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ABSTRACT

HIGH-PRECISION AND PERSONALIZED WEARABLE SENSING SYSTEMS FOR
HEALTHCARE APPLICATIONS

By

Linlin Tu

The cyber-physical system (CPS) has been discussed and studied extensively since 2010.

It provides various solutions for monitoring the user’s physical and psychological health

states, enhancing the user’s experience, and improving the lifestyle. A variety of mobile

internet devices with built-in sensors, such as accelerators, cameras, PPG sensors, pressure

sensors, and the microphone, can be leveraged to build mobile cyber-physical applications

that collected sensing data from the real world, had data processed, communicated to the

internet services and transformed into behavioral and physiological models. The detected

results can be used as feedback to help the user understand his/her behavior, improve the

lifestyle, or avoid danger. They can also be delivered to therapists to facilitate their diagnose.

Designing CPS for health monitoring is challenging due to multiple factors. First of all,

the high estimation accuracy is necessary for health monitoring. However, some systems

suffer irregular noise. For example, PPG sensors for cardiac health state monitoring are

extremely vulnerable to motion noise. Second, to include human in the loop, health moni-

toring systems are required to be user-friendly. However, some systems involve cumbersome

equipment for a long time of data collection, which is not feasible for daily monitoring. Most

importantly, large-scale high-level health-related monitoring systems, such as the systems

for human activity recognition, require high accuracy and communication efficiency. How-

ever, with users’ raw data uploading to the server, centralized learning fails to protect user’s

private information and is communication-inefficient.

The research introduced in this dissertation addressed the above three significant chal-

lenges in developing health-related monitoring systems. We build a lightweight system for

accurate heart rate measurement during exercise, design a smart in-home breathing training



system with bio-Feedback via virtual reality (VR) game, and propose federated learning via

dynamic layer sharing for human activity recognition.
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CHAPTER 1

INTRODUCTION

The confluence of innovations in sensor development, the emergence of the Internet of Things

(IoT), and the ubiquity of mobile devices has given us a variety of new sensors and systems

that can be utilized to build mobile cyber-physical applications for the improvement of per-

sonal health, well-being, and fitness. Such devices are emerging regularly and address a

diverse set of applications, ranging from physical activity, endurance sports, and resistance

training to sleep monitoring, mindfulness practice, posture monitoring, weight management,

breathing techniques, cardiac health status [128, 80, 113]. Some examples of recent research

conducted in the area. Xiao Sun et al. designed a smartphone-based application, which

leverages the built-in microphone to unobtrusively detect acoustic events related to respira-

tion symptoms [117]. Shahriar et al. proposed using a sensor-equipped earphone to detect

the user’s heart rate and built an automated music recommendation system to help the user

maintain a target heart rate [91].

When designing state-of-the-art cyber-physical applications for health-related applica-

tions, several important considerations must be addressed. The first issue is what optimiza-

tions of the measurement technologies are necessary to improve estimation accuracy. Take

the detection of cardiac information as an example. In this application, heart rate for fitness

is commonly tracked using wrist-worn wearables. However, a major drawback of using these

sensors is that significant noise caused by intensive wrist movements can corrupt measure-

ments. As a result, complex filtering algorithms and designs must be created and tailored

to each application. To include humans in the loop, a second issue that must be considered

is the user-friendliness of applications. Attention must be paid to designing an unobtru-

sive sensing method that is easy-to-operate and convenient such that users can access the

healthcare applications frequently. One example of problems arising from this issue is in the

design of RSA-BT (Respiratory Sinus Arrhythmia biofeedback-based Breathing Training), a
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cardio-respiratory intervention that has been commonly used as a complementary treatment

to respiratory diseases and an exercise to help manage stress and anxiety. Despite its health

benefits, RSA-BT today still relies on in-person sessions and cumbersome sensing devices in

a clinical setting, limiting its accessibility. Furthermore, to design smart systems for large-

scale applications, we need to solve several limitations of centralized learning. With users’

raw data uploading to the server, centralized learning fails to protect users’ private informa-

tion and is communication-inefficient. Distributed learning [49, 132] has been proposed for

large-scale smart systems. The distributed learning paradigm only requires users to upload

their model weights for collaborative learning, avoiding sharing users’ raw data during the

learning process. Several Federated learning systems for Human activity recognition (HAR)

[49, 22] have been developed to enable continuous monitoring of human behaviors without

sharing users’ raw data. However, standard federated learning limits the performance of

smart systems, as the accuracy of models learned in this approach can be largely influenced

by the diversity of users.

Our research improved the precision of smartwatch-based cardiac measurement, enabled

the wrist-band-based unobtrusive and continuous logging of users’ cardiac and respiratory

information to make the intervention accessible daily in-home, and finally, proposed to use

federated learning to train the deep model for HAR. Specifically, first, a lightweight system,

Fitbeat, was developed to enable accurate heart rate tracking on wrist-type during intensive

exercise [123]. After obtaining accurate physiological signals from the system, we include

humans in the loop and design the BreathCoach — a smart and unobtrusive system that

enables in-home RSA biofeedback-based Breathing Training (RSA-BT) using smartphone-

based virtual reality in conjunction with sensors on a smartwatch [121]. Finally, we propose

FedDL, a novel federated learning system for the large-scale HAR, that can dynamically

capture the underlying user relationships and apply them to learn personalized learning

models for different users [124].

The rest of the thesis is organized as follows: Chapter 2 - the research on high-precision

2



heart rate tracking; Chapter 3 - the research about BreathCoach, an in-home RSA-based

Breathing Training system; Chapter 4 - the latest proposed research about Human Activ-

ity Recognition using personalized federated deep learning. The last chapter presents the

conclusion.
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CHAPTER 2

HIGH-PRECISION HEART RATE TRACKING

Tracking heart rate for fitness using wrist-type wearables is challenging, because of the

significant noise caused by intensive wrist movements. This chapter presents FitBeat – a

lightweight system that enables accurate heart rate tracking on wrist-type wearables during

intensive exercises. Unlike existing approaches that rely on computation-intensive signal

processing, FitBeat integrates and augments standard filter and spectral analysis tool, which

achieves comparable accuracy while significantly reducing computational overhead. FitBeat

integrates contact sensing, motion sensing and simple spectral analysis algorithms to suppress

various error sources. This chapter is adapted from a publication [123]. The author of the

dissertation is the first author of the original work. ”We” in this chapter refers to the author

of the original publication. This work contains the App design on Android devices. The

author recruited all the subjects, then collected and processed the data and the ground

truth.

2.1 Background

Recent years have witnessed the proliferation of wrist-type smart wearables. A desirable

feature of these devices is tracking heart rate for fitness, which is essential for exercisers to

monitor health conditions and control training loads. Wrist-type wearables typically employ

photoplethysmogram (PPG) to measure heart rate. Specifically, a PPG sensor consists of

a LED and a photo detector. The LED emits light, which is absorbed by blood flow when

traveling through the tissue. The photo detector then measures the intensity of reflected

light to sense periodic blood flow variation caused by cardiac cycle, which can be used to

estimate heart rate.

However, tracking heart rate for fitness using wrist-type wearables poses several key

challenges. First, since the capillary network around wrist is relatively sparse, PPG signals
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Figure 2.1: Measurement error of the built-in PPG sensor of Moto 360 while the subject is
running.

observed by wrist-worn sensors are usually very weak, which makes the signal extremely

vulnerable to noise. Second, during intensive exercise the subject’s wrist muscle may flex

frequently, resulting in an unstable contact between the subject’s skin and the PPG sensor,

which causes significant noise. Third, in addition to causing unstable contact, intensive wrist

motion affects blood flow, which introduces additional noise that may severely degrade the

accuracy of heart rate measurement, particularly when the motion-induced noise is over-

lapping with the desired signal in frequency domain. Our experiments show that popular

wearable devices like Mio Alpha and Moto 360 suffer extremely poor performance when

measuring heart rate in the presence of intensive wrist movements. For example, as shown

in Fig. 2.1, when the subject is running, the heart rate estimation error of Mio Alpha can

be as high as 50 beats per minute (bpm), compared with the ground truth measured using

a motion-resistant ECG sensor. Similar results were observed on other popular wearable

devices like Basis Peak and Fitbit Charge HR [69].

To improve the accuracy of heart rate measurement, numerous approaches have been

proposed to remove motion-induced noise, including wavelet transformation, independent

component analysis [65], moving average filter, adaptive noise cancellation [118], time fre-
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quency methods, and principle component analysis [97]. However, existing approaches are

mainly designed for PPG sensors worn on fingertips [104], earlobes [94], or forehead [66].

They perform poorly when sensors are worn on the wrists, because noise caused by wrist

motion is much more complex and stronger than those caused by fingers, ears and head.

Although there exist a few methods for reducing noise caused by wrist movements, they rely

on complex signal processing algorithms. For example, in addition to standard filtering and

spectral analysis, TROIKA [135] relies on computation-intensive singular spectrum analysis

and FOCUSS algorithm, which significantly increases overhead.

In this chapter, we present Fitbeat – a lightweight system that enables accurate heart

rate tracking on wrist-type wearables during intensive exercises. Unlike existing approaches

that rely on computation-intensive signal processing [110][38], FitBeat integrates and aug-

ments only standard filter and spectral analysis tool, which achieves comparable accuracy

while significantly reducing computational overhead. To achieve this goal, FitBeat integrates

contact sensing, motion sensing, and simple spectral analysis algorithm to suppress various

error sources. Specifically, to remove noise caused by unstable contact between the subject’s

skin and the PPG sensor, FitBeat performs contact sensing, which measures the amplitude

and variance of PPG signal to identify and remove distorted PPG signal samples. To reduce

motion artifacts caused by complex and intensive wrist motions, FitBeat exploits accelerom-

eter data to rebuild the waveform of motion-induced noise, and then subtracts it from PPG

signal. To extract precise heart rate from raw PPG samples, FitBeat employs a simple

pulse identification algorithm, which accurately identifies the spectral peak of heart rate by

co-analyzing the spectrum of PPG signal and acceleration data. FitBeat is implemented on

Moto 360 – a COTS smartwatch. We evaluate the performance of FitBeat for workouts of

different intensities, including walking, running and riding. Experimental results involving

10 subjects show that the average error of FitBeat is around 4 bpm, which improves heart

rate accuracy by 10x compared with the default heart rate tracker of Moto 360.
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2.2 Related work

To improve the accuracy of heart rate measurement, several approaches have been pro-

posed to remove motion-induced noise from PPG signal. Kim et al. in [65] propose to use

independent components analysis (ICA) for reducing motion-induced noise. In ICA, PPG

signals are modeled as the combination of PPG signals and motion artifacts.When applied

to the contaminated PPG signal, ICA separates the clean PPG signal from noise compo-

nents. However, ICA assumes that all signal components are mutually independent with

each other, which is not true in PPG signal. For example, intensive wrist movements always

affect the subject’s cardiac activity, which implies that clean PPG signal is correlated with

motion-induced noise. Besides, ICA relies on multiple PPG sensors, which are usually not

available on COTS wearable devices.

Another approach to reducing motion-induced noise is adaptive noise cancellation (ANC)

[130]. ANC estimates motion-induced noise components using acceleration data and then

substracts the estimated noise from PPG signal. However, when the hand movements are

irregular or the wristband is loosely attached to the subject’s skin, the estimated noise

may not be well correlated with the noise. Consequently, motion noise can not be removed

completely.

There exist two classes of signal processing algorithms to extract heart rate from noise-

reduced PPG signal, including moving window and spectral analysis [55]. Previous studies

have shown that spectral analysis is more accurate than moving window. Specifically, spec-

tral analysis algorithm estimates heart rate by analyzing the spectrum of PPG signal and

then locating the largest spectral peak in the possible range of cardiac cycle. However, this

algorithm performs poorly in the presence of residual motion-induced noise, because residual

noise may cause multiple peaks around the frequency of cardiac cycle when PPG signal is

noisy.
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2.3 System Design

FitBeat is designed for accurate heart rate tracking using wrist-type wearables during

intensive exercises. To achieve this goal, FitBeat addresses two key challenges. First, during

intensive exercises, the subject’s wrist muscle may flex frequently, which causes the band of

the wearable to tighten and loosen, resulting in an unstable contact between the subject’s skin

and the PPG sensor that significantly distorts PPG signals. Second, in addition to causing

unstable contacts, the wrist motion may affect blood flow, which introduces additional noise

that interferes with heart rate measurements.

FitBeat addresses the above challenges by integrating contact sensing, motion sensing,

and simple signal processing algorithm to suppress various error sources. The architecture of

FitBeat is illustrated in Fig. 2.2. Specifically, FitBeat consists of three major components.

1. Based on the amplitude and variance of PPG signal, the contact sensing component

continuously monitors the contact between the PPG sensor and the subject’s skin, and

removes those signal samples distorted by unstable contact.

2. The noise reduction component analyzes both PPG signal and accelerometer data to

remove motion-induced noise. It exploits accelerometer data to rebuild the waveform

of motion-induced noise based on an empirical model, and then subtracts the noise

from PPG signal. The empirical model is refined using iterative adaptive filtering to

improve accuracy.

3. The pulse identification component further reduces the residual motion-induced noise

by co-analyzing the spectrum of PPG signal and accelerometer data, and then performs

spectral analysis to accurately identify the pulse corresponding to the heart rate.
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Figure 2.2: The signal processing pipeline of FitBeat.

2.3.1 Contact Sensing

When the subject is moving intensively, his/her wrist muscle may flex frequently, which may

tighten and loosen the contact between the PPG sensor and the subject’s skin. The impact

on PPG signal is two-fold. First, when wrist flex loosens the contact, the PPG sensor will

be exposed to an increased level of ambient light, which overwhelms the pulsatility of PPG

signal that characterizes cardiac cycles. Second, when the contact varies frequently, a new

pulsatile components will be imposed to the original PPG signal, which interferes with heart

rate measurements.

To maintain accurate heart rate measurements in the presence of intensive wrist move-

ments, FitBeat continuously senses the contact between the PPG sensor and the subject’s

skin, and removes those signal samples that are distorted by unstable contact. Specifically,

FitBeat identifies distorted PPG signal samples based on their amplitudes and variances.

When the PPG sensor is exposed to an increased level of ambient light due to a loosened

contact, the amplitude of the PPG signal will experience a disruptive increase. In addition,

when the contact between the PPG sensor and the subject’s skin is unstable, the PPG signal

will exhibit a large variance. For example, Fig. 2.3 shows the amplitude and variance of

PPG signals when the subject performs intensive wrist movements. It’s obvious that both

the amplitude and variance of PPG signals are much larger in the time periods from 30s to

130s and from 280s to 580s, which correspond to the time period when the subject keeps

moving his hands.

Based on the above observations, FitBeat removes a PPG signal sample if its amplitude

is higher than a pre-defined threshold, and excludes signal samples from heart rate derivation
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Figure 2.3: The waveform of PPG signal and its variance. The PPG signal are recorded
while subject performing wrist movements intensively

if the variance measured in a window is larger than a pre-defined threshold. We determine

the thresholds of amplitude and variance based on empirical experiments. According to

our measurements, the thresholds of amplitude and variance are set to 106 and 5 × 108,

respectively.

