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ABSTRACT 

OOCYTE AND PREIMPLANTATION EMBRYO CROSS-SPECIES TRANSCRIPTOME 

META-ANALYSIS REVEALS DIVERGENCE AT GENE LEVEL BUT 

CONSERVATION IN FUNCTIONS 

 

By 

 

Peter Zachary Schall 

 

Two of the most critical stages in early development occur during the maturation of 

oocytes and during the first lineage specification during morula-to-blastocyst transition. The 

accurate regulation of the transcriptome during these essential events is necessary for the 

development of a healthy embryo. This thesis presents the culmination of custom pipelines 

developed to produce three meta-analyses: 1) transcriptome changes during oocyte maturation 

across four mammalian species (human, rhesus monkey, cow, and mouse), 2) predictive 

modeling of RNA binding proteins and microRNAs binding to the 3’ UTR, impacting stability 

during oocyte maturation across four mammalian species (human, rhesus monkey, cow, and 

mouse), and 3) transcriptome changes during the morula-to-blastocyst transition and the 

establishment of the inner cell mass and trophectoderm across five mammalian species (human, 

rhesus monkey, cow, pig, and mouse). The results of these studies reveal that there are relatively 

few individual transcripts regulated commonly across species, while there are greater shared 

features at the pathway and functional level. This underscores that different species may utilize a 

different cohort of genes to accomplish a given outcome. Additionally, the pipelines developed 

for this thesis are highly applicable across many areas of biology.
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CHAPTER 1. 

INTRODUCTION 

1.1  Introduction 

“A mouse is not a Cow” Toronto stem cell biologist Dr. Janet Rossant  wrote in 2011 (1). 

On its face, this is an obvious statement. A scientifically trained mind is not required to visually 

comprehend that there are massive differences between adults of these two species. At the 

microscopic level, however, during the earliest stages of development all mammals traverse 

strikingly similar stages of development. Oocyte and preimplantation stage embryos of different 

species look very similar and later embryos also look similar due to evolutionary constrains. The 

oocyte undergo maturation, fertilization, cell division, gastrulation, the morula-to-blastocyst 

transition, cell lineage formation, and implantation. The convergence in appearance is somewhat 

misleading, such that a closer examination at the subcellular level reveals marked divergence in 

composition as revealed by the following meta-analyses. The seeming divergence, however, is 

not the end of the saga as some degree of convergence is hiding in that substantial functional 

similarities emerge that we are able to expose. During the course of early development, there are 

core events oocytes and preimplantation embryos must undertake and accomplish, regardless of 

species. According to the Ingenuity Pathway Analysis database, the functional category 

“meiosis” contains 419 member molecules (genes, proteins, or endogenous chemicals). 

Similarly, when examining a less apparent functional category, such as “function of 

mitochondria”, there are 117 member molecules. With this great magnitude of molecules present 

within just these two functions, the number of possible combinations any given species can 

utilize to reach a common end point is monumental. To ascertain an understanding of the various 
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components a specific species utilize to regulate these functions can only by elucidated by 

employing a modern meta-analysis. 

This thesis includes three chapters: 1) Essential shared and species-specific features of 

mammalian oocyte maturation-associated transcriptome changes impacting oocyte physiology, 

2) Predictive modeling of RNA binding proteins binding motifs in oocyte mRNA 3’UTRs for 

five mammalian species reveals novel candidate regulators of mRNA stability during oocyte 

maturation, and 3) Cross-species meta-analysis of transcriptome changes during the morula to 

blastocyst transition: metabolic and physiological changes take center stage. 

1.2  Oocyte Maturation and posttranscriptional regulation via the 3’ UTR 

Preceding maturation, mammalian oocytes are in a state of arrest at the prophase I stage. 

The maturational process occurs during each reproductive cycle, after the pre-ovulatory 

luteinizing hormone (LH) surge which initiates the resumption of meiosis. These immature 

oocytes (germinal vesical or GV), undergo a breakdown of the nuclear envelope (germinal 

vesicle breakdown or GVBD), condensation of chromosomes, spindle formation, followed by the 

extrusion of the first polar body. Upon completion of meiosis II the oocyte undergoes arrest 

again, halting as a mature oocyte (metaphase II or MII), awaiting fertilization. The ultimate 

success of fertilization and embryonic development, requires proper maturation. These mature 

oocytes contain the maternal genetic material and other essential factors required for 

preimplantation development and embryonic genome activation.  

During oocyte maturation, the cell is transcriptionally inactive and no new transcripts are 

being produced. However, it has been found that there are thousands of mRNAs that have 

significant changes in expression during maturation. If the relative abundance of mRNAs is 

significantly changing without the addition of new transcripts, this modulation of expression 
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must be primarily a consequence of posttranscriptional modes of regulation. The traditional 

nomenclature of “up-regulated” and “down-regulated” simply do not apply. The changes in 

relative abundance are essentially a factor of mRNA stability. Those mRNAs exhibiting a 

relative increase in abundance are being preferentially stabilized, while those showing a decrease 

have undergone substantial degradation. The oocyte’s ability to modulate transcripts of mRNAs 

is varied and can be acted upon via RNA binding proteins (RBPs), micro-RNAs (miRNAs), 

nonsense-mediated decay, and other RNA degradation factors. 

One of the primary modes of post-transcriptional regulation of mRNA processes 

(localization, stability, and translation), and by proxy stability, involves the 3’ untranslated 

region (UTR), which is the section of mRNA following the translation termination codon. There 

are a number of regulatory elements within the 3’ UTR that have been found to impact 

polyadenylation, translation, and the stability of mRNA. Additionally, there are complementary 

sequence motifs where RNA binding proteins (RBPs) can bind and likewise influence mRNA 

stability and translational state (2).  

There are many factors that can impact human fertility, and an estimated 1/10 females of 

reproductive age suffer from some form of infertility (3). By first examining the regulation of 

mRNAs during maturation and their putative roles in pathways and function, followed by 

deciphering which RBPs are impacting mRNA stability, will allow for a greater understanding of 

which factors are potentially essential during oocyte maturation. 

1.3 Morula-to-blastocyst transition 

Post-fertilization, genome activation, and multiple rounds of cell division, the 

preimplantation embryo undergoes the morula-to-blastocyst transition (MBT). This transition 

involves the first cell lineage formation: inner cell mass (ICM) and trophectoderm (TE). 
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Undergoing this transition and cell fate determination requires an intricate coordination of 

physiological, morphological, and metabolic changes. In humans and domestic animals, 

embryonic mortality is a major underlying factor causing infertility. In cattle, 37% of embryonic 

mortality occurs within one-week post-insemination (4). Increasing the understanding of genetic 

changes and key molecular pathways and functions are essential to address these issues. 

1.4 Putting the Bio in Bioinformatics 

One of the major challenges in generating meaningful results from a meta-analysis of 

high-throughput sequencing data, is accurately ascertaining a biological narrative relevant to the 

study at hand. In short, getting the “bio” from bioinformatics. There is no simple solution to this 

multi-faceted problem. Researchers have to mine through thousands of datapoints and identify 

significant changes at the mRNA level, and then further ascertain the impact of those genetic 

changes at a functional level. Further compounding the difficulty, a meta-analysis by its nature, 

will necessitate the inclusion of multiple studies, and potentially multiple species. 

Before even reaching a point where a narrative can be developed from resultant data, 

there are multiple preceding steps required: 1) identification of public data relevant to one’s 

study and accessing said data; 2) integrating complex data of potentially different sources and 

then interpreting those thousands of data points, and; 3) succinctly present the data in a digestible 

format. Only once these goals have been completed, should a researcher attempt to discern a 

biological meaning, often, steps 2 and 3 must be repeated with different comparisons and 

iterations.  

While the overarching goal of this research was to explore the biological imperatives 

during early development, nearly half of the efforts were centered around tackling these 

questions. To answer these questions, public repositories of sequencing data were accessed, 
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custom pipelines were developed to leverage techniques from various fields, integrating data 

from multiple different sources.  

These three aims constituted reprocessing 31 public studies, comprised of 346 samples, 

totaling 4.392 TB of sequencing data, across five mammalian species. The initial steps in these 

studies mirrored those following a standard protocol of analyzing RNA sequencing of two 

conditions/stages: identify differentially expressed genes (DEGs). Upon completion of the 

standard section of the protocol, is where my methods diverge. Many legacy techniques would 

ascertain shared regulation of genes, within species, by finding the intersection of those with 

significant difference. However, as highlighted in the following chapters, and in other reviews 

(5), different techniques of generating sequencing data imbue batch effects (culture medium, 

library preparation kit, sequencing platform, etc.). Meta-analyses of RNA-seq (and in general, 

expression data) can be utilized to elucidate complex biological questions by integrating datasets 

of similar phenotypes, thereby increasing power. Specifically, the methods herein used the R 

package metaRNASeq (6), to integrate studies with comparable samples within species. This 

software package utilizes the p-values from input datasets, applies a Fisher’s combination 

method to said p-values, thus deriving a unified species list of changes. While the inherent 

differences in input studies may initially seem detrimental, with the application of the 

metaRNAseq package, they become strengths. Using simple intersections of DEGs can vastly 

underestimate the number of changes. By utilizing the metaRNAseq method, no single study 

where a gene fails to meet significance, can preclude its inclusion. 

Likewise, when comparing across species, the approach of gene intersection was 

expanded by taking into consideration sequence similarity. This is necessary due to the potential 

impact imbued from disparate qualities of genome builds, annotation, and evolutionary 
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divergence. Using the public database MetaPhOrs (7), which applies a tree-based method 

incorporating multiple other databases to derive a consistency score of gene orthologs/paralogs, 

allowed for the identification of genes with high sequence homology across all input species. It 

should be stated, that since both gene methods have limitations and strengths, therefore, the data 

was presented in tandem: 1) all genes for each species, and 2) only those genes meeting 

consistency score of sequences similarity. This, in our opinion, generates a more complete 

picture of transcriptome changes and increases the power of these analyses. 

Upon identifying a list of genes, the next logical step is to explore what functions and 

pathways those genes are regulating. Previous public databases, such as DAVID (8), KEGG (9), 

and GO (10), have been adequate over the years in identifying pathways and functions with 

significant overlap to a list of genes, but lack plasticity in comparisons and custom analyses and 

do not provide information about direction of activity. Therefore, I opted to utilize the IPA 

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). 

software for this purpose. The IPA software not only outputs entries with significant enrichment 

(p-value), but also calculates a z-score which provides a measure of predicted activity. With two 

statistical measures (p-value and z-score), a standard operating procedure was developed, 

decreasing the difficulty in rank ordering results: 1) limit results to those with significant overlap 

(p<0.05), 2) remove results with a single gene overlap, 3) rank atop those with significant z-

scores (|z|>1.96), and 4) sort by number of genes per entry. Even with this rank ordered data, the 

number of entries can seem insurmountable. Therefore, graphical representation was used to 

ascertain trends and important entries. Over the course of these analyses, numerous iterations of 

figures were developed to properly present data, such that a reader would find them intuitive and 
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easily understandable. Additionally, these developed formats aid in the process of identifying 

those results most meaningful and conserved within an analysis.  

Simply listing the top 10 results and expanding on their relation to the model of study, is 

not sufficient. Interpretation of results and selection of entries should be grounded in the model 

of study, and effort should be given to integrate the results into a cohesive story. Simply relying 

on statistical outputs can blind one to potentially important results as those statistics are 

inherently reliant upon the data and databases. 

While the difficulty of developing a cohesive biological narrative is lessened through the 

application of these steps (data acquisition, metaRNAseq, MetaPhOrs, IPA, and modified rank 

ordering of results), it is still an arduous and time-consuming task. Nevertheless, the efforts are 

worthwhile, and the resultant outputs allow for greater extrapolation across study and species. 

While the focus of these derived methodologies was developed and instituted in a specific use 

case, they can be applied to additional stages, models, and species. 

1.5 Discussion 

In the following three chapters, I present the meta-analyses of oocyte maturation, 

regulation of maternal mRNA stability via the 3’ UTR during oocyte maturation, the morula-to-

blastocyst transition, and inner cell mass and trophectoderm (ICMTE) lineage specification. 

These works were aimed to identify shared and species-specific changes at both the gene and 

functional level. The results highlight the relatively few shared significant changes at the 

transcriptome level, while identifying the comparatively more shared features at a functional 

level. In all, these works underscore the importance of evaluating both the similarities and 

differences between mammalian species during early development and further the field in 

understanding the complexity of these essential functions. 
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CHAPTER 2. 

ESSENTIAL SHARED AND SPECIES-SPECIFIC FEATURES OF MAMMALIAN 

OOCYTE MATURATION-ASSOCIATED TRANSCRIPTOME CHANGES 

IMPACTING OOCYTE PHYSIOLOGY 

2.1 Abstract 

Oogenesis is a complex process resulting in the production of a truly remarkable cell—

the oocyte. Oocytes execute many unique processes and functions such as meiotic segregation of 

maternal genetic material, and essential life-generating functions after fertilization including 

posttranscriptional support of essential homeostatic and metabolic processes, and activation and 

reprogramming of the embryonic genome. An essential goal for understanding female fertility 

and infertility in mammals is to discover critical features driving the production of quality 

oocytes, particularly the complex regulation of oocyte maternal mRNAs. We report here the first 

in-depth meta-analysis of oocyte maturation-associated transcriptome changes, using eight 

datasets encompassing 94 RNAseq libraries for human, rhesus monkey, mouse, and cow. A 

majority of maternal mRNAs are regulated in a species-restricted manner, highlighting 

considerable divergence in oocyte transcriptome handling during maturation. We identified 121 

mRNAs changing in relative abundance similarly across all four species (92 of high homology), 

and 993 (670 high homology) mRNAs regulated similarly in at least three of the four species, 

corresponding to just 0.84% and 6.9% of mRNAs analyzed. Ingenuity Pathway Analysis (IPA) 

revealed an association of these shared mRNAs with many shared pathways and functions, most 

prominently oxidative phosphorylation and mitochondrial function. These shared functions were 

reinforced further by primate-specific and species-specific differentially expressed genes 
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(DEGs). Thus, correct downregulation of mRNAs related to oxidative phosphorylation and 

mitochondrial function is a major shared feature of mammalian oocyte maturation. 

2.2 Introduction 

Rodent models, particularly mice, comprise the predominant animal models in 

biomedical research, owing to small size, ease of manipulation and husbandry, available tools for 

genetic manipulation, and an ever-increasing legacy of genomics, genetic, and other data to 

enable rapid hypothesis testing. However, although rodent models are highly valuable for some 

basic studies of mammalian biology, significant differences across species limit the value of 

rodent models, particularly in reproductive biology, where litter-bearing rodents have clearly 

different modes of regulation compared with mono-ovular species. In addition, it is well-

established that even some of the most fundamental developmental events in the life of every 

mammal, such as early cell lineage commitment of cells to inner cell mass or trophectoderm, can 

differ across species in key mechanistic respects (1–4). This suggests that a substantial amount of 

variation may exist in controlling mechanisms relevant to reproductive biology, and 

understanding that variation is important for understanding the limits to which any given model 

organism informs us about human reproductive biology. 

That mice are useful models for some aspects of human reproduction, whereas other 

species (e.g., cow) are more useful for other aspects was noted nearly two decades ago (5). The 

implicit lessons are that there is much to be learned by taking advantage of multiple mammalian 

model species to better understand the human embryo or embryos of any given species. In 

addition, it is important to understand which aspects of each species are shared, which are 

species-specific, and which are relevant to understanding human biology. Despite these obvious 

https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B1
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B4
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B5
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conclusions, relatively little headway has been made to date on the incorporation of different 

mammalian models into our quest to understand human reproduction. 

There are likely a variety of reasons underlying the limited use of diverse mammalian 

species to understand human reproduction, such as feasibility, cost, type of study (in vivo vs. in 

vitro), and biased perceptions of relevance. Despite such limitations, these other species have 

been extensively employed, including in recent studies using more current technologies such as 

transcriptome analysis (e.g., see Refs. 6–17). But efficient use of data from diverse species has 

been limited. Most data have been used for addressing immediate and narrowly focused 

questions of interest. Differences in developmental timing, assay platforms, and interlaboratory 

variations in methodology have presented barriers to the broader use of published data, and as a 

result, very few meta-analyses have been attempted for mammalian oocytes or preimplantation 

stage embryos. 

Our goal here was to gain deeper insight into the fundamental mechanisms, pathways, 

and processes that contribute to mammalian oocyte maturation. Our strategy was to apply a 

novel combination of methods to complete a meta-analysis of transcriptome changes during 

oocyte maturation and compare these changes across multiple species. 

Such an analysis must take into account the relationships between maternal mRNA 

storage, translation, and degradation. The controlling mechanisms of these processes are 

complex (18, 19). Within the cytoplasmic compartment, mRNAs can variably be translated, 

stored, or degraded, depending upon the actions of diverse RNA binding proteins, micro-RNAs, 

nonsense-mediated decay factors, and RNA degradation complexes (18–20). mRNA decay can 

occur without translation, during translation, or after translation. Deposition in storage granules 

or other depots can greatly extend mRNA half-life, particularly in oocytes (21), and exit from 

https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B6
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B17
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B18
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B19
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B18
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B20
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B21
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storage can lead to faster degradation. mRNA degradation is achieved by both 5′- and 3′-directed 

exonucleases. Inhibiting translation initiation can enhance the rates of 5′ degradation by exposing 

the mRNA to de-capping. Conversely, stress-mediated inhibition of translation initiation or 

elongation can inhibit decapping and stabilize mRNAs. Poly(A) tail lengthening can enhance 

translation, whereas poly(A) tail shortening can enhance 3′ degradation. Degradation can also be 

coupled to translation or to translational stalling. Because maternal mRNA degradation can be 

coupled to translational recruitment (i.e., removal from storage) and translation, one can infer 

that for many mRNAs, a high rate of degradation during maturation indicates production of 

protein within the cell. Increased degradation may also reflect a shift to translation inhibition and 

less protein production during maturation. To distinguish between such possibilities and capture 

information about mRNA translation, we coupled whole oocyte transcriptome meta-analysis 

with data from a previous analysis of changes in mRNA translation during the first 8 h of in vitro 

oocyte maturation (22). The combination of these datasets allows maternal mRNAs to be 

characterized according to both pattern of stability/degradation and translational regulation. 

This analysis revealed mRNAs that are regulated similarly, mRNAs that are regulated 

species-specifically, and the pathways and cell physiological functions that are associated with 

these classes of mRNAs. The results reveal for the first time that only a limited number of 

mRNAs are regulated similarly across all four species examined, but certain pathways and 

functions nevertheless emerge that are regulated in all species, marking these pathways and 

functions as fundamental to the overall process of oocyte maturation. In addition, the data reveal 

cell physiological functions associated with cohorts of mRNAs that are stable, moderately 

degraded, or highly degraded during maturation, indicating apparent roles before and after 

fertilization. 

https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B22
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2.3 Materials and Methods 

A summary of the process flow of the computational analysis for this study is depicted 

in Fig. 2.1. This included sample set processing for different species, identification of mRNAs of 

different stability classes, processing gene lists through QIAGEN Ingenuity Pathway Analysis 

(IPA; QIAGEN, Hilden, Germany), and interspecies comparisons of mRNA expression classes 

and associated IPA results. Differentially expressed gene (DEG) lists and IPA results are 

described in Supplemental Information (all Supplemental material is available at https://doi-

org.proxy2.cl.msu.edu/10.6084/m9.figshare.14226368.v1). 

