
TOPOLOGICAL APPROACHES FOR QUANTIFYING THE SHAPE OF TIME SERIES DATA

By

Sarah Tymochko

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computational Mathematics, Science and Engineering – Doctor of Philosophy

2022



ABSTRACT

TOPOLOGICAL APPROACHES FOR QUANTIFYING THE SHAPE OF TIME SERIES DATA

By

Sarah Tymochko

Topological data analysis (TDA) is field that started only two decades ago and has already shown

promise both in theory and in applications. The goal of TDA is to quantify the shape of data in a

manner that is concise and robust using concepts from algebraic topology. Persistent homology,

arguably the most popular tool from TDA, studies the shape of a filtered space by watching how

its homology changes. The output of persistent homology is a persistence diagram, which encodes

information about the changing homology.

Persistent homology has shown success in various application areas; one ever growing area

of study in this field is time series analysis. Nonlinear time series analysis is a research field

in and of itself that aims to capture structure in time series data, however, it lacks theoretically

justified tools to analyze the resulting structure. Persistent homology comes with a solid theoretical

framework, is robust to noise, and quantifies the same type of structure as appears in time series

data. Thus combining tools from time series analysis and TDA provides a new approach to analyze

and quantify behavior in time series data.

One field where time series are prevalent is dynamical systems, since a time series arises from

a projection of a solution to a system. Specifically, given a time series, Takens’ theorem can be

leveraged to embed the time series as a point cloud in a higher dimensional space, where this point

cloud is a sampling of the full state space. Then for each time series, persistent homology can be

computed on the embedding. The result is a persistence diagram for each time series. The question

then becomes how do we analyze this collection of persistence diagrams to learn something about

the original time series data? Many people have developed methods to answer this question, through

methods such as machine learning or statistics. This dissertation provides several new methods

leveraging tools from both TDA and nonlinear time series analysis to study time varying data.
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CHAPTER 1

INTRODUCTION

Topological data analysis (TDA) is a collection of methods to quantify the shape of data. By lever-

aging tools from algebraic topology, TDA tools can capture shape such as connected components,

loops and voids, and summarize that information in a format that is concise, robust, and comparable.

Specifically, persistent homology encodes the structure of a filtered space in a persistence diagram.

One application area where persistent homology is particularly well suited is time series analysis.

There are tools, specifically the time delay embedding or Takens’ embedding [4], to embed time

series data in R𝑑 (𝑑 ≥ 2) where underlying features of the original time series give different shapes

in the embedding space. For example, periodic time series appear as a collection of points tracing

out a circle in R𝑑 . Since persistent homology is designed to detect circular structures, it is a natural

combination to quantify the shapes formed from these embeddings using persistence diagrams.

This combination of persistent homology applied to time delay embeddings is well studied and has

shown success in many applications [5–23].

This dissertation develops TDA tools for time series analysis in two ways: (1) by applying and

modifying existing methods for applications and (2) by developing new methods to characterize

behavior that previously has not been studied using persistent homology techniques. Under the first

category, we combine existing methods from image processing and TDA to study time series satellite

imagery from hurricanes to detect a daily cycle. Next, we develop a modification of a method of

transforming persistence diagrams into feature vectors that can be used for machine learning tasks.

We tested this method by classifying periodic or chaotic behavior in the Rössler dynamical system.

Lastly, we attempt to avoid potential pitfalls of the time delay embedding, specifically the fact

that longer time series generate larger embeddings and can become computationally prohibitive.

We use a coarser embedding called ordinal partition networks, which embed a time series into a

network, rather than a point cloud. Previous work has shown that using the topological structure of

these networks provides a method of classification between periodic and chaotic time series. We
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extend this work to incorporate additional features of the network into the topological analysis.

In the second category, we use a generalization of persistent homology called zigzag persistence

to develop a one-step method of analyzing Hopf bifurcations in dynamical systems. This method

bypasses the problem of analyzing a collection of persistence diagrams, resulting in only one

persistence diagram that encodes information about when a bifurcation occurs. Further, we propose

future work to improve this method by studying the zigzag persistent homology of ordinal partition

networks to reduce computation time of our existing method.

This dissertation is structured in the following way: Chapter 2 provides the necessary back-

ground material from TDA [24, 25] as well as time series analysis [26], while Chapters 3–5 cover

each of the four projects described. Note that a significant portion of the work in this dissertation

has already been published in [27–29].
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CHAPTER 2

BACKGROUND

In this section, we will cover background material from topological data analysis [24, 25] and time

series analysis [26]. Additional background will be introduced in the relevant chapters, but tools

such as homology, persistent homology, and the time delay embedding form the basis for all other

methods utilized.

2.1 Homology

Homology is a standard tool in algebraic topology to study topological structure in different

dimensions. In particular, given a space 𝑋 , homology computes a group for dimensions 𝑘 =

0, 1, 2, . . ., denoted 𝐻𝑘 (𝑋), that represents information about the structure in each dimension. In

particular, dimension 0 studies connected components, dimension 1 studies loops, dimension 2

studies voids, and higher dimensions study the higher dimensional analogues.

We will first introduce a few other concepts in order to define homology, specifically simplicial

homology, more formally. A simplicial complex K is a space built from different dimensional

building blocks called simplices. These spaces can be viewed both geometrically and abstractly.

