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ABSTRACT

PLANNING FOR AUTONOMY AND ELECTRIFICATION IN FUTURE
TRANSPORTATION SYSTEMS

By
Harprinderjot Singh

Autonomous vehicles (AVs) and electric vehicles (EVs) will improve safety, mobility,
roadway capacity and provide efficient driving, efficient use of travel time, and reduced emissions.
However, these technologies affect vehicle miles traveled (VMT), travel time, ownership cost, and
electric grid network. Shared mobility systems can ameliorate the high price of these technologies.
However, the shared mobility system poses additional problems such as users’ waiting time,
inconvenience, and increased VMT. Further, the impact of these emerging technologies varies on
different groups of users (different values of travel time (VOTT). Another hurdle to the adoption
of EVs is the limited range and scarcity of charging infrastructure. A well-established network of
charging infrastructure, especially the direct current fast chargers (DCFC), can alleviate this
challenge. However, the widespread adoption of EVs and the growing network of DCFC stations
will increase the electric energy demand affecting the electric grid stability, demand-supply
imbalance, overloading, and degradation of the electric grid components. Distributed energy
resources (DER) such as solar panels and energy storage systems (ESS) can support the EV
demand and reduce the load on the electric grid. This study develops modeling frameworks for the
optimal adoption of AVs and EVs, considering their effect on transportation systems, the
environment, and the electric grid network. Further, it suggests different scenarios that would

promote the adoption of these technologies and provide a sustainable and resilient system.

This study proposes a multi-objective mathematical model to estimate the optimal fleet

configuration in a system of private manual-driven vehicles (PMVs), private AVs (PAVs), and



shared AVs (SAVs) while minimizing the purchase and operating costs, time (travel and waiting
time), and emission production. SAVs can be the optimal solution with the efficient use of travel
time or the purchase price below a certain relative threshold. PAVs can be the optimal solution
only if the onboard amenities are improved, lifetime mileage is increased, AV technology is
installed in luxurious cars, and adopted by people with high VOTT. The framework is extended to
consider different combinations of EV's, AVs, and conventional human-driven vehicles in a private
and shared mobility system. The metaheuristics based on genetic and simulated annealing
algorithms are developed to solve the large-scale NP-hard nonlinear optimization problem. The
model is implemented for the network of Ann Arbor, Michigan. The results suggest that EVs are
optimal for the system due to low operating costs and zero tailpipe emissions. Shared autonomous
electric vehicles (SAEVs) are the best option for users with low VOTT. Private autonomous
electric vehicles (PAEVs) would favor the system if the travel time savings are at least 20% or the

price of AV technology is less than one-third of the vehicle price.

The study then investigates the optimum investment technology to support the rising
energy demand at the DCFC stations and reduce the load on the electric grid network. The different
investments include purchasing and installing various ESS (new batteries (NB), second-life
batteries (SLB), flywheels), solar panels, electric grid upgrades, and the cost of buying/selling
electricity from/to the electric grid. The model is implemented for the DCFC stations supporting
the future needs of EV charging demand for urban trips in the major cities of Michigan in 2030.
The combination of SLBs and solar panels provides maximum benefits. The total annual and

electricity savings are $25,000-$165,000 and $40,000-$300,000 per city.
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CHAPTER1 INTRODUCTION

1.1 Overview and Objectives

Cars started as environmental saviors (Kars4Kids, 2017; Keim, 2013; Levitt and Dubner,
2009), clearing the streets from horse manure (Carlisle, 2016; Hayden, 2016; Keim, 2013; Levitt
and Dubner, 2009; Milsom, 2019; Nikiforuk, 2013; Private Fleet, 2010), possible fleas (Carlisle,
2016; Nikiforuk, 2013), and even carcasses (Hayden, 2016; Nikiforuk, 2013). The shift from
horses to cars was a significant change in the transportation industry. The benefits of cars include
but are not limited to increased speed, longer travel distance, and high carrying capacity (Private
Fleet, 2010). However, in today’s world, cars have turned into one of the significant environmental
challenges. Transportation is the leading contributor of greenhouse gas emissions in the US, with
light-duty vehicles accounting for about 60% of production in this sector (EPA, 2020). The
transportation system faces another significant change moving towards autonomous vehicles (AV)
and electric vehicles (EV) technology. These technologies will trigger disruptive changes to
transportation systems, infrastructure, users' travel behavior, environment, and electric grid
network. Inspite of myriad potential benefits like improved safety and mobility, reduced emission,
efficient use of travel time; these technologies might affect vehicle miles traveled (VMT), travel
time, and ownership cost (Brown et al., 2014; Chen et al., 2016; Cokyasar et al., 2020; de Looff et
al., 2018; Dias et al., 2020; Eberhard and Tarpenning, 2006; Fagnant and Kockelman, 2015;
FastCompany, 2014; Gai et al., 2019; Ghamami et al., 2020a; Gruel and Stanford, 2016; Gucwa,
2014; Harper et al., 2016; Hidrue et al., 2011; Kroger et al., 2019; LeVine Steve, 2017; Moore et
al., 2020; NHTSA, 2016; Y. (Marco) Nie et al., 2016; Romm, 2006; Saleh and Hatzopoulou, 2020;
Samaras and Meisterling, 2008; Singh et al., 2021; Soteropoulos et al., 2019; Stogios et al., 2019;

Tomaés et al., 2020; Vasebi and Hayeri, 2020; Wadud et al., 2016; Zhang et al., 2018; Zhong et al.,



2020). There are also studies indicating that AVs can promote the adoption of EVs (Annema, 2020;
Brown and Dodder, 2019; Weiss et al., 2017). The AVs can enhance the battery performance and
battery life of EVs by optimizing the driving cycles and energy recovery during regenerative
braking (Annema, 2020), which will ameliorate some of the limitations of EVs. On the other hand,
EVs can resolve the issues of increased emissions (Wang et al., 2018) and operating costs (Weiss
et al., 2017) associated with increased VMT due to AVs. EVs can also reduce the total ownership
cost of autonomous EVs (AEV) due to their low operating cost (Weiss et al., 2017). However,
these technologies might not be affordable to the users with the added cost of AV technology and
battery price, increasing the purchase price of these vehicles (FastCompany, 2014; Hidrue et al.,
2011; LeVine Steve, 2017; Singh et al., 2021). Then, it might be reasonable to adopt these
technologies as a shared mobility system where users are not required to buy these vehicles.
Instead, these will be owned by transportation network companies (TNC). The shared mobility
would also reduce the vehicle ownership and fleet size requirements (Chen et al., 2016; Fagnant
etal., 2016; Fagnant and Kockelman, 2014; Golbabaei et al., 2020; Singh et al., 2021; Soteropoulos
et al., 2019; Spieser et al., 2016; Zhang et al., 2015) parking demand (Yan et al., 2020; Zhang et
al., 2015), labor costs (Liu et al., 2020), and the cold start emissions (Fagnant and Kockelman,
2014; Singh et al., 2021). However, this system poses additional problems such as the waiting time
and the emanated inconvenience (Fagnant and Kockelman, 2014; Singh et al., 2021), increased
VMT (Burns et al., 2013; Fagnant and Kockelman, 2014; Oh et al., 2020; Singh et al., 2021; Yan
etal., 2020), and increased congestion (Oh et al., 2020; Overtoom et al., 2020) due to empty miles
generation. Another paramount concern that arises due to the growth of EVs which will be further
promoted with the growth of AVs, is the rise in the electric energy demand that can effect the

electric grid stability, supply-demand imbalance, and overloading of the electric grid distribution



system (Khalid et al., 2019). The provision of distributed energy resources (DER) such as energy
storage system (ESS), and solar panels, at the EV charging station can reduce the electric grid
upgrade cost and support EV charging demand (Rafi and Bauman, 2021). In light of all of the
above promoting and demoting factors, it is crucial to develop an optimal approach to adopt these
technologies considering their effect on environment, transportation systems, and the electric grid

network.

The purpose of this study is threefold. First, it develops a framework to estimate the optimal
fleet configuration of private human-driven vehicles (PHDV), private AV (PAV), and shared AV
(SAV) that will minimize the total system cost comprising of emission production, user’s time,
and total cost of ownership. The study captures the trade-off between the benefits of increased
mobility, efficient use of travel time (reduction in Value of Travel Time (VOTT)), efficient
driving, and the negative impacts of increased VMT and the higher ownership cost of AVs.
Second, the study considers the EV and AV in private and shared mobility systems to estimate the
optimal combination of these technologies to minimize the system cost. It also captures competing
factors like improved safety, roadway capacity, driver productivity, increased congestion,
increased VMT, zero tailpipe emissions, low operating cost, limited charging infrastructure, and
the limited range of EVs. Third, it proposes an optimal investment technology at the direct current
fast charging (DCFC) stations to support the EV charging demand in urban areas and reduce the
load on the electric grid. The study captures the time-dependent existing energy demand and EV
charging demand, capacity constraints of the electric grid, different types of DER (solar panels,

ESS), and the cost of purchasing electricity from the electric grid.



1.2 Knowledge Gap and Research Motivation

Autonomous-electric technologies will improve the future of mobility while exacerbating
some aspects of the transportation system. These technologies will also affect the environment and
the electric grid network. Further, adopting these technologies as private or shared mobility
systems will have different implications. The various trade-offs involved have been studied to
estimate the generalized transportation cost, which analyzed the different effects of AV and EV
technologies. Some studies captured the effect of reduced VOTT (Correia and van Arem, 2016),
empty miles generation (Correia and van Arem, 2016; Singh et al., 2021; Zhang et al., 2018),
changes in parking cost (Correia and van Arem, 2016), improvement in roadway capacity
(Childress et al., 2015) by the adoption of private AVs (PAVs), while others considered SAVs and
their effects on emissions (Fagnant and Kockelman, 2014; Singh et al., 2021) and VMT (Burns et
al., 2013; Fagnant and Kockelman, 2014; Singh et al., 2021). Other studies estimate optimal
incentive policies (Y. Nie et al., 2016) and find charging station locations (Chen et al., 2020;
Ghamami et al., 2020a; Kavianipour et al., 2021b; Yang et al., 2017) for the adoption of EVs.
However, the prior research is focused on considering the limited number of factors influencing
the adoption of AV and EV technologies. It is essential to capture trade-offs among all the
influential factors to estimate the overall impact and favorable conditions for adopting these
technologies in the transportations system. For instance, the emissions can increase significantly
due to increased VMT with the adoption of PAVS/SAVs. However, the efficient driving pattern
and reduced number of cold-starts in these vehicles may result in an overall reduction of emissions.
Anincrease in VMT also increases the operating and maintenance cost of the vehicle (AAA, 2017),
which may reduce due to the efficient driving pattern. Further, the emissions and operating costs

can be substantially reduced if the vehicles are electric.



The travel behavior of the users will also change with the adoption of AVs. The different
advantages of AVs, such as efficient use of travel time and roadway, and reduced parking cost,
will encourage users to travel more, which will increase VMT in the system. These self-driving
vehicles will allow non-drivers, physically disabled, and the elderly to travel independently on
their own, encouraging them to travel more, which will again increase VMT in the system. The
AVs can efficiently relocate on their own for the next scheduled trip. The relocating ability of AVs
not only allows to serve multiple trips in a shared system, but it also allows serving multiple family
trips by the same AV in a private system, as opposed to having two or more human-driven vehicles.
Vehicle sharing reduces vehicle ownership, which will generate additional empty miles (with no
passengers) in the system. These different factors will affect the VMT in the system. It is essential
to consider all of these competing factors (changes in travel behavior, family dynamics, reduction
in vehicle ownership, empty miles generated) for the increase in VMT due to AVs to better
understand the effects of the adoption of AVs. Further, the high cost of AV technology and the
battery may be compensated by the reduced maintenance cost of EVs and efficient driving
behavior of AVs. The increased travel time cost due to changes in travel behavior with AVs and
the reduction in VOTT, and improvement in roadway capacity is another aspect that has not been
thoroughly studied in the literature. Thus, this study develops frameworks that will consider all the
contradicting and corroborating factors mentioned above in a system of emerging technologies

capturing their implications in both private and shared mobility systems.

Finally, the growing EV market share, enhanced by the AV technology, will mandate the
EV DCFC stations network deployment. This network of DCFC stations would reduce the
charging time and concerns related to the limited range of these vehicles. However, the widespread

network of the DCFC stations and rising EV charging demand will increase the load on the electric



grid. Therefore, it might be required to provide DER at the charging station to support the EV
charging demand and reduce the load on the electric grid. Thus, it is essential to propose an optimal
design of DER by capturing the existing load on the electric grid, increasing EV charging demand,
and the capacity constraints of the electric grid network. Further, it is crucial to consider the electric
grid upgrade costs and compare them with the investment cost of DER. In addition, it is crucial to
consider different DER to propose the best DER for various conditions. This is the primary
motivation in developing a modeling framework to estimate the optimal investment technology to
support the fast charging demand of EVs considering the electric grid upgrade costs, investment
in different DER (solar panels, ESS), and cost of energy (electricity). The results can also provide

electricity discounted pricing scenarios.

1.3 Research Significance and Contributions

The main objective of this study is to provide modeling frameworks for the optimal
adoption of AVs and EVs by considering their effect on the transportation systems, the
environment, and the electric grid network. The study aims to address the following research

questions:

e What are the different influential factors involved with the adoption of AVs and EVs, and

what are their impacts on mobility, the environment, and the electric grid network?

e How to model these factors and capture the trade-offs among various promoting/demoting

factors?

e What are the scenarios or range of different influential factors that will reduce the negative

impacts of the new technologies and promote their adoption?



e What will be the impact of EVs on the electric grid network, and how can this impact be

managed to reduce the load on the electric grid?
The main contributions of this study are as follows:

e Simultaneously capturing several influential factors, including changes in travel behavior,
driving behavior, increase in VMT, travel time, operating costs, and ownership costs, and
the variety of trade-offs among these contributing factors, that will govern the adoption of

AV and EV technologies.

e Estimating and calibrating functions for the various contributing factors, using the limited

available data on AVs, mainly focusing on simulation data.

e Developing a mathematical model for optimizing the adoption of AVs in private and shared
mobility systems to minimize emissions, time (travel and waiting), and the total cost of

ownership.

e Analyzing various scenarios to capture different stakeholders' perspectives, including but
not limited to car companies, system planners, and policymakers, to promote the adoption

of AV and EV technologies.

e Developing a mathematical model to find the best DER to support the rising energy
demand at the EV fast charging (DCFC) stations while minimizing the investment cost and
the cost of purchasing electricity from the electric grid. The investment includes purchasing

and installing ESS and solar panels and electric grid upgrades.

e Developing a time-dependent energy demand model at the DCFC stations considering the
electric grid network details, capacity constraints of the electric grid components, and

seasonal variation in solar energy, electricity rates, and energy demand.



1.4 Research Methods and Dissertation Outline

The dissertation consists of six chapters. The first chapter describes the overview of the
problem and the objective of the study. The second chapter includes a comprehensive review of

the literature related to the dissertation topic.

Chapter 3 presents a multi-objective framework for optimum fleet configuration of human-
driven and autonomous vehicles in a shared or privately-owned mobility system to minimize the
purchase and operating costs, time spent, and emission production. The proposed model captures
the trade-off between the benefits of increased mobility, reduction in the VOTT, efficient driving
pattern, and the negative impacts of increased VMT and ownership cost by adopting PAVS/SAVS.
The proposed framework assists with the development of simplified adoption models that can be

used by policymakers and/or investors.

Chapter 4 develops a modeling framework to estimate the optimal fleet configuration
considering AV and EV technologies in a private and shared mobility system. The different
mobility options positively and negatively influence the transportation system. The study captures
the trade-offs embedded among different mobility options to determine the optimum combinations
of these technologies for a sustainable transportation system. A nonlinear fleet optimization model
is developed to minimize the system cost considering a multiclass user problem. The small-scale
problem is solved using commercial solvers. However, commercial solvers cannot solve the large-
scale nonlinear optimization problem. Hence, a metaheuristic is developed based on a modified
parallel genetic algorithm (GA). The proposed framework provides the optimal conditions that
favor emerging technologies in private and shared mobility systems. The outcomes of this research

can be used to develop policies/incentives that will promote the adoption of AVs and EVs.



Chapter 5 presents an optimization model to estimate the optimal investment technology
to support the electric grid hosting a network of DCFC stations. The objective is to minimize the
system cost, including purchasing and installing the different ESS and solar panels, the cost of
electric grid upgrades, and purchasing electricity from the electric grid. The study captures the
time-dependent EV fast-charging demand, existing energy demand, capacity constraints of the
electric grid network, seasonal variation in solar energy, electricity rates to propose the optimal
investment technology. The proposed framework finds the optimal strategy to reduce the load on
the electric grid and support the rising energy demand with the increased market penetration rate

of EVs, exacerbated by introductions of AVs and SAVS.

Chapter 6 provides concluding remarks and future research directions.



CHAPTER 2 STATE OF ART OVERVIEW

2.1 Overview

Numerous studies capture the effects of AVs and EVs on the transportation system,
environment, and electric grid network. A comprehensive review of the literature is presented in
the following subsections. Section 2.2 discusses the studies related to AVs and their implications.
Section 2.3 discusses the research related to EVs. Section 2.4 discusses the synergies between
these two technologies and how these can promote the adoption of each other. Then, the adoption
of these technologies as shared mobility systems is discussed in section 2.5. Section 2.6 and 2.7
present the studies capturing the effect of rising EV charging demand on the electric grid, scope,

and implementation of DER at these charging stations.

2.2 Autonomous Vehicles

Automated Vehicle Technology has been the subject of interest to many researchers
recently (Chehri and Mouftah, 2019; Fagnant et al., 2016; Greenblatt and Shaheen, 2015; Gruel
and Stanford, 2016; Levin and Boyles, 2015; Wadud et al., 2016; Wang et al., 2018; Zhang et al.,
2015). This technology has the potential to improve the transportation system in numerous aspects,
such as safety (Fagnant and Kockelman, 2015; Harper et al., 2016; NHTSA, 2016; Wadud et al.,
2016), mobility (Brown et al., 2014; Harper et al., 2016), driver productivity (de Looff et al., 2018;
Gucwa, 2014; van den Berg and Verhoef, 2016), congestion mitigation (Center for Sustainable
Systems, 2017; Fagnant and Kockelman, 2015; Wadud et al., 2016), road capacity (Childress et
al., 2015; Gucwa, 2014) and energy savings (Brown et al., 2014; Chehri and Mouftah, 2019;
Fagnant and Kockelman, 2015; Folsom, 2012; Greenblatt and Saxena, 2015; Morrow et al., 2014).

However, the AVs can significantly increase VMT in the system due to empty miles generated
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(Fagnant and Kockelman, 2014), improved mobility of non-drivers (Harper et al., 2016), roadway
capacity (Childress et al., 2015; Gucwa, 2014), reduced VOTT (Childress et al., 2015; Gucwa,
2014) and reduced parking cost (Childress et al., 2015), etc. The increase in VMT will also increase
emissions and operating costs. Further, these vehicles have high ownership costs (FastCompany,
2014; LeVine Steve, 2017) due to the added value of AV technology. However, no studies
currently capture all the listed interconnections and trade-offs. Hence, it is essential to understand
the overall impact of AVs on the transportation system and determine the conditions favorable to
the adoption of these vehicles. This section reviews all studies considering the advantages and

disadvantages of AVs.

2.2.1 Advantages of Autonomy

Researchers found that AVs can reduce energy use by mitigating congestion (Center for
Sustainable Systems, 2017; Wadud et al., 2016), altering the size (Center for Sustainable Systems,
2017; Morrow et al., 2014; Wadud et al., 2016), and weight (Brown et al., 2014; Greenblatt and
Shaheen, 2015; Morrow et al., 2014). The AVs can be programmed to follow efficient driving
practices or eco-driving, potentially reducing fuel consumption and energy usage (Brown et al.,
2014; Center for Sustainable Systems, 2017; Wadud et al., 2016). The platooning effect in
connected AVs, which involves a group of vehicles traveling closely together, can provide
potential energy savings (Brown et al., 2014; Center for Sustainable Systems, 2017; Greenblatt
and Shaheen, 2015; Morrow et al., 2014; Wadud et al., 2016). One of the studies estimates that
AVs can improve fuel efficiency by up to 90% (Brown et al., 2014). The studies estimate that AVs
can potentially reduce energy use up to nearly 80% due to platooning, right-sizing and weighting,
automated vehicle sharing, efficient traffic flow, and parking (Greenblatt and Shaheen, 2015;

Morrow et al., 2014). The estimated reduction in energy consumption due to eco-driving behavior
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and platooning of AVs can be up to 25% and 3%-25%, respectively (Center for Sustainable
Systems, 2017; Wadud et al., 2016). Thus, the adoption pattern of AVs has been an interest to
researchers (Jiang, Zhang, Wang, & Wang, 2019; Menon, Barbour, Zhang, Pinjari, & Mannering,

2019; Sheela & Mannering, 2020).

AVs can be shared by multiple travelers traveling at different times to and from various
locations (Fagnant and Kockelman, 2015). This system, known as Shared Autonomous Vehicle
(SAV) system, can replace a significant number of private human-driven (conventional) vehicles
(PHDV) (Bischoff and Maciejewski, 2016; Fagnant et al., 2016; Fagnant and Kockelman, 2018,
2014). Estimates have shown that a single SAV can replace 12 personal vehicles in a grid network
(Fagnant and Kockelman, 2014). Another study reports a replacement rate of 9.3 personal vehicles
per SAV in the regional network system of Austin, Texas (Fagnant et al., 2016). The smaller fleet
size of the SAV system, compared to the system of PMV, results in continuous repositioning of
each SAV to pick up another traveler, making each SAV busy (Fagnant and Kockelman, 2014).
As a result, the amount of cold-start emissions reduces significantly with SAVs compared to PMVs
(Fagnant and Kockelman, 2014). The cold-start emissions produce CO, NOx and VOC, etc.
(Chester and Horvath, 2008). The adoption of SAVs can significantly reduce VOC, CO, and NOx
production (49%, 34%, and 18%, respectively) due to the decreased number of cold-starts (Fagnant
and Kockelman, 2014). The smaller fleet size requirements and continuous repositioning of SAV

will also substantially reduce parking demand (Zhang et al., 2015).

The introduction of AVs increases the attractiveness of traveling by car and willingness to
drive longer distances and allows efficient use of travel time by drivers in the vehicle (de Looff et
al., 2018; Gruel and Stanford, 2016; Gucwa, 2014). The efficient use of travel time reduces the

VOTT significantly (de Looff et al., 2018). VOTT is interpreted as an individual’s willingness to
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pay to avoid another travel time unit (de Looff et al., 2018). A study using the Netherlands as the
case study applies discrete choice models to the data obtained from a stated preference survey,
estimating VOTT for an AV with office interior to be 6.26€/h as compared to 8.37€/h for a human-

driven car (de Looff et al., 2018).

2.2.2 Disadvantages of Autonomy

Private AVs (PAVs) and SAVs have the potential to improve the transportation system in
different ways, as mentioned above. However, these vehicles can also worsen some aspects of the
transportation system, such as increased VMT, causing increased emissions and operating costs,
high ownership costs, and waiting time (if SAVs are considered a substitute to PMV). PAVs and
SAVs are expected to increase vehicle miles significantly traveled (VMT) (Brown et al., 2014;
Chehri and Mouftah, 2019; Childress et al., 2015; Gucwa, 2014; Harper et al., 2016; Wang et al.,
2018). AVs will increase the mobility of the non-drivers, elderly, and people with travel
restrictions due to medical conditions, causing an increase in VMT by up to 14% (Harper et al.,
2016). Based on the 2009 NHTS (National Household Travel Survey) data, VMT can increase by
up to 40% (Brown et al., 2014). A study estimated a 20% increase in VMT, considering the effect
of increased road capacity (30%), reduction in VOTT (35%), and reduction in parking cost (50%)
(Childress et al., 2015). Gucwa (2014) estimated a 4-8% increase in VMT in San Francisco, Bay
Area, due to the simultaneous increase in roadway capacity and reduction in VOTT (Gucwa,

2014).

Adoption of AVs can significantly reduce vehicle ownership resulting in empty miles
generation and a consequent increase in VMT in the system (Zhang et al., 2018). Zhang et al.
(2018) estimated a 9.5% decrease in vehicle ownership and a 13.3% increase in VMT in the system

due to the adoption of PAVs in the Atlanta Metropolitan area (Zhang et al., 2018). Further, the use
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of SAVs also results in empty miles generation, which depends upon the fleet size and trip density
(Burns et al., 2013; Fagnant and Kockelman, 2014). It has been estimated that SAVs can increase

VMT by 11% due to empty repositioning (Fagnant and Kockelman, 2014).

The high ownership cost is another critical factor affecting the adoption of PAVs and
SAVs. The expected purchase price of AVs is estimated to be more than $250,000 (FastCompany,
2014; LeVine Steve, 2017). Fagnant et al. (2018) assume that the cost of adding AV technology
to the existing vehicle would be $50,000 (Fagnant and Kockelman, 2018). However, some studies
show that the cost of adding AV technology to the vehicle will come down to $3,000-$10,000 in
the future (Fagnant and Kockelman, 2015; IHS, 2014). The high ownership cost of AV, combined
with increased running emissions and operating costs due to increased VMT, can significantly
affect the adoption of these vehicles. Hence, it is essential to consider this factor while estimating

system effects due to AV adoption.

