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ABSTRACT 

A POTENTIAL ROLE FOR EARLY GUT MICROBIAL COLONIZATION IN INFANT 
BEHAVIOR AND CHILD SLEEP DISORDERS 

By 

Tengfei Ma 

There is increasing evidence from pre-clinical and human studies implicating the microbiota–

gut–brain axis in behavior and sleep physiology. Infancy is a critical time period for brain 

development and is vulnerable to the harmful effects of gut dysbiosis. Thus, it is crucial to 

understand how gut microbial colonization during this period may influence behavior and sleep 

physiology in the later stages of life. 

We analyzed data from 194 mother-infant pairs from the Michigan Archive for Research on 

Child Health (MARCH) cohort Study. Clinical and demographic information was obtained from 

the birth certificate and interview during pregnancy and childhood. Fecal samples from infants at 

3-9 months of age were sequenced at the V4 region of the 16S rRNA gene. 

In the first study, which examined whether feeding practices may affect early gut microbial 

colonization, we found that the gut microbiota of infants who were exclusively breastfed 

displayed a significantly lower Shannon diversity (p-adjust < 0.001) and a different gut 

microbiota composition than infants who were not breastfed (p-value = 0.001). Among the 

exclusively breastfed infants, recipients of supplemental vitamin D displayed a significantly 

lower Shannon diversity (p-adjust = 0.007) and different gut microbiota composition structure 

than non-supplemented, breastfed infants (p-value = 0.02). In addition, several individual taxa 

were identified to be associated with different feeding practices. 

In the second study, we examined whether gut microbiota in early infancy was associated with 

temperament in the nine-month-old infants. We identified that a microbial cluster characterized 



 

by a higher abundance of Bifidobacterium, Veillonella, and Escherichia-Shigella that was 

associated with lower emotionality scores (coefficient = -0.58, p-value = 0.02) compared to a 

cluster characterized by a higher abundance of Bacteroides. This association was especially 

prominent among infants who were not supplemented with vitamin D (coefficient = -1.01, p-

value = 0.01), while no significant association was found among infants who were supplemented 

(coefficient = -0.43, p-value = 0.20).  

In the final aim, we assessed the association between gut microbiota in early infancy and the 

difficulty of initiating and maintaining sleep at age of two years. The gut microbiota of children 

who had difficulty maintaining sleep displayed significantly higher Shannon index (OR: 2.41, 

95% CI= 1.23-4.93, p-adjust < 0.04) and Chao 1 index (OR: 1.01, 95% CI= 1.0-1.03, p-adjust < 

0.008) after adjustment for covariates. We also observed that gut microbiota composition was 

significantly different between children with difficulty initiating (p-value= 0.043) and 

maintaining sleep (p-value= 0.004) by PERMANOVA based on the unweighted UniFrac 

distance metric. 

In conclusion, these results from analysis in a prospective cohort study suggest that early gut 

microbial colonization is shaped by breastfeeding status, vitamin D supplement, and maternal 

characteristics including gestational age, delivery mode and education level. Our findings 

suggested that the infant gut microbiome clusters may be associated with the temperament 

characteristic of negative emotionality in 9-month-old infants. We also demonstrated a 

significant association between infant gut microbiome composition and sleep problems in 2-

year-old children. Thus, our results add to the evidence that early gut microbial colonization may 

be linked with brain outcomes with potential long-term effects. 
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CHAPTER1. INTRODUCTION 

1.1 Background 

The human gut microbiome is composed of a wide variety of microorganisms, including 

bacteria, archaea, viruses, and eukaryotic microbes that all reside in our intestines. Several basic 

functions conferred by the gut microbiome on the human host suggest its importance in health 

and disease. These functions include regulation of the immune system, protection against 

pathogens, and fermentation of indigestible food components into metabolites[1,2]. However, 

these functions can be disrupted by an altered microbial composition, which is referred to as 

dysbiosis[1]. Several diseases are now thought to be influenced by dysbiosis, including some 

types of cancer[3,4], mental disorders[5–8], inflammatory bowel diseases[9,10], type 2 

diabetes[11,12], and obesity[1,13].  

The gut microbiota produces a set of through the breakdown of indigestible carbohydrates 

[14,15]. Among the metabolites, short chain fatty acids (SCFAs) perform complex but important 

roles in the human body[16]. The three most prominent SCFAs are acetate, propionate, and 

butyrate, which occur in a ratio of approximately 3:1:1 in the human intestinal lumen, 

respectively[16]. Butyrate is thought to be the most important SCFA for human health, as it 

forms the major energy source for human colonocytes[17,18]. Butyrate also potentially prevents 

cancer activity by inducing apoptosis of colon cancer cells and by regulating gene expression by 

inhibiting histone deacetylases[19]. Propionate is also an energy source for the epithelial cells 

but is largely taken up by the liver[18]. The transformation of propionate to glucose in intestinal 

gluconeogenesis has beneficial effects on energy homeostasis by decreasing hepatic activity, and 

in turn, reduces adiposity[20]. Acetate is the most abundant SCFA, and is important for gut 

environment stability and the growth of beneficial bacteria[21]. In addition, Acetate can cross the 
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blood–brain barrier and regulate hypothalamic neuronal activation patterning and neuropeptide 

release[22].The joint study of the microbiome and the metabolome is considered one of the best 

approaches to study host–microbiome interactions[23,24]. 

The gut microbiota is also critical for the development of both the intestinal mucosal and 

systemic immune system as demonstrated by the studies in animal models. A number of studies 

have shown that germ-free (GF)  mice are more susceptible to infection than specific-pathogen 

free mice[25]. In addition, administration of antibiotics is associated with an increased risk of 

pathogen colonization in both mice and humans, suggesting an important function of the 

commensal microbiota in protecting the host from infection[26,27]. A major immune deficiency 

in germ-free animals is the absence of expansion of CD4+ T-cell populations, which can be 

completely reversed by polysaccharide A produced by B. fragili[28,29]. This reversion is mainly 

performed by the pattern recognition receptors (PRRs) of epithelial cells, such as Toll-like or 

Nod-like receptors, which can recognize the molecular effectors that are produced by gut 

microbiota[30]. Dysbiosis can alter the microbiol molecules sensed by the host, and in turn lead 

to a different activation state of the immune system[31]. A recent research which studied prenatal 

and early life bacterial colonization found that by transferring altered gut microbiome from 

pregnant patients with Crohn’s disease to germ-free mice, an imbalanced immune system lacking 

critical homeostatic elements was displayed in the GF mice, suggesting gut dysbiosis could 

trigger abnormal imprinting of the intestinal immune system[32].  

1.2 Early microbial colonization  

The colonization of gut bacteria begins at birth and remains highly dynamic until about 2-3 years 

of age when more stable microbial profiles begin to emerge[33,34]. Several reports highlighted 

that the early life development of the infant gut microbiota plays a critical role in the health of 
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later life, such as allergic diseases, obesity, and autism[33,35]. Mode of delivery, infant feeding 

practices, and antibiotic exposure are thought to be three key factors that influence early 

microbial colonization and establishment[36]. The relationship between these 3 factors and 

infant gut microbiome have been well established in the studies of recent years. 

Mode of delivery is one of the major contributors to influencing the infant's gut microbiome. 

During vaginal delivery, the infant’s microbial colonization starts at the contact with the 

maternal vaginal and intestinal flora, while infants delivered by CS acquire bacteria derived from 

the maternal skin, mouth, and from the hospital environment[37,38]. The gut microbiota patterns 

of infants delivered by CS differ from those who were vaginally delivered, including lower 

diversity and richness, lower abundance of Bacteroides, Lactobacillus, and Bifidobacterium, and 

higher abundance of Clostridium difficile and microbes associated with the human skin such as 

Staphylococcus, Streptococcus and Propionibacterium[39–41]. Previous studies found that from 

birth to 90 days of life, Bifidobacterium and Lactobacillus were significantly lower in the infants 

delivered by CS compared with those delivered vaginally[42]. These differences in newborn gut 

microbiome community may have an impact on health since the genera Bifidobacterium and 

Lactobacillus are considered to be the beneficial bacteria in the gut[43].  

Infant feeding practices are also key factors in shaping early microbiota composition[44,45]. 

Recent studies have shown that gut microbial profiles in breastfed infants are significantly 

different from those in formula-fed infants and change rapidly after the transition from 

breastfeeding to formula or solid food[46,47]. Specifically, breastfed infants have higher 

abundance of bifidobacterial, and lower microbial diversity compared with formula-fed infants 

whose gut microbiota is more diverse and similar to older children[47,48]. The differences in gut 

microbiota composition observed between formula-fed and breastfed infants have, at least 



4 
 

partially, been attributed to the absence of human milk oligosaccharides (HMOs) in infant 

formula[49]. Human milk is enriched with HMOs, which have been linked to beneficial bacteria 

in the gut microbiota[50,51]. In recent years, some oligosaccharides have been added to some 

formula to help infant to establish a Bifidobacterium-rich microbiota[51]. However, formula-fed 

infants still have distinct features of their microbiotas compared with breastfed infants, with a 

higher abundance of C. difficile[52]. The introduction of solid food represents another key factor 

of feeding practices influencing the composition of infant gut microbiota, producing an adult-like 

complex microbiome dominated by the phyla Bacteroidetes and Firmicutes[53,54]. Infant gut 

bacterial abundance changed significantly with the introduction of solid foods between 9 and 18 

months. Specifically, the abundance of Bacteroidetes increases and the abundance of 

Bifidobacterium and Lactobacillus decrease[55,56].  

During birth and immediately thereafter, broad-spectrum antibiotics are commonly used in 

newborns and their mothers who are at high risk for infection. However, antibiotics can also 

contribute to gut dysbiosis[57]. Early antibiotic exposure can reduce the diversity of the gut 

microbiota of infants and change its composition, with a decreased abundance of 

Bifidobacterium and increased abundance of Proteobacteria[58]. Healthy infants whose mothers 

received ampicillin for group B Streptococcus before delivery displayed significantly decreased 

abundance of Bifidobacterium by one week of life, highlighting the modulatory influences of 

intrapartum antibiotic interventions[59]. Studies have also demonstrated that the prophylactic 

antibiotic treatment in preterm infants can reduce the diversity of gut flora and delay the 

colonization of commensal flora[60,61]. 

1.3 The microbiota–gut–brain axis 

The ‘microbiota-gut-brain axis’ (MGBA) refers to the biological network involving multiple 
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biological systems that allow bidirectional communication between gut bacteria and the 

brain[62]. This axis is becoming popular in fields investigating the biological and physiological 

basis of stroke, psychiatric, neurodevelopmental, age-related, and neurodegenerative 

disorders[62–64]. The communication network includes the central nervous system (CNS), both 

brain and spinal cord, the autonomic nervous system (ANS), the enteric nervous system (ENS) 

and the hypothalamic pituitary adrenal (HPA) axis[63]. The communication pathways in these 

biological networks include both direct and indirect signaling via neurotransmitters, metabolic 

pathways, and the immune system[62,63].  

The most well-studied neuronal pathway for the MGBA is the vagus nerve signaling. The vagus 

nerve innervates the muscle and mucosa layers of the gut both in the lamina propria and 

muscularis externa, detects sensory signals and then relays these signals to the CNS[65,66]. The 

most important function of the vagus nerve is afferent activity which brings information of the 

inner organs, such as gut, liver, heart, and lungs to the brain[67]. A study reported that in 

vagotomized mice where the vagus nerve has been surgically severed, administration of 

Lactobacillus rhamnosus JB-1 does not affect GABA receptor expression[68]. whereas in 

normal mice, administration of Lactobacillus rhamnosus JB-1 alters the expression of GABA 

receptors in brain regions associated with fear and emotions.These receptors  modulate anxiety-

like behaviors, suggesting that the vagus as a major modulatory communication pathway 

between gut microbiota and the brain[68].  

Inspired by how microbiota influence the brain through their ability to produce and modify many 

metabolic, immunological and neurochemical factors that impact the nervous system, flood of 

research is now connecting microbial communities, and their function to neuropsychiatric 

disorders associated with development (for example, autism spectrum disorder and 
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schizophrenia), with mood (for example, depression and anxiety) and with neurodegeneration 

(for example, Parkinson disease and Alzheimer disease)[69,70]. GF mice are one of the most 

widely used technical strategies in studying MGBA[71]. The main advantage of the GF mice 

model is that gut microbiome strains thought to be risk factors in gastrointestinal and systemic 

disease, such as candidate psychobiotics, can be studied in GF mice to learn more about their 

specific effects. In addition, fecal microbiota of human donors can be transplanted into GF mice 

to directly investigate the role of bacteria on disease pathogenesis. Several studies have shown 

that GF mice displayed increased stress response and decreased anxiety with augmented levels of 

adreno-corticotrophic hormone and cortisol compared with specific pathogen-free (SPF) mice 

with normal gut microbiota[72,73]. The abnormalities could be partially reversed when the 

gastrointestinal tracts of the germ-free mice were reconstituted with stool from normally raised 

mice[72]. The administration of microbiota from a patient with Alzheimer’s disease has been 

shown to trigger cognitive decline in recipient GF mice[74]. In addition, metabolites related to 

the nervous system, including γ-aminobutyrate, taurine, and valine, were significantly less 

abundant in the feces of mice transplanted with microbiota from the affected patient, reinforcing 

the idea of a microbiota-gut-brain axis[74].  

Human studies have also demonstrated that the gut microbiota is associated with 

neuropsychiatric and neurodegenerative disorders[70,75,76]. Autism spectrum disorder (ASD) 

are a serious neurodevelopmental disorder in children and about 1 in 44 children has been 

identified with ASD according to the estimates from CDC in the United States[77]. Children 

with ASDs have been found to have lower abundances of Coprococcus, Prevotella, and 

unclassified Veillonellaceae, and an increased Firmicutes/Bacteroidetes ratio[78,79]. Recent 

research has also reported beneficial effects of fecal microbiota transplantation therapy (MTT) 
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for individuals with ASD[80]. In this open-label clinical trial of MTT, 18 children diagnosed 

with ASD received an antibiotic treatment for 2 weeks followed by an initial, high dose of fecal 

microbiota transplants and subsequent lower maintenance doses administered daily for 7–

8 weeks[80]. This study demonstrated that MTT appeared to reduce gastrointestinal symptoms 

(such as, constipation and abdominal pain) and improved ASD symptoms, such as social skills 

deficits and repetitive behavior. In a follow-up with the same participants after 2 years, most 

improvements in gastrointestinal symptoms were maintained, and autism-related symptoms 

improved even more after the end of treatment, suggesting a long-term impact[81]. The 

treatment also increased overall bacterial diversity and the abundance of 

Bifidobacteria and Prevotella, and these effects were remained over time as they were still 

observed in the 2-year follow-up[81]. The relationship between gut microbiota and cognitive 

development has been well studied in humans[82,83]. Carlson et al. demonstrated that higher 

alpha diversity of gut microbiota was associated with lower scores on the overall cognitive score, 

visual reception scale, and expressive language scale in 89  2-year-old children[82]. This study 

also showed that microbiome has minimal effects on regional brain volumes at 1 and 2 years of 

age by using MRI imaging[82]. 

1.4 Gut microbiome and sleep 

Sleep quality and quantity are increasingly being considered as critical factors for child health 

and development. Epidemiology studies indicate that up to 50% of children experience a sleep 

disorder between 0 to 6 years old[84–86]. Difficulty initiating and maintaining sleep are the two 

most frequent sleep problems in childhood and often co-exist[87]. Spruyt et al. reported that 31% 

of children aged 6 to 13 years had disorder of initiating and maintaining sleep in a normal 

school-age population[88]. Liu et al. also showed that 16% of the parents in the United States 
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reported their children aged 4 to 11 years “sometimes” have difficulties falling asleep[89]. 

Multiple biological, psychosocial, and environmental factors are linked to sleep disorders in 

children[90]. Leone et al. found that gut microbiome dysbiosis could impair central and hepatic 

circadian clock gene expression, suggesting that gut microbiota may play a role in regulating or 

modifying circadian rhythm[91]. In a small group of breast cancer survivors (n=12), global sleep 

dysfunction was found to be associated with higher abundance of Paracoccus, Rikenellaceae, 

and Clostridium[92]. Another cross-sectional study of 37 healthy older adult found that global 

sleep dysfunction was associated with lower abundance of the phyla Verrucomicrobia and 

Lentisphaerae. Valentini  et al. reported that children with Obstructive Sleep Apnea syndrome 

had a lower microbiota diversity and higher abundance of pro-inflammatory bacteria 

(Proteobacteria, Clostridiaceae, Oscillospiraceae, Klebsiella) compared to healthy 

participants[93].  

