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ABSTRACT

THE HOMOLOGY POLYNOMIAL AND THE BURAU REPRESENTATION FOR
PSEUDO-ANOSOV BRAIDS

By

Warren Michael Shultz

The homology polynomial is an invariant for pseudo-Anosov mapping classes [3]. We study

the homology polynomial as an invariant for pseudo-Anosov braids and its connection to

the Burau representation. Given a pseudo-Anosov braid β ∈ Bn, we determine necessary

and su�cient conditions under which the homology polynomial of β is equal to the the

characteristic polynomial of the image of β under the Burau representation. In particular,

we build upon [1] and show that the orientation cover associated to a pseudo-Anosov braid

is equivalent to a quotient to the Burau cover when the measured foliations associated to

β have odd-ordered singularities at each puncture and any singularity that occurs in the

interior of Dn is even-ordered. We next construct an algorithm which allows us to determine

the homology polynomial from the Burau representation for an arbitrary pseudo-Anosov

braid. As an application, we show how to easily determine the homology polynomial for

large family of pseudo-Anosov braids.



ACKNOWLEDGEMENTS

First, I want to thank my advisor, E�e Kalfagianni, for her guidance, insight, and extremely

generous support. I also want to thank Robert Bell for the time and expertise he shared with

me. I also am grateful to Ben Scmidt, Matthew Hedden, and Kristina Hendricks for their

involvement in my development as a mathematician. I also want to thank Echo Fields and

Wolfgang Rünzi for their guidance. Finally, I want to thank Mollee Shultz for her support,

encouragement, and valuable feedback.

iii



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Pseudo-Anosov mapping classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The Nielsen-Thurston Classi�cation . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Singular measured foliations and pseudo-Anosov mapping classes . . . 5

2.2 Train Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Measured train tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Bestvina-Handel Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 From e�cient graph maps to train tracks . . . . . . . . . . . . . . . . . . 14

2.4 The homology polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 The orientation cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 W (G,g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 The decomposition h(x) = p(x)s(x) . . . . . . . . . . . . . . . . . . . . . 19

2.5 The Burau representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CHAPTER 3 THE HOMOLOGY POLYNOMIAL AND ITS CONNECTION TO
THE BURAU REPRESENTATION . . . . . . . . . . . . . . . . . . . . 22

3.1 The Burau estimate quotients of the Burau cover . . . . . . . . . . . . . . . . . 22
3.2 The homology polynomial from the burau representation . . . . . . . . . . . . . 25
3.3 Proof of Theorem 1.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Odd-ordered singularities in the interior . . . . . . . . . . . . . . . . . . . 27
3.3.3 Even-ordered singularities occurring at punctures . . . . . . . . . . . . . 30
3.3.4 Conclusion and proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 An algorithm for constructing β′ from β . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 4 EXAMPLES AND APPLICATIONS . . . . . . . . . . . . . . . . . . . 35
4.1 Application of Theorem 1.0.2 to a large family of braids . . . . . . . . . . . . . 36
4.2 An example comparing the computation of h(x) from de�nition and com-

puting h(x) using Theorem 1.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 An odd ordered singularity in the interior of the disk . . . . . . . . . . . 42

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



LIST OF FIGURES

Figure 2.1: Saddles for n = 3,4,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.2: A train track in S0,4 (left) and a 1-complex that is not a train track in
S0,3 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.3: τ ⊂D3 (left) and β(τ) (right) where β = σ1σ−12 . . . . . . . . . . . . . . . . . 9

Figure 2.4: k-junctions for k = 1,2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.5: A graph map induced by σ1σ−12 . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.6: The branches a1 and a2 form a corner. The branch b does not form a
corner with either ai. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.1: β (left), β′ (right), τ (above) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2: Left: ηi, Right: η̂i (edges without labels have weight 0) . . . . . . . . . . . 30

Figure 3.3: τ (left) and τ ′ (right) after �lling in an order-2 singularity . . . . . . . . . . 33

Figure 4.1: β ⋆ α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.2: β(m1,p1),...,(mk,pk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.3: Comparison of βm,p and γm,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.4: Trees of star type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.5: The tree map gS ∶ TS → TS for S = {(3,2), (4,1))}. . . . . . . . . . . . . . . . 41

Figure 4.6: Constructing τ from TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.7: From top to bottom: G, σ1(G), σ1σ2(G), and σ1σ2σ3−1(G) . . . . . . . . . 44

Figure 4.8: The train track induced by the graph map shown in Figure 4.7. . . . . . . 44

Figure 4.9: The basis element η1. All other edges are assigned a weight of 0. . . . . . . 45

Figure 4.10: The braid σ1σ2σ3−1. The dashed line represents the additional strand
after declaring the singularity a new puncture resulting in the 5-braid
σ1σ2σ1σ3σ4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



CHAPTER 1

INTRODUCTION

The homology polynomial for a pseudo-Anosov mapping class [f] on a surface S is an

integer polynomial invariant h(x) introduced in [3]. If the stable and unstable foliations of

[f] are orientable, then h(x) is associated to the induced action of [f] on H1(S,R). It is

the product of two additional polynomial invariants h(x) = p(x)s(x) each with topological

meaning. By identifying Bn with the mapping class group on the n-punctured disk, the

homology polynomial becomes an invariant for pseudo-Anosov braids.

However determining the homology polynomial for an arbitrary mapping class can be

di�cult or impossible in practice. Computing h(x) involves an application of the Bestvina-

Handel algorithm ([2]). Software limitations make this impractical for many mapping classes.

We will show that for many pseudo-Anosov braids it is trivially easy to determine the

homology polynomial using the (reduced) Burau representation. The (reduced) Burau rep-

resentation is map

Ψ ∶ Bn → GLn−1(Z[t,1/t])

The image of β ∈ Bn is ψβ(t) and is called the Burau matrix of β. It is an (n − 1) × (n − 1)

matrix with entries from the ring of Laurent polynomials Z[t,1/t]. Our �rst result is a

connection between the characteristic polynomial of ψβ(t) and h(x). In Section 3.2 we prove

the following:

Theorem 1.0.1. Suppose β ∈ Bn is pseudo-Anosov with stretch factor λ and homology

polynomial h(β,x). Let (Fu, µu) and (F s, µs) be the singular measured foliations for β.

Finally, let ψβ(t) be the Burau matrix for β and let

χ(ψβ(t)) = ∣xI − ψβ(t)∣

Then the following are equivalent
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(1) χ(ψβ(η)) = h(β,x) for some root of unity η.

(2) χ(ψβ(−1)) = h(β,x) and −1 is the only root of unity at which this equality occurs.

(3) sr(ψβ(−1)) = λ where sr(ψβ(−1)) is the spectral radius of ψβ(−1).

(4) The singularites of Fu and F s are odd-ordered if they occur at a puncture and even-

ordered if they occur in the interior of Dn.

(5) D(2)n is the orientation double-cover of τ (after attaching a punctured disk to the bound-

ary of Dn).

With the above in mind, if Fu and F s above have an even-ordered singularity at a punc-

ture or odd-ordered singularity in the interior we will say that β produces a bad singularity.

Suppose that β ∈ Bn is pseudo-Anosov and produces at least one bad singularity. In this case

we cannot recover h(x) from ψβ(t) and the direct computation may be di�cult. However

we can still use the Burau representation to compute h(x) which is our next result.

Theorem 1.0.2. Let β0 ∈ Bn be a pseudo-Anosov braid identi�ed with its pseudo-Anosov

representative β0 ∶ Dn → Dn. Suppose the measured foliations for β0 have p odd-ordered

singularities occurring at interior points x1, . . . , xp and q even-ordered singularities occurring

at punctures p1, . . . , pq. Let β = βk0 where k ≥ 1 is chosen so that β �xes each pi and xi

pointwise.

Identify Dn+q−r with (Dn ∪ {p1, . . . , pr})−{x1, . . . , xq}. Since β �xes each xi and pi point-

wise it induces a map β′ ∶Dn+q−r →Dn+q−r.

The braid β′ ∈ Bn+q−r is pseudo-Anosov with

h(β,x) = (1 + x)ε h(β′, x) = ∣xI − ψβ′(−1)∣

where ε ≥ 0 is the number of order-2 singularities occurring at a puncture.

In other words, if β is pseudo-Anosov we can either recover h(x) from ψβ(−1) or we can

construct a new braid β′ and recover h(x) from ψβ′(−1).
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Of course, determining the types of singularities produced by a pseudo-Ansov braid is not

necessarily an easier task than computing its homology polynomial directly. The usefulness

of Theorem 1.0.2 is demonstrated in Chapter 4. In particular, in Section 4.1 we present a

large family of pseudo-Anosov braids and use Theorem 1.0.2 to trivialize the computation

of h(x) (regardless of the singularity types they produce).