2.3 Electric Vehicles

EVs are becoming popular because of their higher energy efficiency (Annema, 2020;
Eberhard and Tarpenning, 2006; Romm, 2006) compared to gasoline vehicles. Recent growth in
the adoption of EVs has a significant impact on greenhouse gas emissions(Chen et al., 2016; Crist,
2012; Gai et al., 2019; Kavianipour et al., 2020; Nie and Ghamami, 2013; Samaras and
Meisterling, 2008; Stogios et al., 2019), and energy usage (Chen et al., 2016). However, the limited
driving range (Ghamami et al., 2020a; Hidrue et al., 2011), the high purchase price (Hidrue et al.,
2011), and the low density of charging infrastructure (Ghamami et al., 2020a; Hidrue et al., 2011)
has impeded the adoption of EVs. Some of the current EV models have a range greater than 300
miles per charge. However, it is still lower as compared to conventional gasoline vehicles. The

limited range of EVs makes the customers concerned about EV running out of charge with no
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charge stations nearby, called range anxiety (Tate et al., 2008). These limitations also make the

shared mobility services using EVs challenging. Studies have shown that investing in charging
infrastructure, rather than providing purchase subsidies, further improves the adoption of EVs (Y.
(Marco) Nie et al., 2016). There is also a trade-off in investing the available funds on battery or
charging infrastructure technological advancement (Nie and Ghamami, 2013). A study suggests
that the smaller batteries with denser charging infrastructure might be more cost-effective than
building long-ranged plug-in EVs (Ghamami et al., 2016). As infrastructure is one of the main
challenges in the adoption of EVs, the optimal location of EV charging stations has been an
interest to many researchers (Chen et al., 2020; Dashora et al., 2010; Frade et al., 2011; Ghamami
etal., 2020a, 2016; Kavianipour et al., 2021b; Sweda and Klabjan, 2011; Yang et al., 2017). Some
studies have obtained driving pattern information of EV users through travel surveys to estimate
the optimal location of charging infrastructure (Andrews et al., 2012; Avci et al., 2015; Sweda and
Klabjan, 2011). Other studies have utilized taxi GPS data to estimate optimal charging station
locations for shared EVs (Shahraki et al., 2015; Tu et al., 2016). Some studies used traffic
simulation data based on origin and destination of trips to capture travel information of private
EVs. These studies either considered fixed-route choice (Lim and Kuby, 2010; Xie et al., 2016;
Zockaie et al., 2016) or interaction between traffic assignment problems and charging stations
locations (Fakhrmoosavi et al., 2021; Ghamami et al., 2020a; He et al., 2018; Kavianipour et al.,
2021a, 2021b). Another critical factor in the adoption of EVs is their performance reliability under
adverse weather conditions as the fuel efficiency of EVs and charging efficiency decreases
significantly in cold weather conditions (Hawkins, 2019). Studies suggest that battery performance
reduces by 25-30% in cold weather conditions (EERE, 2021). One of the studies estimates that the

battery performance is more crucial as compared to rising charging demand in summer for optimal
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deployment of DCFC stations (Fakhrmoosavi et al., 2021). The AV technology can reduce some

of the limitations of EVs, which will promote their adoption.

2.4 Synergies and combined implications of autonomous-electric vehicles technology

As discussed above, AVs and EVs can have various impacts on the transportation system.
However, the synergy between AV and EV technology can ameliorate and enhance some of these
impacts and influence the adoption of both technologies. Some of AV technology features might
require a battery (Brown and Dodder, 2019), which will further promote EV adoption. EVSs' zero
tailpipe emission can partially attenuate the environmental consequences of increased VMT by
adopting AVs(Wang et al., 2018). The EVs can reduce the operating cost induced due to an
increase in travel of users with the adoption of AVs, which can also offset the higher purchase
price of autonomous EVs (AEV) (Weiss et al., 2017). The induced travel demand by the adoption
of AVs may increase gasoline fuel prices, promoting the adoption of alternative-fuel vehicles such
as EVs (Brown and Dodder, 2019). On the other hand, AV technology can implement efficient
algorithms promoting a smoother drive cycle and maximizing energy recovery with regenerative
braking (Annema, 2020). AEVs can be programmed to choose energy-efficient routes, considering
congestion, number of stops, etc. (Annema, 2020), improving battery efficiency. Improved battery
efficiency and driving range, as a result, will mitigate range anxiety and enhance the battery life
of AEV. AVs are more compatible with vehicle-to-grid (V2G) technology by synchronizing the
operating, charging, and discharging algorithms (Lam et al., 2016). This allows AEV owners to
receive compensation for delivering energy to the electric grid during peak hours(Annema, 2020)

and will encourage users to adopt AEVs.

However, the AVs and EVs have higher purchase prices due to the additive cost of LIDAR

technology and batteries, respectively. Tesla’s “full self-driving” option, featuring automatic car
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parking and lane changing, costs around $10,000 (Porter, 2020). Other studies predicted the AV
technology cost would be around $2000-$10,000 (Fagnant and Kockelman, 2015; IHS, 2014;
Ritchie, 2019). EVs are also more expensive than gasoline vehicles, as a significant portion of the
cost is the cost of their batteries. Studies show that the price of Lithium-lon batteries has reduced
by 85% from 2010 to 2018 (BloombergNEF, 2019). However, the unit battery cost is still
$176/kWh in 2018 (BloombergNEF, 2019). The high purchase price of these technologies
questions the affordability of these vehicles as private modes. However, the adoption of these

technologies as a shared mobility system might overcome these challenges.

2.5 Shared mobility with autonomous-electric vehicles

The AV technology facilitates the dynamic ridesharing system (Krueger et al., 2016),
reducing fleet size, emissions, congestion, and parking demand (Golbabaei et al., 2020). The
shared AVs provide guaranteed compliance to real-time changes in demand compared to human-
driven taxis (Hyland and Mahmassani, 2018). A well-planned and demand-responsive system will
decrease the fleet size requirement and users' waiting time compared to a conventional taxi system
(Spieser et al., 2016). The replacement rate is defined as the number of private human-driven
vehicles (PMV) a single SAV or shared autonomous electric vehicle (SAEV) can replace while
serving the same equivalent demand due to its ability to travel independently. This replacement
is larger for SAVs than SAEVs due to the long charging time and low range of the EV batteries
(Chen et al., 2016; Fagnant et al., 2016; Fagnant and Kockelman, 2014; Zhang et al., 2015). AVs
have the potential to partially overcome the limitation of EVs, especially in a shared mobility
system, by automating the charging process and managing the range, considering the location of
the charging station and real-time demand (Chen et al., 2016). SAEV provides a driver-free method

to efficiently relocate based on real-time demand and charging infrastructure availability (Chen et
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al., 2016). SAEVs not only allows for a reduction of labor costs (Bdsch et al., 2018; Hyland and
Mahmassani, 2018; Liu et al., 2020) but also reduce energy costs (Chen et al., 2016; Eberhard and
Tarpenning, 2006; Romm, 2006) of transportation network companies (TNC) providing shared
mobility services. The electrification of SAVs and renewable energy charging can enhance
environmental benefits (Golbabaei et al.,, 2020). The AV technology increases the vehicle
utilization rate in the shared mobility system (Weiss et al., 2017), increasing the miles traveled and
the associated operating and emission cost. This promotes the electrification of the fleet with
substantial savings in operating costs (Weiss et al., 2017) and zero tailpipe emissions. Some studies
find that the AV technology will reduce the charging cost of shared EVs, allowing the vehicles to
charge when the electricity price is low (lacobucci et al., 2019, 2018). The reduction in cold-start
emissions (Fagnant and Kockelman, 2014; Singh et al., 2021), parking demand (Yan et al., 2020;

Zhang et al., 2015), and driver cost (Liu et al., 2020) are some of the other advantages of SAVs.

The shared mobility system increases users' waiting time (Fagnant and Kockelman, 2014;
Singh et al., 2021) VMT (due to empty miles generation) (Burns et al., 2013; Fagnant and
Kockelman, 2014; Oh et al., 2020; Singh et al., 2021; Yan et al., 2020), and the total travel time
in the system (Oh et al., 2020; Overtoom et al., 2020). The high replacement rate of SAVs or
smaller fleet size exponentially increases the users' waiting time and empty miles generation
(Singh et al., 2021). The limited charging infrastructure is another potential barrier to the adoption
of SAEVs. The studies have assessed the effect of charging infrastructure on the operation and
performance of the SAEV fleet (Chen et al., 2016; Loeb et al., 2018; VVosooghi et al., 2020; Zhang
et al., 2020). Further, the high charging time and limited battery size can affect service usage and
increase waiting time for SAEVs (Vosooghi et al., 2020). The faster-charging infrastructure such

as super-chargers or battery swapping might be required to improve the service performance of

18



SAEVs to be comparable to that of SAVs (Vosooghi et al., 2020). The widespread network of
these fast chargers will reduce the charging time and ease the concerns related to the limited range
of EVs. Hence, it will enhance the growth of EVs. However, this will increase the electricity
demand and overload the electric grid. The provision of DER at these charging stations would

reduce the load on the electric grid and support the EV fast-charging demand.

2.6 Effect of growth in EV charging demand and requirement of Distributed Energy

Resources

The EV and the associated industries have grown rapidly in recent years (Ma, 2019). In
2019, electric car sales hit a record high of 2.1 million globally, increasing by 40% from the
previous year (IEA, 2020). The rapid growth of the EV market will necessitate the development
of proper electric vehicle charging infrastructure to serve the electric energy demand(Ma, 2019;
Negarestani et al., 2016). There are three standard EV charging levels (Morrow et al., 2008). The
charging level 1 and level 2 are based on AC voltage with charging power of 1.44 kW and 3.3 kW,
respectively(Morrow et al., 2008). The charging level 3 is a direct current fast charging (DCFC)
which can have a charging power of up to 150 kW, allowing EV to charge in 10-25 minutes
(Negarestani et al., 2016). While the level 1 and level 2 chargers are typically used for overnight
charging at home supporting intra-city trips (Negarestani et al., 2016), the DCFC chargers are used
for public applications similar to gasoline service stations (Morrow et al., 2008; Yilmaz and Krein,
2013). The DCFC chargers have gained much attention due to the short charging time (Negarestani
et al., 2016). The survey shows that the charging time and the charging infrastructure are the
primary concerns of EV customers, with the majority of the customers placing significant
importance on fast charging(Chakraborty et al., 2019). The deployment of DCFC chargers is

mandatory for the widespread adoption of EVs (Chakraborty et al., 2019). The comprehensive
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network of DCFC chargers will reduce the range anxiety and charging time, allowing users to

travel freely, even for long-distance intercity trips (Rafi and Bauman, 2021).

However, the widespread usage and rise in the EV charging demand will affect the electric
grid (Negarestani et al., 2016; Rafi and Bauman, 2021). The EV charging stations can affect the
electric grid stability, supply-demand imbalance, overloading and degradation of the distribution
system, voltage fluctuations, and power system losses (Khalid et al., 2019). One of the studies
tested the IEEE 3-bus system and showed that its stability deteriorates with the addition of EV
load(Onar and Khaligh, 2010). Another study showed that the stability margin lowers if the EV
power load is constant compared to the constant impedance load (Das and Aliprantis, 2008).
McCarthy and Wolfs, 2010 mention that the peak demand increases due to the uncontrolled
charging demand of EVs (McCarthy and Wolfs, 2010). A UK-based study indicates that the
demand increases by 18 % with a 10% increase in EV load (Mahalik et al., 2010; Putrus et al.,
2009). The rise in EV load also increases power losses in the electric grid system, which can be
about 40% during off-peak charging at an EV load penetration rate of 62% (Bradley et al., 1981).
The high penetration of EV load causes significant overloading of distribution transformers,
thereby reducing the performance and the life (Masoum et al., 2010). The distribution system
might have to be reinforced to support EV charging demand during peak periods(Pieltain
Fernandez et al., 2011). Further, the DCFC chargers will impose an unpredictably large load on
the electric grid (Gallinaro, 2020; Knupfer et al., 2018; Richard and Petit, 2018a). Also, the
majority of DCFC charging stations should be located along the highways outside the cities to
support long-distance trips (Rafi and Bauman, 2021). However, these locations would be in rural
areas with weak electric grid connections far away from the main distribution electric grid (Baatar

et al., 2021; Rafi and Bauman, 2021). This would require the electric grid upgrades and high
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installation cost for the DCFC charging stations at these locations (INL, 2015). Electric grid
upgrades might be necessary even in urban areas (with strong electric grid connections) at locations
with high peak demand and multiple fast charging ports (Rafi and Bauman, 2021). Expanding the
DCFC charging network would require more upgrades of distribution lines and transformers than
that of the substation, transmission lines, and power plants (Rafi and Bauman, 2021). The increase
in demand can be as high as 1.2 MW with a typical Electrify America installation of two 350 kW
chargers and four 150 kW chargers along the highways (Nicholas and Hall, 2018). One of the
studies shows that the electric grid reinforcement cost could be $1.6 billion in Norway, to support
the uncontrolled charging of large EV load by 2040 (Molnar, 2019). In light of the above, the
provision of ESS at the charging stations can play a vital role to mitigate the electric grid upgrade
cost (Rafi and Bauman, 2021), reduce the peak electricity demand i.e. peak shaving (Gallinaro,
2020; Knupfer et al., 2018), prevent overloading of the electric grid (Nicholas and Hall, 2018) as

well as supporting the fast charging EV demand.

The provision of ESS can minimize or eliminate the upgrades of the electric grid (Rafi and
Bauman, 2021). One of the studies shows that the battery energy storage system can save up to
$157,000 annually for six 350 kW chargers at the DCFC charging station (Francfort et al., 2017).
Even in remote areas, the ESS can be less costly than electric grid reinforcement (EASE, 2019).
Further, the use of renewable energy sources along with ESS can be advantageous as ESS can
efficiently store intermittent renewable energy (e.g., solar energy) to support EV demand (Rafi
and Bauman, 2021). These ESS can be charged at low electricity demand and prices, charge EVs
with higher power suitable for the DCFC chargers, substantially reduce the electric grid's load,
reduce the operating cost, and monthly electricity demand charges from the electric grid (Rafi and

Bauman, 2021).
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2.7 Distributed Energy Resources supporting EV charging demand

The literature consists of numerous studies considering DER like solar panels, and batteries
to support EV charging demand. One of the studies, considered energy loss, charging demand, and
life cycle to optimize the size of ESS supporting fast-charging stations (Negarestani et al., 2016).
M.Gjelaj et al. perform a cost-benefit analysis to minimize the operating cost of DCFC stations
considering connection costs, installation costs, and ESS life cycle costs (Gjelaj et al., 2017c).
Another study optimizes the size of ESS considering mixed-integer linear programming (Salapic
et al., 2018). The studies have assessed the integration of bidirectional DCFC station with ESS
into the low voltage electric grid (Gjelaj et al., 2017a) and optimal size of ESS to ameliorate the
adverse effect on the electric grid (Gjelaj et al., 2017b). One of the studies develops a modeling
framework considering the ESS degradation, trade-offs between the power rating of EV charging
station, and size of the ESS (Richard and Petit, 2018b). Another study compared second life
batteries (SLB) with new batteries (NB) of lithium-ion (Li-ion) to support EV fast-charging
demand and reduce the electric grid load (Kamath et al., 2020). The study concluded that the
levelized cost of electricity reduces by 12-41% when using SLB instead of new batteries. A
comparison of different storage technologies proposed flywheel storage systems to minimize the
energy cost and storage cost at the fast charging station (Negarestani et al., 2016). However,
technological advancements have changed the cost of different ESS (especially the Li-ion

batteries).

The studies have also considered renewable energy (RE) to support EV charging stations.
These can assist in peak-shaving and reduce electric grid power losses (Ma, 2019). Further, the
provision of ESS can improve or completely remove the power fluctuations of RE power

generators(Ma, 2019). One of the studies estimated the impact of variation in the number of DCFC
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stations, load profiles, electricity price, geographic locations on the economic and energy
performance of DCFC stations with solar panels and ESS (Yang and Ribberink, 2019). The system
provides energy savings, and the economic viability is promising, considering the unit price of
DER in the year 2021-2026, with a payback period of 12-16 years (Yang and Ribberink, 2019). A
study optimizes the annual cost of energy to estimate the location and size of level 2 charging
stations, distributed ESS, and solar panels/wind turbines (Kandil et al., 2018) over the grid
network. The cost includes the investment cost of technologies, energy consumption, and
renewable energy savings. The study estimated that to support existing and EV demand; the solar
panels can provide savings of around 70-75% instead of distributed ESS, which can provide only
approximately 15-20% savings. Li et al., 2019 develop an optimization framework to minimize
the electricity cost and the number of charge/discharge cycles of ESS for the solar panel-assisted
EV charging station (Li et al., 2019). The study showed that optimum coordination between the
energy resources and EVs could maintain stable power system operations and reduce the charging
cost. Another study proposed a solar panel and lithium ferro phosphate battery as the optimal
solution out of three ESSs, including lead-acid and lithium nickel cobalt aluminum oxide batteries
(Nizam and Wicaksono, 2019). The optimization minimizes the initial capital and operating cost
of the off-grid charging station in rural areas (Nizam and Wicaksono, 2019). Ugirumurera and
Haas, 2017 estimated the optimum number of solar panels and size of ESS to support the EV
charging system with energy generation exclusively by the solar farm. The optimum number of
solar panels decreases with an increase in the average delay of EV users and the power rating of
each charging station (Ugirumurera and Haas, 2017). One of the studies implemented GA and
Monte-Carlo method to optimize the location and capacity of solar panels and ESS to support

charging stations considering uncertainties in EV demand, solar panel power, electricity price
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(Khanghah et al., 2017). The study showed that the ESS and solar panels could reduce the system's
operating cost, power losses, and voltage sags. Hilton et al., 2019 develop an optimization
framework to maximize the profit and minimize the electric grid connection cost and associated
energy cost for a solar panel-ESS charging station (Hilton et al., 2019). The study showed that the
solar farm and ESS reduce grid energy use and can provide savings, especially if the grid

connection cost is high.
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CHAPTER3 OPTIMAL ADOPTION OF AV IN PRIVATE AND SHARED

MOBILITY SYSTEMS

3.1 Overview

The AVs may impose positive or negative externalities on the transportation system and
environment. Numerous studies are capturing the trade-offs among different influential factors that
govern the adoption of AVs. However, it is important to consider all the competing factors and
capture the trade-offs between these factors so as to estimate the overall impact of AVs on the
transportation system, and environment. Further, the implications of AVs would be different in
private and shared mobility systems. This study develops a modeling framework to estimate the
impacts of PAVs and SAVs on the environment and the transportation system, considering the
changes in travel behavior, VMT, emission production, driving behavior, travel time, operating
costs, and cost of ownership. A multi-objective framework is developed to find the best vehicle
fleet (PMV, PAV, or SAV) that will result in minimum emissions, minimum time spent, and
minimum total cost of ownership. It is worth noting that this study estimates and calibrates
functions for the various contributing factors, using the limited available data on AVs, mainly

focusing on simulation data.

The remainder of this study is as follows. Section 3.2 discusses the problem statement and
objective of the study, followed by the methodology in section 3.3. The case study, numerical

results, and the summary are presented in sections 3.4, 3.5, and, 3.6, respectively.

3.2 Problem Statement

This study aims to capture the trade-off between the benefits of increased mobility,

efficient use of travel time (reduced VOTT), efficient driving, and the negative impacts of
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increased VMT, as well as the higher ownership cost as a result of the adoption of AVs. This study
aims to minimize emission production, users’ time, and total cost of ownership (purchase price
and operating cost) by proposing a multi-objective optimization framework. This framework finds
the best configuration of different vehicle types (PMVs, PAVs, or SAVs) for urban trips, under
different circumstances. The different circumstances may vary over time or regions and affect the
listed trade-offs. It is important to note that this study considers fully autonomous vehicles (Level

5 autonomy) which do not require human drivers.

The contradicting and complementary factors listed above are functions of a variety of
parameters. Thus, each function needs to be defined and calibrated. The emission produced is
derived from the superposition of four factors; VMT (Moore et al., 2010), number of cold-starts
(Chester and Horvath, 2008; EPA, 1994; Reiter and Kockelman, 2016), and speed and acceleration
rate (Int Panis et al., 2006; Qi et al., 2004). The categories of emissions considered are running
emissions and cold-start emissions. The running emissions are the function of speed, acceleration,
and VMT. The cold-start emissions are a function of the number of trips, emission per cold-start,
and the number of cold-starts per person-trip. The operating cost of the vehicle includes the fuel
and maintenance cost, which are functions of VMT generated, cost of fuel, fuel efficiency, and
maintenance cost per mile. The total VMT generated in the system is estimated considering
changes in users' travel behavior, changes in family dynamics, reduction in vehicle ownership, and
empty miles generated due to the adoption of PAVS/SAVs. The travel time cost is a function of
occupied VMT, VOTT, and the reduction factor for VOTT (RVOTT) due to the adoption of
PAVs/SAVs. The total waiting time cost in the system, which applies exclusively to SAVs,

depends on the waiting time cost per unit time, fleet size, and trip density in the system. The
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ownership cost is a function of the purchase price, average miles driven per year, and total miles

traveled by vehicle during its lifetime.

3.3 Modeling Framework

The methodology has two main steps. First, the definition and calibration of the travel
pattern, emission production and cost functions, pre and post-adoption of the AVs. Second,
defining a multi-objective optimization problem to find the optimum market for these vehicles,

considering the changes in travel patterns, emission production, and costs.

As discussed above, the introduction of PAVS/SAVs affects the travel pattern of users.
There are a variety of underlying reasons that cause this change. These reasons and their effects
are carefully studied and discussed in the subsections below. The changes in travel pattern and
driving pattern affects emission production. The adoption of SAVs reduces cold-start emissions in
the system. Adopting PAVs/SAVs also affects users' travel time cost and SAVs come with possible
waiting times. It is worth noting that the purchase price and operating costs of AVs are different
from that of PMVs. The objective of the study is to find the optimum vehicle fleet and vehicle
type, under different underlying conditions, and the best way to use these vehicles to minimize the
emissions, total time spent by the users in the system, and the total cost of owning the vehicles
(purchase cost and operating costs), including changes in VMT, emissions, waiting time, operating
cost and ownership cost. The study also does a comparative analysis of the results while
minimizing emission cost (focusing on environmental concerns) to that of minimizing all the
different system costs (emissions, total time, and total cost of owning vehicles). The multi-
objective model is reduced to a Linear Programming (LP) problem, with the market share of each
vehicle type (PMV, PAV, or SAV), defined as the number of vehicles of that type, being the

decision variable.
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The factors affecting VMT are discussed in section 3.3.1. The emission estimation is
presented in 3.3.2. Section 3.3.3 explains how ownership cost and operating cost are estimated.
The system travel time cost and waiting time cost (due to SAVS) are discussed in sections 3.3.4
and 3.3.5, respectively. Further, the Linear Programming problem and its analytical solution are

presented in sections 3.3.6 and 3.3.7, respectively.

3.3.1 Factors affecting VMT

The adoption of autonomous vehicles affects the average VMT due to the changes in travel
behavior, family dynamics, vehicle ownership, housing locations, and trip chaining. The detailed

influence of these factors are explained below:

Changes in the travel behavior: The efficient utilization of roadway, reduction in the
VOTT, and parking costs due to the adoption of PAVs/SAVs will encourage the users to travel
more which will increase the VMT in the system. The reduction in VOTT is the result of the
efficient use of travel time in these vehicles. The self-drive and self-park capability of these
vehicles provides them with a variety of less expensive parking options. The parking cost is further
reduced due to better utilization of the space by these vehicles (as no room is required for the driver
to get out). The computer-controlled vehicles will use the road more efficiently which will increase
the roadway capacity. All these factors will change users’ travel behavior, encouraging them to
travel more, which will increase VMT in the system. This effect has been considered by (Childress

etal., 2015) and the presents study captures it through the parameter a;“ .

Changes in family dynamics: The ability of the AVs to drive on their own will increase

independence and encourage non-drivers, elderly, and physically disabled to travel more. The
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increase in VMT due to the above-mentioned factor has been quantified by (Harper et al., 2016)

and captured by the parameter aj”d, in this study.

Reduction in vehicle ownership: The same PAV can be used by different family members
if the schedule of their trips allows. The vehicle can travel on its own picking up and dropping off
family members. Similarly, a single SAV can serve multiple trips within the city. This will reduce
the number of vehicles and vehicle ownership, which will not only increase VMT per vehicle but,
will also generate additional empty miles (with no passenger) between drop-off (current trip) and

pick-up (next trip) locations. These effects are quantified by VMT per vehicle (a;™) and empty

mile generation (a™") factors.

The other factors which might affect VMT are the land-use changes and trip chaining. The
adoption of SAVs is expected to reduce urban sprawl (Meyer et al., 2017; Zhang, 2017). However,
as accessibility in rural areas increases some population groups might consider moving to remote
locations (Meyer et al., 2017; Zhang, 2017). Studies have shown that in the US Atlantic region,
with the introduction of SAVs elderly are expected to move closer to city centers (by 2-7%), while
younger people are expected to move further away (by 7-10%) (Zhang, 2017). Another study for
Australia reported 3-4% of the population moving to suburbs with the adoption of PAVS,
considering 50% reduction in VOTT (Thakur et al., 2016). There are also studies that predict AVs
to have no effect on the housing location (Zmud and Sener, 2017). Thus, the true effect of self-
driving vehicles on housing location is still unclear which will not only be region-specific but will
also depend upon the demographics. Hence, it is difficult to quantify this effect and it is not
considered in this study. Another factor that can affect VMT is the trip chaining dynamics. The
adoption of PAVS/SAVs might reduce total travel costs due to efficient use of the roadway,

reduced VOTT, and the reduction in parking, fuel and insurance cost and efficient use of vehicles,
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causing users to engage less in trip chaining (Rodier, 2018). Due to insufficient data, it is difficult
to quantify this effect and therefore not considered in this study. However, the effect on VMT due
to the efficient use of the roadway capacity, reduced VOTT, and reduction in parking cost has been
rc

captured by the parameter «;

¢ which partially captures the effect of reduced trip chaining.

Equation 1 represents miles per vehicle m]’?” for each vehicle type j (PMV, PAV, and

SAV), in the given system for the duration of study T, considering different factors for VMT

increase.

v
mP’ = al®

em v
; 4 anda' P v, P 1

j Y% i Mpmy

In which, the term my . is the average VMT per PMV for the duration of the study T .

Each of the other parameters represents one of the main factors affecting average VMT due to the

adoption of AVs, as explained above. The factor afm” is a function of the replacement rate y;

for vehicle type j (PAV or SAV), as presented in Equations 2 and 3. The replacement rate is
defined as the number of PMVs replaced by each PAV or SAV, as a result of carsharing. The
increase in empty miles is also a function of the increase in the number of trips (1,,,,) due to the
adoption of SAVs. The larger the density of the area and larger the number of trips, it is more
likely that the consecutive trips are closer together location-wise. This means while the empty
miles generated increases with an increase in the replacement rate, it decreases with an increase in

the number of trips in a given system, exclusively for SAVs. The detailed functions are presented

in section 3.4.
a;?vp =f (Vpav) 2
Ueqn = f Wsavs Nsav) 3
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The factor a;™” is equal to the replacement rate y; . This is based on the conclusion that

the reduction in the number of vehicles will result in an equivalent increase in miles per vehicle to
serve the same trips. The increase in VMT due to changes in travel behavior and family dynamics
with the adoption of AVs are captured by a;“ and a}‘d . Note that, all of the factors representing

an increase in VMT are equal to 1 for PMV.

