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ABSTRACT

DEVELOPMENT AND APPLICATION OF HIERARCHICAL MODELS FOR MONITORING
AVIAN SOUNDSCAPES, POPULATIONS, AND COMMUNITIES

By

Jeffrey W. Doser

Climate change, land use change, and other anthropogenic pressures are increasing species extinc-

tions, phenology shifts, and drastic population declines. Avian populations and communities are

particularly vulnerable to global change given their mobile and migratory life history strategies.

Avian abundance has drastically declined throughout North America over several decades, which

is compounded by phenological shifts in breeding periods and migratory patterns. Informed man-

agement and conservation of avian populations and communities requires large-scale monitoring

programs, as well as associated inferential tools to provide statistically robust inference using mul-

tiple data sources. In this dissertation, I develop a suite of hierarchical modeling approaches to

understand avian soundscapes, populations, and communities. I leverage a hierarchical Bayesian

modeling framework, which is ideally suited for complex wildlife data with numerous types of

observation error and dependencies among data points. In Chapter 1, I provide a brief overview

of avian monitoring approaches and their associated statistical analysis frameworks. In Chapters

2 and 3, I develop hierarchical models for the analysis of complex avian soundscape data, and

apply these approaches to two case studies. In Chapter 2, I apply a two-stage hierarchical beta

regression model to quantify the relationship between anthropogenic and biological sounds in

avian soundscapes in western New York. In Chapter 3, I use a multivariate linear mixed model

to assess disturbance impacts of a shelterwood logging on avian soundscapes in northern Michi-

gan. In Chapter 4, I develop a multi-region, multi-species abundance model to quantify trends

of avian species and communities using point count data across a network of National Parks in

the northeastern US. In Chapters 5 and 6, I use a model-based data integration approach to yield

improved inference on avian population and communities. In Chapter 5, I integrate automated

acoustic recording data with point count data to estimate avian abundance, which I apply to a case



study on the Eastern Wood Pewee (Contopus virens) in a National Historical Park in Vermont.

In Chapter 6, I develop an integrated community occupancy model that combines multiple types

of detection-nondetection data for inference on species-specific and community level occurrence

dynamics, which I use to assess occurrence dynamics of a foliage-gleaning bird community in

New Hampshire. These results exhibit the value of hierarchical models to partition ecological data

into distinct observation and ecological components for improved inference on avian population

and community dynamics. Future work should continue to leverage complex data sources within

hierarchical modeling frameworks to address pressing conservation and management questions on

avian populations, communities, and the ecosystem services they provide.
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CHAPTER 1

INTRODUCTION

1.1 Biodiversity crisis and avian declines

Biodiversity loss is one of the most pressing issues of the Anthropocene, with already high species

extinction rates expected to increase further into the future as a result of climate change, land

use change, and other anthropogenic pressures (Dirzo and Raven, 2003; Ceballos et al., 2010,

2015). Species extinctions alone are only one mechanism in which global change is influencing

biodiversity, as the composition and functional diversity of communities have also rapidly shifted,

in large part due to shifts in individual species ranges (Chen et al., 2011; Rushing et al., 2020). Such

shifts in community composition can have potentially profound impacts on ecosystem functioning

and the ecosystem services human society relies on (Tilman et al., 2014). Further, populations

of a wide variety of organisms, including birds (Rosenberg et al., 2019), bats (Rodhouse et al.,

2019), and insects (Wagner et al., 2021), have shown significant declines in their distributions and

abundances across large geographical regions. Given the numerous ecosystem services provided

by individual populations, such losses can have drastic impacts on ecosystem functioning.

Avian populations and communities in particular are vulnerable to the effects of climate and

land use change due to a reliance on numerous locations across broad spatial scales at specific times

of the year (Smith et al., 2011; Hallworth et al., 2021). Key studies have shown large declines in

avian abundance over several decades across vast spatial regions in both North America (Rosenberg

et al., 2019) and Europe (Inger et al., 2015). Phenological changes in the timing of breeding periods

andmigrations are occurring in Europe (Hällfors et al., 2020) and North America (Youngflesh et al.,

2021) but are inconsistent across different groups of species, which has important implications for

reproductive success as global change progresses. Similar inconsistencies across avian assemblages

have led to differential species range shifts in response to climate change (Rushing et al., 2020).

Despite these findings, little is still understood about specific drivers of population declines and
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community shifts, relative importance of drivers, and specificmanagement and conservation actions

most beneficial to avian populations and communities at local, regional, and continental scales

(Breiner et al., 2015; Kindsvater et al., 2018). Such informed management and conservation

requires efficient monitoring of avian populations and communities at fine resolution across large

scales, as well as associated statistical tools to draw inference from monitoring initiatives.

1.2 Avian population and community monitoring

1.2.1 Point count surveys

Birds are one of the most well-monitored animal groups. The primary survey method for avian

population and community monitoring is the point count survey (Bibby et al., 2000), in which

observers stand stationary at a specific location and count the number of individual birds seen or

heard within some pre-specified distance from the location. Observers identify birds to the species

level, most commonly resulting in counts of each species at each individual point count site. These

data provide information pertinent to knowledge of avian habitat use and the abundance of different

species across space and/or time. However, point count data are confounded by imperfect detection

(i.e., false negatives) during the sampling process (MacKenzie et al., 2002). An observer may miss

an individual of a given species (or miss an entire species) if it is truly absent, or the observer

might not detect the individual even if it is truly present. This imperfect detection process is

further exacerbated in highly mobile species like birds (Kéry and Royle, 2016), as birds may move

out of the sampling area during the survey or may be in the sampling area but not available for

detection (e.g., an individual is not vocalizing). Thus, observed counts of birds from point count

surveys confound this imperfect detection process with the true distribution of birds across space

and/or time. This is especially true when the imperfect detection process varies across space (e.g.,

probability of detection is lower in heavily forested areas) and/or time (e.g., avian vocalization rates

vary over the duration of the breeding season; Kéry et al. 2005; Kéry and Schmidt 2008). Failing

to account for this detection process in models of avian occurrence and/or abundance can result in

biased estimates of population size as well as biased effects of environmental drivers (Kéry et al.,
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2010a).

There exist a multitude of ways to separately estimate the detection process from the true

ecological process of interest, all of which rely on the collection of additional information on

detection probability (i.e., the probability of detecting an individual given it is present; MacKenzie

and Royle 2005; Nichols et al. 2009). Most commonly, observers will perform multiple point count

surveys at each specific location during some period of closure (i.e., no permanent immigration or

emigration). The variation in the data collected in one survey versus another provides information on

the detection probability of individual birds, which allows for separate estimation of the detection

probability from the ecological process of interest (e.g., abundance, occurrence; Nichols et al.

2009). Alternative approaches to estimate detection probability include using multiple independent

observers, measuring the detection distance to a bird (Burnham et al., 1980; Buckland et al., 2005),

and recording the specific time a detection occurs (Farnsworth et al., 2002; MacKenzie and Royle,

2005).

1.2.2 Autonomous recording units

Over the last twenty years, autonomous acoustic recording units (ARUs) have emerged as a potential

alternative for monitoring acoustically active wildlife like birds (Darras et al., 2019; Gibb et al.,

2019). ARUs are primarily used to monitor wildlife in two ways. First, ARUs can be deployed to

monitor spatiotemporal changes in soundscapes, or the sounds present at a given location at any

given point in time (Pĳanowski et al., 2011a,b). The recently developedfields of soundscape ecology

and ecoacoustics rely on the premise that the soundscape, and its variation over space and time,

can reflect changes in ecological status and landscapes, ultimately suggesting soundscapes can be

used as alternative ecological units to study change in wildlife populations and communities (Sueur

and Farina, 2015; Farina, 2019). A typical soundscape analysis involves the collection of acoustic

recordings using ARUs across a spatiotemporal gradient, quantification of the recordings using

numerical summaries of the recordings referred to as acoustic indices (Sueur et al., 2008, 2014),

and ecological interpretation of these acoustic indices in the context of the wildlife community
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that comprises the vocalizations in the soundscape. Such ecoacoustic approaches have successfully

revealed effects of natural gas extraction on biodiversity in tropical forests (Deichmann et al., 2017),

timber harvesting on biodiversity (Law et al., 2018; Burivalova et al., 2021), and artificial light on

bat communities (Mena et al., 2021).

Despite the utility of acoustic indices, their relationship with biodiversity and landscape quality

is variable across urbanization gradients and ecosystems (Fairbrass et al., 2017; Buxton et al.,

2018). Alternatively, ARUs can provide information on the presence/absence (or abundance) of

multiple species at different sites, analogous to traditional point count surveys (Shonfield and

Bayne, 2017). Most commonly, experienced ornithologists will listen to acoustic recordings and

extract detection-nondetection data for the species of interest (e.g., Furnas and Callas 2015). More

recently, fully automated machine learning algorithms are used to determine whether or not a

species is present in a specific recording (Ducrettet et al., 2020), although at least some manual

verification of the recordings must occur to account for the potential of false positives. ARUs can

also provide information on the abundance and/or density of individuals within a study area (Pérez-

Granados and Traba, 2021), which typically relies on estimation of distances to the individuals

identified in the recording (Darras et al., 2018; Yip et al., 2019) or calibration with other ARUs in

a multi-sensor array using spatial capture-recapture techniques (Efford et al., 2009). Ultimately,

ARUs are an attractive alternative to traditional point count surveys as they create a permanent

record of the survey that can be reanalyzed, require minimal observer training, and usually provide

more temporal replicates at a specific location than are possible using human observers (Darras

et al., 2019).

1.3 Hierarchical models

Hierarchical Bayesian modeling has emerged as a common statistical paradigm for working with

complex ecological data, like those derived from point count surveys andARUs (Royle andDorazio,

2008; Hobbs and Hooten, 2015; Kéry and Royle, 2021). Hierarchical models contain multiple

random variables that are structured according to their conditional probability, which provides
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an intuitive way to separately model observation processes (i.e., imperfect detection) from the

true ecological process of interest (Hobbs and Hooten, 2015; Hooten and Hefley, 2019). At the

most general level, a Bayesian hierarchical model comprises the following series of conditional

probability distributions (Berliner, 1996)

[process, parameters | data] ∝[data | process, parameters]×

[process | parameters]×

[parameters],

(1.1)

where process refers to the ecological process of interest (e.g., occurrence, abundance), data

refers to the observed data that are an imperfect representation of the true ecological process, and

parameters are the parameters governing both the ecological process and observation process. The

first stage of the hierarchical model is the likelihood ([data | process, parameters]), or observation

model, which describes the imperfect relationship between the observed data and the true ecological

process of interest. The second stage is the process model ([process | parameter]), which models

the true ecological process of interest conditional on a set of parameters that potentially relate to

the process of interest. The final stage is the prior models ([parameters]), which completes the

Bayesian specification of a hierarchical model. Together, these three components enable inference

on the joint posterior distribution ([process, parameters | data]), which describes understanding of

the true ecological process and the parameters that govern it after observing the data.

This general hierarchical model is ideally suited for imperfect data used to monitor wildlife

such as birds because it provides an explicit way to account for observation error (e.g., imperfect

detection; Royle andDorazio 2006). Such a hierarchical framework allows for inclusion of covariate

effects and observation processes separately from the model from the true ecological process

of interest, which ultimately can lead to improved inference and predictive performance (Kéry

and Schmidt, 2008; Guélat and Kéry, 2018). To this end, researchers have developed models

that are specific forms of Equation 1.1 to address imperfect detection and observation errors

associated with common wildlife data collection approaches, such as point count surveys and
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ARUs. For example, occupancy models are a form of species distribution model (SDM) that

leverage replicated detection-nondetection data to separately model the imperfect detection process

from the true species occurrence process (MacKenzie et al., 2002). Numerous extensions of

occupancy models exist, including dynamic occupancy models for modeling colonization and

extinction dynamics (MacKenzie et al., 2003) and multispecies occupancy models (Dorazio and

Royle, 2005; Zipkin et al., 2010) that leverage a hierarchical framework to share information across

species. For modeling abundance, a series of hierarchical models of the form of Equation 1.1 have

been developed to separately model true species abundance from an imperfect observation process,

includingN-mixturemodels (Royle, 2004), double observermethods (Nichols et al., 2000), distance

sampling (Buckland et al., 2005), and removal sampling (Farnsworth et al., 2002). Such single

species approaches can all be extended to a multispecies framework to model an entire community

of species simultaneously (e.g., Yamaura et al. 2011; Sollmann et al. 2016; Chandler et al. 2013).

