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ABSTRACT

NUMERICAL SIMULATIONS OF PERMEABLE-WALL TURBULENCE WITH
APPLICATIONS IN HYPORHEIC EXCHANGE

By

Guangchen Shen

In aquatic environments such as rivers, the exchange of solutes across the interface between the sedi-

ment and the overlying water plays a significant role in controlling biogeochemical processes, which

are important for an array of topics from nutrient transport and cycling to release of greenhouse

gases such as nitrous oxide. Most previous studies on characterizing this exchange are focused on

flows with sediment bedforms much larger than individual sediment grains. The physics at the

pore or grain scale were typically not resolved. The effects of grain roughness on the sediment

bed surface on the transport across the sediment-water interface (SWI), isolated from those of bed

permeability and bedforms, are not well understood. In this work, direct numerical simulations

(DNS) of the connected system of turbulent open-channel flow and pore-resolved sediment flow

are carried out, with different arrangements of grains at the sediment surface.

First, the statistics and structure of the mean flow and turbulence are characterized in flows

with a friction Reynolds number of 395 and a permeability Reynolds number of 2.6 over sediments

with either regular or random grain packing on a macroscopically flat bed. It is shown that, even

in the absence of any bedform, the subtle details of grain roughness alone can significantly affect

the dynamics of turbulence and the time-mean flow. Such effects translate to large differences in

penetration depths, apparent permeabilities, vertical mass fluxes and subsurface flow paths. The

less organized distribution of mean recirculation regions near the interface with a random packing

leads to a more isotropic form-induced stress tensor, which plays a significant role in increasing

mixing and wall-normal exchange of mass and momentum.

Next, the mass exchange is characterized in detail for macroscopically flat river beds, focusing

on the transit time—the time spent by a fluid particle in the sediment—which determines the role

of hyporheic zones in transforming the chemical signature of stream water. Results show that bed



roughness leads to interfacial pressure variations, which induces deep subsurface flow paths that

yield a transit time distribution with a heavy tail. Furthermore, the addition of molecular diffusion

is accounted for and is shown to increase transit times regardless of roughness texture. The results

demonstrate that particle roughness on a macroscopically flat sediment bed can induce significant

hyporheic exchange that is fundamentally similar to that induced by bedforms.

Lastly, to identify possible interaction between the effect of grain roughness and that of a

bedform, DNSs of open channels with a friction Reynolds number of 1580 on a porous dune

with two different roughnesses are conducted. Results show that the roughness modifies the wall

friction, shear penetration depth and pressure distribution along the interface. Unlike the case

on a macroscopically flat bed where the random roughness induces more intense roughness-scale

pressure variation than the regular roughness, over a bedform the random roughness reduces the

macroscopic pressure distribution at the interface instead due to its higher hydrodynamic drag.

The weaker pressure variation in turn weakens the pumping and shortens transit times. The

results highlight the nonlinear interaction between the effects of bed morphological features of

different scales. Pore-resolved simulations such as the ones herein can be used in the future in

direct characterization of pore-scale dynamics to provide insights for pore-unresolved modeling of

biogeochemical processes.
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CHAPTER 1

INTRODUCTION

In this Chapter, first the hyporheic exchange and its importance are introduced. Then a detailed

literature review is conducted and limitations of the current understanding of the exchange processes

are discussed. The research objectives are proposed based on present limitations and the studies in

this dissertation to address these goals are outlined.

1.1 Hyporheic exchange

Aquatic environments such as rivers form an important part of the water circulation on earth. A

typical river flow can be considered as a turbulent water flow bounded by permeable sediment

beds at the sides and the bottom, as shown in Fig. 1.1 (a). Vertical and lateral exchanges of water

Figure 1.1: Perspectives in (a) reach scale (Boano et al., 2014), (b) local scale (Stonedahl et al.,
2010) and (c) pore scale (Voermans et al., 2018) of surface-subsurface water interactions and
hyporheic exchange.
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and solutes with the more slowly moving flow in the sediments are important. Specifically, the

sediments slow down the overall movement of solutes and increase opportunities for biogeochemical

processing (Boano et al., 2014). The hyporheic zone is the portion of sediments surrounding the

stream that is permeated with stream water. The exchange of water, solutes and momentum between

the subsurface and the surface flows is called the hyporheic exchange (Bencala, 2000; Wondzell,

2006). Hyporheic exchange plays a significant role in controlling biogeochemical processes in

aquatic environments. As shown in Fig. 1.1, the interfacial exchange phenomena occur over a

wide range of spatial and temporal scales. The hyporheic exchange is affected by a number of

key processes and parameters including sediment roughness, grain size (Malard et al., 2002),

bedform, bed permeability, bed heterogeneity, water flow velocity and unsteadiness (Boano et al.,

2014; Cardenas, 2015) and directly influences the fluxes of water and solutes (nutrients, dissolved

organic carbon and oxygen, etc.) by transferring momentum and energy across the sediment-water

interface.

1.2 Literature Review

1.2.1 Turbulence across the sediment-water interface

At a fundamental level, a river flow can be modeled as a turbulent open channel flow of water

overlaying a porous wall. A review of existing studies on turbulence bounded by permeable walls

is provided next.

Studies of turbulent flow over permeable beds have addressed the effect of wall permeability

on canonical wall turbulence (such as a fully developed turbulent channel flow). These include, for

examples, experimental studies of Zagni and Smith (1976), Kong and Schetz (1982), Zippe and Graf

(1983), Manes et al. (2011), Kim et al. (2018) and numerical studies of Kuwata and Suga (2016a),

Kuwata and Suga (2016b), Fang et al. (2018). Wall permeability is shown to significantly affect the

dynamics and statistics of turbulence. Specifically, the effects include a higher friction coefficient,

a permeability-dependent von Kármán constant (𝜅), reduced streamwise velocity fluctuations, and

augmented wall-normal and spanwise velocity fluctuations due to a relaxation of wall blocking.
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Another focus of study has been on the effects of heterogeneous permeability inside the sediment

(for example, see Laube et al. (2018)). A few studies emphasized the importance of the uppermost

sediment layer on the transport across the interface (for example, see Kalbus et al. (2009)).

The interfacial flows can be grouped into three regimes (Suga et al., 2011; Voermans et al., 2017)

according to the type of dominant flow processes. Such categorization is based on the permeability

Reynolds number, 𝑅𝑒𝐾 = 𝑢𝜏
√
𝐾/𝜈 (where 𝑢𝜏 is the friction velocity, 𝐾 is the permeability, and

𝜈 is the kinematic viscosity): (1) an effectively impermeable regime (𝑅𝑒𝐾 ≪ 1) where attached

eddies dominate near-wall dynamics, displaying a broad range of turbulent scales (Cossu and

Hwang, 2017); (2) a highly permeable regime (𝑅𝑒𝐾 ≫ 1) where the interface is characterized by a

distinct inflection point of the mean velocity and a predictable frequency of coherent motions due

to Kelvin-Helmholtz instability; and (3) a transitional regime (𝑅𝑒𝐾 ∼ 𝑜(1)), where characteristics

of both limiting regimes exist. The current work is focused on a scenario similar to river flows over

sand beds, i.e., turbulent water flows over sediments with 𝑅𝑒𝐾 ∼ 𝑜(1).

A challenge in understanding the momentum and mass transport across the sediment-water

interface is associated with the lack of detailed information on the fluid dynamics at the scale of

sediment grains (or particles), especially near the bed surface. This is due to both the difficulty of

experimental measurements at the scale of sediment grains as well as the high cost of numerical

simulations needed to resolve the full spectrum of scales from individual grains to bedforms—

ripples, dunes, pool-riffle structures, etc. The wall-normal protuberances formed by individual

grains are characterized as bed roughness (or particle roughness). This is to be differentiated

from the protuberances of bed forms, which are formed by clusters of grains and are typically

orders-of-magnitude larger compared to the length scale associated with grains.

The bed roughness influences properties of time-average flow and turbulence over permeable

walls (Nikora et al., 1998). Many rough, permeable-bed flow studies focused on the role of

permeability using similarly structured sediments that vary in particle size; in this case, it is

difficult to separate the effect of bed roughness from that of permeability, except for cases with very

small particle sizes (Breugem et al., 2006) or cases where the grain packing structure is modified
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inside the bed (Fang et al., 2018) only. Manes et al. (2009) compared permeable and impermeable

walls with the same roughness and showed that the penetration of turbulent flows into the porous

bed leads to higher flow resistance than an impermeable rough bed. Even in the fully rough regime,

the friction factor for the permeable bed increases with Reynolds number; this is different from an

impermeable-bed turbulent flow which, in the region near the wall, is Reynolds number independent

in the fully rough regime (Jiménez, 2004).

The understanding on the effect of roughness isolated from that of permeability is limited.

Several existing studies are summarized below. Padhi et al. (2018a,b) experimentally compared

two gravel beds with different bed surface roughnesses. They observed that the bed with streamwise

oriented gravels which had a higher bed surface roughness generates significantly higher Reynolds

stresses, form-induced stresses and turbulent kinetic energy (TKE) flux than the sediment with

randomly oriented gravels . Han et al. (2018) conducted large-eddy simulations (LES) of solute

transport on synthesized sediments consisting of regularly packed spheres with a layer of small

spheres above to simulate roughness in different regimes of rough-walled turbulence. They found

that a high roughness Reynolds number (𝑘𝑢𝜏/𝜈, where 𝑘 is the roughness height) leads to disruption

of the diffusive layer and induces turbulent motions that more efficiently transport the solute than

does a lower roughness Reynolds number. Kim et al. (2020) experimentally investigated surface and

subsurface flows with idealized permeable beds made of cubically packed spheres. Two cases are

considered with one exhibiting a smooth interface while the other that embodied a hemispherical

surface topography at the SWI. The results show that the presence of bed roughness intensifies

the strength and penetration of flow into the permeable bed modulated by large-scale structures

in the surface flow, and linked to possible roughness-formed channelling effects and shedding of

smaller-scale flow structures from the roughness elements.

While most existing studies focusing on the effects of sediment bed roughness were conducted

using regularly packed particles (Manes et al., 2009; Kim et al., 2017; Fang et al., 2018; Kim et al.,

2020), natural permeable bed roughnesses are characterized by random shape, orientation, spacing

and arrangement of particles. These irregularities potentially affect the pattern and intensity of
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turbulence, as well as the transport characteristics across the interface.

1.2.2 Conservative-solute transport in the sediment

In addition to the roughness effects on the water transport mentioned above, the transport of

solutes—such as dissolved oxygen and nitrate—across the sediment-water interface may be also

important. The role of hyporheic zones in transforming the chemical signature of stream water de-

pends, among other factors, on transport time scales often described using transit time distributions

(TTDs) and residence time distributions (RTDs). For a solute mass pulse entering the river bed

at time 𝑡, the residence time 𝜏 is the age of a water parcel in the bed (Elliott and Brooks, 1997b).

Transit time, on the other hand, is the residence time (or water age) at the time a parcel of water

exits the system, and therefore represents the maximum residence time (or age) that can be attained

by a water parcel for a given subsurface flow path. RTDs and TTDs are related and they have both

been extensively used in hyporheic zone research. For example, residence times have been used to

evaluate the ability of the hyporheic zone to process nutrients (Boano et al., 2014) and to classify

hyporheic zones (Harvey et al., 2013). Transit times have been used to understand the kinematics

of age mixing processes in advection-dispersion models (Benettin et al., 2013), as well as relations

between flow, storage and chloride transport in a small watershed (Benettin et al., 2015; Harman,

2015), to infer changes in water cycle dynamics in managed landscapes (Danesh-Yazdi et al., 2016)

and to understand biogeochemical reactions in a dam-regulated river corridor (Song et al., 2020).

Median transit times have been used to assess the reaction efficiency of hyporheic flows by defining

a Damköhler number representing the ratio of transport and biogeochemical time scales (Song

et al., 2020).

Bed geometry and morphology exert a strong influence on exchange fluxes and transit times.

Bed geometries are often multiscale, with both large- and small-scale features contributing to the

exchange (Persson et al., 2005; Wörman et al., 2006; Aubeneau et al., 2015; Stubbs et al., 2018;

Roche et al., 2018; Lee et al., 2020). For example, large-scale features such as bars that scale

with bankfull depth and channel width, relatively small-scale features such as bedforms, as well

5



as even smaller-scale roughness details at the scale of individual grains all influence exchange

fluxes. Existing studies on flow and residence/transit times are typically focused on the effects of

morphological features such as ripples and dunes that are orders of magnitude larger than individual

sediment grains. Elliott and Brooks (1997a,b) conducted analytical studies and lab experiments on

the exchange with permeable bedforms. They summarized that bedforms “turnover”. Pumping is

the movement of fluid through the bed induced by static pressure variations over bedforms. Turnover

occurs as a moving bedform trap and releases interstitial fluid in the bed. The main mechanism

driving mass exchange when bedforms are stationary are based on the process of pumping. Elliott

and Brooks (1997b) (henceforth referred to as EB97) analytically solved for the velocity field and

residence time for an ideal subsurface flow model with a sinusoidal bedform. The solutions were

based on a two-dimensional (2D) Darcy equation with prescribed pressure distribution at the bed

surface; these solutions described the pumping mechanism of the exchange. The time a fluid

particle spends along its subsurface flow path was calculated using a numerical particle tracking

approach. For stationary bedforms, it was observed that the sinusoidal head pumping model (Elliott

and Brooks, 1997a) can only be used in the initial stage and underpredicts the mass exchange in

the later stage. They inferred that additional exchange may be related to bed inhomogeneity or

irregular variations in pressure at the bed surface which are not related to bedforms. Such effects are

likely to be more pronounced in actual river flows. The model of EB97 considered only advection

(by the spatially and temporally averaged Darcy velocity) for flow path tracking, while in Elliott

(1991) additional mixing mechanisms (turbulent mixing or molecular diffusion of solutes) were

also accounted for by using a random walk method. In all the above methods, a constant solute

concentration is assumed in the fluid column; in other words, the flow is assumed well mixed. It

is probably different in an actual river flow, as the bed morphology is likely to induced spatial

heterogeneity of local solute concentration.

Examples of the application of the Darcy model for subsurface flow calculation and particle

tracking to estimate residence time based on advective exchange (EB97) include the following,

among many others. Packman et al. (2000) applied a model of pumping exchange to colloid
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transport and filtration. They calculated the residence time by superimposing advective transport

and particle settling in the bed and included the effect of physicochemical filtration by bed sediment

also. Wörman et al. (2002) developed a framework to integrate the residence time estimation

based on the method of Packman et al. (2000) into a model of longitudinal solute transport in

streams. Many studies, such as Salehin et al. (2004),Sawyer and Cardenas (2009) and Laube

et al. (2018), characterized hyporheic exchange within heterogeneous streambeds. It was shown

that, in a heterogeneous bed compared to a homogeneous one, more shorter and faster preferential

hyporheic flow paths are induced, leading to more rapid net hyporheic exchange and a shallower

hyporheic zone. Sawyer and Cardenas (2009) numerically studied the heterogeneity of cross-bedded

sediment in which sedimentary structures are roughly horizontal units composed of inclined layers.

The results show that the permeability structures do impact the distribution of residence times.

Specifically, permeability heterogeneity can increase the proportion of short or long residence

times. The shape of the residence time distribution appears to be sensitive to permeability patterns

near the sediment-water interface. However, the tails of the residence time distributions follow

a power law, regardless of specific permeability structure. Laube et al. (2018) further developed

a modeling strategy for an equivalent conductivity tensor for heterogenous sediments. Recently,

several studies analyzed sediment flows using pore-scale simulation data (Sun et al., 2015; Kim

and Kang, 2020). For example, Kim and Kang (2020) studied 2D pore-scale transport phenomena

across a surface-subsurface interface, based on a Reynolds-averaged Navier-Stokes (RANS) closure.

Most of the studies summarized above quantified residence time using ideal conceptual models

of bedform features (such as ripples or dunes). Detailed aspects of solute transport near the bed,

including turbulent mixing and pore-scale dynamics, are rarely studied. At the “micro” scale of

pore flow, the effects of bed roughness formed by the uppermost-layer of sediment grains and their

arrangement on biogeochemical processes are likely to be important, as the benthic biolayer where

important nutrient or pollutant processing occurs is limited to a thin layer (of 2-5 cm) beneath the

streambed surface (Battin et al., 2008; Harvey et al., 2013; Knapp et al., 2017). In addition, in a

warmer climate streambed roughness is expected to increase as a result of enhanced bioturbation—
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the effect of small animals, such as chironomid larvae and tubificid worms, within the sediment

bed as they rework the sediment (Baranov et al., 2016; Dairain et al., 2020).

The fundamental effects of wall roughness on turbulence were predominantly studied for flows

over impermeable walls (see reviews by Jiménez (2004) and Flack and Schultz (2014)). Typically,

roughness is categorized as bed height variations in the range between 5𝛿𝜈 and 0.1𝛿 (where

𝛿𝜈 = 𝜈/𝑢𝜏 is the viscous length scale and 𝛿 is the turbulent boundary layer thickness). Roughness

affects turbulence by increasing wall friction and enhancing turbulence production near the wall.

It is known to enhance the momentum transfer toward the wall (Jiménez, 2004) and dynamically

modify the near-wall flow (Raupach and Shaw, 1982). The effects become more important in

non-equilibrium flows (Ghodke and Apte, 2016; Yuan and Piomelli, 2014a, 2015; Mangavelli

et al., 2021) where streamwise mean pressure gradients—which can be induced by the presence of

bedforms—are significant. In the context of turbulent flow bounded by a permeable wall (such as

the region near a sediment-water interface), bed roughness likely affects the flow near the bed and

consequently the mass exchange also.

Some insights into how small-scale features of bed topography (e.g., grain-scale irregularities)

may affect the exchange were provided by a few studies on multiscale or fractal bed topographies.

Aubeneau et al. (2015) performed laboratory measurements of solute transport with sand beds

under different flow velocities. They found that fractal properties of the bed topography affect

solute residence time distributions. Larger bedforms induced more hyporheic exchange but shorter

residence times, as shown by the steeper slope of the washout breakthrough curve. He et al.

(2019) applied LES to study the effects of roughness Reynolds number on scalar transport at

SWI. They showed that from hydraulically smooth regime (0 < 𝑅𝑒𝑘 ≤ 5, where 𝑅𝑒𝑘 is the

roughness Reynolds number) to the transitionally rough regime (5 < 𝑅𝑒 ≤ 70), the dominant

transport mechanism at the interface changes from molecular diffusion to turbulent diffusion. In

addition, Lee et al. (2020) analyzed the effect of fractal properties of the bed topography on

interfacial flux and residence time, based on sequentially coupled simulations using RANS for the

channel flow and a Darcy model for the subsurface flow. Residence times were calculated using the
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random walk particle tracking method. They observed that the interfacial flux increases with the

fractal dimension of the bed (i.e., prominence of smaller topographical features). In such coupled

surface-subsurface model framework (used also by Cardenas and Wilson (2007), Cardenas et al.

(2008), and Chen et al. (2015), for examples), the two sets of governing equations are coupled

through the pressure distribution along the sediment-water interface. In this case, the accuracy

of RANS pressure solution along the interface dictates the accuracy of the coupled simulation.

Given the difficulties of RANS simulations in predicting accurately the near-wall flow and flow

separation in strongly non-equilibrium wall-bounded turbulence (Yuan et al., 2014; Dutta et al.,

2016), pore-resolved simulation or measurement data are needed to characterize near-wall dynamics

and provide validation for pore-unresolved modeling.

