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ABSTRACT 

PLANNING FOR AUTONOMY AND ELECTRIFICATION IN FUTURE 

TRANSPORTATION SYSTEMS 

By 

Harprinderjot Singh 

Autonomous vehicles (AVs) and electric vehicles (EVs) will improve safety, mobility, 

roadway capacity and provide efficient driving, efficient use of travel time, and reduced emissions. 

However, these technologies affect vehicle miles traveled (VMT), travel time, ownership cost, and 

electric grid network. Shared mobility systems can ameliorate the high price of these technologies. 

However, the shared mobility system poses additional problems such as users’ waiting time, 

inconvenience, and increased VMT. Further, the impact of these emerging technologies varies on 

different groups of users (different values of travel time (VOTT). Another hurdle to the adoption 

of EVs is the limited range and scarcity of charging infrastructure. A well-established network of 

charging infrastructure, especially the direct current fast chargers (DCFC), can alleviate this 

challenge. However, the widespread adoption of EVs and the growing network of DCFC stations 

will increase the electric energy demand affecting the electric grid stability, demand-supply 

imbalance, overloading, and degradation of the electric grid components. Distributed energy 

resources (DER) such as solar panels and energy storage systems (ESS) can support the EV 

demand and reduce the load on the electric grid. This study develops modeling frameworks for the 

optimal adoption of AVs and EVs, considering their effect on transportation systems, the 

environment, and the electric grid network. Further, it suggests different scenarios that would 

promote the adoption of these technologies and provide a sustainable and resilient system. 

This study proposes a multi-objective mathematical model to estimate the optimal fleet 

configuration in a system of private manual-driven vehicles (PMVs), private AVs (PAVs), and 
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shared AVs (SAVs) while minimizing the purchase and operating costs, time (travel and waiting 

time), and emission production. SAVs can be the optimal solution with the efficient use of travel 

time or the purchase price below a certain relative threshold. PAVs can be the optimal solution 

only if the onboard amenities are improved, lifetime mileage is increased, AV technology is 

installed in luxurious cars, and adopted by people with high VOTT. The framework is extended to 

consider different combinations of EVs, AVs, and conventional human-driven vehicles in a private 

and shared mobility system. The metaheuristics based on genetic and simulated annealing 

algorithms are developed to solve the large-scale NP-hard nonlinear optimization problem. The 

model is implemented for the network of Ann Arbor, Michigan. The results suggest that EVs are 

optimal for the system due to low operating costs and zero tailpipe emissions. Shared autonomous 

electric vehicles (SAEVs) are the best option for users with low VOTT. Private autonomous 

electric vehicles (PAEVs) would favor the system if the travel time savings are at least 20% or the 

price of AV technology is less than one-third of the vehicle price.  

The study then investigates the optimum investment technology to support the rising 

energy demand at the DCFC stations and reduce the load on the electric grid network. The different 

investments include purchasing and installing various ESS (new batteries (NB), second-life 

batteries (SLB), flywheels), solar panels, electric grid upgrades, and the cost of buying/selling 

electricity from/to the electric grid. The model is implemented for the DCFC stations supporting 

the future needs of EV charging demand for urban trips in the major cities of Michigan in 2030. 

The combination of SLBs and solar panels provides maximum benefits. The total annual and 

electricity savings are $25,000-$165,000 and $40,000-$300,000 per city.  
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 INTRODUCTION 

1.1 Overview and Objectives 

Cars started as environmental saviors (Kars4Kids, 2017; Keim, 2013; Levitt and Dubner, 

2009), clearing the streets from horse manure (Carlisle, 2016; Hayden, 2016; Keim, 2013; Levitt 

and Dubner, 2009; Milsom, 2019; Nikiforuk, 2013; Private Fleet, 2010), possible fleas (Carlisle, 

2016; Nikiforuk, 2013), and even carcasses (Hayden, 2016; Nikiforuk, 2013). The shift from 

horses to cars was a significant change in the transportation industry. The benefits of cars include 

but are not limited to increased speed, longer travel distance, and high carrying capacity (Private 

Fleet, 2010). However, in today’s world, cars have turned into one of the significant environmental 

challenges. Transportation is the leading contributor of greenhouse gas emissions in the US, with 

light-duty vehicles accounting for about 60% of production in this sector (EPA, 2020). The 

transportation system faces another significant change moving towards autonomous vehicles (AV) 

and electric vehicles (EV) technology. These technologies will trigger disruptive changes to 

transportation systems, infrastructure, users' travel behavior, environment, and electric grid 

network. Inspite of myriad potential benefits like improved safety and mobility, reduced emission, 

efficient use of travel time; these technologies might affect vehicle miles traveled (VMT), travel 

time, and ownership cost (Brown et al., 2014; Chen et al., 2016; Cokyasar et al., 2020; de Looff et 

al., 2018; Dias et al., 2020; Eberhard and Tarpenning, 2006; Fagnant and Kockelman, 2015; 

FastCompany, 2014; Gai et al., 2019; Ghamami et al., 2020a; Gruel and Stanford, 2016; Gucwa, 

2014; Harper et al., 2016; Hidrue et al., 2011; Kröger et al., 2019; LeVine Steve, 2017; Moore et 

al., 2020; NHTSA, 2016; Y. (Marco) Nie et al., 2016; Romm, 2006; Saleh and Hatzopoulou, 2020; 

Samaras and Meisterling, 2008; Singh et al., 2021; Soteropoulos et al., 2019; Stogios et al., 2019; 

Tomás et al., 2020; Vasebi and Hayeri, 2020; Wadud et al., 2016; Zhang et al., 2018; Zhong et al., 
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2020). There are also studies indicating that AVs can promote the adoption of EVs (Annema, 2020; 

Brown and Dodder, 2019; Weiss et al., 2017). The AVs can enhance the battery performance and 

battery life of EVs by optimizing the driving cycles and energy recovery during regenerative 

braking (Annema, 2020), which will ameliorate some of the limitations of EVs. On the other hand, 

EVs can resolve the issues of increased emissions (Wang et al., 2018) and operating costs (Weiss 

et al., 2017) associated with increased VMT due to AVs. EVs can also reduce the total ownership 

cost of autonomous EVs (AEV) due to their low operating cost (Weiss et al., 2017). However, 

these technologies might not be affordable to the users with the added cost of AV technology and 

battery price, increasing the purchase price of these vehicles (FastCompany, 2014; Hidrue et al., 

2011; LeVine Steve, 2017; Singh et al., 2021). Then, it might be reasonable to adopt these 

technologies as a shared mobility system where users are not required to buy these vehicles. 

Instead, these will be owned by transportation network companies (TNC). The shared mobility 

would also reduce the vehicle ownership and fleet size requirements (Chen et al., 2016; Fagnant 

et al., 2016; Fagnant and Kockelman, 2014; Golbabaei et al., 2020; Singh et al., 2021; Soteropoulos 

et al., 2019; Spieser et al., 2016; Zhang et al., 2015) parking demand (Yan et al., 2020; Zhang et 

al., 2015), labor costs (Liu et al., 2020), and the cold start emissions (Fagnant and Kockelman, 

2014; Singh et al., 2021). However, this system poses additional problems such as the waiting time 

and the emanated inconvenience (Fagnant and Kockelman, 2014; Singh et al., 2021), increased 

VMT (Burns et al., 2013; Fagnant and Kockelman, 2014; Oh et al., 2020; Singh et al., 2021; Yan 

et al., 2020), and increased congestion (Oh et al., 2020; Overtoom et al., 2020) due to empty miles 

generation. Another paramount concern that arises due to the growth of EVs which will be further 

promoted with the growth of AVs, is the rise in the electric energy demand that can effect the 

electric grid stability, supply-demand imbalance, and overloading of the electric grid distribution 
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system (Khalid et al., 2019). The provision of distributed energy resources (DER) such as energy 

storage system (ESS), and solar panels, at the EV charging station can reduce the electric grid 

upgrade cost and support EV charging demand (Rafi and Bauman, 2021). In light of all of the 

above promoting and demoting factors, it is crucial to develop an optimal approach to adopt these 

technologies considering their effect on environment, transportation systems, and the electric grid 

network.  

The purpose of this study is threefold. First, it develops a framework to estimate the optimal 

fleet configuration of private human-driven vehicles (PHDV), private AV (PAV), and shared AV 

(SAV) that will minimize the total system cost comprising of emission production, user’s time, 

and total cost of ownership. The study captures the trade-off between the benefits of increased 

mobility, efficient use of travel time (reduction in Value of Travel Time (VOTT)), efficient 

driving, and the negative impacts of increased VMT and the higher ownership cost of AVs. 

Second, the study considers the EV and AV in private and shared mobility systems to estimate the 

optimal combination of these technologies to minimize the system cost. It also captures competing 

factors like improved safety, roadway capacity, driver productivity, increased congestion, 

increased VMT, zero tailpipe emissions, low operating cost, limited charging infrastructure, and 

the limited range of EVs. Third, it proposes an optimal investment technology at the direct current 

fast charging (DCFC) stations to support the EV charging demand in urban areas and reduce the 

load on the electric grid. The study captures the time-dependent existing energy demand and EV 

charging demand, capacity constraints of the electric grid, different types of DER (solar panels, 

ESS), and the cost of purchasing electricity from the electric grid. 
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1.2 Knowledge Gap and Research Motivation 

Autonomous-electric technologies will improve the future of mobility while exacerbating 

some aspects of the transportation system. These technologies will also affect the environment and 

the electric grid network. Further, adopting these technologies as private or shared mobility 

systems will have different implications. The various trade-offs involved have been studied to 

estimate the generalized transportation cost, which analyzed the different effects of AV and EV 

technologies. Some studies captured the effect of reduced VOTT (Correia and van Arem, 2016), 

empty miles generation (Correia and van Arem, 2016; Singh et al., 2021; Zhang et al., 2018), 

changes in parking cost (Correia and van Arem, 2016), improvement in roadway capacity 

(Childress et al., 2015) by the adoption of private AVs (PAVs), while others considered SAVs and 

their effects on emissions (Fagnant and Kockelman, 2014; Singh et al., 2021) and VMT (Burns et 

al., 2013; Fagnant and Kockelman, 2014; Singh et al., 2021). Other studies estimate optimal 

incentive policies (Y. Nie et al., 2016) and find charging station locations (Chen et al., 2020; 

Ghamami et al., 2020a; Kavianipour et al., 2021b; Yang et al., 2017) for the adoption of EVs. 

However, the prior research is focused on considering the limited number of factors influencing 

the adoption of AV and EV technologies. It is essential to capture trade-offs among all the 

influential factors to estimate the overall impact and favorable conditions for adopting these 

technologies in the transportations system. For instance, the emissions can increase significantly 

due to increased VMT with the adoption of PAVs/SAVs. However, the efficient driving pattern 

and reduced number of cold-starts in these vehicles may result in an overall reduction of emissions. 

An increase in VMT also increases the operating and maintenance cost of the vehicle (AAA, 2017), 

which may reduce due to the efficient driving pattern. Further, the emissions and operating costs 

can be substantially reduced if the vehicles are electric.   



5 

The travel behavior of the users will also change with the adoption of AVs. The different 

advantages of AVs, such as efficient use of travel time and roadway, and reduced parking cost, 

will encourage users to travel more, which will increase VMT in the system. These self-driving 

vehicles will allow non-drivers, physically disabled, and the elderly to travel independently on 

their own, encouraging them to travel more, which will again increase VMT in the system. The 

AVs can efficiently relocate on their own for the next scheduled trip. The relocating ability of AVs 

not only allows to serve multiple trips in a shared system, but it also allows serving multiple family 

trips by the same AV in a private system, as opposed to having two or more human-driven vehicles. 

Vehicle sharing reduces vehicle ownership, which will generate additional empty miles (with no 

passengers) in the system. These different factors will affect the VMT in the system. It is essential 

to consider all of these competing factors (changes in travel behavior, family dynamics, reduction 

in vehicle ownership, empty miles generated) for the increase in VMT due to AVs to better 

understand the effects of the adoption of AVs. Further, the high cost of AV technology and the 

battery may be compensated by the reduced maintenance cost of EVs and efficient driving 

behavior of AVs. The increased travel time cost due to changes in travel behavior with AVs and 

the reduction in VOTT, and improvement in roadway capacity is another aspect that has not been 

thoroughly studied in the literature. Thus, this study develops frameworks that will consider all the 

contradicting and corroborating factors mentioned above in a system of emerging technologies 

capturing their implications in both private and shared mobility systems. 

Finally, the growing EV market share, enhanced by the AV technology, will mandate the 

EV DCFC stations network deployment. This network of DCFC stations would reduce the 

charging time and concerns related to the limited range of these vehicles. However, the widespread 

network of the DCFC stations and rising EV charging demand will increase the load on the electric 
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grid. Therefore, it might be required to provide DER at the charging station to support the EV 

charging demand and reduce the load on the electric grid. Thus, it is essential to propose an optimal 

design of DER by capturing the existing load on the electric grid, increasing EV charging demand, 

and the capacity constraints of the electric grid network. Further, it is crucial to consider the electric 

grid upgrade costs and compare them with the investment cost of DER. In addition, it is crucial to 

consider different DER to propose the best DER for various conditions. This is the primary 

motivation in developing a modeling framework to estimate the optimal investment technology to 

support the fast charging demand of EVs considering the electric grid upgrade costs, investment 

in different DER (solar panels, ESS), and cost of energy (electricity). The results can also provide 

electricity discounted pricing scenarios. 

1.3 Research Significance and Contributions 

The main objective of this study is to provide modeling frameworks for the optimal 

adoption of AVs and EVs by considering their effect on the transportation systems, the 

environment, and the electric grid network. The study aims to address the following research 

questions: 

• What are the different influential factors involved with the adoption of AVs and EVs, and 

what are their impacts on mobility, the environment, and the electric grid network? 

• How to model these factors and capture the trade-offs among various promoting/demoting 

factors? 

• What are the scenarios or range of different influential factors that will reduce the negative 

impacts of the new technologies and promote their adoption? 
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•  What will be the impact of EVs on the electric grid network, and how can this impact be 

managed to reduce the load on the electric grid? 

The main contributions of this study are as follows: 

• Simultaneously capturing several influential factors, including changes in travel behavior, 

driving behavior, increase in VMT, travel time, operating costs, and ownership costs, and 

the variety of trade-offs among these contributing factors, that will govern the adoption of 

AV and EV technologies. 

• Estimating and calibrating functions for the various contributing factors, using the limited 

available data on AVs, mainly focusing on simulation data.  

• Developing a mathematical model for optimizing the adoption of AVs in private and shared 

mobility systems to minimize emissions, time (travel and waiting), and the total cost of 

ownership. 

• Analyzing various scenarios to capture different stakeholders' perspectives, including but 

not limited to car companies, system planners, and policymakers, to promote the adoption 

of AV and EV technologies. 

• Developing a mathematical model to find the best DER to support the rising energy 

demand at the EV fast charging (DCFC) stations while minimizing the investment cost and 

the cost of purchasing electricity from the electric grid. The investment includes purchasing 

and installing ESS and solar panels and electric grid upgrades.  

• Developing a time-dependent energy demand model at the DCFC stations considering the 

electric grid network details, capacity constraints of the electric grid components, and 

seasonal variation in solar energy, electricity rates, and energy demand. 
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1.4 Research Methods and Dissertation Outline 

The dissertation consists of six chapters. The first chapter describes the overview of the 

problem and the objective of the study. The second chapter includes a comprehensive review of 

the literature related to the dissertation topic.  

Chapter 3 presents a multi-objective framework for optimum fleet configuration of human-

driven and autonomous vehicles in a shared or privately-owned mobility system to minimize the 

purchase and operating costs, time spent, and emission production.  The proposed model captures 

the trade-off between the benefits of increased mobility, reduction in the VOTT, efficient driving 

pattern, and the negative impacts of increased VMT and ownership cost by adopting PAVs/SAVs. 

The proposed framework assists with the development of simplified adoption models that can be 

used by policymakers and/or investors.  

Chapter 4 develops a modeling framework to estimate the optimal fleet configuration 

considering AV and EV technologies in a private and shared mobility system. The different 

mobility options positively and negatively influence the transportation system.  The study captures 

the trade-offs embedded among different mobility options to determine the optimum combinations 

of these technologies for a sustainable transportation system. A nonlinear fleet optimization model 

is developed to minimize the system cost considering a multiclass user problem. The small-scale 

problem is solved using commercial solvers. However, commercial solvers cannot solve the large-

scale nonlinear optimization problem. Hence, a metaheuristic is developed based on a modified 

parallel genetic algorithm (GA). The proposed framework provides the optimal conditions that 

favor emerging technologies in private and shared mobility systems. The outcomes of this research 

can be used to develop policies/incentives that will promote the adoption of AVs and EVs. 
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 Chapter 5 presents an optimization model to estimate the optimal investment technology 

to support the electric grid hosting a network of DCFC stations. The objective is to minimize the 

system cost, including purchasing and installing the different ESS and solar panels, the cost of 

electric grid upgrades, and purchasing electricity from the electric grid. The study captures the 

time-dependent EV fast-charging demand, existing energy demand, capacity constraints of the 

electric grid network, seasonal variation in solar energy, electricity rates to propose the optimal 

investment technology. The proposed framework finds the optimal strategy to reduce the load on 

the electric grid and support the rising energy demand with the increased market penetration rate 

of  EVs, exacerbated by introductions of AVs and SAVs.  

Chapter 6 provides concluding remarks and future research directions. 
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 STATE OF ART OVERVIEW 

2.1 Overview 

Numerous studies capture the effects of AVs and EVs on the transportation system, 

environment, and electric grid network. A comprehensive review of the literature is presented in 

the following subsections. Section 2.2 discusses the studies related to AVs and their implications. 

Section 2.3 discusses the research related to EVs. Section 2.4 discusses the synergies between 

these two technologies and how these can promote the adoption of each other. Then, the adoption 

of these technologies as shared mobility systems is discussed in section 2.5. Section 2.6 and 2.7 

present the studies capturing the effect of rising EV charging demand on the electric grid, scope, 

and implementation of DER at these charging stations.   

2.2 Autonomous Vehicles 

Automated Vehicle Technology has been the subject of interest to many researchers 

recently (Chehri and Mouftah, 2019; Fagnant et al., 2016; Greenblatt and Shaheen, 2015; Gruel 

and Stanford, 2016; Levin and Boyles, 2015; Wadud et al., 2016; Wang et al., 2018; Zhang et al., 

2015). This technology has the potential to improve the transportation system in numerous aspects, 

such as safety (Fagnant and Kockelman, 2015; Harper et al., 2016; NHTSA, 2016; Wadud et al., 

2016), mobility (Brown et al., 2014; Harper et al., 2016), driver productivity (de Looff et al., 2018; 

Gucwa, 2014; van den Berg and Verhoef, 2016), congestion mitigation (Center for Sustainable 

Systems, 2017; Fagnant and Kockelman, 2015; Wadud et al., 2016), road capacity (Childress et 

al., 2015; Gucwa, 2014) and energy savings (Brown et al., 2014; Chehri and Mouftah, 2019; 

Fagnant and Kockelman, 2015; Folsom, 2012; Greenblatt and Saxena, 2015; Morrow et al., 2014). 

However, the AVs can significantly increase VMT in the system due to empty miles generated 
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(Fagnant and Kockelman, 2014), improved mobility of non-drivers (Harper et al., 2016), roadway 

capacity (Childress et al., 2015; Gucwa, 2014), reduced VOTT (Childress et al., 2015; Gucwa, 

2014) and reduced parking cost (Childress et al., 2015), etc. The increase in VMT will also increase 

emissions and operating costs. Further, these vehicles have high ownership costs (FastCompany, 

2014; LeVine Steve, 2017) due to the added value of AV technology. However, no studies 

currently capture all the listed interconnections and trade-offs. Hence, it is essential to understand 

the overall impact of AVs on the transportation system and determine the conditions favorable to 

the adoption of these vehicles. This section reviews all studies considering the advantages and 

disadvantages of AVs. 

2.2.1 Advantages of Autonomy 

Researchers found that AVs can reduce energy use by mitigating congestion (Center for 

Sustainable Systems, 2017; Wadud et al., 2016), altering the size (Center for Sustainable Systems, 

2017; Morrow et al., 2014; Wadud et al., 2016), and weight (Brown et al., 2014; Greenblatt and 

Shaheen, 2015; Morrow et al., 2014). The AVs can be programmed to follow efficient driving 

practices or eco-driving, potentially reducing fuel consumption and energy usage (Brown et al., 

2014; Center for Sustainable Systems, 2017; Wadud et al., 2016). The platooning effect in 

connected AVs, which involves a group of vehicles traveling closely together, can provide 

potential energy savings (Brown et al., 2014; Center for Sustainable Systems, 2017; Greenblatt 

and Shaheen, 2015; Morrow et al., 2014; Wadud et al., 2016). One of the studies estimates that 

AVs can improve fuel efficiency by up to 90% (Brown et al., 2014). The studies estimate that AVs 

can potentially reduce energy use up to nearly 80% due to platooning, right-sizing and weighting, 

automated vehicle sharing, efficient traffic flow, and parking (Greenblatt and Shaheen, 2015; 

Morrow et al., 2014).  The estimated reduction in energy consumption due to eco-driving behavior 
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and platooning of AVs can be up to 25% and 3%-25%, respectively (Center for Sustainable 

Systems, 2017; Wadud et al., 2016). Thus, the adoption pattern of AVs has been an interest to 

researchers (Jiang, Zhang, Wang, & Wang, 2019; Menon, Barbour, Zhang, Pinjari, & Mannering, 

2019; Sheela & Mannering, 2020).  

AVs can be shared by multiple travelers traveling at different times to and from various 

locations (Fagnant and Kockelman, 2015). This system, known as Shared Autonomous Vehicle 

(SAV) system, can replace a significant number of private human-driven (conventional) vehicles 

(PHDV) (Bischoff and Maciejewski, 2016; Fagnant et al., 2016; Fagnant and Kockelman, 2018, 

2014). Estimates have shown that a single SAV can replace 12 personal vehicles in a grid network 

(Fagnant and Kockelman, 2014). Another study reports a replacement rate of 9.3 personal vehicles 

per SAV in the regional network system of Austin, Texas (Fagnant et al., 2016). The smaller fleet 

size of the SAV system, compared to the system of PMV, results in continuous repositioning of 

each SAV to pick up another traveler, making each SAV busy (Fagnant and Kockelman, 2014). 

As a result, the amount of cold-start emissions reduces significantly with SAVs compared to PMVs  

(Fagnant and Kockelman, 2014). The cold-start emissions produce CO, NOx and VOC, etc. 

(Chester and Horvath, 2008). The adoption of SAVs can significantly reduce VOC, CO, and NOx 

production (49%, 34%, and 18%, respectively) due to the decreased number of cold-starts (Fagnant 

and Kockelman, 2014). The smaller fleet size requirements and continuous repositioning of SAV 

will also substantially reduce parking demand (Zhang et al., 2015).  

The introduction of AVs increases the attractiveness of traveling by car and willingness to 

drive longer distances and allows efficient use of travel time by drivers in the vehicle (de Looff et 

al., 2018; Gruel and Stanford, 2016; Gucwa, 2014). The efficient use of travel time reduces the 

VOTT significantly (de Looff et al., 2018). VOTT is interpreted as an individual’s willingness to 
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pay to avoid another travel time unit (de Looff et al., 2018). A study using the Netherlands as the 

case study applies discrete choice models to the data obtained from a stated preference survey, 

estimating VOTT for an AV with office interior to be 6.26€/h as compared to 8.37€/h for a human-

driven car (de Looff et al., 2018).  

2.2.2 Disadvantages of Autonomy 

Private AVs (PAVs) and SAVs have the potential to improve the transportation system in 

different ways, as mentioned above. However, these vehicles can also worsen some aspects of the 

transportation system, such as increased VMT, causing increased emissions and operating costs, 

high ownership costs, and waiting time (if SAVs are considered a substitute to PMV).  PAVs and 

SAVs are expected to increase vehicle miles significantly traveled (VMT) (Brown et al., 2014; 

Chehri and Mouftah, 2019; Childress et al., 2015; Gucwa, 2014; Harper et al., 2016; Wang et al., 

2018). AVs will increase the mobility of the non-drivers, elderly, and people with travel 

restrictions due to medical conditions, causing an increase in VMT by up to 14% (Harper et al., 

2016). Based on the 2009 NHTS (National Household Travel Survey) data, VMT can increase by 

up to 40% (Brown et al., 2014). A study estimated a 20% increase in VMT, considering the effect 

of increased road capacity (30%), reduction in VOTT (35%), and reduction in parking cost (50%) 

(Childress et al., 2015). Gucwa (2014) estimated a 4-8% increase in VMT in San Francisco, Bay 

Area, due to the simultaneous increase in roadway capacity and reduction in VOTT (Gucwa, 

2014). 

Adoption of AVs can significantly reduce vehicle ownership resulting in empty miles 

generation and a consequent increase in VMT in the system (Zhang et al., 2018). Zhang et al. 

(2018) estimated a 9.5% decrease in vehicle ownership and a 13.3% increase in VMT in the system 

due to the adoption of PAVs in the Atlanta Metropolitan area (Zhang et al., 2018). Further, the use 
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of SAVs also results in empty miles generation, which depends upon the fleet size and trip density 

(Burns et al., 2013; Fagnant and Kockelman, 2014). It has been estimated that SAVs can increase 

VMT by 11% due to empty repositioning (Fagnant and Kockelman, 2014). 

The high ownership cost is another critical factor affecting the adoption of PAVs and 

SAVs. The expected purchase price of AVs is estimated to be more than $250,000 (FastCompany, 

2014; LeVine Steve, 2017). Fagnant et al. (2018) assume that the cost of adding AV technology 

to the existing vehicle would be $50,000 (Fagnant and Kockelman, 2018). However, some studies 

show that the cost of adding AV technology to the vehicle will come down to $3,000-$10,000 in 

the future (Fagnant and Kockelman, 2015; IHS, 2014). The high ownership cost of AV, combined 

with increased running emissions and operating costs due to increased VMT, can significantly 

affect the adoption of these vehicles. Hence, it is essential to consider this factor while estimating 

system effects due to AV adoption. 

2.3 Electric Vehicles 

EVs are becoming popular because of their higher energy efficiency (Annema, 2020; 

Eberhard and Tarpenning, 2006; Romm, 2006) compared to gasoline vehicles. Recent growth in 

the adoption of EVs has a significant impact on greenhouse gas emissions(Chen et al., 2016; Crist, 

2012; Gai et al., 2019; Kavianipour et al., 2020; Nie and Ghamami, 2013; Samaras and 

Meisterling, 2008; Stogios et al., 2019), and energy usage (Chen et al., 2016). However, the limited 

driving range (Ghamami et al., 2020a; Hidrue et al., 2011), the high purchase price (Hidrue et al., 

2011), and the low density of charging infrastructure (Ghamami et al., 2020a; Hidrue et al., 2011) 

has impeded the adoption of EVs. Some of the current EV models have a range greater than 300 

miles per charge. However, it is still lower as compared to conventional gasoline vehicles.  The 

limited range of EVs makes the customers concerned about EV running out of charge with no 
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charge stations nearby, called range anxiety (Tate et al., 2008). These limitations also make the 

shared mobility services using EVs challenging. Studies have shown that investing in charging 

infrastructure, rather than providing purchase subsidies, further improves the adoption of EVs (Y. 

(Marco) Nie et al., 2016). There is also a trade-off in investing the available funds on battery or 

charging infrastructure technological advancement (Nie and Ghamami, 2013). A study suggests 

that the smaller batteries with denser charging infrastructure might be more cost-effective than 

building long-ranged plug-in EVs (Ghamami et al., 2016). As infrastructure is one of the main 

challenges in the adoption of EVs, the optimal location of  EV charging stations has been an 

interest to many researchers (Chen et al., 2020; Dashora et al., 2010; Frade et al., 2011; Ghamami 

et al., 2020a, 2016; Kavianipour et al., 2021b; Sweda and Klabjan, 2011; Yang et al., 2017). Some 

studies have obtained driving pattern information of EV users through travel surveys to estimate 

the optimal location of charging infrastructure (Andrews et al., 2012; Avci et al., 2015; Sweda and 

Klabjan, 2011). Other studies have utilized taxi GPS data to estimate optimal charging station 

locations for shared EVs (Shahraki et al., 2015; Tu et al., 2016). Some studies used traffic 

simulation data based on origin and destination of trips to capture travel information of private 

EVs. These studies either considered fixed-route choice (Lim and Kuby, 2010; Xie et al., 2016; 

Zockaie et al., 2016) or interaction between traffic assignment problems and charging stations 

locations (Fakhrmoosavi et al., 2021; Ghamami et al., 2020a; He et al., 2018; Kavianipour et al., 

2021a, 2021b). Another critical factor in the adoption of EVs is their performance reliability under 

adverse weather conditions as the fuel efficiency of EVs and charging efficiency decreases 

significantly in cold weather conditions (Hawkins, 2019). Studies suggest that battery performance 

reduces by 25-30% in cold weather conditions (EERE, 2021). One of the studies estimates that the 

battery performance is more crucial as compared to rising charging demand in summer for optimal 
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deployment of DCFC stations (Fakhrmoosavi et al., 2021). The AV technology can reduce some 

of the limitations of EVs, which will promote their adoption.  

2.4 Synergies and combined implications of autonomous-electric vehicles technology 

As discussed above, AVs and EVs can have various impacts on the transportation system. 

However, the synergy between AV and EV technology can ameliorate and enhance some of these 

impacts and influence the adoption of both technologies. Some of AV technology features might 

require a battery (Brown and Dodder, 2019), which will further promote EV adoption. EVs' zero 

tailpipe emission can partially attenuate the environmental consequences of increased VMT by 

adopting AVs(Wang et al., 2018). The EVs can reduce the operating cost induced due to an 

increase in travel of users with the adoption of AVs, which can also offset the higher purchase 

price of autonomous EVs (AEV) (Weiss et al., 2017). The induced travel demand by the adoption 

of AVs may increase gasoline fuel prices, promoting the adoption of alternative-fuel vehicles such 

as EVs (Brown and Dodder, 2019). On the other hand, AV technology can implement efficient 

algorithms promoting a smoother drive cycle and maximizing energy recovery with regenerative 

braking (Annema, 2020). AEVs can be programmed to choose energy-efficient routes, considering 

congestion, number of stops, etc. (Annema, 2020), improving battery efficiency. Improved battery 

efficiency and driving range, as a result, will mitigate range anxiety and enhance the battery life 

of AEV. AVs are more compatible with vehicle-to-grid (V2G) technology by synchronizing the 

operating, charging, and discharging algorithms (Lam et al., 2016). This allows AEV owners to 

receive compensation for delivering energy to the electric grid during peak hours(Annema, 2020) 

and will encourage users to adopt AEVs. 

However, the AVs and EVs have higher purchase prices due to the additive cost of LIDAR 

technology and batteries, respectively. Tesla’s “full self-driving” option, featuring automatic car 
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parking and lane changing, costs around $10,000 (Porter, 2020). Other studies predicted the AV 

technology cost would be around $2000-$10,000 (Fagnant and Kockelman, 2015; IHS, 2014; 

Ritchie, 2019). EVs are also more expensive than gasoline vehicles, as a significant portion of the 

cost is the cost of their batteries. Studies show that the price of Lithium-Ion batteries has reduced 

by 85% from 2010 to 2018 (BloombergNEF, 2019). However, the unit battery cost is still 

$176/kWh in 2018 (BloombergNEF, 2019). The high purchase price of these technologies 

questions the affordability of these vehicles as private modes. However, the adoption of these 

technologies as a shared mobility system might overcome these challenges. 