2.3.1 Data Selection Processing 

We identified four mammalian species (human, mouse, cow, and rhesus monkey) for 

which RNAseq datasets could be identified that contained both germinal vesicle, immature 

oocyte (GV) and metaphase II, mature oocyte (MII) stage oocytes, at least three biological 

replicates at each stage, and meeting other quality parameters. To access these datasets, we used 

The European Nucleotide Archive. Study parameters are listed in Supplemental Table S1, 

including sequencing platform, sequencing read format/length, and RNA sequencing preparation 

kit. Unless otherwise noted, each study was processed with the following methods. Raw 

sequencing data in FASTQ format were downloaded for processing. Initial quality metrics were 

conducted using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Trimming was conducted with Fastp (v0.20.0) (23): minimum quality threshold of 20, minimum 

length of 20, and removal of low complexity/mononucleotide reads. Genomes index and 

abundance quantified with Kallisto (v0.44.0) (24), using standard settings. 

https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#F0001
https://doi-org.proxy2.cl.msu.edu/10.6084/m9.figshare.14226368.v1
https://doi-org.proxy2.cl.msu.edu/10.6084/m9.figshare.14226368.v1
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B23
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B24
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2.3.2 Human Data Processing 

Two human studies were identified meeting criteria: PRJNA377237 and PRJNA293908 

(12, 25). FastQC identified aberrant nucleotide distribution in the first 13 bp in both studies. 

Therefore, the Fastp settings were set to include a hard trim of 13 bp from start of reads. The 

human cDNA genome (GRCh38, build 100) was downloaded from Ensembl. Quantification and 

differential expression were conducted as detailed under Dataset Selection and Data Processing. 

MII stage oocytes were matured in vivo. 

2.3.3 Rhesus Data Processing 

Two rhesus studies were identified meeting criteria: PRJNA343030 and 

PRJNA448148/PRJNA448150 (13, 17). FastQC identified aberrant nucleotide distribution in the 

first 13 bp in PRJNA343030 and 6 bp in PRJNA448148/PRJNA448150, which were hard 

trimmed accordingly. The rhesus cDNA genome (Mmul_10, build 100) was downloaded from 

Ensembl. Quantification and differential expression were conducted as detailed under Dataset 

Selection and Data Processing. The two studies used two distinct rhesus monkey populations 

(Indian-origin and Chinese-origin), providing for inclusion of genetic diversity in this analysis. 

MII stage oocytes were matured in vivo. 

2.3.4 Cow Data Processing 

Two cow studies were identified meeting criteria: PRJNA261946 and PRJNA228235 

(26, 27). FastQC identified aberrant nucleotide distribution in the first 6 bp for PRJNA228235, 

which were hard trimmed. The cow cDNA genome (ARS-UCD1.20, build 100) was downloaded 

from Ensembl. Quantification and differential expression were conducted as detailed under 

Dataset Selection and Data Processing. MII stage oocytes were matured in vitro. 

https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B12
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B25
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2.3.5 Mouse Data Processing 

Two mouse studies were identified meeting criteria: PRJNA342001 and PRJNA464431 

(15, 28). FastQC identified aberrant nucleotide distribution in the first 13 bp in PRJNA342001 

and 6 bp in PRJNA464431, which were hard trimmed accordingly. The mouse cDNA genome 

(GRCm38, build 100) was downloaded from Ensembl. The study PRJNA464431 consisted of 

three different mouse strains (B6, D2, and BDF1), which were processed independently, 

therefore resulting in effectively four mouse datasets. Quantification and differential expression 

were conducted as detailed under Dataset Selection and Data Processing. MII stage oocytes were 

matured in vivo. 

2.3.6 Differential Expression Calculation and Gene Homology 

Kallisto output was imported into R (v4.0) and processed with DESeq2 (v1.30.0) (29), 

and transcript abundance was collapsed to gene using Ensembl identifiers converted with 

biomartR (v2.45.8), summing transcript isoform abundances for each gene. Two different lists of 

genes were processed through DESeq2 for each study: unfiltered gene lists and only genes with 

high level of homology across species. Because normalization and expression threshold selection 

were performed independently on each gene list, the homology lists were not simple subsets of 

the full gene lists. As the IPA gene set enrichment software is primarily based on human and 

mouse data, there is some concern in mapping genes incorrectly for other species. To address 

this potential concern, the metaPhOrs database (30) was used to identify genes with a high 

degree of homology, and IPA was repeated on this set of homologous genes. All pairwise species 

comparisons were retrieved from the database. Genes with high homology scores across all 

species were retained, numbering 11,272. Differential expression calculations were then repeated 

on this list of homologous genes. Both methods of filtering were conducted in parallel to 

https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B29
https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B30
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ascertain the impact on mRNA overlap and gene set enrichment within IPA. For both methods, 

genes with an FPKM (fragments per kilobase of transcript per million mapped read) above 1 in 

at least one sample were included for differential expression calculation. For each study, DESeq2 

(29) was used to calculate differentially expressed genes (DEGs) between GV and MII, where a 

positive log2(fold-change) indicates a higher expression in MII as compared with GV; the level 

of significance for genes was set at an adjusted P value (false discovery rate: FDR) below 0.05. 

2.3.7 Differential Expression Calculation and Gene Homology 

Within each species, the R package metaRNASeq (v1.0.3) (31) was used to calculate a 

meta P value between studies via the Fisher’s combination method. In short, the Fisher’s 

combination method assumes that gene counts follow a negative binomial distribution within 

each included study. For each gene in each study, the null hypothesis was tested; that each gene 

is not differentially expressed. Whereupon the Fisher’s exact test is applied to calculate gene- 

and study-wise P values. 

In a review of different library preparation kits used in RNA-seq (32), there are inherent 

differences and biases. This was confirmed in this analysis and presented in Supplemental Table 

S1, such that within species, there is a level of variability in the number of captured genes with 

expression and number of mRNAs by stability classification. By leveraging the metaRNAseq 

method, these differences become a strength by allowing the integration of different preparation 

and sequencing methods for the derivation of a cohesive transcriptome. Volcano plots, plotting 

pre- and post-metaRNAseq log2(fold-change) versus FDR, for all species and datasets, can be 

found in Supplemental Figs. S1, S2, S3, and S4. 

https://journals-physiology-org.proxy2.cl.msu.edu/doi/full/10.1152/ajpcell.00105.2021#B29
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2.3.8 Gene Group Classification 

During oocyte maturation, transcription is inactive and there are no new mRNAs being 

produced. Therefore, it is incorrect to state that a gene is “upregulated” in MII compared with 

GV. What is occurring is that many mRNAs are degraded during maturation, thereby drastically 

changing the “background” mRNA population being used to identify DEGs. Thus, ”upregulated” 

mRNAs are preferentially stabilized (i.e., display longer half-lives), degrading at a lesser rate 

compared with the background population. mRNAs calculated to be “downregulated” are those 

that undergo an elevated rate of degradation (i.e., become destabilized or have shorter half-lives). 

In addition, mRNAs exhibiting no significant change in expression undergo a moderate amount 

of degradation, which is less than that impacting the “degraded” class of mRNAs. This situation 

requires the reframing of directional classification of gene classes post-metaRNASeq. Genes 

were thus classified by actual change during maturation: upregulated (MII > GV, termed 

“stable”), no significant change (termed “moderately degraded”), and downregulated (MII < GV, 

termed “highly degraded”). These trifurcated lists were then compared across species, based on 

gene symbol, deriving all possible distinct gene group overlaps. There were a number that were 

found to have discordant directionality: genes regulated in opposite directions across species. As 

the underpinning goal of this study was to identify core shared features, these genes were not 

included in the analysis nor appear in the counts of overlaps. 

2.3.9 Correlating Stability and Translational Changes during Early Oocyte Maturation 

Raw sequencing data in FASTQ format were downloaded for processing for polysome-

associated mRNAs at germinal vesicle stage and at metaphase I of meiosis for mouse oocytes 

(22). Processing of samples was conducted as described under Dataset Selection and Data 

Processing, with the inclusion of the Fastp parameter of a minimum length of 36 bp for reads, 
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matching the original publication. Differential expression was calculated between 0h and 8h post 

maturation induction, corresponding to GV and metaphase I stages. Although not equivalent to 

GV versus MII comparisons, this analysis nevertheless provides some insight into whether 

mRNAs are recruited to or depleted from polyribosomes in response to maturation induction. 

Three classifications of temporal translation pattern were derived: activated (higher in 8 vs. 0h), 

repressed (lower in 8 vs. 0h), and constitutive (no significant difference). These classifications 

were intersected with the three stability classifications, resulting in nine gene groups. 

2.3.10 IPA Core Analysis 

Gene lists were analyzed through the use of Ingenuity Pathway Analysis (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis), focusing on 

Canonical Pathway (CP) and Diseases and Functions (DF) analysis tools (IPA database v. 

11/2020) (33). IPA is a software suite that allows for the enrichment of Canonical Pathways (CP) 

and Biological Functions (BF, a manually selected subset of Diseases and Functions) and the 

development of novel networks, based on submitted gene lists. IPA was selected due to the 

robustness of their database (>7M interactions, >700 pathways, >800,000 expression datasets, 

and >30 integrated third-party databases), and because it is manually curated and has the ability 

to compare multiple datasets. As a typical gene set enrichment methodology, submitted gene lists 

are compared with the genes in each CP/BF to calculate a level of significant overlap (P value; 

significance set at 0.05). In addition, with the known impact of up- or downregulating a gene on 

CP or BF, the IPA software can calculate a direction (activated or inhibited) as indicated by a 

positive or negative z-score (significance set at z > |1.96|). It should be noted that the magnitudes 

of gene expression changes do not factor into the calculations; only the direction of change is 

used. Each derived gene group was submitted to IPA and the CP/BF results were retrieved. 
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2.4 Results 

We first identified shared and species-specific DEGs (mRNAs that change during 

maturation from GV to MII stage) and nonchanging mRNAs, as well as shared and species-

specific Ingenuity Pathway Analysis (IPA) CPs and BFs associated with gene sets. Through the 

analysis of these mRNAs and associated IPA results, we then assessed shared and species-

specific aspects of maternal mRNA regulation during oocyte maturation. 

We analyzed the transcriptomes of the included mammalian species by two methods. The 

first method used the full gene list, mapping Ensembl gene identifiers to gene symbols, and the 

second method limited the analysis to those genes with a high level of homology across all four 

species. This second method addresses disparities in species and associated genome builds (gaps 

in sequencing, unannotated genes, evolutionary divergence, etc.) and possible impacts on results. 

Although the utilization of the full unfiltered gene lists may include genes not annotated in all 

species, the homology-based analysis can result in a decrease in power for the detection of 

DEGs. Presenting the outputs for both methods provides the most complete view of the analysis. 

Both methods are valuable and ultimately displayed highly similar results. 

In addition to accounting for gene homologies, we leveraged the metaRNAseq method. 

This allows for the integration of multiple sequencing studies based on their respective generated 

P values based on a Fisher’s combination method. Because of different sequencing platforms, 

library preparation kits used, and breed/strain/ethnicity variation, and other methodological 

differences between datasets, this metaRNAseq method helps account for these variables. A total 

of 94 sequencing libraries were processed for this study (12 Cow, 38 Mouse, 18 Human, and 26 

Rhesus). An average of 14,380 genes were captured per study (Supplemental Table S1). 
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2.4.1 Identification of mRNA Sets According to Cellular mRNA Stability during 

Maturation 

We categorized mRNAs for each species as highly degraded (MII < GV), moderately 

degraded (MII not significantly different from GV), and stable (MII > GV), and analyzed total 

(“full”) mRNAs detected and highly homologous mRNAs (Supplemental Tables S2–S5). 

Hereafter, numbers of mRNAs will be given in the format: “full mRNA number (highly 

homologous mRNA number).” Across the four species analyzed, we observed a median of 2,151 

(1,316) stable, 11,962 (6,362) moderately degraded, and 2,048 (1,295) highly degraded mRNAs 

(Fig. 2.2 and Supplemental Tables S1, S2, S3, and S5). 

2.4.2 Shared and Species-Specific Members of Different mRNA Stability Classes 

Our next step was to identify mRNAs that changed in abundance with a similar pattern 

across species. We examined transcriptomes for mRNAs regulated similarly across all four 

species (Fig. 2.2, designated hereafter as “All-4” mRNAs). We also identified mRNAs that were 

regulated across three of the four species (Fig. 2.2, designated as “3 of 4” mRNAs). The 

combined set of the All-4 plus the 3-species mRNAs is referred to as “4&3” mRNAs (Fig. 2.2). 

We identified 993 (670) “3 of 4” DEGs include 645 (423) not in rhesus monkey, 33 (23) not in 

human, 174 (119) not in mouse, and 141 (105) not in cow for the full and homology methods. 

Including the use of the 4&3 mRNA sets provided a less stringent look at shared mRNAs that 

considers possible impact of differences in genome annotation completeness across species. Such 

differences could artificially underestimate the degree of conservation of mRNA temporal 

expression profiles and impacts on cellular functions, pathways, and processes during oocyte 

maturation. We reasoned, therefore, that allowing a single species exception to a pattern reduced 
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the risk of such an artifact impacting conclusions of the study. We therefore examined the 

mRNAs and associated IPA results for the 4&3, as well as the All-4 mRNAs alone. 

A prominent result of our analysis was the limited number of All-4 mRNAs (Fig. 2.2, B 

and C, middle column “All-4” group). Although thousands of mRNAs changed in abundance 

during maturation within any one species, only 121 (92) were regulated similarly, comprised of 

40 (24) stable and 81 (68) highly degraded, across all four species. These 121 (92) mRNAs 

accounted for an average of only 1.22% (full method) and 1.58% (Homology method) of the 

total number of 9,878 (5,825) DEGs identified across all four species combined. Even allowing 

for a single species exception, the number of 3-species mRNAs was still comparatively limited 

(Fig. 2.2, column “3 of 4” group in Shared mRNAs). These encompassed 993 (670), consisting 

of 521 (345) stable and 472 (325) highly degraded mRNAs (Supplemental Table S6). Further 

evidence of the dramatic interspecies differences in mRNA regulation was seen with respect to 

the moderately degraded mRNAs. Although a median number of 11,962 (6,362) mRNAs were 

categorized as moderately degraded (i.e., unchanged during maturation), the tremendous 

variation across species in mRNAs being stabilized or degraded resulted in a very limited 

number of mRNAs being classified as moderately degraded across all four species or even three 

of four species (Fig. 2.2). 

Aspects of shared mRNA regulation specific to primate species were observed by 

considering mRNAs displaying changes in human and rhesus monkey only (Fig. 2. 2 and 

Supplemental Table S6). Genes with shared changes in mRNA relative abundance specific to 

rhesus and human, exclusive of 3-species or All-4 mRNAs, included a total of 248 (237), 

consisting of 125 (85) stable and 236 (152) highly degraded mRNAs. There were an additional 

881 (390) primate-specific mRNAs classified as moderately degraded. 
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We observed a range of species-specific changes for mRNAs across the species, 200–

1,474 (165–809) stable and 332–1,692 (220–837) highly degraded (Fig. 2.2 and Supplemental 

Table S7). The rhesus monkey had the fewest species-specific changes, and the human had the 

most. A range of species-specific moderately degraded mRNAs was found for full and homology 

analyses (819–4,024 and 154–777, respectively). We also note that some mRNAs encoded by the 

mitochondrial genome appeared in the species-specific DEG lists but not in the shared All-4 and 

4&3 DEG lists. 

2.4.3 IPA Analysis of Shared and Overall Species Changes in mRNA Abundance 

During maturation, some mRNAs are dramatically degraded in abundance, suggesting 

translation to produce cognate proteins contributing to the maturation process or terminating 

production of those proteins to downmodulate associated functions. Conversely, some mRNAs 

do not undergo degradation, and thus may be reserved to contribute to later functions or may 

become translationally silenced to downmodulate certain functions. The IPA terms “inhibition” 

and “activation” applied to the highly degraded and stable cohorts of mRNAs, respectively, thus 

could indicate which biological pathways and functions are used/terminated and which are 

reserved/sustained for later use. Defining the biological functions of the stable and highly 

degraded classes of mRNAs could thus provide insight into a core set of essential features of 

oocyte maturation that are shared across species, namely pathways and functions that are directly 

associated with the process of oocyte maturation and those that are associated with maternal 

mRNAs roles in the early embryo. To ascertain the overall functional systems enriched per 

species and the core shared features, IPA was applied to the stable and highly degraded whole 

species (WS) DEG lists for each species, the All-4 DEGs, the 4&3 DEGs, and the primate-

specific DEGs. In addition, moderately degraded mRNAs seen specifically in primates were 
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analyzed using IPA. The other moderately degraded gene lists were not processed through IPA 

due to the large number of gene members. 

To identify the core shared processes of mammalian oocyte maturation, the IPA results of 

the All-4, 4&3, and the four whole species DEG lists were compared for stable and highly 

degraded mRNA classes (Fig. 2.3 and Supplemental Tables S8 and S9). The ERK/MAPK 

signaling pathway was significantly affected in IPA results for stable mRNAs identified in the 

All-4, 4&3, and individual whole species (WS)-DEG lists, with predicted activation in all of 

these except the All-4 set (Fig. 2.3 and Supplemental Table S8). Twenty additional pathways 

displayed significant activation (positive z-score) with stable mRNAs from the 4&3 and all 

individual WS-DEG sets, including IGF-1 signaling, ephrin receptor signaling, estrogen receptor 

signaling, IL-3 signaling, and Fms-related receptor tyrosine kinase 3 (FLT3) signaling in 

hematopoietic progenitor cells in all species (full and homologous DEGs; Fig. 2.3 and 

Supplemental Table S8). 

When comparing the IPA CP results on the highly degraded genes, the most prominent 

result present across gene sets was for oxidative phosphorylation, which was inhibited for the 

All-4, 4&3, all individual WS-DEG lists, and for the primate-specific moderately degraded 

mRNAs, with additional effects observed among species-specific DEG sets (Fig. 2.3 and 

Supplemental Table S8). In addition, NRF2 (NFE2L2, nuclear factor erythroid 2-like 2)-

mediated oxidative stress response, assembly of RNA polymerase II complex, and fatty acid 

beta-oxidation I had significantly inhibited z-scores for the 4&3 and all individual WS-DEG sets 

(Fig. 2.3 and Supplemental Table S8). 

Additional similarities were seen comparing results obtained by IPA analysis of each 

individual WS-DEG list that were not present in the All-4 and 4&3 analyses. The shared CPs 
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identified using the full method included ones with activation in all species, such as PEDF 

(SERPINF1, serpin peptidase inhibitor clade F member 1)-mediated and IL-8 signaling, and the 

superpathway of inositol phosphate compounds. The results obtained with the homology method 

included CPs with significant activation z-scores such as superpathway of inositol phosphate 

compounds, endotehlin-1, thrombin, and Gaq signaling (Fig. 2.4 and Supplemental Table S8). 