2.3.2 Noise Reduction

During intensive exercises, the subject’s motion may affect his/her blood flow around wrist,

imposing another noise component into the original PPG signal. To address this prob-

lem, FitBeat exploits the accelerometer of wearable to sense the subject’s motion, estimates

motion-induced noise, and then subtracts the noise from the original PPG signal. The

framework of the noise reduction component is illustrated in Fig. 2.5. Specifically, the input

signal ppg(i) is a combination of motion-induced noise n(i) and the desired PPG signal s(i)

that characterizes cardiac cycles. The accelerometer data acc(i) is used to derive n′(i) as an

approximate estimation of n(i). The adaptive filter then iteratively optimizes its coefficients

to improve the accuracy of n′(i). The process typically converges in a few rounds. Finally,

10



0 2 4 6 8 10

×10
4

1.45

1.5

1.55
Raw PPG signals

0 2 4 6 8 10

×10
4

-5

0

5
reference input: X

0 2 4 6 8 10P
P

G
 s

ig
n

a
l

×10
4

-1

0

1
reference input: Y

0 2 4 6 8 10

×10
4

-1

0

1
reference input: Z

time (s)
0 2 4 6 8 10

×10
4

-2

0

2
reference input: X+Y+Z

Figure 2.4: the waveform of motion-reduced PPG signal. The last four plots shown the result
of adaptive noise cancellation with four different reference input, including acceleration from
axis X, Y , Z and a linear summation, (X + Y + Z).

the estimated n′(i) is subtracted from ppg(i) to suppress motion-induced noise.

To re-build the waveform of motion-induced noise, FitBeat models n′(i) as a function of

accelerometer data. Specifically, we derive the model based on extensive empirical measure-

ments. First, we sample the X, Y, and Z axis of accelerometer and collect PPG signals for

different subjects during typical workouts such as riding, running, and walking, etc. Then,

we evaluate different polynomials consisting of X, Y, and Z to study their accuracy when

re-building the waveform of motion-induced noise. Based on 20 groups of experiments, we

find that the linear combination, i.e., (X+Y +Z) yields the best accuracy. For example, Fig.

2.4 compares the PPG signal generated by the noise reduction component after subtracting

noise waveforms modeled using different polynomials. As shown in the figure, the waveform

of PPG signal is the smoothest when using (X + Y + Z) to estimate motion-induced noise.

We note that this result is different from previous studies [104][94][66], which show that

motion-induced noise is best modeled using one axis of accelerometer data when the heart

rate sensor is worn on the forehead, earlobe or finger of the subject. This is because, during

exercises, the motion of the subject’s wrist can be along any possible direction, which is
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Figure 2.5: the flowchart of Adaptive Noise Cancellation.

much more complex than those of head, ears, and fingers. As a result, models that account

for only one axis of accelerometer are not enough to accurately characterize noise caused by

wrist movements.

Based on the above observation, we design the noise reduction component shown in Fig.

2.5 as follows.

acc(i) = x(i) + y(i) + z(i) (2.1)

k(i) =
λ−1P(i− 1)acc(i)

1 + λ−1accH(i)P(i− 1)acc(i)
(2.2)

n′(i) = wT (i)acc(i) (2.3)

s′(i) = ppg(i)− n′(i) (2.4)

w(i) = w(i− 1) + k(i)s′(i) (2.5)

P(i) = λ−1P(i− 1)− λ−1k(i)accH(i)P(i− 1) (2.6)

where,

• i denotes the current index of time window,

• acc(i) is the vector of buffered acceleration at step i,

• P(i) denotes the inversive correlation matrixe at step i,

• k(i) is the gain vector at step i,

• w(i) is the vector of filter tap at step i,
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• n′(i) is estimated noise, at step i,

• s′(i) is the noise-reduced PPG signal at step i,

• ppg(i) is the raw PPG signal at step i,

• λ denotes the forgetting factor.

acc, P and w are all column vectors of the same length.

To improve the accuracy of noise reduction, FitBeat needs to optimize the coefficients

of adaptive filter w(i). While previous heart rate monitoring systems typically employ the

Least Mean Square (LMS) algorithm to approach this problem, our measurements find that

Recursive Least Square (RLS) algorithm [102] performs better in the presence of intensive

wrist movements. Fig. 2.6 shows the average estimation error for three subjects during a

workout of 10-minute running. As shown in the figure, noise reduction using RLS-based

adaptive filter is more accurate. Fig. 2.7 shows the waveform of PPG signal when filter

contaminated PPG signals with LMS and RLS-based adaptive filter. As shown in the figure,

the signal waveform generated by RLS is much smoother. Based on the above observations,

FitBeat employs RLS algorithms to optimize adaptive filter coefficients, and set the forgetting

factor of RLS filter to 0.98 based on empirical measurements.
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2.3.3 Pulse Identification

In the presence of intensive wrist movements, noise reduction cannot completely remove

all motion-induced noise components. As an example, Fig. 2.8 compares the spectrum of

ground truth, raw PPG signal, and noise-reduced PPG signal when the subject continuously

moving his wrist. The ground truth is collected from the other wrist of the subject, which

keeps still during measurement. As shown in the figure, in the spectrum of noise-reduced

PPG signal, residual motion-induced noise causes multiple peaks in the segment from 0.8

Hz to 3.2 Hz, which significantly disturbs heart rate measurements.

To address the above problem, FitBeat employs a simple spectral analysis algorithm to

suppress residual motion-induced noise, which allows it to accurately identify the pulse that

corresponds to the heart rate. The basic idea is to co-analyze the spectrum of PPG signal

and accelerometer data. Specifically, FitBeat first filters PPG signal and accelerometer data

with a Savitzky-Golay (SG) filter to remove high-frequency noise, and then performs Fast

Fourier Transform (FFT). To identify the pulse that corresponds to the heart rate, FitBeat

performs spectral analysis following two steps.
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1. Locate the highest peak between 0.8 Hz and 3.2 Hz in the spectrum of PPG signal.

Denote the frequency of the located peak as fp. If there is only one peak, return 60×fp

as the heart rate measurement.

2. If there exist multiple peaks, examine the spectrum of accelerometer data, and check if

there is a peak at fp. If not, return 60× fp as the heart rate measurement. Otherwise,

check the amplitude of the peak at fp in the spectrum of accelerometer data T . If

the amplitude is higher than a pre-defined threshold, remove the peak at fp from the

spectrum of PPG signal, and repeat step 1. Otherwise, return 60× fp as a heart rate

measurement.

The above algorithm iteratively cleans the PPG signal by removing spectral peaks caused

by residual noise. To identify motion-induced peaks, we determine the threshold T based on

empirical measurements, and set T = 10000 in FitBeat.

2.4 Evaluation

2.4.1 Experiment Settings

We evaluate FitBeat for typical workouts of different exercise intensities, and compare it

with three baselines, including:

• Baseline-1: the default heart rate monitoring app of Moto 360.

• Baseline-2: a variant of FitBeat, where contact sensing and pulse identification are

disabled during heart rate measurement.

• Baseline-3: another variant of FitBeat, where only contact sensing is disabled.

We compare FitBeat with baseline-2 and baseline-3 to study the effects of contact sensing

and pulse identification. In addition, we employ Zephyr HxM BT – a strap with built-in

ECG sensor – to collect ground truth.
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Figure 2.9: Heart rate estimation while walking.
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Figure 2.10: Heart rate estimation during a 10-minute walking.

To evaluate FitBeat, we recruited 10 subjects and collected data from different workouts

including 10 walks, 3 runs and 3 rides. Our study along with its data collection procedure

was approved by the Institutional Review Boards (IRB) at Michigan State University. All

the subjects voluntarily agreed to help with data collection, and signed a consent form. In

order to collect data, each subject used a smartwatch (Moto 360), a Bluetooth chest strap

(Zephyr HxM BT), and a smartphone (Google Nexus 4) while doing exercise. During data

collection, the PPG sensor and the accelerometer of Moto 360 are continuously sampled

at 25 Hz. At the same time, the heart rate reported by the default app of Moto 360 is

recorded at 1 Hz. To obtain ground-truth, we log the heart rate measured by Zephyr HxM

BT, which uses ECG sensor that is resistant to body movements. The raw PPG signal and

accelerometer data are then transferred to the smartphone for heart rate estimation.
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We evaluate FitBeat based on two metrics, including Absolute Heart Rate Error (Errabs),

and Average Estimation Error (µ). Specifically, Errabs is the absolute estimation error per

minute, and µ is computed as the average of Errabs in a 10-minute window. They are

computed as:

Errabs(i) = |BPMest(i)−BPMtrue(i)| (2.7)

µ =
1

N

N∑
i=1

Errabs(i) (2.8)

where,

• Errabs(i) denotes the absolute estimation error in the i-th time window;

• N is the total number of estimation windows;

• BPMest(i) denotes the estimated heart rate in the i-th time window measured in beats

per minute (bpm),

• BPMtrue(i) denotes the ECG-based heart rate measured in beats per minute (bpm),

which is used as ground truth,

2.4.2 FitBeat Performance

In the following, we evaluate FitBeat under different levels of exercise intensity, including

walking, running, and riding.

2.4.2.1 Walking

We first evaluate FitBeat while subjects are walking at normal speed. Fig. 2.9(a) shows the

average estimation error µ for all subjects. Fig. 2.9(b) compares the distributions of µ for

FitBeat and baselines. As shown in Fig. 2.9(b), when using FitBeat, µ ranges from 2.43 to

8.13 with a median of 4.27, outperforming all baselines.
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Figure 2.12: The waveform and variance of PPG signal.

To further study the performance of FitBeat, Fig. 2.10 shows the trace of estimated

heart rate during a 10-minute walk for one subject. We observe that baseline-1 – which is

the default heart rate app of Moto 360 – performs worst among all methods. Its estimation

error can be 70 bpm, and is higher than 50 bpm for most of the time. We also observe

that baseline-2 performs worse than FitBeat. This is because baseline-2 is more vulnerable

18



subject No.
1 2 3

A
v
e
ra

g
e
 H

R
 E

rr
o
r 

(b
m

p
)

0

10

20

30

40

50

60
baseline-1
baseline-2
baseline-3
FitBeat

Figure 2.13: Average estimation error while running.

to residual motion-induced interference, as it disables pulse identification during spectral

analysis. Specifically, Fig. 2.11 shows the spectrum of reference PPG signal, noise-reduced

PPG signal, and accelerometer data. In the spectrum of reference PPG signal, peak corre-

sponding to the heart rate is located at 1.3 Hz. While in the spectrum of motion-reduced

PPG signal, the peak of maximum amplitude is located at 1 Hz, which is caused by residual

motion-induced noise (as shown in the spectrum of accelerometer data). When using the

peak at 1 Hz to estimate heart rate, baseline-2 results in an error of 18 bpm. In comparison,

FitBeat uses the pulse identification algorithm to remove peaks caused by residual noise,

which allows it to accurately identify the peak corresponds to the heart rate. Moreover,

we observe that FitBeat outperforms baseline-3, which disables contact sensing during heart

rate measurement. In particular, baseline-3 yields an estimation error of about 15 bpm in

the time period between 150s and 240s. As shown in Fig. 2.12, the variance of PPG signal

experiences a surge in this time period, which indicates an unstable contact between the

subject’s skin and the PPG sensor. With contact sensing, FitBeat is able to identify and

exclude PPG signal samples corrupted by unstable contacts, which allows it to maintain

accurate heart rate measurements.
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Figure 2.14: Heart rate monitoring while running.
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Figure 2.15: Average estimation error while riding.
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Figure 2.16: Heart rate monitoring while riding.

2.4.2.2 Running

We now evaluate FitBeat while subjects are running in gyms or outdoors. Fig. 2.13 shows

the average estimation error µ for three subjects during a workout of 10-minute running.

We observe that FitBeat outperforms baseline-1 by a significant margin. In particular, the

average estimation error of FitBeat is below 8 bpm for all subjects. Fig. 2.14(a) shows the
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trace of heart rate estimation for one subject. As shown in the figure, FitBeat is able to

maintain accurate heart rate measurement consistently over time. Fig. 2.14(b) compares

the distributions of Errabs for FitBeat and baseline-1. For FitBeat, the median Errabs is

around 5 bpm, and the maximum Errabs is below 10 bpm.

2.4.2.3 Riding

We then evaluate FitBeat when subjects are riding on spinning or outdoors. Fig. 2.15 shows

the average estimation error µ for three subjects during a workout of 10-minute riding.

Compared with the result shown in Fig. 2.13, µ is generally lower during riding, because

riding involves less intensive wrist movements. In this case, FitBeat still maintains accurate

heart rate measurements, but brings little accuracy improvement when compared with other

baselines. For example, Fig. 2.16(a) shows the estimated heart rates for a 10-minute riding

on spinning. As shown in the Fig. 2.16(b), the heart rate estimated by FitBeat is close to

the ground truth, and the median of Errabs is no more than 2 bpm.

2.5 Conclusion of Study

In this thesis, we present FitBeat – a lightweight system that uses wrist-worn PPG for

accurate measurement during intensive exercises. To achieve this goal, FitBeat integrates

contact sensing, motion sensing and lightweight signal processing algorithm to suppress

various error sources. We implement FitBeat on a COTS smartwatch, and evaluate its

performance under different levels of exercise intensity, including walking, running and riding.

Experimental results from 10 objects show that FitBeat can accurately measure the heart

rate during exercise.
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CHAPTER 3

RESPIRATORY SINUS ARRHYTHMIA BIOFEEDBACK-BASED
BREATHING TRAINING

RSA-BT (Respiratory Sinus Arrhythmia biofeedback-based Breathing Training) is a cardio-

respiratory intervention that has been commonly used as a complementary treatment to

respiratory diseases, as well as an exercise to help manage stress and anxiety. Despite its

health benefits, today’s RSA-BT still relies on in-person sessions and cumbersome sensing

devices in a clinical setting, which limits its accessibility. In this chapter, we introduce

BreathCoach, a smart and unobtrusive system that enables effective in-home RSA-BT using

sensors on a smartwatch and smartphone-based VR. This chapter is adapted from a publi-

cation [122]. The author of the dissertation is the first author of the original work. ”We” in

this chapter refers to the author of the original publication. This work contains the software

design on Android devices and the algorithm design in Matlab. The author recruited all the

subjects, then collected and processed the data and the ground truth.

3.1 Background

Respiratory sinus arrhythmia (RSA) refers to the naturally occurring synchronization

between heart beat and respiration — cardio-acceleration during inspiration, and cardio-

deceleration during expiration — which is known as a reflection of the regulation of autonomic

nervous system [61]. As such, RSA-BT (Respiratory Sinus Arrhythmia biofeedback-based

Breathing Training) has been used as a common cardio-respiratory intervention with the

goal of guiding trainees to initially breathe at their Resonant Frequency (RF), the frequency

at which maximum amplitude of RSA is achieved, and then breathe in phase with heart

beat changes with the same goal of RSA maximization [71]. Due to its ability to help

improve autonomic control of cardiopulmonary function [72] and emotional self-regulation

capacities [64], RSA-BT and its variants have been adopted as a complementary treatment
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to pulmonary diseases such as Asthma and chronic obstructive pulmonary disease (COPD)

[36, 70], or as a relaxation technique especially for mental health conditions such as post-

traumatic stress disorder (PTSD) [62].

When used as a clinical therapy, RSA-BT requires a set of instruments and follows

a standard procedure administered by a therapist. Figure 3.1(a) shows a typical clinical

setting of RSA-BT, where the trainee’s physiological signals are measured by ECG electrodes,

abdominal strain gauge, and pulse oximeter finger clip sensor. The measurements are then

transmitted to a computerized machine to provide bio-feedback for breathing. The training

protocol is typically composed of two types of sessions [36] (illustrated in Figure 3.1(a)(c)):

(1) RF detection session: the trainee is asked to breathe for 2 minutes at each pre-set pace,

e.g. 7, 6.5, 6, 5.5, 5, 4.5 breaths per minute (bpm), to obtain the RF. (2) Biofeedback session:

the trainee is instructed to breathe at RF for the first few minutes and then follow a breath

pattern (BP) in phase with IBI (Inter-beat Interval) for the rest of the session. Note that the

traditional training protocol requires the supervision of a therapist. Specifically, the therapist

should decide the RF according to the RSA distribution during the RF detection and suggest

the moment to shift to IBI-based breathing basing on trainee’s real-time performance during

the training.