1.1 Organization of Dissertation

In Chapter 2 we prove an brief overview of the homology polynomial and the reduced Burau

representations along with any necessary preliminaries. In Chapter 3 we prove both Theo-

rem 1.0.1 and Theorem 1.0.2. Finally, in Chapter 4 we present examples and applications of

Theorem 1.0.1 and Theorem 1.0.2.
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CHAPTER 2

PRELIMINARIES

2.1 Pseudo-Anosov mapping classes

We assume a basic familiarity with braid groups [6] and mapping class groups [4]. Unless

stated otherwise, we assume all surfaces are closed, connected, and orientable with a disjoint

collection of �nitely many points and open disks removed.

De�nition 2.1.1. Let S be a surface. Let Hom+(S, ∂S) be the collection of orientatation

preserving homeomorphisms on S. The mapping class group on S is

Mod(S) = π0(Hom+(S, ∂S)) = Hom+(S, ∂S)/ ∼

where f ∼ g if there is an isotopy from f to g which �xes all punctures and boundary

components pointwise. If [f], [g] ∈ModS then [f][g] is de�ned as composition, which is to

say [f][g] = [f ○ g].

Let Dn denote the disk with n ≥ 3 points removed. It is well known that the braid group

on n strands Bn is represented as a mapping class group on Dn, that is

Bn ≃Mod(Dn).

For convenience, we identify β ∈ B with its representative isotopy class in Mod(Dn). See [6]

Section 1.6 for more details.

De�nition 2.1.2. Let γ ⊂ S be a simple closed curve. We say γ is essential if it is not

homotopic to a point, a puncture, or a boundary component of S. We say an isotopy class

of curves is essential if it has an essential representative γ.

For example, if Sg,n is the genus g surface with n points removed, then S0,n has no

essential curves for n = 0,1,2,3. On a torus, the meridinal and longitudinal curves are both

essential.
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2.1.1 The Nielsen-Thurston Classi�cation

The Nielsen-Thurston classi�cation says that all mapping classes can be classi�ed as one of

three types. For convenience we provide the statement below. For more information see [4],

Section 13.3.

Theorem 2.1.3 (The Nielsen-Thurston Classi�cation). Let S be a compact, orientable sur-

face with possibly �nitely many punctures and let [f] ∈Mod(S). Then there is a representa-

tive homeomorphism f ∶ S → S that is periodic, reducible, or pseudo-Anosov. Furthermore

if f is pseudo-Anosov then it is neither periodic nor reducible.

We say a mapping class [f] is periodic if there is some positive integer k such that [fk] has

a representative isotopic to the identity. We say [f] is reducible if there a non-trivial collection

of isotopy classes of essential simple closed curves {c1, . . . , ck} so that {f(c1), . . . , f(ck)} =

{c1, . . . , ck} up to isotopy. Our main focus will be on pseudo-Anosov mapping classes. A

basic overview of what it means to be pseudo-Anosov is given below.

2.1.2 Singular measured foliations and pseudo-Anosov mapping classes

De�nition 2.1.4. A singular foliation F on a surface S is a decomposition of S into a

disjoint union of subsets of S called leaves along with a �nite collection of singular points

{x1, . . . , xm} ⊂ S so that

1. For every nonsingular point p ∈ S there is a smooth chart from a neighborhood of p to

R2 which sends each leaf to a horizontal line segment.

2. For each singluar point xi ∈ S there is a smooth chart from a neighborhood of p to R2

which sends leaves to level sets of a k-pronged saddle with k ≥ 3.

A smooth arc α ∈ S is transverse to F if it is transverse to each leaf of F and is disjoint

from the singular points of F . A singular measured foliation is a pair (F , µ) where µ is a

5



Figure 2.1: Saddles for n = 3,4,5

measure that assigns a positive value to each smooth arc α transverse to F with µ invariant

under any leaf-preserving isotopy.

In Chapter 3 we will wish to keep track of the types of singularities that occur.

De�nition 2.1.5. Let F be a singular foliation on a surface S with a singular point x ∈ S

with a chart sending the leaves in a neighborhood of x to the the level sets of a k-pronged

saddle. Then we say x is an order k singularity. See Figure 2.1.

De�nition 2.1.6. A homeomorphism f ∶ S → S is pseudo-Anosov if there is a pair of

transverse measured foliations (Fu, µu) (F s, µs) on S and a real number λ > 1 so that

f ⋅ (Fu, µu) = (Fu, λµu) and f ⋅ (F s, µs) = (F s, λ−1µs)

A mapping class is pseudo-Anosov if it has a pseudo-Anosov representative.

The measured foliations (Fu, µu) and (F s, µs) are called the unstable and stable foliations

respectively. The number λ is called the dilitation or stretch factor of [f].

2.2 Train Tracks

See [8] Chapter 1 for more information on the de�nitions given in this section.

De�nition 2.2.1. Let S be a closed orientable surface of genus g with �nitely many punc-

tures and let τ ∈ S be an embedded smooth, closed, 1-complex. We will refer to the vertices
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of τ as switches and denote the set of all switches by Sw(τ). Then τ − Sw(τ) consists of a

disjoint collection of smooth open arcs. These components will be refered to as the branches

of τ and we will denote set of all branches by Br(τ). Then τ is a train track in S if

1. For each switch v there is an open neighborhood U of v and a well de�ned tangent line

L ∈ Tv(S) so that τ ∩U is the union of a �nite collection of open arcs, each tangent to

L at v.

2. The components of S − τ are either once-punctured k-gons with k ≥ 1 or unpunctured

k-gons with k ≥ 3.

Example 2.2.2. See Figure 2.2. On the left is a train track in the 4-punctured sphere. On

the right is a 1-complex in the 3-punctured sphere which is not a train track (S0,3−τ contains

a punctured disk with no cusps).

Figure 2.2: A train track in S0,4 (left) and a 1-complex that is not a train track in S0,3 (right)

De�nition 2.2.3. Let C be a family of smooth simple closed curves disjointly embedded in

a surface S so that no component belonging to C is homotopic to a point or a puncture. We

7



say that a train track τ carries C if there is a smooth map ϕ ∶ S → �, called the supporting

map, so that

1. ϕ(C) ⊆ τ

2. ϕ is homotopic to the identity map

3. The restriction of the di�erential dϕpto the tangent line to C at p is nonzero for every

p ∈ C.

Similarly, we say a train track τ ′ is carried by τ is there is a supporting map ϕ ∶ S → S

meeting the conditions given above.

De�nition 2.2.4. A mapping class [f] ∶ S → S is carried by a train track τ ⊂ S if there is

a representative f ∈ [f] so that f(τ) is carried by τ .

Note that the supporting map ϕ for a map f carried by τ can always be chosen so that

switches are sent to swiches and edges are sent to edge-paths. See [2] for details.

De�nition 2.2.5. Suppose β is carried by τ with supporting map ϕ chosen so that edges

are sent to edge-paths and vertices are sent to vertices. Then viewing τ as a graph, the map

β∗ = ϕ ○ β ∶ ∣τ ∶ τ → τ is the train track map induced by β.

Example 2.2.6. Let β = σ1σ2−1. Let τ ∈ D3 be the train track depicted in Figure 2.3 (left)

with branches labeled as indicated. A representation of β(τ) is shown in Figure 2.3 (below).

The induced train track map β∗ ∶ τ → τ is de�ned by

e1 ↦ e3 e4 ↦ e5e2e4

e2 ↦ e1 e5 ↦ e4e2 e5 e3e5

e3 ↦ e2

De�nition 2.2.7. Let g ∶ G → G be a graph map sending vertices to vertices and edges to

edge-paths. Suppose G has edges e1, . . . , ek. Then the transition matrix for g ∶ G → G is

8



e1

e2

e3

e4 e5

β(e4)
β(e5)

e1

Figure 2.3: τ ⊂D3 (left) and β(τ) (right) where β = σ1σ−12

de�ned as M = (aij)1≤i,j≤k where aij is the number of times β(ej) passes over ei (ignoring

orientation).

Example 2.2.8. Consider again the braid and train track used in Example 2.2.6 and shown

in Figure 2.3. Using the de�nition above, we have transition matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0

0 0 1 1 1

1 0 0 0 1

0 0 0 1 1

0 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

2.2.1 Measured train tracks

Let τ be a train track in a surface S and let v ∈ τ be a switch. By de�nition every branch

incident to v approaches the switch along a well de�ned tangent line Lv. This allows us to

partition the branches incident to a switch into two sides. Let e1, . . . , ek be the branches of

τ and let w = (w1, ...,wk) be an assignment of real-valued weights to the edges of τ with

w(ei) = wi. We say that w satis�es the switch conditions if at each switch the sum of the

weights of the branches on each side are equal.
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De�nition 2.2.9. Let τ be a train track with edges e1, . . . , ek and let w be an assignment

of real-valued weights to the branches of τ . If w satisies the switch conditions, then the pair

(τ,w) is called a measured train track.

2.3 The Bestvina-Handel Algorithm

In [2] Bestvina and Handel gave an algorithmic proof of the Nielsen-Thurston classi�cation by

using train tracks to encode the properties of (Fu, µu) and (F s, µs). Bestvina and Handel's

proof showed that given we can always construct a graph G ⊂ S and a graph map g ∶ G→ G

induced by [f] so that g sends vertices to vertices and for any branch b the map g∣b is an

immersion. An example of a graph map induced by a braid is given in Example 2.2.6. What

follows is a brief overview of how G is constructed.