3.3.2 Emission Estimation

This section presents the estimation of the amount of emission produced by each of the
PMVs, PAVs, and SAVs. The pollutants considered for emission estimation are CO», CO, and
NOx. The CO emissions are estimated from the cold-starts of the vehicle (Chester and Horvath,
2008). The amount of CO2, which is the main component of running emissions, is estimated using
the trip trajectory of the vehicle (Int Panis et al., 2006). NOx is estimated for both running

emissions (Int Panis et al., 2006) and cold-start emissions (Chester and Horvath, 2008).

3.3.2.1 Running Emissions

The running emission is a function of the speed and acceleration of the vehicle:
e®i; = filv®©, q;®] Vi,j 4

Here, é(t);; is the instantaneous running emission for emission type i (CO2 and NOx)

and vehicle type j (PMV, PAV, or SAV). The term v;(t) and a;(t) are the instantaneous speed
and acceleration of the vehicle type j . These are determined using the trip trajectory of the vehicle
type j . The trajectories are obtained considering efficient driving (for PAVs and SAVs) and
nonefficient-driving (for PMVs) behaviors. Efficient driving is defined as the smooth driving

pattern without any sudden changes in acceleration/deceleration rate causing a reduction in
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emission production and fuel consumption. Further, Equation 5 is used to estimate running
emissions per mile (e;;’) for emission type i by vehicle type j .
Ts sciyre
e Jo €@i7dt
ij — L
In which, L is the length of the stretch considered and Ty is the time required to drive
through that stretch. The total running emission (E{‘;-E) per vehicle type j for the emission type i

is as follows:

RE __ pv
Eij - elj m] 6

3.3.2.2 Cold-start Emissions

In general, a cold-start is defined as any start that occurs after one hour of the end of the
preceding trip (EPA, 1994; Reiter and Kockelman, 2016). A significant amount of CO and NOx
are produced in each cold-start. The cold-start emission is a function of the number of trips. The
amount of cold-start emission produced by PAVs is comparable to that of PMVs. However, the
cold-start emissions produced by SAVs are considerably less than that of PMVs (Fagnant and
Kockelman, 2014). This is due to the reduction in the number of cold-starts per person trip because
of the continuous repositioning of the vehicle with the engine being turned off less frequently. The
number of cold-starts (Ns5,,) per person-trip decreases with the increase in the replacement rate
and the increase in the number of trips due to the adoption of SAVs. Hence, a factor accounting

for the reduction in number of cold-starts (57 “*) is considered in the model (Equation 7). The term
phav 1S the original number of cold-starts per person-trip in the PMV system. The number of

cold-starts per person-trip in a system comprising of SAVs (N&;,,) is the function of replacement

rate of SAVS (y,q) and increase in the trips due to the adoption of SAVS (1,,,). The detailed
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function for N&, is presented in the section 3.4. The number of cold-starts per person-trip in a

system comprising of PAVs (Nyz,,) is assumed to be equal to that of PMV (Ny3,,). Hence, the

factor B/ isequal to 1 for PMVs and PAVs.

cs
res ] 7
j BENT

N pmv

The total cold-start emission (EfS) per vehicle type j for the emission type i is as follows:

cCS _ _cs NV prces..,, PV
Eij = e n;q; i Mpmy 8

In which, ef* is the cold-start emissions (CO and NOXx) per mile for emission type i by
PMVs. Note that CO: is a negligible factor in cold-start emissions. The term 7; represents the

increase in the total number of trips generated due to the adoption of PAVs and SAVs. The value

of n; is given by Equation 9.
n; = BjB° 9
The term ﬁ}‘d represents the increase in the number of trips as a result of the improved

mobility of non-drivers, due to the adoption of PAVs and SAVs. The term S/ represents the

increase in trips due to the efficient use of roadway capacity, reduction in VOTT, and parking cost.

The value of n; and af™ for PMV is equal to 1
3.3.3 Purchase and Operating Costs

The purchase price of PAVs and SAVs is expected to be higher than that of PMVs,
considering the cost of LIDAR technology, other radar systems, and the variety of sensors installed

in the vehicle. This study also includes operating costs (maintenance cost and fuel cost) to estimate
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optimal fleet configuration. The purchase price, fuel, maintenance, and operating cost over the

duration of the study T for a vehicle type j are presented in Equations 10 to 13, respectively.

oc __ C}o
o =(L)r 10

j s;

¢ = (mc_;> Rfm}” 11

G = Cumy” 12

P = ij + (" = [(7:_f> ij + le m” 13
g

In which, the terms € and S; represent purchase price and average service life (in years)

of vehicle type j , respectively. The term ij denotes the reduction factor for fuel consumption as

the result of efficient driving patterns of autonomous vehicles. Thus, the factor will be equal to 1

for PMVs. The factors Cr and m,, are the average fuel cost per gallon and the fuel efficiency
of the PMVs (average miles per gallon of fuel), respectively. The factor C,, is the average

maintenance cost per mile. The average service life of the vehicle type j is given as follows:
MJ
Sj = Dy 14

In which, M/ and m;” are the total lifetime mileage of the vehicle (total miles traveled

by the vehicle during its lifespan) and total miles traveled in a year by vehicle type j , respectively.

The term mfy is obtained considering different factors causing an increase in VMT due to the

adoption of PAVs and SAVs. The detailed calibrated function is presented in section 3.4.
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3.3.4 Travel Time

The travel time in the given system, estimated based on the average speed and miles

traveled by the vehicle, is presented as follows:

v
mP arcanda_rnv

Y

In which, TT; and v; are the total travel time per vehicle (in the study period T ) and

the average speed for the vehicle type j .

3.3.5 Waiting Time

Similar to other shared-mobility systems, the use of SAVs might result in users’ waiting
time. The reduced number of vehicles in the shared system increases the likelihood of waiting for
an available ride. On the other hand, the increase in trip density of the system increases the
likelihood of finding the next departure location close to the current or arrival location of SAV,
resulting in an overall reduction in the average waiting time. Thus, the average waiting time (w_f,f,,
is a function of the replacement rate of SAV (y,,,,) and the increase in the number of trips (1s4,)
due to the adoption of SAVs (Equation 16). The average waiting time increases with an increase

in the replacement rate and decreases with an increase in the number of trips in a given system.
why = f (saw Nsav) 16

The waiting time per vehicle Wt for the duration of the study T , is given as follows:
Weirs = Wiy Tps 17
In which, T, is the number of trips generated per SAV for the duration of the study,

given as follows:
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Tps = Ysav Tpnsav 18

Here, T, represents the original number of trips generated per PMV (in time T'), when

PAVs and SAVs are not present in the system. The total waiting time per vehicle is equal to zero

for PMVs and PAVS.

3.3.6 Optimization problem

The objective of this study is to find the best vehicle type under different underlying
conditions that will minimize emissions, time (waiting and travel time), and cost of ownership
(purchase price and operating costs) of the vehicles. The problem is formulated as a multi-objective
optimization problem with an aim to minimize societal costs, user costs, and investor costs. The
societal costs include emission (running and cold-start). Ownership and operating costs are user
and/or investor costs, depending on the SAVs operation agreements. The travel time and waiting

time are user costs. The multi-objective optimization problem is defined as follows:

minZ, = Z Z(Eg.s +EfF)N)) 19
j i

winz = Y (T + W 0

J
minZs = ) (7 + PN, 21
J
S.t.:

> M) = No 22
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N; >0 vj 23

In which, the objective functions, Z;, Z, and Z;, are minimizing the emissions, time
(travel and waiting time), and ownership cost (purchase price and operating cost), respectively.
The term N; represents the number of vehicles of type j (PMV, PAV, or SAV) in the system.
The term y; is the replacement rate (number of PMVs replaced by each vehicle) of vehicle type
J. This term captures the effect of the reduced number of vehicles and vehicle ownership in the
system due to the adoption of PAVS/SAVSs, as they can replace multiple PMVs. The term N, is
the number of PMVs originally present in the system. Equation 22 ensures that the new fleet of
vehicles (PMV, PAV, and SAV), after accounting for replacement rate, is equivalent to the former
fleet of PMV. This ensures that all the trips currently available in the system are served. The
constraint has been set as greater than/equal to so as to reduce the computational complexity. The
objective to minimize the cost function will eventually treat the constraint as an equality constraint.

Equation 23 is a feasibility constraint.

The above problem is a multi-objective optimization problem with three objectives. The
problem is converted to a single-objective optimization problem by converting the total emissions
and total time in the equivalent monetary values, considering cost per unit emissions and value of

time. The modified total emissions (Z;) and total time (Z;) cost objective functions are as follows:
Z; —ZZQ(ECS+ERE 24

%= Z(thitzdijttTﬂ + Cu W )N; 25
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In which, c; is the societal cost of producing one unit of emission type i (CO2, CO, and

NOx). The term V4, and R;® are the VOTT for PMVs and the reduction factor for VOTT

(RVOTT) due to the adoption of PAVs and SAVS, respectively. The RVOTT considers the effect
of increased driver productivity in AVs. A value of 0.8, means the VOTT is reduced to 80% of its

original value. The value of R® is equal to 1 for PMVs. The term C,, denotes the average cost

of waiting per unit time. The modified single objective optimization problem is defined as follows:
MinZ = Z; + Zy + Z5 26

s.t.
> () = Ny 27
J

N; >0 vj 28

This is a linear programming problem (LP), solved analytically as well as by a dual-simplex
algorithm. The dual-simplex algorithm is well known for solving linear minimization problems
with linear constraints and non-negative decision variables (Koberstein, 2008; Nocedal and
Wright, 2006; Padberg, 1999). In every successive iteration, this algorithm improves the solution
and has a method to identify when the optimal solution is reached and terminates immediately.
These properties make this algorithm efficient and suitable to solve the proposed optimization

problem.

3.3.7 Analytical Solution

To solve the linear programming problem analytically, first Lagrangian relaxation is used

to incorporate the major constraint into the objective function. Then the Karush—Kuhn-Tucker
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(KKT) conditions are applied, which are necessary but not sufficient conditions for optimality for

the given optimization problem. Finally, different conditions for optimality are investigated.

3.3.7.1 Lagrangian Relaxation

As there is only one main constraint in the proposed optimization problem given by
Equation 27, the optimization problem is solved analytically using Lagrangian relaxation by
introducing a Lagrangian multiplier (x). The new optimization problem in the expanded form is

as follows:

Min L = Cphvaphdv + Cpavaav + Csastav
29
- .u( Nphdv + Vpavaav + Vsastav - NO)

Subject to Constraints:

Nphdv:Npaszavuu =0 30

Where, Cypay, Cpav and Cgq,, are the parameter representing the total cost per vehicle for

PMV, PAV, and SAV, respectively. These include all the costs defined in previous sections of the
methodology. The above problem is solved using KKT conditions as explained in the following

subsection.

3.3.7.2 KKT Conditions

The KKT conditions are applied to solve the above Linear Programming Problem. These

conditions are listed below:

N < oL >—0 oL >0 31
phdv aNphclv ' aNphdv -
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N oL _ o oL 0
pav aNpav - aNpav '
N ( oL )_ 0- JL 0
sav aNsav B ’ aNsav ’
((’)L) _ 0 oL -0
.Ll a’l,l, - ) a’l,l, = )

Condition 31 implies that

Nphdv(Cphdv - .u) =0- Nphdv =0oru= Cphdv

And oL C >0
n —_— = — U=
aNphdv phdv

Condition 32 implies that

Npav(Cpav - ypav.u) =0; Npav =0or Ypavlt = Cpav

oL

And
ONpay

= Cpav — Vpavkt 2 0

Condition 33 implies that

Nsav(Csav - ysavﬂ) = 0; Nggp = 0 07 Ysqptt = Csqp

oL

And
aNSdU

= Csqp — Vsavtt = 0

Condition 34 implies that

p=_0or (Nphdv + ypavaav + VsavNsav — NO) =0
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oL
And a = Nphdv + Vpavaav + ysastav — NO >0 42

Now we have four equations (35,37,39, and 41) with four unknown variables
(Nphavs Npav, Nsap and p), subject to four inequality constraints (36,38,40, and 42). Hence, we
can solve for the unknown variables using the above set of equations which is explained in detail

in the following subsection.
3.3.7.3 A solution to the optimization problem

From Equation 41, if u = 0, as Cynay » Cpav, Csay # 0 inour case, from Equations 35,37, and 39,

N.

whdv Npav» Nsqy = 0. Then, from Equation 42, N, < 0, which is only possible in a system with

no vehicles. Therefore,
Nphdv + Vpavaav + VsavNsay — No = 0 & u>0 43

From, Equations 35,37,39, and 41, there are seven possible cases as listed below:

C C
pav
U= Cphdv = = Sav; Nphdv + Ypavaav + VsavNsaw = No 44
Ypav  Vsav
C C
t = Cohav # e sav; Npav = Nggy = 0; Nphdv =Ny 45

pav Vsav

C C
H= Cphdv = Sav; Nggp = 0; Nphdv + ypavaav =Ny 46
pav  Vsav
C Cpav
u= Cphdv === ; Npav = 0; Nphdv + YsavNsar = Np 47
Ysav  Vpav
C C N
= P2 * ild * Cphdv; Nphdv = Nsgp = 0; Npav =2 48
Ypav  Vsav Ypav
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. Cpav . Csav

= v = v * Cphdv; Nphdv = 0; Npav + VsavNsaw = No 49
pav sav
C Cpav N
u= — * * Cphdv; Nphdv = Npav =0; Nggp =— 50
Ysav  Vpav Vsav

The solution to the optimization problem can be any one of the above cases, depending upon the
value of different parameters assumed in the study. However, to check the uniqueness of the

solution we must check other conditions as explained in the following subsection.

3.3.7.4 The uniqueness of the optimal solution
For the solution to be unique, both of the following conditions should be met: -

e The objective function should be strictly convex near the optimal solution and it should be

an overall convex function.
e The set of unknown variables should be a convex feasible set.

For checking the condition first, we estimate the Hessian Matrix (H) for the objective

function (Equation 26), which is given below:

0%Z 0%Z 0%Z

aNghdu aNphoivaNpav aNphdvaNsav
P i
aNpavaNphdv aNzgav aNpavaNsav 0O 0 O

0%*Z 0%Z 0%*Z

_aNsavaNphdv aNsavaNpav astav

In order to satisfy the condition first, all of the Eigenvalues for the Hessian Matrix should

be greater than zero. Therefore, we estimate Eigenvalues for the Hessian Matrix which is given by

the following equation.
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|[H—2|=0- 23=0-> 1=0 52

All the three Eigenvalues for the Hessian Matrix equal to zero. Hence, it is a convex
function but not strictly convex. Further, the constraints of the objective function (Equations 27
and 28) represent the area above the plane (given by Equation 53) in the positive quadrant, which

is always a convex feasible set.

Nphdv + Vpavaav + Vsastav = NO 53

As the objective function is not strictly convex. Hence, the uniqueness of the optimal

solution can not be proved for this optimization problem.

It is important to note that the current multi-objective problem is a linear programming
(LP) problem that has a convex pareto front. As the pareto front is convex, for every pareto optimal
solution there exist positive values of weights such that the pareto optimal solution is the optimal
solution for the corresponding single-objective optimization (Deb, 2001). Hence, every point on
the pareto optimal front can be obtained by selecting the appropriate weights for the single-
objective optimization problem. The dual-simplex algorithm is a quick way to solve the LP
problem providing the exact optimal solution on the pareto front for the selected weights. Further,
this study also does sensitivity analysis with respect to these weights (VOTT and unit cost of
emissions) to obtain the optimal solution. The value of these weights and the corresponding
optimal solution can be decided based on the discussion with policymakers for the specific
applications of the model. The weighted sum method is being used in this study considering the

fact that the problem is an LP problem (convex pareto front).
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3.4 Case study

This study assumes a hypothetical transportation system with signalized arterial roads in a
small or mid-sized urban area of the United States. The trips within this transportation system can
be served with PMVs, PAVs, or SAVs. As SAVs are not suitable to serve long-distance trips, only
internal trips within the system boundaries are considered. The duration of the study T is assumed

to be 1 year. The number of PMVs originally present in the system (N,) is estimated as follows:

365
No = Ty X — 54

T

In which, T, is the total number of trips per day in the system. The value of T,, (number

of trips per PMV per year) is given as follows:

Tp = Ntdl X 55

val

Here, N.q; and N,,,; are the number of trips per day per licensed driver and the number of

vehicles per licensed driver. These values are assumed to be 3.02 and 0.99, respectively (Santos et

al., 2011).

3.4.1 VMT Variation Parameters

The average urban VMT for each light-duty PMV (m}7 ) is assumed to be 6334 miles/year
(FHWA, 2017). The calibrated functions representing variation in VMT, derived and/or calibrated
using different studies, are listed in Table 3.1.

The value of the parameter ggv /sav» Which represents the increase in the trip generation

due to the improved mobility of non-drivers, with the adoption of PAVs and SAVS, is assumed to

be equal to the total mile increase factor (a4 ). This factor (874 ) is estimated considering

pav/sav pav/sav
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the average trip length remains the same. The changes in average trip length due to the adoption
of PAVS/SAVs is captured by parameter a,q,/sq, - The value of the parameter 8,2, /sq,» Which
represents the increase in the number of trips as a result of the improved roadway capacity,
reduction in VOTT, and reduction in parking cost, is assumed to be 1.049 (Childress et al., 2015).

These parameters can be used to estimate the value of »;, using Equation 9.
3.4.2 Emission Estimation Parameters

The unit societal cost of CO2, CO, and NOx (Table 3.2) emissions are used along with

emission production functions to calculate the total emission cost.

3.4.2.1 Running Emissions

This study adopts an instantaneous emission model (Int Panis et al., 2006) to estimate the
running emissions (CO2 and NOx). The trajectories for efficient-driving (PAVS/SAVS) and
nonefficient-driving (PMVs) profile at a signalized arterial corridor are obtained using the study,
He et al. (2015). The speed and acceleration profiles are obtained for these trajectories which are
incorporated in the calibrated emission model to estimate instantaneous running emissions.

Further, the running emission per mile (e;’) is estimated using Equation 5.
3.4.2.2 Cold-start Emissions

The function for the number of cold-starts per person-trip when only SAVs are in the
system (Table 3.1), is calibrated based on the data available from the sensitivity analysis of the
number of cold-starts with respect to the replacement rate and the trips generated (Fagnant and

Kockelman, 2014).
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3.4.3 Ownership and Operating Costs Parameters

The average purchase price of PMVs is assumed to be $30,000 (NADA, 2012). The costs
of PAVs and SAVs are assumed to be $10,000 higher than that of PMVs. It is based on the
assumption that AV technology will add up to $7000-$10,000 to the existing purchase price of
PMVs by the end of 2025 (IHS, 2014). The average annual miles traveled per SAV (m?Y,) is
assumed to be equal to that traveled within the urban area (m?,,). It is based on the assumption
that SAVs behave similar to a taxi system and do not travel outside the given urban boundaries.
The average annual miles traveled per PAV (mf,’ﬁl’,,) is estimated, assuming that if the trip is outside
the given urban system, the PAV will not return empty to the system, (due to the long travel

distance) (Table 3.1). The total lifetime mileage of PMV (M],,,,) is as follows:
MIT;TYW = mgfnv X Spmv 56

The total lifetime mileage of PAV(M,,,) is assumed to be equal to that of PMVs.
However, the total lifetime mileage for SAVs (MZ,,) is assumed to be comparable to that of a
regular taxi, which is equal to 250,000 miles (Fagnant and Kockelman, 2018).

The reduction factor for fuel consumption as the result of efficient driving patterns of
PAVS/SAVs (Rgav /sav) 1S assumed to be 0.75. This value is based on the conclusion that eco-

driving is expected to reduce fuel consumption by 25% (Center for Sustainable Systems, 2017;

Wadud et al., 2016).

3.4.4 Travel Time Cost Parameters

The average speed is obtained from the speed profile of efficient driving (for PAVS/SAVS)

and nonefficient driving behavior (for PMVs) (He et al., 2015). The VOTT is assumed to be
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$18.82/hr (van den Berg and Verhoef, 2016). The reduction factor for VOTT (RVOTT) is assumed
to be 0.8, which means the users can use their travel time 20 percent more efficiently when riding

in an autonomous vehicle (van den Berg and Verhoef, 2016).

3.4.5 Waiting Time Cost Parameters

The function of the average waiting time (stlf,) per trip (in minutes) as given in Table 3.1
Functions and their Definitions, is calibrated based on the data available from the sensitivity
analysis of waiting time per trip with respect to the replacement rate and trip generation (Fagnant

and Kockelman, 2014), and is set to maintain a positive value.

The waiting time cost per unit time (C,,) is assumed to be 70% of the wage rate (Fagnant
and Kockelman, 2018). The average wage rate (W,) in the US is estimated as $22.59/hr

(Tradingeconomics.com, 2018) in May 2018.

A summary of the different functions for vehicle type j and different parameters assumed
in the study are listed in Table 3.1 and Table 3.2, respectively. The functions listed below are
estimated/calibrated using the data from the studies listed in the last column. It is important to note
that as the AVs are not operational on the road, the calibration of the different factors is based on
the simulation data conducted by the different studies. These calibrated functions might be
different in practical applications depending upon the urban area or network chosen and also when
AVs are actually on the road. However, we believe that the nature of dependency of these
dependent factors to that of independent factors would remain the same. Considering the limited
data, the current study aims to capture this dependency of the dependent factors rather than

proposing the exact function to consider the effect of the adoption of PAVs and SAVs.
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3.4.6 Scenarios considered for Optimization
The study estimates the optimal solution under two scenarios as explained below:-

e The optimum vehicle fleet that will result in a minimum total system cost. The weight

factors for this model are:

W =1 V1 57

e The optimum vehicle fleet that will result in minimum emission cost. The weight factors

for this model are:
lpRE = lpcs =1 58
& Yoc = lpop =Y =Py =0 59

Table 3.1 Functions and their Definitions

Source/
Parameter Definition Function
Justification
(Zhang et al.,
. 2018)
1 j = PMV
Vi Replacement rate {1.105 j = PAV (Fagnant and
12 j = SAV
Kockelman,
2014)
Factored VMT
- increase due to { 1 j = PMV arper et
j j v
improved mobility of 114 j € {PAV,SAV}
2016)
non-drivers
e Factored VMT {1 j = PMV child
i 12 je {PAV,SAV} (Childress et

increase due to the
al., 2015)
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Table 3.1 (cont’d)

rny

emp

nd
J

rc
J

reduction in VOTT,
parking cost, and

efficient use of the

roadway

Factored VMT

increase per vehicle
1 j =PMV

due to the reduction Ypav j = PAV
Ysav j = SAV

in the number of

vehicles

Factored VMT

increase due to the 1

L 1.341 +1.001),1

empty repositioning { max|( 09e Vpav )]

max[(0.98 exp(0.008y,,,) —

of autonomous 0.04log, Ngqp + 0.02),1]

vehicles

Factored increase in
the trip generation

) 1 j = PMV
due to the improved a}ld j € {PAV, SAV}

mobility of non-
drivers

Factored increase in
trip generation due to

L. 1 j = PMV
the reduction in { J

1.049 j € {PAV,SAV}
VOTT and parking

j = PMV
j = PAV
j = SAV

Reducing the
number of
vehicles results
inan
equivalent
increase in
VMT per

vehicle

Calibrated
based on
(Zhang et al.,
2018)
Calibrated
based on
(Burns et al.,

2013)

Assuming
average trip
length remains

the same

(Childress et

al., 2015)
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_ Table 3.1 (cont’d)

cost and efficient use

of the roadway

Number of cold-starts

per person trip when

Nf® only vehicle type j

is present in the

system

Average annual miles
m”

traveled per vehicle j

Total miles traveled
M/ during the lifespan of

the vehicle j

The average waiting
wht

sav i B
time (minutes) per

0.64 j € (PMV, PAV}
max[(0.645y:,5°%% — 0.011n3,, +
0.047n2,, — 0.062154, + 0.027),0] j = SAV
My j = PMV
[(mzfnv - mz;}nv) + mgfnuajemp]a;ﬁvaggva;% j = PAV
Miay j = SAV
mh s Spmw j = PMV
My j = PAV
250,000 miles j = SAV

max[(0.0003 exp(0.575¥5qy) — 0.551n3,, +

217712 — 2832054y + 1.206),0]

(Fagnant and
Kockelman,
2014; Kang
and Recker,
2009)
Calibrates
based on
(Fagnant and
Kockelman,
2014)
Assuming PAV
trips outside
the system
does not
generate empty
ride and SAVs
travels only
within urban
boundaries
Assuming
SAVs behave
similarly to a
taxi system
(Fagnant and
Kockelman,
2018)
Calibrated
based on

(Fagnant and
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Table 3.1 (cont’d)

trip, exclusively for

SAVs

Kockelman,

2014).

Table 3.2 Definition and Value of Different Parameters

Parameter Definition Values assumed in the
deterministic model
Tyt Number of daily trips in the system (Burns et al., 2013) 528,000 trips/day
T Study period 1 year
Neay Number of daily trips per licensed driver (Santos et al., 2011) 3.02 trips/licensed driver
Nyp, Number of vehicles per licensed driver (Santos et al., 2011) 0.99 veh./licensed driver
mg;’w Average VMT per PMV in the given urban system during T 6334 miles/year
(FHWA, 2017)
Ceo, The societal cost of producing one unit of CO; (US DOT, 2015) $49/metric ton
Ceo The societal cost of producing one unit of CO (assumed 2. 813 times ~ $137.84/metric ton
than that of CO»(Shindell, 2015))
Cno, The societal cost of producing one unit of NOx (US DOT, 2015) $7877/metric ton
Loy pmy Running emission (CO>) per mile for each PMV (obtained using the 337.81 gm/mile/vehicle
instantaneous emission model by (Int Panis et al., 2006) for
nonefficient-driving profile (He et al., 2015))
€co,pav/say  RUNNING emission (CO2) per mile for each PAV/SAV (obtained using  260.40 gm/mile/vehicle

ere
N0y, MU

instantaneous emission model by (Int Panis et al., 2006) for efficient-
driving profile (He et al., 2015))

Running emission (NO,) per mile for each PMV (obtained using the
instantaneous emission model by (Int Panis et al., 2006) for

nonefficient-driving profile (He et al., 2015))

0.148 gm/mile/vehicle
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Table 3.2 (cont’d)

e

re
noy,pav/sav

cs
eCO

cs
€no,

[4
Cpmv

o
pav/sav

Spmv

):U

pav/sav

Upmv

vpav /sav

tt
mev

Rtt

pav/sav

Running emission (NOy) per mile for each PAV/SAV (obtained using
instantaneous emission model by (Int Panis et al., 2006) for efficient-
driving profile (He et al., 2015))

Cold-start emission (CO) per mile for each PMV (Chester and
Horvath, 2008)

Cold-start emission (NOx) per mile for each PMV (Chester and
Horvath, 2008)

Average purchase price of PMV (NADA, 2012)

Purchase Price of PAV/SAV ( $10K higher than that of PMV (IHS,
2014))

The average service life of PMV (IHS Markit, 2016)

Total miles that one PMV travels in a year (FHWA, 2017)

Fuel cost (AAA, 2017)

Fuel efficiency (FHWA, 2017)

Reduction factor for fuel consumption due to efficient driving of
PAV/SAV (Center for Sustainable Systems, 2017; Wadud et al.,
2016)

Maintenance cost (AAA, 2017)

The average speed of PMV (estimated from nonefficient-driving
profile (He et al., 2015))

The average speed of PAV/SAV (estimated from efficient-driving
profile (He et al., 2015))

Value of Travel Time (VOTT) for PMV (van den Berg and Verhoef,
2016)

Reduction Factor for VOTT (RVOTT) due to efficient use of travel

time in PAV/SAV (van den Berg and Verhoef, 2016)

0.118 gm/mile/vehicle

7.3 gm/mile/vehicle

0.17 gm/mile/vehicle

$30,000

nap+$10,000

11.6 years
11,370 miles/yr.
$2.329/gallon
24 miles/gallon

0.75

$.0794/mile

31.68 mph

27.91 mph

$18.82/hr.
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Table 3.2 (cont’d)

Cy Cost of waiting time (assumed to be 70% of the wage rate (Fagnant $15.813/hr.
and Kockelman, 2018). The average wage rate (W) of the US is

$22.59/hr (Tradingeconomics.com, 2018) in May 2018.)

