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ABSTRACT 

THE NUCLEO-CYTOPLASMIC FUNCTION OF  
ACTIN AND ACTIN DEPOLYMERIZATION FACTORS IN PLANT IMMUNITY 

By  

Pai Li 

The plant immune system is a multi-phase complex network that involves the collaboration of 

multiple subcellular structures. In the past two decades, the core signaling pathways of the 

immune process, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), 

and systemic acquired resistance (SAR), as well as the behavior of organelles, have been 

revealed to a level of clarity that is able to describe a general and well-covered process of the 

immune response. However, there are still many events during the immune response that remain 

mysterious. For instance, while higher plants live a sessile lifestyle, there are countless 

intracellular motions mediated by the cytoskeleton (including its associated proteins) in response 

to the external triggers, such as the invasion of pathogens. As our knowledge of plant immunity 

accumulates, the deficiency in knowledge on how immune signaling regulates the behavior of the 

cytoskeleton as a critical aspect of defense response, howbeit, becomes more evident. Therefore, 

this is a field of research that calls for powerful toolboxes to facilitate the analysis of the 

cytoskeleton in the context of immunity, as well as instructive biological model(s) that guide the 

direction of the multifarious studies.  

 

In this dissertation, I focus on the summary and prospective discussion on the immune function 

of the actin cytoskeleton and, more importantly, describe my original studies on two major aspects 

of this topic. First, a prerequisite to functional study of the actin cytoskeleton in the cytoplasm is 

the ability to accurately describe the status of the cytoskeleton. To achieve this goal, I developed 

an algorithm, namely implicit Laplacian of enhanced edge (ILEE), to accurately identify and 

analyze the biological status of the cytoskeleton from confocal image samples. This method 



significantly improves the accuracy, stability, and robustness of cytoskeleton segmentation, 

solves other technical hindrances, and enables abundant information to be extracted from images 

for biological interpretation (see Chapter 2). The ILEE algorithm will further help me to explore the 

phenotypes of actin architecture in response to immune signaling, which was not previously 

available due to the lack of the toolbox. Also, the ILEE has been packaged as a library released 

publicly to benefit the community with a powerful cytoskeleton analysis platform. 

 

For the second project of my total research, I focused on the immune function of the actin 

cytoskeleton in the nucleus. Previously, some Arabidopsis actin depolymerization factors were 

reported to genetically contribute to plant immunity by unknown mechanism(s), and my story 

began with a novel activity identified among Arabidopsis actin depolymerization factors – to 

interact with WRKYs, the stress-responsive transcription factors. During my research, I proved 

that certain ADFs can form a complex with WRKYs that binds to targeted promoters, hence 

regulating the activity of WRKYs and playing a positive role in the immune response. The 

knowledge obtained through this study, in combination with previous research (Lu et al., 2020; 

Porter et al., 2012) of my lab, can be summarized into a biological model, in which ADF mediates 

a nuclear-cytoplasmic immune regulation that systemically facilitates both cytoskeleton dynamics 

and pro-immune transcriptome reprogramming. In general, this study reveals a novel yet general 

pattern of cytoskeleton mediated transcriptional regulation, as ADF and perhaps other 

components of the actin cytoskeleton can shuttle between the cytoplasm and nucleus to form a 

network with a higher level of complexity. As a potential broader impact, the application range of 

this model includes but is not necessarily limited to plant immunity. 
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Chapter 1: the plant immunity and the immune-regulatory function of cytoskeleton 

(This chapter is adapted from Li and Day, 2019 and Li et al., 2020, published by the author.) 

 

Chapter abstract 

 

Throughout the lifespan, plants confront an endless barrage of pathogens and pests. To defend 

the biotic threats, plants have evolved a complex immune system responsible for surveillance, 

perception, and the activation of defense. These processes require the activation of host 

perception, the regulation of numerous signaling cascades, and transcriptome reprogramming, all 

of which are highly dynamic in terms of temporal and spatial scales. Towards defining how 

immune signaling is regulated, recent research has focused on the core mechanisms that 

underpin receptor-ligand interactions, phospho-regulation of signaling cascades, and the 

modulation of host gene expression during infection. Meanwhile, thanks to the expanded horizon 

facilitated by these studies, one of the major participants of the immune signaling – the plant 

cytoskeleton – has emerged as a critical regulator of the transport of the organelles, proteins, and 

chemicals that support plant defense signaling. However, the major aspects and particular 

mechanisms of the pro-immune functionality of the plant cytoskeleton are largely unknown. In this 

chapter, I will introduce the current knowledge on plant immunity, focusing the functionality of the 

cytoskeleton on the immune processes, as well as the strategies adopted by the pathogens to 

target the activity of the cytoskeleton. This led to the discussion of the frontier topics in this field 

of study, which greatly motivated my original studies described in Chapter 2 and Chapter 3 of the 

dissertation, on the immune function of the actin cytoskeleton and actin-associated proteins. In 

total, I will integrate the recent discoveries and hypothetical models, to present a dynamic portrait 

of plant immunity, focusing on my field of interest. 
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Plant Biotic Interactions 

 

In natural ecosystems, most plants are resistant to most pathogens, a phenomenon whose 

mechanism is undoubtedly one of the holy grails in plant pathology – to understand and harness 

the ability of a plant to respond to, and successfully defend against, pathogen invasion 

(Staskawicz, 2001). Indeed, the abundance of host, pathogen, and climatic diversity provides a 

rich source of broad-spectrum resistance, the result of which is a naturally selected balance of 

genetically diverse plant and pathogen/pest populations. Therefore, epidemics in ecosystems are 

rare, and when they do occur, they are typically restricted to a specific geographical region, 

climate, or a combination of both. In the case of natural resistance, typically referred to as non- 

host resistance, the breadth of genetic diversity represented in the host population is often 

sufficient to limit infection(s), resulting in the evolution of what is referred to as non-adapted (Stam 

et al., 2014). Conversely, and what has become the basis for much of the research in modern 

molecular plant pathology, the selection for and enrichment of pathogens that are adapted to their 

host has resulted in the establishment of ecosystems where pathogen virulence and disease are 

more often the norms than the exception. 

 

Plants begin and end their lifecycles in a single geographical location; however, the environment 

around plants is in constant flux. In response to these changes, and ultimately, to survive and 

thrive, plants must sense, respond, and adapt to an endless barrage of external perturbations – 

biotic and abiotic threats. Thus, it is not surprising that an emerging theme in plant pathology is the 

contribution and influence of the environment on immune system maturation (Chappelka and 

Grulke, 2016; Morris et al., 2017). To successfully respond to and defend against biotic threats, 

plants have evolved highly complex pathogen defense systems or surveillance networks, which 

functions similarly to the innate immunity of humans. The defense signaling acts cooperatively 

with numerous cellular processes, and together, the sum of these interactions imparts the ability 
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to recognize a vast array of biotic threats (e.g., pathogens, pests, viruses) and distinguish self from 

non-self (Sanabria et al., 2008). As described in greater detail below, underpinning the function 

and activity of the plant immune system is a complex network of preformed and inducible signaling 

processes, which provides unfettered access to both external and internal (i.e., systemic) cues.  

 

During fungal colonization of plants, the transition from external to internal growth and proliferation 

begins with germination of a spore and formation of the penetration-specialized architecture 

Figure 1-1: Invasion strategies by phytopathogens. To promote infection, both phyllospheric and 
rhizosphere pathogens must overcome physical barriers on the plant surface. Filamentous pathogens 
typically infect their host using the appressorium to invade living cells. During infection, the germinating spore 
(S) forms an extended tube-like structure (i.e., germination tube, GT), which then develops into an 
appressoria (A) that promotes the entry into plant. Appressorium can either directly penetrate into epidermis 
cells by breaking through the cuticle surface and cell wall, or enter through the apoplast, the space between 
cells. Additionally, wounds or natural openings (i.e., stomata) on the plant surface provide easy entry into 
the intercellular space. Once inside the host, filamentous pathogens use a root-like structure (i.e., haustoria, 
H) to obtain host-derived nutrients, resulting in the establishment of the pathogen-host interface. The 
invasion of bacterial phytopathogens, unlike filamentous pathogen, highly depends on natural openings to 
enter the plant host. 
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– appressoria (Yi and Valent, 2013; Ryder and Talbot, 2015). In short, this process enables 

“forced entry”, or direct penetration, of the plant outer physical barriers, a common yet diverse 

invasion strategy among filamentous pathogens (see Figure 1-1). For instance, the model foliar powdery 

mildew pathogen Golovinomyces orontii uses its appressoria to forcibly invade into leaf epidermal 

cells by breaking the cuticle and cell wall (Braun et al., 2019). Such a strategy is also common in 

soilborne pathogens, including, for example, Phytophthora sojae, which invades the roots of 

soybean (Fawke et al., 2015). Alternatively, pathogens do not necessarily need to directly 

penetrate into a live cell in the very beginning; case-in-point, the oomycete pathogen 

Hyaloperonospora arabidopsidis (Coates and Beynon, 2010) penetrates the cuticle and grows 

into the apoplast, the space between the junction of two pavement cells (Underwood, 2012), 

which potentially benefits the pathogen by delaying the full engagement with plant immune 

system. As a point of strategy, while the “forced entry” model greatly expands the opportunity for 

filamentous pathogens to successfully invade the host, the “passive entry” mechanism (e.g., 

through natural openings or wounds) presents less of a challenge to the pathogen as a function 

of reduced physical barriers and defense response. One of such examples is the invasion of 

Colletotrichum species, which causes anthracnose diseases. Outside plant, they generate non-

penetrative appressoria, from which undifferentiated germ-tubes extend and search for stomata 

to enter, resulting in host colonization via intercellular hyphae development (Latunde-Dada et al., 

2002).  

 

Of the numerous systems that have advanced our understanding of the processes underpinning 

appressorium-mediated penetration, the interaction between rice and the fungal pathogen 

Magnaporthe grisea illustrates one of the better illustrated examples of this virulence mechanism. 

As demonstrated using a combination of genetics-, cell biology-, and classical plant pathology-

based methods, M. grisea initiates appressorium development upon the perception of the 

hydrophobic leaf surface environment, in combination with contact of the wax cuticle (Ryder and 
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Talbot, 2015; Anjago et al., 2018). Upon contact and assessment of the leaf surface environment 

by the developing fungus, physical penetration is mediated by the establishment and maintenance 

of cellular turgor pressure, which comes from elevated concentrations of glycerol in the 

appressoria, as well as a semi-permissive melanin barrier at the host-fungal interface (Chang et 

al., 2014; Ludwig et al., 2014). During this stage of infection, appressorial growth and development 

is facilitated by the assembly of a condensed septin-actin network, a mechanism hypothesized to 

enhance mycelia growth and trafficking during the maturation of pathogen infection (Van Ngo and 

Mostowy, 2019). In addition to the early stages of fungal development and infection, the pathogen 

secretes a battery of virulence-associated enzymes to promote infection, including cutinases, 

cellulases, and pectinases (Kebdani et al., 2010), which target host cell wall components to 

promote further ingress. In total, the integrity of the whole penetration-facilitating system of 

filamentous pathogen is a prerequisite of successful and efficient invasion. Indeed, mutants with 

reduced turgor pressure or an absence of cell wall degrading enzymes display reduced 

penetration capabilities (Auyong, 2015; Paccanaro et al., 2017; Tang et al., 2018).  

 

In the case of phytopathogenic bacteria, the transition from epiphytic/saprophytic growth to 

infection is hypothesized to be induced by external signals, including those emanating from a 

combination of the host and environment (e.g., changes in humidity and temperature), as well as 

from microbial community (i.e., microbiome composition, quorum sensing, etc.) (Baker et al., 

2010; Leonard et al., 2017; Xin et al., 2018).  In the case of leaf-attached bacterial colonies, 

communities may persist as non-infective entities as a consequence of low surface humidity. Such 

“dormancy” on the host surface is mediated by a humidity-regulated quorum sensing system that 

inhibits the transition to an infection phase, as indicated by bacterial mobility, exopolysaccharide 

production, and pathogen secretion system maturation (Quiñones et al., 2005, 2005; Cheng et al., 

2016). Once the stimulus is perceived by potential pathogenic microorganisms, as described in 

the case of the model bacterial phytopathogen P. syringae (Ortiz-Martín et al., 2010), the bacteria 
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enters infection phase. In short, this process coincides with the rapid expression of core 

pathogenesis regulons, including hrp/hrc, hrpA, hrpL, and hrpR. In turn, this leads to the activation 

of signaling associated with the production of key virulence factors, including toxins(Baker et al., 

2010; Geng et al., 2012), and the induction of signaling responsible for the production of the type 

III secretion system (TTSS) (Tang et al., 2006). In another example for soilborne bacteria, 

Ralstonia solanacearum perceives oleanolic acid (Wu et al., 2015) and ferulic acid (Zhang et al., 

2017) as critical host-released virulence inducive signals, potentially via PrhA-PrhR receptor 

complex. This is significant, because these compounds are directly released into the soil matrix, 

and R. solanacearum, like other soilborne pathogens, may induce transitions to pathogenesis and 

gain higher virulence before host invasion. 

 

As a foundation describing molecular plant-pathogen interactions during host immune signaling 

and defense, it is important to clarify the status of pathogen virulence in advance of host infection. 

Current models portray pathogen virulence, in the most generalizable terms, as a process 

activated upon host contact. In this context, and herein, we too will define contact between a 

pathogen and the apoplast or living cell as “time zero” in the chronology of the activation of plant 

immunity. This leads to an essential question related to the entire process of plant immunity – are 

pathogens already capable (i.e., competent) of interfering with immune signaling at time zero? 

For bacteria, as discussed above, they are capable of entering the infection phase and activating 

the effector/toxin secretion systems before time zero. For filamentous pathogens, spore 

germination, per se, is a hallmark of the initiation of the infection phase, which activates a virulent 

secretome before penetration (Kleemann et al., 2012). Hence, it is reasonable to hypothesize that 

pathogens have already obtained the ability to inhibit the impending defense response by host 

before confronting with plant immune system. This temporal advance is critical for pathogenesis 

because it ensures that the secretion of effectors or other defense-inhibitory compounds to host 

is, at a minimum, simultaneous with pathogen perception, if not in advance. 
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Core signaling mechanism of plant immunity 

 

In plants, local immunity describes a fundament concept founded on the basic principle that an 

independent live cell is immuno-totipotent – possessing the full capability of all aspects of the 

immune response, independent of additional signal input(s) from other host-associated 

components (Verdeil et al., 2007). Previous work has generalized a canonic model to describe local 

immunity with two primary nodes, namely PAMP-triggered immunity (PTI) and effector-triggered 

immunity (ETI). PTI, as mechanism of basal defense, is activated following host perception of microbial 

PAMPs (pathogen associated molecular patterns), the conserved organismal motifs required for the 

survival and lifestyle of the microbe (e.g., flagellin, chitin). As an immune response that best illustrates 

the initiation and integration of complex host signaling and innate immunity, PTI follows a classic 

cellular signaling model comprised of receptors, cascades, and defense executors. Here, we 

describe the temporal function(s) of each of these three components (i.e., receptors, cascades, 

and defense executors) as they correlate with the initiation of basal defense signaling (see Figure 

1-2). 

 

Plant pattern recognition receptors (PRRs) perceive a wide range of elicitors, including pathogen- 

derived cell wall/membrane components (e.g., peptidoglycan, chitin), pathogen-associated 

proteins (e.g., flagellin, effectors), and host-derived danger associated molecular patterns 

(DAMPs; e.g., cuticle). Though diverse, these receptors share certain features: they are single-

transmembrane receptor-like kinases or receptor-like proteins, containing a leucine-rich repeat (LRR), 

LysM, EGF-like, or lectin domain for ligand binding within the apoplast (Boutrot and Zipfel, 2017). 

For most cases, evidence supports a general mechanism wherein a core receptor and their 

associated kinases form the primary receptor complex, in association with additional regulators, 

mediate pathogen recognition and the initiation of downstream signaling. Herein lies one of the 

key remaining questions: How fast does PRR activation occur following pathogen perception? 
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Figure 1-2: A schematic map of plant local immunity. Invasive pathogens are recognized by plant PRR 
(pattern recognition receptor) proteins, which results in the activation of broad spectrum of downstream 
signaling, such as Ca2+ influx, the accumulation of H2O2 generated by RbohD (respiratory burst oxidase 
homolog protein D), and kinase cascading, which includes signaling pathways mediated by MAPKs, CPKs, 
and other additional kinases. As depicted, various kinases may also engage in a highly coordinated 
crosstalk during signal amplification and attenuation. These immune signals, amplified by kinase cascades, 
trigger a variety of defense responses, including cytoskeletal remodeling, activation of defense function in 
organelles, and transcriptional reprogramming through the activity of pro-immune transcription factors (TF). 
In total, the sum of this highly coordinated signaling functions to promote plant defense signaling and 
pathogen resistance. Concomitant with the activation of defense signaling, the attenuation of key immune 
pathways occurs, a process hypothesized to function in rebalancing of immunity and growth pathways 
occurs. To cope with plant immunity, pathogens have evolved mechanisms to deliver effector proteins into plant cell, 
which target and inhibits immune signaling, as well as to subvert immunity through targeting of critical host cellular 
processes… 
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While no technical approaches currently exist which can directly measure the speed of PRRs 

activation, this question can be answered by correlating the timing of measurable downstream 

outputs, such as the generation of apoplastic reactive oxygen species (ROS) – one of the earliest 

measurable defense responses (Lehmann et al., 2015). In Arabidopsis, the PTI-triggered 

apoplastic ROS burst is generated by respiratory burst oxidase homolog protein D (RBOHD) 

(Kadota et al., 2015), a plasma membrane  (PM)-associated NADPH oxidase that generates H2O2 

as secondary signaling messenger. As one example of the link to PRR signaling complex 

activation, RBOHD is phosphorylated and activated by BIK1 (Botrytis-induced kinase 1), a core 

signaling kinase within the FLS2 (flagellin sensitive 2)-associated PRR complex (see Figure 1-

2; Kadota et al., 2014). As an indicator of the timing of this response, the rate of ROS accumulation 

(i.e., d[ROS]/dt) reaches saturation at approximately 3 minutes after flg22 (elicitor that activates 

FLS2) stimulation (Nühse et al., 2007), with complementary data demonstrating a maximum 

accumulation approximate 25 min following P. syringae infection (Smith and Heese, 2014). Taken 

together, the initial activation of PRRs occurs within the first few minutes following pathogen 

perception (Figure 1-3); the rapidity of this process further illustrates the role of ROS as second 

messenger in downstream immune signaling, including regulating Ca2+ influx. 

 

Once PAMP recognition and PRR associated signaling events are activated, the immune signal 

is handed off to downstream signaling processes, which serves to not only amplify the initial 

Figure 1-2 (cont’d) … In response, plants utilize NLR (nucleotide-binding leucine-rich-repeat proteins) 
proteins to recognize certain effectors through sensing pathogen modification of surveilled host processes 
(i.e., guardee), resulting the activation of robust immune signaling and cell death (i.e., ETI; effector-
triggered immunity). As a potential mechanism to activate ETI, cell membrane (PM)-associated NLRs (in 
most instances, possessing a coiled-coil domain, i.e,, C- NLR), can form a channel-like structure following 
activation, which presumably functions to mobilize additional defense signaling molecules. NLRs containing 
a Toll/interleukin-1 receptor- like domain (T-NLRs) at the C-terminus are typically associated with a nuclear 
subcellular localization, and in large part, function as sensors (i.e., sNLR) that activate helper NLRs (hNLR) 
to form channels within the PM. As an additional hypothesized mechanism, activated nuclear NLRs may 
regulate specific defense genes functioning in ETI, by interacting with TFs. Dashed in indicate 
putative/hypothesized processes. 
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signal, but importantly, functions as a mechanism to regulate signaling specificity and the 

activation of defenses that are appropriate to the nature of the stimulus. To accomplish this, plants 

utilize a complex series of phosphorylation-dependent signaling cascade, the best characterized 

of which include mitogen-activated protein kinases (MAPK) (Meng and Zhang, 2013) and calcium- 

dependent protein kinase (CPDK; aka CPK) relays (Singh et al., 2017). To date, one of the best 

characterized signaling pathways is flg22-triggered PTI, wherein MAPKs are rapidly activated 

following phosphorylation by FLS2-associated signal regulators – a cascade from MAPKKK3/5 to 

MAPK3/4/6 (see Figure 1-2; Mithoe and Menke, 2018). As an illustration of the rapidity of this 

process, it has been demonstrated that flg22-induced signaling occurs within ~5 minutes following 

ligand perception as determined by MAPK3/4/6 phosphorylation; maximal phosphorylation is 

believed to peak at ~30 minutes post elicitation (see Figure 1-3; Frei dit Frey et al., 2014). 

 

Simultaneous with MAPK cascading, CPK-dependent signaling is induced by Ca2+ influx, a 

process that is initiated by gated Ca2+ channel(s) downstream of PRRs (also discussed in Section 

III). While direct evidence is largely absent which describes the dynamic status of CPK 

phosphorylation during PTI, the influx of cytosolic Ca2+ can be used as an indirect index of CPK 

activity. Indeed, the accumulation of cytosolic Ca2+ obtains maximum speed (i.e., d[Ca2+]cyt/dt) in 

1 minute after elicitor treatment; the Ca2+ concentration reaches the peak in 3 minutes post-

treatment (Qi et al., 2010). Because CPKs are directly activated by elevated concentration of 

cytosolic Ca2+ without intermediate kinases, and CPKs, Ca2+ channels, and RBOHD form a 

positive feedback loop (see Figure 1-2), the activation of CPKs is supposed to be slightly faster 

than MAPKs. This hypothesis is supported by evidence demonstrating that the rice OsCPK18 

functions as direct upstream regulator of OsMAPK5 (Xie et al., 2014), which further indicates that 

CPK-MAPK crosstalk is involved in PTI signaling. In total, these data support a model whereby 

MAPKs and CPKs work synergistically (Tena et al., 2011), yet non-redundantly (Li et al., 2018) 

as pro-immune activators. 
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Following MAPK and CPK signaling, the next step is the activation of defense executor proteins, 

a process leads to nuclear-based transcriptional reprogramming, induction of defense hormone 

accumulation and signaling (Verma et al., 2016), cytoskeleton/organelle remodeling (introduced 

above), regulation of the secretome and cell wall/apoplast composition (Bellincampi et al., 2014), 

and cellular motion (e.g. stomatal closure; Arnaud and Hwang, 2015). As key outputs of defense, 

the development of each of these cellular processes can be briefly categorized into two distinct 

phases. The first phase is the fast, pre-transcriptional defense responses, which are often directly 

activated as a byproduct of the basal immune signaling cascade. For example, RBOHD, 

described above, activates a robust ROS burst in the apoplast via the direct activation of PRR 

complex assembly and activation (Kadota et al., 2014, 2015); as noted above, the timing of this 

response is detectable within 3 minutes of elicitation. Similar rapid signaling responses are also 

observed in the case of PM-associated ion channels (Jeworutzki et al., 2010). As another example 

of rapid signaling through PTI executor, PAMP-triggered actin remodeling illustrates the 

integration of PRR function with broader signaling platforms, as illustrated by the detection of 

changes in microfilament remodeling within 5-15 minutes following PTI elicitation (Henty-Ridilla 

et al., 2014). While the full mechanism(s) underpinning this response is unknown, we posit that it 

involves the regulation of actin depolymerizing factors (ADFs) by cytosolic kinases at the 

downstream of PRRs, as well as H2O2 and phosphatidic acid (Porter et al., 2012; Li et al., 2015, 

2017a). While still largely hypothetical, this model is in agreement with an abundance of data 

describing fast responses mediated by changes in actin filament organization, including the 

activation of downstream immune signaling processes. 

 

In order to initiate a large-scale and long-term output of defense, signaling next proceeds to the 

phase of transcriptional activation of sustained and robust defense processes (Lewis et al., 2015). 

As indicated by its classification, the foundation of this stage of immunity lies in the activation of 

stress-responsive transcription factors and the gene networks under their control. In brief, key 
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regulators of this includes AP2/ERF, bHLH, bZIP, MYB, NAC, and WRKY (Tsuda and Somssich, 

2015). Here, as a result of MAPK activation, the phosphorylation of defense transcription factors 

by MAPK significantly contributes to plant immunity. For example, in response to necrotrophic 

fungal pathogen Botrytis cinereal, MAPK3/6 phosphorylates WRKY33 within 0~12 hours post-

infection (hpi), which has been shown to regulate the overall resistance signaling within 6~24 hpi 

(Mao et al., 2011). Interestingly, as an example of the dynamic control and specificity of signaling, 

Figure 1-3: Dynamics of signaling processes associated with local immunity. The signaling 
processes associated with local immune signaling can largely be described in a temporal fashion; for the 
sake of comparison, we suppose “Time 0” = PRR activation. To estimate the signaling dynamics (i.e., timing 
of initiation, sustained saturation, peak of increasing speed, and termination), published data recording the 
development of immune processes following elicitor treatment or pathogen infection are collected, 
analyzed, and translated into this figure. Dashed lines in indicate estimation without direct evidence. 
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the WRKY33 mRNA is up-regulated in response to flg22 or HrpZ (a bacterial elicitor) elicitation at 

ca. 1 hpi and subsequently down-regulated at 4 hpi, suggestive of a negative feedback loop to 

control signaling (Liu et al., 2015). As such, a single PAMP treatment does not necessarily reflect 

the true dynamics of TF activity, because pathogens possess multiple elicitors (e.g., PAMPs, 

effectors) that result in the stimulation of various synergistic signaling cascades. In this regard, 

the overall dynamics and pattern of defense-induced transcription cannot be measured 

exclusively by the early (ca. minutes to hours) events, but rather, must be evaluated over the 

duration of the interaction, which can last days or longer. Thus, as illustrated in Figure 1-2 and 

Figure 1-3, the activation of immunity is not a sequential series of events, but rather, represents 

a complex network of processes, each of which can be activated or attenuated multiple times 

during the host-pathogen interaction. 

 

Another important aspect of plant immunity is Effector-triggered immunity (ETI), a robust and 

sustained pattern of immunity activated following perception of pathogen-secreted effector 

proteins. As an additional layer of the immune surveillance platform, ETI resembles PTI in many 

regards, such as the involvement of MAPK signaling cascades and defense gene activation. 

However, distinct from PTI, ETI results in the activation of an apoptosis-like cell death (aka 

hypersensitive response (HR); Balint-Kurti, 2019), a fast process hypothesized to result in an 

abrogation of pathogen proliferation. As estimated by the dynamics of electrolyte leakage 

(indicating cell death) during HR, full intensity of ETI occurs within 2~6 hours after inoculation of 

avirulent (containing effectors that triggers ETI) bacterial pathogens (Mackey et al., 2002, 2003). 

Similar to such dynamic pattern, the transcriptome reprogramming during ETI reaches the 

maximum speed during the same period of time (Mine et al., 2018), indicating that ETI is a fast-

acting immune response that may overcover the development of basal defense. 

 

In terms of its mechanism, ETI relies on the function of host resistance (R) proteins to survey the 
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cell for perturbations, through what is referred to as the Guard Hypothesis (Biezen and Jones, 

1998). As highlighted in reviews by Dangl and Jones (Jones and Dangl, 2006) and Chisholm et al. 

