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ABSTRACT 

USE OF LAGRANGIAN METHODS TO SIMULATE HEAVY STORM-INDUCED RIVER 

PLUME DYNAMICS AND RECREATIONAL WATER QUALITY IMPACTS IN THE 

NEARSHORE REGION OF SOUTHWESTERN LAKE MICHIGAN 

By 

Chelsea Weiskerger 

The Great Lakes are the primary source of drinking water for nearly 30 million people in the 

region. During storm events runoff from upstream watersheds and (combined) sewer overflows 

delivers pathogens to the Lakes. The pathogens are then transported to beaches and water intakes 

by the lake circulation, posing risks to human health. Fecal indicator organisms such as 

Escherichia coli are used to track pollution levels and to take proactive measures to manage coastal 

resources and to safeguard public health by closing beaches to the public, issuing swimming 

advisories, etc. Predictive modeling of coastal water quality continues to be an attractive approach 

to generate water quality forecasts and to gain insights into key processes. Although progress has 

been made in understanding and quantifying the impacts of tributary loading and river plumes on 

microbial pollution at beaches, the impacts of extreme storm events on coastal water quality are 

not well-understood. As the frequency and intensity of storm events increase, the pollution 

footprint of extreme storm events has not been quantified in a way that can be used to inform 

policy. Complex nearshore features, including irregular coastlines and coastal structures calls for 

high-resolution modeling that is computationally demanding. While traditional Eulerian 

approaches to plume modeling have been previously used, comparisons with available observed 

plume data indicated that Lagrangian particle tracking improves prediction of plume dimensions 

(and hence risks) in southwestern Lake Michigan. Therefore, coupled hydrodynamic and reactive 

particle tracking models were developed and tested to simulate the complex dynamics of multiple 



  

 

river plumes induced by extreme storm events in the Chicago area in southwestern Lake Michigan. 

The present-day Chicago River normally flows to the Mississippi River and discharges into Lake 

Michigan only during “backflow” events triggered by these storms. Simulations of extreme storm-

induced river plumes during years 2008, 2010, 2011, 2013 and 2017 were reported and models 

tested using available data on currents, water temperatures, concentrations of indicator bacteria (E. 

coli) and the spatial extent of turbidity plumes using MODIS Terra satellite imagery. Results 

suggest that plumes associated with the extreme storms persist along the Chicago shoreline for up 

to 24 days after the commencement of backflow release and that plume areas of influence range 

from 7.9 to 291 km2 in the nearshore. Plume spatiotemporal dynamics were largely related to the 

volume of water released via backflow events and the duration of the backflow releases. Empirical 

relations were proposed to allow beach and stormwater managers to predict plume spatiotemporal 

dynamics in real time. Model results from a Lagrangian E. coli fate and transport model were 

compared against monitoring data collected at 16-18 beaches during and after backflow events in 

2010 and 2011. Results indicate that all Chicago Park District beaches are susceptible to E. coli 

concentrations that exceed USEPA thresholds for safe recreation after extreme storms. Therefore, 

the current approach to beach management, which involves closing all beaches during and 

immediately after backflow events, is likely prudent. However, results also suggest that beaches 

are probably being reopened prematurely after storm events, as beaches may be at risk for degraded 

water quality for multiple days, post backflow event. To address data gaps, we recommend that 

future research focus on the collection of additional in situ hydrometeorological and water quality 

data during and after extreme storms and backflow events. These data may be collected using 

unmanned aerial vehicles or autonomous sensor systems. 
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1. Introduction and Context: 

 

1.1. Ensuring Public Health at Great Lakes Recreational Beaches 

 

With over 17,000 km of shoreline, the Laurentian Great Lakes provide ample recreational and 

tourism opportunities for local municipalities and visitors alike (USEPA, 2019). Beach tourism 

alone brings 14–31 million people to the Chicago’s shoreline per year (Nevers and Whitman, 

2011). Many beachgoers engage in activities such as swimming, sunbathing and playing in sand 

at beach areas, frequently leading to exposure to any contaminants that may be entrained in the 

sand or water at the beach (Heaney et al., 2009).   

At beaches, contaminants of human health concern are most frequently microbiological in nature 

and may include bacteria, viruses and protozoa, as well as emerging contaminants like 

antimicrobial resistant microorganisms and fungi (Corsi et al., 2016; da Costa Andrade et al., 2015; 

Sabino et al., 2011; Turgeon et al., 2012). These contaminants can come from both point (i.e., 

sewage outfalls) and nonpoint (i.e., runoff and wave deposition) sources, and their public health 

implications can vary widely, from gastrointestinal illness, to respiratory, skin or eye infections 

(Harwood et al., 2014). 

Beginning in 2000, the Beaches Environmental Assessment and Coastal Health (BEACH) Act 

mandated the monitoring and management of recreational beaches across the USA for the benefit 

of public and environmental health (Beaches Environmental Assessment and Coastal Health Act 

(BEACH) Act, 2000). As a result of this mandate, management agencies have been sampling beach 

water to track contamination, water quality, and overall beach health for decades. However, this 

contaminant tracking frequently involves culturing indicator bacteria or amplifying contaminant 

genetic material via quantitative Polymerase Chain Reaction (qPCR) (Griffith and Weisberg, 

2011; Lavender and Kinzelman, 2009). These processes can take three to 48 hours to yield water 
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quality information and results, leading to a lag between water contamination events and beach 

actions such as swimming advisories or closures (USEPA, 2014a, 2013). Consequently, 

beachgoers may be exposed to contaminants of public health concern before water quality 

degradation has been discovered. Even with daily in situ beach water quality monitoring, public 

health in recreational areas is thus not always guaranteed.  

Statistical, data-based and mechanistic models have been developed in recent years, to aid in the 

prediction and “nowcast” simulation of water quality at beaches. Statistical models such as 

multiple linear regression and partial least squares regression, and data-based (e.g., artificial neural 

network) models have shown promise in predicting recreational water quality using 

hydrometeorological conditions as input (Francy et al., 2013; He and He, 2008; Nevers and 

Whitman, 2005; USEPA, 2012; Zhang et al., 2018). Mechanistic models of hydrodynamics and 

water quality have also been able to simulate contaminant fate and transport in coastal areas with 

reasonable precision (Liu and Huang, 2012; Safaie et al., 2016; Thupaki et al., 2010). While these 

modeling approaches leave room for continued improvement and do not always capture nearshore 

water quality, they are becoming an intriguing option to supplement in situ monitoring for the 

purposes of beach management and public health decision making.          

1.2. Southwestern Lake Michigan Beaches and Water Quality 

 

With hundreds of beaches along its shore (EGLE, 2016; IDEM, 2016; IDPH, 2018; WDNR, 2000), 

Lake Michigan is a popular destination for local and visiting beachgoers alike. Water quality at 

these beaches can vary widely, both spatially and temporally. Jeorse Park beach, near the Illinois 

– Indiana border (Figure 1-1) has been regularly cited as one of the most polluted beaches in the 

US, exceeding the EPA–mandated contamination exceedance threshold of 2.37 log10(MPN 100 

ml-1) on more than 40% of the days that it is monitored. Meanwhile, only 13.5 km southeast of 
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Jeorse Park (Figure 1-1 inset), Marquette Park beach samples exceed 2.37 log10(MPN 100 ml-1) 

on only 5% of days that it is monitored (Dorfman and Haren, 2014). Likewise, beach indicator 

bacteria concentrations can change by up to 4 orders of magnitude over the course of hours to 

days, especially during turbulent weather patterns, including storms (IDPH, 2018). 

 

Southwestern Lake Michigan beaches extend from Wilmette, Illinois to the Illinois–Indiana 

border. Water quality at these beaches, like at many others across the USA, is often impacted by 

point- and non-point contamination sources as well as meteorological, sunlight, seasonal and beach 

morphological influences (Byappanahalli et al., 2015; Heaney et al., 2014; Whitman et al., 2008). 

Southwestern Lake Michigan beaches are somewhat unique, though, in that they can also be 

Figure 1-1: Google Earth imagery showing Lake Michigan, with inset focused on the highly 

contaminated Jeorse Park beach and the nearby but much less contaminated Marquette Park 

beach 
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impacted by the intense urbanization of the Chicago region as well as the heavy industrialization 

of oil refineries and steel mills in northwest Indiana.    

1.3. Water Management and Heavy Storm Effects in Chicago 

 

The city of Chicago, situated on the southwestern shore of Lake Michigan, has a population of 2.7 

million (US Census Bureau, 2019). This highly urbanized area is impacted by the lake to the east 

as well as three river channels: the North Shore Channel in Wilmette, the Chicago River in 

downtown Chicago and the Calumet River near the Illinois–Indiana border (Figure 1-2). The water 

in the city, rivers and lake has been managed by the Metropolitan Water Reclamation District of 

Greater Chicago (MWRD; originally called the Chicago Sanitary District) since 1889 (MWRD, 

n.d.). From a recreational standpoint, the Chicago Park District (CPD) is responsible for beach 

water quality monitoring and management at Chicago’s 24 public recreational beaches, 

determining when to advise against beach usage due to water quality degradation (CPD, 2020).  

 

 

 

 

 

 

Figure 1-2: Google Earth imagery of the Chicago region, showing the three major river outlets 

affecting the city 
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1.3.1. The Unique River Conditions in Chicago 

 

The Chicago area has presented a unique river flow regime since the early 1900’s. Historically, 

there were only two rivers in the Chicago region (the Chicago River and the Calumet River), and 

both flowed eastward from upstream in their watersheds and toward Lake Michigan (Figure 1-3a) 

(ASCE, 2020; Hansen, 2009; Hill, 2019). By the mid-1800’s, Chicago was growing rapidly, 

releasing sewage and stormwater into the Chicago River. As a result, highly contaminated water 

from the Chicago River was flowing into Lake Michigan, the primary drinking water source for 

residents of the city. Such contamination caused public health concerns and outbreaks of 

waterborne infections such as typhoid, cholera and dysentery within the city (ASCE, 2020; 

Hansen, 2009; Hill, 2019). In 1889, Chicago created the Chicago Sanitary District and between 

1892 and 1900, a large-scale effort to dredge the riverbed and reverse the flow of the Chicago 

River was undertaken (ASCE, 2020; Hansen, 2009; Hill, 2019). A system of sluice gates and lock 

infrastructure was built at the mouth of the Chicago River. This system, called the Chicago River 

Controlling Works (CRCW) was used to help divert flows when necessary while supporting 

portage between the river and Lake Michigan (USACE, 2014). In the following decades, 

infrastructure for the North Shore Channel and Wilmette Pumping station (completed in 1910) and 

Thomas J. O’Brien lock and dam (completed in 1960) was implemented to further prevent the flow 

of water from the rivers into Lake Michigan (Figure 1-3b) (USACE, 2014).  
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Since 1960, the North Shore Channel, Chicago River and Calumet River have flowed westward to 

the Mississippi River under normal flow conditions (i.e., when there is low risk of flooding for 

Chicago or western downstream areas). However, the infrastructure at the Wilmette pumping 

station, CRCW and O’Brien lock and dam were put into place so that river flows can be directed 

back into the lake during heavy storm events. This combination of river flow reversals (also known 

as backflow events) and flow control structures allows for a balance between preserving Lake 

Michigan water quality and preventing flooding within Chicago during storms (USACE, 2014). 

Herein, any storm that threatens flooding in the Chicago area and thus necessitates a backflow to 

Lake Michigan will be deemed a “heavy storm” or “extreme storm”.  

Figure 1-3: Schematics showing the difference in river flow regime in the Chicago area before 

(A, left) and after (B, right) the completion of the Chicago River flow reversal (1892 - 1900), 

Wilmette Pumping Station (1910) and O'Brien Lock and Dam (1960). Image adapted from the 

Great Lake Fishery Commission and the Milwaukee Journal Sentinel 



 

7 
 

1.3.2. Backflow Events and Their Impact on Beach Management 

 

During heavy storms that precipitate backflow events in Chicago, the infrastructure at Wilmette 

pumping station and the CRCW and O’Brien locks and dams are engaged to send stormwater back 

into Lake Michigan in the form of river plumes. 

Backflow events are relatively uncommon, occurring an average of 1.0 times per year, for 1.51 

days annually, on average, since 1985 (USACE, 2014, MWRD, 2019). There is no single threshold 

for amount of rainfall or storm return period to trigger a backflow event in Chicago. Initiation of 

backflow involves assessment of factors such as the timing and duration of the storm, the area over 

which the rain falls, and status of the stormwater management system and reservoir capacity 

(Duncker and Johnson, 2016). As a result, storms with return periods ranging from two months to 

100 years (NOAA National Weather Service, 2020) have precipitated backflow events in Chicago. 

Between 1985 and 2017, the Chicago region experienced 32 storms that resulted in backflow 

events. These storms produced 3.91 (August 1985) to 23.75 (August 1987) cm of precipitation at 

Chicago O’Hare Airport (NOAA National Weather Service, 2020). While there were no backflows 

in 1988, 1991 – 1995, 1998, 2000, 2003 – 2006 and 2012, other years such as 1985, 1987, 1990, 

1997, 2001, 2008, 2009, 2011 and 2017 yielded multiple backflow-inducing storms (Figure 1-4). 

These backflow events often have a duration of 24 hours or less, but on occasion, extreme storms 

will facilitate multiple-day backflows (e.g., 13 – 16 September 2008). The volume of water 

released during backflow events is dependent upon the amount of rain that the city receives, with 

total volumes for the 32 events ranging from 35,961.41 m3 (17 – 18 August 1990) to 41,825,393.30 

m3 (13 – 16 September 2008) (Table 1-1, Figure 1-5) (USACE, 2014).  
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Table 1-1: Annual number of backflow events, number of days under backflow conditions and 

total volume of stormwater released during backflows, 1985 – 2017 

Year 

Number of 

Backflow 

Events 

Number of Days 

Under Backflow 

Conditions 

Annual Total Volume of 

Water Released During 

Backflows (m3) 

1985 2 2 799857.51 

1986 1 1 200626.82 

1987 2 4 7476188.27 

1988 0 0 0 

1989 1 2 196841.41 

1990 3 6 3673742.14 

1991 0 0 0 

1992 0 0 0 

1993 0 0 0 

1994 0 0 0 

1995 0 0 0 

1996 1 2 5871173.68 

1997 2 5 17935281.03 

1998 0 0 0 

1999 1 1 36718.49 

2000 0 0 0 

2001 3 3 4500854.61 

Figure 1-4: Bar plot showing the annual frequency of backflow events in the Chicago area,  

1985 - 2017 
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Table 1-1 (cont’d) 

 

2002 1 1 6631284.36 

2003 0 0 0 

2004 0 0 0 

2005 0 0 0 

2006 0 0 0 

2007 1 2 874932.24 

2008 2 6 43569711.09 

2009 3 4 1565646.31 

2010 1 1 24737287.47 

2011 2 2 8810545.93 

2012 0 0 0 

2013 1 2 40577721.62 

2014 1 2 1987341.19 

2015 1 2 4408869.11 

2016 1 1 128741.85 

2017 2 4 10468556.29 
 

 

While observational data regarding the water quality in the stormwater released during backflow 

events are scarce, it is likely that the water carried through the rivers and out to Lake Michigan 

Figure 1-5: Bar plot showing the total volume of water released during backflow events each 

year, 1985-2017 



 

10 
 

during these events is composed of runoff from upstream watersheds. This runoff may contain 

biological and chemical contaminants associated with the urban Chicago area, industrial region of 

northwest Indiana and the agricultural land west of the city. In the resulting plumes, these 

contaminants may move from the river outlets and to the nearshore areas of Lake Michigan, 

potentially degrading beach water quality and fostering swimming advisories at local beaches 

(City of Chicago, 2014).  

1.4. Brief Introduction to Water Quality Numerical Modeling with the Finite Volume 

Community Ocean Model (FVCOM) 

In the absence of observational data to track water quality within backflow-induced river plumes 

in Lake Michigan, modeling can be valuable in characterizing the dynamics and water quality 

impacts of backflow events. There is a wide range of numerical and mechanistic models available 

for application to natural waters (Blumberg and Mellor, 1987; Bravo et al., 2017; Hamrick et al., 

1992; Lesser et al., 2004; Madani et al., 2020), and these models can be powerful tools for 

simulating nearshore hydrodynamics and their resulting impacts on water quality. One example of 

such models is the Finite Volume Community Ocean Model (FVCOM) (Chen et al., 2006). 

FVCOM is an unstructured-grid, finite-volume, fully three-dimensional model that can couple 

hydrodynamics with ice, sediment, ecosystem, water quality, or wave functions to simulate 

conditions in coastal aquatic ecosystems (Chen et al., 2006, 2003). This framework utilizes the 

primitive momentum (Eq. 1-1a-c), continuity (Eq. 1-2), temperature (Eq. 1-3), salinity (Eq. 1-4) 

and density (Eq. 1-5) equations. 
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𝜌 = 𝜌(𝑇, 𝑆, 𝑝)                                                                (1-5) 

In these equations, (u, v, w) are the velocity components of water currents in the east-west (x), 

north-south (y), and vertical (z) directions, respectively (m s-1), while t is time. fu and fv are Coriolis 

terms for the x and y directions, Fu, Fv are horizontal diffusion terms in the x and y directions, 

respectively and Fw represents a vertical diffusion term (m2 s-1). Km is a vertical eddy viscosity 

coefficient (m2 s-1), ρ0 is the density of water (kg m-3), pa is air pressure (Pa), pH represents 

hydrostatic pressure (Pa) and q is non-hydrostatic pressure (Pa). In Eq. 1-3, T denotes temperature 

(°C), while S in Eq. 1-4 is salinity (PSU) and p in Eq. 1-5 is a generalized pressure term (Pa) (Chen 

et al., 2006). These equations are solved over a computational mesh of the model domain (Figure 

1-6) between time steps to simulate hydrodynamics within FVCOM. 
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Inputs to FVCOM include the bathymetry of the water body to be modeled, data from 

meteorological stations and buoys surrounding the model domain, as well as stream gauge data 

corresponding to the river flows that can impact nearshore circulation. Meteorological data inputs 

include air temperature, water temperature, air pressure, precipitation, relative humidity, wind 

speed and wind direction observations over the model temporal domain, while river input data 

include discharge time series and, optionally, salinity and water temperature in rivers over time. 

Bathymetry of the water body, and in turn, depth of the water column, are interpolated to the model 

domain’s mesh as an input.  

As the model runs, it uses Eq. 1-1 – 1-5 to calculate hydrodynamics as a function of meteorological 

forcing (wind, precipitation, solar radiation) and the Coriolis effect due to Earth’s rotation. 

Important model parameters include turbulent vertical and horizontal eddy viscosities, horizontal 

Figure 1-6: Sample model domain mesh grid for Lake Michigan, showing triangular 

grid elements joined by nodes, where FVCOM calculations for meteorology, 

hydrodynamics and water quality variables are interpolated 
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and vertical diffusivities, and parameters associated with bed shear stress (τ, m2 s-2). Model results 

for the computational domain are exported over hourly timesteps. This allows for the model to 

simulate these conditions spatiotemporally (Chen et al., 2006, 2003).  

FVCOM is a fully three-dimensional model that uses a terrain-following (sigma-) coordinate 

system in the vertical direction (Figure 1-7). The sigma layers ensure that the water column is 

uniformly discretized, regardless of the local depth, ensuring that vertical processes are adequately 

resolved. Thus, model results can vertically-integrated for subsequent analysis (Chen et al., 2006, 

2003).    

 

In addition to the base hydrodynamics modeled by FVCOM, Eulerian modules such as the water 

quality model, specific contaminant models and the offline Lagrangian Particle Tracking model 

can be activated to track contamination in the water across space and time. The Eulerian models 

take contaminant concentration values and locations as initial conditions and use the 

hydrodynamics of the water body to calculate subsequent contaminant concentrations in the water 

body over time (Ge et al., 2012a; Ji et al., 2008; Rowe et al., 2019; Safaie et al., 2016; Thupaki et 

Figure 1-7: Schematic showing how terrain-following sigma layers are utilized within the 

FVCOM framework, to discretize vertically-variable conditions and make the resulting models 

fully three-dimensional. Image adapted from Chen et al. (2006) 
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al., 2013, 2010). In contrast, the Lagrangian approach utilizes input of discrete particle locations 

within the model domain as initial conditions, using hydrodynamics to track the locations of 

individual particles within the water over time (Anderson and Phanikumar, 2011; Huang et al., 

2019; Nekouee et al., 2015; Rowe et al., 2016). Each of these modeling approaches is slightly 

different from the others, and there are tradeoffs in the use of any of them, depending upon the 

modeling context and research questions. All three have been used previously to track 

contaminants, but the Lagrangian approach is used less frequently than Eulerian approaches like 

FVCOM’s built-in water quality and general ecological models (Bravo et al., 2017; Huang et al., 

2019; Nekouee et al., 2015).  

1.5. Research Objectives 

 

Extreme precipitation events (i.e., those that facilitate backflows of the Chicago River, North Shore 

Channel and Calumet River) create conditions that make in situ sampling and observation of water 

quality and river plumes difficult. For this reason, beach managers at the CPD take a conservative 

approach to the protection of public health, closing large swathes of the shoreline during backflow 

events (USACE, 1996). For example, if a backflow event occurs at the Wilmette Pumping Station, 

all beaches from Evanston, IL to Ohio St. Beach in downtown Chicago are closed. If either CRCW 

or O’Brien Lock release stormwater to Lake Michigan, all beaches in Illinois that are south of 

Ohio St. close (USACE, 1996). Only within 24 hours of the end of a backflow event does MWRD 

sample beaches near the river outlets to determine bacterial and chemical water quality, to make 

decisions regarding the re-opening of beaches (MWRD, 2019). While it stands to reason that 

stormwater plumes associated with backflow events can rapidly degrade recreational water quality 

and impact public health (City of Chicago, 2014), there is a lack of observational data to support 

or refute this idea. Modeling can help visualize and characterize the effects of backflow events on 
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recreational water quality in Chicago, potentially allowing for more targeted management of 

beaches during and after storms. With this in mind, the overarching research goal of this 

dissertation is to use numerical modeling techniques to characterize backflow-induced river 

plumes in the Chicago area, to describe the spatial and temporal scales of their impacts on the 

nearshore zone and local beach water quality.  

There are two classes of potential approaches to characterizing contaminant plumes in natural 

waters: Eulerian and Lagrangian. Each of these approaches has advantages and drawbacks, 

depending on model context and research questions. The first objective of the research is to test 

the predictive capacity of each, to optimize the prediction of backflow-associated contaminant 

plumes in Lake Michigan against the limited observational data available for the plumes. The 

Eulerian approach to modeling river plumes has known limitations including excessive numerical 

diffusion that tends to smear plumes while overestimating their spatial extent. This approach is 

also inherently unable to resolve plume details at scales smaller than the mesh size. Due to these 

limitations, the Lagrangian approach is expected to lead to tighter plumes relative to those 

produced by the Eulerian method. For this reason, it is predicted that a Lagrangian approach will 

better simulate backflow-associated contaminant plumes, compared to Eulerian methods.  

Once an optimal modeling framework is determined for reliable simulation of backflow-associated 

contaminant plumes from the three Chicago-area river outlets, that optimal model approach will 

be used to simulate the impacts of multiple backflow events in the area. Five backflow events in 

Chicago, between 2008 and 2017, will be simulated using the optimal model approach, to 

determine the spatiotemporal scales of the contaminant plumes along the Chicago shoreline. These 

five events occurred in September 2008, July 2010, July 2011, April 2013 and October 2017, and 

released 8,405,507 to 41,825,393 m3 of stormwater to Lake Michigan (USACE, 2014). Due to 
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differential volumes of water released between the backflow events, it is predicted that the 

spatiotemporal scales of plumes will also vary. Plumes of higher volumes can be expected to have 

larger areas of influence, impacting more of the shoreline for longer periods than plumes of smaller 

volumes. However, storms leading to backflow events are expected to lead to volatile wind and 

wave conditions within the lake, potentially fostering mixing and rapid dispersion of the plumes 

in the lake. Based on assessment of satellite imagery (Vermote, 2015), backflow-associated plumes 

are hypothesized to impact beaches and nearshore areas within 5 – 10 km of the three river outlets 

in the Chicago area, depending upon wind conditions, before dispersing into the lake. Likewise, 

plumes are expected to impact the nearshore areas in Chicago for 1 – 5 days after the end of the 

backflow releases.  

To link the backflow plume dynamics and scales to public health in Chicago, the plume simulations 

for backflow events in 2010 and 2011 will be adjusted to simulate the microbial water quality 

dynamics associated with the plumes. Extending the research to public health and water quality 

will require the simulation of fecal indicator bacteria contamination and the factors influencing its 

fate and transport (Ge et al., 2012b; Safaie et al., 2016; Thupaki et al., 2010). Using a calibrated 

Lagrangian particle tracking model that incorporates these fate and transport factors, a novel 

coupled hydrodynamic and particle tracking model will simulate backflow-induced river plumes 

and the fate and transport of E. coli within them. By including factors associated with solar 

inactivation, base mortality, settling, and/or biological interactions, models may predict how beach 

water quality is impacted by these storm-associated contaminant plumes. Due to these additional 

factors influencing microbial decay in the plumes, it is expected that plumes of microbial 

contamination will reach nearby Chicago beaches but may be limited in their spatial and temporal 

impacts on recreational water quality. Beaches nearer to the river outlets will likely be more greatly 
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affected by the plumes than those farther away, and the impacts on beaches will likely decline over 

time, as the plumes disperse into the lake. Generally, it is hypothesized that microbial water quality 

degradation associated with backflow plumes may not impact all beaches along the shore in the 

same way. Consequently, the CPD and MWRD approach to broadly closing beaches during 

backflow events may be overly conservative. Some beaches – especially those farther from river 

outlets – may be able to safely stay open to recreation during and after backflow events. Similarly, 

some beaches may be at increased risk due to storm-associated plumes and may require additional 

management during and after storms.    
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2. Numerical Modeling of Microbial Fate and Transport in Natural Waters:  

Review and Implications for Normal and Extreme Storm Events 

 

2.1. Introduction 

Water systems and the recreational opportunities that they afford bring millions of people outside 

each year, especially during warm weather. Over 75% of people traveling in the summer visit 

beaches, and in Chicago alone, 20 million people go to Lake Michigan beaches annually, on 

average (Klein et al., 2004; Nevers and Whitman, 2011). To protect public health and the safety 

of beachgoers, the Beaches Environmental Assessment and Coastal Health (BEACH) Act of 2000 

requires routine monitoring of coastal water quality at both marine and freshwater beaches across 

the USA (Beaches Environmental Assessment and Coastal Health Act (BEACH Act), 2000). This 

monitoring, however, often involves obtaining samples and either culturing for fecal indicator 

organisms (FIO) such as E. coli or enterococci or using quantitative Polymerase Chain Reactions 

(qPCR) to determine FIO concentrations in the water. These approaches take time, leading to a 

delay of up to 24 hours before obtaining water quality information to effectively manage beach 

usage for public health. This delay can be the difference between keeping beachgoers safe by 

advising against beach access and putting them in danger by keeping a contaminated beach open 

for recreation.  

To avoid the lag time associated with water sample analyses, mechanistic, statistical and other 

data-based models have emerged as potentially feasible alternatives to daily water quality 

monitoring. These models incorporate parameters associated with meteorology, hydrodynamics, 

human and wildlife usage, water turbidity, and settling of suspended sediments to predict microbial 

concentrations (Abu-Bakar et al., 2017; Bravo et al., 2017; Eregno et al., 2018; Francy et al., 2009; 

Garcia-Alba et al., 2019; Ge et al., 2012b; Liu et al., 2006; Madani et al., 2020; Nevers et al., 2020; 
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Nevers and Whitman, 2005; Safaie et al., 2016; Shively et al., 2016; Thupaki et al., 2010; Wong 

et al., 2009; Zhang et al., 2018, 2015, 2012).  

Numerical mechanistic models have shown variable success in predicting microbial concentrations 

in coastal and beach systems across space and time. As knowledge of aquatic systems and their 

various influences on waterborne microorganisms has progressed in recent years, predictive 

capacity of models has increased as well (Hipsey et al., 2008; Liu et al., 2006; Madani et al., 2020; 

Safaie et al., 2016). However, with a still incomplete knowledge of how components of the aquatic 

environment interact to influence microbial fate and transport, improving the representation of 

processes as well as source behavior, parameter identification and model evaluation remains an 

evolving process.  

This process is further complicated by the often rapidly-changing conditions within aquatic 

environments. For example, Lakes Michigan and Huron in the Laurentian Great Lakes, USA, have 

become significantly clearer since the 1990’s. in response to an invasion by dreissenid mussels 

(Binding et al., 2015; Fahnenstiel et al., 2010; Yousef et al., 2017). This clarification likely impacts 

microbial survival in the water, due to the subsequent changes in sunlight extinction and solar 

microbial inactivation rates in the water (Weiskerger and Whitman, 2018). Similarly, changes to 

microbial sources and hydrodynamics associated with climate change (Curriero et al., 2001; Delpla 

and Rodriguez, 2014; Patz et al., 2008; Xu et al., 2019) may lead to changes in how microbial fate 

and transport can be effectively modeled. Not only is sea level predicted to rise due to climate 

change, frequency and intensity of storm events are projected to increase for many regions as well 

(IPCC, 2014). Sea level rise will undoubtedly change the layout of beach areas, leading to 

phenomena like shoreline erosion and increased foreshore areas that are susceptible to microbial 

transfer between water and sand (Dvorak et al., 2018). At the same time, a predicted increase in 
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the frequency and intensity of storm events will likely lead to increased runoff of urban and 

agricultural contaminants to rivers, which will in turn flow to coastal areas and potentially impact 

beach water quality (Dwight et al., 2002). 

Herein, we aim to compare the various approaches to modeling microbial (i.e., FIO) fate and 

transport in coastal aquatic environments using coupled mechanistic hydrodynamic and transport 

modeling approaches, to determine how these approaches impact model predictive capability. 

Examples of such models include the Finite Volume Community Ocean Model (FVCOM) (Chen 

et al., 2006), the Princeton Ocean Model (POM) (Blumberg and Mellor, 1987; Bravo et al., 2017; 

Thupaki et al., 2013, 2010), the Aquatic Ecosystem Model 3D (AEM3D) (Madani et al., 2020), 

Delft3D (Lesser et al., 2004), and the Environmental Fluid Dynamics Code (EFDC) (Hamrick, 

1992) to name only a few. For the purposes of this review, we will concentrate on these 

mechanistic and process-based models of FIO fate and transport, but statistical and data-based 

modeling approaches are briefly discussed to the extent that they can support mechanistic 

modeling efforts. We then discuss the application of such approaches to emerging modeling 

questions surrounding the simulation of storm-associated river plumes and microbial exchange 

between beach sand and water. While nearshore environments harbor a variety of microorganisms, 

including bacteria, viruses and fungi, this work will focus on modeling of FIO such as E. coli, 

enterococci, and coliforms. Understanding how numerical models predict water quality will lend 

insight into which approaches may be most appropriate for modeling recreational water quality to 

ensure public health in the face of climatic and environmental changes.  

2.2. Modeling Hydrodynamics and Microbial Fate & Transport 

 

Numerical modeling of hydrodynamics in coastal environments depends heavily on the physics of 

the water body, meteorological conditions over time and the impacts of river/estuary inputs. Water 
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moves in three spatial dimensions and over time, so utilizing a 3-Dimensional hydrodynamic 

model is key to adequately simulating water movement in coastal areas. Unstructured grid models 

(e.g., FVCOM) may have advantages in simulating coastal water quality due to their ability to 

accurately represent nearshore features such as irregular coastlines, barrier islands and sandbars, 

harbors, breakwaters etc. 

Generally, coastal hydrodynamics are governed by 3-Dimensional, unsteady forms of the Navier-

Stokes momentum equations (Eq. 2-1 – 2-3) and the assumption of the continuity equation (Eq. 2-

4) (Chen et al., 2006, 2003; Liu, 2018). 
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In these equations, x, y, and z represent the east, north and vertical directions, while u, v, and w 

denote the velocity components in the x, y, and z directions, respectively (m s-1). fu, fv are the 

Coriolis terms, Fu, Fv are the horizontal diffusion terms in the x and y directions, respectively and 

Fw is a vertical diffusion term (m2 s-1). Km denotes a vertical eddy viscosity coefficient (m2 s-1) and 

ρo represents the density of water (kg m-3). Air pressure at the water surface is denoted by pa, 

hydrostatic pressure is represented by pH and q is the non-hydrostatic pressure (all in Pa) (Chen et 

al., 2006). Using these equations, models can effectively account for the effects of temperature, 

density, and Coriolis force on water movement over time. The effects of waves in the nearshore 
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environment (e.g., wave-current interactions, bottom shear stress) can be simulated using coupled 

hydrodynamic and spectral wave models such as the FVCOM-Surface Wave (FVCOM-SWAVE) 

model (Qi et al., 2009). 

Building on the general hydrodynamic model, microbial fate and transport associated with 

diffusion, dispersion, advection, and mortality within an aquatic system can be simulated (Abu-

Bakar et al., 2017; Bravo et al., 2017; Chapra, 2008; Eregno et al., 2018; Hipsey et al., 2008; Liu 

et al., 2006; Madani et al., 2020; Safaie et al., 2016; Thupaki et al., 2010). The governing equation 

for microbial fate and transport is based on the advection-dispersion-reaction (ADR) equation, 

formulated in terms of FIO concentration (Eq. 2-5). This equation includes terms for advection, 

diffusion/dispersion in the water column, and microbial decay (Chen et al., 2006; Safaie et al., 

2016). 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
=

𝜕

𝜕𝑥
(𝐾𝐻

𝜕𝐶

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝐻

𝜕𝐶

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑉

𝜕𝐶

𝜕𝑧
) − 𝑘𝐶           (2-5) 

In the equation, C corresponds to the microbial concentration (Colony Forming Units (CFU) 100 

ml-1), k represents the overall microbial decay rate (d-1), and KV and KH are the vertical and 

horizontal mixing coefficients, respectively (m2 s-1). Horizontal and vertical mixing are described 

using the Smagorinsky and Mellor-Yamada 2.5 level turbulence parameterizations (Chen et al., 

2006, 2003). Microbial decay can depend on factors such as microbial taxon and base mortality, 

water temperature and chemistry, attachment to and detachment from suspended solids, settling 

after attachment to suspended solids, sunlight inactivation, and interactions with other biota in the 

aquatic environment (Hipsey et al., 2008). Because of its dependence on these factors, the decay 

term in mechanistic models has taken on many forms within the literature and is often a 

combination of multiple terms. 
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2.3. Boundary and Initial Conditions 

 

Key drivers of hydrodynamics in the nearshore region include winds and/or tides (Nguyen et al., 

2017, 2014) and riverine/estuarine flows (Abu-Bakar et al., 2017; Gao et al., 2015, 2011; 

Kashefipour et al., 2006). These are often governed by local conditions such as bathymetry, wind 

stress, Coriolis force, and water temperature, which can vary spatiotemporally. For example, 

seasonality of thermal or density stratification in large lakes such as Lake Michigan can impact 

circulation as well as buoyancy of contaminant plumes, leading to differential impacts on water 

quality and hydrodynamics throughout the year (Beletsky and Schwab, 2001; Nekouee et al., 

2015a). Similarly, estuarine exchange flows and the corresponding changes in vertical density 

stratification (and hence vertical mixing) are controlled by the along-channel wind component 

which changes seasonally (Scully et al., 2015). In addition to seasonal-temporal variability in fluid 

properties, there are spatial influences that control hydrodynamics. The impacts of Coriolis force 

can vary by latitude as well as water body size, with effects becoming significant for large (> 5 km 

width) lakes and at high latitudes (Mortimer, 1974). Because these effects can vary 

spatiotemporally while also influencing large-scale hydrodynamics by influencing stratification, it 

is important to specify related model boundary conditions as realistically as possible.   

Boundary conditions for the momentum equations are well-known and include wind stress on the 

surface of the water column and bed friction on the lake/seabed; additional details are available in 

Chen et al. (2006, 2003). For the FIO transport model, the nature of the source(s) dictates the type 

of boundary conditions used. For beaches impacted by riverine sources, monitoring data collected 

at the river mouth can be used to provide boundary forcing for the FIO transport model. However, 

most mechanistic models use small time steps (on the order of seconds to minutes) while 

monitoring data are collected less frequently (e.g., weekly or bi-weekly), introducing significant 
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uncertainty into the modeling due to a mismatch between the model time steps and forcing data. 

In addition, model inputs are generally specified at regular intervals while monitoring data may be 

irregular and with gaps (e.g., missing data during weekends).  

One way to address this limitation is to use calibrated watershed models (Bedri et al., 2014; 

Mohammed et al., 2019; Niu and Phanikumar, 2015) or statistical models to generate high-

resolution boundary forcing data at the river mouth when high-resolution discharge data are 

available (e.g., at a United States Geological Survey (USGS) gauging station in the USA). Several 

researchers have exploited a potential correlation between river discharge (Q) and FIO (e.g., E. 

coli) concentrations (C) and have used statistical relations between Q and C to generate high-

resolution tributary loading data for nearshore FIO models (Bravo et al., 2017; Madani et al., 2020; 

Safaie et al., 2016). Compared to the use of sparse monitoring data to represent tributary loading 

in FIO models, these approaches have promise as they can better describe rapid changes in loading 

and may be suitable for simulating the impacts of extreme storm events on microbial water quality 

in coastal areas. For beaches with no known riverine sources, observed FIO dynamics may be 

driven by local sources including birds (Converse et al., 2012; Eregno et al., 2018; Nevers et al., 

2018), resuspension of bottom sediment-bound FIO (Gao et al., 2015, 2011) and shoreline sand 

(Nevers et al., 2020; Weiskerger et al., 2019). A comprehensive analysis of the relative importance 

of the different sources calls for detailed modeling of hydrodynamics including currents and 

waves, sediment transport, sediment-FIO interactions and relatively fine computational grids to 

capture the impact of shoreline birds and sand. Because initial conditions for hydrodynamic 

models of lakes and reservoirs may specify a waterbody that is initially at rest (zero velocity 

components), a spin-up period is often used to allow models to catch up with observed data.  For 

FIO models, the initial concentration of FIO may include a small non-zero background value and 
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model spin-up time may allow for increased water quality predictability over the model simulation 

period. 

2.4. Components of the Microbial Decay Function 

 

One generic form of the microbial decay function from Eq. 2-5 is represented by Eq. 2-6, where 

total microbial loss (k) is characterized by the combination of a base mortality rate (kb1), light 

inactivation rate (kbi) and settling rate (kbs) (Chapra, 2008; Sokolova et al., 2013). All of the decay 

terms in the equation are daily decay rates (units of d-1). 

𝑘 = 𝑘𝑏1 + 𝑘𝑏𝑖 + 𝑘𝑏𝑠                                                   (2-6) 

The factors that influence these three terms, though, can be variable and specific to the model 

domain, context, and aims.  

Liu et al. (2006) further separated this basic decay function for Lake Michigan, yielding a function 

that accounted for bacterial loss due to settling and light inactivation, with a temperature correction 

factor to justify changes due to temperature variations from 20°C (Eq. 2-7). In this model, fp is the 

fraction of FIO particles attached to suspended solids (unitless), vs represents settling velocity (m 

d-1), H is the depth of the water column (m), kI is the inactivation rate associated with solar radiation 

(m2 W-1 d-1), It denotes the solar irradiance at the surface of the water at time t (W m-2), θ is the 

temperature correction factor (unitless), and T is the water temperature (°C). 

𝑘 = [
𝑓𝑝𝑣𝑠

𝐻
+ 𝑘𝐼𝐼𝑡] 𝜃𝑇−20                                                     (2-7) 

The right-hand side of this equation is composed of a sedimentation/settling term, a light 

inactivation term, and a temperature correction factor, when read from left to right. Though it 
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incorporates terms for temperature, settling, and sunlight impacts on FIO, this form of the decay 

function fails to account for other potentially important influences.  

Microbial survival in aquatic systems can be subject to impacts due to temperature, salinity, light 

penetration and inactivation, predation, competition for resources, nutrient availability and other 

natural (or base) mortality. Similarly, conditions such as the presence of aquatic vegetation and 

dreissenid mussels in a water body can impact bottom shear stress, thereby influencing 

sedimentation and resuspension of FIO. These factors can be difficult to characterize, especially 

when they vary between systems. In marine or brackish ecosystems where salinity may vary over 

time and space, it can have a substantial impact on the survival and persistence of several 

microorganisms (Anderson, 1979; Carlucci and Pramer, 1960; Evison, 1988; Hanes and Fragala, 

1967; Hipsey et al., 2008; Johnson et al., 1997; Kaspar and Tamplin, 1993; Mancini, 1978; Sinton 

et al., 2002; Solic and Krstulovic, 1992). Similarly, in systems with high levels of mixing or 

turbidity, FIO may not settle out of the water column as much as they would for less well-mixed 

systems that would foster settling (Li and Gregory, 1991). Finally, light inactivation has been 

shown to play a significant role in FIO decay via inactivation in natural waters (Boehm et al., 2009; 

Whitman et al., 2004).  This is especially true for oligotrophic or low-turbidity waters that do not 

have high levels of suspended solids that can serve as refugia for FIO (Weiskerger and Whitman, 

2018). 

Impacts can also vary between different microorganisms. Cabelli (1977), Colford et al. (2007), 

and Schang et al. (2016) document differential sensitivities to environmental pressures between E. 

coli, Cryptosporidium parvum, Giardia lamblia, and Campylobacter spp. in natural waters. 

Sanders et al. (2005) tested the impact of organism-dependent sensitivities to environmental 

survival influences on model predictive ability. They found that a model with the same 
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environmental influences underpredicted E. coli concentrations, but overpredicted concentrations 

of both total coliforms and enterococci, compared to observations.   

2.4.1. Dark Mortality, Base Mortality and Temperature/Salinity Dependence 

 

Base mortality (kb1) and dark mortality (kd) terms are often used in models to account for the natural 

decay that microbes undergo, independent of sunlight effects. The value of kd can be highly 

variable, depending on the geographic location and the microorganism of focus (Hipsey et al., 

2008; Jin et al., 2003; Liu et al., 2015; Liu and Huang, 2012; Rodrigues et al., 2011; Safaie et al., 

2016; Thupaki et al., 2010). Models have been presented using kd values as low as 8.6*10-5 d-1 

(Thupaki et al., 2010) and in vitro experiments have yielded kd rates of up to 2.2 d-1 (Jin et al., 

2003). Once kd is established, it is then possible to correct for other factors affecting kb1, like 

temperature, salinity, or pH of the water. 

While salinity and its impacts on microbial persistence are frequently negligible in freshwater 

systems, marine and estuarine systems often have dynamic salinity conditions, and microbial 

decay rates are proportional to salinity levels (Anderson, 1979; Carlucci and Pramer, 1960; Evison, 

1988; Hanes and Fragala, 1967; Hipsey et al., 2008; Johnson et al., 1997; Kaspar and Tamplin, 

1993; Mancini, 1978; Sinton et al., 2002; Solic and Krstulovic, 1992). As a result, models in the 

context of marine or estuarine systems calculate kb1 in terms of salinity, using either percent sea 

water (Psea) (Mancini, 1978) or salinity (S, PSU) terms (Eq. 2-8 and 2-9). 

𝑘𝑏1 = (𝑘𝑑 + 0.006𝑃𝑠𝑒𝑎)                                                   (2-8) 

𝑘𝑏1 = (𝑘𝑑 + 0.02𝑆)                                                     (2-9) 

Dark mortality rates are developed for a reference water temperature of 20°C, so an adjustment to 

account for variability in temperature is also needed. Microorganism base mortality terms are 
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adjusted for temperature using the Arrhenius equation (Garcia-Alba et al., 2019; Rehmann and 

Soupir, 2009; Thupaki et al., 2010). Resulting temperature correction factor values can range from 

1.04 to 1.11 (Rehmann and Soupir, 2009), but frequently are assumed to be 1.07 (Thomann and 

Mueller, 1987). This adjustment indicates a strong temperature dependence, with a doubling of the 

mortality rate for every 10°C increase in temperature (Chapra, 2008). The resulting full 

formulation of the base mortality term is thus represented by Eq. 2-10 and 2-11, where θ represents 

the temperature correction factor. 