1.4 Recent hierarchical modeling developments in wildlife ecology

1.4.1 Methods for ARU data

As ecological data becomemore complex and span larger spatio-temporal extents, there iswidespread

interest in the development of appropriate statistical tools to analyze such data. Acoustic data col-

lected from ARUs are becoming more prominently used throughout monitoring programs designed

for different research, management, and conservation initiatives. Given the vast amount of data

ARUs provide, appropriate statistical methods must be applied to yield valid ecological inference

from these data. Acoustic indices are often used as numerical summaries of large soundscape data

sets in the field of ecoacoustics, resulting in complex data that are often multivariate, composi-

tional, non-Gaussian, and/or highly correlated across space and/or time. Contemporary ecological

statistics literature offers rigorous approaches to dealing with such data (e.g., Clark 2007; Hobbs

and Hooten 2015), however, applied methodology is scarcely available in the ecoacoustics litera-

ture. Despite recent advances in standardization of the use of acoustic indices (Bradfer-Lawrence

et al., 2019, 2020), there is a clear need for flexible statistical approaches for analyzing complex
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ecoacoustic data (Gibb et al., 2019; Sugai et al., 2019).

In contrast to the field of ecoacoustics, there has been more statistical modeling development

for the use of ARUs to monitor individual (or multiple) species distributions across space and/or

time. Through manual validation of acoustic recordings arising from ARUs, researchers can

obtain detection-nondetection histories of different species of interest, which can be used in a

series of traditional occupancy modeling approaches to study species habitat use across potentially

vast spatio-temporal regions (Furnas and Callas, 2015; Wood et al., 2019, 2021). Further, new

hierarchical modeling approaches have been developed that directly incorporate semi-automated

clustering or machine learning algorithms into occupancy modeling frameworks, which reduces the

time required to manually validate individual vocalizations in acoustic recordings (Chambert et al.,

2018; Wright et al., 2020b). While such approaches are promising for the evaluation of species

distributions, there are few approaches to reliably estimate abundance/density from ARUs without

the deployment of multi-sensor arrays (which is cost intensive across broad regions) or extensive

validation of acoustic recordings (Pérez-Granados and Traba, 2021).

1.4.2 Multiregion models and data integration

Two recent developments in statistical ecology for modeling species populations and communities

across large spatio-temporal regions are multiregion models (Sutherland et al., 2016) and data

integration (Zipkin and Saunders, 2018; Miller et al., 2019). Multiregion community models

(Sutherland et al., 2016) extend the multispecies occupancy model (Dorazio and Royle, 2005)

to estimate occurrence and species richness across multiple distinct spatial units (i.e., regions)

that collect data following a similar protocol. This approach is ideally suited for monitoring and

conservation networks that are structured hierarchically (e.g., a network of individual National

Parks), as it allows for the estimation of distinct region level estimates as well as overall network

level estimates. This approach has been used to reveal effects of habitat connectivity and area

on amphibian communities (Wright et al., 2020a), effects of management regimes on tropical

mammal diversity (Oberosler et al., 2020), and urbanization effects on North American mammal
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communities (Fidino et al., 2020). Currently, multiregion community approaches have been limited

to assessments of species occurrence and richness. Extensions of the multiregion community

approach to model abundance across multiple distinct spatial regions could provide improved

insight on wildlife populations and communities at multiple spatial scales.

Data integration is amodel-based approach to combiningmultiple disparate data sources (Zipkin

and Saunders, 2018; Isaac et al., 2020). This approach is gaining widespread popularity due to the

proliferation of large-scale citizen science monitoring programs (e.g., eBird) and continental scale

governmental monitoring programs (e.g., BBS, NEON) in addition to smaller scale monitoring

initiatives. The integration of multiple data sources can yield benefits, such as improved accuracy

and precision (Dorazio, 2014), a larger spatio-temporal extent (Zipkin et al., 2021), and the ability

to accommodate multiple sampling and detection biases that are not always possible in single data

source models (Miller et al., 2019; Simmonds et al., 2020; Lauret et al., 2021). Although many

data types have been used in integrated models, such as presence-only data (Dorazio, 2014), count

and detection-nondetection data (Zipkin et al., 2017), distance sampling data (Farr et al., 2021), and

capture-recapture data (Abadi et al., 2010b), many common data sources, such as automated and

semi-automated acoustic vocalization data, have yet to be leveraged in these promising modeling

frameworks. Further, despite the clear utility of single species integrated models, there are only

a few instances of the use of model-based data integration to jointly assess multiple species in a

community (Péron and Koons, 2012; Lahoz-Monfort et al., 2017; Barraquand and Gimenez, 2019).

The combination of data integration together with hierarchical community modeling principles

has the potential to improve understanding of community dynamics across potentially vast spatio-

temporal regions.

1.5 Overview of chapters

The following dissertation includes five main chapters. The overall goal of this work is to develop

novel hierarchical modeling approaches for analyzing multiple data types for inference on avian

soundscapes, populations, and communities. I subsequently apply these modeling approaches to a
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series of case studies in which I showcase the ecological inference that is possible using advanced

hierarchical Bayesian models and the benefits these approaches can provide for improved avian

monitoring, management, and conservation. Below I provide a brief summary of the chapters.

Chapters 2 and 3 focus on the development of statistical approaches for the analysis of complex

avian soundscape data. In Chapter 2, I develop a two-stage hierarchical beta regression model

to quantify the relationship between anthropogenic and biological sounds in avian soundscapes in

western New York. In Chapter 3, I develop a multivariate linear mixed model for the assessment

of disturbance impacts on soundscapes, which I use to explore the effects of a shelterwood logging

on avian soundscapes in northern Michigan.

Chapter 4 focuses on the development of a multi-region, multispecies abundance model to

assess trends of avian communities across a network of spatial locations using traditional point

count data. I apply the model to a network of National Parks in the Northeast Temperate Inventory

andMonitoringNetwork in the northeasternUS to assess species-level, guild-level, and community-

level abundance trends from 2006-2019.

In Chapters 5 and 6, I develop two integrated modeling frameworks for combining multiple data

sources to yield improved inference on bird population and community dynamics. In Chapter 5, I

integrate automated acoustic recording data with traditional point count surveys to yield improved

estimates of bird abundance, and apply the framework to elucidate trends in the Eastern Wood

Pewee (Contopus virens) in a National Historical Park in Vermont. In Chapter 6, I develop an

integrated community occupancy model that integrates multiple types of replicated and nonrepli-

cated detection-nondetection data for inference on species-specific and community level occurrence

dynamics. I then apply this framework to assess varying trends in foliage-gleaning bird abundance

from 2010-2018 in the White Mountain National Forest in New Hampshire.

Finally, I provide a summary of key research findings from the five chapters and a discussion

on future research directions in Chapter 7.

9



CHAPTER 2

CHARACTERIZING FUNCTIONAL RELATIONSHIPS BETWEEN
ANTHROPOGENIC AND BIOLOGICAL SOUNDS: A WESTERN NEW YORK STATE

SOUNDSCAPE CASE STUDY

2.1 Abstract

Roads are a widespread feature of landscapes worldwide, and road traffic sound potentially makes

nearby habitat unsuitable for acoustically communicating organisms. It is important to understand

the influence of roads at the soundscape level to mitigate negative impacts of road sound on indi-

vidual species as well as subsequent effects on the surrounding landscape. We seek to characterize

the relationship between anthropogenic and biological sounds in western New York and assess the

extent to which available traffic data explains variability in anthropogenic noise. Recordings were

obtained in the spring of 2016 at 18 sites throughout western New York. We used the Welch Power

Spectral Density (PSD) at low frequencies (0.5-2 kHz) to represent anthropogenic noise and PSD

values at higher frequencies (2-11 kHz) to represent biological sound. Relationships were modeled

using a novel two-stage hierarchical Bayesian model utilizing beta regression and basis splines.

Model results and map predictions illustrate that anthropogenic noise and biological sound have an

inverse relationship, and anthropogenic noise is greatest in close proximity to high traffic volume

roads. The predictions have large uncertainty, resulting from the temporal coarseness of public

road data used as a proxy for traffic sound. Results suggest that finer temporal resolution traffic

sound data, such as crowd-sourced time-indexed traffic data from geographic positioning systems,

might better account for observed temporal changes in the soundscape. The use of such data, in

combination with the proposed modeling framework, could have important implications for the

development of sound management policies.

Material from: Doser, J. W., Hannam, K. M., & Finley, A. O. (2020). Characterizing functional

relationships between anthropogenic and biological sounds: a western New York state soundscape
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case study. Landscape Ecology, 35(3), 689-707.

For full text of this work, please go to: https://doi.org/10.1007/s10980-020-00973-2
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CHAPTER 3

ASSESSING SOUNDSCAPE DISTURBANCE THROUGH HIERARCHICAL MODELS
AND ACOUSTIC INDICES: A CASE STUDY ON A SHELTERWOOD LOGGED

NORTHERN MICHIGAN FOREST

3.1 Abstract

Assessing the effects of anthropogenic disturbances on wildlife and natural resources is a necessary

conservation task. The soundscape is a critical habitat component for acoustically communicating

organisms, but the use of the soundscape as a tool for assessing disturbance impacts has been

relatively unexplored until recently. Here we present a broad modeling framework for assessing

disturbance impacts on soundscapes, which we apply to quantify the influence of a shelterwood

logging on soundscapes in northern Michigan. Our modeling approach can be broadly applied to

assess anthropogenic disturbance impacts on soundscapes. The approach accommodates inherent

differences in control and treatment sites to improve inference about treatment effects, while also

accounting for extraneous variables (e.g., rain) that influence acoustic indices. Recordings were

obtained at 13 sites before and after a shelterwood logging. Four sites were in the logging region and

nine sites served as control recordings outside the logging region. We quantify the soundscapes us-

ing common acoustic indices (Normalized Difference Soundscape Index (NDSI), Acoustic Entropy

(H), Acoustic Complexity Index (ACI), Acoustic Evenness Index (AEI)) and Welch Power Spectral

Density (PSD) values. We build two hierarchical Bayesian models to quantify the changes in the

soundscape over the study period. Our analysis reveals no long-lasting effects of the shelterwood

logging on the soundscape as measured by the NDSI, but analysis of H, AEI, and PSD suggest

changes in the evenness of sounds across the frequency spectrum, indicating a potential shift in the

avian species communicating in the soundscapes as a result of the logging. Further, our analysis

confirms previous findings that the ACI does not accurately reflect changes in landscape config-

uration. Multiple model validation techniques (i.e., comparison of parameter estimates and the

widely applicable information criterion (WAIC)) reveal our proposed hierarchical Bayesian models
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outperform more simple models used for hypothesis testing. Acoustic recordings, in conjunction

with this modeling framework, can deliver cost efficient assessment of disturbance impacts on the

landscape and underlying biodiversity as represented through the soundscape.

Material from: Doser, J. W., Finley, A. O., Kasten, E. P., & Gage, S. H. (2020). Assessing sound-

scape disturbance through hierarchical models and acoustic indices: A case study on a shelterwood

logged northern Michigan forest. Ecological Indicators, 113, 106244.

For full text of this work, please go to: https://doi.org/10.1016/j.ecolind.2020.106244
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CHAPTER 4

TRENDS IN BIRD ABUNDANCE DIFFER AMONG PROTECTED FORESTS BUT NOT
BIRD GUILDS

4.1 Abstract

Improved monitoring and associated inferential tools to efficiently identify declining bird pop-

ulations, particularly of rare or sparsely distributed species, is key to informed conservation and

management across large spatio-temporal regions. We assess abundance trends for 106 bird species

in a network of eight forested national parks located within the northeast U.S.A. from 2006-2019

using a novel hierarchical model. We develop a multi-species, multi-region removal sampling

model that shares information across species and parks to enable inference on rare species and

sparsely sampled parks and to evaluate the effects of local forest structure. Trends in bird abun-

dance over time varied widely across parks, but species showed similar trends within parks. Three

parks (Acadia National Park and Marsh-Billings-Rockefeller and Morristown National Historical

Parks (NHP)) decreased in bird abundance across all species, while three parks (Saratoga NHP

and Roosevelt-Vanderbilt and Weir-Farm National Historic Sites) increased in abundance. Bird

abundance peaked at medium levels of basal area and high levels of percent forest and forest regen-

eration, with percent forest having the largest effect. Variation in these effects across parks could

be a result of differences in forest structural stage and diversity. By sharing information across both

communities and parks, our novel hierarchical model enables uncertainty-quantified estimates of

abundance acrossmultiple geographical (i.e., network, park) and taxonomic (i.e., community, guild,

species) levels over a large spatio-temporal region. We found large variation in abundance trends

across parks but not across bird guilds, suggesting that local forest condition might have a broad

and consistent effect on the entire bird community within a given park. Research should target the

three parks with overall decreasing trends in bird abundance to further identify what specific factors

are driving observed declines across the bird community. Understanding how bird communities
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respond to local forest structure and other stressors (e.g., pest outbreaks, climate change) is crucial

for informed and lasting management.

Material from: Doser, J. W., Weed, A. S., Zipkin, E. F., Miller, K. M., & Finley, A. O. (2021).