(Chisholm et al., 2006), the Guard Hypothesis posits that R protein “guards” another host derived 

protein (guardee), and when a guardee is modified (e.g., cleaved, phosphorylated, etc.) by a 

pathogen-secreted effector, its associated R protein recognize such modification and triggers 

downstream signaling. Most of R protein belongs to nucleotide-binding site leucine-rich repeat 

(NB-LRR or NLR) protein family, which is also the best studied R protein architecture (Monteiro 

and Nishimura, 2018). According to their distinguishing feature of the structure and activity, NLR 

proteins have been historically divided into two subgroups, based on the amino-terminal presence 

of either a coiled-coil (CC) domain or a domain with similarity to the Toll/interleukin-1 receptor 

(TIR) family of proteins. In total, different domains (e.g., TIR/CC, NB, and LRR) of NLR provide 

abundant interaction interfaces, which not only supports intramolecular interactions that inhibit 

NLR activation at the absence of corresponding effector, but also serves as intermolecular 

adapters to form NLR heterodimers that regulates ETI with higher order of flexibility (Sukarta et 

al., 2016). Directly related to this feature is the genetic evidence that certain extra downstream 

NLR(s) may be commonly required for ETI activation mediated by various NLRs (Adachi et al., 

2019). This leads to a helper-sensor model where a “sensor” NLR (sNLR; cesari et al., 2014) 

perceives the existence of avirulent effector and activates a “helper” NLR (hNLR; Bonardi et al., 

2011), which next processes ETI signaling pathway. Such model potentially explains why NLRs 

form heterodimer and why ETI mediated by various R protein shares a unique pattern. However, 

one of the key questions that remains in ETI is: How does activated NLR protein function in ETI 

initiation? 

 

Recently, a series of publications offers a mechanistic insight into the biochemical function of 

activated NLR proteins. To explore the topic, Wang and colleagues (Wang et al., 2019, 2019) 

inspected the protein structure of activated NLR ZAR1 (HOPZ-activation resistance-1) through a 
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combined approach of cryo-EM based modeling and analysis. In brief, the study demonstrated 

that ZAR1 presents a pentameric-like structure, forming a general funnel shape within the PM . 

Related to its function to activate programmed cell death, this conformation is easily associated 

to mammalian inflammasome complexes, which serve as a cytosolic catalytic center to activate 

downstream apoptosis (Sharma and Kanneganti, 2016). However, the PM-localized ZAR1 differs 

from cytosolic inflammasomes with respect to its subcellular localization, which suggests a 

distinguishing function of ZAR1 as a massive channel that mediates influx of apoplast 

components (including Ca2+) and leakage of cytosol and trigger the downstream signaling of ETI. 

Interestingly and related to this, co-expression of NAIP (inflammasome structure protein that 

resembles sNLR and recognize animal PAMP), RPS4TIR- NLRC4 (inflammasome structure 

protein that resembles hNLR, and fused with TIR domain of RPS4), and corresponding PAMP 

(conceptually equal to “effector” in plant immunity) in N. benthamiana can trigger HR-like 

symptoms (Duxbury, 2016), which suggests that formation of the inflammasome in plants is 

sufficient to trigger ETI, yet the downstream signaling events in animals and plants may vary. 

 

Hence, a general picture of ETI can be further clarified if the sensor-helper model is combined 

with the hypothesis that NLR functions as a PM localized channel. As described by Jubic and 

colleagues (Jubic et al., 2019), while some NLR, such as ZAR1, can both perceive effector activity 

and form up an active pentamer channel on the PM, other NLRs (i.e., absolute sNLR) does not 

have the second capability due to the lack of corresponding interaction interfaces or PM 

localization. In this case, an hNLR to be activated by sNLR is required for the assembly of PM-

localized channel to activate ETI. Howbeit, it is still not clear whether the vast material transport 

mediated by the NLR channel is the major process responsible for ETI. Since some NLRs have 

additional biochemical activity, such as regulating TFs in the nucleus (Sun et al., 2020), it is 

possible that activated NLR can initiate several relatively independent signaling pathways the 

synergistically contributes to the development of ETI. 
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Immune attenuation: rebalancing growth versus defense 

 

The energy distribution of growth versus defense requires a constant balancing of signaling 

processes, including the simultaneous activation and attenuation of processes that share 

considerable overlap. Quite obviously, plant defense signaling following pathogen perception 

requires the rapid engagement and activation of a broad range of immune signaling processes, 

as described above. At the same time, in the absence of pathogens, plants redirect a considerable 

amount of energy to processes which downregulate immune signaling (Huot et al., 2014). Thus, 

the attenuation of immune signaling is a critical process of self-defense which likely evolved as a 

mechanism to protect the host from the ill effects of hyper-activated defenses that down-regulates 

growth. 

 

In contrast to the events associated with the activation of pro-immune signaling, our current 

knowledge of con-immune signaling is relatively limited. What we do know, however, is that much 

like immune activation signaling, MAPK cascade also plays an essential role in this process and 

represent one of the best characterized con-immune signaling mechanisms known. In 

Arabidopsis, a well-illustrated example of immune attenuation lies in our understanding of signaling 

mediated by MAPK3/6, which is activates its own inhibitory, MAPK phosphatase 1/2 (MKP1/2; 

Jiang et al., 2018). In a detailed and elegant series of temporal gradient analyses focusing on the 

dynamics of MKP1 activity, it was revealed that MKP1 phosphorylation by MAPK6 is saturated at 

~10 min following PAMP treatment, resulting in the stabilization of MKP1 and an increase in MPK1 

protein levels (Jiang et al., 2017b). Corelated to this observation, MPK1 and MKP2 mRNAs are 

nominally upregulated (< 2-fold) in response to biotic stress perception; we surmise that this 

illustrates a relatively low impact of transcriptional regulation on MPK abundance. Besides MAPKs 

per se, MKPs may actually dephosphorylates a wide spectrum of immune signaling substrates, 

as evidenced by the fact that MKP1 regulates thousands of MPK6-independent pro-immune 
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transcriptions within 90 min after flg22 elicitation (Jiang et al., 2017c). Moreover, and consistent 

with the role for MPK1/2 as broad regulators of immune attenuation, it is noteworthy that previous 

work has demonstrated that MPK1/2 are negative regulators of defense against biotrophic (e.g., 

R. solanacearum) and hemi-biotrophic (e.g., P. syringae) pathogen, whereas MKP2 is a positive 

regulator against necrotrophic (e.g., B. cinerea) pathogens (Lumbreras et al., 2010; Anderson et 

al., 2011). Taken together, these data illustrate that defense attenuation facilitates host immune- 

totipotency against full spectrum of pathogens. 

 

In addition to MKPs, other protein phosphatases (i.e., PP2A/Cs) also function as known 

contributors of counteracting kinase activity in immune signaling, and as such, play a substantial 

role in immune attenuation (Withers and Dong, 2017). For example, recent work has 

demonstrated that a group of PP2Cs (i.e., HAI1/2/3) quench MAPK3/6 downstream of flg22 

triggered ABA signaling – a key virulence mechanism utilized by pathogens to manipulate immune 

signaling (Mine et al., 2017). Likewise, Arabidopsis AP2C1 (aka PP2C25) dephosphorylates 

MAPK4/6, which modulates JA-and SA- associated immune signaling. In similar mechanisms, 

additional kinases also regulate the activation of PP2A/Cs, including the key PTI signaling 

regulators CPK6, BIK1, and BAK1 (Brandt et al., 2012; Segonzac et al., 2014; Couto et al., 2016). 

However, evidence indicating phosphatase targets of other immune signaling components, such 

as receptors, enzymes, channels, and TFs, is still lacking, illustrating a general knowledge gap in 

the breadth of engagement by the mechanism of immune attenuation. 

 

Another important mechanism for immune signaling attenuation is the degradation of immune 

signaling components, a process that is typically mediated via the ubiquitin-proteasome system 

(UPS). In brief, UPS functions through E1, E2, and E3 ligases, of which E1 and E2 energize and 

load ubiquitin onto the proteasome complex, with E3 function to physically guide target specificity 

(Sharma et al., 2016). As a common mechanism in plant immune signaling, several well-
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characterized examples of ubiquitin-mediated attenuation exist. For example, FLS2 is targeted 

by the U-box E3 ligases PUB12/13, resulting in the degradation of FLS2 following flg22 stimulation 

(Lu et al., 2011). As an illustration of the specificity and rapidity of this response, it was further 

demonstrated that physical association of PUB13 with FLS2 is initiated at ca. 30 seconds post 

FLS2 activation, indicating that PUB12/13 promotes rapid quenching of immunity. In contrast, 

LYK5, a membrane-associated receptor kinase responsible for chitin perception, is also targeted 

by PUB13, but the activation of LYK5 results in its dissociation from PUB13 and enhances LYK5 

accumulation (Liao et al., 2017). In another example, the immune kinase BIK1 is ubiquitinated by 

U-box E3 ligases PUB25/26, but such process is inhibited by the hetero-trimeric G-protein 

complex XLG2/3-AGB1-AGG1/2 when BIK1 is inactive (Liang et al., 2016). Upon activation of 

BIK1 (i.e., in response to PTI elicitation), the XLG2/3- AGB1-AGG1/2 inhibitory complex 

dissociates, releasing unblocked BIK1 for UPS mediated-degradation (Liang et al., 2016; Wang 

et al., 2018). 

 

Given that the proteasome exists within the cytosol, nucleus, and vacuole, it is a reasonable 

assumption that free, soluble, proteins are targeted to the proteasome via simple diffusion 

processes. However, this is not the case of PM-associated proteins, which are typically anchored 

through a variety of mechanisms, including transmembrane domains, post-translational 

modification, as well as via association with PM-resident components. In this regard, PM-associated 

immune signaling components, such as FLS2, BAK1, SERK1, CERK1, LYK5, PERP1, and SlCf- 

4, all require endocytosis-based mechanisms as a means to regulate recycling and or degradation 

(Claus et al., 2018). In a general sense, the constitutive endocytosis of membrane components 

serves as a recycling mechanism to ensure that immunity is maintained in signaling-competent 

state. As a mechanism describing the naïve and activated recycling of immune receptors, the 

example of flg22-triggered FLS2 endocytosis is one of the best characterize models (Robatzek et 

al., 2006; Mbengue et al., 2016). As observed, following flg22 elicitation, the majority of FLS2 
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(GFP-tagged FLS2) was internalized from the PM to cytosolic vesicles within 20-40 minutes 

following flg22 treatment. As an illustration of immune attenuation and the regulation of PTI, during 

this same time, de novo synthesized FLS2 was not replenished at the PM. Instead, a marked 

induction in FLS2 transcription was observed, indicating that PRR endocytosis is an approach of 

immune regulation, in support of UPS, to maintain the equilibrium of immune signaling. 

 

As a final example, the negative regulation of pro-immune transcription represents a key 

component of the defense signaling network attenuation. Just as immune activation requires the 

induction of TF-mediated gene expression, so does immune attenuation. Among the best 

example(s) of this process is illustrated by the activity of the plant-specific family of WRKY 

transcription factors, known for their broad roles in signaling processes associated with both 

abiotic and biotic stress (Tsuda and Somssich, 2015; Hussain et al., 2019). For example, 

Arabidopsis WRKY18 and WRKY40 are rapidly induced following P. syringae DC3000 and G. 

orontii perception, yet they function as synergistic negative regulators of resistance in response 

to both pathogens (Xu et al., 2006; Pandey et al., 2010). Using a series of ChIP-seq and RNA-

seq approaches, it was further revealed that WRKY18 and WRKY40 possess broad 

transcriptional regulatory (presumably inhibitory) functions over defense genes during the early 

activation of PTI (Birkenbihl et al., 2017). Taken together, these studies indicate that certain 

“WRKY sub-regulatory networks” may serve as a mechanism to prevent over-induction of 

immunity, through balancing the in/activation of transcription following pathogen perception. 

Related to this hypothesis, Moore and colleagues (Moore et al., 2011) provided a similar network 

perspective, proposing a transcription pulse model to describe transcription cascading in plant 

immunity. In short, this posits that the expression of TFs in different temporal nodules display 

consecutive cyclical bursts, with sharp up- and down-regulated oscillations over the course of the 

lifecycle, a process regulated in part by UPS-mediated degradation of transcription activators in 

the nucleus. Indeed, such a mechanism is required for the degradation of activated NPR1, as well 
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as the enrichment of pro-immune TF inhibitors, including MYC2-induced JAZ expression. 

 

The immune functionality of Plant cytoskeleton 

 

There are two major classes of the cytoskeletal network are found in higher plants (Figure 1-4). 

The first, microfilaments (MF), commonly referred to as the actin cytoskeleton, are formed by the 

polymerization of globular (G)-actin into filamentous (F)-actin, a process in plants that requires 

the function of more than 75 actin binding proteins (Figure 1-4A) (Day et al., 2011). Actin is 

responsible for functions ranging from cytoplasmic streaming (e.g., movement of organelles) and 

cell division, to trafficking and endocytosis. The second, microtubules (MT), are comprised of a 

complex array of α/β-tubulin heterodimers, a network that is typically associated with cell growth 

and long-distance intercellular movement and communication (Figure 1-4B) (Brandizzi and 

Wasteneys, 2013). Both MF and MT exhibit a remarkable degree of rapid, seemingly random yet 

highly specific, dynamism, represented by tremendous rates of polymerization and 

depolymerization. Together, these patterns of cytoskeletal organization yield a highly dynamic 

and tightly regulated framework that connects the intercellular components of the cell to an 

endless suite of microenvironments and physiological processes. The eukaryotic cytoskeleton 

engages a variety of signaling events, including those associated with cell division and 

development, organelle movement, vesicle trafficking, and immunity (Porter and Day, 2016; Elliott 

and Shaw, 2018). As a function of the plant immune system, an abundance of data supports roles 

for the cytoskeleton in at least two key aspects of the immune response: 1) establishment and 

maintenance of signaling-competent microenvironments, and 2) cellular trafficking (organelle, 

proteins, and small molecules). Below, we highlight current research in each of these areas, 

discussing the role of each of these in immunity and the function of each as linkages between 

immune signaling and the dynamism of the host cytoskeleton. 
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The cytoskeleton as a molecular and cellular scaffold of plant immunity 

In a typical plant cell, the vast majority of the cytoskeleton stretches from the cytosol to attachment 

points at or near the plasma membrane (PM). This is significant, as the PM is regarded as one of 

the key signaling interfaces between the host and pathogen, supporting the function of two 

primary classes of immune receptors: PRR complexes and the coiled-coil type NB-LRR (CC-NLR) 

Figure 1-4: Schematic diagram of cytoskeleton polymerization/depolymerization (treadmilling). A, 
Microfilament treadmilling. G-actin is dynamically polymerized onto the growing F-actin strand. The (+) end 
is defined as the site where polymerization dominates, and the (-) end as where depolymerization 
dominates, while spontaneous polymerization/depolymerization may occur on both sites. Actin 
polymerization is achieved through loading ATP-associated G-actin to the end of F-actin, while 
depolymerization occurs through destabilization of ADP-associated actin. B, Microtubule treadmilling. The 
(+) end is defined as the site where both polymerization and depolymerization are very active, with 
polymerization dominating. Conversely, on the (-) end, tubulin is relatively stable with dominant 
depolymerization occurring. α-tubulin (TUA) and β-tubulin (TUB) form a heterodimer as the basic unit of the 
polymerized microtubule. TUA is constitutively bound to GTP; TUB binds the growing MT filament as GTP-
bound monomers, and tends to disassociate from the filament when bound to GDP. 
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Figure 1-5: The versatility and involvement of the plant cytoskeleton in immunity. Plant MF and 
MT are involved in multiple processes during the immune response. (a) The cytoskeleton provides the 
physical attachment, as well as specialized microenvironments, to numerous PM-associated immune 
processes (e.g., PRR complexes, RBOHD, and CalS complex) and is required for full functionality of 
these immune processes. (b) The cytoskeleton aggregates at the interaction interface of fungal 
pathogen penetration, a process that is even more striking in avirulent strains. The cytoskeleton is also 
required pro-immune cellular trafficking, a process that is associated with the transport immune-
functional molecules, through the action of endocytosis (c), PM and apoplast secretion (d), transport of 
organelles (e, f, g, h), plastid stromules (i), as well as cell-to-cell trafficking through plasmodesmata. (j) 
Virus replication complex (VRC) can hijack cytoskeleton and transports to adjacent cells through 
plasmodesmata. (k) As a less-characterized mechanism of plant immunity, actin is also involved in the 
transcriptional regulation of immune signaling events within the nucleus, potentially through aiding in 
the formation of a regulatory complex consisting of transcription factors and chromatin. Arrows are 
shown to indicate the directionality/movement of corresponding cellular components. 
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resistance proteins. Thus, it is not surprising that the cytoskeleton-PM interface is also a key 

component of the signaling processes associated with receptor activation, mobilization, and 

signaling transduction. Indeed, as a scaffold for many of these PM-associated processes, recent 

work has revealed that the plant cytoskeleton selectively interacts with – either directly or indirectly 

– numerous membrane-localized receptors associated with immunity and signaling plant defense.  

 

In Arabidopsis, the PM localized PRRs FLS2 (flagellin receptor) and BRI1 (brassinosteroid 

receptor), interact with BIK1 to form a co-receptor complex to initiate downstream signaling (Couto 

and Zipfel, 2016). Following ligand binding, activated PRR complexes aggregate into distinct 

nanodomains within the PM, where they function in immune signaling activation (Keinath et al., 

2010). Indeed, a recent study demonstrates that FLS2-BIK1 and BRI1-BIK1 complexes localize 

in distinct nanodomains within the PM, where they further associate with different proteins 

required for downstream signaling (Bücherl et al., 2017). In the case of BRI1-BIK1, the 

nanodomain has been shown specifically interact with the MT network. This finding is significant 

as it provides experimental evidence that plant receptor kinases, including immune receptors, 

form functional complexes with the plant cytoskeleton to activate downstream signaling 

associated with immunity. In an additional study, it was further demonstrated that disruption of 

actin filament organization leads to the generation of a relatively enhanced ROS burst response 

following flg22 perception by FLS2 (Sun et al., 2018). In total, these studies were among the first 

to provide evidence supporting the hypothesis that cytoskeletal organization – and the physical 

interactions between PRR complexes and actin – are required for maintenance of appropriate 

levels of immune activation and signaling. 

 

While conclusive data demonstrating that the plant cytoskeleton directly interacts with individual 

immune receptors is lacking, an abundance of data in mammalian systems does exist. For 

example, the nucleotide-binding oligomerization domain protein 1 (NOD1), the PRR responsible 
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for perception of p G-d-glutamyl-meso-diaminopimelic acid (iE-DAP), requires F-actin for proper 

PM localization. Further, the interaction(s) between NOD1 and actin serves as an immune 

interface which influences actin-remodeling and control of downstream signaling (Kufer et al., 

2008), including the phospho-dependent activation of the actin depolymerizing factor cofilin (Bielig 

et al., 2014). Similar to the activation of NOD1, the mammalian muramyl dipeptide receptor NOD2 

is also recruited to the PM through its association with actin (Legrand-Poels et al., 2007). Using 

a pharmacological-based approach, these studies also demonstrated that following application of 

cytochalasin-D, an inhibitor of actin polymerization, both NOD1 and NOD2 signaling are activated, 

providing strong support for the hypothesis that the actin remodeling (including depolymerization) 

of PM-associated F-actin is likely a physical trigger of NOD1/2 signaling. Taken together, data 

from both plant and animal systems support the hypothesis that the cytoskeleton provides the 

necessary microenvironment to sustain the functionality of immune receptor complexes (Figure 

1-5, (a)), and based on this, we hypothesize that the actin cytoskeleton is a guardee of PM-

localized PRRs. 

 

The actin cytoskeleton is required for turnover of PM-localized PRRs 

During both PTI and ETI, the turnover of activated signaling complexes is mediated by receptor 

endocytosis, a process that functions not only to protect the plant from constitutive activation of 

defenses (i.e., autoimmune response), but also to support the surveillance function of the immune 

system (He et al., 2017). In the case of the PTI, recycling of PM-associated immune components 

is controlled in large part by clathrin-mediated endocytosis (CME), a process that requires the 

function of the actin cytoskeleton (Nagawa et al., 2012). In well-studied in animal and yeast 

models, CME is initiated by loading the clathrin coat onto the PM components (e.g., PRRs), which 

induces concomitant physical changes in the PM endocytic membrane fraction. Once the clathrin 

coat is loaded onto the cargo, the newly formed compartment gradually bends towards the cytosol, 

ultimately resulting in a scission from the membrane. While the initial bending force that curves 
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the membrane is provided by the clathrin coated vesicles themselves, the growth and bending of 

the cargo-containing fraction is driven by actin polymerization. In short, this process is facilitated 

by the specific attachment of actin to the clathrin coat. Upon binding, the actin filaments extend 

by polymerizing and branching, a process mediated by the Arp2/3 complex and PM-associated 

myosin. This process is referred to as actin flow (Kaksonen and Roux, 2018). It is predicted that 

plants utilize functionally and mechanistically analogous processes to those in animal systems 

(Figure 1-5, (c)), yet in plants, the actin branching structure required for actin flow may not be 

mediated by the Arp2/3 complex (Fan et al., 2015). This hypothesis is supported by data showing 

that the Arabidopsis Arp2/3 mutant does not have a exhibit developmental lethality (Li et al., 2003), 

the expected phenotype if CME is fully inhibited. 

 

In the case of plant immunity, multiple PRRs, as well as numerous additional PM-associated 

proteins, have been demonstrated to require CME for plant defense activation and signaling. For 

example, in the case of PTI, Mbengue et al. (Mbengue et al., 2016) demonstrated that FLS2, EFR 

(Ef-Tu receptor), and PERP1/2 (pep1 receptor) require clathrin, as well as the activity of BRI1-

ASSOCIATED KINASE 1 (BAK1), for endocytosis, which are activated by corresponding PAMPs. 

A second study further indicates that CME is required not only for the endocytosis of PEPR1 itself, 

but also the activation of PEPR1-mediated defense responses (Ortiz-Morea et al., 2016). 

Interestingly, myosin inhibitor 2,3-butanedione monoxime (BDM) was found to inhibit FLS2 

endocytosis, while the actin filament modifier latrunculin-B (LatB) was shown to have only a minor 

impact on FLS2 endocytosis (Beck et al., 2012). Taken together, these data support a role for 

actin cytoskeleton-mediated CME in the turnover and regulation of PM-associated immune 

receptors and their associated signaling processes. As one might expect, ETI-associated 

receptors also rely on CME for proper activity, as is the case for the tomato R-protein Cf-4, which 

functions in immunity against the pathogenic fungus Cladosporium fulvum (Postma et al., 2016). 
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The role of the cytoskeleton in intercellular trafficking of immune-associated processes 

The plant immune response relies on specialized patterns of cellular trafficking to deploy the suite 

of proteins, organelles, and small molecules required for pathogen resistance signaling (Park et 

al., 2018). To facilitate the rapid re-localization of immune components to the site of infection, 

both MF and MT are required for the specific trafficking of immune cargo to the site of 

infection(Brandizzi and Wasteneys, 2013; Tominaga and Ito, 2015; Nebenführ and Dixit, 2018). 

As a broader function underpinning the regulation of this process, and moreover, the connectivity 

to PTI, numerous studies have demonstrated that the plant immune signal involves the positive 

feedback in the expression of PM-cell wall (CW) associated immune components (Figure 1-5, (d)), 

which include various signaling complexes, CW-associated polysaccharide synthases, and CW 

polysaccharide components synthesized in Golgi (Schneider et al., 2016; van de Meene et al., 

2017; Bacete et al., 2018). For example, flg22 perception enhances the transcription of FLS2, 

EFR, BAK1, and RBOHD (Li et al., 2016), a process that is hypothesized to compensate for the 

turnover (i.e., endocytosis) of PM-associated immune components to sustain the immune (i.e., 

PTI) signaling capacity of the cell. The enhanced expression these PM-CW localized immune 

regulators requires a robust cytoskeleton system for their transportation and localization to the 

membrane. For instance, once pathogen signals (i.e., PAMPs) are perceived, callose- enriched 

papillae between the CW and PM will form to inhibit pathogen penetration, which is regulated by 

salicylic and jasmonic acid pathway (Luna et al., 2011; Yi et al., 2014). At a mechanistic level, 

callose deposition requires callose synthases (CalSs), enzymes that are sorted in Golgi and 

translocated to the cell wall. This process requires the activity of both MF and MT, and disruption 

of either cytoskeletal network leads to a dysfunction in CalS (Cai et al., 2011). Accordingly, in 

another study, it was demonstrated that an Arabidopsis class XI myosin mutant, with disrupted 

MF/MT trafficking, has dampened callose and lignin accumulation at the fungal infection site 

(Yang et al., 2014). Thus, from perception of PAMPs to the activation of PTI-associated defense 
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responses, the cytoskeletal network plays a key role in surveillance, activation, and the execution 

of immunity. 

 

As noted above, the cytoskeleton is also required for the rapid re-localization of various host 

organelles and proteins to the site of pathogen penetration, a process that is hypothesized to 

enhance the immune response (Figure 1-5, (e-h)). In one of the best-characterized examples, 

Takemoto et al. (Takemoto et al., 2003) observed the accumulation of Arabidopsis ER and Golgi 

occur at the infection site of oomycete plant pathogen Hyaloperonospora arabidopsidis, 

simultaneously with rapid remodeling of actin filaments. Subsequent work further showed that 

these events paralleled the redistribution of the host nucleus, ER, Golgi, mitochondria, and 

peroxisome at sites adjacent to penetration events during powdery mildew infection (Takemoto 

et al., 2006; Yang et al., 2014). We posit that these processes function to accelerate defense-

associated metabolism, yielding an increase in the rate of response during infection via 

cytoskeletal-mediated cellular trafficking. 

 

The recent discovery of a role for chloroplast in plant immunity illustrates the complex 

relationship(s) between immune signaling and the cytoskeletal network. As a component of the 

plant defense system, the chloroplast plays a role in the activation of HR-PCD though its 

degradation, which functions as a source of ROS burst following ETI elicitation (Dong and Chen, 

2013). Interestingly, disruption of the MT network has been shown to trigger chloroplast 

autophagy, yet this same disruption attenuates cellular autophagy (Wang et al., 2015). Based on 

this, it is difficult to discern a role for the concomitant regulation of chloroplast and cytoskeleton 

as a function of HR-PCD. However, the explanation may lie in recent data describing the function 

of stromule formation during the activation of plant defense. A recent study found that chloroplasts 

form a tube-like architecture, called stromules, which stretch towards chloroplasts as well as other 

plastids and even the nucleus, to mediate immune signaling (Hanson and Hines, 2018 ; Figure 1-
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5, (i)). As an ETI-associated process, stromules were demonstrated to function in the transport of 

the N-Receptor Interacting Protein 1 (NRIP1; Caplan et al., 2008) and potentially other pro-

immunity molecules into the nucleus to trigger the ETI against tobacco mosaic virus (TMV) 

effector p50 (Caplan et al., 2015). As a link to the engagement of the cytoskeleton, two recent 

study confirmed that the extension of stromules from the chloroplast is mediated by the 

cytoskeleton (Erickson et al., 2018; Kumar et al., 2018). In brief, these studies demonstrate that 

MT guides the stromules for extension, and application of the MT-disrupting agents amiprophos-

methyl or oryzalin inhibited the growth of stromules. In parallel, MF serves as the anchor point 

rather than the extension track (Kumar et al., 2018), potentially through binding of the stromule 

via class XI myosin (Natesan et al., 2009). Taken together, these studies provide compelling 

evidence indicating the deployment of organelles and the transportation of their products is crucial 

for immune regulation, which relies on the activity of the cytoskeleton. 