𝑘𝑏1 = (𝑘𝑑 + 0.006𝑃𝑠)𝜃
𝑇−20                                          (2-10) 

𝑘𝑏1 = (𝑘𝑑 + 0.02𝑆)𝜃𝑇−20                                            (2-11) 

A majority of existing models use some version of this formulation to determine base mortality 

rate of microorganisms in natural waters (Table 2-1). Notable exceptions were found in models 

from Liu et al. (2014), McCorquodale et al. (2004), Hipsey et al. (2008), Rehmann and Soupir 

(2009), Servais et al. (2007a, 2007b), and de Brauwere et al. (2011). Rather than using a dark 

mortality rate to calculate base mortality, Liu et al. (2014) use the time to inactivate 90% of 

microorganisms in the dark (t90).  McCorquodale et al. (2004) use a curve-fitting procedure on 

field-collected data to determine the impact of salinity on base mortality. Hipsey et al. (2008) and 

Rehmann and Soupir (2009) incorporate the effects of salinity and pH on mortality (𝑐𝑆𝑀
 and 𝑐𝑝𝐻𝑀

, 

respectively), sensitivity of the microorganism to salinity and pH (β and 𝐾𝑝𝐻𝑀

𝛿 , respectively), 

nutrient limitation (fLIM) and dissolved organic carbon concentration (DOCL) when calculating 

base mortality. Following Servais et al. (2007a, 2007b), de Brauwere et al. (2011) uses a logistic 

relationship between microbial decay and temperature to determine kb1.   
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Table 2-1: Base mortality terms used in contaminant fate and transport models 

Aquatic 

Environment 

Type 

Simulated 

Microorganism 
Base Mortality Term Reference 

Freshwater/Marine E. coli 𝑘𝑑𝜃𝑇−20 
Mancini 

(1978) 

Freshwater 

Lake/River 
Coliform 𝑘𝑑𝜃𝑇−20 

Auer and 

Niehaus 

(1993) 

Freshwater 

Lake/River 
Fecal Coliform 𝑘𝑑 

Canale et al. 

(1993) 

Freshwater Lake 

E. coli, 

enterococci, 

Fecal Coliform 

𝑘𝑑 
Jin et al. 

(2003) 

Freshwater 

Lake/River 
E. coli 𝑘 

Jamieson 

(2004) 

Brackish Lake Fecal Coliform 
(0.00014𝑆2 + 0.0024𝑆

+ 0.0253)𝜃𝑇−20 

McCorquodale 

et al. (2004) 

Estuary/Coastal 
Total Coliform, 

Fecal Coliform 
𝑘𝑑𝜃𝑇−20 

Kashefipour  

et al. (2006) 

Generic Coastal 

Model 

Generic 

Bacteria, 

Viruses, 

Protozoa 

[𝑘𝑑

𝑐𝑆𝑀
𝑆𝛼

35
[1 − 𝑓𝐿𝐼𝑀(𝐷𝑂𝐶𝐿)]

𝛽]

∙ [1 + 𝑐𝑝𝐻𝑀
[

𝑝𝐻𝛿

𝐾𝑝𝐻𝑀

𝛿 + 𝑝𝐻𝛿
]] 𝜃𝑇−20 

Hipsey et al. 

(2008) 

Freshwater Stream E. coli 

[𝑘𝑑

𝑐𝑆𝑀
𝑆𝛼

35
[1 − 𝑓𝐿𝐼𝑀(𝐷𝑂𝐶𝐿)]

𝛽]

∙ [1 + 𝑐𝑝𝐻𝑀
[

𝑝𝐻𝛿

𝐾𝑝𝐻𝑀

𝛿 + 𝑝𝐻𝛿
]] 𝜃𝑇−20 

Rehmann and 

Soupir (2009) 

Freshwater Lake E. coli 𝑘𝑑𝜃𝑇−20 
Thupaki  

et al. (2010) 

Estuary/Coastal E. coli 𝑘𝑑

𝑒
(
−(𝑇−25)2

400
)

𝑒(
−25
400

)
 

Servais  

et al. (2007a, 

2007b);  

de Brauwere  

et al. (2011) 

Estuary/Coastal E. coli 𝑘𝑑 
Bedri et al. 

(2011) 

Estuary/Coastal Fecal Coliform 𝑘𝑑𝜃𝑇−20 
Liu et al. 

(2012) 

Freshwater Lake E. coli 𝑘𝑑𝜃𝑇−20 
Thupaki  

et al. (2013) 
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Table 2-1 (cont’d) 

Estuary/Coastal Vibrio spp. 𝑘𝑑𝜃𝑇−20 
Froelich  

et al. (2013) 

River/Estuary Fecal Coliform 𝑘𝑑𝜃𝑇−20 
Boye et al. 

(2015) 

Freshwater Lake E. coli 
2.3

𝑡90
𝜃𝑇−20 

Liu et al. 

(2014) 

Freshwater Stream Fecal Coliform 𝑘𝑑𝜃𝑇−20 
Reder et al. 

(2015) 

Estuary/Coastal Fecal Coliform 𝑘𝑑𝜃𝑇−20 
Gao et al. 

(2015) 

Estuary/Coastal Fecal Coliform 𝑘𝑑𝜃𝑇−20 
Liu et al. 

(2015) 

Freshwater Lake E. coli 𝑘𝑑𝜃𝑇−20 
Safaie et al. 

(2016) 

Freshwater Lake Fecal Coliform 𝑘𝑑𝜃𝑇−20 
Bravo et al. 

(2017) 

Estuary/Coastal E. coli (𝑘𝑑 + 𝑘𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦)𝜃𝑇−20 
Garcia-Alba  

et al. (2019) 

Freshwater Stream E. coli 𝑘𝑑𝜃𝑇−20 
Mohammed  

et al. (2019) 

 

2.4.2. Solar Inactivation Terms 

 

It is generally accepted that incoming solar radiation affects the survival of microbes in water 

systems (Auer and Niehaus, 1993; McCambridge and McMeekin, 1981; Rhodes and Kator, 1990; 

Whitman et al., 2004). This is especially true in clear, oligotrophic waters, where solar inactivation 

can be a predominant influence on microbial survival (Boehm et al., 2009; Weiskerger and 

Whitman, 2018). Many mechanistic fate and transport modelers recognize the impacts of solar 

inactivation on microbial survival in water and include inactivation parameters in their models.  

Accounting for solar irradiation in natural waters inherently involves the calculation of the light 

extinction rate within the water column. The amount of light penetrating the water column declines 

exponentially with depth and is influenced by the turbidity or clarity of the water, such that clearer 

water yields a lower light extinction rate than turbid water. Lower light extinction rates, in turn, 
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yield more intense solar radiation at deeper depths in the water, leading to higher microbial solar 

inactivation rates (Chapra, 2008).   

Nearly all of the models which account for solar inactivation use some variation of Eq. 2-7 in 

which the Beer-Lambert Law (Eq. 2-12) (Kocsis et al., 2006) is used to model the variation of 

solar radiation with depth. In the Beer-Lambert equation, z is vertical coordinate of depth (m) and 

Iz represents the amount of solar radiation at vertical coordinate z (W m-2). I0 is solar radiation at 

the water surface (W m-2), and ke is the light extinction rate (m-1) (Weiskerger et al., 2018).It is 

important to distinguish between kI from Eq. 2-7 and ke in Eq. 2-12. In Eq. 2-7, the kI term is an 

inactivation rate for FIO as a result of solar radiation (Liu et al., 2014; Safaie et al., 2016; Sanders 

et al., 2005), whereas ke in Eq. 2-12 is the rate of light extinction with depth in the water column 

(Chapra, 2008; Hipsey et al., 2008; Weiskerger et al., 2018).  

𝐼𝑧 = 𝐼0𝑒
−𝑘𝑒𝒛                                                             (2-12) 

Model type can have a significant impact on the variables used in parameterization of solar 

inactivation effects on FIO. Models may employ either total depth (H) or the vertical coordinate 

(z) within their solar radiation parameterizations, depending on the model context. In 2-

dimensional model frameworks, conditions within the water column are often vertically-

integrated. For these cases, fate and transport models use a single depth variable (H) and a single 

solar radiation variable (It) to account for potential variability in the vertical dimension (Chapra, 

2008; Gao et al., 2015; Liu et al., 2006; Rehmann and Soupir, 2009). Fully 3-dimensional models, 

in contrast, explicitly define conditions at different depths in the water column via their 

incorporation of the vertical coordinate variable z within their parameters. For example, fully 3-

dimensional models will often incorporate variables for solar radiation at the water surface (I0) and 

solar radiation at depth z (Iz) to capture differences with depth in the water column (Auer and 
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Niehaus, 1993; Boye et al., 2015; Canale et al., 1993; Hipsey et al., 2008; Jin et al., 2003; Mancini, 

1978; Nekouee et al., 2015b; Reder et al., 2015; Safaie et al., 2016; Thupaki et al., 2010, 2013).   

A variety of approaches have been used for characterizing the effects of solar inactivation on FIO 

fate and transport. In some cases, models do not include solar inactivation terms at all (Bedri et 

al., 2011; De Brauwere et al., 2011; Liu et al., 2015; Liu and Huang, 2012; Madani et al., 2020; 

Mohammed et al., 2019), often because the water is so turbid that solar effects are assumed 

negligible compared to other environmental influences. Others use either a microbial decay rate 

solely as a function of incoming solar radiation (Eq. 2-7) or as a function of the light extinction 

rate and depth in the water (Eq. 2-12, Table 2-2). Hipsey et al. (2008) expanded the description of 

solar inactivation effects on FIO in their generic modeling framework, including specific terms for 

dissolved oxygen (DO), pH, salinity (S), and solar bandwidth (b). Garcia-Alba et al. (2019) 

included terms corresponding to day length (DL) and fraction of solar irradiance that is in the UV 

spectrum (fUV) as well as the typical light extinction rate, solar inactivation rate, solar irradiance 

and depth terms seen in other models.  

Table 2-2: Solar inactivation terms used in contaminant fate and transport models 

Aquatic 

Environment 

Type 

Simulated 

Microorganism 
Solar Inactivation Term Reference 

Freshwater/ 

Marine 
E. coli 𝑘𝐼

𝐼0
𝑘𝑒𝐻

(1 − 𝑒−𝑘𝑒𝐻) Mancini (1978) 

Freshwater 

Lake/River 
Coliform 𝑘𝐼

𝐼0
𝑘𝑒𝑧

(1 − 𝑒−𝑘𝑒𝑧) 
Auer and Niehaus 

(1993) 

Freshwater 

Lake/River 
Fecal Coliform 𝑘𝐼

𝐼0
𝑘𝑒𝑧

(1 − 𝑒−𝑘𝑒𝑧) 
Canale et al. 

(1993) 

Freshwater 

Lake 

E. coli, 

enterococci, 

Fecal Coliform 

𝛼𝐼0
𝑘𝑒𝐻

(1 − 𝑒−𝑘𝑒𝐻) Jin et al. (2003) 
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Table 2-2 (cont’d) 

Brackish Lake Fecal Coliform 𝑘𝐿𝜃
𝑇−20 

McCorquodale  

et al. (2004) 

Estuary/ 

Coastal 
E. coli 𝑘𝐼𝐼𝑡 

Sanders et al. 

(2005) 

Freshwater 

Lake 
E. coli (𝑘𝐼𝐼𝑡)𝜃

𝑇−20 Liu et al. (2006) 

Estuary/ 

Coastal 

Total Coliform, 

Fecal Coliform 
𝑘𝐼𝐼𝑡 

Kashefipour  

et al. (2006) 

Generic 

Coastal Model 

Generic 

Bacteria, 

Viruses, 

Protozoa 

∑

[
 
 
 
 
 
 
 𝜑(𝑘𝐼 + 𝑐𝑠𝑆)𝑓𝑏𝐼0 (

1 − 𝑒−𝑘𝑒𝑧

−𝑘𝑒𝑧
)

∙ (
𝐷𝑂

𝑘𝐷𝑂 + 𝐷𝑂
)

∙ (1 + 𝑐𝑝𝐻

𝑝𝐻𝛿

(𝑘𝑝𝐻)
𝛿

+ (𝑝𝐻)𝛿
)
]
 
 
 
 
 
 
 

𝑁𝑏

𝑏=1

 
Hipsey et al. 

(2008) 

Freshwater 

Stream 
E. coli 𝑘𝐼

𝐼𝑡
𝑘𝑒𝐻

(1 − 𝑒−𝑘𝑒𝐻) 
Rehmann and 

Soupir (2009) 

Freshwater 

Stream 

E. coli, 

enterococci 
𝑘𝐼𝐼𝑡 Cho et al. (2010) 

Freshwater 

Lake 
E. coli (𝑘𝐼𝐼0𝑒

−𝑘𝑒𝑧)𝜃𝑇−20 
Thupaki et al. 

(2010) 

Freshwater 

Lake 
E. coli (𝑘𝐼𝐼0𝑒

−𝑘𝑒𝑧)𝜃𝑇−20 
Thupaki et al. 

(2013) 

Marine Coastal Enterococci 𝑘𝐼𝐼𝑡 Feng et al. (2013) 

River/Estuary Fecal Coliform 𝑘𝐼𝐼𝑡
1.0 − 𝑒−𝑘𝑒𝐻

𝑘𝑒𝐻
 Boye et al. (2015) 

Freshwater 

Lake 
E. coli (𝑘𝐼𝐼𝑡)𝜃

𝑇−20 Liu et al. (2014) 

Freshwater 

Stream 
Fecal Coliform 𝑘𝐼

𝐼0
𝑘𝑒𝐻

(1 − 𝑒−𝑘𝑒𝐻) 
Reder et al. 

(2015) 

Estuary/ 

Coastal 
Fecal Coliform (𝑘𝐼𝐼𝑡)𝜃

𝑇−20 Gao et al. (2015) 

Marine Coastal Enterococci 𝑘𝐼𝐼𝑡 Feng et al. (2015) 

Freshwater 

Lake 
E. coli (𝑘𝐼𝐼0𝑒

−𝑘𝑒𝑧)𝜃𝑇−20 

Nekouee  

et al. (2015b, 

2015a) 

Freshwater 

Lake 
E. coli (𝑘𝐼𝐼0𝑒

−𝑘𝑒𝑧)𝜃𝑇−20 
Safaie et al. 

(2016) 

Freshwater 

Lake 
Fecal Coliform (𝑘𝐼𝐼0𝑒

−𝑘𝑒𝑧)𝜃𝑇−20 
Bravo et al. 

(2017) 

Estuary/ 

Coastal 
E. coli 𝑘𝐼 ∗ 𝐷𝐿 ∗ 𝑓𝑈𝑉 ∗ 𝐼0 (

1 − 𝑒−𝑘𝑒𝐻

𝑘𝑒𝐻
) 

Garcia-Alba  

et al. (2019) 



 

34 
 

2.4.3. Sedimentation Terms 

 

In addition to solar inactivation, attachment to suspended solids and settling out of the water 

column is another significant driver of FIO losses in aquatic environments. 80-100% of total 

coliforms and E. coli have been shown to readily attach to suspended particles in the water column 

(Hipsey et al., 2006), and viruses have also been shown to easily attach to particulate matter and 

settle out of suspension (Gerba, 2005).  

Similar to the solar inactivation term, several published models do not incorporate sedimentation 

effects on microbial fate and transport (Bedri et al., 2011; Boye et al., 2015; Feng et al., 2013, 

2015; Jamieson et al., 2004; Kashefipour et al., 2006; Sanders et al., 2005; Sinton et al., 1999; Zhu 

et al., 2011). In models that do incorporate sedimentation losses, settling terms most frequently 

use parameters representing settling velocity (vs, as calculated using Stokes’ Law), vertical 

coordinate (z) or the total water column depth (H), and the fraction of the FIO that is attached to 

particles (fp, Table 2-3). In many cases, sedimentation terms are also subject to temperature 

correction, in the same manner that base mortality and solar inactivation terms utilize temperature 

correction factors (Liu et al., 2006, 2015; Liu and Huang, 2012; Safaie et al., 2016), to 

acknowledge the fact that overall loss of FIO increases with temperature.  

In their generalized sedimentation term, Hipsey et al. (2008) expanded upon the simplified 

sedimentation terms used in most other models. This expansion accounts for various particle size 

classes (Ns), particle and attachment surface areas (Ap and As, respectively), and settling velocities 

for attached (vs) and unattached (vc) FIO.  
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Table 2-3: Sedimentation loss terms used in contaminant fate and transport models 

Aquatic 

Environment 

Type 

Simulated 

Microorganism 

Sedimentation Loss 

Term 
Reference 

Freshwater 

Lake/River 
Coliform 

𝑣𝑠

𝑧𝑒
 

Auer and 

Niehaus (1993) 

Freshwater 

Lake/River 
Fecal Coliform 

𝑣𝑠

𝑧
 

Canale et al. 

(1993) 

Freshwater 

Lake 

E. coli, 

enterococci, 

Fecal Coliform 

𝑓𝑝
𝑣𝑠

𝐻
 Jin et al. (2003) 

Brackish Lake Fecal Coliform 𝑓𝑝
𝑣𝑠

𝐻
𝜃𝑇−20 

McCorquodale 

et al. (2004) 

Freshwater 

Lake 
E. coli 𝑓𝑝

𝑣𝑠

𝐻
𝜃𝑇−20 Liu et al. (2006) 

Generic 

Coastal Model 

Generic 

Bacteria, 

Viruses, 

Protozoa 

(1 − 𝑓𝑝)
𝑣𝑐

𝑧

+ 𝑓𝑝 ∑[
𝑣𝑠

𝑧
(

𝐴𝑠

∑ 𝐴𝑝
𝑁𝑠
𝑠=1

)]

𝑁𝑠

𝑠=1

 

Hipsey et al. 

(2008) 

Freshwater 

Stream 
E. coli 

𝑣𝑠𝐶

𝐻
 

Rehmann and 

Soupir (2009) 

Freshwater 

Stream 

E. coli, 

enterococci 
𝑓𝑝

𝑣𝑠

𝐻
 

Cho et al. 

(2010) 

Freshwater 

Lake 
E. coli 

𝜕(𝑓𝑝𝑣𝑠𝐶)

𝜕𝑧
 

Thupaki et al. 

(2010) 

Estuary/Coastal E. coli 
𝑣𝑠

𝐻
 

de Brauwere  

et al. (2011) 

Estuary/Coastal Fecal Coliform 𝑓𝑝
𝑣𝑠

𝐻
𝜃𝑇−20 Liu et al. (2012) 

Freshwater 

Lake 
E. coli 

𝜕(𝑓𝑝𝑣𝑠𝐶)

𝜕𝑧
𝜃𝑇−20 

Thupaki et al. 

(2013) 

Freshwater 

Lake 
E. coli 𝑓𝑝

𝑣𝑠

𝐻
𝜃𝑇−20 Liu et al. (2014) 

Freshwater 

Stream 
Fecal Coliform 

𝑣𝑠

𝐻
 

Reder et al. 

(2015) 

Estuary/Coastal Fecal Coliform 𝑓𝑝
𝑣𝑠

𝐻
𝜃𝑇−20 Liu et al. (2014) 

Freshwater 

Lake 
E. coli 

𝜕(𝑓𝑝𝑣𝑠𝐶)

𝜕𝑧
𝜃𝑇−20 

Safaie et al. 

(2016) 

Freshwater 

Lake/River 
E. coli 𝑓𝑝

𝑣𝑠

𝐻
𝜃𝑇−20 Liu (2018) 
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Bravo et al. (2017) and Thupaki et al. (2013) incorporated sedimentation effects by including them 

in the vertical advection term of the 3D ADR equation (Eq. 2-5). As a result, the ADR presented 

is Eq. 2-13 and the microbial decay function (kC) only includes terms for base mortality and solar 

inactivation in these models. 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+

𝜕((𝑤−𝑓𝑝𝑣𝑠)𝐶)

𝜕𝑧
=

𝜕

𝜕𝑥
(𝐾𝐻

𝜕𝐶

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝐻

𝜕𝐶

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑉

𝜕𝐶

𝜕𝑧
) − 𝑘𝐶        (2-13)  

2.5. Model Testing and Evaluation 

 

There is a large number of processes influencing FIO fate and transport and it can be difficult to 

identify a correct conceptual model that acknowledges process interdependencies over wide ranges 

of environmental variables of interest. Therefore, it is difficult to fully test FIO models across 

environments, and within the same environment, across different time periods (e.g., dry vs. wet 

weather events, “normal” vs. extreme events). While calibrated FIO fate and transport models have 

the potential to aid management by providing near real-time predictions, a majority of the 

published papers report results of model back-testing (or history matching, see Bredehoeft and 

Konikow (1993)).  

To evaluate the goodness of fit between models and observational data as well as to identify 

superior model formulations (by comparing different models), the use of multiple model 

evaluation metrics may be more beneficial (Bredehoeft and Konikow, 1993; Legates and McCabe, 

1999) than the use of a single metric such as the coefficient of determination (R2) or root mean 

squared error (RMSE). This is due to the fact that no single model performance metric captures all 

aspects of the data and simulation results, and all metrics have known limitations. In the context 

of FIO and beach management, evaluating models using the confusion matrix and concepts of 
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sensitivity and specificity (Altman and Bland, 1994; Loong, 2003; Zhang et al., 2018) have proven 

to be useful, especially from the practical application of issuing beach advisories and closings.   

Existing, published models have been tested in a number of ways. Most model testing protocols, 

particularly those in more recent modeling studies, involve statistical analysis of comparability of 

model results to observed data. A majority of published models have used RMSE or R2 as model 

performance metrics (Table 2-4). Other statistics such as Normalized RMSE (NRMSE), Mean 

Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), Percent Bias 

(PBIAS) (Moriasi et al., 2007) or the Refined Willmott Index of Agreement (Willmott et al., 2012) 

have also been used by Boye et al. (2015), Liu et al. (2015) and Feng et al. (2013). A subset of the 

published models were qualitatively assessed, often with comparisons to other models replacing 

the more quantitative RMSE, R2, MAE, NSE and Wilmott index statistics (Auer and Niehaus, 

1993; Bedri et al., 2011; De Brauwere et al., 2011; Hipsey et al., 2008; Jamieson et al., 2004; Liu, 

2018; Liu and Huang, 2012; Mancini, 1978; Rehmann and Soupir, 2009). In all applicable cases, 

the RMSE or MAE values have units of log10 FIO CFU 100 ml-1, while NRMSE units are 

percentages and NSE values are unitless.   

Table 2-4: Skill statistics and validation data for published numerical models of microbial water 

quality and FIO fate and transport 

Aquatic 

Environment 

Type 

Simulated 

Microorganism 

Validation 

Type/Statistic 

Skill Statistic 

Value/Qualitative 

Observations 

Reference 

Freshwater/ 

Marine 
E. coli 

Qualitative 

Evaluation 

Good agreement with 

coliform mortality 

rates. 

Mancini 

(1978) 

Freshwater 

Lake/River 
Coliform 

Qualitative 

Evaluation 

Model was based on 

empirical relationships 

from lab/field data. 

Auer and 

Niehaus 

(1993) 
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Table 2-4 (cont’d) 

Freshwater 

Lake/River 
Fecal Coliform 

Qualitative 

Evaluation 

Model output is 

comparable and 

consistent with 

observed bacterial 

loads during wet and 

dry weather events. 

Canale et al. 

(1993) 

Freshwater 

Lake 

E. coli, 

enterococci, 

Fecal Coliforms 

Qualitative 

Evaluation 

Fairly good 

prediction of 

observed microbial 

concentrations, but a 

general 

underestimation by 

the model. 

Jin et al. 

(2003) 

Freshwater 

Lake/River 
E. coli 

Qualitative 

Evaluation 

Modeled results 

generally simulate 

observations well. 

Empirical data should 

be used to calibrate 

models for nutrient-

rich streams. 

Jamieson 

(2004) 

Brackish Lake Fecal Coliforms 
Qualitative 

Evaluation 

Fecal coliform 

dilution-decay is 

well-represented in 

the model, but 

predictions are 

susceptible to high 

levels of uncertainty 

associated with 

observed values. 

McCorquodale 

et al. (2004) 

Estuary/ 

Coastal 
E. coli R2 0.19 – 0.70 

Sanders et al. 

(2005) 

Freshwater 

Lake 
E. coli RMSE 0.71 – 0.84 

Liu et al. 

(2006) 

Estuary/Coastal Total Coliform R2 0.715 
Kashefipour  

et al. (2006) 

Estuary/Coastal Fecal Coliform R2 0.686 
Kashefipour  

et al. (2006) 

Generic 

Coastal Model 

Generic Bacteria, 

Viruses, 

Protozoa 

Qualitative 

Evaluation 

The generic model 

did not outperform 

other models 

significantly. 

Hipsey et al. 

(2008) 
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Table 2-4 (cont’d) 

Freshwater 

Stream 
E. coli 

Qualitative 

Evaluation 

Predictive capacity 

changes over time. 

Model underpredicts 

E. coli at shorter time 

scales but reproduces 

measurements at 

longer time scales 

after storms. 

Rehmann and 

Soupir (2009) 

Freshwater 

Stream 

E. coli, 

enterococci 
NSE -0.02 – 0.81 

Cho et al. 

(2010) 

Freshwater 

Lake 
E. coli RMSE 0.41 

Thupaki et al. 

(2010) 

Estuary/Coastal E. coli 
Qualitative 

Evaluation 

Reference model 

overpredicted median 

observations by 7 and 

3% at Temse and 

Uitbergen locations, 

respectively, but the 

variability of 

modeled results is 

much higher (3% for 

Uitbergen, 50% for 

Temse) than the 

observed data. 

de Brauwere  

et al. (2011) 

Estuary/Coastal E. coli 
Qualitative 

Evaluation 

Model significantly 

underestimates E. 

coli in a bay. 

Bedri et al. 

(2011) 

Estuary/Coastal Fecal Coliform R2 0.71 – 0.83 
Liu et al. 

(2012) 

Freshwater 

Lake 
E. coli RMSE 0.52 – 1.36 

Thupaki et al. 

(2013) 

Estuary/Coastal Vibrio spp. RMSE 0.80 
Froelich  

et al. (2013) 

Marine Coastal Enterococci 

Willmott 

Index of 

Agreement 

0.47 – 0.60 
Feng et al. 

(2013) 

Freshwater 

Lake 
E. coli NRMSE 5 – 23 

Nekouee  

et al. (2015b, 

2015a) 

River/Estuary Fecal Coliform MAE 0.348 
Boye et al. 

(2015) 

Freshwater 

Lake 
E. coli RMSE 2.24 – 3.00 

Liu et al. 

(2014) 
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Table 2-4 (cont’d) 

Freshwater 

Stream 
Fecal Coliform RMSE 0.44 – 0.70 

Reder et al. 

(2015) 

Estuary/Coastal Fecal Coliform RMSE 4.42 – 4.80 
Gao et al. 

(2015) 

Estuary/Coastal Fecal Coliform RMSE 3.62 – 5.37 
Liu et al. 

(2015) 

Marine Coastal Enterococci 
RMSE 

MAE 

0.67 – 0.92 

0.47 – 0.72 

Feng et al. 

(2015) 

Freshwater 

Lake 
E. coli 

R2 

RMSE 

NSE 

0.60 – 0.72 

0.52 – 0.60 

0.13 – 0.30 

Safaie et al. 

(2016) 

Freshwater 

Lake 
Fecal Coliform RMSE 0.66 

Bravo et al. 

(2017) 

Freshwater 

Lake/River 
E. coli 

RMSE/ 

Qualitative 

Evaluation 

Model was optimized 

for RMSE, given 

various Manning 

roughness 

coefficients. 

Optimized model 

used Manning 

roughness coefficient 

= 0.035. 

Liu (2018) 

Estuary/Coastal E. coli R2 0.87 
Garcia-Alba  

et al. (2019) 

Freshwater 

Stream 
E. coli R2 0.26 – 0.31 

Mohammed  

et al. (2019) 

 

Based on R2 to evaluate model performance, the model of Garcia-Alba et al. (2019) produced one 

of the best descriptions of observed data among the models considered here (R2 = 0.87). Their 

model incorporated temperature- and salinity-dependent base mortality (𝑘𝑏1 = (𝑘𝑑 +

𝑘𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦)𝜃𝑇−20) and solar inactivation terms accounting for day length and fraction of irradiance 

composed of UV radiation (𝑘𝑏𝑖 = 𝑘𝐼 ∗ 𝐷𝐿 ∗ 𝑓𝑈𝑉 ∗ 𝐼0 (
1−𝑒−𝑘𝑒𝐻

𝑘𝑒𝐻
)). Based on RMSE alone, one of 

the published models that best approximates observed microbial concentrations is detailed in 
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Thupaki et al. (2010) (RMSE = 0.41 log10 CFU 100 ml-1). Within this model, kb1 = kdθ
T-20, kbi = 

(kIIt)θ
T-20, and kbs = 

𝜕(𝑓𝑝𝑣𝑠𝐶)

𝜕𝑧
𝜃𝑇−20.  

Although comparison of these model frameworks can lend insight into which ones may best 

simulate microbial water quality, it is important to note that the models were developed under 

varying contexts. One published approach attempted to develop a generic water quality model, to 

be used across environments and target microorganisms (Hipsey et al., 2008). This model 

framework led to complex terms within the decay function, often including parameterization for 

salinity, pH, dissolved organic carbon concentration, varying particle sizes and settling velocities, 

and variable sensitivity of the microorganism to such environmental changes. The resulting 

validation of the model indicated that the generic model did not outperform other existing models 

in its prediction of contaminant fate and transport. Despite this lack of substantial model 

improvement over existing models, the generality of this model may be attractive to researchers 

looking for a single model to predict water quality under various conditions. 

A lack of ancillary data may provide a confounding factor in the use of generic models such as the 

one described in Hipsey et al. (2008). In many cases, models are developed without the use of 

DOC, pH, temperature and salinity data, instead relying on hydrodynamics and meteorology to 

model FIO fate and transport. Likewise, additional water quality data such as DOC, pH, 

temperature and salinity are often not collected or available for model development, potentially 

hindering the usage and applicability of such a generic model. This could, however, indicate not 

that generic models may be less useful than specific and localized models, but rather that in situ 

DOC, pH, temperature and salinity data should be collected as part of the water quality monitoring 

process. For example, while the focus of most FIO modeling efforts is to reproduce the observed 

FIO concentrations, if no temperature data are collected in the nearshore region, the ability of the 
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coupled FIO-temperature-hydrodynamic model to accurately represent FIO decay is questionable 

as base mortality, solar inactivation, and sedimentation are often functions of temperature. A 

majority of the models reported in the literature use microbial decay formulations with a solar 

inactivation term and use FIO data collected during the daytime. Previous research shows that the 

highest levels of FIO are typically observed during the early morning hours (e.g., 6:00 AM) (Lušić 

et al., 2017) due to the absence of solar radiation the previous night. Therefore, modeling the 

nighttime variation of FIO is important to correctly describe FIO levels in the morning (Ge et al., 

2012a); however, since monitoring data are not collected at night, this aspect has not received 

much attention in the modeling literature. 

In the absence of the specific data needed for the generic water quality model described above, 

selection of an appropriate modeling framework should be based on the target FIO as well as the 

environmental and hydrological context of the model.   

2.6. Applying Microbial Fate and Transport Models to Extreme Storm Events 

 

Numerical simulation of microbial water quality has evolved in recent years, as the dynamics of 

processes such as solar inactivation have become clearer. Even so, the incomplete knowledge of 

influences within aquatic systems on water quality indicates that there is still room for model 

improvement. Likewise, climate and land use/urbanization changes provide additional contexts for 

the prediction of microbial water quality (Xu et al., 2019). Although the link between extreme 

precipitation and waterborne disease outbreaks is well-known (Curriero et al., 2001; Thomas et 

al., 2006), the current generation of FIO models can be further refined and tested for their ability 

to reproduce observed dynamics during extreme storm events. Major areas of research impacting 

coastal water quality from the perspective of extreme storm events may include the exchange of 

FIO between water and sand at beaches, the fate and transport of FIO in storm-associated river 
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plumes and the expansion of water quality monitoring research into microbial source tracking and 

environmental DNA (eDNA) for use in public health contexts.  

The interaction between water and sand at the beach, and its impacts on recreational safety and 

water quality, has been an active area of discussion in recent years (Alm et al., 2003; Beversdorf 

et al., 2007; Boehm et al., 2014; Ishii et al., 2007; Solo-Gabriele et al., 2015; Weiskerger et al., 

2019; Whitman et al., 2014; Yamahara et al., 2007). Microorganisms in beach sands have been 

cited as potential sources of contamination and swimmer infection as early as 2003 (Alm et al., 

2003). The microbial community within beach sands is unique (Thupaki et al., 2010) in that it can 

serve as either a sink or a source of FIO to the adjacent recreational water, depending upon wave 

energies, currents and the movement of the water. When wave energy is low, FIO often get 

deposited from the water and into shoreline sand where they can form biofilm communities, while 

higher wave energy frequently leads to the release and re-suspension of FIO from the shoreline 

sand into the water (Ishii et al., 2007; Weiskerger et al., 2019). These sand-based sources and sinks 

can heavily impact spatial and temporal trends in FIO concentrations at beaches. Further, the 

Intergovernmental Panel on Climate Change (IPCC) has predicted increases in wind speeds and 

wave heights/energies in mid- and upper latitudes as a result of climate change (Pachauri et al., 

2014). Similarly, the IPCC has predicted sea level rise in coming decades, a phenomenon already 

being observed, leading to changes in the beach face and the intertidal zone that is impacted by 

wave deposition/resuspension of FIO (Nerem et al., 2018; Weiskerger et al., 2019). This will likely 

lead to increases in wave-induced FIO release from sands and into recreational water. Because of 

the potential for climate change to significantly impact sand-water exchange of FIO at beaches, it 

will be integral for numerical models to include sand-sediment-water interactions when predicting 

microbial water quality. Currently there are gaps in our understanding of these sand-sediment-FIO 
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related processes and there is a need to further refine our mechanistic modeling approaches based 

on high-quality field observations and datasets which are often lacking. This will be especially 

important in substantially wave-impacted beach areas, to improve upon model predictions that 

exclude sand/sediment parameters (Gao et al., 2011; Thupaki et al., 2013).  

Such models accounting for sand-sediment-water interactions at the beach may take inspiration 

from modeling frameworks that incorporate sedimentation. For instance, the modeling approach 

developed by Hipsey et al. (2008) includes terms for various particle size classes, accounting for 

differential resuspension effects on “fine” and “coarse” particles. Fine particles require lower bed 

shear stress values for resuspension, compared to coarse particles, so it may be important to 

differentiate between the readily resuspended particles and those that are less likely to resuspend 

after deposition (Brown et al., 2013; Feng et al., 2013; Hipsey et al., 2006). After simulating 

sediment transport as a function of particle size, sediment-FIO interactions can be modeled using 

attachment-detachment kinetics following those established for subsurface transport models 

(Brown and Boehm, 2016). 

An additional concern related to how climate change will impact recreational water quality 

involves storm- and runoff-associated FIO at coastal areas. For many regions, including mid-

latitudinal coastal areas, climate change is expected to lead to increasingly frequent and intense 

storms (Pachauri et al., 2014). Not only will these intense storms make recreating at beaches 

dangerous via rip tides, rip currents and strong waves, they will also send increased volumes of 

potentially contaminated runoff and river water downstream, to be released to coastal areas 

(Barlage et al., 2002). As a result, recreational beaches may be expected to experience the impacts 

of more frequent and larger storm-associated river FIO plumes.  
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Effective prediction of the coastal water quality impacts from river FIO plumes will be helpful in 

not only understanding an additional source of contamination to recreational areas but will also 

aid in the management of beach resources for public and environmental health. This simulation 

will require extension of existing numerical modeling approaches to include the determination of 

FIO concentrations in dynamic river plumes as well as reliable estimation of plume dynamics.  

A number of studies have reported a “first-flush” effect for FIO (Brown et al., 2013; Nerem et al., 

2018), in which elevated FIO levels were observed following storm events with levels declining 

in later portions of the storm event and in subsequent events over a season. However, other 

researchers did not report such an effect (McCarthy et al., 2012). These differences can be 

attributed to different runoff characteristics of watershed areas, so linking coastal water quality 

models with well-tested watershed models of FIO is expected to help address current limitations 

of nearshore FIO models (Brito et al., 2015). For example, microbial composition and 

concentrations in runoff depend on upstream land uses; runoff from rural/agricultural watersheds 

is likely to have different water quality concerns than runoff from urbanized or forested catchments 

(Goonetilleke et al., 2005; Liang et al., 2013; Tong and Chen, 2002). These differences are 

magnified during first flush phenomena and heavy storm events, where FIO can be released from 

soils and into the water, leading to high FIO loads in rivers that can then degrade coastal water 

quality. Therefore, calibrated upstream watershed models can be beneficial for modeling of coastal 

water quality in response to storm-associated river plume releases, simply because of the 

differential impacts resulting from different upstream watershed conditions that send FIO loads 

downstream to the coast.  

In addition to the enteric pathogens of human health concern that can be indicated using FIO, 

microorganisms that cause other health problems, such as respiratory and skin infections, are also 
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often present at beaches, and may be tracked to upstream sources (Fewtrell and Kay, 2015). This 

is especially true in the context of extreme storm events when beaches are heavily impacted by 

upstream river flows and plumes. Methods such as microbial source tracking (MST) and the 

monitoring of eDNA have shown value in their ability to improve predictive modeling of extreme 

storm events by offering insights into sources and transport pathways for FIO (Brownell et al., 

2007; Nevers et al., 2020). Differences in MST and eDNA monitoring results between “normal” 

and heavy storm conditions can be helpful in determining the types of microorganisms that become 

active within the aquatic environment in response to storm conditions (Staley et al., 2018). 

Similarly, they can be informative in characterizing upstream impacts on coastal areas, by 

revealing potential catchment sources of microorganisms. Integrating well-calibrated watershed 

FIO models with nearshore water quality models (e.g., Bedri et al. (2014)) or statistical and data-

based approaches that describe FIO loading to coastal areas (Bravo et al., 2017) may further 

improve the performance of nearshore FIO models during extreme events. 

Conditions surrounding FIO sedimentation, attachment to suspended solids, and resuspension in 

riverbeds and coastal areas can vary greatly between storm events. However, there is a notable 

lack of observational data on water quality during and immediately following different storm 

conditions. High-resolution FIO data both within and between storm events will be critical to 

effective simulation of FIO loading, attachment dynamics, sedimentation and resuspension 

kinetics, and overall water quality in river plumes associated with heavy rain events. It can be 

difficult to collect these data, due to safety considerations, but the use of sensor networks and small 

unmanned aerial vehicles has emerged as a potential alternative to field data collection. Morgan et 

al. (2020) demonstrated the use of unmanned aerial vehicles to photograph and document inland 

irrigation ponds and used image analysis to characterize water quality from the images collected. 
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Many existing sensors on water bodies (e.g., select USGS gauging stations) collect ancillary water 

quality data such as turbidity and electrical conductivity as well. These easy-to-collect data have 

the potential to help further constrain and evaluate FIO models because of their correlations to 

microbial water quality (Safaie et al., 2016; Schimmelpfennig et al., 2012; Zhang et al., 2015, 

2012). High-resolution water quality data collection is ideal for effective fate and transport 

modeling, but this data collection can take many forms, including remote sensing and proxy data 

collection.  

In the coastal environment, there are multiple ways to simulate river plumes in numerical water 

quality models. Along with the river flow inputs, plumes may be characterized by tracking specific 

FIO within a water quality or FIO-specific model. In these models, FIO concentrations associated 

with the river inputs and decay function parameters can be specified to reflect local conditions. To 

assess the relative contributions of FIO from riverine sources to a beach site, constant FIO 

concentrations or arbitrary FIO masses can be input into the model over a release period 

(Chatzichristos et al., 2000; Li et al., 2019) and breakthrough curves can be generated over time 

for specific locations. In contrast, FIO concentrations that are associated with riverine flows may 

be calculated using empirical relationships between river flowrate and FIO concentration (Bravo 

et al., 2017; Madani et al., 2020; Safaie et al., 2016). For beaches impacted by multiple river 

plumes (e.g., Liu et al. (2006); Kim et al. (2009)), the plume dynamics and hence nearshore water 

quality can be significantly more complex (Figure 2-1). Using realistic boundary 

conditions/forcing, models can track the FIO within the plumes spatiotemporally. Another 

attractive option for simulating FIO plumes involves the use of particle tracking (Anderson and 

Phanikumar, 2011; Byrnes et al., 2011; Huang et al., 2019; Nekouee et al., 2015b; Rowe et al., 

2016), especially “reactive” particle tracking models that can account for FIO losses (Xue et al., 
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2018). In this case, FIO are released to the model domain (i.e., river outlets) as discrete particles. 

Upon their release, the particles’ movements are tracked over time based on the simulated velocity 

field in three dimensions. This approach, using a Lagrangian formulation for dispersion, has the 

advantage that it does not suffer from excessive numerical dispersion inherent to Eulerian 

approaches. All of these approaches have their merits and drawbacks, so it is likely that selection 

of an optimal framework for plume modeling will require evaluation of the approaches within the 

context of the research questions and local conditions.    

 

Emerging issues such as water quality degradation associated with FIO exchange between water 

and sand, river plumes, upstream watershed impacts, and heavy storm runoff are key to effective 

modeling of microbial fate and transport in coastal areas. As such, future research and modeling 

Figure 2-1: Complex factors influencing FIO fate and transport at river-impacted  

nearshore areas 
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in these areas will be beneficial to the water quality modeling community and knowledge base into 

the future.       

2.7. Conclusions 

 

Numerical models of water quality in nearshore regions can be useful tools for management of 

recreational water resources. Water quality and FIO fate and transport models within larger coastal 

ocean modeling frameworks have the potential to predict the fate and transport of FIO and 

pathogens of human health concern over time and across space. However, these models are only 

useful if they are refined and validated against observations.  

In recent years, development of reliable FIO fate and transport models for aquatic and coastal 

systems has been an active area of research.  As a result, modeling approaches frequently include 

decay terms associated with base mortality, solar inactivation, and sedimentation, though the 

specific parameterization of those terms can vary between models (Chapra, 2008). Highly 

generalized fate and transport models expand upon those terms to account for the effects of salinity, 

water temperature, pH, dissolved organic carbon, and differential settling rates due to varying 

particle sizes (Hipsey et al., 2008). Model optimization in terms of FIO tracking has led to 

frameworks with RMSE values as low as 0.41 log10 FIO CFU 100 ml-1 of water (Thupaki et al., 

2010). Some models have also been shown to predict up to 87% of variation in FIO concentrations 

from observed data (Garcia-Alba et al., 2019). While these validation statistics indicate that model 

frameworks are improving in their prediction of water quality, there is still room to optimize 

further. It is also important to note that many of these model parameterizations are specific to their 

local model domains. Generic models of FIO fate and transport can be developed but without 

extensive datasets to test and constrain processes, generic model formulations may not offer 

superior performance compared to simpler models (Hipsey et al., 2008). Therefore, it will likely 



 

50 
 

continue to be imperative that models be developed for their specific contexts, in order to maximize 

their predictive capacity.  

FIO fate and transport modeling frameworks linked to watershed models in the contexts of water-

sand exchange at the beach and release of FIO during storms can help us prepare for the potential 

impacts of extreme events on coastal areas. High quality intra- and inter-event data as well as 

modeling studies are needed to push the predictive capability of the current generation of FIO 

models.  By refining established FIO decay functions to maximize predictive ability of models and 

combining those with the diffuse point and non-point FIO sources like plumes and sand-water 

exchange, prediction and tracking of pollutants in nearshore water and sand can be optimized. 

Confidence in modeling results can be maximized, allowing for more effective management for 

public health at nearshore and recreational beach areas in the face of climate and land use change. 
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3. Effect of Turbulent Prandtl Number on Nearshore Water Quality in a Large Lake 

System 

 

3.1. Introduction 

The movement and quality of water in natural settings can be influenced by a range of factors, 

from meteorological (e.g., surface heat fluxes and wind stress at the top of the water column) to 

physical basin characteristics including lake morphometry and bed roughness (Silva et al., 2014). 

Thus, it can be difficult to reliably model hydrodynamics and solute transport, particularly in 

systems where these factors can change over time and space. Understanding the linkages between 

the rates of momentum, heat and mass transfer is key to improving the predictive ability of 

numerical models of hydrodynamics and water quality. 