2.5 Shared mobility with autonomous-electric vehicles 

The AV technology facilitates the dynamic ridesharing system (Krueger et al., 2016), 

reducing fleet size, emissions, congestion, and parking demand (Golbabaei et al., 2020). The 

shared AVs provide guaranteed compliance to real-time changes in demand compared to human-

driven taxis (Hyland and Mahmassani, 2018). A well-planned and demand-responsive system will 

decrease the fleet size requirement and users' waiting time compared to a conventional taxi system 

(Spieser et al., 2016). The replacement rate is defined as the number of private human-driven 

vehicles (PMV) a single SAV or shared autonomous electric vehicle (SAEV) can replace while 

serving the same equivalent demand due to its ability to travel independently.  This replacement 

is larger for SAVs than SAEVs due to the long charging time and low range of the EV batteries 

(Chen et al., 2016; Fagnant et al., 2016; Fagnant and Kockelman, 2014; Zhang et al., 2015). AVs 

have the potential to partially overcome the limitation of EVs, especially in a shared mobility 

system, by automating the charging process and managing the range, considering the location of 

the charging station and real-time demand (Chen et al., 2016). SAEV provides a driver-free method 

to efficiently relocate based on real-time demand and charging infrastructure availability (Chen et 
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al., 2016).  SAEVs not only allows for a reduction of labor costs (Bösch et al., 2018; Hyland and 

Mahmassani, 2018; Liu et al., 2020) but also reduce energy costs (Chen et al., 2016; Eberhard and 

Tarpenning, 2006; Romm, 2006) of transportation network companies (TNC) providing shared 

mobility services. The electrification of SAVs and renewable energy charging can enhance 

environmental benefits (Golbabaei et al., 2020). The AV technology increases the vehicle 

utilization rate in the shared mobility system (Weiss et al., 2017), increasing the miles traveled and 

the associated operating and emission cost. This promotes the electrification of the fleet with 

substantial savings in operating costs (Weiss et al., 2017) and zero tailpipe emissions. Some studies 

find that the AV technology will reduce the charging cost of shared EVs, allowing the vehicles to 

charge when the electricity price is low (Iacobucci et al., 2019, 2018). The reduction in cold-start 

emissions (Fagnant and Kockelman, 2014; Singh et al., 2021), parking demand (Yan et al., 2020; 

Zhang et al., 2015), and driver cost (Liu et al., 2020) are some of the other advantages of SAVs.    

The shared mobility system increases users' waiting time (Fagnant and Kockelman, 2014; 

Singh et al., 2021) VMT (due to empty miles generation) (Burns et al., 2013; Fagnant and 

Kockelman, 2014; Oh et al., 2020; Singh et al., 2021; Yan et al., 2020),  and the total travel time 

in the system (Oh et al., 2020; Overtoom et al., 2020). The high replacement rate of SAVs or 

smaller fleet size exponentially increases the users' waiting time and empty miles generation 

(Singh et al., 2021). The limited charging infrastructure is another potential barrier to the adoption 

of SAEVs. The studies have assessed the effect of charging infrastructure on the operation and 

performance of the SAEV fleet (Chen et al., 2016; Loeb et al., 2018; Vosooghi et al., 2020; Zhang 

et al., 2020). Further, the high charging time and limited battery size can affect service usage and 

increase waiting time for SAEVs (Vosooghi et al., 2020). The faster-charging infrastructure such 

as super-chargers or battery swapping might be required to improve the service performance of 
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SAEVs to be comparable to that of SAVs (Vosooghi et al., 2020). The widespread network of 

these fast chargers will reduce the charging time and ease the concerns related to the limited range 

of EVs. Hence, it will enhance the growth of EVs. However, this will increase the electricity 

demand and overload the electric grid. The provision of DER at these charging stations would 

reduce the load on the electric grid and support the EV fast-charging demand.  

2.6 Effect of growth in EV charging demand and requirement of Distributed Energy 

Resources 

The EV and the associated industries have grown rapidly in recent years (Ma, 2019). In 

2019, electric car sales hit a record high of 2.1 million globally, increasing by 40% from the 

previous year (IEA, 2020).  The rapid growth of the EV market will necessitate the development 

of proper electric vehicle charging infrastructure to serve the electric energy demand(Ma, 2019; 

Negarestani et al., 2016). There are three standard EV charging levels (Morrow et al., 2008). The 

charging level 1 and level 2 are based on AC voltage with charging power of 1.44 kW and 3.3 kW, 

respectively(Morrow et al., 2008). The charging level 3 is a direct current fast charging (DCFC) 

which can have a charging power of up to 150 kW, allowing EV to charge in 10-25 minutes 

(Negarestani et al., 2016). While the level 1 and level 2 chargers are typically used for overnight 

charging at home supporting intra-city trips (Negarestani et al., 2016), the DCFC chargers are used 

for public applications similar to gasoline service stations (Morrow et al., 2008; Yilmaz and Krein, 

2013). The DCFC chargers have gained much attention due to the short charging time (Negarestani 

et al., 2016). The survey shows that the charging time and the charging infrastructure are the 

primary concerns of EV customers, with the majority of the customers placing significant 

importance on fast charging(Chakraborty et al., 2019). The deployment of DCFC chargers is 

mandatory for the widespread adoption of EVs (Chakraborty et al., 2019). The comprehensive 
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network of DCFC chargers will reduce the range anxiety and charging time, allowing users to 

travel freely, even for long-distance intercity trips (Rafi and Bauman, 2021). 

However, the widespread usage and rise in the EV charging demand will affect the electric 

grid (Negarestani et al., 2016; Rafi and Bauman, 2021). The EV charging stations can affect the 

electric grid stability, supply-demand imbalance, overloading and degradation of the distribution 

system, voltage fluctuations, and power system losses (Khalid et al., 2019). One of the studies 

tested the IEEE 3-bus system and showed that its stability deteriorates with the addition of EV 

load(Onar and Khaligh, 2010). Another study showed that the stability margin lowers if the EV 

power load is constant compared to the constant impedance load (Das and Aliprantis, 2008). 

McCarthy and Wolfs, 2010 mention that the peak demand increases due to the uncontrolled 

charging demand of EVs (McCarthy and Wolfs, 2010). A UK-based study indicates that the 

demand increases by 18 % with a 10% increase in EV load (Mahalik et al., 2010; Putrus et al., 

2009). The rise in EV load also increases power losses in the electric grid system, which can be 

about 40% during off-peak charging at an EV load penetration rate of 62% (Bradley et al., 1981). 

The high penetration of EV load causes significant overloading of distribution transformers, 

thereby reducing the performance and the life (Masoum et al., 2010). The distribution system 

might have to be reinforced to support EV charging demand during peak periods(Pieltain 

Fernandez et al., 2011).  Further, the DCFC chargers will impose an unpredictably large load on 

the electric grid (Gallinaro, 2020; Knupfer et al., 2018; Richard and Petit, 2018a). Also, the 

majority of DCFC charging stations should be located along the highways outside the cities to 

support long-distance trips (Rafi and Bauman, 2021). However, these locations would be in rural 

areas with weak electric grid connections far away from the main distribution electric grid (Baatar 

et al., 2021; Rafi and Bauman, 2021). This would require the electric grid upgrades and high 
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installation cost for the DCFC charging stations at these locations (INL, 2015). Electric grid 

upgrades might be necessary even in urban areas (with strong electric grid connections) at locations 

with high peak demand and multiple fast charging ports (Rafi and Bauman, 2021). Expanding the 

DCFC charging network would require more upgrades of distribution lines and transformers than 

that of the substation, transmission lines, and power plants (Rafi and Bauman, 2021). The increase 

in demand can be as high as 1.2 MW with a typical Electrify America installation of two 350 kW 

chargers and four 150 kW chargers along the highways (Nicholas and Hall, 2018). One of the 

studies shows that the electric grid reinforcement cost could be $1.6 billion in Norway, to support 

the uncontrolled charging of large EV load by 2040 (Molnar, 2019). In light of the above, the 

provision of ESS at the charging stations can play a vital role to mitigate the electric grid upgrade 

cost (Rafi and Bauman, 2021), reduce the peak electricity demand i.e. peak shaving (Gallinaro, 

2020; Knupfer et al., 2018), prevent overloading of the electric grid (Nicholas and Hall, 2018) as 

well as supporting the fast charging EV demand. 

The provision of ESS can minimize or eliminate the upgrades of the electric grid (Rafi and 

Bauman, 2021). One of the studies shows that the battery energy storage system can save up to 

$157,000 annually for six 350 kW chargers at the DCFC charging station (Francfort et al., 2017). 

Even in remote areas, the ESS can be less costly than electric grid reinforcement (EASE, 2019). 

Further, the use of renewable energy sources along with ESS can be advantageous as ESS can 

efficiently store intermittent renewable energy (e.g., solar energy) to support EV demand (Rafi 

and Bauman, 2021). These ESS can be charged at low electricity demand and prices, charge EVs 

with higher power suitable for the DCFC chargers, substantially reduce the electric grid's load, 

reduce the operating cost, and monthly electricity demand charges from the electric grid (Rafi and 

Bauman, 2021). 
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2.7 Distributed Energy Resources supporting EV charging demand 

The literature consists of numerous studies considering DER like solar panels, and batteries 

to support EV charging demand. One of the studies, considered energy loss, charging demand, and 

life cycle to optimize the size of ESS supporting fast-charging stations (Negarestani et al., 2016). 

M.Gjelaj et al. perform a cost-benefit analysis to minimize the operating cost of DCFC stations 

considering connection costs, installation costs, and ESS life cycle costs (Gjelaj et al., 2017c). 

Another study optimizes the size of ESS considering mixed-integer linear programming (Salapic 

et al., 2018). The studies have assessed the integration of bidirectional DCFC station with ESS 

into the low voltage electric grid (Gjelaj et al., 2017a) and optimal size of ESS to ameliorate the 

adverse effect on the electric grid (Gjelaj et al., 2017b). One of the studies develops a modeling 

framework considering the ESS degradation, trade-offs between the power rating of EV charging 

station, and size of the ESS (Richard and Petit, 2018b).  Another study compared second life 

batteries (SLB) with new batteries (NB) of lithium-ion (Li-ion) to support EV fast-charging 

demand and reduce the electric grid load (Kamath et al., 2020). The study concluded that the 

levelized cost of electricity reduces by 12-41% when using SLB instead of new batteries. A 

comparison of different storage technologies proposed flywheel storage systems to minimize the 

energy cost and storage cost at the fast charging station (Negarestani et al., 2016). However, 

technological advancements have changed the cost of different ESS (especially the Li-ion 

batteries). 

 The studies have also considered renewable energy (RE) to support EV charging stations. 

These can assist in peak-shaving and reduce electric grid power losses (Ma, 2019). Further, the 

provision of ESS can improve or completely remove the power fluctuations of RE power 

generators(Ma, 2019). One of the studies estimated the impact of variation in the number of DCFC 
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stations, load profiles, electricity price, geographic locations on the economic and energy 

performance of DCFC stations with solar panels and ESS (Yang and Ribberink, 2019). The system 

provides energy savings, and the economic viability is promising, considering the unit price of 

DER in the year 2021-2026, with a payback period of 12-16 years (Yang and Ribberink, 2019).  A 

study optimizes the annual cost of energy to estimate the location and size of level 2 charging 

stations, distributed ESS, and solar panels/wind turbines (Kandil et al., 2018) over the grid 

network. The cost includes the investment cost of technologies, energy consumption, and 

renewable energy savings. The study estimated that to support existing and EV demand; the solar 

panels can provide savings of around 70-75% instead of distributed ESS, which can provide only 

approximately 15-20% savings. Li et al., 2019 develop an optimization framework to minimize 

the electricity cost and the number of charge/discharge cycles of ESS for the solar panel-assisted 

EV charging station (Li et al., 2019). The study showed that optimum coordination between the 

energy resources and EVs could maintain stable power system operations and reduce the charging 

cost. Another study proposed a solar panel and lithium ferro phosphate battery as the optimal 

solution out of three ESSs, including lead-acid and lithium nickel cobalt aluminum oxide batteries 

(Nizam and Wicaksono, 2019). The optimization minimizes the initial capital and operating cost 

of the off-grid charging station in rural areas (Nizam and Wicaksono, 2019). Ugirumurera and 

Haas, 2017 estimated the optimum number of solar panels and size of ESS to support the EV 

charging system with energy generation exclusively by the solar farm. The optimum number of 

solar panels decreases with an increase in the average delay of EV users and the power rating of 

each charging station (Ugirumurera and Haas, 2017). One of the studies implemented GA and 

Monte-Carlo method to optimize the location and capacity of solar panels and ESS to support 

charging stations considering uncertainties in EV demand, solar panel power, electricity price 
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(Khanghah et al., 2017). The study showed that the ESS and solar panels could reduce the system's 

operating cost, power losses, and voltage sags. Hilton et al., 2019 develop an optimization 

framework to maximize the profit and minimize the electric grid connection cost and associated 

energy cost for a solar panel-ESS charging station (Hilton et al., 2019). The study showed that the 

solar farm and ESS reduce grid energy use and can provide savings, especially if the grid 

connection cost is high. 
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 OPTIMAL ADOPTION OF AV IN PRIVATE AND SHARED 

MOBILITY SYSTEMS 

3.1 Overview 

The AVs may impose positive or negative externalities on the transportation system and 

environment. Numerous studies are capturing the trade-offs among different influential factors that 

govern the adoption of AVs. However, it is important to consider all the competing factors and 

capture the trade-offs between these factors so as to estimate the overall impact of AVs on the 

transportation system, and environment. Further, the implications of AVs would be different in 

private and shared mobility systems. This study develops a modeling framework to estimate the 

impacts of PAVs and SAVs on the environment and the transportation system, considering the 

changes in travel behavior, VMT, emission production, driving behavior, travel time, operating 

costs, and cost of ownership. A multi-objective framework is developed to find the best vehicle 

fleet (PMV, PAV, or SAV) that will result in minimum emissions, minimum time spent, and 

minimum total cost of ownership. It is worth noting that this study estimates and calibrates 

functions for the various contributing factors, using the limited available data on AVs, mainly 

focusing on simulation data. 

The remainder of this study is as follows. Section 3.2 discusses the problem statement and 

objective of the study, followed by the methodology in section 3.3. The case study, numerical 

results, and the summary are presented in sections 3.4, 3.5, and, 3.6, respectively.  

3.2 Problem Statement 

This study aims to capture the trade-off between the benefits of increased mobility, 

efficient use of travel time (reduced VOTT), efficient driving, and the negative impacts of 
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increased VMT, as well as the higher ownership cost as a result of the adoption of AVs. This study 

aims to minimize emission production, users’ time, and total cost of ownership (purchase price 

and operating cost) by proposing a multi-objective optimization framework. This framework finds 

the best configuration of different vehicle types (PMVs, PAVs, or SAVs) for urban trips, under 

different circumstances. The different circumstances may vary over time or regions and affect the 

listed trade-offs. It is important to note that this study considers fully autonomous vehicles (Level 

5 autonomy) which do not require human drivers. 

The contradicting and complementary factors listed above are functions of a variety of 

parameters. Thus, each function needs to be defined and calibrated. The emission produced is 

derived from the superposition of four factors; VMT (Moore et al., 2010), number of cold-starts 

(Chester and Horvath, 2008; EPA, 1994; Reiter and Kockelman, 2016), and speed and acceleration 

rate (Int Panis et al., 2006; Qi et al., 2004). The categories of emissions considered are running 

emissions and cold-start emissions. The running emissions are the function of speed, acceleration, 

and VMT. The cold-start emissions are a function of the number of trips, emission per cold-start, 

and the number of cold-starts per person-trip. The operating cost of the vehicle includes the fuel 

and maintenance cost, which are functions of VMT generated, cost of fuel, fuel efficiency, and 

maintenance cost per mile. The total VMT generated in the system is estimated considering 

changes in users' travel behavior, changes in family dynamics, reduction in vehicle ownership, and 

empty miles generated due to the adoption of PAVs/SAVs. The travel time cost is a function of 

occupied VMT, VOTT, and the reduction factor for VOTT (RVOTT) due to the adoption of 

PAVs/SAVs. The total waiting time cost in the system, which applies exclusively to SAVs, 

depends on the waiting time cost per unit time, fleet size, and trip density in the system. The 
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ownership cost is a function of the purchase price, average miles driven per year, and total miles 

traveled by vehicle during its lifetime. 

3.3 Modeling Framework 

The methodology has two main steps. First, the definition and calibration of the travel 

pattern, emission production and cost functions, pre and post-adoption of the AVs. Second, 

defining a multi-objective optimization problem to find the optimum market for these vehicles, 

considering the changes in travel patterns, emission production, and costs. 

As discussed above, the introduction of PAVs/SAVs affects the travel pattern of users. 

There are a variety of underlying reasons that cause this change. These reasons and their effects 

are carefully studied and discussed in the subsections below. The changes in travel pattern and 

driving pattern affects emission production. The adoption of SAVs reduces cold-start emissions in 

the system. Adopting PAVs/SAVs also affects users' travel time cost and SAVs come with possible 

waiting times. It is worth noting that the purchase price and operating costs of AVs are different 

from that of PMVs. The objective of the study is to find the optimum vehicle fleet and vehicle 

type, under different underlying conditions, and the best way to use these vehicles to minimize the 

emissions, total time spent by the users in the system, and the total cost of owning the vehicles 

(purchase cost and operating costs), including changes in VMT, emissions, waiting time, operating 

cost and ownership cost. The study also does a comparative analysis of the results while 

minimizing emission cost (focusing on environmental concerns) to that of minimizing all the 

different system costs (emissions, total time, and total cost of owning vehicles). The multi-

objective model is reduced to a Linear Programming (LP) problem, with the market share of each 

vehicle type (PMV, PAV, or SAV), defined as the number of vehicles of that type, being the 

decision variable. 
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The factors affecting VMT are discussed in section 3.3.1. The emission estimation is 

presented in 3.3.2. Section 3.3.3 explains how ownership cost and operating cost are estimated. 

The system travel time cost and waiting time cost (due to SAVs) are discussed in sections 3.3.4 

and 3.3.5, respectively. Further, the Linear Programming problem and its analytical solution are 

presented in sections 3.3.6 and 3.3.7, respectively. 

3.3.1 Factors affecting VMT  

The adoption of autonomous vehicles affects the average VMT due to the changes in travel 

behavior, family dynamics, vehicle ownership, housing locations, and trip chaining. The detailed 

influence of these factors are explained below: 

Changes in the travel behavior: The efficient utilization of roadway, reduction in the 

VOTT, and parking costs due to the adoption of PAVs/SAVs will encourage the users to travel 

more which will increase the VMT in the system.  The reduction in VOTT is the result of the 

efficient use of travel time in these vehicles. The self-drive and self-park capability of these 

vehicles provides them with a variety of less expensive parking options. The parking cost is further 

reduced due to better utilization of the space by these vehicles (as no room is required for the driver 

to get out). The computer-controlled vehicles will use the road more efficiently which will increase 

the roadway capacity. All these factors will change users’ travel behavior, encouraging them to 

travel more, which will increase VMT in the system. This effect has been considered by (Childress 

et al., 2015) and the presents study captures it through the parameter  𝛼𝑗
𝑟𝑐 . 

Changes in family dynamics: The ability of the AVs to drive on their own will increase 

independence and encourage non-drivers, elderly, and physically disabled to travel more. The 
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increase in VMT due to the above-mentioned factor has been quantified by (Harper et al., 2016) 

and captured by the parameter 𝛼𝑗
𝑛𝑑, in this study.  

Reduction in vehicle ownership: The same PAV can be used by different family members 

if the schedule of their trips allows. The vehicle can travel on its own picking up and dropping off 

family members. Similarly, a single SAV can serve multiple trips within the city. This will reduce 

the number of vehicles and vehicle ownership, which will not only increase VMT per vehicle but, 

will also generate additional empty miles (with no passenger) between drop-off (current trip) and 

pick-up (next trip) locations. These effects are quantified by VMT per vehicle (𝛼𝑗
𝑟𝑛𝑣) and empty 

mile generation (𝛼𝑗
𝑒𝑚𝑝

) factors. 

The other factors which might affect VMT are the land-use changes and trip chaining. The 

adoption of SAVs is expected to reduce urban sprawl (Meyer et al., 2017; Zhang, 2017). However, 

as accessibility in rural areas increases some population groups might consider moving to remote 

locations (Meyer et al., 2017; Zhang, 2017). Studies have shown that in the US Atlantic region, 

with the introduction of SAVs elderly are expected to move closer to city centers (by 2-7%), while 

younger people are expected to move further away (by 7-10%) (Zhang, 2017). Another study for 

Australia reported 3-4% of the population moving to suburbs with the adoption of PAVs, 

considering 50% reduction in VOTT (Thakur et al., 2016). There are also studies that predict AVs 

to have no effect on the housing location (Zmud and Sener, 2017). Thus, the true effect of self-

driving vehicles on housing location is still unclear which will not only be region-specific but will 

also depend upon the demographics. Hence, it is difficult to quantify this effect and it is not 

considered in this study. Another factor that can affect VMT is the trip chaining dynamics. The 

adoption of PAVs/SAVs might reduce total travel costs due to efficient use of the roadway, 

reduced VOTT, and the reduction in parking, fuel and insurance cost and efficient use of vehicles, 
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causing users to engage less in trip chaining (Rodier, 2018). Due to insufficient data, it is difficult 

to quantify this effect and therefore not considered in this study. However, the effect on VMT due 

to the efficient use of the roadway capacity, reduced VOTT, and reduction in parking cost has been 

captured by the parameter  𝛼𝑗
𝑟𝑐  which partially captures the effect of reduced trip chaining. 

Equation 1 represents miles per vehicle  𝑚𝑗
𝑝𝑣

  for each vehicle type  𝑗  (PMV, PAV, and 

SAV), in the given system for the duration of study  𝑇 , considering different factors for VMT 

increase. 

𝑚𝑗
𝑝𝑣 = 𝛼𝑗

𝑟𝑐𝛼𝑗
𝑛𝑑𝛼𝑗

𝑒𝑚𝑝𝛼𝑗
𝑟𝑛𝑣𝑚𝑝𝑚𝑣

𝑝𝑣
 1 

In which, the term  𝑚𝑝ℎ𝑑𝑣
𝑝𝑣

  is the average VMT per PMV for the duration of the study  𝑇 . 

Each of the other parameters represents one of the main factors affecting average VMT due to the 

adoption of AVs, as explained above. The factor  𝛼𝑗
𝑒𝑚𝑝

  is a function of the replacement rate  𝛾𝑗  

for vehicle type  𝑗  (PAV or SAV), as presented in Equations 2 and 3. The replacement rate is 

defined as the number of PMVs replaced by each PAV or SAV, as a result of carsharing.  The 

increase in empty miles is also a function of the increase in the number of trips (𝜂𝑠𝑎𝑣) due to the 

adoption of SAVs. The larger the density of the area and larger the number of trips, it is more 

likely that the consecutive trips are closer together location-wise. This means while the empty 

miles generated increases with an increase in the replacement rate, it decreases with an increase in 

the number of trips in a given system, exclusively for SAVs. The detailed functions are presented 

in section 3.4. 

𝛼𝑝𝑎𝑣
𝑒𝑚𝑝 = 𝑓(𝛾𝑝𝑎𝑣) 2 

𝛼𝑠𝑎𝑣
𝑒𝑚𝑝 = 𝑓(𝛾𝑠𝑎𝑣, 𝜂𝑠𝑎𝑣) 3 
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 The factor  𝛼𝑗
𝑟𝑛𝑣  is equal to the replacement rate  𝛾𝑗 . This is based on the conclusion that 

the reduction in the number of vehicles will result in an equivalent increase in miles per vehicle to 

serve the same trips. The increase in VMT due to changes in travel behavior and family dynamics 

with the adoption of AVs are captured by  𝛼𝑗
𝑟𝑐  and  𝛼𝑗

𝑛𝑑 . Note that, all of the factors representing 

an increase in VMT are equal to 1 for PMV. 

3.3.2 Emission Estimation 

This section presents the estimation of the amount of emission produced by each of the 

PMVs, PAVs, and SAVs. The pollutants considered for emission estimation are CO2, CO, and 

NOX. The CO emissions are estimated from the cold-starts of the vehicle (Chester and Horvath, 

2008). The amount of CO2, which is the main component of running emissions, is estimated using 

the trip trajectory of the vehicle (Int Panis et al., 2006). NOX is estimated for both running 

emissions (Int Panis et al., 2006) and cold-start emissions (Chester and Horvath, 2008). 

3.3.2.1 Running Emissions 

The running emission is a function of the speed and acceleration of the vehicle: 

𝑒̂(𝑡)𝑖𝑗
𝑟𝑒 = 𝑓𝑖[𝑣𝑗(𝑡), 𝑎𝑗(𝑡)]    ∀𝑖, 𝑗 4 

Here,  𝑒̂(𝑡)𝑖𝑗
𝑟𝑒  is the instantaneous running emission for emission type  𝑖  (CO2 and NOX) 

and vehicle type  𝑗  (PMV, PAV, or SAV). The term  𝑣𝑗(𝑡)  and  𝑎𝑗(𝑡)  are the instantaneous speed 

and acceleration of the vehicle type  𝑗 . These are determined using the trip trajectory of the vehicle 

type  𝑗 . The trajectories are obtained considering efficient driving (for PAVs and SAVs) and 

nonefficient-driving (for PMVs) behaviors. Efficient driving is defined as the smooth driving 

pattern without any sudden changes in acceleration/deceleration rate causing a reduction in 
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emission production and fuel consumption. Further, Equation 5 is used to estimate running 

emissions per mile (𝑒𝑖𝑗
𝑟𝑒) for emission type  𝑖  by vehicle type  𝑗 . 

𝑒𝑖𝑗
𝑟𝑒 =

∫ 𝑒̂(𝑡)𝑖𝑗
𝑟𝑒𝑑𝑡

𝑇𝑠
0

𝐿
 5 

In which,  𝐿  is the length of the stretch considered and  𝑇𝑠  is the time required to drive 

through that stretch. The total running emission (𝐸𝑖𝑗
𝑅𝐸) per vehicle type  𝑗  for the emission type  𝑖  

is as follows: 

𝐸𝑖𝑗
𝑅𝐸 = 𝑒𝑖𝑗

𝑟𝑒𝑚𝑗
𝑝𝑣

 6 

3.3.2.2 Cold-start Emissions 

In general, a cold-start is defined as any start that occurs after one hour of the end of the 

preceding trip (EPA, 1994; Reiter and Kockelman, 2016). A significant amount of CO and NOx 

are produced in each cold-start. The cold-start emission is a function of the number of trips. The 

amount of cold-start emission produced by PAVs is comparable to that of PMVs. However, the 

cold-start emissions produced by SAVs are considerably less than that of PMVs (Fagnant and 

Kockelman, 2014). This is due to the reduction in the number of cold-starts per person trip because 

of the continuous repositioning of the vehicle with the engine being turned off less frequently. The 

number of cold-starts (𝑁𝑠𝑎𝑣
𝑐𝑠 ) per person-trip decreases with the increase in the replacement rate 

and the increase in the number of trips due to the adoption of SAVs. Hence, a factor accounting 

for the reduction in number of cold-starts (𝛽𝑗
𝑟𝑐𝑠) is considered in the model (Equation 7). The term  

𝑁𝑝ℎ𝑑𝑣
𝑐𝑠  is the original number of cold-starts per person-trip in the PMV system. The number of 

cold-starts per person-trip in a system comprising of SAVs (𝑁𝑠𝑎𝑣
𝑐𝑠 ) is the function of replacement 

rate of SAVs (𝛾𝑠𝑎𝑣) and increase in the trips due to the  adoption of SAVs (𝜂𝑠𝑎𝑣). The detailed 
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function for  𝑁𝑠𝑎𝑣
𝑐𝑠   is presented in the section 3.4. The number of cold-starts per person-trip in a 

system comprising of PAVs (𝑁𝑝𝑎𝑣
𝑐𝑠 ) is assumed to be equal to that of PMV (𝑁𝑝𝑚𝑣

𝑐𝑠 ). Hence, the 

factor  𝛽𝑗
𝑟𝑐𝑠  is equal to 1 for PMVs and PAVs. 

𝛽𝑗
𝑟𝑐𝑠 =

𝑁𝑗
𝑐𝑠

𝑁𝑝𝑚𝑣
𝑐𝑠  7 

The total cold-start emission (𝐸𝑖
𝐶𝑆) per vehicle type  𝑗  for the emission type  𝑖  is as follows: 

𝐸𝑖𝑗
𝐶𝑆 = 𝑒𝑖

𝑐𝑠𝜂𝑗𝛼𝑗
𝑟𝑛𝑣𝛽𝑗

𝑟𝑐𝑠𝑚𝑝𝑚𝑣
𝑝𝑣   8 

 In which,  𝑒𝑖
𝑐𝑠  is the cold-start emissions (CO and NOx) per mile for emission type  𝑖  by 

PMVs.  Note that  CO2  is a negligible factor in cold-start emissions. The term  𝜂𝑗  represents the 

increase in the total number of trips generated due to the adoption of PAVs and SAVs.  The value 

of  𝜂𝑗  is given by Equation 9. 

𝜂𝑗 = 𝛽𝑗
𝑛𝑑𝛽𝑗

𝑟𝑐 9 

 The term  𝛽𝑗
𝑛𝑑  represents the increase in the number of trips as a result of the improved 

mobility of non-drivers, due to the adoption of PAVs and SAVs. The term 𝛽𝑗
𝑟𝑐 represents the 

increase in trips due to the efficient use of roadway capacity, reduction in VOTT, and parking cost. 

The value of  𝜂𝑗  and  𝛼𝑗
𝑟𝑛𝑣  for PMV is equal to 1 

3.3.3 Purchase and Operating Costs 

The purchase price of PAVs and SAVs is expected to be higher than that of PMVs, 

considering the cost of LIDAR technology, other radar systems, and the variety of sensors installed 

in the vehicle. This study also includes operating costs (maintenance cost and fuel cost) to estimate 
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optimal fleet configuration. The purchase price, fuel, maintenance, and operating cost over the 

duration of the study  𝑇  for a vehicle type  𝑗  are presented in Equations 10 to 13, respectively. 

𝐶𝑗
𝑜𝑐 = (

𝐶𝑗
𝑜

𝑆𝑗
)𝑇  10 

𝐶𝑗
𝑓
= (

𝐶𝑓

𝑚𝑝𝑔
)𝑅𝑗

𝑓
𝑚𝑗
𝑝𝑣

 11 

𝐶𝑗
𝑚 = 𝐶𝑚𝑚𝑗

𝑝𝑣
 12 

𝐶𝑗
𝑜𝑝 = 𝐶𝑗

𝑓
+ 𝐶𝑗

𝑚 = [(
𝐶𝑓

𝑚𝑝𝑔
)𝑅𝑗

𝑓
+ 𝐶𝑚]𝑚𝑗

𝑝𝑣
 13 

  

In which, the terms  𝐶𝑗
𝑜  and  𝑆𝑗  represent purchase price and average service life (in years) 

of vehicle type  𝑗 , respectively. The term 𝑅𝑗
𝑓
 denotes the reduction factor for fuel consumption as 

the result of efficient driving patterns of autonomous vehicles. Thus, the factor will be equal to 1 

for PMVs. The factors  𝐶𝑓  and  𝑚𝑝𝑔  are the average fuel cost per gallon and the fuel efficiency 

of the PMVs (average miles per gallon of fuel), respectively. The factor  𝐶𝑚   is the average 

maintenance cost per mile. The average service life of the vehicle type  𝑗  is given as follows: 

𝑆𝑗 =
𝑀𝑗
𝑇

𝑚𝑗
𝑝𝑦 14 

In which,  𝑀𝑗
𝑇  and 𝑚𝑗

𝑝𝑦
 are the total lifetime mileage of the vehicle (total miles traveled 

by the vehicle during its lifespan) and total miles traveled in a year by vehicle type  𝑗 , respectively. 

The term  𝑚𝑗
𝑝𝑦

  is obtained considering different factors causing an increase in VMT due to the 

adoption of PAVs and SAVs. The detailed calibrated function is presented in section 3.4. 
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3.3.4 Travel Time 

The travel time in the given system, estimated based on the average speed and miles 

traveled by the vehicle, is presented as follows: 

𝑇𝑇𝑗 =
𝑚𝑝ℎ𝑑𝑣
𝑝𝑣 𝛼𝑗

𝑟𝑐𝛼𝑗
𝑛𝑑𝛼𝑗

𝑟𝑛𝑣

𝑣𝑗
 15 

 In which,  𝑇𝑇𝑗   and  𝑣𝑗   are the total travel time per vehicle (in the study period  𝑇 ) and 

the average speed for the vehicle type  𝑗 .  