1.3 Research objectives and outline

The goal of this dissertation is to analyze the effect of morphological details of sediment beds on

interfacial turbulence and solute transport in turbulent flows that are representative of river flows

on sand beds. To this end, three-dimensional DNS simulations are carried out with synthesized

sediments. Both the flow in the water column and the that inside the sediment pores are resolved.

Specific questions are:

1. How different are the effects of roughness on a flow over porous wall versus its effects on

that over a non-permeable wall? How does sediment bed roughness on a macroscopically

flat bed affect the turbulence statistics and structure?

2. How does bed roughness on a macroscopically flat bed influence fluid parcel transit times in

the bed? Does small-scale bed roughness lead to significant fluid volumetric flux normal to

the interface?

3. To what extent will the grain-scale bed roughness affect the hyporheic exchange with the

presence of bedform?

The outline of this dissertation is as follows.
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• Chapter 2 describes the methodologies of the sediment synthesis with two different rough-

nesses, regular and random, and the numerical simulations. Simulation parameters are

introduced. The simulations are then validated against existing experimental measurements.

Results on how roughness on a flat bed, isolated from the effect of bed permeability, affects

the interfacial turbulent flow are discussed.

• Chapter 3 introduces the methodology to calculate the transit time distribution and compares

the transit time distribution for the two different roughnesses. The effect of molecular

diffusion in the exchange is also quantified.

• Chapter 4 focuses on turbulent flows over a bed with both bedform and roughness. The

bedform synthesis and simulation parameters are introduced. The effects of bed roughness

geometry on velocities, pressure and transit time are compared. Comparisons are made with

flat-bed results discussed in Chapters 3 and 4, to show a different role played by the roughness

when a bedform is present.

• Chapter 5 summarizes the major findings and contributions, and describes the plan for future

work.
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CHAPTER 2

DIRECT NUMERICAL SIMULATIONS OF TURBULENCE AND HYPORHEIC
MIXING NEAR SEDIMENT–WATER INTERFACES

2.1 Introduction

The goal of this Chapter is to characterize the detailed effects of different bed roughnesses on

aspects of turbulence that are responsible for scalar and momentum transfer, including averaged

statistics and flow structural information. Specific questions include the following:

(1) How different are the roughness characteristics corresponding to regular and random ar-

rangements of sediment grains in the top layer?

(2) How does the bed roughness texture influence the dynamics at the individual grain level

and the overall interfacial exchange of mass and momentum? Specifically, how important are the

additional, form-induced terms in the momentum and stress balances?

To address the above questions, we perform direct numerical simulations (DNS) of fully-

developed turbulent open-channel flows over grain-resolved permeable beds with an identical bulk

permeability (below the interface region) but different roughnesses produced by either random or

regular grain arrangements at the bed surface. The Reynolds numbers based on the open-channel

height (𝑅𝑒𝜏 = 𝑢𝜏𝛿/𝜈, where 𝛿 is the open-channel height) and on the permeability (𝑅𝑒𝐾) are kept

constant. This chapter is organized as follows. Section 2.2 introduces the methodology of the simu-

lations and porous-bed synthesis and compares the two different interfaces generated. Section 2.3.1

validates the random sediment synthesis by comparing with the experimental measurements of Vo-

ermans et al. (2017). Section 2.3.2 compares the turbulence statistics and structure as affected

by the differences in the interface. Lastly, Section 2.3.3 discusses implications for the hyporheic

exchange mechanisms.
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2.2 Methodology

2.2.1 Governing equations

The incompressible flow of a Newtonian fluid is governed by the equations of conservation of mass

and momentum:

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (2.1)

𝜕𝑢 𝑗

𝜕𝑡
+
𝜕𝑢𝑖𝑢 𝑗

𝜕𝑥𝑖
= − 𝜕𝑃

𝜕𝑥 𝑗
+ 𝜈∇2𝑢 𝑗 + 𝐹𝑗 . (2.2)

Here, 𝑥1, 𝑥2 and 𝑥3 (or 𝑥, 𝑦 and 𝑧) are, respectively, the streamwise, wall-normal and spanwise

directions, and 𝑢 𝑗 (or 𝑢, 𝑣 and 𝑤) are the velocity components in those directions; 𝑃 = 𝑝/𝜌

is the modified pressure, where 𝜌 the density. The term 𝐹𝑗 in Equation (2.2) is a body force

imposed by an immersed boundary method (IBM) to impose no-slip boundary conditions on the

fluid-solid interface. The grain geometry is well-resolved by the grid. The IBM is based on the

volume-of-fluid approach (Scotti, 2006); its detailed implementation and validation are provided

in Yuan and Piomelli (2014b,c). The 𝐹𝑖 values are negligible except in the cells that are cut by the

immersed solid boundaries. The simulations are performed using a well-validated code that solves

the governing equations (2.1) and (2.2) on a staggered grid using second-order, central differences

for all terms, semi-implicit time advancement (with second-order Adams-Bashforth scheme for the

wall-normal diffusion term) and MPI parallelization (Keating et al., 2004).

Fully developed open-channel flows are simulated with symmetric boundary conditions applied

at both top and bottom boundaries of the simulation domain and periodic conditions are applied in

𝑥 and 𝑧. A constant pressure gradient is used to drive the flow.

In the sediment, the presence of grains leads to spatial heterogeneity of the time-averaged

variables; these time-averaged fluctuations are separated from turbulent fluctuations using the

double-averaging (DA) decomposition introduced by Raupach and Shaw (1982),

𝜙(𝑥, 𝑡) = ⟨𝜙⟩(𝑦) + 𝜙(𝑥) + 𝜙′(𝑥, 𝑡), (2.3)
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Interface type 𝜃𝑎𝑣𝑔 𝑅𝑒𝐾 𝑅𝑒𝜏 𝐷/𝛿 𝐷+ 𝐻𝑠/𝛿 (𝐿𝑥 , 𝐿𝑧)/𝛿 (Δ𝑥+, Δ𝑦+min, Δ𝑧
+)

Case 1 Random 0.41 2.56 178 0.43 76 2.6 (12, 6) (2.0, 1.5, 2.0)
Case 2 Regular 0.41 2.62 395 0.20 79 0.8 (6, 3) (1.5, 0.19, 1.5)
Case 3 Random 0.41 2.62 395 0.20 79 0.8 (6, 3) (1.5, 0.19, 1.5)

Table 2.1: Summary of simulations. 𝜃𝑎𝑣𝑔 is the average porosity in the bulk of the sediment; 𝐷 is
the sphere diameter; 𝐻𝑠 is the sediment depth; 𝐿𝑥𝑖 is the domain size in 𝑥𝑖.

where 𝜙 is an instantaneous flow variable, ⟨𝜙⟩ is the intrinsic spatial average in the (𝑥, 𝑧)-plane,

⟨𝜙⟩ = 1/𝐴 𝑓
∫
𝐴 𝑓
𝜙𝑑𝐴 (where 𝐴 𝑓 is the area occupied by fluid), 𝜙 is the temporal average, 𝜙′ = 𝜙− 𝜙

is the instantaneous turbulent fluctuation, and 𝜙 = 𝜙− ⟨𝜙⟩ is the form-induced fluctuation. The area

averaging carried out in the total area of fluid and solid, 𝐴𝑜, is termed superficial area averaging,

denoted by ⟨𝜙⟩𝑠 = 1/𝐴𝑜
∫
𝐴 𝑓
𝜙𝑑𝐴; the two averaging approaches satisfy the relation ⟨⟩𝑠 = 𝜃 (𝑦)⟨⟩,

where 𝜃 (𝑦) is the plane-averaged porosity at elevation 𝑦,

𝜃 (𝑦) =
𝐴 𝑓 (𝑦)
𝐴𝑜

. (2.4)

The plane-averaged total drag 𝐹𝐷 (𝑦), exerted by the grains on the fluid (including both viscous

and pressure drag contributions), is calculated using the IBM body force, 𝐹1:

𝐹𝐷 (𝑦) =
𝜌

𝐿𝑥𝐿𝑧

∫
𝐴𝑜

𝐹1(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑧, (2.5)

where 𝐿𝑥𝑖 is the domain size in 𝑥𝑖. For a detailed explanation of this method, see Yuan and Piomelli

(2014b). The friction velocity, 𝑢𝜏, is calculated based on the maximum value of the total stress,

which are the sum of the the viscous shear stress, turbulent shear stress and the form-induced shear

stress.

2.2.2 Parameters

The detailed simulation parameters for all cases are listed in Table 2.1. Two types of SWI – regular

and random interfaces – are simulated; their definitions are given in Section 2.2.3. Case 1 is used

in Section 2.3.1 to validate the synthesis of the random interface generated with experimental data.
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Cases 2 and 3 share a higher friction Reynolds number than that in Case 1; these two cases are used

to compare the effects of different interface geometries on the turbulent flow in Section 2.3.2.

In Table 2.1, 𝜃𝑎𝑣𝑔 is the volume-averaged porosity inside the sediment; its value is kept the same

for all cases. The bulk permeability, 𝐾 , is estimated using the Kozeny-Carman model (Kozeny,

1927; C. Carman, 1937),

𝐾 =
𝜃3
𝑎𝑣𝑔

180(1 − 𝜃𝑎𝑣𝑔)2
𝐷2, (2.6)

where 𝐷 is the grain diameter. The Kozeny-Carman model has been widely used for multiple types

of artificially-generated packed beds, for example, by Voermans et al. (2017) for a random packing

of spheres and by Fang et al. (2018) for periodic arrays of spheres. The elevation of 𝑦 = 0 is chosen

at the sediment crest, for ease of simulation domain setup. However, 𝑦 = 0 is not used as the virtual

origin of the 𝑦 axis for comparison of flow statistics. Instead, the virtual origin is chosen at the

zero-plane displacement, −𝑑, which is obtained by fitting the DA velocity to the logarithmic law

(shown in Section 2.3.2). 𝐻𝑠 is the sediment depth measured from the sediment crest to the bottom

boundary of the simulation domain. Figure 2.1(a,b) show the simulation domain and the relation

between various lengths and the 𝑦 axis.

The domain sizes for Case 1 in the 𝑥 and 𝑧 directions are 12𝛿 and 6𝛿, respectively. For

Cases 2 and 3 with higher 𝑅𝑒𝜏 values, smaller domain sizes are used. Such domain sizes are

considered sufficiently large for the following reasons. (1) The streamwise and spanwise two-point

autocorrelations of the streamwise turbulent velocity fluctuations, calculated at 𝑦 ≤ 0.5𝛿, fall below

Figure 2.1: (a) Simulation domain and (b) positions of sediment crest, 𝑘𝑐, and zero-plane
displacement, 𝑑, defined in Section 2.3.2.1.
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0.1 at half the domain length or width for all cases. (2) The domain is sufficient for the sediment

domains to contain 2000 – 2500 randomly distributed grains to produce statistically converged

single-point and two-point turbulent flow statistics. A test is performed for Case 3 with a domain

size twice as large in both 𝑥 and 𝑧, which yields similar results. (3) The sediment depth, 𝐻𝑠, is

much larger than the penetration depth of turbulence into the sediment, as shown in Section 2.3.2.

The total simulation time for each case is at least 𝑇 = 25𝛿/𝑢𝜏 after the transient.

The number of grid points are 1024(𝑥) × 380(𝑦) × 512(𝑧) for Case 1 and 1536(𝑥) × 478(𝑦) ×

768(𝑧) for Cases 2 and 3. For Cases 2 and 3, we have verified that coarsening Δ𝑥+
𝑖

two-fold does

not noticeably affect the results shown in this paper. Here, superscript + indicates normalized by

viscous length scale, 𝛿𝜈 = 𝜈/𝑢𝜏. Uniform spacing of grids are used in 𝑥 and 𝑧; Δ𝑥 = Δ𝑧. The grain

geometry is resolved by 36 grid points along each direction in Case 1 and 50 grid points in Cases 2

and 3. In the 𝑦 direction, 120 grids are used to refine the grid within one diameter distance below

the crest; deeper inside the sediment, uniform Δ𝑦 same as the grid size in 𝑥 and 𝑧 is used. Above

the crest, the 𝑦 grid is stretched with finer resolution close to the interface. The minimum vertical

grid spaces Δ𝑦+min in wall units is 1.5 for Case 1 and 0.19 for Cases 2 and 3. The maximum Δ𝑦+ is

5.3 for Case 1 and 4.2 for Cases 2 and 3.

To provide further evidence that the resolution of 50 grid points per diameter captures well

the velocity distribution and forces produced by the spheres, we conducted another simulation of a

uniform flow past a single sphere with a set-up similar to Mittal et al. (2008) and compared results

to the experimental measurements of Taneda (1956). Two values of the Reynolds number based

on grain diameter, 𝐷𝑈/𝜈 (where 𝑈 is the uniform undisturbed velocity), of 75 and 100 are used.

These values are similar to or higher than the Reynolds number experienced by the spheres near

the interface in this work. Results (not shown) quantify the difference between our DNS and the

experimental results as 1-4% for the flow characteristics (separation angle, recirculation bubble size

and recirculation center location) and 1−1.5% for the drag force. The comparison gives confidence

that the results herein, especially the local mean shear layers (important for turbulence production)

and the drag force (important for form-induced-stress production (Raupach and Shaw, 1982)) are
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well captured by the spatial resolution.

2.2.3 Synthesis of porous beds

Numerical studies of permeable walls usually employ idealized models characterized by regular

packing of grains and a constant bed height due to their easy implementation. Examples include a

Cartesian grid of cubes used by Breugem and Boersma (2005), a regular packed bed of Breugem

et al. (2006), or a simple cubic packing of spheres used in Stoesser et al. (2007) and Fang et al.

(2018). Numerical approximations of natural sediments were constructed by, for example, Stubbs

et al. (2018), who used a CAD model to design and manufacture an artificial gravel riverbed

to approximate a natural bed for both experimental and numerical studies. Here, we implement

a different approach based on molecular dynamics (MD) simulations, which are widely applied

in flows through porous media with applications in materials science (Khirevich, 2011; Amadio,

2014). The simulations are carried out using the open-source code LAMMPS (Plimpton, 1995)

to generate sediments composed of randomly packed, monodisperse hard spheres. The process of

pouring hard spheres into a tank is simulated; this process is designed to reproduce the sediment

used in the experimental studies of Voermans et al. (2017) (henceforth referred to as VGI17).

Figure 2.2: Synthesized sediment beds colored by 𝑦/𝛿 with (a) the regular and (b) the random
interfaces.
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Details of the MD simulations are included in Appendix A.

Two types of distribution of the sphere-center locations of the uppermost-layer spheres are

generated: (1) regular distribution in (𝑥, 𝑧) with constant height, 𝑦, called a regular interface, and

(2) random values of both (𝑥, 𝑧) and 𝑦 directions, called a random interface. Below the interface,

sediments with both types of interface are synthesized using a random sphere distribution that is

statistically similar. The total number of spheres are 2633, 2351 and 2116, for Cases 1, 2, and 3,

separately. Figure 2.2 compares the sphere distributions in Cases 2 and 3; the difference at the

top of the sediments is apparent. These characteristics of the interface can also be expressed in

terms of the mean and variance of the permeability in the uppermost sediment layer as well as the

correlation length scales in the 𝑥 and 𝑧 directions (Section 2.2.4).

2.2.4 Geometrical comparison of the two interface types

The characteristics of the grain distributions in Cases 2 and 3 are compared. First, the plane-

averaged porosity profiles along the vertical direction are shown in Figure 2.3. In the interface

region (𝑦 ≈ 0), the random interface yields monotonically decreasing porosity with decreasing

𝑦, with an inflection point as observed in VGI17. In comparison, the regular sediment yields a

Figure 2.3: Wall-normal profiles of plane-averaged porosity profile for regular ( ) and random
( ) interfaces.
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different pattern, with large-amplitude fluctuations. This is due to the constant sphere height in the

uppermost layer. The vertically-averaged porosity inside the sediment is the same between the two

cases.

To characterize the positioning of the sediment grains located in the vicinity of the interface,

we define the local bed surface height, ℎ(𝑥, 𝑧), as the highest sphere-surface elevation at each (𝑥, 𝑧)

location. Note that this is different from using the sediment-grain center height (which would

yield constant height distribution for the regular interface). Since the penetration depths are within

one sphere diameter as shown later in Table 2.2, only sphere surfaces within one sphere diameter

distance below the crest are considered in calculating ℎ(𝑥, 𝑧). The number of top-layer spheres

identified in this way are 900 for the regular interface (Case 2) and 632 for the random interface

(Case 3). The sediment-height fluctuations, ℎ′(𝑥, 𝑧), are defined as the deviations of the local height

values ℎ(𝑥, 𝑧) from its plane-averaged value. Figure 2.4(a,b) compare ℎ′(𝑥, 𝑧) distributions in Cases

2 and 3, normalized by 𝛿. Interpolation is carried out to show a smooth variation for demonstration.

The magnitude of ℎ(𝑥, 𝑧) fluctuations can be characterized by the root-mean-square value of ℎ′, 𝜎ℎ.

The 𝜎+
ℎ

values are 17 and 23 for Cases 2 and 3, respectively. The horizontal distribution of ℎ′(𝑥, 𝑧)
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Figure 2.4: Bed surface height fluctuations for the (a) regular and (b) random interfaces. (c)
Autocorrelation of height fluctuations and Taylor micro scales.

18



is characterized here by a Taylor micro scale, 𝜆, determined from a polynomial fit of the two-point

autocorrelation 𝑅𝑥 of ℎ′, similar to the method used by Padhi et al. (2018a). 𝑅𝑥 is calculated as

𝑅𝑥 =
1
𝐴𝑜

∫
𝑥,𝑧

ℎ′(𝑥, 𝑧)ℎ′(𝑥 + 𝑟𝑥 , 𝑧)𝑑𝐴, (2.7)

where 𝑟𝑥 is the separation length in 𝑥. Figure 2.4(c) shows that 𝜆+, estimated using the two-point

correlation with streamwise separation, is 15 and 28 for Cases 2 and 3, respectively. The significant

difference in roughness length scales affects the apparent permeability in the uppermost sediment

layer, as shown in Section 2.3.3.1. The random interface is more heterogeneous with a larger mean

and variance of the apparent permeability, although the permeability in the bulk of the sediment is

the same.

The probability density functions of ℎ′(𝑥, 𝑧) are shown in Figure 2.5. Case 2 (regular) gives a

highly skewed probability distribution with a skewnwss of -2.5 and a kurtosis of 8.7, while Case

3 (random) displays a less skewed but still asymmetric distribution with a skewness of -0.075 and

kurtosis of 1.9. The skewness and a kurtosis of Case 3 are well within the ranges for gravel-beds

summarized in Nikora et al. (1998), confirming that the interface is random. These observations

show that the major differences between the sediment surfaces in Cases 2 and 3 are the larger

wall-normal and horizontal length scale for the random case. These lengths are small compared

to the grain size (𝐷+ ≈ 70); thus, such height fluctuations are considered as roughness, instead

Figure 2.5: Histogram of bed height fluctuations for the (a) regular and (b) random interfaces.
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of bedform, whose length scales are much larger than the grain scale. We have also verified

that different realizations of the random interface (obtained from separate MD simulations) share

similar geometrical characteristics of the sediment surface. For example, another realization of the

sediment in Case 1 gives matching values of 𝜎ℎ/𝐷 and 𝜆/𝐷 within 1% difference.