De�nition 2.3.1. A �bered surface is a compact surface F decomposed into arcs and poly-

gons modelled after k-junctions as shown in Figure 2.4. The components of F − {junctions}

are called strips.

We will be interested in �bered surfaces which are subsurfaces of S0 associated to f . We

say a �bered surface F ⊂ S0 carries f if

1. F ↪ S0 is a homotopy equivalence,

2. f sends decomposition elements to decomposition elements

3. The junctions of F are sent to junctions by f

In particular, each arc belonging to a strip in F is sent to an arc or into a junction of F , but

junctions must be sent to junctions.

Every �bered surface F is associated to a graph G obtained by crushing each decompo-

sition elements of F to a point. The edges (resp. vertices) of G correspond to the strips

(resp. junctions) of F . If F carries f , then there is a map g ∶ G → G induced by f which

sends vertices to vertices and edges to edge-paths de�ned in the obvious way.

10



Figure 2.4: k-junctions for k = 1,2,3

Recall that the link of a vertex v ∈ G is a graph lk(v,G) with vertices corresponding

to the edges in G emanating from v. If ei and ej emanate from v then the corresponding

vertices in lk(v,G) are connected by an edge if ei and ej are incident to a common 2-cell.

For convenience we will refer to vertex of Lk(v,G) corresponding to e as e ∈ Lk(v,G) when

there is no risk of confusion.

With that in mind, suppose v and w are vertices in G with g(v) = w and e is an edge

emanating from v. Then g(v) is an edge-path in G with initial edge e′ emanating from w.

The derivative of g ∶ G→ G is the map

Dg ∶ Lk(v,G)→ Lk(w,G)

de�ned by

e↦ e′

De�nition 2.3.2. We say ei and ej in Lk(v,G) belong to the same gate if there is some

k > 0 such that D(gk)(ei) =D(gk)(ej).

In other words, edges ei and ej belong to the same gate if there is some power of g that

sends both edges to an edge path with the same initial edge segment in G.

Before proceeding we review some matrix theory. Let A = (ai,j) and B = (bi,j) be n × n

matrices with non-negative integer entries. We will write A ≥ B or A > B to mean that

ai,j ≥ bi,j for all i, j. By aki,j we mean the i, j-th entry of Ak.

We say A = {aij} is irreducible if for each ai,j there is a k > 0 so that aki,j > 0. If there is

a k for which Ak > 0, we say A is primitive.

11



We can associate to A a directed graph GA. The graph consists of n vertices v1, . . . , vn

and an edge oriented from vj to vi whenever ai,j is non-zero.

Lemma 2.3.3.

1. A is irreducible if and only if for every pair of vertices vi, vj in GA, there is an oriented

edge-path connecting vj to vi.

2. A is primitive if and only if there is an integer n such that for every vi, vj in GA, there

is an edge path of length n connecting them.

A primitive matrix A is Perron-Frobenius if it has integer entries.

Theorem 2.3.4 (Perron-Frobenius theorem for primitive matrices). Let A be a non-negative

n × n matrix. If A is primitive, then there is a eigenvalue λ > 0 of A such that given any

other eigenvalue λ′ of A we have ∣λ′∣ < λ.

Note that in the case that A is primitive and has integer entries, then λ > 1.

By de�nition the transition matrix M (see De�nition 2.2.7) is a square matrix with

non-negative integer entries. Therefore if M is irreducible there is a unique positive unit

eigenvector with positive eigenvalue λ which is the spectral radius of M and is called the

growth rate of M . We will also occasionally refer to this value as λ = λ(F, f) = λ(G,g) when

it is convenient.

Example 2.3.5. Let β = σ1σ−12 ∈ B3. Let G be the graph depicted in Figure 2.5. A visual

representation of the map induced by σ1σ−12 is also shown. However, the actual map sends

edges to edge paths along the edges of G. The edges represented as circles are peripheral

to punctures and thus do not contribute to the transition matrix for the real edges of the

induced train track τ . Comparing σ1σ−12 (G) to G we see that the edgepath σ1σ−12 (e1) passes

once through e1 and e2. The edgepath σ1σ−12 (e2) passes through e1 once and e2 twice. Then

12



the transition matrix for the real edges is

M =
⎛
⎜⎜
⎝

e1 e2

e1 1 1

e2 1 2

⎞
⎟⎟
⎠

As we will see in later sections, the stretch factor for σ1σ2−1 is the largest real root of the

characteristic polynomial of M which is h(x) = x2 − 3x+ 1. It will also turn out that h(x) is

the homology polynomial for β

σ1(G)

σ1σ2(G)
-1

G

σ2

e1

σ
1
σ
2
(e1)

σ
1
σ
2
(e2)

e2

-1

-1

-1

Figure 2.5: A graph map induced by σ1σ−12

The following is a consequence of [2]:
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Proposition 2.3.6. A mapping class [f] is pseudo-Anosov if and only if there is a train

track τ invariant under [f] and the transition matrix for the real edges of τ under the train

track map is Perron-Frobenius.

2.3.1 From e�cient graph maps to train tracks

The graph map g ∶ G → G can be used to recover a train track τ that carries β along with

a train track map representing β. Suppose v is a vertex of G and that there are k gates

at v, g1, . . . , gk. Replace v with a small circle C and identify k points q1, . . . , qk ∈ C. We

assume the gates are labeled to match the ordering of their associated gates when traveling

counterclockwise around C. For each gate gi, we arrange all edges belonging to the gate to

intersect C orthogonally at pi.

Suppose there is an edge e0 ∈ G so that the edgepath g(e0) passes through v. Then there

is some subpath of g(e0) of the form eiej with ei ∩ ej = {v} Suppose ei and ej belong to

gates gi and gj respectively. Then we add an edge ϵij connecting pi to pj within the region

bounded by C. We assume ϵij intersects C orthogonally.

After performing this operation at each vertex of G we have a train track τ . The edges

in τ that come from edges in G are called real edges. The edges connecting gates are called

in�ntesimal edges. At a vertex with k gates, the resulting in�ntesimal edges form a k-gon

(possibly with one edge missing).

De�nition 2.3.7. A vertex of G is odd (even respectively) if the corresponding in�ntesimal

edges form a polygon with an odd (even respectively) number of sides. If v corresponds to

a polygon that is missing a side, we say v is partial.

De�ne ϕ ∶ τ → τ as follows:

If e is a real edge in τ , then g(e) = eiej⋯ek is an edge-path in G. Suppose eiej enters and

exits the vertex v ∈ G. By the operation described above, there is an in�ntesimal edge η ∈ τ

14



connecting ei to ej. Repeating this at each vertex g(e) passes through, we get the edge path

ϕ(e) = eiηej⋯.

If η is an in�ntesimal edge connecting real edges ei and ej. Then there is an edge e ∈ G

for which g(e) contains eiej as a subpath. The map g2(e) contains the subpath g(ei)g(ej)

and determines ϕ(η). See Figure 4.7 and Figure 4.7 for an example of this process for the

braid σ1σ2σ−13 .

After constructing τ , Bestvina and Handel use the train track and map to recover the

invariant measured foliations for the pseudo-Anosov mapping class. The following is a con-

sequence:

Proposition 2.3.8. Let β ∈ Bn be pseudo-Anosov carried by a train track τ . There is a

1-to-1 correspondance between the components of S4 − τ and the singularities of Fu and F s.

In particular, a non-punctured disk with k corners corresponds to an order-k singularity in

the interior of S4 and a punctured disk with k corners corresponds to an order k singularity

occurring at a puncture.

2.4 The homology polynomial

Recall the homology polynomial discussed in the introduction. Let [f] ∈Mod(S). The main

result of [3] is the following.

Theorem 2.4.1 ([3], Theorem 1.1). Let [f] be a pseudo-Anosov mapping class in a closed,

orientable surface S with possibly �nitely many punctures. Let f ∶ S → S be the pseudo-

Anosov representative of [f] with the Bestvina-Handel graph and graph map g ∶ G → G and

transition matrix M . Then

1. The characteristic polynomial of M , ∣xI −M ∣, has a divisor h(x) which is an invariant

of [f]. The dilatation of [f] is the largest real root of h(x). It is associated to the

induced action of f∗ on H1(X,R) where X = S when τ is orientable and X is the

orientation cover of τ when is not orientable.
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2. The homology polynomial decomposes as a product p(x) ⋅ s(x) of two polynomials, each

a topological invariant of [f].

a) p(x) is the puncture polynomial and records the action of g∗ on the radical of

a skew-symmetric form on W (G,g). It is related to the way f permutes the

punctures of S.

b) s(x) is the symplectic polynomial and records the action of g∗ on the non-degenerate

symplectic spaceW (G,g)/Z and contains the dilitation of f as its largest real root.

In Chapter 3 we will wish to compare homology polynomials for distinct mapping classes.

If [f], [g] ∈Mod(S), we write their homology polynomials as h([f], x) and h([g], x) respec-

tively.