1.5 Gut microbiome research methods 

Nowadays, microbiome studies often rely on the analysis of 16S ribosomal RNA sequences for 

the taxonomic identification of bacteria. The 16S rRNA gene sequence is about 1,500 bp long 

and contains a highly conserved sequence that includes nine regions or windows of variable 

nucleotide sequence[94,95]. These nine regions constitute the most informative portions of the 

gene sequence for use in taxonomic classification. With the development of next-generation 

sequencing technology, 16S rRNA gene has become a powerful tool for pathogen detection and 

identification[94]. The pipeline for 16S amplicon analyses usually starts with using primers 

designed to amplify the hypervariable regions of the 16S rRNA gene (typically the V1–V3 

region or the V3–V5 region). Sequences are clustered into Operational Taxonomic Units’ 

(OTUs) that contain similar 16S rRNA sequences with high sequence similarity[96]. A common 
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similarity threshold used is 97%, which was derived from an empirical study that showed most 

strains had 97% 16S rRNA sequence similarity[96]. For each OUT cluster, a single sequence is 

selected as a representative sequence, which is annotated using a 16S classification method[97]. 

The annotation is applied to all other sequences within the same OUT. Several pipelines have 

been developed to perform the entire 16S analysis from end to end, including QIIME and 

MOTHUR[98,99]. 

Recently, a new method called Amplicon Sequence Variant (ASV) approach has been 

developed. The ASV approach starts by determining which exact sequences are read and how 

many times each exact sequence is read from Illumina-scale amplicon data without imposing the 

arbitrary dissimilarity thresholds[100]. ASV methods infer the biological sequences in the 

sample before the introduction of amplification and sequencing errors. This allows ASV methods 

distinguish sequence variants differing from only one nucleotide[100].  Therefore, an ASV-based 

analysis is able to provide a higher-resolution taxonomic result allowing for more precise 

identification down to the species level and even potentially beyond[101]. 

Alpha diversity is the ecological diversity of a single sample and is commonly used as a 

measurable outcome in microbiome research with respect to its richness (number of different 

species present in an area), evenness (relative abundance of the different species in an area), or 

both[102]. In microbial ecology, analyzing the alpha diversity of gut microbiota data is a 

common first approach to assessing differences between environments. The Shannon index is 

one of the popular index for alpha diversity, which accounts for both richness and evenness in a 

single equation, while the Chao 1 index only accounts for the richness[103]. The diversity of gut 

microbiota within an individual has been linked to several human diseases. For example, low 

diversity in the gut has been associated with obesity and inflammatory bowel disease[104].  
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While alpha diversity is a measure of microbiome diversity in a single sample, beta diversity is a 

measure of similarity or dissimilarity between two communities. It provides a measure of the 

degree to which samples differ from one another and it can reveal the structure difference 

between microbiota samples[105]. Some of the most popular beta diversity measures in 

microbiome research include the Bray-Curtis index (compositional dissimilarity), the Jaccard 

index (presence / absence measures, ignoring abundance information), and the UniFrac distances 

(which take into account the phylogenetic tree information)[106]. Many popular statistical 

methods, such as ordination-based methods, and permutational multivariate analysis of variance 

(PERMANOVA) are relied on the beta diversity[107,108]. Beta diversity is widely used for 

studying the association between environmental variables and microbial composition. 

1.6 Study population 

The Michigan Archive for Research on Child Health (MARCH) cohort is an ongoing population-

based pregnancy and birth cohort set in Michigan’s lower peninsula. Many important problems 

in child health and development may result from a mother's diet, her infections, and chemicals in 

her environment during her pregnancy. The MARCH study plans to examine 1,100 pregnancies 

in detail by interviewing women in pregnancy, acquiring abstracts of their medical records, and 

by saving biological specimens obtained in pregnancy (blood, urine, and placenta). The MARCH 

study assesses the child's health and development in relation to these factors, to learn what 

changes might be made during a woman's pregnancy that could prevent later problems in child 

health and development. The MARCH study contributes to a nation-wide study of child health 

called the Environmental Influences on Child Health Outcomes (ECHO). ECHO is a research 

program launched by the National Institutes of Health in 2016 to understand early environmental 

factors on child health and development from nearly 40 cohorts across the US. ECHO research 
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focuses on four key pediatric outcomes: pre-, peri-, and postnatal outcomes, upper and lower 

airway, obesity, and neurodevelopment. With the large sample size and generalizability of the 

study population, the ECHO program should allow for new insights into many prenatal factors 

and child health, that can lead to the development of interventions and prevention strategies to 

improve child health across the U.S[109]. 
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CHAPTER 2. SPECIFIC AIMS 

The overall goal of this dissertation is to determine how feeding practices and other factors shape 

the early development of the infant gut microbiota, and to study the gut-microbiota-brain axis by 

assessing the relationship between gut microbiota and infant temperament at 9 months, and 

infant sleep problems at 2 years.  

Aim 1: To determine the association between infant feeding practices and gut bacterial 

composition in early infancy, accounting for other factors affecting the gut microbiota. 

Hypothesis1a: We hypothesize that the gut microbiota of infants who are exclusively breastfed 

will have higher abundance of Bifidobacterial, Streptococcus, and Lactobacillus, and a lower 

alpha diversity, compared with partially breastfed infants and exclusively formula infants at 3-9 

months of infant life.  

Hypothesis1b: We hypothesize that the composition of gut microbiota from partially breastfed 

shows a greater resemblance to the gut microbiota of exclusively breastfed infants than to the gut 

microbiota from exclusively formula infants. 

Hypothesis1c: We hypothesize that among the exclusively breastfed, the gut microbiota of 

infants who had been given a vitamin D supplement will display a lower alpha diversity and a 

lower abundance of Haemophilus. 

Aim 2: To determine whether gut microbiota at the age of 3 months is associated with infant 

temperament at the age of 9 months. 

Hypothesis2a: We hypothesize that gut microbiome with higher alpha diversity at 3 months of 

age will be associated with higher scores of negative emotionality (NEG), and lower scores of 

positive affect/surgency (PAS) and orienting and regulatory capacity (ORC) of infant 

temperament at the age of 9 months. 
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Hypothesis2b: We hypothesize that a gut microbiome with higher abundance of beneficial 

bacteria, such as Bifidobacterial, Streptococcus, and Lactobacillus will be associated with lower 

scores of NEG, and higher scores of PAS and ORC of infant temperament at the age of 9 

months. 

Hypothesis2c: We hypothesize that gut microbiota clusters characterized by higher abundance of 

beneficial bacteria are associated with lower scores of NEG, and higher scores of PAS and ORC 

of infant temperament at the age of 9 months.  

Aim 3: Determine whether gut microbiota in early infancy is associated with infant sleeping 

disorders at the age of 2 years.  

Hypothesis3a: We hypothesize that a gut microbiome with higher alpha diversity in early infancy 

will be associated with a higher risk of difficulty initiating and maintaining sleep at the age of 2 

years. 

Hypothesis3b: We hypothesize that a gut microbiome with higher abundance of beneficial 

bacteria, such as Bifidobacteria, Streptococcus, and Lactobacillus, will be associated with a 

higher risk of difficulty initiating and maintaining sleep at the age of 2 years. 
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CHAPTER 3. VITAMIN D SUPPLEMENTATION IN EXCLUSIVELY BREASTFED 
INFANTS IS ASSOCIATED WITH ALTERATIONS IN THE FECAL MICROBIOME 

3.1 Abstract 

Breastfeeding and introduction of solid food are the two major components of infant feeding 

practices that influence gut microbiota composition in early infancy. But it is unclear whether 

additional factors influence the microbiota of infants either exclusively breastfed or not 

breastfed. We obtained 194 fecal samples from infants at 3-9 months of age, extracted DNA, and 

sequenced the V4 region of the 16S rRNA gene. Feeding practices and clinical information were 

collected by questionnaire and abstraction of birth certificates. The gut microbiota of infants who 

were exclusively breastfed displayed significantly lower Shannon diversity (p-adjust < 0.001) 

and different gut microbiota composition compared to infants who were not breastfed (p-value = 

0.001). Among the exclusively breastfed infants, recipients of vitamin D supplements displayed 

significantly lower Shannon diversity (p-adjust = 0.007), and different gut microbiota 

composition structure than non-supplemented, breastfed infants (p-value = 0.02). MaAslin 

analysis identified microbial taxa that associated with breastfeeding and vitamin D 

supplementation. Breastfeeding and infant vitamin D supplement intake play an important role in 

shaping infant gut microbiota.  

3.2 Introduction 

The gut microbiota has been considered an "invisible organ" of the human body, playing 

important roles in modulating host functions, including metabolism, digestion, and gut mucosal 

immune responses and integrity[1,2]. Dysbiosis of the gut microbiota may be associated with 

various adverse health outcomes in infants such as asthma, Crohn's disease, inflammatory bowel 

disease, and type 1 diabetes (T1D)[3–7]. The colonization of gut bacteria begins at birth and 

remains remarkably dynamic until about 2-3 years of age when more stable microbial profiles 
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begin to emerge[8,9]. In addition to the mode of delivery and antibiotic exposure, infant feeding 

practices are key factors in shaping early microbiota composition[10,11]. Recent studies have 

shown that gut microbial profiles in breastfed infants are significantly different from those in 

formula-fed infants and change rapidly after the transition from breastfeeding to formula or solid 

food[12–15]. The differences in gut microbiota composition observed between formula-fed and 

breastfed infants have, at least partially, been attributed to the absence of human milk 

oligosaccharides (HMOs) in infant formula[16]. Human milk is enriched with HMOs, which 

have been linked to beneficial bacteria in the gut microbiota[17,18]. The introduction of solid 

food represents another key factor influencing the composition of infant gut microbiota, 

producing an adult-type complex microbiome dominated by the phyla Bacteroidetes and 

Firmicutes[19,20]. 

Most gut microbiota research on infant nutrition to date has focused on breastfeeding and the 

introduction of solid food. Little is known about the effect of other dietary features within the 

two different feeding practices. It is recommended that babies who are breastfed exclusively 

should take vitamin D supplements every day due to the variability of vitamin D content in 

human breastmilk[21]. Because all infant formula in the United States is fortified with vitamin 

D, infants who are fed exclusively with formula usually do not need a vitamin D 

supplementation. Vitamin D not only prevents rickets, but also plays an important role in 

immune responses and metabolic processes that maintain the integrity of the gut epithelium[22–

24].   

Human milk can also be provided by bottle, from banking of milk by the mother or from human 

milk banks. This indirect form of breastfeeding can lead to enrichment by environmental 

bacteria, such as Stenotrophomonas and Pseudomonadacea[25]. The water used to reconstitute 
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powdered infant formulas may also be an important exposure for infant health outcomes. 

Reconstituting formula with tap water can lead to excessive fluoride and lead intake [26,27]. 

Different water types (e.g., city water, well water, filtration systems) can be a source of varied 

bacterial composition.  

We sought to determine the association between maternal and infant characteristics and infant 

feeding practices and the gut microbiota profiles in 3- to 9-month-old infants. In addition, we 

analyzed the exclusively breastfed and non-breastfed infants separately to assess the impact of 

unique feeding practices features on the microbiotas of the infants in each group.  

3.3 Materials and Methods 

3.3.1 Study participants 

The study population was drawn from the Michigan Archive for Research on Child Health 

(MARCH) cohort[28], an ongoing population-based pregnancy and birth cohort set in 

Michigan’s lower peninsula. The purpose of the MARCH study is to store biological specimens 

and other health information in pregnancy and early life that can be used to better understand the 

causes of problems in pregnancy and optimize the health of children. This cohort is a component 

of a nation-wide study of child health called the Environmental influences on Child Health 

Outcomes (ECHO)[29]. Our analysis included mothers who provided informed consent for 

providing infant stool samples. During the MARCH 3 month phone interview mothers confirmed 

their interest in participating in this sample collection. Fecal collection kits were sent by mail. 

194 fecal samples have so far been collected from singleton infants aged from 3 to 9 months old. 

The infants in this analysis were 3-9 months of age between 2018 and 2021. 

3.3.2 Data collection 
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Several questionnaires were administered to mothers from the first prenatal visit through 9 

months postpartum. The questionnaire at the first prenatal visit included demographic 

information about the mothers, their breastfeeding plans and many health-related practices and 

conditions as well as their estimated due date. Infant dietary feeding patterns, including breast 

milk and/or formula, detailed feeding practices, and complementary food intake, were collected 

at the same time as the fecal samples. Detailed information, including the infant's sex, birth 

weight, complications of pregnancy, mode of delivery (vaginal vs C-section), pre-pregnancy 

BMI and gestational age, was abstracted from the birth certificate. 

3.3.3 Fecal microbiota analysis 

Once received in the lab, the fecal samples were aliquoted into sterile tubes and stored at -80°C. 

DNA was extracted following a modified version of the Human Microbiome Project’s protocol 

as described previously [30]. Barcoded primers were used to amplify the V4 region of the 16S 

rRNA gene following the mothur wet lab documentation. PCR amplification also followed the 

wet lab protocol outlined in the mothur documentation. The resulting 16S rRNA libraries were 

sequenced using 250 base pair Illumina MiSeq with V2 chemistry at the Michigan State 

University genomics core. After trimming, clean sequences were analyzed using the QIIME2 

(2021.2 version) pipeline[31]. Demultiplexed sequences were further quality filtered and 

clustered using QIIME2's DADA2 plugin to generate the ASV table[32]. Unique amplicon 

sequence variants (ASVs) were assigned a taxonomy by the QIIME2 feature-classifier plugin, 

using the Silva 132 database at the similarity threshold of 99% (for 16S data)[33,34]. Samples 

were rarefied to 6,000 sequencing reads per sample, leaving 191 stool samples with 6,905 unique 

ASVs, and findings were summarized at the genus taxonomic level.  

3.3.4 Statistical analysis 
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We used multivariate ordinal logistic regression models to estimate the association between pre-

pregnancy BMI and breastfeeding practices, with adjustment for demographic variables and 

delivery mode.  

Gut microbiota is analyzed by alpha diversity (Chao1 and Shannon) and beta diversity (Bray–

Curtis dissimilarity and Weighted UniFrac) using the "vegan" package in R[35]. The difference 

of alpha diversity and relative abundance of taxa between feeding practices groups were tested 

by Wilcoxon rank test and Kruskal–Wallis test with false discovery rate (FDR) correction for 

multiple comparisons. We assessed the influence of factors significantly associated with gut 

bacterial community structure by multivariate models using a Permutational Multivariate 

Analysis of Variance (PERMANOVA) with 999 permutations based on Bray-Curtis 

dissimilarities (adonis, R vegan package)[35,36]. PERMANOVA is non-parametric multivariate 

statistical test, with p-values obtained using appropriate distribution‐free permutation techniques. 

We used the multivariate association with linear models (MaAsLin) to identify associated 

microbiological taxa with the feeding practices and other related factors[37,38]. MaAsLin is a 

multivariate statistical framework that identifies associations between clinical metadata and 

microbial community abundance and provides both nominal p-values and FDR adjusted p-values 

(q-values) by Benjamini–Hochberg procedure[39]. Associations are considered significant when 

the q-value is below the threshold of 0.1. 

3.4 Results 

3.4.1 Participants and feeding practices 

We analyzed gut microbiome samples from 191 infants. The distribution of the age at stool 

collection was shown in Figure 3.1. In Table 3.1, maternal and infant characteristics are 

compared by breastfeeding status (exclusive breastfeeding, partial breastfeeding, and not 
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breastfeeding). During the week immediately preceding stool sample collection, 88 (46.1%) 

infants were fed exclusively with breast milk, 43 (22.5%) were fed partially with breast milk, and 

60 (31.4%) were not fed with breast milk. The median age at the time of specimen collection was 

3.8 months (range: 3.0 months – 9.3 months). Partially breastfed infants were more likely to be 

fed with complementary foods than those who were not breastfed (44.2% vs 35.0%, P > 0.4). 