Despite its health benefits, today’s RSA-BT therapy has several limitations. 1) First, it

still relies on cumbersome devices and in-person sessions in a lab/clinical setting. Specifically,

to measure physiological signs such as BP and IBI, trainees are required to wear sensors on

their wrist, chest, and fingertip. In addition, the biofeedback display with a two-dimensional

human-computer interface makes it difficult to convey intuitive guidance to trainees, there-

fore hampering the training experience and effectiveness. 2) Second, the protocol of today’s

RSA-BT lacks a way of taking poor training performance into account to adjust breath-

ing guidance dynamically. Specifically, during a training session, trainees’ breathing is only

guided by IBI series, which does not always result in a suitable breathing pattern for trainees

to follow, as some trainees may feel uncomfortable to breathe at a certain pace due to their
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((c)) Comparison of the training procedures of RSA-BT between traditional ap-
proach and BreathCoach, showing two major differences: (1) Unlike traditional
RSA-BT, no pre-training required in BreathCoach as RF is dynamically estimated
during training. (2) During training, traditional RSA-BT relies only on IBI-based
pacing after the initial 2-min RF-based pacing, while BreathCoach provide guid-
ance by intelligently switching between RF-based and IBI-based pacing based on
real-time measurements.

Figure 3.1: A Comparison between the traditional approach and BreathCoach for respiratory
sinus arrhythmia biofeedback-based breathing training (RSA-BT).

physical conditions. Another possible cause of poor training performance is irregularities in

measured IBI signals, due to body movements or other sources of interference. 3) Lastly,

conventional RSA-BT’s dependence on the supervision of a therapist [71] significantly limits

its accessibility, therefore making it ill-suited for long-term practice at home.
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In this thesis, we present BreathCoach — a smart and unobtrusive system that enables

in-home RSA-BT using smartphone-based VR and sensors on a smartwatch (illustrated in

Figure 3.1(b)). Specifically, BreathCoach continuously calculates required physiological mea-

surements (i.e., BP, IBI, and RSA) using signals from the accelerometer and the PPG sensor

on a smartwatch. These real-time measurements are used to calculate the recommended BP,

which is then conveyed through a VR game to provide intuitive and continuous breathing

guidance. To further improve the training performance and experience, BreathCoach in-

telligently switches between two pacing mechanisms based on a dynamic measure of user’s

difficulty in following the guidance (Figure 3.1(c)).

The key novelties of BreathCoach include:

• The system adopts a suite of lightweight algorithms to extract BP, IBI, and RSA from

raw sensor signals in real-time, making it suitable for implementation on smartwatch

and smartphone.

• To achieve better effectiveness of training, the system informs the calculation of rec-

ommended BP with dynamically estimated RF and RSA thresholds based on both

current and historical measurements; and intelligently switches between two feedback

mechanisms based on users’ difficulty in following the guidance.

• The breathing guidance is conveyed to users in the form of VR game to provide a more

intuitive and immersive guidance.

We have implemented a research prototype of BreathCoach with two exploratory VR

game designs using a wrist-type wearable (Empatica E4 [2]), a smartphone (Moto G4 [5])

and a VR viewer (Google cardboard [3]). The evaluation of BreathCoach was conducted in

three aspects, including the accuracy of physiological measurements, effectiveness of training,

and user experience. We have collected both subjective and objective data from experiments

where each of 10 participants performed 6 sessions of RSA-BT using either traditional ap-

proach or BreathCoach. The results show that BreathCoach is not only able to accurately
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measure required physiological signs, but also achieves better training performance than the

traditional approach.

3.2 related Work

3.2.1 RSA Biofeedback Training

RSA-BT has been implemented for numerous clinical applications, such as treatments for

asthma, COPD and various neurotic disorder [36, 70, 139]. Its implementation involves

sensing and displaying instruments. The commonly used set of sensing instruments include

ECG electrodes, abdominal strain gauge, and pulse oximeter finger clip sensor, as shown in

Figure 3.1(a). C-2 biofeedback units with HRDFT software [36] and the cardiotachmeter

[71] as shown in Figure 3.1(b) are widely used as displaying instruments for clinical RSA-

BT. Figure 3.1(b) also illustrates the biofeedback interface of C-2 biofeedback units. The

breathing pacer is a sawtooth-shaped line. A small ball travels along the line from left

to right to guide inhalation and exhalation. Heart rate is displayed in the same window

as the biofeedback. Besides, the clinical RSA-BT adopted a standard training protocol.

Specifically, this protocol consists of two sessions [36]. In the first session, the trainee is

asked to breathe for 2 minutes at each pre-set pace, e.g., 7, 6.5, 6, 5.5, 5, 4.5 bpm, to obtain

the RF. During the second session, the trainee is instructed to breathe at RF for the first

few minutes and then breathe in phase with IBI.

However, these RSA-BT systems have several shortcomings, especially for in-home train-

ing. Firstly, the cumbersome sensing and displaying instruments make these systems im-

practical for in-home RSA-BT. Secondly, training with these systems entails the supervision

of the therapist. Specifically, the therapist should decide the RF according to the RSA

distribution and suggests the moment to shift to IBI-based breathing basing on trainee’s

real-time performance in the second session. Moreover, according to the standard RSA-BT

protocol, RF detection should be performed every time starting training, which is inefficient.

Finally, trainees may feel overwhelmed when failing to breathe in phase with IBI. Trainees’
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((a)) Apple Watch Breathing
Application [8].

((b)) StressEraser, a
popular off-the-shelf
device for daily
RSA-BT [6].

((c)) The VR interface of
SOLAR.

Figure 3.2: Examples of the products on the market with functions related to breathing
training.

physiological limit may prevent them from breathing at a low rate, and irregularities in ECG

signals also make it difficult for trainees to follow an aperiodic IBI. In these situations, their

training performance will be degraded without the therapist’s supervision.

An abundance of breathing applications has emerged to serve different functions—from

entertainment-oriented games to improving health or well-being. ”Breathe” is a native ap-

plication on Apple watch [8]. As shown in Figure 3.2(a), it uses graphic animation and gentle

taps to guide the breathing and help the user focus. The training duration and frequency

can be customized. This app is easy to operate and designed for daily breathing training.

However, without any biofeedback, this app fails to consider users’ training performance.

Besides, this app leads users to breathe at a fixed pace and the breathing pace is constant

for all users, which makes the training ineffective. On the one hand, the exact cardiac RF

varies from person to person [127]. Thus, the breathing pace should be adapted to varied

individuals. On the other hand, the RF has been shown to change over time within individ-

uals [71, 33, 74]. Therefore, breathing at a fixed pace is ineffective when the RF has reduced

to a slower pace. Instead, by breathing in phase with heartbeat changes, RSA-BT allows

each individual to breathe at a rate that is adapted to the rhythms of his/her own body and

over time as respiratory function improves.

StressEraser is an off-the-shelf device for daily RSA-BT, which has been commonly used in

various treatments and the related research [98, 112]. As shown in Figure 3.2(b), StressEraser
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is a hand-held biofeedback device that measures HRV from the pulse in your fingertip via an

infrared sensor and displays it as a wave to instruct users’ respiration. This portable device

can be used for in-home RSA-BT. The users often complained about error sensing signals

and the failures to deal with irregularities in IBI [1]. To obtain good-quality signals, users are

asked to hold finger steady and avoid sunlight. Even so, sometimes it provides a meaningless

straight line. Moreover, like a clinical RSA-BT system, it still fails to manage trainees’ bad

performance resulting from physiological limits and uncertain irregularity in ECG signals.

Finally, without a respiratory sensor, StressEraser is unable to detect trainees’ real-time

respiratory response, and thus leaves trainees unaware of their real-time performance.

Recently, an immersive breathing training system, called AirFlow, has been developed for

COPD [100]. It collects respiratory data from sensors on the chest and abdomen and reflects

them in immersive breathing training games, including the Balloon Game, Eating Game and

Penguin Game. These games are designed to train Pursed-Lip breathing, breathing rhythm

and depth respectively. In addition to requiring obtrusive sensing devices, the system is only

able to guide users to breathe at a fixed rate.

3.2.2 Breathing training as a stress mitigating intervention

Breathing has a direct effect on RSA and as such plays a fundamental role in regulating the

autonomic nervous system and reducing autonomic arousal [46]. Research suggests that each

individual has a resonant frequency at which RSA is the greatest. Breathing at resonant

frequency stimulates the vagal baroreflex [73]. Frequent high-amplitude stimulation of the

baroreflexes by breathing at resonant frequencies increases the efficiency of cardiac reflexes

and baroreflexes, and consequently promotes relaxation.

Research shows that breathing training as an effective regulator of autonomic arousal

leads to concrete stress reduction effects [24, 23, 126]. Preliminary results suggest that

portable RSA biofeedback appears to be a promising treatment adjunct for disorders of

autonomic arousal and is easily integrated into treatment [103]. Several studies support
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that RSA-BT is a promising treatment for several kinds of anxiety disorder, such as post-

traumatic stress disorder (PTSD), work stress and perinatal depression [119, 89, 17]. Re-

cently, guided breathing has been utilized as a mindful intervention for drivers to counteract

the stress accumulated at work and the additional stress encountered during driving [93].

3.2.3 Respiration pattern measurement

Respiratory inductance plethysmography (RIP) sensor is the most widely used device to

evaluate pulmonary ventilation by measuring the movement of the chest and abdominal

wall [16, 44]. It consists of two lightweight elastic and adhesive bands, which makes the

measurement of respiration pattern cumbersome.

To detect the breathing pattern unobtrusively, the MindfulWatch, a smartwatch-based

system for real-time respiration monitoring during meditation, was developed in [44]. It

utilizes motion sensors to sense the subtle ”micro” wrist rotation ( 0.01 rad/s) induced by

respiration. MindfulWatch offers reliable real-time respiratory timing measurement using a

novel self-adaptive model that tracks changes in both BP and meditation posture over time.

3.2.4 Bio-responsive VR

VR systems have been successfully applied in the treatment of various anxiety disorders

including fear of flying, social phobia, PTSD, fear of spiders and fear of heights. There are

mainly three principles for the VR design of these mindful games: abstract visual elements,

rewarding practice and attention restorative environment. Specifically, abstract visual ele-

ments such as images and shapes are less distracting than concrete images such as flower, sky,

etc., and thus help participants relax [58]. The use of subtle visual elements as a reminder

to focus on stimulus is the preferred form of visible feedback [27]. Additionally, Rewarding

practice can motivate users to practice more often and for longer periods of time because of

the enjoyment they feel. Finally, attention restorative environment positively affects user’s
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attention [57]. The environments with stimuli that modestly capture attention are preferred.

For instance, subtle nature sounds are preferred over traffic noise.

SOLAR is a popular VR game that assists novice users in learning the stress-reducing

practice of mindfulness meditation [99]. Its VR is generated by the user’s brain activity and

respiratory rate. SOLAR asks users to focus their attention on the visual representation of

breathing. It is common for the users’ mind to wander during meditation. Therefore, we

included the user’s meditation scores in order to provide gentle feedback to the user when

their mind starts to wander. This meditation score was mapped to the color of the meditation

circle, positioned behind the silhouette as shown in Figure 3.2(c). Besides, the respiration

sensors were placed on the user’s thorax and diaphragm. The data received from the sensors

were used for generating both audio and visual elements of SOLAR. The respiration sensors

are mapped to the breathing circle in front of the silhouette. The breath circle becomes

larger and smaller as the user inhales and exhales.

3.3 System Requirements and Challenges

BreathCoach is designed to be an in-home RSA-BT system that continuously tracks

physiological variables, calculates the recommended BP in real time and guides users towards

the recommended BP through a VR game. To achieve this goal, BreathCoach should meet

the following requirements: (1) Since BreathCoach is designed for home and office use,

its sensing and displaying instruments should be easy to operate and comfortable to wear.

(2) BreathCoach needs to provide accurate and continuous measurement of physiological

variables, including BP, IBI and RSA, compared to clinical tools. (3) BreathCoach should

automate the procedure of traditional training, and intelligently provide guidance to users

without the presence of a therapist. (4) BreathCoach should provide guidance in an intuitive

and easy-to-follow fashion.

To meet these requirements, we addressed two major challenges in developing Breath-

Coach. (1) It is challenging to extract accurate BP, IBI, and RSA in real time from the
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built-in PPG sensor and accelerometer on the smartwatch. Compare to sensors available

(i.e., ECG and RIP) in a clinical setting, smartphone sensors are significantly susceptible

to motion artifacts. (2) The pacing mechanism used in traditional RSA-BT only relies on

real-time IBI series, which is not suitable due to irregularities caused by interference such as

body motion. Therefore, without the supervision of a therapist, it is challenging to create

an intelligent pacing mechanism that provides continuous and effective breathing guidance.

3.4 System Design

The architecture of BreathCoach is illustrated in Figure 3.3 with three key components,

which are Physiological Measurement, Dynamic Estimation, and Intelligent Pacing. The

Physiological Measurement component is responsible for calculating required bio-signals

needed for Breathing Pattern Recommendation. Specifically, it takes raw signals from ac-

celerometer and PPG sensor on the smartwatch as input to extract breathing pattern (BP)

and inter-beat interval (IBI), which are then used to calculate RSA amplitude. Based on

the historical data and current measurements, The Dynamic Estimation keeps track of the

resonant frequency (RF) and its corresponding RSA threshold – two key parameters for

generating effective breathing recommendation – which typically changes during training.

Informed by the results of dynamic estimation, the Intelligent Pacing component selects an

optimal pacing mechanism and generates the recommended breathing pattern. Finally, the

system presents the resulting breathing pattern in a smartphone-based VR game.

3.4.1 Physiological Measurement

Physiological measurement provides required bio-signals, including BP, IBI and RSA, to BP

recommendation. It contains three major components: IBI extraction, breathing pattern

extraction and RSA quantification.

As both PPG-based IBI extraction and acceleration-based breathing pattern extraction

are sensitive to significant postural change, the system first analyzes the acceleration data to
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Figure 3.3: System overview of BreathCoach.

estimate postural stability before further extracting cardiac and respiratory signals. When

low postural stability is detected, the system will pause extracting physiological signals and

resume when it goes back to being stable.

The postural stability is assessed using the standard deviation of three-axial acceleration’s

norm (STDacc), which is calculated over 1 s acceleration series every 0.03s (set according

to the sample rate of the accelerometer). As the respiration-induced wrist motion fluctuates

subtly and consequently has a low variation in the norm of acceleration compared with a sig-

nificant postural change, STDacc should stay below a threshold with no significant postural

change. Once STDacc exceeds the threshold, physiological measurements are discontinued as

it indicates significant postural changes. This threshold is generally defined as 1 g according

to our experimental results.
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data from PPG sensor.

3.4.1.1 IBI extraction

The system extracts IBI from PPG signal when the user’s posture is relatively stable. Specif-

ically, the raw PPG signals are first filtered from 0.8 Hz to 5 Hz to reduce noise. The filtered

PPG is then segmented using Incremental-merge segmentation algorithm (IMS) to calculate

IBI [60]. After segmentation, lines are classified as pulse or non-pulse lines. If the interval

between an up-slope and the last pulse line is large than a pre-defined threshold, this up-

slope is identified as a validated pulse line. The threshold is set to 0.6, as the resting IBI

ranges from 0.6 to 1 sec. Finally, the continuous PPG signal is divided into a group of pulse

lines (as shown in Figure 3.4). The IBI is calculated as the interval between the ends of

consecutive pulse lines.

