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ABSTRACT 

STRUCTURAL INSTABILITIES FOR THE DESIGN AND CONTROL OF 

COMPUTATIONAL MATERIALS AND STRUCTURES  

By 

Talal Husain Ibrahem Salem 

The main hypothesis in this work is that structural instabilities, in single microbeams and 

assembled structures, can be tailored to build in computational capabilities into structural systems, 

thus mimicking advanced circuitry functionalities using only mechanical loading in structural 

elements. In this thesis, we demonstrate the possibilities of solving complicated fourth order partial 

differential equations using potential energy optimization in axially loaded beams. A similar 

concept to the minimum energy path in analog circuitry.     

The proposed approach relies on controlling the post-buckling instability of elastic Euler-

Bernoulli beams subjected to gradually increasing loading. The focus in the first few chapters in 

this thesis, is to study novel methods to tailor and control the mechanical response of anisotropic 

bilaterally constrained beams with arbitrary cross-section geometries. In particular, theoretical 

models are developed, using the small deformation theory assumptions, and the static post- 

buckling behavior of the elastic beams is analyzed using the energy method. Non- prismatic and 

Functionally-Graded Materials (FGM) beams are studied with respect to several parameters and 

effects (i.e., beam shape configurations, materials, geometric properties). Effective control levels 

over the post-buckling behavior, of the bi-walled beams, were achieved. In addition, the 

manufacturing of the structural system was studied using 3D printing techniques. It was 

demonstrated that by tuning the beams’ parameters (material and geometry), the snap-through 

transition events between post-buckling configurations (i.e., sudden energy release), can be 



configured to happen at specific times (during the loading stage), and that the generated energy 

output can be controlled. This principle is the main concept used to implement multifunctional 

capabilities in structural systems.  
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Chapter 1: Dissertation Overview – Motivation and Vision 

This work describes the efforts undertaken towards implementing, studying and controlling 

the mechanism of post-buckling in simple and assembled structural systems. The tuning and 

control of snap-through events in deformed constrained strips, was demonstrated as a proof-of-

concept approach to embed computational capabilities in structural systems, in particular for this 

work, the ability to solve complex fourth order differential equations under real loading in real 

time. An example of possible practical use can be the design of a mechanical structural apparatus 

that implements the partial differential equations of a real physical problem (for example a 

vibrating component on a bridge). The apparatus can solve and simulate the component response 

in real time under real loading, alleviating the need for any complex finite element or other heavy 

modeling approaches. This concept can be easily extended to simulate in real time any physical 

phenomena described by partial differential equations, or can be directly used to endow materials 

with the capability to compute and analyze their response under service loading, with the purpose 

of real time structural analysis. Practical manufacturing and experimental considerations were also 

studied in this work.   

1.1 Outline 

The dissertation can be drawn as: Chapter 1 summarizes the dissertation chapters and sections 

and provide the main motivation of this work. Chapter 2 present the successful attempts to control 

the postbuckling behavior of bi-walled beams by tuning its geometric properties. Chapters 3 and 

4 reports the tailoring of the stored potential energy for the constrained system by varying the 

materials’ properties. Chapter 5 shows the implementation of the mechanism of structural 

instability for solving high order PDEs. Chapter 6 presents the conclusions and the suggested 

future work.  
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1.2 Summary of Research  

1.2.1 Development of Bi-walled Nonuniform Beams 

Postbuckling structural instabilities has been shown to have useful mechanical 

characteristics such as well deformation resistance and recovery. However, the difficulties in 

control and programmability, due to the complex interconnected sensitivities to geometric and 

material properties, severely hinder the phenomenon use in multifunctional structural applications. 

In this chapter, we propose a concept of nonuniform beam assembly to increase the controllability 

of the postbuckling response. Bilaterally constrained, nonuniform beams are theoretically 

investigated to obtain the buckling instability, and the predictions are compared with the 

experimental and numerical results with satisfactory agreements. Parametric studies are carried 

out to demonstrate the tunability of the reported beam assembly with respect to the geometric 

properties and material parameters (i.e., Young’s modulus) of the nonuniform beams. Finally, the 

use of the proposed beam assembly method is investigated for novel applications as mechanical 

triggers and deformation detectors. This study demonstrates an exciting approach to tune the 

mechanical characteristics of engineered assembly structures for novel applications, such as 

material embedded mechanical sensing. 

1.2.2 Bi-Walled Mechanical Metamaterials with Patternable Anisotropy 

In recent years, the study of Functionally graded materials (FGM) opened exciting new venues 

for the control and manipulation of engineered materials and structures. In this chapter, we 

investigate bilaterally constrained FGM beams with programmable material functions. The FGM 

beams are fabricated using 3D printing techniques, and tested to understand the behavior of 

structural instability (i.e., postbuckling) under the bilateral confinements. Theoretical and 

numerical models are developed to investigate the postbuckling response, and the results are 
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compared to experimental observations with satisfactory agreements. Material topology 

optimization is then carried out to investigate the influences of the material functions on the release 

of the stored energy during the bucking mode transitions in the FGM beams. It is found that stored 

energy variations can be used to optimize the material functions, which allows for the guided 

design of bi-walled FGM beams with well-defined controllability over the structural instability. 

The reported bilaterally constrained FGM beams with optimized material functions can be used in 

a multitude of different applications.  

1.2.3 Carbon Nanotube and FG Plate-like 2D Mechanical Metamaterials 

Architected, structural materials have been reported with promising enhancement of 

mechanical performance using the structural method (e.g., mechanical metamaterials MM) and 

material method (e.g., composite materials). Here, we develop the extensible, plate-like 

mechanical metamaterials at the microscale using functionally graded materials (FGM-MM) and 

carbon nanotubes (CNT-MM) to obtain the advanced structural materials with well 

maneuverability over the postbuckling response. Theoretical models are developed to investigate 

the postbuckling response of the FGM-MM and CNT-MM subjected to bilateral constraints, and 

numerical simulations are carried out to validate the theoretical results. The theoretical models are 

then used to investigate the maneuverability of the postbuckling behaviors with respect to the 

material properties (i.e., FGMs and CNTs) and geometric properties (i.e., corrugated 

microstructures). The findings show that more significant corrugation in MM and more obvious 

composition in FGMs and CNTs provide higher controllability on the buckling mode transitions. 

The reported CNT-MM and FGM-MM provide a novel direction of programming mechanical 

response of artificial materials.  
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1.2.4 Postbuckling-based Partial Differential Equations Solver  

Solving nonlinear partial differential equations (PDEs) is complex, time consuming and may 

be error-prone. Thus, they typically require high-performance computers to be solved. Generally, 

solving PDEs analytically is based on finding a change of variable to transform the equation into 

soluble form. Here, a novel design concept of PDEs analog solver is reported based on structural 

instabilities (i.e., postbuckling) of a bilaterally confined beam. 3D-printed beams are fabricated in 

the centimeter scale to consider both design maneuverability and manufacturing cost. In this 

approach, the potential energy balance after the snap-through energy release events, represent the 

solution for a fourth order PDE equation. Analytical models are developed to obtain the response 

generated by the PDE-solver under gradually increasing static axial compressive load.   
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Chapter 2: Programmable Assembly of Bi-walled Nonuniform Beams: Concept, Modeling 

and Performance 

2.1 Introduction 

Buckling has been usually considered as a limit state to avoid in typical structural design [1-

3]. However, in recent years significant interest has been raised toward the potential positive 

usages of the buckling and postbuckling states in smart materials and structures [4]. For instance, 

instability of slender elements (i.e., buckling) has been designed in advanced structures to obtain 

predominant mechanical response such as negative Poisson’s ratio [5], enhancement of 

deformation resistance [6], or deformation recovery caused by geometric nonlinearity [7]. 

Buckling-enabled monostable, bistable, and multistable systems have been reported in 

multifunctional devices [8]. Moreover, the instability behavior of a stiff thin film device integrated 

on a cylindrical substrate was investigated for potential uses in smart wearable devices (e.g., 

smartwatch, wristband, etc.) [9]. The buckling behavior of mechanical metamaterials was also 

studied to develop energy absorption devices by maximizing its snap-through response [10]. In 

oreder to maximize the generated electrical energy, the control and optimization of the postbuckled 

beams (generators) mechanical characteristics, is required beams. Four control approaches have 

been reported for the tuning of the postbuckling response: (i) Material altering, specifically the 

switching of  isotropic  and orthotropic properties [11-13]; (ii) Geometric approach absed on 

investigating non-uniform and non-prismatic geometries [14, 15]; (iii) Constraint changing 

strategies, from regular confinements to irregularly distributed constraints [16, 17]; and (iv) our 

investigated assembly strategies based combining multiple easy to build and design uniform beams 

to form a system with multi-variable control possibilities  
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Theoretical, numerical and experimental studies were conducted to investigate the influence 

of material and geometric properties on the beams. It was shown that the material variables are 

less influential when compared with the effects of geometry changes. More importantly, modifying 

a single beam element is insuffient for effective optimization of the overall postbuckling mode 

transitions. Therefore, the constraint strategy was used to change the rigid and fixed walls into 

movable and spring-constrained walls [18, 19]. In addition, Borchani at al. used the assembly 

strategy to investigate a multi-beam system that stacks the elasticas in a parallel configuration, 

thus tailoring the postbuckling response of the system using the number and geometric properties 

of the uniform beams [20]. However, using only uniform beams limits the controllability of the 

postbuckling behavior (i.e., unable to achieve certain postbuckling mode transitions). 

In this chapter, postbuckled non-uniform beam assembly systems are studied theoretically, 

numerically, and experimentally. This work combines all of the discussed control strategies to 

achieve a precise control over the postbuckling performance (i.e., snap-through mode transitions) 

of bi-walled elasticas. In principle, placing multiple nonuniform beams between parallel 

confinements (i.e., varying the geometric properties and number of non-prismatic beams) provides 

effective tunability over the postbuckling mode transitions. Tuning the stacked beams in the 

assembly leads to more accurate controllability that is beneficial for the considered applications. 

To investigate the mechanical characteristics of the nonuniform beam assembly, we first develop 

a discretized theoretical model that accounts for the buckling-induced instability of multiple bi-

constrained beams under quasi-static loading. The total potential energy of the beam system is 

used to determine the postbuckling response of the beams with linear, sinusoidal and radical width. 

Experiments and numerical simulations are then conducted to validate the theoretical results, and 

satisfactory agreements are obtained. Parametric studies are carried out using the theoretical model 
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to investigate the sensitivity of the postbuckling response tunability with respect to the geometric 

strategy (i.e., geometric variation of the beams) and assembly strategy (i.e., number and 

arrangement of the beams). It is shown that nonuniform beams assembly offers an effective 

approach to control the postbuckling response, which is required for the envisioned multiscale 

applications, such as mechanical triggers and damage detectors. 

 

2.2 Design Principle and Problem Statement 

In this chapter, we combine the beam shape and assembly methods. We develop a system 

assembly approach of multiple nonuniformly shaped beams, in varying configurations, in order to 

effectively tune the postbuckling mode transitions (Φ defines the buckling mode) under a range of 

different excitations, e.g., external force, environmental temperature fluctuations, etc. Effectively 

controlling the mode transitions is critical, which can be verified by the characteristics of the 

postbuckling response. The axial stiffness (i.e., slope of the force-displacement relation) is 

maintained between different postbuckling modes. The axial displacement can be converted into 

transverse motion, which can be used to a activate piezoelectric patch to generate electrical signals 

for different purposes such as energy harvesting [14, 16]. Tuning the mode transitions significantly 

influences the generated electrical signals. For example, it is desirable to maximize the harvested 

electrical power for energy harvesting purposes, while the objective in sensing applications is to 

match the response amplitude to classified damage events. Given the difficulties, reported in 

previous studies, of precisely controlling the postbuckling mode transitions, we introduce the 

nonuniform beam assembly approach to demonstrate a programmable postbuckling system 

response.   

Three beam shapes are investigated, linear, sinusoidal and radical, as shown in Figure 1(a). 

Each individual beam ‘k’ is fully defined by its length 𝐿𝑘, elastic modulus 𝐸𝑘, net gap between the 
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bilateral constraints ℎ𝑘(𝑥) thickness 𝑡𝑘(𝑥), width 𝑏𝑘(𝑥), nonuniform cross section area 𝐴𝑘(𝑥) 

and moment of inertia 𝐼𝑘(𝑥). Figure 1(b) illustrates the nonuniform beam assembly system that 

will exhibit different buckling mode transitions for the different beams under an external applied 

load on the system. Figure 1(c) provides the side view of the postbuckling shape configurations 

for the nonuniform beams subjected to bilateral constraints. The change in the buckling modes 

with increasing displacement can be demonstrated in four stages: (1) original shape, (2) point 

contact, (3) line contact, and (4) snap-through. The beams switch from (1) to (2) when the buckling 

limit is exceeded under the axial displacement. Increasing the displacement, the deformation is 

more severe, and the point contact is enlarged to a line contact. Further, the deformed beam snaps 

to a higher buckling mode. 

 
Figure 1. (a) Studied cases of the nonuniform beams with the linear width, sinusoidal width, and radical 

width. (b) Illustration of the assembly of nonuniform beams under different postbuckling modes. (c) Side 

view of the postbuckling deformation configurations of the nonuniform beams subjected to bilateral 

constraints. (d) Symbols defined in the theoretical modelling of the bi-walled beam. 
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2.2.1 Geometry Variation – Single Beam Analysis 

The postbuckling response of a bi-walled single elastic beam with nonuniform cross section 

under axial force control was studied and investigated [14]. For a single beam, the system consists 

of clamped-clamped nonuniform beam positioned between two bilateral fixed frictionless walls as 

presented in Figure 1(d) The beam will be subjected to axial displacement ∆, and the beam has a 

length 𝐿, elastic modulus 𝐸, net gap between the bilateral constraints ℎ(𝑥) thickness 𝑡(𝑥), width 

𝑏(𝑥), nonuniform cross section area 𝐴(𝑥) = 𝑏(𝑥)𝑡(𝑥) and area moment of inertia 𝐼(𝑥) =
𝑏(𝑥)𝑡3(𝑥)

12
 

that vary continuously along the axial direction. Small deformation assumptions are adopted in 

Euler–Bernoulli 

Table 1. Geometry functions considered in the theoretical model. 

Case Geometry function* 

Linear width 𝑏(𝑋) =  𝑏𝑡𝑜𝑝 + ( 𝑏𝑏𝑜𝑡 −  𝑏𝑡𝑜𝑝)𝑋 

Sinusoidal width 𝑏(𝑋) =  𝑏𝑏𝑜𝑡 + 2𝐴̅𝑠𝑖𝑛(2𝜋𝑚𝑋) 

Radical width 𝑏(𝑋) =  𝑏𝑏𝑜𝑡 − 2𝐵̅√𝑋𝐿  

*: 𝐴̅ is the sine amplitude and 𝐵̅ is the radical width variation parameter.  

beam theory to model the beam under consideration. According to the conducted studies [21, 22], 

the simple local balance of moments equation that governs the buckling behavior of beam with 

nonuniform cross section, under an axial compressive force 𝑝̂, may be written as 

𝑑2𝑀(𝑋)

𝑑𝑋2
+𝑁 𝑀(𝑋) = 0;         (2-1) 

where, 𝑁 =
𝑝

𝐸𝐼(𝑋)
 and the normalized transverse deflection 𝑊(𝑋) is used to define the curvature 

of the beam 𝑀(𝑋), as 

𝑀(𝑋) =
𝑑2𝑊(𝑋)

𝑑𝑋2
;          (2-2) 
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where 𝑋 =
𝑥

𝐿
 and the normalized transverse displacement 𝑊(𝑋) =

𝑤̂(𝑋𝐿)

ℎ
. The boundary 

conditions of the governing equation are 

{
𝑊(0) = 𝑊(1) = 0;

𝑑𝑊(𝑋)

𝑑𝑋
|𝑋=0 =

𝑑𝑊(𝑋)

𝑑𝑋
|𝑋=1 = 0;

        (2-3) 

and the general solution of Eq. (2-2) can be expressed as follows,  

𝑀(𝑋) = 𝐶1Ω1(𝑋) + 𝐶2Ω2(𝑋);        (2-4) 

where 𝐶1and 𝐶2are the unknown integral constants, and Ω1(𝑋) and Ω2(𝑋) represent the linearly 

independent special solutions for different cross section area configurations. Integrating the 

curvature of the beam 𝑀(𝑋) leads to the general solution of the diverse beam as, 

𝑑𝑊(𝑋)

𝑑𝑋
= 𝐶1 ∫Ω1(𝑋)𝑑𝑋 + 𝐶2 ∫Ω2(𝑋)𝑑𝑋 + 𝐶3;      (2-5) 

𝑊(𝑋) = 𝐶1∬Ω1(𝑋)𝑑𝑋𝑑𝑋 + 𝐶2∬Ω2(𝑋)𝑑𝑋𝑑𝑋 + 𝐶3𝑋 + 𝐶4.    (2-6) 

Higher order expansion improves the solution. Therefore, direct numerical integration was 

used and since different independent specific solutions will result from different beam shape 

configurations, three possible cases have been studied, (i) linear width; (ii) sinusoidal width; and 

(iii) radical width. The beam geometry varies with respect to the normalized longitudinal 

coordinate X .  Table 1 summarized the functions which the beams follow in varying their 

geometry. Since the linearly independent special solutions Ω1(𝑋)  and Ω2(𝑋)  depend on the 

distribution of the beam flexural stiffness in Eq. (2-7), therefore the first step is to evaluate the 

variable quantities 𝛼, 𝛽 and ζ for each beam shape configurations with respect to its geometry 

function.    

𝐸𝐼(𝑋) = 𝛼(1 + 𝛽𝑓(𝑋))ζ.         (2-7) 

According to previous conducted study, the linearly independent special solutions for each of the 

prementioned cases can be expressed as follows, 
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2.2.1.1 Linear width  

Ω(𝑋)𝐿𝑛𝑟𝑤 =

{
  
 

  
 Ω1(𝑋) = √1 + 𝛽𝑋 𝐽1[𝜑]

𝐿𝑛𝑟𝑤;

Ω2(𝑋) = √1 + 𝛽𝑋 𝑌1[𝜑]
𝐿𝑛𝑟𝑤;

𝜑𝐿𝑛𝑟𝑤 = 2𝑛(1 + 𝛽𝑋)
1

2;

𝑛 = √
𝑝𝐿2

𝛼𝛽2
;

      (2-8) 

where, 𝛼 =
 𝐸𝑏𝑡𝑜𝑝𝑡

3

12
;  𝛽 =

 𝑏𝑏𝑜𝑡

 𝑏𝑡𝑜𝑝
− 1;  ζ = 1 and 𝐽; 𝑌 are the first and second type of Bessel function.   

Substituting Eq. (2-8) into Eqs. (2-5) and (2-6), to get the general deflection functions, then 

the integration constants C3 and C4 can be evaluated and expressed in terms of C1 and C2 by using 

the given boundary conditions in Eq.        

 (2-3) as follows, 

0 =
𝑑𝑊(0)

𝑑𝑋

𝐿𝑛𝑟𝑤

= 𝐶1
 2𝐾

3
2 𝑝𝐹𝑞[

3

2
;(2,

5

2
); −𝐾]

3𝛽𝑛
5
2√𝜋

+ 𝐶2𝐺𝑚 𝑛
𝑝 𝑞

(

 
 
 

0
−1
−0.5 0.5
−1 −1

√𝐾
0.5)

 
 
 
.

𝐾

𝛽𝑛
5
2√𝜋

+ 𝐶3;  (2-9) 

0 = 𝑊(0)𝐿𝑛𝑟𝑤 = 𝐶1
 4𝐾

5
2 𝑝𝐹𝑞[

3

2
;(2,

7

2
); −𝐾]

15𝛽2𝑛
5
2√𝜋

+ 𝐶2𝐺𝑚 𝑛
𝑝 𝑞

(

 
 
 

0
−1
−0.5 0.5
−2 −1

√𝐾
0.5)

 
 
 
.

𝐾

𝛽2𝑛
9
2√𝜋

+ 𝐶4;  (2-10) 

0 = 𝑊(1)𝐿𝑛𝑟𝑤 = 𝐶1
 4𝐾

5
2 𝑝𝐹𝑞[

3

2
;(2,

7

2
); −𝐾]

15𝛽2𝑛
5
2√𝜋

+ 𝐶2𝐺𝑚 𝑛
𝑝 𝑞

(

 
 
 

0
−1
−0.5 0.5
−2 −1

√𝐾
0.5)

 
 
 
.

𝐾

𝛽2𝑛
9
2√𝜋

+𝐶3 + 𝐶4; (2-11) 
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where,  𝑝𝐹𝑞  and 𝐺𝑚 𝑛
𝑝 𝑞

 are the generalized hypergeometric and Meijer G functions. With all 

integration constants defined in terms of C4, eigenvalues and buckling mode shapes can be 

obtained numerically. 

2.2.1.2 Sinusoidal width  

Ω(𝑋)𝑆𝑖𝑛𝑢𝑤 =

{
  
 

  
 Ω1(𝑋) = √1 + 𝛽sin (2𝜋𝑚𝑋) 𝐽1[𝜑

𝑆𝑖𝑛𝑢𝑤];

Ω2(𝑋) = √1 + 𝛽sin (2𝜋𝑚𝑋) 𝑌1[𝜑
𝑆𝑖𝑛𝑢𝑤];

𝜑𝑆𝑖𝑛𝑢𝑤 = 2𝑛(1 + 𝛽𝑋)
1

2;

𝑛 = √
𝑝𝐿2

𝛼𝛽2
  ;

     (2-12) 

where, 𝛼 =
 𝐸𝑏𝑡𝑜𝑝𝑡

3

12
;  𝛽 =

2𝐴̅

 𝑏𝑏𝑜𝑡
 ; and  ζ = 1. 

2.2.1.3 Radical width  

Ω(𝑋)𝑅𝑎𝑑𝑤 =

{
 
 
 

 
 
 Ω1(𝑋) = √1 + 𝛽𝑋 𝐽2

3

[𝜑𝑅𝑎𝑑𝑤];

Ω2(𝑋) = √1 + 𝛽X 𝑌2
3

[𝜑𝑅𝑎𝑑𝑤];

𝜑𝑅𝑎𝑑𝑤 =
4

3
𝑛(1 + 𝛽𝑋)

3

4;

𝑛 = √
𝑝𝐿2

𝛼𝛽2
;

      (2-13) 

where, 𝛼 =
𝐸√ 𝑏𝑏𝑜𝑡𝑡

3

12
;  𝛽 = −

2𝐵̅

 𝑏𝑏𝑜𝑡
 ;  and ζ =

1

2
 . 