Infants who were exclusively breastfed were more likely to be given vitamin D supplementation 

than partially breastfed or not-breastfed infants (39.8% vs 18.6% vs 1.7%, P<0.01). A higher 

proportion of mothers who practiced exclusive breastfeeding were of normal BMI (18.5- 25.0) 

prior to pregnancy comparing to those who practiced partial breastfeeding or who were not 

breastfeeding (50.0% vs 39.5% vs 26.7%, P<0.01). Mothers who practiced exclusive 

breastfeeding were more likely to have a college degree than women who partially breastfed or 

did not breastfeed (72.4% vs 61.9% vs 32.2%, P<0.01). In a multivariate model adjusted for 

maternal age, maternal educational level, pre-pregnancy BMI (continuous), delivery mode, and 

infant age, mothers with higher pre-pregnancy BMI were less likely to practice breastfeeding 

(OR = 0.95, CI:0.91-0.99, p-value = 0.01, Table 3.2), and mothers with higher educational level 

were more likely to practice breastfeeding (OR= 2.66, CI: 1.72 - 4.21, p-value < 0.001, Table 

3.2). 
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Figure 3.1. Distribution of infant age (month) at stool sample collection 
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             Table 3.1. Characteristics of the mothers and infants by breastfeeding status1 

Characteristic 
Exclusive 

breastfeeding  
(N=88) 

Partial 
breastfeeding  

(N=43) 

No 
breastfeeding  

(N=60) 

P-
value 

Infant age at sample collection 
(day), mean (SD) 115.5(17.3) 135.9 (39.8) 126.3 (31.9) <0.01 

Baby had any antibiotics since 
birth, n (%) 14 (15.9) 5 (11.6) 8 (13.3) 0.40 

Consumption of 
complementary food during 
past 24 hours, n (%) 

0 (0.0) 19 (44.2) 21 (35.0) <0.013 

Infant probiotic supplement2 
during past 24 hours, n (%) 

4 (4.5) 1 (2.4) 3 (3.3) 0.90 

Infant Vitamin D supplement 
during past 24 hours, n (%) 35 (39.8) 8 (18.6) 1 (1.7) <0.01 

Delivery mode, n (%)         
        Vaginal delivery 66 (75) 30 (69.8) 36 (60) 0.10         C-section 22 (25) 13 (30.2) 24 (40) 
Baby weight at delivery 
(gram), mean (SD) 3461 (551) 3336 (529) 3269 (598) 0.10 

Baby sex, n (%)         
         Male 43 (48.9) 22 (51.2) 30 (50) 0.98          Female 45 (51.1) 21 (48.8) 30 (50) 
Maternal pre-pregnancy BMI, 
n (%)         

        <18.5 1 (1.1) 0 (0.0) 3 (5.0) 

<0.01         18.5-25 44 (50) 17 (39.5) 16 (26.7) 
         >25-30 24 (27.3) 11 (25.6) 12 (20.0) 
         >30 19 (21.6) 15 (34.9) 29 (48.3) 
Maternal education level, n 
(%)         

         Did not finish high 
school 0 (0.0) 0 (0.0) 6 (10.2) 

<0.01          High school graduate or 
GED 4 (4.6) 4 (9.5) 21 (35.6) 

         Some college 20 (23.0) 12 (28.6) 13 (22.0) 
         College graduate or more 63 (72.4) 26 (61.9) 19 (32.2) 

1Breastfeeding status information was collected at the time of fecal sample collection. Values are 
mean (SD) for continuous variables or n (%) for categorical variables. Difference by 
breastfeeding status was calculated using an ANOVA or chi-squared test.  
2Including probiotic supplement, kefir and kimchi 
3Post hoc analysis with Bonferroni adjustment showed significant difference in consumption of 
complementary food between partial breastfeeding and no breastfeeding groups. 
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             Table 3.2. Association between breastfeeding and perinatal characteristics1 

Maternal characteristics 
Proportional odds 

ratio  
95% CI p-value 

Maternal age(year) 1.02 0.96-1.09 0.48 

Maternal educational level 2.66 1.72-4.21 <0.001 

Pre-pregnancy BMI (continuous) 0.95 0.91-0.99 0.01 

Delivery mode (C-section vs 

Vaginal) 
0.56 0.29-1.05 0.07 

Infant age (day) 0.99 0.98-1.0 0.07 

1A multivariate ordinal logistic regression analysis was performed to assess the association. 
Variables in the model include maternal age, maternal education level, pre-pregnancy BMI, 
delivery mode, and infant age. 
 
 

3.4.2 Gut microbiota analysis 

Fecal samples from infants who were exclusively breastfed displayed lower Shannon diversity 

than samples from those who were not breastfed (FDR adjusted p-value <0.01, Figure 3.2A). 

Samples from infants who were partially breastfed displayed Shannon diversity intermediate 

between the other two groups, but not significantly different from either. (FDR adjusted p-value 

= 0.9). Chao 1 index was not significantly different across the three groups (FDR adjusted p-

value =1.0, Figure 3.2B). Among the exclusively breastfed, infants who had been given a 

vitamin D supplement during the previous 24 hours displayed lower Shannon index (FDR 

adjusted p-value < 0.01, Figure 3.2C) and lower Chao 1 index (FDR adjusted p-value = 0.6, 

Figure 3.2D) than those infants who were not given a vitamin D supplement. The multivariate 

model confirmed that fecal samples from infants who were not breastfed displayed significantly 

higher Shannon diversity than samples from those who were exclusively breastfed (Beta=0.18, 
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95% CI: 0.01, 0.34, p-value= 0.03, Table S3.1). The multivariate model also confirmed that fecal 

samples from infants who had been given a vitamin D supplement during the previous 24 hours 

displayed significantly lower Shannon index than those who were not given a vitamin D 

supplement (Beta=-0.27, 95% CI=-0.48, -0.08, p-value= 0.006, Table S3.2) in exclusively 

breastfed infants. All the multivariate models were adjusted for maternal age, maternal 

educational level, pre-pregnancy BMI (continuous), delivery mode, and infant age.  

Whether breast milk was fed directly or was pumped and fed to the infant using a bottle, the 

Shannon and Chao 1 indices of the infant gut microbiota alpha diversity were similar (FDR 

adjusted p-value =1.0 and 0.88, respectively, Figure S3.1). Among the non-breastfed infants, 

neither the water type used to reconstitute the formula nor the consumption of complementary 

food during past 24 hours was associated with gut microbiota alpha diversity as measured by the 

Shannon or Chao 1 indices (Figure S3.1). 

When classified by breastfeeding status, the gut microbiota communities of the infants were well 

separated in principal coordinate analysis (PCoA) based on the Bray–Curtis distance matrix 

(univariate PERMANOVA: R2= 4.1%, p-value <0.01, Figure 3.2E). In addition to the feeding 

practices, gestational age (R2=4.0%, p-value = 0.001) and delivery mode (R2=2.0%, p-value = 

0.003) were significantly associated with overall gut microbiome composition (Table 3.3; 

multivariate PERMANOVA model on Bray-Curtis distances). The PERMANOVA results were 

consistent with results from the Weighted UniFrac distance metric (Table S3.3). We then 

repeated the PERMANOVA analysis on Bray-Curtis distances within exclusively breastfed and 

not breastfed infants separately. These subgroup analyses also included additional variables. 

Accordingly, delivery mode (R2 = 3.5%, P = 0.01) and infant vitamin D supplement in the past 

24 hours (R2 = 3.4%, P = 0.02) were significantly associated with gut microbiota composition in 
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exclusively breastfed infants (Table S3.4). Among the not breastfed infants, only maternal 

education level (R2 = 4.1%, p-value = 0.02) was significantly associated with gut microbiota 

composition (Table S3.5). The PERMANOVA results of these two subgroup analyses were 

consistent with results from the Weighted UniFrac distance metrics (results not shown).  

                                                  

 

Figure 3.2. Infant alpha and beta diversity by infant breastfeeding and Vitamin D 
supplement. FDR adjusted p-value for alpha diversity was displayed in upper-left. (A) The 
Shannon diversity was used for alpha diversity. All the participants were included in the analysis 
(N=191). Group differences were tested by Kruskal-Wallis test. We then performed post hoc test 
for multiple comparisons. After FDR adjustment, no breastfeeding group has significant 
difference with exclusive breastfeeding (adjusted p-value <0.01). Partial breastfeeding group has 
no significant difference with exclusive breastfeeding group (p-value= 0.4, adjusted p-value=0.9) 
and no breastfeeding group (p-value= 0.03, adjusted p-value=0.09). (B) The Chao 1 index was 
used for alpha diversity. All the participants were included in the analysis (N=191). Post hoc test 
didn’t find any significant difference between groups. (C) The Shannon diversity was used for 
alpha diversity. Only breastfeeding participants were included in this subgroup (N=92). Group 
differences were tested by Wilcoxon rank test. (D) The Chao 1 index was used for alpha 
diversity. Only breastfeeding participants were included in this subgroup analysis (N=92). (E) 
Principal component analysis (PCoA) ordinations of variation based on the Bray–Curtis distance 
matrix for all infants. R2 and p-value were calculated by univariate PERMANOVA test. 
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Table 3.3. Results of Permutational Multivariate Analysis of Variance 
(PERMANOVA) for all infants 

Variable 

F 

value R2 

p-

value 

Breastfeeding during past week 4 4.10% 0.001* 

Gestational age 2.3 1.20% 0.03* 

Infant sex 1.1 0.50% 0.36 

Delivery mode (vaginal vs C-section) 3.6 1.80% 0.004* 

Baby weight at delivery 0.7 0.30% 0.72 

Infant probiotic supplement during past 

24 hours 1 0.50% 0.38 

Infant had any antibiotics since birth 0.9 1.00% 0.47 

Maternal educational level 2.7 1.30% 0.02* 

Maternal pre-pregnancy BMI 

(continuous) 0.37 0.20% 0.96 

           1Bray-Curtis distance was used for the PERMANOVA 
           * indicates the p-value <0.05 
 

We further assessed the association between breastfeeding status and relative abundance of 8 

dominant genera by univariate analysis (Figure S3.2). These 8 dominant genera were 

Bacteroides, Bifidobacterium, Veillonella, Escherichia-Shigella, Ruminococcus gnavus, 

Clostridium sensu stricto 1, Prevotella, and Lachnoclostridium. Exclusive breastfeeding was 

significantly associated with a higher relative abundance of Bifidobacterium (FDR adjusted p-

value= 5 × 10-5) and a lower relative abundance of Lachnoclostridium (FDR adjusted p-value 

=5.6 × 10-7). 
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MaAsLin results revealed that exclusive breastfeeding was significantly associated with the 

relative abundance of a set of genera, including Intestinibacter, Flavonifractor, 

Lachnoclostridium, Clostridium innocuum group, Lactobacillus, Bifidobacterium etc. (Table 

3.4). Infant age at sample collection and maternal pre-pregnancy BMI were associated with 

higher relative abundance of Lachnospira and Alistipes, respectively (Table 3.4). Among 

exclusively breastfed infants, infants who had taken a vitamin D supplement in the previous 24 

hours had a lower relative abundance of Haemophilus (Table 3.5). Among the not breastfed 

infants, having taken a probiotic supplement in the past 24 hours was associated with higher 

relative abundance of uncultured Lachnospiraceae and Faecalitalea (Table 3.5). Maternal pre-

pregnancy BMI was associated with a higher relative abundance of Alistipes (Table 3.5). 
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Table 3.4. MaAsLin Analysis Results: Associations of infant feeding practices and gut 
microbiome taxa at genus level adjusted by covariates in all infants1 

Taxonomy at 
genus level 

Meta data 
value Coefficient N/N not 

0 p-value q-value2 

Intestinibacter Exclusive 
breastfeeding -0.567 191/64 3.6 × 10-

10 
3.0 × 10-

7 

Flavonifractor Exclusive 
breastfeeding -0.896 191/145 4.0 × 10-

8 
1.7 × 10-

5 

Lachnoclostridium Exclusive 
breastfeeding -0.998 191/146 1.9 × 10-

7 
5.2 × 10-

5 

Clostridium 
innocuum group 

Exclusive 
breastfeeding -0.393 19144 4.9 × 10-

6 
6.8 × 10-

4 

Lactobacillus Exclusive 
breastfeeding 0.68 191/115 4.3 × 10-

6 
6.8 × 10-

4 

Lactococcus Exclusive 
breastfeeding -0.287 191/29 1.7 × 10-

5 
1.7 × 10-

3 

Bifidobacterium Exclusive 
breastfeeding 0.535 191/186 2.4 × 10-

4 0.018 

Eisenbergiella Exclusive 
breastfeeding -0.322 191/24 2.4 × 10-

4 0.018 

Colidextribacter Exclusive 
breastfeeding -0.398 191/40 3.2 × 10-

4 0.022 

Akkermansia Exclusive 
breastfeeding -0.55 191/124 1.3 × 10-

3 0.066 

Uncultured 
Lachnospiraceae 

Exclusive 
breastfeeding -0.188 191/20 1.4 × 10-

3 0.069 
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Table 3.4. (cont’d) 

Haemophilus Exclusive 
breastfeeding 0.463 191/141 1.7 × 10-

3 0.073 

Staphylococcus Exclusive 
breastfeeding 0.293 191/56 1.8× 10-

3 0.073 

Incertae_Sedis Exclusive 
breastfeeding -0.358 191/99 1.6 × 10-

3 0.073 

Flavonifractor Partial 
breastfeeding -0.909 191/145 7.2 × 10-

7 
1.5 
× 10-4 

Haemophilus Partial 
breastfeeding 0.74 191/141 1.3 × 10-

5 0.001 

Lachnoclostridium Partial 
breastfeeding -0.86 191/146 5.8 × 10-

5 0.005 

Lactococcus Partial 
breastfeeding -0.258 191/29 5.6 × 10-

4 0.031 

Alistipes 
Pre-
pregnancy 
BMI 

0.206 191/99 4.0 × 10-

4 0.025 

Lachnospira 
Age at 
sample 
collection 

0.171 191/84 5.7 × 10-

4 0.032 

1Model was adjusted for infant antibiotic use, sex, infant birth weight, delivery mode, age at 
fecal sample collection, infant probiotic supplement and pre-pregnancy BMI. Not breastfeeding 
is the reference for the breastfeeding status in the regression model. 
2q-value is the FDR (Benjamini-Hochberg) adjusted p-value. q-value < 0.1 for multiple 
comparisons was considered statistically significant and included in the table. 
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Table 3.5. MaAsLin Analysis Results: Associations of infant feeding practices and gut 
microbiome taxa at genus level within exclusively breastfed and no breastfed infants1 
Breastfeeding 

status 

Taxonomy at 

genus level Meta data value Coefficient 

N/N 

not 0 p-value q-value2 

Exclusively  

Haemophilus 

Vitamin D 

supplement (Yes) -0.683 88/74 6.7 × 10-5 0.058 

 

Faecalitalea 

Probiotic 

supplement (Yes) 1.718 60/9 2.9 × 10-9 2.4 × 10-6 

Not 

breastfeeding 

Uncultured 

Lachnospiraceae 

Probiotic 

supplement (Yes) 1.269 60/10 5.1 × 10-5 0.021 

 

Alistipes 

 Pre-pregnancy 

BMI 0.431 60/27 2.6 × 10-4 0.072 

1Both Models were adjusted for infant antibiotic use, sex, infant birth weight, delivery mode, age 
at fecal sample collection, infant probiotic supplement and pre-pregnancy BMI.  
2q-value is the FDR (Benjamini-Hochberg) adjusted p-value. q-value < 0.1 for multiple 
comparisons was considered statistically significant and results were included in the table. 
 
3.5 Discussion 

Our study was conducted in a population with somewhat higher than average rates of exclusive 

breastfeeding, with nearly half (46.1%) of the infants exclusively breastfed at the median age of 

3.8 months. This percentage is higher than found in the Infant Feeding Practices Study II in the 

US ( 34% at 3 months) in 2007 [40], while it is closed to the percentage in the CDC National 

Immunization Survey in 2018 (46.3% at 3 month)[41]. Although the American Academy of 

Pediatrics recommends vitamin D supplementation for all breast-fed babies[42], only 39.8% of 

the exclusively breastfed infants in our study followed this recommendation, a lower frequency 

than that has been found in Canadian and European cohorts in 2009 and 2014, 

respectively[43,44].  



41 
 

We found that higher maternal education level and lower pre-pregnancy BMI were 

independently and significantly associated with an increased odds of being exclusively breastfed, 

consistent with previous studies in developed and developing countries[40,45,46]. Breastfeeding 

initiation and duration are also negatively correlated with high pre-pregnancy BMI[47,48]. These 

associations may be attributed to the physiological factors such as delayed onset of lactogenesis 

II and imbalances of hormones[49]. Previous studies have showed that maternal obesity can 

cause the delayed onset of lactogenesis II (DOL), a hormonal process that is associated with 

mother's confidence that her milk is sufficient for her child[50,51]. As a result, it can lead to 

lower rates of breastfeeding initiation and early termination of exclusive breastfeeding. The 

associations between maternal BMI and lactation success have been recently reviewed[52,53]. 