3.4.1.2 Breathing pattern extraction

With the wrist band being held against the user’s abdomen, the respiration can be monitored

by analyzing the motion caused by the subtle displacement of the user’s abdomen due to

respiration. Apple Watch has utilized a similar method for blood pressure measurement, in

which the accelerometer would, when held against your chest, detect the heartbeat [7]. To

measure breathing, the raw acceleration is first processed by a low-pass filter of 0.4Hz, which

aims to highlight the motion due to respiration. The filtered acceleration signal is then used

to calculate BP using IMS. As mentioned before, IMS segments acceleration into up-slope
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Figure 3.5: An example of breathing pattern extraction based on 15-second acceleration.

and down-slope lines. If the interval between an up-slope and the last expiration line is large

than a pre-defined threshold, this up-slope is identified as a validated expiration line. The

threshold is set to 3, as the normal resting breathing cycle is no less than 3 sec. Finally,

the acceleration is divided into a group of expiration and inspiration lines, and each pair of

consecutive expiration and inspiration lines will be identified as a breathing cycle (as shown

in Figure 3.5).

3.4.1.3 RSA quantification

RSA refers to synchronization between heart beat and respiration [116]. As a critical pa-

rameter for breathing pattern recommendation, the system quantifies RSA by calculating

its amplitude on a breath-by-breath basis through Peak-valley algorithm [61] based on the

real-time IBI and BP. Specifically, when there are valid minimal and maximal IBI for a

breath cycle, RSA is calculated as the difference between the maximum and minimum IBI.

Figure 3.6 illustrates the peak-valley method for RSA estimation. Each breathing cycle is

detected from the respiration pattern. For each breath, the estimate of RSA is obtained by

searching the corresponding segment of IBI series for the maximum and minimum value and

then computing their difference.
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Figure 3.6: An example illustrating Peak-valley algorithm for RSA quantification. Per
breath, RSA is calculated as the difference between maximum and minimum inter-beat
interval (IBI).

3.4.2 Real-time Breathing Pattern Recommendation

Running on the smartphone, this component takes the continuous measurements of IBI, BP,

and RSA to dynamically calculate a recommended BP for optimal performance. Specifically,

real-time BP recommendation involves dynamic estimation and intelligent pacing.

3.4.2.1 Intelligent Pacing

The intelligent pacing dynamically chooses the optimal mechanism for BP recommendation

between IBI-based where users are guided to breathe in phase with IBI changes, and RF-

based pacing mechanism where users are guided to breathe at a fixed pace, i.e., RF.

The dynamic switching is controlled by two RSA thresholds: RSAlow and RSAhigh,

which act as the standards for real-time evaluation of training performance. When the user

hardly breathes in phase with the IBI wave, which may be irregular at that time, the RSA

amplitude will drop below the RSAlow indicating a bad training performance. According

to experimental results, RSAlow is set to 100 ms in BreathCoach to define a bad training

performance as a weak synchronization between breathing and IBI with RSA below 100

ms. If the RSA exceeds RSAhigh while the user breathes following the RF-based pacer,

it means the IBI wave acts regular and the user is capable of breathing in phase with
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IBI. RSAhigh is defined as the maximum RSA amplitude achieved when breathing at RF. It

should be set and updated during training, because it varies with each individual and changes

during the training. Specifically, the system will switch to RF-based pacing mechanism if

the current RSA is lower than RSAlow or the IBI extraction is interrupted by significant

postural changes, and switch back to IBI-based mechanism when the RSA exceeds RSAhigh.

Figure 3.7 illustrates how intelligent pacing works with a real-world example. At T1,

BreathCoach switches from IBI-based to RF-based pacing mechanism as IBI extraction is

suspended, and switches back to IBI-based pacing at T2 when RSA is detected greater than

RSAhigh. We can observe that IBI waveform is irregular and RSA stays low from T1 to T2,

whereas IBI waveform gets regular and RSA becomes larger at the end of RF-based pacing

training, suggesting that RSA as an evaluation of real-time training performance monitors

not only the user’s capacity to breathe in phase with IBI but also the irregularity of IBI

signals.
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Figure 3.8: Dynamic estimation.

3.4.2.2 Dynamic Estimation

RF and its corresponding maximum RSA amplitude (i.e.,RSAhigh) changes during training

in two scenarios. In the first scenario, a respiration frequency with its corresponding RSA

amplitude higher than RSAhigh is detected to be the new RF. In another scenario, the RSA

amplitude observed when the user breathes at RF is different from RSAhigh, suggesting

RSAhigh should be updated to this RSA amplitude. In order to adapt breathing pattern

recommendation to such changes, RF and RSAhigh are dynamically updated by analyzing

historical data, including BP and RSA.

By analyzing BP, BreathCoach monitors user’s breathing rate (BR) and its stability

through the standard deviation of BR (STDBR) to identify RF candidates. BR is calcu-

lated breath by breath as 60 divided by the average of previous 5 breathing cycles. Its

corresponding STDBR is also calculated each breath in a 5-breathing-cycle window. Since

the detection of RF entails a long-term observation, STDBR is necessary to make sure users

maintain a BR long enough that this BR can be a potential RF. A STDBR lower than the

pre-defined threshold (set to 0.2) makes the corresponding BR an RF candidate, suggesting

the user has kept breathing at this BR during previous five cycles.
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((a)) Balloon, where the player controls the
movement of the balloon through respiration to
follow the recommended breathing pattern rep-
resented by the yellow track.

((b)) Pilot, where the player breathes in and out
with the shrinkage and expansion of the white
circle to make the flight as fast and straight as
possible.

Figure 3.9: Screenshots of two proof-of-concept VR games.

BreathCoach recognizes the new RF and RSAhigh by observing the RSA of RF can-

didates. Same as BR, its corresponding RSA amplitude (RSABR) is calculated breath by

breath in a 5-breathing-cycle window. As shown in Figure 3.8(a), for each RF candidate, if

BR equals RF, RSAhigh is updated to the RSABR. Otherwise, RSAhigh and RF will be

updated to RSABR and BR respectively if RSABR is greater than RSAhigh. Figure 3.8(b)

shows the dynamic estimation of RF and RSAhigh in practice. As shown in this figure, both

RF and RSAhigh are updated at T2 as the STDBR is lower than 0.2 and RSA exceeds

RSAhigh at this moment. Only RSAhigh is modified at T1, since BR with a STDBR below

0.2 is equal to RF at this point.

3.5 VR Game

To provide an immersive and intuitive guidance, BreathCoach presents bio-feedback

through VR game, in which a pacing stimulus is driven by the recommended BP to in-

struct breathing. In this section, we describe two exploratory proof-of-concept VR games

implemented as part of BreathCoach system.
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3.5.1 Balloon

As illustrated in Figure 3.9(a), the goal of this game is to guide users to breathe in sync

with the yellow track to make the red balloon move along the track as precisely as possible

in 15 minutes. The dynamic track, as the pacing stimulus, represents the recommended BP.

The player controls the movement of the balloon through respiration, and the trail of the

balloon reflects the player’s breathing pattern. The degree of alignment between the trail of

the balloon and the track indicates the player’s performance, which is also used to change

the game’s background color to give users feedback on their performance.

3.5.2 Pilot

The Pilot game is designed to guide users to breathe in and out with the shrinkage and

expansion of the white circle to make the flight as fast and straight as possible, as shown in

Figure 3.9(b). As the pacing stimulus, the white circle near the bottom of the screen expands

and shrinks according to the recommended BP. The flight altitude, speed, and the game’s

background color are controlled by RSA amplitude, i.e., a proxy of the player’s real-time

performance. The higher and stabler the RSA estimations are, the farther and straighter

the player will fly. Different from Balloon, the Pilot game translates a proxy of training

performance into actions in the game, instead of directly revealing real-time respiration and

performance to users.

3.6 Evaluation

In this section, we present the evaluation of BreathCoach based on a set of in-lab con-

trolled experiments. First, we evaluate the accuracy of physiological measurements that

the system uses to generate recommendations (Section 6.2). Second, we investigate the ef-

fectiveness of BreathCoach’s real-time breathing pattern recommendation with respect to

RSA amplitude maximization throughout breathing training [71] and an essential use case

of RSA-BT, i.e. stress reduction [59, 96, 112, 139] (Section 6.3). Finally, we explore the
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effect of different game design (Section 6.4).

3.6.1 Experiment settings

The evaluation adopts a repeated-measures design, with the training protocol (i.e., tra-

ditional and BreathCoach) and game design (i.e., Balloon and Pilot) as within-subjects

variables. Subjects were required to conduct RSA-BT using three types of protocol-game

combination, including Traditional-Balloon (traditional breathing training protocol plus Bal-

loon), BreathCoach-Balloon, and BreathCoach-Pilot. Such experiment design allowed us to

compare the BreathCoach-Balloon training with the traditional-Balloon training to assess

the effects of intelligent breathing pattern recommendation module in BreathCoach and com-

pare the BreathCoach-Balloon with BreathCoach-Pilot training to study the game design

of BreathCoach. Our study along with its data collection procedure was approved by the

Institutional Review Boards (IRB). All the subjects voluntarily agreed to help with data

collection and signed a consent form.

We have recruited 10 subjects, and each participated in our data collection consisting of

six 45-minute RSA-BT sessions scheduled in different days. As shown in 3.10, in each session,

the participants were exposed to a different and randomly selected breathing training setup.

Note that the six sessions consist of two for each kind of training setup and participants

randomly arranged their sequence for the six-day training. Each experiment begins with a

tutorial during which the study administrator explained each part of the session and gave

subjects a live demonstration of the breathing training system. After that, participants

started the six daily sessions. As illustrated in Figure 3.10, each session includes 5 stages:(1)

RF detection, (2) pre-training task, (3) breathing training, (4) post-training task, (5) survey.

Specifically, the participants are initially left alone in the workspace to accomplish a 10-min

RF detection, a procedure required in traditional RSA-BT protocol to manually estimate

user’s in-situ RF. Subsequently, participants are asked to perform cognitive tasks, including

a standard Stroop Test, followed by a restorative break. This task is widely utilized to
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Structure:

Tutorial Session 1 Session 2 Session 5Session 3 Session 4 Session 6

Session structure:

Duration: 10min 5min 3min 15min 5min 3min unlimited

Task: RF 
detection

Stroop  
test Break Breathing 

Training
Stroop 

test Break Survey

Protocol-Game 

combination:

for each subject, session 1-6 follow 
a randomly ordered list of

[ BreathCoach-Balloon x2,  

BreathCoach-Pilot x2,  
Traditional-Balloon x2 ]

Figure 3.10: Schematic illustration of the study protocol.

simulate a focused and stress-eliciting work situation and the recovery from it [98, 112].

After cognitive tasks, participants are left alone in the workspace for the 15-min breathing

training with specific training setup. Upon finishing the training, participants will be asked

to perform cognitive tasks again. At the end of each experimental session, participants are

presented with a survey for training experience. The scale explores users’ training experience

and game preference via the following questions:

1. How often have you been distracted from breathing during the training?

2. How often have you felt hard to follow pacing stimulus?

3. How often have you felt anxious while training?

4. How often have you tried too hard while breathing?

5. Which game do you prefer, Balloon or Pilot, and Why?

The subject assesses the frequency on a 0-4 scale (0 = Never, 4 = Very Often). Besides,

subjects’ physiological responses, such as RSA, BR and IBI, were recorded in all procedures.

In order to collect data, each subject was asked to wear an off-the-shelf wrist-type wear-

able (Empatica E4 [2]) and a smartphone (Moto G4 [5]) with a VR viewer (Google Cardboard

[3]) during breathing training as shown in Figure 3.1(b). Both BreathCoach and traditional

41



protocol are implemented using the Empatica E4, Moto G4 and Google Cardboard. During

data collection, the PPG sensor and the accelerometer of Empatica E4 are continuously

sampled at 64 Hz and 32 Hz, respectively. The ground truth for IBI and BP measurements

is collected from Hexoskin [4] – a smart shirt with built-in ECG and RIP sensors.

3.6.2 Evaluation of physiological measurement

We evaluate the algorithms for BP and IBI measurements by comparing them with the

ground truth.

3.6.2.1 Evaluation of breathing pattern extraction

We first evaluate the performance of BreathCoach in detecting the breathing pattern and

measuring the complete breathing cycles. The evaluation is based on the metric: estimation

error of Breathing cycle duration (Durbc). BreathCoach extracts users’ BP from acceleration.

To evaluate its accuracy, we compare BreathCoach’s measurement for each breath cycle with

the corresponding one from the ground truth (same data measured using the RIP sensor),

and use their differences in Durbc as performance metrics. Figure 3.11 shows the error

distribution of the breath-by-breath detection result collected from 10 subjects during their

RF detection. We can see that the distribution of Durbc error is mostly symmetric around

0, indicating that the error does not accumulate over time. Specifically, the average absolute

error of Durbc is 0.61 s, with 80.07% of the absolute errors under 1 second, as shown in

the cumulative distribution function (CDF) of absolute Durbc error. We believe that this

accuracy of complete breathing cycle detection is sufficient for deriving RSA and BR as users’

breathing rates range from 4 to 10 breath per minute (bpm) during breathing training.

3.6.2.2 Evaluation of IBI extraction

To evaluate BreathCoach’s performance in measuring IBI, we compare all the IBI produced

by BreathCoach with those obtained from the ground truth (same data measured using the
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Figure 3.11: The error distribution (left) and CDF (right) of the breath-by-breath detection
result of BreathCoach collected from 10 subjects. The average absolute error of breathing
cycle duration (Durbc), which is used to derive RSA, is 0.61 s.

ECG on Hexoskin), and use their pairwise differences, i.e. IBI errors, as evaluation metrics.

Figure 3.12 shows the error distribution of IBI collected from 10 subjects during their RF

detection. We can observe that the distribution of IBI error is almost symmetric around 0,

suggesting that the error does not accumulate over time. Specifically, the average absolute

error of IBI is 9.6 ms, with 81.48% of the absolute errors under 15 ms, as shown in the CDF

of absolute IBI error. Therefore, we believe that BreathCoach’s accuracy and reliability in

measuring IBI are sufficient for generating feedbacks and deriving RSA.

3.6.3 Evaluation of Intelligent Breathing pattern recommendation

In this subsection, we evaluate BreathCoach in two aspects: training effectiveness and sub-

jects’ training experience. To study the effect of intelligent breathing pattern recommenda-

tion, we compare the BreathCoach-Balloon training with the baseline, traditional-Balloon

training.
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Figure 3.12: The error distribution (left) and CDF (right) of the BreathCoach’s inter-beat
interval (IBI) extraction from 10 subjects. The average absolute error of IBI, which is used
for RSA assessment and real-time breathing pattern recommendation, is 9.6 ms.

3.6.3.1 RSA maximization

We evaluate the effect of BreathCoach on RSA maximization, as the direct objective of RSA-

BT is to maximize the RSA amplitude throughout the training to achieve better health

outcome. The evaluation is based on Difrsa, the difference between RSA and RSAref .

RSAref is the maximum RSA amplitude achieved by breathing at RF during RF detection,

which is considered as a reference in the assessment of the effect on RSA maximization. It is

obtained from the 10-min RF detection before each training. Difrsa gauges how close user’s

RSA is to the maximum RSA amplitude. Difrsa is computed as:

Difrsa(i) = RSA(i)−RSAref (3.1)

where RSA(i) denotes the user’s RSA in the i-th breathing cycle. Difrsa(i) denotes the

difference between user’s RSA in the i-th breathing cycle and the maximum RSA, RSAref .