By adopting the same procedure followed in the linear width case for other cases, the shape 

functions of the cases under consideration can be obtained.  

2.2.2 Material Variation– Single Beam Analysis 

For an anisotropic beam defined in Cartesian coordinates, the beam has a length 𝐿 in the 𝑥-

direction, width 𝑏 in the 𝑦-direction, a thickness 𝑡 in the 𝑧-direction, a cross section area 𝐴 = 𝑏 𝑡, 

an area moment of inertia 𝐼 =
bt3 

12
 and a Young’s modulus 𝐸(𝑥) that varies continuously along the 

longitudinal direction 𝑥 in accordance with the rule of mixtures. Different distribution functions 
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(i.e., simple power law, natural exponential and decimal logarithm) can be used to control the 

variation of the Young’s modulus in the longitudinal direction, from pure material 1 at (𝑥 = 0) to 

pure material 2 at (𝑥 = 𝐿), 

𝐸(𝑥) =

{
 
 

 
 𝐸1 − [𝐸1 − 𝐸2] (

𝑥

𝐿
)
𝑟

;  Simple power law

𝐸1 +
[𝐸1−𝐸2]

𝑒
(
𝑥𝑟
𝐿
)
;  Natural exponential

𝐸1 + [𝐸1 − 𝐸2] log (
𝑥

𝐿
) 𝑟2;  Decimal logarithm

     (2-14) 

where, 𝑟 =
𝑉1

𝑉2
 describes the variation in the volume fraction, 0 < 𝑥 < 𝐿 , 𝐸1  is defined as the 

Young’s modulus of the stiffer material, [𝐸1 − 𝐸2] is the difference between Young’s moduli of 

the two materials being used, and 𝐸2 is the softer material’s Young’s modulus.  

The governing equation of the buckling behavior of the presented anisotropic beam, may be 

re-written as  

𝑑2𝑀(𝑋)

𝑑𝑋2
+Ň 𝑀(𝑋) = 0;         (2-15) 

where, Ň =
12𝑝

𝑏𝑡3𝐸(𝑋)
 and integration constants, eigenvalues, and buckling shape functions can be 

obtained numerically by adopting the same prescribed boundary conditions. 

According to the previous study [16], the obtained buckling shape functions form an 

orthogonal basis and thus, the superposition method is used to express the transverse deflection as 

a linear combination of buckling modes as 

𝑊(𝑋) = ∑ 𝐴𝑗𝜓𝑗(𝑋)
∞
𝑗=1,3,5… ;         (2-16) 

where 𝐴𝑗  are the coefficients that express each buckling mode influence on the transverse 

deflection.  
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2.2.3 Beam Assembly Analysis 

In the case of an assembly system, the previously mentioned analytical formulation is extended 

to account for multiple different beams subjected to axial displacement simultaneously. The 

system consists of N anisotropic/nonuniform beams stacked in parallel. All beams will be 

subjected to the specified axial displacement ∆𝑘  simultaneously. We use displacement control 

since it helps to increase the controllability of loading on the beams, thus leading to more precise 

tuning over the post-buckling process. 

The post buckling responses for the beams with anisotropic/nonuniform sections are analyzed 

by applying the energy method. The weight coefficients are obtained through minimizing the total 

energy between the bilateral constraints. Since the beams are deflected quasi-statically between 

frictionless bilateral constraints, the kinetic energy can be ignored, and the potential energy will 

signify the total energy. The summation of the bending strain energy 𝑢𝑏
𝑘, compressive strain energy 

𝑢𝑐
𝑘, and energy of external work 𝑢𝑝

𝑘 represent the total potential energy. The beams are subjected 

to a gradually increasing axial displacement. The axial force 𝑝̂𝑘  due to the applied axial 

displacement can be expressed as  

{
 
 

 
 GV: 𝑝̂𝑘 = 𝐸𝑘 [

∆𝑘

∫
1

𝐴𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

−
∫ (

𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

2∫
1

𝐴𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

] ;

MV: 𝑝̂𝑘 = 𝐴𝑘 [
∆𝑘

∫
1

𝐸𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

−
∫ (

𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

2∫
1

𝐸𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

] ;

      (2-17) 

where GV and MV denote the geometry variation for nonuniform beams and the material variation 

for anisotropic beams, respectively, 

The prescribed energy quantities can be expressed in terms of axial displacement ∆𝑘  as 

follows,     



15 

 

{
GV: 𝑢𝑏

𝑘 =
𝐸𝑘

2
∫ 𝐼𝑘(𝑥) (

𝑑2𝑤̂𝑘(𝑥)

𝑑𝑥2
)
2

𝑑𝑥
𝐿𝑘
0

;

MV: 𝑢𝑏
𝑘 =

𝑏𝑘𝑡𝑘
3

24
∫ 𝐸𝑘(𝑥) (

𝑑2𝑤̂𝑘(𝑥)

𝑑𝑥2
)
2

𝑑𝑥
𝐿𝑘
0

;

      (2-18) 

𝑢𝑐
𝑘 =

𝑆𝑘∆𝑐
𝑘

2
;           (2-19) 

𝑢𝑝
𝑘 =

𝑝𝑘∆
𝑘

2
;           (2-20) 

where 𝑆𝑘  and ∆𝑐
𝑘 , respectively, refer to the axial compressive force and deformation under the 

geometry and material considerations as,  

{
 
 

 
 GV: S𝑘 = 𝐸𝑘 [

∆𝑘

∫
1

𝐴𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

−
∫ (

𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

2∫
1

𝐴𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

] ;

MV: S𝑘 = 𝐴𝑘 [
∆𝑘

∫
1

𝐸𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

−
∫ (

𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

2∫
1

𝐸𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

] ;

       (2-21) 

and 

{
GV: ∆𝑐

𝑘 =
𝑝𝑘

𝐸𝑘
∫

1

𝐴𝑘 (𝑥)
  𝑑𝑥

𝐿𝑘
0

;

MV: ∆𝑐
𝑘 =

𝑝𝑘

𝑏𝑘𝑡𝑘
∫

1

𝐸𝑘 (𝑥)
  𝑑𝑥

𝐿𝑘
0

.
        (2-22) 

Note that ∆𝑘 is the variation of the beam length given as 

∆𝑐
𝑘 = ∆𝑘 −

1

2
∫ (

𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

.        (2-23) 

Substituting Eqs. (2-21) to (2-23) into Eqs. (2-18) to (2-20), the potential energy is the summation 

of the partial potential energies as, 
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𝛱(𝐴𝑗
𝑘) = ∑ 𝑢𝑏

𝑘(𝐴𝑗
𝑘) + 𝑢𝑐

𝑘(𝐴𝑗
𝑘) − 𝑢𝑝

𝑘(𝐴𝑗
𝑘)𝑁

𝑘=1 ;      (2-24)  

which can be written as,   

𝛱𝑘 =
𝐸𝑘

2
∫ 𝐼𝑘(𝑥) (

𝑑2𝑤̂𝑘(𝑥)

𝑑𝑥2
)
2

𝑑𝑥 −
𝐸𝑘(2∆

𝑘 ∫ (
𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

−[∫ (
𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

]

2

)

8∫
1

𝐴𝑘(𝑥)
 𝑑𝑥

𝐿𝑘
0

 
𝐿𝑘
0

;  (2-25a) 

𝛱𝑘 =
𝑏𝑘𝑡𝑘

3

24
[
∫ (

𝑑2𝑤̂𝑘(𝑥)

𝑑𝑥2
)
2

𝑑𝑥
𝐿𝑘
0

∫
1

𝐸𝑘(𝑥)
𝑑𝑥

𝐿𝑘
0

] −
𝑏𝑘𝑡𝑘(2∆

𝑘 ∫ (
𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

−[∫ (
𝑑𝑤̂𝑘(𝑥)

𝑑𝑥
)
2

𝑑𝑥
𝐿𝑘
0

]

2

)

8 ∫
1

𝐸𝑘(𝑥)
𝑑𝑥

𝐿𝑘
0

;   (2-25b) 

Substituting the boundary conditions and Eqs. (2-16) and (2-17) into Eq. (2-25), the total potential 

energy can be expressed as, 

{
 
 
 

 
 
 
GV: 𝛱𝑘 = 𝐸𝑘 (

𝐿𝑘

24
∫ ℎ𝑘

2(𝑋)𝑏𝑘(𝑋)𝑡𝑘
3(𝑋) [∑ 𝐴𝑗

𝑘∞
𝑗=1

𝑑2𝜓𝑗(𝑋)

𝑑𝑋2
]
2

𝑑𝑋 −
2∆𝑘 ∫ ℎ𝑘

2(𝑋)[∑ 𝐴𝑗
𝑘∞

𝑗=1

𝑑𝜓𝑗(𝑋)

𝑑𝑋
]
2

𝑑𝑋
1

0
−[∫ ℎ𝑘

2(𝑋)[∑ 𝐴𝑗
𝑘∞

𝑗=1

𝑑𝜓𝑗(𝑋)

𝑑𝑋
]
2

𝑑𝑋
1

0
]

2

8𝐿𝑘 ∫
1

𝑏𝑘(𝑋)𝑡𝑘(𝑋)
 𝑑𝑋

1

0

 
1

0
) ;

MV: 𝛱𝑘 = ℎ𝑘
2 (

𝑏𝑘𝑡𝑘
3𝐿𝑘

24
[
∫ [∑ 𝐴𝑗

𝑘∞
𝑗=1

𝑑2𝜓𝑗(𝑋)

𝑑𝑋2
]

2

𝑑𝑋
1

0

∫
1

𝐸𝑘(𝑋)
𝑑𝑋

1

0

] −

𝑏𝑘𝑡𝑘(2∆
𝑘 ∫ [∑ 𝐴𝑗

𝑘∞
𝑗=1

𝑑𝜓𝑗(𝑋)

𝑑𝑋
]
2

𝑑𝑋
1

0
−[∫ [∑ 𝐴𝑗

𝑘∞
𝑗=1

𝑑𝜓𝑗(𝑋)

𝑑𝑋
]
2

𝑑𝑋
1

0
]

2

)

8𝐿𝑘 ∫
1

𝐸𝑘(𝑋)
𝑑𝑋

1

0

) ;

 

            (2-26) 

where,   𝑗 = 1,…… . ,∞, 𝑘 = 1,…… . , 𝑁.  

The unknown weight coefficients 𝐴𝑗
𝑘 can be determined by solving the following constrained 

minimization problem, which represent the physical confinement of the beam between the bilateral 

boundaries.  

{
Min[𝛱(𝐴𝑗

𝑘)];       𝑗 = 1,… ,∞, 𝑘 = 1,… ,𝑁

0 ≤ 𝑊𝑘(𝑋) ≤ 1.
       (2-27) 

The Nelder–Mead algorithm is adopted to solve the energy minimization problem in Eq. (2-27).  

It is worthwhile noting that we consider 30 buckling modes to solve the numerical 

minimization problem in this study. This is mainly due to the considerations of accuracy and 

computational cost. The 30-mode model offers the most accurate theoretical results when 

compared with the experimental results, especially for the postbuckling mode transitions (i.e., Φ3, 
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Φ5 and Φ7). On the other hand, the computational cost of solving the 30-mode theoretical model 

is approximately two times of that for the 20-mode model. 

2.3 Experimental and Numerical Validations 

The theoretical model was simplified to account for a single uniform beam under displacement 

control to validate the results with the existing model [20]. Figure 2 presents the theoretical force-

displacement response for a constant width beam subjected to the quasi-static axial force. The 

beam has the length of 250 mm, thickness of 2.34 mm, total separated gap of 4 mm, Young’s 

modulus of 2.31 GPa and constant width of 30 mm. The third, fifth and seventh buckling mode 

shapes are labeled as Φ3, Φ5 and Φ7, respectively, indicating the buckling shapes after the snap-

through events. Both elastic curves match with the differences of 1.22, 1.77 and 1.73% at Φ3, Φ5 

and Φ7, respectively. The difference between both theoretical models, could be due to the 

numerical errors while minimizing the total potential energy. However, since the range of error is 

very small (<2%), the theoretical model can be adopted to investigate the effect of other parameters 

on the postbuckling response of a nonuniform cross-section beams assembly subjected to an axial 

displacement loading. 

To validate the theoretical postbuckling response of the beams, the beam assemblies were 

experimentally investigated. The experimental setup was similar to the adopted setup presented 

in previous conducted study, the procedure was adjusted to account for multiple non-uniform 

beams (i.e., different lengths and thicknesses) simultaneously, as shown in Figure 3(a). 
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Figure 2. Comparison of the force-displacement relationship between the current and existing models. 

 

 

Figure 3. (a) Experimental setup. (b) Aluminum frames for the bilateral constraints and the fixtures for the 

clamped-clamped boundary conditions. Nonuniform beam samples tested in the (c) first (i.e., PLA) and (d) 

second (i.e., polycarbonate) beam assemblies. (e) Deformation configurations of the constant, radical and 

sinusoidal PLA beams. (f) Comparison between the theoretical, experimental and numerical results for the 

polycarbonate and PLA beam assemblies. 
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The experimental setup structure consists of aluminum frames with 13 mm thickness, in order 

to hold the beams firmly in place and emphasize the independent response of each beam, Softer 

restraints may influence the responses due to the contact interactions between each the buckled 

beams and the adjacent walls. Transverse reactions (i.e., forces, moments) will accelerate the 

development of the higher buckling modes, resulting in earlier than expected mode transitions. 

The beam ends were fixed and positioned between the two rigid constraining walls, while the gaps 

between the walls were free to adjust which allows the use of varied geometries. The aluminum 

frames provided the bilateral constraints, and the fixed-fixed boundary conditions were induced 

by the top and bottom fixtures, as shown in Figure 3(b). 

In this study, the bilateral constraints are flat, rigid and fixed with limited gap distance, such 

that the postbuckling mode transitions of the reported beam assembly can be more tunable. Note 

that the aluminum constraints were lubricated to omit the influence of friction in the experiments. 

We only considered the clamped-clamped boundary conditions in the beam assembly because of 

their higher controllability in an experimental setup, compared to other types of boundary 

conditions such as pinned-pinned or pinned-clamped. An MTS Flextest 40 and a loading frame 

unit model370 were used for displacement-control testing. Gradually increasing axial force was 

applied to the top of the rigid beam placed on the top of the assembly frame. The loading stage 

was limited to a maximum total shorting of 6 mm, and the loading period was set to be 40 seconds. 

Before loading the nonuniform beam assembly, cyclic load test was carried out on a constant 

polycarbonate beam, and repeatability was verified. 

We tested two sets of samples. For the first set, three polycarbonate beams (𝐸 = 2.25 GPa) 

with different geometries were tested. It includes two linear and one constant width beams (Figure 

3(c)). The beams length and Young’s modulus are 250 mm and 2.25 GPa, respectively. In the 
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second set of experiments, three beams (i.e., constant, radical and sinusoidal beams with different 

length and thickness) were 3D printed, using an UltiMaker 3D printer, with 0.1 mm layer height 

polylactic acid (PLA) material (Figure 3(d)). The beams width and Young’s modulus are set to 25 

mm and 3.5 GPa, respectively. Figure 3(e) displays the postbuckling shape configurations of the 

3D printed constant, radical and sinusoidal PLA beams. 

Finite Element models were developed in Abaqus v16.1. The exact same beam assemblies, 

discussed above, were simulated. The contact interaction was defined to consider the effect of the 

bilateral constraints. The walls and microbeams were simulated using shell elements (S4R). Figure 

3(f) compares the theoretical, experimental and numerical results for the first (i.e., polycarbonate) 

and second (i.e., PLA) beam assemblies. Satisfactory agreements are obtained between the 

theoretical and experimental results. 

2.4 Control of Assembly System Response using the Number of Beams, Stiffness, Length 

and Thickness 

2.4.1 Influence on the Postbuckling Response 

The developed theoretical model is used to analyze the postbuckling behavior of the multi-

nonuniform beams assembly to investigate the effects on the assembly’s elastic response of the 

length L, thickness t, Young’s modulus E and the number of the beams. We consider the second 

set from the experiments (i.e., assembly of 3D printed beams). The gap between the bilateral 



21 

 

constraints was fixed at 4 mm. In the case of sinusoidal and radical width, the amplitude A ̅ and 

the width variation parameter B ̅ are set to be 0.5 and 0.315, respectively.  

 

Figure 4. Influence of the (a) beam number, (b) bending stiffness, (c) length and (d) thickness on the 

postbuckling behavior of the beam assembly. 
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Figure 5. Effect of the beam width and thickness on travelling distance between mode transitions 

for (a) linear width, (b) sinusoidal width and (c) radical width. 

Figure 4(a) shows the influence mechanism of changing the number of beams as a controlling 

parameter on the assembly elastic behavior. Three, six (2 linear, 2 sinusoidal, 2 radical), and nine 

(3 linear, 3 sinusoidal, 3 radical) beams assembly configurations were investigated. The length, 

thickness and Young’s modulus were 250 mm, 2.14 mm and 2.25 GPa, respectively for all beams 

in this comparison. The results show that increasing the number of beams in the assembly will lead 

to an axial force increment with respect to the number of beams being used, i.e., the axial forces 

were twice the values in the case of a using six beams and three times the values in the case of 

nine beams, however the axial displacement at the transition were the same. Figure 4(b) shows the 

effect of changing the elastic modulus, in the range 1.65 ≤ 𝐸 ≤ 2.85 GPa, on the assembly’s 

force-displacement response. The three beams have a length of 250 mm and a thickness of 2.14 

mm. The axial forces at each mode transition, for the three different configurations, are considered. 
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The results show that varying material properties (elastic modulus) has no effects on the transitions 

displacements or stiffness. This implies that it will result in significant increase in the forces at 

each mode transitions, but fails in controlling the gap between these mode transitions. Figure 4(c) 

investigates the influence of the beam length, and Figure 4(d) shows the effect beam thickness 

variation. It is observed that decreasing the beam length and increasing the beam thickness will 

decrease the gap between the mode transitions, which leads to a better resolution. 

2.4.2 Influence on the Postbuckling Response 

In this section, we define the gap between the mode transitions as the ‘travelling distance’. The 

aim is to investigate ways to pre-define it and to design an assembly system with linear, sinusoidal 

and radical beams that will exhibit the desired travel distance response. Although the travelling 

distance can be varied using the assembly of multiple uniform beams, we aim here to exactly tune 

it to a set value using the complex nonuniform beams assembly configuration. Figure 5 shows 

the variation of the travelling distance, between the buckling mode transitions, with respect to the 

beam cross-sectional area (combined effect of beam thickness and width). Figure 5(a) presents the 

results for a nonuniform beam with linear width. Figure 5(b) shows the sinusoidal beam results 

and Figure 5(c) displays the radical beam output. The results show that beam thickness and width 

can be used to tune the traveling distance between postbuckling mode transitions. Note that the 

sinusoidal beam shows a significant influence in Figure 5(b), which indicates that sinusoidal shape 

affects the travelling distance more significant than the other two beam patterns. 

2.5 Conclusions 

This study developed an approach for nonuniform beam assembly to tune and control the 

postbuckling response of a loaded system. A theoretical model was developed to investigate the 

postbuckling performance of the nonuniform beams subjected to bilateral constraints. 
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Experimental and numerical simulations were conducted to validate the theoretical predictions. 

Satisfactory agreements were obtained. Parametric studies were carried out to investigate the 

tunability of the reported assembly system response in terms of the geometric and material 

attributes of the nonuniform beams. The reported assembly of nonuniform elasticas offers a novel 

approach to tune the mechanical characteristics of architected structures for use in novel 

applications such as energy harvesting and extremely low frequency force/displacement sensing.  
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Chapter 3: Functionally Graded Materials Beams Subjected to Bilateral Constraints: 

Structural Instability and Material Topology 

3.1 Introduction 

Functionally graded materials (FGM), a type of functional composites focused on exploring 

mechanical responses through material design and optimization, have marked their debut decades 

ago and have been experiencing rapid developments ever since then, which rekindles the 

popularity of research on composite materials [23]. Compared to their traditional counterparts, 

FGM have several advantages and unusual properties such as enhanced deformation resistance, 

enhanced toughness, ultra-light, well recoverability, etc. [24-26]. Surpassing the mechanical 

characteristics of natural materials, FGM are reported with superior response behavior  due to their 

effectively tuned and engineered material properties [27]. A research field has therefore  emerged  

aiming to design, characterize and harness the functional patterns of FGMs in order to obtain 

desirable performances for specific applications. This is a highly multidisciplinary research 

community that comprises structural analysis, material science, mechanics and engineering. As a 

consequence, research efforts have been dedicated to designing composites’ functionally graded 

material properties, such that to obtain advanced physical and mechanical responses that are 

otherwise not accessible in nature materials [28-31].  

A significant number of studies have been conducted in recent years to characterize and design 

FGMs under different conditions. Static, free vibration and wave propagation of bi-material beams 

fused with an FGM layer were investigated analytically using the first-order shear deformation 

theory [32]. Structural behavior of functionally graded tapered clamped free Euler–Bernoulli 

beams was studied to determine the critical buckling loads and free frequencies in the longitudinal 

and transverse directions [33]. General formulas were proposed to obtain the effective stiffness 
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coefficients of the elastic beams made of FGM and piecewise homogeneous materials [34]. 

Modified couple stress theory and von Kármán geometric nonlinearity were used to investigate the 

nonlinear vibration of FGM microbeams, where the material properties were assumed to be graded 

in the thickness direction [35, 36]. The authors discussed the influences of the length scale 

parameter and material properties on the nonlinear mechanical response of the FGM microbeams. 

Higher-order shear deformation beam theories were developed for bending and free vibration of 

FGM beams [37]. The authors reported that varying the power law index in the material functions 

significantly affected the stiffness of the FGM beams. Effects of material composition on the 

thermal buckling and vibration of FGM beams were also investigated [38-41]. Higher order shear 

deformation theory was adopted to develop finite element models for refined mixed beam element 

[42]. The mixed finite beam model was proposed to explore the vibrational behavior of FGM 

beams, in which material properties were described using a power law distribution [43]. The 

mechanical behavior of porous beams, made of FGMs, was inspected by different researchers to 

explore their principles and features (i.e., abundance of delamination) compared with the 

conventional materials [44]. The dynamic behavior of the porous FGM beams was studied while 

the Young's moduli and mass density were nonlinearly graded along the thickness direction [45-

47]. The authors reported the effects of the porosity distributions and porosity coefficients on the 

dynamic behavior of the FGM porous beams. In addition to investigating the influence of material 

functions on the mechanical response of FGM structures, recent research studies have also been 

dedicated to optimizing the material functions in order to tune and control the response.  

