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ABSTRACT

LIFE CYCLE MONITORING OF REVERSIBLE ADHESIVE BONDED JOINTS USING
GUIDED WAVES

By

Rajendra Prasath Palanisamy

Recent advancements in automotive, aerospace, civil and wind-energy industries have resulted

in an ever-increasing demand for lightweight, cost-effective, rapidly manufactured and recy-

clable/reusable of structural components. Adopting composite materials is a popular solution

to achieve light-weighting, however it requires complex joining methods compared to traditional

mechanical fasteners. Electromagnetic targeted heating of nano-𝐹𝑒3𝑂4 reinforced thermoplastic

adhesives (Reversible-Adhesive) is an emerging technique for rapid assembly, dis-assembly, and

re-assembly of bonded composite parts. Alternate magnetic field applied to the dispersed ferro-

magnetic nanoparticles (FMNP) within a thermoplastic adhesive results in these particles acting

as nano-heaters and rapidly heating the surrounding material resulting in melting and flow of the

adhesive, which upon cooling forms a structural bond. This process can be repeated and hence

termed reversible adhesive.

Reversible-adhesive bonded composite structures (RBCS) offer a greater advantage over ther-

mosets or mechanical joints such as rapid processing, easy repair, quick disassembly, and possible

re-usability of components. However, it is essential to accurately measure the temperature of the

adhesive during processing and repair, since overheating may cause chemical degradation and

underheating may introduce improper bonds. Adhesively bonded composite structures provide a

more uniform stress distribution in the bond-line than riveted joints resulting in higher fatigue life.

However, modeling the physics behind crack initiation and propagation inside bonded regions is

challenging especially under fatigue loading. As a result, real-time in-service bond monitoring

is required to ensure structural safety. In addition to monitoring the damage state, prediction of

damage area and remaining useful life of the component is imperative. Thus, this research work



focusses on developing a life cycle monitoring solution for RBCS using the guided wave (GW)

technique.

Ultrasonic guided waves were made to propagate across the bond-line of the joint by exciting and

sensing them using miniature piezoelectric wafers. Analysis of dispersion relations and dynamic

wave propagation were performed using finite element modeling (FEM). Fundamental longitudinal

mode 𝐿0 at 35 kHz was found optimal for bond process monitoring. Mapping between the FE-

simulated transmission coefficient of 𝐿0 and actual temperature of the thermoplastic adhesive

was established using the DMA test data. Real-time guided wave measurements were used as

feedback in the discrete control of the induction heater so as to provide optimal bonding and

prevent adhesive degradation. The developed ultrasonic technique was successfully validated by

fiber-optic temperature sensing. Results indicate that the bondlines processed with GW control

offer better ultimate strength compared to uncontrolled processing.

Guided wave modal and frequency sensitivity analysis for fatigue damage was performed.

Based on the analysis, symmetric mode at 85 kHz was found optimal for fatigue damage detection.

Further, a damage propagation model based on Paris law was developed to estimate remaining

useful life in terms of the GW signal features. Finally, the remaining useful life of the lap-joint

was predicted and validated experimentally. One of the major advantages of reversible adhesive

is its ability to repair/heal the damage. The controlled processing technique developed earlier

was used for controlled healing of fatigue damaged joints. Experimental investigation proves the

healed-bond line have returned to its original strength. A holistic approach of a complete lifecycle

monitoring of bonded joints was aimed at increasing the confidence in the use of bonded joints

relative to mechanical fasteners, and can be easily extended to other structural applications.
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CHAPTER 1

INTRODUCTION

Traditionally, non-destructive evaluations (NDE) involves setting up monitoring devices in a con-

trolled environment and hard wired to identify suspecting localized damage. Most NDE is per-

formed during its service life for repair and maintenance. With advancing technology, the develop-

ment of monitoring systems within the life-cycle context of a structure or component is necessary.

Emerging sensor technology opens the opportunity for continuous monitoring of components from

its manufacturing process to in-service and failure. By combining the component information with

the sensor network, the overall state of the structure shall be monitored throughout its lifetime. This

process is called life cycle health monitoring [46]. This work is focused on the life cycle monitoring

of the reversible-adhesive bonded composite structures (RBCS). Figure 1.1 shows the schematic of

different life stages of RBCS and associated monitoring activity considered in this work.

Figure 1.1: Overall Process of Life Cycle Health monitoring

Before introducing the monitoring techniques, it is important to know the reason for choosing
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reversible adhesive bonds. Unlike mechanical joints, adhesive bonds are lightweight, free of holes

which eliminates high-stress concentration. Adhesives shall be broadly classified into two types

thermosets and thermoplastics. Thermoplastic adhesives modified with conductive nanoparticles

and exposed to alternate magnetic field results in intensive heat dissipation and melting from within

the adhesive. This phenomenon provides thermoplastics a greater advantage over thermosets such

as rapid processing, easy repair, quick disassembly, and possible reusability of components [69].

However, it is essential to accurately measure the temperature of the adhesive, since overheating

may cause chemical degradation and underheating may introduce kissing bonds. Thus one cannot

take full advantage of thermoplastics unless a parallel monitoring system is implemented. Thus,

proposed techniques monitor the bond-line during processing and repair. During the in-service

period, the system continuously monitors the bond-line and substrates for any defects. Also, the

system simultaneously predicts the Remaining Useful Life (RUL) of the components. Studies

show dis-assembly of reversible-adhesive components are much easier compared to chemical or

mechanical dismantling process [44, 74]. In most cases, once the components are disassembled the

bond-line areas are resurfaced and a fresh adhesive is used during re-assembly. Thus, a bond-line

monitoring technique during disassembly is considered less important and not included in this

study.

By implementing life cycle monitoring the overall reliability of the structure shall be improved

such as (1) Quality control: Every RBCS manufactured in the assembly line is monitored for pro-

cessing defects. (2) Timely warning on components health during the in-service period avoids any

catastrophic failure. (3) Monitored repairs increase the confidence in using repaired components.

(5) Continuous in-service monitoring helps in the prognosis of various failures.

1.1 Objective

Automotive industries in the last decade are demanding for light-weight, cost-effective, and multi-

material joining solutions [44]. Adhesively bonded joints having all such properties, quickly gain

popularity over traditional mechanical joints. Adhesive bonds also provide better vibration damping
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and uniform stress distribution properties.

Figure 1.2: Some common defects found in adhesively bonded joints during fabrication and
in-service.

With the introduction of reversible adhesive, targeted heating and easy dismantle further elevate

the popularity of RBCS. However, In comparison to metallic riveted joints, one of the major

challenges in bonded joints and laminated composites is various processing and in-service defects

(see Figure 1.2). Defects at all life stages shall be classified into bond-line and substrate defects. Life

cycle monitoring is the best solution to improve the reliability of adhesive bonded components.

Thus, the overall objective of this work is to develop a life cycle monitoring framework with

prognosis for RBCS.

The monitoring approach at each stage involves strategic sensor deployment, data acquisition,

and signal processing. In process monitoring, Analysis of dispersion relations and dynamic wave

propagation were performed using finite element modeling (FEM). Fundamental longitudinal mode

L0 at 35 kHz was found optimal for bond process monitoring. Real-time guided wave measurements

were used as feedback in the discrete control of the induction heater to provide optimal bonding

and prevent adhesive charring. A very similar approach shall be followed for repair monitoring.
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Sensor deployment, excitation frequency, and mode selection all remain the same between process

and repair monitoring. The only difference in repair monitoring is, the adhesive is expected to have

some in-service damages. Unlike processing or repair, in-service monitoring cannot be generalized,

it purely depends on the type of in-service loads. This work focuses primarily on fatigue loads.

Guided wave modal and frequency sensitivity analysis for fatigue damage is performed. Based on

the analysis, Symmetric mode at 85 kHz was found optimal for fatigue damage detection. Further,

a damage propagation model based on Paris law is developed to estimate remaining useful life in

terms of the GW signal features. Finally, the remaining useful life of the lap-joint is predicted and

validated experimentally.

1.2 Background

This section illustrate the necessary background and current state of the art under each focus

areas. Since this research work centers around the application of reversible adhesive, A detailed

background study on reversible adhesive is discussed first. Later, application of Guided waves for

bond motioning and existing fatigue prognosis techniques are discussed in detail.

1.2.1 Reversible Adhesive

Acrylonitrile butadiene styrene (ABS) terpolymer reinforced with 𝐹𝑒3𝑂4 nanoparticles was used

as adhesive to bond the substrates of the lap-joint. ABS is widely used in automotive, sports,

electronics and other consumer markets owing to its good balance between cost, mechanical

properties and ease of processing [56]. ABS pellets (CYCOLACTM Resin MG 94) obtained from

Sabic® corporation were dry mixed with 16 wt.% of 𝐹𝑒3𝑂4 nanoparticles (obtained from Sigma-

Aldrich®) before they were fed into the twin-screw driven extruder to produce the adhesive films.

16 wt.% of 𝐹𝑒3𝑂4 nanoparticles were chosen as they provided the optimum balance between

mechanical and thermal properties [69].

Dynamic mechanical analysis (DMA) was performed using DMA Q800 analyzer from TA

Instruments in order to determine the temperature dependent elastic modulus 𝐸 of the ABS polymer.
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All measurements were performed at a heating rate of 5𝑜𝐶/𝑚𝑖𝑛 in the temperature range between

20𝑜𝐶 and 160𝑜𝐶. A sinusoidal displacement of 20 `𝑚 with a frequency of 1 𝐻𝑧 was applied to the

sample holder throughout the experiment. The elastic modulus 𝐸 was calculated from the storage

modulus 𝐺 ′ and loss modulus 𝐺 ′′ using equation 1.1:

𝜎 = 𝜖𝐸 = 𝜖

(√︁
𝐺

′2 + 𝐺 ′′2
)
, (1.1)

where 𝜎 is stress, and 𝜖 is strain. Note that in (1.1),𝐺 ′ represents the elastic stored energy when the

material is deformed, and 𝐺 ′′ represents the energy dissipation during the material deformation.

The temperature dependent elastic modulus obtained from DMA for ABS is shown in figure

1.3.

Figure 1.3: Dependence of ABS elastic modulus 𝐸 on temperature.

The dynamic viscosity a, which represents the internal resistance of a fluid to flow is also

obtained from the DMA, and is shown in figure 1.4.

In the process of EM bonding, the FMNPs embedded in the thermoplastic adhesive generate heat

using two possible mechanisms, such as hysteresis heating and Joule (resistive) heating. In case of

hysteresis heating, the cause of heat generation is a hysteresis loss in individual FMNPs (see Figure

1.5(d)) due to the reversal of magnetization [10]. In case of Joule heating, the heat is produced
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Figure 1.4: Dependence of ABS dynamic viscosity a on temperature.

owing to induced eddy currents passing through local agglomerations of FMNPs (see Figure

1.5(a)). figure 1.5(b,c) [15] with SEM images showing nanoparticles responsible for hysteresis

and Joule’s heating. The clustering of nano-particles is observed in the images acquired with the

Figure 1.5: Schematic of structural bonding using EM induction heating technique (e) with SEM
images (b,c) illustrating nanoparticles configuration responsible for joule (a) and hysteresis
heating (d).
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help of scanning electron microscopy (SEM). Induced eddy currents form loops as demonstrated

in Figure 1.5(a). The power of generated Joule heat will increase with larger nano-particle clusters.

However, the authors consider hysteresis loss a dominant source of heat generation in the adhesive,

since FMNPs are generally well dispersed and clusters are less common. Properties of 𝐹𝑒3𝑂4

nano-particles are given in Table 1.1, and the schematic of the adhesive bond-line of the lap-joint

is shown in Figure 1.5(e).

Properties Value Unit
Size 50-100 𝑛𝑚

Density 5180 𝑘𝑔

𝑚3

Thermal Conductivity 90 𝑊
𝑚𝐶

Specific heat 148.63 𝐽
𝐾𝑔𝐶

Elastic modulus 161 𝐺𝑝𝑎

Table 1.1: Material properties of 𝐹𝑒3𝑂4 nano-particles.

1.2.2 Induction Bonding and Monitoring

The electromagnetic (EM) targeted heating of thermoplastic adhesives may offer multiple advan-

tages over heating in a conventional oven such as rapid processing, high repeatability [71], low

energy consumption and smaller space requirements. In this case, the adhesive is modified with

ferromagnetic nanoparticles (FMNP) that interact with the applied electromagnetic field at radio

or microwave frequencies [44, 18, 74]. The temperature of suspended nanoparticles rises ow-

ing to hysteretic losses, Neel relaxation and Brown relaxation losses, and friction losses making

the surrounding adhesive melt from the inside [10, 9, 12, 11]. If the adherends of the joint are

made of electrically insulating materials, they will be affected mainly by the heat transfer from the

FMNP-reinforced adhesive [69, 68, 70].

However, several technical challenges need to be addressed in order to increase the technology

readiness level (TRL) of the EM-activated reversible bonding. The temperature of the FMNP-

modified adhesive need to be monitored in real-time, and the energy of the excitation EM field

need to be actively controlled for optimal bonding and disassembly of a reversible structural joint.
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The adhesive may suffer chemical degradation if heated above the optimal processing temperature.

In contrast, the bond-line may develop kissing bonds if the adhesive is underheated. The amount

of generated heat within the adhesive may differ depending on the weight fraction of the FMNPs,

their type, average size, and surface functionalization that determine the specific power loss (SPL).

Another issue to consider is the thermal profile of the adhesive during the EM heating process as

it may be less uniform in comparison with heating in the convection oven. The local temperature

distribution in the adhesive depends on such factors as the quality of FMNP dispersion, the

uniformity of the applied EM field, and the overall geometry of the joint that determines the

thermal boundary conditions [22]. For instance, possible agglomeration of FMNPs may lead to

formation of eddy currents and Joule heating [10] in particulate clusters, and the shape of the coil

or microwave applicator will determine the distribution of the excitation field.

To the best of authors knowledge, the studies on monitoring the aggregate state and temperature

distribution within the FMNP-reinforced adhesives in manufacturing of structural joints have been

limited. Ciardiello et al [19] used a setup with infrared (IR) cameras to measure the temperatures of

the substrates and the exposed edges of the adhesive bond-line during the EM heating of the lap-shear

joint. Vattathurvalappil et al [69] deployed the distributed fiber-optic sensor within the bond-line

to measure the temperature of the adhesive using the optical frequency domain reflectometry

(OFDR). The sensor consisted of a free single mode optical fiber covered by an insulating tube

in order to decouple measured temperature from strain in the adhesive. The proposed technique

was successful in capturing the temperature distribution along the axis of the embedded sensor.

However, the diameter of the sensor was large enough to create a weak interface inside the bond-line

and thereby act as a flaw that reduced the load carrying capacity of the joint.

In this research work, we present an ultrasonic guided wave technique for real-time monitoring of

adhesive temperature and elastic modulus for controlled EM heating of FMNP-reinforced adhesive

in manufacturing of reversible composite joints. The validation experiments are performed on

a single lap-shear joint with glass fiber reinforced polymer (GFRP) adherends and nano-𝐹𝑒3𝑂4

reinforced acrylonitrile butadiene styrene (ABS) polymer adhesive. Guided waves (GW) are chosen
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as the sensing modality, because: 1) they are sensitive to material properties of a wave guide in

which they propagate (adhesive bond-line region); 2) being mechanical stress waves they do not

interfere with electromagnetic radiation during the EM heating; and 3) they can travel relatively

long distances with little attenuation so that the excitation and sensing transducers can be deployed

conveniently away from the heating zone.

Application of GWs for in-situ damage detection in adhesively bonded joints was successfully

demonstrated in several studies [30, 75, 77, 38]. GWs showed promise in identifying disbonds,

cracks, and in-service fatigue damage [63, 64, 16, 24, 25, 7, 8]. The influence of bond interface

properties on wave propagation was also thoroughly investigated [40, 63, 64]. Vogt et al.[76]

showed the possibility of using ultrasonic GWs for monitoring the curing process of epoxy resins.

Similarly, the experimental work by Hudson et al [32] featured a GW technique for real-time cure

monitoring of carbon fiber reinforced polymer (CFRP) composites. The concepts described in the

aforementioned studies were successfully implemented in a GW sensing technique proposed by the

authors.

