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ABSTRACT 

COMPUTATIONAL DISCOVERY AND ANNOTATIONS OF CELL-TYPE SPECIFIC LONG-
RANGE GENE REGULATION  

By 

Binbin Huang 

Long-range regulation by distal enhancers plays critical roles in cell-type specific 

transcriptional programs. Delineation of the underlying mechanisms underlying long- range 

enhancer regulation will improve our systems-level understandings on the gene regulatory 

networks and their functional impacts on human diseases. Although there are experimental 

approaches to infer cell-type specific long-range regulation, they suffer from the problems of low 

resolution or high false negative rates. Recent technological advances make it possible to have 

a comprehensive profile of the regulatory activities in multiple layers, bringing us to the multi-

omics era. Here, we took use of the booming data resources and integrated them into machine 

learning models to uncover the resulting effects of long- range regulation, especially in diseases. 

In the first study about androgen- induced gene regulation in the ovary and its impact on female 

fertility, we identified a total of 190 annotated significant differentially expressed genes. The 

H3K27me3 histone modification level change was observed in more than half of the DEGs, 

highlighting the importance of complex long-range multi-enhancer regulation of androgen 

receptors regulated genes in the ovarian cells. However, current computational predictions of 

genome-wide enhancer–promoter interactions are still challenging due to limited accuracy and 

the lack of knowledge on the molecular mechanisms. Based on recent biological investigations, 

the protein–protein interactions (PPIs) between transcription factors (TFs) have been found to 

participate in the regulation of chromatin loops. Therefore, we developed a novel predictive model 

for cell-type specific enhancer– promoter interactions by leveraging the information of TF PPI 

signatures. Evaluated by a series of rigorous performance comparisons, the new model achieves 



superior performance over other methods. In this chromatin loop prediction model, TF bindings 

inferred from Chromatin immunoprecipitation followed by high- throughput sequencing (ChIP-seq) 

make an essential contribution to the instruction to prioritize specific TF PPIs that may mediate 

cell-type specific long-range regulatory interactions and reveal new mechanistic understandings 

of enhancer regulation. When processing ChIP-seq data, we detected, on average, 25% of the 

ChIP-seq reads can be aligned to multiple positions in the reference genome. These reads are 

discarded by traditional pipeline, which causes a large loss of information. To cope with this waste, 

we developed a Bayesian model and designed a Gibbs sampling algorithm to properly align these 

reads. Evidences from a series of biological comparisons indicated a significantly better 

performance of this model over the competing tool. In summary, our studies took full advantage 

of the booming data in this multi-omics era, to provide a novel view of the cell-type specific long-

range regulation by distal enhancers and its effects on diseases.  
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CHAPTER 1 

OVERVIEW 

 

Conventionally viewed as male hormone, androgens play a critical role in female fertility. 

Although androgen receptors (AR) are transcription factors, to date very few direct transcriptional 

targets of ARs have been identified in the ovary. Using mouse models, this study provides two 

critical insights about androgen-induced gene regulation in the ovary and its impact on female 

fertility. First, RNA-sequencing reveals a number of genes that were previously not known to be 

directly regulated by androgens in the ovary. Second, correlation analysis shows androgens may 

also influence gene expression by decreasing the tri-methyl mark on lysine 27 of histone3 

(H3K27me3), a gene silencing epigenetic mark. ChIP-seq analyses highlight that androgen-

induced modulation of H3K27me3 mark within gene bodies, promoters or distal enhancers have 

a much broader impact on ovarian function than the direct genomic effects of androgens. Among 

the list of differentially expressed genes (DEGs), more than half of them showed H3K27me3 level 

change in the distal enhancer regions, indicating the critical roles of long-range regulation by distal 

enhancers in cell-type specific transcriptional programs.  

Computational predictions of genome-wide enhancer–promoter interactions are still 

challenging due to limited accuracy and the lack of knowledge on the molecular mechanisms. 

Based on recent biological investigations, protein–protein interactions (PPIs) between 

transcription factors (TFs) have been found to participate in the regulation of chromatin loops. 

Therefore, we developed a novel predictive model for cell-type specific enhancer–promoter 

interactions by leveraging the information of TF PPI signatures. Evaluated by a series of rigorous 

performance comparisons, the new model achieves superior performance over other methods. 

The model also identifies specific TF PPIs that may mediate long-range regulatory interactions, 
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revealing new mechanistic understandings of enhancer regulation. The prioritized TF PPIs are 

associated with genes in distinct biological pathways, and the predicted enhancer– promoter 

interactions are strongly enriched with cis-eQTLs. Most interestingly, the model discovers 

enhancer-mediated trans-regulatory links between TFs and genes, which are significantly 

enriched with trans-eQTLs. The new predictive model, along with the genome-wide analyses, 

provides a platform to systematically delineate the complex inter- play among TFs, enhancers 

and genes in long-range regulation. The novel predictions also lead to mechanistic interpretations 

of eQTLs to decode the genetic associations with gene expression. In the chromatin loop 

prediction model, TF bindings inferred from Chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-seq) make an essential contribution to the instruction to prioritize 

specific TF PPIs that may mediate cell-type specific long-range regulatory interactions and 

revealing new mechanistic understandings of enhancer regulation.  

We detected, on average, 25% of the ChIP-seq reads can be aligned to multiple positions 

in the reference genome. These reads are discarded by traditional pipeline, which causes a large 

loss of information. To cope with this waste, we designed a Naïve Bayesian model and applied a 

Gibbs sampling algorithm to properly align these reads. Evidences from a series of biological 

comparisons indicated a significant better performance of this model over the competitor tool. 

Transposable elements (TE), as the most dynamic genomic units, have been suggested to 

contribute regulatory elements on gene expression and rewire the network topology and functions. 

By applying our model of ChIP-seq read allocation, we identified millions of new TE- regulatory 

elements. Systematic analysis of the TE-rewired networks reveals different waves of network 

innovation through evolution, and potential co-evolution between TE-regulatory elements and the 

flanking co-factors. Genetic variants disrupting these TE-regulatory networks are found to be 

associated with diverse phenotypes, including cancer. Our integrated analyses on TE-derived 

network rewiring provides mechanistic insights on the dynamics of network evolution. 
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CHAPTER 2 

ANDROGENS AFFECT OVARIAN GENE EXPRESSION THROUGH LONG-RANGE 
REGULATION 

A modified version of this chapter was previously published (Roy S*, Huang B* et al, 2021): Roy 

S*, Huang B*, Sinha N, Wang J, & Sen A. (2021) Androgens regulate ovarian gene expression 

by balancing Ezh2-Jmjd3 mediated H3K27me3 dynamics. PLoS Genet 17(3):e1009483. 

 

2.1 INTRODUCTION 

Androgens are traditionally considered as male hormones with well-established roles in 

male physiology and prostate cancer. However, in the last decade, several genetic models and 

in vitro studies have proven that androgens acting through androgen receptors (AR) are critical 

for ovarian function and female fertility [1–6]. While excess androgen level leads to polycystic 

ovary syndrome (PCOS) [7–9], a certain amount of direct androgen actions through the androgen 

receptor (AR) are essential for normal ovarian function [10]. Thus, it is now believed that with 

respect to androgen actions in the ovary, balance is key [4]. To date, in addition to the global 

androgen receptor knockout (ARKO) mouse models [11–13], AR has been knocked out 

specifically in different cell types along the hypothalamus-pituitary-gonadal (HPG) axis, namely 

granulosa cells (GCARKO) [14,15], theca cells (TCARKO) [16], oocyte (OoARKO) [15], pituitary 

(PitARKO) [17] and neurons (NeuroARKO) regulating the HPG axis [18]. All of these ARKO 

mouse models establish that the granulosa cells (GCs) of the ovary are the primary site of 

androgen actions in regulating normal follicular development and female fertility; while in hyper-

androgenic conditions, neuroendocrine ARs play a major role in the development of PCOS [18]. 

Moreover, ex vivo [5,19], in vitro [20–23] and clinical studies [10,24–31] show that androgens are 

essential for follicle growth while simultaneously preventing follicular atresia. Despite these 
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studies, how androgens regulate these follicular endpoints is poorly understood.  

Androgen actions are mediated by “nuclear” transcriptional signals or “extra-nuclear” 

kinase actions [32–34]. Primary AR target genes are those at which AR occupies an androgen 

response element (ARE) on the promoter of a gene and regulates gene transcription. However, 

to date, very few ovarian genes have been identified as AR-ARE target genes and, intriguingly, 

there are no studies on the global impact of androgens on GC gene expression under normal 

conditions. Here we describe androgen-induced gene expression profiles in mouse GCs and 

provide molecular insight into the underlying mechanism of how androgens regulate the 

expression of these genes.  

Importantly, this study also shows that androgens can regulate gene expression in an AR-

ARE independent fashion, involving membrane-initiated androgen signaling [5,35–37]. Previous 

study [38] reported that androgens influence gene expression through post- translational histone 

modifications. H3K27me3 (tri-methyl lysine 27 histone3), which is a gene silencing mark, [39] is 

a downstream target of androgen actions. Here using ChIP-seq studies with H3K27me3 antibody 

we identify the ovarian (GC-specific) genes and their enhancer regions that are regulated by 

androgen-induced modulation of H3K27me3 mark on the enhancers, promoters and gene bodies. 

This study provides a mechanistic understanding of the global impact of androgens in normal 

follicular development. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Bioinformatics analysis for RNA-seq. Raw data quality was judged based on Illumina’s 

Q score, which represents the error rate at each base, built on a log10 score. Thereafter, 

sequence reads were trimmed to remove possible adapter sequences and nucleotides with poor 

quality using Trimmomatic v.0.36 [40]. The trimmed reads were mapped to the reference Mus 
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musculus GRCm38 genome available on ENSEMBL [41] using the STAR [42] aligner v.2.5.2b. 

The STAR aligner uses a splice aligner that detects splice junctions and incorporates them to help 

align the entire read sequences. BAM files were generated as a result of this step. Unique gene 

hit counts were calculated by using feature Counts from the Subread [43] package v.1.5.2. Only 

unique reads that fell within exon regions were counted. After extraction of gene hit counts, the 

gene hit counts table was used for downstream differential expression analysis. Using DESeq2 

[44] R package, differentially expressed genes (DEGs) were identified between control (n = 3) 

and DHT-treatment (n = 3). The heat maps were constructed using rlog transformed values 

obtained from RNA-seq data followed by z-normalization. The Wald test was used to generate p-

values and Benjamini-Hochberg test for adjusted p-value. Genes with adjusted p-values ≤ 0.05 

and absolute log2 fold changes > 1 were called as differentially expressed genes for each 

comparison.  

 

2.2.2 Bioinformatics analysis for ChIP-seq. FastQC [45](version 0.11.7) was used for quality 

controls of ChIP-seq datasets, including 3 replicates for control and 3 replicates for DHT treated 

GCs. The ChIP-seq reads were mapped to the reference mouse genome (mm9) using Bowtie2 

[46] (version 2.3.4), and only uniquely mapped reads were used for subsequent analyses. MACS2 

[47] (version 2.1.1) was then applied to identify signal peaks of H3K27me3 signals, in broad peak 

calling mode since H3K27me3 distribution along the genome is more diffusive and demonstrate 

broader peaks. PCR duplicates were removed in peak calling. Peaks with q-value ≤ 0.05 were 

used as the significant signal peaks. Peaks in control samples and treatment samples are center-

aligned separately with +/-10kb flanking regions. The flanking regions of each peak were further 

divided into 100bp bins and the normalized H3K27me3 ChIP-seq read densities for each bin were 

plotted. The genomic locations of significant H3K27me3 peaks in controls and DHT treated 

samples were then compared to gene annotations to identify genes overlapping with H3K27me3 
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peaks in gene bodies. Promoters (+/- 1kb from transcription start sites) were also compared with 

H3K27me3 peaks. Gene promoters overlapping with control-specific H3K27me3 peaks were 

center-aligned with +/- 1kb flanking regions, and the average peak densities per 50bp bins were 

plotted. Similar peak densities were plotted for gene promoters overlapping with treatment-

specific H3K27me3 peaks. For differentially expressed genes that also contain H3K27me3 peaks 

in gene bodies, their gene bodies were divided into 10 bins, starting from transcription start sites 

(TSS) to transcription end sites (TES), where every bin represented 10% of the specific gene’s 

body. The number of H3K27me3 peaks in each bin were then calculated for every gene, based 

on H3K27me3 signals from control samples and treatment samples. 

A combined chromatin interaction dataset, including Hi-C and Capture-C, were used to 

identify candidate distal enhancers that can interact with promoters of differentially expressed 

genes. Hi-C datasets include: GSE81503 [48], GSE82144 [49], GSE119171 [50], GSE121753 

[51], and GSE63525 [52]. Capture-C dataset includes GSE81503. For the long-range chromatin 

interactions profiled in these dataset, they were first compared with promoters of differentially 

expressed genes and a subset of chromatin interactions was then identified, if one of the 

interacting anchors overlapped with promoters. For each interaction in this subset, the other 

interacting anchor of the interaction that did not overlap with promoters were identified as 

candidate distal enhancers that may regulate the gene. The identified enhancer regions from 

different chromatin interaction datasets were then combined together. To purify false positives of 

enhancers, we calculated the Pearson correlations between the gene’s expression levels and the 

enhancer’s H3K27me3 signal levels across the 6 samples. The lengths of enhancers and the 

library sizes of different samples were normalized for H3K27me3 signals. Therefore, for each 

enhancer-gene pair, an activity correlation was calculated. Only enhancer-gene pairs with 

correlations < -/+0.4 were considered as true regulatory pairs and the corresponding enhancers 

were used for subsequent analysis. For each differentially expressed gene with distal interacting 
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enhancers, we generated the distribution of the numbers of enhancers co-regulating the same 

genes. We also calculated the distribution of the distances between gene promoters and distal 

interacting enhancers.  

Motif enrichment analysis was applied on the identified enhancers using MEME [53] 

(version 5.0.4). Enhancers were classified into two groups: the first group of enhancers interact 

with promoters of up-regulated genes and the second group of enhancers interact with promoters 

of down-regulated genes. For each group of enhancers, the top five enriched sequence motifs 

were identified using MEME. TomTom [54] (version 5.0.4) was then applied on the top-enriched 

motifs to identify the corresponding transcription factors, based on transcription factor motif 

annotations in “HOCOMOCOv11_full_MOUSE_mono_meme_format.meme” from the MEME 

suite [55]. The matched transcription factors with E-value < 0.1 were then identified as the 

candidate factors associated with epigenetic changes in distal enhancers. 

 

2.3 RESULTS  

2.3.1 Effect of androgen on granulosa cell (GC) transcriptome  
Global effects of androgens in GCs were elucidated by RNA-seq analysis in primary 

mouse GC cultures treated with media (control) or DHT. DESeq2 analysis identified a total of 190 

annotated significant differentially expressed ENSEMBL genes (DEGs) (Table A.1). Out of these 

genes, 129 were upregulated and 61 were downregulated genes. The global transcriptional 

change across the two groups compared (control vs DHT) is represented by a volcano plot in Fig 

2.1A and hierarchical clustering of all the significant DEGs in control vs DHT treated GCs are 

shown in Fig 2.1B. In silico analysis revealed that all of the DEGs have at least one or more ARE 

sequences in the promoter and/or distal (within 5Kb) region thereby suggesting that most of these 

genes are regulated directly by AR, rather than secondary effects of hormone exposure.  
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Figure 1.1. Androgen-induced transcriptome analysis in primary mouse granulosa cells 
(GC). A: Volcano plot: Representing the global transcriptional change across the groups 
compared. Each data point in the scatter plot represents a gene. Genes with an adjusted 
P 0.05 and a log2 fold change 1 are indicated by red dots and represent up-regulated genes. 
Genes with an adjusted P 0.05 and a log2 fold change -1 are indicated by blue dots and 
represent downregulated genes. B: Heatmap of differentially expressed genes sorted by 
adjusted p-value by plotting their log2 transformed expression values in samples.  

 

2.3.2 Androgens significantly modulate H3K27me3 mark on gene promoters and 
enhancers  

Previous study [38] showed that androgens decrease the H3K27me3 mark in GCs. To 

evaluate the impact of androgens on genome-wide distribution of H3K27me3 landscape, we 

performed ChIP with the H3K27me3 antibody followed by high-throughput sequencing in control 

vs. DHT treated GCs 

Total H3K27me3 peaks modulated by DHT. The analysis of sequencing reads revealed 

16,345 H3K27me3 peaks in control and 3975 H3K27me3 peaks in DHT treated samples: a 75% 

reduction in peaks in the DHT treated samples. Fig 2.2A shows a heat map of genome wide 

H3K27me3 peaks in GCs from control and treatment groups. Each row in the heatmap 

corresponds to a H3K27me3 signal peak identified from either controls or DHT treated samples. 

The normalized ChIP-seq read densities around the peaks are shown with the summits of the 

peaks in the middle, along with +/-10kb flanking regions. Of 16,345 H3K27me3 peaks in control 
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samples, 5513 peaks were within gene bodies while 153 peaks were in promoter regions. In 

contrast, there were only 1389 H3K37me3 peaks in the gene body and 54 peaks in the promoter 

region in the DHT treated samples. Fig A.2 represents the number of H3K27me3 peaks 

overlapping different genomic annotations in the control and treatment (DHT) group.  

 

 

Figure 2.2. Genes associated with androgen-induced decrease in H3K27me3 mark in the 
gene body and overlapping with promoters and distal enhancers involving long-range 
regulation of gene expression. A: Heat maps showing the read density change along the 
peak regions for the 16345 control peaks and the 3975 treatment peaks. B: H3K27me3 signals 
in control and DHT treatment groups along the gene body of Fshr- follicle stimulating hormone 
receptor, Cyp19a1- aromatase, Lhcgr- luteinizing hormone/Choriogonadotropin receptor, 
Runx1- runt-related transcription factor 1, Egfr–epidermal growth factor receptor and Smad3- 
Mothers against decapentaplegic homolog 3. Log2 fold change was calculated as 
log2{(H3K27me3 control signal)/ (H3K27me3 treatment signal)}. Regions along the gene body 
with higher signals in the control group are represented as positive value- blue peaks and 
regions where signal was higher in the treatment group are shown as negative value-red peaks. 
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C: Heatmap showing H3K27me3 peak counts in control and DHT-treated samples for 28 
differentially expressed genes identified by comparing genes containing H3K27me3 peaks in 
the gene body with DEGs from the RNA-seq data. D: Average number of H3K27me3 peaks per 
50bp overlapping with the promoter regions of 160 genes in the control samples and 55 genes 
in the DHT-treated samples. E: Degree analysis of enhancer-gene interactions for genes 
associated with significant decrease in H3K27me3 peaks in their enhancer regions with respect 
to DHT treatment. F: Distance between the promoters of genes and their corresponding 
enhancers that have decreased H3K27me3 signal by DHT treatment. G: Enriched transcription 
factor binding motifs in distal enhancers of genes associated with decrease in H3K27me3 signal 
with DHT treatment. E-values were < 0.1 and indicate the probabilities of observing the 
enrichment from random control DNA sequences. For each transcription factor, the upper motif 
logo corresponds to the consensus motif based on HOCOMOCO database and the lower motif 
logo corresponds to the observed sequence motifs that are enriched in linked distal enhancers.  

 

DHT-induced modulation of H3K27me3 peaks in gene bodies. To further analyze the 

influence of androgen-modulated epigenetic dynamics on genes, we examined genes with gene 

bodies overlapping with H3K27me3 peaks. We identified 3144 genes in control and 1146 genes 

in DHT treated GCs with H3K27me3 peak signal across the gene body. Comparison of these two 

gene sets revealed that 2462 genes exclusively had H3K27me3 peak signal across the gene 

body in the control but not in the DHT-treated samples. Fig 2.2B demonstrates log2-fold change 

of H3K27me3 peaks overlapping with gene bodies of six representative genes (Fshr, Cyp19a1, 

Lhcgr, Runx1, Egfr and Smad3) that are known to play critical roles in ovarian function. For each 

gene, the H3K27me3 mark in control and treatment signals along the gene body was calculated 

by dividing each gene into 1000bp windows. The number of reads falling under each 1000bp 

window were considered the H3K27me3 signal in that window and log2 fold change of H3K27me3 

signals along the gene body was calculated. Results show that DHT-treatment significantly lowers 

the H3K27me3 signal in all of the genes.  

Subsequently, we compared the list of genes containing H3K27me3 peaks in their gene 

bodies with the list of DEGs from the RNA-seq data. We found 28 genes (22-upregulated and 6-

downregulated genes) that were both differentially expressed and overlapped with H3K27me3 

peaks, suggesting that the condition-specific epigenetic landscape of H3K27me3 may be related 
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to the transcriptional variation of these genes. Fig 2.2C is a heat map representing the number of 

H3K27me3 peaks in the gene body (TSS to TES) for the 28 DEGs. Most of the upregulated genes 

had significantly lower levels of H3K27me3 marks while the downregulated genes had higher 

H3K27me3 marks in DHT-treated GCs than in controls. This shows that in addition to AR-ARE, 

the expression of these genes may also be regulated by androgen-induced H3K27me3 

modulation.  

DHT-induced modulation of H3K27me3 peaks in the promoter region. Further analysis 

revealed that there were 160 genes in control and only 55 genes in the DHT treated samples with 

H3K27me3 peaks located specifically in the gene promoter regions. Fig 2.2D (Left panel) 

represents the average number of H3K27me3 peaks per 50bp in the promoter region (TSS +/-

1KB) for the 160 genes in the control group and corresponding average peaks for the same genes 

in the treatment group. Similarly, Fig 2.2D (right panel) represents the average number of 

H3K27me3 peaks per 50bp in the promoter region (TSS+/-1KB) for the 55 genes in the treatment 

group and corresponding average peaks for the same genes in the control group. The list of all 

the genes with promoters overlapping with H3K27me3 peaks in the control and treatment groups 

is provided in the supplemental data. Considering the complex regulatory activities in promoter 

regions, these androgen-induced differential H3K27me3 peaks located in the promoters may play 

pivotal roles in regulating the transcriptional levels of the corresponding genes.  

DHT-induced modulation of H3K27me3 peaks in the enhancer region. Since large portions 

of the mouse genome are non-coding regions with numerous enhancers widely spread [56], we 

further extended our analysis to non-coding regions and focused on distal enhancers that have 

long-range chromatin interactions with promoters and may play a crucial role in controlling the 

expression of genes. While enhancers act through the binding of transcription factors just like 

promoters, their locations greatly vary from the transcription start site (TSS) of the gene they 

regulate. Moreover, while a single enhancer can influence the expression of multiple genes, a 
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single gene can be regulated by multiple enhancers. Thus, we determined enhancer-gene pairs 

for the 2462 genes in which the H3K27me3 signal peaks were significantly decreased by DHT 

treatment (genes with exclusive H3K27me3 peaks in the control group). For these genes, the 

chromatin interaction data including Hi-C and Capture-C were used to find potential enhancers. 

For each gene, the H3K27me3 in the gene body and H3K27me3 level in each of its potential 

enhancers were calculated. We found 1380 genes where DHT treatment lowered the H3K27me3 

signal. For enhancer–gene pair, the correlation between the gene body H3K27me3 level and 

enhancer H3K27me3 level was calculated and only positively correlated enhancer–gene pair 

(Pearson correlation > 0.4) were selected. Results show 3447 enhancer–gene pairs. Next, we 

determined the number of enhancers that regulate the same gene (Fig 2.2E). Results show that 

45% of these genes are regulated by only 1 enhancer region while 21% of the genes are regulated 

by 2 enhancers. Furthermore, we calculated the distance between the promoters and their 

corresponding enhancers that have decreased H3K27me3 signal by DHT treatment. Fig 2.2F 

shows the distance analysis of the enhancer–gene interactions for the genes that show DHT-

induced decrease in H3K27me3 levels. 33% of the enhancer–gene pairs that show decreased 

H3K27me3 with DHT treatment have 0 to 100KB distance between the gene and the enhancer. 

These analyses show that androgens may modulate gene expression by reducing the H3K27me3 

mark in the promoter region of genes or in distal enhancers.  

Moreover, comparing the chromatin contact maps (ChIP-seq data) with the androgen- 

induced DEGS revealed 186 enhancers whose H3K27me3 levels were significantly negatively 

correlated (Pearson correlation < -0.4) with the expression of 99 DEGs, out of which 66 were 

upregulated and 33 were downregulated genes across samples of controls and DHT treated GCs. 