 

Battlefield cytoskeleton: the frontline of plant-pathogen interaction 

 

Recent data from a suite of studies demonstrate numerous important roles for the plant 

cytoskeleton in the activation and signaling of plant immunity. However, the question remains: Is 

the reorganization of the cytoskeleton a response, or a consequence? Is it associated with the 

activation of immunity, or a process manipulated by pathogens to induce susceptibility? The short 

answer is both. A leading hypothesis in the field of cell biology and immunity is that the rapid and 

seemingly random reorganization of the cytoskeletal network is a plant-regulated cellular 

response to support immune signaling and downstream signaling of defense (Day et al., 2011). 

In this case, recent data demonstrates that pathogens alter both types of cytoskeletal structures 

during infection to evade immunity and promote infection. It is very common that rapid changes 

in cytoskeletal organization occur during immune activation. For example, perception of the 

PAMPs flg22, elf26, and chitin have all been shown to trigger the reorganization of actin in 
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Arabidopsis epidermal cells (Henty-Ridilla et al., 2013, 2014) and in stomatal guard cells 

(Shimono et al., 2016a). As predicted, these PAMP-stimulated events require the PRRs FLS2, 

Ef-Tu, and CERK1, reinforcing the requirement of the actin cytoskeleton for PRR-PAMP function. 

Upon infection of tobacco BY-2 cells, the Pseudomonas syringae DC3000 (Pst DC3000) type III 

secretion system (T3SS) helper protein, HrpZ, has been demonstrated to function as a PAMP, 

the perception of which induces bundling of F-actin and a concomitant decrease in MT density 

(Guan et al., 2013).  

 

Alternatively, it is also demonstrated that pathogens can alter actin cytoskeletal structures during 

infection to evade immunity and promote infection. In a follow-up infection assay using Pst 

DC3000, it was observed that while the MT architecture did not change within 16 hpi (Lee et al., 

2012); treatment for longer periods (i.e., >20 h) tended to induce long-term and multiple-phase 

influences on host actin. These changes included an initial increase in MF density, followed by a 

decrease in MF density with a concomitant increase in MF bundling at later stages of infection 

(Henty-Ridilla et al., 2013). Importantly, a type-III secretion system (T3SS)-deficient, avirulent, 

strain Pst DC3000 hrpH was unable to trigger the second phase of remodeling, suggesting a 

role of pathogen virulence by the T3SS as well as T3Es themselves (Shimono et al., 2016b). 

 

In the case of fungal pathogens, similar to bacteria, avirulent and virulent strains confer 

differences in the pattern of cytoskeleton re-organization, illustrating a role for the cytoskeleton 

as a common immune component in response to multiple types of pathogens. In the well-defined 

barley-powdery mildew interaction system, avirulent strains will trigger the rapid reorganization of 

host MF and MT during the invasion process(Kobayashi et al., 1992; Opalski et al., 2005; Miklis 

et al., 2007); this response is indicated by actin bundling at the interface of the mature 

appressorium, with the formation of a dense network of MF surrounding the papillae. Such 

phenomena are referred to as actin focusing, with F-actin linking the host nucleus and the host-
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appressorium interface. For virulent strains, however, this pattern of filament organization is not 

observed, with only a slight aggregation of filament bundles without actin focusing. Interestingly, 

MT remodeling patterns show a similar trend, with the induction of thick radial arrays of MT 

bundles at the site of appressorium formation in the presence of avirulent isolates and no 

aggregation in the presence of virulent strains (Kobayashi et al., 1992). Similar to powdery mildew, 

studies in the cowpea-rust fungi interaction system also demonstrated that avirulent strains trigger 

MF and MT reorganization, leading to a reduction in filament density, while no significant 

reorganization is observed in cells infected by virulent strains (Skalamera and Heath, 1998).  

 

In the case of bacterial pathogen infection, this phenomenon can be phenocopied by the 

application of cytoskeletal agents that interfere with MF and MT dynamics, manifesting in differing 

immune phenotypes between bacterial and fungal pathogens. For example, in the case of 

bacterial phytopathogens, disrupted MF increases resistance, including both PTI and ETI 

branches (Tian et al., 2009; Henty-Ridilla et al., 2013; Kang et al., 2014a; Krutinová et al., 2018), 

while disrupted MT increase susceptibility to infection (Lee et al., 2012). However, host resistance 

to fungal pathogens is usually dampened by both MF and MT dynamics inhibitor (Schmidt and 

Panstruga, 2007). These data indicate that cytoskeletal architecture has a significant influence on 

plant immunity, potentially controlled by both host and pathogen to alter the balance of resistance 

versus susceptibility. 

 

While the broader function and mechanism(s) associated with MF/MT (re)organization in 

response to pathogen infection remain largely undefined, insight into the role of the cytoskeleton 

in plant immunity is becoming clearer through the analysis of individual MF- and MT-associated 

proteins. Among the first regulators of actin cytoskeletal organization revealed to play an 

important role in immunity are the actin depolymerizing factor (ADF)/cofilin (hereafter referred to 

as AC) family of proteins – a conserved class of small proteins that regulate actin cytoskeletal 
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organization via filament severing and depolymerization (Kanellos and Frame, 2016). As a family, 

ACs are widely conserved across all eukaryotes, yet their abundance varies: In human, 3 ACs 

have been identified (i.e., ADF, CFL1, and CFL2) and in most plants, dozens of ADF-encoding 

genes are present (11 in Arabidopsis, up to 27 in banana) (Kanellos and Frame, 2016; Nan et al., 

2017). Similar to their mammalian counterparts, plant ADFs function as key regulators of 

cytoskeletal organization, controlling the overall balance of cellular G- and F-actin ratios.  

 

In recent studies, ADFs have also been shown to be associated with the function and activity of 

the plant immune system. For example, as a regulator of PTI, it was demonstrated that 

Arabidopsis ADF4 plays a key role in PAMP-triggered actin remodeling, demonstrating that ADF4 

– and actin depolymerization – are necessary components of actin remodeling and callose 

deposition upon elf26 perception by the EFR (Henty-Ridilla et al., 2014). In the case of fungal 

pathogen perception and immunity, the adf4 mutant was found to possess enhanced resistance, 

with subclass I ADFs imparting an additive effect on pathogen susceptibility (Inada et al., 2016). 

Furthermore, these immune functions are controlled by the phosphor-regulation of CPK3, a critical 

mechanism to transduce immune signaling to the actin cytoskeleton dynamics (Lu et al., 2020). 

These data suggest that resistance signaling associated with ADF function may in fact be 

mediated in a homologue/class-specific manner, and moreover, that expansion of the ADF gene 

family in plants, as compared to mammals, may impart roles for specific and individual ADFs. 

Indeed, additional data support this hypothesis: Arabidopsis ADF6 was shown to negatively 

regulate the localization of RPW8.2 to extrahaustorial membranes to promote immune signaling 

(Wang et al., 2009); ADF3 is a positive regulator of resistance against aphids(Mondal et al., 2018); 

and in wheat, TaADF4 and TaADF7 significantly contribute to resistance against the stripe rust 

pathogen Puccinia striiformis (Fu et al., 2014; Zhang et al., 2017), while TaADF3 is an negative 

regulator of this interaction (Tang et al., 2016). However, the detailed mechanism of these pro-

immune function is unknown. 
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In addition to ADFs, the roles of other MF/MT associated proteins in plant immunity are beginning 

to emerge. For instance, capping protein (CP), which biochemically functions as an (+) end actin 

polymerization inhibitor, is required for MF re-organization during immune signaling (Li et al., 2015, 

2017a). Further, a recent study has shown that Arabidopsis Profilin3 (PFN3) negatively regulates 

PTI by inhibiting formin-mediated actin polymerization (Sun et al., 2018). This discovery is 

interesting, because profilins are usually regarded as co-factors for formin-mediated actin 

polymerization. Thus, the biochemical function of AtPFN3 represents another strategy of 

cytoskeletal architecture regulation during immune activation – competitive inhibition of active 

cytoskeleton regulators. Converse to MF function during plant immunity, the molecular 

mechanism(s) of MT regulation during immune signaling events is relatively unclear. Thus, we 

posit that future work in the area of immune-MT interactions will lead to exciting new discoveries 

for the broader role of the cytoskeleton during plant defense and pathogen virulence. 

 

Pathogen targeting of cytoskeletal organization: immune subversion and pathogenicity 

 

Given the incredible connectivity of the cytoskeletal platform to nearly all cellular networks (Figure  

1-5), it is not surprising that pathogens and pests have evolved mechanisms to block immunity – 

either directly or indirectly – through manipulation of cytoskeletal function. In this respect, by 

targeting a few key steps in cytoskeletal assembly, for example, pathogens can gain access to a 

range of host mechanisms. To usurp, evade, or destroy? These are the evolved “choices” that 

pathogens have made to overtake the function and activity of the immune system at the 

cytoskeletal interface. In the case of plant viruses, whose amplification and intercellular movement 

require manipulation of the host cell machinery, including cytoskeleton (Hong and Ju, 2017), the 

“choice” is to usurp. As a general strategy for viral manipulation of the cytoskeleton, the viral 

replication complex (VRC) can load itself onto the cytoskeleton using scaffold proteins (e.g., 

movement protein, linking protein) or myosins, which enable the virus to track along the 
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cytoskeletal network, including through plasmodesmata (Pitzalis and Heinlein, 2018, 2017; Figure 

1-5, (j)). As a result, the infecting virus is able to move from cell to cell, overwhelming immunity, 

and ultimately taking control of the host. 

 

As noted above, pathogen effector molecules function to subvert immune signaling, and in recent 

years, much effort has been spent on the discovery of the constellation of host processes targeted 

by these secreted factors. Thus, it was only a matter of time before pathogen effectors were 

identified which can directly and/or indirectly influence cytoskeletal function. In the case of indirect 

modulation of cytoskeletal function, work from Lee and colleagues (Lee et al., 2012) observed 

that the Pst DC3000 T3E HopE1 can bind to calmodulin, a process that leads to disassociation 

of the microtubule-associated protein 65-1 (MAP65-1) from the MT network, resulting in an 

increase in susceptibility to Pst DC3000. In a similar mechanism, the Xanthomonas euvesicatoria 

T3E AvrBsT, and acetyltransferase, was shown to acetylate ACETYLATED INTERACTING 

PROTEIN1 (ACIP1), causing it to dissociate from MT, leading to a dampening of plant immunity 

(Cheong et al., 2014). Interestingly, it has also been demonstrated that pathogenic effectors can 

also influence the regulation of cytoskeletal function within and between organelles. As 

demonstrated by Erickson et al., the Xanthomonas campestris T3E XopL, an E3 ligase, 

suppresses plastid stromule formation induced by Agrobacterium; it is hypothesized that XopL 

targets unknown MT-associated proteins, a conclusion based on the observation that a non-active 

mutant of XopL loses such function but binds to MT (Erickson et al., 2018). 

 

Lastly, and in work supported by independent studies that converged on similar pathogen 

virulence mechanisms, is the case of the P. syringae T3E HopG1. Previous work showed that 

HopG1 is a mitochondria-targeted effector that suppresses plant immunity (Block et al., 2010). In 
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a bid to define virulence factors that target host cytoskeletal immune signaling, Shimono et al.  

(Shimono et al., 2016b) demonstrated that HopG1 interacts with Arabidopsis kinesin 7.4 (i.e., 

Kin7.4), a mitochondria-localized motor protein whose function is required for actin filament 

organization. During Pst DC3000 infection of Arabidopsis, HopG1 is delivered into the host cell, 

and subsequently associates with Kin7.4, resulting in actin bundling and enhanced disease 

symptom development. This is exciting from the standpoint of pathogen targeting of the 

Figure 1-6: The cytoskeleton is central to the balance between immunity and susceptibility, and the 
host-dominated balance and alterability between G-actin, F-actin, and tubulin control the plant 
response to pests and pathogens. The cytoskeleton is tightly regulated by the temporal and spatial 
control of filament architecture, and these points of control are influenced by the perception of pathogens 
and pathogen elicitors (i.e., PAMPs, effectors). For host, identified actin regulator in immune response 
includes ADFs (depolymerizing and severing actin), CP (stabilizing short F-actin oligo and G-actin), and 
AtPFR3 (stabilizing G-actin). Pathogen and pests, on the other hand, can use effectors to interfere the host 
regulation of cytoskeleton. For instance, HopW1 and the CMV movement protein (MP) can directly sever 
F-actin, thus increasing the cellular concentration of G-actin. Similarly, HopZ1a can disrupt MT filaments 
by acetylating tubulins, a process that results in disruption of the MT network and associated process. In 
the case of MF function, MiPFN3 can stabilize G-actin and directly inhibit actin assembly. HopG1, HopE1, 
AvrBsT, and XopL can indirectly interfere host cytoskeletal function. 
 



35 

cytoskeleton and in the broader context of a role for actin in immunity. For example, if HopG1 and 

kinesin associate on the mitochondrial outer membrane, this might suggest a mechanism to inhibit 

the motor activity of kinesin, leading to an impediment in mitochondrial motion through the 

concerted action of both (i.e., MF and MT) cytoskeletal networks. This would then lead to a 

reduction in the energy needed to support cytoskeletal function and dynamism (Bartolák-Suki et 

al., 2017). However, if HopG1 and kinesin localize within the mitochondria itself, it would indicate 

a role for HopG1 in the disruption of kinesin function and a broader role of mitochondria as a 

signaling hub for immunity and cell death through actin filament remodeling. We tend to favor the 

latter, as evidence for such a role is supported by numerous studies demonstrating a function for 

the actin-mitochondrial network as a hub for the activation of apoptosis, a process associated with 

pathogen-induced senescence (Shimono et al., 2016b). 

 

Converse to the examples highlighted above – whereby pathogens finesse cytoskeletal function 

to promote infection and disease – pathogens have also evolved virulence strategies to disrupt 

actin cytoskeletal dynamics in a more abrupt manner. In short, pathogens can paralyze host 

immunity by directly dissembling the cytoskeletal machinery. In one of the first examples of 

directed targeting of the plant cytoskeleton by a phytopathogen, work by Lee et al. (Lee et al., 

2012) uncovered a mechanism whereby the P. syringae T3E HopZ1a, an acetyltransferase, can 

modify and disrupt the MT network to interfere with MT-supported processes, such as trafficking. 

More recently, work by Kang et al. (Kang et al., 2014) showed that the P. syringae T3E HopW1 

disrupts F-actin integrity by directly depolymerizing actin filaments during infection, a process 

resulting in blocks to protein cargo trafficking and endocytosis. Such strategies are also employed 

by viral pathogens, such as the case of the cucumber mosaic virus (CMV) movement protein (MP), 

which can sever F-actin to increase the size exclusion limit of plasmodesmata, potentially 

accelerating the viral spread to adjacent cells (Su et al., 2010). Additionally, a newest study 

demonstrates that root-knot nematodes secrets an effector, Meloidogyne incognita Profilin3 
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(MiPFN3) into host “giant cell”, the feeding structure, to inhibit host actin polymerization and cause 

higher susceptibility (Leelarasamee et al., 2018). 

 

While each of these examples clearly demonstrates that direct disruption of the MT or MF 

networks are strategies to impede plant immunity, the question remains as to how the activities 

of these effectors are coordinately regulated, since absolute disruption of plant MF/MT does not 

always lead to attenuated immune response, as mentioned above. One hypothesis is that 

additional signals are generated during infection that leads to proper regulation of effector-

mediated cytoskeleton dissemble. This would, hypothetically, result in the specific modulation of 

effectors’ activities at different key stages of the infection process, which leads to disruption of 

immune signaling. Such strategies have been characterized in the case of Salmonella infection 

of human cells, in which the co-regulation of the type-III effectors SipA and SipC, with opposing 

yet cooperative, actin polymerizing and depolymerizing activites renders the immune escape 

(McGhie et al., 2009). 

 

Emerging themes on the immune functions of the nuclear actin cytoskeleton 

 

The past two decades have witnessed the discovery of numerous mechanisms underpinning the 

linkages between the cytoskeleton and plant immune system (Figure 1-6). However, like many 

pieces of research on other fields of the cytoskeleton, these studies mainly focused on the 

cytoskeleton – including its associated proteins – in the cytoplasm, leaving the nuclear 

cytoskeleton not well explored. In fact, according to the studies using animal systems, the 

molecular functions of proteins associated with the nuclear cytoskeleton are sometimes different 

from those from the cytoplasm. For example, the nuclear actin also forms the filament 

configuration, but this short nod-like F-actin can interact with RNA polymerase to form a 

transcriptional regulatory complex (Kelpsch and Tootle, 2018), a novel activity compared to the 
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similar cytoplasmic architecture. Besides, other nuclear-exclusive functions of actin include but 

are not limited to facilitating chromatin remodeling, chromatin movement, histone deacetylation, 

DNA damage repair, and maintenance of the nuclear mechanical structure (Kelpsch and Tootle, 

2018). As both actin and most of the actin-associated proteins exist in the nucleus, it is 

hypothesized that the actin dynamics is empowered by a different set of biological significance in 

the nucleus.  

 

While there is currently no study supporting a particular immune function of the nuclear 

cytoskeleton at the mechanism level, there is indeed genetic evidence suggesting that ADFs, as 

a family of actin-binding protein introduced above, contribute to functions that support pathogen 

resistance in the nucleus. First, Arabidopsis ADF4 contributes to the robust transcription of the 

NB-LRR protein RPS5, which can be further regulated by ADF4 phosphorylation (Tian et al., 2009; 

Porter et al., 2012); however, its cytoplastic function as a mediator of actin 

severing/depolymerization cannot explain such activity. Second, in another study, it was reported 

that ADF4 genetically contributes the resistance against powdery mildew exclusively when it is 

imported into the nucleus (Inada et al., 2016). While the evidence is relatively indirect, the 

framework exists to further define and conceptually link the role of the cytoskeleton in almost 

every step of plant immune response, from pathogen perception to the regulation of the immune 

transcriptome. This work is particularly described in Chapter 3 of this dissertation, where my study 

revealed that ADFs control pro-immune transcription by directly interacting with WRKY 

transcription factors. 
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Chapter 2: Implicit Laplacian of Enhanced Edge (ILEE): An unguided algorithm for 

accurate and automated quantitative analysis of cytoskeletal images 

(The chapter is revised from Li et al., 2021, a preprint release under submission process.) 

 

Chapter abstract 

 

The eukaryotic cytoskeleton plays essential roles in cell signaling, trafficking, and motion. As 

recent work explored and discovered an emerging link between cytoskeleton dynamics and plant 

immunity, it becomes more important to utilize quantitative analysis of cytoskeletal fluorescence 

images as a standard approach to define cytoskeletal function and correlate with immune process. 

However, due to the uneven spatial distribution of the cytoskeleton, including varied filament 

shape and unstable binding efficiency to staining markers, these approaches may result in 

inaccurate cytoskeletal segmentation. Additionally, quantitative approaches currently suffer from 

human bias, as well as information loss caused by z-axis projection of raw images. To overcome 

these obstacles, I developed Implicit Laplacian of Enhanced Edge (ILEE), a cytoskeletal 

component segmentation algorithm, which uses as 2D/3D-compatible, unguided local 

thresholding approach, therefore providing less biased and more stable and accurate results. 

Empowered by ILEE, I constructed a Python library, namely ILEE_CSK, for automated 

quantitative analysis of cytoskeleton images, which computes cytoskeletal indices that cover 

density, bundling, severing, branching, and directionality. Compared to various classic 

approaches, the ILEE generates descriptive data with higher accuracy, stability, robustness, and 

efficiency, providing a superior platform for the evaluation of cytoskeletal organization and status. 

My study also revealed that the treatment of a virulent bacterial pathogen on Arabidopsis leaf 

causes a multi-aspect regulation of cytoskeleton dynamics, which provides a foundation to 

investigate and define the link between plant immunity and cytoskeleton. In addition to the 
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analysis described herein, I have released ILEE_CSK as an open-source library for the 

community, together with Google Colab pipelines, as a convenient and user-friendly access that 

requires no programming knowledge or specific computer requirements for usage. 

 

Introduction and rationale 

 

As discussed in Chapter 1, plants, as well as other higher eukaryotes, have evolved complex 

mechanisms to organize and co-regulate a multitude of cellular processes, including growth, 

development, movement, cell division, and response to environmental stimuli. For example, 

plants coordinate growth with resistance against abiotic and biotic stress by engaging numerous 

systemic signaling processes, among which the cytoskeleton plays an indispensable role (Lian et 

al., 2021). To facilitate these processes and ensure robust and highly specific responses to 

changes in cell status, plants utilize two types of cytoskeleton – microfilaments and microtubules 

– to connect intercellular signaling to extracellular environments. Structurally, both of them are 

chains dynamically assembled from monomeric subunits named global actin and tubulin, 

respectively, and are involved in ceaseless events of polymerization/depolymerization, bundling, 

severing, and branching (Blanchoin et al., 2014; Brouhard, 2018), which is commonly referred to 

as “cytoskeletal dynamics”. Therefore, the foundational step to explore the relationship between 

the plant immunity and the cytoskeleton is to define and observe the status of cytoskeleton 

dynamics – the behavior of cytoskeleton – during an immune event.  

 

Over the past several decades, confocal microscopy-based methods using fluorescence markers 

have been developed to monitor changes in cytoskeletal organization (Melak et al., 2017). While 

showing advantages in real-time observation and intuitive visual presentation, these approaches 

possess critical limitations – namely, they are subject to interpretation from captured images, 

which potentially involves human bias. As a step to remedy this limitation, the emergence of 
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computational algorithm-based analyses offers a solution to describe the quantitative features of 

cytoskeletal architecture with reduced human bias. However, while early studies introduced the 

concept of using generalizable image processing pipelines (Lichtenstein et al., 2003; Shah et al., 

2005) to transfer the task of evaluation away from the user and into a series of computer-based 

quantitative indices, several key bottlenecks emerged. First, most of the quantitative algorithms 

described to date are limited to 2D images. As a result, these approaches require the user to 

manually generate z-axis projections from raw data, resulting in an incredible amount of 

information loss, especially within the perpendicular portion of the cytoskeleton. Second, many 

approaches require users to manually set the threshold to segment cytoskeletal components from 

the images, resulting in sampling bias. Lastly, the accuracy and robustness of current algorithms 

greatly varies among different types of biological samples. This latter hurdle imposes a 

considerable disparity in the algorithm performance for plants (usually with curvy and spherical 

cytoskeleton) and animal (usually straight and complanate) samples, which compromises the 

performance of some advanced cytoskeleton analysis algorithms (Liu et al., 2020, 2018; Alioscha-

Perez et al., 2016) when directly applied to plant cell images. In fact, while sample source greatly 

impacts our ability to evaluate the features of cytoskeletal function across all eukaryotes, the vast 

majority of current approaches are developed based on cytoskeletal images from animal cells, 

which indicates potential systemic bias when applied to other types of image samples, such as 

plant. 

 

Previous work described the development of a global-thresholding-based pipeline to define and 

evaluate two key parameters of cytoskeleton filament organization in living plant cells: cytoskeletal 

density, defined by occupancy, and bundling, defined by statistical skewness of 

fluorescence(Higaki et al., 2010). Interestingly, while it utilizes manual global thresholding (MGT), 

which can potentially introduce a certain level of user-bias, it still outperforms many standardized 

adaptive/automatic global or local thresholding approaches such as Otsu (Otsu, 1979) or Niblack 
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(Niblack, 1985). As a further advance of this early work, Higaki and colleagues developed the use 

of coefficient of variation (CV) of fluorescence to quantify the level of filament bundling, which 

improved the robustness and utility of the algorithm(Higaki et al., 2020). However, not only does 

this pipeline consume a considerable amount of time and effort from users for massive sample 

processing, but it also leaves unaddressed two key issues of rigor in image processing and 

analysis: information loss and human bias.  

 

In the current study, I led a team and developed implicit Laplacian of enhanced edge (ILEE), a 

2D/3D compatible unguided local thresholding algorithm for cytoskeletal segmentation and 

analysis, which is based on the native value, first-order derivative (i.e., gradient), and second-

order derivative (i.e., Laplacian) of the cytoskeleton image altogether (see Figure 2-1). The 

research described herein supports ILEE as a superior quantitative imaging platform, one that 

overcomes current limitations related to information loss through dimensional reduction, human 

bias, and inter-sample instability. As shown, ILEE can accurately process cytoskeleton samples 

with a high dynamic range of fluorescence brightness and thickness, such as live plant sample. 

 

As a key advance in the development of ILEE, I further established an ILEE-based Python library 

for the fully-automated quantitative analysis of 12 cytoskeletal indices within 5 primary classes: 

density, bundling, connectivity, branching, and anisotropy. This platform not only enables the 

acquisition and evaluation of key actin filament parameters with high accuracy from both projected 

2D and native 3D images, but also improves the accessibility to a broader range of biologically 

relevant states, including polymerization/depolymerization, bundling, severing, branching, and 

directional regulation. The library, ILEE_CSK, is publicly released at GitHub 

(https://phylars.github.io/ILEE_CSK/). In addition, I developed the ILEE Google Colab pipelines 

for the one-stop data processing, visualization, and statistical analysis, which is a convenient and 

user-friendly interface that requires no programing experience or computational device.  
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Figure 2-1: ILEE pipeline and the demonstration of cytoskeletal indices. A, ILEE is an adaptive 
local thresholding approach that applies to both 2D and 3D data structures, with an output of 13 
cytoskeletal indices. B, Schematic diagram of the ILEE algorithm. ILEE requires a sample image with 
enhanced edge gradient, a computed gradient threshold, and an implicit Laplacian smoothing 
coefficient, K2, to generate a binary image and skeletonized image for index computation. Z-axis 
maximum projection (red box) is only conducted in the 2D mode. C, Visualized demonstration of ILEE 
performance. Raw data, binary image generated by ILEE, and visualization of selected data, by both 
2D and 3D data structure are shown. TDT, total distance transformation map, used to compute all 
diameter indices; skeleton NCE, non-connected elements of skeleton image with each element in 
different color, used to calculate severing activity; branching, skeleton image with each branch in 
different color and each node by black cross; anisotropy, local anisotropy level, shown as length of red 
lines, and direction of first eigen vector, shown as the direction of red lines. Scale bar = 20μm. 
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Results 

 

The ILEE pipeline 

Raw images generated by laser scanning confocal microscopy are typically obtained through 

detecting in-focus photons by a sensor from each resolution unit on a given focal plane. Since the 

cytoskeleton is a 3D structure which permeates throughout the cell, current approaches to capture 

filament organization and architectural parameters rely on pixel scanning of each plane along the 

z-axis, independently, at regular intervals within a given depth, and reconstruction into 3D images. 

However, due to limited computational biological resources, most studies have exclusively 

employed the z-axis projected 2D image, which results in substantial information loss, as well as 

systemic bias in downstream analyses.  

 

In our newly developed algorithm, I integrated both 2D and 3D data structures into the same 

processing pipeline to ameliorate the aforementioned conflict (Figure 2-1A). In short, this pipeline 

enabled automatic processing and evaluation of both traditional 2D and native 3D z-stack image 

analysis. As shown in Figure 2-1B, cytoskeleton segmentation using ILEE requires 3 inputs: an 

edge-enhanced image, a global gradient threshold that recognizes the edges of potential 

cytoskeletal components, and the Laplacian smoothing coefficient K (described below). With 

these inputs, a local threshold image is generated via ILEE, and the pixels/voxels with values 

above the threshold image at the same coordinates are classified as cytoskeletal components. 

The output of this is the generation of the binary image (Figure 2-1C). Once acquired, the binary 

image is further skeletonized (Lee et al., 1994) to enable the downstream calculation of numerous 

cytoskeleton indices, the sum of which comprises the quantitative features of cytoskeletal 

dynamics (Figure 2-1C). Additionally, because the 2D and 3D modes share a common workflow, 

all of the calculated cytoskeleton indices also share the definition for both modes, regardless of 

the difference in dimensional spaces. This additional feature enables a horizontal comparison of 
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both modes by the user, which will significantly contribute to the community by providing massive 

image datasets for further examination, and comparison through the open-source library. In 

general, the ultimate goal of this approach, and resultant algorithm, is to construct a pipeline that 

enables the automated detection of the eukaryotic cytoskeleton from complex biological images 

in an accurate and unbiased manner. 