Geometrically, an 𝑛-simplex 𝜎 is the convex hull of 𝑛 + 1 affinely independent points, and a face

of an 𝑛-simplex 𝜏 ≤ 𝜎 is defined to be the convex hull of a nonempty subset of the vertices of 𝜎.

The simplicial complex must satisfy the following requirements: (1) the intersection of any two

simplices in K is also a simplex in K and (2) all faces of a simplex in K are also simplices in K.

Abstractly, a 𝑝-simplex can be represented by the unordered set of 𝑝 + 1 vertices it is built from.

So a simplicial complex, K, is a family of sets that is closed under taking subsets. That is, given a

𝑝-simplex, 𝜎 ∈ K, then any simplex consisting of a subset of the vertices of size 0 < 𝑘 ≤ 𝑝, called

a 𝑘-dimensional face of 𝜎, is also in K.

For a given simplicial complex K, let K𝑝 be the set of all 𝑝-simplices, 𝑝 = 0, 1, 2, . . .. Then a
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𝑝-chain, 𝑐, is defined to be a finite1 formal sum of 𝑝-simplices in K,

𝑐 =
∑︁
𝜎𝑖∈K𝑝

𝑎𝑖𝜎𝑖,

where coefficients 𝑎𝑖 ∈ Z2. Note that other fields can be used for coefficients, but we will focus on

the simplified case of Z2 as that is typically what is used for persistent homology. Since we can add

and scale chains by a constant, the collection of 𝑝-chains, 𝐶𝑝 (K), called the chain group, forms a

vector space. The boundary map between chain groups is defined as the linear transformation

𝜕𝑝 : 𝐶𝑝 → 𝐶𝑝−1

which maps a 𝑝-simplex to the sum of its (𝑝 − 1)-dimensional faces. The chain complex is a

sequence of chain groups connected by the corresponding boundary maps,

· · ·
𝜕𝑝+2−−−→ 𝐶𝑝+1

𝜕𝑝+1−−−→ 𝐶𝑝
𝜕𝑝−−→ 𝐶𝑝−1

𝜕𝑝−1−−−→ · · · .

Within a chain group, we have two different kinds of 𝑝-chains, cycles and boundaries. A 𝑝-cycle

is a 𝑝-chain, 𝑐, with 𝜕𝑝 (𝑐) = 0, meaning it has empty boundary. The set of 𝑝-cycles is the kernel

of the boundary map, ker(𝜕𝑝). A 𝑝-boundary is a 𝑝-chain that is the boundary of a 𝑝 + 1-chain,

i.e. for 𝑐𝑝 ∈ 𝐶𝑝, 𝑐𝑝 = 𝜕𝑐𝑝+1 for some 𝑐𝑝+1 ∈ 𝐶𝑝+1. The set of 𝑝-boundaries is the image of the

boundary map, im(𝜕𝑝). Note that the 𝑝 + 1-boundaries are a subgroup of the 𝑝-cycles. Now, the

𝑝-th homology group is formally defined as

𝐻𝑝 (K) = ker(𝜕𝑝)/im(𝜕𝑝+1).

Further, the 𝑝-th Betti number is defined to be the rank of the 𝑝-th homology group and is denoted

𝛽𝑝. Intuitively, 𝛽𝑝 can be thought of as the number of 𝑝-dimensional features in K.

2.2 Persistent Homology

Homology is a useful tool for studying a static topological space; persistent homology is a method

of using homology to instead study a changing, parameterized space called a filtration. A filtration
1We assume finiteness throughout this entire dissertation.

4



is a nested set of simplicial complexes,

𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ · · · ⊆ 𝐾𝑛. (2.1)

Computing 𝑘-dimensional homology of each space in the filtration, the inclusions in (2.1) induce

linear maps between the homology groups,

𝐻𝑘 (𝐾0) → 𝐻𝑘 (𝐾1) → · · · → 𝐻𝑘 (𝐾𝑛). (2.2)

By studying these maps, we study how the homology of the space changes through the filtration.

In particular, we care about when features appear and disappear in this sequence. We say a 𝑘-

dimensional feature 𝛾 is “born” at the 𝑖-th step of the filtration if 𝛾 ∈ 𝐻𝑘 (𝐾𝑖) but 𝛾 ∉ 𝐻𝑘 (𝐾𝑖−1). In

other words, 𝛾 is born at 𝑖 if 𝛾 ∉ Im (𝐻𝑘 (𝐾𝑖−1) → 𝐻𝑘 (𝐾𝑖)). A feature “dies” at the 𝑗-th step of the

filtration if it merges with an older feature going from 𝐾 𝑗−1 to 𝐾 𝑗 .

A persistence diagram is a way of representing the births and deaths of homology classes.

Formally, a persistence diagram, 𝐷, is defined as a collection of points, 𝐷, given by

𝐷 = {(𝑥, 𝑦) ∈ R2 | 0 < 𝑥 < 𝑦}.

A point (𝑏, 𝑑) ∈ 𝐷 represents a class in the persistence module that was born at 𝑏 and died at

𝑑. Persistence diagrams are typically visualized as scatter plots of the points in 𝐷. This is called

the birth-death plane, or birth-death coordinates. In a filtration, a feature is born before it dies, so

all persistence points will be above the diagonal through the birth-death plane. Another popular

modification of a persistence diagram is to plot a class that is born at 𝑏 and dies at 𝑑 as the point

(𝑏, 𝑑 − 𝑏) where the quantity 𝑑 − 𝑏 represents how long a feature lived, referred to as its “lifetime.”