Two optimization strategies have been proposed to tune FGMs for enhanced mechanical or 

thermal behavior, including varying the material functions with respect to the 1) volume fraction 

distribution of FGM, and 2) relationships between material gradation and property variations, 
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which leads to various potential applications (e.g., dentistry, bone implants, energy harvesting, 

etc.) [48-52]. Tailoring material properties of FGM to achieve specific desired goals has received 

considerable attention in recent years [53-58]. To date, the majority of the studies has been 

focusing on the material properties of FGM. However, only a limited number of reported studies 

have investigated FGM systems optimization for complex performance with structural instabilities 

(e.g., postbuckling behavior). Structures with controlled instabilities (i.e., postbuckling) in 

bilaterally confined FGM beams, have been investigated for deployment for smart applications, in 

several recent studies, including innovative devices and techniques for energy harvesting, 

structural health monitoring (SHM), artificial muscles, and soft robotics [8, 59, 60]. It is critical to 

effectively tune the postbuckling response of the bi-walled FGM beams in those devices. 

Therefore, studies have been particularly focused on investigating the postbuckling mechanisms. 

Buckling mode transitions of bi-walled beams were investigated using the geometric equilibrium 

conditions [61, 62]. More recently, an energy method was developed to determine the postbuckling 

response by minimizing the total energy of the deformed beams between the bilateral confinements 

[63, 64]. To improve the overall performance of the devices in those applications, studies were 

conducted on the control of postbuckled beams using structure-related methods. The postbuckling 

response was tuned by varying the geometric properties of bi-walled beams (i.e., nonuniform 

beams) [65], assembling the beams into controllable systems (i.e., beam assembly) [20], and 

changing the lateral confinements from rigid to flexible discontinuous (i.e., irregular constraints) 

[66]. However, studies have not been proposed on the bi-walled FGM beams for controllarble 

postbuckling. Behavior that could be harnessed for multiple applications.   

To address this research gap, we investigate in this chapter, bi-walled FGM beams with a focus 

on optimizing the functional patterns. Here, we propose bilaterally confined FGM beams with 
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programmable postbuckling behavior by optimizing the material functions. The FGM beams are 

fabricated using 3D printing techniques, and the experiments are conducted to test the postbuckling 

response under axial loading. Theoretical and numerical models are developed to validate the 

experimental results and satisfactory agreements are obtained. The material topology model is then 

developed to optimize the material pattern such that to accurately control the postbuckling 

response. This study develops a promising approach to design and optimize FGM structures for 

multipurpose applications. For example, taking advantage of programmable postbuckling 

responses which convert quasi-static excitations into snap-through high accelerations, the reported 

bi-walled FGM beams can be applied to trigger piezoelectric materials for energy harvesting under 

low-frequency excitations [67, 68]. Identifying the electric signals generated by piezoelectric 

transducer as limit states, the FGM beams are also expected to be used in SHM methods to detect 

thermal damage under low-frequency ambient temperature variation [69].  

The chapter is outlined as follow: Section 2 introduces the fabrication of the FGM beams using 

3D printing technique, and discusses the experimental setups for postbuckling under bilateral 

constraints. Section 3 presents the analytical and numerical models of the bi-walled FGM beams 

and compare the results with the experiments. Section 4 discusses the material topology used to 

optimize the functions of the reported bi-walled FGM beams for maneuverable structural 

instability. Section 5 summarizes the main findings in this study. 

3.2 Fabrication and Experiments of the FGM beams 

3.2.1 Fabrication of FGM Beams Using 3D Printing Technique 

In this study, the FGM beams were fabricated using a 3D printing technique, and the bilateral 

constraints were made of alumina. The Ultimaker-S5 dual nozzle printer implementing the fused 

filament fabrication technology was used in the experiments. This provided flexibility and 
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maintained structural integrity over the FGM samples. Fig. 1 illustrates the principle and printing 

process of the dual nozzle 3D printing. The polymer filaments were fed and heated by the 3D 

printer to convert the materials from the glassy to rubbery state, then extruded through the nozzle 

to the platform such that to construct the desired FGM beam distributions. The extrusion head 

consisted of two 0.4 mm diameter brass nozzles, which can be moved in 360○. In particular, the 

nozzles were fed with different materials, which were moved in the x − y plane to deposit the FGM 

beam designed in AutoCAD 2019 and Siemens NX. The direction of action of the compressive 

load was in the x-axis, the layer build direction was in the z-axis, and the raster was moving in the 

x-y plane to deposit the material. The platform was moved in the z direction layer by layer until 

the designed thickness was reached [70]. Note that the thickness tolerance was approximately 0.06 

mm. FGM specimens were fabricated using the polylactic acid (PLA), acrylonitrile butadiene 

styrene (ABS) and Nylon mainly since the difference of their failure modes (i.e., Nylon and ABS 

typically experienced elastic failure while PLA was brittle) [71]. 

In 3D printing, the dual extrusion head rate was set to be 25 mm/s, and the printing bed 

temperature was varied from 0-85 oC depending on the melt temperatures of the feeding materials. 

The temperatures of the nozzles for the material pattern of PLA/ABS was 200/230 oC and 

PLA/nylon pattern was 200/245 oC. The standby temperatures (which the inactive nozzle cools 

down to, while switching nozzles in dual extrusion machines) for PLA and nylon were fixed as 

175 oC and the temperature for ABS was 85 oC. The fan speeds used to print PLA, ABS and nylon 

were set as 100%, 2% and 40 %, respectively. The FGM beams were printed with the layer 

tolerance of 0.06 mm. The material properties of the PLA, nylon and ABS used in the experiments 

are listed in Table 2. 
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The FGM beams were divided into six segments with the length of 28.3 mm, and the material 

fraction was varied in each segment in the 𝑥 −direction, as shown in Figure 6(b). The volume 

distribution of the FGM beams can be described as the power, cosine squared, decimal logarithm, 

natural exponential, and sinusoidal functions in the longitudinal direction,  

𝑉(𝑥) =

{
 
 
 
 

 
 
 
 𝑉1 − (𝑉1 − 𝑉2) (
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𝐿
)
𝑟
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𝑟

;

  (0 < 𝑥 < 𝐿)      (3-1) 

where the total beam length and volume fraction r are 170 mm and 0.76, respectively. 

3.2.2 Experimental Setup and Testing 

The postbuckling response of the bilaterally constrained FGM beams was experimentally 

investigated. Figure 7 presents the experimental setup and testing results of the deformed  

Table 2. Materials properties of the FGM beams. 

 PLA  Nylon ABS 

Density (g/cm3) 1.24 1.14 1.1 

Young’s modulus (GPa) 3.47 0.889 2.07 

Elongation at break (%) 5.2 210 4.8 

Flexural modulus/tensile modulus 1.34 0.8 1.28 

Filament length/weight (mm/g) 126.67 137.33 142.67 
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Figure 6. (a) 3D printing device used to manufacture the FGM beams (Ultimaker s5 3D printer). 

(b) Illustrative demonstration of the 3D printing technique used to fabricate the FGM beams.  The 

material distributions of the FGM beams were designed with six segments using PLA, ABS and 

nylon. (A: PLA, B: ABS/Nylon). 

 

Figure 7. (a) Experimental setup of the FGM beams subjected to the bilateral constraints. (b) 

Postbuckling mode shape configurations of the PLA/ABS beams in buckling modes 1, 3 and 5 (i.e., 

Φ1, Φ3 and Φ5) (Green demonstrates the ABS material and blue demonstrates the PLA material). 
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Table 3. Geometric properties of the FGM specimens. 

 FGM beam 

Width w (mm) 25 

Length L (mm) 170 

Thickness t (mm) 2.89 

Volume fraction r 0.76 

shape configurations. Figure 7(a) shows the bilateral constraints made in alumina for the 

postbuckling response of the FGM beams. The testing protocol consisted of applying the quasi-

static axial displacement in three continuous steps (i.e., initial calibration, loading, and unloading) 

using the MTS Flextest 40 mechanical testing machine [14]. The FGM beams were placed between 

the adaptable, frictionless aluminum frames under the clamped-clamped boundary conditions 

using the testing fixtures. The gap between the aluminum frames was 5 mm and the gradually 

increasing loading was applied to the top of the samples within the loading time period of 40 s. 

The aluminum frames were designed to test three samples parallelly, and therefore, the testing in 

the middle frames can effectively prevent probable experimental imperfections (e.g., vibration or 

rotation). In addition, the frames were lubricated to ensure the negligibility of the friction between 

the FGM beam and the constraints. Two types of the FGM beams (i.e., PLA/ABS and PLA/nylon) 

were tested in the experiments Figure 7(b) shows the postbuckling shape configurations of the 3D 

printed FGM beams under bilateral constraints in buckling modes 1, 3 and 5 (i.e., Φ1, Φ3 and Φ5).  
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3.3 Theoretical and Numerical Modeling of the Bi-walled FGM Beams 

3.3.1 Theoretical Modeling for Postbuckling Analysis 

In the theoretical modelling, the FGM beams are considered with the length 𝐿  in the 𝑥 -

direction, width 𝑏 in the 𝑦-direction, thickness 𝑡 in the 𝑧-direction, cross-sectional area 𝐴 = 𝑏𝑡, 

and moment of inertia 𝐼 =
bt3 

12
, as shown in Figure 8. The FGM beams are under the clamped-

clamped boundary conditions. The net gap ℎ is defined as the distance from the FGM beams to the 

constraint at the far end, i.e., ℎ = ℎ0 − 𝑡, where ℎ0 is the gap between the constraints. The beams 

are subjected to axial displacement ∆, and the small deformation assumptions are adopted into the 

Euler–Bernoulli beam theory to develop the theoretical model since the ratio of the  

 

 

Figure 8. Schematic illustration of the bi-walled FGM beam postbuckled to the 7th buckling mode 

under the axial compression. 

net gap-to-length is relatively small (
ℎ

𝐿
≪ 1).  

The material functions of the FGM beams are defined by the Young’s modulus, which is varied 

from complete material A at one end (𝑥 = 0) to complete material B at the other end (𝑥 = 𝐿). The 

effective Young’s moduli are defined as the power, cosine squared, decimal logarithm, natural 

exponential, and sinusoidal functions in the longitudinal direction, which are given as 
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𝐸(𝑥) =
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  (0 < 𝑥 < 𝐿)     (3-2) 

where, 𝑟 =
𝑉𝐴

𝑉𝐵
 describes the variation in the volume fraction, 𝐸𝐴 is defined as the Young’s modulus 

of the stiffer material, |𝐸𝐴 − 𝐸𝐵| is the absolute difference between the Young’s moduli of the two 

materials, and 𝐸𝐵 is the Young’s modulus of the softer material.  

The second order differential equation that governs the buckling behavior of the FGM beams, 

under an axial compressive force 𝑝̂, can be written as [21, 22] 

d2𝑀(𝑋)

d𝑋2
+ 𝑁(𝑋) 𝑀(𝑋) = 0;         (3-3) 

where 𝑁(𝑋) =
12𝑝

𝑏𝑡3𝐸(𝑋)
. Note that the normalized governing equation accounts for the postbuckling 

response of the FGM beams with variable geometries (i.e., the differential equation is valid for 

variable coefficients), since 𝑁(𝑋) is defined with respect to the variable modulus 𝐸(𝑋). The 

normalized transverse deflection 𝑊(𝑋) is used to define the curvature 𝑀(𝑋) as 

𝑀(𝑋) =
d2𝑊(𝑋)

d𝑋2
;          (3-4) 

where 𝑋 =
𝑥

𝐿
 and 𝑊(𝑋) =

𝑤̂(𝑋𝐿)

ℎ
. The boundary conditions are 

{
𝑊(0) = 𝑊(1) = 0

d𝑊(𝑋)

d𝑋
|𝑋=0 =

d𝑊(𝑋)

d𝑋
|𝑋=1 = 0.

        (3-5) 
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𝑀(𝑋) = 𝐶1sin(𝛽𝑋) + 𝐶2cos(𝛽𝑋);        (3-6) 

where 𝐶1and 𝐶2are the unknown integral constants, and 𝛽 = √
12𝑝

𝑏𝑡3𝐸(𝑋)
. 

 

Integrating 𝑀(𝑋) leads to obtain the general solution for the FGM beams as 

d𝑊(𝑋)

d𝑋
= −𝐶1

cos(𝛽𝑋)

𝛽
+ 𝐶2

sin(𝛽𝑋)

𝛽
+ 𝐶3;       (3-7) 

𝑊(𝑋) = −𝐶1
sin(𝛽𝑋)

𝛽
− 𝐶2

cos(𝛽𝑋)

𝛽
+ 𝐶3𝑋 + 𝐶4;      (3-8) 

where 𝐶1 ,𝐶2 ,𝐶3 and 𝐶4 are the integration constants that can be determined using the boundary 

conditions.  

Substituting Eq. (3-5) into Eqs. (3-7) and (3-8), the four algebraic equations are obtained as 

{
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where 𝐶1 ,𝐶2 and 𝐶3 are defined in terms of 𝐶4. The eigenvalues and buckling shape functions 𝜓𝑗 

can be obtained numerically. The general form of the buckling shape function can be expressed as 

 

𝜓(𝑋) = 1 − cos(𝛽𝑋) +
𝛽 sin(0.5𝛽)+1.4142𝛽 cos(0.7071𝛽)

cos(0.7071𝛽)+1.4142𝛽 sin(0.7071𝛽)−cos(0.5𝛽)
[
sin(𝛽𝑋)

𝛽
− 𝑋].  (3-10) 
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According to [20], the obtained buckling shape functions form an orthogonal basis, and thus, 

the shape function of the FGM beams can be expressed using the superposition method by linearly 

combining the buckling modes as 

 

𝑊(𝑋) = ∑ 𝛼𝑗𝜓𝑗(𝑋)
∞
𝑗=1,3,5… ;         (3-11) 

 

where 𝛼𝑗 are the coefficients that determine the contributions of the buckling modes to the shape 

function.  

The energy method is used to determine the weight coefficients 𝛼𝑗 in Eq. (3-11). In particular, 

the energy minimization has been applied to minimize the total energy of the postbuckled FGM 

beams between the bilateral constraints, since the total energy of the beams is, at any equilibrium 

states, the minimum. Due to the negligibility of the kinetic energy (i.e., quasi-static loading), the 

potential energy is considered. The total potential energy of the FGM beams is given as the 

summation of the bending strain energy 𝑢𝑏 and the energy resulting from compressive strain and 

external work 𝑢𝑠. Because the beam is under the displacement control, the axial force 𝑝̂ induced 

by the gradually applied axial displacement and the midplane rotation due to buckling is: 

𝑝̂ = 𝛥𝑏𝑡 [∫ (𝐸(𝑋) −
(
d𝑤̂(𝑋)

d𝑥
)
2
𝐸(𝑋)

2𝛥
)

𝐿

0
𝑑𝑋].       (3-12) 

The potential energy components can be obtained in terms of the overall variation in length 

due to the buckled configuration and the axial compressive displacement as 

𝑢𝑏 =
𝑏𝑡3

24
∫ 𝐸(𝑋) (

d2𝑤̂(𝑋)

d𝑋2
)
2

d𝑋
𝐿

0
;        (3-13) 

and 
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𝑢𝑠 =
𝑆

2
(𝛥𝑐 − 𝛥);          (3-14) 

where 𝛥, 𝑆, and 𝛥𝑐 refer to the entire variation of the beam’s length, axial compressive force, and 

axial compressive deformation, respectively, which are defined in terms of the overall deformation 

𝛥 as 

𝑆 = 𝛥𝑏𝑡 [∫ (𝐸(𝑋) −
(
d𝑤̂(𝑋)

d𝑥
)
2
𝐸(𝑋)

2𝛥
)

𝐿

0
𝑑𝑋] ;       (3-15) 

𝛥𝑐 =
𝑝

𝑏𝑡
∫

1

𝐸(𝑥)
d𝑥

𝐿

0
;          (3-16) 

and 

𝛥𝑐  = 𝛥 −
1

2
∫ (

d𝑤̂(𝑋)

d𝑥
)
2

d𝑥
𝐿

0
.         (3-17) 

Substituting Eqs. (3-15) to (3-17) into Eqs. (3-13) and (3-14), the total potential energy can be 

written as 
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𝛱 = 𝑢𝑏 + 𝑢𝑠 =
𝑏𝑡3

24
∫ 𝐸(𝑋) (

d2𝑤̂(𝑋)

d𝑥2
)
2

d𝑋
𝐿

0
−
𝑝

4
[∫ (

d𝑤̂(𝑋)

d𝑋
)
2

d𝑋
𝐿

0
].    (3-18) 

 

Figure 9. (a) Numerical simulations of the FGM beams defined as bi-layered lamination and the 

postbuckling shape configurations in mode 1, 3 and 5 (i.e., Φ1, Φ3 and Φ5). (b) Comparison of 

the normalized force-displacement relationship between the theoretical, numerical and 

experimental results for the PLA/ABS and PLA/nylon beams.  

Substituting Eqs. (3-5) and (3-11) into Eq. (3-18), the total potential energy with respect to the 

normalized deflection 𝑊(𝑋) can be expressed as 

𝛱 = ℎ2 [
𝑏𝑡3𝐿

24
∫ 𝐸(𝑥)
𝐿

0
[∑ 𝛼𝑗

∞
𝑗=1

𝑑2𝜓𝑗(𝑋)

𝑑𝑋2
]
2

𝑑𝑋 −
𝑝

4𝐿
[([∑ 𝛼𝑗

∞
𝑗=1

𝑑𝜓𝑗(𝑋)

𝑑𝑋
]
2

𝑑𝑋)
2

]] ;  (3-19) 

where,   𝑗 = 1,…… . ,∞ 

A total of 30 buckling modes are used to numerically solve the minimization of the total energy 

mainly due to the considerations of accuracy and computational cost. The 30-mode model offers 

the most accurate theoretical results comparing with the experimental results, especially for the 

postbuckling mode transitions (i.e., Φ3, Φ5 and Φ7). On the other hand, the computational cost of 

solving the 30-mode theoretical model is approximately two times of that for the 20-mode model. 

Thus, coefficients 𝛼𝑗 can be obtained as, 
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{
Min[𝛱 (𝛼𝑗)],      𝑗 = 1,… ,∞

0 ≤ 𝑊(𝑋) ≤ 1
.         (3-20) 

It is worthwhile to point out that the reported governing equation Eq. (3-3) is valid only for the 

buckling response of the FGM beams. This study uses the energy method to obtain the 

postbuckling behavior by minimizing the total potential energy of the postbuckled FGM beams 

between the bilateral constraints. Therefore, the energy minimization is calculated under 0 ≤

𝑊(𝑋) ≤ 1, where 1 is the normalized constraints gap. Due to the complexity of the total potential 

energy (i.e., higher order expansions), numerical tools are used to obtain the postbuckling response 

of the beam assembly. In particular, the Nelder-Mead algorithm is deployed because of its well 

efficiency and accuracy in solving the energy minimization problem. The algorithm needs a set of 

n + 1 points for a function of n variables, to form polytope’s vertices in the n -dimensional space. 

The arrangement of the points are conducted in the form of  𝑓 (𝑥1) ≤  𝑓 (𝑥2) ≤ . . . ≤  𝑓 (𝑥𝑛+1).  

In order to replace the worst point 𝑥𝑛+1, a new point is generated to the centroid of the polytope 

consisting of the best 𝑛 points as 𝑐 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 .  A trial point 𝑥𝑙  by reflecting the worst point 

through the centroid is expressed as 𝑥𝑙 = 𝑐 + 𝛾(𝑐 − 𝑥𝑛+1), where 𝛾 > 0 is a parameter. If the new 

point 𝑥𝑙 is neither a new worst n or best point, 𝑥𝑙 is replaced by 𝑥𝑛+1. If the new generated point 

𝑥𝑙 is better than the previous best point, the reflection can be moved forward to 𝑥𝑒 = 𝑐 + Ϛ(𝑥𝑙 −

𝑐), where Ϛ > 𝑙 is a parameter to expand the polytope. The Nelder–Mead algorithm accurately 

solves the energy minimization problem in this study. Detailed discussion can be found in [41]. 

3.3.2 Numerical Modeling and Results Comparison 

The FE models of the bi-walled FGM beams are developed using Abaqus v16.1. The FGM beam 

and bilateral constraints are simulated using the shell elements (S4R), as shown in Figure 9(a). 

According to the 3D printed samples in the experiments, the FGM beams are partitioned into 6 
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parts and the bi-layer laminations [0/90] of PLA/ABS and PLA/nylon are defined in the material 

properties. Contact interaction was defined to take into account the conflict between the beam and 

constraints. Buckling and postbuckling calculations are conducted to obtain the postbuckling 

response. In particular, the buckling analysis is defined as the linear perturbation/buckle, and the 

postbuckling analysis is the dynamic implicit with Nlgeom. The dynamic loading is applied to the 

top edge of the FGM beams, and the theoretical, experimental and numerical results are obtained 

for the force-displacement relationships of the PLA/ABS and PLA/nylon samples. The geometric 

and material properties in Table 2 and Table 3 are used. The interaction between the beam and 

constraints was defined as “hard” contact without friction (i.e., frictionless) in Abaqus, mainly due 

to two reasons: 1) the axial displacement was relatively small comparing to the beam length, which 

means that the sliding of the contact region is negligible; and 2) lubrication was applied to the 

alumina constraints to reduce the friction in the experiments. Figure 9(b) compares the theoretical, 

experimental and numerical results of the force-displacement relationships for the PLA/ABS and 

PLA/nylon beams. Satisfactory agreements are obtained, which demonstrates the accuracy of the 

theoretical prediction. 

3.4 Parametric study 

Figure 10 studies the influence of the material functions (i.e., the Young’s modulus in Eq. (3-2)) 

on the postbuckling response   



41 

 

 

Figure 10. (a) Effects of the material functions on the Young’s modulus of the FGM beams, and 

the (b) postbuckling resistance with respect to the material functions. (c) Effect of the volume 

fraction r on the Young’s modulus, and the (d) postbuckling resistance with respect to the volume 

fraction r. (e) Effect of the length L on the Young’s modulus, and the (f) postbuckling resistance 

with respect to different length L (gap, width and thickness of the FGM beams are fixed as 4 mm, 

25 mm and 1.32 mm, respectively, for all cases). 

