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ABSTRACT

METAMODELING IN EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION FOR CONSTRAINED AND

UNCONSTRAINED PROBLEMS

By

Rayan Hussein

One of the main difficulties in applying an optimization algorithm to a practical problem

is that the evaluation of objectives and constraints often involve computationally expensive

procedures. To handle such problems, a metamodel (or surrogate model, or response surface

approximations) is first formed from a few exact (high-fidelity) solution evaluations, and

then optimized by an algorithm in a progressive manner. However, there has been lukewarm

interest in finding multiple trade-off solutions for multi-objective optimization problems us-

ing surrogate models. The literature on surrogate modeling for constrained optimization

problems is also rare. The difficulty lies in the requirement of building and solving multiple

surrogate models, one for each Pareto-optimal solution.

In this study, we propose a taxonomy of different possible metamodeling frameworks for

multi-objective optimization and provide a comparative study by discussing advantages and

disadvantages of each framework. Also, we argue that it is more efficient to use different

metamodeling frameworks at different stages of the optimization process. Thereafter, we

propose a novel adaptive method for switching among different metamodeling frameworks.

Moreover, we observe the convergence behavior of the proposed approaches is better with a

trust regions method applied within the metamodeling frameworks.

The results presented in this study are obtained using the well-known Kriging meta-

modeling approach. Based on our extensive simulation studies on proposed frameworks, we



report new and interesting observations about the behavior of each metamodeling frame-

work, which may provide salient guidelines for further studies in this emerging area within

evolutionary multi-objective optimization. Results of this study clearly show the efficacy and

efficiency of the proposed adaptive switching approach compared to three recently-proposed

other metamodeling algorithms on challenging multi-objective optimization problems using

a limited budget of high-fidelity evaluations.
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Chapter 1

Introduction

In this chapter, we provide a brief overview of metamodels (or surrogate models) and Evo-

lutionary Multi-objective Optimization (EMO). Then, we highlight main research contribu-

tions, which include, a taxonomy of metamodeling frameworks, switching between frame-

works, and use of a trust regions method to achieve a better convergence behavior.

1.1 Overview

1.1.1 Metamodels (Surrogate Models)

In most practical optimization problems, the evaluation of a solution involves computation-

ally expensive softwares and procedures, which remain as one of the main bottlenecks of

completing an optimization run within a reasonable amount of time. However, since solu-

tions created at the beginning of an optimization simulation are expected to be far from the

optimal region, an exact and precise evaluation of the solution may not be necessary. As the

solutions progress towards the optimal region, a more precise evaluation may be invoked.

The recent developments of optimization methods have led to an increasing interest of

approximation models or surrogate models [1, 2]. The use of metamodels (or surrogate

models) to approximate the functional form of exact objectives and constraints by using a

few high-fidelity solution evaluations is a common approach [3]. Among various methods,
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the Kriging method is one of the widely used metamodels, which can provide an estimated

function value and also simultaneously provide an error estimate of the approximation [4].

The optimization process is then continued using the surrogate model until the model is

deemed to be accurate enough in the current region of focus. Due to this reason, surrogate

models are effective in reducing the overall computational time required in real-world design

optimization.

Despite the existence of numerous surrogate modeling studies in the context of single-

objective optimization problems, there are not many efforts spent on extending the ideas

to multi-objective optimization. The reasons for few studies [5, 6] is that in multi-objective

optimization, the aim is to find multiple trade-off Pareto-optimal solutions, instead of a

single optimal solution. Most surrogate modeling studies have not considered modeling

a multi-modal function in the spirit of locating multiple optimal solutions simultaneously.

Hence, there is not much that can be borrowed from the single-objective literature. How-

ever, Emmerich et al. [5] have generalized the probability of improvement and the expected

improvement concept to multi-objective optimization. Single-objective Evolutionary Algo-

rithms (EA) are used for maximizing one of these metrics for determining which point should

be evaluated next. Although one can select multiple test points with high-metric values at

each iteration, these scalar metrics on their own could not predict the most likely shape and

location of the whole Pareto-front (PF). Therefore, they may not be stochastically sound for

locating multiple test points.

1.1.2 Kriging

Kriging, or the Gaussian process regression, has been one of the most popular choices in

surrogate techniques used mainly because of its ability to provide uncertainty information
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of the approximated values. The term Kriging was proposed by Matheron in 1963 [7] in

honor of the South African mining engineer Danie G. Krige [8]. His research was focused on

the distribution of gold samples found in mines and the correlation between these samples.

He implemented a statistical technique based on a limited amount of samples, which is now

known as Kriging. The first work in using Kriging for an approximation of simulation-based

or computer experiments which was proposed in 1989 by Sacks et al. [9]. However, the most

cited algorithm in using Kriging is efficient global optimization (EGO) proposed in 1998

by Jones et al. [10] for single-objective optimization problems. EGO uses a criterion called

expected improvement (EI) to select samples for training the Kriging model.

The Kriging approach treats the function of interest as a realization of a random function

(stochastic process) y(x) . For this reason, the mathematical model of the Kriging method

has been presented as a linear combination of a global model, plus its departure:

y(x) = f(x) + Z(x) (1.1)

where y(x) is the unknown deterministic response, f(x) is a known function of x, and Z(x)

is a realization of a stochastic process with zero mean, σ2 variance, and having non-zero

covariance values. The procedure starts with obtaining a sample data of limited size (i.e.

n-design sets each having k-variables), X =
{
x(1),x(2), . . . ,x(n)

}T
, and a corresponding

vector of scalar responses, Y =
{
y(1), y(2), . . . , y(n)

}T
. It is assumed that if any two design

points, e.g. x(i) and x(j), are positioned close together in the design space, their respective

function values y(i) and y(j) are also expected to be similar. Usually, the Latin hypercube

technique is used to create an initial point, ensuring a diverse set of points along each variable

dimension [1].
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Without going into the detailed mathematics, here, we provide the Kriging predictor, as

follows:

ŷ(x) = µ̂+ r(x∗,x)TR−1(y(x)− 1µ̂) (1.2)

where r(x∗,x) is the linear vector of correlation between the unknown point x to be predicted

and the known sample points x∗. R denotes the n × n matrix with (i, j) whose entry is

Corr[y(i), y(j)], and 1 denotes an n-vector of ones. The optimal values of µ̂ and σ̂2, expressed

as a function of R are given below [10]:

µ̂ =
1TR−1y

1TR−11
(1.3)

σ̂2 =
(y⃗ − 1µ̂)TR−1(y⃗ − 1µ̂)

n
(1.4)

Moreover, Kriging is attractive because of its ability to provide error estimates of the pre-

dictor:

s2(x) = σ̂2[1− rTR−1r +
(1− rTR−1r)2

1TR−11
] (1.5)

1.1.3 Evolutionary multiobjective optimization (EMO)

Evolutionary multi-objective optimization (EMO) methods based on evolutionary algorithms

(EAs) have become popular and been widely used in the past few decades [11, 12]. EMO

methods start with a population of individuals, which evolve by using genetic operators (e.g.,

reproduction, crossover, and mutation). This study focuses on using evolutionary algorithms

because of their wide applicability and certain advantages. For example, they do not assume

any convexity or differentiability of the objective functions involved and can easily deal with

the problems with locally optimal solutions.
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Instead of finding a single Pareto-optimal solution at a time, set based multi-objective

optimization methods attempt to find a set of Pareto-optimal solutions in a single simulation

run [11]. The goals of an EMO are:

1. Find a well-converged set of trade-off solutions, and

2. Find a well-diversified set of solutions across the entire efficient front.

The population approach of an EMO and the flexibilities in its operators allow both the

above goals to be achieved for multi-objective problems. EMO algorithms, such as NSGA-

II [13] and SPEA2 [14], are popular methods for handling two and three-objective problems.

Recent extensions, such as NSGA-III [15] and MOEA/D [16], are able to handle four or more

objectives (even more than ten objectives). The topic is so important today that handling

such large numbers of objectives is given a separate name, evolutionary many-objective

optimization. Figure 1.1 illustrates the principle of set based multi-objective optimization.

In each iteration, a set of points gets operated by an EMO procedure and a new set of

points—hopefully towards the strict efficient front and with more diversity—are generated.

This process is expected to continue with iterations before converging on the true efficient

front covering its entire range. When a set based multi-objective optimization algorithm

transits from one set of non-dominated points to hopefully a better set of non-dominated

points, there is a need to evaluate the convergence and diversity of the new set of solutions

vis-a-vis the old solutions. It is because, if we can measure both aspects well through one

or more performance metrics, they can also be used to determine the termination of the

optimization algorithm.

Despite several advantages, EAs have one major limitation: they can consume many

function evaluations to find an approximated set of Pareto-optimal (PO) solutions [17]. This
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Weak Iteration t

Iteration t+1

Efficient
front

(Strict)

front
Efficient

Figure 1.1: A principle of set based multi-objective optimization procedure is illustrated.

issue becomes more prominent when the problem to be solved involves computationally ex-

pensive functions which is another challenge in solving industrial optimization problems.

To obtain solutions for expensive problems in a limited number of expensive function eval-

uations, surrogates (or metamodels) have been used in the literature as an alternative to

expensive evaluations.

1.1.4 Achievement Scalarization Function (ASF) Method

One of the common ways to solve the generic multi-objective optimization problem is to solve

a parameterized achievement scalarization function (ASF) optimization problem repeatedly

for different parameter values. The ASF approach was originally suggested by Wierzbicki

[18]. For a specified reference point z and a weight vectorw (parameters of the ASF problem),
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Figure 1.2: ASF procedure of finding a Pareto-optimal solution is illustrated.

the ASF problem is given as follows:

Minimize(x) ASF(x, z,w) = maxMi=1

(
fi(x)−zi

wi

)
,

Subject to gj(x) ≤ 0, j = 1, 2, . . . , J.

(1.6)

The reference point z ∈ RM is any point in theM -dimensional objective space and the weight

vector w ∈ RM is an M -dimensional unit vector for which every wi ≥ 0 and ∥w∥ = 1. To

avoid division by zero, we shall consider strictly positive weight values. It has been proven

that for above conditions of z and w, the solution to the above problem is always a Pareto-

optimal solution [19]. Figure 1.2 illustrates the ASF procedure of arriving at a weak or a

strict Pareto-optimal solution.

For illustrating the working principle of the ASF procedure, we consider specific reference

vector z (marked as z in the figure) and weight vector w (marked as w in the figure). For

any point x, the objective vector f is computed (shown as F). Larger of two quantities
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((f1 − z1)/w1 and (f2 − z2)/w2) is then chosen as the ASF value of the point x. For the

point G, the above two quantities are identical, that is, (f1 − z1)/w1 = (f2 − z2)/w2 = p

(say). For points on line GH, the first term dominates and the ASF value is identical to p.

For points on line GK, the second term dominates and the ASF value is also identical to

p. Thus, it is clear that for any point on lines GH and GK, the corresponding ASF value

will be the same as p. This is why an iso-ASF line for an objective vector at F traces any

point on lines GK and GH. For another point A, the iso-ASF line is shown in dashed lines

passing through A, but it is important to note that its ASF value will be larger than p, since

its iso-ASF lines meet at the w-line away from the direction of minimum of both objectives.

Since the ASF function is minimized, point F is considered better than A in terms of the

ASF value. Similarly, point A will be considered better than point B. Simple logic will reveal

that when the ASF problem is optimized the point O will correspond to the minimum ASF

value in the entire objective space (marked with a shaded region), thereby making point O

(an efficient point) as the final outcome of the optimization problem stated in Equation 1.6

for the chosen z and w vectors. By keeping the reference point z fixed and by changing the

weight vector w (treating it like a parameter of the resulting scalarization process), different

points on the efficient front can be generated by the above ASF minimization process.

1.2 Summary of Research Contributions

The main research contributions of this study is summarized in the following subsections.
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1.2.1 A Generative Kriging Surrogate Model

Surrogate models are effective in reducing the computational time required for solving op-

timization problems. Nevertheless, interest in and literature on surrogate models and its

effectiveness in finding multiple trade-off solutions has been lacking. This is largely be-

cause there is difficulty in building and solving multiple surrogate models, one for each

Pareto-optimal solution. In this study, we suggest a computationally fast, Kriging-based,

and generative procedure for finding multiple near Pareto-optimal solutions in a systematic

manner [20]. The approach is computationally fast due to the interlinking of building multi-

ple surrogate models, and in its systematic sequencing methodology for assisting one model

with another. The proposed framework takes only a few hundreds of high-fidelity solution

evaluations to find widely distributed solutions near Pareto-optimal solutions compared to

the standard EMO methods requiring tens of thousands of high-fidelity solution evaluations.

The framework is generic and can be extended to utilize other surrogate modeling methods

easily.

1.2.2 A Taxonomy for Metamodeling Frameworks for Evolution-

ary Multi-Objective Optimization

An increased interest in metamodeling efforts has grown from recent developments in op-

timization methods. Some researchers have made efforts to classify different metamodeling

approaches, but only in the realm of single-objective optimization. Most metamodeling ef-

forts in multi-objective optimization, so far, seem to have taken a straightforward extension

of single-objective metamodeling approaches. First, every objective and constraint func-

tion is metamodeled independently. Thereafter, a standard EMO methodology is applied to
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the metamodels, instead of the original objective and constraint functions, to find the non-

dominated front. In some studies, the above metamodeling-EMO combination is repeated in

a progressive manner so that refinement of the metamodels can occur with iterations. How-

ever, with the possibilities of a combined constraint violation function that can be formu-

lated by combining violations of all constraints in a normalized manner [21] and a combined

scalaraized objective function (weighted-sum, achievement scalarization function or Tcheby-

shev function) [19], different metamodeling frameworks can certainly be explored. While the

straightforward approach requires a construction of many metamodels, the suggested meta-

models for combined objective and constraint violations will reduce the number of needed

metamodels. However, the flip side is that each metamodel of the combined functions is

likely to be more complex, having discontinuous, non-differentiable, and multi-modal land-

scapes. Thus, the success of these advanced metamodeling frameworks is closely tied with

the advancements in the metamodeling methods. While these advancements are in progress,

in this study, we outline, for the first time, a number of different and interesting meta-

modeling frameworks [22] for multi-objective optimization, utilizing combined approaches

of objectives alone, constraints alone, as well as objectives and constraints together. Our

taxonomy includes one framework that requires as many as (M + J) metamodels (where M

and J are the number of objectives and constraints, respectively) to another framework that

requires only one metamodel.