This is called the birth-lifetime plane, or birth-lifetime coordinates.

2.2.1 Persistent Homology of Point Cloud Data

There are many ways of defining a filtration on different types of data such as point clouds, images,

and graphs. Here we will introduce the one method, however additional methods will be introduced
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Figure 2.1: Examples of a point cloud, the Vietoris-Rips complex on several scales and the resulting
persistence diagram in birth-death coordinates and birth-lifetime coordinates.

in the relevant chapters where they are needed. The Vietoris-Rips complex, or Rips complex for

short, is a method of creating a simplicial complex from a point cloud. Here, we need only assume

that a point cloud is a collection of points with a notion of distance; however, in practice, this

distance often arises from a point cloud in Euclidean space inheriting the ambient metric. Given a

point cloud 𝑋 and a distance 𝑟 the Vietoris-Rips complex 𝑅(𝑋, 𝑟) is a simplicial complex where

for every finite set of 𝑛 points with maximum pairwise distance at most 𝑟, the 𝑛− 1 simplex formed

by those points is included in 𝑅(𝑋, 𝑟). This can be visualized as centering a ball of radius 𝑟
2 on

each point in 𝑋 . When two of balls intersect, an edge is added between those points, and when

there are three sets of pairwise intersections, a triangle is added between the three vertices. These

complexes have the property that if 𝑟𝑖 < 𝑟 𝑗 then 𝑅(𝑋, 𝑟𝑖) ⊆ 𝑅(𝑋, 𝑟 𝑗 ). Thus, for any increasing set
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Figure 2.2: Two example point clouds and their corresponding 1-dimensional persistence diagrams
with matching shown as dashed lines. Figures generated using scikit-tda [3].

of distance values, 0 ≤ 𝑟0 ≤ 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟𝑛, we get a filtration,

𝑅(𝑋, 𝑟0) ⊆ 𝑅(𝑋, 𝑟1) ⊆ 𝑅(𝑋, 𝑟2) ⊆ · · · ⊆ 𝑅(𝑋, 𝑟𝑛). (2.3)

An example of a point cloud, several steps in the Vietoris-Rips filtration, and the resulting persistence

diagram are shown in Fig. 2.1. In general, we do not even need the coordinates of the points in the

point cloud; all that is needed to compute the Vietoris-Rips filtration is a matrix of the pairwise

distances between all points.

2.2.2 Metrics on Persistence Diagrams

The most common metrics used to compare persistence diagrams are the Wasserstein distance and

bottleneck distance, which are closely related. First, let Δ = {(𝑐, 𝑐) ∈ R2} be the set of points

along the diagonal in persistence diagrams, representing features where the birth time equals the

death time. Note that Δ can have infinitely many copies of each point along the diagonal. The

𝑝-Wasserstein distance (𝑝 ≥ 1) between two persistence diagrams 𝐷1, 𝐷2 can be defined as

𝑑𝑊𝑝
(𝐷1, 𝐷2) = inf

𝜑

( ∑︁
𝑥∈𝐷1

∥𝑥 − 𝜑(𝑥)∥𝑝𝑞

)1/𝑝

(2.4)
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where 𝜑 : 𝐷1 ∪ Δ → 𝐷2 ∪ Δ is a bijection between the persistence diagrams that allows points

in the diagrams can be matched to the diagonal. An example of this bijection, frequently called

a matching, can be seen in Fig. 2.2. In practice, typically 𝑞 = ∞ however there is evidence that

choosing 𝑞 = 𝑝 is a better choice [30]. Similarly, the bottleneck distance is defined as

𝑑∞(𝐷1, 𝐷2) = inf
𝜑

sup
𝑥∈𝐷1

∥𝑥 − 𝜑(𝑥)∥∞ (2.5)

where 𝜑 : 𝐷1 ∪Δ→ 𝐷2 ∪Δ is again a bijection that allows matching to the diagonal. However, in

practice, these metrics are very computationally expensive and often cannot be used in application

to large datasets.

A more simple approach is to develop statistics that can be calculated on a single persistence

diagram. The most common is maximum persistence, which is also sometimes called maximum

lifetime. Given a persistence diagram, 𝐷, maximum persistence is defined as

MaxPers(𝐷) = max
(𝑏,𝑑)∈𝐷

𝑑 − 𝑏. (2.6)

This value represents the maximum lifetime of all homological features in the data. Using maximum

persistence as a statistic on persistence diagram has shown success in numerous applications

[11, 12, 27, 31]. However it may not always be sufficient. Typically, points with longer lifetime are

interpreted as the most important features in the data since they are the ones that persist through

the filtration the longest, while points with smaller lifetimes are considered noise. However this is

not always the right interpretation; it has been shown in that shorter bars are important in many

applications [32, 33].

One important property of persistence diagrams is that they are stable, meaning that noise and

small changes in the input data results in a small change in the persistence diagram [34, 35]. An

example can be seen in Fig. 2.2. The persistence diagrams for the circular point cloud and for the

noisy version of the point cloud are very similar and thus have a small bottleneck distance. However

there are certain types of noise that are more problematic. While the purple triangles are slightly

perturbed from the circle in Fig. 2.2, a point in the middle of the circle would more drastically

change the persistence diagram.
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Figure 2.3: Example time series and corresponding time delay embedding using parameters 𝜏 = 10
and 𝑑 = 3.

