in the typical LSTM equations with 2d convolution and then feed raw image data directly to the

LSTM at each time step. This results in a more tightly coupled modeling of spatial and temporal

relationships since each LSTM layer now models both spatial and temporal relationships rather

than only temporal ones. Hutchison et al. [3] use a hybrid of 3d convolution and recurrent neural

networks for spatio-temporal modeling. Spatio-temporal features are extracted at each time step

using 3d convolution and are then fed to a long short-term memory network to capture long-term

dependencies among the video frames.

2.2 Deep Learning For Geo-spatio-temporal Data

In this section we provide examples of how deep learning is used to model spatial and temporal

relationships in geo-spatio-temporal data. Most research into deep learning that is concerned

with spatial relationships is applied to images where the spatial relationships are the result of the

relationship between grids of pixels. For this reason, in any geo-spatio-temporal dataset where the

data is arranged into a 2d spatial grid the same techniques, namely convolutional neural networks,

can be used to model the spatial relationships [46, 57, 68, 82, 94, 113].

In some cases geo-spatial data is not arranged on an orderly spatial grid. Weather and traffic
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data, for example, are often measured at stations scattered irregularly so their spatial structure is

unsuitable to be input to convolutional neural networks. Though these irregularly spaced location

lack a gridded structure, they can be regarded as graphs where spatial locations correspond to

vertices and their spatial relationships correspond to edges. In light of this observation, researchers

have drawn upon recent developments into generalizing convolutional neural networks to graphs.

Generalizations of convolution are formulated either in the spatial domain or the spectral domain.

Just as ordinary gridded convolution computes weighted sums of local regions of images, spatial

domain generalizations of convolution to graphs computes weighted sums of neighborhoods of

graphs. Prominent examples of spatial domain formulations of graph convolution include message

passing neural networks [31], diffusion convolution [61], graph attention networks [97], and Graph-

SAGE [37]. Spectral approaches to graph convolution are theoretically well motivated approaches

involving the eigendecomposition of the graph laplacian [12, 25, 51]. Though these two approaches

to formulating convolution on graphs appear to be very distinct, it turns out that they share many

connections. For example, in Gilmer et al. [31] the authors show that their framework for graph

convolution formulated in the spatial domain actually encompasses several spectral domain for-

mulations. There are several recent reviews of graph networks [6, 11, 102, 114] that offer a more

comprehensive overview of how convolution can be generalized to graphs.

The techniques for modeling temporal relationships with deep learning in geo-spatio-temporal

data are the same as those used to model temporal relationships with deep learning in other spatio-

temporal problems, namely convolution [110] and RNNs [61, 108]. When attempting to model

spatial and temporal relationships simultaneously, the family of techniques used is once again

relatively similar to those techniques used for modeling spatio-temporal relationships with deep

learning in other settings. Yu et al. [110] use convolution to model both spatial and temporal

relationships while Li et al. [61] and Ye et al. [106] model spatial relationships with convolution

(either gridded 2d convolution or some extension of convolution to graphs) and a recurrent neural

network to model temporal relationships.

Though deep learning is most often used in the context of geo-spatio-temporal data to model
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spatial and temporal relationships this is not the only way it is used. For example, in Grover et al.

[36] the authors use a deep belief net to model the joint statistics of the weather variables that serve

as their target resulting in a 1-2% reduction in error. In Albert et al. [2], in addition to using a CNN

for to model spatial relationships the authors also use a recent architecture known as a Generative

Adversarial Network [34] to ensure that generated urban land usage patterns are drawn from the

same distribution as real patterns.
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CHAPTER 3

A LOW RANK WEIGHTED GRAPH CONVOLUTIONAL LSTM APPROACH FOR
MODELING GEO-SPATIO-TEMPORAL DATA

3.1 Introduction1

Weather prediction is an important modeling task due to its significant impact on agriculture, water

resources, transportation, and many other aspects of our daily lives. Among the most popular

approaches to weather prediction in use today is numerical weather prediction, which employs

physics-based models to generate forecasts of future weather conditions [7]. In addition, there has

also been substantial research on using data driven approaches to weather prediction [36] [69].

However, because of the nonlinearity inherent within the task, simple linear models are often in-

sufficient to produce reliable forecasts. This has led to considerable interest in applying non-linear

techniques, such as artificial neural networks [42][70] [63], to weather prediction problems. These

approaches are mostly implemented using fully connected neural networks [55] [85], recurrent

neural networks [112], and long short-term memory (LSTM) networks [80]. However, a major lim-

itation of using these approaches is that they do not adequately consider the spatial autocorrelation

within the dataset.

To illustrate this problem, we examine the prediction errors of an LSTM on a dataset of 12-hourly

(a) Correlation = 0.59 (b) Correlation = 0.34.

Figure 3.1: Plot of changes in temperature at a weather station (x-axis) against (a) LSTM prediction
error and (b) average temperature change at nearby locations in the previous time step.

1This chapter is adapted from a previously published paper: Tyler Wilson, Pang-Ning Tan, and Lifeng
Luo. "A Low Rank Weighted Graph Convolutional Approach to Weather Prediction". In Proceedings of IEEE
International Conference on Data Mining (ICDM 2018), Singapore (2018).
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(a) Correlation = 0.52 (b) Correlation = 0.56.

Figure 3.2: Plot of changes in GCN prediction error (y-axis) against (a) temperature change and
(b) temperature change at neighboring locations

weather measurements taken at weather stations across the continental United States. LSTMs are a

powerful deep learning model for time series prediction that have found success in various domains

such as speech recognition [35] and machine translation [83]. However, an LSTM that makes

predictions based solely on its historical weather measurements completely ignores the important

spatial relationships that exist within the data. For example, Figure 3.1a compares the temperature

prediction error of an LSTM at a given time step 𝑡 against changes in temperature from its previous

time step (i.e., Temp𝑡 − Temp𝑡−1). Since the LSTM is trained for each station using its historical

observations only, it tends to predict temperature values that are similar to the temperature of its

previous time step, and thus, unable to anticipate rapid changes in the temperature time series.

This is illustrated in Figure 3.1a, which shows the high correlation between LSTM prediction error

and the temperature changes at a location. Furthermore, Figure 3.1b shows that these sudden

changes tend to be preceded by large temperature changes at nearby locations in the previous time

step. This observation suggests the importance of incorporating spatial information into weather

prediction models. In fact, the correlation between LSTM prediction error and average temperature

changes in the previous time step at nearby locations is indeed high (0.44). Thus, if the information

about temperature changes in neighboring locations can be incorporated into LSTM, this may help

improve its prediction accuracy.

In contrast, a convolutional neural network (CNN) is a deep learning approach for modeling

spatial relationships in data. CNNs have been successfully applied to images [53], videos [47], and

other spatially gridded datasets [80]. For weather prediction, as the locations of weather stations are

irregularly spaced, an ordinary convolutional neural network cannot be used for modeling the data.
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However, recent work has explored methods of extending convolutional neural networks so that

they can be applied to arbitrary graphs [25] [51]. Just as each layer of an ordinary convolutional

neural network represents each pixel as a linear combination of its neighboring pixels, a graph

convolutional neural network represents each vertex in the graph as a linear combination of nearby

vertices. A more detailed discussion of graph convolutional neural networks is reserved for Section

3.3. We can apply graph convolutional neural networks to the weather prediction problem by

treating each weather observation location as a vertex in a graph and form edges between vertices

based upon the distance between the corresponding observation locations. However, Figures 3.2a

and 3.2b show that a graph convolutional neural network encounters similar type of problems as

an LSTM. Whereas an LSTM is limited by its inability to consider spatial relationships, the graph

convolution is unable to consider temporal relationships.

The goal of this chapter is to improve spatiotemporal prediction with deep learning by combining

graph convolution with an LSTM. This can be achieved by replacing the fully connected layers

within each LSTM cell with graph convolutional layers. However, care must be taken when

constructing the graph to be used as input into the graph convolutional LSTM. For example,

a typical approach is to consider the geographic distance between locations as edge weights of

the graph. For weather prediction, the strength of the relationship between locations may also

be affected by prevailing winds, topography, and other factors not directly related to distance.

Consequently, distance alone may not be an optimal way to determine edge weights. To address

this problem, we propose an approach to automatically learn the graph structure from data by treating

the edge weights as model parameters. The learned adjacency matrix not only improves predictive

performance, it also provides useful insights into how the current weather condition at a location

influences the weather pattern at other locations. However, learning the full adjacency matrix

introduces an additional 𝑂 ( |𝑉 |2) parameters, which can be computationally expensive for large

graphs and may potentially lead to overfitting. To overcome these problems, we develop a technique

called weighted graph convolutional LSTM (WGC-LSTM) for learning an adjacency matrix for the

weather prediction problem. We propose two approaches to control overfitting in WGC-LSTM, a
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Figure 3.3: Proposed model

variant with a sparse adjacency matrix and another based on the low rank assumption. Experimental

results performed on two real-world datasets demonstrate the effectiveness of the approach in terms

of its predictive performance, computational efficiency, and interpretability of the learned graph.

We also show that the high prediction accuracy can still be maintained but with faster runtime when

using a low rank adjacency matrix for our graph convolution network.

3.2 Preliminaries

Consider a sequence of 𝑇 weather observations at |𝑉 | locations, i.e., X1,X2, ...,X𝑇 , where each

X𝑡 ∈ R|𝑉 |×𝑑 . The 𝑑 features correspond to values of weather variables such as temperature, wind

speed, and humidity from previous time steps.

A full discussion of the specific weather variables used is reserved for Section 3.4.1. Given this

sequence of historical observations, the goal is to predict the target sequence y1, y2, ..., y𝑇 , where

y𝑡 ∈ R|𝑉 | is a vector of the targeted weather variable to be predicted at time 𝑡 for all |𝑉 | locations.

Note that y𝑡 is also a column in X𝑡+1, i.e., the values of the target variable y𝑡 at the current time step

become one of the predictor variables at the next time step.

In this study, we will employ a deep learning approach for the weather prediction problem. A

deep learning architecture can be thought of as layers of simple functions. Each layer takes an

input, h(𝑙−1) , from the layer below and maps it to an output, h(𝑙) , using a function 𝑓 (𝑙) . This can

be expressed mathematically as: h(𝑙) = 𝑓 (𝑙) (h(𝑙−1)). We denote the dimension of the input vector

to the 𝑙𝑡ℎ layer as 𝑑 (𝑙−1) and the dimension of the output vector of the 𝑙𝑡ℎ layer as 𝑑 (𝑙) . The input to

the first layer (h(0)) corresponds to the X𝑡 whereas the output of the final layer (h(𝐿)) corresponds

to y𝑡 .
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Our proposed WGC-LSTM framework is a novel extension of two deep learning architectures—

long short-term memory (LSTM) networks and convolutional neural networks. Below we provide

some background information on these architectures to motivate discussion of our proposed frame-

work in the next section. A graphical representation of our model is provided in Figure 3.3.

3.2.1 Long Short-Term Memory Networks

One of the most common ways of capturing temporal or sequential relations with neural networks

is with a variation of recurrent neural networks called a long short-term memory network (LSTM)

[40]. In contrast to an ordinary recurrent neural network, LSTMs are capable of learning temporal

relationships extending over long periods of time while also alleviating the vanishing gradient

problem present in ordinary recurrent neural networks.

The LSTM has an internal memory in each layer, c(𝑙)𝑡 , that it updates at each time step. The

update at time 𝑡, c̃(𝑙)𝑡 depends upon the output of the layer below at that time step, h(𝑙−1)
𝑡 as well

as the output from the same layer at the previous time step, h(𝑙)
𝑡−1. So the change of the memory is

given by the equation:

c̃(𝑙)𝑡 = tanh(W(𝑙)
𝑐 h𝑙−1

𝑡 + U(𝑙)
𝑐 h(𝑙)

𝑡−1 + 𝑏
(𝑙)
𝑐 ) (3.1)

In this equation and all equations that follow, any W, U, or 𝑏 with a subscript is a trainable model

parameter.

The amount that c̃(𝑙)𝑡 is allowed to modify the memory is regulated by an input gate, i(𝑙)𝑡 and the

amount that the memory is allowed to leak from one time step to the next is regulated by the forget

gate f(𝑙)𝑡 . The input and forget gate are determined by the following two equations:

f(𝑙)𝑡 =𝜎(W(𝑙)
𝑓

h(𝑙−1)
𝑡 + U(𝑙)

𝑓
h(𝑙)
𝑡−1 + 𝑏

(𝑙)
𝑓
) (3.2)

i(𝑙)𝑡 =𝜎(W(𝑙)
𝑖

h(𝑙−1)
𝑡 + U(𝑙)

𝑖
h(𝑙)
𝑡−1 + 𝑏

(𝑙)
𝑖
) (3.3)

Here 𝜎 represents the sigmoid function applied component wise to ensure that each component of
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the input and forget gates ranges between 0 and 1. The updated value of the memory is given by:

c(𝑙)𝑡 =i(𝑙)𝑡 ◦ c̃(𝑙)𝑡 + f(𝑙)𝑡 ◦ c(𝑙)
𝑡−1 (3.4)

where ◦ represents the Hadamard product. A portion of the memory "leaks" to form the LSTM

output h𝑡 . The amount of memory allowed to leak is regulated by an output gate 𝑜𝑡 , which is

calculated as follows:

o(𝑙)
𝑡 =𝜎(W(𝑙)

𝑜 h(𝑙−1)
𝑡 + U(𝑙)

𝑜 h(𝑙)
𝑡−1 + 𝑏

(𝑙)
𝑜 ) (3.5)

h(𝑙)
𝑡 =o(𝑙)

𝑡 ◦ tanh(c(𝑙)𝑡 ) (3.6)

The final output of the model, ŷ𝑡 is:

ŷ𝑡 = h(𝐿)
𝑡 = w𝑇

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛h
(𝐿−1)
𝑡 + 𝑏𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, (3.7)

where w𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 and 𝑏𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 are parameters used to convert the output of the last layer of the

LSTM into the final prediction.

3.2.2 Convolutional Neural Networks

Convolutional neural networks are designed to learn representations of data by taking a linear

combination of each data point with its neighbors with an operation called convolution. For

example, we may learn the representation of each point in a time series by considering the point

itself along with the time points immediately before and after it. As an illustration, let x be a

univariate time series of length 𝑇 , w be a weight vector, and 𝑏 is a bias. Then the 𝑡𝑡ℎ element of the

convolution of x with w can be expressed as:

(x ∗ w)𝑡 =
𝑘∑︁

𝑗=−𝑘
x𝑡+ 𝑗w 𝑗+𝑘 + 𝑏

where ∗ represents the convolution operation. Note that 𝑡𝑡ℎ element of the convolution depends

upon points of x within 𝑘 steps away from the 𝑡𝑡ℎ element of x.

In contrast, the representation learned by a fully connected neural network depends upon the

entire time series rather than localized segments of it. Thus, fully connected neural networks
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would require 𝑂 (𝑇2 × 𝑑 (𝑙−1) × 𝑑 (𝑙)) parameters to be learned for a time series of length 𝑇 , whereas

convolutional neural networks with filter size 𝑘 would only require 𝑂 (𝑘 × 𝑑 (𝑙) × 𝑑 (𝑙−1)) parameters

with 𝑘 << 𝑇 .

3.3 Proposed Approach

Convolution is useful to handle datasets with autocorrelated observations. For example, convolu-

tional neural networks are often applied to images as nearby pixels are correlated with each other.

Similarly, convolution has been applied to time series, where the measurements at consecutive

points in time are autocorrelated. However, convolutional neural networks are typically formulated

in such a way that it can be applied only to datasets where observations are taken at regular intervals.

In the next section we discuss how to address this problem using graph convolution and how to

incorporate the graph convolution into an LSTM.

3.3.1 Graph Convolution

Convolution can be applied to spatial data by imposing a graph structure on the data. Several

different approaches to graph convolution have been discussed in the literature [51] [12] [25]. In

this section we describe the approach used in this chapter. For a graph convolutional neural network

with 𝐿 layers, the output of each layer, 𝐻 (𝑙) , is a |𝑉 | × 𝑑 (𝑙) matrix with each row representing one of

the vertices (i.e. locations) of the graph. The number of vertices in each layer will stay the same,

only the dimension of the vertex representation 𝑑 (𝑙) changes. The graph convolution of a set of

vertices, H(𝑙−1) with a matrix of weights, W(𝑙) is defined as:

H(𝑙−1) ∗𝑊 (𝑙) = AH(𝑙−1)W(𝑙) (3.8)

where A is the adjacency matrix associated with the graph. The product AH(𝑙−1)
𝑡 will sum up

the features in the neighborhood around each vertex, while right multiplying this product by W(𝑙)

allows us to consider linear combinations of features.

We can then utilize graph convolution in the layers of a neural network. The operations

22



performed in each graph convolutional layer can be expressed as:

H(𝑙) = 𝑓 (𝑙) (H(𝑙−1)) (3.9)

=𝜎(H(𝑙−1) ∗𝑊 (𝑙))

=𝜎(AH(𝑙−1)W(𝑙))

where 𝜎 is a non-linear activation function. In our proposed approach, the adjacency matrix is

shared between all layers of the network to reduce the number of model parameters.

3.3.2 Graph Convolutional LSTM

Graph convolutions allow the model to utilize spatial relationships and by incorporating them into

a long short-term memory network it is possible for the model to consider spatial and temporal

relationships simultaneously. We call the combination of graph convolution inside an LSTM a

graph convolutional LSTM (GC-LSTM). The modified LSTM equations are:

C(𝑙)
𝑡 = I𝑡 ◦ C̃(𝑙)

𝑡 + F(𝑙)
𝑡 ◦ C(𝑙)

𝑡−1

F(𝑙)
𝑡 = 𝜎(H(𝑙−1)

𝑡 ∗ W(𝑙)
𝑓
+ H(𝑙)

𝑡−1 ∗ U(𝑙)
𝑓
+ b(𝑙)

𝑓
)

I(𝑙)𝑡 = 𝜎(H(𝑙−1)
𝑡 ∗ W(𝑙)

𝑖
+ H(𝑙)

𝑡−1 ∗ U(𝑙)
𝑖

+ b(𝑙)
𝑖
)

C̃(𝑙)
𝑡 = 𝑡𝑎𝑛ℎ(H(𝑙−1)

𝑡 ∗ W(𝑙)
𝑐 + H(𝑙)

𝑡−1 ∗ U(𝑙)
𝑐 + b(𝑙)

𝑐 )

H(𝑙)
𝑡 = O(𝑙)

𝑡 ◦ 𝑡𝑎𝑛ℎ(C(𝑙)
𝑡 )

O(𝑙)
𝑡 = 𝜎(H(𝑙−1)

𝑡 ∗ W(𝑙)
𝑜 + H(𝑙)

𝑡−1 ∗ U(𝑙)
𝑜

+C(𝑙)
𝑡 ∗ V(𝑙)

𝑜 + b(𝑙)
𝑜 )

where ∗ represents graph convolution. There are two primary differences between these equations

and the original LSTM formulation given in Equations 3.1-3.6. First, many of the variables are now

matrices with |𝑉 | rows rather than vectors. Second, all the matrix multiplications in the ordinary

LSTM equations are replaced by graph convolutions.
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3.3.3 Weighted Graph Convolutional LSTM

Previous work has often applied graph convolutions to datasets with known graph structure or used

simple heuristics to form the graph. However, in the case of weather prediction, there are many

factors that can potentially affect the spatial relationships between different locations, which makes

it difficult to manually create the adjacency matrix. To overcome this problem, we propose to treat

the entries of the adjacency matrix as a model parameter. This gives the model complete freedom

to determine, in a data driven way, how to organize the relationships between vertices. Once this

adjacency matrix is learned it can be examined for insight into weather phenomena as well as future

research into climate networks.