1.2.3 Adaptive Switching Between Metamodeling Frameworks

Here, our main contribution is twofold. As we mentioned previously regarding the proposed

taxonomy of different metamodeling frameworks for multi-objective optimization, there are

several ways to build and utilize metamodeling approaches. We argue that it is more efficient
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to use different metamodeling frameworks at different stages of the optimization process, we

proposed a novel adaptive method for switching among different generative metamodeling

frameworks and simultaneous framework in multiple epochs. Statistical tests on multi-

objective convergence and diversity-preservation metrics are made at the start of each epoch

to determine one of the frameworks which is most suitable at that instant. A switching be-

tween metamodeling frameworks is an efficient approach, rather than using one framework

throughout, mainly due to the specialties that each metamodeling framework possesses. On a

number of multi-objective constrained and unconstrained test problems, the switching meth-

ods have produced better results by using a low budget of solution evaluations, compared to

the individual metamodeling framework alone.

Additionally, we introduced a trust regions method to achieve a better convergence be-

havior. We have presented a trust regions concept in order to produce a reliable and focused

search by trading-off exploration and exploitation aspects of an optimization algorithm.

From another side, the uncertainty of metamodeling effected the accuracy and the efficiency

of any approximation mathematical model (surrogated model or metamodel). Therefore, we

implemented the trust regions concept for getting more robust solution and reducing the

uncertainty as well.

1.3 Dissertation Organization

The rest of the study is structured as follows. In Chapter 2, we present the proposed taxon-

omy for metamodeling frameworks. In Chapter 3, we present the metamodeling frameworks

M1-1, M2-1, M1-2, M3-1, M4-1, M5, and M6. Results and comparison between metamod-

eling frameworks will be included Chapter 4. While in Chapter 5 we discuss the adaptive
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switching between metamodeling frameworks as well as trust regions. We present the future

work in Chapter 6. Finally, in Chapter 7, the conclusion of this study is provided.
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Chapter 2

A Taxonomy for Metamodeling

Frameworks for Evolutionary

Multi-Objective Optimization

In this chapter, we provide a review of the most important efforts in a classification of

metamodeling literature that relates to our study. Then we describe our proposed taxonomy

for metamodeling frameworks in evolutionary multi-objective optimization.

2.1 Introduction

Some researchers have made efforts to classify different metamodeling approaches, but only

in the realm of single-objective optimization. Santana et al. [23] has classified surrogates

according to the type of model used (e.g., Kriging, radial basis function, and polynomial

regression). Jin [24] proposed a classification based on the way single-objective evolutionary

algorithms incorporated surrogate models. Shi and Rasheed [25] classified different meta-

modeling approaches according to direct or indirect fitness replacement methods. Alan and

Toscano [26] classified surrogated models depending on the accuracy between metamodel

approaches and which approach was best suited for use.

A recent study [27] provided a taxonomy of model-based multi-objective optimization
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mainly for unconstrained problems. The taxonomy is based on modeling of independent or

aggregation of objectives and how new solutions are created and selected (in-fill or otherwise)

in an algorithm. Based on the taxonomy, authors have classified seven existing metamodeling

multi-objective methods (including ParEGO [28], SMS-EGO [29], and MOEA/D-EGO [6]).

Parallel and batch use of the methods were also highlighted and extended [30]. While these

advancements are in progress. In this study, we outline, for the first time, a number of

different and interesting metamodeling frameworks for multi-objective optimization utilizing

combined approaches of objectives alone, constraints alone, and objectives and constraints

together. Our taxonomy includes one method that requires as many as (M +J) metamodels

(where M and J are numbers of objectives and constraints) to another framework that

requires only one metamodel. The taxonomy proposed here is generic for it to degenerate for

single-objective unimodal, multi-modal, and importantly constrained optimization problems.

On a survey of many existing multiple and many-objective metamodeling studies, we

have made a classification of them according to our proposed taxonomy. Table 2.1 shows

that a majority of the existing studies used M1 framework (in which each objective and

constraint function is metamodeled separately) and only a few studies used M2, M3, and

M4. Our previous initial proof-of-principle study on M5 framework is the lone study in this

category [20]. There does not exist any study implementing our M6 framework which seems

to be an interesting and technically challenging proposition. In this study, we propose one

such framework; other frameworks are certainly possible.
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Table 2.1: Classification of existing metamodeling-based multi-objective optimization studies
into six frameworks of this study. Framework M6 is proposed for the first time here.

Frameworks References Metamodel

M1-1
[31] Artificial Neural Network (ANN)
[32–34] Radial Basis Function (RBF)
[35,36] Support Vector Machines (SVM)

M1-2

[6, 37–44] Kriging (KRG)
[45,46] Genetic Programming (GP)
[47] KRG+Polynomial Response Surfaces (PRS)
[48–50] KRG+RBF
[51] KRG+SVM
[52–56] RBF
[57,58] SVM

M2-2 [59] KRG

M3

[60] KRG+RBF+PRS
[61] Moving Least Squares (MLS)
[62] KRG+ Polynomial Chaos Expansions (PCE)
[63] SVM

M4
[64] RBF+SVM
[65–67] KRG

M5 [20] KRG
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2.2 The Proposed Taxonomy

Multiple and many-objective optimization problems involve a number of (say, M) objective

functions (fi(x)) as a function of decision variables x) and a number of (say, J) constraint

functions (gj(x)), each as a function of x. For brevity, we do not consider equality constraints

in this study, but with certain modifications, they can be handled in the same way as

discussed here.

2.2.1 A Taxonomy for Multi-objective Constraint Problems

In this section, we propose a taxonomy of various frameworks for using metamodeling ap-

proach in multiple and many-objective optimization algorithms. Our taxonomy finds six

different broad frameworks (M1 to M6), as illustrated in Figure 2.1. Our approach is based

on the cardinality of metamodels for objectives and constraints.

In the first framework (M1), all objectives and constraints are metamodeled indepen-

dently, thereby requiring a total of (M + J) metamodels before a multi-objective opti-

mization approach can be applied. This framework is a straightforward extension of the

single-objective metamodeling studies, applied to approximate each objective and constraint

functions. Once all such metamodels are constructed, an EMO algorithm can use them

to find one Pareto-optimal solution at a time (like the generative method used in classical

optimization literature [19]) and we call this framework M1-1, or they can be used to find

a number of Pareto-optimal solutions simultaneously (like in evolutionary multi-objective

optimization (EMO) literature), and we call this method M1-2.

The next metamodeling framework can approximate an overall estimation function of all

constraint violations together as one quantity, thereby reducing the overall number of meta-
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M3-2M3-1

M4-1 M4-2

Figure 2.1: The proposed taxonomy of six different metamodeling frameworks for multiple
and many-objective optimization.
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models to (M +1). The well-known normalized, bracket-operator based constraint violation

functions [11,21] can be used for this purpose. Like in M1, the constructed metamodels can

also be used to find one Pareto-optimal solution at a time as a generative approach (we call

it M2-1) or simultaneously like in an EMO approach (we call it M2-2).

The next metamodeling framework approximates each constraint function independently,

but metamodels a combined objective function involving allM objectives together, similar to

ParEGO approach [28]. Both M3 and ParEGO frameworks use parameterized scalarization

methods to target one optimal point at a time. While ParEGO uses Tchebyshev function as

scalarization, our M3 framework uses the achievement scalarization function (ASF), which

is identical to Tchebyshev function under certain conditions. M3 uses a real-valued RGA to

optimize the metamodel, while ParEGO uses a steady-state EA where parents are replaced

by better offsprings. While M3-1 proposes to find a single Pareto-optimal solution in one

run, thereby requiring multiple runs to generate Pareto-optimal solutions, a multi-modal

combined landscape, similar to framework M6 described later, but with objective functions

alone, can be metamodeled as M3-2.

Then, our fourth classification (M4) requires only two metamodels to be constructed for

finding one Pareto-optimal solution, in which one metamodel is for a combined objective

function and the second metamodel is made for a combined constraint violation (like in M2

approach). A similar multi-modal approach (M4-2) can also be constructed. The frameworks

(M1-1, M2-1, M3-1, and M4-1) are ideal for classical point-based optimization algorithms,

each requiring multiple applications to find multiple Pareto-optimal solutions. However,

frameworks (M1-2, M2-2, M3-2, and M4-2) are ideal for EMO approaches.

More analysis will reveal that there could be two more frameworks, in which objectives

and constraints are somehow combined to have a single overall selection function which when
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optimized will lead to one or more Pareto-optimal solutions. In M5, the combined selection

function has a single optimum coinciding with a specific Pareto-optimal solution, and in M6,

the combined selection function is multi-modal and makes multiple Pareto-optimal solutions

as its optima. Both M5 and M6 frameworks involve a single metamodel in each iteration,

but if K Pareto-optimal solutions are to be found, M5 needs to be applied K times, whereas

M6 still involves a single multi-modal metamodel in finding a set of Pareto-optimal solutions.

In EMO algorithms, such as in NSGA-II [13], NSGA-III [15], MOEA/D [16], and others, the

combined action of the selection operator involving non-domination and niching operations is

an ideal way of visualizing the above-mentioned selection function. In this spirit, we believe

that M5 and M6 are intricately advantageous for EMO approaches and, although they have

not been paid much attention, remain as potential and fertile areas for metamodeling based

EMO algorithms.

Thus, it is observed that according to our proposed taxonomy, frameworks M1 to M6

require the maximum possible metamodels (M + J) to single metamodel in each iteration

of the multi-objective metamodeling algorithms. While M6 requires a minimum number of

metamodels, this does not come free and is expected that complexity of the metamodels

will increase from M1 to M6. It then becomes an interesting research task to identify a

balance between the number of metamodels and the reduced complexity of metamodels for

a particular problem-algorithm combination. In this study, we do not study the effect of

algorithm per se, but present results of a particular approach on different problems using all

six metamodeling frameworks to illustrate each framework’s potential in different problems.

In an application, all M objectives can be clustered into a smaller number of m clusters

(m < M) and all J constraints can be clustered into smaller number of j clusters (j < J).

In such a situation, objectives and constraints within each cluster can be combined and then
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Figure 2.2: Degenerated taxonomy for multi-objective unconstrained optimization.

each combined function can be metamodeled using our proposed taxonomy.

2.2.2 A Taxonomy for Multi-Objective Unconstraint Problems

If the multi-objective optimization problem is unconstrained, frameworks M1 and M2 be-

comes identical and so are M3 and M4. Interestingly, M3, M4, and M5 also become identical

to each other. Figure 2.2 shows the resulting taxonomy of metamodeling methods in this

case.
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Figure 2.3: Degenerated taxonomy for single-objective optimization for finding a single op-
timal solution.

2.2.3 A Taxonomy for Single-Objective Constraint Problems

The proposed taxonomy for multi-objective metamodeling frameworks also degenerates to

single-objective problems. Figure 2.3 shows the resulting degenerate taxonomy for finding

a single optimum in a single-objective problem. In this case, frameworks M1 and M3 are

identical and so are M2 and M4. A similar taxonomy can also be derived for finding multi-

ple optima in a single-objective optimization problem, except that M6 framework will now

become relevant. Sub-frameworks M1-1 and M1-2 become relevant in determining whether

a single optimum at a time or multiple optima simultaneously, respectively, would be found.

Similarly, sub-frameworks M2-1 and M2-2 will also be relevant in this case. For brevity, we

do not present the respective diagram for single-objective, multi-modal optimization case

here.
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2.3 Summary

In this chapter, we presented the proposed taxonomy for metamodeling frameworks for evo-

lutionary multi-objective optimization with a literature review that relates to our study.

Moreover, we provided a description of each of the six multi-objective frameworks. Addi-

tionally, we degenerated the taxonomy to unconstrained multi-objective optimization and

also to single-objective optimization problems.
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Chapter 3

Metamodeling Frameworks M1-1,

M2-1, M1-2, M3-1, M4-1, M5, and

M6

In this chapter, we provide further description and representative algorithm of each of the

six multi-objective metamodeling frameworks.

3.1 Metamodeling Frameworks M1-1 and M2-1

The metamodeling algorithm for M1-1 and M2-1 starts with an archive of initial population

(A0 of size N0) created using the Latin hypercube sampling (LHS) method on the entire

search space. Each objective function (fi(x), for i = 1, . . . ,M) is first normalized to obtain

a normalized function f
i
(x) using high-fidelity evaluation of initial archive members, so that

the minimum and maximum values of f
i
(x) evaluations is zero and one, respectively. Then,

metamodels are constructed for each of the M normalized objective functions independently:

(f̃
1
(x), . . . , f̃

M
(x)),∀i ∈ {1, 2, . . . ,M} using a chosen metamodeling method. For all im-

plementations here, we use the Kriging metamodeling method [10]. While the objective

metamodeling approach is identical to both M1-1 and M2-1, the metamodeling of constraint

functions is different.
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For M1-1, each constraint function (gj(x), for j = 1, . . . , J) is first normalized to obtain a

normalized constraint function (g
j
(x)) using standard methods [68], and then metamodeled

separately to obtain an approximate function (g̃
j
(x)) using the same metamodeling method

(Kriging method is adopted here) used for metamodeling objective functions. For M2-1,

a single aggregated constraint violation function (ACV(x)) is first constructed using the

normalized constraint functions, as follows:

ACV(x) =


∑J

j=1 gj(x), if x is feasible,∑J
j=1⟨gj(x)⟩, Otherwise,

(3.1)

where the bracket operator ⟨α⟩ is α if α > 0 and zero, otherwise. In M2-1, the constraint

violation function is then metamodeled to obtain ÃCV(x). Thus, it is clear that for high-

fidelity solutions, ACV(x) takes a negative value for feasible solutions and a positive value

for an infeasible solution.