It is worth noting that Difrsa has a sign, determining whether recorded values fall below

or above RSAref . Specifically, a non-negative Difrsa suggests the RSA amplitude is cur-

rently maximized and a high negative Difrsa indicates the current RSA fall closely below

the maximum RSA. Therefore, high Difrsa implies well performance in maximizing RSA

amplitude.
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Figure 3.13(a) compares the distribution of Difrsa from BreathCoach and traditional

training for each subject. We observe that there is a smaller variability of Difrsa for Breath-

Coach as well as greater medians, suggesting that for most of the subjects RSA consistently

falls more closely below RSAref and is more likely to exceed RSAref in BreathCoach-based

training than traditional training. For subject 2, Difrsa from BreathCoach are generally

higher with about 50% above 0, suggesting that RSA has been maximized for most of the

time during the BreathCoach-based training, see Figure 3.13(b). For subject 7, although

the median of Difrsa from BreathCoach is lower than 0, it fluctuates within a narrow

range, which indicates that RSA falls more closely to the RSAref in BreathCoach than

in the traditional training, see Figure 3.13(b). Thus, BreathCoach still outperforms tra-

ditional training in RSA maximization for subject 7. Also, we used paired t-tests to re-

veal significant (p < 0.05) differences between the effects of BreathCoach and traditional

training on RSA maximization according to two metrics: the mean and STD of Difrsa

collected from each training. The result shows BreathCoach-based training produces sig-

nificantly higher Difrsa (Mean(Difrsa) : p = 0.00001) with significantly lower variability

(STD(Difrsa) : p = 0.0086) than traditional training.

Figure 3.14 compares the distribution of Difrsa collected from all BreathCoach-based

training with the one obtained from traditional training. We can see that, compared with

Difrsa from traditional training, those from BreathCoach distribute more intensively around

an average closer to 0, suggesting that RSA collected from BreathCoach-based training

consistently fall closely below or above RSAref . Specifically, the average and STD of Difrsa

from BreathCoach are 2.37 and 42.94 ms respectively, with 70% of Difrsa above -20 ms and

50% of Difrsa above 0 ms. For traditional training, the average and STD of Difrsa are

-49.9 and 63.82 ms respectively, with only 32% of Difrsa above -20 ms and 70% above -85

ms, see Figure 3.14. As the RSAref is usually greater than 200 ms, an absolute Difrsa

below 20 ms is sufficient to suggest an RSA highly close to the maximum value. Therefore,

we believe that training using BreathCoach enable users to perform well in maximizing RSA
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((a)) Comparing the distribution of the difference between RSA and RSAref (Difrsa) from

BreathCoach and traditional training for each subject. BreathCoach-based training produces sig-
nificantly higher Difrsa (p < 0.05) with significantly lower variability (p < 0.05) than traditional
training according to two metrics: the mean and STD of Difrsa collected from each training.
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((b)) Illustrating the Difrsa series of subject 2 (upper) and 7 (lower). For
each subject, compare the Difrsa series collected from BreathCoach-based
and traditional training

Figure 3.13: Evaluating the effect of BreathCoach on RSA maximization by observing the
difference between RSA and RSAref (Difrsa). RSAref , the maximum RSA amplitude
achieved by breathing at RF during RF detection, acts as a reference in the assessment of
the effect on RSA maximization.

throughout the training.

3.6.3.2 Stress Reduction

The stress reduction is studied based on heart rate variability (HRV), which is an estab-

lished psycho-physiological measure for stress development and restoration [120, 19]. We

used the standard deviation of normal to normal R-R intervals (SDNN) method to compute

HRV. SDNN is calculated for consecutive overlapping sections of 1-min IBI data. We defined

three metrics from HRV time series, including the mean of HRV during the cognitive task
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Figure 3.14: The distribution (left) and CDF (right) of the difference between RSA and
RSAref (Difrsa) collected from BreathCoach-based training, showing that BreathCoach
significantly improves the performance in maximizing users’ RSA throughout the training
compared with traditional training approach (p < 0.05).

(µHRV ), recovery speed and amplitude of HRV during the post-task rest (SpeedRecHRV

and AmpRecHRV ). Specifically, greater µHRV is associated with enhanced executive func-

tion resulting in faster reaction time and more correct responses to cognitive tasks [43, 42].

SpeedRecHRV and AmpRecHRV act as indicators for stress recovery. High amplitude of

HRV is generally believed to promote emotional self-regulation [59, 96]. To evaluate the

post-training improvements in stress reduction, we study the difference between pre- and

post-training metrics and perform a series of t-tests on the difference.

Each plot in Figure 3.15 compares the 8-min HRV series of pre-training tasks and post-

training tasks for subject 1 with the left from BreathCoach and the right from traditional

training. We can see that HRV stays low during the first 5-min cognitive task and is elevated

during the subsequent break, which supports that HRV is an indicator of stress recovery.

Comparing pre- and post-training HRV series, we find that, after training with BreathCoach,

there is an increment in three features: HRV amplitude during Stroop test, the speed of HRV

increasing to the maximum amplitude right after 5-min task and the maximum recovery

amplitude during break, suggesting an improvement in the ability to recover from stressful

situation. However, these gains are hardly observed after traditional training.
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(a) (b)Figure 3.15: Compare the 8-min HRV series of pre-training task and post-training task for
subject 1 with the left from BreathCoach and the right from traditional training. After
training with BreathCoach (right), there is an increment in three features: HRV amplitude
during cognitive task, the speed of HRV increasing to the maximum amplitude right after
5-min task and the maximum recovery amplitude during break. However, these gains are
hardly observed after traditional training (left).

Figure 3.16 visualizes the change in µHRV , SpeedRecHRV andAmpRecHRV after BreathCoach-

based training and traditional training for each subject. We can observe that µHRV ,

SpeedRecHRV and AmpRecHRV increased after BreathCoach-based training for most of

participants, while very few participants have these three indices improved after tradi-

tional training. Specifically, when training with BreathCoach, there is a significant post-

training improvements in stress reduction according to the three metrics: µHRV (p =

0.0052), SpeedRecHRV (p = 0.0006) and AmpRecHRV (p = 0.0031). However, the sig-

nificant improvement is not observed after traditional breathing training (µHRV : p = 0.52,

SpeedRecHRV : p = 0.29 and AmpRecHRV : p = 0.73).

In conclusion, our results suggest that BreathCoach is more effective than Traditional

training when comes to RSA maximization, cognitive function and stress reduction. Breath-

Coach can improve cognitive performance while concurrently aiding stress reduction.
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Figure 3.16: Visualize the change in the mean of HRV during the cognitive task (µHRV ),
recovery speed and amplitude of HRV during the post-task rest (SpeedRecHRV and
AmpRecHRV ) after BreathCoach-based training and traditional training for each subject.
When training with BreathCoach, there is a significant post-training improvements in stress
reduction according to the three metric: µHRV (p < 0.05), SpeedRecHRV (p < 0.05) and
AmpRecHRV (p < 0.05). However, the significant improvement is not observed after tradi-
tional breathing training.

3.6.3.3 Training Experience

A good training experience of RSA-BT involves participants’ relaxed and stable respiration

and sustained attention during training. In this subsection, training performance is studies

based on both subjective and objective measurements. The self-reported scale for training

experience is taken as the subjective assessment of the training experience. To examine phys-

iological responses in relation to subjective perception, we analyze BR distribution collected

during training.

Training experience is assessed subjectively through a 6-item self-report measure, which

asks users the frequency of they being distracted, feeling hard to follow pacing stimulus,

feeling anxious while training and trying too hard while breathing, etc. The survey is per-

formed right after each training, as shown in Figure 3.10. Table 3.1 statistically analyzes the

difference of self-reported training experience between BreathCoach-Balloon and Traditional-

Balloon training using paired t-tests. We can see that, compared with traditional training,

the frequency of feeling distracted, anxious, hard to follow stimulus and breathing too deeply

significantly decreases when training with BreathCoach (p < 0.05).

Moreover, Figure 3.17 compares the distribution of BR from BreathCoach and tradi-
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Table 3.1: Assess the difference of self-reported training experience between BreathCoach-
Balloon and Traditional-Balloon training using paired t-tests. Compared with traditional
training, the frequency of feeling distracted, anxious, hard to follow stimulus and breathing
too deeply significantly decreases when training with BreathCoach (p < 0.05).

Frequency of.
BreathCoach
M(STD)

Traditional
M(STD)

p

Being distracted 0.85 (0.74) 1.35 (0.67) 0.0234
Feeling hard to follow pacing stimulus 0.8 (0.76) 2.2 (1.1) 0.00005
Feeling anxious while training 0.95 (0.6) 1.7 (0.92) 0.0004
Trying too hard while breathing 1.05 (0.75) 2.4 (0.88) 0.00001

tional training for each subject. We observe that there is a smaller variability of BR for

BreathCoach as well as lower medians, suggesting that BreathCoach enables users to keep

the breath steady while slowing their respiration. Traditional training can also provide a

steady breathing experience, like for subject 2. However, it can not ensure steady respira-

tion as BreathCoach do. For subject 5, BR from BreathCoach fluctuates within a narrow

range, while the one from traditional training has a large variability and falls far above

the RF. Additionally, we extract the STD of BR (STDBR) for each training and compare

the STDBR collected from all BreathCoach sessions with the one collected from traditional

training through paired t-test. It turns out STDBR from BreathCoach is significantly lower

than the one from traditional training, suggesting that BreathCoach enables users to breathe

significantly more steady than traditional training does(STDBR : p = 0.0019). Given the

above, BreathCoach ensures users’ steady respiration, which is in agreement with users’

subjective ratings.

3.6.4 Discussion of game designs

To explore the game design, we compare the BreathCoach-Balloon and BreathCoach-Pilot

training for each subject. Paired t-tests reveal no significant (p < 0.05) differences of training

effectiveness between BreathCoach-Balloon and BreathCoach-Pilot. Additionally, we collect

users’ game preference through the last question of the scale. There are 7 out of 10 partici-

pants who prefer Balloon over Pilot. According to the survey, this is mainly because Balloon
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Figure 3.17: Compare the distributions of BR from BreathCoach and traditional training for
each subject. It shows that BreathCoach enables users to breath significantly more steady
while slowing their respiration according to the metric, the STD of BR for each training
(p = 0.0019).

presents players their real-time training performance (i.e., how well the user’s respiration

is in phase with the recommended BP.) by displaying not only the recommended BP but

also their respiration trace, which helps users maintain or improve training performance by

adjusting their breathing. We leave further investigation of the effects of game designs as

future work.

3.7 Conclusion of Study

In this thesis, we present BreathCoach – a smart and unobtrusive system that enables

in-home RSA-BT using sensors on smartwatch and smartphone-based VR. To achieve this

goal, BreathCoach adopts a suite of lightweight algorithms to continuously monitors BP, IBI

and RSA using raw acceleration and PPG signals collected from the smartwatch. The system

uses these real-time measurements to intelligently switch between two feedback mechanisms,

IBI-based and RF-based, in order to derive the optimal BP. The recommended BP is then

conveyed to users in the form of VR game to provide an intuitive training experience. We

implemented BreathCoach using an off-the-shelf wrist-type wearable, a smartphone and a

VR viewer, and designed two exploratory VR games. BreathCoach is evaluated in three as-

pects, including accuracy of physiological measurements, effectiveness of training, and user

experience. Our experimental results collected from 10 subjects with each one performs both

traditional and BreathCoach-based training indicate that BreathCoach is able to provide ac-

51



curate physiological measurements with breathing cycle duration and IBI errors lower than

0.61s and 15ms respectively. Moreover, compared to traditional RSA-BT protocol, Breath-

Coach achieves significant improvement (p < 0.05) on training effectiveness and experience.
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CHAPTER 4

PERSONALIZED FEDERATED LEARNING FOR HUMAN ACTIVITY
RECOGNITION

This chapter introduces FedDL, a novel federated learning system for human activity recogni-

tion that can capture the underlying user relationships and apply them to learn personalized

models for different users dynamically. This chapter is adapted from a publication [124]. The

author of the dissertation is the first author of the original work. ”We” in this chapter refers

to the author of the original publication. This work contains the phototype implementation

on Amazon Elastic Compute Cloud (Amazon EC2) and the algorithm design in Tensorflow.

4.1 Background

Human activity recognition (HAR) is a key enabling technology for a wide range of

applications, including smart home, health surveillance, and medical assistance [52, 133, 51].

For instance, it has been shown that longitudinal monitoring of daily routine activities, such

as indoor/outdoor time, meals with/without family, and sleeping, can help to detect early

onsets of Alzheimer’s Disease in aged population [108, 75]. Similarly, smart home systems

can conserve home energy consumption and improve residents’ comfort/safety by recognizing

complex home activities (e.g., eating, taking a shower, washing dishes, etc.) [32, 50].

Deep learning has recently been applied to HAR thanks to its better generalization and

the ability of automatic feature extraction with less human effort [107, 41, 45]. However,

several major challenges have not been addressed. The data collected from each user is

usually unbalanced and sparse. Activities such as taking a shower, shopping, and biking,

usually take place in a relatively low frequency. Applying deep learning to sparse and

unbalanced data is likely to result in severe under-sampling artifacts. Training a global

model for HAR in the cloud in a centralized manner may reduce the effect of data sparsity.

However, the sensing data for HAR is often privacy-sensitive and hence cannot be shared or
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uploaded [29, 105].

Federated Learning (FL) is an emerging technique used to collaboratively learn a global

model, such as by computing an average aggregation of local models, without exposing

users’ raw data [84, 115, 22, 90, 83]. Existing FL paradigms learn a single global model

that however fails to capture the statistical diversity of users’ data. Such statistical diversity

of users’ data not only leads to significant convergence delay but also poor model accuracy

[13, 25, 47]. Several FL approaches have been proposed to address this problem by learning

personalized models which capture both general and personal features of users [31, 28, 82,

15]. In [15], users share only lower layers of their models and leave upper layers user-

specific to retain personal features. However, this approach assumes a pre-defined number

of model layers shared among users, which is determined by empirical perception of user

data distributions and their correlations. As a result, it suffers poor performance when the

users’ data distributions are highly dynamic and time-varying [109]. The post-personalized

FL approach is proposed to further fine-tune the global federated model on the nodes’ local

data [54, 35]. However, the performance of such an approach is largely influenced by the

accuracy of the global model.

4.2 Related Work

4.2.1 Deep learning for HAR.

Deep learning has been applied to improve the accuracy of human activity recognition and

eliminate the human efforts of handcrafted feature extractions [101, 20, 63]. However, since

many daily events, like taking a shower, shopping, and biking, only occur occasionally, one

user usually has limited and unbalanced training samples, which can cause overfitting in

training deep learning models [39, 30]. Data augmentation techniques may address the issue

by expanding the local datasets. However, they will fail to discover the new activities in

HAR when users’ patterns of activities change largely. For instance, users without exercise

habit start to do sports, which is not the situation that data augmentation works. As data
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augmentation cannot produce the data for a previous unknown activity, the model trained

with data augmentation will fail to discover the new activity. Training a global model for

HAR at the server is proposed to reduce the effect of data sparsity [138]. However, centralized

methods require uploading users’ sensing data to the cloud, leading to risk of privacy breach.