 

Identification of coarse background 

One of the central problems of automated cytoskeletal image processing is how to accurately 

recognize cytoskeletal components – a task that is extremely challenging because object pixels 

(i.e., cytoskeleton components) generally have a high dynamic range of signal intensity within and 

among individual samples, due to varied bundle thickness, the concentration of fluorescent dye, 

and its binding efficiency. As a framework to further understand this challenge, the value of a 

single pixel captured using confocal microscopy is conceptually comprised of three components: 

(1) the true fluorescence, that which is emitted by the dye molecules within the pixel, (2) the 

diffraction signal transmitted from neighboring space, and (3) the ground noise generated by the 

sensor of the imaging system (Figure 2-2A). During confocal imaging, the ground noise is a 

constant due to fixed setting of photon sensors, while the diffraction signal is positively correlated 

with the local fluorescence. Therefore, an ideal actin segregation algorithm will be a local 

thresholding approach that refers to both ground noise and local signal intensity.  

 

In order to identify ground noise and locate the background for downstream analyses (e.g., fine 

thresholding), I designed an algorithm that calculates a global threshold using the morphological 

features of the ground noise; namely, non-connected negative element scanning (NNES; Figure 

2-2B). In brief, NNES calculates the total number of non-connected negative elements at different 
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global thresholds, resulting in the identification of a representative value with a maximum non-

connected negative element count (Figure 2-2B, (i)). The global threshold for the coarse 

background (Figure 2-2B, (iii)) will be determined using a linear model trained by the 

representative value rendered by NNES and manual global thresholding (MGT), a global 

threshold determined by operators experienced in cytoskeleton image analysis (Figure AA-1 and 

AA-2). NNES can maintain stability and accuracy over different samples that vary in the 

distribution of native pixel value, because ground noise is the image component with the lowest 

Figure 2-2: NNES global thresholding. A, the conceptual decomposition of confocal fluorescence image 
of cytoskeleton. An Arabidopsis leaf confocal microscopic image of actin, as an example of the eukaryotic 
cytoskeleton, can be decomposed into 3 components: ground noise, the mechanical noise of the sensor 
regardless of true fluorescence signal, diffraction light, the unavoidable diffraction signal of fluorescence 
component around, and true actin signal. They correspond to noise filtered by coarse background, noise 
additionally filtered by ILEE, and segmented actin components in the algorithm. B, The performance of 
NNES. The curve reflecting the NNE (negative non-connected component) count when certain global 
thresholding is applied to the raw images of 30 randomly selected sample in the database of my Lab. They 
have a very smooth shape, which is easy to detect the peak as a feature value. The demonstration of filtered 
background of position (i), (ii), (iii), and (iv) are shown above, where (iii) is adopted. The black area 
surrounded by colored area is the foreground information to be further processed.  
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value that is subject to a normal distribution and generally does not interfere with the actual 

fluorescence signal. Another accessible method is to directly use the peak-of-frequency 

brightness of the image as a representative value to train a model. However, this approach is less 

accurate because the interval near the theoretical peak is always turbulent and non-monotone, a 

limitation potentially due to the pollution of diffracted light (Figure AA-1).  

 

Cytoskeleton segmentation by ILEE 

The core strategy of ILEE is to accurately identify the edge of all cytoskeletal filament components 

and apply an implicit Laplacian smoothing (Desbrun et al., 1999) on the selected edge, which 

generates a threshold image that refers to high gradient areas and smoothly connects the 

selected edge of potential cytoskeleton fractions (Figure 2-3A). As illustrated in Figure AA-3A, the 

general local threshold trend changes as a function of the baseline values of the cytoskeleton 

edges. This is because ILEE selectively filters out high-frequency noise while preserving salient 

geometric features of individual actin filaments, in leveraging the spectral characteristics of 

Laplacian operators (Figure AA-3B). Thus, ILEE can filter the background and noise regardless 

of the general local brightness level, and it therefore does not require an operating kernel that 

may restrict the performance at varying filament thickness. Additionally, the edge of the 

cytoskeletal component is smoothed and elongated using a significant difference filter (SDF; 

Figure AA-4) and a Gaussian filter, the sum of which serves to enhance the continuity of the edge 

and contributes to the accuracy of edge detection (Figure 2-1B and 3A). Based on this process 

of the computational pipeline, I named this algorithm Implicit Laplacian of Enhanced Edge (ILEE).  

 

The core concept of ILEE was proposed by Dr. Yiying Tong and Ze Zhang, the collaborators in 

my team. The algorithm builds a linear system based on Laplacian operators to achieve local 
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adaptive thresholding for edges of cytoskeletal components (see Methods for detail). To do this, 

we first calculated the gradient of the whole image. Then, based on an estimated global threshold 

Figure 2-3: Cytoskeletal identification by ILEE. A, Visual demonstration and summarized 
mathematical process of ILEE. On the left, the visualized intermediate images of ILEE process are 
presented; on the right, an abbreviated mathematical process of ILEE is shown (see Method for detailed 
computational process). Grey, image pre-processing; blue, ILEE in a narrow sense; yellow, post 
processing. B, The value of implicit Laplacian smoothing coefficient K influences ILEE performance. 
When K is small (e.g., 2.5), the rendering of faint and thin filaments is accurate, but the edge of thick 
filaments tends to be omitted. Conversely, when K is large (e.g., 200), rendering of thick filaments is 
accurate but thin and faint filaments are omitted. I adopt a solution to use a full outer join image of a fixed 
K1 = 2.5, and an estimated universal K2 for an entire biological batch of samples. C, Optimal K2 estimation 
model. I established a regression model to compute any universal K2 for a given sample batch (see Figure 
AA-8 for detail). To maximize the training sample pool, 7 images with manually portrayed ground truth 
binary image (shown as single dots) are interpolated by a new resolution of different folds to the original 
(shown as different color) into 42 samples that cover the general range of actin thickness by pixel. The 
adopted K2 are computed as one that render an average deviation rate of distance transformation (DT) 
compared to the ground truth, and a non-linear regression estimation model is trained using the mean of 
top 5% DT values and these K2. For input sample pool for ILEE, the mean of top 5% DT will be calculated 
by Niblack thresholding.  
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of the gradient magnitude (݃௧௦) over the image, we identified pixels above ݃௧௦ as boundary 

elements (ܫௗ) with high gradient magnitude to preserve during implicit Laplacian smoothing 

(Figure 2-3A, 2.1). Accordingly, we constructed a selection matrix S, a diagonal matrix with i-th 

diagonal entry being 1 if the i-th pixel has a norm of the gradient above ݃௧௦. The output of this 

approach is marking all of the elements to be kept as the boundary of the cytoskeleton filament, 

which serves as a guidance for local thresholding. Using this approach, ܫௗ  can be 

mathematically redefined as shown in Figure 2-3A, equations 2.2.1 and further 2.2.2, where L is 

the Laplacian matrix and K, or implicit Laplacian smoothing coefficient, is a weight that adjusts 

the influence of the Laplacian operator. The local threshold image can therefore be rendered by 

solving the linear equation shown in Figure 2-3B, 2.2.3. A detailed mathematical algorithm is 

introduced in Methods. 

 

For a given image input, the performance of ILEE depends on two parameters: ݃௧௦, which 

defines the edge, and K, which determines the weight of detail (i.e., high-frequency components) 

to be filtered. To calculate the optimal ݃௧௦ for an input image, the pixel brightness values of the 

area identified as coarse background by NNES are used. Since the ground noise is subjected to 

a normal distribution, I hypothesized that there is a certain deducible statistical relationship 

between the image gradient, defined by Scharr operator (Scharr, 2000), and the native brightness 

of pixels within the coarse background. Using a normal random array that simulates the noise 

with a 2D or 3D data structure, I demonstrated that the distribution of the background gradient 

magnitude is also normal-like, and both mean (ீߤ) and standard deviation (ீߪ) of the gradients 

are directly proportional to the standard deviation of their native pixel values (ߪ ), and I 

calculated the proportionality coefficient (see Figure AA-5). For 3D mode, since the pixel size on 

the x- and y-axis is different from that of the z-axis, the proportionality coefficient of ீߤ and ீߪ 

over ߪ will vary for different ratios of the x-y unit : z unit (see Figure AA-6). To solve this problem, 
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I simulated artificial 3D noise images and trained a multi-interval regression model that accurately 

(R2 > 0.999) calculates the proportionality coefficient of ீߤ and ீߪ over ߪ for different x-y : z 

ratios of the voxel. Finally, using this approach and randomly selected actin image samples, a 

prediction model is established as ݃௧௦  = ீߤ   +  ݇൫ߪ൯ ∗ ீߪ , to determine the ݃௧௦ as ILEE 

input (Figure AA-7). 

 

To determine the appropriate setting of K, I first tested how different K values influence the result 

of the local threshold image (ܫ௧௦  of Figure 2-3A). As shown in Figure AA-8A, at the optimal 

݃௧௦, a low value of K generated an ܫ௧௦  that is highly consistent with the selected edge. When 

K increases, the total threshold image shifted towards the average value of the selected edges 

with increasing loss of detail. As for the resultant binary image, a relatively lower K enables the 

accurate recognition of thin and faint actin filament components, yet is unable to cover the full 

width of thick filaments. Conversely, a high K value covers thick actin filaments with improved 

accuracy, resulting in a binary image that is less noisy; however, thin and/or faint filaments tend 

to be omitted as pseudo-negative pixels (Figure 2-3B, Figure AA-8A). To overcome this dilemma, 

I applied a strategy using a lower ܭଵ and a higher ܭଶ to compute two different threshold images, 

as well as binary images, that focuses on thin/faint components and thick components, 

respectively. Then, I generated a full outer-join image that contains all cytoskeleton components 

in these two binary images. This approach led to improved recognition of actin with varying 

morphologies (see Figure 2-3B). 

 

As described above, K1 controls the performance of thin and faint filaments. Since the theoretical 

minimum thickness of distinguishable cytoskeletal components is approximately equal to one 

pixel unit, ܭଵ can be fixed to a constant to recognize the finest of cytoskeletal components from a 

complex and heterogeneous set of input samples. Using this combined approach, I identified an 
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empirical optimal ܭଵ of 2.5. However, since different image samples have different distributions 

of cytoskeleton thickness, ܭଶ , which controls the performance over thick filaments, must be guided 

according to the maximum thickness among all samples. To ensure that the algorithm described 

herein is fully unguided, my strategy was to estimate an appropriate ܭଶ  from an estimated 

maximum thickness using all samples from a single batch of experiments, including multiple 

biological replicates (if applicable). To do this, I used Niblack thresholding to first generate a 

coarse binary image (which is sufficiently accurate for the thickest portion of the filament) and 

from this, I calculated the mean of the top 5% of the Euclidian distance transformation (DT) values 

of all positive pixels (see Methods for additional information). Next, the top 5% means of all single 

images were averaged, which is used to estimate ܭଶ via a trained model using diverse samples 

with manual binary ground truth (Figure 2-3C and Figure AA-8B, C, D). All individual image 

samples of all groups in the same batch of experiment were processed through ILEE by this ܭଶ, 

and hence the bias of human input was avoided. When processing native 3D images, additionally, 

an alternative approach that uses a single K that balances the accuracy over thin/faint and thick 

filaments is provided, because the 3D ILEE can be time-consuming if MATLAB-based GPU 

acceleration (already employed by the library) is not applicable for individual users. 

 

Computational analysis of cytoskeleton indices 

For image library assembly, cytoskeletal indices are automatically calculated from the binary 

image generated by ILEE. As a substantial expansion from the previously defined cytoskeletal 

indices (e.g., occupancy, skewness, and CV)(Higaki et al., 2010, 2020), this study proposed 12 

indices (including 8 core indices; see Figure 2-4 for a visualized demonstration) within 5 classes. 

In short, these classifications describe and function as quantifiable features of cytoskeletal 

morphology and dynamics, and importantly, each of these are critical considerations within the 

context of complex biological samples (Figure 2-1A; see also Methods for detailed mathematical 
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definitions). It is worth noting that all of these indices require a certain level of image post-

processing (e.g., oversampling) to further enhance the accuracy, which is described in Methods. 

 

For the index class “density”, I developed a novel set of metrics to evaluate linear density, a 

feature that measures filament length per unit of 2D/3D space. For “bundling”, I developed two 

new, highly robust, indices referred to as diameter by total DT (diameter_TDT) and diameter by 

skeleton DT (diameter_SDT), both of which measure the physical thickness of filament bundles, 

in addition to the indirect indices skewness and CV, which estimate the relative bundling level 

Figure 2-4: Visualized demonstration of concepts of cytoskeleton indices. Major cytoskeleton 
indices involved in this research are explained by showing schematic cytoskeleton pieces representing 
high vs low value of the indices. Skewness/CV, as well as Diameter (TDT/SDT) have similar concept and 
reflect similar features of cytoskeleton image, with minor difference in their mathematical definition (see 
Methods in this Chapter); therefore, their demonstrations are merged.  
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based on statistical distribution of fluorescence intensity. For the class “connectivity”, I introduced 

two indices, total connected element and its derived index – severing activity, which estimates 

the severing events within per length unit of the cytoskeleton. This additional metric assumes that 

severing generates two visible cytoskeletal filaments, which is distinguishable from filament 

depolymerization. This is an important consideration in terms of the biological activity of the 

cytoskeleton, as it enables the decoupling of the impact of filament depolymerization and filament 

severing, key activities of the eukaryotic actin depolymerizing factor (ADF) and cofilin family of 

proteins(Tanaka et al., 2018). For the class “branching”, my algorithm is based on Skan, a recently 

developed Python library for graph-theoretical analysis of the cytoskeleton (Nunez-Iglesias et al., 

2018). To further explore the relationship between filament morphology and the biological activity 

of branching, I specifically designed an additional index, referred to as “branching activity”, which 

I define as the total number of additional branches emerging from any non-end-point node per 

unit length of filament. In total, this index measures the abundancy/frequency of cytoskeletal 

branching. Finally, the library is capable of estimating the level of directional cytoskeletal growth 

by indexing local anisotropy, which measures how local filaments tend to be directional or chaotic. 

This approach is adapted from an ImageJ plug-in FibrilTool (Boudaoud et al., 2014), but we 

expanded this algorithm to 3D with both numerical and visual output (Figure 2-1C), contributed 

by my collaborator Ze Zhang. 

 

ILEE displays high accuracy and stability over actin image samples 

To evaluate the performance of ILEE in terms of its accuracy and compatibility over diverse 

samples, I constructed a dataset of actin images from Arabidopsis leaves with diverse morphology, 

and compared ILEE with numerous traditional global and local thresholding algorithms, including 

MGT. First, to evaluate the accuracy of each algorithm in terms of filament segregation, I manually 



53 

Figure 2-5: ILEE shows superior accuracy and robustness over classic thresholding 
approaches. The manually portrayed binary ground truth of 7 visually diverse selected samples… 
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generated the ground truth binary image from each of the in planta collected samples, using a 

digital drawing monitor (Figure 2-5A, ground truth). Next, I used each of the ground truth binary 

images as a reference and compared the filament architecture obtained by ILEE, MGT, and 6 

additional adaptive thresholding algorithms. These additional thresholding algorithms include 

Otsu (Otsu, 1979), Triangle (Zack et al., 1977), Li (Li and Tam, 1998), Yan (Jui-Cheng Yen et al., 

1995), Niblack (Niblack, 1985), and Sauvola (Sauvola and Pietikäinen, 2000) (Figure 2-5). As an 

additional element of rigor, because pseudo-positive pixels can be obtained due to user bias 

during the generation of each of the ground truth images (even when the operator is experienced 

in the actin imaging field), I further analyzed and categorized each non-connected component of 

pseudo-positive pixel by its shape and connectivity to matched elements and identified the actin-

like pseudo-positive pixels as possible real actin components. 

 

As shown in Figure 2-5A (visualized demonstration), 4B (quantitative analysis), and 4C (bias 

analysis), ILEE offers a superior performance, with the highest rate of accuracy with low pseudo-

positive and  pseudo-negative occurrence, as well as the lowest bias over local filament thickness. 

It is noteworthy, however, that the adaptive global thresholding approaches (from Otsu to Yan) 

Figure 2-5 (cont’d) … were compared with binary images rendered by ILEE, MGT, 4 global thresholding 
algorithms (Otsu, Triangle, Li, Yan), and 2 local thresholding algorithms (Niblack and Sauvola). A, 
Visualized comparison of ILEE versus other approaches. Pixels with different colors are defined as green: 
match of rendered binary image and ground truth; blue: pseudo-negative, the pixels omitted by the 
algorithm; red, absolute pseudo-positive, the pixels that are rendered by the algorithm but not in the ground 
truth, and are not within a filament-shaped component; brown, actin-like pseudo-positive, the pseudo-
positive pixels within a filament-like component, which cannot be judged by high confidence. ILEE has the 
most accurate cytoskeleton segmentation.B, Quantitative comparison of pixel render demonstrating that 
ILEE has superior accuracy and stability across diverse samples. ILEE has the highest match rate and low 
and stable error rate, while MGT and Li also have acceptable performance. C, Comparison of distribution 
of distance transformation error. Single pixel errors of all 7 samples were merged and summarized as a 
violin plot. Red dashed line indicates no error, or results identical to the ground truth. ILEE has a symmetric 
and centralized distribution, indicating an accurate and unbiased filament segmentation. D, ILEE has 
accurate and robust computation of cytoskeletal indices. Nine indices computed using binary images 
rendered by different algorithms are compared with the ground truth. The index values are normalized to 
the fold of ground truth. Red dashed line indicates 1-fold, or identical to the ground truth. 
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tend to be relatively accurate when judging the thick and bright bundles of the cytoskeleton. 

However, these approaches are unable to capture faint filaments, and as a result, generate a high 

pseudo-negative rate. Conversely, both adaptive local thresholding approaches, Niblack and 

Sauvola, generate numerous block-shaped pseudo-positive elements, and fail to capture the 

near-edge region of thick filaments. For MGT and Li method, although they showed satisfactory 

match rate, as well as lower averaged pseudo-positive/negative rates, their performance are far 

less stable than ILEE (Figure 2-5B). 

 

As the next step in my analysis, I evaluated the accuracy and stability of cytoskeletal indices using 

ILEE versus other commonly used imaging algorithms. To do this, I first evaluated the ground 

truth indices from the manually generated binary images. In brief, quantitative measurements 

were collected from all methods and normalized by the relative fold to the result generated from 

the corresponding ground truth image. As shown in Figure 2-5D, ILEE showed improved stability 

compared to all other quantitative approaches and the highest accuracy for occupancy, skewness, 

CV, and diameter_TDT. However, in terms of the morphology-sensitive indices (i.e., linear density, 

severing activity, and branching activity), the ILEE algorithm did not fully conform with data 

collected from the ground truth binary images. Upon further inspection, I determined that this is 

because the manually portrayed ground truth images and ILEE results showed different 

tendencies in the judging the pixels in the narrow areas between two bright filaments (see 

Discussion). While other approaches displayed obvious, somewhat predictable, inaccuracies, the 

MGT and Li methods still generated satisfactory results, which echoes their performance in actin 

segmentation. However, the performance of these two algorithms among diverse and complex 

biological samples was not as stable as ILEE.  

 

In order to further evaluate the stability and robustness of ILEE performance, I continued to 

analyze the variance coefficient of all groups (Figure AA-9), uncovering that ILEE is the only 



56 

approach which simultaneously maintained high accuracy and stability. Next, I tested the 

robustness of ILEE and other approaches against noise signal disturbance by adding different 

levels of Gaussian noise to the image dataset (Figure AA10-12). Using this approach, it was 

observed that ILEE was still the best performing algorithm, maintaining stable and accurate 

results of image binarization and cytoskeleton indices against increasing noise. Taken together, 

these results demonstrate that ILEE has superior accuracy, stability, and robustness over MGT 

and other classic automated image thresholding approaches in terms of both cytoskeleton 

segmentation and index computation.  

 

ILEE leads to discovery of new features of actin dynamics in response to bacteria. 

My primary impetus for the creation of the ILEE algorithm was to develop a method to define 

cytoskeleton organization from complex samples, including those during key transitions in cellular 

status. For example,  our previous research has demonstrated that the activation of immune 

signaling is associated with specific changes in cytoskeletal organization (Henty-Ridilla et al., 

2014, 2013; Li et al., 2017a; Lu et al., 2020). Complementary to these studies, other research 

identified the temporal and spatial induction of changes in cytoskeletal organization as a function 

of pathogen (e.g., Pseudomonas syringae) infection and disease development (Guo et al., 2016; 

Kang et al., 2014; Shimono et al., 2016b). The sum of these studies, which broadly applied MGT-

based quantitative analysis of cytoskeleton architecture, concluded that virulent bacterial infection 

triggers elevated density (by occupancy) yet induced no changes in filament bundling (by 

skewness) in the early stages of infection. Since one of the major motivations herein was to 

develop an ILEE-based toolkit – supported by novel cytoskeletal indices – to investigate the 

process of pathogen infection and immune signaling activation, I collected raw data from a 
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Figure 2-6: ILEE library enables the discovery of actin dynamic features of bacteria infected leaf 
tissue. Leaves of the Arabidopsis actin marker line Col-0/GFP-fABD2 were inoculated with mock or a… 
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previous study (Lu et al., 2020) describing a bacterial infection experiment using Arabidopsis 

expressing an actin fluorescence marker (i.e., GFP-fABD2), followed by confocal imaging and 

data analysis by ILEE as well as MGT conducted by three independent operators (OA, OB, and 

OC) with rich experience in actin quantificational analysis (Figure 2-6). Additionally, because 

researchers sometimes apply a universal global threshold to all images from a batch of biological 

experiments to avoid tremendous labor consumption, I included this approach and aimed to 

observe its performance as well. In this experiment, the only categorical variant is whether 

sampled plants are treated with bacteria (EV) or not (mock). In total, nine indices that cover 

features of density, bundling, severing, branching, and directional order are measured and 

compared.  

 

The first concern is whether bias generated by MGT will influence the result and conclusion 

generalized from raw image samples of the experiment. I thereby analyzed the correlation of 

individual MGT values set by the three operators and found only weak correlation between 

different operators (Figure 2-6B), which indicates MGT bias indeed has the potential to impact 

Figure 2-6 (cont’d) … virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000 with empty 
vector (EV, identical to wild type); images (n = 28 for mock, n = 31 for EV) of epidermal cells were captured 
by laser scanning confocal microscopy at 24 hours post-inoculation (hpi). MGT and ILEE were applied to 
generate binary images and all indices were computed using ILEE_CSK. Double-blinded samples were 
provided to 3 operators OA, OB, and OC for comparison. OA additionally provides data using a universal 
threshold (OA-fix). A, Experimental schematic diagram. B, Corelative comparison of MGTs of individual 
samples determined by different operators. A very low correlation between each pair of operators indicates 
MGT has an increased risk of bias and is potentially inaccurate. C, D, E, F, G, H, L, M, N, Output indices 
occupancy, linear density, skewness, CV, diameter_TDT, diameter_SDT, severing activity, branching 
activity, and anisotropy, respectively. Blue, mock; orange, EV. Multiple comparisons are conducted using 
a t-test without family-wise error correction (because image samples themselves are ground truth for all 
methods). Groups without overlapping letters have p_value lower than 0.05. For n, a visual illustration of 
the concept of local anisotropy is attached, where each red line segment points to the “averaged” direction 
of actin growth in the local area and the length shows the intensity of consistency of the direction. I, J, K, 
Comparisons of different indices in bundling class. Skewness and CV have medium-weak correlation; 
diameter_TDT and diameter_SDT have strong correlation; diameter_SDT, as a representative of direct 
indicator, and CV, as a representative of indirect indicator, have literally no correlation. 
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quantitative results. Interestingly, while minor statistical discrepancies between MGTs by different 

operators are found in some indices (i.e., skewness and severing activity), most of the MGT 

results (both adaptive or fixed) shows the same trend as 2D ILEE, yet with far higher standard 

deviation, or lower stability (Figure AA-13A) over a certain biological treatment. This indicates that 

the historical data based on MGT should be majorly trustworthy despite the biased single data 

points, but an accurate conclusion must be based on high sampling number that balances the 

deviation of individuals. Since ILEE provides more stable results over biological repeats, I am also 

interested in whether it renders higher statistical power to identify potential significant differences. 

Therefore, I compared the p-values of t-tests conducted for each index (Figure AA-13B) and found 

that ILEE indeed has the superior statistical power to distinguish numerical difference over 

datasets. These aspects of evidence demonstrated ILEE as a better choice for actin segregation.  

 

Next, I attempted to understand whether different indices of the same class, particularly density 

and bundling, can reflect the quantitative level of the class in accordance, or instead show 

inconsistency. For density, I correlated the occupancy and linear density values of all methods 

over actin images of both mock and EV groups, and found that occupancy and linear density 

measurements are in high conformity, with a Pearson coefficient at 0.98 (Figure AA-14). 

Interestingly, while both demonstrate high positive correlation, 2D ILEE and MGT do not share 

the same numeric relationship. Moreover, 3D ILEE has a weaker correlation, potentially due to 

cavities introduced by the skeleton image involved in linear density calculation. For bundling 

indices, I was interested in their level of conformity because direct indices (based on binary shape) 

and indirectly indices (based on relative fluorescence intensity) are completely different strategies 

to measure bundling. Using the same approach of correlating analysis, I found that diameter_TDT 

and diameter_SDT indeed display strong positive correlation, while skewness and CV have 

merely medium-low correlation, which echoes the previous report demonstrating skewness and 

CV have different performance on the  bundling evaluation(Higaki et al., 2020). Unexpectedly, I 
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also found that CV (as a representative of indirect indices) and diameter-SDT (as a representative 

of direct indices) have a striking correlation of zero. This is perplexing, as it raises the question of 

whether skewness or CV should be regarded as an accurate measurement of bundling (see 

Discussion). This discrepancy is also reflected by the result of 3D ILEE, whose CV and diameter-

SDT over mock versus EV reveals to the converse results at significant difference. In general, 

these results indicated that the biological conclusion that DC3000 treatment renders increased 

actin bundling level should be reconsidered with further inspection.  

 

Last but not least, I sought to learn if additional features of plant actin cytoskeletal dynamics in 

response to virulent bacterial infection can be identified by the newly introduced indices and 

enhanced performance of ILEE. As shown in Figure 2-6D, significantly increased severing activity, 

local anisotropy, and decreased branching activity triggered by EV were observed, compared to 

the mock. At a minimum, these discoveries potentially lead to new biological interpretations, and 

as a result, may contribute to the identification of additional immune-regulated processes as a 

function of actin dynamics. However, while most of the 2D approaches were consistent and in 

agreement with the other indices, the severing activity estimated by 3D ILEE indicates a 

significant, but opposite, conclusion. After diagnosing the difference of each 2D ILEE and 3D ILEE 

sample, I concluded this is potentially due to information loss and misinterpretation by z-axis 

projection in the 2D-based approach. Therefore, it is not recommended to totally depend on the 

2D mode for the analysis of filament severing at the current stage; a solid, clear conclusion awaits 

more data and insight from the community in the future.  