In what follows we shall restrict our attention to braids. As we see, every train track

that carries a braid is non orientable. First we recall the Euler-Poincarè-Hopf formula (see

[5], Exposè 5, Section 1.6)

Theorem 2.4.2. Let S be a genus g surface, possibly punctured, with a singular foliation F

and singular points x1, . . . , xk. For 1 ≤ i ≤ k let Pi denote the order of xi. Then

4 − 4g =
k

∑
i=1

(2 − Pi).

Lemma 2.4.3. Let β ∈ Bn be a pseudo-Anosov braid and let τ be a train track that carries

β. Then τ is not orientable.

Proof. It su�ces to show that β must produce at least one odd-ordered singularity. By

Theorem 2.4.2,

4 =
k

∑
i=1

(2 − Pi)

If each Pi > 1 the above equality fails. Therefore at least one singularity is odd-ordered and

τ is not orientable.
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a1

a2

b

Figure 2.6: The branches a1 and a2 form a corner. The branch b does not form a corner with
either ai.

2.4.1 The orientation cover

When τ is not orientable we lift to a special branched double of S determined by τ .

De�nition 2.4.4. Let b1 and b2 be branches in τ that meet at a switch v. Recall that b1 and

b2 intersect v along a well de�ned tangent which allows us to partition the branches meeting

v into two sides.

If b1 and b2 approach v from the same side, we say the angle between them is 0. Otherwise,

the angle between them is π. In the latter case we say the branches b1 and b2 form a corner

(see Figure 2.6.

De�nition 2.4.5. Let τ ⊂ S be a non-orientable train track and �x some basepoint x ∈ τ . If

S is not homotopic to τ , then let S0 be the surface obtained by puncturing each unpunctured

disk component of S − τ . Then S0 is homotopic to τ and we may identify π1(S0, x) with

π1(τ, x).

De�ne ϵ ∶ π1(τ, x)→ Z/2Z ≃ {−1,1} by

γ ↦ (−1)#corners in γ

Then the kernel of ϵ is all loops in τ with an even number of corners. The covering space

cooresponding to the kernel of ϵ, after �lling in any added punctures, is called the orientation

cover for τ . It is a two-fold branched cover of S and the �ber of τ is an orientable train

track in the cover.
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The following is result of Theorem 2.4.1.

Theorem 2.4.6. Let β ∈ Bn be a pseudo-Anosov mapping class with train track τ . Let D̃

denote the orientation double cover for τ and denote its involution by ι. Then ι∗ ∶H1(D̃,R)→

H1(D̃,R) has two eigenspaces E+ and E− corresponding to eigenvalues 1 and −1 respectively.

The homology polynomial of β is the characteristic polynomial of β∗∣E−.

2.4.2 W (G,g)

Given a train track τ constructed from g ∶ G → G, there is a natural surjection π ∶ τ → G

sending real edges to real edges and collapsing all in�ntesimal polygons to a point.

Let V (τ) be the R-vector space of real weights on the branches of τ . De�ne V (G)

similarly. LetW (τ) ⊂ V (τ) be the subspace of assignments that satisfy the switch conditions.

The surjection π ∶ τ → G induces a surjection π∗ ∶ V (τ)→ V (G).

De�nition 2.4.7. We de�ne W (G,g) = π∗(W (τ)). It is the subspace of W (G,g) consisting

of weight assignments that extend to an assignments of weights on τ that satisfy the switch

conditions.

There is a convenient way to determine if an element in V (G) is in W (G,g).

Lemma 2.4.8 ([3], Lemma 2.9). An element η ∈ V (G) belongs to W (G,g) if and only if for

each non-odd vertex the alternating sum of the weights at the incident gates is zero.

Lemma 2.4.9 ([3], Lemma 2.11). If τ is orientable, then

dim W (G,g) =#(edges of G) −#(vertices of G) + 1

otherwise

dim W (G,g) =#(edges of G) −#(non-odd vertices of G)
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2.4.3 The decomposition h(x) = p(x)s(x)

Theorem 2.4.10 ([3], Theorem 3.8). Let p(x) and s(x) be the characteristic polynomials

of g∗∣Z and g∗∣W (G,g)/Z respectively. The map g∗ preserves the direct sum decomposition

W (G,g) ≈ Z ⊕ (W (G,g)/Z) so that h(x) = p(x)s(x). Moreover we have

1. The polynomial p(x) is an invariant of the pseudo-Anosov mapping class [f] ∈Mod(S).

The restriction g∗∣Z encodes how [f] permutes the puntures whose projections to τ have

even numbers of corners. In particular, g∗∣Z is a periodic map, so that all the roots of

p(x) are roots of unity and the polynomial p(x) is palindromic or anti-palindromic.

2. The polynomial s(x) is an invariant of [f]. The skew-symmetric form ⟨⋅, ⋅⟩W (G,g) nat-

urally induces a symplectic form on W (G,g)/Z. The map g∗ induces a symplectomor-

phism of W (G,g)/Z. Hence ks(x) is palindromic.

3. The homology polynomial h(x) is either palindromic or anti-palindromic.

2.5 The Burau representation

The Burau representation for braids will play a crucial role in what follows. In particular,

there is an equivalent twisted homological version of the Burau representation which allows

us to represent braids as acting on the �rst homology group of an in�nite cyclic cover

D∞n →Dn

with deck group ⟨t⟩ ≃ Z. In Chapter 3 we will see that the quotient D∞n / ⟨t2⟩ is equivalent

to the orientation cover for a train track that carries a braid. For more information on this

topic see [6] sections 3.1-3.3 and [1].
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De�nition 2.5.1. Let Z[t,1/t] denote the ring of Laurent polynomials and let n ≥ 3. De�ne

V1, . . . , Vn−1 ∈ GLn−1 (Z[t,1/t]) as

V1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−t 0 0

1 1 0

0 0 In−3

⎞
⎟⎟⎟⎟⎟⎟
⎠

and Vn−1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

In−3 0 0

0 1 t

0 0 −t

⎞
⎟⎟⎟⎟⎟⎟
⎠

and for 1 < i < n − 1 de�ne

Vi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ii−2 0 0 0 0

0 1 t 0 0

0 0 −t 0 0

0 0 1 1 0

0 0 0 0 In−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Then the group homomorphism ψn ∶ Bn → GLn−1 (Z[t,1/t]) denined on the generators as

σi ↦ Vi

for 1 ≤ i ≤ n − 1 is the (reduced) Burau representation.

The above representation is a reduction of the original Burau representation. See [6] for

an explaination of the distinction.

De�nition 2.5.2. Let p1, . . . , pn ∈D and let Dn =D − {p1, . . . , pn}. Let γ ∈ π1(Dn, d) where

d ∈ ∂D. For each pi we have H1 (D − {p};Z) ≃ Z generated by a loop around pi oriented

counterclockwise. Then γ represents k times the generator of H1 (D − {p};Z). We will call k

the winding number of γ around pi and we write wpi(γ) = k. Then the total winding number

of γ is the sum

w(γ) =
n

∑
i=1

wpi(γ).

Identify Z with the multiplicative group generated by t. Consider the map ε ∶ π1(Dn, d)→

Z de�ned by ε(γ) = tw(γ). The kernel of this map determines the in�nite cyclic covering

D
(inf)
n →Dn with deck transformation group identi�ed with {tk}k∈Z. In this way we can view

H1 (D(inf)n ;Z) as a free module of rank n − 1 over Z[t,1/t].
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Any braid β ∈ Bn ≃ Mod (Dn) has a lift β̃ ∶ D(inf)n → D
(inf)
n which �xes the �ber of d

pointwise. This induces a Z[t,1/t]-module automorphism of H1 (D(inf)n ;Z).

De�nition 2.5.3. The twisted homological Burau representation of Bn is the map

Ψn ∶ Bn → Aut (H1 (D(∞)n ;Z))

de�ned by

β ↦ β̃∗

Theorem 2.5.4. The twisted homological Burau representation Ψn is equivalent to the (re-

duced) Burau reprentation ψn.

See [6] section 3.2.5 for a proof.
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CHAPTER 3

THE HOMOLOGY POLYNOMIAL AND ITS CONNECTION TO THE

BURAU REPRESENTATION

In this chapter we begin by determining exactly when between h(β,x) = ∣xI − ψβ(−1)∣. In

Section 3.1 we summarize a result of Band and Boyland [1] which describes the relation-

ship between the Burau representation and the stretch factor of a pseudo-Anosov braid.

In Section 3.2 we expand upon their work to establish a relationship between the Burau

representation and the homology polynomial which leads to our �rst new result. We see

that h(β,x) = ∣xI − ψψ(−1)∣ if and only if all singularities belonging to Fu, µu andF s, µs are

odd-ordered if they occur at a puncture and even-ordered if they occur in the interior of Dn.

In Section 3.3 we prove Theorem 1.0.2. Finally, in Section 3.3.4 we present an algorithm for

constructing β′ for an arbitrary pseudo-Anosov β.

Before proceeding we give a simple example demonstrating the construction of β′.