4.2.2 Federated learning (FL)

[49, 132] is an emerging learning paradigm that only requires users to upload their model

weights for collaborative learning, avoiding sharing user’s raw data during the learning pro-

cess. A typical FL approach named FedAvg [49, 22] averages all models from users to learn

a single global model, which proves to suffer significant accuracy degradation under hetero-

geneous data distributions of users [137, 76]. Recently several personalized FL approaches

are proposed to address this issue. Dinh et al. add a regularized term to the loss function of

each user’s local model during the FL process to reduce the distance between the local and

global models (average of all models) [31, 54, 35]. However, the accuracy of models learned

in this approach can be largely influenced by the diversity of users. Moreover, other stud-

ies [28, 82] tend to introduce a post-training procedure that personalizes the learned global

model on each user’s local data. However, careful fine-tuning is required in this approach to

balance the local and global models, which varies among different applications and hence is

hard to generalize. Compared with existing personalized FL approaches, FedDL is able to

learn users’ relationships during the FL process and utilize them to dynamically aggregate

the local models in a layer-wise manner, which is applicable to different applications with

highly diverse data distributions.

4.2.3 FL personalization via model sharing.

In the FL approaches proposed in [26, 15], the lower layers between all users are shared,

while several upper layers are user-specific. This design is motivated by the observation

that the lower layers capture more general features, and hence can be shared across multiple
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tasks, whereas the top layers capture features at a higher level of abstraction and hence

are more user-specific [134]. The above methods have been extended and applied to multi-

task deep learning [79, 86], where the goal is to learn multiple different models. However,

these multi-task methods rely on a pre-defined structure for model sharing. As network

architectures become deep and the user relationship becomes more complex in large-scale

HAR applications, finding the right level of feature sharing across local models through hand-

crafted network branches is impractical. Moreover, most multi-task deep learning methods

[95, 81] are centralized and do not address the communication efficiency of the learning

process. To reduce the communication overhead of FL (especially for transferring deep

learning models), previous solutions mainly focused on the techniques for model quantization

[67, 111] or model compression [40]. FedDL reduces the communication overhead through

the dynamic layer-wise sharing scheme, as each model merging at the server only involves

the parameters of users’ lower model layers, which is orthogonal to the model quantization or

compression techniques. In a recent work [92], the authors show significant similarity exists

among users in a number of real-world datasets, which is similar to our finding in Section 4.3.

However, in [92], the clustering structure is formulated as part of the learning objective, and

the local models are required to share all the layers in their multi-task learning framework.

On the contrary, FedDL dynamically captures the users’ relationship while learning different

models for users with a partial sharing structure, which leads to better model accuracy and

lower communication overhead.

4.3 A Motivation Study

In this section, we use an open real-world dataset, HARBox [9], to motivate the approach

of FedDL in two aspects. First, there often exists underlying similarity amongst users’

patterns of activities due to their habits of behavior or environments [114, 136, 68, 92],

which can be utilized to improve the learned model accuracy by facilitating collaborations

among similar users. Second, the degree of similarity among users’ deep models reduces from
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Figure 4.1: The data of “typing” from the HARBox dataset after reducing dimension to 2D
using PCA. There exists a clear group relationship among different subjects’ data.

the bottom up [134, 78, 88], which suggests that we may exploit such similarity of models and

aggregate them in an iterative, layer-wise manner, rather than aggregating whole models.

We show that such an approach improves the model accuracy and reduces communication

overhead between users and the server since only partial models need to be transmitted.

The HARBox dataset is collected in real-world federated settings [92]. The 9-axis IMU

data from 121 users’ smartphones is recorded when the users conduct five activities of daily

life (ADL), including walking, hopping, phone calls, waving, and typing. To visualize the

data distribution, we plot the data of “typing” from 6 users in the HARBox dataset after

reducing the dimension of features to 2D using Principal Component Analysis. As shown

in Fig. 4.1, there exists a clear grouping relationship among the 6 subjects’ data, with

G1 = (n1, n2) and G2 = (n3, n4, n5, n6). We note that such similarity among users is also

reported on other HAR datasets [14, 37, 53].

Our goal is to exploit the similarity among users’ data to personalize their models. A

natural idea is to share some model layers between similar users [82, 15]. We now explore

different model sharing schemes for each user group and their impact on the shared model

accuracy. Fig. 4.3 shows three sharing schemes of deep learning models for a specific user
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Figure 4.2: Correlation matrix of 6 users’ HARBOX data. Each number is the Pearson
correlation coefficient (PCC), measuring the linear correlation between two users’ data. It is
obvious there are two groups, (n1, n2) and (n3, n4, n5, n6). However, the users within each
group are of different degrees of similarity.

group. The “all-sharing” scheme shares all layers of the users’ models within each group.

The K-sharing scheme shares only the lowest K layers of the users’ models, where the num-

ber of shared lower layers K is usually empirically pre-set and fixed during the learning

process. This baseline is similar to several existing FL personalization methods [15, 79]. In

the experiments, we set K = 3 for the two groups. However, we will show that the K-sharing

scheme cannot accurately capture the complicated relationship among users’ data distribu-

tion. Some users are closely related enough to share more than K layers, while others with

a large difference in their data distributions may benefit from sharing fewer than K layers.

We visualize the relationship among data of 6 users from the HARBOX datasets through

a correlation matrix by computing the Pearson correlation coefficients (PCC) between each

pair of users’ data. As shown in Fig. 4.2, we see there are two groups, G1 = (n1, n2)

and G2 = (n3, n4, n5, n6). However, the users within each group are of different degrees

of similarity. For instance, n3 is less related with the other users in G2 (the statistically

independent variables have correlation coefficients close to zero). This observation inspires
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a dynamic sharing structure, where only users with similar data distributions should collab-

orate in learning and users who are more closely related to each other will share more layers

of their models. Based on this idea, we design a new scheme “layer-wise sharing” shown

in Fig. 4.3, which is derived according to the correlation matrix of the six users (shown in

Fig. 4.2) with closer-related users sharing more model layers. Specifically, n4, n5 and n6

should share more layers than n3, since they are more closely related to each other than n3.

Shown in Fig. 4.3, n4, n5 and n6 share their lower 3 layers in this example, while n3 only

shares the lower two layers with them.

We also implement a baseline “global” method where all the six users share the same

global model by averaging all their layers [83], and compare its performance on HAR with

three sharing schemes (shown in Fig. 4.3): all-sharing, K-sharing, and the layer-wise sharing

structure derived from the correlation matrix in Fig. 4.2. Fig. 4.4 presents the model accuracy

performance of n3 when trained under different sharing schemes. We see that the model

based on the layer-wise sharing structure gives the highest testing accuracy.

Motivated by this result, we attempt to generate the layer-wise sharing structure from

user relationships to improve the model accuracy. However, the correlation matrix of users’

data in Fig. 4.2 is global information that cannot be obtained on the server without accessing

the data of users. Thus, we design a dynamic sharing scheme to learn the similarity of users’

model weights and generate the layer-wise model sharing structure accordingly during FL to

improve the model accuracy. Specifically, FedDL learns the grouping relationship of the local

models and then merges only the lower layers of models in a bottom-up layer-wise manner.

In Section 4.5, we will elaborate on the proposed dynamic sharing scheme.

In addition to the possible improvement in the training accuracy and efficiency of FL,

another key advantage of our dynamic sharing scheme is that it reduces communication

overhead as it is unnecessary for users to upload their user-specific layers to the server for

model merging during the distributed learning process.
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Figure 4.4: Illustration of the performance of federated learning under four sharing schemes.
Layer-wise sharing scheme outperforms other sharing schemes in overall accuracy.

4.4 System Overview

This section presents an overview of the proposed Federated Learning via Dyanmic

Layer Sharing (FedDL). FedDL aims to enable accurate daily activity recognition through

communication-efficient deep FL, based on the underlying affinities among users’ activity

patterns. In this section, we first briefly introduce the application scenarios of FedDL, and

then describe its system architecture.

FedDL is designed for monitoring a wide range of daily activities using sensors built in

wearables or deployed in natural living environments. Representative applications include
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healthcare monitoring and smart home systems [32, 50]. These systems are usually designed

to recognize a wide range of activities, like medicine taking, indoor/outdoor activities, and

meal events, using ambient sensors and body-worn sensors [125, 106, 21]. However, since

many events only occur occasionally, users tend to have limited and unbalanced training

samples, which can cause overfitting in training deep learning models. Moreover, the sensing

data for HAR is mostly privacy-sensitive and hence cannot be shared or uploaded. To

address this issue, FedDL adopts the FL paradigm, utilizing a central server to collect local

models and aggregate them, while avoiding the exposure of users’ raw data during the

learning process. However, models learned by FL may deliver unsatisfactory performance on

recognition of each user’s activities, due to the statistical diversity of users’ data. To improve

the model accuracy, FedDL learns the underlying relationship among users dynamically and

merges the local models partially based on the degree of similarity among users in a layer-wise

manner. Since the users’ data distribution may change over time, FedDL will periodically

update the layer-wise sharing structure and models.

FedDL features a dynamic and hierarchical FL framework that improves accuracy and

communication efficiency by capturing the intrinsic relationship among users and applying

it to learn layer-wise personalized models for different users. Fig. 4.5 depicts the hierarchical

training procedure of FedDL. First of all, the local model of each user is optionally initialized

randomly or from a pre-trained model. Then FedDL performs model grouping and model

merging in a bottom-up layer-wise manner. Specifically, the server groups users based on

the model affinities obtained from models’ testing results on a common sample set using

Kullback–Leibler divergence (KLD) (shown in Fig. 4.6(3.1)). It then performs model-merging

to obtain stable models with the lower layers shared within each group. The merging process

is implemented by calculating a weighted average of local models’ parameters at the server

over multiple rounds. Each model merging round involves 4 steps, as shown in Fig. 4.6.

Users perform multiple epochs of local training and then upload local models to the server.

The server computes the weighted average of local models based on grouping results. It
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Figure 4.5: Illustration of the dynamic and hierarchical federated learning framework of
FedDL when learning 3-layer models for 6 users.

then generates further personalized models through the weighted average of local models

and their corresponding averaged models. Finally, the server transmits personalized models

back to users for local training. This model grouping and model merging process repeats till

reaching the output layer (i.e., the top layer), as FedDL leaves the output layer user-specific

without sharing between users.

It is challenging to learn the intrinsic relationship among users without accessing the

users’ data. FedDL learns the relationship among users based on their local models, and

generates the sharing structure by grouping the lower model layers of closely related users,

and keeps exploring the grouping relationship layer by layer within each group from the

bottom up till reaching the top layer. Section 4.5.1 describes the model affinity-based group-

ing in detail. Moreover, based on the iteratively learned sharing structure, FedDL performs

layer-wise model merging after each model grouping process to obtain stable models un-
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Figure 4.6: The system architecture of FedDL. Each grouping / model-merging round mainly
consists of 4 steps.

der the sharing structure. Section 4.5.2 presents the design of intra-group layer-wise model

merging. FedDL generates shared models in a bottom-up layer-wise manner using a greedy

algorithm. Section 4.5.3 describes the detail of bottom-up layer-wise model aggregation.

The layer-wise model aggregation of FedDL improves the model accuracy through dy-

namic sharing within groups and reduces communication overhead by only transmitting the

merged layers rather than entire models. As shown in Fig. 4.6, except for the grouping itera-

tion when whole local models are uploaded to the server, most of the global communication

involves only their lower layers, which significantly reduces the communication overhead

during the FL process.
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4.5 Dynamic Layer-wise Federated deep learning framework

FedDL is a federated learning framework that learns personalized deep models for users

with limited or unbalanced data in HAR applications. Specifically, FedDL learns the re-

lationship among users, generates the dynamic sharing structure for models’ lower layers

based on the user relationship, and merges the models according to the sharing structure

iteratively. In Section 4.5.1 and 4.5.2, we presents how to group users using their deep mod-

els and how to dynamically merge different layers of models for users in the same group,

respectively. In Section 4.5.3, we describe the procedure of the bottom-up layer-wise model

aggregation. Finally, we introduce the design on communication efficiency in Section 4.5.4.

4.5.1 Model Affinity-based User Grouping

FedDL learns the underlying relationship of users based on their model affinities. Specifically,

FedDL measures model affinities using Kullback–Leibler divergence (KLD), which estimates

how one probability distribution is different from the reference one and is recently used for

knowledge distillation of deep learning models [12, 10]. As demonstrated in [48, 34], element-

wise weight distances (e.g., L1/L2 norms) have severe limitations in modeling affinities of

deep models since the neurons of each layer in hierarchical models are permutable. Besides,

it is computational inefficient to measure the norm distance of high-dimensional weights for

complex hierarchical models. Therefore, instead of directly analyzing the weight matrices,

FedDL tests all local models on a reference distribution in the form of a common sample

set, and then measures the model affinities using the KLD of the different model outputs, as

shown in Fig. 4.7. Specifically, the KLD for a pair of models, wp and wq, is calculated as

follows:

Dkl(wp,wq) =
1

N

N∑
i=1

1

2
(δp,i log

δp,i
δref,i

+ δq,i log
δq,i
δref,i

) (4.1)

δp,i = δ(wp,xi) (4.2)

δref,i =
1

2
[δ(wp,xi) + δ(wq,xi)] (4.3)
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Figure 4.7: The procedure of model-affinity-based grouping. It consists of three steps: 1.
Calculate the affinity matrix; 2. Group users based on the affinity matrix and previous
grouping results; 3. Update the layer-wise sharing structure.

where δq,i denotes the softmax outputs of the model wq on the ith record, xi, of the common

sample set. δref,i is the reference distribution. We take the average of the two models’

outputs as the reference distribution and measure how these two models are different from

the reference, where a lower Dkl value indicates a higher model affinity. Instead of directly

using the KLD of P over Q, we adopt this symmetric metric for similarity measurement,

which is more suitable for user grouping.

In the next, FedDL performs grouping at the l-th layer based on the model affinity

and previous grouping results. Specifically, FedDL maintains an affinity matrix, Ma with

a(p,q) = Dkl(wp,wq), and keeps the grouping results of lower l layers in the dictionary,

Groups, to represent the dynamic sharing structure, as follows:

Groups = { 1 : [G1,1, G1,2, ..., G1,k1
]

2 : [G2,1, G2,2, ..., G2,k2
]

...

l : [Gl,1, Gl,2, ..., Gl,kl
] }

where Groups keeps the layer index as the key and a list of groups at this layer as the

value, respectively. Gl,i denotes the i-th group for the aggregation of the l-th layer. kl is the
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number of groups at the l-th layer.

With the affinity matrix, Ma, and previous grouping results Groups, FedDL groups the

users at the server as shown in Fig. 4.7. Specifically, the l-th round of grouping operation

only happens within groups that are obtained from the previous grouping round (Gl−1,k).

To group users within Gl−1,k, FedDL checks the affinity between each pair of users, i and j

(i, j ∈ Gl−1,k), and compares it with the threshold, θG, to decide if their models are related

enough to be grouped together. We take the average of the affinities between users in Gl−1,k

as the adaptive threshold θG for the grouping within this group. It is noted that two less-

related users may be grouped together as long as they are closely related to the same user.

To differentiate the degree that users are related to their group, we consider not only the

group members (mh) but also their corresponding frequency (freqmh
) as shown in Equation

4.4. freqmh
is the times the user being accessed during the procedure of grouping. A higher

freqmh
indicates that the group member, mh, is closely related to more users within the

group. This information will be utilized to improve the accuracy of the model merging.

Gl,i = [(m1, freqm1), (m2, freqm2), ...(mh, freqmh
)]. (4.4)

Based on the group relationship among users, FedDL updates the layer-wise sharing

structure by sharing one upper layer of users’ models within each group, as shown in Fig. 4.7.