One published work [61] has also explored the possibility of using graph convolutional LSTMs

for language processing and traffic prediction applications based on diffusion convolution [25].

Specifically, the 𝑗 (𝑡ℎ) column of the convolution between the |𝑉 | × 𝑑 (𝑙) matrix of vertex features H

with an order 3 tensor of parameters with dimension 𝑑 (𝑙−1) × 𝑑 (𝑙) × 𝐾 is defined as:

(H ∗ W):, 𝑗 =
𝑑𝑖𝑛∑︁
𝑖=1

𝑔W𝑖, 𝑗
(L)H:,𝑖,

where L is the graph Laplacian. If, 1 is the identity matrix and 𝑇𝑘 (L) is the order k Chebyshev

polynomial of L and 𝜆𝑚𝑎𝑥 is the largest eigenvalue of L then:

𝑔w(L)x =

𝐾−1∑︁
𝑘=0

w𝑘𝑇𝑘 (L̃)

L̃ = 2L/𝜆𝑚𝑎𝑥 − 1

However, learning the weighted graph convolution using the Chebyshev polynomial approach is a

very expensive operation. This is because if we modify the graph Laplacian at each training step,

then the value of 𝜆𝑚𝑎𝑥 would have to be recomputed. As a consequence, these previous approaches

assume that the adjacency matrix of the graph is known and fixed unlike our proposed WGC-LSTM

approach, which learns the adjacency matrix from the training data. We avoid the costly calculation

of eigenvalues by using the following graph convolution operation as described in Section 3.3.1:

H ∗ W = AHW
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where W is a 𝑑 (𝑙−1) × 𝑑 (𝑙) parameter matrix.

In our framework, the value of A can be trained using gradient descent based methods such

as Adam [50] as long as the loss function is a differentiable function. However, the edge weights

introduce an additional |𝑉 |2 parameters into our model. The addition of such a large number

of parameters can potentially lead to overfitting. It is worth noting, however, that as bad as the

addition of |𝑉 |2 model parameters may initially seem, even with a fully learned adjacency matrix

this convolution-like operation still has fewer parameters than a similar fully connected network.

If we are given a graph of |𝑉 | vertices each with dimension 𝑑 (𝑙) , mapping to a 𝑑 (𝑙+1) dimensional

representation for each vertex, a fully connected neural network layer would require |𝑉 |2𝑑 (𝑙)𝑑 (𝑙+1)

parameters since every feature of each of the output vertices depends on all the features of all the

vertices in the input. In contrast, using graph convolution with learned edge weights requires only

|𝑉 |2 + 𝑑 (𝑙)𝑑 (𝑙+1) parameters.

For the weather prediction task we expect that the vast majority of potential edges in the dataset

are unnecessary as any given station will be related to just a small percentage of the other stations.

One way to create sparser models is by using L1 regularization, 𝜆∥A∥1. The choice of the value

for the hyper-parameter 𝜆 determines the desired sparsity of the adjacency matrix. Another way

to reduce the number of parameters is to discard some of the edges in the graph before learning.

This makes sense for weather prediction, which is driven primarily by the current weather at nearby

locations. Consequently, we can remove edges between distant weather stations. When we pre-

sparsify the adjacency matrix by removing edges between distant stations, we call the model a

sparse WGC-LSTM. An added bonus of using a sparse adjacency matrix is that it enables us

to compute the convolution operation using sparse matrix multiplication rather than dense matrix

multiplication thus reducing the amount of computation required. However, in practice deep

learning models are often deployed on GPUs which cannot evaluate sparse matrix operations very

quickly. To better take advantage of the unique capabilities of GPUs we propose to factorize

the adjacency matrix2 𝐴 = 𝑈𝑇𝑉 , where 𝑈 and 𝑉 are 𝑘 × |𝑉 | dimensional matrices. Factorizing

2If the adjacency matrix is expected to be symmetric then this can be further simplified by factorizing 𝐴 as
𝐴 = 𝑈𝑇𝑈
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the adjacency matrix in this way can significantly reduce the number of model parameters while

also reducing the required computation in a GPU friendly way. Computing this low rank graph

convolution has time complexity𝑂 (𝑘 × |𝑉 | × 𝑑 + 𝑑2). The low rank assumption is justified because

we are dealing with spatial data and we expect the intrinsic dimensionality of the data to be much

lower than the number of stations in the dataset. We call this approach low-rank WGC-LSTM.

3.4 Experimental Evaluation

We have performed extensive experiments using two real-world datasets to evaluate the performance

of our proposed WGC-LSTM framework. In this section, we describe the datasets and baseline

algorithms used along with experimental setup and the results obtained.

3.4.1 Weather Datasets

There are two real-world weather datasets are used in this study: (1) Radiosonde (weather balloon)

data from the Integrated Global Radiosonde Archive (IGRA)3 and (2) NOAA Global Surface

Summary of the Day (GSOD) dataset4. In both datasets, we consider only measurements taken

from locations in the continental United States. Furthermore, a location is included in the dataset

only if less than 10% of their data is missing. Any missing values for the selected location are

linearly interpolated in time. A summary of the datasets is given in Table 3.1.

For the IGRA dataset, measurements of dew point, wind speed, wind direction, temperature,

and geopotential height were obtained from weather balloons released at particular heights. Our

goal is to predict one of the weather variables (temperature or wind speed) twelve hours in the

future based on the weather measurements from its previous time steps. The resulting dataset

contains weather measurements from 67 locations, spanning the years between 1996 and 2015.

Measurements from the first 10,000 time steps are used for training, the next 2,300 time steps are

used as validation set, and the remaining 2,300 time steps are used as a dedicated test set. All the

variables are standardized so that their mean is zero and standard deviation is one.

3https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
4https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod
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Dataset # Locations Time Training
Period Size

IGRA 67 1996-2015 10,000
GSOD 332 1990-2016 7,800

Table 3.1: Summary of weather datasets.

For the GSOD dataset, daily measurements of minimum, maximum, and average temperature

are recorded along with the maximum and average wind speed as well as average surface pressure

from various weather stations. Our objective is to predict one of the weather variables (temperature

or wind speed) at every selected weather station for the next day. Similar to the IGRA dataset,

all variables are standardized to mean zero and unit variance. The dataset contains measurements

from 332 weather stations, spanning the years from 1990 to 2016. Measurements from the first

7,800 days are used as the training set and the next 1,000 days are used as validation set. Finally,

we reserve the data from another 1,000 days as test set.

3.4.2 Baseline Algorithms

We compared the performance of WGC-LSTM against the baseline methods listed below.

1. Previous Time Step: This baseline simply predicts the weather observations at the next time

step to be the same as those at the current time step.

2. Gaussian Process: This baseline uses spatio-temporal Gaussian process regression. Gaus-

sian process regression makes predictions at the next time step by taking a linear combination

of the observations at previously observed time steps. We use a kernel that is the product

of a spatial kernel and a temporal kernel. The spatial kernel is an RBF kernel based on the

geographic distance between two stations. The temporal kernel is an RBF kernel that takes

the time differences between observations as input. Only the 10 most recent observations are

used to predict the next time step.

3. Graph Convolution: This baseline uses only X𝑡 to predict Y𝑡 with a graph convolutional
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neural network. This approach primarily relies on spatial relationships to make predictions

and has very little temporal information.

4. Local LSTM: This baseline trains an ordinary LSTM to predict the future weather at a given

location based on weather information from its previous time steps. This is equivalent to

using a graph convolutional LSTM with an identity matrix as its spatial adjacency matrix.

5. Global LSTM At each time step we combine the data from all weather stations into a single

vector to form a multivariate time series. This multivariate time series is then used as the

input to an LSTM. The LSTM will be tasked with predicting a multivariate time series of

length 𝑉 , where each element of the prediction vector corresponds to the forecasted weather

at a particular station. In this approach, the LSTM’s prediction depends not only on the

weather condition at a given location, but also on the weather conditions at other locations

as well. Due to the large number of parameters in the model, an L2 regularizer is placed on

the LSTM parameters to avoid overfitting.

6. GC-LSTM (Fixed Adjacency) This corresponds to a graph convolutional LSTM approach

with a fixed adjacency matrix, where the edge weights are computed based on a Gaussian

kernel on the geographic distance between each pair of locations, i.e., 𝐴𝑖 𝑗 = 𝑒

(
−

𝑑2
𝑖 𝑗

2𝜎2

)
.

3.4.3 Experimental Setup

All LSTMs were trained with a variant of the gradient descent algorithm called Adam [50]. Each

LSTM based model has the following hyper parameters: weight of an 𝐿2 norm regularization term,

number of LSTM layers, number of hidden units. The low-rank WGC-LSTM has a hyper-parameter

controlling the rank of the adjacency matrix. The rank is varied between 2 and one half of the

number of stations in the dataset. Hyper-parameters were chosen through a random search [8]. The

initial learning rate was set to 0.01 and periodically reduced.
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IGRA GSOD
Approach Temp Wind Speed Temp Wind Speed
Previous Time Step 0.8766 0.3554 0.9103 0.1739
Gaussian Process 0.8940 0.4467 0.9016 0.1888
Graph Convolution (without LSTM) 0.9094 0.5567 0.9299 0.3863
Local LSTM 0.9187 0.5400 0.9476 0.4796
Global LSTM 0.9423 0.6147 0.9523 0.5600
GC-LSTM (fixed adjacency) 0.9353 0.6117 0.9459 0.4930
WGC-LSTM (learned adjacency) 0.9523 0.6412 0.9705 0.5982

Table 3.2: Comparison of 𝑅2 value for graph convolutional LSTM against other baseline methods.

Gaussian Graph Local Global GC-LSTM WGC-LSTM
Process Convolution LSTM LSTM

Gaussian Process 0.0% 0.0% 0.0% 0.3% 0.0% 0.3%
Graph Convolution 100.0% 0.0% 0.6% 26.8% 6.6% 2.4%
Local LSTM 100.0% 99.4% 0.0% 44.6% 60.2% 9.6%
Global LSTM 99.7% 73.2% 55.4% 0.0% 60.2% 0.6%
GC-LSTM 100.0% 93.4% 39.8% 39.8% 0.0% 6.3%
WGC-LSTM 99.7% 97.6% 90.4% 99.4% 93.7% 0.0%

Table 3.3: Percent of stations for which the model on each row outperforms the model in the column
on the temperature prediction task for the GSOD dataset.

Gaussian Graph Local Global GC-LSTM WGC-LSTM
Process Convolution LSTM LSTM

Gaussian Process 0.0% 2.4% 0.0% 0.3% 0.3% 0.0%
Graph Convolution 97.6% 0.0% 2.1% 4.8% 13.6% 2.7%
Local LSTM 100.0% 97.9% 0.0% 13.9% 47.0% 6.9%
Global LSTM 99.7% 95.2% 86.1% 0.0% 89.2% 3.6%
GC-LSTM 99.7% 86.4% 53.0% 10.8% 0.0% 1.2%
WGC-LSTM 100.0% 97.3% 93.1% 96.4% 98.8% 0.0%

Table 3.4: Percent of stations for which the model on each row outperforms the model in the column
on the wind speed prediction task for the GSOD dataset.

3.4.4 Experimental Results

The following experiments are performed to evaluate the proposed approach. First we compare

the 𝑅2 of WGC-LSTM against the baseline methods. Second, we investigate the effect of reducing

the rank of the adjacency matrix. Finally, we examine the impact of varying the number of LSTM

layers on the predictive performance.
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3.4.4.1 Comparison against Baseline Methods

Table 3.2 shows the results of our experiments comparing graph convolutional LSTMs (WGC-

LSTM and GC-LSTM) against other baseline methods. For WGC-LSTM, we use the sparse

implementation of the framework and reported the results on both IGRA and GSOD datasets,

with temperature and wind speed as the response variables. The results in Table 3.2 demonstrate

the superiority of both GC-LSTM and WGC-LSTM on all four prediction tasks. For wind speed

prediction the improvement in 𝑅2 is greater than 3% when compared against the strongest baseline.

For temperature prediction, the gain is more modest (aproximately 1%), which is not surprising

as the simple baseline of using temperature from previous time step is sufficient to obtain high

accuracy. The global LSTM is also capable of making accurate predictions as it considers the

weather observations at multiple locations. However, the weighted graph convolutional LSTMs

still outperform the global LSTM by 2% (for temperature prediction) and 4% (for wind speed

prediction), which suggests that the graph convolutional LSTMs are more effective at utilizing

observations from multiple locations to improve their predictions while using fewer parameters.

We also observe significant performance gain using WGC-LSTM compared to GC-LSTM on all

tasks, which suggests the advantages of treating edge weights as learned parameters in graph

convolutional LSTM. The performance gain is less significant for temperature prediction as the 𝑅2

is already very close to 1.

A more detailed analysis on the performance comparison is shown in Tables 3.3 and 3.4. We

compare the predictive performance of the competing methods on a location by location basis.

Each number represents the percentage of locations in which the method specified in the given row

outperformed the method specified in the given column. We see that the proposed WGC-LSTM

method is superior than all other baseline methods for the majority of the locations on the GSOD

dataset. In particular, WGC-LSTM outperforms other competing methods between 90% to 99%

of the locations for temperature prediction and by more than 93% of the locations for wind speed

prediction.

In Figure 3.4 we plot a map of the MSE error for temperature prediction at each station. Each
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Figure 3.4: Plot of IGRA stations with station size scaled to be proportional to the cubic value of
MSE of the WGC-LSTM for temperature prediction at that station. We see that there are larger
errors in the north. Correlation between a station’s average error and station temperature standard
deviation is 0.82.

circle represents a station and the size of the circle is scaled according to the cubic value of MSE for

temperature prediction at each station. Observe that the errors tend to be smaller near the coastal

and southern stations and larger for those located to the north. Further analysis shows that the

correlation between a station’s average squared error and standard deviation of its temperature is

0.82. This suggests the lower error for stations located to the south and along the coast could be

due to the less variability in their temperature compared to the northern stations.

3.4.5 Low-Rank versus Sparse WGC-LSTM

This section examines the effect of reducing the rank of the adjacency matrix on predictive per-

formance and runtime. A low rank adjacency matrix can be created by factorizing the adjacency

matrix into the product of two |𝑉 | × 𝑘 matrices where k is the matrix rank. By factorizing the

adjacency matrix in this way we help to reduce run time while also reducing the number of model

parameters. In Figure 3.5a we see that it is possible to obtain strong performance on the GSOD

wind speed prediction task with a rank 40 matrix (the original matrix is 332 × 332).

In addition, we compare the runtime of a model with a low rank adjacency matrix against

a model with a full rank adjacency matrix sparsified by removing edges between very distant

locations. We see in Figure 3.5b that a low rank adjacency matrix requires much less time to

compute than a sparse adjacency matrix with the same number of model parameters. This large
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(a) MSE for temperature prediction as a function
of adjacency matrix rank.

(b) Average time per training iteration (for the
GSOD dataset) as a function of degrees of free-
dom. The low rank WGC-LSTM results in a
much faster model than the sparse WGC-LSTM.

Figure 3.5: Comparison between low rank WGC-LSTM and sparse WGC-LSTM.

discrepency is due to the fact that the GPUs used in many deep learning tasks are not optimized for

sparse-dense matrix multiplications but are optimized for dense-dense matrix multiplications.

3.4.6 Number of Layers

Next we consider the impact of the number of layers on model performance. Figure 3.6 shows

predictive performance as a function of the number of LSTM layers in the network. The y-axis

shows the maximal 𝑅2 reached across all runs for graph convolutional LSTMs with a learned

adjacency matrix and a given number of layers. Only 2 layers are necessary to achieve near optimal

performance on the IGRA dataset while the GSOD dataset benefits from increasing the number

of layers further. Since each added layer represents an additional multiplication by the adjacency

matrix, adding more layers to the WGC-LSTM allows it to incorporate weather information from

larger areas.

3.4.7 Learned Adjacency Matrix Visualization

In this section we visualize the learned adjacency matrix in two ways. First, we directly visualize

the adjacency matrix by plotting the most important weights. Second, we use the learned adjacency
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Figure 3.6: Prediction error for wind speed as a function of the number of layers in WGC-LSTM.

Figure 3.7: Prediction error for wind speed as a function of the number of layers in WGC-LSTM.

matrix to cluster stations. Throughout this section we compare results for models with the low rank

assumption against models with a sparsity assumption.

In Figure 3.8 we visualize the edges learned by a WGC-LSTM for the IGRA temperature

prediction task. To do this, we take the absolute value of the learned adjacency matrix and find the

largest edge weight in each row of the adjacency matrix. The edge corresponding to each row’s

largest weight is then plotted along with its direction. In cases where both 𝐴𝑖 𝑗 and 𝐴 𝑗𝑖 would be

plotted we display the edge as a purple line segment. We visualize a sparse full rank adjacency

matrix that includes edges between stations less than 1400 km long and a low rank adjacency

matrix with edges longer than 1400 km removed before plotting. What we observe is that the most

significant edge for each station closely matches what we would expect from climate research. In

particular, we see that stations are almost always most heavily influenced by stations to the west.

This phenomenon is clearer for the sparse adjacency matrix than the low rank adjacency matrix.

33



(a) Sparse adjacency matrix

(b) Low rank adjacency matrix

Figure 3.8: Comparison between the sparse and low rank adjacency matrices learned for temperature
prediction on the IGRA dataset.
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After learning the adjacency matrix it becomes possible to assign different weather stations to

different regions using a clustering algorithm. Our choice of clustering algorithm depends on the

structure of the adjacency matrix. For a sparse adjacency matrix, we apply spectral clustering.

When using a low rank adjacency matrix, we concatenate the learned latent factors and use them

as input to K-Means clustering. We compare the clusters obtained from the adjacency matrix

learned in the IGRA temperature prediction task to the clusters found using a fixed adjacency

matrix based on the RBF kernel computed from the geographic distance. These clusters are formed

using spectral clustering. The clusters resulting from the fixed adjacency matrix are generally

quite “spherical" and are spatially contiguous. The clusters derived from the sparse adjacency

matrix tend to be geographically contiguous but not quite as spherical as those arising from the

fixed adjacency matrix. This is most apparent when observing stations located around the Gulf

of Mexico. Nevertheless, the clusters obtained from the sparse adjacency matrix are still quite

similar to those found using the fixed adjacency matrix. In contrast, when the low-rank adjacency

matrix is used for clustering, the stations within a cluster may be geographically distant from each

other. Its possible that the clusters formed based on the low rank model are less geographically

contiguous because the adjacency matrix formed by the low rank factors is a dense matrix with

edges spanning the entire United States whereas the sparse adjacency matrix only has edges between

nearby stations.

In both of these tasks, the sparsity assumption yielded more interpretable results. This suggests

that, though low rank adjacency matrices may be much more computationally efficient, sparse ad-

jacency matrices may still be useful in situations where the interpretability of the learned adjacency

matrix is highly important.