Although the governing equations for fluid flow (the Navier-Stokes equations) contain information 

at all spatiotemporal scales including molecular scales, direct numerical simulation (DNS) of these 

equations is computationally demanding and it is impractical to apply DNS models to large lake 

systems. Therefore, the equations governing turbulent flows are averaged around a mean state 

(e.g.,  𝑢̅ where u denotes the velocity component in the x-direction) and turbulent fluctuations 

around the mean (denoted by primes, e.g., u) are treated separately. Eddy viscosity 𝐴𝑚 (for 

momentum), eddy diffusivity 𝐴ℎ (for heat) and eddy diffusivity for solute or contaminant mass 𝐴𝑐 

are additional variables that are often introduced to express the unknown product terms involving 

turbulent fluctuations resulting from the averaging process in terms of the known variables for the 

mean state. For example, turbulent fluctuations in momentum and heat in the horizontal (x and y) 

directions are expressed using the following equations: 

−𝑢𝑣̅̅ ̅̅ ̅ = 𝐴𝑚
𝜕𝑢

𝜕𝑥
                                                          (3-1) 
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−𝑢𝑇̅̅ ̅̅ ̅ = 𝐴ℎ
𝜕𝑇̅

𝜕𝑥
                                                            (3-2) 

where u and v are the x- and y-direction velocity components and T denotes temperature (similar 

equations can be written in the vertical direction). The turbulent Prandtl number is a direct 

consequence of the above parameterization and is defined as the ratio of the eddy viscosity for 

momentum transfer to the eddy diffusivity for heat (Eq. 3-3) (Chen et al., 2006; Kays, 1994; Ye et 

al., 2019)  

𝑃𝑟𝑡,𝐻 =
𝐴𝑚

𝐴ℎ
                                                                   (3-3) 

where the suffix H denotes horizontal mixing and a similar Prandtl number is defined in the vertical 

direction (𝑃𝑟𝑡,𝑉). In water quality simulations, the eddy diffusivity for heat should be replaced with 

the eddy diffusivity for contaminant mass (Eq. 3-4). Similar to the way momentum and heat 

transfer rates are related using the turbulent Prandtl number, momentum and contaminant mass 

transfer rates are linked using the turbulent Schmidt number (𝑆𝑐𝑡, Eq. 3-5) (Donzis et al., 2014; 

Graf and Cellino, 2002; Gualtieri et al., 2017; Rauen et al., 2012). 

−𝑢𝐶̅̅ ̅̅ ̅ = 𝐴𝑐
𝜕𝐶̅

𝜕𝑥
                                                           (3-4) 

𝑆𝑐𝑡 =
𝐴𝑚

𝐴𝑐
                                                               (3-5) 

where C denotes the dissolved or suspended contaminant concentration. If the turbulent Schmidt 

number is known, then the above equation can be used to compute the eddy diffusivity coefficient 

used in the advection-dispersion-reaction equation for concentration. The FVCOM manual uses 

the same symbol 𝐴ℎ (used for heat) for the eddy diffusion coefficient for solute transport as well 

(that is, 𝐴𝑐 = 𝐴ℎ). Although this maybe a reasonable assumption for the transport of dissolved 



 

53 
 

substances (e.g., DO), significant differences can be expected if the interest is in modeling the 

transport of suspended material such as sediment or bacteria. Therefore, it is important to make a 

distinction between Ah and Ac (or alternatively, between the turbulent Prandtl number and the 

turbulent Schmidt number).  

Turbulent Prandtl number (Prt) can help characterize the influences of momentum and heat flux 

on hydrodynamics in the horizontal and vertical directions. Prt can be related to the fluid’s 

molecular Prandtl number (Pr) via Eq. 3-6 (Malhotra and Kang, 1984)  

𝑃𝑟𝑡 = 1.01 − 0.09𝑃𝑟0.36                                                    (3-6) 

where 𝑃𝑟 =  𝜐/𝛼 is the ratio of the kinematic viscosity to the thermal diffusivity of the fluid and 

is therefore a property of the fluid (Malhotra and Kang, 1984). The turbulent Prandtl number, on 

the other hand, is a property of the flow field and can change in a complex manner depending on 

conditions within the water column (Kays, 1994; Ye et al., 2019). Conceptually, Prt helps describe 

the additional shear stress and heat flux that are present in turbulent flows but absent from laminar 

flows, and how the resulting impacts relate to one another. Eddy diffusivity models have proven 

to be useful, and continue to be useful, for modeling large natural systems such as lakes and oceans. 

Recent advances in the field of turbulence modeling have led to models that can simulate 

hydrodynamics and temperature without the need for a turbulent Prandtl number. These advances, 

thus, render the concept of a turbulent Prandtl number meaningless for turbulent flows within many 

fully 3-dimensional unsteady models (Kays, 1994; Launder, 1989; Nagano and Kim, 1988). 

However, the thermal eddy diffusivities and momentum eddy viscosities remain important for 

characterizing hydrodynamics and mixing in large bodies of water that are prone to stable 

stratification (Elliott and Venayagamoorthy, 2011; Noh et al., 2005; Ye et al., 2019). Therefore, 

turbulent Prandtl numbers in eddy diffusivity models influence the ability of models to predict 
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hydrodynamics (directly) and water quality (indirectly via hydrodynamics) while the turbulent 

Schmidt number directly influences the ability to predict contaminant concentrations in such large 

systems.      

A simplification of Prt is the Reynolds analogy, where momentum and heat transfer rates are 

identical such that Prt is unity (Crimaldi et al., 2006). However, experimental data have suggested 

that this simplification may not be realistic for environmental turbulent flows, particularly in stably 

stratified conditions (Crimaldi et al., 2006; Ye et al., 2019). Beginning in the 1990’s, research 

suggested that Prt values should realistically be approximately 0.85 for natural waters (Kays, 

1994). More recent experimental data, however, have shown that Prt values can be location-

dependent, varying from 1.5 to 4.2 in Antarctica’s Ross Sea (Muench et al., 2009) and from 2 to 8 

in Narragansett Bay, Rhode Island USA (Goodman and Levine, 2003). 

Values of turbulent Schmidt numbers reported in the literature for environmental flows varied 

considerably but the best-fitting Sct values were found to be in the range 0.1 – 1.0 with values 

greater than 1.0 (but less than 2.1) representing sediment-laden open channels flows of sand 

particles (Gualtieri et al., 2017). Although a separate sensitivity analysis can be carried out by 

varying Sct in the range 0.1 – 2.1 after identifying the best Prandtl number for hydrodynamic 

simulations, the assumption Sct = Prt is made, following the same assumption in the FVCOM 

modeling framework and considering that the particle sizes that E. coli are known to associate with 

are significantly smaller than sand particles. 

Since molecular and turbulent Prandtl numbers can inherently impact hydrodynamics in a lake 

setting, they are also important for describing the fate and (especially) transport of contaminants 

suspended in the water. Therefore, Prandtl numbers may substantially affect the ability of models 

to characterize water quality in large bodies of water, because of their effects on vertical mixing 
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schemes (Elliott and Venayagamoorthy, 2011; Noh et al., 2005). Further, because contaminants in 

the water have different molecular properties than the water itself, they may get transported at 

different rates compared to the rates of momentum and heat transport. Similar to the molecular 

Prandtl number, the molecular Schmidt number (𝑆𝑐 =  𝜐/𝐷) is a property of water and represents 

the ratio of viscosity (𝜐) to the binary diffusion coefficient (D) of the contaminant in water. The 

turbulent Schmidt number is a property of the flow, like the turbulent Prandtl number.  

Despite the potential for influence on water quality models, systematic efforts to quantify the 

effects of turbulent Prandtl and Schmidt numbers on hydrodynamics, thermal structure and 

concentrations of dissolved and suspended material (e.g., sediment, bacteria) within coastal 

regions are limited. Because Prt values are often assumed to be close to one (Kays, 1994), it seems 

that there is little discussion of how they can affect hydrodynamics and water quality simulation. 

However, looking at the effects of different Prandtl numbers on contaminant fate and transport 

models can shed light on physical drivers of contaminant transport in the nearshore zone. With 

this in mind, our research objectives were to assess the sensitivity of coupled numerical 

hydrodynamics and water quality models for southern Lake Michigan to changes in Prt inputs. We 

conducted a sensitivity analysis for models using horizontal and vertical Prt values ranging from 

0.1 to 10.0 to evaluate the model predictive ability in the context of hydrodynamics and water 

quality. The results of the sensitivity analysis provided insight into optimal Pr value combinations 

for simulating lake surface temperature (LST), lake currents and water quality for southwestern 

Lake Michigan. Further, the results allowed for inferences regarding a theoretical case for using 

different Prt values for bulk water and water quality variables. 
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3.2. Methods 

 

3.2.1. Numerical Modeling Framework 

 

The Finite Volume Community Ocean Model (FVCOM) numerical modeling framework was used 

to assess the impacts of turbulent Prandtl number on simulation of hydrodynamics and water 

quality. This is an unstructured-grid, finite-volume, fully three-dimensional model approach to the 

simulation of hydrodynamics in nearshore environments, using primitive Navier-Stokes equations 

governing momentum (Eq. 3-7a-c), continuity (Eq. 3-8), salinity (Eq. 3-9), density (Eq. 3-10) and 

temperature (Eq. 3-11) (Chen et al., 2003). Equations are solved for nodes and cells across a spatial 

mesh grid, and over multiple timesteps to create the base hydrodynamics model. 

𝜕𝑢
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(3-7a) 
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𝜌 = 𝜌(𝑇, 𝑆, 𝑝)                                                            (3-10) 
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In these equations, u, v and w are the velocity components in the x, y and z directions, respectively 

(m s-1). S and T represent salinity and water temperature. fu and fv are Coriolis terms (m2 s-1).  

Horizontal eddy viscosity and eddy diffusivity (m2 s-1) are represented by Am and Ah, respectively. 

Likewise, vertical eddy viscosity is denoted by Km (m2 s-1) and thermal vertical eddy diffusion 

coefficient is Kh (m
2 s-1). ρo is the density of water (kg m-3). Pressure terms include air pressure 

(pa), hydrostatic pressure (pH) and non-hydrostatic pressure (q), all in units of Pa.        

This base model of hydrodynamics can be expanded to include water quality impacts at nearshore 

regions, via the use of a Water Quality Model (FVCOM-WQM). This allows the model to simulate 

localized contamination at beaches (Ge et al., 2012; Thupaki et al., 2010). By including source and 

sink terms and contaminant decay functions (Eq. 3-12) to the advection-dispersion-reaction (ADR) 

equation (Eq. 3-13), these models can effectively simulate the flux of microbial water quality 

contaminants like Fecal Indicator Organisms (FIO) (Liu et al., 2006; Safaie et al., 2016; Thupaki 

et al., 2010).    

𝑘 = [
𝑓𝑝𝑣𝑠

𝐻
+ 𝑘𝐼𝐼𝑡 + 𝑘𝑑] 𝜃𝑇−20                                                     (3-12) 

𝜕𝐶
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=

𝜕

𝜕𝑥
(𝐴𝑐

𝜕𝐶

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐴𝑐

𝜕𝐶

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑐

𝜕𝐶

𝜕𝑧
) − 𝑘𝐶             (3-13) 

In the ADR (Eq. 3-13), k is the contaminant decay function, C is the contaminant concentration in 

the water (commonly MPN 100 mL-1) and 𝐴𝑐 and 𝐾𝑐 are horizontal and vertical mixing 

coefficients, respectively (m2 s-1). Within the contaminant decay function itself (Eq. 3-12), fp is the 

fraction of contaminant concentration that is attached to suspended particles in the water (unitless), 

vs is the settling velocity of the suspended particles (m d-1) and H is the depth of the water column 

(m). It represents the solar irradiance at the water surface at time t (W m-2), kI is the contaminant 
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solar inactivation rate (m2 W-1 d-1), kd denotes base mortality (d-1) and θT-20 is a temperature (T, 

°C) correction factor (unitless).   

Eddy viscosity and diffusivity within FVCOM can be calculated using multiple approaches but 

are commonly computed using the Smagorinsky formulation in the x and y directions 

(Smagorinsky, 1963) and the Mellor-Yamada Level 2.5 Turbulent Closure Model in the vertical 

direction (Mellor and Yamada, 1982).  

Utilizing the Smagorinsky formulation, horizontal diffusion of momentum (Am) and thermal 

diffusion (Ah) coefficients are calculated using Eq. 3-14 and 3-15, respectively.  

𝐴𝑚 = 0.5𝐶𝛺𝑢√(
𝜕𝑢

𝜕𝑥
)
2

+ 0.5 (
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

                                      (3-14) 

𝐴ℎ =
0.5𝐶𝛺𝜁

𝑃𝑟𝑡,𝐻

√(
𝜕𝑢

𝜕𝑥
)
2

+ 0.5 (
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

                                         (3-15) 

In these calculations, C is a constant parameter, Ωu and Ωζ represent the area of individual 

momentum and tracer control elements (i.e., cells) in the model domain’s mesh grid, respectively. 

PrH is the horizontal Prandtl number. Similar to the overall momentum equations used in FVCOM, 

u and v here are the velocity components of currents in the x and y horizontal directions.  

In the vertical plane, the Mellor-Yamada 2.5 level turbulence model (MY2.5) (Chen et al., 2006; 

Mellor and Yamada, 1982) solves equations for turbulent kinetic energy (q2) and q2l, a 

combination of turbulent kinetic energy and turbulence length scale (l) (Eq. 3-16 and 3-17).  

𝜕𝑞2
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) + 𝐹𝑞                 (3-16)  
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In these equations, u, v, and w are components of velocity in the x, y, and z directions, following 

the parameterization in Eq. 3-3 – 3-7. Fq is the horizontal diffusion of turbulent kinetic energy, Fl 

is the horizontal diffusion of the turbulence macroscale, Kq is the vertical eddy diffusion coefficient 

and E1 is a model constant of value 1.8. ε is the dissipation rate of turbulent kinetic energy (Eq. 3-

18), where B1 is a model constant.  

𝜀 =
𝑞3

𝐵1𝑙
                                                                (3-18) 

Ps and Pb in Eq. 3-16 and 3-17 represent shear and buoyancy production, in terms of turbulent 

kinetic energy, water density (ρ), a reference density (ρ0), acceleration due to gravity (g), vertical 

eddy viscosity coefficient (Km, Eq. 3-19), vertical thermal eddy diffusion (Kh, Eq. 3-20), the Brunt-

Väisälä frequency for the calculation of vertical direction of water movement (N) (Kundu et al., 

2016), and shear frequency (M).  

𝐾𝑚 = 𝑙𝑞𝑆𝑚                                                            (3-19) 

𝐾ℎ = 𝑙𝑞𝑆ℎ =
𝐾𝑚

𝑃𝑟𝑡,𝑉
                                                       (3-20) 

where Sm and Sh are stability functions in terms of constants A1 = 0.92, B1 = 16.6, C1 = 0.08, A2 = 

0.74 and B2 = 10.10 (Eq. 3-21 – 3-22) (Allen et al., 1995; Galperin et al., 1988; Mellor and Yamada, 

1982). GH in the equations below is represented by Eq. 3-23 and must fall between -0.28 for stably 

stratified conditions and 0.02 for unstable conditions. 

𝑆𝑚 = 𝐴1
(1−3𝐶1−6𝐴1𝐵1

−1)+9(2𝐴1+𝐴2)𝑆𝐻𝐺𝐻

1−9𝐴1𝐴1𝐺𝐻
                                  (3-21) 

𝑆ℎ = 𝐴2
1−6𝐴1𝐵1

−1

1−3𝐴2(6𝐴1+𝐵2)𝐺𝐻
                                                 (3-22) 

𝐺𝐻 =
−𝑙2𝑁2

𝑞2                                                         (3-23) 
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To calculate the wall proximity function 𝑊̃ from Eq. 3-17, free surface elevation (ζ), mean water 

depth (H), the von Karman constant κ and a constant of E2 = 1.33 are incorporated into Eq. 3-24. 

𝑊̃ = 1 +
𝐸2𝑙2

(𝜅𝐿)2
                                                         (3-24) 

Here, 𝐿−1 = (𝜁 − 𝑧)−1 + (𝐻 + 𝑧)−1.  

By adjusting model inputs to these equations, it is possible to evaluate the impacts of such 

conditions on model predictive ability, leading to model optimization for applications like beach 

water quality management and engineering for public health. In this case, PrH and PrV values were 

adjusted and assessed for resulting model predictive ability. 

3.2.2. Input Data and Boundary Conditions 

 

Hydrodynamic and water quality models were run over a model domain mesh encompassing the 

entirety of Lake Michigan. Mesh grid resolution was variable, ranging from 50 m near the shore 

in southwestern Lake Michigan to 2 km offshore and in the northern part of the lake (Figure 3-1), 

to balance computational requirements with resolution of shoreline features in the lake’s southern 

basin. The mesh was created using Surface-water Modeling System (SMS) 12.2 (Aquaveo, Provo, 

UT USA). Lake bathymetry data from the National Oceanic and Atmospheric Administration’s 

(NOAA) National Centers for Environmental Information (NCEI) (NOAA, 2018a) were 

interpolated across the mesh to create the model’s three-dimensional spatial domain for FVCOM 

(Figure 3-2). 
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Figure 3-1: Google Earth image of Lake Michigan with FVCOM model domain mesh grid 

overlaid. Mesh grid shows smaller triangular mesh elements (indicating higher mesh resolution) 

in southwestern Lake Michigan, compared to northern and offshore areas 
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When not using a restart file, FVCOM models begin simulations with conditions of zero currents 

and a lakewide constant temperature. As the models work through calculations and simulation 

timesteps, they become increasingly robust at simulating spatiotemporally varying conditions in a 

process called “spin up”. Often, these models require weeks to months of model spin up time 

before adequately simulating conditions across a lake. Herein, a validated base hydrodynamic 

model simulating January 1st to June 9th, 2008 was used as a restart file for the model. This allowed 

for immediate reliable representation of hydrodynamic conditions within Lake Michigan and 

avoided the need for model “spin up”. Using the restart file, models were initialized to simulate 

Figure 3-2: Three-dimensional representation of Lake Michigan bathymetry used in  

FVCOM simulations 
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conditions between June 9th and August 27th, 2008 for the sensitivity analysis. Meteorological 

forcing data corresponding to times throughout the models’ temporal domain came from up to 118 

buoy and weather station locations, from NOAA’s NCEI and National Data Buoy Center (NDBC) 

(NOAA, 2018a, 2018b) and were interpolated to the model mesh. 

Surface winds and heat fluxes in the models were calculated using the COARE 26Z bulk air-sea 

flux formulation (Fairall et al., 2003, 1996). Mixing was simulated using the turbulent closure 

models from Smagorinsky (Smagorinsky, 1963) and Mellor & Yamada (Mellor and Yamada, 

1982) with horizontal diffusion coefficient (Am) and vertical eddy viscosity (Km) values of 0.1 and 

1.0*10-6, respectively. River flow inputs to the model were simulated for the period of June 9th to 

August 17th, 2008 from USGS stream gauge data from gauge 04095090 in northwest Indiana 

(41.634° N, 87.178° W). 

The Water Quality Model (WQM) within FVCOM used input E. coli concentrations at the outlet 

of the Burns waterway, collected in situ between June 8th and August 16th, 2008. The subsequent 

microbial decay function used to model E. coli fate and transport in the lake utilized terms for solar 

inactivation, sedimentation, and base mortality (Eq. 3-12, above), as presented by Liu et al. (Liu 

et al., 2006) and Safaie et al. (Safaie et al., 2016). Following Safaie et al. (Safaie et al., 2016), fp = 

0.05, vs = 1 m d-1, kI = 0.003 m2 W-1 d-1, ke = 0.55 m-1 and kd = 0.777 d-1 for the models presented.                

3.2.3. Sensitivity Analysis 

The impacts of changing input turbulent Prandtl numbers on water quality were assessed through 

the systematic adjustment of both vertical and horizontal turbulent Prandtl numbers within the 

FVCOM framework. FVCOM allows for the input of horizontal and vertical turbulent Prandtl 

numbers ranging from 0.1 to 10.0 (Chen et al., 2006). Thirteen different combinations of vertical 
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and horizontal turbulent Prandtl numbers were specified in the FVCOM input file (Table 3-1), 

resulting in 13 separate model simulations for June – August 2008.  

Table 3-1: Names of 13 models used in sensitivity analysis  

and corresponding horizontal and vertical turbulent Prandtl numbers used 

Model Name 

Horizontal 

Prandtl Number 

(Prt,H) 

Vertical Prandtl 

Number 

(Prt,V) 

mich08-1 0.1 0.1 

mich08-2 0.1 0.14 

mich08-3 0.14 0.1 

mich08-4 0.2 0.2 

mich08-5 0.5 0.5 

mich08-6 0.85 0.85 

mich08-7 1 1 

mich08-8 1.18 1.18 

mich08-9 2 2 

mich08-10 5 5 

mich08-11 7 10 

mich08-12 10 7 

mich08-13 10 10 

 

These combinations of horizontal and vertical turbulent Prandtl numbers span the range of 

applicable values that can be used in FVCOM and represent ratios that signify higher relative 

influences of both thermal diffusivity and eddy viscosity as well as a balance between their relative 

impacts on hydrodynamics. Some of the combinations come from previous published model 

frameworks (e.g., mich08-2, mich08-8) (Kays, 1994; Safaie et al., 2016), while others were chosen 

to encapsulate the range of potential value combinations in the models. Within the models, mixing 

coefficients such as the eddy diffusivity and eddy viscosity remained the same for both 

hydrodynamics and water quality models. This allowed for the assumption that the resulting Prt 

value in the hydrodynamic model would be equal to the value of the corresponding Sct number for 
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the E. coli model. This, in turn, meant that the models for hydrodynamics and E. coli could both 

be assessed, in terms of the optimization of Prt and Sct. 

3.2.4. Model Validation 

 

The 13 WQM simulations of southern Lake Michigan in 2008 were comparatively evaluated in 

terms of their ability to reproduce observational data in the model spatiotemporal domain. Modeled 

LST was plotted against observed LST at NDBC buoy 45007 (42.674° N, 87.026° W) (NOAA 

2018b). Modeled water temperatures at depth over time were plotted and visually compared to 

observations from a thermistor chain mooring deployed at buoy 45007 (NOAA National Centers 

for Environmental Information, Accession 0190726). Additionally, root mean squared error 

(RMSE) values were calculated for the comparisons of the model results (Pi) to observations (Oi) 

of LST, following Eq. 3-25. Currents within the lake were assessed similarly. Model results for 

each of the 13 simulations were plotted against currents observed in the u and v directions at a 

nearshore Acoustic Doppler Current Profiler (ADCP) location (MADCP: 41.711 °N, 87.210 °W, 

Figure 3-3) for qualitative evaluation. RMSE values for u- and v-components of current and the 

resulting prevailing currents (|V|, Eq. 3-26) were calculated as a quantitative assessment. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖−𝑂𝑖)

2𝑛
𝑖=1

𝑛
                                                   (3-25) 

|𝑉| = √𝑢2 + 𝑣2                                                       (3-26) 

E. coli concentration results were validated against daily sample observations from Ogden Dunes 

beach in northwest Indiana (41.630° N, 87.197° W) (Figure 3-3). In similar fashion to temperature 

and current validation for model results, modeled E. coli concentration results over time were 

plotted against observed E. coli concentrations at the beach. Multiple validation metrics were used 

to evaluate the model simulations in the context of E. coli because no single metric can capture all 
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aspects of model predictive ability (Legates and McCabe, 1999). As a result, the common 

coefficient of determination (R2) and RMSE metrics were used during evaluation and were 

supplemented by percent bias (PBIAS, Eq. 3-27), Nash-Sutcliffe efficiency (NSE, Eq. 3-28), 

RMSE-observation standard deviation ratio (RSR, Eq. 3-29) and normalized Fourier norm (Fn, Eq. 

3-30) calculations to assess model predictive ability (Fry et al., 2013; Moriasi et al., 2007; Ritter 

and Munoz-Carpena, 2013; Thupaki et al., 2013). All validation statistics for the prediction of E. 

coli concentrations at Ogden Dunes beach utilized log10-transformations of observed and simulated 

concentrations (Oudin et al., 2006).  

 

 

 

 

 

 

 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑂𝑖−𝑃𝑖)×100𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

                                                (3-27) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

                                                 (3-28) 

𝑅𝑆𝑅 =
√∑ (𝑂𝑖−𝑃𝑖)

2𝑛
𝑖=1

√∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

                                                      (3-29) 

Figure 3-3: Google Earth image showing locations of MADCP and Ogden Dunes beach in 

southern Lake Michigan, relative to Chicago 
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𝐹𝑛 =

√∑ (|𝑂𝑖−𝑃𝑖|)
2𝑛

𝑖=1
𝑛

√∑ (𝑂𝑖)
2𝑛

𝑖=1
𝑛

                                                       (3-30) 

Models which maximized R2 values, minimized RMSE and RSR, and produced NSE, PBIAS and 

Fn values closest to 1, 0 and 0, respectively, were deemed optimal for simulation of water quality 

at Ogden Dunes beach. This analysis created a hierarchy of model turbulent Prandtl number 

options recommended for use in hydrodynamic and water quality modeling for water bodies like 

southwestern Lake Michigan.  

3.3. Results and Discussion 

 

3.3.1. Model Comparisons with Observed Temperature at Buoy 45007 

 

Temperature observations at both the water surface and over the water column depth were recorded 

in the middle of Lake Michigan’s southern basin, at the location of the NOAA NDBC buoy 45007 

(NOAA 2018b). These observations were compared to predicted water temperatures at this 

location for each of the 13 FVCOM models, for the time period of June 9th to August 27th, 2008.  

Plotted comparisons of surface water temperatures at buoy 45007 (Figure 3-4) indicate that, 

overall, the FVCOM models simulate the observed water temperatures reasonably well. During 

the warming period of late spring to early summer, the models tended to predict more rapid 

warming of the water than was observed. This is a known limitation within the FVCOM framework 

and highlights a need for continued model refinement and improvement, particularly in the context 

of spring and fall seasons, when the water column mixes, changing water temperatures. The 

models were able to simulate LST especially well toward the middle and end of the summer, with 

many of the simulated temperatures matching observations very well during August of 2008. 

Despite the general predictive ability of all models for the summer of 2008 in the context of surface 
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water temperature, there are some discrepancies between the models, suggesting that adjustment 

of the turbulent Prandtl numbers within the models can impact resulting water temperature 

predictions. 

 

As seen in Figure 3-4, models mich08-1, mich08-2, mich08-3, and mich08-4 show a better 

correlation between observed and simulated surface water temperature than models mich08-9, 

mich08-10, mich08-11, mich08-12 and mich08-13. These trends are supported by the quantitative 

Figure 3-4: Plots comparing simulated (black lines) and observed (red lines) surface water 

temperatures over time in 2008 at Buoy 45007. Plots A-M correspond to results from models 

mich08-1 to mich08-13, respectively 
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analysis of simulated surface water temperatures at the buoy. Models mich08-6 and mich08-7 

show the lowest LST RMSE values, when simulations were compared to buoy observations 

(RMSE range = 2.53 and 2.55 °C, respectively). Generally, models using Prt,H values ≤ 1 yielded 

lower RMSE values than those utilizing Prt,H values > 1. Models mich08-8 through mich08-11 all 

yielded RMSE values above 3.00 °C (RMSE range = 3.00 – 3.21 °C, Table 3-2). This further 

indicates that Prt,H values ≤ 1  may lead to better FVCOM simulations of LST for southwestern 

Lake Michigan than Prt,H values > 1. However, it seems that the optimal horizontal and Prt,V values 

for prediction of surface water temperature are close to 1, with the optimal model using Prt,H and 

Prt,V values of 0.85. 

Table 3-2: Lake surface water temperature RMSE values for 13 FVCOM models 

with varying Prandtl number combinations 

Model Name 
Lake Surface Temperature  

RMSE (°C) 

mich08-1 2.63 

mich08-2 2.63 

mich08-3 2.66 

mich08-4 2.61 

mich08-5 2.57 

mich08-6 2.53 

mich08-7 2.55 

mich08-8 2.59 

mich08-9 2.74 

mich08-10 3.00 

mich08-11 3.17 

mich08-12 3.14 

mich08-13 3.21 

 

Similar results are seen in visual comparison of water temperature at depth and over time at buoy 

45007. Thermistor chain data show that water near the surface of the basin (< 80 m depth) 

gradually warms to 22.36°C over the course of the summer and particularly in July and August 

2008. Meanwhile, water temperatures at depths greater than 80 m remain near 4 °C throughout the 
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summer (Figure 3-5). FVCOM model water temperature results, across the board, did not simulate 

the depth of the warming over the summer in the middle of the southern basin of Lake Michigan. 

The FVCOM models also indicated earlier surface water warming at the thermistor chain location 

than the observational data showed. Model results suggested surface water temperatures of 10°C 

in June while observations remained near 5°C at the surface until mid-July 2008. While the models 

do simulate a gradual warming of the surface layers of the lake over the summer, the depth and 

timing of that warming are not fully captured in any of the model results (Figure 3-5), suggesting 

that FVCOM models of water temperature would benefit from additional optimization, across the 

board. However, assessment of the plots can lend some insight into which FVCOM models can 

better simulate the warming of the basin at depth over time. Mich08-11 through mich08-13 results 

suggest that water only warmed during the season at depths < ~30 m. Other models indicate that 

the water warmed at depths less than 40 – 50 m, potentially signifying improved prediction of 

water temperature at depth for models mich08-1 through mich08-10 over models mich08-11 

through mich08-13. Models mich08-5 through mich08-8 show that the water warmed to 20 – 25 

°C at depths greater than 10 m, better reflecting the observed warming to that level at depths of up 

to 30 m compared to other model simulations.  
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Figure 3-5: Heat map plots comparing simulated water temperatures at depth and over time in 

2008, at the location of Buoy 45007. Plots A - M correspond to results from models mich08-1 to 

mich08-13, respectively and were compared to thermistor chain observations depicted in plot N. 

Depths were truncated to -80 meters to highlight temperature changes near the water surface 
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3.3.2. Model Comparisons with Observed Currents at Acoustic Doppler Current Profiler 

Locations 

 

Additionally, u and v current component results for the 13 models were compared to u and v current 

component observations obtained at the MADCP location near the northwest Indiana shoreline. 

Plotted comparisons of currents for simulated and observed data show that the 13 models have 

simulated currents in southern Lake Michigan with reasonable reliability, capturing the majority 

of maximum and minimum values for both u- and v-components of current (Figure 3-6). 

Qualitatively, none of the 13 models is substantially better or worse than the others, in terms of 

comparison to observed current values.  

 

Quantitatively, RMSE values for current comparisons are all in the range of 0.025 to 0.054 m s-1 

(Table 3-3). RMSE values for u current components at both BBADCP and MADCP are larger in 

magnitude than RMSE values for v components, which is common and to be expected. At the 

Figure 3-6: Comparison of simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-1. Additional comparison plots for other 

model simulations can be found in Appendices A-1 – A-12 
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MADCP location, u RMSE values are 0.0076 to 0.019 m s-1 greater than v RMSE values. All 

RMSE values for u and v current components are at least an order of magnitude smaller than the 

values of the current components, further suggesting reasonable predictive ability of the models. 

These RMSE values are comparable to previously published RMSE values for models of currents 

in the same area of Lake Michigan (Safaie et al., 2016; Thupaki et al., 2013). 

In terms of comparing current predictive ability between models at the MADCP location, RMSE 

for u current component is minimized in models mich08-1, mich08-2 and mich08-3 and 

maximized for models mich08-11, mich08-12 and mich08-13 (Table 3-3, Figure 3-7). 

Interestingly, comparison of RMSE values for the v-components of current between models shows 

a different and more varied trend. RMSE for v-component of current is minimized under models 

mich08-12, mich08-13 and mich08-4 and maximized under models mich08-10, mich08-11 and 

mich08-5 (Table 3-3, Figure 3-7).     

Table 3-3: RMSE values for 13 models, comparing modeled and observed u-components, v-

components and overall currents at BBADCP and MADCP locations 

Model 

Name 

MADCP  

u-Component 

RMSE 

MADCP 

 v-Component 

RMSE 

MADCP 

Overall Current 

RMSE 

mich08-1 0.040 0.026 0.034 

mich08-2 0.040 0.026 0.033 

mich08-3 0.040 0.026 0.033 

mich08-4 0.041 0.025 0.034 

mich08-5 0.042 0.026 0.035 

mich08-6 0.043 0.026 0.036 

mich08-7 0.043 0.026 0.036 

mich08-8 0.044 0.026 0.037 

mich08-9 0.046 0.026 0.038 

mich08-10 0.049 0.041 0.026 

mich08-11 0.051 0.044 0.026 

mich08-12 0.050 0.025 0.042 

mich08-13 0.051 0.025 0.044 
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Combining the u- and v- current components via Eq. 3-26 above, RMSE values for overall currents 

at MADCP range from 0.026 to 0.044 m s-1. These values are comparable to the ranges of RMSE 

values for u- and v- components. RMSE for overall currents was minimized for models mich08-

10, mich08-11 and mich08-2 and maximized for models mich08-13, mich08-12 and mich08-9 

(Table 3-3, Figure 3-7). These discrepancies between ADCP locations, and current variables 

highlight the importance of using multiple metrics to evaluate model predictive ability and 

optimize model approaches.    

3.3.3. Model Comparisons with Observed E. coli Concentrations at Ogden Dunes Beach 

To assess the ability of the 13 models to predict water quality conditions in southwestern Lake 

Michigan, results of E. coli simulation via the WQM were quantitatively compared to observed E. 

coli concentrations at Ogden Dunes beach, Indiana using six validation metrics. While no single 

 Figure 3-7: Comparison plot of RMSE values for u- and v-components of current (blue and 

orange bars, respectively) and overall currents (yellow bars) at the MADCP location, between 

the 13 models 
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evaluation metric can definitively validate a model’s full predictive ability, the combination of all 

six metrics can give researchers a fuller picture of whether models are truly predicting conditions 

(Legates and McCabe, 1999).  

Following the evaluation of model results for temperature and currents, RMSE was calculated for 

observed and modeled E. coli concentrations at Ogden Dunes beach. RMSE for the 13 models 

varied from 0.39 to 0.42 log10(MPN 100 ml-1) of water (Table 3-4, Figure 3-8). RMSE was 

minimized for models mich08-3 (RMSE = 0.39 log10(MPN 100 ml-1)), mich08-1 (RMSE = 0.39 

log10(MPN 100 ml-1)) and mich08-2 (RMSE = 0.39 log10(MPN 100 ml-1)). The highest RMSE 

values were calculated for mich08-11 (RMSE = 0.42 log10(MPN 100 ml-1)), mich08-13 (RMSE = 

0.42 log10(MPN 100 ml-1)) and mich08-12 (RMSE = 0.42 log10(MPN 100 ml-1)). 

Table 3-4: Model evaluation statistics comparing modeled and observed E. coli concentrations 

at Ogden Dunes beach for 13 models 

Model 

Name 

RMSE R2 Fn NSE PBIAS RSR 

mich08-1 0.39 0.45 0.26 -0.80 16.95 1.43 

mich08-2 0.39 0.45 0.26 -0.81 17.10 1.34 

mich08-3 0.39 0.45 0.26 -0.77 16.90 1.33 

mich08-4 0.40 0.45 0.26 -0.82 16.71 1.35 

mich08-5 0.40 0.45 0.26 -0.83 17.46 1.35 

mich08-6 0.40 0.46 0.26 -0.82 17.95 1.35 

mich08-7 0.40 0.46 0.26 -0.82 18.16 1.35 

mich08-8 0.39 0.47 0.26 -0.81 18.19 1.35 

mich08-9 0.40 0.47 0.26 -0.86 19.18 1.36 

mich08-10 0.41 0.48 0.27 -1.00 20.98 1.41 

mich08-11 0.42 0.49 0.28 -1.09 22.04 1.45 

mich08-12 0.42 0.49 0.27 -1.02 21.29 1.42 

mich08-13 0.42 0.49 0.28 -1.06 21.84 1.44 
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Coefficients of determination for the models indicate that all 13 combinations of Prandtl numbers 

capture less than 50% of the observed E. coli data from the summer of 2008 (Table 3-4, Figure 3-

9). However, these R2 values are comparable to those published for similar models corresponding 

to the location of interest in southwestern Lake Michigan (Safaie et al., 2016a). The coefficients 

of determination differ between models by up to 0.04, suggesting that adjustments to Prandtl 

numbers alone within the FVCOM framework may have a considerable impact on ability to 

capture observed data. The values of R2 are maximized for models mich08-13 (R2 = 0.49), mich08-

11 (R2 = 0.49) and mich08-12 (R2 = 0.49). Conversely, R2 values are minimized by models 

mich08-5 (R2 = 0.45), mich08-4 (R2 = 0.45) and mich08-1 (R2 = 0.49).  

  

Figure 3-8: Comparison plot of RMSE values for simulated and observed E. coli concentrations 

at Ogden Dunes Beach, between models mich08-1 to mich08-13 
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Calculated normalized Fourier Norm (Fn) statistics, measuring variance in observed data not 

captured by the 13 models range from 0.26 to 0.28. Models mich08-3, mich08-1 and mich08-2 

minimize Fn, while mich08-11, mich08-13 and mich08-12 yielded the greatest magnitude of Fn. 

However, the standard deviation of these values is 0.007, indicating that the models are similar in 

their ability to capture variance in observed data, despite some models showing marginal 

improvement over others (Table 3-4, Figure 3-10). None of the Fn values are negative, suggesting 

that the input E. coli concentrations and WQM simulations do improve E. coli prediction, over a 

model that would use an input E. coli concentration of 0.  

 

 

 

 

Figure 3-9: Comparison plot of R2 values for simulated and observed E. coli concentrations at 

Ogden Dunes beach, between models mich08-1 to mich08-13 
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NSE, or a measure of the ratio of the root mean squared error and the standard deviation of 

observational data, is useful in hydrological modeling because of its sensitivity to biases in model 

predictions and its applicability to a wide range of modeling data (Ritter and Munoz-Carpena, 

2013). For models mich08-1 through mich08-13, NSE varied from -1.09 to -0.77 (Table 3-4, 

Figure 3-11). Models mich08-3, mich08-1 and mich08-2 optimized their NSE values (NSE =  

-0.77, -0.80 and -0.81, respectively), while mich08-11, mich08-13 and mich08-12 yielded NSE 

values furthest from the optimal value of +1.0 (NSE = -1.09, -1.06 and -1.02, respectively). In 

spite of these differences in NSE values that suggest that models mich08-1, mich08-2 and mich08-

3 have higher predictive ability than models mich08-4 through mich08-13, all NSE values are 

negative. This may indicate that none of the models are adequately simulating E. coli at Ogden 

Dunes beach, because negative NSE values suggest that the average of observations may be a 

better predictor than the model results (Ritter and Munoz-Carpena, 2013). However, the NSE 

Figure 3-10: Comparison plot of Fn values for simulated and observed E. coli concentrations at 

Ogden Dunes beach, between models mich08-1 to mich08-13 
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values for this location are somewhat comparable to those from previously published models 

(Safaie et al., 2016). 

 

Percent bias (PBIAS), or the tendency for simulated E. coli values to be above or below observed 

values, varies between 16.71 and 22.04 for the 13 models (Table 3-4, Figure 3-12). Models 

mich08-4, mich08-3 and mich08-1 minimized the PBIAS of their results (PBIAS = 16.71, 16.90, 

16.95, respectively), showing improved predictive ability relative to other models. Conversely, 

PBIAS was maximized for models mich08-11, mich08-13 and mich08-12 (PBIAS = 22.04, 21.84 

and 21.29, respectively), indicating relatively poor predictive capacity of these models. All models 

yielded positive PBIAS statistics, indicating that all of the models underpredicted observed E. coli 

concentrations at Ogden Dunes beach. 

  

Figure 3-11: Comparison plot of NSE values for simulated and observed E. coli concentrations 

at Ogden Dunes beach, between models mich08-1 to mich08-13 
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The final model validation statistic used, RSR, showed a similar pattern amongst the 13 models 

(Table 3-4, Figure 3-13). Following PBIAS, NSE, Fn and RMSE, RSR was minimized for models 

mich08-3, mich08-1 and mich08-2 (RSR = 1.33, 1.34 and 1.34 log10(MPN 100 ml-1), respectively). 

Likewise, RSR was maximized in models mich08-11, mich08-13 and mich08-12 (RSR = 1.45, 

1.44 and 1.42 log10(MPN 100 ml-1), respectively). Because RSR is a normalized form of RMSE, 

the hierarchy of models optimized for RSR reflects the hierarchy of models optimized for RMSE. 

Similarly, the calculation of RSR and NSE is very similar, as both are a ratio of RMSE to standard 

deviation of observations (Moriasi et al., 2007; Ritter and Munoz-Carpena, 2013). It would thus 

Figure 3-12: Comparison plot of PBIAS values for simulated and observed E. coli oncentrations 

at Ogden Dunes beach, between models mich08-1 to mich08-13 
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be expected that, as seen here, the hierarchies of models in the context of RSR and NSE 

predictability would match. 

 

3.3.4. Model Selection Based on the Combination of Evaluation Statistics 

 

Because no single metric can fully characterize a model’s predictive ability, especially for 

microbial water quality variables such as E. coli concentration, evaluation of all presented statistics 

must be undertaken when selecting an optimal model for simulation of E. coli spatiotemporally.  

Seven of the models were calculated to be optimized model for at least one of the evaluation 

statistics (mich08-1, mich08-2, mich08-3, mich08-4, mich08-6, mich08-12 and mich08-13). Due 

to their lack of optimization for any metric, it can be concluded that models mich08-7 through 

mich08-11 are not desirable for the simulation of hydrodynamics or E. coli concentrations in 

southwestern Lake Michigan. Since these suboptimal models reflect the usage of horizontal 

Figure 3-13: Comparison plot of RSR values for simulated and observed E. coli concentrations 

at Ogden Dunes beach, between models mich08-1 to mich08-13 
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turbulent Prandtl numbers greater than one, it may also be reasonably established that horizontal 

turbulent Prandtl number inputs to FVCOM that are less than one lead to more reliable simulations 

of water quality than those greater than one. At the same time, model mich08-7 reflects Prt,H and 

Prt,V values of one and seems to simulate temperature, currents and E. coli concentrations at Ogden 

Dunes beach with reasonable reliability as well. This may suggest that the Reynolds analogy 

approximation for Prt values (Prt values = 1) can be appropriate for simulating hydrodynamics and 

water quality in large lake systems such as southwestern Lake Michigan.  

Of the models that optimized at least one evaluation metric, model mich08-3 minimized RMSE 

values for u-component of current at MADCP RMSE (RMSE = 0.04 m s-1), and E. coli 

concentration RMSE (RMSE = 0.39 log10(MPN 100 ml-1)). Mich08-3 also minimized Fn and RSR 

(Fn = 0.26, RSR = 1.33) and maximized NSE (NSE = -0.77) for E. coli concentration simulation, 

among the 13 models tested. Though not the most optimized model, mich08-3 showed the second 

lowest PBIAS value and fifth-highest E. coli R2 value (PBIAS = 16.90, R2 = 0.45). These statistics 

indicate that mich08-3 is the optimal model for simulation of hydrodynamics and E. coli 

concentrations in southwestern Lake Michigan, of those tested herein. This model corresponds to 

horizontal and vertical turbulent Prandtl numbers equal to 0.14 and 0.1, respectively.  

It is important to note that this model, while capturing variability in u-components of current and 

overall currents, is relatively poor at capturing the smaller and more difficult to simulate v-

components of current, compared to other models in the analysis. Because of the smaller scale and 

higher difficulty in simulating v-components of current, it is possible that results indicating 

applicability of this model are misleading. For modeling contexts that rely on high degrees of 

predictive ability in the v-component of currents, use of Prt values corresponding to those from 
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models mich08-4, mich08-12 or mich08-13, though selection of these models may come with a 

tradeoff in predictive ability in other contexts. 

The optimal model for reliably simulating E. coli at Ogden Dunes beach was not necessarily the 

same as the optimal model for reproducing hydrodynamic conditions like surface water 

temperature and currents. Model mich08-3 was able to minimize RMSE values for u-components 

of current at the BBADCP and MADCP but did not minimize RMSE values for LST, v-

components of currents at the ADCP locations or overall currents at the ADCP locations. Instead, 

RMSE in v-components of current at the MADCP were minimized for model mich08-12, with 

Prt,H = 10 and Prt,V = 7. These values are, in fact, the inverse of the values in model mich08-3. 

RMSE values for overall currents at the ADCP locations were minimized for model mich08-2, 

with Prt,H = 0.1 and Prt,V = 0.14.  

The differences in optimal models for simulation of hydrodynamics and E. coli concentrations in 

southwestern Lake Michigan may lend credence to the idea that an additional model parameter 

signifying the turbulent Schmidt number (Sct) would improve water quality models. As previously 

discussed, Sct is a common model parameter in direct numerical simulations (DNS) of any scalar 

in a computational fluid dynamics context, but it is assumed to be similar to the Prt,H value within 

the FVCOM modeling framework. In many cases, this number is used to estimate the relative 

impacts of momentum diffusivity and mass diffusivity on contaminant concentrations in aquatic 

or atmospheric settings within the Advection-Diffusion-Reaction equation (ADR, Eq. 3-13) 

(Donzis et al., 2014; Graf and Cellino, 2002; Gualtieri et al., 2017; Rauen et al., 2012). Research 

to date has largely determined that models of contaminant fate and transport are optimized for Sct 

values between 0.1 and 2.0, but that optimal Sct values can be highly context-dependent (Gualtieri 

et al., 2017). This context-dependence is similar to that seen with turbulent Prandtl numbers, where 
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the optimal values of Prt in models can vary by location, hydrometeorological factors and mixing 

regime (Ye et al., 2019).  