3.3.5 Waiting Time 

Similar to other shared-mobility systems, the use of SAVs might result in users’ waiting 

time. The reduced number of vehicles in the shared system increases the likelihood of waiting for 

an available ride. On the other hand, the increase in trip density of the system increases the 

likelihood of finding the next departure location close to the current or arrival location of SAV, 

resulting in an overall reduction in the average waiting time. Thus, the average waiting time (𝑤𝑠𝑎𝑣
𝑝𝑡

) 

is a function of the replacement rate of SAV (𝛾𝑠𝑎𝑣) and the increase in the number of trips (𝜂𝑠𝑎𝑣) 

due to the adoption of SAVs (Equation 16). The average waiting time increases with an increase 

in the replacement rate and decreases with an increase in the number of trips in a given system. 

𝑤𝑠𝑎𝑣
𝑝𝑡 = 𝑓(𝛾𝑠𝑎𝑣, 𝜂𝑠𝑎𝑣) 16 

The waiting time per vehicle  𝑊𝑠𝑎𝑣
𝑤𝑡   for the duration of the study  𝑇 , is given as follows: 

𝑊𝑠𝑎𝑣
𝑤𝑡 = 𝑤𝑠𝑎𝑣

𝑝𝑡 𝑇𝑝𝑠 17 

 In which,  𝑇𝑝𝑠  is the number of trips generated per SAV for the duration of the study, 

given as follows:  
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𝑇𝑝𝑠 = 𝛾𝑠𝑎𝑣 𝑇𝑝𝜂𝑠𝑎𝑣 18 

Here,  𝑇𝑝  represents the original number of trips generated per PMV (in time  𝑇 ), when 

PAVs and SAVs are not present in the system. The total waiting time per vehicle is equal to zero 

for PMVs and PAVs. 

3.3.6 Optimization problem 

The objective of this study is to find the best vehicle type under different underlying 

conditions that will minimize emissions, time (waiting and travel time), and cost of ownership 

(purchase price and operating costs) of the vehicles. The problem is formulated as a multi-objective 

optimization problem with an aim to minimize societal costs, user costs, and investor costs. The 

societal costs include emission (running and cold-start). Ownership and operating costs are user 

and/or investor costs, depending on the SAVs operation agreements. The travel time and waiting 

time are user costs. The multi-objective optimization problem is defined as follows: 

min𝑍1  = ∑∑(𝐸𝑖𝑗
𝐶𝑆 + 𝐸𝑖𝑗

𝑅𝐸)

𝑖

𝑁𝑗)

𝑗

 19 

min𝑍2  = ∑(𝑇𝑇𝑗 +𝑊𝑗
𝑤𝑡)𝑁𝑗

𝑗

 20 

min𝑍3  = ∑(𝐶𝑗
𝑜𝑐 + 𝐶𝑗

𝑜𝑝)𝑁𝑗
𝑗

 21 

s.t.:  

∑(𝛾𝑗𝑁𝑗)

𝑗

≥ 𝑁0 22 
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𝑁𝑗 ≥ 0              ∀𝑗 23 

In which, the objective functions,  𝑍1 ,  𝑍2  and  𝑍3 , are minimizing the emissions, time 

(travel and waiting time), and ownership cost (purchase price and operating cost), respectively. 

The term  𝑁𝑗  represents the number of vehicles of type  𝑗  (PMV, PAV, or SAV) in the system. 

The term  𝛾𝑗  is the replacement rate (number of PMVs replaced by each vehicle) of vehicle type 

j. This term captures the effect of the reduced number of vehicles and vehicle ownership in the 

system due to the adoption of PAVs/SAVs, as they can replace multiple PMVs. The term  𝑁0  is 

the number of PMVs originally present in the system. Equation 22 ensures that the new fleet of 

vehicles (PMV, PAV, and SAV), after accounting for replacement rate, is equivalent to the former 

fleet of PMV. This ensures that all the trips currently available in the system are served. The 

constraint has been set as greater than/equal to so as to reduce the computational complexity. The 

objective to minimize the cost function will eventually treat the constraint as an equality constraint. 

Equation 23 is a feasibility constraint. 

The above problem is a multi-objective optimization problem with three objectives. The 

problem is converted to a single-objective optimization problem by converting the total emissions 

and total time in the equivalent monetary values, considering cost per unit emissions and value of 

time. The modified total emissions (𝑍1
′ ) and total time (𝑍2

′ ) cost objective functions are as follows: 

𝑍1
′ =∑∑𝑐𝑖(𝐸𝑖𝑗

𝐶𝑆 + 𝐸𝑖𝑗
𝑅𝐸)

𝑖

𝑁𝑗
𝑗

 24 

𝑍2
′ =∑(𝑉𝑝ℎ𝑑𝑣

𝑡𝑡 𝑅𝑗
𝑡𝑡𝑇𝑇𝑗 + 𝐶𝑤𝑊𝑗

𝑤𝑡)𝑁𝑗
𝑗

 25 
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In which,  𝑐𝑖  is the societal cost of producing one unit of emission type  𝑖  (CO2, CO, and 

NOX). The term  𝑉𝑝ℎ𝑑𝑣
𝑡𝑡   and  𝑅𝑗

𝑡𝑡  are the VOTT for PMVs and the reduction factor for VOTT 

(RVOTT) due to the adoption of PAVs and SAVs, respectively. The RVOTT considers the effect 

of increased driver productivity in AVs. A value of 0.8, means the VOTT is reduced to 80% of its 

original value. The value of  𝑅𝑗
𝑡𝑡  is equal to 1 for PMVs. The term  𝐶𝑤  denotes the average cost 

of waiting per unit time. The modified single objective optimization problem is defined as follows: 

Min 𝑍 = 𝑍1
′ + 𝑍2

′ + 𝑍3 26 

s.t.:  

∑(𝛾𝑗𝑁𝑗)

𝑗

≥ 𝑁0 27 

𝑁𝑗 ≥ 0               ∀𝑗 28 

This is a linear programming problem (LP), solved analytically as well as by a dual-simplex 

algorithm. The dual-simplex algorithm is well known for solving linear minimization problems 

with linear constraints and non-negative decision variables (Koberstein, 2008; Nocedal and 

Wright, 2006; Padberg, 1999). In every successive iteration, this algorithm improves the solution 

and has a method to identify when the optimal solution is reached and terminates immediately. 

These properties make this algorithm efficient and suitable to solve the proposed optimization 

problem.   

3.3.7 Analytical Solution 

To solve the linear programming problem analytically, first Lagrangian relaxation is used 

to incorporate the major constraint into the objective function. Then the Karush–Kuhn–Tucker 
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(KKT) conditions are applied, which are necessary but not sufficient conditions for optimality for 

the given optimization problem. Finally, different conditions for optimality are investigated. 

3.3.7.1 Lagrangian Relaxation 

As there is only one main constraint in the proposed optimization problem given by 

Equation 27, the optimization problem is solved analytically using Lagrangian relaxation by 

introducing a Lagrangian multiplier (𝜇). The new optimization problem in the expanded form is 

as follows: 

Min 𝐿 = 𝐶𝑝ℎ𝑑𝑣𝑁𝑝ℎ𝑑𝑣 + 𝐶𝑝𝑎𝑣𝑁𝑝𝑎𝑣 + 𝐶𝑠𝑎𝑣𝑁𝑠𝑎𝑣                                                             

− 𝜇( 𝑁𝑝ℎ𝑑𝑣 + 𝛾𝑝𝑎𝑣𝑁𝑝𝑎𝑣 + 𝛾𝑠𝑎𝑣𝑁𝑠𝑎𝑣 − 𝑁0)   
29 

Subject to Constraints: 

𝑁𝑝ℎ𝑑𝑣, 𝑁𝑝𝑎𝑣, 𝑁𝑠𝑎𝑣 , 𝜇 ≥ 0 30 

 Where, 𝐶𝑝ℎ𝑑𝑣, 𝐶𝑝𝑎𝑣 and 𝐶𝑠𝑎𝑣 are the parameter representing the total cost per vehicle for 

PMV, PAV, and SAV, respectively. These include all the costs defined in previous sections of the 

methodology. The above problem is solved using KKT conditions as explained in the following 

subsection. 

3.3.7.2 KKT Conditions 

The KKT conditions are applied to solve the above Linear Programming Problem. These 

conditions are listed below: 

𝑁𝑝ℎ𝑑𝑣 (
𝜕𝐿

𝜕𝑁𝑝ℎ𝑑𝑣
) = 0 ;   

𝜕𝐿

𝜕𝑁𝑝ℎ𝑑𝑣 
≥ 0;                31 
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𝑁𝑝𝑎𝑣 (
𝜕𝐿

𝜕𝑁𝑝𝑎𝑣
) = 0;       

𝜕𝐿

𝜕𝑁𝑝𝑎𝑣
≥ 0;          32 

𝑁𝑠𝑎𝑣 (
𝜕𝐿

𝜕𝑁𝑠𝑎𝑣
) = 0;             

𝜕𝐿

𝜕𝑁𝑠𝑎𝑣
≥ 0; 33 

𝜇 (
𝜕𝐿

𝜕𝜇
) = 0 ;               

𝜕𝐿

𝜕𝜇
≥ 0; 34 

Condition 31 implies that       

𝑁𝑝ℎ𝑑𝑣(𝐶𝑝ℎ𝑑𝑣 − 𝜇) = 0 → 𝑁𝑝ℎ𝑑𝑣 = 0 𝑜𝑟 𝜇 = 𝐶𝑝ℎ𝑑𝑣 35 

𝐴𝑛𝑑               
𝜕𝐿

𝜕𝑁𝑝ℎ𝑑𝑣
= 𝐶𝑝ℎ𝑑𝑣 − 𝜇 ≥ 0                                         36 

Condition 32 implies that       

𝑁𝑝𝑎𝑣(𝐶𝑝𝑎𝑣 − 𝛾𝑝𝑎𝑣𝜇) = 0;𝑁𝑝𝑎𝑣 = 0 𝑜𝑟 𝛾𝑝𝑎𝑣𝜇 = 𝐶𝑝𝑎𝑣 37 

𝐴𝑛𝑑               
𝜕𝐿

𝜕𝑁𝑝𝑎𝑣
= 𝐶𝑝𝑎𝑣 − 𝛾𝑝𝑎𝑣𝜇 ≥ 0                                         38 

Condition 33 implies that       

𝑁𝑠𝑎𝑣(𝐶𝑠𝑎𝑣 − 𝛾𝑠𝑎𝑣𝜇) = 0;𝑁𝑠𝑎𝑣 = 0 𝑜𝑟 𝛾𝑠𝑎𝑣𝜇 = 𝐶𝑠𝑎𝑣 39 

𝐴𝑛𝑑               
𝜕𝐿

𝜕𝑁𝑠𝑎𝑣
= 𝐶𝑠𝑎𝑣 − 𝛾𝑠𝑎𝑣𝜇 ≥ 0                                         40 

Condition 34 implies that       

𝜇 = 0 𝑜𝑟 ( 𝑁𝑝ℎ𝑑𝑣 + 𝛾𝑝𝑎𝑣𝑁𝑝𝑎𝑣 + 𝛾𝑠𝑎𝑣𝑁𝑠𝑎𝑣 − 𝑁0) = 0 41 
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𝐴𝑛𝑑               
𝜕𝐿

𝜕𝜇
= 𝑁𝑝ℎ𝑑𝑣 + 𝛾𝑝𝑎𝑣𝑁𝑝𝑎𝑣 + 𝛾𝑠𝑎𝑣𝑁𝑠𝑎𝑣 −𝑁0 ≥ 0       42 

Now we have four equations (35,37,39, and 41) with four unknown variables 

(𝑁𝑝ℎ𝑑𝑣, 𝑁𝑝𝑎𝑣, 𝑁𝑠𝑎𝑣  𝑎𝑛𝑑 𝜇), subject to four inequality constraints (36,38,40, and 42). Hence, we 

can solve for the unknown variables using the above set of equations which is explained in detail 

in the following subsection. 

3.3.7.3 A solution to the optimization problem 

From Equation 41, if 𝜇 = 0 , as 𝐶𝑝ℎ𝑑𝑣 , 𝐶𝑝𝑎𝑣 , 𝐶𝑠𝑎𝑣 ≠ 0 in our case, from Equations 35,37, and 39, 

𝑁𝑝ℎ𝑑𝑣, 𝑁𝑝𝑎𝑣, 𝑁𝑠𝑎𝑣 = 0. Then, from Equation 42, 𝑁0 ≤ 0, which is only possible in a system with 

no vehicles. Therefore, 

𝑁𝑝ℎ𝑑𝑣 + 𝛾𝑝𝑎𝑣𝑁𝑝𝑎𝑣 + 𝛾𝑠𝑎𝑣𝑁𝑠𝑎𝑣 − 𝑁0 = 0         &   𝜇 > 0  43 

From, Equations 35,37,39, and 41, there are seven possible cases as listed below: 

𝜇 = 𝐶𝑝ℎ𝑑𝑣 =
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
=
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

;           𝑁𝑝ℎ𝑑𝑣 + 𝛾𝑝𝑎𝑣𝑁𝑝𝑎𝑣 + 𝛾𝑠𝑎𝑣𝑁𝑠𝑎𝑣 = 𝑁0 44 

𝜇 = 𝐶𝑝ℎ𝑑𝑣 ≠
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
≠
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

;           𝑁𝑝𝑎𝑣 = 𝑁𝑠𝑎𝑣 = 0 ;      𝑁𝑝ℎ𝑑𝑣 = 𝑁0  45 

𝜇 = 𝐶𝑝ℎ𝑑𝑣 =
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
≠
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

;           𝑁𝑠𝑎𝑣 = 0;     𝑁𝑝ℎ𝑑𝑣 + 𝛾𝑝𝑎𝑣𝑁𝑝𝑎𝑣 = 𝑁0 46 

𝜇 = 𝐶𝑝ℎ𝑑𝑣 =
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

≠
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
;           𝑁𝑝𝑎𝑣 = 0;    𝑁𝑝ℎ𝑑𝑣 + 𝛾𝑠𝑎𝑣𝑁𝑠𝑎𝑣 = 𝑁0 47 

𝜇 =
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
≠
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

≠ 𝐶𝑝ℎ𝑑𝑣;           𝑁𝑝ℎ𝑑𝑣 = 𝑁𝑠𝑎𝑣 = 0 ;    𝑁𝑝𝑎𝑣 =
𝑁0
𝛾𝑝𝑎𝑣

 48 
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𝜇 =
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
=
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

≠ 𝐶𝑝ℎ𝑑𝑣;          𝑁𝑝ℎ𝑑𝑣 = 0;  𝑁𝑝𝑎𝑣 + 𝛾𝑠𝑎𝑣𝑁𝑠𝑎𝑣 = 𝑁0 49 

𝜇 =
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

≠
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
≠ 𝐶𝑝ℎ𝑑𝑣;            𝑁𝑝ℎ𝑑𝑣 = 𝑁𝑝𝑎𝑣 = 0 ;   𝑁𝑠𝑎𝑣 =

𝑁0
𝛾𝑠𝑎𝑣

 50 

The solution to the optimization problem can be any one of the above cases, depending upon the 

value of different parameters assumed in the study. However, to check the uniqueness of the 

solution we must check other conditions as explained in the following subsection. 

3.3.7.4 The uniqueness of the optimal solution 

For the solution to be unique, both of the following conditions should be met: - 

• The objective function should be strictly convex near the optimal solution and it should be 

an overall convex function. 

• The set of unknown variables should be a convex feasible set. 

For checking the condition first, we estimate the Hessian Matrix (𝐻) for the objective 

function (Equation 26), which is given below: 

𝐻 =

[
 
 
 
 
 
 
 

𝜕2𝑍

𝜕𝑁𝑝ℎ𝑑𝑣
2  

𝜕2𝑍

𝜕𝑁𝑝ℎ𝑑𝑣𝜕𝑁𝑝𝑎𝑣

𝜕2𝑍

𝜕𝑁𝑝ℎ𝑑𝑣𝜕𝑁𝑠𝑎𝑣

𝜕2𝑍

𝜕𝑁𝑝𝑎𝑣𝜕𝑁𝑝ℎ𝑑𝑣

𝜕2𝑍

𝜕𝑁𝑝𝑎𝑣2

𝜕2𝑍

𝜕𝑁𝑝𝑎𝑣𝜕𝑁𝑠𝑎𝑣

𝜕2𝑍

𝜕𝑁𝑠𝑎𝑣𝜕𝑁𝑝ℎ𝑑𝑣

𝜕2𝑍

𝜕𝑁𝑠𝑎𝑣𝜕𝑁𝑝𝑎𝑣

𝜕2𝑍

𝜕𝑁𝑠𝑎𝑣2 ]
 
 
 
 
 
 
 

= [
0 0 0
0 0 0
0 0 0

] 51 

In order to satisfy the condition first, all of the Eigenvalues for the Hessian Matrix should 

be greater than zero. Therefore, we estimate Eigenvalues for the Hessian Matrix which is given by 

the following equation. 
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|𝐻 − 𝜆𝐼| = 0 → 𝜆3 = 0 →  𝜆 = 0 52 

All the three Eigenvalues for the Hessian Matrix equal to zero. Hence, it is a convex 

function but not strictly convex. Further, the constraints of the objective function (Equations 27 

and 28) represent the area above the plane (given by Equation 53) in the positive quadrant, which 

is always a convex feasible set. 

𝑁𝑝ℎ𝑑𝑣 + 𝛾𝑝𝑎𝑣𝑁𝑝𝑎𝑣 + 𝛾𝑠𝑎𝑣𝑁𝑠𝑎𝑣 = 𝑁0 53 

 As the objective function is not strictly convex. Hence, the uniqueness of the optimal 

solution can not be proved for this optimization problem.  

It is important to note that the current multi-objective problem is a linear programming 

(LP) problem that has a convex pareto front. As the pareto front is convex, for every pareto optimal 

solution there exist positive values of weights such that the pareto optimal solution is the optimal 

solution for the corresponding single-objective optimization (Deb, 2001). Hence, every point on 

the pareto optimal front can be obtained by selecting the appropriate weights for the single-

objective optimization problem. The dual-simplex algorithm is a quick way to solve the LP 

problem providing the exact optimal solution on the pareto front for the selected weights. Further, 

this study also does sensitivity analysis with respect to these weights (VOTT and unit cost of 

emissions) to obtain the optimal solution. The value of these weights and the corresponding 

optimal solution can be decided based on the discussion with policymakers for the specific 

applications of the model. The weighted sum method is being used in this study considering the 

fact that the problem is an LP problem (convex pareto front). 
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3.4 Case study 

This study assumes a hypothetical transportation system with signalized arterial roads in a 

small or mid-sized urban area of the United States. The trips within this transportation system can 

be served with PMVs, PAVs, or SAVs. As SAVs are not suitable to serve long-distance trips, only 

internal trips within the system boundaries are considered. The duration of the study  T  is assumed 

to be 1 year. The number of PMVs originally present in the system (𝑁0) is estimated as follows: 

𝑁0 = 𝑇𝑝𝑡 ×
365

𝑇𝑝
 54 

In which,  𝑇𝑝𝑡  is the total number of trips per day in the system. The value of  𝑇𝑝  (number 

of trips per PMV per year) is given as follows: 

𝑇𝑝 = 𝑁𝑡𝑑𝑙 ×
365

𝑁𝑣𝑝𝑙
 55 

 Here, 𝑁𝑡𝑑𝑙 and 𝑁𝑣𝑝𝑙 are the number of trips per day per licensed driver and the number of 

vehicles per licensed driver. These values are assumed to be 3.02 and 0.99, respectively (Santos et 

al., 2011).  

3.4.1 VMT Variation Parameters  

The average urban VMT for each light-duty PMV (𝑚𝑝𝑚𝑣
𝑝𝑣

) is assumed to be 6334 miles/year 

(FHWA, 2017). The calibrated functions representing variation in VMT, derived and/or calibrated 

using different studies, are listed in Table 3.1. 

The value of the parameter 𝛽𝑝𝑎𝑣/𝑠𝑎𝑣
𝑛𝑑 , which represents the increase in the trip generation 

due to the improved mobility of non-drivers, with the adoption of PAVs and SAVs, is assumed to 

be equal to the total mile increase factor (𝛼𝑝𝑎𝑣/𝑠𝑎𝑣
𝑛𝑑 ). This factor (𝛽𝑝𝑎𝑣/𝑠𝑎𝑣

𝑛𝑑 ) is estimated considering 
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the average trip length remains the same. The changes in average trip length due to the adoption 

of PAVs/SAVs is captured by parameter  𝛼𝑝𝑎𝑣/𝑠𝑎𝑣
𝑟𝑐  . The value of the parameter 𝛽𝑝𝑎𝑣/𝑠𝑎𝑣

𝑟𝑐 , which 

represents the increase in the number of trips as a result of the improved roadway capacity, 

reduction in VOTT, and reduction in parking cost, is assumed to be 1.049 (Childress et al., 2015). 

These parameters can be used to estimate the value of 𝜂𝑗, using Equation 9. 

3.4.2 Emission Estimation Parameters 

The unit societal cost of CO2, CO, and NOx (Table 3.2) emissions are used along with 

emission production functions to calculate the total emission cost.  

3.4.2.1 Running Emissions 

This study adopts an instantaneous emission model (Int Panis et al., 2006) to estimate the 

running emissions (CO2 and NOX). The trajectories for efficient-driving (PAVs/SAVs) and 

nonefficient-driving (PMVs) profile at a signalized arterial corridor are obtained using the study, 

He et al. (2015). The speed and acceleration profiles are obtained for these trajectories which are 

incorporated in the calibrated emission model to estimate instantaneous running emissions. 

Further, the running emission per mile (𝑒𝑖𝑗
𝑟𝑒) is estimated using Equation 5.  

3.4.2.2 Cold-start Emissions 

The function for the number of cold-starts per person-trip when only SAVs are in the 

system (Table 3.1), is calibrated based on the data available from the sensitivity analysis of the 

number of cold-starts with respect to the replacement rate and the trips generated (Fagnant and 

Kockelman, 2014). 
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3.4.3 Ownership and Operating Costs Parameters 

The average purchase price of PMVs is assumed to be $30,000 (NADA, 2012). The costs 

of PAVs and SAVs are assumed to be $10,000 higher than that of PMVs. It is based on the 

assumption that AV technology will add up to $7000-$10,000 to the existing purchase price of 

PMVs by the end of 2025 (IHS, 2014). The average annual miles traveled per SAV (𝑚𝑠𝑎𝑣
𝑝𝑦

 ) is 

assumed to be equal to that traveled within the urban area (𝑚𝑠𝑎𝑣
𝑝𝑣

). It is based on the assumption 

that SAVs behave similar to a taxi system and do not travel outside the given urban boundaries. 

The average annual miles traveled per PAV (𝑚𝑝𝑎𝑣
𝑝𝑦

) is estimated, assuming that if the trip is outside 

the given urban system, the PAV will not return empty to the system, (due to the long travel 

distance) (Table 3.1). The total lifetime mileage of PMV (𝑀𝑝𝑚𝑣
𝑇 ) is as follows: 

𝑀𝑝𝑚𝑣
𝑇 = 𝑚𝑝𝑚𝑣

𝑝𝑦
× 𝑆𝑝𝑚𝑣 56 

  The total lifetime mileage of PAV(𝑀𝑝𝑎𝑣
𝑇 ) is assumed to be equal to that of PMVs. 

However, the total lifetime mileage for SAVs (𝑀𝑠𝑎𝑣
𝑇 ) is assumed to be comparable to that of a 

regular taxi, which is equal to 250,000 miles (Fagnant and Kockelman, 2018). 

The reduction factor for fuel consumption as the result of efficient driving patterns of 

PAVs/SAVs (𝑅𝑝𝑎𝑣/𝑠𝑎𝑣
𝑓

), is assumed to be 0.75. This value is based on the conclusion that eco-

driving is expected to reduce fuel consumption by 25% (Center for Sustainable Systems, 2017; 

Wadud et al., 2016). 

3.4.4 Travel Time Cost Parameters 

The average speed is obtained from the speed profile of efficient driving (for PAVs/SAVs) 

and nonefficient driving behavior (for PMVs) (He et al., 2015). The VOTT is assumed to be 
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$18.82/hr (van den Berg and Verhoef, 2016). The reduction factor for VOTT (RVOTT) is assumed 

to be 0.8, which means the users can use their travel time 20 percent more efficiently when riding 

in an autonomous vehicle (van den Berg and Verhoef, 2016). 

3.4.5 Waiting Time Cost Parameters 

The function of the average waiting time (𝑊𝑠𝑎𝑣
𝑝𝑡 ) per trip (in minutes) as given in Table 3.1 

Functions and their Definitions, is calibrated based on the data available from the sensitivity 

analysis of waiting time per trip with respect to the replacement rate and trip generation (Fagnant 

and Kockelman, 2014), and is set to maintain a positive value.  

The waiting time cost per unit time (𝐶𝑤) is assumed to be 70% of the wage rate (Fagnant 

and Kockelman, 2018). The average wage rate (𝑊𝑟 )  in the US is estimated as $22.59/hr 

(Tradingeconomics.com, 2018) in May 2018.  

A summary of the different functions for vehicle type j  and different parameters assumed 

in the study are listed in Table 3.1 and Table 3.2, respectively. The functions listed below are 

estimated/calibrated using the data from the studies listed in the last column. It is important to note 

that as the AVs are not operational on the road, the calibration of the different factors is based on 

the simulation data conducted by the different studies. These calibrated functions might be 

different in practical applications depending upon the urban area or network chosen and also when 

AVs are actually on the road. However, we believe that the nature of dependency of these 

dependent factors to that of independent factors would remain the same. Considering the limited 

data, the current study aims to capture this dependency of the dependent factors rather than 

proposing the exact function to consider the effect of the adoption of PAVs and SAVs. 
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3.4.6 Scenarios considered for Optimization 

The study estimates the optimal solution under two scenarios as explained below:- 

• The optimum vehicle fleet that will result in a minimum total system cost. The weight 

factors for this model are: 

𝜓𝑙 = 1              ∀ 𝑙   57 

• The optimum vehicle fleet that will result in minimum emission cost. The weight factors 

for this model are: 

𝜓𝑅𝐸 = 𝜓𝐶𝑆 = 1          58 

&         𝜓𝑜𝑐 = 𝜓𝑜𝑝 = 𝜓𝑡𝑡 = 𝜓𝑤𝑡 = 0          59 

Table 3.1 Functions and their Definitions 

Parameter Definition Function 

Source/ 

Justification 

𝛾𝑗 Replacement rate {

1                      j = PMV
1.105              j = PAV
12                     j = SAV

 

(Zhang et al., 

2018) 

(Fagnant and 

Kockelman, 

2014) 

𝛼𝑗
𝑛𝑑 

Factored VMT 

increase due to 

improved mobility of 

non-drivers 

{
1                       j = PMV

1.14        j ∈ {PAV, SAV}
 

 

(Harper et al., 

2016) 

𝛼𝑗
𝑟𝑐 

Factored VMT 

increase due to the 

{
1                        j = PMV

1.2          j ∈ {PAV, SAV}
 

 

(Childress et 

al., 2015) 
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reduction in VOTT, 

parking cost, and 

efficient use of the 

roadway 

𝛼𝑗
𝑟𝑛𝑣 

Factored VMT 

increase per vehicle 

due to the reduction 

in the number of 

vehicles 

{

1                      j = PMV
𝛾𝑝𝑎𝑣                     j = PAV

𝛾𝑠𝑎𝑣                   j = SAV
 

Reducing the 

number of 

vehicles results 

in an 

equivalent 

increase in 

VMT per 

vehicle  

𝛼𝑗
𝑒𝑚𝑝

 

Factored VMT 

increase due to the 

empty repositioning 

of autonomous 

vehicles  

{
 

 
1                                                                                   j = PMV

max[(1.34 𝑙𝑜𝑔𝑒 𝛾𝑝𝑎𝑣 + 1.001), 1]                       j = PAV

max[(0.98 exp(0.008𝛾𝑠𝑎𝑣) −                                              

0.04 log𝑒 𝜂𝑠𝑎𝑣 + 0.02 ), 1]                                     j = SAV 

 

Calibrated 

based on 

(Zhang et al., 

2018) 

Calibrated 

based on 

(Burns et al., 

2013) 

𝛽𝑗
𝑛𝑑 

Factored increase in 

the trip generation 

due to the improved 

mobility of non-

drivers 

{
1                       j = PMV

𝛼𝑗
𝑛𝑑        j ∈ {PAV, SAV}

 

Assuming 

average trip 

length remains 

the same 

𝛽𝑗
𝑟𝑐 

Factored increase in 

trip generation due to 

the reduction in 

VOTT and parking 

 

{
1                       j = PMV

1.049         j ∈ {PAV, SAV}
 

(Childress et 

al., 2015) 

Table 3.1 (cont’d) 
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cost and efficient use 

of the roadway 

𝑁𝑗
𝑐𝑠 

Number of cold-starts 

per person trip when 

only vehicle type  j  

is present in the 

system 

{

0.64                                                                   j ∈ {PMV, PAV}

max [(0.645𝛾𝑠𝑎𝑣
−1.022 − 0.011𝜂𝑠𝑎𝑣

3 +                                      

0.047𝜂𝑠𝑎𝑣
2 − 0.062𝜂𝑠𝑎𝑣 + 0.027),0]              j = SAV         

      

 

(Fagnant and 

Kockelman, 

2014; Kang 

and Recker, 

2009) 

Calibrates 

based on 

(Fagnant and 

Kockelman, 

2014) 

𝑚𝑗
𝑝𝑦

 
Average annual miles 

traveled per vehicle  j  

{

𝑚𝑝𝑚𝑣
𝑝𝑦

                                                                          j = PMV

[(𝑚𝑝𝑚𝑣
𝑝𝑦

−𝑚𝑝𝑚𝑣
𝑝𝑣

) + 𝑚𝑝𝑚𝑣
𝑝𝑣

𝛼𝑗
𝑒𝑚𝑝

]𝛼𝑝𝑎𝑣
𝑟𝑐 𝛼𝑝𝑎𝑣

𝑛𝑑 𝛼𝑝𝑎𝑣
𝑟𝑛𝑣  j = PAV

𝑚𝑠𝑎𝑣
𝑝𝑣
                                                                       j = SAV

 

Assuming PAV 

trips outside 

the system 

does not 

generate empty 

ride and SAVs 

travels only 

within urban 

boundaries 

𝑀𝑗
𝑇 

Total miles traveled 

during the lifespan of 

the vehicle  j  

{

 𝑚𝑝𝑚𝑣
𝑝𝑦

𝑆𝑝𝑚𝑣                                                               j = PMV

𝑀𝑝𝑚𝑣
𝑇                                                                       j = PAV

250,000 𝑚𝑖𝑙𝑒𝑠                                                   j = SAV

 

Assuming 

SAVs behave 

similarly to a 

taxi system 

(Fagnant and 

Kockelman, 

2018) 

𝑊𝑠𝑎𝑣
𝑝𝑡

 

The average waiting 

time (minutes) per 

max[(0.0003 exp(0.575𝛾𝑠𝑎𝑣) − 0.551𝜂𝑠𝑎𝑣
3  +

2.177𝜂𝑠𝑎𝑣
2 −  2.832𝜂𝑠𝑎𝑣  +  1.206),0] 

Calibrated 

based on 

(Fagnant and 

Table 3.1 (cont’d) 
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trip, exclusively for 

SAVs 

Kockelman, 

2014). 