3.5 Related Work

3.5.1 Deep Learning

Over the past decade, deep learning has exploded in popularity. Thanks to the availability of large

labeled datasets and access to cheap computing power (especially GPUs), deep neural networks
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(a) Sparse adjacency matrix clustering

(b) Low rank adjacency clustering

(c) Clustering based on geographic distance

Figure 3.9: Comparing the results of clustering performed on the sparse and low rank adjacency
matrices learned for temperature prediction on the IGRA dataset are used for clustering. An
adjacency matrix formed from geographic distance is also clustered.
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have been able to achieve strong results on challenging tasks. They have successfully been applied

to object recognition [53], speech recognition [35], and machine translation [83].

To date, most work applying deep learning to spatiotemporal data has focused on sequences of

gridded observations like videos. Because each sample in the sequence is gridded convolutional

layers can easily be incorporated into the deep learning. For example, [80] develops that convo-

lutional LSTM model that incorporates convolution into an LSTM and applies their model to the

problem of precipitation now-casting based on sequences of gridded radar observations.

3.5.2 Graph Convolution

Many of the most successful applications of deep learning involve convolutional neural networks.

Consequently, there has been a wide range of research exploring the possibility of generalizing

convolutional neural networks so that they are applicable to a broader class of problems.

[12] devises a neural network architecture based on graph convolutions and apply it to graph

classifications problems on synthetic datasets. Building on this, [25] use a polynomial approxi-

mation of graph convolution that is computationally efficient and localized. The effectiveness of

the method is demonstrated for the classification of vertices in a graph. [51] further approximates

graph convolution and also proposes a technique for applying graph convolutions to semi-supervised

learning problems. Our approach to graph convolution is most similar to [51] but our approach to

graph convolution is distinct from theirs in several important ways. First, [51] used a dataset with

known graph structure and weights. In contrast, we learn edge weights over the course of training.

Second, their approach is based on multiplication by the normalized graph Laplacian of a self-loop

augmented graph and is formulated in the spectral domain. Our approach however is formulated in

the vertex domain and involves multiplication by a learned adjacency matrix.

One previously published work has also used graph convolutional LSTMs for prediction. In

[61] the authors use a graph convolutional LSTM for traffic prediction. We distinguish our work in

the following ways. First, in [61], the authors assume that the graph structure is known. However,

we show that incorporating edge weights as a part of the learning process can improve predictive
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performance. In addition, [61] use a formulation of graph convolution based on random walks

while the graph convolution operation employed in this chapter is formulated in the vertex domain.

Since we are learning the edge weights graphs, the approach to graph convolution utilized in [61]

would require computing the powers of the adjacency matrix at each training step which takes

𝑂 ( |𝑉 |3) time. We avoid this costly computation in our formulation.

3.5.3 Weather Prediction

The most common approach to weather prediction is based on numerical simulations [7]. In

addition, data-driven approaches such as [36] [69] have also been developed. The framework in

[36] contains three components: the first component consists of a regression model at each location

for which they would like to produce predictions that predicts weather at that location in the future

based on the historical weather measurements at that location, the second component enforces

smoothness constraints using a gaussian process with a custom kernel, and the third component

uses a restricted Boltzman machine to enforce physical constraints on the weather variables at each

location. [80] uses a convolutional LSTM to perform precipitation now casting using ground based

radar observations. In [69], the authors propose an extension of decision trees to spatiotemporal

data that they evaluate on weather prediction tasks. Finally, in [54], the authors use an LSTM for

soil moisture prediction.

3.6 Conclusions and Future Work

In conclusion, an approach to weather prediction using graph convolutional LSTMs was proposed.

We evaluated our WGC-LSTM method against several baselines and found that it outperformed

the baselines on all prediction tasks. In particular, we found that learning the edge weights gave

noticeable performance improvements. We also evaluated predictive performance as a function of

adjacency matrix rank and found that a relatively small rank was necessary in order to reach near

optimal performance. This makes it possible to reduce the computational requirements of training

and reduce the chance of overfitting without compromising prediction quality.
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In this chapter we focused on making predictions using a fixed graph. Future work might explore

ways to extend the framework proposed here to allow weather stations to be added or removed over

time. Another possible research direction is to explore ways of leveraging datasets where different

vertices have different predictor variables. For example, some vertices may contain observations

of temperature and wind speed while others contain only precipitation measurements. In addition,

we will also explore the possibility of designing a hybrid approach that leverages the computational

benefits of the low rank structure and the interpretability yielded by sparse models simultaneously.
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CHAPTER 4

CONVOLUTIONAL METHODS FOR PREDICTIVE MODELING OF GEOSPATIAL
DATA

4.1 Introduction1

Predictive modeling of geospatial data is an important class of machine learning problem as it can

be applied to a wide range of domains, from climate [80] and ecological sciences [23] to disease

surveillance [39] and agricultural sciences [107]. The problem typically involves fitting a regression

model to predict a future scenario (e.g., climate condition, disease incidence, or crime rate) at each

location in a study region. These applications often present various modeling challenges, including

the prevalence of noisy data, limited amount of labeled examples to fit accurate local models, and

the need to consider the spatial relationships of the data. The limited labeled data in geospatial

applications is a common challenge as the phenomenon being studied may need to be observed over

long time scales to effectively predict its future behavior. Many sophisticated models that work

well with access to large amounts of training data but may falter when data is limited. In addition

the applications may involve complex, potentially nonlinear, spatial relationships. For example, in

weather forecasting, two nearby locations are likely to experience similar weather patterns but the

relationship can be altered by differences in altitude or proximity to oceans, among other reasons.

One recent technique with application to geospatial data is convolution. The strength of

convolution lies in its ability to model complex non-linear relationships in the data. Convolution

initially found its most widespread application in computer vision tasks such as hand-written digit

recognition [60] but more recently has been applied to a wider range of domains, including climate

downscaling [94] and precipitation nowcasting [80]. However, current methods are typically used

to model spatial relationships that exist among predictor variables, such as the pixels of an image.

1This chapter is adapted from a previously published paper: Tyler Wilson, Pang-Ning Tan, and Lifeng Luo,
"Convolutional Methods for Predictive Modeling of Geospatial Data". In Proceedings of the SIAM International
Conference on Data Mining (SDM-2020), Cincinnati, OH (2020).
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We termed this approach as convolution on input or 𝐶𝑜𝑛𝑣𝑥 .

The recent success in applying multi-task learning to geo-spatial prediction problems has

demonstrated the utility of modeling the relationship between the parameters of different local

models [64]. Specifically, when applying multi-task learning to geo-spatial prediction, the different

tasks (i.e., predictions at different locations) are often represented as vertices of a graph while the

relationship between tasks is represented by the edges of the graph. In this chapter, we propose

an extension of convolution to model the relationships between the local model parameters of the

different tasks. This is accomplished by using a graph convolutional neural network to map from a

low dimensional embedding of each location to the location’s model parameters. We refer to this

approach as convolution on parameters or 𝐶𝑜𝑛𝑣𝑤.

Our use of convolution raises several interesting research questions: When should we perform

convolution on predictors? When should we use convolution to capture relationships between model

parameters? Are there cases where convolution can be effectively used to represent relationships

among both predictors and model parameters? These issues will be explored in more details in the

remainder of this chapter.

To address these issues, we propose a flexible deep learning framework for geospatial prediction.

The framework assumes each location has its own local model parameters, which can be derived

using a graph convolutional neural network, while simultaneously learning a low dimensional

representation for each location. This convolution on parameter (𝐶𝑜𝑛𝑣𝑤) approach can thus be

viewed as an implementation of traditional multi-task learning [14] using graph convolutional

neural network. More importantly, the framework can also accommodate for convolution on input,

𝐶𝑜𝑛𝑣𝑥 , or a hybrid of both,𝐶𝑜𝑛𝑣𝑥𝑤. We also provide guidance on how to determine when each type

of convolution should be used in geospatial prediction problems and demonstrate the effectiveness

of our framework on both synthetic and real-world datasets.
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4.2 Related Work

Geospatial prediction encompasses a wide range of important problems including weather fore-

casting [36], disease spread detection [39], and crop yield prediction [107]. Such prediction often

involves the creation of a separate local model at each location within the study domain as a single

global model might not effectively capture the spatial heterogeneity of the data. Conversely, training

an accurate local model can be challenging when there are limited training examples available at

each location. In this case, it would be better to jointly model the prediction tasks for all locations

using multi-task learning (MTL) techniques [14]. MTL attempts to improve generalization errors

by exploiting the relationships between different tasks. The approach has been successfully applied

to many applications, such as climate [64] and soil moisture prediction [105].

Convolutional neural networks (CNNs) have proven to be a powerful technique for modeling

spatial relationships in data. The idea was first applied to computer vision problems [53, 60],

where it was used to model the relationships between pixels. However, CNN is also capable of

capturing spatial relationships in other applications including precipitation nowcasting [80] and

climate downscaling [94]. One major drawback of CNNs is that they are only capable of handling

spatial relationships in data with a grid-like structure. This assumption was relaxed in work that

generalized convolution to graphs. Bergstra and Bengio [8] proposed spectral graph convolutional

neural networks, which are extended by Defferrard et al. [25] with localized filters. Kipf and

Welling [51] proposed an approximation of graph spectral convolution. Graph convolutional

methods have since been applied to spatial problems such as weather prediction [101].

4.3 Convolutional Methods for Modeling Geospatial Data

Let {(X𝑙 , y𝑙)} |𝐿 |𝑙=1 be the dataset collected for a set of geo-referenced locations 𝐿, where X𝑙 ∈ R𝑇𝑙×𝑑

denotes the values of the input (predictor) variables and y𝑙 ∈ R𝑇𝑙 denotes the values of the output

(target) variable at location 𝑙 for𝑇𝑙 time steps. Let A ∈ R|𝐿 |×|𝐿 | be the adjacency matrix for modeling

spatial dependencies between different locations. Our goal is to learn a target function 𝑓𝑙 : X𝑙 → y𝑙

for each location. Each 𝑓𝑙 is characterized by its local regression parameter, w𝑙 ∈ 𝑅𝑑 , which can
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(a) 𝑐𝑜𝑛𝑣𝑋 (b) 𝑐𝑜𝑛𝑣𝑊 (c) 𝑐𝑜𝑛𝑣𝑋𝑊

Figure 4.1: Three different architectures for performing convolution on geospatial data.

be concatenated column-wise to form a weight matrix W ∈ 𝑅𝑑×|𝐿 |. This section presents three

different approaches for applying convolutional methods to learn W, as shown in Figure 4.1.

4.3.1 Convolution on Input (𝐶𝑜𝑛𝑣𝑥)

The use of convolutional neural networks (CNNs) was pioneered in computer vision applications

to model relationships among pixels in images. Specifically, small filters are applied across the

pixels of the input image so that, at each layer of the convolutional neural network, each pixel of

the response map depends upon a small region of pixels from the layer below. By stacking multiple

such layers on top of one another, each pixel in the final layer of the convolutional neural network

will depend upon a number of pixels surrounding it and as a result the learned function captures

the inter-dependencies among the pixels in the input image.

The application of CNN to geo-spatial data can be motivated in a similar way. By feeding

the input variables from multiple locations through the network layers, the resulting function will

capture the spatial relationships among the predictor variables at different locations. We thus refer

to this approach as convolution on input. One major drawback of traditional CNNs is that they

require the input to possess a gridded structure, like the pixels of an image. Thus, they may not

be appropriate for datasets in which the locations of the observations can be arbitrary and do not
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conform to a regular grid structure. Graph convolutional networks (GCNs) are a generalization of

traditional CNNs, which allows the data to have a graph structure. In the context of geo-spatial

prediction, each vertex of the graph corresponds to one location and each edge represents the

relationship between a pair of locations.

The overall structure of a model that performs convolution on the predictors is show in Figure

4.1a. The predictors at all locations are fed through a GCN, which computes a high level repre-

sentation of the predictors at each location (denoted as GCN output in Figure 4.1a). The learned

representation at each location is thus dependant upon its own predictor values as well as those of

its neighbors. Assuming a linear model, we can compute a dot product between the GCN output

at each location with its local regression parameter w𝑙 to generate a prediction vector ŷl at each

location.

We employ a Res-Net like GCN architecture [38] to map the input predictors to its output

representation. Specifically, the 𝑖-th layer of GCN hs the following form:

H𝑖 = A𝜎
(
AH𝑖−1U𝑖

)
V𝑖 + H𝑖−1 (4.1)

where H𝑖 is the output of the 𝑖-th layer, A is the adjacency matrix, U𝑖 and V𝑖 are matrices of the

GCN weight parameters, and 𝜎(·) is an activation function. The right multiplication by U𝑖 and V𝑖

compute a linear transformation of the features at each location while the left multiplication by A

allows the model to consider the features at neighboring locations. Note that U𝑖 and V𝑖 in each

layer are the model parameters to be estimated during training while A is assumed to be known.

The adjacency matrix is computed based on the geographic distance between every pair of

locations:

A𝑖, 𝑗 = 𝑒𝑥𝑝

[
−
𝑑𝑖𝑠𝑡 (𝑙𝑖, 𝑙 𝑗 )

𝑘

]
(4.2)

where 𝑑𝑖𝑠𝑡 (·, ·) is the Haversine distance and 𝑘 is a hyperparameter.

Let g(X; A)𝑙 ∈ R𝑇𝑙×𝐷 denote the GCN output associated with location 𝑙 and w𝑙 ∈ R𝐷 is

its corresponding local regression parameter. The 𝐶𝑜𝑛𝑣𝑥 framework is trained to minimize the
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following loss function:
𝐿∑︁
𝑙=1

∥Φ𝑙 (X)w𝑙 − y𝑙 ∥2, s.t. Φ𝑙 (X) = g(X; A)𝑙 (4.3)

The parameters to be estimated are the weights 𝑉𝑖’s from all layers of the GCN as well as the local

regression parameter 𝑤𝑙’s. All parameters are trained simultaneously in an end-to-end fashion to

minimize the loss.

4.3.2 Convolution on Parameter (𝐶𝑜𝑛𝑣𝑤)

In the previous subsection, we described how convolution can be used to model the spatial relation-

ships among predictor variables. However, spatial relationships may exist between parameters of

the local models. One way of enforcing the spatial relationship between models is by incorporating

a graph Laplacian regularization term [104] into the loss function of the learning algorithm:
𝐿∑︁
𝑙=1

∥ 𝑓𝑙 (X𝑙 ; w𝑙) − y𝑙 ∥2 + 𝜆
𝐿∑︁

𝑖, 𝑗=1
A𝑖, 𝑗 ∥w𝑖 − w 𝑗 ∥2 (4.4)

The graph Laplacian regularization ensures that the local model parameters vary smoothly over

space and that any sharp discontinuities between the parameters at two nearby locations will be

heavily penalized.

Alternatively, we can apply graph convolution to model the spatial relationship between the

parameters, as shown in Figure 4.1b. Specifically, each location is represented by a low dimensional

vector, z𝑙 ∈ 𝑅𝑚, where 𝑚 is a hyperparameter representing the dimensionality of the embedding

vector. We can then learn a function mapping from this location embedding vector z𝑙 to the local

regression parameters, w𝑙 , which we refer to as “convolved linear weights." By using a GCN,

the output regression parameter for each location will also depend on the location embedding of

its nearby neighbors. This makes it possible to pool information from nearby models as a way of

combating overfitting when training samples are limited.

Our GCN is trained to minimize the following loss:
𝐿∑︁
𝑙=1

∥X𝑙w𝑙 − y𝑙 ∥2 s.t. w𝑙 = g(Z; A)𝑙 (4.5)
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By using a non-linear function to map the location embedding to its regression parameters, this

gives it more flexibility in modeling relationship between regression parameters compared to graph

Laplacian regularizer.

𝐶𝑜𝑛𝑣𝑤 differs from 𝐶𝑜𝑛𝑣𝑥 in two important ways. First, in 𝐶𝑜𝑛𝑣𝑤, the convolved linear

weights are mapped from the location embeddings using a GCN whereas the local linear regression

weights in𝐶𝑜𝑛𝑣𝑥 are actually model parameters learned over the course of training using Eq. (4.3).

Second, the predictors in 𝐶𝑜𝑛𝑣𝑥 are spatially transformed using a GCN before being multiplied

to each location’s local regression weights. In contrast, 𝐶𝑜𝑛𝑣𝑤 does not perform any spatial

transformation on its predictors before multiplying them to the convolved linear regression weights.

During each forward pass, 𝐶𝑜𝑛𝑣𝑤 will calculate the new convolved linear regression weights,

w𝑙 = g(Z; A)𝑙 based upon the current value of Z. These weights are used to predict the value of y𝑙 at

each location. The mean squared error of these predictions is then averaged across all observations

and all stations. Since w𝑙 is actually the output of a neural network, it will be updated during each

backward pass via gradient descent. The GCN parameters and location embeddings are trained

simultaneously in an end-to-end fashion to minimize the mean squared error of the predictions.

4.3.3 Hybrid Convolution Approach (𝐶𝑜𝑛𝑣𝑥𝑤)

In addition to performing convolution on X alone or W alone, it is possible to apply convolution

on both 𝑋 and𝑊 which allows us to leverage the advantages of both methods. In this case the loss

function for 𝐶𝑜𝑛𝑣𝑥𝑤 is:

min
𝐿∑︁
𝑙=1

∥Φ𝑙 (X)w𝑙 − y𝑙 ∥2, (4.6)

s.t. g1(X𝑙 ,A), w𝑙 = g2(Z𝑙 ,A)

Estimating y in this way requires two separate graph convolutional neural networks, g1 and g2, one

for the predictors, and the other for computing the convolved linear weights. In our implementation

we assume that both GCNs share the same adjacency matrix. The parameters to be learned over
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(a) 𝐶𝑜𝑛𝑣𝑥 (b) 𝐶𝑜𝑛𝑣𝑤

Figure 4.2: Flow charts showing when different kinds of convolution are applicable

the course of training are the weights internal to the two GCNs as well as the location embeddings,

Z. All parameters are trained simultaneously in an end-to-end fashion.

4.4 Choice of Convolutional Method

Below, we discuss scenarios in which the different kinds of convolutional methods are expected

to be useful. We argue that the utility of convolutional methods often depends on the following 3

criteria: (1) size of local training sets, (2) degree of spatial autocorrelation, and (3) noise level of

the data. While these are by no means the only possible criteria, they are generally applicable to

many geospatial applications. Our suggestions on choosing the right convolutional methods to use

are summarized in the flow chart shown in Figure 4.2.

4.4.1 When 𝐶𝑜𝑛𝑣𝑥 is useful?

𝐶𝑜𝑛𝑣𝑥 is designed to capture relationships among the predictor variables. Specifically, each layer

of convolution incorporates information not just from a single location, but from nearby locations

as well. By stacking multiple convolutional layers on top of one another, the architecture is able

to consider relationships between predictors in progressively larger regions. 𝐶𝑜𝑛𝑣𝑥 can thus be

used to capture broad-scale spatial patterns in geospatial data. For example, in weather forecasting,

the broad-scale patterns may provide information about the high or low pressure regions and their

frontal zones—information that are useful to determine the local weather conditions. However,

even in situations where the output at a given location depends only on the predictors at that location

it may still be useful to apply 𝐶𝑜𝑛𝑣𝑥 . For example, if the values of the predictor variables in 𝑋
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are noisy, then performing convolution on the input may allow us to denoise the data and train

more accurate prediction models at each location so long as the values of the predictor variables

are spatially auto-correlated. 𝐶𝑜𝑛𝑣𝑋 will generally perform better with more training data even if

that data is split across many different locations. Figure 4.2a shows a flowchart for determining

whether 𝐶𝑜𝑛𝑣𝑥 should be applied to a geospatial prediction problem.

