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ABSTRACT
TOPOLOGICAL APPROACHES FOR QUANTIFYING THE SHAPE OF TIME SERIES DATA
By
Sarah Tymochko

Topological data analysis (TDA) is field that started only two decades ago and has already shown
promise both in theory and in applications. The goal of TDA is to quantify the shape of data in a
manner that is concise and robust using concepts from algebraic topology. Persistent homology,
arguably the most popular tool from TDA, studies the shape of a filtered space by watching how
its homology changes. The output of persistent homology is a persistence diagram, which encodes
information about the changing homology.

Persistent homology has shown success in various application areas; one ever growing area
of study in this field is time series analysis. Nonlinear time series analysis is a research field
in and of itself that aims to capture structure in time series data, however, it lacks theoretically
justified tools to analyze the resulting structure. Persistent homology comes with a solid theoretical
framework, is robust to noise, and quantifies the same type of structure as appears in time series
data. Thus combining tools from time series analysis and TDA provides a new approach to analyze
and quantify behavior in time series data.

One field where time series are prevalent is dynamical systems, since a time series arises from
a projection of a solution to a system. Specifically, given a time series, Takens’ theorem can be
leveraged to embed the time series as a point cloud in a higher dimensional space, where this point
cloud is a sampling of the full state space. Then for each time series, persistent homology can be
computed on the embedding. The result is a persistence diagram for each time series. The question
then becomes how do we analyze this collection of persistence diagrams to learn something about
the original time series data? Many people have developed methods to answer this question, through
methods such as machine learning or statistics. This dissertation provides several new methods

leveraging tools from both TDA and nonlinear time series analysis to study time varying data.
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CHAPTER 1

INTRODUCTION

Topological data analysis (TDA) is a collection of methods to quantify the shape of data. By lever-
aging tools from algebraic topology, TDA tools can capture shape such as connected components,
loops and voids, and summarize that information in a format that is concise, robust, and comparable.
Specifically, persistent homology encodes the structure of a filtered space in a persistence diagram.

One application area where persistent homology is particularly well suited is time series analysis.
There are tools, specifically the time delay embedding or Takens’ embedding [4], to embed time
series data in RY (d > 2) where underlying features of the original time series give different shapes
in the embedding space. For example, periodic time series appear as a collection of points tracing
out a circle in R¢. Since persistent homology is designed to detect circular structures, it is a natural
combination to quantify the shapes formed from these embeddings using persistence diagrams.
This combination of persistent homology applied to time delay embeddings is well studied and has
shown success in many applications [5-23].

This dissertation develops TDA tools for time series analysis in two ways: (1) by applying and
modifying existing methods for applications and (2) by developing new methods to characterize
behavior that previously has not been studied using persistent homology techniques. Under the first
category, we combine existing methods from image processing and TDA to study time series satellite
imagery from hurricanes to detect a daily cycle. Next, we develop a modification of a method of
transforming persistence diagrams into feature vectors that can be used for machine learning tasks.
We tested this method by classifying periodic or chaotic behavior in the Rossler dynamical system.
Lastly, we attempt to avoid potential pitfalls of the time delay embedding, specifically the fact
that longer time series generate larger embeddings and can become computationally prohibitive.
We use a coarser embedding called ordinal partition networks, which embed a time series into a
network, rather than a point cloud. Previous work has shown that using the topological structure of

these networks provides a method of classification between periodic and chaotic time series. We



extend this work to incorporate additional features of the network into the topological analysis.

In the second category, we use a generalization of persistent homology called zigzag persistence
to develop a one-step method of analyzing Hopf bifurcations in dynamical systems. This method
bypasses the problem of analyzing a collection of persistence diagrams, resulting in only one
persistence diagram that encodes information about when a bifurcation occurs. Further, we propose
future work to improve this method by studying the zigzag persistent homology of ordinal partition
networks to reduce computation time of our existing method.

This dissertation is structured in the following way: Chapter 2 provides the necessary back-
ground material from TDA [24, 25] as well as time series analysis [26], while Chapters 3—5 cover
each of the four projects described. Note that a significant portion of the work in this dissertation

has already been published in [27-29].



CHAPTER 2

BACKGROUND

In this section, we will cover background material from topological data analysis [24, 25] and time
series analysis [26]. Additional background will be introduced in the relevant chapters, but tools
such as homology, persistent homology, and the time delay embedding form the basis for all other

methods utilized.

2.1 Homology

Homology is a standard tool in algebraic topology to study topological structure in different
dimensions. In particular, given a space X, homology computes a group for dimensions k =
0,1,2,..., denoted H;(X), that represents information about the structure in each dimension. In
particular, dimension O studies connected components, dimension 1 studies loops, dimension 2
studies voids, and higher dimensions study the higher dimensional analogues.

We will first introduce a few other concepts in order to define homology, specifically simplicial
homology, more formally. A simplicial complex K is a space built from different dimensional
building blocks called simplices. These spaces can be viewed both geometrically and abstractly.
Geometrically, an n-simplex o is the convex hull of n + 1 affinely independent points, and a face
of an n-simplex 7 < o is defined to be the convex hull of a nonempty subset of the vertices of o .
The simplicial complex must satisfy the following requirements: (1) the intersection of any two
simplices in K is also a simplex in K and (2) all faces of a simplex in K are also simplices in K.
Abstractly, a p-simplex can be represented by the unordered set of p + 1 vertices it is built from.
So a simplicial complex, %K, is a family of sets that is closed under taking subsets. That is, given a
p-simplex, o € K, then any simplex consisting of a subset of the vertices of size 0 < k < p, called
a k-dimensional face of o, is also in K.