 

of the FGM beams. The volume fraction r and beam length L are particularly varied. Note that the 

FGM beams are investigated with the complete material A as PLA (i.e., 𝐸𝐴 =  3.47 GPa) and 
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complete material B as ABS (i.e., 𝐸𝐵  =  2.07 GPa). The gap, width and thickness are fixed as 4 

mm, 25 mm and 1.32 mm, respectively.  

The results show that changing the volume fraction r or the distribution function increases the 

axial force. However, the stiffness (i.e., slope of the force-displacement relations) and the spacing 

between the mode transitions Φ3, Φ5 and Φ7 are not affected. Figure 10(a) and Figure 10(b) 

investigate the influences of changing the distribution functions of the Young’s modulus. The 

material functions are defined as sinusoidal, natural exponential, cosine squared and decimal 

logarithm functions, and the beam with and volume fraction are fixed as L = 185 mm and 𝑟 = 0.5, 

respectively. Figure 10(c) shows the effect of changing the volume fraction r on the young’s 

modulus if the power function was adopted, and Figure 10(d) shows the influence of r on the 

normalized force-displacement relations. The non-dimensional axial force at which the buckling 

transitions happen are drastically affected by varying the volume fraction r and the distribution 

functions. Figure 10(e) and Figure 10(f) study the influence of the beam’s length L on the 

postbuckling behavior (i.e., the volume fraction is 𝑟 = 1). It can be seen that changing the length 

affects the stiffness which is likely to postpone further buckling modes. This provides an approach 

to control over the location and magnitude of the postbuckling mode transitions.  

3.5 Material Topology to Design the FGM Beams with Maneuverable Postbuckling 

Response  

The reported bi-walled FGM beams release the stored strain energy when postbuckling 

mode transitions occur. The FGM beams are expected to release more strain energy if the 

postbuckling response is more significant (i.e., drop-forces are more critical in buckling snap-

throughs). As a consequence, the total drop-forces can be used to control the postbuckling 

response, which leads to the maneuverability over the structural instability of the bi-walled FGM 
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beams. We particularly use the total drop-forces to design the volume fraction r and the Young’s 

modulus of the softer material (i. e. , 𝐸𝐵) in the material functions of the FGM beams. The total 

drop-forces can be obtained as 

𝛥𝑝̂ = ∑ 𝑝̂𝑖,   (𝑖 = 3,5,7);         (3-21) 

where 𝑝̂𝑖 represents the drop-forces happened in buckling mode Φ3, Φ5 and Φ7, which are given 

in Eq. (3-12). 

Figure 11 presents the flowchart of the postbuckling analysis and material topology for the 

FGM beams. Following the former, material topology addresses the total drop-forces from the 

force-displacement relations of the FGM beams using the energy minimization. Force limit state ε 

is defined for the control criterion as   

 

Figure 11. Flowchart of the optimization of the FGM beams subjected to bilateral constraints, 

including the postbuckling analysis for structural instability and the material topology for material 

function optimization. 
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Figure 12. (a) Drop-forces prior and posterior to buckling mode transitions for the FGM beams 

with the power material function. Distributions of the drop-forces in buckling modes Φ3, Φ5, Φ7 

and the summation with respect to E2 and r for the FGM beams with the material functions defined 

in (b) power, (c) cosine square, (d) decimal logarithm, (e) natural exponential, and (f) sinusoidal 

functions (𝐿 = 200 𝑚𝑚, 𝑏 = 25 𝑚𝑚, 𝑡 = 1.82 𝑚𝑚 and 𝐸𝐴 = 3.85 𝐺𝑃𝑎 for all cases).  

𝛥𝑝̂ < 𝜀;           (3-23) 
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where, 𝜀 represent the desired total drop-forces. In particular, if the drop-forces are larger than the 

limit state, the releasing of the stored strain energy is too significant, and therefore, the topology 

algorithm is calculated again by updating the Young’s modulus 𝐸 and volume fraction 𝑟. The loop 

keeps running until Eq. (3-23) is met.  

Here, we calculate the material functions as the power, cosine squared, decimal logarithm, 

natural exponential, and sinusoidal functions, as defined in Eq. (3-2). Note that the length, width, 

thickness, and the Young’s modulus of the stiffer material are fixed as: 𝐿 = 200 mm, 𝑏 = 25 mm, 

𝑡 = 1.82 mm  and 𝐸𝐴 = 3.85 GPa , respectively. The optimization variables are the volume 

fraction 𝑟 and the Young’s modulus of the softer material 𝐸𝐵, which are varied as 0 ≤ 𝑟 ≤ 1 and 

1.65 ≤ 𝐸𝐵 ≤ 3.85 GPa, respectively. Figure 12 investigates the influences of the volume fraction 

𝑟 and the Young’s modulus of the softer material 𝐸𝐵 on the releasing of the stored strain energy in 

terms of the drop-forces. Following Eq. (2), the material functions of the FGM beams are defined 

as Figure 12(b) power, Figure 12(c) cosine squared, Figure 12(d) decimal logarithm, Figure 12(e) 

natural exponential, and Figure 12(f) sinusoidal functions. The results show that varying 𝐸𝐵 and 𝑟 

results in significant changes in the drop-forces at each buckling mode transition. Note that the 

cosine squared and decimal logarithm functions cause decreasing of the drop-forces when 𝐸𝐵 and 

𝑟 are increased. Theses variation patterns are the opposite of the power, natural exponential and 

sinusoidal cases.  

Figure 13 compares the variation patterns for the material functions in the power, cosine 

squared, decimal logarithm, natural exponential, and sinusoidal functions. It can be seen that the 

cosine squared function is likely to be the most critical function to affect the releasing of the stored 

energy in the FGM beams, while the power, natural exponential and sinusoidal functions tend to 

affect the releasing at the same level. More interestingly, increasing 𝐸𝐵 and 𝑟 lead to the same 
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drop-forces for all the cases, which demonstrates that material functions can be used to affect the 

releasing of the stored energy, and eventually, tune the structural instability of the bi-walled FGM 

beams. According to the reported material topology, the material functions of the FGM beams can 

be controlled, and thus, optimized by programming 𝐸𝐵  and 𝑟 , which provides an effective 

approach to maneuver the structural instability for different applications. 

 

Figure 13. Total drop-forces posterior to buckling mode transitions for the FGM beams with 

power, cosine square, decimal logarithm, natural exponential, and sinusoidal functions. 

 

3.6 Additional Studies  

Table 4 presents the values in the material distribution functions used to define the 

programmable Young’s modulus, and the obtained axial forces for the postbuckling snap-through 

in the 3rd, 5th and 7th modes in Section 4.   
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Table 4. Material distribution functions in the theoretical modelling and the axial force for the 

postbuckling snap-through in the 3rd, 5th and 7th modes (all in mm and N). 

𝐸(𝑥) r L  𝐹3 (Φ3) 
𝐹5 

(Φ5) 

𝐹7 

(Φ7) 

Natural exp 0.5 185 453.22 1131.81 2341.46 

Decimal log 0.5 185 329.37 822.44 1701.43 

 

Power 

0.25 185 233 583.57 1207.27 

0.5 185 252.14 629.63 1302.57 

 

1 

 

160 365.98 917.7 1700.48 

185 275.21 687.21 1412.68 

190 258.56 650.99 1352.13 

220 194.41 488.4 987.37 

250 150.81 375.57 782.09 

2 185 298.27 744.79 1540.80 

4 185 316.72 790.85 1636.09 

Sinusoidal  1 185 285.29 749.92 1470.31 

Cosine2 1 185 306.24 804.95 1591.01 

 

In this study, a total of 30 buckling modes are taken into account in the present study mainly 

due to the considerations of: 1) accuracy; and 2) computational cost. Figure 14 compares the 

theoretical force-displacement relations of the bi-walled isotropic beam with 10, 20 and 30 

buckling modes and the experiments. The 30-mode model offers the most accurate theoretical 

results comparing with the experimental results, especially for the postbuckling mode transitions 
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(i.e., Φ3, Φ5 and Φ7). On the other hand, the computational cost of solving the 30-mode 

theoretical model is approximately two times of that for the 20-mode model, as listed in Table 5. 

The personal computer used to solve the theoretical model consists of the Intel(R) Core (TM) i7-

4770T CPU @ 2.5 GHz processor, 8 GB installed memory (RAM) and 64-bit operating system.   

 

Figure 14. Comparison of the postbuckling responses of the bilaterally constrained beam obtained 

using the 10-, 20- and 30-mode theoretical model and experiments. 

Table 5. Buckling mode vs. computing time. 

Buckling mode Time (min) 

10 158 

20 638 

30 1249 
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3.7 Conclusions   

This study reported on a design and optimization approach for bilaterally constrained FGM 

beams with programmed material functions aimed at controlling structural instabilities (i.e., 

postbuckling). Theoretical and numerical models were developed to characterize the postbuckling 

response, and the results were compared with experimental observations. Satisfactory agreements 

were obtained between the theoretical, numerical and experimental results. Parametric studies 

were carried out to demonstrate the tunability of the reported FGM beams with respect to the 

geometric and material parameters (i.e., beam length L, Young's modulus E and volume ratio r). 

The material topology was then used to investigate the variation of total potential energy (i.e., 

releasing of the stored energy) in buckling mode transitions. The drop-forces were used to 

demonstrate the influences of the Young's modulus and volume ratio on the variation of the 

potential energy. It was found that the cosine squared function is the most critical function to affect 

the energy release in the FGM beams, while the power, natural exponential and sinusoidal 

functions affected the release of energy at a similar level. As a consequence, it was concluded that 

material distributions functions can be controlled based on the release of the stored energy, which 

allows for well-defined controllability over the structural instability of the FGM beams. The 

reported bi-walled FGM beams offer a novel approach to program structural instability in 

functional composites for multipurpose applications.   
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Chapter 4: Maneuverable Postbuckling of Extensible Mechanical Metamaterials Using 

Functionally Graded Materials and Carbon Nanotubes 

4.1 Introduction 

Mechanical metamaterials (MM) provide the possibility of improving the mechanical 

properties of bulk materials from the structural perspective. Utilizing various engineered 

microstructures [23], MM have been reported on their outstanding mechanical characteristics 

resulted in the critical geometric nonlinearity. Studies have been conducted on controlling and 

optimizing the mechanical response of MM [72], such as the enhanced tension [73], programmable 

bending and buckling, compression-induced twisting [31], ultra-light and ultra-stiff [25, 74], 

negative Poisson’s ratio [5], programmable unusual bulk modulus and mass density, and complete 

recovery from large strains in compression [75-77], etc. Exploring and programming the 

mechanical characteristics in a desirable manner, MM have been used in various innovative ap-

plications, e.g., mechanical sensor [78], heat transferring [79, 80], energy absorption [10, 81], 

artificial muscles [82], drug delivery [83, 84], and soft robots [85].  However, MM have been 

facing the dilemma in obtaining the better controllability in the mechanical response (i.e., 

tunability of performance) and less complexity in the microstructures (i.e., feasibility of 

fabrication). To address such research dilemma, functional composite materials can be used in 

MM, such as functionally graded materials (FGMs) and carbon nanotubes (CNTs). FGMs have 

been reported as the functional composite materials that the material properties are varied in the 

length, width, or thickness directions [86]. Studies have been conducted to explore the principles 

and applications of FGMs [87-89]. FGMs have been applied in many fields, including the 

reduction of the in-plane and lateral thickness stresses, improvement of the residual stress 

distribution, increment of the fracture toughness, reduction of the stress strength factor, and 
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enhancement of the thermoelectric energy conversion properties [90, 91].  Studies have been 

conducted to investigate the instability behavior (i.e., buckling) of FGMs at the multiscale. The 

buckling behavior of the Bernoulli-Euler nano-beams was studied under different boundary 

conditions [92], and the size-dependent response of the functionally graded nano-beams was 

investigated under the uniformly distributed transverse load [93]. The nonlocal integral 

formulation was proposed for the nano-beams in the non-isothermal environment by adopting the 

proper Gibbs potential [94].  CNTs, on the contrary, have been developed by eventually mixing 

carbon nanotubes in the matrix [95], which have been used in different applications [96-98]. 

Studies have shown that the addition of a small percentage of nanotubes are likely to considerably 

increase the mechanical, electrical, or thermal properties of CNTs [99-102]. The integral elasticity 

model was proposed to characterize the mechanical behavior of the single-walled CNTs under 

axial force and kinematic boundary using the molecular dynamics simulations [103]. Although the 

functionalities of FGMs and CNTs have been investigated by tuning the material properties of the 

composites, recent research interests have been dedicated to exploring their utilities using the 

method of structural design (e.g., MM). As a consequence, MM made by FGMs (i.e., FGM-MM) 

and CNTs (i.e., CNT-MM) are expected to behave more effective maneuverability with less 

complicated microstructures. Here, we develop the microscale, extensible FGM-MM, and CNT-

MM by applying the structural design method (i.e., MM) to the functional composite materials 

(i.e., FGMs and CNTs). The FGM-MM and CNT-MM are designed in the plate-like 

configurations, which are placed between the bilateral constraints to obtain the postbuckling 

response under the axial compression. The material models are developed to characterize the 

effective material properties of the reported engineered metastructures, and the theoretical models 

are reported to investigate the postbuckling response (i.e., buckling mode transitions and force- 
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displacement relations). Numerical simulations are carried out to vali-date the theoretical results 

and satisfactory agreements are obtained. The programmable mechanical behaviors of the FGM-

MM and CNT-MM are investigated in terms of the microstructures and material functions. This 

work combines the structural method (i.e., corrugation) and material method (i.e., FGMs and 

CNTs) to obtain the more maneuverable postbuckling response, which is novel since studies have 

yet been carried out on tuning the mechanical performance of MM using FGMs or CNTs. The rest 

of the chapter can be drawn as: Section 2 develops the material models to characterize the effective 

materials of the microscale FGM-MM and CNT-MM. Section 3 reports the theoretical models to 

investigate the postbuckling response of the FGM-MM and CNT-MM. Section 4 conducts the 

numerical simulations to validate the theoretical results of the postbuckling behaviors. Section 5 

carries out the parametric studies to unveil the influences of the structure designs in the MM and 

material functions in the FGMs and CNTs on the postbuckling performance of the FGM-MM and 

CNT-MM. Section 6 summarizes the main findings of this study.  

4.2 Problem Formulation of the Microscale FGM-MM and CNT-MM 

In this study, we theoretically formulate the FGM-MM and CNT-MM by considering the 

structural characteristics of MM and the material characteristics of FGMs and CNTs. Figure 15 

illustrates the designs of the maneuverable, extensible FGM-MM and CNT-MM designed using 

the structural method of MM and material method of CNTs and FGMs. Due to the slenderness of 

the plate-like structures (i.e., thickness ≪ width), the material properties of FGMs are assumed to 

be distributed following the material functions in the length direction 𝑥. In contrast, the material 

properties of CNT-MM are evenly distributed (i.e., the material functions are not varied with 𝑥). 

Table 6 compares the material functions between the FGM-MM and CNT-MM.  
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Table 6. Comparison of the material functions between the FGM-MM and CNT-MM. 

 FGM-MM CNT-MM 

Young’s modulus 𝐸 𝐸FM = 𝑓1(𝑥)
* 𝐸CM = 𝑓2(𝑉) 

Shear modulus 𝐺 𝐺FM = 𝑔1(𝑥) 𝐺CM = 𝑔2(𝑉) 

* 𝑓𝑖 and  𝑔𝑖(𝑖=1, 2) refer to the material functions, 𝑉 indicates the volume fraction in CNTs, and 

the subscripts FM and CM indicate the FGM-MM and CNT-MM, respectively. 
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Figure 15. Principles of the maneuverable, extensible FGM-MM and CNT-MM designed using the 

structural method of MM and material method of FGMs and CNTs. 

4.3  Effective Materials Properties of the FGM-MM and CNT-MM 

4.3.1 Structural Characteristics of MM 

Figure 16(a) demonstrates the postbuckling deformation for the extensible CNT-MM and 

FGM-MM subjected to bilateral constraints. According to [104], the effective stress-strain 

relations of plate MM can be written as  
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𝐸MM = 𝜁MM𝐸 (
𝜌MM

𝜌hb
)
𝟐

;         (4-1) 

where 𝐸 is the Young’s modulus of the material in MM, and 𝜁MM, 𝜌MM and 𝜌hb are, respectively, 

the weight factor accounts for the influence of the cylindrical webbing patterns on the MM, density 

of the MM, and density of a hollow beam that has the equivalent length 𝐿, width W𝑏, height H, 

thickness 𝑡MM and mass 𝑀 as the MM. The volume of the MM in FGM-MM and CNT-MM, and 

the volume of the hollow beam can be obtained as [105], therefore the effective Young’s modulus 

of the plate MM can be rewritten 

𝐸MM = 𝜁MM [
2(𝐷+𝐺)2(𝑊𝑏+𝐻−2𝑡MM)

𝑊𝑏((𝐷+𝐺)
2+𝜋𝐷𝐻)

]
2

𝐸;       (4-2) 

where 𝐷 and 𝐺 are the diameter and the distance between two cells in the cylindrical 

configuration. 

4.3.2 Material Characteristics of FGMs and CNTs 

Assuming postbuckling deformation are resulted in the normal stress among the longitudinal 

direction (x-axis) 𝜎𝑥 and couple stress 𝑚𝑥𝑦, the stress-strain relations of the FGM-MM and CNT-

MM can be written as [106], 

𝜎 = {
𝜎𝑥
𝑚𝑥𝑦

} = 𝑄𝜀 = [
𝑄11

𝑄̂44
] {
𝜀𝑥
𝜒𝑥𝑦

} .       (4-3) 

Since the Poisson’s ratio can be neglected for the slender structures in this study [107], the 

components of the  𝑄 matrix can be reduced to [106]: 

{
𝑄11 = 𝐸11
𝑄̂44 = 𝐺13𝑙

2 ,          (4-4) 

where 𝐸11, 𝐺13 and 𝑙  are the Young’s modulus in CNT direction, shear modulus in 1-3 plan and 
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material length scale factor, respectively.  

 

Figure 16. (a) Demonstration of the postbuckling deformation for the extensible CNT-MM and FGM-MM 

subjected to bilateral constraints. (b) Deformation analysis of an arbitrary segment in the postbuckled 

CNT-MM and FGM-MM. 

First, let us define the effective material properties of the FGM-MM. The coefficients in Eq. 

(4-4) can be written as 

𝑄11 = 𝐸(𝑥) and 𝐺13 =
1

2
𝐸(𝑥);        (4-5) 

where 𝐸(𝑥) is the material functions of the FGMs. In this study, we particularly consider two 

material functions for FGMs as 

{
𝐸(𝑥),1 = 𝛼(1 + 𝛽𝑥)

𝛾

𝐸(𝑥),2 = 𝛼𝑒
𝛽𝑥

𝛾

;         (4-6) 

where α, 𝛽 and 𝛾 are the factors used to define the Young’s modulus. Taking Eqs. (4-2) and (4-6) 

into Eq. (4-5), the applied coefficients in Eq. (4-4) can be written as 
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{
𝑄11,FM = 𝜁MM [

2(𝐷+𝐺)2(𝑊𝑏+𝐻−2𝑡MM)

𝑊𝑏((𝐷+𝐺)
2+𝜋𝐷𝐻)

]
2

𝐸(𝑥)

𝑄̂44,FM =
1

2
𝜁MM [

2(𝐷+𝐺)2(𝑊𝑏+𝐻−2𝑡MM)

𝑊𝑏((𝐷+𝐺)
2+𝜋𝐷𝐻)

]
2

𝐸(𝑥)𝑙2
;     (4-7) 

where the subscript FM refers to the FGM-MM. 

Next, let us determine the effective materials properties of the CNT-MM. The Young’s 

modulus of CNTs can be estimated by the Mori-Tanaka scheme or the rule of mixtures. To take 

into account the small scale effects, the CNTs efficiency parameters (𝜂1, 𝜂3) are introduced in the 

extended version of this rule and evaluated by matching the effective properties of CNT-reinforced 

composites determined from the molecular dynamics simulations with those from the rule of 

mixture [108]. The Young's modulus and shear modulus of CNTs can be expressed as [109, 110]. 

{
𝐸11 = 𝜂1𝑟𝑉𝐵𝐸11

𝐴 + (1 − 𝑟𝑉𝐵)𝐸
𝐵

𝐺13 =
𝜂3𝐺13

𝐴 𝐺𝐵

(𝑟𝐺𝐵+𝐺13
𝐴 )𝑉𝐵

;       (4-8) 

where 𝐸11
𝐴 , 𝐺13

𝐴 , 𝐸𝐵, 𝐺𝐵 are the CNTs’ Young’s modulus, shear modulus and matrix’s Young’s 

modulus and shear modulus, respectively, and 𝑟 =
𝑉𝐴

𝑉𝐵
 describes the variation in the volume 

fraction. Note that 𝐴 and 𝐵 refer to the CNTs and matrix, respectively.  Substituting Eqs. (4-8) and 

(4-2) into Eq. (4-4), the effective material properties of the CNT-MM can be obtained by 

combining the Young’s modulus of CNTs with MM as 

{
𝑄11,CM = 𝜁MM [

2(𝐷+𝐺)2(𝑊𝑏+𝐻−2𝑡MM)

𝑊𝑏((𝐷+𝐺)
2+𝜋𝐷𝐻)

]
2

(𝜂1𝑟𝑉𝐵𝐸11
𝐴 + (1 − 𝑟𝑉𝐵)𝐸

𝐵)

𝑄̂44,CM = 𝜁MM [
2(𝐷+𝐺)2(𝑊𝑏+𝐻−2𝑡MM)

𝑊𝑏((𝐷+𝐺)
2+𝜋𝐷𝐻)

]
2

𝜂3𝐺12
𝐴 𝐺𝐵

(𝑟𝐺𝐵+𝐺12
𝐴 )𝑉𝐵

𝑙2
;   (4-9) 

where the subscript CM refers to the CNT-MM. 
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4.4 Postbuckling Analysis of the FGM/CNT-MM Subjected to Bilateral Constraints  

4.4.1 General Governing Equations  

According to the modified couple stress theory, the strain energy density can be written as a 

function of the strain (i.e., conjugated with stress) and curvature (i.e., conjugated with couple 

stress) as 

𝑈 =
1

2
∭(𝜎𝜀 +𝑚𝜒)d𝑉 ;         (4-10) 

where 𝜎, 𝜀,𝑚 and 𝜒 are the Cauchy stress tensor, conventional strain tensor, deviatoric couple 

stress tensor and symmetric curvature tensor, respectively. 