4.4.2 When 𝐶𝑜𝑛𝑣𝑤 is useful?

Unlike 𝐶𝑜𝑛𝑣𝑥 , 𝐶𝑜𝑛𝑣𝑤 can be thought of as a form of multi-task learning as it enables us to capture

relationships between model parameters at different locations. Thus, it is best applied in those

situations where traditional multi-task learning typically excels. This suggests that 𝐶𝑜𝑛𝑣𝑤 is best

utilized when (1) the prediction tasks are distinct enough that a single global model would perform

poorly and (2) there are insufficient samples to train the local model at each location accurately.

𝐶𝑜𝑛𝑣𝑤 also makes the additional assumption that there exists spatial relationships between the

model parameters at different locations. A flowchart for determining whether 𝐶𝑜𝑛𝑣𝑤 should be

applied is shown in Figure 4.2b.

4.4.3 When 𝐶𝑜𝑛𝑣𝑥𝑤 is useful?

In some situations we may wish to perform convolution on both the input and model parameters.

This will most frequently be the case when each location should be associated with its own predictive

function but that function should be based on relationships among predictors at different locations.

The main drawback of combining the two forms of convolution is the additional model parameters.

Convolution on parameters is useful primarily in situations with limited training data, in which case

the additional model parameters introduced by the convolution on input makes it more susceptible

to overfitting. However, as the parameters introduced by convolution on input are also shared

between tasks, this may help regularize the parameters especially if there are sufficient number of

autocorrelated tasks (locations).
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Models DS1 DS2 DS3
𝐶𝑜𝑛𝑣𝑤 0.832 0.167 0.083
𝐶𝑜𝑛𝑣𝑥 0.8094 0.891 0.491
𝐶𝑜𝑛𝑣𝑥𝑤 0.559 0.809 0.524

Table 4.1: R-squared results for synthetic data.

4.5 Experimental Evaluation

We have conducted extensive experiments using both synthetic and real-world data to demonstrate

the effectiveness of convolutional methods.

4.5.1 Experiments on Synthetic Data

To test the hypotheses suggested by the flowchart shown in Figure 4.2, we have created three

synthetic datasets, each of which is intended to demonstrate a situation where 𝐶𝑜𝑛𝑣𝑤, 𝐶𝑜𝑛𝑣𝑥 , or

𝐶𝑜𝑛𝑣𝑥𝑤 is useful. All datasets have a fixed test set of size 250 examples. Below, we describe how

each dataset is created.

1. DS1 (Correlated Task Model Parameters) This dataset is created to demonstrate the

effectiveness of𝐶𝑜𝑛𝑣𝑤. Specifically, it has a small training set size (8 examples per location)

and the model parameters are spatially autocorrelated. We first create a graph on a 30 by

30 grid to represent 900 locations. For each vertex, we generate a set of 8 40 dimensional

vectors to represent the predictor variables, where each component of the vector is drawn

from a standard normal distribution. We then generate the regression weights, w, using a

Gaussian process with a covariance matrix determined by an RBF kernel of the Euclidean

distance between locations and a mean value that increases linearly moving from left to right.

Since there are 40 predictors, we must generate 40 separate samples for each location. To

ensure that the regression weights are significantly different, we apply a separate scaling

factor, 𝑣𝑑 , drawn from the standard normal distribution, to each feature coefficient and apply

the scaling factor uniformly to the 𝑤𝑑 for all locations. Finally, the ground truth values of the

target variable are generated by applying a dot product between the predictors and regression
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IGRA GSOD GHCN
# of Stations 67 332 13,529
Time Range 1996-2015 1990-2016 1970-2015
Frequency 12 hourly daily monthly
#Samples/Station 14,610 9,862 551

Table 4.2: Summary of real-world datasets.

GHCN IGRA GSOD
TMin TMax Prcp Wspd Temp MaxTemp MaxSpd Wspd

Local Linear 0.597 0.602 0.269 0.269 0.628 0.474 0.024 -0.014
Global Linear 0.585 0.554 0.297 0.312 0.655 0.571 0.118 0.130
MALSAR 0.613 0.622 0.303 0.311 0.658 0.567 0.118 0.152
𝐶𝑜𝑛𝑣𝑤 0.611 0.617 0.304 0.315 0.660 0.576 0.123 0.136
𝐶𝑜𝑛𝑣𝑥 0.619 0.632 0.295 0.355 0.717 0.575 0.074 0.055
𝐶𝑜𝑛𝑣𝑥𝑤 0.620 0.649 0.313 0.362 0.710 0.603 0.126 0.156

Table 4.3: Comparison of convolutional methods against other baselines using R-squared as eval-
uation metric.

weights. The predictor and target values are both standardized per location and noise is added

to observations of 𝑦.

2. DS2 (Correlated Predictors) We create a graph on a 10 by 10 grid. Similar to DS1, the

predictor values are drawn from the same Gaussian process except their dimensionalities are

equal to 5 (instead of 40) and noise are added to the features. The training set size is 250

samples per vertex. As the predictors are noisy and their ground truth values are correlated,

we expect 𝐶𝑜𝑛𝑣𝑥 will be most effective on this dataset.

3. DS3 (Correlated Task Parameters and Predictors) This dataset is created using a combi-

nation of the techniques used in DS1 and DS2. The weights, 𝑤 are generated from a Gaussian

process as in DS1 and the predictors are generated from a Gaussian process as in DS2. Noise

are added to both the predictors and response values. As in DS1, the training set size is

limited. 𝐶𝑜𝑛𝑣𝑥𝑤 is expected to perform well on this dataset.
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4.5.1.1 Experimental Results on Synthetic Data

We reported the performance of all three convolutional methods on the synthetic datasets in

Table 4.1. We use R-squared as our evaluation measure. R-squared is a widely-used statistical

measure to determine the proportion of variance in the target variable explained by the predictor

variables. The results agree with our previous expectation. First,𝐶𝑜𝑛𝑣𝑤 outperforms other methods

on DS1 because of the limited training data and the spatial autocorrelations among the regression

weights introduced by the Gaussian process. 𝐶𝑜𝑛𝑣𝑥 achieves the best performance on DS2 due to

the correlations and noisiness of the predictor variables while 𝐶𝑜𝑛𝑣𝑥𝑤 , as expected, performs best

on DS3, which had limited training samples, correlated and noisy predictors, as well as correlated

regression weights. Together, these results validate our hypothesis in Section 4.4 regarding when

to use which form of convolution.

4.5.2 Experiments on Real-world Data

In this section we examine the predictive performance of the different forms of convolution on the

following three real world datasets (details are in Table 4.2):

1. GHCN: This is a monthly gridded dataset, where the predictors are coarse-scale variables

obtained from the NCEP re-analysis project (e.g., convective precipitation rate, solar radiation

flux, relative humidity, and sea level pressure) while the target variable corresponds to fine

scale observations of temperature and precipitation from the Global Historical Climatology

Network (GHCN)2.

2. IGRA: This is a weather dataset from the Integrated Global Radiosonde Archive (IGRA)3.

The task here is to predict the weather at each station in the next time step given its past

conditions over the previous three time steps. The predictors used include dew point, wind

2https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-
climatology-network-ghcn

3https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
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speed, temperature, and geopotential height with temperature and wind speed also serving

as target variables.

3. GSOD: This is another weather dataset from NOAA Global Summary of the Day website4.

The task here is similar to IGRA. The predictors include minimum and maximum temperature,

maximum wind speed, and mean sea level pressure whereas the target variables are maximum

wind speed, average wind speed and maximum temperature.

4.5.2.1 Experimental Setup

We compare the three variations of convolutional methods (𝐶𝑜𝑛𝑣𝑋 , 𝐶𝑜𝑛𝑣𝑊 , and 𝐶𝑜𝑛𝑣𝑋𝑊 ) against

the following baseline methods:

1. Global Linear Model. This corresponds to fitting a single ridge regression model on the

combined data from all locations.

2. Local Linear Model - This corresponds to training an independent ridge regression model

at each location. The hyper-parameters for each location are tuned independently.

3. SRMTL - This is the MALSAR [115] implementation of sparse graph Laplacian regularized

multi-task learning.

For all baseline and convolutional methods, we perform a random search over the hyper-

parameters [8]. We also fixed both the validation and test set sizes to be 33% each for all 3 datasets.

As the performance of the models depend on the amount training data, we vary the training set size

from 5% up to 33%.

4.5.2.2 Experimental Results

In Table 4.3 we compare the predictive performance of the different forms of convolution against

our baselines. Results are reported using 20% training data (for GHCN) and 1% training data (for

4https://catalog.data.gov/dataset/global-surface-summary-of-the-day-gsod
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(a) Precipitation (b) Maximum Temperature

Figure 4.3: Proportion of stations in which 𝐶𝑜𝑛𝑣𝑤 beats the baseline methods as the size of the
training set varies.

IGRA and GSOD). We use a higher percentage for GHCN since it is monthly data with fewer

number of observations per location. We find that the best performing model across seven of

the eight prediction tasks is 𝐶𝑜𝑛𝑣𝑥𝑤. The strong performance of 𝐶𝑜𝑛𝑣𝑥𝑤 can be attributed to

its ability to leverage the strengths of both convolution on input and convolution on parameters.

Furthermore,𝐶𝑜𝑛𝑣𝑥 consistently underperforms compared to𝐶𝑜𝑛𝑣𝑥𝑤, which suggests its tendency

to overfit when there is limited training data. This problem can be alleviated by 𝐶𝑜𝑛𝑣𝑥𝑤 with its

convolution on parameter. The strong performance of 𝐶𝑜𝑛𝑣𝑥𝑤 in comparison to 𝐶𝑜𝑛𝑣𝑤 can be

attributed to its ability to incorporate predictors from multiple locations when making predictions

via its convolution on input.

Of the four methods that use only local predictors at a single location to make predictions (local

linear, global linear, SRMTL, and 𝐶𝑜𝑛𝑣𝑤), we see that either SRMTL or 𝐶𝑜𝑛𝑣𝑤 always performs

the best depending on the dataset. The performance of SRMTL and 𝐶𝑜𝑛𝑣𝑤 are comparable to

each other, which is not surprising as both are MTL methods. Figure 4.3 further breaks down the

performance of the local linear, global linear, and 𝐶𝑜𝑛𝑣𝑤 models on a station by station basis for

precipitation and temperature prediction on the GHCN dataset. The results suggest that when the

amount of data is small (around 5%), 𝐶𝑜𝑛𝑣𝑤 outperforms the local model over 80% of the time

while outperforming the global model at more than 55% of the stations. As training data increases,
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TMin TMax Prcp
Linear 𝐶𝑜𝑛𝑣𝑥 0.311 0.641 0.619
Non-Linear 𝐶𝑜𝑛𝑣𝑥 0.304 0.630 0.631
Linear 𝐶𝑜𝑛𝑣𝑥𝑤 0.322 0.633 0.618
Non-Linear 𝐶𝑜𝑛𝑣𝑥𝑤 0.321 0.639 0.630

Table 4.4: Comparing the R-squared values of linear and non-linear convolution on inputs for
GHCN data.

𝐶𝑜𝑛𝑣𝑤 outperforms the global model at an increasing proportion of locations while still faring well

against the local model baseline.

4.5.2.3 Ablation Study

Throughout most experiments, we employed GCNs with non-linear activation functions. However,

in the case of 𝐶𝑜𝑛𝑣𝑥 and 𝐶𝑜𝑛𝑣𝑥𝑤 this non-linear activation function in the convolution applied to

inputs will make the final prediction a non-linear function of the inputs. To demonstrate that the

performance gain from applying convolution to inputs is due to the utilization of additional spatial

information and not primarily because the predictions are a non-linear function of the inputs, we

compare the predictive performance of convolution on inputs with linear and non-linear activation

functions. Results on the GHCN tasks with 33% of data used as training are shown in Table 4.4.

We find that the difference in R-squared between the best performing linear and non-linear model

differ by at most 0.02, which indicates that the benefits provided by performing convolution on

inputs do not depend solely on non-linearity of the convolution.

4.5.2.4 Embedding Visualization

𝐶𝑜𝑛𝑣𝑤 learns a separate embedding vector for each location. At first glance, one may expect that

the location embedding vectors z𝑙 should exhibit spatial autocorrelation. Alternatively, it may be

the case that spatial auto-correlation does not exist in the location embeddings but instead results

from the repeated application of graph convolution, in which case we would expect to find spatial

auto-correlation in the convolved linear regression weights w𝑙 instead. To verify this, in Figure 4.4,
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(a) Convolved weights of 𝐶𝑜𝑛𝑣𝑤
and geographic distance

(b) Local linear regression weights
and geographic distance

(c) Location embeddings of
𝐶𝑜𝑛𝑣𝑤 and geographic distance

Figure 4.4: Relationship between location embeddings, regression weights, and geographic dis-
tance.

TMin TMax Prcp
Convolved Weights 0.277 0.431 0.082
Local Linear Weights 0.147 0.322 0.090
Local Embeddings 0.038 0.059 -0.001

Table 4.5: Correlation between regression weights and local embeddings with geographic distance.

we plot the 2-d heatmaps that show the relationship between pairwise geographic distance and two

other quantities: Euclidean distance of the location embeddings and Euclidean distance of their

convolved linear weights, for the maximum temperature GHCN data. We plot this relationship

only for pairs of stations whose geographic distance is less than 5000 kilometers because beyond

this threshold the relationship between geographic distance and the other distances is reduced.

Figure 4.4c shows that there is little relationship between the location embedding distance and

geographic distance. In contrast, the convolved linear weights w𝑙 derived by 𝐶𝑜𝑛𝑣𝑤 have a much

stronger relationship with geographic distance (see Figure 4.4a). This can be further verified by

computing the Pearson correlation between each of these values and geographic distance as shown

in Table 4.5. We see that models trained to predict maximum or minimum temperature exhibit a

stronger relationship between geographic distance and the convolved linear weights than they do

with local linear regression weights or location embeddings. The result suggests that the location

embeddings themselves do not capture the spatial autocorrelation; instead, the GCN is responsible

for deriving spatialy autocorrelated convolved linear weights from uncorrelated embeddings.
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4.5.2.5 Discussion

By comparing the performance of the different forms of convolution across these three datasets

we can validate our advice about which scenarios favor which form of convolution. To this end,

we visualize the performance of the predictive models when different amounts of training data is

available in Figure 4.5. Figure 4.5a shows that when there is an abundance of training data, a

local model outperforms the global model on the maximum temperature prediction task, but when

training data is limited, the local model is outperformed by the global model. This suggests that a

more data efficient model may be able to outperform both the global and local linear models when

training data is limited. Since the local linear regression parameters are spatially autocorrelated (see

Figure 4.4b), convolution on model parameters is a natural way to improve predictive performance

when data is limited. We also see that when there is sufficient data, 𝐶𝑜𝑛𝑣𝑥 achieves strong

performance on the GHCN maximum temperature prediction task. This is not surprising since

climate data tends to be noisy and spatially auto-correlated. Combining convolution on inputs

and convolution on parameters improves the data efficiency of 𝐶𝑜𝑛𝑣𝑥 so that 𝐶𝑜𝑛𝑣𝑥𝑤 outperforms

𝐶𝑜𝑛𝑣𝑥 especially when data is limited.

In Figure 4.5b and Figure 4.5c we show how the predictive models perform with varying

amounts of training data on the IGRA and GSOD wind speed prediction tasks respectively. Unlike

GHCN, the performance difference between a local linear model and a global linear model is quite

small even when training data is around 33%. This suggests that it will be difficult for the local

model to outperform the global model when training data is limited (≪ 33%). This explains why

𝐶𝑜𝑛𝑣𝑤 performs so similarly to the local linear and global linear models on the IGRA and GSOD

prediction tasks. The performance improvements achieved by convolution on inputs on the IGRA

and GSOD datasets is even greater than the performance improvements provided by convolution

on inputs on the GHCN tasks, which is likely due to future weather being driven by large-scale

weather patterns in addition to small-scale patterns.
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(a) GHCN Max Temperature (b) IGRA Wind Speed

(c) GSOD Wind Speed

Figure 4.5: Performance comparison between convolutional and baseline methods on the real-world
datasets.

4.6 Conclusion

In this chapter we explored the application of convolutional methods to geospatial prediction

problems. We distinguished between the conventional practice of using convolution to model

relationships among predictor variables and our proposed technique for using convolution to model

relationships between model parameters. We provide guidance on situations when different varieties

of convolution can be effectively applied and validate them on several synthetic and real-world

datasets.
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CHAPTER 5

A DEEP LEARNING APPROACH FOR MODELING GEOSPATIO-TEMPORAL
EXTREME EVENTS

5.1 Introduction1

Extreme geospatio-temporal events such as flooding, heat waves, and droughts are destructive

natural forces with the potential to cause devastating losses in property and human lives. According

to NOAA’s National Center for Environmental Information, as of July 2021, there were 8 billion

dollar weather/climate disaster events in 2021 alone, incurring close to $30 billion in total losses.

Given the severity of their impact, accurate modeling of extreme events are therefore critical to

provide timely information to the public threatened by such hazards and to minimize the risk for

human casualties and property destruction.

Numerous methods have been developed in the past for modeling extremes. This includes outlier

detection methods [10, 17, 18, 19], where the goal is not to predict future extreme events but to detect

them retrospectively from observation data after they have occurred. Statistical approaches based

on extreme value theory [48, 49, 67] are also commonly used to infer the statistical distribution of the

extreme values. Another approach is to cast the prediction of extreme events as a supervised learning

problem [56, 71], which is the approach used in this chapter. Specifically, we are interested to predict

the conditional distribution of excesses over a threshold (e.g., monthly precipitation or temperature

that exceeds their 95th percentile) at various spatial locations. However, predicting the conditional

distribution of such excesses is a challenging problem due to their rare frequency of occurrence.

In addition, the predictive model must consider the complex spatial relationships between events

at multiple locations. Identifying such complex and potentially nonlinear interactions among the

predictors is a challenge that must be addressed.

1This chapter is adapted from a previously published paper: Tyler Wilson, Pang-Ning Tan, Lifeng Luo,
Asadullah Galib. "DeepGPD: A Deep Learning Approach for Modeling Geospatio-Temporal Extreme Events".
To appear in Proceedings of 36th AAAI Conference on Artificial Intelligence (AAAI-2022), Vancouver, Canada
(2022).
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In recent years, there have been growing interests in developing deep learning algorithms to

address various spatio-temporal modeling problems [66, 80, 101]. For spatial data, one emerging

technique that can effectively handle spatial relationships in the data is convolutional neural network

(CNN). CNN initially found its application in computer vision tasks, but has since been successfully

applied to a wider range of problems, including climate downscaling [94], precipitation nowcasting

[80] and hail prediction [29]. However, despite their growing body of literature, there has been

scant research on spatio-temporal deep learning for modeling extreme events.

Non-parametric deep learning methods are generally ineffective to infer the distribution of

extreme events unless there are sufficiently long, historical observation data available. When trained

for regression problems, deep learning models are generally trained to predict the conditional mean

of a distribution using the mean squared error loss, and thus, fail to capture the tail of the distribution.