After all (M +J) or (M +1) metamodels are constructed for M1-1 or M2-1, respectively,

the metamodeled normalized objectives are combined into a single aggregated function and

optimized with metamodeled constraints to find a single infill point using a single-objective

evolutionary optimization algorithm (real-coded genetic algorithm (RGA) [11]). In τ gen-

erations of RGA, the following achievement scalarization function (ASF12(x, z)) [18] is

optimized for every z vector:

ASF12(x, z) =
M
max
j=1

(
f̃
j
(x)− zj

)
, (3.2)

where the vector z is one of the Das and Dennis’s [69] approach on the unit simplex on the

M -dimensional hyper-space. Thus, for H different z vectors, H different ASF12 functions
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are formed and optimized one after the other. The RGA procedure is modified using a trust-

region concept, which we describe in Section 5.3. The best solution for each subproblem

constitutes one infill point and is sent for a high-fidelity evaluation. The solution is then

included in the archive of high-fidelity solutions to obtain A1. After all H solutions are

included in the archive, one epoch of the M1-1 or M2-1 framework optimization problem is

completed. In the next epoch, all high-fidelity solutions are used to normalize the objective

functions and constraints, and the above process is repeated to obtain A2. The process

is continued until all pre-specified maximum solution evaluations (SEmax) is completed. A

basic structure of methodologies M1-1 and M2-1 are outlined in Algorithm 1.

Thus, in M1-1, a total of (M +J) metamodels are constructed and H RGA optimization

procedures are run to create H infill solutions in each epoch. The only difference in M2-1 is

that a total of (M + 1) metamodels are constructed in each epoch.

3.2 Metamodeling Frameworks M1-2

In this framework, each objective and constraint is independently modeled. Thus, any

classical generative or any EMO algorithm can be applied on the objective and constraint

metamodels, once they are constructed.

In this study, we have used NSGA-II [13] as the EMO algorithm throughout, although

any other algorithm could have been used. Furthermore, NSGA-II algorithm is able to find

multiple solutions in a single run.

The description of M1-2 framework is given as follows. The metamodeling algorithm

starts with an archive of initial population created using the Latin hypercube method on

the entire search space. Then, metamodels are constructed for all M objectives (fj(x), j =
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Algorithm 1 Metamodeling Frameworks M1-1 and M2-1.

Input : Objectives: (f1, . . . , fM )T , normalized constraints: (g
1
, . . . , g

J
)T , n (variables),

N0 (initial sample size), SEmax (total high-fidelity evaluations), RGA (real-
parameter genetic algorithm), Γ (parameters of RGA), R (reference direction
set), α (fraction of samples used for each reference direction), ASF (scalarization
function), ACV (constrained violation function)

Output: PT
1 P← LHS(N0, n) // Latin hypercube sampling

2 F ← N(fm(P)),∀m ∈ {1, . . . ,M} // high-fidelity evaluations (Objectives) and

normalize

3 G← g
j
(P),∀j ∈ {1, . . . , J} // high-fidelity evaluations (constraints)

4 eval← N0 // number of function evaluations

5 while eval < SEmax do
6 for r ∈ R do
7 Pr ← Choose nearest α|P| solutions from r

8 F̃ ←METAMODEL(fm(Pr)), ∀m ∈ {1, . . . ,M}
if M1-1 then

9 G̃←METAMODEL(g
j
(Pr), ∀j ∈ {1, . . . , J})

10 else if M2-1 then

11 G̃←METAMODEL(ACV(G(Pr)))

12 xr ← RGA(ASF12(F̂ , r), Ĝ,Γ) // returns the best found solution along r

13 Fxr ← fm(xr), ∀m ∈ {1, . . . ,M}// Evaluate objectives of xr

14 Gxr ← gj(xr),∀j ∈ {1, . . . , J} // Evaluate constraints of xr

15 P← P ∪ {xr}
16 F← N(F ∪ Fxr)
17 G← G ∪Gxr
18 eval← eval + 1
19 if eval ≥ SEmax then
20 Break out of all loops

21 return PT ← Non-dominated solutions of P
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1, 2 . . . ,M), and each constraint function is metamodeled separately also. Then, NSGA-II

procedure is run for τ generations with these metamodels. Each non-dominated solution

after τ generations of a NSGA-II run is considered as an in-fill point and is included in the

archive. Generations are included in the archive. New metamodels are created again using

the archive and the process is repeated until termination.

3.3 Metamodeling Frameworks M3-1 an M4-1

In these two frameworks, we transform the multi-objective optimization problem into a pa-

rameterized single-objective optimization problem. We use the achievement scalarization

function (ASF) [18] using a set of H reference points z(h) and a corresponding reference di-

rection w, identical for every z. The reference direction is an equally-angled direction from

each objective axis (w = (1, 1, ..., 1)T /
√
M). Reference points z(h) for h = 1, 2, . . . , H are

initialized as equi-spaced points on a unit hyperplane making equal angle to each objective

axis. In this study, we have used Das and Dennis’ method [69] to create H equi-spaced points

on the hyperplane, but any other method or any other biased set of points, if desired, can also

be used. Objective values of solutions are normalized (f̄i(x)) using the population-maximum

and population-minimum objective values so that reference points on the normalized hyper-

plane (z
(h)
i ∈ [0, 1] for all i and h) can be compared with the normalized objective values of

the population members. The ASF formulation is given below:

ASF(x) =
M
max
i=1

fi(x)− z
(h)
i

wi
. (3.3)

In M3 and M4, we construct one metamodel ASF (x), instead of constructing one meta-
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model for each objective function fi(x) independently. In M3, each constraint function

gj(x) is modeled separately, but in M4, only the overall constraint violation function CV(x)

is metamodeled, as described in Equation 3.1. Since a parameterized scalarization of multiple

objectives is used in both M3-1 and M4-1, we use a single-objective evolutionary optimiza-

tion algorithm (real-coded genetic algorithm (RGA) [11]) for finding in-fill points. RGA

uses a penalty parameter-less approach [68] to handle constraints. Like in M1 and M2, both

algorithms start with an archive of randomly created solutions created using the Latin Hyper-

cube method. Each archive member is then evaluated exactly, and then suitable metamodels

are constructed for a specific objective scalarization parameter values after every τ genera-

tions. Constraint functions are metamodeled independently (framework M3) or together as

an overall constraint violation (framework M4). The metamodels are then optimized using

RGA and the obtained best solution is used as an in-fill point and this solution is included

in the archive. Due to similarities of M3-2 and M4-2 with M6, we defer the discussions on

these two frameworks until Section 3.5. More details are available in [70].

For frameworks M3-1 and M4-1, since every metamodeling effort results in a formulation

that is expected to make one specific Pareto-optimal solution (say, x(∗,h)) as the target,

there is an important aspect about the sequence of the parameterized formulations which

we discuss next. Thus, in total, there are H different scalarizations each focusing on finding

a single Pareto-optimal point x(∗,h). Each scalarization may construct a new metamodel at

every τ generations in order to progressively approach the respective Pareto-optimal solution.

However, the sequence of choosing consecutive scalarization will play an important role in

the success of the overall procedure. In one approach (neighborhood sweep approach), the

first scalarization targets one extreme Pareto-optimal solution. Once new and improved

solutions are found, the next scalarization task can target a neighboring Pareto-optimal
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solution to the already found extreme or newer-extreme solution. Hence, having a number

of near-optimal solutions from previous scalarizations will allow the overall procedure to

be more efficient and implicitly parallel. Also, getting optimal solutions from one extreme

part of the Pareto-optimal front may allow a better normalization of objectives, which is an

essential part of any EMO algorithm. To find and use all extreme points from the beginning

of a run, in another approach (diverse sweep approach), after every scalarization is applied,

the next scalarization may consider a new reference point that is maximally away along the

reference plane from all the reference points that have already been considered. Both the

above approaches have merits of their own and a mixed approach may be better. In this

study, we only adopt the neighborhood sweep approach.

For each scalarization, the RGA is started with α proportion of archive points close

to the reference line passing through the specific reference point in the objective space.

This is because points far away from the focal region of metamodeling do not contribute

much to the generated metamodeling function and also fewer points for metamodeling help

reduce computational time. Then, the RGA is applied κ times to take care of the inherent

stochasticities of the RGA procedure. The parameters α = 0.7 and κ = 5 are observed

to perform well experimentally and kept fixed for all problems of this study. Again, every

RGA solution is included in the archive to make a new metamodel before a new RGA run

is performed. After making one pass of consecutive scalarizations involving all reference

points, the process is repeated in reverse order one time to make more refined metamodeling

of initial scalarizations. The basic structure of M3 and M4 is outlined in Algorithm 2. For

M3-2 and M4-2, RGA must be replaced with a multi-modal RGA, similar to one described

in Section 3.5.

Frameworks M1 to M4 are straightforward extensions of single-objective metamodeling
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frameworks used in the context of evolutionary algorithms. To take care of a multitude of

objectives and constraints, each is categorized the way the objectives and/or constraints are

metamodeled separately or in a combined manner.

3.4 Metamodeling Framework M5

In this section, we describe one of our main contributions in this study. Framework M5

proposes a more direct metamodeling approach which not only reduces the cardinality of

distinct metamodeling efforts, it is also algorithm specific. A metamodel of the outcome of

an algorithm’s selection operation is directly constructed here.

The focus of M5 is to find a single Pareto-optimal solution at a time by using a parameter-

ized scalarization of all objective functions. However, instead of constructing metamodels for

the scalarized objective function and constraint functions separately, as was done in M3 and

M4, here, the combined effect of an EMO’s selection operation is metamodeled. For exam-

ple, while comparing two solutions A and B in an EMO for a particular scalarized problem,

say with ASF having a specific z and w, the operator computes ASF values for both A and

B and then the winner is selected using the constraint-domination principle [11]. We can

then directly construct a metamodel of the resulting ASF and use as a single-objective opti-

mization problem. In this approach, we formulate the following combined selection function

(S(x)) by considering all objective functions and all constraint functions together, but the

final focus is to make the global optimum of S-function as one of the targeted Pareto-optimal

solutions:

S(x) =


ASF(x), if x is feasible,

ASFmax + CV(x), otherwise.

(3.4)
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Algorithm 2 Metamodeling Frameworks M3-1 and M4-1.

Input : Objectives: [f1, . . . , fM ]T , constraints: [g1, . . . , gJ ]
T , n (variables), ρ (sample size),

SEmax (total high fidelity evaluations), RGA (real-parameter genetic algorithm),
Γ (parameters of RGA), R (reference direction set), κ (number of points created
for each reference direction), α (fraction of samples used for metamodel), ASF
(scalarization function), CV (constrained violation function)

Output: PT
22 P← LHS(ρ, n) // initialization with Latin Hypercube Sampling

23 F← fm(P),∀m ∈ {1, . . . ,M} // high fidelity evaluations (functions)

24 C← gj(P),∀j ∈ {1, . . . , J} // high fidelity evaluations (constraints)

25 eval← ρ // number of function evaluations

26 while eval < SEmax do
27 for r ∈ R do

// for each reference direction r

28 Pr ← Sort P according to distance from r and select nearest αρ solutions
29 Fr ← Create Surrogate Model(ASF(r,Pr))
30 if M3 then

31 Cjr ← Create Surrogate Model(Cj(Pr),∀j ∈ {1, . . . , J})
32 else if M4 then

33 Vr ← CV(Cj(Pr), ∀j ∈ {1, . . . , J})
34 Cr ← Create Surrogate Model(Vr)

35 for i = 1 to κ do
36 xr ← RGA(Fr, Cr,Γ) // returns the best found solution

37 fmxr ← fm(xr),∀m ∈ {1, . . . ,M}// Evaluate objectives of xr

38 c
j
xr ← gj(xr), ∀j ∈ {1, . . . , J} // Evaluate constraints of xr

39 P← P ∪ {xr}
40 F← F ∪ {[f1xr , . . . , f

M
xr ]}

41 C← C ∪ {[c1xr , . . . , c
J
xr ]}

42 eval← eval + 1
43 if eval ≥ SEmax then
44 Break out of all loops

45 return PT ← P(1 : |R|) // One solution closest in objective space to each of |R|
reference lines
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Here, the parameter ASFmax is the worst ASF function value of all feasible solutions of

the archive. After metamodeling the above selection function S, we formulate the expected

improvement (EI) function [10] and optimize the EI function using a RGA. The best solution

is then used as an in-fill point and a new metamodel of S is created using the new archive.

Clearly, other scalarization approaches, such as weighted-sum function or epsilon-constraint

function or a generic Tchebyshev function [19] can also be used. This framework is a genera-

tive multi-objective optimization procedure in which one Pareto-optimal point is determined

to be found at a time [20]. The algorithm is outlined in Algorithm 3.

3.4.1 The Expected Improvement Procedure

Kriging methodology was also called the Design and Analysis of Computer Experiments (or

DACE) stochastic process model [71]. The DACE is one of the efficient tools for dealing with

expensive single-objective optimization problems. In this framework, the approximation of

a function in terms of a design variable is considered as a sample of the Gaussian stochastic

process. Then, the distribution of the function value at any untested point can be estimated

using Kriging model. Jones et al [10] proposed a practical approach to determine the location

of additional sample points which improves the Kriging model accuracy. This is known as

the Efficient Global Optimization (EGO) procedure. On the Kriging model, EGO searches

for the location where the expected improvement of the original function is maximized and

then reconstructs the surrogate model by adding a new sample point at this location.

The second step of this procedure is based on the fact that Kriging helps in estimating

the model uncertainty and stresses on exploring points where we are uncertain. In order to

do this, Kriging method treats the value of the function at x as if it was the realization of a

stochastic process y(x), with the mean given by the predictor ŷ(x) and variance s(x). The
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Algorithm 3 Metamodeling Framework M5.