3.5 Numerical Experiments

The proposed optimization problem is a linear programming problem with linear
constraints. The model aims to minimize the total system cost by finding the best fleet
configuration under different circumstances. The system cost consists of the user, investor, and

societal costs (environmental cost).

3.5.1 Base Scenario

The solution to the optimization problem for the base scenario (considering values of
parameters reported in Table 3.1 and Table 3.2), calculated using analytical methods as well as

dual simplex algorithm, is presented in the following subsections.

3.5.1.1 Analytical solution for the base case

The assumed value of different parameters (Table 3.1 and Table 3.2) for the case study are
used to obtain different costs type per vehicle (le) in the optimization problem (given by Equation
26-28). The total cost per vehicle (C;) for vehicle type j, assuming a uniform weight (1, = 1 V1),

is obtained using Equation 60. The corresponding values obtained are given in Equation 61 and

62.

G=) W v 60
l
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C

ohdy = 7,593.67; Cpap = 12,589.08; Cyqy = 94,552.69; 61

Ypav = 1.105; ysq, = 12; Ny = 173,086 62

Comparing these values, with all the possible solutions (Equations 44 to 50). We have

C C
Conav = 7,593.67; —= =11,392.83; %Y = 7,879.391 63
Vpav Vsav
Which implies:
C C
Cphdv 2 = s — 64
pav Vsav
Therefore, the only three possible cases would be:
C C N,
1. U= pav + sav * Cphdv; Nphdv = NSClU = 0; Npav = _0; 65
ypav Vsav ypav
C C N,
2. #:ﬂicphdv iﬂ; Nphdv:NpaVZO; Nsav:_o; 66
YSaU bav )/sav
C C
3. u= Cphdv # 22 ysav; Npav = Nggp = 0; Nphdv = Noy; 67
pav sav
For case 1, we have,
Cpav
u=——=11,392.83 68
Vpav
Now from Equation 36, we have,
Cohav —u =0 69

In the base case presented in this study, Cppq, — p = 7,593.67 — 11,392.83 = —3799.16 < 0.

Thus, it does not satisfy Equation 36. Hence, this case is rejected.
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For case 2, we have,

CS av

p=—%—17879391 70

YS av

Again comparing it with Equation 36 of section 3.3.7.2, we have Cppq, —p = 7,593.67 —

7,879.391 = —285.72 < 0. Thus, it also does not satisfy Equation 36 in section 3.3.7.2. Hence,

this case is also rejected.
Therefore, the only case would be 3:
Nphdv = NO and Npav = Nsav =0 71

This solution satisfies all of the inequalities mentioned in section 3.3.7.2 (Equations 36,38,40, and
42). Hence, this is our solution to the optimization problem while minimizing the system cost.
Therefore, using the base parameter values, the system cost would be minimum if only PMVs are

present in the system.

3.5.1.2 Solution for the base case using a dual-simplex algorithm

The solution to the proposed model is obtained in MATLAB using the ‘dual-simplex’
algorithm. The algorithm applies the simplex algorithm to obtain the solution to the dual problem.
The algorithm involves two phases. In the first phase, the algorithm estimates the initial basic
feasible solution. In the second phase, the algorithm performs iterations to reduce the infeasibility
of the primal problem while maintaining the feasibility of the dual problem. The algorithm tests
the optimality of the solution in every iteration and stops once the optimality is reached or both
primal and dual problem becomes feasible. The results obtained using a dual-simplex algorithm
are found to be consistent with that of the analytical solution. In the base scenario, using the

parameter values listed in Table 3.1 and Table 3.2, the optimal solution suggests PMVs as the best
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type of vehicle. The travel time and ownership cost are the major costs, contributing 50% and 34%
to the total system cost in the PMV system, respectively (Figure 3.1). The fuel consumption,
maintenance, and emissions contribute to 8%, 7%, and 2% of the total system cost, respectively.
The increased VMT due to the adoption of PAVs and SAVs results in higher total travel time in
the system, higher fuel and maintenance costs for users while increasing the societal cost of
emissions. Thus, these vehicles under the current situation, in the base scenario, do not appear in
the optimum fleet configuration. The number of cold-starts and associated emissions (CO and
NOx) in the SAV system is less than that of the PMV system. However, the running emissions
(CO2 and NOy), due to increased VMT, are significantly higher in the SAV system. The cost of
ownership of the vehicular fleet for the SAV system as a whole is smaller than the PMV system
due to the higher total lifetime mileage of SAVs. But it is not small enough to cover for the costs

increased due to an increase in VMT in the system.

Emission Cost

ime Cost

Fuel Cost

Maintenance Cost

Figure 3.1 The different components of the objective function at the optimal solution for the base
scenario
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3.5.2 System Analysis with Private and Shared Mobility

In different regions and over time, the parameters such as VMT variations, VOTT,
RVOTT, etc. may change. Various studies predict the above-mentioned factors and their influence
on AV adoption. However, as the AVs are not operational on the road, the exact values of these
factors are still a question. Hence, this study does sensitivity analysis with respect to the main
factors and proposes suitable values of these factors that will promote the adoption of PAVS/SAVSs.
It should be noted that the sensitivity analysis is done based on discrete values of parameters rather

than a continuous variation to reduce the computational time.

3.5.2.1 Sensitivity to user and system-related parameters

The VOTT and RVOTT represent user characteristics and are among the most important
factors affecting the optimal solution. The configuration of the system, which in part is presented
by the user to vehicle ratio, affects the optimal solution. A larger reduction in VOTT (lower
RVOTT), or more efficient use of travel time makes SAVs the most promising option (Figure 3.2).
However, if the replacement rate of SAVs is very high (e.g. =16 PMVs per SAV, at
RVOTT=0.7), then there is an exponential increase in the empty miles generation and users’
waiting time. Hence, at higher replacement rates, SAVs are not the optimal solution. Further, at
such a high replacement rate, with efficient use of travel time (RVOTT < 0.4), the travel time cost
for PAVs becomes very low, resulting in PAVs entering the optimal solution (Figure 3.2).
However, the VOTT of users adopting PAVs should be high (at least $18/hr). It is important to
note that the increase in the empty miles results in each SAV traveling a larger amount of miles in
a year. Hence, it reduces the lifetime of the vehicle. As a result, the ownership cost per year

increases for SAVs with an increase in the empty miles traveled.
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Figure 3.2 Optimal vehicle type (PMV, PAV, and SAV) considering variations in VOTT,
Reduction Factor for VOTT (RVOTT), and replacement rate of SAV.

It is important to note that the RVOTT, as an incentive in the adoption of autonomous
vehicles, is only effective if there is a significant reduction (RVOTT< 0.6). If RVOTT is higher,
then the increased VOTT of users switches the optimal solution to PMVs. The reason is that the
increased mobility of the users with the adoption of PAV/SAV, increases the total travel time and
the total system cost, hence a significant reduction in VOTT is required to make these vehicles
competitive in the market (for system planners). With a significant improvement in the efficient
use of travel time, this study confirms the findings of the recent studies (Fagnant et al., 2016;
Fagnant and Kockelman, 2014). Even with less efficient use of travel time (higher RVOTT), SAVs
can appear in the optimal solution, if there is a larger fleet of SAVs (lower replacement rate)

supporting the trips of the users. It can be concluded that efficient use of travel time is a significant

58



factor in the adoption of PAVS/SAVs. This can be a function of the different features of
autonomous vehicles that provide a working or recreational environment inside the vehicle. It is
worth noting that even though reducing the fleet size of SAVs reduces the upfront cost of the
system, it increases the emission, waiting time, operating and maintenance cost, thus the

appropriate fleet size is reported in this study.

3.5.2.2 Sensitivity to vehicle specifications

This study estimates the optimal solution by assuming the average current purchase price
for PMVs and the cost of AV technology to estimate the purchase price of PAVS/SAVs. However,
the price of PMVs and PAVS/SAVs can vary significantly depending on various factors. This study
finds the optimal solution under the different purchase prices of vehicles (Figure 3.3). The analysis
shows that among other factors the optimum fleet configuration is a function of the relative cost
of PMVs and PAVs/SAVs. The adoption of SAVs can be the optimal solution if the purchase price
of SAVs is below a certain relative threshold than that of PMVs. For example, if the purchase price
of PMVs is $60,000, then the purchase price of SAVs should be less than or equal to $100,000 for
SAVs to be the optimal solution. The PMV-PAV/SAV cost function of the optimum market can

be used for planning purposes (Figure 3.3).
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Figure 3.3 Sensitivity to purchase price

3.5.3 System Analysis without Shared-Mobility

The shared-mobility systems are shown to be the optimum answer in many scenarios tested
in the previous section, while the adoption of PAVs appeared as the least favorable option. In this

section, the study analyses different scenarios in which shared mobility is not an option.

First, the model is analyzed with respect to the purchase price and the total lifetime mileage
of PAVs. The total lifetime mileage of PMVs on average is equal to 131,892 miles, which is
obtained from Equation 56. The adoption of PAVs will be the optimal solution, if the total lifetime
mileage of PAV is increased (at least to 240,000 miles) (Figure 3.4). For PAVs to be a part of the
optimum market, these vehicles should be able to travel long distances during their lifespan. This
can be achieved by following an efficient driving pattern and scheduled maintenance. The

computer-controlled vehicles can be programmed to follow the maintenance schedule on their
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own, without any inconvenience to their owners. Further, in addition to the higher total lifetime
mileage of PAVs, the purchase price of PMVs should also be sufficiently high (preferably >
$40,000) for PAVs to appear in the market. The higher purchase price of PMVs reduces the
fraction of additional cost required to install AV technology, for a given cost of AV technology.
Thus, it increases the range of acceptable purchase price of PAVs, for PAVs to be the optimal
solution. In other words, the PAVs would be the optimal solution, if the AV technology is installed

in luxurious cars.
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Figure 3.4 Sensitivity analysis considering the purchase price of PMV and PAV, and total
lifetime mileage of PAV

The analysis results with respect to VOTT, RVOTT, and total lifetime mileage of PAVs
are presented in Figure 3.5. The PAV adoption would be the optimal solution if RVOTT is below
a certain threshold, which increases with an increase in the total lifetime mileage of PAV or VOTT
(Figure 3.5). For example, if the total lifetime mileage of PAVs is 200,000 miles and the VOTT

of users is $26/hr, the RVOTT should be less than or equal to 0.5, for PAVs to be the optimal
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solution. Reducing VOTT by improving amenities on-board, advancing the total lifetime mileage

of PAVs, and the adoption of PAVs by users with high VOTT, are the ways to make these vehicles

an optimum option in the fleet.
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Figure 3.5 Optimal vehicle type (PMV and PAV), in absence of shared mobility, considering
variations in VOTT, Reduction Factor for VOTT (RVOTT) and Total lifetime mileage of PAV

3.5.4 Emission Production in Different Scenarios

The emission produced in the system may vary due to the changes in parameters such as

VMT, driving behavior, replacement rate, number of cold-starts, emission per cold-start, number

of trips. These parameters may vary across different regions. Also, the societal cost of producing

one unit of emission, for different emissions (CO2, CO, and NOx) may vary with time, depending

upon their effect on the environment. The sensitivity analysis of the emission production and the

associated cost, with respect to these parameters, is presented in the following sub-sections.
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3.5.4.1 Emission Production while optimizing total system cost

The replacement rate and societal cost per unit of different emissions are the two most
important factors affecting the optimal solution and the amount of emission produced. The lower
replacement rate or CO, Cost, or higher CO Cost, make SAVs the optimal solution (Figure 3.6).
The running emissions (COy) are higher (Figure 3.6 a and c), but the cold-start emissions (CO) are
lower (Figure 3.6 b and d), in the SAV system than that in the PMV system. The reason is that
each SAV keeps on empty repositioning itself to serve the trips with the engine being turned off
less frequently, which increases the VMT but decreases the number of cold-starts. Further, the
higher replacement rate reduces the number of cold-starts and associated cold-start emissions in
an SAV system (Figure 3.6b). The higher replacement rate also causes an exponential increase in
empty miles generated resulting in an increase in VMT and associated costs such as running
emissions (Figure 3.6a), Thus, SAVs are not the optimal solution at a higher replacement rate.
However, if the societal cost of CO is significantly high, then SAVs can be the optimal solution
even at a higher replacement rate. For example, the SAVs are the optimal solution if the societal
cost of CO is at least $7000/tonne, at a replacement rate of 12 PMVs per SAV (Figure 3.6 a and
b). At a low replacement rate (y,4, = 4), the empty miles generated, and the average waiting time
is negligible. Thus, SAVs would always be the optimal solution, under different CO Costs (Figure
3.6 aand b). Considering the cost of CO>, the optimal solution is invariably the adoption of PMVs
at higher replacement rates (ysq,, = 8 or 12) (Figure 3.6 ¢ and d). It is due to the higher system
cost in the SAV system, which further increases with an increase in CO2 cost. However, at
significantly low replacement rates ( ys4,, = 4), the negligible empty miles generation and waiting
time, can make SAVs the optimal solution if CO cost is below a certain threshold (< $100/tonne)

(Figure 3.6 c and d). The PAVs do not appear in the market because of the significant increase in
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VMT and trip generation, resulting in higher emissions, operating costs, ownership costs, and

travel time costs.
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Figure 3.6 Sensitivity to Emission Cost
3.5.4.2 Sensitivity to Emission Cost while Minimizing Emission Cost

This section represents the emission produced and the optimum vehicle type with an
objective to minimize the emission cost. The higher replacement rate favors PMVs as the optimal
solution, similar to what was observed while minimizing the system cost (Figure 3.7). However,

the optimum market switches to SAVs at lower CO costs, while minimizing only the emission cost
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(Figure 3.7 a and b). This is due to the smaller share of the emission cost in the total system cost
estimated. The reason is that the higher replacement rate is only increasing running emissions
rather than other costs while minimizing emission costs. Further, the cost of CO> should be below
a certain threshold (e.g. $50/tonne at y,,,, = 4) for SAVs to be the optimal solution (Figure 3.7 ¢
and d). This threshold increases with a decrease in the replacement rate because of the reduction
in running emissions (CO2) in the SAV system (Figure 3.7 ¢ and d). The adoption of PAVs
increases the total miles traveled and the number of cold-starts in the system, due to the generation
of empty miles, improved mobility, and increased number of trips. Hence, the adoption of these

vehicles would result in higher emission production than that of PMVs/SAVs.
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3.5.5 Analysis results for the real-world scenarios

The analysis and results in the aforementioned sections are based on parameter estimations

for mid-sized urban areas in the US. This section considers and compares two cities of San

Francisco, CA, and Hammond, LA. These two cities are selected based on their distinct

characteristics. San Francisco, CA is one of the largest cities in the US with a high wage rate, high

fuel prices, and a large number of trips. Hammond, LA is one of the small cities with low wage

rates, low fuel prices, and a smaller number of trips. The characteristics of these cities are presented

in Table 3.3.

Table 3.3 Characteristics of the cities

Parameter Definition San Francisco, CA Hammond, LA
Tyt Number of daily trips in the system in 2017 1155288.1 19292.76
(NHTS, 2017) trips/day trips/day
VMT VMT in the city in 2017 (NHTS, 2017) 9226712 miles/day 128428.4
miles/day
T Number of daily vehicle trips per household 5.11 trips/hh 5.11 trips/hh
(Mcguckin and Fucci, 2018)
U Number of vehicles per household (Mcguckin 1.88 veh./hh 1.88 veh./hh
and Fucci, 2018)
A Trips per vehicle z z
I I
Ny Number of vehicles required % %
My Average VMT per PMV VII\\;/IT « 365 VII\\I/IT « 365
0 0
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Table 3.3 (cont’d)

m%u Total annual miles of each PMV in 2017

(FHWA, 2019)

Cr Fuel cost in 2017 (EIA, 2020a, 2020b)

Vit Value of Travel Time (VOTT) for PMV for
USA (van den Berg and Verhoef, 2016)

wb The average wage rate of the US in 2017
(Tradingeconomics.com, 2020).

wr The average wage rate for the city in 2017

(BLS, 2018a, 2018b)

Vymw VOTT for PMV for the city

11,467miles/yr.

$ 3.142/gallon

$18.82/hr.

$22.05/hr

$33.51/hr

VEExwT

Wb

11,467miles/yr.

$ 2.295/gallon

$18.82/hr.

$22.05/hr

$18.02/hr

VEExwT
wb

The analysis results for the two cities under the current scenario suggest PMVs as the

optimal solution. However, the sensitivity results regarding various parameters, such as the

purchase price of PMVs/SAVs, replacement rate, and RVOTT show the variation in the optimal

solution (Figure 3.8). It can be observed that the relative threshold (slope and intercept) of the

purchase price of PAV/SAV, below which SAVs are the optimal solution, is higher for the city of

Hammond as compared to San Francisco (Figure 3.8a). This is because the waiting time cost

associated with SAVs is higher in San Francisco due to the higher wage rate and higher cost of

waiting compared to the users in Hammond. Hence, the adoption of SAVs would be more

favorable in the city of Hammond. The PAVs are not the optimal solution due to their high

normalized ownership cost.
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The base values for the replacement rate and RVOTT for SAVs are 12 PMVs per SAV and

0.8, respectively. However, the optimum choice is sensitive to these two parameters, as observed

in Figure 3.8b. The replacement rate has to be below a certain threshold for SAVs to be the optimal

solution so that the waiting time of the users, empty
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reduced. This threshold decreases with an increase in RVOTT as the driver productivity decreases
in AVs, which increases the travel time cost for PAV/SAVs. The higher threshold for the
replacement rate of SAVs in the city of Hammond as compared to that of San Francisco makes
Hammond to be more favorable for the adoption of SAVs. Another conclusion is that PAVs can
be the optimal solution in San Francisco if the reduction in VOTT is relatively high (RVOTT <
0.3) and fewer SAVs are available (replacement rate of SAVs is greater than 17 PMVs per SAV).
This significantly reduces the travel time cost associated with PAV/SAVs. However, the waiting
time, empty miles, and the associated cost for the SAV system are significantly high due to the
high replacement rate making them a non-optimal choice. A similar observation can not be made
for Hammond as the overall cost for PMV is still lower than PAVs even at low RVOTT due to the
lower VOTT of users and the higher purchase price of PAVs. Thus, the effect of high ownership

costs of PAVs dominates over the impact of the high travel time cost of PMVs.

3.6 Summary

Autonomous Vehicles and Shared Autonomous Vehicles claim to have significant benefits
to the transportation system, such as improved safety, road capacity, mobility, and reduction in
emission (due to the efficient driving pattern). However, these vehicles will also increase VMT in
the system, which may increase the emissions, travel time, and operating cost of the vehicle.
Further, the purchase price of these vehicles would be higher than that of Human-driven Vehicles.
To gain insight regarding how PAVs and SAVs will affect the environment and transportation
system, the travel pattern, emission, and cost functions for these vehicles are developed and
calibrated. Then, to minimize the negative impacts and maximize the benefits of these vehicles in
a transportation system, a multi-objective optimization model is proposed to find the optimum

fleet configuration by minimizing the overall cost of the system. The system cost consists of

69



emissions (running and cold start), travel time, waiting time, operating, and ownership cost. The
objective of this study is to determine the optimum vehicle type (PMV, PAV, or SAV) and fleet

size resulting in the reduction of emissions or overall system cost.

Some of the findings of this study are intuitive, which are used to confirm the barebone of
the study. However, this study also has some major findings that are unique and valuable to expand

the current line of research. These are separated in the summary section for clarification purposes.

Intuitive findings

e The adoption of PAVS/SAVs is affected not only by the high ownership cost and waiting time
but mainly by the increased VMT, which increases operating costs.

e The higher running emission cost of autonomous vehicles (due to increased VMT) is more
than the savings in cold-start emissions by SAVs.

e The lower replacement rate, or lower CO> cost, or higher CO cost favor SAVs as the optimal
solution for emission cost minimization.

e The adoption of PAVs would always result in higher emissions costs as compared to that of
PMV/SAYV due to an increase in VMT and trip generation. Hence, these vehicles do not appear
in the market while minimizing the emission cost.

Contributory findings

e This study finds a threshold for the required reduction in the value of travel time. In other
words, the required improvements for efficient use of travel time to overcome the other high
costs of adoption of autonomous vehicles. This can be done by improving on-board amenities
and maybe even the drivetrain, which is valuable information for car companies and their

investment policy.
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e SAVsare often selected as the optimal choice compared to PAVS. This study derives simplified
adoption models for this choice. The simplified adoption models have the ability to get
peripheral conditions as an input and find the following factors that make SAVs the optimum
choice:

- Relative purchase price function for SAVs and PMVs.

- The replacement rate of SAVs (significantly lower than current suggested/expected
practice)

- Reduced value of travel time for SAVs (substantially reduced)

- The unit cost of different types of emission (CO2 and CO)(using appropriate policies)

These simplified models can be adopted by policymakers and/or investors.

e The adoption of SAVs is more favorable for Hammond, LA, as compared to San Francisco,
CA. The main reason is the lower wage rate in Hammond, which reduces the waiting cost.

e In the absence of shared mobility, PAVs can be the optimal solution, under the conditions
suggested by the simplified adoption models derived in this study. The simplified adoption
models can be adopted by policymakers and/or investors to meet the following requirements:

- On-board amenities improvement

- Improved total lifetime mileage of PAVs

- The target group for adoption of PAVs (Adopted by users with a high value of travel
time)

e PAVs are only the optimal solution when the AV technology is installed in luxurious cars and

in the absence of shared mobility.
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CHAPTER 4 OPTIMUM ADOPTION OF AV AND EV IN PRIVATE AND

SHARED MOBILITY SYSTEMS

4.1 Overview

The AV and EV technology have synergies. These two technologies enhance and
ameliorate the effects of one another and promote their adoption. Hence, it is essential to capture
the combined effect of these two technologies on the environment and the transportation system.
A modeling framework is developed to capture the trade-offs among the competing factors that
govern the overall impact of EVs and AVs on the transportation system and environment. A fleet
optimization problem considers the different combinations of these technologies in private and
shared mobility systems in a network of multiclass users with different VOTT. The objective is to
minimize the system cost, which is a combination of total time, emissions, ownership cost, driver

cost, and crash cost.

The remainder of this study is as follows. Section 4.2 discusses the problem statement and
objective of the study, followed by the problem formulation in section 4.3. The solution method,

numerical results, and the summary are presented in sections 4.4, 4.5, and, 4.6, respectively.

4.2 Problem Statement

While the autonomous and electric vehicle technology might improve the transportation
system in different aspects, there are certain other aspects that might worse off due to
implementation of such technologies. Further, these technologies will have different effects on the
private and shared mobility systems. It is important to note that the shared mobility system
considered in this study is like a taxi system or other carpooling services provided by transportation

network companies (TNC), which can serve multiple trips and users, and also allow users to
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carpool in the same vehicle. In contrast to the private mobility system, the vehicles in the shared
mobility system have high utilization rate (serving multiple trips) and high lifetime mileage. These
mobility options have different positive and negative influence on the performance of
transportation systems. The different combinations of these technologies will govern the overall
impact on the transportation system. However, the variety of trade-offs (Figure 4.1) embedded in
these options makes it challenging to determine the optimum combinations of these technologies
required to provide a sustainable transportation system. This optimization and cost-benefit analysis

are necessary for policy makers to implement and invest in the best incentive policies.

@ Advantages
I Disadvantages

Private

Figure 4.1 Trade-offs associated with different mobility options
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This study aims to estimate the optimal fleet configuration considering AV and EV
technologies in a private and/or shared mobility system to minimize the total system cost. This
configuration is defined by the number of vehicles of each type and the number of PMVs each
vehicle type replaces to ensure all trips' feasibility. The vehicle types considered here are PMVs,
private manual-driven electric vehicles (PMEVs), private autonomous vehicles (PAVs), and
private autonomous electric vehicles (PAEVS). Similarly, these vehicles are considered in a shared
capacity (Shared manual-driven vehicle (SMV), shared manual-driven electric vehicle (SMEV),
shared autonomous vehicle (SAV), shared autonomous electric vehicle (SAEV)). These vehicle
types are shown in Figure 4.2. Another important factor considered in the study is the replacement
rate of each vehicle type. The replacement rate is defined as the number of PMVs replaced by one
vehicle of type j, serving equivalent trips. One shared vehicle or an AV can serve multiple trips
by continuous repositioning to different pickup locations. Hence, these vehicles can replace
multiple PMVs, which reduces the number of vehicles in the system. However, a higher
replacement rate increases the waiting time, empty miles, and inconvenience of users. A nonlinear
optimization model is developed to minimize the total system cost, with the number of vehicles of
each type, the replacement rate of each vehicle type, and the number of interzonal trips of the
different user classes served by each vehicle type as decision variables. The system cost includes
the following cost terms in the monetary unit: travel time (tt), waiting time (wt), emissions (running
emission (re) and cold-start emission (cs)), operating (op), normalized ownership (noc), driver
(dr), and crash (cr). These costs are estimated considering different factors as shown in Figure 4.3.