 

ILEE has broad compatibility with various sample types 

Cytoskeleton imaging from live plant samples is arguably one of the most difficult types of images 

to evaluate due to the dynamic topology and uneven brightness of actin filaments. While I 

demonstrated that ILEE shows a superior performance over plant actin samples, ILEE and the 
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ILEE_CSK library are generally designed for non-specific confocal images of cytoskeleton and 

are therefore applicable to other types of samples. To investigate the compatibility of ILEE to other 

types of image sample, I tested ILEE on both plant microtubules(Faulkner et al., 2017) and animal 

cell actin images (Figure AA-15). Importantly, I found ILEE can process, with high fidelity and 

accuracy, both plant and animal cytoskeletal features. This is encouraging, as animal cells 

generally possess a high volume of straight actin filament bundles, and therefore Hough 

transform-based feature detection is commonly applied to facilitate and/or enhance the 

performance of cytoskeleton segregation accuracy. However, this approach has certain 

limitations; specifically, they neglect and/or miscalculate curvy cytoskeleton fractions(Liu et al., 

2020, 2018). With the advancement of ILEE, Hough transform will not be absolutely necessary, 

and the potential cytoskeleton indices that rigorously requires Hough transform can still utilize 

ILEE as a provider of binary image input for more accurate results.  

 

In addition, images of single animal cell sometimes contain “void background” – areas that are 

truly blank without any cellular component. This is different from plant tissue whose total image 

field is sample area, which may negatively influence the accuracy of the computed indices. To 

solve this issue and further support animal cell sample, I developed a single-sell mode in the 

ILEE_CSK, which identifies the effective cell area using the statistical features of the brightness 

histogram, and hence secures accurate index output.  

 

Finally, while ILEE was already tested on both of plant and animal image samples, the Github 

documentation website (https://phylars.github.io/ILEE_CSK/Help%20needed/) and ILLE_CSK 

main page are open for issue report (where ILEE cannot segregate cytoskeleton correctly). Such 

information greatly contributes to improving the compatibility of ILEE and the ILEE_CSK library in 

the future.  
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Discussion 

 

Herein, I described the creation of ILEE, an accurate, stable, and robust filament segregation 

algorithm for the unguided quantitative analysis of the organization of the eukaryotic cytoskeleton. 

As presented, this approach supports the in vivo analysis of both 2D and native 3D data structures, 

enabling an unbiased evaluation of cytoskeletal organization and dynamics. In addition to the 

development of key methods, I also generated a publicly available Python library that supports 

the automated batch processing analysis of 13 filament indices from 5 classes of morphological 

features of the cytoskeleton. As described above, my data indicate that ILEE shows superior 

accuracy, robustness, and stability over current cytoskeleton image analysis algorithms, including 

the widely employed MGT approaches(Higaki et al., 2010; Lu and Day, 2017). As a result of these 

newly developed approaches, I, together with my team, have developed an open-access library 

to conduct ILEE based cytoskeleton analysis, which eliminates limitations imposed by popular 2D 

MGT approaches, including the introduction of user bias and information loss. 

 

The gradient threshold (݃௧௦) defines the selected edge of actin filaments for implicit Laplacian 

transformation, the appropriateness of which greatly determines the performance of ILEE. To 

calculate ݃௧௦ without imposing a user-biased input, my strategy was to utilize feature values 

collected from NNES curve and human-guided MGT to train a prediction model for the rapid 

rendering of a coarse area of image background. Through this approach, I was able to deduce 

the corresponding ݃௧௦ by the mathematical relationship between the statistical distribution of 

the native pixel values and Scharr gradient magnitude of the coarse background (Figure AA-5, 6, 

7, and Methods). This step might first appear unnecessary, since, alternatively, the most straight-

forward strategy was to directly train a prediction model using the image gradient histogram and 

the human-determined ݃௧௦. However, as the gradient operator (see Methods) for any given 

object pixel is influenced by the values of surrounding pixels, the calculated gradient on the edge 
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of the background is highly impacted (overestimated) by the contrast of foreground (cytoskeleton) 

versus the background. In other words, the frequency distribution of the background gradient will 

change at elevated cytoskeleton fluorescence levels, even though the background per se does 

not. The outcome of this is a significant decrease in the accuracy of gained ݃௧௦. For this reason, 

I assert that ݃௧௦  should be mathematically deduced from a pre-determined region of 

background, rather than directly predicted via human-trained models, or calculated from a 

histogram of gradients using the pre-determined background. 

 

The data generated in this study demonstrate that ILEE generally shows dominant robustness 

and accuracy for most of the indices when comparing to the manually portrayed ground truth 

binary image, but there are 3 indices (linear density, severing activity, and branching activity) 

where ILEE renders stable yet dramatically lower output than those derived from the ground truth 

images (Figure 2-5D). Since such inclination is very stable, I suspected this is due to certain 

systemic “bias” of the ILEE algorithm. After inspecting the binary images generated by ILEE 

compared with the ground truth, I identified a potentially critical reason: ILEE is less likely to 

presume unconfident branches inside the narrow space between two bright filaments. As 

demonstrated by Figure AA-16, while the ground truth and ILEE binary image look very similar, 

their skeleton images, which represent their topological structure, show contrast discrepancy 

between two bundles of bright filaments. Considering their procedure of generation, I speculate 

this is because: (1), ILEE fully outer-joins the binary results by a lower ܭଵ and a higher ܭଶ (Figure 

2-3C), among which ܭଶ sacrifices the sensitivity to local filaments at high signal region to improve 

the sensitivity at low signal region, including the edge of thick filaments; and (2), human eyes tend 

to “hallucinate” imaginary filaments that do not statistically exist. Objectively speaking, there is no 

overwhelming evidence suggesting either 2D ILEE or the human eye is more accurate, as this 

comparison is conducted using 2D mode. However, 3D ILEE may solve this paradox because 
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most “adjacent” bright bundles are artifacts out of z-axis projection, which are distant enough in 

3D space to offer ILEE with a satisfactory resolution to split.  

 

For all indices, 2D ILEE agrees with MGT, while showing higher robustness and stability (Figure 

2-6). However, this is not always the case for 3D ILEE. To understand this inconformity, I 

investigated the ILEE 3D algorithm as well as the rendered binary and skeletonized images. 

Based on the observation, I propose three key assertions: (1) the result of the 3D mode is a more 

accurate reflection of the nature of the cytoskeleton, as compared with the output of the 2D mode; 

(2) due to the limited computational power of most users’ personal computers, I did not introduce 

the oversampled binary image to compute the skeleton image for topological analysis, and 

therefore the accuracy of ‘severing activity’ and ‘branching activity’ may be negatively influenced; 

and (3) because of the 3D-specific sphere-cavity structures in the skeleton images, I used a 

different method to calculate filament total length, which indicates all indices that involve the 

filament total length in 3D mode are not strictly comparable to those calculated in 2D mode. 

Although the imperfectness due to reason (2) and (3) are solvable by improving the computational 

power of mainstream PCs and the skeletonization algorithm performance in the future, it is 

currently difficult to make a definite conclusion whether the current 2D or 3D mode is more 

accurate. Nonetheless, the 2D mode is inevitably an inaccurate and biased approach based on 

the nature of the image projection.  

 

While ILEE has already remedied many disadvantages of traditional methods such as MGT, I, 

together with my collaborators, am still working to further advance the ILEE approaches presented 

herein. Our goal is to ultimately accomplish an analytic platform that provide highly trustworthy 

and informative results upon regularly updated ILEE algorithms as well as novel, representative 

indices. As such, I offer the following as an initial list of potential upgrades and applications to be 

integrated to our library:  
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 ILEE compatibility to x-y-t and x-y-z-t data, where t represents time. We are in the process of 

developing a 4D-compatible analysis of cytoskeletal dynamics that tracks filament 

organization over time. This approach will provide a temporal evaluation of supported indices 

with high accuracy and robustness.  

 Deep learning-based cytoskeleton segmentation algorithm with “foreign object” removal. As 

presented herein, ILEE enables the generation of trustworthy binary images in large scale, 

which enables the construction of deep learning models to identify cytoskeleton components 

from confocal images with potentially better performance. The deep learning-based approach 

is also the key to solve the ultimate problem of all current cytoskeleton segmentation 

algorithms (including ILEE), which is the inability to detect and erase non-cytoskeleton objects 

with high fluorescence, such as the nucleus and cytoplasm. As one approach to circumvent 

this limitation, we are testing the feasibility of introducing 35S:mCherry as a cell-permeable 

false signal. This will enable us to further train our models to recognize and exclude the non-

cytoskeleton-like foreign objects, to render ideally pure cytoskeletal datasets.  

 Vectorized intermediate image. After generating the difference image (i.e., ܫௗ, Figure 2-3A) 

using ILEE, one computational limitation of the current algorithm is the tradeoff between the 

demand for unlimited high-resolution imaging versus limited computational power. 

Accordingly, an ideal strategy we propose is to transfer the pixel/voxel image to a 2D vector 

image or 3D polygon mesh for index calculation. We are currently working towards enabling 

this function at an acceptable requirement of computational power to further enhance the 

accuracy of ILEE.  

 Regions of interest and organelle segmentation. There is currently a high demand in research 

of plant cell biology to quantify cytoskeletal parameters in stomatal guard cells, as well as 

additional plant cellular and subcellular architectures. In future releases of ILEE, we will 
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develop additional traditional and deep-learning approaches to enable recognition and 

selection of regions of interest, such as stomata, for various demand by the community.  

 

Methods 

 

Plant genotypes and growth 

Arabidopsis thaliana Col-0 expressing the actin cytoskeletal marker GFP-fABD2 (Lu et al., 2020) 

was used in this study. Arabidopsis seeds were stratified for 2 d in the dark at 4°C then sown onto 

soil. All plants were grown in a BioChambers model FLX-37 walk-in growth chamber 

(BioChambers, Manitoba, Canada) at 20°C under long day conditions (16 h of light/8 h of dark) 

with 60% relative humidity and a light intensity of approximately 120 mol photons m-2s-1.  

 

Bacteria growth and plant inoculation 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) strains were grown as previously 

described (Lu et al., 2020). Antibiotics used in this study include kanamycin (GoldBio #K-120-5, 

50 g mL-1), and rifampicin (GoldBio #R-120-1, 100 g mL-1). Bacterial treatments for actin 

dynamics analysis were conducted following previously described methods36. Briefly, 2-week-old 

Arabidopsis Col-0/GFP-fABD2 was dipped for 30s in Dip-inoculation solution (10 mM MgCl2 + 

0.02% Silwet-77) with DC3000 with empty vector (EV) at a concentration OD600 = 0.2 (ca. 2 x 107 

colony forming units/mL). Confocal images were collected at 24 hours post-inoculation.  

 

Mouse cancer cells sample 

Yale University Mouse Melanoma line YUMMER1.7D4 cells (EMD Millipore, #SCC243) were 

cultured in DMEM (ATCC # 30-2006) supplemented with 10% FBS (Gibco #10437-028), 1% Pen-

strep (ThermoFisher, #15140122), and 1% NEAA (Gibco,  #11140035). For staining actin stress 
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fiber, approximate 10,000 cells were seeded onto a glass coverslip maintained in a six-well plate 

overnight. First, semiconfluent cells were fixed with 3.7% formaldehyde for 15 min at RT, washed 

three times with PBS, then blocked in PBS supplemented with 2% BSA and 0.1% Triton for one 

hour at RT. Next, cells were incubated with 100 nM rhodamine-phalloidin (Cytoskeleton Inc, 

#PHDR1) in blocking buffer for 30 minutes at RT in dark, then washed with PBS three times each 

for 5 min with gentle shaking at RT. Stained cells on the coverslip were mounted in ProLong Glass 

Antifade Mountant with DAPI (ThermoFisher, #P36982). Slides were cured overnight at room 

temperature and were then imaged. 

 

Confocal microscopy 

For plant leaf actin images, 2-week-old Col-0/GFP-fABD2 plants were used for data collection 

and analysis. Images of epidermal pavement cells and guard cells were collected using laser 

confocal scanning microscope (Olympus FV1000D) by obtaining z-series sections at 0.5 µm 

intervals. Optical setting: 65x/1.42 PlanApo N objective with a 488 nm excitation laser and 510-

575 nm emission filter. Images were collected at a resolution of 800 x 800 x 25 (x-y-z) and a 12-

bit dynamic range. Voxel size was 0.132 μm at the x- and y-axis and 0.5 μm at the z-axis. For 

animal cell actin images, YUMMER1.7D4 stained by rhodamine-phalloidin were sampled by the 

same confocal system. Optical setting: 100x/1.40 UPLSAPO objective with a 559 nm excitation 

laser and 570-670 nm emission filter. Images were collected at a resolution of 800 x 800 x 10 (x-

y-z) with voxel size of 0.039 μm at the x- and y-axis and 0.16 μm at the z-axis 

 

Manually portrayed ground truth binary image 

Seven raw projected images of 400x400 pixel size that have diverse visual appearance (e.g., 

actin density, shape, thickness, fluorescence brightness) were selected from the actin image 

database of my lab. Using a pen-drawing display (HUION KAMVAS 22 Plus, GS2202) and GIMP, 

we enhanced the brightness of low-value pixels to clarify the actin structure and carefully 
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portrayed the actin component of the selected image sample. The portrayed layer was extracted 

and transferred to binary format for further evaluation.  

 

Double-blind MGT analysis 

For the mock versus P. syringae-inoculated sample pool, we erased the sample name and 

randomized the order and distributed them to three independent scientists with rich experience in 

cytoskeleton analysis (referred to as OA, OB, and OC) to let them determine the global threshold 

value of each sample manually using the approach described previously35. Once completed, we 

restored the grouping of the samples for batch analysis. We use Python to mimic the MGT pipeline 

generally conducted by ImageJ after the determination of a specific thresholding value. OA also 

provided a universal threshold value (referred to as OA_fix) that applies to all samples as a 

commonly used fast MGT approach.  

 

Statistical analysis and data visualization 

All data analysis was conducted in the Python 3.8 environment and was described in figure 

legends. 

 

Determination of K2 for sample batches 

For both 2D and 3D modes of ILEE, each 12-bit single-channel 3D image ݔ)ܫ, ,ݕ  in a batch of (ݖ

samples was transferred into 2D image ܫ ,ݔ)  by z-axis maximum projection, where each (ݕ

pixel ܫ ,ݔ) (ݕ = max{ݔ)ܫ, ,ݕ ݖ|(ݖ ∈ ܰା, ݖ < {௫ݖ ܫ  .  was processed by a Niblack 

thresholding function16 (library API reference [1]) to render ܫ௧௦(ݔ,  with parameter k = -0.36 ,(ݕ

and ݁ݖ݅ݏ_ݓ݀݊݅ݓ = (݈ 25)ݐ݊݅ 2 + 1, where ݈ is the mean of x and y resolution of ܫ . A binary 

image defined as ܫ௬(ݔ, (ݕ = {1, ܫ ݂݅ ,ݔ) (ݕ > ,ݔ)௧௦ܫ ;(ݕ 0, {݁ݏ݈݁  was generated. The 

binary image was processed through Euclidean distance transformation (library API reference 
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[2]), and the mean of the highest 5% values were used as the input of the K2 calculation function 

(see Figure 2-3) that outputs individual recommended K2. Finally, the mean of all individual K2 will 

be output as the recommend K2 for the total batch. 

 

ILEE 

An abbreviated workflow of ILEE is illustrated in Figure 2-3B. Here, we describe the overall 

process in further detail. For 2D mode, input image structure is (ݔ݅)ܫ = ,ݔ)ܫ (ݕ =

max{ݔ)ܫ, ,ݕ ݖ|(ݖ ∈ ܰା, ݖ < (ݔ݅)ܫ ,௫}. For 3D modeݖ = ,ݔ)ܫ ,ݕ  is treated by a significant ܫ ,First .(ݖ

difference filter (SDF; Figure AA-4) to render ܫௌி , where: 

 

In other words, it substitutes a pixel by the mean of the 8 adjacent pixels if the absolute difference 

between it and that mean is higher than 2-fold of the standard deviation of the surrounding pixels. 

Then, ܫௌி  is input to a discrete gaussian filter with a 3x3(x3) weighting kernel at 0.5 = ߪ, to render 

ܫ = ௌிܫ)ݏݏݑܽܩ ), which is the smoothed pre-processed image. Since confocal microscopy has 

different resolutions on x/y and z axis (hereby named as ܷ௫௬ and ௭ܷ), we adjusted the weighting 

kernel from ܱீ௨௦௦ to ܱீ௨௦௦
ᇱ  in 3D mode particularly by a scaling operator, as below:  
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From ܫ , the gradient magnitude image G is rendered through Scharr operator as: 

 

for 2D mode, or: 
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for 3D mode. Next, to calculate the gradient threshold (݃௧௦) as an input for ILEE, a global 

threshold ݐ to determine the coarse background (ܫ, as flattened image) is calculated by the 

NNES (non-connected negative element scanning) function that satisfies: 
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If I is processed using the 2D mode, as demonstrated previously (see Figure AA-5), the statistical 

mean and STD of gradient magnitude of ܫ .ீߤ)   and ீߪ. , respectively) are univariate 

proportional functions of the STD of ܫ, ߪ, not influenced by the mean of ܫ. Particularly, ீߤ 

and ீߪ, of the coarse background area of the gradient image is:  

 

.ீߤ =  ߪ 0.8542

.ீߪ =  ߪ 0.4469

 

With these, we established a ݃௧௦ estimation model, where ݃௧௦ = ீߤ. + k (ߪ)  ீߪ. Using 

the optimized parameters described in Figure AA-7, ݃௧௦  is deduced as: 

 

k(ߪ)  =  ߪ 0.040018 

݃௧௦ = ீߤ. + k(ߪ) ீߪ. 

 

If I is processed by the 3D mode, the inconformity of ܷ௫௬ and ௭ܷ will not only impact the weighting 

of Scharr operator, but also influencing the proportional coefficient of ߪ  to ீߤ  and ீߪ . We 

simulated the accurate mathematical relationship between the proportional coefficient ݇௦  and 

௭ܷ/ܷ௫௬ (see Figure AA-6), so ݃௧௦ for 3D can be calculated as: 
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.ீߤ  = ݇௦.ఓ ߪ 

.ீߤ = ݇௦.ఙ ߪ 

k(ߪ)  =  ߪ 0.040519  

݃௧௦ = ீߤ. +  .ீߪ (ߪ)݇

 

The total process above to computer ݃௧௦ is referred as function ݃௧௦ . ܫ)݁ݐܽ݉݅ݐݏ݁ ,  ) inܫ 

Figure 2-3A (1.3).  

 

The critical step to generate the threshold image of the input sample I is implicit Laplacian 

smoothing. This algorithm builds a linear system using the Laplacian operator to achieve local 

adaptive thresholding based on edges of cytoskeletal components. Leveraging the spectral 

characteristics of discrete Laplacian operators, we could filter out high-frequency components 

(aka, high fluorescence fractions of cytoskeleton) while preserving the low-frequency salient 

geometric features of background fluorescence. First, an edge image is defined as ܫௗ(ݔ݅) =

,(ݔ݅)ܫ (ݔ݅)ܩ݂݅ > ;ݏ݁ݎℎݐ݃ 0, ௗሬሬሬሬሬሬሬሬሬ⃗ܫ ௗ into a flattened image vectorܫ but we transform ,݁ݏ݈݁ , 

and hence it can be further be represented as: 

 

ௗሬሬሬሬሬሬሬሬሬ⃗ܫ  = S ܫሬሬሬሬሬሬሬ⃗  

 

where S is a (sparse) selection matrix, which is a diagonal matrix with i-th diagonal entry being 1 

if the i-th pixel has a gradient above ݃௧௦. 

 

Next, according to the concept of Laplacian operator, we constructed the (sparse) Laplacian 

matrix L that satisfies:  
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where the Laplacian operators in different modes are defined as: 

 

Therefore, we can establish an implicit Laplacian linear system that targets the edge: 

 

ܮ) + ௧௦ሬሬሬሬሬሬሬሬሬሬ⃗ܫ (ܵ݇ = ௗሬሬሬሬሬሬሬሬሬ⃗ܫ  = S ܫሬሬሬሬሬሬሬ⃗  

 

where ܫ௧௦ሬሬሬሬሬሬሬሬሬሬ⃗  is the unknown to be solved by conjugate gradient method and restored to 2D/3D 

array ܫ௧௦ , and K is a weight that adjusts the influence Laplacian operator has on the result (see 

Figure 2-3B). 
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Finally, a difference image ܫௗ  is calculated as ܫௗ = ܫ −  ௧௦. To further clean the noise, aܫ

temporary binary image ܫ௬.௧(ݔ݅) = {1, (ݔ݅)ௗܫ ݂݅ > 0; 0,  is generated and the sizes {݁ݏ݈݁

of all positive connected component (element) are counted. An adjusted difference image ܫௗ_ௗ 

is generated by lowering the values of potential noise into the mean of negative pixels: 

 

ௗ_ௗܫ = ቊ
,(ݔ݅)ௗܫ  ݁ݖ݅ݏ ݐ݈݊݁݉݁ ݂݅  ≥ 3 

(ݔ݅)ௗܫ ห (ݔ݅)ௗܫ൫݊ܽ݁ܯ  < 0), ݁ݏ݈݁
 

 

Using ܫௗ_ௗ, the various versions of the binary image for computation of different indices are 

calculated as: 

 

(ݔ݅)௬ܫ = {1, (ݔ݅)ௗ_ௗܫ ݂݅ > 0; 0,  {݁ݏ݈݁

(ݔ݅)௬.௩௦ܫ = {1, ((ݔ݅)ௗ_ௗܫ)ଷ,ଷݎ݁ݐ݊ܫ ݂݅ > 0; 0,  {݁ݏ݈݁

 

for the 2D mode, where ݎ݁ݐ݊ܫଷ,ଷ (ܫௗ) is an oversampled image by bicubic interpolation whose 

resolution on both x- and y-axis are upscaled for 3 folds, or 

 

(ݔ݅)௬.ܫ = {1, (ݔ݅)ௗܫ ݂݅ > 0; 0,  {݁ݏ݈݁

(ݔ݅)௬ܫ = {1, ((ݔ݅)ௗܫ)ଵ,ଵ,ଵ/ݎ݁ݐ݊ܫ ݂݅ > 0; 0,  {݁ݏ݈݁

(ݔ݅)௬.௩௦ܫ = {1, ((ݔ݅)ௗܫ)ଷ,ଷ,ଷ/ݎ݁ݐ݊ܫ ݂݅ > 0; 0,  {݁ݏ݈݁

 

for the 3D mode, where ݎ݁ݐ݊ܫଵ,ଵ,ଵ/(ܫௗ(ݔ݅)) aims to restore the voxel to cubic shape by only 

interpolate z axis to 1/f folds of its original resolution and  ݎ݁ݐ݊ܫଷ,ଷ,ଷ/(ܫௗ) additionally enhance 

3 folds of resolution for all three axes. 
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Computation of cytoskeletal indices 

 Occupancy: the frequency of the positive pixels in the computed binary image, or 

∑ ܰ/(ݔ݅)௬ܫ  for 2D mode and ∑ ௬.ܫ ܰ/(ݔ݅)  for 3D mode, where N is the 

number of total pixels. 

 Linear density: the length of the skeletonized filament per unit of 2D or 3D space. For 2D 

mode, ܫ௬.௩௦  is skeletonized using Lee’s approach18 to render the skeletonized image 

௦ܫ  .  Then, linear density is calculated as: 

 

For the 3D mode, ܫ௦  is rendered by ܫ௬ , and we use the sum of the Euclidean lengths 

of all (graph theory defined) branches obtained by Skan library22 as the total length of 

skeletonized filament and divide it by N. This is because sphere-cavities structures 

existent in the 3D skeletonized images are not applicable to the concept of length.  

 Skewness: the (statistical) skewness of the fluorescence value of positive pixels, or 

mathematically: 

 

where N୮୭ୱ, μ୮୭ୱ, and σ୮୭ୱ represents the count, mean, and standard deviation of positive 

pixels in the raw image ܫ. 

 CV: the (statistical) coefficient of variance of the fluorescence value of positive pixels, or 

mathematically: 

CV = ఙೞ

ఓೞ
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 Diameter_TDT: average filament diameter estimated by Euclidian distance 

transformation of total binary image. The Euclidian distance transformation map ୢܫ ୧ୱ  is 

calculated as an image with the same shape of ܫ௬.௩௦, but the value of each pixel is: 

 

,ݔௗ௦൫ܫ ,)ݕ ൯(ݖ =

⎩
⎨

⎧ඨ  ൫݅ − ݅൯
ଶ

ୀ௫,௬(,௭)

,ݔ)௬.௩௦ܫ ݂݅     , ,)ݕ ((ݖ = 1

,ݔ)௬.௩௦ܫ ݂݅    ,0 ,)ݕ ((ݖ = 0

 

 

where ݅  is the coordinates of the nearest negative pixel to (x,y,z). Therefore, the 

Diameter_TDT is mathematically defined as: 

 

Diameter_TDT = Mean {ܫௗ௦(ݔ݅)|ܫௗ௦(ݔ݅) > 0} 

 

 Diameter_SDT: average filament diameter estimated by Euclidian distance 

transformation values of ܫ௬.௩௦ ௦ܫ positive pixels on ݕ݈݊ ݃݊݅ݏݑ ݈݀݁݉ܽݏ ݐݑܾ  , or 

mathematically as: 

 

Diameter_SDT = Mean {ܫௗ௦(ݔ݅)|ܫ௦(ݔ݅) = 1} 

 

 Severing activity: the count of connected components in binary image per unit length of 

skeletonized filament. For images captured in 2D mode, it is ݐ݊ݑܥ. .݂ /௬.௩௦൯ܫ൫ܧܰܰ

∑ ,ݔ)ℎݐ݈݃݊݁  In 3D mode, both the count of non-connected elements and the length of .(ݕ

skeletonized filament are called from the Skan library using  ܫ௦  computed from ܫ௬  as 

the input.  
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 Branching activity: the branching point count per unit length of skeletonized filament. ܫ௦  

is obtained from ܫ௬.௩௦ for 2D mode or ܫ௬  for 3D mode respectively and is next 

input into Skan library. The total number of type-3 and type-4 branches22 is collected and 

then divided by the length of the skeletonized filament.  

 Local anisotropy: We performed a local averaging of filament alignment tensor, which is 

constructed as follows. First, we calculate the unit direction vector for each straight 

filament segment ݃. Then, the covariance matrix for each segment is obtained from the 

following equation:  

 

ݐ =  ݃ ݃
௧ 

 

This rank-2 tensor is independent of the orientation of the line segment, and can thus be 

averaged over a region containing a collection or unoriented line segments. We weight 

each filament tensor in a circular/spherical neighborhood by the length of every filament 

to produce a smoothed tensor field. The eigenvector corresponding to the largest 

eigenvalue indicated the primary orientation of filaments in this region. The difference 

between the maximum and the minimum eigenvalues is an indicator of the anisotropy in 

this region. If all the eigenvalues are the same, the indicator is 0, which implies an isotropic 

region. If the eigenvalues other than the maximum are all nearly 0, all the filaments in this 

region are parallel to each other. In this case, they are all aligned with the maximum 

eigenvector, the dominant filament direction of this region. 