The GW technique presented here allows for the indirect measurement of the average tempera-

ture and Young’s modulus of the FMNP-reinforced adhesive. Selected GW modes are excited in one

adherend, propagate across the adhesive bond-line and are sensed at the opposite adherend of the

lap-joint. Important properties such as amplitude, time-of-flight (TOF) and/or energy transmission

coefficient are extracted from the acquired GW signals. Properties of transmitted guided waves are

mapped into the adhesive temperature and modulus using validated finite element models (FEM)

and the results of the dynamic mechanical analysis (DMA). The average temperature estimated with

the help of the GW technique is also used as a feedback for the discrete control of the EM heater.

The heater is programmed to turn off automatically as soon as the adhesive temperature reaches

an optimal value so as to prevent charring. Additionally, the results of guided wave sensing are

experimentally validated using the OFDR technique reported by the Vattathurvalappil et al [69].
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1.2.3 Fatigue Diagnosis and Prognosis

Unlike mechanical fasteners or rivets in metallic components, composite structures prefer adhesively

bonded joints which not only maintains low weight but also distribute the force over larger areas

thereby avoiding stress concentrations. This extends the overall life cycle of a composite structure.

However, fatigue degradation often leads to formation of cracks or disbonds in the adhesive layer

which reduces the load carrying capacity of the joint. An un-monitored adhesive joint may be

detrimental to a composite structure if not replaced or repaired on time. Hence, efficient non-

destructive evaluation (NDE) technology is required to detect disbonds in adhesive joints and

ensure reliability of the complex structures.

In recent studies, guided waves(GW) have been demonstrated as a potential NDE technique for

monitoring disbonds in lap-joints of fiber-reinfored polymers [57, 61]. The propagation of guided

waves in adhesively bonded lap joints and the influence of bond conditions in wave parameters

have been thoroughly studied in the past [34, 40, 63, 64]. Recently, researchers used guided wave

sensing to detect dis-bonds, cracks, post-cure and perform in-service monitoring [16, 24, 25].

Further, behavior of guided wave in lap-joint fatigue loading is studied by Karpenko et al., [37].

Most of the studies in lap joints are conducted to monitor the changes in guided wave features with

damage propagation. There are minimal efforts in incorporating guided wave for prediction and

estimation of remaining useful life in lap-joints.

The primary challenge of prediction of remaining life in lap joints is that the physics behind

damage propagation in adhesively bonded structures is extremely complex and highly dependent

on the geometry, ply layup, dimensions and material property. In order to accurately compute

fatigue life of a lap joint, each time a new bonded joint has to be monitored, its corresponding FEM

model needs to be developed. Some modeling approaches have been performed to understand the

stress distribution and damage mechanism [2, 52]. Besides, all loading forces need to be accurately

modeled. If one or more physical phenomenon or parameters are overlooked, the prediction results

may be highly discrepant from the true state of the structure. Hence, it is imperative to utilize

periodic NDE or Structural Health Monitoring (SHM) data to track and predict fatigue damage in
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composite lap-joints in addition to physics based knowledge. Similar studies have been proposed

before where residual stiffness of composite coupons were computed based on Paris-Paris law

coupled with data from GW and optical NDE systems [8].

1.2.4 Healing of Thermoplastics

Repair or removal of damaged bond-line is expensive and it can even cause damage to adjoining

structures. Using thermoplastic adhesive with dispersed ferrous nano-particles can enable localized

healing and easy dismantling for re-usability of components. One of the commonly used bond-

line healing technique is micro-encapsulation approach. Here the healing agent and catalyst are

dispersed in epoxy matrix, Once a damage occurs the suspended capsules around the damage area

release the healing agent which react with dispersed catalyst to polymerize and activate the healing

process [79, 35]. Li et al [42], proposed a two step self-healing technique. In this method, first

the initial cracks are closed using a steel frame and later placed in oven to introduce heat that

activate healing of thermoplastic particles. Aubert et al [4], introduced cross-linked polymers that

are capable of healing cracks by formation of thermal activated covalent bond. This reaction is also

known as Diels-Adler reaction.

For bonding non-metallic substrates, Thermoplastics embedded with conductive nano-particles

are great choice. Verna and ciardiello [74, 18], illustrated the assembling and dismantling of

joints using Electro-Magnetic (EM) heating technique. EM offers various advantages over above

mentioned healing techniques. EM healing allows targeted healing, reduced energy usage, rapid

processing. Vattathurvalappil et al [72], demonstrated the ability of EM healing on impact damaged

bondline. Alternate magnetic field applied to dispersed ferromagnetic nanoparticles (FMNP)

introduces hysteresis losses in the FMNPs, which results in intensive heat dissipation and melting

from within the adhesive. However, it is essential to accurately measure the temperature of the

adhesive, since overheating may cause chemical degradation while repair. In this research work

an ultrasonic guided wave technique for online monitoring of the adhesive state while repair and

feedback control of the electromagnetic bonding process.
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1.2.5 Material Characterization

Application of GW in material characterization and damage detection has been successfully demon-

strated in several studies [77, 30, 75, 38] Recent studies used GW to detect disbonds, cracks, perform

quality control, and in-service fatigue monitoring [64, 16, 24, 25, 6, 7] A Multiple Transmitter Mul-

tiple Receiver (MTMR) configuration is generally used for material characterization. In most of

the above-mentioned studies, piezo-ceramic sensors are permanently bonded to the surface of the

substrate during inspection. In this study we have developed a smart skin where the emended

sensors can be reused. An inverse Rayleigh lamb wave technique is used to estimate the material

properties in different direction. This technique is validated on a aluminum sample in identifying

the material modulus in each direction. To enable rapid material classification, machine learning

models are used to process the data collected from smart skin.

1.3 Thesis Organization

There are seven chapters in this thesis. The first chapter 1 introduces the Motivation, objective

and illustrate the background work related to this research focus. Chapter 2 discusses the usage

of Finite Element Method to understand the behavior of guided wave propagation under different

bond-line state while curing. This chapter uses COMSOL for eigen-frequency analysis to determine

dispersion relation and ABAQUS for Time-dependent, guided wave propagation. Chapter 3 focuses

on developing an Guided Wave based method for online monitoring and controlling of induction

bonding. Chapter 4 deals with developing fatigue damage model for adhesively bonded lap-

joint and data driven prognosis technique for remaining useful life (RUL) estimation. Chapter 5

reports the advantage of controlled healing after fatigue damage in adhesively bonded lap-joint

Chapter 6 introduces a conformable Smart skin with embedded piezoelectric sensors for material

characterization. Finally, Chapter 7 summarizes the overall contribution to the field of structural

Health Monitoring (SHM) and provides concluding remarks and future recommendations.
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CHAPTER 2

FINITE ELEMENT MODELING OF GUIDED WAVES IN LAP JOINT

2.1 Introduction

This chapter first presents the Lap-joint geometry and material properties that are required for

modeling. Next, two finite element models developed to understand dispersion properties and

propagation of ultrasonic guided waves in the adhesively bonded lap-joint. The first model was

an eigenfrequency study that helped determine possible GW modes in the adherends and the

bond-line region of the joint. Results of the study were used to identify an optimal excitation

frequency and select the mode shape that would be most sensitive to changes in the modulus of

the adhesive. The second FE model was a time-dependent study of wave propagation from one

adherend to another adherend thorough the bond-line. Guided wave signals were simulated at

different adhesive temperatures in order to link the features in the signals such as energy, peak

amplitude or time-of-flight to adhesive state. Temperature-dependent viscoelastic properties of

the adhesive were taken from the DMA, and uniform temperature distribution in the adhesive was

assumed for simplicity.

2.2 Lap-joint Geometry and Material Properties

Single lap-shear joint was manufactured in accordance with the ASTM standard D-5868 [21]. The

adherends were made of Garolite G-10 glass-fiber reinforced epoxy. Garolite G-10 was selected due

to its low in-plane anisotropy, low thermal expansion coefficient, and high dimensional stability

at the ABS processing temperatures. In addition, Garolite was an electric insulator that didn’t

interact with the applied magnetic field to any appreciable degree. Adherends of the lap-joint had

the dimensions of 177.8 × 25 𝑚𝑚 with a thickness of 3.175 𝑚𝑚. Bond-line area was 25 × 25 𝑚𝑚2,

and the thickness of the nano 𝐹𝑒3𝑂4 reinforced ABS adhesive film was 1 𝑚𝑚. Figure 2.1 shows

the overall dimensions of the lap-joint along with sensor locations.
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Figure 2.1: Lap-joint dimensions.

Table 2.1 lists the respective material properties of the ABS adhesive and Garolite G-10

adherends. Modulus 𝐸 and dynamic viscosity a of the ABS were labeled as known functions

of temperature 𝑇 . However, material properties of Garolite were assumed to be constant in the

temperature range between 20𝑜𝐶 and 160𝑜𝐶.

Material Property Value/Function Unit
Adherend (Garolite) Young’s modulus (𝐸) 20 𝐺𝑃𝑎

Poission’s ratio (a) 0.3 -
Density (𝜌) 1799 𝑘𝑔

𝑚3

Adhesive (ABS) Young’s modulus (𝐸) 𝐸 (𝑇) 𝐺𝑃𝑎

Poission’s ratio (a) 0.35 -
Density (𝜌) 1050 𝑘𝑔

𝑚3

Dynamic viscosity ([) [(𝑇) 𝑃𝑎 × 𝑠
Table 2.1: Material properties of Garolite G-10 and ABS adhesive.

Pairs of rectangular lead zirconate titanate (PZT) wafers (7 𝑚𝑚 × 8 𝑚𝑚) with a thickness of

0.2 𝑚𝑚 were bonded to respective edges of the adherends as shown in figure 2.1. PZT wafers were

made of PZT-5A Navy Type-2 material from STEMiNC, and had the same resonant frequency of

275 𝑘𝐻𝑧. Electrical, mechanical and piezoelectric porperties of PZT wafers can be found in the

reference [66]. PZT wafers bonded to one adherend were used as actuators of ultrasonic guided

waves, and wafers bonded to the opposite adherend were used as receivers of guided waves as
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shown in figure 2.1.

2.3 Eigenfrequency Analysis to Determine Dispersion Relations

Guided waves are elastic waves that can propagate in plate-like structures, bars, rods, pipes, rails

and other waveguides of various cross-sections and periodicity. Compared to ultrasonic bulk waves,

guided waves are characterized by complex displacement fields or modes. Only certain modes can

be supported by the host structure, however there can be multiple at the same excitation frequency.

Guided waves are also dispersive, meaning that the phase and group velocities of each mode

are functions of excitation frequency. Hence, determining dispersion relations is key in current

application, since the goal is to identify modes with large displacements in the adhesive bond-line

of the lap-joint.

Dispersion relations for plates can be computed analytically (e.g. using Rayleigh-Lamb equa-

tion for isotropic plates [60, 49], Transfer Matrix method or Global Matrix method for classical

laminates[53]) based on the assumption that plates have infinite length and width. More sophis-

ticated techniques such as Semi-Analytical Finite Element (SAFE) method [60] were developed

for computation of dispersion relations of waveguides with arbitrary cross-sections. In this work,

we adopted Floquet-Bloch (F-B) technique ([28]) to identify dispersion curves of the adherends

and bond-line region of the lap-joint. The F-B technique doesn’t require development of complex

numerical scripts and can be easily implemented using commercial FEM software.

The concept of the F-B is to represent a continuous rectangular waveguide with a unit cell and

apply periodic displacement boundary conditions on the faces perpendicular to the direction of

wave propagation (see fig.2.2). Equation of motion for rectangular waveguide accepts plane wave

solutions of the form

u(𝑥, 𝑦, 𝑧, 𝑡) = U(𝑦, 𝑧)𝑒𝑖(𝑘𝑥𝑥−𝜔𝑡) , (2.1)

where u(𝑥, 𝑦, 𝑧, 𝑡) is displacement field, U(𝑦, 𝑧) is mode shape, 𝑘𝑥 is wavenumber component in 𝑥

direction, 𝜔 is angular frequency and 𝑖 =
√
−1. Note that U(𝑦, 𝑧) doesn’t depend on 𝑥, therefore

if we compute the displacement at a distance 𝐿 from the origin, it will differ from the original
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Figure 2.2: Floquet-Bloch theory for computation of dispersion relations of a rectangular
waveguide: (a) unit cell; (b) boundary conditions.

displacement only by a phase term:

u(𝑥 + 𝐿, 𝑦, 𝑧, 𝑡) = u(𝑥, 𝑦, 𝑧, 𝑡)𝑒𝑖𝑘𝑥𝐿 . (2.2)

Since the waveguide is a periodic structure, we can consider its unit cell of length 𝐿 and apply the

Floquet-Bloch theorem:

u𝑘𝐹𝐵
𝑥
(𝑥, 𝑦, 𝑧, 𝑡) = U𝑝 (𝑦, 𝑧)𝑒𝑖(𝑘

𝐹𝐵
𝑥 𝑥−𝜔𝑡) , (2.3)

u𝑘𝐹𝐵
𝑥
(𝑥 + 𝐿, 𝑦, 𝑧, 𝑡) = u𝑘𝐹𝐵

𝑥
(𝑥, 𝑦, 𝑧, 𝑡)𝑒𝑖𝑘𝑥𝐿 , (2.4)

where u𝑘𝐹𝐵
𝑥
(𝑥, 𝑦, 𝑧, 𝑡) is displacement in the unit cell, U𝑝 (𝑦, 𝑧) is mode shape in the unit cell (also

a periodic function in 𝑥), and 𝑘𝐹𝐵 is the Floquet wavenumber. Floquet wavenumber is related to

the original wavenumber as

𝑘𝑥 =
2𝜋𝑛
𝐿

+ 𝑘𝐹𝐵𝑥 , (2.5)

where 𝑛 is an integer and 𝐿 is the length of the unit cell. Owing to periodicity in Eq.2.4, dispersion

relations of the rectangular waveguide and its representative unit cell will be equal only for certain

values of 𝑘𝐹𝐵𝑥 :

𝜔(𝑘𝑥) = 𝜔(𝑘𝐹𝐵𝑥 ) ∀𝑘𝐹𝐵𝑥 ∈
(
0,
𝜋

𝐿

)
(2.6)
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The high-frequency limit of computation can be adjusted by changing the size of the unit cell 𝐿.

The F-B method for finding dispersion relations was implemented in Comsol Multiphysics 5.4.

Structural mechanics module was used to conduct an eigenfrequency study. Material properties for

FE simulation were the same as in section 2.2. It was assumed that the thermoplastic adhesive was

fully cured. Two separate unit cells were created to represent the adherend and bond-line region

of the lap-joint as shown in figure 2.3. The unit cells were meshed using tetrahedral elements, and

Figure 2.3: Unit cells for computation of dispersion relations using Floquet-Bloch approach: (a)
adherend; (c) bond-line region.

periodic displacement boundary conditions were applied to highlighted faces as defined in Comsol

Multiphysics 5.4:

u𝑑𝑠𝑡 = u𝑠𝑟𝑐𝑒−𝑖𝑘
𝐹𝐵
𝑥 (r𝑑𝑠𝑡−r𝑠𝑟𝑐) (2.7)

where, 𝑘𝐹𝐵𝑥 is the Floquet wavenumber; u𝑠𝑟𝑐 and u𝑑𝑠𝑡 are displacements at source and destination,

respectively; and r is the spatial coordinate vector. Note that in our case 𝐿 = |r𝑑𝑠𝑡 − r𝑠𝑟𝑐 |.

The Floquet wavenumber 𝑘𝐹𝐵𝑥 was parametrically swept while solving for angular frequency

𝜔 = 2𝜋 𝑓 and mode shapes. Corresponding results for the Garolite adherend are shown in figure2.4.

There are four fundamental modes in low frequency region under 𝑓 = 40 𝑘𝐻𝑧, out of which one is

longitudinal (𝐿0), one is torsional (𝑇0) and two are flexural (𝐹𝑧0 and 𝐹𝑦0).
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Figure 2.4: Eigenfrequency analysis of the Garolite adherend: (a) wavenumber versus excitation
frequency; (b) mode shapes.

Phase 𝑐𝑝ℎ and group 𝑐𝑔𝑟 velocities were computed using the equations 2.8 and 2.9, respectively:

𝑐𝑝ℎ =
𝜔

𝑘𝑥
, (2.8)

𝑐𝑔𝑟 =
𝑐𝑝ℎ

2

𝑐𝑝ℎ − 𝑓 𝑎
𝜕𝑐𝑝ℎ
𝜕 ( 𝑓 𝑎)

, (2.9)

where 𝑎 = ℎ
2 is the half thickness of the unit cell. The results are demonstrated in figure 2.5.