2.3 Time Series Analysis

One common tool to analyze time series data is the time delay embedding. It is built off of

underlying work in differential geometry and dynamical systems by Whitney [36] and Takens [4],

respectively. The underlying assumption of this tool is that the time series is an observation of an

underlying dynamical system. More formally, we assume the state space is a manifold, 𝑀 , and

the system is given by a smooth map, 𝑓 : 𝑀 → 𝑀 . Further, assuming the dynamics live on an

attractor, 𝐴 ⊂ 𝑀 , then there exists a diffeomorphism 𝜙 : 𝐴→ R𝑑 for a well-chosen dimension, 𝑑.

Whitney’s embedding theorem says an𝑚-dimensional manifold can be smoothly embedded inR2𝑚.

All together, this means that given an observation function of the underlying system 𝛼 : 𝑀 → R

one can embed 𝛼 into R𝑑 in a way that the embedding is diffeomorphic (and thus topologically

equivalent) to the original underlying attractor. This embedding is called the time delay embedding

(also sometimes referred to as Takens’ embedding or the sliding window embedding) and requires

three inputs: the observation function [𝑥1, . . . , 𝑥𝑛], an embedding dimension 𝑑, and a delay

(sometimes called a lag) 𝜏. Sometimes these parameters are expressed as the window size, 𝑑𝜏. The

embedding is then the point cloud X = {x𝑖 := (𝑥𝑖, 𝑥𝑖+𝜏, . . . , 𝑥𝑖+(𝑑−1)𝜏)} ⊂ R𝑑 . Figure 2.3 shows an

example time series and depicts how the two parameters, 𝑑 and 𝜏, are used in the creation of the

time delay embedding. The time series value of three red points along the time series correspond
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to the three coordinates of the red point on the right side. In practice, given a time series, one does

not know the underlying system, the manifold 𝑀 , or the dimensional of the manifold. Thus, there

is no way theoretically to determine the correct embedding dimension. However, there are several

heuristics that work well in practice for selecting the delay and dimension parameters [37–43].

Most of these heuristics are iterative, testing various values of 𝜏 or 𝑑 and determining which

is best. For example one of the most common methods of selecting the dimension 𝑑 is using false

nearest neighbors [38]. Intuitively, this method works by assuming that if two points are near each

other when embedded in dimension 𝑑, but then are far apart in dimension 𝑑 + 1, then they were

false nearest neighbors in dimension 𝑑, and thus dimension 𝑑 is insufficient to embed into. This

process would then compare embedding into dimension 𝑑 + 1 and 𝑑 + 2, and continue until the

proportion of neighbors that are false is 0, or sufficiently small. In Chapter 5 we will introduce a

heuristic for selecting the delay which we will use in experiments in that chapter.

For another example, consider the Lorenz system defined as,

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑧),

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦, (2.7)

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧.

We can see one example solution using the parameters, 𝜎 = 10, 𝜌 = 28 and 𝛽 = 8/3, using

initial conditions [1.0, 1.0, 1.0] in Fig. 2.4. This is generated using full knowledge of the Lorenz

system, however if we only retain the 𝑥-coordinates over time, we get the time series shown in the

bottom left plot of Fig. 2.4. Using the time delay embedding, we can reconstruct the topological

structure setting 𝑑 = 3 and 𝜏 = 8, resulting in the bottom right plot in Fig. 2.4. While the time

delay embedding is not identical to the original system, it still has two loop-like structures and is

topologically equivalent.
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Figure 2.4: Top left: Example solution of the Lorenz system (as defined in Eqn. 2.7) using
parameters, 𝜎 = 10, 𝜌 = 28 and 𝛽 = 8/3, using initial conditions [1.0, 1.0, 1.0]. Bottom left: Time
series of 𝑥-coordinates from the example solution. Bottom right: Time delay embedding of the
𝑥-coordinate time series using 𝑑 = 3 and 𝜏 = 8.

2.4 Related Works

Significant work has been done using persistent homology on time delay embeddings. Specifically,

in [5], the authors provide a full theoretical analysis of persistent homology for time series analysis.

The authors show that maximum persistence of the persistence diagram computed from the time

delay embedding can be used to quantify periodicity. Additionally, they provide a description of

how persistence diagrams change depending on the embedding dimension and the delay parameter.

This work provides sound theoretical backing for the use of persistent homology on time delay
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embeddings.

This combination of tools has shown success in numerous application areas as well. In the

literature so far, persistent homology has been shown to quantify features of a time series such as

periodic and quasi-periodic behavior [5–10]. Existing applications in time series analysis include

studying machining dynamics [11–14], gene expression [15], financial data [16], video data [17, 18],

sleep-wake states [19, 20], motion tracks [21, 22], and the movement of C. elegans [23]. This list

is far from exhaustive, but shows the wide range of fields that these tools have been successfully

applied to.

In this dissertation, we will present applications of using topological tools to analyze time series

data, as well as introduce new methods.
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CHAPTER 3

QUANTIFYING A DIURNAL CYCLE IN A TIME SERIES OF HURRICANE IMAGERY

A time series can consist of different types of data. While we typically think of a time series as a

single variable recorded over some time period, we can also think of a video or a movie as a time

series of images. Satellite imagery is one example of a source of such data, where, for example,

the satellite records temperatures of the Earth in a certain region. This type of data is especially

useful in the field of atmospheric science to study phenomena such as hurricanes.