Our study demonstrated the importance of both breastfeeding and infant vitamin D supplements 

in shaping infant gut microbiota composition. Breastfeeding is significantly associated with both 

alpha and beta diversity of infant gut microbiota. We observed that the Shannon diversity of 

partially breastfed infants was between that of exclusively breastfed infants and not breastfed 

infants, though somewhat closer to the exclusively breast fed, suggesting a dose-response 

relationship between breastfeeding and Shannon diversity of infant gut microbiota. These results 

agree with a previous study, which reported that the composition of gut microbiota from partially 

breastfed infants are similar to that from exclusively breastfed infants[13]. Among the subgroup 

analysis of exclusively breastfed infants, the alpha and beta diversity results demonstrated that 

vitamin D supplementation is associated with infant gut microbiota overall composition. These 

results are in good agreement with the study of Lei et al. who investigated the role of vitamin D 

supplement on gut microbiome from 31 exclusively breastfed infants at 4-months-old[54]. 

Animal studies demonstrate that vitamin D plays a critical role in maintaining the integrity of the 
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intestinal mucosal barrier by preserving the integrity of junctions that control mucosal 

permeability and reduction of pro-inflammatory cytokines such as IL-8[55–57]. In addition, 

studies also found that VDR-mediated signaling inhibits inflammation-induced apoptosis of 

intestinal epithelial cells[56,58]. As a result of these effects on the intestinal mucosa, vitamin D 

acts as an important factor influencing the gut microbiota.  

Besides the infant feeding practices, the results herein confirm that gestational age, delivery 

mode and maternal educational level are also significantly associated with gut microbiome 

composition. These results are consistent with many previous studies[10,13,59].  However, 

delivery mode is only associated with gut microbiota composition among the exclusively 

breastfed infants, while no significant association was found in the not breastfed infants. This 

might be attributed to the fact that c-section delivery can delay lactation initiation[60] and shape 

the bacterial composition of breast milk[61,62]. Maternal educational level is the only factor that 

significantly associated with infant gut microbiota composition among the not breastfed infants, 

whereas it was not significant among the exclusively breastfed infants. This finding suggests that 

not breastfed infants are more susceptible to socio-economic factors, such as educational level, 

which is normally be connected to offspring diet and nutritional status[63]. Hence, this 

association among the not breastfed infants might be mediated by the types of solid food 

introduction and quality of formula purchased. However, our data set did not allow us to test 

these associations. 

Our study confirmed that Bifidobacterium was enriched in breastfed infants when compared with 

non-breastfed infants. Lower abundance of Bifidobacterium in infants due to early cessation of 

breastfeeding could potentially inhibit the interaction of bifidobacterial-mediated metabolites 

with the immune system, leading to higher levels of inflammation[64,65]. In contrast, the genus 
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Lachnoclostridium (Lachnospiraceae family) was found to be enriched in the non-breastfed 

infants when compared with exclusively breastfed or partially breastfed infants. In addition, the 

genera Eisenbergiella and Lachnospiraceae_uncultured, which also belong to Lachnospiraceae 

family were found to be enriched in the non-breastfed infants by MaAslin. These observations 

agree with previous studies that lower abundance of Lachnospiraceae is associated with 

breastfeeding at 3 months of age[66]. The evidence from many studies showed that 

Lachnospiraceae family or specific genera of Lachnospiraceae may be associated with several 

inflammatory conditions, such as metabolic syndrome, obesity, diabetes, and liver diseases[67–

70].  

Notably, the genus Haemophilus was enriched in the breastfed infants. However, exclusively 

breastfed infants who had taken a vitamin D supplement in the past 24 hours had a lower relative 

abundance of Haemophilus compared to those exclusively breastfed infants who were not 

supplemented. Consistent with our study, Fehr et al. showed that breastmilk may specifically 

provide Haemophilus to the infant gut[13]. Luthold et al also demonstrated that Haemophilus 

was less abundant in the group of highest vitamin D intake[71], supporting the hypothesis that a 

reduced immune response in vitamin D deficiency could augment the competitive advantage of 

Haemophilus and influence the composition of the infant gut microbiome[72]. 

Our study did not detect any effect of feeding with expressed milk, infant antibiotic intake, and 

water type for formula on gut microbiome. However, sample sizes were small for many of these 

comparisons. Therefore, pooling data from multiple cohort studies or analysis in larger cohorts 

with similar data are necessary to confirm this lack of association. For instance, previous studies 

demonstrated that infants who had been exposed to antibiotics had decreased abundance of 

Bifidobacteria and Bacteroides in the infant gut microbiome[73]. In our study, we asked the 
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mothers if the infant had taken any antibiotics since birth, whereas the timing of antibiotics 

administration was unknown. Hence, it's possible that infant gut microbiome had recovered from 

the dysbiosis states caused by antibiotics at the time of stool sample collection. The inconsistent 

results may also be attributed to variations in the antibiotic type, dosage, duration[74].   

An important limitation of this study is that only a single stool sample was available for analysis. 

Although the infant feeding practice information was collected at the same time as the stool 

sample collection and can demonstrate the impact of short-term exposures on the infant gut 

microbiota composition, we are unable to determine how these factors contribute to the temporal 

development of the infant gut microbiome. Also, we did not collect more detailed information, 

such as dose of vitamin D, maternal vitamin D status, timing of antibiotic administration. Future 

studies would benefit from a longitudinal stool sample collection during infancy and a more 

detailed infant feeding practices questionnaire that not only collects proximal but also long-term 

data about infant nutritional exposures.  
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Figure S3.1. Infant alpha diversity by infant different feeding practices. FDR adjusted p-
value for alpha diversity was displayed in upper-left. (A) The Shannon diversity was used for 
alpha diversity. Only exclusively breastfed infants were included in this subgroup analysis 
(N=92). Group differences were tested by Wilcoxon rank test. (B) The Chao 1 index was used 
for alpha diversity. Only exclusively breastfed infants were included in this subgroup analysis 
(N=92). (C) The Shannon diversity was used for alpha diversity. Only no breastfed infants were 
included in this subgroup (N=60). Group differences were tested by Kruskal-Wallis test. We then 
performed post hoc test for multiple comparisons and no significant associations was found. (D) 
The Chao 1 index was used for alpha diversity. Only no breastfed infants were included in this 
subgroup (N=60). Group differences were tested by Kruskal-Wallis test. We then performed post 
hoc test for multiple comparisons and no significant associations was found (N=92). (E) The 
Shannon diversity was used for alpha diversity. Only no breastfed infants were included in this 
subgroup (N=60). Group differences were tested by Kruskal-Wallis test. We then performed post 
hoc test for multiple comparisons and no significant associations was found. (F) The Chao 1 
index was used for alpha diversity. Only no breastfed infants were included in this subgroup 
(N=60). Group differences were tested by Kruskal-Wallis test. We then performed post hoc test 
for multiple comparisons and no significant associations was found (N=60). 
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 Table S3.1. Association between Shannon/Chao1 index and breastfeeding status 
in all infants1 

  Shannon index Chao 1 index 
  Beta (95% CI) p-value Beta (95% CI) p-

value 
Breastfeeding status 

    

Exclusive 
breastfeeding 

ref - ref - 

    Partial breastfeeding 0.04 (-0.12, 0.20) 0.65 -0.32(-12.6, 6.3) 0.52 
    No breastfeeding 0.18 (0.01, 0.34) 0.03 0.02 (-9.6, 9.68) 0.98 

1A multivariate linear regression regression analysis was performed to assess the 
association. Covariates in the         models include maternal age, maternal education level, 
pre-pregnancy BMI, delivery mode, and infant age. 

 

 
 Table S3.2. Association between Shannon/Chao1 index and infant vitamin D 
supplement intake1 

  Shannon index Chao 1 index 
  Beta (95% CI) p-value Beta (95% CI) p-

value 
Vitamin D supplement for 
infant 

    

    No ref - ref - 
    Yes -0.27 (-0.48, -

0.08) 
0.006 -10.8 (-22.08, 0.54) 0.06 

1A multivariate linear regression regression analysis was performed to assess the 
association. Covariates in the models include maternal age, maternal education level, pre-
pregnancy BMI, delivery mode, and infant age. 
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Figure S3.2. Association between breastfeeding status and relative abundance of 8 
dominant genera. Group differences were tested by Kruskal-Wallis test. Wilcoxon rank test was 
used for post hoc test. P-value was adjusted by Bonferroni correction.  
* indicates the adjusted p-value <0.05 
NS indicates the adjusted p-value ≥ 0.05 
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Table S3.3. Results of Permutational Multivariate Analysis of Variance (PERMANOVA) 
on weighted UniFrac distances 

Variable 
F 
value R2 

p-
value 

Breastfeeding during past week 4.8 4.70% 0.001* 
Gestational age 4.1 2.10% 0.007* 
Infant sex 1.7 0.80% 0.14 
Delivery mode (virginal vs C-section) 6.0 3.00% 0.001* 
Baby weight at delivery 0.4 0.20% 0.85 
Infant probiotic supplement during past 
24 hours 0.7 0.40% 0.57 
Infant had any antibiotics since birth 0.9 0.90% 0.50 
Maternal educational level 2.3 1.10% 0.06 
Maternal pre-pregnancy BMI 
(continuous) 0.3 0.10% 0.95 

* indicates the p-value <0.05 
 
 
 
Table S3.4. Results of Permutational Multivariate Analysis of Variance (PERMANOVA) 
for exclusively breastfed infants on Bray-Curtis distances 

Variable 
F 
value R2 

p-
value 

Gestational age 1.1 1.20% 0.31 
Infant sex 0.9 1.00% 0.46 
Delivery mode (virginal vs C-section) 3.0 3.50% 0.01* 
Baby weight at delivery 0.3 0.40% 0.92 
Infant probiotic supplement during past 
24 hours 1.0 1.10% 0.41 
Infant had any antibiotics since birth 0.8 0.90% 0.54 
Maternal educational level 0.7 0.80% 0.67 
Maternal pre-pregnancy BMI 
(continuous) 0.3 0.30% 0.95 
Infant vitamin D supplement in the past 
24 hours 2.9 3.40% 0.02* 

Feeding with expressed breast milk 0.3 0.30% 0.95 
* indicates the p-value <0.05 
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Table S3.5. Results of Permutational Multivariate Analysis of Variance (PERMANOVA)1 
for not breastfed infants on Bray-Curtis distances 

Variable 
F 
value R2 

p-
value 

Gestational age 1.1 2.00% 0.31 
Infant sex 1.2 2.10% 0.29 
Delivery mode (virginal vs C-section) 1.3 2.30% 0.21 
Baby weight at delivery 0.4 0.70% 0.94 
Infant probiotic supplement during past 
24 hours 0.7 1.20% 0.68 
Infant had any antibiotics since birth 0.4 0.70% 0.95 
Maternal educational level 2.4 4.10% 0.02* 

Maternal pre-pregnancy BMI 
(continuous) 0.6 1.10% 0.75 
Water type for formula 1.1 7.40% 0.39 

Introduction of complementary food 0.8 1.40% 0.66 
* indicates the p-value <0.05 
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CHAPTER 4. ASSOCIATION OF THE INFANT GUT MICROBIOME WITH 
TEMPERAMENT  

4.1 Abstract 

Recent studies in both animals and humans have shown that gut microbiota is linked to brain 

development and control of behavior, but the association between gut microbiota and behavior in 

healthy infants is largely unknown. We undertook this prospective study to determine 

associations between gut microbiota at 3 months during infancy and infant temperament in a 

populational-based birth cohort. We analyzed data from 157 infants from the Michigan Archive 

for Research on Child Health Cohort Study. Infant temperament outcomes were reported by 

mothers using the Rothbart Infant Behavior Questionnaire-Revised Very Short Form at a mean 

age of 9.1 months. Microbiota profiling with 16S rRNA gene sequencing was conducted on fecal 

samples obtained at approximately 3 months of age. We identified three clusters of infants based 

on the relative abundance of gut microbiota: cluster A was characterized by a higher abundance 

of Bacteroides; cluster C was characterized by a higher abundance of Bifidobacterium, 

Veillonella, and Escherichia-Shigella; cluster B is intermediate between the other two clusters. 

Fully adjusted multivariate linear regression analysis showed a negative association between 

cluster C and negative emotionality score (coefficient = -0.58, p-value= 0.02) compared to 

cluster A, prominently among infants who were not given vitamin D supplement. However, no 

associations were evident between gut microbiota clusters and temperament scales after FDR 

correction. MaAslin analysis identified that individual microbial taxa were associated with three 

scales of temperament. This study found an association between infant gut microbiota 

composition and temperament by connecting temperament to microbiota clusters and individual 

taxa. 
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4.2 Introduction 

The human gastrointestinal tract is the habitat of trillions of microorganisms that are closely 

associated with many aspects of human health, including physiological functions, metabolism, 

and immune functions[1–3]. A critical time for the microorganism, typically referred to as the 

microbiota, is during the first year of life since the gastrointestinal tract moves from a sterile to a 

bacteria rich environment[4]. The gut microbiota does not only aid human health physically but 

also plays a critical role in neurodevelopment through the interaction between microbiota and the 

brain, also known as the gut-brain axis[5,6]. The gut-brain axis hypothesizes that the brain and 

the microbiota communicate with each other through various chemical processes, which impact 

psychological and mental health[7]. 

The bidirectional relationship between the brain and the microbiota, or gut-brain axis, has been 

established using animal models. Previous studies have demonstrated that altered gut microbiota 

can lead to higher stress responsiveness[8], anxiety-like behaviors, abnormal social behaviors[9], 

and autism spectrum disorder behaviors[10]. Several studies have shown that germ-free (GF) 

mice who have no commensal microbiota and an undeveloped immune system[11,12] displayed 

increased motor activity and reduced anxiety compared with specific pathogen-free (SPF) mice 

with normal gut microbiota[13]. The abnormalities could be partially reversed when the 

gastrointestinal tracts of the germ-free mice were reconstituted with stool from normally raised 

mice[14]. Besides the behavioral differences, the brains of GF mice displayed various molecular 

differences, including brain-region-specific changes in levels of brain-derived neurotrophic 

factor, oxytocin, and vasopressin expression[15].  

There is mounting evidence that gut microbiota plays a critical role in brain development and the 

control of behavior in humans[16,17]. Cross-sectional studies have discovered an association 
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between gut microbiome composition and neuropsychiatric outcomes, including autism spectrum 

disorder (ASD) and depression[18–20]. The disturbance of the gut microbiota in early life can 

lead to adverse mental health outcomes later in life[21]. Previous studies reported that children 

with ASD had lower abundances of Coprococcus, Prevotella, and unclassified Veillonellaceae 

compared to neurotypical children[22]. A recent study also reported a significant increase in the 

Firmicutes/Bacteroidetes ratio in children with ASD[23]. However, there are also some studies 

that  observed no difference regarding severity ASD in the bacterial composition among 

children[24,25]. In terms of infant physical development, Sordillo et al. reported that infant gut 

microbiome composition at 3–6 months was associated with fine motor skills assessed by the 

Ages and Stages Questionnaire[26]. In a longitudinal study of 201 children, Loughman et al. 

found that the decreased abundance of the genus Prevotella in fecal samples collected at 12 

months of age was associated with increased behavioral problems at age 2[27]. These studies 

suggest that the effects of the microbiome in early infancy play a more permanent role over the 

course of human life, whether it is in brain development or future behavioral outcomes. 

The microbiome plays an essential role in behavior which determines temperament, a 

constitutionally based individual difference in emotion, motor behavior, attention, and self-

regulation[28,29]. Longitudinal studies have reported that temperament characteristics in early 

life are associated with psychiatric problems, including anxiety, depression, ADHD, and autism 

in mid‐childhood[30–32]. Despite the importance of temperament characteristics, few 

prospective studies have examined the associations between gut microbiome composition and 

temperament in infancy. In this study, we aimed to investigate the association between the fecal 

microbiota composition at 3 months of age and infant temperament at 9 months of age. 
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4.3 Materials and Methods 

4.3.1 Study participants 

The study population was drawn from the Michigan Archive for Research on Child Health 

(MARCH) cohort[33], an ongoing pregnancy and birth cohort set in Michigan’s lower peninsula. 