The notations used in the study are presented in Table 4.1.
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It is important to note that this study considers multiclass users with different VOTT.
Further, the study considers fully autonomous vehicles (Level 5 Autonomy) that do not require

any driver assistance.

PMYV: Private Manual-driven Vehicle
PMEYV: Private Manual-driven Electric Vehicle

= %, . .
= (2 PAYV: Private Autonomous Vehicle
SAEV | SMEV = PAEYV: Private Autonomous Electric Vehicle
Electric =E_= SMYV: Shared Manual-driven Vehicle
PAEV | PMEV _-~T
z SMEYV: Shared Manual-driven Electric Vehicle
‘?‘f;— } SAV: Shared Autonomous Vehicle
SAEYV: Shared Autonomous Electric Vehicle

Figure 4.2 The vehicle type considered in this study based on different technologies/systems
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Figure 4.3 Diagram of different cost terms in the objective function and influencing factors
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Table 4.1 Nomenclature

Sets Definition
o,d,z € Z  Setof different zones (0= origin zone, d=destination zone, z=zone)
kekK Set of different user class
rel Set of different emissions considered {C0,, NO,, VOC, PM}
J€] Set of different vehicle types considered {PMV, PMEV, PAV, PAEV, SMV, SMEV, SAV, SAEV}
gea Running Emissions cost(re), Cold Start Emissions cost(cs),
) Normalized Ownership cost(noc), Operating cost(op)
Set of different cost types ) o ]
Travel Time cost(tt), Waiting time cost (wt)
Driver cost (dr), Crash Cost (cr)
b€B {peak hour, oft-peak hour}
Decision  Definition
variable
N; The number of vehicles of vehicle type j
Y; Replacement rate (equals to 1 for PMV, PMEV)
fi The fraction of OD trips for user class k served by vehicle j
Jjkod p Yy j)
State Definition
variables
A; The average number of times the one vehicle needs to be refueled in time ¢, for vehicle type j
Cf Total cost of type g for vehicle type j
EiCjS Cold-start emission normalized per mile
m;- The total interzonal miles per vehicle j in the time ¢
m; The total detour miles traveled to refueling station per vehicle j in the time ¢,
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Table 4.1 (cont’d)

n

The total intrazonal miles per vehicle j to pickup/drop off different riders in carpooling trips for the

m;
shared mobility
m; The total miles traveled per vehicle j in the study time period ¢,
t; The total time spent by one vehicle of vehicle type j
TT,ap The travel time from zone o to d during time period b(peak or off-peak)
U Total number of vehicle trips in the original system (in the absence of EV/AV technology) that
should be served by vehicle j
V od The average vehicle trips per hour during time period b (peak or off-peak), along the path between
zone o and d by vehicle j, respectively
W;- The average interzonal waiting time per person trip
a; Factored VMT increase due to the empty rides for repositioning of autonomous vehicles
Parameter Definition Function/Values Source
Egg ; Running emission (COy) 338 g/mile j € {PMV, SMV} (He et al., 2015;
2,
260 g/mile j € {PAV, SAV .
considering efficient-driving 8 jel . ) Int Panis et al.,
0 otherwise
profile for AVs and 2006; Singh et
. . al., 2021)
nonefficient-driving profile for
non-AVs
Eﬁ% ; Running emission (NOx- 148 mg/mile j € {PMV, SMV} (He et al., 2015;
’ 118 mg/mile  j € {PAV, SAV .
)eonsidering efficient-driving g/ je i ) J Int Panis et al.,
0 otherwise
profile for AVs and 2006; Singh et
. . al., 2021)
nonefficient-driving profile for
non-AVs
E%Cj Running emission (VOC) 491 mg/mile j € {PMV, SMV} (He et al., 2015;
589 mg/mile j € {PAV, SAV .
considering efficient-driving 8/ el . } Int Panis et al.,
0 otherwise

profile for AVs and 2006; Singh et

al., 2021)
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Table 4.1 (cont’d)

RE
EPM,j

lod

Qkodb

nonefficient-driving profile for
non-AVs

Running emission
(PM)considering efficient-
driving profile for AVs and
nonefficient-driving profile for
non-AVs

Hourly pay rate for a driver
($/hr)

The average detour distance
traveled per
refueling/recharging

The interzonal distance
between the zones o and d
Vo #4d)

Number of trips from zone o to

zone d (V o # d) during period

b for the user class k

Range (in miles) for the vehicle {

type j
The average speed of the
vehicle

Duration of study

The average time required per
refueling
The average inconvenience

time at the refueling station

8747 ug/mile j € {PMV, SMV} (He et al., 2015;
6378 pg/mile j € {PAV, SAV} Int Panis ot al.
0 otherwise
2006; Singh et
al., 2021)
{$12 /hr  j € {SMV, SMEV} (PayScale,
0 otherwise 2019)
300 miles j € {PMV, PAV, SMV, SAV}
150 miles j € {PMEV, PAEV, SMEV, SAEV}
30 miles/hr (Singh et al.,
2021)

1hr

3 minutes
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Table 4.1 (cont’d)

X

Tp

Ajod

‘ujod

Crashes per million (106) VMT

for vehicle type j

Equivalent cost per crash

The average intrazonal distance
between different locations at
zone z for users carpooling.

Average car occupancy
The time during time period b

Capacity (veh/hr) of the
roadway along the link from
zone o to zone d in a system of
vehicle type j

The fraction of person trips
carpooling from zone o to zone
d served by vehicle j

Factored increased in the
number of trips due to the
improved mobility with the
adoption of vehicle j
Equivalent cold-start emission

per mile in a PMYV system

j € {PMV, PMEV, SMV, SMEV}
j € {PAV, PAEV, SAV, SAEV}

$26,745 per crash

j € {PMV, PMEV, PAV, PAEV}
j € {SMV, SMEV, SAV, SAEV}

j € {PMV, PMEV}
j € {SMV, SMEV}
j € { PAV, PAEV, SAV, SAEV}

14 g/mile i= CO,

80 mg/mile i= NO,

1,963 mg/mile i= VOC
11 mg/mile i=PM

80

(Cicchino, 2017;

Tefft, 2017)

(Fletcher, 2019;

Tefft, 2017)

(Childress et al.,

2015)

(Singh et al.,

2021)

(He et al., 2015;
Int Panis et al.,
2006; Reiter and
Kockelman,
2016; Singh et

al., 2021)



Table 4.1 (cont’d)

Wy

Value of travel time (VOTT)

for user class k

Reduction factor for VOTT
(RVOTT) due to the adoption

of vehicle j

Value of waiting time (VOWT)
for user class k
The societal cost of producing

one unit of emission i

Average purchase price of the

vehicle type j

Total lifetime mileage of the

vehicle j

Life of EV battery

The total price of the battery

Average fuel cost per mile

$50/metric ton
{ $7,900/metric ton
$2,000/metric ton

$20/hr k=1
{$50/hr k=2
$100/hr k = 3

1 j € {PMV, PMEV}
10.8 j€ {PAV,PAEV}
0.9 j € {SMV, SMEV, SAV, SAEV}

$360,383 /metricton i=PM

($30,000

I pPMV

{130,000 miles
250,000 miles

100,000 miles

$9,600

$0.10/mile
$0.04 /mile
$0.07 /mile
$0.03 /mile

81

0.87

+ $10,000
| 4% 0"

j € {PMV, SMV}

j € {PMEV, SMEV}
j € {PAV, SAV}

j € {PAEV, SAEV}

j € {PMV, SMV}

j € {PMEV, SMEV}

j € {PAV, SAV}

j € {PAEV, SAEV}

i= CO,
i= NO4

(Singh et al.,

2021)

Assumed
(Singh et al.,

2021)

(US DOT, 2015)

(EnergySage,
2019; IHS,
2014; NADA,

2012)

j € {PMV, PMEV, PAV, PAEV} (Singh et al.,
j € {SMV, SMEV, SAV, SAEV}

2021)

(Singh et al.,
2021)

(Union of
Concerned
Scientists, 2019)
(BloombergNEF
,2020;
Ghamami et al.,
2019)

(AAA, 2017;
ChooseEnergy,

2019; FHWA,



Table 4.1 (cont’d)
2017; Ghamami

etal., 2019;
Wadud et al.,
2016)
o Maintenance cost per mile { $0.08/mile  j € {PMV, PAV,SMV,SAV} (AAA, 2017,
$0.04/mile  j € {PMEV, PAEV, SMEV, SAEV Berman, 2016)

¢ Average trips per PMV per day (Santos et al.,

2011)

4.3 Problem Formulation

This study aims to capture the effects of different technologies (electrification and
automation) on the transportation system. The adoption of these technologies has a variety of
impacts on users' convenience, travel behavior, travel cost, and travel time. These technologies
will also impact the traffic flow dynamics, safety, and emission in transportation systems. The cost
of owning and operating these vehicles is different than those of PMVs. Thus, an optimization
framework is proposed to find the optimum fleet configuration in a private and shared mobility
system. The study considers eight different vehicle types, four in private mode (PMV, PEV, PAV,
PAEV) and four in the shared system (SHDV, SEV, SAV, SAEV). The modeling framework, cost
components, and factors influencing the adoption of different technologies are explained in the
following subsections. The notations used in this study are listed in Table 4.1. The superscripts are
used to define the cost types such as tt for travel time, re for running emissions, cs for cold-start
emissions, etc. The subscripts are used for indices in the sets such as j and k for vehicle type and

user class, respectively.
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4.3.1 Optimization Problem

The trade-offs associated with different technologies and systems have specific effects on
various cost types. However, finding the adoption strategy with the minimum overall cost to the
transportation system is essential. The objective of the study is to estimate the optimum fleet
configuration that will result in minimum transportation cost, including time (travel time cost,
waiting time cost), emission (running and cold start), ownership, operating, driver cost, and crash
cost (Equation 72). The decision variables are the number of vehicles (N;) of each vehicle type j,
the replacement rate (y;) for each type, and the fraction of OD trips for user class k served by

vehicle j (fjkoq). The parameters ng are the costs associated with the adoption of vehicle j (j €

{PMV,PMEV,PAV,PAEV,SMV,SMEV,SAV,SAEV}) for the cost type g. The optimization

framework proposed is as follows:

i g

s.t.:
Zj fikoa =1 Vk,Vo,Vd,o #d 73
t; < to vj “a
Vil =2 v 7
N, >0 vj 76
=1 je{PHDV,PEV,PAV,PAEV} 7
yj =2 j e {SHDV,SEV,SAV,SAEV} 8
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fikoa = 0 Vj,Vk,Vo,vd, o #d 79

Equation 73 ensures that all the trips of all the user classes are being served. Equation 74
ensures that the total time spent, which includes interzonal time (travel and waiting time),
intrazonal time (travel and waiting time), the detour time to the refueling station, the refueling
time, and the inconvenience time at refueling stations, is less than the total time available (t,). This
constraint provides enough backup vehicles in the system to cover incidentals. Equation 75
certifies that the trips assigned to a specific vehicle type are served by providing the equivalent
number of vehicles considering the estimated replacement rate (y;N;). The term U; is the total
number of vehicle trips in the original system (in the absence of EV/AV technology) that should
be served by vehicle j. The term ¢ is the number of vehicle trips per vehicle in the original system
when there are only human-driven vehicles. Equations 76 to 79 are the feasibility constraints. The
number of vehicles should be positive. The replacement rate for private modes are set as 1. The
replacement rate for shared mode is set to a lower bound of 2 to operate as a shared mobility system

(Equation 78). The fraction (fjx,4) should be greater than zero. The term U; is defined as follows:

Hjo 2 f 0dQko
Ui =sz:zb:<[ _— ,{jk — dbl"’ (1_ﬂj0d)zk:fjkod0kodb> 80

Where, ujoq represents the fraction of users willing to carpool and is set as zero for private

modes. The 4; is the average car occupancy. The term Qy,y, is the total person trips in the original

system between origin o and destination d, for the user class k, during the time-period b (peak or
off-peak hour). The different cost functions considered in the study are developed in the following

subsections.
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4.3.2 Travel time cost

The sketch network is modeled as a complete graph with zone centroids as demand
generation and attraction points. The vehicles are assumed to follow user equilibrium, minimizing
their travel time. The average number of vehicle trips V;,q4;, per hour for each vehicle type j, on
the path between zones o and d, during the peak/off-peak hour is expressed as follows:

WjoaNj 2k fikod Qkoan 1
Vioar = ([ e /1] e l +(1- Hjod)’?jijkonkodb) (a) 81
X

i

Where, the term 7, represents the time duration of period b. The n; captures the increased
number of trips due to improved mobility with the adoption of AVs. Adoption of AVs leads to
efficient use of the roadway, hence improving the roadway capacity. These vehicles also allow
users to use their travel time more efficiently, consequently reducing the in-vehicle VOTT. AVs
are known to enhance the mobility of non-drivers and reduce the parking cost due to self-parking
at cheaper locations and better utilization of parking space (as no room is required for the driver
to access the vehicle). All these potential benefits change the travel behavior of the users and
increase the total trips in the system, which is captured by parameter 17;. The fjx,4 is the decision
variable representing the fraction of the OD trips of user classes k assigned to vehicle type j. This
study captures the effect of high demand during peak periods on the utilization rate of vehicles and
refueling/recharging requirements. However, to reduce the complexity of the optimization
problem, this study assumes that the optimal solution is identical for both the peak and off-peak

periods.

The roadway capacity during peak/off-peak hour, along the path between zones o and d is

estimated considering the fraction of different types of vehicles along the path, and the roadway

85



capacity (Ajoq) in a system of vehicle type j. This study accounts for the improved roadway
capacity due to the adoption of AVs. The computer-controlled AVs operate at shorter headways
(due to the reduced reaction time) and keep traffic flow parameters steady, boosting the maximum
throughput/capacity (Lu et al., 2020). Considering the above effect on traffic flow, the travel time
during peak/off-peak hour ( TT,q;,) between zones o and d is obtained using BPR function as

follows (Bureau of Public Roads, 1964):

]|
| 82
|
|

Where, TT2, is the free-flow travel time between zones o and d.The terms, &; and &, are
the calibrated parameters of the BPR function for different roadway conditions (Bureau of Public

Roads, 1964).

The carpooling users might experience additional intrazonal travel time at the origin and
destination for picking up and dropping off. This extra travel time tt;, per person trip, experienced
by the users already inside the vehicle, are obtained as follows:

4 —1(x
K (?j) -

Where, y, is the average intrazonal distance between pickup/drop-off locations at zone z.
The s; is the average speed of vehicle type j. The total travel time cost for vehicle j is defined as

follows:
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kEK 0€EZ dEZ DEB

Where Z is the set of zones in the network.The w; and A; are the VOTT for each user class

k and reduction factor for VOTT (RVOTT) due to efficient use of travel time in vehicle type j.
Unlike shared mobility systems and AVs, the users of private non-AVs cannot utilize their travel
time to perform any other activity inside the car other than driving. Therefore, the RVOTT is set
as 1 for private non-AVs (PMV, PEV). Further, the travel time savings in the shared mobility
systems might be lesser than that in private AVs, due to the inconvenience to the users. Hence, the

travel time savings in shared mobility systems is assumed to be half of that in private AVs.

4.3.3 Waiting Time Cost

The waiting time in a shared mobility system has two components. First, the time required
for the empty vehicle to reach the origin of the first user (W)"). Second, the average time required
for the intrazonal trips (picking up the carpooling users in the same zone) (wj,). The first
component is a function of the replacement rate (y;) and the increased travel demand due to the
adoption of AVs (n;) (Singh et al., 2021). The higher replacement rate will reduce the number of
vehicles resulting in an increased trip load on each vehicle. Consequently, this will increase the
average waiting time (Singh et al., 2021). The increasing number of trips in a given system
increases the likelihood of closer consecutive trips, reducing the average waiting time and travel
distance (Singh et al., 2021). The factor Wj/ for the shared mobility system is defined as follows

(Singh et al., 2021):

w,”

. =max[(0.0003ex p(0.575y;) — 0.551n7 +2.177n? — 2.832n; + 1.206),0] 85
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The second component of the waiting time, defined as the average intrazonal time at the

origin zone o, is defined as follows:
Ai—1
Wj, = = > <X—°> 86

Thus, the total cost of waiting time C}** is as follows:

C]yvt — Z z z Z(M/]’ + ,Lljodeo)f}'konkodbnjwk 87

keKo €Z d €Z beB

Where the term @, is the VOWT for the user class k.
4.3.4 Miles Traveled

The VMT in the system changes significantly with the adoption of different technologies.
The AVs and shared mobility systems generate empty rides in the system, which increases VMT
in the system. The improved mobility by the adoption of AVs further increases VMT in the system.
Carpooling will reduce the interzonal miles, but it will add intrazonal miles to pickup/drop-off
different users. EVs add extra detour miles for charging the vehicle due to the limited number of
charging stations. To capture these effects, the total miles traveled is defined for each vehicle type.
The total miles traveled include three categories: interzonal and intrazonal miles traveled, and
detour miles traveled for refueling. The interzonal miles traveled per vehicle type j, include the

occupied miles traveled and empty miles, as follows:

! = Yoez Xaez Xves VioabThloa

N;

Where, 1,4 and N; are the interzonal distance between zone o and d, and the number of

vehicles of type j present in the system, respectively. The empty miles («;) is the function of the
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replacement rate y; and the increased number of trips (n;). The higher replacement rate increases
the trip load on each vehicle, which increases the empty miles generated(Singh et al., 2021). The
increased number of shared mobility trips increases the probability of consecutive trips closer,
which reduces the overall empty miles (Singh et al., 2021). The empty mile function is given as

follows (Singh et al., 2021):

1 j e {PHDV, PEV}
@ = {max[(1.34 logeyj +1.001),1] j € {PAV,PAEV} 89
max[(0.98 exp(0.008y;) — 0.04log, n; + 0.02),1] j e {SHDV,SEV,SAV,SAEV}

The detour miles traveled (m;") to the refueling station, is critical for EV's considering the
limited number of charging stations. It is a function of the density of refueling stations in the area
(affecting average distance traveled per refueling (1)) and the total number of times (4;) the

vehicle needs to be refueled in a given time t,, which is defined as follows:

m’ = Al 90

The number of times a vehicle needs to be refueled (4;) is a function of total miles traveled
(m;) during time ¢,, and the total miles a vehicle can drive on a full fuel tank or battery (known as
the range (R;) of the vehicle), which is defined as follows:

A= o1
) Rj

The intrazonal miles are traveled within all the origin and destination zones to pick up and

drop off users carpooling in the same vehicle. The total intrazonal miles traveled per vehicle (m]f”)

is a function of the average car occupancy, the average distance between consecutive pickup and

drop-off locations, and the total carpooling trips, which is defined as follows:

89



A—1
Yo ez dez beB Q (o + Xa)MjoaNj Lk fikoa Quoan
mIII _ A] 92

, N

The overall total miles per vehicle (m;) considering all the three components and using

Equation 90 and 91, is as follows:

( / " R] if N 0
B (m] +mj T if N; #
m ) ] 93

k 0 otherwise

4.35 Emissions

The emission cost is estimated considering major pollutants carbon dioxide (COz), nitrogen
oxides (NOy), volatile organic compounds (VOC) and particulate matter (PM) (Int Panis et al.,
2006). The emission cost includes the societal cost of running and cold-start emissions in a system.

The running emission cost (C;©) is a function of running emission per mile (E7°) for emission type
[, total miles per vehicle (m;) and the number of vehicles of vehicle type j (N;), which is estimated

as:

G = Z mElfmy N 94

i
The term 7; is the societal cost of producing a unit quantity of emission type. The term
Ejf is derived considering instantaneous emissions (Int Panis et al., 2006) as the function of speed
and acceleration of the vehicle type j, depending upon its driving behavior (eco-driving for AVs
and non-eco-driving for other vehicles) (He et al., 2015; Singh et al., 2019).
The cold-start emission cost (Cjcs ) is a function of normalized cold-start emission per mile

(E 5-5 ), and the occupied interzonal vehicle miles. It is important to note that the factor E L-st accounts
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for the reduction in cold-start in a shared mobility system. The number of cold-starts reduces with
increased replacement rate (y;) and travel demand (7;) in a shared mobility system, due to the
continuous repositioning which reduces the frequency of engine shut-offs (Singh et al., 2019). The

E l-cjs for non electric shared mobility system, based on the study by Singh et al., is given as follows

(Singh et al., 2019):

B;(0.645y; -°%2 — 0.01179? + 0.047n% — 0.0627; + 0.027) 0
X

i 95
0en , je{SHDV,SAV}

cs
E;7 = ma

The cold-start emission cost is defined as follows:

G~ = z mEf; Z z Z VioanTnloa 96
i o d

b

4.3.6 Ownership and Operation Costs

The normalized ownership cost (C;*°“) over the study period (t,) is a function of the
purchase price (p;), total lifetime mileage of the vehicle &; (total miles a vehicle can travel during
its entire lifetime), and miles traveled per vehicle (m;). It is important to note that the cost of
adding AV technology is considered in the purchase price of AVs (p;). The normalized ownership

cost (C;*°°) is as follows:

p .
Gt = gjij,- 97

The operating cost (Cj"p) includes fuel and maintenance costs. It is a function of the fuel

cost per mile (¢;), the maintenance cost per mile (g;), the miles traveled per vehicle (m;), the

number of vehicles. For EVs, the battery might have to be replaced after its life is expired. Hence,

the operating cost for EVs is also a function of the life of the battery (Q), the battery price (9),
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and the total lifetime mileage of the vehicle (6;). It is important to note that the fuel cost per mile
(¢;) accounts for the reduction in fuel consumption due to the efficient driving behavior of AVs.
The operating cost is defined as follows:

(¢; +0)) miN;  if je{PHDV,PAV,SHDV,SAV}

Cj"p = 519 o 98
<p,-+aj+l5J6—j m;N; if j € {PEV,PAEV,SEV,SAEV}

4.3.7 Driver Cost

The non-AV shared vehicles (SHDV, SEV) require human drivers. Thus, there would be a

cost to support the salary of these drivers. The labor cost (Cj‘”) depends on the hourly salary of the
driver (h;), and the total service hours (t;).
G = hitN; 99

The total service hours can be divided into five components interzonal time (travel and
waiting time), intrazonal time (travel and waiting time), the detour time to the refueling station,

the refueling time, and the inconvenience time at a refueling station, which is defined as follows:

Yora2o(TToap + W )Vipapty mi” L
tj _ 0 Ld b( odb ]) jodb b+ j +Aj i+t{+t{' 100
]Vj Sj Sj J ]

Where, t; and t; are the average refueling time and inconvenience time at the refueling

station. The inconvenience time is the time to drive the vehicle in and out of the station, remove

and put the nozzle back, and pay at the station.
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4.3.8 Crash Cost

The adoption of AVs is known to reduce the number of crashes and the associated cost
significantly. Hence, it is crucial to consider this cost to estimate the optimum vehicle fleet

configuration. The cost estimated due to crashes C/" for vehicle type j is as follows:
G = yxym;N; 101

Where, the term y is the average monetary value per crash. The term x; is the crashes per

VMT in a system of vehicle type j. This factor accounts for the reduction in crashes due to the

adoption of AVs.

4.4 Solution Method

The optimization model is an NP-hard problem including nonlinear objective function with
nonlinear constraints. It including various nonlinear functions (i.e., ceiling, exponential, and
polynomial functions) for different variables. The small-scale hypothetical transportation problem
is solved using nonlinear commercial solver ‘Knitro’. Knitro is one of the most powerful and
commonly used solver for complex nonlinear optimization problems (Artelys, 2019; Byrd et al.,
2006; Ghamami et al., 2016). Therefore, the proposed model is implemented in AMPL and solved
using Knitro. However, the current commercial solvers are unable to solve large-scale problems
(i.e., a mid-size city in the US). Hence, the metaheuristic algorithms are developed based on the
genetic algorithm (GA) and simulated annealing (SA) algorithm to solve large-scale problems.
The developed metaheuristics are calibrated and validated using the small-scale network, and their

performances are compared using a large-scale network in terms of solution quality and efficiency.
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4.4.1 Genetic Algorithm (GA)

The initial input to the real-coded GA includes detailed network data, travel demand,
vehicle types, user classes, cost types, and user-defined algorithm parameters (Figure 4.4). The
algorithm is initialized by generating a population of n (population size) random solutions (labeled
as parent population set (PPS)). The algorithm is then performed for the total number of
generations (gen) or until the termination condition is met. In each iteration, the objective function
value (OBJ), constraint violation (CV), and fitness value (FV) are estimated for the population of

solution. The CV, estimated after normalizing the constraint, is defined as follows:
V=) q.() 102
e

In which, g, (x) is the non-negative constraint violation of the normalized e‘" constraint.
If the CV is zero, then the solution is feasible. To estimate FV the penalty-parameter-less approach
is adopted, which is an efficient constraint handling method (Deb, 2012, 2000). The FV is defined

as follows:

OB] ifCV=0

FV = 103
{OB],{;‘;S +CV ifCV#0

Where, OBJ/€% is the maximum OBJ among all the feasible solutions in a given

population set. This method minimizes CV rather than OBJ if no feasible solution exists. Among

two feasible solutions, the one with a smaller OBJ has a better fitness value (FV).

In the next step, the selection/reproduction of different solutions is performed based on
binary tournament selection without replacement (Deb, 2012). The solution with a lower fitness
value has a higher chance of getting selected. Further, this method selects exactly two (binary)

copies of the best solution (lowest fitness). The crossover operation is performed on the new
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population set (labeled as child population set (CPS)) generated after the selection procedure. This
study performs a simulated binary crossover (SBX) operator using a distribution index @, and
crossover probability p.. The SBX is an efficient crossover method for real-coded GA (Deb and
Agrawal, 1995). The higher value of ®_. generates the child solutions closer to the parent solutions.

The crossover operation helps in searching the space close to the existing solutions.

Then the mutation operation is performed, which implements parameter-based mutation
operation with polynomial distribution (distribution index @,,) (Deb, 2012, 2001). The mutation
operation ensures that the algorithm avoids getting trapped in locally optimal solutions. The
mutation probability (p,,,) is limited to small values otherwise it might affect some of the good

solutions.