This highlights the importance of complex long-range multi-enhancer regulation of AR regulated 

genes in the ovarian GCs.  

Motif analysis of the enhancers. Given that H3K27me3 is a gene repressive mark, it is 
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likely that the androgen-induced decrease of H3K27me3 allows specific transcription factors to 

bind to these enhancer regions. We analyzed the enhancer regions linked with H3K27me3 peaks 

for motif enrichment using MEME-ChIP as described in bioinformatics analysis for ChIP-seq. Four 

transcription factors (TFs), FOXJ3 (forkhead box j3; p-value 1.44e-04 and q-value 1.49e-01), MAZ 

(MYC associated zinc finger protein; p-value 6.85e-08 and q-value 7.05e-05), SALL1 (spalt like 

transcription factor 1; p-value 2.20e-04 and q-value 9.90e-02) and SMAD3 (p-value 3.20e-05 and 

q-value 3.32e-02) with E-value < 0.1 were identified as candidate factors associated with 

epigenetic changes in distal enhancers (Fig 2.2G).  

 

2.4 DISCUSSION  

In the ovary, androgens are not merely a substrate for estrogen synthesis, but direct 

androgen actions through the ARs are critical for normal follicular development and female fertility 

[2,4]. However, there is a dearth of knowledge about the genes and biological pathways regulated 

by androgens, which is a significant limitation towards understanding how androgens regulate 

follicular growth and function. This study for the first time provides three critical insights about 

androgen actions in the ovary.  

First, we have identified a large number of genes and biological processes that were not 

formerly known to be regulated directly by androgens in GCs. Results show that genes like Bmp4 

[57], Lhcgr [58], Adamts4 [59], Ptgds4 and Mmp2 [60–62], that are critical for follicular function 

are AR-induced genes. Previously studies have reported that androgens primarily maintain 

normal follicular development by regulating pre-antral to antral follicle transition by increasing FSH 

receptor levels and prevent follicular atresia. However, our gene expression data now clearly 

show that androgens have a much far-reaching impact on follicular function. Moreover, androgen 

treatment resulted in downregulation of 61 genes. Interestingly, comparison of the RNA-seq and 

ChIP-seq dataset revealed that out of all the downregulated genes, only 6 genes had higher 
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H3K27me3 level. This suggests that androgen-induced downregulation of genes may be a 

secondary effect of androgen treatment. For example, a previous study has shown [38] that 

androgens induce the expression of miR-101 that in turn downregulates the expression of Ezh2. 

Another example is androgen-induced expression of miR-125b that decreases the expression of 

pro-apoptotic proteins [5].  

Second, we have performed ChIP-seq analysis in GCs to determine the DHT-induced 

changes in H3K27me3, which is a gene silencing mark. Control of gene expression is exerted at 

a number of levels, one of which is the accessibility of genes and their controlling elements to the 

transcription machinery. Accessibility is dictated broadly by the degree of chromatin compaction, 

which is influenced in part by post-translational histone modifications. Our results highlight an 

important concept: in GCs, in addition to the genomic actions of androgens through the “classical” 

AR-ARE binding, androgen-induced decrease in H3K27me3 mark is another avenue through 

which androgens can regulate gene expression. The fact that we identified only 190 DEGs (from 

RNA-seq study) that are directly regulated by androgens in contrast to 2462 genes (from ChIP-

seq) that specifically had lower H3K27me3 mark in DHT- treated GCs, clearly shows that 

androgen-induced modulation of H3K27me3 mark has a much broader impact than the direct 

effects of androgens on GC function. On the basis of our present study, we propose that in GCs, 

androgens prime the promoter and/or enhancer regions of genes by lowering the H3K27me3 

mark, that enables other transcription factors to induce the expression of these genes. In fact, we 

have reported previously [38] that Runx1, a gene critical for ovulation, is one such downstream 

target and androgens remove the H3K27me3-repressive mark from the Runx1 promoter. This 

enables the hCG-induced transcription machinery to access the Runx1 promoter region leading 

to increased expression of Runx1. Intriguingly, previous studies have reported that androgen 

treatment increases the expression of genes like Fshr [6,65–68] and Cyp19a1 [1,63,64] that are 

critical for follicular development. However, there was no evidence that these genes are direct 
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targets of AR-ARE mediated actions. Prior to this study, it was not known how androgens 

regulated the expression of these critical ovarian genes to promote ovarian function and female 

fertility, in general. We now show that androgen treatment significantly lowers the H3K27me3 

mark in the gene body of Fshr and Cyp19a1 which provides a mechanistic explanation of how 

androgens, independent of AR-ARE interaction, through H3K27me3 modulation may influence 

the expression of these genes. Moreover, some of the genes with lower H3K27me3 mark on the 

gene body/enhancer regions following DHT treatment, like Cyp19a1 [69], Adamts15 [70] Casp7 

[71], Erbb4 [72] and Lepr [73] have been reported to be elevated and/or associated with PCOS.  

In summary, given the role of androgens in female fertility and women’s health in general, results 

of this study provide a global perception of androgen effects in follicular function and insights into 

the androgen-induced molecular mechanisms responsible for normal ovarian physiology as well 

as for disease conditions like PCOS.  
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CHAPTER 3 

PREDICT LONG-RANGE ENHANCER REGULATION BASED ON PROTEIN-PROTEIN 
INTERACTIONS BETWEEN TRANSCRIPTION FACTORS 

 

A modified version of this chapter was previously published (Wang H*, Huang B* et al, 2021): 

Wang H*, Huang B*, Wang J. (2021) Predict long-range enhancer regulation based on protein-

protein interactions between transcription factors. Nucleic Acids Res 49(18): 10347-10368.  

 

3.1 INTRODUCTION 

Cell-type specific transcriptional regulation plays important roles in differentiation and 

development [74–86]. In addition to proximal regulatory elements, e.g. promoters, which are 

located around transcriptional start sites (TSS) of genes, distal enhancers provide complex and 

precise controls on gene expression through long-range regulation [87,88]. Based on recent 

genome-wide enhancer annotations from ENCODE and Roadmap Epigenomics projects [89,90], 

hundreds of thousands of putative enhancers across the whole human genome have been 

identified, especially in non-coding regions, highlighting the biological impacts of enhancer 

regulation. Although a series of computational algorithms have been developed to predict the 

genomic locations of cell-type specific enhancers [91,92], it remains challenging to identify the 

specific target genes regulated by enhancers in different cell-types or tissues. Unlike promoters, 

enhancers are usually located far away from their target genes along the genome [93] and the 

nearest genes may not be regulated by a proximal enhancer [94]. In three-dimensional (3D) space, 

an enhancer and its target genes are placed close to each other through long-range chromatin 

interactions, i.e. enhancer-promoter interactions [95].  

The discoveries of tissue-specific long-range enhancer regulation have the potential to 
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enable novel insights in a wide range of different biological studies. As one of the canonical 

examples, long-range regulation by distal enhancers play pivotal roles in controlling the tissue 

and condition-specific expression of the mouse β-globin (Hbb) gene expression [74,78,79]. As 

another well-known example, the expression of the Shh gene in mouse limb bud is precisely 

regulated by a distal enhancer located 850 kb away, which is critical for the proper limb 

development [80–82,96]. In addition to normal tissue development, the annotation of long-range 

enhancer regulation has also facilitated the interpretation of genetic variants underlying complex 

diseases. A non-coding genetic variant associated with obesity is located in an intron of the FTO 

gene but regulates the IRX3 and IRX5 genes that are located >400 kb away [75,83,97]. Similar 

examples of long-range interactions linking disease-associated genetic variants to distal genes 

have also been found in studies of autoimmune diseases [76,77,84–86].  

Given the functional importance of long-range enhancer regulation, experimental 

techniques have been developed to identify chromatin interactions linking distal enhancers to 

promoters of their target genes. Based on the pioneering chromosome conformation capture (3C) 

technology [98], along with its derivatives of 4C and 5C [99,100], the genome-wide version, i.e. 

Hi-C [101], has been applied to several human cell-types and tissues [89,102,103]. Furthermore, 

the promoter-enriched genome conformation assay, Capture Hi-C [104], improves the resolution 

and cell-type specificity of the identified chromatin interactions for gene promoters [105]. On the 

other hand, the method of chromatin interaction analysis with paired-end-tag sequencing (ChIA-

PET) [106] was developed to capture long-range chromatin interactions associated with a protein 

of interest, such as a specific transcription factor (TF), with high-resolution and cell-type specificity 

[107]. These cutting-edge technologies have generated large-scale chromatin contact maps for a 

number of cell-types or tissues in the human genome and other model species [89,102,103,107].  

Although experimental techniques have substantially expanded the catalog of annotations for 

long-range chromatin interactions, there are several limitations that hinder in-depth analysis on 
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cell-type specific enhancer–promoter interactions. First, the resolution of interacting genomic 

anchors profiled by Hi-C and Capture Hi-C is relatively low (∼5–10 kb genomic fragments) 

[102,104], which makes it difficult to pinpoint the specific enhancers involved in long-range 

regulation. Second, while Capture Hi-C and ChIA-PET experiments can discover cell-type or 

tissue-specific enhancer regulation, data generated by Hi-C experiments have been found to be 

largely invariant across different cell-types or tissues [108]. Third, the background noise levels of 

Hi-C and Capture Hi-C datasets are high, leading to many false positive discoveries [109]. Fourth, 

due to the dependency on specific protein antibodies, such as CTCF or RNA Pol II [107], each 

ChIA-PET experiment can only profile a subset of long-range interactions, resulting in large 

numbers of false negative interactions that are not identified [110].  

Because of these limitations, computational models are needed to predict cell-type 

specific long-range enhancer regulation, based on integration of multi-omics signatures, e.g. 

genomics, transcriptomics, and epigenomics. Large-scale multi-omics data resources collected 

by the ENCODE and Roadmap Epigenomics projects contain the multi-view information of gene 

regulation [89], including gene expression, transcription factor binding and histone modifications. 

They can help to overcome the limitations of experimental techniques because they are cell-type 

or tissue specific [111], provide high-resolution signal landscape along the genome [112,113], 

have high signal-to-noise ratio [113], and cover the genomic binding sites for diverse transcription 

factors [89]. The existing computational models of long-range enhancer–promoter interaction 

prediction can be grouped into two classes. For the first class, i.e. supervised algorithms, 3D 

chromatin interactions profiled by experimental techniques are used as labels for enhancer–

promoter pairs. The commonly used features include: (i) cell-type specific gene expression based 

on RNA-seq data; (ii) enhancer activity based on specific epigenetic signals, such as H3K4me1, 

H3K27ac or DNase hypersensitivity; (iii) genomic separation distance between enhancers and 

gene promoters and (iv) correlations between gene expression and enhancer activity. Supervised 
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methods incorporating some or all of these features include RIPPLE [114], FOCS [115], EAGLE 

[116] and JEME [117]. As one of the most recently developed supervised methods, JEME [117] 

employs a combined approach of regression and random forest to predict long-range regulatory 

links between enhancers and genes. But it requires multi-omics datasets from a large panel of 

diverse cell-types and tissues as inputs, which is usually not available for users. The other two 

top-performing methods are IM-PET [118] and TargetFinder [119]. These two algorithms not only 

integrate the features described above but also leverage additional features of transcription factor 

binding in promoters, enhancers, or genomic windows between enhancers and promoters. With 

respect to machine learning techniques, IM-PET employs a random forest model, and 

TargetFinder implements a boosting tree approach. For the second class, i.e. unsupervised 

algorithms, every enhancer–promoter pair is assigned with a score and then ranked based on the 

scores. Top-ranking enhancer– promoter pairs are predicted to interact with each other. The 

scores are generally based on genomic separation distance and co-activity patterns, e.g. 

correlations, between enhancers and genes [120–122]. Based on a systematic performance 

evaluation analysis [123], supervised methods overall demonstrate better performance than 

unsupervised methods, but many of the supervised methods suffer from over-fitting issues due to 

high model complexity [123] or excessively high-dimensional features that are often shared 

across training and testing sets [124]. Furthermore, existing methods provide limited mechanistic 

insights on how specific long-range chromatin interactions are established to link distal enhancers 

with promoters of target genes [125].  

Interestingly, as shown by recent experimental studies [75,126–131], in addition to the 

binding of individual TFs on enhancers or promoters, the protein–protein interactions (PPIs) 

between TFs have been found to participate in the process of long-range chromatin interaction 

formation and thus, mediate distal enhancer to the proximity of target gene promoters (Fig 3.1A–

D). For example, the PPI between the enhancer-binding and promoter-binding YY1s (i.e. YY1 
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dimerization) has been found to mediate enhancer–promoter contacts [132]. The ChIA-PET data 

from mESCs suggests that the YY1–YY1 interactions largely participate in the connections 

between active enhancers and gene promoters [132]. In a chromatin structure engineering study, 

based on a CRISPR-dCas9 system, two proteins (PYL1 and ABL1) are fused to dCas9 and are 

guided to bind on different genomic locations [133]. Remarkably, the PYL1–ABL1 dimerization 

can establish novel long-range chromatin interactions, highlighting the mechanistic importance of 

PPIs in orchestrating chromatin loops. In addition, a couple of genome-wide analyses have also 

found that specific groups of transcription factors are enriched in cell-type specific long-range 

chromatin interactions [134–136]. Within each group, some TF members can interact with each 

other and form protein complexes. As a representative example, a group of CTCF, RAD21, SMC3 

and ZNF143 is found to be enriched in chromatin interactions [134], consistent with the chromatin 

loop extrusion model that CTCF and cohesin can interact with each other and regulate chromatin 

loops [137,138].  

These observations strongly support the mechanistic hypothesis that specific TF PPIs, 

except intratypic dimerizations where TFs can only co-bind locally to DNA instead of across long-

range distances, may mediate long-range enhancer regulation. Therefore, incorporation of TF 

PPIs as a new set of features into a machine learning model is expected to improve the accuracy 

of long-range enhancer–promoter interaction predictions. Moreover, the prioritized TF PPIs from 

the predictive model can further indicate the important transcription factors that facilitate long-

range enhancer regulation, leading to novel understandings of enhancer biology. However, unlike 

basic enrichment analysis of candidate TF–TF pairs that are over-represented in enhancer–

promoter interactions [134–136], building a predictive model based on TF PPI features is 

computationally challenging. First, the number of candidate TF PPIs is large (∼200 000). By 

filtering the features using cell-type specific TF expression, there are still large amounts of 

potential TF PPI features. Take the human GM12878 cell-line as an example, by only considering 
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TFs that are expressed [90], the number of PPIs between expressed TFs is ∼1900. The  

 

 

Figure 3.1. ProTECT infers long-range enhancer–promoter interactions based on TF PPI 
features. (A)The enhancer–promoter interactions are regulated by PPIs between enhancer-
binding TFs (brown) and promoter-binding TFs (blue), which link distal enhancers (orange) to 
the proximity of promoters (red) in 3D chromatin structure. (B) Enrichment of TF–TF pairs in Hi-
C interactions (y-axis) compared to background (x-axis). Points represent TF–TF pairs. 
Frequency is calculated as the fraction of enhancer-gene pairs containing the specific TF–TF 
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pairs. Fold-change (FC) is the ratio of the frequency in Hi-C interactions over the frequency in 
background. TF–TF pairs are colored by the FC (red: FC > 2; orange: 1 < FC < 2; blue: FC < 1). 
(C) Enriched TF–TF pairs are supported by PPIs. The fraction of pairs supported by PPIs are 
calculated for the set of enriched TF–TF pairs (red). As controls, the TF members from the 
enriched TF–TF pairs are randomly paired (brown). Statistical test is done based on 1000 
random repeats of controls (***P-value = 10–3). Error bar represents sd. (D) Examples of Hi-C 
interactions linking enhancers (orange) and promoters (red) showing enhancer-binding CTCF 
ChIP-seq peaks and promoter-binding RUNX3 ChIP-seq peaks in GM12878 cells. (E) The 
workflow of ProTECT algorithm. A balanced training dataset is generated with confounding 
factors controlled. A feature matrix summarizing cell-type specific TF PPI features, activity-
based features (enhancer activity, gene expression, enhancer-gene activity correlation), and 
genomic distances is then constructed. A novel hierarchical network community detection-based 
approach is applied for feature dimension reduction. Based on the reduced feature matrix, a 
random forest model is trained, and rigorous genomic-bin split cross- validations are used for 
performance evaluations and comparisons. Using the trained predictive model, genome-wide 
high-confidence enhancer–promoter interactions are predicted based on stringent permutation 
statistical tests.  

 

excessively high-dimensional TF PPI features easily render predictive models with high overfitting 

risks. Second, individual TF PPIs are not independent features because of (i) co-binding TF 

modules along the 1D genome [89] and (ii) protein complexes consisting of multiple interacting 

TFs [139,140]. Both challenges require advanced feature dimension reduction approaches to 

efficiently handle the non-linear dependencies in features. In addition, as highlighted by recent 

benchmark studies [123,124], rigorous settings of cross-validation need to be designed for 

unbiased performance evaluation and interpretation.  

In this study, we developed a new predictive model, ProTECT, to infer long-range 

enhancer–promoter interactions with substantially improved accuracy. A unique novelty of the 

model is designing a graph-based dimension reduction algorithm, which can efficiently 

incorporate combinatorial TF PPI features into the model and, in the meantime, control the 

overfitting risks. By setting rigorous genomic bin-split cross-validations and controlling various 

confounding factors, we systematically demonstrated the superior performance of our model 

compared to existing algorithms. Furthermore, we analyzed the relative importance of TF PPI 

features in different cell-types and prioritized the key TF PPIs that may participate in the regulation 
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of long-range enhancer–promoter interactions, leading to new mechanistic insights on enhancer 

regulation. Accordingly, we further classified genes into specific subsets, where enhancer-gene 

interactions are predicted to be mediated by different TF PPIs. Interestingly, genes in different 

subsets are enriched with distinct biological pathways, suggesting the specific functional impacts 

of TF PPIs. Genome-wide implementation of ProTECT in human GM12878 and K562 cell-lines 

results in 134 792 long-range enhancer–promoter interactions, which are significantly enriched 

with cis-eQTLs. In addition, by analyzing enhancer–promoter interactions mediated by different 

TF PPIs, we were able to assign specific TFs as upstream trans-factors to downstream target 

genes through distal enhancers. Strikingly, the prioritized TF–gene pairs are significantly 

supported by trans-eQTLs, leading to new mechanistic interpretations of trans-genetic effects 

propagated through the combined regulatory path-ways of TF bindings, TF PPIs and long-range 

chromatin interactions.  

 

3.2 MATERIALS AND METHODS 

To predict cell-type specific long-range enhancer–promoter interactions and obtain 

understandings of the under-lying mechanisms, we have developed a new algorithm ProTECT 

(i.e. PROtein-protein interactions of Transcription factors predicting Enhancer Contacts with 

Target genes). In addition to cell-type specific multi-omics data, ProTECT 

(https://github.com/wangjr03/PPI-based_prediction_enh_gene_links) further integrates the 

information of PPIs between transcription factors as new features, because TF PPIs have been 

found to be functionally associated with the regulation of chromatin loops [74–78,83,85,86,96]. 

The major steps of ProTECT are summarized in Fig 3.1E. By creating balanced training sets with 

confounding factors systematically controlled, ProTECT is trained on cell-type specific chromatin 

interactions linking distal enhancers and gene promoters. The high-dimensional TF PPI features 

are hierarchically grouped into feature modules based on a novel graph-based dimension 
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reduction approach. This approach can simultaneously control the overfitting risk and also reveal 

the cooperative complexes of TF interactions. Our model demonstrated substantially improved 

accuracy based on a series of rigorous performance evaluations. Along with genome-wide 

enhancer–promoter interaction predictions, ProTECT also identifies the key TF PPIs involved in 

chromatin interaction mediation and prioritizes specific gene sets whose expressions are 

regulated by distinct TF PPIs.  

 

3.2.1 Chromatin contact maps and multi-omics datasets. ProTECT can take different types 

of chromatin contact maps as input data (Fig 3.1E), such as Hi-C [102], Capture Hi-C [103] and 

ChIA-PET [106]. In this study, we used the significant high-resolution Hi-C interactions from 

human GM12878 and K562 (GEO: GSE63525) [102] to train models for the two cell-lines 

separately. Enhancer-promoter pairs are labeled as positive samples if overlapping with Hi-C 

interactions, or are labeled as negative samples otherwise.  

Enhancer coordinates are based on Roadmap and ENCODE enhancer annotations 

[89,90]. Cell-type specific enhancer activities in GM12878 and K562 cell-lines are quantified using 

the cell-type specific DNase-seq signals [90]. Other enhancer-associated histone marks, such as 

H3K27ac or H3K4me1 ChIP-seq data, can also be used to represent enhancer activities and have 

been found to produce similar predictions in our testing (see Results). Promoters of genes are 

defined as ±1 kb around transcriptional start sites (TSS), based on gene annotations from 

GENCODE v17 [141]. Cell-type specific gene expressions are measured by RPKM values of 

RNA-seq dataset from Roadmap Epigenomics project [90]. Correlation coefficients are calculated 

for enhancer-gene pairs across diverse cell-types [89,90] based on the same set of RNA-seq data 

for genes and DNase-seq data for enhancers.  

The ChIP-seq datasets of transcription factor (TF) bindings in GM12878 and K562 are 

collected from ENCODE separately [89]. For each TF, if multiple datasets exist, one ChIP-seq 
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dataset is selected based on data quality evaluations. In total, 129 TFs in GM12878 and 270 TFs 

in K562 cell-lines are included in the analysis (Fig B.1A). The significant narrow peaks identified 

by MACS2 [142] are used to label whether a TF binds to a specific genomic location (Fig 3.1E).  

The protein–protein interaction dataset is collected from the STRING database v11 [140]. 

To remove low-quality PPIs, only PPIs with confidence scores greater than 100 in the 

‘Experiments’ category are included into the analysis. Multiple PPI confidence score thresholds 

(e.g. 200 and 300) are also tested, which produce similar predictive performance (see Results). 

The high-quality PPIs are then summarized into a matrix and represented as a PPI network, where 

every node corresponds to a protein and every edge corresponds to a protein–protein interaction. 

To account for the intratypic dimerizations of TFs from the Nuclear Receptor (NR), bHLH and 

bZIP families, these PPI edges are removed from the PPI network [143], because they can only 

bind locally as dimers. The nodes are further classified into two types: (i) TF protein nodes and 

(ii) non-TF protein nodes. For edges connecting two TF nodes, i.e. TF–TF PPIs, if both TFs are 

expressed in the specific cell-type, then the TF–TF PPI is considered as active. Therefore, cell-

type specificity is assigned for every TF–TF PPI. non-TF protein nodes are maintained in the PPI 

network because they are useful to identify indirect TF–TF interactions mediated by non-TF 

proteins, leading to the discovery of TF PPI modules in subsequent steps.  

 

3.2.2 Generation of the training dataset and the matrix of features. In a specific cell-type, 

enhancer–promoter pairs that overlap with significant Hi-C interactions [102], i.e. the enhancer of 

the pair overlaps with one of the Hi-C interaction anchors and the promoter overlaps with the other 

anchor, are labeled as positive samples of enhancer–promoter interactions. As reported by 

previous studies [108,144,145], the data quality of Hi-C interactions whose anchors are located 

in different topologically associated domains (TADs) are substantially reduced. Therefore, we 

remove cross-TAD interactions from the analysis, and only use intra-TAD enhancer–promoter 
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interactions, i.e. the interacting enhancer and promoter are located in the same TAD, to train the 

model.  

To avoid biased model training and inflated performance evaluations, we generate a 

balanced negative set of training samples by randomly selecting the same number of enhancer–

promoter pairs that do not overlap with Hi-C interactions. In addition, as pointed out by recent 

bench-mark studies [123], predictions of enhancer–promoter interactions can be substantially 

biased due to uncontrolled confounding factors. Thus, in the process of generating the balanced 

random set of negative samples, we strictly control three key confounding factors that have been 

found to influence the model (Fig 3.1E): (i) the negative samples of enhancer–promoter pairs 

should be intra-TAD pairs (Fig B.1B); (ii) the genomic separation distances between the 

enhancers and promoters follow the same distance distribution of the positive training set. 