 

Table 3.2 Definition and Value of Different Parameters 

Parameter Definition Values assumed in the 

deterministic model 

𝑇𝑝𝑡 Number of daily trips in the system (Burns et al., 2013) 528,000 trips/day 

T Study period 1 year 

𝑁𝑡𝑑𝑙 Number of daily trips per licensed driver (Santos et al., 2011) 3.02 trips/licensed driver 

𝑁𝑣𝑝𝑙 Number of vehicles per licensed driver (Santos et al., 2011) 0.99 veh./licensed driver 

𝑚𝑝𝑚𝑣
𝑝𝑣

 Average VMT per PMV in the given urban system during  T  

(FHWA, 2017) 

6334 miles/year 

𝑐𝑐𝑜2  The societal cost of producing one unit of CO2 (US DOT, 2015) $49/metric ton 

𝑐𝑐𝑜 The societal cost of producing one unit of CO (assumed 2. 813 times 

than that of CO2(Shindell, 2015)) 

$137.84/metric ton 

𝑐𝑁𝑂𝑥  The societal cost of producing one unit of NOX (US DOT, 2015) $7877/metric ton  

𝑒𝑐𝑜2,𝑝𝑚𝑣
𝑟𝑒  Running emission (CO2) per mile for each PMV (obtained using the 

instantaneous emission model by (Int Panis et al., 2006) for 

nonefficient-driving profile (He et al., 2015))  

337.81 gm/mile/vehicle 

𝑒𝑐𝑜2,𝑝𝑎𝑣/𝑠𝑎𝑣
𝑟𝑒  Running emission (CO2) per mile for each PAV/SAV (obtained using 

instantaneous emission model by (Int Panis et al., 2006) for efficient-

driving profile (He et al., 2015)) 

260.40 gm/mile/vehicle 

𝑒𝑛𝑜𝑥,𝑝𝑚𝑣
𝑟𝑒  Running emission (NOx) per mile for each PMV (obtained using the 

instantaneous emission model by (Int Panis et al., 2006) for 

nonefficient-driving profile (He et al., 2015)) 

0.148 gm/mile/vehicle 

Table 3.1 (cont’d) 
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𝑒𝑛𝑜𝑥,𝑝𝑎𝑣/𝑠𝑎𝑣
𝑟𝑒   Running emission (NOx) per mile for each PAV/SAV (obtained using 

instantaneous emission model by (Int Panis et al., 2006) for efficient-

driving profile (He et al., 2015)) 

0.118 gm/mile/vehicle 

𝑒𝑐𝑜
𝑐𝑠 Cold-start emission (CO) per mile for each PMV (Chester and 

Horvath, 2008) 

7.3 gm/mile/vehicle  

𝑒𝑛𝑜𝑥
𝑐𝑠  Cold-start emission (NOX) per mile for each PMV (Chester and 

Horvath, 2008) 

0.17 gm/mile/vehicle  

𝐶𝑝𝑚𝑣
𝑜  Average purchase price of PMV (NADA, 2012) $30,000  

𝐶𝑝𝑎𝑣/𝑠𝑎𝑣
𝑜  Purchase Price of PAV/SAV ( $10K higher than that of PMV (IHS, 

2014)) 

𝐶𝑝ℎ𝑑𝑣
𝑜 +$10,000 

𝑆𝑝𝑚𝑣  The average service life of PMV (IHS Markit, 2016) 11.6 years  

𝑚𝑝𝑚𝑣
𝑝𝑦

 Total miles that one PMV travels in a year (FHWA, 2017) 11,370 miles/yr.  

𝐶𝑓 Fuel cost (AAA, 2017) $2.329/gallon  

𝑚𝑝𝑔 Fuel efficiency (FHWA, 2017) 24 miles/gallon  

𝑅𝑝𝑎𝑣/𝑠𝑎𝑣
𝑓

 Reduction factor for fuel consumption due to efficient driving of 

PAV/SAV (Center for Sustainable Systems, 2017; Wadud et al., 

2016) 

0.75  

𝐶𝑚 Maintenance cost (AAA, 2017) $.0794/mile  

𝑣𝑝𝑚𝑣  The average speed of PMV (estimated from nonefficient-driving 

profile (He et al., 2015)) 

31.68 mph 

𝑣𝑝𝑎𝑣/𝑠𝑎𝑣 The average speed of PAV/SAV (estimated from efficient-driving 

profile (He et al., 2015)) 

27.91 mph 

𝑉𝑝𝑚𝑣
𝑡𝑡  Value of Travel Time (VOTT) for PMV (van den Berg and Verhoef, 

2016) 

$18.82/hr.  

𝑅𝑝𝑎𝑣/𝑠𝑎𝑣
𝑡𝑡

 Reduction Factor for VOTT (RVOTT) due to efficient use of travel 

time in PAV/SAV (van den Berg and Verhoef, 2016) 

0.8 

Table 3.2 (cont’d) 
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𝐶𝑤 Cost of waiting time (assumed to be 70% of the wage rate (Fagnant 

and Kockelman, 2018). The average wage rate (𝑊𝑟)  of the US is 

$22.59/hr (Tradingeconomics.com, 2018) in May 2018.) 

$15.813/hr. 

 

3.5 Numerical Experiments 

The proposed optimization problem is a linear programming problem with linear 

constraints. The model aims to minimize the total system cost by finding the best fleet 

configuration under different circumstances. The system cost consists of the user, investor, and 

societal costs (environmental cost).  

3.5.1 Base Scenario 

The solution to the optimization problem for the base scenario (considering values of 

parameters reported in Table 3.1 and Table 3.2), calculated using analytical methods as well as 

dual simplex algorithm, is presented in the following subsections. 

3.5.1.1 Analytical solution for the base case 

The assumed value of different parameters (Table 3.1 and Table 3.2) for the case study are 

used to obtain different costs type per vehicle (𝐶𝑗
𝑙) in the optimization problem (given by Equation 

26-28). The total cost per vehicle (𝐶𝑗) for vehicle type  j , assuming a uniform weight (𝜓𝑙 = 1  ∀𝑙), 

is obtained using Equation 60. The corresponding values obtained are given in Equation 61 and 

62. 

𝐶𝑗 =∑𝜓𝑙𝐶𝑗
𝑙

𝑙

         ∀ 𝑗  60 

Table 3.2 (cont’d) 
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𝐶𝑝ℎ𝑑𝑣 = 7,593.67; 𝐶𝑝𝑎𝑣 = 12,589.08; 𝐶𝑠𝑎𝑣 = 94,552.69; 61 

𝛾𝑝𝑎𝑣 = 1.105; 𝛾𝑠𝑎𝑣 = 12; 𝑁0 = 173,086 62 

Comparing these values, with all the possible solutions (Equations 44 to 50). We  have 

𝐶𝑝ℎ𝑑𝑣 = 7,593.67;     
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
= 11,392.83;        

𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

= 7,879.391 63 

Which implies: 

𝐶𝑝ℎ𝑑𝑣 ≠
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
≠
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

 64 

Therefore, the only three possible cases would be: 

1.     𝜇 =
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
≠
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

≠ 𝐶𝑝ℎ𝑑𝑣;     𝑁𝑝ℎ𝑑𝑣 = 𝑁𝑠𝑎𝑣 = 0 ;    𝑁𝑝𝑎𝑣 =
𝑁0
𝛾𝑝𝑎𝑣

; 65 

2.     𝜇 =
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

≠ 𝐶𝑝ℎ𝑑𝑣 ≠
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
;    𝑁𝑝ℎ𝑑𝑣 = 𝑁𝑝𝑎𝑣 = 0 ;   𝑁𝑠𝑎𝑣 =

𝑁0
𝛾𝑠𝑎𝑣

; 66 

3.      𝜇 = 𝐶𝑝ℎ𝑑𝑣 ≠
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
≠
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

;       𝑁𝑝𝑎𝑣 = 𝑁𝑠𝑎𝑣 = 0 ;         𝑁𝑝ℎ𝑑𝑣 = 𝑁0;  67 

For case 1, we have, 

𝜇 =
𝐶𝑝𝑎𝑣

𝛾𝑝𝑎𝑣
= 11,392.83 68 

Now from Equation 36, we have, 

𝐶𝑝ℎ𝑑𝑣 − 𝜇 ≥ 0  69 

In the base case presented in this study, 𝐶𝑝ℎ𝑑𝑣 − 𝜇 = 7,593.67 − 11,392.83 = −3799.16 <  0. 

Thus, it does not satisfy Equation 36. Hence, this case is rejected. 
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For case 2, we have, 

𝜇 =
𝐶𝑠𝑎𝑣
𝛾𝑠𝑎𝑣

= 7,879.391 70 

Again comparing it with Equation 36 of section 3.3.7.2, we have 𝐶𝑝ℎ𝑑𝑣 − 𝜇 = 7,593.67 −

7,879.391 = −285.72 <  0.  Thus, it also does not satisfy Equation 36 in section 3.3.7.2. Hence, 

this case is also rejected. 

Therefore, the only case would be 3:  

𝑁𝑝ℎ𝑑𝑣 = 𝑁0 𝑎𝑛𝑑  𝑁𝑝𝑎𝑣 = 𝑁𝑠𝑎𝑣 = 0 71 

This solution satisfies all of the inequalities mentioned in section 3.3.7.2 (Equations 36,38,40, and 

42). Hence, this is our solution to the optimization problem while minimizing the system cost. 

Therefore, using the base parameter values, the system cost would be minimum if only PMVs are 

present in the system. 

3.5.1.2 Solution for the base case using a dual-simplex algorithm 

The solution to the proposed model is obtained in MATLAB using the ‘dual-simplex’ 

algorithm. The algorithm applies the simplex algorithm to obtain the solution to the dual problem.  

The algorithm involves two phases. In the first phase, the algorithm estimates the initial basic 

feasible solution. In the second phase, the algorithm performs iterations to reduce the infeasibility 

of the primal problem while maintaining the feasibility of the dual problem. The algorithm tests 

the optimality of the solution in every iteration and stops once the optimality is reached or both 

primal and dual problem becomes feasible. The results obtained using a dual-simplex algorithm 

are found to be consistent with that of the analytical solution. In the base scenario, using the 

parameter values listed in Table 3.1 and Table 3.2, the optimal solution suggests PMVs as the best 
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type of vehicle. The travel time and ownership cost are the major costs, contributing 50% and 34% 

to the total system cost in the PMV system, respectively (Figure 3.1). The fuel consumption, 

maintenance, and emissions contribute to 8%, 7%, and 2% of the total system cost, respectively. 

The increased VMT due to the adoption of PAVs and SAVs results in higher total travel time in 

the system, higher fuel and maintenance costs for users while increasing the societal cost of 

emissions. Thus, these vehicles under the current situation, in the base scenario, do not appear in 

the optimum fleet configuration. The number of cold-starts and associated emissions (CO and 

NOx) in the SAV system is less than that of the PMV system. However, the running emissions 

(CO2 and NOx), due to increased VMT, are significantly higher in the SAV system. The cost of 

ownership of the vehicular fleet for the SAV system as a whole is smaller than the PMV system 

due to the higher total lifetime mileage of SAVs. But it is not small enough to cover for the costs 

increased due to an increase in VMT in the system.  

 

Figure 3.1 The different components of the objective function at the optimal solution for the base 

scenario 
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3.5.2 System Analysis with Private and Shared Mobility 

In different regions and over time, the parameters such as VMT variations, VOTT, 

RVOTT, etc. may change. Various studies predict the above-mentioned factors and their influence 

on AV adoption. However, as the AVs are not operational on the road, the exact values of these 

factors are still a question. Hence, this study does sensitivity analysis with respect to the main 

factors and proposes suitable values of these factors that will promote the adoption of PAVs/SAVs.  

It should be noted that the sensitivity analysis is done based on discrete values of parameters rather 

than a continuous variation to reduce the computational time. 

3.5.2.1 Sensitivity to user and system-related parameters 

The VOTT and RVOTT represent user characteristics and are among the most important 

factors affecting the optimal solution. The configuration of the system, which in part is presented 

by the user to vehicle ratio, affects the optimal solution. A larger reduction in VOTT (lower 

RVOTT), or more efficient use of travel time makes SAVs the most promising option (Figure 3.2). 

However, if the replacement rate of SAVs is very high (e.g. ≥ 16  PMVs per SAV, at 

RVOTT=0.7), then there is an exponential increase in the empty miles generation and users’ 

waiting time. Hence, at higher replacement rates, SAVs are not the optimal solution. Further, at 

such a high replacement rate, with efficient use of travel time (RVOTT ≤ 0.4), the travel time cost 

for PAVs becomes very low, resulting in PAVs entering the optimal solution (Figure 3.2). 

However, the VOTT of users adopting PAVs should be high (at least $18/hr). It is important to 

note that the increase in the empty miles results in each SAV traveling a larger amount of miles in 

a year. Hence, it reduces the lifetime of the vehicle. As a result, the ownership cost per year 

increases for SAVs with an increase in the empty miles traveled.  
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Figure 3.2 Optimal vehicle type (PMV, PAV, and SAV) considering variations in VOTT, 

Reduction Factor for VOTT (RVOTT), and replacement rate of SAV. 

It is important to note that the RVOTT, as an incentive in the adoption of autonomous 

vehicles, is only effective if there is a significant reduction (RVOTT≤ 0.6). If RVOTT is higher, 

then the increased VOTT of users switches the optimal solution to PMVs. The reason is that the 

increased mobility of the users with the adoption of PAV/SAV, increases the total travel time and 

the total system cost, hence a significant reduction in VOTT is required to make these vehicles 

competitive in the market (for system planners). With a significant improvement in the efficient 

use of travel time, this study confirms the findings of the recent studies (Fagnant et al., 2016; 

Fagnant and Kockelman, 2014). Even with less efficient use of travel time (higher RVOTT), SAVs 

can appear in the optimal solution, if there is a larger fleet of SAVs (lower replacement rate) 

supporting the trips of the users. It can be concluded that efficient use of travel time is a significant 

PMV 
PAV 
SAV 
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factor in the adoption of PAVs/SAVs. This can be a function of the different features of 

autonomous vehicles that provide a working or recreational environment inside the vehicle. It is 

worth noting that even though reducing the fleet size of SAVs reduces the upfront cost of the 

system, it increases the emission, waiting time, operating and maintenance cost, thus the 

appropriate fleet size is reported in this study. 

3.5.2.2 Sensitivity to vehicle specifications  

This study estimates the optimal solution by assuming the average current purchase price 

for PMVs and the cost of AV technology to estimate the purchase price of PAVs/SAVs. However, 

the price of PMVs and PAVs/SAVs can vary significantly depending on various factors. This study 

finds the optimal solution under the different purchase prices of vehicles (Figure 3.3). The analysis 

shows that among other factors the optimum fleet configuration is a function of the relative cost 

of PMVs and PAVs/SAVs. The adoption of SAVs can be the optimal solution if the purchase price 

of SAVs is below a certain relative threshold than that of PMVs. For example, if the purchase price 

of PMVs is $60,000, then the purchase price of SAVs should be less than or equal to $100,000 for 

SAVs to be the optimal solution. The PMV-PAV/SAV cost function of the optimum market can 

be used for planning purposes (Figure 3.3). 
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Figure 3.3 Sensitivity to purchase price 

3.5.3 System Analysis without Shared-Mobility  

The shared-mobility systems are shown to be the optimum answer in many scenarios tested 

in the previous section, while the adoption of PAVs appeared as the least favorable option. In this 

section, the study analyses different scenarios in which shared mobility is not an option. 

First, the model is analyzed with respect to the purchase price and the total lifetime mileage 

of PAVs. The total lifetime mileage of PMVs on average is equal to 131,892 miles, which is 

obtained from Equation 56. The adoption of PAVs will be the optimal solution, if the total lifetime 

mileage of PAV is increased (at least to 240,000 miles) (Figure 3.4). For PAVs to be a part of the 

optimum market, these vehicles should be able to travel long distances during their lifespan. This 

can be achieved by following an efficient driving pattern and scheduled maintenance. The 

computer-controlled vehicles can be programmed to follow the maintenance schedule on their 

PMV 

PAV 

SAV 
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own, without any inconvenience to their owners. Further, in addition to the higher total lifetime 

mileage of PAVs, the purchase price of PMVs should also be sufficiently high (preferably ≥ 

$40,000) for PAVs to appear in the market. The higher purchase price of PMVs reduces the 

fraction of additional cost required to install AV technology, for a given cost of AV technology. 

Thus, it increases the range of acceptable purchase price of PAVs, for PAVs to be the optimal 

solution. In other words, the PAVs would be the optimal solution, if the AV technology is installed 

in luxurious cars. 

 

Figure 3.4 Sensitivity analysis considering the purchase price of PMV and PAV, and total 

lifetime mileage of PAV 

The analysis results with respect to VOTT, RVOTT, and total lifetime mileage of PAVs 

are presented in Figure 3.5. The PAV adoption would be the optimal solution if RVOTT is below 

a certain threshold, which increases with an increase in the total lifetime mileage of PAV or VOTT 

(Figure 3.5). For example, if the total lifetime mileage of PAVs is 200,000 miles and the VOTT 

of users is $26/hr, the RVOTT should be less than or equal to 0.5, for PAVs to be the optimal 
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solution.  Reducing VOTT by improving amenities on-board, advancing the total lifetime mileage 

of PAVs, and the adoption of PAVs by users with high VOTT,  are the ways to make these vehicles 

an optimum option in the fleet. 

 

Figure 3.5 Optimal vehicle type (PMV and PAV), in absence of shared mobility, considering 

variations in VOTT, Reduction Factor for VOTT (RVOTT) and Total lifetime mileage of PAV  

3.5.4 Emission Production in Different Scenarios 

The emission produced in the system may vary due to the changes in parameters such as 

VMT, driving behavior, replacement rate, number of cold-starts, emission per cold-start, number 

of trips. These parameters may vary across different regions. Also, the societal cost of producing 

one unit of emission, for different emissions (CO2, CO, and NOx) may vary with time, depending 

upon their effect on the environment. The sensitivity analysis of the emission production and the 

associated cost, with respect to these parameters, is presented in the following sub-sections. 
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3.5.4.1 Emission Production while optimizing total system cost  

The replacement rate and societal cost per unit of different emissions are the two most 

important factors affecting the optimal solution and the amount of emission produced. The lower 

replacement rate or CO2 Cost, or higher CO Cost, make SAVs the optimal solution (Figure 3.6). 

The running emissions (CO2) are higher (Figure 3.6 a and c), but the cold-start emissions (CO) are 

lower (Figure 3.6 b and d), in the SAV system than that in the PMV system. The reason is that 

each SAV keeps on empty repositioning itself to serve the trips with the engine being turned off 

less frequently, which increases the VMT but decreases the number of cold-starts. Further, the 

higher replacement rate reduces the number of cold-starts and associated cold-start emissions in 

an SAV system (Figure 3.6b). The higher replacement rate also causes an exponential increase in 

empty miles generated resulting in an increase in VMT and associated costs such as running 

emissions (Figure 3.6a), Thus, SAVs are not the optimal solution at a higher replacement rate. 

However, if the societal cost of CO is significantly high, then SAVs can be the optimal solution 

even at a higher replacement rate. For example, the SAVs are the optimal solution if the societal 

cost of CO is at least $7000/tonne, at a replacement rate of 12 PMVs per SAV (Figure 3.6 a and 

b). At a low replacement rate (𝛾𝑠𝑎𝑣 = 4), the empty miles generated, and the average waiting time 

is negligible. Thus, SAVs would always be the optimal solution, under different CO Costs (Figure 

3.6 a and b). Considering the cost of CO2, the optimal solution is invariably the adoption of PMVs 

at higher replacement rates (𝛾𝑠𝑎𝑣 = 8 𝑜𝑟 12) (Figure 3.6 c and d). It is due to the higher system 

cost in the SAV system, which further increases with an increase in CO2 cost. However, at 

significantly low replacement rates ( 𝛾𝑠𝑎𝑣 = 4), the negligible empty miles generation and waiting 

time, can make SAVs the optimal solution if CO2 cost is below a certain threshold (< $100/tonne) 

(Figure 3.6 c and d). The PAVs do not appear in the market because of the significant increase in 
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VMT and trip generation, resulting in higher emissions, operating costs, ownership costs, and 

travel time costs.  

 

Figure 3.6 Sensitivity to Emission Cost 

3.5.4.2 Sensitivity to Emission Cost while Minimizing Emission Cost 

This section represents the emission produced and the optimum vehicle type with an 

objective to minimize the emission cost. The higher replacement rate favors PMVs as the optimal 

solution, similar to what was observed while minimizing the system cost (Figure 3.7). However, 

the optimum market switches to SAVs at lower CO costs, while minimizing only the emission cost 
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(Figure 3.7 a and b). This is due to the smaller share of the emission cost in the total system cost 

estimated. The reason is that the higher replacement rate is only increasing running emissions 

rather than other costs while minimizing emission costs. Further, the cost of CO2 should be below 

a certain threshold (e.g. $50/tonne at 𝛾𝑠𝑎𝑣 = 4) for SAVs to be the optimal solution (Figure 3.7 c 

and d). This threshold increases with a decrease in the replacement rate because of the reduction 

in running emissions  (CO2) in the SAV system (Figure 3.7 c and d). The adoption of PAVs 

increases the total miles traveled and the number of cold-starts in the system, due to the generation 

of empty miles, improved mobility, and increased number of trips. Hence, the adoption of these 

vehicles would result in higher emission production than that of PMVs/SAVs.  

 

Figure 3.7 Sensitivity to Emission Cost while Minimizing Emission Costs 
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3.5.5 Analysis results for the real-world scenarios 

The analysis and results in the aforementioned sections are based on parameter estimations 

for mid-sized urban areas in the US. This section considers and compares two cities of  San 

Francisco, CA, and Hammond, LA. These two cities are selected based on their distinct 

characteristics. San Francisco, CA is one of the largest cities in the US with a high wage rate, high 

fuel prices, and a large number of trips. Hammond, LA is one of the small cities with low wage 

rates, low fuel prices, and a smaller number of trips. The characteristics of these cities are presented 

in Table 3.3. 

Table 3.3 Characteristics of the cities 

Parameter Definition San Francisco, CA Hammond, LA 

𝑇𝑝𝑡 Number of daily trips in the system in 2017 

(NHTS, 2017) 

1155288.1 

 trips/day 

19292.76 

 trips/day 

𝑉𝑀𝑇 VMT in the city in 2017 (NHTS, 2017) 9226712 miles/day 128428.4 

miles/day 

𝜏 Number of daily vehicle trips per household 

(Mcguckin and Fucci, 2018) 

5.11 trips/hh 5.11 trips/hh 

𝜇 Number of vehicles per household (Mcguckin 

and Fucci, 2018) 

1.88 veh./hh 1.88 veh./hh 

𝜆 Trips per vehicle  𝜏

𝜇
  

𝜏

𝜇
  

𝑁0 Number of vehicles required 𝑇𝑝𝑡

𝜆
  

𝑇𝑝𝑡

𝜆
  

𝑚𝑝𝑚𝑣
𝑝𝑣

  Average VMT per PMV 𝑉𝑀𝑇

𝑁0
× 365 

𝑉𝑀𝑇

𝑁0
× 365 
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𝑚𝑝𝑚𝑣
𝑝𝑦

 Total annual miles of each PMV in 2017 

(FHWA, 2019) 

11,467miles/yr.  11,467miles/yr.  

𝐶𝑓 Fuel cost in 2017 (EIA, 2020a, 2020b)  $ 3.142/gallon  $ 2.295/gallon  

𝑉𝑏
𝑡𝑡 Value of Travel Time (VOTT) for PMV for 

USA (van den Berg and Verhoef, 2016) 

$18.82/hr.  $18.82/hr.  

𝑊𝑏 The average wage rate of the US in 2017 

(Tradingeconomics.com, 2020). 

$22.05/hr $22.05/hr 

𝑊𝑟 The average wage rate for the city in 2017 

(BLS, 2018a, 2018b) 

$33.51/hr $18.02/hr 

𝑉𝑝𝑚𝑣
𝑡𝑡    VOTT for PMV for the city 𝑉𝑏

𝑡𝑡 ×𝑊𝑟

𝑊𝑏
 

𝑉𝑏
𝑡𝑡 ×𝑊𝑟

𝑊𝑏
 

    

The analysis results for the two cities under the current scenario suggest PMVs as the 

optimal solution. However, the sensitivity results regarding various parameters, such as the 

purchase price of PMVs/SAVs, replacement rate, and RVOTT show the variation in the optimal 

solution (Figure 3.8).  It can be observed that the relative threshold (slope and intercept) of the 

purchase price of PAV/SAV, below which SAVs are the optimal solution, is higher for the city of 

Hammond as compared to San Francisco (Figure 3.8a). This is because the waiting time cost 

associated with SAVs is higher in San Francisco due to the higher wage rate and higher cost of 

waiting compared to the users in Hammond. Hence, the adoption of SAVs would be more 

favorable in the city of Hammond. The PAVs are not the optimal solution due to their high 

normalized ownership cost. 

Table 3.3 (cont’d) 



68 

  

i) Hammond, LA ii) San Francisco, CA 

a) Sensitivity to the purchase price of vehicles 

 

  

i) Hammond, LA ii) San Francisco, CA 

b) Sensitivity to the replacement rate of SAVs and RVOTT 

Figure 3.8 Sensitivity analysis results for the city of Hammond, LA, and San Francisco, CA 

The base values for the replacement rate and RVOTT for SAVs are 12 PMVs per SAV and 

0.8, respectively. However, the optimum choice is sensitive to these two parameters, as observed 

in Figure 3.8b. The replacement rate has to be below a certain threshold for SAVs to be the optimal 

solution so that the waiting time of the users, empty miles generated, and the associated costs are 
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reduced. This threshold decreases with an increase in RVOTT as the driver productivity decreases 

in AVs, which increases the travel time cost for PAV/SAVs. The higher threshold for the 

replacement rate of SAVs in the city of Hammond as compared to that of San Francisco makes 

Hammond to be more favorable for the adoption of SAVs. Another conclusion is that PAVs can 

be the optimal solution in San Francisco if the reduction in VOTT is relatively high (RVOTT ≤

0.3) and fewer SAVs are available (replacement rate of SAVs is greater than 17 PMVs per SAV). 

This significantly reduces the travel time cost associated with PAV/SAVs. However, the waiting 

time, empty miles, and the associated cost for the SAV system are significantly high due to the 

high replacement rate making them a non-optimal choice. A similar observation can not be made 

for Hammond as the overall cost for PMV is still lower than PAVs even at low RVOTT due to the 

lower VOTT of users and the higher purchase price of PAVs. Thus, the effect of high ownership 

costs of PAVs dominates over the impact of the high travel time cost of PMVs.  

3.6 Summary 

Autonomous Vehicles and Shared Autonomous Vehicles claim to have significant benefits 

to the transportation system, such as improved safety, road capacity, mobility, and reduction in 

emission (due to the efficient driving pattern). However, these vehicles will also increase VMT in 

the system, which may increase the emissions, travel time, and operating cost of the vehicle. 

Further, the purchase price of these vehicles would be higher than that of Human-driven Vehicles. 

To gain insight regarding how PAVs and SAVs will affect the environment and transportation 

system, the travel pattern, emission, and cost functions for these vehicles are developed and 

calibrated. Then, to minimize the negative impacts and maximize the benefits of these vehicles in 

a transportation system, a multi-objective optimization model is proposed to find the optimum 

fleet configuration by minimizing the overall cost of the system. The system cost consists of 
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emissions (running and cold start), travel time, waiting time, operating, and ownership cost. The 

objective of this study is to determine the optimum vehicle type (PMV, PAV, or SAV) and fleet 

size resulting in the reduction of emissions or overall system cost.  

Some of the findings of this study are intuitive, which are used to confirm the barebone of 

the study. However, this study also has some major findings that are unique and valuable to expand 

the current line of research. These are separated in the summary section for clarification purposes.  

Intuitive findings 

• The adoption of PAVs/SAVs is affected not only by the high ownership cost and waiting time 

but mainly by the increased VMT, which increases operating costs.  

• The higher running emission cost of autonomous vehicles (due to increased VMT) is more 

than the savings in cold-start emissions by SAVs. 

• The lower replacement rate, or lower CO2 cost, or higher CO cost favor SAVs as the optimal 

solution for emission cost minimization. 

• The adoption of PAVs would always result in higher emissions costs as compared to that of 

PMV/SAV due to an increase in VMT and trip generation. Hence, these vehicles do not appear 

in the market while minimizing the emission cost. 

Contributory findings 

• This study finds a threshold for the required reduction in the value of travel time. In other 

words, the required improvements for efficient use of travel time to overcome the other high 

costs of adoption of autonomous vehicles. This can be done by improving on-board amenities 

and maybe even the drivetrain, which is valuable information for car companies and their 

investment policy.  
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• SAVs are often selected as the optimal choice compared to PAVs. This study derives simplified 

adoption models for this choice. The simplified adoption models have the ability to get 

peripheral conditions as an input and find the following factors that make SAVs the optimum 

choice: 

­ Relative purchase price function for SAVs and PMVs.  

­ The replacement rate of SAVs (significantly lower than current suggested/expected 

practice)  

­ Reduced value of travel time for SAVs (substantially reduced) 

­ The unit cost of different types of emission (CO2 and CO)(using appropriate policies) 

These simplified models can be adopted by policymakers and/or investors. 

• The adoption of SAVs is more favorable for Hammond, LA, as compared to San Francisco, 

CA. The main reason is the lower wage rate in Hammond, which reduces the waiting cost. 

• In the absence of shared mobility, PAVs can be the optimal solution, under the conditions 

suggested by the simplified adoption models derived in this study. The simplified adoption 

models can be adopted by policymakers and/or investors to meet the following requirements: 

­ On-board amenities improvement 

­ Improved total lifetime mileage of PAVs  

­ The target group for adoption of PAVs (Adopted by users with a high value of travel 

time) 

• PAVs are only the optimal solution when the AV technology is installed in luxurious cars and 

in the absence of shared mobility. 
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 OPTIMUM ADOPTION OF AV AND EV IN PRIVATE AND 

SHARED MOBILITY SYSTEMS 

4.1 Overview 

The AV and EV technology have synergies. These two technologies enhance and 

ameliorate the effects of one another and promote their adoption. Hence, it is essential to capture 

the combined effect of these two technologies on the environment and the transportation system. 

A modeling framework is developed to capture the trade-offs among the competing factors that 

govern the overall impact of EVs and AVs on the transportation system and environment. A fleet 

optimization problem considers the different combinations of these technologies in private and 

shared mobility systems in a network of multiclass users with different VOTT. The objective is to 

minimize the system cost, which is a combination of total time, emissions, ownership cost, driver 

cost, and crash cost.   

The remainder of this study is as follows. Section 4.2 discusses the problem statement and 

objective of the study, followed by the problem formulation in section 4.3. The solution method, 

numerical results, and the summary are presented in sections 4.4, 4.5, and, 4.6, respectively.  

4.2 Problem Statement  

While the autonomous and electric vehicle technology might improve the transportation 

system in different aspects, there are certain other aspects that might worse off due to 

implementation of such technologies. Further, these technologies will have different effects on the 

private and shared mobility systems. It is important to note that the shared mobility system 

considered in this study is like a taxi system or other carpooling services provided by transportation 

network companies (TNC), which can serve multiple trips and users, and also allow users to 
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carpool in the same vehicle. In contrast to the private mobility system, the vehicles in the shared 

mobility system have high utilization rate (serving multiple trips) and high lifetime mileage. These 

mobility options have different positive and negative influence on the performance of 

transportation systems. The different combinations of these technologies will govern the overall 

impact on the transportation system. However, the variety of trade-offs (Figure 4.1) embedded in 

these options makes it challenging to determine the optimum combinations of these technologies 

required to provide a sustainable transportation system. This optimization and cost-benefit analysis 

are necessary for policy makers to implement and invest in the best incentive policies. 