Results presented herein indicate that Sct and Prt may not be similarly sensitive to location, 

hydrometeorology and mixing factors. Therefore, it is possible that the incorporation of an 

additional model parameter denoting Sct in FVCOM would further improve water quality and E. 

coli fate and transport simulation. To assess this possibility, an additional sensitivity analysis may 

be conducted, whereby Prt,H and Prt,V values are held constant at optimal values of 0.14 and 10, 

respectively, and various Sct values are introduced to the modeling environment. Developing a 

hierarchy of optimal Sct values for Lake Michigan would not only lend insight into how Sct may 

impact simulation of nearshore water quality but would also show potential differences in the 

optimization of Prt and Sct values. This could lead to further support for the addition of an Sct 

model parameter in FVCOM that is separate from the Prt parameter.      

3.4. Conclusions 

 

Models of hydrodynamics and water quality rely upon effective combinations of input parameters 

to simulate conditions in natural water bodies. However, it can be difficult to find parameter 

combinations that lead to optimal predictions. Often-overlooked input parameters to models like 

FVCOM are horizontal and vertical turbulent Prandtl numbers, which weight the relative 

contributions of eddy viscosity and thermal diffusivity to hydrodynamics. A sensitivity analysis 

was conducted to determine an optimal combination of horizontal and vertical turbulent Prandtl 

number inputs to FVCOM, to maximize predictive ability for water temperature, currents and E. 

coli concentrations at a beach in southwestern Lake Michigan.  

While several of the 13 evaluated models optimized various validation metrics such as R2, RMSE, 

NSE, Fn, PBIAS and RSR, one model stood out as employing an optimal turbulent Prandtl number 
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combination for the majority of metrics. Model mich08-3 yielded the lowest RMSE, RSR, and Fn 

values for E. coli concentrations of all models, while maximizing NSE for E. coli concentrations. 

This model also minimized RMSE values for some currents in the model, compared to the other 

12 models. Given these evaluation metric results, it is recommended that hydrodynamic and water 

quality modeling for southwestern Lake Michigan include a Prt,H value of 0.14 and a Prt,V value 

of 10 within FVCOM. This is especially true in the context of water quality modeling, as the model 

with Prt,H = 0.14 and Prt,V = 0.1 was the optimal model for 67% of the water quality-associated 

evaluation metrics and was a top-5 optimal model for all six water quality model validation 

metrics.   

The differences between optimal models for hydrodynamic and water quality evaluation metrics 

underscore the importance of using multiple metrics for model evaluation. They also highlight the 

distinction between vertical and horizontal turbulent Prandtl number combinations for effective 

modeling of hydrodynamics and those for modeling water quality variables like E. coli 

concentration. While the optimal model for simulating surface water temperature uses Prandtl 

numbers near 1 (Prt,H = 0.85 and Prt,V = 0.85), the model that best captured nearshore E. coli used 

a much lower horizontal turbulent Prandtl number (Prt,H = 0.14) and a much higher vertical 

turbulent Prandtl number (Prt,V = 0.1). Because of these differences, it is important to consider the 

geographic and hydrodynamic context and goals of FVCOM modeling when determining effective 

combinations of turbulent Prandtl numbers to input to the modeling framework.  

Differences between optimal Prt values for hydrodynamics and water quality models herein also 

highlight a potentially important omission within the FVCOM modeling framework. The turbulent 

Schmidt number (Sct) is often used in direct numerical simulations to characterize relative impacts 

of diffusivity of momentum and diffusivity of mass for contaminants in aquatic systems, in similar 
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fashion to how Prt is utilized for hydrodynamics (Gualtieri et al., 2017, Rauen et al., 2012). 

However, Sct is not explicitly defined or used in current FVCOM frameworks, with these models 

instead relying solely on Prt to characterize diffusivity and viscosity impacts (Chen et al., 2006). 

The difference in optimal Prt,H and Prt,V value combinations for simulation of hydrodynamics and 

water quality in southwestern Lake Michigan may highlight the shortcoming associated with 

omitting the Sct parameter from simulations. The incorporation of an additional, calibrated Sct 

parameter within FVCOM may lead to improvements in water quality modeling for environmental 

flows and natural waters.     
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4. Simulating Storm-Associated River Plumes in Southern Lake Michigan: Model 

Selection Process 

 

4.1. Introduction  

 

Water is an essential part of life; from drinking water to wastewater and recreational water, humans 

rely on safe and adequate water for survival and comfort. As a result, lakes, oceans and shoreline 

environments are integral parts of people’s lives, especially in the summer and during swimming 

seasons. This is particularly true in the Laurentian Great Lakes of the United States of America, a 

basin that houses hundreds of beaches and over 15,000 km of shoreline (Canada, 2011; EGLE, 

2016; IDEM, 2016; IDPH, 2018; NOAA, 2020a; ODH, 2020; WDNR, 2000). The beaches and 

shoreline communities draw millions of visitors annually (Nevers and Whitman, 2011) and 

contribute substantial tourism revenue to local municipalities (Kinzelman, 2009; Shaikh, 2012). 

This tourism and revenue is dependent upon the safety and quality of water in the nearshore region 

of the lakes. Recreational activities at beaches are advised against when public health is threatened 

by recreational activities in the nearshore region (Canada, 2011; EGLE, 2016; IDEM, 2016; IDPH, 

2018; ODH, 2020; WDNR, 2000). 

At beaches, public health hazards can come from multiple sources, including rip currents and rip 

tides, strong waves, debris on the beach, sunburn and other solar impacts, storm effects and 

degraded water quality, as well as combinations of such sources (NOAA, 2020c). Many of these 

impacts affecting public health are expected to change in response to climate change. For instance, 

changes in wind patterns associated with climate change can also influence waves and nearshore 

water quality (Smith et al., 1999). Similarly, the predicted increase in frequency and intensity of 

storms in the Great Lakes region (IPCC, 2014) are likely to lead to more frequent and intense water 

quality degradation and high wave energy conditions at local beaches.  
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The degradation of water quality associated with runoff from more frequent and intense storm 

events is a specific public health threat to beaches in the Chicago area of southwestern Lake 

Michigan due to the local management of stormwater in Chicago (MWRD, 2019). The three main 

river channels in the Chicago area, the North Shore Channel, the Chicago River and the Calumet 

River, have all been engineered to flow westward and away from Lake Michigan unless there is 

substantial threat of flooding within the city (ASCE, 2020; Hansen, 2009). When heavy storms 

produce enough rain to flood Chicago or areas west of the city, infrastructure at Wilmette Pumping 

Station, Chicago River Controlling Works (CRCW) and O’Brien Lock and Dam engage and 

reverse river flows to send water eastward to Lake Michigan (MWRD, 2019; USACE, 2014). 

These storms can lead to the release of stormwater plumes in the nearshore of Lake Michigan via 

“backflow" events, and there may be significant urban and agricultural water quality 

contamination in the resulting stormwater plumes (Masoner et al., 2019; MWRD, 2019; Paule-

Mercado et al., 2016; USACE, 2014).   

Beach and stormwater managers in Chicago recognize the risk that storm-associated river plumes 

present to nearshore environments and recreational water. However, there is a noticeable lack of 

observational data characterizing water quality in response to storm events, largely due to the 

inherent dangers in sampling for water quality during and immediately after storms. The Chicago 

Park District (CPD) and Metropolitan Water Reclamation District (MWRD) take a conservative 

approach to managing recreational water in the face of heavy storms and backflow events. During 

backflow events at the Wilmette outlet, CPD and MWRD close all beaches between Wilmette, IL 

to Ohio St. beach in Chicago. Similarly, if either CRCW or O’Brien outlets backflow stormwater 

into Lake Michigan, all beaches between Ohio St. and Calumet beach are closed to preserve public 

health and safety (USACE, 1996). During such backflows, these beaches remain closed until after 



 

89 
 

water quality samples at representative beaches (Table 4-1) yield Fecal Indicator Organism (FIO) 

concentrations below Beach Action Value (BAV) thresholds (MWRD, 2019; USACE, 2014). 

These BAV thresholds are 2.37 log10(MPN 100 ml-1) for culturable E. coli or 1000 CCE 100 ml-1 

for enterococci via quantitative Polymerase Chain Reaction (qPCR) (USEPA, 2014b).  

Table 4-1: Representative beaches sampled for water quality, post-backflow event in Chicago 

Representative  

Beach Name 

Nearest River 

Outlet 

Kenilworth Wilmette 

Wilmette Wilmette 

Gillson Wilmette 

Lighthouse Wilmette 

Northwestern (Lincoln St.) Wilmette 

Dempster St. Wilmette 

North Ave. CRCW 

Oak St. CRCW 

12th St. CRCW 

Margaret T. Burroughs CRCW 

Rainbow O’Brien 

Calumet O’Brien 

 

This conservative approach to beach management during and after backflow events is borne in 

part from necessity. It can be dangerous to collect water quality monitoring samples during storms, 

and backflow events are frequently triggered by extreme storms (USACE, 1996), so closing all 

beaches in response to such events can ensure public health to the extent possible while keeping 

beach managers and water quality researchers safe. While this approach is beneficial for safety of 

researchers, beach managers and the public during storms, it also means that some beaches may 

be closed when they are not experiencing degraded water quality, potentially leading to economic 

losses. At the same time, automatically closing beaches during backflow events can lead to a 

paucity of in situ water quality data available for storm events. Similarly, satellite imagery 

collected from sources like Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and 
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Sentinel satellites can be valuable in assessing conditions during storms (Vermote, 2015), but the 

imagery is often obstructed by clouds associated with the storms (Figure 4-1). As a result, there 

are few observational data from which insight can be drawn regarding exactly how these storm-

associated river plumes impact the nearshore during and after extreme storm events that lead to 

backflows. 

 

 

 

 

 

 

 

 

Despite the lack of observational data associated with conditions during and after storms, 

understanding how storms and backflow events can affect the nearshore is important for effective 

beach management, public health, and research (MWRD, 2019; USACE, 2014). Therefore, 

alternative approaches to collecting in situ data must be employed to supplement and increase our 

understanding of storms and their impacts on nearshore environments.  

Statistical and numerical models can be useful in supplementing the scarce observational data for 

the water quality and plume dynamics resulting from storms. Data-driven statistical and 

mechanistic models have been used in nowcasting and hindcasting contexts, to predict water 

Figure 4-1: MODIS-Terra true color image from September 2013 highlighting obstruction of 

Lake Michigan and the Chicago shoreline due to storm-associated cloud cover 
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quality at Great Lakes beaches (Francy and Darner, 2007; Nevers and Whitman, 2005; Safaie et 

al., 2016; Thupaki et al., 2010; Zhang et al., 2018). Though still being actively refined (Weiskerger 

and Phanikumar, 2020), these types of model frameworks can be valuable in characterizing 

hydrodynamic and water quality conditions in situations with little observational data, such as 

backflow events. While models can be useful in the absence of observational data, multiple 

modeling approaches can be applied to answer environmental questions and selecting the most 

appropriate model for specific hydrodynamic and water quality questions remains a challenge. To 

determine the modeling approach that is optimized in its applicability for assessment of nearshore 

conditions during backflow events, we tested two potential transport modeling approaches for the 

simulation of storm-induced river plumes in southwestern Lake Michigan. These approaches, 

including one Eulerian method and one Lagrangian method (Chen et al., 2006), were coupled with 

a mechanistic model of hydrodynamics, applied for backflow events in September 2008 and 

October 2017. Results of the modeling approaches were visually and quantitatively compared to 

the spatial extents of the plumes, as captured by MODIS-Terra satellite imagery after the storm 

(Vermote, 2015). Comparisons were used to determine which approach best approximated the 

plumes from the satellite imagery. While model testing was limited to comparisons with data 

obtained after the storm event, these comparisons can lend some confidence to the modeling 

approaches, in terms of their ability to simulate the storm-associated river plume dynamics. Model 

results for after the storm depend on those calculated during the storm. Therefore, it may be 

possible to infer that if the modeled plumes reasonably compare to the MODIS data after the 

storms, they would also reasonably predict the plume dynamics during the storm and at times for 

which MODIS data are not available. 
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It was expected that differences in the way that the two approaches calculate dispersion would lead 

to an overestimation of plume areas in the Eulerian approach, compared to the Lagrangian 

framework (Zhang and Chen, 2007). Therefore, it was hypothesized that the Lagrangian approach 

would simulate the storm-induced plumes with higher confidence than the Eulerian method. 

Results from this model selection exercise can be used to inform future plume modeling work, 

which in turn can lead to inferences about the spatiotemporal scales of backflow-induced plumes, 

dynamics of the tracers in the plumes, and risks to public health as a result of the backflow events. 

Beach management recommendations regarding when and where to limit recreation in the 

nearshore in response to backflow events can be made based on simulations, and results can also 

be used to help prioritize management efforts for areas at highest risk of water quality degradation 

due to plumes.    

4.2. Methods 

 

4.2.1. Study Area and Temporal Context 

 

The city of Chicago sits on the southwestern shore of Lake Michigan (Figure 4-2). Chicago’s 

metropolitan area includes three major rivers: the North Shore Channel, the Chicago River and the 

Calumet River. While these rivers have been engineered to commonly flow westward, away from 

Lake Michigan, extreme storms can trigger backflow events. During these backflow events, water 

in the rivers is diverted to flow east into the lake to prevent overland flooding (MWRD, 2019), via 

infrastructure at Wilmette Pumping Station (referred to hereafter as Wilmette), Chicago River 

Controlling Works (CRCW) and O’Brien Lock and Dam (referred to hereafter as O’Brien) (Figure 

4-2, inset). Models were developed to simulate flows from these three outlets into Lake Michigan 

during backflow events in 2008 and 2017, and to track the plumes, as they were transported 

throughout the nearshore environment during and after the backflow events. While the model 
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domain was the whole of Lake Michigan, the focus of the simulations was on the Chicago 

nearshore area, extending from Wilmette, IL to in the Illinois-Indiana border. 

 

Numerical simulations were performed for the backflow events that occurred on September 13th – 

16th, 2008 and October 14th – 15th, 2017. These events were chosen due to the availability of 

satellite imagery against which model results could be evaluated. The 2008 storm event led to the 

release of 41,825,393.34 m3 of water into Lake Michigan, via releases from all three outlets, while 

Figure 4-2: Google Earth imagery showing Lake Michigan and the Chicago area (inset), 

including the three flow control infrastructure locations (Wilmette, CRCW and O'Brien) 
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the 2017 event released 10,395,497.84 m3 of stormwater to the lake via the Wilmette and CRCW 

outlets (USACE, 2014). To ensure that all of the dynamics of the 2008 storm plumes were captured 

in the simulations, models began at 12:00 AM on September 12th, 2008, and continued simulation 

through 11:00 PM on September 30th, 2008. Likewise, the models for 2017 simulated plumes from 

October 13th – 31st, 2017. Plume release timing was controlled in the models via input of river flux 

observations (see Appendices B-1 and B-5 for river flux data input into the model); all three river 

outlets began and ended the model with flux values of zero, and their flows to the lake were 

dynamic depending on the timing and volume of the backflows at each outlet. This reflected the 

true conditions at the outlets; the outlets have infrastructure that prevents flow to Lake Michigan 

except during backflow events and the infrastructure can control the discharge rates during 

backflow events. Thus, discharge in each location was zero before and after the backflow event, 

and that flow was temporally dynamic at the outlets during the backflow in response to MWRD 

control of the backflow infrastructure.       

4.2.2. Overview of FVCOM Hydrodynamics Modeling and Model Setup 

 

Models were developed and run using the Finite Volume Community Ocean Model (FVCOM), an 

unstructured-grid, finite volume, fully three-dimensional model framework for simulating 

conditions in coastal communities (Chen et al., 2006, 2003). This framework utilizes the primitive 

Navier-Stokes equations for momentum, continuity, temperature and salinity, together with the 

equation of state for density, to characterize hydrodynamics spatiotemporally over a model 

domain, given hydrometeorological and geophysical inputs. Further details on FVCOM 

hydrodynamics equations can be found in Chapter 2: Numerical Modeling of Microbial Fate and 

Transport in Natural Waters:  Review and Implications for Normal and Extreme Storm Events 
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(Eq. 2-1 – 2-4). These equations are solved for nodes and cells within the model domain, to 

characterize hydrodynamics over time within the focal area of the model. 

Inputs to FVCOM include boundary and initial conditions, in terms of hydrometeorological and 

geophysical data. A model mesh was created to discretize the model domain into a series of non-

overlapping unstructured grid cells containing nodes and cell faces. Scalar variables such as water 

surface elevations, total water depth, salinity, temperature, horizontal and vertical eddy diffusivity 

and eddy viscosity values are defined at the nodes while currents (e.g., u and v) are placed at the 

centroids of the grid cells. For the backflow simulations, this mesh encompassed all of Lake 

Michigan but incorporated a variable mesh resolution. This variable mesh resolution allowed for 

a balance between focusing detailed modeling computational efforts on the Chicago area and 

capturing the localized impacts from hydrodynamics throughout the lake. As a result, the mesh 

resolution varied between ~50 m in the nearshore areas extending from Wilmette, IL to Gary, IN 

and ~2 km in offshore zones and areas north and east of Chicago (see Figure 1-6).  

Lake bathymetry was interpolated to the grid nodes using a natural neighbor interpolation method. 

The bathymetry data came from the National Oceanic and Atmospheric Administration’s (NOAA) 

National Centers for Environmental Information (NCEI), in the form of 5 m contour data compiled 

at a spatial resolution of 1/3 to 1 arc-second (10 – 30 m) (National Geophysical Data Center, 1996). 

Meteorological inputs to the model framework came from NOAA National Data Buoy Center 

(NDBC) and NCEI (NOAA, 2018a, 2018b). Temperature, wind and pressure data from a total of 

118 NDBC and NCEI stations surrounding Lake Michigan were used as weather forcing data for 

the 2008 model simulations, frequently at a temporal resolution of 1 hour. 
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To track the plumes associated with river discharges to Lake Michigan, river flow data were also 

input to the models. Hourly hydrograph data were obtained from MWRD at Wilmette, CRCW and 

O’Brien (Appendices B-1 and B-5). Time series data for the flowrates (Figures 4-3 and 4-4) were 

directly input to the models at the river outlet locations via a river input forcing file for the model.    

  

Figure 4-3: Flow hydrograph for Wilmette (blue line), CRCW (orange line) and O’Brien (yellow 

line) discharges during the September 13-16, 2008 backflow event 
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4.2.3. Plume Numerical Simulation Approaches 

 

There are multiple options for modeling river plumes in the lake. Two approaches were tested to 

determine the option that best simulated observed plumes during and after the backflow events. 

Both approaches involved tracking plumes via tracer concentrations, but they differ in the way that 

they calculate tracer concentrations. As a result of the differences between the plume simulation 

approaches, it can be expected that one would model plumes better than the other. 

4.2.3.1. Eulerian Model  

 

One approach to simulating river plumes within FVCOM involves coupling the physical 

hydrodynamics model with the river inputs using the Eulerian formulation to calculate dispersion. 

The model takes tracer concentrations across the spatial model domain as initial conditions and 

incorporates hydrodynamics to track the movement of the tracer over time. Tracer concentrations 

at the river outlets are specified as elevated above bulk tracer concentrations to simulate plumes. 

Figure 4-4: Flow hydrograph for Wilmette (blue line) and CRCW (orange line) discharges 

during the October 14-15, 2017 backflow event 
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As a result, the model yields tracer concentrations across time and space. The transport and 

dispersion of tracers within the model are calculated using the Eulerian formulation and the 

advection-dispersion equation (Eq. 4-1). 
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)                   (4-1) 

In these equations, t is time, C is tracer concentration, x, y, and z are the three coordinate directions 

and u, v and w are velocity components in the x, y, and z directions, respectively (m s-1).  KH and 

KV represent the horizontal and vertical mixing coefficients, respectively (m2 s-1).  

To simulate the backflow-associated plumes in September 2008 and October 2017 using the 

Eulerian method, a tracer with initial concentration of 10000 mg L-1 was specified for each of the 

three river outlets during the backflow event. This high initial tracer concentration ensured that the 

tracer could be tracked over a longer period of time before dissipating into the lake, while also 

allowing for straightforward calculation of normalized concentrations from modeled results.  

Tracer concentrations were linked to the time series of river flows into Lake Michigan, such that 

the tracer only contributed to the model domain during the backflow events. After tracer was added 

to the model domain via the rivers, the hydrodynamics in the lake drove the transport of the plumes 

over time. As a result, plumes were delineated for evaluation by elevated tracer concentrations in 

the nearshore area of southern Lake Michigan.     

4.2.3.2. Lagrangian Particle Tracking Model  

 

An alternative modeling approach for the simulation of tracer plumes in natural waters involves 

the tracking of discrete particles through the model domain over time (Huang et al., 2019; Nekouee 

et al., 2015b). This approach relies on the Lagrangian formulation to calculate dispersion of the 

particles over time, rather than the Eulerian formulation. As part of FVCOM, a three-dimensional 
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Lagrangian particle tracking model solves Eq. 4-2 and uses the explicit Runge-Kutta (ERK) 

method to solve Eq. 4-3 (Chen et al., 2006). 

𝑑𝑥⃗

𝑑𝑡
= 𝑣⃗(𝑥⃗(𝑡𝑛), 𝑡𝑛)                                                          (4-2)  

𝑥⃗(𝑡𝑛+1) = 𝑥⃗(𝑡𝑛) + ∫ 𝑣⃗(𝑥⃗(𝑡𝑛), 𝝉)𝑑𝝉
𝑡𝑛+1

𝑡𝑛
                                          (4-3) 

In these equations, 𝑥⃗ is the position of a particle at time tn, 
𝑑𝑥⃗

𝑑𝑡
 is the rate of particle position change 

over time, 𝑣⃗(𝑥⃗, 𝑡𝑛) is a three-dimensional velocity field from the hydrodynamics model. tn 

represents the current time step in the explicit method, 𝑥⃗𝑛 is the particle position at time tn and τ 

represents time between tn and tn+1 in the explicit scheme. At the next time step (𝑡𝑛+1 = 𝑡𝑛 + 𝑑𝝉) 

the particle position is represented by xn+1. In three-dimensional space, a 4-stage ERK algorithm 

can be utilized to solve the x, y and σ velocity equations explicitly (Eq. 4-4 – 4-8) and track particles 

spatiotemporally. In this case, σ replaces z because of the use of terrain-following σ coordinates in 

the vertical plane of the water column. ϖ replaces w as the vertical velocity component in the 

context of these σ vertical coordinates, and 𝜛̂ is related to ϖ by water depth H and free surface 

elevation ζ, via Eq. 4-9. Additional details regarding the application of a 3-dimensional, 4-stage 

ERK algorithm to particle tracking in FVCOM can be found in Chen et al. (2006).  

𝜉𝑛 = 𝑥𝑛                                                              (4-4a) 

𝜂𝑛 = 𝑦𝑛                                                              (4-4b) 

𝛾𝑛 = 𝜎𝑛                                                              (4-4c) 

 

𝜉2 = 𝑥𝑛 +
1

2
∆𝑡𝑢(𝜉1, 𝜂1, 𝛾1)                                               (4-5a) 

𝜂2 = 𝑦𝑛 +
1

2
∆𝑡𝑣(𝜉1, 𝜂1, 𝛾1)                                              (4-5b) 

𝛾2 = 𝜎𝑛 +
1

2
∆𝑡𝜛̂(𝜉1, 𝜂1, 𝛾1)                                              (4-5c) 
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𝜉3 = 𝑥𝑛 +
1

2
∆𝑡𝑢(𝜉2, 𝜂2, 𝛾2)                                               (4-6a) 

𝜂3 = 𝑦𝑛 +
1

2
∆𝑡𝑣(𝜉2, 𝜂2, 𝛾2)                                               (4-6b) 

𝛾3 = 𝜎𝑛 +
1

2
∆𝑡𝜛̂(𝜉2, 𝜂2, 𝛾2)                                               (4-6c) 

 

𝜉4 = 𝑥𝑛 + ∆𝑡𝑢(𝜉3, 𝜂3, 𝛾3)                                              (4-7a) 

𝜂4 = 𝑦𝑛 + ∆𝑡𝑣(𝜉3, 𝜂3, 𝛾3)                                              (4-7b) 

𝛾4 = 𝜎𝑛 + ∆𝑡𝜛̂(𝜉3, 𝜂3, 𝛾3)                                              (4-7c) 

𝑥𝑛+1 = 𝑥𝑛 + ∆𝑡 [
𝑢(𝜉1,𝜂1,𝛾1)

6
+

𝑢(𝜉2,𝜂2,𝛾2)

3
+

𝑢(𝜉3,𝜂3,𝛾3)

3
+

𝑢(𝜉4,𝜂4,𝛾4)

6
]             (4-8a) 

𝑦𝑛+1 = 𝑦𝑛 + ∆𝑡 [
𝑣(𝜉1,𝜂1,𝛾1)

6
+

𝑣(𝜉2,𝜂2,𝛾2)

3
+

𝑣(𝜉3,𝜂3,𝛾3)

3
+

𝑣(𝜉4,𝜂4,𝛾4)

6
]             (4-8b) 

𝜎𝑛+1 = 𝜎𝑛 + ∆𝑡 [
𝜛̂(𝜉1,𝜂1,𝛾1)

6
+

𝜛̂(𝜉2,𝜂2,𝛾2)

3
+

𝜛̂(𝜉3,𝜂3,𝛾3)

3
+

𝜛̂(𝜉4,𝜂4,𝛾4)

6
]           (4-8c) 

𝜛̂ =
𝜛

𝐻+𝜁
                                                                   (4-9) 

Random-walk processes can also be included in the Lagrangian particle tracking model, to help 

account for particle movement at spatial resolutions lower than the model’s mesh size (Gräwe, 

2011; Visser, 1997).  

For the simulation of storm-associated plumes in southwestern Lake Michigan with the Lagrangian 

particle tracking model, an offline modeling approach was coupled with the hydrodynamic model 

results from FVCOM. Hydrodynamics were simulated for the backflow period using FVCOM, 

and those hydrodynamic results were then used as a velocity field input to the Lagrangian model, 

to influence particle movement in the model domain.  

Previous research has indicated a tradeoff in the use of Eulerian and Lagrangian formulations for 

modeling fluid dynamics. The Lagrangian formulation often yields lower dispersion than the 

Eulerian formulation (Zhang and Chen, 2007). The cost of this reduction in dispersion may come 



 

101 
 

in the form of computational demand. The Lagrangian scheme uses a moving coordinate system, 

calculating locations for each individual particle, calculating a concentration or density of particles 

at a given location after determining particle locations (Suh, 2006; Van Wageningen-Kessels et 

al., 2016, Rowe et al., 2016). This can lead to higher computational demand and extensive 

computational time for Lagrangian-based models, compared to Eulerian-based simulations. As a 

result, it was necessary to balance the need for a high number of particles simulated (to resolve 

plume details) with the additional computational demand of increasing the number of particles in 

the model. Previous research has shown that at least 100000 particles should be released from a 

source to ensure stable simulation (Zhang and Chen 2007). To optimize both the number of 

particles simulated and the computational efficiency, 5000 particles were released from each river 

outlet every hour during the 2008 and 2017 backflow events. This number allowed for more than 

100000 particles to be released from each outlet during each backflow event, while also 

minimizing the computational effort required for the model.  

Because the outlets released water to Lake Michigan over varying time periods from during the 

backflow events, different numbers of particles were released from each outlet (Table 4-2). Over 

the course of the entire 2008 backflow event, a total of 955000 particles were released to 

southwestern Lake Michigan while at total of 205000 particles were released during the 2017 

event. The transport, dispersion, locations and 3-dimensional concentrations of particles were 

simulated via the Lagrangian particle tracking model. Plumes resulting from the Lagrangian model 

were visualized, delineated and evaluated in terms of particle concentration values across the 

spatial model domain. 
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Table 4-2: September 2008 and October 2017 backflow event times for the three river outlets in 

the Chicago area, and corresponding numbers of particles released from each outlet during the 

backflow event 

River 

Outlet 
Year 

Backflow 

Starting 

Date/Time 

Backflow 

Ending 

Date/Time 

Backflow 

Period 

(hours) 

Total 

Number of 

Particles 

Released 

During 

Backflow 

Wilmette 2008 
9/13/2008  

7:00 AM CDT 

9/16/2008  

8:00 AM CDT 
73 365000 

CRCW 2008 
9/13/2008 

11:00 AM CDT 

9/15/2008  

1:00 PM CDT 
50 250000 

O’Brien 2008 
9/13/2008  

6:00 PM CDT 

9/16/2008  

2:00 PM CDT 
68 340000 

Wilmette 2017 
10/14/2017 

1:00 PM CDT 

10/15/2017 

10:00 AM CDT 
21 105000 

CRCW 2017 
10/14/2017 

1:00 PM CDT 

10/15/2017 

9:00 AM CDT 
20 100000 

 

4.2.4. Evaluation of Model Results 

 

Results from the two model approaches were compared in terms of their ability to simulate the 

river plumes from Wilmette, CRCW and O’Brien during and after the September 2008 backflow 

event and plumes from Wilmette and CRCW associated with the October 2017 event. Due to the 

differences between the models in terms of what they were simulating, concentrations in the lake 

were normalized to ensure effective comparison of plumes between model results. In the Eulerian 

model, tracer was released uniformly throughout the width and depth of each of the river channels, 

prior to moving out to the lake. However, due to differences in the widths and depths of the river 

channels and the time periods over which the tracers were released during the backflow event, 

differential tracer concentrations were calculated at the three river outlets. Similarly, the three river 

channels are of different dimensions, so that the release of discrete numbers of particles in each 

channel leads to different particle concentrations at the river outlets in the Lagrangian model. 
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These resulting differences in concentration of particles and tracer at river outlets to the lake can 

make normalization of concentrations in the plumes challenging. Further complicating the 

normalization process was the potential coalescence of plumes and their associated tracer/particle 

concentrations, which prevented normalization of each plume concentration individually. In light 

of these challenges, maximum plume concentrations were calculated at each river outlet, and all 

tracer and particle concentrations from the models were normalized to the lowest of the three 

calculated maximum concentrations. This ensured that high tracer/particle concentrations could be 

represented while also guaranteeing that results for all three plumes would be visible, even if tracer 

or particle concentrations were relatively low. Plumes were delineated using a normalized 

concentration threshold of 0.01, such that any tracer or particle concentration greater than or equal 

to 1% of the lowest maximum concentration at the river outlets constituted part of a plume, 

following Huang et al. (2019). Normalized plume concentrations were plotted as contours within 

Tecplot 360 EX 2018 (Tecplot, Inc., Bellevue, WA) and then overlaid on satellite-derived imagery 

of the plumes, to visually assess the comparability of the observed and simulated plumes in the 

nearshore.  

Modeled plumes were compared to observational data in the form of satellite-derived ocean color 

imagery from the MODIS-Terra satellite (NASA Goddard Space Flight Center et al., 2008) and 

downloaded from the National Aeronautics and Space Administration’s (NASA) EarthData Ocean 

Data repository (https://oceandata.sci.gsfc.nasa.gov/). Plume observational data were scarce due 

to obstruction of the satellite imagery by clouds during much of the backflow event periods. 

MODIS images captured on September 16th, 2008 and October 16th, 2017 (captured at 11:40 AM 

and 11:55 AM CDT, respectively) were not obstructed and most clearly showed plumes in the area 

of the river outlets, so these images were selected for model validation.  Data from these images 
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were downloaded and imported into the NASA SeaDAS data analysis software (NASA, 

https://seadas.gsfc.nasa.gov/) (Figure 4-5). MODIS level-1A data, composed of scans of raw 

radiances obtained by the satellite, were directly imported into SeaDAS. Within SeaDAS, the 

level-1A data were used as input to three processes: modis_GEO to create a geolocation file for 

the data, modis_L1B to create level-1B data calibrated 1 km resolution radiances, and l2gen to 

create level-2 data including reflectance spectra and water quality data. The l2gen process in 

SeaDAS allows for atmospheric correction, to convert atmospheric data to surface reflectance data, 

and specification of spatial resolution. Following Mendes et al., (2014), the standard SeaDAS 

atmospheric correction was used, and level-2 data for southwestern Lake Michigan were generated 

at a spatial resolution of 250 m when possible.  
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Because of its ability to approximate turbidity and suspended solids in the water (Mendes et al., 

2014; Nezlin et al., 2005; Nezlin and DiGiacomo, 2005; Thomas and Weatherbee, 2006), the 

reflectance band at 555 nm (corresponding to green visible light) was used to delineate the plumes 

from the MODIS level-2 data. Reflectance values in southwestern Lake Michigan were normalized 

with respect to the maximum reflectance value. River plume zones of influence were denoted by 

areas in southwestern Lake Michigan showing normalized reflectance values between 0.60 and 

1.0. High normalized reflectance values would signify high turbidity levels in relation to those in 

offshore waters, which could then be interpreted as plumes (Eadie et al., 1996; Vanderploeg et al., 

Figure 4-5: Processing of MODIS imagery to delineate storm--induced river plumes in the 

Chicago area (following Mendes et al, 2014). The original, 1 km spatial resolution normalized 

reflectance data at the 555 nm band for September 16th (A, top-left) shows the plumes, but the 

processing tools in SeaDAS allowed for development of data with higher spatial resolution of 

250 m (B, top-right). Panel C (bottom) shows the data overlaid with the mask excluding 

normalized reflectance values < 0.55 (purple color) 
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2007). The threshold normalized reflectance value of 0.60 was adapted from previous work from 

Mendes et al. (2014) and Nezlin et al. (2005), which used normalized reflectance thresholds 

between 0.325 and 0.8. A data mask was created to focus on these areas of plume influence, and 

the georeferenced area of the mask was directly calculated in the SeaDAS software program via 

the Mask Area tool.  

Additionally, plume distances from the three outlets were measured directly within the SeaDAS 

software program, using the Range Finder tool. Distances normal to shore were measured from 

each river outlet, normal to the shoreline, while distances along the shore were measured from the 

outlets in a southerly direction and parallel to the shoreline. Measurements were made from the 

center of each river outlet to the end of the furthest pixel within the mask denoting the plumes 

(Figure 4-6). It is important to note that, at times, the representation of plumes in SeaDAS indicated 

that the plumes were not connected to the outlets. Nonetheless, plume distances were measured 

from the outlets to avoid discrepancies in where the measurements were conducted between 

backflow events.  
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Plume data from the FVCOM model results were then exported from Tecplot as image files, 

imported into ArcMap and georeferenced to overlay MODIS-Terra true color satellite imagery. 

The newly-georeferenced plume image files were reclassified to delineate pixels representing the 

plumes (Figure 4-7). The Zonal Geometry tool was then used to automatically calculate the area 

of the reclassified pixels representing the plumes. Also following the protocols for measuring 

alongshore and normal-to-shore plume dimensions from MODIS imagery, reclassified plumes 

from FVCOM results were manually measured in ArcMap to determine alongshore and normal-

to-shore dimensions of the simulated plumes (Figure 4-8).    

Figure 4-6: MODIS imagery with orange-colored arrows showing how plume alongshore and 

normal-to-shore distances from Wilmette (A, left) and CRCW and O'Brien (B, right) were 

measured directly in SeaDAS 
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Figure 4-7: Processing of FVCOM Lagrangian particle transport model results to delineate 

storm-induced river plumes in the Chicago area. The original image from September 16th (A, 

left) shows the plumes, but reclassification of the pixels is more straightforward when the blue 

and red bands of the image are removed (B, center). The reclassified image (C, right) clearly 

shows the extent of the modeled plumes in green 

Figure 4-8: MODIS imagery with arrows showing how plume alongshore and normal-to-shore 

distances from Wilmette (A, left) and CRCW and O'Brien (B, right) were measured directly in 

ArcMap 
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Modeled plume surface areas as well as alongshore and normal-to-shore dimensions were then 

compared to the observed surface areas and dimensions from the MODIS imagery to evaluate the 

ability of the models to re-create observed plumes. Absolute errors in total plume surface area and 

dimensions from each river outlet (errj) were computed by subtracting the MODIS-associated 

plume distances and areas (Oj) from the modeled plume distances and areas (Pj) (Eq. 4-10). The 

model approach that minimized the error for a majority of distance/area calculations was selected 

as the optimal approach for simulating storm-induced river plumes in southern Lake Michigan.   

𝑒𝑟𝑟𝑗 = 𝑃𝑗 − 𝑂𝑗                                                            (4-10)   

4.3. Results and Discussion 

 

4.3.1. MODIS-Derived Plumes 

 

Satellite data from the MODIS-Terra satellite were obtained for southwestern Lake Michigan on 

September 16th, 2008 and October 16th, 2017. These data showed minimal cloud-obstruction while 

also having been obtained less than 24 hours after the cessation of their respective backflow events, 

so they were deemed to be appropriate for modeled plume evaluation. Reflectance data for the 555 

nm band were used to delineate and measure the plumes in the nearshore area for both days, after 

processing the original 1 km resolution data to 250 m spatial resolution.  

Assessment of the plumes captured by MODIS-Terra on September 16th, 2008 indicate that the 

stormwater affected an area of the nearshore equal to 125.59 km2 (see Figure 4-5c). Plumes 

associated with CRCW and O’Brien outlets seem to have combined into a single, large plume 

extending the length of the shoreline between the two, while there is a separate and smaller plume 

near the Wilmette outlet. Normal-to-shore distances from the Wilmette, CRCW and O’Brien 

outlets were measured to be 1.92 ± 0.0065, 2.72 ± 0.0091 and 4.58 ± 0.015 km, respectively, while 
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alongshore distances were measured as 2.80 ± 0.0094, 19.00 ± 0.064 and 8.16 ± 0.027 km, 

respectively.  

Plume data obtained by MODIS-Terra on October 16th, 2017 suggest a plume surface area of 

189.43 km2. Similar to September 16th, 2008 imagery, plumes associated with CRCW and O’Brien 

outlets covered the length of the shoreline between the two outlets. However, the plume data for 

the 2017 event also show that the plume area of influence also extended northward to the Wilmette 

outlet (Figure 4-9). Alongshore distances measured from the MODIS data for October 16th, 2017 

were 20.76 ± 0.070 and 24.59 ± 0.082 km from Wilmette and CRCW outlets, respectively. 

Normal-to-shore distances were measured as 6.69 ± 0.022 and 3.77 ± 0.013 km, respectively.  

Figure 4-9: Map of southwestern Lake Michigan derived from MODIS-Terra data reflectance 

data at the 555 nm (green) band. Purple areas overlaying the map indicate areas of normalized 

reflectance > 0.55, indicative of elevated turbidity and storm-associated river plumes 
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4.3.2. 2008 Storm Event Plume Simulation 

 

Eulerian simulation of the three storm-associated plumes in 2008 indicate that plumes extended 

from the Wilmette Pumping station outlet, south through the city of Chicago and beyond the 

Indiana Harbor peninsula, on September 16th, 2008 (Figure 4-10). This suggests that the 

hydrodynamics in the nearshore drive the plumes along the shore in the days immediately after a 

backflow event like that in September 2008, rather than pushing the plumes offshore and to the 

open water. This also shows that the plumes do not remain distinct over time, at least for large 

magnitude backflow events. Instead, they seem to coalesce along the shore, potentially leading to 

the accumulation of tracer from multiple formerly separate plumes and even from multiple 

additional sources at nearby beaches along the shore.  
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The total surface area of the modeled plumes on September 16th was 201.64 km2, which is only 

0.12 km2 smaller than the plume derived from MODIS satellite data (Table 4-3). The modeled 

plume dimensions in the x-direction (normal-to-shore) at Wilmette, CRCW and O’Brien outlets 

were measured as 3.16 km, 6.10 km and 2.40 km, respectively. The modeled normal-to-shore 

distances from Wilmette and CRCW outlets both overpredicted those obtained from the MODIS 

data (absolute errors = 0.69 and 2.84 km, respectively). However, the modeled normal-to-shore 

distance at the O’Brien outlet was 4.87 km smaller than the corresponding MODIS-derived 

Figure 4-10: MODIS-derived reflectance data and corresponding results from the Eulerian 

model simulating the plumes associated with the September 2008 backflow event. Black contour 

lines indicate the extent of the plumes, denoted by normalized tracer concentrations ≥ 0.01, 

while MODIS-derived plumes are represented by yellow, orange and red areas on the heat map 

(normalized reflectance at 555 nm ≥ 0.55) 
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distance (Table 4-3). Modeled distances in the y-direction (alongshore) from Wilmette, CRCW 

and O’Brien outlets were measured as 22.76 km, 17.62 km and 7.30 km, respectively. At Wilmette 

and O’Brien outlets, these matched the corresponding measured distances from MODIS data. This 

is due to the Wilmette plume extending from the Wilmette outlet to the CRCW outlet, while the 

plume dispersion from the O’Brien outlet was limited by the presence of a breakwall. The plume 

from the CRCW outlet did not extend all the way to the O’Brien outlet, so its alongshore distance 

was measured to be 1.44 km smaller in magnitude than the corresponding distance measured from 

the MODIS-derived data (Table 4-3). 

 

 

Table 4-3: Evaluation results comparing quantitative metrics of predictive ability of the Eulerian 

model, relative to plumes derived from MODIS reflectance data for the 2008 and 2017 backflow 

events 

Model Year Dataset

Plume Total 

Surface Area 

(km
2
)

Along-shore 

Distance from 

Wilmette (km)

Along-shore 

Distance from 

CRCW (km)

Along-shore 

Distance from 

O’Brien (km)

Normal-to-Shore 

Distance from 

Wilmette (km)

Normal-to-Shore 

Distance from 

CRCW (km)

Normal-to-Shore 

Distance from 

O’Brien (km)

MODIS 201.76 22.76 ± 0.076 19.06 ± 0.064 7.30 ± 0.025 2.47 ± 0.0083 3.26 ± 0.011 7.27 ± 0.024

Eulerian Model 201.64 22.76 17.62 7.3 3.16 6.1 2.4

Lagrangian 

Model
94.44 22.76 17.82 7.3 0.43 3.15 2.4

Eulerian Model 

– MODIS 

Absolute Error

-0.12 0 -1.44 0 0.69 2.84 -4.87

Lagrangian 

Model – 

MODIS 

Absolute Error

-107.32 0 -1.24 0 -2.04 -0.11 -4.87

MODIS 295.94 21.66 ± 0.073 24.59 ± 0.082 N/A 8.02 ± 0.029 5.57 ± 0.019 N/A

Eulerian Model 53.48 0.31 11.49 N/A 0.32 2.1 N/A

Lagrangian 

Model
48.11 20.76 10.16 N/A 0.77 3.39 N/A

Eulerian Model 

– MODIS 

Absolute Error

-242.46 -21.35 -13.1 N/A -7.7 -3.47 N/A

Lagrangian 

Model – 

MODIS 

Absolute Error

-247.83 -0.9 -14.43 N/A -7.25 -2.18 N/A

2008

2017
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Lagrangian simulation of the river plumes associated with the September 2008 backflow event, 

like the Eulerian simulation, suggest that the plumes from all three outlets coalesced by September 

16th, 2008. As a result, the modeled plumes were shown to impact the entire Chicago shoreline on 

September 16th. In contrast to the plumes simulated by the Eulerian model, plumes derived from 

the Lagrangian model extended partially around the Indiana Harbor peninsula but did not spread 

beyond the peninsula. The modeled plumes stayed relatively close to shore, potentially indicating 

that nearshore wind and hydrodynamics were driving plume movement along the shore rather than 

out to the open water (Figure 4-11). 

Figure 4-11: Storm-associated river plumes, overlaid on MODIS imagery for September 16, 

2008. Modeled plumes are represented by the black contour corresponding to the normalized 

particle concentration of 0.01. The contours show the modeled plume’s zone of influence, 

compared to the plume from the MODIS imagery, denoted by yellows, oranges and reds in the 

heat map 
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On September 16th, 2008, the plume surface area generated by the Lagrangian model was 

calculated to be 94.44 km2. This area is 107.32 km2 smaller than the area calculated from the 

MODIS-Terra derived reflectance data (Table 4-3). In the x-direction (normal-to-shore), modeled 

plume distances measured from Wilmette, CRCW and O’Brien were 0.43 km, 3.15 km and 2.40 

km, respectively. These measurements were all smaller than the distances measured from MODIS-

Terra data, with absolute errors between modeled and MODIS distances ranging from 0.11 km at 

the CRCW outlet to 4.87 km at the O’Brien outlet (Table 4-3). In the y-direction (alongshore), 

modeled distances were measured as 22.76 km from Wilmette, 17.82 km from CRCW and 7.30 

km from O’Brien. Because the modeled alongshore plumes from the CRCW outlet did not extend 

to the O’Brien outlet, it underpredicted the MODIS-derived alongshore distance by 1.24 km. At 

the Wilmette and O’Brien outlets, though, the Lagrangian model simulated plumes that extended 

as far as the MODIS-derived plumes did, because the Wilmette plumes extended to CRCW and 

the O’Brien plumes were limited in extent by the Indiana Harbor peninsula (Table 4-3).  