A recently discovered pattern exhibited in many major hurricanes is a diurnal cycle that is

apparent in changing cloud temperatures within a hurricane [44]. This cycle, formally called the

tropical cyclone (TC) diurnal cycle, can be seen as a cyclical pulse in the cloud field that propagates

radially outward from the storm’s center. The pulses begin forming in the inner core of the storm,

appearing as a region of cooling cloud-top temperatures in the satellite imagery. The area of

cooling takes on a ring-like structure as cloud top warming occurs on the inside edge as the cooling

moves away from the storm center. Figure 3.1 shows two examples of the ring-like structure in

Hurricane Felix. This cycle is of interest to atmospheric scientists as it has implications for the

storms structure and intensity. However, as methods to detect this cycle have thus far been mostly

qualitative in nature, we seek a method of automatic and quantifiable detection of this cycle.

Because this cycle can be seen as an expanding circular structure, 1-dimensional persistent

Figure 3.1: Two examples of the ring-like structure of the tropical cyclone diurnal cycle.
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Figure 3.2: Example image and visual on propagating greyscale function values to lower dimen-
sional cubes.

homology seems like an obvious choice of tool for detecting the diurnal cycle. We developed a

method of utilizing persistent homology to detect and quantify this cycle using a time series of

infrared (IR) satellite imagery data. The work in this chapter was published in [27].

3.1 Persistent Homology on Images

Persistent homology is a versatile tool in that it can be applied to a filtration resulting from many

different types of data. We saw the case of simplicial data in Sec. 2.2, however, in the case of images,

cubical complexes are a more natural choice. Here we introduce cubical complexes following the

presentation in [45].

An elementary interval in R is a closed interval of the form [𝑙, 𝑙 + 1] or [𝑙], 𝑙 ∈ Z and is

called degenerate or nondegenerate respectively. An elementary cube is the product of elementary

intervals, 𝑄 = 𝐼1 × 𝐼2 × · · · × 𝐼𝑑 ⊂ R𝑑 . The dimension of an elementary cube is defined as the

number of nondegenerate intervals in 𝑄. A complex, K, is cubical if it can be written as a finite

union of elementary cubes. As with simplicial complexes, we have a notion of faces: if 𝑃 and𝑄 are

elementary cubes and 𝑃 ⊆ 𝑄, then 𝑃 is a face of𝑄 (denoted 𝑃 ≤ 𝑄). Intuitively, this construction is

similar to a simplicial complex, however triangles and higher dimensional analogues, are replaced

by elementary cubes. To avoid confusion, we will call the building blocks of simplicial complexes

𝑝-simplices, and the building blocks of cubical complexes 𝑝-cubes.

Given an greyscale image, we can construct a filtered cubical complex where each pixel repre-

sents a 2-cube with function value equal to the greyscale value of that pixel. Then function values
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Figure 3.3: Original satellite imagery from Hurricane Felix GOES-12 data set (left) and Hurricane
Felix GridSat-GOES data set (right) at approximately the same time.

can be propagated down to lower dimensional faces. More formally,

𝑓 (𝑄) = min
𝑃∈K such that 𝑄≤𝑃

𝑓 (𝑃)

For example, the function value on an edge is equal to the minimum of the pixel values adjacent to

it, and similarly for vertices. An example of this can be seen in Fig. 3.2.

Given the cubical complex with a function 𝑓 : K → R, one can define a filtration formed from

nested sublevel sets,

𝑓 −1(−∞, 𝛼0] ⊆ 𝑓 −1(−∞, 𝛼1] ⊆ · · · ⊆ 𝑓 −1(−∞, 𝛼𝑛]

for increasing parameter value 𝛼0 ≤ 𝛼1 ≤ · · · ≤ 𝛼𝑛 with all 𝛼𝑖 ∈ R. This forms a filtration as

defined in Eqn. 2.1 and thus, persistent homology can be computed as described in Sec. 2.2. The

sublevel set filtration1 is very commonly used on images in this way, and is what we will use for

the hurricane images.

3.2 Imagery Data

For this study, we will focus on two hurricanes that exhibit the diurnal cycle behavior, Hurricane

Felix from 2007 and Hurricane Ivan from 2004. We worked with two types of geostationary
1Technically, most filtrations can be viewed as a sublevel set filtration that only differ in the definition of the

R-valued function and choice of domain. The Vietoris-Rips filtration is a sublevel set filtration defined on the complete
simplicial complex, where the real valued function is induced by the pairwise distances.
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operational environmental satellite (GOES) data, each with varying spatial and temporal resolution.

The first type (hereafter referred to as the GOES-12 data sets) consists of data in hourly increments,

with the exception of the 0400 and 0500 UTC each day (due to the GOES-12 satellite eclipse

period). This imagery has a spatial resolution of 2 km2 and each image covers a total area of

approximately 1500 km × 1500 km, represented as a 752 × 752 matrix. The second type is the

GridSat-GOES [46] data set and consists of data in 3-hour increments with the exception of 0600

UTC each day. Each pixel has a resolution of 8 km2 and each image is cropped to a 191 × 191

matrix to approximately match the area covered by the first set of data. The cropped version covers a

total area of approximately 1530 km × 1530 km. For both data sets, the images are storm-centered,

meaning the center of the hurricane is in the middle of the image. This is done to ensure the

hurricane is aligned at each point in time.