For a given simplicial complex K, let K, be the set of all p-simplices, p =0,1,2,.... Thena



p-chain, c, is defined to be a finite! formal sum of p-simplices in K,
c= Z aoi,
o€k,
where coefficients a; € Z,. Note that other fields can be used for coefficients, but we will focus on
the simplified case of Z; as that is typically what is used for persistent homology. Since we can add
and scale chains by a constant, the collection of p-chains, C,,(K), called the chain group, forms a

vector space. The boundary map between chain groups is defined as the linear transformation

which maps a p-simplex to the sum of its (p — 1)-dimensional faces. The chain complex is a

sequence of chain groups connected by the corresponding boundary maps,

Op+2 Op+1 Op Ip-1
> Cp — Cp > Cpy — -+

Within a chain group, we have two different kinds of p-chains, cycles and boundaries. A p-cycle
is a p-chain, ¢, with d,(c) = 0, meaning it has empty boundary. The set of p-cycles is the kernel
of the boundary map, ker(d,). A p-boundary is a p-chain that is the boundary of a p + 1-chain,
ie. forc, € Cp, ¢, = dcpy1 for some ¢y € Cpii. The set of p-boundaries is the image of the
boundary map, im(d,). Note that the p + 1-boundaries are a subgroup of the p-cycles. Now, the

p-th homology group is formally defined as
H,(K) =ker(8,)/im(0p41).

Further, the p-th Betti number is defined to be the rank of the p-th homology group and is denoted

Bp. Intuitively, 8, can be thought of as the number of p-dimensional features in K.

2.2 Persistent Homology

Homology is a useful tool for studying a static topological space; persistent homology is a method

of using homology to instead study a changing, parameterized space called a filtration. A filtration

'We assume finiteness throughout this entire dissertation.



is a nested set of simplicial complexes,
KoCKi CKyC- - CK,. 2.1)

Computing k-dimensional homology of each space in the filtration, the inclusions in (2.1) induce

linear maps between the homology groups,
Hi(Ko) = Hi(K1) — - — Hi(Kp). (2.2)

By studying these maps, we study how the homology of the space changes through the filtration.
In particular, we care about when features appear and disappear in this sequence. We say a k-
dimensional feature 7y is “born” at the i-th step of the filtration if y € Hy(K;) buty ¢ H;(K;_1). In
other words, y is born at i if y ¢ Im (Hy(K;-1) — Hy(K;)). A feature “dies” at the j-th step of the
filtration if it merges with an older feature going from K;_; to K.

A persistence diagram is a way of representing the births and deaths of homology classes.

Formally, a persistence diagram, D, is defined as a collection of points, D, given by
D={(x,y) eR?|0<x <y}

A point (b,d) € D represents a class in the persistence module that was born at b and died at
d. Persistence diagrams are typically visualized as scatter plots of the points in D. This is called
the birth-death plane, or birth-death coordinates. In a filtration, a feature is born before it dies, so
all persistence points will be above the diagonal through the birth-death plane. Another popular
modification of a persistence diagram is to plot a class that is born at » and dies at d as the point
(b, d — b) where the quantity d — b represents how long a feature lived, referred to as its “lifetime.”

This is called the birth-lifetime plane, or birth-lifetime coordinates.

2.2.1 Persistent Homology of Point Cloud Data

There are many ways of defining a filtration on different types of data such as point clouds, images,

and graphs. Here we will introduce the one method, however additional methods will be introduced
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Figure 2.1: Examples of a point cloud, the Vietoris-Rips complex on several scales and the resulting
persistence diagram in birth-death coordinates and birth-lifetime coordinates.

in the relevant chapters where they are needed. The Vietoris-Rips complex, or Rips complex for
short, is a method of creating a simplicial complex from a point cloud. Here, we need only assume
that a point cloud is a collection of points with a notion of distance; however, in practice, this
distance often arises from a point cloud in Euclidean space inheriting the ambient metric. Given a
point cloud X and a distance r the Vietoris-Rips complex R(X,r) is a simplicial complex where
for every finite set of n points with maximum pairwise distance at most r, the n — 1 simplex formed

r

by those points is included in R(X,r). This can be visualized as centering a ball of radius 5 on

\S]

each point in X. When two of balls intersect, an edge is added between those points, and when
there are three sets of pairwise intersections, a triangle is added between the three vertices. These

complexes have the property that if r; < r; then R(X,r;) € R(X,r;). Thus, for any increasing set
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Figure 2.2: Two example point clouds and their corresponding 1-dimensional persistence diagrams
with matching shown as dashed lines. Figures generated using scikit-tda [3].

of distance values, 0 < ryp <r; <rp <--- <rp,, we get a filtration,
R(X,I’()) QR(X,I’]) QR(X,I’Q) c--- QR(X,I”H). (2.3)

An example of a point cloud, several steps in the Vietoris-Rips filtration, and the resulting persistence
diagram are shown in Fig. 2.1. In general, we do not even need the coordinates of the points in the
point cloud; all that is needed to compute the Vietoris-Rips filtration is a matrix of the pairwise

distances between all points.

2.2.2 Metrics on Persistence Diagrams

The most common metrics used to compare persistence diagrams are the Wasserstein distance and
bottleneck distance, which are closely related. First, let A = {(c,c) € R?} be the set of points
along the diagonal in persistence diagrams, representing features where the birth time equals the
death time. Note that A can have infinitely many copies of each point along the diagonal. The

p-Wasserstein distance (p > 1) between two persistence diagrams D, D, can be defined as

1/p
_: _ p
dw,(D1,D2) = n;f(z e — (oIl 2.4)

xeD




where ¢ : D; UA — D, U A is a bijection between the persistence diagrams that allows points
in the diagrams can be matched to the diagonal. An example of this bijection, frequently called
a matching, can be seen in Fig. 2.2. In practice, typically ¢ = co however there is evidence that

choosing g = p is a better choice [30]. Similarly, the bottleneck distance is defined as

de(D1, Dy) =inf sup [|[x — (%)l (2.5)

¥ xeD;
where ¢ : D1 UA — D, U A is again a bijection that allows matching to the diagonal. However, in
practice, these metrics are very computationally expensive and often cannot be used in application
to large datasets.
A more simple approach is to develop statistics that can be calculated on a single persistence
diagram. The most common is maximum persistence, which is also sometimes called maximum

lifetime. Given a persistence diagram, D, maximum persistence is defined as

MaxPers(D) = max d - b. (2.6)
(b,d)eD

This value represents the maximum lifetime of all homological features in the data. Using maximum
persistence as a statistic on persistence diagram has shown success in numerous applications
[11, 12,27, 31]. However it may not always be sufficient. Typically, points with longer lifetime are
interpreted as the most important features in the data since they are the ones that persist through
the filtration the longest, while points with smaller lifetimes are considered noise. However this is
not always the right interpretation; it has been shown in that shorter bars are important in many
applications [32, 33].