Consider the pseudo-Anosov braid β = σ1σ2σ−13 σ−14 σ−13 . It has homology polynomial

h(β,x) = (1+x)(1− 2x− 2x3 +x4). However, ∣xI −ψβ(−1)∣ = 1− 2x+ 4x2 − 2x3 +x4 which has

no real roots. Then this cannot be the homology polynomial since h(β,x) must have at least

one real root (the stretch factor). A train track that carries β is shown in Figure 3.1 (top).

The point S represents an order-3 singularity occuring in the interior of D5. An order-2

singularity occurs at the fourth puncture of D5 (labeled P ). After removing S and �lling in

P , we get the braid β′ = σ1σ2σ1σ3σ4−1 as indicated in Figure 3.1 (right).

Since β′ produces no bad singularities we know h(β′, x) = χ(β,−1) = 1 − 2x − 2x3 + x4.

This means (x + 1)h(β′, x) = h(β,x) as predicted by Theorem 1.0.2.

3.1 The Burau estimate quotients of the Burau cover

In this section we review a relationship between the stretch factor of a pseudo-Anosov braid

and its Burau matrix given by Band and Boyland in [1]. This will give us the foundation we
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P

P P

S

S S
Figure 3.1: β (left), β′ (right), τ (above)

need to recover the homology polynomial from the Burau representation.

Recall the Burau cover introduced in Section 2.5, the in�nite cyclic cover D
(∞)
n associated

to the kernel of the map sending each element in π1(Dn, d) to its winding number in Z. Let

t denote the generator of the deck group of D
(∞)
n /Dn. Then the (reduced) Burau matrix of

β is ψ[β, t] ∈ GLn−1(Z[t,1/t]).

If β is pseudo-Anosov with dilatation λ > 1, it is well known that

sup{sr(ψ[β, η] ∣ η a root of unity } ≤ λ (3.1)

where ψ[β, η] is the (reduced) Burau matrix for β and with the substitution t = η. and

sr(ψ[β, η] is its spectral radius. The left side of Equation (3.1) is called the Burau estimate

for the stretch factor of a pseudo-Anosov braid at η.

Let ϕ ∶ π1(Dn, d)→ Z denote the map sending elements to their winding numbers, and for
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any k ≥ 2 let ϵk ∶ Z→ Zk denote the standard quotient mapping. Clearly ker(ϵk ○ ϕ) ⊂ kerϕ.

De�nition 3.1.1. For each k ≥ 2 let pk ∶D(k)n →Dn denote the covering space of associated

to the kernel of the map

ϵk ○ ϕ ∶ π1(Dn, d)→ Zk

with

D
(k)
n =D(∞)n /tk

Let qk ∶D(∞)n →D
(k)
n denote the corresponding covering map.

The main result of [1] that we build upon is

Theorem 3.1.2 ([1], Theorem 5.1). Let β be a pseudo-Anosov braid with stretch factor λ

and (reduced) Burau matrix ψ[β, t]. Then the following are equivalent

(1) sr(ψ[β, η] = λ for some root of unity η.

(2) sr(ψ[β,−1]) = λ and −1 is the only root of unity for which this equality is true.

(3) The invariant foliations Fu and F s have odd-ordered singularities at each puncture and

all singularities in the interior of D are even-ordered.

(4) D(2) is the orientation double-cover for Fu and F s.

We state two additional results of [1] which we will wish to use in later sections.

Lemma 3.1.3 ([1], Lemma 3.2). Let T be the generator of the deck group for the covering

p(k) ∶ X(k) → X and let h(k) and h(∞) be the lifts of h to X(k) and X(∞). The eigenvalues

of T∗ restricted to S
(k)
C are 1, ηk, η2k, . . . , η

k−1
k where ηk = e2πi/k. Denote by E0, . . . ,Ek−1 the

corresponding eigenspaces in S
(k)
C . Then each subspace Em is h

(k)
∗ -invariant, and the action

of h
(k)
∗ on Em is given by the matrix M(ηmk ), obtained by substituting ηmk into the matrix

M(t) of h(∞)∗ .
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Theorem 3.1.4 ([1], Theorem 3.4). Let h ∶X →X be a homeomorphism of the locally path-

connected, semi-locally simply connected topological space X, whose �rst homology group we

assume to be free and of �nite rank. Suppose ρ ∶ H1(X) → Z is a homomorphism which

satis�es ρh∗ = ρ, and let X(∞) and X(k) = X(∞)/T k denote the covering spaces over X

corresponding to ρ and ξk ○ ρ, with covering projection q(k) ∶X(∞) →X(k). Let h(∞) and h(k)

denote lifts of h to these covering spaces. If M = M(t) ∈ GL(r,R) denotes the matrix of

h
(∞)
∗ ∶ H1(X(∞)) → H1(X(∞)) as an R-module isomorphism, then the action of h

(k)
∗ on the

invariant subspace S
(k)
C = q(k)∗ (H1(X(∞),C)) is given by the direct sum

h
(k)
∗ =M(1)⊕M(ηk)⊕⋯⊕M(ηk−1k )

where M(ηjk) denotes the complex matrix obtained by substituting ηjk = e2πij/k into M . Fur-

thermore, any eigenvector of h
(k)
∗ not lying in S(k) has eigenvalue which is a root of unity.

3.2 The homology polynomial from the burau representation

We now build upon Theorem 3.1.2 and show that under the same singularity conditions given

in Theorem 3.1.2(3) the characteristic polynomial of the Burau matrix of a pseudo-Anosov

braid is the homology polynomial.

Fix some β ∈ Bn be a pseudo-Anosov braid with stretch factor λ and homology polynomial

h(x). Suppose g ∶ G → G is an e�cient graph map corresponding to β that induces train

track τ ⊂ Dn. Let χ(β) = χ (ψ[β,−1]) = ∣xI − ψ[β,−1]∣. That is, χ(β) is the characteristic

polynomial of ψ[β,−1].

Lemma 3.2.1. The stretch factor of β is the largest real root of χ(β) if and only if χ(β) =

h(x).

Proof. If χ(β) = h(x) then λ is the largest real root of χ(β) since h(x) always contains λ as

its largest real root.

Conversely, suppose that λ is the largest real root of χ(β). Then by Theorem 3.1.2 D
(2)
n

is the orientation cover for τ and by Lemma 3.1.3 ψ[β,−1] represents the action of β
(2)
∗ on
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the eigenspace of H1(D(2)n ;R) corresponding to the eigenvalue −1. Then by Theorem 2.4.6

χ(β) is equal to the homology polynomial.

Using Lemma 3.2.1 and Proposition 2.3.8. we are able to restate Theorem 3.1.2 in terms

of the homology polynomial, graph maps, and train tracks.

Proposition 3.2.2. Suppose β ∈ Bn is pseudo-Anosov with dilatation λ and homology poly-

nomial h(x). Then the following are equivalent:

(1) χ(β) is equal to the homology polynomial for β;

(2) The spectral radius of ψ[β, e2πij/k] = λ for some 0 ≤ j < k;

(3) The spectral radius of ψ[β,−1] = λ and −1 is the only root of unity at which this occurs;

(4) The vertices of G occuring at the punctures of Dn and in the interior of Dn are odd

and even respectively.

(5) D(2)n is the orientation double-cover of τ (after attacking a punctured disk to the bound-

ary of Dn).

Proof. By Theorem 3.1.2 conditions (2), (3), and (5) are equivalent. By Lemma 3.2.1 and

Theorem 3.1.2 (2) is equivalent to (1). Finally, by Proposition 2.3.8 (4) is equivalent to the

third statement of Theorem 3.1.2 which implies (4) is equivalent to (3).

3.3 Proof of Theorem 1.0.2

3.3.1 Overview

The goal of this section is to prove Theorem 1.0.2. Unless stated otherwise all braids are

assumed to be pseudo-Anosov.

De�nition 3.3.1. We say that β produces a k-ordered singularity if the invariant foliations

associated to β have a k-ordered singularity.
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By Proposition 3.2.2 h(β,x) = χ(β) if and only if β does not produce certain types of

�bad� singularities.

De�nition 3.3.2. A singularity produced by β is bad if it is odd-ordered and occurs at an

interior point of Dn or even-ordered and occurs at a puncture of Dn.

By Theorem 1.0.1 if β does not produce bad singularities h(β,x) = ∣xI−ψ beta(−1)∣. In the

case that β does produce bad singularities Theorem 1.0.2 says that we can algorithmically

construct some new braid β′ which produces no bad singularities so that h(β,x) is recoverable

from h(β′, x).

We construct β′ from β using two operations. The �rst involves puncturing Dn at each

odd-ordered singularity in the interior of Dn. This can be thought of as "inserting a strand"

into β. The second operation involves �lling in any punctures of Dn at which β produces

an even-ordered singularity. This can be thought of as "forgetting a strand". If βi+1 is

constructed from βi using one of these two operations we see that βi+1 produces exactly one

less bad singularity than βi.

3.3.2 Odd-ordered singularities in the interior

We now prove assume that a pseudo-Anosov braid β ∈ Bn produces and �xes an odd-ordered

singularity at a point s in the interior of Dn. We show that declaring s a new puncture

results in a pseudo-Anosov braid β′ ∈ Bn+1 with the same homology polynomial as β.