Uncontrolled genomic distances have been found to substantially dominate the models and result 

in simple short-range predictions, leading to inflated performance [123,124]. Using the positive 

training set of enhancer–promoter pairs, we group them into different genomic distance bins. For 

each distance bin (bin-size = 50 kb), we sample the same number of negative enhancer–promoter 

pairs as observed from the positive set. Therefore, the genomic distance is controlled and the 

final predictions will not be driven by genomic distances alone (Fig B.1C, 1D). (iii) The negative 

enhancer–promoter pairs are sampled for genes which are actively transcribed (Fig B.1E, F). As 

demonstrated by previous studies [146], the false negative rates of Hi-C datasets are substantially 

lower in actively transcribed genomic regions, i.e. more enhancer– promoter interactions can be 

mapped by Hi-C in active regions compared to repressive genomic regions. To account for this 

intrinsic bias of Hi-C data, we restrict the sampling of negative enhancer–promoter pairs only from 

genes whose cell-type specific expression is nonzero (RPKM > 0). By controlling these three key 

sets of confounding factors, we thus construct the rigorous balanced training dataset for robust 

model training and performance evaluation. In total, the balanced training dataset contains 5348 
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enhancer–promoter pairs in GM12878 and 8650 enhancer–promoter pairs in K562.  

Based on the cell-type specific multi-omics datasets, the matrix of features are then 

constructed for enhancer– promoter pairs in the training dataset (Fig 3.1E). There are three types 

of features incorporated into the model: (i) activity-based features; (ii) genomic distance and (iii) 

TF PPI features. Activity-based features include (i) cell-type specific enhancer activity measured 

by DNase-seq signals as described above [90]; (ii) cell-type specific gene expression measured 

by RNA-seq [90] and (iii) the activity correlations between enhancers and their paired genes 

calculated from diverse cell-types profiled in the ENCODE and Roadmap Epigenomics projects 

[89,90]. All these activity based features are differentially distributed across positive and negative 

training sets, suggesting they are informative to make predictions (Fig B.2A-C). For each 

enhancer-gene pair, the genomic distance is calculated as the distance between the center of the 

enhancer and the gene’s TSS. Although they have been controlled in the positive and negative 

training sets based on genomic bins, there might be residue distance bias within bins. Therefore, 

the inclusion of genomic distances into the feature matrix captures the residue effects of genomic 

distances, leading to robust feature prioritization in subsequent analyses.  

TF PPIs are the most important set of features for the model because of both the 

mechanistic relationship with long-range regulation [131,132,147] and their significant enrichment 

in enhancer–promoter interactions (Fig 3.1B, C and Fig B.2D). In each specific cell-type (i.e. 

GM12878 or K562 cells), all TFs with available ChIP-seq datasets are collected as described 

above and compared with the PPI database [140]. From the pool of all candidate pairs, the TF–

TF pairs that are capable of forming direct PPIs are considered as TF PPIs. Considering the 

differences of binding sites in enhancers or promoters, each TF PPI pair is allocated with two 

directional features. For example, TFa –TFb represents the PPI between enhancer-binding TFa 

and promoter-binding TFb , while TFb –TFa represents the PPI between enhancer-binding TFb 

and promoter-binding TFa. Thus, a set of directional TF PPI features is generated. Because the 



 28 

features are generated only for TFs with cell-type specific ChIP-seq signals, PPIs between TFs 

that are not active in the specific cell-type do not participate in the predictions. Enhancer-promoter 

pairs are scanned for TF binding peaks in enhancers and promoters. For each enhancer–

promoter pair, if TFa binds to the enhancer and TFb binds to the promoter, then the directional 

PPI feature TFa–TFb is labeled as 1. Therefore, a matrix of TF PPI features is constructed for all 

enhancer–promoter pairs. Combining with the activity-based features and genomic distances, the 

full matrix of features is then built (Fig 3.1E).  

 

3.2.3 Hierarchical TF community detection on the PPI network. Due to the large number of 

TF PPI features, dimension reduction is fundamentally important for the construction of robust 

predictive models. Without dimension reduction, there are 1888 TF PPI features in GM12878 

and 7066 TF PPI features in K562 cells. Although a number of TF PPIs are enriched in 

enhancer–promoter interactions (Fig 3.1B and C), direct incorporation of these TF PPI features 

makes the model to be over-complicated, leading to poor generalization of predictions. To 

illustrate the significant overfitting issues of direct incorporation of high-dimensional TF PPI 

features, a basic random forest model is used to test the performance in GM12878 [102]. The 

features include the activity correlations between enhancers and genes, genomic distances and 

1888 active TF PPI features. Although the regular 5-fold cross-validation shows an AUC of 0.89, 

a rigorous genomic-bin split cross-validation (see subsequent sections on cross-validation) 

shows the unbiased AUC as 0.55, suggesting strong overfitting problems without advanced 

feature dimension reductions (Fig B.3). Thus, a novel predictive model is needed for predicting 

long-range enhancer–promoter interactions based on PPI features among transcription factors.  

To address the over-fitting problem, we substantially reduce the feature dimensions by 

hierarchically grouping individual TF PPIs into TF PPI modules based on the topology of the PPI 

network, while maintaining the predictability of the model (Fig 3.1E). TF PPI modules represent 
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densely connected groups of TFs in the PPI network, and they are hierarchically organized 

where smaller PPI modules merge together to form larger modules (Fig B.4). Biologically, using 

TF PPI modules as features is consistent with the regulatory mechanisms of long-range 

chromatin loops, because multiple TFs usually interact with each other as protein complexes. 

Empirically, the biological relevance of TF PPI modules is also supported by the data. As can be 

seen in Fig B.5, similar to individual TF–TF pairs, a specific subset of TF modules are strongly 

enriched in enhancer– promoter Hi-C interactions and are strongly supported by PPI 

connections (P-value = 1.39 × 10–2, permutation test).  

TF PPI modules are computationally identified from the PPI network [140] using a 

random-walk based network-community detection approach. The PPI network, including non-TF 

protein nodes, is modeled as an undirected weighted graph, where the weights on edges are 

the ‘Experiment’ PPI scores from the STRING database [140]. Define 𝑊 as the adjacency 

matrix of the PPI network, and define the diagonal degree matrix 𝐷 as 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗 . Hence, 

based on the stochastic model of random-walks on graphs [148], the 1-step transition probability 

from node i to node j is 𝑊𝑖𝑗

𝐷𝑖𝑖
, and the p-step transition matrix 𝑇𝑟𝑎𝑛𝑠𝑝 can be calculated as 

𝑇𝑟𝑎𝑛𝑠𝑝 = (𝐷−1 ∗ 𝑊)𝑃. Based on the p-step transition matrix, the pairwise distance matrix 

between TFs (denoted as 𝑅) can be further calculated as: 𝑅 = 𝑑𝑖𝑎𝑔(𝐺)𝑡 ∗ 1 + 1𝑡 ∗ 𝑑𝑖𝑎𝑔(𝐺) − 2𝐺, 

where 𝐺 = 𝑇𝑟𝑎𝑛𝑠𝑝 ∗ 𝑇𝑟𝑎𝑛𝑠𝑝
𝑡 . Each entry in the matrix 𝑅 quantifies the distance between a pair of 

TFs based on the PPI network structure. Hierarchical clustering is then applied to the pair-wise 

distance matrix 𝑅 to identify hierarchical PPI modules of TFs (Fig 3.1E). ‘wald’ method is used in 

the hierarchical clustering as suggested by previous studies of network-community detections 

[149]. By testing multiple values (Fig B.4A and B.4B), 𝑝 is set to be 20 in order to balance the 

detection of both local (i.e. small-size) and global (i.e. large-size) modules.  

In the constructed hierarchical clustering tree, the leaf nodes are individual TF PPIs. By 
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applying the bottom-up merging strategy on the tree, individual TF PPIs are first grouped into 

small-size PPI modules, i.e. S-modules, with the maximum size of 𝑆𝑚𝑎𝑥. S-modules represent 

densely connected TFs in the PPI network, corresponding to candidate protein complexes. S-

modules are further merged to form large-size PPI modules, i.e. L-modules, with the maximum 

size of 𝐿𝑚𝑎𝑥. L-modules represent larger PPI network components that cover multiple densely 

connected S-modules. Biologically, L-modules represent candidate groups of highly interacting 

protein complexes. The maximum sizes for S-modules (𝑆𝑚𝑎𝑥) and L-modules (𝐿𝑚𝑎𝑥) are 

selected based on the modularity score of the clustering [150] (Fig B.4). The modularity score 𝑄 

is defined as 𝑄 =
1

2𝑚
∗ ∑ (𝑊𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
) ∗ 𝛿(𝑐𝑖 , 𝑐𝑗)𝑖𝑗  where 𝑊 is the adjacency matrix, 𝑘𝑖 is the 

degree of node I, 𝑚 is the total number of edges in the PPI network (𝑚 =
1

2
∑ 𝑘𝑖𝑖 ), and 𝑐𝑖 is the 

membership assignment to modules for node i. Modularity scores are extensively calculated for 

different choices of maximum module sizes (Fig B.4C and D), because the choice of specific 

maximum module sizes automatically determines the total number of modules and results in the 

final module membership assignments. The optimal size of S-modules is selected as the one 

yielding the maximum modularity score, which guarantees that the generated S-modules 

represent densely connected TF groups. The optimal size of L-modules is selected as the one 

corresponding to the elbow point of modularity score curves, leading to the delineation of large-

scale PPI components without significant loss of modularity. Compared to Markov Cluster 

Algorithm, the PPI modules from our approach demonstrate higher modularity scores and larger 

module sizes (Fig B.6), which is desired for feature dimension reductions. Using this procedure, 

a two-layer hierarchical modular structure is finally built and each individual TF PPI is assigned 

with the memberships belonging to a specific S-module and a specific L-module.  

Based on the TF PPI module assignments, individual TF PPI features (i.e. direct TF–TF 

PPIs) are merged into module-level PPI features, and, therefore, the feature matrix of TF PPIs 

are restructured accordingly (Fig 3.1E). There are two types of module-level PPI features: (i) 
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intra-module features, which include all S-modules and L-modules. The intra-module features 

cover PPIs between TFs within the same modules. (ii) inter-module features, which include inter 

S-module features and inter L-module features. The inter-module features cover PPIs linking 

TFs from two different modules. Given a pair of S-modules, e.g. S-module a and S-module b, if 

there exists a TF member from S-module a that has PPI with a TF member from S-module b, 

then the pair of S-modules a and b is included into the feature matrix as one inter S-module PPI 

feature. The inter L-module PPI features are defined in the same way by checking PPIs of TF 

members from two L-modules. Each inter-module feature is further split into two directional 

features, depending on the binding sites of TF members in enhancers and promoters. Using this 

approach, the PPI features are substantially reduced. For example, the 1,888 individual TF PPI 

features are reduced to only 78 module-level PPI features in GM12878 and the 7066 individual 

TF PPI features are reduced to only 238 module-level PPI features in K562 cells.  

The training set of enhancer–promoter pairs are then scanned for module-level PPI 

features. For each specific enhancer–promoter pair, based on the counts of individual TF PPI 

features calculated in the previous step, the counts of module-level PPI features are generated 

depending on the module memberships of TFs (Fig 3.1E). For each module-level PPI feature, if 

multiple TF PPI features are found for an enhancer–promoter pair, the maximum count is used 

for the module-level feature. Although the number of features is substantially reduced after 

using module-level PPIs, the specific PPI information is still maintained in this procedure, as 

shown in Fig B.5. It suggests that the module-based dimension reduction does not cause the 

loss of information, while substantially reducing the risk of over-fitting  

 

3.2.4 Predictive model of long-range enhancer–promoter interactions. Random forest model 

is used to predict cell-type specific long-range enhancer–promoter interactions based on the 

feature matrix constructed above, after module-based dimension reduction (Fig 3.1E). Random 



 32 

forest model is selected due to its superior performance of handling non-linear feature 

dependency and its capability of prioritizing the key set of important features for subsequent 

biological interpretations. As a free model parameter, the number of decision trees in the model 

is extensively tested with different values, and the accuracy of predictions is found to be robust 

(Fig B.7).  

Additionally, to quantitatively demonstrate the contributions from TF PPIs, we train random 

forest models based on two versions of input features: (i) the model is trained using only activity-

based features and genomic distances; and (ii) the full set of features including module-level TF 

PPI features. The Area Under Curve (AUC) values of cross-validations are calculated for the two 

versions. The increased AUC from version 2 is the quantitative measurement of the additional 

information contributed from TF PPIs that is not encoded in activity-based or genomic distance 

features.  

 

3.2.5 Feature selection. In the random forest model, the backward feature elimination 

approach is used to select useful module-level TF PPI features, where the features with the 

minimum importance are recursively eliminated from the model. Furthermore, the statistical 

significance of the directions of TF PPI features are evaluated. As described in the previous 

section, every module-level PPI feature is split into a pair of two directional features, based on 

the binding sites of TFs in enhancers or promoters. For example, the feature module a– module 

b represents the PPI between an enhancer-binding TF member from module a and a promoter-

binding TF member from module b. Reversely, the feature module b – module a represents the 

PPI between an enhancer-binding TF member from module b and a promoter-binding TF 

member from module a. Based on the statistical evaluation of the feature directions, insignificant 

directional features are merged into un-directional features. This feature merging procedure not 

only reduces the number of features but also reveals the biological roles of TF bindings in the 
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context of different binding orientations.  

The determination of whether a pair of directional TF PPI features to be merged into an 

un-directional feature is a model selection problem. While Akaike Information Criterion (AIC) has 

been a widely-used metric for parametric models, it can not be applied to random forest models, 

which are non-parametric. Instead, we use the Generalized Degrees of Freedom (GDF) method 

to calculate a relaxed AIC [151] for the random forest model. GDF is a metric to evaluate the 

degrees of freedom for Bernoulli distributed data, e.g. the binary labels for enhancer–promoter 

interactions. And it is defined as 𝐺𝐷𝐹 ≈ ∑ (𝑦𝑖
′̂

𝑖 − 𝑦𝑖̂)/(𝑦𝑖
′ − 𝑦𝑖), where 𝑦𝑖 is the observed label for 

data point 𝑖,  𝑦𝑖
′ is the perturbed label by inverting 𝑦𝑖, i.e. 𝑦𝑖

′ = 1 − 𝑦𝑖,  𝑦𝑖̂ is the predicted label 

from the model using the unperturbed 𝑦𝑖, and  𝑦𝑖
′̂ is the predicted label from the model using the 

perturbed 𝑦𝑖
′. As suggested by previous studies [151], to calculate GDF, 20% samples are 

simultaneously perturbed. The relaxed AIC of random forest models are then estimated as 

𝐴𝐼𝐶 = −2𝑙𝑚 + 2𝐺𝐷𝐹 + 𝐺𝐷𝐹(𝐺𝐷𝐹 + 1)/(𝑁 − 𝐺𝐷𝐹 − 1), where 𝑁 represents the total number of 

data points and 𝑙𝑚 represents the goodness-of-fit of the random forest model. As suggested by 

previous analyses [151], 𝑙𝑚 is calculated as the averaged 𝑅2 value from 5-fold cross-validations. 

For each pair of directional TF PPI features, the relaxed AIC metrics are calculated 

before and after they are merged into an un-directional feature. If a smaller AIC is observed by 

merging the two directional features, the model with the merged un-directional feature is then 

selected, because the reduced AIC suggests the directions of the pair are not statistically 

important. This procedure is conducted for all pairs of directional TF PPI features, and a final 

random forest model with the selected features is built. In GM12878 cells, the number of 

module-level TF PPI features is reduced to 53 from 78. In K562 cells, the number is reduced to 

139 from 238. This feature selection process further boosts the generalizability of our model and 

improves the biological interpretations of the learned TF PPI features (i.e. directional or un-

directional).  
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3.2.6 Cross-validation and performance comparison. To evaluate the performance of our 

model, i.e. area under curve (AUC), we designed a stringent strategy of 5-fold cross-validation. 

As highlighted by previous studies [123,124], multiple factors have been found to substantially 

inflate the performance evaluations and cause overfitting problems. First, the confounding factors 

(i.e. TAD domain structures, genomic distances between enhancers and promoters, and gene 

expression levels) need to be controlled. Otherwise, the performance will be biased and 

dominated by confounding factors. We addressed this issue in the step of data generation as 

described in previous sections. Negative samples are randomly generated with the con-founding 

factors controlled to have the same distributions as seen from the positive samples. Second, 

inflated cross-validation AUC can be found due to the spatially proximal enhancer–promoter pairs 

across the training and testing datasets [123,124]. Because TF binding profiles are highly 

correlated among enhancers and promoters in neighboring genomic regions, proximal enhancer–

promoter interactions that are allocated in the testing set will substantially inflate the accuracy. 

Therefore, random splits of samples based on typical cross-validation may suffer from the 

dependency of spatially proximal samples allocated in both training and testing sets, as has been 

noted in previous studies [123,124]. To address this issue, we developed a genomic bin-split 

cross-validation approach (Fig 3.1E). In this approach, the human genome is first divided into 

consecutive 1Mb bins. In each of the 5-fold cross-validation steps, 80% of the genomic bins are 

selected as training bins. And the balanced and con-founding factor controlled samples of 

enhancer–promoter pairs from the training bins are used to train the random forest model. The 

remaining 20% bins are selected as testing bins, and the samples of enhancer–promoter pairs 

from the testing bins are used to test the model. Using this genomic bin-split cross-validation 

method, the dependency between training and testing samples are broken and the model 

performance can be rigorously quantified.  
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The performance of our model, ProTECT, is compared with two most recent supervised 

methods that also leverage TF information: IM-PET [118] and TargetFinder [119]. In addition to 

activity-based features and genomic distances, IM-PET and TargetFinder also includes the TF 

binding features in enhancers and promoters, while TargetFinder further incorporates TF binding 

information in the genomic windows between enhancers and promoters. By comparing with these 

two algorithms, we can further demonstrate the improved accuracy is obtained purely from the 

unique features of our model, i.e. the PPIs between TFs.  

The stand-alone package of IM-PET (https://github.com/tanlabcode/IM-PET) is applied to 

the same dataset. Since IM-PET automatically makes predictions for all enhancer-gene pairs with 

distances <2 Mb, only the enhancer-gene pairs overlapping with the dataset are used for 

performance evaluation, leading to a fair comparison for IM-PET. The TargetFinder software 

(https://github.com/shwhalen/targetfinder) is also implemented to the same training and testing 

dataset. The same set of TF ChIP-seq peaks are used to generate the window related features 

for TargetFinder. 5-fold cross-validation with the same genomic bin-split strategy is applied to 

remove the potential issues of inflated performance evaluations.  

In addition, to quantitatively demonstrate that the improved accuracy of ProTECT is indeed 

contributed by TF PPI features, we randomly permute the PPIs between TFs, with the degree of 

each TF in the PPI network unchanged. Furthermore, for every TF, the specific binding sites in 

enhancers and promoters are also maintained. Therefore, only the TF PPI features are shuffled 

across enhancer–promoter pairs. The same model training and evaluation procedure are then 

applied on the permuted dataset. The resulting AUC is then compared to the model trained on 

the original dataset. This comparison provides direct evidence on the contributions of TF PPIs to 

chromatin interaction regulation.  

 

3.2.7 Genome-wide prediction of long-range enhancer–promoter interactions. The trained 
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ProTECT algorithm is applied to all enhancer– promoter pairs with genomic distances <2 Mb 

across the whole human genome to make genome-wide predictions of cell-type specific 

enhancer–promoter interactions (Fig 3.1E). The features for each candidate enhancer–promoter 

pair are generated in the same way as described in previous sections. By applying the trained 

random forest classifier, every candidate enhancer–promoter pair is assigned with a predicted 

score of interacting with each other. To derive un-biased estimates of the statistical significance 

for the scores, i.e. P-values, a null distribution of the scores is generated by permuting the feature 

matrix across enhancer–promoter pairs. This permutation approach effectively maintains the 

overall abundances of different features in the shuffled dataset. Based on the null distribution, the 

P-value for each enhancer–promoter pair is then calculated.  

Unlike the phase of model training, where the genomic distances are controlled in order 

to learn specific TF PPI signatures, the phase of genome-wide predictions requires the 

incorporation of genomic distance information. As shown by chromatin contact maps, e.g. Hi-C 

datasets, enhancer– promoter pairs with shorter genomic separation distances have higher 

probability to interact and the probabilities decay as the distances increase (Fig B.1C). To 

statistically incorporate the genomic distances based on this prior knowledge, we use the pFDR 

algorithm [152] to transform P-values into distance-aware q-values. In pFDR, the distribution of 

distances between Hi-C linked enhancers and promoters is treated as prior probabilities of 

interactions for enhancer–promoter pairs. Based on Hi-C data, ProTECT divides the range of 

distances into consecutive 20 kb bins, and the prior probability of interactions for each distance 

bin is calculated as: , where  is the prior probability for distance-bin . The prior probability for bin 

1 (i.e. the shortest distance bin) is set to be the default 0.05. The pFDR under rejection region  in 

distance-bin  is then calculated as , where  represents the P-value for each enhancer–promoter 

interaction. P follows the uniform distribution under the null hypothesis, i.e. H=0, so that  can be 

estimated by , where  is the P-value for the enhancer–promoter interaction j, N represents the 
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total number of P-values, and  equals to 1 if x is true and equals to 0 otherwise. Therefore, the q-

values can be calculated as , which combines the information from both the distance-aware prior 

probabilities  and the P-values from the random forest model (P). Based on the q-value threshold 

of 0.05, the final genome-wide predictions of significant enhancer–promoter interactions are 

obtained.  

 

3.2.8 Feature interpretation for mechanistic insights. Using the trained random forest model 

of ProTECT, we evaluate and rank the importance of features, i.e. the module-level PPI features 

in the model. The top-ranking module-level PPIs are considered as important features, which 

represent putative protein complexes that may regulate chromatin interactions. Furthermore, in 

order to obtain detailed mechanistic understandings of important PPIs between specific TFs, we 

decode the module-level PPI feature importance into TF-level PPI feature importance. For each 

prioritized module-level PPI feature, we decompose it into individual TF–TF PPI features, i.e. 

specific PPIs between an individual enhancer-binding TF and an individual promoter-binding TF. 

Then the genome-wide predictions of enhancer–promoter interactions are scanned, and the 

fractions of predictions that contain the specific TF-level PPI features are calculated. The fractions 

scanned from genome-wide predictions are highly correlated with the fractions calculated from 

the Hi-C training samples in model training, and are more robust, given the larger pool of genome-

wide enhancer–promoter pairs (see Results). Using the fractions, the top-ranking TF-level PPI 

features are thus identified for each important module-level PPI feature. The prioritized features, 

both module-level and TF-level, shed light on new biological insights on long-range enhancer 

regulation.  

 

3.2.9 Pathway enrichment analysis for genes regulated by specific TF PPIs. To investigate 

whether chromatin interactions mediated by different TF PPIs may participate in distinct biological 
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pathways, we classify genes based on the specific TF PPI features involved in their interactions 

with enhancers. For each top-ranking module-level PPI feature, we first identify the top five TF-

level PPI features using the method described above. Then, we scan the genome-wide 

predictions of enhancer–promoter interactions and collect the subset of interactions that contain 

at least one of the top five TF-level PPI features. Finally, the subset of interactions are ranked by 

their q-values, and the top 1000 genes regulated by these interactions are selected. In this way, 

the prioritized subset of genes represent strong targets of long-range enhancer regulation 

mediated by the important TF PPIs. Gene Ontology enrichment analyses are performed on 

different gene sets using DAVID [153] to check whether they are enriched with specific biological 

pathways.  

 

3.2.10 cis-eQTL enrichment analysis for predicted long-range enhancer–promoter 

interactions. As the orthogonal information to validate the accuracy of genome-wide predictions 

made by ProTECT, cis-eQTL datasets from the matched human tissues and cell-types are 

compared with the predicted enhancer–promoter interactions. Because our genome-wide 

predictions are made in human GM12878 and K562 cells, we selected four eQTL datasets [154–

157] which were profiled from either whole blood tissues or lymphoblastoid cells. A predicted 

enhancer–promoter interaction is considered to be supported by a cis-eQTL (i.e. a significantly 

associated SNP-gene pair), if the enhancer contains the SNP and the promoter matches with the 

gene. For each eQTL dataset, the fraction of predicted enhancer–promoter interactions that are 

supported by cis-eQTLs is calculated, and is compared to two versions of negative controls. The 

first version of negative control is based on random pairing enhancers with promoters that are 

within 2 Mb distances. The second version of negative control further requires the genomic 

distances of random enhancer–promoter pairs follow the same distribution from our predicted 

enhancer–promoter interactions. Therefore, the second version is a more stringent control. For 
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each version, 1000 random samples are generated. And the statistical significance, i.e. P-values, 

of the observed overlapping fractions from our predictions is calculated as the portion of random 

samples showing a higher overlapping fraction than the real observed one.  