4.3.3. 2017 Storm Event Plume Simulation 

Simulated plumes associated with the October 2017 backflow event were smaller in size, 

compared to those associated with the September 2008 event. This was likely due to the smaller 

magnitude discharge connected to the 2017 event. Plumes resulting from the Eulerian model were 

shown to stay close to the shore on October 16th, much like the plumes associated with the 2008 

backflow event. However, the modeled plumes do not capture the extent of the MODIS-derived 

plumes associated with the October 2017 backflow event, especially between the Wilmette and 

CRCW outlets (Figure 4-12).  
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The Eulerian model simulated a total plume surface area of 53.48 km2 on October 16th, 2017. This 

area is 242.46 km2 smaller than the plume surface area derived from the MODIS reflectance data 

(Table 4-3, above). Distances from the outlets in the x-direction (normal-to-shore) at Wilmette and 

CRCW outlets were measured from the modeled plumes as 0.32 km and 2.10 km, respectively. 

These distances are 7.70 and 3.47 km smaller, respectively, than those distances measured from 

MODIS-Terra reflectance data. The O’Brien outlet did not release stormwater as part of the 

October 2017 backflow event, so normal-to-shore and alongshore distances were not measured. 

Figure 4-12: MODIS-derived reflectance data and corresponding results from the Eulerian 

model simulating the plumes associated with the October 2017 backflow event. Black contour 

lines indicate the extent of the plumes, denoted by normalized tracer concentrations ≥ 0.01, 

while MODIS-derived plumes are represented by yellow, orange and red areas on the heat map 

(normalized reflectance at 555 nm ≥ 0.55) 
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Along the shore, distances measured corresponding to the Eulerian model-derived plumes were 

measured as 0.31 km from the Wilmette outlet and 11.49 km from the CRCW outlet. These 

distances are also substantially smaller in magnitude than the distances measured from the 

MODIS-derived reflectance data, with measurements differing by 21.35 km at the Wilmette outlet 

and 13.10 km at the CRCW outlet (Table 4-3). 

In similar fashion to the plumes from the September 2008 backflow event, the Lagrangian model-

derived plumes associated with Wilmette and CRCW outlets coalesced at 11:00 am on October 

16th, 2017. This coalescence occurred at the CRCW outlet, just outside of the breakwater 

infrastructure at CRCW. As a result, the modeled combined plume extended from the Wilmette 

outlet south through the CRCW outlet and roughly 7 km south of CRCW (Figure 4-13). 
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The total surface area of the Lagrangian-modeled plumes on October 16th, 2017 was calculated as 

48.11 km2. This area, like that generated by the Eulerian model, is significantly smaller than the 

MODIS-derived plume surface area (absolute error of 247.83 km2, Table 4-3). Normal-to-shore 

distances from the Wilmette and CRCW outlets were measured as 0.77 km and 3.39 km for the 

Lagrangian modeled plumes, respectively. These distances were smaller than those measured from 

the MODIS-Terra data. The modeled normal-to-shore distance from the Wilmette outlet is 7.252 

km smaller than the corresponding distance from the MODIS-Terra data. Modeled normal-to-

Figure 4-13: Storm-associated river plumes, overlaid on MODIS imagery for October 16, 2017. 

Modeled plumes are represented by the black contour corresponding to the normalized particle 

concentration of 0.01. The contours show the modeled plume’s zone of influence, compared to 

the plume from the MODIS imagery, denoted by yellows, oranges and reds in the heat map 
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shore distance from the CRCW outlet is 2.18 km shorter than that derived from the MODIS data 

(Table 4-3). Modeled alongshore distance from the Wilmette outlet matched the alongshore 

distance derived from the MODIS-Terra data (20.76 km) because both the modeled and MODIS-

derived plumes extended from the Wilmette outlet to the CRCW outlet along the shore. South of 

the CRCW outlet along the shore, the modeled plume extended 10.16 km. This modeled distance 

is 14.43 km shorter than the alongshore distance from CRCW that was derived from the MODIS-

Terra data (Table 4-3).  

Seasonal turbidity trends and mixing effects may be attributable to the lack of predictive ability 

for the Eulerian model in the context of the October 2017 backflow event. As a large lake, Lake 

Michigan is often stably stratified through the summer, but the water column begins to mix 

vertically in the autumn and often experiences an overturning through the winter and spring 

(Belestky and Schwab, 2001). The mixing of the water column, supplemented by seasonal changes 

in primary productivity may lead to an increase in turbidity in the water in the autumn months 

(Fahnenstiel et al., 2010; Rousar 1973; Son and Weng, 2019). This seasonal turbidity would be in 

addition to the turbidity generated by the storm-associated river plumes and may lead to an 

overestimation of plume dimensions in the nearshore region via MODIS-derived data. 

Nonetheless, the differences between modeled and satellite-derived plume dimensions presented 

here suggest that the Eulerian model may not be an effective approach to plume simulation, 

especially as the lake begins to mix. 

4.3.4. Model Selection 

 

Plume simulation results from the Eulerian and Lagrangian models for September 16th, 2008 and 

October 16th, 2017 show comparable simulation of plumes, in a quantitative sense. Visually, 

though, the comparability between the models is less clear. In both cases in 2008, modeled plumes 
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from the three river outlets quickly coalesce along the shoreline, forming one large plume that 

extends through the entire study area. In 2017, there is a discrepancy between the Eulerian and 

Lagrangian models. On October 16th, 2017, the Eulerian model simulated multiple smaller plumes 

along the shoreline, while the Lagrangian model simulated a single large plume from the 

coalescence of the Wilmette and CRCW plumes. In all cases, the models also show that the plumes 

remain close to the shoreline in the days post-backflow event, indicating that the plumes pose a 

threat to nearshore areas and beaches in Chicago.  

Qualitatively, plumes resulting from the Lagrangian model tend to follow the curvature of the 

observed plumes better than those resulting from the Eulerian model, especially near the CRCW 

outlet.  The plumes resulting from the Eulerian model also extend well beyond the Indiana Harbor 

peninsula east of the O’Brien Lock on September 16th. This extent of the O’Brien plume is not 

visible in the MODIS reflectance data. The Lagrangian simulated plume for the O’Brien outlet 

extent more closely matches what is seen in the MODIS reflectance imagery for September 16th. 

Likewise, the plumes modeled by the Lagrangian approach extend continuously farther along the 

shoreline as well as farther toward the open water on October 16th, 2017 than the plumes simulated 

by the Eulerian model. Against the MODIS-Terra reflectance data shown to represent turbidity 

and plumes effectively, the plume maps generated from model results indicate that the Lagrangian 

model may predict the plume dynamics more effectively than the Eulerian model.    

Quantitatively, the evaluation metrics used to determine model ability to simulate MODIS-Terra 

generated plumes suggest that the two modeling approaches are similar. Of the 12 evaluation 

metrics used to compare the Eulerian and Lagrangian model approaches, the absolute errors 

between the modeled and MODIS-measured metric were the same between the two approaches 

for 3 metrics (25%). This happened when plumes were limited in their dispersion by breakwater 
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infrastructure or when the plumes extended from one outlet to another continuously for both model 

approaches and the MODIS data. The Eulerian model minimized the absolute error between the 

modeled plume and MODIS plume measurements for the normal-to-shore distances from 

Wilmette and CRCW in 2008 as well as the plume total surface area and alongshore distance from 

CRCW in 2017. Differences between modeled and MODIS-Terra derived metrics were minimized 

by the Lagrangian model for the plume total surface area and alongshore distance from O’Brien in 

2008. The Lagrangian model also minimizes absolute errors between the model and MODIS data 

for alongshore and normal-to-shore distance from Wilmette as well as the normal-to-shore distance 

from CRCW (Table 4-4). Using these metrics as a guide, the Lagrangian model minimized 

absolute errors for one more metric (5 out of 12, 41.67%) than the Eulerian model (4 out of 12 

(33.33%), indicating that the Lagrangian model may be slightly more effective at simulating storm-

associated river plumes. 

Table 4-4: Results of model comparison, showing whether the Eulerian or Lagrangian model 

minimized the difference between modeled and MODIS-Terra derived plume dimensions. "N/A" 

values in right column denote plume dimension metrics for which absolute errors between both 

models and the MODIS-Terra derived plumes were equal 

Evaluation Metric Backflow Year 

Model with lowest model-

MODIS Absolute 

Difference 

Plume Total Surface Area 2008 Lagrangian 

Alongshore Distance from 

Wilmette 
2008 N/A 

Alongshore Distance from 

CRCW 
2008 N/A 

Alongshore Distance from 

O’Brien 
2008 Lagrangian 

Normal-to-Shore Distance 

from Wilmette 
2008 Eulerian 

Normal-to-Shore Distance 

from CRCW 
2008 Eulerian 

Normal-to-Shore Distance 

from O’Brien 
2008 N/A 
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Table 4-4 (cont’d) 

Plume Total Surface Area 2017 Eulerian 

Alongshore Distance from 

Wilmette 
2017 Lagrangian 

Alongshore Distance from 

CRCW 
2017 Eulerian 

Normal-to-Shore Distance 

from Wilmette 
2017 Lagrangian 

Normal-to-Shore Distance 

from CRCW 
2017 Lagrangian 

 

As a result of qualitative and quantitative evaluations of the Eulerian and Lagrangian models for 

plumes in the Chicago area, the Lagrangian model was selected as the optimal model for plume 

simulation. Qualitatively, the Langrangian model more closely simulated the plumes visible in the 

MODIS imagery for both September 16th, 2008 and October 16th, 2017, via visual assessment of 

the plume contours overlaid on MODIS-Terra derived reflectance data. The Lagranigan model 

also minimized the magnitude of model-MODIS absolute errors in 5 of 12 (41.67%) plume surface 

area and dimension metrics for both days, while the Eulerian model minimized such errors for 4 

of 12 metrics (33.33%). This selection is supported by previous research into river plume effects 

on nearshore zones. Nekouee et al. (2015) used Lagrangian particle tracking to simulate a river 

plume along the eastern shore of Lake Michigan, with similar results and comparisons to remotely-

sensed plume imagery. Likewise, Huang et al. (2019) relied on Lagrangian particle tracking to 

simulate footprints and dimensions of water quality areas of concern resulting from wastewater 

treatment plant releases in northern Lake Ontario. 

4.3.5. Limitations of the Validation and Selection Process 

 

There is a considerable lack of observational data associated with storm events and how they 

impact nearshore regions. Storm events often lead to dangerous conditions and thus discourage the 
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collection of direct, observational data in favor of ensuring safety of researchers and managers. 

This is especially true for extreme storm events such as those that lead to backflow events in 

Chicago. By definition, a backflow event occurs to divert water back to the lake and relieve high 

water in the rivers during heavy rain (USACE, 1996). These events often coincide with localized 

flooding, high water levels and wind that can threaten health and well-being of people along the 

lakeshore. As a result, observational data corresponding to conditions during and immediately after 

backflow events are frequently limited to remotely-sensed observations. Further, before 

processing, remotely-sensed data are often of coarse spatial resolution (i.e., 1 km) and thus limited 

in their usability, particularly in the nearshore zone. In the case of satellite imagery captured during 

and immediately after backflow-inducing storms, obstruction by clouds can severely constrain the 

application of the data. When satellite imagery is not obstructed, it can be difficult to delineate 

river plumes with confidence as well. While parts of the plumes are visible in the imagery (Figure 

4-7a), parts of the plumes that have been more diluted in the water column may be less clear from 

the imagery, though they are still part of the plumes. Isolation of the green band of images can be 

helpful in delineating plumes (Mendes et al., 2014; Nezlin et al., 2005; Nezlin and DiGiacomo, 

2005; Thomas and Weatherbee, 2006) (Figure 4-7b), but still leaves some uncertainty due to a 

continuous gradient of color or shade in the images and bands.     

An additional confounding factor in the collection of in situ observational data associated with 

backflow events is the timing of the events themselves. Of the 19 backflow events that occurred 

in Chicago since 2000, only 58% occurred during the swimming season (Memorial Day to Labor 

Day annually) (USACE, 2014). Further, these swimming season backflow events are all relatively 

small in magnitude, releasing and average of 60% less stormwater to the lake, compared to 

backflow events occurring outside the swimming season. Since beach water quality sampling 



 

124 
 

associated with backflows only occurs during the swimming season (MWRD, 2019), there is a 

paucity of water quality data to support model validation, particularly for the large backflow events 

such as that seen in 2008.     

Without collecting in situ data during and after backflow events themselves, it is difficult for 

researchers to fully validate models of storm-induced conditions and resulting river plumes in the 

nearshore. Satellite imagery and remotely-sensed data can be useful, but future work related to 

water conditions during storms would benefit from additional observational data for model 

calibration. This is especially important in the context of predicted increases in both the frequency 

and intensity of storms as a result of climate change (Pachauri et al., 2014). With the development 

and application of unmanned aerial vehicles such as drones (Morgan et al., 2020) and complex 

sensor systems that can autonomously collect in situ data (Angelescu et al., 2019; Huynh et al., 

2016; Safaie et al., 2016; Schimmelpfennig et al., 2012; Zhang et al., 2012), these types of 

observations are more feasible than they have been historically.  

Quantitatively, the differences in plume surface area and dimension calculations between the 

FVCOM-simulated plumes and plumes visible in the MODIS imagery were not weighted in any 

way. That is, the model that minimized the errors was ultimately selected as the most reliable 

approach for subsequent plume modeling. It is interesting to note that the Lagrangian modeled 

plume surface areas and dimensions are frequently smaller plumes than those observed via 

MODIS-Terra reflectance. This could be associated with uncertainty in normalized reflectance 

threshold selection. The threshold of 0.60 was selected because it fell within the range of thresholds 

used in previous research (Mendes et al., 2014; Nezlin et al., 2005; Nezlin and DiGiacomo, 2005), 

but the range of threshold values is relatively large (0.33 – 0.80). There is also substantial spatial 

variability in terms of normalized reflectance values that adequately delineate plumes (Nezlin et 
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al., 2005), so additional investigation normalized reflectance threshold values for southwestern 

Lake Michigan may be beneficial.  

Despite its limitations, the use of satellite imagery for delineation of plumes and validation of 

model plume simulations may provide an effective step toward more reliable model validation in 

the future. The 250 m spatial resolution of the processed MODIS-Terra data used herein seems to 

be high enough to reasonably show plumes. In the absence of other in situ or higher-resolution 

data, satellite imagery thus seems to be useful to begin validating and refining plume models for 

southwestern Lake Michigan.  

4.4. Conclusions 

 

Storm-associated river plumes have the potential to transport substantial amounts of contamination 

into open water and nearshore areas in large lake and ocean environments (Nekouee et al., 2015b, 

2015a). While storm conditions can make it difficult to directly observe resulting plume dynamics 

in the nearshore zone, model simulations can aid in the understanding of spatiotemporal dynamics 

of plumes.  

Two modeling approaches were compared in terms of their ability to reproduce plumes captured 

by MODIS satellite imagery after a heavy storm event that resulted in backflow of stormwater to 

Lake Michigan in September 2008 and October 2017. Qualitative and quantitative comparison of 

the plume dimensions on September 16th, 2008 showed that plume surface areas and dimensions 

both along the shore and normal to the shore for the Eulerian model were larger than those modeled 

using the Lagrangian approach. Though this is not always the case (particularly for the October 

16th, 2017 modeled plumes), it supports the idea that Eulerian models tend to overestimate 

dispersion in the water, compared to Lagrangian models (Zhang and Chen, 2007). Comparison of 

the model results to MODIS-Terra reflectance data along the southwestern Lake Michigan 
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shoreline indicate that the additional dispersion calculated via the Eulerian model may have 

diminished the model’s ability to simulate the plumes; the Lagrangian model absolute errors were 

equal to or less than the errors corresponding to the Eulerian model for 8 out of 12 (66.67%) 

evaluation metrics across the two dates.  As a result, the Lagrangian model has been selected as 

the more reliable approach to simulation of storm-associated river plumes in southwestern Lake 

Michigan.  

While the differences between the two model approaches allowed for selection of an optimal model 

with reasonable confidence, assessment and study of river plumes would benefit from additional 

data collection. Availability of observational data to compare with model results was a 

considerable limiting factor for the effective selection of an optimal modeling approach. The 

Lagrangian model was selected based on its ability to reproduce plumes visible from MODIS 

satellite data, but it is unknown whether the MODIS data effectively captured the plumes and to 

what degree the MODIS data captured non-plume related turbidity. Therefore, additional 

observational data, particularly imagery and data from unmanned aerial vehicles or water quality 

data from high-resolution sensor stations (Morgan et al., 2020; Safaie et al., 2016; 

Schimmelpfennig et al., 2012; Zhang et al., 2012) would increase the confidence with which 

modeling and model selection could be completed. Outreach and citizen science approaches may 

be beneficial for data collection and accumulation of anecdotal evidence regarding plume 

conditions as well (Jennings et al., 2020), as long as the safety of the public is ensured. 

In the absence of such complementary data for plume conditions and dynamics, Lagrangian 

particle tracking appears to be an effective approach to simulation of storm-induced river plumes 

in the nearshore zone. Therefore, in future hindcasting assessment of storm-induced plume 
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conditions and effects, it is recommended that Lagrangian models be prioritized over Eulerian 

approaches.  
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5. Simulating Storm-Associated River Plumes in Southern Lake Michigan: 

Characterization of Plume Spatiotemporal Scales 

 

5.1. Introduction 

Shoreline systems such as beaches and nearshore areas are dynamic and complex environments 

and can be impacted by both the aquatic and terrestrial ecosystems nearby (Graham et al., 2018; 

Jones and Lennon, 2015; Lee et al., 2016; Viau et al., 2011; Whitman et al., 2014). These systems 

are also important for tourism and local economies (Kinzelman, 2009; Klein et al., 2004; Leggett 

et al., 2014; Nevers and Whitman, 2011; Shaikh, 2012), so their effective management is 

imperative for the viability of surrounding communities.  

Nearshore water quality can be impacted by a variety of influences, including both point- and non-

point sources. Point sources of contamination, distinct sources whose locations can be pinpointed, 

can include rivers and wastewater or stormwater outlets near the shore (Boehm et al., 2002; Garcia-

Armisen and Servais, 2007; Huang et al., 2019; Mika et al., 2009). Diffuse sources that are not 

easily tracked or can be attributed to large areas rather than single locations are deemed non-point 

sources. These non-point sources can include animals and humans, beach sand, urban and 

agricultural runoff and wave-induced contamination along the shore (Bernhard and Field, 2000; 

Lin et al., 2009; Vogel et al., 2016; Wu et al., 2017; Yamahara et al., 2007). The effects of nonpoint 

sources on water quality can be much more challenging to predict or model, compared to the 

impacts of point sources. Nevertheless, beaches and other nearshore areas are susceptible to 

contamination by pathogens of human health concern from both point- and non-point sources. 

While recent research has focused on characterizing non-point sources of pollution at beaches and 

in nearshore areas, the effects of contamination plumes on water quality remain a substantial 

knowledge gap. While some plume-related research has begun to characterize the effects of 
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sewage releases and river flows on beaches (Bravo et al., 2017; Connolly et al., 1999; Huang et 

al., 2019; McLellan et al., 2007; Thupaki et al., 2010; Wong et al., 2013), assessments of impacts 

from plumes associated with large storm events on the nearshore are limited (Nekouee et al., 2015; 

Wilkinson et al., 2011). Research into the effects of storm-induced plumes on nearshore 

environments is key to understanding the overall connections between terrestrial and aquatic 

systems during and after disruptions to typical flow regimes, such those associated with storms. 

This is especially true given that storm frequency and intensity are predicted to increase in the 

coming decades, as a result of climate change (IPCC, 2014).   

Nearshore areas in the Chicago region, along the southwestern shore of Lake Michigan, may be 

increasingly sensitive to the effects of storm-induced river plumes, compared to other regions, due 

to the nature of the region’s flow regime. Where the majority of rivers flow out to lakes or oceans 

under typical flow patterns, the three major rivers in the Chicago area have been engineered to 

flow away from Lake Michigan unless there is a threat of river flooding (MWRD, 2019; USACE, 

2014). Under these circumstances, known as backflow events, infrastructure at the Wilmette 

Pumping Station (referred to hereafter as “Wilmette”), Chicago River Controlling Works (CRCW) 

and O’Brien Lock and Dam (referred to hereafter as “O’Brien”) (Figure 4-2) engages to reverse 

the flows of the North Shore Channel, Chicago River and Calumet River, respectively (MWRD, 

2019). As a result, the rivers flow into Lake Michigan only during these backflow events. 

Therefore, the Chicago shoreline is not only impacted by the stormwater from the city that runs 

off directly to the lake, but also may be susceptible to additional runoff from west of the shore via 

these backflows and the plumes that they release to the lake (USACE, 2014). Since the nearshore 

zone in the Chicago area is not typically vulnerable to the contamination associated with the three 

rivers, the Chicago Park District automatically closes all 24 Lake Michigan beaches in its 
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jurisdiction during backflow events (MWRD, 2019). These beaches remain closed to recreation 

until water quality samples at representative locations consistently show water that is safe for 

recreation (E. coli concentrations < 2.37 log10(MPN 100 ml-1) or enterococci concentrations  

< 1000 CCE 100 ml-1) (MWRD, 2019).    

A limiting factor for the effective management of Chicago beaches and nearshore zones may be a 

lack of water quality monitoring during and immediately after the backflow events. Only select 

beaches are monitored for water quality associated with the backflow event, and they are 

monitored only after the backflow has ended (MWRD, 2019). Further, sampling for water quality 

during storms that can produce high waves and strong winds can be dangerous for beach managers 

or researchers. Hence, regular water quality monitoring at beaches does not resume until conditions 

are safe again and the beaches reopen for recreation (IDPH, 2018). This can lead to scarce water 

quality or observational data at beaches during and immediately after backflow events, despite 

their potential to impact the nearshore considerably (MWRD, 2019).  

In the absence of in situ observational data surrounding backflow events and their resulting river 

plumes in Lake Michigan, remotely-sensed data can be useful, but also have their own drawbacks 

for research and management (Morgan et al., 2020; NASA Goddard Space Flight Center et al., 

2008; Vermote, 2015). The same dangerous conditions that limit sampling at beaches can also 

negatively impact data collected remotely via sensors, by creating conditions that can damage 

sensors. Aerial and satellite imagery can also be valuable, but only if the data are of sufficient 

spatial resolution to draw conclusions and if the shoreline in the images is not obstructed by clouds 

(Song et al., 2004).  

In recent years, numerical modeling has become an intriguing alternative to in situ data collection, 

especially in situations where observational data may be difficult to obtain (Huang et al., 2019; 
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Nekouee et al., 2015). Well-calibrated models can effectively simulate hydrodynamic and water 

quality conditions given hydrometeorological inputs (Liu et al., 2006; Safaie et al., 2016; Thupaki 

et al., 2010). These models may then be able to help researchers and managers characterize water 

quality and hydrological conditions without the need for additional observational data. Numerical 

models can be especially valuable for simulation of conditions during and after storm events for 

which sample collection is particularly dangerous. These models may supplement any available 

data and allow for inferences to be made regarding plume dynamics and contaminant fate and 

transport (Bravo et al., 2017; Nekouee et al., 2015). 

We aimed to apply a validated numerical model that couples hydrodynamic simulation for Lake 

Michigan with nearshore Lagrangian particle tracking simulation to model the dynamics of river 

plumes resulting from five backflow events in the Chicago area. Combining the model validated 

in Chapter 4 with observed river flow data for the five different backflow events, river plumes 

from the release of stormwater along Chicago’s shoreline were simulated. The coupled particle 

tracking model followed distinct but inert particles throughout the basin as a proxy for conservative 

tracers in the plumes. Results from the models allowed inferences to be made regarding the 

spatiotemporal scales at which these plumes impact the nearshore zone in Chicago, showing plume 

areas of influence in the basin as well as the timing of plume dispersion, growth and contraction. 

Plume simulations also allowed for the determination of which beaches were likely impacted by 

the plumes, and when. By evaluating plume dynamics over time, we aimed to draw conclusions 

about the relative influences of localized wind patterns and larger-scale lake circulation on plume 

dynamics during and after large storm events. All of these results can help predict plume dynamics 

and risks to the nearshore zone that may be connected to future backflow events.  
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5.2. Methods 

5.2.1. Study Area and Temporal Context 

Models were developed to focus on the Chicago region of southwestern Lake Michigan. The area 

between the North Shore Channel in Wilmette, IL (42.077°N, 87.681°W) and the Calumet River 

at the Illinois/Indiana border (41.733°N, 87.529°W) was the main study area for this analysis 

(Figure 1-2). However, storm-induced plumes were expected to occasionally extend beyond these 

limits along the shore.  

There have been 32 backflow events in the Chicago area between 1985 and 2017, but this work 

focused on five major events between 2008 and 2017 (Table 5-1). These events were chosen 

because they represented the five largest backflow events in the region since 2000, in terms of 

volume of stormwater released to Lake Michigan. Wilmette and CRCW both released stormwater 

to the lake on all five occasions, while O’Brien released water to the lake in 2008 and 2013 only.  

Table 5-1: Timing and volume of stormwater released during five backflow events selected  

for simulation 

Year 
Dates of Backflow 

Event 

Locations Releasing 

Water to Lake 

Michigan 

Total Volume of 

Water Released (m3) 

2008 September 13 – 16 
Wilmette, CRCW, 

O’Brien 
41,825,393.34 

2010 July 24 Wilmette, CRCW 24,737,287.48 

2011 July 23 Wilmette, CRCW 8,405,506.87 

2013 April 18 – 19 
Wilmette, CRCW, 

O’Brien 
40,577,721.62 

2017 October 14 – 15 Wilmette, CRCW 10,395,497.84 

 

The timing of releases to Lake Michigan during the backflow events varied between the three river 

outlet locations (Table 5-2). For instance, in both the 2008 and 2013 events, in which the O’Brien 
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outlet released stormwater to the lake, O’Brien began and ended its backflow release later than 

Wilmette and CRCW.  

Table 5-2: Timing of stormwater release from Wilmette, CRCW and O'Brien outlets  

during five backflow events 

Backflow 

Event 

River 

Outlet 

Date/Time of Backflow 

Start 

Date/Time of 

Backflow End 

Backflow 

Duration 

(hr) 

2008 Wilmette September 13, 7:00 am  September 16, 8:00 am 73 

 CRCW September 13, 11:00 am September 15, 1:00 pm 50 

 O’Brien September 13, 6:00 pm September 16, 2:00 pm 68 

2010 Wilmette July 24, 2:00 am July 24, 7:00 pm 17 

 CRCW July 24, 2:00 am July 24, 7:00 pm 17 

 O’Brien N/A N/A N/A 

2011 Wilmette July 23, 2:00 am July 23, 1:00 pm 11 

 CRCW July 23, 3:00 am July 23, 1:00 pm 10 

 O’Brien N/A N/A N/A 

2013 Wilmette April 18, 1:00 am April 19, 12:00 am 23 

 CRCW April 18, 12:00 am April 19, 1:00 am 25 

 O’Brien April 18, 5:00 am April 19, 4:00 am 23 

2017 Wilmette October 14, 1:00 pm October 15, 9:00 am 20 

 CRCW October 14, 1:00 pm October 15, 8:00 am 19 

 O’Brien N/A N/A N/A 

 

5.2.2. Modeling of Plumes 

The model framework used to simulate backflow plumes for 2008, 2010, 2013 and 2017 was 

selected via the process detailed in Chapter 4. Briefly, a coupled hydrodynamic and Lagrangian 

particle tracking model was used to simulate plume dynamics associated with the backflow events. 

This model approach was deemed optimal compared to an Eulerian simulation approach because 

it tracked discrete particles rather than concentrations of contaminants over time. It also used a 

fundamentally different approach to calculate dispersion of the particles over time, compared to 

the Eulerian method (See Chapter 4.2.3 for details on the two approaches). As a result, the plumes 

simulated using Lagrangian particle tracking were smaller and matched plume observational 
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dimensions from MODIS satellite imagery better than those simulated using the Eulerian model. 

To focus solely on the plume dynamics, the model simulated a worst-case scenario in which the 

particles represented conservative tracers that were not subject to decay factors over time.  

Backflow-associated plumes were modeled by incorporating river discharge data into a base 

hydrodynamic model within the Finite Volume Community Ocean Model (FVCOM), to simulate 

the additional volume of water released during and after the storms. The Lagrangian particle 

tracking model was then coupled to this hydrodynamic simulation. Previous research has 

determined that release of at least 100000 particles from a source is likely to ensure a stable and 

reliable particle concentration solution of the Lagrangian particle tracking model (Zhang and Chen, 

2007). While the number of particles to be released is problem- and context-dependent, this 

100000-particle value can provide an initial threshold to help guide particle number determination 

for models. Therefore, the number of particles released at each river outlet varied between the 

backflow events, in response to the number of hours over which the backflow event occurred at 

the outlets. For the 2008, 2013 and 2017 backflow events, 5000 particles were released at each of 

the river outlets when stormwater began to enter the lake. Since the 2010 and 2011 backflow events 

were shorter in duration (18 hours and 10 – 11 hours, respectively), they required additional 

particles to be released at the outlets to fulfill the 100000-particle requirement for model stability. 

As a result, 6000 particles were released per hour at the Wilmette and CRCW outlets during the 

2010 backflow event, while 11000 particles were released per hour at Wilmette and CRCW during 

the 2011 event.  

Particles were randomly distributed throughout the outlets’ channel cross-sectional areas. After 

the initialization of the backflow, 5000 additional particles were released to the lake for every hour 

that each river was releasing water. The movement and spatially-variable concentrations of these 
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particles was tracked in the model for 14 – 25 days after each backflow event began. Model 

temporal extent depended upon the magnitude of the stormwater release associated with each 

backflow event, as well as other environmental factors such as wind speed and direction. To 

account for the different storm magnitudes, plumes associated with smaller events in 2010, 2011 

and 2017 were modeled for 14 days, while those associated with the large events in 2008 and 2013 

were simulated for 25 days.  

5.2.3. Plume Spatiotemporal Scale Assessment 

 

From the results of each backflow event’s Lagrangian particle tracking model, plume scale 

assessment involved creating animations of the plumes over time, calculating maximum plume 

areas of influence in the nearshore, and developing breakthrough curves for particle concentrations 

at select beach locations along the shore.  

Animations of the plumes were created using Tecplot 360 EX 2018 (Tecplot, Inc., Bellevue, WA 

USA) to visualize and track the plumes over time (see supplemental files SF-1 – SF-5 for 

animations). To delineate the plumes, particle concentrations were normalized with respect to the 

smallest-magnitude maximum concentration between the three river outlets, such that all plumes 

could be visualized without losing data due to differences in concentration between the three river 

outlets. A plume’s spatial extent was defined as the area encompassing plume concentration 

contours corresponding to a normalized concentration of 0.01 or greater (concentration of 1% or 

more of the smallest maximum concentration at the river outlets). These animations directly 

showed the spatiotemporal scales of the plumes, indicating areas of influence at any given time 

step within the model. From the animations, images of the plumes at specific time steps could be 

extracted for use in subsequent quantitative plume surface area evaluation, and alongshore and 

normal-to-shore distance calculations.  
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5.2.3.1. Spatial Scales 

 

To calculate maximum areas of influence for the plumes following each backflow event, images 

from Tecplot were extracted from timesteps where plumes extents were maximized. These images 

were imported into ArcMap 10.7.1 (ESRI, Redlands, CA USA) and georeferenced to match 

processed 250 m spatial resolution MODIS-Terra reflectance data for the 555 nm (green visible 

light) band. This type of georeferencing to the MODIS data along the Chicago shoreline allowed 

plume areas to be effectively calculated from pixel areas (Figure 5-1a). The green bands of the 

images were extracted from these georeferenced Tecplot images, to better show the contrast 

between the plumes and the bulk water of the lake (Figure 5-1b). Pixels in the georeferenced, green 

bands of the plume images from Tecplot were then reclassified to delineate the plumes (Figure 5-

1c), and the number of pixels representing the plumes were counted using the Zonal Histogram 

feature in ArcMap. The number of pixels representing the plumes was multiplied by the surface 

area of a pixel to obtain the total surface area of the plumes when their extent was maximized. 

Alongshore and normal-to-shore extents of the plumes were also directly measured within ArcMap 

via the Measure tool.  
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5.2.3.2. Temporal Scales 

 

Animations of the backflow-induced river plumes qualitatively showed the spatial and temporal 

scales of the plumes, but they were supplemented by particle concentration breakthrough curves 

developed for the water surface at nearby beach locations. Plotting the surface particle 

concentrations over time at various beaches along the shore was expected to show not only the 

magnitude of concentrations over time at the beaches, but also the time scales over which each 

beach was likely impacted by the plumes.  

Breakthrough curves were plotted in MATLAB 2019b (MathWorks, Natick, MA USA) for 12 

beaches along the Chicago shoreline (See Table 4-1, Figure 5-2). Selected beaches correspond to 

those locations that are monitored for water quality after backflow events and used to determine 

when to open all beaches along the shore after storm events. Concentrations for the breakthrough 

curves were normalized with respect to the lowest magnitude maximum surface concentration at 

Figure 5-1: Images showing overlays of processed MODIS-Terra data and an original Tecplot 

plume image (A, left), and extracted green band image of the plume from Tecplot (B, center) and 

reclassified pixels showing the plume from Tecplot (C, right), showing the process to calculate 

the plume surface area 
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the three river outlets. These curves were generated for each beach during each of the five backflow 

events. In addition, combined plots showing all breakthrough curves for beaches near a given river 

outlet were also developed, to lend insight into the direction of travel of the plumes and the order 

in which different beaches were impacted by the plumes. 

Figure 5-2: Google Earth imagery showing locations of beaches sampled after backflow events 

from Wilmette (A, top-left), CRCW (B, top-right) and O'Brien (C, bottom) outlets along the 

Chicago shore of Lake Michigan 

the Chicago shoreline 
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5.2.3.3. Relating Stormwater Release Data to Plume Spatiotemporal Scales 

 

Data regarding the time periods and volumes of water released from each of the three outlets were 

tested to determine their ability to predict the modeled spatiotemporal scales of resulting plumes 

in southwestern Lake Michigan. RStudio software (RStudio, PBA, Boston, MA) was used to 

determine Spearman correlations between stormwater release durations and volumes at the 

Wilmette and CRCW outlets, and plume maximum areas of influence and durations in the 

nearshore. Additionally, multiple regression analyses and stepwise Akaike Information Criterion 

(AIC) model selection were used to determine relationships between the release volume and timing 

data from the outlets and resulting spatiotemporal scales of the storm-induced plumes. In these 

analyses, statistical significance was determined at the α = 0.05 level. Model selection utilized a 

comparison of AIC, p, and R2 values between regression models, where the optimal model was 

signified by a minimized AIC and p-value, and a maximized R2 value.    

5.3. Results and Discussion 

 

5.3.1. 2008 Backflow Event 

 

The largest of the five backflow events simulated occurred in September of 2008. Between 

September 13th and 16th, 2008, the Wilmette Pumping Station released 11,135,545.84 m3 of 

stormwater to Lake Michigan, while CRCW released 20,585,826.36 m3 and O’Brien Lock and 

Dam released 10,104,021.13 m3 (Table 5-3, Figure 5-3). Once released to the lake, plume 

animations indicate that the plumes initially moved out toward the open water, before moving back 

toward the shore. Along the shore, the simulated plumes began to move northward late on 

September 13th, before shifting and moving southward between the afternoon of September 14th 

and the evening of September 16th (see Supplemental File SF-1 for an animation of the plumes 

over time). While the plumes were confined to areas relatively close to the shoreline for the first 
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four days of the model simulation, they began to disperse into the basin on September 17th, 

extending as far as 8.02 km into the nearshore zone at 9:00 am on September 21st. Modeled plumes 

remained distinct along the shore until 6:00 pm on September 15th, when the plumes from Wilmette 

and CRCW outlets coalesced near the breakwall north of the CRCW outlet. Two days later, this 

plume merged with the plume from the O’Brien outlet at 6:00 pm on September 17th, forming a 

single plume that impacted the entire Chicago shoreline before moving northward again, beginning 

on September 20th.  

Table 5-3: Volume of stormwater released from Wilmette, CRCW  

and O’Brien outlets during the September 2008 backflow event 

Outlet Name 
Volume of Water Released in 

2008 Backflow Event (m3) 

Wilmette 11,135,545.84 

CRCW 20,585,826.36 

O’Brien 10,104,021.13 

TOTAL: 41,825,393.34 
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The simulated plume footprint in the nearshore zone was maximized 125, 144 and 119 hours after 

the cessation of the backflow event at Wilmette, CRCW and O’Brien outlets, respectively, at 9:00 

am on September 21st, 2008. This maximized plume footprint was calculated as 291.01 km2 

(Figure 5-4). The simulated plume would be expected to impact 64.06 km of the shoreline, from 

north of Wilmette to the O’Brien outlet and extending over 8 km offshore in places north of 

Wilmette.  

 

 

 

 

 

 

 

Figure 5-3: Discharge hydrograph showing stormwater releases from Wilmette, CRCW and 

O'Brien outlets in September 2008 
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Breakthrough curves generated for the 12 beaches that are monitored post-backflow event provide 

additional insight into plume dynamics and the potential impacts of storm-induced river plumes 

on beach water quality. Particles from the simulated plume released at the Wilmette outlet reached 

Gillson, Wilmette and Kenilworth beaches, before being observed at Northwestern, Lighthouse 

and Dempster St. beaches (Figure 5-5). This supports the inference from plume animations that 

the plume moved northward shortly after its release, shifting and moving south in subsequent 

hours. Simulated particles were first observed at Gillson beach at 2:00 pm on September 13th, 

moving to Wilmette and Kenilworth beaches by 12:00 am on September 14th. To the south of the 

Wilmette outlet, particles reached Northwestern and Lighthouse beaches at 9:00 am on September 

14th and were extended further south to Dempster St. beach three hours later (12:00 pm on 

September 14th). Higher particle concentrations in the breakthrough curves for Lighthouse, 

Figure 5-4: Tecplot image of the largest plume resulting from the September 2008  

backflow event 
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Northwestern and Dempster St. beaches than at Gillson, Wilmette and Kenilworth beaches may 

be due to the continued release of particles from the Wilmette outlet from September 13 – 16. 

Additional particles were released at the outlet as the plume moved toward the beaches. It is likely 

that particles accumulated in the plume between the time that it reached the beaches north of the 

outlet and when it reached those beaches south of the outlet, leading to higher concentrations at 

Northwestern, Lighthouse and Dempster St. beaches than at Gillson, Wilmette and Kenilworth 

beaches.  

 

Breakthrough curves developed for North Ave., Oak St., 12th St. and Margaret T. Burroughs 

beaches near the CRCW outlet indicate a similar trend in plume movement, compared to the 

breakthrough curves associated with the Wilmette plume. Simulated particles were observed at 

Oak St. and North Ave. beaches first (on September 13th at 11:00 pm), before the plume shifted its 

Figure 5-5: Combined breakthrough curves for the 2008 backflow event, showing timing of 

plume transport from the Wilmette outlet to six nearby beaches 



 

144 
 

direction of travel and impacted 12th St. and Margaret T. Burroughs beaches south of the CRCW 

outlet on September 14th at 1:00 pm (Figure 5-6).  

 

In similar fashion to the Wilmette plume breakthrough curves, the curves associated with the 

CRCW plume suggest that the plume affected most of the nearby beaches as an initial pulse of 

particles. However, these breakthrough curves show a ~2-day cycle over which particle 

concentrations peak locally, then decline before increasing to another peak. This pattern is 

particularly evident for 12th Street beach, the closest beach to the CRCW outlet in the southern 

direction. The cycle may represent the movement of the plume up and down the shoreline over 

time in response to lake circulation patterns, as also seen in the plume animations.    

Simulation data indicate that the plume associated with the O’Brien outlet was substantially 

impacted by breakwall infrastructure north and east of the outlet. Particles from the simulated 

plume were first observed at Calumet beach, south of the outlet, at 1:00 pm on September 14th. 

Figure 5-6: Combined breakthrough curves for the 2008 backflow event, showing timing of 

plume transport from the CRCW outlet to four nearby beaches 
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Concentrations of particles reached Rainbow beach 36 hours later (Figure 5-7), after dispersing 

and moving around the breakwalls north of the outlet. It is interesting to note, also, that the plume 

animation suggests that the CRCW plume reached Rainbow beach by 11:00 pm on September 15th 

and that the CRCW and O’Brien plumes had coalesced by the time the particle concentrations 

increased considerably at Rainbow beach, at 6:00 pm on September 16th. It is difficult to determine 

whether increased particle concentrations at Rainbow beach at 6:00 pm on September 16th can be 

attributed to the CRCW or O’Brien plumes.  

 

5.3.2. 2010 Backflow Event 

 

The 2010 backflow event released a much smaller volume of water to Lake Michigan, compared 

to the 2008 event. This event released 24,737,287.48 m3 of stormwater to the lake from only the 

Wilmette and CRCW outlets (Table 5-4, Figure 5-8). The CRCW and Wilmette outlets released 

stormwater on July 24, 2010, from 2:30 am to 7:15 pm. Immediately after release to the lake, 

Figure 5-7: Combined breakthrough curves for the 2008 backflow event, showing timing of 

plume transport from the O'Brien outlet to two nearby beaches 
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simulated plumes flowed away from shore and toward the open water, but over longer time scales, 

the plumes remained in the nearshore zone and were transported along the shore rather than normal 

to the shoreline. This follows the pattern seen in the simulation of plumes associated with the 2008 

backflow event. After release to the lake, the plumes initially moved northward along the shore on 

July 24th. Beginning at 7:00 pm on July 24th, the plume dynamics shifted and the plumes began to 

travel south. This southern plume movement continued until 3:00 pm on July 26th, when the plumes 

shifted again and began to move north along the shore. Roughly two days later, at 1:00 pm on July 

28th, movement of the plumes switched to a southern direction again (see Supplemental File SF-2 

for plume animation over time). Because of the smaller volume of water released from both CRCW 

and Wilmette, the two resulting plumes remained distinct for the entire model simulation period 

and until they fully dispersed into the lake. The plume released from the CRCW outlet persisted 

in the nearshore until 8:00 pm on July 26th, while the simulated plume associated with the Wilmette 

outlet remained visible south of the outlet until 7:00 pm on July 30th.   

Table 5-4: Volume of stormwater released from Wilmette  

and CRCW outlets during the July 2010 backflow event 

Outlet Name 
Volume of Water Released in 

2010 Backflow Event (m3) 

Wilmette 2,840,194.46 

CRCW 21,897,093.01 

O’Brien N/A 

TOTAL: 24,737,287.48 
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The maximum area of influence of the plumes associated with the 2010 backflow event was 

considerably smaller than the area of influence connected to the 2008 event, as expected. Plume 

footprints were maximized after the 2010 backflow event on July 25th at 7:00 am. This was 29 

hours after the beginning of the backflow event at both outlets and only 12 hours post-release at 

both Wilmette and CRCW. Within the nearshore zone, the maximum total surface area of the 

plumes was calculated as 7.88 km2 (Figure 5-9).  

 

 

 

 

 

Figure 5-8: Discharge hydrograph showing stormwater releases from Wilmette and CRCW 

outlets during the July 2010 backflow event 
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Because the O’Brien outlet did not release stormwater during the 2010 backflow event, no particles 

associated with the plumes reached Rainbow or Calumet beaches. Breakthrough curves generated 

for the beaches near the Wilmette outlet suggest that particles within the plume were transported 

to Gillson and Wilmette beaches initially after release to the lake (at 11:00 am and 12:00 pm on 

July 24th, respectively). However, the plume did not reach Kenilworth beach before shifting 

direction and moving southward and reaching Lighthouse and Northwestern beaches at 6:00 pm 

and 8:00 pm on July 24th. Nine hours later, the simulated plume reached Dempster St. beach at 

5:00 am on July 25th. After shifting direction again, the plume finally reached Kenilworth beach 

at 7:00 pm on July 27th (Figure 5-10) (see Supplemental File SF-2 for an animation of the plumes 

over time). The highest normalized particle concentrations were simulated at Gillson and 

Lighthouse beaches; the two closest beaches to the Wilmette outlet. 

Figure 5-9: Tecplot image of the largest plume resulting from the July 2010 backflow event 
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Breakwater infrastructure heavily influenced the spatial and temporal scales of the plume 

originating from the CRCW outlet in 2010. Breakwaters north and northeast of the outlet 

inhibited initial flow of the plume toward the north, forcing the plume to disperse near the shore 

until it could flow around the breakwater. Once it was able to flow around the breakwater 

infrastructure, the plume moved northward, impacting Oak St. and North Ave. beaches at 11:00 

am and 12:00 pm, on July 24th, respectively. After the plume shifted direction and began to move 

south, it reached 12th St. beach at 9:00 am on July 25th before moving to Margaret T. Burroughs 

beach at 12:00 pm on July 25th (Figure 5-11).  