 

Figure 4.1 Trade-offs associated with different mobility options  
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This study aims to estimate the optimal fleet configuration considering AV and EV 

technologies in a private and/or shared mobility system to minimize the total system cost. This 

configuration is defined by the number of vehicles of each type and the number of PMVs each 

vehicle type replaces to ensure all trips' feasibility. The vehicle types considered here are PMVs, 

private manual-driven electric vehicles (PMEVs), private autonomous vehicles (PAVs), and 

private autonomous electric vehicles (PAEVs). Similarly, these vehicles are considered in a shared 

capacity (Shared manual-driven vehicle (SMV), shared manual-driven electric vehicle (SMEV), 

shared autonomous vehicle (SAV), shared autonomous electric vehicle (SAEV)). These vehicle 

types are shown in Figure 4.2. Another important factor considered in the study is the replacement 

rate of each vehicle type. The replacement rate is defined as the number of PMVs replaced by one 

vehicle of type 𝑗, serving equivalent trips. One shared vehicle or an AV can serve multiple trips 

by continuous repositioning to different pickup locations. Hence, these vehicles can replace 

multiple PMVs, which reduces the number of vehicles in the system. However, a higher 

replacement rate increases the waiting time, empty miles, and inconvenience of users. A nonlinear 

optimization model is developed to minimize the total system cost, with the number of vehicles of 

each type, the replacement rate of each vehicle type, and the number of interzonal trips of the 

different user classes served by each vehicle type as decision variables. The system cost includes 

the following cost terms in the monetary unit: travel time (tt), waiting time (wt), emissions (running 

emission (re) and cold-start emission (cs)), operating (op), normalized ownership (noc), driver 

(dr), and crash (cr). These costs are estimated considering different factors as shown in Figure 4.3. 

The notations used in the study are presented in Table 4.1. 
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It is important to note that this study considers multiclass users with different VOTT. 

Further, the study considers fully autonomous vehicles (Level 5 Autonomy) that do not require 

any driver assistance. 

 

Figure 4.2 The vehicle type considered in this study based on different technologies/systems 

PMV: Private Manual-driven Vehicle 

PMEV: Private Manual-driven Electric Vehicle 

PAV: Private Autonomous Vehicle 

PAEV: Private Autonomous Electric Vehicle 

SMV: Shared Manual-driven Vehicle 

SMEV: Shared Manual-driven Electric Vehicle 

SAV: Shared Autonomous Vehicle 

SAEV: Shared Autonomous Electric Vehicle 
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Figure 4.3 Diagram of different cost terms in the objective function and influencing factors 
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Table 4.1 Nomenclature 

Sets Definition 

𝑜, 𝑑, 𝑧 ∈ 𝑍 Set of different zones (o= origin zone, d=destination zone, z=zone) 

𝑘 ∈ 𝐾 Set of different user class 

𝑖 ∈ 𝐼 Set of different emissions considered {𝐶𝑂2, 𝑁𝑂𝑥 , 𝑉𝑂𝐶, 𝑃𝑀} 

 𝑗 ∈ 𝐽  Set of different vehicle types considered {PMV, PMEV, PAV, PAEV, SMV, SMEV, SAV, SAEV} 

𝑔 ∈ G 

Set of different cost types    {

𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑐𝑜𝑠𝑡(𝑟𝑒), 𝐶𝑜𝑙𝑑 𝑆𝑡𝑎𝑟𝑡 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑐𝑜𝑠𝑡(𝑐𝑠),

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝑐𝑜𝑠𝑡(𝑛𝑜𝑐), 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡(𝑜𝑝)

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝑐𝑜𝑠𝑡(𝑡𝑡), 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑐𝑜𝑠𝑡 (𝑤𝑡)

𝐷𝑟𝑖𝑣𝑒𝑟 𝑐𝑜𝑠𝑡 (𝑑𝑟), 𝐶𝑟𝑎𝑠ℎ 𝐶𝑜𝑠𝑡 (𝑐𝑟)

 

𝑏 ∈ 𝐵 {peak hour, off-peak hour} 

Decision 

variable 

Definition 

𝑁𝑗 The number of vehicles of vehicle type 𝑗 

𝛾
𝑗
 Replacement rate (equals to 1 for PMV, PMEV) 

𝑓
𝑗𝑘𝑜𝑑

 The fraction of 𝑂𝐷 trips for user class 𝑘 served by vehicle 𝑗 

State 

variables 

Definition 

𝐴𝑗 The average number of times the one vehicle needs to be refueled in time 𝑡0 for vehicle type 𝑗 

𝐶𝑗
𝑔
 Total cost of type 𝑔 for vehicle type 𝑗 

𝐸𝑖𝑗
𝐶𝑆 Cold-start emission normalized per mile  

𝑚𝑗
′  The total interzonal miles per vehicle j in the time 𝑡0 

𝑚𝑗
′′ The total detour miles traveled to refueling station per vehicle 𝑗 in the time 𝑡0 
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𝑚𝑗
′′′ The total intrazonal miles per vehicle 𝑗 to pickup/drop off different riders in carpooling trips for the 

shared mobility 

𝑚𝑗 The total miles traveled per vehicle 𝑗 in the study time period 𝑡0 

𝑡𝑗 The total time spent by one vehicle of vehicle type 𝑗 

𝑇𝑇𝑜𝑑𝑏  The travel time from zone 𝑜 to 𝑑 during time period 𝑏(peak or off-peak)  

𝑈𝑗 Total number of vehicle trips in the original system (in the absence of EV/AV technology) that 

should be served by vehicle 𝑗 

𝑉𝑗𝑜𝑑𝑏 The average vehicle trips per hour during  time period 𝑏 (peak or off-peak), along the path between 

zone 𝑜 and 𝑑 by vehicle 𝑗, respectively 

𝑊𝑗
′  The average interzonal waiting time per person trip 

𝛼𝑗 Factored VMT increase due to the empty rides for repositioning of autonomous vehicles  

Parameter Definition Function/Values  Source 

𝐸𝐶𝑂2,𝑗
𝑅𝐸  Running emission (CO2) 

considering efficient-driving 

profile for AVs and 

nonefficient-driving profile for 

non-AVs  

{
338 g/mile          j ∈ {PMV, SMV}

260 g/mile           j ∈ {PAV, SAV}
0                                  otherwise

 

(He et al., 2015; 

Int Panis et al., 

2006; Singh et 

al., 2021) 

𝐸𝑁𝑂𝑥,𝑗
𝑅𝐸  Running emission (NOx-

)considering efficient-driving 

profile for AVs  and 

nonefficient-driving profile for 

non-AVs 

{
148 mg/mile         j ∈ {PMV, SMV}

118 mg/mile           j ∈ {PAV, SAV}
0                             otherwise

 

(He et al., 2015; 

Int Panis et al., 

2006; Singh et 

al., 2021) 

𝐸𝑉𝑂𝐶,𝑗
𝑅𝐸  Running emission (VOC) 

considering efficient-driving 

profile for AVs and 

{
491 mg/mile          j ∈ {PMV, SMV}

589 mg/mile           j ∈ {PAV, SAV}
0                                  otherwise

  

(He et al., 2015; 

Int Panis et al., 

2006; Singh et 

al., 2021) 

Table 4.1 (cont’d) 
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nonefficient-driving profile for 

non-AVs  

𝐸𝑃𝑀,𝑗
𝑅𝐸  Running emission 

(PM)considering efficient-

driving profile for AVs  and 

nonefficient-driving profile for 

non-AVs 

{
8747 μg/mile         j ∈ {PMV, SMV}

6378 μg/mile           j ∈ {PAV, SAV}
0                             otherwise

  

(He et al., 2015; 

Int Panis et al., 

2006; Singh et 

al., 2021) 

ℎ𝑗 Hourly pay rate for a driver 

($/hr) 

{
$12/hr       j ∈ {SMV, SMEV}

0                            otherwise
 

(PayScale, 

2019) 

𝑙𝑗
′  The average detour distance 

traveled per 

refueling/recharging 

  

𝑙𝑜𝑑 The interzonal distance 

between the zones 𝑜 and 𝑑 

(∀ 𝑜 ≠ 𝑑) 

  

𝑄
𝑘𝑜𝑑𝑏

 Number of trips from zone 𝑜 to 

zone 𝑑 (∀ 𝑜 ≠ 𝑑) during period 

𝑏 for the user class 𝑘 

  

𝑅𝑗 Range (in miles) for the vehicle 

type 𝑗 

{
300 miles      j ∈ {PMV, PAV, SMV, SAV}

150 miles     j ∈ {PMEV, PAEV, SMEV, SAEV}
  

 

𝑠𝑗 The average speed of the 

vehicle 

 30 miles/hr (Singh et al., 

2021) 

𝑡0 Duration of study   

𝑡𝑗
′  The average time required per 

refueling 

{
1.5 min     j ∈ {PMV, PAV, SMV, SAV}

1 hr           j ∈ {PMEV, PAEV, SMEV, SAEV}
  

 

𝑡𝑗
′′ The average inconvenience 

time at the refueling station 

3 minutes        

Table 4.1 (cont’d) 
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𝑥𝑗 Crashes per million (106) VMT 

for vehicle type 𝑗 

5          j ∈ {PMV, PMEV, SMV, SMEV}

2.5        j ∈ {PAV, PAEV, SAV, SAEV}
  

(Cicchino, 2017; 

Tefft, 2017) 

𝑦 Equivalent cost per crash $26,745 per crash 

 

(Fletcher, 2019; 

Tefft, 2017) 

𝜒
𝑧
 The average intrazonal distance 

between different locations at 

zone 𝑧 for users carpooling. 

  

𝜆𝑗 Average car occupancy   

𝜏𝑏 The time during time period 𝑏   

Λ𝑗𝑜𝑑 Capacity (veh/hr) of the 

roadway along the link from 

zone 𝑜 to zone 𝑑 in a system of 

vehicle type 𝑗 

 (Childress et al., 

2015) 

 

𝜇
𝑗𝑜𝑑

 The fraction of person trips 

carpooling from zone o to zone 

𝑑 served by vehicle 𝑗 

{
N/A     j ∈ {PMV, PMEV, PAV, PAEV}

0.2          j ∈ {SMV, SMEV, SAV, SAEV}
   

 

𝜂
𝑗
 Factored increased in the 

number of trips due to the 

improved mobility with the 

adoption of vehicle 𝑗 

{

1             j ∈ {PMV, PMEV}                        

1.14      j ∈ {SMV, SMEV}                         

1.20         j ∈ { PAV, PAEV, SAV, SAEV}

  

(Singh et al., 

2021) 

𝛽
𝑖
 Equivalent cold-start emission 

per mile in a  PMV system {

14 g/mile               i =  CO2
80 mg/mile          i =  NOx 

1,963 mg/mile     i =  VOC

11 mg/mile         i = PM

  

(He et al., 2015; 

Int Panis et al., 

2006; Reiter and 

Kockelman, 

2016; Singh et 

al., 2021) 

Table 4.1 (cont’d) 
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𝜔𝑘 Value of travel time (VOTT) 

for user class k 
{
$20/hr       k = 1  

$50/hr       k = 2 

$100/hr     k = 3

  

 

Δ𝑗 Reduction factor for VOTT 

(RVOTT) due to the adoption 

of vehicle j 

{
1           j ∈ {PMV, PMEV}           
0.8         j ∈ {PAV, PAEV}                
0.9    j ∈ {SMV, SMEV, SAV, SAEV}

  

(Singh et al., 

2021) 

 

Assumed 

𝜛𝑘 Value of waiting time (VOWT) 

for user class 𝑘 

 (Singh et al., 

2021) 

𝜋𝑖 The societal cost of producing 

one unit of emission 𝑖 

{
 

 
               $50/metric ton        i =  CO2
        $7,900/metric ton       i =  NOx
         $2,000/metric ton       i =  VOC

$360,383/metric ton     i = PM

  

(US DOT, 2015)  

𝜌
𝑗
 Average purchase price of the 

vehicle type 𝑗 

{
 
 

 
 
$30,000                            j ∈ {PMV, SMV}

 4 × (ρ
PMV

)0.87        j ∈ {PMEV, SMEV}

 ρ
PMV

+ $10,000             j ∈ {PAV, SAV}

4 × (ρ
pav
)0.87          j ∈ {PAEV, SAEV}

  

(EnergySage, 

2019; IHS, 

2014; NADA, 

2012) 

 

𝛿𝑗 Total lifetime mileage of the 

vehicle j 

{
130,000 miles     j ∈ {PMV, PMEV, PAV, PAEV}

250,000 miles     j ∈ {SMV, SMEV, SAV, SAEV}
  

(Singh et al., 

2021) 

(Singh et al., 

2021) 

Ω Life of EV battery 100,000 miles (Union of 

Concerned 

Scientists, 2019) 

𝜗 The total price of the battery $9,600 (BloombergNEF

, 2020; 

Ghamami et al., 

2019) 

𝜑
𝑗
 Average fuel cost per mile 

{

$0.10/mile             j ∈ {PMV, SMV}

 $0.04 /mile           j ∈ {PMEV, SMEV}

$0.07/mile              j ∈ {PAV, SAV}

  $0.03 /mile           j ∈ {PAEV, SAEV}

  

 (AAA, 2017; 

ChooseEnergy, 

2019; FHWA, 

Table 4.1 (cont’d) 
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2017; Ghamami 

et al., 2019; 

Wadud et al., 

2016) 

𝜎𝑗 Maintenance cost per mile 
{

$0.08/mile       j ∈ {PMV, PAV, SMV, SAV}

$0.04/mile       j ∈ {PMEV, PAEV, SMEV, SAEV}
  
(AAA, 2017; 

Berman, 2016) 

𝜁 Average trips per PMV per day  (Santos et al., 

2011) 

 

4.3 Problem Formulation 

This study aims to capture the effects of different technologies (electrification and 

automation) on the transportation system. The adoption of these technologies has a variety of 

impacts on users' convenience, travel behavior, travel cost, and travel time. These technologies 

will also impact the traffic flow dynamics, safety, and emission in transportation systems. The cost 

of owning and operating these vehicles is different than those of PMVs. Thus, an optimization 

framework is proposed to find the optimum fleet configuration in a private and shared mobility 

system. The study considers eight different vehicle types, four in private mode (PMV, PEV, PAV, 

PAEV) and four in the shared system (SHDV, SEV, SAV, SAEV). The modeling framework, cost 

components, and factors influencing the adoption of different technologies are explained in the 

following subsections. The notations used in this study are listed in Table 4.1. The superscripts are 

used to define the cost types such as 𝑡𝑡 for travel time, 𝑟𝑒 for running emissions, 𝑐𝑠 for cold-start 

emissions, etc. The subscripts are used for indices in the sets such as 𝑗  and 𝑘 for vehicle type and 

user class, respectively. 

 

 

Table 4.1 (cont’d) 
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4.3.1 Optimization Problem 

The trade-offs associated with different technologies and systems have specific effects on 

various cost types. However, finding the adoption strategy with the minimum overall cost to the 

transportation system is essential. The objective of the study is to estimate the optimum fleet 

configuration that will result in minimum transportation cost, including time (travel time cost, 

waiting time cost), emission (running and cold start), ownership, operating, driver cost, and crash 

cost (Equation 72). The decision variables are the number of vehicles (𝑁𝑗) of each vehicle type 𝑗, 

the replacement rate (𝛾𝑗) for each type, and the fraction of 𝑂𝐷 trips for user class 𝑘 served by 

vehicle 𝑗 (𝑓𝑗𝑘𝑜𝑑). The parameters 𝐶𝑗
𝑔

 are the costs associated with the adoption of vehicle 𝑗 (𝑗 ∈

{𝑃𝑀𝑉, 𝑃𝑀𝐸𝑉, 𝑃𝐴𝑉, 𝑃𝐴𝐸𝑉, 𝑆𝑀𝑉, 𝑆𝑀𝐸𝑉, 𝑆𝐴𝑉, 𝑆𝐴𝐸𝑉} ) for the cost type 𝑔 . The optimization 

framework proposed is as follows: 

min 𝑍 =∑∑𝐶𝑗
𝑔

𝑔𝑗

 72 

s.t.:  

    ∑ 𝑓𝑗𝑘𝑜𝑑𝑗 = 1                             ∀𝑘, ∀𝑜, ∀𝑑, 𝑜 ≠ 𝑑 73 

     𝑡𝑗 ≤ 𝑡0                                      ∀𝑗   74 

     𝛾𝑗𝑁𝑗 =
𝑈𝑗

𝜁
                                ∀𝑗  75 

     𝑁𝑗 ≥ 0                                      ∀𝑗 76 

     𝛾𝑗 = 1                                       𝑗 𝜖 {𝑃𝐻𝐷𝑉, 𝑃𝐸𝑉, 𝑃𝐴𝑉, 𝑃𝐴𝐸𝑉} 77 

     𝛾𝑗 ≥ 2                                       𝑗 𝜖 {𝑆𝐻𝐷𝑉, 𝑆𝐸𝑉, 𝑆𝐴𝑉, 𝑆𝐴𝐸𝑉} 78 
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  𝑓𝑗𝑘𝑜𝑑 ≥ 0                         ∀𝑗, ∀𝑘, ∀𝑜, ∀𝑑, 𝑜 ≠ 𝑑 79 

Equation 73 ensures that all the trips of all the user classes are being served. Equation 74 

ensures that the total time spent, which includes interzonal time (travel and waiting time), 

intrazonal time (travel and waiting time), the detour time to the refueling station, the refueling 

time, and the inconvenience time at refueling stations, is less than the total time available (𝑡0). This 

constraint provides enough backup vehicles in the system to cover incidentals. Equation 75 

certifies that the trips assigned to a specific vehicle type are served by providing the equivalent 

number of vehicles considering the estimated replacement rate (𝛾𝑗𝑁𝑗). The term 𝑈𝑗  is the total 

number of vehicle trips in the original system (in the absence of EV/AV technology) that should 

be served by vehicle 𝑗. The term 𝜁 is the number of vehicle trips per vehicle in the original system 

when there are only human-driven vehicles. Equations 76 to 79 are the feasibility constraints. The 

number of vehicles should be positive.  The replacement rate for private modes are set as 1. The 

replacement rate for shared mode is set to a lower bound of 2 to operate as a shared mobility system 

(Equation 78). The fraction (𝑓𝑗𝑘𝑜𝑑) should be greater than zero. The term 𝑈𝑗 is defined as follows: 

𝑈𝑗 =∑∑∑(⌈
𝜇𝑗𝑜𝑑 ∑ 𝑓𝑗𝑘𝑜𝑑𝑄𝑘𝑜𝑑𝑏𝑘

𝜆𝑗
⌉ + (1 − 𝜇𝑗𝑜𝑑)∑𝑓𝑗𝑘𝑜𝑑𝑄𝑘𝑜𝑑𝑏

𝑘

)

𝑏𝑑𝑜

 80 

 Where, 𝜇𝑗𝑜𝑑 represents the fraction of users willing to carpool and is set as zero for private 

modes. The 𝜆𝑗 is the average car occupancy. The term 𝑄𝑘𝑜𝑑𝑏 is the total person trips in the original 

system between origin o and destination d, for the user class 𝑘, during the time-period 𝑏 (peak or 

off-peak hour). The different cost functions considered in the study are developed in the following 

subsections.  
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4.3.2 Travel time cost 

The sketch network is modeled as a complete graph with zone centroids as demand 

generation and attraction points. The vehicles are assumed to follow user equilibrium, minimizing 

their travel time. The average number of vehicle trips 𝑉𝑗𝑜𝑑𝑏 per hour for each vehicle type 𝑗, on 

the path between zones 𝑜 and 𝑑, during the peak/off-peak hour is expressed as follows:  

𝑉𝑗𝑜𝑑𝑏 = (⌈
𝜇𝑗𝑜𝑑𝜂𝑗 ∑ 𝑓𝑗𝑘𝑜𝑑𝑄𝑘𝑜𝑑𝑏𝑘

𝜆𝑗
⌉ + (1 − 𝜇𝑗𝑜𝑑)𝜂𝑗∑𝑓𝑗𝑘𝑜𝑑𝑄𝑘𝑜𝑑𝑏

𝑘

)(
1

𝜏𝑏
) 81 

Where, the term 𝜏𝑏 represents the time duration of period 𝑏. The 𝜂𝑗 captures the increased 

number of trips due to improved mobility with the adoption of AVs. Adoption of AVs leads to 

efficient use of the roadway, hence improving the roadway capacity. These vehicles also allow 

users to use their travel time more efficiently, consequently reducing the in-vehicle VOTT. AVs 

are known to enhance the mobility of non-drivers and reduce the parking cost due to self-parking 

at cheaper locations and better utilization of parking space (as no room is required for the driver 

to access the vehicle). All these potential benefits change the travel behavior of the users and 

increase the total trips in the system, which is captured by parameter 𝜂𝑗. The 𝑓𝑗𝑘𝑜𝑑 is the decision 

variable representing the fraction of the 𝑂𝐷 trips of user classes 𝑘 assigned to vehicle type 𝑗. This 

study captures the effect of high demand during peak periods on the utilization rate of vehicles and 

refueling/recharging requirements. However, to reduce the complexity of the optimization 

problem, this study assumes that the optimal solution is identical for both the peak and off-peak 

periods. 

The roadway capacity during peak/off-peak hour, along the path between zones 𝑜 and 𝑑 is 

estimated considering the fraction of different types of vehicles along the path, and the roadway 
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capacity (Λ𝑗𝑜𝑑 ) in a system of vehicle type 𝑗. This study accounts for the improved roadway 

capacity due to the adoption of AVs. The computer-controlled AVs operate at shorter headways 

(due to the reduced reaction time) and keep traffic flow parameters steady, boosting the maximum 

throughput/capacity (Lu et al., 2020). Considering the above effect on traffic flow, the travel time 

during peak/off-peak hour ( 𝑇𝑇𝑜𝑑𝑏) between zones 𝑜 and 𝑑 is obtained using BPR function as 

follows (Bureau of Public Roads, 1964): 

𝑇𝑇𝑜𝑑𝑏 = 𝑇𝑇𝑜𝑑
0

[
 
 
 
 
 

1 + 𝜉1

(

 
 ∑ 𝑉𝑗𝑜𝑑𝑏𝑗

(
∑ 𝑉𝑗𝑜𝑑𝑏𝑗 Λ𝑗𝑜𝑑
∑ 𝑉𝑗𝑜𝑑𝑏𝑗

)
)

 
 

𝜉2

]
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Where, 𝑇𝑇𝑜𝑑
0  is the free-flow travel time between zones 𝑜 and 𝑑.The terms, 𝜉1 and 𝜉2 are 

the calibrated parameters of the BPR function for different roadway conditions (Bureau of Public 

Roads, 1964). 

The carpooling users might experience additional intrazonal travel time at the origin and 

destination for picking up and dropping off. This extra travel time 𝑡𝑡𝑗𝑧 per person trip, experienced 

by the users already inside the vehicle, are obtained as follows: 

𝑡𝑡𝑗𝑧 =
𝜆𝑗 − 1

2
(
 χz 

𝑠𝑗
) 83 

Where, 𝜒𝑧 is the average intrazonal distance between pickup/drop-off locations at zone 𝑧. 

The 𝑠𝑗 is the average speed of vehicle type 𝑗. The total travel time cost for vehicle 𝑗 is defined as 

follows: 
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𝐶𝑗
𝑡𝑡 = ∑∑∑∑[𝑇𝑇𝑜𝑑𝑏 + 𝜇𝑗𝑜𝑑(𝑡𝑡𝑗𝑜 + 𝑡𝑡𝑗𝑑)]𝑓𝑗𝑘𝑜𝑑𝑄𝑘𝑜𝑑𝑏𝜂𝑗Δ𝑗𝜔𝑘

𝑏∈𝐵𝑑∈𝑍𝑜∈𝑍𝑘∈𝐾

 84 

Where 𝑍 is the set of zones in the network.The 𝜔𝑘 and Δ𝑗 are the VOTT for each user class 

𝑘 and reduction factor for VOTT (RVOTT) due to efficient use of travel time in vehicle type 𝑗. 

Unlike shared mobility systems and AVs, the users of private non-AVs cannot utilize their travel 

time to perform any other activity inside the car other than driving. Therefore, the RVOTT is set 

as 1 for private non-AVs (PMV, PEV). Further, the travel time savings in the shared mobility 

systems might be lesser than that in private AVs, due to the inconvenience to the users. Hence, the 

travel time savings in shared mobility systems is assumed to be half of that in private AVs. 

4.3.3 Waiting Time Cost 

The waiting time in a shared mobility system has two components. First, the time required 

for the empty vehicle to reach the origin of the first user (𝑊𝑗
′). Second, the average time required 

for the intrazonal trips (picking up the carpooling users in the same zone)  (𝑤𝑗𝑜 ).  The first 

component is a function of the replacement rate (𝛾𝑗) and the increased travel demand due to the 

adoption of AVs (𝜂𝑗) (Singh et al., 2021). The higher replacement rate will reduce the number of 

vehicles resulting in an increased trip load on each vehicle. Consequently, this will increase the 

average waiting time (Singh et al., 2021). The increasing number of trips in a given system 

increases the likelihood of closer consecutive trips, reducing the average waiting time and travel 

distance (Singh et al., 2021). The factor 𝑊𝑗
′ for the shared mobility system is defined as follows 

(Singh et al., 2021): 

𝑊𝑗
′ = 𝑚𝑎𝑥[(0.0003𝑒𝑥 𝑝(0.575𝛾𝑗) − 0.551𝜂𝑗

3  + 2.177𝜂𝑗
2 −  2.832𝜂𝑗  +  1.206), 0] 85 
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 The second component of the waiting time, defined as the average intrazonal time at the 

origin zone 𝑜, is defined as follows: 

𝑤𝑗𝑜 =
𝜆𝑗 − 1

2
(
𝜒𝑜
𝑠𝑗
) 86 

Thus, the total cost of waiting time 𝐶𝑗
𝑤𝑡 is as follows: 

𝐶𝑗
𝑤𝑡 =∑∑ ∑∑(𝑊𝑗

′ + 𝜇𝑗𝑜𝑑𝑤𝑗𝑜)𝑓𝑗𝑘𝑜𝑑𝑄𝑘𝑜𝑑𝑏𝜂𝑗𝜛𝑘
𝑏∈𝐵𝑑 ∈𝑍𝑜 ∈𝑍k∈K
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Where the term 𝜛𝑘 is the VOWT for the user class 𝑘. 

4.3.4 Miles Traveled  

The VMT in the system changes significantly with the adoption of different technologies. 

The AVs and shared mobility systems generate empty rides in the system, which increases VMT 

in the system. The improved mobility by the adoption of AVs further increases VMT in the system. 

Carpooling will reduce the interzonal miles, but it will add intrazonal miles to pickup/drop-off 

different users. EVs add extra detour miles for charging the vehicle due to the limited number of 

charging stations. To capture these effects, the total miles traveled is defined for each vehicle type. 

The total miles traveled include three categories: interzonal and intrazonal miles traveled, and 

detour miles traveled for refueling. The interzonal miles traveled per vehicle type 𝑗, include the 

occupied miles traveled and empty miles, as follows:  

𝑚𝑗
′ =

∑ ∑ ∑ 𝑉𝑗𝑜𝑑𝑏𝜏𝑏𝑙𝑜𝑑𝑏∈𝐵𝑑∈𝑍𝑜∈𝑍

𝑁𝑗
𝛼𝑗 88 

Where, 𝑙𝑜𝑑 and 𝑁𝑗 are the interzonal distance between zone 𝑜 and  𝑑, and the number of 

vehicles of type 𝑗 present in the system, respectively. The empty miles (𝛼𝑗) is the function of the 
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replacement rate 𝛾𝑗 and the increased number of trips (𝜂𝑗). The higher replacement rate increases 

the trip load on each vehicle, which increases the empty miles generated(Singh et al., 2021). The 

increased number of shared mobility trips increases the probability of consecutive trips closer, 

which reduces the overall empty miles (Singh et al., 2021). The empty mile function is given as 

follows (Singh et al., 2021): 

𝛼𝑗 = {

1                                                                                                  𝑗 𝜖 {𝑃𝐻𝐷𝑉, 𝑃𝐸𝑉}                     

max[(1.34 𝑙𝑜𝑔𝑒 𝛾𝑗 + 1.001), 1]                                          𝑗 𝜖 {𝑃𝐴𝑉, 𝑃𝐴𝐸𝑉}                     

max[(0.98 exp(0.008𝛾𝑗) −  0.04 log𝑒 𝜂𝑗 + 0.02 ), 1]   𝑗 𝜖 {𝑆𝐻𝐷𝑉, 𝑆𝐸𝑉, 𝑆𝐴𝑉, 𝑆𝐴𝐸𝑉}

 89 

 The detour miles traveled (𝑚𝑗
′′) to the refueling station, is critical for EVs considering the 

limited number of charging stations. It is a function of the density of refueling stations in the area 

(affecting average distance traveled per refueling (𝑙𝑗
′)) and the total number of times (𝐴𝑗) the 

vehicle needs to be refueled in a given time 𝑡0, which is defined as follows: 

𝑚𝑗
′′ = 𝐴𝑗𝑙𝑗

′ 90 

 The number of times a vehicle needs to be refueled (𝐴𝑗) is a function of total miles traveled 

(𝑚𝑗) during time 𝑡0, and the total miles a vehicle can drive on a full fuel tank or battery (known as 

the range (𝑅𝑗) of the vehicle), which is defined as follows: 

𝐴𝑗 =
𝑚𝑗

𝑅𝑗
 91 

The intrazonal miles are traveled within all the origin and destination zones to pick up and 

drop off users carpooling in the same vehicle. The total intrazonal miles traveled per vehicle (𝑚𝑗
′′′) 

is a function of  the average car occupancy, the average distance between consecutive pickup and 

drop-off locations, and the total carpooling trips, which is defined as follows: 
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𝑚𝑗
′′′ =

∑ ∑ ∑
(𝜆𝑗 − 1)
𝜆𝑗

(𝜒𝑜 + 𝜒𝑑)𝜇𝑗𝑜𝑑𝜂𝑗 ∑ 𝑓𝑗𝑘𝑜𝑑𝑄𝑘𝑜𝑑𝑏𝑘𝑏∈𝐵𝑑 ∈𝑍𝑜 ∈𝑍

𝑁𝑗
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The overall total miles per vehicle (𝑚𝑗) considering all the three components and using 

Equation 90 and 91, is as follows: 

𝑚𝑗 =

{
 

 (𝑚𝑗
′ +𝑚𝑗

′′′) (
𝑅𝑗

𝑅𝑗 − 𝑙𝑗
′)               𝑖𝑓 𝑁𝑗 ≠ 0        

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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4.3.5 Emissions  

The emission cost is estimated considering major pollutants carbon dioxide (CO2), nitrogen 

oxides (NOx), volatile organic compounds (VOC) and particulate matter (PM) (Int Panis et al., 

2006). The emission cost includes the societal cost of running and cold-start emissions in a system. 

The running emission cost (𝐶𝑗
𝑟𝑒) is a function of running emission per mile (𝐸𝑖𝑗

𝑟𝑒) for emission type 

𝑖, total miles per vehicle (𝑚𝑗) and the number of vehicles of vehicle type 𝑗 (𝑁𝑗), which is estimated 

as: 

𝐶𝑗
𝑟𝑒 =∑ 𝜋𝑖𝐸𝑖𝑗

𝑟𝑒𝑚𝑗
𝑖

𝑁𝑗 94 

 The term 𝜋𝑖 is the societal cost of producing a unit quantity of emission type. The term 

𝐸𝑖𝑗
𝑟𝑒 is derived considering instantaneous emissions (Int Panis et al., 2006) as the function of speed 

and acceleration of the vehicle type 𝑗, depending upon its driving behavior (eco-driving for AVs 

and non-eco-driving for other vehicles) (He et al., 2015; Singh et al., 2019).  