In addition to cis-eQTLs, we also use cis-hQTLs, i.e. histone QTLs, to evaluate the 

accuracy of our predictions. The hQTL dataset was also profiled from the human GM12878 cells 

[158]. Similarly, a predicted enhancer–promoter interaction is considered to be supported by a 

cis-hQTL (i.e. a significantly associated SNP-histone pair), if the enhancer contains the SNP and 

the promoter overlaps with the histone modification peak. The overlapping fraction is also 

compared with the two versions of negative controls to justify the enrichment of cis-hQTLs in 

support of our predictions.  

 

3.2.11 cis-eQTL enrichment around TF binding sites. For cis-eQTLs that overlap with 

predicted enhancer– promoter interactions, the genomic locations of the SNPs from cis-eQTLs 

are further compared with TF binding sites within enhancers. Here, the TF binding sites are 

defined as the ChIP-seq peak summits. For each enhancer included in this analysis, the TFs 

involved in important PPI features prioritized from the previous steps are selected. The genomic 

distances between the SNPs and the binding sites of these TFs are calculated. To statistically 

test whether the SNPs are closer to these important PPI-related TFs, two versions of random 

controls are generated. The first version is generated by randomly sampling binding sites of any 

TFs within the same set of enhancers. And the second version is generated by randomly sampling 

binding sites of TFs that are members of bottom-ranking PPI features, based on feature 

importance calculations from the previous sections. For each version of negative controls, P-

values are calculated using Kolmogorov–Smirnov tests by comparing the cumulative distributions 

of distances.  
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3.2.12 trans-eQTL enrichment analysis for enhancer-mediated TF– gene pairs. Compared 

to cis-eQTLs, trans-eQTLs can provide additional evidence to support the functional associations 

between the prioritized TFs and specific genes, where the TF’s PPIs are predicted to mediate 

enhancer–promoter interactions of the target genes. For enhancer-binding TFs that are members 

of the important PPI features, we first collect the predicted enhancer–promoter interactions 

mediated by the corresponding PPI features. Genes regulated by these predicted interactions are 

thus considered as the downstream target genes of the specific enhancer-binding TFs. We define 

this relationship as enhancer-mediated TF–gene pairs. To exclude the possibility of promoter-

mediated effects, we remove the genes whose promoters are also bound by the specific TF.  

Using the trans-eQTLs from the published database [159], we identify a subset of trans-

eQTLs whose SNPs are located within TF’s gene bodies (plus –10 kb from TSS) and target genes 

are covered in our input dataset. For this specific subset of trans-eQTLs, the SNPs are likely to 

disrupt the transcription of the TF genes, which in turn affects the TF’s regulation on the 

downstream target gene’s expression.  

Hypergeometric test is used to statistically test whether the enhancer-mediated TF–gene 

pairs significantly overlap with the subset of trans-eQTLs described above. A TF–gene pair is 

considered to overlap with a trans-eQTL if the SNP is located within the TF’s gene body and the 

gene is the same as the trans-eQTL’s target gene. As comparisons, two versions of controls are 

generated based on the same set of TFs and enhancers. The first version uses the nearest genes 

to the enhancers as target genes, instead of using ProTECT’s predictions. The second version 

randomly selects genes within 2 Mb distances as target genes. In each version, the same number 

of enhancer–promoter interactions are generated as seen from the foreground for each sample, 

and totally 1000 random samples are created, along with the hypergeometric P-values.  
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3.3 RESULTS  

3.3.1 Long-range enhancer–promoter interaction prediction based on PPIs among TFs  
As discovered by recent experimental studies [77–79,81–86,131,132], the protein–protein 

interactions between specific transcription factors have been found to participate in the regulation 

of long-range chromatin loops, where the TFs bind to enhancers and promoters respectively (Fig 

3.1A). The PPIs between the enhancer-binding TFs and promoter-binding TFs facilitate the 3D 

proximity of enhancers and the target gene’s promoters. By analyzing the Hi-C interactions 

between enhancers and promoters in human GM12878 cells, a specific set of TF–TF pairs are 

found to be enriched in enhancer–promoter interactions (Fig 3.1B), compared to their frequencies 

in distance-controlled random enhancer–promoter pairs. Interestingly, these TF–TF pairs are also 

enriched with known PPIs (Fig 3.1C, P-value = 10–3 ), suggesting that the TFs within each pair 

can establish interactions at the protein level. Fig 3.1D shows two examples, where both 

enhancer–promoter Hi-C interactions contain enhancer-binding CTCF peaks and promoter-

binding RUNX3 peaks. And the physical interaction between RUNX3 and CTCF is validated by 

the PPI database STRING [140], suggesting the RUNX3-CTCF interaction as a putative 

mechanism linking the enhancers with specific promoters. These observed enrichments strongly 

indicate the functional importance of TF PPIs in long-range chromatin loops and the possibility of 

predicting cell-type specific enhancer–promoter interactions using TF PPI features.  

Due to the large number of TF PPI features, i.e. PPIs between enhancer-binding TFs and 

promoter-binding TFs, basic predictive models significantly suffer from overfitting problems, as 

shown in Fig B.3. Therefore, to efficiently leverage the information of TF PPIs from the high-

dimensional feature space and overcome the overfitting risks, we developed a new machine 

learning classifier, ProTECT, to predict cell-type specific long-range enhancer– promoter 

interactions (Fig 3.1E). Detailed algorithmic designs have been described in Materials and 

Methods. Overall, there are four main steps to achieve the final predictions: (i) generation of the 
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balanced Hi-C based training dataset, along with cell-type specific TF PPI features; (ii) dimension 

reduction of features based on hierarchical network community detection; (iii) predictive model 

construction using random forest and (iv) Genome-wide predictions of cell-type specific 

enhancer–promoter interactions.  

As a new predictive model, here we highlight a series of key novelties of ProTECT (see 

Materials and Methods for details). First, a rigorous method of controlling confounding factors, 

such as TAD domains, genomic separation distances and gene expression levels, is designed in 

the steps of data and feature generations. This method efficiently removes the impacts of 

confounding factors, which are fundamentally important to control as discussed by recent 

benchmark analyses [123,124]. Second, the graph-based dimension reduction approach not only 

addresses the potential risk of overfitting but also facilitates the prioritization of functionally 

important TF PPIs and TF complexes. Third, a generalized degree of freedom (GDF) technique 

[151] is incorporated to improve feature selections, leading to new biological understandings of 

specific TFs. Fourth, a stringent genomic bin-split cross-validation strategy is developed for 

unbiased and robust performance evaluation. This stringent strategy thoroughly breaks the 

dependency between the training and testing datasets and avoids the inflated performance 

estimations that have been commonly found in existing methods [123,124]. Fifth, a genomic 

distance-aware pFDR procedure [152] is implemented to identify statistically significant 

enhancer–promoter interactions along the whole human genome.  

We trained ProTECT using the high-resolution Hi-C datasets from the human GM12878 

and K562 cell-lines separately [102]. The balanced and confounding factor-controlled training 

dataset contains 5,348 long-range enhancer–promoter interactions in GM12878 and 8650 

interactions in K562 cells. The trained classifiers were further applied to make genome-wide cell-

type specific predictions of enhancer–promoter interactions. As shown in subsequent sections, 

the ProTECT algorithm not only improves the prediction accuracy substantially, but also reveals 
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novel mechanistic insights on the functional roles of TF PPIs in the regulation of long-range  

 

            

Figure 3.2. Performance comparison in GM12878 and K562 cells.4ProTECT, TargetFinder, 
and IM-PET are applied on the same input datasets and are evaluated based on the averaged 
performance of 5-fold genomic-bin split cross-validation. As a baseline comparison, a random 
forest model using only enhancer-gene activity correlations is also included in the analysis. (A, 
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B) ROC curves in GM12878 (A) and K562 (B). (C, D) The enrichment of Hi-C interactions in top-
ranking predictions. Cumulative odds ratios of true positives (y-axis), i.e. overlapping Hi-C 
interactions, are calculated across the ranked lists of predictions where predictions with stronger 
scores are ranked at the top (x-axis), in GM12878 (C) and K562 (D). (E, F) Examples of 
enhancer– promoter interactions predicted by ProTECT (pink paired lines) in GM12878 (E) and 
K562 (F). In each example, the highlighted enhancer (orange) is predicted to interact with the 
highlighted promoter (red) by ProTECT. Both predictions are supported by cell-type specific Hi-
C interactions (black paired lines). The prioritized TF PPIs mediating the interactions are CTCF-
RUNX3 (E) and CTCF-ELF1 (F) respectively, both of which are top-ranking PPI features from 
the random forest model.  

 
chromatin loops. The prioritized TFs and their specific PPIs provide a new platform to 

understand the complex interplay among TFs, enhancers and genes, and remarkably, open a 

new avenue to systematically interpret both cis- and trans-eQTLs in human genetics analyses. 

 

3.3.2 Boosted performance based on features of TF PPIs  
Using the genomic bin-split cross-validation strategy (see Materials and Methods), we  

rigorously tested the accuracy of ProTECT and compared with the other two supervised 

methods, i.e. IM-PET(45) and TargetFinder [119]. In both GM12878 and K562 cell-lines, 

ProTECT achieves the highest performance (Fig 3.2A and B): AUC = 0.82 in GM12878 and 

AUC = 0.78 in K562 cells. 

And the accuracy of ProTECT is robust with respect to the number of trees used in the 

random forest models (Fig B.7). As comparison, TargetFinder is ranked as the second algorithm 

with AUC values below 0.74, while the AUC metrics of IM-PET is around 0.6. As a baseline 

comparison, a random forest model using only activity correlations between enhancers and genes, 

without using TF PPI features, shows AUC values around 0.57. Because we systematically 

controlled confounding factors in the training dataset, the AUC estimates are not dominated or 

biased by those factors, especially the genomic separation distances. Therefore, these 

comparisons strongly support that the ProTECT model substantially boosts the prediction 

accuracy over existing algorithms.  
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In addition to the overall AUC metrics, to demonstrate that ProTECT has better capabilities 

of pinpointing true enhancer–promoter interactions in top-ranking predictions, we calculated the 

cumulative odds ratio (OR) of true positives along the ranked list of predictions. As shown in Fig 

3.2C and 3.2D, ProTECT achieves much higher OR curves than other algorithms, especially in 

the zone of top-ranking predictions. Because top-ranking predictions are the main de novo 

discoveries used for experimental studies in practice, this observation further exemplifies the 

superior precision of ProTECT.  

Moreover, we further evaluated the robustness of ProTECT’s superior performance with 

respect to different settings of input features and data. As shown in Fig B.8, by setting different 

confidence score cut-offs on PPIs to be included as input features (i.e. 100, 200 and 300), 

ProTECT robustly achieves the highest accuracy (AUC > 0.78) compared to other methods. In 

addition, using different epigenetic signals to represent cell-type specific enhancer activity levels, 

such as DNase-seq, H3K27ac and H3K4me1, ProTECT demonstrates highly similar accuracy, 

with DNase-seq and H3K27ac based versions slightly better than the H3K4me1 based version 

(Fig B.8). Furthermore, we also tested the performance on imbalanced dataset, where the ratio 

of positive-to-negative samples is 0.1, as suggested by previous studies [118,119]. ProTECT 

consistently shows the best ROC and Precision-Recall curves (Fig B.9). To obtain orthogonal 

evidence on ProTECT’s accuracy, we also used a diverse panel of Hi-ChIP [94,160,161] and 

ChIA-PET [89] datasets from the matched cell-types as gold-standards for enhancer–promoter 

interactions. Remarkably, ProTECT maintains the highest accuracy across all comparisons based 

on different gold-standard datasets (Fig B.10 and 11). Across the five Hi-ChIP evaluations, 

ProTECT achieves AUC >0.78, while TargetFinder and IM-PET only show AUC <0.66. Using 

ChIP-PET datasets as gold-standards, ProTECT achieves AUC >0.84 while other methods 

demonstrate AUC <0.76. These tests systematically support the robustness of ProTECT’s 

performance advantages.  



 46 

Fig 3.2E shows one example predicted by ProTECT in human GM12878 cells. The distal 

enhancer is located 99.4 kb from the predicted target gene’s promoter, and this long-range 

prediction is supported by a cell-type specific Hi-C interaction [102]. Based on the trained random 

forest model, this enhancer–promoter interaction is mediated by the PPI between the enhancer-  

 

 

Figure 3.3. TF PPI features provide additional information beyond TF bindings and 
activity-based features. (A) Schematic figure of the permutation test on TF PPI features. The 
shuffled PPIs are generated by randomly pairing two interacting TFs from the original pool of TF 
PPIs, while the degrees of PPI partners and TF binding sites in enhancers and promoters are 
maintained. Based on the shuffled PPI features, a new random forest model is trained and then 
evaluated by the same cross-validation procedure. (B) ROC plots for the models based on the 
original TF PPI features (red), the models based on the shuffled TF PPI features (salmon), and 
the baseline models based on activity-correlation features alone (blue), in GM12878 and K562 
cells. 5 

 

binding CTCF and the promoter-binding RUNX3 (Fig 3.2E). Interestingly, the correlation between 

the enhancer’s activity and the target gene’s expression across different cell-types is only 0.28, 

which strongly suggests the importance of incorporating TF PPI features in predicting enhancer–
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promoter inter-actions. A similar example from K562 is shown in Fig 3.2F, where the distal 

enhancer is located 46kb from the predicted target gene’s promoter, and is also supported by a 

cell-type specific Hi-C interaction (Fig 3.2F). This enhancer–promoter interaction, which only 

shows an activity correlation of 0.261, is successfully predicted based on the PPI between 

enhancer-binding CTCF and promoter-binding ELF1. Overall, these results demonstrate that TF 

PPI features can improve the delineation of specific interacting enhancer–promoter pairs from 

neighboring non-interacting pairs, beyond the information of activity-related features. In addition, 

specific hypotheses of the mechanisms mediating chromatin interactions, i.e. the functional TF 

PPIs linking enhancers and promoters, are derived from the model simultaneously. 

To further justify that the superior performance of ProTECT is indeed due to the 

information from TF PPI features, we randomly shuffled the TF–TF connections in the PPI network 

(Fig 3.3A). Therefore, the specific TF binding sites in enhancers and promoters are strictly 

maintained (see Materials and Methods), while the PPI features across enhancer–promoter pairs 

are randomized. This shuffling strategy also controls the degree of PPI partners for each TF, i.e. 

the number of protein neighbors in the PPI network. By training the ProTECT model on the 

shuffled data, we found that the accuracy is substantially reduced. The AUC based on PPI-

shuffled data is only 0.68, while the original AUC of ProTECT is 0.82 in human GM12878 cells 

(Fig 3.3B). Similar decrease of performance is also observed in human K562 cells (Fig 3.3B). The 

striking differences of prediction accuracy suggest that the performance improvement of ProTECT 

is mainly induced by TF PPI features, instead of TF binding information, consistent with previous 

biological studies of the functional roles of PPIs in chromatin loop regulation [137].  

To evaluate the model’s dependence on the cell-type specificity of TF bindings, we 

swapped the TF ChIP-seq data across GM12878 and K562, and run ProTECT based on the 

swapped data. As expected, the prediction accuracy decreased in both cell-types (Fig B.12A and 

B), suggesting the necessity of using TF datasets from the matched cell-types. Interestingly, 
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ProTECT still maintains the highest prediction accuracy when other algorithms are also trained 

on the swapped TF data, suggesting reasonable generalizability of ProTECT. In addition, to test 

the model’s dependence on the number of TFs included as features, we obtained the intersection 

subset of TFs whose ChIP-seq are available in both GM12878 and K562, and trained ProTECT 

based on features derived from this subset. The cell-type specific predictions in GM12878 and 

K562 demonstrate similar accuracy (AUC = 0.74 and 0.70, Fig B.12C), suggesting additional TFs 

are needed in each cell-type beyond the intersection subset.  

 

3.3.3 Genome-wide prediction of long-range enhancer–promoter interactions  
The trained random forest model is then applied to the genome-wide dataset in GM12878 

and K562 cell-lines separately to predict novel enhancer–promoter interactions (Fig B.13A-D). All 

enhancer–promoter pairs within 2Mb distance windows are included into genome-wide 

predictions (see Materials and Methods), as suggested by observations from experimental Hi-C 

datasets [102]. For each enhancer–promoter pair, a P-value from the permutation test is 

generated, which is further used to derive a q-value based on the pFDR approach [152] (see 

Materials and Methods). Using the q-value threshold of 0.05, there are totally 60 016 significant 

enhancer–promoter interactions predicted in GM12878, and 80 591 significant enhancer–

promoter interactions predicted in K562 (Fig 3.4A). The median separation genomic distance 

between linked enhancers and promoters is 243 kb in GM12878 (Fig B.13E), consistent with 

enhancer’s function of long-range regulation. In the predicted GM12878 enhancer–promoter 

network, >37% of enhancers regulate multiple genes (Fig B.13F), whose accuracy is consistent 

with the overall performance (Fig B.14) and 24% of these multi-gene enhancer links are supported 

by experimental chromatin interactions. On average, every gene is regulated by 6.9 enhancers 

(Fig B.13G), suggesting combinations of multiple enhancers are recruited for precise 

transcriptional regulation. Similar patterns are also observed in the predicted K562 enhancer–



 49 

promoter network (Fig B.13H-J). Furthermore, the predicted enhancer–promoter interactions are 

highly cell-type specific. By comparing the predictions in GM12878 and K562, only 5815 (∼4.2%) 

enhancer–promoter interactions are shared by the two cell-types (Fig 3.4A). Compared to the 

recent activity-by-contact (ABC) model [162], our genome-wide predictions demonstrate higher 

accuracy, as quantified by both ROC and Precision-Recall curves, using Hi-ChIP data as gold-

standards (Fig B.15).  

 

3.3.4 Important protein–protein interactions regulating chromatin interactions  
To gain insights of the underlying mechanisms of linking distal enhancers to target gene’s 

promoters, we analyzed the feature importance of module-level PPI features inferred by the 

random forest model and further prioritize the representative TF-level PPI features. We first 

identified the top-ranking module-level PPI features, which represent the protein complexes of 

interacting TFs involved in chromatin loops (Fig 3.4B and C). For example, in GM12878 cells, 

module(CTCF)-module(POLR2A) is ranked as the top third feature (here the module-level 

features are named by the most abundant TF-level PPIs linking the modules). Interestingly, this 

is consistent with a recent experimental study [163], which also found that the enhancer-binding 

CTCF interacts with the promoter-binding Pol II and participates in the regulation of long-range 

chromatin loops. As another interesting example, the module-level PPI feature module(IKZF1)–

module(RB1) is one of the top-ranking features in K562, consistent with their critical functions in 

leukemia cells and their impacts on chromatin structure [164,165]. Additional examples of the 

prioritized module-level TF PPIs are visualized as PPI networks in Fig B.16, showing the complex 

PPI connectivity between TF modules binding to enhancers and promoters.  

In order to characterize the key PPI features between individual TFs, instead of TF 

modules, we further decode the module-level PPI features into ranked TF-level PPI features (Fig 

3.4D), based on their occurrences across genome-wide predictions of enhancer–promoter  
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Figure 3.4. Genome-wide prediction of enhancer–promoter interactions reveals 
functional roles of TF PPIs in gene regulation. (A) Summary of genome- wide predictions in 
GM12878 and K562. The venn-diagram shows the overlap between predicted enhancer–
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promoter interactions in GM12878 (yellow) and K562 (salmon). (B, C) Feature importance (y-
axis) of top 10 module-level TF PPI features based on the random forest models in GM12878 
(B) and K562 (C). Each module-level PPI feature is named by the most abundant TF-level PPIs 
between the modules as axis-labels (x-axis). (D) Schematic figure of ranking specific TF-level 
PPIs in each PPI module. For each module-level PPI feature, all TF-level PPIs linking two TFs 
from the pair of two modules (the pair of modules can be the same to represent intra-module 
TF-level PPIs) are ranked by their occurrences in the predicted long-range enhancer–promoter 
interactions (abundance scores). (E, F) Examples of top 5 TF-level PPIs for three representative 
module-level features in GM12878 (E) and K562 (F). (G) Examples of predicted enhancer–
promoter interactions regulated by RELB-YY1 in the ISCU locus. Predicted enhancer–promoter 
interactions for the ISCU gene are shown as the pink paired lines. Totally 11 enhancers are 
predicted to interact with the promoter of ISCU, and five predictions are supported by Hi-C 
(purple paired lines) or capture Hi-C (grey paired lines). ChIP-seq signal tracks of RELB and 
YY1 (brown signal peaks) are consistent with predictions. (H) Schematic figure of ranking 
enhancer–promoter interactions regulated by specific TF PPIs. For each prioritized TF PPI 
feature, enhancer–promoter interactions are ranked based on the q-values inferred by 
ProTECT. Top 1000 genes are then selected by following the ranked list of interactions for 
pathway enrichment analysis. (I) Pathway enrichments of genes regulated by five different TF 
PPIs in GM12878. The top 10 most enriched pathways for each TF PPI feature are shown. The 
heatmap is colored based on the –log10(P value) of pathway enrichments. 6  

 

interactions (see Materials and Methods). Genome-wide predictions are used to calculate the 

abundance scores for TF level PPIs because they provide a large pool of enhancer– promoter 

links, and the abundance scores are found to be highly correlated with the observations from Hi-

C training samples (Fig B.17, Spearman correlation = 0.95). For each module-level feature, the 

top 5 most abundant PPI features between specific enhancer-binding and promoter-binding TFs 

are identified. For example (Fig 3.4E), RELB-YY1 is predicted to be a key TF-level PPI feature in 

long-range enhancer regulation. In support of this new discovery, RELB has recently been found 

to promote gene expression by interacting with YY1 [166]. As another example, SMC3-HDAC1 is 

one of the top-ranking features in K562 (Fig 3.4F), consistent with the reported regulatory roles 

of HDAC1 on chromatin structure by interacting with SMC3 [167]. The discoveries of these key 

TFs and their PPIs as candidate functional factors in chromatin loop formation may lead to new 

biological hypotheses of enhancer regulation for in-depth experimental investigations.  

As a demonstration of the potential importance of TF PPIs in linking distal enhancers to 

promoters, Fig 3.4G shows the predicted long-range enhancer–promoter interactions for the gene 
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ISCU. There are totally 11 enhancers predicted by ProTECT to interact with ISCU’s promoter, 

and five of them are supported by experimental data of chromatin interactions based on Hi-C or 

Capture Hi-C (Fig 3.4G), indicating the high accuracy of the predictive model. The inferred top-

ranking feature is the PPI between enhancer-binding RELB and promoter-binding YY1. 

Consistent with this prediction, YY1 has a strong ChIP-seq binding site at the promoter of ISCU, 

and almost all linked enhancers have ChIP-seq signals of RELB binding. Importantly, four out of 

the five validated enhancers show the strongest RELB ChIP-seq binding signals (Fig 3.4G), 

indicating the shared mechanism of these enhancer–promoter interactions for the gene ISCU. In 

this region, the longest interaction predicted by ProTECT is from a distal enhancer located >547 

kb from ISCU’s promoter. Although not captured by chromatin contact map experiments, this 

specific enhancer contains a sharp ChIP-seq peak of RELB binding (Fig 3.4G), suggesting this 

novel prediction as a strong candidate of enhancer–promoter interactions. It also implies the 

capability of ProTECT to discover long-range enhancer regulation that might be missed by 

experimental approaches.  

To investigate whether the orientations of PPI features between enhancer-binding and 

promoter-binding TFs have impacts in chromatin interactions, we designed a systematic model 

selection strategy to test whether a pair of two TF PPI features with opposite directions can be 

merged into one un-directional PPI feature without reducing the predictive accuracy (see 

Materials and Methods). Using this approach, 32 pairs of directional PPI features in GM12878 

are merged into 16 un-directional features, suggesting there is no statistical preference of 

binding sites (i.e. enhancers versus promoters) between interacting TFs involved in these PPIs. 