2.3 Results

2.3.1 Validation of sediment synthesis

To test how the random interface mimic sediment beds in natural and laboratory settings, we

compare Case 1 with the measurements of Case L12 from VGI17. The present values of 𝜃 = 0.41

and 𝑅𝑒𝐾 = 2.56 match those in VGI17 and fall in the range in real aquatic systems. To be consistent

with VGI17, in this section we define the location of 𝑦 = 0 to be the location where 𝜕2𝜃/𝜕𝑦2 = 0.

Note that for the rest of this paper, 𝑦 = 0 is defined at the sediment crest (while the virtual origin is

chosen as 𝑦 = −𝑑 for statistics comparison, as discussed in Section 2.3.2).

The comparison of the mean velocity profile 𝑈 = ⟨𝑢⟩ normalized by the DA free-surface (or

channel-half-height) flow velocity,𝑈𝛿, is shown in Figure 2.6(a). Excellent agreement is obtained.
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Figure 2.6: Comparison of (a) mean velocity and (b-d) streamwise, wall-normal and shear
components of the Reynolds stress tensor. ◦ Experiment, DNS.
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Figure 2.6(b-d) show the comparison of the turbulence intensities normalized by 𝑢𝜏. Very good

agreement is obtained and the slight differences in the outer layer (𝑦/𝛿 ≥ 0.3) are probably due

to the fact that the flow in the experiment at the measurement station is not a fully developed

open-channel flow, but resembles a spatially-developing boundary-layer flow.

The intensities of the form-induced fluctuations normalized by 𝑢𝜏 are compared in Figure 2.7.

Relatively large discrepancies are found between the present DNS and the experimental measure-

ments. This is at least partially attributed to a difference in the sampling size. The sizes of the

sediment domains are similar between the present DNS and the experiment; however, for the DNS,

the spatial averaging is carried out throughout the entire (𝑥, 𝑧) domain, while the spatial averaging

in the experiment was carried out over six lateral measurement frame positions at one streamwise

location only. The form-induced stresses have been found highly sensitive to the interface geom-

etry (Nikora et al., 2001; Fang et al., 2018). If we mimic the experimental sampling protocol by

applying the spanwise averaging procedure at six uncorrelated spanwise locations and then repeat

the procedure for different streamwise locations using the DNS data, we obtain a family of curves
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Figure 2.7: Comparison of (a) streamwise, (b) wall-normal and (c) shear component of the
form-induced stress tensor. ◦ Experiment, DNS. Black lines represent the values spatially
averaged over the entire horizontal plane; grey lines emulate the sampling used in the experiment.
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Interface 𝜅 𝑑/𝛿 𝐶 𝑓 𝛿𝑏/𝛿 𝛿∗
𝑏
/𝛿 𝛿𝑝/𝛿 𝛿∗𝑝/𝛿 𝜇ln(𝐾∗) 𝜎2

ln(𝐾∗)
Case 2 Regular 0.32 0.06 0.008 0.078 0.138 0.097 0.157 -6.472 0.005
Case 3 Random 0.33 0.11 0.013 0.055 0.165 0.117 0.227 -5.391 0.055

Table 2.2: Flow parameters for Cases 2 and 3. 𝛿𝑏 and 𝛿𝑝 are Brinkman-layer thickness and
Reynolds-stress penetration depth, both measured from 𝑦 = −𝑑; 𝛿∗

𝑏
and 𝛿∗𝑝 are the same lengths

measured from crest; 𝐾∗ is apparent permeability.
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Figure 2.8: (a) Diagnostic function for fitting the logarithmic profile and (b) DA velocity profiles
for regular ( ) and random ( ) interfaces; (red) fitted logarithmic profiles.

whose envelope provides an indication of the level of uncertainty in the experimental measure-

ments. Such a family of curves are shown by the gray lines in Figure 2.7 while the black solid lines

denotes DNS results using spatial averaging over the entire domain. The VGI17 data points fall

within the scatter.

In addition to the uncertainties arising due to sampling size, subtle differences in details of the

sphere distribution near the interface may also contribute to discrepancies in form-induced velocity

fluctuations. However, since the detailed grain-distribution characteristics are not available from

VGI17, we consider the synthesized sediment sufficiently ‘realistic’ as it reproduces quantitatively

the turbulence statistics and matches qualitatively the form-induced fluctuations. In comparison, a

sediment with a regular interface may yield flow statistics that are drastically different as described

in Sec. 2.3.2.
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2.3.2 Effects of interface irregularity on flow statistics

In this section, Cases 2 and 3 are compared to understand the effects of interface characteristics on

turbulence statistics and structure.

2.3.2.1 DA velocity and friction

The location of the zero-plane displacement, 𝑑, and the von Kármán constant, 𝜅, of the wall-bounded

flow are determined by fitting the streamwise DA velocity profile to the logarithmic law,

𝑈+ =
1
𝜅

log(𝑦 + 𝑑)+ + 𝐵, (2.8)

where 𝐵 is the intercept of the logarithmic profile. The fitting procedure is similar to the method

used by Breugem et al. (2006) and Suga et al. (2010) and is demonstrated in Figure 2.8(a). The fitted

velocity profiles are shown in Figure 2.8(b). The fitted values of 𝜅 and 𝑑 are listed in Table 2.2; these

values are close to the results (𝜅 = 0.31 − 0.32 and 𝑑/𝛿 = 0.06 − 0.1) reported by Breugem et al.

(2006), Suga et al. (2010) and Manes et al. (2011) at similar 𝑅𝑒𝐾 . It is well established that 𝜅 for

turbulence bounded by a porous wall is smaller than the corresponding value for an impermeable
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Figure 2.9: DA velocity along 𝑦 in linear scaling for regular ( ) and random ( )
interfaces. Inset magnifies the distribution at 𝑦 ≈ −𝑑.
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wall, which is usually within 5% of 0.41 for both smooth and rough walls. Despite sharing similar

𝜅 values, Cases 2 and 3 differ significantly in 𝑑. Recalling that 𝑑 is measured from the sediment

crest height, the higher 𝑑 in Case 3 is probably due to the larger variance in local sediment heights

associated with the random interface. In the following plots we offset 𝑦 by the amount of 𝑑 to

effectively collapse the logarithmic regions between the two cases.

The DA velocity profiles in linear scaling (Figure 2.9) show the differences in the velocities

near the interface. The velocity in the vicinity of the regular interface is negative with a small

magnitude. This can be related to the organized recirculation regions induced by each sphere at

the top layer (discussed in Section 2.3.2.3). This is an important observation with implications for

interfacial exchange of solutes. Also, simpler models, especially those that ignore inertial effects,

may not be able to capture these features. Such a flow pattern is also described in the conceptual

model of Pokrajac and Manes (2009). For lower 𝑦, the velocity decreases and eventually reaches

a constant, positive value inside the sediment. For the random interface, the velocity variation is

monotonic. Both velocity profiles exhibit an inflection point near the sediment crest, consistent

with observations of Manes et al. (2011); Voermans et al. (2017).

The depth of shear-layer penetration, 𝛿𝑏, is defined as the distance from the 𝑦 = −𝑑 to the 𝑦

location separating the constant-velocity region in the bed and the shear layer above. 𝛿𝑏 is also

referred to as the Brinkman-layer thickness. Here, 𝛿𝑏 is calculated in the same way as Voermans

et al. (2017), ⟨𝑢⟩𝑦+𝑑=−𝛿𝑏 = 0.01(𝑈𝑖 − 𝑈𝑝) + 𝑈𝑝, where 𝑈𝑖 is the DA velocity at 𝑦 = −𝑑 and 𝑈𝑝

is the constant velocity deep in the sediment. 𝛿𝑏 is the penetration depth measured from 𝑦 = −𝑑.

The value measured from the crest, 𝛿∗
𝑏
= 𝛿𝑏 + 𝑑, for the two cases are shown in Table 2.2, equaling

0.138𝛿 (regular case) and 0.165𝛿 (random case). They are of the same order of the grain diameter,

as also observed by Goharzadeh et al. (2005).

The friction coefficient is defined as

𝐶 𝑓 = 2
(
𝑢𝜏

𝑈𝛿

)2
. (2.9)

Table 2.2 shows that the friction coefficient on the random interface is 70% higher than the regular

one. A higher 𝐶 𝑓 for the random interface is expected as the larger interface length scales (𝜎+
ℎ

and
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𝜆+) lead to higher total drag, similar to the effects of an impermeable wall with a larger roughness

length scale.
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Figure 2.10: Components of (a) the Reynolds-stress tensor and (b) the anisotropy tensor for
regular ( ) and random ( ) interfaces.

2.3.2.2 Turbulent fluctuations

Figures 2.10(a,b) compare the Reynolds stress tensor and its anisotropy between the two cases.

The Reynolds-stress anisotropy tensor is defined as

𝑏𝑖 𝑗 =
⟨𝑢′
𝑖
𝑢′
𝑗
⟩

⟨𝑢′
𝑘
𝑢′
𝑘
⟩
−
𝛿𝑖 𝑗

3
. (2.10)

It is shown that Townsend’s wall-similarity hypothesis for a wall-bounded flow applies to the outer

layer (𝑦/𝛿 > 0.2). As 𝑦 decreases from the sediment crest, for both cases all components of the

Reynolds stress tensor are damped rapidly, together with a decrease of tensor anisotropy. In the

interface region, the random interface results in a lower Reynolds stress anisotropy with a higher

fraction of TKE residing in 𝑣′ and 𝑤′ motions.

The more isotropic turbulence near the random interface is linked to the augmented disturbance

from the sediment obstruction to the near-wall turbulent coherent structures. Figure 2.11 compares
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the contours of 𝑢′+ at the respective locations of the ⟨𝑢′2⟩ peaks in the two cases. The low-speed

streaks near the random interface are significantly shorter in wall units than those near the regular

interface due to the physical blockage from the spheres serving as roughness elements.

Figure 2.11: Contours of instantaneous 𝑢′+ in the (𝑥, 𝑧) plane at the respective ⟨𝑢′2⟩-peak
elevations for the (a) regular and (b) random interfaces.

The penetration depth of turbulent shear stress into the bed, 𝛿𝑝, is obtained from ⟨𝑢′𝑣′⟩𝑦=−𝛿𝑝 =

0.01⟨𝑢′𝑣′⟩𝑖, following Voermans et al. (2017), and shown in Table 2.2. ⟨𝑢′𝑣′⟩𝑖 is the value of ⟨𝑢′𝑣′⟩

at 𝑦 = −𝑑. 𝛿∗𝑝 is the same depth measured from the crest. The flow over the random interface

gives significantly deeper turbulence penetration, as shown by 47% higher 𝛿∗𝑝 and 20% higher in

𝛿𝑝 compared to the regular interface.

To quantitatively compare turbulent scales, the integral length scales are shown in Figure 2.12.
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Figure 2.12: Integral length scales of 𝑢′ motions along the streamwise directions for regular
( ) and random ( ) interfaces.
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It is defined as

𝐿𝑖 𝑗 ,𝑥𝑘 (𝑦) =
∫ ∞

0
𝑅𝑖 𝑗 (𝑦, △𝑟𝑘 )𝑑 (△𝑟𝑘 ), (2.11)

where

𝑅𝑖 𝑗 (𝑦, △𝑟𝑘 ) =
⟨𝑢′
𝑖
(𝑦, 𝑥𝑘 )𝑢′𝑗 (𝑦, 𝑥𝑘 + △𝑟𝑘 )⟩
𝜎𝑢𝑖 (𝑦)𝜎𝑢 𝑗

(𝑦) , (2.12)

(no summation over repeated indices). △𝑟𝑘 is the separations along the 𝑥𝑘 direction and 𝜎𝑢𝑖 (𝑦),

𝜎𝑢 𝑗
(𝑦) are the root-mean-square of turbulent fluctuations. The integration is carried out to the

value of △𝑟𝑘 at which the correlation coefficient first crosses 0.3. A threshold value between 0.3

and 0.5 is usually used to calculate the integral lengths from two-point correlation coefficients

(see, for examples, Krogstad and Antonia (1994), Christensen and Wu (2005) and Volino et al.

(2011)). It has been checked that varying this threshold from 0.2 to 0.5 would not noticeably affect

the comparison. It is shown that, for the random interface, at 𝑦 = −𝑑 the coherent motions are

more extensive in 𝑥 due to a deeper flow penetration. At the sediment crest, however, the coherent

motions are noticeably shorter in 𝑥 for the random interface, due to the disturbances of the larger

roughness height.

Farther away from the interface ((𝑦 + 𝑑)/𝛿 > 0.15), the difference in the 𝑥 integral length

between the two cases systematically increases with 𝑦, indicating a lack of Townsend’s wall-

similarity hypothesis for this flow quantity. One reason is the relatively high roughness. Jiménez

(2004) has proposed that Townsend’s hypothesis applies when the roughness height is less than

0.02𝛿. In the present study, the roughness height (measured from 𝑦 = −𝑑) is at least 0.06𝛿. Another

possible reason is the limited Reynolds number used in the present DNS. The experimental study

of Krogstad and Antonia (1994) showed a lack of similarity in the outer-layer 𝐿11 in 𝑥 between a

smooth-wall and a rough-wall turbulent boundary layer flow. However, a repeated experiment of

boundary layer flows by Krogstad and Efros (2012) at a higher Reynolds number indicated reduced

discrepancy in the outer-layer 𝐿11.
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2.3.2.3 Form-induced fluctuations

The form-induced stresses are shown in Figure 2.13. The peak values of all components are much

smaller than the corresponding Reynolds stresses, consistent with observations of Manes et al.

(2009), Voermans et al. (2017) and Fang et al. (2018). The streamwise form-induced stress near

the regular interface region is concentrated in a narrower layer near the crest elevation with a much

higher peak value. This is due to the vertical alignment of the wake regions of the grains as shown

in Figures 2.14(b,c). Large values of ⟨�̃�2⟩ are found in the troughs of the top sediment surface and

in the wake regions of the surface protuberances. Since these regions are located in a narrow layer

near the crest, the distribution of ⟨�̃�2⟩ is narrower with a larger peak. In contrast, Figure 2.15 shows

that, for the random interface the mean recirculation regions can reach much larger sizes and that

the penetration of the time-mean flow is much deeper. In addition, ⟨̃𝑣2⟩, ⟨𝑤2⟩ and ⟨�̃� �̃�⟩ are higher

near the random interface. This may be explained by the higher spatial variation of �̃� associated
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Figure 2.13: Components of the form-induced stress tensor: (a) streamwise, (b) wall-normal and
(c) spanwise components, for regular ( ) and random ( ) interfaces.
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with the disordered blockage, which leads to more intense �̃� and 𝑤 through continuity.

Figure 2.14: (a) Time-averaged streamlines for the regular interface. (b) Streamlines on Slice A
(𝑥 − 𝑦 plane across the crests of the grains). (c) Streamlines distribution on Slice B (𝑥 − 𝑦 plane
across the valley between two rows of grains). Dash lines indicate 𝑦 = −𝑑.

To analyze the importance of form-induced stresses to the mean momentum balance, we

compare the magnitudes of the various shear stresses in Figure 2.16. For the regular interface, the

form-induced shear stress is negligible; the viscous shear stress contributes significantly to the total

shear stress at the sediment crest. However, for the random interface the viscous shear is weaker

due to the milder DA velocity gradient associated with the thicker shear layer; a much stronger

Figure 2.15: (a) Time-averaged streamlines for the random interface. (b) and (c) show streamlines
on two 𝑥 − 𝑦 planes, Slice C and Slice D. Dash lines indicate 𝑦 = −𝑑.
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form-induced stress is present.
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Figure 2.16: Shear stresses for cases with (a) regular and (b) random interfaces: Reynolds
shear stress, viscous shear stress and (red) form-induced shear stress.

It is important to note that, in the vicinity of the random interface, the form-induced shear

stress reaches a similar magnitude of the Reynolds shear stress (Figure 2.16(b)). The fact that

the form-induced stress potentially affects the DA velocity near the interface and that it strongly

depends on the interface geometry calls for a systematic study of the generation of the form-induced

stresses; however, this is beyond the scope of the present work.

2.3.2.4 Reynolds-stress budgets

The budget equations of the normal Reynolds stresses, ⟨𝑢′2𝛼 ⟩𝑠, can be written as (Raupach and Shaw,

1982; Mignot et al., 2009; Yuan and Jouybari, 2018)

0 = −2⟨𝑢′𝛼𝑣′⟩𝑠
𝜕⟨𝑢𝛼⟩
𝜕𝑦︸               ︷︷               ︸

𝑃𝑠

−2⟨𝑢′𝛼𝑢′𝑗 ⟩𝑠
〈
𝜕�̃�𝛼

𝜕𝑥 𝑗

〉
︸                 ︷︷                 ︸

𝑃𝑚

−2
〈�𝑢′𝛼𝑢′𝑗 𝜕�̃�𝛼𝜕𝑥 𝑗

〉
𝑠︸              ︷︷              ︸

𝑃𝑤

−
〈
𝜕

𝜕𝑥 𝑗
�𝑢′𝛼𝑢′𝛼�̃� 𝑗 〉

𝑠︸               ︷︷               ︸
𝑇𝑤

(2.13)

−
〈
𝜕

𝜕𝑥 𝑗
𝑢′𝛼𝑢

′
𝛼𝑢
′
𝑗

〉
𝑠︸               ︷︷               ︸

𝑇𝑡

+𝜈
〈
𝜕2𝑢′2𝛼
𝜕𝑥 𝑗𝜕𝑥 𝑗

〉
𝑠︸            ︷︷            ︸

𝑇𝜈

−2

〈
𝑢′𝛼
𝜕𝑃′

𝜕𝑥𝛼

〉
𝑠︸           ︷︷           ︸

Π

−2𝜈

〈
𝜕𝑢′𝛼
𝜕𝑥 𝑗

𝜕𝑢′𝛼
𝜕𝑥 𝑗

〉
𝑠︸               ︷︷               ︸

𝜖

.

On the right-hand side, the first three terms are, respectively, shear production (𝑃𝑠) and additional

productions due to the form-induced shear (𝑃𝑤 and 𝑃𝑚). The following three terms are the transport
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terms due to the form-induced (wake) fluctuations (𝑇𝑤), turbulent fluctuations (𝑇𝑡), and viscous

diffusion (𝑇𝜈). Π is the pressure work and 𝜖 is the viscous dissipation. Summing over the equations

of the three Reynolds-stress components yields the budget equation of the TKE; the sum of the Π

terms yields the pressure transport, 𝑇𝑝. The production terms and viscous dissipation of the TKE

are shown in Figure 2.17(a), whereas the transport terms are shown in Figure 2.17(b). The residuals

are around 3% of 𝑃𝑠 peak values.

Figure 2.17: Terms in the TKE budget equation. (a) Production and viscous dissipation for
regular (symbols and thin lines) and random-interface (thick lines) cases; 𝑃𝑠 ( , △) , 𝑃𝑚 + 𝑃𝑤
( , ⃝, red) and 𝜖 ( , □). Transport terms for (b) regular and (c) random interfaces; 𝑇𝑤
( , red), 𝑇𝑡 ( ), 𝑇𝜈 ( ) and 𝑇𝑝 ( ). All terms are normalized by 𝑢3

𝜏/𝛿.