Figure 5-10: Combined breakthrough curves for the 2010 backflow event, showing timing of 

plume transport from the Wilmette outlet to six nearby beaches 
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Both the CRCW plume and the Wilmette plume were rapidly diluted after their release to Lake 

Michigan. Normalized particle concentrations at beaches near the CRCW outlet never exceeded 

0.015, while normalized concentrations near the Wilmette outlet were on the order of 10-3 or less 

throughout the model simulation period. Therefore, the plumes associated with the 2010 backflow 

event may not be expected to have impacted beach water quality considerably during this time. 

However, this would depend on the actual concentration of E. coli that the concentrations are 

normalized with respect to.   

5.3.3. 2011 Backflow Event 

A relatively small backflow event occurred on July 23rd, 2011. Following the 2010 backflow event, 

this event led to the release of stormwater to Lake Michigan via the Wilmette and CRCW outlets; 

there was no need to release stormwater from the O’Brien outlet. The backflow event began at 

2:30 am on July 23rd, when the Wilmette Pumping Station began releasing stormwater to the lake. 

Figure 5-11: Combined breakthrough curves for the 2010 backflow event, showing timing of 

plume transport from the CRCW outlet to four nearby beaches 
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Stormwater began to flow to the lake from CRCW one hour later. The storm and resulting 

backflow event were short-lived, with releases to Lake Michigan ending at 1:00 pm on July 23rd 

(Table 5-5, Figure 5-12). Over the course of the 11-hour backflow event, the two outlets released 

a total of 8,405,506.87 m3 of stormwater to the lake. 

Table 5-5: Volume of stormwater released from Wilmette  

and CRCW outlets during the July 2011 backflow event 

Outlet Name 
Volume of Water Released in 

2011 Backflow Event (m3) 

Wilmette 1,908,983.16 

CRCW 6,496,523.70 

O’Brien N/A 

TOTAL: 8,405,506.87 

 

Figure 5-12: Discharge hydrograph showing stormwater releases from Wilmette and CRCW 

outlets during the July 2011 backflow event 
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From discharge hydrograph in Figure 5-12, the majority of the water released during the backflow 

event was released within four hours of the beginning of the backflow. This is supported by data 

from the National Weather Service, which suggest that the Chicago area received a record 17.42 

cm (6.86 inches) of rain between 1:00 and 3:00 am on July 23rd (NOAA National Weather Service, 

2011).  

After the backflow releases at Wilmette and CRCW ended, the plumes continued to disperse in 

the basin, growing to a maximum surface area on July 25th at 1:00 pm. This maximum plume 

surface area occurred 44 hours after the end of the backflow releases from both CRCW and 

Wilmette outlets, when the plumes were moving northward along the shoreline (Figure 5-13). At 

this point in time, the footprint of the plumes in the basin was 22.74 km2, with the largest plume 

footprint associated with the Wilmette plume and the dispersion of the CRCW plume largely 

limited by breakwater infrastructure. 

  

 

 

 

 

 

 

Figure 5-13: Tecplot image of the largest plume resulting from the July 2011 backflow event 
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Beaches near each river outlet were affected by the 2011 backflow plumes differently. At the 

Wilmette outlet, Lighthouse and Northwestern beaches were impacted by particles from the plume 

first, at 4:00 am on July 23rd. Before the plume could reach Dempster St. beach, though, its 

trajectory switched and it began to move northward. Particles were then modeled at Gillson, 

Wilmette and Kenilworth beaches at 11:00 pm on July 23rd, 3:00 am on July 24th and 11:00 am on 

July 24th, respectively. Roughly 12 hours later, the plume began to move southward again, showing 

elevated particle concentrations at Gillson beach at 1:00 am on July 25th. Increased particle 

concentrations were then modeled at Lighthouse and Northwestern beaches again at 9:00 am and 

10:00 am on July 25th, respectively. The modeled plume then continued to move southward, 

impacting Dempster St. beach at 3:00 pm on July 25th (Figure 5-14). After roughly July 27th, 

concentrations at all six beaches declined and stabilized, indicating that the majority of the plume 

had dispersed into the water column within four days of the backflow event (see Supplemental File 

SF-3 for an animation of the plumes over time). The maximum normalized particle concentration 

from the Wilmette plume was modeled at Gillson beach, which stands to reason since Gillson 

beach is the closest beach to the outlet. However, normalized concentrations across the board are 

relatively low, suggesting that the beaches may not have been heavily impacted by the plume. 
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Modeled normalized particle concentrations at beaches near the CRCW outlet were frequently an 

order of magnitude larger than those normalized concentrations modeled for beaches near the 

Wilmette outlet. The CRCW-generated plume moved northward initially, with particles reaching 

Oak St. beach at 6:00 am on July 24th. A very low concentration of particles (5.20*10-4) was then 

modeled at North Ave. beach at 11:00 am on July 24th. 12 hours later, the modeled plume had 

begun to move southward, with increased normalized particle concentrations modeled at 12th St. 

beach as early as 11:00 pm on July 24th. Normalized particle concentrations then increased 

Margaret T. Burroughs beach at 11:00 am on July 25th, before declining. 12th St. beach experienced 

subsequent increases in modeled particle concentrations at 2:00 am on July 31st and at 12:00 am 

on August 6th. Margaret T. Burroughs beach saw increased particle concentrations at 11:00 pm on 

August 5th as well, potentially indicating a 5-day cycle of plume movement along the shore south 

of the outlet (Figure 5-15). The maximum normalized particle concentration from the CRCW 

Figure 5-14: Combined breakthrough curves for the 2011 backflow event, showing timing of 

plume transport from the Wilmette outlet to six nearby beaches 
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outlet occurred at Oak St. beach, on July 24th at 11:00 pm. Concentrations modeled for Oak St. 

beach and 12th St. beach are generally higher than those modeled for North Ave. beach and 

Margaret T. Burroughs beach, likely due to their relative proximity to the outlet. 

   

5.3.4. 2013 Backflow Event 

 

In April of 2013, a major storm caused a backflow event in Chicago, which led to a backflow 

release of stormwater from all three river outlets along the shoreline. A total of 40,577,721.62 m3 

of stormwater was discharged to Lake Michigan from Wilmette, CRCW and O’Brien outlets 

during this event, which began on the morning of April 18th, 2013 and lasted roughly 24 hours 

(Table 5-6, Figure 5-16). The backflow event began at 12:00 am on April 18th, when CRCW started 

releasing stormwater. Wilmette began releasing water to the lake at 1:00 am April 18th and O’Brien 

began backflowing water four hours later, at 5:00 am. The releases at Wilmette and O’Brien each 

Figure 5-15: Combined breakthrough curves for the 2011 backflow event, showing timing of 

plume transport from the CRCW outlet to four nearby beaches 
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lasted 23 hours, ending at 12:00 am and 4:00 am on April 19th, respectively. At CRCW, the 

backflow event lasted 25 hours, ending at 1:00 am on April 19th.  

Table 5-6: Volume of stormwater released from Wilmette, CRCW  

and O'Brien outlets during the April 2013 backflow event 

Outlet Name 
Volume of Water Released in 

2013 Backflow Event (m3) 

Wilmette 5,410,110.52 

CRCW 23,108,803.32 

O’Brien 12,058,807.78 

TOTAL: 40,577,721.62 

 

 

As the plumes from the three outlets dispersed post-backflow, the maximum plume area of 

influence was simulated at 12:00 am on April 21st. This was 48 hours after the end of the Wilmette 

release, 47 hours after the end of the CRCW release and 44 hours after the end of the O’Brien 

Figure 5-16: Discharge hydrograph showing stormwater releases from Wilmette, CRCW and 

O'Brien outlets during the April 2013 backflow event 
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release period. The three plumes remained distinct throughout the simulation period, so the 

resulting area of influence of the three combined plumes at this time measured 96.53 km2 (Figure 

5-17). At this point in time, the largest plume was associated with the CRCW release, as expected 

due to the volume of water released from CRCW that was at least twice as large in magnitude of 

those volumes released from Wilmette and O’Brien.  

  

 

 

 

 

 

 

 

 

 

 

 

Plumes associated with the 2013 backflow event behaved similarly to the plumes associated with 

the 2008 and 2010 events. Upon release to the lake, all three plumes moved northward initially, 

before shifting direction and moving southward later (see Supplemental File SF-4 for an animation 

of the plumes over time). The data from the 2013 backflow event suggest that the plumes changing 

direction every 1 – 3 days for the first eight days after the backflow event. Starting April 26th, the 

plumes continuously move northward for five days, changing direction on May 2nd. This shift in 

Figure 5-17: Tecplot image of the largest plume resulting from the April 2013 backflow event 
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direction on May 2nd is the last of the model simulation period, with the plumes continuing to move 

southward along the shore until they dissipate into the lake. The cycles of plume movement 

indicate that beaches near the outlets may be impacted by increased particle concentrations every 

few days within the simulation period. This may be associated with the general circulation pattern 

within the lake, especially since the plumes seem to move in response to currents in the nearshore 

zone.  

Breakthrough curves corresponding to the plume from the Wilmette outlet show that the plume 

traveled northward and impacted Wilmette, Gillson and Kenilworth beaches first, after release to 

Lake Michigan, though it reached all six associated beaches within 11 hours after initially 

spreading to Wilmette beach at 2:00 am on April 22nd. The plume then began to impact Gillson 

beach two hours later. By 5:00 am on April 22nd, the plume had traveled further north, to 

Kenilworth beach before shifting direction and moving southward. At 6:00 am on April 22nd, the 

plume reached Lighthouse beach, south of the Wilmette outlet and continued moving toward the 

south, reaching Northwestern and Dempster St. beaches at 7:00 am and 1:00 pm on April 22nd 

(Figure 5-18). The highest normalized particle concentration (C = 0.085) from the Wilmette plume 

was simulated at Dempster St. beach at 4:00 am on May 3rd. This and other concentration peaks at 

Dempster St. beach in the breakthrough curve show an interesting trend, in that they frequently 

reflect higher normalized concentrations than those simulated at other beaches. Further, these 

peaks do not always coincide with peaks at nearby Lighthouse or Northwestern beaches. This may 

indicate that Dempster St. beach was simultaneously impacted by particles from both the Wilmette 

and CRCW plumes at times in 2013. 
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The simulated plume from CRCW also moved northward soon after its release to the lake, 

following the Wilmette plume’s behavior. Upon release, the plume impacted Oak St. beach at 6:00 

am on April 18th before moving further north to North Ave. beach at 1:00 am on April 19th. Then, 

the plume began to change direction, moving southward and impacting 12th St. beach and Margaret 

T. Burroughs beaches on April 20th at 2:00 pm and April 21st at 2:00 am, respectively (Figure 5-

19). Over the following three days, the simulated plume shifted to move northward, extending over 

much of the shoreline between CRCW and Wilmette outlets by 5:00 am on April 23rd. After 

moving southward again between April 23rd and 25th, the plume then shifted and move northward 

once more, extending beyond the Wilmette outlet to the north between April 27th and 29th, when 

the plume eventually moved north of the study area altogether (see supplemental file SF-4 for 

animation of the plumes in 2013). Interestingly, the highest magnitude normalized particle 

concentrations associated with the CRCW plume were simulated at Margaret T. Burroughs and 

Figure 5-18: Combined breakthrough curves for the 2013 backflow event, showing timing of 

plume transport from the Wilmette outlet to six nearby beaches 
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12th St. beaches (C = 0.074 and 0.073, respectively), which were not the first beaches to be 

impacted by the plume. However, in similar fashion to Dempster St. beach near the Wilmette 

outlet, it is possible that the elevated normalized particle concentrations at 12th St. and Margaret 

T. Burroughs beaches are associated with particle from both the CRCW and O’Brien outlet 

plumes. The plume animation in SF-4 indicates that both plumes from CRCW and O’Brien extend 

to both 12th St. and Margaret T. Burroughs beaches during the course of the simulation period, so 

it is possible that the plumes have a compounding effect on normalized particle concentrations at 

these beaches. 

 

Breakwater infrastructure, again, limited much of the movement of the plume associated with the 

O’Brien outlet, particularly in shorter time periods after the release. These anthropogenic limits to 

northerly flow led to plume dispersal within the embayment between the Indiana Harbor peninsula 

and the breakwater infrastructure north of the O’Brien outlet for the first 28 hours after the 

Figure 5-19: Combined breakthrough curves for the 2013 backflow event, showing timing of 

plume transport from the CRCW outlet to four nearby beaches 
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backflow discharge began at the outlet. As a result, Calumet beach was the first beach near the 

outlet to see increases in normalized simulated particle concentrations from the plume. Particles 

from the simulated plume reached Calumet beach at 7:00 pm on April 19th. After these initial 

impacts on Calumet beach, the plume did not travel northward to Rainbow beach until 11:00 am 

on April 21st (Figure 5-20). The highest magnitude normalized particle concentration (C = 0.060) 

was simulated at Calumet beach, the first beach affected by the plume after release. However, the 

peak normalized particle concentration at Rainbow beach is similar to the normalized 

concentration at Calumet beach, at C = 0.059. This peak normalized particle concentration at 

Rainbow beach occurred 14 days after the peak normalized particle concentration at Calumet 

beach.  

 

 

Figure 5-20: Combined breakthrough curves for the 2013 backflow event, showing timing of 

plume transport from the O'Brien outlet to two nearby beaches 
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5.3.5. 2017 Backflow Event 

 

The October 2017 backflow event was a smaller storm event in the Chicago area, compared to the 

2008, 2010 and 2013 events. Like the 2010 and 2011 backflow events, the 2017 event led to 

releases from only the Wilmette and CRCW outlets. Both outlets began releasing stormwater to 

Lake Michigan at 1:00 pm on October 14th. Wilmette’s release lasted 20 hours, ending at 9:00 am 

on October 15th. At CRCW, the release ended one hour earlier, at 8:00 am on October 15th (Figure 

5-21). Between the two outlets, 10,395,497.84 m3 of stormwater to the nearshore of Lake Michigan 

(Table 5-7).  

 

 

Table 5-7: Volume of stormwater released from Wilmette  

and CRCW outlets during the October 2017 backflow event 

Outlet Name 
Volume of Water Released in 

2017 Backflow Event (m3) 

Wilmette 1,097,012.34 

Figure 5-21: Discharge hydrograph showing stormwater releases from Wilmette and CRCW 

outlets during the October 2017 backflow event 
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Table 5-7 (cont’d) 

CRCW 9,298,485.51 

O’Brien N/A 

TOTAL: 10,395,497.84 

 

Plumes resulting from the releases at Wilmette and CRCW outlets in 2017 coalesced at 11:00 am 

on October 16th and the single, large plume moved north along the shoreline in the following days, 

before dispersing into the lake. The maximum combined area of influence of the plumes in the 

nearshore zone was simulated at 6:00 pm on October 17th, 77 hours after the commencement of 

the backflow event, 58 hours after CRCW stopped releasing stormwater and 59 hours after 

Wilmette ended its release. At this point in time, the total surface area of the plumes was 69.76 

km2, with the combined Wilmette and CRCW plume extending 28.86 km from near the Wilmette 

outlet, though the CRCW outlet to 8.10 km south of the CRCW outlet (Figure 5-22). 
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Plumes from both Wilmette and CRCW traveled northward upon their release to Lake Michigan, 

before shifting direction and moving southward 17 hours later on October 15th. This southward 

movement lasted for 34 hours before the plumes shifted direction again. The plumes moved 

northward again until October 19th. For a brief period (six hours), the plumes began to move 

southward, but ultimately shifted once again and moved northward and away from the Chicago 

shoreline. The plumes moved southward and into the Chicago shoreline area again on October 23rd 

– 25th and October 27th – 31st before dissipating into the lake late on October 31st (see Supplemental 

File SF-5 for an animation of the plumes over time). The initial northward movement of the CRCW 

plume was limited by the breakwater infrastructure north of the outlet in 2017, in similar fashion 

to the CRCW plumes in 2008, 2010, 2011 and 2013.  

Figure 5-22: Tecplot image of the largest plume resulting from the  

October 2017 backflow event 
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Breakthrough curves developed for beaches near the Wilmette outlet indicate that Gillson beach 

was the first location impacted by the plume, at 4:00 pm on October 14th. Two hours later, the 

plume reached both Wilmette and Kenilworth beaches. The plume then continued to move 

northward until 6:00 am on October 15th, when it changed direction and began to move alongshore 

in a southerly direction. Beaches located south of the Wilmette outlet were impacted by the plume 

beginning at 8:00 am on October 15th, when the plume reached Lighthouse and Northwestern 

beaches. Dempster St. beach began to see elevated normalized particle concentrations at 11:00 am 

1:00 pm on October 15th (Figure 5-23). Following other plumes, the highest magnitude normalized 

particle concentration was simulated at Gillson beach, the closest beach to the Wilmette outlet. 

Interestingly, normalized particle concentrations declined rapidly in this plume; simulated 

concentrations at Lighthouse, Northwestern and Dempster St. beaches were nearly one order of 

magnitude lower than those at Gillson, Wilmette and Kenilworth beaches. The shoreline 

experienced strong currents between October 14th and 16th, so it is possible that those currents 

fostered substantial dispersion of particles in the lake while also driving the plume toward the 

beaches south of the outlet. This is also supported by the beach breakthrough curves, which suggest 

that the beaches were only impacted by particles in the plume once, rather than showing a three-

day cycle like those seen in 2013. The curves, compared with the normalized particle concentration 

threshold of 0.01 to denote a plume suggest that the simulated plume originating from Wilmette 

was no longer impacting beaches near the Wilmette outlet by October 16th, only two days post-

backflow event.  
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The plume associated with the CRCW outlet follows a similar pattern to the Wilmette plume, 

initially moving northward before changing direction after its release. The first beach to be 

impacted by particles from the plume was Oak St. beach, at which increased particle concentrations 

were initially simulated at 10:00 pm on October 15th. It took the plume 33 hours from its initial 

release for the plume to move to the shore at Oak St. beach, likely due to the limited ability of the 

plume to flow around breakwater infrastructure north of the CRCW outlet. This idea is supported 

by the plume animation (Supplemental File SF-5), which shows that the CRCW-associated plume 

remains between the shore and the breakwater infrastructure for 14 hours after initial release. The 

lag in northward movement may have then forced the plume to disperse and begin moving 

southward before it could reach North Ave. beach, as seen in the breakthrough curve where North 

Ave. beach was not impacted until after Oak St., 12th St. and Margaret T. Burroughs beaches were 

affected (Figure 5-24). Particles from the plume reached 12th St. beach at 11:00 pm on October 

Figure 5-23: Combined breakthrough curves for the 2017 backflow event, showing timing of 

plume transport from the Wilmette outlet to six nearby beaches 
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15th and traveled to Margaret T. Burroughs beach at 4:00 am on October 16th. Later, the plume 

traveled northward again, reaching North Ave. beach at 5:00 am on October 17th.  

 

Interestingly, the highest normalized particle concentration from the CRCW plume in 2017 was 

simulated at Margaret T. Burroughs beach on October 16th at 5:00 pm. Margaret T. Burroughs 

beach is the farthest of the four focal beaches from the CRCW outlet (~6 km distance as the crow 

flies), so it would not be expected that it would experience the highest normalized particle 

concentrations. However, Margaret T. Burroughs beach is the only beach facing the direction of 

the CRCW outlet. It is also the least sheltered of the four beaches as well, with just a small 

breakwater on its northern edge. Since Oak St. and North Ave. beaches both face away from the 

CRCW outlet and 12th St beach is embayed and facing the open water of the lake, it is possible 

that the plume from the CRCW outlet was inhibited in its ability to impact these three beaches. On 

the other hand, Margaret T. Burroughs beach may be easily affected by the plume because of its 

Figure 5-24: Combined breakthrough curves for the 2017 backflow event, showing timing of 

plume transport from the CRCW outlet to four nearby beaches 
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orientation and relative lack of embayment, potentially leading to normalized particle 

concentrations that were higher than at the other three beaches. Wind and currents may also play 

a role in these types of impacts; higher winds and/or stronger currents may drive plumes to beaches 

in certain locations relative to the outlets, like Margaret T. Burroughs beach. 

5.3.6. Overall Trends in Scale of Backflow Events  

 

The five backflow events simulated are very different, in terms of the volumes of stormwater 

released, which outlets released stormwater, duration of backflow events and currents driving 

plumes in the nearshore region, largely due to the action of wind. However, some trends may 

emerge from assessment of all five events together.  

Volume of water released during a backflow event can considerably impact the spatiotemporal 

scales of resulting plumes (Table 5-8). The 2008 backflow event was the largest of the five events, 

by both volume and backflow event duration. This event released over 1 million more cubic meters 

of stormwater than the second-largest event in 2013 and the release lasted roughly twice as long 

as the 2013 backflow event. Simulated plumes resulting from the events in 2008 and 2013 persisted 

longer in the nearshore region than those from the smaller events, moving along the shore for up 

to 24 days post-backflow event commencement. Spatially, the 2008 backflow event was the only 

event that produced large enough water volumes to make the resulting plumes to coalesce in the 

nearshore, combining to create a single, large plume impacting the entire Chicago shoreline. This 

single, combined plume yielded the largest plume area of influence simulated for all five events, 

at 291.10 km2. This footprint is nearly three times as large as the 2013 maximum plume footprint. 

Conversely, the 2010, 2011 and 2017 backflow events released the smallest volumes of water, and 

simulated plume spatiotemporal scales were the smallest in magnitude. As a result of these events, 

plumes persisted in the nearshore zone for only days after the events, with 2010, 2011 and 2017 
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plumes persisting for 5 – 408 hours (0.21 – 17.21 days), post-backflow event. Similarly, the 

maximum simulated plume areas of influence corresponding to these smaller backflow events are 

2.71 – 49.51% of those resulting from the larger events.  

Table 5-8: Comparison of backflow magnitude details for five modeled backflow events 

Backflow 

Event 

Duration of 

Backflow Event 

(hr) 

Volume of 

Water Released 

(m3) 

Maximum 

Simulated Plume 

Surface 

Area/Footprint 

(km2) 

Time Until All 

Plumes 

Disperse (hr) 

2008 

Wilmette: 73 

CRCW: 50 

O’Brien: 68 

41,825,393.34 291.10 575 

2010 
Wilmette: 18 

CRCW: 17 
24,737,287.47 7.88 5 

2011 
Wilmette: 11 

CRCW: 10 
8,405,506.87 22.74 192 

2013 

Wilmette: 23 

CRCW: 25 

O’Brien: 23 

40,577,721.62 96.53 586 

2017 
Wilmette: 20 

CRCW: 19 
10,395,497.84 69.76 393 

 

Spatial and temporal scales of plume impacts are largely proportional to the volumes of water 

released during backflow events. The 2010 backflow event provided an interesting deviation from 

this trend. Despite releasing a larger volume of stormwater to Lake Michigan than the events in 

2011 and 2017, the plumes associated with this event were short-lived in the nearshore zone and 

the maximum plume footprint was much smaller than those footprints calculated for the other four 

backflow events. In both 2011 and 2017, plumes’ particle concentrations remained ≥ 1% of the 

maximum concentrations at the river outlets for multiple days. The particle concentrations 

resulting from the 2011 event were diluted to below the 1% threshold in a matter of hours after the 

backflow event ended. Similarly, the 2010 backflow event yielded the smallest maximum plume 

footprint of the three smaller-volume backflow events. The maximum plume surface area of 7.88 
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km2 in 2010 was 8.85 times smaller than the maximum plume footprint from the 2017 backflow 

event and 2.89 times smaller than the maximum plume footprint from the 2011 event. These inter-

event patterns may be due to differing wind and current conditions in the nearshore zone between 

the events.  

During the 2010 storm, winds over Lake Michigan (at offshore buoy 45007) did not exceed 10 m 

s-1, while winds reached 11.7 m s-1 in 2011 and 13.3 m s-1 in 2017. Larger magnitude winds likely 

play a role in driving plume movement and may inhibit plume dispersion or settling of particles 

within the plumes. As a result, it is possible that the plumes associated with the 2010 event were 

not subject to the wind velocities that would keep the plumes in suspension, leading to relatively 

fast dispersion and small plume footprints (Kastner et al., 2018).  Wind direction may also play a 

role in the differences in modeled plumes between 2010, 2011 and 2017, as has been previously 

documented in other water bodies (Choi and Wilkin, 2007; Kastner et al., 2018; Otero et al., 2008). 

During the 2010 storm event, wind direction at the lake ranged from southerly to west-

northwesterly. In 2011, wind directions during the backflow event were largely easterly to 

southeasterly turning westerly at the end of the backflow release period. Similarly, winds during 

the 2017 backflow release were easterly to southerly until the final three hours of the backflow, 

during which winds turned southwesterly. Winds during the 2010 backflow event may have the 

plumes out to open water rapidly upon release at the outlets. This would lead to smaller maximum 

plume footprint and a shorter temporal scale of nearshore effects in 2010, compared to 2011 and 

2017. Additional research to further solidify a connection between wind speed and direction and 

plume persistence in the nearshore zone may be beneficial.  

Due to inherent connections to wind, plume dynamics are also likely driven by currents in the 

nearshore zone. Immediately upon release to the lake, many plumes expanded outward, toward the 
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open water of the basin. However, over the scale of hours after their release, the plumes quickly 

became influenced by currents and circulation patterns near the shore (Beletsky and Schwab, 2001; 

Beletsky et al, 2006), driving their movement along the shore rather than normal to shore. 

Similarly, the cycles of plume movement direction seen in simulations of plumes for 2008, 2013 

and (to a lesser degree) 2017 backflow events correspond closely with cycles of current movement 

direction in the nearshore zone (see Supplemental Files SF-6 – SF-10 for animation of the plumes 

and currents over time). Nearshore currents tend to shift direction on a two- to three-day cycle, 

potentially driving the cycles of modeled plume movement after backflow events.   

Beaches near the river outlets in the Chicago area can be heavily impacted by backflow-induced 

plumes. Simulated particles reached all 12 beaches that are routinely sampled post-backflow to 

guide beach reopening after the 2008 and 2013 backflow events, while particles were transported 

to 10 out of the 12 beaches after the 2010, 2011 and 2017 events. Rainbow and Calumet beaches 

were not impacted by simulated particles after the 2010, 2011 and 2017 events because of the lack 

of stormwater release from the O’Brien outlet during these events.  

In many cases, the highest magnitude of normalized particle concentrations among beaches near 

outlets was simulated at the first beaches to be impacted by the plumes. This is reasonable 

considering that the particles within the plumes were subject to constant dispersion. Over time, 

more particles could be expected to disperse, leading to smaller concentration magnitudes as the 

plumes moved from beach to beach along the shore. Similarly, the first beaches to be impacted by 

the plumes were frequently the closest to the river outlets. Dispersion was further limited by the 

small relative distances that the plumes traveled to reach those initial beaches, leading to higher 

normalized particle concentrations than those seen at beaches farther from the outlets.  
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Overall, beaches nearer to the river outlets were more likely to be impacted by plumes than those 

beaches farther away from the outlets. In some cases, beaches between river outlets were impacted 

by two different plumes at different times. For example, beaches between Wilmette and CRCW 

outlets such as Dempster St., Leone/Loyola (42.010°N, 87.659°W) and Montrose (41.967°N, 

87.638°W) beaches were likely impacted by both the Wilmette and CRCW plumes after the 2008 

and 2013 backflow events. Similarly, beaches between CRCW and O’Brien outlets such as 12th 

St., Margaret T. Burroughs, 57th St. or 63rd St. beach (41.783°N, 87.573°W) were likely impacted 

by particles from both the CRCW and O’Brien plumes in 2008 and 2013, especially after the 

plumes coalesced. 

5.3.7. Implications for Beach Management 

 

Without in situ monitoring data at beaches, tracking plume effects in real-time can be challenging 

for stormwater and beach managers in areas like Chicago. However, the results of these models 

indicate that there may be correlations between the duration of backflow events, the volume of 

water released at Wilmette and CRCW outlets, and the maximum footprints and time scales of the 

plumes in the nearshore. These correlations may be valuable in empowering stormwater and beach 

managers to predict the extent of plume effects along the shore. With knowledge of the total 

volume of water released from the outlets as well as the duration of the backflow events, managers 

may be able to calculate an expected plume footprint and duration of plume effects in the 

nearshore. Multiple regression analyses were conducted using the data in Table 5-8, to determine 

empirical relationships that could predict the spatiotemporal scales of the plumes during and 

immediately after backflow events.  

Multiple regression analysis for the prediction of the maximum plume area of influence associated 

with backflow events indicates that the duration of stormwater release at the Wilmette outlet (hr) 
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(rho = 0.98, p = 0.0036) and CRCW outlet (hr) (rho = 0.98, p = 0.0042) are highly correlated with 

the resulting maximum plume footprint. Volume of water released from the Wilmette outlet (m3) 

was also significantly correlated with maximum plume footprint (rho = 0.93, p = 0.022). Despite 

these significant correlations, AIC analysis determined that only one of the above factors is needed 

to maximize the prediction of maximum plume footprint (footprint, km2): duration of stormwater 

release at the Wilmette outlet (DurationW) (Eq. 5-1, AIC = 34.33). This regression equation 

captures 94.46% of the variability within the plume footprint data and is statistically significant (p 

= 0.0036) and the addition of other factors decreased the coefficient of determination value and 

increased the AIC value of the equation by 0.32 – 1.91.  

𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 4.44(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑊) − 30.30                                    (5-1) 

While Eq. 5-1 can be useful for predicting plume footprints for the 2008, 2010, 2011, 2013 and 

2017 storm events in Chicago, it is notable that the equation does not include a predictor variable 

for volume of water discharged, either combined or from individual outlets. Plume footprints are, 

inherently, related to the volume of stormwater entering the nearshore zone. Therefore, it can be 

informative to develop a predictive model for plume footprints associated with the recent storm 

events that includes a measure of the volume of water released during the storm. A regression 

model that predicts maximum plume footprint and includes a measure of stormwater volume was 

developed using the same input data as those used to develop Eq. 5-1. The resulting regression 

equation (Eq. 5-2) incorporates terms corresponding to the duration of the backflow event at the 

CRCW outlet (DurationC) as well as the total volume of stormwater released from CRCW and 

Wilmette outlets (VolumeT). This equation is able to capture 94.06% of the variability in plume 

footprint data between the storm events (p = 0.03) and yields a similar AIC score to Eq. 5-1, with 

AIC = 34.65.  
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𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 8.39(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐶) − 1.44 ∗ 10−6(𝑉𝑜𝑙𝑢𝑚𝑒𝑇) − 69.04                 (5-2) 

24-hour antecedent rainfall may be a useful predictor for plume footprints as well, especially in 

the absence of other backflow volume data.  Antecedent rainfall amounts have been established as 

potential predictors of beach water quality (e.g., Ackerman and Weisberg, 2003; Francy et al., 

2013; Ramirez and Gelsey, 2021) due to the impacts of rainfall runoff on plumes and 

contamination in the nearshore zone. Therefore, it stands to reason that antecedent rainfall may be 

a predictor of plume footprint in response to backflow events. Incorporating 24-hour antecedent 

rainfall recorded at Chicago O’Hare International Airport into a predictive multiple linear 

regression model for backflow plume footprints led to a marginal increase in predictive ability. 

Eq. 5-3 incorporates duration of the backflow event at CRCW (DurationC) and antecedent rainfall 

(AntePrec) and captures 95.6% of the variability in the plume footprint data (p = 0.02). The 

resulting AIC of 33.15 is similar, albeit marginally lower, than the AIC values corresponding to 

Eq. 5-1 and Eq. 5-2, indicating slightly higher predictive ability, compared to the other multiple 

linear regression models for predicting plume footprint. 

𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 6.67(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐶) − 16.94(𝐴𝑛𝑡𝑒𝑃𝑟𝑒𝑐) − 41.15                      (5-3) 

Maximum plume footprints predicted from Eq. 5-1 were larger than those simulated via the 

Lagrangian particle tracking model for storm events in 2011, 2013 and 2017, while they were 

smaller than the particle tracking model plumes in 2008 and 2010. Equations 5-2 and 5-3 both 

overpredicted maximum plume footprints for backflow events in 2010 and 2017, while 

underpredicting footprints for events in 2008, 2011 and 2013. Errors between the regression 

equation-derived plume footprints and the particle tracking model plume footprints ranged from 

2.81 km2 in 2008 to 37.3 km2 in 2010. The largest errors between the particle tracking model-

derived maximum footprints and those calculated from multiple regression equations correspond 
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to the 2010 backflow event and could be associated with the same relatively unique wind 

conditions in 2010 that contributed to the small overall footprint. It is possible that the wind 

conditions that may have driven the plumes out to the open water rapidly were truly unique to the 

2010 event, in comparison to the other 4 storm events, which would lead to the lower predictive 

capacity of the equations for the 2010 backflow event. 

Using the same backflow duration and volume data, multiple regression analysis suggests that the 

backflow duration at the Wilmette outlet can be combined with the backflow duration and volume 

at the CRCW outlet (DurationC, hr and VolumeC, m3, respectively) to predict the temporal scale 

of plume effects along the Chicago shoreline after heavy storm events (TimeScale, hr) (AIC = 

49.57, Eq. 5-4). Resulting curve-fitting from the analysis shows that the prediction of the duration 

of plume effects in the nearshore is less reliable than prediction of plume areas of influence in 

response to backflow events (Eq. 5-1, 5-2, 5-3). The optimal multiple regression relationship (Eq. 

5-4) is not statistically significant at the 0.05 level (p = 0.36). Nonetheless, the relationship between 

maximum plume footprint and duration of plume effects captures 67.64% of the variability in the 

data. 

𝑇𝑖𝑚𝑒𝑆𝑐𝑎𝑙𝑒 = −50.52(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑊) + 99.91(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐶) − 2.93 ∗ 10−5(𝑉𝑜𝑙𝑢𝑚𝑒𝐶) 

−  136.50                                                                  (5-4) 

In the case of the backflow plume duration data, adding antecedent rainfall data as a predictor did 

not increase predictive ability of the multiple linear regression model. In fact, the addition of 24-

hour antecedent rainfall as a predictor led to an R2 value of 0.23, indicating that the regression 

model including antecedent rainfall captures less than half of the variability in the data that Eq. 5-

4 captures. Further, the regression model that includes antecedent rainfall is less statistically 
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significant than Eq. 5-4 (p = 0.54) and the corresponding AIC value is 53.90, higher than that 

corresponding to Eq. 5-4. Therefore, inclusion of antecedent rainfall in a multiple regression model 

for predicting plume duration in the nearshore is not advisable. 

The relatively large magnitude of the intercept terms in these relationships, along with the 

associated AIC, R2 and p values indicate that the strength of the correlations between variables 

could be stronger. This may be due to low degrees of freedom in the analyses since the 

relationships are based on only 5 data points. In spite of the low degrees of freedom used, these 

equations can still capture a substantial amount of variability in the data across the very different 

backflow conditions. Thus, the empirical relationships based on mechanistic model results hold 

promise for prediction of storm-induced river plume effects in the nearshore zone of Chicago. 

Beach and stormwater managers in the Chicago area can use these relationships, along with 

stormwater release volume and duration data collected during backflow events, to gain insight into 

the spatiotemporal scales of the plumes. This knowledge may allow for improved prediction of 

plume impacts on beach water quality, leading to more targeted beach management in the face of 

the heavy storm events that are predicted to become more intense and frequent with climate change 

(IPCC, 2014).   
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5.4. Conclusions 

Heavy storm-induced river plumes released to Lake Michigan were simulated for five backflow 

events between 2008 and 2017, to characterize the spatiotemporal scales of such plumes and lend 

insight into how the plumes impact beaches and the nearshore environment. Resulting simulations 

indicated that the storm-induced river plumes can affect the nearshore region for days to weeks, 

post-backflow event. Likewise, plumes can move along the nearshore at large scales, with plume 

maximum areas of influence in the lake between 7.88 km2 and 291.10 km2.  

Results support the idea that plume spatiotemporal scales are generally proportional to the 

magnitude of the backflow events themselves, though other environmental factors such as wind 

direction, speed and fetch have been shown to play a role in plume dynamics (Bravo et al, 2017; 

Choi and Wilkin, 2007; Kastner et al., 2018; Otero et al., 2008). Events in 2010, 2011 and 2017 

were all significantly smaller than events in 2008 and 2013, in terms of volume of water released 

(USACE, 2014). As a result, their simulated spatial and temporal scales were smaller in magnitude 

than those from 2008 and 2013.   

Beaches along the shore are frequently at risk from contamination in water in the nearshore zone. 

This is especially concerning in backflow situations, where plumes can transport a variety of 

contaminants to coastal areas from urban, industrial and agricultural environments in the watershed 

(Dwight et al., 2002; McCarthy et al., 2012; Packett et al., 2009; Paule-Mercado et al., 2016; 

Topalcengiz et al., 2017; Walters et al., 2011). However, the impacts of such backflow events on 

nearshore environments remains poorly understood due to a lack of observational data associated 

with the often physically-dangerous events. In the absence of observational data for these backflow 

events, model simulations can provide some initial insight into the spatiotemporal scales and 

dynamics of storm-associated plumes (Nekouee et al., 2015, Wilkinson et al., 2011). Well-
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calibrated models of plume dynamics in the nearshore may be a useful alternative to in situ data 

collection in the context of understanding the effects of backflow-associated river plumes and 

predicting the impacts of future backflow events. Results may also be valuable for effective beach 

management in the context of increased frequency and intensity of storm events, as predicted under 

climate change scenarios (IPCC, 2014). Empirical relationships using backflow volume and 

duration at Wilmette and CRCW outlets as predictors of maximum plume area of influence and 

temporal scale of influence can help beach managers target monitoring and management efforts 

along the shore.  

The collection of additional in situ or remotely-sensed observational data will be beneficial for 

increasing our understanding of plume dynamics in the nearshore as well as refining models. 

However, the models presented herein are effective starting points in characterizing the plume 

dynamics and resulting impacts on the nearshore region of southern Lake Michigan. Results of our 

model simulations largely support the current management approach of the Chicago Park District 

and Metropolitan Water Reclamation District, which involves closing all beaches along the shore 

until the 12 representative beaches indicate acceptable water quality for recreation (MWRD, 2019; 

USACE, 2014). During and after backflow events, plumes can extend for kilometers along the 

shore, impacting numerous beaches simultaneously and potentially warranting beach closures or 

swimming advisories. While smaller events like those in 2010, 2011 and 2017 yield plumes that 

often do not impact all beaches along the shore at once, resulting plumes do frequently move along 

the shore, potentially transporting contaminants to beaches over time as they disperse into the 

water. Therefore, maintaining the current, conservative approach to beach closure during and after 

backflow events is recommended for effective beach management for public health. As is the case 

with many other spatiotemporally-variable influences on the nearshore, a single beach 
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management approach for all backflow events may be ineffective. Adaptive management of 

beaches during and after heavy storms and backflow events may be more useful; using data-driven 

statistical and numerical models to nowcast the impacts of plumes at beaches can help to determine 

when and where beaches along the shore should be closed. This can help to balance preserving the 

safety of beaches for visitors via advisories or closures with maintaining the economic value of 

opening beaches when they are presumed safe, even if other nearby beaches are not. 
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6. Simulating Storm-Associated River Plumes in Southern Lake Michigan: Modeling Fate 

and Transport of Fecal Indicator Organisms in Plumes 

 

6.1. Introduction  

Extreme storm events can have substantial impacts on both the natural and built environments. 

Hurricanes and cyclones can devastate cities, thunderstorms can cut power to homes and tornadoes 

can destroy infrastructure on large scales (Bouwer, 2019; Marshall, 2002; Padgett et al., 2008; 

Pistrika and Jonkman, 2010). The effects of these storms can already be overwhelmingly 

damaging, as seen in the destruction of much of New Orleans, Louisiana as a result of 2005’s 

Hurricane Katrina (Pistrika and Jonkman, 2010). However, both the frequency and intensity of 

these types of extreme storms are predicted to further increase in response to climate change 

(IPCC, 2014). As a result, even more damage to both the built and natural environments can be 

expected due to extreme storm events in the future, potentially posing social and economic threats 

as well (Gasper et al., 2011). It is imperative that planning for and management of such 

environments account for these predicted effects, so that infrastructural and natural systems can 

be resilient to the predicted extreme storm events (Childers et al., 2015; Jabareen, 2013). 

Coastal areas are of particular interest in the context of extreme storm effects, due to their 

susceptibility to both terrestrial and aquatic storm impacts. In coastal areas, storm-related risks can 

involve physical risks from high waves, rip tides/currents or public health risks associated with 

water quality degradation (NOAA, 2020c). During and after storm events, water quality 

degradation in the coastal zone can be associated with combined sewer overflows (CSOs), 

resuspension of contaminants from sand or sediments and river inputs, including runoff from 

upstream in the watershed (Eregno et al., 2018; Federigi et al., 2019; USEPA, 2014b). It is assumed 

that river inputs to coastal zones significantly degrade recreational water quality during and after 
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heavy storm events; this assumption has guided coastal and beach management in areas like 

southern Lake Michigan. Along the southwestern shore of Lake Michigan, the Chicago Park 

District (CPD) closes all 24 of the beaches in its jurisdiction in conjunction with extreme storms, 

assuming that the water quality and physical risks at the beaches exceed thresholds for safe 

recreation (MWRD, 2019). While this cautious approach to coastal management may be preferable 

to a less conservative approach for recreation in the face of extreme storms, it is based on a lack 

of understanding of the dynamics of storm-induced sources of contamination.  

There is relatively little knowledge of the dynamics of storm-associated river plumes in the 

nearshore zone of lakes and oceans, and in turn, their impacts on public health at recreational 

beaches. Observational data regarding plume footprints/areas of influence and dynamics in the 

nearshore are scarce, due to concerns about safety of data collection during and after storm events 

(MWRD, 2019). While researchers have found that agricultural, industrial and urban contaminants 

can be released to the nearshore via storm-associated river plumes (Dwight et al., 2002; Masoner 

et al., 2019; Walters et al., 2011), knowledge of what happens to those contaminants upon release 

remains elusive. Water quality sampling is largely impossible during and immediately after heavy 

storm events, due to the need for sampling to be conducted in the water during dangerous wind 

and wave conditions (MWRD, 2019; USEPA, 2010). Remotely-sensed data for storm-induced 

plume dynamics can also be limited, though. Satellite imagery, for example, is often obstructed by 

cloud cover during storm events (Song et al., 2004). Some unobstructed satellite imagery can be 

useful for characterizing plumes generally, but this imagery does not indicate specific 

contaminants within the plumes without additional post-processing of the data. Other remotely-

sensed data such as suspended minerals or dissolved organic carbon content (GLOS et al., 2020; 
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NOAA, 2020b) are valuable for offshore analysis of water quality contamination, but frequently 

lack the spatial resolution required for use in the nearshore context.  

Potential public health concerns at beaches warrant an expansion of knowledge of storm-induced 

river plume dynamics and impacts in the nearshore coastal zone. Additional insights into how 

plumes transport contaminants such as fecal indicator organisms like E. coli will be integral to the 

refinement of effective beach management practices in the face of increasingly frequent and 

intense storms. This is especially true in a region like southwestern Lake Michigan, where extreme 

storms create very different conditions for the nearshore zone, compared to non-storm conditions. 

Along the shoreline of Chicago, the North Shore Channel, Chicago River and Calumet River only 

release water to Lake Michigan during extreme storm events, in phenomena known as backflow 

events (MWRD, 2019; USACE, 2014). Under typical flow conditions, the three rivers flow away 

from Lake Michigan and toward the Mississippi River, so they have minimal impacts on nearshore 

areas in the lake (ASCE, 2020; Hansen, 2009). However, during extreme storm events that threaten 

flooding in the city, Chicago’s Metropolitan Water Reclamation District (MWRD) can release 

stormwater back to Lake Michigan via the Wilmette Pumping Station, Chicago River Controlling 

Works (CRCW) and/or O’Brien Lock and Dam (City of Chicago, 2014; MWRD, 2019). During 

these events, stormwater plumes and their inherent contaminants are released to a nearshore zone 

that is typically not impacted by river releases in any form, so backflow events may be expected 

to create highly degraded water quality at recreational beaches.    

Since in situ data collection during and immediately after extreme storms is inadvisable, numerical 

modeling of storm-induced river plumes and their impacts on recreational water quality may be 

useful to fill the existing knowledge gap. There has been some study of plume modeling in 

nearshore environments (Huang et al., 2019; Jameel et al., 2018; McCorquodale et al., 2004; 
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Nekouee et al., 2015a), but much of this work has been limited to characterizing general plume 

dynamics. Existing models have been shown to effectively track plumes in the water column, but 

often lack a connection back to public health and recreational water quality. A single model that 

did track fecal indicator organisms (FIO) in plumes (McCorquodale et al., 2004) utilized an 

Eulerian water quality model, which has been determined to inadequately simulate plumes in the 

nearshore in comparison to a Lagrangian model (see Chapter 4 and Nekouee et al., 2015). 