The cold-start emission cost (𝐶𝑗
𝑐𝑠) is a function of  normalized cold-start emission per mile 

(𝐸𝑖𝑗
𝐶𝑆), and the occupied interzonal vehicle miles. It is important to note that the factor 𝐸𝑖𝑗

𝐶𝑆 accounts 



91 

for the reduction in cold-start in a shared mobility system. The number of cold-starts reduces with 

increased replacement rate (𝛾𝑗) and travel demand (𝜂𝑗) in a shared mobility system, due to the 

continuous repositioning which reduces the frequency of engine shut-offs (Singh et al., 2019). The  

𝐸𝑖𝑗
𝑐𝑠 for non electric shared mobility system, based on the study by Singh et al., is given as follows 

(Singh et al., 2019): 

𝐸𝑖𝑗
𝑐𝑠 = max [

𝛽𝑖(0.645𝛾𝑗
−1.022 − 0.011𝜂𝑗

3 + 0.047𝜂𝑗
2 − 0.062𝜂𝑗 + 0.027)

0.64
, 0]      𝑗 𝜖 {𝑆𝐻𝐷𝑉, 𝑆𝐴𝑉} 95 

The cold-start emission cost is defined as follows: 

𝐶𝑗
𝑐𝑠 =∑ 𝜋𝑖𝐸𝑖𝑗

𝑐𝑠∑∑∑𝑉𝑗𝑜𝑑𝑏𝜏𝑏𝑙𝑜𝑑
𝑏

 

𝑑𝑜𝑖
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4.3.6 Ownership and Operation Costs 

The normalized ownership cost (𝐶𝑗
𝑛𝑜𝑐 ) over the study period (𝑡0) is a function of the 

purchase price (𝜌𝑗), total lifetime mileage of the vehicle 𝛿𝑗 (total miles a vehicle can travel during 

its entire lifetime), and miles traveled per vehicle (𝑚𝑗). It is important to note that the cost of 

adding AV technology is considered in the purchase price of AVs (𝜌𝑗).  The normalized ownership 

cost (𝐶𝑗
𝑛𝑜𝑐) is as follows: 

 𝐶𝑗
𝑛𝑜𝑐 =

𝜌𝑗

𝛿𝑗
𝑚𝑗𝑁𝑗 97 

 The operating cost (𝐶𝑗
𝑜𝑝

) includes fuel and maintenance costs. It is a function of the fuel 

cost per mile (𝜑𝑗), the maintenance cost per mile (𝜎𝑗), the miles traveled per vehicle (𝑚𝑗), the 

number of vehicles. For EVs, the battery might have to be replaced after its life is expired. Hence, 

the operating cost for EVs is also a function of the life of the battery (Ω), the battery price  (𝜗), 
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and the total lifetime mileage of the vehicle (𝛿𝑗). It is important to note that the fuel cost per mile 

(𝜑𝑗)  accounts for the reduction in fuel consumption due to the efficient driving behavior of AVs. 

The operating cost is defined as follows: 

𝐶𝑗
𝑜𝑝 = {

(𝜑𝑗 + 𝜎𝑗) 𝑚𝑗𝑁𝑗           𝑖𝑓 𝑗 𝜖 {𝑃𝐻𝐷𝑉, 𝑃𝐴𝑉, 𝑆𝐻𝐷𝑉, 𝑆𝐴𝑉}

(𝜑𝑗 + 𝜎𝑗 + ⌊
𝛿𝑗

Ω
⌋
𝜗

𝛿𝑗
 )  𝑚𝑗𝑁𝑗     𝑖𝑓 𝑗 𝜖 {𝑃𝐸𝑉, 𝑃𝐴𝐸𝑉, 𝑆𝐸𝑉, 𝑆𝐴𝐸𝑉}
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4.3.7 Driver Cost 

The non-AV shared vehicles (SHDV, SEV) require human drivers. Thus, there would be a 

cost to support the salary of these drivers. The labor cost (𝐶𝑗
𝑑𝑟) depends on the hourly salary of the 

driver (ℎ𝑗),  and the total service hours (𝑡𝑗). 

𝐶𝑗
𝑑𝑟 = ℎ𝑗𝑡𝑗𝑁𝑗  99 

 The total service hours can be divided into five components interzonal time (travel and 

waiting time), intrazonal time (travel and waiting time), the detour time to the refueling station, 

the refueling time, and the inconvenience time at a refueling station, which is defined as follows: 

𝑡𝑗 =
∑ ∑ ∑ (𝑇𝑇𝑜𝑑𝑏 +𝑊𝑗

′)𝑉𝑗𝑜𝑑𝑏𝜏𝑏𝑏𝑑𝑜

𝑁𝑗
+
𝑚𝑗
′′′

𝑠𝑗
+ 𝐴𝑗 (

𝑙𝑗
′

𝑠𝑗
+ 𝑡𝑗

′ + 𝑡𝑗
′′) 100 

  Where, 𝑡𝑗
′ and 𝑡𝑗

′′ are the average refueling time and inconvenience time at the refueling 

station. The inconvenience time is the time to drive the vehicle in and out of the station, remove 

and put the nozzle back, and pay at the station. 
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4.3.8 Crash Cost 

The adoption of AVs is known to reduce the number of crashes and the associated cost 

significantly. Hence, it is crucial to consider this cost to estimate the optimum vehicle fleet 

configuration. The cost estimated due to crashes 𝐶𝑗
𝑐𝑟 for vehicle type 𝑗 is as follows: 

𝐶𝑗
𝑐𝑟 = 𝑦𝑥𝑗𝑚𝑗𝑁𝑗 101 

Where, the term 𝑦 is the average monetary value per crash. The term 𝑥𝑗 is the crashes per 

VMT in a system of vehicle type 𝑗. This factor accounts for the reduction in crashes due to the 

adoption of AVs.  

4.4 Solution Method 

The optimization model is an NP-hard problem including nonlinear objective function with 

nonlinear constraints. It including various nonlinear functions (i.e., ceiling, exponential, and 

polynomial functions) for different variables. The small-scale hypothetical transportation problem 

is solved using nonlinear commercial solver ‘Knitro’. Knitro is one of the most powerful and 

commonly used solver for complex nonlinear optimization problems (Artelys, 2019; Byrd et al., 

2006; Ghamami et al., 2016). Therefore, the proposed model is implemented in AMPL and solved 

using Knitro. However, the current commercial solvers are unable to solve large-scale problems 

(i.e., a mid-size city in the US). Hence, the metaheuristic algorithms are developed based on the 

genetic algorithm (GA) and simulated annealing (SA) algorithm to solve large-scale problems. 

The developed metaheuristics are calibrated and validated using the small-scale network, and their 

performances are compared using a large-scale network in terms of solution quality and efficiency. 
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4.4.1 Genetic Algorithm (GA) 

The initial input to the real-coded GA includes detailed network data, travel demand, 

vehicle types, user classes, cost types, and user-defined algorithm parameters (Figure 4.4). The 

algorithm is initialized by generating a population of n (population size) random solutions (labeled 

as parent population set (PPS)). The algorithm is then performed for the total number of 

generations (gen) or until the termination condition is met. In each iteration, the objective function 

value (OBJ), constraint violation (CV), and fitness value (FV) are estimated for the population of 

solution. The CV, estimated after normalizing the constraint, is defined as follows: 

𝐶𝑉 =∑𝑞𝑒(𝑥)

𝑒

 102 

 In which, 𝑞𝑒(𝑥) is the non-negative constraint violation of the normalized 𝑒𝑡ℎ constraint. 

If the CV is zero, then the solution is feasible. To estimate FV the penalty-parameter-less approach 

is adopted, which is an efficient constraint handling method (Deb, 2012, 2000). The FV is defined 

as follows: 

𝐹𝑉 = {
𝑂𝐵𝐽        𝑖𝑓 𝐶𝑉 = 0

𝑂𝐵𝐽𝑚𝑎𝑥
𝑓𝑒𝑎𝑠

+ 𝐶𝑉      𝑖𝑓 𝐶𝑉 ≠ 0    
 103 

 Where, 𝑂𝐵𝐽𝑚𝑎𝑥
𝑓𝑒𝑎𝑠

 is the maximum OBJ among all the feasible solutions in a given 

population set. This method minimizes CV rather than 𝑂𝐵𝐽 if no feasible solution exists. Among 

two feasible solutions, the one with a smaller 𝑂𝐵𝐽 has a better fitness value (FV).  

In the next step, the selection/reproduction of different solutions is performed based on 

binary tournament selection without replacement (Deb, 2012). The solution with a lower fitness 

value has a higher chance of getting selected. Further, this method selects exactly two (binary) 

copies of the best solution (lowest fitness). The crossover operation is performed on the new 
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population set (labeled as child population set (CPS)) generated after the selection procedure. This 

study performs a simulated binary crossover (SBX) operator using a distribution index Φ𝑐 and 

crossover probability 𝑝𝑐. The SBX is an efficient crossover method for real-coded GA (Deb and 

Agrawal, 1995). The higher value of Φ𝑐 generates the child solutions closer to the parent solutions. 

The crossover operation helps in searching the space close to the existing solutions.  

Then the mutation operation is performed, which implements parameter-based mutation 

operation with polynomial distribution (distribution index Φ𝑚) (Deb, 2012, 2001). The mutation 

operation ensures that the algorithm avoids getting trapped in locally optimal solutions. The 

mutation probability (𝑝𝑚) is limited to small values otherwise it might affect some of the good 

solutions. 

Finally, the survivor selection is performed, which compares the new set of solutions (CPS) 

with the PPS and chooses the best population of the solution. This new set of best solutions is fed 

into the next iteration as PPS for the selection, crossover, and mutation process. The algorithm 

stops if the total number of generations is reached or the termination condition is met. Then, the 

solution with the lowest fitness is reported as the optimal solution. The flow-chart diagram of the 

proposed GA is as follows: 
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Figure 4.4 Flow chart diagram for Genetic Algorithm 

This study proposes a metaheuristic algorithm based on the real-coded genetic algorithm 

(GA). However, due to the complexity of the proposed model, the GA algorithm takes a 

considerable amount of time to solve the model. Thus, certain modifications are made to improve 



97 

the performance of the metaheuristic algorithm. First, the set of solutions is generated in such a 

way that the equality constraint in Equation 73 is always satisfied. This is done by assuming a new 

integer variable ∅𝑘𝑜𝑑  as follows: 

1 ≤ ∅𝑘𝑜𝑑  ≤ 𝐽𝑛 104 

Where, 𝐽𝑛 is the number of vehicle types considered in the study. The algorithm is fed with the 

input variable ∅𝑘𝑜𝑑 rather than 𝑓𝑗𝑘𝑜𝑑  to optimize the objective function. The variable 𝑓𝑗𝑘𝑜𝑑 is 

determined based on the estimated value of ∅𝑘𝑜𝑑, as follows: 

𝑓𝑗𝑘𝑜𝑑 = {
1             𝑖𝑓 𝑗 = ∅𝑘𝑜𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 𝑖𝑛 𝑠𝑒𝑡 𝐽 
0                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

     ∀𝑘, ∀𝑜, ∀𝑑, 𝑜 ≠ 𝑑 105 

Equations 104 and 105 ensures that the constraint in equation 73 is always satisfied. 

Further, the constraint in equation 75 is used to estimate 𝑁𝑗 from the variable 𝛾𝑗 and 𝑓𝑜𝑑𝑗𝑘, thereby 

making it always satisfied. These modifications make it easier for GA to find a feasible solution 

and reduces the time in searching for the feasible set. To further improve the efficiency of the 

modified GA, a parallelization approach is adopted which involves multiple processors cores 

(using a cloud cluster of high-performance computers) to perform evaluation operations on the 

large population set. The algorithm is initialized by generating a population of n (population size) 

random solutions. These n solutions are equally divided into smaller subsets, which are fed into 

different computer cores (80-100 computer cores) in a cloud cluster for improving the algorithm 

speed. The above modifications substantially reduce the time and improve the performance of the 

GA. 

4.4.2 Simulated Annealing (SA) 

The SA solution method proposed in this study starts with an initial feasible solution and 

determines the objective function value for this solution (Figure 4.5). The algorithm includes two 
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iterative procedures. In the first iteration, a control parameter is reduced (similar to reducing the 

temperature as annealing in metallurgy) which reduces the probability of accepting worst solution. 

In the second iterative procedure, the algorithm perturbs the current solution by changing the value 

of decision variables to get a neighborhood solution. The objective function value of the 

neighborhood solution is compared with that of the current solution. If the objective function value 

of the neighborhood solution is better, then the current solution is replaced by the neighborhood 

solution deterministically. However, if the objective function of the neighborhood solution is 

worse, then it might replace the current solution probabilistically depending upon the difference 

in the objective function values. This allows algorithm to avoid getting trapped in local optima 

(Ghamami et al., 2020a). The current solution is updated based on the objective function value of 

neighboring solution and existing current solution. Then, in the next iteration another neighboring 

solution is generated randomly based on the current solution. The probability of accepting a worse 

solution decreases by adjusting the control parameter through the first iterative procedure to ensure 

convergence to the best solution. As, the problem is NP hard nonlinear problem, so to improve the 

performance and time of the SA algorithm, high-tech computers with substantially available RAM 

is utilized. 
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Figure 4.5 Flow chart of Simulated Annealing algorithm 

4.5 Numerical Experiments 

The modeling framework is implemented for a hypothetical case study and the real-world 

transportation network of Ann Arbor, Michigan.  The values of different parameters for the "Base 

Scenario" are presented in Table 4.1.  The hypothetical case study includes a transportation 
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network with four zones and three user classes in a mid-sized urban area of the US.  These zones 

are assumed to be equidistant from one another (5 miles).  A total of 30,000 trips per day are 

assumed to be equally distributed among each user class for each 𝑂𝐷 pair.  The city of Ann Arbor 

consists of 36 Traffic Analysis zones (TAZ) and about 192,169 trips/day (Figure 4.6).  The distance 

between the zones varies from less than 5 miles to up to 23 miles.  Further, the study considers 

three user classes differentiated based on their VOTT, as shown in Table 4.1.  The study considers 

daily trips of a typical weekday in Ann Arbor, being equally distributed among the three user 

classes.  The hypothetical problem is solved using the commercial solver 'Knitro.' However, the 

network of Ann Arbor cannot be solved using a commercial solver.  Hence, metaheuristics are 

developed to solve the optimization problem for the network of Ann Arbor, Michigan.  The 

metaheuristic algorithms are validated for the hypothetical problem.  Finally, these metaheuristics 

are implemented to produce the results for the Ann Arbor case study network. 

 

Figure 4.6 Traffic Analysis Zones (TAZ) Centroids in Ann Arbor, Michigan (Ghamami et al., 

2019) 
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4.5.1 Algorithms Performance 

The metaheuristic algorithms developed are based on GA and SA algorithms.  The 

algorithms are compared with a commercial solver (Knitro).  These algorithms are faster, and the 

solution is equal to that of the commercial solver for the hypothetical network (Table 4.2).  It can 

be observed that as the size of the problem grows, the commercial solver is unable to solve the 

problem.  

Table 4.2 Result and the Solution Time for different Optimization Techniques 

 
Case Study- Hypothetical Network Case Study- Ann Arbor, Michigan 

 

Objective function 

($/day) 

Solution Time 

(min) 

Objective function 

($/day) 

Solution Time 

(min) 

Knitro 294544 17.60 N/A N/A 

GA 294544 0.26 2059454 140.75 

SA 294544 0.11 2059681 76.51 

 

For Ann Arbor, the GA algorithm is parallelized using high-performance computers with multiple 

cores running in parallel (i.e., cloud computing).  In contrast, the SA algorithm is implemented 

using high-tech computers with substantial available RAM.  The SA algorithm converges faster 

(about 55%) than the parallel GA algorithm (Table 4.2 and Figure 4.7).  The objective function 

value for the two algorithms is almost similar, with the value in GA slightly smaller.  Thus, the SA 

algorithm should be used for the optimization problem that requires real-time output.  However, 

to get more accurate results, GA should be used. 
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Figure 4.7 Comparison of SA and parallel GA algorithm for Ann Arbor, Michigan 

The following subsection presents the results for the base scenario of the Ann Arbor 

network, followed by the sensitivity analysis for the same Ann Arbor network with respect to 

different parameters.  

4.5.2 Base Scenario for Ann Arbor network 

The optimum mode for the different user classes can vary with respect to trip length and 

depends upon the trade-offs between different factors such as operating costs, traffic congestion, 

travel time savings, etc.  This subsection studies the base scenario considering the specifications 

and parameters listed in Table 4.1.  The optimum mode by each user class for different distances 

for the base scenario is shown in Figure 4.8. The solution indicates the adoption of EVs (i.e., 

PMEVs, SAEVs, PAEVs) results in minimum system cost due to low operating costs, and zero 

tailpipe emissions.  The non-electric modes (PMVs, PAVs, SAVs) are not the optimal solution as 

these result in significant emissions.  Further, non-autonomous shared modes (SMVs, SMEVs) are 

not favorable as these modes pose higher crash costs and additional driver costs as compared to 

autonomous shared modes (SAEVs).  Note that the total number of trips are higher if the adopted 

modes are autonomous or shared mode which is attributed to improved mobility of the users in 

these systems. 
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The lowest VOTT ($20/hr) users should predominantly adopt SAEVs to minimize the 

system cost (Figure 4.8a).  These users can avail the benefits of travel time savings in SAEVs, and 

prefer waiting for these vehicles rather than incurring the high ownership cost of private modes.  

Note that, the VOWT is a function of the VOTT of the users. The optimal solution favors the 

adoption of PMEVs by the second user class (VOTT=$50/hr) over SAEVs, especially for short-

distance trips (<10 miles), as the travel time savings are not significant to outweigh the waiting 

time experienced by users in SAEVs (Figure 4.8b).  However, these travel time savings increases 

with an increase in the distance (>10 miles), making users shift to SAEVs. Further, the PAVs and 

PAEVs are not favorable for the second user class (Figure 4.8b) because the travel time savings 

are not significant enough to outweigh the high ownership cost of these vehicles. The optimal 

solution for the third user class (VOTT= $100/hr) is the adoption of private modes (PAEVs, 

PMEVs) to avoid the waiting time (Figure 4.8c).  Further, the third user class (VOTT=$100/hr) 

should predominantly adopt PAEVs over PMEVs to avail the benefits of reduced crash cost and 

travel time savings in the short distance trips (<10 miles).  The long-distance trips (>10 miles) of 

these users (VOTT=$100/hr) shifts to PMEVs over PAEVs because the increased number of trips 

(due to improved mobility by AVs) increases the operating cost and congestion, which outweighs 

the travel times savings, and crash reduction benefits in PAEVs (Figure 4.8c).  
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(a)  (b)  (c)  

Figure 4.8 Optimum mode and vehicles type of different user classes for long and short distance 

commute trips for the base scenario in the Ann Arbor network  

4.5.3 Sensitivity analysis of Ann Arbor network with respect to various parameters 

The different parameters associated with the adoption of AV and EV will change with 

increase in market penetration rate of these vehicles. These factors, such as travel time savings, 

purchase price of vehicle and AV technology cost, would govern the fleet configuration in the 

system. Further, different stakeholders might be interested in optimum fleet under various 

scenarios. E.g. system planners would be interested in overall system costs, TNC might be 

interested in fleet size in carpooling and non carpooling scenario, users might be interested in the 

costs directly impacting them. The sensitivity analysis with respect to above-mentioned factors for 

the Ann Arbor, Michigan network are presented in this section. 
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4.5.3.1 Sensitivity to Reduction factor for VOTT (RVOTT) 

The RVOTT represents the most critical factor that captures the ability of the autonomous 

or shared mobility system to allow users to efficiently use their travel time for other activities 

rather than driving.  These travel time savings can offset the high ownership cost of AVs.  The 

lower value of RVOTT implies greater travel time savings.  Thus, the sensitivity of the results to 

variations of RVOTT, as the technology evolves, are presented in Figure 4.10 (the RVOTT for the 

base scenario is equal to 0.8 (Singh et al., 2021; van den Berg and Verhoef, 2016)). The dominant 

optimum vehicles are EVs.  It can be observed that the solution shifts to PAEVs as the RVOTT is 

reduced, which is intuitive due to substantial travel time savings dominating over the high 

ownership cost and increased congestion (with increased VMT).  Further, making these 

autonomous vehicles electric also reduces the operating costs and emissions in the system.  

If there are no travel time savings (RVOTT=1) the optimal solution indicates PMEVs to 

be the optimal solution for users with high VOTT (≥ 50/hr) due to high ownership cost of private 

autonomous vehicles (PAVs, PAEVs) and high waiting time cost in the shared mode (Figure 

4.10a(ii, iii)). The users with the lowest VOTT ($20/hr) should predominantly adopt SAEVs as 

these users would not mind waiting (Figure 4.10a(i)). Further, the PMEVs are not dominant for 

users with low VOTT ($20/hr) because these vehicles have high ownership costs as opposed to 

the shared mode.  Also, the crash cost is higher in PMEVs as opposed to SAEVs. 

It is worth noting that the users with the lowest VOTT ($20/hr) should adopt SAEVs as 

long as the RVOTT is greater than 0.2 (travel time savings less than 80%) because the users with 

the lowest VOTT would prefer waiting for SAEVs rather than owning these costly vehicles as 

private modes (Figure 4.10a-d, (i)).  The solution shifts to PAEVs at the lowest RVOTT (0.2) for 
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these users (VOTT=$20/hr) because the travel time savings are considerably high in PAEVs as 

opposed to SAEVs due to inconvenience caused in the shared mode (Figure 4.10e(i)).  

The minimum system cost solution indicates users with VOTT of $50/hr adopting PAEVs 

over PMEVs only if travel time savings are substantial (RVOTT≤0.6) to outweigh the high 

ownership cost of these vehicles (Figure 4.10c-e, (ii)). However, lesser travel time savings are 

required (RVOTT≤0.8) in case of the users with highest VOTT of $100/hr, for the optimal solution 

to be PAEVs (Figure 4.10b-e, (iii)). Further, users with highest VOTT ($100/hr) may adopt PAEVs 

for long distance trips (> 10 miles), only if the travel time savings are 40% (RVOTT≤ 0.6), 

otherwise these vehicles increases congestion and operating cost due to improved mobility in the 

system. The SAEVs are not the optimal solution for the users with high VOTT (≥$50/hr), because 

these users would prefer private vehicles rather than waiting for the shared vehicle to pick them 

up. 

Investment in promoting SAEVs is recommended even if there are no travel time savings, 

provided that the users have low VOTT. The PAEVs adoption will favor the system if there is at 

least 20% savings in the travel time with amenities onboard. These amenities can be the availability 

of charging ports, tables, computers, etc., to conduct meetings inside the vehicle or some collection 

of books, games, novels for recreational activities allowing users to make their travel time 

productive. The policies can be adopted to encourage the transportation network companies (TNC) 

to operate the fleet of SAEVs in the regions with denser populations of users with low VOTT or 

low incomes. Further, to promote the adoption of PAEVs the technology advancements are 

required to provide onboard amenities in the vehicle such that it provides ambiance to perform 

other activities e.g., organizing meetings, reading books, or other recreational activities.  
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(i)  (ii)  (iii) 

a) RVOTT=1 

 
(i)  (ii)  (iii) 

b) RVOTT=0.8 

 
(i)  (ii)  (iii) 

c) RVOTT=0.6 

Figure 4.9 Sensitivity analysis of trips from zone 5 (origin) to all the zones for different user 

classes (i-iii) withwith respect to RVOTT (a-e), in Ann Arbor network 
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(i)  (ii)  (iii) 

d) RVOTT=0.4 

 
(i)  (ii)  (iii) 

e) RVOTT=0.2 

Figure 4.10 Sensitivity analysis of trips from zone 5 (origin) to all the zones for different user 

classes (i-iii) withwith respect to RVOTT (a-e), in Ann Arbor network 

4.5.3.2 Sensitivity to cost of AV technology 

The additional cost of AV technology is one of the significant factors governing these 

vehicles' adoption.  The study considers two scenarios: adding AV technology to mid-priced cars 

($30,000) that are affordable to most users.  The second scenario is adding AV technology to 

luxurious cars ($80,000), affordable for high-income users.  The AV technology cost varies from 

zero to half of the vehicle price, depending on the amenities provided. 

In the scenario with mid-priced cars (Figure 4.11a), the users with the lowest VOTT 

($20/hr) should predominantly adopt SAEVs, irrespective of the AV technology cost, due to travel 

time savings, smaller waiting cost, and reduced ownership cost in shared mode.  The users with a 

VOTT of $50/hr should adopt a mix of SAEVs and PMEVs.  The SAEVs would be optimal for 

Figure 4.9 (cont’d) 
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long-distance trips when the travel time savings outweighs the waiting time cost.  However, for 

short-distance trips waiting time is a significant portion of total trip time and travel time savings 

are not enough in SAEVs making users (VOTT=$50/hr) switch to PMEVs.  Further, the optimal 

solution for these users is PAEVs only if there is no additional cost of AV technology.  The optimal 

solution for the third user class (VOTT=$100/hr) would predominantly be PAEVs until the price 

of the AV technology cost is greater than one-third of the vehicle price.  At a higher cost (half of 

the vehicle price), the travel time savings do not outweigh the high ownership cost of PAEVs, and 

these users (VOTT=$100/hr) switch to PMEVs. Note that the PAEVs are the optimal solution at 

low AV technology cost even though PAEVs are more expensive than PAVs due to low operating 

costs and zero tailpipe emissions.  

In the scenario with luxurious cars (Figure 4.11b), the system cost would be minimum if 

the fleet composition has SAEVs and PMEVs for the AV technology cost greater than zero.  The 

users with high VOTT($100/hr) should adopt PMEVs to avoid waiting in the shared mode.  The 

users with VOTT ≤  $50/hr should predominantly adopt SAEVs for the system cost to be 

minimum.  The SAEVs provide benefits such as travel time savings, reduced ownership cost, the 

reduced crash cost that dominates the waiting time cost.  Further, the PMEVs are expensive to 

afford due to high vehicle prices in addition to the added battery cost, which is significant in private 

mode.  As the AV technology cost is reduced to zero, users with high VOTT ($100/hr) should shift 

to PAEVs due to substantial travel time savings. 

The adoption of AV technology is recommended in shared electric mode for the users with 

low VOTT (≤$50/hr) even if the price of AV is substantial (30-50% of the vehicle price). The 

users with the highest VOTT ($100/hr) should preferably adopt PAEVs unless the vehicle price 

and AV technology cost are substantial, making these users shift to PMEVs for minimum system 
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cost. The policies should be adopted to promote autonomous and electric vehicles together to 

ameliorate and enhance each other's effects. The low operating costs of EVs offset the high 

ownership cost of AVs.  Further, the ownership cost can be further reduced if these vehicles are 

adopted as a shared mode, which can be utilized by low-income groups. The technology 

advancements are further needed to be improved in order to adopt these vehicles as private modes 

so that the cost of AV technology should come down to at least one-third of the vehicle prices.  In 

the case of luxurious cars, the cost of AV technology should be negligible relative to the price of 

the vehicle to be adopted as private modes. 

 

AV technology cost relative to vehicle price 

 

AV technology cost relative to vehicle price 

 

a) Mid-prices cars ($30,000) b) Luxurious cars ($80,000) 

Figure 4.11 Sensitivity analysis of optimum vehicle type for different user classes with respect to 

AV technology cost  for the mid-price car (a) and luxurious car (b), in Ann Arbor network 

4.5.3.3 Sensitivity with respect to replacement rate and carpooling 

The replacement rate of the shared modes is an essential factor that governs the fleet size 

requirement relative to the total number of trips. It affects the empty miles, users' waiting time, 

and cold-start emissions. In addition, carpooling reduces the fleet size requirement (increasing the 
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replacement rate) and reduces the empty miles, while increasing waiting time of users sharing the 

same ride. Hence, the sensitivity analysis with respect to replacement rate for carpooling and non-

carpooling scenario is presented in this subsection. In the carpooling scenario 20% of the users are 

assumed to share the ride (base scenario) and in non-carpooling scenario it is assumed that no two 

users share the same ride.  

The result shows that the SAEVs are less likely to be optimal solution with an increase in 

the replacement rate due to an exponential increase in the empty miles and users' waiting time 

(Figure 4.12). Hence, the fleet size should be provided as large as the number of vehicle trips in 

the system, resulting in replacement rate as low as possible. Further, if the replacement rate is 

lower (≤ 6), the trips served by SAEVs are lower in the carpooling scenario (Figure 4.12a) as 

compared to the non-carpooling scenario (Figure 4.12b).  The user's waiting time increases with 

the carpooling due to extra time to pick up users sharing the same ride.  However, at a higher 

replacement rate (≥ 9), the carpooling substantially reduces the empty miles generated, which 

dominates over extra waiting time added for carpooling.  Thus, the number of trips served by 

SAEVs increases in the carpooling scenario (Figure 4.12a) relative to the non-carpooling scenario 

(Figure 4.12b) due to a reduction in the empty miles generated. 
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(a)  (b)  
Figure 4.12 Optimum vehicle type under different replacement rate (fleet size) for (a) carpooling 

and (b) non-carpooling scenario for the Ann Arbor network 

Hence, the fleet size of the shared mode should be as large as the number of vehicle trips 

in the system. The larger fleet size or lower replacement rate reduces the users' waiting time as 

well as empty miles, which reduces the normalized ownership cost and the operating cost. Further, 

this larger fleet size is also favorable to TNCs because although the upfront cost would be higher 

but each of these vehicles would have less operating costs, which extends the effective life of these 

vehicles. A higher replacement rate or a reduced fleet size should preferably be adopted in the 

regions where users are more willing to share their rides. The TNC should deploy its fleet size 

considering the above factors. Note that the non-carpooling component of the replacement rate is 

the decision variable of the optimization problem. The optimal solution always sets this component 

to the lower bound value, which indicates that the cost associated with an exponential increase in 

empty miles and user's waiting time dominates the reduction in the cost associated with decrease 

in the cold-start emissions (or zero tailpipe emissions in EVs). Hence, the sensitivity results 

presented here are obtained by setting the lower bound of the replacement rate (decision variable) 
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to higher values. Further, the replacement rate in Figure 4.12 accounts for the reduction in the fleet 

size by both the non-carpooling and carpooling components.   

4.5.3.4 Optimal solution without considering emissions 

The EVs are favored to be included in the optimal solution due to their zero tailpipe 

emissions. In this subsection, we minimize the system cost without considering emissions to 

capture the shift in the optimal solution ignoring this societal cost. 

Figure 4.13 indicates that the solution changes significantly if we do not consider 

emissions. Users with the lowest VOTT ($20/hr) should adopt SAVs to minimize the system cost 

as these users would not mind waiting for these vehicles and avail the benefits of travel time 

savings (Figure 4.13a).  Further, the private and electric modes are not preferable due to the high 

ownership cost. Users with VOTT $50/hr should adopt a mix of SAVs, PMEVs, PMVs (Figure 

4.13b).  The SAVs should be adopted for long-distance trips to avail benefits of substantial travel 

time savings and insignificant waiting time. However, the travel time savings are not significant 

to outweigh waiting time cost for short-distance trips, and the users should switch to private modes. 

The PMEVs, PMVs should be adopted for short-distance trips by users with VOTT $50/hr, with 

most of the trips by PMEVs due to low operating costs compared to PMVs.  The PAVs, PAEVs 

are not part of the optimal solution because of their high ownership cost. The users with high 

VOTT ($100/hr) predominantly adopt PAVs due to substantial travel time savings and reduced 

crash cost (as opposed to non-AVs), and no waiting time (as opposed to shared mode) (Figure 

4.13c).  Further, the PAEVs do not minimize the system cost as these contribute to additional 

battery costs, which increases the ownership costs.  
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In conclusion, the proper policies should be implemented to make users adopt 

environmental-friendly vehicles (EVs) to favor the system.  This can be done by imposing carbon 

taxes, providing rebates over the purchase of EVs, developing adequate charging infrastructure, 

etc.     

4.5.3.5 Optimal solutions considering costs directly impacting users 

The users' main goal is to fulfill their trips with maximum benefits.  Hence, it is crucial to 

estimate the optimal solution considering the costs directly impacting the users.  These costs 

include travel time, waiting time, ownership, operating, and driver costs.  The optimal solution is 

shown in Figure 4.14.  The users with lowest VOTT ($20/hr) predominantly adopts SAVs due to 

low ownership cost, less waiting time, and travel time savings SAVs (Figure 4.14a). The users 

with high VOTT (≥ $50/hr) predominantly adopt PMEVs, which is attributed to low operating 

costs (as opposed to PMVs), low ownership cost (as opposed to PAVs, PAEVs), and no waiting 

time (as opposed to shared mode) (Figure 4.14b,c).  The PAVs are adopted by some users with a 

high VOTT of $100/hr due to substantial travel time savings (Figure 4.14c). Further, some of the 

trips for the users with VOTT $50/hr are fulfilled by SAVs due to travel time savings, low 

ownership cost, and smaller waiting time costs (Figure 4.14b).  