The purpose of the MARCH study is to store biological specimens, and other health information 

that can be used to better understand the causes of problems in pregnancy and the health of 

children and to contribute to a nation-wide study of child health called the Environmental 

Influences on Child Health Outcomes (ECHO)[34]. Our analysis included mothers who provided 

informed consent for providing infant stool samples. During the MARCH 3 month phone 

interview, mothers confirmed their interest in participating in this sample collection. Fecal 

collection kits were sent by mail. 157 samples collected from singleton infants were included in 

the analysis.  

4.3.2 Data collection 

At approximately nine months of age, the Rothbart Infant Behavior Questionnaire-Revised Very 

Short Form (IBQ-RVSF) was administered to mothers by phone interview to assess the infant 

temperament[35]. The Infant Behavior Questionnaire is a widely used parent-report measure of 

infant temperament, first introduced by Rothbart in 1981[36,37]. IBQ-RVSF consists of 37 items 

measuring three dimensions of infant temperament, including positive affect/surgency (PAS, 13 

items), negative emotionality (NEG, 12 items), and orienting/regulatory capacity (ORC, 12 

items)[35]. Each item asked caregivers to report how often their babies engaged in a particular 

behavior during the last seven days. The items were rated on a scale ranging from 1 (never) to 7 

(always). Higher scores of each scale indicate more of the measured temperament characteristic. 

PAS is characterized by positive loadings on approach, vocal reactivity, high intensity pleasure, 
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smiling and laughter, activity level, and perceptual sensitivity. NEG is analogous to the 

personality trait of neuroticism, and is characterized by positive loadings on sadness, distress to 

limitations, and fear, as well as negative loadings on falling reactivity. ORC is characterized by 

duration of orienting, low intensity pleasure, cuddliness, and soothability. Previous studies have 

demonstrated IBQR–VSF has adequate internal consistency, test-retest reliability, and interrater 

agreement between mothers and fathers[35]. Besides the IBQ-RVSF, multiple questionnaires 

were administered to mothers from the first prenatal visit through 9 months postpartum to collect 

a variety of socioeconomic and feeding practices factors. Detailed information on the neonate, 

including sex, birth weight, and gestational age, was abstracted from the birth certificate. 

4.3.3 Fecal microbiota analysis 

The fecal samples were aliquoted into sterile tubes and stored at -80°C, once received in the lab. 

DNA was extracted following a modified version of the Human Microbiome Project’s protocol 

as described previously[38]. Barcoded primers were used to amplify the V4 region of the 16S 

rRNA gene region. The resulting 16S rRNA libraries were sequenced using 250 base pair 

Illumina MiSeq with V2 chemistry at the MSU genomics core. After trimming, clean sequences 

were analyzed using the QIIME2 (2021.2 version) pipeline[39]. QIIME2's DADA2 plugin was 

used to process the demultiplexed sequences and generate the amplicon sequence variants (ASV) 

table[40].  ASVs were assigned to taxonomy by the QIIME2 feature-classifier plugin, using the 

Silva 132 database at the similarity threshold of 99% (for 16S data)[41,42]. Samples were 

rarefied to 6,000 sequencing reads per sample, and taxa present in less than one sample were 

excluded, leaving 157 stool samples with 6,905 unique ASVs. ASVs were summarized at the 

genus taxonomic level.  

4.3.4 Statistical analysis 
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All the analyses were performed using R software (version 4.0). The Shannon index, which 

represents microbial richness and evenness, and the Chao 1 index, which represents microbial 

richness, were calculated using the "vegan" package[43]. Associations between Shannon index 

or Chao1 index to temperament scales were assessed by multivariate linear regression models, 

adjusted by delivery mode (vaginal vs C-section), race, maternal education, maternal pre-

pregnancy BMI, breastfeeding status, infant sex, and infant age at IBQ-RVSF collection. 

Dirichlet multinomial mixture (DMM) clustering is an unsupervised Bayesian clustering method 

to identify clusters or enterotypes of microbial community data[44,45], as performed 

previously[46,47]. The best fitting DMM model was determined using the Laplace 

approximation. The difference of alpha diversity and relative abundance of taxa between DMM 

clusters were tested by Kruskal–Wallis test with Dunn test for post hoc. Multiple comparisons 

were adjusted for false discovery rate (FDR) correction using the Benjamini-Hochberg 

procedure. We performed Principal Coordinates Analysis (PCOA) and Permutational 

Multivariate Analysis of Variance (PERMANOVA) based on Bray–Curtis dissimilarity using the 

"vegan" package to compare the difference in microbial community structure between DMM 

clusters. We used multivariate linear regression models to determine the association between 

DMM clusters and infant temperament scales, adjusting by race, maternal education level, pre-

pregnancy weight, delivery mode (vaginal vs C-section), infant sex, infant age at IBQ-RVSF 

collection, breastfeeding status, and infant vitamin D supplement.  

Previous studies discovered that vitamin D and infant sex play roles as effect modifiers in the 

association between gut microbiota and neurodevelopment[48,49]. So, we conducted the 

sensitivity analyses to confirm the potential for infant vitamin D and sex to modify gut 

microbiome associations with temperament scales by stratification. we utilized MaAsLin, a 
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multivariate statistical framework that identifies associations between clinical metadata and 

individual microbiome abundance[50,51]. MaAslin provides both nominal p-values and FDR 

adjusted p-values (q-values) by Benjamini–Hochberg procedure. Associations were considered 

significant if the q-value was below the threshold of 0.2 in MaAslin results. 

4.4 Results 

4.4.1 Study Population Characteristics and temperament scales 

157 participants were included in the final analysis (male= 52.2%, female= 47.8%). Descriptive 

statistics for maternal factors, infant factors by the three scales of infant temperament were 

displayed in Table 4.1. More than half of the mothers (58.6%) earned a college graduate degree, 

and 66.2% had a vaginal delivery. 57.3% of the mothers fed their children with exclusive breast 

milk at the time of fecal sample collection, and 92.4% of them had ever fed their children with 

breast milk. The mean (SD) age at temperament measurement was 9.1 (0.7) months, and the 

median was 9.0 (range: 8.0-13.0) months. Race is significantly associated with all three scales. 

Infants of white race were reported to have significantly lowest scores of all three scales, while 

infants of black race were reported to have significantly highest scores of NEG and ORC. Male 

has significantly higher PAS score than female (p-value <0.001). Higher maternal age is 

significantly associated with lower PAS score (coefficient = -0.03, p-value= 0.006) and lower 

NEG score (coefficient = -0.04, p-value= 0.009).  
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Table 4.1. Characteristics of mothers and infants by infant temperament scales 

Scale 
  

Positive 
affect/surgency 

Negative 
emotionality 

Orienting/regulatory 
capacity 

Variable 
n (%) 

or mean 
(SD) 

Mean 
(SD) 
or β 

(95% 
CI) 

p-
value 

Mean 
(SD) 
or β 

(95% 
CI) 

p-value 

Mean 
(SD) 
or β 

(95% 
CI) 

p-value 

Categorical 
variable1       

        

Delivery 
mode, n 
(%) 

      
        

        
Vaginal 
delivery 

104 
(66.2%) 

5.53 
(0.65) 0.71 4.05 

(0.96) 0.31 5.34 
(0.68) 0.24 

        C-
section 

53 
(33.8%) 

5.58 
(0.70)   4.22 

(0.99)   
5.48 

(0.70)   

Maternal 
education 
level, n (%) 

      

        

         Did 
not finish 
high school 

4 
(2.6%) 

5.92 
(0.98) 0.18 4.92 

(1.05) 0.22 4.85 
(1.10) 0.004* 

         High 
school 
graduate or 
GED 

22 
(14.0%) 

5.75 
(0.69)   4.30 

(1.0) 

  

5.81 
(0.53) 

  

         Some 
college 

39 
(24.8%) 

5.59 
(0.67)   4.14 

(0.95) 
  

5.46 
(0.70) 
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Table 4.1. (cont’d) 

         College 
graduate or 
more 

92 
(58.6%) 

5.46 
(0.64)   4.02 

(0.96) 
  

5.28 
(0.67) 

  

Race, n (%)       
        

         White 126 
(80.3%) 

5.46 
(0.63) <0.001* 4.02 

(0.94) 0.03* 5.29 
(0.69) 0.002* 

         Black 20 
(12.7%) 

5.82 
(0.73)   4.53 

(0.88)   
5.85 

(0.58)   

         Other 11 
(7.0%) 

6.04 
(0.70)   4.42 

(1.25)   
5.66 

(0.56)   

Breastfeeding 
status at fecal 
sample 
collection, n 
(%) 

      

        

          
Exclusive 
breastfeeding 

90 
(57.3%) 

5.51 
(0.67) 0.37 4.17 

(0.95) 0.68 5.29 
(0.70) 0.1 

          Partial 
breastfeeding 

41 
(26.1%) 

5.72 
(0.63)   4.03 

(0.96) 
  

5.60 
(0.75) 

  

          Not 
breastfeeding 

26 
(16.6) 

5.53 
(0.68)   4.03 

(1.04) 
  

5.46 
(0.62) 

  
Ever 
breastfeeding, 
n (%) 

      
        

Yes 145 
(92.4%) 

5.53 
(0.66) 0.32 4.09 

(0.97) 0.38 5.38 
(0.71) 0.73 

No 12 
(7.6%) 

5.73 
(0.70)   4.34 

(1.02)   
5.46 

(0.51)   
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Table 4.1. (cont’d) 

Baby sex, n 
(%)       

        

         Male 82 
(52.2%) 

5.72 
(0.64) <0.001* 4.14 

(0.96) 0.69 5.40 
(0.73) 0.77 

         Female 57 
(47.8%) 

5.36 
(0.65)   4.08 

(0.98)   
5.37 

(0.65)   

Continuous 
variable2       

        

Maternal age 
(year), mean 
(SD) 

31.5 
(5.0) 

-0.03 
(-0.05, 

-
0.008) 

0.006* 

-0.04 
(-

0.07, -
0.01) 

0.009* 
-0.006 
(-0.03, 
0.02) 

0.61 

Pre-
pregnancy 
BMI, mean 
(SD) 

27.8 
(7.2) 

0.01 (-
0.005, 
0.02) 

0.18 

0.001 
(-

0.02, 
0.02) 

0.96 
0.01 (-
0.002, 
0.03) 

0.09 

Gestational 
age at 
delivery 
(week), 
mean (SD) 

38.8 
(1.5) 

0.03 (-
0.04, 
0.10) 

0.38 

0.02 
(-

0.08, 
0.13) 

0.67 
-0.05 

(-0.13, 
0.02) 

0.14 

Infant age at 
IBQ 
measurement 
(month), 
mean (SD) 

9 (0.7) 

0.004 
(-

0.001, 
0.008) 

0.14 

0.04 
(-

0.003, 
0.01) 

0.32 

0.002 
(-

0.004, 
0.007) 

0.55 

1Summary of categorical variables were displayed as n (%). The difference in temperament 
scores between categorical variables was analyzed by One-Way Analysis of Variance 
(ANOVA).  
2Summary of continuous variables were displayed as mean (SD). The association between 
continuous variables and temperament scales was analyzed by linear regression. 
*p-value < 0.05 
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4.4.2 Alpha diversity and temperament scores 

Table 4.2 presents the association between alpha diversity of fecal samples and infant 

temperament scales. Higher Shannon index is associated with higher positive affect/surgency 

scores (coefficient=0.16, p-value= 0.12) and lower negative emotionality score (coefficient= -

0.16, p-value= 0.27), but the associations were not statistically significant. We also did not 

observe any significant associations between Chao 1 index and temperament scales (Table 4.2).  

 

Table 4.2. Association between alpha diversity and infant temperament1 

  Shannon Chao 1 

Scale Beta p-value Beta  p-value 

Positive affect/surgency 0.13 0.18 0.001 0.44 

Negative emotionality -0.20 0.20 -0.004 0.08 

Orienting/regulatory capacity 0.003 0.98 -0.001 0.66 

1Linear regression Models were adjusted for delivery mode, race, maternal education, maternal 
pre-pregnancy BMI, breastfeeding status, infant sex, and infant age at IBQ-RVSF collection. 
 

4.4.3 Cluster analysis 

We employed Dirichlet multinomial mixture (DMM) modeling to assign microbiota composition 

into clusters. Using the minimum Laplace approximation, we identified three optimal clusters, 

which we also referred to as enterotypes (Figure 4.1A). Cluster A, B, and C accounted for 25%, 

56%, and 19% of the total samples, respectively. A significantly lower Shannon index and Chao 

1 index were observed in cluster B, compared to cluster A and C (Figure 4.1B-4.1C). In addition, 

the gut microbiota communities were well-separated by the three clusters in principal coordinate 

analysis (PCoA) based on the Bray–Curtis distance matrix (univariate PERMANOVA: R2= 

11.9%, p-value =0.001, Figure 4.1D). Thus, these results revealed broad community differences 
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across the three clusters. Figure 4.1E displayed the heatmap, which shows the relative abundance 

of the top ten genera within each cluster. Samples in each cluster were ordered by the relative 

abundance of Bacteroides. Bacteroides, Bifidobacterium, Veillonella, and Escherichia-Shigella 

were the top 4 genera that drove the clustering (Figure 4.2). Samples in cluster A exhibited a 

higher relative abundance of Bacteroides than the cluster C (adjusted p-value = 1.7 × 10-10), but 

similar abundance of Bacteroides to cluster B (adjusted p-value= 0.33). Cluster C was 

characterized by the highest relative abundance of Bifidobacterium, Veillonella, and Escherichia-

Shigella, compared to the cluster A and B. 

To investigate the potential association between clusters and infant temperament, we applied 

linear regression models, adjusted by covariates including delivery mode (vaginal vs C-section), 

race, maternal education, maternal pre-pregnancy BMI, breastfeeding status, infant vitamin D 

intake, infant sex, and infant age at IBQ-RVSF collection (Table 4.3). The results of univariate 

models demonstrated that cluster C is significantly associated with lower PAS score (coefficient 

= -0.43, p-value=0.009), and lower NEG score (coefficient = -0.54, p-value= 0.02), comparing to 

the cluster A. In multivariate linear regression models, cluster C is significantly associated with a 

lower NEG score (coefficient = -0.58, p-value=0.02), comparing to cluster A. However, after 

FDR correction, none of these clusters remained significantly associated with the temperament 

scales. 

In the sensitivity analysis, among the infants who had not taken any vitamin D supplements, 

infants of cluster C showed a significantly lower NEG scores than cluster A (coefficient = -1.01, 

p-value = 0.01) before FDR correction (Table S4.1). While in the vitamin D group, cluster C was 

no longer significant with NEG score, and displayed less pronounced coefficient (coefficient = -

0.43, p-value = 0.20), which suggested the associations were potentially attenuated by the 



71 
 

vitamin D intake. We did not find any significant association between gut microbiota clusters 

and temperament scales when stratifying by infant sex (Table S4.2). 