Trends in bird abundance differ among protected forests but not bird guilds. Ecological Applica-

tions, e2377.

For full text of this work, please go to: https://doi.org/10.1002/eap.2377
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CHAPTER 5

INTEGRATING AUTOMATED ACOUSTIC VOCALIZATION DATA AND POINT
COUNT SURVEYS FOR ESTIMATION OF BIRD ABUNDANCE

5.1 Abstract

Monitoring wildlife abundance across space and time is an essential task to study their population

dynamics and inform effective management. Acoustic recording units are a promising technology

for efficiently monitoring bird populations and communities. While current acoustic data models

provide information on the presence/absence of individual species, new approaches are needed

to monitor population abundance, ideally across large spatio-temporal regions. We present an

integrated modeling framework that combines high-quality but temporally sparse bird point count

survey data with acoustic recordings. Our models account for imperfect detection in both data types

and false positive errors in the acoustic data. Using simulations, we compare the accuracy and

precision of abundance estimates using differing amounts of acoustic vocalizations obtained from

a clustering algorithm, point count data, and a subset of manually validated acoustic vocalizations.

We also use our modeling framework in a case study to estimate abundance of the Eastern Wood-

Pewee (Contopus virens) in Vermont, U.S.A. The simulation study reveals that combining acoustic

and point count data via an integrated model improves accuracy and precision of abundance es-

timates compared with models informed by either acoustic or point count data alone. Improved

estimates are obtained across a wide-range of scenarios, with the largest gains occurring when

detection probability for the point count data is low. Combining acoustic data with only a small

number of point count surveys yields estimates of abundance without the need for validating any

of the identified vocalizations from the acoustic data. Within our case study, the integrated models

provided moderate support for a decline of the Eastern Wood-Pewee in this region. Our integrated

modeling approach combines dense acoustic data with few point count surveys to deliver reliable

estimates of species abundance without the need for manual identification of acoustic vocalizations
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or a prohibitively expensive large number of repeated point count surveys. Our proposed approach

offers an efficient monitoring alternative for large spatio-temporal regions when point count data

are difficult to obtain or when monitoring is focused on rare species with low detection probability.

Material from: Doser, J. W., Finley, A. O., Weed, A. S., & Zipkin, E. F. (2021). Integrating

automated acoustic vocalization data and point count surveys for estimation of bird abundance.

Methods in Ecology and Evolution, 12(6), 1040-1049.

For full text of this work, please go to: https://doi.org/10.1111/2041-210X.13578
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CHAPTER 6

INTEGRATED COMMUNITY OCCUPANCY MODELS: A FRAMEWORK TO ASSESS
OCCURRENCE AND BIODIVERSITY DYNAMICS USING MULTIPLE DATA

SOURCES

6.1 Abstract

The occurrence and distributions of wildlife populations and communities are shifting as a result of

global changes. To evaluate whether these shifts are negatively impacting biodiversity processes, it

is critical tomonitor the status, trends, and effects of environmental variables on entire communities.

However, modeling the dynamics of multiple species simultaneously can require large amounts of

diverse data, and few modeling approaches exist to simultaneously provide species and community

level inferences. I present an “integrated community occupancy model” (ICOM) that unites

principles of data integration and hierarchical communitymodeling in a single framework to provide

inferences on species-specific and community occurrence dynamics using multiple data sources.

The ICOM combines replicated and nonreplicated detection-nondetection data sources using a

hierarchical framework that explicitly accounts for different detection and sampling processes

across data sources. I use simulations to compare the ICOM to previously developed hierarchical

community occupancy models and single species integrated distribution models. I then apply the

model to assess the occurrence and biodiversity dynamics of foliage-gleaning birds in the White

Mountain National Forest in the northeastern USA from 2010-2018 using three independent data

sources. Simulations reveal that integrating multiple data sources in the ICOM increased precision

and accuracy of species and community level inferences compared to single data source models,

although benefits of integration were dependent on the information content of individual data

sources (e.g., amount of replication). Compared to single species models, the ICOM yielded more

precise species-level estimates. Within my case study, the ICOM had the highest out-of-sample

predictive performance compared to single species models andmodels that used only a subset of the

three data sources. The ICOM provides more precise estimates of occurrence dynamics compared
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to multi-species models using single data sources or integrated single-species models. I further

found that the ICOM had improved predictive performance across a broad region of interest with

an empirical case study of forest birds. The ICOM offers an attractive approach to estimate species

and biodiversity dynamics, which is additionally valuable to inform management objectives of both

individual species and their broader communities.

6.2 Introduction

Populations and communities of a wide range of organisms, including birds (Rosenberg et al.,

2019), bats (Rodhouse et al., 2019), and insects (Wagner et al., 2021), have experienced severe

declines in their distributions and abundances across large geographical regions as a result of habitat

loss, climate change, and other anthropogenic stressors. As a result, there is growing interest in

developing enhanced monitoring techniques to estimate species’ trends and distributions. While

species-level assessments can be valuable, it is critical to quantify the status and dynamics of

entire communities to understand global change effects on biodiversity. However, multi-species

approaches require large numbers of observations for each species or make assumptions about equal

detectability of species during sampling, precluding robust assessments of rare species and overall

community dynamics (Sor et al., 2017).

Despite these limitations, many sampling approaches (e.g., autonomous recording units for

birds and bats, camera traps for mammals) naturally provide data on the occurrence patterns of

multiple species in a community. However, occurrence data for each species are confounded by

imperfect detection during sampling. An observer may record a species as absent if it is indeed

absent, or the observer may fail to detect the species during sampling, and thus I refer to such

data as detection-nondetection data. Replicated sampling can provide additional information on

species’ detection rates, allowing for the separation of the occurrence process from the detection

process to enable ecologically relevant inferences. Most commonly, this information is obtained by

collecting multi-species detection-nondetection data on several occasions over short time periods

when closure—no permanent extinction or colonization—can be reasonably assumed (MacKenzie
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and Royle, 2005). By accounting for imperfect detection of species during sampling, these data

(hereafter “replicated data”) allow for estimation of species distributions and occurrence patterns

within an occupancy modeling framework (MacKenzie et al., 2002). This additional information

required to separate detection from occurrence is often more costly and time consuming to collect,

which motivates the desire to use nonreplicated detection-nondetection data to model species

distribution patterns. Accordingly, there is widespread interest in determining statistically robust

ways to incorporate nonreplicated data sources into species and community level analyses to inform

effective biodiversity conservation.

Two recent statistical modeling developments, data integration and hierarchical community

occupancy models, have led to improved inference on individual species and community dynamics,

respectively, to help inform biodiversity assessments. Data integration is a model-based approach

to combining multiple data types (Zipkin and Saunders, 2018; Miller et al., 2019). This approach

yields many key benefits compared to single data source models, such as higher accuracy and

precision of parameter estimates (Dorazio, 2014), inference across broader spatio-temporal extents

(Zipkin et al., 2021), and the opportunity to accommodate sampling biases and imperfect detection

for the various data sources (Miller et al., 2019). Data integration is particularly useful for

combining large-scale nonreplicated data with replicated data, as the replicated data allow for

the explicit modeling of imperfect detection while still using the information contained in the

nonreplicated data. The combination of these data types can thus greatly expand the spatial scope

of analysis.

Hierarchical community occupancy models provide combined inference on the occurrence of

multiple species using a single replicated detection-nondetection data source (Dorazio and Royle,

2005; Gelfand et al., 2005). Species-specific parameters are viewed as random effects arising from

a common, community-level distribution with a mean and variance parameter representing the

average effect across species in the community and the variation of species-specific effects within

the community, respectively (Dorazio and Royle, 2005). In addition to providing more precise

estimates of species-specific effects (Zipkin et al., 2009), these models can estimate community-
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level parameters, as well as biodiversity metrics (Guillera-Arroita et al., 2019), all with associated

uncertainty. Community occupancy models have led to improved insights into understanding

species occurrence patterns for insects (Mata et al., 2017), birds (Frishkoff et al., 2016), mammals

(Gallo et al., 2017), and a variety of other taxa (Devarajan et al., 2020).

While substantial development of both data integration and hierarchical community models

has occurred over the last decade (reviewed in Zipkin and Saunders 2018; Guillera-Arroita et al.

2019; Miller et al. 2019), there has been comparatively less research focused on modeling multiple

species using more than one data source. Multi-species integrated population models have been

used to assess competition (Péron and Koons, 2012), synchrony (Lahoz-Monfort et al., 2017), and

predator-prey dynamics (Barraquand and Gimenez, 2019; Clark, 2021), but these approaches are

not designed for assessment of larger communities. Clark et al. (2017) introduced generalized

joint attribute modeling (GJAM), a broad framework for using multiple data sets to estimate the

distribution and abundance of multiple species, but their approach does not model the observation

process hierarchically, making it difficult to account for differences in sampling protocols and

species detections among data sources. Thus, a new modeling approach that combines the benefits

of data integration and hierarchical community modeling in a single framework has the potential to

yield detailed inferences on individual species occurrence patterns while simultaneously providing

inference on community dynamics.

Here I develop an “integrated community occupancy model” to simultaneously estimate occur-

rence patterns of multiple species within a community as well as community metrics by incorpo-

rating multiple available data sources into a single analysis. My modeling framework combines

one or more “replicated” detection-nondetection data sources with one or more “nonreplicated”

data sources. The integrated model consists of a single, ecological process model and multiple

observation models that explicitly account for different detection processes in each data source.

The detection models are linked to the process model using a joint-likelihood framework (Miller

et al., 2019). My ecological process model is a dynamic community occupancy model in which

I explicitly model the latent occurrence process as a function of space and/or time varying co-
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variates and a temporal autologistic parameter (Royle and Dorazio, 2008). I validate the model

using simulations and assess its ability to estimate species-specific and community level dynamics

using different amounts of data sources. I then compare inferences from the integrated community

occupancy model to those generated by single species integrated models to evaluate the marginal

benefits of the approach. I apply the model to an empirical case study of a community of twelve

foliage-gleaning insectivorous birds in the White Mountain National Forest in the northeastern

USA to assess patterns and trends in species occurrence and community metrics (i.e., richness,

composition) from 2010-2018. The integrated community occupancy model provides a rigorous

approach to elucidate both species specific and community level dynamics that can provide crucial

insights on the specific mechanisms driving biodiversity shifts and population declines.

6.3 Materials and Methods

6.3.1 Integrated community occupancy model

I develop an “integrated community occupancy model” (ICOM) that leverages one or more repli-

cated detection-nondetection data sources with one or more nonreplicated detection-nondetection

data sources to provide inferences on species-specific and community occurrence dynamics. I

present the model using one replicated and one nonreplicated data source, but my framework can

be extended to incorporate additional data sources (if available) in an analogous manner. The

ICOM consists of a single ecological process model for individual species, which is shared across

the various data sets. Here, I demonstrate the model with a dynamic ecological process that de-

scribes species occurrences as a function of spatio-temporally varying covariates and an autologistic

parameter that accounts for temporal correlation (Royle and Dorazio, 2008). This process model

is then linked to individual likelihoods for each data set via a hierarchical framework that assumes

independence among the detection processes and which is conditional on the true latent occurrence

state (i.e., whether a species is truly present or absent at sampling locations; Miller et al. 2019). To

link the individual species models, I assume species-level occurrence and detection parameters are

random effects coming from common, community level distributions (Dorazio and Royle, 2005;
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Gelfand et al., 2005), enabling information sharing across the community to increase precision of

species effects and estimation of biodiversity attributes.

6.3.1.1 Ecological Process Model

My goal is to model the occurrence dynamics of multiple species at sites 9 = 1, . . . � within a

specified region of interest �. Let I8, 9 ,C denote the true presence (1) or absence (0) of species 8 at

site 9 during year C, where 8 = 1, . . . , � and C = 1, . . . , ) . I assume I8, 9 ,C arises from a Bernoulli

process following

I8, 9 ,C ∼ Bernoulli(k8, 9 ,C), (6.1)

where k8, 9 ,C is the probability species 8 occurs at site 9 in year C. For the first year, I model k8, 9 ,C

according to

logit(k8, 9 ,1) = V08,1 + #8 · x 9 ,1, (6.2)

where V08,1 is the species-specific occurrence probability (on the logit scale) in the first year (at

average covariate values) and #8 is a vector of species-specific regression coefficients that describe

the effect of standardized covariates (i.e., mean 0 and standard deviation 1) x 9 ,1 on the occurrence

probability of species 8. In subsequent years, the occurrence probability for species 8 in year C at

site 9 depends on whether or not the species was present at the site 9 in the previous year C − 1 in

addition to covariates (which can vary spatially and/or temporally). I accommodate the temporal

dependence by incorporating a species-specific autologistic parameter q8 into the occurrencemodel,

such that for C > 1

logit(k8, 9 ,C) = V08,C + #8 · x 9 ,C + q8 · I8, 9 ,C−1, (6.3)

where V08,C + q8 is the species-specific intercept in year C when species 8 occurred at site 9 in the

previous year C − 1 and V08,C is the intercept in year C when species 8 did not occur at site 9 in the
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previous year C − 1. I use the autologistic parameterization of the dynamic community occupancy

model as it allows me to assess covariate effects directly on species occurrence probabilities (i.e.,

the covariate effects remain the same regardless of the value of I8, 9 ,C−1) and derive species-specific

trends post-hoc from the occurrence probabilities (k8, 9 ,C). However, the ecological process model

can be readily modified to incorporate relevant biological processes of interest (provided sufficient

data are available; Royle and Dorazio 2008). For example, the ecological process model can

be modified to explicitly include a trend effect (covariate on year), assess covariate effects on

colonization and persistence (Dorazio et al., 2010), or the autologisitc component can be removed

if that is not relevant to the target community.