Based on the Euler-Bernoulli beam theory as shown in Figure 16(b), the displacement 

components of the FGM-MM and CNT-MM can be obtained as 

{
 
 

 
 
𝑢𝑥 = −𝑢(𝑥, 𝜏) − 𝑧𝜙(𝑥, 𝜏)

𝑢𝑦 = 0

𝑢𝑧 = 𝑤(𝑥, 𝑡)

𝜒𝑥𝑦 = −
𝜕𝜙

𝜕𝑥

;        (4-11) 

where 𝜙 =
𝜕𝑤

𝜕𝑥
, 𝜏 and 𝑡 are the rotation angle of the neutral axis, time term and the thickness, 

respectively. 𝑢 and 𝑤 are the axial displacement and transverse deflection, respectively. Thus, the 

nonzero components of the strain curvature are obtained as 

𝜀 = {
𝜀𝑥
𝜒𝑥𝑦

} = {
−
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2

−
𝜕2𝑤

𝜕𝑥2

}.        (4-12) 

According to the Hamilton’s principle, the total energy can be express as 

∫ ẟ𝛺d𝜏
𝑇1
𝑇2

= ∫ (ẟ𝐾 − ẟ𝑈 + ẟ𝑊)d𝜏 = 0;
𝑇1
𝑇2

      (4-13) 
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where ẟ𝑈, ẟ𝑊 and ẟ𝐾 are the virtual potential energy, virtual external work, and virtual kinetic 

energy, respectively, which can be evaluated as 

ẟ𝑈 = ∫ ∫ [∫ 𝜎𝑇ẟ𝜀 + 𝑚𝑇ẟ𝜒d𝑧
𝑡

0
] d𝑦d𝑥

𝑏

0

𝐿′

0
;      (4-14) 

ẟ𝑊 = 𝑃∫ [sin𝜙
𝜕𝜙

𝜕𝑥
ẟ𝑢 + sin𝜙 (1 −

𝑑𝑢

𝑑𝑥
) ẟ𝜙]d𝑥

𝐿′

0
+ 𝑃 cos𝜙 ẟ𝑢 |

𝑥 = 𝐿′

𝑥 = 0
;  (4-15) 

and 

ẟ𝐾 = ∫ ∫ [∫ 𝜌 (
𝜕𝑢

𝜕𝜏
) ẟ (

𝜕𝑢

𝜕𝜏
) + 𝑧2 (

𝜕2𝑤

𝜕𝑥𝜕𝜏
) ẟ (

𝜕2𝑤

𝜕𝑥𝜕𝜏
) + (

𝜕𝑤

𝜕𝜏
) ẟ (

𝜕𝑤

𝜕𝜏
) d𝑧

𝑡

0
] d𝑦d𝑥

𝑏

0

𝐿′

0
.  (4-16) 

Note that 𝑃 and 𝐿′ are the axial force and beam length after deformation, respectively.  

The force, moments, unit mass, and moment of inertia of the FGM-MM and CNT-MM can be 

written as 

{𝑁𝑥, 𝑀𝑥, 𝑀𝑥𝑦, 𝑚, 𝐼} = ∫ ∫ {𝜎𝑥 , 𝑧𝜎𝑥 , 𝑚𝑥𝑦, 𝜌,
𝑧2

𝑦
} d𝑧d𝑦

𝑡

0

𝑏

0
.     (4-17) 

Substituting Eq. (4-17) into Eq. (4-12), we have 

{
 
 

 
 𝑁𝑥 = 𝑄̅11

𝜕𝑢

𝜕𝑥
− 𝐽1̅1

𝜕2𝑤

𝜕𝑥2

𝑀𝑥 = 𝐽1̅1
𝜕𝑢

𝜕𝑥
− 𝐼1̅1

𝜕2𝑤

𝜕𝑥2

𝑀𝑥𝑦 = −𝑄̿44
𝜕2𝑤

𝜕𝑥2

;         (4-18) 

where 𝑄̅11, 𝐽1̅1, 𝐼1̅1 and 𝑄44 can be expressed as 
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{
 
 
 
 

 
 
 
 𝑄̅11 = ∫ ∫ 𝑄11d𝑧d𝑦

𝑡

2

−
𝑡

2

𝑏

0

𝐽1̅1 = ∫ ∫ 𝑧𝑄11d𝑧d𝑦
𝑡

2

−
𝑡

2

𝑏

0

𝐼1̅1 = ∫ ∫ (𝑧)2𝑄11d𝑧d𝑦
𝑡

2

−
𝑡

2

𝑏

0

𝑄44 = ∫ ∫ 𝑄̂44d𝑧d𝑦
𝑡

2

−
𝑡

2

𝑏

0

.        (4-19) 

Taking Eqs. (4-14) to (4-17) into Eq. (4-13) and integrating by parts, we obtain 

∫ ẟ𝛺d𝜏
𝑇1
𝑇2

= ∫ ∫ [(𝑃 sin𝜙
𝜕𝜙

𝜕𝑥
−
𝜕𝑁𝑥

𝜕𝑥
−𝑚

𝜕2𝑢

𝜕𝑡2
) ẟ𝑢 + (−𝑃 (1 −

d𝑢

d𝑥
)
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑥𝑦

𝜕𝑥2
+

𝐿′

0

𝑇2
𝑇1

𝑚𝐼 (
𝜕2𝑤

𝜕𝑥𝜕𝜏
)
2

−𝑚
𝜕2𝑤

𝜕𝜏2
) ẟ𝑤] d𝑥d𝜏 + ∫ [(𝑃 cos𝜙 + 𝑁𝑥 +𝑚

𝜕𝑢

𝜕𝜏
) ẟ𝑢 + (𝑃 sin 𝜙 (1 −

d𝑢

d𝑥
) −

𝑇2
𝑇1

𝜕𝑀𝑥

𝜕𝑥
−
𝜕𝑀𝑥𝑦

𝜕𝑥
+𝑚

𝜕𝑤

𝜕𝜏
−𝑚𝐼

𝜕3𝑤

𝜕𝑥𝜕𝜏2
) ẟ𝑤 + (𝑀𝑥 +𝑀𝑥𝑦 + 𝐼

𝜕2𝑤

𝜕𝑥𝜕𝜏
) ẟ (

𝜕𝑤

𝜕𝑥
)] |
𝑥 = 𝐿′

𝑥 = 0
d𝜏 = 0 ; (4-20) 

which leads to the governing equation: 

{
𝑃 sin𝜙

𝜕𝜙

𝜕𝑥
−
𝜕𝑁𝑥

𝜕𝑥
−𝑚

𝜕2𝑢

𝜕𝑡2
= 0

−𝑃 (1 −
d𝑢

d𝑥
)
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑥𝑦

𝜕𝑥2
+𝑚𝐼 (

𝜕2𝑤

𝜕𝑥𝜕𝜏
)
2

−𝑚
𝜕2𝑤

𝜕𝜏2
= 0

;   (4-21) 

and the boundary conditions 

{
 
 

 
 𝑃 cos𝜙 + 𝑁𝑥 +𝑚

𝜕𝑢

𝜕𝜏
= 0

𝑃 sin𝜙 (1 −
d𝑢

d𝑥
) −

𝜕𝑀𝑥

𝜕𝑥
−
𝜕𝑀𝑥𝑦

𝜕𝑥
+𝑚

𝜕𝑤

𝜕𝜏
−𝑚𝐼

𝜕3𝑤

𝜕𝑥𝜕𝜏2

𝑀𝑥 +𝑀𝑥𝑦 + 𝐼
𝜕2𝑤

𝜕𝑥𝜕𝜏
= 0

= 0

}
 
 

 
 

|
𝑥 = 𝐿′

𝑥 = 0
.   (4-22) 

Substituting Eqs. (4-18) and (4-19) into Eqs. (4-21) and (4-22), the governing equation and 

boundary conditions are obtained as 
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{
𝑃 sin𝜙

𝜕𝜙

𝜕𝑥
− 𝑄11

𝜕2𝑢

𝜕𝑥2
+ 𝐽11

𝜕3𝑤

𝜕𝑥3
−𝑚

𝜕2𝑢

𝜕𝜏2
= 0

𝑃 (1 −
d𝑢

d𝑥
)
𝜕2𝑤

𝜕𝑥2
− 𝐽11

𝜕3𝑢

𝜕𝑥3
+ (𝐼11 + 𝑄44)

𝜕4𝑤

𝜕𝑥4
−𝑚𝐼 (

𝜕2𝑤

𝜕𝑥𝜕𝜏
)
2

+𝑚
𝜕2𝑤

𝜕𝜏2
= 0

;  (4-23) 

and 

{
 
 

 
 𝑃 cos𝜙 + 𝑄11

𝜕𝑢

𝜕𝑥
− 𝐽11

𝜕2𝑤

𝜕𝑥2
+𝑚

𝜕𝑢

𝜕𝜏
= 0

𝑃 sin𝜙 (1 −
d𝑢

d𝑥
) − 𝐽11

𝜕2𝑢

𝜕𝑥2
+ (𝐼11 + 𝑄44)

𝜕3𝑤

𝜕𝑥3

𝐽1̅1
𝜕𝑢

𝜕𝑥
− (𝐼1̅1 + 𝑄̿44)

𝜕2𝑤

𝜕𝑥2
+ 𝐼

𝜕2𝑤

𝜕𝑥𝜕𝜏
= 0

+𝑚
𝜕𝑤

𝜕𝜏
−𝑚𝐼

𝜕3𝑤

𝜕𝑥𝜕𝜏2
= 0

}
 
 

 
 

|
𝑥 = 𝐿′

𝑥 = 0
; (4-24) 

where 𝛬 =
𝑑𝑢

𝑑𝑥
 is the extensible factor resulted in the cylindrical corrugation of the FGM-MM and 

CNT-MM.  

It is worthwhile to point out that Eqs. (4-23) and (4-24) are the general governing equations 

for the extensible FGM-MM and CNT-MM. Neglecting the extensible terms (i.e., 𝛬 = 0), Eq. (4-

23) and (4-24) are reduced to: 

{
𝑃 sin𝜙

𝜕𝜙

𝜕𝑥
− 𝑄11

𝜕2𝑢

𝜕𝑥2
+ 𝐽11

𝜕3𝑤

𝜕𝑥3
−𝑚

𝜕2𝑢

𝜕𝜏2
= 0

−𝐽11
𝜕3𝑢

𝜕𝑥3
+ (𝐼11 + 𝑄44)

𝜕4𝑤

𝜕𝑥4
+ 𝑃

𝜕2𝑤

𝜕𝑥2
−𝑚𝐼 (

𝜕2𝑤

𝜕𝑥𝜕𝜏
)
2

+𝑚
𝜕2𝑤

𝜕𝜏2
= 0

;   (4-25) 

and 

{
 
 

 
 

−

𝑃 cos𝜙 + 𝑄11
𝜕𝑢

𝜕𝑥
− 𝐽11

𝜕2𝑤

𝜕𝑥2
+𝑚

𝜕𝑢

𝜕𝜏
= 0

𝐽11
𝜕2𝑢

𝜕𝑥2
+ (𝐼11 + 𝑄44)

𝜕3𝑤

𝜕𝑥3
+ 𝑃

𝜕𝑤

𝜕𝑥
+𝑚

𝜕𝑤

𝜕𝜏
−𝑚𝐼

𝜕3𝑤

𝜕𝑥𝜕𝜏2
= 0

𝐽1̅1
𝜕𝑢

𝜕𝑥
− (𝐼1̅1 + 𝑄̿44)

𝜕2𝑤

𝜕𝑥2
+ 𝐼

𝜕2𝑤

𝜕𝑥𝜕𝜏
= 0 }

 
 

 
 

|
𝑥 = 𝐿′

𝑥 = 0
.  (4-26) 

Further neglecting the time terms, the governing equations are the same as the static micro-

composite beams model proposed in [111].  
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In order to compare with the micro-isotropic beams in the existing study, the coefficients for 

the FGMs and CNTs materials are reduced to isotropic as 

{
 
 

 
 
𝑄̅11 = 𝐸𝑏𝑡

𝐽1̅1 = 0

𝐼1̅1 =
𝐸𝑏𝑡3

12

𝑄44 = 𝑏𝑡𝐺𝑙
2

.          (4-27) 

Taking Eq. (4-27) into Eq. (4-25), the governing equation for the micro-isotropic beams is 

(𝐸𝐼 + 𝐺𝐴𝑙2)
𝜕4𝑤

𝜕𝑥4
+ 𝑃

𝜕2𝑤

𝜕𝑥2
−𝑚𝐼 (

𝜕2𝑤

𝜕𝑥𝜕𝜏
)
2

+𝑚
𝜕2𝑤

𝜕𝜏2
= 0.     (4-28) 

Omitting the higher-order rotation term (
𝜕2𝑤

𝜕𝑥𝜕𝜏
)
2

, Eq. (4-28) can be simplified to 

𝐵
𝜕4𝑤

𝜕𝑥4
+ 𝑃

𝜕2𝑤

𝜕𝑥2
+𝑚

𝜕2𝑤

𝜕𝜏2
= 0;        (4-29) 

where 𝐵 = 𝐸𝐼 + 𝐺𝐴𝑙2 is the bending stiffness. Eq. (4-29) is the same as the governing equation of 

the micro-isotropic beams in [112].  Further dropping the length scale factor 𝑙 and time related 

term 
𝜕2𝑤

𝜕𝜏2
, the governing equation for classical Euler-Bernoulli beams is obtained. 

4.4.2 Postbuckling Analysis of the FGM-MM and CNT-MM 

To solve the governing equation given in Eq. (4-23), the following assumptions are taken into 

account in this section: 

1) The FGM-MM and CNT-MM are assumed to be symmetric about the neutral axis, and 

therefore, 𝐽11 = 0. 

2) The axial force is gradually applied to the end, which lead to quasi-static postbuckling response 

of the FGM-MM and CNT-MM, and therefore, 
𝜕2𝑤

𝜕𝑥𝜕𝜏
= 𝑚

𝜕2𝑤

𝜕𝜏2
= 0. 
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According to the assumptions, the governing equation in Eq. (4-23) can be reduced to 

(𝐼11 + 𝑄44)
𝜕4𝑤

𝜕𝑥4
+ (𝑃 − 𝑃𝛬)

𝜕2𝑤

𝜕𝑥2
= 0;       (4-30) 

and the boundary conditions are 

𝑤(𝑥) |
𝑥 = 𝐿′

𝑥 = 0
=

d𝑤(𝑥)

d𝑥
|
𝑥 = 𝐿′

𝑥 = 0
= 0 ;       (4-31) 

where 𝑃𝛬
𝜕2𝑤

𝜕𝑥2
 is the extensibility term caused by the cylindrical corrugation. The extensible factor 

can be expressed as [107]. 

 𝛬 =
𝑃

𝑄̅11
cos𝜙 ;          (4-32) 

where 𝜙  is the rotation angle of the FGM-MM and CNT-MM resulted in the postbuckling 

deformation. For small deformations, 𝜙 ≈ 0, and cos 𝜙 ≈ 1. 

4.4.2.1 Postbuckling Analysis of the FGM-MM 

The material factors of the FGM-MM are given as 

{𝑄11, 𝐽11, 𝐼11, 𝑄44}FM
= 𝑏𝑡 {𝐸FM(𝑥), 0,

𝑡2𝐸FGM−MM(𝑥)

12
,
𝐸FGM−MM(𝑥)𝑙

2

2
} ;   (4-33) 

and therefore, the governing equation for the postbuckling behavior of the FGM-MM can be 

rewritten as 

[𝐸FM(𝑥)𝐼 +
1

2
𝐸FM(𝑥)𝐴𝑙

2]
𝜕4𝑤

𝜕𝑥4
+ (𝑃 − 𝑃𝛬)

𝜕2𝑤

𝜕𝑥2
= 0.     (4-34) 

Introducing the non-dimensional variables 𝑋 =
𝑥

𝐿′
 and 𝑊(𝑋) =

𝑤(𝑋𝐿′)

ℎ
, Eq. (4-34) can be 

normalized as 
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𝜕4𝑊

𝜕𝑋4
+ 𝑁(𝑋)

𝜕2𝑊

𝜕𝑋2
= 0;         (4-35) 

where the correlated normalized axial load 𝑁(𝑋) is obtained as 

𝑁(𝑋) =
2𝐿′

2
(𝑃−𝑃𝛬)

(2𝐼+𝐴𝑙2)𝐸FM
.         (4-36) 

Taking Eq. (4-7) into Eq. (4-36), 𝑁(𝑋) can be rewritten as 

𝑁(𝑋) =
(𝑃−𝑃𝛬)𝑏2((𝐷+𝐺)2+𝜋𝐷𝐻)

2
𝐿′
2

2𝜁MM(2𝐼+𝐴𝑙2)(𝐷+𝐺)4(𝑊𝑏+𝐻−2𝑡MM)
2𝛼(1+𝛽𝑋)𝛾

.     (4-37) 

According to [21], the second-order general solution of Eq. (4-35) can be written as 

d2𝑊(𝑋)

d𝑋2
= 𝑘1𝑆1(𝑋) + 𝑘2𝑆2(𝑋);        (4-38) 

where the integral functions are expressed as 

{
 

 𝑆1(𝑋) = √1 + 𝛽𝑋𝑱 1

2−𝛾

(𝑛
2

2−𝛾
(1 + 𝛽𝑋)

1

4−2𝛾)

𝑆2(𝑋) = √1 + 𝛽𝑋𝑱 1

𝛾−2

(𝑛
2

2−𝛾
(1 + 𝛽𝑋)

1

4−2𝛾)
;     (4-39) 

in which 𝑱 indicates the first Bessel functions, and 𝑛 is  

𝑛 =
𝑏[(𝐷+𝐺)2+𝜋𝐷𝐻]𝐿′

2𝛽(𝐷+𝐺)2(𝑊𝑏+𝐻−2𝑡MM)
√

2(𝑃−𝑃𝛬)

(2𝐼+𝐴𝑙2)𝜁MM𝛼
.      (4-40) 

Integrating Eq. (4-39), we obtain 

d𝑊(𝑋)

d𝑋
= 𝑘1 ∫ √1 + 𝛽𝜉𝑱 1

2−𝛾

(𝑛
2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾)d𝜉
𝑋

0
+ 𝑘2 ∫ √1 + 𝛽𝜉𝑱 1

𝛾−2

(𝑛
2

2−𝛾
(1 +

𝑋

0

𝛽𝜉)
1

4−2𝛾)d𝜉 + 𝑘3;          (4-41) 

and 
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𝑊(𝑋) = 𝑘1 ∫ ∫ √1 + 𝛼𝜉𝑱 1

2−𝛾

(𝑛
2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾) d𝜉d𝑡
𝑡

0

𝑋

0
+

𝑘2 ∫ ∫ √1 + 𝛽𝜉𝑱 1

𝛾−2

(𝑛
2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾)d𝜉d𝑡
𝑡

0

𝑋

0
+ 𝑘3𝑋 + 𝑘4.    (4-42) 

where 𝑘𝑖(𝑖 = 1,… ,4) are the integral constants. Taking Eqs. (4-41) and (4-42) into Eq. (4-31), we 

have 

{
 
 

 
 

𝑘3 = 0
𝑘4 = 0

𝑘1 ∫ √1 + 𝛽𝜉𝑱 1

2−𝛾
(𝑛

2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾) d𝜉
1

0
+ 𝑘2 ∫ √1 + 𝛽𝜉𝑱 1

𝛾−2
(𝑛

2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾) d𝜉
1

0
+ 𝑘3 = 0

𝑘1 ∫ ∫ √1 + 𝛼𝜉𝑱 1

2−𝛾
(𝑛

2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾) d𝜉d𝑡
𝑡

0

1

0
+ 𝑘2 ∫ ∫ √1 + 𝛽𝜉𝑱 1

𝛾−2
(𝑛

2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾) d𝜉d𝑡
𝑡

0

1

0
+ 𝑘3 + 𝑘4 = 0

. 

            (4-43) 

Eq. (4-43) represents the eigenvalue problem for 𝑛𝑖, which has the characteristic equation as 

∫ √1 + 𝛽𝜉𝑱 1

2−𝛾

(𝑛
2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾)d𝜉
1

0
⋅ ∫ ∫ √1 + 𝛽𝜉𝑱 1

𝛾−2

(𝑛
2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾)d𝜉d𝑡
𝑡

0

1

0
−

∫ √1 + 𝛽𝜉𝑱 1

𝛾−2

(𝑛
2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾)d𝜉
1

0
⋅ ∫ ∫ √1 + 𝛽𝜉𝑱 1

2−𝛾

(𝑛
2

2−𝛾
(1 + 𝛽𝜉)

1

4−2𝛾)d𝜉d𝑡
𝑡

0

1

0
= 0. 

            (4-44) 

A set of value of 𝑛𝑖 can be obtained by numerically solving Eq. (4-44).  

Assuming 𝛼 = 2300, 𝛽 = 1.2 and 𝛾 = 0.3 and using the first material function in Eq. (4-6), 

the general form of the buckling shape function is obtained as  

𝑊(𝑋) = ∑ 𝐴𝑗 ∫ ∫ √1 + 1.2𝜉[𝑱0.588(𝑛𝑗1.176(1 + 1.2𝜉)
0.294) +

𝑡

0

𝑋

0
∞
𝑗=1

𝑘𝑗𝑱−0.588(𝑛𝑗1.176(1 + 1.2𝜉)
0.294)]d𝜉d𝑡 ;       (4-45) 
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where 𝐴𝑗  are the coefficients to determine the contributions of the buckling modes to the 

postbuckling shape functions of the FGM-MM. 𝑛𝑗  and 𝑘𝑗  are determined as 𝑛𝑗 =

1.78𝜋, 2.55𝜋, 3.56𝜋, 4.38𝜋…, and 𝑘𝑗 = 1.80,−14.10, 2.03, 0.79… for 𝑗 = 1, 2, 3, 4…. 