4.4.4 Individual taxa analysis 

We next sought to assess the association between individual taxa at the genus level and infant 

temperament scales using MaAslin (Table 4.4). Infants with higher positive affect/surgency 

scores had significantly higher relative abundance of a set of Firmicutes, including genera 

Oscillospiraceae UCG-003, Oscillospiraceae UCG-002, Christensenellaceae R-7 group. Infants 

with higher negative emotionality score had significantly lower relative abundance of 

Lachnospiraceae FCS020 group (MaAslin coefficient = -0.07, q-value= 0.012), and higher 

relative abundance of Eggerthella (MaAslin coefficient = 0.10, q-value= 0.13). Infants with 

higher orienting/regulatory capacity scores had a significantly lower relative abundance of 

Clostridioides (MaAslin coefficient = -0.14, q-value= 0.19).  
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Figure 4.1. Dirichlet multinomial mixture clustering identified three optimal clusters from 
157 fecal samples. (a) The number of clusters (k=3) was chosen by selecting the minimal 
Laplace approximation to the negative log model evidence. (b-c) Boxplot of the alpha diversity 
(Shannon and Chao 1) distributed between the 3 clusters. Group differences were tested by 
Wilcoxon signed-rank test, and p-values were adjusted for multiple testing using Bonferroni. 
Adjusted p-value <0.05 was labeled as *, and adjusted p-value ≥ 0.05 was labeled as NS. (d) 
Principal component analysis (PCoA) ordinations of variation based on the Bray–Curtis distance 
matrix. R2 and p-value were calculated by the univariate PERMANOVA test. (e) Heatmap of 
relative abundance of top 10 genera by the three clusters. Within the clusters, samples were 
ordered by the relative abundance of the genus Bacteroides.  
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Figure 4.2. Relative abundance of the top 4 genera that contribute by clusters. Group 
differences were tested by Wilcoxon signed-rank test. P-values were adjusted for multiple testing 
using Bonferroni. Adjusted p-value <0.05 was labeled as *, and adjusted p-value ≥ 0.05 was 
labeled as NS. 
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Table 4.3. Association between gut microbiota clusters and infant temperament scales1 

 Scale Cluster 

Univariate model Multivariate model 

Beta 

p-

value 

q-

value Beta  

p-

value 

q-

value2 

Positive 

affect/surgency 

Cluster A ref -  - ref -  - 

Cluster B 

-0.20 (-0.46, 

0.05) 0.12 0.18 

-0.12 (-0.38, 

0.13) 0.34 0.51 

Cluster C 

-0.43 (-0.74, -

0.11) 0.009* 0.05 

-0.29 (-0.61, 

0.02) 0.07 0.21 

Negative 

emotionality 

Cluster A Ref -  - ref -  - 

Cluster B 

-0.04 (-0.41, 

0.33) 0.84 0.84 

-0.04 (-0.43, 

0.34) 0.82 0.82 

Cluster C 

-0.54 (-1.00, -

0.08)   0.02* 0.06 

-0.58 (-1.05, -

0.10) 

   

0.02* 0.12 

Orienting/regulatory 

capacity 

Cluster A ref -   ref -  - 

Cluster B 

-0.09 (-0.36, 

0.18) 0.53 0.64 

-0.06 (-0.33, 

0.22) 0.69 0.82 

Cluster C 

-0.30 (-0.63, 

0.04) 0.08 0.16 

-0.21 (-0.56, 

0.13) 0.22 0.44 

1Models were adjusted for delivery mode, race, maternal education, maternal pre-pregnancy 
BMI, breastfeeding status, infant vitamin D intake, infant sex, and infant age at IBQ-RVSF 
collection. 
2P-values were adjusted by false discovery rate (FDR) correction for multiple comparisons using 
the Benjamini-Hochberg procedure. 
*p-value < 0.05 
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Table 4.4. MaAsLin Analysis Results: Associations of gut microbiome taxa at genus level 
and infant temperament scales adjusted by covariates1 

Scale Phylum Family Genus 
Coeffici

ent 

N/ N 

not 0 

p-

value 

q-

valu

e2 

Negative 

emotionality 

Firmicutes Lachnospiraceae 
Lachnospiraceae_FCS0

20_group 
-0.07 

157/

16 

0.000

03 

0.01

3 

Actinobacte

riota 
Eggerthellaceae Eggerthella 0.10 

157/

44 
0.002 

0.13

1 

Positive 

affect/surgency 

Firmicutes 
Christensenellac

eae 

Christensenellaceae R-

7 group 
0.16 

157/

57 
0.001 

0.11

2 

Firmicutes Oscillospiraceae UCG-003 0.12 
157/

44 
0.001 

0.11

3 

Firmicutes Oscillospiraceae UCG-002 0.14 
157/

73 
0.003 0.15 

Orienting/regul

atory capacity 
Firmicutes 

Peptostreptococ

caceae 
Clostridioides -0.14 

157/

79 
0.009 0.20 

1Model was adjusted for delivery mode, race, maternal education, maternal pre-pregnancy BMI, 
breastfeeding status, infant vitamin D intake, infant sex, and infant age at IBQ-RVSF collection. 
2Q-value is the FDR (Benjamini-Hochberg) adjusted p-value. Q-value < 0.2 for multiple 
comparisons was considered statistically significant and included in the table. 
 

4.5 Discussion 

Accumulating evidence from animal and human studies report that the gut microbiota plays a 

role in neurodevelopment during the early critical time window. In the current study, we focus 

on the three subscales of the infant temperament: positive affect/surgency, negative emotionality, 
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and orienting/regulatory capacity. Our results show an association between infant gut microbiota 

composition and temperament by connecting temperament to both DMM clusters and individual 

taxa.  

4.5.1 Alpha diversity and temperament scales 

No significant associations were found between alpha diversity and temperament scales. This 

finding is consistent with some results of studies from longitudinal and cross-section studies. Fox 

et al. investigated the relationship between gut microbiota at each age group (1–3 weeks, 2, 6, 

and 12 months) and IBQ scores at 12-months of age[52]. No temperament scales at age 12 

months demonstrated a significant association with the alpha diversity measures at each age. 

Similarly, Kelsey et al. demonstrated that neither alpha diversity nor richness was associated 

with any of the temperament scales in a cross-sectional study[53]. 

4.5.2 Cluster analysis 

We identified three clusters based on the DMM method. Cluster A was characterized by a higher 

abundance of Bacteroides; cluster C is characterized by a higher abundance of Bifidobacterium, 

Veillonella, and Escherichia-Shigella; while cluster B is intermediate between the other two 

clusters. Our result shows that cluster C had a significant inverse association with negative 

emotionality. Negative emotionality, which is defined by the disposition to experience negative 

emotions such as anger and fear[54], has often been linked with internalizing and externalizing 

problems[55,56]. Previous work by Aatsinki et al. also showed the same trend toward the 

relationship between Bifidobacterium-dominated/ Bacteroides-dominated cluster and negative 

emotionality, though it was not statistically significant[57]. In addition, two studies of early 

infants discovered the association between Bacteroides-dominant community and poor fine 
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motor skills, which also supports the adverse effect of Bacteroides-dominated microbiome 

composition on infant neurodevelopment[47,58].  

In the sensitivity analysis, we discovered the potential role of infant vitamin D intake in 

modifying the association between clusters and negative emotionality. The association was only 

identified among the infants who were not recipients of vitamin D supplements, suggesting 

infant vitamin D intake potentially protects against the adverse effect of the gut microbiome–

associated increments on infant negative emotionality. Similarly, a prior study reported that in 

participants who received prenatal vitamin D treatment, the Veillonella-dominated gut 

microbiota community was associated with improved communication scores in infants, whereas 

no association between the Veillonella-dominated community and communication scores was 

observed in the control group[58]. A possible explanation is that,  vitamin D and vitamin D 

receptor (VDR) levels modify gut microbiota in neurodevelopment through the gut–microbiota–

brain axis, such as cytokines, neurotransmitters, and SCFAs[59].  

4.5.3 Individual taxa 

Our results showed that several taxa were significantly associated with infant temperament 

outcomes, suggesting a mechanism of influence on infant temperament involving specific taxa of 

the gut microbiome. Of note, our results agree with the previous literature, which suggests that 

the genus Clostridioides (Clostridium) in the infant's gut is associated with adverse 

neurodevelopment outcomes[57,60]. Clostridioides is demonstrated to be an important predictor 

of infant temperament, as a similar study also reports a significant negative association between 

Clostridioides at age 2.5 months and regulation scale at age 6 months[57]. Clostridioides difficile 

(C difficile), which can cause severe diarrhea and colitis, is the most common Clostridioides 

species in the infant. Animal studies showed that C. difficile can produce Propionic Acid, a short-
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chain fatty acid that can introduce ASD-related symptoms[61,62]. Future research should further 

examine the specific strain of Clostridioides in the infant gut to confirm the association between 

C difficile and infant temperament.  Our results did not identify any significant associations 

between Bifidobacterium and positive affect/surgency, which is in contrast to other studies. Both 

Fox et al. and Aatsinki et al. reported that Bifidobacterium abundance at early infancy was 

positively associated with surgency/extraversion[52,57]. Bifidobacterium is typically considered 

as a beneficial bacteria for infant neurodevelopment, demonstrating benefits for gut epithelium 

integrity and function as well as gastrointestinal motility[63]. Larger sample size may need for 

our study to replicate the results from previous studies. 

4.5.4 Strength and limitation 

Our current study may have a number of strengths. We demonstrated prospective associations 

between infant gut microbiome and temperament in a population-based cohort study. In addition 

to adjustment for prenatal and infant variables, our models also accounted for the mode of 

delivery, gestational age, and nutrition. The associations between microbiome clusters and 

negative emotionality are robust to adjustment for these variables. Our analysis not only 

demonstrated the effect of gut microbiota composition on infant temperament but also 

highlighted the importance of individual taxa. Of note, our study is not free of limitations. First, 

infant gut microbiota is rapidly maturated over the first year of life. However, only one fecal 

sample was included in our analysis and cannot fully represent the temporal development of the 

infant gut microbiome, which may be critical to neurodevelopment in early life. Second, 16S 

rRNA sequencing can only provide very limited strain-level information. Previous studies 

demonstrate the biological importance and different metabolic capabilities of specific bacterial 
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strains on human health. Thus, Shotgun metagenomic sequencing is needed for our future 

studies. 
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Table S4.1. Association between gut microbiota clusters and infant temperament scales 
stratifying by infant vitamin D intake1 

Scale Cluster 
No Vitamin D Vitamin D 

Beta 
p-

value 
q-

value2 Beta  
p-

value 
q-

value 

Positive affect/surgency 

Cluster 
A ref -   ref -   

Cluster 
B 

-0.34 (-0.86, 
0.18) 0.20 0.46 -0.05 (-0.35, 

0.25) 0.76 0.91 

Cluster 
C 

-0.33 (-0.87, 
0.20) 0.23 0.46 -0.35 (-0.77, 

0.08) 0.11 0.46 

Negative emotionality 

Cluster 
A ref -  ref -  

Cluster 
B 

-0.50 (-1.21, 
0.22) 0.18 0.46 0.03 (-0.43, 

0.49) 0.89 0.91 

Cluster 
C 

-1.01 (-1.75, -
0.26) 0.01* 0.12 -0.43 (-1.08, 

0.23) 0.20 0.46 

Orienting/regulatory capacity 

Cluster 
A ref -  ref -  

Cluster 
B 

-0.03 (-0.54, 
0.48) 0.91 0.91 -0.15 (-0.44, 

0.39) 0.38 0.57 

Cluster 
C 

-0.13 (-0.66, 
0.40)   0.63 0.84 -0.23 (-0.90, 

0.25)  0.34 0.57 
1Models were adjusted for delivery mode, race, maternal education, maternal pre-pregnancy 
BMI, breastfeeding status, infant age at IBQ-RVSF collection and infant sex. 
2P-values were adjusted by false discovery rate (FDR) correction for multiple comparisons using 
the Benjamini-Hochberg procedure. 
*p-value < 0.05 
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Table S4.2. Association between gut microbiota clusters and infant temperament scales 
stratifying by infant sex1 

Scale Cluster 
Male Female 

Beta p-value 
q-

value2 Beta  
p-

value 
q-

value 

Positive affect/surgency 

Cluster 
A ref -   ref -   

Cluster 
B 

-0.08 (-0.42, 
0.26) 0.63 0.83 -0.24 (-0.67, 

0.19) 0.27 0.54 

Cluster 
C 

-0.30 (-0.74, 
0.14) 0.18 0.48 -0.41 (-0.91, 

0.10) 0.12 0.48 

Negative emotionality 

Cluster 
A ref -  ref -   

Cluster 
B 0.04 () 0.86 0.86 -0.13 (-0.74, 

0.49) 0.69 0.83 

Cluster 
C -0.59 () 0.08 0.48 -0.51 (-1.23, 

0.22) 0.18 0.48 

Orienting/regulatory 
capacity 

Cluster 
A ref -  ref -   

Cluster 
B 

0.06 (-0.32, 
0.44) 0.76 0.83 -0.20 (-0.64, 

0.24) 0.38 0.60 

Cluster 
C 

-0.33 (-0.82, 
0.16) 0.20 0.48 -0.22 (-0.74, 

0.30) 0.40 0.60 
1Models were adjusted for delivery mode, race, maternal education, maternal pre-pregnancy 
BMI, breastfeeding status, infant age at IBQ-RVSF collection, infant vitamin D. 
2P-values were adjusted by false discovery rate (FDR) correction for multiple comparisons using 
the Benjamini-Hochberg procedure. 
*p-value < 0.05 
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CHAPTER 5. ASSOCIATION BETWEEN INFANT GUT MICROBIOME AND SLEEP 
PROBLEMS DURING CHILDHOOD 

5.1 Abstract 

The difficulty of initiating and maintaining sleep are the two most predominant complaints of sleep 

disorders in childhood. To the best of our knowledge, no study has yet investigated the association 

between gut microbiota collected at early infancy and these two disorders in early childhood. We 

undertook this prospective study to determine the associations between gut microbiota collected at early 

infancy (3-9 months) and difficulty initiating and maintaining sleep at the age of 2 years in a 

populational-based birth cohort. We analyzed data from 195 infants from the Michigan Archive for 

Research on Child Health Cohort Study. Sleep disorders were abstracted from the items in the PROMIS 

Sleep Disturbance scale, which was reported by mothers. Feeding practices and clinical information were 

collected by questionnaire and abstraction of birth certificates. Microbiota profiling with 16S rRNA gene 

sequencing at the V4 region was conducted on fecal samples. Gut microbiota of children who had 

difficulty of maintaining sleep displayed significantly higher Shannon index (OR: 2.41, 95% CI= 1.23-

4.93, p-adjust < 0.04) and Chao 1 index (OR: 1.01, 95% CI= 1.0-1.03, p-adjust < 0.008) after adjustment 

for covariates. We also demonstrated that gut microbiota composition was significantly associated with 

difficulty initiating (p-value= 0.043) and maintaining sleep (p-value= 0.004) based on the unweighted 

UniFrac distance metric in 2-year-old children. In the DESeq2 analysis for individual taxa, we identified 

several taxa associated with each of two sleep disorders at the genus level. This study demonstrated a 

clear association between infant gut microbiota and sleep disorders in early childhood.  

5.2 Introduction 

5.2.1 Sleep in childhood 

Sleep quality and quantity are increasingly being considered critical factors for child health and 

development. Epidemiology studies indicate that up to 50% of children experience a sleep 

disorder between 0 to 6 years old[1–3]. The frequency of childhood sleep disorders from 2 
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general pediatric clinics indicated that 41% of parents reported insomnia in their children[4]. 

Difficulty initiating and maintaining sleep are the two most frequent sleep problems in childhood 

and often co-exist[5]. Multiple biological, psychosocial, and environmental factors are linked to 

sleep disorders in children[6]. Obesity is one of the critical factors associated with sleep 

disorders, and the relationship is bidirectional[7]. Cross-sectional studies from multiple countries 

suggested that increased levels of obesity are associated with decreased sleep duration[8–11]. 

Previous studies also have reported a higher prevalence and severity of obstructive sleep apnea 

(OSA) in children with obesity[12].  

Environmental exposure also plays a vital role in sleep disorders among children. For example, 

elevated blood lead levels in early childhood are associated with increased risk for sleep 

disorders and excessive daytime sleepiness in later childhood[13]. Sleep disorders are associated 

with an increased risk of poor school performance, anxiety, depression, aggressive behaviors, 

and attention problems that continue in adulthood [14–17]. Sleep disorders interrupt the duration 

and depth of sleep, which are essential for child development. It is critical to identify the 

underlying factors involved in sleep disorders. 

5.2.2 The gut microbiome and sleep 

Disruption of the gut microbiota had been linked to psychiatric disorders and behavior problems 

in children. Growing evidence points toward the gut-microbiota-brain axis, which refers to the 

network involving multiple biological systems that allow bidirectional communication between 

gut bacteria and the brain[18]. The communication pathways in these biological networks 

include both direct and indirect signaling via chemical transmitters, neuronal pathways, and the 

immune system[18]. Sleep disorders, which are closely related to psychiatric disorders, have 

been linked to gut microbiota in recent years. Animal studies showed that during sleep 



92 
 

fragmentation, the relative abundance of Actinobacteria, Lactobacillaceae, and 

Bifidobacteriaceae decreased, while the relative abundance of Ruminococcaceae increased in 

mice[19,20]. A cohort study showed that children with Obstructive Sleep Apnoea syndrome 

were associated with a lower microbiota diversity in respect to healthy subjects[21]. A study 

among old adults also suggested a possible relationship between the composition of the gut 

microbiome and sleep quality[22].  

Although difficulty initiating and maintaining sleep has a high prevalence among children, the 

mechanisms underlying the development of these two sleep problems has not yet been 

understood[23]. To our knowledge, no study has investigated their association with gut 

microbiota in children. Therefore, the present study aimed to investigate the association between 

the fecal microbiota collected in early infancy and difficulty initiating and maintaining sleep at 

the age of two years.  