Lemma 3.3.3. Let β ∈ Bn be a pseudo-Anosov braid that produces an odd-ordered singularity

at a point s in the interior of Dn. Suppose β �xes s and let Dn+1 =Dn−{s}. De�ne β′ ∈ Bn+1

by

β′ = β∣Dn−{s}.

Then

1. β′ is pseudo-Anosov
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2. β′ produces one less bad singularity than β

3. We have

p(β′, x) = p(β,x)

s(β′, x) = s(β,x)

h(β′, x) = h(β,x)

Proof. We �rst prove that β′ is pseudo-Anosov.

Consider β as an element of Mod(Dn) where Dn = (D,{p1, . . . , pn}) is the disk with

marked points p1, . . . , pn. Let Dn+1 = (D,{p1, . . . , pn, S}). Let T denote the transition matrix

for a train track τ ⊂Dn that carries β. The singular point s is in Dn − τ so we may embed a

copy of τ in Dn+1. Since β acts as the identity on some neighborhood of s β′ is also carried

by the image of τ embedded in Dn+1. Then the transition matrix for β′ is also represented

by T and the submatrix representing the transition matrix corresponding to the real edges

of τ is also Perron-Frobenius. Then by Theorem 2.3.4 β is pseudo-Anosov.

The singularities of β′ are the same as those of β except we have replaced an odd-ordered

singularity in the interior with an odd-ordered singularity at a puncture. Thus β′ produces

one less bad singularity than β.

It remains to show (c).

If the singularity at s is order k then s cooresponds to a vertex vs of G with k gates.

De�ne G′ as G with the vertex vs replaced by a k-gon, with k partial vertices v1, . . . , vk

cooresponding to the gates of vs and k edges e1, . . . , ek with ei connecting vi to vi+1 for i < k

and ek connecting vk to v1. See Figure 3.2. Each of there new vertices is partial by the

assumption that vS is odd.

Since the induced train track for a braid is not orientable (Lemma 2.4.3), we know from

Lemma 2.4.9 that

dimW (G,g) =#(edges of G) −#(non-odd vertices of G)
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By construction, the addition of k real edges and k partial vertices results in

#(edges of G′) = k +#(edges of G)

#(non-odd vertices of G′) = k +#(non-odd vertices of G)

which gives

dimW (G′, g′) =#(edges of G′) −#(non-odd vertices of G′)

=#(edges of G) + k − (#(non-odd vertices of G) + k)

= dimW (G,g).

Let {η1, . . . , ηm} be a basis for W (G,g) and for any edge G let ηi(e) denote the weight

assigned to e by ηi. Let xi denote the gate of vs associated to the vertex vi ∈ G′ and let wi

be the sum of the weights assigned to the edges of G belonging to xi.

For each j = 1, . . . ,m we now construct an element η′j ∈ W (G′, g′) and show the {η′j}

form a basis for W (G′, g).

First, for every edge e in G′ that comes from an edge of G, η̂j(e) = ηj(e). For each

i = 1, . . . , k, add ±wi/2 to e1, . . . , ek as indicated in Figure 3.2. We can do this consistently

with η̂i ∈W (G′, g′) because k is odd. Since dimW (G′, g′) = dimW (G,g), this forms a basis

for W (G′, g′).

By construction, g′ �xes the edges e1, . . . , ek and the following diagram commutes.

W (G,g) W (G′, g′)

W (G,g) W (G′, g′)

ηi↦η̂i

g∗ g′
∗

ηi↦η̂i

It follows that the characteristic polynomial for g′∗∣W (G′,g′) is equal to the characteristic

polynomial for g∗∣W (G,g) and thus the homology polynomials for β and β′ are equal.

We now show that p(β′, x) = p(β,x).

By construction β′ produces the same set of singularities as β. The only change is that

an odd-ordered singularity that previously occurred in the interior of Dn now occurs at a

puncture of Dn+1. In particular, β′ produced the same collection of even-ordered singularities
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occurring at punctures and β′ permutes them in the same way. By Theorem 2.4.1 this implies

p(β′, x) = p(β,x).

From h(β′, x) = h(β,x) and p(β′, x) = p(β,x) it immedietly follows that s(β′, x) = s(β,x).

wi

wj

wi

wj

wi

2 − wj

2

−wi

2 +
wj

2

wi

2 +
wj

2

−wi

2 − wj

2

wi

2 +
wj

2

Figure 3.2: Left: ηi, Right: η̂i
(edges without labels have weight 0)

3.3.3 Even-ordered singularities occurring at punctures

We now show that if β ∈ Bn �xes a puncture p and produces an even-ordered singularity

that occurs at p then after �lling in p the resulting braid β′ ∈ Bn−1 is pseudo-Anosov and

produces one less bad singularity than β.

Lemma 3.3.4. Let β ∈ Bn be a pseudo-Anosov braid that produces an even-ordered singular-

ity at a puncture p and that p is �xed by β. Let Dn−1 be the space obtained from Dn by �lling

in p. De�ne β′ ∈ Bn−1 as the image of β after passing to Dn−1. Then β′ is pseudo-Anosov.
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1. If the singularity at p is order 2 then

p(β′, x) = p(β,x)/(x + 1)

s(β′, x) = s(β,x)

h(β′, x) = h(β,x)/(x + 1)

2. Otherwise

p(β′, x) = p(β,x)/(x + 1)

s(β′, x) = s(β,x) ⋅ (x + 1)

h(β′, x) = h(β,x)

Proof. Let k be the order of the singularity occurring at p. Let g ∶ G → G be an e�cient

graph map that carries β with induced train track τ . Since p ∈ Dn − τ we can embed τ in

Dn−1 as de�ned above.

We �rst prove that β′ is pseudo-Anosov. We separate the special case of k = 2 since the

resulting braid has a slightly modi�ed homology polynomial.

If k = 2 then τ ′ is not a train track since one of the components of Dn−1 − τ ′ is a bigon as

depicted in Figure 3.3. Let {e1, . . . , em} be the edges of τ . We construct τ ′ by embedding a

copy of τ and pushing ej onto ei across the bigon containing the �lled in point p. We now

de�ne the map g′∗ ∶ τ ′ → τ ′ and argue it carries β′ e�ciently. For each edge ek with k ≠ i, i+1

de�ne g′∗(ek) as the edge path g∗(ek) in τ with each occurrence of ei or ei+1 replaced with e∗i .

Similarly de�ne g′∗(e∗i ) as the edgepath g(ei) with all occurrences of ei or ei+1 replaced by

e∗i . Since β is carried by τ we can see that β′ is carried by τ ′ since we can push β′ along the

same bigon we used when constructing τ ′. Finally, the real transition matrix for g′∗ ∶ τ ′ → τ ′

is equal to the real transition matrix for g∗ ∶ τ → τ since ei, ei+1, and e∗i are in�ntesimal edges

of τ . Therefore it is Perron-Frobenius and β′ is pseudo-Anosov.

Recall that h(β′, x) is the characteristic polynomial of the map g∗ ∶W (G,g)→W (G,g).

Recall further that W (G,g) ≈ Z ⊕W (G,g)/Z so that p(x) and s(x) represent g∗ restricted
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to Z and W (G,g)/Z respectively (see Theorem 2.4.1). Furthermore we know the generators

of Z are the simple loops around punctures with an even numbers of corners when projected

onto τ . The in�ntesimal edges ei and ej represented one of these generators since the loop

has two corners. Since we assume all bad singularities are �xed by β the g∗∣Z = (x + 1)r

where r is the number of even-ordered singularities occurring at punctures.

When p is �lled we end up with the space Z ′ with r−1 generators, each �xed by β′ which

yealds p(β′, x) = p(β,x)/(x + 1). Clearly W (G′, g′)/Z ′ ≈ W (G,g)/Z since G′ is obtained

from G by crushing a generator of Z to a point. Therefore s(β′, x) = s(β,x). Therefore

h(β′, x) = p(β′, x)s(β′, x) = (p(β,x)/(x + 1))s(β,x) = h(β,x)/(x + 1).

Now, if k is even and k > 2 then Dn−1 − τ is still a train track so g′∗ ∶ τ ′ → τ ′ carries β′

with no modi�cation from g∗ ∶ τ → τ . Again, p(β′, x) = p(β,x)/(x+1) by the same reasoning

as above. Furthermore, the transition matrix for β′ acting on τ is the same as the transition

matrix for β which means β′ is pseudo-Anosov (again see Theorem 2.3.4.)

Suppose W (G,g) ≈ Z ⊕ W (G,g)/Z is of dimension M . Let η1 be the generator of

Z associated to p. Let {η1, . . . , ηr, γ1, . . . , γM−r} be a basis for W (G,g) so that the {ηi}

generate Z. Since g′∗ ∶ W (G′, g′) → W (G′, g′) is unmodi�ed from g∗ ∶ W (G,g) → W (G,g)

{η1, . . . , ηr, γ1, . . . , γM−r} is still a basis for W (G′, g′). The generator η1 is not longer an

element of Z ′. This leads to p(β′, x) = p(β,x)/(x + 1). The element represented by η is now

a generator of W (G′, g′)/Z ′ �xed by β′. It follows that s(β′, x) = (x + 1)s(β,x) and

h(β′, x) = p(β′, x)s(β′, x) = (p(β,x)/(x + 1)) ((x + 1) ⋅ s(β,x)) = h(β,x)

as desired.