In the same manner, assuming 𝛼 = 2300, 𝛽 = 1 , and 𝛾 = 2  and using the second material 

function in Eq. (4-6), the postbuckling shape functions of the FGM-MM can be obtained as 

𝑊(𝑋) = ∑ 𝐴𝑗 ∫ ∫ 𝑱0(2𝑛𝑗𝑒
−0.5𝜉) − 𝑘𝑗𝒀0(2𝑛𝑗𝑒

−0.5𝜉)d𝜉d𝑡
𝑡

0

𝑋

0
∞
𝑗=1 ;   (4-46) 

where 𝒀  indicates the second Bessel functions, and 𝑛𝑗  and 𝑘𝑗  are obtained as 𝑛𝑗 =

2.58𝜋, 3.56𝜋, 5.10𝜋, 6.21𝜋…, and 𝑘𝑗 = −0.81, −0.06,−0.36, 0.86… for 𝑗 = 1, 2, 3, 4… 

4.4.2.2 Postbuckling Analysis of the CNT-MM 

In this section, the postbuckling behavior of the CNT-MM is analyzed. The governing 

equation can be expressed as 

𝜕4𝑊

𝜕𝑋4
+ 𝑁2 𝜕

2𝑊

𝜕𝑋2
= 0.         (4-47) 

where the correlated normalized axial load and coefficients of the CNT-MM are 

𝑁2 =
𝑃(1−𝛬)𝐿′

2

𝐼11CM+𝑄44CM

;         (4-48) 

and 

{𝑄11, 𝐽11, 𝐼11, 𝑄44}CM
= 𝑏𝑡 {𝑄11,CM, 0,

𝑡2𝑄11,CM

12
, 𝑄̂44,CM 𝑙

2}.    (4-49) 

The general solution to Eq. (4-47) is: 

d2𝑊(𝑋)

d𝑋2
= 𝑘1 sin𝑁𝑋 + 𝑘2 cos𝑁𝑋 ;       (4-50) 
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where 𝑘1 and 𝑘2 are the constants. Integrating Eq. (4-50), we have  

d𝑊(𝑋)

d𝑋
= −𝑘1

cos𝑁𝑋

𝑁
+ 𝑘2

sin𝑁𝑋

𝑁
+ 𝑘3;       (4-51) 

and 

𝑊(𝑋) = −𝑘1
sin𝑁𝑋

𝑁2
− 𝑘2

cos𝑁𝑋

𝑁2
+ 𝑘3𝑋 + 𝑘4;      (4-52) 

where 𝑘𝑖 (𝑖 = 1,2,3,4) indicate the integral constants. Using the boundary conditions in Eq. (4-

31), the relations of the constants can be determined as 

{
 
 

 
 −

𝑘1

𝑁
+ 𝑘3 = 0

−𝑘1
cos𝑁

𝑁
+ 𝑘2

sin𝑁𝑋

𝑁
+ 𝑘3 = 0

−
𝑘2

𝑁2
+ 𝑘4 = 0

−𝑘1
sin𝑁

𝑁2
− 𝑘2

cos𝑁

𝑁2
+ 𝑘3 + 𝑘4 = 0

.       (4-53) 

Expressing 𝑘1, 𝑘2 and 𝑘3 in terms of 𝑘4, the eigenvalues and buckling shape functions 𝑦𝑗 of the 

CNT-MM can be numerically obtained. Thereafter, the general form of the postbuckling shape 

function are obtained as 

𝑦(𝑋) = 1 − cos𝑁𝑋 +
𝑁 sin𝑁

1−cos𝑁
(
sin𝑁𝑋

𝑁
− 𝑋).      (4-54) 

Eq. (4-54) can be expressed in terms of the symmetric and asymmetric terms as [46]. 

𝑦𝑗(𝑋) = 1 − cos𝑁𝑗𝑋

𝑁𝑗 = (𝑗 + 1)𝜋
}  𝑗 = 1,3,5, …       (4-55) 

and 

𝑦𝑗(𝑋) = 1 − 2𝑋 − cos𝑁𝑗𝑋 +
2 sin𝑁𝑗𝑋 

𝑁𝑗

𝑁𝑗 = 2.86𝜋, 4.92𝜋, 6.94𝜋, 8.95𝜋,…
}  𝑗 = 2,4,6, …     (4-56) 
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Using the superposition theory, the postbuckling shape functions of the CNT-MM can be obtained 

as 

𝑊(𝑋) = ∑ 𝐴𝑗(1 − cos𝑁𝑗𝑋)
∞
𝑗=1,3,5… + ∑ 𝐴𝑗 (1 − 2𝑋 − cos𝑁𝑗𝑋 +

2 sin𝑁𝑗𝑋 

𝑁𝑗
)∞

𝑗=2,4,6… ;  

 (4-57) 

where 𝐴𝑗  are the coefficients to determine the contributions of the buckling modes to the 

postbuckling shape functions. 

4.4.3 Energy Method to Solve the Postbuckling Response  

In this section, the postbuckling behaviors of the FGM-MM and CNT-MM are resolved by 

determining weight coefficients 𝐴𝑗  using the energy method. In particular, 𝐴𝑗  are obtained by 

minimizing the total potential energy of the postbuckled FGM-MM and CNT-MM. The total 

potential energy of the FGM-MM and CNT-MM consists of the bending strain energy Ub , 

compressive strain energy Uc and external work Up. The total strain energy yields 

U = Ub + Uc =
1

2
∫ (𝐼11 + 𝑄44) (

𝜕2𝑤

𝜕𝑥2
)
2

d𝑥
𝐿′

0
+
1

2
𝑃∆𝑐;     (4-58) 

and the external work caused by the axial force 𝑃 is 

Up = −
1

2
𝑃;          (4-59) 

where the longitudinal displacement ∆, axial shortening ∆𝑐 and variation of length ∆𝑏 resulted in 

the buckling-induced midplane rotation are  

{

∆= ∆𝑐 + ∆𝑏
∆𝑐= 𝐿 − 𝐿

′

∆𝑏=
1

2
∫ (

𝜕𝑤

𝜕𝑥
)
2

d𝑥
𝐿′

0

.         (4-60) 
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As a consequence, the total potential energy 𝚷 can be written as 

𝚷 = Ub + Uc + Up.         (4-61) 

The normalized length after deformation can be written as  

𝐿′ = 𝐿 − ∆𝑐= 𝐿 − ∆ +
ℎ2

2𝐿′
∫ (

𝜕𝑊

𝜕𝑋
)
2

d𝑋
1

0
.       (4-62) 

Considering an arbitrary segment in the FGM-MM and CNT-MM, the shortening of the element 

might be written as 

d∆𝑐=
𝑃d𝑥

𝑄11
.          (4-63) 

Integrating Eq. (4-63) and substituting into Eq. (4-60), the axial force can be written as 

𝑃 =
1

𝐸𝑚𝐿
[∆ −

ℎ2

2𝐿′
∫ (

𝜕𝑊

𝜕𝑋
)
2

d𝑋
1

0
] ;        (4-64) 

where 𝐸𝑚 is written as 

𝐸𝑚 = ∫
1

𝑄11
d𝑋

1

0
.          (4-65) 

Substituting Eq. (4-64) into Eqs. (4-58) and (4-59), the normalized potential energies and axial 

force are expressed, in terms of the normalized axial displacement 𝑑, as 

𝑉𝑏 =
1

2𝐼𝑚
[∑ 𝐴𝑗

2 ∫ (𝐼11 + 𝑄44) (
𝜕2𝑦𝑗(𝑋)

𝜕𝑋2
)
2

d𝑋
1

0
∞
𝑗=1 ] ;     (4-66) 

𝑉𝑐 =
𝑘ℎ2

2𝐸𝑚𝐼𝑚
[𝑑 −

1

2
∑ 𝐴𝑗

2 ∫ (
𝜕𝑦𝑗(𝑋)

𝜕𝑋
)
2

d𝑋
1

0
∞
𝑗=1 ]

2

;      (4-67) 

𝑉𝑃 = −
𝑘ℎ2

2𝐸𝑚𝐼𝑚
[𝑑2 −

𝑑

2
∑ 𝐴𝑗

2 ∫ (
𝜕𝑦𝑗(𝑋)

𝜕𝑋
)
2

d𝑋
1

0
∞
𝑗=1 ] ;     (4-68) 
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and 

𝑃̃ =
𝑘ℎ2

𝐸𝑚𝐼𝑚
[𝑑 −

1

2
∑ 𝐴𝑗

2 ∫ (
𝜕𝑦𝑗(𝑋)

𝜕𝑋
)
2

d𝑋
1

0
∞
𝑗=1 ] ;      (4-69) 

where the variables and normalization factors are introduced as 

𝑑 =
∆𝐿′

ℎ2
, 𝑘 =

𝐿′

𝐿
, 𝑄 =

𝑡

ℎ
, 𝑃̃ =

𝑃𝐿′
2

𝐼𝑚
, 𝑉𝑏 =

𝑈𝑏𝐿
′3

𝐼𝑚ℎ2
, 𝑉𝑐 =

𝑈𝑐𝐿
′3

𝐼𝑚ℎ2
, 𝑉𝑃 =

𝑈𝑃𝐿
′3

𝐼𝑚ℎ2
 and 𝐼𝑚 = ∫ 𝐼11d𝑋

1

0
 

            (4-70) 

Substituting the postbuckling shape functions in Eqs. (4-45), (4-46) and (4-57) into Eqs. (4-66), 

(4-67) and (4-68), respectively, the normalized total potential energy of the FGM-MM is obtained 

as 

𝚷FM = (
1

2𝐼𝑚
+

𝐴𝑙2

4𝐼𝑚
) [∑ 𝐴𝑗

2 ∫ 𝐸FM(𝑋) (
𝜕2𝑦𝑗(𝑋)

𝜕𝑋2
)
2

d𝑋
1

0
∞
𝑗=1 ] +

6𝑘

𝑄2
[𝑑 −

1

2
∑ 𝐴𝑗

2 ∫ (
𝜕𝑦𝑗(𝑋)

𝜕𝑋
)
2

d𝑋
1

0
∞
𝑗=1 ]

2

−
6𝑘

𝑄2
[𝑑2 −

𝑑

2
∑ 𝐴𝑗

2 ∫ (
𝜕𝑦𝑗(𝑋)

𝜕𝑋
)
2

d𝑋
1

0
∞
𝑗=1 ] ;   (4-71) 

and the normalized total potential energy of the CNT-MM is 

𝚷CM =
1

2
∫ (1 +

𝑄44CM

𝐼11CM
) (∑ 𝐴𝑗𝑁𝑗

2 cos𝑁𝑗𝑋
∞
𝑗=1,3,5… + ∑ 𝐴𝑗(𝑁𝑗

2 cos𝑁𝑗𝑋 −
∞
𝑗=2,4,6…

1

0

2𝑁𝑗 sin𝑁𝑗𝑋))
2
d𝑋 +

𝑄̅11CMℎ
2𝑘

2𝐼11CM
[𝑑 −

1

2
∫ (∑ 𝐴𝑗𝑁𝑗 sin𝑁𝑗𝑋

∞
𝑗=1,3,5… + ∑ 𝐴𝑗(2 +

∞
𝑗=2,4,6…

1

0

𝑁𝑗 sin𝑁𝑗𝑋 + 2 cos𝑁𝑗𝑋))
2
d𝑋]

2

−
𝑄̅11CMℎ

2𝑘

2𝐼11CM
[𝑑2 −

𝑑

2
∫ (∑ 𝐴𝑗𝑁𝑗 sin𝑁𝑗𝑋

∞
𝑗=1,3,5… +

1

0

∑ 𝐴𝑗(2 + 𝑁𝑗 sin𝑁𝑗𝑋 + 2 cos𝑁𝑗𝑋)
∞
𝑗=2,4,6… )

2
d𝑋].      (4-72) 
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Minimizing total potential energies in Eqs. (4-71) and (4-72) with respect to the deflection 

𝑊(𝑋) between bilateral constraints, the weight coefficients 𝐴𝑗 of the postbuckling shape functions 

can be determined for the FGM-MM and CNT-MM. 

{
Min[𝚷(𝐴𝑗)]

0 ≤ 𝑊(𝑋) ≤ 1
.          (4-73) 

Given the complexity of the total potential energies, numerical approach is used to solve the energy 

minimization in Eq. (4-73). In particular, for sake of improve calculation efficiency while ensure 

accuracy, the first 20 modes were used to express the general buckling shape function, then the 

finite total potential energy expression were obtained. By using the built-in functions in 

Mathematica, the minimum potential energies with different axial displacement can be acquired. 

Figure 17  illustrates the flowchart of numerically solving the postbuckling response of FGM-MM 

and CNT-MM using the energy minimization. 
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Figure 17. Flowchart of numerically solving the postbuckling response of FGM-MM and CNT-MM using 

the energy minimization. 

4.5 Numerical Modelling and Validation of the FGM-MM and CNT-MM  

In this section, numerical simulations are conducted to validate the presented theoretical 

model. The FGM-MM and CNT-MM are developed to obtain the postbuckling response in Abaqus 

R2016x. Linear perturbation buckle algorithm is used in the buckling analysis and dynamic 

implicit with Nlgeom is applied in the postbuckling analysis. Buckling imperfection is accounted 

the FE model by modifying the input files [113]. User-defined subroutine USDFLD is developed 

to characterize the material properties of the FGM-MM and CNT-MM. 

4.5.1 Numerical Setup and Modelling  

       Figure 18(a) displays the meshed FE models of the FGM-MM and CNT-MM subjected to the 

bilateral confinements. One end of the FGM-MM and CNT-MM (i.e., 𝑥 = 0) is fixed and the other 
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end can slide in the loading direction. To investigate the effect of the bilateral constraints on the 

postbuckling response of the FGM-MM and CNT-MM, contact interaction is considered in the FE 

models. In particular, the interaction properties are defined as “hard” contact that allows separation 

after frictionless contact for the normal and tangential behaviors are. In the FE models, linearly 

increasing loading is gradually applied to the edge of the beam ends (𝑥 = 𝐿) as axial displacement 

𝑑, which is defined as  

𝑑 = 𝐾𝑇;           (4-74) 

where the amplitude and time period are 𝐾 = 60 μm and 𝑇 = 10 s, respectively.  

Figure 18(b) presents the postbuckling shape configurations between the CNT-MM, FGM1-

MM and FGM2-MM. In particular, the postbuckled beams are demonstrated from the first 

buckling mode (Φ1), flatten first buckling mode (Φ1 flatten), third buckling mode (Φ3), flatten 

third buckling mode (Φ3 flatten), and fifth buckling mode. It can be seen that the psotbuckling 

shapes are significantly affected by the material functions of the FGMs and CNTs, especially for 

the beams in the higher buckling modes. Note that FGM1-MM denote the plate-like MM designed 

by the first type of FGMs and FGM2-MM denote the plates designed by the second FGMs. 

Following Eq. (4-6), the first and second types of FGMs are given as 
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Figure 18. (a) Meshed CNT-MM and FGM-MM with cylindrical corrugation under the axial force and 

bilateral constraints. (b) Postbuckling shape configurations of the CNT-MM, FGM1-MM and FGM2-MM 

from the first buckling mode (Φ1), flatten first buckling mode (Φ1 flatten), third buckling mode (Φ3), flatten 

third buckling mode (Φ3 flatten), and fifth buckling mode (In this study, FGM1-MM denote the MM 

designed with the first type of FGMs, and FGM2-MM are designed by the second FGMs).  

{
FGM1:  𝐸M(1 + 1.2𝑋)

𝑏  

FGM2:  𝐸𝑀𝑒
𝑏𝑋   

;        (4-75) 

where 𝑏 is varied from 0.3 to 0.9. The geometric and material properties of the FE models are 

summarized in Table 7 [95]. 

4.5.2 Comparison of the Theoretical and Numerical Models 

Figure 19 compares the postbuckling response of the CNT-MM and FGM-MM between the 

theoretical and numerical results. The geometric and materials in Table 7 are used to obtain the 

results. Figure 19(a) presents the comparison for the CNT-MM in terms of the force-displacement 



75 

 

relations, and the postbuckling shape configurations are provided in the buckling mode transitions 

(i.e., Φ1- Φ3 and Φ3- Φ5). It can be seen that when buckling mode transitions happen, the force-

displacement curves behave sharply dropping in the axial force due to the displacement-control 

loading conditions. The theoretical model accurately captures the snap-through of the postbuckled 

CNT-MM in the force-displacement relations and deformed shape configurations. Figure 19(b) 

compares the postbuckling behaviors of FGM-MM between the theoretical and numerical results 

and good agreements are obtained for the force-displacement response and postbuckling shape 

configurations, which demonstrates the accuracy of the developed theoretical model in predicting 

the postbuckling performance of the architected beams. The theoretical and numerical results show 

clear differences of the postbuckling response results in the material properties, i.e., same 

geometries in MM corrugations but different materials in CNTs and FGMs, which indicate the 

possibility of using the material properties (e.g., material functions for CNTs and FGMs) to harness 

the posbuckling response.  
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Table 7. Geometric and material properties, element size and type, and loading condition of the FE 

models for the CNT-MM and FGM-MM. 

Geometry 

property 

Overall 

Length 𝐿 (mm) 2 

Width 𝑊𝑏 (mm) 0.4 

Thickness 𝑡MM (μm) 10 

Corrugation 

Height 𝐻 (μm) 20 

Constraints net gap h (μm) 30 

Diameter 𝐷 (μm) 60 

Rib width 𝐺 (μm) 20 

Material 

property 

CNTs 

Young’s modulus 𝐸11 (TPa) 5.6466 

Shear modulus 𝐺13 (TPa) 1.9445 

Volume fraction 𝑉CNT 0.028 

Efficiency parameters 𝜂1 0.0058 

Efficiency parameters 𝜂3 0.642 

FGMs 

Function 𝐸(𝑋),1 𝐸M(1 + 1.2𝑋)
0.9 

Function 𝐸(𝑋),2 𝐸M𝑒
0.3𝑋 

Matrix Young’s modulus 𝐸M (GPa) 2000 

Length scale factor 𝑙 𝑡MM/10 

Element size and type 

Size 𝑙 (mm) 

FGM-MM and CNT-MM 0.01 

Bilateral constraints 0.05 

Type S4R 
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Figure 19. Comparison of the force-displacement relations and postbuckling shape configurations at 

buckling mode transitions between the theoretical and numerical results for the (a) CNT-MM and (b) 

FGM1-MM and FGM2-MM. 

4.5.3 Comparison of the Theoretical and Numerical Results with the Existing 

Study  

The CNT-MM and FGM-MM models are reduced to the uncorrugated, isotropic beams under 

bi-walls (i.e., without the corrugation in MM and composition in FGMs and CNTs). The reduced 

theoretical and numerical results are then compared with the postbuckling response reported in the 

existing study [63]. Table 8 shows the geometric and material factors used to compare the 

theoretical and numerical results with the theoretical results in the literature. 
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Table 8. Geometric and material properties used in the comparison between the presented and existing 

studies. 

Geometric 

Properties 

(mm) 

Length L  250 

Width 𝑊b  30 

Thickness 𝑡𝑀𝑀 2.3 

Constraints gap H 4 

Material properties Young’s modulus E (MPa) 2300 

 

Figure 20. Comparison of the force-displacement relations between the reduced CNT-MM and FGM-MM 

models in this study, and the theoretical results in the existing study [63]. 

Figure 20 presents the comparison of the postbuckling response for the uncorrugated, 

isotropic beams under bilateral constraints between the theoretical and numerical models in this 

study and the theoretical results in the literature [63]. The developed CNT-MM and FGM-MM 

models are simplified to compare the force-displacement relations with the existing study, and 

satisfactory agreements are obtained.  
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4.6 Maneuverability of the Postbuckling Response for the FGM-MM and CNT-MM 

In this section, the presented theoretical models are used to investigate the influence of the 

material functions in FGMs and CNTs and the corrugation in MM aon the postbuckling response 

(i.e., force-displacement relations and postbuckling shape configurations) of the CNT-MM and 

FGM-MM. The material influence is studied in terms of the volume fraction 𝑉 for CNTs (see Eq. 

(8)) and index 𝑏 for FGMs (see Eq. (6)), and the geometric influence is particularly investigated 

with respect to the diameter 𝐷 and height 𝐻 of the corrugation in MM (see Figure 20). 

4.6.1 Material Influence of FGMs and CNTs  

The effect of the material functions on the postbuckling response is presented on the CNT-

MM and FGM-MM. The beam length 𝐿, width 𝑊b, thickness 𝑡, constraints net gap ℎ0, and matrix 

Young’s modulus 𝐸M are fixed as 2 mm, 0.4 mm, 10 μm, 30 μm, and 130 GPa, respectively. Figure 

21(a) shows the effect of the volume fraction 𝑉 on the force-displacement relations of the CNT-

MM. Since different volumes of CNTs have different efficient parameters [95], the effective 

bending stiffness of the CNT-MM is critically changed, especially due to the fact that CNTs have 

extremely high stiffness-to-weight ratio. Figure 21(b) and Figure 21(c) display the effect of the 

index 𝑏 on the force-displacement curves for the FGM1-MM and FGM2-MM, respectively, using 

the FGMs defined in Eq. (4-75). Although the index has shown influence on the effective bending 

stiffness, less significance  
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Figure 21. Influence of the material functions on the postbuckling response of the CNT-MM, 

FGM1-MM and FGM2-MM. Force-displacement relations of the (a) CNT-MM affected by the 

volume fraction 𝑉, (b) FGM1-MM affected by the index 𝑏, and (c) FGM2-MM affected by the 

index 𝑏. Postbuckling shape configurations of the (d) CNT-MM in Φ1 for 𝑉 = 2.8%, Φ3 for 𝑉 =
12%, and Φ5 for 𝑉 = 28%, and the (e) FGM1-MM and (f) FGM2-MM in Φ1 for 𝑏 = 0.3, Φ3 for 

𝑏 = 0.6, and Φ5 for 𝑏 = 0.9 (𝐿 = 2 𝑚𝑚, 𝑊𝑏 = 0.4 𝑚𝑚, 𝑡𝑀𝑀 = 10 𝜇𝑚, ℎ0 = 30 𝜇𝑚, and 𝐸𝑀 =
130 𝐺𝑃𝑎). 

is observed. Figure 21(d) shows the postbuckling shape configurations in the first buckling model 

(Φ1) for CNT-MM with 𝑉 = 2.8%, the third buckling model (Φ3) for 𝑉 = 12%, and the fifth 

buckling mode (Φ5) for 𝑉 = 28%. The presented buckling snap-through events are highlighted in 

Figure 21(a). Figure 21(e) and Figure 21(f) present the postbuckling shape configurations for the 

FGM1-MM and FGM2-MM, respectively, in the first buckling model (Φ1) for 𝑏 = 0.3, the third 

buckling model (Φ3) for 𝑏 = 0.6, and the fifth buckling model (Φ5) for 𝑏 = 0.9. 