For (𝑦+𝑑)/𝛿 ≥ 0.2, the shear production is balanced by the viscous dissipation (not shown). 𝑃𝑠

terms reach their maximum values close to the sediment crest. The total amounts of form-induced

production (𝑃𝑚+𝑃𝑤) are significant near the interface, becoming the dominant term a short distance

below the crest. Fang et al. (2018) also observed non-negligible form-induced TKE production for

regular interface particle distribution with 𝑅𝑒𝐾 = 0 − 27.

In the vicinity of the regular interface, 𝑇𝜈, 𝑇𝑡 and 𝑇𝑝 remove TKE from the high-TKE region

slightly above the crest and transfer it into the low-TKE region in the bed; 𝑇𝜈 dominates other TKE

transports due to high 𝜕𝑈/𝜕𝑦, while 𝑇𝑤 is negligible. In contrast, for the random interface 𝑇𝜈 is

negligible and the augmented �̃� fluctuations (Figure 2.13) lead to a non-negligible form-induced

transport, which works against the other transport processes by moving TKE upward from low-TKE
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region in the bed to the crest region corresponding to the TKE peak. Such process contributes to a

more equilibrium turbulence (with more energy dissipated at the location where it is generated).

The total form-induced production (𝑃𝑤 + 𝑃𝑚) for individual normal Reynolds stresses are

compared in Figure 2.18(a). For both cases below the crest, it predominantly contributes to ⟨𝑢′2⟩

other than the other two components, more so for the regular interface. 𝑃𝑚 can be rewritten as

−2⟨𝑢′𝛼𝑣′⟩⟨𝑢𝛼⟩𝑑𝜃/𝑑𝑦. Thus, 𝑃𝑚 remains positive for ⟨𝑢′2⟩ and is zero for ⟨𝑣′2⟩ and ⟨𝑤′2⟩. The

negative 𝑃𝑤 + 𝑃𝑚 in both cases in the vicinity of the crest is then due to negative 𝑃𝑤, indicating

conversion of TKE to the kinetic energy of form-induced fluctuations, since this term also exists in

the form-induced stress budgets with a positive sign (Raupach and Shaw, 1982). Such conversion

is probably due to the work of particle drag against the turbulent motions of scales larger than the

particles, generating form-induced fluctuations at the scale of the particles. Deeper into the porous

bed, the scales of turbulent motions are rapidly reduced and are smaller than that of the particles

(as shown by the integral scales in Figure 2.12); here, the particle-scale form-induced shear layers

generates turbulence, represented by positive 𝑃𝑤.

The pressure work for a normal Reynolds stress is decomposed into the pressure transport and
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Figure 2.18: (a) Form-induced production and (b) pressure-strain-rate term in regular ( ) and
random interface ( ) cases for the budgets of ⟨𝑢′2⟩𝑠 (⃝, red), ⟨𝑣′2⟩𝑠 (□) and ⟨𝑤′2⟩𝑠 (△, blue);
normalization is done with 𝑢𝜏 and 𝛿.
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a pressure-strain-rate term, R = 2⟨𝑃′𝜕𝑢′𝛼/𝜕𝑥𝛼⟩𝑠. The latter is compared in Figure 2.18(b). R

distributes energy among different normal components of the Reynolds stress tensor; it forms the

primary source for 𝑣′- and 𝑤′- energy budgets that balances the viscous dissipation. The main

difference is that, at the crest of the regular interface the 𝑢′ energy converts mostly to that of 𝑤′,

with R22 ≈ 0, while R22 and R33 are of comparable magnitudes at the crest for the random case.

Liu and Katz (2018) observed experimentally that, in a shear layer formed over an open cavity,

the magnitude of R11 is an order of magnitude higher than R22. The similar observation herein

may also be attributed to the local mean shear layers formed above the topmost-layer particles,

shown in Figure 2.19 using time-mean spanwise vorticity in an (𝑥, 𝑦) plane. Such shear layers are

stronger and aligned in 𝑦 above the regular interface, while the random distribution of particle for

the random interface results in a spread in such effect on energy redistribution.

Figure 2.19: Time-averaged spanwise vorticity 𝜔𝑧 normalized by 𝑢𝜏/𝛿 at (a) Slice B of the regular
interface and (b) Slice D of the random interface.
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2.3.3 Implications for the mechanism of flat-bed hyporheic exchange

2.3.3.1 Variation of apparent permeability

As a convention of the oil and gas industry (Edwards et al., 1990; Huang et al., 2006; Javadpour

et al., 2009), the apparent permeability, 𝐾∗, is used to establish a relationship between mean velocity

and macroscopic pressure gradient in a finite Reynolds number flow inside a porous medium. Here,

the local value of 𝐾∗ is obtained based on the local volume-averaged velocity and the gradient of

the local volume-averaged pressure,

⟨𝑢⟩𝑠 (𝑥, 𝑦, 𝑧) = −
𝐾∗(𝑥, 𝑦, 𝑧)

𝜇

𝜕⟨𝑝⟩(𝑥, 𝑦, 𝑧)
𝜕𝑥

, (2.14)

where ⟨·⟩𝑠 and ⟨·⟩ indicates, respectively, the superficial and intrinsic volume averaging performed

locally (within a volume much larger than a grain size). Normalized by 𝑢𝜏 and 𝛿, Equation (2.14)

becomes

⟨𝑢⟩+𝑠 = −𝑅𝑒𝜏
(
𝐾∗

𝛿2

) (
𝜕⟨𝑃⟩+
𝜕𝑥/𝛿

)
, (2.15)

keeping in mind that 𝑃 = 𝑝/𝜌. For convenience, from here on write the dimensionless 𝐾∗/𝛿2 as

𝐾∗. Note that 𝐾∗ is not the Darcy permeability, but a macroscopic descriptor of the complex flow
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Figure 2.20: Horizontal variation of the apparent permeability 𝐾∗ in the Brinkman layer in the
random-interface case.
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at the interface, including the influences of both diffusion of the mean momentum (traditionally

modelled using the Brinkman correction (Brinkman, 1949)) and microscopic inertial and drag

forces (traditionally modelled using the Forchheimer’s correction (Hassanizadeh and Gray, 1987).

)

Since the Brinkman layer (measured from crest) has a thickness (𝛿∗
𝑏
) of the order of a sphere

diameter, 𝐾∗ in this layer is considered constant along 𝑦, but varying in 𝑥 and 𝑧, in this layer. To

calculate such 𝐾∗(𝑥, 𝑧), we divide the Brinkman layer horizontally into small segments of a size of

2𝐷 × 2𝐷 in 𝑥 and 𝑧. Enlarging the segment size to 4𝐷 × 4𝐷 or 8𝐷 × 8𝐷 does not fundamentally

change the observation. The velocity and pressure values in Equation (2.14) are spatially averaged

in each small segment respectively; the pressure gradient for each segment is obtained using

second-order central difference. The (𝑥, 𝑧) distribution of 𝐾∗ for the random interface is shown

in Figure 2.20; the variation for the regular interface is between 1 × 10−3 and 2 × 10−3, barely

visible using the same color bar and is thus not shown. The random interface leads to a much more

heterogeneous permeability distribution with a higher mean value. Based on its natural logarithm,

the mean, 𝜇𝑙𝑛(𝐾∗) , and the variance, 𝜎2
𝑙𝑛(𝐾∗) , are calculated and summarized in Table 2.2. For the

regular and random interfaces, respectively, the 𝜇𝑙𝑛(𝐾∗) values are −6.5 and −5.4 (or twice higher

in mean apparent permeability for the random case) and the 𝜎2
𝑙𝑛(𝐾∗) values are 0.005 and 0.055.

Since the square root of permeability has a physical meaning of the effective pore size (Breugem

et al., 2006), the results here show that the random interface increases the effective pore size at

the interface associated with a larger apparent permeability. This is consistent with the larger

streamwise integral length scales of 𝑢′ motions at 𝑦 ≈ −𝑑, as shown in Figure 2.12.

The 𝐾∗ value is also calculated below the Brinkman layer using equation (2.15). Here, 𝐾∗

becomes the bulk permeability, 𝐾 , associated with laminar flow inside the porous medium, which

is typically predicted using a semi-empirical model such as the Kozeny-Carman equation. The

value of 𝑙𝑛(𝐾∗) obtained using the DNS data is almost a constant of -10.9, regardless of location.

Such value indicates a 𝐾∗ that is almost two order-of-magnitude smaller than the value in the

Brinkman layer. In comparison, the Kozeny-Carman equation predicts a 𝑙𝑛(𝐾) value of −10.0
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inside the bulk of the sediment, overestimating the bulk permeability by almost 1.5 times.

In the next section, it will be shown that the spatial variation of apparent permeability in the

Brinkman layer of the random interface is correlated with the roughness geometry. As 𝐾∗ in the

Brinkman layer incorporates the effect of both macroscopic diffusion and microscopic inertia on the

macroscopic (volume-averaged) velocity, we focus on the spatial variation of these two mechanisms

as affected by the roughness geometry.

2.3.3.2 Momentum transport mechanisms and dependence on roughness geometry

The double-averaged 𝑢-momentum equation can be written as (Raupach and Shaw, 1982)

− 𝜕⟨�̄�⟩𝑠
𝜕𝑥
+

(
𝜈
𝜕2⟨�̄�⟩𝑠
𝜕𝑦2 −

𝜕⟨𝑢′𝑣′⟩𝑠
𝜕𝑦

)
︸                      ︷︷                      ︸

D

−
(
𝜕⟨�̃��̃�⟩𝑠
𝜕𝑦

+ 𝐹𝐷
)

︸             ︷︷             ︸
I

= 0, (2.16)

where 𝐹𝐷 is the total drag per unit mass (sum of both pressure drag and viscous drag around the

grains). According to Whitaker (1996), the viscous and Reynolds shear stress terms represent the

effects due to diffusion of the mean momentum, usually modelled using the Brinkman correction;

Figure 2.21: Terms in the DA 𝑢-momentum equation (equation (2.16)), normalized by 𝑢2
𝜏/𝛿 for (a)

regular and (b) random interfaces: Reynolds-stress term( , red), viscous stress term ( ,
red), total drag ( ), form-induced stress term ( ) and pressure-gradient term( ).
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the sum of these two terms is denoted herein as D, representing ‘diffusion’. The terms related

to the form-induced fluctuations (i.e., the form-induced shear stress and the total drag) represent

the effects of fluid inertia at the grain scale on the mean momentum, usually modelled by the

Forchheimer’s correction. Their sum is denoted as I, representing (microscopic) ‘inertia’.
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Figure 2.22: Horizontal variation of local volume-averaged D (a) and |I | (b), both normalized by
𝑢2
𝜏/𝛿. (c) sediment surface height fluctuations ℎ′ normalized by 𝛿 for the random-interface case.

(d) Correlations of D′ (red) and |I |′ (black) with ℎ′.

Figure 2.21 shows the balance of equation (2.16) across the interface, with the spatial averaging

performed using area averaging in the 𝑥-𝑧 plane of the whole domain. The residual is less than 2.3%

of the peak magnitude of the total force term for the two cases. For both cases, the spatial-averaged

values of D and I are both significant inside the Brinkman layer, approximately balancing each
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other as the pressure gradient is comparatively weak. The total drag is the main contributor to I

for both cases. For the regular interface, D is contributed almost equally by both Reynolds and

viscous stresses, while it is predominantly due to the Reynolds stress for the random one; this is

consistent with the observations made for shear stress distribution (Figure 2.19). The total drag

peaks at the crest for the regular interface. This is because the main contributor of 𝐹𝐷–the pressure

drag–is caused by recirculation regions, which are distributed uniformly near the crest for this case.

For the random interface, recirculation regions of various sizes are formed due to various scales of

roughness protuberances, leading to a peak of 𝐹𝐷 below the crest.

We now explore potential correlation between the geometry of the random interface and the

(𝑥, 𝑧) variation of locally-averaged D and I magnitudes inside the Brinkman layer. The same

local volume-averaging method described in Section 2.3.3.1 is used. The results for the regular

interface are not shown, as the variations are barely visible using the same range of contour levels.

Figures 2.22(a) and (b) compare the (𝑥, 𝑧) distribution of locally averaged D and |I |, respectively.

The spatial average is similar for both contours, a result of relatively weak pressure gradient

discussed earlier. The spatial variation is much more intense for |I | than for D. This indicates

that, though roughness leads to local augmentation of 𝑢′𝑣′ (predominantly through wake-induced

production), such spatial variation is rather weak and does not significantly affect the (𝑥, 𝑧) pattern

of wall-normal ⟨𝑢⟩𝑠 transport. In contrast, the pressure drag is generated by the small-scale wake of

each grain. Therefore, |I | is more sensitive to the local roughness height. Visual comparison with

the roughness height distribution ℎ′(𝑥, 𝑧) in Figure 2.22(c) shows that the distributions of |I | and ℎ′

are somewhat correlated. Indeed, the scatter plot (Figure 2.22(d)) of ℎ′ and the spatial fluctuation

of |I | (departure from the 𝑥-𝑧 mean) displays a positive correlation (with preferred distribution in

Quadrants I and III). This is consistent with the expectation that a high roughness protuberance

tends to generate a large (in 𝑦) recirculation region and, consequently, a higher-than-average value

of pressure drag at the corresponding (𝑥, 𝑧) location.

As 𝐾∗ describes the global effect of both I and D, the 𝐾∗ contour in Figure 2.20 also displays

correlation with ℎ′(𝑥, 𝑧) distribution; the correlation is negative as a higher local drag serves as a
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stronger momentum sink.

2.3.3.3 Mechanisms producing vertical mass flux

The hyporheic flux (𝑄𝐻) quantifies the magnitude of mass exchange across the interface during a

period of time; it is defined as the wall-normal volumetric flow rate at 𝑦 = −𝑑 directed out of the

permeable bed (Elliott and Brooks, 1997b),

𝑄𝐻 (𝑇) =
1
𝐴

∫
(𝑥,𝑧)

𝑣(𝑡, 𝑥) |𝑣>0
𝑇
𝑑𝐴, (2.17)

where ()𝑇 denotes running time averaging within a window size 𝑇 and A is the fluid area of the

𝑥-𝑧 plane at 𝑦 = −𝑑. Figure 2.23(a) shows the variation of the vertical flux, 𝑄𝐻 , as a function of

𝑇 . The error bars quantify the variance of the values obtained from the DNS data for each 𝑇 ; the

variance is zero for 𝑇 equal to the total simulation time and increases with decreasing 𝑇 . For 𝑇

much larger than the large-eddy turn-over time, 𝛿/𝑢𝜏, the form-induced wall-normal velocity (̃𝑣) is

the only contributor of 𝑄𝐻 , while for 𝑇 < 𝛿/𝑢𝜏 the turbulence fluctuation (𝑣′) also contributes to

the exchange. Evidently, the contribution of �̃� is more significant than that of 𝑣′ for both interfaces.

0 1 2 3

0

0.05

0.1

0.15

-0.2 0 0.2

-2

0

2

4

6

8

10

Figure 2.23: (a) Wall-normal flux at 𝑦 = −𝑑 normalized by 𝑢𝜏𝛿2 with different averaging window
sizes 𝑇𝑢𝜏/𝛿 for regular ( ) and random ( ) interfaces. (b) Pressure-work term of ⟨̃𝑣2⟩𝑠
budget normalized by 𝑢3

𝜏/𝛿 for regular( ,⃝) and random( ) interfaces.
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Also, 𝑄𝐻 is around 5 times larger for the random interface compared to the other, consistent with

the more intense Reynolds and form-induced stresses near 𝑦 = −𝑑.

The mechanisms governing 𝑣′ energy transport have been discussed in Section 2.3.2.4 using

the stress budget. For the transport of �̃� energy, studies on impermeable flows over rough surfaces

(Raupach and Shaw, 1982; Yuan and Piomelli, 2014c) showed that the process is governed by

the work done by the form-induced pressure, Π̃ = −2⟨̃𝑣𝜕𝑃/𝜕𝑦⟩𝑠, as the main source, the wake

production predominantly as a sink. The wall-normal variation of Π̃ is compared in Figure 2.23(b);

the much higher overall value for the random interface is due to the more intense 𝑃 fluctuations

(shown in Figure 2.24 in a (𝑥−𝑦) slice for each case) leading to significant 𝜕𝑃/𝜕𝑦 near the interface.

Figure 2.24: Time-averaged pressure variation and 3D mean streamlines for (a) regular and (b)
random interfaces. Blue arrows indicate examples of hyporheic flow paths.
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Thus, the main difference between the𝑄𝐻 generation in the two cases is that the random particle

arrangement leads to larger-scale and more intense time-mean pressure variations which, by working

against the time-mean velocity, generates more intense �̃� near the interface and promotes vertical

momentum exchange. Meanwhile, 𝑣′ is also intensified by the pressure work near the interface,

also contributing to 𝑄𝐻 , though with a smaller magnitude.

The hyporheic flow paths are also of interests due to their impact on important macroscopic

exchange parameters such as the residence-time distribution and the penetration depth. Below the

region of turbulence penetration (1𝐷 below the crest), the flow is steady and, consequently, the

mean streamlines shown in Figure 2.24 can be interpreted as the hyporheic flow paths of particles

released from the upstream.

For the regular interface, the spatial variation of 𝑃 shows distributions with alternating negative

and positive values with a length scale of one sphere diameter, representing organized mean

recirculation regions that are shown in Figure 2.14 (𝑏) and (𝑐). The main mechanism of vertical

time-mean exchange is due to these organized recirculation regions at the interface. The relatively

low 𝐾∗ at the uppermost layer of the regular interface limits communication between the flows

inside the sediment and in the region above; thus, in the sediment, there is little vertical exchange

and the lateral flow paths are long.

In contrast, for the random interface, the hyporheic flow paths display a multiscale pattern with

short flow paths near the interface and longer flow paths in the shape of circular arcs reaching deeper

into the bed. These paths are similar to those visualized through dye transport for a flat bed in the

experiments of Packman et al. (2004). Near the bed, the strong 𝑃 gradients of larger coherence

length induce flow infiltration near the bed, reminiscent of bedform-induced advective pumping

(Packman et al., 2004). This also results in more intense �̃�, increasing form-induced mixing. The

streamwise lengths of the flow paths appear to be reduced as the wall-normal communication is

strengthened.
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2.4 Conclusions and discussions

We reported DNS results for fully-developed turbulent flows in an open channel on grain-resolved

sediment beds with either regular or random grain positioning at the sediment-water interface. The

random interface results in a particle roughness with significantly larger root-mean-square height

and longer horizontal correlation lengths. These length scales are much smaller compared to those

typical of a bedform. Thus, the interface height variation is considered as roughness. A comparison

with experimental measurements using randomly poured spheres shows that the case with random

interface yields matching flow statistics. It is thus considered as a good approximation of a realistic

sediment.

Detailed DNS results obtained with regular and random interfaces with matching 𝑅𝑒𝜏 = 395

and 𝑅𝑒𝐾 = 2.6 are compared. The differences in the effects on the turbulence and the mass and

momentum exchange across the interface are summarized as follows. (1) As a main difference

between the two cases, the larger roughness length scales brought by the random interface results

in less organized distribution of mean recirculation regions at the interface and more intense 𝑃

variations at larger scales. The result is a higher �̃� production and, consequently, more isotropic

form-induced stress tensor and significant form-induced shear stress (that is comparable to the

Reynolds shear stress). It is shown that �̃�, as opposed to 𝑣′, is the main contributor to the

wall-normal hyporheic flux across the interface for both regular and random interface roughness.