3.3.4 Conclusion and proof

The following result from [3] gives a corollary that will be used in the proof of Theorem 1.0.2.
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p

vj vj

ei
vj+1

vj+1

ei+1
ei*

Figure 3.3: τ (left) and τ ′ (right) after �lling in an order-2 singularity

Lemma 3.3.5 ([3], Corollary 4.5). Let m > 0. If g ∶ G → G is a graph map representing a

pseudo-Anosov mapping class β then gm ∶ G → G represents βm. Suppose that the homology

polynomial for β hβ(x) = sβ(x)pβ(x) and that

sβ(x) =∏
i

(x − zi) and pβ(x) =∏
j

(x −wj) , zi,wj ∈ C.

Then hβm(x) = sβm(x)pβm(x) with

sβm (x) =∏
i

(x − zmi )

pβm (x) =∏
j

(x −wmj )

hβm(x) =∏
i

(x − zmi )∏
j

(x −wmj )

See [3], Corollary 4.5 for a proof.

We now prove Theorem 1.0.2

Proof of Theorem 1.0.2. Suppose β0 produces q odd-ordered singularities at the interior

points s1, . . . , sq and r even-ordered singularities at punctures p1, . . . , pr and that these q + r

are the only bad singularities produces by β. Suppose ϵ ≥ 0 of the r even-ordered singularities

at the punctures of Dn are order-2. Choose k so that β = βk0 �xes all q + r bad singularities.
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Let β̂ be the braid obtained by applying Lemma 3.3.3 at each odd-ordered singularity in

the interior of Dn. Then h(β̂, x) = h(β,x) and whβ produces no odd-ordered singularities in

the interior of Dn. Now let β′ be the braid obtained from β̂ after applying Lemma 3.3.4 at

each even-ordered singularity at a puncture. Then β′ produces no bad singularities and

χ(β′) = h(β′, x) = h(β̂, x)/(x + 1)ϵ = h(β,x)/(x + 1)ϵ

By Lemma 3.3.5 if h(β0, x) =∏i(x − zi) then

χ(β′) = h(β′, x)

= h(β,x)(x + 1)ϵ = ∏i(x − zki )
(x + 1)ϵ

as desired.

3.4 An algorithm for constructing β′ from β

What follows is an algorithm for constructing β′ for an arbitrary pseudo-Anosov β0.

Let β0 be pseudo-Anosov. If β0 produces no bad singularities then χ(β0) = h(β0, x). If

β0 produces at least one bad singularity, we apply the following steps to obtain β′.

(1) Choose k ≥ 1 so that β = βk0 �xes all bad singularities.

(2) If β produces an odd-ordered singularity at an interior point s of Dn puncture Dn at

s and de�ne β̂0 as the image of β in Dn+1 =Dn − {s}. Repeat until every interior point

with an odd-ordered singularity is punctured. Let β̂ be the resulting braid in Dn+q

where q is the number of interior points punctured.

(3) If β̂ produces an even-ordered singularity at a puncture P of Dn+q then �ll in P and let

β̂′ be the resulting braid in Dn+q−1. Repeat until every puncture with an even-ordered

singularity is �lled in. Let β′ be the resulting braid.

By Theorem 1.0.2

χ(β′) = h(β′, x)

and h(β′, x) is related to h(β,x) as described in Theorem 1.0.2.
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CHAPTER 4

EXAMPLES AND APPLICATIONS

In this chapter we give examples and applications of Theorem 1.0.2. This result is only

useful if we can use it to avoid �nding train tracks and singularity types. Otherwise we may

as well compute h(x) from de�nition. With this in mind we �rst introduce a large family of

braids for which Theorem 1.0.2 can be used to compute h(x) from the braid word alone. As

a simple example we �rst show that h(β,x) = ∣xI − ψβ(−1)∣ for any pseudo-Anosov β ∈ B3.

When applying the Nielsen-Thurston Classi�cation to a mapping class on a surface with

boundary we �rst attack punctured disks to each boundary component. In particular, we

attach a punctured disk to the boundary component of Dn to consider β ∈ Bn as an element

of Mod(Sn+1) where Sn+1 is the sphere with n + 1 points removed.

Proposition 4.0.1. If β ∈ B3 is a pseudo-Anosov braid, then

h(β,x) = ∣xI − ψβ(−1)]∣

Proof. Suppose β ∈ B3 is pseudo-Anosov carried by a singular foliation F on S4. Let

x1, . . . , xk be the singular points (possibly occurring at a puncture) of F . Let Pi ≥ 1 de-

note the order of xi. Recall that Pi ≥ 3 if xi is in the interior and Pi ≥ 1 if xi occurs at a

puncture.

According to Theorem 2.4.2,

4 =
k

∑
i=1

(2 − Pi)

For convenience assume x1, x2, x,3, x4 occur at the punctures of S4. Then Pi ≥ 1 for 1 ≤ i ≤ 4

and Pi ≥ 3 for i > 4. Therefore

4 =
4

∑
i=1

(2 − Pi) +
k

∑
i=5

(2 − Pi)

≥ 4 +
k

∑
i=5

(−1)
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Therefore there can be no singularities in the interior of D3. The above application of the

Euler-Poincarè-Hopf formula also implies that Pi = 1 for i = 1,2,3,4.

Let β ∈ B3 be pseudo-Anosov. By the above the foliations associated to β have exactly

four singularities. Each is odd-ordered and each occurs at a puncture. By Theorem 1.0.1

h(β,x) = ∣xI − ψβ(−1)∣.

4.1 Application of Theorem 1.0.2 to a large family of braids

The family of braids presented in this section and the methods for studying them are an

extension of the methods of [7].

We �rst de�ne two �building blocks� for constructing the elements.

De�nition 4.1.1. For any integers m,p ≥ 1 we de�ne two elements of Bm

β(m,p) = (σ1σ2 . . . σm−1)p and β(−m,p) = (σ−11 σ−12 . . . σ−1m−1)p

β

α

· · · · · ·
n

m

Figure 4.1: β ⋆ α

An illustration of β(3,2) is given in Figure 4.3 (left). Elements of B are constructed from

the above with a modi�ed form of concatination.

De�nition 4.1.2. Let β ∈ Bn and α ∈ Bm. Let β′ ∈ Bn+m−1 be the image of β under the

usual inclusion map σi ↦ σi and let α′ be the shifted image of α under the map σi ↦ σn+i−1.

Then β ⋆ α = β′α′ ∈ Bn+m−1. See Figure 4.1.
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β(m1,p1)

β(m2,p2)

β(mk,pk)

· · ·

m1

m2

mk

· · · · · · · · ·

Figure 4.2: β(m1,p1),...,(mk,pk)

De�nition 4.1.3. A sequence of ordered pairs {(mi, pi)}ki=1 is a pA-sequence if

1. ∣mi∣, pi > 0 for all i

2. ∣mi∣ and pi are relatively prime for all i

3. The sequence m1, . . . ,mk is alternating.

We de�ne

B = {β{(mi,pi)}ki=1
∣ {(mi, pi)}ki=1 is a pA-sequence}.

where

β{(mi,pi)}ki=1
= β(m1,p1) ⋆ β(m2,p2) ⋆⋯ ⋆ β(mk,pk).

An illustration of β(m,p) is given in Figure 4.3 (left).

De�nition 4.1.4. De�ne

γ(m,p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

β(m,p) if m even

(σ2 ⋅ β(m+1,1))
p

if m is odd

and

γ{(mi,pi)}ki=1
= γ(m1,p1) ⋆ γ(m2,p2) ⋆⋯ ⋆ γ(mk,pk)

If β ∈ B then β = β{(mi,pi)}ki=1
for some pA-sequence (mi, pi)ki=1. In this case we de�ne

γ(β) = γ(β{(mi,pi)})

= γ{(mi,pi)})
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γ3,2β3,2 γ(4,3) = β(4,3)

Figure 4.3: Comparison of βm,p and γm,p

Note that γ(m,p) is always a braid on an even number of strands. A comparison of β(m,p)

and γ(m,p) is given in Figure 4.3.

We will show the following:

Theorem 4.1.5. Let β ∈ B. Then

1. β and γ(β) are pseudo-Anosov

2. h(β,x) = h(γ(β), x)

3. h(γ(β)), x) = ∣xI − ψγ(β)(−1)∣

To prove these braids are pseudo-Anosov we use combined tree maps [7].

De�nition 4.1.6. For any m ≥ 1 let T +m and T −m be trees of star type shown in Figure 4.4.

Each has m valence-1 vertices and 1 valence-m vertex. See Figure 4.4. T0 is the trivial tree

consisting of exactly one vertex.