One important property of persistence diagrams is that they are stable, meaning that noise and
small changes in the input data results in a small change in the persistence diagram [34, 35]. An
example can be seen in Fig. 2.2. The persistence diagrams for the circular point cloud and for the
noisy version of the point cloud are very similar and thus have a small bottleneck distance. However
there are certain types of noise that are more problematic. While the purple triangles are slightly
perturbed from the circle in Fig. 2.2, a point in the middle of the circle would more drastically

change the persistence diagram.
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Figure 2.3: Example time series and corresponding time delay embedding using parameters 7 = 10
and d = 3.

2.3 Time Series Analysis

One common tool to analyze time series data is the time delay embedding. It is built off of
underlying work in differential geometry and dynamical systems by Whitney [36] and Takens [4],
respectively. The underlying assumption of this tool is that the time series is an observation of an
underlying dynamical system. More formally, we assume the state space is a manifold, M, and
the system is given by a smooth map, f : M — M. Further, assuming the dynamics live on an
attractor, A C M, then there exists a diffeomorphism ¢ : A — R4 for a well-chosen dimension, d.
Whitney’s embedding theorem says an m-dimensional manifold can be smoothly embedded in R>".
All together, this means that given an observation function of the underlying system @ : M — R
one can embed « into R? in a way that the embedding is diffeomorphic (and thus topologically
equivalent) to the original underlying attractor. This embedding is called the time delay embedding
(also sometimes referred to as Takens’ embedding or the sliding window embedding) and requires
three inputs: the observation function [xi,...,x,], an embedding dimension d, and a delay
(sometimes called a lag) 7. Sometimes these parameters are expressed as the window size, dr. The
embedding is then the point cloud X = {x; := (X;, Xjs7, . . ., Xis(a-1)r)} C R¢. Figure 2.3 shows an
example time series and depicts how the two parameters, d and 7, are used in the creation of the

time delay embedding. The time series value of three red points along the time series correspond



to the three coordinates of the red point on the right side. In practice, given a time series, one does
not know the underlying system, the manifold M, or the dimensional of the manifold. Thus, there
is no way theoretically to determine the correct embedding dimension. However, there are several
heuristics that work well in practice for selecting the delay and dimension parameters [37—43].

Most of these heuristics are iterative, testing various values of 7 or d and determining which
is best. For example one of the most common methods of selecting the dimension d is using false
nearest neighbors [38]. Intuitively, this method works by assuming that if two points are near each
other when embedded in dimension d, but then are far apart in dimension d + 1, then they were
false nearest neighbors in dimension d, and thus dimension d is insufficient to embed into. This
process would then compare embedding into dimension d + 1 and d + 2, and continue until the
proportion of neighbors that are false is 0, or sufficiently small. In Chapter 5 we will introduce a
heuristic for selecting the delay which we will use in experiments in that chapter.

For another example, consider the Lorenz system defined as,

E:U(y—Z)’

dy

a9 _ - 2.7
7 x(p—-2) -y, (2.7)
dz

o Tz

We can see one example solution using the parameters, o = 10,p = 28 and 8 = 8/3, using
initial conditions [1.0, 1.0, 1.0] in Fig. 2.4. This is generated using full knowledge of the Lorenz
system, however if we only retain the x-coordinates over time, we get the time series shown in the
bottom left plot of Fig. 2.4. Using the time delay embedding, we can reconstruct the topological
structure setting d = 3 and 7 = 8, resulting in the bottom right plot in Fig. 2.4. While the time
delay embedding is not identical to the original system, it still has two loop-like structures and is

topologically equivalent.
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Figure 2.4: Top left: Example solution of the Lorenz system (as defined in Eqn. 2.7) using
parameters, o = 10, p = 28 and 8 = 8/3, using initial conditions [1.0, 1.0, 1.0]. Bottom left: Time
series of x-coordinates from the example solution. Bottom right: Time delay embedding of the
x-coordinate time series using d = 3 and 7 = 8.

2.4 Related Works

Significant work has been done using persistent homology on time delay embeddings. Specifically,
in [5], the authors provide a full theoretical analysis of persistent homology for time series analysis.
The authors show that maximum persistence of the persistence diagram computed from the time
delay embedding can be used to quantify periodicity. Additionally, they provide a description of
how persistence diagrams change depending on the embedding dimension and the delay parameter.

This work provides sound theoretical backing for the use of persistent homology on time delay

11



embeddings.

This combination of tools has shown success in numerous application areas as well. In the
literature so far, persistent homology has been shown to quantify features of a time series such as
periodic and quasi-periodic behavior [5—10]. Existing applications in time series analysis include
studying machining dynamics [11-14], gene expression [15], financial data [16], video data [17, 18],
sleep-wake states [19, 20], motion tracks [21, 22], and the movement of C. elegans [23]. This list
is far from exhaustive, but shows the wide range of fields that these tools have been successfully
applied to.

In this dissertation, we will present applications of using topological tools to analyze time series

data, as well as introduce new methods.
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CHAPTER 3

QUANTIFYING A DIURNAL CYCLE IN A TIME SERIES OF HURRICANE IMAGERY

A time series can consist of different types of data. While we typically think of a time series as a
single variable recorded over some time period, we can also think of a video or a movie as a time
series of images. Satellite imagery is one example of a source of such data, where, for example,
the satellite records temperatures of the Earth in a certain region. This type of data is especially
useful in the field of atmospheric science to study phenomena such as hurricanes.

A recently discovered pattern exhibited in many major hurricanes is a diurnal cycle that is
apparent in changing cloud temperatures within a hurricane [44]. This cycle, formally called the
tropical cyclone (TC) diurnal cycle, can be seen as a cyclical pulse in the cloud field that propagates
radially outward from the storm’s center. The pulses begin forming in the inner core of the storm,
appearing as a region of cooling cloud-top temperatures in the satellite imagery. The area of
cooling takes on a ring-like structure as cloud top warming occurs on the inside edge as the cooling
moves away from the storm center. Figure 3.1 shows two examples of the ring-like structure in
Hurricane Felix. This cycle is of interest to atmospheric scientists as it has implications for the
storms structure and intensity. However, as methods to detect this cycle have thus far been mostly
qualitative in nature, we seek a method of automatic and quantifiable detection of this cycle.