6.3.1.2 Observation Model: replicated detection-nondetection data

For the replicated data type, I assume  > 1 “sampling replicates” within each year C are available

at a subset of sites A = 1, . . . , '. The sampling replicates can be observations from multiple

independent surveys, multiple independent observers, spatial subsamples, or sampling intervals

from a removal design, which enable separate estimation of occurrence and detection probabilities

(MacKenzie et al., 2002). I assume the ' sites are a subset of the total � sites (i.e., ' ≤ �), which

may cover the entire region of interest � or, more commonly, only a portion of it. Let H8,A,:,C denote

the detection (1) or nondetection (0) of species 8 during replicate : at site A during year C. I model

H8,A,:,C as

H8,A,:,C ∼ Bernoulli(?8,A,:,C · I8, 9 [A],C), (6.4)

where ?8,A,:,C is the probability of detecting species 8 during visit : at site A in year C and I8, 9 [A],C

is the true occurrence status of species 8 in year C at site 9 corresponding to the Ath replicated data

site.

Species detection probabilities can vary by site and/or sampling covariates following
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logit(?8,A,:,C) = U08,C + "8 · wA,:,C (6.5)

where U08,C is the species-specific detection probability (on the logit scale) in year C at average

covariate values and "8 is a vector of parameters that describe the effect of standardized covariates

wA,:,C on the detection probability of species 8.

6.3.1.3 Observation Model: nonreplicated detection-nondetection data

Let E8,<,C be the detection (1) or non-detection (0) of species 8 at site< in year C for the nonreplicated

data source, where < = 1, . . . , " . I assume the " sites are a subset of all � sites of interest (i.e.,

" ≤ �) within the area of interest �. The replicated data may be available at different sites than

the nonreplicated data in the same region �, the same sites, or a subset of the same sites in �.

We model the detection-nondetection data E8,<,C according to

E8,<,C ∼ Bernoulli(c8,<,C · I8, 9 [<],C), (6.6)

where c8,<,C is the probability of detecting species 8 in site < in year C for the nonreplicated

data set and I8, 9 [<],C is the true occurrence status of species 8 in year C at the site 9 corresponding

to the <th nonreplicated data site. Detection probability c8,<,C can vary by species, site, and time

following

logit(c8,<,C) = W08,C + $8 · s<,C , (6.7)

where W08,C is a species and year specific intercept and $8 is a vector of parameters that describe

the effect of standardized covariates s<,C on the detection probability of species 8.

Nonreplicated data alone are unable to separate occurrence probabilities from detection prob-

abilities as the model structure is generally unidentifiable (Dorazio, 2014). While detection and

occurrence parameters can beweakly identifiable under certain circumstances (e.g., detection varies

with covariates, large number of sites and years; Lele et al. 2012; Kéry and Royle 2021), estimates
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often do not converge or have unreasonably large credible intervals, such that inferences are not

ecologically useful.

6.3.1.4 Linking species models across the community

Following the structure of the hierarchical community occupancy model (Dorazio and Royle,

2005; Gelfand et al., 2005), species-specific parameters in both the ecological process model and

observationmodels are treated as random effects arising from community level normal distributions

with associated community level mean and variance parameters. For example, V08,C , the intercept

on occurrence probabilities for species 8 in year C, is modeled as

V08,C ∼ Normal(`V0C , f
2
V0C ), (6.8)

where `V0C is the hyper-mean for occurrence probability (on the logit scale) of all species in

the community in year C (at average covariate values) and f2
V0C is the hyper-variance for occurrence

probability across all species in the community in year C. Models for all other species-specific

effects in the ecological and observation models are defined analogously. By treating species-

specific effects as random, I improve estimates for both rare and abundant species (Zipkin et al.,

2009) while simultaneously estimating community level effects.

A further benefit of the hierarchical community modeling approach is the ability to easily

calculate biodiversity metrics (e.g., species richness (Dorazio and Royle, 2005), beta diversity

(Dorazio et al., 2010), Hill numbers (Broms et al., 2015)) from the latent occurrence state (I8, 9 ,C)

that account for imperfect detection of species. Under a Bayesian framework, I can calculate any

biodiversity metric as a derived parameter at each iteration of the MCMC to obtain a full posterior

distribution from which I can obtain estimates with fully propagated uncertainty. For example, I

can estimate species richness at each site 9 and year C at each iteration of the MCMC by summing

the latent occurrence state (I8, 9 ,C) for all species. As a metric of beta diversity, I can calculate the

Jaccard index (Magurran, 2013), which describes the similarity between two sites in terms of the
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number of species that occur at both sites. More specifically, I calculate the Jaccard index between

site 9 and 9 ′ in year C as

JACCARD 9 , 9 ′,C =

∑�
8=1 I8, 9 ,C · I8, 9 ′,C∑�

8=1 I8, 9 ,C +
∑�
8=1 I8, 9 ′,C −

∑�
8=1 I8, 9 ,C · I8, 9 ′,C

, (6.9)

which takes value 0 if the two sites have no species in common and value 1 if the same species

occur at the two sites.

6.3.1.5 Data integration via joint likelihood

I use a joint likelihood framework to integrate the replicated and nonreplicated detection-nondetection

data sources into a single model (the ICOM;Miller et al. 2019). To do this, I assume the likelihoods

for the individual data sets are independent, conditional on the shared latent ecological process.

This assumption can be interpreted as the detection of a species in one data set (conditional on the

species being present) is independent of the detection of the species in any other data set (Schaub

and Abadi, 2011; Kéry and Royle, 2021). Thus, the full joint likelihood, conditional on the true,

shared ecological process, is the product of the individual conditional likelihoods for each data set:

LICOM("0,", $0, $ | z, #0, #, y, v) = LREP("0," | z, #0, #, y) · LNREP($0, $ | z, #0, #, v).

(6.10)

6.3.2 Simulation study 1: Assessing benefits of integration

I performed a simulation study to assess whether integration of multiple data sources in an ICOM

framework could provide improved accuracy and precision for species and community level pa-

rameters compared to individual analyses under a range of realistic parameter values (Appendix).

I simulated data from one replicated data source with  = 3 replicates and two nonreplicated

data sources, with the replicated data source having medium community-level detection probability

(mean hyper-parameter = 0.5), one nonreplicated data source having low community-level detec-
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tion probability (mean = 0.22), and the other having high community-level detection probability

(mean = 0.78), which allowed me to compare the benefits of integration across varying qualities of

nonreplicated data. I generated 100 replicates of each data source under the ICOM framework using

a range of community-level ecological parameter values and subsequently drew simulated species

data for � = 25 species for ) = 6 years. I generated species’ occurrence probabilities according

to Equations 6.2 and 6.3 with a single spatially-varying covariate. I generated detection processes

for each data source as a function of a species and year specific intercept, and a species-specific

effect of a spatio-temporally varying covariate unique to each data set. I simulated all covariates

as normally distributed random variables with mean zero and standard deviation one. I generated

each data source at 50 distinct sites that were randomly distributed across the range of covariates,

resulting in a total of � = 150 sites. I compared model performance by fitting models individually

for each of the seven unique combinations of the three data sources and subsequently computing the

average bias (i.e., true simulated value minus estimated value) of the species-specific occurrence

parameters across all 25 species and 100 simulations, as well as the average bias of the community

level parameters.

6.3.3 Simulation study 2: Assessing benefits of community modeling

To evaluate the benefits of the hierarchical communitymodel approach used in the ICOM, I assessed

how species-level estimates from the ICOM compared to estimates from single species integrated

distribution models (IDMs). The IDM took the same form as the ICOM except species-specific

parameters were no longer random effects from a community level distribution; rather, species-

specific parameters were estimated individually in a model for each species. I simulated data

from one replicated data source with  = 3 replicates and one nonreplicated data source, both

with medium community-level detection probabilities (mean = 0.5). I simulated a community of

� = 25 species, where each of the two data sources consisted of 50 unique locations sampled over

) = 6 years, where the locations were randomly distributed across the range of a spatially varying

covariate influencing occurrence. I assumed detection for both data sets was a function of a species
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and year specific intercept, and a species-specific spatio-temporally varying covariate unique to

each survey replicate at each site. I generated species-specific occurrence and detection intercepts

and covariate effects from uniform distributions (Supplemental Information S1.1), which allowed

me to compare the ICOM to individual IDMs under the scenario when species level effects may

not follow a normal distribution. I simulated 100 data sets from the community under realistic

parameter values (Supplemental Information S1.1). I assessed model performance across the 100

simulated data sets by comparing the accuracy and precision of estimates from the ICOM to the

IDMs.

6.3.4 Case study: foliage-gleaning birds in the White Mountains

I applied the ICOM to characterize temporal trends and spatial variability in individual species

occurrence, species richness, and species composition of a community of twelve foliage-gleaning

birds from 2010-2018 across the White Mountain National Forest using two replicated data sets

and one nonreplicated data set (Figure 6.1). The two replicated data sets come from the Hubbard

Brook Experimental Forest (HBEF) and the National Ecological Observatory Network (NEON)

at Bartlett Experimental Forest (Barnett et al., 2019; National Ecological Observatory Network

(NEON), 2021), while the nonreplicated data set comes from the North American Breeding Bird

Survey (BBS; Pardieck et al. 2020). At HBEF, observers performed three replicate surveys at each

of 373 sites in each survey year to account for imperfect detection, while observers at NEON used

a removal design at 81 sites to separate detection from occurrence. BBS observers performed point

counts at 50 point count locations (called stops) along four routes (i.e., roads) that at least partially

fell within theWhite Mountain National Forest, resulting in a total of 200 nonreplicated point count

locations during each survey year. Integration of these three data sets is particularly valuable as

each data source has clear advantages and disadvantages (Table 6.1) and covers disparate areas

within the study region. Thus, data integration may yield parameter estimates more indicative of

the entire White Mountains rather than analyses of the data sources independently. See Appendix

for additional details on the three data sets.
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Table 6.1: Characteristics of the three data sources used to model occurrence dynamics of twelve
foliage-gleaning birds in the White Mountain National Forest from 2010-2018. Forest Cover
corresponds to the amount of forest within a 250m radius of a point count site. Values for
elevation and forest cover are mean (minimum, maximum).

HBEF NEON BBS

Data type Replicated Replicated Nonreplicated
Years 2010-2018 2015-2018 2010-2018

Number of sites 373 81 200
Elevation (m) 607 (240, 932) 432 (268, 766) 352 (134, 917)

Forest Cover (%) 97.7 (71, 100) 94.2 (75, 100) 70.6 (0, 92)
Survey Location Experimental forest Experimental forest Roadside

I modeled occurrence dynamics for the following twelve foliage-gleaning bird species: Ameri-

can Redstart (Setophaga ruticilla), Black-and-white Warbler (Mniotilta varia), Blue-headed Vireo

(Vireo solitarius), Blackburnian Warbler (Setophaga fusca), Blackpoll Warbler (Setophaga stri-

ata), Black-throated Blue Warbler (Setophaga caerulescens), Black-throated Green Warbler (Se-

tophaga virens), Canada Warbler (Cardellina canadensis), Magnolia Warbler (Setophaga magno-

lia), Nashville Warbler (Leiothlypis ruficapilla), Ovenbird (Seiurus aurocapilla), and Red-eyed

Vireo (Vireo olivaceus). I specified species occurrence following Equation 6.1, with occurrence

probability in the first year, k8, 9 ,1, modeled according to

logit(k8, 9 ,1) = V08,1 + V18 · ELEV 9 + V28 · ELEV2
9 + V38 · FOR 9 , (6.11)

where V08,1 is the species-specific intercept in year 1, and V18, V28, and V38 are species-specific

effects of elevation (ELEV, linear and quadratic) and local forest cover within a 250m radius (FOR),

respectively. Occurrence in subsequent years is modeled analogously with a year-specific intercept

and an autologistic parameter following Equation 6.3. I extracted elevation data at a 30 × 30

m resolution from the National Elevation Dataset (Gesch et al., 2002) and associated each point

count site with the elevation at the center of the point count. I used the National Land Cover

Database (Homer et al., 2015) to determine the amount of local forest cover in 2016 within a

250m radius of each point count location. To compute species-specific temporal trend estimates,
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B
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Figure 6.1: Study location for the case study. Panel (A) shows the White Mountain National
Forest (shaded dark grey region) and the location of the Hubbard Brook Experimental Forest
(HBEF; light grey region), the BBS routes (dark blue lines), and the NEON data from Bartlett
Forest (purple region). Panel (B) shows the distribution of point count locations in HBEF, and
Panel (C) shows the distribution of points in the NEON data set. Note different axis spacings
across the three plots.