2.4.4 IPA Analysis of Primate-Specific Stable and Highly Degraded mRNAs 

The comparison of rhesus monkey and human oocyte maturation is of interest for better 

understanding processes that may be unique to primates, and which may cooperate with those 

features identified from examining the shared mRNA lists. In addition, common features of these 

two closely related species would provide corroboration of results obtained for each species. 

Primate-specific stable CPs included: role of cytokines in mediating communication between 

immune cells and IL-12 signaling and production of macrophages. Primate-specific moderately 

degraded mRNAs were significantly enriched in oxidative phosphorylation and eukaryotic 

translation initiation factor 2 (EIF2) pathway, both activated. The assembly of RNA POL-II 

complex, glutamate receptor signaling, and the superpathway of methionine degradation were 

found in the highly degraded DEG results (Fig. 2.5). The BF analysis (Fig. 2.5) showed no 

overlap between methods; the full method consisted of RNA processing and lipid synthesis, 

whereas the homology method identified hypoplasia and gamete/gametogenesis. A similar result 

was found for the moderately degraded mRNAs, with the full gene list method yielding effects 

on translation of RNA and transport of ion/metals. The homology method results included 

MAPKKK cascade and phosphorylation of l-tyrosine. Analysis of the highly degraded DEGs 

yielded effects associated with contractility of muscle, exocytosis of dense core granules, and 

conversion of isocitric acid (Fig. 2.5). 
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2.4.5 IPA Analysis of Species-Specific Changes in mRNA Abundance 

The aforementioned analysis focused on features of maternal mRNA regulation that were 

shared across species or that were primate specific. Because shared mRNAs accounted for a 

small fraction of the total number of mRNAs that were analyzed, and because each individual 

species displayed dynamic regulation of thousands of mRNAs, oocyte maturation is 

accompanied by species-specific modulations of maternal mRNAs. These species-specific 

modulations may signify species-specific requirements for oocyte function or early embryo 

development, which in turn may signify species-specific sensitivities to exogenous influences 

such as maternal health or environmental factors. In addition, species-specific mRNA 

modulations may act cooperatively with the shared changes. We therefore applied IPA analysis 

to the species-specific stable and highly degraded DEG sets to gain insight into pathways and 

functions associated with mRNAs that are regulated in a species-specific manner (Supplemental 

Tables S8 and S9). 

Of note were those CPs/BFs overlapping from the All-4, 4&3, and species-specific 

datasets. Using both the full and homology DEGs, mouse-specific highly degraded DEGs were 

enriched for oxidative phosphorylation, mitochondrial dysfunction, and sirtuin signaling. These 

same pathways were also found for cow-specific highly degraded DEGs from the full method. In 

addition, human-specific highly degraded DEGs were enriched for the NRF2-mediated oxidative 

stress response. When comparing the BF results from the species-specific stable DEGs, the 

function organismal death was reinforced for all species, and cell cycle progression for human, 

rhesus, and mouse. There were no overlapping functions found from the highly degraded DEG 

functions. 
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2.4.6 Regulation of mRNAs Related to Oxidative Phosphorylation 

One of the most prominent results identified was the shared inhibition of the oxidative 

phosphorylation pathway across all species and datasets from the highly degraded DEGs. From 

the IPA database, the oxidative phosphorylation pathway has 109 member molecules. 

Interestingly, while an average of 47 of those 109 genes were among the DEGs for any given 

species (Human = 49, Rhesus = 27, Cow = 49, and Mouse = 73), 31 were shared by three of the 

four species and eight were shared by All-4 species. There were 24 DEGs shared between any 

two species and 17 species-specific DEGs. When splitting the DEGs by mitochondrial 

complexes (I–V), the majority of shared DEGs (n = 5) were from complex I and most of the 

species-specific DEGs were in complex IV (Fig. 2.6). In addition, when cross-referencing the 

mouse DEGs with the translational state, we found 68 entries with 19 constitutively translated 

and 49 repressed. 

2.4.7 Relationship between Stability Classes and Early Maturational Changes in mRNA 

Translation 

As previously stated, during oocyte maturation, transcription is inactive and stored 

mRNAs are either degraded, translated, or stabilized for use later. Luong et al. (22) employed the 

RiboTag method to explore the early maturation-related changes in mRNA translation during the 

first half of in vitro maturation period for mouse oocytes, from the GV to first meiotic metaphase 

stages. They defined three distinct groups of mRNAs based on changes in polyribosome 

abundances during this interval: activated (increased representation in polyribosomes), 

constitutive (constant representation in polyribosomes), and repressed (reduced representation in 

polyribosomes). The availability of this analysis in the mouse provides an opportunity for better 

understanding how initial changes in translation status relate to the stability classes identified 
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here. This allowed comparison of the shared 4&3 class of mRNAs to the different translation 

classes defined on events during early oocyte maturation (Fig. 2.7). 

Comparing the three translational groups with the three stability groups identified here 

for the mouse revealed that a large fraction of the stable DEGs (n = 959; 38.15%)) were 

classified as translationally activated. Most (n = 1,311, 60%) highly degraded mRNAs were in 

the constitutively translated class with another 813 (37.38%) of the highly degraded mRNAs in 

the translationally repressed class, and very few in the activated class. Most (n = 7,166, 82.99%) 

of moderately degraded mRNAs were constitutively translated (Fig. 2.7). Similar patterns were 

seen when comparing the All-4 and the 4&3 DEG sets to the mouse results, although the 

proportion of activated highly degraded mRNAs was much lower, as was the proportion of 

stable-repressed mRNAs (Fig. 2.7). 

Subjecting the different translation-stability groups to IPA revealed prominent pathways 

and functions associated with particular combinations (Fig. 2.8 and Supplemental Tables S10 

and S11). The stable-repressed category could only be examined for the mouse DEGs due to the 

small number of genes for the 4&3 group. The mouse stable-repressed group yielded significant 

associations with many signaling pathways (vascular endothelial growth factor VEGF, ciliary 

neurotrophic factor CNTF, insulin-like growth factor 1 IGF1, and Ephrin) and a prominent 

association with superpathway of inositol phosphate compounds, along with numerous entries 

for myoinositol, inositol, and phosphoinositide signaling and a relevant significant effect on 

calcium signaling. The stable-activated category for the 4&3 shared DEGs yielded significant 

effects for many CPs and BFs related to cell cycle and cell division such as G2/M DNA damage 

checkpoint, mitotic roles of polo-like kinase, kinetochore metaphase signaling, and cyclins and 

cell cycle regulation, as well as associations with cell viability, organismal death (inhibited), and 
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mRNA degradation. These results were also seen for the mouse DEGs, along with effects on 

many other CPs and BFs. One striking result of this analysis was that the top results obtained for 

highly degraded-repressed category for both 4&3 and mouse DEGs were for strong inhibition of 

oxidative phosphorylation, and an effect on mitochondrial function, both with very strong P 

values [-log10(P) > 20] and associated with effects on numerous mRNAs encoding 

mitochondrial proteins. Fatty acid beta-oxidation was also inhibited. Affected BFs included 

inhibition of ATP synthesis and oxidative phosphorylation and activation of oxidative stress. 

This result was accompanied by predicted activation of sirtuin signaling, a result that may 

emerge from IPA due to the role for sirtuin signaling in regulating mitochondrial functions (34). 

The highly degraded-repressed DEGs were also associated with inhibition of NRF2-mediated 

oxidative stress response and effects on multiple BF entries related to protein synthesis. 

2.5 Discussion 

An essential question in reproductive biology is what constitutes a high-quality oocyte in 

mammals. To answer this question, it is instructive to consider data obtained from different 

species to identify fundamental characteristics of normal oocyte maturation and strategies for 

managing the rich oocyte endowment to ensure not only oocyte maturation but also preservation 

of the requisite endowment of mRNAs to support early embryogenesis. We provide here the first 

meta-analysis to convey a comprehensive cross-species comparison of oocyte transcriptome 

changes associated with mammalian oocyte maturation. We applied a methodology that was 

designed to account for differences in library quality, molecular reagents, genome annotations, 

and sequencing platforms. 

One main conclusion from this analysis is that, although each individual species displays 

many thousands of mRNAs that change in abundance, there emerged a small set of just 121 (92) 
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mRNAs regulated in common (i.e., highly degraded, or stable) across all four species, and just 

993 (670) additional mRNAs that changed in at least three of the four species analyzed, which 

averaged to just over one quarter of DEGs observed between GV and MII stage oocytes for each 

species. Thus, the degree of species conservation for transcriptome change during oocyte 

maturation is limited. This discovery highlights a surprising degree of divergence, given the 

presumed central importance of maternal mRNA regulation in oocyte function and early embryo 

development, and suggests that essential functions may not be strictly enforced at the individual 

gene level but rather at the level of overall pathway and function. 

Indeed, despite the limited number of shared DEGs, our analysis was successful in 

highlighting many pathways and functions that are either used/terminated (highly degraded 

mRNAs) or reserved/sustained (stable mRNAs) in common across four mammalian species by 

maternal mRNA regulation during oocyte maturation, denoted by the IPA terms inhibition and 

activation, respectively. Shared aspects of transcriptome regulation during early maturation were 

observed both for shared DEG lists and attendant IPA results, and by comparing the IPA analysis 

obtained for WS-DEG lists for each individual species. This suggests species divergence in the 

regulation of stability of specific mRNAs, but with an underlying adherence to an essential set of 

functional outcomes; i.e., different mRNAs may be regulated to achieve effects on shared 

pathways or biological functions. 

The most prominent shared functional outcomes to emerge from examining pathways and 

functions associated with the shared DEGs was the downregulation of mitochondrial function, 

reflected in inhibition of oxidative phosphorylation. Inhibition of NRF2-mediated oxidative 

stress response was also prominent. A majority of the shared DEGs related to oxidative 

phosphorylation encode components of complex I, whereas many of the species-specific DEGs 
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related to oxidative phosphorylation encode proteins in complex IV. The highly degraded, 

translationally repressed (reduced in polyribosomes) subset of 4&3 DEG mRNAs were strongly 

associated with inhibition of oxidative phosphorylation and ATP synthesis, involving many 

mRNAs encoding mitochondrial proteins (Fig. 2.8). Such early maturational mRNA degradation 

coupled with reduced polyribosomal abundance during the first 8h of maturation suggests that 

this downmodulation of oxidative phosphorylation is an early, shared, regulated process that 

begins with translational repression followed by transcript degradation. This result indicates that 

across all four species there is a dramatic exit of mRNAs associated with mitochondrial function 

and ATP synthesis from the polyribosomes followed by degradation. We note that 

downmodulation of oxidative phosphorylation and mitochondrial function may be protective by 

reducing mitochondrial activity and limiting reactive oxygen species production (35). The 

simultaneous shared degradation-translational repression of the NRF2-mediated oxidative stress 

response pathway further suggests the importance of downregulating oxidative phosphorylation. 

Indeed, a deficiency in the degradation of mRNAs related to oxidative phosphorylation is a key 

feature of human and rhesus monkey oocytes that fail to mature (13, 36). mRNAs related to 

nucleotide excision repair, fatty acid beta oxidation, and assembly or RNA polymerase II 

complex were also seen for degraded mRNAs. This suggests that these functions are also 

used/terminated across species. 

To our knowledge, this is the first study to examine the connection between maternal 

mRNA stability and translation status during early oocyte maturation. Conservation of these 

relationships is seen across species. Across stability categories, constitutively translated (mouse) 

mRNAs comprised the bulk of mRNAs detected. mRNAs that are moderately degraded across 

all four species are mostly in the mouse constitutively translated class. A large proportion of the 



 

 32 

shared (All-4 and 4&3) stable mRNAs are in the mouse translationally activated category. 

Conversely, a large proportion of the shared highly degraded mRNAs are in the mouse 

translationally repressed and constitutively translated categories. This indicates that the 

regulation of degradation at least during early oocyte maturation is connected to translation for 

large cohorts of mRNAs. 

Stable-repressed mRNAs in the mouse are associated with multiple signaling pathways, 

particularly inositol and calcium signaling effects (Fig. 2.8). Early translational repression of this 

subset of stable mRNAs may sequester them to support later functions, such as oocyte activation. 

The stable-activated subset of mRNAs were associated with numerous G2/M and M-phase 

pathways and functions, checkpoint controls, transcription, as well as shared activation of 

pathways related to stress response, endocrine and cytokine signaling, pluripotency, and 

microtubule dynamics, but apparent shared inhibition of functions related to death and 

chromosomal instability (Fig. 2.8). We also found that stable mRNAs were strongly associated 

with inhibition of apoptosis and organismal death and activation of cell survival and viability 

functions. These were accompanied by predicted activation of other basic functions such as 

cytoskeletal and cytoplasmic organization and DNA replication. These observations indicate that 

mRNAs that are stable and translationally activated during early maturation may endow the 

oocyte with numerous essential proteins that support key signaling processes and cell survival 

and proteins that support early embryogenesis. 

Beyond the early oocyte maturation period, other maternal mRNAs may be 

reserved/sustained for later use in the embryo. Stable mRNAs across species were associated 

with a variety of signaling pathways such as ERK/MAPK, IGF1, Ephrin, Estrogen, IL3, and 

EGF, as well as DNA damage checkpoint regulation, and several biological functions related to 
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viability, cytoskeleton regulation, and transcription. Several of these functions were previously 

associated with mRNAs present on both MII stage oocyte and 1-cell stage polysomes (37). 

Earlier studies revealed maternal mRNAs encoding transcription regulators that act 

postfertilization (35, 38, 39) and both DNA repair and checkpoint control can be vital processes 

following fertilization (40–42). DNA repair and checkpoint control functions were also 

associated with polysomes in MII stage oocytes and fertilized embryos (37). Successful 

expression of proteins related to inhibiting apoptosis was previously proposed as an important 

embryo quality surveillance mechanism after fertilization (43). 

Overall, this meta-analysis of oocyte maturation-associated transcriptome changes across 

four mammalian species used an improved approach that identified key shared functions that are 

driven by limited numbers of shared DEGs. Chief among these is the downmodulation of 

mRNAs related to mitochondrial activity, oxidative phosphorylation, and ATP synthesis. This is 

the first study to conduct such a meta-analysis in mammalian oocytes. Previous studies compared 

expressed mRNAs between oocytes of different species (16, 44), but a detailed look at 

maturation-related changes in the transcriptome conserved across species has not been reported. 

One previously published meta-analysis explored published microarray oocyte datasets for 

human, mouse, rhesus, and cow (44). Our study employed a more sensitive mRNA expression 

detection method (RNAseq vs. microarray), thereby quantifying a larger number of mRNAs, and 

employed a more rigorous approach to functional interpretation of the DEGs. These combined 

approaches extend insights gained previously. Indeed, we note that no DEG overlaps were 

observed across all species during oocyte maturation in the earlier study, whereas we identified 

121 (92) shared DEGs. However, we also note that the previously reported Gene Ontology 

enrichment of DEGs associated with oocyte developmental competence shared by at least two of 
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the included species were also revealed in our findings of effects on mitochondrial function. This 

further supports the conclusion that the regulation of the oocyte transcriptome related to 

mitochondrial function and oxidative phosphorylation is a key aspect of oocyte maturation. 

The limited degree of conservation of transcriptome changes (i.e., mRNAs displaying 

significant change in relative abundance) across species echoes recent observations comparing 

different mouse inbred strains and their F1 hybrids (15). In that study, substantial variation was 

also observed for transcriptome changes during maturation. These observations indicate that the 

dynamic process of transcriptome change during oocyte maturation is subject to considerable 

genetic variability. Our data reveal a core set of features that are indeed shared across species. 

However, there is a vast amount of maturational change in the oocyte transcriptome that is highly 

specific to individual species or strains. Even looking at the level of IPA pathways and functions, 

there are many differences across species. This remarkable species divergence poses significant 

challenges for efforts to identify molecular markers of oocyte quality, as well as endeavors to 

optimize in vitro manipulation systems, because oocytes and early embryos of different species 

may accordingly have very different optima for in vitro culture and other procedures. In addition, 

the finding that such differences exist in maternal mRNA regulation during oocyte maturation 

indicates that there are likely multiple strategies for the generation of high-quality oocytes 

employed in different mammalian species or even different strains. This discovery sets the stage 

for many interesting future studies to understand why such divergent strategies exist and what 

exogenous factors and forces have driven the emergence of such diversity among mammals. In 

addition, the results provide an important baseline against which to judge the extent to which 

transcriptome alterations impacting essential features emerge under conditions that compromise 
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oocyte quality. The understanding gained here of essential shared and species-specific aspects of 

oocyte maturation may thus be useful for designing novel methods for predicting oocyte quality. 
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Figure 2.1 – Flowchart of analysis. 

Input read counts for each study (a) were imported into DESeq2 and significant differences are 

calculated between germinal vesicle, immature oocyte (GV) and metaphase II, mature oocyte 

(MII) (b). Within each species, the P values for all included studies were input into metaRNASeq 

to calculate differentially expressed genes (DEGs) between GV and MII, resulting in whole 

species (WS) DEGs (c). Comparison of WS DEGs and derivation of gene groups (d). Each gene 

list was trifurcated based on direction (stable, moderately degrade, and highly degraded): 1) 

individual species results, 2) mRNAs regulated in the same direction from “All-4” species, 3) 

mRNAs regulated in the same direction by “3 of 4” species, 4) mRNAs regulated in the same 

direction by only human and rhesus, 5) mRNAs regulated in a species-specific (SS) manner, and 

each gene list was sub mitted to IPA (e) for Canonical Pathways (CP) and Biological Functions 

(BF) analysis. 
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Figure 2.2 – Gene regulation groups during maturation. 

Gene regulation groups during maturation. Visual representation of stability classes, 

numerological depiction of mRNAs, classified by regulation and species. A: Venn diagram 

overlap of stable + highly degraded mRNAs across the four species using the full gene method. 

B: Venn diagram overlap of stable + highly degraded mRNAs across the four species using the 

homology method. C and D: gene counts for full and homology method analyses, respectively, 

for mRNAs identified by stability classification. Column 1, WS mRNAs, denotes global 

classification of changes for each whole species gene lists. Column 2 (Shared mRNAs) shows 

selected mRNAs overlaps of: “All-4” species, “3 of 4” species, and primate-specific mRNAs. 

Column 3 (SS mRNAs) shows the number of mRNAs regulated in a species-specific manner. 

The associated mRNA numbers and gene lists are found in Supplemental Tables S2, S3, S4, S5, 

S6, and S7. 
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Figure 2.3 - Ingenuity Pathway Analysis (IPA) features during maturation from shared 

differentially expressed genes (DEGs). 