Extreme events are governed by two parametric distributions [22]: the distribution of block maxima

is governed by the generalized extreme value distribution (GEV) and the distribution of excesses

over a threshold are governed by the generalized Pareto distribution (GPD).

In this chapter, we propose a novel framework that combines extreme value theory (EVT) with

deep learning. Specifically, our framework leverages the strengths of deep learning in modeling

complex relationships in geospatio-temporal data as well as the ability of GPD to capture the

distribution of excess values with limited observations. However, integrating a deep neural network

(DNN) with EVT is a challenge as the loss function minimized by the DNN must be modified to

maximize the likelihood function of the GPD. Another computational challenge is that the sufficient

statistics of GPD must satisfy certain positivity constraints unlike the output of DNN, which are

typically unconstrained. Furthermore, the distribution of extreme values are often temporally

correlated. For example, Figure 5.1 shows the relationship between the shape parameter 𝜉 of

the GPD distribution for precipitation excesses from one year to the next based on 45-year data

from more than 1000 stations considered in our study. This poses a challenge from a modeling

perspective as the number of excesses above a threshold tends to vary from one time step to the

next. Developing a deep learning approach that can incorporate such variable number of excess
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Figure 5.1: Relationship between shape parameter 𝜉 of generalized Pareto distribution for modeling
precipitation excesses in two successive time windows.

values as predictors, in addition to other fixed length vectors, is another challenge to be addressed.

The major contributions of this chapter are as follows:

1. We propose a deep learning framework to model the distribution of extreme events. The

framework combines CNN with deep sets [111] for modeling geo-spatial relationships among

predictors that include fixed-length vectors and variable-sized sets.

2. We propose a re-parameterization method for constraining the outputs of the DNN so that

they satisfy the requisite constraints and present an algorithm that learns the GPD parameters

in an end-to-end fashion.

3. We evaluate our proposed framework on a real world climate dataset and demonstrate its

effectiveness in comparison to conventional EVT and deep learning approaches.

5.2 Related Work

Convolutional neural networks [53] have gained considerable attention over the last several years

due to its success in artificial intelligence applications. The strength of CNN lies in its ability

to model spatial relationships. For example, CNN has been successfully used to model spatial

relationships in geographic applications [46, 57, 68, 82, 94, 113]. A similar intuition motivates the

application of CNN to model temporal autocorrelations in time series data. For example, Bai et al.

[5] provided empirical evidence that a properly designed convolutional architecture can outperform

recurrent neural networks.
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More recently, there have been concerted efforts to model both spatial and temporal relationships

jointly using CNN. For example, [90], [93], and [43] use 3d convolution to model the spatial and

temporal relationships within the layers of their network. Instead of applying convolution to model

temporal relationships, some research uses recurrent layers to model temporal relationships [27].

For example, Shi et al. [80] replaces every instance of matrix multiplication in an LSTM with

2d convolution and then feeds the data to the LSTM at each time step. However, none of these

approaches are designed for modeling extreme values.

Statistical approaches based on extreme value theory (EVT) [48, 49, 67] are commonly used

to infer the distribution of extreme values. Several recent papers have combined deep learning

with EVT but often only as a post-processing step. For example,[103] fit a GPD to the residuals

of a neural network to help detect cyber risks. Similarly, Yu et al. [109] identify samples with

unknown classes at test time using the Weibull distribution. Weng et al. [100] utilize EVT to derive

a neural network robustness metric called CLEVER. In none of these cases are deep learning and

EVT integrated together within a single end-to-end learning framework. Instead, EVT is used as a

post-processing step to identify unusual samples or as a robustness score of the network. In contrast

we integrate EVT directly into our deep learning formulation to predict the GPD parameters and

training it in an end-to-end fashion. Ding et al. [26] do integrate EVT into the loss function but

in an ad-hoc way, where the CDF of the GPD is used to assign weights on extreme samples whose

prediction is framed as a binary classification problem. Rather than learning the parameters of

GPD, they instead treated them as user-provided hyper-parameters.

5.3 Preliminaries

Let D =

{
(𝑋𝑖𝑙 , 𝑌𝑖𝑙)

���� 𝑖 ∈ {1, · · · , 𝑛}; 𝑙 ∈ {1, · · · , 𝐿}
}

be a geospatio-temporal dataset, where 𝑋𝑖𝑙

denote the predictor attribute values for the time window (𝑡𝑖−1, 𝑡𝑖] in location 𝑙 and 𝑌𝑖𝑙 denote the

corresponding target (response) values for the time window (𝑡𝑖, 𝑡𝑖+1]. Since we are interested in

predicting the excesses above a threshold in the next time window, the target variable corresponds to

the set of excess values at location 𝑙 during the period (𝑡𝑖, 𝑡𝑖+1], i.e.,𝑌𝑖𝑙 = {𝑦𝑡𝑙 | 𝑦𝑡𝑙 ≥ 𝑢, 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1]}.
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In addition, the predictors can be divided into two groups, 𝑋𝑖𝑙 ≡ (𝑋𝑣
𝑖𝑙
, 𝑋 𝑠

𝑖𝑙
), where 𝑋𝑣

𝑖𝑙
∈ R𝑑 is a fixed

length vector and 𝑋 𝑠
𝑖𝑙
∈ R𝑝𝑖 is a variable length vector corresponding to the set of excess values in

the previous window, i.e., 𝑋 𝑠
𝑖𝑙
= {𝑦𝑡𝑙 | 𝑦𝑡𝑙 ≥ 𝑢, 𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖]}. Note that the number of excess values

can vary, e.g., one window may have 10 excess values while the previous window has only 5 excess

values. The collections of excess values associated with the current and next time windows form

the sets 𝑋 𝑠
𝑖𝑙

and 𝑌𝑖𝑙 , respectively. Our goal is to estimate the conditional distribution 𝑃(𝑌𝑖𝑙, 𝑗 |𝑋𝑖𝑙) for

all the locations 𝑙 and all windows 𝑖conditioned on the predictors observed in the current window,

where 𝑌𝑖𝑙, 𝑗 is an element of the set 𝑌𝑖𝑙 .

5.3.1 Extreme Value Theory

This chapter focuses primarily on the use of generalized Pareto distribution (GPD) for modeling the

distribution of excesses above a given threshold. For example, in precipitation prediction, one may

be interested in modeling the distribution of high precipitation values above a certain threshold.

Let𝑌1, 𝑌2, · · · be a sequence of independent and identically distributed random variables. Given

an excess value 𝑌 = 𝑢 + 𝑦, where 𝑢 is some pre-defined threshold, the conditional probability of

observing the excess event is:

𝑃(𝑌 − 𝑢 ≤ 𝑦 | 𝑌 > 𝑢) =


1 −

[
1 + 𝜉𝑦

𝜎

]−1/𝜉
, 𝜉 ≠ 0

1 − 𝑒−𝑦, 𝜉 = 0

Furthermore, its density function is given by:

𝑃(𝑦) =


1
𝜎

[
1 + 𝜉𝑦

𝜎

]− 1
𝜉
−1
, 𝜉 ≠ 0

1
𝜎
𝑒−

𝑦

𝜎 𝜉 = 0
(5.1)

subject to the constraint ∀𝑦 : 1+ 𝜉𝑦

𝜎
> 0. The GPD has two parameters, shape, 𝜉, and scale, 𝜎. The

shape parameter has a significant impact on the overall structure of the probability density. When

𝜉 is negative, the support of the distribution is finite such that 0 < 𝑦 < −𝜎
𝜉

due to the constraint.

When 𝜉 is zero or positive, its support ranges from 0 to positive infinity.
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The advantage of using the GPD to model extreme values is its generality as one does not have to

know the underlying distribution of the random variable prior to thresholding since the distribution

of excesses will be governed by the GPD in relatively general conditions. In many cases, the values

of 𝜉 and 𝜎 may depend on some contextual features as predictors 𝑥. Assuming a linear relationship

between 𝜉 and 𝑥 and between log(𝜎) and 𝑥 (the log linear relationship is used to guarantee that the

estimate of 𝜎 is non-negative):

𝜉 = 𝑓𝜉 (𝑥) = 𝑤𝑇1𝑥, log(𝜎) = 𝑓𝜎 (𝑥) = 𝑤𝑇2𝑥 (5.2)

where 𝑤1 and 𝑤2 are the model parameters, which can be learned by minimizing the negative

log-likelihood of the GPD.

One important consideration when modeling data using a GPD is the choice of threshold 𝑢 since

the threshold must be set high enough for the GPD to be applicable. A common way to evaluate

the suitability of a given threshold is by examining the mean residual life plot. If a collection of

samples were drawn from a GPD then the empirical distribution of the excesses should have a linear

relationship with selected threshold. Specifically, we have:

𝐸 (𝑌 − 𝑢 |𝑌 > 𝑢) = 𝜎0 + 𝜉𝑢
1 − 𝜉 (5.3)

for threshold 𝑢, and 𝑌 ∼ 𝐺𝑃𝐷 (𝜉, 𝜎0). In the experiment section, we will verify our choice of

threshold by examining the mean residual life plot for our precipitation data.

5.3.2 Deep Set

Our framework must be able to handle variable size set of excess values as input predictor, 𝑥𝑠
𝑖𝑙
. To

accommodate this, we employ a deep set architecture [111] to transform the variable-length input

into fixed size vector. The transformation consists of the following two stages. The first stage

is responsible for transforming each element of the set, 𝑥𝑠
𝑖𝑙, 𝑗

, from its raw representation into a

high-level vector representation, ℎ𝑖𝑙, 𝑗 by using a fully connected network, 𝜙. These element-wise

representations are then aggregated to obtain a fixed-length vector representation for the set. This
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Figure 5.2: Proposed DeepGPD framework.

set-level representation is then used as input to a fully connected network, 𝜌, to produce the final

output representation, 𝑧𝑠
𝑖𝑙
= 𝜌

[ ∑
𝑗 𝜙(𝑥𝑠𝑖𝑙, 𝑗 )

]
5.4 Proposed DeepGPD Framework

Figure 5.2 shows the architecture of our DeepGPD framework, which has the following three major

components:

1. Local Feature Extraction - This component is responsible for transforming both the (fixed-

length) vector-valued, 𝑥𝑣
𝑖𝑙
, and (variable-length) set-valued predictors, 𝑥𝑠

𝑖𝑙
, at each location

into a fixed-length feature vector.

2. Spatial Feature Extraction - This component models the spatial relationships among the

predictors in the data.

3. Extreme Value Modeling (EVM) - This component is responsible for ensuring that the

constraints on the GPD parameters are satisfied by the induced model.

5.4.1 Local Feature Extraction

This component is responsible for learning a representation of the predictors associated with

each location 𝑙 by utilizing both the set-valued predictors 𝑥𝑠
𝑖𝑙

and the vector-valued predictors 𝑥𝑣
𝑖𝑙
.

Learning a representation of the predictors is challenging for two reasons. First, because the set-

valued predictors are variable length we must transform them into a fixed length vector so that it
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can be used by the later stages of the model. Second, the set-valued predictors may not always be

available for some locations.

To address the first challenge, we employ the deep set architecture described in subsection 5.3.2

to transform the set-valued predictors into a fixed-length vector, 𝑧𝑠
𝑖𝑙
.

For the second challenge, there may be some cases where a given grid cell lacks set-valued

predictors, 𝑥𝑠
𝑖𝑙
. In these cases we set 𝑧𝑠

𝑖𝑙
= 0. However, zeroing the inputs in this way risks the

possibility that predictions at locations without set predictors will be distorted. To address this,

an indicator variable, 𝐼𝑖𝑙 is introduced to indicate whether set-valued predictors are available at

a given location and time. This indicator variable is then concatenated with the vector-valued

predictors and the deep set representation of the set-valued predictors to generate the following

vector: 𝑧𝑖𝑙 = 𝑧𝑠𝑖𝑙 ∥ 𝐼𝑖𝑙 ∥ 𝑥
𝑣
𝑖𝑙
, where ∥ denotes the concatenation operator.

Our deep set implementation assumes there is a maximum set size. Sets that are smaller than

this maximum size are padded with dummy values of zero so that each set can be represented by

a fixed length vector. Each dummy element is processed in the same way as the real set elements.

After each set element is processed by several fully connected layers, only the representations of

the actual set elements (i.e. dummy elements excluded) are averaged together. This is implemented

through the use of a masking array multiplied by the set member representations element-wise.

5.4.2 Spatial Feature Extraction

After extracting a separate representation for each location, we need to model the spatial rela-

tionships between the representations at different locations. DeepGPD uses a CNN to capture the

geospatial relationships in the data. In our architecture, we arrange the representation extracted

from all the gridded locations into a 3-dimensional tensor (excluding the batch dimension) and then

provide the tensor as input to a CNN with residual layers [38]. The final linear layer of the CNN

produces a response map for each location, 𝑘𝑖𝑙 ∈ R2, for the prediction time window (𝑡𝑖, 𝑡𝑖+1].

65



5.4.3 Extreme Value Modeling (EVM)

The EVM component is designed to predict the conditional distribution of excess values by utilizing

the response map generated by the CNN. Specifically, it will convert the CNN output for each

location and time window (𝑡𝑖, 𝑡𝑖+1] to the generalized Pareto model parameters, 𝜉𝑖𝑙 and 𝜎𝑖𝑙 . These

parameters enable us to infer various statistics about the excess values in the predicted time window,

such as the expected values at varying quantiles (including maximum and median value) as well as

their return level.

Unlike previous work such as [26], which assumes that 𝜉 and 𝜎 are hyperparameters provided

by users, DeepGPD enables both parameters to be automatically learned from the data. Specifically,

the deep architecture is trained to minimize the following negative log-likelihood function of the

excess values in the next time step:

L({𝜉𝑖𝑙 , 𝜎𝑖𝑙}) =
∑︁
𝑖,𝑙, 𝑗

[
log𝜎𝑖𝑙 + (1 + 1

𝜉𝑖𝑙
) log(1 + 𝜉𝑖𝑙

𝑦𝑖𝑙 𝑗

𝜎𝑖𝑙
)
]

(5.4)

One major computational challenge in estimating the GPD parameters using a deep learning

architecture is the need to enforce positivity constraints on the solution of (5.4) during training.

To address this challenge, DeepGPD employs a re-parameterization trick to transform (𝜉𝑖𝑙 , 𝜎𝑖𝑙) into

a pair of unconstrained variables 𝑘𝑖𝑙 = (𝑘 (1)
𝑖𝑙
, 𝑘

(2)
𝑖𝑙

) that can be learned by the convolutional neural

network.

Theorem 1. Let {𝜉∗
𝑖𝑙
, 𝜎∗

𝑖𝑙
} = argmin L({𝜉𝑖𝑙 , 𝜎𝑖𝑙}) subject to the following positivity constraints:

∀𝑖, 𝑗 , 𝑙 : 𝜎𝑖𝑙 > 0 and 1 + 𝜉𝑖𝑙
𝑦𝑖𝑙 𝑗

𝜎𝑖𝑙
> 0

By re-parameterizing (𝜉𝑖𝑙 , 𝜎𝑖𝑙) ↦→ (𝑘 (1)
𝑖𝑙
, 𝑘

(2)
𝑖𝑙

) as follows:

𝜎𝑖𝑙 = exp (𝑘 (1)
𝑖𝑙

)

𝜉𝑖𝑙 = exp (𝑘 (2)
𝑖𝑙

) −
exp (𝑘 (1)

𝑖𝑙
)

𝑀𝑖𝑙

(5.5)
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Figure 5.3: Fitted p-Value distribution of K-S test.

and solving for {𝑘̂ (1)
𝑖𝑙
, 𝑘̂

(2)
𝑖𝑙

} = argmin L̂({𝑢𝑖𝑙 , 𝑣𝑖𝑙}), where

L̂({𝑢𝑖𝑙 , 𝑣𝑖𝑙}) =
∑︁
𝑖𝑙 𝑗

[
𝑢𝑖𝑙 +

(
1 + 𝑀𝑖𝑙

𝑀𝑖𝑙𝑒
𝑣𝑖𝑙 − 𝑒𝑢𝑖𝑙

)
× log

(
1 + 𝑒𝑣𝑖𝑙

𝑦𝑖𝑙 𝑗

𝑒𝑢𝑖𝑙
−
𝑦𝑖𝑙 𝑗

𝑀𝑖𝑙

)]
(5.6)

and 𝑀𝑖𝑙 = max 𝑗 𝑌𝑖𝑙 𝑗 , then the solution set {𝜉∗
𝑖𝑙
, 𝜎∗

𝑖𝑙
} can be derived from the solution for {𝑘̂ (1)

𝑖𝑙
, 𝑘̂

(1)
𝑖𝑙

}

by applying the mapping given in Equation (5.5).

The proof for the preceding theorem can be shown by substituting (5.5) into (5.4), which yields

the equivalent objective function for L̂({𝑘 (1)
𝑖𝑙
, 𝑘

(2)
𝑖𝑙

}). Furthermore, since Equation (5.4) can be

re-written as follows:

𝜎𝑖𝑙 = 𝑒𝑘
(1)
𝑖𝑙 ≥ 0

1 + 𝜉𝑖𝑙
𝑦𝑖𝑙 𝑗

𝜎𝑖𝑙
= 1 −

𝑦𝑖𝑙 𝑗

𝑀𝑖𝑙

+ 𝑒𝑘
(2)
𝑖𝑙

𝑦𝑖𝑙 𝑗

𝑒𝑘
(1)
𝑖𝑙

≥ 0

the positivity constraints are automatically satisfied given the fact that ∀𝑖, 𝑙, 𝑗 : 𝑦𝑖𝑙 𝑗 ≤ 𝑀𝑖𝑙 , 𝑒𝑘
(1)
𝑖𝑙 > 0

and 𝑒𝑘
(2)
𝑖𝑙 > 0 as long as 𝑘 (1)

𝑖𝑙
and 𝑘 (2)

𝑖𝑙
are not equal to −∞.

Corollary 1. The DeepGPD framework trained to optimize the loss function in Equation (5.6) will

generate the maximum likelihood solution for {𝜉∗
𝑖𝑙
, 𝜎∗

𝑖𝑙
} in Equation (5.4) given the one-to-one

mapping with {𝑘̂ (1)
𝑖𝑙
, 𝑘̂

(2)
𝑖𝑙

} in Equation (5.5).

The preceding corollary demonstrates the advantages of using our re-parameterization trick

to train DeepGPD as the values of 𝑘̂ (1)
𝑖𝑙

and 𝑘̂ (2)
𝑖𝑙

are less constrained compared to {𝜉∗
𝑖𝑙

and 𝜎∗
𝑖𝑙
}.
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(a) Excess mean for random samples of locations
and time windows. Colors represent different
samples.

(b) Excess mean for all locations and time win-
dows.

Figure 5.4: Mean residual life plot for excess precipitation.

This enables the parameters to be more easily learned by DeepGPD. All three components of the

framework, including deep set and CNN, are trained in an end-to-end fashion using Adam [50].

Once the parameters for 𝑘̂ (1)
𝑖𝑙

and 𝑘̂
(2)
𝑖𝑙

are obtained, we can apply Equation (5.5) to derive the

corresponding GPD parameters.

5.5 Experimental Results

We evaluate our proposed framework on a 44-year global precipitation data from 1970 to 2013.