The fundamental longitudinal mode 𝐿0 was selected for excitation in the lap-joint. As shown

in Figure 2.5, the 𝐿0 mode is largely non-dispersive under 40 𝑘𝐻𝑧, which helps preserve the shape

of the excitation signal and simplify signal processing. In addition, the 𝐿0 mode is the easiest to

identify among the other modes and reflections in the received signal as it has the highest group

velocity. The authors verified that in the low frequency region with only fundamental modes, 𝐿0

was best excited by square surface-bonded PZT wafers at 35 𝑘𝐻𝑧. The corresponding mode shape
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Figure 2.5: Dispersion curves of Garolite adherend: (a) phase velocity; (b) group velocity.

is shown in Figure 2.6. Figure 2.6 demonstrates that the 𝐿0 at 35 𝑘𝐻𝑧 is characterized by dominant

in-plane displacement 𝑢𝑥 in the transect of the adhesive bond-line. Strong displacement in the

bond-line ensures high sensitivity of transmitted guided waves to adhesive stiffness change.
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Figure 2.6: Displacement profile 𝑢𝑥 , and 𝑢𝑧 for garolite adherend (a) and lap joint (b) in 𝐿 mode at
35 𝑘𝐻𝑧

2.4 Time-depended Model of Guided Wave Propagation

ABAQUS CAE with Implicit Dynamic Analysis (IDA) was used to simulate the piezoelectric wafers

and guided wave propagation across the lap-joint. The geometry of the lap-joint is presented in

figure 2.1.
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2.4.1 Maxwell Viscoelastic Model of the Adhesive

Adhesive was modeled as a viscoelastic material in order to account for the damping of ultrasonic

waves. The generalized 4𝑡ℎ order Maxwell viscoelastic model was incorporated into the FE analysis.

Equivalent mechanical representation of the viscoelastic model is demonstrated in figure 2.7.

Figure 2.7: Equivalent mechanical representation of Maxwell viscoelastic model.

The bulk and shear relaxation moduli can be expanded in the Prony series [17] as shown in

equation 2.10 and 2.11:

𝐾 (𝑡) = 𝐾∞ +
4∑︁
𝑖=1

𝑘𝑖𝐾0𝑒
−𝑡
𝜏𝑖 (2.10)

𝐺 (𝑡) = 𝐺∞ +
4∑︁
𝑖=1

𝑔𝑖𝐺0𝑒
−𝑡
𝜏𝑖 (2.11)

𝐺0 = 𝐺∞ +
4∑︁
𝑖=1

𝑔𝑖 (2.12)

𝐾0 = 𝐾∞ +
4∑︁
𝑖=1

𝑘𝑖, (2.13)

where 𝑔𝑖, 𝑘𝑖 and 𝜏𝑖 are Prony parameters [65]. Note that 𝑔𝑖 = 𝐺𝑖

𝐺0
is the shear relaxation modulus

ratio; 𝑘𝑖 = 𝐾𝑖

𝐾0
is the bulk relaxation modulus ratio; and 𝜏𝑖 = [𝑖

𝐸𝑖
is the relaxation time.
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2.4.2 Guided Wave Excitation and Sensing using Surface-bonded PZT Wafers

The voltage signal applied to actuating PZT wafers was the Morlet wavelet with the central frequency

𝑓0 = 35 𝑘𝐻𝑧 and 𝑉𝑝𝑝 = 20 𝑉 as shown in figure 2.8. Figure 2.9 illustrates how the top and bottom

PZT wafers were driven in phase in order to generate purely 𝐿0 mode (see figure 2.5).

Figure 2.8: Excitation signal (electric potential) applied to actuating PZT wafers.

Figure 2.9: Collocated PZT wafer excitation for generation of the 𝐿0 mode.

2.4.3 FE Model Configuration

Substrate, adhesive, and piezoelecric domain are all defined as part, meshed (Structured), and

assembled to form a single lap joint as shown in figure 2.10. The adherends were meshed using

first order C3D8 (3D-brick) elements with maximal size of 1 × 1 × 0.78 𝑚𝑚, and the adhesive

bond-line was meshed using C3D8R elements with maximal size of of 1 × 1 × 0.33 𝑚𝑚 so that

the bond-line had at least 3 elements in the thickness direction. PZT wafers were assumed ideally
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Figure 2.10: Meshed lap-joint geometry in ABAQUS CAE.

bonded to the adherends, and were represented using C3D8E piezoelectric elements with maximal

size of 1× 1× 0.2 𝑚𝑚. For the excitation frequency of 35 𝑘𝐻𝑧, selected mesh size provided nearly

92 nodes per wavelength of the 𝐿0 mode.

The implicit solver was configured to run simulations with fixed 0.1 `𝑠 time increments. The

von Misses stress and displacements were saved for every time increment in order to create snapshots

of the ultrasonic wave field. The parametric study was performed by sweeping through material

properties of the ABS thermoplastic adhesive obtained experimentally using the DMA.

2.4.4 FE Simulation Results

The wave propagation in the lap-joint is simulated for the time period of 200 `𝑠. Within this time

span, the excited longitudinal mode 𝐿0 propagates from PZT transmitters across the adhesive bond-

line and reaches the PZT receiver pair. Voltages generated by the PZT receivers are summed to

reduce the effect of flexural modes on the resulting signal. Guided waves undergo mode conversions

while entering and while leaving the adhesive bond-line region. This phenomenon combined with

varying thicknesses and different dispersion relations in the substrates and the adhesive bond-line
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may render signal analysis complicated. Hence, in this study, the measured GW signal is cropped

to include mostly the fastest 𝐿0 mode, then its energy is monitored in order to evaluate the bond

condition [59].

Figure 2.11: Displacement fields in the lap-joint at 90 `𝑠 corresponding to different adhesive
states: (a) fully cured; (b) partially melted; and (c) fully melted.

Guided wave propagation corresponding to different adhesive states is simulated by changing

the elastic modulus 𝐸 of the adhesive and its dynamic viscosity a as per experimental DMA results

from Figure 1.3 and Figure 1.4. The ABS adhesive at 30 ◦C, 110 ◦C and 130 ◦C will be in a fully

cured, partially melted and fully melted state, respectively. Thus, the simulation results at these

three temperatures are discussed in detail for better understanding of guided wave transmission

through the adhesive bond-line. Figure 2.11 shows snapshots of the corresponding displacement

fields in the lap-joint at 90 `𝑠. The energy transfer of guided waves from the top Substrate 1 to the

bottom Substrate 2 reduces slightly in the case of partially melted adhesive compared to the case of

the fully cured adhesive. However, when the adhesive is fully melted, the energy transfer is nearly

zero. In the process of transitioning from the fully cured to the fully melted state, the magnitude
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of displacements increases in the top Substrate 1. This indicates that guided waves are trapped in

the Substrate 1. They reflect from the top edge in the bond-line region and propagate backwards

to the transmitter PZT pair. Similar observations are reflected in Figure 2.12 that demonstrates the

voltages generated by the PZT receiver pair.

Figure 2.12: Voltage acquired by the receiver transducer pair

Figure 2.13 presents the guided wave transmission coefficient 𝛼 as a function of the adhesive

temperature. In this case, the simulated guided wave signals were cropped between 𝑡1 = 50 `𝑠

and 𝑡2 = 175 `𝑠 (see Figure 2.12), and 𝛼 was computed as per the Eq. 4.5 for the frequencies

between 𝑓1 = 10 𝑘𝐻𝑧 and 𝑓2 = 60 𝑘𝐻𝑧. The relationship in Figure 2.13 was later used during

experiments for the real-time estimation of the adhesive state and temperature from the acquired

guided wave signals. Figure 2.14 demonstrates the non-linear dependence of the simulated guided

wave transmission coefficient 𝛼 with respect to the adhesive modulus.
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Figure 2.13: Guided wave transmission coefficient, 𝛼 as a function of the adhesive temperature.

Figure 2.14: Guided wave transmission coefficient, 𝛼 as a function of the adhesive modulus.
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CHAPTER 3

PROCESS MONITORING AND CONTROLLED FABRICATION OF REVERSIBLE
ADHESIVE BONDED LAP JOINTS

3.1 Introduction

This chapter presents an ultrasonic guided wave technique for online monitoring of the adhesive

state and feedback control of the electromagnetic bonding process. Experiments were carried out

on a single lap-shear joint with nano-Fe3O4 reinforced thermoplastic adhesive and non-conductive

glass fiber reinforced polymer (GFRP) adherends. Ultrasonic guided waves were made to propa-

gate across the bond-line of the joint by exciting and sensing them using miniature piezoelectric

wafers. Analysis of dispersion relations and dynamic wave propagation were performed using finite

element modeling (FEM). Fundamental longitudinal mode 𝐿0 at 35 𝑘𝐻𝑧 was found optimal for

bond process monitoring. Mapping between the FE-simulated transmission coefficient of 𝐿0 and

actual temperature of the thermoplastic adhesive was established using the DMA test data. Real-

time guided wave measurements were used as a feedback in the discrete control of the induction

heater so as to provide optimal bonding and prevent adhesive charring. The developed ultrasonic

technique was successfully validated by fiber-optic temperature sensing. Single mode optical fiber

was embedded inside the adhesive bond-line, and dynamic distributed temperature measurements

were acquired using commercial optical frequency domain reflectometer (OFDR). Experiments

demonstrated good agreement between guided wave measurements and OFDR system. Overall,

the results indicate the potential of guided wave technique for in-situ monitoring and controlled

bonding of reversible lap-joints using electromagnetic heating. Further, Lap-joint samples prepared

with guided wave controlled system offer better ultimate strength compared to lap-joints processed

without guided wave control.
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3.2 Experimental Setup for Rapid EM Bonding with Temperature Feedback

The experimental setup consist of separate systems for 1) EM targeted heating of the adhesive,

2) guided wave monitoring of the adhesive state, and 3) OFDR distributed temperature sensing

using the embedded optical fiber as shown in figure 3.1. All systems are controlled using a PC

and software developed in MatLab. EM system heats up the nano 𝐹𝑒3𝑂4 reinforced ABS adhesive

Figure 3.1: Schematic experimental Setup with direction of data and control flow

based on the principles discussed in Chapter 1. The temperature and aggregate state of the adhesive

is monitored by registering ultrasonic guided waves transmitted through the bond-line. Application

of the electromagnetic field is controlled in a discrete manner. The heater is turned off when guided

wave measurements are being acquired, and it turns on for 0.5 𝑠 afterwards. The process continues

until the optimal melt temperature of the adhesive is reached. A fiber optic temperature sensor is

deployed within the adhesive layer in order to validate the acquired guided wave measurements.

Ultrasonic guided waves fill the whole cross-section of the bond-line, hence provide the information

about the average temperature of the adhesive. In contrast, the OFDR system furnishes localized

temperature measurements distributed along the whole length of the embedded optical fiber.
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3.2.1 EM Induction Heating System

Electromagnetic heating of nano 𝐹𝑒3𝑂4 reinforced ABS adhesive was performed using IHG06A1

induction heater from Across International shown in figure 3.2 (a). Commercial induction heater

could operate in the frequency range of 100-500 𝑘𝐻𝑧. It had a maximum active current of 30

𝐴 and maximum output power of 6.6 𝑘𝑊 . The EM heater was remotely controlled via optically

isolated USB relay switch from SMAKN® that was connected to a PC. Remote control allowed for

the implementation of the pulse-width modulation (PWM), in which the heater could be turned on

and off for short time intervals of 0.5-1 𝑠.

Figure 3.2: (a) Induction processing system with non-conductive supportive stand and fixture. (b)
Lap-joint before processing withing the non-conductive ceramic fixture. (c) Lap-joint after
processing withing the non-conductive ceramic fixture.

Induction heater was equipped with IHHC 2×1 water cooled rectangular coil (50.8 𝑚𝑚 × 25.4

𝑚𝑚). The coil was made of 6 turns of a hollow copper profile with a square cross-section of

6.35 𝑚𝑚 × 6.35 𝑚𝑚. Induction heater automatically adjusted the excitation frequency to 200 𝑘𝐻𝑧

for optimal impedance matching with the coil. A non-conductive ceramic fixture for holding the
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lap-joint was inserted into a coil as shown in 3.2. Guide pins were used to maintain bond-line

thickness and align the substrates to prevent them from moving during EM bonding.

3.2.2 GW Measurement System

The block diagram of the guided wave system is shown in figure 3.3. It consisted of 1) PZT wafers

deployed on the lap-joint, 2) arbitrary waveform generator 33220A from Keysight Technologies,

3) acoustic emission pre-amplifier, and 4) data acquisition (DAQ) device USB-6255 from National

Instruments. PZT wafers were bonded to the Garolite adherends using instant Loctite epoxy. PZT

transmitters were electrically connected to the output of the waveform generator. Excitation was

done using a Morlet wavelet function with adjustable center frequency, bandwidth and amplitude.

Guided waves transmitted through the adhesive bond-line were sensed using PZT receivers, which

were connected to the multi-channel acoustic pre-amplifier. Signals from the pre-amplifier were

acquired by the DAQ with a sample rate of 1.25𝑀𝑆/𝑠 and no averaging. Data was then transferred to

a PC with MatLab for real-time processing. Guided wave measurement system was only activated

discretely for approximately 50 𝑚𝑠 time intervals when the EM heating was off so as to avoid

electromagnetic interference and noise.

In order to simplify the analysis of multi-modal guided wave signals, it was desirable to actuate

only one guided wave mode in the adherend of a lap-joint. This was accomplished by frequency

tuning and collocated actuation/sensing. Frequency tuning was established by Giurgiutiu et al

[27]. The technique helps identify the frequencies that enhance the excitation of certain GW modes

while suppressing the excitation of other modes. Frequency tuning is accomplished by analyzing

the strain response of a PZT coupled with a host structure. In contrast, collocated actuation/sensing

technique requires two PZT wafers symmetrically bonded to different sides of the adherend. When

wafers are driven in-phase (the electric field of the same polarity is applied across the similar faces),

they apply extension forces to the structure, thus generating only symmetric modes (see fig.2.9).

Conversely, if the pair is driven out-of-phase, the host structure is subjected to bending moment,

and only antisymmetric modes are actuated.
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Figure 3.3: Guided Wave system

Guided wave signals acquired at different adhesive temperatures were processed in MatLab in

order to estimate their energy spectral density (ESD), 𝐸𝑆:

𝐸𝑆 =

∫ 𝑓2

𝑓1

|𝑠( 𝑓 ) |2𝑑𝑓 , (3.1)

where 𝑠( 𝑓 ) =
∫ ∞
−∞ 𝑒

−𝑖(2𝜋 𝑓 )𝑡𝑠(𝑡)𝑑𝑡 is the Fourier transform of the acquired and cropped signal 𝑠(𝑡),

and 𝑓1 and 𝑓2 are the lower and upper frequencies selected for the analysis, respectively. Then the

guided wave transmission coefficient 𝛼 was evaluated for each signal as:

𝛼(𝑛) =
𝐸
(𝑛)
𝑆

𝐸
(0)
𝑆

, (3.2)

where 𝐸 (𝑛)
𝑆

is the ESD of the 𝑛-th guided wave signal acquired at adhesive temperature 𝑇 (𝑛) , and

𝐸
(0)
𝑆

is the ESD of the baseline signal acquired with fully cured adhesive at room temperature 𝑇 (0) .

Note that 𝑇 (𝑛) > 𝑇 (0) during EM heating, but 𝛼(𝑛) < 𝛼(0) as adhesive heats up and transitions from

solid to viscoelastic state. The condition for stopping the EM heating process was

𝛼
(𝑛)
𝑆𝑇𝑂𝑃

= 0.05𝛼(0) . (3.3)
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In this case, the developed software would send an 𝑂𝐹𝐹 command to the relay controlling the

heater. The 5% threshold accounted for electric noise in guided wave measurements and small

acoustic energy transferred via ceramic fixture bypassing the adhesive bond-line of the lap-joint.

3.2.3 OFDR Measurement System

In order to measure the temperature of the adhesive, a fiber-optic sensor from Luna Innovations

was embedded into the center of the adhesive bond-line as demonstrated in figure 2.1. The sensor

was a free single mode fiber (SMF) inserted into an insulating polymer tube with outer diameter of

1 𝑚𝑚. Distributed temperature measurements in the bond-line were acquired using Luna ODiSI-B

optical frequency domain reflectometer (OFDR). Luna ODiSI-B OFDR system operated based

upon Raleigh back-scattering in SMF. Temperature profiles along the fiber length were acquired at

10 𝐻𝑧 and with a spatial resolution of 1.5 𝑚𝑚. The OFDR system was calibrated with respect to

the ambient temperature prior to EM bonding.