Finally, the survivor selection is performed, which compares the new set of solutions (CPS)
with the PPS and chooses the best population of the solution. This new set of best solutions is fed
into the next iteration as PPS for the selection, crossover, and mutation process. The algorithm
stops if the total number of generations is reached or the termination condition is met. Then, the
solution with the lowest fitness is reported as the optimal solution. The flow-chart diagram of the

proposed GA is as follows:
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solution and report

Figure 4.4 Flow chart diagram for Genetic Algorithm

This study proposes a metaheuristic algorithm based on the real-coded genetic algorithm
(GA). However, due to the complexity of the proposed model, the GA algorithm takes a

considerable amount of time to solve the model. Thus, certain modifications are made to improve
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the performance of the metaheuristic algorithm. First, the set of solutions is generated in such a
way that the equality constraint in Equation 73 is always satisfied. This is done by assuming a new

integer variable @4 as follows:

Where, J,, is the number of vehicle types considered in the study. The algorithm is fed with the

input variable @, rather than fj;,, to optimize the objective function. The variable fjyq is

determined based on the estimated value of @;,4, as follows:

1 if j = Qoq vehicle type in set |

firoa = { venice Vk,Yo,d,0 # d 105

Equations 104 and 105 ensures that the constraint in equation 73 is always satisfied.
Further, the constraint in equation 75 is used to estimate N; from the variable y; and f,4x, thereby
making it always satisfied. These modifications make it easier for GA to find a feasible solution
and reduces the time in searching for the feasible set. To further improve the efficiency of the
modified GA, a parallelization approach is adopted which involves multiple processors cores
(using a cloud cluster of high-performance computers) to perform evaluation operations on the
large population set. The algorithm is initialized by generating a population of n (population size)
random solutions. These n solutions are equally divided into smaller subsets, which are fed into
different computer cores (80-100 computer cores) in a cloud cluster for improving the algorithm
speed. The above modifications substantially reduce the time and improve the performance of the
GA.

4.4.2 Simulated Annealing (SA)
The SA solution method proposed in this study starts with an initial feasible solution and

determines the objective function value for this solution (Figure 4.5). The algorithm includes two
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iterative procedures. In the first iteration, a control parameter is reduced (similar to reducing the
temperature as annealing in metallurgy) which reduces the probability of accepting worst solution.
In the second iterative procedure, the algorithm perturbs the current solution by changing the value
of decision variables to get a neighborhood solution. The objective function value of the
neighborhood solution is compared with that of the current solution. If the objective function value
of the neighborhood solution is better, then the current solution is replaced by the neighborhood
solution deterministically. However, if the objective function of the neighborhood solution is
worse, then it might replace the current solution probabilistically depending upon the difference
in the objective function values. This allows algorithm to avoid getting trapped in local optima
(Ghamami et al., 2020a). The current solution is updated based on the objective function value of
neighboring solution and existing current solution. Then, in the next iteration another neighboring
solution is generated randomly based on the current solution. The probability of accepting a worse
solution decreases by adjusting the control parameter through the first iterative procedure to ensure
convergence to the best solution. As, the problem is NP hard nonlinear problem, so to improve the
performance and time of the SA algorithm, high-tech computers with substantially available RAM

is utilized.
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Figure 4.5 Flow chart of Simulated Annealing algorithm

4.5 Numerical Experiments

The modeling framework is implemented for a hypothetical case study and the real-world
transportation network of Ann Arbor, Michigan. The values of different parameters for the "Base

Scenario” are presented in Table 4.1. The hypothetical case study includes a transportation
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network with four zones and three user classes in a mid-sized urban area of the US. These zones
are assumed to be equidistant from one another (5 miles). A total of 30,000 trips per day are
assumed to be equally distributed among each user class for each OD pair. The city of Ann Arbor
consists of 36 Traffic Analysis zones (TAZ) and about 192,169 trips/day (Figure 4.6). The distance
between the zones varies from less than 5 miles to up to 23 miles. Further, the study considers
three user classes differentiated based on their VOTT, as shown in Table 4.1. The study considers
daily trips of a typical weekday in Ann Arbor, being equally distributed among the three user
classes. The hypothetical problem is solved using the commercial solver 'Knitro." However, the
network of Ann Arbor cannot be solved using a commercial solver. Hence, metaheuristics are
developed to solve the optimization problem for the network of Ann Arbor, Michigan. The
metaheuristic algorithms are validated for the hypothetical problem. Finally, these metaheuristics

are implemented to produce the results for the Ann Arbor case study network.
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Figure 4.6 Traffic Analysis Zones (TAZ) Centroids in Ann Arbor, Michigan (Ghamami et al.,
2019)
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4.5.1 Algorithms Performance

The metaheuristic algorithms developed are based on GA and SA algorithms. The
algorithms are compared with a commercial solver (Knitro). These algorithms are faster, and the
solution is equal to that of the commercial solver for the hypothetical network (Table 4.2). It can
be observed that as the size of the problem grows, the commercial solver is unable to solve the

problem.

Table 4.2 Result and the Solution Time for different Optimization Techniques

Case Study- Hypothetical Network Case Study- Ann Arbor, Michigan
Objective function  Solution Time | Objective function Solution Time
($/day) (min) ($/day) (min)
Knitro 294544 17.60 N/A N/A
GA 294544 0.26 2059454 140.75
SA 294544 0.11 2059681 76.51

For Ann Arbor, the GA algorithm is parallelized using high-performance computers with multiple
cores running in parallel (i.e., cloud computing). In contrast, the SA algorithm is implemented
using high-tech computers with substantial available RAM. The SA algorithm converges faster
(about 55%) than the parallel GA algorithm (Table 4.2 and Figure 4.7). The objective function
value for the two algorithms is almost similar, with the value in GA slightly smaller. Thus, the SA
algorithm should be used for the optimization problem that requires real-time output. However,

to get more accurate results, GA should be used.
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Figure 4.7 Comparison of SA and parallel GA algorithm for Ann Arbor, Michigan

The following subsection presents the results for the base scenario of the Ann Arbor
network, followed by the sensitivity analysis for the same Ann Arbor network with respect to
different parameters.
4.5.2 Base Scenario for Ann Arbor network

The optimum mode for the different user classes can vary with respect to trip length and
depends upon the trade-offs between different factors such as operating costs, traffic congestion,
travel time savings, etc. This subsection studies the base scenario considering the specifications
and parameters listed in Table 4.1. The optimum mode by each user class for different distances
for the base scenario is shown in Figure 4.8. The solution indicates the adoption of EVs (i.e.,
PMEVs, SAEVs, PAEVS) results in minimum system cost due to low operating costs, and zero
tailpipe emissions. The non-electric modes (PMVs, PAVs, SAVs) are not the optimal solution as
these result in significant emissions. Further, non-autonomous shared modes (SMVs, SMEVs) are
not favorable as these modes pose higher crash costs and additional driver costs as compared to
autonomous shared modes (SAEVs). Note that the total number of trips are higher if the adopted
modes are autonomous or shared mode which is attributed to improved mobility of the users in

these systems.

102



The lowest VOTT ($20/hr) users should predominantly adopt SAEVs to minimize the
system cost (Figure 4.8a). These users can avail the benefits of travel time savings in SAEVS, and
prefer waiting for these vehicles rather than incurring the high ownership cost of private modes.
Note that, the VOWT is a function of the VOTT of the users. The optimal solution favors the
adoption of PMEVs by the second user class (VOTT=$50/hr) over SAEVs, especially for short-
distance trips (<10 miles), as the travel time savings are not significant to outweigh the waiting
time experienced by users in SAEVs (Figure 4.8b). However, these travel time savings increases
with an increase in the distance (>10 miles), making users shift to SAEVs. Further, the PAVs and
PAEVs are not favorable for the second user class (Figure 4.8b) because the travel time savings
are not significant enough to outweigh the high ownership cost of these vehicles. The optimal
solution for the third user class (VOTT= $100/hr) is the adoption of private modes (PAEVS,
PMEVs) to avoid the waiting time (Figure 4.8c). Further, the third user class (VOTT=$100/hr)
should predominantly adopt PAEVs over PMEVs to avail the benefits of reduced crash cost and
travel time savings in the short distance trips (<10 miles). The long-distance trips (>10 miles) of
these users (VOTT=$100/hr) shifts to PMEVs over PAEVs because the increased number of trips
(due to improved mobility by AVs) increases the operating cost and congestion, which outweighs

the travel times savings, and crash reduction benefits in PAEVs (Figure 4.8c).
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Figure 4.8 Optimum mode and vehicles type of different user classes for long and short distance
commute trips for the base scenario in the Ann Arbor network

4.5.3 Sensitivity analysis of Ann Arbor network with respect to various parameters

The different parameters associated with the adoption of AV and EV will change with
increase in market penetration rate of these vehicles. These factors, such as travel time savings,
purchase price of vehicle and AV technology cost, would govern the fleet configuration in the
system. Further, different stakeholders might be interested in optimum fleet under various
scenarios. E.g. system planners would be interested in overall system costs, TNC might be
interested in fleet size in carpooling and non carpooling scenario, users might be interested in the
costs directly impacting them. The sensitivity analysis with respect to above-mentioned factors for

the Ann Arbor, Michigan network are presented in this section.
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4.5.3.1 Sensitivity to Reduction factor for VOTT (RVOTT)

The RVOTT represents the most critical factor that captures the ability of the autonomous
or shared mobility system to allow users to efficiently use their travel time for other activities
rather than driving. These travel time savings can offset the high ownership cost of AVs. The
lower value of RVOTT implies greater travel time savings. Thus, the sensitivity of the results to
variations of RVOTT, as the technology evolves, are presented in Figure 4.10 (the RVOTT for the
base scenario is equal to 0.8 (Singh et al., 2021; van den Berg and Verhoef, 2016)). The dominant
optimum vehicles are EVs. It can be observed that the solution shifts to PAEVs as the RVOTT is
reduced, which is intuitive due to substantial travel time savings dominating over the high
ownership cost and increased congestion (with increased VMT). Further, making these

autonomous vehicles electric also reduces the operating costs and emissions in the system.

If there are no travel time savings (RVOTT=1) the optimal solution indicates PMEVs to
be the optimal solution for users with high VOTT (= 50/hr) due to high ownership cost of private
autonomous vehicles (PAVs, PAEVs) and high waiting time cost in the shared mode (Figure
these users would not mind waiting (Figure 4.10a(i)). Further, the PMEVs are not dominant for
users with low VOTT ($20/hr) because these vehicles have high ownership costs as opposed to

the shared mode. Also, the crash cost is higher in PMEVs as opposed to SAEVS.

It is worth noting that the users with the lowest VOTT ($20/hr) should adopt SAEVs as
long as the RVOTT is greater than 0.2 (travel time savings less than 80%) because the users with
the lowest VOTT would prefer waiting for SAEVs rather than owning these costly vehicles as

private modes (Figure 4.10a-d, (i)). The solution shifts to PAEVs at the lowest RVOTT (0.2) for
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these users (VOTT=%$20/hr) because the travel time savings are considerably high in PAEVs as

opposed to SAEVs due to inconvenience caused in the shared mode (Figure 4.10e(i)).

The minimum system cost solution indicates users with VOTT of $50/hr adopting PAEVs
over PMEVs only if travel time savings are substantial (RVOTT <0.6) to outweigh the high
ownership cost of these vehicles (Figure 4.10c-e, (ii)). However, lesser travel time savings are
required (RVOTT<0.8) in case of the users with highest VOTT of $100/hr, for the optimal solution
to be PAEVs (Figure 4.10b-¢, (iii)). Further, users with highest VOTT ($100/hr) may adopt PAEVs
for long distance trips (> 10 miles), only if the travel time savings are 40% (RVOTT< 0.6),
otherwise these vehicles increases congestion and operating cost due to improved mobility in the
system. The SAEVs are not the optimal solution for the users with high VOTT (=$50/hr), because
these users would prefer private vehicles rather than waiting for the shared vehicle to pick them
up.

Investment in promoting SAEVSs is recommended even if there are no travel time savings,
provided that the users have low VOTT. The PAEVs adoption will favor the system if there is at
least 20% savings in the travel time with amenities onboard. These amenities can be the availability
of charging ports, tables, computers, etc., to conduct meetings inside the vehicle or some collection
of books, games, novels for recreational activities allowing users to make their travel time
productive. The policies can be adopted to encourage the transportation network companies (TNC)
to operate the fleet of SAEVs in the regions with denser populations of users with low VOTT or
low incomes. Further, to promote the adoption of PAEVs the technology advancements are
required to provide onboard amenities in the vehicle such that it provides ambiance to perform

other activities e.g., organizing meetings, reading books, or other recreational activities.
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Figure 4.9 Sensitivity analysis of trips from zone 5 (origin) to all the zones for different user
classes (i-iii) withwith respect to RVOTT (a-e), in Ann Arbor network
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Figure 4.9 (cont’d)
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Figure 4.10 Sensitivity analysis of trips from zone 5 (origin) to all the zones for different user
classes (i-iii) withwith respect to RVOTT (a-e), in Ann Arbor network

4.5.3.2 Sensitivity to cost of AV technology

The additional cost of AV technology is one of the significant factors governing these
vehicles' adoption. The study considers two scenarios: adding AV technology to mid-priced cars
($30,000) that are affordable to most users. The second scenario is adding AV technology to
luxurious cars ($80,000), affordable for high-income users. The AV technology cost varies from

zero to half of the vehicle price, depending on the amenities provided.

In the scenario with mid-priced cars (Figure 4.11a), the users with the lowest VOTT
($20/hr) should predominantly adopt SAEVs, irrespective of the AV technology cost, due to travel
time savings, smaller waiting cost, and reduced ownership cost in shared mode. The users with a

VOTT of $50/hr should adopt a mix of SAEVs and PMEVs. The SAEVs would be optimal for
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long-distance trips when the travel time savings outweighs the waiting time cost. However, for
short-distance trips waiting time is a significant portion of total trip time and travel time savings
are not enough in SAEVs making users (VOTT=$50/hr) switch to PMEVs. Further, the optimal
solution for these users is PAEVs only if there is no additional cost of AV technology. The optimal
solution for the third user class (VOTT=$100/hr) would predominantly be PAEVs until the price
of the AV technology cost is greater than one-third of the vehicle price. At a higher cost (half of
the vehicle price), the travel time savings do not outweigh the high ownership cost of PAEVSs, and
these users (VOTT=$100/hr) switch to PMEVs. Note that the PAEVs are the optimal solution at
low AV technology cost even though PAEVSs are more expensive than PAVs due to low operating

costs and zero tailpipe emissions.

In the scenario with luxurious cars (Figure 4.11b), the system cost would be minimum if
the fleet composition has SAEVs and PMEVs for the AV technology cost greater than zero. The
users with high VOTT($100/hr) should adopt PMEVs to avoid waiting in the shared mode. The
users with VOTT < $50/hr should predominantly adopt SAEVs for the system cost to be
minimum. The SAEVs provide benefits such as travel time savings, reduced ownership cost, the
reduced crash cost that dominates the waiting time cost. Further, the PMEVs are expensive to
afford due to high vehicle prices in addition to the added battery cost, which is significant in private
mode. Asthe AV technology cost is reduced to zero, users with high VOTT ($100/hr) should shift

to PAEVs due to substantial travel time savings.

The adoption of AV technology is recommended in shared electric mode for the users with
low VOTT (<$50/hr) even if the price of AV is substantial (30-50% of the vehicle price). The
users with the highest VOTT ($100/hr) should preferably adopt PAEVs unless the vehicle price

and AV technology cost are substantial, making these users shift to PMEVs for minimum system
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cost. The policies should be adopted to promote autonomous and electric vehicles together to
ameliorate and enhance each other's effects. The low operating costs of EVs offset the high
ownership cost of AVs. Further, the ownership cost can be further reduced if these vehicles are
adopted as a shared mode, which can be utilized by low-income groups. The technology
advancements are further needed to be improved in order to adopt these vehicles as private modes
so that the cost of AV technology should come down to at least one-third of the vehicle prices. In
the case of luxurious cars, the cost of AV technology should be negligible relative to the price of

the vehicle to be adopted as private modes.
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Figure 4.11 Sensitivity analysis of optimum vehicle type for different user classes with respect to
AV technology cost for the mid-price car (a) and luxurious car (b), in Ann Arbor network

4.5.3.3 Sensitivity with respect to replacement rate and carpooling

The replacement rate of the shared modes is an essential factor that governs the fleet size
requirement relative to the total number of trips. It affects the empty miles, users' waiting time,

and cold-start emissions. In addition, carpooling reduces the fleet size requirement (increasing the
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replacement rate) and reduces the empty miles, while increasing waiting time of users sharing the
same ride. Hence, the sensitivity analysis with respect to replacement rate for carpooling and non-
carpooling scenario is presented in this subsection. In the carpooling scenario 20% of the users are
assumed to share the ride (base scenario) and in non-carpooling scenario it is assumed that no two

users share the same ride.

The result shows that the SAEVs are less likely to be optimal solution with an increase in
the replacement rate due to an exponential increase in the empty miles and users' waiting time
(Figure 4.12). Hence, the fleet size should be provided as large as the number of vehicle trips in
the system, resulting in replacement rate as low as possible. Further, if the replacement rate is
lower (< 6), the trips served by SAEVs are lower in the carpooling scenario (Figure 4.12a) as
compared to the non-carpooling scenario (Figure 4.12b). The user's waiting time increases with
the carpooling due to extra time to pick up users sharing the same ride. However, at a higher
replacement rate (= 9), the carpooling substantially reduces the empty miles generated, which
dominates over extra waiting time added for carpooling. Thus, the number of trips served by
SAEVs increases in the carpooling scenario (Figure 4.12a) relative to the non-carpooling scenario

(Figure 4.12b) due to a reduction in the empty miles generated.
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Figure 4.12 Optimum vehicle type under different replacement rate (fleet size) for (a) carpooling
and (b) non-carpooling scenario for the Ann Arbor network

Hence, the fleet size of the shared mode should be as large as the number of vehicle trips
in the system. The larger fleet size or lower replacement rate reduces the users' waiting time as
well as empty miles, which reduces the normalized ownership cost and the operating cost. Further,
this larger fleet size is also favorable to TNCs because although the upfront cost would be higher
but each of these vehicles would have less operating costs, which extends the effective life of these
vehicles. A higher replacement rate or a reduced fleet size should preferably be adopted in the
regions where users are more willing to share their rides. The TNC should deploy its fleet size
considering the above factors. Note that the non-carpooling component of the replacement rate is
the decision variable of the optimization problem. The optimal solution always sets this component
to the lower bound value, which indicates that the cost associated with an exponential increase in
empty miles and user's waiting time dominates the reduction in the cost associated with decrease
in the cold-start emissions (or zero tailpipe emissions in EVS). Hence, the sensitivity results

presented here are obtained by setting the lower bound of the replacement rate (decision variable)
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to higher values. Further, the replacement rate in Figure 4.12 accounts for the reduction in the fleet
size by both the non-carpooling and carpooling components.
4.5.3.4 Optimal solution without considering emissions

The EVs are favored to be included in the optimal solution due to their zero tailpipe
emissions. In this subsection, we minimize the system cost without considering emissions to

capture the shift in the optimal solution ignoring this societal cost.

Figure 4.13 indicates that the solution changes significantly if we do not consider
emissions. Users with the lowest VOTT ($20/hr) should adopt SAVs to minimize the system cost
as these users would not mind waiting for these vehicles and avail the benefits of travel time
savings (Figure 4.13a). Further, the private and electric modes are not preferable due to the high
ownership cost. Users with VOTT $50/hr should adopt a mix of SAVs, PMEVs, PMVs (Figure
4.13b). The SAVs should be adopted for long-distance trips to avail benefits of substantial travel
time savings and insignificant waiting time. However, the travel time savings are not significant
to outweigh waiting time cost for short-distance trips, and the users should switch to private modes.
The PMEVs, PMVs should be adopted for short-distance trips by users with VOTT $50/hr, with
most of the trips by PMEVs due to low operating costs compared to PMVs. The PAVs, PAEVs
are not part of the optimal solution because of their high ownership cost. The users with high
VOTT ($100/hr) predominantly adopt PAVs due to substantial travel time savings and reduced
crash cost (as opposed to non-AVs), and no waiting time (as opposed to shared mode) (Figure
4.13c). Further, the PAEVs do not minimize the system cost as these contribute to additional

battery costs, which increases the ownership costs.
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In conclusion, the proper policies should be implemented to make users adopt
environmental-friendly vehicles (EVs) to favor the system. This can be done by imposing carbon
taxes, providing rebates over the purchase of EVs, developing adequate charging infrastructure,
etc.
4.5.3.5 Optimal solutions considering costs directly impacting users

The users' main goal is to fulfill their trips with maximum benefits. Hence, it is crucial to
estimate the optimal solution considering the costs directly impacting the users. These costs
include travel time, waiting time, ownership, operating, and driver costs. The optimal solution is
shown in Figure 4.14. The users with lowest VOTT ($20/hr) predominantly adopts SAVs due to
low ownership cost, less waiting time, and travel time savings SAVs (Figure 4.14a). The users
with high VOTT (= $50/hr) predominantly adopt PMEVs, which is attributed to low operating
costs (as opposed to PMVs), low ownership cost (as opposed to PAVs, PAEVS), and no waiting
time (as opposed to shared mode) (Figure 4.14b,c). The PAVs are adopted by some users with a
high VOTT of $100/hr due to substantial travel time savings (Figure 4.14c). Further, some of the
trips for the users with VOTT $50/hr are fulfilled by SAVs due to travel time savings, low

ownership cost, and smaller waiting time costs (Figure 4.14b).

Hence, the users with low VOTT prefer to adopt SAVs availing the benefits of autonomy
without owning these vehicles. Certain policies should be adopted to encourage TNCs to operate
the fleet of SAVs in the regions with denser populations of users with low VOTTs or low incomes.
Users with high VOTTs predominantly prefer PMEVs. Hence, the adoption of EVs should be
promoted by providing adequate charging infrastructure and eliminating the human factors which
are difficult to capture, such as range anxiety, and concerns for being stranded for long time at the

charging stations.
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Figure 4.14 Optimal solution for different user classes while minimizing the costs
directly impacting users in Ann Arbor, Michigan

4.6 Summary

AV technology provides various potential benefits such as improved safety, mobility,
roadway capacity, and driver productivity. One of the outcomes of these benefits is the increased
VMT in the system, which will increase emissions and operating costs and affect the total system
travel time. The cost of owning these vehicles is also high due to added cost of AV technology.
The emissions and operating costs can be significantly reduced with the adoption of EVs.

However, EVs have a limited range, higher battery price, and limited refueling infrastructure. In
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light of these, AV and EV technology adoption in the shared mobility systems would be a
promising solution. However, the shared mobility systems generate additional empty miles in the
system and waiting time for users. Furthermore, the impact of these technologies would vary for
different user classes defined based on their VOTT attributed to their income levels. This study
builds a modeling framework to capture the trade-offs associated with emerging
technologies/systems, and estimates the optimum fleet configuration of these technologies with
the minimum total system cost, considering both private and shared mobility systems. A fleet
optimization problem is developed in a multiclass user system to minimize the system cost,
including emission, ownership, operating, travel time, waiting time, crash, and driver costs. The
solution to the optimization problem provides fleet configuration of different vehicle types (PMV,
PMEV, PAV, PAEV, SMV, SMEV, SAV, SAEV), which is also specific to various user classes
having different VOTT or income levels. The developed metaheuristic algorithms based on GA
and SA are validated using a hypothetical problem and then implemented to solve the NP-hard
nonlinear real-world optimization problem (Ann Arbor, Michigan). The main findings from the

research are as follows:

e The optimal solution is a combination of private and shared mobility and is sensitive to
VOTT of the users, trip lengths, RVOTT, AV technology cost, ownership cost,

replacement rate, emissions, and user-specific costs.

e The GA and SA algorithm both converge to a similar solution for smaller case studies. SA
algorithm is twice faster than the GA. However, the GA provides a smaller objective

function for larger case studies.

e The EVsare recommended as the optimal solution for the system due to their low operating

costs, and zero tailpipe emissions. Hence, policies should be adopted to promote EV by
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providing adequate charging infrastructure, rebates over the purchase of EVs, and imposing

carbon taxes.

Electrifying AVs would lower the operating cost that offsets their high ownership cost.
Hence, policies should be adopted to promote vehicle automation and electrification

together.

SAEYV adoption is recommended for users with low VOTT ($20/hr) even if there are no
travel time savings or the price of AV technology is substantial. Hence, these should be

deployed in regions with a denser population of low VOTT/low income groups.

SAEVs are also recommended for users with VOTT of $50/hr, only if the trip length is

greater than 10 miles.

PMEVs are recommended for the short distance trips (<10 miles) of users with mid VOTT

($50/hr), and long distance trips (>10 miles) of users with high VOTT ($100/hr).

PAEVs are recommended for short distance trips (<10 miles) of users with VOTT of
$100/hr. In long distance trips (>10 miles) of these users (VOTT=$100/hr), the travel time

savings of at least 40% (RVOTT< 0.6) is required for these trips to be PAEVs.

Adoption of PAEVs may also be favorable for users with high VOTT ($100/hr) if the AV
technology cost of a mid-priced car ($30,000) is reduced to at least one-third of the vehicle
price. The AV technology deployment cost for luxurious cars ($80,000) is relatively
negligible compared to the vehicle price, resulting PAEVs to be favorable to users with

high VOTT ($100/hr).
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Technology advancements are required for promoting AVs as private mode so that the AV
technology cost is reduced or the amenities onboard are improved, allowing efficient use

of travel time through meetings, reading, or recreational activities.

The fleet size of the shared mode should be as large as the number of vehicle trips in the
system to avoid the exponential increase in empty miles generated, and the user’s waiting
time. Further, this large fleet size would also reduce operating cost and increase service life

(in years) of each of the vehicles.

The carpooling is favorable to the system if and only if the fleet size is such that the
replacement rate is greater than 9, below which the extra waiting time in carpooling

increase the system cost.

Considering the costs directly impacting the users, the users with low VOTT or low
incomes prefer SAVs. Users with high VOTT predominantly prefer PMEVs due to the low
operating costs of EVs and no waiting time. Hence, the adoption of EVs should be
promoted by eliminating uncaptured human factors, such as range anxiety and waiting at

charging stations.
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CHAPTERS DISTRIBUTED ENERGY RESOURCES TO SUPPORT EVS’ FAST

CHARGING STATIONS

5.1 Overview

The rapid growth in the market acceptance of EVs requires a well-developed network of
DCFC stations. However, this network of DCFC stations along with the increased electric miles
traveled will increase the electricity demand and affect the electric grid stability, supply-demand
imbalance, and degradation of the electric grid distribution system. It is important to consider
investment in technologies at these charging stations to support the EV charging demand and
reduce the load on the electric grid. This study develops a framework to considers the capacity
constraints of the electric grid network, the existing energy demand, the EV charging demand, and

different types of DER to find the optimal investment technology at DCFC stations.