Specifically, we use daily precipitation values collected from the Global Historical Climatology

Network2 (GHCN) for 1,112 stations located in the Northern Hemisphere (between 22.5◦N to

67.5◦N) as our target variable. The data is partitioned into 45 non-overlapping one-year time

windows. Excess daily precipitation values are considered as any value exceeding one standard

deviation above the mean for the station. For predictor variables, we consider the excess values in

the previous year as set-valued attributes and the mean and standard deviation of monthly climate

values (e.g., convective precipitation rate, solar radiation flux, relative humidity, and sea level

pressure) from the NCEP re-analysis project3 as fixed-length vector-valued attributes.

Our objective is to predict the conditional distribution of the excess precipitation values for

2https://www.ncdc.noaa.gov/ghcn-daily-description
3https://www.ncep.noaa.gov/
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Method NLL 𝜌(𝜉) 𝜌(𝜎)
Persistence 0.6271 ± 0.0092 0.40 0.77
Linear Regression 0.6514 ± 0.0114 0.49 0.80
ViT Regression 0.6372 ± 0.0088 0.56 0.87
CNN Regression 0.6332± 0.0102 0.41 0.75
Linear GPD 0.6101 ± 0.0035 0.38 0.57
DeepGPD 0.5688 ± 0.0036 0.57 0.85

Table 5.1: Comparison between DeepGPD against baseline methods in terms of negative log-
likelihood (NLL) and correlation (𝜌) of predicted 𝜉 and 𝜎 to ground truth values.

next year based on the observed excess values and statistics of the NCEP climate variables for the

current year. The precipitation data at each location is de-seasonalized separately using its own

monthly means and standard deviations. Each 1 year window of predictor and target values are

assigned to either training, validation or test sets, with 34 windows in training, 5 in validation and

4 in test. We repeat our experiment 10 times with different train-validation-test splits.

To verify that the excess values follow the GPD, we perform the Kolmogorov-Smirnov goodness

of fit test. The KS-test is a non-parametric approach to determine whether a given set of samples

is drawn from a given distribution. To do this, we first infer values of the GPD statistics, 𝜉 and

𝜎, from the excess values observed at each location and time window using SciPy genpareto class

and then apply the KS-test to assess whether the excess values were indeed drawn from the inferred

distribution. We observe that the average p-value over all the locations and time windows is 0.60,

which suggests that the inferred distributions accurately fit the data. The distribution of the fitted

p-values is shown in Figure 5.3.

Next we evaluate our choice of excess threshold. Equation 5.3 shows a linear relationship

between the choice of threshold and the mean value of the excesses. We empirically verify this

linear relationship by plotting the chosen threshold against the mean of excesses in Figure 5.4. The

resulting diagram is also known as the mean residual life plot. Ordinarily, the mean residual life

plot is used to evaluate the choice of threshold for a single GPD distribution. However, in our case,

each window and location has its own GPD distribution. Thus we must evaluate our choice of

threshold for this entire family of excess distributions.
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Method Negative log-likelihood
DeepGPD with GHCN only 0.5706 ± 0.0035
DeepGPD with NCEP only 0.5670 ± 0.0040
DeepGPD 0.5688 ± 0.0036

Table 5.2: Results of ablation study.

In Figure 5.4a, we plot a random selection of mean residual life plots at different locations and

windows and we find that the relationship between thresholds and the mean residual is approximately

linear when the threshold is around 1. In addition, Figure 5.4b shows the average excess mean across

all time windows and locations at any given threshold level with shading representing 1 standard

deviation in each direction. In the vicinity of 1, the average excess mean across all distributions

varies linearly with the choice of threshold and the relatively narrow shade suggests this behavior is

shared across most distributions. Notice that the slope of both plots is negative around thresholds

of 1 which, based on Equation 5.3, indicates that 𝜉 is negative-valued. Because the relationship

between chosen threshold and the empirical mean of the excesses is approximately linear around

1, this justifies our choice of using 1 standard deviation as our excess threshold.

We compare DeepGPD against the following baselines. Similar to DeepGPD, each baseline

generates the GPD parameters of a location for the next time window as its output. (1) Persistence

- A GPD is fitted to the excess values in the current window and used to predict the next window.

(2) Linear Regression - A linear regression model is trained to predict the GPD parameters (𝜉𝑖𝑙 and

𝜎𝑖𝑙) for each location using the NCEP climate variables as well as the fitted GP parameters from

previous window as its predictors. (3) ViT Regression - This baseline uses the Vision Transformer

architecture [28] to predict the GPD parameters and is trained using mean squared error loss. To

accommodate our pixel-wise regression problem setting we remove the class token embeddings

and set the final MLP to output 2 scalars for each pixel in each patch corresponding to the 2 GPD

parameters. (4) CNN Regression - This baseline uses the same architecture (including deep set

and CNN) and predictors as DeepGPD except it replaces the maximum likelihood loss with a mean

square error loss on the GPD parameters, similar to the linear regression baseline. This is similar

to the architecture proposed in [38] but consists only of residual layers and a final linear layer
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(a) correlation = 0.33 (b) correlation = 0.26.

(c) correlation = 0.01 (d) correlation = -0.25

Figure 5.5: Relationship between predictive improvements over baselines and true 𝜉.

while omitting the pooling and fully connected layers because it performs pixel-wise regression.

(5) Linear GPD [22] - This is a linear GPD model for predicting the GPD parameters using NCEP

and the GPD parameters from the previous window as its predictors (see Equation (5.2)).

5.5.1 Comparison against Baseline Methods

Table 5.1 compares the performance of DeepGPD against various baselines using negative log-

likelihood and correlation between the predicted and actual 𝜉 values as evaluation metrics. The

results in Table 5.1 suggest that, with one exception, DeepGPD significantly outperforms all the

baseline methods regardless of the metric chosen. The performance of CNN regression and linear

regression are poor relative to other baselines. Since both methods employ the mean-square error
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(a) window 0, true 𝜉 (b) window 0, DeepGPD 𝜉 (c) window 0, linear GPD 𝜉

(d) window 5, true 𝜉 (e) window 5, DeepGPD 𝜉 (f) window 5, linear GPD 𝜉

(g) window 10, true 𝜉 (h) window 10, DeepGPD 𝜉 (i) window 10, linear GPD 𝜉

Figure 5.6: Comparison between the spatial distribution of the true and predicted 𝜉 values for linear
GPD and DeepGPD.

(MSE) of the predicted GPD parameters as its loss function, this shows the importance of explicitly

incorporating extreme value theory and its corresponding negative log-likelihood loss to train the

model. The only baseline to compare favorably to the proposed method according to any metric is

ViT regression which achieves correlations with the ground truth 𝜉 and 𝜎 comparable to DeepGPD

due to being an extremely expressive model trained explicitly to predict the ground truth 𝜉 and 𝜎

values through MSE loss. However, because it doesn’t incorporate NLK into its loss in practice it

makes poor predictions of the distribution of observed excesses. The relatively strong performance

of the persistence method suggests the importance of using information about the excess values in

the previous time window to predict their distribution in the next window.

The linear GPD model employs the same loss function (i.e., MLE) as DeepGPD except it uses

a linear layer, as opposed to non-linear model, to learn the mapping from the predictors to the

GPD parameters. This has two additional implications. First, linear GPD is unable to directly

incorporate the set-valued predictors of the GHCN; therefore they can only use the inferred GPD
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statistics from previous window as one of its predictors. Furthermore, existing linear GPD approach

also does not incorporate spatial information since it does not include a spatial component such as

CNN. As a result, the proposed DeepGPD method outperforms linear GPD by a significantly large

margin, demonstrating the importance of non-linearity and incorporating spatial relationship into

the modeling task. Nevertheless, the linear GPD still outperforms other baselines, suggesting the

value of incorporating GPD into the learning formulation.

Table 5.2 compares our full model against variations that utilize only the vector-valued (NCEP

only) or the set-valued predictors (GHCN only). The results show that all three methods achieve

comparable performance with significant overlap in their confidence intervals. This suggests that

there exists large amount of redundant information between both types of predictors. Although our

model can effectively utilize the set-valued or vector-valued predictors, leveraging them together

does not appear to improve the model.

5.5.2 Distribution of Estimated GPD Parameters

The previous subsection compares the overall performance of DeepGPD against the various baseline

methods in terms of their negative log-likelihood and correlation with the ground truth GPD shape

parameter values. Table 5.1 indeed shows that the proposed method significantly outperforms the

baseline methods but this raises the question of the reason for its performance improvement. Since

the results in Table 5.1 are based on an aggregation over multiple time windows and locations, we

need to analyze the relative performance of the various baseline methods compared to DeepGPD at

a finer level. To do this, we first compute the difference between the negative log-likelihood (NLL)

of each baseline against the proposed method for each location and time window. If the difference

is positive, this suggests that the NLL value of the baseline is worse (i.e., higher) than the NLL of

DeepGPD. Figure 5.5 displays the relationship between the NLL difference of each baseline relative

to the proposed method and the true GPD shape parameter 𝜉. First, note that there is a positive

bias along the y-axis in the plots, which suggests that the performance improvement in DeepGPD

is observed for the majority of the locations and time windows of our data. In fact, DeepGPD
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outperforms the baselines in 58% to 89% of locations and windows. Second, in the case of linear

and CNN regression-based methods, observe that there is a positive correlation between the value

of 𝜉 and relatively stronger performance by the proposed method. This suggests that DeepGPD

performs best in situations where the tails of the distribution are heaviest. Since extreme events

are the ones most important to predict, the strong performance of DeepGPD in these scenarios is a

major point in its favor. This plot also illustrates that there are a considerable number of samples for

which the ViT Regression model makes much worse predictions than the proposed model. The plot

also suggests that linear GPD outperforms DeepGPD when the 𝜉 parameter is in the range between

-0.5 and 0. Nevertheless, there are still more data points with positive NLL difference for the same

range of 𝜉 values.

Next, we examine the spatial distribution of the predicted 𝜉 values and compare them to their

ground truth distribution. Since large values of 𝜉 are especially important we focus on them. In

Figure 5.6 we plot the predicted values of 𝜉 for three time windows with grid cells colored based

on their relationship to certain high thresholds. These thresholds range from 85th to 95th quantiles

calculated based on the ground truth data with 𝜉 values exceeding the 95th quantile of the ground

truth 𝜉 values colored black and everything below the 80th percentile colored white and any 𝜉 in

between colored gray. We produce separate plots for the ground truth, proposed method, and the

linear GPD baseline. Due to space limitations we only show the results for linear GPD because it

is best NLL performance among the baseline methods. These plots show that the proposed method

does well in predicting the general spatial distribution of the highest 𝜉 values by identifying which

locations have relatively high or low 𝜉 values. The worst predictions come from the linear GPD

baseline which struggles to capture the variability of the data with almost all locations visualized

as black or gray due to the large positive bias of the model as well as the low standard deviation of

its predictions.
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5.6 Conclusions

In this chapter we identified the limitations of existing deep learning methods in predicting the

distributions of extreme values. To address this limitation we proposed a novel deep learning ar-

chitecture capable of learning the parameters of the generalized Pareto distribution while satisfying

the conditions placed on those parameters. We evaluated our results on a real world climate data

set and showed that our proposed framework outperformed various baseline methods.
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CHAPTER 6

DEEP EXTREME MIXTURE MODEL FOR GEO-SPATIO-TEMPORAL DATA

6.1 Introduction 1

The prediction of extreme events encompasses many important applications including the prediction

of heat waves [79], equity risk [30], corrosion phenomena [78], and flooding [13]. There are many

ways to formalize the notion of an extreme event [21]. In this work, we will focus on extreme

events that correspond to values that exceed some fixed threshold. The previous chapter presents

a deep learning framework called DeepGPD for inferring the future distribution of extreme events

based on the historical incidence and other predictors. Such a prediction task is particularly useful

for long-term forecasting applications such as projecting the future climate change scenarios at

a location. Nevertheless, there are other applications that require accurate point estimate of the

forecasts at each time step to enable determination of the magnitude, timing, and frequency of the

extreme events. As shown in previous works [1, 65], regression methods designed to learn the

future distribution of data may not necessarily have low mean square prediction error in terms of

their point-wise estimation. A new deep learning formulation for geo-spatio-temporal applications

is therefore needed to enable accurate point-wise forecasts while preserving the properties of the

inferred distribution.

Attempting to simultaneously predict the distribution, timing, and frequency of extreme events

in addition to making accurate point predictions imposes three challenges. The first challenge is

that the statistical distributions used to model extreme events have natural constraints on their model

parameters. These constraints must be preserved to ensure its fidelity in terms of characterizing

the tail distribution of a random variable. Second, when modeling the predictive distribution of

a target variable, it is common to use the expected value (mean) of the distribution as its point

1This chapter is adapted from an unpublished paper: Tyler Wilson, Pang-Ning Tan, Lifeng Luo, Andrew
McDonald, Asadullah Galib. "DEMM: Deep Extreme Mixture Model".

76



estimate. However, this will require modeling the full distribution of the target variable, not just

its excesses over a threshold, which is the approach used in DeepGPD. Additionally, the mean of

the distribution that governs the extreme values is only well-defined if the model parameters satisfy

certain feasibility conditions. This imposes additional constraints on the optimizing algorithm for

learning the parameters. Finally, the prediction results may vary depending on the threshold used

to define the extreme events. In general, a prediction model trained on a specific threshold of excess

values may not necessarily perform well when applied to a different threshold. Since the true excess

threshold is often unknown, it is possible that users may want to vary the threshold when applying

the model. Thus, developing a robust model with the flexibility to alter the threshold that defines

extreme values at test time without requiring the model to be retrained will be valuable for users.

When predicting extreme values it is important to consider other features of the data as well.

For example, the geo-spatio-temporal data can be zero inflated as in precipitation prediction. A

typical way to model these zero inflated distributions is a hurdle model[24], which uses separate

random variables to model the distribution of zero and non-zero values. However, this approach

fails to account for extreme values. By incorporating extreme value theory into the model we hope

to develop a better specified model especially in applications where extreme values are particularly

important.

Developing a deep learning framework for predicting geo-spatio-temporal extreme events will

require addressing all of these challenges. In this chapter, we propose a framework called Deep

Extreme Mixture Model (DEMM) that fuses a deep learning based hurdle model with extreme value

theory (EVT) to predict the future values of a geo-spatio-temporal variable as well as the conditional

distribution of its extreme values. The core of the framework is a novel, deep-learning based

hurdle model. A typical hurdle model is a mixture model with two underlying components—one

component governing the strictly zero values while the other component governing the distribution

of its non-zero values. Instead, DEMM incorporates a third component that uses the generalized

Pareto distribution (GPD) to model the distribution of extreme values above a specified threshold.

The parameters of the hurdle model in DEMM are inferred using a 3-d convolutional neural network
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(CNN), which is capable of capturing both the spatial and temporal relationships within the data.

In summary, the contributions of this chapter are:

1. We propose a novel architecture capable of predicting the timing, frequency, and distribution

of geo-spatio-temporal extreme events while simultaneously making point predictions.

2. We propose a novel re-parameterization which ensures that the standard set of constraints on

the GPD are satisfied and that it has a well defined mean.

3. We propose a technique for allowing the user to dynamically alter their chosen extreme value

threshold at test time without retraining the model.

4. We demonstrate the effectiveness of the DEMM in predicting the timing and frequency of

extreme events on a real world precipitation data set.

The remainder of this chapter is organized as follows: First, in Section 6.2, we will describe

recent literature related to the use of neural networks to estimate the parameters of mixture models.

Section 6.3 introduces a formal statement of the prediction problem and provides a brief introduction

to extreme value theory and hurdle model. Section 6.4 describes the underlying components of

the proposed DEMM architecture. Section 6.5 presents the experimental results, followed by

concluding remarks in Section 6.6.

6.2 Related Work

This section reviews recent work using deep learning to infer the parameters of mixture models

including hurdle models and the distributions studied in extreme value theory. An early use of

neural networks to predict the parameters of a mixture distribution comes from Bishop [9] which

proposes "Mixture Density Networks" which combines neural networks with a gaussian mixture

model to represent what are in principal arbitrary conditional distributions. Though their model

is not trained to make point predictions they show how point estimates can be derived from their

conditional distributions. More recently, deep neural networks have been integrated with mixture

models for a wider range of purposes. Zong et al. [117] propose a deep gaussian mixture model
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for unsupervised anomaly detection. And Viroli and McLachlan [98] propose a deep gaussian

mixture model for clustering. Hurdle models were originally proposed by Cragg [24] and some

recent work has used deep neural networks to estimate the parameters of hurdle models. Kong et

al. [52] propose a deep hurdle network for multi-target regression. Vandal et al. [95] use a deep

neural network to estimate the parameters of a hurdle model using a log-normal distribution as its

second component. Additionally, they use monte-carlo dropout to account for uncertainty in model

parameters. In Bacry et al. [4] a multinomial based zero inflated model is proposed and applied to

medical data.

Previously, traditional statistical approaches have been used to infer the distribution of extreme

values [48, 49, 67]. However, these statistical approaches for incorporating extreme value theory

generally assume there is a relatively simple relationship between predictors and the generalized

Pareto statistical parameters. In addition, this previous work generally does not model the full

distribution of the data but instead only focuses on the distribution of extremes and generally does

not incorporate point prediction. The previous work combining deep learning with extreme value

theory does not generally tightly couple the two techniques. Instead, extreme value theory is used

as a post-processing step [100, 109] or utilized in a limited or ad hoc way [26]. To the best of our

knowledge, the previous DeepGPD framework described in Chapter 5 is the only work exploring

the use of deep learning to infer the parameters of distributions studied in extreme value theory.

6.3 Preliminaries

This section formalizes the problem statement and provides a brief introduction to extreme value

theory and the hurdle model, both of which are both integral to the proposed DEMM framework.

6.3.1 Problem Statement

Let D =

{
(𝑋𝑙𝑤, 𝑌𝑙𝑤)

���� 𝑤 ∈ {1, · · · , 𝑛}; 𝑙 ∈ {1, · · · , 𝐿}
}

be a geo-spatio-temporal dataset, where

𝑋𝑙𝑤 ∈ R𝑑×𝜏 denotes the sequence of 𝑑 predictors for a prediction window 𝑤 of width 𝜏 at location 𝑙

while𝑌𝑙𝑤 ∈ R denotes the scalar value of the target variable associated with the prediction window.
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The locations are assumed to be organized onto a spatial grid S while each prediction window 𝑤

is associated with a series of discrete time steps, [𝑡𝑤1 , 𝑡
𝑤
2 , · · · , 𝑡

𝑤
𝜏 ]. Thus, each 𝑋𝑙𝑤𝑖 ∈ R𝑑 represents

a vector of predictors at a particular location 𝑙 at time step 𝑡 (𝑤)
𝑖

while 𝑌𝑙𝑤 represents the observed

value at time 𝑡𝑤𝜏 . For brevity, let 𝑋:𝑤𝑖 ∈ R𝐿×𝑑 denote a gridded snapshot image of the predictors

across all spatial locations at time step 𝑡 (𝑤)
𝑖

∈ 𝑤 while 𝑋:𝑤 = ⟨𝑋:𝑤𝑖

���� 𝑖 ∈ {1, · · · , 𝜏}⟩ denotes a

sequence of such snapshots. Similarly, the gridded snapshot of the target variable at time step 𝑡 (𝑤)𝜏

will be denoted as 𝑌:𝑤. To determine whether the value of the target variable is an extreme value,

let 𝑈𝑙𝑤 be the excess value threshold at a given location 𝑙 and prediction window 𝑤. Specifically,

any samples above this threshold will be considered extreme values. The set of threshold values

for all locations in a given prediction window 𝑤 is denoted as 𝑈:𝑤. Note that in practice users will

likely assign 𝑈𝑙𝑤 a constant value at all prediction windows and possibly all locations but for full

generality we allow it to be defined separately at each prediction window and location.