Consequently, the hyporheic flux is significantly higher for the random interface than for the

regular one. (2) The vertical spread-out of the mean-shear-layer distribution near the random

interface leads to a more even TKE redistribution for 𝑣′ and 𝑤′ fluctuations and consequently

a more isotropic Reynolds stress tensor. The form-induced fluctuations also modulate the total

production of Reynolds stress through conversion between TKE and WKE, as well as introducing

an additional diffusion process that transports energy from the low-TKE region to the high-TKE

region. (3) More intense mixing is observed near the random interface due to augmented Reynolds

and form-induced shear stresses; this is reflected by a deeper turbulence penetration (44% higher

𝛿∗𝑝) and a higher apparent permeability (twice higher 𝐾∗) in the Brinkman layer. The local apparent
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permeability in this layer is negatively correlated with the local height of roughness. Moreover, the

strengthened communication between the surface and subsurface flows for the random interface

leads to shortened and deeper-reaching hyporheic flow paths.

Regarding how the type of interface roughness influences the effects of wall permeability, the

results show that the penetration depths of mean shear and turbulence are significantly increased by

the random roughness. However, the roughness type does not appear to noticeably modify the von

Kármán constant (which is lower on a permeable wall than on an impermeable one), as long as the

same type of packing is used inside the sediment. Lastly, the Kelvin-Helmholtz (K-H) instability

due to wall permeability and the K-H rollers, if present, may also be affected differently by the

two roughness types. The K-H instability is, however, expected to be very weak in this work as

𝑅𝑒𝐾 ≈ 2.5. Manes et al. (2011) systematically evaluated the effects of 𝐾 with 𝑅𝑒𝐾 varying from 0

to 17. Within this range, the K-H instability and signature of the rollers were observed for 𝑅𝑒𝐾 ≈ 17

and not for 𝑅𝑒𝐾 ≈ 8, for example. The effects of interface roughness on K-H instability and the

resulting coherent motions for flows with high 𝑅𝑒𝐾 are interesting questions for future work.

It should be noted that the specific configuration of the regular packing may also affect the

drag, turbulent statistics and structure. For example, the hexagonal particle packing is expected

to give more drag and higher resistance to the streamwise velocity fluctuations. We have run an

additional DNS simulation with hexagonal arrangement at the interface (not shown herein) and

compared various flow quantities with the cubic arrangement. It was observed that, though the

hexagonal arrangement gave slightly higher 𝐶 𝑓 and anisotropy of the form-induced stresses, such

differences were much smaller compared to the difference between the cubic and and the random

arrangements. The reason is probably due to the similar roughness length scales among various

regular arrangements and the organized mean-velocity pattern (e.g. mean recirculation regions)

they generate. For this reason, the cubic arrangement discussed in details herein is considered as a

representative example of regular type of packing.

The results demonstrate that subtle details of the particle roughness alone, in the absence of

bedform, can affect significantly the dynamics of the turbulence and the form-induced fluctuations.
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Such effects translate to large differences in apparent permeability, hyporheic flux, and subsurface

flow paths of passive scalars. Future work is needed to fully understand the effects of particle

roughness on scalar and momentum transport with systematically varying roughness lengths (𝜎+
ℎ
,

𝜆+), roughness texture, as well as the effect of varying bulk permeability with random interface

roughness.
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CHAPTER 3

QUANTIFYING THE EFFECTS OF BED ROUGHNESS ON TRANSIT TIME
DISTRIBUTIONS VIA DIRECT NUMERICAL SIMULATIONS OF TURBULENT

HYPORHEIC EXCHANGE

3.1 Introduction

The pore-resolved direct numerical simulations (DNS) of interface turbulence carried out in Chap-

ter 2 revealed that, even in the absence of bedforms, the grain-scale roughness of a macroscopically

flat bed leads to significant fluid volumetric flux into the sediment. Also, statistics and structure of

the turbulent flow were shown to depend on the texture of roughness. Similar observations were

made for a macroscopically flat bed by Chandler et al. (2016), Grant et al. (2020a) and Kim and

Kang (2020).

In this chapter, the work in Chapter 2 is expanded by documenting the effects of grain-scale

roughness and its texture on macroscopic exchange quantities including the fluid volumetric flux

into the sediment, subsurface flow paths, and transit time characteristics. The primary questions

that will be addressed in this chapter include:

1. How does bed roughness on a macroscopically flat bed influence fluid parcel transit times?

2. How do TTDs change with tracer particle entry/exit locations within a three-dimensional

flow field and with the inclusion of molecular diffusion?

To this end, turbulent open-channel flows bounded by synthesized sediment beds similar to those

studied in Chapter 2 were simulated. Computed flows for two sediment beds that share the

same bed permeabilities but have different bed roughness arrangements are compared. A forward

particle tracking method is used to calculate the transit times, considering the mechanism of

time-mean velocity advection with and without molecular diffusion. The paper is organized as

follows. Section 3.2 describes the details of the DNS simulations, the sediment bed synthesis, and

the method used to calculate transit times. Section 3.3 compares the transit time results for the
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two cases examined and analyzes the effects of molecular diffusion, followed by conclusions in

Section 3.4.

3.2 Methodology

3.2.1 Case configuration and parameters

Figure 3.1: Simulation domain and synthesized sediment beds colored by 𝑦 in (a) the regular and
(b) the random cases. (c) One-dimensional power spectral densities 𝐸𝑘 of the interface height
fluctuations for Case 1 (regular case, ) and Case 2 (random case, , red). (red) Slope
of power-law decay for Case 2; 𝑘𝑟𝑚𝑠 is the root-mean-square (rms) of interface height fluctuations.

Fully developed open-channel flows are simulated using the same DNS method mentioned

in previous Chapter. The simulation domain includes both the surface and sub-surface flows

(Figure 3.1(a,b)). 𝛿 is the thickness of the turbulent boundary layer (i.e., open-channel height)

measured from the sediment crest; 𝐻𝑠 is the sediment depth measured from the crest to the bottom

boundary of the simulation domain. Symmetric boundary conditions are applied at both top and

bottom boundaries of the domain. Periodic conditions are applied at 𝑥 and 𝑧 boundaries. A

constant mean pressure gradient is used to drive the flow. The elevation of 𝑦 = 0 is set at the
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Interface 𝑅𝑒𝐾 𝑅𝑒𝜏 𝐷/𝛿 𝐷+ 𝐻𝑠/𝛿 (𝐿𝑥 , 𝐿𝑧)/𝛿 (Δ𝑥+, Δ𝑦+min, Δ𝑧
+)

Case 1 Regular 2.62 395 0.20 79 1.6 (6, 3) (1.5, 0.19, 1.5)
Case 2 Random 2.62 395 0.20 79 1.6 (6, 3) (1.5, 0.19, 1.5)

Table 3.1: Summary of simulation parameters. 𝐷 is the grain diameter; 𝐿𝑥𝑖 is the simulation
domain size in 𝑥𝑖. Δ𝑥+, Δ𝑦+, and Δ𝑧+ are DNS grid sizes in 𝑥, 𝑦 and 𝑧, respectively, normalized
using the viscous length scale 𝜈/𝑢𝜏.

virtual origin—an offset of the 𝑦 axis such that the mean velocity profile in the overlap region of

the turbulent flow recovers its logarithmic form. The elevation of the virtual origin was determined

based on a fitting procedure (Breugem et al., 2006; Manes et al., 2011); it falls between 0.3𝐷 and

0.5𝐷 below the sediment crest, where 𝐷 is the grain diameter.

The simulation parameters are listed in Table 3.1. Two cases are considered, one with a regular

interface (Case 1) in which the arrangement of grains in the uppermost layer is regular and the

other with random arrangement of grains (termed ‘random interface’, Case 2). In both cases,

the same porosity of 0.41 is imposed in the sediment sufficiently far from the interface. The

permeability Reynolds number and the friction Reynolds number are the same for both cases:

𝑅𝑒𝐾 =
√
𝐾𝑢𝜏/𝜈 = 2.62 (where 𝐾 is the permeability) and 𝑅𝑒𝜏 = 𝛿𝑢𝜏/𝜈 = 395. Following

Voermans et al. (2017), 𝑢𝜏 is obtained from the maximum magnitude of the bed-normal profile of

the total shear stress, which is the sum of the viscous shear stress, the Reynolds shear stress and

the form-induced shear stress. The total numbers of grid points are 1536, 779 and 768 in 𝑥, 𝑦 and

𝑧 directions, respectively. The present DNS simulations are similar to the simulations reported by

Shen et al. (2020). The only difference is that the sediment thickness herein is doubled (𝐻𝑠/𝛿 = 1.6

versus 0.8 in Shen et al. (2020)), to allow for deeper subsurface flow paths, which are important for

calculation of large transit times but less important for interfacial turbulence. The total simulation

time used for data collection is around 10 large-eddy turn-over times (LETOTs), defined as 𝛿/𝑢𝜏; a

LETOT represents the time scale of the evolution of the largest turbulent eddy in the open channel.

Sufficiency of the data sampling in time was validated by comparing both surface and subsurface

flow statistics, as well as TTDs, obtained with 10 LETOTs and those obtained with 20 LETOTs.

The differences were small (e.g., up to 1% in subsurface dispersive velocities,
〈
�̃�2〉1/2, as shown in
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the Appendix B Figure B.4).

For both cases, the depths of the channel and the bed (both measured from the virtual origin)

are 5 times and 8 times of the grain diameter, respectively. A boundary layer thickness of 5 times

the grain size is much smaller than in many streams in reality and, consequently, the turbulence

near the interface may not be identical to those in many real streams. However, the present setup

is designed to represent streams for the regime with 𝑅𝑒𝐾 of 𝑜(1) where the form-induced velocity

is the main component of the subsurface fluid motion; the interfacial turbulence weakly affects

the majority of the parcel transit times in comparison to the form-induced velocities. In addition,

𝐷/𝛿 of the same order of magnitude were used in existing numerical and experimental studies that

reported grain-scale physics (Manes et al., 2009; Dey and Das, 2012; Fang et al., 2018; Han et al.,

2018; Voermans et al., 2017, 2018).

The porous sediment beds are modeled as closely packed monodisperse hard spheres. In

the bulk of the sediment, the sphere positioning is determined based on molecular dynamics

simulations (Plimpton, 1995) and is random for both cases. For the uppermost-layer spheres,

two types of distributions are imposed, representing regular (Case 1) and random (Case 2) bed

roughness geometries, respectively. The random case corresponds to significantly larger root-

mean-square roughness height and longer horizontal correlation lengths. As these length scales

are much smaller compared to 𝛿 and the scales typical of a bedform, the bed height variation

is considered as roughness. Figures 3.1(a,b) compare the sphere distributions in Cases 1 and 2,

showing the difference in grain arrangement at the top of the sediments. The sediment in Case

2 was constructed such that it yields turbulence statistics that match those observed for randomly

poured spheres in the experimental studies of Voermans et al. (2017) (case L12 therein). Case 2 is

thus considered as a good approximation of a realistic sediment.

To highlight the difference between the two roughness geometries, the one-dimensional (1D)

power spectra of height fluctuations of uppermost-layer spheres (𝐸𝑘 ) are compared in Figure 3.1(c)

as functions of the streamwise wavenumber (𝜅1 = 1/𝜆1, where 𝜆1 is the streamwise wavelength).

Both cases show a white noise regime at small wavenumbers, characterized by almost constant 𝐸𝑘 .
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Aubeneau et al. (2015) calculated the power spectra of elevations of sand beds produced in lab

flume experiments under various discharges. They also observed a white noise region in the power

spectrum for small wavenumbers. For the random case the white noise regime applies to𝜆1/𝐷 larger

than around 1.5. For smaller 𝜆1, 𝐸𝑘 shows a power-law decay with a slope of around −2.4. From

this power-law decay, a fractal dimension 𝐷 𝑓 can be identified as 𝐷 𝑓 = 𝐸 + (3− 𝛽)/2 = 2.3, where

𝛽 = 2.4 is the fitted slope of the decay and 𝐸 = 2 (for a 3D surface) is the Euclidean topological

dimension. Aubeneau et al. (2015) also observed power-law decays at large wavenumbers, though

with different slopes of −1.0 to −1.5. In comparison, for the regular case the white noise region

covers wavenumbers up to 𝐷. At larger wavenumbers 𝐸𝑘 is characterized by higher-frequency

harmonics, which is a mathematical consequence of the slight clipping (or flattening) at the top

of the sphere surfaces that results from the spatial discretization of the sphere geometry. These

observations show that the bed roughness of Case 2 is close to a self-affine fractal (similar to real

sediment beds) while Case 1 is characterized by organized grain-wise protuberances.

3.2.2 Transit time calculation based on particle tracking

For an unsteady flow in general, the mass conservation equation for the storage of water of a certain

age in the sediment is (Botter et al., 2011; Harman, 2015)

𝜕𝑆(𝑡)𝑝𝑆 (𝜏, 𝑡)
𝜕𝑡

= −𝑄(𝑡)←−𝑝 𝑄 (𝜏, 𝑡) −
𝜕𝑆(𝑡)𝑝𝑆 (𝜏, 𝑡)

𝜕𝜏
, (3.1)

where 𝑆(𝑡) is the instantaneous total water storage in the sediment at time 𝑡,𝑄(𝑡) is the instantaneous

flux at the outflow, 𝑝𝑆 (𝜏, 𝑡) is the instantaneous RTD, defined as the probability density function

(pdf) of the age (𝜏) of all the water parcels in the sediment at time 𝑡, and←−𝑝 𝑄 (𝜏, 𝑡) is the backward

TTD, defined as the probability that the age of a water parcel at the outflow at time 𝑡 is equal to

𝜏 (Harman, 2015). The only assumption used in Equation (3.1) is that there is one inlet and one

outlet of the system. In this study, the inlet is the collection of regions on the water-sediment

interface where the bed-normal velocity (𝑣) is negative, while the collection of regions where 𝑣 is

positive serves as the outlet. The water age is considered zero at the inlet.
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Note that different definitions of RTD were used in the literature. For example, the cumulative

distribution function of RTD was defined as the fraction of solute entering the sediment bed in

a short time near 𝑡 = 0 and exiting the bed by time 𝜏 (Grant et al., 2020b). The residence time

function of EB97 is trivially different from this definition. In this article, however, the definitions

of Harman (2015) are followed.

We consider fluid parcels advected by the three-dimensional, time-averaged velocity, 𝑢𝑖. The

advection by instantaneous turbulent fluctuations 𝑢′
𝑖

is not accounted for. This is because, at the

present 𝑅𝑒𝐾 = 2.6, the magnitudes of normal Reynolds stress components are significantly smaller

than those of the form-induced stresses in the sediment below the Brinkman layer, as shown by

the DNS data of Shen et al. (2020) for the present cases. At a higher 𝑅𝑒𝐾 range, however, the

effect of 𝑢′
𝑖
on the transit times is likely to be more important inside the sediment (Voermans et al.,

2017). Kim et al. (2020) showed that at 𝑅𝑒𝐾 = 50 and 𝑅𝑒𝜏 ≈ 2, 000 significant turbulent motions

in the bed—including downwelling and upwelling flows—occur and are modulated by large-scale

turbulent motions in the surface flow. The present analyses, therefore, are relevant for the regime

of 𝑅𝑒𝐾 = 𝑜(1) only, where the interfacial turbulence is present but weak compared to dispersive

velocities.

The consideration of the water parcels advected by the time mean velocity implies a steady state

assumption for Equation (3.1), which becomes

𝑄←−𝑝 𝑄 (𝜏) + 𝑆
𝜕𝑝𝑆 (𝜏)
𝜕𝜏

= 0. (3.2)

Equation (3.2) shows that the backward TTD and the RTD are related; one can be calculated from

the other given known values of the outflow flux and water storage. In this work, we calculate←−𝑝 𝑄 (𝜏)

based on its definition. The discussion is focused on ←−𝑝 𝑄 (𝜏) and the corresponding cumulative

distribution function, ←−𝑃𝑄 (𝜏). The RTD can be calculated based on Equation 3.2; details are

presented in the Appendix B.

In the present particle tracking approach, a fluid parcel is considered as a tracked particle.

To calculate the transit time (or the maximum water age achieved by an individual parcel in the

sediment), fluid parcels are traced starting from a 𝑦 elevation near the interface throughout the
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(𝑥, 𝑧) plane. Only the fluid parcels entering the sediment (i.e., those released at locations where

𝑣 < 0) are tracked. The tracked paths are in general three-dimensional. The parcel position 𝑥𝑖 (𝑡) at

a time 𝑡 (with 𝑡 = 0 at the parcel release time) is tracked based on

𝑑𝑥𝑖

𝑑𝑡
= 𝑢𝑖 [𝑥𝑖 (𝑡)], (3.3)

where 𝑡 is a fictitious time used for particle tracking, not to be confused with the simulation time in

DNS. Equation (3.3) is discretized and solved using the explicit Euler scheme. Once a subsurface

travel path is determined, the transit time for the corresponding fluid parcel is calculated as the total

time it spends along the subsurface path.

All tracked fluid parcels share the same release elevation (𝑦1) and the same ‘exit’ elevation (𝑦2).

If 𝑦1 ≤ 𝑦2, a parcel is considered to have left the sediment once it passes 𝑦2. If 𝑦1 > 𝑦2, the tracked

parcel first goes downward, passing the 𝑦2 elevation, and then upward toward the 𝑦2 elevation; in

this case, the exit is considered to occur when the parcel passes 𝑦2 the second time. The periodic

boundary conditions in 𝑥 and 𝑧 are used: parcels leaving the domain at boundary 𝑥/𝛿 = 6 reenters

the domain at boundary 𝑥/𝛿 = 0, and vice versa, for up to twice of the domain lengths. Longer

tracking lengths up to 4 times of the domain lengths in 𝑥 and 𝑧 were also tested, yielding similar

transit time distributions. One particle is released at each computational grid point in the fluid

domain at 𝑦 = 𝑦1. In total, around 𝑜(106) particles are released. To test the result convergence,

we used twice the number of released particles, which led to differences of less than 1% in the

fitted TTD slope and the median transit time value. The cumulative backward TTD, ←−𝑃𝑄 (𝜏), is

calculated as the fraction of the number of tracked subsurface paths that correspond to transit times

shorter than 𝜏. ←−𝑝 𝑄 (𝜏) is then obtained as 𝑑←−𝑃𝑄/𝑑𝜏. The calculated←−𝑝 𝑄 (𝜏) is smoothed based on a

moving averaging procedure. The size of the averaging window widens with the transit time value

as approximately 0.1𝜏.

To validate the implementation of the particle tracking method, the computed residence time

function as defined in EB97 is compared to the analytical solution for a subsurface flow induced

by a 2D sinusoidal interface pressure distribution. Details of the validation are included in the

Appendix B. The comparison shows that the particle-tracked residence time function matches
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well with the analytical solution given a sufficiently fine spatial resolution and a sufficiently deep

sediment domain (Figure B.2).

Figure 3.2: (a) Sketch of typical tracked flow paths for the random interface (Case 2). The
cumulative backward transit time distribution (b) and its pdf (c) are shown for two sets of entry
and exit locations: 𝑦1 = 𝑦2 = 0 ( ) and 𝑦1 = 𝑦2 = −3𝐷 ( ) for the regular interface (black
lines) and the random interface (red lines). (d) Modified pdf showing the probability density in
evenly spaced logarithmic increments. In (b), the horizontal dashed lines ( , blue) mark the 50th
(median) and 95th percentiles. In (c), the dashed blue lines ( , blue) show the fitted power law
with slopes indicated.