Because this cycle can be seen as an expanding circular structure, 1-dimensional persistent
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Figure 3.1: Two examples of the ring-like structure of the tropical cyclone diurnal cycle.

13



Example Image

|| |
| -

o O X o}

Figure 3.2: Example image and visual on propagating greyscale function values to lower dimen-
sional cubes.

homology seems like an obvious choice of tool for detecting the diurnal cycle. We developed a
method of utilizing persistent homology to detect and quantify this cycle using a time series of

infrared (IR) satellite imagery data. The work in this chapter was published in [27].

3.1 Persistent Homology on Images

Persistent homology is a versatile tool in that it can be applied to a filtration resulting from many
different types of data. We saw the case of simplicial data in Sec. 2.2, however, in the case of images,
cubical complexes are a more natural choice. Here we introduce cubical complexes following the
presentation in [45].

An elementary interval in R is a closed interval of the form [/,] + 1] or [[], [ € Z and is
called degenerate or nondegenerate respectively. An elementary cube is the product of elementary
intervals, Q = I} X I X --- X I; C R?. The dimension of an elementary cube is defined as the
number of nondegenerate intervals in Q. A complex, K, is cubical if it can be written as a finite
union of elementary cubes. As with simplicial complexes, we have a notion of faces: if P and Q are
elementary cubes and P C Q, then P is a face of Q (denoted P < Q). Intuitively, this construction is
similar to a simplicial complex, however triangles and higher dimensional analogues, are replaced
by elementary cubes. To avoid confusion, we will call the building blocks of simplicial complexes
p-simplices, and the building blocks of cubical complexes p-cubes.

Given an greyscale image, we can construct a filtered cubical complex where each pixel repre-

sents a 2-cube with function value equal to the greyscale value of that pixel. Then function values

14
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Figure 3.3: Original satellite imagery from Hurricane Felix GOES-12 data set (left) and Hurricane
Felix GridSat-GOES data set (right) at approximately the same time.

can be propagated down to lower dimensional faces. More formally,

f(Q) = min f(P)

PeX such that Q<P
For example, the function value on an edge is equal to the minimum of the pixel values adjacent to
it, and similarly for vertices. An example of this can be seen in Fig. 3.2.
Given the cubical complex with a function f : K — R, one can define a filtration formed from

nested sublevel sets,

f_l(_OO,a()] - f_l(_oo’ CY]] c---C f_l(_oo’ Oln]

for increasing parameter value @p < @) < --- < @, with all @; € R. This forms a filtration as
defined in Eqn. 2.1 and thus, persistent homology can be computed as described in Sec. 2.2. The
sublevel set filtration! is very commonly used on images in this way, and is what we will use for

the hurricane images.

3.2 Imagery Data

For this study, we will focus on two hurricanes that exhibit the diurnal cycle behavior, Hurricane

Felix from 2007 and Hurricane Ivan from 2004. We worked with two types of geostationary

Technically, most filtrations can be viewed as a sublevel set filtration that only differ in the definition of the
R-valued function and choice of domain. The Vietoris-Rips filtration is a sublevel set filtration defined on the complete
simplicial complex, where the real valued function is induced by the pairwise distances.
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operational environmental satellite (GOES) data, each with varying spatial and temporal resolution.
The first type (hereafter referred to as the GOES-12 data sets) consists of data in hourly increments,
with the exception of the 0400 and 0500 UTC each day (due to the GOES-12 satellite eclipse
period). This imagery has a spatial resolution of 2 km? and each image covers a total area of
approximately 1500 km X 1500 km, represented as a 752 X 752 matrix. The second type is the
GridSat-GOES [46] data set and consists of data in 3-hour increments with the exception of 0600
UTC each day. Each pixel has a resolution of 8 km? and each image is cropped to a 191 x 191
matrix to approximately match the area covered by the first set of data. The cropped version covers a
total area of approximately 1530 km X 1530 km. For both data sets, the images are storm-centered,
meaning the center of the hurricane is in the middle of the image. This is done to ensure the
hurricane is aligned at each point in time.

For Hurricane Felix, we studied both types of data sets to test the flexibility of the method across
spatial and temporal resolution. The Felix GOES-12 data set spans 2 to 4 September 2007, while
the Felix GridSat-GOES data set spans spanning 31 August to 6 September 2007. For Hurricane
Ivan, we only used the GOES-12 data set, which spans 30 August to 1 September 2004. Figure 3.3

shows example satellite imagery for both Hurricane Felix data sets.

3.3 Method of Detection and Quantification

Our method of detecting and quantifying periodic circular structure in IR satellite imagery com-
bines existing methods from the fields of image processing, topological data analysis, and signal
processing. In this application, it is not only the structure at a given time that matters, but also how
the structure changes over time.

Initially, we have a time series of IR satellite images, represented as a matrix of pixel values
S(t) for time t. The method works by applying four steps to these matrices, examples of which can

be seen in Fig. 3.4.

1. Forall times ¢, given the original brightness temperature image S(7), we compute the six-hour

differences, M (t) = S(t + 6) — S(1).
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Figure 3.4: (a) Example of 6 hour difference, M (), from the Felix GOES-12 data set; (b)
Thresholded subset, M (t),, where p = 80; (c) Distance transform function applied to M (1),; (d)
Corresponding sublevel set persistence diagram. These figures correspond to steps 1-4 in 3.3.
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2. Fix a threshold p and let M(t), be the subset of M (¢) which has function value less than u:

1AM, ] <
M(t),li, j] =
0 otherwise.

3. To each matrix M(t),, apply the distance transform [47, 48], which gives a new matrix D(t),
defined as

D(1)[i, j] = mind(m; ;. x)

where m;; = M (t),[i, j], x is a 0-valued pixel and d is the L-distance. This gives a new

greyscale image from which a cubical complex can be constructed.
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Figure 3.5: Example of 6-hour difference image and the corresponding persistence diagram.

