THE HOMOLOGY POLYNOMIAL AND THE BURAU REPRESENTATION FOR

 PSEUDO-ANOSOV BRAIDSBy

Warren Michael Shultz

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
Mathematics - Doctor of Philosophy

ABSTRACT
 THE HOMOLOGY POLYNOMIAL AND THE BURAU REPRESENTATION FOR PSEUDO-ANOSOV BRAIDS

By
Warren Michael Shultz

The homology polynomial is an invariant for pseudo-Anosov mapping classes [3]. We study the homology polynomial as an invariant for pseudo-Anosov braids and its connection to the Burau representation. Given a pseudo-Anosov braid $\beta \in B_{n}$, we determine necessary and sufficient conditions under which the homology polynomial of β is equal to the the characteristic polynomial of the image of β under the Burau representation. In particular, we build upon [1] and show that the orientation cover associated to a pseudo-Anosov braid is equivalent to a quotient to the Burau cover when the measured foliations associated to β have odd-ordered singularities at each puncture and any singularity that occurs in the interior of D_{n} is even-ordered. We next construct an algorithm which allows us to determine the homology polynomial from the Burau representation for an arbitrary pseudo-Anosov braid. As an application, we show how to easily determine the homology polynomial for large family of pseudo-Anosov braids.

ACKNOWLEDGEMENTS

First, I want to thank my advisor, Effie Kalfagianni, for her guidance, insight, and extremely generous support. I also want to thank Robert Bell for the time and expertise he shared with me. I also am grateful to Ben Scmidt, Matthew Hedden, and Kristina Hendricks for their involvement in my development as a mathematician. I also want to thank Echo Fields and Wolfgang Rünzi for their guidance. Finally, I want to thank Mollee Shultz for her support, encouragement, and valuable feedback.

TABLE OF CONTENTS

LIST OF FIGURES v
CHAPTER 1 INTRODUCTION 1
1.1 Organization of Dissertation 3
CHAPTER 2 PRELIMINARIES 4
2.1 Pseudo-Anosov mapping classes 4
2.1.1 The Nielsen-Thurston Classification 5
2.1.2 Singular measured foliations and pseudo-Anosov mapping classes 5
2.2 Train Tracks 6
2.2.1 Measured train tracks 9
2.3 The Bestvina-Handel Algorithm 10
2.3.1 From efficient graph maps to train tracks 14
2.4 The homology polynomial 15
2.4.1 The orientation cover 17
2.4.2 $W(G, g)$ 18
2.4.3 The decomposition $h(x)=p(x) s(x)$ 19
2.5 The Burau representation 19
CHAPTER 3 THE HOMOLOGY POLYNOMIAL AND ITS CONNECTION TO THE BURAU REPRESENTATION 22
3.1 The Burau estimate quotients of the Burau cover 22
3.2 The homology polynomial from the burau representation 25
3.3 Proof of Theorem 1.0.2 26
3.3.1 Overview 26
3.3.2 Odd-ordered singularities in the interior 27
3.3.3 Even-ordered singularities occurring at punctures 30
3.3.4 Conclusion and proof 32
3.4 An algorithm for constructing β^{\prime} from β 34
CHAPTER 4 EXAMPLES AND APPLICATIONS 35
4.1 Application of Theorem 1.0.2 to a large family of braids 36
4.2 An example comparing the computation of $h(x)$ from definition and com- puting $h(x)$ using Theorem 1.0.2 42
4.2.1 An odd ordered singularity in the interior of the disk 42
BIBLIOGRAPHY 48
Figure 2.1: Saddles for $n=3,4,5$ 6
Figure 2.2: A train track in $S_{0,4}$ (left) and a 1-complex that is not a train track in $S_{0,3}$ (right) 7
Figure 2.3: $\tau \subset D_{3}$ (left) and $\beta(\tau)$ (right) where $\beta=\sigma_{1} \sigma_{2}^{-1}$ 9
Figure 2.4: k-junctions for $k=1,2,3$ 11
Figure 2.5: A graph map induced by $\sigma_{1} \sigma_{2}^{-1}$ 13
Figure 2.6: The branches a_{1} and a_{2} form a corner. The branch b does not form a corner with either a_{i}. 17
Figure 3.1: β (left), β^{\prime} (right), τ (above) 23
Figure 3.2: Left: η_{i}, Right: $\widehat{\eta}_{i}$ (edges without labels have weight 0) 30
Figure 3.3: τ (left) and τ^{\prime} (right) after filling in an order-2 singularity 33
Figure 4.1: $\beta \star \alpha$ 36
Figure 4.2: $\beta_{\left(m_{1}, p_{1}\right), \ldots,\left(m_{k}, p_{k}\right)}$ 37
Figure 4.3: Comparison of $\beta_{m, p}$ and $\gamma_{m, p}$. 38
Figure 4.4: Trees of star type 39
Figure 4.5: The tree map $g_{S}: \mathcal{T}_{S} \rightarrow \mathcal{T}_{S}$ for $\left.S=\{(3,2),(4,1))\right\}$. 41
Figure 4.6: Constructing τ from \mathcal{T}_{S} 41
Figure 4.7: From top to bottom: $G, \sigma_{1}(G), \sigma_{1} \sigma_{2}(G)$, and $\sigma_{1} \sigma_{2} \sigma_{3}^{-1}(G)$ 44
Figure 4.8: The train track induced by the graph map shown in Figure 4.7. 44
Figure 4.9: The basis element η_{1}. All other edges are assigned a weight of 0 45
Figure 4.10: The braid $\sigma_{1} \sigma_{2} \sigma_{3}{ }^{-1}$. The dashed line represents the additional strand after declaring the singularity a new puncture resulting in the 5 -braid $\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{4}{ }^{-1}$47

CHAPTER 1

INTRODUCTION

The homology polynomial for a pseudo-Anosov mapping class [f] on a surface S is an integer polynomial invariant $h(x)$ introduced in [3]. If the stable and unstable foliations of [f] are orientable, then $h(x)$ is associated to the induced action of $[f]$ on $H_{1}(S, \mathbb{R})$. It is the product of two additional polynomial invariants $h(x)=p(x) s(x)$ each with topological meaning. By identifying B_{n} with the mapping class group on the n-punctured disk, the homology polynomial becomes an invariant for pseudo-Anosov braids.

However determining the homology polynomial for an arbitrary mapping class can be difficult or impossible in practice. Computing $h(x)$ involves an application of the BestvinaHandel algorithm ([2]). Software limitations make this impractical for many mapping classes.

We will show that for many pseudo-Anosov braids it is trivially easy to determine the homology polynomial using the (reduced) Burau representation. The (reduced) Burau representation is map

$$
\Psi: B_{n} \rightarrow G L_{n-1}(\mathbb{Z}[t, 1 / t])
$$

The image of $\beta \in B_{n}$ is $\psi_{\beta}(t)$ and is called the Burau matrix of β. It is an $(n-1) \times(n-1)$ matrix with entries from the ring of Laurent polynomials $\mathbb{Z}[t, 1 / t]$. Our first result is a connection between the characteristic polynomial of $\psi_{\beta}(t)$ and $h(x)$. In Section 3.2 we prove the following:

Theorem 1.0.1. Suppose $\beta \in B_{n}$ is pseudo-Anosov with stretch factor λ and homology polynomial $h(\beta, x)$. Let $\left(\mathcal{F}^{u}, \mu_{u}\right)$ and $\left(\mathcal{F}^{s}, \mu_{s}\right)$ be the singular measured foliations for β. Finally, let $\psi_{\beta}(t)$ be the Burau matrix for β and let

$$
\chi\left(\psi_{\beta}(t)\right)=\left|x I-\psi_{\beta}(t)\right|
$$

Then the following are equivalent
(1) $\chi\left(\psi_{\beta}(\eta)\right)=h(\beta, x)$ for some root of unity η.
(2) $\chi\left(\psi_{\beta}(-1)\right)=h(\beta, x)$ and -1 is the only root of unity at which this equality occurs.
(3) $\operatorname{sr}\left(\psi_{\beta}(-1)\right)=\lambda$ where $\operatorname{sr}\left(\psi_{\beta}(-1)\right)$ is the spectral radius of $\psi_{\beta}(-1)$.
(4) The singularites of \mathcal{F}^{u} and \mathcal{F}^{s} are odd-ordered if they occur at a puncture and evenordered if they occur in the interior of D_{n}.
(5) $D_{n}^{(2)}$ is the orientation double-cover of τ (after attaching a punctured disk to the boundary of D_{n}).

With the above in mind, if \mathcal{F}^{u} and \mathcal{F}^{s} above have an even-ordered singularity at a puncture or odd-ordered singularity in the interior we will say that β produces a bad singularity. Suppose that $\beta \in B_{n}$ is pseudo-Anosov and produces at least one bad singularity. In this case we cannot recover $h(x)$ from $\psi_{\beta}(t)$ and the direct computation may be difficult. However we can still use the Burau representation to compute $h(x)$ which is our next result.

Theorem 1.0.2. Let $\beta_{0} \in B_{n}$ be a pseudo-Anosov braid identified with its pseudo-Anosov representative $\beta_{0}: D_{n} \rightarrow D_{n}$. Suppose the measured foliations for β_{0} have p odd-ordered singularities occurring at interior points x_{1}, \ldots, x_{p} and q even-ordered singularities occurring at punctures p_{1}, \ldots, p_{q}. Let $\beta=\beta_{0}^{k}$ where $k \geq 1$ is chosen so that β fixes each p_{i} and x_{i} pointwise.

Identify D_{n+q-r} with $\left(D_{n} \cup\left\{p_{1}, \ldots, p_{r}\right\}\right)-\left\{x_{1}, \ldots, x_{q}\right\}$. Since β fixes each x_{i} and p_{i} pointwise it induces a map $\beta^{\prime}: D_{n+q-r} \rightarrow D_{n+q-r}$.

The braid $\beta^{\prime} \in B_{n+q-r}$ is pseudo-Anosov with

$$
h(\beta, x)=(1+x)^{\varepsilon} h\left(\beta^{\prime}, x\right)=\left|x I-\psi_{\beta^{\prime}}(-1)\right|
$$

where $\varepsilon \geq 0$ is the number of order-2 singularities occurring at a puncture.

In other words, if β is pseudo-Anosov we can either recover $h(x)$ from $\psi_{\beta}(-1)$ or we can construct a new braid β^{\prime} and recover $h(x)$ from $\psi_{\beta^{\prime}}(-1)$.

Of course, determining the types of singularities produced by a pseudo-Ansov braid is not necessarily an easier task than computing its homology polynomial directly. The usefulness of Theorem 1.0.2 is demonstrated in Chapter 4. In particular, in Section 4.1 we present a large family of pseudo-Anosov braids and use Theorem 1.0.2 to trivialize the computation of $h(x)$ (regardless of the singularity types they produce).

1.1 Organization of Dissertation

In Chapter 2 we prove an brief overview of the homology polynomial and the reduced Burau representations along with any necessary preliminaries. In Chapter 3 we prove both Theorem 1.0.1 and Theorem 1.0.2. Finally, in Chapter 4 we present examples and applications of Theorem 1.0.1 and Theorem 1.0.2.

CHAPTER 2

PRELIMINARIES

2.1 Pseudo-Anosov mapping classes

We assume a basic familiarity with braid groups [6] and mapping class groups [4]. Unless stated otherwise, we assume all surfaces are closed, connected, and orientable with a disjoint collection of finitely many points and open disks removed.