5.3 Materials and Methods 

5.3.1 Study participants 

The study population was drawn from the Michigan Archive for Research on Child Health 

(MARCH) cohort, an ongoing population-based pregnancy and birth cohort set in Michigan’s 

lower peninsula. During the MARCH 3 month phone interview, mothers confirmed their interest 

in participating in this sample collection. Our analysis used the subset of the cohort whose 

mothers provided informed consent for providing infant stool samples. Fecal collection kits were 

sent by mail. The infants in this analysis were 3-9 months of age between 2018 and 2021 at time 

of fecal sample collection. 195 fecal samples collected from singleton infants were included in 

the analysis.  

5.3.2 Data collection 
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Several questionnaires were administered to mothers from the first prenatal visit through 2 years 

postpartum. The questionnaire during the prenatal visit included demographic information about 

the mothers, their breastfeeding plans, health-related practices, and their estimated due date. 

Detailed information, including the infant's sex, birth weight, pregnancy complications, mode of 

delivery (vaginal vs C-section), pre-pregnancy BMI, and gestational age, were abstracted from 

the birth certificate.  

To assess sleep problems of the children, we administered the PROMIS Sleep Disturbance scale 

(PSDS, four items)[24] to mothers when their children were age 2. PSDS has demonstrated high 

internal consistency and strong construct validity among children in previous studies[24,25]. For 

our outcomes, we used two items from the PSDS to represent difficulty initiating sleep (my child 

had difficulty falling asleep) and difficulty maintaining sleep (my child could not sleep through 

the night). The items followed a 5-point format (1= never, 2= almost never, 3= sometimes, 4= 

almost always, 5= always). We considered the children to be free of difficulty initiating or 

maintaining sleep if the scores reported by mothers were less or equal than 2. 

5.3.3 Fecal microbiota analysis 

Once received in the lab, the fecal samples were aliquoted into sterile tubes and stored at -80°C. 

DNA was extracted following a modified version of the Human Microbiome Project’s protocol 

described previously[26]. Barcoded primers were used to amplify the V4 region of the 16S 

rRNA gene following the mothur wet lab documentation. PCR amplification also followed the 

wet lab protocol outlined in the mothur documentation. The resulting 16S rRNA libraries were 

sequenced using 250 base pair Illumina MiSeq with V2 chemistry at the Michigan State 

University genomics core. After trimming, clean sequences were analyzed using the QIIME2 

(2021.2 version) pipeline[27]. Demultiplexed sequences were further quality filtered and 
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clustered using QIIME2's DADA2 plugin to generate the ASV table[28]. Unique amplicon 

sequence variants (ASVs) were assigned a taxonomy by the QIIME2 feature-classifier plugin, 

using the Silva 132 database at the similarity thresh-old of 99% (for 16S data)[29,30]. Samples 

were rarefied to 6,000 sequencing reads per sample, leaving 191 stool samples with 6,905 unique 

ASVs, and findings were summarized at the genus taxonomic level.  

5.3.4 Statistical analysis 

We used multivariate logistic regression to assess the association between characteristics of the 

study population and sleeping disorders at age of two years, with adjustment for breastfeeding 

status, delivery mode, birth weight, gestational age, age at fecal sample collection. Characteristic 

variables included maternal education level, pre-pregnancy BMI, race, sex, and maternal age.  

Gut microbiota was analyzed in terms of alpha diversity (Chao1 and Shannon) and beta diversity 

(Unweighted UniFrac and Weighted UniFrac) using the "vegan" package in R[31]. The 

difference in alpha diversity and relative abundance of taxa between sleep outcomes were tested 

by the Wilcoxon rank test with false discovery rate (FDR) correction for multiple comparisons. 

We also performed multivariate logistic regression models to estimate the association between 

alpha diversity and sleep disorders, with adjustment for breastfeeding status, delivery mode, birth 

weight, gestational age, age at fecal sample collection, maternal education level, pre-pregnancy 

BMI, race, baby sex, and maternal age. We performed Principal Coordinates Analysis (PCoA) 

and Permutational Multivariate Analysis of Variance (PERMANOVA) based on Unweighted 

UniFrac and Weighted UniFrac distance metric to compare the difference in microbial 

community structure between sleep disorders[32,33]. PERMANOVA is a non-parametric 

multivariate statistical test, with p-values obtained using appropriate distribution‐free 

permutation techniques. Differential abundance of microbial genera was determined using 
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generalized linear models with a negative binomial family and a log link function implemented 

in DESeq2[34], with adjustment by delivery mode, maternal education level, maternal age, 

gestational age, pre-pregnancy BMI, race, breastfeeding status, age at fecal sample collection, 

child sex, and birth weight. DESeq2 assumes that counts can be modeled as a negative binomial 

distribution with a mean parameter, allowing for size factors and a dispersion parameter[34]. 

5.4 Results 

In total, 95 boys and 99 girls with data on sleep disturbance at age two years were included in 

this analysis. The mean age of the children when the PROMIS Sleeping Disturbance 

questionnaire was implemented to mothers was 24.2 (SD= 1.2) months. The mean age of the 

children at fecal sample collection was 4.0 (SD= 1.1) months. Mean birth weight was 3,352 

(SD= 583) grams, and mean gestational age was 38.5 weeks (SD= 1.9). Mean (SD) maternal age 

was 30.9 (5.4) years and mean pre-pregnancy BMI was 27.9 (SD= 7.6). 100 children were 

exclusively breastfed, 33 were partially breastfed, and 61 were fed with exclusive formula at the 

time of fecal sample collection. At one year, 169 children were ever breastfed or fed with 

pumped breast milk and 25 were never fed with breast milk. Descriptive summary of study 

participants by difficulty initiating sleep and maintaining sleep are shown in Table 5.1.  

Over the 194 children, 61 (31%) were reported to have difficulty initiating sleep, 63 (32.5%) 

were reported to have difficulty maintaining sleep, 32 (16.4%) were reported to have both 

disorders, and 92 (47.2%) were reported to have at least one disorder. Univariate analysis 

showed that a lower proportion of mothers whose children had difficulty initiating sleep were of 

normal BMI (< 25.0) prior to pregnancy compared to those whose children did not (36.1% vs 

47.8%, p-value= 0.004). Children with difficulty maintaining sleep were more likely to be never 

fed with breast milk, compared to those who were ever fed with breast milk (22.2% vs 8.5%, p-
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value= 0.01). In a multivariate model, children whose mothers were overweight were more likely 

to have difficulty initiating sleep (OR = 3.7, CI:1.6-8.7, p-adjust = 0.004) and more likely to 

have difficulty maintaining sleep (OR = 2.7, CI:1.2-6.4, p-adjust = 0.04) at age 2, compared to 

those whose mothers with normal BMI (Table S5.1-S5.2). Increased birth weight tended to be 

associated with a lower risk of having difficulty initiating sleep in infants (OR = 0.4, CI:0.2-0.9, 

p-adjust = 0.08, Table S5.2). 

 

 

 

 

Table 5.1. Characteristics of mothers and infants by difficulty initiating sleep and 
maintaining sleep 

  Difficulty initiating sleep P-
value

1 

Difficulty maintaining sleep  P-
valu

e   Yes (61) No (134) Yes (63) No (131) 

  
N/mea

n 
%/S
D 

N/mea
n 

%/S
D   

N/mea
n %/SD 

N/mea
n %/SD   

Delivery 
mode, n 
(%)                     

        
Vaginal 
delivery 37 61% 98 74% 

0.1 

39 
62.90

% 95 
72.50

% 

0.24 
        C-
section 24 39% 35 26% 23 

37.10
% 36 

27.50
% 

Materna
l 
educatio
n level, 
n (%)                     
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Table 5.1. (cont’d) 

         Did 
not finish 
high school 5 8.50% 8 6% 

0.85 

7 11.70% 6 4.60% 

0.17 

         High 
school 
graduate or 
GED 6 10.20% 18 13.50% 9 15.00% 15 11.50% 

         Some 
college 13 22.00% 31 23.30% 15 25.00% 29 22.10% 

         
College 
graduate or 
more 35 59.30% 76 57.20% 29 48.30% 81 61.80% 

Maternal 
pre-
pregnancy 
BMI                     

        
Normal 
(<25) 22 36.10% 64 47.80% 

0.004 

21 33.30% 64   

0.12 

        
Overweight 
(25-30) 24 39.30% 23 17.20% 19 30.20% 28   

        
Obesity (≥ 
30) 15 24.60% 47 35.00% 23 36.50% 39   
Race, n 
(%)                     

         White 44 74.60% 105 78.90% 

0.8 

42 70.00% 106 80.90% 

0.21 

         Black 11 18.60% 20 15.00% 13 21.70% 18 13.70% 

         Other 4 6.80% 8 6.10% 5 8.30% 7 5.30% 
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Table 5.1. (cont’d) 

Breastfeeding 
status at fecal 
sample 
collection, n 
(%)                     

          
Exclusive 
breastfeeding 31 51.70% 69 51.50% 

0.92 

27 43.50% 72 55.00% 

0.19 

          Partial 
breastfeeding 11 18.30% 22 16.40% 10 16.10% 23 17.60% 

          Not 
breastfeeding 18 30% 43 32.10% 25 40.40% 36 27.40% 

Ever exposed 
to breast 
milk, n (%)                     

          Yes 53 86.90% 116 87.20% 

0.99 

49 77.80% 119 91.50% 

0.01           No 8 13.10% 17 12.80% 14 22.20% 11 8.50% 

Baby sex, n 
(%)                     

         Male 31 50.80% 64 47.80% 

0.85 

27 43.50% 68 51.90% 

0.35          Female 30 49.20% 69 52.20% 35 56.50% 63 48.10% 
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Table 5.1. (cont’d) 

Maternal age 
(year), mean 
(SD) 30.7 5.26 31 5.42 0.7 29.9 5.9 30.1 5 0.1 

Birth weight 
(gram), 
mean (SD) 3251 620 3398 562 0.12 3244 587 3402 579 0.08 

Gestational 
age (week), 
mean (SD) 38.3 2.1 38.6 1.8 0.28 38.2 2.2 38.7 1.7 0.14 

Age at 
sleeping 
disturbance 
assessment 24.3 1.57 24.1 0.91 0.16 24.1 1.27 24.2 1.11 0.72 

1The difference between sleep disorders and characteristics was analyzed by Chi-square test or 
One-Way Analysis of Variance (ANOVA). 

Infancy fecal samples from children who have difficulty initiating sleep displayed a higher 

Shannon index (p-adjusted= 0.07) and a higher Chao 1 index (p-adjusted= 0.09) than samples 

from those who did not have difficulty initiating sleep (Figure 5.1A-5.1B). Infancy fecal samples 

from children who have difficulty maintaining sleep displayed a higher Shannon index (p-

adjust= 0.004) and a higher Chao 1 index (p-adjust= 0.0004) than samples from those who did 

not have difficulty maintaining sleep (Figure 5.1C-5.1D). The multivariate model showed that 

children who had a higher Shannon index (OR = 2.4, CI:1.2-4.9, p-adjust = 0.04) and a higher 

Chao 1 index (OR = 1.01, CI:1.0-1.03, p-adjust = 0.008) at early infancy were more likely to 

have difficulty maintaining sleep (Table 5.2). There was also a non-significant trend towards an 

increased Shannon index (OR = 1.8, CI:0.95-3.6, p-adjust = 0.32) and an increased Chao 1 index 
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(OR = 1.1, CI:0.99-1.01, p-adjust = 0.64) being associated with a higher risk of having difficulty 

initiating sleep (Table 5.2). 

 

 

Figure 5.1. Boxplot of the alpha diversity (Shannon and Chao 1) by difficulty initiating and 
maintaining sleep. (A) Association between difficulty initiating sleep and Shannon index. P-
adjust = 0.07 after Bonferroni correction. (B) Association between difficulty initiating sleep and 
Chao 1 index. P-adjust = 0.09 after Bonferroni correction. (C) Association between difficulty 
maintaining sleep and Shannon index. P-adjust = 0.008 after Bonferroni correction. (D) 
Association between difficulty maintaining sleep and Chao 1 index. P-adjust = 0.0008 after 
Bonferroni correction. 
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Table 5.2. Association between alpha diversity and difficulty initiating and maintaining sleep 

  Shannon index Chao1 index 

  
Odds ratio 
(95% CI) 

p-
value 

adjusted p-
value1 

Odds ratio (95% 
CI) 

p-
value 

adjusted p-
value 

Difficulty initiating 
sleep 1.83 (0.95, 

3.64) 0.08 0.32 
1.05 (0.99, 
1.01) 0.16 0.64 

Difficulty 
maintaining sleep 2.41 (1.23, 

4.93) 0.01 0.04 
1.01 (1.00, 
1.03) 0.002 0.008 

P-value was adjusted by Bonferroni correction. All models were adjusted for breastfeeding 
status, delivery mode, birth weight, gestational age, age at fecal sample collection, maternal 
education level, pre-pregnancy BMI, race, baby sex, and maternal age 

When classified by difficulty initiating sleep, the gut microbiota communities of the children 

were significantly differed based on unweighted UniFrac distance metric (PERMANOVA: R2= 

0.9%, p-value =0.04, Figure 5.2B), but were similar when compared based on Weighted UniFrac 

distance metric (PERMANOVA: R2= 0.4%, p-value =0.57, Figure 5.2A). When classified by 

difficulty maintaining sleep, the gut microbiota communities were significantly differed based on 

the unweighted UniFrac distance metric (PERMANOVA: 1.8%, p-value =0.004, Figure 5.2D), 

but were not distinct based on the weighted UniFrac distance metric (PERMANOVA: R2= 0.9%, 

p-value =0.1, Figure 5.2C). 

We then performed differential abundance testing with DESeq2 to see which taxa were 

associated with the sleep problems. At the genus level, we detected a higher abundance of 

Desulfovibrio, Butyricimonas, Roseburia, and a lower abundance of the Lachnospiraceae 

NK4A136 group, Collinsella in the children with difficulty initiating sleep (q-value < 0.001, 

Table 5.3). We also identified a higher abundance of Eubacterium coprostanoligenes group, 

Epulopiscium, Colidextribacter, Lactobacillus, Megamonas, Faecalibacterium, Roseburia, and a 

lower abundance of Lachnospiraceae uncultured in the children with difficulty maintaining sleep 

(q-value < 0.001, Table 5.4). 
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Figure 5.2. Principal Coordinates Analysis (PCoA) for difficulty initiating and maintaining 
sleep. R2 and p-value were calculated by the PERMANOVA test. (A) PCoA for difficulty 
initiating sleep based on weighted UniFrac distance metric. (B) PCoA for difficulty initiating 
sleep based on unweighted UniFrac distance metric. (C) PCoA for difficulty maintaining sleep 
based on weighted UniFrac distance metric. (D) PCoA for difficulty maintaining sleep based on 
unweighted UniFrac distance metric.  
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Table 5.3. DESeq2 Analysis Results: Associations of gut microbiome taxa at genus level and 
difficulty initiating sleep adjusted by covariates1 

Family Genus 
Log 2 folder 

change p-value p-adjusted 
Desulfovibrionaceae Desulfovibrio 1.32 7.48×10-8 8.37×10-6 

Marinifilaceae Butyricimonas 1.30 1.52×10-6 5.67×10-5 
Lachnospiraceae NK4A136 group -1.94 1.20×10-6 5.67×10-5 

Coriobacteriaceae Collinsella -1.58 3.62×10-6 1.02×10-4 
Lachnospiraceae Roseburia 1.45 3.97×10-5 8.90×10-4 

1All models were adjusted for breastfeeding status, delivery mode, birth weight, gestational age, 
age at fecal sample collection, maternal education level, pre-pregnancy BMI, race, baby sex, and 
maternal age. P-adjusted is the FDR (Benjamini-Hochberg) adjusted p-value. p-adjusted < 0.001 
for multiple comparisons was considered statistically significant and included in the table. 