4. Compute sublevel set persistence on the function D(t) using the cubtop method in Perseus
[49, 50], which calculates persistent homology for cubical complexes using concepts from

discrete Morse theory.

The first three steps are modifications to the binary image, while the last step constructs a cubical
complex as described in Sec. 3.1. Since the TC diurnal pulse is a cooling ring propagating outward
through the day, step 1 is necessary in order to see the changes in the GOES satellite brightness
temperature. In previous work by atmospheric scientists, the 6 hour difference was found to be
most effective difference to detect the cycle [44, 51]. While one can compute persistence directly
from the 6-hour differences where the circular features are visually prominent in the data, the
results did not show any relevant features. This discrepancy is due to the extreme differences in the
function values between the circular sections which prevents the sublevel sets from containing the
full circular structure until very late in the filtration. As seen in Fig 3.5, the persistence diagram
computed directly on a 6-hour difference image has no significant off diagonal point, thus it is not
detecting a significant circular feature despite the visible feature in the image. Thus, the addition
of steps 2 and 3 were necessary to detect the circular structure that we see visually. For step 2, all
the examples shown use a threshold of u = 80, however we will address the choice of threshold in
Sec.3.4.1.

This thresholding gives a binary image, however the persistent homology of binary images
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is uninteresting as there would only be two steps in the filtration and likely would not detect the
circular structure. The distance transform creates a new greyscale image where pixel values are
based on distance to the thresholded region. This creating a “blurring” effect where all pixels
that are close to a white pixel have a smaller greyscale value, and the further away the pixel it is
the higher the value. This sets up the image perfectly for sublevel set persistence. The distance
transform has been used in conjunction with persistent homology in applications including porous
materials [52—-57]. However, this is the first time to our knowledge that this combination of tools
has been applied in atmospheric science.

After these four steps are applied to each image, we calculate maximum persistence of each
persistence diagram as defined in Eqn. 2.6. By plotting maximum persistence over time, we
can see how the most prominent circular feature changes through the progression of the day and
life of the TC. This plot should show an oscillatory pattern, detecting the change in the diurnal
cycle throughout the day. In order to quantify this oscillatory pattern, we use the discrete Fourier
transform [58]. Using the power spectrum, we pick the frequency corresponding to the highest
peak for each data set, which gives the frequency of the most prominent periodic signal in the data.
Additionally, we use the inverse Fourier transform to see how closely this signal matches with the

maximum persistence time series.

3.4 Results

After the data is prepared, we apply the steps described in Sec. 3.3 to each data set. For the two
Hurricane Felix data sets, as they are from the same hurricane, we would expect the results to be
similar despite the temporal and spatial resolution differences. Plotting the calculated maximum
persistence over time, we get the time series plotted as solid lines in Fig. 3.6. The plots show an
oscillatory pattern for all three data sets which appears to repeat approximately daily.

To verify the periodicity of the oscillatory pattern, we apply the discrete Fourier transform and
calculate the power spectrum for each data set. Each power spectrum is shown in Fig. 3.7. The

maximum peaks in the power spectra give a frequency of f = 0.976 cycles per day for the Felix
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Figure 3.6: Maximum persistence plotted over time for both hurricane Felix data sets (left) and
the hurricane Ivan data set (right) using threshold ¢ = 80 in addition to the reconstructed versions,
created using inverse Fourier transform. Gray vertical lines separate days according to UTC. The
labels on the x-axis are formatted as MM.DD.time.

GridSat-GOES data set, f = 0.979 cycles per day for the Felix GOES-12 data set, and f = 1.0
cycles per day for the Ivan GOES-12 data set. We use this frequency, f, to calculate the period, T,
of the cycle by calculating

T =24/f.

giving the period of the sinusoid in hours per cycle. Doing so gives the result that the cycle is
repeating every 24.6 hours for the Felix GridSat-GOES data set, every 24.5 hours for the Felix
GOES-12 data set, and 24.0 hours for the Ivan GOES-12 data set.

Using the most prominent frequency for each data set, we calculate the inverse Fourier transform,
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Figure 3.7: Power spectrum for the Felix GridSat-GOES data set (left), the Felix GOES-12 data set
(middle), and the Ivan GOES-12 data set (right).

and plot these reconstructed sinusoids over the original data. These sinusoids, plotted as the
lighter dashed lines in Fig. 3.6, closely resemble the patterns exhibited by the original maximum
persistence versus time plots; therefore, these approximately 24 hour patterns visible in the plots
are also detected mathematically, which verifies the claim that our method is detecting a daily cycle
in each data set. Additionally, since for both Hurricane Felix data sets, the plots of maximum
persistence against time seem to match and both have similar detected periodicity from the discrete
Fourier transform, our method is robust to the temporal and spatial resolution differences in these

two data sets.

3.4.1 Choice of Threshold

The method described involves a choice of threshold, so we used a variety of thresholds, u €
{25,30,...,100}, to test the sensitivity of our method to the parameter choice. For both data sets
from Hurricane Felix, our method is very robust to the choice of threshold. In Fig. 3.8, the top
row are plots that represent maximum persistence versus time for the Hurricane Felix data sets
using a variety of thresholds. There is a clear periodic pattern for both data sets across most of
the thresholds shown. In fact, for all thresholds tested the Fourier transform detects a period of
24.6 hours and 24.5 hours for the Felix GridSat-GOES data set and GOES-12 data set respectively.
For u < 35 and u > 90 the Fourier transform is unable to pick up the daily pattern in the Felix
GridSat-GOES data set.

For Hurricane Ivan, the plot is shown on the bottom row of Fig. 3.8 for thresholds u €
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Figure 3.8: Maximum persistence vs time plot for Hurricane Felix (top row) and Hurricane Ivan
(bottom row). Hurricane Felix results are shown for all thresholds u € {35,40,...,90} while
Hurricane Ivan results are shown for u € {80, 85,90, 95, 100}.

{80, 85,90, 95,100}. For all of the threshold values shown, the Fourier transform consistently
detects a 24.0 hour period in the maximum persistence values. This is a smaller range of threshold
values than those that detect a daily cycle in Hurricane Felix, but for thresholds u € {80, 85, 90},
our method detects a daily cycle in all three data sets. Thus, the method may require some parameter
tuning, but our analysis of these three data sets gives a range of values to start with when testing

new data sets.