Definition 2.1.1. Let S be a surface. Let $\operatorname{Hom}^{+}(S, \partial S)$ be the collection of orientatation preserving homeomorphisms on S. The mapping class group on S is

$$
\operatorname{Mod}(S)=\pi_{0}\left(\operatorname{Hom}^{+}(S, \partial S)\right)=\operatorname{Hom}^{+}(S, \partial S) / \sim
$$

where $f \sim g$ if there is an isotopy from f to g which fixes all punctures and boundary components pointwise. If $[f],[g] \in \operatorname{Mod} S$ then $[f][g]$ is defined as composition, which is to say $[f][g]=[f \circ g]$.

Let D_{n} denote the disk with $n \geq 3$ points removed. It is well known that the braid group on n strands B_{n} is represented as a mapping class group on D_{n}, that is

$$
B_{n} \simeq \operatorname{Mod}\left(D_{n}\right)
$$

For convenience, we identify $\beta \in B$ with its representative isotopy class in $\operatorname{Mod}\left(D_{n}\right)$. See [6] Section 1.6 for more details.

Definition 2.1.2. Let $\gamma \subset S$ be a simple closed curve. We say γ is essential if it is not homotopic to a point, a puncture, or a boundary component of S. We say an isotopy class of curves is essential if it has an essential representative γ.

For example, if $S_{g, n}$ is the genus g surface with n points removed, then $S_{0, n}$ has no essential curves for $n=0,1,2,3$. On a torus, the meridinal and longitudinal curves are both essential.

2.1.1 The Nielsen-Thurston Classification

The Nielsen-Thurston classification says that all mapping classes can be classified as one of three types. For convenience we provide the statement below. For more information see [4], Section 13.3.

Theorem 2.1.3 (The Nielsen-Thurston Classification). Let S be a compact, orientable surface with possibly finitely many punctures and let $[f] \in \operatorname{Mod}(S)$. Then there is a representative homeomorphism $f: S \rightarrow S$ that is periodic, reducible, or pseudo-Anosov. Furthermore if f is pseudo-Anosov then it is neither periodic nor reducible.

We say a mapping class [f] is periodic if there is some positive integer k such that $\left[f^{k}\right]$ has a representative isotopic to the identity. We say $[f]$ is reducible if there a non-trivial collection of isotopy classes of essential simple closed curves $\left\{c_{1}, \ldots, c_{k}\right\}$ so that $\left\{f\left(c_{1}\right), \ldots, f\left(c_{k}\right)\right\}=$ $\left\{c_{1}, \ldots, c_{k}\right\}$ up to isotopy. Our main focus will be on pseudo-Anosov mapping classes. A basic overview of what it means to be pseudo-Anosov is given below.

2.1.2 Singular measured foliations and pseudo-Anosov mapping classes

Definition 2.1.4. A singular foliation \mathcal{F} on a surface S is a decomposition of S into a disjoint union of subsets of S called leaves along with a finite collection of singular points $\left\{x_{1}, \ldots, x_{m}\right\} \subset S$ so that

1. For every nonsingular point $p \in S$ there is a smooth chart from a neighborhood of p to \mathbb{R}^{2} which sends each leaf to a horizontal line segment.
2. For each singluar point $x_{i} \in S$ there is a smooth chart from a neighborhood of p to R^{2} which sends leaves to level sets of a k-pronged saddle with $k \geq 3$.

A smooth arc $\alpha \in S$ is transverse to \mathcal{F} if it is transverse to each leaf of \mathcal{F} and is disjoint from the singular points of \mathcal{F}. A singular measured foliation is a pair (\mathcal{F}, μ) where μ is a

Figure 2.1: Saddles for $n=3,4,5$
measure that assigns a positive value to each smooth $\operatorname{arc} \alpha$ transverse to \mathcal{F} with μ invariant under any leaf-preserving isotopy.

In Chapter 3 we will wish to keep track of the types of singularities that occur.

Definition 2.1.5. Let \mathcal{F} be a singular foliation on a surface S with a singular point $x \in S$ with a chart sending the leaves in a neighborhood of x to the the level sets of a k-pronged saddle. Then we say x is an order k singularity. See Figure 2.1.

Definition 2.1.6. A homeomorphism $f: S \rightarrow S$ is pseudo-Anosov if there is a pair of transverse measured foliations $\left(\mathcal{F}^{u}, \mu_{u}\right)\left(\mathcal{F}^{s}, \mu_{s}\right)$ on S and a real number $\lambda>1$ so that

$$
f \cdot\left(\mathcal{F}^{u}, \mu_{u}\right)=\left(\mathcal{F}^{u}, \lambda \mu_{u}\right) \text { and } f \cdot\left(\mathcal{F}^{s}, \mu_{s}\right)=\left(\mathcal{F}^{s}, \lambda^{-1} \mu_{s}\right)
$$

A mapping class is pseudo-Anosov if it has a pseudo-Anosov representative.

The measured foliations $\left(\mathcal{F}^{u}, \mu_{u}\right)$ and $\left(\mathcal{F}^{s}, \mu_{s}\right)$ are called the unstable and stable foliations respectively. The number λ is called the dilitation or stretch factor of $[f]$.

2.2 Train Tracks

See [8] Chapter 1 for more information on the definitions given in this section.

Definition 2.2.1. Let S be a closed orientable surface of genus g with finitely many punctures and let $\tau \in S$ be an embedded smooth, closed, 1-complex. We will refer to the vertices
of τ as switches and denote the set of all switches by $\operatorname{Sw}(\tau)$. Then $\tau-\operatorname{Sw}(\tau)$ consists of a disjoint collection of smooth open arcs. These components will be refered to as the branches of τ and we will denote set of all branches by $\operatorname{Br}(\tau)$. Then τ is a train track in S if

1. For each switch v there is an open neighborhood U of v and a well defined tangent line $L \in T_{v}(S)$ so that $\tau \cap U$ is the union of a finite collection of open arcs, each tangent to L at v.
2. The components of $S-\tau$ are either once-punctured k-gons with $k \geq 1$ or unpunctured k-gons with $k \geq 3$.

Example 2.2.2. See Figure 2.2. On the left is a train track in the 4-punctured sphere. On the right is a 1-complex in the 3 -punctured sphere which is not a train track ($S_{0,3}-\tau$ contains a punctured disk with no cusps).

Figure 2.2: A train track in $S_{0,4}$ (left) and a 1-complex that is not a train track in $S_{0,3}$ (right)

Definition 2.2 .3 . Let C be a family of smooth simple closed curves disjointly embedded in a surface S so that no component belonging to C is homotopic to a point or a puncture. We
say that a train track τ carries C if there is a smooth map $\phi: S \rightarrow \S$, called the supporting map, so that

1. $\phi(C) \subseteq \tau$
2. ϕ is homotopic to the identity map
3. The restriction of the differential $d \phi_{p}$ to the tangent line to C at p is nonzero for every $p \in C$.

Similarly, we say a train track τ^{\prime} is carried by τ is there is a supporting map $\phi: S \rightarrow S$ meeting the conditions given above.

Definition 2.2.4. A mapping class $[f]: S \rightarrow S$ is carried by a train track $\tau \subset S$ if there is a representative $f \in[f]$ so that $f(\tau)$ is carried by τ.

Note that the supporting map ϕ for a map f carried by τ can always be chosen so that switches are sent to swiches and edges are sent to edge-paths. See [2] for details.

Definition 2.2.5. Suppose β is carried by τ with supporting map ϕ chosen so that edges are sent to edge-paths and vertices are sent to vertices. Then viewing τ as a graph, the map $\beta_{*}=\phi \circ \beta:\left.\right|_{\tau}: \tau \rightarrow \tau$ is the train track map induced by β.

Example 2.2.6. Let $\beta=\sigma_{1} \sigma_{2}{ }^{-1}$. Let $\tau \in D_{3}$ be the train track depicted in Figure 2.3 (left) with branches labeled as indicated. A representation of $\beta(\tau)$ is shown in Figure 2.3 (below). The induced train track map $\beta_{*}: \tau \rightarrow \tau$ is defined by

$$
\begin{array}{llll}
e_{1} & \mapsto e_{3} & e_{4} & \mapsto e_{5} e_{2} \overline{e_{4}} \\
e_{2} & \mapsto e_{1} & e_{5} & \mapsto e_{4} \overline{e_{2}} \overline{e_{5}} \overline{e_{3}} e_{5} \\
e_{3} & \mapsto e_{2} & &
\end{array}
$$

Definition 2.2.7. Let $g: G \rightarrow G$ be a graph map sending vertices to vertices and edges to edge-paths. Suppose G has edges e_{1}, \ldots, e_{k}. Then the transition matrix for $g: G \rightarrow G$ is

Figure 2.3: $\tau \subset D_{3}$ (left) and $\beta(\tau)$ (right) where $\beta=\sigma_{1} \sigma_{2}^{-1}$
defined as $M=\left(a_{i j}\right)_{1 \leq i, j \leq k}$ where $a_{i j}$ is the number of times $\beta\left(e_{j}\right)$ passes over e_{i} (ignoring orientation).

Example 2.2.8. Consider again the braid and train track used in Example 2.2.6 and shown in Figure 2.3. Using the definition above, we have transition matrix

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) .
$$

2.2.1 Measured train tracks

Let τ be a train track in a surface S and let $v \in \tau$ be a switch. By definition every branch incident to v approaches the switch along a well defined tangent line L_{v}. This allows us to partition the branches incident to a switch into two sides. Let e_{1}, \ldots, e_{k} be the branches of τ and let $\boldsymbol{w}=\left(w_{1}, \ldots, w_{k}\right)$ be an assignment of real-valued weights to the edges of τ with $\boldsymbol{w}\left(e_{i}\right)=w_{i}$. We say that \boldsymbol{w} satisfies the switch conditions if at each switch the sum of the weights of the branches on each side are equal.

Definition 2.2.9. Let τ be a train track with edges e_{1}, \ldots, e_{k} and let \boldsymbol{w} be an assignment of real-valued weights to the branches of τ. If \boldsymbol{w} satisies the switch conditions, then the pair (τ, \boldsymbol{w}) is called a measured train track.

2.3 The Bestvina-Handel Algorithm

In [2] Bestvina and Handel gave an algorithmic proof of the Nielsen-Thurston classification by using train tracks to encode the properties of $\left(\mathcal{F}^{u}, \mu_{u}\right)$ and $\left(\mathcal{F}^{s}, \mu_{s}\right)$. Bestvina and Handel's proof showed that given we can always construct a graph $G \subset S$ and a graph map $g: G \rightarrow G$ induced by $[f]$ so that g sends vertices to vertices and for any branch b the map $\left.g\right|_{b}$ is an immersion. An example of a graph map induced by a braid is given in Example 2.2.6. What follows is a brief overview of how G is constructed.

Definition 2.3.1. A fibered surface is a compact surface F decomposed into arcs and polygons modelled after k-junctions as shown in Figure 2.4. The components of F - \{junctions $\}$ are called strips.

We will be interested in fibered surfaces which are subsurfaces of S_{0} associated to f. We say a fibered surface $F \subset S_{0}$ carries f if

1. $F \hookrightarrow S_{0}$ is a homotopy equivalence,
2. f sends decomposition elements to decomposition elements
3. The junctions of F are sent to junctions by f

In particular, each arc belonging to a strip in F is sent to an arc or into a junction of F, but junctions must be sent to junctions.

Every fibered surface F is associated to a graph G obtained by crushing each decomposition elements of F to a point. The edges (resp. vertices) of G correspond to the strips (resp. junctions) of F. If F carries f, then there is a map $g: G \rightarrow G$ induced by f which sends vertices to vertices and edges to edge-paths defined in the obvious way.

Figure 2.4: k-junctions for $k=1,2,3$
Recall that the link of a vertex $v \in G$ is a graph $l k(v, G)$ with vertices corresponding to the edges in G emanating from v. If e_{i} and e_{j} emanate from v then the corresponding vertices in $l k(v, G)$ are connected by an edge if e_{i} and e_{j} are incident to a common 2 -cell. For convenience we will refer to vertex of $\operatorname{Lk}(v, G)$ corresponding to e as $e \in \operatorname{Lk}(v, G)$ when there is no risk of confusion.