The remainder of this study is as follows. Section 5.2 discusses the problem statement and
objective of the study, followed by the modeling framework in section 5.3. Section 5.4, 5.5, and
5.6 discusses the data collection, results of the numerical experiment, and the summary of the

study.

5.2 Problem statement

The increasing market penetration rate of electric vehicles would necessitate the
deployment of DCFC charging station network. This network of DCFC chargers will not only
reduce the charging time but will also reduce/eliminate concerns related to the limited range of
EVs. However, it will increase the load on the electric grid network causing supply-demand
imbalance, and degradation of the electric grid system. The electric grid transmission and

distribution system, which includes transmission lines, substations, feeder lines, segment etc.,
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might need to be upgraded to support the rising EV charging demand. The investment cost to
upgrade these can be substantial depending upon the location of DCFC stations and the arrival rate
of EVs. However, the provision of DER such as ESS, solar panels, etc. can support the EV charging
demand, reduce the load on the electric grid, and also reduce the electric cost. This study aims to
estimate the optimum investment technology to support the rising EV charging demand. The study
estimates the critical locations that would require the provision of DER which depends upon the
EV charging demand, existing electricity demand, and the capacity constraints of the electric grid
network. The study estimates the optimum type of DER for each of the DCFC locations depending
upon the investment cost, electricity cost savings, and overall savings in the system cost. The study
also captures the seasonal effect on the performance of these different types of DER. The detailed
modeling framework to address the above-mentioned problem statement is presented in the
following subsection.
5.3 Methodology

This study proposes an optimization modeling framework with an aim to find the optimal
investment technology to support the fast charging demand of EVs. An optimization problem is
developed to minimize the system cost which includes the project cost of NB/SLB Battery ESS
(BESS), Flywheel ESS (FESS), and solar panels (if any), electric grid upgrade cost (i.e., cost of
bringing electricity to the EV charging station, segment upgrades, feeder line upgrades, substation
upgrades, and transmission upgrades), and the total cost of energy for refueling electric vehicles.
It is worth noting that the project cost includes the cost of ESS (battery packs, flywheels, etc.), the
balance of plant, inverter cost, construction cost, cost of solar panels, racking of solar panels,
electrical balance of system, installation cost, etc. This study also considers the possibility of

transmitting excess energy stored/generated (other than that required for EV charging) back to the
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electric grid network, which reduces the overall electricity purchase cost as well as the system cost.
The decision variables are the capacity of li-ion NB/SLB battery (BS?), capacity of the flywheels
(FSY), area of the solar panels (4"), additional feeder line capacity (AF/), additional substation
capacity (AS*), additional subsegment/segment capacity (AG") to support EV charging demand at
location i. The superscripts i, j, k, and [ represents segments/subsegments, feeder line, substation,
and the transmission line, respectively. The study considers a discrete time-dependent energy
model with a step size of . The EV charging demand depends upon the arrival rate of EVs
throughout the day. The different notations used are presented in Table 5.1. The schematic diagram
of the electric grid network is shown in Figure 5.1. The input data is fed into the optimization
model to estimate the optimum investment technology with maximum cost savings.

The inputs and the outputs to the model are listed as below:

Inputs

1. Demand distribution over the entire electric grid network
a. Spatiotemporal EV charging demand
b. Spatiotemporal existing electricity demand

2. Electric grid network details of segment/subsegment, feeder line, substation, transmission

line

a. Spatial capacity
b. Cost of upgrading
c. Connections and locations
d. Spatiotemporal time of use electricity rate
e. Life of the grid components

3. Distributed energy resources (Li-ion NB BESS, Li-ion SLB BESS, FESS, solar panels)
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a. Performance and charging/discharging rate
b. Unit cost of investment (includes installation, BOS, inverters etc.)
c. Life
Outputs

1. Distributed Energy Resources (Li-ion NB BESS, Li-ion SLB BESS, FESS, solar panels)
a. Size
b. Location
c. Time dependent charge/discharge profile and power output

2. Electric grid network
a. Additional capacity requirement of upgrading subsegment, feeder line, substation,

transmission line

3. Investment cost & savings
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Figure 5.1 Flow chart diagram of electric grid network

Table 5.1 Nomenclature

Sets Definition

terl Set of time intervals

i€l Set of segments/subsegments

je] Set of feeder lines

keK Set of substation locations

lel Set of transmission lines
meM Set of seasons (summer, winter)
Decision Definition
variable
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Table 5.1 (cont’d)
BS!

FSt
AG!
AFJ
ASk
AT!

Al'

Size of BESS at location i (kWh)

Size of FESS at location i (kwh)

Additional subsegment/segment capacity (kW)
Additional feeder line capacity (kW)
Additional substation capacity (kW)
Additional transmission capacity (kW)

Area of the solar panel at location i (sg.m)

State variables

Definition

BE/™
BPi™
FEm

Fpim

im
W i
SP{™

ELi™

im

im
t

Battery energy at time t and location i for the season m (kWh)

Battery charging demand at time t +/- and location i for the season m (kW)
Flywheel energy at time t and location i for the season m (kWh)

Flywheel charging demand at time t +/- and location i for the season m
(kW)

Power delivered to flywheel including self-discharge losses (kW)
Maximum power of flywheel required (kW)

Solar panel power at any time t and location i for the season m

Net energy required/available from/to the electric grid by the EV charging
station

Binary variable indicating if the energy is inflow (1) or outflow(0)

Binary variable indicating if the battery (1) or the flywheel (0) is selected
Binary variable to ensure no power delivered to flywheel if it’s not

selected.
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Table 5.1 (cont’d)

Parameters Definition

CB Unit project cost of battery ($/kWh)

CK Unit project cost per kwWh of FESS ($/kWh)

CL Unit project cost per kW for FESS ($/kW)

Cl Unit project cost of solar panel ($/kW)

CG Unit cost of subsegment/segment ($/kW)

CF Unit cost of the feeder line ($/kW)

CS Unit cost of substation ($/kW)

CT Unit cost of transmission line ($/kW)

H Life of the transmission line (years)

U Life of substation (years)

\Y Life of feeder line (years)

X Life of segment (years)

Y Life of solar panel (years)

VA Life of BESS (years)

Q Life of FESS (years)
Rim Electricity rate at time t in the season m for location i ($/kWh)
om Outflow rate at time t in the season m for location i ($/kWh)
FR! Fixed electricity rate for the base electricity provision cost

EDim EV charging demand (kW)

Dpim Demand at location i at time t in season m (kW)

G! Subsegment/segment capacity (kW)

F/ Feeder line capacity (kW)
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Table 5.1 (cont’d)
Sk

Tl
CP
DP
Ai,max
B Si,max

F Si,max

SR

Substation capacity (kW)

Transmission capacity (kW)

Maximum charging power of BESS (kW)

Maximum discharging power of BESS (kW)

Maximum allowable size of solar panel based upon site conditions (sgq.m)
Maximum allowable size of BESS based upon site conditions (kWh)
Maximum allowable size of flyhweel ESS based upon site conditions
(kwh)

The solar radiation intensity at location i and time t for the season m
(kW /m?)

Cloud coverage at any time t in season m for the location i

The calibrated parameters for solar radiation intensity dependent on w;™

Length of the season m (days)
Self discharge loss in FESS(kW/hr)

Energy density of flywheel (kWh/m?)

Power density of flywheel (kW /m3)

A very large number

Maximum state of charge of BESS

Minimum state of charge of FESS

Length of each time interval (hour)

Whether subsegment/segment i is on feeder line j

Whether feeder line j is connected to substation k
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Table 5.1 (cont’d)

okt Whether transmission line | is connected to substation k
pt The efficiency of the solar panel at location i
im The sun’s elevation angle at time t in season m for the location i

5.3.1 Optimization Model

The objective function includes the purchase cost of energy from the electric grid, and
investment in DER technologies such as ESS (NB/SLB, flywheels), solar panels, and electric grid

upgrades. The overall optimization problem is defined as follows:

CBxBS! CKXFS'4CLxW! CIxptAt
min Ve (B + (1 - f! )—) + Yier
CGXAG! CFXAF/J CSXASk CT ATl
5 A+ Y T 4 Ve A 15, A 4 106
Yier Zm 1" Deer(ELE" (@™R{™ + (1 — ai™)OF™) + FRY)
s.t.

Supply-Demand constraints

G' + AG' + SP™ > D™ + ED™ + BPf™ + ™  VteT,i€l,meM 107
Yi(G'+ AGY)0Y < FJ + AFI je] 108
Y(F/ + AF/)E/k < Sk + AS* keK 109
Y (8% + AS®)ok < T + AT! leL 110
(ED{™ + BP™ + rti™ — SP{™)(af™ — 0.5) = 0 VtET,i€l, mEM 111
Battery storage constraints

BE/™ = BE'™ + BP{™1 vt=2,., i€l meM 112
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BE™ = BEI™ 4+ Bpi™t
8 x BS' < BEI™ < A x BS!

— DP < BP™ < CP

Flywheel storage constraints
FE™ = FEI™ + FP™t
FEI™ = FEI™ + FP™1

0 < FE™ < FS!

—yi < FPIm < @t

Yint < FSW°

FPIm = gim — @ipim

FS! < Aw'

Solar panel power generation

0 < SP/™ < ptAISRI™

Feasibility constraints
AG' >0
AF7 >0

ASk >0

VielmeM
vtel,ielmeM

Vtel,iel,meM

vt=2,...IL i€l meM
iel, meM
vtel,iel, meM
vtel,iel, meM
iel, meM

vtel,iel, meM

Vtel,iel, meM

vtel,ielmeM

J€J

keK
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113

114

115

116

117

118

119

120

121

122

123

124

125
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AT >0 lel 127

BSLFSL Wi >0 i€l 128
0 < BS! < pSimax iel 129
0 < FSt < Fgimax iel 130
0 <Al < Abmax i€l 131
o', af™, Bt € {0,1} VteET,i€l, mEM 132

The terms in the objective function represent the investment cost of BESS (NB/SLB),
FESS, solar panels, segment upgrades, feeder line upgrades, substation upgrades, transmission line
upgrades, and the cost of purchasing/selling the electricity from/to the electric grid, respectively.
The terms CB, CK, CL,CI,CG,CF,CS and CT are the unit project cost of BESS, project cost per
FESS energy capacity, project cost per FESS power capacity, unit project cost of solar panel, and
unit upgrade costs of segment, feeder line, substation, and transmission line, respectively. The 5
is a binary variable indicating either BESS or FESS is selected. The W is the power capacity
(maximum power) of the flywheel. The terms Z,Q,Y, X, V, U, and H are the life (in years) of the
BESS, FESS, solar panels, segment, feeder line, substation, and transmission line, respectively.
The u™ represents the number of days in season m in one year. The term EL™ is the net energy

required/available from/to the electric grid by the DCFC station, and is defined as follows:
EL™ = (ED{™ + BP{™ + /™ — SPI™)t VteT, i€l meM 133

Where, the ED{™, BP{™, /™ and SP{™ are the EV charging demand, battery charging
demand, flywheel charging demand (including self-discharge losses) and the solar panel power

generation at any time t of the day, in season m, respectively. The t is the step size of the discrete

time-dependent model. The RI™, 0™ and FR! are the time-of-use rate for buying electricity from
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grid, selling electricity to grid, and fixed monthly electricity purchase rates, respectively. The ai™
IS a binary variable indicating either energy is withdrawn or send back to the grid. The different
constraints are explained in the following subsections.
5.3.2 Supply Demand Model

In order to ensure the feasibility of charging at a DCFC station, the available energy at any
time t should be greater than the energy required. The energy required includes EV charging
demand, existing electricity demand, and the energy required to charge the ESS. The available
energy resources are the electric grid network and solar panel power generation. ESS is also used
as a source of energy during parts of the day when it is discharging. The supply-demand model
and the constraints are presented in Equations 107- 111. The G% F/,S¥, and T' are the existing
capacity of the segment, feeder line, substation, and transmission line, respectively. The
AGY, AF7, AS*, and AT' are the additional capacity of the segment, feeder line, substation, and the
transmission line that might be required to support the EV charging demand, respectively. The
EDf™ BPf™, mri™, D™ and SPF™ are the EV charging demand, BESS charging demand, FESS
charging demand, existing demand, and the solar panel power generation at any time t of the day,
in season m, respectively. The 8, 2/, and o* are the binary parameters capturing the network
details of electric grid explaining whether, a segment i is connected to feeder line j, a feeder line
j is connected to substation k, and a substation k is connected to transmission line [, respectively.
Equation 107 ensures that the electric grid capacity at the segment level, and solar panel power
generated is greater than the total electric power required at any time t. The equation 108, 109,
110, and 111 ensures that the electric grid capacity at feeder line level is greater than that at
segment level, electric grid capacity at substation level is greater than the feeder line level, and the

electric grid capacity at the transmission line level is greater than the substation level, respectively.

130



Equation 111 assigns the value 1 or 0 to the binary variable ai™ depending upon if net energy is
drawn from the electric grid or it is supplied back to the electric grid, respectively.
5.3.3 Energy Storage Model

The energy stored in the ESS at the end of any time ¢, is a function of charging/discharging
power and the energy at the time t — 1. The BESS model and FESS model are presented in
Equations 112-115 and Equations 116-122, respectively. The  BP™ FP/™ are the
charging/discharging power of the BESS and FESS, respectively. The positive or negative values
of BP™, FP/™ indicate that ESS is being charged or discharged, respectively. The BE™, FE™
are the energy stored at the end of time t in the BESS and FESS, respectively. The BS!, FS?
represents the size/capacity of the ESS. The Equations 112 and 116 update the energy stored in
the ESS at end of time t, based on charging/discharging rate at time t, step size t and energy stored
at the end of time t — 1. The Equations 113 and 117 updates the energy stored at the beginning of
the time based on the energy stored at the end of time T. The BESS is allowed to charge to A and
discharge to & (20% of battery capacity) state of charge (SOC) to reduce the depth of discharge
and protect the battery's health (equation 114). The BESS power is restricted by maximum
allowable charging (CP) or discharging power (DP) as indicated in equation 115. The FESS energy
cannot be greater than its energy capacity (Equation 118). The FESS power is restricted by
maximum allowable power W (equation 119). This maximum allowable power is restricted by
sizelenergy capacity of FESS, energy density n*, and power density 9¢ of FESS (equation 120).
Equation 121 updates the power delivered ™ to FESS based on FESS power FP{™ and the self-
discharge losses A¥™. Equation 121 and 122ensures that no power is delivered if the FESS is not
selected through binary variable w® and a very large number A. As it is a minimization problem,

this w' is zero if FS' is zero, through Equation 121 and 122.
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5.3.4 Solar Panel Power Generation Model

The maximum solar panel power generated depends upon the sun elevation angle ¢pi™,
cloud coverage w/™, the efficiency of the solar panel p?, and area of the solar panel A:. The cloud
coverage is measured in Oktas ranging from integer 0-8. The sky is divided into eight parts and
the value indicates how much of that is covered by clouds (Jones, 1992). The value of 0 indicates
completely clear weather conditions, and the value of 8 indicates complete overcast (Madsen et
al., 1985). The solar panel power generation model at charging station location i is given in
equation 123. The SP/™ is the solar panel power at any time ¢ which is limited by the maximum
power that can be generated by solar panels at any time t. The solar radiation intensity
SRI™(W /m?) is a function of cloud coverage w/™, and the sun elevation angle ¢:™ as given in
Equation 134 (Ehnberg and Bollen, 2005; Nielsen et al., 1981; Ugirumurera and Haas, 2017).

qO(Wtim) +q1 (ng) sin {™ + g (Wtim) sin® ™ — Q4(Wtim)

SR = i
q(wy)

134

The q, 99,91, 92, and q, are the calibrated parameters depending upon the cloud coverage,
as given in the following table (Ehnberg and Bollen, 2005; Nielsen et al., 1981; Ugirumurera and

Haas, 2017):

Table 5.2 The calibrated parameters for solar radiation intensity based on cloud coverage
(Ehnberg and Bollen, 2005; Nielsen et al., 1981; Ugirumurera and Haas, 2017)

wim o g (W/m?)  q,(W/m?) q q.(W/m?)
(W /m?)

0 -112.6 653.2 174 0.73 -95

1 -112.6 686.5 120.9 0.72 -89.2
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Table 5.2 (cont’d)

2 -107.3 650.2 127.1 0.72 -78.2
3 -97.8 608.3 110.6 0.72 -67.4
4 -85.1 552 106.3 0.72 -57.1
5 -17.1 511.5 58.5 0.7 -45.7
6 -711.2 495.4 -37.9 0.7 -33.2
7 -31.8 287.5 94 0.69 -16.5
8 -13.7 154.2 64.9 0.69 -4.3

The bounds for variables are presented in Equations 124-132. The term
BSimax pgimax and ALMAX gre the maximum allowable size of BESS, FESS, and solar panels
depending upon the site conditions, respectively.

5.4 Data Collection

The input data includes the proposed and current EV fast charging (DCFC) station network,
EV energy demand, existing energy demand (other than EV demand), electric grid network details
and capacity constraints, ESS types, and characteristics, and solar panel characteristics and weather
conditions. The details of obtaining each of these data sets are explained in this section.

5.4.1 DCFC locations and EV energy demand

The potential DCFC locations in Michigan are obtained from Phase-Il of the "Electric
Vehicle Charger Placement Optimization in Michigan" by our research team as Ghamami et al.,
2020. These locations were estimated based on the simulated urban trips of EV users throughout
the road network of different urban areas in Michigan, corresponding to the proposed EV market
penetration rate (6%) in the year 2030 (Ghamami et al., 2020b; Kavianipour et al., 2021b)

(Ghamami et al., 2020). Similarly, the time-dependent EV energy demand and power demand at
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these DCFC locations are extracted based on the travel patterns. Note that the battery sizes of all
EVs are assumed to be 70 kWh, and the charging power of DCFC chargers is assumed to be 50

kW.

5.4.2 Existing energy demand and electric grid network details

The existing energy demand, grid network details, and capacity constraints are obtained
from the different utility companies, cooperatives, and municipalities. The companies provided
data for the electric grid network and connections (i.e., substation, feeder line, segment, etc.) that
will serve the proposed DCFC locations, existing energy demand, upgrade costs, and capacity
constraints of the electric grid network. It is worth noting that the data was not available for some
potential DCFC locations; thus, these locations are not considered for the analysis. A total of 75
DCFC locations were considered in the major cities of Michigan (i.e., Saginaw, Lansing, Flint,

Grand Rapids, Kalamazoo, and Muskegon). The locations are presented below.
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Figure 5.2 The proposed DCFC stations in Michigan in 2030 considered for DER analysis
(Ghamami et al., 2020b; Kavianipour et al., 2021b).

5.4.3 Energy storage systems types and characteristics

The study considered different types of ESS technologies which include Li-ion battery,
lead-acid, redox flow battery, sodium-sulfur, sodium metal halide, zinc-hybrid cathode, sodium-
ion battery, flywheels (Beacon Power, 2021; Kane, 2021; Mongird et al., 2019; Patel, 2021; Rafi
and Bauman, 2021). The Li-ion batteries are deployed across various industries due to high power
density, high energy density, and performance (Mongird et al., 2019). The price of this ESS
technology is consistently reducing due to major demand in EV industry (Mongird et al., 2019).
These batteries are used in residential commercial buildings, distribution grids, renewable
generation smoothing etc (EASE, 2022). Lead-acid batteries are also used for various applications
such as load following, time shifting but these are not used for small portable systems (Mongird

et al., 2019). Redox flow batteries consists of electrolyte solution in tanks acting as cathode and
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anode (Mongird et al., 2019). The electrolyte is passed through a membrane to generate and store
energy. This technology is currently in early phase of commercialization but it has long life, easy
scalability, and operating at low temperature range (Mongird et al., 2019). Further, due to low
energy density, large storage tanks are required (EASE, 2022). These are utilized for peak shaving,
energy time shifting, etc (EASE, 2022). Sodium-sulfur battery is another electrochemical energy
storage system which has high energy-density but it is highly corrosive, requires high operating
temperatures (300 — 350°C), and consequent safety requirements (EASE, 2022; Mongird et al.,
2019). Sodium Metal Halide (sodium nickel chloride) is used for various application such as
residential buildings, EVs, renewable generation smoothing, etc (Mongird et al., 2019). These
batteries have smaller range than other electrochemical storage, but has high performance,
durability, and low sensitivity to ambient temperature (EASE, 2022; Mongird et al., 2019). Zinc-
Hybrid Cathode batteries utilizes widely available material and can be supplied at low cost
(Mongird et al., 2019). The Sodium-ion battery are in the development phase and are expected to
replace Li-ion in the following years (especially in storage applications) as the cost of sodium is
very low and it is available in abundance (EASE, 2022). Further, this technology is safer, operates
on lower temperature, provides faster charging, and higher cycle life efficiency as compared to Li-
ion batteries (Kane, 2021; Patel, 2021). However, the energy density of these batteries is currently
lower than Li-ion batteries (Kane, 2021). Flywheels store energy in the form of electromechanical
energy (Mongird et al., 2019). It consists of rotating cylinders which stores energy in the form of
kinetic energy. Higher is the velocity, higher is the energy stored. The electric energy is withdrawn
by slowing down the rotating cylinder. The flywheels have longer life cycle, and fast response
time making them suitable for frequency regulations, and renewable smoothing (Mongird et al.,

2019). The data related to different types of ESS, their characteristics, and their feasibility to serve
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at the DCFC locations is obtained from different studies in the literature (Beacon Power, 2021;
Cole et al., 2021; Kane, 2021; Mongird et al., 2019; Patel, 2021; Rafi and Bauman, 2021). The

following table represents the characteristics, and project costs of different ESS:

Table 5.3 Different types of energy storage technologies (Beacon Power, 2021; EASE, 2022;

Kane, 2021; Mongird et al., 2019; Patel, 2021; Rafi and Bauman, 2021)

ESS Type Project Cost* Life (years) Energy Density Power Density**

($/kWh) (Wh/L) (WI/L)
Sodium- Sulfur 669 13.5 40 10
Li-lon 362 10 90-130 23-33
Lead Acid 464 3 16 4
Sodium Metal Halide (669 12.5 65 16
Zinc-Hybrid Cathode [433 10 17 4
Redox Flow Battery [650 15 13 3
Flywheel 10,124 20 18 74
Sodium-ion <Li-ion >Li-ion <Li-ion >Li-ion
(Current projection)

*The cost includes capital cost, power conversion system, the balance of plant, and construction
cost
**Assuming Energy/Power=4 for batteries and 0.25 for flywheel

It can be observed that the Li-ion battery has the lowest project cost. Further, among the
different battery technology, Li-ion batteries have the maximum energy density and power density.
Thus, the Li-ion is the optimum choice among the batteries and is considered for analysis. The
study also considers flywheels for the analysis due to the significantly high-power density, which

might be useful during peak power demand of EV.
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The study also considers SLB Li-ion batteries. The batteries are remanufactured after their
end of life (EOL) to be used as SLB. The cost of remanufacturing SLB is around 30% of NB
(Neubauer et al., 2012). The comparison of SLB with that of the NB Li-ion battery is as shown

below:

Table 5.4 Comparison of second-life batteries (SLB) versus new lithium ion battery

NB Li-ion battery SLB Li-ion battery

$137/kWh (BloombergNEF,  30% of new battery (Neubauer et
Battery pack Cost 2020) al., 2012)

10 years (Kamath et al.,

Battery Life 3-7 years (Kamath et al., 2020)

2020)
70-80% of a new battery (Kamath

Battery Energy Capacity | Depend upon Size et al., 2020)

The study also considered BESS with different storage durations. The storage duration is
the time to charge/discharge the full battery at its power capacity. The smaller storage duration
would mean that the battery can charge/discharge faster, which might be required, especially
during peak hours. However, batteries with smaller storage durations are more expensive. The

projected capital cost for different storage durations is as follows (Cole et al., 2021):
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Figure 5.3 Projected BESS unit project cost with different storage durations (Cole et al., 2021)

This study considers the projected cost of the BESS system in 2050, including battery pack,
balance of plant, inverter, construction cost, etc. Finally, the battery size is limited to 50 kwWh per
50 kW charger due to area restrictions depending on site conditions (Gjelaj et al., 2020).
5.4.4 Solar panel characteristics and input data

The solar panels' output power depends upon the efficiency of the solar panels, sun
elevation angle, and cloud coverage. The sun elevation angle throughout the year at different
locations in Michigan is obtained from SunEarthTools, 2021 (Figure 5.4). The input data is fed
into the optimization model to estimate the optimum investment technology with maximum cost
savings. Note that these figures represents the sun elevation angle averaged over all the days in the
given season (winter or summer). The cloud coverage data throughout the year is obtained from
Weather Spark, 2022 (Figure 5.5). Note that the variation in sun elevation angle and cloud
coverage is found to be similar in all urban areas of the Michigan. Hence, same variation is
assumed for all the areas in Michigan.Finally, the solar panel efficiency of 19.5% (Feldman et al.,

2021) and cost of $0.68/W (NREL, 2021) are considered in this study. . The cost of the solar panels
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is the entire project cost, including inverters, structural balance of system (racking), electrical
balance of system, installation cost, etc. The projected cost for the solar panels is considered to be
for the year 2050 (NREL, 2021). It is important to note that the area of the solar panels is restricted
to the maximum area based on the site conditions at each of the charging stations. Thus, the solar

panel area is restricted to the charging/parking spot area per charger (Schmitt, 2016).
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Figure 5.4 Variation in sun elevation angle during the a) winter and b) summer season in
Saginaw, Michigan (SunEarthTools, 2021)
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Figure 5.5 Variation in cloud coverage over the entire year in Saginaw, Michigan ©
WeatherSpark.com (Weather Spark, 2022)
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5.5 Results
The model is applied to obtained the optimum size of DER, required grid upgrades,

infrastructure cost and the savings. The results are obtained for the 75 DCFC locations at the six
major cities (i.e., Saginaw, Lansing, Flint, Grand Rapids, Kalamazoo, and Muskegon) of
Michigan. The study considers different scenarios for obtaining results which includes different
combinations of DER (Li-ion NB BESS, Li-ion SLB BESS, FESS, solar panels), variation in EV
charging demand, different storage duration of batteries, projected cost of the DER. These

scenarios are listed as below:

e DERs
o BESS, FESS, and solar panels
o BESS, FESS only
e Battery cost, type, and storage duration
o 2-hour storage duration
* Li-ion NB $190/kWh
= Li-ion SLB $145/kWh
o 4-hour storage duration
* Li-ion NB $150/kWh
= Li-ion SLB $115/kWh
o 6-hour storage duration
= Li-ion NB $140/kWh
» Li-ion SLB $105/kWh
e EV load factor (EV demand)

o EV demand in the year 2030
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o 1.5times the EV demand in the year 2030
o 2times the EV demand in the year 2030
The results are obtained for the 75 DCFC locations in the six major urban areas (i.e.,
Saginaw, Lansing, Flint, Grand Rapids, Kalamazoo, and Muskegon) of Michigan. The analysis
has been done for the 2030 EV demand, 1.5 times the EV demand of 2030 (EV load factor of 1.5
means demand equivalent to 1.5 times the demand in the year 2030), and 2 times the EV demand

of 2030, to predict future requirements of EV charging.