In the analyses of EB97, detailed flow information around sediment grains is not available. The

water column and the subsurface flow were delineated by a zero-thickness interface separating the

surface flow and the subsurface flow where the Darcy model applies. In that context, a particle
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tracking method for residence time calculation assumes that the release elevation (𝑦1) and exit

elevation (𝑦2) of the tracked fluid parcels are both at the exact water-sediment interface. In the

present DNS, there is a transition layer between the surface flow and the Darcy-flow region. This

layer includes the roughness sublayer (Raupach et al., 1991)—a near-bed layer where form-induced

stresses are important—and the Brinkman layer—the region of mean shear layer penetration,

𝜕⟨𝑢⟩/𝜕𝑦 > 0. Varying entry and exit elevations parcels are tested. Examples of tracked flow paths

are sketched in Figure 3.2(a).

3.3 Results

3.3.1 Effect of bed roughness geometry on transit times

Figures 3.2(b) and 3.2(c) compare←−𝑃𝑄 (𝜏) and←−𝑝 𝑄 (𝜏) with the same entry and exit elevations for

two sets of values: 𝑦1 = 𝑦2 = 0 (near the sediment crest) and 𝑦1 = 𝑦2 = −3𝐷 (a sufficiently deep

elevation beyond which the median 𝜏 of the←−𝑝 𝑄 (𝜏) distribution becomes largely independent of

the entry and exit elevations for both cases, as shown later in Figure 3.5). The elevation −3𝐷 is

equivalent to −0.6𝛿. The transit times are normalized by the LETOT (𝛿/𝑢𝜏) of the open-channel

turbulence, representative of the time scale of largest turbulent coherent motions in the water

column. For large transit times stronger fluctuations of the TTD curves are seen in Figure 3.2(c),

since the sampling of these long paths available from the DNS domain is extremely limited. The
←−𝑝 𝑄 (𝜏) distributions display power-law decays with a slope of around −1.3 at large transit times

for both cases. The existence of a power-law tail indicates that the sediment domain in the DNS

simulations is sufficiently large (in both 𝑥 and 𝑦) to capture deeper flow paths, and is consistent

with experimental observations by Aubeneau et al. (2015) and results of numerical simulations

obtained by Lee et al. (2020) of exchanges induced by multiscale bed geometries. Note that,

according to Equation (3.2), a power-law decay of the TTD (←−𝑝 𝑄) is associated with a power-law

decay of the RTD (𝑝𝑆), which is shown in Figure B.1 in the Appendix B. For both cases, a deeper

entry elevation excludes shorter flow paths close to the surface and, consequently, increases the

probability of longer paths. This is reflected by the shifting of the TTDs toward larger times in
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(𝑦1, 𝑦2) Characteristic Case 1 (A) Case 2 (A) Case 1 (MD) Case 2 (MD)
(0, 0) 𝜏50 0.294 0.368 0.467 0.574
(0, 0) 𝜏95 10.6 10.6 110 80.0

(−3𝐷,−3𝐷) 𝜏50 7.33 8.67 13.6 13.8
(−3𝐷,−3𝐷) 𝜏95 205 393 8.35 × 105 2.17 × 106

Table 3.2: Various characteristics of transit times calculated based on mean advection only and
both mean advection and molecular diffusion, at two elevations of particle entry (𝑦1) and exit (𝑦2).
Transit times are normalized by 𝛿/𝑢𝜏. Note. ‘A’ denotes calculation based on time-mean
advection alone; ‘MD’ denotes calculation accounting for both time-mean advection and
molecular diffusion (discussed in Section 3.3.3).

Figure 3.2(c) as 𝑦1 and 𝑦2 change from 0 to −3𝐷. The change of entry and exit elevations does not

significantly modify the slope of the power-law tail.

When the particle release location at 0 was used, the←−𝑝 𝑄 distribution in the case with regular

roughness displays a relatively sharp drop of probability for dimensionless 𝜏 at around 400. This

is thought to be related to the organized fluid motions around the regularly arranged grains at the

surface, leading to preferential values of 𝜏 associated with these short paths. A similar drop in

probability is also evident at dimensionless 𝜏 of around 200 to 400 in both cases, when a particle

release elevation of −3𝐷 was used. This is because the algorithm tracks undulating segments of the

large number of paths that reach not far beyond 𝑦 = −3𝐷 (visualized in Figures 3.3(e,f)). Lee et al.

(2020) studied bed geometries synthesized with systematically varying spectral characteristics.

They also observed variations in the slope of the RTD and suggested that they are connected to the

flow recirculation regions induced by bed morphology.

An alternative approach to plot the transit time distribution, different from←−𝑝 𝑄 (𝜏), is to divide

the unit area under the curve into evenly spaced logarithmic increments of 𝜏. This allows the actual

probability density to be shown in a plot with a logarithmic 𝜏 axis. This distribution, shown in

Figure 3.2(d), is defined as 𝑑←−𝑃𝑄/𝑑 log10 𝜏 and is equivalent to 2.303𝜏←−𝑝 𝑄 (Grant et al., 2020b).

To quantitatively compare the TTDs, the 50th and 95th percentiles (denoted as 𝜏50 and 𝜏95,

respectively) of the←−𝑝 𝑄 distributions are calculated. Specifically, 𝜏50 represents the central tendency

of the distribution, while 𝜏95 is considered as a characteristic 𝜏 associated with the rare, long-transit-
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time subsurface paths. Their values are tabulated in Table 3.2 under columns “Case 1 (A)” and

“Case 2 (A)”. The comparison shows that the two cases give rather similar 𝜏50 values (up to 10-20%

different) for both elevations. For 𝑦1 = 𝑦2 = −3𝐷, 𝜏95 is significantly higher in Case 2 than in Case

1 (393 versus 205), due to longer and deeper reaching paths, which will be shown in Figure 3.3(g,h).

An important conclusion that follows from this result is that the difference in bed roughness texture

extends deep into the sediment and significantly modifies the transit time values.

Figure 3.3: Time-mean subsurface flow paths corresponding to the median (50th-percentile)
transit time (a,b,e,f) and the 95th-percentile transit time (c,d,g,h) for entry/exit elevations at
𝑦1 = 𝑦2 = 0 (a,b,c,d) and 𝑦1 = 𝑦2 = −3𝐷 (e,f,g,h), for the regular (a,c,e,g) and random (b,d,f,h)
interfaces.
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To explain the differences in the TTD characteristics, Figure 3.3 shows tracked subsurface flow

paths for 𝑦1 = 𝑦2 = 0 (a-d) and for 𝑦1 = 𝑦2 = −3𝐷 (e-h) for both cases. Only the paths with

travel times equal to 𝜏50 and 𝜏95 are plotted. In each subplot, around 200 pathlines are visualized.

For both cases the paths associated with 𝜏50 are short and do not reach beyond one grain diameter

below 𝑦1. Those associated with 𝜏95, however, reach far deeper and are described as follows. For

the regular interface, relatively uniform small-scale arc-shaped paths are observed (due to flows

around regularly packed grains at the bed surface). For the random case the tracked paths are more

complex, with short paths near the interface and also longer, deeper paths. As the transit time of a

water parcel depends on the depth and the length of the flow path, 𝜏95 in Case 2 is longer than that

in Case 1. For paths at 𝑦1 = 𝑦2 = −3𝐷, Case 1 also yields multiscale flow paths similar to those

for Case 2, as the short paths near the interface for Case 1 are now excluded by the deeper entry

elevation. The paths in Case 2 reach deeper into the sediment than for Case 1, leading to longer

transit times. These observations indicate that the flow pattern throughout the bed is dependent on

the roughness characteristics.

In Figure 3.3, nearly all of the flow paths are oriented downstream in 𝑥. Exceptions are the

flow paths located in the lower portion of the recirculation regions near the interface, where the

flow is directed upstream. The very high fraction of subsurface flow paths oriented downstream

is a major difference from flow paths induced by bedforms, such as those induced by triangular

bedforms in the experimental study of Elliott and Brooks (1997a), where a significant fraction

of large-scale upstream-oriented subsurface flow paths were found. This difference is probably

due to the negligible hydrostatic pressure variations along the interface in the present cases as the

roughness height is much lower than the open-channel height.

To characterize the velocity along the subsurface flow paths, Figure 3.4 compares the wall-

normal velocity magnitudes (|𝑣 |) that are conditionally averaged along the down- and up-going

portions of the flow paths, respectively. The result is a function of 𝑦 and the bed-normal flow path

direction. Flow paths tracked with 𝑦1 = 𝑦2 = 0 are used. At a given 𝑦 near the interface, |𝑣 | for the

random case is much larger than the value for the regular case. This is consistent with the deeper
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flow paths for the former (Figure 3.3(d)) than for the latter (Figure 3.3(c)). In addition, for both

cases the speed of downward flow is higher compared to that of upward flow. This difference has

an impact on the transit time values when the entry elevation differs from the exit one.

 y
/�

 |v|/u⌧

Figure 3.4: Wall-normal variation of 𝑣 magnitude conditionally averaged along downward (red)
or upward (black) flow paths tracked at 𝑦1 = 𝑦2 = 0, for regular ( ) and random ( ) cases.

Next, independent variations of entry (𝑦1) and exit (𝑦2) elevations are studied. Both 𝑦1 and 𝑦2 are

varied between the sediment crest and 𝑦/𝛿 = −0.9. An ensemble of particle-tracking simulations

based on 42 values each of 𝑦1 and 𝑦2 (total 1764) was carried out. For each (𝑦1, 𝑦2) pair, 𝜏50 is

calculated and plotted in a map shown in Figure 3.5. The variation of 𝜏95 was also evaluated and a

similar comparison was observed; the 𝜏95 plots are shown in the Appendix B Figure B.5.

First, focus on the diagonal line represented by 𝑦1 = 𝑦2. The short transit times of 𝑜(1)𝛿/𝑢𝜏 at

𝑦1 = 𝑦2 ≈ 0 are mostly due to mild undulations of subsurface paths (Figure 3.3a,b). For sufficiently

deep entry/exit elevations, 𝜏50 plateaus to values of 𝑜(10)𝛿/𝑢𝜏. The dependence of transit times on

the entry and exit elevations of particles is not restricted to elevation variation within the Brinkman

layer, which corresponds approximately to 𝑦/𝛿 ∈ (−0.1, 0.1). Beyond this layer, deeper entry or

exit elevations will still result in progressively longer transit times due to progressive exclusion of
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shorter flow paths, until only long flow paths remain.

Next, small values of |𝑦1 − 𝑦2 | produce short transit times due to a large fraction of tracked

paths being associated with short flow paths that do not extend far beyond the elevation of 𝑦1, while

with large |𝑦1 − 𝑦2 | differences a larger fraction of the tracked paths are longer and deep-reaching

ones, which yields much longer transit times. The regions above the diagonal line (i.e., 𝑦1 > 𝑦2)

and below the line (i.e., 𝑦1 < 𝑦2) are not symmetric. The median transit times with 𝑦1 below 𝑦2 are

larger than those with 𝑦1 above 𝑦2 at the same |𝑦1 − 𝑦2 | difference. This is because the downward

motion of a fluid parcel in the bed is, on average, faster than the upward motion, as shown in

Figure 3.4. One also observes that the median transit times with 𝑦1 > 𝑦2 are less well-converged

statistically than those with 𝑦1 < 𝑦2, as shown by the more fluctuating contour lines. This is due to

the fewer flow paths used for averaging when 𝑦1 > 𝑦2 in the current computation procedure (see

Appendix B Figure B.3). At large 𝑦1-𝑦2 separations, much longer transit times are observed for the

regular case compared to the random one. This difference is probably a result of the significantly

smaller magnitude of bed-normal velocity along flow paths in the regular case for 𝑦/𝛿 > −0.5

(a) (b)

Figure 3.5: Median transit time normalized by 𝛿/𝑢𝜏 with independent variations of 𝑦1 (entry) and
𝑦2 (exit) elevations, for regular (a) and random (b) cases. Similar variations of 𝜏95 are shown in
the Appendix B Figure B.5.
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(Figure 3.4).

These results highlight the fact that subsurface flow paths are multiscale in nature and typically

extend deeper beyond the Brinkman layer. They also show that both the entry and exit elevations

are important parameters in measuring and reporting transit times in the presence of bed roughness;

however, these details are not often presented in the literature. The roughness geometry affects not

only the transit time when 𝑦1 is set equal to 𝑦2, but also the dependence of transit time on 𝑦1 and

𝑦2 when 𝑦1 ≠ 𝑦2.

In the next two sections we address the following questions: (1) What factors determine the (𝑥, 𝑧)

locations of the entries and exits of subsurface flow paths (and consequently TTD characteristics)?

(2) How important is the molecular diffusion for solute transit time?

3.3.2 Interfacial 𝑣 distribution

Figure 3.6 shows the typical flow pattern around a roughness protuberance formed as a grain

cluster. A stagnation point appears upstream of the protuberance, leading to a region with local 𝑃

higher than the spatial average (indicated by 𝑃 > 0). In addition, a recirculation region appears

downstream, leading to a local low-𝑃 region (indicated by 𝑃 < 0). Such interfacial pressure

Figure 3.6: Sketch showing how local high-pressure (stagnation point) and low-pressure
(recirculation) regions lead to entry and exit of fluid parcels (red spheres and red lines),
specifically, in Case 2. Roughness geometry. 𝑃(𝑥, 𝑦, 𝑧) and 𝑣(𝑥, 𝑦, 𝑧) are the time-averaged
values of pressure and wall-normal velocity; 𝑃(𝑥, 𝑦, 𝑧) = 𝑃(𝑥, 𝑦, 𝑧) − ⟨𝑃⟩(𝑦) is the form-induced
pressure, i.e., deviations from the plane-averaged value.

59



variation is in line with the description of local pressure variation on a bedform (triangular dune)

by Savant et al. (1987). These local pressure maxima and minima lead to bed-normal pressure

gradients at the bed surface: 𝜕𝑃/𝜕𝑦 > 0 upstream and 𝜕𝑃/𝜕𝑦 < 0 downstream.

Figure 3.7: Bed-parallel contours for the random interface (Case 2) at 𝑦 = 0: (a) bed-normal mean
velocity, (b) form-induced pressure, (c) bed-normal gradient of mean pressure, and (d) transit time
of flow paths entering at each location. Only 1/4 of the domain is shown. All quantities in (a-d)
are normalized by 𝛿 and 𝑢𝜏. Joint probability density functions of 𝜕𝑃/𝜕𝑦 and 𝑣 in the interface
region, for Case 1 (e) and Case 2 (f).

The bed-normal mean momentum equation near the interface connects the pressure gradients
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to the entry and exit of subsurface flow paths:

𝐷𝑣

𝐷𝑡
≡ 𝜕𝑣
𝜕𝑡
+ 𝑢𝑖

𝜕𝑣

𝜕𝑥𝑖
= −1

𝜌

𝜕𝑃

𝜕𝑦
−
𝜕𝑢′

𝑖
𝑣′

𝜕𝑥𝑖
+ 𝜈 𝜕2𝑣

𝜕𝑥𝑖𝜕𝑥𝑖
, (3.4)

where 𝐷𝑣/𝐷𝑡 is the material derivative of 𝑣 advected by the time-mean flow, and the three terms

on the right-hand-side represent forces due to, respectively, time-mean pressure, Reynolds stress

and viscous stress. Equation (3.4) describes how various factors (on the right-hand-side) affect the

time-mean 𝑣 velocity of a fluid parcel. It is hypothesized that the local pressure gradient (the first

term on the right-hand-side of (3.4)) is the main factor in determining the entry (𝑣 < 0) and exit

(𝑣 > 0) locations of subsurface flow paths. Specifically, a positive 𝜕𝑃/𝜕𝑦 upstream of the obstacle

would lead to negative 𝑣 values (entries of flow paths) for a fluid parcel initially with 𝑣 = 0, while

a negative 𝜕𝑃/𝜕𝑦 downstream would lead to exits of flow paths. Such mechanism is sketched in

Figure 3.6. This hypothesis is to be validated next.

Figures 3.7(a-d) compare contours of 𝑣, 𝑃, and 𝜕𝑃/𝜕𝑦 in a bed-parallel plane at 𝑦 = 0 for

the random case. The correlation between positive-𝑃 regions, positive 𝑦-gradients of pressure,

and negative 𝑣 values (entries), is apparent. These regions are typically seen upstream of clusters

of grains serving as roughness protuberances. Similarly, downstream of these protuberances,

one typically observes low pressure values, negative pressure gradients, and positive 𝑣 (exits).

Figure 3.7(d) shows the contour of transit time of flow paths entering the subsurface from this

plane. Regions with the highest pressure values are seen to generate the longest transit times.

The local correlation between 𝑣 and the bed-normal pressure gradients is better demonstrated

using contours of their joint probability density function (jpdf) in Figures 3.7(e,f) for the two cases,

respectively. Since the local 𝑦-gradient of 𝑃 varies significantly in 𝑦 between the crest elevation

and the bottom of the Brinkman layer, here the jpdf value for each 𝜕𝑃/𝜕𝑦 and 𝑣 combination is

calculated at every 𝑦 grid point in the region bounded by these two elevations and then averaged.

The jpdf values shown in Figure 3.7(e,f) are normalized such that the area integral in each of

these two plots is one. Both quantities are normalized by 𝛿 and the bulk velocity (𝑢𝑏) in the

water column; 𝑢𝑏 is calculated as 1/𝛿
∫ 𝛿

0 ⟨𝑢⟩𝑑𝑦. Here 𝑢𝑏 instead of 𝑢𝜏 is used for normalization

to highlight the effect of roughness geometry. For both cases, the vertical pressure gradients are
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indeed negatively correlated with the vertical flux. Comparing the two cases, the random case

displays much wider distribution of 𝑣 and narrower distribution of 𝑦-gradient of pressure. This

means that 𝑣 is more sensitive in this case to changes in 𝜕𝑃/𝜕𝑦, probably because of the higher

effective permeability near the interface than for the regular case (Shen et al., 2020). Notice also

that in both cases the magnitude of 𝑣 < 0 reaches much higher values than the magnitude of 𝑣 > 0,

again indicating faster fluid parcel entry into the bed than exit from the bed.

Figure 3.7 indicates that, for both cases, the interfacial pressure distribution is closely correlated

with local 𝑣 and therefore is probably the driving force of 𝑣 transport near the interface. Forces of

the Reynolds and viscous stresses play secondary roles. In other words, the differences in transit

time characteristics between Cases 1 and 2 are probably due to the different interfacial pressure

distributions caused by the roughness geometries obstructing the surface flow in different ways.

3.3.3 Effect of molecular diffusion on TTD

The transit time calculation using Equation (3.3) considers the movement of a fluid parcel. On the

other hand, the transit time of a solute is affected also by molecular diffusion. An exact estimation

of the solute transit time would require tracking either the instantaneous location of a tracer particle

(during the DNS simulation) or the concentration variation which yields a breakthrough curve.

These tasks are beyond the scope of the present work. An alternative approach is to use the random

walk method (Kinzelbach, 1988) to incorporate the effect of molecular diffusion into Equation (3.3)

and this approach is used here.