With that in mind, suppose v and w are vertices in G with $g(v)=w$ and e is an edge emanating from v. Then $g(v)$ is an edge-path in G with initial edge e^{\prime} emanating from w. The derivative of $g: G \rightarrow G$ is the map

$$
D g: \operatorname{Lk}(v, G) \rightarrow \operatorname{Lk}(w, G)
$$

defined by

$$
e \mapsto e^{\prime}
$$

Definition 2.3.2. We say e_{i} and e_{j} in $\operatorname{Lk}(v, G)$ belong to the same gate if there is some $k>0$ such that $D\left(g^{k}\right)\left(e_{i}\right)=D\left(g^{k}\right)\left(e_{j}\right)$.

In other words, edges e_{i} and e_{j} belong to the same gate if there is some power of g that sends both edges to an edge path with the same initial edge segment in G.

Before proceeding we review some matrix theory. Let $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$ be $n \times n$ matrices with non-negative integer entries. We will write $A \geq B$ or $A>B$ to mean that $a_{i, j} \geq b_{i, j}$ for all i, j. By $a_{i, j}^{k}$ we mean the i, j-th entry of A^{k}.

We say $A=\left\{a_{i j}\right\}$ is irreducible if for each $a_{i, j}$ there is a $k>0$ so that $a_{i, j}^{k}>0$. If there is a k for which $A^{k}>\mathbf{0}$, we say A is primitive.

We can associate to A a directed graph \mathcal{G}_{A}. The graph consists of n vertices v_{1}, \ldots, v_{n} and an edge oriented from v_{j} to v_{i} whenever $a_{i, j}$ is non-zero.

Lemma 2.3.3.

1. A is irreducible if and only if for every pair of vertices v_{i}, v_{j} in \mathcal{G}_{A}, there is an oriented edge-path connecting v_{j} to v_{i}.
2. A is primitive if and only if there is an integer n such that for every v_{i}, v_{j} in \mathcal{G}_{A}, there is an edge path of length n connecting them.

A primitive matrix A is Perron-Frobenius if it has integer entries.

Theorem 2.3.4 (Perron-Frobenius theorem for primitive matrices). Let A be a non-negative $n \times n$ matrix. If A is primitive, then there is a eigenvalue $\lambda>0$ of A such that given any other eigenvalue λ^{\prime} of A we have $\left|\lambda^{\prime}\right|<\lambda$.

Note that in the case that A is primitive and has integer entries, then $\lambda>1$.
By definition the transition matrix M (see Definition 2.2.7) is a square matrix with non-negative integer entries. Therefore if M is irreducible there is a unique positive unit eigenvector with positive eigenvalue λ which is the spectral radius of M and is called the growth rate of M. We will also occasionally refer to this value as $\lambda=\lambda(F, f)=\lambda(G, g)$ when it is convenient.

Example 2.3.5. Let $\beta=\sigma_{1} \sigma_{2}^{-1} \in B_{3}$. Let G be the graph depicted in Figure 2.5. A visual representation of the map induced by $\sigma_{1} \sigma_{2}^{-1}$ is also shown. However, the actual map sends edges to edge paths along the edges of G. The edges represented as circles are peripheral to punctures and thus do not contribute to the transition matrix for the real edges of the induced train track τ. Comparing $\sigma_{1} \sigma_{2}^{-1}(G)$ to G we see that the edgepath $\sigma_{1} \sigma_{2}^{-1}\left(e_{1}\right)$ passes once through e_{1} and e_{2}. The edgepath $\sigma_{1} \sigma_{2}^{-1}\left(e_{2}\right)$ passes through e_{1} once and e_{2} twice. Then
the transition matrix for the real edges is

$$
M=\begin{gathered}
e_{1} \\
e_{2}
\end{gathered} \begin{gathered}
e_{1} \\
e_{2} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
\end{gathered}
$$

As we will see in later sections, the stretch factor for $\sigma_{1} \sigma_{2}{ }^{-1}$ is the largest real root of the characteristic polynomial of M which is $h(x)=x^{2}-3 x+1$. It will also turn out that $h(x)$ is the homology polynomial for β

Figure 2.5: A graph map induced by $\sigma_{1} \sigma_{2}^{-1}$

The following is a consequence of [2]:

Proposition 2.3.6. A mapping class [f] is pseudo-Anosov if and only if there is a train track τ invariant under $[f]$ and the transition matrix for the real edges of τ under the train track map is Perron-Frobenius.

2.3.1 From efficient graph maps to train tracks

The graph map $g: G \rightarrow G$ can be used to recover a train track τ that carries β along with a train track map representing β. Suppose v is a vertex of G and that there are k gates at v, g_{1}, \ldots, g_{k}. Replace v with a small circle C and identify k points $q_{1}, \ldots, q_{k} \in C$. We assume the gates are labeled to match the ordering of their associated gates when traveling counterclockwise around C. For each gate g_{i}, we arrange all edges belonging to the gate to intersect C orthogonally at p_{i}.

Suppose there is an edge $e_{0} \in G$ so that the edgepath $g\left(e_{0}\right)$ passes through v. Then there is some subpath of $g\left(e_{0}\right)$ of the form $e_{i} e_{j}$ with $e_{i} \cap e_{j}=\{v\}$ Suppose e_{i} and e_{j} belong to gates g_{i} and g_{j} respectively. Then we add an edge $\epsilon_{i j}$ connecting p_{i} to p_{j} within the region bounded by C. We assume $\epsilon_{i j}$ intersects C orthogonally.

After performing this operation at each vertex of G we have a train track τ. The edges in τ that come from edges in G are called real edges. The edges connecting gates are called infintesimal edges. At a vertex with k gates, the resulting infintesimal edges form a k-gon (possibly with one edge missing).

Definition 2.3.7. A vertex of G is odd (even respectively) if the corresponding infintesimal edges form a polygon with an odd (even respectively) number of sides. If v corresponds to a polygon that is missing a side, we say v is partial.

Define $\phi: \tau \rightarrow \tau$ as follows:
If e is a real edge in τ, then $g(e)=e_{i} e_{j} \cdots e_{k}$ is an edge-path in G. Suppose $e_{i} e_{j}$ enters and exits the vertex $v \in G$. By the operation described above, there is an infintesimal edge $\eta \in \tau$
connecting e_{i} to e_{j}. Repeating this at each vertex $g(e)$ passes through, we get the edge path $\phi(e)=e_{i} \eta e_{j} \cdots$.

If η is an infintesimal edge connecting real edges e_{i} and e_{j}. Then there is an edge $e \in G$ for which $g(e)$ contains $e_{i} e_{j}$ as a subpath. The map $g^{2}(e)$ contains the subpath $g\left(e_{i}\right) g\left(e_{j}\right)$ and determines $\phi(\eta)$. See Figure 4.7 and Figure 4.7 for an example of this process for the braid $\sigma_{1} \sigma_{2} \sigma_{3}^{-1}$.

After constructing τ, Bestvina and Handel use the train track and map to recover the invariant measured foliations for the pseudo-Anosov mapping class. The following is a consequence:

Proposition 2.3.8. Let $\beta \in B_{n}$ be pseudo-Anosov carried by a train track τ. There is a 1-to-1 correspondance between the components of $S_{4}-\tau$ and the singularities of \mathcal{F}^{u} and \mathcal{F}^{s}. In particular, a non-punctured disk with k corners corresponds to an order- k singularity in the interior of S_{4} and a punctured disk with k corners corresponds to an order k singularity occurring at a puncture.

2.4 The homology polynomial

Recall the homology polynomial discussed in the introduction. Let $[f] \in \operatorname{Mod}(S)$. The main result of [3] is the following.

Theorem 2.4.1 ([3], Theorem 1.1). Let [f] be a pseudo-Anosov mapping class in a closed, orientable surface S with possibly finitely many punctures. Let $f: S \rightarrow S$ be the pseudoAnosov representative of $[f]$ with the Bestvina-Handel graph and graph map $g: G \rightarrow G$ and transition matrix M. Then

1. The characteristic polynomial of $M,|x I-M|$, has a divisor $h(x)$ which is an invariant of $[f]$. The dilatation of $[f]$ is the largest real root of $h(x)$. It is associated to the induced action of f_{*} on $H_{1}(X, \mathbb{R})$ where $X=S$ when τ is orientable and X is the orientation cover of τ when is not orientable.
2. The homology polynomial decomposes as a product $p(x) \cdot s(x)$ of two polynomials, each a topological invariant of [f].
a) $p(x)$ is the puncture polynomial and records the action of g_{*} on the radical of a skew-symmetric form on $W(G, g)$. It is related to the way f permutes the punctures of S.
b) $s(x)$ is the symplectic polynomial and records the action of g_{*} on the non-degenerate symplectic space $W(G, g) / Z$ and contains the dilitation of f as its largest real root.

In Chapter 3 we will wish to compare homology polynomials for distinct mapping classes. If $[f],[g] \in \operatorname{Mod}(S)$, we write their homology polynomials as $h([f], x)$ and $h([g], x)$ respectively.

In what follows we shall restrict our attention to braids. As we see, every train track that carries a braid is non orientable. First we recall the Euler-Poincarè-Hopf formula (see [5], Exposè 5, Section 1.6)

Theorem 2.4.2. Let S be a genus g surface, possibly punctured, with a singular foliation \mathcal{F} and singular points x_{1}, \ldots, x_{k}. For $1 \leq i \leq k$ let P_{i} denote the order of x_{i}. Then

$$
4-4 g=\sum_{i=1}^{k}\left(2-P_{i}\right)
$$

Lemma 2.4.3. Let $\beta \in B_{n}$ be a pseudo-Anosov braid and let τ be a train track that carries β. Then τ is not orientable.

Proof. It suffices to show that β must produce at least one odd-ordered singularity. By Theorem 2.4.2,

$$
4=\sum_{i=1}^{k}\left(2-P_{i}\right)
$$

If each $P_{i}>1$ the above equality fails. Therefore at least one singularity is odd-ordered and τ is not orientable.

Figure 2.6: The branches a_{1} and a_{2} form a corner. The branch b does not form a corner with either a_{i}.

2.4.1 The orientation cover

When τ is not orientable we lift to a special branched double of S determined by τ.

Definition 2.4.4. Let b_{1} and b_{2} be branches in τ that meet at a switch v. Recall that b_{1} and b_{2} intersect v along a well defined tangent which allows us to partition the branches meeting v into two sides.

If b_{1} and b_{2} approach v from the same side, we say the angle between them is 0 . Otherwise, the angle between them is π. In the latter case we say the branches b_{1} and b_{2} form a corner (see Figure 2.6.

Definition 2.4.5. Let $\tau \subset S$ be a non-orientable train track and fix some basepoint $x \in \tau$. If S is not homotopic to τ, then let S_{0} be the surface obtained by puncturing each unpunctured disk component of $S-\tau$. Then S_{0} is homotopic to τ and we may identify $\pi_{1}\left(S_{0}, x\right)$ with $\pi_{1}(\tau, x)$.

Define $\epsilon: \pi_{1}(\tau, x) \rightarrow \mathbb{Z} / 2 \mathbb{Z} \simeq\{-1,1\}$ by

$$
\gamma \mapsto(-1)^{\# \text { corners in } \gamma}
$$

Then the kernel of ϵ is all loops in τ with an even number of corners. The covering space cooresponding to the kernel of ϵ, after filling in any added punctures, is called the orientation cover for τ. It is a two-fold branched cover of S and the fiber of τ is an orientable train track in the cover.