For example, the features ATF2-SMARCA5 and SMARCA5-ATF2 are merged into an un-

directional feature by the model, consistent with the observation that the two directional PPI 

features have similar abundance in enhancer–promoter interactions (Fig B.18A). A similar 

example involves the merge of IKZF1-CREM and CREM-IKZF1 features (Fig B.18A). In  
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Figure 3.5. Predicted enhancer–promoter interactions are enriched with cis-QTLs and 
trans-QTLs. (A) cis-eQTLs and cis-hQTLs from multiple datasets (x- axis) are significantly 
enriched in predicted enhancer–promoter interactions in GM12878 (red). The fractions of 
enhancer–promoter interactions overlap- ping with cis-QTLs (y-axis) are compared with other 
methods and two versions of controls: (1) random enhancer–promoter pairs (brown) and (2) 
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distance- controlled random enhancer–promoter pairs (blue). 1,000 samples are generated for 
both versions to calculate P-values (***: P-value < 1.04 × 10–4 ). Error bars represent sd. (B) 
Schematic figure of cis-eQTL SNPs located in the binding sites of functionally important TFs (blue) 
of chromatin interactions, com- pared to general enhancer-binding TFs (grey), as a mechanistic 
hypothesis of cis-regulatory effects on target gene expression. (C) Distributions of relative 
distances between cis-eQTL SNPs and binding sites of different enhancer-binding TFs. Relative 
distances (x-axis) are genomic distances between SNPs and TF ChIP-seq peak summits 
normalized by the sizes of TF peaks. Binding sites of top-ranking TFs inferred by ProTECT (red) 
significantly overlap with cis-eQTL SNPs, compared with bottom-ranking TFs (grey, P-value = 
3.02 × 10–4 ) and random enhancer-binding TFs (blue, P-value = 4.17 × 10–18 ). (D) Example of 
a cis-eQTL, i.e. the rs2488088-ADK pair, overlapping with a predicted enhancer–promoter 
interaction (pink paired lines). The predicted interaction is supported by Hi-C (black paired lines). 
The prioritized PPI feature is RUNX3-SMAD, consistent with the ChIP-seq signal tracks (brown 
signals). Zoom-in view of the distal enhancer (orange) shows the cis-eQTL SNP rs2488088 is 
located at the peak summit of RUNX3 binding site. (E) Schematic figure of trans-eQTL SNPs 
located in specific TF genes, whose binding to enhancers are predicted to mediate long-range 
enhancer–promoter interactions of trans-eQTL target genes. (F) Hypergeometric test on the 
overlaps between trans-eQTLs (i.e. trans- SNP-gene pairs) and enhancer-mediated TF–gene 
pairs, if the SNP is located in the TF’s gene body and the trans-eQTL’s target gene is the same 
as the TF’s target gene (red, P-value = 0.014). The –log10(P-value) (y-axis) from the 
hypergeometric test is compared to two versions of controls: 1) nearest genes to the enhancers 
(brown); and 2) random target genes (blue). Each control is generated 1000 times and the error 
bars show the sd. The black dash line corresponds to –log10(0.05). (G) Venn diagram comparing 
genes affected by weakened Hi-C interactions in PAX5 KO pro-B cells and genes regulated by 
PAX5 in ProTECT predictions (Hypergeometric test, P-value = 5.64 × 10–165). (H) Example of a 
trans-eQTL, i.e. rs10973104-NOL6 pair, supported by the predicted enhancer-mediated PAX5-
NOL6 pair. The predicted enhancer–promoter interaction for NOL6 (black paired lines) is based 
on the prioritized TF PPI feature PAX5-CTCF. ChIP-seq signals (brown signal tracks) show a 
strong CTCF peak in the NOL6 promoter (red) and strong PAX5 peaks in the linked enhancer 
(orange). The trans-eQTL SNP rs10973104 is located in the gene body of PAX5, which is 3.6 Mb 
away from this locus. 7 

 

spite of these un-directional PPI features, there are 37 features remaining to be directional in 

GM12878. For example, there is a significant preference of SMC3-MXI1 feature over the MXI1-

SMC3 feature (fold-enrichment = 7.80, Fig B.18B). This is an interesting observation considering 

the function of SMC3 (a subunit of cohesin [168]) in chromatin structural maintenance, and the 

reported regulatory function of MXI1 binding in promoter regions [169]. Another example 

corresponds to the preference of EP300-POL2R2A over POL2R2A-EP300 (fold-enrichment = 

9.19, Fig B.18B), consistent with the well-known enhancer binding activities of EP300 [170] and 

the transcriptional initiation function of POL2R2A [171]. Similarly, 184 pairs of directional PPI 
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features in K562 are merged into 92 un-directional features, while 47 PPI features remain to be 

directional. 

 

3.3.5 Genes regulated by different TF PPIs are enriched in distinct pathways  
To evaluate the downstream impacts of chromatin interactions mediated by different TF 

PPIs, we focused on the top 5 module-level PPI features (Fig 3.4B and C). We identified the 

strongest enhancer–promoter interactions mediated by each feature separately based on the 

ranked q-values of predictions (see Materials and Methods). Genes that are regulated by the top-

ranking enhancer–promoter interactions are therefore collected for pathway enrichment analysis 

(Fig 3.4H). Overall, these prioritized genes are enriched with immune-related or B-cell-related 

pathways (Fig B.19A and B), which is expected since the predictions are inferred from GM12878 

and K562 cell-lines. Strikingly, for each specific PPI feature, the gene sets are strongly enriched 

with distinct groups of pathways (Fig B.19A and B). Fig 3.4I shows the most enriched pathways 

for each TF PPI feature discovered in the GM12878 cell-line. Clearly, the enhancer–promoter 

interactions mediated by different TF PPIs are enriched with diverse biological processes. For 

example, the CTCF-YY1 feature is found to be associated with long-range regulation of genes in 

the B cell receptor signaling pathway, while the SMC3-POLR2A feature is associated with genes 

of the innate immune response pathway (Fig 3.4I). To exclude the potential bias caused by gene 

background, we carried out pathway enrichment analysis based on two additional gene 

backgrounds, respectively: (i) genes with the same set of promoter-binding TFs and (ii) genes 

with the same set of enhancer-binding TFs (Fig B.19C and D). Based on these two rigorous gene 

backgrounds, the majority (>67%) of enriched pathways are still discovered. These differentially 

enriched pathways further highlight the functional roles of TF PPIs in regulating gene expression 

and maintaining the specific cellular states.  
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3.3.6 Predicted enhancer–promoter interactions are enriched with cis-eQTLs  
Because the predictive model is trained on Hi-C datasets, we use cis-eQTLs as orthogonal 

evidence to quantitatively evaluate the accuracy of the genome-wide predictions of enhancer–

promoter interactions. By comparing the predictions with the SNP-gene pairs of significant eQTLs, 

we calculated the overlapping enrichment scores (see Materials and Methods). Using four eQTL 

datasets generated from matched cell-types or tissues (e.g. whole blood tissues or 

lymphoblastoid cell-lines) [154–157], the predicted enhancer– promoter interactions in GM12878 

cell-line show significantly higher fractions overlapping with eQTLs, compared to stringent 

distance-controlled random interactions and other algorithms (P-value < 1.04 × 10–4, Fig 3.5A). 

Similar, but relatively weaker, enrichment with eQTLs is found for predictions in K562 cell-line (Fig 

B.20A). In addition to cis-eQTLs, we compared our predictions in GM12878 with histone-QTLs 

from the same cell-line [158] and also observed strong enrichment (P-value = 3.27 × 10–5) 

compared to distance-controlled random samples and other algorithms (Fig 3.5A). These 

observations not only support the high accuracy of genome-wide predictions but also suggest the 

putative mechanisms of cis-eQTLs mediated by chromatin interactions between regulatory 

elements and target genes.  

 

3.3.7 cis-eQTLs are enriched in binding sites of prioritized TFs  
The prioritized TF PPI features by the ProTECT model provides a new metric of 

delineating functionally important TFs for enhancer regulation against general enhancer-binding 

TFs, which is complicated due to the large array of TFs binding to enhancers. For a typical 

enhancer, it contains 10 different TF binding sites on average, based on the counts of TF ChIP-

seq peaks in GM12878 from the ENCODE project [89]. However, binding itself is not sufficient to 

assign functional importance for TFs. As found by previous studies, TFs binding in enhancer 

regions are not equally important for the function of enhancers, with many enhancer-binding TFs 
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lacking evidence of regulatory impacts on gene expression [172]. This ambiguity hinders the 

understanding of enhancer activation and downstream effects. We hypothesized the TFs involved 

with top prioritized PPI features are more likely to be functional for enhancers. We tested this 

hypothesis by checking the enrichment of cis-eQTL SNPs within the binding sites of the prioritized 

TFs in enhancers (Fig 3.5B, see Materials and Methods). The cis-eQTLs are called in whole blood 

tissues from the GTEx project [154]. Interestingly, the SNPs of cis-eQTLs are located significantly 

closer to the binding sites of prioritized TFs in GM12878 (P-value = 4.17 × 10–18, Kolmogorov– 

Smirnov test), compared to the binding sites of other adjacent enhancer-binding TFs (Fig 3.5C). 

To control the potential bias caused by data availability, we also generated a more stringent 

background only using TFs included in the model but inferred with low feature importance (see 

Materials and Methods). Compared with this new background, the prioritized TFs are still 

significantly enriched with cis-eQTL SNPs (P-value = 3.02 × 10–4, Kolmogorov-Smirnov test, Fig 

3.5C). In the K562 cell-line, cis-eQTL SNPs are also closer to the binding sites of the prioritized 

TFs but not statistically significant (Fig B.20B). Overall, this analysis supports the stronger 

regulatory effects of prioritized TFs whose PPIs may mediate long-range enhancer–promoter 

interactions. Additionally, the prioritized TF binding sites provide a new layer of information to 

pinpoint regulatory SNPs at a higher resolution, by dissecting the ambiguity of numerous TF 

bindings within enhancers.  

As a representative example, a distal enhancer located > 589kb away is predicted by 

ProTECT to interact with the promoter of the ADK gene in GM12878 (Fig 3.5D), which is 

supported by experimental Hi-C data [102]. This long-range interaction is also supported by a 

significant eQTL, i.e. rs2488088-ADK (P-value = 3.29 × 10–19) [154]. The prioritized TF PPI 

feature for this interaction is RUNX3-SMAD, where RUNX3 binds to the enhancer and SMAD 

binds to the promoter. By zooming into the enhancer element, which is 1.2 kb long and contains 

binding sites of five different TFs, the SNP rs2488088 is found to be precisely located at the ChIP-
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seq peak summit of RUNX3 (Fig 3.5D), consistent with our prioritization of RUNX3 as the 

important TF for this enhancer. This observation also implies the mechanistic interpretation of this 

non-coding SNP, whose disruptive effect on the RUNX3 binding causes the loss of RUNX3-SMAD 

mediated long-range interaction to ADK.  

 

3.3.8 trans-eQTLs are enriched in enhancer-mediated TF–gene pairs  
As one of the advantages of the ProTECT algorithm, both cis-regulatory elements (i.e. 

enhancers) and trans-regulatory factors (i.e. TFs) are jointly modeled in long-range chromatin 

interactions. In traditional studies of trans-regulation of gene expression, analyses have been 

mainly limited to promoter-binding TFs as candidate trans-regulatory factors [173,174]. Based on 

the functional impacts of the predicted important TF PPI features (Fig 3.4B-I) and the observed 

enrichment of cis-eQTL SNPs in prioritized enhancer-binding TFs (Fig 3.5B–D), we hypothesized 

that there is an enhancer-mediated pathway of trans-regulation, i.e. the enhancer-binding TFs 

associated with top-ranking PPI features for long-range chromatin interactions are trans-

regulatory factors for the expression of distal target genes (Fig 3.5E). To quantitatively validate 

this hypothesis, we compared the enhancer-mediated TF–gene pairs with significant trans-eQTLs 

[159], and the significance of overlaps are statistically tested using Hypergeometric tests (see 

Materials and Methods). Interestingly, the enhancer-mediated TF–gene pairs are found to be 

strongly supported by trans-eQTLs (P-value = 0.014, Fig 3.5F, Fig B.20C), suggesting that the 

SNPs of trans-eQTLs are associated with target gene’s expression via the disruption of the TF 

gene’s activity (Fig 3.5E), although the SNPs may be located far away from the target genes or 

even located in different chromosomes. The observed statistical significance is also stronger than 

two versions of controls, excluding the potential confounding effects of biased enhancer activity 

and genomic distances (Fig 3.5F, see Materials and Methods).  

To obtain additional experimental evidence on the predicted enhancer-mediated TF–gene 
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regulation, we leveraged a differential Hi-C interaction dataset in mouse pro-B cells where 7810 

weakened Hi-C interactions were identified following PAX5 knock-out [175]. The top-ranking 

PAX5 related PPI feature predicted by ProTECT is PAX5-CTCF, consistent with their 

collaborative roles in B cells [176,177]. Based on our genome-wide predictions in GM12878, we 

identified the subset of PAX5-CTCF mediated enhancer– promoter interactions (see Materials 

and Methods), and thus collected the enhancer-mediated target genes of PAX5. To purify the 

subsequent analysis, genes whose promoters are also bound by PAX5 are removed from the list. 

If PAX5 is a true trans-regulatory factor for these genes, the genes are expected to be targeted 

by the weakened long-range interactions following PAX5 knock-out. By mapping the genes to 

their homology in the mouse genome [178], 6,744 enhancer-mediated target genes of PAX5 are 

conserved. Strikingly, these genes are found to significantly overlap with the genes of weakened 

Hi-C interactions in PAX5-/- pro-B cells [175] (hypergeometric P-value = 5.64 × 10–165, Fig 3.5G). 

To control the potentially biased enhancer activity and TF bindings, we generated two versions of 

controls. The first version randomly selects genes as enhancer-mediated target genes of PAX5. 

And the second version randomly chooses target genes of other TFs. 1000 random samples are 

generated for each version and the same number of genes are selected for each sample. Both 

versions of negative controls show decreased overlap with genes of weakened Hi-C interactions 

in PAX5–/– pro-B cells (P-value = 10–3), supporting the predicted trans-regulatory links between 

PAX5 and target genes by ProTECT. Fig 3.5H shows one representative example of PAX5-CTCF 

mediated long-range enhancer–promoter interaction (∼600 kb), where the enhancer contains 

multiple PAX5 binding sites and the promoter of the target gene, i.e. NOL6, contains a strong 

CTCF binding site. Interestingly, NOL6 is linked with weakened Hi-C interactions in PAX5–/– pro-

B cells. These strong experimental validations, along with the enrichment of trans- eQTLs, 

suggest the biological validity of the predicted enhancer-mediated TF–gene pairs, and provide a 

new regulatory mechanism to discover and interpret trans-regulatory genetic variants.  
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3.4 DISCUSSION  

In this study, we have developed a novel supervised algorithm, ProTECT, to predict long-

range enhancer–promoter interactions. By incorporating new features of protein–protein 

interactions among transcription factors, the algorithm achieves superior performance compared 

to other methods, based on a rigorously designed genomic bin-split cross-validation procedure. 

Considering the overfitting risk of high-dimensional inter-dependent TF PPI features, a novel 

network-community based dimension reduction strategy is used to hierarchically organize TF 

PPIs into module-level features. This approach efficiently improves the generalizability of the 

predictive model to make robust predictions based on complex TF PPI patterns, while maintaining 

the detailed ranking of TF-level PPI features for specific mechanistic understandings of long-

range enhancer regulation. With the impacts of confounding factors strictly controlled, the relative 

contributions of different features are systematically evaluated, which shows that TF PPIs contain 

substantially additional information beyond activity-based features of enhancers and genes.  

The genome-wide implementation of ProTECT in GM12878 and K562 cell-lines generated 

60 016 and 80 591 new predictions of significant enhancer–promoter interactions, which will be 

useful resources of cell-type specific enhancer regulation for biologists. In addition, a set of 

prioritized TF PPIs, in both module-level and TF-level, are identified as the key PPIs mediating 

long-range chromatin loops. Different TF PPIs are found to mediate enhancer regulation for genes 

in distinct biological pathways, implying specific functional roles of complex TF cooperation. The 

TF members participating in these prioritized PPI features can be used as candidate targets for 

knock-out to investigate the changes of specific enhancer–promoter interactions, which will 

expand the insights on the underlying mechanisms of chromatin loop formation and long-range 

gene regulation.  

To gain orthogonal evidence of the validity of genome-wide predictions, cis- and trans-

eQTLs are compared with the predicted enhancer–promoter interactions in three ways, each of 
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which supports one aspect of the interplay among TFs, enhancers and genes. First, the 

enrichment of overlaps between cis-eQTLs and enhancer–promoter interactions suggests the 

accuracy of predicted long-range cis- regulation by distal enhancers. Second, the enrichment of 

cis-eQTL SNPs located within the binding sites of prioritized TFs underscores the precise 

delineation of functionally important TFs for enhancer activities against other general enhancer-

binding TFs. Third, the enrichment of overlaps between trans-eQTLs and enhancer-mediated TF–

gene pairs highlights the novel identification of trans-regulatory pathways from upstream TFs to 

downstream genes via distal enhancers. The promising enrichment analyses further indicate that 

the predictions from ProTECT can be used as a platform to interpret cis- and trans-eQTLs, i.e. 

characterize the non-coding SNP’s disruptive effects propagated through long-range enhancer 

regulation on gene expression. Therefore, combined with eQTL datasets, the ProTECT model 

can also be a useful tool to generate testable hypotheses in statistical genetics studies.  

To control the model complexity, only direct PPIs between TFs are included as features, 

while indirect PPIs between TFs may also participate in the regulation of chromatin loops. For 

example, an enhancer-binding TF and a promoter-binding TF may not be able to interact with 

each other but they both can interact with a third protein. The incorporation of module-level TF 

PPI features helps to capture the potential indirect PPIs to some degree, but does not explicitly 

address this problem. Due to the large number of indirect PPI features and the limited number of 

labeled samples for model training, more advanced designs of feature selection will be needed to 

achieve a balance between predictive accuracy and model generalizability.  

As a major novelty of the ProTECT model, the efficient inclusion of TF PPIs as features 

not only improves the predictions but also reveals mechanistic insights on long-range enhancer 

regulation. In the meantime, the algorithm requires the availability of large panels of TF ChIP-seq 

data for the specific cell-types under study, which may be a practical challenge for users. As one 

of the directions to extend the ProTECT model, it is possible to leverage the combined information 
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of chromatin accessibility data, e.g. DNase-seq or ATAC-seq data, and TF binding motif 

annotation datasets as approximations for cell-type specific TF bindings. Several recent studies 

have demonstrated the reasonable accuracy of this approximation [89,90]. Furthermore, multiple 

imputation algorithms have been recently developed for ENCODE cell-types or tissues to impute 

cell-type specific TF binding ChIP-seq signals [179,180]. The imputed TF binding signals can be 

used as alternative inputs for the model to make cell-type specific predictions of enhancer–

promoter interactions, for cell-types lacking ChIP-seq datasets. As an evaluation of this possibility, 

we generated the imputed TF bindings by overlapping TF motifs with cell-type specific DNase-

seq peaks, and then derived TF PPI features based on the imputed data. Remarkably, applied on 

the imputation-based input features, Pro-TECT is able to achieve high accuracy (Fig B.21). This 

evaluation strongly supports the wide applicability of ProTECT on diverse cell-types even if TF 

ChIP-seq data is not directly available.  
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CHAPTER 4 

CHIP-SEQ MULTI-MAPPING READ ALLOCATION ALGORITHM REVEALS REGULATORY 
ELEMENT ACTIVITIES IN HUMAN GENOME 

 

4.1 INTRODUCTION 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a technology to map 

DNA-binding proteins and histone modifications in a genome-wide manner [181]. It has the 

advantages of high resolution, less noise and high genome coverage and becomes the preferred 

approach to profile cell-type/ tissue-specific regulatory elements. In ChIP-seq experiment, 

proteins first cross link with specific DNA sequences. The whole DNA sequence is then sheared 

into small fragments. These protein-DNA complexes are extracted through antibody enrichment 

and sequenced by high-throughput sequencing platform [182]. After mapping these sequenced 

DNA fragments (reads) back to the genome, we can infer the location of the regulatory elements 

in the genome. The sequence length in most platforms is short, often varying from 20bp to 100bp. 

As significant fraction of human genome is composed of repetitive regions and a large fraction of 

ChIP-seq reads are from repetitive region. In general, about 20-25% of the reads in ChIP-seq can 

be aligned to multiple locations on the genome. We call these multi-mapping reads ambiguous 

reads. Traditional pipeline [183] just discards these ambiguous reads, which results in a large loss 

of information.  

Although there have been some computational algorithms that can allocate the ambiguous 

reads to one of its possible mapping positions, they suffer from either high false positive and high 

false negative rate [184, 185] or require the use of additional data [186]. In order to cope with the 

challenge of ambiguous read allocation and improve the mapping specificity, we developed a 

statistical model (RegisTER-ME) to iteratively infer the binding positions of ambiguous reads. 

RegisTER-ME takes use of the neighborhood read counts and local sequence information to 



 64 

formulate the probability of an ambiguous read binding to one possible location. Gibbs sampling 

algorithm is applied to update these probabilities and infer the read allocation simultaneously. We 

showed that RegisTER-ME is able to identify numerous novel regulatory elements with higher 

accuracy than existing tool. Furthermore, we applied RegisTER-ME to all the single-end (SE) 

ChIP-seq data in the ENCODE database and achieved around 3 million new ChIP-seq peaks. 

These new peaks enable us to study the waves of transposable elemen(TE)t-derived transcription 

factor (TF) binding position creation, the co-evolution between TFs and the corresponding co-

factors and the co-regulation among TE-derived TFs. In addition, by identifying the TF binding 

region an eQTL located in, we were able to reveal the functional mechanism of eQTLs. 

 

4.2 MATERIALS AND METHODS 

4.2.1 RegisTER-ME Algorithm. RegisTER-ME is a software for assigning each multi-mapping 

read in human single-end ChIP-seq data to one of its candidate mapping positions with the highest 

posterior probability. RegisTER-ME contains five major steps: 

(i) ChIP-seq data cleaning. 

Only read assignments in autosome and chromosome X, Y are kept for later calculation. 

If the total number of nucleotide mismatches, insertions or deletions is more than 2, the ChIP-seq 

read will also be removed. 

For a genome position, if the number of canonical reads mapped to it exceeds a threshold, 

these reads will be considered as PCR duplications. Only canonical reads with higher mapping 

scores will be left among the PCR duplications.  

To calculate the read count threshold for each ChIP-seq dataset, we fit a Poisson 

distribution, where 
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𝜆 =
𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑢𝑡𝑜𝑠𝑜𝑚𝑒 𝑎𝑛𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑋, 𝑌 (𝑏𝑝)
 

By setting p-value = 0.001

𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑢𝑡𝑜𝑠𝑜𝑚𝑒𝑠 𝑎𝑛𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑋,𝑌
, we got the maximum 

number of reads mapped to the same genome position. 

(ii) genome segmentation 

The whole genome is segmented into a large number of small intervals (sites) to speed 

up the later calculation. If there are few ChIP-seq reads falling into a region and the concatenation 

of reads is less than 100bp, then this region is divided into multiple sites with length 100bp. If 

there are numerous reads falling into a region, to avoid the signal diffusion, we set a length 

threshold for each site in this region. In other cases, the site length is between 100bp and the 

length limitation. 

To obtain a reasonable site length limitation, we run MACS1 (v1.4.2; default settings) [187] 

to gain a sense of binding region width of the target protein. Half of the median width of these 

binding sites is used as the site length limitation so that there will be around two to three sites 

within a true protein binding region and the read signals will not be largely dispersed by the ChIP-

seq peak tails. In addition, all the genome sites are classified into two groups: within MACS1 peak 

regions and outside peak regions. These two groups are given label 1 and 0 respectively. 

(iii) likelihood fitting 

 Likelihood value here represents the confidence of a site being the protein binding 

region or background when we observe a certain number of canonical reads and multi-mapping 

reads. 

We use 𝑃𝑠 to denote the likelihood distribution of site densities when these sites are 

within protein binding regions, and 𝑃𝑛 to denote the likelihood when the sites are just genome 
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background. There are two groups of 𝑃𝑠, 𝑃𝑛 distributions, one for only canonical reads within the 

site and the other for canonical reads and multi-mapping reads within the site. 

As one multi-mapping read can be assigned to multiple sites, if we consider it the same 

as the canonical reads, these multi-mapping reads will be over-represented. To solve this 

problem, we give each multi-mapping read a weight 0.2 and each canonical read a weight 1. 