I performed a post-hoc linear regression using the average occurrence probability of each species

during each year as a response variable and year as a covariate. Under a Bayesian framework, I

obtain full uncertainty propagation by calculating the trend for each posterior sample of the average

occurrence probabilities (Appendix). All species-specific occurrence intercepts and regression

coefficients were modeled hierarchically following Equation 6.8.

I incorporated multiple covariates in the conditional likelihoods of each data type to account

for variation in detection probabilities following the species’ detection models described in the

“Integrated community occupancy model” section. For the HBEF and NEON data, I included
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species and year-specific intercepts, a species-specific linear effect of the time of the survey,

and species-specific linear and quadratic effects of the day of the survey. For the BBS data, I

modeled detection as a function of a species and year specific intercept, species-specific linear and

quadratic effects of day of survey, and a random observer effect to account for variation in detection

among observers. All detection covariates were modeled hierarchically following Equation 6.8.

Species and year specific intercepts were also modeled hierarchically, but were drawn from a single

distribution for all species and years within each data set (Appendix).

6.3.4.1 Goodness of fit and model validation

Model assessment and validation for integrated models is an active area of research (Fletcher et al.,

2019). I assessed model fit for the case study using a Bayesian p-value approach with a Chi-square

fit statistic. I calculate a separate Bayesian p-value for each data source (Appendix). I used two-fold

cross validation with the log predictive density (Vehtari et al., 2017) as a predictive performance

metric to assess the out-of-sample predictive performance of the full ICOM compared to six

models using subsets of the three data sets for the case study. Assessing out-of-sample predictive

performance with occupancy models presents additional complexities since the ecological state of

interest is not directly observed (Zipkin et al., 2012). I split each data set into two parts, such that

each half consisted of the data from half of the spatial locations for all years those locations were

sampled. For a given data set, I compared the occurrence predictions at each hold out location

during each year it was sampled to the occurrence values generated from models that were fit

using the data at the hold out locations. To account for model uncertainty, I compared the yearly

occurrence predictions individually to latent occurrence values generated from the subset of the

seven models that used the data set in the model fitting process (see Appendix for details). I

summarize predictive performance for each species and the entire community individually at each

data set location, as well as across the entire study region (i.e., White Mountains). I used a similar

approach to compare the performance of the ICOM to individual species IDMs (Appendix).
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6.3.5 Model implementation

I estimated the parameters in all model versions (simulations and case study) with a Bayesian

framework using Markov Chain Monte Carlo (MCMC). I fit the models in NIMBLE (de Valpine

et al., 2017, 2021) within the R statistical environment (R Core Team, 2020) using vague priors

for all hyper-parameters (Appendix). For all simulations, I ran three chains, each with 20,000

iterations with a burn-in period of 10,000 iterations and a thinning rate of four. For the case study,

I ran models for three chains of 450,000 iterations with a burn-in period of 200,000 iterations

and a thinning rate of 20, resulting in a total of 52,000 samples from the posterior distribution. I

assessed model convergence using the Gelman-Rubin R-hat diagnostic (Brooks and Gelman, 1998)

and visual assessment of trace plots using the coda package (Plummer et al., 2006).

6.4 Results

6.4.1 Simulations

The ICOM using one replicated data set, one nonreplicated data set with low average detection

probability across the community, and one nonreplicated data set with high detection probability

yielded unbiased estimates and was generally more precise in community and species-level occur-

rence parameter estimates than models using smaller combinations of the three data sets or data sets

individually (Figure 6.2, Appendix Figure A.1). Patterns were similar across community effects and

species-specific effects, with increases in precisionmore prominent in species-level effects. Despite

the general improvement in estimates found when integrating all three data sources, models using

only two data sources, particularly the replicated data source and the nonreplicated data source with

high detection probability, also yielded estimates with low bias and high precision. Models using

only the nonreplicated data source with low detection probability often failed to converge, while

models using only the nonreplicated data source with high detection probability mostly converged

but were less precise than models using replicated data (and with essentially unidentifiable intercept

values; Figure 6.2A).
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Figure 6.2: Sampling distribution of estimated bias in simulated species level occurrence
intercepts (A) and covariate effects (B) under models using different combinations of a replicated
(REP) data set and nonreplicated data sets with low (NREP L) and high (NREP H) detection
probability. Points represent the median bias (posterior mean - true simulated value) in a
species-level effect across 100 simulations for a community of 25 species. Lines represent the
95% quantiles of the bias values. The intercept parameter using only NREP L is not shown as it
failed to converge.

The ICOM also led to substantial improvements in precision of parameter estimates compared

to single species IDMs (Table 6.2, Appendix Figure A.2). Species-level IDMs provided slightly

more accurate estimates of species-specific occurrence parameters for some species as compared to

the ICOM, which is a result of Bayesian shrinkage (i.e., borrowing strength) driving species-level

parameters closer to the community average for those species with extreme parameter values in

the ICOM. However, the true species-level parameters were contained within the 95% Bayesian

credible interval of the estimated parameter values across 94.9% of all simulations, indicating

that this loss in accuracy is negligible. Further, I simulated species-level effects from a uniform

distribution rather than a normal distribution, which led to more extreme species values. Losses

in accuracy would be much lower for communities of species where the normal assumption is

adequate. Thus, in addition to providing community-level parameter effects, the ICOM provides
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more precise estimates of species-specific effects compared to IDMs with only minor losses in

accuracy for species with extreme intercepts and/or covariate effects.

Table 6.2: Precision and accuracy of species-specific parameter estimates when using the
integrated community occupancy model (ICOM) compared to a single species integrated
distribution model (IDM) for a simulated community of 25 species over six years across 100
simulations with one replicated (REP) data set and one nonreplicated (NREP) data set. Precision
improvement is the percentage improvement in precision when using the ICOM compared to the
IDM, where precision is defined as the difference between the 2.5% and 97.5% quantiles of the
posterior means. Bias is the average magnitude of the posterior means minus the true simulated
value. Values are averaged across all 25 species and six years.

Parameter Precision ICOM Bias IDM Bias Parameter
Improvement (%)

W08 41.9 0.235 0.101 NREP detection intercept
W18 33.4 0.070 0.027 NREP detection covariate
q8 30.0 0.173 0.121 Auto-logistic
V08 29.2 0.173 0.108 Occurrence intercept
V18 22.5 0.042 0.017 Occurrence covariate
U08 18.8 0.104 0.044 REP detection intercept
U18 9.63 0.023 0.012 REP detection covariate

6.4.2 Case Study

The ICOM estimated variable trends in occurrence for the twelve foliage-gleaning bird species

across the White Mountain National Forest, with five species having >75% probability of increas-

ing occurrence rates and three species having >75% probability of decreasing (Appendix A.3) from

2010-2018. Community level parameters revealed that average occurrence probability peaked

at mid-level elevations and higher amounts of local forest cover across foliage-gleaning species,

although species-specific parameters were highly variable (Appendix Table A.3). Occurrence

probabilities peaked at a variety of elevations across the twelve species (Appendix Figure A.4),

which resulted in species richness being maximized at mid-level elevations (600-800m; Figure

6.3A). Species composition of the community, as measured by the Jaccard index, largely followed

similar patterns (Figure 6.3B). Estimated trends in species-specific occurrence probabilities were
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Figure 6.3: Estimated average site-level species richness (A) and Jaccard index (B) of a
community of twelve foliage-gleaning bird species in the White Mountain National Forest. Points
are posterior means. Jaccard index values are relative to a single site in the Hubbard Brook
Experimental Forest with value 1, with 0 indicating no species in common to the reference site,
and 1 indicating identical community composition to the reference site.

highly dependent on the data sets included in the model (Figure 6.4), suggesting important spatial

variability across the White Mountains. For example, while Red-eyed Vireo occurrence showed

consistent trends across models from all data source combinations, trends for the Black-throated

Blue Warbler and Black-throated Green Warbler were stable in estimates from most data combina-

tions, but occurrence probabilities were estimated to have declined over this time period based on

the model that used only BBS data.

Integration of all data sources in the ICOM yielded better predictive performance for the

community of birds across the three data set locations than models using only a subset of the

available data (Table 6.3). This is likely a result of both a larger number of detections and a

wider range of the covariate space when using all three data sources. The model using only HBEF

and BBS data had the highest predictive performance for data at HBEF, while the model using

NEON data only had the highest predictive performance for data at NEON. The ICOM had higher
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Figure 6.4: Average occurrence probabilities of twelve foliage-gleaning bird species in the White
Mountain National Forest from 2010 to 2018 from models using different subsets of the three data
sources. Points show posterior mean occurrence probabilities averaged across all sites in a given
year. Gray shaded region indicates the 95% credible interval of estimates derived from the model
that incorporated all three data sources.
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predictive performance compared to single species IDMs across all 12 species for the three data

sets, and outperformed single species IDMs individually for each species for 64%, 91%, and 100%

of the species at HBEF, BBS, and NEON, respectively (Appendix Table A.6).

Table 6.3: Two-fold cross validation results comparing predictive performance across models
using different combinations of the three data sets. The fitted model is shown in the first column
and log predictive density measures are shown for the entire community with each data set and
across all data sets. Values in parentheses show the average rank of the model for an individual
species across all models, with 1 indicating the model is the best for all species and 7 indicating
the the model is worst for all species. Bold values indicate the best performing model for each
individual data set. Predictive performance of the model using only NEON data is only assessed
at NEON locations because NEON data are only available for four of the nine study years.

Model HBEF BBS NEON All

HBEF -10174 (3.75) -6200 (4.67) -947 (4.75) -17321 (4.5)
NEON - - -792 (2.83) -
BBS -13876 (3.75) -5702 (3.5) -1148 (5.08) -20726 (3.83)

HBEF+NEON -10097 (3.58) -5878 (3.33) -852 (3.67) -16829 (3.33)
HBEF+BBS -9732 (2.67) -5717 (3.67) -934 (4.42) -16383 (2.67)
NEON+BBS -12560 (4.5) -5759 (3.25) -801 (3.83) -19121 (4.33)

HBEF+NEON+BBS -9767 (2.75) -5691 (2.58) -836 (3.42) -16294 (2.33)

6.5 Discussion

Assessing species distributions and occurrence dynamics of multiple species in a community

is an important task for biodiversity conservation (Guillera-Arroita et al., 2019). Monitoring

programs collect different types of data that vary in amount, spatial extent, quality, and information

content, and incorporating these varied data into a unified analysis can yield improved estimates

on quantities of interest (Zipkin and Saunders, 2018). I developed an “integrated community

occupancy model” (ICOM) that uses replicated and nonreplicated detection-nondetection data

to simultaneously provide inferences on species-specific and community-level dynamics. Using

simulations and empirical bird data, I showed that the ICOM can provide more accurate and precise

estimates of occurrence dynamics than analyses using single data sources (Figure 6.2) or single

species models (Table 6.2) as well as improved predictive performance across a study region (Table
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6.3, Appendix Table A.6).

In my simulation study, the ICOM using one replicated data set, one nonreplicated data set

with low detection probability, and one replicated data set with high detection probability provided

unbiased and generallymore precise parameter estimates thanmodels using a subset of the three data

sources (Figure 6.2), which aligns with previous single species data integration work (Fletcher et al.,

2019). Despite this general improvement in the simulation study, integrating the single replicated

data source with the high detection nonreplicated data source yielded comparable accuracy and

precision to the model using one replicated and two nonreplicated data sources. This suggests that

integrating a data source of particularly low quality (e.g., nonreplicated, potentially large detection

variability) with higher quality data sources may not yield any practical benefits (Simmonds et al.,

2020). I generated each data source at random locations across the range of the covariate with no

systematic bias in sampling locations. In reality, many sources of detection-nondetection data are

spatially biased (e.g., collected along road transects or near locations with high human density),

which can lead to a narrow range of habitat variables (e.g., forest cover) that drive species and

community occurrence dynamics. Such biases can result in different species being observed across

data sets or estimated parameters that are either biased, only span a portion of the covariate range of

interest, or are not indicative of the larger spatial areas of interest (Conn et al., 2017). By integrating

disparate data sources from multiple locations in the ICOM, I can increase the likelihood that the

sampled sites vary along important ecological and environmental gradients, which in turn enables

more precise and accurate inference on the environmental conditions driving species occurrence

(Zipkin et al., 2017).