The top selected IPA entries pertinent to oocyte maturation, derived from DEGs shared by all 

four (“All-4”) and at least three species (“4&3”). The four panels represent IPA CP and BF 

results obtained for DEGs identified by the full and homology methods. Each panel has two 

vertical facet plots for each mRNA stability classification: stable and highly degraded. For each 

plot, the x-axis denotes the -log10(P value) and the y-axis are the IPA entries. The color of each 

points represents the z-score: activated = red, inhibited = blue, no-significant = black. Vertical 

dashed lines at 1.3 equates to a P value of 0.05. Associated data and additional IPA entries are 

listed in Supplemental Tables S8 and S9. 
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Figure 2.4 - Additional Ingenuity Pathway Analysis (IPA) features during maturation 

shared by all species. 

IPA entries pertinent to oocyte maturation shared by all species while not present in All-4 and 

4&3 analyses. The four panels show IPA CP and BF results obtained for DEGs identified by the 

full and homology methods. Each panel has two vertical facet plots for each mRNA stability 

classification: stable and highly degraded. For each plot, the x-axis denotes the -log10(P value) 

and the y-axis are the IPA entries. The color of each points represents the z-score: activated = 

red, inhibited = blue, not-significant = black. Vertical dashed lines at 1.3 equates to a P value of 

0.05. Associated data and additional IPA entries are listed in Supplemental Tables S8 and S9. 
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Figure 2.5 - Ingenuity Pathway Analysis (IPA) features during maturation from primate-

specific regulated mRNAs. 

The top selected IPA entries pertinent to oocyte maturation from primate-specific regulated 

mRNAs. The four panels represent IPA CP and BF results obtained for DEGs identified by the 

full and homology methods. Each panel has three facet plots for each mRNA stability 

classification: stable, moderately degraded, and highly degraded. For each plot, the x-axis 

denotes the -log10(P value) and the y-axis are the IPA entries. The black color of the points 

denotes no significant z-score. Vertical dashed lines at 1.3 equates to a P value of 0.05. 
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Figure 2.6 - Overlap of species regulation of differentially expressed genes (DEGs) in the 

oxidative phosphorylation pathway. 

UpSet plot depicting the overlap of highly degraded DEGs from each species that were found in 

the oxidative phosphorylation pathway. Figure depicts the overlaps for the entire pathway and 

DEG membership by mitochondrial complexes. 
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Figure 2.7 - Connecting stability and translational classification. 

For the three stability classifications (stable, moderately degraded, and highly degraded), 

mRNAs were intersected with translational classifications (activated, constitutively, and 

repressed). The x-axis represents the three stability classes, and the y-axis the number of mRNAs 

identified. The left facet of the figure is split into three rows, representing gene list origin: All-4, 

4&3, and whole species (WS) mouse. Labels above bars denote number of genes from the full 

method on top, with the number generated from the homology method within parenthesis. The 

summation of the total number of identified genes, per gene list, are shown in the right facet. 

Coloring denotes translational classifications: red = activated, gray = constitutively, and blue = 

repressed. 
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Figure 2.8 - Key Ingenuity Pathway Analysis (IPA) features of translation-stability 

classified groups. 

Key IPA features for the stable and highly degraded mRNAs subdivided into activated or 

repressed translational categories. IPA results are presented for two submitted gene lists: whole 

species (WS) mouse and the 4&3 gene group. Exterior textbox coloring denotes the predicted z-

score for each listed Canonical Pathways (CP)/Biological Functions (BF). Red = activated, Blue 

= inhibited. IPA entries are grouped by classified translation-stability groups. 
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CHAPTER 3. 

REGULATION OF MRNA STABILITY VIA THE 3’ UTR DURING OOCYTE 

MATURATION 

3.1 Abstract 

During oocyte maturation, the transition from immature (germinal versicle or GV) to 

mature (metaphase II or MII), thousands of transcripts change in relative abundance. However, 

during this process, the cell is transcriptionally inactive and the resulting change in relative 

abundance chiefly comes down to posttranscriptional mechanisms. Specifically of note are RNA 

binding proteins (RBPs) that bind to the 3’ untranslated region and control storage, translation, 

and stability of transcripts. Utilizing publicly available oocyte maturation RNAseq data, across 

five mammalian species (human, rhesus monkey, cow, pig, and mouse), and applying a machine 

learning feature selection and regression algorithm, RBPs were identified that are associated with 

mRNA stability. To further highlight RBPs with similar motif and overall predictive impact on 

stability, a clustering algorithm was applied to the RBP motifs. This resulted in a group of RBPs 

binding to AU rich motifs, either shared across species, a subset of species, or specific, 

impacting mRNA stability during oocyte maturation. 

3.2 Introduction 

Oocyte maturation results in the changes of relative abundance of thousands of maternal 

mRNAs that undergo a complex pattern of polyadenylation, degradation, and translation. These 

transcripts are essential for the oocyte to meet the physiological demands and are required for 

later events such as genome activation. The time from the breakdown of the germinal vesicle 

stretching to embryonic genome activation encompasses a range of physiological and 
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developmental demands that must be met, and that require the production of proteins at the 

necessary times (1,2). Posttranscriptional regulation is an essential mode for regulating protein 

production and expression, chiefly conducted via cis-regulatory elements within the 3’ 

untranslated region (3’ UTR). These 3’ UTR elements are acted upon by trans-acting factors, 

such as RNA binding proteins (RBPs). 

Current research into RBPs and their respective roles in modulating maternal mRNAs is 

limited, and this deficiency is increased when comparing across species. This is a multi-layered 

problem. Evolutionary divergence can occur at the mRNA sequence level impacting binding 

sequence sites, secondary structure, and ultimately altering the binding affinity of RBPs. As 

noted in chapter 1, a meta-analysis of mRNA regulation in four mammalian species (3), the 

number of shared similarly regulated maternal mRNAs during oocyte maturation is highly 

limited. The second layer can occur at the protein level, resulting in protein conformation 

changes and motif recognition sites. To date, more than 1500 RBPs have been cataloged in 

human cells (4). The binding sites, localization, and function of >350 RBPs have been reviewed, 

finding 28% are involved in splicing, 46% with more than one function, and 23% lacking an 

annotated function (5). Therefore, the difficulty in extrapolating species conservation of RBP 

functions and their associated targets, as they relate to maternal mRNA regulation, is 

compounded. 

Acknowledging the limitations in high-resolution data regarding RBP binding and 

regulation of maternal mRNAs, an unbiased cross-species computational analysis was 

undertaken. Whole transcriptome changes during oocyte maturation across five mammalian 

species (human, rhesus monkey, cow, pig, and mouse) was calculated and mRNAs were binned 

into statistically different stability categories (stable and highly-degraded). Public databases 
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containing RBP motif sequences were retrieved, and their binding sites were identified via 

computational predictive software amongst the two stability groups. This was followed by 

overlaying RBP mRNA and proteomic expression, and their annotated functions. A total of 120 

RBPs were interrogated in this analysis, 105 of which had identified expression in at least one 

species. The RBP binding site data was then subjected to machine learning feature selection and 

regression algorithms, identifying high-value RBPs. By further clustering the high-value RBP 

motif sequences, a core group of RBPs targeting AU rich motifs were identified. The result was a 

novel collection of shared RBPs identified as likely to regulate mRNAs in multiple species. This 

analysis thus provides valuable new insight into the mechanisms controlling mRNA utilization 

and how this affects oocyte and embryo biology. 

3.3 Materials and Methods 

3.3.1 Study Selection 

The datasets used in this study were based on those interrogated previously (3) with the 

inclusion of one additional study (6). The parameters for the inclusion of RNA sequencing 

datasets were to contain both GV and MII stage oocytes with at least three replicates per stage. 

This resulted in a collection of datasets for five mammalian species (human, mouse, cow, rhesus 

monkey, and pig). 

3.3.2 Sample Processing 

Pre-processing of the raw sequencing data, quantification of transcripts, and calculation 

of differentially expressed genes, used the same methods as before (3). The processed studies 

included: human (PRJNA377237 and PRJNA293908), rhesus (PRJNA343030 and 

PRJNA448148/PRJNA448150), cow (PRJNA261946 and PRJNA228235), and mouse 
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(PRJNA342001 and PRJNA464431). Briefly, initial QC metrics were found using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc; RRID:SCR_014583), trimming was 

performed using Fastp (RRID:SCR_016962, v0.20.0) (7), transcript quantification was 

performed with Kallisto (RRID:SCR_016582, v0.44.0) (8), and DEG calculations were 

performed with DESeq2 (RRID:SCR_015687, v1.30.1) (9). For the pig study (6), all software 

utilized standard settings, excluding trimming: initial QC metrics detected abnormal nucleotide 

distribution in the first 9 basepairs, and reads were subsequently hard trimmed.  

While Kallisto was used for the quantification of transcripts, physical alignments of reads 

were required for the exploration of the 3’ UTR. This was conducted using STAR (v2.7.3a, 

RRID:SCR_004463) (10) (Figure 3.1, Phase 1). The genomes (GRCh38, Mmul_10, ARS-

UCD1.20, GRCm38, Sscrofa11) were retrieved from Ensembl (build 102, RRID:SCR_002344) 

(11) and were indexed with STAR, the parameter sjdbOverhang was the only variable, matching 

the requirement based on the sequencing length per each study (Supplemental Table S1). STAR 

SAM outputs were converted and sorted to BAM with SAMtools (v1.10, RRID:SCR_002105) 

(12).  

3.3.3 Statistical Difference in Abundance & Stability Classification 

As noted previously (3), the changes in mRNA abundances between the GV and MII 

stages are a matter of modulating relative stability during a time of transcriptional silence. 

Therefore, we opted to drop the terms “up-regulated” or “down-regulated”, instead using 

classifications based on stability. In short, transcript quantification was conducted by Kallisto, 

and statistical significance (FDR<0.05) determined by comparing GV and MII relative mRNA 

abundances for each individual study via DESeq2. Studies within species were integrated via 

metaRNAseq (v1.0.3, RRID:SCR_002174) (13), deriving a unified p-value via a Fisher 
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combination method. This yielded a single list of genes and their associated statistical 

classification per species. These lists were then classified by stability: GV>MII termed highly-

degraded, GV~MII moderately-degraded, and GV<MII stable. It is important to note that this 

approach avoids artificial suppression of DEG numbers when using multiple datasets for each 

species, as could otherwise occur by looking for simple intersects between individual study DEG 

lists. 

3.3.4 3’ UTR Identification and Extraction 

To accurately explore the impact of mRNA  3’ UTRs on their stability during oocyte 

maturation, we first determined the sequence coordinates delineating the 3’ UTRs based on the 

acquired sequencing data (Figure 3.1, Phase 1). To do this, we used APAtrap (14). Preparation of 

data for APAtrap required the quantification of genome coverage. From the sorted and indexed 

BAM files, genome coverage was calculated with BEDTools (v2.29.2, RRID:SCR_006646) 

(15). From the genome coverage files, the APAtrap function identifyDistal3UTR, using standard 

settings was applied, identifying the 3’ UTR coordinates. 

The coordinates of all 3’ UTRs identified from APAtrap were imported into R (v4.1.0) 

for further analysis. For each species, the fasta sequences, DNA coded, of all 3’ UTRs were 

extracted with the package BSgenome (v1.58). As a comparison, the annotated 3’ UTR 

coordinates and fasta sequence were retrieved using the biomaRt (v2.46.3) package for each 

species. 

3.3.5 Identification of RNA Binding Protein Motifs within the 3’ UTR 

Identification of RBA binding protein motifs within the 3’ UTR were limited to the 

statistically significant different stability groups: stable and highly-degraded. This was conducted 
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using the FIMO (16) tool from the MEME suite (RRID:SCR_001783) (17) (Figure 3.1, Phase 2). 

The FIMO tool (Find Individual Motif Occurrences), identifies all occurrences of motifs within 

supplied sequences.  

RBP motifs were retrieved from the CISBP database for each of the input species (18), 

and the CISBP IDs were mapped to protein symbols. For situations where motifs for a given 

RBP was not present for a given species, the human equivalent motif was utilized. The 

AtTRACT database (19) was cross-referenced for additional RBPs not present in the CISBP 

database and were previously found to be involved in oocytes and/or mRNA stability. RBP 

motifs were converted to MEME minimal format using custom scripts. These concentrated RBP 

lists were used to find all occurrences of RBP motifs within species, with a E-value threshold of 

1e-4, for both stable and highly degraded mRNA classes. The location of all RBP motifs for each 

species were reformatted to tabulate the total occurrences of each RBP motif for each gene. For 

each species, the resultant matrices for stable and degraded classes, consisted of three columns: 

1) gene, 2) RBP, and 3) number of sites. This long-data format was then transformed to wide 

format: rows consisting of genes, columns consisting of RBPs, and the interior matrix data 

representing number of RBP sites per gene. An additional column was appended, consisting of 

the maximal Log2Foldchange for each gene from the input studies. This resulted in a single 

matrix for each species containing the frequency of motifs for all stable and highly-degraded 

mRNAs and their respective magnitudes of change.  

For the selected RBPs, publicly available data were retrieved to identify their respective 

expression from three different sources: RNA transcriptome data, protein/proteomics data, and 

mRNA presence on polysomes. RNA expression was mapped from the input studies, containing 

GV and MII samples. For protein expression, human data was extracted from (20), mouse from 
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(21) and (22), and pig from (23). For mRNAs bound to polysomes, cow data was extracted from 

(24), and mouse from (25).  

3.3.6 Statistical Analysis and Machine Learning on 3’ UTR Motifs 

To determine which RBPs are most predictive of mRNA stabilization or degradation 

during oocyte maturation, we utilized a machine learning approach to identify 3’UTR motifs that 

are highly predictive of mRNA degradation or stability during maturation (Figure 3.1, Phase 3). 

Machine learning (ML) is a wide-ranging computational science field consisting of statistics, 

information theory, and artificial intelligence, able to handle large amounts of data. Current 

techniques include clustering, feature selection, classification, and regression models (26). 

Specific ML practices relevant to this present study, are feature selection and regression models. 

Feature selection is a step in ML applications that aims to reduce the number of input 

variables, arising at the minimally optimum number, increasing the accuracy of ML algorithms 

(27). For this analysis, features are represented as the RBPs, and the feature selection algorithm 

utilized is Boruta. The Boruta feature selection is built around the random forest algorithm and 

employs a method that does not compete features against other features, rather a randomized 

‘shadow’ version of themselves. A threshold is derived using the maximal importance score from 

the ‘shadow’ features, and only those non-shadow features exceeding the threshold are deemed 

important. The Boruta function thereby trims the input features (RBPs), leaving those that 

exceed the defined maximal importance score of their respective shadow features.  

With the post-feature selected dataset, the next step is to apply some form of statistical 

modeling, e.g., classification or regression. Utilizing the values of Log2FoldChange, I opted to 

utilize the xgboost regression methodology (28).  
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To that end, the RBP motif matrices generated for each species were analyzed in python 

(v3.8.5). mRNAs with a fold-changes below 1.0 (log2foldchange=0.5849625) were excluded. 

Boruta feature selection was conducted using BorutaShap package (1.0.16) (29). The BorutaShap 

function was called as follows: 

BorutaShap(model=XGBRegressor(),importance_measure='shap',classification=False,percentil

e=75) with the xgboost (v1.4.2) regression and the XGBRegressor parameters set as: 

XGBRegressor(learning_rate=0.02, subsample=0.2, colsample_bytree=0.5, 

n_estimators=5000). 

Shapley Additive Explanations (SHAP) (30) values were estimated from the regression 

output from the python package Shap (v0.39) (31), using the TreeExplainer (32) function. SHAP 

values, developed from a game theory basis, quantify the contribution of each feature (RBP) on 

observations (genes), and the overall impact on model predictions (Log2Foldchange, and by 

proxy mRNA stability). SHAP values are not calculated on a per feature (RBP) basis, rather they 

are calculated on a per observation (gene) basis. 

In summary, the machine learning portion of this analysis takes the number of RBP or 

miRNA motif sites per gene, selects relevant features (RBP), applies a regression analysis upon 

the Log2FoldChange of genes, deriving a SHAP scores. This allows for the interrogation of 

RBPs and visually comprehend the overall predictive correlation between motif frequency and 

mRNA stability. The output from this machine learning analysis were exported to R for plotting. 

From the list of selected RBP, their respective motifs were analyzed with the software 

package GimmieMotifs (33), aiming to cluster similar motif sequences, without using the 

complementary motif sequences. 
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3.3.7 Ingenuity Pathway Analysis 

RBP mRNA targets were analyzed though the use of Ingenuity Pathway Analysis 

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis), 

focusing on Canonical Pathway (CP) and Diseases and Functions (DF) analysis tools (IPA 

database v. 11/2021). The IPA software is a suite of tools that can calculate the overlap between 

submitted gene lists and their database containing pathways and functions (disease and cancer 

related functions were excluded from the analysis). Similar to a typical gene set enrichment 

analysis, IPA calculates which pathways are enriched from submitted gene lists (p-value, 

significance set at 0.05) and a predictive measure of pathway/function activity (activated or 

inhibited, as a z-score, significance set at z>|1.96|). 

3.3.8 Generation of Figures 

Figures were produced in R (v4.1.0) with the R package ggplot2 (v3.3.3, 

RRID:SCR_014601). SHAP plots were generated using ggplot2, motif clusters, expression, and 

IPA results with ComplexHeatmap (v2.6.2, RRID:SCR_017270) (34).  

3.4 Results 

All the essential genetic material needs to be present in the oocyte for proper fertilization 

and embryonic growth, along with a sufficiently rich mRNA endowment. During oocyte 

maturation, the chief mechanism regulating protein expression is the modulation of transcript 

stability and translation. As previously stated, stability is primarily regulated via mechanisms 

involving the 3’ UTR. Layered upon those factors, are RNAs and miRNAs that bind the 3’ UTR, 

enhancing stability or the increased rate of degradation. Therefore, elucidating the primary RBPs 

that are essential across mammalian species can shed further light in those essential factors that 
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lead to proper and successful embryonic development. To that end, we sought out to compare 

oocyte mRNA 3’ UTR sequences and features to derive this information. 

3.4.1 Correlation of 3’ UTR Length and Stability 

For the five included species (human, rhesus, mouse, cow, and pig) we successfully 

identified and extracted the 3’ UTR sequences based on oocyte sequencing data. Application of 

APAtrap allowed for the identification of a number of 3’ UTRs that are not annotated in the 

Ensembl genome build, a mean of 1743 (412-2550) genes per species. When trifurcating the 

identified transcripts by stability classification (highly-degraded, moderately-degraded, and 

stable) we identified a trend: on average, longer 3’ UTR transcripts are more stable than their 

degraded counterparts (Figure 3.2). 

3.4.2 RBPs regulation MmRNA Stability vis 3’ UTR binding 

With the understanding that changes in transcript abundance during oocyte maturation is 

not a result of new transcript production, rather a stability modulation, ascertaining which factors 

impact this phenomenon are essential to further the understanding of proper mammalian oocyte 

maturation. We therefore applied a combination of Boruta feature selection with xgboost 

regression to predict which RBP motifs have the greatest predictive value upon mRNA stability. 