3.3 Experimental Results and Discussion

Reversible bonding was performed on the lap-joint with Garolite adherends and nano-Fe3O4 rein-

forced thermoplastic ABS adhesive (see Figure 1.5). The fully cured lap-joint was placed inside

the inductive coil with electrically insulating fixture, and the thermoplastic adhesive was remotely

heated using the electromagnetic system with PWM described in Section 3.2.1. In order to monitor

the melting and curing processes, the ultrasonic measurements were acquired by sensing guided

waves propagating through the adhesive bond-line as explained in Section 3.2.2. Concurrent

measurements of temperature distribution within the adhesive bond-line were acquired using the

embedded fiber-optic sensor and the OFDR technique. OFDR distributed temperature sensing

using LUNA ODiSI-B instrument served as a validation for the proposed guided wave technique.

Guided wave signals were acquired in real-time and the transmission coefficient of the 𝐿0 mode,

𝛼 was converted into the elastic modulus of the adhesive, 𝐸 using FE results from Section 2.4.4

in order to provide the estimate of the adhesive state. Ultrasonic measurements were used as a
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feedback to prevent adhesive degradation by stopping the EM heating, when 𝐸 was close to zero

(see Eq. 3.2.1).

Additional experiment was performed for a reference. In the reference experiment, the EM

heater was activated manually, the PWM was disabled, and there was no feedback in the form

of guided wave sensing. Only the OFDR temperature measurements were acquired in order to

estimate the time it takes for the adhesive to develop damage due to over-heating.

3.3.1 Fiber-optic Sensing

The optical fiber sensor was embedded in the adhesive bond-line of the lap-joint as shown in Figure

2.1 and Figure 3.1. LUNA ODiSI-B system provided distributed temperature measurements along

the whole fiber length with the spatial resolution of 1𝑚𝑚. It should be noted that the measurements

of temperature distribution inside the adhesive bond-line were by no means comprehensive, since

only a single section of the optical fiber was utilized, and no other segments of the fiber were routed

in the perpendicular direction. However, the acquired OFDR data was sufficient for validation of

guided wave sensing.

Multiple temperature profiles in the embedded section of the optical fiber were acquired over

the course of EM heating and cooling of the adhesive. Each distributed measurement was later

averaged over the length of the embedded section of the fiber in order to provide an integrated

temperature estimate of the adhesive bond-line. The obtained OFDR results are demonstrated in

figure 3.4.

In the reference case of EM heating with no feedback control and no PWM (red curve in Figure

3.4a), the average adhesive temperature reaches a critical value of 140◦C within about 15 𝑠. This

indicates that the melting process is rapid and may be difficult to control manually. Overheating

of the adhesive above 140◦C would lead to its thermal degradation and reduced load carrying

capacity of the lap-joint. On the other hand, if guided wave sensing is enabled and the EM heating

is controlled using PWM, the melting process is stopped when the average temperature in the

adhesive is just over 130◦C (see black curve in Figure 3.4a). Note that the adhesive cooled down
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Figure 3.4: Distributed temperature measurements in the adhesive bond-line using LUNA
ODiSI-B OFDR system and embedded SMF optical fiber: (a) average temperature along the
embedded section of the optical fiber as a function of time; (b) temperature distribution at 𝑡 = 30 𝑠;
(c) temperature distribution at 𝑡 = 65 𝑠; and (d) temperature distribution at 𝑡 = 150 𝑠.

and cured completely at around 450 𝑠, and only the first 170 𝑠 of the process are shown in Figure

3.4a. Periodic variations of temperature during the EM targeted heating of the adhesive at 5-65 𝑠

are caused by the PWM.

Figure 3.4b, Figure 3.4c and Figure 3.4d demonstrate temperature profiles in the adhesive at

different stages of the EM bonding. Temperature distributions in Figure 3.4b and Figure 3.4c

correspond to the heating stage. The authors suggest that the non-uniformity of these profiles is

likely caused by: 1) the non-uniform distribution of Fe3O4 nanoparticles during manufacturing, or

2) local agglomerations of nanoparticles inside the adhesive as they are displaced by the applied

electromagnetic field. Temperature profile in Figure 3.4d corresponds to the cooling stage. This

profile is largely determined by convection heat loss, since the adhesive is approximately 15◦C

hotter in the center of the bond-line compared to the edges.
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3.3.2 Guided Wave Sensing

The 𝐿0 mode at 35 𝑘𝐻𝑧 was excited in the Substrate 1, and resulting guided waves were sensed in

the Substrate 2 using the surface-bonded PZT wafers as described in Section 3.2.2. Guided wave

propagated across the adhesive bond-line of the lap-joint at all stages of the EM heating process.

Figure 3.5 shows the signals acquired by the receiving PZT pair. The amplitudes of transmitted

guided waves reduced as adhesive melted.

Figure 3.5: Experimental received signal at different adhesive state

Overall, obtained results agreed well with FE models from Section 2.4.4 (see Figure 2.12) in

terms of capturing the dependence of the transmission coefficient on the adhesive state. However,

shapes of the experimental and simulated guided waves signals were slightly different owing to 1)

the assumption of ideal bonding of PZT wafers in the models; 2) mismatch between the assumed

and actual material properties of adhesive and adherends; 3) the assumption of uniform temperature

distribution in the adhesive; and 4) minor variations of lap-joint geometry and placement of PZT

wafers compared to the original CAD drawings.

Figure 3.6 shows the transmission coefficient, 𝛼 computed for measured signals using Eq. 2

and Eq. 3. The nano-Fe3O4 reinforced adhesive was fully melted after 70 𝑠 of EM heating with

PWM as 𝛼 reduced to nearly zero. After the heater was disabled, the adhesive started to cool down

and returned back to the solid state.
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Figure 3.6: Experimental guided waves transmission coefficient (𝛼𝐸𝑋𝑃) during adhesive
processing

3.3.3 Comparison of Guided Wave and OFDR Sensing

The average temperature in the embedded section of the optical fiber (see Figure 3.4) was converted

to the elastic modulus, 𝐸 using the DMA data for the ABS adhesive. Since, the DMA provided

the elastic modulus only for a few temperature values (see Figure 1.3), a linear interpolation was

performed on DMA curve in order to map all OFDR temperature averages. Black curve in Figure

3.7 shows the elastic modulus, 𝐸 estimated using the OFDR system. Similarly, the elastic modulus,

𝐸 was computed from guided wave transmission coefficient 𝛼𝐸𝑋𝑃 (see Figure 3.6) using DMA (see

Figure 1.3) and FE simulations from Section 2.4.4. The corresponding result is presented in Figure

3.7 as a red curve.

The elastic modulus estimated with the help of both sensing modalities reduced from it’s

original value to nearly zero when the adhesive was completely melted, and slowly raised while the

adhesive was cooling and curing. This behavior confirmed solid-to-viscoelastic and viscoelastic-

to-solid transitions observed visually during the experiments. Hence, guided wave and OFDR

techniques successfully captured critical aspects of adhesive processing and helped prevent adhesive

degradation. Both techniques can be effectively used for real-time monitoring of EM bonding of

FMNP-reinforced thermoplastics. Minor differences between the two curves in Figure 3.7 are

explained by the assumptions made in the FE modeling of guided wave propagation as mentioned
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Figure 3.7: Elastic modulus of nano-Fe3O4 reinforced ABS adhesive estimated using guided wave
sensing (black curve) and OFDR sensing (red curve).

in Section 2.1, as well as by the fact that the temperature inside the adhesive was measured only

along one segment of the embedded optical fiber.

3.4 Mechanical Testing and Validation

In this section, we are mechanically testing the EM bonded samples prepared with and without

guided wave control. To perform a shear strength comparison a new bond line needs to be prepared.

In this chapter, we assessed the ability of guided wave technique to monitor the phase change of the

adhesive during induction bonding. It is important to note that while preparing a new bond line,

initially there is no transfer of stress wave across the bond line as the adhesive is not melted yet

and are not chemically bonded to the substrate. Thus, a small amount to uncontrolled intermittent

heating is applied as shown in figure 3.8. It can be seen that there is a 20𝑠 of intermittent heating

to achieve initial melting of adhesive strips. The initial heat is only for a short period of time thus

it does not create any adhesive degradation. The process monitoring system developed in section

3.2.2 is modified to wait for 100𝑠 and monitor the energy transmission coefficient 𝑇𝑐 across the

bond-line. If the𝑇𝑐 value did not reach 90% of reference𝑇𝑐 value, then the heating cycle is repeated.

the reference 𝑇𝑐 is measured using an oven bonded joint. Figure 3.8 shows the lap-joint took three

heating cycles to achieve 90% of reference 𝑇𝑐 value. Most samples achieve 90% of reference 𝑇𝑐
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value within three heating cycle.

Figure 3.8: Preparation of new bond line using controlled induction heating technique

From figure 3.8 it can be seen that the duration of heating for each heating cycle increases as 𝑇𝑐

value increases, this indicates that after each heating cycle there are more area of chemical bonding

then the previous cycle.

Figure 3.9: Representative load vs displacement comparison of lap-joints process with and
without GW control

Samples prepared with and without GW controlled processing are tested in Mechanical Testing

System for ultimate shear strength. Monotonic lap-shear tests are conducted in the MTS machine

at the rate of 0.1𝑚𝑚/𝑚𝑖𝑛 as shown in figure 3.9. It can seen that the lap-joint processed by GW

control shows much higher ultimate strength and also higher displacement to failure. This clearly
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indicate the effectiveness of controlled heating. Figure 3.10 shows Mean and variance of ultimate

strength comparison between lap-joints process with and without GW control. The low variance

observed in the controlled processing indicates the reliability and uniform heating of samples.

Figure 3.10: Mean and variance of ultimate strength comparison between lap-joints processed
with and without GW control

3.5 Summary and Conclusion

Ultrasonic guided wave sensing and optical frequency domain reflectometry were successfully

implemented for real-time monitoring of melting and curing processes in a Garolite lap-shear joint

with nano-Fe3O4 reinforced ABS adhesive. The thermoplastic adhesive was remotely heated at

200 𝑘𝐻𝑧 with the help of a 6.6 𝑘𝑊 commercial induction heater and a water-cooled solenoid.

The embedded FMNPs interacted with the applied electromagnetic field by generating heat due to

hysteresis losses and eddy currents between locally agglomerated nano-particles. The electromag-

netic system was controlled using pulse-width modulation and was programmed to terminate the

heating process based on guide wave measurements so that the adhesive wouldn’t suffer thermal

degradation.

Guided waves were excited and sensed using surface-bonded PZT wafers on both adherends.

Dispersion relations corresponding to the adherends and the bond-line region were obtained in
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Comsol Multiphysics 5.4 based on the Floquet-Bloch theory. The state of adhesive was actively

monitored by passing the fundamental 𝐿0 mode at 35 𝑘𝐻𝑧 across the bond-line from one adherend

to another. The 𝐿0 mode was selected due to its high sensitivity to material properties of the

adhesive and its high group velocity that helped simplify signal processing. Ultrasonic wave

propagation was simulated in Abaqus CAE 6.14 in order to map the transmission coefficient of the

𝐿0 mode to the Young’s modulus of the adhesive. In FE modeling, the nano-Fe3O4 reinforced ABS

plastic was simulated as a viscoelastic material, and it’s properties were obtained experimentally

using the dynamic mechanical analysis. A non-linear relationship between the Young’s modulus of

the adhesive and the FE transmission coefficient of the 𝐿0 mode was later applied to experimental

guided wave signals.

In addition to guided wave measurements, distributed measurements of temperature within

the adhesive bond-line were successfully acquired using the strategically embedded optical fiber.

A Rayleigh back-scattering OFDR system ODiSI-B from Luna Innovations provided temperature

profiles of the adhesive at a rate of 10 𝐻𝑧 and with a spatial resolution of 1.5 𝑚𝑚. Measured

temperature distributions were averaged along the length of the embedded section of the optical

fiber. Then, similarly to the guided wave technique, temperature averages were converted to the

Young’s modulus of the adhesive based on the DMA data.

The advantages of EM bonding with guided wave and fiber-optic feedback were successfully

demonstrated in the experiments with a manufactured lap-joint specimen. Implementing guided

wave and fiber-optic sensing provided real-time monitoring of the adhesive state by displaying the

effective Young’s modulus of the adhesive. Both techniques accurately captured a transition from

a solid to a viscoelastic state at which the modulus dropped down to nearly zero values. At that

stage, the EM heating was automatically disabled at a prescribed temperature of 130◦C to avoid

thermal damage. In addition, guided wave and fiber-optic systems correctly sensed the curing of

the adhesive after the EM field was removed. As the lap-joint was let cool down to the room

temperature and eventually turned solid, measured Young’s modulus of the adhesive went up to

its original value observed before EM heating. Obtained experimental results demonstrated the
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stability of the proposed EM bonding process. Mechanical validation test results indicate that

the bondlines processed with GW control offer better ultimate strength compared to uncontrolled

processing.
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CHAPTER 4

DIAGNOSIS AND PROGNOSIS OF FATIGUE DAMAGE IN LAP JOINT

4.1 Introduction

Composites have been widely utilized in aviation, automotive and marine industries due to their

excellent properties of light weight and high tensile stiffness. Unlike mechanical fasteners or

rivets in metallic components, composite structures prefer adhesively bonded joints which not

only maintains low weight but also distribute the force over larger areas thereby avoiding stress

concentrations. This extends the overall life cycle of a composite structure. However, fatigue

degradation often leads to formation of cracks or disbonds in the adhesive layer which reduces

the load carrying capacity of the joint. An unmonitored adhesive joint may be detrimental to a

composite structure if not replaced or repaired on time. Hence, efficient non-destructive evaluation

(NDE) technology is required to detect disbonds in adhesive joints and ensure reliability of the

complex structures.

In recent studies, guided waves(GW) have been demonstrated as a potential NDE technique for

monitoring disbonds in lap-joints of fiber-reinfored polymers [57, 61]. The propagation of guided

waves in adhesively bonded lap joints and the influence of bond conditions in wave parameters

have been thoroughly studied in the past [34, 40, 63, 64]. Recently, researchers used guided wave

sensing to detect dis-bonds, cracks, post-cure and perform in-service monitoring [16, 24, 25].

Further, behavior of guided wave in lap-joint fatigue loading is studied by Karpenko et al., [37].

Most of the studies in lap joints are conducted to monitor the changes in guided wave features with

damage propagation. There are minimal efforts in incorporating guided wave for prediction and

estimation of remaining useful life in lap-joints.

The primary challenge of prediction of remaining life in lap joints is that the physics behind

damage propagation in adhesively bonded structures is extremely complex and highly dependent

on the geometry, ply layup, dimensions and material property. In order to accurately compute
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fatigue life of a lap joint, each time a new bonded joint has to be monitored, its corresponding FEM

model needs to be developed. Some modeling approaches have been performed to understand the

stress distribution and damage mechanism [2, 52]. Besides, all loading forces need to be accurately

modeled. If one or more physical phenomenon or parameters are overlooked, the prediction results

may be highly discrepant from the true state of the structure. Hence, it is imperative to utilize

periodic NDE or Structural Health Monitoring (SHM) data to track and predict fatigue damage in

composite lap-joints in addition to physics based knowledge. Similar studies have been proposed

before where residual stiffness of composite coupons were computed based on Paris-Paris law

coupled with data from GW and optical NDE systems [8].

Current health status of a system or structure can be defined by a health-index (HI) which

changes with time (or load cycles) as structural health detoriates. Damage propagation path or HI-

time curve can be estimated using either model-based or data-driven approaches or a hybrid of both.