FedDL performs the grouping operation periodically till the output layer. Moreover, we can

stop the grouping operation in FedDL earlier, when the number of groups at a layer equals

the number of users, i.e. kl = N .

4.5.2 Intra-group Layer-wise Model Merging

Based on the grouping results, Groups, FedDL merges the local models in a layer-wise

manner. Fig. 4.8 illustrates the layer-wise model sharing at the server. Based on the grouping

results of the lower 3 layers, the local models from users in the same group are merged layer
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Figure 4.8: Illustration of the layer-wise model merging based on the grouping results,
Groups. Only lower 3 layers of models are transferred between six users and the server
for model merging.

by layer, as follows:

WGl,k
=

∑
i∈Gl,k

µiW i,l (4.5)

µi =
freqi∑

j∈Gl,k
freqj

(4.6)

where WGl,k
is the weights shared by the users in Gl,k, the k-th group at l-th layer. WGl,k

is a weighted average of all the group members’ layer weights, W i,l. The weighted average

coefficient, µi, of each group member is calculated based on the freqi, which indicates how

close the member is tied to the group. As a result, the models with higher freq will contribute

more to the group model.

After merging the layers of the models into shared models, the server further personalizes

the shared models for each user by aligning each local model with its corresponding group

model as follows,

W ′
i = (1− λi)W i + λiWGl,k

(4.7)

λi = min(1,
µi

1/sizeof(Gl,k)
) (4.8)

where i ∈ Gl,k. λi indicates, from the user’s stand, how closely local model W i is related

to the group model, WGl,k
. This alignment makes the models trained using FedDL robust

to boundary cases, where the least related users are still included in a group (i.e., with the

smallest µi). These users are likely to become a separate group in another training process.
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For instance, at a certain layer, three users are grouped as {1 : 0.5, 2 : 0.49, 3 : 0.01}, and

the training process produces the grouping result {1 : 0.5, 2 : 0.5} and {3 : 1} at the same

layer. Without alignment, the models of user 3 obtained from the two training processes

are significantly different with W ′
3 = WG and W ′

3 = W 3 respectively. However, after the

alignment between the shared models and users’ local models, the models of user 3 under

these two grouping results become similar with W ′
3 = 0.03WG + 0.97W 3 and W ′

3 = W 3

respectively.

As illustrated in Fig. 4.8, in this model-merging round, we get three shared models:

[ WG1,1
, WG2,1

, WG3,1
], [ WG1,1

, WG2,2
, WG3,2

] and [ WG1,1
, WG2,2

, WG3,3
]

shared within the three groups, (n1, n2), (n3, n4) and (n5, n6) respectively. Finally, the

three shared models are aligned with their corresponding users’ local models. For example,

the second shared model will be aligned with the local models of n3 and n4 and sent to them,

respectively. Moreover, only the lower layers of models are necessarily transferred between

server and users during the model-merging iterations, which will significantly reduce the

overall communication overhead during the FL process.

4.5.3 Bottom-up Layer-wise Model Aggregation

At the core of FedDL is the multi-round greedy model aggregation in a bottom-up layer-wise

fashion.

Consider a situation where there are N users. Initially, all the users start with the same

neural network model and initialize it randomly or from a pre-trained model. After users

perform multiple epochs (denoted as R) of local updates, the server will receive the latest N

local models from all the users. The model aggregation operation of the server starts from

the bottom layer, l1. It will first group the N branches into k1 groups where k1 ≤ N . After

that, FedDL will greedily perform the bottom-up model aggregation within their groups.

We note that finding the optimal sharing structure is combinatorial prohibitive. A brute-

force method would need to train and test all the ((CN
N )L−1 possible structures for finding
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the optimal aggregation scheme for N users with L-layer models. Our approach is more

efficient since it only takes O(N logN ∗L) time. For each round of model grouping, it takes

O(N logN) time, and takes a total of O(N logN) ∗ (L − 1) time at the worse case to form

the sharing structure.

For L-layer deep models, FedDL will perform L rounds of user grouping with each group-

ing round followed by intvl rounds of model merging, as shown in Fig.4.5. At each grouping

round, FedDL learns the affinity relationship of local models and groups one upper layer of

the users’ models into groups. After that, FedDL performs multiple rounds of model merging

within each group according to the current sharing structure. It is noted that the interval

between grouping rounds, intvl, decreases with a decay rate, λ. When more layers of local

models are merged according to their layer-wise similarity, the divergence among local mod-

els reduces gradually. Therefore it takes fewer global training rounds for the shared models

to converge [78, 88]. Specifically, the procedure of model aggregation for the lower l layers

is as follow:

1. Grouping round: the users send their complete models to the server. The server

groups the users based on current model affinities and the grouping results from l−1th

iteration, Groups[l− 1]. It was noted that the grouping operation at lth iteration only

happens within each group obtained from (l − 1)th iteration, i.e., the users being

separated into different groups in the first l − 1 rounds no longer share their upper

layers. Moreover, the grouping result will be added to Groups, where the grouping

results of all the lower layers are kept for the model merging process.

2. Model-merging round: After the model grouping, FedDL performs intvl rounds

of layer-wise model merging within each group. For each model-merging round, the

clients perform R epochs of local training and then upload the lower l layers of their lo-

cal models to the server. Upon receiving all local models, the server weighted averages

the lower l layers of local models’ within each group based on the grouping structure,
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Groups, and then aligns each local model with its corresponding group model to gen-

erate the shared model for each user. At the end, the server sends the shared models

to their corresponding clients. It is noted that, for global communication, only the

lower l layers of models are transferred between users and the server, which makes the

FedDL very communication-efficient.

The grouping operation stops at the layer before the output layer. As a result, the higher

layers of each model will be user-specific, while the lower shared layers will ensure generality

across similar users. Moreover, the grouping structure and the models of FedDL will be

updated periodically with continuously collected data.

Fig. 4.5 shows the procedure of learning a 3-layer model for 6 users. As shown in

Fig. 4.5(1.1), after grouping based on the initial local training models, all the users are

grouped together for model aggregation. As a result, the first layers of their models are

merged as the group model. After that, FedDL performs the model aggregation operation

for the lower two layers within the groups obtained from the previous round, i.e., {n1 6},

as shown in Fig. 4.5(2.1) and (2.2). The server groups the users into two groups, {n1, n2}

and {n3, n4, n5, n6} and updates the sharing structure with parameters of the second layer

shared within each group. The dynamic sharing structure is finalized after the 2-round model

aggregation, and FedDL keeps the output layer user-specific.

4.5.4 Reducing Communication Overhead

In typical FL systems [83, 115, 22, 90], a large number of global communication rounds

between users and the server is required, which can be the bottleneck of the learning process.

FedDL takes advantage of the dynamic layer-wise sharing scheme to improve communication

performance. Specifically, FedDL reduces the number of parameters that each user needs to

upload to the server as well as the number of global training rounds.

As shown in Fig. 4.5, after learning the grouping results for the l-th layer, only the lower l

layers of local models need to be merged at the server for each global training. Thus, FedDL
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uploads the lower l layers of local models for the global model merging where l increases

from 1 to L−1 during the training process, largely reducing the amount of data transferred.

Besides, FedDL further reduces the communication overhead by stopping the upload of each

model’s user-specific layers whenever possible. As shown in the left of Fig. 4.3, at the third

layer, n1, n2 and n3 no longer belong to any group, i.e. their layers are user-specific. After

obtaining the fourth layer’s grouping results, unlike n4 − n6, n1, n2 and n3 need to upload

only the lower 2 layers to the server during all the following model merging rounds.

Moreover, the models trained using FedDL converge fast even with a small number of

local training rounds, which is detailed in Section 4.6. Thus, FedDL can use a small number

of global training rounds to reduce communication costs. As shown in Section 4.6, FedDL-

based models can always converge within 10 global rounds with different settings of local

rounds R, while other FL methods may take more than 30 rounds to converge. Therefore

FedDL largely reduces the communication overhead.

4.6 Evaluation

In this section, we evaluate the performance of FedDL from three aspects, including the

performance on different datasets, the scalability of the system, and its performance with

different local computation rounds. For each evaluation, we compare the performance of

FedDL with four baselines as follows:

1. FedAvg [83]: the standard FL method, where all users share one global model.

2. FedPer [15]: a federated deep learning approach, where all the users share their lower

K layers and leave their upper layers user-specific. This approach adopts a K-sharing

scheme and pre-sets the value of K empirically, as mentioned in Section 4.3. In our

experiments, we set K to be 3.

3. pFedMe [31]: an algorithm for personalized FL using the distance between the global

model and the user’s local model as the user’s regularized loss functions. The global
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Table 4.1: Five HAR datasets (UWB, Depth Images, HARBOX-IMU, IMU and LiDAR).

Application Tasks Sensor Data
Dimen-
sion

Number
of sub-
jects

Number
of
records
per
subject

Human move-
ment detection

with/without human
movement

UWB 50x1 8 ∼ 80

Hand Gesture
Recognition

good/ok/victory/stop/fist Depth
camera

36x36x1 9 ∼ 400

Activity of Daily
Life (ADL) recog-
nition using IMU

walking/hopping/phone
calls/waving/typing

IMU 100x9x1 121 ∼ 300

Human Activity
Recognition using
IMU

walking-upstair/
walking-downstair/
walking/sitting /stand-
ing/laying.

IMU 128x3x2 30 ∼ 300

Human Activity
Recognition using
LiDAR

walking/bending/phone
calls/sitting/standing/
checking watch.

Livox
Horizon
LiDAR

60x30x1 10 ∼ 600

model is an average aggregation of all the local models at the server.

4. Local training: the model learned from local data at each user.

4.6.1 Datasets

In our evaluation, we use one self-collected dataset and four public real-world datasets (Table

4.1) for deep learning. We use the self-collected LiDAR data for two main reasons. First,

most of the existing HAR datasets lack detailed information about subjects, such as gender,

height, and weight. Such information is critical to understand the underlying similarity of

users’ data and hence is important to validate the design of FedDL. Second, LiDAR has a

long detection distance, which facilitates recognizing whole-body movements, like bending

and falling. At the same time, compared with RGB images, Lidar data is more spare presents

a major challenge in achieving high model accuracy, which motivates the adoption of FL to

enable collaborative learning from multiple users.
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Moreover, we choose additional four public datasets for evaluation as they are collected

in real-world settings with significant dynamics. Besides, these datasets are collected from

various HAR tasks based on different sensors, like depth sensor and IMU (inertial measure-

ment units). Moreover, some datasets are of large scale, which can be utilized to evaluate

systems’ scalability.

1. Human Activity Recognition using LiDAR1 : We record the point cloud data of

6 types of human activities (walking/sitting/standing/bending/checking watch/phone

calls) conducted by 10 subjects using a Livox Horizon LiDAR [77] in an indoor en-

vironment. The LiDAR collects point clouds at 10Hz, and each activity of a subject

lasts for 2 minutes. Fig. 4.9 shows the preprocessing steps for the collected point

clouds, which are first proposed in [18, 87]. First, we conduct the cylinder projection

to project the 3D point cloud to a range image of 120 × 30 pixels, where each pixel’s

grayscale represents the range value (the whiter, the farther). Then we average every

25 consecutive range images in sliding windows of 2.5 seconds and 50% overlap to form

each data record. After that, the ROIs (region of interest) of each image are retrieved,

and then we down-sample the original image to 60×30 pixels and normalize the depth

value to 0-1. This dataset has a large number of data records (6560 records in total),

and each data record’s dimension is relatively high, thus increasing the difficulty of

activity recognition.

2. Human Movement Detection using UWB [9]: To detect if there were human

movements in a specific area, two UWB (Ultra Wide Band) nodes are deployed 3m

away from each other in 3 different environments (i.e., parking lot, corridor, room) with

or without a person walking between them. This dataset is collected using 8 subjects,

with each one walking randomly in the area for 10 minutes. The two-way ranging at

5Hz is captured and labeled manually. Then the data is sampled in sliding windows

1The data collection was approved by IRB of the authors’ institution.
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of 10 seconds and 50% overlap (50 readings/window) to form each data record (50× 1

dimensions).

3. Hand Gesture Recognition using Depth Camera [9]: Five types of gestures

(good/ok/victory/stop/fist) are conducted by 8 subjects using a depth camera. The

region of interest of the depth image is retrieved, and then we down-sample the original

image to 40× 40 pixels and normalize the depth value to 0-1.

4. Activity of Daily Life (ADL) Recognition using Smartphones [9]: The “HAR-

BOX” App is developed to collect 9-axis IMU (inertial measurement units) data from

users’ smartphones when the user conducts five types of ADL, including walking, hop-

ping, phone calls, waving and typing. Labeled IMU data from 121 users is collected in

total. The data from each user is filtered and then sliced into multiple frames (100× 9

dimensions) using a window of 2 seconds and 50% overlap.

5. Human Activity Recognition using Smartphones 2: this online dataset is col-

lected from 30 subjects performing six activities (walking, walking upstairs, walk-

ing downstairs, sitting, standing, lying) while carrying a waist-mounted smartphone

(Samsung Galaxy S II) with embedded IMU. Specifically, the 3-axial linear acceleration

and 3-axial angular velocity are captured at a constant rate of 50Hz and are labeled

manually through video records. The 6-dimension sensor signals were pre-processed by

applying noise filters and then sampled in fixed-width sliding windows of 2.56 seconds

and 50% overlap (128 readings/window) to form each data frame with a size of 128×6.

4.6.2 Implementation

We design and implement a FedDL phototype on Amazon Elastic Compute Cloud (Amazon

EC2). This EC2 instance is built on the Ubuntu platform and has 96 virtual CPUs (3.1

2https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
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Figure 4.9: The preprocessing of LiDAR data for the recognition of activities, including
walking, sitting, standing, bending, checking the watch and phone calls.

GHz) and 768 GB memory. We build a server on the instance and run each user end on one

CPU to simulate the FL. The communication between the server and users is implemented

locally using sockets. The system is implemented in Python3.

We adopt randomly initialized convolutional neural networks (CNN) for the human activ-

ity recognition tasks of the five datasets. The CNN network is composed of 2 convolutional

layers, 2 full-connect layers, and one softmax output layer. It uses mini-batch Stochastic

Gradient Descent (SGD) for optimization. For the data samples of each subject, we use 75%

of the local data for model training, while the rest 25% is for model testing. We set the initial

learning rate to be 0.01 with periodical decay and the batch size to be 32. Although with the

same depth, the CNN models for different datasets will have various network structures (e.g.,

input dimension, kernel size, stride, and padding) depending on the data characteristics and

the tasks.

4.6.3 Validation on LiDAR Dataset

In this section, we validate the design of FedDL on the LiDAR dataset. Specifically, we

compare the performance of FedDL with four baselines, FedAvg, FedPer, pFedMe, and local

training. We set the local communication rounds (R) to be 30 and the global computation

rounds (T ) to be 40. We involve totally 10 users for the FL on the LiDAR dataset.