When applying the clustering algorithm on the selected RBPs, the most prominent cluster of 

RBPs were those binding to AU rich motifs, including 8 identified proteins (KHDRBS1, CPEB2, 

PABPC5, SART3, U2AF2, KHDRBS2, PTBP1/3, and CPEB4) (Figure 3.3). None of these 

RBPs were populated by the algorithm across all five species, however, by using this grouping 

method, at least one RBP was identified in every species.  
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KHDRBS1 was identified among human, cow, pig, and mouse. For human and cow, the 

majority of the high-feature value targets were populated among the stable mRNAs, pig among 

the highly-degraded, and a heterogenous mixture for mouse. CPEB2 (human, pig, and mouse) 

showed stable mRNAs with high-feature value targets for human and mouse, with the inverse for 

pig. While rhesus did not have CPEB2 selected, CPEB4 was a selected RBP and resulted in a 

preferential targeting of stable mRNAs. With a similarly structured poly(U) motif, PTBP1/3 was 

selected for cow, again signaling high-feature value targets among stable mRNAs. U2AF2 

selection was limited to the two ungulate species (cow and pig), and both species highlighted 

stable mRNAs with high feature values. Those results identifying high-feature value targets 

among the stable mRNAs, indicate those RBPs could be potentially binding the 3’ UTR and 

increasing mRNA stability. 

3.4.3 Stable mRNA targets poly(U) RBPs CPEB2, CPEB4, and U2AF2 

To explore shared targets and functions populated by stable mRNAs targeted by RBPs, 

three RBPs with poly(U) binding motifs (CPEB2, CPEB4, and U2AF2) were selected for further 

analysis. Mouse and human data were limited to CPEB2, Rhesus for CBPE4, and Cow and Pig 

for U2AF2. These were selected due to the prominent trend of stable mRNAs exhibiting high-

feature values (Figure 3.3). From these stable mRNAs, the population was further limited to 

those transcripts with a feature value greater than 0.33. Across the three RBPs and five species, a 

total of 370 genes were identified, none were shared by all species, and only 10 overlapping in 

more than one species. The total number of targets per species were 135, 35, 84, 56, and 71, for 

human, rhesus, cow, pig, and mouse, respectively.  

The stable mRNA targets, with feature values greater than 0.33, of the RBPs for each 

species (human and mouse, CPEB2; rhesus, CPEB4; cow and pig, U2AF2) were submitted to 



 

 61 

IPA for pathway and function results. These results included a few overlapping entries across a 

subset of species. The canonical pathways PPRa/RXRa activation was found for human and cow, 

ERK/MAPK signaling in rhesus and pig, and a few inositol biosynthesis pathways for rhesus and 

cow. When comparing biological functions, the entry organization of cytoplasm was significant 

for cow, pig, and mouse. Expression of RNA was populated amongst human, rhesus, and cow, 

and several cell cycle functions for cow and pig. 

3.5 Discussion 

Ascertaining a further understanding regarding the complex interplay between RBPs and 

mRNA stability is an essential step in elucidating which RBP factors are essential for oocyte 

maturation. By applying a novel bioinformatics pipeline and machine learning feature selection 

and regression, a core group of RBPs targeting AU rich motifs were identified across five 

mammalian specie (human, rhesus monkey, cow, pig, and mouse). The machine learning results 

show that there is a heterogenous targeting of both stable and highly-degraded mRNAs by these 

RBPs. This echoes the trend seen above with cross-species variation at the individual gene level 

but conservation in key processes, which applies here both limited numbers of shared RBPs, 

limited numbers of shared target mRNAs, but some conserved cellular functions, nonetheless. 

Independent of transcriptional mechanisms, posttranscriptional regulation is an essential 

facet of an oocyte’s ability to modulate protein expression. These mechanisms can be both macro 

and micro, at the transcript level via 3’ UTR regulatory elements and chiefly through the 

interaction of RBPs. There are several well characterized protein domains that interact with the 

3’ UTR, primarily amongst them include the RNA recognition motif (RRM) and the K 

homology (KH). The cytoplasmic polyadenylation element (CPE) is one of the most well 

characterized elements within the 3’ UTR. In mice, translationally activated mRNAs have been 



 

 62 

found to contain two or more CPEs, whereas downregulation of translation was found for those 

mRNAs without CPEs (39). Another well characterized 3’ UTR element is AU-rich elements 

(AREs), which, when bound by RBPs can result in either stabilization or destabilization of 

transcripts (36). 

KHDRBS1 (KH RNA Binding Domain Containing, Signal Transduction Associated 1), 

also known as Sam68, is a member of the KH domain containing protein family. It has been 

found to be involved in the posttranscriptional mRNA metabolism, RNA splicing, and the 

translation regulation of maternal mRNAs, and is released from the cytoplasm upon the 

resumption of meiosis (37). In one-cell embryos, KHDRBS1 accumulates to the nucleus, and its 

inhibition via cycloheximide or puromycin resulted in the localization at cytoplasmic granules. 

These granules were found to be populated with other proteins essential for the initiation of 

mRNA translation (37). Additionally, mutations within KHDRBS1 have been found to result in 

aberrations in alternative splicing, resulting the decreased fertility (38). 

CPEB2 (Cytoplasmic Polyadenylation Element Binding Protein 2) and CPEB4 

(Cytoplasmic Polyadenylation Element Binding Protein 2) are proteins that have a high sequence 

similarity to CPEB, a protein that regulated cytoplasmic polyadenylation of mRNAs. CPEB2 has 

been found to be essential for proper meiotic maturation in the porcine model and binds to CPE 

containing transcripts with homopolymeric poly(U) RNAs (39). In Xenopus oocyte, CPEB4 

forms a positive feedback loop with CPEB1, which causes the metaphase I to metaphase 2 

transition (40). Interestingly, as CPEB2 was selected for all species excluding rhesus, while 

CPEB4 was selected for rhesus, indicating a possible species-specific adaptation to regulating 

mRNA stability during oocyte maturation. 
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The application of this unbiased novel bioinformatics pipeline has allowed for the 

identification of a core group of AU-rich binding RBPs impacting mRNA stability during oocyte 

maturation. Further exploration of this rich dataset can identify conserved mRNA targets and 

prediction of the canonical pathways and functions these RBPs impact. This developed 

framework is highly applicable to a number of other developmental stages, cell models, and 

species. Its robustness can further the field in identifying key features that are both shared and 

species-specific.  
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Figure 3.1 – Flowchart of Analysis 

Simplified diagram depicting the flow of analysis used to identify miRNA and RBP binding in 

the 3’ UTR. This pipeline was utilized for each study and species. Figure is divided into three 

sections: 1) 3’ UTR extraction, 2) Motif identification, and 3) Motif selection. For section 1: 

fastq files from each study, within species, were aligned to their respective genomes using 

STAR, the 3’ UTR was extracted using APATrap. Section 2: RBP motifs for each species were 

downloaded from CISBP and sites identified with FIMO. Section 3: the RBP binding sites were 

processed for feature selection with the Boruta algorithm and a regression applied with xgboost, 

with the output of SHAP importance score. 
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Figure 3.2 – 3’ UTR Length versus mRNA Stability 

Boxplot comparing mRNA stability classification versus 3’ UTR length for five mammalian 

species during oocyte maturation. Figure consists of five vertical facets for each of the five 

species, y-axis denotes the length of the 3’ UTR, color denotes mRNA stability (blue = highly 

degraded, grey = moderately degraded, and red = stable). Significance was calculated comparing 

log10 normalized 3’ UTR lengths with a t-test. Significance key: p<=0.01 (**), p<=0.001 (***) 

and p<=0.0001 (****). 



 

 67 

 
Figure 3.3 - Identification of RNA binding proteins and predictive output on mRNA 

stability 

Figure depicting the selected RBPs among five mammalian species, their predictive SHAP 

scores on mRNA stability, motif group, IUPAC consensus sequence, domain group, functional 

categories, and detected expression. SHAP importance plot consists of five vertical facets for 

each species, x-axis denotes SHAP value (which represents the impact on the model), y-axis 

denotes each of the identified RBPs, and the color of each dot (an individual gene) denotes the 

feature value. The single vertical column titled “Group” denotes the identified clusters of RBP 

motif. For each RBP, the position weight matrix was converted to IUPAC consensus sequence. 

The domain group for each RBP was retrieved from UniProt, as well as their functional 

categories. RBP expression was identified from three different data sources: RNA (RNA-seq 

transcriptome), Prot. (protein expression), Polysome (presence on polysome from sequencing or 

microarray). 
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CHAPTER 4. 

CROSS-SPECIES META-ANALYSIS OF TRANSCRIPTOME CHANGES DURING 

THE MORULA TO BLASTOCYST TRANSITION: METABOLIC AND 

PHYSIOLOGICAL CHANGES TAKE CENTER STAGE 

4.1 Abstract 

The morula-to-blastocyst transition (MBT) culminates with formation of inner cell mass 

(ICM) and trophectoderm (TE) lineages. Recent studies identified signaling pathways driving 

lineage specification, but some features of these pathways display significant species divergence. 

To better understand evolutionary conservation of the MBT, we completed a meta-analysis of 

RNA sequencing data from five model species and ICM versus TE differences from four species. 

Although many genes change in expression during the MBT within any given species, the 

number of shared differentially expressed genes (DEGs) is comparatively small, and the number 

of shared ICMTE DEGs is even smaller. DEGs related to known lineage determining pathways 

(e.g., POU5F1) are seen, but the most prominent pathways and functions associated with shared 

DEGs or shared across individual species DEG lists impact basic physiological and metabolic 

activities, such as TCA cycle, unfolded protein response, oxidative phosphorylation, sirtuin 

signaling, mitotic roles of polo-like kinases, NRF2-mediated oxidative stress, estrogen receptor 

signaling, apoptosis, necrosis, lipid and fatty acid metabolism, cholesterol biosynthesis, 

endocytosis, AMPK signaling, homeostasis, transcription, and cell death. We also observed 

prominent differences in transcriptome regulation between ungulates and nonungulates, 

particularly for ICM- and TE-enhanced mRNAs. These results extend our understanding of 

shared mechanisms of the MBT and the formation of ICM TE and should better inform the 

selection of model species for particular applications. 



 

 75 

4.2 Introduction 

Preimplantation development in mammals entails a set of unique events that culminate in 

the production of a conceptus that is competent to implant into the uterus and continue 

embryogenesis. The transition from morula to blastocyst (MBT) entails a complex combination 

of morphological, physiological, and metabolic changes associated with formation of a fluid-

pumping polarized epithelium to drive cavitation, in concert with the first cell lineage 

specification event specifying the inner cell mass (ICM) and trophectoderm (TE) lineages, 

followed soon thereafter by the separation of primitive endoderm and epiblast lineages (1–8). 

Important insights into the mechanisms driving these unique features of the MBT have been 

elucidated in model species, particularly the mouse, for which numerous induced gene mutations 

affect key molecular pathways related to cell polarization, cell lineage specification, modulations 

in genomic imprinting, and progress of X chromosome inactivation (2, 3, 9–15). However, 

fundamental differences exist between species, including differences in genomic imprinting, X 

chromosome regulation, the expression patterns and roles of essential cell-lineage factors and 

regulation of signaling pathways related to linage formation (16–28). The existence of such 

interspecies differences, particularly in early processes that are considered fundamental to 

mammalian embryogenesis, suggests that there is value in understanding developmental 

mechanisms in multiple mammalian model species, to better understand the human embryo, and 

embryos of any given species. Through such studies, shared mechanisms and processes driving 

important developmental events should be revealed. 

Whole transcriptome analysis provides a powerful approach that can be readily applied to 

mammalian oocytes and embryos, avoiding technical and cost limitations of many other 

approaches. Indeed, numerous whole transcriptome datasets have been described for mammalian 
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embryos of different species and stages, and efforts have been made to organize and consolidate 

these data into online databases (e.g., Ref. 29). Such data have revealed many details of temporal 

profiles of gene regulation and some of the processes associated with those changes (e.g., Refs. 

20, 21, 30–32). However, translating data across species can be challenging due to interspecies 

differences in development, interlaboratory variations in assay platforms, and variations in 

embryological methods, as noted previously (e.g., Ref. 20), as well as less efficient methods of 

identifying overlaps, such as those that rely heavily on gene list intersects. Recently developed 

computational tools have provided new capabilities for undertaking cross-species meta-analyses 

of transcriptome data, both at the level of identifying shared DEGs and at the level of identifying 

relevant functional associations and predicted effects on cells. We recently used such methods to 

complete a meta-analysis of oocyte maturation-associated transcriptome changes to discover 

essential shared features of mRNA regulation, combining data for changes in mRNA abundance 

with changes in mRNA translation status (33). Exemplifying the power of cross-species 

transcriptome meta-analysis, that study yielded several new insights, most notably the discovery 

that modulation of the abundances of mRNAs related to oxidative phosphorylation is a major 

feature of oocyte maturation, signifying a key role for modulating mitochondrial function in 

regulating oocyte physiology. 

The goal of this study was to complete a detailed meta-analysis of whole transcriptome 

RNA sequencing data for five mammalian species to discover shared changes in gene expression 

and associated pathways and processes that drive the MBT. The meta-analysis employed a novel 

analysis pipeline to account for interspecies and interlaboratory differences associated with the 

individual datasets. Using this novel pipeline, we discovered that although thousands of genes 

display significant changes in relative mRNA expression levels during this MBT in each species, 
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the proportion of such genes shared across species is comparatively small. However, these 

shared DEGs are associated with shared pathways and biological functions that predominantly 

relate to essential cell physiological and metabolic processes. The existence of such highly 

shared pathways and functions for the MBT highlights essential molecular changes that underlie 

this important embryonic process. We also find that the number of shared DEGs that distinguish 

ICM from TE is much more restricted than those distinguishing morula from blastocyst, as is the 

number of associated shared pathways and functions. We propose that these prominent, highly 

conserved changes in physiology and metabolism create a permissive state supporting key 

developmental events such as lineage formation, which themselves are driven largely by 

posttranscriptional mechanisms. 

4.3 Materials and Methods 

4.3.1 Overview of study design 

Datasets for each species (Table 1) were processed, followed by the identification of 

differentially expressed genes (DEGs) and then analysis of associated pathways, functions, and 

regulators using QIAGEN Ingenuity Pathway Analysis (IPA; Qiagen, Hilden, Germany; 

https://www.qiagenbioinformatics. com/products/ingenuity-pathway-analysis; RRID:SCR_ 

008653) (34), and subsequent interspecies comparisons of DEGs and associated IPA results. 

4.3.2 Data set selection and data processing 

We identified five species for which datasets were available for comparing morula and 

blastocyst stages and meeting other quality parameters (Supplemental Table S1; all 

Supplemental material is available at https://doi.org/10.6084/m9.figshare.15031854.v2). We 

identified four species for which ICM and TE could be compared (Supplemental Table S1). 
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Datasets were accessed via the European Nucleotide Archive (RRID:SCR_006515). Study 

parameters are listed in Table 1 and Supplemental Table S1, including sequencing platform, 

sequencing read format/length, and RNA sequencing preparation kit. Unless otherwise noted, 

each study was processed by downloading raw sequencing data in fastq format. Initial 

sequencing quality metrics were conducted using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc; RRID:SCR_014583). Trimming 

was conducted using Fastp (RRID:SCR_016962, v0.20.0) (35) with the following parameters: 

minimum quality threshold of 20, minimum length of 20 bps, and removal of low 

complexity/mononucleotide reads. Genome indexing and mRNA abundance quantitation were 

performed with Kallisto (RRID:SCR_ 016582, v0.44.0) (36), using standard settings. For studies 

containing both morula versus blastocyst and ICM versus TE, the two comparisons were 

processed and analyzed independently. 

We applied two complementary methods for analyses. The “full method” used the full 

gene lists from each species for identifying DEGs, mapping Ensembl gene identifiers to gene 

symbols, and then using those DEG lists for subsequent analyses. An average of 14,332 genes 

were captured per study using the full method (Supplemental Table S1). The second method, 

denoted here as the “homology method,” limited the analysis to orthologous genes with a high 

level of homology across all five species, using a list of genes selected from the MetaPhOrs 

repository of phylogeny-based orthologs and paralogs (37). The MetaPhOrs database utilizes 

information from PhylomeDB (RRID:SCR_007850) (38), Ensembl Compara (39), EggNOG 

(RRID:SCR_002456) (40), TreeFam (RRID:SCR_013401) (41), Evolclust (42), Hogenom (43), 

and OrthoMCL (RRID:SCR_ 007839) (44). A score is assigned to each orthology and paralogy 

prediction based on its level of consistency across the different sources. The consistency score is 



 

 79 

the ratio of the number of trees confirming given relationship over the total number of trees that 

were used to infer the relationship, with a recommended consistency score of 0.5. All pairwise 

species comparisons were retrieved from the MetaPhOrs database. Using homologous gene lists 

was intended to minimize impact on results from interspecies differences in genome builds (gaps 

in sequencing, unannotated genes, evolutionary divergence, etc.). The full method may include 

genes not annotated in all species. The application of sequence-based consistency scores across 

species can result in the exclusion of well-studied genes from the study list, even apparent gene 

homologs that share a gene symbol annotation. Consequently, the more restricted repertoire of 

genes used with the homology method can limit the number of DEGs identified for downstream 

analyses and can thus underestimate conservation of gene expression differences and associated 

effects on pathways and functions. Because the two methods present complementary strengths 

and weaknesses, we present outputs for both methods to provide a complete view of the analysis. 

Results are presented in the text in the format of “full (homology)” values. We do not view one 

method as more correct or more reliable than the other. Rather, the two methods of analysis are 

complementary, seeking to account for the possible impact of interspecies genetic differences on 

subsequent analyses. 

4.3.3 Human embryos and data processing 

Three human studies were identified for inclusion: PRJNA153427 (45) (MBT), 

PRJNA291062 (46) [MBT and inner cell mass and trophectoderm (ICMTE)], and 

PRJNA293908 (47) (ICMTE). ICM and TE separation for both PRJNA291062 and 

PRJNA293908 was conducted via laser cutting. FastQC identified aberrant nucleotide 

distribution in the first 13 basepairs for PRJNA153427 and PRJNA293908, and the first 3 for 

PRJNA291062. The Fastp settings were set to include a hard trim to remove those basepairs 
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from start of reads. The human cDNA genome (GRCh38, annotation build 102) was downloaded 

from Ensembl, whereupon quantification and differential expression were conducted as detailed 

in the data processing and differential expression calculation sections. 

Study PRJNA153427 utilized a single-cell sequencing-based approach. The authors 

endeavored to identify ICM and TE samples by using the expression of selected genes and 

clustering. However, the submitted metadata does not include these derived cell types; rather 

they are labeled as blastocyst. Due to there being a total of 29 putative blastocyst samples, for the 

purpose of this analysis, we used the blastocyst label and the averaging of the 29 samples for 

calculating the transcriptome differences between morula and blastocyst. Study PRJNA291062 

employed a whole embryo sequencing approach and contained blastocysts with staging classified 

as early, mid, and late. We tested the impact of using all three blastocyst stages, exclusion of 

early, and then the inclusion of only late. The resultant impact on the metaRNASeq output when 

integrating with PRJNA153427 was less than a 10% difference across the three selection 

methods. We therefore included all PRJNA291062 blastocyst stage samples in the analysis. 