 

 

Methods Library API reference: 

[1] https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_niblack 
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[2]https://docs.scipy.org/doc/scipy-

0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html 
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Chapter 3: The nuclear-cytoplasmic function of  

actin depolymerization factors (ADFs) in plant Immunity 

 

Chapter abstract 

 

Plant immunity is a systemic response that immobilizes and integrates multiple signaling 

pathways, including the one that regulates the architecture of the actin cytoskeleton (a.k.a., actin 

remodeling). The general output of immune-triggered actin remodeling is related to the 

directionality of organelles and immune-related molecules to the host-pathogen interface, but it is 

unclear whether another important portion of the actin cytoskeleton – the nuclear actin and its 

associated proteins – is involved in the immune regulation. Besides, while previous studies 

revealed a genetic relationship between Arabidopsis actin depolymerization factors (ADFs), a 

group of actin-associated proteins, and the resistance against pathogens, they failed to explain 

why ADF seems to contribute to the pro-immune transcription and loses activity when exported 

from the nucleus. To answer these questions, my research herein focused on the identification of 

a novel activity of ADF – the capability to interact with WRKY transcription factors that control the 

pro-immune transcriptome. In this study, I proved that certain ADF can form a complex with 

WRKYs that bind to the targeted promoters, hence regulating the activity of WRKYs and playing 

a positive role in the immune response. In brief, ADF2/3/4 in the nucleus can interact with certain 

WRKY transcription factors, such as WRKY22/29/48, at the WRKY-regulated promoters in charge 

of immune genes. Further inspection discovered that ADF can enhance the activity of WRKY, 

stabilize it, and alter its targeting spectrum, a process that is potentially regulated by 

phosphorylation triggered by immune signaling. This work demonstrated that ADF moonlights as 

a direct TF regulator, which serves to mediate a pattern of the nuclear-cytoplasmic regulation on 

the plant immune response.  
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Introduction and rationale 

 

Plants use a systemic strategy to fine-tune immune signaling, which requires cohesive 

cooperation between cytosolic and nuclear signaling cascades. Generally, the immune receptors 

locate in PM and cytosol, which release signal to fast, non-transcriptional “effectors” and 

simultaneously transduce the signal to TFs in charge of transcriptional reprogramming in the 

nucleus. Suppose we apply this model to the actin cytoskeleton; the vast majority of discoveries 

on the immune function of the actin cytoskeleton only reflect the fast cytoplasmic response – for 

example – immune-regulated actin reorganization to transport defense molecules to the 

pathogen-host interface. However, it is well acknowledged that actin and actin-associated 

proteins (ACPs) also play critical functions in the nucleus in the mammalian system, as 

aforementioned in Chapter 1. Therefore, it is possible that the nuclear actin cytoskeleton also 

plays a critical role in plant immunity, potentially working with cytosolic actin as a collaborative 

system under the regulation of immune signals.  

 

While the nuclear function of actin and ACPs is rarely identified in either plant system or immune 

processes several previous studies indeed suggested the existence of this possibility. First, 

Arabidopsis ADF4 (Actin Depolymerization Factor 4) was previously reported to be critical for the 

robust expression of NB-LRR protein RPS5 (Porter et al., 2012). If the only molecular activity of 

ADF4 is to depolymerize/sever actin, it is difficult to conceptually link such function(s) to the 

nuclear event (i.e., regulation of RPS5 expression). Second, as a more direct piece of evidence, 

subclass I ADFs of Arabidopsis (ADF1/2/3/4) have been shown to genetically contribute to 

resistance against powdery mildew (Inada et al., 2016) only when they enter the nucleus. 

However, the molecular mechanism(s) remains largely unknown. Regarding these, one of the 

most obvious potential mechanism(s) is that certain ADFs may be involved in the transcription 

events because ADF, by nature, can bind to actin, and actin is previously shown to function as a 
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scaffold for the transcription pre-initiation complex and chromatin remodeling (Wei et al., 2020; 

Kyheröinen and Vartiainen, 2020). If this hypothesis is proven valid, then a novel nuclear-

cytoplasmic mechanism of plant immune regulation will be revealed, conceptually linking the 

cytosolic and nuclear actin cytoskeleton as a collaborative signaling platform. Moreover, rather 

than being limited to the framework of plant immunity, such a regulatory pattern may generally 

apply to eukaryotes and other signaling pathways, which introduces a new perspective to 

understand cytoskeleton functionality. 

 

Based on the hypothesis and preliminary evidence above, I hereby propose that Arabidopsis 

ADFs have moonlighting functions in the nucleus, which contributes to immunity and potentially 

involves the nuclear actin cytoskeleton. To broadly test this hypothesis, I designed and conducted 

a series of experiments to identify the nuclear function of Arabidopsis ADFs, as introduced in 

Chapter 3 below in detail. In brief, I found that certain nuclear ADFs can interact with certain 

WRKY transcription factors and form an ADF-WRKY-DNA complex at the WRKY-regulated 

promoters of immune response genes. ADF can enhance the activity of WRKY, stabilize it, and 

alter its targeting spectrum. At the same time, this event is regulated by phosphorylation that 

prohibits its actin severing/depolymerization activity while enhancing the WRKY-boosting activity, 

triggered by immune signaling. The work presented herein demonstrated that ADFs moonlight as 

direct TF regulators, which serves as a critical piece of the jigsaw puzzle to envision the nuclear-

cytoplasmic function of the actin cytoskeleton. 

 

Results 

 

WRKY transcription factors are potential ADF interactors 

As introduced above, previous studies had suggested the possibility that ADF4 may contribute to 

the immune response in a manner related to unknown transcriptional regulation in the nucleus 
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(Inada et al., 2016; Porter et al., 2012). Therefore, one possibility is that ADF participates in certain 

pro-immune transcriptome reprogramming events mediated by TFs that control this process. 

Driven by this hypothesis, a previous doctoral student, Alex Corian of the lab, conducted an 

amplified luminescent proximity homogeneous assay (AlphaScreen; Nomoto, Tada, and 

Tsukagoshi 2019) to screen for ADF4 interactors, using selected genes known to involve in plant 

immunity. This method uses a wheat germ cell-free system to co-express ADF4 and candidate 

proteins to detect the interaction intensity via a bi-luminescence approach. As a result, several 

members in the WRKY gene family are revealed as potential interactors of ADF4 (see Figure 3-

1A). As WRKYs are plant-specific TFs generally regulating the stress response (Birkenbihl et al., 

2017), it is reasonable to suspect that the moonlighting function of ADF in the immune response 

is mediated by particular ADF-WRKY interaction. However, because both the accuracy and 

specificity of the AlphaScreen result was uncertain, and the selected candidates, ADF4 and the 

Figure 3-1: AlphaScreen and co-localization assay reveal potential existence of ADF-WRKY 
interaction. A, AlphaScreen of ADF4 interactor. Bi-luminescence fusion of ADF4 and selected genes are 
co-expressed in a wheat germ cell-free system to detect potential interaction. Relatively high signal in some 
WRKY samples are observed. B, nuclear co-localization of ADF4 and WRKY29/48. ADF4-BFP and WRKY-
YFP are co-transformed into N. benthamiana leaves by Agro-infiltration. While ADF4 exist in both cytoplasm 
and nucleus, a perfect nuclear ADF-WRKY co-localization in planta is visible.  
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seven WRKYs, may not represent the general properties of members in their protein families. 

Therefore, I initiated this project to examine the hypothetic nuclear function of Arabidopsis ADFs.  

As a preliminary attempt to confirm whether ADF is (at least partially) a nuclear protein, I 

conducted a subcellular co-localization assay using ADF4 and WRKYs. Specifically, ADF4, 

WRKY29, and WRKY48 are cloned to Agrobacteria binary vector containing 35S::-BFP or 35S::-

EYFP fusion, respectively, to transform N. benthamiana leaf for observation. As demonstrated in 

Figure 3-1B, ADF4, as a representative member of the ADF/cofilin family, displayed both 

cytoplasmic and nuclear signal. The robust nuclear signal co-localized with WRKY29 and 

WRKY48, which indicates that ADF4 indeed exists in the nucleus, spatially allowing it to interact 

with members of the WRKY family.  

 

The Expression pattern of ACT, ADF, and WRKY 

The introduction and preliminary study above suggest that ACT, ADF, and WRKY may form a 

complex interactome to mediate any pattern of nuclear-cytoplastic regulation. This is because all 

three groups – actin, ADF/cofilin, and WRKY – have an intricate protein family in terms of isoform 

numbers of expression pattern, and this approach cannot confirm which among them are critical 

or typical interactor pair(s) for biological function. Particularly, Arabidopsis has 11 ADFs (6 

expressed in leaf; Ruzicka et al. 2007), 12 ACTs (3 expressed in leaf; 2 pseudogenes; McDowell 

et al. 1996), and more than 74 WRKYs (Li et al., 2020b). Hence, to study their joint function, my 

first step was to select members as representative candidates. 

 

Since our organismic platform is Arabidopsis, the primary strategy is to understand which 

members of these families are expressed in Arabidopsis rosette leaf, our major experimental 

material. Therefore, I conducted a preliminary screening by analyzing leaf transcriptome datasets 

under PTI and ETI conditions using bioinformatic approaches. Briefly, the wild-type (Col-0) portion 

of the published mRNA-seq datasets GSE85932 (Birkenbihl et al., 2017; describing leaf tissue 
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upon PTI signaling) and GSE151885 (Saile et al., 2020; describing leaf tissue upon ETI signaling) 

were downloaded, cleaned, and evaluated, as presented in Figure 3-2. It is clear that ACT2/7/8, 

ADF1/2/3/4/5/6, and dozens of WRKYs are capable of being expressed in the leaf. For ADFs, 

most of these members are relatively constitutive if not minorly up-regulated, except for ADF5, 

which can be significantly up-regulated ~6 fold by both PTI and ETI signals. For ACTs, all three 

follow a pattern of up-and-down pattern, while ACT2 meets the peak earlier than ACT7/8. Besides, 

the amplitude of transcriptional regulation is not very high, as actin is commonly regarded as a 

constitutive expresser. These data generally align with the early studies of expression patterns 

observed by traditional approaches (McDowell et al., 1996; Ruzicka et al., 2007).  For WRKY, 

Figure 3-2: Expression pattern of all ACTs, ADFs, and WRKYs in Arabidopsis leaves upon immune 
signaling. Arabidopsis mRNA-seq dataset GSE85932, of flg22 (PTI inducer) treated Col-0 leaf, and 
GSE151885, of (a/)virulent bacteria (ETI inducer) treated Col-0 were downloaded, trimmed by 
Trimmomatic, and the reads were quantified by Salmon, using Galaxy platform. ACT2/7/8 (A) and 
ADF1/2/3/4/5/6 (B) are constitutively expressed; multiple WRKYs (C, marked by numbers) are induced by 
PTI and/or ETI signal.  
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most of those expressed in leaves are greatly induced by both PTI and ETI. While some rapidly 

boost and reach the peak within 30-60 min post-treatment and then fast decay, others are up-

regulated in the later phase. Such pattern conforms with the general identities of WRKYs – anti-

stress TFs with a multi-phase network.  

 

The preliminary candidates for ADF-WRKY interaction by molecular approaches are selected 

according to the expression above. For the ADF side, ADF1/2/3/4/5/6 are chosen because they 

are significantly expressed in the leaf; for the WRKY side, I additionally considered their reported 

genetic functions, and made sure that all subgroups of members in this family are covered by at 

Table 3-1: selected WRKYs and their phylogenic groups. WRKY candidates for interaction analysis 
are selected based on a comprehensive consideration of expression pattern, coverage of all categorical 
groups, and reports of genetic function(s) in immunity. See reference in the text. 
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least one representative (Lai et al., 2008; Zheng et al., 2006; Gao et al., 2013; Hsu et al., 2013; 

Hu et al., 2012; Journot-Catalino et al., 2006; Schön et al., 2013; Asai et al., 2002; Kim et al., 

2008), as summarized in Table 3-1.  The strategy above made sure that representative interactors 

with potential significant function are included at the best possibility.  

 

The interaction specificity of Arabidopsis leaf ADF-WRKY interactome 

To understand the interaction specificity of ADF and WRKY on a large scale, I decided to use 

semi-quantitative BiFC to directly evaluate the interaction levels of ADF-WRKY pairs. To prepare, 

all selected ADFs and WRKYs, aforementioned in the previous section, are cloned from 

Arabidopsis cDNA into BiFC vectors pM1089 or pH1097 for fusion with MYC-nEYFP(nY) or HA-

cEYFP(cY), respectively. First, nY-ADF4, together with similar quantities of each of the individual 

WRKYs, was co-transformed into Arabidopsis protoplast. Afterward, the multiple images at a large 

scale with low magnification were taken by confocal microscope. The interaction intensity is 

measured by total BiFC fluorescence per unit of chlorophyll fluorescence, as a normalized matrix. 

As shown in Figure 3-3A, half of the WRKY candidates showed visible interaction (descending 

group greater than “e”) with ADF4, while their interaction intensities had contrast variation. Herein, 

I define WRKY29/22/48 as strong interactors and WRKY6/8/18/28/33 as medium interactors. 

Interestingly, strong and medium interactors concentrated in certain WRKY clades (e.g., clade Ib 

and IId), indicating that such interaction is structure-based, and certain features in these clades 

are responsible for this interaction. Herein, I choose WRKY29 and WRKY48 as primary and 

secondary objectives of the study, as these strong interactors can represent two different cases 

of Clade Ib and IId in the WRKY family.  

 

Next, to understand the interaction specificity among the Arabidopsis leaf-expressed ADFs, I 

conducted a similar BiFC assay using each individual of ADFs in combination with either of 

WRKY29, 40, and 48, wherein WRKY29/48 are strong interactors, and WRKY40 is a non-
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Figure 3-3: ADF-WRKY interaction intensity of selected family members of Arabidopsis. Vector 
containing nY-ADF4 and cY-WRKY are co-transformed into Arabidopsis protoplast. Photos (n=3) of 
large scale (low magnification), covering closely distributed protoplasts are captured 12h post-
transformation. The BiFC (YFP) fluorescence per unit of chlorophyll fluorescence is used to measure 
interaction intensity (see Method). Non-overlapped alphabet indicates significant difference, defined as 
one-way ANOVA with p < 0.001 followed by multiple comparison of t-test corrected by Benjamini–
Hochberg method with p < 0.05. A, ADF4 interaction intensities with selected WRKYs covering all 
phylogenic clades of WRKY family of Arabidopsis. B, WRKY29/48 interaction intensities with leaf-
expressed ADFs. C, classic demonstration of BiFC by single protoplast fluorescence. The α-GFP (for 
eYFP fractions) indicates both WRKY and ADF4 is robustly expressed. Bar = 20 μm. 
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interactor as a negative control, as illustrated before. In addition, in order to understand whether 

the ADF-WRKY interaction requires ADF to interact with ACT simultaneously to form a triplex, I 

constructed an ADF4 mutant, ADF4-R91A/K93A, referring to previous studies (Du et al., 2016; 

Tanaka et al., 2018). Theoretically, this mutant is not able to interact with ACT because the two 

mutated residues disrupted the hypothetical ACT-ADF interaction interface. Therefore, I name 

this mutant as ADF4dα3 (for “disrupted alpha-helix III”). If ADF4dα3 can interact with WRKYs, it 

indicates the ADF-WRKY interaction does not necessarily require ACT (as a scaffold). As shown 

in Figure 3-3B, all of ADF2/3/4 showed strong interaction with WRKY29/48 and no interaction with 

WRKY40. Also, ADF6 was a medium interactor; ADF1 was a weak interactor; ADF5 was 

absolutely a non-interactor. Since all ADFs displayed no differentiation of interaction pattern 

among three WRKYs, it is deducible that the interaction pattern of WRKY29/48 with positive ADFs 

are the same. Also, it is noticeable that ADF4dα3 still had a high interaction intensity at a level 

close to wild type ADF4, which indicates that ADF-WRKY interaction represents a moonlighting 

independent from classic ADF-ACT interaction.  

 

ADFs interact with WRKY-DNA complex 

The studies above identified a strong interaction between WRKY29/48 and ADFs, which leads 

the question to the outcome of this interaction from the perspective of their molecular functionality. 

Here, I hypothesized that ADFs can regulate the activity of targeted WRKYs by such physical 

interaction. According to current knowledge, the primary function of WRKYs is mediating 

transcription as a TF that binds to the W-box motif ((T)TGAC(C/T)) in the promoter sequence of 

stress-responsive genes (Jiang et al., 2017a). Hence, one of the potential approaches for ADF to 

impact WRKY activity is to regulate in the WRKY-mediated transcription initiation. It is important 

to understand whether the ADF-WRKY complex can occur while WRKY binds to its objective 

promoters.  
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To answer this question, I conducted a chromatin immunoprecipitation (ChIP) experiment using 

protoplast co-expressing ADF4 and WRKY29, the primary candidate pair of strong interaction  

(Figure 3-4).  Multiple combinations using ADF4-HA and/or WRKY29-MYC are co-transformed 

into adf4/wrky29 double mutant, and the samples are harvested to crosslink the DNA with 

adjacent protein by formaldehyde to pull down the DNA fractions that interact with ADF4/WRKY29, 

which can be measured by qPCR. There was no systemic study published to elucidate the 

Figure 3-4: ADF4 co-localizes with WRKY29 on WRKY29-targeted promoters. A, distribution of W-
boxes in the promoter of WRKY29 and BAG7. The existence of W-box (WRKY-binding motif) in the 
promoter of these genes suggest the potential of WRKY-regulated gene expression. B, ChIP-qPCR to 
detect quantify of DNA fraction of hypothetic WRKY-targeted promoters. Combinations of W29-MYC and 
ADF4-HA are transformed into the protoplast of wrky29/adf4 double mutant, and α-MYC(M) or α-HA(H) 
ChIP are then conducted. Both pW29 and pBAG7 are targeted by WRKY29, and ADF4 also binds to these 
promoter together with WRKY29. Act2 is a general negative control. Non-overlapped alphabet indicates 
significant difference defined as ANOVA of p<0.001 followed by t-test with Benjamini-Hochberg correction 
of p<0.05. Error bar means 95% confidence interval.  
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objective genes regulated by WRKY29, so it was unclear which promoter fractions would be 

tested to verify whether ADF4 and WRKY co-localize on the chromatin. However, it was 

previously reported that WRKY18/40/60 use a self and cascaded negative feedback mechanism 

to prevent excessive expression (Liu et al., 2012). Accordingly, it is possible that WRKY29 also 

utilizes such mechanism by binding to the promoter of WRKY29 (pW29). Therefore, I searched 

the promoter of WRKY29 (pWRKY29/pW29) and found 5 W-boxes (see figure 3-4A). For each of 

them, a pair of qPCR primers with high specificity was designed to cross the W-box. Additionally, 

in a study focusing on AtBAG7, a ER-nuclear co-chaperone involved in unfolded protein response, 

it was reported that WRKY29 can bind the promoter of BAG7 (Li et al., 2017b), so I included the 

W-box identified in pBAG7 as another potential pull-down targeted by WRKY29 and ADF4 (see 

Figure 3-4A).  

 

As shown in Figure 3-4B, each of the W-box fractions in pW29 was significantly enriched by IP of 

WRKY29-MYC, when compared with the negative control groups Act2 and the mock (shown as 

blue). This demonstrated that WRKY29 indeed binds to the W-boxes in its own promoters, and 

further verified the technical feasibility of this experiment. Interestingly, when co-expressing 

WRKY29-Myc and ADF4-HA, both α-HA and α-Myc IP were able to significantly enrich the same 

pW29 fractions, which indicated that WRKY29 and ADF4 not only bind to each other, but also 

form a complex together with DNA – the W-boxes targeted by WRKY29. In addition, because 

sometimes pro-immune transcription requires specific immune signal(s) as a trigger, I also 

included the treatment of flg22 as a variable. However, the impact of flg22 was not obvious and 

stable, which suggested that the PTI signal is not a prerequisite to trigger the ADF4-WRKY29-

DNA interaction at the experiment condition. However, the possibility was not excluded that this 

interaction can be enhanced by specific immune signal(s) when ADF4 and WRKY29 are not 

overexpressed. Another potential target of WRKY29, pBAG7, was also generally enriched, but 
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the amplitude was minor, and some groups did not show a significant difference, which indicates 

the W-box affiliation of pBAG7 was not as strong as pW29 in the experimental condition.  

 

Certain ADFs enhance the transcription promoting activity of WRKYs 

Since the study above suggested that the ADF-WRKY interaction occurs on the promoter of the 

WRKY-regulated genes, it is natural to conceptually associate such interaction to the regulation 

of activity of corresponding WRKYs. In order to test whether the activity (i.e., the capability of 

transcription activation) of WRKY is alternated by the strong ADF interactors, I designed a 

promoter reporter system to track the activity of WRKY in the presence/absence of ADFs.  

The promoter reporter system is comprised of 3 vectors, which contains 35S::WRKY-BFP, 

35S::ADF-RFP, and GFP driven by WRKY-targeted promoter, respectively (see Figure 3-5A). 

When the GFP reporter vector is co-transformed with the combinations of WRKY-BFP and/or 

ADF-RFP into protoplasts, all three fluorescence signals can be measured by confocal 

microscopy to get quantitative data at a large scale like semi-quantitative BiFC, and therefore the 

differentiated levels of GFP can be explained as a result of different transcription enhancing 

function of corresponding ADFs. For WRKY29, I still used pW29 and pBAG7 to drive the GFP 

expression, as these two promoters were proved to interact with WRKY29 in the section above. 

At the same time, I introduced pW48 (potential self-regulation) and pW46 (Gao et al., 2013) to 

drive the GFP expression for measurement under the regulation of ADF-WRKY48 complex. Null 

mutant wrky29 and wrky48 were used as the source of protoplast to eliminate the background 

WRKYs that were unmeasurable.  

 

As expected, WRKY29 was able to significantly boost the expression of pW29::GFP, and ADF4 

up-regulated the transcription activation capability when co-transformed with WRKY29. Similarly, 

WRKY48 was able to trigger the expression of pW48::GFP and pW46::GFP, while the activation 

on pW46 was far more robust than pW48, which suggested that WRKY48 may play critical 
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function in the activation of pW46 by its nature. As for pBAG7, although it can be significantly up-

regulated at the presence of both WRKY29 and ADF4, there was only a ~2.5 fold upregulation, 

which indicates pBAG7 was not a target of WRKY29 at the experiment condition, the same as 

suggested by the ChIP-qPCR experiment (Figure 3-4).  

 

Next, I substituted ADF4 in the reporter system with each of the individual ADF candidates. 

Besides ADF1/2/3/4/5/6, I also introduced ADF-NLS (fusion protein of ADF-BFP-FLAG-NLS) and 

ADF-NES (ADF- BFP-FLAG-NES), where NLS/NES stands for “nuclear localization/export signal”. 

These signal peptides can compel the protein to be imported into or exported from the nucleus, 

thereby rendering almost complete nuclear/cytoplasmic localization, which assists in evaluating 

the contribution of nuclear ADF to the transcription activation by WRKY. In addition, ADF4dα3 was 

also included to understand whether this activity requires actin as a co-factor.  

 

As shown in Figure 3-5C, ADF2, ADF3, and ADF4 indeed enhanced the transcription activation 

activity of WRKY29, while ADF1 and ADF5 showed a lower transcription level compared with the 

WRKY-only group in the absence of ADF. At the same time, the ADF4-NLS group had the highest 

expression level among all the groups, which fully supports the hypothetic mechanism that ADFs 

enhance the function of WRKY by directly binding WRKY at the targeted promoters inside the 

nucleus. However, ADF4-NES also got a relatively high reporter signal like ADF4, which was 

confusing. After a thorough inspection into the dataset, I found the most probable reason was that 

the ADF-NES group had twice the cell number and three times the total WRKY quantity compared 

to ADF4, which might generate certain levels of inaccuracy when simply comparing the GFP level 

normalized by chlorophyll fluorescence. Besides, ADF4dα3 was also able to enhance the activity 

of WRKY29  a level identical to ADF4, indicating that the WRKY enhancement activity of ADF4 

does not require the physical interaction with ACT at the same time, which echoed the result of 
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Figure 3-5: ADF can boost the transcription activation capability of interacted WRKYs. Non-
overlapped alphabet indicates significant difference defined as ANOVA of p<0.001 followed by t-test 
with Benjamini-Hochberg correction of p<0.05. Error bar means 95% confidence interval. A, design of 
promoter reporter system using GFP driven by WRKY targeted promoters. B, ADF4 is able to boost the 
activity of both WRKY29 and WRKY48. adf4 protoplast was used to lower the background level of ADF4. 
C, WRKY29 activities upon treatment of multiple ADF variants. ADF2/3/4/dα3 can strongly enhance the 
activity of WRKY29. Nuclear-exclusive ADF4 has higher activity to enhance WRKY function than wild 
type or cytoplasmic-exclusive ADF4. D, E, the expression level of WRKY29 and ADF of C. F, the 
mathematical model of WRKY enhancing coefficient (EC) to estimate the normalized activity of per unit 
of ADF to per unit of WRKY.  
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the BiFC conclusion that ADF-WRKY interaction does not require ACT in the complex (Figure 3-

3B).  

 

In order to further inspect whether the expression level of the pW29-driven GFP is comparable, I 

also computed the expression level of WRKY29 and ADFs of each group. As illustrated in Figure 

3-5D, while the expression level of WRKY29 was similar in most groups, it turned significantly low 

when co-expressed with ADF1 or ADF5, and the ADF-NLS group were significantly high. On the 

other hand, the ADF expression levels were not perfectly identical among all groups (Figure 3-

5E). Over a comprehensive consideration on these data, it is concluded that ADF2/3/4, as strong 

WRKY interactors, have the capability of enhancing the activity of WRKYs. However, they may 

have a stabilizing effect on WRKY simultaneously, which explains why the weak interactor ADF1 

and non-interactor ADF5 rendered relatively low WRKY expression.  

 

To avoid worse tangled situations of quantitative interaction of the three components, I did not 

change the quantity of protoplast and three transformed vectors of individual groups – which had 

been rigorously controlled – to re-balance the ADF and WRKY expression. Instead, I designed a 

mathematical model to further dissect the contribution of ADF to boost the activity of WRKY by 

defining a WRKY enhancement coefficient (EC), which evaluates the impact of per unit of ADF 

on per unit of WRKY, as an index reflecting the nature of ADFs regardless of the quantity of ADFs 

and WRKYs. The mathematical definition is stated in Figure 3-5F. In brief, this approach subtracts 

the non-WRKY-triggered transcription of each group and computes how much fold enhancement 

of WRKY-triggered transcription was due to per unit of ADF, compared to the absence of ADF. 

As shown, the trend of EC generally conformed with the expression level of pW29::GFP (Figure 

3-5C) but with certain adjustments. First, ADF6 got an unexpected high EC while ADF3 and 

ADF4dα3 got lower than ADF2 and 4. As these differences were not significant, one of the potential 

possibilities is that these differences were generated by the amplified error of measurement and 
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nonlinear relationship between the florescence and protein quantity in the model. Second, ADF4-

NLS and ADF4-NES both got low EC. While the situation of ADF4-NES may reflect the fact that 

cytoplasmic ADF cannot effectively enhance the activity of WRKY, the abnormal value of the NLS 

group actually suggested that ADF4 and WRKY29 concentration (Figure 3-5D, E) reached the 

saturation level for a limited quantity of pW29 promoter. Hence, the data did not contradict the 

conclusion that ADF actually enhances the WRKY activity in the nucleus. 

 

In summary, the data above support the hypothetic mechanism that certain ADF can enhance the 

transcriptional activation capability of interactive WRKYs. These ADFs include ADF2, ADF3, and 

ADF4, which are exactly the strong WRKY interactors, indicating that the direct physical 

interaction can explain the enhancement of the activity of WRKYs. It is highly possible that ADF 

contributes to plant immunity by this mechanism, in addition to mediating actin remodeling in the 

cytoplasm, as aforementioned in Chapter 1.  