6.3.2 Extreme Value Theory

There are two widely-used statistical distributions for modeling extremes—(1) the generalized

extreme value (GEV) distribution, which is used to model the distribution of block maxima, and

(2) the generalized Pareto distribution (GPD), which is used to model the distribution of excesses

above a given threshold. Since we are primarily interested in the distributions of excesses over

thresholds, this chapter will focus only on the generalized Pareto distribution.

A brief introduction to the GPD is given in Section 5.3.1. Recall that the density function of

GPD is given by

𝑃(𝑦) =


1
𝜎

[
1 + 𝜉𝑦

𝜎

]− 1
𝜉
−1
, 𝜉 ≠ 0

1
𝜎
𝑒−

𝑦

𝜎 𝜉 = 0
(6.1)

Observe that the distribution is characterized by two parameters: shape, 𝜉, and scale, 𝜎. Fur-

thermore, there are two key constraints that must be satisfied by the GPD parameters, namely, a

positivity constraint on its scale parameter 𝜎 and a more complex constraint involving the shape,
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scale, and samples from the distribution, i.e.:

GPD constraints: 𝜎 > 0 and ∀𝑦 : 1 + 𝜉𝑦
𝜎
> 0 (6.2)

Note that this second constraint is always satisfied when 𝜉 ≥ 0 since 𝑦 > 0. Another important

fact about the GPD distribution is that its expected value is given by 𝐸 [𝑌 ] = 𝜎
1−𝜉 when 𝜉 < 1 but

is undefined otherwise.

6.3.3 Hurdle Model

In some cases a random variable may have a large number of zeros. When modeling daily

precipitation, for instance, most days of zero rainfall. In these cases it may be helpful to use a

hurdle model separately model the probability that the variable is 0 and its probability distribution

when non-zero. The hurdle model is essentially a mixture model consisting of two components.

The first component has a constant value of 0 while the second component governs the distribution

of non-zero values. This can be represented formally as follows:

𝑃(𝑌 = 𝑦) =


𝑝 𝑦 = 0

(1 − 𝑝) × 𝑓𝑌 (𝑦) 𝑦 > 0

where 𝑌 is the random variable modeled by the hurdle model, 𝑝 is its probability of being 0 and 𝑓𝑌

is the probability density function of 𝑌 when its value is non-zero. Any valid probability density

function can be used as the second component of the hurdle model (i.e. 𝑓 ) as long as its integral

over 𝑦 from 0 to infinity is 1 since:∫ ∞

0
𝑃(𝑦)𝑑𝑦 =

∫ ∞

0

(
𝑝𝐼 [𝑦 = 0] + (1 − 𝑝) 𝑓𝑌 (𝑦)𝐼 [𝑦 ≠ 0]

)
𝑑𝑦

= 𝑝 + (1 − 𝑝)
∫ ∞

0
𝑓𝑌 (𝑦)𝐼 [𝑦 ≠ 0]𝑑𝑦

= 𝑝 + (1 − 𝑝)
∫ ∞

0
𝑓𝑌 (𝑦)𝑑𝑦

where 𝐼 [·] denotes the indicator function. Furthermore, since 𝑌 is assumed to be a continuous

random variable, the density function 𝑓𝑌 is zero at any given value of 𝑦, including 𝑦 = 0. Hence∫ ∞
0 𝑃(𝑦)𝑑𝑦 = 1 as long as

∫ ∞
0 𝑓𝑌 (𝑦)𝑑𝑦 = 1.
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Figure 6.1: An overview of the proposed DEMM architecture

6.4 Deep Extreme Mixture Model

The core of the Deep Extreme Mixture Model (DEMM) is a mixture model which governs the

conditional distribution of the target variable, 𝑌𝑙𝑤. Figure 6.1 presents a schematic illustration of

the DEMM architecture, which can be divided into three major components. The first component

is a 3-d convolutional neural network, which is responsible for modeling the spatio-temporal

relationships within the predictors in addition to inferring the impact of the choice of threshold

on the overall distribution. The second component is a constraint enforcement module, which is

responsible for transforming the output of the neural network, 𝑎𝑙𝑤, into a feasible set of mixture

model parameters, 𝜃𝑙𝑤. The third component corresponds to the mixture model itself. We will

introduce the mixture model at the heart of the DEMM first before describing the rest of the

components in detail.

6.4.1 Mixture Model

The DEMM is centered around estimating the parameters of a mixture model. This mixture model

is a combination of 3 probability functions, each of which is responsible for a different range of

values for the target variable. The three components of the mixture model combined have a total

of 6 parameters, which is unique for each window 𝑤 and location 𝑙.

Because the model is intended for use with zero inflated data, such as precipitation, it is based

82



on a hurdle model, extended to account for the modeling of extreme values. The first component

of the mixture model is a probability function that the target variable has the value of zero. Since

the variable of interest is assumed to be non-negative, this component corresponds to the lower

boundary of the distribution.

The second component governs the distribution of non-zero values below a certain threshold,

𝑈𝑙𝑤. For precipitation prediction, a truncated log-normal distribution with parameters 𝜇𝑙𝑤 and 𝑠𝑙𝑤

can be used, though the DEMM framework can accommodate other types of density functions. The

density function of a non-truncated log-normal distribution with parameters 𝜇𝑙𝑤 and 𝑠𝑙𝑤 is given

by:

𝑓1(𝑌𝑙𝑤; 𝜇𝑙𝑤, 𝑠𝑙𝑤) =
1

𝑌𝑙𝑤𝜎𝑙𝑤
√

2𝜋
exp− (log𝑌𝑙𝑤 − 𝜇𝑙𝑤)2

2𝜎2
𝑙𝑤

(6.3)

Let 𝐹̂1 be the cumulative distribution function (cdf) of 𝑓1. The truncated log-normal distribution

function can thus be expressed as follows:

𝑓1(𝑌𝑙𝑤) =
𝑓1(𝑌𝑙𝑤)

𝐹̂1(𝑈𝑙𝑤; 𝜇𝑙𝑤, 𝑠𝑙𝑤)
(6.4)

with the domain 0 < 𝑌𝑙𝑤 < 𝑈𝑙𝑤. Note that the subscript 1 here is used to denote the second

component of the mixture model.

Together, the first two components of the mixture model are quite similar to a hurdle model.

However, the choice of the second component of the hurdle model will have a significant impact

on how well the mixture model fits the empirical distribution. However, there is strong theoretical

motivation for choosing the generalized Pareto distribution for sufficiently large𝑈𝑙𝑤 [22]. Thus, the

generalized Pareto distribution can be used as the third component of the mixture model and it will

govern the distribution of excesses over a threshold. This ensures that the model is well specified

for large values of 𝑌𝑙𝑤 which exceed𝑈𝑙𝑤. With parameters 𝜉𝑙𝑤 and 𝜎𝑙𝑤 its density function is given

in Equation 6.1 and is denoted 𝑓2.

To ensure that its integral over the domain of 𝑌𝑙𝑤 is equal to 1, the last two components

underlying the mixture model must be rescaled. The lognormal component is rescaled by a factor

of (1 − 𝑝
(0)
𝑙𝑤
) × 𝑝

(1)
𝑙𝑤

, where 𝑝 (0)
𝑙𝑤

represents the probability that 𝑌𝑙𝑤 = 0 and 𝑝
(1)
𝑙𝑤

represents the
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probability it is non-zero and will not exceed the threshold. The GPD component must be rescaled

by a factor of (1 − 𝑝
(0)
𝑙𝑤
) × (1 − 𝑝

(1)
𝑙𝑤
). Thus, the full distribution of the mixture model used in

DEMM is:

𝑃(𝑌𝑙𝑤
��𝑋:𝑤;𝑈:𝑤; 𝜃𝑙𝑤) =



𝑝
(0)
𝑙𝑤

𝑌𝑙𝑤 = 0

(1 − 𝑝 (0)
𝑙𝑤
) × 𝑝 (1)

𝑙𝑤
× 𝑓1(𝑌𝑙𝑤; 𝜇𝑙𝑤, 𝑠𝑙𝑤) 0 < 𝑌𝑙𝑤 < 𝑈𝑙𝑤

(1 − 𝑝 (0)
𝑙𝑤
) × (1 − 𝑝 (1)

𝑙𝑤
) × 𝑓2(𝑌𝑙𝑤; 𝜉𝑙𝑤, 𝜎𝑙𝑤,𝑈𝑙𝑤) 𝑈𝑙𝑤 < 𝑌𝑙𝑤

Collectively, the parameters of the mixture model are denoted as the following 6-dimensional

vector:

𝜃𝑙𝑤 = (𝑝 (0)
𝑙𝑤
, 𝑝

(1)
𝑙𝑤
, 𝜇𝑙𝑤, 𝑠𝑙𝑤, 𝜉𝑙𝑤, 𝜎𝑙𝑤) (6.5)

The target variable is a sample from the conditional distribution defined by this mixture model.

Given the mixture model parameters, it is easy to compute the negative log likelihood loss as:

LNLL = −
∑︁
𝑙𝑤

{
𝐼 [𝑌𝑙𝑤 = 0] × log(𝑝 (0)

𝑙𝑤
)

+ 𝐼 [0 < 𝑌𝑙𝑤 < 𝑈𝑙𝑤] × [log(1 − 𝑝 (0)
𝑙𝑤
) + log(𝑝 (1)

𝑙𝑤
) + log( 𝑓1(𝑌𝑙𝑤; 𝜇𝑙𝑤, 𝑠𝑙𝑤))]

+ 𝐼 [𝑈𝑙𝑤 < 𝑌𝑙𝑤] × [log(1 − 𝑝 (0)
𝑙𝑤
) + log(1 − 𝑝 (1)

𝑙𝑤
) + log( 𝑓2(𝑌𝑙𝑤; 𝜉𝑙𝑤, 𝜎𝑙𝑤,𝑈𝑙𝑤))]

}
(6.6)

In addition the expected value of the mixture model can be easily computed as a weighted sum

of the component means:

𝑌𝑙𝑤 = 𝑝
(0)
𝑙𝑤

× 0

+ (1 − 𝑝 (0)
𝑙𝑤
) × (𝑝 (1)

𝑙𝑤
) × exp (𝜇𝑙𝑤 + 𝑠2𝑙𝑤/2) ×

Φ( ln(𝑈𝑙𝑤)−𝜇𝑙𝑤−𝑠2𝑙𝑤
𝜎𝑙𝑤

)

Φ( ln(𝑈𝑙𝑤)−𝜇𝑙𝑤
𝜎𝑙𝑤

)

+ (1 − 𝑝 (0)
𝑙𝑤
) × (1 − 𝑝 (1)

𝑙𝑤
) × ( 𝜎𝑙𝑤

1 − 𝜉𝑙𝑤
)

where Φ is the cumulative distribution function of a standard normal distribution. The value 𝑌𝑙𝑤

can be used as a point prediction 𝑌𝑙𝑤.
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6.4.2 Deep Neural Network

This section introduces the deep neural network architecture that forms the first major component

of the DEMM shown in Figure 6.1. The neural network is responsible for modeling spatio-temporal

relationships among the predictors as well modeling the influence of threshold choice on the mixture

model parameters. Thus, it takes as input a batch of 𝑋:𝑤 and 𝑈:𝑤. The activations from its final

layer are then passed on to the constraint enforcement module. The mapping from the predictors

and thresholds for a particular window to final activations can be represented formally as:

𝑎:𝑤 = CNN(𝑋:𝑤,𝑈:𝑤) (6.7)

where 𝑎:𝑤 ∈ R𝐿×6 is the activations of the final layer of the neural network associated with a given

window 𝑤. Since the final activations for each location and window will ultimately be mapped to

the mixture model parameters, therefore, 𝑎𝑙𝑤 ∈ R6 to match the dimensionality of 𝜃𝑙𝑤.

The neural network can be further divided into a spatio-temporal feature extraction module and

a local feature extraction module. The 3-d CNN is the basis for the spatio-temporal feature extractor.

3-d CNNs [33] are generalizations of the 2-d convolutions conventionally used in image datasets to

a 3rd dimension. In the context of this chapter, the 3 dimensions correspond to latitude, longitude,

and time. The 3-d CNN works by computing the inner product between a filter of parameters with

small localized regions within the 3-d spatio-temporal volume. These convolutional layers alternate

with non-linear activation functions such as the ReLU or tanh functions. Similar 3-d CNNs have

had success in other spatio-temporal applications [15, 44, 74, 91, 92]. The application of the 3d

CNN to the predictors can be written formally as 𝑧:𝑤 = 𝑔(𝑋:𝑤) where 𝑧:𝑤 ∈ 𝑅𝐿×𝑑 and 𝑔 is the

non-linear function associated with the trained 3-d CNN.

Once the spatio-temporal features have been extracted, they need to be combined with the chosen

threshold at each location so that the parameters of the mixture model can be estimated. This is

accomplished by concatenating the threshold at each location,𝑈𝑙𝑤, to the location’s spatio-temporal

feature representation, 𝑧𝑙𝑤, and feeding the results to a fully connected neural network (FCN). The

output activation of the network is 𝑎𝑙𝑤 = ℎ(𝑧𝑙𝑤,𝑈𝑙𝑤), where ℎ represents the non-linear function
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associated with the fully connected neural network. Observe that each location and window are

processed separately by the fully connected neural network.

6.4.3 Constraint Enforcement

Since the final output of the neural network is completely unconstrained, they may not be suitable

for use as the parameters of the mixture model, which must satisfy certain feasibility conditions

including the GPD inequality constraints stated in Equation (6.2). Specifically, 𝑝 (0)
𝑙𝑤

and 𝑝 (1)
𝑙𝑤

are

constrained to be between 0 and 1, 𝑠𝑙𝑤 and 𝜎𝑙𝑤 are constrained to be non-negative, while 𝜉𝑙𝑤 and

𝜎𝑙𝑤 must jointly satisfy:

∀𝑌𝑙𝑤 : 1 + 𝜉𝑙𝑤𝑌𝑙𝑤
𝜎𝑙𝑤

> 0 (6.8)

Given that the mean of the mixture model, 𝑌𝑙𝑤, will be used as a point estimate of 𝑌𝑙𝑤, this requires

computing the mean of the 3 components of the mixture model. However, the mean of the GPD

distribution is only well-defined when 𝜉𝑙𝑤 < 1. This imposes another constraint that needs to be

satisfied.

The constraint enforcement module will transform the output activation of the neural network,

𝑎𝑙𝑤, into parameters of the mixture model, 𝜃𝑙𝑤, such that all the constraints are satisfied. Formally,

the transformation can be stated as applying the following mapping function, 𝑐 : R6 → R6:

𝜃𝑙𝑤 = 𝑐(𝑎𝑙𝑤) (6.9)

The constraints on 𝑝 (0)
𝑙𝑤

and 𝑝 (1)
𝑙𝑤

are easy to achieve by passing the corresponding activations

through a sigmoid function, 𝜎[·], i.e.:

𝑝
(0)
𝑙𝑤

= 𝜎[𝑎 (1)
𝑙𝑤
] = 1

1 + 𝑒−𝑎
(0)
𝑙𝑤

, 𝑝
(1)
𝑙𝑤

= 𝜎[𝑎 (1)
𝑙𝑤
] = 1

1 + 𝑒−𝑎
(2)
𝑙𝑤

The non-negativity constraints on 𝑠𝑙𝑤 and𝜎𝑙𝑤 are similarly easy to achieve by passing the activations

through the exponential function, as shown below:

𝑠𝑙𝑤 = exp[𝑎 (2)
𝑙𝑤
], 𝜎𝑙𝑤 = exp[𝑎 (3)

𝑙𝑤
]

More challenging however is enforcing the constraints involving the shape parameter of the GPD

distribution, 𝜉𝑙𝑤.
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6.4.3.1 GPD Constraints

Recall that there are two constraints on the GPD shape parameter:

∀𝑌𝑙𝑤 : 1 + 𝜉𝑙𝑤𝑌𝑙𝑤
𝜎𝑙𝑤

> 0

𝜉𝑙𝑤 < 1
(6.10)

where the second constraint is to ensure that the mean of the GPD, and thus the mixture model, is

well-defined. Our approach for ensuring both constraints are satisfied will proceed in three steps.

First a base GPD constrainer function is applied to ensure that 𝜉 satisfies the first constraint. Next,

a shifted softplus function is used to ensure that 𝜉𝑙𝑤 < 1. Finally, a gated thresholding function will

be applied to ensure that the base GPD constrainer and shifted softplus function work appropriately

together so that both constraints involving the shape parameter are simultaneously satisfied. We

will discuss each of these steps to enforce the shape parameter constraint in order.

As mentioned above, the base GPD constrainer will ensure that the first GPD constraint is

satisfied. Let 𝑎 (4)
𝑙𝑤

and 𝑎 (5)
𝑙𝑤

be the neural network activations corresponding to the GPD parameters

and 𝑚 is the supremum, i.e., least upper bound, of 𝑌𝑙𝑤. Define 𝜎𝑙𝑤 = exp(𝑎 (5)
𝑙𝑤
), and define:

𝜉𝑙𝑤 = 𝑐𝜉 [𝑎 (4)𝑙𝑤 , 𝑎
(5)
𝑙𝑤
]

= [exp(𝑎 (4)
𝑙𝑤
) − 1] × exp(𝑎 (5)

𝑙𝑤
)/(𝑚 + 𝜖)

(6.11)

where 𝑐𝜉 is the base GPD constrainer function. The initial output of the base GPD constrainer is

denoted as 𝜉𝑙𝑤 rather than 𝜉𝑙𝑤 to indicate that its output must be further constrained to ensure that

the second constraint (i.e. 𝜉𝑙𝑤 < 1) is satisfied.

The second constraint 𝜉𝑙𝑤 < 1 will be enforced using the shifted softplus function and the gated

thresholding function. The shifted softplus function is defined as:

𝑆(𝜉𝑙𝑤) = (1 − 𝜖) − 1
𝛽

log
[
1 + exp[(1 − 𝜖 − 𝜉𝑙𝑤) × 𝛽]

]
(6.12)

where 𝛽 is a hyper-parameter (set to 10 for this work), and 𝜖 is a small positive value (set to 0.05 for

this work). The shifted softplus function is a shifted and rotated version of the softplus function. It

is easy to verify that lim𝜉𝑙𝑤→inf 𝑆(𝜉𝑙𝑤) = (1 − 𝜖) and lim𝜉𝑙𝑤→− inf 𝑆(𝜉𝑙𝑤) = 𝜉𝑙𝑤.
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Note that the general outcome of applying the shifted softplus function is to reduce the value

of its input so that 𝑆(𝜉𝑙𝑤) < 𝜉𝑙𝑤. When 𝜉𝑙𝑤 > 0 this is no problem since the only constraint 𝜉𝑙𝑤

needs to satisfy is 𝜉𝑙𝑤 < 1, but when 𝜉𝑙𝑤 < 0, this may result in a situation where the first shape

constraint now becomes violated so when 𝜉𝑙𝑤 < 0, 𝑆 risks violating the other constraint. This is

avoided using the gated thresholding function, 𝑇 defined as:

𝑇 (𝜉𝑙𝑤) = 𝑣(𝜉𝑙𝑤) × 𝑆(𝜉𝑙𝑤) + (1 − 𝑣(𝜉𝑙𝑤)) × 𝜉𝑙𝑤 (6.13)

where,

𝑣(𝑥𝑖𝑙𝑤) =



0 𝜉𝑙𝑤 < 0

𝜉𝑙𝑤/(1 − 𝜖) 0 < 𝜉𝑙𝑤 < 1 − 𝜖

1 1 − 𝜖 < 𝜉𝑙𝑤

The basic idea of the gated thresholding function is that when its input, 𝜉, is less than 0, then its

input will be returned unchanged. However, when the input 𝜉 is greater than 1 − 𝜖 , the shifted

softplus function is used to reduce its value to be less than 1. When 𝜉 is between 0 and 1 − 𝜖 ,

it will smoothly interpolate between the identity function and shifted softplus function to ensure

continuity. This results in a function that will constrain 𝜉𝑙𝑤 < 1 while also ensuring that its output

satisfies the GPD constraints as long as the input does.