Additionally, this model tracked coliforms in stormwater plumes; coliforms represent a broad 

category of FIO that is now rarely used for recreational water quality monitoring (McCorquodale 

et al., 2004). The development and refinement of a coupled numerical hydrodynamic and 

Lagrangian particle tracking model to simulate storm-induced river plumes and their impacts on 

recreational beaches can aid in the understanding of how and when extreme storms impact beaches 

and public health.  

In this work, a coupled hydrodynamic and Lagrangian particle tracking model (see Chapter 5) was 

expanded to simulate microbial fate and transport in storm-induced river plumes released to 

southwestern Lake Michigan during extreme storm events. E. coli concentrations at three river 

outlets near Chicago were estimated using a discharge-concentration relationship previously 

developed for southern Lake Michigan (Safaie et al., 2016b). These concentrations were used to 

initialize particles released from each river outlet during the backflow periods, yielding proxy 

values for E. coli concentrations which served as the boundary conditions for the Lagrangian E. 

coli fate and transport model. Estimated river mouth E. coli concentrations used as boundary 

conditions to the nearshore transport model were then subjected to components of a typical 

microbial decay function (see Chapter 2) to simulate decay and compute estimated E. coli 

concentrations in the plumes over time. Model results will not only indicate plume dynamics in 
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the nearshore environment of southwestern Lake Michigan but will also draw connections between 

plume dynamics and the fate and transport of contaminants within the plumes. Estimated E. coli 

concentrations at nearby beaches over time will lend insight into the spatiotemporal dynamics of 

microbial contamination in storm-induced river plumes. This would be valuable to beach managers 

in terms of allowing for more targeted management of beaches that can protect public health while 

permitting recreation when and where water is expected to be reasonably safe.            

6.2. Methods 

6.2.1. Study Area and Temporal Context 

Storm-induced river plumes were simulated and tracked within the southwestern basin of Lake 

Michigan. Along the southwestern shore of the lake, the Chicago Park District (CPD) manages 24 

recreational beaches, along 41.84 km of lakefront (Figure 6-1). All 24 of these beaches are situated 

between the Wilmette Pumping Station to the north and the O’Brien Lock and Dam to the south. 

The Chicago River outlet at the Chicago River Controlling Works (CRCW) is located in the city 

center, roughly halfway between the Wilmette and O’Brien outlets. Because of their relative 

proximities to multiple river outlets, all 24 of these beaches may be susceptible to contamination 

from stormwater releases during and after extreme storm events. E. coli concentrations were 

modeled for all 24 CPD recreational beaches. 
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Extreme storm events that result in backflows are relatively rare in Chicago, occurring an average 

of once per year between 1985 and 2017. Conditions within the city, downstream flood conditions, 

storm duration, magnitude of rainfall and capacity of stormwater distribution system infrastructure 

all determine whether a given storm will demand a backflow event (Duncker and Johnson, 2016). 

Therefore, there is no specific return period or rainfall volume threshold for necessitating release 

of stormwater to Lake Michigan. Since 1985, storms with return periods of two months to 100 

years and durations of 24 to 74 hours have caused backflow events in Chicago (NOAA and NWS 

2020). 

Figure 6-1: Locations of the 24 beaches managed by the Chicago Park District and two of the 

three river outlets, along the southwestern shore of Lake Michigan.  

Imagery source: Google Earth 
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The two largest backflow events that occurred during the swimming season since 2000 were 

chosen for modeling of plumes and effects on recreational water quality at CPD beaches. These 

events are associated with storms in July of 2010 and July of 2011. The storm in 2010 constituted 

a 25-year, 72-hour storm event, while the 2011 storm was a 100-year, 24-hour event (NOAA and 

NWS, 2020). Volumes of stormwater released during these events ranged from 8,405,506.87 m3 

in 2011 to 24,737,287.48 m3 in 2010 (Table 5-1) and the duration of stormwater release ranged 

from 10 hours at CRCW in 2011 to 17 hours at both CRCW and Wilmette Pumping Station in 

2010 (Table 5-2). Neither of these backflow events involved stormwater release from the O’Brien 

Lock and Dam outlet. However, the events that did involve releases from all three outlets did not 

take place during the recreational swimming season and thus it is impossible to validate model 

results against in situ E. coli monitoring data for them. As a result, other backflow events that 

incorporated stormwater release from all three outlets are beyond the scope of this work. 

Base hydrodynamic models for Lake Michigan were developed for the years of each backflow 

event, beginning on January 1st of 2010 and 2011. These models allowed for adequate model 

calibration and spin-up time, leading to maximally reliable simulations of hydrodynamics in the 

lake during the backflow events. To model the plumes themselves, hydrodynamic and Lagrangian 

particle tracking models were coupled and run beginning at 12:00 am on the days that the backflow 

events began at the river outlets. Models associated with the 2010 and 2011 backflow events 

simulated for 15 and 16 days, respectively, assuming that the plumes would dissipate into the lake 

after roughly two weeks (Table 6-1).  
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Table 6-1: Timing of model simulation periods associated with  

each of five backflow events, 2000 - 2017 

Backflow Year 

Start of 

Hydrodynamic 

Model 

Start of Particle 

Tracking Model 

End of 

hydrodynamic and 

Particle Tracking 

Models 

2010 January 1, 2010 July 24, 2010 August 8, 2008 

2011 January 1, 2011 July 23, 2011 August 8, 2011 

  

6.2.2. Coupled Hydrodynamic and Lagrangian Particle Tracking Model 

A modeling framework that couples a whole-lake hydrodynamic model for Lake Michigan with a 

near-field Lagrangian particle tracking model for the Chicago shoreline was used to track river 

plumes and E. coli in response to backflows from extreme storm events. These models were 

developed and run within the larger Finite Volume Community Ocean Model (FVCOM). This 

unstructured-grid, finite-volume, fully-three-dimensional model takes hydrometeorological and 

bathymetric data as input. The model then uses primitive equations for calculation of momentum, 

continuity, temperature, salinity and density across mesh elements and nodes within the model 

spatiotemporal domain. Additional details regarding the modeling framework and primitive 

equations can be found in Chapter 2.  

Hydrodynamics within the lake were modeled using the optimal turbulent Prandtl number (Prt) 

combination determined from Chapter 3, with a horizontal turbulent Prandtl number (Prt,H) of 0.14 

and a vertical turbulent Prandtl number (Prt,V) of 0.1. As discussed in Chapter 3, for modeling 

frameworks that focus on fate and transport of a contaminant such as E. coli, the turbulent Schmidt 

number Sct replaces the turbulent Prandtl number. The turbulent Schmidt number and turbulent 

Prandtl number are defined similarly as the ratio of eddy viscosity to eddy diffusivity in the context 

of heat (turbulent Prandtl number) and solute transport (turbulent Schmidt number) (Donzis et al., 
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2014; Graf and Cellino, 2002; Gualtieri et al., 2017; Rauen et al., 2012). Thus, within the FVCOM 

framework the turbulent Schmidt number is assumed to be equal to the turbulent Prandtl number, 

with diffusion coefficient of solute transport equal to that of thermal diffusion (Chen et al., 2006).    

Simulation of the storm-associated river plumes was conducted via a Lagrangian particle tracking 

model developed for FVCOM. Following the recommendations from Chapter 4, the Lagrangian 

particle tracking model was determined to be the optimal approach for re-creating plumes within 

the nearshore, compared to Eulerian modeling frameworks. This approach took the results of the 

hydrodynamic model and combined them with initial positions of discrete particles at the river 

outlets to track the particles’ positions over time, given contemporaneous hydrodynamics. It also 

uses the Lagrangian formulation to calculate particle dispersion in the water column, as opposed 

to using the Eulerian formulation to calculate tracer concentration dispersion (see Chapter 4 for 

additional details). This leads to simulation of tighter plumes than the Eulerian formulation, and 

these condensed plumes have been shown to better represent available plume observations than 

those generated by the Eulerian formulation that tend to exhibit numerical dispersion artifacts. The 

results of this coupled hydrodynamic and Lagrangrian particle tracking model are temporally-

variable individual particle locations as well as particle concentrations calculated for each node in 

the model domain. Particle concentrations can then be related to E. coli concentrations at any 

location within the model, allowing for evaluation of water quality at all of the beaches over time.  

6.2.3. Boundary Conditions and FIO Estimation at River Outlets 

Simulation of plumes in the models relied upon the use of river discharge (Q) at the river outlets. 

These discharge boundary conditions were incorporated into the hydrodynamics model, via the 

use of the rivers module within FVCOM. Hourly averaged discharge data from Chicago’s 

Metropolitan Water Reclamation District (MWRD) were input as part of river initialization files 
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for the models (see Appendices B-2 and B-3 for data). The discharge was assumed to be uniform 

over the depth of the water at the locations of the Wilmette Pumping Station, CRCW and O’Brien 

Lock and Dam infrastructure and was only variable over time and between outlets. When the river 

outlets were not actively releasing stormwater during a backflow event, Q at the outlets was 

assumed to be zero.  

Setting up the model to simulate E. coli in storm-induced river plumes involved releasing particles 

at each of the river outlets for the duration of each backflow event. The number of particles released 

at each outlet and at any timestep was estimated from the discharge (Q) at the outlet, because 

contaminant concentrations have been shown to be related to discharge in southern Lake Michigan 

(Safaie et al., 2016b). This procedure was necessary because the model used small time steps but 

high-resolution E. coli observations at the river outlets matching the model’s temporal resolution 

were not available. Following Safaie et al. (2016), cumulative distribution functions (CDFs) were 

fitted for logistic distributions of Q data at the river outlets. Fitted distributions yielded parameters 

μ and s to denote the mean and a scale factor for the data, respectively. A similar cumulative log-

logistic distribution function was created for E. coli data collected at Burns Ditch river outlet in 

southern Lake Michigan. New CDFs were developed for discharge at each outlet and during each 

backflow event, resulting in eight different CDFs for Q. Comparison of the CDFs for the Q and E. 

coli concentration data formed the basis for the assumption that E. coli concentrations at the river 

outlets could be estimated from the Q data (Figure 6-2). CDFs for the z-scores of both Q and E. 

coli concentration match well, indicating that they are related and that the estimation of E. coli 

concentrations at the three Chicago River outlets is likely valid. Similar relations between 

discharge and E. coli concentrations at river outlets were used to drive numerical models in 

previous work (Bravo et al., 2017)  
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Using the established relationship between discharge Q and E. coli concentration, hourly input 

concentration values to the backflow models ranged from 1.79 to 3.00 log10(MPN 100 ml-1). 

However, there is a difference between the number of particles released at a river outlet during a 

Lagrangian particle tracking model and the concentration of E. coli at the outlets. In many cases, 

assuming that one particle is equal to one MPN 100 ml-1 leads to underprediction of observed 

concentrations as a sufficient number of particles are needed to adequately resolve the E. coli 

dynamics. While multiplying input hourly E. coli concentrations by large numbers was not feasible 

due to limitations on computing power, based on the results of a sensitivity analysis concentrations 

multiplied by 102 were used as the numbers of particles released each hour at the outlets.  

Due to the differences between particle concentrations and estimated E. coli concentrations in the 

water, estimated E. coli concentrations at the outlets ranged from 1.79 to 3.00 log10(MPN 100 ml-

Figure 6-2: Comparison of CDF results for discharge Q and log10(E. coli concentration) at 

the Wilmette outlet in 2010 
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1), but the number of particles released at the outlets ranged from 6100 to 99700 per hour (Table 

6-2). This allowed for a balance between characterizing the spatiotemporal differences in 

concentration at the outlets during and after the backflow events and minimizing the computational 

demand for the models. 

Table 6-2: Range of estimated E. coli concentrations from Q – concentration relationships and 

resulting ranges of particle numbers released per hour during backflow events 

Backflow Event 

Minimum 

Estimated  

E. coli 

Concentration 

(log10(MPN 100 

ml-1)) 

Maximum 

Estimated  

E. coli 

Concentration 

(log10(MPN 100 

ml-1)) 

Minimum 

Number of 

Particles 

Released 

Maximum 

Number of 

Particles 

Released 

2010 1.79 2.95 6100 90000 

2011 1.88 3.00 7600 99700 

 

6.2.4. Modeling FIO Fate and Transport 

Within a typical Lagrangian particle tracking model, particles are simulated within the water 

column as conservative tracers. The model uses hydrodynamics to simulate how and where each 

discrete particle moves over time, resulting in new particle positions at every hourly timestep. 

After determining new particle positions for every timestep, the model is then able to use an inverse 

distance weighting scheme, along with the particle positions and node positions from the model 

mesh, to calculate particle concentrations corresponding to each node in the model domain (Rowe 

et al. 2016). These calculations of the particle concentration over the model domain only account 

for advection and dispersion, though. Adjustments to the particle tracking model code are required 

to incorporate reactions and decay, thus fully characterizing microbial fate and transport.    
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A microbial decay function modeled after that from Safaie et al. (2016) was incorporated into the 

concentration calculation within the Lagrangian particle tracking model code. This decay function 

(S) included terms for dark mortality (kd), solar inactivation and settling (Eq. 6-1).  

𝑆 = − [
𝑓𝑝𝑣𝑠𝐶

𝑧
+ 𝑘𝐼𝐼𝑡𝑒

−𝑘𝑒𝑧𝐶 + 𝑘𝑑𝐶] 𝜃𝑇−20                                     (6-1) 

In this function, fp is the fraction of microbes attached to solids that may settle out of the water 

column (unitless), vs is the settling velocity of the solids settling out the water column (m d-1), and 

z is the depth coordinate of the solids settling out of the water column (m). These parameters 

characterize the effects of settling on the microbial concentration in the water. In the second term, 

kI denotes the microbial solar inactivation rate (m2 W-1 d-1), It is solar irradiance at the water surface 

at time t (W m-2) and ke is the solar radiation extinction rate with depth in the water column (m-1). 

Together, these parameters signify the effects of solar inactivation on aquatic microbes. The final 

term signifies base mortality in the water, with kd representing the dark decay rate of a microbial 

contaminant (d-1). 𝜃 is a temperature correction factor (unitless), dependent on water temperature 

T (°C) and C is the microbial concentration (MPN 100 ml-1).  

The parameters in these terms can be locally specific and can vary between microbial taxa. For E. 

coli in southern Lake Michigan, parameter values used in the microbial decay function are 

represented by Eq. 6-2 – 6-7 (Safaie et al., 2016b). 

𝑓𝑝 = 0.05                                                                    (6-2) 

𝑣𝑠 = 1                                                                       (6-3) 

𝑘𝐼 = 0.003                                                                  (6-4) 

𝑘𝑒 = 0.55                                                                   (6-5) 

𝑘𝑑 = 0.777                                                                  (6-6) 
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𝜃 = 1.07                                                                    (6-7) 

These values were directly input into the microbial decay function and incorporated into the 

particle concentration calculation within the Lagrangian particle tracking model (Eq. 6-8). In this 

way, the model could simulate the fate and transport of E. coli in southern Lake Michigan during 

and after the backflow events, using fate and transport of non-conservative particles as proxies. 

For each time step ∆𝑡 (hr) the following equation was used to update concentration values: 

𝐶 = 𝐶𝑎𝑑 − ∆𝑡 [
0.05∗1∗𝐶𝑎𝑑

𝑧
+ 0.003 ∗ 𝐼𝑡 ∗ 𝑒−0.55∗𝑧 ∗ 𝐶𝑎𝑑 + 0.777 ∗ 𝐶𝑎𝑑] 1.07𝑇−20          (6-8) 

where the concentration Cad on the right-hand side of Eq. 6-8 includes the effects of horizontal 

and vertical mixing processes (advection and dispersion) and C includes the effects of advection, 

dispersion and decay. 

6.2.5. Characterizing FIO at Beaches 

Calculated particle concentrations from the output of the Lagrangian particle tracking models were 

post-processed to obtain estimates of E. coli concentrations in plumes in the nearshore during and 

after backflow events. Spatiotemporally-variable particle concentrations at each beach were 

multiplied by 106. This accounts for a unit conversion between the MPN 100 ml-1 units in final E. 

coli concentrations at the beaches and the particles m-3 units from the particle tracking model 

results. It also accounts for the multiplication of the estimated E. coli concentrations by 102 to 

ensure adequate particle numbers for the model simulation process.    

These calculated concentrations corresponded to the simulated concentrations from the model, 

given the discharge to concentration relationship, microbial decay function and particle tracking 

model approach. Isolating the concentrations at locations specific to the 24 Chicago beaches 

allowed for analysis of the spatiotemporal scales of contaminants in the storm-induced plumes. 
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Breakthrough curves showed not only maximum expected concentrations of E. coli at the beaches, 

but also how long the elevated concentrations may be expected to persist along the shore.    

6.2.6. Validation of Modeled E. coli Concentrations for 2010 and 2011 Backflow Events 

 

Backflow events in 2010 and 2011 occurred in July of their respective years, so beach water quality 

monitoring data were available from the Illinois BeachGuard website (IDPH, 2018). These data 

were extracted for available beaches (Table 6-3) and used to validate the modeled E. coli 

concentrations at the beaches. In both 2010 and 2011, the O’Brien outlet did not release 

stormwater, so modeled E. coli concentrations at Calumet beach were zero through the entire 

modeling period. Therefore, observations at Calumet beach were not used for validation. Similarly, 

in 2010, Rainbow and South Shore beaches were also not impacted by modeled E. coli from river 

plumes, so they were not included in the validation process for that year’s model. 

Table 6-3: CPD Beaches analyzed for validation of E. coli particle tracking models 

corresponding to 2010 and 2011 backflow events 

Beach Name 

Monitoring 

Data Used 

for 2010? 

Monitoring Data 

Used for 2011 

Validation? 

Rogers Park Yes Yes 

Howard Yes Yes 

Marion 

Mahony Griffin 
Yes Yes 

Leone Yes Yes 

Loyola No No 

Tobey Prinz No No 

Helen Doria No No 

North Shore No No 

Hartigan Yes Yes 

Lane No No 

Osterman Yes Yes 

Foster Yes Yes 

Montrose Yes Yes 

North Ave. Yes Yes 

Oak St. Yes Yes 

Ohio St. Yes Yes 
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Table 6-3 (cont’d) 

 

12th St. Yes Yes 

Margaret T. 

Burroughs 
Yes Yes 

Oakwood Yes Yes 

57th St. Yes Yes 

63rd St. Yes Yes 

South Shore No Yes 

Rainbow No Yes 

Calumet No No 

 

Monitoring data from the beaches were of daily temporal resolution and were collected between 

sunrise and 8:30 am. Due to the temporal range in possible sampling times, model results were 

compared to observations three times, once each assuming that sampling occurred at 6:00 am, 7:00 

am and 8:00 am. Because the samples could have been taken at any of these three times, the 

comparisons presented herein represent modeled data from the single timestep (6:00 am, 7:00 am 

or 8:00 am) that best match with the observational data. Similarly, in the absence of exact GPS 

coordinates of sampling locations along the beach faces, model results for all nodes along each 

beach face were compared to observational data and results from the single node at each beach 

that best represented observational data are presented herein.   

Log-transformed results from monitoring at the beaches were temporally aligned with log-

transformed simulated E. coli concentrations at model nodes corresponding to the beaches. Plots 

comparing the observed and modeled E. coli concentrations allowed for visual comparison of the 

data and qualitative analysis of whether the models captured the observed data. Quantitatively, the 

predictive ability of the models was assessed using R2 coefficient of determination, Root Mean 

Squared Error (RMSE), normalized Fourier Norm (Fn), Nash-Sutcliffe Efficiency (NSE), Percent 

Bias (PBIAS) and the RMSE-observations standard deviation ratio (RSR) (Eq. 3-21, 3-23 – 3-26). 
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Additional details regarding how these statistics are calculated and interpreted can be found in 

Chapter 3.2.4. Results of these analyses indicated the applicability of the particle tracking model 

and discharge Q – concentration relationship for simulating the effects of contaminants in storm-

induced river plumes in the southwestern Lake Michigan nearshore zone. 

6.2.7. Assessing E. coli Patterns at 24 Chicago Beaches 

Calculated E. coli concentrations from the validated coupled hydrodynamic and Lagrangian 

particle tracking model in the context of the two backflow events in 2010 and 2011 were used to 

develop time series E. coli concentration data and plots for analysis of spatiotemporal patterns. 

Resulting E. coli concentrations were compared to the 2.37 log10(MPN 100 ml-1) threshold for 

imposing a swimming advisory (USEPA, 2012), to determine when and at which beaches E. coli 

concentrations exceeded safe recreation levels. Spatiotemporal variability in the E. coli results 

were assessed to determine any temporal cycles or spatial trends in the E. coli at the beaches. 

To aid beach management organizations, statistical relationships between beach proximities to the 

river outlets, E. coli time of final exceedance during the model simulation period after the backflow 

event and average E. coli concentration at the beaches were developed. Beach proximity to the 

outlets was also statistically compared to the time that it took the E. coli particles to initially reach 

the corresponding beach. In this case, the timing of the initial elevation of modeled E. coli 

concentration above 0 MPN 100 ml-1 was noted as the variable time of initial E. coli increase for 

statistical analysis. Spearman correlations between these variables were evaluated, to determine 

which variables may be used to predict others. Multiple regression analysis was then performed to 

generate equations that can be used to estimate average E. coli concentration and time before E. 

coli levels begin to rise at beaches from beach proximity to outlets. All statistical models were 

developed in RStudio (RStudio, Boston, MA USA) with a significance threshold of α = 0.05.         
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6.3. Results and Discussion 

E. coli concentrations in storm-induced river plumes were simulated using a coupled FVCOM 

hydrodynamic and Lagrangian particle tracking model, equipped with a microbial decay function 

specific to E. coli in southern Lake Michigan, to track microbial contamination in the plumes. 

Model results were compared with observational E. coli enumeration data at Chicago beaches after 

the backflow events that produced the plumes in 2010 and 2011. Comparisons were used to assess 

the model’s predictive capacity and provide insight into recreational water quality in response to 

heavy storms. 

6.3.1. Validation Results for 2010 Backflow Model 

 

Modeled E. coli concentrations were truncated such that they ranged from one to 2420, following 

the range of concentrations detectable by the Colilert-QuantiTray method of enumeration of E. 

coli in samples (IDEXX Laboratories, Westbrook, ME). Plots comparing log-transformed 

concentrations observed at the beaches to the modeled concentrations in 2010 visually indicate 

that the model captures the observational data reasonably well, but the model’s predictive ability 

varies between the beaches. For example, the model seemed to simulate E. coli concentrations at 

North Ave., Oakwood and 57th St. beaches (Figure 6-3) more effectively than it did at Leone, 

Hartigan and Foster beaches (Figure 6-4). As seen in Figure 6-4, the model frequently overpredicts 

observed E. coli concentrations at beaches between the Wilmette and CRCW outlet, at times by 

orders of magnitude. This may be due, in part, to the model simulating the effects of two plumes 

on these beaches. The three beaches represented in Figure 6-4 are all between the CRCW and 

Wilmette outlets but are closer to the Wilmette outlet than CRCW. These beaches may be 

substantially impacted by both plumes, leading to higher modeled E. coli concentrations that 

encompass E. coli from both CRCW and Wilmette outlets. In contrast, North Avenue beach in 
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Figure 6-3 is just north of the CRCW outlet and Oakwood and 57th Street beaches are south of the 

CRCW outlet. These three beaches are not as likely to be impacted by plumes from both CRCW 

and Wilmette, so it is possible that the model better predicted E. coli at these locations because it 

was only predicting effects from one plume instead of the synergistic effects from both outlets.  

Other potential factors influencing the model predictive ability at specific beaches may include 

differences in beach morphology and resulting dynamics. Additional comparison plots for the 

remaining 10 beaches in July 2010 can be found in Appendices C-1 – C-10.  
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Figure 6-3: Plots comparing observed (red circles) and modeled (blue lines) log-transformed  

E. coli concentrations at North Ave. (A, top), Oakwood (B, center) and  

57th St. (C, bottom) beaches in July 2010 
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Figure 6-4: Plots comparing observed (red circles) and modeled (blue lines) log-transformed  

E. coli concentrations at Leone (A, top), Hartigan (B, center) and  

Foster (C, bottom) beaches in July 2010 
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Quantitative analysis of comparisons between modeled and observed E. coli concentrations during 

and after the 2010 backflow event suggest that the model may be capturing the observations at 

some beaches more reliably than the plots would suggest. At the same time, quantitative analysis 

also indicates that model predictive ability is highly variable between beaches. Across all 16 

beaches analyzed for the 2010 backflow event, R2 values for the model ranged from -0.33 at 

Marion Mahony Griffin beach to 0.75 at Oakwood beach (Table 6-4). The model yielded positive 

R2 values at 13 of 16 beaches (81.25%) but at Marion Mahony Griffin, Montrose and 63rd St. 

beaches, the model simulated E. coli concentration at a lower capacity than a constant E. coli 

concentration value over time would be expected to predict.  

Table 6-4: Summary of validation statistics for the July 2010 backflow  

E. coli concentration model, at individual beaches along the Chicago shoreline 

Beach Fn NSE PBIAS R2 RMSE RSR 

Marion Mahoney 

Griffin 
1.08 -4.53 -98.68 -0.33 1.99 2.35 

Montrose 0.87 -4.15 -61.23 -0.27 1.71 2.27 

63rd St. 0.88 -3.78 49.34 -0.13 1.58 2.19 

Leone 1.33 -4.70 -135.63 0.01 2.14 2.39 

Margaret T. 

Burroughs 
0.81 -9.57 34.59 0.03 1.86 3.25 

Hartigan 1.52 -9.68 -157.41 0.04 2.15 3.27 

Oak St. 0.61 -2.41 -31.41 0.05 1.15 1.85 

Rogers Park 1.38 -8.59 -141.31 0.15 2.08 3.10 

Howard 1.28 -8.55 -127.98 0.17 2.02 3.09 

12th St. 0.48 -2.87 -7.87 0.19 1.08 1.97 

Ohio St. 0.84 -15.94 -60.26 0.22 1.37 4.11 

57th St. 0.77 -10.47 61.36 0.29 1.68 3.39 

North Ave. 0.55 -0.86 3.69 0.34 0.76 1.36 

Kathy Osterman 0.74 -4.31 -70.65 0.46 1.46 2.30 

Foster 0.76 -6.30 -74.81 0.55 1.48 2.70 

Oakwood 0.69 -1.39 -10.61 0.75 1.07 1.55 

 

The poor predictive ability of the model at Montrose and 63rd St. beaches may be related to the 

different beach morphology and dynamics that these beaches are subject to. Both beaches are 
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embayed and sheltered (Grant and Sanders, 2010) by manmade breakwaters. These unique 

embayment conditions create interesting dynamics for solute transport at the beaches by sheltering 

the nearshore zones from the offshore currents. As a result, gyres have a tendency to form inside 

embayments like Montrose and 63rd St. beaches and force E. coli that are inside the embayments 

to stay inside there, often settling out of the water column and becoming available for future 

resuspension from sand and sediments (Ge et al., 2010; Ge et al. 2012b). In contrast, beaches such 

as Oakwood, Foster and Kathy Osterman are relatively un-embayed and do not have major 

breakwater infrastructure to artificially impact hydrodynamics along the shore. These un-embayed 

beaches also yielded the highest R2 values for the model. Resuspension dynamics like those often 

seen at embayed beaches (Ge et al., 2012a) were not incorporated in the model herein and thus 

provide an interesting opportunity for additional assessment of dynamics affecting plume-

associated E. coli in the nearshore zone. Beach morphology and embayment may play a role 

beyond just the poor predictive ability of the model at Montrose and 63rd St. beaches. The four 

beach locations for which the 2010 backflow model underpredicted E. coli concentrations (North 

Ave., Margaret T. Burroughs, 57th St. and 63rd St.) are all embayed or sheltered by breakwater 

infrastructure. As a result, it is possible that E. coli accumulate at these locations, leading to higher 

concentrations than those observed at less embayed or sheltered beaches and underprediction of 

E. coli by the model.   

In addition to beach morphology, an important factor to consider when evaluating differences in 

model predictive ability between beaches is native E. coli from local sources that are not related 

to the plumes. Beaches are subject to a number of sources of microbial contamination, and those 

sources can vary greatly between them. Sources such as humans, wildlife, runoff and 

stormwater/wastewater discharges can impact beaches differently, based on proximity, beach 
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usage and backshore land use, leading to differential local microbial populations. These 

populations were not accounted for in the model, since the model was solely looking at plume-

associated E. coli, so the effects of those local populations may be a substantial factor in the 

differences in model predictive ability between beach locations in 2010 and 2011. 

RMSE values across all beaches range from 0.76 to 2.15 log10(MPN 100 ml-1), with lower RMSE 

values largely seen at beaches with higher R2 values, as can be expected. One notable exception is 

Foster beach, for which the model produced the second-highest R2 value (R2 = 0.55), but also 

yielded a relatively high RMSE value (RMSE = 1.48 log10(MPN 100 ml-1). PBIAS generally 

follows the same pattern, with PBIAS values closer to zero frequently corresponding to models 

for beaches with higher R2 and lower RMSE values (Figure 6-5).  

Figure 6-5:  Bar chart comparing PBIAS values for the 2010 model of E. coli in backflow 

plumes at 16 beach locations. The model best simulated observed E. coli concentrations at 

North Ave. beach, where the PBIAS value is closest to 0.0 
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PBIAS values in 2010 indicate a systematic overprediction of E. coli concentrations at the beaches. 

The model yielded a positive PBIAS value (suggesting underprediction of E. coli concentration) 

only at North Ave., Margaret T. Burroughs, 57th St. and 63rd St. beaches. This systematic 

overprediction of E. coli concentrations at Chicago beaches may indicate that the simulation of 

decay processes would benefit from additional model refinement. It is also possible that the model 

E. coli input was unreasonably high, leading to overprediction of E. coli, not only at Leone, 

Hartigan and Foster beaches, but at 14 of the 18 locations modeled (77.78%). The initial E. coli 

concentrations in the model, represented by particle numbers, were determined from statistical 

relations developed for southern Lake Michigan. However, those statistical relations were 

generated for non-storm conditions, so it is possible that input concentrations during heavy rain 

events are different from those input to the models here. Because the model simulated E. coli 

concentrations at some beaches well, though, it can be difficult to pinpoint a specific source of 

error at other beaches without additional observational data. Overprediction of E. coli was 

maximized at Hartigan, Rogers Park, Leone and Howard beaches, between the Wilmette and 

CRCW outlets (PBIAS = -157.42, -141.31, -135.63 and -127.98, respectively, Table 6-4). This 

relatively large magnitude of overprediction at beaches between the outlets, compared to those 

beaches south of the CRCW outlet, may stand to reason, given that the modeled E. coli was 

associated with storm-induced river plumes at both outlets. Nonetheless, the PBIAS values 

indicate that the model predicted E. coli values with magnitudes twice those of observational data, 

further supporting the idea that the model framework would benefit from additional testing and 

refinement.  

The other validation statistics applied to the 2010 model show similar trends to the coefficient of 

determination, RMSE and PBIAS between beaches. At beaches with lower RMSE values and 
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higher R2 values, NSE values tend to be closest to the optimal value of +1.0, Fn values are closest 

to 0.0 and RSR values are minimized, though there are some differences between statistics, in 

terms of which beaches optimize the respective validation statistic (Figures 6-6 – 6-8). Generally, 

the statistics indicate that the model predicts E. coli concentration most reliably at North Ave. and 

12th St. beaches, while its simulation is least reliable at Hartigan and Ohio St. beaches.  

 

 

 

 

 

 

 

Figure 6-6: Bar chart comparing RMSE, R2 and NSE values for the 2010 model of E. coli in 

backflow plumes at 16 beach locations. The model best simulated observed E. coli 

concentrations at North Ave. beach, where the NSE value is closest to 1.0. The model at North 

Ave. beach also yielded the lowest RMSE value and fourth-highest R2 value, compared to other 

beaches 
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Figure 6-7: Bar chart comparing RMSE, R2 and Fn values for the 2010 model of E. coli in 

backflow plumes at 16 beach locations. The Fn value is closest to 0.0 for 12th St. beach. The 

model at 12 St. beach also yields the third-lowest RMSE value and yields a relatively high R2 

value, compared to the other 15 beaches 
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6.3.2. Validation Results for 2011 Backflow Model 

 

Validation of the model results in the context of the July 2011 backflow event showed that the 

model predictive capacity was comparable, and in many cases, improved, compared to its 

predictive capacity in the context of the 2010 backflow event. Similar to the 2010 event, predictive 

ability of the model for the 2011 backflow event varied considerably between the 18 beaches for 

which it was validated. Plots comparing the observed and simulated E. coli concentrations over 

time show that the model simulated E. coli relatively well at Montrose, North Ave. and Rainbow 

beaches (Figure 6-9), while it performed relatively poorly for Rogers Park, Howard and Oakwood 

beaches (Figure 6-10). Figures 6-9 and 6-10 show that the E. coli model for the 2011 backflow 

event often failed to capture relatively low magnitude E. coli concentrations at locations like 

Figure 6-8: Bar chart comparing RMSE, R2 and RSR values for the 2010 model of E. coli in 

backflow plumes at 16 beach locations. The model best simulated observed E. coli 

concentrations at North Ave. beach, where the RSR value is minimized. The model at North Ave. 

beach also yields the fourth-lowest RMSE value and third-highest R2 value, compared to other 

beaches 
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Rogers Park, Howard and Oakwood beaches (Figure 6-10), but also could underpredict very high 

concentrations, as seen at Montrose and Rainbow beaches (Figures 6-9a and 6-9c). Plots also 

suggest that the model did not capture E. coli concentrations at the beaches at the beginning of the 

backflow event. This may lend insight into the temporal scale of the plume effects at the beaches, 

though. The non-zero observational E. coli concentrations at the beaches early in the backflow 

event may be background concentrations or E. coli from sources other than the plumes, and it is 

possible that the model did not calculate those concentrations because the plumes had not yet 

reached those beaches. Additional comparison plots can be found in Appendices D-1 – D-12. 
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Figure 6-9: Plots comparing observed (red circles) and modeled (blue lines) log-transformed  

E. coli concentrations at Montrose, (A, top), North Ave. (B, center)  

and Rainbow (C, bottom) Beaches in July 2011 
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Figure 6-10: Plots comparing observed (red circles) and modeled (blue lines) log-transformed 

E. coli concentrations at Rogers Park (A, top), Howard (B, center)  

and Oakwood (C, bottom) beaches in July 2011 
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Model validation statistics computed for the 2011 backflow model indicate that the model 

frequently simulated E. coli concentrations as well as or better than the 2010 backflow model at 

specific beach locations. However, the two models’ predictive abilities are similar in that their 

ability to simulate water quality varies by beach location. Validation statistics were calculated for 

the 2011 backflow model at 18 beaches, including the Rainbow and South Shore locations that 

were not included in validation of the 2010 model. Across the beaches, R2 values for the model 

ranged from -0.44 at 57th St. beach to 0.78 at Oak St. beach (Table 6-5). High R2 values at beaches 

such as Oak St., North Ave., Rainbow, Montrose, and Hartigan are comparable to some of the 

highest R2 values for other water quality models in Lake Michigan (Liu et al., 2006; Safaie et al., 

2016b; Thupaki et al., 2010). This lends some confidence to the ability of the model to predict 

water quality after backflow events. However, the promise that this shows may be tempered by 

the 13 out of 18 (72.22%) beach locations for which the R2 value is less than 0.50, indicating that 

the model captures less than 50% of the variability in the observed data at nearly ¾ of the beaches 

in the Chicago area. This high degree of variation in R2 values amongst the beaches underscores 

the idea that each beach is unique, with its own set of microbial sources and dynamics. However, 

lack of understanding of the full picture of microbial dynamics and sources at these beaches often 

requires the application of “one-size-fits-all” approaches and models, which may not be 

appropriate at all locations. 

Table 6-5: Summary of validation statistics for the July 2011 backflow E. coli concentration 

model, at individual beaches along the Chicago shoreline 

Beach Location Fn NSE PBIAS R2 RMSE RSR 

57th St. 0.91 -7.48 20.14 -0.44 1.51 2.91 

Kathy Osterman 0.70 -2.73 30.02 0.02 1.36 1.93 

Ohio St. 0.73 -2.20 -47.54 0.11 1.32 1.79 

Rogers Park 1.15 -5.63 -37.30 0.12 1.58 2.57 

Marion Mahoney 

Griffin 0.99 -7.03 -37.63 0.16 1.37 2.83 
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Table 6-5 (cont’d) 

63rd St. 0.68 -2.92 16.39 0.17 1.18 1.98 

12th St. 0.46 -2.69 -15.49 0.28 0.97 1.92 

Howard 1.06 -4.75 -52.70 0.36 1.37 2.40 

Leone 1.47 -24.35 33.65 0.36 2.24 5.03 

South Shore 0.61 -11.39 36.61 0.37 1.12 3.52 

Margaret T. 

Burroughs 0.53 -6.72 -31.59 0.38 0.99 2.78 

Foster 0.64 -3.12 43.89 0.39 0.99 2.03 

Oakwood 0.91 -7.39 -62.68 0.41 1.27 2.90 

Hartigan 0.69 -1.32 16.74 0.52 1.09 1.52 

Montrose 0.69 -6.63 59.42 0.54 1.47 2.76 

Rainbow 0.65 -13.66 49.80 0.55 1.39 3.83 

North Ave. 0.49 -1.68 8.00 0.66 0.82 1.64 

Oak St.  0.76 -1.96 -78.92 0.78 1.31 1.72 

 

RMSE values for the 2011 backflow event model are also highly variable, ranging from 0.82 

log10(MPN 100 ml-1) at North Ave. beach to 2.24 log10(MPN 100 ml-1) at Leone beach. Generally, 

beach locations for which the 2011 backflow model exhibits relatively high R2 values also yield 

relatively low RMSE values. Oak St. beach, though, provides a notable exception. At Oak St. 

beach, the R2 value for the model is 0.78, the highest R2 value of all of the beaches, indicating high 

local predictive ability for the model. At the same time, the RMSE value for Oak St. beach was 

only the ninth-lowest of all 18 beaches, a signal of relatively low predictive ability for the model 

there, compared to other locations. This discrepancy between validation metrics underscores the 

necessity for using multiple validation metrics to fully understand a model’s predictive ability. 

Similarly, Montrose beach simultaneously exhibits the fourth-highest R2 value and the fourth-

highest RMSE value, amongst the beach locations. For cases like Oak St. and Montrose beaches, 

with R2 and RMSE metrics that contradict one another, a metric like RSR can be used to determine 

the effect of standard deviation in the observational values on model performance. This 

standardizes the error values from the model, allowing for more reliable comparison of model 
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predictive ability between beaches with different observational datasets (Moriasi et al., 2007). The 

RSR for Oak St. beach (1.72 log10(MPN 100 ml-1)) is the third-lowest of the RSR values at the 18 

beaches, indicating that the model may indeed be predicting observed E. coli relatively well at the 

beach. In contrast, the RSR value corresponding to the model at Montrose beach (2.76 log10(MPN 

100 ml-1)) is the eighth-highest of the 18 beach locations, suggesting that the high RMSE value 

may better indicate model performance than the high R2 value there.  

Model RMSE values for 2011 exceeded 1.00 log10(MPN 100 ml-1) at 14 out of the 18 beaches 

(77.78%), but remained at least one order of magnitude lower than average modeled concentration 

calculations at 10 out of 18 (55.56%) of the respective beach locations. This indicates that the 

model errors are small compared to the calculated E. coli concentrations at many of the beach 

locations, another sign of promise for the use of the model.  

PBIAS calculations show that the model underpredicted E. coli concentrations at 10 of the 18 

beaches (55.56%) (Figure 6-11). The beaches for which the model overpredicted E. coli 

concentrations are geographically closest to either the Wilmette or the CRCW outlet. It is therefore 

possible that beach proximity to the outlets has played an outsized role in the prediction of E. coli 

at nearby beaches. There is the potential that modeled E. coli is transported to these relatively close 

beaches before the microbial decay function can considerably influence the E. coli concentrations 

within the model. This may also highlight a shortcoming of the model. At beaches very close to 

the outlets, nearfield processes such as buoyant spreading of the E. coli plume(s) may become 

important (Nekouee et al., 2015) and the decay function may be different from that used herein.  
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Additional validation statistics suggest that the model’s predictive ability was maximized at 12th 

St. and Hartigan beaches. Fn was minimized for the model at 12th St. beach (Fn = 0.46, Figure 6-

12), indicating optimal predictive ability in the context of the Fn statistic. Hartigan beach optimized 

both RSR and NSE (RSR = 1.52 and NSE = -1.32, Figures 6-13 and 6-14). Interestingly, the model 

at 12th St. and Hartigan beaches yielded RMSE values that were not the two best for the model, 

instead yielding the second- and fifth-best RMSE values, respectively. Following the discrepancies 

seen at Montrose beach, this further highlights the importance of using multiple validation metrics 

for model assessment. A model that indicates high predictive ability via high R2 value or low 

RMSE can suggest low predictive ability via the NSE, RSR or Fn metrics, due to biases inherent 

in the calculation of each metric. For instance, the R2 metric is inherently biased toward high E. 

Figure 6-11: Bar chart comparing PBIAS values for the 2011 model of E. coli in backflow 

plumes at 18 beach locations. The model best simulated observed E. coli concentrations at North 

Ave. beach, where the PBIAS value is closest to 0.0 
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coli values, potentially undervaluing low background levels at the beaches in its estimation of 

model fit.  

 

Figure 6-12: Bar chart comparing RMSE, R2 and Fn values for the 2011 model of E. coli in 

backflow plumes at 18 beach locations. The model best simulated observed E. coli 

concentrations at 12th St. beach, where the Fn value is closest to 0.0. The model at 12th St. 

beach also yielded the second-lowest RMSE value and an R2 value of 0.28 
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Figure 6-13: Bar chart comparing RMSE, R2 and RSR values for the 2011 model of E. coli in 

backflow plumes at 18 beach locations. The model best simulated observed E. coli 

concentrations at Hartigan beach, where the RSR value is closest to 0.0. Hartigan beach also 

exhibited the fifth-lowest RMSE and R2 values 

Figure 6-14: Bar chart comparing RMSE, R2 and NSE values for the 2011 model of E. coli in 

backflow plumes at 18 beach locations. The model best simulated observed E. coli 

concentrations at Hartigan beach, where the NSE value is closest to 1.0. Hartigan beach also 

exhibited the fifth-lowest RMSE and R2 values 
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As discussed previously, RSR may be a useful metric to consult in cases like Montrose beach in 

2011. There can be conflicting evaluation metric results between R2, RMSE, PBIAS, RSR and 

NSE, leading to confusion about whether a model performed well for a specific case. At Montrose 

beach, the model yielded high R2 values, but also showed a high RMSE value, so an assessment 

of RSR could more definitively characterize the model’s performance for that particular beach. 

The corresponding RSR value for Montrose beach was shown to be 2.76 log10(MPN 100 ml-1), the 

eighth-highest RSR value of all 18 beaches in 2011. Further review of other evaluation metrics, 

such as PBIAS, NSE and Fn at Montrose beach also indicate relatively mediocre predictive ability 

of the model at the beach. Fn at Montrose beach was only the eighth-highest of all beaches, at 0.69. 

Likewise, NSE for Montrose beach was -6.63, the eleventh-best value between the 18 beaches. 

PBIAS at Montrose beach was also the third-highest in magnitude of the 18 beaches, at 59.42%. 

These additional metrics suggest that though the R2 value from Montrose beach is relatively high 

(R2 = 0.54), the model did not predict E. coli at Montrose beach as well as it did at some of the 

other locations.  

Montrose beach has a unique morphology (Figure 6-15); it is bordered to the south by a marina, 

from which it is separated by a breakwall. Due to the presence of the marina, the beach is located 

farther into the lake than other nearby beaches. As a result, it could be subject to higher current 

velocities that drive plumes, compared to other beaches. The beach is also highly curved on its 

southern side and has a breakwater on its eastern edge, creating an embayment. This morphology 

leads to some potential sheltering of the beach from plumes originating to its south or east as well 

as direct interception of plumes traveling north to south. It is possible that the model overestimated 

the impacts of sheltering on the southern and eastern sides of the beach on E. coli transport to the 

beach, simulating that the E. coli in the plume would move northward along the shore and pass 
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over the Montrose beach area in the process. As a result, the model would simulate that the plume 

would largely not affect Montrose beach, possibly leading to underprediction of local E. coli.  