The random walk particle tracking is based on a set of stochastic differential equations. Follow-

ing Sun et al. (2015) who carried out pore-scale random walk particle tracking for a 3D domain,

we solve

𝑥𝑖 (𝑡 + Δ𝑡) = 𝑥𝑖 (𝑡) + 𝑢𝑖 (𝑥𝑖, 𝑡)Δ𝑡 + 𝑟𝑖
√︁

2𝐷𝑚Δ𝑡, (3.5)

where Δ𝑡 is a small time differential, 𝑟𝑖 is a random number of standard Gaussian distribution

with unit variance and zero mean, and 𝐷𝑚 is the molecular diffusion coefficient. Equation (3.5)

is a generalization of Equation (3.3). Compared to the approach of Kinzelbach (1988), here the
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dispersion terms are ignored by setting the longitudinal and transverse dispersivity lengths to zeros.

This is because the DNS resolves the time-mean flow details. Note also that the diffusion due to the

turbulent velocities 𝑢′
𝑖
is assumed to be much smaller than that due to �̃�𝑖 because of much weaker

Reynolds stresses compared to the dispersive stresses below the interface. The smoothness of

the results of Equation (3.5) requires the step of particle advection to be a fraction of the grid cell

size; Kinzelbach (1988) recommended five to ten steps per cell. Here, the Δ𝑡 value corresponds to

five steps per grid cell at a convection velocity of ⟨𝑢⟩ below the Brinkman layer. 𝐷𝑚/𝑢𝜏𝛿 takes a

value of 2.5 × 10−6 to achieve a Schmidt number (𝑆𝑐 = 𝜈/𝐷𝑚) of around 1000, representative of

dissolved oxygen in water.

Figure 3.8: Cumulative backward transit time distribution (a) and its pdf (b) based on mean
advection only ( ) and based on both mean advection and molecular diffusion ( ), for Case
1 (black) and Case 2 (red) at 𝑦1 = 𝑦2 = 0. In (b), (blue) shows the fitted power law with slope
indicated.

The backward TTD and its cumulative distribution are shown in Figure 3.8 for 𝑦1 = 𝑦2 = 0.

Various TTD characteristics are tabulated in Table 3.2 under columns “Case 1 (MD)” and “Case

2 (MD)”. The TTD power-law decay slope is milder for both cases, with the slope of around

−1.1, compared to −1.3 considering advection only. Changing to a deeper elevation, such as

𝑦1 = 𝑦2 = −3𝐷, does not affect the power-law slope. For both cases, the addition of molecular
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diffusion increases significantly the probability of transit times being longer than 𝑜(102)𝛿/𝑢𝜏, while

early time values are only slightly affected. This increase in transit times is attributed to the fact that

solute particles are displaced from the time-mean paths by molecular diffusion, resulting in paths

with greater lengths. The addition of molecular diffusion does not remove the difference brought

by a change in the roughness geometry. For a particle release elevation below the interface region

(i.e. 𝑦1 = 𝑦2 = −3𝐷) which tracks a large fraction of deep subsurface paths, 𝜏95 normalized by

𝛿/𝑢𝜏 is significantly longer in Case 2 (2.17 × 106) than in Case 1 (8.35 × 105).

For a 2D sinusoidal bedform analyzed using an advection-dispersion model, Bottacin-Busolin

and Marion (2010) also observed a milder slope (−0.5) of the residence time function when

both mean advection and mechanical dispersion were accounted for, compared to the slope with

advection only (−1.0). According to Equation (3.2) and the as shown in the Appendix B, the

present slopes of←−𝑝 𝑄 shown in Figure 3.8(b) indicate power-law decay slopes of −0.1 and −0.3 of

the same residence time function, with or without molecular diffusion, respectively. The difference

between the slopes observed herein and those in the study of Bottacin-Busolin and Marion (2010) is

possibly due to the three-dimensionality of the present flow and the capability of DNS in capturing

the actual velocities near the interface and within the bed.

3.4 Conclusions

Results of transit times are reported for turbulent open-channel flows over flat sediment beds at

𝑅𝑒𝐾 = 2.6 with two different bed roughnesses consisting of either regularly (Case 1) or randomly

(Case 2) positioned sediment grains at the bed surface. The transit time calculations are based on

DNS simulations similar to the ones reported in Shen et al. (2020). The transit times are calculated

using the particle tracking method, considering (i) advection by time-mean velocity only and (ii)

both time-mean advection and molecular diffusion.

Despite the absence of bedforms, both bed roughnesses generated a large spectrum of transit

times, whose characteristics are similar to those generated by bedforms. The TTDs show power-law

tails at late times for both cases; the time range and slope of the tail vary only weakly with the
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roughness geometry. For both cases, the power-law slopes range from −1.3 considering the mean

advection only, and around −1.1 considering both the mean advection and the molecular diffusion.

We also show that, with pore-resolved data, the definition of a surface-subsurface interface becomes

obscure; the calculated transit times vary with the elevations chosen to mark the ‘entry’ or ‘exit’ of

particles.

Near the interface, roughness leads to regions with local pressure maxima or minima due to its

effect on the near-bed turbulence. These regions are found to correlate closely with the distribution

of interfacial bed-normal velocity. This suggests that locations of subsurface flow path entries and

exits are mainly determined by the interfacial pressure, while being less sensitive to forces due

to the Reynolds and viscous stresses. In other words, the advective pumping mechanism may be

used to describe the subsurface flow induced by roughness on a macroscopically flat bed, similar

to those induced by bedforms.

Compared to the regular roughness, the random roughness leads to longer transit times in the

TTD power-law tail associated with deep subsurface pathlines. Specifically, the pure-advection

particle tracking in Case 2 yields 18% and 91% larger transit times of the 50th and the 95th

percentiles, respectively, than in Case 1 when 𝑦1 = 𝑦2 = −3𝐷. This difference occurs because

the random roughness induces more intense interfacial pressure variation (due to grain clusters

forming protuberances larger than a single grain), with a wider range of horizontal length scales.

Consequently, the subsurface flow paths in Case 2 can reach farther and deeper than in Case 1.

With the addition of molecular diffusion in the transit time calculation, the transit time increases

(especially at late times) for both cases, as expected. The differences between the two cases remain

significant.

This work demonstrates that grain-scale roughness and its geometry are important for hyporheic

exchange, as shown by the subsurface flow characteristics and transit times. The effect appears to be

fundamentally similar to how a larger-scale bedform affects the exchange. These findings would not

have been possible if a pore-unresolved simulation model (such as the Darcy flow model) was used

instead. In addition, DNS data similar to the present data can be used for closure developments,
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such as the parameterization of advection due to �̃�𝑖 and 𝑢′
𝑖

in TTD or RTD prediction based on a

Darcy flow. Additional factors that are likely to affect the overall transit time of solutes include (i)

grain-scale solute concentration variation near the bed surface and (ii) turbulent diffusion, which

is strong in the Brinkman layer and is likely to affect 𝜏 values calculated with 𝑦1 or 𝑦2 close to 0.

The importance of these factors and their dependence on roughness details need to be addressed in

future work. In addition, scenarios that include both roughness and bedforms need to be explored

for possible interactions between the effects of the two.
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CHAPTER 4

PORE-RESOLVED DIRECT NUMERICAL SIMULATIONS OF HYPORHEIC
EXCHANGE INDUCED BY BEDFORMS AND BED ROUGHNESS

4.1 Introduction

Bedforms are the most important source of flow resistance at the local scale in river channels.

The word “Bedform” are used herein refers to ripples or dunes as described by Vanoni (2006). In

sand-bedded rivers, form resistance is primarily generated by bedforms. The turbulent motions and

flow separation generated by bedforms are responsible for transfer of mean flow energy to turbulent

kinetic energy (Venditti, 2013).

The objective of this Chapter is to identify to what extent the grain-scale bed roughness affects

the hyporheic exchange with the presence of bedform. To this end, pore-resolved DNS simulations

of turbulent half-channel flows bounded by the same permeable dune-shape bedform with two

different bed roughnesses are carried out and compared. The effects of grain-scale roughness and

its texture on macroscopic exchange quantities including the subsurface flow paths and transit time

characteristics are documented. A forward particle tracking method is used to calculate the transit

times, considering the advection by time-mean velocity only, same as in Chapter 3.

The chapter is organized as follows. Section 4.2 describes the numerical techniques used for

DNS and transit time calculation, the problem set-up, and the syntheses of bedforms with two

different roughnesses superimposed on them. Section 4.3 compares the effects of bed roughness

geometry on velocities, pressure field and transit times for the two cases examined and analyzes the

effects of roughness with the presence of bedform, followed by conclusions in Section 4.4.
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4.2 Methodology

4.2.1 Configurations and parameters

Fully developed open-channel flows are simulated using the same DNS method mentioned in

previous chapters. The simulation domain includes both the surface and sub-surface flows (Fig-

ure 4.1(a,b)). 𝛿 is the thickness of the turbulent boundary layer (i.e., open-channel height) measured

from the trough of the bedform; 𝐻𝑠 is the sediment depth measured from the bedform trough to

the bottom boundary of the simulation domain. 𝐻 is the bedform height measured from its trough

to its crest. The bedform wavelength is denoted by 𝜆. The 𝑥 location of the crest is 𝐿𝑐 = 𝜆/2.

Symmetric boundary conditions are applied at both top and bottom boundaries of the simulation

domain. Periodic conditions are applied at 𝑥 and 𝑧 boundaries. A constant mean pressure gradient

is used to drive the flow. The elevation of 𝑦 = 0 is set at the bedform trough elevation. The same

double-averaging (DA) decomposition of an instantaneous flow variable as that used in previous

Figure 4.1: Simulation domain and synthesized bedforms with (a) regular and (b) random
roughnesses, colored by 𝑦.
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Roughness 𝐷/𝛿 𝐻𝑠/𝛿 𝐻/𝛿 𝜆/𝛿 𝐿𝑐/𝜆 (𝐿𝑥 , 𝐿𝑧)/𝛿 (Δ𝑥+, Δ𝑦+min, Δ𝑧
+)

Case 1 Regular 0.05 2 0.15 3 0.5 (3, 1) (3.7, 0.3, 4.1)
Case 2 Random 0.05 2 0.15 3 0.5 (3, 1) (3.7, 0.3, 4.1)

Table 4.1: Summary of parameters. 𝐷 is the grain diameter; 𝐿𝑥𝑖 is the simulation domain size in
𝑥𝑖; 𝑅𝑒𝐾 = 2.5, 𝑅𝑒𝜏 = 1580, 𝐷+ = 79. Δ𝑥+, Δ𝑦+, and Δ𝑧+ are DNS grid sizes in 𝑥, 𝑦 and 𝑧,
respectively, normalized using the viscous length scale 𝜈/𝑢𝜏.

chapters are applied. Given the streamwise dependence of this flow, a modified double-averaging

decomposition is used, with the spatial averaging performed in 𝑧 only, instead of averaging in both

𝑥 and 𝑧 as in the previous chapters.

The simulation and case parameters are listed in Table 4.1. Two cases are considered, one

with regular roughness (Case 1) in which the arrangement of grains in the uppermost layer is

regular and the other with random arrangements of uppermost-layer grains (Case 2). In both

cases, the same porosity of 0.4 is imposed in the bulk of the sediment. The friction Reynolds

number and permeability Reynolds number are the same for both cases: 𝑅𝑒𝜏 = 𝛿𝑢𝜏/𝜈 = 1580 and

𝑅𝑒𝐾 =
√
𝐾𝑢𝜏/𝜈 = 2.5, where 𝐾 is the permeability. The 𝑅𝑒𝐾 is the same as that used in previous

chapters. The grain diameter in wall units is 𝐷+ = 79. 𝑢𝜏 is obtained as the average of the local

𝑢𝜏, calculated from the maximum magnitude of the local 𝑦 profile of the total shear stress, which

is the sum of the viscous shear stress, the Reynolds shear stress and the form-induced shear stress.

The number of grid points are 1280, 1147 and 384 in 𝑥, 𝑦 and 𝑧, respectively. The total simulation

time used for data collection is around 10 large-eddy turn-over times (LETOTs), defined as 𝛿/𝑢𝜏.

The porous bedforms are immobile and modeled as closely packed mono-disperse hard spheres.

The locations of the grains are determined based on molecular dynamics simulations (Plimpton,

1995; Shen et al., 2020). Two bedforms with the same macroscopic dune geometry but different

roughnesses at the uppermost layer are synthesized and shown in Figure 4.1. One is the “regular”

case (Case 1) formed by regular distribution in (𝑥, 𝑧) of grains and the other is the “random” case

(Case 2) formed by random grain distribution of grains in both (𝑥, 𝑧) and 𝑦. Both roughnesses are

statistically similar to those imposed on a flat bed in the previous chapters. Below the bed surface,

the grain distribution is random in both cases.
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Figures 4.2 compares the bed surfaces in Cases 1 and 2, showing the difference in grain

arrangement at the top of the bedform.

Figure 4.2: Roughness surfaces colored by 𝑦 (a,b) and local height fluctuations measured from
the bedform surface (c,d) in Cases 1 (a,c) and Case 2 (b,d). (e) One-dimensional power spectral
densities 𝐸𝑘 of the local height fluctuations for Case 1 (regular roughness, ) and Case 2
(random roughness, , red). 𝑘𝑟𝑚𝑠 is the root-mean-square (rms) of interface height
fluctuations.

To quantify the difference between the two roughness geometries, the one dimensional (1D)
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power spectra (𝐸𝑘 ) of local height fluctuations measured from the bedform surface are compared

in Figure 4.2(e) as functions of the streamwise wavenumber (𝜅1 = 1/𝜆1, where 𝜆1 is the streamwise

wavelength). Similar spectral distributions as those seen in Chapter 3 are observed here, expectedly.

For the random case the white noise regime applies to 𝜆1/𝐷 larger than around 2.0. For smaller 𝜆1,

𝐸𝑘 shows a power-law decay with a slope of around −2.4, which is the same as shown in Chapter

2. In comparison, for the regular roughness the white noise region covers wavenumbers up to 𝐷.

4.2.2 Transit time calculation based on particle tracking

The same definition and calculation of transit times are used as in Chapter 3 and are not repeated

here. The only difference is the particle release and exit locations. Different from a constant height

elevation for particle enter and exit used in Chapter 3, here we release particles on the streamwise-

varying bedform interface and track particles until they exit from the interface, as shown in Fig. 4.3.

Particles residing in the sediment without exiting or particles exiting the sediment elsewhere other

than the interface are not accounted for in the transit time calculation. The particles are seeded

uniformly on the bedform surface. In total, around 𝑜(106) particles are released. To test the result

Figure 4.3: Conceptual sketch to show the enter and exit locations of tracked particles.
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convergence, we used twice the number of released particles, which led to less than 1% difference

in the fitted TTD slope or the median transit time value.

Figure 4.4: (a) Time- and spanwise-averaged streamwise velocity ⟨𝑢⟩+𝑧 for cases with regular
( ) and random ( , red) roughnesses. ⟨𝑢⟩+𝑧 contours for (b) regular and (c) random
roughness.

4.3 Results

In this section, Cases 1 and 2 are compared to understand the effects of roughness on the hyporheic

exchange with the presence of bedform, specifically the effects on turbulent flow and pressure

distributions along the SWI and how they influence the mass transport in the sediment.
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4.3.1 Effects of roughness geometry on velocity

The 𝑦 profiles of the time- and spanwise-averaged streamwise velocity normalized by average 𝑢𝜏

are compared in Fig. 4.4 (a). These profiles are qualitatively similar with previous observations

of Chen et al. (2015) and Kirca et al. (2020), which show that the flow is accelerated towards the

bedform crest, due to the streamline convergence, and decelerated after the crest. The random

roughness leads to a lower bulk velocity compared to the regular one and, consequently, results in

a 17% higher friction coefficient,

𝐶 𝑓 = 2
(
𝑢𝜏

𝑈𝛿

)2
, (4.1)

of 0.0109 compared to 0.0093 in the regular-roughness case. Here, 𝑈𝛿 is the DA velocity at half

channel height. The higher 𝐶 𝑓 is due to the larger effective length scale of the random roughness

enhancing the local wall friction on the bedform surface, consistent with the observations made on

a macroscopically flat bed for the same roughnesses in Chapter 2.

Profiles of the viscous shear stress normalized by local wall units are shown in Fig. 4.5(a).

Despite the adverse-pressure-gradient (APG) region on the lee side and a sharp edge of the bedform

at its crest, no mean flow separation (or change of sign of the 𝑦-gradient of streamwise mean

velocity) is observed. More interestingly, the inflection point of the mean velocity profile stays

at the permeable wall, as opposed to the presence of an inflection point inside an APG boundary

layer bounded by an impermeable wall (as shown by the similarity solution of the Falkner-Skan

equation or by extensive experimental and numerical evidences in turbulence boundary layers).

This indicates that a permeable wall promotes inner-outer interaction in a turbulent boundary layer

and, consequently, reduces the likelihood of APG-induced flow separation.

The Reynolds shear stress profiles (Fig. 4.5(b)) show deeper penetration of turbulence into the

bed in the random case, which indicates stronger wall-normal mean momentum transfer at the

interface. Different from the viscous shear stress reaching the maximum values on the bed surface,

the maximum magnitudes of the Reynolds shear stress are reached above the wall, farther from

the wall in the APG region, consistent with observations made for impermeable-wall APG flows.

In addition, the streamwise maximum of the Reynolds shear stress occurs on the lee side, not
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corresponding to the 𝑥 location of the maximum of the 𝑦-gradient of the streamwise mean velocity.

This indicates that the turbulence are not generated by the mean shear alone; other mechanisms,

such as the shear production due to mean strain rate at the roughness scale (i.e. wake production

(Raupach and Shaw, 1982; Yuan and Piomelli, 2014c; Yuan and Jouybari, 2018; Mangavelli et al.,

2021)), may be important.

Figure 4.5: Profiles of (a) viscous shear stresses −𝜕⟨�̄�⟩+𝑧 /𝜕𝑦+ and (b) Reynolds shear stresses
−⟨𝑢′𝑣′⟩+𝑧 for cases with regular ( ) and random ( , red) roughnesses.

4.3.2 Effects of roughness geometry on pressure field

The distribution of the time- and spanwise-averaged pressure across the half channel and the

permeable bed is compared in Fig. 4.6 (a,b). In both cases the bedform introduces favorable

streamwise pressure gradients on the stoss side and adverse gradients on the lee side. Similar to
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what was observed by Cardenas and Wilson (2007) using RANS simulation of surface flows, the

minimum pressure is located at the crest of bedform. The pressure distribution along the SWI

drives the flow in the sediment and controls the surface-subsurface dynamics exchange and mass

transport.

Figure 4.6: Time- and spanwise-averaged pressure field for cases with (a) regular and (b) random
roughnesses. Pressure distributions along the SWI normalized using bulk velocity (c) or friction
velocity (d) for both cases.

The interfacial pressure non-dimensionalized using either 𝑢𝑏 or average 𝑢𝜏 is shown in Fig. 4.6

(c) and (d). When normalized using 𝑢𝜏 (Fig. 4.6 (d)) the pressure variation induced by the random

roughness is significantly weaker (by almost a half in magnitude) than that generated by the regular

one. However, the profiles almost collapse when the pressure is non-dimensionalized using 𝑢𝑏

instead (Fig. 4.6 (c)). This implies that the difference of pressure variations at the SWI between

the two cases is mostly due to the higher 𝐶 𝑓 in the random case. The interfacial pressure variation

reflects the pressure drag induced by the dune, which is a quadratic function of the speed of flow
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passing it. As the random roughness provides stronger flow resistance than the regular one, it

reduces the speed of flow passing the dune and thus reduces the pressure variation. Although the

size of roughness is much smaller compared to the size of bedform, it significantly influences the

pressure distribution along the interface.