Input : Objectives: [f1, . . . , fM ]T , constraints: [g1, . . . , gJ ]
T , n (variables), ρ (sample size),

SEmax (total high fidelity evaluations), RGA (real-parameter genetic algorithm),
Γ (parameters of RGA), R (reference direction set), κ (number of points created
for each reference direction), α (fraction of samples used for metamodel), ASF
(scalarization function), CV (constrained violation function)

Output: PT
46 P← LHS(ρ, n) // initialization with Latin Hypercube Sampling

47 F← fm(P),∀m ∈ {1, . . . ,M} // high fidelity evaluations (functions)

48 C← gj(P),∀j ∈ {1, . . . , J} // high fidelity evaluations (constraints)

49 eval← ρ // number of function evaluations

50 while eval < SEmax do
51 for r ∈ R do

// for each reference direction r

52 Pr ← Sort P according to distance from r and select nearest αρ solutions
53 Ps

r ← Feasible(Pr) // find feasible solutions of Pr

54 Pu
r ← Pr\Ps

r // locate infeasible solutions of Pr

55 Fitnesssr ← ASF(r,Ps
r) // fitness of feasible solutions

56 Vu
r ← CV(Cj(Pu

r ), ∀j ∈ {1, . . . , J}) // constraint violation function

57 Fitnessur ← Vu
r +

(
max∀Psr Fitness

s
r

)
// fitness of infeasible solutions

58 Fr ← Create Surrogate Model(Fitnessr) // Surrogate model for constrained

ASF function model

59 for i = 1 to κ do
60 xr ← RGA(Fr,EI,Γ) // returns the best found solution

61 fmxr ← fm(xr),∀m ∈ {1, . . . ,M}// Evaluate objectives of xr

62 c
j
xr ← gj(xr), ∀j ∈ {1, . . . , J} // Evaluate constraints of xr

63 P← P ∪ {xr}
64 F← F ∪ {[f1xr , . . . , f

M
xr ]}

65 C← C ∪ {[c1xr , . . . , c
J
xr ]}

66 eval← eval + 1
67 if eval ≥ SEmax then
68 Break out of all loops

69 return PT ← P(1 : |R|) // One solution closest in objective space to each of |R|
reference lines
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expected improvement function is given as follows [10]:

E[I(x)]) = (ybest − ŷ(x))Φ

(
ybest − ŷ(x)

s(x)

)
+ s(x)ϕ

(
ybest − ŷ(x)

s(x)

)
(3.5)

where Φ(.) and ϕ(.) are the normal cumulative distribution function and probability

density function, respectively. It is worth noting here that the implementation of Kriging

(DACE) is based on universal Kriging, where it is possible to use other regression models as

well.

As mentioned above, Kriging and subsequent EGO methodology are standards in the

context of single-objective unconstrained problems, but they have not been extended well

either to constrained single-objective problems nor to multi-objective optimization problems.

A recent study [72] suggested a way to modify the expected improvement function for con-

strained problems. It selects the best feasible objective function value instead of ybest in

Equation 3.5. This method has been applied only to single objective optimization problems.

The expected improvement function is modified as follows:

Ec[I(x)] = E[I(x)]ΠJ
j=1Fj(x) (3.6)

where Fj(x) is given as follows for j-th constraint:

Fj(x) =



0.5 + 0.5erf

(
ḡj(x)

sj(x)

)
, if erf

(
ḡj(x)

sj(x)

)
≥ 1,

2− erf

(
ḡj(x)

sj(x)

)
, if 0 < erf

(
ḡj(x)

sj(x)

)
< 1,

0, otherwise,

(3.7)

where ḡj(x) is the normalized version of j-th constraint function, and sj is the MSE pre-
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diction of the j-th constraint function. It is clear that if any constraint is violated, Ec[I(x)]

is zero and for near constraint boundary solutions Ec[I(x)] has a large value, thereby em-

phasizing near-boundary solutions during simulations and for points that are well inside the

feasible region Ec[I(x)] = E[I(x)]. Here, we do not use this method and instead handle

constraint directly through a modeling of the selection function.

3.4.2 Proposed Multi-objective EGO Method

With the brief description of the EGO method for single-objective optimization problems

that are discussed above, we are now ready to provide details of our proposed procedure.

The development of a suitable surrogate modeling and its solution are achieved for one

targeted Pareto-optimal solution at a time. However, the surrogate building process for

multiple Pareto-optimal solutions are not all independent to each other. Rather the whole

process is interlinked, as described by the following step-by-step procedure:

Step 1: Create an archive having H random points based on Latin hypercube sampling

(LHS) [1] from the entire variable search space. Evaluate each of these solutions using

the objective and constraint functions (referred to as ‘high-fidelity’ evaluations).

Step 2: Generate R reference directions on a normalized unit hyperplane in the objective

space using Das and Denni’s method [69]. Then, for each reference direction chosen

using a Diversity Preserver procedure [73], execute the following steps.

Step 3: Select K points closest to the reference direction based on projected Euclidean

distance of all H archive points in the objective space using a Points Selector pro-

cedure.
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Step 4: Build a local surrogate model (Surrogate Model procedure) using the chosen αH

points executed already with high-fidelity evaluations, 0 < α < 1. According to our

empirical results α = 0.7.

Step 5: Use the developed surrogate model to find the best possible solution of the model

by a specific (Optimization) procedure.

Step 6: Perform a high-fidelity evaluation of the newly created solution and add it to the

archive.

Step 7: Repeat Steps 3 to 6 p times to add p new solutions to the archive.

Step 8: Move to a new reference line according to the Diversity Preserver procedure and

Go to Step 3 until all reference lines are considered or another termination criterion is

satisfied.

The above step-by-step procedure is a generic surrogate-based EMO procedure that can

be applied with any surrogate modeling technique and optimization algorithm. It also has

a few other flexibilities which we describe next.

3.4.3 Diversity Preserver Procedure

This procedure provides the linking between model building and its solution among several

reference lines. Given K reference directions spanning the entire first quadrant of the M -

dimensional objective space, this procedure determines the sequence of choosing reference

lines. Figure 3.1 illustrates the proposed procedure in which H = 20 random points denote

the archive and for each of five reference directions, K = 4 points are chosen.

This procedure involves fixing the following three entities:
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Figure 3.1: The proposed surrogate-based generative EMO.

1. The starting reference direction,

2. The sequence of choosing reference directions, and

3. Repeat pattern of the sequencing.

The surrogate modeling can start anywhere, but either one of the extreme reference directions

(lying on one of the objective directions) or in the middle of the objective space (equi-distance

from all objective directions) are two unbiased approaches. In our study here, we consider

the former approach of choosing one of the objective axis direction as the initial reference

direction.

The second entity is probably the most important factor. Once the initial direction is

chosen, a model is built and one or more solutions are obtained using the model, and which

reference direction to choose next is a relevant question.

In the neighborhood approach, we can choose one of the nearest reference directions to
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the already chosen directions as the next direction. Since there are one or more models

already built around a neighboring reference direction in this approach, inclusion of their

best solutions in the neighboring model building process should create a better model. How-

ever, the flip side is that each model then has a local perspective and the performance of

this approach will depend on the mapping between variable and objective spaces. In the

maximum diversity approach, a reference direction which is maximally away from all cho-

sen reference directions is selected for building the next surrogate model. In this approach,

initial few models are independent of each other, but together they will span the search

space well. Later surrogate models tend to have a more global perspective than those in the

neighborhood approach. We use both approaches in this study.

Another aspect of the diversity-sweep procedure is whether the above sequencing process

needs to be repeated after their first pass on all reference directions. This can be decided

adaptively, based on whether a satisfactory set of non-dominated solutions have been found

for each reference direction. If it is to be repeated, an exactly the same sequencing or

a different sequencing operation can be chosen as well. The repetition does not need all

reference directions, and the ones that generated a dominated solution can be repeated. For

repetition, it will be a good idea to preserve all surrogate models generated in the first pass

of the procedure. In this study, we repeat the first pass in the same sequence one more time.

3.4.4 Optimization Procedure

Once the surrogate model is built, the next step is to optimize the model to find the best

possible solution of the model. For this purpose, we use a real-parameter genetic algorithm

(RGA) which uses simulated binary crossover and polynomial mutation operator [11]. The

population is started with a random population and RGA is run for τ number of generations.
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Here, the RGA population can be initialized by the K points used to build the surrogate

model. Figure 3.1 illustrates the overall procedure. It can be observed that some of the

original archive points may not have been chosen for any of the reference directions, par-

ticularly when K is very small compared to H. Also, some points can be chosen for more

than one reference directions, particularly when K is comparable to H. Since all H points

were already made high-fidelity evaluations, it is better to choose K in a way so that all

H evaluated solutions are used for one or more reference directions. Another advantage of

the proposed method is that since the points chosen for a surrogate model for a particular

reference direction are close to each other, each model will be local to the reference direction

and is likely to find the respective Pareto-optimal solution more reliably than if the model

was a global spanning the entire search space. Since each surrogate model uses a few points

to build it, the proposed algorithm is also likely to be computationally faster than global

models.

3.5 Metamodeling Framework M6

Framework M6 culminates into an ambitious metamodeling procedure in which only one

metamodel is required to find multiple Pareto-optimal solutions. A little thought will reveal

that if by any procedure we are able to construct a multi-modal selection function MS(x)

having H Pareto-optimal solutions as multiple distinct global optimum of it, then we can

possibly employ a multi-modal (niching-based [74]), single-objective evolutionary algorithm

to find and capture multiple optima in a single simulation run. In this study, we used the

Karush-Kuhn-Tucker (KKT) optimality conditions based on a recently developed theoretical

performance metric for multi-objective optimization by Deb et al. [75, 76] called the KKT
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Proximity Measure, or KKTPM which makes a monotonous increase in KKTPM values

for an increase in domination level of solutions. An interesting aspect of KKTPM is that

its value is zero for all Pareto-optimal solutions and it takes a positive value as a solution

that gets more and more dominated. Such a property motivates us to use KKTPM as a

potential multi-modal selection function for the purpose of developing an M6 framework.

Also, KKTPM considers all objectives and constraint satisfaction into its computational

procedure, thereby making it an ideal MS-function for our purpose.

First we create a set of sample points from the variable space by using the Latin hypercube

approach and then compute their objective values by high fidelity computations. We then

compute KKTPM value of each sample point. KKTPM function on the entire search space

is then metamodeled using the Kriging procedure. Thereafter, a multi-modal real-coded GA

(m-RGA) is employed to search the metamodeled KKTPM function for finding new and

multiple multi-modal solutions. In our proposed approach, we set H reference directions

like in NSGA-III approaches [15] or in MOEA/D [16]. For M3-2 and M4-2, the above

multi-modal RGA can be used with metamodeled combined objective function and single or

multiple metamodeled constraint functions, instead of a single combined selection function

used in M6. For more details regarding this framework, readers can refer to [22,70].

3.6 Summary

Based on the above detailed description of six different metamodeling frameworks, we now

summarize the number of metamodels needed for each framework in Table 3.1. Recall that

M , J , H, and κ are the number of objectives, constraints, desired number of Pareto-optimal

solutions, and number of solutions created from a single metamodel, respectively. Clearly,
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Table 3.1: Number of metamodels needed for each of the six metamodeling frameworks.
Framework M1-1 M1-2 M2-1 M2-2 M3 M4 M5 M6
Objective Handling Independent Independent Independent Independent Combined Combined Combined Combined
Constrained Handling Independent Independent Combined Combined Independent Combined Combined Combined
# of Selection Function (s) M+J M+J M+1 M+1 1+J 2 1 1
# of Metamodel (s) Hκ(M+J) κ(M+J) Hκ(M+1) κ(M+1) Hκ(1+J) Hκ(2) Hκ κ
# of Solution (s) One Many One Many One One One Many

M1-1 requires maximum number of metamodeling constructions (Hκ(M+J)); M2-1 requires

Hκ(1+J); M3 requires Hκ(M+1); M4 needs Hκ(2); M5 requires Hκ; and M6 requires κ

metamodels. While M1-1 needs the maximum number of metamodeling efforts, M6 requires

the least. While the cardinality reduces from M1 to M6, in general, the relative complexity

of the resulting landscapes is likely to increase from M1 to M6. For a given set of objective

and constraint functions, M1 approximates the original functions as they are. However,

M6 attempts to approximate the most complex selection function which is multi-modal and

discontinuous at the constraint boundaries.
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Chapter 4

Results and Comparison Between

Metamodeling Frameworks

In this chapter, we compare the results obtained by all six proposed metamodeling frame-

works. We use the same parameter settings for RGA or m-RGA, each of which uses the

binary tournament selection operator, simulated binary crossover (SBX), and polynomial

mutation, with parameters as follows: Population size = 10n, where n is a number of vari-

ables, number of generations = 100, crossover probability = 0.95, mutation probability =

1/n, distribution index for SBX operator = 1, and distribution index for polynomial muta-

tion operator = 10. The NSGA-II procedure, wherever used, is also applied with the same

parameter values as above. For repeating a metamodeling formulation for each formulation,

we have used κ = 5 and τ = 50 generations. We performed 10 runs of all frameworks on all

test problems. As mentioned earlier, for unconstrained problems (ZDT) with no constraints

and three-objective problem C2DTLZ2 having a single constraint, the behaviors of both

M1 and M2 are identical. In such a case, we only show the results for M1-2. The same

situation occurs for M3 and M4 and we only show the results of M3. In order to have a

graphical comparison, we show the obtained trade-off solutions for the median IGD run in

each case. The inverted generational distance (IGD) [16] is considered as the performance

metric for providing a quantitative evaluation of the obtained solutions. The IGD metric
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provides a combined information about the convergence and diversity of the obtained solu-

tions. It is worth mentioning here that, in this study, we do not make any effort to choose

optimal parameter setting for each algorithm, rather identical parameters are used to provide

a representative performance of each framework.

4.1 Two-Objective Unconstrained Problems

First, we apply our proposed frameworks to two-objective unconstrained problems ZDT1,

ZDT2, ZDT3, and ZDT6 with ten (n = 10) variables, H = 21 reference directions, and

with a maximum of only SEmax = 500 high-fidelity solution evaluations. For each problem,

we have used an initial sample size of ρ = 300. The obtained non-dominated solutions are

shown in Figures 4.1, 4.2, 4.3, and 4.4 for frameworks M1-2, M3, M5, and M6, respectively.

As mentioned above, M2-2 becomes identical to M1-2 and M4 becomes identical to M3

for unconstrained problems. For brevity, we also do not show the results from the M1-1

framework.

It is clear from the figures that all four frameworks are able to solve ZDT1 problem

fairly well in only 500 high-fidelity SEs, but frameworks M5 and M1-2 perform the best.

The obtained points are very close to the respective true Pareto-optimal fronts and have

a good distribution of points on the entire front. Most past studies [13] have used tens of

thousands of high-fidelity SEs to have a similar performance, while here using the proposed

metamodeling frameworks, we are able to find a similar set of points in only 500 high-fidelity

SEs. Table 4.1 shows the IGD metric value for all runs performed for all frameworks. While

the Table 4.2 shows the generational distance (GD) metric value for all runs performed for all

frameworks. The IGD metric is computed using 21 true Pareto-optimal points obtained for
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Figure 4.1: Obtained non-dominated solutions for problem ZDT1 using frameworks M1-2,
M3, M5 and M6 from left to right.

each reference point, one at a time. Since each framework is expected to find the respective

Pareto-optimal point, this IGD computation is able to distinguish a set of non-dominated

points from another set depending on their convergence level to the desired set of points.