In the foliage-gleaning bird case study, I used a two-fold cross validation approach to show

that integration of all three data sets yielded the best overall predictive performance across the

White Mountain National Forest compared to models using smaller subsets of the three data

sources (Table 6.3). Further, the ICOM generally yielded improved predictive performance for

individual species and the overall community compared to single species integrated distribution

models (Appendix Table A.5). In contrast to the simulation study, parameter precision was not
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always highest when integrating all three data sets in the case study (Appendix Tables A.4, A.5).

Additionally, models with smaller subsets of the three data sources outperformed the ICOM with

all three data sets individually for the HBEF and NEON data sets, although the improvements in

predictive performance were not large (Table 6.3). This is likely a result of different covariate

ranges among the three data sources and only having NEON data for a subset of the time period of

interest. For example, precision of species-specific effects of local forest cover was highest for the

model using HBEF and NEON data. Sites at HBEF and NEON have low variability in forest cover,

with average forest cover of sites being 94.2% and 97.7%, respectively. However, variability in

forest cover is comparatively higher at BBS sites, which likely explains why precision is lower when

incorporating BBS data. For most intercept parameters at the community and species-specific level,

models using either NEON data alone or NEON and BBSwere the most precise. In the model using

NEON and BBS data, information for separating detection probability from true occurrence comes

solely from the NEON data, which are only available for four of the nine years of the study period.

This shorter time period likely results in less unexplained variability in occurrence probability and

detection across years, which in turn leads to more precise intercept estimates. However, the ICOM

using all three data sets enables inference across the entire temporal period of interest as well as a

broader range of covariates, generating more informative estimates on trends and spatial patterns

across the White Mountains.

The large variation in temporal trends when using different combinations of the three data

sources suggests spatially-varying occurrence trends for the community of twelve foliage-gleaning

birds. NEON data were only available from 2015-2018, which may account for differences in

estimated trends from the model using only NEON data compared to other models. BBS data were

sampled along road transects and thus have less forest cover than both the NEON and HBEF sites,

suggesting that occurrence trends could vary as a result of differences in amount of local forest

cover and/or proximity to roads (Furnas, 2020). Estimates from the full ICOM are a weighted

average across heterogeneity in trends across the region, where the weights are determined by the

amount of available data from each data source (Fletcher et al., 2019). In the case study, the HBEF
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data source comprised a majority of observations (77%; Appendix Table A.2) and thus contributed

the most to estimates of model parameters, which I deemed acceptable because the HBEF data

are a high-quality replicated data source. Alternatively, a profiling approach could be used within

the MCMC sampler to change the weights for each data set similar to the maximum likelihood

approach of Fletcher et al. 2019. By including information from multiple data sources within

a region, the ICOM yields area-wide averaged species-specific trends. If an area-wide averaged

trend is not desired, trends from different spatial locations could be estimated hierarchically in a

multi-region framework (Doser et al., 2021d) or treated as spatially varying coefficients to explicitly

model spatial heterogeneity (Finley, 2011).

BBS data are a nonreplicated data source and so there is little information to separate the

occurrence and detection processes when using only BBS data in a community model (Kéry

and Royle, 2021). In the model using only BBS data, this resulted in large uncertainty in the

autologistic parameter and subsequent occurrence estimates (Supplemental Table S5). This weak

identifiability of the occurrence and detection intercepts contributed to substantial differences in

average occurrence probabilities estimated using only BBS data compared to models using multiple

data sources in the ICOM (Figure 6.4). When the BBS data were integrated with NEON or HBEF,

the information used to separately estimate detection from occurrence came from only the replicated

data source(s). This may explain why yearly occurrence probabilities from the NEON + BBS and

BBS models for the Black-throated Blue Warbler, Black-throated Green Warbler, and Blue-headed

Vireo were nearly identical in the years NEON data were available (2015-2018; Figure 6.4). The

limited temporal span of the NEON data sometimes resulted in the BBS data effectively “pulling

down” estimates of occurrence form 2010-2014 in the NEON + BBS model for certain species

(e.g., Black-throated Green Warbler), while for other species (e.g., Blue-headed Vireo) estimates in

2010-2014 from the NEON + BBS model appeared to be less influenced by the BBS data (Figure

6.4). These varying species-level patterns highlight the complexities that can arise when integrating

data sets of different qualities, types, and size, which should be carefully considered by end-users

of integrated modeling approaches such as the ICOM.
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The benefits of data integration for multi-species detection-nondetection data sets will depend

on the characteristics and goals of each specific study. The simulations and foliage-gleaning bird

case study demonstrate that the ICOM can yield more accurate and precise estimates of occurrence

dynamics than alternative approaches. However, it is impossible to explore the full range of data

integration complexities within a single study. Future analyses motivated by specific data sets,

sample sizes, and ecological questions are necessary to provide further guidance on the practical

benefits and potential drawbacks of integrating multiple data sources within an ICOM framework.

While the ICOM generally leads to improved inference for species and community level effects,

integrating multiple data sets leads to increased computation times and potential complications in

achieving model convergence. For example, in the simulation study, the ICOM with three data

sets took approximately twice as long to run as a community model using only one replicated data

source (i.e., 27 minutes vs. 13 minutes for 20,000 iterations). The added computational costs will

depend on numerous analysis-specific factors, such as the number of data sets, and the number of

species, sites, and years available within each data set.

When determiningwhat data sources to use in an ICOM, I recommend considering the following

factors: (1) the amount of the different data sources within the area of interest and how they are

distributed across the range of ecological and environmental gradients; (2) the precision of estimates

required for the analysis objectives; (3) amount of time and computational power available to run the

models; (4) the spatial resolution of each data source; and (5) the quality and information content

of each data source (e.g., replicated vs. nonreplicated, large detection variability vs. standardized

protocol). For example, suppose multiple data sources are available for a study seeking to reveal

the effect of a spatially-varying covariate (e.g., amount of urbanization) on species-specific and

community-level occurrence dynamics. If one of the data sources is a high quality, replicated data

set that spans the entire environmental gradient of the covariate, a community model using only this

single data source would likely suffice. Alternatively, if each individual data source only spans a

portion of the environmental gradient, integration of the data sets in an ICOMwould be necessary to

fully understand the covariate effect on species and community occurrence dynamics. I encourage
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the use of model validation techniques, such as the cross-validation approach I presented in the

foliage-gleaning bird case study to evaluate the benefits of the ICOM for specific study objectives.

I envision numerous possible methodological extensions to the ICOM framework. While I used

three data sources arising from the same method in the case study (i.e., point count surveys), the

ICOM can incorporate detection-nondetection data from different data collection approaches, such

as autonomous recording units (Doser et al., 2021b) and citizen science checklists (Kéry et al.,

2010b) in an analogous manner. The ICOM assumes the detection processes of each data source

are independent, conditional on the true occurrence process. This conditional independence could

be violated for certain data sources where trained observers performing structured surveys also

submit observations to citizen science repositories (e.g., eBird). The consequences of violating

such conditional independence should be explored before combining data types, although results

for integrated population models suggest this violation likely has negligible impacts on the accuracy

of inferences (Abadi et al., 2010a).

The ICOM can help address a variety of questions in applied population and community

ecology. As in the single data source hierarchical community model (Dorazio and Royle, 2005),

data augmentation (Royle et al., 2007) could be incorporated into the ICOM to account for missing

species and to estimate richness of the community. If regional species pools differ between data

source locations, the ICOM could be adapted to a multiregion framework (Sutherland et al., 2016)

or extended to explore variation of species traits among disparate communities (Garrard et al.,

2013; Tenan et al., 2017). Given the model’s ability to estimate species and community level

effects, the ICOM can be applied to help elucidate individual species sensitivities to various global

change drivers, determine factors causing shifts in taxonomic or functional diversity, or forecast

future species and community shifts under varying climate and land use change scenarios to help

prioritize conservation strategies. In particular, the ICOM will assist multi-species conservation

planning by providing estimates for rare species that lack adequate data for common analysis

approaches, while simultaneously obtaining inference on an entire community that may elucidate

specific species traits linked to occurrence trends.
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As changes in environmental and climate conditions continue globally, continued development

of monitoring and analysis techniques that can effectively produce accurate and precise estimates

of biodiversity metrics are needed to understand global change impacts and develop appropriate

mitigation plans. Integrated community occupancy models provide a new approach to simul-

taneously analyze multi-species data from numerous available sources. This framework can be

used to elucidate both species specific and community level dynamics, improving understanding

of the mechanisms driving biodiversity distributions and informing appropriate management and

conservation actions to address ongoing global change.
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CHAPTER 7

CONCLUSIONS

7.1 Research synthesis

In this dissertation, I have presented a suite of hierarchical Bayesian modeling approaches for

inference on avian soundscapes, populations, and communities. Using multiple data types, I have

displayed the value of hierarchical models to partition ecological data into distinct observation

and ecological components for improved inference on avian population and community dynamics,

as well as a more traditional use of hierarchical models to accommodate complex dependency

structures between data points and multivariate responses. As avian data sources become more

accessible and span larger spatiotemporal regions, novel and clearly-communicated hierarchical

models will play a crucial role in informed management and conservation of individual avian

species and entire communities.

In Chapter 2, I developed a two-stage hierarchical beta regression model leveraging basis

splines to quantify the nonlinear relationship between anthropogenic and biological sounds in

avian soundscapes in western New York. Through this approach, I revealed the extent to which

publicly-available traffic data could explain the inverse relationship between anthropogenic and

biological sounds. Importantly, I concluded the large uncertainty in predictions of biological

soundscapes from traffic data was largely a result of temporal coarseness of the public road traffic

data, indicating that time-indexed traffic data from traffic and navigation applications (e.g., Waze)

might serve as a valuable tool for soundscape conservation (Dumyahn and Pĳanowski, 2011),

reducing anthropogenic noise impacts on wildlife communities (Herrera-Montes and Aide, 2011),

and maintaining the plethora of ecological and human health benefits that biological sounds provide

(Buxton et al., 2021).

In Chapter 3, I used a multivariate linear mixed effects model to show a shelterwood logging in

northern Michigan had no long-term impacts on overall soundscape quality, but did have impacts
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on the composition of sounds in the soundscape. Given these soundscapes are comprised primarily

of avian vocalizations, this indicated a shift in avian community composition. These results align

with previous research documenting logging impacts on avian communities in temperate forest

ecosystems (Franklin and Forman, 1987; Doyon et al., 2005), suggesting the potential for sound-

scape monitoring, along with the developed modeling framework, as a rapid tool for assessment of

disturbance impacts on acoustically-communicating communities.

In Chapter 4, I found trends in bird abundance were highly variable across protected forests

in the northeastern US, but species within a forest showed similar trends, suggesting local forest

condition might have a broad and consistent effect on bird communities in this region. I developed

a novel multi-species, multi-region, removal sampling model to leverage data from eight distinct

parks within a single monitoring network, which enabled estimation of trends for rare species

and sparsely sampled parks. Future work will seek to use these data together with additional

data sources (e.g., Breeding Bird Survey, eBird, autonomous recording units) to understand the

mechanisms driving these heterogeneous spatial trends.

In Chapter 5, I developed a novel integrated model that combines automated acoustic vocaliza-

tion data together with traditional point count survey data to estimate bird abundance. Given the

ability of ARUs to record for multiple distinct time periods at a given location, my approach has

the potential to greatly improve abundance estimates, as well as estimated effects of environmental

drivers on abundance, in particular for rare and hard-to-detect species. Further, by leveraging

information from point count survey data, my approach reduces the time necessary to validate ARU

vocalizations obtained from an automated clustering or machine learning algorithm, which has

been a major downside to the use of ARUs in wildlife monitoring programs (Gibb et al., 2019).

In Chapter 6, I extended single species integrated distribution models to a multispecies frame-

work, which enables estimation of occurrence and biodiversity dynamics using multiple data

sources. I showed the novel modeling framework resulted in improved predictive performance

of occurrence dynamics for a community of twelve-foliage gleaning birds in the White Mountain

National Forest. This framework can improve estimates of both species specific and community
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level dynamics, providing the opportunity to improve understanding of the specific environmental

drivers of biodiversity shifts, and how such effects vary across species groups, space, and time.

7.2 Future research

The previous analyses represent methodological improvements for analyses of avian soundscapes,

populations, and communities. I presented applications of these approaches towards understanding

disturbance effects, spatial and temporal variation in bird abundance, and population and commu-

nity occurrence trends. However, areas of future work remain in terms of both methodological

development and application to address important management and conservation questions, in par-

ticular for addressing research questions that span regional to continental scales. My future work

will build on the work presented in this dissertation and focus on the development and application

of novel data integration approaches for macroscale analyses of bird populations, communities, and

the ecosystem services they provide. Below I present three specific areas of future research.