The following is result of Theorem 2.4.1.
Theorem 2.4.6. Let $\beta \in B_{n}$ be a pseudo-Anosov mapping class with train track τ. Let \tilde{D} denote the orientation double cover for τ and denote its involution by ι. Then $\iota_{*}: H_{1}(\tilde{D}, \mathbb{R}) \rightarrow$ $H_{1}(\tilde{D}, \mathbb{R})$ has two eigenspaces E^{+}and E^{-}corresponding to eigenvalues 1 and -1 respectively. The homology polynomial of β is the characteristic polynomial of $\left.\beta_{*}\right|_{E^{-}}$.

2.4.2 $W(G, g)$

Given a train track τ constructed from $g: G \rightarrow G$, there is a natural surjection $\pi: \tau \rightarrow G$ sending real edges to real edges and collapsing all infintesimal polygons to a point.

Let $V(\tau)$ be the \mathbb{R}-vector space of real weights on the branches of τ. Define $V(G)$ similarly. Let $W(\tau) \subset V(\tau)$ be the subspace of assignments that satisfy the switch conditions. The surjection $\pi: \tau \rightarrow G$ induces a surjection $\pi_{*}: V(\tau) \rightarrow V(G)$.

Definition 2.4.7. We define $W(G, g)=\pi_{*}(W(\tau))$. It is the subspace of $W(G, g)$ consisting of weight assignments that extend to an assignments of weights on τ that satisfy the switch conditions.

There is a convenient way to determine if an element in $V(G)$ is in $W(G, g)$.
Lemma 2.4.8 ([3], Lemma 2.9). An element $\eta \in V(G)$ belongs to $W(G, g)$ if and only if for each non-odd vertex the alternating sum of the weights at the incident gates is zero.

Lemma 2.4.9 ([3], Lemma 2.11). If τ is orientable, then

$$
\operatorname{dim} W(G, g)=\#(\text { edges of } G)-\#(\text { vertices of } G)+1
$$

otherwise

$$
\operatorname{dim} W(G, g)=\#(\text { edges of } G)-\#(\text { non-odd vertices of } G)
$$

2.4.3 The decomposition $h(x)=p(x) s(x)$

Theorem 2.4.10 ([3], Theorem 3.8). Let $p(x)$ and $s(x)$ be the characteristic polynomials of $\left.g_{*}\right|_{Z}$ and $\left.g_{*}\right|_{W(G, g) / Z}$ respectively. The map g_{*} preserves the direct sum decomposition $W(G, g) \approx Z \oplus(W(G, g) / Z)$ so that $h(x)=p(x) s(x)$. Moreover we have

1. The polynomial $p(x)$ is an invariant of the pseudo-Anosov mapping class $[f] \in \operatorname{Mod}(S)$. The restriction $\left.g_{*}\right|_{Z}$ encodes how $[f]$ permutes the puntures whose projections to τ have even numbers of corners. In particular, $\left.g_{*}\right|_{Z}$ is a periodic map, so that all the roots of $p(x)$ are roots of unity and the polynomial $p(x)$ is palindromic or anti-palindromic.
2. The polynomial $s(x)$ is an invariant of $[f]$. The skew-symmetric form $\langle\cdot, \cdot\rangle_{W(G, g)}$ naturally induces a symplectic form on $W(G, g) / Z$. The map g_{*} induces a symplectomorphism of $W(G, g) / Z$. Hence $k s(x)$ is palindromic.
3. The homology polynomial $h(x)$ is either palindromic or anti-palindromic.

2.5 The Burau representation

The Burau representation for braids will play a crucial role in what follows. In particular, there is an equivalent twisted homological version of the Burau representation which allows us to represent braids as acting on the first homology group of an infinite cyclic cover

$$
D_{n}^{\infty} \rightarrow D_{n}
$$

with deck group $\langle t\rangle \simeq \mathbb{Z}$. In Chapter 3 we will see that the quotient $D_{n}^{\infty} /\left\langle t^{2}\right\rangle$ is equivalent to the orientation cover for a train track that carries a braid. For more information on this topic see [6] sections 3.1-3.3 and [1].

Definition 2.5.1. Let $\mathbb{Z}[t, 1 / t]$ denote the ring of Laurent polynomials and let $n \geq 3$. Define $V_{1}, \ldots, V_{n-1} \in \mathrm{GL}_{n-1}(\mathbb{Z}[t, 1 / t])$ as

$$
V_{1}=\left(\begin{array}{ccc}
-t & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & I_{n-3}
\end{array}\right) \quad \text { and } \quad V_{n-1}=\left(\begin{array}{ccc}
I_{n-3} & 0 & 0 \\
0 & 1 & t \\
0 & 0 & -t
\end{array}\right)
$$

and for $1<i<n-1$ define

$$
V_{i}=\left(\begin{array}{ccccc}
I_{i-2} & 0 & 0 & 0 & 0 \\
0 & 1 & t & 0 & 0 \\
0 & 0 & -t & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & I_{n-2}
\end{array}\right)
$$

Then the group homomorphism $\psi_{n}: B_{n} \rightarrow \mathrm{GL}_{n-1}(\mathbb{Z}[t, 1 / t])$ denined on the generators as

$$
\sigma_{i} \mapsto V_{i}
$$

for $1 \leq i \leq n-1$ is the (reduced) Burau representation.

The above representation is a reduction of the original Burau representation. See [6] for an explaination of the distinction.

Definition 2.5.2. Let $p_{1}, \ldots, p_{n} \in D$ and let $D_{n}=D-\left\{p_{1}, \ldots, p_{n}\right\}$. Let $\gamma \in \pi_{1}\left(D_{n}, d\right)$ where $d \in \partial D$. For each p_{i} we have $H_{1}(D-\{p\} ; \mathbb{Z}) \simeq \mathbb{Z}$ generated by a loop around p_{i} oriented counterclockwise. Then γ represents k times the generator of $H_{1}(D-\{p\} ; \mathbb{Z})$. We will call k the winding number of γ around p_{i} and we write $w_{p_{i}}(\gamma)=k$. Then the total winding number of γ is the sum

$$
w(\gamma)=\sum_{i=1}^{n} w_{p_{i}}(\gamma)
$$

Identify \mathbb{Z} with the multiplicative group generated by t. Consider the map $\varepsilon: \pi_{1}\left(D_{n}, d\right) \rightarrow$ \mathbb{Z} defined by $\varepsilon(\gamma)=t^{w(\gamma)}$. The kernel of this map determines the infinite cyclic covering $D_{n}^{(\text {inf })} \rightarrow D_{n}$ with deck transformation group identified with $\left\{t^{k}\right\}_{k \in \mathbb{Z}}$. In this way we can view $H_{1}\left(D_{n}^{(\text {inf })} ; \mathbb{Z}\right)$ as a free module of rank $n-1$ over $\mathbb{Z}[t, 1 / t]$.

Any braid $\beta \in B_{n} \simeq \operatorname{Mod}\left(D_{n}\right)$ has a lift $\widetilde{\beta}: D_{n}^{(\text {inf })} \rightarrow D_{n}^{(\text {inf) }}$ which fixes the fiber of d pointwise. This induces a $\mathbb{Z}[t, 1 / t]$-module automorphism of $H_{1}\left(D_{n}^{(\text {inf })} ; \mathbb{Z}\right)$.

Definition 2.5.3. The twisted homological Burau representation of B_{n} is the map

$$
\Psi_{n}: B_{n} \rightarrow \operatorname{Aut}\left(H_{1}\left(D_{n}^{(\infty)} ; \mathbb{Z}\right)\right)
$$

defined by

$$
\beta \mapsto \widetilde{\beta}_{*}
$$

Theorem 2.5.4. The twisted homological Burau representation Ψ_{n} is equivalent to the (reduced) Burau reprentation ψ_{n}.

See [6] section 3.2.5 for a proof.

CHAPTER 3

THE HOMOLOGY POLYNOMIAL AND ITS CONNECTION TO THE BURAU REPRESENTATION

In this chapter we begin by determining exactly when between $h(\beta, x)=\left|x I-\psi_{\beta}(-1)\right|$. In Section 3.1 we summarize a result of Band and Boyland [1] which describes the relationship between the Burau representation and the stretch factor of a pseudo-Anosov braid. In Section 3.2 we expand upon their work to establish a relationship between the Burau representation and the homology polynomial which leads to our first new result. We see that $h(\beta, x)=\left|x I-\psi_{\psi}(-1)\right|$ if and only if all singularities belonging to \mathcal{F}^{u}, μ_{u} and \mathcal{F}^{s}, μ_{s} are odd-ordered if they occur at a puncture and even-ordered if they occur in the interior of D_{n}. In Section 3.3 we prove Theorem 1.0.2. Finally, in Section 3.3.4 we present an algorithm for constructing β^{\prime} for an arbitrary pseudo-Anosov β.

Before proceeding we give a simple example demonstrating the construction of β^{\prime}.
Consider the pseudo-Anosov braid $\beta=\sigma_{1} \sigma_{2} \sigma_{3}^{-1} \sigma_{4}^{-1} \sigma_{3}^{-1}$. It has homology polynomial $h(\beta, x)=(1+x)\left(1-2 x-2 x^{3}+x^{4}\right)$. However, $\left|x I-\psi_{\beta}(-1)\right|=1-2 x+4 x^{2}-2 x^{3}+x^{4}$ which has no real roots. Then this cannot be the homology polynomial since $h(\beta, x)$ must have at least one real root (the stretch factor). A train track that carries β is shown in Figure 3.1 (top). The point S represents an order-3 singularity occuring in the interior of D_{5}. An order- 2 singularity occurs at the fourth puncture of D_{5} (labeled P). After removing S and filling in P, we get the braid $\beta^{\prime}=\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{4}^{-1}$ as indicated in Figure 3.1 (right).

Since β^{\prime} produces no bad singularities we know $h\left(\beta^{\prime}, x\right)=\chi(\beta,-1)=1-2 x-2 x^{3}+x^{4}$. This means $(x+1) h\left(\beta^{\prime}, x\right)=h(\beta, x)$ as predicted by Theorem 1.0.2.

3.1 The Burau estimate quotients of the Burau cover

In this section we review a relationship between the stretch factor of a pseudo-Anosov braid and its Burau matrix given by Band and Boyland in [1]. This will give us the foundation we

Figure 3.1: β (left), β^{\prime} (right), τ (above)
need to recover the homology polynomial from the Burau representation.
Recall the Burau cover introduced in Section 2.5, the infinite cyclic cover $D_{n}^{(\infty)}$ associated to the kernel of the map sending each element in $\pi_{1}\left(D_{n}, d\right)$ to its winding number in \mathbb{Z}. Let t denote the generator of the deck group of $D_{n}^{(\infty)} / D_{n}$. Then the (reduced) Burau matrix of β is $\psi[\beta, t] \in \operatorname{GL}_{n-1}(\mathbb{Z}[t, 1 / t])$.

If β is pseudo-Anosov with dilatation $\lambda>1$, it is well known that

$$
\begin{equation*}
\sup \{\operatorname{sr}(\psi[\beta, \eta] \mid \eta \text { a root of unity }\} \leq \lambda \tag{3.1}
\end{equation*}
$$

where $\psi[\beta, \eta]$ is the (reduced) Burau matrix for β and with the substitution $t=\eta$. and $\operatorname{sr}(\psi[\beta, \eta]$ is its spectral radius. The left side of Equation (3.1) is called the Burau estimate for the stretch factor of a pseudo-Anosov braid at η.