4.3.4 Rhesus embryos and data processing 

Two rhesus monkey studies were selected that met inclusion criteria: PRJNA448149 (32) 

and PRJNA343030 (48), both for the MBT comparison. Both studies showed aberrant nucleotide 

distribution in the first 13 basepiars via FastQC. Therefore, the Fastp settings were set to include 

a hard trim to remove those basepairs from start of reads. The rhesus cDNA genome (Mmul_10, 

annotation build 102) was downloaded from Ensembl, whereupon quantification and differential 

expression were conducted as detailed in the data processing and differential expression 

calculation sections. 
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4.3.5 Mouse embryos and data processing 

Three mouse studies were identified for inclusion: PRJNA231896 (49) (MBT), 

PRJNA289146 (50) (MBT and ICMTE), and PRJNA246056 (51) (ICMTE). The PRJNA246056 

study employed immunosurgery for isolating ICM and concanavalin A-conjugated magnetic 

beads to isolate TE cells. PRJNA289146 separated the ICM and TE cells via pipetting in 

calcium-free medium. FastQC identified aberrant distribution in the first 13 basepairs for 

PRJNA231896 and the first 9 for PRJNA291062. Therefore, the Fastp settings were set to 

include a hard trim to remove those basepairs from start of reads. The mouse cDNA genome 

(GRCm38, annotation build 102) was downloaded from Ensembl, whereupon quantification and 

differential expression were conducted as detailed in the data processing and differential 

expression calculation sections. 

4.3.6 Cow embryos and data processing 

Four cow studies were identified for inclusion: PRJNA 228235 (52) (MBT), 

PRJNA254699 (53) (MBT), PRJNA286918 (54) (ICMTE), and PRJNA228235 (55) (ICMTE). 

ICM and TE samples from PRJNA286918 were extracted via magnetic microbeads conjugated 

to mouse anti-FITC IgG1. PRJNA228235 ICM and TE samples were collected via dissection. 

Study PRJNA254699 was ABSOLiD based and required transformation from csfastq to fastq via 

the Perl script “csfq2fq.pl” (obtained from https://gist.github. com/pcantalupo). FastQC 

identified aberrant nucleotide distribution in the first 13 basepairs in PRJNA656838 and 

PRJNA254699. Therefore, the Fastp settings were set to include a hard trim to remove those 

basepairs from start of reads. The cow cDNA genome (ARS-UCD1.20, annotation build 102) 

was downloaded from Ensembl, whereupon quantification and differential expression were 

conducted as detailed in the data processing and differential expression calculation sections. 
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4.3.7 Pig embryos and data processing 

Four pig studies were identified for inclusion: PRJNA 648324 (56) (MBT), 

PRJNA580004 (57) (ICMTE), PRJNA656843 (55) (ICMTE), and PRJNA307541 (58) (ICMTE). 

Study PRJNA 648324 contained samples of morula and blastocyst stage embryos that developed 

in vivo or in vitro. For this analysis, the two types of embryos were processed as separate 

datasets, yielding two datasets for comparing morula and blastocyst. The PRJNA580004 study 

separated the ICM and TE cells via manual pipetting and flushing. PRJNA307541 obtained ICM 

and TE samples via an ultrasharp splitting blade with a stereomicroscope. The PRJNA656843 

ICM and TE samples were collected by dissection. Study PRJNA307541 was ABSOLiD-based 

and required transformation from csfastq to fastq via the Perl script “csfq2fq.pl” (obtained from 

https://gist.github.com/pcantalupo). FastQC identified aberrant in the first 13 basepairs in 

PRJNA656843 and PRJNA580004, 9 basepairs in PRJNA648324, and 3 basepairs for 

PRJNA307541. Therefore, the Fastp settings were set to include a hard trim to remove those 

basepairs from start of reads. The pig cDNA genome (Sscrofa11, annotation build 102) was 

downloaded from Ensembl, whereupon quantification and differential expression were 

conducted as detailed in the data processing and differential expression calculation sections. 

4.3.8 Differential expression calculation and gene homology 

All Kallisto outputs were imported into R and processed with DESeq2 

(RRID:SCR_015687, v1.30.1) (59), and transcript abundance was collapsed to gene using 

Ensembl gene identifiers, converted with biomaRt (RRID:SCR_019214, v2.45.8) (60). Two 

different lists of genes were processed through DESeq2 for each study: unfiltered gene lists and 

only genes with high level of homology across species as defined by MetaPhOrs consistency 

threshold. 
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Because normalization and expression thresholding were performed independently on 

both the full and homology gene lists, the homology lists were not simple subsets of the full 

method gene lists. For both methods, genes with a fragments per kilobase per million mapped 

fragments (FPKM) above 1 in at least one sample were included for differential expression 

calculation. DESeq2 natively applies independent filtering, resulting in the maximum number of 

genes for multiple test correction. The threshold is dependent on the mean of normalized counts 

from all samples, set at the lowest quantile wherein the number of rejections is within one 

residual standard deviation. Coupling the DESeq2 native independent filtering with our manually 

applied 1 FPKM threshold minimizes the chance of identifying low-quality DEGs. Additionally, 

we applied the zFPKM package (61) for filtering, which was developed using human cell lines 

for the accurate detection of biologically relevant genes in RNAseq datasets; we found our 

threshold of 1 FPKM a more stringent threshold than the zFPKM method imposes (data not 

shown). For each study, DESeq2 (45) was used to calculate differentially expressed genes 

(DEGs) between morula and blastocyst and ICM and TE, where a positive log2(fold-change) 

indicates a higher expression in blastocyst as compared with morula and TE as compared with 

ICM; the level of significance for genes was set at an adjusted P value [false discovery rate 

(FDR)] below 0.05. For comparison across species, the Ensembl gene identifiers were converted 

to gene symbols with biomaRt. Care was taken to identify and rectify gene symbols mapping to 

multiple Ensembl gene identifiers via a tiered approach: 1) exclusion of genes present on non-

chromosomal scaffolds/contigs and 2) if remaining genes showed the same direction of change, 

the entry with the lowest FDR was selected. This approach allowed the removal of all duplicated 

entries. 
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4.3.9 Differential meta-analysis 

For each species and cell comparison, the R package metaRNASeq (RRID:SCR_002174, 

v1.0.3) (62) was used to integrate included studies to calculate a meta P value via the Fisher 

combination method. As described in Schall and Latham (33), the Fisher’s combination method 

assumes that gene counts follow a negative binomial distribution within each included study. The 

null hypothesis, that each gene is not differentially expressed, was tested for each study, and then 

Fisher’s exact test was applied to calculate gene- and study-wise P values. As there are different 

biases inherent for specific library preparation kits and sequencing platforms, leveraging 

metaRNASeq mitigates these differences and in turn adds strength by integrating different 

studies for the derivation of a cohesive transcriptome and associated significant changes. 

Volcano plots for each included study, pre-metaRNASeq [log2(fold-change) versus log10(FDR)] 

and post-metaRNASeq [log2(fold-change) versus log10(Fisher)], can be found in Supplemental 

Figs. S1 and S2. 

4.3.10 IPA 

As in an earlier study (33), the biological significance of observed shared and species-

restricted DEGs was assessed using Ingenuity Pathway Analysis (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathwayanalysis). We focused this 

analysis on canonical pathways (CPs), disease and functions (DFs), and upstream regulators 

(URs; IPA database content as of May, 2021) (34). IPA was selected due to the robustness of its 

manually curated knowledgebase, which contains >7 M observations (Qiagen. com, March 2021) 

including molecular interactions organized into >700 pathways and reported associations of 

molecules with diseases and biological functions, and >30 integrated third-party databases 

(Qiagen IPA in-program description), and its ability to compare multiple datasets. Similar to 
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standard gene set enrichment methodology, submitted gene lists are compared with the genes 

associated with each CP/DF/UR to calculate a level of significant overlap (P value; significance 

set at 0.05). With the known impact of up- or downregulating genes on a given IPA CP or 

biological functions (BFs) entry, the software can also calculate a direction of CP or BF 

modulation (activation or inhibition), denoted as positive and negative z-scores, respectively 

(significance set at z> j1.96j). For the upstream regulator analysis, the activity of a UR is 

predicted based on the direction of change for the downstream DEG targets. It should be noted 

that the magnitudes of gene expression changes do not factor into the calculations, only the 

direction of change. For the purposes of this analysis, DF entries were filtered to remove 

disease/cancer-related entries, and the term biological functions (BFs) was applied. Additionally, 

for all IPA results, only those with more than one DEG present were included. For both the 

morula versus blastocyst and ICM versus TE comparisons, the CP and BF results were retrieved. 

The UR analysis was only applied to the ICM versus TE comparison. 

4.3.11 DEG and IPA Figures 

Generated barplots quantifying results were produced in R (v4.0.2) with the R package 

ggplot2 (RRID:SCR_014601, v3.3.3) (63). Heatmaps of DEGs and IPA results were generated 

using the R package ComplexHeatmap (RRID:SCR_017270, v2.6.2) (64) and arranged with 

cowplot (RRID:SCR_018081, v1.1.1) (65). 

4.4 Results 

4.4.1 Overview of Datasets and Limitations 

We identified five species for which published datasets were available for comparing 

morula and blastocyst stages and four species for which published datasets were available for 
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comparing ICM and TE. Some studies provided data for morula and whole blastocysts, samples 

for morula and separated ICM and TE samples, or samples for all these stages/cell types 

together, as indicated in Supplemental Table S1. Cross-species comparisons for differences 

between morulae and blastocyst used only those studies that contained both morulae and 

blastocyst samples, or a mixture of single cell samples for the two stages and not specifically 

divided by cell lineage. Studies comparing ICM and TE used only those studies with separated 

ICM and TE samples. 

Using these datasets, we identified DEGs between morula and blastocyst stages (denoted 

as MBT DEGs) and between ICM and TE (denoted ICMTE DEGs) for each species (whole 

species, W.S. sets, Fig. 4.1) using a false discovery rate (FDR) < 0.05. W.S. DEG lists 

comparing morula and blastocyst stages ranged in size from 3,142 to 5,773 (1,559– 2,802; 

Supplemental Tables S2–S6). Comparisons between ICM and TE cells were not performed for 

monkey due to lack of data availability. For the other four species, the total number of genes 

expressed more highly in ICM, or TE (ICMTE DEG lists) ranged in size from 280 to 2,927 (91 

to 1,101), with pig and cow having numbers of DEGs similar to each other but fewer than human 

and mouse (Fig. 4.1; Supplemental Tables S7–S10). We noted that the ICMTE DEG lists 

contained some genes that were not classified as detected in whole embryo samples, possibly due 

to an overall low level of expression less discernible at the whole embryo level. 

To evaluate to what extent DEGs expressed more highly in ICM or TE were up- or 

downmodulated at the whole embryo level during the MBT, we assessed overlaps between the 

MBT DEG and the ICMTE DEG lists for each species (Fig. 4.2). The largest number of DEGs 

for which expression was M < B and higher in ICM or TE was seen for human, followed by 

mouse, cow, and then pig. Interestingly, a large majority (74% full and homology methods) of 
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such genes were expressed more highly in the TE in humans, and 87% (86%) in pig, whereas 

only 46% (48%) and 40% (38%) of such genes were expressed more highly in TE for mouse, 

and cow, respectively. For DEGs that were downregulated during the MBT and different 

between ICM and TE, a majority were expressed preferentially in the ICM with 74% (72%), 

86% (81%), 91% (78%), and 87% (87%) for human, mouse, cow, and pig, respectively. For all 

four species, a majority of ICMTE DEGs displayed no significant difference in expression 

between stages, with 57% (57%), 72% (72%), 56% (59%), and 43% (47%) for human, mouse, 

cow, and pig, respectively. 

4.4.2 Shared DEGs observed for MBT and ICMTE DEG lists 

A cross-species comparison of MBT DEGs revealed 78 (37) DEGs seen in all five 

species, and 408 (242) additional DEGs shared in four of the five species (Fig. 4.1; denoted as 

“All 5” and “4 of 5”; Supplemental Table S11). Comparing ICMTE DEGs for human, mouse, 

pig, and cow revealed a limited number of shared DEGs (Fig. 4.1; designated as “All 4” and “3 

of 4”; Supplemental Table S12), numbering just 21 (15) expressed more highly in ICM (ICM > 

TE DEGs) and 11 (7) expressed more highly in TE (TE > ICM DEGs). 

4.4.3 Shared IPA Features for the Morula-to-Blastocyst Transition 

We next evaluated the degree to which the shared pathways and functions were 

associated with the MBT using two approaches. First, we applied IPA to the shared DEGs 

identified as intersections between the W.S. MBT DEG lists (Fig. 4.1). Second, we applied IPA 

to each individual W.S. MBT DEG list and then identified between-species overlaps for the IPA 

results. This second method complements the first method because effects on pathways and 
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functions can emerge through modulations in different sets of DEGs associated with a pathway 

or function. 

Applying IPA to the shared MBT DEGs (“All 5”, and combined all 5 plus 4 of 5, i.e., 

“4&5”) identified a number of key associated pathways (Fig. 4.3, first two columns; 

Supplemental Table F3 S13). The “All 5” DEGs garnered 9 (4) significant CPs (none with 

significant z-scores), whereas the “4&5” DEGs resulted in 54 (26) CPs including 3 (4) inhibited, 

and 10 (3) activated. Seven CPs were significant in both groups from the full method: TCA 

cycle, unfolded protein response, NRF2-mediated oxidative stress response, mitotic roles of 

polo-like kinase, phagosome maturation, clathrin-mediated endocytosis signaling, and role of 

OCT4 in mammalian ESC pluripotency. The “4&5” DEGs also indicated the inhibition of sirtuin 

and RHOGDI signaling and the activation of oxidative phosphorylation, RHOA signaling, ILK 

signaling, telomerase signaling, and superpathway of cholesterol biosynthesis (Fig. 4.3, first two 

columns; Supplemental Table S13). 

The shared MBT DEGs were further associated with significant effects on 111 (76) BFs 

[3 (0) activated, 1 (1) inhibited] from the “All 5” and 218 (213) from the “4&5” [27 (6) 

activated, 7 (6) inhibited], of which 64 were shared (Fig. 4.4, first two columns; Supplemental 

Table S14). Prominent results included the shared feature in both full method datasets 

(significant in the homology without significant z-score) for the inhibition organismal death and 

the activation of metabolism of membrane lipid derivative. The “4&5” DEGs, for both the full 

and homology methods, found activation of invasion of cells, cell survival, cell viability, 

synthesis/metabolism of cholesterol, various lipid, sphingolipid, and fatty acid metabolism 

functions, concentration of ATP and steroid metabolism and inhibition of accumulation of lipid, 
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quantity of sphingolipid, accumulation of glycosylceramide, and organ degeneration (Fig. 4.4, 

first two columns; Supplemental Table S14). 

We next applied IPA to each individual W.S. MBT DEG list and assessed overlaps in 

IPA results between species. To do this, it was necessary to reduce the number of W.S. MBT 

DEGs submitted for IPA in accordance with application guidelines by limiting the submitted 

DEGs to FDR < 0.001. The total of number of significantly affected CPs shared between “All 5” 

species was 20 (48) and for “4 of 5” 46 (62) and the total number of shared BFs was 48 (58) and 

28 (35) for “All 5” and “4 of 5,” respectively (Figs. 3–5; Supplemental Tables S13 and S14). 

Many of the CPs and BFs associated with the shared “4&5” DEGs were also associated with the 

W.S. DEGs observed for all five species, 4 of 5 species, or smaller subsets of species using the 

full method (Figs. 3 and 4; Supplemental Tables S13 and S14). Many of these were also seen 

with the homology method, with or without significant z-scores for some species (Figs. 3 and 4; 

Supplemental Tables S13 and S14). Some shared CPs and BFs were seen with the homology 

method only. Additionally, some CPs and BFs were significantly affected in all five species but 

not associated with the shared DEGs. These included signaling pathways for integrins, RHO 

family GTPases, CXCR4, as well as ferroptosis and myo-inositol synthesis, and several 

functions related to growth, cell death, morbidity and mortality (inhibited in three species), 

metabolism and synthesis of reactive oxygen species, and necrosis, among others. Additional 

CPs were associated with 4 of 5 species but not the shared DEGs, including actin cytoskeleton, 

RHGDI (inhibited in three species), mTOR, and HIF1a signaling, protein ubiquitination, and 

epithelial adherens junctions, among others. 
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4.4.4 Shared IPA Features for ICM-Enhanced and TE-Enhanced DEGs 

Although the number of shared ICM > TE and TE > ICM DEGs (Fig. 4.1) was 

comparatively small, IPA yielded informative results for pathways and functions associated with 

shared DEGs (“All 4” plus 3 of 4 combined, i.e., “3&4”) DEGs in the two cell types (Figs. 6, 7, 

8, and 9; Supplemental Tables S15–S18). We note that z-scores were not calculated because 

between-stage comparisons do not apply. 

For the “3&4” DEGs expressed more highly in the ICM, IPA revealed 12 (0) affected 

CPs and 110 (0) affected BFs (Figs. 6 and 7; Supplemental Tables S15 and S16). Prominent 

affected CPs for the full method in the ICM included regulation of epithelial-mesenchymal 

transition, multiple stem cell pluripotency entries including role of NANOG, and signaling 

through IGF1, IL-15, STAT3, TGF-b, and PI3/AKT, and regulation of the epithelial-

mesenchymal transition (EMT; Supplemental Table S15). For shared “3&4” DEGs expressed 

more highly in TE cells, IPA revealed a single affected CP (glucocorticoid receptor signaling) 

for the full method (0 results for homology method) and 57 (0) affected CPs (Fig. 4.8; 

Supplemental Table S17). Prominent affected BFs from the TE full method IPA results included 

entries related to cell death, lipid metabolism, cell migration, endocytosis, and cell invasion, 

among others (Fig. 4.9; Supplemental Table S18). Because of the small numbers of genes, we 

did not apply IPA to subsets of ICM > TE or TE > ICM DEG sets distinguished by MBT 

expression comparisons. 

To compare overlaps between IPA results for individual species (W.S.) ICMTE DEG 

lists, we were able to retain the FDR < 0.05 threshold for inclusion in the uploaded DEG lists. 

For ICM-enhanced genes, there were 33 (27) shared CPs and 54 (65) shared BFs (Figs. 5–7; 
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Supplemental Tables S15 and S16). For TE-enhanced DEGs, there were 11 (2) shared CPs and 

38 (29) shared BFs (Figs. 5, 8, and 9; Supplemental Tables S17 and S18). 

Affected CPs associated with ICM-enhanced DEGs in all four species included IGF1 

signaling and transcription regulatory network of embryonic stem cells (ESCs). Using the 

homology method, CPs shared across species included multiple entries related to pluripotency as 

well as JAK, IL-6, IL9, and FLT3 signaling (Fig. 4.6; Supplemental Table S15). A number of 

affected CPs and BFs were associated with ICM-enhanced DEGs in at least three species with 

either method (full or homology) but not seen for shared ICM DEGs (Figs. 7 and 8; 

Supplemental Tables S15 and S16). Three BFs were associated with all four W.S. lists and the 

shared DEG “3&4” list (apoptosis, organismal death, and necrosis). 