3.4.2 The Influence of Noise

While the above method detects a daily cycle, there are some instances where the six-hour difference
introduces noise because of varying behavior in the center of the hurricane. Figure 3.9 shows an
example of how this noise can appear in the thresholded image and the distance transform for the
Felix GOES-12 data set. A small area of pixels above the threshold cause the distance transform to

fill in the center of the circular region, thus potentially changing the value of maximum persistence.
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Figure 3.9: Example of a thresholded image with noise and the resulting distance transform image.
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Figure 3.10: Example binary image and the result after erosion and dilation with a 2 X 2 square
kernel.

Note that while persistence diagrams are stable, with this type of noise, stability does not guarantee
small changes in the persistence diagrams. To combat this, before applying the distance transform,
we use a method from mathematical morphology [59] called opening to de-noise the image and
see how this impacts the detected periodicity.

Opening is the combination of two tools from mathematical morphology: erosion and dilation
[59]. Both involve moving a structural element through a binary image and adding or removing to
the foreground of the image (where the foreground is the portion of the binary image with value

1). In general, any structural element can be used however in this case we will use an n X n square.
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Figure 3.11: Example of a thresholded image after opening is applied and the corresponding
distance transform.

As in Sec. 3.3, we can treat a binary image as a matrix, B. Erosion of B, which we will denote as
E(B) can be defined as

1 ifVkedli,...,i+(n-0)},te{j,...,j+(n—-1}L B[k, €] =1
E(B)[i,j] =

0 otherwise.

Similarly, dilation of B, denoted D (B), can be defined as

1 if3ke{i,....i+(n—1},€€{j,....j+(n—1)}such that B[k, ] = |
D(B)[i, j] =

0 otherwise.

Note that both of these operations result in a smaller binary image as n — 1 rows and columns are
removed. Figure 3.10 shows an example of dilation and erosion using a 2 X 2 square structural
element. Opening of a binary image, B, is erosion followed by dilation, D(E(B)), which will
remove noise and rebuild the area around the boundary.

We apply opening to the binary thresholded image using a 8 X 8 pixel kernel for the GOES-12
data sets and a 2 X 2 pixel kernel for the GridSat-GOES data set to remove noise such as these
center pixels. Note the difference in size of the kernel is due to the differences in spatial resolution
between the two data sets. We use the python library OpenCV [60] for these computations. Opening
is specifically implemented using the function cv2 .morphologyEx using cv2.MORPH_OPEN as the

second input. Figure 3.11 show the result when opening is used on the thresholded matrix and then
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Figure 3.12: Maximum persistence plotted over time for all data sets using threshold y = 80 in
addition to the versions using opening to remove noise. Gray vertical lines separate days according
to UTC.

the distance transform is applied. Since the distance transform is no longer filled in, the opening
process has removed the noisy pixels causing the issue.

Using this extra step in the method, we recalculate maximum persistence for all times and
compute the estimated period of the new maximum persistence values using Fourier transforms.
Figure 3.12 shows maximum persistence plotted versus time using our original method described
in Sec. 3.4, and the method including the additional opening step. While the new maximum
persistence values vary a little from the originals, the general oscillatory behavior seems similar.
For both the Felix and Ivan GOES-12 data sets, the Fourier transform still detects a 24.5 and 24.0

hour cycle respectively. Thus the presence of noise in these data sets is not impacting the results.
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However, for the Felix GridSat-GOES data set, the Fourier transform now detects a 15.375 hour
cycle, likely due to the difference in spatial resolution. The GOES-12 data has higher spatial
resolution, so applying opening to remove noise does not impact the global circular structure. The
GridSat-GOES data has lower spatial resolution, and is therefore more sensitive to noise in the
image. Thus, our method is more reliable when applied to higher spatial resolution data, and should

be used with caution on lower quality data.
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CHAPTER 4

TIME SERIES CLASSIFICATION USING ADAPTIVE TEMPLATE FUNCTION
FEATURIZATION

In the previous section, we analyzed time series of images, resulting in a time series of maximum
persistence values. However, in other cases you may have multiple time series that you wish to
classify in some way. For example, if you have a time series of vibration data from a machining
process, you may want to classify whether the machine is undergoing excessive vibrations causing
chatter, a phenomena that is damaging to the machine pieces as well as to the material the machine
is cutting [11, 61].

While combining persistent homology with machine learning sounds like a reasonable idea,
the space of persistence diagrams is problematic. It is not a Banach space and does not have
unique means or geodesics [30, 62, 63]. Thus, applying machine learning to persistence diagrams
takes some additional mathematical creativity. One method of doing so is using a kernel function,
where you compute a similarity matrix on the collection of persistence diagrams and use any kernel
based machine learning method. Another collection of methods are featurizations, or methods
of mapping from the space of persistence diagrams to Euclidean space in a way that maximizes
the structure preserved. Then the resulting feature vectors can be used in any machine learning
framework. Intuitively, we want persistence diagrams that are “close” in the space of persistence
diagrams to have vectors that are “close” in the feature space. However, it has been shown that there
is no isometric embedding from the space of persistence diagrams into Euclidean space [64, 65].
This means there is no feature map that will preserve the original metric, so while these methods
are useful in practice, the theoretical guarantees are limited.

Numerous kernels [2, 66—72] and featurization methods [73-81] have been developed as the
interest in using persistence diagrams for machine learning has grown in popularity. For brevity,
here I will only focus on one featurization method, called the template function featurization [1],

however surveys of additional methods can be found in [82, 83]. Further, I will present an adaptive
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version of the template function featurization. The content of this chapter was published in [28].