Given a sequence

S = {(m1, p1), . . . , (mk, pk)}

De�ne

TS = (
k

⋃
i=1

T (−1)
i+1

mi ) /(ri ∼ li+1)
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Label the edges of T +m1
e1, . . . , em1 in the order indicated in Figure 4.4. Then the edges

of T −m2
are em1+1, . . . , em1+m2 and so forth. For 1 ≤ j ≤ k, de�ne gj ∶ TS → TS by

ei ↦ ei i <m1 +⋯ +mj−1 − 1

ei ↦ e

Then gS ∶ TS → TS is given by

gS = gpkk ○ ⋯ ○ g
p1
1 .

Tn,+
v1

v2

vnv0

· · ·

Tm,−

w1

w2

wm

w0

· · ·

Figure 4.4: Trees of star type

Example 4.1.7. Let S = {(3,2), (4,1)}. The combined tree map gS ∶ TS → TS is shown in

Figure 4.5.

The following is a consequence of [7] (section 3):

Proposition 4.1.8. Let gS ∶ TS → TS be a combined tree map for a pA-sequence S and let

MS be the transition matrix of gS. Then M is Perron-Frobenius.

Given TS as above, we can produce a train track in the punctured disk:

1. Replace each valence 1 vertex with a 1-gon bounding a punctured disk.

2. Each valence-2 vertex shared by two trees is replaced by a 1-gon bounding a punctured

disk as indicated in Figure 4.6.
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3. The valence-m vertex in each T ±m is replaced with an m-gon bounding a disk.

Finally, we extend gS to ϕS ∶ τS → τS by permuting the in�ntensimal edges to match the

rotation of T ±m . The following is a result of [7].

Proposition 4.1.9. Let S be a pA-sequence and let gS ∶ TS → TS be the induced combined

tree map.

1. The transition matrix MS is Perron-Frobenius

2. The induced train track τS carries βS.

3. MS is the transition matrix for the real edges of τS.

See [7] Section 4. The assumption that each pair (m,p) are relatively prime is needed

for MS to be Perron-Frobenius.

Proof of Theorem 4.1.5. By Proposition 4.1.9 the transition matrix for the real edges of βS

is Perron-Frobenius. Then by Theorem 2.3.4, βS is pseudo-Anosov.

If βS ∈ Bn then γS ∈ Bn+n′ where n′ is the number of pairs (mi, pi) in S with mi odd.

However, by construction, γS is carried by a copy of τS embedded in Dn+n′ with the same

train track map representing γS. Therefore the transition matrix for the real edges of a train

track invariant under γS is Perron-Frobenius and γS is pseudo-Anosov.

Using combined tree maps we can predict the singularity types produced by βS. Specif-

ically, if S = {(mi, pi)}ki=1, βS produces an order-1 singularity at each puncture and an

order-mi singularity in the interior of S4 for each mi ≥ 3. The braid γS is βS after applying

Theorem 1.0.2 at each odd-ordered singularity in the interior. Then by Theorem 1.0.2 we

have

h(βS, x) = h(γS, x) = ∣xI − ψγS(−1)∣

as desired.
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Figure 4.5: The tree map gS ∶ TS → TS for S = {(3,2), (4,1))}.

Figure 4.6: Constructing τ from TS

Proposition 4.1.10. Let S = {(mi, pi)}ki=1 be a pA-sequence. Then

β = βS = β(m1,p1) ⋆⋯ ⋆ β(mk,pk)

is pseudo-Anosov.
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Proposition 4.1.11. Let {(mi, pi)}ki=1 be a pA-sequence. Let

β⋆ = β{(mi,pi)}ki=1

and

γ⋆ = γ{(mi,pi)}ki=1

Then

1. γ⋆ is pseudo-Anosov

2. The characteristic polynomial of the Burau matrix for γ⋆ is the homology polynomial:

h (γ⋆, x) = ∣xI − ψ[γ⋆,−1]∣

3. The homology polynomials for β⋆ and γ⋆ are equal

h (β⋆, x) = h (γ⋆, x)

4.2 An example comparing the computation of h(x) from de�nition

and computing h(x) using Theorem 1.0.2

In this section we will compute the homology polynomial for a pseudo-Anosov braid from

de�nition and then using Theorem 1.0.2 The e�cient graphs used in the following examples

were determined with the help of [10].

4.2.1 An odd ordered singularity in the interior of the disk

Let β = σ1σ2σ−13 denote the braid in B4 represented as a mapping class in the 4-punctured

sphere. We will �nd an e�cient graph and graph map that carries β and construct the

corresponding train track. After this we will �nd the homology polynomial for βusing both

the de�nition given in Section 2.4 and by using Theorem 1.0.2.
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The graph map, transition matrix, and train track

Let G be the graph as depicted in Figure 4.7. The edges and vertices are labeled and will

be refered to throughout this example. Also depicted is the graph maph g ∶ G → G. An

orientation is given for convenience.

Recall that if G has k edges, the transition matrix of g ∶ G → G is the k × k matrix

with ij-th entry equal to the number of times the edgepath g(ej) passes through ej in either

direction. The transition matrix for the map constructed above is

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

e1 e2 e3 e4 e5 e6 e7 e8

e1 0 1 0 0 0 0 0 0

e2 0 0 1 1 0 0 0 0

e3 1 0 0 1 0 0 0 0

e4 1 0 0 2 0 0 0 0

e5 0 0 0 0 0 1 0 0

e6 0 0 0 0 0 0 1 0

e7 1 0 0 1 0 0 0 1

e8 0 0 0 2 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

To construct a train track τ that carries β we need to determine the gates at each vertex.

Consider edges e3 and e4 emanating from v4. As is shown the edgepaths g(e3) and g(e4)

have the same initial segment. Therefore they belong to the same gate. The peripheral edges

are permuted, and the two ends are never sent to the same initial segment, so at v4 we have

three distinct gates. See Figure 4.8 for a visual representation of τ . The enlarged dashed

circles represent the gates and in�ntesimal edges that replace the vertices of G.

The vertex v2 is odd. To see this, let U be a neighborhood of v2 so that U ∩G consists of

three open-ended arcs emanating from v2. Since v2 is �xed by g and the arcs are permuted,

we see that for any p > 0 the edgepaths gp(e1), gp(e2), and gp(e3) never coincide and belong

to distinct gates.
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e1

e5

e6
e7 e8

v1 v2

v3

v4 v5

e2

e3 e4

Figure 4.7: From top to bottom: G, σ1(G), σ1σ2(G), and σ1σ2σ3−1(G)

Figure 4.8: The train track induced by the graph map shown in Figure 4.7.

The homology polynomial from W (G,g)

As seen above v2 is an odd vertex and all others are non-odd.

For w = (w1,w2,w3,w4,w5,w6,w7,w8) ∈ W (G,g), wi denotes the weight assigned to ei,
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Figure 4.9: The basis element η1. All other edges are assigned a weight of 0.

i = 1, . . . ,8. Let B = {η1, η2, η3, η4} where

η1 = (2,0,0,0,1,0,0,0),

η2 = (0,2,0,0,0,1,0,0),

η3 = (0,0,2,0,0,0,1,0),

η4 = (0,0,−2,2,0,0,0,1)

Recall that an element w ∈ V (G) belongs to W (G,g) if at each non-odd vertex vi the

alternating sum of the weights at incident gates is zero (see Lemma 2.4.8). Thus B ⊂W (G,g).

According to Lemma 2.4.9, the dimension of W (G,g) is

#(Edges) −#(Non-odd vertices) = 8 − 4 = 4

which implies B is a basis for W (G,g). See Figure 4.9 for a depiction of η1.

Let T be the transition matrix given above and let P denote the matrix for the map

R8 → R4 which projects onto the �rst four coordinates. Let

Q = (ηT1 ηT2 ηT3 ηT4 )

denote the 8 × 4 matrix with column vectors equal to the elements of B.
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Then the homology polynomial for β is

h(x) = ∣xI − PTQ∣ = x4 − 2x3 − 2x + 1

The homology polynomial from the Burau representation

The image of β under the Burau representation is

Ψβ(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 t 0

1 − t 1 − t 1

−1
t −1

t −1
t

⎞
⎟⎟⎟⎟⎟⎟
⎠

By Proposition 3.2.2 if

χ(Ψβ(ν)) = ∣xI −Ψβ(ν)∣

is equal to the homology polynomial then ν = −1. However this will not hold for β because

of the bad singularity occuring at v2 above. In fact χ(Ψβ(−1)) = (1 − x)3.

Following the strategy outlined in Section 3.3.2 we will "add a strand" by declaring the

bad singularity a new puncture. The resulting braid is

β = σ2σ1σ2σ3σ4−1 ∈ B5

which is shown in Figure 4.10. We now have

Ψβ(−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 0 0

0 −1 −1 0

2 2 2 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

∣xI −Ψβ(−1)∣ = x4 − 2x3 − 2x + 1 = h(x)

as expected.
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Figure 4.10: The braid σ1σ2σ3−1. The dashed line represents the additional strand after
declaring the singularity a new puncture resulting in the 5-braid σ1σ2σ1σ3σ4−1
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