However, to compute the GD metric, we use a large number of Pareto-optimal fronts so as

to get a clear idea of the convergence level to the Pareto-optimal front.

In ZDT2 problem, two selection function based meta-modeling frameworks (M5 and M6)

perform the best, followed by M1-2 and then M3. It is interesting to note that despite the

multi-modal nature of the selection function landscape with M6, it is able to find multiple

near Pareto-optimal points with only 500 high-fidelity solution evaluations. The convex or
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Figure 4.2: Obtained non-dominated solutions for problem ZDT2 using frameworks M1-2,
M3, M5 and M6 from left to right.

non-convex nature of the Pareto-optimal front does not seem to matter to all the frameworks.

For ZDT3 problem, which has a disconnected Pareto-optimal front, M1-2 and M3 perform

the best, followed by M5 and then M6. The multi-modal KKTPM-based M6 approach is

also not able to get quite close to the true Pareto-optimal front with only 500 high-fidelity

SEs. This is due to the added complexity the multi-modal KKTPM surface offers to the

metamodeling approach when dealing with a disconnected Pareto-optimal front. Although

a single metamodel is progressively modeled by adding in-filled points, more high-fidelity

SEs are needed in the initial sample to make a better modeling of the entire multi-modal

landscape in this problem.
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Figure 4.3: Obtained non-dominated solutions for problem ZDT3 using frameworks M1-2,
M3, M5 and M6 from left to right.

ZDT6 problem shown in Figure 4.4 raises an interesting aspect common to all metamod-

eling frameworks. It introduces a bias in the distribution of points along the Pareto-optimal

front. Thus, when a set of Latin hypercube based points are created in the variable space,

the distribution of points on the objective space is biased towards a particular part (in the

large f1 part of the ZDT6 objective space). Thus, since the entire objective space is not

distributed well right from the initial generation, the respective metamodels are not able to

make a good approximation of the entire objective space. In such problems, a decomposition-

based aggregate method should work well. We observe that all other frameworks, except
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Figure 4.4: Obtained non-dominated solutions for problem ZDT6 using frameworks M1-2,
M3, M5 and M6 from left to right.

M5, fail to converge close to the true front in 500 high-fidelity solution evaluations.

Nevertheless, the results of the first three problems indicate that all frameworks have

performed well with a fraction of solution evaluations than they are usually used in standard

studies [13].

Table 4.1 presents the average and standard deviation of the IGD values for an identical

set of reference Pareto-optimal solutions for all four frameworks. It is clear that framework

M5 performs the best on the unconstrained two-objective test problems. frameworks having

a statistically insignificant performance from the best performing method in each problem
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Table 4.1: Computed IGD values for test problems. Best performing framework and other
statistically similar frameworks are marked in bold.

Problems
M1-2 M2-2 M3 M4 M5 M6

Average SD Average SD Average SD Average SD Average SD Average SD

ZDT 1
0.0115 0.0006 - - 0.0185 0.0046 - - 0.0103 0.0028 0.0249 0.0153
p = 0.12120 - p = 0.00170 - - p = 0.02570

ZDT 2
0.0105 0.0027 - - 0.0130 0.0013 - - 0.0078 0.0011 0.0103 0.0051
p = 0.00170 - p = 0.00019 - - p = 0.73370

ZDT 3
0.0136 0.0019 - - 0.0254 0.0154 - - 0.0246 0.0027 0.7111 0.2054

- - p = 0.06390 - p = 0.00018 p = 0.00018

ZDT 6
1.6144 0.1965 - - 0.3774 0.1099 - - 0.1208 0.0311 5.9401 0.7896
p = 0.00018 - p = 0.00024 - - p = 0.00018

BNH
0.5322 0.2164 0.4605 0.1324 0.3854 0.0724 0.3539 0.1543 0.3727 0.0798 0.4177 0.1852
p = 0.02070 p = 0.00880 p = 0.05290 - p = 0.30530 p = 0.27120

SRN
0.7452 0.2473 1.0477 0.1765 1.5564 0.1742 1.9072 0.3237 2.8532 0.5795 1.5824 0.2557

- p = 0.00910 p = 0.00024 p = 0.00016 p = 0.00018 p = 0.00025

TNK
0.0173 0.0059 0.0748 0.0208 0.0107 0.0010 0.0300 0.0075 0.0654 0.0353 0.0388 0.0038
p = 0.00033 p = 0.00018 - p = 0.00018 p = 0.00018 p = 0.00018

OSY
6.9534 6.3585 31.0684 10.8709 5.8386 1.1182 39.4488 13.2070 23.8865 7.9269 39.7462 8.7765
p = 0.47250 p = 0.00018 - p = 0.00018 p = 0.00018 p = 0.00018

Welded Beam
0.8428 0.3655 2.0504 0.7854 1.5036 0.5551 2.1265 0.7054 1.0268 0.2396 2.5987 1.1322

- p = 0.00058 p = 0.01400 p = 0.00044 p = 0.16200 p = 0.00033

DTLZ2
0.0387 0.0045 - - 0.0634 0.0038 - - 0.0318 0.0029 0.0345 0.0043
p = 0.00077 - p = 0.00018 - - p = 0.30750

DTLZ4
0.1208 0.0380 - - 0.2614 0.0485 - - 0.0856 0.0113 0.3828 0.0277
p = 0.03760 - p = 0.00018 - - p = 0.00018

DTLZ5
0.0039 0.0005 - - 0.0176 0.0017 - - 0.0102 0.0005 0.0057 0.0034

- - p = 0.00018 - p = 0.00018 p = 0.00280

C2DTLZ2
0.0485 0.0046 - - 0.05902 0.0020 - - 0.0490 0.0017 0.1037 0.0268

- - p = 0.00025 - p = 0.21210 p = 0.00018

Car Side
0.2148 0.0252 0.2128 0.0192 0.1992 0.0241 0.2691 0.0425 0.1530 0.0113 0.3915 0.08211
p = 0.00044 p = 0.00018 p = 0.00044 p = 0.00018 - p = 0.00018

DTLZ2-5D
0.0416 0.0030 - - 0.0929 0.0029 - - 0.0840 0.0029 0.2512 0.0202

- - p = 0.00018 - p = 0.00018 p = 0.00018

C2DTLZ2-5D
0.1510 0.0266 - - 0.0720 0.0190 - - 0.1792 0.0302 0.2311 0.0140
p = 0.00018 - - - p = 0.00018 p = 0.00018

are also marked in bold with the respective p-value in Wilcoxon signed-ranked test.

For more investigation and analysis of the proposed metamodeling frameworks, we com-

pared IGD and GD performance metric values of the proposed metamodeling frameworks

with NSGA-II for solving the ZDT problems with 500 evaluations. It is clear from Table 4.3

and Table 4.4, that the proposed metamodeling frameworks show superior performance com-

pared with NSGA-II with the same set of high-fidelity evaluations.
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Table 4.2: Computed GD values for test problems. Best performing framework and other
statistically similar frameworks are marked in bold.

Problems
M1-2 M2-2 M3 M4 M5 M6

Average SD Average SD Average SD Average SD Average SD Average SD

ZDT 1
0.0132 0.0042 - - 0.0087 0.0046 - - 0.0022 0.0004 0.0300 0.0191
p = 0.00018 - p = 0.00018 - - p = 0.00018

ZDT 2
0.0089 0.0037 - - 0.00195 0.0007 - - 0.00194 0.0004 0.0195 0.0156
p = 0.00018 - p = 0.96980 - - p = 0.01400

ZDT 3
0.0086 0.0037 - - 0.0067 0.0051 - - 0.0222 0.0402 1.1084 0.1907
p = 0.08840 - - - p = 0.03760 p = 0.00018

ZDT 6
2.2308 0.3263 - - 2.6621 1.3698 - - 0.4714 0.3616 6.7718 0.28976
p = 0.00018 - p = 0.00100 - - p = 0.00018

BNH
0.1431 0.0382 0.1311 0.0255 0.1182 0.0037 0.1005 0.1172 0.1012 0.0222 0.1049 0.0094
p = 0.00056 p = 0.00130 p = 0.00270 - p = 0.73260 p = 0.30570

SRN
0.7852 0.2083 0.7860 0.2462 2.8448 0.4905 1.5515 0.1578 1.7792 0.4990 0.9051 0.1479

- p = 0.91590 p = 0.00018 p = 0.00016 p = 0.00044 p = 0.10410

TNK
0.0124 0.0046 0.0761 0.0265 0.0021 0.0001 0.0133 0.0028 0.0542 0.0315 0.0272 0.0049
p = 0.00018 p = 0.00018 - p = 0.00018 p = 0.00018 p = 0.00018

OSY
0.7042 0.2461 4.5294 1.7321 1.1246 0.2822 7.9533 4.5279 21.9504 7.8221 31.3670 9.3676

- p = 0.00018 p = 0.00580 p = 0.00018 p = 0.00018 p = 0.00018

Welded Beam
1.8407 1.4305 5.8158 4.9596 0.2495 0.1214 1.4903 1.1544 0.4935 0.4415 9.1873 10.9327
p = 0.00018 p = 0.00018 - p = 0.00018 p = 0.38400 p = 0.00018

DTLZ2
0.0171 0.0032 - - 0.0469 0.0042 - - 0.0173 0.0008 0.0152 0.0024
p = 0.24130 - p = 0.00018 - p = 0.02830 -

DTLZ4
0.0353 0.0049 - - 0.0438 0.0219 - - 0.0287 0.0212 0.2555 0.0353
p = 0.18590 - p = 0.06390 - - p = 0.00018

DTLZ5
0.0030 0.0007 - - 0.0237 0.0035 - - 0.0120 0.0040 0.0277 0.0345

- - p = 0.00018 - p = 0.00910 p = 0.00018

C2DTLZ2
0.0461 0.0022 - - 0.0434 0.0036 - - 0.0294 0.0024 0.0819 0.0252
p = 0.00018 - p = 0.00018 - - p = 0.00018

Car Side
0.8447 0.1059 0.8965 0.0946 0.0394 0.0018 0.0440 0.0022 0.0954 0.0296 0.0573 0.0079
p = 0.00018 p = 0.00018 - p = 0.00170 p = 0.00044 p = 0.00018

DTLZ2-5D
0.0070 0.0002 - - 0.0513 0.0190 - - 0.0517 0.0012 0.3309 0.0346

- - p = 0.00017 - p = 0.00017 p = 0.00017

C2DTLZ2-5D
0.0103 0.0005 - - 0.0568 0.0031 - - 0.176 0.0118 0.2327 0.0338

- - p = 0.00018 - p = 0.00018 p = 0.00018

4.2 Two-Objective Constrained Problems

Next, we apply our frameworks to two-objective constrained problems: BNH, SRN, TNK,

and OSY [11], For each problem, H = 21 reference directions, an initial sample size of

ρ = 400, and a maximum of SEmax = 800 high-fidelity SEs are fixed. The obtained non-

dominated solutions are shown in Figures 4.5, 4.6, 4.8, and 4.7 for M1-2, M2-2, M3, M4,

M5, and M6 frameworks, respectively.

All six frameworks are able to find a close and well-distributed set of trade-off points

to the true Pareto-optimal front (shown by a solid line in each case) for BNH and SRN

problems. With only SEmax = 800 high-fidelity SEs used in our study, the performance of

49



Table 4.3: Computed IGD values for ZDT problems. Best performing framework and other
statistically similar frameworks are marked in bold.

M1-2 M3 M5 M6 NSGA-II
Average SD Average SD Average SD Average SD Average SD

ZDT 1 0.0115 0.0006 0.0185 0.0046 0.0103 0.0028 0.0249 0.0153 0.3567 0.0935
ZDT 2 0.0105 0.0027 0.013 0.0013 0.0078 0.0011 0.0103 0.0051 0.7063 0.2306
ZDT 3 0.0136 0.0019 0.0254 0.0154 0.0246 0.0027 0.7111 0.2054 0.2801 0.0731
ZDT 6 1.6144 0.1965 0.3774 0.1099 0.1208 0.0311 5.9401 0.7896 5.0010 0.2883

Table 4.4: Computed GD values for ZDT problems. Best performing framework and other
statistically similar frameworks are marked in bold.

M1-2 M3 M5 M6 NSGA-II
Average SD Average SD Average SD Average SD Average SD

ZDT1 0.0132 0.0042 0.0087 0.0046 0.0022 0.0004 0.03 0.0191 0.4056 0.1419
ZDT2 0.0089 0.0037 0.00195 0.0007 0.0019 0.0004 0.0195 0.0156 0.5768 0.1483
ZDT3 0.0086 0.0037 0.0067 0.0051 0.0222 0.0402 1.1084 0.1907 0.3488 0.1119
ZDT6 2.2308 0.3263 2.6621 1.3698 0.4714 0.3616 6.7718 0.2897 4.8678 0.3431

these frameworks is noteworthy. However, the problem TNK has provided difficulties to all

six frameworks, due to discontinuities in its Pareto-optimal front. Although all frameworks

come close to the true Pareto-optimal front, M3 performs the best, but as presented in

Table 4.1, frameworks M1-2, M4, and M6 also perform well. In OSY, frameworks M3 and

M1-2 perform the best. Although metamodels are constructed progressively, the independent

approximation of constraints adopted by M3 and M1-2 produced more accurate results than

the use of a combined constraint function in this difficult problem. Another aspect which has

become clear from these results is that modeling of a combined constraint violation function

(as in M2-2 and M4) is not better than modeling each constraint independently (as in M1-2

and M3). However, an integrated constraint handling using the aggregated ASF approach

or the KKTPM approach is better.

Next, a two-objective welded-beam design problem [11] is solved using all six frameworks.

Same parameter settings are used as in above two-objective problems except SEmax = 1, 000

and ρ = 500. Figure 4.9 shows the resulting non-dominated solutions.
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Figure 4.5: Obtained non-dominated solutions for BNH using frameworks M1-2, M2-2, M3,
M4, M5 and M6 from left to right and top to bottom.