4.6.2 Geometric Influence of the Cylindrical Corrugation in MM  

Figure 22 depicts the effect of the cylindrical corrugation on the postbuckling response of the 

CNT-MM and FGM-MM. Figure 22(a) indicates the influence of the diameter-to-height ratio (i.e., 
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𝐷

𝐻
= 0.2 − 5) of the corrugation on the force-displacement relations of the CNT-MM. Figure 22(b) 

and Figure 22(c) show the effects of 
𝐷

𝐻
 on the postbuckling response of the FGM1-MM and FGM2-

MM, respectively. Note that 
𝐷

𝐻
 are obtained from the cases of 20 μm-to-100 μm, 20 μm-to-20 μm 

and 100 μm-to-20 μm. 

Next, the material and geometric influences are investigated and compared on the postbuckling 

performance of the CNT-MM and FGM-MM. Figure 23(a) compares the force-displacement 

relations for the CNT-MM with 1) diameter-to-height ratio is 
𝐷

𝐻
= 0.2 and volume fraction is 𝑉 =

2.8% , 2) 
𝐷

𝐻
= 1  and 𝑉 = 12% , and 3) 

𝐷

𝐻
= 5  and 𝑉 = 28% . Figure 23(b) and Figure 23(c) 

compares the force-displacement relations for the FGM1-MM and FGM2-MM, respectively, with 

1) 
𝐷

𝐻
= 0.2 and 𝑏 = 0.3, 2) 

𝐷

𝐻
= 1 and  𝑏 = 0.6, and 3) 

𝐷

𝐻
= 5  and  𝑏 = 0.9. According to the 

comparison, the volume fraction of CNTs proved more significant  
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Figure 22. Influence of the cylindrical corrugation on the postbuckling response of the CNT-MM, FGM1-

MM and FGM2-MM. Force-displacement relations of the (a) CNT-MM, (b) FGM1-MM and(c) FGM2-MM 

affected by the diameter-to-height ratio 
𝐷

𝐻
. Postbuckling shape configurations of the (d) CNT-MM, (e) 

FGM1-MM and (f) FGM2-MM in Φ1 for 
𝐷

𝐻
= 0.2, Φ3 for 

𝐷

𝐻
= 1, and Φ5 for 

𝐷

𝐻
= 5. (

𝐷

𝐻
 are obtained from 

the cases of 20 𝜇𝑚-to-100 𝜇𝑚, 20 𝜇𝑚-to-20 𝜇𝑚 and 100 𝜇𝑚-to-20 𝜇𝑚). 

 

influence on the CNT-MM, since the effective bending stiffness is not decreased critically when 

𝐷

𝐻
 is reduced from 1 to 0.2 and the 𝑉 is increased from 2.8% to 12%, However, the FGM-MM are 

found to be more sensitive to 
𝐷

𝐻
 rather than the index b. Different geometric and material functions 

lead to different postbuckling response for the CNT-MM and FGM-MM. Figure 23(d) presents 

the distributions of the first four buckling mode coefficients (𝐴1, 𝐴3, 𝐴5 and 𝐴7) for the CNT-MM 

with 
𝐷

𝐻
= 0.2 and 𝑏 = 0.3. Figure 23(e) and Figure 23(f) show the distributions of 𝐴1, 𝐴3, 𝐴5 and 

𝐴7 for the FGM1-MM and FGM2-MM, respectively, with 
𝐷

𝐻
= 0.2 and 𝑏 = 0.3. It can be seen that 

certain mode coefficient dominants the postbuckling response in the stable buckling modes (i.e., 
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Φ1, Φ3 and Φ5), and significant coefficient fluctuations are obtained in buckling snap-throughs 

(i.e., Φ1-Φ3, Φ3-Φ5 and Φ5-Φ7).  

Figure 24 shows the variation of the larger axial force during the buckling mode transitions 

(i.e., 𝐹Φ3 for the Φ1-Φ3 snap-through) for the (a) CNT-MM, (b) FGM1-MM and (c) FGM2-MM. 

Different corrugation factors, 𝑉 and 𝑏 are used to investigate the influences of the material and 

geometric functions. In particular, the corrugation factor is defined as [
2(𝐷+𝐺)2(𝑊+𝐻−2𝑡MM)

𝑊((𝐷+𝐺)2+𝜋𝐷𝐻)
]
2

 based 

on Eq. (2). It can be seen that higher corrugation factors (i.e., more significant corrugation) and 

larger volume fraction and index b (i.e., more obvious functional materials) tend to provide higher 

controllability on the buckling mode transitions. In addition, CNTs are likely to be more 

maneuverable over the FGMs on the postbuckling response of the bilaterally constrained CNT-

MM and FGM-MM.  
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Figure 23. Comparison of the material and geometric influences on the force-displacement relations for 

the (a) CNT-MM with  
𝐷

𝐻
= 0.2 and 𝑉 = 2.8%,  

𝐷

𝐻
= 1 and 𝑉 = 12%, and 

𝐷

𝐻
= 5 and 𝑉 = 28%, and (b) 

FGM1-MM and (c) FGM2-MM with 
𝐷

𝐻
= 0.2 and 𝑏 = 0.3,  

𝐷

𝐻
= 1 and  𝑏 = 0.6, and 

𝐷

𝐻
= 5 and  𝑏 = 0.9. 

Distributions of 𝐴1, 𝐴3, 𝐴5 and 𝐴7 for the (d) CNT-MM with 
𝐷

𝐻
= 0.2 and 𝑏 = 0.3, and the (e) FGM1-MM 

and (f) FGM2-MM with 
𝐷

𝐻
= 0.2 and 𝑏 = 0.3. 
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Figure 24. Variation of the maximum axial force in buckling mode transitions for the (a) CNT-MM, (b) 

FGM1-MM and (c) FGM2-MM. 

4.7 Additional Studies 

Figure 25(a) demonstrates the FGM-MM and CNT-MM designed with cylindrical corrugation, 

and Figure 25(b) shows the hollow beam that has the same length, width, height and thickness as 

the FGM-MM and CNT-MM. The volume of the MM in FGM-MM and CNT-MM, and the 

volume of the hollow beam can be obtained as [105]. 

{
𝑉MM = 𝐿𝑊𝑡MM (1 +

𝜋𝐷𝐻

(𝐷+𝐺)2
)

𝑉hb = 2𝐿𝑡MM(𝑊 + 𝐻 − 2𝑡MM)
.                                 

(A1) 
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Taking Eq. (A1) into Eq. (4-1) leads to Eq. (4-2).  

In addition, the weight factor 𝜁MM of the cylindrical corrugation for the FGM-MM and CNT-

MM is numerically calibrated using Abaqus R2016x. The mean value is 0.43 using the parameters 

in Table 2. 

4.7.1 User-Defined Subroutine USDFLD for the FGM-MM 

In this study, the material functions of the FGMs in the numerical modelling are defined using 

the field variables. The user-defined subroutine for the FGM-MM is given as, 

 

Figure 25. Demonstration of the (a) FGM-MM and CNT-MM designed with cylindrical 

corrugation, and the (b) hollow beam that has the same length, width, height and thickness as 

the FGM-MM and CNT-MM. 

4.8 Conclusions 

In this study, we investigated the postbuckling response (i.e., force-displacement relations and 

postbuckling shape configurations) of the extensible mechanical metamaterials at the microscale 

designed by functionally graded materials (FGM-MM) and carbon nanotubes (CNT-MM). 

Theoretical models were developed to investigate the postbuckling response of the FGM-MM and 

CNT-MM subjected to bilateral constraints and solved using the energy method. Numerical 
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simulations were conducted to validate the theoretical results and good agreements were obtained. 

The theoretical models were used to investigate the maneuverability of the FGM-MM and CNT-

MM with respect to the material properties (i.e., FGMs and CNTs) and geometric properties (i.e., 

corrugated microstructures). The findings showed that more significant corrugation in MM and 

more critical composition in FGMs and CNTs provided higher controllability on the buckling 

mode transitions, and CNTs were likely to be more maneuverable over the FGMs on the 

postbuckling response of the bilaterally constrained CNT-MM and FGM-MM. The reported FGM-

MM and CNT-MM provide a novel direction of programming mechanical response of artificial 

materials.   
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Chapter 5: Structural Instability for the Design and Control of Computational Materials 

and Structures  

5.1 Introduction 

Numerical computations, such as solving differential equations, are pervasive and well-known 

in scientific research and engineering areas [114, 115], as are many other tasks that involve 

simulation and optimization. The basic characteristics of any system can be represented by a set 

of equations and the prediction of the system’s behavior is their solution [116]. These differential 

equations arise in mathematical modeling of many real life application [117, 118], such as 

biosciences [119, 120]; human pupil reflex [121]; physics [122, 123]; weather prediction [124]; 

engineering [125] biology [126]; economy [127]. However, complicated mathematical approaches 

are required to achieve accurate and exact solutions of PDEs [128]. Moreover, understanding how 

to obtain solutions from differential equations, and their application to describe the physical 

processes in some cases is still challenging [129]. The latest developments in technology provides 

many different analytical and numerical methods solving tools [130]. However, these technologies 

are computer-based and still suffer severe drawbacks [131], it becomes a matter of interest to 

introduce other disruptive ways and approaches that will save cost, efforts for quicker results while 

improving the overall performance.  

The revival of analog computing might be the recourse for filling the gap. Different studies 

have been conducted to propose different analog computing system, for instance, an acoustic 

analog computing system was proposed, based on the concept on simulated transmitted pressure, 

as an ordinary differential equation solver [132]. On other hand, a silicon microring resonator that 

relies on the speed and wide band of the photonic integrated circuit, was used as an alternative 

solution to solve ordinary differential equation [133]. Moreover, another approach in which 
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electronic circuits were defined by periodic networks of repeated identical cells, was introduced 

and successfully obtained the finite difference approximation (i.e., locally) of the partial 

differential equation [134]. Also, recently a complete memristor-based hardware and software 

system with a high precise performance was proposed to solve static and time-evolving differential 

equation problems [135].  

Structural Instability of slender elements (i.e., postbuckling) has been designed in advanced 

structures to meet multiple functional purposes in recent studies, such as autonomous sensing 

systems, medical devices and bioengineering [136-138]. Taking the advantage of the 

programmable, postbuckling-induced instability of the bi-walled beam, we propose a solution for 

analog computing. To overcome the issues associated with the performance of these smart 

applications, different studies that proposed different strategies (material strategies, geometric 

strategies, lateral confinement strategies) was conducted in order to achieve to better control over 

the postbuckling response of the bi-walled beams [139-141]. Our approach is based on bi-walled 

beam system capable of, in which deformed shapes are defined as solutions for the differential 

equation under study. This bi-walled beam must have the properties of being elastically deformed 

then return back to its original shape, when the force is released. Basically, for an arbitrary force 

to a bi-walled anisotropic non-uniform beam associated with a prescribed differential equation 

operator, the solution of such an equation is generated as a complex-valued output mode transition. 

By exploiting beam-walls interactions under quasi-static load our bi-walled beam-based analog 

computer may provide a route to achieve chip-scale, fast, and integrable computing elements. 

5.2 Conceptual Design  

A conceptual representation of our idea for solving 4th order nonlinear differential equations 

using the postbuckling behavior of a non-uniform anisotropic bi-walled beam can be described by 
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characteristically considering the differential equation as an inverse problem, and the postbuckling 

mechanism can be used to generate the solution. We present a partial differential equation (PDE) 

solver for a class of higher-order nonlinear PDEs, as in Eq. (1). An appropriate analog approach 

was introduced to reach solutions that are consistent with the target equations in this research. Two 

applications (e.g., trigonometric functions, exponential and polynomial functions) and a 

parametric study were presented to verify the effectiveness and compatibility of the proposed 

technique. Figure 26 schematically illustrates the post-buckling process and the design principle 

of the PDE solver.  

𝑔(𝑥, 𝑦, 𝑧)
𝜕4𝑓(𝑥)

𝜕𝑥4
+ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜕2𝑓(𝑥)

𝜕𝑥2
= 0;       (5-1) 

where, 
𝜕2𝑓(𝑥)

𝜕𝑥2
 represents the unknown solution of 4th order nonlinear differential equation.  

 

 

Figure 26. Postbuckling shape configurations in mode 1st, 3rd, 5th and 7th. 
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5.3 Theoretical formulation for PDE solver 

The prementioned fourth order partial differential equation, is represented by a bi-walled beam 

consists of the length 𝐿, width 𝑏, thickness 𝑡, cross section area 𝐴 = 𝑏𝑡, moment of inertia 𝐼 =

𝑏𝑡3 

12
, as shown in Figure 27. The beam has a fixed-fixed boundary condition and positioned between 

two bilateral fixed frictionless walls along the length of the beam, with the net gap between the 

lateral constraints ℎ. The net gap can be simply defined as the difference between the total gap and 

the thickness of the beam ℎ = ℎ𝑜 − 𝑡. It worth to point out that the beam is modeled based on 

small deformation assumptions (since the ratio of the beam’s gap to length is relatively small 
ℎ

𝐿
≪

1). 

 

Figure 27. PDE solver arbitrary cross-section. 

5.4 Trigonometric Functions 

Let’s assume that we have such 4th order partial differential equation:  

𝑎0
3

12
[(𝑎1 + |𝑎1 − 𝑎2| 𝑐𝑜𝑠 (

2𝜋𝑥

𝑎3
)) (𝑎4 + 2𝑎5𝑠𝑖𝑛 (

2𝜋𝑥

𝑎3
))]

𝜕4𝑓(𝑥)

𝜕𝑥4
+ 𝑎6

𝜕2𝑓(𝑥)

𝜕𝑥2
= 0;  (5-2) 
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To solve the above equation analogy, we are going to the build a beam with specific geometric 

and material properties in which its transverse displacement, while deflecting quasi-statically 

between frictionless bilateral constraints, will represent the solution of the partial differential 

equation. Since quasi-static assumptions are adopted, therefore the potential energy will represent 

the total energy and the net between the bending strain energy u_b, compressive strain energy and 

the energy of external work u_(p-c), is equal to the total potential energy. The total potential energy 

Ω can be written as 

𝛺 = 𝑢𝑏 − 𝑢𝑝−𝑐.          (5-3) 

The energy components can be obtained as 

𝑢𝑏 =
1

12
∫ [𝑎0

3(𝑥) (𝑎4(𝑥) + 2𝑎5𝑠𝑖𝑛 (
2𝜋𝑥

𝑎3
)) (𝑎1 + |𝑎1 − 𝑎2| 𝑐𝑜𝑠 (

2𝜋𝑥

𝑎3
)) (

𝜕2𝑓(𝑥)

𝜕𝑥2
)
2

] d𝑥
𝑎3
0

;  

            (5-4) 

and 

𝑢𝑝−𝑐 =
𝑎6∆𝑝−𝑐

2
;          (5-5) 

where 𝛥𝑝−𝑐 refers to the net deformation (net difference between the overall variation in the 

length of the beam and the axial compressive deformation) which can be obtained as 

∆𝑝−𝑐=
1

2
∫ (

𝜕𝑓(𝑥)

𝜕𝑥
 )
2

𝑑𝑥
𝑎3
0

.         (5-6) 

Let’s assume that Ϛ represents the minimum energy path that PDEs solver will follow (rule of 

physics), Eq. (5-1) can be re-written as,  
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Ϛ = min(𝛺) =
1

12
∫ 𝑎0

3(𝑥) (𝑎1 + |𝑎1 − 𝑎2| 𝑐𝑜𝑠 (
2𝜋𝑥

𝑎3
)) (𝑎4(𝑥) +

𝑎3
0

2𝑎5𝑠𝑖𝑛 (
2𝜋𝑥

𝑎3
)) (

𝜕2𝑓(𝑥)

𝜕𝑥2
)
2

d𝑥 −
𝑎6

2
∫ (

𝜕𝑓(𝑥)

𝜕𝑥
 )
2

𝑑𝑥
𝑎3
0

= 0.     (5-7) 

First, let’s consider the bending strain energy; the solution 𝑓𝑏(𝑥) and its first 
𝜕𝑓𝑏(𝑥)

𝜕𝑥
 and second 

derivatives 
𝜕2𝑓𝑏(𝑥)

𝜕𝑥2
 can be expressed as, 

𝜕2𝑓𝑏(𝑥)

𝜕𝑥2
= √

12
𝜕𝑢𝑏(𝑥)

𝜕𝑥

𝑎0
3(𝑎1+|𝑎1−𝑎2| cos(

2𝜋𝑥

𝑎3
))(𝑎4+2𝑎5𝑠𝑖𝑛(

2𝜋𝑥

𝑎3
))

     (5-8) 

and by double integrating the 
𝜕2𝑓𝑏(𝑥)

𝜕𝑥2
, 𝑓𝑏(𝑥) resulted from bending can be obtained as,  

𝑓𝑏(𝑥) = ∫ ∫
𝜕2𝑓𝑏(𝑥)

𝜕𝑥2
d𝑥

𝑎3
0

𝑎3
0

          (5-9)  

Now, by considering both the compressive strain energy and the energy of external work, the 

first derivative 
𝜕𝑓𝑐−𝑝(𝑥)

𝜕𝑥
 can be expressed as,  

𝜕𝑓𝑝−𝑐(𝑥)

𝜕𝑥
=

2

√𝑎6
√
𝜕𝑢𝑝−𝑐

𝜕𝑥
         (5-10) 

and the transverse displacements resulted from compressive and external work can be 

expressed as,  

𝑓𝑝−𝑐(𝑥) =
4

3√𝑎6
√(

𝜕𝑢𝑝−𝑐

𝜕𝑥
)
3

(
𝜕2𝑢𝑝−𝑐

𝜕𝑥2
)
−1

+ 𝑘3      (5-11) 

where 𝑘𝑎(𝑎 = 1,2,3) are the unknown integration constants that can be determine using the 

boundary conditions that describe the lateral confinement (clamped-clamped) can be described as,  
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{
𝑓𝑏(0) = 𝑓𝑏(1) = 𝑓𝑝−𝑐(0) = 𝑓𝑝−𝑐(1) = 0;

𝑑𝑓𝑏(𝑥)

𝑑𝑥
|𝑥=0 =

𝑑𝑓𝑏(𝑥)

𝑑𝑥
|𝑥=1 =

𝑑𝑓𝑝−𝑐(𝑥)

𝑑𝑥
|𝑥=0 =

𝑑𝑓𝑝−𝑐(𝑥)

𝑑𝑥
|𝑥=1 = 0.

    (5-12) 

The total 𝑓(𝑥) is the net of the transverse displacements resulted from bending, compressive 

and external work, 

𝑓(𝑥) = ∑𝑓𝑏(𝑥) − 𝑓𝑝−𝑐(𝑥) ;         (5-13) 

According to Salem et al. [139], the 4th order partial differential equation that govern the 

postbuckling behavior of beam, under quasi-static increase loading, constrained between 

frictionless bilateral walls can be expressed as,  

𝜕4𝑤̂(𝑥)

𝜕𝑥4
+

𝑝

𝐸𝐼

𝜕2𝑤̂(𝑥)

𝜕𝑥2
= 0;         (5-14) 

Thus, in order to solve the 4th order partial differential equation Eq. (5-2), the material 

distribution should be assumed to follow the cosine distribution as 𝐸(𝑥) = 𝑎1 + |𝑎1 −

𝑎2| cos (
2𝜋𝑥

𝑎3
) and the geometric variation should be assumed to follow the sinusoidal case as 

𝐼(𝑥) =
𝑎0
3(𝑥)

12
(𝑎4(𝑥) + 2𝑎5𝑠𝑖𝑛 (

2𝜋𝑥

𝑎3
)) . Therefore, we need to build a walled beam with the 

properties presented in Table 7 to obtain the solution of the equation under consideration.   
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Table 9. PDE-solver (trigonometric functions), parameter definition. 

4th order PDE PDE-solver Definition (of the beam) 

𝑎0 𝑡  Thickness of the beam 

𝑎1 𝐸𝐴 Young’s modulus of stiffer material 

𝑎2 𝐸𝐵 Young’s modulus of softer material 

𝑎3 𝑙 Length of the beam 

𝑎4 𝑏 Width of the beam 

𝑎5 𝐴 Sine amplitude 

𝑎6 𝑝̂ Axial compressive force 

 

5.5 Exponential and Polynomial Functions 

Following the previous approach, here we are trying to solve another 4th order partial 

differential equation:  

𝑎0
3

12
[(𝑎1 +

|𝑎1−𝑎2|

𝑒
(
𝑥𝑎7
𝑎3

)
)(𝑎4 + (𝑎5 − 𝑎4) (

𝑥

𝑎3
))]

𝜕4𝑓(𝑥)

𝜕𝑥4
+ 𝑎6

𝜕2𝑓(𝑥)

𝜕𝑥2
= 0;    (5-15) 

The minimum energy path Ϛ can be re-written as,  

Ϛ = min(𝛺) =
1

12
∫ 𝑎0

3(𝑥) (𝑎1 +
|𝑎1−𝑎2|

𝑒
(
𝑥𝑎7
𝑎3

)
)(𝑎4 + (𝑎5 − 𝑎4) (

𝑥

𝑎3
)) (

𝜕2𝑓(𝑥)

𝜕𝑥2
)
2

d𝑥
𝑎3
0

−

𝑎6

2
∫ (

𝜕𝑓(𝑥)

𝜕𝑥
 )
2

𝑑𝑥
𝑎3
0

= 0.         (5-16)  

Thus, in order to solve the 4th order partial differential equation Eq. (5-15), the material 

distribution should be assumed to follow the distribution as 𝐸(𝑥) = 𝑎1 +
|𝑎1−𝑎2|

𝑒
(
𝑥
𝑎3
)

 and the geometric 
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variation should be assumed as 𝐼(𝑥) =
𝑎0
3(𝑥)

12
(𝑎4 + (𝑎5 − 𝑎4) (

𝑥

𝑎3
)). Therefore, we need to build 

a walled beam with the properties presented in Table 10 to obtain the solution of the differential 

equation under consideration.  

Table 10. PDE-solver (exponential and polynomial), parameter definition. 