Table 5.4. DESeq2 Analysis Results: Associations of gut microbiome taxa at genus level and 
difficulty maintaining sleep adjusted by covariates1 

Family Genus 

Log 2 
folder 
chang

e p-value 

Adjuste
d p-

value 
Eubacterium coprostanoligenes gro

up 
Eubacterium coprostanoligenes gro

up 1.81 
3.32×10

-9 
3.56×10

-7 

Lachnospiraceae Epulopiscium 1.98 
3.09×10

-7 
3.56×10

-7 

Oscillospiraceae Colidextribacter 1.98 
3.48×10

-7 
1.24×10

-5 

Lachnospiraceae Lachnospiraceae uncultured -2.29 
6.12×10

-7 
1.64×10

-5 

Lactobacillaceae Lactobacillus 1.85 
1.11×10

-6 
2.38×10

-5 

Selenomonadaceae Megamonas 1.50 
1.32×10

-5 2.2×10-4 

Ruminococcaceae Faecalibacterium 1.41 
1.44×10

-5 2.2×10-4 

Lachnospiraceae Roseburia 1.39 
7.14×10

-5 
9.55×10

-4 
1All models were adjusted for breastfeeding status, delivery mode, birth weight, gestational age, 
age at fecal sample collection, maternal education level, pre-pregnancy BMI, race, baby sex, and 
maternal age. P-adjusted is the FDR (Benjamini-Hochberg) adjusted p-value. p-adjusted < 0.001 
for multiple comparisons was considered statistically significant and included in the table. 
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5.5 Discussion 

Our prospective study demonstrated that the composition of the gut microbiome at early infancy 

was significantly associated with difficulty initiating sleep and maintaining sleep at the age of 2 

years. We also identified those microbial candidates that might contribute to both sleep 

disorders. Our results suggested a clear association between infant gut microbiota composition 

and difficulty initiating sleep and maintaining sleep. 

Due to different inclusion criteria, prevalence estimates of insomnia symptoms in childhood have 

varied from 4–41%[35–39]. In the Diagnostic and Statistical Manual of Mental Disorders, Fourth 

Edition (DSM-4), a patient with difficulty initiating or maintaining sleep for at least one month 

was considered having a risk for insomnia. In our study, nearly half of the population had 

difficulty initiating sleep or maintaining sleep, but our survey did not ask for the of these 

symptoms. The univariate analysis showed that difficulty initiating sleep was significantly 

associated with maternal pre-pregnancy BMI. The multivariate analysis confirmed this finding 

that children whose mothers were overweight were more likely to have difficulty initiating and 

maintaining sleep. This association could possibly be mediated by child obesity, which was 

shown to be significantly associated with maternal pre-pregnancy BMI in many studies. Obesity, 

which is a risk factor for sleep disorders of all ages, has been linked to short sleep duration and 

poor sleep quality during childhood[40]. However, child BMI was not recorded in our study.  

The univariate analysis also showed that children with difficulty maintaining sleep were more 

likely to be never fed with breast milk, although this association disappeared in the multivariate 

analysis with the odds ratio decreasing from 3.1 to 1.7.  

Breastfeeding was found in other studies to be associated with increased night waking and sleep 

fragmentation at infancy due to parenting practices of nursing at night[41–43]. However, this 
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association disappeared by the 9-month follow-up[41,44], suggesting that sleep disruptions 

associated with breastfeeding resolve when the breastfeeding ends. 

Turning to the microbiome findings, our results demonstrated that alpha diversity at 3 months of 

age predicted sleep disorder at 2 years of age. Higher Shannon index and Chao 1 index were 

significantly associated with a higher risk of difficulty maintaining sleep after adjustment of 

covariates. There was also a trend of increased Shannon index and Chao 1 index in the children 

with difficulty initiating sleep. The alpha diversity of gut microbiota is dynamic during infancy 

and is correlated with complementary feeding and delivery mode. High alpha diversity in infancy 

indicates a more mature, adult-like community[65]. Carlson et al. demonstrated that high alpha 

diversity at infancy was associated with poor cognitive development at 2 years of age[45]. 

However, numerous studies have shown that low alpha diversity in infancy is associated with 

asthma and type 1 diabetes[66-67]. A highly diverse microbiome can introduce functional 

redundancy[46], which allows individuals to adapt to environmental fluctuations, maintain 

intestinal homeostasis and support human health. Our results, together with the work done by 

Carlson et al.[45] suggest that increased alpha diversity at early infancy could contribute to sleep 

problems in childhood.  

We noted that the structure of the infant gut microbiota affected difficulty initiating and 

maintaining sleep when the unweighted UniFrac distance metric was used. An unweighted 

UniFrac distance considers only species presence and absence information and counts the 

fraction of branch length unique to either community, while a weighted UniFrac distance uses 

species abundance information and weights the branch length with abundance difference[47,48]. 

Thus, unweighted UniFrac distance is most efficient in detecting abundance change in rare taxa. 

https://www.sciencedirect.com/science/article/pii/S0006322317317201?casa_token=0zbDu_PIEKEAAAAA:hsovjVb5jtda9IeBEH_yZoBlynG-H2c-lkeYIxq2yG-5nPloWATRCfMiUVyK276jMQ1-0ckYiQ#!
https://www.sciencedirect.com/science/article/pii/S0006322317317201?casa_token=0zbDu_PIEKEAAAAA:hsovjVb5jtda9IeBEH_yZoBlynG-H2c-lkeYIxq2yG-5nPloWATRCfMiUVyK276jMQ1-0ckYiQ#!
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Our results suggested that the association between gut microbiota composition and sleep 

disorders was potentially driven by rare and less abundant taxa[49,50]. 

Our results indicated that several taxa were positively or negatively associated with infant sleep 

problems, suggesting different taxa were involved in the mechanisms that influence the sleep 

disorders in children. Our results agree with the previous literature, which suggests that the 

genera Desulfovibrio and Lactobacillus were significantly enriched in the gut microbiome of 

insomniac adult participants[51,52]. An animal study also confirmed that Desulfovibrio could 

increase the risk of obstructive sleep apnea (OSA) by causing intermittent hypoxia during 

sleep[53]. Many studies have also confirmed that a higher abundance of Desulfovibrio is 

associated with the incidence and the severity of autism[54,55]. Desulfovibrio is a sulfate-

reducing bacterium in the human gut that can generate hydrogen sulfide, which is an effective 

inhibitor of the oxidation of short-chain fatty acids (SCFAs) in cells[56,57]. Several species in 

the Lactobacillus genus were found to have beneficial effects on sleep rhythms in animal 

models, which is in contradiction to our results[58,59]. However, some Lactobacillus species can 

produce GABA, and abnormal expression of GABA mRNA is linked to depression and 

insomnia[60,61]. Thus, more studies are needed at the species level of Lactobacillus to 

understand the mechanism of the influence of gut Lactobacillus on sleep disorders.  

An important limitation of this study is that only one stool sample collected. Gut microbial ecology 

and function are dynamic across the infancy lifestage by time and influenced by multiple factors, 

including feeding practice, delivery mode, and environmental exposures[62–64]. Future studies 

would benefit from a longitudinal stool sample collection during infancy that helps us better 

understand the association between infant gut microbiome and sleep disorders. Another limitation 

is that 16S rRNA sequencing can provide limited strain-level information. Previous studies 
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demonstrate a complex mechanism for several species of Lactobacillus in sleep disorders[60]. 

Thus, Shotgun metagenomic sequencing is needed for future studies. 
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Table S5.1. Association between maternal/infant characteristics and difficulty 
falling sleep in infants1 

  Odds ratio (95% CI) P-value 
Delivery mode, n (%)     
        Vaginal delivery ref  
        C-section 1.94 (0.91,4.15) 0.08 
Maternal education level, n (%)    
         Did not finish high school ref  
         High school graduate or GED 0.55 (0.10, 3.18) 0.49 
         Some college 0.87 (0.18, 4.73) 0.87 
         College graduate or more 0.85 (0.17, 4.64) 0.84 
Maternal pre-pregnancy BMI   
        Normal ref  
        Overweight 3.73 (1.64, 8.72) 0.002* 
        Obesity 0.85 (0.35, 2.03) 0.72 
Race, n (%)   
         White ref  
         Black 1.08(0.34, 3.4) 0.89 
         Other 1.22(0.29, 4.48) 0.77 
Breastfeeding status at fecal sample collection, n (%)   
          Exclusive breastfeeding ref  
          Partial breastfeeding 0.87(0.33, 2.22) 0.78 
          Not breastfeeding 0.89(0.33, 2.33) 0.82 
Ever breastfeeding, n (%)   
          Yes ref  
          No 0.85(0.22, 3.15) 0.81 
Baby sex, n (%)   
         Male ref  
         Female 1.11(0.56, 2.23) 0.77 
Maternal age (year) 0.98(0.91, 1.05) 0.62 

Birth weight (kilogram) 0.41(0.17, 0.94) 0.04* 

Gestational age (week) 1.13(0.89, 1.46) 0.32 
1All variables listed in table were included in the multivariable model. 
*<0.05 
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Table S5.2. Association between maternal/infant characteristics and difficulty 
maintaining sleep in infants1 

  Odds ratio (95% CI) P-value 
Delivery mode, n (%)     
        Vaginal delivery ref  
        C-section 1.5(0.71, 3.15) 0.29 
Maternal education level, n (%)    
         Did not finish high school ref  
         High school graduate or GED 0.52(0.11, 2.39) 0.40 
         Some college 0.69(0.16, 3.0) 0.62 
         College graduate or more 0.51(0.11, 2.28) 0.37 
Maternal pre-pregnancy BMI   
        Normal ref  
        Overweight 2.69(1.15, 6.39) 0.02* 
        Obesity 1.49(0.64, 3.48) 0.35 
Race, n (%)   
         White ref  
         Black 0.87(0.29, 2.57) 0.81 
         Other 2.1(0.54, 7.74) 0.26 
Breastfeeding status at fecal sample collection, n (%)   
          Exclusive breastfeeding ref  
          Partial breastfeeding 0.92(0.35, 2.33) 0.86 
          Not breastfeeding 0.99(0.38, 2.49) 0.98 
Ever breastfeeding, n (%)   
          Yes ref  
          No 1.72(0.51, 5.81) 0.38 
Baby sex, n (%)   
         Male ref  
         Female 1.64(0.83, 3.29) 0.16 
Maternal age (year) 0.97(0.9, 1.04) 0.35 

Birth weight (kilogram) 0.63(0.27, 1.38) 0.26 

Gestational age (week) 1.01(0.80, 1.28) 0.93 
1All variables listed in table were included in the multivariable model. 
*<0.05 
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CHAPTER 6. SUMMARY, LIMITATIONS AND FUTURE RESEARCH 

Our studies examined whether feeding practices affect early gut microbial colonization and 

whether gut microbial colonization influence temperament and sleep disorders in children using 

a sample of singleton births from an ongoing population-based pregnancy and birth cohort set in 

Michigan’s lower peninsula. In this prospective study, fecal samples were collected between 3-9 

months, and the bacterial 16S rRNA gene (V4 hypervariable regions) was amplified. We then 

collected temperament and sleep outcomes of infants at 9 months and 2 years, respectively.  

In the first analysis, we confirmed the importance of breastfeeding and vitamin D supplements in 

shaping gut microbiota composition in early infancy. By performing differential abundance 

analysis on individual taxa, our results demonstrated that vitamin D supplement potentially 

reduced the likelihood of Haemophilus colonization in exclusively breastfed infants. The 

Vitamin D family is a group of fat-soluble secosteroids absorbed from sunlight, food or 

supplements. Vitamin D exists in several forms, including ergocalciferol (D2), cholecalciferol 

(D3), 1-hydroxylated and 1,25-hydroxylated forms[12-13]. In addition to the food, humans 

acquire vitamin D synthesized in the skin upon exposure to sunlight. vitamin D synthesis is 

affected by season, time of day, skin pigmentation, cloth, aging etc.[13]. The liver and kidneys 

convert vitamin D into 25-hydroxyvitamin D which is a major circulating form and 1,25-

dihydroxyvitamin D which is the biologically active form, respectively[13-14]. Vitamin D is 

essential for bone development and calcium homeostasis[15]. In addition, vitamin D may play a 

critical role in immune regulation, partially via modulating the gut microbial composition[16]. 

Vitamin D deficiency is associated with dysbiosis that promotes inflammation[16]. Our results 

confirm and extend existing findings and point out that vitamin D potentially protects against 

Haemophilus, which can cause a wide variety of infections in infants. However, only 39.8% of 

the exclusively breastfed infants received vitamin D supplements in our study population. Our 
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results highlight the need for actions to support the promotion of vitamin D among exclusive 

infants. 

In the analysis of the next two aims, we focused on temperament and sleep disorders which are 

two critical outcomes closely related to brain development during childhood. Uncovering the 

relationship between gut microbiota and these two outcomes will help us better understand the 

operation of the microbiota-gut-brain axis. Our results demonstrated an association between gut 

microbiota composition and the temperament characteristic described as negative emotionality. 

Negative emotionality, defined as a disposition to experience negative emotions such as anger 

and fear[1], is one of the most important dimensions of infant temperament. An excess of 

negative emotionality may contribute to a high risk of later childhood psychopathology and 

behavior problems[2]. Thus, the present study provides further evidence of the critical functional 

roles of the gut microbiota in behavior problems. In a sensitivity analysis, we discovered a 

potential role of infant vitamin D intake in modifying the association between microbiota 

clusters and negative emotionality. The association described above was identified only among 

the infants who were not recipients of vitamin D supplements, suggesting that infant vitamin D 

intake potentially protects against the adverse effect of the gut microbiome–associated on infant 

emotionality. Finally, we demonstrated that the composition of the gut microbiome in early 

infancy was significantly associated with difficulty initiating sleep and maintaining sleep at the 

age of 2 years. Epidemiologic studies indicate that up to 50% of children have experienced a 

sleep problem by age six[3]. A growing body of evidence shows that sleep disorders and 

insomnia in early childhood may be linked obesity, diabetes, and inflammatory diseases in later 

life[4–6].  
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Previous research has focused on understanding the psychological, social, and physiological 

factors that regulate sleep. Our study, together with recent studies, provides a new basis for 

understanding the mechanisms of sleep problems. Circadian Rhythm, which is an important 

process in the regulation of sleep, has been linked to gut microbiota in recent studies[7].  Studies 

have demonstrated that the gut microbiota exhibit compositional and functional rhythmic 

fluctuations[8]. Consequently, the intestinal epithelium is exposed to different bacterial species 

and their metabolites throughout the day[8]. In turn, the circadian rhythm of the microbiota 

regulates the transcription of host circadian clock genes and affects epigenetic modifications and 

oscillations in metabolite levels[8,9].  

These results add to the mounting evidence connecting the gut microbiota with the gut-brain 

axis, where early gut microbial colonization may be linked with neurodevelopmental outcomes 

with potential long-term effects. Within this axis, gut microbiota affects brain function through 

various pathways, including the immunoregulatory pathway, neuroendocrine pathway, vagus 

nerve pathway, and tryptophan metabolism[10]. The term psychobiotic was brought up by Dinan 

et al.[11], as a novel class of psychotropic medication, defined as a “live organism that, when 

ingested in adequate amounts, produces a health benefit in patients suffering from psychiatric 

illness.” Research into the microbiota-gut-brain axis could help us develop potential new 

therapeutic targets for the effective treatment or prevention of brain disorders. 

One limitation of this dissertation is that only one fecal sample was included in our analysis, and 

infant gut microbiota matures rapidly maturated the first year of life. Thus, our results may not 

fully represent the temporal development of the infant gut microbiome, which may be critical to 

studying neurodevelopment in early life. A second limitation is that 16S rRNA sequencing can 

only provide limited strain-level information. Previous studies have demonstrated the biological 



121 
 

importance and different metabolic capabilities of specific bacterial strains on human health. A 

third limitation is that due to the small sample size and lack of power, we are unable to assess the 

potential role of gut microbiota in the causal pathway linking infant feeding practices and brain 

development. 

Future studies using this same cohort may be able to extend our study in four ways. First, we 

may use shotgun metagenomic sequencing, which provides higher resolution and sensitivity in 

microbiome analysis. Metagenomics also allows us to access the species-level functional 

profiling of the gut microbiota, which is important for understanding gene and metabolic 

pathway content. Second, vitamin D, which is an important factor for gut microbiota, has only 

been studied in vitamin D supplements for infants in our study. However, previous studies 

highlight the influence of prenatal vitamin D and vitamin D concentration in breast milk on 

infant health. We may be able to estimate prenatal vitamin D intake by interview and to measure 

vitamin D concentration in mother’s breast milk and in archived prenatal serum. Third, we can 

use Mendelian randomization to make casual inferences for our existing findings. Mendelian 

randomization is a method of using measured variation in genes of known function to examine 

the causal effect of a modifiable exposure on disease in observational studies. Fourth, as the 

sample size of our cohort increases, we may be able to assess the potential role of gut microbiota 

in the causal pathway linking infant feeding practices and brain development. 
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