CPs associated with TE-enhanced DEGs of at least three species but not with shared 

DEGs included ferroptosis, endocytosis signaling, mTOR signaling, ILK signaling (full method), 

RhoA signaling (both methods), phagosome maturation, and superpathway of cholesterol 

biosynthesis (homology method; Fig. 4.8; Supplemental Table S17). Most of the BFs associated 

with at least three species of TE-enhanced DEGs were also seen for the shared DEGs, 

particularly using the homology method (Fig. 4.9; Supplemental Table S18). 

4.4.5 Affected IPA Upstream Regulators Associated with ICM-TE Divergence 

In addition to the CP and BF analyses, the upstream regulator (UR) analysis was applied 

to the ICMTE DEGs. Most of the URs associated with the shared DEGs were likewise associated 

with at least 3 of the W.S. DEG lists, and many were shared in all 4 species using either full or 

homology method, including many well-known regulators of ICM-TE lineage divergence such 

as POU5F1, GATA6, and Let-7 (Fig. 4.10; Supplemental Tables S19 and S20). Some URs 

implicated in ICM with either or both methods were themselves ICM-enhanced DEGs across 
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multiple species, such as STAT3, NANOG, SOX17, and KIT. Interestingly, many of the URs 

implicated in human ICM were DEGs only in human. URs implicated in TE using either or both 

methods included FOS, ESR1, and TGFB1. An additional three URs were found in all datasets 

from the full method (FSH, NFKBIA, and ESR2) and 8 URs present in all W.S. lists from the 

full method (TP53, YAP1, PTEN, MTOR, CDKN1A, PPARA, SREBF1, and WT1). Two URs 

(MYC, KLF5) implicated with either or both methods were themselves TE-enhanced DEGs in at 

least two species. Interestingly, MYC was ICM-enhanced in the mouse but TE-enhanced in 

human and pig. 

4.4.6 Taxonomic Differences in Gene and Pathway Regulation 

We examined set overlaps for evidence of features that distinguish ungulate species that 

form epitheliochorial placentae (cow and pig) and non-ungulate species that form hemochorial 

placentae (human, mouse, and monkey). There was little evidence of such taxonomic separation 

at the level of overall MBT (Figs. 3 and 4, Supplemental Tables S13 and S14). Indeed, from both 

the full and homology methods, only three CPs were exclusive to cow + pig (endothelin-1 

signaling, melatonin signaling, and heme biosynthesis from uroporphyrinogen-III-I) and a single 

pathway was limited to human + mouse + rhesus (PTEN signaling; Supplemental Table S13). 

However, numerous CPs and BFs were associated solely with human + mouse or cow + pig W.S. 

ICMTE DEG lists (Figs. 6, 7, 8, and 9). Notable CPs associated solely with human and mouse 

ICM-enhanced DEGs included HIPPO signaling, role of OCT4 in pluripotency, and other 

signaling pathways including NRF2-mediated oxidative stress response, signaling through 

mTOR, ATM, TNFR1, IL3, IL10, insulin, ERK5, and PTEN, and HOTAIR regulatory pathway 

(Fig. 4.6; Supplemental Table S15). Several BFs were associated only with cow and pig ICM-

enhanced DEGs including multiple immune cell-related functions, development of stem cells, 
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binding of connective tissue (Fig. 4.7; Supplemental Table S16). For TE-enhanced DEGs, many 

CPs were only seen for human and mouse, including adherens junction, RHOGDI, RHOGTPase, 

actin cytoskeleton and other actin-related CPs, EIF2, integrin, ephrin, RAC, necroptosis, 

estrogen receptor, and IL-1 signaling, and functions related to DNA repair (Fig. 4.8; 

Supplemental Table S17). Only ATM signaling was associated specifically with cow and pig 

TE-enhanced DEGs. These differences were largely echoed for BFs, but with the notable 

addition of prostaglandin metabolism, BFs related to inflammation and cell proliferation and 

endocytosis for cow and pig, and many BFs related to protein metabolism, actin and microtubule 

functions, and cell proliferation for human and mouse (Fig. 4.9; Supplemental Table S18). 

We also observed artiodactyl ungulate versus non-ungulate differences for genes related 

to eight cell lineage formation pathways, for which member genes were identified in the IPA 

database and compared with the W.S. DEG lists (Table T2 2). Differential expression between 

ICM and TE was prominent for these genes in human and mouse, but much less so for cow and 

pig (Table 2, Supplemental Tables S7–S10). Some mRNAs for genes that are widely 

characterized as ICM- or TE-specific did not display conserved differences in such a manner. 

For example, CDX2 was only TE specific in humans, despite its well-characterized role in TE-

specific functions (3). Other genes displayed ICM- or TE-enhanced expression in human and 

mouse but not cow or pig. Some genes (e.g., STAT3, WASF1, ACTG1, ID2, MYC, FGFR2, and 

ASH2L) displayed opposite enrichment in human and mouse, and many other genes were 

lineage-enhanced in a single species. 

4.5 Discussion 

This meta-analysis is the first to offer a comprehensive between-species comparison of 

gene regulation during the morula-to-blastocyst transition for five experimental mammalian 
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model species, addressing both stage-specific changes in expression as well as the emergence of 

differential expression between ICM and TE cells. The main outcome of this meta-analysis is 

that, at the level of mRNA expression, there is a very limited repertoire of shared DEGs 

comparing between stages, and even fewer shared DEGs distinguishing ICM and TE cells. These 

limited groups of shared DEGs for whole embryos, ICM, and TE are associated with limited 

numbers of shared pathways and functions. Additional overlaps between W.S. DEG lists echoed 

many of the pathways and functions associated with the shared DEGs for whole embryos, but not 

those distinguishing ICM and TE. These results collectively indicate substantial species 

divergence in gene regulation discernible at the mRNA level during the MBT and the 

specification of ICM and TE cells. 

One striking result from our analysis was the nature of the most prominent conserved 

effects on pathways and functions associated with shared DEGs and those observed as overlaps 

between pathways and functions associated with individual W.S. DEG lists comparing whole 

morulae and blastocysts. These included basic pathways related to cell physiology and 

metabolism, such as TCA cycle, unfolded protein response, oxidative phosphorylation, sirtuin 

signaling, mitotic roles of polo-like kinases, NRF2-mediated oxidative stress, metabolism, 

apoptosis, necrosis, lipid and fatty acid metabolism, multiple carbohydrate metabolism pathways, 

cholesterol biosynthesis, endocytosis, AMPK signaling, cellular homeostasis, transcription, and 

cell death. The broad conservation of regulated changes in expression of genes associated with 

such general CPs and BFs reveal key roles for changes in fundamental metabolic, physiological, 

and cellular features in supporting the MBT, possibly providing a permissive environment to 

enable cell lineage formation. These were accompanied by functions and pathways expected to 

accompany the MBT, such as OCT4 (POU5F1) function, RhoA signaling, estrogen receptor 
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signaling, cytoskeleton organization, tight junction signaling, adherens junction remodeling, and 

cell invasion. 

Changes related to increased oxidative phosphorylation were associated with shared 

DEGs and four of five W.S. DEG lists. Additionally, sirtuin signaling was a downregulated CP 

observed for shared DEGs and all five species W.S. DEG lists. Sirtuin signaling and 

mitochondrial dysfunction pathways were also associated with the TE-enhanced DEGs for 

human and mouse. Because one function of SIRT3 is negative regulation of oxidative 

phosphorylation (66), these results are reminiscent of previous observations that oxidative 

phosphorylation increases during the MBT (67–70). A previous study also observed diminishing 

expression of all sirtuins from zygote to blastocyst stages but an important embryo-protective 

role for maternally expressed SIRT3 in protecting against reactive oxygen species production 

and p53-mediated demise (71). Continued modulations in metabolism may play a key role in the 

elaboration of pluripotency by balancing energy production with other needs such as providing 

metabolic intermediates for anabolic purposes (6). Intricate and correct timing of changes in 

mitochondrial function and oxidative phosphorylation may thus be key for formation of healthy 

blastocysts and proper formation of ICM and TE lineages. Our results indicate that such dynamic 

regulation may be among the most conserved features of mammalian blastocyst biology. 

Our analysis also highlighted NRF2 oxidative stress response as a shared CP for the MBT 

and affected in the TE of mouse and human blastocysts. An earlier study noted that NRF2-

mediated oxidative phosphorylation was associated with the MBT in pig embryos (56). NRF2 

function was proposed to protect bovine blastocysts from reactive oxygen species damage (72). 

Another recent study noted NRF2 function as a possible early marker of TE formation (73). Our 

data further highlight NRF2 function as playing an important role across mammalian species, 
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possibly protecting embryos from oxidative damage at a time of increasing metabolic energy 

production demands. 

Estrogen receptor signaling was another prominent shared CP for the MBT using the 

W.S. and “4&5” DEG lists, and both ESR1 and ESR2 were implicated as shared affected URs in 

both the ICM and TE cells. Estrogen receptor mRNA increases in abundance during the 

transition to blastocyst stage in mice (74), and, additionally, estrogen receptor protein is detected 

in blastocysts (75), Although ESR1 deficiency is not embryo lethal, its downregulation occurs in 

conjunction with blastocyst activation after delayed implantation to facilitate implantation (76). 

Estrogen stimulation increases calcium concentration in dormant blastocysts (77) via GPR30 

signaling (78) and inhibits hyaluronan expression needed for blastocyst attachment (79). 

Interestingly, estradiol also regulates Wnt gene expression in blastocysts in conjunction with 

uterine factors (80). One study reported that estradiol promotes the MBT in pigs (81) and another 

reported negative effects of estrogen on human blastocysts adhesion in vitro (82). The 

observations here provide evidence for a conserved role for estrogen signaling in blastocysts, 

possibly as a shared feature of embryo-maternal communication, attachment, or implantation and 

could be useful for dissecting the stage- and/or concentration-dependent actions of estrogens 

during the MBT and beyond. 

There were fewer conserved DEGs related to ICM and TE divergence than comparing 

whole embryos, but conservation was nevertheless seen for multiple affected pathways and 

functions, including multiple entries related to pluripotency, as well as signaling through STAT3, 

PI3/AKT, RHOA, and TGFb1. Some pathways normally associated with ICMTE divergence 

were not as well conserved. Interestingly, we observed a limited degree of shared regulation of 

individual genes associated with eight key pathways that are widely viewed as serving key, 



 

 97 

conserved functions in ICM and TE specification. Even some genes strongly implicated for roles 

in ICM and TE delineation were only differentially regulated in a subset of species or some even 

within a single species. One example of this is the regulation of CDX2 function. CDX2 is 

initially expressed from maternal mRNA and ubiquitously throughout early cleaving embryos, 

becoming restricted to the TE where it suppresses ICM-specific functions (3). But CDX2 

displayed TE-specific mRNA expression only in the human. Previous transcriptome studies have 

concluded phylogenetic differences in the regulation of genes associated with pluripotency and 

lineage divergence as well (20, 21, 30). Because the transcriptome data are limited to the mRNA 

level of analysis, such divergence in individual gene regulation indicates that the essential 

mechanisms that delineate the ICM and TE lineages may employ key elements of 

posttranscriptional control impacting protein expression, localization, and function, or that 

distinct sets of pathway member genes operate within each species to achieve common outcomes 

via a limited number of shared pathways. For the example of CDX2, other posttranscriptional 

mechanisms may drive the elaboration of a TE-specific mode of CDX2 function in other species, 

whereas the human relies more heavily on regulation at the level of mRNA expression. 

Species differences in the nuances of lineage-determining gene regulation and function 

have been described for between-species comparisons involving fewer species (8, 20, 21, 30). 

For example, mouse and cow embryos differ in the mechanisms regulating YAP1 nuclear 

localization (83) and in other aspects of HIPPO pathway signaling such as the temporal 

regulation of TAZ nuclear localization and differences in the regulation of CDX2 by TEAD4 (8). 

Differences have also been reported for effects of SMARCA5inhibition comparing mice and 

cattle (84). Spatial and temporal regulation of POU5F1 (OCT4) and its control of CDX2 differ 

between species. By analyzing data for five species in a single study, our data indicate that such 



 

 98 

divergence may be more extensive than previously appreciated. One striking observation to 

emerge is the differences between ungulates and non-ungulates for the CPs and BFs associated 

with ICM- and TE-enhanced DEGs. These include many prominent pathways that play key roles 

in ICM and TE lineage formation, including HIPPO signaling, OCT4 role in pluripotency, 

adherens junction formation, RHOGDI signaling, among others. Such differences in DEGs, CPs, 

and BFs indicate that the species differences shown here for the spatial and temporal regulation 

of these key pathways may be particularly significant between ungulates and non-ungulates and 

may reflect, at least in part, later differences in placentation (epitheliochorial, hemochorial). 

The small number of shared DEGs comparing either whole morulae and blastocysts or 

isolated ICM and TE cells could be considered to reflect inherent variation in timing and kinetics 

of developmental progression or variations between studies in how the embryos or cells were 

obtained (Table 1), particularly given the potential impact of embryo culture and interspecies 

differences in timing of gene expression changes relative to morphological changes previously 

observed using array technologies (20). However, we consider this explanation unlikely to 

account for the extent of differences in transcriptome regulation observed, for the following 

reasons. First, other studies have described significant phylogenetic differences between species, 

particularly with respect to lineage-dependent DEGs (20, 21, 30). For example, comparing 

epiblast versus primitive endoderm DEGs revealed just 23.2% and 17.8% overlap of human 

DEGs with marmoset and mouse, respectively (30). This compares favorably with the 11.2% 

overlap of ICMTE DEGs between human and mouse found here, although the amount of overlap 

may vary with stage. Second, regarding differences in developmental kinetics or timing, we note 

that comparing morula and blastocyst stage embryos and comparing ICM and TE cells entail 

comparisons of the clearly distinguishable and clearly definable endpoints, before and after key 
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developmental events and in embryos that have fulfilled a minimum number of changes to 

accomplish these developmental transitions. This greatly minimizes the potential impact of 

species differences in developmental timing, which would predominantly affect intermediate and 

less definable points during these transitions. Although transcriptomes may continue to change to 

some degree after cavitation, for example, this would not eliminate the need for sufficient 

transcriptome change to allow a blastocyst to form. Our analysis reveals the degree of 

conservation and nature of pathways and functions associated with shared DEGs and these 

essential transitions. Third, with regard to potential effects of embryo culture previously 

observed, particularly for ICMTE DEGs (20), we note that data for three of the species (mouse, 

pig, cow) included both flushed and cultured embryos, thereby mitigating the chance that any 

single species would represent an outlier due to embryo culture effects. Fourth, we note that for 

study where blastocysts of different degrees of expansion were sampled separately 

(PRJNA291062), we assessed the impact on results of pooling or not pooling these samples and 

found <10% effect on identified DEGs, suggesting that transcriptome changes between 

blastocysts of different degrees of expansion are modest and unlikely to dramatically impact the 

DEG list for a given species. It should also be noted that we avoided using elongated blastocysts 

in the ungulate species, so that blastocyst samples across species were similar morphologically. 

Finally, we emphasize the power of the metaRNASeq approach to overcome many artifacts that 

can arise with interstudy variations. The metaRNASeq method is not based on a simple 

intersection or union of identified DEGs between input studies. By integrating the P values from 

input studies, the potentiality of individual study changes or non-changes is mitigated via this 

applied statistical test. The results, therefore, are DEGs that are indeed fundamental differences 

between stages or between cell types and supersede minor interstudy variations within species. 
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The result for each species was the identification of large and very similar numbers of DEGs 

comparing morulae and blastocysts, providing ample resolution for discovering cross-species 

shared DEGs. And although the number of ICMTE DEGs is lower for ungulates than non-

ungulates, this does not negate the finding that many ICMTE DEGs were restricted to human or 

mouse, which displayed similar numbers of ICMTE DEGs. Additionally, we imposed stringent 

criteria for inclusion of studies in the meta-analysis and rejected studies due to low level of 

bioreplication. Although TE-ICM samples were utilized from Kong et al. (20) (PRJNA580004), 

we opted to exclude the MBT comparison due to the study including only two blastocyst 

replicates. Similarly, Chitwood et al. (85; PRJNA401876), exploring preimplantation embryos in 

rhesus monkeys, was likewise excluded due to having just two replicates at both morula and 

blastocyst stages. These considerations collectively support the conclusion that the degree of 

conservation of transcriptome changes associated with the MBT or ICM-TE divergences is 

limited and associated prominently with changes related to basic metabolic and physiological 

functions. 

Our meta-analysis included the development and refinement of novel methods of data 

processing and analysis that should be broadly applicable in diverse biological contexts. Previous 

forays into the integration of publicly available sequencing data have often been limited to 

reduced species populations, and most often, singular studies from respective species. 

Acknowledging that there are variations inherent from the multitude of different methodologies 

(e.g., embryo staging, culture components, RNA isolation, library preparation kits sequencing 

platforms, and processing software), the application of methodologies that can integrate disparate 

studies is essential to further the field. Herein, our applied computational methods accomplish 

this goal by integrating studies using the metaRNASeq package to derive a more complete 
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assessment of changes at both the mRNA and functional (IPA) levels, and when coupled with a 

simplified graphical representation of results (e.g., heat maps, summary bar plots), provides a 

more cohesive understanding of shared and specific species features with greater mechanistic 

insight. By applying these methods to a complicated array of datasets spanning both two embryo 

stages and two cell populations within the blastocyst within a total of five species, we 

accomplished the most comprehensive assessment, to date, of species conservation of patterns of 

regulation of genes and associated canonical pathways and biological functions during the MBT. 

The collection of methods used here should be broadly applicable and can yield substantial new 

insights when applied to datasets with suitable degrees of species coverage, bioreplication, and 

richness of sampling. Our analysis demonstrates that as methods for library construction and 

deep sequencing achieve greater degrees of sensitivity, concurrent refinements in bioinformatics 

data processing and analysis will have the potential to provide dramatically improved 

understanding of phylogenetic impacts of gene regulation, species divergence, and evolution. 
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Figure 4.1 - Quantification of numbers of identified MBT and ICMTE DEGs using hull 

and homology methods. 

Quantification of the number of identified differentially expressed genes for the MBT and 

ICMTE comparisons, for both the full and homology methods. Figure is split into two vertical 

panels: left panel for the Full method, and the right for the homology method. For both full and 

homology methods, the panels are split into two rows: top row for the MBT comparison, bottom 

for the ICMTE comparison. The MBT comparison DEGs are split by direction: top row with red 

fill are those DEGs with higher expression at Blastocyst, bottom row with blue fills for those 

with decreased expression in Blastocyst. Similarly, the ICMTE comparison is split by direction: 

green for ICM>TE, yellow for TE>ICM. For both the MBT and ICM,TE overlaps of the ‘Whole 

Species’ DEGs were derived for those shared by all species and those when allowing one species 

to drop. W.S. lists and intersections of W.S. groups are listed along the x-axis, and the number of 

identified DEGs are along the y-axis. Comparisons were performed as described in methods. 