While M1-2 performs the best, M5 the second-best, all other frameworks find it difficult to

find minimum-cost (f1) solutions, which has also been reported to be challenging in another

study [77]. This problem requires more high-fidelity SEs, but the use of a metamodeling

based optimization approach with a limited high-fidelity SEs is not expected to find the

exact Pareto-optimal solutions on the entire front in real-world problems. Moreover, each

framework may require its own parameter set-up for optimal performance – a matter which

we plan to pursue in the future.
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Figure 4.6: Obtained non-dominated solutions for the SRN problem using frameworks M1-2,
M2-2, M3, M4, M5 and M6 from left to right and top to bottom.

4.3 Three-Objective Constrained and Unconstrained

Problems

Next, we apply all six frameworks to three-objective optimization problems (DTLZ2, DTLZ4,

and DTLZ5) and also to a three-objective constrained problem (C2DTLZ2). Each of these

problems are considered for seven variables and considered for H = 91 reference directions.

We fix SEmax = 1, 000 high-fidelity SEs and ρ = 500 for DTLZ2 and DTLZ5, and SEmax =

2, 000 and ρ = 700 for DTLZ4 due to multi-modality in its landscape. For C2DTLZ2, we

have used SEmax = 1, 500 and ρ = 700.

The Pareto-optimal surface of DTLZ2, C2DTLZ2, DTLZ4, and DTLZ5 problems and

the respective non-dominated solutions (all non-dominated solutions of the high-fidelity so-
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Figure 4.7: Obtained non-dominated solutions for the TNK problem using frameworks M1-2,
M2-2, M3, M4, M5 and M6 from left to right and top to bottom.

lutions) are shown in Figures 4.10, 4.13, 4.11, and 4.12 for M1-2, M3, M5, and M6 frame-

works, respectively. First, all four frameworks perform well, in general, on the DTLZ2

problem. Frameworks M5 and M6 perform the best on this problem. Then, on problem

DTLZ4, framework M5 performs the best. On DTLZ5, all four frameworks performs well,

with M1-2 performing the best, followed by M6. Thus, on unconstrained three-objective

problems, frameworks M5 and M1-2 perform the best, followed by M6 and then M3.

On C2DTLZ2 problem, frameworks M1-2 and M5 perform the best, followed by M3.

As noted before, since this problem has a single constraint, M1-2 and M2-2 frameworks

will produce identical results, M3 and M4 will also produce identical results. Interestingly,

framework M6 is able to find multiple near Pareto-optimal solutions through the multi-modal

RGA approach; however, further developments are needed to understand full potential of
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Figure 4.8: Obtained non-dominated solutions for OSY problem using frameworks M1, M2,
M3, M4, M5 and M6 from left to right and top to bottom.

M6.

Finally, we apply all six frameworks to a car side-impact problem having three objectives

and ten constraints. This problem allows us to apply each of our six frameworks on the

same problem. Figure 4.14 presents all obtained non-dominated points by six methods with

SEmax = 2, 000 and with an initial sample size of ρ = 700. Framework M5 performs the best

on this problem, while M3, M4, and M6 are also able to find a wide distribution and well-

converged set of solutions. However, the poor convergence (apparent from large GD values)

and distribution of simplistic M1-2 and M2-2 frameworks for a relatively larger number of

objectives and constraints is evident from the figure. As the number of objectives is more,

M1-2 and M2-2 frameworks demand more metamodels (one for each objective function) to
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Figure 4.9: Obtained non-dominated solutions for the welded-beam problem using frame-
works M1-2, M2-2, M3, M4, M5 and M6 from left to right and top to bottom.

be constructed. The error in each metamodel can be additive and becomes detrimental in

properly determining non-domination level and NSGA-III’s niching values. Although two

to three-objective is not a big jump, it is interesting that M1-2 and M2-2 on this problem

are not able to find widely distributed points near the true Pareto-optimal front. The

ASF scalarization of objectives in M5 and M3 focuses each metamodel for finding a single

Pareto-optimal point, thereby making an excellent performance on these problems with only

1,000 to 1,500 high-fidelity SEs. Another reason for M5’s better performance is the use of

efficient global optimization (EGO) method [4]. On the more complex problems (DTLZ4

(multi-modal) and C2DTLZ2 (constraints)), framework M6 gets overwhelmed in modeling

the multi-modal KKTPM surface having 91 global optima. It is clear that more high-fidelity
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Figure 4.10: Obtained non-dominated solutions for problem DTLZ2 using frameworks M1-2,
M3, M5 and M6 from left to right.

SEs are needed to get a better performance by M6 on these more complex problems, but the

use of a single metamodel to solve a multi-objective optimization problem as a multi-modal

optimization problem is algorithmically novel and challenging, and further studies are needed

to fully exploit its potential.

4.4 Five-Objective Constrained and Unconstrained Prob-

lems

Finally, we apply all six frameworks to five-objective unconstrained DTLZ2 and to five-

objective constrained C2DTLZ2 problem. Each of these problems is considered for seven
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Figure 4.11: Obtained non-dominated solutions for problem DTLZ4 using frameworks M1-2,
M3, M5 and M6 from left to right.

variables and considered for H = 210 reference directions. We fix SEmax = 2, 500 high-

fidelity SEs and ρ = 900 for DTLZ2 and C2DTLZ2, respectively. According to the IGD

performance metric value in Table 4.1, M1-2 performs the best on DTLZ2, followed by M5

and then M3. For C2DTLZ2, M3 performs the best, followed by M1-2 and M5. As mentioned

earlier, more high-fidelity points are needed for M6 to work better, but these initial results

demonstrate the relative performances of proposed six metamodeling frameworks in two to

five-objective constrained and unconstrained problems.
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Figure 4.12: Obtained non-dominated solutions for problem DTLZ5 using frameworks M1-2,
M3, M5 and M6 from left to right.

4.5 Summary

In this chapter, we have provided the results and comparison among different frameworks

of the proposed taxonomy. Important conclusions about the behavior of each of the frame-

works have been revealed. It is worth noting that although parameters of all six proposed

frameworks have not been fine-tuned for their best performances, our obtained results are

able to bring out the generic properties of different possible multi-objective metamodeling

frameworks applied to distinct problem classes.

First, it is interesting to note that compared to standard EMO studies in which tens

of thousands of solution evaluations are usually used to solve these test problems, here we

present results that take only a fraction (a few hundred to a maximum of two thousand)
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Figure 4.13: Graphical results for problem C2DTLZ2 using frameworks M1-2, M3, M5 and
M6 from left to right.

of solution evaluations in each case to find a near Pareto-optimal set of solutions using a

metamodeling based EMO approach. This is remarkable and the proposed metamodeling

frameworks hold promise to the successful applications of metamodeling methods in evolu-

tionary multiobjective optimization.

Second, there is a trade-off between the number of metamodeling efforts and resulting

performance. It is intuitive that as the number of objectives increase, the straightforward

implementation of metamodeling frameworks for each objective and constraint function may

not be a computationally efficient approach. The flip side is that the resulting integrated

functions become complex to the metamodel, thereby requiring more high-fidelity points.

Although further studies are needed to make more confident conclusions, we have observed
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Figure 4.14: Obtained non-dominated solutions for problem car-side impact using frame-
works M1-2, M2-2, M3, M4 M5 and M6 from left to right and top to bottom.

that a metamodeling of an aggregate function to find a single Pareto-optimal solution at

a time is a better strategy, as evident from the better performance of frameworks M3 and

M5. Both these frameworks constitute an implicit parallel approach, as intermediate points

obtained for one reference line may lie in the vicinity of the Pareto-optimal solution of an-

other neighboring reference line, thereby helping to create better metamodels for subsequent

reference lines. This is one of the key reasons for the superior performance of M5.

Third, it is also clear that a metamodeling of a combined constraint violation function (M2

and M4) is not, in general, a better strategy compared to independent-constraint metamod-

eling frameworks M1-2 and M3 both in terms of convergence and diversity issues. However,

when constraints are integrated with objective functions by a scalarization function (in M5),

better performance has been achieved. The superiority of M5 in most problems of this study

suggests that metamodeling of an implicit selection function involving all objective and con-
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straint functions together either for finding a single solution at a time (or multiple solutions

together) as an integrated approach is a better strategy. Framework M6 is interesting, but

further investigation is needed with a different parameter setting to completely evaluate its

merit.
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Chapter 5

Adaptive Switching Between

Frameworks and Use of Trust Regions

In this chapter, we describe our proposed adaptive switching method between different frame-

works that we proposed previously. Then, we provide a review of the use of trust regions

approach with metamodeling for the improvement of the convergence behavior of metamod-

eling frameworks.

5.1 Introduction

In multi-objective optimization, there are several ways to build and utilize metamodeling

approaches as we mentioned in previous chapters. Here we argue that it is more efficient to

use different metamodeling approaches at different stages of the optimization process and

then propose several switching strategies between the metamodeling methods.

The developments in optimization methods have recently led to an increasing interest in

metamodeling efforts. Most metamodeling studies in optimization (single or multiobjective)

concentrate on handling unconstrained problems only. In some occasions, bounded vari-

able problems are considered. But, this defeats the whole purpose of using a metamodeling

approach in the first place. Metamodeling methods are needed mainly to solve practical

problems, which are often computationally expensive. Constraints are also inevitable in
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practical problems. Thus, addressing metamodeling methods to solve only unconstrained or

bounded variable problems does not solve the issue completely. Also, extending an uncon-

strained optimization algorithm for constrained optimization is not trivial [78]. Hence, we

believe that metamodeling methods in optimization should involve constraint handling to

the extent possible.

We propose switching among proposed frameworks adaptively within the optimization

procedure for obtaining better results than before. We have also implemented the trust

regions concept for getting more robust solutions and reduce the uncertainty as well.

5.2 Literature Review

In this study [22,79], we performed an extensive literature survey on studies involving meta-

modeling assisted EMO approaches. Since then, a few more interesting and relevant studies

have come to our attention. Here we provide a brief review of them.

Zhao et al. [80] classified the sample data into clusters based on their similarities in the

variable space. Then, a local metamodel was built for each cluster of the sample data. A

global metamodel is then built using these local metamodels considering their contributions

in different regions of the variable space. Due to the construction and optimization of multiple

metamodels, one for each cluster, this method belongs to our M-3 framework. The use of a

global metamodel by combining all local cluster-wise metamodels qualify this method under

the M3-2 framework. No constraint handling method is suggested.

Zhang et al. [6] proposed an MOEA/D-EGO algorithm which metamodeled each objective

independently. They constructed multiple expected global optimization (EGO) functions for

multiple reference lines of the MOEA/D approach to find a number of trade-off solution in

63



each optimization task. No constraint handling procedure was suggested. Thus, this method

falls under our M1-2 framework.

Chugh et al. [81] proposed a surrogate-assisted adaptive reference vectors guided evo-

lutionary algorithm (K-RVEA) for multi-objective unconstrained optimization problems.

Each objective function is metamodeled independently using a Gaussian process approach

(Kriging). According to our proposed taxonomy [79], both procedures fall under the M1-2

framework.

Datta et al. [82] proposed a surrogate-assisted evolution strategy for constrained multi-

objective optimization (SMES) using Radial Basis Function (RBF) to metamodel each ob-

jective and constraint function. Due to this treatment, this method falls under our M1-2

framework. Bhattacharjee et al. [83] used multiple spatially distributed surrogates, in which

each surrogate is modeled using multiple methods, such as Radial Basis Function (RBF),

Kriging, and Response Surface Methodology (RSM), in different regions of the search space.

Both algorithms are build on NSGA-II platform [13]. Since one surrogate model in both the

above procedures is constructed for each objective and constraint function separately, they

fall under our M1-2 framework.

Rahat et al. [84] proposed an approach which can either construct a scalarized objec-

tive from individual metamodels of objective functions or metamodel a scalarized objective

function. They provided an user choice for this option. These methods can be classified as

our M1-1 and M3-1 frameworks, respectively. Three different scalarizing functions – hyper-

volume improvement, dominance ranking, and minimum signed distance – are used in their

study. Kriging was used as the metamodeling method, but no constraint handling strategy

was proposed.

Pan et al. [85] proposed a classification based surrogate-assisted evolutionary algorithm
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(CSEA) for solving unconstrained optimization problems by using an artificial neural network

(ANN) as a surrogate model. The surrogate model aims to learn the dominance relationship

between the candidate solutions and a set of selected reference solutions. This algorithm

falls in M3-2 framework, more details of which will be provided in Part-II of this study.

Nghia Le et al. [86] proposed multiple co-objective evolutionary optimization by cross-

surrogate assisted memetic augmentation algorithm (CSAMA). In this algorithm, standard

quadratic regression or polynomial regression as a surrogate model is employed for construc-

tion of each objective function separately. For selecting best solutions, they used NSGA-II

algorithm as a global search, Thereafter, the Tchebycheff scalarization function is applied as

a local search on aggregated objective function. The CSAMA algorithm is implemented for

unconstrained optimization problems only. This algorithm falls under M1-2 (for the global

search) and M1-1 (for the local search) frameworks according to our taxonomy.

The above descriptions indicate how our proposed taxonomy [79] includes most of the

possible and existing multi-objective metamodeling approaches. We choose three of the

above metamodeling-based EMO approaches – MOEA/D-EGO, K-RVEA, and CSEA – as

a basis of comparison of our proposed adaptive switching approach.

5.3 Trust Regions

A well-known concept in optimization is to maintain a balance between exploration versus

exploitation [87]. Exploration relates to focusing on unknown areas in the design space in

order to increase the information gain when a new point is evaluated. On the other hand,

exploitation searches only in the areas that seem to be promising. Intuitively, after having

explored the search space enough, a gradual switch to more exploitation makes sense. Some
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metamodels address this issue by providing an uncertainty measure that can be used in

the algorithm [88]. However, we address the exploitation versus exploration trade-off in the

algorithm independently from the used metamodel by introducing a trust region concept.

Whenever metamodels are used, some approximation to the true objective and constraint

values is introduced. This case an uncertainty to exist in the process, particularly when a

stochastic metamodeling approach is adopted. Predictions close to high-fidelity observations

are more accurate than predictions far from them. Therefore, we propose a trust region with

a radius Rtrust in order to address the amount of uncertainty allowed within our optimization

process. If Rtrust is infinity, almost any solution is accepted as an in-fill solution, and an in-

fill point evaluated well by the metamodel may not fair well on the exact model. Contrarily, if

Rtrust is close to zero, metamodel may be well correlated with the exact model, but the search

power is lost. To have a better exploration, we also introduce another radius Rprox, within

which of an evaluated point no other points can be considered. This is because evaluating

points close to existing ones will not change the metamodel in a significant manner. For

multi-objective optimization, Rprox aids in achieving multiple Pareto-optimal solutions with

a variable space diversity from each other. Figure 5.1 shows the use of one such strategy

proposed by COIN laboratory researchers recently [89].