7.2.1 Integration of soundscape, population, and community level analyses

Analyses on avian soundscapes in the fields of soundscape ecology and ecoacoustics are typically

performed separately from more traditional analyses that focus on avian populations and communi-

ties. Both approaches can provide information on the impacts of global change and anthropogenic

disturbance on natural ecosystems, as well as the ecosystem services they provide to humans (re-

viewed in Gibb et al. 2019). Integration of soundscape analyses together with population and

community analyses could provide a more holistic understanding of how avian communities are

changing and the implications this has for ecosystems, natural resources and the human health

benefits they provide (Buxton et al., 2021). Acoustic patterns in soundscapes are inherently a

function of individual species abundance as well as the species composition of a community (Aide

et al., 2017). However, soundscapes are nonlinearly related to both the abundance and composition

of avian communities, as individual species have distinct contributions to soundscape complexity

as a result of variation in song complexity, duration, and frequency (Rappaport et al., 2020). As a
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result, changes in abundance and composition of avian communities are likely linked to changes

in soundscape complexity and diversity in complex, non-linear patterns that vary across space

and time. Recent research has recognized this deficiency and linked long-term avian population

declines to shifts in soundscapes (Morrison et al., 2021). Ignoring the impacts of avian population

and community shifts (e.g., biotic homogenization) on soundscapes underestimates the impacts

such losses will have on human health and well-being, especially given the premier importance of

bird song to human health and sense of place in nature (Buxton et al., 2021). I plan to develop

integrated models that relate multiple soundscape characteristics (e.g., acoustic complexity, diver-

sity, composition) to avian community composition to understand how predicted homogenization

of avian communities as a result of land-use change and climate change will influence soundscape

quality and the underlying human health and well-being benefits these soundscapes provide.

7.2.2 Software development formodels of species and community level occurrence dynamics

While there has been widespread development of hierarchical modeling approaches to address

common complexities when modeling species-specific and community level occurrence dynamics

(MacKenzie et al., 2002; Dorazio and Royle, 2005), there is a lack of user-friendly and computation-

ally efficient software to fit these specialized models. This is particularly true for spatially-explicit

models that accommodate sources of dependency among observations, as computationally com-

plexity increases in cubic order with the number of spatial locations. Despite this computational

bottleneck, known as the “big N” problem (Heaton et al., 2019), such spatially-explicit models

often improve predictive performance when predicting species-specific and community level oc-

currence probabilities across a region of interest (Swanson et al., 2013; Guélat and Kéry, 2018;

Wright et al., 2021). The lack of specialized software to fit models that account for both imperfect

detection and spatial dependence has resulted in either the use of more standard approaches for

which such software exists (e.g., spatially-explicit logistic regression using spBayes; Finley et al.

2015) or the use of standard Bayesian software packages (e.g., JAGS, BUGS, NIMBLE), which

can be drastically slow and requires learning new syntax. I recently developed spOccupancy, an R
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package that fits single species occupancy models, multispecies occupancy models, and integrated

occupancy models that can accommodate spatial autocorrelation (Doser et al., 2021a). I leverage

Pólya-Gamma data augmentation (Polson et al., 2013) and Nearest Neighbor Gaussian Processes

(Datta et al., 2016) to yield a computationally efficient Gibbs sampler for all models. I plan to

continue development of spOccupancy with the following extensions: (1) Include functionality

for dynamic occupancy models (MacKenzie et al., 2003); (2) Allow for spatially varying coefficiets

(SVCs; Gelfand et al. 2004; Finley and Banerjee 2020); (3) Functionality for integrated community

occupancy models (Doser et al., 2021c). Such computationally efficient software will make it easier

to address both imperfect detection and spatial autocorrelation in species distribution models that

use large data sets.

7.2.3 Nonstationary and multi-scaled climate and land use effects on avian communities

Avian species have been severely impacted by global changes, with an estimated three billion birds

lost in North America (Rosenberg et al., 2019) over the last 50 years and similar losses in Europe

(Inger et al., 2015). The impacts of climate change and land-use/land-cover (LULC) change have

additionally resulted in shifts in avian species distributions (Rushing et al., 2020) and timing of

migratory patterns (Hällfors et al., 2020; Youngflesh et al., 2021). Despite increased recognition

of global change impacts, a mechanistic understanding of the roles of climate and LULC change in

shaping bird occurrence dynamics and distributional shifts is severely lacking for all but the most

common species (Breiner et al., 2015; Kindsvater et al., 2018), resulting in critical information gaps

to understand and predict future avian trajectories. Understanding the relative contribution of global

change drivers to shifts in both species distributions and community composition is complex as it

depends on the extent of spatiotemporal synchrony among local populations and species as well as

the strength of competing drivers whose effects are nonstationary and multi-scaled. I seek to extend

the integrated community occupancy model (ICOM) developed in Chapter 6 to a “macrosystems

integrated community occupancy model” (mICOM) to estimate the effects of nonstationary and

multi-scaled environmental drivers on avian occurrence dynamics across the continental United
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States. I will integrate four continental-scale avian data sources (eBird, BBS, NEON, and National

Park Service Inventory andMonitoringNetwork data) and incorporate spatially-varying coefficients

(Finley, 2011) of climate and LULC effects at multiple spatial scales via a scale-selection submodel

(Frishkoff et al., 2019) to reveal how these effects vary across space, across species, and within a

given species range. This analysis will generate improved knowledge on how global change will

impact avian communities, the ecosystems they use, and the ecosystem services they provide, as

well as help shape management actions across networks of national parks and Bird Conservation

Regions by identifying specific areas and communities that are particularly vulnerable to the effects

of climate and LULC change.

7.3 Concluding remarks

Novel and clearly-communicated hierarchical models that integrate multiple disparate data sources

will be valuable tools for conservation and management efforts at both local and continental

scales. In this work, I developed hierarchical Bayesian modeling approaches to understand avian

soundscape, population, and community dynamics. My future work will continue to leverage

complex data sources within hierarchical modeling frameworks to answer important questions on

bird populations, communities, and the ecosystem services they provide.
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APPENDIX

INTEGRATED COMMUNITY OCCUPANCY MODELS: A FRAMEWORK TO ASSESS
MULTISPECIES OCCURRENCE AND BIODIVERSITY DYNAMICS USING

MULTIPLE DATA SOURCES

A.1 Simulation study details

For the simulation study focused on assessing the benefits of integration (simulation study 1), my

goal was to determine whether integration of multiple data sources in an ICOM could provide

improved accuracy and precision for species and community level parameters compared to models

using smaller only a subset of the available data sources. I therefore drew community-level

parameters from a range of realistic values. Specifically, for the 100 simulations, community-level

occurrence parameters were drawn from the following distributions

V̄0,C = Uniform(−1.5, 0.5) for all C = 1, . . . , 6,

V̄1 = Uniform(−0.5, 0.5),

q̄ = Uniform(−0.2, 0.8).

The intercepts for the detection models for the replicated data set were randomly drawn from

a uniform distribution from -1 to 1 in each year C. I used a uniform distribution from -2.5 to 0 for

the nonreplicated data set with low detection probability and a uniform distribution from 0 to 2.5

for the nonreplicated data set with high detection probability. All detection covariate effects for all

three data sources were randomly drawn from a uniform distribution from -0.75 to 0.75. Variance

parameters controlling variation in the species and year-specific occurrence intercepts were drawn

from a uniform distribution ranging from 0.5 to 1.5. All variance parameters controlling the

variation in species-specific detection intercepts were drawn from a uniform distribution ranging

from 1 to 3, and all variance parameters controlling the variation in species-specific covariate effects
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were drawn from a uniform distribution ranging from 0.25 to 2, except for the the autologistic

parameter, which was drawn from a uniform distribution that ranged from 0.25 to 1.

For the simulation study focused on assessing the benefits of community modeling (simulation

study 2), my goal was to compare the performance of the ICOM to single species integrated species

distribution models (IDMs). Since in reality, species specific effects may not follow the normal

distribution assumed by the ICOM framework, I generated intercepts and covariate effects for each

species from uniform distributions. More specifically, year specific occurrence intercepts for each

species were generated from a uniform distribution between -1.5 and 1.5, detection intercepts for

each data set were generated uniformly from -1 to 1, the autologistic parameter was generated

uniformly from -0.5 to 2, and all covariate effects on occurrence and detection were generated from

a uniform distribution with lower bound -0.5 and upper bound 0.5. I then used either the ICOM

framework to estimate the parameters for each species or used an individual IDM for each species.

I subsequently compared results to assess the benefits of using the ICOM framework compared to

individual IDMs.

A.2 Case study data set details

The first data set comes from the Hubbard Brook Experimental Forest (HBEF), a 3600 ha northern

hardwood forest in the White Mountain National Forest. Observers recorded the numbers of all

bird species in 50m radius point count surveys three times annually since 1999 at 373 sites along

15 transects. Transects are separated by 500m and points within a transect separated by either

100 or 200m. Here I use data from 2010-2018 and summarize the counts during each visit as

either detections (at least one individual detected) or non-detections (no individuals detected) for

the twelve species used in the analysis.

The second data set comes from the National Ecological Observatory Network (NEON; Barnett

et al. 2019; National Ecological Observatory Network (NEON) 2021) at Bartlett Experimental

Forest, a long-term research site in the WMNF, where there are a total of nine sampling grids, each

comprised of 7-10 point count sites separated by a minimum of 250m. From 2015-2018, observers
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recorded the number of all bird species observed during a six minute, 125m radius point count

survey once during the breeding season. The six minute survey was split into three two-minute

intervals following a removal design (MacKenzie and Royle, 2005) where the observer recorded the

interval during which a species was first observed (if any) with a 1, intervals prior to observation

with a 0, and then mentally removed the species from subsequent intervals (marked with NA),

which enables modeling of data in an occupancy modeling framework.

The third data set comes from the North American Breeding Bird Survey (BBS; Pardieck et al.

2020), in which observers count birds along routes (i.e., roads) approximately 39.2km in length.

At 50 points along the route (referred to as stops), the observer performs a three minute point count

of birds seen or heard within a 0.4km radius. Here I use data from 2010-2018 from four routes

that at least partially fell within the WMNF (Figure 1). I use the detection (1) or nondetection

(0) of each species at each stop within each route as the detection-nondetection data. The BBS

data are nonreplicated and alone cannot be used to explicitly separate occurrence from detection

probabilities.

I model all three data sources at the same spatial resolution despite differences in the radius

of point counts (HBEF = 50m radius, NEON = 125m radius, BBS = 400m radius). Most birds

during point count surveys are counted within a 125m radius of the point count center (Ralph,

1993) and so I am confident ignoring these resolution differences is inconsequential, especially

given that I am modeling occurrence and not abundance. Further, the separate detection models

effectively account for differences in the point count radii that result in differing species-level

detection probabilities. Nevertheless, if available data sets are summarized at largely different

spatial resolutions, I recommend incorporating a change of support into the occupancy modeling

approach (Pacifici et al., 2019).

A.3 Model implementation details

I specified vague priors for all parameters in the model. I specified uniform priors from 0 to 1 for the

community level occurrence intercept in each year C and all community-level detection intercepts
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in each year C on the real scale. For example, for the community-level occurrence intercept in year

t, I specified logit−1( V̄0,C) ∼ Uniform(0, 1). For all covariate effects and the autologistic parameter

(in the simulation study and case study) I assigned normal priors with mean 0 and variance 2.72 to

the mean community-level effect on the logit scale, which results in a relatively flat prior between

0 and 1 on the true occurrence scale (Broms et al., 2016). I assigned a gamma prior with shape and

rate parameters equal to 0.1 for all community level-dispersion parameters that govern the variance

of species-specific effects around the common community-level distribution. See NIMBLE code

onGitHub (https://github.com/zipkinlab/Doser_etal_2021_InReview) formore details

on model implementation.

In the foliage-gleaning bird case study, I modeled species and year-specific detection intercepts

as random effects across all years and species, as opposed to the model description and simulation

study where each intercept for a given year had its own community-level distribution. Thus, for a

given data set, the intercept on detection probability for species 8 in year C was modeled as

U08,C ∼ Normal(`U0, f
2
U0),

where `U0 is the hyper-mean for detection probability (on the logit scale) of all species in the

community across all years (at average covariate values) and f2
U0 is the hyper-variance for detection

probability across all species in the community across all years.

For the case study, I performed a post-hoc simple linear regression analysis using the average

occurrence probability of each species during each year as a response variable and year as a

covariate. I wrote a Gibbs sampler in R (R Core Team, 2020) where at each iteration of the sampler

I used a different individual sample from the posterior distributions of the average species-specific

occurrence probabilities in each year, which enables full uncertainty propagation for the estimated

trend parameter. I used vague normal priors with mean 0 and variance 1000 for the intercept and

slope (trend) parameter and a vague inverse gamma prior with shape and scale parameter equal to

0.001 for the residual variance.
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A.4 Bayesian P-value Calculation

I performed a posterior predictive check for each data set to assess model fit. Because standard

goodness of fit approaches are not valid for binary data (McCullagh, 2019), goodness of fit measures

for occupancy models must be obtained by binning the data in some manner (Broms et al., 2016).