Figure 4.7: Distribution of the Clauser parameter 𝛽 in the two cases. The black dash line shows
the bedform interface geometry.

The strength of pressure gradient can be quantified by the Clauser parameter (Clauser, 1956),

𝛽(𝑥) = (𝛿∗/𝜏𝑤) (𝑑𝑃∞/𝑑𝑥), where 𝑑𝑃∞/𝑑𝑥 is the streamwise pressure gradient at the free-surface

(or half channel height), 𝛿∗ is the displacement thickness, and 𝜏𝑤 is the wall shear stress. Here, 𝜏𝑤

is set to the maximum value of local total shear stress 𝜏 = 𝜈 𝜕⟨�̄�⟩𝑧
𝜕𝑦
− ⟨𝑢′𝑣′⟩𝑧− ⟨�̃��̃�⟩𝑧. The distributions

of 𝛽 in both cases are shown in Figure 4.7, which shows a sinusoidal variation with negative values

(i.e. favorable pressure gradients (FPG) and flow acceleration) on the stoss side and positive ones

(i.e. APG and flow deceleration) on the lee side. The regular roughness case yields larger 𝛽

magnitudes with both signs than does the random case, consistent with the discussions above. The

𝛽 values on the lee side indicates that the turbulence is subjected to mild APGs (Aubertine and

Eaton, 2005). A different bedform shape that induces stronger APG is needed to test the effect of

wall permeability on flow separation.

Compared to that on a flat bed, the effect of roughness geometry on the pressure distribution on a

bedform is significantly different. On a flat bed, the roughness protuberance creates local stagnation
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Interface 𝜏50 𝜏95 Slope
Case 1 Regular 3.00 385 −1.52
Case 2 Random 0.0854 7.47 −1.54

Table 4.2: Various characteristics of transit times calculated based on mean advection only.
Transit times are normalized by 𝛿/𝑢𝜏. Note. 𝜏50 and 𝜏95 represent 50th (median) and 95th
percentiles of the TTD distributions.

point upstream of the protuberance and low pressure region downstream, inducing roughness-scale

pressure heterogeneity at the interface. As shown earlier in Figure 2.24, the more intense pressure

variations are observed at the random interface of flat bed due to larger roughness scales. However,

with the presence of bedform, the higher wall friction due to the random roughness reduces the

bulk velocity and the macroscopic pressure variation on the bedform. Meanwhile, the macroscopic

pressure variation induced by bedform masks the roughness-scale pressure variation induced by

the roughness. In other words, the effect of roughness on the pressure field appears global when a

bedform is present, while, on a flat bed, the roughness effect is local.

4.3.3 Effects of roughness geometry on transit times

The effect of bed roughness on modulating the interfacial pressure has significant implications

in the exchange of mass (e.g. water and solutes) across the interface, which can be quantified,

for examples, using transit time distribution. Table 4.2 compares characteristics of transit times

calculated based on mean advection only. Particles are released at the bedform interface and tracked

until they exit from the interface, as shown in Figure 4.3. Here, 𝜏50 represents the central tendency

of the distribution, while 𝜏95 is considered as a characteristic 𝜏 associated with the rare, long-transit-

time subsurface paths. The comparison shows that the 𝜏50 and 𝜏95 of the transit time distribution

in the regular case are significantly higher than in the random case. However, a constant slope of

the power-law tail of around −1.5 is observed for both cases. This is similar with the observations

of Sawyer and Cardenas (2009) that the tails of residence time distributions follow a power law

regardless of permeability structure near the SWI. An important conclusion that follows is that the
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difference in grain-scale roughness texture on top of a bedform extends deep into the sediment and

significantly modifies the transit time distributions.

Figure 4.8: Cumulative backward transit time distributions (a) and their pdf distributions (b) for
regular ( ) and random ( , red) cases. In (a), the horizontal dashed lines ( , blue) mark
the 50th (median) and 95th percentiles. In (b), the dashed blue lines ( , blue) show the fitted
power law with slopes indicated. Subsurface flow paths in the (c) regular and (d) random cases.

To explain such difference in the TTD characteristics, Figure 4.8(c,d) compares the subsurface

paths obtained using the particle tracking approach. For both cases, multiscale subsurface flow

paths are induced, with the longest ones characterized by roughly a half of the bedform length scale

𝜆. The general pattern is consistent with observations in existing numerical and experimental studies

of subsurface flows induced by bedforms based on advective pumping (Cardenas and Wilson, 2007;

Elliott and Brooks, 1997b). Here, the regular roughness is shown to induce a larger fraction of
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deep-reaching paths and, consequently, overall longer transit times. This is probably due to the

higher-magnitude interfacial pressure variation observed in Fig. 4.6 for this case. Figure 4.9 shows

the histogram of the number of pathlines that reaches a depth of each given 𝑦 value. The area of

the integral equals one. It is evident that a larger fraction of pathlines in the regular case reaches

deep in the bed than in the random case.

Figure 4.9: Histogram of the number of flow paths reaching a depth of a given 𝑦 value for the two
cases. Values are normalized such that the area integral is one.

The comparison with TTD results calculated for flat beds (Table 3.2) shows that the roughness

influences the mass exchange differently depending on whether a bedform is present. On a flat

bed, the random roughness induces slightly larger 𝜏50 measured at the interface than the regular

roughness. However, with the presence of bedform, the regular roughness case induces a much

longer transit times. This is due to the different roles played by roughness. The pressure difference

here is much larger than on a flat bed. The results show that grain-scale roughness on top of a
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bedform modulates the pumping effects of bedform in a way that significantly modifies the transit

times.

4.4 Conclusions

Pore resolved DNSs are carried out over immobile bedforms at 𝑅𝑒𝐾 = 2.5 and 𝑅𝑒𝜏 = 1580 in order

to investigate the effects of two roughnesses, regular and random, on the flow and transit times with

the presence of bedforms. The time-averaged velocity profiles show that the roughness affects the

flow velocity near the SWI, resulting in different wall friction depending on the roughness texture

(similar to what happens in impermeable-bed flows), viscous shear stress and shear penetration

depth.

The two roughness textures also induces different pressure variation along the bedform surface.

On the bedform with regular roughness case, a larger pressure variation is observed than in the

random roughness case. This is contrary to what has been observed on a flat bed (in Chapter 3)

where the random roughness induces more intense pressure variation of the roughness scale. This

discrepancy between flat-bed and bedform cases occurs because of the different roles played by

roughness. On flat bed, roughness protuberance creates roughness-scale pressure heterogeneity,

while on a bedform, the roughness also modulates the pressure variation of the bedform scale.

In addition, contrary to the flat-bed flows where the random roughness augments mass storage

in the bed by inducing longer and deeper flow paths and longer transit times, with the presence of

bedform the opposite is observed: the random roughness damps the pumping effect of the bedform

and reduces storage. The observations show that grain-scale roughness superimposed on a bedform

does not simply act as a smaller-scale “bedform” with a lesser effect on pumping. Instead, roughness

modulates significantly the bedfrom-induced pumping exchange, by changing the macroscopic

pressure distribution along SWI. This work demonstrates that grain-scale roughness on top of a

bedform should not be ignored when studying hyporheic exchange, as shown by its influence on

the pressure variation and transit times.
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CHAPTER 5

CONCLUSIONS

5.1 Summary

In this dissertation, three-dimensional pore-resolved direct numerical simulation are carried out to

elucidate multiscale flow physics regarding mass and momentum transport across water-sediment

interfaces. River-bed sediments representative of realistic ones are synthesized based on molecular

dynamics simulations. An immersed boundary method is used to impose the boundary conditions

of fluid regime in a complex sediment geometry. The methods are validated by comparing with

experimental results. A particle tracking method is implemented to calculate the transit time

distributions in the sediment, with or without the contribution of molecular diffusion. These

numerical methods have been applied to understand the effects of roughness on flows bounded by

flat beds and bedforms. The most important findings and their implications are summarized below.

Bed roughness plays a key role in inducing hyporheic exchange on both flat beds and bedforms.

On a flat bed, small bed morphological features on hyporheic exchange should not be ignored,

as they significantly affect the dynamics of turbulence, time-mean flow, subsurface pathlines and

transit time distributions. Specifically, the larger roughness length scales brought by the random

interface results in more intense mixing, pressure variations, more isotropic form-induced stress

tensor, significantly higher wall-normal hyporheic flux across SWI and deeper-reaching hyporheic

flow paths. These differences explain the dependence of transit times on the roughness geometry.

The results also demonstrate that the grain roughness on a flat bed induces hyporheic exchange

predominantly through the pumping mechanism, similar to the effect of a bedform.

With the presence of bedform, grain roughness still plays an important role in modifying the

wall friction, interfacial pressure distribution and velocity profiles, as well as penetration depth.

The large-scale variation of the interfacial pressure is induced by the bedform geometry, while the

magnitude of its variation is significantly modulated by the texture of roughness superimposed on
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the bedform. Roughness still leads to local pumping of interfacial flow; but a more significant

part of its effect is the augmentation of hydrodynamic drag, which slows down the core flow and

consequently reduces the pressure variation on the bedform. As a result, the transit times are more

sensitive to the roughness texture when a bedform is present than when it is not. These results

demonstrate that the effect of bed roughnesses interacts nonlinearly with that of larger bed scales

such as bedforms.

5.2 Future work

Pore-resolved simulations such as the DNS herein offer an unprecedented amount of information

useful in direct characterization of pore-scale drivers of the flow. In future work, other contributing

factors of hyporheic exchange can be further studied with the present methodologies. These factors

include Reynolds numbers, bulk permeability, spatial heterogeneity of bed permeability, grain-

diameter distributions, bedform configurations such as asymmetric dunes or those with high slope,

and moving or deformable beds. DNS data of surface-subsurface exchange within this parameter

space are needed to fully understand the hyporheic exchange and validate pore-unresolved models

of the exchange. In addition, direct simulations of reactions and microbial biomass grow/decay

may be used to understand pore-scale physics in an array of increasingly important topics, such as

transport of nutrients/pollutants and greenhouse-gas production in river beds.
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APPENDIX A

DETAILS OF POROUS-BED SYNTHESES

Both the porous beds with random and regular interface are generated by simulating the pouring

of hard spheres of the same diameter, 𝐷, into the MD simulation domain. The particles are subject

to the gravitational force in the 𝑦 direction and the forces between particles determined by the

Hookean-style granular potential with history effects. The top and bottom boundaries are fixed,

where the repulsive boundary condition is imposed; the periodic boundary condition is imposed

on the 𝑥 and 𝑧 boundaries.

For the bed with the random interface packing, the particles are released at each time step from

the top boundary and move towards the bottom boundary due to imposed gravity (Figure A.1). The

simulation ends as the sediment-bed domain is filled with randomly packed spheres. For the bed

with the regular interface, special treatment is required at the bottom boundary. Specifically, a layer

of regularly packed spheres are initially positioned on the bottom boundary (Figure A.2a); a second
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Figure A.1: Bed synthesis with random interface packing.

(a) (b) (c) (d) (e)

Figure A.2: Bed synthesis with regular interface packing.
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layer of spheres are also manually positioned following hexagonal close packing (Figure A.2b).

However, as is, the first two layers of spheres lead to locally low value of 𝜃 at such elevation.

To maintain the running average of 𝜃 (𝑦) (with an averaging window size of 𝐷) as almost a

constant value of 𝜃𝑎𝑣𝑔, the second layer of spheres are shifted away from the wall by a small

amount determined by the targeted 𝜃𝑎𝑣𝑔 value (of an order of 𝑜(0.1𝐷) with 3% fluctuations added,

Figure A.2(c)). Then, the similar procedure as in Figure A.1 is employed to fill the rest of the porous

bed with randomly packed spheres. In the end, the MD simulation domain is flipped upside-down

to yield a regularly-packed uppermost layer. Once the particle positions are determined using the

aforementioned procedure, the particles are overlaid with the DNS grid and the volume of fluid for

each grid cell is determined for the immersed boundary method of the fluid solver.
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APPENDIX B

SUPPORT INFORMATION FOR CHAPTER 3

Calculation of the residence time distribution

Integrating the master equation (Equation (3.2)) for a steady system with the boundary condition

of zero age for water parcels entering via inflow, i.e.,

𝑝𝑆 (0) =
𝐽

𝑆
, (B.1)

and noting that 𝑆 and 𝐽 = 𝑄 are constants for a steady flow, one obtains∫ 𝜏

𝑜

𝑑𝑝𝑆 (𝜏) = −
𝑄

𝑆

∫ 𝜏

0

←−𝑝 𝑄 (𝜏)𝑑𝜏. (B.2)

Figure B.1: Residence time distributions (RTD) normalized by 𝑄/𝑆 for 𝑦1 = 𝑦2 = 0 ( ) and
−3𝐷 ( ). For 𝜏𝑢𝜏/𝛿 > 𝑜(106) when 𝑦1 = 𝑦2 = 0 or 𝑜(107) when 𝑦1 = 𝑦2 = −3𝐷, the RTD
rapidly decreases; this is not physical but an artifact associated with the finite domain size in 𝑥
(limited to 2𝐿𝑥) imposed for particle tracking as the tracking procedure cannot be indefinitely long.
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Since 𝑑←−𝑃𝑄 =
←−𝑝 𝑄𝑑𝜏 and←−𝑃𝑄 (0) = 0 (as the minimal age is 0), this yields

𝑝𝑆 (𝜏) =
𝑄

𝑆

[
1 −←−𝑃𝑄 (𝜏)

]
. (B.3)

Equation (B.3) states that the total volume of water storage with age 𝜏, which equal to the sum

of the volume of stored water that is aging to 𝜏 + 𝑑𝜏 and the volume of water leaving the bed at

age 𝜏, is the same as the total water volume leaving the bed at age 𝜏 or higher (i.e., 𝑄(1 −←−𝑃𝑄)).

This is a result of the time-invariant water age distribution in a steady system. The calculated 𝑝𝑆

distributions for the regular and random cases, with 𝑦1 = 𝑦2 = 0 or −3𝐷, are shown in Figure B.1.

Validation of particle tracking method

To verify the implementation of the particle tracking method, the subsurface flow induced by

a 2D sinusoidal pressure field applied at the interface is considered, which corresponds to the

stationary bedform case studied in EB97. Note that we do not discuss the results of the residence

time function from the DNS data. This quantity is used for validation purpose in this section only.

An analytical solution of the Darcy velocity was derived by EB97 as

𝑢∗ = − cos 𝑥∗𝑒𝑦
∗
, 𝑎𝑛𝑑 𝑣∗ = − sin 𝑥∗𝑒𝑦

∗
, (B.4)

where𝜆 is the wavelength of the imposed interface pressure distribution and ∗ denotes normalization

using the maximum velocity amplitude at the interface and 𝜆/(2𝜋). Following EB97, consider a

pulse of solute entering the bed at a location ®𝑥. Assume that the flow is steady. Denote the fraction

of solute molecules that remains in the bed after an elapsed time 𝜏 as 𝑅(®𝑥, 𝜏). 𝑅(®𝑥, 𝜏) = 1 before

the pulse of solute leaves the bed and 𝑅(®𝑥, 𝜏) = 0 after it leaves the bed. The overall residence time

function averaged across the bed surface, 𝑅(𝜏), is obtained by averaging 𝑅 at all surface locations,

weighted by the local bed-normal fluid volumetric flux at the bed surface, 𝑞(®𝑥),

𝑅(𝜏) =

∫
(𝑥,𝑧) 𝑞(𝑥, 𝑧)𝑅 (𝑥, 𝑧, 𝜏) 𝑑𝑥𝑑𝑧∫

(𝑥,𝑧) 𝑞(𝑥, 𝑧) 𝑑𝑥𝑑𝑧
, (B.5)

where
∫
(𝑥,𝑧) 𝑑𝑥𝑑𝑧 denotes integration throughout the fluid area at the bed surface. According to

EB97, the analytical solution of 𝑅, given in implicit form, is

𝜏∗ =
2 cos−1 𝑅

𝑅
. (B.6)
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Equation (B.4) is used as the advection velocity for particle tracking. The 𝑥∗ domain size

covers two wavelengths, 𝑥∗ ∈ [−𝜋/2, 3𝜋/2], while the 𝑦∗ domain size is varied from [−𝜆/2, 0]

to [−2𝜆, 0] to study the convergence of the particle tracking method. Uniform grids in 𝑥 and 𝑦

are used to discretize the velocity fields in Equation (B.4). The spatial resolution is also varied,

from 10 points to 50 points per wavelength. The particle-tracked 𝑅 is compared with the analytical

solution provided by Equation (B.6) in Figure B.2.
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(b)

Figure B.2: Validation of particle tracking against EB97, with various spatial resolution and a
sediment domain of 𝑦 ∈ [−𝜆/2, 0] (a) or 𝑦 ∈ [−𝜆, 0] (b).

For sufficiently deep sediment (with depth of at least one bedform wavelength) and sufficiently

fine spatial resolution (at least around 50 grid points per wavelength), the particle-tracked residence

time distribution matches well with the analytical solution. Figure B.2(a) shows that the values of

𝑅 at large times are significantly underestimated with a small sediment depth due to the absence

of deeper flow paths, while Figure B.2(b) shows that the large-time slope is slightly different at a

coarse resolution.

Some details of the particle tracking implementation

The following provides explanation as to why a better statistical convergence is obtained for the

mean residence times calculated with 𝑦1 < 𝑦2 than those calculated with 𝑦1 > 𝑦2, with the same

|𝑦1 − 𝑦2 |. To calculate 𝜇1 at each (𝑦1, 𝑦2) combination, the same number of particles are released
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in the fluid domain of the bed-parallel plane at 𝑦1. As illustrated in Figure B.5, among the particles

that are released at a 𝑦1 higher than 𝑦2 and eventually leaving the sediment (e.g., released at 𝑦′1,

exiting at 𝑦′′2 ), only a fraction of them reach a depth of 𝑦′′2 , leading to fewer averaging samples and

more undulatory 𝜇1 contour lines in Figure 5. On the other hand, for particles released at a 𝑦1

lower than 𝑦2 (e.g., released at 𝑦′′1 , exiting at 𝑦′2), all of them pass 𝑦′2 to exit the sediment.

Figure B.3: Sketch to demonstrate that a particle entry elevation (𝑦1) lower than the exit elevation
(𝑦2) tracks a larger fraction of subsurface flow paths than in the case with 𝑦1 > 𝑦2, considering the
same |𝑦1 − 𝑦2 |. Here, (𝑦′1, 𝑦

′′
2 ) tracks 2 out of the 4 paths (50%) entering from 𝑦′1, while (𝑦′′1 , 𝑦

′
2)

tracks 2 out of the 2 paths (100%) entering from 𝑦′′1 .
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Figure B.4: Streamwise dispersive velocity intensities in the sediment bed: comparison between
results obtained from DNS data taken for simulation times of 10 ( , red) and 20 ( )
large-eddy turn-over times, for the regular- (a) and random-interface (b) cases.

Figure B.5: Transit time of the 95th percentile (𝜏95) normalized by 𝛿/𝑢𝜏 with independent
variations of 𝑦1 (entry) and 𝑦2 (exit) elevations, for the regular- (a) and random-interface (b) cases.
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