Model-based methods predict the equipment health condition using component physical models,

such as finite element (FE) models, or damage propagation models such as Paris-Ergodan law based

on damage mechanics [54]. Kacprzynski et al. [36] presented a prognosis tool using 3D gear FE

modeling to study damage inititation and propagation in helicopter gears. Li and Lee [41] proposed

a gear prognosis approach based on FE modeling to estimate Fourier coefficients of the meshing

stiffness expansion. The strip-yield model included in the NASGRO software developed in [62]

is widely used to simulate crack growth under variable amplitude loading. Such methods extract

model parameters depending on structural properties and generally do not use condition monitoring

data for prediction of damage evolution. Although CBM data is used in hybrid prognostic methods,

lack of knowledge of physics-based models especially in newer composites often hinders accurate

prediction of damage status. Unlike metals, composites are heterogenous in nature whereby a

slight change in their material or geometry can result into an entirely different and complex damage

mechanism which may not adhere to known physical models. As a result in most cases, prognosis

based on periodic inspection data is the only available choice for prediction of damage in composite

structures.
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Data-driven prognostic methods models the relationship between damage status and condition-

monitoring or NDE data by training the prognostic system on historical inspection data. Gebraeel

et al. [26] used Artificial Neural Network (ANN) for monitoring rolling bearing elements and

predicting fatigue crack propagation from vibration-based degradation signals. Hu et al. proposed

ensemble data-driven prognostic approach which combines multiple member algorithms with a

weighted-sum formulation for predicting RUL of electronic cooling fan units [31]. Accuracy of

these methods strongly rely upon the training data characteristics and they may fail to produce

accurate prediction if insufficient or under-representative data are used.

In general, data-driven methods estimates the ’best’ fitted HI-time curve based on all the

inspection data collected upto current time, as shown in Fig 1. This may often lead to overfitting on

the training data especially since NDE measurements are often noisy. In such cases, prediction of

future damage states is significantly different from the ground truth. In order to tackle this challenge,

Bayesian inference [3] in a sequential Monte Carlo process can be implemented wherein the data

fitting parameters are updated sequentially at every instant a new inspection data is reported instead

of using them all at once. Such a dynamic framework enables incorporation of measurement noise

and uncertainties in composite properties which can avoid overfitting leading to lower prediction

error.

In this research work, dynamic framework for data-driven prognosis of fatigue damage growth

in adhesively bonded lap-joint is presented. guided wave(GW)[78] sensing and optical technique

are used for NDE of damage introduced in a lap-joint sample by cyclic fatigue loading. The guided

wave signals are generated through surface-mounted piezo electric transducers (PZT) which enable

on-line monitoring of bond-line while they are in use. Displacement and force information from

Mechanical Testing System (MTS) have high accuracy of damage estimation. Hence, damage area

computed from MTS are considered as the ground truth. Prediction results of static and dynamic

methods combined with GW data are compared with the ground truth to assess their prognostic

capability
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4.2 Damage Mechanism and Damage Growth Model

In this paper, single lap joints (SLJ) are chosen to demonstrate the ability of single sensor based

shear fatigue prognosis. Damage mechanism of SLJ under tension-tension fatigue loading is well

studied in the past [1]. Based on these studies fatigue loading in SLJ might be complex, however

the damage mechanism is straight forward. The crack initiation and propagation is the main source

of fatigue failure. The crack growth indirectly represents the reduction in area of stress transfer. In

other words, the crack growth can be converted to damage area by knowing the dimension of SLJ

as shown in figure 4.1

Figure 4.1: Damage and effective adhesive area with fatigue crack

Damage area shall be estimated directly using force and displacement information from me-

chanical testing device (MTS). E, according to equation 4.1 where, 𝐴𝐷𝑎𝑚𝑎𝑔𝑒 is the Damage area

(𝑚2), 𝐴𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒 is the original undamaged joint area (𝑚2), 𝐹 is the force applied to the lap joint

(𝑁), 𝛿𝑙 is the change in displacement for the applied force 𝐹 and 𝐺 is the shear modulus (𝑁/𝑚2).

Damage area being the crucial factor to decide on remaining useful fatigue life, GW sensors are

deployed to monitor the damage area as it propagates. Damage area obtained from MTS testing

system remains as ground truth for prognosis.
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𝐴𝐷𝑎𝑚𝑎𝑔𝑒 = 𝐴𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒 −
𝐹𝑙

𝛿𝑙𝐺
(4.1)

4.3 Modal Analysis

Crack initiation and propagation are not identical from one sample to other. They are highly random

and depends on various factors such as micro cracks in adhesive, surface preparation etc., Due to

the complex interaction of guided wave with different crack nature dispersion analysis performed

in chapter 2 is not a viable solution for selecting a particular frequency and mode-shape that is

sensitive to fatigue damage. Thus, we require a investigate the wave propagation using simulation

or experiments. In this section, the interaction of guided waves with different crack length is

explored numerically and experimentally. The best excitation mode and frequency for fatigue

damage monitoring is selected.

4.3.1 Numerical Modal analysis

The aim of these simulations are to understand the interaction of different GW modes at different

fatigue damage state. Three parameter are selected for this purpose 1) Excitation mode: fundamental

symmetric (𝑆0) and Asymmetric (𝐴0) mode. 2) Crack length: The lap joint is assumed to have

symmetrical crack formation at stress concentration areas as shown in Figure 4.1 with crack lengths

such as 2, 4, 6 and 8 𝑚𝑚. 3) Excitation frequency: Seven different frequencies such as 25,

35, 45, 55, 75, 85 and 95 𝑘𝐻𝑧 are considered. In total, 70 simulations (including pristine lap-

joint) are conducted to analyze the GW modal sensitivity towards fatigue damage. It would be

computationally expensive to conducting 70 3D full model simulation, thus a simplified 2D model

of lap-joint described in section 2.2 is considered.

Substrate is defined as part, meshed (Structured), and assembled to form a single lap joint as

shown in Figure 4.2. Adhesive is replaced as cohesive zone which connects both the adherends in

joint location. Cohesive zone properties are obtained through tensile lap-shear FEM calibration.

The cohesive zone contact length is adjusted to simulate different crack length. For excitation
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of GW, piezo-ceramic transducers are replaced with displacement boundary conditions. Nodal

displacement history are recorded at the receiver transducer pair.

Figure 4.2: Simplified 2D lap-joint geometry in ABAQUS CAE.

ABAQUS CAE with Implicit Dynamic Analysis (IDA) was used to simulate guided wave

propagation across the lap-joint. Input signal in the form of Morlet wavelet with varying central

frequency and peak displacement of 10 `𝑚 is applied to the displacement boundary condition

(B.C). The top and bottom B.C are applied in phase to excite symmetric mode 𝑆0 and out of phase

to excite anti-symmetric mode 𝐴0. The implicit solver was configured to run simulations with fixed

0.1 `𝑠 time increments. The displacements at the receiver end were saved for every time increment

in order to create snapshots of the ultrasonic wave field. With this model being created, the modal

analysis was performed with the help of PYTHON by sweeping through selected parameters.

4.3.1.1 Results and Discussion

Displacements acquired on the receiver end on all 70 simulations are processed and features are

extracted using MATLAB. The aim of this analysis is to identify which combination of mode and

frequency are sensitive to crack initiation and propagation. Figure 4.3 shows the input and recorded

received signal at 75 𝑘𝐻𝑧 under 𝑆0 mode on a pristine lap-joint. 70 such input and received signals

are obtained form ABAQUS. To identify sensitivity features, Guided wave signals acquired at

different combinations were processed to estimate their energy spectral density (ESD), 𝐸 according

to Equation 4.2.

𝐸 =

∫ 𝑓2

𝑓1

|𝑠( 𝑓 ) |2𝑑𝑓 , (4.2)
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where 𝑠( 𝑓 ) =
∫ ∞
−∞ 𝑒

−𝑖(2𝜋 𝑓 )𝑡𝑠(𝑡)𝑑𝑡 is the Fourier transform of the acquired and cropped signal 𝑠(𝑡),

and 𝑓1 and 𝑓2 are the lower and upper frequencies which are +/− 15 𝑘𝐻𝑧 from the corresponding

excitation central frequency.

Figure 4.3: Excitation and received GW signal at 75 𝑘𝐻𝑧, S0 mode configuration on a pristine
lap-joint

Figure 4.4 and 4.5 shows the sensitivity of selected mode and frequency combination towards

crack initiation and propagation respectively. Sensitivity towards crack initiation is obtained by

taking the energy difference between pristine and initial cracked ESD. Similarly, sensitivity towards

crack propagation is obtained by taking the energy difference between first and final cracked

(8𝑚𝑚) ESD. Analyzing 𝐴0 from Figure 4.5 clearly indicates that it is less sensitive towards crack

propagation compared to 𝑆0 mode under any frequency combination. However, from Figure 4.4

it can be seen that combination of 𝐴0 mode at 45 𝑘𝐻𝑧 is highly sensitive to crack initiation in

comparison to symmetric mode. Thus tracking 𝐴0 and 𝑆0 mode at 45 𝑘𝐻𝑧 will help to identify

the damage state transition.

Figure 4.6 shows the received symmetric 𝑆0 and anti-symmetric 𝐴0 signals at 45 𝑘𝐻𝑧 combina-

tion for pristine and 2 mm cracked joint. 𝐴0 mode signals shows drastic variation between cracked

and pristine joint. This reconfirms the selected frequency-mode combination is sensitive towards

crack initiation. Like-wise Figure 4.7 shows the received symmetric 𝑆0 and anti-symmetric 𝐴0
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Figure 4.4: Sensitivity analysis towards crack initiation

Figure 4.5: Sensitivity analysis towards crack propagation

signals at 75 𝑘𝐻𝑧 combination for 2 and 8 mm cracked joint. In this case 𝑆0 mode signals shows

drastic variation during crack propagation. This confirms the selected 𝑆0, 75 𝑘𝐻𝑧 combination is

sensitive towards crack propagation.

Simulation results are analyzed and anti-symmetric (𝐴0) mode at 45 𝑘𝐻𝑧 is found to be the most

sensitive mode-frequency combination to detect fatigue crack initiation. Further, symmetric 𝑆0

mode at 75 𝑘𝐻𝑧 is proved to be more sensitive towards crack propagation. Experimental validation
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Figure 4.6: Received symmetric 𝑆0 and anti-symmetric 𝐴0 signals at 45 𝑘𝐻𝑧 combination for
pristine and 2 mm cracked joint

Figure 4.7: Received symmetric 𝑆0 and anti-symmetric 𝐴0 signals at 75 𝑘𝐻𝑧 combination for 2
and 8 mm cracked joint

are planned in the future, where selected frequency combination of both 𝐴0 and 𝑆0 modes are

continuously tracked in real-time to identify damage state transition 𝑁∗. Further, identified 𝑁∗ will

be used in prognosis algorithm for accurate remaining useful life prediction.
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4.3.2 Experimental modal analysis

In this section, experimental setup for both mechanical testing and guided wave system along

with optical camera are shown. Both fatigue and monotonic loading of fabricated samples where

conducted and their guided wave and mechanical test results are illustrated in detail.

4.3.2.1 Experimental setup

The experimental setup consist of two NDE technique for damage identification such as guided

wave and optical camera. Damage identified form MTS data are accurate and so treated as reference

damage index. Figure 4.8 shows the overall flow of control and components in the experimental

setup. The control unit is in the center of the experimental setup where, it is connected to all the

components of the setup and controlled using an MATLAB algorithm.

Figure 4.8: Experimental setup used for Fatigue monitoring along with control unit

Figure 4.8 shows the physical control unit which is a 8 channel relay system controlled with

the help of MATLAB algorithm. Five relays are controlled to perform a fully automated model

analysis. Four relays on the left are used to switch the polarity of each transducer pair to excite either

symmetric 𝑆 or anti-symmetric 𝐴mode. Two relays on the right is used to control the MTS system.

One relay on the top right corner controls the camera shutter. During modal analysis, the control
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unit automatically pauses fatigue loading at specified fatigue intervals and trigger GW system

to obtain crack growth data for different frequency-mode combination. Once data acquisition is

completed, the MTS is triggered to resumes fatigue cycle. This process repeats until the sample

fails without any manual intervention.

4.3.2.2 Mechanical Testing

The setup used for fatigue testing and experimental data collection is shown in Figure 4.9. At first,

similar lap-joints were subjected to monotonic displacement testing. These tests were conducted

without sensors to determine the maximum tensile strength. Monotonic tests results conducted at a

test rate of 2mm/min is shown in Figure 4.10. The fatigue testing was done with the surface bonded

PZT sensors as described in chapter 3.

Figure 4.9: Mechanical testing system with Data collection

Under displacement testing the lap joints failed at approximately 1.72 kN (refer figure 4.10) and

hence the fatigue tests were conducted at 70% of the maximum load cycle with cyclic frequency of

4 Hz.

For fatigue testing the maximum load (P𝑚𝑎𝑥) was set to 70% of 1.72𝑘𝑁 and which equals 1.2𝑘𝑁 .

The load ratio P𝑚𝑖𝑛/P𝑚𝑎𝑥 was considered as 0.1 [5] and thus P𝑚𝑖𝑛 becomes 0.12𝑘𝑁 . Therefore in

case of force controlled testing, applied force varied from P𝑚𝑖𝑛 to P𝑚𝑎𝑥 with initial target set point
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Figure 4.10: Force and displacement from monotonic testing

at 540𝑁 . Force, displacement and guided wave signals were collected at certain fatigue interval.

True damage area 𝐴𝐷𝑎𝑚𝑎𝑔𝑒 was then estimated using equation 4.1 with force and displacement

information from MTS. Effective area is the undamaged area of adhesive available at any fatigue

cycle for stress transfer and was calculated according to equation 4.3, 𝐴𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒 being the area of

pristine sample.

𝐴𝑒 𝑓 𝑓 = 𝐴𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒 − 𝐴𝐷𝑎𝑚𝑎𝑔𝑒 (4.3)

Figure 4.11 shows the increase in damage area of adhesive with increasing load cycles. It can

be inferred that the effective area reduces rapidly during the first 400 cycles. After that, the change

in area is minimal until total failure after 3900 cycles where the lap-joint completely broke apart

indicative of failure.

4.3.2.3 Optical and Guided Wave Technique

In this section two NDE technique used for fatigue damage estimation is analyzed. First, the optical

camera is used to directly capture the crack formation and growth in the lapjoint during fatigue

intervals. Figure 4.12 shows the camera setup to capture the lap-joint’s side view. Some samples

prepared using induction bonding technique will have excess adhesive outside the bond-line. Any
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Figure 4.11: Bond line damage area vs fatigue cycle

excess adhesive are removed and the flat surface is coated with a thin uniform layer of water based

white paint. During fatigue loading, the control unit stops the MTS loading at predefined fatigue

intervals. Once the fatigue loading is stopped, the MTS system applies a constant mean load

(540𝑁). Then the control unit activate the camera shutter to obtain the crack images as shown in

figure 4.12.

Figure 4.12: Guided wave setup for modal analysis during fatigue

Images taken at various fatigue intervals are processed in MATLAB to identify the crack

clearly. Figure 4.13 shows the processed image of bond-line at crack initiation (400 cycle) and

crack propagated until a complete failure (3900 cycle). The change in crack length can be clearly

seen in the processed images. Figure 4.13 also shows the measured crack length at different fatigue
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cycles. It can be seen that the initial crack formation is about 1.4𝑚𝑚 and it has a faster phase of

formation. After the crack initiation the propagation phase is much slower which is in accordance

with the MTS and literature survey. During crack propagation, the crack lenght grew about 3.2𝑚𝑚

and a complete failure occurred. It is important to note this behavior is strictly for the given loading

condition and geometry of the lap-joint.

Figure 4.13: Guided wave setup for modal analysis during fatigue

The block diagram of the guided wave system is shown in figure 4.14. It consisted of 1)

PZT wafers deployed on the lap-joint, 2) arbitrary waveform generator 33220A from Keysight

Technologies, 3) control unit, and 4) data acquisition (DAQ) device USB-6255 from National

Instruments. PZT wafers were bonded to the Garolite adherends using instant Loctite epoxy. PZT

transmitters were electrically connected to the output of the waveform generator, via control unit

where the excitation mode is controlled. Excitation was done using a Morlet wavelet function

with adjustable center frequency, bandwidth and amplitude. Guided waves transmitted through

the adhesive bond-line were sensed using PZT receivers, which were connected to the control

unit for mode control. Signals from the control unit were acquired by the DAQ with a sample

rate of 1.25 𝑀𝑆/𝑠 at 10 averaging. Data was then transferred to a PC with MatLab for real-time

processing. Guided wave measurement system was only activated between the fatigue intervals to

avoid interference of changing load during fatigue cycles.