Then we use canonical read density to estimate the 𝑃𝑠, 𝑃𝑛.  for canonical reads and weighted 

read density to estimate the 𝑃𝑠, 𝑃𝑛 for all the reads (canonical reads and multi-mapping reads). 

To smooth the 𝑃𝑠, 𝑃𝑛 distribution, we compare them with some known distributions and 

find Gamma distribution achieves the best fit for both 𝑃𝑠 and 𝑃𝑛.  

 (iv) prior estimation 

Prior value in the model reflects the target protein’s preference on a given sequence. 

Since the prior value only depends on its genome sequence, we use 𝑃(𝐷) to represent the prior 

value of a site 𝑘𝑖. 𝐷 here denotes the original ChIP-seq data. 

To quantify the target protein’s preference, we down-sample the same number of sites 

with label 1 and sites with label 0. Next, we calculate the 6-mer frequencies in both groups. 

Using fold-change > 1.5, adjusted P-value < 0.001 in binomial test and 6-mer frequency larger 

than the median frequency of all the 6-mers, we get enriched 6-mers and depleted 6-mers in 

protein binding regions. To reduce the feature dimension, we further use K-means to create 6-

mer clusters using their sequence similarity. For each site, we calculate its 6-mer cluster 

features using 𝑛𝑖×𝑙𝑜𝑔10(6-mer group ith fold-change). 𝑛𝑖 refers to the occurrence of 6-mers in 

cluster i. Fitting the samples using logistic regression and applying the fitting results to all the 

sites, we obtain the prior value for each site. 

(v) Gibbs sampling optimization 
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We use 𝑎𝑖 to represent the 𝑖𝑡ℎ multi-mapping reads.  𝑠𝑖 =𝑠𝑖1, 𝑆𝑖2, …, 𝑆𝑖𝑛𝑖
 are all the sites 

𝑎𝑖 can be assigned to, and 𝑘𝑖𝑗 is the sequence information of site 𝑠𝑖𝑗. Let D represents the 

original ChIP-seq data, U stands for the assignment of all the genome sites, M[−𝑖] refers to the 

mapping of all the multi-mapping reads except ai and rij is the number of canonical reads in site 

sij, we can formulate the posterior probability of 𝑎𝑖 being assigned to 𝑠𝑖𝑗 as  

𝑃(𝑀[−𝑖], 𝐷, 𝑘𝑖𝑗|𝑎𝑖~𝑠𝑖𝑗)~𝑃(𝑎𝑖~𝑠𝑖𝑗|𝑀[−𝑖], 𝐷, 𝑘𝑖𝑗) ∙ 𝑃(𝑀[−𝑖], 𝐷, 𝑘𝑖𝑗) 

                                                                ~𝑃(𝑎𝑖~𝑠𝑖𝑗|𝑀[−𝑖], 𝐷, 𝑘𝑖𝑗)𝑃(𝑘𝑖𝑗|𝐷) 

= 
𝑃𝑠(𝑟𝑗+1) ∏ 𝑃𝑛(𝑟𝑚)∙𝑃(𝑈\𝑠𝑖)𝑚∈𝑠𝑖/𝑗

∑ [𝑃𝑠(𝑟𝜏+1) ∏ 𝑃𝑛(𝑟𝑚)] ∙𝑃(𝑈\𝑠𝑖)𝑚∈𝑠𝑖/𝜏𝜏∈𝑠𝑖

 

=  

𝑃𝑠(𝑟𝑗+1)

𝑃𝑛(𝑟𝜏)
∙

𝑃(𝑘𝑖𝑗|𝐷)

1−𝑃(𝑘𝑖𝑗|𝐷)
∙

∑ [
𝑃𝑠(𝑟𝜏+1)

𝑃𝑛(𝑟𝜏)
∙

𝑃(𝑘𝑖𝜏|𝐷)

1−𝑃(𝑘𝑖𝜏|𝐷)
]𝜏∈𝑠𝑖

                                                        

Then we can apply Gibbs sampling method to sample a mapping site for each multi-

mapping reads using this posterior probability formula.  

In each iteration, we go through all the multi-mapping reads and calculate the posterior 

probabilities of a multi-mapping read assigned to its candidate mapping sites, and sample one 

site to be the mapping position of this multi-mapping read in this iteration. 

In the initialization step, we use the 𝑃𝑠, 𝑃𝑛 fitted from canonical reads. However, after the 

initialization, each multi-mapping read can be assigned to only one site. In some sense, the 

multi-mapping reads become canonical reads, and we use the 𝑃𝑠, 𝑃𝑛 fitted from weighted reads 

in the following iterations. 

The optimization procedure will end once the whole system converges. 
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4.2.2 ChIP-seq Data Source and Data Processing. We downloaded human ChIP-seq datasets 

from ENCODE data portal [188]. Only single-end ChIP-seq raw reads (fastq file) with at least two 

isogenic replicates and without any treatments were used. We also downloaded the 

corresponding control ChIP-seq files and applied the same processing procedure to the control 

files. 

ChIP-seq raw reads were mapped to human reference genome assembly GRCh37 (hg19) 

by Bowtie2 (V2.3.4; -k 11) [189]. Reads mapped to only one genome position are named 

‘canonical reads’ while reads mapped to multiple positions are called ‘multi-mapping reads’. Multi-

mapping reads are restricted to be assigned to at most 11 genome positions by Bowtie2. 

To control the ChIP-seq data quality, we also calculated the FRiP value [190]. If either of the 

isogenic replicates has FRiP smaller than 1%, this ChIP-seq dataset was removed. 

Multi-mapping read assignment tools, RegisTER-ME (V1.0.0; --weight 0.2 –flanking 0.5site –

max_iter 35) and CSEM(V2.4; default settings) [191], were applied to the read files (SAM file) 

respectively. Every multi-mapping read will be assigned to only one genome position after this 

procedure. 

We used the SPP peak caller(v1.10.1; -npeak=300000) [192] to identify potential protein 

binding regions (peaks) and IDR(V2.0.3; --idr-threshold 0.02) [193] to filter high confident peaks. 

The peaks from canonical reads are regarded as ‘canonical peaks’ and newly discovered peaks 

after assigning the multi-mapping reads are named after the multi-mapping read assignment tools 

(RegisTER-ME peaks or CSEM peaks). 

 

4.2.3 Processing of RNA-seq Data. To get expressed genes in specific cell lines, we 

downloaded gene-level expression data from ENCODE Portal for 7 cell lines (GM12878: 

ENCFF300QDV, ENCFF313RNF. K562: ENCFF186TXT, ENCFF728TIT. MCF-7: 
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ENCFF057ITQ, ENCFF456OYZ. HepG2: ENCFF974MUO, ENCFF649AHO. IMR-90: 

ENCFF480FTB, ENCFF588AJG. Liver: ENCFF804QWF, ENCFF418BVF. H1: ENCFF045NOY, 

ENCFF334LZL.). The expression values (TPM) from the 2 isogenic replicates were merged and 

genes with the lowest 10% expressions in the files were removed. 

 

4.2.4 Promoter-enriched TFs Selection. To get the list of TFs more enriched in promoters than 

other genomic regions, we performed TF enrichment analysis in cell-type specific promoters and 

cell-type specific enhancers. Cell-type specific promoters were defined as +/- 2.5kb of expressed 

genes’ RefSeq [194] transcription start sites and cell-type specific enhancers were downloaded 

from Roadmap Epigenomics and ENCODE data portal. Enrichment is calculated as the fraction 

of regions with target TF binding (canonical peaks). We down-sampled the same number of 

enhancers as the promoters for 1000 times, and calculated the enrichments of these 1000 

enhancer sets. The TF enrichment in promoter regions was compared with these 1000 

enrichments using one-tailed binomial test. TF ChIP-seq datasets with P-value < 0.001 were 

considered to be more enriched in promoter regions. 

 

4.2.5 Processing of Chromatin interaction data. We obtained the chromatin interaction data 

used in this study from publicly available datasets. GM12878 Capture-C data and H1 Capture-C 

data was obtained from GSE86189 [195] using P-value < 0.1 and P-value < 0.05 as the 

corresponding filters. K562 ChIA-PET data was obtained from GSE33664 [196]. In long-range 

chromatin interaction analysis, these chromatin interaction datasets were further filtered. Only 

chromatin interactions in the datasets that anchored at Refseq transcription start sites were kept. 
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4.2.6 Paired-end ChIP-seq Analysis. We downloaded peak files of Paired-end ChIP-seq 

datasets from ENCODE Portal for 3 cell lines (GM12878: ENCFF568FPC, ENCFF360OXD, 

ENCFF809OOE, ENCFF431XRU, ENCFF356UKE, ENCFF006MIL. K562: ENCFF845UBO, 

ENCFF235UZG, ENCFF631IAC, ENCFF661CJD, ENCFF837QOK, ENCFF120MVT, 

ENCFF988FFD, ENCFF529GVQ, ENCFF168KBY, ENCFF231HJU, ENCFF906BNB, 

ENCFF401FXT, ENCFF067ZUO, ENCFF724TVS, ENCFF591UOR, ENCFF836FKF. HepG2: 

ENCFF304CJQ, ENCFF459HJZ, ENCFF324OAJ.). These peaks were used as the gold standard 

to examine the confidence of newly discovered peaks. 

 

4.2.7 Processing of Genomic Domain Data. Genomic domain lists for GM12878 and K562 cell 

lines were obtained from GSE63525 [197]. By extending upstream and downstream a certain 

distance of each domain boundary, we got the domain boundary region lists for GM12878 and 

K562. 

 

4.2.8 Gene Ontology (GO) Enrichment Analysis. GO enrichment analysis was performed using 

GOATOOLS (--pval=0.1) [198]. GOATOOLS is a computational tool to identify enriched biological 

themes of the input gene list against the background gene set. In this study, we used all the 

UniProt IDs in the GOATOOLS database as the background gene set. 

In method comparison, we generated the genes in GO analysis by including the nearest 

expressed RefSeq genes within 50kb of the tool specific peaks. Q-values in cell-type specific 

Biological Pathways (BP) from RegisTER-ME peaks and CSEM peaks were extracted and were 

compared across all the ChIP-seq datasets in the cell line. In co-evolution analysis, we increased 

the expanding region to include enough genes for GO analysis. The nearest genes within 100kb 

of the peaks were added to the gene set. Since the size of the gene set was small, the q-values 
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for all the BPs were not significant. Therefore, we calculated the fraction of genes within a pathway 

and compared with the fraction of background gene sets. The pathways with the highest fold-

change values were selected in the study. In TE-derived long-range interaction analysis, the gene 

set was derived from the target genes inferred from chromatin interaction data. We also used fold-

change to select the top pathways for the study. 

 

4.2.9 Motif Analysis. The genome sequences in motif analysis were derived from canonical 

peaks, RegisTER-ME peaks and RegisTER-ME competitor regions. RegisTER-ME competitor 

regions are defined as regions that compete with RegisTER-ME peaks for most of the multi-

mapping reads. We extended upstream and downstream of the peak summit (RegisTER-ME 

competitor regions used the region middle point) to half of the mean canonical peak and got the 

sequences. FIMO (V5.0.5; --thresh 1.0E-4) [199] was used to scan these sequences to identify 

the positions of TF motifs within the sequences. The position weighted matrices of the TFs were 

downloaded from HOCOMOCO database (Version 11) [200]. The TF motifs that did not overlap 

the ChIP-seq target TF’s motif positions were ranked on their occurrences among all the canonical 

peak sequences. Top TF motifs were selected as the potential co-factors. 

In co-evolution analysis, we also used FIMO to scan the TE sequences. Scores from FIMO results 

were used to describe the motif matching level. 

 

4.2.10 Protein-Protein Interaction Analysis. The protein-protein interactions (PPI) were 

downloaded from STRING database (Version 11.0) [201]. We filtered the PPIs using experiment 

score > 0. 
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4.2.11 Gene Expression Correlation Analysis. We downloaded the normalized gene 

expression file from ENCODE data portal and Roadmap Epigenomics. Pearson’s correlation 

coefficient between every two genes was calculated using their expression values across the 56 

cell lines. 

 

4.2.12 Genome Annotation. The gene position file of hg19 was downloaded from the RefSeq 

database. We extended upstream and downstream 2.5 kb of each gene’s transcription start site 

(TSS) to obtain the promoter regions. The genic regions were defined as 10 kb upstream of a 

gene’s TSS to downstream 10 kb of a gene’s transcription end site (TES). We obtained segmental 

duplication data (Segmental Dups track), repeat annotations (RepeatMasker track) and 

centromere and telomere data (Gap track) from the UCSC Table Browser [202]. Only TEs in 

‘LINE’, ‘LINE?’, ‘LTR’, ‘LTR?’, ‘SINE’, ‘SINE?’ families were kept. Per-centromere was defined as 

upstream 1 MB to the downstream 1 MB of a centromere. And peri-telomere was defined as the 

first 2 MB or the last 2 MB of a chromosome. Repressive regions were retrieved from Roadmap 

Epigenomics.  

 

4.2.13 Enrichment of TF Binding Sites in TEs. To compare the contribution of different TE 

families in TF binding sites, we calculated an enrichment value of the TF binding sites in each TE 

family. The enrichment value was defined as the fraction of TF binding sites derived from a TE 

family over this TE family’s length fraction among the whole genome.  

The TE position file was downloaded from UCSC Genome Browser database. If the 

summit region (+/- 100bp of the peak summit) of a TF ChIP-seq peak overlapped a TE, then we 

considered it as TE-derived. 
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4.2.14 Co-evolution Analysis. The consensus sequences for all the TE subfamilies were 

retrieved from the Dfam database [203]. We directly used the ‘milliDiv’ value from the repeat 

annotation data as an estimation of the TE age.  

TEs overlapping ChIP-seq peak summits were considered to contribute to TF binding sites. 

We extracted the sequences of these TEs and used FIMO to detect the motif positions of target 

TF and the potential co-factors (see Motif Analysis in Method). TEs from the same sub-family and 

contributing to TF binding sites were extracted. We then did multiple sequence alignment on these 

TEs and their corresponding consensus sequence using MUSCLE (V3.8.31; default setting) [204]. 

The multiple sequence alignment results were visualized on Jalview (V2.11.1.4) [205] and the 

positions with target TF motif or co-factor motif were colored based on nucleotides. 

 

4.2.15 Co-regulation Analysis. We obtained TE-derived long-range interactions by overlapping 

TE-derived TF binding sites and cell-type specific chromatin interaction data (see Processing of 

Chromatin Interaction Data in Method). If the two anchors of a chromatin interaction were located 

within a TF binding site and at a gene TSS respectively, we considered it as one TE-derived long-

range interaction. 

For each gene, we calculated the fraction of enhancers from different TE families. Then 

we averaged these enhancer fractions across all the genes for each TE family respectively. We 

called these average numbers as the contributions of the corresponding TE families in co-

regulation analysis. Genes regulated by only one enhancer were not considered in the calculation, 

but the enhancers were included in later permutation to generate a shuffled background. 

We shuffled the TE labels of all the enhancers 1000 times, and used the contributions of 

a specific TE family in these 1000 shuffles as the null distribution. Kernel density estimation was 
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used to estimate the probability of observing a contribution value equal or larger than the true 

contribution value under this null distribution. 

 

4.2.16 SNP Enrichment Analysis. We downloaded three types of SNPs publicly available 

datasets: GWAS SNPs, eQTLs and TCGA mutations. GWAS SNPs were retrieved from GWAS 

Catalog [206] and somatic mutations in acute myeloid leukaemia (LAML) were downloaded from 

TCGA program. We combined eQTLs from 3 studies [207-209]. These eQTLs were from either 

blood tissues or lymphoblastoid and thus related to GM12878 and K562 cell lines.  

We first calculated the fraction of TE-derived RegisTER-ME peaks with the SNPs across 

all the ChIP-seq datasets in GM12878 and K562 cell lines. Then we generated permutation peaks 

for each dataset using the ‘shuffle’ function from bedtools (V2.27.1; default settings) [210]  and 

calculated the fraction of permutation peaks with the SNPs. The permutation was done 1000 times. 

We did the two-tailed Wilcoxon signed-rank test to compare the SNP enrichment in RegisTER-

ME peaks with the enrichment in the permutation peaks from the same ChIP-seq dataset. 

 

4.2.17 Statistical Analysis and Figure Generation. We did all the statistical analysis and 

associated figures by Python. Examples were generated with UCSC Genome Browser 

screenshots [211]. 

 

4.3 RESULTS 

4.3.1 ChIP-seq multi-mapping reads alignment based on neighborhood read counts and 
flanking sequences 

Previous studies [184,185] have proved the local genomic ChIP-seq read context 

(neighborhood reads) can help to guide the allocation of multi-mapping reads. However, in some  
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Figure 4.1. ChIP-seq multi-mapping reads alignment based on neighborhood read counts 
and flanking sequences. (A) A real example of a multi-mapping read from a CEBPB ChIP-seq 
in UCSC genome browser. This read can be mapped to 2 positions with the same read count 
but different flanking sequences. (B) The schematic figure of RegisTER-ME. (C) The pipeline of 
downstream analysis. (D) The summary of newly discovered peaks for ChIP-seq data in 
ENCODE project. (E) Real examples of newly discovered peaks after applying RegisTER-ME.8  
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cases, the potential mapping positions of a multi-mapping read share similar local genomic read 

contexts. Fig 4.1A is a real example from a CEBPB ChIP-seq dataset. There are totally 27 multi-

mapping reads which can be mapped to two regions in the genome. Since both regions are within 

TEs, the canonical read in these two regions are rare. Therefore, previous computational 

algorithms may not be able to distinguish the true binding region. 

Inspired by the binding activity of transcription factors and the coordinated binding of 

cofactors [212,213], we exanimated the sequences around the exact mapping coordinates. The 

binding position in the left (Fig 4.1A) has higher probability to be a true binding position, as it is 

near a gene promoter. In this true binding position, we observed both TF motif (CEBPB) and the 

motif of SP1, while there is only CEBPB motif in the other mapping position. CEBPB is shown to 

cross-talk with SP1 to modulate downstream gene production [214]. This example illustrated the 

benefits of integrating flanking sequence information when there are similar neighborhood reads 

in competing binding regions. The TF motifs and co-factor motifs in the flanking sequences of the 

true binding position should help us to discriminate it from other regions. 

We then designed a Bayesian model, RegisTER-ME (METHOD), which considers both 

local genomic ChIP-seq read context and the flanking sequence, to compute the probability for 

each multi-mapping read mapping to any potential binding positions (Fig 4.1B). Since there are 

millions of multi-mapping reads in a ChIP-seq dataset, we also took use of the Gibbs sampling 

algorithm to optimize the mappings. The combinational use of ChIP-seq read context and flanking 

sequence boosted the performance of the model an allowed the model to converge with only a 

few interactions (Fig C.1). 

We applied RegisTER-ME to the whole ENCODE database (Fig 4.1D), and achieve 

around 3 million new binding positions (RegisTER-ME peaks). Fig 4.1E shows real examples in 

2 ChIP-seq datasets (JUNB in GM12878 and H3K4me1 in H1). The genomic regions in the 

examples are near gene promoters and are very possible to be true binding positions. However, 
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these regions are within TEs, making them to have low mapping abilities [215]. RegisTER-ME 

overcame the limitation and re-discovered the binding positions. The large repository of newly 

discovered TE-derived TF-binding positions allows us to have a comprehensive study of the 

activity of TEs in regulation network evolution (Fig 4.1C). 

 

4.3.2 Boosted performance through sequence information integration 
 We conducted four method comparisons with an existing read mapping algorithm, CSEM 

[5], to systematically exanimate the performance of RegisTER-ME in accurately allocating the 

multi-mapping ChIP-seq reads. We applied both methods to ChIP-seq datasets and called the 

newly discovered peaks RegisTER-ME peaks or CSEM peaks respectively. 

(i) Promoter region enrichment 

Some TFs are especially more enriched in promoter regions [216]. For those TFs, we 

exanimated the promoter enrichment of RegisTER-ME peaks and CSEM peaks. Fig 4.2A shows 

the enrichment differences of these algorithms across promoter enriched TF ChIP-seq datasets 

in K562. RegisTER-ME peaks showed higher percentage in promoter regions in the majority of 

the datasets. The results in other cell lines (Fig C.2) reflected a similar pattern. 

(ii) Domain boundary enrichment of CTCF peaks 

CTCF is an insulator-binding protein and previous study identified significant binding of 

CTCFs in domain boundaries [217]. Therefore, we used domain boundary enrichment as a 

standard to determine CTCF peaks quality. Fig 4.2B shows the domain boundary enrichments for 

CTCF peaks in K562 and GM12878. In all these CTCF ChIP-seq datasets, RegisTER-ME peaks 

always have higher fraction to near domain boundaries. 

(iii) Chromatin interaction activity enrichment 

Chromatin interaction data connects regulatory elements to the target genes [218]. We  
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Figure 4. 2. Boosted performance through sequence information integration. (A) Method 
comparison using fraction of peaks within promoter regions. (B) Method comparison using 
fraction of CTCF peaks in domain boudaries. (C) Method comparison using fraction of peaks 
involved in enhancer-promoter interactions. (D) Method comparison using fraction of peaks 
validated by PE ChIP-seq data. (E) Real examples of newly discovered peaks from RegisTER-
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ME but missed by CSEM. (F) Method comparison using enriched pathways from the nearest 
genes. 9 

 
extracted anchors from K562 ChIA-PET data as the potential TF binding positions to check the 

overlapping of newly discovered peaks with these potential bindings. Fig 4.2C shows the 

overlapping fraction of RegisTER-ME peaks or CSEM peaks in K562 ChIP-seq datasets with 

chromatin interaction anchors. A statistical test indicated there was a significant higher 

overlapping fraction in RegisTER-ME peaks than CSEM peaks. Similar results were observed in  

other cell lines using other type of chromatin interaction data (Fig C.3). 

 

(iv) Paired-end (PE) ChIP-seq validation 

PE ChIP-seq technology sequences both ends of a DNA fragments and captures more 

information than SE ChIP-seq data [219]. We considered the peaks from PE ChIP-seq as gold 

standards to determine if a peak in SE ChIP-seq has high confidence or not. Fig 4.2D shows the 

comparison results between RegisTER-ME and CSEM. In all 3 cell lines, there are more ChIP-

seq datasets where RegisTER-ME has higher fraction of high confidence peaks. 

Except for the overall performance evaluation, we also dig into real examples. Fig 4.2E 

shows genomic regions with high TF binding confidence. RegisTER-ME was able to identify them 

as true binding positions while CSEM failed. 

In addition, pathway analysis for nearby genes of newly discovered peaks shows 

RegisTER-ME peaks tend to be around genes with cell type specific functions. GM12878 is a 

lymphoblastoid cell line. Pathways related to GM12878 involve in multiple immune functions. We 

checked the enrichment of nearby genes from RegisTER-ME peaks and CSEM peaks, and found 

RegisTER-ME peaks show higher fraction to near genes involve in these pathways (Fig 4.2F). 

Both overall performance comparisons and examples checking indicate a better performance of  
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Figure 4.3. Transposable element (TE) activities from RegisTER-ME peaks. (A) Fractions of 
peaks with the corresponding TF motifs for canonical peaks, RegisTER-ME peaks and the 
competitor regions of these  RegisTER-ME peaks. (B) Fractions of peaks with the top 3 co-
factor motifs from canonical peaks for the 3 groups of peaks. (C) Fractions of peaks overlapping 
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different genome annotations for canonical peaks and RegisTER-ME peaks. (D) TE divergence 
score cumulative distributions for canonical peaks and RegisTER-ME peaks across K562 ChIP-
seq data. (E) Enrichment of different TE families across different TF ChIP-seq data. Bar plots 
show the enrichment of different TE families in CTCF ChIP-seq data (left panel) and SMAD5 
ChIP-seq data (right panel).10  

 

RegisTER-ME algorithm over CSEM. 

 

4.3.3 Transposable element (TE) activities from RegisTER-ME peaks 
The integration of flanking sequences boosted the performance of RegisTER-ME in 

capturing the true binding positions. To explore the benefits of using flanking sequences and 

reveal the potential mechanism of TF binding, we checked the occurrence of TF motifs and co-

factor motifs in three groups of peaks: canonical peaks, RegisTER-ME peaks and the competitor  

regions of RegisTER-ME peaks. Fig 4.3A and 4.3B shows the overall occurrence of TF motifs or 

co-factor motifs in these three groups of peaks across all K562 ChIP-seq datasets. Significant 

higher fractions of occurrences can be observed through the figures or through statistical tests, 

which illustrates the ability of RegisTER-ME in capturing useful motif information from the flanking 

sequences.  