Let $\phi: \pi_{1}\left(D_{n}, d\right) \rightarrow \mathbb{Z}$ denote the map sending elements to their winding numbers, and for
any $k \geq 2$ let $\epsilon_{k}: \mathbb{Z} \rightarrow \mathbb{Z}_{k}$ denote the standard quotient mapping. Clearly $\operatorname{ker}\left(\epsilon_{k} \circ \phi\right) \subset \operatorname{ker} \phi$.
Definition 3.1.1. For each $k \geq 2$ let $p_{k}: D_{n}^{(k)} \rightarrow D_{n}$ denote the covering space of associated to the kernel of the map

$$
\epsilon_{k} \circ \phi: \pi_{1}\left(D_{n}, d\right) \rightarrow \mathbb{Z}_{k}
$$

with

$$
D_{n}^{(k)}=D_{n}^{(\infty)} / t^{k}
$$

Let $q_{k}: D_{n}^{(\infty)} \rightarrow D_{n}^{(k)}$ denote the corresponding covering map.

The main result of [1] that we build upon is

Theorem 3.1.2 ([1], Theorem 5.1). Let β be a pseudo-Anosov braid with stretch factor λ and (reduced) Burau matrix $\psi[\beta, t]$. Then the following are equivalent
(1) $\operatorname{sr}(\psi[\beta, \eta]=\lambda$ for some root of unity η.
(2) $\operatorname{sr}(\psi[\beta,-1])=\lambda$ and -1 is the only root of unity for which this equality is true.
(3) The invariant foliations \mathcal{F}^{u} and \mathcal{F}^{s} have odd-ordered singularities at each puncture and all singularities in the interior of D are even-ordered.
(4) $D^{(2)}$ is the orientation double-cover for \mathcal{F}^{u} and \mathcal{F}^{s}.

We state two additional results of [1] which we will wish to use in later sections.

Lemma 3.1.3 ([1], Lemma 3.2). Let T be the generator of the deck group for the covering $p^{(k)}: X^{(k)} \rightarrow X$ and let $h^{(k)}$ and $h^{(\infty)}$ be the lifts of h to $X^{(k)}$ and $X^{(\infty)}$. The eigenvalues of T_{*} restricted to $S_{\mathbb{C}}^{(k)}$ are $1, \eta_{k}, \eta_{k}^{2}, \ldots, \eta_{k}^{k-1}$ where $\eta_{k}=e^{2 \pi i / k}$. Denote by E_{0}, \ldots, E_{k-1} the corresponding eigenspaces in $S_{\mathbb{C}}^{(k)}$. Then each subspace E_{m} is $h_{*}^{(k)}$-invariant, and the action of $h_{*}^{(k)}$ on E_{m} is given by the matrix $M\left(\eta_{k}^{m}\right)$, obtained by substituting η_{k}^{m} into the matrix $M(t)$ of $h_{*}^{(\infty)}$.

Theorem 3.1.4 ([1], Theorem 3.4). Let $h: X \rightarrow X$ be a homeomorphism of the locally pathconnected, semi-locally simply connected topological space X, whose first homology group we assume to be free and of finite rank. Suppose $\rho: H_{1}(X) \rightarrow \mathbb{Z}$ is a homomorphism which satisfies $\rho h_{*}=\rho$, and let $X^{(\infty)}$ and $X^{(k)}=X^{(\infty)} / T^{k}$ denote the covering spaces over X corresponding to ρ and $\xi_{k} \circ \rho$, with covering projection $q^{(k)}: X^{(\infty)} \rightarrow X^{(k)}$. Let $h^{(\infty)}$ and $h^{(k)}$ denote lifts of h to these covering spaces. If $M=M(t) \in G L(r, R)$ denotes the matrix of $h_{*}^{(\infty)}: H_{1}\left(X^{(\infty)}\right) \rightarrow H_{1}\left(X^{(\infty)}\right)$ as an R-module isomorphism, then the action of $h_{*}^{(k)}$ on the invariant subspace $S_{\mathbb{C}}^{(k)}=q_{*}^{(k)}\left(H_{1}\left(X^{(\infty)}, \mathbb{C}\right)\right)$ is given by the direct sum

$$
h_{*}^{(k)}=M(1) \oplus M\left(\eta_{k}\right) \oplus \cdots \oplus M\left(\eta_{k}^{k-1}\right)
$$

where $M\left(\eta_{k}^{j}\right)$ denotes the complex matrix obtained by substituting $\eta_{k}^{j}=e^{2 \pi i j / k}$ into M. Furthermore, any eigenvector of $h_{*}^{(k)}$ not lying in $S^{(k)}$ has eigenvalue which is a root of unity.

3.2 The homology polynomial from the burau representation

We now build upon Theorem 3.1.2 and show that under the same singularity conditions given in Theorem 3.1.2(3) the characteristic polynomial of the Burau matrix of a pseudo-Anosov braid is the homology polynomial.

Fix some $\beta \in B_{n}$ be a pseudo-Anosov braid with stretch factor λ and homology polynomial $h(x)$. Suppose $g: G \rightarrow G$ is an efficient graph map corresponding to β that induces train track $\tau \subset D_{n}$. Let $\chi(\beta)=\chi(\psi[\beta,-1])=|x I-\psi[\beta,-1]|$. That is, $\chi(\beta)$ is the characteristic polynomial of $\psi[\beta,-1]$.

Lemma 3.2.1. The stretch factor of β is the largest real root of $\chi(\beta)$ if and only if $\chi(\beta)=$ $h(x)$.

Proof. If $\chi(\beta)=h(x)$ then λ is the largest real root of $\chi(\beta)$ since $h(x)$ always contains λ as its largest real root.

Conversely, suppose that λ is the largest real root of $\chi(\beta)$. Then by Theorem 3.1.2 $D_{n}^{(2)}$ is the orientation cover for τ and by Lemma 3.1.3 $\psi[\beta,-1]$ represents the action of $\beta_{*}^{(2)}$ on
the eigenspace of $H_{1}\left(D_{n}^{(2)} ; \mathbb{R}\right)$ corresponding to the eigenvalue -1 . Then by Theorem 2.4.6 $\chi(\beta)$ is equal to the homology polynomial.

Using Lemma 3.2.1 and Proposition 2.3.8. we are able to restate Theorem 3.1.2 in terms of the homology polynomial, graph maps, and train tracks.

Proposition 3.2.2. Suppose $\beta \in B_{n}$ is pseudo-Anosov with dilatation λ and homology polynomial $h(x)$. Then the following are equivalent:
(1) $\chi(\beta)$ is equal to the homology polynomial for β;
(2) The spectral radius of $\psi\left[\beta, e^{2 \pi i j / k}\right]=\lambda$ for some $0 \leq j<k$;
(3) The spectral radius of $\psi[\beta,-1]=\lambda$ and -1 is the only root of unity at which this occurs;
(4) The vertices of G occuring at the punctures of D_{n} and in the interior of D_{n} are odd and even respectively.
(5) $D_{n}^{(2)}$ is the orientation double-cover of τ (after attacking a punctured disk to the boundary of D_{n}).

Proof. By Theorem 3.1.2 conditions (2), (3), and (5) are equivalent. By Lemma 3.2.1 and Theorem 3.1.2 (2) is equivalent to (1). Finally, by Proposition 2.3.8 (4) is equivalent to the third statement of Theorem 3.1.2 which implies (4) is equivalent to (3).

3.3 Proof of Theorem 1.0.2

3.3.1 Overview

The goal of this section is to prove Theorem 1.0.2. Unless stated otherwise all braids are assumed to be pseudo-Anosov.

Definition 3.3.1. We say that β produces a k-ordered singularity if the invariant foliations associated to β have a k-ordered singularity.

By Proposition 3.2.2 $h(\beta, x)=\chi(\beta)$ if and only if β does not produce certain types of "bad" singularities.

Definition 3.3.2. A singularity produced by β is bad if it is odd-ordered and occurs at an interior point of D_{n} or even-ordered and occurs at a puncture of D_{n}.

By Theorem 1.0.1 if β does not produce bad singularities $h(\beta, x)=\left|x I-\psi_{\text {beta }}(-1)\right|$. In the case that β does produce bad singularities Theorem 1.0.2 says that we can algorithmically construct some new braid β^{\prime} which produces no bad singularities so that $h(\beta, x)$ is recoverable from $h\left(\beta^{\prime}, x\right)$.

We construct β^{\prime} from β using two operations. The first involves puncturing D_{n} at each odd-ordered singularity in the interior of D_{n}. This can be thought of as "inserting a strand" into β. The second operation involves filling in any punctures of D_{n} at which β produces an even-ordered singularity. This can be thought of as "forgetting a strand". If β_{i+1} is constructed from β_{i} using one of these two operations we see that β_{i+1} produces exactly one less bad singularity than β_{i}.

3.3.2 Odd-ordered singularities in the interior

We now prove assume that a pseudo-Anosov braid $\beta \in B_{n}$ produces and fixes an odd-ordered singularity at a point s in the interior of D_{n}. We show that declaring s a new puncture results in a pseudo-Anosov braid $\beta^{\prime} \in B_{n+1}$ with the same homology polynomial as β.

Lemma 3.3.3. Let $\beta \in B_{n}$ be a pseudo-Anosov braid that produces an odd-ordered singularity at a points in the interior of D_{n}. Suppose β fixes s and let $D_{n+1}=D_{n}-\{s\}$. Define $\beta^{\prime} \in B_{n+1}$ by

$$
\beta^{\prime}=\left.\beta\right|_{D_{n}-\{s\}} .
$$

Then

1. β^{\prime} is pseudo-Anosov
2. β^{\prime} produces one less bad singularity than β
3. We have

$$
\begin{aligned}
& p\left(\beta^{\prime}, x\right)=p(\beta, x) \\
& s\left(\beta^{\prime}, x\right)=s(\beta, x) \\
& h\left(\beta^{\prime}, x\right)=h(\beta, x)
\end{aligned}
$$

Proof. We first prove that β^{\prime} is pseudo-Anosov.
Consider β as an element of $\operatorname{Mod}\left(D_{n}\right)$ where $D_{n}=\left(D,\left\{p_{1}, \ldots, p_{n}\right\}\right)$ is the disk with marked points p_{1}, \ldots, p_{n}. Let $D_{n+1}=\left(D,\left\{p_{1}, \ldots, p_{n}, S\right\}\right)$. Let T denote the transition matrix for a train track $\tau \subset D_{n}$ that carries β. The singular point s is in $D_{n}-\tau$ so we may embed a copy of τ in D_{n+1}. Since β acts as the identity on some neighborhood of $s \beta^{\prime}$ is also carried by the image of τ embedded in D_{n+1}. Then the transition matrix for β^{\prime} is also represented by T and the submatrix representing the transition matrix corresponding to the real edges of τ is also Perron-Frobenius. Then by Theorem 2.3.4 β is pseudo-Anosov.

The singularities of β^{\prime} are the same as those of β except we have replaced an odd-ordered singularity in the interior with an odd-ordered singularity at a puncture. Thus β^{\prime} produces one less bad singularity than β.

It remains to show (c).
If the singularity at s is order k then s cooresponds to a vertex v_{s} of G with k gates. Define G^{\prime} as G with the vertex v_{s} replaced by a k-gon, with k partial vertices v_{1}, \ldots, v_{k} cooresponding to the gates of v_{s} and k edges e_{1}, \ldots, e_{k} with e_{i} connecting v_{i} to v_{i+1} for $i<k$ and e_{k} connecting v_{k} to v_{1}. See Figure 3.2. Each of there new vertices is partial by the assumption that v_{S} is odd.