To perform modal and frequency analysis, the MATLAB algorithm instructs the function
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Figure 4.14: Guided wave setup for modal analysis during fatigue

generator to change frequencies between 35𝑘𝐻𝑧 to 85𝑘𝐻𝑧 with 10𝑘𝐻𝑧 stepping. Also symmetric

and anti-symmetric modes are tested for all the above mentioned frequencies. Thus we have 12

guided wave waveform collected at a single fatigue interval. For a sample with about 4000 cycles,

and 13 fatigue intervals consist of 156 waveform. Thus an effective processing technique is need to

process such large volume of waveform. Guided wave signals acquired at different mode, frequency

and fatigue cycle combinations were processed in MatLab in order to estimate their energy spectral

density (ESD), 𝐸𝑆:

𝐸𝑆 =

∫ 𝑓2

𝑓1

|𝑠( 𝑓 ) |2𝑑𝑓 , (4.4)

where 𝑠( 𝑓 ) =
∫ ∞
−∞ 𝑒

−𝑖(2𝜋 𝑓 )𝑡𝑠(𝑡)𝑑𝑡 is the Fourier transform of the acquired and cropped signal 𝑠(𝑡),

and 𝑓1 and 𝑓2 are the lower and upper frequencies selected for the analysis, respectively. Then the

guided wave transmission coefficient 𝛼 was evaluated for each signal as:

𝛼(𝑛) =
𝐸
(𝑛)
𝑆

𝐸
(0)
𝑆

, (4.5)

where 𝐸 (𝑛)
𝑆

is the ESD of the 𝑛-th guided wave signal acquired at 𝑛-th fatigue cycle, and 𝐸 (0)
𝑆

is the

ESD of the baseline signal acquired at zero fatigue cycle. Guided waves are launched for inspection
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Figure 4.15: Guided wave signals for 85𝑘𝐻𝑧 and Symmetric mode combination at 0, 400, 3900
and 4900 fatigue cycle

only after the MTS system is paused. In the guided wave system, transmitter was excited with a

Gaussian pulse signal of selected frequency at 0.5 bandwidth as discussed in chapter 3. The guided

waves generated at first substrate, travels through the lap-joint and then to the second substrate.

Receiving transducer bonded on the second substrate picks up the transmitted guided wave. Initially

generated guided waves undergo double mode conversion at the grips, beginning and at the end of

lap-joint. It would be complex to isolate modes at the receiver end. Thus only the energy transfer

between the adherents is analyzed in this study. Figure 4.15 shows the received signal at 85𝑘𝐻𝑧

over different crack stages such as 1) 0𝑐𝑦𝑐𝑙𝑒 before the fatigue cycle starts 2) 400𝑐𝑦𝑐𝑙𝑒 right after

crack initiation 3) 3900𝑐𝑦𝑐𝑙𝑒 before the sample completely fails 4) 4900𝑐𝑦𝑐𝑙𝑒𝑠 where the sample

completely failed. Other studies show a similar trend of GW response [37].

Figure 4.16 and 4.17 shows the energy transferred at 6 different frequencies and 13 differ-

ent fatigue interval for symmetric and anti-symmetric modes respectively. All the frequency for

symmetric mode combination is sensitive towards fatigue damage, see figure 4.16 . However, com-

paring different combinations, Energy change of symmetric mode at 85𝑘𝐻𝑧 clearly is qualitatively

similar to effective area change as shown in figure 4.11 and figure 4.13. Also, 65𝑘𝐻𝑧 combination

is very sensitive towards stage transition. Other studies also show a similar trend of GW response
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Figure 4.16: Guided wave energy received vs fatigue cycle for symmetric mode

towards fatigue damage [37]. Under anti-symmetric mode 𝐴0, 35 − 55𝑘𝐻𝑧 show similar trend as

of symmetric mode. other frequency combinations are not consistent. Thus from the experimental

modal analysis, symmetric mode at 85𝑘𝐻𝑧 is selected as the most sensitive combination for fatigue

damage. It is important to note that the identified mode-frequency combination is geometry and

load specific. Thus, a new modal analysis should be conducted for a sample with different geometry

and loading condition.

4.4 Diagnosis of fatigue damage

From section4.3 symmetric mode, 85𝑘𝐻𝑧 is selected as the optimal mode-frequency combination

for fatigue damage identification from experimental modal analysis. Experimental and numerical

modal analysis do not share the same behavior owing to the simplification and assumptions con-

sidered in the numerical analysis. Thus, outcome of experimental analysis is used in diagnosis

and prognosis of fatigue damage. In this section, only data collected at selected mode-frequency

combination is processed to perform fatigue diagnosis.
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Figure 4.17: Guided wave energy received vs fatigue cycle for anti-symmetric mode

Figure 4.15 shows the time series data of received signal for symmetric mode at 85𝑘𝐻𝑧 over

different crack stages such as 1) 0𝑐𝑦𝑐𝑙𝑒 before the fatigue cycle starts 2) 400𝑐𝑦𝑐𝑙𝑒 right after

crack initiation 3) 3900𝑐𝑦𝑐𝑙𝑒 before the sample completely fails 4) 4900𝑐𝑦𝑐𝑙𝑒𝑠 where the sample

completely failed. Clearly the amplitude of the signal shows a significant change as the damage

area grow. However, there is no significant phase or frequency shift noticed.

Transmission coefficient 𝐸𝑠 is calculated according to equation 4.5. For a final validation

fatigue damage estimated using optical and MTS system are compared to the GW system. The

normalized transmission coefficient 𝐸𝑠 obtained from GW system is directly proportional to the

effective area 𝐴(𝑒 𝑓 𝑓 ). Thus normalized damage index shall be easily obtained by 1− 𝐸𝑠 as shown

in figure 4.18. The estimated fatigue damage form guided wave technique is highly correlated with

MTS and Optical camera system. As discussed in section 4.2 crack formation and propagating is

random among samples. Thus, one more sample is validated with MTS results only see figure 4.19.

Considering figure 4.18 and 4.19 it can be clearly seen that the intensity and growth rate of crack is
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different for different stages and samples. Overall, MTS and GW system have greater correlation,

thus GW system have successfully tracked the fatigue damage In both the samples. This illustrate

the potential of developed in-situ ultrasonic technique for real-time fatigue damage diagnosis.

Figure 4.18: Comparison of fatigue damage estimated from MTS system, optical camera, and
guided wave system.

Figure 4.19: Comparison of fatigue damage estimated from MTS, and guided wave system.
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4.5 Prognosis of Fatigue Damage

In this study, particle filtering framework was implemented to predict damage area in the lap-joint

using guided wave measurements from first few load cycles. Particle filtering is a powerful prog-

nostic tool since it combines benefits of both data-driven and model-based prediction approaches.

To begin with, a modified damage growth model based on Paris law was defined to generate the

degradation trend of fatigue-induced damage growth in the lap-joint specimens. Paris model was

first studied for prediction of crack growth rate in a metal plate under Mode I loading condition

relating rate of increase of crack length per cycle
𝑑𝑎

𝑑𝑁
and the range of the stress intensity factor Δ𝐾

, according to equation 4.6 [54] . Since then, Paris model has been widely implemented in several

crack growth studies in metals [51, 13] as well as in composites [55, 20].

𝑑𝑎

𝑑𝑁
= 𝐶 (Δ𝐾)𝑚 (4.6)

where 𝑎 is the crack length, 𝑁 is the total number of load cycles and 𝑚,𝐶 are the Paris law

parameters. Δ𝐾 can be further interpreted as:

Δ𝐾 = 𝑌
√
𝜋𝑎 (4.7)

where, 𝑌 is a dimensionless constant depending on the crack shape and geometry of the specimen

for a given stress range in the fatigue crack growth models.

As shown in Fig. 4.11, the damage area growth curve obtained from fatigue experiments in

lap-joints can be observed to increase at different rates before and after the knee-point of 400

cycles (for this case study). Hence, a Paris-Paris model based on Piecewise-deterministic Markov

processes (PDMPS) was used in this study where Paris law is described by two sets of parameters

(𝑚1, 𝐶1, 𝑚2, 𝐶2) before and after a transition time 𝑁∗, denoted by equation 4.8. This model have

been adopted from previous damage growth studies in composite structures by Banerjee et al. [6, 7].

𝑑𝑎

𝑑𝑁
=


𝐶1

(
𝑌
√
𝜋𝑠

)𝑚1 , if 𝑁 ≤ 𝑁∗

𝐶2
(
𝑌
√
𝜋𝑠

)𝑚2 , if 𝑁 ≥ 𝑁∗
(4.8)
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Next, 𝑇𝑐 values from the periodic guided wave measurements on the lap-joints, denoted by 𝑧𝑘 ,

were incorporated for updation of model parameters. 𝑧𝑘 is assumed to linearly correlate with the

true damage area 𝑎𝑘 of the lap-joint at load cycle 𝑁𝑘 along with additive noise 𝜔𝑘 .

𝑧𝑘 = 𝐻 (𝑎𝑘 ) + 𝜔𝑘 (4.9)

𝜔𝑘 ∼ N(0, 𝜎2) (4.10)

4.5.1 Procedure

Details of the proposed algorithm for estimation of Paris-Paris model parameters are summarized

in the following steps.

1. Initialization: At 𝑘 = 1 step, the initial (prior) distribution of 𝑛 samples of all parameters

Θ𝑘 is defined.

𝑠0 ∼ N(0.01, (0.001)2)

𝑚10 ∼ N(0.8, (0.01)0.01), log𝐶10 ∼ N(−5, (0.01)2)

𝑚20 ∼ N(0.5, (0.01)2), log𝐶20 ∼ N(−10, (0.01)2) (4.11)

𝑁 ∗0 ∼ N(40, (5)2)

𝜔 ∼ N(0.05, (0.01))

2. Prediction: Posterior distributions of the model parameters evaluated at the previous (𝑘−1)𝑡ℎ

step are used as prior distributions at the current step (𝑘).

Damage area at the current time step is then computed from the parameters estimated at the

previous step by rewriting equation 4.8 in its state-transition form as:

𝑎𝑘 =


𝐶𝑘1

(
𝑌
√
𝜋𝑎𝑘−1

)𝑚𝑘
1 Δ𝑁 + 𝑎𝑘−1, if 𝑁𝑘 ≤ 𝑁∗

𝐶𝑘2
(
𝑌
√
𝜋𝑎𝑘−1

)𝑚𝑘
2 Δ𝑁 + 𝑎𝑘−1, if 𝑁𝑘 ≥ 𝑁∗

(4.12)
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3. Updating: The distribution of 𝑖𝑡ℎ particle is updated based on its likelihood given the 𝑇𝑐

measurement data (𝑧𝑘 ), as denoted in equation 4.13. It is important to note that different

Paris law parameters {𝑚1, 𝐶1} and {𝑚2, 𝐶2}are selected before and after the loading cycle

𝑁𝑘 crosses the ’jump’ cycle 𝑁∗.

𝐿 (𝑧𝑘 |𝑎𝑖𝑘 ) =
1

𝑧𝑘
√

2𝜋𝜎𝑖
𝑘

𝑒𝑥𝑝

−
1
2

(
𝑧𝑘 − 𝑎𝑖𝑘
𝜎𝑖
𝑘

)2 (4.13)

4. Resampling: Finally, resampling is achieved through inverse CDF method such that particles

with higher likelihood of representing the true measurement data are duplicated while the

others are discarded [80]. The process is repeated 𝑛 times in order to obtain 𝑛 resampled

particles at the 𝑘 𝑡ℎ iteration. The PDF constituted from these resampled particles thus forms

the posterior distribution of the current iteration 𝑝(𝜽𝒌 |𝑧1:𝑘 ) and the prior distribution of the

next iteration. Adding randomness to the resampling process avoids degeneracy of weights.

5. Remaining-Useful-Life (RUL) computation: In this study, it is assumed that the end-of-life

(EOL) of the lap-joint occurs at 𝐿𝐸𝑂𝐿 = 3900cycles when the joint is completely broken apart.

Hence, the paris-paris model parameters 𝜽𝒌 are updated upto 𝑘 = 𝐿 iterations, where 𝐿 is the

total number of observed measurements. After L iterations, future damage area is predicted

using equations 4.12. RUL after L iterations is hence computed as 𝑅𝑈𝐿𝐿 = (𝐿𝐸𝑂𝐿 − 𝐿)

cycles. The RUL PDF is generated by computing the RUL of all the particles. The mean and

median values are computed at each load cycle.

4.5.2 Results and Discussion

Guided wave data collected during experiments are used for prognosis using the procedure shown

in section 4.5.1. Initial distribution of noise (eq. 4.12) was characterized based on experimental

evidence of GW measurements on lap-joint specimens shown in figure 4.18. The other set of

guided wave measurements are used in rest of the prognosis procedure. Prediction results with

different number of measurements are presented in Fig.4.20. It should be noted that as number of
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measurements increases, the predicted damage area converges to the true values calculated from

MTS measurements according to equation 4.3. Further, the 95 percentile uncertainty bounds also

decreases thereby increasing confidence associated with the prediction results.

Figure 4.20: Prediction of damage growth curve based available guided wave measurement in
Paris-Paris model until following fatigue cycle (a) Fc=400, (b) Fc=1300 (c) Fc=2300 (d) Fc=3300.

The estimated RUL values at all fatigue stages are illustrated in Fig. 4.21. For most cases

with the given loading condition, samples fails around 5000 cycles. In the beginning the estimated

RUL is lower then the actual value as initial assumption and random variable distribution is taken

from a different sample. However, once the guided wave measurements started to flow into the

prognosis algorithm the predictions become much accurate and the estimated RUL converged to

the true values.
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Figure 4.21: RUL prediction for varying number of available guided wave measurements.

4.6 Summary and Conclusion

This chapter presents a guided wave technique to monitor and predict damage area growth in

adhesive bonded SLJ. Mechanical test results reveal that the damage area growth is rapid in the

first 400 cycles followed by slow growth rate until complete failure. A similar trend was noticed

in the transmission coefficients of the GW signals and optical images as the damage area grew

in size, hence denoting the sensitivity of the NDE technique for damage diagnosis in composite

SLJs. Two samples where successfully validated for diagnosis of fatigue damage with guided wave

measurements only. Further, a data-driven prognosis technique is introduced and guided wave

data are used for prediction of damage area in upcoming cycles and Remaining useful life. Final

validation of prognosis results show a reliable prediction of damage area and RUL.
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CHAPTER 5

GUIDED WAVE CONTROLLED HEALING OF DAMAGES IN BOND-LINE

5.1 Introduction

Repair or removal of damaged bond-line is expensive and it can even cause damage to adjoining

structures. Using thermoplastic adhesive with dispersed ferrous nano-particles can enable localized

healing and easy dismantling for re-usability of components. One of the commonly used bond-

line healing technique is micro-encapsulation approach. Here the healing agent and catalyst are

dispersed in epoxy matrix, Once a damage occurs the suspended capsules around the damage area

release the healing agent which react with dispersed catalyst to polymerize and activate the healing

process [79, 35]. Li et al [42], proposed a two step self-healing technique. In this method, first

the initial cracks are closed using a steel frame and later placed in oven to introduce heat that

activate healing of thermoplastic particles. Aubert et al [4], introduced cross-linked polymers that

are capable of healing cracks by formation of thermal activated covalent bond. This reaction is also

known as Diels-Adler reaction.

For bonding non-metallic substrates, Thermoplastics embedded with conductive nano-particles

are great choice. Verna and ciardiello [74, 18], illustrated the assembling and dismantling of

joints using Electro-Magnetic (EM) heating technique. EM offers various advantages over above

mentioned healing techniques. EM healing allows targeted healing, reduced energy usage, rapid

processing. Vattathurvalappil et al [72], demonstrated the ability of EM healing on impact damaged

bondline. Alternate magnetic field applied to dispersed ferromagnetic nanoparticles (FMNP)

introduces hysteresis losses in the FMNPs, which results in intensive heat dissipation and melting

from within the adhesive. However, it is essential to accurately measure the temperature of the

adhesive, since overheating may cause chemical degradation while repair. In this research work

an ultrasonic guided wave technique for online monitoring of the adhesive state while repair and

feedback control of the electromagnetic bonding process.
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Guided wave monitoring technique described in chapter 3 is used here for controlled healing.

Single lap-shear joints subjected to fatigue damage as described in chapter 4 are healed and

mechanically tested to analyze restoration of the original bond strength. Further, this technique is

also numerically investigated to heal a localized bond area in a long bond-line.