We also checked the genome annotations of canonical peaks and RegisTER-ME peaks 

(Fig 4.3C). The result shows that RegisTER-ME peaks tend to locate in repeat regions, such as 

TEs, where the ChIP-seq read mappability is low. Digging deeper into those TE-derived peaks, 

we found RegisTER-ME peaks were originated from younger TEs (Fig 4.3D), indicating the ability 

of RegisTER-ME in capturing the recent activities of TEs in regulatory network evolution.  

Figure 4.3E shows the enrichments of TE families in different TF ChIP-seq datasets. 

Previous studies uncovered a pervasive phenomenon where TEs expanded the TF regulatory 

networks [220,221]. Once there is a TF binding site in a TE, it can be spread to the genome 

through the copy and insertion of the TE. The enrichment heatmaps provided a good source to  
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Figure 4.4. Co-evolution of transcription factors and co-factors in TE-derived TF binding 
sites. (A) A sequence alignment for LTR13-derived CTCF binding regions. The left panel shows 
the identification of each binding site (blue: from canonical peaks, red: from RegisTER-ME 
peaks). The positions with motifs in the sequence alignment result are colored based on the 
nucleotides. The right panel shows the divergence score of each LTR13 sequence. (B) The 
motif matching scores for CTCF binding sites. The CTCF binding sites are divided into 2 groups: 
before having p63 motifs in the flanking regions and after having p63 motifs in the flanking 
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regions. (C) The expression level of the nearest genes for the 2 groups of CTCF binding sites. 
(D) Enriched pathways for the 2 groups of nearest genes. 11 

 

study different waves of TFBS creation from TEs in evolution. Using CTCF as an example, the 

enrichments from canonical peaks illustrated that long before, TEs in MIR family or L2 family 

contributed to the creation of CTCF binding sites, while in recent time, Alu elements and ERV1 

elements began to participate in this creation procedure. The pattern in SMAD5 binding sites are 

quite different, as the majority of the TE creation activities were observed from RegisTER-ME 

peaks. 

 

4.3.4 Co-evolution of transcription factors and co-factors in TE-derived TF binding sites 
Although TEs can expand a TF’s binding sites, not all the TEs of the same family (or sub-

family) contain this TF binding site. Some TF binding sites are fixed while others decay with 

evolution. We then raise the question, what is the potential underlying mechanism of this 

phenomenon? To answer this question, we first collected peaks (both canonical and RegisTER-

ME) derived from the same TE subfamily. By scanning the sequences with all the motifs from 

public available database [200], we identified a list of TF - co-factor pairs in a few ChIP-seq 

datasets (Fig 4.4A and Fig C.4-C.9).  

In Fig 4.4A, we profiled the motifs in LTR13-derived peaks and sorted the peaks on TE 

divergence score in a CTCF ChIP-seq in HepG2. While the majority of the peaks have CTCF 

motifs, p63 motif appeared only in peaks with smaller TE divergence scores. After the occurrence 

of this p63 motif in the peak, we observed a fixed high motif matching score of the TF, compared 

to previous fluctuated scores (Fig 4.4B), and an overall increased expression level in the nearest 

genes (Fig 4.4C). We did not have these observations for p53 motif or p73 motif. 

Previous studies showed p63 cooperates with CTCF to modulate chromatin architecture  
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Figure 4.5. Co-regulation of TE-derived TF binding sites in long-range chromatin 
interactions. (A) Number of TEs participating in long-range interactions. (B) Distance 
distribution for long-range interactions. (C) Degree distribution for long-range interactions. (D) 2 
examples of Alu-derived co-regulation. The example in the upper panel shows 3 Alu-derived 
MYC binding sites that regulate the TFRC gene. The example in the lower panel shows 2 Alu-
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derived binding sites (one for CEBPB and one for USF1) that regulate the CBX5 gene. (E) 
Average number of Alu-derived enhancers that regulate a gene among shuffled long-range 
interactions. (F) –log10(P-value) of different Alu sub-families in Alu-derived long-range 
interaction co-regulations. (G) –log10(P-value) of top 20 TFs in Alu-derived long-range 
interaction co-regulations. 12 

 

[222] and p63 itself plays an important role in regulating metabolism of cancer cells [223], 

therefore we conducted pathway analysis for the nearest genes before and after the appearance 

of p63 motif to explore whether p63 is a potential co-factor of CTCF and the occurrence of p63 

will result in functional results. In Fig 4.4D, the two groups of nearest genes showed totally 

different gene ontology enrichments. While the nearest genes of peaks without p63 motif tend to 

participate in immune-related pathways, the nearest genes of peaks with p63 motif are more 

enriched in metabolic processes. We thus came to the conclusion that the occurrence of co-factor 

motifs in the flanking region of the TF binding site may stabilize the TF motif and increase the  

activity of this TF binding site in cell-type specific functions.      

 

4.3.5 Co-regulation of TE-derived TF binding sites in long-range chromatin interactions 
Long-range chromatin interactions play an essential role in regulatory networks [224]. To 

uncover the contribution of transposable elements in long-range interaction, we analyzed TE-

derived TF binding sites, including those from canonical pipeline or from RegisTER-ME 

application. Fig 4.5A illustrates the scales of different TE families that participate in long-range 

interaction. 3 TE families, Alu, MIR and L2, contribute the majority of the TF binding sites in long-

range interaction. Next, we studied the distance distribution (Fig 4.5B) and found most of TE-

derived TF binding sites are within 100kb of their target genes. Degree analysis showed many 

genes can be regulated by multiple TE-derived TF binding sites (Fig 4.5C), with most of the genes 

regulated by less than 100 TF binding sites. 

We checked those genes regulated by multiple TE-derived TF binding sites, especially 



 86 

those TF binding sites from the same TE family. These TE-derived TF binding sites and gene 

pairs can be classified into two groups: binding sites for the same TF and binding sites for different 

TFs. We showed real examples for these two groups respectively in Fig 4.5D. In Fig 4.5D. The 

example in the top shows three MYC binding sites regulating the same gene, TFRC. The example 

at the bottom shows two TF binding sites, CEBPB and USF1, regulating CBX5 gene. We called 

the regulation for TF binding sites derived from the same TE family co-regulation. To test which 

TE family engages more in co-regulation events, we conducted a perturbation on the TE label of 

each TE-derived TF binding site. The results for each TE family is listed in Fig C.10. Among all 

the TE families, only Alu shows higher participation in co-regulation than the shuffled backgrounds 

in K562 (Fig 4.5E). Further subdivision on Alu subfamilies and TF ChIP-seq datasets prioritized 

AluSg, FRAM, AluSx1 and ADNP, GTF2E2, BRD4 to be the top subfamilies or TFs involved in 

co-regulation activities. 

 

4.3.6 eQTL interpretation from the identification of RegisTER-ME peaks 
The application of RegisTER-ME to the whole ENCODE database resulted in around three 

million newly discovered peaks. We further explored the usage of these RegisTER-ME peaks in 

interpreting eQTL mechanisms. We first checked the enrichment of functional elements in 

RegisTER-ME peaks compared to shuffled backgrounds. Fig 4.6A shows RegisTER-ME peaks 

from K562 ChIP-seq datasets were more enriched with eQTLs in blood-related diseases, 

leukemia SNPs and GWAS SNPs.  

In addition, we discovered a few real examples of explaining eQTL using RegisTER-ME 

peaks. In Fig 4.6B, there is an SNP (rs1165696) from GEUVADIS project. This SNP is an eQTL 

located in a TE in blood cells, with target gene C12orf73 (P-value=1.27539 × 10−10). However, 

the mechanism of how this eQTL affects C12orf73 expression is understudied. By applying 

RegisTER-ME, we identified a CEBPB binding site around this eQTL. Since CEBPB has shown 
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to be involves in immune and inflammatory responses [225], a SNP within it may block this 

enhancer-gene interaction and thus resulting in target gene expression change. This provides a 

potential mechanical explanation for the functional results of this SNP. 

In total, we discovered 10 cases (Fig C.11-C.19) in K562 ChIP-seq datasets where an 

eQTL was understudied due to their location in repeat regions. 

 

              

Figure 4.6. eQTL mechanism revealing from the identification of RegisTER-ME peaks. (A) 
Compared to shuffled background, newly discovered peaks from RegisTER-ME have higher 
fraction to overlap 3 types of SNPs: eQTLs in blood diseases (left), SNPs in leukemia from 
TCGA (middle), GWAS SNPs (right). (B) A real example shows how to utilize newly discovered 
peak from RegisTER-ME to interpret eQTL mechanism. 13 
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4.4 DISCUSSION 

In this study, we developed a statistical model, RegisTER-ME, to allocate multi-mapping 

reads in ChIP-seq. This model not only takes use of the local genomic context, but also integrates 

flanking sequence information to help discriminate true binding regions in repetitive regions with 

low mappabilities. The fractions of RegisTER-ME peaks with TF motifs and top co-factor motifs 

indicate that the flanking sequence information used in the model can capture the TF binding 

activities. In addition, the inclusion of sequence information allows for the quick convergence of 

the model. We proved the superior performance of RegisTER-ME through conducting four overall 

method comparisons with an existing read mapping algorithm, CSEM [5], as well as real example 

checking and pathway analysis.  

We applied RegisTER-ME to the whole ENCODE database and achieved around three 

million newly discovered ChIP-seq peaks. These peaks tend to locate in repeat regions, such as 

TEs, and serve as a rich resource to study the evolution of young TEs in regulatory network 

evolution.  

Long-range chromatin interactions play an essential role in regulatory networks [224]. In 

the study of long-range chromatin interactions from transposable elements, we defined a term, 

co-regulation, which refers to the regulation events from TF binding sites derived from the same 

TE family. Perturbation tests shows Alu is the only TE family in K562 that is enriched in the co-

regulation activities. Next step, we will expand our analysis to the collaborations among TE 

families in co-regulation, and the functional results from these collaborations. 

Finally, we explored the capacity of RegisTER-ME in revealing eQTL mechanism. Some 

eQTLs are located in non-coding regions, where the mappabilities are low. Traditional ways of 

processing ChIP-seq data often result in peak missing in such regions. By applying RegisTER-

ME, we re-discovered the protein binding events in these regions and were able to uncover the 

mechanism of how eQTLs affect target gene expression. In Fig 4.6B, we discussed an example, 
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where an eQTL is within a missing CEBPB peak to affect the expression of C12orf73 gene through 

long-range interactions. In total, we discovered 10 cases in K562 ChIP-seq datasets where an 

eQTL was understudied due to their locations in repeat regions. 
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CHAPTER 5 

FUTURE DIRECTIONS 

 

The protein-protein interactions between TFs on enhancers or promoters have been 

found to participate in the process of long-range chromatin interactions and mediate distal 

enhancers to the proximity of target gene promoters. There are in-direct PPIs between TFs on 

enhancers and TFs on promoters. Another group of TF may not directly bind to genomic 

regions. They have PPIs with TFs on both enhancers and promoters, thus mediating in-direct 

interactions between TFs on enhancers and TFs on promoters. These in-direct interactions can 

be partially caught by TF modules in ProTECT. Next step, we will build a weighted multi-step in-

direct PPI network to capture in-direct TF interactions and further improve the performance of 

ProTECT. 

Although unsupervised enhancer-promoter prediction algorithms demonstrate an overall 

worse performance than supervised methods, their performances are not constrained by 

experimental techniques. We are considering to adapt the features in ProTECT into an 

unsupervised model. In this way, the new ProTECT model can overcome the high false positive 

rate or high false negative rate in experimental techniques and the predicted enhancer-promoter 

pairs will have reduced bias, while we can still gain mechanistic insights on how specific long-

range chromatin interactions are established. 

PE ChIP-seq technology sequences both ends of a DNA fragments and captures more 

information than SE ChIP-seq. With the decrease of PE ChIP-seq cost, more PE ChIP-seq 

datasets are now available. Since multi-mapping reads still account for a substantial part of PE 

ChIP-seq, there is an urgent need to improve RegieTER-ME so that it can be applied to PE 

ChIP-seq. 



 91 

In the study of long-range chromatin interactions from transposable elements, we 

defined a term, co-regulation, which refers to the collaborative regulation events from TE-

derived TF binding sites. Enriched co-regulations were observed from Alu-derived enhancers. 

We plan to expand our analysis to the co-regulations among enhancers from different TE 

families, to explore the functional outcome from collaborations among TE families. 
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APPENDIX A  

Supplementary materials for Chapter 2 

Table A.1. List of Differentially expressed genes (control vs DHT) 

ID Gene name log2(FoldChange) padj 

ENSMUSG00000040026 Saa3 3.232645808 6.66E-11 

ENSMUSG00000057465 Saa2 2.948129216 1.31E-07 

ENSMUSG00000097767 Miat 2.791957628 4.51E-20 

ENSMUSG00000044254 Pcsk9 2.531884636 8.37E-13 

ENSMUSG00000026227 2810459M11Rik 2.366871294 3.33E-07 

ENSMUSG00000040627 Aicda 2.335567409 6.75E-40 

ENSMUSG00000102224 4930447F24Rik 2.302135849 4.11E-06 

ENSMUSG00000066438 Plekhd1 2.29319525 3.85E-24 

ENSMUSG00000048572 Tmem252 2.274213716 2.08E-13 

ENSMUSG00000022367 Has2 2.253576087 8.32E-11 

ENSMUSG00000040181 Fmo1 2.118140893 3.91E-05 

ENSMUSG00000025491 Ifitm1 2.083852535 3.64E-09 

ENSMUSG00000015090 Ptgds 2.074159236 7.31E-17 
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Table A.1 (cont’d) 

ENSMUSG00000033377 Palmd 2.047156175 4.44E-06 

ENSMUSG00000040170 Fmo2 1.99665727 1.18E-16 

ENSMUSG00000048108 Tmem72 1.921339475 2.98E-18 

ENSMUSG00000041731 Pgm5 1.902586561 8.39E-26 

ENSMUSG00000040276 Pacsin1 1.886299113 5.05E-15 

ENSMUSG00000025194 Abcc2 1.883052665 0.000718345 

ENSMUSG00000051727 Kctd14 1.863800792 5.11E-06 

ENSMUSG00000029275 Gfi1 1.861459796 4.85E-10 

ENSMUSG00000059852 Kcng2 1.827329868 0.001091998 

ENSMUSG00000040732 Erg 1.787673692 0.001345005 

ENSMUSG00000036067 Slc2a6 1.777850079 5.22E-05 

ENSMUSG00000041831 Sytl3 1.74518592 0.001483168 

ENSMUSG00000043811 Rtn4r 1.737659814 0.000512981 

ENSMUSG00000030228 Pik3c2g 1.684749791 4.60E-07 

ENSMUSG00000037071 Scd1 1.66702247 6.96E-23 

ENSMUSG00000020787 P2rx1 1.661067032 0.013374431 
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Table A.1 (cont’d) 

ENSMUSG00000001435 Col18a1 1.650641718 9.68E-18 

ENSMUSG00000028753 Vwa5b1 1.640786008 0.00551037 

ENSMUSG00000026535 Ifi202b 1.601341035 0.000632483 

ENSMUSG00000053469 Tg 1.585868099 2.12E-08 

ENSMUSG00000064310 Zpld1 1.580805284 5.34E-05 

ENSMUSG00000025020 Slit1 1.56004132 1.31E-23 

ENSMUSG00000020866 Cacna1g 1.538872791 0.000268186 

ENSMUSG00000024124 Prss30 1.49510662 9.26E-05 

ENSMUSG00000057615 Ldoc1 1.467712441 0.007714176 

ENSMUSG00000026959 Grin1 1.451093966 0.000327071 

ENSMUSG00000024030 Abcg1 1.450491667 5.79E-30 

ENSMUSG00000021835 Bmp4 1.445764915 1.68E-08 

ENSMUSG00000029371 Cxcl5 1.44348941 0.000309589 

ENSMUSG00000045281 Gpr20 1.431277922 0.000405488 

ENSMUSG00000003617 Cp 1.429595418 1.47E-18 

ENSMUSG00000075270 Pde11a 1.425886484 2.29E-07 



 96 

Table A.1 (cont’d) 

ENSMUSG00000009378 Slc16a12 1.419791994 0.02934806 

ENSMUSG00000035493 Tgfbi 1.412417685 6.47E-12 

ENSMUSG00000033576 Apol6 1.407447859 1.34E-18 

ENSMUSG00000015950 Ncf1 1.39897161 0.005941624 

ENSMUSG00000031636 Pdlim3 1.396592218 0.000477026 

ENSMUSG00000035226 Rims4 1.387428306 5.71E-52 

ENSMUSG00000090610 Gm3571 1.385630311 0.038014637 

ENSMUSG00000059743 Fdps 1.382081539 5.14E-66 

ENSMUSG00000000197 Nalcn 1.379624502 0.001284748 

ENSMUSG00000020010 Vnn3 1.368341677 0.011805643 

ENSMUSG00000027442 Cst8 1.362656254 0.019111214 

ENSMUSG00000020264 Slc36a2 1.362423795 1.64E-14 

ENSMUSG00000034452 Slc24a1 1.349514808 0.018595761 

ENSMUSG00000046182 Gsg1l 1.345261258 1.06E-27 

ENSMUSG00000060807 Serpina6 1.339428344 0.047426531 

ENSMUSG00000014846 Tppp3 1.334558932 1.22E-07 
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Table A.1 (cont’d) 

ENSMUSG00000042429 Adora1 1.33333995 2.66E-62 

ENSMUSG00000024799 Tm7sf2 1.320636003 7.02E-47 

ENSMUSG00000022309 Angpt1 1.313581442 7.21E-23 

ENSMUSG00000023832 Acat2 1.307843953 9.65E-99 

ENSMUSG00000031349 Nsdhl 1.300080882 1.64E-64 

ENSMUSG00000004031 Brinp2 1.290549003 2.82E-25 

ENSMUSG00000097471 5830432E09Rik 1.281348669 0.003149409 

ENSMUSG00000030041 M1ap 1.26800181 9.89E-06 

ENSMUSG00000027500 Stmn2 1.253686327 0.003644936 

ENSMUSG00000074768 Bhmt 1.252135434 4.53E-05 

ENSMUSG00000108022 Gm7298 1.226191284 0.028326201 

ENSMUSG00000031170 Slc38a5 1.226148147 5.52E-33 

ENSMUSG00000044716 Dok7 1.219641601 2.66E-28 

ENSMUSG00000038295 Atg9b 1.216862215 1.68E-09 

ENSMUSG00000020388 Pdlim4 1.21409607 4.53E-38 

ENSMUSG00000031740 Mmp2 1.211829905 3.09E-07 



 98 

Table A.1 (cont’d) 

ENSMUSG00000099884 Gm8204 1.198275608 0.042096463 

ENSMUSG00000032327 Stra6 1.179022794 9.06E-12 

ENSMUSG00000040907 Atp1a3 1.177776882 2.08E-44 

ENSMUSG00000034353 Ramp1 1.172786352 1.65E-23 

ENSMUSG00000027460 Angpt4 1.169968692 9.66E-11 

ENSMUSG00000029121 Crmp1 1.169663257 0.040245001 

ENSMUSG00000078627 Marchf10 1.167228441 0.027691879 

ENSMUSG00000026255 Efhd1 1.164338295 3.71E-20 

ENSMUSG00000020262 Adarb1 1.164202495 4.65E-41 

ENSMUSG00000048022 Tmem229a 1.150303917 0.000111156 

ENSMUSG00000109127 Gm31135 1.148494426 0.023103526 

ENSMUSG00000029168 Dpysl5 1.140837153 1.06E-29 

ENSMUSG00000015093 Clic3 1.138175042 0.007403659 

ENSMUSG00000024107 Lhcgr 1.132216745 0.038850278 

ENSMUSG00000030088 Aldh1l1 1.130149599 3.97E-19 

ENSMUSG00000047496 Rnf152 1.125091067 2.95E-17 
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Table A.1 (cont’d) 

ENSMUSG00000030562 Nox4 1.119480441 7.26E-20 

ENSMUSG00000085664 Atxn7l1os2 1.115950907 0.049939487 

ENSMUSG00000085403 Gm13068 1.111291427 0.035327459 

ENSMUSG00000105870 7330423F06Rik 1.102392118 0.002277307 

ENSMUSG00000024665 Fads2 1.102356377 6.75E-26 

ENSMUSG00000025203 Scd2 1.096572492 1.10E-43 

ENSMUSG00000017969 Ptgis 1.088273402 2.70E-31 

ENSMUSG00000084979 Gm16267 1.085952855 0.003474604 

ENSMUSG00000024697 Gna14 1.071172568 0.001223465 

ENSMUSG00000020275 Rel 1.070970176 6.74E-48 

ENSMUSG00000001467 Cyp51 1.068673265 1.54E-61 

ENSMUSG00000038623 Tm6sf1 1.067893051 4.15E-07 

ENSMUSG00000006517 Mvd 1.062210849 1.32E-43 

ENSMUSG00000032066 Bco2 1.055436112 0.047639175 

ENSMUSG00000074676 Foxs1 1.050418422 0.043531869 

ENSMUSG00000079654 Prrt4 1.046750317 3.65E-27 
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Table A.1 (cont’d) 

ENSMUSG00000029380 Cxcl1 1.03981259 0.006424397 

ENSMUSG00000006403 Adamts4 1.038981977 1.71E-14 

ENSMUSG00000042761 Mrap2 1.038813908 0.012243783 

ENSMUSG00000058258 Idi1 1.036867263 4.17E-46 

ENSMUSG00000055809 Dnaaf3 1.034012926 0.000654305 

ENSMUSG00000031169 Porcn 1.03313075 5.93E-18 

ENSMUSG00000087042 Gm11611 1.025716389 0.028152442 

ENSMUSG00000027459 Fam110a 1.02374762 4.56E-20 

ENSMUSG00000020826 Nos2 1.023665657 2.98E-15 

ENSMUSG00000042116 Vwa1 1.01944436 7.48E-05 

ENSMUSG00000031604 Msmo1 1.018192168 4.92E-48 

ENSMUSG00000108825 Gm45838 1.014362481 4.67E-05 

ENSMUSG00000043953 Ccrl2 1.011263096 0.0149534 

ENSMUSG00000027360 Hdc 1.009906987 0.003260173 

ENSMUSG00000021678 F2rl1 1.005672859 0.027004401 

ENSMUSG00000042284 Itga1 1.00515774 3.96E-12 
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Table A.1 (cont’d) 

ENSMUSG00000073608 Gal3st2c 1.004561136 9.69E-06 

ENSMUSG00000108456 4732496C06Rik 1.004194728 0.007027598 

ENSMUSG00000052504 Epha3 1.003992581 0.0004508 

ENSMUSG00000038173 Enpp6 1.000379706 8.78E-06 

ENSMUSG00000034450 Gulo -1.002542898 0.003162637 

ENSMUSG00000033910 Gucy1a1 -1.011772779 1.44E-05 

ENSMUSG00000020467 Efemp1 -1.014829693 1.84E-24 

ENSMUSG00000076441 Ass1 -1.023276864 1.13E-09 

ENSMUSG00000097451 Rian -1.036267552 0.003266465 

ENSMUSG00000070867 Trabd2b -1.053062374 1.33E-18 

ENSMUSG00000006538 Ihh -1.057559256 0.001762436 

ENSMUSG00000021268 Meg3 -1.063057702 0.000271158 

ENSMUSG00000021396 Nxnl2 -1.071824774 0.004202448 

ENSMUSG00000032899 Styk1 -1.077512677 0.000246695 

ENSMUSG00000075334 Rprm -1.090742714 0.00461596 

ENSMUSG00000044337 Ackr3 -1.104640699 0.012565919 
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Table A.1 (cont’d) 