4.1 Template Function Featurization

A template function is defined as any function on R? that that is continuous, and has compact
support contained within the upper half plane!, W := R x R.o. Let ® denote the space of all
persistence diagrams. A template function f : W — R can be turned into a function on persistence
diagrams as follows. Given a diagram in birth-lifetime coordinates, D, the function, v : © — R
is evaluated on each point in the diagram, and then summed, giving

vi(D) =) f(x).

xeD

A collection of template functions, 7, is called a template system if the resulting functions on
persistence diagrams, 5 = {vy : f € 7} separate points. That is, for every pair of diagrams,
D and D’, there exists a function f € 7 such that v¢(D) # v¢(D’). As a true template system
is infinite, vectorization is done by returning (v (D), -+, v (D)) for functions in some subset
of the template system. This is well justified since any function on persistence diagrams can be
approximated by some reasonably chosen finite subset of a template system; see [1, Thm. 29].
In this paper, we will use two examples of template systems as given in [1]: tent functions and

interpolating polynomials.

4.1.1 Tent Functions

Tent functions are an example of template functions that are meant to probe small regions of the
persistence diagram. Again, recall everything is defined in the birth-lifetime plane. Given a point

a=(a,b),and aradius 6 € R, with 0 < § < b, the tent function is defined to be

1
8as(x,y) =1 - gmax{lx —al,|ly—bl}| ,

+

where | - |+ denotes the positive value of the function, and O otherwise. This function is supported

on the compact box [a — d,a + d] X [b — 6, b + ¢], evaluates to 1 at a, and decreases linearly to 0

"We will use birth-lifetime coordinates as described in Sec. 2.2 throughout this section, so all points in the
persistence diagram lie in the upper half plane, rather than above the diagonal.
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Figure 4.1: Example tent function, g(3) 1, drawn in the birth-death plane and birth-lifetime plane
with d =5, 6 = 1 and € = 0. Plot adapted from [1, Fig.4].
on the boundary of the box. An example of a tent function is shown in Fig. 4.1. Note that since
the box must be compactly supported on persistence diagrams, the bottom edge of the box cannot
lie on or below the x-axis. Given a persistence diagram D = {x = (b;, [;)}, the tent function is the
sum of the evaluation of this function on all points in the diagram,

Gas(D) = ) gas(x).

xeD

The full template system consists of all tent functions g, s which have compact support contained

in W. However, in practice, we work with the subset of these tent functions
G = {G(éi,5]'+e),6 | 0<i<d, 1< j< d} 4.1

by choosing the grid size, d, and a vertical shift, € > 0, to ensure G is compactly supported inside
W. This gives a d X (d + 1) feature vector. In Fig. 4.1, the grid represents the mesh on which tent
functions can be centered and a single tent function, centered at (3,2) with 6 = 1 and € = 0 is

shown.

4.1.2 Interpolating Polynomial Functions

The second template system we work with are interpolating polynomials. Unlike the localized tent
functions, interpolating polynomials have support that fills out the space, however to satisfy the

properties of template functions, they will be transformed to have compact support. Given a mesh
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adapted from [1, Fig. 5].

e
B iisi} &
h.iiai).a

(@]
N
N
o
N
N

A ={a;}!", C R, the Lagrange polynomial ff‘ (x) corresponding to a; is

xX—a;
e = | =
7 () aj—a;

i#j

This has the property that fjﬂ(ak) is 1 if j = k, and O otherwise. Then fixing meshes A C R,

B C R0, and coordinates i’ and j’, the template function is

FOuy) = hx,y) - 1616 ()]

where £ is a hill function forcing the resulting polynomial to have compact support inside a
designated box. In practice, the box for % is a bounding box containing the mesh A x B where
both meshes A and B are chosen to have d elements; if this box further encloses all points in all
diagrams, then its existence is implicit and need not be coded at all. Examples of these interpolating

polynomials are shown in Fig. 4.2.

4.2 Adaptive Template Functions

We develop a modification to the template function featurization method [28]. To test this method,
we apply it to synthetic shape data as well as time series data generated from the Rossler dynamical

system. Here we will describe our modifications to the method as well as the results in applications.
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Figure 4.3: The top left image is an example of a set of persistence diagrams from the manifold
experiment explained in 4.3 showing both the 0 and 1 dimensional diagrams in the birth-lifetime
plane. The top right is an example showing clustering on both 0 and 1 dimensional diagrams
together, which we call “combined partitioning,” and creating 5 partitions. The bottom left and
bottom right are examples showing 0 and 1 dimensional diagrams respectively, and clustering each
dimension separately, which we call “split partitioning,” creating 3 partitions per dimension. In all
except the first image, the black stars represent centers of clusters from k-means clustering while
the black boxes represent the partitions.

In the original template function method, a subset of a template system is selected based on a
grid over the persistence diagram. However, persistence diagrams often do not have points covering
the entire area of the grid. For example, in the top left plot in Fig. 4.3, the points are concentrated
in certain regions of the diagram. Thus, we develop our method to select the subset of a template
system based on localized information in the diagrams.

We provide an adaptive method for choosing a subset of a template system based on k-means
clustering [84]. The method consists of two steps: first, cluster the points in all diagrams in a
training set to find regions of interest, and second, construct localized template function systems
based on these clusters.

To get the clusters, points in the persistence diagrams in the training set are combined and input
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into the standard k-means clustering algorithm for a selected number of clusters k. Then, for each
cluster, a covering box, which we call a partition?, is selected based on the bounding box of the
points assigned to that particular cluster. This results in one cover element per cluster; however,
notice that the partitions themselves can overlap each other so points from the diagrams could
land in the support of more than one partition. Because of this, the clusters themselves are not
particularly interesting, they are just used to select general regions where persistence points are
located. This method gives us a collection of partitions, each of which is a rectangular region in
the birth-lifetime plane. We then define a grid of template functions on each partition, creating a
collection of template functions for each partition. Additionally, we develop a method of adaptively

selecting parameters for the template functions to fit the localized partitions.