For Hurricane Felix, we studied both types of data sets to test the flexibility of the method across

spatial and temporal resolution. The Felix GOES-12 data set spans 2 to 4 September 2007, while

the Felix GridSat-GOES data set spans spanning 31 August to 6 September 2007. For Hurricane

Ivan, we only used the GOES-12 data set, which spans 30 August to 1 September 2004. Figure 3.3

shows example satellite imagery for both Hurricane Felix data sets.

3.3 Method of Detection and Quantification

Our method of detecting and quantifying periodic circular structure in IR satellite imagery com-

bines existing methods from the fields of image processing, topological data analysis, and signal

processing. In this application, it is not only the structure at a given time that matters, but also how

the structure changes over time.

Initially, we have a time series of IR satellite images, represented as a matrix of pixel values

𝑆(𝑡) for time 𝑡. The method works by applying four steps to these matrices, examples of which can

be seen in Fig. 3.4.

1. For all times 𝑡, given the original brightness temperature image 𝑆(𝑡), we compute the six-hour

differences, 𝑀 (𝑡) = 𝑆(𝑡 + 6) − 𝑆(𝑡).
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(a) (b)

(c) (d)

Figure 3.4: (a) Example of 6 hour difference, 𝑀 (𝑡), from the Felix GOES-12 data set; (b)
Thresholded subset, 𝑀 (𝑡)𝜇 where 𝜇 = 80; (c) Distance transform function applied to 𝑀 (𝑡)𝜇; (d)
Corresponding sublevel set persistence diagram. These figures correspond to steps 1–4 in 3.3.

2. Fix a threshold 𝜇 and let 𝑀 (𝑡)𝜇 be the subset of 𝑀 (𝑡) which has function value less than 𝜇:

𝑀 (𝑡)𝜇 [𝑖, 𝑗] =


1 if 𝑀 (𝑡) [𝑖, 𝑗] < 𝜇

0 otherwise.

3. To each matrix 𝑀 (𝑡)𝜇, apply the distance transform [47, 48], which gives a new matrix 𝐷 (𝑡),

defined as

𝐷 (𝑡) [𝑖, 𝑗] = min 𝑑 (𝑚𝑖, 𝑗 , 𝑥)

where 𝑚𝑖 𝑗 = 𝑀 (𝑡)𝜇 [𝑖, 𝑗], 𝑥 is a 0-valued pixel and 𝑑 is the 𝐿∞-distance. This gives a new

greyscale image from which a cubical complex can be constructed.
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Figure 3.5: Example of 6-hour difference image and the corresponding persistence diagram.

4. Compute sublevel set persistence on the function 𝐷 (𝑡) using the cubtop method in Perseus

[49, 50], which calculates persistent homology for cubical complexes using concepts from

discrete Morse theory.

The first three steps are modifications to the binary image, while the last step constructs a cubical

complex as described in Sec. 3.1. Since the TC diurnal pulse is a cooling ring propagating outward

through the day, step 1 is necessary in order to see the changes in the GOES satellite brightness

temperature. In previous work by atmospheric scientists, the 6 hour difference was found to be

most effective difference to detect the cycle [44, 51]. While one can compute persistence directly

from the 6-hour differences where the circular features are visually prominent in the data, the

results did not show any relevant features. This discrepancy is due to the extreme differences in the

function values between the circular sections which prevents the sublevel sets from containing the

full circular structure until very late in the filtration. As seen in Fig 3.5, the persistence diagram

computed directly on a 6-hour difference image has no significant off diagonal point, thus it is not

detecting a significant circular feature despite the visible feature in the image. Thus, the addition

of steps 2 and 3 were necessary to detect the circular structure that we see visually. For step 2, all

the examples shown use a threshold of 𝜇 = 80, however we will address the choice of threshold in

Sec. 3.4.1.

This thresholding gives a binary image, however the persistent homology of binary images
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is uninteresting as there would only be two steps in the filtration and likely would not detect the

circular structure. The distance transform creates a new greyscale image where pixel values are

based on distance to the thresholded region. This creating a “blurring” effect where all pixels

that are close to a white pixel have a smaller greyscale value, and the further away the pixel it is

the higher the value. This sets up the image perfectly for sublevel set persistence. The distance

transform has been used in conjunction with persistent homology in applications including porous

materials [52–57]. However, this is the first time to our knowledge that this combination of tools

has been applied in atmospheric science.

After these four steps are applied to each image, we calculate maximum persistence of each

persistence diagram as defined in Eqn. 2.6. By plotting maximum persistence over time, we

can see how the most prominent circular feature changes through the progression of the day and

life of the TC. This plot should show an oscillatory pattern, detecting the change in the diurnal

cycle throughout the day. In order to quantify this oscillatory pattern, we use the discrete Fourier

transform [58]. Using the power spectrum, we pick the frequency corresponding to the highest

peak for each data set, which gives the frequency of the most prominent periodic signal in the data.

Additionally, we use the inverse Fourier transform to see how closely this signal matches with the

maximum persistence time series.

3.4 Results

After the data is prepared, we apply the steps described in Sec. 3.3 to each data set. For the two

Hurricane Felix data sets, as they are from the same hurricane, we would expect the results to be

similar despite the temporal and spatial resolution differences. Plotting the calculated maximum

persistence over time, we get the time series plotted as solid lines in Fig. 3.6. The plots show an

oscillatory pattern for all three data sets which appears to repeat approximately daily.