ENSMUSG00000030607 Acan -1.111625779 0.023745298 

ENSMUSG00000025777 Gdap1 -1.124532224 0.029720475 

ENSMUSG00000021640 Naip1 -1.157295562 4.37E-10 

ENSMUSG00000096586 Gm22918 -1.163812831 0.004119923 

ENSMUSG00000074183 Gsta1 -1.167756095 0.032930109 

ENSMUSG00000022054 Nefm -1.171375777 0.041654816 

ENSMUSG00000020099 Unc5b -1.173123864 1.07E-62 

ENSMUSG00000042453 Reln -1.188156285 1.76E-08 

ENSMUSG00000026602 Nphs2 -1.189681413 0.019540185 

ENSMUSG00000027419 Pcsk2 -1.199314632 0.00200391 

ENSMUSG00000021373 Cap2 -1.208094708 0.00049739 

ENSMUSG00000039419 Cntnap2 -1.214593399 7.00E-24 

ENSMUSG00000005413 Hmox1 -1.221386276 9.93E-58 

ENSMUSG00000016918 Sulf1 -1.222159623 2.12E-21 

ENSMUSG00000031465 Angpt2 -1.239146624 4.10E-10 

ENSMUSG00000055301 Adh7 -1.244391021 0.029440687 



 103 

Table A.1 (cont’d) 

ENSMUSG00000000435 Myf5 -1.296820117 0.005717626 

ENSMUSG00000049107 Ntf3 -1.298559462 2.90E-09 

ENSMUSG00000021806 Nid2 -1.301206732 0.000356361 

ENSMUSG00000082676 Gm11843 -1.301296198 5.06E-15 

ENSMUSG00000064036 Mro -1.307659644 3.61E-08 

ENSMUSG00000033342 Plppr5 -1.309653699 4.04E-05 

ENSMUSG00000061353 Cxcl12 -1.319144969 4.21E-05 

ENSMUSG00000033007 Asic4 -1.319314742 0.047433484 

ENSMUSG00000101859 Gm29233 -1.328498354 0.002503608 

ENSMUSG00000031216 Stard8 -1.339077201 1.77E-12 

ENSMUSG00000025934 Gsta3 -1.357998501 0.000645456 

ENSMUSG00000025127 Gcgr -1.363476036 4.32E-05 

ENSMUSG00000046699 Slitrk4 -1.398743797 8.90E-77 

ENSMUSG00000020902 Ntn1 -1.415616681 0.00029717 

ENSMUSG00000032419 Tbx18 -1.424888285 0.000936063 

ENSMUSG00000044313 Mab21l3 -1.439242208 4.01E-06 
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Table A.1 (cont’d) 

ENSMUSG00000074665 Bpifb4 -1.466550727 0.006972841 

ENSMUSG00000027220 Syt13 -1.477151576 1.33E-07 

ENSMUSG00000031870 Pgr -1.499841059 0.021940689 

ENSMUSG00000021822 Plau -1.503772993 3.25E-06 

ENSMUSG00000071766 Rhox12 -1.567693589 0.002987725 

ENSMUSG00000015619 Gata3 -1.613808564 2.60E-26 

ENSMUSG00000062372 Otof -1.623276637 7.61E-06 

ENSMUSG00000040856 Dlk1 -1.644044335 3.13E-10 

ENSMUSG00000031380 Vegfd -1.673597832 2.69E-48 

ENSMUSG00000021730 Hcn1 -1.763970618 4.06E-08 

ENSMUSG00000058252 Tcp11x2 -1.86169062 0.00393985 

ENSMUSG00000029917 C130060K24Rik -1.923897495 0.000484132 

ENSMUSG00000003849 Nqo1 -1.932631264 1.71E-11 

ENSMUSG00000020838 Slc6a4 -1.973826888 2.08E-13 

ENSMUSG00000027895 Kcnc4 -2.092342463 0.000168556 

ENSMUSG00000046999 1110032F04Rik -2.244200074 2.37E-11 
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Table A.1 (cont’d) 

ENSMUSG00000091272 Gm17641 -3.174375896 1.61E-06 

                            

 

 

 

 

Figure A.1 Genome wide H3K27me3 peaks with respect to different genomic annotations 
14 
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APPENDIX B  

Supplementary materials for Chapter 3 

 

Figure B.1. Summary of training dataset generation and confounding factor controls. (A) 
Summary of the multi-omics datasets (upper panel) and the numbers of TF PPI features (lower 
panel). The number of TF features are reduced by applying the hierarchical network community 
detection on the PPI network. (B-F) A balanced training dataset is generated by controlling three 
sets of confounding factors. (B) Inter-TAD enhancer-promoter interactions are removed. 
Compared with Hi-C interactions (red lines), randomly generated enhancer-promoter 
interactions (brown lines) are enriched with inter-TAD pairs and cover domain boundaries. 
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Consequently, the stronger binding strength of boundary-enriched TFs, e.g. CTCF, between 
enhancers and genes are observed for negative interactions. The inter-TAD pairs are removed 
after confounding factor control (blue lines). (C-D) The genomic distance is controlled. 
Compared with the genomic distance of positive interactions (red), (C) Genomic distances of 
randomly paired negative enhancer-promoter interactions (brown) are longer than positive 
interactions observed from Hi-C (red), before confounding factor controls. (D) The genomic 
distance distribution of negative sets (blue) is consistent with positive interactions (red), after 
confounding factor control. (E) The fraction of linking to expressed genes in random enhancer-
gene interactions (brown) is lower than the fraction in the positive set based on Hi-C (red), 
before confounding factor control. (F) All target genes are expressed in both negative 
interactions (blue) and positive interactions (red), after confounding factor control. 15  
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Figure B.2. Predictive powers of features are supported by the differential distributions of 
features in Hi-C based positive interactions and random negative interactions. (A) The 
genes linked by Hi-C interactions (red) have a higher expression level than random genes 
(blue). (B) The enhancers linked by Hi-C interactions (red) are more active than random 
enhancers (blue). (C) The enhancer-promoter interactions overlapping with Hi-C interactions 
(red) have higher activity correlations between linked enhancers and genes across 56 cell-
types. As comparisons, two versions of controls are generated: 1) Distance controlled random 
enhancer-promoter pairs (blue): randomly paired enhancer-promoter interactions which follow 
the same distance distribution as Hi-C interactions. 2) Random pairs (brown): randomly paired 
enhancer-promoter interactions without controlling any confounding factors. For each version, 
the same number of enhancer-promoter interactions are generated and the correlations 
between enhancer activity and gene expression across cell types are calculated. (D) Examples 
of TF PPIs showing differential enrichments in Hi-C interactions (red) vs. random interactions 
(blue). The PPI enrichment is calculated as the fraction of enhancer-promoter interactions 
containing the specific TF PPI features. 16  

 



 109 

 

Figure B.3. Advanced feature dimension reduction is needed due to the risk of 
overfitting. (A) The ROC curves of a random forest predictive model using high-dimensional TF 
PPI features, based on typical cross-validation. (B) The ROC curves of the same predictive 
model, based on the rigorous genomic-bin split cross-validation, where the dependency 
between the training and testing datasets are strictly broken. The significantly decreased AUC is 
due to the large number of TF PPI features, suggesting advanced feature dimension reduction 
approach is required to construct a robust predictive model. 17  
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Figure B.4. Hierarchical network-community detection based on the PPI network to 
construct module-level TF PPI features. (A) The number of TF PPI modules as a function of 
different random-walk step-sizes (P). step-size=20 is selected to balance the detection of local 
and global modules. (B) Examples of detected TF PPI modules. Nodes represent proteins and 
edges represent PPIs. TFs belonging to the same module are annotated with the same color. 
(C-D) Modularity scores of hierarchical network-community detections with different maximum 
module sizes. The optimal number of S-modules is selected based on the highest modularity 
score. The optimal number of the L-module is selected based on the elbow points of the 
modularity score curves. 18 
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Figure B.5. Enrichment analysis and PPI support analysis for TF module pairs. (A) The 
enrichment of TF module pairs in Hi-C interactions (y-axis) compared to background random 
interactions (x-axis). Points represent TF module pairs. Frequency is calculated as the fraction 
of enhancer-gene interactions containing the specific TF module pairs, one on the enhancer 
side and one on the linked promoter side. Fold-change (FC) is the ratio of the frequency in Hi-C 
interactions over the frequency in backgrounds. TF module pairs are colored by the FC (red: 
FC>2; orange: 1<FC<2; blue: FC<1). (B) Enriched TF module pairs are supported by inter-
module PPIs. The fraction of pairs supported by inter-module PPIs is calculated for the set of 
enriched TF module pairs (red). As controls, the TF members from the enriched module pairs 
are randomly paired (brown). An empirical statistical test is done based on 1,000 random 

repeats of controls (p-value=1.39x10-2). 19 
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Figure B.6. PPI community detection based on the Markov Cluster Algorithm (MCL). (A) 
Modularity scores of PPI communities using MCL with different inflation values. (B) Distribution 
of the module sizes based on the MCL prediction using the inflation value with the highest 
modularity score.  20 
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Figure B.7. Model performance (y-axis) as a function of the number of decision trees (x-
axis) used in the random forest model. The AUCs are calculated based on the same data 
and the same cross-validation procedure. The averaged AUC of cross-validations is shown. 
Robust performances are observed in (A) GM12878 and (B) K562. 21 
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Figure B.8. Performance of ProTECT using different epigenetic signals for enhancers and 
thresholds for the PPI confidence scores in GM12878. The enhancer activity is quantified by 
DNase-seq (brown), H3K4me1 (green) and H3K27ac (red), respectively. The threshold of PPI 
confidence scores is set to (A) 100, (B) 200 and (C) 300. Only PPIs with ‘Experimental’ 
confidence scores greater than the thresholds are used as TF-related features in ProTECT and 
TargetFinder. In K562. ProTECT achieves AUC=0.8, 0.78 and 0.74 with threshold 100, 200 and 
300 respectively. As comparisons, TargetFinder achieves AUC=0.71, 0.69 and 0.69.  22 
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Figure B.9: Performance comparison based on imbalanced training data, using the 
genomic bin-split cross-validation procedure. The positive to negative ratio is set to 0.1. The 
model performance is quantified by (A) ROC curves and (B) PR curves. 23 
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Figure B.10. Performance comparison using five different Hi-ChIP datasets as the gold-
standards in GM12878. The model is trained on the balanced training data. ProTECT uses the 
DNase-seq signals to quantify enhancer activity. The threshold for the PPI confidence scores is 
set to 100. 24 
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Figure B.11. Performance comparison using four different ChIA-PET datasets as the 
gold-standards in (A-C) K562 and (D) GM12878. ProTECT uses the DNase-seq signals to 
quantify enhancer activities. The threshold for the PPI confidence scores is set to 100.  25 
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Figure B.12. Performance comparison based on different combinations of Hi-C data and 
TF ChIP-seq data. (A-B) Performance comparison by pairing Hi-C data and TF ChIP-seq 
data from different cell-types. (A) The training enhancer-gene pairs are generated using the 
Hi-C data in GM12878. The TF-related features are generated using the TF ChIP-seq datasets 
in K562. (B) The training enhancer-gene pairs are generated using the Hi-C data in K562. The 
TF-related features are generated using the TF ChIP-seq datasets in GM12878. (C) The 
training data are generated using the Hi-C in GM12878 (red) and K562 (blue) respectively. Only 
83 TFs with ChIP-seq data available in both GM12878 and K562 (intersection subset) are used 
to generate the PPI features. 26 
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Figure B.13. Summary of genome-wide predictions by ProTECT in GM12878 and K562. 
(A-C) Compared with controls, the ProTECT predictions have (A) higher gene expressions, (B) 
higher enhancer activities, (C) higher activity-correlations between enhancers and genes. The 
controls are generated in the same way as described in Supplementary Figure 1. (D-E) 
Summary of distance distributions of ProTECT predictions in GM12878. (D) ProTECT 
predictions have similar distance distributions as real GM12878 Hi-C interactions. (E) The 
distribution of the genomic distances for predicted enhancer-promoter interactions by ProTECT. 
(F-G) The degree distributions for (F) enhancers (i.e. the number of target genes regulated per 
enhancer), and (G) genes (i.e. the number of enhancers co-regulating the same genes), based 
on ProTECT predictions in GM12878. (H-J) The distribution of genomic distances and the 
degree distributions for enhancers and genes in K562.  27 
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Figure B.14. Validation of predicted enhancer-gene links with enhancer degrees greater 
than one. ProTECT is applied to the whole genome to predict enhancer-gene links. The 
enhancer-gene links are considered as positive samples if the links are supported by the Hi-C 
interactions and the enhancer has degree greater than one across all positive samples. The 
negative samples are selected by pairing the same enhancer set as the positive samples with 
random genes. The positive to negative ratio is set to 0.1. The performance is evaluated by (A) 
ROC curves and (B) PR curves. 28 



 121 

 

Figure B.15. Performance comparison with the ABC model in the whole genome. The 
same set of enhancer-gene pairs are ranked by ProTECT (red) and ABC model (blue) 
respectively. Five different Hi-ChIP datasets are used as the gold-standards. The performance 
is evaluated by ROC curves and PR curves.  29 
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Figure B.16. Examples of prioritized module-level TF PPI features. The two module-level TF 
PPI features are selected based on the highest feature importance inferred by the random forest 
model. Two types of nodes are included in the network: TFs (large size) and non-TF proteins 
(small). Nodes from the first module are colored as blue and TFs from the second module are 
colored as orange. Edges represent the inter-module TF-level PPIs that connect the TF module 
pairs. Edges point from enhancer-binding TFs to promoter-binding TFs. The edges are colored 
by the occurrence frequencies of TF PPIs in ProTECT predictions. Important TF-level PPIs in 
each module-level feature are further prioritized based on the occurrence frequencies, 
e.g.RELB-YY1 and SMC3-POLR2A.  30 
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Figure B.17. Comparing the TF-level PPI abundance scores in the Hi-C supported 
enhancer-gene links (training set, x-axis) and the ProTECT predictions (y-axis). Dots 
represent the TF PPIs. The Spearman correlation is 0.954.  31 
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Figure B.18. Identification of the directions of TF PPI features. For each pair of TF PPI 
features with opposite directions, the fractions of predicted enhancer-promoter 
interactions containing the specific TF PPI features are used as the abundance scores. (A) 
Examples of un-directional TF PPI features, where the abundance scores of two directional 
features are similar to each other. (B) Examples of directional TF PPI features, where the 
abundance scores of the two directional features are substantially different. 32 
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Figure B.19. Differential pathway enrichments of genes regulated by different module-level 
TF PPIs based on the ProTECT predictions. (A-B) Using all genes as the background gene 
sets in (A) GM12878 and (B) K562. (C) The genes with the same promoter-binding TFs are used 
as the background gene sets in GM12878 for the GO analysis. (D) The genes linked by the 
enhancers with the same enhancer-binding TFs are used as the background gene sets in 
GM12878 for the GO analysis. 33 
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Figure B.20. QTL enrichment analysis in K562. (A) Enrichment of ProTECT predictions with 
cis-eQTLs (y-axis) from multiple datasets (x-axis). Two versions of controls are generated: 1) 
Random pairs (brown): randomly pairing enhancers and promoters within 2Mb distance windows. 
2) Distance controlled (blue): randomly pairing enhancers and genes while the genomic distances 
follow the same distribution as ProTECT predictions (red). Controls are generated 1,000 times 
and standard deviations are used for error bars. Enrichments of TargetFinder and IM-PET are 

also included. Empirical p-values are calculated. (***: p-value < 10-3, **: p-value < 10-2) (B) 
Relative genomic distance distribution between cis-eQTL SNPs and the summits of ChIP-seq 
peaks of the prioritized TFs by the model (red). The relative distance is calculated as the distance 
between cis-eQTL SNPs and TF ChIP-seq peak summits, normalized by the size of TF peaks. 
The same number of peaks of bottom-ranked TFs (grey) and randomly selected enhancer-binding 
TFs (blue) are used as controls. The p-value equals to 0.0518 based on the Kolmogorov-Smirnov 
test. (C) Trans-eQTL analysis in K562. The hypergeometric test is used to test the enrichment of 



 127 

overlaps between enhancer-mediated TF-gene pairs and trans-eQTLs, whose SNPs located in 
the TF’s gene body and the eQTL target gene is the same as the TF’s target gene (red). The -
log10(p-value) of the hypergeometric test is shown. The p-values are highly significant in 

ProTECT predictions (p-value=8.12x10-9) compared with two controls: 1) nearest gene to 

enhancers (p-value=0.052, brown), and 2) random target genes (p-value=7.13x10-4, blue). 34 
 
 
 

 

Figure B.21. ProTECT predicts enhancer-gene links based on the imputed TF binding 
sites. The TF binding sites are imputed by overlapping TF motifs with cell-type specific DNase-
seq peaks. For each TF, strong motifs within DNase-seq peaks across the whole genome are 
considered as the imputed TF binding sites. ProTECT uses the imputed TF binding sites to 
generate the TF PPI features. (A) In GM12878, TF binding sites for 128 TFs are imputed and 
used. (B) In K562, TF binding sites for 270 TFs are imputed and used. 35 
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APPENDIX C  

Supplementary materials for Chapter 4 

 

Figure C.1. The exploration of different parameters in the model. (A) The Ps, Pn distribution 
in a CTCF ChIP-seq dataset in GM12878 (left) and a NRF1 ChIP-seq dataset in K562 (right). 
(B) The kmer frequencies in the CTCF ChIP-seq dataset (left) and the NRF1 ChIP-seq dataset 
(right). (C) Model convergence with iterations in the CTCF ChIP-seq dataset (left) and the NRF1 
ChIP-seq dataset (right).  
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Figure C.2. Method comparison using fraction of peaks within promoter regions in different 
cell lines. (A) promoter enrichment difference across all the ChIP-seq datasets in GM12878. (B) 
promoter enrichment difference across all the ChIP-seq datasets in H1. (C) promoter enrichment 
difference across all the ChIP-seq datasets in HepG2. (D) promoter enrichment difference across 
all the ChIP-seq datasets in IMR-90. (E) promoter enrichment difference across all the ChIP-seq 
datasets in liver cell. (F) promoter enrichment difference across all the ChIP-seq datasets in MCF-
7. 36 
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Figure C.3. Method comparison using fraction of peaks involved in enhancer-promoter 
interactions. (A) Fraction of RegisTER-ME peaks or CSEM peaks overlapping anchors in Hi-C 
data in K562. (B) Fraction of RegisTER-ME peaks or CSEM peaks overlapping anchors in 
Capture-C data in GM12878. (C) Fraction of RegisTER-ME peaks or CSEM peaks overlapping 
anchors in Hi-C data in GM12878. (D) Fraction of RegisTER-ME peaks or CSEM peaks 
overlapping anchors in Capture-C data in H1. (E) Fraction of RegisTER-ME peaks or CSEM 
peaks overlapping anchors in Hi-C data in H1. 37 
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Figure C.4. Co-evolution of transcription factors and co-factors in TE-derived TF binding 
sites. (A) A sequence alignment for LTR13-derived USF1 binding regions. The left panel shows 
the identification of each binding site (blue: from canonical peaks, red: from RegisTER-ME 
peaks). The positions with motifs in the sequence alignment result are colored based on the 
nucleotides. The right panel shows the divergence score of each LTR13 sequence. (B) The 
motif matching scores for USF1 binding sites. The USF1 binding sites are divided into 2 groups: 
before having RFX5 motifs in the flanking regions and after having RFX5 motifs in the flanking 
regions. (C) The expression level of the nearest genes for the 2 groups of USF1 binding sites. 
(D) Enriched pathways for the 2 groups of nearest genes.   38 
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Figure C.5. Co-evolution of transcription factors and co-factors in TE-derived TF binding 
sites. (A) A sequence alignment for LTR13-derived USF1 binding regions. The left panel shows 
the identification of each binding site (blue: from canonical peaks, red: from RegisTER-ME 
peaks). The positions with motifs in the sequence alignment result are colored based on the 
nucleotides. The right panel shows the divergence score of each LTR13 sequence. (B) The 
motif matching scores for USF1 binding sites. The USF1 binding sites are divided into 2 groups: 
before having TCF7L1 motifs in the flanking regions and after having TCF7L1 motifs in the 
flanking regions. (C) The expression level of the nearest genes for the 2 groups of USF1 binding 
sites. (D) Enriched pathways for the 2 groups of nearest genes.  39 



 133 

 

Figure C.6. Co-evolution of transcription factors and co-factors in TE-derived TF binding 
sites. (A) A sequence alignment for LTR13-derived CTCF binding regions. The left panel shows 
the identification of each binding site (blue: from canonical peaks, red: from RegisTER-ME 
peaks). The positions with motifs in the sequence alignment result are colored based on the 
nucleotides. The right panel shows the divergence score of each LTR13 sequence. (B) The 
motif matching scores for CTCF binding sites. The CTCF binding sites are divided into 2 groups: 
before having PRDM6 motifs in the flanking regions and after having PRDM6 motifs in the 
flanking regions. (C) The expression level of the nearest genes for the 2 groups of CTCF 
binding sites. (D) Enriched pathways for the 2 groups of nearest genes.  40 
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Figure C.7. Co-evolution of transcription factors and co-factors in TE-derived TF binding 
sites. (A) A sequence alignment for LTR2B-derived SPI1 binding regions. The left panel shows 
the identification of each binding site (blue: from canonical peaks, red: from RegisTER-ME peaks). 
The positions with motifs in the sequence alignment result are colored based on the nucleotides. 
The right panel shows the divergence score of each LTR2B sequence. (B) The motif matching 
scores for SPI1 binding sites. The SPI1 binding sites are divided into 2 groups: before having 
LEF1 motifs in the flanking regions and after having LEF1 motifs in the flanking regions. (C) The 
expression level of the nearest genes for the 2 groups of SPI1 binding sites. (D) Enriched 
pathways for the 2 groups of nearest genes. 41 
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Figure C.8. Co-evolution of transcription factors and co-factors in TE-derived TF binding 
sites. (A) A sequence alignment for LTR13-derived USF1 binding regions. The left panel shows 
the identification of each binding site (blue: from canonical peaks, red: from RegisTER-ME 
peaks). The positions with motifs in the sequence alignment result are colored based on the 
nucleotides. The right panel shows the divergence score of each LTR13 sequence. (B) The 
motif matching scores for USF1 binding sites. The USF1 binding sites are divided into 2 groups: 
before having NR3C1 motifs in the flanking regions and after having NR3C1 motifs in the 
flanking regions. (C) The expression level of the nearest genes for the 2 groups of USF1 binding 
sites. (D) Enriched pathways for the 2 groups of nearest genes.   42 



 136 

 

Figure C.9. Co-evolution of transcription factors and co-factors in TE-derived TF binding 
sites. (A) A sequence alignment for LTR13-derived CTCF binding regions. The left panel shows 
the identification of each binding site (blue: from canonical peaks, red: from RegisTER-ME 
peaks). The positions with motifs in the sequence alignment result are colored based on the 
nucleotides. The right panel shows the divergence score of each LTR13 sequence. (B) The 
motif matching scores for CTCF binding sites. The CTCF binding sites are divided into 2 groups: 
before having RFX2 motifs in the flanking regions and after having RFX2 motifs in the flanking 
regions. (C) The expression level of the nearest genes for the 2 groups of CTCF binding sites. 
(D) Enriched pathways for the 2 groups of nearest genes. 43 
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Figure C.10. Average number of TE-derived enhancers that regulate a gene among 1000 
times of TE label shuffles. (A) Average number of ERV1-derived enhancers among shuffled 
ERV1 background. (B) Average number of ERVL-derived enhancers among shuffled ERVL 
background. (C) Average number of L1-derived enhancers among shuffled L1 background. (D) 
Average number of L2-derived enhancers among shuffled L2 background.(E) Average number of 
MIR-derived enhancers among shuffled MIR background. (F) Average number of ERVL-MaLR 
derived enhancers among shuffled ERVL-MaLR background. 44 
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Figure C.11. A real example of eQTL interpretation in a E2F6 ChIP-seq dataset in K562. 45 

 

 

Figure C.12. A real example of eQTL interpretation in a EGR1 ChIP-seq dataset in K562. 46 
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Figure C.13. A real example of eQTL interpretation in a CBX3 ChIP-seq dataset in K562. 
47 

 

 

Figure C.14. A real example of eQTL interpretation in a GATA2 ChIP-seq dataset in 
K562.48 
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Figure C.15. A real example of eQTL interpretation in a ZC3H11A ChIP-seq dataset in K562. 

49 

 

 

Figure C.16. A real example of eQTL interpretation in a USF2 ChIP-seq dataset in K562. 50 
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Figure C.17. A real example of eQTL interpretation in a ZKSCAN8 ChIP-seq dataset in K562. 

51 

 

 

Figure C.18. A real example of eQTL interpretation in a CEBPG ChIP-seq dataset in K562. 

52 
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Figure C.19. A real example of eQTL interpretation in a NR2C2 ChIP-seq dataset in K562. 
53 
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