5.2 Controlled Induction Healing of Single Lap-joint

In this section, a new single lap-joint is processed using induction heating method and the processed

bond is subjected to fatigue loads. Crack formation due to fatigue loads are healed using guided

wave controlled induction heating. Figure 5.1 shows how a controlled new bondline is processed. It

is important to note that while preparing a new bond line, initially there is no transfer of stress wave

across the bond line as the adhesive is not melted yet and are not chemically bonded to the substrate.

Thus, a small amount to uncontrolled intermittent heating is applied as shown in figure 5.1. It

can be seen that there is a 20𝑠 of intermittent heating to achieve initial melting of adhesive strips.

Initial heat does not create any adhesive degradation. The process monitoring system developed in

section 3.2.2 is modified to wait for 100𝑠 and monitor the energy transmission coefficient 𝑇𝑐 across

the bond-line. If the 𝑇𝑐 value did not reach 90% of reference 𝑇𝑐 value, then the heating cycle is

repeated. The reference 𝑇𝑐 is measured using an oven bonded joint. Figure 3.8 shows the lap-joint

took three heating cycles to achieve almost 100% of reference 𝑇𝑐 value.

The newly processed single lap-joint is subjected to about 2000 fatigue cycles. An initial crack

formation is observed and also the guided wave fatigue monitoring technique developed in chapter

4 shows a 15% loss in guided wave energy transfer. The tracked energy transfer during fatigue have

a different boundary conditions and mode-frequency combination as that of process monitoring.

During process and heal monitoring a symmetric mode at 35 𝑘𝐻𝑧 is used and during fatigue

monitoring symmetric mode at 85 𝑘𝐻𝑧 is used. Energy transfer at symmetric 35 𝑘𝐻𝑧 shows a

20% loss as shown in figure 5.1. Now the lap-joint is heated using controlled induction system

as developed in chapter 3. Once the adhesive is completely melted, the system detects the phase

change and stop the induction system automatically. Figure 5.1 (b) shows the guided wave energy
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Figure 5.1: Controlled processing and healing of bondline: (a) processing a new bond; (b)
controlled healing of fatigue damaged bond.

transfer is completely restored.

Figure 5.2: Representative load-displacement curve of lap-joint after fatigue damage and healing

Samples prepared after fatigue and healing are tested in Mechanical Testing System for ultimate

shear strength. Monotonic lap-shear tests are conducted in the MTS machine at the rate of

0.1𝑚𝑚/𝑚𝑖𝑛 as shown in figure 5.2. It can seen that the lap-joint processed by GW control

shows higher ultimate strength and also higher displacement to failure. This clearly indicate the

effectiveness of controlled healing. Figure 5.3 shows Mean and variance of ultimate strength

comparison between newly processed lap-joints and joints subjected to fatigue and healing. From
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figure 5.3 it can be seen that after 2000 fatigue cycles the joint lost about 20% of load carrying

capacity and once the joint is healed, it has recovered almost 98% of its original strength. Thus the

developed controlled healing technique is very efficient in restoring the original bond strength.

Figure 5.3: Peak load carrying capacity of lap-joint at different life stages

5.3 Healing Technique for Long Bondline

Generally, damage in long bondline are not throughout the bondline, thus it would be much easier

to heal only the damage section. The only challenge in localized healing of a bondline compared to

healing a single lap-joint is transfer of energy through non-melted adhesive zones. Thus this section

will focus on numerically understanding the behavior of guided waves while healing a small section

of a long bondline 5.4. Two finite element models developed to understand dispersion properties

and propagation of ultrasonic guided waves in the adhesively bonded lap-joint. The first model was

an eigenfrequency study that helped determine possible GW modes in the adherends and the bond-

line region of the joint. Results of the study were used to identify an optimal excitation frequency

and select the mode shape that would be most sensitive to changes in the modulus of adhesive. The

second FE model was a time-dependent study of wave propagation from one adherend to another

thorough the bond-line. Guided wave signals were simulated at different adhesive temperatures in

order to link the features in the signals such as energy, peak amplitude or time-of-flight to adhesive
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state. Temperature-dependent viscoelastic properties of the adhesive were taken from the DMA,

and uniform temperature distribution in the adhesive was assumed for simplicity.

Figure 5.4: Selective heating of long bondline along with representative Finite Element Model.

5.3.1 Dispersion Analysis

Guided waves are elastic waves that can propagate in plate-like structures, bars, rods, pipes, rails

and other waveguides of various cross-sections and periodicity. Compared to ultrasonic bulk waves,

guided waves are characterized by complex displacement fields or modes. Only certain modes can

be supported by the host structure, however there can be multiple at the same excitation frequency.

Guided waves are also dispersive, meaning that the phase and group velocities of each mode

are functions of excitation frequency. Hence, determining dispersion relations is key in current

application, since the goal is to identify modes with large displacements in the adhesive bond-line

of the lap-joint.

Dispersion relations for plates can be computed analytically (e.g. using Rayleigh-Lamb equa-

tion for isotropic plates [60, 49], Transfer Matrix method or Global Matrix method for classical

laminates[53]) based on the assumption that plates have infinite length and width. More sophis-

ticated techniques such as Semi-Analytical Finite Element (SAFE) method [60] were developed

for computation of dispersion relations of waveguides with arbitrary cross-sections. In this work,

we adopted Floquet-Bloch (F-B) technique ([28]) to identify dispersion curves of the adherends
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Figure 5.5: Floquet-Bloch theory for computation of dispersion relations of a plate-like
waveguide: (a) unit cell; (b) boundary conditions.

and bond-line region of the lap-joint. The F-B technique doesn’t require development of complex

numerical scripts and can be easily implemented using commercial FEM software.

The concept of the F-B is to represent a continuous plate-like waveguide with a unit cell and

apply periodic displacement boundary conditions on the faces perpendicular to the direction of

wave propagation (see fig.5.5).

The F-B method for finding dispersion relations was implemented in Comsol Multiphysics 5.4.

Structural mechanics module was used to conduct an eigenfrequency study. Material properties

for FE simulation were the same as in chapter 2. The unit cells were meshed using tetrahedral

elements, and periodic displacement boundary conditions were applied to highlighted faces as

defined in COMSOL Multiphysics 5.4:

The Floquet wavenumber 𝑘𝐹𝐵𝑥 was parametrically swept while solving for angular frequency

𝜔 = 2𝜋 𝑓 and mode shapes. Corresponding results for the Garolite adherend are shown in figure5.6.

Phase 𝑐𝑝ℎ and group 𝑐𝑔𝑟 velocities were computed using the equations 5.1 and 5.2, respectively:

𝑐𝑝ℎ =
𝜔

𝑘𝑥
, (5.1)

𝑐𝑔𝑟 =
𝑐𝑝ℎ

2

𝑐𝑝ℎ − 𝑓 𝑎
𝜕𝑐𝑝ℎ
𝜕 ( 𝑓 𝑎)

, (5.2)

where 𝑎 = ℎ
2 is the half thickness of the unit cell. The results are demonstrated in figure 5.7.
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Figure 5.6: Eigenfrequency analysis of the Garolite adherend: wavenumber versus excitation
frequency

Figure 5.7: Dispersion curves of Garolite adherend: (a) phase velocity; (b) group velocity.

The fundamental longitudinal mode 𝐿0 was selected for excitation in the lap-joint. As shown in

Figure 5.7, the 𝐿0 mode is largely non-dispersive under 250 𝑘𝐻𝑧, which helps preserve the shape
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Figure 5.8: Collocated PZT wafer excitation for generation of the 𝐿0 mode.

of the excitation signal and simplify signal processing. In addition, the 𝐿0 mode is the easiest to

identify among the other modes and reflections in the received signal as it has the highest group

velocity. A sqaure surface-bonded PZT wafer introduced in chapter 3 is used here for simulation.

Based on the group velocity plot (figure 5.2) longitudinal mode beyond 150 𝑘𝐻𝑧 is dispersive, thus

85 𝑘𝐻𝑧 is choose for excitation.

5.3.2 Time-depended model of guided wave propagation

ABAQUS CAE with Implicit Dynamic Analysis (IDA) was used to simulate the piezoelectric wafers

and guided wave propagation across the lap-joint. The geometry of the lap-joint is presented in

figure 5.4. Adhesive was modeled as a viscoelastic material as discussed in chapter 2 in order to

account for the damping of ultrasonic waves. The voltage signal applied to actuating PZT wafers

was the Morlet wavelet with the central frequency 𝑓0 = 85 𝑘𝐻𝑧 and𝑉𝑝𝑝 = 10𝑉 . Figure 5.8 illustrates

how the top and bottom PZT wafers were driven in phase in order to generate purely 𝐿0 mode.

5.3.2.1 FE model configuration

Substrate, adhesive, and piezoelecric domain are all defined as part, meshed (Structured), and

assembled to form a long bond line lap joint as shown in figure 5.4. The adherends were meshed

using first order C3D8 (3D-brick) elements with maximal size of 1×1×0.78𝑚𝑚, and the adhesive

bond-line was meshed using C3D8R elements with maximal size of of 1 × 1 × 0.33 𝑚𝑚 so that

the bond-line had at least 3 elements in the thickness direction. PZT wafers were assumed ideally

bonded to the adherends, and were represented using C3D8E piezoelectric elements with maximal

73



size of 1 × 1 × 0.2 𝑚𝑚. For the excitation frequency of 85 𝑘𝐻𝑧. Infinite Elements are used at the

edges to avoid edge reflection in the simulation as shown in figure 5.4.

The implicit solver was configured to run simulations with fixed 0.1 `𝑠 time increments. The

displacements were saved for every time increment in order to create snapshots of the ultrasonic

wave field. The parametric study was performed by sweeping through material properties of the

ABS thermoplastic adhesive obtained experimentally using the DMA. Material parameters adhesive

zone A2 is only changed to simulate the localized heating of bondline.

5.3.2.2 Results and Discussion

The wave propagation in the lap-joint is simulated for the time period of 200 `𝑠. Within this time

span, the excited longitudinal mode 𝐿0 propagates from PZT transmitters across the adhesive bond-

line and reaches the PZT receiver pair. Voltages generated by the PZT receivers are summed to

reduce the effect of flexural modes on the resulting signal. Guided waves undergo mode conversions

while entering and while leaving the adhesive bond-line region. This phenomenon combined with

varying thicknesses and different dispersion relations in the substrates and the adhesive bond-line

may render signal analysis complicated. Hence, in this study, the measured GW signal is cropped

to include mostly the fastest 𝐿0 mode, then its energy is monitored in order to evaluate the bond

condition [59].

Guided wave propagation corresponding to different adhesive states is simulated by changing

the elastic modulus 𝐸 of the adhesive and its dynamic viscosity a as per experimental DMA results

from Figure 1.3 and Figure 1.4. The ABS adhesive at 30 ◦C, 110 ◦C and 130 ◦C will be in a fully

cured, partially melted and fully melted state, respectively. Thus, the simulation results at these

three temperatures are discussed in detail for better understanding of guided wave transmission

through the adhesive bond-line. Figure 5.9 shows snapshots of the corresponding displacement

fields in the substrate-2 at 60 `𝑠. The energy transfer of guided waves from the top Substrate 1

to the bottom Substrate 2 reduces slightly in the case of partially melted adhesive compared to the

case of the fully cured adhesive. However, when the adhesive is fully melted, the energy transfer
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Figure 5.9: Displacement fields in the lap-joint at 60 `𝑠 corresponding to different adhesive
states: (a) fully cured; and (b) fully melted.

is not zero due to transfer through non-melted regions (A1 and A3). In the process of transitioning

from the fully cured to the fully melted state, the magnitude of displacements increases in the top

Substrate 1. This indicates that guided waves are trapped in the Substrate 1. They reflect from the

top edge in the bond-line region and propagate backwards to the transmitter PZT pair. Figure 5.10

shows the voltage received in the receiver transducer pair. Voltage for top and bottom transducer

pair are summed up to maximize longitudinal mode reception. Received voltage signals indicate

both amplitude and phase shift or Time of Flight (TOF) while the adhesive is being melted. Thus

both energy transfer and TOF are clearly an indicative feature for heal and process monitoring.

Figure 5.11 presents the TOF and Energy transfer 𝑇𝑐 of the received waveform at different

healing stages. From figure 5.11(b) It can be seen that initially there is no induction heating applied

until healing timeline 3, later the induction heating is applied from stages 3 to 6 where there is a

steady increase in TOF. This indicates the adhesive A2 is melting and thus the guided waves take

time to arrive at the received PZT pair from the adjacent adhesives (A1 and A3). Energy transfer

𝑇𝑐 of the received waveform at different adhesive stages are calculated according to Equation 5.3.

𝑇𝑐 =

∫ 𝑓2

𝑓1

|𝑠( 𝑓 ) |2𝑑𝑓 , (5.3)

where 𝑠( 𝑓 ) =
∫ ∞
−∞ 𝑒

−𝑖(2𝜋 𝑓 )𝑡𝑠(𝑡)𝑑𝑡 is the Fourier transform of the acquired and cropped signal 𝑠(𝑡),
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Figure 5.10: Voltage acquired by the receiver transducer pair

and 𝑓1 and 𝑓2 are the lower and upper frequencies which are +/− 15 𝑘𝐻𝑧 from the corresponding

excitation central frequency 85 𝑘𝐻𝑧. Figure 5.11 (a) shows the energy transfer while a section

of bond line is being heated. Initially there is no induction heating applied until healing timeline

3, where the energy transfer is constant. Later the adhesive properties are changed to simulate a

heating condition from stages 3 to 6, where there is a 60% loss in energy transfer. This indicates the

adhesive A2 is melting and thus the guided waves are not effectively transferred to the substrate-2.

40% of energy being transferred after heating timeline 6 are via adhesive sections A1 and A3.

Based on the results, Both energy transfer and TOF shall be used as an indicative feature to control

the healing process.

5.4 Summary and Conclusion

In this chapter, a single lap-joint is processed using guided wave controlled processing technique

and subjected to fatigue loads. Lap-joint that had fatigue damage are healed using guided wave

controlled induction healing technique. Overall the life cycle monitoring of the single lap-joint is

demonstrated here. Further, joints prepared with, without and guided wave controlled healing are

mechanically tested. Mechanical strength testing of healed samples show the controlled healing was

able to restore 98% of original strength. In addition, healing of long bondline is also numerically

investigated. Based on the numerical results, Both energy transfer and TOF are sensitive features
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Figure 5.11: Energy transfer(a) and TOF(b) of received waveform with different heating stages
while healing

towards bondline healing. Thus, the developed life-cycle monitoring technique shall be easily

extended to longer bondlines.
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CHAPTER 6

MATERIAL CHARACTERIZATION USING SMART SKIN

6.1 Introduction

Tailoring the structural properties through strategic lamina layup is one of the biggest advantages

that fiber reinforced polymer (FRP) composites offer. These FRP composites are designed to

handle complex mechanical, thermal and diffusion loading, and the damage is accumulated over

time. While many non-destructive (NDE) techniques are available to determine the flaw(s) or

defects, the gradual degradation in elastic properties cannot be detected until the flaw is formed.

earlier work on 3 on determining the degradation of adhesive under cyclic loading has shown that

the guided wave/lamb-wave technique is an excellent method to back-calculate the elastic properties

(modulus) and its degradation over time. In this work, instead of one actuation-receiving sensor pair,

an array of sensors were used to determine the elastic properties (Modulus) in multiple directions.

Furthermore, since most automotive structural components are curved, hence this research aims

at developing a conformable sensing skin that estimates the elastic moduli in multiple directions

including curved surfaces. A Single-Transmitter-Multiple-Receiver (STMR) Piezo-ceramic based

sensor array is embedded to a conformable skin, called as Smart skin. The developed Smart skin

can be attached to any surface using pressure sensitive adhesive.

Application of GW in material characterization and damage detection has been successfully

demonstrated in several studies [77, 30, 75, 38] Recent studies used GW to detect disbonds,

cracks, perform quality control, and in-service fatigue monitoring [64, 16, 24, 25, 6, 7] A MTMR

configuration is generally used for material characterization. In most of the above-mentioned

studies, piezo-ceramic sensors are permanently bonded to the surface of the substrate during

inspection. In this study we have developed a smart skin where the emended sensors can be

reused. An inverse Rayleigh lamb wave technique is used to estimate the material properties in

different direction. Schematic of inverse Rayleigh technique is shown in figure 6.1 This technique
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is validated on a aluminum sample in identifying the material modulus in each direction. To enable

rapid material classification, machine learning models are used to process the data collected form

smart skin.