 

ADF4 stabilizes the interacted WRKYs  

As shown in Figure 3-5D, E above, a trend emerged that when a strong ADF interactor of WRKY 

reached high quantity in the sample, the expression level of WRKY would also gain a relatively 

high level. This phenomenon suggests a possibility that ADF may be able to stabilize the WRKY 

that it interacts with, which serves as another potential mechanism for ADF to enhance the overall 

function of WRKYs. Similarly, in an inspection of protein expression level for the aforementioned 

BiFC experiment (Figure 3-3B) by western blot, I also repeatedly observed an increased quantity 

of cY-WRKY29 when co-transformed with strong interactor ADF4, but not the non-interactor 

ADF9(Figure 3-6A). However, this observation may not be rigorous enough to deduce any solid 

conclusion, because the fluorescence protein fractions in the fusion protein introduce an extra 

weak interaction affinity that may have unpredictable impact(s). 
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In order to confirm whether the stabilization effect by ADF exists, I used the protoplast system to 

co-transform the combinations of 35S::WRKY-MYC and 35S::ADF4-HA to measure the protein 

quantity by western blot. The simple epitope tag can minimize the influence of the introduced 

fusion structure, ensuring that any experiment result is caused by the nature of WRKY and ADF 

per se. As a result, ADF4 indeed enhanced the expression of the strong interactor WRKY29 and 

WRKY48, but not the weak interactor WRKY70. Given that all proteins are expressed via the 

constitutive 35S promoter, whose transcription rate is stable, the simplest interpretation of such 

result is that ADF4 can indeed stabilize its interactive WRKYs from degradation. While other ADFs 

are not tested, they potentially follow that same pattern as ADF4: obvious stabilization effect exists 

between any ADF-WRKY pair with strong interaction. Therefore, the stabilization effect is indeed 

one of the mechanisms for ADFs to enhance the total activity of WRKY. As previously discussed 

Figure 3-6: ADF4 can stabilize interacted WRKY exclusively. A, WRKY and ADF level of adf4 protoplast 
samples transformed by BiFC vectors expressing nY-ADF and cY-WRKY. B, WRKY and ADF level of adf4 
protoplast sample expressing WRKY-MYC at the presence or absence of ADF-HA. Small epitope tag 
minimizes unknown impact of fusion fractions. For both data, ADF4 can stabilize its strong interactor 
WRKY29/48, but not its non-interaction WRKY40/70. 
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in the description of the EC model (Figure 3-5F), currently it is very difficult to dissect the 

contribution of the stabilization effect from the total activity enhancement of WRKYs by ADF at 

ideal accuracy, but the gross activity of strong WRKY interactors is indeed boosted by strong ADF 

interactors as a result of their physical protein-protein interaction.  

 

Nuclear ADF4 contributes to resistance against pathogen 

The studies above demonstrated that the ADF-WRKY interaction enhances the transcriptional 

activation activity of WRKY, and strong interactors are identified as ADF2/3/4 and WRKY29/48. 

Because WRKY29/48 and other interacted WRKYs are stress-responsive TF that mediate pro-

immune transcriptome reprogramming, it is reasonable to ask whether ADF indeed contributes to 

plant immunity by such mechanism.  

 

To prepare the material to inspect the genetic function of nuclear ADF using ADF4 as a 

representative, I screened and finally obtained an adf4-2 mutant that is Col-0 background and 

free of a contaminated exon insertion on AT1G77500, from the ABRC seed line SALK_121647. 

Then, adf4-2 was back-crossed with Col-0 to further clean the background. Then, 35::ADF-BFP-

FLAG-NES/NLS were transformed into adf4-2, and two T2 homozygous lines with stable 

expression of NES/NLS-tagged ADF4 were selected to test their resistance against pathogen.  

Because previous reports suggested that the adf4 mutant has impaired resistance against 

Pseudomonas syringae pv. tomato DC3000 expressing the avirulent effector AvrPphB 

(DC3000/AvrPphB), I also chose DC3000/AvrPphB as the test pathogen to infect Arabidopsis. As 

shown in Figure 3-7, adf4-2 supported increased bacterial growth compared with WT Col-0, which 

can be complemented by expressing ADF4 in the nucleus but not the cytoplasm. This result 

indicates that ADF4 indeed contributes to the ETI against AvrPphB only when a certain level of 

ADF4 exists in the nucleus, rather than cytoplasm, at the experimental condition. The conclusion 



99 

agrees with the proposed molecular mechanism that ADF4, and potentially ADF2 and 3, function 

in plant immunity by interacting with and enhancing the function of WRKYs.  

 

To further inspect and evaluate genetic function(s) of ADFs in greater detail, a series of high-order 

ADF mutants have been under construction, using CRISPR/Cas9 system. The proposed plan and 

current process are described in Appendix A. 

 

 

Figure 3-7: Bacteria growth assay of nuclear and cytoplasmic-exclusive complementation lines of 
ADF4. Two independent lines of homozygous adf4/35S::ADF4-BFP-FLAG-NLS/NES, which expresses 
ADF4 with nuclear localization/export tag were constructed. DC3000/AvrPphB of 106 CFU is inoculated by 
hand infiltration and bacteria growth is measured 3dpi (n=8). ADF-NLS, rather than NES, can significantly 
enhance the resistance against AvrPphB. Non-overlapped alphabet indicates significant difference defined 
as ANOVA of p<0.001 followed by t-test with Benjamini-Hochberg correction of p<0.05. Error bar means 
standard deviation. 
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ADF4, while binding WRKY29, targets immune-regulatory genes genome-widely and 

regulate WRKY29 activity and targeting spectrum 

It is revealed in the studies above that nuclear ADFs contribute to plant immunity potentially by 

interaction with WRKYs to enhance their transcriptional activation function. However, while the 

interaction pair of WRKY29-ADF4 was deeply inspected, it is difficult to further explore the 

mechanism of the immune functionality of the ADF-WRKY complex with current knowledge, 

because the function of WRKY29 remains largely unknown. Therefore, to directly solve this 

problem and clarify the contribution of WRKY29 and ADF4 in plant immunity, I constructed a 

wrky29/adf4 double mutant line and conducted a series of ChIP-seq assays using protoplasts 

system derived the mutant. 

 

In brief, this experiment uses a strategy similar to the ChIP-qPCR experiment but a simpler 

experiment setting (Figure 3-8A): the transformation of ADF4-HA only for α-HA IP (cyan), 

transformation of WRKY29-MYC only for α-MYC IP (green), and co-transformation of WRKY29-

MYC and ADF4-HA for both α-MYC and α-HA IP (purple and red). The experiment was 

biologically repeated 3 times, and the results were merged and screened before analysis. As the 

first study that systematically reveals the targeting spectrum of WRKY29, I have identified totally 

3704 WRKY29 targeted genes that passed the screening filter (see Figure 3-8A). When ADF4 

was co-transformed with WRKY29, the coverage of the WRKY29-targeted gene expanded, and 

ADF4 also gained the ability to bind the promoters of WRKY29 simultaneously.  

 

Next, to determine whether WRKY29 and ADF4 tend to bind DNA as a complex, I conducted a 

quantitative co-localization analysis by correlating the quantity of promoter fractions pulled down 

by WRKY29 and ADF4. As shown in Figure 3-8B, there is a strong positive linear correlation 

between the WRKY29 pulled-down fraction and ADF4 pulled-down fraction among all the shared 
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Figure 3-8: ChIP-seq identifies of genome-wide target of WRKY29 and the enhancement of 
WRKY29 promoter bind by ADF. Combinations of vector expressing WRKY29-MYC and ADF4-HA are 
transformed into protoplasts of wrky29/adf4 double mutant. DNA fractions bond to ADF/WRKY are pulled-
down following Illumina sequencing. A, Venn diagram showing the overlapping of different samples. 415 
and 3704 targets of WRKY29 are identified at the absence/presence of ADF4, respectively. B, ADF4 and 
WRKY largely colocalize with each other at the presence of WRKY29, suggesting that ADF4 and WRKY29 
forms a complex at the promoters of targets of WRKY29. C, ADF4 can up- and down- regulate the overall 
promoter affinity of WRKY. Up- and down-regulated promoters with top-15 overall promoter binding and 
top-15 regulated fold are listed. D, WRKY29 (and ADF4) largely targets genes participating immune 
process. GO pathway enrichment analysis on WRKY29 targeted genes suggests high enrichment of 
pathways related to plant immunity.  
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genes by the two methods, which indicates that WRKY29 and ADF4 indeed co-localize on the 

targeted promoter loci, and generally form a WRKY29-ADF4-DNA complex.  

 

From the perspective of ADF4 functionality, another question is whether ADF4 can generally 

regulate the promoter binding affinity (as previously proved in Figure 3-4) and regulate the 

targeting spectrum of WRKY29. Indeed, in the presence of overexpressed ADF4, the number of 

identified targets by WRKY29 was largely expanded from 415 to 3704, compared with the 

condition without ADF4. At the same time, for those promoters significantly detected by both 

+WRKY29/-ADF4 and +WRKY29/+ADF4 group, ADF4 was capable of regulating the promoter 

binding affinity by WRKY29 onto the promoter loci (see Figure 3-8C). Among the 371 promoters 

targeted by both ADF4 and WRKY29 (present in both -ADF and +ADF), 328 promoters got up-

regulated affinity, while 43 promoters got down-regulated. The top-15 enriched genes and the 

top-15 regulated genes were listed aside, many of which were reported to be involved in plant 

immunity. While such data cannot be directly interpreted as a change of transcription level of 

these genes, they do suggest that ADF4 has the potential to influence the transcription as a result 

of the regulated WRKY-DNA affinity.  

 

Last, in order to learn which biological processes are potentially influenced by the targeted genes 

of the WRKY29-ADF4 complex, I conducted a biological pathway enrichment assay. The 385 

genes targeted by WRKY29 on both the presence and absence of ADF4 were input for gene 

ontology (GO) enrichment analysis. Interestingly yet as expected, almost all aspects of immune 

processes – covering immune response against both bacterial and fungal pathogen, resistance 

against wounds, and programmed cell death – are enriched within the WRKY29-targeted genes. 

Such result fully conforms with the general features of WRKY proteins as the stress-responsive, 

immune regulator. In summary, the study above identified the target genes of WRKY29 in 
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Arabidopsis genome, and further demonstrated that ADF4 can enhance the promoter affinity and 

expand the targeting spectrum of WRKY29 by forming a co-regulatory complex.  

 

Inspection of the ADF interaction interface 

One of most important questions is how ADFs with strong affinity to WRKYs mediate this 

interaction, from the perspective of its protein structure. It was revealed by the aforementioned 

studies (Figure 3-3 and 3-5) that only ADF2, 3, and 4 can strongly interact with WRKY29/48 

among all ADFs expressed in the leaf, while ADF1 and ADF5 are weak and non-interactor, 

respectively. Such conclusion is refreshingly interesting, because among all 11 ADF isoforms of 

Arabidopsis, ADF1 has the closest phylogenic relationship with ADF4 but dramatically different 

WRKY-interaction features. Therefore, inspection on the sequential difference between ADF1 and 

ADF4 can be a critical strategy to identify the interaction interface on ADF. From a different 

perspective, it was previously reported that immune signals can trigger the phosphorylation on 

ADF4 by CPK3, a mechanism to regulate its functionality (Lu et al., 2020); meanwhile, certain 

phosphomimic variants of ADF4 can rescue the dampened ETI against AvrPphB (Porter et al., 

2012). Therefore, it is highly possible that phosphorylation(s) triggered by immune signal occur(s) 

on the residues of ADF-WRKY interface, which serves as an alternative strategy to inspect the 

ADF-WRKY interaction mechanism. 

 

Following the first strategy, I compared the protein sequence of ADF1 versus ADF4, as shown in 

Figure 3-9A. As suggested by their phylogenic relationship, ADF1 and ADF4 have almost identical 

sequences, with a subtle difference of only eight residues, among which only three residues have 

strong difference of chemical properties. Therefore, I generated 3 mutants of ADF4 referring to 

ADF1, ADF448-51QPIQ (abbr. QPIQ), ADF4S59C, and their combination ADF448-51QPIQ/S59C (abbr. 

QPIQ/S59C), and conducted a semi-quantitative BiFC experiment with WRKY29. Unexpectedly, 

although both S59S and QPIQ/S59C display a significantly decreased interaction intensity with 
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Figure 3-9: inspection on potential mechanism of ADF-WRKY interaction. A, protein sequence 
alignment of ADF4 vs ADF1. ADF4 and ADF1 have very few difference but dramatically different affinity 
to WRKY29. Red color marks 3 residues of major difference in chemical property, as hypothetic ADF-
WRKY interface. B, BiFC interaction intensity of mutants on these residues with WRKY29. The minor 
decrease of interaction infinity cannot explain the contrast difference between ADF4 and ADF1. C, 
ADF4 phosphorylation by CPK3 in vitro. The G- and F-actin interface is deduced by aligning with 
published crystal model of cofilin-actin complex. Some of the phosphorylation occur on the ADF-ACT 
interface, potentially inhibit this interaction. D, BiFC interaction intensity of ADF4 phosphomimic 
mutants with WRKY29. Both up- and down- regulation of interaction by phosphorylation on various 
residues are detected. Non-overlapped alphabet indicates significant difference defined as ANOVA of 
p<0.001 followed by t-test with Benjamini-Hochberg correction of p<0.05. Error bar means standard 
deviation. 
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WRKY29 (approximately 1.5-fold down-regulation), it was still a strong interaction compared to 

the intensity ADF1 (approximately 16 fold lower, Figure 3-3B). Therefore, these three residues 

are not critical to the difference between ADF1 and ADF4; a valid explanation should be proposed 

from a different perspective. 

 

As for the second strategy, I inspected the unpublished data generated by the former lab member 

Dr. Yi-Ju Lu, which described the in-vitro ADF4 phosphorylation sites by CPK3, identified by mass 

spectrometer (MS). As illustrated in Figure 3-9C, seven residues were selected according to the 

data, namely S6, S99, S105, S106, T124, T127, and S136. Single and multiple phosphomimic 

mutants (S/T to D/E) of these residues were made and cloned into BiFC vectors with nEYFP 

fusion, to be co-transformed with cY-WRKY29. As suggested by Figure 3-9D, two phosphomimic 

mutants, S6D and S105D had increased interaction intensity with WRKY29 by 4-fold and 3-fold, 

respectively, while other mutants got significantly down-regulated interaction. Particularly, three 

phosphomimic mutants at the C terminal of ADF4, T124E, T127E, and S136E, rendered intense 

down-regulation of this interaction to a level of weak WRKY interactor like ADF1. These results 

suggested that these five residues are critical for mediating the interaction with WRKY29, 

potentially acting as phosphoregulatory sites by immune-regulated kinases, such as CPK3. 

Interestingly, the introduction of S106D overshadowed the up-regulatory impact by S6 and S105, 

which suggests that the phosphor-regulation mechanism is relatively complex and requires a finer 

methodology to examine. In addition, because the in-planta phosphorylation sites of ADF4 by 

CPK3 are unknown and ADF4 may also be regulated by other kinases, anticipating the influence 

of phosphorylation on the WRKY-regulatory function by these data is not decently rigorous. To 

further explore the phosphor-regulation on the functionality of ADF4, an IP-MS experiment to 

determine all the phosphorylation sites of ADF4 has been under preparation and optimization, 

with details described in Appendix B.  

 



106 

Discussion 

 

In Chapter 3, my research focused on the discovery of ADF-WRKY interaction in Arabidopsis, 

and the identification of its property and mechanism. By screening WRKY and ADF candidates of 

different phylogenic clades, I identified ADF2, ADF3, ADF4 in the ADF/cofilin family, as well as 

WRKY22, WRKY29, and WRKY48 in the WRKY family, as participants that mediate a strong 

interaction, which occurs in the nucleus and leads to the formation of WRKY-ADF-DNA complex 

on the WRKY-targeted promoter. Through this physical interaction, strong interactors of ADF 

enhance the transcriptional activation capability of bound WRKYs and simultaneously stabilize 

them. As a result, the promoter affinity and targeting spectrum of corresponding WRKYs are 

regulated to a pro-immune status, thereby enhancing the resistance against pathogens. 

Furthermore, this process is potentially regulated by the phosphorylation triggered by immune 

signal, such as those mediated by CPK3 (Lu et al., 2020), which can both up- and down-regulate 

the ADF-WRKY interaction intensity.  

 

From the perspective of the overall functionality of the actin cytoskeleton in plant immunity, the 

study herein identified the moonlighting function of ADFs in the nucleus, which supports a novel 

comprehensive model describing the nuclear-cytoplasmic role of ADFs as a multi-layer regulator 

of immune responses  (see Figure 3-10). In the cytoplasm, the known function of ADF is to 

catalyze actin depolymerization – as suggested by its name – to facilitate actin remodeling 

(reorganization) against pathogen threat. In this process, the activity of ADFs is dynamically 

regulated by phosphorylation to enable accurate and flexible regulation of actin architecture (Li 

and Day, 2019). At the same time, as early immune signal triggers the expression of WRKYs, 

ADFs (e.g., ADF2/3/4) in the nucleus stabilize these WRKYs (e.g., WRKY22/29/48) and facilitate 

their full functionality to secure a robust pro-immune transcriptional reprogramming. Importantly, 

phosphorylation can act as a dual switch to systemically tune up the immunity, by inhibiting ADF-



107 

ACT interaction and enhancing ADF-WRKY interaction simultaneously. For example, the study 

described in Figure 3-9 suggests that S6P phosphorylation enhances the ADF4-WRKY29 

interaction by 4-fold. Since S6 exactly locates on the ACT-ADF interface, S6P phosphorylation 

inhibits the intensity of this interaction following immune activation. Thus, with a finite quantity of 

Figure 3-10: a schematic diagram describing the nuclear-cytoplasmic function of ADF4 in immune 
regulation. Upon recognition of pathogen (PAMPs and/or avirulent effectors), plant triggers immune 
signaling to initiate actin remodeling to aid downstream immune response, during which one of the critical 
steps is to activate CPK3 to phosphor-regulate ADFs at high dynamic level. At the same time, ADFs in the 
nucleus binds to the WRKY TFs induced by immune signal to enhancing their stability and regulate their 
activity as well as targeting spectrum. The phosphorylated ADF4 by CPK3 and other kinases, released from 
actin cytoskeleton, have higher affinity to WRKY, which further enhance the pro-immune transcription 
mediated by ADF-WRKY complex. Besides, ADF can facilitate actin to enter the nucleus (identified in animal 
system), where actin serve as a transcriptional regulator in many aspects. In the entire process, ADFs 
participate and secure the robust immunity by the synergistic collaboration of their cytoplasmic and nuclear 
functions.  
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ADF4, it is deducible that the overall impact of S6P phosphorylation is to push ADF4 to incline 

toward the nuclear activity, or a pro-immune phase. This model represents a comprehensive 

nuclear-cytoplasmic co-regulatory network mediated by the actin cytoskeleton.  

 

There are still two questions that remain to be answered. First, where is the structural interface 

on ADFs to mediate the interaction with WRKYs and how is it regulated by phosphorylation? The 

previous attempt to directly solve the problem by testing the mutations of hypothetically critical 

amino acids failed to prove the importance of these residues, which suggests the study omitted 

critical residues for this interaction. As an alternative strategy, I will construct chimera proteins of 

ADF4 and ADF1 (or ADF5) to screen the total protein sequence by BiFC, and gradually locates 

the critical residues that contribute to the strong interaction between ADF4 and WRKY29. At the 

same time, I will determine the phosphorylation sites that add to ADF4 in cytoplasm and nucleus, 

respectively, by IP-MS approach using Arabidopsis transgenic lines expressing ADF4-BFP-

FLAG-NES/NLS with PAMP treatment (see Appendix A). This study will further confirm the 

existence of phosphor-regulation on ADF4 and serves to reveal its impact by direct evidence. 

Second, because all of ADF2/3/4 can boost the activity of WRKY29 while having high expression 

in Arabidopsis leaves, ADF2/3/4 potentially have redundant functions that overshadow any 

immune phenotype in ADF single mutants, a hindrance to exploring genetic evidence supporting 

the nuclear function of ADFs. Therefore, I have been preparing the high-order mutant of ADFs by 

the CRISPR-Cas9 system, which will be accomplished in the near future (see Appendix A).  

 

Last but not least, I wish to discuss the application range of the mechanism model of ADF-WRKY 

interaction. As the research herein used a strategy of case study (i.e., focusing on the inspection 

into representative members of ADF and WRKY family as examples to deduce the general 

properties of their interaction), there was no evidence indicating that this is the only pattern of 

ADF-WRKY interaction that participates in plant immunity. Instead, other WRKYs that are not 
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involved in the molecular study but actually highly up-regulated upon the immune signaling, such 

as WRKY15/30/53, may also play critical roles via interaction with uncertain ADF(s). Similarly, the 

different WRKY may have other preferences on ADF variants, a perspective that is not covered 

in depth either.  

 

However, the value of exploring a single case of ADF-WRKY interaction in Arabidopsis lies largely 

beyond the elucidation of the function of this interaction per se. From an expanded horizon, this 

study discovered brand-new possibilities that indeed refreshed our knowledge on actin 

cytoskeleton and its associated proteins. First, apart from the ADF-WRKY interaction, ADFs may 

“moonlighting” as direct TF-regulators at a large scale beyond the WRKY family. In the case of 

ADF4, the ChIP-seq of ADF4 targeted DNA fraction without co-expression of WRKY actually has 

revealed 30 promoters (Figure 3-8A), including those of TFs in MYB, bHLH, ERF, and WRKY 

families. As ADF per se does not have any DNA-binding motif, it is predictable that such targeting 

spectrum is potentially mediated by interaction with other transcription factors. Like the case of 

ADF4, another study has demonstrated that ADF1 can also interact with TFs such as REM16 (Yu 

et al., 2020). These shreds of evidence strongly suggest that members of the ADF family, in 

general, can participate in direct transcriptional regulation regardless of the type of the TF it 

potentially interacts with, which can enlighten the community as a new perspective to interpret 

relevant data and observations. In other words, this mechanism may also apply to animals and 

other eukaryotes – while they do not have WRKY, they do have ADFs or cofilins. 

 

Second, this study conceptually reveals a general signaling pattern that I name as “cytoskeleton 

reservoir”, where cytoskeleton actually serves as a reservoir of storage of semi-functioning 

proteins that have additional critical function(s) in places beyond cytoskeleton. Like ADFs, their 

affinity to cytoskeleton can be regulated by incoming signals followed by a change of the affinity 

to cytoskeleton, or even the collapse of the cytoskeleton itself, to release these proteins for a 
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different phase of functionality. From this perspective, many ACPs, as well as actin itself, 

potentially apply to this model, a topic to be explored and verified in the future.  

 

Methods 

 

Plant Growth 

All plants are grown in a BioChambers model FLX-37 walk-in growth chamber (BioChambers, 

Manitoba, Canada) at 20 °C with 12h light/12 dark with 60% relative humidity and a light intensity 

of 120 μmol photons m−2 s−1. 

 

Construction of vectors 

The studies herein utilized the Gateway™ system, where specific interested genes (such as ADFs 

and WRKYs) were amplified from Col-0 cDNA, and first cloned into an “entry vector” pENTR™/D-

TOPO™ (Thermo #K240020), following the commercial documentation. The obtained 

pENTR::gene-of-interest can be transferred to any functional “destination vector”, by LR clonase 

(Thermo #12538120) following the same standardized approach in the documentation. If the 

destination vector is also Kanr, it will be first linearized by MluI digestion and purified before 

recombination by LR clonase.  

 

For protoplast BiFC, Gateway-compatible destination vector pM1089 (for -nEYFP) and pH1097 

(for -cEYFP) were designed and constructed in this research. To test the BiFC system, vector 

CD3-1089 and CD3-1097 (purchase from TAIR) was investigated in the beginning, but two major 

issue were found: (1) CD3-1089 have very low copy number due to mutations on the origin of 

replication, and (2) both do not have high-specific immune tags. Therefore, we constructed the 

pH1097 and pM1089 using the edited backbones of different sources, together with other newly 
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Figure 3-11: Construction of Gateway vectors for multiple purpose. A, the schematic diagram 
showing the process of construction of the Gateway vectors. From the protoplast vector CD3-1096, a 
methylation site on a XbaI site necessary for the reconstruction is removed by PCR of the total plasmid 
to obtain pNeo1096, followed by replacing the cYFP between the ApaI and XbaI site to other sequences. 
For some of generated protoplast vectors, the functional sequence between the two I-CeuI sites is 
transferred to pPZP-RCS2-bar (TAIR, #CD3-1057), to generate corresponding binary vectors for 
Agrobacteria-mediated transformation. A similar strategy is used on CD3-1097 for other objective 
vectors. B, the table describing the information of each generated vector. The ones highlighted by green 
colors were used in this study. 
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constructed plasmids for difference functions, with some adapted in this study. The total process 

is described in Figure 3-11. 

 

In addition, pBGWB and pBGWY were used for subcellular co-localization assay; p5GWH and 

p5GWM were used for the protein stabilization assay and ChIP; pBGWφ, p5GWB, p5GWB-NLS, 

p5GWB-NES, and p5GWR were used for the promoter reporter assay. Please refer to these 

sections for specific usage of these vectors.  

 

DNA point-mutation 

The construction of mutants is conducted by fusion PCR, i.e., generating two pieces of PCR 

product with overlapping sequence (with objective mutation) at the downstream of upstream of 

the products, respectively, and conduct a second PCR using the previous product as template. 

The primers used for mutagenesis in this study are listed in the Appendix B.  

 

Agrobacteria-mediated transformation 

Agrobacterium tumefaciens GV3101 (Rifr/Genr) was used in this study. Target genes in the binary 

vector are transformed into the Agrobacteria by electroporation. 2-day-old Agrobacterial grown 

on a LB plate with proper antibiotics are used for plant transformation.  

 

For Agro-infiltration, the Agrobacteria lawn on a plate is diluted to O.D. = 0.6 (single transformation) 

or each of 0.4 (co-transformation) by Agro-infiltration buffer (10 mM MES [pH 5.6], 10 mM MgCl2, 

150 mM acetosyringone). After incubation in darkness for 2 hours, the Agrobacteria solution is 

inoculated to N. Benthamiana leaves by hand-infiltration, and the plant is transferred back to 

growth environment. 48hpi plants are used for downstream experiments.  
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For Arabidopsis floral-dip, Agrobacteria are inoculated into 10mL LB media with proper antibiotics 

overnight. After centrifuge, the bacteria are re-suspended in 2mL of the floral-dip buffer (1/2 MS, 

5% sucrose, and 0.02% Silwet L-77). Each flower to be transformed is dipped up-and-down for 

10s. The plants with dipped flower are shaded in full darkness with saturated humidity for 24 and 

restore to growth condition for harvest.  

 

Protoplast transformation 

Arabidopsis protoplasts are transformed using a modified method referring to Yoo et al., 2007 

and Wu et al., 2009. In brief, leaf #8,9,10 of 5-week-old Arabidopsis are cut off, and the lower 

epidermis are removed by tapes. The leaves are merged in the Enzyme Solution for 1.5h with 

slight touch-shake per 20min. The obtained protoplast were washed by the W5 solution finally 

resuspended by MMG solution at 5x105 protoplast/mL. For a standard procedure, each sample 

of 200 μL protoplast in MMG is gently mixed with less than 20μL of vector and 220 μL of PEG 

solution and kept in darkness for 5min. 920μL of W5 is added immediately to stop transformation. 

The transformed sample is washed once by W5, and finally re-suspended in 1mL W5 solution 

and kept under weak light (~200 lux) for 12h before downstream experiment. The formula of the 

solutions involved is exactly identical to those in []. 