Fig. 4.10 shows the overall accuracy and the communication overhead of different ap-
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Figure 4.10: Comparison of different approaches’ performance on the LiDAR dataset. FedDL
outperforms other approaches in accuracy performance by more than 15%, and save about
42.6% communication overhead compared with approaches that share the whole models
(Fedavg and pFedMe).

n1 . . . n10

n1, n2, n5 n3, n9, n10 n4, n6, n7,
n8
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Figure 4.11: The sharing structure for 10 users, which is dynamically learned by FedDL. n2,
and n1 share more layers as they have similar behavior habits and biological features.
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proaches on the LiDAR dataset. We evaluate the overall accuracy by observing the distribu-

tion of testing accuracy after 30 rounds of global training for all the users. From Fig. 4.10,

we can see that FedDL achieves the best accuracy performance with meanacc = 0.98 and

the interquartile range IQR = 0.025. Compared with other methods, FedDL improves the

mean testing accuracy by more than 15% and reduces the variation significantly by more

than 94%, suggesting that FedDL can converge fast to a steady and accurate model for most

users. In contrast, FedAvg and FedPer yield larger testing accuracy variations as models

of some users barely converge even after 30 rounds of global training. FedDL achieves a

significantly lower variation as it facilitates the collaboration among users with similar data

distributions, which mitigates the noise/outliers from other users, improving the convergence

rate and accuracy. Fig. 4.10 also compares the communication overhead of FedDL with the

other three FL methods. We measure the communication overhead (Qcomm) by calculating

the total amount of data transferred between the server and users during the training pro-

cedure. It is shown that FedDL saves about 42.6% communication overhead compared with

FedAvg and pFedMe, which share the entire models during FL.

To better understand the above results, we take a closer look at the sharing structure

dynamically learned by FedDL (shown in Fig. 4.11). From the figure, we can see, n3, n9,

and n10 share the lower two layers, which is consistent with the fact that they are the only

three subjects using the left hand to make phone calls. Among these three subjects, n9 and

n10 are females (n9: heights 1.66m, weights 50kg; n10: heights 1.63m, weights 48kg), while

n3 is a male with the height 1.78m and weight 66kg. It is shown that n9 shares more layers

with n10 than with n3, which can be attributed to the distinct effects of the body shapes

on the collected LiDAR data. The effect of biological features on the LiDAR data is also

reflected on n5. Users n5, n2, and n1 use both the left and right hands to answer phone

calls, and they are all males. However, n5 (height 1.93m, weights 95kg) is much taller and

heavier than the other two subjects. In the sharing structure, n5 shares the lower 3 layers

with n2 and n1, while n2 and n1 keep sharing more upper layers.
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Figure 4.12: Comparison of different approaches’ performance on four datasets, UWB, HAR-
BOX, Depth Images and IMU. FedDL outperforms other approaches in accuracy performance
and has a lower communication overhead than approaches that share the whole models (Fe-
davg and pFedMe).

The above results confirm that FedDL can capture the different degrees of similarity

among users’ data due to behavior habits or biological features, and can effectively apply

them to layer-wise model merging to improve model accuracy and communication efficiency.

4.6.4 Performance on Different Datasets

In this section, we evaluate the performance of FedDL on different datasets, UWB, HARBOX-

IMU, depth images, and IMU (Table .4.1). Specifically, for each dataset, we compare the

overall accuracy and communication overhead of FedDL with four baselines, FedAvg, Fed-

Per, pFedMe, and local training. We fix the local communication rounds (R) to be 30 and

the global computation rounds (T ) to be 40 for all the approaches. Also, we involve 8 users

for the FL on each dataset, where the number of data samples varies for different users to

simulate an unbalance data setting in FL. It is noted that we evaluate the scalability of

FedDL on HARBOX dataset involving up to 90 users in Section 4.6.4.

Overall accuracy. Fig. 4.12(a) compares the testing accuracy of different approaches for
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the four datasets. It is shown that compared with four baselines, FedDL achieves the best and

stable accuracy performance on the four datasets with a high mean value (meanacc > 90%)

and IQR < 0.2. Specifically, compared with local training (0.05 < IQR < 0.4, 75% <

meanacc < 85% ), FedDL, FedPer, and pFedMe improve the accuracy of the model while

FedAvg fails, as the data distributions of users are too heterogeneous to learn a good global

model. Specifically for the UWB dataset, FedAvg barely converges within 40 global rounds.

FedPer and pFedMe also fail to improve the accuracy as their model aggregation schemes are

oblivious to the underlying relationship among users. Moreover, FedDL outperforms them,

as FedDL can capture the intrinsic relationship among users dynamically and aggregate

users’ models within each group in a layer-wise manner.

Communication overhead. Fig. 4.12(b) compares the communication overhead of

different methods for the four datasets. In our experiments, we set the number of global

rounds T = 40. The communication overhead measures the total amount of the parameters

transferred between users and the server during the whole FL process, which is determined by

the sharing scheme and the size of the CNN model. From the figure, we can see FedDL is able

to maintain a relatively low communication overhead, which suggests our dynamic bottom-up

layer-wise model aggregation strategy improves the communication efficiency. Specifically,

FedDL and FedPer have a relatively low communication cost for all the datasets, as they

only share part of model layers among users. FedPer combines the lower 3 layes of local

models and FedDL merges models according to layer-wise grouping results. In particular,

FedDL outperforms FedPer for UWB and depth images datasets. The reason is that the

data distributions of users are so heterogeneous in these two datasets that most of the users’

upper layers are user-specific in FedDL’s grouping results, i.e., they share and upload less

than 3 lower layers.
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Figure 4.13: Comparison of different approaches’ performance on Depth images datasets with
different number of local computation rounds (R = 20, 40, 60). All the methods benefits from
a larger R, and FedDL maintains the best accuracy and communication performance with
different numbers of R.

4.6.5 Scalability

To evaluate the scalability of FedDL, we compare the performance of different approaches

(FedDL, FedAvg, FedPer, pFedMe) when training on the data of 30, 60, 90 users from the

HARBOX dataset.

4.6.5.1 Overall accuracy

. Fig. 4.14 shows the experiment results with different number of users. From Fig. 4.14(a),

It is obvious that the overall accuracy of FedAvg decreases with the increase of the number

of users, as the heterogeneity of users’ data becomes higher. In this case, FedAvg performs

the worst among all approaches and can not even converge within 40 global rounds when

90 users are involved. Besides, FedDL outperforms FedAvg, FedPer and pFedMe under

different settings as FedDL can capture the relationship among users and dynamically merge

user’ models within each group in a layer-wise manner. On the contrary, FedPer adopts

a static sharing scheme that shares the lower 3 layers of models for all the users, which
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Figure 4.14: Comparison of different approaches’ performance on 30-, 60- and 90-user HAR-
BOX datasets. FedDL outperforms FedAvg, FedPer and pFedMe in both overall accuracy
and communication overhead.

fails to capture the complicated user relationship, resulting in worse performance when the

number of involved users is large. pFedMe aligns each user’s local model with the averaged

global models, which makes the overall accuracy partially dependent on the global model’s

performance, which is hence largely influenced by users’ data heterogeneity. Moreover, the

accuracy of FedDL is more stable (with small IQRs) as the number of users increases, which

shows the advantage of its group-based dynamic model aggregation scheme.

4.6.5.2 Communication overhead

. Fig. 4.14(b) compares the communication overhead of different approaches with the data

of 30, 60, 90 users from the HARBOX datasets. We can see that the communication over-

head of FedAvg, pFedMe and FedPer increases dramatically in proportion to the number

of users involved in the training procedure. However, FedDL always maintains a relatively

low communication overhead, as FedDL can stop uploading the parameters of models’ upper

layers earlier when the users’ data is significantly heterogeneous.

The above results suggest that FedDL exhibits satisfactory scalability by maintaining
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relatively high accuracy and low communication overhead and performs better on large-scale

datasets.

4.6.6 Impact of Local Computation Rounds

The number of local computation rounds, R, is a critical hyperparameter in FL. The setting

of R shows a trade-off between the computation and communication: a larger R requires more

computations at local devices of users, while a smaller R means more global communication

rounds to converge. To understand how R affects the convergence of different FL methods,

we conduct the experiments on an 8-user Depth Images dataset with (R = 20, T = 30),

(R = 40, T = 15) and (R = 60, T = 10, respectively. It is noted that, for all the baselines,

we only change the value of R with the model structure and all the other settings of the

models stay the same. Specifically, the initial learning rate is set to be 0.01 with periodic

decay and the batch size is set to be 32.

Fig. 4.13 illustrates the performance of different methods with different settings of local

computation rounds R. It shows that a larger value of R will improve the performance on

the accuracy and communication overhead of both the personalized and the global models.

Fig. 4.15 visualizes the change of training loss and testing accuracy over global rounds with

different settings of R for a specific user. We can see that all the methods have improvements

in convergence when R is larger. For example, FedAvg takes a much smaller number of global

communication rounds to converge (reduce from more than 30 to 10 rounds) when R increases

from 20 to 40. However, FedDL will always converge fastest (with the smallest number of

global rounds), especially when the local computation round R is set small (e.g., R=20).

4.7 Discussion and Future Work

4.7.1 Convergence of FedDL

. In our experiments (discussed in Section 4.6.3-4.6.6), FedDL is demonstrated to converge

on the five real-world HAR datasets. In particular, it converges fast even when training
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Figure 4.15: The training loss and testing accuracy of a specific user’s model changing
over global rounds with different settings of R. Larger R improves convergence, especially
for FedAvg. However, FedDL will always converge fastest with different local computation
rounds R.

on 90 users with a limited number of local rounds. We now provide some insights into the

convergence guarantee of FedDL. Firstly, FedDL groups users with similar data distributions,

which mitigates the impact of noise/outliers from other users, thus improving the convergence

performance. Second, the intra-group model merging entails a weighted average of the local

models (see section 4.5.2), where the weights quantify how closely each local model is to the

group model. In FedDL, the weights of users whose models lie at the border or intersection

of multiple groups are relatively small, and hence the models will contribute less to the

intra-group model merging. Thus, such a design mitigates the impact of dynamic grouping

on model convergence.
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4.7.2 Scalability of FedDL

. FedDL is generally more scalable as a clustering-based approach since the number of user

groups (who share some degree of similarity among their data) may not increase drastically

with the number of users. For the scenarios where users arrive dynamically, FedDL merges

the new users in the sharing structure instead of retraining the sharing structure for all the

users for scratch, which substantially reduces the compute and communication overhead.

Specifically, FedDL considers each group as one user and learns the new users’ relationship

with existing groups to update the sharing structure by merging the new users into different

groups.

4.7.3 Future work

. Firstly, the local models transmitted in FedDL may reveal certain information about user

activities [56, 131]. In the future, we will integrate additional mechanisms, like differential

privacy [129], in FedDL to provide stronger privacy protection. However, such privacy-

preserving mechanisms can have a complicated impact on the overall performance. We will

conduct a comprehensive study of privacy-preserving techniques and the trade-off between

the privacy and performance of FedDL. Besides, we will extend FedDL to other applications

where the users’ data has a high level of dynamics while exhibiting significant similarity. For

example, FedDL can be applied to applications like health monitoring [11] and road traffic

prediction [85], where the data of nodes (e.g., users or cars) share spatial-temporal similarity

due to spatial proximity, models of devices/cars, user routines, etc. Finally, as the real-

world HAR applications may involve high-dimension data (e.g., images or videos), deeper or

wider neural network models are required to avoid underfitting. We will evaluate how the

model complexity, including the depth and width of the model, affects the convergence and

accuracy of FedDL.
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4.8 Conclusion of Study

This thesis proposes FedDL, a novel federated deep learning system for HAR that cap-

tures the similarity of users’ models and generates personalized user models through dynamic

layer sharing in an iterative layer-wise manner. We evaluate the performance of FedDL for

the recognition of various activities on five datasets collected from 178 users in total. The

experimental results show that FedDL outperforms the other methods in terms of overall ac-

curacy (e.g., by 24.05%, 16.67%, 19.51%, and more than 30.67%, to local training, pFedMe,

FedPer, and FedAvg respectively). Moreover, FedDL saves more than 50% communication

overhead when there is a large number of users and achieves a high convergence rate even

with a small number of local computation rounds. As future work, we will deploy FedDL on

edge devices, like smartphones, to evaluate the system overhead of FedDL. Moreover, we will

also explore the application scenarios with intrinsic statistical heterogeneity beyond HAR by

leveraging domain adaptation techniques.
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CHAPTER 5

CONCLUSION

This thesis introduce three studies for CPS to first address the inaccuracy of the sensing

data due to the noise and the dynamics of the context, then include human in the loop of

smart systems, and finally, design distributed learning platform for large-scale applications.

First of all, the accuracy of cardiac signals is extremely essential for daily health moni-

toring. FitBeat enables accurate heart rate tracking on wrist-type wearables during inten-

sive exercises. It integrates and augments standard filter and spectral analysis tool, which

achieves comparable accuracy while significantly reducing computational overhead. Experi-

mental results involving 10 subjects show that the average error of FitBeat is around 4 beats

per minute, which improves heart rate accuracy of the default heart rate tracker of Moto

360 by 10x.

After that, we include human in the loop and design the smart health applications. To

make the RSA-based breathing training, which relies on in-person sessions and cumbersome

sensing devices, accessible at home, we propose the BreathCoach - a smart and unobtru-

sive system which enables effective in-home RSA-BT using sensors on a smartwatch and

smartphone-based VR. Specifically, BreathCoach continuously measures key bio-signals in-

cluding breathing pattern (BP), inter-beat interval (IBI), amplitude of RSA, and intelligently

calculates the optimal BP based on current and historical measurements. The recommended

BP is conveyed to users through a VR game to provide intuitive guidance. The experimental

results suggest that BreathCoach is able to reliably measure needed bio-signals and intelli-

gently calculate BP recommendations which result in improved performance compared with

the traditional approach.

Finally, we build the smart system using federated learning for large-scale applications.

Federated Learning (FL) enables the collaborative learning of a global model without expos-

ing users’ raw data. However, existing FL approaches yield unsatisfactory HAR performance
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as they fail to dynamically aggregate models according to the statistical diversity of users’

data. In out study, we propose FedDL, a novel federated learning system for HAR that

can capture the underlying user relationships and apply them to learn personalized models

for different users dynamically. We have implemented FedDL and evaluated using a new

data set we collected using LiDAR and four public real-world datasets involving 178 users

in total. The results show that FedDL outperforms several state-of-the-art FL paradigms

in terms of model accuracy (by more than 15%), converging rate (by more than 70%),

and communication overhead (about 30% reduction). Moreover, the testing results on the

datasets of different scales show that FedDL has high scalability and hence can be deployed

for large-scale real-world applications.
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[41] N. Y. Hammerla, S. Halloran, and T. Plötz. Deep, convolutional, and recurrent models
for human activity recognition using wearables. arXiv preprint arXiv:1604.08880, 2016.

[42] A. L. Hansen, B. H. Johnsen, J. J. Sollers, K. Stenvik, and J. F. Thayer. Heart rate
variability and its relation to prefrontal cognitive function: the effects of training and
detraining. European journal of applied physiology, 93(3):263–272, 2004.

91



[43] A. L. Hansen, B. H. Johnsen, and J. F. Thayer. Vagal influence on working memory
and attention. International journal of psychophysiology, 48(3):263–274, 2003.

[44] T. Hao, C. Bi, G. Xing, R. Chan, and L. Tu. Mindfulwatch: A smartwatch-based
system for real-time respiration monitoring during meditation. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):57, 2017.

[45] M. M. Hassan, M. Z. Uddin, A. Mohamed, and A. Almogren. A robust human activity
recognition system using smartphone sensors and deep learning. Future Generation
Computer Systems, 81:307–313, 2018.

[46] J. A. Hirsch and B. Bishop. Respiratory sinus arrhythmia in humans: how breathing
pattern modulates heart rate. American Journal of Physiology-Heart and Circulatory
Physiology, 241(4):H620–H629, 1981.

[47] A. Ignatov. Real-time human activity recognition from accelerometer data using con-
volutional neural networks. Applied Soft Computing, 62:915–922, 2018.

[48] L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex formulation.
arXiv preprint arXiv:0809.2085, 2008.
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