The suggested size of the battery (kWh) and the solar panels (square meter) for the various
urban areas for 4-hour storage duration (Li-ion NB and SLB), are presented from Figure 5.6 to
Figure 5.17. The optimum solution is the provision of solar panels at all the locations in all the
cities. The size of these solar panels is the maximum area that can be provided depending upon the
site area restrictions at each particular location. These solar panels provide savings in the electricity
cost, charge the battery (especially during the summer and highest sun elevation angle), and supply
extra energy to the electric grid (if any). The size of the battery depends upon the type and cost of
battery (NB versus SLB), cost of upgrading the grid, and the EV load factor (EV load factor of 1.5
means demand equivalent to 1.5 times the demand in year 2030). When considering the NBs,
numerous locations do not have batteries because of the high investment cost for the battery as
compared to the cost of upgrading the grid. However, with SLBs all the locations have batteries,
and the optimum size of these batteries is much larger than that of NBs. The investment cost for
SLB is lower than upgrading the grid. Further, these batteries efficiently utilize the time of use
electricity rates by charging during off-peak hours and discharging during peak hours. Note that
the grid upgrading cost depends upon the capacity constraints of grid components at a given

location. Substations might have to be upgraded (in the absence of DER), or a basic connection
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can be the electricity provision costs. Note that flywheels are not the optimal solution as these have

higher investment costs than batteries.

The temporal variation of demand/supply in summer for an EV load factor of 2 at one of
the locations in Saginaw, Michigan, is shown in Figure 5.18 (at the Grid level) and Figure 5.19 (at
DCFC station level). Figure 5.18 shows that the feeder capacity is less than the peak hour demand
(existing demand plus EV demand). Solar panels and batteries are provided to support the extra
demand and reduce the load on the grid. The Figure 5.18a and Figure 5.18b are the profile for the
case of new battery and SLB, respectively. Figure 5.19 represents the detailed temporal
demand/supply at DCFC level for battery, solar panel output, the EV demand and the electricity
price at the charging station location. The SLB (Figure 5.19b) is able to utilize the time-of-use
electricity rate more efficiently as compared to the NB (Figure 5.19a). The SLB (800 kwh) has
larger size and can store more energy as compared to NB (575 kWh), during the off-peak hours
(midnight and morning hours). It is evident from the figures (especially Figure 5.19b) that the
battery charges from the midnight to morning when the electricity price as well as demand is low.
The battery discharges during the morning peak hour when electricity price is higher. However, it
again charges around the noon when the solar power output is maximum. Finally, it again

discharges during the evening peak hour with increased electricity price.

The total cost breakdown for the different cities for the optimum scenario (SLB and solar
panels) for 4-hour storage duration is shown in Table 5.5. It can be observed that the provision of
DER provide substantial savings in the annual electricity cost ($40,000-$285,000) and the annual
total cost ($25000-$165,000) for each of the major cities in Michigan. The maximum savings are
in Grand Rapids, Michigan and the minimum savings are in Lansing, Michigan. The total savings

are smaller because it includes additional investment costs for DER. Table 5.6 shows the same
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cost breakdown considering NBs and solar panels for 4-hour storage duration. In this scenario, the
annual electricity and annual total cost savings are around $25,000-$170,000 and $20,000-
$145,000 respectively. The study also obtained results for other scenarios (No solar panels, 2-hour
storage duration, 6-hour storage duration). However, the scenario with a 4-hour storage duration
SLB and solar panels provides the maximum savings. SLBs are cheaper and offer an acceptable
charging/discharging rate for the required power during peak hour demand. The cost breakdown
for the 2-hour and 6-hour storage duration BESS are presented in appendix from Table A to Table

A.
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Figure 5.17 Size of SLB (4-hour storage duration) and solar panels for the city of Flint
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Figure 5.18 Daily demand and supply variations at Grid level for the EV load factor of 2, during
the summer season at a location in Saginaw, Michigan

Demand/Supply (kW)

‘7 EV Demand — B

attery Power

Solar Power‘

1000

NY D X6 6D 0,00 00000 DD
Time(hr)
(@ NB
Figure 5.19 Daily demand and supply variations at DCFC station level for the EV load factor of
2, during the summer season at a location in Saginaw, Michigan
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Table 5.5 Cost breakdown for the case of 4-hour SLB and the solar panels in Michigan

Electricity price ($/kWh)

Saginaw

EV Grid  Battery Solar Electric Total Electricity  Total
Load Cost Cost Panel Flywheel Cost Cost Savings Savings
Factor ($k)  ($k) Cost (k) Cost ($k)  ($k/yr)  ($klyr)  ($ki/yr) (Skiyr)
1 498 469 207 0 1538 1595 95 63
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Table 5.5 (cont’d)

1.5 755 713 310 0 2247 2334 142 87

2 894 937 414 0 2957 3068 189 111
Muskegon

EV Grid  Battery Solar Electric Total Electricity  Total
Load Cost Cost Panel Flywheel Cost Cost Savings Savings
Factor ($k)  ($k) Cost (3k) Cost (3k)  ($k/yr)  ($k/yr)  ($kl/yr) ($k/yr)
1 273 252 108 0 862 893 50 29

1.5 281 378 163 0 1264 1305 75 44

2 316 504 217 0 1665 1719 100 57
Lansing

EV Grid  Battery Solar Electric Total Electricity  Total
Load Cost Cost Panel Flywheel Cost Cost Savings Savings
Factor ($k) (%K) Cost ($k) Cost ($k)  ($k/yr)  ($kiyr)  (Sk/yr) ($k/yr)
1 185 212 91 0 857 882 43 25

1.5 205 318 137 0 1259 1294 64 37

2 219 424 182 0 1662 1706 84 53
Kalamazoo

EV Grid  Battery Solar Electric Total Electricity Total
Load Cost Cost Panel Flywheel Cost Cost Savings Savings
Factor ($k)  ($k) Cost ($k) Cost ($k)  ($k/yr)  ($k/yr)  ($kiyr) ($k/yr)
1 263 246 106 0 975 1005 49 29

1.5 289 370 159 0 1433 1474 73 45

2 314 493 212 0 1890 1943 99 64
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Table 5.5 (cont’d)

Grand Rapids

EV Grid  Battery Solar Electric Total Electricity  Total

Load Cost Cost Panel Flywheel Cost Cost Savings Savings

Factor ($k)  ($k) Cost (3k) Cost ($k)  ($k/yr)  ($k/yr)  ($kl/yr) (Skiyr)

1 397 711 306 0 2799 2873 141 81

1.5 455 1066 458 0 4141 4249 213 121

2 506 1421 611 0 5484 5624 284 165

Flint

EV Grid  Battery Solar Electric Total Electricity Total

Load Cost Cost Panel Flywheel Cost Cost Savings Savings

Factor ($k) (%K) Cost ($k) Cost ($k)  ($k/yr)  ($kiyr)  (Sk/yr) ($k/yr)

1 286 407 175 0 1518 1563 81 47

1.5 326 610 262 0 2231 2294 121 70

2 368 814 350 0 2944 3026 162 93

Table 5.6 Cost breakdown for the case of 4 hour NB and the solar panels in Michigan

Saginaw

EV Grid Battery Solar Electric Total Electricity  Total
Flywheel

Load Cost Cost Panel Cost Cost Savings Savings
Cost ($k)

Factor ($k) ($k) Cost ($k) ($k/yr)  ($kiyr)  ($kiyr) ($k/yr)

1 502 94 207 0 1572 1603 61 55

1.5 793 129 310 0 2299 2346 90 75

2 916 160 414 0 3027 3083 119 96
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Table 5.6 (cont’d)

Muskegon

EV Grid Battery Solar Electric Total Electricity  Total
Flywheel

Load Cost Cost Panel Cost Cost Savings Savings
Cost ($k)

Factor ($k) ($k) Cost ($k) ($k/yr)  (Skiyr)  ($kiyr) ($k/yr)

1 277 24 108 0 882 897 30 25

15 291 77 163 0 1291 1312 48 37

2 323 49 217 0 1705 1727 60 49

Lansing

EV Grid Battery Solar Electric Total Electricity  Total
Flywheel

Load Cost Cost Panel Cost Cost Savings Savings
Cost ($k)

Factor ($k) ($k) Cost ($k) ($k/yr)  (Skiyr)  ($kiyr) ($k/yr)

1 185 36 91 0 873 885 27 22

15 219 17 137 0 1286 1299 37 32

2 226 143 182 0 1689 1713 57 46

Kalamazoo

EV Grid Battery Solar Electric Total Electricity  Total
Flywheel

Load Cost Cost Panel Cost Cost Savings Savings
Cost ($k)

Factor ($k) ($k) Cost ($Kk) (Bk/yr)  (Skiyr)  ($kiyr) ($k/yr)

1 267 30 106 0 994 1009 30 25

15 299 8 159 0 1464 1480 42 39

2 323 101 212 0 1926 1952 63 55

Grand Rapids
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Table 5.6 (cont’d)

EV Grid Battery Solar Electric Total Electricity  Total
Flywheel

Load Cost Cost Panel Cost Cost Savings Savings
Cost ($k)

Factor ($k) ($k) Cost ($Kk) (BK/yr)  (Skiyr)  ($kiyr) ($k/yr)

1 405 15 306 0 2859 2883 81 71

15 483 5 458 0 4233 4265 121 105

2 550 71 611 0 5602 5646 166 143

Flint

EV Grid Battery Solar Electric Total Electricity  Total
Flywheel

Load Cost Cost Panel Cost Cost Savings Savings
Cost ($Kk)

Factor ($k) ($k) Cost ($k) ($k/yr)  (Skiyr)  ($klyr) ($k/yr)

1 294 38 175 0 1551 1569 48 41

15 330 65 262 0 2279 2304 73 60

2 380 34 350 0 3011 3038 95 81

5.6 Summary

The rapid growth in EVs will necessitate the growth of EV fast-charging infrastructure.
However, this will increase the electricity demand which might overload the electric grid. To
counter this effect, electric grid upgrades or other DER might be required to support the rising EV
demand. An optimization model has been developed to estimate the optimum investment
technology to support EV charging demand at DCFC charging stations. The different investment
technology includes installation and purchase of ESS (NBs, SLBs, flywheels), solar panels, cost
of electric grid network upgrade, and cost of buying/selling electricity from/to the electric grid. A

discrete time-dependent model is developed to capture the spatiotemporal demand (EV demand
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and existing demand), electric grid distribution network, and capacity constraints, and seasonal
impacts of solar radiation intensity, electricity rate, and electricity demand. The model is
implemented to consider the expected EV charging in 6 major cities in Michigan by the year 2030.
The study also did sensitivity analysis with varying EV demand, storage duration of the batteries,
and cost of the ESS. The results indicate that maximizing the area of the solar panels considering
site restrictions would maximize the benefits. Further, the Li-ion SLB are proved to be a cost-
effective solution compared to other ESS (NB, flywheels, etc.). These SLBs make efficient use of
the time of use of electricity rate, store the intermittent solar energy, charges during the night, and
discharges during peak hours. The optimum charge/discharge schedule of SLBs proposed by the
study should be adopted for maximum savings. Both solar panels and SLBs should be provided to
substantially save total annual costs ($25000-$165,000 per city) and the annual electricity cost
($40,000-$300,000 per city). These savings can be further increased if more area is available to

offer solar panels and the ESS.
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CHAPTER 6 CONCLUSIONS

AVs and EVs technology claim to have numerous potential benefits such as improved
safety, mobility, roadway capacity, efficient driving, efficient use of travel time, and reduced
emissions. These technologies can also promote the adoption of each other due to synergies
between them, such as enhanced battery performance and battery life by AV technology and
reduced emissions operating cost of AVs by EV technology. However, these technologies might
increase users’ travel time, VMT, ownership cost, and electric load over the electric grid. The
high cost of EVs’ battery and AV technology will demote the adoption of these technologies as
private modes, promoting the adoption of these technologies as a shared mobility system. Adopting
these technologies as shared mobility systems can reduce ownership costs, but it will pose
additional problems such as increased VMT, waiting time, and inconvenience to users. Another
concern of EV technology is the limited range and high charging time, which can be overcome by
deploying the DCFC charging station network. However, this network of DCFC stations would
increase the electric load causing demand-supply imbalance, overloading the electric grid, and
degradation of the electric grid distribution system. This challenge can be overcome by providing
DER such as ESS solar panels at the DCFC charging stations. This study proposes frameworks to
provide an optimal approach to promote the adoption of AV and EV technologies and reduce their
effects on the transportation systems, environment, and the electric grid network. First, the study
proposes a modeling framework for the optimum fleet configuration of PMVs, PAVS, and SAVS,
to minimize the purchase and operating costs, time spent (travel time and waiting time), and
emission production. Then this modeling framework is further extended to estimate optimum fleet
configuration in private mobility and shared mobility systems of EVs and AVs. The study captures

the trade-offs between all the competing factors that promote/demote the adoption of AVs and
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EVs. The study also considers the adoption and implication of AV EV technologies for users with
different VOTT attributed to their income levels. The metaheuristic algorithms are developed
based on the genetic algorithm (GA) and simulated annealing algorithm to obtain the solution for
the large-scale real-world NP-hard nonlinear optimization problem. Finally, the study estimates
the optimal investment technology to support the electric grid hosting EV charging demand at
DCFC stations. The different investment technology includes the installation of BESS (NB/SLB),
FESS, solar panels, and electric grid upgrades. These models are implemented for hypothetical
networks and real-world networks (Ann Arbor, Saginaw, Lansing, Flint, Kalamazoo, Grand

Rapids, Muskegon).

The results suggest that EVs are optimal for the system due to low operating costs, and
zero tailpipe emissions. Hence, policies should be adopted to promote EV by providing adequate
charging infrastructure, rebates over the purchase of EVs, and imposing carbon taxes. Further,
electrifying AVs would lower the operating cost and offset the high ownership cost. Hence,
policies should be adopted to promote autonomous and electric vehicles together. SAEVs are
recommended for users with low VOTT and long-distance trips of users with mid VOTT, due to
low ownership costs, travel time savings, low waiting time cost, low crash cost, and no driver
costs. Hence, these should be deployed in regions with a denser population of low VOTT/low-
income groups. PMEVs are recommended for the short distance trips of users with mid VOTT and
long distance trips of users with high VOTT. PAEVs adoption would be favorable if adopted by
users with high VOTT and there are at least 20% savings in travel time, or the AV technology cost
is reduced to at least one-third of the vehicle price. Hence, technology advancements are required
to either reduce the AV technology cost or design these vehicles to provide amenities onboard that

allow efficient use of travel time through meetings, reading books, novels, or recreational
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activities. Targeting user-specific costs, the users with low VOTT or low incomes prefer SAVs.
The users with high VOTT predominantly prefer PMEVs due to the low operating costs of EVs
and no waiting time. Hence, EVs adoption should be promoted by eliminating uncaptured human

factors, such as range anxiety and concerns for standing a long time at the charging stations.

Further, to support the rising EV charging demand and reduce the load on the electric grid,
the Li-ion SLB and the solar panels should be provided at different locations. The solar panel area
provided should be maximum to avail the maximum benefits considering the site restrictions. The
4-hour storage duration Li-ion SLB is the cost-effective solution compared to other BESS systems,
NB, FESS, and other storage durations (2-hour, 6-hour). It efficiently utilizes the time of use of
the electricity rate, stores the intermittent solar energy, charges at night, and discharges during
peak hours. For maximum savings in total annual cost ($25000-$165,000 per city) and the annual
electricity cost ($40,000-$300,000 per city), both the solar panels and SLBs should be provided,
and the optimum charge/discharge schedule of SLBs proposed in this study should be adopted.

These savings can be further increased if more area is available for solar panels and the ESS.

The study estimates various models, scenarios, and the range of different influential
parameters that can be utilized by the car companies, policymakers, and utility companies to

promote the adoption of these technologies and provide a sustainable system.
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APPENDIX

Cost breakdown for BESS with 6 hour storage duration and solar panels

Table A 1 Cost breakdown for the case of 6 hour NB and the solar panels in Michigan

Saginaw
EV Grid  Battery Solar Flywheel Electric  Total Electricity  Total
Panel : .

Load Cost  Cost Cost Cost (8K Cost Cost Savings Savings
Factor ($k)  ($K) ($K) ost ($k) ($klyr)  ($kiyr)  (Sklyr) ($ktyr)
1 721 71 207 0 1574 1610 59 48
15 886 60 310 0 2304 2348 85 73
2 966 102 414 0 3031 3084 115 95
Muskegon

. Solar . -
EV Grid  Battery Panel  Elvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k)  ($K) ($K) ($kiyr)  ($kiyr)  ($kiyr) ($k/yr)
1 277 34 108 0 882 897 30 25
1.5 303 50 163 0 1293 1312 46 37
2 323 67 217 0 1703 1727 62 49
Lansing

. Solar . -
EV Grid  Battery panel  Flvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k)  ($K) ($K) ($klyr)  ($kiyr)  (Sklyr) ($ktyr)
1 185 50 91 0 872 885 28 22
1.5 219 24 137 0 1285 1299 38 32
2 256 172 182 0 1686 1714 60 45
Kalamazoo

. Solar . -
EV Grid  Battery Panel  Elvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k)  ($k) (3K) ($k/yr)  ($kiyr)  (Sklyr) ($ktyr)
1 267 41 106 0 993 1009 31 25
1.5 299 12 159 0 1464 1480 42 39
2 314 180 212 0 1920 1952 69 55

Grand Rapids
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Table A 1 (cont’d)

EV Grid  Battery gg:]irl Flywheel Eletric Total Elegtricity Totgl
Load Cost  Cost Cost Cost ($K) Cost Cost Savings Savings
Factor ($k) ($k) (3K) ($k/yr)  ($kiyr)  (Sklyr) ($kiyr)
1 405 22 306 0 2858 2883 82 71
1.5 483 7 458 0 4233 4265 121 105
2 550 99 611 0 5600 5646 168 143
Flint

. Solar . -
EV Grid  Battery Panel  Flywheel Electric  Total Elegtrluty Totgl
Load Cost  Cost Cost Cost ($k) Cost Cost Savings Savings
Factor ($k) ($k) ($K) ($k/yr)  ($kiyr)  (Sklyr) (Skyr)
1 294 56 175 0 1549 1569 50 41
1.5 342 40 262 0 2281 2304 71 60
2 380 54 350 0 3010 3038 96 81

Table A 2 Cost breakdown for the case of 6 hour SLB and the solar panels in Michigan

Saginaw

. Solar . -
EV Grid  Battery Panel  Elvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k)  ($Kk) (3K) ($kiyr)  ($kiyr)  ($kiyr) ($k/yr)
1 717 439 207 0 1539 1602 94 56
1.5 861 674 310 0 2248 2336 141 85
2 951 879 414 0 2960 3068 186 111
Muskegon

. Solar . -
EV Grid  Battery Panel  Elvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k)  ($Kk) ($K) ($klyr)  ($kiyr)  ($kiyr) ($k/yr)
1 273 235 108 0 863 892 49 30
15 303 353 163 0 1264 1305 75 44
2 323 471 217 0 1666 1718 99 58
Lansing

. Solar . -
EV Grid  Battery Panel  Elvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k) (%K) (3K) ($klyr)  ($kiyr)  ($kiyr) ($k/yr)
1 185 198 91 0 858 881 42 26
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Table A 2 (cont’d)

15 219 297 137 0 1260 1293 63 38
2 256 396 182 0 1663 1706 83 53
Kalamazoo

. Solar . -
EV Grid  Battery Panel  Flywheel Electric  Total Elec_tr|C|ty Totql
Load Cost  Cost Cost Cost ($K) Cost Cost Savings Savings
Factor ($k)  ($K) ($K) ($kiyr)  ($kiyr)  (Sklyr) (Sktyr)
1 263 230 106 0 976 1004 48 30
15 299 345 159 0 1433 1474 73 45
2 314 460 212 0 1891 1942 98 65
Grand Rapids

: Solar . -
EV Grid  Battery Panel  Flywheel Electric  Total Elegtrlcny Totql
Load Cost  Cost Cost Cost ($K) Cost Cost Savings Savings
Factor ($k)  ($K) ($K) ($kiyr)  ($kiyr)  (Sklyr) ($ktyr)
1 401 663 306 0 2800 2871 140 83
15 476 995 458 0 4144 4247 210 123
2 524 1327 611 0 5488 5621 280 168
Flint

: Solar . -
EV Grid  Battery panel  Flywheel Electric  Total Elegtrlcny Totql
Load Cost  Cost Cost Cost ($K) Cost Cost Savings Savings
Factor  ($k)  ($K) ($K) ($k/yr)  ($kiyr)  (Sklyr) ($ktyr)
1 286 380 175 0 1519 1562 80 48
15 338 570 262 0 2233 2294 119 70
2 368 760 350 0 2946 3024 160 95

169



Cost breakdown for BESS with 2 hour storage duration and solar panels

Table A 3 Cost breakdown for the case of 2 hour NB and the solar panels in Michigan

Saginaw

. Solar . -
EV Grid  Battery Panel  Flvwheel Electric  Total Electricity  Total
Load Cost Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k)  ($Kk) ) (Skiyr)  ($kiyr)  ($kiyr) ($ktyr)
1 427 82 207 0 1574 1601 59 57
15 503 182 310 0 2298 2339 91 82
2 845 145 414 0 3030 3083 116 96
Muskegon

. Solar . -
EV Grid  Battery Panel  Flvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k)  ($Kk) ) ($kiyr)  ($kiyr)  ($kiyr) ($ktyr)
1 277 5 108 0 884 897 28 25
15 303 8 163 0 1296 1312 43 37
2 323 11 217 0 1708 1727 57 49
Lansing

. Solar . -
EV Grid  Battery panel  Flvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k)  ($K) ($K) ($klyr)  ($kiyr)  (Sklyr) ($ktyr)
1 169 31 91 0 874 885 26 22
15 199 28 137 0 1285 1299 38 32
2 214 93 182 0 1693 1714 53 45
Kalamazoo

. Solar . -
EV Grid  Battery panel  Flvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cg/svtv($k) Cost Cost Savings Savings
Factor  ($k)  ($K) ($K) ($k/yr)  ($kiyr)  (Sklyr) ($ktyr)
1 267 18 106 0 995 1009 29 25
15 299 4 159 0 1464 1480 42 39
2 323 63 212 0 1929 1952 60 55

Grand Rapids

170



Table A 3 (cont’d)

EV Grid  Battery gg:]irl Flywheel Electric  Total Elegtricity Totgl
Load Cost  Cost Cost Cost ($K) Cost Cost Savings Savings
Factor ($k) ($k) (3K) ($k/yr)  ($kiyr)  (Sklyr) ($kiyr)
1 409 1 306 0 2860 2883 80 71
1.5 483 1 458 0 4233 4265 121 105
2 561 25 611 0 5605 5646 163 143
Flint

. Solar . -
EV Grid  Battery Panel  Flywheel Electric  Total Elegtrluty Totgl
Load Cost  Cost Cost Cost ($k) Cost Cost Savings Savings
Factor ($k) ($k) ($K) ($k/yr)  ($kiyr)  (Sklyr) (Skyr)
1 294 23 175 0 1552 1569 47 41
1.5 342 10 262 0 2283 2304 69 60
2 380 20 350 0 3013 3039 93 80

Table A 4 Cost breakdown for the case of 2 hour SLB and the solar panels in Michigan

Saginaw

. Solar . -
EV Grid  Battery Panel  Elvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cg/svtv($k) Cost Cost Savings Savings
Factor ($k)  ($Kk) (3K) ($k/yr)  ($kiyr)  ($kiyr) ($k/yr)
1 411 126 207 0 1570 1599 63 59
1.5 445 340 310 0 2285 2334 104 87
2 733 303 414 0 3017 3077 129 102
Muskegon

. Solar . -
EV Grid  Battery Panel  Flvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cg/svtv($k) Cost Cost Savings Savings
Factor ($k)  ($Kk) (3K) ($klyr)  ($kiyr)  ($kiyr) ($k/yr)
1 257 76 108 0 879 896 33 26
1.5 287 60 163 0 1292 1311 47 38
2 299 181 217 0 1696 1726 69 50
Lansing

. Solar . -
EV Grid  Battery Panel  Elvwheel Electric  Total Electricity  Total
Load Cost  Cost Cost Cgsvtv($k) Cost Cost Savings Savings
Factor ($k) (%K) (3K) ($klyr)  ($kiyr)  ($kiyr) ($k/yr)
1 165 30 91 0 874 884 26 23
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Table A 4 (cont’d)

15 185 82 137 0 1281 1298 42 33
2 193 134 182 0 1689 1711 57 48
Kalamazoo

. Solar . -
EV Grid  Battery Panel  Flywheel Electric  Total Elec_tr|C|ty Totql
Load Cost  Cost Cost Cost ($K) Cost Cost Savings Savings
Factor ($k)  ($K) ($K) ($kiyr)  ($kiyr)  (Sklyr) (Sktyr)
1 251 76 106 0 991 1008 33 26
15 283 74 159 0 1459 1479 47 40
2 308 97 212 0 1926 1951 63 56
Grand Rapids

: Solar . -
EV Grid  Battery Panel  Flywheel Electric  Total Elegtrlcny Totql
Load Cost  Cost Cost Cost ($K) Cost Cost Savings Savings
Factor ($k)  ($K) ($K) ($kiyr)  ($kiyr)  (Sklyr) ($ktyr)
1 395 52 306 0 2856 2883 84 71
15 455 111 458 0 4226 4264 128 106
2 506 220 611 0 5592 5645 176 144
Flint

: Solar . -
EV Grid  Battery panel  Flywheel Electric  Total Elegtrlcny Totql
Load Cost  Cost Cost Cost ($K) Cost Cost Savings Savings
Factor  ($k)  ($K) ($K) ($k/yr)  ($kiyr)  (Sklyr) ($ktyr)
1 286 36 175 0 1551 1569 48 41
1.5 308 162 262 0 2272 2303 80 61
2 356 105 350 0 3006 3037 100 82
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