Because I was interested primarily in assessing occurrence trends over time, I binned the data

across all sites within a given year for each species. More specifically, for the HBEF data set, I

predicted the observed detection/non-detection of each species 8 at site 9 during year C and visit : ,

denoted Ĥ8, 9 ,:,C . I then summed across both the observed detection/non-detection data and replicated

detection/non-detection data across all sites and visits, yielding, respectively,

HSUM,8,C =

�HBEF∑
9=1

 9∑
:=1

H8, 9 ,:,C

ĤSUM,8,C =

�HBEF∑
9=1

 9∑
:=1

Ĥ8, 9 ,:,C .

I used these binned values in a posterior predictive check with a Chi-square discrepancy test

statistic, which I summarized using a Bayesian p-value. More specifically, I compute

jH =

�∑
8=1

)∑
C=1

(HSUM,8,C − � [HSUM,8,C])2
� [HSUM,8,C] + n

jĤ =

�∑
8=1

)∑
C=1

( ĤSUM,8,C − � [ ĤSUM,8,C])2
� [ ĤSUM,8,C] + n

,

where � [ ĤSUM,8,C] = � [HSUM,8,C] =
∑�REP
9=1

∑ 9

:=1 ?8, 9 ,:,C · I8, 9 ,C and n = 0.0001 is an added constant

to avoid problems with small expected values (Kéry and Royle, 2021).

I then computed the Bayesian p-value as

BPH =
"∑
<=1

� (jĤ > jH),
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where � (·) is the indicator function. I compute a separate Bayesian p-value for the NEON and

BBS data sets following the same procedure.

A.5 Additional Simulation Study Results
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Figure A.1: Sampling distribution of estimated bias in simulated community level occurrence
intercepts (A) and covariate effects (B) under models using different combinations of a replicated
(REP) data set and a nonreplicated data set with low detection probability (NREP L) and with
high detection probability (NREP H). Points represent the median bias (posterior mean - true
simulated value) in a community-level effect across 100 simulations for a community of 25
species. Lines represent the 95% quantiles.
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Figure A.2: Sampling distributions of estimated occurrence intercepts for a single year for a
simulated community of 25 species across 100 simulations when using the integrated community
occupancy model (ICOM) or a single species integrated distribution model (IDM). Points
represent the median posterior mean across all 100 simulations, and lines represent the 2.5% and
95% quantiles of the posterior means across the 100 simulations. Black points are the true
simulated values.

A.6 Additional Case Study Results

Table A.1: Bayesian p-value goodness of fit assessment for the foliage-gleaning bird case study
using the Chi-square fit statistic. Bayesian p-values between 0.1 and 0.9 indicate adequate model
fit to each data source (Hobbs and Hooten, 2015).

Model H8, 9 ,:,C E1,8, 9 ,C E2,8, 9 ,C

HBEF 0.508 - -
NEON - 0.503 -
BBS - - 0.559

HBEF + NEON 0.491 0.490 -
HBEF + BBS 0.474 - 0.521
NEON + BBS - 0.462 0.509

HBEF + NEON + BBS 0.478 0.494 0.524
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Table A.2: Number of unique observations at each site and year combination of the twelve
foliage-gleaning bird species in the three data sets used in the case study in White Mountain
National Forest from 2010-2018. Numbers in parentheses indicate total number of observations
including pseudoreplicates (i.e., repeated detection of a bird species at a site in the same year).

Species HBEF NEON BBS Total

American Redstart 93 (111) 45 270 408 (426)
Black-and-white Warbler 264 (294) 30 41 335 (365)

Blue-headed Vireo 684 (779) 54 190 928 (1023)
Blackburnian Warbler 1974 (3348) 120 142 2236 (3610)
Blackpoll Warbler 297 (469) 0 1 298 (470)

Black-throated Blue Warbler 2226 (4030) 116 153 2494 (4299)
Black-throated Green Warbler 2272 (3898) 195 138 2605 (4231)

Canada Warbler 213 (269) 2 11 226 (282)
Magnolia Warbler 565 (830) 12 113 690 (955)
Nashville Warbler 72 (80) 0 57 129 (137)

Ovenbird 1956 (3441) 245 545 2746 (4231)
Red-eyed Vireo 1880 (3272) 246 1012 3138 (4530)

Total 12496 (20821) 1065 2673 16233 (24559)
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Figure A.3: Probability of positive trends in occurrence probabilities of twelve foliage-gleaning
bird species in the White Mountain National Forest from 2010-2018. Color indicates the posterior
mean trend estimate from a post-hoc simple linear regression.

A.7 Model validation details

I used two-fold cross validation to assess the out-of-sample predictive performance of the full

ICOM compared to six models using subsets of the three data sets for the case study. I split each

data set into two parts, such that each half of the data set consisted of the data from half of the

spatial locations for all years those locations were sampled. I fit each model using each half of the

data set and subsequently predicted the true occurrence (I8, 9 ,C) at the locations not used to fit the

model for all years those locations were sampled. Assessing out-of-sample predictive performance

with occupancy models presents additional complexities since the ecological state of interest is not

directly observed (Zipkin et al., 2012). As such, I must generate the latent occurrence values using

a separate model. For a given data set, I compared the yearly occurrence predictions at the hold out

locations to the yearly occurrence values generated from models that were fit using the data at the

hold out locations. To account for model uncertainty, I compared the yearly occurrence predictions
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Figure A.4: Estimated occurrence probabilities of twelve foliage-gleaning bird species across an
elevation gradient. Black lines are posterior mean occurrence probabilities with 95% credible
intervals denoted by the gray region. Occurrence probabilities correspond to the probability of a
species occupying a site in 2014 that was not occupied in the previous year.

Table A.3: Posterior means and standard deviations of species-specific occurrence covariate
effects from the integrated community occupancy model (Mean (SD)), as well as the overall
community level effects (COMM). Boldface indicates 95% credible interval does not overlap zero.

Species Elevation Elevation2 Percent Forest Autologistic

AMRE -0.23 (0.089) -0.30 (0.072) -0.18 (0.074) 2.6 (0.70)
BAWW 0.26 (0.11) -0.28 (0.084) 0.087 (0.13) 4.0 (0.84)
BHVI -0.030 (0.099) -0.055 (0.080) 0.16 (0.12) 5.3 (0.99)
BLBW 0.17 (0.068) -0.57 (0.055) 0.087 (0.090) 2.2 (0.18)
BLPW 0.75 (0.20) 1.31 (0.14) 0.60 (0.28) 1.8 (0.31)
BTBW 0.40 (0.084) -0.82 (0.075) -0.33 (0.20) 3.1 (0.26)
BTNW 0.28 (0.082) -0.16 (0.069) 0.045 (0.13) 1.9 (0.22)
CAWA 1.01 (0.20) -0.34 (0.13) 0.093 (0.19) 5.6 (0.47)
MAWA 0.51 (0.086) 0.45 (0.071) -0.10 (0.090) 5.2 (0.32)
NAWA 0.18 (0.12) 0.31 (0.095) -0.099 (0.11) 4.3 (0.76)
OVEN -0.30 (0.064) -0.54 (0.054) 0.21 (0.071) 3.5 (0.25)
REVI -0.42 (0.054) -0.45 (0.042) 0.22 (0.055) 2.7 (0.17)

COMM 0.22 (0.15) -0.12 (0.19) 0.065 (0.11) 3.2 (0.48)
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individually to latent occurrence values generated from the subset of the seven models that used

the data set in the model fitting process. I used the log predictive density (Vehtari et al., 2017) to

compare predictive performance of the models, where larger values indicate better model fit. Thus,

for each species 8 at each hold out location 9 during each year C that site was sampled, I obtained a

measure of the log predictive density, which were then summed across all hold-out sites and years.

For example, to assess the ability of the full ICOM to predict occurrence at HBEF, I compared

out of sample predictions at HBEF generated from the full ICOM to latent occurrence values for

each individual species generated from the following models that were fit using the out-of-sample

data: (1) HBEF, (2) HBEF + NEON, (3) HBEF + BBS, (4) HBEF + NEON + BBS. This generated

four log predictive density measures (after summing across sites and years), that I then averaged to

account for model uncertainty, yielding a single measure of predictive performance at the locations

of a specific data set. I followed the same process using the other half of the data and averaged

these two values to obtain a single value of predictive performance for a model of a given data set.

I obtained log predictive density measures individually for each species and summed these values

Table A.4: Precision of community-level occurrence parameters from models using different
amounts of the three data sets. Precision is measured as the width of the 95% credible interval.
Boldface indicates the model with the highest precision for a given parameter.

Parameter HBEF NEON BBS HBEF + HBEF + NEON + HBEF +
NEON BBS BBS NEON + BBS

V̄0,1 2.97 - 2.59 3.01 2.77 2.53 2.80
V̄0,2 2.62 - 2.44 2.67 2.81 2.41 2.65
V̄0,3 2.82 - 2.36 2.92 2.98 1.94 2.92
V̄0,4 2.47 - 2.61 2.60 2.43 2.35 2.44
V̄0,5 2.76 - 2.35 2.83 2.81 1.54 2.68
V̄0,6 2.64 2.21 2.29 2.43 2.72 1.89 2.47
V̄0,7 3.19 2.86 1.71 3.14 2.79 2.06 2.76
V̄0,8 3.05 2.56 2.37 2.92 3.07 1.88 2.85
V̄0,9 3.67 2.26 3.12 3.51 3.38 2.21 3.21
V̄1 1.24 0.53 0.44 1.06 0.67 0.37 0.59
V̄2 0.65 0.39 0.34 0.70 0.81 0.29 0.75
V̄3 0.33 0.46 0.39 0.30 0.48 0.32 0.42
q̄ 2.07 0.92 4.20 2.05 2.01 1.96 1.92
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Table A.5: Precision of species-level occurrence parameters from models using different amounts
of the three data sets. Species-specific values are averaged across the twelve species, while species
and year-specific intercepts are averaged across the twelve species and nine years. Precision is
measured as the width of the 95% credible interval. Boldface indicates the model with the highest
precision for a given parameter.

Model Intercept Elevation Elevation2 Percent Autologistic
Forest

HBEF 0.25 0.49 0.37 0.35 2.12
NEON 0.21 0.75 0.56 0.66 1.51
BBS 0.31 0.68 0.42 0.52 5.12

HBEF + NEON 0.22 0.45 0.36 0.33 1.95
HBEF + BBS 0.25 0.45 0.36 0.57 2.06
NEON + BBS 0.38 0.54 0.35 0.47 2.54

HBEF + NEON + BBS 0.21 0.41 0.32 0.50 1.80

to obtain a single metric for the entire community. The model with the best predictive performance

across the community throughout the White Mountains across all study years will have the highest

Table A.6: Two-fold cross validation results comparing predictive performance of single-species
integrated distribution models (IDM) to the integrated community occupancy model (ICOM).
Values are the log predictive density, where higher values indicate better predictive performance.
Results are not shown for Blackpoll Warbler due to insufficient data required to fit the
single-species model.

Species HBEF BBS NEON

ICOM IDM ICOM IDM ICOM IDM
American Redstart -683 -846 -592 -562 -75 -88

Black-and-white Warbler -885 -1014 -492 -729 -82 -139
Blue-headed Vireo -993 -919 -573 -668 -107 -154

Blackburnian Warbler -925 -968 -514 -743 -118 -173
Black-throated Blue Warbler -714 -835 -418 -647 -117 -140
Black-throated Green Warbler -488 -600 -496 -127 -127 -201

Canda Warbler -620 -646 -100 -575 -10.5 -25.8
Magnolia Warbler -1153 -1083 -436 -574 -41.6 -74
Nashville Warbler -411 -1161 -218 -434 - -

Ovenbird -1052 -1029 -293 -365 -78 -88
Red-eyed Vireo -1030 -988 -364 -397 -88 -101

Community -8953 –10091 -4496 -5942 -845 -1185
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total log predictive density measure summed across the three values for the three data sets.

Finally, I used two-fold cross validation to assess the performance of the ICOM compared to

individual species IDMs. I fit each model to half of the data points (which were constructed in the

same manner as described in the preceding paragraph), predicted the yearly occurrence values at

the other half of the data points, and compared the yearly predicted values to the latent occurrence

values generated from the model fit using the out of sample data points. I used the log predictive

density as a measure of predictive performance, computing a single value for each species at each

data set location (summed across all available years), which subsequently allowed me to compare

predictive performance across species, data sets, and the entire community.
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