Combining both the above concepts, we enforce a feasible search region Rsearch around

every exactly evaluated solution having Rprox ≤ Rsearch ≤ Rtrust. Figure 5.1 shows different

Rsearch settings during an optimization run and visualizes the gradual movements from

exploration to exploitation. We also reduce the two radii after every metamodeling task by

constant factors: of 0.75 and 0.1 for Rnew
trust = 0.75Rold

trust and Rnew
prox = 0.1Rnew

trust. A reduction

of two radii helps in achieving more trust on exactly evaluation solutions.

For the optimization procedure, two additional constraints are introduced. First, the
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Figure 5.1: Proximal and Trust Region.

trust region Rtrust which is violated when the minimum distance to any existing point is

larger than the Rtrust. Second, the proximate region that is violated when the distance

to any existing point is smaller than Rprox. Each non-dominated solutions from NSGA-II

generations are included in the archive. Then Rprox and Rtrust are decreased by multiplied

constant parameter less than one. After τ generations, new metamodels are created again

and the process is repeated until termination.

5.4 Results of Trust Region

In this section, we only show the results of M1-2 framework for comparing the performance of

metamodeling framework without and with using trust region. The same parameters setting

for NSGA-II that were produced in chapter 4 are used here. For the trust regions method,

an initial value of Rtrust = 0.75
√
M (M is the number of objectives) is used.
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5.4.1 Two-Objective Unconstrained Problems

First, we apply our proposed algorithm to two-objective unconstrained problems ZDT1,

ZDT2, ZDT3, and ZDT6 with ten (n = 10) variables, H = 21 reference directions, and

with a maximum of only SEmax = 500 high-fidelity solution evaluations. The obtained non-

dominated solutions are shown in Figures 5.2,for framework M1-2. The results show that

M1-2 with trust regions method is better than without it.
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Figure 5.2: Non-dominated solutions for ZDT1, ZDT2, ZDT3, and ZDT6 problems using
framework M1-2 from left to right.
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5.4.2 Two-Objective Constrained Problems

Next, we apply our algorithm to two-objective constrained problems: TNK, OSY , BNH,

and SRN [11], For each problem, H = 21 reference directions and a total of 1,000 solu-

tion evaluations. The obtained non-dominated solutions are shown in Figures 5.3 for M1-2

framework. Similar conclusions can be made about the use of trust regions method with

M1-2.

0 0.2 0.4 0.6 0.8 1 1.2
f
1

0

0.2

0.4

0.6

0.8

1

1.2

f 2

TNK

M1-2
M1-2 with TR
PF

-300 -200 -100 0
f
1

0

20

40

60

80

f 2

OSY

M1-2 with TR
M1-2
PF

0 50 100 150
f
1

0

10

20

30

40

50

f 2

BNH

M1-2 with TR
M1-2
PF

0 50 100 150 200 250
f
1

-250

-200

-150

-100

-50

0

50

f 2

SRN

M1-2 with TR
M1-2
PF

Figure 5.3: Non-dominated solutions for TNK, OSY, BNH, and SRN problems using frame-
work M1-2 from left to right.

Median IGD values are presented in Table 5.1 for M1-2 framework for 10 runs each. The

best performance of algorithm are marked in bold. Results in Table 5.1 indicate that M1-2

metamodeling framework perform better with the trust regions method on all problems.
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Table 5.1: Computed IGD values for test problems. Best performing are marked in bold.
W/TR: Without Trust Region.

ZDT1 ZDT2 ZDT3 ZDT6
W/TR TR W/TR TR W/TR TR W/TR TR
0.0115 0.0077 0.0105 0.0015 0.136 0.0131 1.6144 0.2726

TNK OSY BNH SRN
W/TR TR W/TR TR W/TR TR W/TR TR
0.0173 0.0062 6.9534 0.3303 0.5322 0.1121 0.7452 0.2966

5.5 Adaptive Switching between Frameworks

Each metaomodeling framework in our proposed taxonomy requires to build metamodels for

different individual or aggregated objective and constraint functions. Thus, it is expected

that each framework may be most suitable for certain function landscapes that produce

a smaller approximation error, but that framework may not fair well in other landscapes.

During an optimization process, an algorithm usually faces different kinds of landscape

complexities from start to finish. Thus, no one framework is expected to perform best during

each step of the optimization process. While each framework was applied to different multi-

objective optimization problems in our previous studies [22,79] from start to finish, different

problems were found to be solved best by different frameworks. To determine the best

performing framework for a problem, a simple-minded approach would be to apply each of the

10 frameworks (or six frameworks of this study) to solve each problem independently using

SEmax high-fidelity evaluations, and then determine the specific framework which performs

the best using an EMO metric, such as hypervolume or IGD. This will be computationally

expensive, requiring 10 (or six) times more than the prescribed SEmax. If each framework is

allocated only 1/10 (or 1/6) of SEmax, they may be insufficient to find comparatively good

solutions. A better approach would be use an adaptive switching strategy, in which the most

suitable framework is chosen at every step of the optimization process. In this section, we
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propose one such adaptive switching strategy.

We call a ’step’ during the optimization process for assessing different metamodeling

frameworks to choose the best-performing framework as an epoch. In each epoch, exactly

H new infill solutions are created, thereby consuming H high-fidelity SEs. Clearly, the

maximum number of epochs allowable is Emax = ⌈SEmax−N0
H ⌉ with a minor adjustment

on the SEs used in the final epoch. At the beginning of each epoch (say, t-th epoch), we

have an archive (At) of Nt high-fidelity solutions. For the first epoch, these are all N0 LHS

solutions, and in each subsequent epoch, H new infill members are added to the archive. At

the start of t-th epoch, each of the six participating frameworks (M1-1, M1-2, M2-1, M3-1,

M4-1 and M5) are used to construct its respective metamodels using all Nt archive members.

Then, a 10-fold cross-validation method (described in Section 5.5.2) is used with a suitable

performance metric (described in Section 5.5.1) to determine the next suitable framework for

the next epoch. A flowchart of the proposed adaptive switching based metamodeling strategy

is illustrated in Figure 5.4. In the following subsection, we describe a new performance metric

used for choosing the selected framework.

5.5.1 Performance Metric for Framework Selection

We propose a selection error probability (SEP) metric which is appropriate for an optimiza-

tion task. SEP is defined as the probability of making an error in correctly predicting the

better of two solutions compared against each other using the constructed metamodels. Con-

sider Figure 5.5, which illustrates an minimization task and comparison of three different

population members pair-wise. The true function values are shown in solid blue, while the

predicted function values are shown in dashed blue. When points x1 and x2 are compared

based on predicted function, the prediction is correct, but when points x1 and x3 are com-
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Figure 5.4: Flowchart of the proposed G-ASM method.

pared, the prediction is wrong. Out of three pairwise comparisons, two predictions are correct

and one is wrong, thereby making a selection error probability of 1/3 in this case. We argue

that in an optimization procedure, it is the SEP which provides a better selection error than

the actual function values. Unfortunately, many optimization methods borrow the mean

squared error (MSE) metric, commonly-used in regression and metamodeling studies, but

such a metric may not be the most appropriate metric for metamodeling-based approaches

in optimization.
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Samples

Figure 5.5: Selection Error Probability (SEP) concept is illustrated.

Mathematically, the SEP metric can be defined for n points as follows. For each of

N =
(n
2

)
pairs of points (p and q), evaluate the selection error function (E(p, q)), which is

one, if there is a mismatch between predicted winner and actual winner of p and q; zero,

otherwise. Then, SEP is calculated as follows:

SEP =
1

N

n−1∑
p=1

n∑
q=p+1

E(p, q). (5.1)

The definition of a ‘winner’ can be easily extended to multi-objective and constrained multi-

objective optimization by considering the domination [19] and constraint-domination [11]

status of two points p and q.

5.5.2 Identifying a Suitable Framework for Next Epoch

A framework with a smaller SEP metric value over a 10-fold cross-validation is considered

better. We describe the framework selection procedure in the following. At the end of

each epoch, the new infill points are evaluated using high-fidelity evaluations and added to
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the archive. Then, 90% of archive points are chosen at random and respective metamodels

are constructed according to the framework’s plan described above. Then, the constructed

metamodels are used to compare every pair (p and q) of the remaining 10% of archive

points. Constrained domination checks are performed to establish the superiority of one

point over the other and compared with that on the original problem. Then, the selection

error function (E(p, q)) and finally the SEP are computed. The above process is repeated 10

times by using different blocks of 90% points and 10 different SEP values are obtained for each

framework. Notice that these 10-fold cross-validation procedure does not require any new

solution evaluations, as the whole computations are performed based on the archive points,

which were already evaluated using high-fidelity computational procedures. Thereafter, the

best framework (Mb) is identified based on the median SEP value of frameworks. Finally, the

Wilcoxon rank-sum test is performed betweenMb and each other framework. All frameworks

within a statistical insignificance (having p > 0.05) are identified. Then, a random framework

from the statistically insignificant frameworks includingMb is selected for the next epoch.

Since each of these frameworks performs similar to Mb in a median sense, the choice of a

random framework helps to use a diverse metamodeling landscapes for the search from one

epoch to another, thereby prohibiting the overall method to not get stuck in similar search

behaviors.

5.6 Results

The RGA uses the simulated binary crossover (SBX), and polynomial mutation, with pa-

rameters as follows: Number of generations = 100, crossover probability = 0.95, mutation

probability = 1/n, distribution index for SBX operator = 1, and distribution index for poly-
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nomial mutation operator = 10. The NSGA-II procedure used in M1-2 is also applied with

the same parameter values as above. For one run of RGA or NSGA-II, we use a maximum

of τ = 50 generations. We perform 11 runs of all metamodeling frameworks on all test prob-

lems. For unconstrained problems (ZDT) with no constraints and three-objective problem

C2DTLZ2 having a single constraint, two frameworks M1-1 and M2-1 are identical. In such

a case, we only show the results for M1-1. The same situation occurs for M3-1, M4-1, and

M5 for unconstrained problems. For We only show the results of M3-1 for such cases. For

C2DTLZ2 problems, M5 is different from M3-1 and M4-1. It is worth mentioning here, we do

not make any effort to choose optimal parameter setting for each algorithm, rather identical

parameters are used to provide a representative performance of each methodology. In Table

5.2, we summarize the other parameter setting for all test problems used in this study.

Table 5.2: Parameter settings used in the study.
Problem n M J N0 SEmax #epochs H
ZDT1 10 2 0 100 500 20 21
ZDT2 10 2 0 100 500 20 21
ZDT3 10 2 0 100 500 20 21
ZDT4 5 2 0 100 1000 43 21
ZDT6 10 2 0 100 500 20 21
OSY 6 2 6 200 800 29 21
TNK 2 2 2 200 800 29 21
SRN 2 2 2 200 800 29 21
BNH 2 2 2 200 800 29 21
WB 4 2 4 300 1000 39 21

DTLZ2 7 3 0 500 1000 6 91
C2DTLZ2 7 3 1 700 1500 9 91

CAR 7 3 10 700 2000 15 91
DTLZ5 7 3 0 500 1000 6 91
DTLZ4 7 3 0 700 2000 15 91
DTLZ7 7 3 0 500 1000 6 91
DTLZ2-5 7 5 0 700 2500 9 210

C2DTLZ2-5 7 5 1 700 2500 9 210
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5.6.1 Two-Objective Unconstrained Problems

First, we apply our proposed methodologies to two-objective unconstrained problems ZDT1,

ZDT2, ZDT3, ZDT4 and ZDT6 with only SEmax=500 or 1,000 high-fidelity evaluations for

ZDT4 only. IGD values are presented in Table 5.3. It is clear that except in ZDT4, in other

four problems, the generative adaptive switching based metamodeling (G-ASM) method

performs either equivalent or better than individual metamodeling frameworks. In ZDT2

and ZDT6, G-ASM performs the best in terms of median performance. Interestingly, M1-1

as a single metamodeling framework performs well in three of the five ZDT problems, but

G-ASM performs well in four of the five problems. M1-2 and M3-1 performs well in two of

the five problems.

Non-dominated solutions for the median run of the G-ASM are shown in Figure 5.6.

In order to understand the switching mechanism of G-ASM, we calculate the proportion of

the times (out of 11 runs) a framework was chosen for the best performing list of frameworks

at the end of each epoch. Figure 5.7 marks this proportion in black and white shading.

Corresponding switching plots for the median run are shown in Figure 5.8. Switching

among different frameworks is clear from the plot. These plots support G-ASM’s ability to

switch between different frameworks to obtain a better overall performance at the end.

5.6.2 Two-Objective Constrained Problems

Next, we apply G-ASM to two-objective constrained problems: BNH, SRN, TNK, OSY [11],

and the welded beam design problem (WB). Table 4.1 presents the IGD values of individual

frameworks and G-ASM. It can clearly seen that in all five problems, G-ASM performs

equally well or better than individual frameworks. No individual framework work well on
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Figure 5.6: Obtained non-dominated solutions of the final archive for the median G-ASM
run for ZDT problems.
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Figure 5.7: Adaptive switching method of six frameworks among average runs for two ob-
jectives unconstrained problems.
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Figure 5.8: Adaptive switching method of six frameworks for median IGD run for two
objectives unconstrained problems.

all five constrained problems. Figure 5.9 shows all final non-dominated archive members for

the median performing G-ASM run. Such performances with only a total of 800 high-fidelity

SEs are remarkable.