To verify the periodicity of the oscillatory pattern, we apply the discrete Fourier transform and

calculate the power spectrum for each data set. Each power spectrum is shown in Fig. 3.7. The

maximum peaks in the power spectra give a frequency of 𝑓 = 0.976 cycles per day for the Felix
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Figure 3.6: Maximum persistence plotted over time for both hurricane Felix data sets (left) and
the hurricane Ivan data set (right) using threshold 𝜇 = 80 in addition to the reconstructed versions,
created using inverse Fourier transform. Gray vertical lines separate days according to UTC. The
labels on the 𝑥-axis are formatted as MM.DD.time.

GridSat-GOES data set, 𝑓 = 0.979 cycles per day for the Felix GOES-12 data set, and 𝑓 = 1.0

cycles per day for the Ivan GOES-12 data set. We use this frequency, 𝑓 , to calculate the period, 𝑇 ,

of the cycle by calculating

𝑇 = 24/ 𝑓 ,

giving the period of the sinusoid in hours per cycle. Doing so gives the result that the cycle is

repeating every 24.6 hours for the Felix GridSat-GOES data set, every 24.5 hours for the Felix

GOES-12 data set, and 24.0 hours for the Ivan GOES-12 data set.

Using the most prominent frequency for each data set, we calculate the inverse Fourier transform,
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Figure 3.7: Power spectrum for the Felix GridSat-GOES data set (left), the Felix GOES-12 data set
(middle), and the Ivan GOES-12 data set (right).

and plot these reconstructed sinusoids over the original data. These sinusoids, plotted as the

lighter dashed lines in Fig. 3.6, closely resemble the patterns exhibited by the original maximum

persistence versus time plots; therefore, these approximately 24 hour patterns visible in the plots

are also detected mathematically, which verifies the claim that our method is detecting a daily cycle

in each data set. Additionally, since for both Hurricane Felix data sets, the plots of maximum

persistence against time seem to match and both have similar detected periodicity from the discrete

Fourier transform, our method is robust to the temporal and spatial resolution differences in these

two data sets.

3.4.1 Choice of Threshold

The method described involves a choice of threshold, so we used a variety of thresholds, 𝜇 ∈

{25, 30, . . . , 100}, to test the sensitivity of our method to the parameter choice. For both data sets

from Hurricane Felix, our method is very robust to the choice of threshold. In Fig. 3.8, the top

row are plots that represent maximum persistence versus time for the Hurricane Felix data sets

using a variety of thresholds. There is a clear periodic pattern for both data sets across most of

the thresholds shown. In fact, for all thresholds tested the Fourier transform detects a period of

24.6 hours and 24.5 hours for the Felix GridSat-GOES data set and GOES-12 data set respectively.

For 𝜇 < 35 and 𝜇 > 90 the Fourier transform is unable to pick up the daily pattern in the Felix

GridSat-GOES data set.

For Hurricane Ivan, the plot is shown on the bottom row of Fig. 3.8 for thresholds 𝜇 ∈
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Figure 3.8: Maximum persistence vs time plot for Hurricane Felix (top row) and Hurricane Ivan
(bottom row). Hurricane Felix results are shown for all thresholds 𝜇 ∈ {35, 40, . . . , 90} while
Hurricane Ivan results are shown for 𝜇 ∈ {80, 85, 90, 95, 100}.

{80, 85, 90, 95, 100}. For all of the threshold values shown, the Fourier transform consistently

detects a 24.0 hour period in the maximum persistence values. This is a smaller range of threshold

values than those that detect a daily cycle in Hurricane Felix, but for thresholds 𝜇 ∈ {80, 85, 90},

our method detects a daily cycle in all three data sets. Thus, the method may require some parameter

tuning, but our analysis of these three data sets gives a range of values to start with when testing

new data sets.

3.4.2 The Influence of Noise

While the above method detects a daily cycle, there are some instances where the six-hour difference

introduces noise because of varying behavior in the center of the hurricane. Figure 3.9 shows an

example of how this noise can appear in the thresholded image and the distance transform for the

Felix GOES-12 data set. A small area of pixels above the threshold cause the distance transform to

fill in the center of the circular region, thus potentially changing the value of maximum persistence.
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Figure 3.9: Example of a thresholded image with noise and the resulting distance transform image.

Figure 3.10: Example binary image and the result after erosion and dilation with a 2 × 2 square
kernel.

Note that while persistence diagrams are stable, with this type of noise, stability does not guarantee

small changes in the persistence diagrams. To combat this, before applying the distance transform,

we use a method from mathematical morphology [59] called opening to de-noise the image and

see how this impacts the detected periodicity.

Opening is the combination of two tools from mathematical morphology: erosion and dilation

[59]. Both involve moving a structural element through a binary image and adding or removing to

the foreground of the image (where the foreground is the portion of the binary image with value

1). In general, any structural element can be used however in this case we will use an 𝑛 × 𝑛 square.
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Figure 3.11: Example of a thresholded image after opening is applied and the corresponding
distance transform.