Hence, the users with low VOTT prefer to adopt SAVs availing the benefits of autonomy 

without owning these vehicles.  Certain policies should be adopted to encourage TNCs to operate 

the fleet of SAVs in the regions with denser populations of users with low VOTTs or low incomes.  

Users with high VOTTs predominantly prefer PMEVs. Hence, the adoption of EVs should be 

promoted by providing adequate charging infrastructure and eliminating the human factors which 

are difficult to capture, such as range anxiety, and concerns for being stranded for long time at the 

charging stations.  
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a) VOTT=$20/hr b) VOTT=$50/hr c) VOTT=$100/hr  

Figure 4.13 Optimal solution for different user classes for scenario without 

considering emission costs in Ann Arbor, Michigan 

 

 

 

a) VOTT=$20/hr b) VOTT=$50/hr c) VOTT=$100/hr  

Figure 4.14 Optimal solution for different user classes while minimizing the costs 

directly impacting users in Ann Arbor, Michigan 

 

 

4.6 Summary 

AV technology provides various potential benefits such as improved safety, mobility, 

roadway capacity, and driver productivity. One of the outcomes of these benefits is the increased 

VMT in the system, which will increase emissions and operating costs and affect the total system 

travel time. The cost of owning these vehicles is also high due to added cost of AV technology. 

The emissions and operating costs can be significantly reduced with the adoption of EVs. 

However, EVs have a limited range, higher battery price, and limited refueling infrastructure. In 
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light of these, AV and EV technology adoption in the shared mobility systems would be a 

promising solution. However, the shared mobility systems generate additional empty miles in the 

system and waiting time for users. Furthermore, the impact of these technologies would vary for 

different user classes defined based on their VOTT attributed to their income levels. This study 

builds a modeling framework to capture the trade-offs associated with emerging 

technologies/systems, and estimates the optimum fleet configuration of these technologies with 

the minimum total system cost, considering both private and shared mobility systems. A fleet 

optimization problem is developed in a multiclass user system to minimize the system cost, 

including emission, ownership, operating, travel time, waiting time, crash, and driver costs. The 

solution to the optimization problem provides fleet configuration of different vehicle types (PMV, 

PMEV, PAV, PAEV, SMV, SMEV, SAV, SAEV), which is also specific to various user classes 

having different VOTT or income levels. The developed metaheuristic algorithms based on GA 

and SA are validated using a hypothetical problem and then implemented to solve the NP-hard 

nonlinear real-world optimization problem (Ann Arbor, Michigan). The main findings from the 

research are as follows: 

• The optimal solution is a combination of private and shared mobility and is sensitive to 

VOTT of the users, trip lengths, RVOTT, AV technology cost, ownership cost, 

replacement rate, emissions, and user-specific costs. 

• The GA and SA algorithm both converge to a similar solution for smaller case studies. SA 

algorithm is twice faster than the GA. However, the GA provides a smaller objective 

function for larger case studies. 

• The EVs are recommended as the optimal solution for the system due to their low operating 

costs, and zero tailpipe emissions. Hence, policies should be adopted to promote EV by 
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providing adequate charging infrastructure, rebates over the purchase of EVs, and imposing 

carbon taxes. 

• Electrifying AVs would lower the operating cost that offsets their high ownership cost. 

Hence, policies should be adopted to promote vehicle automation and electrification 

together.  

• SAEV adoption is recommended for users with low VOTT ($20/hr) even if there are no 

travel time savings or the price of AV technology is substantial. Hence, these should be 

deployed in regions with a denser population of low VOTT/low income groups. 

• SAEVs are also recommended for users with VOTT of $50/hr, only if the trip length is 

greater than 10 miles.  

• PMEVs are recommended for the short distance trips (<10 miles) of users with mid VOTT 

($50/hr), and long distance trips (>10 miles) of users with high VOTT ($100/hr). 

• PAEVs are recommended for short distance trips (<10 miles) of users with VOTT of 

$100/hr. In long distance trips (>10 miles) of these users (VOTT=$100/hr), the travel time 

savings of at least 40% (RVOTT≤ 0.6) is required for these trips to be PAEVs. 

• Adoption of PAEVs may also be favorable for users with high VOTT ($100/hr) if the AV 

technology cost of a mid-priced car ($30,000) is reduced to at least one-third of the vehicle 

price. The AV technology deployment cost for luxurious cars ($80,000) is relatively 

negligible compared to the vehicle price, resulting PAEVs to be favorable to users with 

high VOTT ($100/hr).  
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• Technology advancements are required for promoting AVs as private mode so that the AV 

technology cost is reduced or the amenities onboard are improved, allowing efficient use 

of travel time through meetings, reading, or recreational activities. 

• The fleet size of the shared mode should be as large as the number of vehicle trips in the 

system to avoid the exponential increase in empty miles generated, and the user’s waiting 

time. Further, this large fleet size would also reduce operating cost and increase service life 

(in years) of each of the vehicles.  

• The carpooling is favorable to the system if and only if the fleet size is such that the 

replacement rate is greater than 9, below which the extra waiting time in carpooling 

increase the system cost. 

• Considering the costs directly impacting the users, the users with low VOTT or low 

incomes prefer SAVs. Users with high VOTT predominantly prefer PMEVs due to the low 

operating costs of EVs and no waiting time. Hence, the adoption of EVs should be 

promoted by eliminating uncaptured human factors, such as range anxiety and waiting at 

charging stations. 

  



119 

 DISTRIBUTED ENERGY RESOURCES TO SUPPORT EVS’ FAST 

CHARGING STATIONS 

5.1 Overview 

The rapid growth in the market acceptance of EVs requires a well-developed network of 

DCFC stations. However, this network of DCFC stations along with the increased electric miles 

traveled will increase the electricity demand and affect the electric grid stability, supply-demand 

imbalance, and degradation of the electric grid distribution system. It is important to consider 

investment in technologies at these charging stations to support the EV charging demand and 

reduce the load on the electric grid. This study develops a framework to considers the capacity 

constraints of the electric grid network, the existing energy demand, the EV charging demand, and 

different types of DER to find the optimal investment technology at DCFC stations. 

The remainder of this study is as follows. Section 5.2 discusses the problem statement and 

objective of the study, followed by the modeling framework in section 5.3. Section 5.4, 5.5, and 

5.6 discusses the data collection, results of the numerical experiment, and the summary of the 

study.  

5.2 Problem statement 

The increasing market penetration rate of electric vehicles would necessitate the 

deployment of DCFC charging station network. This network of DCFC chargers will not only 

reduce the charging time but will also reduce/eliminate concerns related to the limited range of 

EVs. However, it will increase the load on the electric grid network causing supply-demand 

imbalance, and degradation of the electric grid system. The electric grid transmission and 

distribution system, which includes transmission lines, substations, feeder lines, segment etc., 
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might need to be upgraded to support the rising EV charging demand. The investment cost to 

upgrade these can be substantial depending upon the location of DCFC stations and the arrival rate 

of EVs. However, the provision of DER such as ESS, solar panels, etc. can support the EV charging 

demand, reduce the load on the electric grid, and also reduce the electric cost. This study aims to 

estimate the optimum investment technology to support the rising EV charging demand. The study 

estimates the critical locations that would require the provision of DER which depends upon the 

EV charging demand, existing electricity demand, and the capacity constraints of the electric grid 

network. The study estimates the optimum type of DER for each of the DCFC locations depending 

upon the investment cost, electricity cost savings, and overall savings in the system cost. The study 

also captures the seasonal effect on the performance of these different types of DER. The detailed 

modeling framework to address the above-mentioned problem statement is presented in the 

following subsection. 

5.3 Methodology 

This study proposes an optimization modeling framework with an aim to find the optimal 

investment technology to support the fast charging demand of EVs. An optimization problem is 

developed to minimize the system cost which includes the project cost of NB/SLB Battery ESS 

(BESS), Flywheel ESS (FESS), and solar panels (if any), electric grid upgrade cost (i.e., cost of 

bringing electricity to the EV charging station, segment upgrades, feeder line upgrades, substation 

upgrades, and transmission upgrades), and the total cost of energy for refueling electric vehicles. 

It is worth noting that the project cost includes the cost of ESS (battery packs, flywheels, etc.), the 

balance of plant, inverter cost, construction cost, cost of solar panels, racking of solar panels, 

electrical balance of system, installation cost, etc.  This study also considers the possibility of 

transmitting excess energy stored/generated (other than that required for EV charging) back to the 
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electric grid network, which reduces the overall electricity purchase cost as well as the system cost. 

The decision variables are the capacity of li-ion NB/SLB battery (𝐵𝑆𝑖), capacity of the flywheels 

(𝐹𝑆𝑖),  area of the solar panels (𝐴𝑖), additional feeder line capacity (𝐴𝐹𝑗), additional substation 

capacity (𝐴𝑆𝑘), additional subsegment/segment capacity (𝐴𝐺𝑖) to support EV charging demand at 

location 𝑖. The superscripts 𝑖, 𝑗, 𝑘, 𝑎𝑛𝑑 𝑙 represents segments/subsegments, feeder line, substation, 

and the transmission line, respectively. The study considers a discrete time-dependent energy 

model with a step size of 𝜏. The EV charging demand depends upon the arrival rate of EVs 

throughout the day. The different notations used are presented in Table 5.1. The schematic diagram 

of the electric grid network is shown in Figure 5.1. The input data is fed into the optimization 

model to estimate the optimum investment technology with maximum cost savings.  

The inputs and the outputs to the model are listed as below: 

Inputs 

1. Demand distribution over the entire electric grid network 

a. Spatiotemporal EV charging demand  

b. Spatiotemporal existing electricity demand 

2. Electric grid network details of segment/subsegment, feeder line, substation, transmission 

line 

a. Spatial capacity 

b. Cost of upgrading 

c. Connections and locations 

d. Spatiotemporal time of use electricity rate 

e. Life of the grid components 

3. Distributed energy resources (Li-ion NB BESS, Li-ion SLB BESS, FESS, solar panels) 
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a. Performance and charging/discharging rate 

b. Unit cost of investment (includes installation, BOS, inverters etc.) 

c. Life 

Outputs 

1. Distributed Energy Resources (Li-ion NB BESS, Li-ion SLB BESS, FESS, solar panels) 

a. Size 

b. Location 

c. Time dependent charge/discharge profile and power output 

2. Electric grid network 

a. Additional capacity requirement of upgrading subsegment, feeder line, substation, 

transmission line 

3. Investment cost & savings 
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Figure 5.1 Flow chart diagram of electric grid network 

Table 5.1 Nomenclature 

Sets Definition 

𝑡 ∈ Γ Set of time intervals 

𝑖 ∈ 𝐼 Set of segments/subsegments 

𝑗 ∈ 𝐽 Set of feeder lines 

𝑘 ∈ 𝐾 Set of substation locations 

𝑙 ∈ 𝐿 Set of transmission lines 

𝑚 ∈ 𝑀 Set of seasons (summer, winter) 

Decision 

variable 

Definition 
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𝐵𝑆𝑖 Size of BESS at location i (kWh) 

𝐹𝑆𝑖 Size of FESS at location i (kWh) 

𝐴𝐺𝑖 Additional subsegment/segment capacity (kW) 

𝐴𝐹𝑗 Additional feeder line capacity (kW) 

𝐴𝑆𝑘 Additional substation capacity (kW) 

𝐴𝑇𝑙 Additional transmission capacity (kW) 

𝐴𝑖 Area of the solar panel at location 𝑖 (sq.m) 

State variables Definition 

𝐵𝐸𝑡
𝑖𝑚 Battery energy at time t and location i  for the season m (kWh) 

𝐵𝑃𝑡
𝑖𝑚 Battery charging demand at time t +/- and location i for the season m (kW) 

𝐹𝐸𝑡
𝑖𝑚 Flywheel energy at time t and location i  for the season m (kWh) 

𝐹𝑃𝑡
𝑖𝑚 Flywheel charging demand at time t +/- and location i for the season m 

(kW) 

𝜋𝑡
𝑖𝑚 Power delivered to flywheel including self-discharge losses (kW) 

Ψ𝑖 Maximum power of flywheel required (kW) 

𝑆𝑃𝑡
𝑖𝑚 Solar panel power at any time 𝑡 and location i for the season m 

𝐸𝐿𝑡
𝑖𝑚 Net energy required/available from/to the electric grid by the EV charging 

station 

𝛼𝑡
𝑖𝑚 Binary variable indicating if the energy is inflow (1) or outflow(0) 

𝛽𝑡
𝑖𝑚 Binary variable indicating if the battery (1) or the flywheel (0) is selected 

𝜔𝑖 Binary variable to ensure no power delivered to flywheel if it’s not 

selected. 

Table 5.1 (cont’d) 
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Parameters Definition 

CB Unit project cost of battery ($/kWh) 

CK Unit project cost per kWh of FESS ($/kWh)  

CL Unit project cost per kW for FESS ($/kW) 

CI Unit project cost of solar panel ($/kW) 

CG Unit cost of subsegment/segment ($/kW) 

CF Unit cost of the feeder line ($/kW) 

CS Unit cost of substation ($/kW) 

CT Unit cost of transmission line ($/kW) 

H Life of the transmission line (years) 

U Life of substation (years) 

V Life of feeder line (years) 

X Life of segment (years) 

Y Life of solar panel (years) 

Z Life of BESS (years) 

Q Life of FESS (years) 

𝑅𝑡
𝑖𝑚 Electricity rate at time t  in the season m for location i ($/kWh) 

𝑂𝑡
𝑖𝑚 Outflow rate at time t in the season m for location i ($/kWh) 

𝐹𝑅𝑖 Fixed electricity rate for the base electricity provision cost  

𝐸𝐷𝑡
𝑖𝑚 EV charging demand (kW) 

𝐷𝑡
𝑖𝑚 Demand at location i at time t in season m (kW) 

𝐺𝑖 Subsegment/segment capacity (kW)  

𝐹𝑗 Feeder line capacity (kW) 

Table 5.1 (cont’d) 
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𝑆𝑘 Substation capacity (kW) 

𝑇𝑙 Transmission capacity (kW) 

CP Maximum charging power of BESS (kW) 

DP Maximum discharging power of BESS (kW) 

𝐴𝑖,𝑚𝑎𝑥 Maximum allowable size of solar panel based upon site conditions (sq.m) 

𝐵𝑆𝑖,𝑚𝑎𝑥 Maximum allowable size of BESS based upon site conditions (kWh) 

𝐹𝑆𝑖,𝑚𝑎𝑥 Maximum allowable size of flyhweel ESS based upon site conditions 

(kWh) 

𝑆𝑅𝑡
𝑖𝑚 The solar radiation intensity at location 𝑖 and time 𝑡 for the season 𝑚 

(𝑘𝑊/𝑚2)  

𝑤𝑡
𝑖𝑚 Cloud coverage at any time 𝑡 in season 𝑚 for the location 𝑖 

𝑞𝑛(𝑤𝑡
𝑖𝑚) The calibrated parameters for solar radiation intensity dependent on 𝑤𝑡

𝑖𝑚 

𝜇𝑚 Length of the season 𝑚 (days) 

𝜆𝑡
𝑗𝑚

 Self discharge loss in FESS(kW/hr) 

𝜂𝑗 Energy density of flywheel (kWh/𝑚3) 

𝜗𝑗 Power density of flywheel (𝑘𝑊/𝑚3) 

Λ A very large number 

Δ Maximum state of charge of BESS 

𝛿 Minimum state of charge of FESS 

𝜏 Length of each time interval (hour) 

𝜃𝑖𝑗 Whether subsegment/segment i is on feeder line j 

Ξ𝑗𝑘 Whether feeder line j is connected to substation k 

Table 5.1 (cont’d) 



127 

σ𝑘𝑙 Whether transmission line l is connected to substation k 

𝜌𝑖 The efficiency of the solar panel at location 𝑖 

𝜙𝑡
𝑖𝑚 The sun’s elevation angle at time 𝑡 in season 𝑚 for the location 𝑖 

 

5.3.1 Optimization Model 

The objective function includes the purchase cost of energy from the electric grid, and 

investment in DER technologies such as ESS (NB/SLB, flywheels), solar panels, and electric grid 

upgrades. The overall optimization problem is defined as follows: 

min∑ (𝛽𝑖
𝐶𝐵×𝐵𝑆𝑖

𝑍
+ (1 − 𝛽𝑖)

𝐶𝐾×𝐹𝑆𝑖+𝐶𝐿×Ψ𝑖

𝑄
)𝑖∈𝐼 + ∑

𝐶𝐼×𝜌𝑖𝐴𝑖

𝑌𝑖∈𝐼 +

∑
𝐶𝐺×𝐴𝐺𝑖

𝑋𝑖 + ∑
𝐶𝐹×𝐴𝐹𝑗

𝑉𝑗∈𝐽  + ∑
𝐶𝑆×𝐴𝑆𝑘

𝑈𝑘∈𝐾 + ∑
𝐶𝑇×𝐴𝑇𝑙

𝐻𝑙∈𝐿 +

∑ ∑ 𝜇𝑚 ∑ (𝐸𝐿𝑡
𝑖𝑚(𝛼𝑡

𝑖𝑚𝑅𝑡
𝑖𝑚 + (1 − 𝛼𝑡

𝑖𝑚)𝑂𝑡
𝑖𝑚)  + 𝐹𝑅𝑖) 𝑡∈Γ𝑚𝑖∈𝐼   
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s.t. 

Supply-Demand constraints  

𝐺𝑖 + 𝐴𝐺𝑖 + 𝑆𝑃𝑡
𝑖𝑚 ≥ 𝐷𝑡

𝑖𝑚 + 𝐸𝐷𝑡
𝑖𝑚 + 𝐵𝑃𝑡

𝑖𝑚 + 𝜋𝑡
𝑖𝑚        ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀  107 

∑ (𝐺𝑖 + 𝐴𝐺𝑖)𝜃𝑖𝑗𝑖 ≤ 𝐹𝑗 + 𝐴𝐹𝑗              𝑗 ∈ 𝐽  108 

 ∑ (𝐹𝑗 + 𝐴𝐹𝑗)Ξ𝑗𝑘𝑗 ≤ 𝑆𝑘 + 𝐴𝑆𝑘            𝑘 ∈ 𝐾 109 

 ∑ (𝑆𝑘 + 𝐴𝑆𝑘)σ𝑘𝑙𝑘 ≤ 𝑇𝑙 + 𝐴𝑇𝑙              𝑙 ∈ 𝐿 110 

(𝐸𝐷𝑡
𝑖𝑚 + 𝐵𝑃𝑡

𝑖𝑚 + 𝜋𝑡
𝑖𝑚 − 𝑆𝑃𝑡

𝑖𝑚)(𝛼𝑡
𝑖𝑚 − 0.5) ≥ 0            ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀  111 

  

Battery storage constraints  

𝐵𝐸𝑡
𝑖𝑚 = 𝐵𝐸𝑡−1

𝑖𝑚 + 𝐵𝑃𝑡
𝑖𝑚𝜏                        ∀𝑡 = 2,… , Γ, 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀  112 

Table 5.1 (cont’d) 
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𝐵𝐸1
𝑖𝑚 = 𝐵𝐸𝑇

𝑖𝑚 + 𝐵𝑃1
𝑖𝑚𝜏                           ∀ 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀  113 

𝛿 × 𝐵𝑆𝑖 ≤ 𝐵𝐸𝑡
𝑖𝑚 ≤ Δ × 𝐵𝑆𝑖                                 ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀  114 

− 𝐷𝑃 ≤ 𝐵𝑃𝑡
𝑖𝑚 ≤ 𝐶𝑃                                         ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀  115 

 

Flywheel storage constraints  

𝐹𝐸𝑡
𝑖𝑚 = 𝐹𝐸𝑡−1

𝑖𝑚 + 𝐹𝑃𝑡
𝑖𝑚𝜏                        ∀𝑡 = 2,… , Γ, 𝑖 ∈ 𝐼,𝑚 ∈ 𝑀  116 

𝐹𝐸1
𝑖𝑚 = 𝐹𝐸𝑇

𝑖𝑚 + 𝐹𝑃1
𝑖𝑚𝜏                           𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀   117 

 0 ≤ 𝐹𝐸𝑡
𝑖𝑚 ≤ 𝐹𝑆𝑖                                 ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀  118 

 −Ψ𝑖 ≤ 𝐹𝑃𝑡
𝑖𝑚 ≤ Ψ𝑖                      ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼 , 𝑚 ∈ 𝑀 119 

 Ψ𝑖𝜂𝑖 ≤ 𝐹𝑆𝑖𝜗𝑖                                         𝑖 ∈ 𝐼 , 𝑚 ∈ 𝑀 120 

 𝐹𝑃𝑡
𝑖𝑚 = 𝜋𝑡

𝑖𝑚 − 𝜔𝑖𝜆𝑡
𝑖𝑚               ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀  121 

 𝐹𝑆𝑖  ≤ Λ𝜔𝑖               ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀 122 

  

Solar panel power generation  

0 ≤ 𝑆𝑃𝑡
𝑖𝑚 ≤ 𝜌𝑖𝐴𝑖𝑆𝑅𝑡

𝑖𝑚                        ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀  123 

 

Feasibility constraints  

𝐴𝐺𝑖 ≥ 0                                                                      𝑖 ∈ 𝐼  124 

𝐴𝐹𝑗 ≥ 0                                                                    𝑗 ∈ 𝐽  125 

𝐴𝑆𝑘 ≥ 0                                                                    𝑘 ∈ 𝐾  126 
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𝐴𝑇𝑙 ≥ 0                                                                    𝑙 ∈ 𝐿  127 

𝐵𝑆𝑖, 𝐹𝑆𝑖 , Ψ𝑖 ≥ 0                                                     𝑖 ∈ 𝐼  128 

0 ≤ 𝐵𝑆𝑖 ≤ 𝐵𝑆𝑖,𝑚𝑎𝑥                                          𝑖 ∈ 𝐼  129 

0 ≤ 𝐹𝑆𝑖 ≤ 𝐹𝑆𝑖,𝑚𝑎𝑥                                         𝑖 ∈ 𝐼  130 

0 ≤ 𝐴𝑖 ≤ 𝐴𝑖,𝑚𝑎𝑥                                             𝑖 ∈ 𝐼  131 

𝜔𝑖, 𝛼𝑡
𝑖𝑚, 𝛽𝑖 ∈ {0,1}                                  ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀  132 

 The terms in the objective function represent the investment cost of BESS (NB/SLB), 

FESS, solar panels, segment upgrades, feeder line upgrades, substation upgrades, transmission line 

upgrades, and the cost of purchasing/selling the electricity from/to the electric grid, respectively. 

The terms 𝐶𝐵, 𝐶𝐾, 𝐶𝐿, 𝐶𝐼, 𝐶𝐺, 𝐶𝐹, 𝐶𝑆 𝑎𝑛𝑑 𝐶𝑇 are the unit project cost of BESS, project cost per 

FESS energy capacity, project cost per FESS power capacity, unit project cost of solar panel, and 

unit upgrade costs of segment, feeder line, substation, and transmission line, respectively. The 𝛽𝑖 

is a binary variable indicating either BESS or FESS is selected. The Ψ𝑖  is the power capacity 

(maximum power) of the flywheel. The terms 𝑍, 𝑄, 𝑌, 𝑋, 𝑉, 𝑈, 𝑎𝑛𝑑 𝐻 are the life (in years) of the 

BESS, FESS, solar panels, segment, feeder line, substation, and transmission line, respectively. 

The 𝜇𝑚 represents the number of days in season 𝑚 in one year. The term 𝐸𝐿𝑡
𝑖𝑚 is the net energy 

required/available from/to the electric grid by the DCFC station, and is defined as follows: 

𝐸𝐿𝑡
𝑖𝑚 = (𝐸𝐷𝑡

𝑖𝑚 + 𝐵𝑃𝑡
𝑖𝑚 + 𝜋𝑡

𝑗𝑚
− 𝑆𝑃𝑡

𝑖𝑚)𝜏             ∀𝑡 ∈ Γ, 𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀 133 

Where, the 𝐸𝐷𝑡
𝑖𝑚, 𝐵𝑃𝑡

𝑖𝑚, 𝜋𝑡
𝑗𝑚
 𝑎𝑛𝑑 𝑆𝑃𝑡

𝑖𝑚  are the EV charging demand, battery charging 

demand, flywheel charging demand (including self-discharge losses) and the solar panel power 

generation at any time 𝑡 of the day, in season 𝑚, respectively. The 𝜏 is the step size of the discrete 

time-dependent model. The 𝑅𝑡
𝑖𝑚, 𝑂𝑡

𝑖𝑚 𝑎𝑛𝑑 𝐹𝑅𝑖 are the time-of-use rate for buying electricity from 
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grid, selling electricity to grid, and fixed monthly electricity purchase rates, respectively. The 𝛼𝑡
𝑖𝑚 

is a binary variable indicating either energy is withdrawn or send back to the grid. The different 

constraints are explained in the following subsections.  

5.3.2 Supply Demand Model 

In order to ensure the feasibility of charging at a DCFC station, the available energy at any 

time 𝑡 should be greater than the energy required. The energy required includes EV charging 

demand, existing electricity demand, and the energy required to charge the ESS. The available 

energy resources are the electric grid network and solar panel power generation. ESS is also used 

as a source of energy during parts of the day when it is discharging. The supply-demand model 

and the constraints are presented in Equations 107- 111. The  𝐺𝑖, 𝐹𝑗 , 𝑆𝑘, 𝑎𝑛𝑑 𝑇𝑙 are the existing 

capacity of the segment, feeder line, substation, and transmission line, respectively. The 

𝐴𝐺𝑖 , 𝐴𝐹𝑗 , 𝐴𝑆𝑘 , 𝑎𝑛𝑑 𝐴𝑇𝑙 are the additional capacity of the segment, feeder line, substation, and the 

transmission line that might be required to support the EV charging demand, respectively. The 

𝐸𝐷𝑡
𝑖𝑚, 𝐵𝑃𝑡

𝑖𝑚, 𝜋𝑡
𝑖𝑚 , 𝐷𝑡

𝑖𝑚 𝑎𝑛𝑑 𝑆𝑃𝑡
𝑖𝑚  are the EV charging demand, BESS charging demand, FESS 

charging demand, existing demand, and the solar panel power generation at any time 𝑡 of the day, 

in season 𝑚, respectively. The 𝜃𝑖𝑗, Ξ𝑗𝑘 , 𝑎𝑛𝑑 σ𝑘𝑙 are the binary parameters capturing the network 

details of electric grid explaining whether, a segment 𝑖 is connected to feeder line 𝑗, a feeder line 

𝑗 is connected to substation 𝑘, and a substation 𝑘 is connected to transmission line 𝑙, respectively.  

Equation 107 ensures that the electric grid capacity at the segment level, and solar panel power 

generated is greater than the total electric power required at any time 𝑡. The equation 108, 109, 

110, and 111 ensures that the electric grid capacity at feeder line level is greater than that at 

segment level, electric grid capacity at substation level is greater than the feeder line level, and the 

electric grid capacity at the transmission line level is greater than the substation level, respectively. 
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Equation 111 assigns the value 1 or 0 to the binary variable 𝛼𝑡
𝑖𝑚 depending upon if net energy is 

drawn from the electric grid or it is supplied back to the electric grid, respectively. 

5.3.3 Energy Storage Model 

The energy stored in the ESS at the end of any time 𝑡, is a function of charging/discharging 

power and the energy at the time 𝑡 − 1. The BESS model and FESS model are presented in 

Equations 112-115 and Equations 116-122, respectively. The  𝐵𝑃𝑡
𝑖𝑚, 𝐹𝑃𝑡

𝑖𝑚  are the 

charging/discharging power of the BESS and FESS, respectively. The positive or negative values 

of 𝐵𝑃𝑡
𝑖𝑚, 𝐹𝑃𝑡

𝑖𝑚 indicate that ESS is being charged or discharged, respectively.  The 𝐵𝐸𝑡
𝑖𝑚, 𝐹𝐸𝑡

𝑖𝑚 

are the energy stored at the end of time t in the BESS and FESS, respectively. The 𝐵𝑆𝑖 , 𝐹𝑆𝑖 

represents the size/capacity of the ESS. The Equations 112 and 116 update the energy stored in 

the ESS at end of time 𝑡, based on charging/discharging rate at time 𝑡, step size 𝜏 and energy stored 

at the end of time 𝑡 − 1. The Equations 113 and 117 updates the energy stored at the beginning of 

the time based on the energy stored at the end of time 𝑇. The BESS is allowed to charge to Δ and 

discharge to δ (20% of battery capacity) state of charge (SOC) to reduce the depth of discharge 

and protect the battery's health (equation 114). The BESS power is restricted by maximum 

allowable charging (CP) or discharging power (DP) as indicated in equation 115. The FESS energy 

cannot be greater than its energy capacity (Equation 118). The FESS power is restricted by 

maximum allowable power Ψ𝑖 (equation 119). This maximum allowable power is restricted by 

size/energy capacity of FESS, energy density 𝜂𝑖, and power density 𝜗𝑖  of FESS (equation 120). 

Equation 121 updates the power delivered 𝜋𝑡
𝑖𝑚 to FESS based on FESS power 𝐹𝑃𝑡

𝑖𝑚 and the self-

discharge losses 𝜆𝑡
𝑖𝑚.  Equation 121 and 122ensures that no power is delivered if the FESS is not 

selected through binary variable 𝜔𝑖  and a very large number Λ. As it is a minimization problem, 

this 𝜔𝑖 is zero if 𝐹𝑆𝑖 is zero, through Equation 121 and 122. 
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5.3.4 Solar Panel Power Generation Model 

The maximum solar panel power generated depends upon the sun elevation angle 𝜙𝑡
𝑖𝑚, 

cloud coverage 𝑤𝑡
𝑖𝑚, the efficiency of the solar panel 𝜌𝑖, and area of the solar panel 𝐴𝑖. The cloud 

coverage is measured in Oktas ranging from integer 0-8. The sky is divided into eight parts and 

the value indicates how much of that is covered by clouds (Jones, 1992). The value of 0 indicates 

completely clear weather conditions, and the value of 8 indicates complete overcast (Madsen et 

al., 1985). The solar panel power generation model at charging station location 𝑖  is given in 

equation 123. The 𝑆𝑃𝑡
𝑖𝑚 is the solar panel power at any time 𝑡 which is limited by the maximum 

power that can be generated by solar panels at any time 𝑡 . The solar radiation intensity 

𝑆𝑅𝑡
𝑖𝑚(𝑊/𝑚2) is a function of cloud coverage 𝑤𝑡

𝑖𝑚, and the sun elevation angle 𝜙𝑡
𝑖𝑚 as given in 

Equation 134 (Ehnberg and Bollen, 2005; Nielsen et al., 1981; Ugirumurera and Haas, 2017). 