The median run switching plots are shown in Figure 5.10. These plots are similar to the

ones shown for unconstrained two-objective problems. For example, M1-1 (marked as M11)

is always found to be the only best performing framework in all epochs from start to finish

for OSY. This is supported by the smallest IGD value of 0.15323 for M1-1 in Table 4.1. By

choosing the M1-1 in all epochs by our G-ASM method, it is able to produce statistically

similar result on OSY. In WB, G-ASM switches among the six approaches to produce the

best IGD value (0.12819), compared to all other individual frameworks. For SRN, BNH and

TNK problems, G-ASM finds the frameworks M1-1 and M1-2 mostly useful. A better picture

emerges when we plot the switching strategy for a single (median IGD run) in Figure 5.11

for OSY, SRN, BNH, TNK and WB. G-ASM is able to use a switching of frameworks to
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Figure 5.9: Obtained non-dominated solutions of the final archive for the median G-ASM
run for two-objective constrained problems.

produce a better performance on these problems overall. These plots make the power of

G-ASM method clear.

5.6.3 Three-Objective Constrained and Unconstrained Problems

Next, we apply all six methods to three-objective optimization problems (DTLZ2, DTLZ4,

DTLZ5 and DTLZ7) and also to two, three-objective constrained problems (C2DTLZ2 and

car side impact problem, CAR). In all six problems, G-ASM performs better or equiva-

lent to individual frameworks. The final non-dominated points obtained for three-objective

problems are shown in Figure 5.12.

The average epoch-wise proportion of usage frameworks in the G-ASM method are shown
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Figure 5.10: Proportion of framework usage in 11 runs for two-objective constrained prob-
lems.
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Figure 5.11: Switching of frameworks for the median G-ASM run for SRN, BNH and welded
beam problems.
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Figure 5.12: Obtained non-dominated solutions for Adaptive switching method of six frame-
works for three objectives constrained and unconstrained problems.

in Figure 5.13 plots in all 11 runs. Patterns of their usage and also the non-usage of certain

frameworks provide interesting information about the frameworks.

Finally, here we show the switching of frameworks for the median run in Figure 5.14.

5.6.4 Five-Objective Constrained and Unconstrained Problems

Next, we apply metamodeling frameworks to five-objective unconstrained DTLZ2 and con-

strained C2DTLZ2 problems. For both these problems, M1-2 framework (simultaneous op-

timization) performs the best and our G-ASM, despite having other frameworks as options,

choose M1-2 in most runs to produce similar performing IGD (Figure 5.13 and Figure 5.14

with labels DTLZ2-5 and C2DTLZ2-5). As shown in Table 4.1, none of the other frameworks

perform well on these two problems.
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Figure 5.13: Proportion of framework usage in 11 runs for three and five-objective problems.
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Figure 5.14: Adaptive switching method of six frameworks for median IGD run for three
and five objectives problems.
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5.6.5 Summary of Results

The rank of each the six frameworks applied alone and our G-ASM method according to

Wilcoxon rank-sum test are shown in Table 5.4 for all 18 problems. It is observed that G-ASM

method performs best overall, followed by M1-2. Among the generative frameworks alone,

M3-1 (metamodeling an aggregate of objectives and each constraint separately) performs

the best.

5.6.6 Comparative Study

Finally, we examine the performance of our proposed adaptive switching metamodeling (G-

ASM) method by comparing it with three recently-proposed algorithms, namely, MOEA/D-

EGO [90], K-RVEA [81], and CSEA [85]. These algorithms are implemented in PlatEMO [91]

platform. MOEA/D-EGO and K-RVEA are surrogate-assisted evolutionary multi-objective

optimization methods which use Kriging method to approximate individual objective or

an aggregation functions. CSEA is a classification based surrogate-assisted evolutionary

algorithm. None of these methods suggest a way to handle constraints. Hence, we restrict

our comparative study to ZDT and DTLZ problems only. All methods are compared for the

same SEmax.

Table 5.5 presents the mean IGD values and marks the best performing method in bold

and other methods with p > 0.05 using the Wilcoxon rank sum test in bold italics. It is clear

that K-RVEA performs the best only on DTLZ4 and DTLZ7 problems. Except on DTLZ4,

in all other problems G-ASM performs better or equivalent to K-RVEA. MOEA/D-EGO

and CSEA do not perform well on any of the nine problems used in this study.
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5.7 Summary

In this chapter, we have presented a trust region concept in order to produce a reliable

and focused search by trading-off exploration and exploitation aspects of an optimization

algorithm. We stated that, in addition, a switching between recently described metamodel-

ing frameworks may be an efficient approach, rather than using one framework throughout,

mainly due to the specialties that each metamodeling framework possess. On a number of

multi-objective constrained and unconstrained test problems, the switching methods have

produced better results by using a low budget of solution evaluations, compared to the

individual metamodeling frameworks alone. In this study, we have proposed an adaptive

switching strategy which chooses a statistically significant framework at the end of each

epoch. In this study, we restrict the frameworks to be chosen from five generative frame-

works and one popular simultaneous framework. Results on two to five-objective constrained

and unconstrained test and engineering problems, it has been established that the adaptive

switching method performs much better than a single framework. Moreover, since the knowl-

edge of which framework would perform the best for a problem is not known a priori, G-ASM

method is more appropriate. In order to demonstrate the working of G-ASM method, we

have presented an epoch-wise selection of frameworks. In most problems, G-ASM switches

between a few frameworks, but in some problems the same framework is used from start

to finish. G-ASM has also been found to produce better or equivalent results compared to

three newly proposed metamodeling methods on unconstrained problems.
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Table 5.3: Computed IGD values for test problems. Best performing framework is marked
in bold and other statistically similar frameworks are marked in bold and italic.

Problem M1-1 M1-2 M2-1 M3-1 M4-1 M5 G-ASM

ZDT1
0.00090 0.00555 - 0.00447 - - 0.00099

- p=8.1e-5 - p=8.1e-5 - - p=0.5114

ZDT2
0.00065 0.00062 - 0.00568 - - 0.00057
p=0.2372 p=0.7928 - p=8.1e-5 - - -

ZDT3
0.06778 0.00212 - 0.17123 - - 0.00456
p=8.1e-5 - - p=8.1e-5 - - p=0.421

ZDT4
0.28900 5.43450 - 0.29300 - - 0.45803

- p=8.1e-5 - p=0.4307 - - p=0.0151

ZDT6
0.37058 0.48360 - 0.24192 - - 0.19038
p=0.001 p=8.1e-5 - p=0.0762 - - -

OSY
0.15323 0.18806 24.57940 6.26550 18.49200 45.18110 0.16376

- p=0.2643 p=8.1e-5 p=8.1e-5 p=8.1e-5 p=8.1e-5 p= 0.4307

TNK
0.01726 0.00082 0.04383 0.01180 0.03332 0.03077 0.00105
p=8.1e-5 - p=8.1e-5 p=8.1e-5 p=8.1e-5 p=8.1e-5 p=0.0569

SRN
0.13191 1.00930 4.17160 1.06120 1.20480 1.28450 0.13434

- p=8.1e-5 p=8.1e-5 p=8.1e-5 p=8.1e-5 p=8.1e-5 p=0.2370

BNH
0.69434 0.04630 0.74425 0.23728 0.23923 0.23699 0.07765
p=8.1e-5 - p=8.1e-5 p=8.1e-5 p=8.1e-5 p=8.1e-5 p=0.652

WB
0.13794 0.23159 0.55529 0.16909 0.88586 0.96166 0.12819
p=0.6457 p= 0.0660 p=8.1e-5 p=0.8438 p=8.1e-5 p=8.1e-5 -

DTLZ2
0.07870 0.03340 - 0.05377 - - 0.03921
p=8.1e-5 - - p=8.1e-5 - - p=0.1002

C2DTLZ2
0.05130 0.03355 - 0.03493 - 0.12403 0.03401
p=8.1e-5 - - p=0.251 - p=8.1e-5 p=0.321

CAR
0.43510 0.50119 0.43145 0.39809 0.42223 0.50061 0.39060
p=0.0041 p=0.0058 p=0.0041 p=0.234 p=0.1149 p=0.0001 -

DTLZ5
0.01960 0.00948 - 0.01352 - - 0.01123
p=8.1e-5 - - p=8.1e-5 - - p=0.0728

DTLZ4
0.05840 0.09024 - 0.20668 - - 0.08012

- p=8.1e-5 - p=8.1e-5 - - p=0.205

DTLZ7
0.89316 0.07664 - 0.87172 - - 0.07261
p=8.1e-5 p=0.5994 - p=8.1e-5 - - -

DTLZ2-5
0.21450 0.03981 - 0.14401 - - 0.04643
p=8.1e-5 - - p=8.1e-5 - - p=0.5109

C2DTLZ2-5
0.17341 0.03676 - 0.15388 - 0.29291 0.04891
p= 8.1e-5 - - p=8.1e-5 - p=8.1e-5 p=0.528
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Table 5.4: Ranking of frameworks summarized. A ‘1’ indicates the best performing frame-
work.

Problem M1-1 M1-2 M2-1 M3-1 M4-1 M5 G-ASM
ZDT1 1 7 1 4 4 4 1
ZDT2 1 1 1 5 5 5 1
ZDT3 3 1 3 5 5 5 1
ZDT4 1 7 1 1 1 1 6
ZDT6 5 7 5 1 1 1 1
OSY 1 1 6 4 5 7 1
TNK 4 1 7 3 6 5 1
SRN 1 2 6 3 4 5 1
BNH 6 1 7 4 5 3 1
WB 1 1 5 1 6 7 1

DTLZ2 6 1 6 3 3 3 1
C2DTLZ2 5 1 7 1 1 7 1

CAR 5 7 4 1 1 6 1
DTLZ5 6 1 6 3 3 3 1
DTLZ4 1 4 1 5 5 5 1
DTLZ7 6 1 6 3 3 3 1
DTLZ2-5 6 1 6 3 3 3 1

C2DTLZ2-5 5 1 5 3 3 6 1
Average 3.56 2.56 4.50 2.94 3.55 4.50 1.27

Table 5.5: Mean IGD comparison among G-ASM, MOEA/D-EGO, K-RVEA, and CSEA
algorithms on unconstrained problems.

Problem MOEA/D-EGO K-RVEA CSEA G-ASM

ZDT1
0.05611 0.07964 0.95330 0.00099
p=8.1e-5 p=8.1e-5 p=8.1e-5 -

ZDT2
0.04922 0.03395 1.01060 0.00057
p=8.1e-5 p=8.1e-5 p=8.1e-5 -

ZDT3
0.3038 0.02481 0.94841 0.00456

p=8.1e-5 p=8.1e-5 p=8.1e-5 -

ZDT4
73.25920 4.33221 12.71601 0.45801
p=8.1e-5 p=8.1e-5 p=8.1e-5 -

ZDT6
0.51472 0.65462 5.42620 0.19036
p=8.1e-5 p=8.1e-5 p=8.1e-5 -

DTLZ2
0.33170 0.05481 0.11420 0.03921
p=8.1e-5 p=8.1e-5 p=8.1e-5 -

DTLZ4
0.64533 0.04490 0.08110 0.08012
p=8.1e-5 - p=0.0022 p=0.001

DTLZ5
0.26203 0.01640 0.03081 0.01123
p=8.1e-5 p=0.0262 p=0.0013 -

DTLZ7
5.33220 0.05310 0.70520 0.07261
p=8.1e-5 - p=8.1e-5 p=0.07

87



Chapter 6

Future Studies

• As an immediate future study beyond this thesis, we plan to investigate other meta-

modeling approaches (such as RBF, support vector regression, and response surfaces)

using Kriging for all of them simultaneously with adaptive switching among the pro-

posed metamodeling frameworks.

• Many acquisition functions can be used with metamodeling frameworks, such as ex-

pected improvement, probability of improvement, hypervolume improvement, and oth-

ers infill sampling criteria approaches to eventually identify optimized algorithms. To

determine the scope for each of the proposed metamodeling frameworks we will solve

various types of problems ranging from two to many objectives.

• It will be interesting to investigate the effect of diverse sweep approach that was men-

tioned in subsection 3.4.3 with metamodeling frameworks M3, M4, and M5 for im-

proving the performance of those frameworks, especially, with problems that have a

high-density distribution in the decision space.

• With the development of efficient metamodeling methods, we are now ready to use them

to solve industrial and agro-environmental problems which involve multiple conflicting

objectives.

• In some problems, objectives and constraints with heterogeneous computational com-
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plexity may exist. We plan to extend our methodologies and applications to these

problems as well.
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Chapter 7

Conclusions

In this study, we have presented a taxonomy for the use of different metamodeling frame-

works for multi-objective optimization. The taxonomy also extends to cover single-objective

optimization problems with and without constraints; however, handling constraints has been

put under the same platform as the handling of objectives - a matter which has been ignored

in many past such studies. The study has focused outside the popular strategy of extending

metamodeling frameworks for single-objective optimization to multi-objective optimization.

The straightforward extension suggests that for every objective function and constraint func-

tion, an independent metamodel is needed. Although this is one viable strategy, we have

proposed five more potential strategies and classified many existing studies into the proposed

six categories. Thereafter, as an initial detailed systematic study, we have implemented a

representative algorithm for each of the six proposed frameworks and applied them to solve

a number of constrained and unconstrained multi-objective optimization problems. Results

are compared against each other and important conclusions about the behavior of each of the

frameworks have been revealed. It is worth noting that although parameters of all six pro-

posed frameworks have not been fine-tuned for their best performance, our obtained results

are able to bring out the generic properties of different possible multi-objective metamodeling

frameworks applied to distinct problem classes.

In this study, we have proposed an adaptive switching strategy which chooses a statisti-

cally significant framework at the end of each epoch. Also, we restrict the frameworks to be
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chosen from five generative frameworks and one popular simultaneous framework. Results

on two to five-objective constrained and unconstrained test and engineering problems, it has

been established that the adaptive switching method performs much better than a single

framework. Moreover, since the knowledge of which framework would perform the best for a

problem is not known a priori, G-ASM method is more appropriate. In order to demonstrate

the working of G-ASM method, we have presented an epoch-wise selection of frameworks.

In most problems, G-ASM switches between a few frameworks, but in some problems the

same framework is used from start to finish.

Finally, G-ASM has been compared against three recently proposed surrogate-assisted,

unconstrained, multi-objective optimization methods. On eight or nine problems, G-ASM

has been found to perform better than the three existing methods. This study has amply

demonstrated the superiority of adaptive switching based metamodeling methods for multi-

objective optimization problems. The studies can be extended to include different metamod-

eling methods at each epoch, such as RBF or other response surface methods. More initial

samples can be allocated to complex metamodeling functions, such as for frameworks M5

and M6, so that more accurate metamodels can be obtained.
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