Level of significance was set at FDR<0.05. Data generated from Supplemental Tables S2-12. 

DEGs, differentially expressed genes; FDR, false discovery rate; ICM, inner cell mass; TE 

trophectoderm; ICMTE, ICM versus TE; MBT, morula to blastocyst transition. 
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Figure 4.2 – Integration of MBT and ICMTE DEGs 

Integration of the MBT and ICMTE DEGs, based on their respective regulation for four species: 

human, mouse, cow, and pig. Figure is split into two vertical panels for each of the gene 

derivation methods: full and homology. For each method, their respective panels are bifurcated 

by ICM-enhanced (ICM>TE, green fill) and TE-enhanced (TE>ICM, yellow fill). For each of 

the ICM and TE-enhanced genes, their mode of regulation was identified in the MBT 

comparison. Row 1: M<B, genes increasing in expression. Row 2: <1 FPKM in MBT, genes 

with no detected expression in the MBT comparison. Row 3: M~B, no significant difference 

between morula and blastocyst. Row 4: M>B, genes decreasing in expression. Individual species 

are listed along the x-axis, and the number of identified genes per MBT regulation group are 

quantified along the y-axis. Comparisons were performed as described in Methods. Significance 

for all in included DEGs were set at FDR<0.05. Data generated from Supplemental Tables S2-

10. DEGs, differentially expressed genes; FDR, false discovery rate; ICM, inner cell mass; TE 

trophectoderm; ICMTE, ICM versus TE; MBT, morula to blastocyst transition. 
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Figure 4.3 - IPA Canonical Pathways for the MBT. 

Heatmap depicting IPA canonical pathways for the MBT comparison; entries were limited to 

those present in at least three datasets in the full analysis. Figure consists of two wrapped 

columns for the full and homology methods. Along the top x-axis, each column is further divided 

by dataset, 4&5* DEGs shared by at least four species and the whole species DEG lists for 

human, rhesus, mouse, cow, and pig. Along the y-axis are the identified canonical pathways. 

Level of significant overlap was set at P < 0.05; entries with white color denote those not 

meeting significance. Color denotes z score and predicted activity: red = activated, blue = 

inhibited, black = nonsignificant z score. Data generated from Supplemental Table S13. DEGs, 

differentially expressed genes; IPA, Ingenuity Pathway Analysis; MBT, morula to blastocyst 

transition. 
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Figure 4.4 - IPA Biological Functions for the MBT. 

Heatmap depicting IPA biological functions for the MB comparison; entries were limited to 

those present in at least three datasets in the full analysis. Figure consists of two wrapped 

columns for the full and homology methods. Along the top x-axis, each column is further divided 

by dataset, 4&5* DEGs shared by at least four species and the whole species DEG lists for 

human, rhesus, mouse, cow, and pig. Along the y-axis are the identified biological functions. 

Level of significant overlap was set at P < 0.05; entries with white color denote those not 

meeting significance. Color denotes z score and predicted activity: red = activated, blue = 

inhibited, black = nonsignificant z score. Data generated from Supplemental Table S14. DEGs, 

differentially expressed genes; IPA, Ingenuity Pathway Analysis; MBT, morula to blastocyst 

transition. 
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Figure 4.5 - Overlap of IPA results from W.S. MBT and ICMTE 

Quantification of the number of pathways/function identified from the IPA analysis for the 

“whole species” DEG lists for both the MBT and ICMTE comparisons and for both the full and 

homology methods. Figure consists of two vertical panels for the two different methods: full and 

homology. Each method panel is further split into three rows: morula vs. blastocyst (gray fill), 

ICM-enhanced (green fill), and TE-enhanced (yellow fill). Overlaps of IPA results were derived 

for those shared by all species and allowing for one species to drop. Additionally, pathways and 

functions present in only one species were quantified. Each bar within the figure depicts the 

number of pathways (darker fill on bottom) and functions (lighter fill on top). Level of 

significance was set at P < 0.05. Data generated from Supplemental Tables S13–S18. BFs, 

biological functions; CPs, canonical pathways; DEGs, differentially expressed genes; ICM, inner 

cell mass; ICMTE, ICM and TE; IPA, Ingenuity Pathway Analysis; MBT, morula to blastocyst 

transition; TE, trophectoderm; W.S., whole species. 
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Figure 4.6 - IPA Canonical Pathways: ICM-enhanced 

ICM-enhanced heatmap depicting IPA canonical pathways for ICM-enhanced genes; entries 

were limited to those present in at least two datasets in the full analysis. Figure consists of two 

wrapped columns for the full and homology methods. Along the top x-axis, each column is 

further divided by dataset: 3&4* DEGs shared by at least three species and the whole species 

DEG lists for human, mouse, cow, and pig. Along the y-axis are the identified canonical 

pathways. Level of significant overlap was set at P < 0.05; entries with white color denote those 

not meeting significance. Data generated from Supplemental Table S15. DEG, differentially 

expressed gene; ICM, inner cell mass; IPA, Ingenuity Pathway Analysis. 
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Figure 4.7 - IPA Biological Functions: ICM-enhanced 

Heatmap depicting IPA biological functions for ICM-enhanced genes; entries were limited to 

those present in at least two datasets in the full analysis. Figure consists of two wrapped columns 

for the full and homology methods. Along the top x-axis, each column is further divided by 

dataset: 3&4* DEGs shared by at least three species and the whole species DEG lists for human, 

mouse, cow, and pig. Along the y-axis are the identified biological functions. Level of significant 

overlap was set at P < 0.05; entries with white color denote those not meeting significance. Data 

generated from Supplemental Table S16. DEG, differentially expressed gene; ICM, inner cell 

mass; IPA, Ingenuity Pathway Analysis. 
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Figure 4.8 - IPA Canonical Pathways: TE-enhanced 

Heatmap depicting IPA canonical pathways for TE-enhanced genes; entries were limited to those 

present in at least two datasets in the full analysis. Figure consists of two wrapped columns for 

the full and homology methods. Along the top x-axis, each column is further divided by dataset: 

3&4* DEGs shared by at least three species and the whole species DEG lists for human, mouse, 

cow, and pig. Along the y-axis are the identified canonical pathways. Level of significant 

overlap was set at P < 0.05; entries with white color denote those not meeting significance. Data 

generated from Supplemental Table S17. DEG, differentially expressed gene; IPA, Ingenuity 

Pathway Analysis; TE, trophectoderm. 
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Figure 4.9 - IPA Biological Functions: TE-enhanced. 

Heatmap depicting IPA biological functions for TE-enhanced genes; entries were limited to 

those present in at least two datasets in the full analysis. Figure consists of two wrapped columns 

for the full and homology methods. Along the top x-axis, each column is further divided by 

dataset: 3&4* DEGs shared by at least three species and the whole species DEG lists for human, 

mouse, cow, and pig. Along the y-axis are the identified biological functions. Level of significant 

overlap was set at P < 0.05; entries with white color denote those not meeting significance. Data 

generated from Supplemental Table S18. DEG, differentially expressed gene; IPA, Ingenuity 

Pathway Analysis; TE, trophectoderm. 



 

 112 

 
Figure 4.10 - IPA Upstream Regulator: ICM & TE-enhanced 

Heatmap depicting IPA upstream regulators for ICM- and TE-enhanced genes, limited to those 

with significance in all four species in full method. Figure consists of two panels: ICM-enhanced 

(A) and TE-enhanced (B), with two columns for the full and homology methods. Along the top 

x-axis, each column is further divided by dataset for three species: human, mouse, and cow. 

Along the y-axis are the identified biological functions. Level of significant overlap was set at P 

< 0.05; entries with white color denote those not meeting significance. Green circles denote those 

upstream regulators that are also ICM-enhanced. As described in methods, the identification of 

DEGs in the full method but not the homology method does not cast doubt on the validity of the 

DEG call; differences arise due to genes falling below the MetaPhOrs consistency score or 

impact in changes in normalization using the homology method. Data generated from 

Supplemental Tables S19 and S20. DEG, differentially expressed gene; ICM, inner cell mass; 

IPA, Ingenuity Pathway Analysis; TE, trophectoderm. 
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Table 1- Summary of different study parameters used to obtain embryos 

Study Information Embryo Production Information Staging 

Species Study ID Use 

Embryo 

Production  Pre-embryo production Culture Medium Atmosphere Morula Blastocyst 

Human PRJNA153427 MBT IVM-ICSI  
GnRH, FSH, hCG, collection 

36h post-hCG 

G1.3, PBS with 20% 

HAS, G2 
N.S. Day 4 Day 6 

Human PRJNA291062 
MBT, 

ICMTE 
IVM-ICSI  

GnRH, FSH, hCG, collection 

36h post-hCG 
G1.3, G2 6% CO2 N.S. 

Early, mid, 

hatched 

Rhesus PRJNA343030 MBT IVF-IVC  
rhFSH, rhCG, collection 32-

35h post-rhCG 
HECM-9 + 10% FBS  5% CO2 N.S. N.S. 

Rhesus PRJNA448149 MBT IVF-IVC 
hFSH, hCG, collection 30h 

post-hCG 
HECM-9 

5% CO2, 10% O2, 85% 

N2 
Day 5 Day 6 

Mouse PRJNA289146 
MBT, 

ICMTE 
IVF-IVC 

PMSG, hCG, collection 14h 

post-hCG 
G1, G2 5% CO2 N.S. N.S. 

Mouse PRJNA231896 MBT In vivo, flush (1) PMSG, hCG KSOM N.S. 64h 
64+20h 

culture 

Cow PRJNA228235 MBT IVM-IVF  N.S. 

Synthetic oviduct fluid + 

5% ECS + BME AA + 

MEM Non-essential AA 

5% CO2, 5% O2, 90% N2 N.S. N.S. 

Cow PRJNA254699 MBT In vivo, flush (1) FSH, PGF N.S. N.S. Day 6 Day 7 

Pig PRJNA648324 MBT 

in vivo  
Altrenogest ReguMate, PMSG, 

hCG 
N.S. 5% CO2, 5% O2, 90% N2 Day 4 Day 6 

in vitro N.S. 

hormone free maturation 

medium, Porcine Zygote 

medium-5 

5% CO2, 5% O2, 90% N2 100 h 174 h 

Human PRJNA293908 ICMTE IVM-ICSI  
ovarian stim. cycle, long 

agonist protocol 
N.S. N.S. N.S. N.S. 

Mouse PRJNA246056 ICMTE In vivo, flush PMSG+hCG or PG600 N.S. N.S. N.S. 94 h 

Cow PRJNA286918 ICMTE IVM-IVF  Abattoir  

IVM medium, Charles 

Rosenkrans + CR1aa + 

10%FBS 

5% CO2 N.S. Day 7 

Cow, Pig PRJNA656838 ICMTE IVM-parth. Abattoir  
IVM medium + PMSG, 

TALP + 6-DMAP 
N.S. N.S. 

Day 9 

(cow), Day 

7 (pig) 

Pig PRJNA580004 ICMTE In vivo flush (2) N.S. N.S. N.S. N.S. 132-140 h 

Pig PRJNA307541 ICMTE in vivo  PMSG, hCG N.S. N.S. N.S. N.S. 
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Table 1 (cont’d)  

(1) Stimulated cycle, (2) unstimulated cycle. DEGs, differentially expressed genes; FSH, follicle stimulating hormone; GnRH, 

gonadotropin-releasing hormone; hCG, human chorionic gonadotropin; hMG, human menopausal gonadotropin; ICM, inner cell mass; 

ICMTE, ICM and TE; MBT, morula-to-blastocyst transition; N.A., not applicable; N.S., not stated; PG600, PMSG þ hCG; PGF, 

prostaglandin F2a; PMSH, pregnant mare serum gonadotropin; TE, trophectoderm. 
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Table 2 – Number and proportion of DEGs (full method) associated with indicated pathways 

   Human Rhesus Mouse Cow Pig 

Pathway Total Genes Overlaps MB ICMTE MB MB ICMTE MB ICMTE MB ICMTE 

Adherens 

Junction 
170 

DEGs 65 37 49 28 39 38 3 38 2 

Percent 38% 22% 29% 16% 23% 22% 2% 22% 1% 

Human 

ESC 
162 

DEGs 50 42 47 22 20 23 7 26 5 

Percent 31% 26% 29% 14% 12% 14% 4% 16% 3% 

Mouse 

ESC 
102 

DEGs 40 26 34 24 22 16 5 27 4 

Percent 39% 25% 33% 24% 22% 16% 5% 26% 4% 

Nanog ESC 117 
DEGs 44 30 39 26 17 19 4 27 2 

Percent 38% 26% 33% 22% 15% 16% 3% 23% 2% 

Oct4 ESC 46 
DEGs 19 18 17 15 14 11 2 12 2 

Percent 41% 39% 37% 33% 30% 24% 4% 26% 4% 

PCP 60 
DEGs 18 11 9 9 4 9 0 12 1 

Percent 30% 18% 15% 15% 7% 15% 0% 20% 2% 

HIPPO 84 
DEGs 37 14 27 15 23 18 1 22 2 

Percent 44% 17% 32% 18% 27% 21% 1% 26% 2% 

NOTCH 38 
DEGs 9 7 3 7 4 8 1 6 0 

Percent 24% 18% 8% 18% 11% 21% 3% 16% 0% 

Average of 8 pathways Percent 36% 24% 27% 20% 18% 19% 3% 22% 2% 

DEGs, differentially expressed genes; ICM, inner cell mass; TE, trophectoderm; ICMTE, ICMTE DEGs, MB, MBT DEGs. 
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CHAPTER 5. 

OVERALL CONCLUSIONS AND FUTURE DIRECTIONS 

In these works, the results find that at the transcriptome level, there are relatively few 

shared features across mammalian species, particularly at the level of individual genes with 

respect to mRNA regulation. When comparing the impact of species-specific and shared mRNAs 

major changes, however, there is substantial conservation at the pathway and functional level. 

Specifically, during oocyte maturation, any one of the four input mammalian species (human, 

rhesus, mouse, and cow) has a minimum of 2000 mRNAs with significant changes in relative 

abundance, but with roughly 100 shared between species (1). And even when loosening the 

restrictions to being shared in just 3 of 4 species, the total is still near just 1000. However, when 

processing individual species mRNAs with significant changes in relative abundance, there are a 

great number of pathways and functions conserved. Of note, from the highly-degraded mRNAs, 

there is conserved inhibition for pathways relating to mitochondrial function, oxidative 

phosphorylation, and NRF2 mediating oxidative stress. Several shared DEGs were especially 

populated within the mitochondrial complex I, and species-specific DEGs within complex IV 

(1). These findings suggest that the decreased function of oxidative phosphorylation could be 

protective in nature, limiting mitochondrial activity and thereby decreasing reactive oxygen 

species.  

When analyzing the 3’ UTR and associated RBPs impacting stability, the results continue 

the trend of sparse conservation at an individual RBP and gene level, but greater conservation at 

the level of function. Specifically, the poly(U) binding RBPs (CPEB2, CPEB4, and U2AF2) 

targeted high feature value mRNAs in a species-specific manner, but signaling pathways, 
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functions relating to cytoplasm, inositol metabolism, and cell cycle regulation had significant 

enrichment across at least a subset of the species. 

A similar trend was seen during the MBT; few shared DEGs, greater shared functional 

categories. Reciprocal to the findings during oocyte maturation, oxidative phosphorylation was 

increased in four of the five mammalian species, essentially reversing the diminishment of 

activity that emerged during oogenesis (2). This activation may indicate the importance of 

mitochondrial function and oxidative phosphorylation in energy metabolism for the formation of 

blastocysts, cellular reprogramming, and preparation for implantation. 

While the three chapters in concert provide a rich resource covering two key 

developmental events in mammalian reproduction, there are limitations. On the level of the 

transcriptome, the human and mouse genomes are well characterized, but there is a certain level 

of deficiency in genome build and annotation across the other species. With the advancements of 

third-generation long-read sequencing (3) (e.g., PacBio (4) and oxford nanopore (5)), the genome 

build quality will increase in resolution, which would warrant revisiting these studies. As 

sequencing data of additional species are deposited in the public domain, the cross-species 

comparisons can increase. Indeed, after the completion of the chapter on oocyte maturation, 

porcine data became available, as noted in its inclusion in the chapter covering RBPs and 3’ 

UTR binding. This methodology can also be extrapolated to integrate non-mammalian species 

with similar cell staging and developmental events. Beyond the same staging, the meta-analysis 

can also be leveraged to compare additional developmental stages, such as fertilization (MII 

versus 1-cell), embryonic genome activation, morula compaction, etc. This methodology, 

however, is not constrained to developmental stages. Assuming sufficient data across species, 
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treatment and conditional based studies can be processed (e.g., tumor versus normal, treated 

versus non-treated, etc.).  

A major point of advancement is the interrogation of RBP binding via the application of 

machine learning, feature selection, regression algorithms, and SHAP scores. A cursory search of 

PubMed (as of 11/2021), with the terms “RNA sequencing” + “SHAP or SHAPley”, garnered 

only three results. These three studies, covering the years 2019-2021, pertain to computational 

predictions of ribosomal entry (6), tissue classifier (7), and longevity-association (8). This is 

clearly an untapped computational resource in the sequencing field. Beyond the previously 

described transcriptome deficiencies, the RBP analysis was also not without its limitations. The 

included proteomic studies had publication years ranging from 2010-2020 (9-13), and while 

there have been advancements in proteomic analysis, the resolution is still lacking behind RNA 

sequencing (14). Updated proteomic data pertaining to the included species, and expansion to 

missing species would be beneficial to ascertain which RBPs are expressed in the oocyte. 

Currently, the data presented for the RBP study was limited to singular RBPs. This can be 

expanded to explore combinations of RBP sites within the 3’ UTR, possibly leveraging a Market 

Basket Analysis (MBA) (15). MBAs were developed for the retail and restaurant space, 

identifying products and items often purchased together. One could easily imagine adopting this 

method to identify which RBPs are often found together for a given mRNA and then extrapolate 

across stability classes. An additional wrinkle would be to factor in both proximity of RBP sites 

to each other and the physical location of the sites, i.e., closer to the transcription start site or 

closer to the polyadenylation site. This would necessitate using a combination of computational 

methods: the SHAP analysis, MBA, and a sliding window feature to capture all available 

information. 
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Another future analysis would entail tracking the identified stabilized maternal mRNAs 

during oocyte maturation and exploring their further relative abundances through fertilization 

and embryonic genome activation. Which of these transcripts continue to exhibit increases in 

relative abundance and which show future degradation? During fertilization and genome 

activation, which RBP factors, new or previously identified, continue to imbue stabilizing or 

destabilizing effects? 

Outside the computational field, the binding sites of high value RBPs can be further 

interrogated with the application of RNA immunoprecipitation sequencing (RIP-seq) (16) to 

verify and augment the computational predicted data. With the advancements of machine 

learning algorithms in the data science fields, the possibilities to port their applications to the 

biological field, and specifically transcriptome data, is nearly limitless. The results and methods 

of studies reported in this thesis lay the groundwork, provide a proof on concept, and a rich 

resource upon which further hypothesis testing projects can be developed.  
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