 

Confocal microscopy 

Olympus FV1000D is used for BiFC, with 515nm excitation, BA535-565 emission filter for YFP 

signal, and BA650IF for chlorophyll, through Olympus UPLFLN 10X Objective (quantitative 

analysis) or 65x/1.42 PlanApo N Objective (portrait of detail). Nikon A1Rsi is used for promoter 

assay, with sequential scanning of (1) 405nm excitation/425-510nm detection for BFP (mTagBFP), 

with 560nm excitation/580-640nm detection for RFP (mCherry), and (2) 488nm excitation/xxx for 

GFP and xxx for chlorophyll, through Plan Apo λ 10X objective lens.  
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Semi-quantitative BiFC 

Protoplast samples are transformed with 3.5μg pM1089::ADF and 7μg pH1089::WRKY vector. 

After 12h, images containing both BiFC fluorescence and chlorophyll channels are collected by 

confocal microscopy, with low magnification (10X) and large pinhole (~600nm) to include large 

quantities of entire cells. The laser power and the sensitivity of the photon sensor is set to barely 

detect saturated pixels in the brightest sample, to obtain the most accurate and comparable 

results. The data of pixel brightness of the captured image is used to calculate the ratio of the 

sum of BiFC (YFP) signal to the sum of chlorophyll signal (serving to normalize BiFC signal by 

the quantity of live cells), above a background threshold. The background threshold is determined 

by the average of the values below which covers 95% of the pixels, of the mock samples.  

 

Promoter reporter assay 

Protoplast samples are transformed with 6μg pBGWφ::pW29/pBAG7/pW46/pW48 (GFP driven 

by WRKY induced promoter), together w/o 3μg p5GWR::WRKY (WRKY-RFP) and/or 7μg 

p5GWB::ADF (ADF4-BFP). The confocal images are captured using the same approach as semi-

quantitative BiFC, but four channels – BFP, GFP, RFP, and chlorophyll – are collected. Like semi-

quantitative BiFC, GFP/chlorophyll (above background threshold) is calculated for the general 

comparison of ADF-WRKY regulated promoter intensity.  

For the mathematical model of WRKY enhancement coefficient (EC), the corresponding 

background threshold is first subtracted from each channel, and the total fluorescence of each 

channel is calculated as:                                     

ܤ = ∑൫ܤ௫ − ܶℎݏ݁ݎ൯ | ݔ݅ ∈ ௫ܤ | ݔ݅} > ܶℎݏ݁ݎ}   , 

ܩ = ∑൫ܩ௫ − ܶℎீݏ݁ݎ൯ ห ݔ݅ ∈ ௫ܩ | ݔ݅} > ܶℎீݏ݁ݎൟ  , 

ܴ = ∑൫ܴ௫ − ܶℎݏ݁ݎோ൯ | ݔ݅ ∈ ௫ܴ | ݔ݅} > ܶℎݏ݁ݎோ}   , 

ℎ݈ܥ = ∑൫ܥℎ݈௫ − ܶℎݏ݁ݎ൯ | ݔ݅ ∈ ℎ݈௫ܥ | ݔ݅} > ܶℎݏ݁ݎ}   , 
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where i represents each image and pix represents each pixel. The GFP brightness normalized by 

chlorophyll (Chl) is calculated as: 

[ܩ] = ீ


  . 

Therefore, the basic (untriggered) transcription level of pW29, as a constant, can be estimated 

as: 

௨௧ௗ[ܩ] = [ܩ]) ݊ܽ݁ܯ  | ݅ ∈ ,ܻܭܴܹ−}  .  ({ܨܦܣ−

Next, to evaluate how many folds of regulation on GFP occur due to the introduction of WRKY29 

w/o ADF, the regulation level is defined by the ratio of gained GFP brightness to estimated basic 

GFP level without ADF/WRKY: 

ܴ݁ ݃ = ீ
[ீ]ೠೝೝ∗

   . 

Then, the upregulation level contributed by per unit of WRKY of each group can be deduced as: 

ܴܲ ܹ = (ܴ݁ ݃ − 1)/ܴ   , 

which includes the impact of ADF, if present in the group. In order to further dissect the up-

regulation of WRKY activity contributed by ADF, the basic RPW, contributed by WRKY without 

ADF, as a constant, is estimated by the data of +WRKY/-ADF group, as: 

ܴܲ ିܹி = ܴܲ) ݊ܽ݁ܯ ܹ | ݅ ∈ ,ܻܭܴܹ+}  ({ܨܦܣ−

Next, to evaluate how many folds of change of RPW is made by the introduced the ADF of each 

group, the fold of enhancement per unit of WRKY, or EPW, is calculated as: 

ܲܧ ܹ = ܴܲ ܹ/ܴܹܲି ி  . 

Finally, the index to measure the power of WRKY enhancement normalized by per unit of ADF is 

named as WRKY regulatory coefficient (EC), which is defined as: 

ܥܧ = ܲܧ) ܹ −  ,  ܤ/(1

which reflect a nature of ADF as WRKY regulator regardless of the quantity in the system. 
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ChIP-qPCR 

600μL protoplast in MMG solution are transformed with 15μg p5GWM::WRKY, w/o 30μg 

p5GWH::ADF, following the method described in the section Protoplast transformation. For flg22 

treatment, flg22 at final concentration of 1μM is added to the sample 1 hour before harvest. After 

12h incubation under weak light, the samples are crosslinked and the nucleus fractions are 

purified, sonicated, homogenized for IP, using Pierce™ Classic Magnetic IP/Co-IP Kit (Thermo # 

88804) following the official instruction. Particularly, the sonication is conducted by Branson 

CPX5800 ultrasonic for a total 30min. After overnight IP followed by DNA de-crosslink, the pulled-

down DNA fraction as well as input samples is collected by Zymoclean Gel DNA Recovery Kit 

(Zymo Research, #4008). 45μL elution buffer (without EDTA) is used to solve the DNA for ChIP-

qPCR. For each run, 2 μL of eluted DNA is used as template with 3 technical repeats. The primers 

to detect WRKY-targeted DNA are listed in Appendix B.  

 

ChIP-seq 

The ChIP is conducted following the same method as ChIP-qPCR, but each sample of 600μL 

protoplast is finally eluted with only 20μL elution buffer. The distribution of fragmented DNA size 

is inspected by TapeStation system to ensure the majority of the DNA is between 200-400bp. 

Then, the library is prepared by Takara ThruPLEX DNA-Seq Kit (Takara, #R400674) and 

inspected by TapeStation again for quality control. 75bp paired end sequencing is conducted by 

Illumina NEXTSEQ 500.  

 

The result is inspected to ensure no adapter is detected. BWA is used to align the reads, and 

results with size >900bp are abandoned. The alignments are filtered to remain only results 

matching with nuclear genome with quality score greater than 20. Results of 3 biological repeats 

are pooled together. Finally, the peak-calling of the filtered alignments is conducted by MACS2 

with default setting, with band width set to 300, for downstream analysis (specified in figure 
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legends). Only peaks aligned to promoter region is used. Besides, if a promoter has multiple 

enriched peaks, the total enrichment fold (TEF) is used to evaluate the level of fraction enrichment, 

which is defined as ܶܨܧ = 2ඥ∑(మாி)మ , where EF is the enrichment fold number of each peak. A 

positive target of WRKY/ADF is generally defined as both log10(p) and log10(q) are greater than 

50; for the -WRKY29 /+ADF4 α-HA group, because the total gain of DNA is relatively lower, both 

thresholds are changed to 20.  

 

Bacterial growth assay 

Pseudomonas syringae pv. tomato DC3000 strains are grown on NYGA plates for 2 days for 

harvest. The bacteria are diluted in 10mM MgCl2 to O.D.600 = 0.002 (106 CFU/mL) to inoculate 

into Arabidopsis leaves (usually #7,8,9) by hand-infiltration. After the leaf is dried, Arabidopsis 

plants are kept in a tray with dome, to maintain near-saturation humidity, and returned to growth 

condition. Samples are harvested 3dpi, with totally 6 leaf disks collected from the 3 leaves from a 

plant defined as a biological repeat. Totally 8 biological repeats of each group are collected for 

analysis.  

 

Transcriptional temporal pattern analysis of ACT, ADF, and WRKY 

Arabidopsis mRNA-seq dataset GSE85932 and GSE151885 were downloaded, decompressed 

and uploaded to the Galaxy platform. Each selected .fastq data file is trimmed by Trimmomatic 

by default setting to eliminate barcode and low-quality reads. Next the reads were quantified by 

Salmon. The TPM quantifications of each isoform of a gene are summed to render the total TPM 

of a gene for comparison in form of heatmap. For GSE151885 dataset only, the absolute 

quantification of all groups is rendered by the reverse-calculation from the 0h group absolute 

quantification and the relative quantification compared to the 0h group.  
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Statistics and visualization 

All image computation, statistical analysis, and data presentation/visualization are conducted in 

Python 3.8 environment, using Numpy, Scikit-posthocs, Pandas, Matplotlib, and Seaborn libraries. 
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Appendix A: supplemental figures of ILEE 

 

Appendix A describes the supplemental figures (Figure AA-1 to AA-16) describing the design 

and performance of ILEE algorithm in Chapter 2, as listed below:  

 

Figure AA-1: NNES (Non-connected negative elements scanning) identification of course 
ackground. A, NNE count has a normal-like distribution. A confocal microscopy background-noise 
image was mimicked by random normal distribution (mean = 90, std = 30) into a 25*800*800 array. The 
maximum projection is conducted by choosing the maximum value of the third axis to make an 800*800 
image (distribution shown as blue), and its mean and STD are calculated to make a true normal 
distribution (shown as red), both of which finely overlap. Therefore, the peak (representing the mean) is 
a good feature value. B, Performance of NNES-based adaptive global thresholding and its prediction. A 
random set of 31 actin image of 25*800*800 in our database are used to evaluate a coarse background 
threshold using MGT. Left, the NNES curves reflecting the relationship between global threshold and 
NNE count; right, correlation of ground truth coarse background evaluated by MGT vs peak of NNE 
count for individual samples. The color of each sample represents the proportion of coarse background 
within all pixels. C, Performance of brightness based adaptive global thresholding using histogram peak 
as a feature value. Left, histogram curve of the 31 training samples; right, correlation of the same ground 
truth coarse background vs peak of histogram (i.e., mathematical mode). Comparing to the histogram-
based methods, NNES has a much smoother shape that enables the utilization of peak as a feature 
value. Also, NNES has a more robust correlation to coarse background determination, as by MGT.  
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Figure AA-2: Performance of NNES adaptive global thresholding and its prediction model (3D). A, 
The NNES curve of the same sample set as Figure AA-1. While they varies in actin features (density, 
bundling, etc.), they have very similar NNES shape. B, The correlation of coarse background (evaluated 
by an approach mimicking 2D MGT) vs the peak of NNE count for individual samples and corresponding 
coarse background prediction model. As suggested by NNES curve shape, they have very similar peak 
as well as coarse background, which represents the norm of sensor performance in 3D imaging (2D 
projection therefore is distorted by information loss). Therefore, we directly used a simple proportional 
function to establish the regression model.  
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Figure AA-3: Visualized explanation of core ILEE algorithm. The core strategy of ILEE thresholding 
is explained from the perspective of time domain threshold (marked cyan in A), which… 
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Figure AA-3 (cont’d) … exclude (i.e., image itself) and frequency domain (i.e., after Fourier 
transformation, FFT). A, Schematic diagram describing how ILEE generates local threshold based on 
detected edges. For the purposed of simplicity, we use a “1D image” for demonstration. Suppose there 
is an example grayscale image (ࡵ) with 4 peaks of pixel value (i, ii, iii, iv); the higher peak ii and iii are true 
cytoskeleton fluorescence but the lower peaks i and iv are random noise. ILEE first identify edges of 
cytoskeleton – area with a gradient magnitude higher than a computed threshold. Then these edge are 
used as “reference values” to generate a threshold image (࢙ࢋ࢘ࢎ࢚ࡵ, in red color), that smoothly links all the 
reference area. Finally, the bona-fide cytoskeleton will be defined as area where ࡵ is higher than ࢙ࢋ࢘ࢎ࢚ࡵ. 
The areas not selected as edges will not be referred, which means true florescence with locally high 
values (ii, iii) are selected and background with locally low values (i, iv) are excluded, regardless of 
whether the local level is generally low (i, ii) or high (iii, iv). B, The comparison of effect of ILEE, classic 
low-pass filter, and implicit Laplacian smoothing (ILS) on image frequency domain. For low-pass filter, 
the input image (I) transformed into frequency domain pattern by FFT, and we artificially define a filter 
where 0-1 indicates the passing rate of each frequency fraction. We pass the frequency pattern through 
the filter to render the filtered FFT pattern, and restore the image by reverse FFT. For ILS and ILEE, the 
input image (I and Iedge respectively) are transformed to frequency domain pattern by FFT; on the other 
side, the result of ILS and ILEE are pre-computed and transformed to frequency domain pattern as the 
“filtered FFT”. The (equivalent) frequency filter is deduced by subtracting filtered FFT from FFT of input 
and make the value relative to the FFT of input, which is comparable to the classic low-pass filter. ILS 
and ILEE has more fractions low frequency fractions on either x- or y-direction, which are potentially thick 
line cytoskeleton structures. Scale bar = 20 μm. C, Comparison of high-frequency filtering of ILS and 
ILEE. The red rectangle in subplot B is maximized to present the detail. ILEE has uneven but well-directed 
selection of high frequency fractions because ILEE particularly preserves the cytoskeleton edge and 
tends to neglect the coarse background.  
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Figure AA-4: Significant difference filter. Significant difference filter changes a pixel to the mean of 
its surrounding pixel if the object pixel is “significantly different” from its surrounding pixel. “Significant 
difference” is defined as a difference greater than 2-fold of standard deviation (STD) of surrounding 
pixels for 2D mode and 5-fold for 3D mode. The rationale behind is that there is no detectable 
independent actin element as tiny as one pixel element, so a one-pixel region that is significantly 
different from its surrounding tends to be noise or bias due to z-axis projection. 
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Figure AA-5: The mean and standard deviation (STD) of gradient magnitude of ground noise 
is directly proportional to the STD of noise. To investigate the mathematical relationship between 
statistical distribution of ground noise (represented by coarse background located by NNES) and the 
gradient magnitude of ground noise, we used random normal array that mimics the data structure of 
our image sample, and generated its Scharr gradient image for statistical analysis. A, Normal-like 
distribution of Scharr gradient. Simulated 800*800 ground noise image subject to normal distribution 
(i), (ii), and (iii) are processed by Scharr operator and the gradient distribution is shown. The gradient 
distribution is not influenced by the mean yet by the STD of native data of the simulated ground noise. 
B and C, The mean of noise gradient is not influenced by the mean of the noise, but the STD of noise. 
The mean of noise gradient is directly proportional to the STD of native noise. D and E, The STD of 
the noise gradient is only influenced by STD of the noise as well. The STD of the noise gradient is 
directly proportional to the STD of native noise.  
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Figure AA-6: The ratio of x-y unit and z unit influences the proportional coefficient of ࡳࣆ-ࢋ࢙ࡺ࣌ 
and ࡳ࣌ -ࢋ࢙ࡺ࣌ relationship. Using a strategy similar to what is presented in Figure AA-5, we simulated 
3D normal ground noise images (800*800*25) with a variable standard deviation (STD) and mean fixed 
to 90. Next, the z-axis was interpolated by the fold of a scaling factor, defined as z-unit / xy-unit, the 
second variable. Like the 2D data structure, at a given scaling factor, the mean and STD of noise gradient 
is proportional only to the STD of native noise. Then, we adopt a mathematical model ீߤ  or ீߪ =
݇௦(݈ܵܿܽ݅݊݃ ݂ܽܿݎݐ) ߪே௦ to accurately describe the numeric relationship between the gradient and native 
value of background noise. By a piecewise polynomial regression, we obtain a prediction model that 
accurately (R2 = 1) calculate ݇௦ and therefore determine the relationship between mean/STD of the noise 
gradient and the native noise values. A and B, the relationship between mean of noise gradient and STD 
of noise. C and D, the relationship between mean of noise gradient and STD of noise. 
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Figure AA-7: Determination of global gradient threshold. In order to determine the global gradient 
threshold using estimated mean and standard deviation (STD) of coarse background gradient as an input 
of ILEE, we constructed a non-linear estimation model ݃௧௦ = ீߤ. + k(ߪ) ீߪ.. The global gradient 
threshold of 30 samples with 800*800*25 resolution randomly collected from our actin image database 
were evaluated manually (similar to MGT), and the mean and STD of gradient values in coarse 
background are calculated following the approach described in the Methods and Figure AA-5. For the 2D 
mode, images were first projected to 800*800 resolution. Then, the coefficient k of each sample was 
calculated and corelated with STD of the coarse background. A, The correlation of STD of coarse 
background and k. Green, standard mode, where each sample have the similar weight of regression; Red, 
conservative mode (default of this paper), where a weight equal to k2 is applied. B, The ݃௧௦-ߪ 
relationship restored from a. C and D, Similar to a and b, but the reference global gradient threshold were 
manually evaluated using a 3D visualizing interface.  
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Figure AA-8: The impact of K and the training for K2 estimation. In order to learn the impact K 
(implicit Laplacian smoothing coefficient) and determine the K value for a give batch of image sample, 
we constructed a training database and developed a non-linear estimation model. A, The influence of … 
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Figure AA-8 (cont’d) … different K to rendered threshold image and binary result by ILEE. A low K renders 
a threshold image that assimilates the object sample with finer filament structure (preserved high 
frequency information), but tends to underestimate the thickness of bright and thick filament; as K 
increases, less local detail are preserved, and the rendered binary image losses thin and faint filaments 
but get more accurate for thick and bright filament. There is a trade-off over the performance over faint/thin 
and bright/thick for a single K. Therefore, we used the full-outer-join result of a small K1 and a high K2 (Fig. 
3b and corresponding main text). B, Construction of K2 training database. Initially, we planned using the 
7 images with hand-portrayed binary ground truth of filament fraction, but these sample have relatively 
limited range of filament size by pixel, so we decided to expand out sample pools using these data. Each 
samples are bicubically interpolated into the resolution of 0.5-, 1,5-, 2-, 2.5-, and 3-fold of the original and 
added to the database. Their corresponding binary imaged are converted to float data type with 0.0 and 
1.0 to process the same bicubic interpolation, with the pixels over 0.42 are defined as True and False if 
not. Using this approach, the judgement of matching between the ground truth and ILEE result did not 
have significant change, as shown. Finally, each sample will be processed by ILEE with a single K2 ranging 
from 1 to 3000, rendering a total of 336 binary images as the training database. C and D, Training 
algorithm. In c, we converted the ILEE samples to a feature value – estimated K2 with -0.2 of average 
deviation rate of pixels with top 5% DT in binary ground truth. Specifically, for each original or interpolated 
image sample (shown by independent lines, where different color represents different fold of interpolation), 
ILEE binary results using various single K2 are compared with corresponding ground truth image to 
calculate the deviation rate, defined as the fold of difference of Euclidian distance transformation (DT) of 
ILEE result vs ground truth relative to ground truth. The averaged deviation rate of pixels with top 5% DT 
are taken as a feature value to represent thick filament. Next this feature was correlated to the 
corresponding K2, and linear regressions were conducted to estimate the log10 of the optimal K2 that 
renders -0.2 for average deviation rate for each sample. Finally, the estimated optimal K2 and the average 
DT of pixels with top 5% DT of each sample were utilized (shown in d) to generate an exponential 
regression model. This model covers the vast majority (if not all) of possible highest filament thickness 
rendered by confocal microscope images of cytoskeleton. The average DT of pixels with top 5% DT 
estimated by Niblack thresholding were used as an independent variable for optimal K2 estimation.  
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Figure AA-9: The stability of ILEE and other classic image thresholding approaches for 
cytoskeleton segregation in confocal images. The coefficient of variation (CV*) of each index 
rendered by each approach in Fig. 4d were calculated and visualized as a heatmap. O, Ostu; T, Triangle; 
L, Li; Y, Yan; N, Niblack; S, Sauvola; I, ILEE. ILEE has a dominantly low CV* (i.e., high stability) over 
diverse sample for occupancy, linear density, skewness, CV, or one of the lowest for other indices. Note 
that the CV* of the computed indices in the figure and the fluorescence CV of a sample, which is a 
cytoskeletal index, are different concepts.  
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Figure AA-10: The visualized comparison of robustness of ILEE and other algorithms by 
segmentation accuracy. The presentation image Figure 2-5A are added with a series of gaussian…  
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Figure AA-10 (cont’d) … noise (μ = 0, σ as variable). The binary images are computed by selected 
algorithms including ILEE and compared with manually portraited ground truth, and pixels of match, 
pseudo-positive, and pseudo-negative are presented. By visual observation, all of the algorithms are 
stable when the σ of noise is within 100 (3~4% of max of dynamic range); 3 of the better performed 
algorithms, ILEE, MGT, and Li, remain accurate, among which ILEE has the best coverage of ground 
truth. When σ of noise is higher than 100, all algorithms become visibly unstable. While MGT and Li 
tend to have single pixel errors while ILEE tends to result in block-shaped errors that are less in number 
and mimics the thickness of the cytoskeleton in shape, which indicates that the indices derived from 
ILEE are potentially more accurate at high noise conditions.  
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Figure AA-11: The quantificational comparison of robustness of ILEE and other algorithms by 
segmentation accuracy.  The dataset of Figure 2-5B, C, and D are added with a series of gaussian 
noise (μ = 0, σ as a variable). Since gaussian noise is random and potential unstable, each sample-noise 
combination are technically repeated by 12 times and the averaged result is used. The transparent area 
with light color indicates 95% confidence interval of each algorithm. The binary images rendered by 
different algorithms are compared with manually portraited ground truth to count the pixels that are 
matched (ideally 1.0), pseudo-positive (ideally 0), and pseudo-negative (ideally 0). Generally speaking, 
ILEE is the best-performing algorithm with high match, low pseudo-positive, and low pseudo-negative 
rate at both low and high noise. Other algorithms have one or more flaws. 
 



134 

 

Figure AA-12: The quantificational comparison of robustness of ILEE and other algorithms by 
index rendering stability. Like Figure AA-11, the dataset of Figure 2-5B, C, and D are added with a 
series of gaussian noise (μ = 0, σ as variable), segmented by aforementioned algorithms, and their 
indices are computed and presented as the relative value to the ground truth. Each sample-noise 
combination are technically repeated by 12 times and the averaged result was used. The transparent 
area with light color indicates 95% confidence interval of each algorithm. For each figure, the lines with 
plainer slope indicate higher robustness (resistance to noise); being closer to 1.0 by value indicates 
higher accuracy. A, Index class of density; B, index class of bundling; c, indices of other classes. For 
most of the indices, ILEE provide an extremely stable result against increasing noise, while other 
algorithms has very obvious change of value of output indices and are therefore no longer accurate (if 
they were), which echoes the visual observation of Figure AA-11. Interestingly, skewness and CV are 
two exceptions, where ILEE shows more instability and tends to have a bifurcated direction of change.  
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Figure AA-13: The stability/robustness of ILEE and MGT in batch analysis of biological samples 
of Figure 2-6. A, The coefficient of variation (CV*) of each index rendered by ILEE and MGT by different 
operators. The individual CV*s of mock and EV group for each index-method combination are merged. 
ILEE or ILEE_3d got the lowest CV* (or highest stability) on occupancy, linear density, (fluorescence) 
CV, Diameter_TDT/SDT, severing activity, and anisotropy. B, A comparison of the t-test P value of mock 
versus P. syringae (EV)-inoculated sample rendered by ILEE and MGT by different operators. ILEE or 
ILEE_3d has the highest -log10 P value (i.e., lowest P value) on occupancy, linear density, skewness, 
(fluorescence) CV, Diameter_SDT, severing activity, and anisotropy. Note that the CV* of computed 
indices in the figure and the fluorescence CV of the samples, which is a cytoskeletal index, are different 
concept. 
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Figure AA-14: The correlation of occupancy and linear density. The occupancy and linear density 
rendered by ILEE and MGT shown in Figure 5 are corelated. The occupancy and linear density generally 
have a very high linear correlation, indicating that they agree with each other on evaluating the cytoskeletal 
density. ILEE and MGT does not display the same mathematical relationship, indicating that ILEE and 
MGT possess different tendencies in rendering the topological structure (mostly influencing linear 
density). In the 3D mode, they only have medium-strong correlation, potentially because the 3D 
topological structure cannot be perfectly rendered due to concave/convex structures present in the 
skeletonized images. Additionally, this could be the result of abandoned oversampling process for 
generating the skeletonized image due to insufficient computational power for standard PCs.  
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Figure AA-15: The performance of ILEE on other type of biological sample. We tested ILEE on leaf 
microtubule images of Arabidopsis Col-0/GFP-MAP4 and animal cell actin images of YUMMER1.7D4 
line. The Col-0/GFP-MAP4 images were generously provided by Dr. Silke Robatzek (Ludwig-
Maximilians-Universität München) from a previously published dataset. The result indicates ILEE 
accurately covers the cytoskeleton samples with locally dynamic brightness, thickness, and shape, with 
no visible difference compared with its performance on leaf actin images.  
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Figure AA-16. ILEE and human eye have different tendency to judge the topological structure of 
cytoskeleton, especially between two bright bundles. A cropped portion of the demonstration image 
from Fig. 3a and its derived images are generated and demonstrated to explain the discrepancy related 
to the determination of the topological structure between ILEE and hand-drawn binary ground truth (i.e., 
human eye evaluation). When ILEE binary image is compared with ground truth, they mostly match with 
each other with only minor and non-influential differences. When both binary images were skeletonized 
based on their topological structure, a numerous branches were detected from the ground truth, but not 
from ILEE. This phenomenon is very obvious in the highlighted (i.e., circled) area, where two bright actin 
bundles are very close to each other. This is intriguing, as where the human eye identified many 
branches and intervals, ILEE did not. These structures have a strong impact on the topological structure. 
Therefore, the topology-sensitive indices, linear density, severing activity, and branching activity display 
contrast and stable inconformity between ground truth and ILEE. However, since the hand-drawn ground 
truth image is not a rigorously defined ground truth, we surmise that inconformity cannot be interpreted 
to any inaccuracy of ILEE.  
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Appendix B: Proposed future experiments 

 

Appendix B describes the critical experiments to be conducted after the submission of this 

dissertation, related to this study herein. It includes the preparation of high-order ADF mutant 

facilitated by CRISPR-Cas9 system (see Figure AB-1, below), and IP-MS based identification of 

ADF in vivo Phosphorylation sites (See Figure AB-2, next page). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure AB-1: the technical route to construct the high-order mutant lines of ADFs. Blue arrow 
indicates knocking-out the gene by CRISPR-Cas9; black arrow indicates general crossing. Black text 
as the name indicates the mutant has been successfully constructed by the submission of this 
dissertation; grey text with dashed boarder as the name indicates the mutant is to be prepared soon.  
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Figure AB-2: the scheme diagram describing the IP-MS based identification of ADF4 in vivo 
phosphorylation sites. adf4/ADF4-BFP-FLAG-NES/NLS plants are grown to 5-week-old; flg22 or mock 
is injected into the leaves and the samples are harvested 30 min post treatment. The leaf samples are 
homogenized with abundant phosphatase in the buffer, and an α-FLAG IP is conducted to purify all ADF4 
fractions. The purified beads will be digested for a spectrometer assay (LC-MS/MS) to identified the 
phosphorylation on ADF4 residues.  



141 

Appendix C: specialized primers in this study 

 

Appendix C lists the primers specifically designed for generation of ADF4 mutations and detection 

of W-box fractions by ChIP-qPCR (see below). 

Table AC-1: list of specialized primers used in the study herein. Primers for ADF4 mutation and 
ChIP-qPCR are listed. The bold underlined bases indicate mutation comparing to the wild type gene.  
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