4th order PDE PDE-solver Definition (of the beam) 

𝑎0 𝑡  Thickness of the beam 

𝑎1 𝐸𝐴 Young’s modulus of stiffer material 

𝑎2 𝐸𝐵 Young’s modulus of softer material 

𝑎3 𝑙 Length of the beam 

𝑎4 𝑏𝑡𝑜𝑝 Top width of the beam 

𝑎5 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 Bottom width of the beam 

𝑎6 𝐿 Length of the beam 

 

5.6 PDE solver Fabrication and Experimental Validation 

In this study, the PDE solver were fabricated using 3D printing technique to satisfy both low 

cost and well flexibility [142]. Figure 28 illustrates the principle and printing process of the 

Ultimaker printer. The polymer filaments were fed into the 3D printer through a hot extruder and 

then heated to glass transition temperature, to assure the filament be smoothly extruded from the 

brass nozzles [143, 144]. The printer deposits melted thermoplastic in a layer-by-layer format (with 

thickness tolerance of 0.06 mm) to create the PDE-solver designed in AutoCAD 2019 and Siemens 

NX. In 3D printing, the extrusion head rate was set to be 25 mm/s, and the printing bed temperature 
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was varied from 0-85 oC (based on the melting temperatures of the feeding filaments) and the 

temperatures of the nozzles were set at 200-245 oC. Furthermore, the standby temperatures for was 

fixed as 175 oC. The fan speeds used to print PLA was set as 40-100%.  

 

Figure 28. 3D printer for the fabrication of the PDE solver.  

5.7 Experimental Validation 

To ensure the high level of tunability and controllability, the 3D printed beam was placed 

between two flat and rigid bilateral constraints with clamped-clamped boundary conditions. The 

constraints were made from aluminum with frictionless surface to omit the influence of friction on 

the behavior of the PDE-solver. Gradually increasing axial force was applied to the top of the PDE-

solver by MTS Flextest 40 and a loading frame unit model370. The loading stage was 

displacement-control and was limited to a maximum total shorting of 6 mm with a loading period 

of 40 seconds. To validate the proposed model, the trigonometric function case was first 

considered. A bi-walled beam with a thickness of 𝑎0 = 1.2 𝑚𝑚, young’s modulus (for both the 
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soft and stiff materials) of 𝑎1 = 𝑎2 = 3.5 𝐺𝑃𝑎, length of 𝑎3 = 185 𝑚𝑚, width of 𝑎4 = 25 𝑚𝑚 

and has a sine amplitude of 𝑎5 = 0.5 𝑚𝑚 . In the second set of experiment, we tested the 

exponential and polynomial functions case by considering a beam with thickness of 𝑎0 =

2.76 𝑚𝑚, young’s modulus of stiff material of 𝑎1 = 3.5 𝐺𝑃𝑎, young’s modulus of soft material 

of 𝑎2 = 0.9 𝐺𝑃𝑎, length of 𝑎3 = 170 𝑚𝑚, width of 𝑎4 = 25 𝑚𝑚 and volume fraction of 𝑎7 =

0.76 𝑚𝑚. 

The solution for the first set (Case A) can be represented as,  
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                                 0.181539(1 − Cos[2𝜋𝑋]) + 0.10201190066875167(1 − Cos[4𝜋𝑋])

+ 0.11127544904624068(1 − Cos[6𝜋𝑋]) + 0.024966657231540405(1

− Cos[8𝜋𝑋]) + 0.010977076443737004(1 − Cos[10𝜋𝑋])

− 0.0036583452682027937(1 − Cos[12𝜋𝑋]) − 0.0019335898911041057(1

− Cos[14𝜋𝑋]) − 0.007487237382895869(1 − Cos[16𝜋𝑋])

− 0.0013705099605957258(1 − Cos[18𝜋𝑋]) + 0.00034608282770272846(1

− Cos[20𝜋𝑋]) − 0.00035149035271551254(1 − Cos[22𝜋𝑋])

+ 0.00019157727488008534(1 − Cos[24𝜋𝑋]) − 0.0008648467277794851(1

− Cos[26𝜋𝑋]) − 0.00037732327103937795(1 − Cos[28𝜋𝑋])

+ 0.00004081026325742306(1 − Cos[30𝜋𝑋]) + 0.17029917874405862(1

− 2𝑋 − Cos[8.986839944858962𝑋]

+ 0.22254763768705213Sin[8.986839944858962𝑋])

− 0.4212368072332286(1 − 2𝑋 − Cos[15.450352670354603𝑋]

+ 0.12944688336063062Sin[15.450352670354603𝑋])

+ 0.00609891052812938(1 − 2𝑋 − Cos[21.808307882689626𝑋]

+ 0.09170816969195042Sin[21.808307882689626𝑋])

+ 0.009546616684841008(1 − 2𝑋 − Cos[28.132333894365882𝑋]

+ 0.07109257296283349Sin[28.132333894365882𝑋])

+ 0.0009529577231114289(1 − 2𝑋 − Cos[34.44159442057026𝑋]

+ 0.058069320937287935Sin[34.44159442057026𝑋])

− 0.011899721568971356(1 − 2𝑋 − Cos[40.74268680587531𝑋]

+ 0.0490885642748428Sin[40.74268680587531𝑋])

+ 0.01159708156921189(1 − 2𝑋 − Cos[47.03875264293461𝑋]
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+ 0.04251813425372382Sin[47.03875264293461𝑋])

+ 0.0029629018855069737(1 − 2𝑋 − Cos[53.33199104660569𝑋]

+ 0.037500943819109296Sin[53.33199104660569𝑋])

+ 0.001096948627932418(1 − 2𝑋 − Cos[59.62334449468461𝑋]

+ 0.03354390829548817Sin[59.62334449468461𝑋])

+ 0.0006509484167195499(1 − 2𝑋 − Cos[65.91281298717136𝑋]

+ 0.030343114022295798Sin[65.91281298717136𝑋])

− 0.0008729809646230986(1 − 2𝑋 − Cos[72.20228147965814𝑋]

+ 0.02769995572180733Sin[72.20228147965814𝑋])

+ 0.0006570504807220779(1 − 2𝑋 − Cos[78.48860837949131𝑋]

+ 0.025481404770613697Sin[78.48860837949131𝑋])

+ 0.00039430615912742367(1 − 2𝑋 − Cos[84.77587775712057𝑋]

+ 0.023591616541322268Sin[84.77587775712057𝑋])

+ 0.00019831880723003418(1 − 2𝑋 − Cos[91.06220465695374𝑋]

+ 0.021963008775532374Sin[91.06220465695374𝑋])

+ 0.00017450091658007073(1 − 2𝑋 − Cos[97.34821739752155𝑋]

+ 0.020544803525605383Sin[97.34821739752155𝑋]) 

 

While the solution for the 1st mode transition in the second set (Case B) can be represented as,  
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                                 0.5136794559191887(1 − Cos[2𝜋𝑋])

− 0.0000506642263922924(1 − Cos[4𝜋𝑋]) − 0.011919205492912258(1

− Cos[6𝜋𝑋]) − 0.000005986220498192588(1 − Cos[8𝜋𝑋])

− 0.0012529910689168886(1 − Cos[10𝜋𝑋])

− 0.000002407715704313205(1 − Cos[12𝜋𝑋])

− 0.0003092981214378512(1 − Cos[14𝜋𝑋])

− 0.000001302192335233192(1 − Cos[16𝜋𝑋])

− 0.00011054681524310559(1 − Cos[18𝜋𝑋])

− 8.116778710742132 × 10−7(1 − Cos[20𝜋𝑋])

− 0.000048831852312373294(1 − Cos[22𝜋𝑋])

− 5.507803749402448 × 10−7(1 − Cos[24𝜋𝑋])

− 0.00002476190266275978(1 − Cos[26𝜋𝑋])

− 3.959943009497743 × 10−7(1 − Cos[28𝜋𝑋])

− 0.000013839623206363896(1 − Cos[30𝜋𝑋]) + 0.0067440092045444(1

− 2𝑋 − Cos[8.986839944858962𝑋]

+ 0.22254763768705213Sin[8.986839944858962𝑋])

+ 0.0002521984227809577(1 − 2𝑋 − Cos[15.450352670354603𝑋]

+ 0.12944688336063062Sin[15.450352670354603𝑋])

− 0.00008459169489831279(1 − 2𝑋 − Cos[21.808307882689626𝑋]

+ 0.09170816969195042Sin[21.808307882689626𝑋])

+ 0.00003025128126188748(1 − 2𝑋 − Cos[28.132333894365882𝑋]

+ 0.07109257296283349Sin[28.132333894365882𝑋])

− 0.000017866910615388942(1 − 2𝑋 − Cos[34.44159442057026𝑋]
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+ 0.058069320937287935Sin[34.44159442057026𝑋])

+ 0.000009411843208285503(1 − 2𝑋 − Cos[40.74268680587531𝑋]

+ 0.0490885642748428Sin[40.74268680587531𝑋])

− 0.000006580834272156238(1 − 2𝑋 − Cos[47.03875264293461𝑋]

+ 0.04251813425372382Sin[47.03875264293461𝑋])

+ 0.000004024549436129806(1 − 2𝑋 − Cos[53.33199104660569𝑋]

+ 0.037500943819109296Sin[53.33199104660569𝑋])

− 0.000003045591031604344(1 − 2𝑋 − Cos[59.62334449468461𝑋]

+ 0.03354390829548817Sin[59.62334449468461𝑋])

+ 0.000002079244403972599(1 − 2𝑋 − Cos[65.91281298717136𝑋]

+ 0.030343114022295798Sin[65.91281298717136𝑋])

− 0.000001587101564243122(1 − 2𝑋 − Cos[72.20228147965814𝑋]

+ 0.02769995572180733Sin[72.20228147965814𝑋])

+ 0.000001175843876178375(1 − 2𝑋 − Cos[78.48860837949131𝑋]

+ 0.025481404770613697Sin[78.48860837949131𝑋])

− 9.756578315261839 × 10−7(1 − 2𝑋 − Cos[84.77587775712057𝑋]

+ 0.023591616541322268Sin[84.77587775712057𝑋])

+ 7.300999721994216 × 10−7(1 − 2𝑋 − Cos[91.06220465695374𝑋]

+ 0.021963008775532374Sin[91.06220465695374𝑋])

− 6.179859254044011 × 10−7(1 − 2𝑋 − Cos[97.34821739752155𝑋]

+ 0.020544803525605383Sin[97.34821739752155𝑋]) 

 

and the solution for the 3rd mode transition in the second set (Case B) can be represented as,  
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                                 5.459239694979734 × 10−8(1 − Cos[2𝜋𝑋]) + 0.5022508118783651(1

− Cos[4𝜋𝑋]) − 6.30433557144345 × 10−8(1 − Cos[6𝜋𝑋])

− 4.410371209712353 × 10−10(1 − Cos[8𝜋𝑋])

− 4.054170783345386 × 10−9(1 − Cos[10𝜋𝑋])

− 0.001962345115767776(1 − Cos[12𝜋𝑋])

− 1.031181542896072 × 10−9(1 − Cos[14𝜋𝑋])

+ 4.603705323998832 × 10−11(1 − Cos[16𝜋𝑋])

− 2.814254007003814 × 10−10(1 − Cos[18𝜋𝑋])

− 0.0002300873594734294(1 − Cos[20𝜋𝑋])

− 1.25989059538196 × 10−11(1 − Cos[22𝜋𝑋])

− 1.264615821391044 × 10−10(1 − Cos[24𝜋𝑋])

− 1.171493730657464 × 10−10(1 − Cos[26𝜋𝑋])

− 0.000058361557561085415(1 − Cos[28𝜋𝑋])

− 7.095178792867994 × 10−11(1 − Cos[30𝜋𝑋])

+ 0.00041978114509530186(1 − 2𝑋 − Cos[8.986839944858962𝑋]

+ 0.22254763768705213Sin[8.986839944858962𝑋])

− 0.00046107460179950255(1 − 2𝑋 − Cos[15.450352670354603𝑋]

+ 0.12944688336063062Sin[15.450352670354603𝑋])

+ 0.000007752188889690367(1 − 2𝑋 − Cos[21.808307882689626𝑋]

+ 0.09170816969195042Sin[21.808307882689626𝑋])

+ 7.150297094650262 × 10−7(1 − 2𝑋 − Cos[28.132333894365882𝑋]

+ 0.07109257296283349Sin[28.132333894365882𝑋])

− 0.000002945815934153597(1 − 2𝑋 − Cos[34.44159442057026𝑋]
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+ 0.058069320937287935Sin[34.44159442057026𝑋])

− 0.00000135116569878663(1 − 2𝑋 − Cos[40.74268680587531𝑋]

+ 0.0490885642748428Sin[40.74268680587531𝑋])

− 8.79691913311177 × 10−8(1 − 2𝑋 − Cos[47.03875264293461𝑋]

+ 0.04251813425372382Sin[47.03875264293461𝑋])

− 4.46109071003682 × 10−8(1 − 2𝑋 − Cos[53.33199104660569𝑋]

+ 0.037500943819109296Sin[53.33199104660569𝑋])

− 2.137233094143693 × 10−7(1 − 2𝑋 − Cos[59.62334449468461𝑋]

+ 0.03354390829548817Sin[59.62334449468461𝑋])

− 1.922464600075722 × 10−7(1 − 2𝑋 − Cos[65.91281298717136𝑋]

+ 0.030343114022295798Sin[65.91281298717136𝑋])

+ 4.547821896314855 × 10−7(1 − 2𝑋 − Cos[72.20228147965814𝑋]

+ 0.02769995572180733Sin[72.20228147965814𝑋])

− 6.443382503319151 × 10−8(1 − 2𝑋 − Cos[78.48860837949131𝑋]

+ 0.025481404770613697Sin[78.48860837949131𝑋])

− 6.411825893513957 × 10−8(1 − 2𝑋 − Cos[84.77587775712057𝑋]

+ 0.023591616541322268Sin[84.77587775712057𝑋])

− 6.954231304079054 × 10−8(1 − 2𝑋 − Cos[91.06220465695374𝑋]

+ 0.021963008775532374Sin[91.06220465695374𝑋])

− 3.808032485636905 × 10−9(1 − 2𝑋 − Cos[97.34821739752155𝑋]

+ 0.020544803525605383Sin[97.34821739752155𝑋]) 

 

and the solution for the 5th mode transition in the second set (Case B) can be represented as,  
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                                 0.0025403607736504486(1 − Cos[2𝜋𝑋]) − 0.003769348141774792(1

− Cos[4𝜋𝑋]) + 0.5044865571485785(1 − Cos[6𝜋𝑋])

+ 0.004006866875739551(1 − Cos[8𝜋𝑋]) + 0.002102686319344609(1

− Cos[10𝜋𝑋]) + 0.000006571735023804506(1 − Cos[12𝜋𝑋])

− 0.00040710038866607293(1 − Cos[14𝜋𝑋])

+ 0.00002461810044278898(1 − Cos[16𝜋𝑋]) − 0.003295597954262204(1

− Cos[18𝜋𝑋]) + 0.000026822546098006285(1 − Cos[20𝜋𝑋])

+ 0.0000832969476807227(1 − Cos[22𝜋𝑋])

+ 0.000001132782605060111(1 − Cos[24𝜋𝑋])

− 0.00006158028826421117(1 − Cos[26𝜋𝑋])

+ 6.276303333789091 × 10−7(1 − Cos[28𝜋𝑋])

− 0.00036814342403603575(1 − Cos[30𝜋𝑋]) + 0.0034113173187788(1

− 2𝑋 − Cos[8.986839944858962𝑋]

+ 0.22254763768705213Sin[8.986839944858962𝑋])

− 0.01044503115586656(1 − 2𝑋 − Cos[15.450352670354603𝑋]

+ 0.12944688336063062Sin[15.450352670354603𝑋])

+ 0.010428692570783752(1 − 2𝑋 − Cos[21.808307882689626𝑋]

+ 0.09170816969195042Sin[21.808307882689626𝑋])

− 0.003294260495508135(1 − 2𝑋 − Cos[28.132333894365882𝑋]

+ 0.07109257296283349Sin[28.132333894365882𝑋])

+ 0.0002891712304945036(1 − 2𝑋 − Cos[34.44159442057026𝑋]

+ 0.058069320937287935Sin[34.44159442057026𝑋])

− 0.00016449470978471652(1 − 2𝑋 − Cos[40.74268680587531𝑋]
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+ 0.0490885642748428Sin[40.74268680587531𝑋])

+ 0.00014014267307558932(1 − 2𝑋 − Cos[47.03875264293461𝑋]

+ 0.04251813425372382Sin[47.03875264293461𝑋])

+ 0.00023158546366680712(1 − 2𝑋 − Cos[53.33199104660569𝑋]

+ 0.037500943819109296Sin[53.33199104660569𝑋])

− 0.0000936789832390618(1 − 2𝑋 − Cos[59.62334449468461𝑋]

+ 0.03354390829548817Sin[59.62334449468461𝑋])

− 0.00007089675115829527(1 − 2𝑋 − Cos[65.91281298717136𝑋]

+ 0.030343114022295798Sin[65.91281298717136𝑋])

+ 0.000014497342787543317(1 − 2𝑋 − Cos[72.20228147965814𝑋]

+ 0.02769995572180733Sin[72.20228147965814𝑋])

− 0.000020922135506748997(1 − 2𝑋 − Cos[78.48860837949131𝑋]

+ 0.025481404770613697Sin[78.48860837949131𝑋])

+ 0.000025860859351685054(1 − 2𝑋 − Cos[84.77587775712057𝑋]

+ 0.023591616541322268Sin[84.77587775712057𝑋])

+ 0.0000363747703382087(1 − 2𝑋 − Cos[91.06220465695374𝑋]

+ 0.021963008775532374Sin[91.06220465695374𝑋])

− 0.000020743049617062955(1 − 2𝑋 − Cos[97.34821739752155𝑋]

+ 0.020544803525605383Sin[97.34821739752155𝑋]) 

 

Figure 29 displays the experimental and theoretical F-D curves and the normalized deflected 

shape for the trigonometric and exponential and polynomial functions under consideration up to 

the fifth mode transition. As shown, changing the material (Young’s modulus) and geometric 
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(shape configuration) properties led to well-defined tenability for the postbuckling behavior of the 

proposed bilateral constrained beam, which resulted in better controllability over the overall 

mechanism of the PDE-solver. Case B shows the approximate solutions for the fourth order PDE 

at different loading stages. Each equilibrium configuration (snap-through event) represents the 

minimum energy path (i.e., minimum potential energy) the PDE solver will follow to reach to the 

stable configuration.     

 

Figure 29. Comparison of the force-displacement relationship between the theoretical and 

experimental results for the material and geometric variation cases. 

5.8 Conclusions 

Due to the possible advantages of analog computing, we have tried to add other features to this 

type of computational methods. We were able to develop a novel approach to solve a class of 

higher-order partial differential equations. The comparisons between theoretical model and the 

solution obtained from the experimental testing, indicates that the behavior of the bilateral 

constrained beam (solution of the 4th order PDE) can be predicted. Thus, the use of structural 

instability in modeling PDEs can be suitable alternative for the FEM approaches and other types 

of solving PDEs. It’s worth mentioning that the mechanism followed in our proposed analytical 
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tool to solve PDE didn’t exceed few seconds compared to the time required (hours) to solve similar 

equation using numerical operations (Mathematica software). We observed that our postbuckling-

based solver is fast, simple and capable to solve such form of PDEs, which could broaden the 

horizon for computer-free computing approaches.   
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Chapter 6: Conclusions and Future Work   

6.1 Conclusions 

This study examined the potential deployment of structural instability (postbuckling) in 

computation (i.e., solving high order partial differential equations). To achieve this objective, the 

main research contributions of the dissertation can be summarized as follows,  

6.1.1 Post-Buckling Analysis of Bi-walled Non-Uniform Beams Using Small 

Deformation Assumptions  

Theoretical models are developed to investigate the mechanical responses of the laterally 

confined systems subjected to a quasi-static axial force. Nonlinear basic equations as of the 

microbeam are derived using the basis of modified couple stress theory and Euler-Bernoulli beam 

theory. To the achieve the desired level of controllability over the beam behavior, it is of necessity 

to accurately control the mode transitions and the travelling distances between them. Since, mode 

transitions’ locations can highly affect the development of the higher order modes (5th and 7th), 

this study proposed theoretical models that account for different shape configurations (e.g., 

sinusoidal, linear) and examined the effect of geometric parameters (e.g., width, length, thickness) 

on the postbuckling response.   

6.1.2 Post-Buckling Analysis of Bi-walled Functionally Graded Material Beams 

Using Small Deformation Assumptions 

This study developed the mechanical response (i.e., postbuckling behavior under the bilateral 

constraints) of deformable functionally graded materials beams. The mathematical model was first 

presented to theoretically characterize the effect of material properties (i.e., effective young’s 

modulus) of the deformable FGMs bi-walled beam and then the energy minimization approach 

was employed to determine the minimum energy paths of the anisotropic constrained beam, along 
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with the corresponding mode transitions. In addition, topology algorithm was developed to 

optimize the stored strain energy by optimizing the young’s modulus and volume fraction between 

different materials. 

6.1.3 Design and Control of Partial Differential Equations-Solver 

This study investigated the potential application of structural instabilities in single microbeams 

for computational capabilities into structural systems, in order to mimic the performance of analog 

partial differential equations solver using the mechanical deformation in structural elements. It 

indicated that the response of bi-walled beam can effectively solve the 4th order nonlinear partial 

differential equations (that represent different systems) analytically but was insufficient in solving 

the full range of loading (e.g., dynamic loading) since kinetic energy is negligible. To validate the 

application of the proposed analog computing approach, experiments were conducted covering 

both material and geometric variation cases.  

6.2 Future Work 

6.2.1 Optimization of the PDE-solver Parameters to Account for Different PDEs  

The conduct studies in this work provide the essential tools for the useable implementation of 

the proposed mechanism in solving 4th order nonlinear partial differential equations. The boundary 

conditions and the postbuckling governing equation restrict the problem under consideration to the 

4th order presented form. Therefore, other boundary conditions, structural elements (cylinders, 

plates) and confinement environment (flexible, irregular walls) should be studied such that the 

proposed analog computing mechanism covers wider applications. 

6.2.2 Optimization of the Algorithm to Include Different Loading Conditions 

In this work, the effect of the kinetic energy of the bi-walled beam was not included. It would 

be of interest to expand the theoretical model and account for the dynamic response of the 
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microbeam which could open different avenues for new applications that can be formed in PDE 

forms. Also, changing the loading type (i.e., applying electrical or magnetic field) would be a good 

path to study.
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