Since the induced train track for a braid is not orientable (Lemma 2.4.3), we know from Lemma 2.4.9 that

$$
\operatorname{dim} W(G, g)=\#(\text { edges of } G)-\#(\text { non-odd vertices of } G)
$$

By construction, the addition of k real edges and k partial vertices results in

$$
\begin{array}{ll}
\#\left(\text { edges of } G^{\prime}\right) & =k+\#(\text { edges of } G) \\
\#\left(\text { non-odd vertices of } G^{\prime}\right) & =k+\#(\text { non-odd vertices of } G)
\end{array}
$$

which gives

$$
\begin{aligned}
\operatorname{dim} W\left(G^{\prime}, g^{\prime}\right) & =\#\left(\text { edges of } G^{\prime}\right)-\#\left(\text { non-odd vertices of } G^{\prime}\right) \\
& =\#(\text { edges of } G)+k-(\#(\text { non-odd vertices of } G)+k) \\
& =\operatorname{dim} W(G, g)
\end{aligned}
$$

Let $\left\{\eta_{1}, \ldots, \eta_{m}\right\}$ be a basis for $W(G, g)$ and for any edge G let $\eta_{i}(e)$ denote the weight assigned to e by η_{i}. Let x_{i} denote the gate of v_{s} associated to the vertex $v_{i} \in G^{\prime}$ and let w_{i} be the sum of the weights assigned to the edges of G belonging to x_{i}.

For each $j=1, \ldots, m$ we now construct an element $\eta_{j}^{\prime} \in W\left(G^{\prime}, g^{\prime}\right)$ and show the $\left\{\eta_{j}^{\prime}\right\}$ form a basis for $W\left(G^{\prime}, g\right)$.

First, for every edge e in G^{\prime} that comes from an edge of $G, \widehat{\eta}_{j}(e)=\eta_{j}(e)$. For each $i=1, \ldots, k$, add $\pm w_{i} / 2$ to e_{1}, \ldots, e_{k} as indicated in Figure 3.2. We can do this consistently with $\widehat{\eta}_{i} \in W\left(G^{\prime}, g^{\prime}\right)$ because k is odd. Since $\operatorname{dim} W\left(G^{\prime}, g^{\prime}\right)=\operatorname{dim} W(G, g)$, this forms a basis for $W\left(G^{\prime}, g^{\prime}\right)$.

By construction, g^{\prime} fixes the edges e_{1}, \ldots, e_{k} and the following diagram commutes.

It follows that the characteristic polynomial for $\left.g_{*}^{\prime}\right|_{W\left(G^{\prime}, g^{\prime}\right)}$ is equal to the characteristic polynomial for $\left.g_{*}\right|_{W(G, g)}$ and thus the homology polynomials for β and β^{\prime} are equal.

We now show that $p\left(\beta^{\prime}, x\right)=p(\beta, x)$.
By construction β^{\prime} produces the same set of singularities as β. The only change is that an odd-ordered singularity that previously occurred in the interior of D_{n} now occurs at a puncture of D_{n+1}. In particular, β^{\prime} produced the same collection of even-ordered singularities
occurring at punctures and β^{\prime} permutes them in the same way. By Theorem 2.4.1 this implies $p\left(\beta^{\prime}, x\right)=p(\beta, x)$.

From $h\left(\beta^{\prime}, x\right)=h(\beta, x)$ and $p\left(\beta^{\prime}, x\right)=p(\beta, x)$ it immedietly follows that $s\left(\beta^{\prime}, x\right)=s(\beta, x)$.

Figure 3.2: Left: η_{i}, Right: $\widehat{\eta}_{i}$ (edges without labels have weight 0)

3.3.3 Even-ordered singularities occurring at punctures

We now show that if $\beta \in B_{n}$ fixes a puncture p and produces an even-ordered singularity that occurs at p then after filling in p the resulting braid $\beta^{\prime} \in B_{n-1}$ is pseudo-Anosov and produces one less bad singularity than β.

Lemma 3.3.4. Let $\beta \in B_{n}$ be a pseudo-Anosov braid that produces an even-ordered singularity at a puncture p and that p is fixed by β. Let D_{n-1} be the space obtained from D_{n} by filling in p. Define $\beta^{\prime} \in B_{n-1}$ as the image of β after passing to D_{n-1}. Then β^{\prime} is pseudo-Anosov.

1. If the singularity at p is order 2 then

$$
\begin{aligned}
& p\left(\beta^{\prime}, x\right)=p(\beta, x) /(x+1) \\
& s\left(\beta^{\prime}, x\right)=s(\beta, x) \\
& h\left(\beta^{\prime}, x\right)=h(\beta, x) /(x+1)
\end{aligned}
$$

2. Otherwise

$$
\begin{aligned}
& p\left(\beta^{\prime}, x\right)=p(\beta, x) /(x+1) \\
& s\left(\beta^{\prime}, x\right)=s(\beta, x) \cdot(x+1) \\
& h\left(\beta^{\prime}, x\right)=h(\beta, x)
\end{aligned}
$$

Proof. Let k be the order of the singularity occurring at p. Let $g: G \rightarrow G$ be an efficient graph map that carries β with induced train track τ. Since $p \in D_{n}-\tau$ we can embed τ in D_{n-1} as defined above.

We first prove that β^{\prime} is pseudo-Anosov. We separate the special case of $k=2$ since the resulting braid has a slightly modified homology polynomial.

If $k=2$ then τ^{\prime} is not a train track since one of the components of $D_{n-1}-\tau^{\prime}$ is a bigon as depicted in Figure 3.3. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the edges of τ. We construct τ^{\prime} by embedding a copy of τ and pushing e_{j} onto e_{i} across the bigon containing the filled in point p. We now define the map $g_{*}^{\prime}: \tau^{\prime} \rightarrow \tau^{\prime}$ and argue it carries β^{\prime} efficiently. For each edge e_{k} with $k \neq i, i+1$ define $g_{*}^{\prime}\left(e_{k}\right)$ as the edge path $g_{*}\left(e_{k}\right)$ in τ with each occurrence of e_{i} or e_{i+1} replaced with e_{i}^{*}. Similarly define $g_{*}^{\prime}\left(e_{i}^{*}\right)$ as the edgepath $g\left(e_{i}\right)$ with all occurrences of e_{i} or e_{i+1} replaced by e_{i}^{*}. Since β is carried by τ we can see that β^{\prime} is carried by τ^{\prime} since we can push β^{\prime} along the same bigon we used when constructing τ^{\prime}. Finally, the real transition matrix for $g_{*}^{\prime}: \tau^{\prime} \rightarrow \tau^{\prime}$ is equal to the real transition matrix for $g_{*}: \tau \rightarrow \tau$ since e_{i}, e_{i+1}, and e_{i}^{*} are infintesimal edges of τ. Therefore it is Perron-Frobenius and β^{\prime} is pseudo-Anosov.

Recall that $h\left(\beta^{\prime}, x\right)$ is the characteristic polynomial of the map $g_{*}: W(G, g) \rightarrow W(G, g)$. Recall further that $W(G, g) \approx Z \oplus W(G, g) / Z$ so that $p(x)$ and $s(x)$ represent g_{*} restricted
to Z and $W(G, g) / Z$ respectively (see Theorem 2.4.1). Furthermore we know the generators of Z are the simple loops around punctures with an even numbers of corners when projected onto τ. The infintesimal edges e_{i} and e_{j} represented one of these generators since the loop has two corners. Since we assume all bad singularities are fixed by β the $g_{*} \mid Z=(x+1)^{r}$ where r is the number of even-ordered singularities occurring at punctures.

When p is filled we end up with the space Z^{\prime} with $r-1$ generators, each fixed by β^{\prime} which yealds $p\left(\beta^{\prime}, x\right)=p(\beta, x) /(x+1)$. Clearly $W\left(G^{\prime}, g^{\prime}\right) / Z^{\prime} \approx W(G, g) / Z$ since G^{\prime} is obtained from G by crushing a generator of Z to a point. Therefore $s\left(\beta^{\prime}, x\right)=s(\beta, x)$. Therefore

$$
h\left(\beta^{\prime}, x\right)=p\left(\beta^{\prime}, x\right) s\left(\beta^{\prime}, x\right)=(p(\beta, x) /(x+1)) s(\beta, x)=h(\beta, x) /(x+1) .
$$

Now, if k is even and $k>2$ then $D_{n-1}-\tau$ is still a train track so $g_{*}^{\prime}: \tau^{\prime} \rightarrow \tau^{\prime}$ carries β^{\prime} with no modification from $g_{*}: \tau \rightarrow \tau$. Again, $p\left(\beta^{\prime}, x\right)=p(\beta, x) /(x+1)$ by the same reasoning as above. Furthermore, the transition matrix for β^{\prime} acting on τ is the same as the transition matrix for β which means β^{\prime} is pseudo-Anosov (again see Theorem 2.3.4.)

Suppose $W(G, g) \approx Z \oplus W(G, g) / Z$ is of dimension M. Let η_{1} be the generator of Z associated to p. Let $\left\{\eta_{1}, \ldots, \eta_{r}, \gamma_{1}, \ldots, \gamma^{M-r}\right\}$ be a basis for $W(G, g)$ so that the $\left\{\eta_{i}\right\}$ generate Z. Since $g_{*}^{\prime}: W\left(G^{\prime}, g^{\prime}\right) \rightarrow W\left(G^{\prime}, g^{\prime}\right)$ is unmodified from $g_{*}: W(G, g) \rightarrow W(G, g)$ $\left\{\eta_{1}, \ldots, \eta_{r}, \gamma_{1}, \ldots, \gamma_{M-r}\right\}$ is still a basis for $W\left(G^{\prime}, g^{\prime}\right)$. The generator η_{1} is not longer an element of Z^{\prime}. This leads to $p\left(\beta^{\prime}, x\right)=p(\beta, x) /(x+1)$. The element represented by η is now a generator of $W\left(G^{\prime}, g^{\prime}\right) / Z^{\prime}$ fixed by β^{\prime}. It follows that $s\left(\beta^{\prime}, x\right)=(x+1) s(\beta, x)$ and

$$
h\left(\beta^{\prime}, x\right)=p\left(\beta^{\prime}, x\right) s\left(\beta^{\prime}, x\right)=(p(\beta, x) /(x+1))((x+1) \cdot s(\beta, x))=h(\beta, x)
$$

as desired.

3.3.4 Conclusion and proof

The following result from [3] gives a corollary that will be used in the proof of Theorem 1.0.2.

Figure 3.3: τ (left) and τ^{\prime} (right) after filling in an order-2 singularity

Lemma 3.3.5 ([3], Corollary 4.5). Let $m>0$. If $g: G \rightarrow G$ is a graph map representing a pseudo-Anosov mapping class β then $g^{m}: G \rightarrow G$ represents β^{m}. Suppose that the homology polynomial for $\beta h_{\beta}(x)=s_{\beta}(x) p_{\beta}(x)$ and that

$$
s_{\beta}(x)=\prod_{i}\left(x-z_{i}\right) \quad \text { and } \quad p_{\beta}(x)=\prod_{j}\left(x-w_{j}\right), \quad z_{i}, w_{j} \in \mathbb{C} .
$$

Then $h_{\beta^{m}}(x)=s_{\beta^{m}}(x) p_{\beta^{m}}(x)$ with

$$
\begin{aligned}
& s_{\beta^{m}}(x)=\prod_{i}\left(x-z_{i}^{m}\right) \\
& p_{\beta^{m}}(x)=\prod_{j}\left(x-w_{j}^{m}\right) \\
& h_{\beta^{m}}(x)=\prod_{i}\left(x-z_{i}^{m}\right) \prod_{j}\left(x-w_{j}^{m}\right)
\end{aligned}
$$

See [3], Corollary 4.5 for a proof.
We now prove Theorem 1.0.2

Proof of Theorem 1.0.2. Suppose β_{0} produces q odd-ordered singularities at the interior points s_{1}, \ldots, s_{q} and r even-ordered singularities at punctures p_{1}, \ldots, p_{r} and that these $q+r$ are the only bad singularities produces by β. Suppose $\epsilon \geq 0$ of the r even-ordered singularities at the punctures of D_{n} are order-2. Choose k so that $\beta=\beta_{0}^{k}$ fixes all $q+r$ bad singularities.