Figure 6.1: Schematic of inverse Rayleigh lamb wave technique for material characterization

To demonstrate the ability of material classification two grades of Aluminum having same

thickness are chosen. Shallow machine learning models need efficient feature extraction for correct

classification. Thus, the experimental signals are first pre-processed by clearing the offsets and

by excluding the transmitted signal from the received ones. Then 21 features such as wavelet

coefficients, zero crossing coefficients, mean, energy, standard deviation etc. are extracted. These

obtained features are then feed into Support Vector Machine (SVM) classification algorithms [58]

for material characterization. However, extracting meaningful features are time consuming and

need opinion of experts [67]. Moreover, with massive amount of data these days there is possibility

of erroneous classification and detection as the number of features become excessive which is

called curse of dimensionality [73]. Feature extractions and dimension reductions by Principal

Component Analysis (PCA) though has great interpretability, but can leave out features with

small contributions which can entail important information about material characterization. Deep
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learning involving Convoluted Neural Networks (CNN) show promising results as these networks

reduce the manual design effort of feature extraction. Features are extracted directly from the raw

data by these networks [39]. Here the experimental images are directly feed into the developed 2D

CNN network for binary classification.

Figure 6.2: Schematic of the characterization methodology

Figure 6.2 shows the schematic of the working methodology in this research work. This

chapter is organized as follows. Section 6.2 and 6.3 describes the fabrication of smart skin and its

application in Guided wave transmission and acquisition on aluminum plate. Section 6.5 illustrate

the features extracted from experimental data and how they are used in SVM. Section 6.6 shows

the development of 2D CNN technique. Results of material classification using SVM and 2D CNN

are discussed in section 6.6.1. Summary, conclusion, and future work are presented finally.

6.2 Development of Smart Skin

A Multiple-Transmitter-Multiple-Receiver (MTMR) Piezo-ceramic based sensor (PZT) array is

embedded to a conformable skin. The bottom layer of the skin is coated with pressure-sensitive

adhesive to be attached to most curved and non-curved structural surfaces (refer Figure 2). Each PZT

sensor nodes are individually controlled by a MATLAB code that actuates and receive the GW waves

signals. The skin could actuate and receive GW waves in each direction of the material. Further,
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the reusable sensors can be deployed in an array configuration for multi-purpose NDE. Figure 3

shows the application of “SMART SKIN” on an Aluminum plate for material characterization.

Figure 6.3: Schematic of smart skin

6.3 Experiments

Two different grade of aluminum plates with same thickness as shown in Table 1 are chosen for

classification

The block diagram in Figure 6.4 Smart skin attached to aluminum sample with GW DAQ

setupshows the GW experimental setup. It consisted of 1) Smart skin deployed on the aluminum

sample, 2) arbitrary waveform generator 33220A from Keysight Technologies, 3) Oscilloscope

DSO 1004A from Keysight Technologies. Piezoelectric transduces embedded on smart skin were

electrically connected to the output of the waveform generator. Excitation was done using a
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Sample
(Name)

Thickness
(mm)

Elastic Modulus, E
(Gpa)

AL - 6061
(AL_1) 1.6 68.9

AL - 2024
(AL_2) 1.6 73.1

Table 6.1: Properties of selected Aluminum sample

Morlet wavelet function with center frequency of 150 kHz. Guided waves transmitted through the

aluminum plate were sensed using piezoelectric receivers, which were connected to the oscilloscope.

Data was then transferred to a PC with MATLAB.

Figure 6.4: Smart skin attached to aluminum sample with GW DAQ setup

Based on the dispersion analysis for selected aluminum plates, excitation of 150 kHz would

avoid any higher-modal excitation and lower dispersion of excited wave. Excited and received

signal from one pair of transducers are shown in Figure 6.5.
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Figure 6.5: Excited and received guided wave signal form smart skin

6.4 Inverse Rayleigh Lamb Wave Technique

For an isotropic plate, Rayleigh-Lamb governing equation shall be used to estimate the multi-modal

dispersion curves [50]. This equation requires wave-guided parameters such as thickness, elastic

modulus, poisons ratio and density of the material. Using the dispersion curves, we shall further

estimate velocity, stress and displacement filed of the propagating wave as shown in figure 6.1. The

inverse optimization is also possible where the experimentally measured guided wave parameters

such as velocity of selected mode-frequency combination shall be used to estimate the intrinsic

material properties of the wave guide.

In this research work, velocities measured on AL 6061 using smart skin as shown in section

6.3 is used in inverse Rayleigh-Lamb wave optimization technique to estimate the modulus of

wave-guide. Estimated elastic modulus of Aluminum sample is shown in figure 6.6. The results

clearly indicates the algorithm is effective in estimating the elastic modulus at 4 different directions.

Estimation error is highly dependent of time of flight (TOF) calculation.

This technique requires accurate calculation of TOF between actuated and received waveform.

Some mode-frequency combinations are dispersive and mixed with other modes, thus accurate
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Figure 6.6: Estimated Elastic modulus of Al-6061 in 00, 450, 900 and 1350

TOF estimation requires high skills. Due to this limitation, functional data analysis techniques are

explored in the following sections.

6.5 Numerical Methods

Material classification of two grades of Aluminum is a binary classification problem. For each

specimen type 40 signals are acquired. Thus, the entire data consists of 80 patterns where from

each pattern 21 features are extracted. The data set is divided into 50 training data, 10 data for

validation set and remaining 20 for test set. The extracted features are feed into shallow machine

learning network (SVM) and the direct experimental images to deep learning network, 2D CNN.

6.5.1 Feature Extraction

Signals have been normalized by considering the absolute of the maximum of the signals. Then from

those normalized values different features like mean, variance, energy, zero crossing coefficients

and discrete wavelet transform (DWT) are obtained. Wavelet transform constitutes an important

feature as the guided wave based ultrasonic signals contain various stationary and non-stationary
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characteristics. Thus, signal analysis by wavelet decompositions provides an efficient method in

NDE and SHM community compared to that with Fourier transforms [14, 48] From the experimental

signals the offsets and transmitted signal is being eliminated. Now on this transformed signal,

Debauchies wavelet of level 4 based on Mallat’s pyramidal algorithm [45] has been used as an

extracted feature. Zero crossing is the place where the sign of a mathematical function changes, thus

providing another important feature [29]. At zero crossing, the time points where the amplitude

of the experimental signal crosses zero has been considered. The insignificant segments at the

beginning are ruled out by setting a minimum pass filter on standard deviation and maximum

amplitude metrics at 10%. Different significant features as obtained from an experimental signal

are shown in Figure 6.7.

Figure 6.7: (a) maximum signal envelope of the signal, (b) standard deviation and energy feature
of the signal

6.5.2 Description of the Dataset

The bar plot below shows the distribution of the features across the two classes. Color red (label

1) represents the class of AL1 sample whereas light green (label2) represents the AL2 sample. As

different features have different ranges, hence the features are normalized to the same scale in bar

plot.
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Figure 6.8: Feature distributions in bar plots representing A1 in red and A2 in light green. F1
stands for Feature1

Variability Coverage by the Principal components
1 PC 2 PCs 3 PCs 4 PCs 5 PCs
47.13% 68.26% 79.84% 84.96% 89.57%
6 PCs 7 PCs 8 PCs 9 PCs 10 PCs
93.73% 95.41% 96.59% 97.65% 98.52%
11 PCs 12 PCs 13 PCs 14 PCs 15 PCs
99.19% 99.47% 99.65% 99.78% 99.90%
16 PCs 17 PCs 18 PCs 19 PCs 20 PCs
99.96% 99.99% 99.99% 100% 100%

Table 6.2: Variability coverage based on Principal components (PC)

6.5.3 Data Analysis

Dimension reduction is done by Principal Component Analysis (PCA) where 5 PC and 10 PC

directions are used as extracted features forming two different datasets and the results are compared

with that on original dataset. Table 2: Variability coverage based on Principal components

(PC)shows the cumulative variability coverage by the PCA components. The table shows that the

three few PCA components do not cover the entire variability of the data.

Figure 6.9 shows the variability in dataset based on first two principal components. From the
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Figure 6.9: Data representation based on first two principal components

below picture it is clear that it is hard to distinguish the two classes based on two PCs as there is

overlap between the 2 classes

The AL1 class is shown in red whereas AL2 class is shown in dark green. Hence it is better to

perform the classification analysis by taking into consideration more than 4 principal components or

without dimension reduction. Support Vector Machine (SVM) is applied where the cost parameter

is varied from 1 to 10 on both the training and test sets. It is seen that cost parameter 8 produces

the optimal result on the test set. Figure 8 shows the train and test errors when SVM is applied.

Choosing the cost parameter as 8 gives the lowest misclassification rate on the test set.

6.6 2D Convolution Neural Network

Recently in the field of Nondestructive evaluation (NDE), studies involving defect classifications

and material characterization using deep learning is gaining prominence [43, 33, 47]. Here we

have developed a 2D CNN network to perform the material characterization between two grades

of Aluminum. The experimental data here are stored in the form of images of dimension 300X30.

The deep learning models are developed in using keras and TensorFlow in Google Colab platform.
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Figure 6.10: Error rate for different values of cost function

A 2D CNN network uses convolution operation and deals with data in grid formats where it learns

features in a hierarchical fashion by constructing deep neural architecture [23]. The network

comprised of 5 convolutional layers and 3 fully connected dense layers. Maximum pooling layers

and dropout layers are also present on order to remove dimension and to introduce regularization

respectively. The first convolutional layer contains 32 kernales each of size 3X3 and stride as 1.

After second convolution the output dimension reduces to 296X296X32. Then maximum pooling

of window size 2x2 is applied which reduces the output dimension to 148X148X32. Next dropout

is introduced to reduce regularization. Then another layer of convolution, maxpooling and dropout

layer is applied which further reduces the dimension to 73X73X32. The fourth convolutional layer

contains 64 kernels modifying the output dimension to 71X71X64. as the non-linear activation

function in the convolutional and dense layers. The optimizer used in the model is ADAM. Figure

6.11 shows the schematic of the described architecture of the 2D CNN.

6.6.1 Results and Discussions

In this section the performance of the shallow machine learning algorithms SVM on the extracted

features and deep learning algorithm 2D CNN on the experimentally gathered data are compared.
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Figure 6.11: Schematic of the developed 2D CNN model

Out of total 80 data, 50 are used for training, 10 for validation and rest 20 are used for testing.

Figure 6.12 shows the train and validation accuracies and losses as obtained from the 2D CNN.

The accuracy obtained using 2D CNN on test dataset is 100%. Deep learning model is successful

in material characterization.

Figure 6.12: Illustrating the 2D CNN accuracy(a) and loss(b) on the original dataset

The shallow machine learning models also produce accurate classification results as the dataset

is small. we receive the accurate classification choosing cost parameter as 8 in SVM gives the

accuracy of 95%. Thus, due to a smaller number of data almost all the classifiers give 100%

accuracy. Figure 6.13 shows the confusion matrix for SVM and 2D CNN.
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Figure 6.13: Confusion matrix of (a) SVM, (b) 2D CNN

6.7 Summary and Conclusion

This chapter presents the development of smart skin for reusable and rapid NDE. Inverse Rayleigh-

Lamb wave technique was successfully used to identify material modulus in aluminum sample.

Rapid Material classification is one of the applications of smart skin. This application is achieved

with machine learning algorithms. SVM and 2D CNN is used successfully to classify two different

grades of aluminum plate. Classification results are promising and clearly indicates the ability to

use smart skin for rapid material classification and identification.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this chapter, a summary of all the work done in Life cycle monitoring of reversible adhesive

bonded joints are revisited and conclusions of all the research findings are presented.

Ultrasonic guided wave sensing and optical frequency domain reflectometry techniques were

successfully implemented for real-time monitoring of melting and curing processes in a Garolite lap-

shear joint with nano-Fe3O4 reinforced ABS adhesive. The thermoplastic adhesive was remotely

heated at 200 𝑘𝐻𝑧 with the help of a 6.6 𝑘𝑊 commercial induction heater and a water-cooled

solenoid. The embedded FMNPs interacted with the applied electromagnetic field by generating

heat due to hysteresis losses and eddy currents between locally agglomerated nano-particles. The

electromagnetic system was controlled using pulse-width modulation and was programmed to

terminate the heating process based on guide wave measurements so that the adhesive wouldn’t

suffer thermal degradation.

Guided waves were excited and sensed using surface-bonded PZT wafers bonded on to both

adherends. Dispersion relations corresponding to the adherends and the bond-line region were

obtained in Comsol Multiphysics 5.4 based on the Floquet-Bloch theory. The state of adhesive was

actively monitored by passing the fundamental 𝐿0 mode at 35 𝑘𝐻𝑧 across the bond-line from one

adherend to another. The 𝐿0 mode was selected due to its high sensitivity to material properties

of the adhesive and its high group velocity that helped simplify signal processing. Ultrasonic wave

propagation was simulated in Abaqus CAE 6.14 in order to map the transmission coefficient of the

𝐿0 mode to the Young’s modulus of the adhesive. In FE modeling, the nano-Fe3O4 reinforced ABS

plastic was simulated as a viscoelastic material, and it’s properties were obtained experimentally

using the dynamic mechanical analysis. A non-linear relationship between the Young’s modulus of

the adhesive and the FE transmission coefficient of the 𝐿0 mode was later applied to experimental

guided wave signals.

In addition to guided wave measurements, distributed measurements of temperature within
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the adhesive bond-line were successfully acquired using the strategically embedded optical fiber.

A Rayleigh back-scattering OFDR system ODiSI-B from Luna Innovations provided temperature

profiles of the adhesive at a rate of 10 𝐻𝑧 and with a spatial resolution of 1.5 𝑚𝑚. Measured

temperature distributions were averaged along the length of the embedded section of the optical

fiber. Then, similarly to the guided wave technique, temperature averages were converted to the

Young’s modulus of the adhesive based on the DMA data.

The advantages of EM bonding with guided wave and fiber-optic feedback were successfully

demonstrated in the experiments with a manufactured lap-joint specimen. Implementing guided

wave and fiber-optic sensing provided real-time monitoring of the adhesive state by displaying the

effective Young’s modulus of the adhesive. Both techniques accurately captured a transition from

a solid to a viscoelastic state at which the modulus dropped down to nearly zero values. At that

stage, the EM heating was automatically disabled at a prescribed temperature of 130◦C to avoid

thermal damage. In addition, guided wave and fiber-optic systems correctly sensed the curing of

the adhesive after the EM field was removed. As the lap-joint was let cool down to the room

temperature and eventually turned solid, measured Young’s modulus of the adhesive went up to

its original value observed before EM heating. Obtained experimental results demonstrated the

stability of the proposed EM bonding process.

During in-service life-stage of lap joint, GW technique is used for prognosis and diagnosis

of fatigue damage. Mechanical test results reveal that the damage area growth is rapid in the

first 400 cycles followed by slow growth rate until complete failure. A similar trend was noticed

in the transmission coefficients of the GW signals and optical images as the damage area grew

in size, hence denoting the sensitivity of the NDE technique for damage diagnosis in composite

SLJs. Two samples where successfully validated for diagnosis of fatigue damage with guided

wave measurements only. Further, a data-driven prognosis technique is introduced and guided

wave data are used for prediction of damage area in upcoming cycles and Remaining useful life.

Final validation of prognosis results show a reliable prediction of damage area and RUL. For the

healing stage in life cycle monitoring, a single lap-joint is processed using guided wave controlled
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processing technique and subjected to fatigue loads. Lap-joint that had fatigue damage are healed

using guided wave controlled induction healing technique. Overall the life cycle monitoring of the

single lap-joint is demonstrated here. Further, mechanical strength testing validates the reliability of

developed life cycle monitoring technique. In addition, healing of long bondline is also numerically

investigated. Based on the numerical results, The developed monitoring technique shall be easily

extended to longer bondlines.

Finally a smart skin was developed for reusable and rapid NDE application. Inverse Rayleigh-

Lamb wave technique was successfully used to identify material properties of aluminum sample.

Rapid Material classification is one of the applications of smart skin. This application is achieved

with machine learning algorithms. SVM and 2D CNN is used successfully to classify two different

grades of aluminum sheet. Classification results are promising and clearly indicates the ability

to use smart skin for rapid material classification. Overall, the proposed GW based life-cycle

monitoring technique is successfully validated in reversible single lap joint. This technique shall

be extended to air-coupled robotic setup where life cycle monitoring of complex automotive joints

are possible.
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