We thus have:

𝜃𝑙𝑤 = 𝑐(𝑎𝑙𝑤)

= 𝑐

(
(𝑎 (0)
𝑙𝑤
, 𝑎

(1)
𝑙𝑤
, 𝑎

(2)
𝑙𝑤
𝑎
(3)
𝑙𝑤
, 𝑎

(0)
𝑙𝑤
, 𝑎

(4)
𝑙𝑤
, 𝑎

(5)
𝑙𝑤
)
)

=

(
𝜎(𝑎 (0)

𝑙𝑤
), 𝜎(𝑎 (1)

𝑙𝑤
), 𝑎 (2)

𝑙𝑤
, exp(𝑎 (3)

𝑙𝑤
), 𝑇

(
𝑐𝜉 (𝑎 (4)𝑙𝑤 , 𝑎

(5)
𝑙𝑤
)
)
, exp(𝑎 (5)

𝑙𝑤
)
) (6.14)

6.4.4 Training

The model is trained end to end using a combination of negative log likelihood and mean squared

error. Specifically DEMM is trained to minimize the following objective function:

LNLL + 𝜆
∑︁
𝑙,𝑤

(𝑌𝑙𝑤 − 𝑌𝑙𝑤)2 (6.15)
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where LNLL denote the negative log-likelihood function given in (6.6) and 𝜆 is a hyper-parameter

representing the tradeoff between minimizing the negative log-likelihood and mean squared error

loss. One challenge when training the model is choosing the appropriate value for the threshold

𝑈𝑙𝑤 at each location and time window. To provide more flexibility and allow users to chose any

reasonable threshold at test time, during training 𝑈𝑙𝑤 is sampled uniformly at random from the

interval (0.5, 0.95). In principle the range from which the threshold is randomly selected could be

extended. This ensures that at test time any threshold from this interval should be usable without

retraining the model. Finally, the DEMM framework is trained end-to-end using Adam [50].

6.5 Experimental Evaluation

6.5.1 Data

We evaluate our model on a real world precipitation data set drawn from two sources. Predictors

are precipitation forecasts from the SubX project2. Specifically, an 11-member ensemble of daily

precipitation forecasts are generated every week by a numerical model for each location for the next

35 days (i.e 𝑋𝑙𝑤𝑖 ∈ R11, 𝑖 ∈ {1, 2, · · · , 35}). We compute the rolling 3-day average of each ensemble

member. For our target we use precipitation observations from NLDAS-2, specifically the average

observed precipitation at each location 10-12 days in advance. We limit our experiments to the

continental United States, at a 1 degree resolution, and the years from 1999-2020. The predictors

are log transformed and standardized.

6.5.2 Baseline Methods

We compare the proposed DEMM framework against the following baseline methods:

1. Ensemble Mean - This approach uses the average value of the ensemble members for days

10-12 as its point prediction.

2http://cola.gmu.edu/subx/
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2. Kernel Density Estimation - Since the ensemble mean only provides a point estimate, to obtain

the density function of the ensemble member forecasts, we apply kernel density estimation

to predict the distribution of extreme events from the ensemble members. Specifically, we

use a Gaussian kernel centered at each ensemble member forecast, with the kernel bandwidth

treated as a hyper-parameter.

3. Lognormal Hurdle Model - This method is similar to the proposed framework except it omits

the generalized Pareto distribution from the mixture model.

6.5.3 Experimental Setup

Hyper-parameters were selected using grid search. The learning rates varied in the range from

1 × 10−4 to 1 × 10−2. The hidden dimension varied in the range from 10 to 40. The parameter

controlling the tradeoff between NLL and MSE (i.e. 𝜆) varied in the range from 1/60 to 1/15. The

optimal parameters for the DEMM were found to be a learning rate of 1e-3, a hidden dimension of

30, and a 𝜆 of 1/30. The CNN has 4 layers and the local FCN has 3 layers. All deep learning models

were trained for 50 epochs and early stopping was used to save model parameters that achieved the

lowest validation loss during training.

All prediction windows were randomly assigned to the train, validation, or test set. A total

of 450 prediction windows were assigned to the training set, 250 to the validation set, and the

remainder to the test set. A total of 10 random train-validation-test splits were used.

Below we consider the following evaluation metrics:

• NLL - The average negative log likelihood of test samples given each model’s predicted

conditional distribution.

• MSE - The mean squared error of each model’s point prediction.

• F1 Micro - Test precipitation samples are assigned to 1 of 3 classes: zero rainfall, non-zero

non-extreme rainfall, and extreme rainfall where extreme rainfall is rainfall that exceeds𝑈𝑙𝑤.
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For each model, samples can be assigned class probabilities using that model’s CDF (e.g.

a sample’s probability of belonging to the excess class will be 1 minus the model’s CDF

evaluated at the threshold) and then assigned to the class with the highest probability. Note

that in the case of the DEMM the class probabilities will be the same as mixture weights.

The predicted and ground truth class labels can then be used to compute F1 micro.

• F1 Macro - As in the case of F1 micro, each test sample can be assigned a predicted class

for each model and a ground truth class. These can then be used to compute F1 macro.

6.5.4 Experimental Results

This section presents the results of our experiments. In addition to characterizing the overall

performance of DEMM, the experiments were designed to:

1. Perform an ablation study to compare the performance of DEMM when trained using a fixed

versus variable threshold defined for extreme values.

2. Characterize the spatial locations where the DEMM outperforms the strongest baseline.

3. Evaluate the ability of the DEMM to predict the frequency of extreme events.

4. Evaluate the ability of the DEMM to predict the timing of extreme events.

6.5.4.1 Performance Comparison against Baseline Methods

Table 6.1 compares the predictive performance of DEMM against the baseline methods. For eval-

uation purposes, the excess threshold 𝑈𝑙𝑤 was set to the global 0.6 quantile value. We consider

two variations of DEMM, one with a fixed excess threshold, also at 0.6 quantile, while the other

was trained with varying thresholds as described in Section 6.4.4. In the latter case, the results are

reported when the threshold is set to the 0.6 quantile at test time. Our experimental results show that

both versions of DEMM (fixed and variable threshold) outperform the baseline methods in terms

of their negative log likelihood, MSE, and F1 score. The DEMM achieves lower MSE than the
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NLL MSE F1 Micro F1 Macro
Ensemble Mean N/A 15.48 ± 0.56 N/A N/A
Kernel Density Estimation 2.787 ± 0.083 15.48 ± 0.56 0.500 ± 0.006 0.323 ± 0.002
Lognormal Hurdle Model 0.906 ± 0.076 16.39 ± 0.51 0.543 ± 0.011 0.258 ± 0.020
DEMM (fixed threshold) 0.412 ± 0.074 14.94 ± 0.55 0.612 ± 0.007 0.416 ± 0.005
DEMM (variable threshold) 0.411 ± 0.080 14.70 ± 0.59 0.610 ± 0.007 0.413 ± 0.008

Table 6.1: Predictive performance comparison

(a) Improvement over the baseline in NLL (b) Improvement over the baseline in absolute
error.

Figure 6.2: Plots showing the improvement of the DEMM over a hurdle model as the amount of
rainfall varies. Positive values indicate samples where the DEMM has achieves a lower loss than
hurdle model baseline.

ensemble mean. Because the ensemble mean is expected to be a strong baseline, this demonstrates

that the DEMM’s ability to make accurate point predictions was not strongly inhibited by simulta-

neously predicting the conditional distribution. Interestingly, the hurdle baseline performs worse

than the ensemble mean, which demonstrates the importance of correctly specifying the probability

distribution of the data. The fact that DEMM outperforms the hurdle model demonstrates the value

of incorporating extreme value theory into the mixture model.

A more detailed comparison between the relative performance of DEMM with variable threshold

against the hurdle baseline model is shown in Figure 6.2. The quantile values of the observed rainfall

are plotted along the x-axis and the difference between the losses of the two models is plotted along

the y-axis. Positive values indicate that the DEMM is outperforming the baseline for a given sample.

We find that for NLL the DEMM model achieves its best performance relative to the baseline for

samples that are excesses above the threshold. In other words, the DEMM outperforms the baseline
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in predicting the occurence of excess values. However, in the case of MSE, the DEMM outperforms

the baseline above the threshold less consistently.

6.5.4.2 Ablation Studies

Since the DEMM was trained to accommodate variable thresholds, it is important to consider what

performance penalty this imposes over training with a single fixed threshold. Surprisingly, we

find that the performance of the DEMM remains virtually unchanged when trained with a fixed or

variable threshold. Table 6.1 shows that regardless of the chosen metrics, the two methods results

in almost identical performance. In Figure 6.3, we show that the DEMM (with variable threshold)

performs similarly to its fixed threshold variant for a range of thresholds. This encouraging result

suggests that training the model with a variable threshold imposes little if any performance penalties

on the model while providing additional flexibility at test time.

Figure 6.3: Plot showing how the negative log-likelihood varies for both the DEMM and the fixed
threshold variant of the DEMM. Shaded region represents ±1 standard deviation.

6.5.4.3 Spatial Analysis

Figure 6.4 shows the spatial relationships between locations where the variable-threshold DEMM

improves over baselines. These figures were created by averaging the mean absolute error (MAE)

achieved at each location by each of the respective models (DEMM, hurdle, or ensemble mean)

across all samples and data splits. The average MAE of the DEMM at each of location is subtracted
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(a) Improvement over hurdle model. (b) Improvement over the ensemble mean.

Figure 6.4: Plots showing the spatial locations where the DEMM outperforms the hurdle model in
terms of their mean absolute error (MAE). Red indicates that the DEMM is outperforming.

from the corresponding MAE for one of the baselines so that positive values shaded in red represent

locations where DEMM outperforms one of the baselines. Based on these figures, it is easy to see

that the DEMM outperforms the hurdle model at almost all locations. However, consistent with the

results given in Table 6.1, we see that the improvement in absolute error over the ensemble mean

baseline is less consistent. Nevertheless, the improvements over the ensemble mean baseline are

concentrated at the locations where precipitation values are largest and most variable. This can be

verified with Figure 6.5, where we plot the average rainfall at each location on the x-axis and the

margin by which the DEMM outperforms the ensemble mean baseline in terms of absolute error

on the y-axis. The strong correlation (0.58) between the two variables indicates that the higher

average rainfall at a location is, the better the DEMM performs relative to the ensemble mean.

6.5.4.4 Extreme Event Frequency

Besides the overall prediction error, another important metric for evaluating the performance of

the different methods is their ability to correctly predict the frequency of extreme events. Because

different applications may be interested in defining extreme values differently, in Figure 6.7 we

plot predicted vs empirical frequency of extreme values at varying thresholds. The empirical

threshold is the quantile defining the excess threshold while the predicted frequency is calculated

by computing the probability of an excess value occurring (as described in Section 6.5.3) averaged
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Figure 6.5: The relationship between average precipitation at a location and the margin by which
the DEMM outperforms the ensemble mean at that location. Positive values indicate the DEMM
outperforms.

Figure 6.6: Plot showing how the brier score for the extreme events class varies with the quantile
used to define extreme events.

across all samples in the test set. We find that the hurdle model consistently under predicts the

frequency of extreme values regardless of the quantile threshold used while the DEMM accurately

predicts their frequency across all thresholds. This suggests that the DEMM is well suited for

predicting the frequency of extreme events regardless of the threshold used to define them.
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Figure 6.7: Plot comparing the observed frequency of extreme events (x-axis) against the predicted
frequency of extreme events.

6.5.4.5 Extreme Event Timing

In addition to predicting their frequencies. it is also important to predict their precise timing of the

extreme events. To evaluate this we compare the Brier score of the DEMM and hurdle model using

a variety of thresholds to define extreme values in Figure 6.6. The Brier score is a classification

metric with a lower Brier score representing better predictive performance. Given the set of binary

class labels for every observed precipitation value, {𝑌𝑖 |𝑖 ∈ {1, · · · , 𝑛}}, which represents whether

or not each sample is an extreme value, and the set of predicted probability of excess for each

sample, {𝑌𝑖 |𝑖 ∈ {1, · · · , 𝑛}}, then the Brier score can be computed as:
𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2

𝑛
(6.16)

The results shown in the figure suggest that the DEMM consistently outperforms the hurdle model

regardless of the threshold chosen to define extreme events. Therefore the DEMM is better at

predicting when excess precipitation values will occur.

6.6 Conclusion

This chapter introduces a new deep learning framework called DEMM for predicting geo-spatio-

temporal events. The proposed framework centers around a mixture model that incorporates extreme

value theory to accurately model the distribution of extreme events while simultaneously making

accurate point predictions. The framework employs a set of novel re-parameterization techniques
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to ensure that the neural network outputs satisfy the constraints placed on the parameters of the

mixture model, including a constraint on the GPD shape parameter required for computing the

mean of the mixture model. Furthermore, the proposed framework also allows the excess threshold

to be an input to the model, thus providing flexibility for the user to alter the threshold at test time

without the need to retrain the model. The experiments performed on a real world precipitation data

set showed that DEMM is able to accurately predict the timing and frequency of extreme events

while also making accurate point predictions and distribution predictions. The experimental results

also verified that the proposed technique for allowing the thresholds to modified without retraining

the model imposes no performance penalty.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This dissertation has demonstrated how deep learning can be effectively applied to geo-spatio-

temporal prediction tasks. In particular, novel deep learning frameworks have been proposed

to address the various challenging aspects of geo-spatio-temporal relationships, including non-

linearity, temporal relationships, and spatial relationships in both predictors and model parameters.

Because extreme events are of particular interest in many geo-spatio-temporal applications, con-

siderable attention has been devoted to the accurate modeling of extreme events, including their

magnitude, timing, frequency, and overall distribution.

In Chapter 3, a deep learning architecture known as WGC-LSTM was developed for geo-spatio-

temporal prediction. The framework incorporated graph convolution into an LSTM network to

model spatial relationships among irregularly spaced locations and to infer the relatedness of the

locations in a data driven way. Experimental results not only demonstrated the improved accuracy

of the proposed approach but also showed that WGC-LSTM could yield interpretable insights into

the spatial patterns underlying the data.

In Chapter 4, we demonstrated that graph convolution could be used not just to model spatial

relationships among predictors but among model parameters as well. Furthermore, we provided

some suggestions for when convolution should be used to model spatial relationships among

model parameters and when it should be used to model spatial relationships among predictors.

We proposed a graph convolution based architecture capable of simultaneously modeling spatial

relationships among predictors and model parameters. Our experiments demonstrated the strong

predictive capabilities of our proposed approach as well as validated our advice regarding when to

apply convolution for spatial modeling.

Chapter 5 focuses on modeling the distribution of extreme events. We showed how a re-

parameterization trick could be used to allow a neural network to predict the parameters of a

generalized Pareto distribution while ensuring all the necessary constraints are satisfied. In addition,
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we explained how deep sets could be used to combine set valued predictors and vector valued

predictors. We demonstrated the effectiveness of our approach on a real world precipitation data

set.

Finally, in Chapter 6 we extended the results in Chapter 5 to allow users to simultaneously

predict the distribution of extreme events while also making point predictions. Accomplishing

this required us to model the full conditional distribution and also required us to further constrain

the generalized Pareto distribution parameters to ensure that its expected value is well-defined. A

crucial aspect of the proposed DEMM framework was the choice of threshold used to define excess

values. We designed our architecture to allow the threshold to be altered without needing to retrain

the model. Using a real world precipitation data set, we were able to show that DEMM could

accurately predict the magnitude, timing, frequency, and overall distribution of extreme events.

7.1 Future Work

The application of deep learning to spatio-temporal data presents many additional avenues for

further research. We will focus on two broad areas of potential future research. First we will

discuss new areas of research in modeling spatio-temporal relationships and second, further research

opportunities in the prediction of extreme spatio-temporal events.

7.1.1 Spatio-temporal Relationships

One fundamental problem in applying deep learning to spatio-temporal data is how to effectively

incorporate such relationships into the model formulation. So far, existing works have made heavy

use of Tobler’s law, which states that things that are closer are more related than those that are

further apart. However, some phenomena that buck this trend. In climate, for instance, long

distance relationships called teleconnections have been well-studied and are known to be related

to important phenomena like El Nino. Convolution is primarily used for modeling relationships

in spatially localized area. Therefore, new architectures drawing on techniques such as attention

will likely be required for inferring these long distance dependencies. One promising approach for
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modeling these relationships is with transformers [96]. Transformers have recently seen a wide

number of applications including to images [28] and sequence data [96]. Though transformers

have strong capabilities in modelling relationships between distant parts of an input, their compu-

tational requirement grows quickly with the size of the input. In cases where we would like to find

distant relationships in high resolution global scale data or in spatio-temporal data with long se-

quence lengths, naive application of transformers becomes computationally infeasible. Developing

techniques for applying transformers at these scales is thus an important future research problem.

7.1.2 Extreme Events

Thus far, our study of deep learning and extreme value theory has focused on the generalized

Pareto distribution which models the distribution of excess values above a threshold. However,

another distribution fundamental to the study of extreme values is the generalized extreme value

(GEV) distribution which governs the distribution of block maxima. Similar to the generalized

Pareto distribution, the GEV is backed by a robust body of theoretical results, justifying its use as

a technique for modeling block maxima in a wide range of circumstances.The GEV distribution

also has constraints placed on its parameters, so any deep learning approach that attempts to infer

these parameter values must find ways to enforce the constraints. The re-parameterization approach

applied to the GPD will need to be adapted to accomplish this. In addition, the use of the GEV

distribution rather than the GPD will significantly reduce the amount of data available for training

since, within each prediction window, it is possible to have multiple samples of excess values from

the GPD but only a single block maxima value to fit the GEV distribution. In applications where

data is limited this could pose a significant challenge as deep learning based approaches often

benefit from having large amounts of training data available.

A second problem is how to develop deep learning approaches for modeling the joint distribution

of multivariate extremes. Most of current research has focused on modeling the spatio-temporal

relationships among predictors or model parameters, but there may be cases where we would like

to know how the multivariate extreme events observed across different times and locations will
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vary spatio-temporally. For instance, it would be useful to know the duration of extreme rainfall at

a given location or the spatial extent of flooding. Although there exists some previous work that

investigates the distribution of multivariate extremes using generalizations of the GEV and GPD or

copula theory, there is comparatively little work integrating these approaches with deep learning.
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