𝑆𝑅𝑡
𝑖𝑚 =

𝑞0(𝑤𝑡
𝑖𝑚) + 𝑞1(𝑤𝑡

𝑖𝑚) sin𝜙𝑡
𝑖𝑚 + 𝑞2(𝑤𝑡

𝑖𝑚) sin3𝜙𝑡
𝑖𝑚 − 𝑞4(𝑤𝑡

𝑖𝑚)

𝑞(𝑤𝑡
𝑖)

 134 

The 𝑞, 𝑞0, 𝑞1, 𝑞2, 𝑎𝑛𝑑 𝑞4 are the calibrated parameters depending upon the cloud coverage, 

as given in the following table (Ehnberg and Bollen, 2005; Nielsen et al., 1981; Ugirumurera and 

Haas, 2017): 

Table 5.2 The calibrated parameters for solar radiation intensity based on cloud coverage 

(Ehnberg and Bollen, 2005; Nielsen et al., 1981; Ugirumurera and Haas, 2017)   

𝑤𝑡
𝑖𝑚  𝑞0 

(𝑊/𝑚2) 

𝑞1(𝑊/𝑚
2) 𝑞2(𝑊/𝑚

2) q 𝑞4(𝑊/𝑚
2) 

0 -112.6 653.2 174 0.73 -95 

1 -112.6 686.5 120.9 0.72 -89.2 
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2 -107.3 650.2 127.1 0.72 -78.2 

3 -97.8 608.3 110.6 0.72 -67.4 

4 -85.1 552 106.3 0.72 -57.1 

5 -77.1 511.5 58.5 0.7 -45.7 

6 -71.2 495.4 -37.9 0.7 -33.2 

7 -31.8 287.5 94 0.69 -16.5 

8 -13.7 154.2 64.9 0.69 -4.3 

The bounds for variables are presented in Equations 124-132. The term 

𝐵𝑆𝑖,𝑚𝑎𝑥, 𝐹𝑆𝑖,𝑚𝑎𝑥 𝑎𝑛𝑑 𝐴𝑖,𝑚𝑎𝑥 are the maximum allowable size of BESS, FESS, and solar panels 

depending upon the site conditions, respectively. 

5.4 Data Collection 

The input data includes the proposed and current EV fast charging (DCFC) station network, 

EV energy demand, existing energy demand (other than EV demand), electric grid network details 

and capacity constraints, ESS types, and characteristics, and solar panel characteristics and weather 

conditions. The details of obtaining each of these data sets are explained in this section. 

5.4.1 DCFC locations and EV energy demand 

The potential DCFC locations in Michigan are obtained from Phase-II of the "Electric 

Vehicle Charger Placement Optimization in Michigan" by our research team as Ghamami et al., 

2020. These locations were estimated based on the simulated urban trips of EV users throughout 

the road network of different urban areas in Michigan, corresponding to the proposed EV market 

penetration rate (6%) in the year 2030 (Ghamami et al., 2020b; Kavianipour et al., 2021b) 

(Ghamami et al., 2020). Similarly, the time-dependent EV energy demand and power demand at 

Table 5.2 (cont’d) 
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these DCFC locations are extracted based on the travel patterns. Note that the battery sizes of all 

EVs are assumed to be 70 kWh, and the charging power of DCFC chargers is assumed to be 50 

kW. 

5.4.2 Existing energy demand and electric grid network details 

The existing energy demand, grid network details, and capacity constraints are obtained 

from the different utility companies, cooperatives, and municipalities. The companies provided 

data for the electric grid network and connections (i.e., substation, feeder line, segment, etc.) that 

will serve the proposed DCFC locations, existing energy demand, upgrade costs, and capacity 

constraints of the electric grid network. It is worth noting that the data was not available for some 

potential DCFC locations; thus, these locations are not considered for the analysis. A total of 75 

DCFC locations were considered in the major cities of Michigan (i.e., Saginaw, Lansing, Flint, 

Grand Rapids, Kalamazoo, and Muskegon). The locations are presented below.  
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Figure 5.2 The proposed DCFC stations in Michigan in 2030 considered for DER analysis 

(Ghamami et al., 2020b; Kavianipour et al., 2021b). 

5.4.3 Energy storage systems types and characteristics 

The study considered different types of ESS technologies which include Li-ion battery, 

lead-acid, redox flow battery, sodium-sulfur, sodium metal halide, zinc-hybrid cathode, sodium-

ion battery, flywheels (Beacon Power, 2021; Kane, 2021; Mongird et al., 2019; Patel, 2021; Rafi 

and Bauman, 2021).  The Li-ion batteries are deployed across various industries due to high power 

density, high energy density, and performance (Mongird et al., 2019). The price of this ESS 

technology is consistently reducing due to major demand in EV industry (Mongird et al., 2019). 

These batteries are used in residential commercial buildings, distribution grids, renewable 

generation smoothing etc (EASE, 2022). Lead-acid batteries are also used for various applications 

such as load following, time shifting but these are not used for small portable systems (Mongird 

et al., 2019). Redox flow batteries consists of electrolyte solution in tanks acting as cathode and 
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anode (Mongird et al., 2019). The electrolyte is passed through a membrane to generate and store 

energy. This technology is currently in early phase of commercialization but it has long life, easy 

scalability, and operating at low temperature range (Mongird et al., 2019). Further, due to low 

energy density, large storage tanks are required (EASE, 2022). These are utilized for peak shaving, 

energy time shifting, etc (EASE, 2022). Sodium-sulfur battery is another electrochemical energy 

storage system which has high energy-density but it is highly corrosive, requires high operating 

temperatures (300 − 3500𝐶), and consequent safety requirements (EASE, 2022; Mongird et al., 

2019). Sodium Metal Halide (sodium nickel chloride) is used for various application such as 

residential buildings, EVs, renewable generation smoothing, etc (Mongird et al., 2019). These 

batteries have smaller range than other electrochemical storage, but has high performance, 

durability, and low sensitivity to ambient temperature (EASE, 2022; Mongird et al., 2019). Zinc-

Hybrid Cathode batteries utilizes widely available material and can be supplied at low cost 

(Mongird et al., 2019). The Sodium-ion battery are in the development phase and are expected to 

replace Li-ion in the following years (especially in storage applications) as the cost of sodium is 

very low and it is available in abundance (EASE, 2022). Further, this technology is safer, operates 

on lower temperature, provides faster charging, and higher cycle life efficiency as compared to Li-

ion batteries (Kane, 2021; Patel, 2021). However, the energy density of these batteries is currently 

lower than Li-ion batteries (Kane, 2021). Flywheels store energy in the form of electromechanical 

energy (Mongird et al., 2019). It consists of rotating cylinders which stores energy in the form of 

kinetic energy. Higher is the velocity, higher is the energy stored. The electric energy is withdrawn 

by slowing down the rotating cylinder. The flywheels have longer life cycle, and fast response 

time making them suitable for frequency regulations, and renewable smoothing (Mongird et al., 

2019). The data related to different types of ESS, their characteristics, and their feasibility to serve 
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at the DCFC locations is obtained from different studies in the literature (Beacon Power, 2021; 

Cole et al., 2021; Kane, 2021; Mongird et al., 2019; Patel, 2021; Rafi and Bauman, 2021). The 

following table represents the characteristics, and project costs of different ESS:  

Table 5.3 Different types of energy storage technologies (Beacon Power, 2021; EASE, 2022; 

Kane, 2021; Mongird et al., 2019; Patel, 2021; Rafi and Bauman, 2021) 

ESS Type Project Cost* 

($/kWh) 

Life (years) Energy Density 

(Wh/L) 

Power Density** 

(W/L) 

Sodium- Sulfur 669 13.5 40 10 

Li-Ion 362 10 90-130 23-33 

Lead Acid 464 3 16 4 

Sodium Metal Halide 669 12.5 65 16 

Zinc-Hybrid Cathode 433 10 17 4 

Redox Flow Battery 650 15 13 3 

Flywheel 10,124 20 18 74 

Sodium-ion 

(Current projection) 

<Li-ion >Li-ion <Li-ion >Li-ion 

*The cost includes capital cost, power conversion system, the balance of plant, and construction 

cost 

**Assuming Energy/Power=4 for batteries and 0.25 for flywheel 

It can be observed that the Li-ion battery has the lowest project cost. Further, among the 

different battery technology, Li-ion batteries have the maximum energy density and power density. 

Thus, the Li-ion is the optimum choice among the batteries and is considered for analysis. The 

study also considers flywheels for the analysis due to the significantly high-power density, which 

might be useful during peak power demand of EV. 
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The study also considers SLB Li-ion batteries. The batteries are remanufactured after their 

end of life (EOL) to be used as SLB. The cost of remanufacturing SLB is around 30% of  NB 

(Neubauer et al., 2012). The comparison of SLB with that of the NB Li-ion battery is as shown 

below: 

Table 5.4 Comparison of second-life batteries (SLB) versus new lithium ion battery 

 NB Li-ion battery SLB Li-ion battery 

Battery pack Cost 
$137/kWh (BloombergNEF, 

2020) 

30% of new battery (Neubauer et 

al., 2012) 

Battery Life 
10 years (Kamath et al., 

2020) 
3-7 years (Kamath et al., 2020) 

Battery Energy Capacity Depend upon Size 
70-80% of a new battery (Kamath 

et al., 2020) 

 

The study also considered BESS with different storage durations. The storage duration is 

the time to charge/discharge the full battery at its power capacity. The smaller storage duration 

would mean that the battery can charge/discharge faster, which might be required, especially 

during peak hours. However, batteries with smaller storage durations are more expensive. The 

projected capital cost for different storage durations is as follows (Cole et al., 2021):  
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Figure 5.3 Projected BESS unit project cost with different storage durations (Cole et al., 2021) 

This study considers the projected cost of the BESS system in 2050, including battery pack, 

balance of plant, inverter, construction cost, etc. Finally, the battery size is limited to 50 kWh per 

50 kW charger due to area restrictions depending on site conditions (Gjelaj et al., 2020). 

5.4.4 Solar panel characteristics and input data 

The solar panels' output power depends upon the efficiency of the solar panels, sun 

elevation angle, and cloud coverage. The sun elevation angle throughout the year at different 

locations in Michigan is obtained from SunEarthTools, 2021 (Figure 5.4). The input data is fed 

into the optimization model to estimate the optimum investment technology with maximum cost 

savings. Note that these figures represents the sun elevation angle averaged over all the days in the 

given season  (winter or summer). The cloud coverage data throughout the year is obtained from 

Weather Spark, 2022 (Figure 5.5). Note that the variation in sun elevation angle and cloud 

coverage is found to be similar in all urban areas of the Michigan. Hence, same variation is 

assumed for all the areas in Michigan.Finally, the solar panel efficiency of 19.5% (Feldman et al., 

2021) and cost of $0.68/W (NREL, 2021) are considered in this study. . The cost of the solar panels 
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is the entire project cost, including inverters, structural balance of system (racking), electrical 

balance of system, installation cost, etc. The projected cost for the solar panels is considered to be 

for the year 2050 (NREL, 2021). It is important to note that the area of the solar panels is restricted 

to the maximum area based on the site conditions at each of the charging stations. Thus, the solar 

panel area is restricted to the charging/parking spot area per charger (Schmitt, 2016). 

  
a) Winter season b) Summer season 

Figure 5.4 Variation in sun elevation angle during the a) winter and b) summer season in 

Saginaw, Michigan (SunEarthTools, 2021) 

 

Figure 5.5 Variation in cloud coverage over the entire year in Saginaw, Michigan ©  

WeatherSpark.com (Weather Spark, 2022) 
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5.5 Results 

The model is applied to obtained the optimum size of DER, required grid upgrades, 

infrastructure cost and the savings. The results are obtained for the 75 DCFC locations at the six 

major cities (i.e., Saginaw, Lansing, Flint, Grand Rapids, Kalamazoo, and Muskegon) of 

Michigan. The study considers different scenarios for obtaining results which includes different 

combinations of DER (Li-ion NB BESS, Li-ion SLB BESS, FESS, solar panels), variation in EV 

charging demand, different storage duration of batteries, projected cost of the DER. These 

scenarios are listed as below: 

• DERs 

o BESS, FESS, and solar panels 

o BESS, FESS only 

• Battery cost, type, and storage duration 

o 2-hour storage duration 

▪ Li-ion NB $190/kWh     

▪ Li-ion SLB $145/kWh 

o 4-hour storage duration 

▪ Li-ion NB $150/kWh  

▪ Li-ion SLB $115/kWh               

o 6-hour storage duration 

▪ Li-ion NB $140/kWh   

▪ Li-ion SLB $105/kWh 

• EV load factor (EV demand) 

o EV demand in the year 2030 
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o 1.5 times the EV demand in the year 2030 

o 2 times the EV demand in the year 2030 

The results are obtained for the 75 DCFC locations in the six major urban areas (i.e., 

Saginaw, Lansing, Flint, Grand Rapids, Kalamazoo, and Muskegon) of Michigan. The analysis 

has been done for the 2030 EV demand, 1.5 times the EV demand of 2030 (EV load factor of 1.5 

means demand equivalent to 1.5 times the demand in the year 2030), and 2 times the EV demand 

of 2030, to predict future requirements of EV charging.  

The suggested size of the battery (kWh) and the solar panels (square meter) for the various 

urban areas for 4-hour storage duration (Li-ion NB and SLB), are presented from Figure 5.6 to 

Figure 5.17. The optimum solution is the provision of solar panels at all the locations in all the 

cities. The size of these solar panels is the maximum area that can be provided depending upon the 

site area restrictions at each particular location. These solar panels provide savings in the electricity 

cost, charge the battery (especially during the summer and highest sun elevation angle), and supply 

extra energy to the electric grid (if any). The size of the battery depends upon the type and cost of 

battery (NB versus SLB), cost of upgrading the grid, and the EV load factor (EV load factor of 1.5 

means demand equivalent to 1.5 times the demand in year 2030). When considering the NBs, 

numerous locations do not have batteries because of the high investment cost for the battery as 

compared to the cost of upgrading the grid. However, with SLBs all the locations have batteries, 

and the optimum size of these batteries is much larger than that of NBs. The investment cost for 

SLB is lower than upgrading the grid. Further, these batteries efficiently utilize the time of use 

electricity rates by charging during off-peak hours and discharging during peak hours. Note that 

the grid upgrading cost depends upon the capacity constraints of grid components at a given 

location. Substations might have to be upgraded (in the absence of DER), or a basic connection 
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can be the electricity provision costs. Note that flywheels are not the optimal solution as these have 

higher investment costs than batteries.  

The temporal variation of demand/supply in summer for an EV load factor of 2 at one of 

the locations in Saginaw, Michigan, is shown in Figure 5.18 (at the Grid level) and Figure 5.19 (at 

DCFC station level). Figure 5.18 shows that the feeder capacity is less than the peak hour demand 

(existing demand plus EV demand). Solar panels and batteries are provided to support the extra 

demand and reduce the load on the grid. The Figure 5.18a and Figure 5.18b are the profile for the 

case of new battery and SLB, respectively. Figure 5.19 represents the detailed temporal 

demand/supply at DCFC level for battery, solar panel output, the EV demand and the electricity 

price at the charging station location. The SLB (Figure 5.19b)  is able to utilize the time-of-use 

electricity rate more efficiently as compared to the NB (Figure 5.19a). The SLB (800 kWh) has 

larger size and can store more energy as compared to NB (575 kWh), during the off-peak hours 

(midnight and morning hours). It is evident from the figures (especially Figure 5.19b) that the 

battery charges from the midnight to morning when the electricity price as well as demand is low. 

The battery discharges during the morning peak hour when electricity price is higher. However, it 

again charges around the noon when the solar power output is maximum. Finally, it again 

discharges during the evening peak hour with increased electricity price. 

The total cost breakdown for the different cities for the optimum scenario (SLB and solar 

panels) for 4-hour storage duration is shown in Table 5.5. It can be observed that the provision of 

DER provide substantial savings in the annual electricity cost ($40,000-$285,000) and the annual 

total cost ($25000-$165,000) for each of the major cities in Michigan. The maximum savings are 

in  Grand Rapids, Michigan and the minimum savings are in Lansing, Michigan. The total savings 

are smaller because it includes additional investment costs for DER. Table 5.6 shows the same 
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cost breakdown considering NBs and solar panels for 4-hour storage duration. In this scenario, the 

annual electricity and annual total cost savings are around $25,000-$170,000 and $20,000-

$145,000 respectively. The study also obtained results for other scenarios (No solar panels, 2-hour 

storage duration, 6-hour storage duration). However, the scenario with a 4-hour storage duration 

SLB and solar panels provides the maximum savings. SLBs are cheaper and offer an acceptable 

charging/discharging rate for the required power during peak hour demand. The cost breakdown 

for the 2-hour and 6-hour storage duration BESS are presented in appendix from Table A  to Table 

A . 
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(i) Solar panel area (sq.m)                                    (ii) NB size (kWh)   

a) EV load factor=1 

 
(i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

b) EV load factor=1.5 

 
(i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

c) EV load factor=2 

Figure 5.6 Size of NB (4 hour storage duration) and solar panels for the city of Saginaw 
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(i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

a) EV load factor=1 

 
(i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

b) EV load factor=1.5 

 
(i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

c) EV load factor=2 

Figure 5.7 Size of SLB (4 hour storage duration) and solar panels for the city of Saginaw 
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(i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

a) EV load factor=1 

 
(i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

b) EV load factor=1.5 

 
(i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

c) EV load factor=2 

Figure 5.8 Size of NB (4 hour storage duration) and solar panels for the city of Muskegon 
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(i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

c) EV load factor=2 

Figure 5.9 Size of SLB (4 hour storage duration) and solar panels for the city of Muskegon 
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                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

c) EV load factor=2 

Figure 5.10 Size of NB (4 hour storage duration) and solar panels for the city of Lansing 
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                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

c) EV load factor=2 

Figure 5.11 Size of SLB (4 hour storage duration) and solar panels for the city of Lansing 
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                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

c) EV load factor=2 

Figure 5.12 Size of NB (4 hour storage duration) and solar panels for the city of Kalamazoo 



152 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

c) EV load factor=2 

Figure 5.13 Size of SLB (4 hour storage duration) and solar panels for the city of Kalamazoo 
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                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

c) EV load factor=2 

Figure 5.14 Size of NB (4 hour storage duration) and solar panels for the city of Grand Rapids 
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                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

c) EV load factor=2 

Figure 5.15 Size of SLB (4 hour storage duration) and solar panels for the city of Grand Rapids 
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                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) NB size (kWh) 

c) EV load factor=2 

Figure 5.16 Size of NB (4 hour storage duration) and solar panels for the city of Flint 
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                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

a) EV load factor=1 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

b) EV load factor=1.5 

 
                      (i) Solar panel area (sq.m)                                    (ii) SLB size (kWh) 

c) EV load factor=2 

Figure 5.17 Size of SLB (4-hour storage duration) and solar panels for the city of Flint 
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1. N

B 

2. SL

B 

Figure 5.18 Daily demand and supply variations at Grid level for the EV load factor of 2, during 

the summer season at a location in Saginaw, Michigan 

                              

  
(a) NB (b) SLB 

Figure 5.19 Daily demand and supply variations at DCFC station level for the EV load factor of 

2, during the summer season at a location in Saginaw, Michigan 

Table 5.5 Cost breakdown for the case of 4-hour SLB and the solar panels in Michigan 

Saginaw 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel  

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 498 469 207 0 1538 1595 95 63 
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1.5 755 713 310 0 2247 2334 142 87 

2 894 937 414 0 2957 3068 189 111 

Muskegon 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 273 252 108 0 862 893 50 29 

1.5 281 378 163 0 1264 1305 75 44 

2 316 504 217 0 1665 1719 100 57 

Lansing 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 185 212 91 0 857 882 43 25 

1.5 205 318 137 0 1259 1294 64 37 

2 219 424 182 0 1662 1706 84 53 

Kalamazoo 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 263 246 106 0 975 1005 49 29 

1.5 289 370 159 0 1433 1474 73 45 

2 314 493 212 0 1890 1943 99 64 

Table 5.5 (cont’d) 
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Grand Rapids 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 397 711 306 0 2799 2873 141 81 

1.5 455 1066 458 0 4141 4249 213 121 

2 506 1421 611 0 5484 5624 284 165 

Flint 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 286 407 175 0 1518 1563 81 47 

1.5 326 610 262 0 2231 2294 121 70 

2 368 814 350 0 2944 3026 162 93 

 

Table 5.6 Cost breakdown for the case of 4 hour NB and the solar panels in Michigan 

Saginaw 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel  

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 502 94 207 0 1572 1603 61 55 

1.5 793 129 310 0 2299 2346 90 75 

2 916 160 414 0 3027 3083 119 96 

Table 5.5 (cont’d) 
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Muskegon 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 277 24 108 0 882 897 30 25 

1.5 291 77 163 0 1291 1312 48 37 

2 323 49 217 0 1705 1727 60 49 

Lansing 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 185 36 91 0 873 885 27 22 

1.5 219 17 137 0 1286 1299 37 32 

2 226 143 182 0 1689 1713 57 46 

Kalamazoo 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 267 30 106 0 994 1009 30 25 

1.5 299 8 159 0 1464 1480 42 39 

2 323 101 212 0 1926 1952 63 55 

Grand Rapids 

Table 5.6 (cont’d) 
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EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 405 15 306 0 2859 2883 81 71 

1.5 483 5 458 0 4233 4265 121 105 

2 550 71 611 0 5602 5646 166 143 

Flint 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost ($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 294 38 175 0 1551 1569 48 41 

1.5 330 65 262 0 2279 2304 73 60 

2 380 34 350 0 3011 3038 95 81 

 

5.6 Summary 

The rapid growth in EVs will necessitate the growth of EV fast-charging infrastructure. 

However, this will increase the electricity demand which might overload the electric grid. To 

counter this effect, electric grid upgrades or other DER might be required to support the rising EV 

demand. An optimization model has been developed to estimate the optimum investment 

technology to support EV charging demand at DCFC charging stations. The different investment 

technology includes installation and purchase of ESS (NBs, SLBs, flywheels), solar panels, cost 

of electric grid network upgrade, and cost of buying/selling electricity from/to the electric grid. A 

discrete time-dependent model is developed to capture the spatiotemporal demand (EV demand 

Table 5.6 (cont’d) 
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and existing demand), electric grid distribution network, and capacity constraints, and seasonal 

impacts of solar radiation intensity, electricity rate, and electricity demand. The model is 

implemented to consider the expected EV charging in 6 major cities in Michigan by the year 2030. 

The study also did sensitivity analysis with varying EV demand, storage duration of the batteries, 

and cost of the ESS. The results indicate that maximizing the area of the solar panels considering 

site restrictions would maximize the benefits. Further, the Li-ion SLB are proved to be a cost-

effective solution compared to other ESS (NB, flywheels, etc.). These SLBs make efficient use of 

the time of use of electricity rate, store the intermittent solar energy, charges during the night, and 

discharges during peak hours. The optimum charge/discharge schedule of SLBs proposed by the 

study should be adopted for maximum savings. Both solar panels and SLBs should be provided to 

substantially save total annual costs ($25000-$165,000 per city) and the annual electricity cost 

($40,000-$300,000 per city). These savings can be further increased if more area is available to 

offer solar panels and the ESS. 
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 CONCLUSIONS 

AVs and EVs technology claim to have numerous potential benefits such as improved 

safety, mobility, roadway capacity, efficient driving, efficient use of travel time, and reduced 

emissions. These technologies can also promote the adoption of each other due to synergies 

between them, such as enhanced battery performance and battery life by AV technology and 

reduced emissions operating cost of AVs by EV technology. However, these technologies might 

increase users’ travel time, VMT, ownership cost, and electric load over the electric grid.  The 

high cost of EVs’ battery and AV technology will demote the adoption of these technologies as 

private modes, promoting the adoption of these technologies as a shared mobility system. Adopting 

these technologies as shared mobility systems can reduce ownership costs, but it will pose 

additional problems such as increased VMT, waiting time, and inconvenience to users. Another 

concern of EV technology is the limited range and high charging time, which can be overcome by 

deploying the DCFC charging station network. However, this network of DCFC stations would 

increase the electric load causing demand-supply imbalance, overloading the electric grid, and 

degradation of the electric grid distribution system. This challenge can be overcome by providing 

DER such as ESS solar panels at the DCFC charging stations. This study proposes frameworks to 

provide an optimal approach to promote the adoption of AV and EV technologies and reduce their 

effects on the transportation systems, environment, and the electric grid network. First, the study 

proposes a modeling framework for the optimum fleet configuration of PMVs, PAVs, and SAVs, 

to minimize the purchase and operating costs, time spent (travel time and waiting time), and 

emission production. Then this modeling framework is further extended to estimate optimum fleet 

configuration in private mobility and shared mobility systems of EVs and AVs. The study captures 

the trade-offs between all the competing factors that promote/demote the adoption of AVs and 
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EVs. The study also considers the adoption and implication of AV EV technologies for users with 

different VOTT attributed to their income levels. The metaheuristic algorithms are developed 

based on the genetic algorithm (GA) and simulated annealing algorithm to obtain the solution for 

the large-scale real-world NP-hard nonlinear optimization problem. Finally, the study estimates 

the optimal investment technology to support the electric grid hosting EV charging demand at 

DCFC stations. The different investment technology includes the installation of BESS (NB/SLB), 

FESS, solar panels, and electric grid upgrades. These models are implemented for hypothetical 

networks and real-world networks (Ann Arbor, Saginaw, Lansing, Flint, Kalamazoo, Grand 

Rapids, Muskegon).  

The results suggest that EVs are optimal for the system due to low operating costs, and 

zero tailpipe emissions. Hence, policies should be adopted to promote EV by providing adequate 

charging infrastructure, rebates over the purchase of EVs, and imposing carbon taxes. Further, 

electrifying AVs would lower the operating cost and offset the high ownership cost. Hence, 

policies should be adopted to promote autonomous and electric vehicles together. SAEVs are 

recommended for users with low VOTT and long-distance trips of users with mid VOTT, due to 

low ownership costs, travel time savings, low waiting time cost, low crash cost, and no driver 

costs. Hence, these should be deployed in regions with a denser population of low VOTT/low-

income groups. PMEVs are recommended for the short distance trips of users with mid VOTT and 

long distance trips of users with high VOTT. PAEVs adoption would be favorable if adopted by 

users with high VOTT and there are at least 20% savings in travel time, or the AV technology cost 

is reduced to at least one-third of the vehicle price. Hence, technology advancements are required 

to either reduce the AV technology cost or design these vehicles to provide amenities onboard that 

allow efficient use of travel time through meetings, reading books, novels, or recreational 
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activities. Targeting user-specific costs, the users with low VOTT or low incomes prefer SAVs. 

The users with high VOTT predominantly prefer PMEVs due to the low operating costs of EVs 

and no waiting time. Hence, EVs adoption should be promoted by eliminating uncaptured human 

factors, such as range anxiety and concerns for standing a long time at the charging stations.  

Further, to support the rising EV charging demand and reduce the load on the electric grid, 

the Li-ion SLB and the solar panels should be provided at different locations. The solar panel area 

provided should be maximum to avail the maximum benefits considering the site restrictions. The 

4-hour storage duration Li-ion SLB is the cost-effective solution compared to other BESS systems, 

NB, FESS, and other storage durations (2-hour, 6-hour). It efficiently utilizes the time of use of 

the electricity rate, stores the intermittent solar energy, charges at night, and discharges during 

peak hours. For maximum savings in total annual cost ($25000-$165,000 per city) and the annual 

electricity cost ($40,000-$300,000 per city), both the solar panels and SLBs should be provided, 

and the optimum charge/discharge schedule of SLBs proposed in this study should be adopted. 

These savings can be further increased if more area is available for solar panels and the ESS.  

The study estimates various models, scenarios, and the range of different influential 

parameters that can be utilized by the car companies, policymakers, and utility companies to 

promote the adoption of these technologies and provide a sustainable system.  
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APPENDIX 

Cost breakdown for BESS with 6 hour storage duration and solar panels 

Table A 1 Cost breakdown for the case of 6 hour NB and the solar panels in Michigan 

Saginaw 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel  
Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) Cost ($k) 

1 721 71 207 0 1574 1610 59 48 

1.5 886 60 310 0 2304 2348 85 73 

2 966 102 414 0 3031 3084 115 95 

Muskegon 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 277 34 108 0 882 897 30 25 

1.5 303 50 163 0 1293 1312 46 37 

2 323 67 217 0 1703 1727 62 49 

Lansing 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 185 50 91 0 872 885 28 22 

1.5 219 24 137 0 1285 1299 38 32 

2 256 172 182 0 1686 1714 60 45 

Kalamazoo 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 267 41 106 0 993 1009 31 25 

1.5 299 12 159 0 1464 1480 42 39 

2 314 180 212 0 1920 1952 69 55 

Grand Rapids 
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EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Eletric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 405 22 306 0 2858 2883 82 71 

1.5 483 7 458 0 4233 4265 121 105 

2 550 99 611 0 5600 5646 168 143 

Flint 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 294 56 175 0 1549 1569 50 41 

1.5 342 40 262 0 2281 2304 71 60 

2 380 54 350 0 3010 3038 96 81 

 

Table A 2 Cost breakdown for the case of 6 hour SLB and the solar panels in Michigan 

Saginaw 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel  

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 717 439 207 0 1539 1602 94 56 

1.5 861 674 310 0 2248 2336 141 85 

2 951 879 414 0 2960 3068 186 111 

Muskegon 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 273 235 108 0 863 892 49 30 

1.5 303 353 163 0 1264 1305 75 44 

2 323 471 217 0 1666 1718 99 58 

Lansing 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 185 198 91 0 858 881 42 26 

Table A 1 (cont’d) 
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1.5 219 297 137 0 1260 1293 63 38 

2 256 396 182 0 1663 1706 83 53 

Kalamazoo 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 263 230 106 0 976 1004 48 30 

1.5 299 345 159 0 1433 1474 73 45 

2 314 460 212 0 1891 1942 98 65 

Grand Rapids 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 401 663 306 0 2800 2871 140 83 

1.5 476 995 458 0 4144 4247 210 123 

2 524 1327 611 0 5488 5621 280 168 

Flint 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 286 380 175 0 1519 1562 80 48 

1.5 338 570 262 0 2233 2294 119 70 

2 368 760 350 0 2946 3024 160 95 

 

  

Table A 2 (cont’d) 
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Cost breakdown for BESS with 2 hour storage duration and solar panels 

Table A 3 Cost breakdown for the case of 2 hour NB and the solar panels in Michigan 

Saginaw 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel  

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 427 82 207 0 1574 1601 59 57 

1.5 503 182 310 0 2298 2339 91 82 

2 845 145 414 0 3030 3083 116 96 

Muskegon 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 277 5 108 0 884 897 28 25 

1.5 303 8 163 0 1296 1312 43 37 

2 323 11 217 0 1708 1727 57 49 

Lansing 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 169 31 91 0 874 885 26 22 

1.5 199 28 137 0 1285 1299 38 32 

2 214 93 182 0 1693 1714 53 45 

Kalamazoo 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 267 18 106 0 995 1009 29 25 

1.5 299 4 159 0 1464 1480 42 39 

2 323 63 212 0 1929 1952 60 55 

Grand Rapids 
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EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 409 1 306 0 2860 2883 80 71 

1.5 483 1 458 0 4233 4265 121 105 

2 561 25 611 0 5605 5646 163 143 

Flint 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 294 23 175 0 1552 1569 47 41 

1.5 342 10 262 0 2283 2304 69 60 

2 380 20 350 0 3013 3039 93 80 

 

Table A 4 Cost breakdown for the case of 2 hour SLB and the solar panels in Michigan 

Saginaw 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel  

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 411 126 207 0 1570 1599 63 59 

1.5 445 340 310 0 2285 2334 104 87 

2 733 303 414 0 3017 3077 129 102 

Muskegon 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 257 76 108 0 879 896 33 26 

1.5 287 60 163 0 1292 1311 47 38 

2 299 181 217 0 1696 1726 69 50 

Lansing 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 165 30 91 0 874 884 26 23 

Table A 3 (cont’d) 
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1.5 185 82 137 0 1281 1298 42 33 

2 193 134 182 0 1689 1711 57 48 

Kalamazoo 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 251 76 106 0 991 1008 33 26 

1.5 283 74 159 0 1459 1479 47 40 

2 308 97 212 0 1926 1951 63 56 

Grand Rapids 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 395 52 306 0 2856 2883 84 71 

1.5 455 111 458 0 4226 4264 128 106 

2 506 220 611 0 5592 5645 176 144 

Flint 

EV 

Load 

Factor 

Grid 

Cost 

($k) 

Battery 

Cost 

($k) 

Solar 

Panel 

Cost 

($k) 

Flywheel 

Cost ($k) 

Electric 

Cost 

($k/yr) 

Total 

Cost 

($k/yr) 

Electricity 

Savings 

($k/yr) 

Total 

Savings 

($k/yr) 

1 286 36 175 0 1551 1569 48 41 

1.5 308 162 262 0 2272 2303 80 61 

2 356 105 350 0 3006 3037 100 82 
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