  

 

 

 

 

 

 

 

 

 

NSE values for the 2011 model are negative at all locations, but the negative magnitude of the 

NSE values for the 2011 model are smaller than those associated with the 2010 model for 11 of 

the 16 beaches that were assessed for both years (68.75%). This suggests that the model predicts 

E. coli concentrations at beaches better for the 2011 backflow event than for the 2010 backflow 

event. This is true for Fn values between the backflow model years as well. Fn values corresponding 

to the 2011 backflow model are closer to the optimal value of 0.00 than those values corresponding 

to the 2010 backflow model for 75% of beaches, respectively (Table 6-4, Table 6-5). A somewhat 

Figure 6-15: Google Earth Image showing the unique morphology and embayment of Montrose 

beach 
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different trend is seen upon comparison of RSR values at the beaches; the magnitude of RSR 

values at 10 of the 16 beach locations (62.50%) are larger for the 2011 model than for the 2010 

model. 

The difference in predictive ability between 2010 and 2011 backflow events may be due in part to 

the unique conditions created by the 2011 storm. During the 2011 backflow event, the storm moved 

over Chicago quickly, and while the CRCW and Wilmette outlets released stormwater for nine 

and 10 hours, respectively, 83.66% of the precipitation associated with the storm fell within 

roughly three hours, at the beginning of the storm (NOAA National Weather Service, 2011). 

Therefore, an excessive amount of water was released to Lake Michigan over a very short period 

of time, potentially leading to a bias toward the over-estimation of E. coli at and near the outlets 

during the beginning of the backflow event. The over-prediction may then be moderated by the 

smaller flowrates after the initial stormwater pulse, which could lead to more reliable E. coli 

concentration predictions over time. In contrast, the 2010 backflow event lasted 17 hours, and the 

outlets released a relatively steady flow of water over the majority of the backflow period. This 

lack of a strong pulse of stormwater and E. coli to the lake may lead to an overprediction of E. coli 

concentrations at beaches for a longer period, post-backflow event. The results presented herein 

suggest that the current model may be more applicable to backflow releases associated with short, 

strong storms rather than longer or more steady releases of water to the lake. Coupling of this 

model and a calibrated watershed model tracking stormwater from upstream of Chicago or 

additional observational data at the river outlets may improve upon the simulation of nearshore E. 

coli in response to storm events. 
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6.3.3. Insights From 2010 and 2011 Backflow Plume Model Validation 

 

The negative NSE values, RSR values that exceeded 1.0 and Fn values that approached or exceeded 

1.0 at times suggest that there may be substantial room for improvement in the model’s predictive 

ability upon addition of other E. coli sources in the nearshore zone. Water quality models in other 

areas of southern Lake Michigan have been shown to more effectively simulate beach water quality 

near a river outlet, via higher R2 values, lower RMSE values, and more optimized values of NSE, 

PBIAS, RSR and Fn (Safaie et al., 2016b). However, the models that produced those results were 

developed in the context of a river outlet that consistently releases water to the lake, rather than an 

outlet that intermittently contributes stormwater to the nearshore zone. For the models presented 

here, the river outlets do not release water to Lake Michigan until there is an extreme storm and 

backflow event. These extreme storms may create conditions that impact hydrodynamics and water 

quality differently than smaller storms or calm conditions, leading to potentially unexpected trends 

in beach E. coli concentrations (Weiskerger et al., 2019). As a result, it is possible that decay 

parameters and E. coli concentration estimates that are reasonable for river outlets that consistently 

release small volumes of water to the lake may not be applicable to river outlets that intermittently 

release large volumes of stormwater.  

An additional confounding factor associated with these model validations is the lack of 

observational data corresponding to E. coli concentrations at beaches during and immediately after 

backflow events. The plots comparing observed and simulated E. coli concentrations at beaches 

show that the models seem to capture many of the water quality patterns at the beaches, but the 

statistics indicate that the simulated values often do not correspond to specific observations at 

specific times. This may be due to uncertainty in sampling times or a lack of high-resolution 

observational data. CPD monitors the beaches along the shore daily during the swimming season, 
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but samples can be obtained at any time between sunrise and 8:30 am. The roughly three hours 

between the typical sunrise time in July of ~5:40 am and 8:30 am (ESRL, 2020), combined with 

variability in sampling time between beaches likely leads to considerable uncertainty in the 

resulting E. coli concentration data. The monitoring results are accessible only as daily data from 

Illinois BeachGuard (IDPH, 2018) and do not include an exact sampling time, so the uncertainty 

in sampling time extends to any analyses performed on the data. This can potentially lead to 

apparent errors in analyses and low validation statistics. In this analysis, model statistics were 

presented for model time steps that produced the best match to the observed E. coli concentrations 

at each beach.  

Since storm events can cause rapidly changing wind, wave and current conditions at beaches 

(NOAA, 2018a, 2018b) (Figure 6-16), daily monitoring data may not provide adequate temporal 

resolution for model validation more broadly. Therefore, effective evaluation of modeled E. coli 

in the context of extreme storms would benefit greatly from observational water quality data at 

higher temporal resolution. Notation of specific sampling times accompanying monitoring data 

would also aid in more effective model validation for assessment of water quality conditions at 

beaches during and after extreme storm events that causes backflows in southern Lake Michigan. 
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Further uncertainty may come from a lack of specific knowledge of sampling locations at the 

beaches and depth in the water column that samples were taken from. It is generally accepted that 

water quality monitoring samples should be obtained from locations at the center of the beach 

along the shore, rather than on one side or the other (CPD, 2020; USEPA, 2010), but the exact 

locations of samples at each beach are not tracked within the Illinois BeachGuard repository 

(IDPH, 2018). With a lack of specific GPS location data for each sample, validation comparisons 

may be impacted by spatial uncertainty along the beaches. As a result, model output corresponding 

to each node along beach faces were compared to observational data and the results from the node 

that indicated the best match between observed and modeled E. coli concentrations at respective 

beaches were used for the validation.  

Figure 6-16: Maps of current vectors along part of the Chicago shoreline during two successive 

hours at the end of the July 2010 backflow event, showing the differences in the current field that 

can occur within an hour during a storm event. Maps correspond to conditions at 9:00 pm (A, 

left) and 10:00 pm (B, right) on July 24, 2010 
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A final source of uncertainty in the model of E. coli in storm-induced river plumes presented herein 

may be the discharge Q – concentration relationship used to estimate E. coli concentrations at the 

river outlets. While this relationship seems to have adequately estimated E. coli from river 

discharges, it was originally developed in the context of a river flowing into Lake Michigan at all 

times (Safaie et al., 2016b). The changes in conditions between a river constantly flowing into the 

lake and the three rivers in Chicago, which only flow into Lake Michigan during heavy storms, 

may lead to inability to accurately estimate E. coli concentrations from the associated large Q 

values. As a result, it is possible that the initial E. coli concentrations at the river outlets are 

incorrectly estimated. Without observational E. coli data at the outlets, though, it is impossible to 

assess the accuracy of the estimates derived from the Q – concentration relationship. Therefore, 

the reliability of the E. coli concentration estimates at the river outlets remains a possible source 

of uncertainty in the model.  

Given the considerable sources of uncertainty that could contribute to low predictive ability in the 

coupled hydrodynamic and Lagrangian particle tracking model for E. coli in storm-induced river 

plumes, the model simulated E. coli concentrations at beaches reasonably well. Validation 

indicates that the model would benefit from additional refinement and higher resolution input and 

observational data. However, high R2 values at several beaches along the Chicago shore suggest 

that the model can simulate E. coli nearly as well as other water quality models in southern Lake 

Michigan (Liu et al., 2006; Safaie et al., 2016b; Thupaki et al., 2010). While current simulation 

results may not be reliable for all beach locations, the model results can still provide some insight 

into water quality at beaches in response to heavy storm events that foster backflows to the Lake 

Michigan nearshore zone. Likewise, results may be useful in future planning and policy-
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development for effective beach management that can balance public health with the economic 

benefits of opening beaches to recreation.   

6.3.4. E. coli Concentration Patterns in Response to Backflow Events and Implications for 

Beach Management 

In spite of some uncertainty surrounding the reliability of modeled E. coli concentrations at 

beaches, results of models tracking storm-induced river plumes may provide some insight into E. 

coli spatiotemporal patterns at Chicago beaches in response to heavy storm events.  

Time series plots of E. coli concentration at Chicago beaches from the 2010 and 2011 backflow 

events suggest that elevated E. coli may be detected at the beaches for days to weeks post-backflow 

event, but that concentrations can be highly variable hour-to-hour. For example, at Oakwood 

beach, the model simulated E. coli concentrations at 10:00 pm and 12:00 am on July 30–31, 2010 

as 2.51 log10(MPN 100 ml-1) and 0.00 log10(MPN 100 ml-1), respectively (Figure 6-17a). The 2011 

model showed similar results, particularly at locations such as Margaret T. Burroughs beach 

(Figure 6-17b). This variability was also seen in results for multiple other beaches in 2010 and 

2011 and may be associated with changes to currents and wind patterns at small time scales, that 

can move E. coli in the plumes toward and away from shore. Nonetheless, modeled E. coli 

concentrations show that beaches may be contaminated by the storm-induced plumes to a degree 

that they require a swimming advisory multiple times and up to 14 days after the beginning of the 

backflow release (Figure 6-18). Simulated E. coli concentrations reached the maximum detection 

value of 2.37 log10(MPN 100 ml-1) at some point in both 2010 and 2011 at all beaches for which 

validation was completed. This indicates that E. coli in storm-induced river plumes has the 

potential to substantially degrade recreational water quality after backflow events in Chicago. 

While results seem to support the current CPD practice of closing all beaches during and 
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immediately after backflow events, it is possible that this practice does not go far enough. Elevated 

E. coli levels were simulated for up to 14 days, post-backflow event, so it is possible that storm-

induced river plumes may present human health risks at beaches for longer than previously 

thought.   
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Figure 6-17: Time series plot for E. coli at Oakwood Beach following the July 2010 backflow 

event (A, top) and Margaret T. Burroughs beach following the July 2011 backflow event (B, 

bottom), showing large variability in E. coli over hourly time scales  

(highlighted by the red circle) 
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Results also indicate that there may be a diurnal pattern of E. coli concentrations at beaches, 

suggesting that contamination frequently peaks between 12:00 am and 4:00 am daily and is 

minimized between 12:00 pm and 4:00 pm (Figure 6-19). This pattern follows the diurnal cycle of 

contamination at previously observed at beaches (Boehm et al., 2002; Ho et al., 2011; Whitman 

and Nevers, 2004) and is likely a response to the effect that solar inactivation has on microbial 

contaminants such as E. coli.   

 

Figure 6-18: Time series plot of E. coli at 12th St. beach following the July 2010 backflow event, 

indicating that the beach is susceptible to contamination leading to swimming advisories for up 

to 14 days, post-backflow event 
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The high degree of spatiotemporal variability in E. coli concentrations at beaches following storm 

and backflow events underscores the importance of vigilance in beach management and 

monitoring. Model results indicate that E. coli concentrations at beaches can change drastically 

over the course of hours, and that the concentrations obtained from monitoring data collected in 

the morning may be significantly different from expected concentrations in the afternoon. As a 

result, daily monitoring occurring in the morning may not lead to reliable indication of beach 

safety, especially if beachgoers visit the shoreline in the afternoon. Thus, it may be beneficial for 

beach management agencies to implement more frequent sampling and microbial enumeration at 

beaches, to better protect public health throughout the day. Similarly, these results show the 

importance of monitoring at each individual beach because E. coli concentration trends at the 24 

Chicago beaches have all shown differential responses to the backflow events and their associated 

river plumes.  

Figure 6-19: Time series plot of E. coli concentration at Margaret T. Burroughs beach, 

following the July 2011 backflow event. Diurnal patterns in E. coli are highlighted by the red 

circle 
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Models such as the coupled hydrodynamic and Lagrangian particle tracking model presented 

herein may not be readily accessible to beach managers, due to the computational and technical 

resources that they require. However, the results from the model may yield useful statistical 

relationships that can allow for empirical prediction of some of the impacts of storm-induced 

plumes on E. coli concentrations at Chicago beaches. Spearman correlation and multiple linear 

regression analyses were performed to determine relationships between beach proximity to the 

CRCW and Wilmette outlets, time to elevated E. coli concentrations (initial increase of modeled 

E. coli concentration to above 0 MPN 100 ml-1), average E. coli concentration and timing of the 

last exceedance of the 2.37 log10(MPN 100 ml-1) concentration threshold for safe recreation over 

the model time periods.  

Spearman correlation analyses suggested that beach proximity to the Wilmette outlet is 

significantly correlated with average E. coli concentration at the beach (p = 5.62*10-6) and timing 

of final exceedance in the model (p = 2.08*10-4), but not with time to elevated E. coli after 

backflow release (p = 0.14). Beach proximity to the CRCW outlet was not significantly correlated 

with time to elevated E. coli (p = 0.20) but was significantly correlated with both average E. coli 

concentration (p = 0.023) and timing of final exceedance (p = 0.01). Multiple linear regression 

analysis stemming from these correlations provided predictive equations that could be useful for 

beach managers in Chicago looking to predict timing and magnitude of plume effects at beaches. 

These equations may estimate the times of initial E. coli increase and final exceedance of 2.37 

log10(MPN 100 ml-1)) at a beach (TimeEC and TimeExceed, respectively, hr after backflow event 

start) and average E. coli concentration at a beach, calculated from both 2010 and 2011 model 

results (AvgEC, log10(MPN 100 ml-1)) (Eq. 6-9, 6-10 and 6-11, respectively). The equations rely 

on beach proximity to the Wilmette and CRCW outlets (ProxW and ProxC, respectively) (km) and 
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backflow duration (Duration, hr) as predictors. These predictors are all either known (ProxW and 

ProxC) or can be forecast given weather predictions and resulting plans for backflow periods 

(Duration). The resulting multiple linear regression equations capture 54.25%, 54.93% and 

64.43% of the variability in the TimeEC, AvgEC and TimeExceed data from the beaches (p = 

1.03*10-7, p = 7.62*10-8 and p = 1.40*10-10, respectively).   

𝑇𝑖𝑚𝑒𝐸𝐶 = 1.15(𝑃𝑟𝑜𝑥𝑊) + 2.98(𝑃𝑟𝑜𝑥𝐶) − 3.71(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) − 74.96               (6-9) 

𝐴𝑣𝑔𝐸𝐶 = −0.03(𝑃𝑟𝑜𝑥𝑊) − 0.02(𝑃𝑟𝑜𝑥𝐶) + 0.08(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) + 2.44              (6-10) 

𝑇𝑖𝑚𝑒𝐸𝑥𝑐𝑒𝑒𝑑 = −2.38(𝑃𝑟𝑜𝑥𝑊) − 7.21(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) + 523.01                       (6-11) 

In the absence of in situ monitoring data that may be dangerous to obtain during and after heavy 

storm events (MWRD, 2019; USEPA, 2010), these equations may be beneficial for beach 

managers. Estimates can lend insight into when beaches may be impacted by elevated E. coli 

concentrations. They can, in turn, allow for prediction of when to begin issuing swimming 

advisories and when to potentially remove the swimming advisories at each beach. Similarly, the 

equations can reasonably estimate average E. coli concentrations during and after the storms, 

allowing for some understanding of the magnitude by which plumes can elevate E. coli 

concentrations during and immediately after heavy storms.       

6.4. Conclusions 

The impacts of heavy storms and their subsequent river plumes on the nearshore zone in 

southwestern Lake Michigan were simulated using a coupled numerical hydrodynamic and 

Lagrangian particle tracking model. Storm-induced river plumes were modeled for storm events 

that produced backflow of water from the North Shore Channel and Chicago River to Lake 



 

231 
 

Michigan in 2010 and 2011, to assess the trends in resulting E. coli concentrations at 16 – 18 

beaches along the shore.  

The model developed was able to simulate up to 78.47% of the variability in E. coli concentrations 

at beaches in Chicago. Validation showed substantial variability in the model’s predictive ability 

between individual beaches. At some locations, the model was unable to predict any of the 

variability in the observed data from Illinois BeachGuard (IDPH, 2018). At other locations, the 

model predicted observed data at levels comparable to previously published models of ambient E. 

coli levels at the beaches. Generally, E. coli concentration observations were better reproduced for 

beaches south of the CRCW outlet, while observations were relatively poorly simulated at beaches 

between the Wilmette and CRCW outlets, potentially owing to the simultaneous simulation of two 

storm-induced river plumes as E. coli sources modeled for beaches north of CRCW. The model 

simulated E. coli concentrations corresponding to the 2011 backflow event marginally better than 

it did for the 2010 backflow event. This may be due to the variation in durations and flowrates of 

stormwater releases to the lake during the storm events (NOAA National Weather Service, 2011) 

and underscores the need for additional observational data for both providing initial and boundary 

conditions as well as for adequate model validation and refinement.  

Model results presented herein apply to relatively small backflow events in Chicago, which 

involve stormwater release from the Wilmette and CRCW outlets but not the O’Brien outlet 

located south of downtown Chicago (MWRD, 2019; USACE, 2014). Additional model 

development and validation would be needed for adequate prediction of water quality during and 

after larger-scale backflow events leading to discharge from all three outlets. Nonetheless, there 

have only been two backflow events that yielded stormwater releases from the O’Brien outlet 

between 2000 and 2017, occurring in 2008 and 2013. Currently, there is a notable lack of in situ 
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microbial water quality monitoring data associated with the 2008 and 2013 backflow events, due 

to their timing outside of the swimming season (USACE, 2014). This lack of monitoring data 

would further challenge the validation process for any model of these larger backflow events. 

However, the majority of backflow events in recent years (17 of 19, 89.47%) have involved 

stormwater releases from Wilmette and/or CRCW outlets only (USACE, 2014). As a result, the 

numerical and statistical models presented herein are expected to reasonably simulate and predict 

water quality patterns at Chicago beaches in response to the majority of backflow events in 

southwestern Lake Michigan. Future backflow events may be expected to follow this pattern, 

whereby most events will likely involve releases from Wilmette and/or CRCW only. This is due 

to the recent and ongoing implementation of the Tunnel and Reservoir Plan (TARP) (MWRD, 

2020), a large-scale infrastructure project designed to prevent flooding and stormwater release via 

backflow in Chicago.   

Storm events and their impacts on the nearshore zone are notoriously understudied because of the 

physical risk involved in data collection during and after heavy storms (MWRD, 2019; USEPA, 

2010). This lack of study, combined with the potential for significant impacts of storms on safety 

and public health at beaches (IDPH, 2018) warrants additional research and characterization of 

storm-induced river plume effects in the nearshore zone. Numerical simulation of conditions can 

provide some of that characterization, via the use of calibrated models (Bravo et al., 2017; Nekouee 

et al., 2015a), but existing models often do not account for microbial water quality effects of the 

plumes. The results presented herein not only provide an initial example of how to model the 

impacts of heavy storms on recreational water quality but highlight considerable gaps in 

knowledge that can hinder the subsequent assessment of water quality impacts from storms. Model 

validation results suggest that the coupled hydrodynamic and Lagrangian particle tracking model 
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developed can reproduce observed E. coli concentrations at Chicago beaches reasonably well, 

given a relative lack of in situ observational data. While statistics presented here indicate a 

comparable but somewhat lower predictive ability for this model compared to other water quality 

models developed for southern Lake Michigan (Liu et al., 2006; Safaie et al., 2016b; Thupaki et 

al., 2010), they also show that the model holds promise, especially if additional observational data 

are available for future storm events.         
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7. Conclusions 

 

Nearshore environments such as beaches are frequently popular destinations for tourism, which 

can in turn bring revenue to local municipalities. This is the case for areas along the shores of the 

Laurentian Great Lakes such as Chicago. The 24 beaches along Chicago’s shoreline draw 14 – 31 

million visitors annually (Nevers and Whitman, 2011), which can lead to millions of dollars of 

tourism revenue for the area (Shaikh, 2012). However, beach tourism relies upon the safety of 

recreation at beaches and that safety can be challenged by microbiological contamination in water 

(DeFlorio-Barker et al., 2016; Dorevitch et al., 2012; Fleisher et al., 2010; Wade et al., 2008).  

An association between precipitation events and recreational water quality degradation has been 

established (Coffey et al., 2018; Curriero et al., 2001). With a projected increase in both frequency 

and intensity of storm events in response to climate change (IPCC, 2014) it can be expected that 

water quality degradation will become more common in the coming years. Therefore, it is crucial 

that research focus on the effects of extreme storm events on nearshore water quality, to ensure 

the health of beachgoers. This is especially true for the Chicago area, because its flow regime 

involves stormwater release from the Wilmette, Chicago River Controlling Works (CRCW) and 

O’Brien outlets only during extreme storms that can cause extreme water quality degradation (City 

of Chicago, 2014; MWRD, 2019).  Despite this need for additional research regarding beach 

responses to extreme storm events, collection of in situ beach monitoring data can be dangerous 

during and immediately after storms. Therefore, numerical and statistical models can be valuable 

sources of information and predictions of future conditions and their effects on public health.  

Coupled hydrodynamic and Lagrangian particle tracking models (Huang et al., 2019; Nekouee et 

al., 2015b) were developed and validated to assess the spatiotemporal scales of storm-induced river 

plumes in southwestern Lake Michigan and along the Chicago shoreline. These models were also 
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expanded to include the fate and transport of E. coli within the plumes, to form an initial approach 

for evaluating the impacts of storm-induced river plumes on beach water quality in Chicago. 

Before developing the coupled hydrodynamic and Lagrangian particle tracking model, 

optimization of the hydrodynamic model for southern Lake Michigan was completed in the context 

of the turbulent Prandtl number. This number, a ratio of the influence of momentum (eddy 

viscosity) and temperature (thermal eddy diffusivity) effects on hydrodynamics (Chen et al., 2006; 

Ye et al., 2019), can impact model predictive ability but is frequently overlooked in modeling 

research. 13 models were set up and run as a sensitivity analysis to assess the impacts of turbulent 

Prandtl number on both hydrodynamics and water quality model results. These models suggested 

that different turbulent Prandtl numbers could optimize model predictions for water temperature, 

currents and water quality. Overall, it was determined that effective coupled hydrodynamics and 

water quality models in southern Lake Michigan should use a turbulent Prandtl number derived 

from a horizontal Prandtl number of 0.14 and a vertical Prandtl number of 0.1, validating its use 

in some previous southern Lake Michigan models (Safaie et al., 2016b).  

Using the optimal turbulent Prandtl number derived from the sensitivity analysis, two approaches 

to storm-induced river plume modeling were undertaken, an Eulerian approach and a Lagrangian 

approach. These two methods differ predominantly in the way that they calculate dispersion of 

tracers or contaminants within plumes and in the way that they characterize tracers or contaminants 

in plumes. Results of the two approaches were compared via validation against MODIS satellite 

imagery for southern Lake Michigan in September of 2008 and October of 2017 (Vermote, 2015). 

As a result of the differences in their calculation of plume dispersion, the Lagrangian method 

simulated plumes with smaller surface areas than the Eulerian method. At two validation time 

periods after the 2008 backflow event, September 16, 2008 at 12:00 pm and October 16, 2017 at 
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12:00 pm, the Lagrangian method produced plume surface areas that were 22.50% and 0.66% 

smaller than those produced via the Eulerian method.  

Via comparison with MODIS satellite imagery of the plumes, it was determined that the 

Lagrangian method-produced plumes better captured the available observations of the plumes than 

the Eulerian method-produced plume simulations. The smaller plumes from the Lagrangian 

approach yielded smaller errors in more of the plume surface area, alongshore and normal-to-shore 

extent values of the plumes from 2008 and 2017, compared to those plumes produced by the 

Eulerian method. It was therefore concluded that future storm-induced river plume modeling in 

southwestern Lake Michigan should involve the use of a Lagrangian plume simulation through a 

coupled hydrodynamic and particle tracking model.  

Following selection of a coupled hydrodynamic and Lagrangian particle tracking model as the 

most effective approach to simulation of storm-induced river plumes in the Chicago area, this 

approach was utilized to simulate the storm-induced river plumes for five major storm events in 

Chicago. These events, occurring in 2008, 2010, 2011, 2013 and 2017 represented a variety of 

temporal and seasonal contexts, volumes of stormwater released to the lake and durations of 

stormwater release. The models for each of these events simulated the fate and transport of the 

overall plumes released from the Wilmette, Chicago River Controlling Works (CRCW) and 

O’Brien outlets to Lake Michigan. Plumes were characterized by particle concentrations over time, 

normalized to the smallest maximum particle concentrations at the river outlets releasing 

stormwater for each backflow event. Results of the models indicated that plumes in the nearshore 

region of Chicago persist for hours to weeks after the release of stormwater ceases at the outlets, 

with a range of five hours to 24 days, post-backflow event. The models also suggested that plume 

footprints in the nearshore ranged from 7.88 to 291.10 km2. These modeled plume spatial and 
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temporal scales were correlated with both the volume of water released at the river outlets as well 

as the duration of stormwater release at the outlets. Higher stormwater release volumes and longer 

duration releases frequently leading to larger plume footprints and plumes that persist for longer 

time periods in the nearshore zone, as expected.  

To connect the simulation of storm-induced river plumes back to recreational water quality at 

beaches, the coupled hydrodynamic and Lagrangian particle tracking models were expanded to 

include E. coli fate and transport in the plumes. Previously developed statistical relationships 

between river discharge Q and E. coli concentration C (Safaie et al., 2016b) were used to estimate 

E. coli concentrations at the river outlets during backflow events as initial conditions for the model. 

In addition, a previously-calibrated microbial decay function determined via literature review was 

incorporated into the particle concentration calculation in the Lagrangian particle tracking model 

to account for base mortality, solar inactivation and sedimentation of E. coli in the plumes over 

time (Liu et al., 2006).  

Results of this model were validated against beach monitoring data obtained after backflow events 

in 2010 and 2011 and showed that the model reasonably captures variability in the monitoring data 

for both backflow events. Across all beaches and both backflow events, the model was able to 

capture up to 78.47% of the variability in the available monitoring data. In response to these two 

backflow events, simulated E. coli concentrations at the all of the 16 – 18 Chicago Park District-

managed beaches exceeded the 2.37 log10(MPN 100 ml-1) threshold for safe recreation at beaches 

(USEPA, 2012) for at least one hour of simulation time.  

Results of this model for 2010 and 2011 suggest that there is considerable variability in model 

predictive ability between beaches, with model R2 values ranging from -0.44 to 0.78 and RMSE 

values ranging from 0.76 to 2.24 log10(MPN 100 ml-1). The presence of high R2 values and low 
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RMSE values for some beaches indicates that the coupled hydrodynamic and Lagrangian particle 

tracking model for E. coli fate and transport holds promise for prediction of water quality impacts 

from storm-induced river plumes. At the same time, the presence of low R2 and high RMSE values 

at other locations suggests that the model leaves substantial room for improvement and additional 

refinement.  

In addition to the conclusions and inferences made in response to numerical model results for 

storm-induced river plume simulation, statistical methods were used to analyze the numerical 

model results. These analyses allowed for determination of empirical predictions of plume 

dynamics and recreational water quality from backflow and beach location information. Backflow 

duration and either 24-hour antecedent rainfall or volume of stormwater released at the Wilmette 

and CRCW outlets can be used to estimate the maximum plume footprint in the nearshore (R2 = 

0.95 and 0.94, respectively). Volume of stormwater released from the CRCW outlet and backflow 

duration at the outlets can also predict time over which plumes persist in the nearshore (R2 = 0.68). 

Expanding this framework to include E. coli fate and transport, beach proximity to river outlets 

was found to have some ability to predict the time after the backflow event at which E. coli 

concentration at a beach could be expected to increase (R2 = 0.54). Further, beach proximity to 

river outlets could predict average log-transformed E. coli concentration at the beach over 2 weeks, 

post-backflow event (R2 = 0.55) and time of the latest exceedance of the 2.37 log10(MPN 100 ml-

1) threshold for safe recreation (R2 = 0.64). These empirical equations may be useful to beach 

managers for estimating the spatiotemporal dynamics and recreational water quality effects of 

storm-induced river plumes in southwestern Lake Michigan. They may be important for 

understanding the dynamics of these plumes and how they affect beaches, but also may be useful 

in determining when and where to advise against swimming at beaches along the Chicago 
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shoreline, given information about the beach location and backflow conditions. The use of the 

numerical models presented herein may be challenging for beach managers, due to the inherent 

computational and technical requirements of the models, but these empirical equations are more 

accessible and useful to managers looking to protect public health in real-time. 

Heavy storm events are predicted to become more intense and frequent in the coming decades, in 

response to climate change (IPCC, 2014). However, due to dangers associated with in situ data 

collection during extreme and after storms, the effects of such storms on nearshore environments 

and recreational water quality are notoriously understudied (Bravo et al., 2017; McLellan et al., 

2007; Nekouee et al., 2015b). In the absence of in situ data, numerical modeling can be a powerful 

tool to enhance understanding of dynamics associated with extreme storms. The development and 

validation of a coupled hydrodynamic and Lagrangian particle tracking model for characterizing 

storm-induced river plumes and the fate and transport of E. coli therein provided a first step toward 

increasing that understanding. At the same time, the model also underscored the substantial gaps 

in knowledge. A model can only be as effective as the data used to initiate it, and since there is a 

notable lack of observational data regarding storm-induced river plumes and storm-associated 

recreational water quality, the predictive ability of numerical models remains limited.  

Future research in this area should focus on supplementing observational water quality data for 

southern Lake Michigan during and after heavy storms like those in 2008, 2010, 2011, 2013 and 

2017. The dangers associated with collecting field data during storms will remain, so it may be 

beneficial to collect additional water quality data during storms via autonomous means, such as 

lab-in-vial systems (Angelescu et al., 2019; Huynh et al., 2016). Further, in situ water quality data 

should be supplemented with quality spatiotemporal metadata, allowing for a reduction in 

uncertainty associated with where and when samples are obtained. Characterization of plume 
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spatial extents via aerial imagery captured with drones or other unmanned aerial vehicles (UAVs) 

(Morgan et al., 2020) would help with validation of plume models by providing high resolution 

imagery of plumes when imagery from satellites like MODIS is obstructed by clouds (Song et al., 

2004). These additional data will be crucial to model refinement by minimizing variability and 

uncertainty associated with observational data used in model development and validation. The 

models presented herein show reasonable predictive ability for simulation of plume spatiotemporal 

dynamics and subsequent E. coli fate and transport in southwestern Lake Michigan. The 

frameworks can be used for estimation of plumes and recreational water quality in response to 

heavy storm events, with some confidence. However, these types of models will rely on additional 

in situ data for further calibration and application to additional locations and storm events, to 

increase confidence in results.  
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APPENDIX A: 

 

Current Comparisons for Models Mich08-2 – Mich08-13 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-2 
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Figure A-3: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-4 

Figure A-2: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-3 



 

244 
 

 

 

Figure A-4: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-5 

Figure A-5: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-6 
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Figure A-6: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-7 

Figure A-7: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-8 
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Figure A-8: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-9 

Figure A-9: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-10 



 

247 
 

 

 

 

Figure A-10: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-11 

Figure A-11: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-12 
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Figure A-12: Plot comparing simulated and observed u- and v-components of current at the 

MADCP location in Lake Michigan for model mich08-13 
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APPENDIX B: 

 

Hourly Backflow Data for 2008, 2010, 2011, 2013 and 2017 

 

Table B-1: Discharge time series data showing backflow releases from Wilmette, CRCW and 

O'Brien outlets in September 2008 

Date/Time 
Wilmette Discharge 

(m3 s-1) 

CRCW Discharge 

(m3 s-1) 

O'Brien Discharge 

(m3 s-1) 

9/13/2008 0:00 0.00 0.00 0.00 

9/13/2008 1:00 0.00 0.00 0.00 

9/13/2008 2:00 0.00 0.00 0.00 

9/13/2008 3:00 0.00 0.00 0.00 

9/13/2008 4:00 0.00 0.00 0.00 

9/13/2008 5:00 0.00 0.00 0.00 

9/13/2008 6:00 0.00 0.00 0.00 

9/13/2008 7:00 175.51 0.00 0.00 

9/13/2008 8:00 351.02 0.00 0.00 

9/13/2008 9:00 429.03 0.00 0.00 

9/13/2008 10:00 380.27 0.00 0.00 

9/13/2008 11:00 409.53 157.82 0.00 

9/13/2008 12:00 448.53 157.82 0.00 

9/13/2008 13:00 331.52 157.82 0.00 

9/13/2008 14:00 253.52 263.04 0.00 

9/13/2008 15:00 273.02 263.04 0.00 

9/13/2008 16:00 253.52 263.04 0.00 

9/13/2008 17:00 234.02 263.04 0.00 

9/13/2008 18:00 214.51 263.04 22.29 

9/13/2008 19:00 195.01 263.04 29.71 

9/13/2008 20:00 195.01 263.04 29.71 

9/13/2008 21:00 175.51 263.04 29.71 

9/13/2008 22:00 156.01 263.04 29.71 

9/13/2008 23:00 156.01 263.04 29.71 

9/14/2008 0:00 156.01 263.04 29.71 

9/14/2008 1:00 156.01 263.04 29.71 

9/14/2008 2:00 156.01 263.04 29.71 

9/14/2008 3:00 156.01 263.04 29.71 

9/14/2008 4:00 156.01 263.04 29.71 

9/14/2008 5:00 156.01 263.04 29.71 

9/14/2008 6:00 156.01 263.04 29.71 
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Table B-1 (cont’d) 

 

9/14/2008 7:00 156.01 263.04 29.71 

9/14/2008 8:00 156.01 263.04 29.71 

9/14/2008 9:00 156.01 263.04 29.71 

9/14/2008 10:00 156.01 263.04 29.71 

9/14/2008 11:00 156.01 263.04 29.71 

9/14/2008 12:00 195.01 263.04 74.28 

9/14/2008 13:00 253.52 464.70 74.28 

9/14/2008 14:00 273.02 464.70 74.28 

9/14/2008 15:00 273.02 464.70 176.42 

9/14/2008 16:00 273.02 464.70 176.42 

9/14/2008 17:00 273.02 464.70 176.42 

9/14/2008 18:00 273.02 289.34 176.42 

9/14/2008 19:00 273.02 289.34 176.42 

9/14/2008 20:00 234.02 289.34 125.35 

9/14/2008 21:00 175.51 267.42 74.28 

9/14/2008 22:00 156.01 179.74 74.28 

9/14/2008 23:00 156.01 157.82 74.28 

9/15/2008 0:00 156.01 157.82 74.28 

9/15/2008 1:00 156.01 157.82 74.28 

9/15/2008 2:00 156.01 157.82 74.28 

9/15/2008 3:00 156.01 157.82 74.28 

9/15/2008 4:00 136.51 138.10 74.28 

9/15/2008 5:00 117.01 118.37 74.28 

9/15/2008 6:00 117.01 59.18 55.71 

9/15/2008 7:00 117.01 32.88 37.14 

9/15/2008 8:00 97.51 21.92 9.29 

9/15/2008 9:00 78.01 21.92 9.29 

9/15/2008 10:00 78.01 21.92 9.29 

9/15/2008 11:00 78.01 21.92 9.29 

9/15/2008 12:00 78.01 21.92 9.29 

9/15/2008 13:00 78.01 0.00 9.29 

9/15/2008 14:00 78.01 0.00 9.29 

9/15/2008 15:00 78.01 0.00 9.29 

9/15/2008 16:00 78.01 0.00 9.29 

9/15/2008 17:00 78.01 0.00 9.29 

9/15/2008 18:00 78.01 0.00 9.29 

9/15/2008 19:00 78.01 0.00 9.29 

9/15/2008 20:00 78.01 0.00 9.29 

9/15/2008 21:00 78.01 0.00 9.29 

9/15/2008 22:00 78.01 0.00 9.29 

9/15/2008 23:00 78.01 0.00 9.29 
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Table B-1 (cont’d) 

 

9/16/2008 0:00 78.01 0.00 9.29 

9/16/2008 1:00 78.01 0.00 9.29 

9/16/2008 2:00 78.01 0.00 9.29 

9/16/2008 3:00 78.01 0.00 9.29 

9/16/2008 4:00 78.01 0.00 9.29 

9/16/2008 5:00 78.01 0.00 9.29 

9/16/2008 6:00 78.01 0.00 9.29 

9/16/2008 7:00 78.01 0.00 9.29 

9/16/2008 8:00 39.00 0.00 9.29 

9/16/2008 9:00 0.00 0.00 9.29 

9/16/2008 10:00 0.00 0.00 9.29 

9/16/2008 11:00 0.00 0.00 9.29 

9/16/2008 12:00 0.00 0.00 9.29 

9/16/2008 13:00 0.00 0.00 9.29 

9/16/2008 14:00 0.00 0.00 9.29 

9/16/2008 15:00 0.00 0.00 0.00 

9/16/2008 16:00 0.00 0.00 0.00 

9/16/2008 17:00 0.00 0.00 0.00 

9/16/2008 18:00 0.00 0.00 0.00 

9/16/2008 19:00 0.00 0.00 0.00 

9/16/2008 20:00 0.00 0.00 0.00 

9/16/2008 21:00 0.00 0.00 0.00 

9/16/2008 22:00 0.00 0.00 0.00 

9/16/2008 23:00 0.00 0.00 0.00 
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Table B-2: Discharge time series data showing backflow releases from Wilmette  

and CRCW outlets in July 2010 

Date/Time 
Wilmette Discharge 

(m3 s-1) 

CRCW Discharge 

(m3 s-1) 

07/24/2010 0:00 0.00 0.00 

07/24/2010 1:00 0.00 0.00 

07/24/2010 2:00 49.81 181.57 

07/24/2010 3:00 62.00 510.35 

07/24/2010 4:00 58.92 510.35 

07/24/2010 5:00 54.04 510.35 

07/24/2010 6:00 58.41 510.35 

07/24/2010 7:00 63.28 510.35 

07/24/2010 8:00 52.25 510.35 

07/24/2010 9:00 40.31 510.35 

07/24/2010 10:00 34.40 510.35 

07/24/2010 11:00 35.30 510.35 

07/24/2010 12:00 25.80 510.35 

07/24/2010 13:00 25.93 510.35 

07/24/2010 14:00 35.17 181.57 

07/24/2010 15:00 34.15 181.57 

07/24/2010 16:00 36.97 181.57 

07/24/2010 17:00 36.07 181.57 

07/24/2010 18:00 25.16 181.57 

07/24/2010 19:00 31.45 181.57 

07/24/2010 20:00 0.00 0.00 

07/24/2010 21:00 0.00 0.00 

07/24/2010 22:00 0.00 0.00 

07/24/2010 23:00 0.00 0.00 
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Table B-3: Discharge time series data showing backflow releases from Wilmette  

and CRCW outlets in July 2011 

Date/Time 
Wilmette Discharge 

(m3 s-1) 

CRCW Discharge 

(m3 s-1) 

07/23/2011 0:00 0.00 0.00 

07/23/2011 1:00 0.00 0.00 

07/23/2011 2:00 82.87 0.00 

07/23/2011 3:00 105.91 96.14 

07/23/2011 4:00 90.58 481.93 

07/23/2011 5:00 78.87 434.44 

07/23/2011 6:00 59.48 358.58 

07/23/2011 7:00 53.84 257.19 

07/23/2011 8:00 27.34 98.37 

07/23/2011 9:00 19.79 59.70 

07/23/2011 10:00 19.36 35.04 

07/23/2011 11:00 18.81 14.13 

07/23/2011 12:00 15.95 9.15 

07/23/2011 13:00 0.00 0.00 

07/23/2011 14:00 0.00 0.00 

07/23/2011 15:00 0.00 0.00 

07/23/2011 16:00 0.00 0.00 

07/23/2011 17:00 0.00 0.00 

07/23/2011 18:00 0.00 0.00 

07/23/2011 19:00 0.00 0.00 

07/23/2011 20:00 0.00 0.00 

07/23/2011 21:00 0.00 0.00 

07/23/2011 22:00 0.00 0.00 

07/23/2011 23:00 0.00 0.00 
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Table B-4: Discharge time series data showing backflow releases from Wilmette,  

CRCW and O'Brien outlets in April 2013 

Date/Time 
Wilmette Discharge 

(m3 s-1) 

CRCW Discharge 

(m3 s-1) 

O'Brien Discharge 

(m3 s-1) 

4/18/2013 0:00 0 139.13 0 

4/18/2013 1:00 249.81 239.47 0 

4/18/2013 2:00 499.62 288.08 0 

4/18/2013 3:00 499.62 490.01 0 

4/18/2013 4:00 499.62 1883.39 0 

4/18/2013 5:00 499.62 4571.19 1.05 

4/18/2013 6:00 499.62 4225.17 2087.50 

4/18/2013 7:00 499.62 4109.96 8345.96 

4/18/2013 8:00 499.62 3984.86 8345.63 

4/18/2013 9:00 499.62 2666.69 6259.19 

4/18/2013 10:00 499.62 4431.84 0.67 

4/18/2013 11:00 499.62 2264.02 1.08 

4/18/2013 12:00 499.62 2050.30 1.25 

4/18/2013 13:00 499.62 2605.82 1.21 

4/18/2013 14:00 499.62 1789.88 1.33 

4/18/2013 15:00 499.62 2735.33 1.36 

4/18/2013 16:00 499.62 2684.26 1.32 

4/18/2013 17:00 499.62 1215.65 1.33 

4/18/2013 18:00 374.72 1147.42 1.26 

4/18/2013 19:00 374.72 1122.88 1.20 

4/18/2013 20:00 499.62 1032.29 1.03 

4/18/2013 21:00 499.62 767.32 0.91 

4/18/2013 22:00 499.62 569.40 0.97 

4/18/2013 23:00 499.62 206.68 0.94 

4/19/2013 0:00 499.62 272.25 0.84 

4/19/2013 1:00 0 152.35 0.50 

4/19/2013 2:00 0 82.18 0.34 

4/19/2013 3:00 0 0 0.34 

4/19/2013 4:00 0 0 0.17 

4/19/2013 5:00 0 0 0 

4/19/2013 6:00 0 0 0 

4/19/2013 7:00 0 0 0 

4/19/2013 8:00 0 0 0 
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Table B-4 (cont’d) 

 

4/19/2013 9:00 0 0 0 

4/19/2013 10:00 0 0 0 

4/19/2013 11:00 0 0 0 

4/19/2013 12:00 0 0 0 
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Table B-5: Discharge time series data showing backflow releases from Wilmette  

and CRCW outlets in October 2017 

Date/Time 
Wilmette Discharge 

(m3 s-1) 

CRCW Discharge 

(m3 s-1) 

10/14/2017 12:00 0.00 0.00 

10/14/2017 13:00 8.83 15.26 

10/14/2017 14:00 30.88 91.60 

10/14/2017 15:00 26.48 106.87 

10/14/2017 16:00 11.03 106.87 

10/14/2017 17:00 10.59 99.24 

10/14/2017 18:00 10.59 68.71 

10/14/2017 19:00 10.59 45.79 

10/14/2017 20:00 11.69 45.79 

10/14/2017 21:00 18.87 152.67 

10/14/2017 22:00 19.20 229.00 

10/14/2017 23:00 19.20 229.00 

10/15/2017 0:00 19.20 229.00 

10/15/2017 1:00 19.20 229.00 

10/15/2017 2:00 19.20 229.00 

10/15/2017 3:00 15.22 229.00 

10/15/2017 4:00 13.22 167.93 

10/15/2017 5:00 13.22 106.87 

10/15/2017 6:00 13.22 106.87 

10/15/2017 7:00 11.02 73.80 

10/15/2017 8:00 6.63 27.98 

10/15/2017 9:00 2.21 0.00 

10/15/2017 10:00 0.00 0.00 

10/15/2017 11:00 0.00 0.00 

10/15/2017 12:00 0.00 0.00 
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APPENDIX C: 

 

Plots Comparing Modeled and Observed E. coli at Chicago beaches in 2010 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-1: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at Rogers Park beach 
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Figure C-2: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at Howard beach 

Figure C-3: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at Marion Mahony Griffin beach 
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Figure C-4: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at Kathy Osterman beach 

Figure C-5: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at Montrose beach 
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Figure C-6: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at Oak St. beach 

Figure C-7: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at Ohio St. beach 
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Figure C-8: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at 12th St. beach 

Figure C-9: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at Margaret T. Burroughs beach 
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Figure C-10: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2010 backflow event at 63rd St. beach 
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APPENDIX D: 

 

Plots Comparing Modeled and Observed E. coli at Chicago beaches in 2011 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D-1: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at Marion Mahony Griffin beach 
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Figure D-2: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at Leone beach 

Figure D-3: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at Hartigan beach 
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Figure D-4: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at Kathy Osterman beach 

Figure D-5: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at Foster beach 
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Figure D-6: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at Oak St. beach 

Figure D-7: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at Ohio St. beach 
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Figure D-8: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at 12th St. beach 

Figure D-9: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at Margaret T. Burroughs beach 
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Figure D-10: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at 57th St. beach 

Figure D-11: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at 63rd St. beach 
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Figure D-12: Validation plot comparing modeled (blue line) and observed (red circles) E. coli 

concentrations during and after the July 2011 backflow event at South Shore beach 
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