Let $\widehat{\beta}$ be the braid obtained by applying Lemma 3.3.3 at each odd-ordered singularity in the interior of D_{n}. Then $h(\widehat{\beta}, x)=h(\beta, x)$ and $w h \beta$ produces no odd-ordered singularities in the interior of D_{n}. Now let β^{\prime} be the braid obtained from $\widehat{\beta}$ after applying Lemma 3.3.4 at each even-ordered singularity at a puncture. Then β^{\prime} produces no bad singularities and

$$
\chi\left(\beta^{\prime}\right)=h\left(\beta^{\prime}, x\right)=h(\widehat{\beta}, x) /(x+1)^{\epsilon}=h(\beta, x) /(x+1)^{\epsilon}
$$

By Lemma 3.3.5 if $h\left(\beta_{0}, x\right)=\prod_{i}\left(x-z_{i}\right)$ then

$$
\begin{aligned}
\chi\left(\beta^{\prime}\right) & =h\left(\beta^{\prime}, x\right) \\
& =\frac{h(\beta, x)}{(x+1)^{\epsilon}} \quad=\frac{\prod_{i}\left(x-z_{i}^{k}\right)}{(x+1)^{\epsilon}}
\end{aligned}
$$

as desired.

3.4 An algorithm for constructing β^{\prime} from β

What follows is an algorithm for constructing β^{\prime} for an arbitrary pseudo-Anosov β_{0}.
Let β_{0} be pseudo-Anosov. If β_{0} produces no bad singularities then $\chi\left(\beta_{0}\right)=h\left(\beta_{0}, x\right)$. If β_{0} produces at least one bad singularity, we apply the following steps to obtain β^{\prime}.
(1) Choose $k \geq 1$ so that $\beta=\beta_{0}^{k}$ fixes all bad singularities.
(2) If β produces an odd-ordered singularity at an interior point s of D_{n} puncture D_{n} at s and define $\widehat{\beta}_{0}$ as the image of β in $D_{n+1}=D_{n}-\{s\}$. Repeat until every interior point with an odd-ordered singularity is punctured. Let $\widehat{\beta}$ be the resulting braid in D_{n+q} where q is the number of interior points punctured.
(3) If $\widehat{\beta}$ produces an even-ordered singularity at a puncture P of D_{n+q} then fill in P and let $\widehat{\beta^{\prime}}$ be the resulting braid in D_{n+q-1}. Repeat until every puncture with an even-ordered singularity is filled in. Let β^{\prime} be the resulting braid.

By Theorem 1.0.2

$$
\chi\left(\beta^{\prime}\right)=h\left(\beta^{\prime}, x\right)
$$

and $h\left(\beta^{\prime}, x\right)$ is related to $h(\beta, x)$ as described in Theorem 1.0.2.

CHAPTER 4

EXAMPLES AND APPLICATIONS

In this chapter we give examples and applications of Theorem 1.0.2. This result is only useful if we can use it to avoid finding train tracks and singularity types. Otherwise we may as well compute $h(x)$ from definition. With this in mind we first introduce a large family of braids for which Theorem 1.0.2 can be used to compute $h(x)$ from the braid word alone. As a simple example we first show that $h(\beta, x)=\left|x I-\psi_{\beta}(-1)\right|$ for any pseudo-Anosov $\beta \in B_{3}$.

When applying the Nielsen-Thurston Classification to a mapping class on a surface with boundary we first attack punctured disks to each boundary component. In particular, we attach a punctured disk to the boundary component of D_{n} to consider $\beta \in B_{n}$ as an element of $\operatorname{Mod}\left(S_{n+1}\right)$ where S_{n+1} is the sphere with $n+1$ points removed.

Proposition 4.0.1. If $\beta \in B_{3}$ is a pseudo-Anosov braid, then

$$
\left.h(\beta, x)=\mid x I-\psi_{\beta}(-1)\right] \mid
$$

Proof. Suppose $\beta \in B_{3}$ is pseudo-Anosov carried by a singular foliation \mathcal{F} on S_{4}. Let x_{1}, \ldots, x_{k} be the singular points (possibly occurring at a puncture) of \mathcal{F}. Let $P_{i} \geq 1$ denote the order of x_{i}. Recall that $P_{i} \geq 3$ if x_{i} is in the interior and $P_{i} \geq 1$ if x_{i} occurs at a puncture.

According to Theorem 2.4.2,

$$
4=\sum_{i=1}^{k}\left(2-P_{i}\right)
$$

For convenience assume $x_{1}, x_{2}, x, 3, x_{4}$ occur at the punctures of S_{4}. Then $P_{i} \geq 1$ for $1 \leq i \leq 4$ and $P_{i} \geq 3$ for $i>4$. Therefore

$$
\begin{aligned}
4 & =\sum_{i=1}^{4}\left(2-P_{i}\right)+\sum_{i=5}^{k}\left(2-P_{i}\right) \\
& \geq 4+\sum_{i=5}^{k}(-1)
\end{aligned}
$$

Therefore there can be no singularities in the interior of D_{3}. The above application of the Euler-Poincarè-Hopf formula also implies that $P_{i}=1$ for $i=1,2,3,4$.

Let $\beta \in B_{3}$ be pseudo-Anosov. By the above the foliations associated to β have exactly four singularities. Each is odd-ordered and each occurs at a puncture. By Theorem 1.0.1

$$
h(\beta, x)=\left|x I-\psi_{\beta}(-1)\right| .
$$

4.1 Application of Theorem 1.0.2 to a large family of braids

The family of braids presented in this section and the methods for studying them are an extension of the methods of [7].

We first define two "building blocks" for constructing the elements.

Definition 4.1.1. For any integers $m, p \geq 1$ we define two elements of B_{m}

$$
\beta_{(m, p)}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{m-1}\right)^{p} \quad \text { and } \quad \beta_{(-m, p)}=\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \ldots \sigma_{m-1}^{-1}\right)^{p}
$$

Figure 4.1: $\beta \star \alpha$

An illustration of $\beta_{(3,2)}$ is given in Figure 4.3 (left). Elements of \mathcal{B} are constructed from the above with a modified form of concatination.

Definition 4.1.2. Let $\beta \in B_{n}$ and $\alpha \in B_{m}$. Let $\beta^{\prime} \in B_{n+m-1}$ be the image of β under the usual inclusion map $\sigma_{i} \mapsto \sigma_{i}$ and let α^{\prime} be the shifted image of α under the map $\sigma_{i} \mapsto \sigma_{n+i-1}$. Then $\beta \star \alpha=\beta^{\prime} \alpha^{\prime} \in B_{n+m-1}$. See Figure 4.1.

Figure 4.2: $\beta_{\left(m_{1}, p_{1}\right), \ldots,\left(m_{k}, p_{k}\right)}$

Definition 4.1.3. A sequence of ordered pairs $\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}$ is a $p A$-sequence if

1. $\left|m_{i}\right|, p_{i}>0$ for all i
2. $\left|m_{i}\right|$ and p_{i} are relatively prime for all i
3. The sequence m_{1}, \ldots, m_{k} is alternating.

We define

$$
\mathcal{B}=\left\{\beta_{\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}} \mid\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k} \text { is a pA-sequence }\right\} .
$$

where

$$
\beta_{\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}}=\beta_{\left(m_{1}, p_{1}\right)} \star \beta_{\left(m_{2}, p_{2}\right)} \star \cdots \star \beta_{\left(m_{k}, p_{k}\right)} .
$$

An illustration of $\beta_{(m, p)}$ is given in Figure 4.3 (left).

Definition 4.1.4. Define

$$
\gamma_{(m, p)}= \begin{cases}\beta_{(m, p)} & \text { if } m \text { even } \\ \left(\sigma_{2} \cdot \beta_{(m+1,1)}\right)^{p} & \text { if } m \text { is odd }\end{cases}
$$

and

$$
\gamma_{\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}}=\gamma_{\left(m_{1}, p_{1}\right)} \star \gamma_{\left(m_{2}, p_{2}\right)} \star \cdots \star \gamma_{\left(m_{k}, p_{k}\right)}
$$

If $\beta \in \mathcal{B}$ then $\beta=\beta_{\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}}$ for some pA-sequence $\left(m_{i}, p_{i}\right)_{i=1}^{k}$. In this case we define

$$
\begin{aligned}
\gamma(\beta) & =\gamma\left(\beta_{\left\{\left(m_{i}, p_{i}\right)\right\}}\right) \\
& \left.=\gamma_{\left\{\left(m_{i}, p_{i}\right)\right\}}\right)
\end{aligned}
$$

Figure 4.3: Comparison of $\beta_{m, p}$ and $\gamma_{m, p}$
Note that $\gamma_{(m, p)}$ is always a braid on an even number of strands. A comparison of $\beta_{(m, p)}$ and $\gamma_{(m, p)}$ is given in Figure 4.3.

We will show the following:

Theorem 4.1.5. Let $\beta \in \mathcal{B}$. Then

1. β and $\gamma(\beta)$ are pseudo-Anosov
2. $h(\beta, x)=h(\gamma(\beta), x)$
3. $h(\gamma(\beta)), x)=\left|x I-\psi_{\gamma(\beta)}(-1)\right|$

To prove these braids are pseudo-Anosov we use combined tree maps [7].
Definition 4.1.6. For any $m \geq 1$ let \mathcal{T}_{m}^{+}and \mathcal{T}_{m}^{-}be trees of star type shown in Figure 4.4. Each has m valence-1 vertices and 1 valence- m vertex. See Figure 4.4. \mathcal{T}_{0} is the trivial tree consisting of exactly one vertex.

Given a sequence

$$
S=\left\{\left(m_{1}, p_{1}\right), \ldots,\left(m_{k}, p_{k}\right)\right\}
$$

Define

$$
T_{S}=\left(\bigcup_{i=1}^{k} \mathcal{T}_{m_{i}}^{(-1)^{i+1}}\right) /\left(r_{i} \sim l_{i+1}\right)
$$

Label the edges of $\mathcal{T}_{m_{1}}^{+} e_{1}, \ldots, e_{m_{1}}$ in the order indicated in Figure 4.4. Then the edges of $\mathcal{T}_{m_{2}}^{-}$are $e_{m_{1}+1}, \ldots, e_{m_{1}+m_{2}}$ and so forth. For $1 \leq j \leq k$, define $g_{j}: \mathcal{T}_{S} \rightarrow \mathcal{T}_{S}$ by

$$
\begin{aligned}
& e_{i} \mapsto e_{i} \quad i<m_{1}+\cdots+m_{j-1}-1 \\
& e_{i} \mapsto \bar{e}
\end{aligned}
$$

Then $g_{S}: \mathcal{T}_{S} \rightarrow \mathcal{T}_{S}$ is given by

$$
g_{S}=g_{k}^{p_{k}} \circ \cdots \circ g_{1}^{p_{1}} .
$$

$\mathcal{T}_{n,+}$

$\mathcal{T}_{m,-}$

Figure 4.4: Trees of star type

Example 4.1.7. Let $S=\{(3,2),(4,1)\}$. The combined tree map $g_{S}: \mathcal{T}_{S} \rightarrow \mathcal{T}_{S}$ is shown in Figure 4.5.

The following is a consequence of [7] (section 3):

Proposition 4.1.8. Let $g_{S}: \mathcal{T}_{S} \rightarrow \mathcal{T}_{S}$ be a combined tree map for a pA-sequence S and let M_{S} be the transition matrix of g_{S}. Then M is Perron-Frobenius.

Given \mathcal{T}_{S} as above, we can produce a train track in the punctured disk:

1. Replace each valence 1 vertex with a 1-gon bounding a punctured disk.
2. Each valence-2 vertex shared by two trees is replaced by a 1 -gon bounding a punctured disk as indicated in Figure 4.6.
3. The valence- m vertex in each $\mathcal{T}_{m}^{ \pm}$is replaced with an m-gon bounding a disk.