4.2.1 Adaptive Parameter Selection

We start by describing this process for the tent functions, which have parameters d, ¢, and €. We
develop a method of adaptively selecting d and 6 based on each partition, allowing for a more
localized featurization. In our modified version of the method, d does not need to be the same
in the x and y direction, thus we will write dy, d, to specify the d parameter in each. Given a
particular partition, P = [Xuin, Xmax] X [Ymin> Ymax], We first choose an initial value of parameter
d. From this, ¢ is calculated to be max{d,, §,} where §, = =2«=2mit and §,, is defined similarly. If
6y > 6y, then d, = d and d, = [*22min] Similarly, if 6, < 6, then dy = [Z2e<=2min] and d, =

The top row of Fig. 4.4 shows an example of this adaptive parameter selection process. In this
example, we are using tent functions with d = 2. The leftmost image, we calculate ¢, and 6, and
choose ¢ to be the larger value. In the middle image, we select d, = 2, calculate d, as explained in
Sec. 4.2 which yields d = 1, and apply a (dy + 1) X (dy + 1) grid (shown as the red points) where
tent functions will be centered. In the rightmost image, for the tent centers that lie along the bottom
of the partition (shown as a hollow blue square and solid green square), we check that the supports

(shown as dashed and dotted boxes colored corresponding to their center) remain above the x-axis.

ZNote that this is not a partition in the mathematical sense as the covering boxes can overlap.
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Since they do, no further action is needed.

Note that by virtue of this notation, the support of the tent functions placed on the boundary of
the partition extends outside the box. This results in a grid of size (dy +1) X (d, + 1) which reduces
the number of features used per cover element yet ensures that based on the selected d value that ¢
is selected appropriately to cover all points.

Additional precautions are taken to ensure that the support of the tent functions did not cross
the x-axis (or the diagonal in the birth-death plane). Fix € > 0, a parameter chosen by the user,
then if after this parameter selection y,,;, — d < 0, the grid of tent centers is shifted up to ensure
the support of all tent functions is at least € above the x-axis. If in this shift, there are tent centers
that are greater than 6/2 above the partition boundary, then they are removed and d, is reduced by
1. The bottom row of Fig. 4.4 shows a visual example of this special case. In this example, we are
using tent functions with d = 2. The leftmost image, we apply the same process as in the standard
case but the tent supports cross the x-axis. In the middle image, we shift up the grid where tent
centers are placed so the tent support is at least a small e > 0 above the x-axis. In the rightmost
image, since the top two tent centers are more than ¢/2 outside the partition, we remove them,
decreasing d, by 1.

When using the interpolating polynomials, the same process as above is used to select d, and
dy. We do not need a value of ¢ because the mesh is defined by a non-uniform Chebyshev mesh
rather than using a regular grid like is done with the tent functions. Note that for the tent functions,
we allow d, and d, to be zero, resulting in a grid consisting of a single, row or column of tent
centers, however for the interpolating polynomials we require at least a 2 X 2 grid.

Note that for applications using several dimensions of diagrams, for example 0 and 1 dimensional
diagrams, there are two possible options for clustering. The first is combining all diagrams in the
training set regardless of dimension; the second is to combine only training persistence diagrams of
like dimensions, and get a different set of clusters for each diagram dimension. Figure 4.3 shows an
example of a persistence diagram with both 0- and 1-dimensional persistence in the birth-lifetime

plane along with examples showing the two different methods for generating clusters when using
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Figure 4.4: Example of steps in adaptive parameter selection for a given partition, shown as the
black rectangle. The top row shows an example where the partition is far enough from the x-axis.
The bottom row shows the necessary modification when the partition is too close to the x-axis.

both 0 and 1 dimensional diagrams. For simplicity, we will label results using the first option as

“combined partitioning” while we will label results using the second option as “split partitioning.”

4.3 Results

Here we present two applications comparing the results of the original template function method
with our adaptive version. The first data set presented in Sec. 4.3.1 is a simple, proof-of-concept
experiment to ensure our adaptive method is able to classify point cloud data drawn from manifolds
which should be distinguishable using their topological structure. The second data set presented in
Sec. 4.3.2 is a common, but fairly challenging, benchmark data set used to test persistence diagram
featurization methods. The second data set presented in Sec. 4.3.3 is a collection of time series

generated from the Rossler dynamical system. In this data set, the goal is to classify between
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Figure 4.5: An example of each of the six types of point clouds generated for the manifold
experiment. From top left to bottom right: annulus, torus, 3 clusters, square, sphere, 3 clusters of
3 clusters. In the torus and sphere, color is used to represent the third dimension.

periodic and chaotic samples.
All experiments are done using the teaspoon python package which has an implementation of

both the original and modified template function featurization method [85].

4.3.1 Manifold Experiment

Replicating an experiment from [1, 73], we generated collections of point clouds drawn from

different manifolds. Each point cloud consists of 200 points drawn from the following manifolds3:

* Annulus: points drawn uniformly from an annulus with inner radius 1 and outer radius 2.

* Torus: points drawn uniformly from a torus created from a rotating circle of radius 1 in the

xz-plane centered at (2, 0) around the z-axis.

« Sphere: points drawn from a sphere in R? of radius 1. Uniform noise in [-0.05, 0.05] was

added to the radius.

3These point clouds can be generated using the function MakeData.PointCloud.testSetManifolds in
teaspoon (https://github.com/lizliz/teaspoon)
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Tents
Num No Partitioning Partitioning
Dgms Train Test Train Test
10 99.8% +£0.9 96.5% +3.2 | 100% +0.0 [ 99.5% =+ 1.5
25 99.9% + 0.3 99.0% + 1.0 | 99.9% + 0.3 ' 99.6% + 0.8
50 99.9% £ 0.2 99.9% +0.3 | 100% +0.0 | 100% % 0.0
100 | 99.8% +0.1 99.7% £ 0.4 | 99.9% + 0.1 | 99.8% + 0.2
200 | 99.5% 0.1 1 99.5% £0.3 | 99.6% +0.1 99.2% + 0.3
Polynomials
Num No Partitioning Partitioning
Dgms Train Test Train Test
10 99.8% 0.9 95.0% +3.9 | 100% +0.0 | 97.5% £ 2.5
25 99.7% + 0.5 97.6% 1.5 | 99.7% + 0.5 A 99.4% + 0.9
50 100% £ 0.0  99.2% +0.9 | 100% = 0.1 | 99.5% + 0.5
100 | 99.6% +0.2 99.3% +0.5 | 99.7% + 0.2 | 99.6% + 0.5
200 | 99.2% +0.2 98.9% 0.5 | 99.5% +0.2 | 99.4% + 0.3

Table 4.1: Results of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>