Finally, we extend g_{S} to $\phi_{S}: \tau_{S} \rightarrow \tau_{S}$ by permuting the infintensimal edges to match the rotation of $\mathcal{T}_{m}^{ \pm}$. The following is a result of [7].

Proposition 4.1.9. Let S be a $p A$-sequence and let $g_{S}: \mathcal{T}_{S} \rightarrow \mathcal{T}_{S}$ be the induced combined tree map.

1. The transition matrix M_{S} is Perron-Frobenius
2. The induced train track τ_{S} carries β_{S}.
3. M_{S} is the transition matrix for the real edges of τ_{S}.

See [7] Section 4. The assumption that each pair (m, p) are relatively prime is needed for M_{S} to be Perron-Frobenius.

Proof of Theorem 4.1.5. By Proposition 4.1.9 the transition matrix for the real edges of β_{S} is Perron-Frobenius. Then by Theorem 2.3.4, β_{S} is pseudo-Anosov.

If $\beta_{S} \in B_{n}$ then $\gamma_{S} \in B_{n+n^{\prime}}$ where n^{\prime} is the number of pairs $\left(m_{i}, p_{i}\right)$ in S with m_{i} odd. However, by construction, γ_{S} is carried by a copy of τ_{S} embedded in $D_{n+n^{\prime}}$ with the same train track map representing γ_{S}. Therefore the transition matrix for the real edges of a train track invariant under γ_{S} is Perron-Frobenius and γ_{S} is pseudo-Anosov.

Using combined tree maps we can predict the singularity types produced by β_{S}. Specifically, if $S=\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}, \beta_{S}$ produces an order-1 singularity at each puncture and an order- m_{i} singularity in the interior of S_{4} for each $m_{i} \geq 3$. The braid γ_{S} is β_{S} after applying Theorem 1.0.2 at each odd-ordered singularity in the interior. Then by Theorem 1.0.2 we have

$$
h\left(\beta_{S}, x\right)=h\left(\gamma_{S}, x\right)=\left|x I-\psi_{\gamma_{S}}(-1)\right|
$$

as desired.

Figure 4.5: The tree map $g_{S}: \mathcal{T}_{S} \rightarrow \mathcal{T}_{S}$ for $\left.S=\{(3,2),(4,1))\right\}$.

Figure 4.6: Constructing τ from \mathcal{T}_{S}

Proposition 4.1.10. Let $S=\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}$ be a $p A$-sequence. Then

$$
\beta=\beta_{S}=\beta_{\left(m_{1}, p_{1}\right)} \star \cdots \star \beta_{\left(m_{k}, p_{k}\right)}
$$

is pseudo-Anosov.

Proposition 4.1.11. Let $\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}$ be a $p A$-sequence. Let

$$
\beta_{\star}=\beta_{\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}}
$$

and

$$
\gamma_{\star}=\gamma_{\left\{\left(m_{i}, p_{i}\right)\right\}_{i=1}^{k}}
$$

Then

1. γ_{\star} is pseudo-Anosov
2. The characteristic polynomial of the Burau matrix for γ_{\star} is the homology polynomial:

$$
h\left(\gamma_{\star}, x\right)=\left|x I-\psi\left[\gamma_{\star},-1\right]\right|
$$

3. The homology polynomials for β_{\star} and γ_{\star} are equal

$$
h\left(\beta_{\star}, x\right)=h\left(\gamma_{\star}, x\right)
$$

4.2 An example comparing the computation of $h(x)$ from definition and computing $h(x)$ using Theorem 1.0.2

In this section we will compute the homology polynomial for a pseudo-Anosov braid from definition and then using Theorem 1.0.2 The efficient graphs used in the following examples were determined with the help of [10].

4.2.1 An odd ordered singularity in the interior of the disk

Let $\beta=\sigma_{1} \sigma_{2} \sigma_{3}^{-1}$ denote the braid in B_{4} represented as a mapping class in the 4-punctured sphere. We will find an efficient graph and graph map that carries β and construct the corresponding train track. After this we will find the homology polynomial for β using both the definition given in Section 2.4 and by using Theorem 1.0.2.

The graph map, transition matrix, and train track

Let G be the graph as depicted in Figure 4.7. The edges and vertices are labeled and will be refered to throughout this example. Also depicted is the graph maph $g: G \rightarrow G$. An orientation is given for convenience.

Recall that if G has k edges, the transition matrix of $g: G \rightarrow G$ is the $k \times k$ matrix with $i j$-th entry equal to the number of times the edgepath $g\left(e_{j}\right)$ passes through e_{j} in either direction. The transition matrix for the map constructed above is

$$
T=\begin{gathered}
e_{1} \\
e_{2} \\
e_{3} \\
e_{5} \\
e_{5} \\
e_{6} \\
e_{7} \\
e_{8}
\end{gathered}\left(\begin{array}{cccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} & e_{8} \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 & 0
\end{array}\right)
$$

To construct a train track τ that carries β we need to determine the gates at each vertex. Consider edges e_{3} and e_{4} emanating from v_{4}. As is shown the edgepaths $g\left(e_{3}\right)$ and $g\left(e_{4}\right)$ have the same initial segment. Therefore they belong to the same gate. The peripheral edges are permuted, and the two ends are never sent to the same initial segment, so at v_{4} we have three distinct gates. See Figure 4.8 for a visual representation of τ. The enlarged dashed circles represent the gates and infintesimal edges that replace the vertices of G.

The vertex v_{2} is odd. To see this, let U be a neighborhood of v_{2} so that $U \cap G$ consists of three open-ended arcs emanating from v_{2}. Since v_{2} is fixed by g and the arcs are permuted, we see that for any $p>0$ the edgepaths $g^{p}\left(e_{1}\right), g^{p}\left(e_{2}\right)$, and $g^{p}\left(e_{3}\right)$ never coincide and belong to distinct gates.

Figure 4.7: From top to bottom: $G, \sigma_{1}(G), \sigma_{1} \sigma_{2}(G)$, and $\sigma_{1} \sigma_{2} \sigma_{3}{ }^{-1}(G)$

Figure 4.8: The train track induced by the graph map shown in Figure 4.7.

The homology polynomial from $W(G, g)$

As seen above v_{2} is an odd vertex and all others are non-odd.
For $\boldsymbol{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{8}\right) \in W(G, g), w_{i}$ denotes the weight assigned to e_{i},

Figure 4.9: The basis element η_{1}. All other edges are assigned a weight of 0 .
$i=1, \ldots, 8$. Let $\mathcal{B}=\left\{\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right\}$ where

$$
\begin{aligned}
& \eta_{1}=(2,0,0,0,1,0,0,0), \\
& \eta_{2}=(0,2,0,0,0,1,0,0), \\
& \eta_{3}=(0,0,2,0,0,0,1,0), \\
& \eta_{4}=(0,0,-2,2,0,0,0,1)
\end{aligned}
$$

Recall that an element $\boldsymbol{w} \in V(G)$ belongs to $W(G, g)$ if at each non-odd vertex v_{i} the alternating sum of the weights at incident gates is zero (see Lemma 2.4.8). Thus $\mathcal{B} \subset W(G, g)$. According to Lemma 2.4.9, the dimension of $W(G, g)$ is

$$
\#(\text { Edges })-\#(\text { Non-odd vertices })=8-4=4
$$

which implies \mathcal{B} is a basis for $W(G, g)$. See Figure 4.9 for a depiction of η_{1}.
Let T be the transition matrix given above and let P denote the matrix for the map $\mathbb{R}^{8} \rightarrow \mathbb{R}^{4}$ which projects onto the first four coordinates. Let

$$
Q=\left(\begin{array}{llll}
\eta_{1}^{T} & \eta_{2}^{T} & \eta_{3}^{T} & \eta_{4}^{T}
\end{array}\right)
$$

denote the 8×4 matrix with column vectors equal to the elements of \mathcal{B}.

Then the homology polynomial for β is

$$
h(x)=|x I-P T Q|=x^{4}-2 x^{3}-2 x+1
$$

The homology polynomial from the Burau representation

The image of β under the Burau representation is

$$
\Psi_{\beta}(t)=\left(\begin{array}{ccc}
0 & t & 0 \\
1-t & 1-t & 1 \\
-\frac{1}{t} & -\frac{1}{t} & -\frac{1}{t}
\end{array}\right)
$$

By Proposition 3.2.2 if

$$
\chi\left(\Psi_{\beta}(\nu)\right)=\left|x I-\Psi_{\beta}(\nu)\right|
$$

is equal to the homology polynomial then $\nu=-1$. However this will not hold for β because of the bad singularity occuring at v_{2} above. In fact $\chi\left(\Psi_{\beta}(-1)\right)=(1-x)^{3}$.

Following the strategy outlined in Section 3.3 .2 we will "add a strand" by declaring the bad singularity a new puncture. The resulting braid is

$$
\bar{\beta}=\sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}{ }^{-1} \in B_{5}
$$

which is shown in Figure 4.10. We now have

$$
\Psi_{\bar{\beta}}(-1)=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & -1 & -1 & 0 \\
2 & 2 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

and

$$
\left|x I-\Psi_{\bar{\beta}}(-1)\right|=x^{4}-2 x^{3}-2 x+1=h(x)
$$

as expected.

Figure 4.10: The braid $\sigma_{1} \sigma_{2} \sigma_{3}{ }^{-1}$. The dashed line represents the additional strand after declaring the singularity a new puncture resulting in the 5 -braid $\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{4}{ }^{-1}$

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Gavin Band and Philip Boyland. "The Burau estimate for the entropy of a braid". In: Algebraic \& Geometric Topology 7.3 (2007), pp. 1345-1378.
[2] Mladen Bestvina and Michael Handel. "Train-tracks for surface homeomorphisms". In: Topology 34.1 (1995), pp. 109-140.
[3] Joan Birman, Peter Brinkmann, and Keiko Kawamuro. "Polynomial invariants of pseudo-Anosov maps". In: Journal of Topology and Analysis, Vol. 4, No 1 (2012) 13-47 (Jan. 28, 2010). DOI: 10.1142/S1793525312500033. arXiv: http://arxiv. org/abs/1001.5094v7 [math.GT].
[4] B. Farb and D. Margalit. A Primer on Mapping Class Groups. Princeton Mathematical Series. Princeton University Press, 2012. ISBN: 9780691147949. URL: https://books.google.com/books?id=FmRMgAV8JwoC.
[5] A. Fathi et al. Thurston's Work on Surfaces (MN-48). Mathematical Notes - Princeton University Press. Princeton University Press, 2012. ISBN: 9780691147352. URL: https://books.google.com/books?id=qHZ2BQAAQBAJ.
[6] Christian Kassel and Vladimir Turaev. Braid groups. Vol. 247. Springer Science \& Business Media, 2008.
[7] Eiko Kin and Mitsuhiko Takasawa. "An asymptotic behavior of the dilatation for a family of pseudo-Anosov braids". In: (Nov. 19, 2007). arXiv: http://arxiv.org/ abs/0711.3009v1 [math.GT].
[8] R.C. Penner and J.L. Harer. Combinatorics of Train Tracks. (AM-125), Volume 125. Annals of Mathematics Studies. Princeton University Press, 2016. ISBN: 9781400882458. URL: https://books.google.com/books?id=L8XdCwAAQBAJ.
[9] Jean-Luc Thiffeault and Marko Budišić. Braidlab: A Software Package for Braids and Loops. Version «version number». 2013-2019. eprint: arXiv:1410.0849[math.GT]. URL: http://arXiv.org/abs/1410.0849.
[10] Toby Hall. Train. Version 4.32. 2009. URL: https://www.liverpool.ac.uk/ ~tobyhall/T_Hall.html.