As in Sec. 3.3, we can treat a binary image as a matrix, 𝐵. Erosion of 𝐵, which we will denote as

𝐸 (𝐵) can be defined as

𝐸 (𝐵) [𝑖, 𝑗] =


1 if ∀ 𝑘 ∈ {𝑖, . . . , 𝑖 + (𝑛 − 1)}, ℓ ∈ { 𝑗 , . . . , 𝑗 + (𝑛 − 1)}, 𝐵[𝑘, ℓ] = 1

0 otherwise.

Similarly, dilation of 𝐵, denoted 𝐷 (𝐵), can be defined as

𝐷 (𝐵) [𝑖, 𝑗] =


1 if ∃ 𝑘 ∈ {𝑖, . . . , 𝑖 + (𝑛 − 1)}, ℓ ∈ { 𝑗 , . . . , 𝑗 + (𝑛 − 1)} such that 𝐵[𝑘, ℓ] = 1

0 otherwise.

Note that both of these operations result in a smaller binary image as 𝑛 − 1 rows and columns are

removed. Figure 3.10 shows an example of dilation and erosion using a 2 × 2 square structural

element. Opening of a binary image, 𝐵, is erosion followed by dilation, 𝐷 (𝐸 (𝐵)), which will

remove noise and rebuild the area around the boundary.

We apply opening to the binary thresholded image using a 8 × 8 pixel kernel for the GOES-12

data sets and a 2 × 2 pixel kernel for the GridSat-GOES data set to remove noise such as these

center pixels. Note the difference in size of the kernel is due to the differences in spatial resolution

between the two data sets. We use the python library OpenCV [60] for these computations. Opening

is specifically implemented using the function cv2.morphologyEx using cv2.MORPH_OPEN as the

second input. Figure 3.11 show the result when opening is used on the thresholded matrix and then
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Figure 3.12: Maximum persistence plotted over time for all data sets using threshold 𝜇 = 80 in
addition to the versions using opening to remove noise. Gray vertical lines separate days according
to UTC.

the distance transform is applied. Since the distance transform is no longer filled in, the opening

process has removed the noisy pixels causing the issue.

Using this extra step in the method, we recalculate maximum persistence for all times and

compute the estimated period of the new maximum persistence values using Fourier transforms.

Figure 3.12 shows maximum persistence plotted versus time using our original method described

in Sec. 3.4, and the method including the additional opening step. While the new maximum

persistence values vary a little from the originals, the general oscillatory behavior seems similar.

For both the Felix and Ivan GOES-12 data sets, the Fourier transform still detects a 24.5 and 24.0

hour cycle respectively. Thus the presence of noise in these data sets is not impacting the results.
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However, for the Felix GridSat-GOES data set, the Fourier transform now detects a 15.375 hour

cycle, likely due to the difference in spatial resolution. The GOES-12 data has higher spatial

resolution, so applying opening to remove noise does not impact the global circular structure. The

GridSat-GOES data has lower spatial resolution, and is therefore more sensitive to noise in the

image. Thus, our method is more reliable when applied to higher spatial resolution data, and should

be used with caution on lower quality data.
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CHAPTER 4

TIME SERIES CLASSIFICATION USING ADAPTIVE TEMPLATE FUNCTION
FEATURIZATION

In the previous section, we analyzed time series of images, resulting in a time series of maximum

persistence values. However, in other cases you may have multiple time series that you wish to

classify in some way. For example, if you have a time series of vibration data from a machining

process, you may want to classify whether the machine is undergoing excessive vibrations causing

chatter, a phenomena that is damaging to the machine pieces as well as to the material the machine

is cutting [11, 61].

While combining persistent homology with machine learning sounds like a reasonable idea,

the space of persistence diagrams is problematic. It is not a Banach space and does not have

unique means or geodesics [30, 62, 63]. Thus, applying machine learning to persistence diagrams

takes some additional mathematical creativity. One method of doing so is using a kernel function,

where you compute a similarity matrix on the collection of persistence diagrams and use any kernel

based machine learning method. Another collection of methods are featurizations, or methods

of mapping from the space of persistence diagrams to Euclidean space in a way that maximizes

the structure preserved. Then the resulting feature vectors can be used in any machine learning

framework. Intuitively, we want persistence diagrams that are “close” in the space of persistence

diagrams to have vectors that are “close” in the feature space. However, it has been shown that there

is no isometric embedding from the space of persistence diagrams into Euclidean space [64, 65].

This means there is no feature map that will preserve the original metric, so while these methods

are useful in practice, the theoretical guarantees are limited.

Numerous kernels [2, 66–72] and featurization methods [73–81] have been developed as the

interest in using persistence diagrams for machine learning has grown in popularity. For brevity,

here I will only focus on one featurization method, called the template function featurization [1],

however surveys of additional methods can be found in [82, 83]. Further, I will present an adaptive
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version of the template function featurization. The content of this chapter was published in [28].

4.1 Template Function Featurization

A template function is defined as any function on R2 that that is continuous, and has compact

support contained within the upper half plane1, W := R × R>0. Let 𝔇 denote the space of all

persistence diagrams. A template function 𝑓 :W→ R can be turned into a function on persistence

diagrams as follows. Given a diagram in birth-lifetime coordinates, 𝐷, the function, 𝜈 𝑓 : 𝔇 → R

is evaluated on each point in the diagram, and then summed, giving

𝜈 𝑓 (𝐷) =
∑︁
x∈𝐷

𝑓 (x).

A collection of template functions, T , is called a template system if the resulting functions on

persistence diagrams, FT = {𝜈 𝑓 : 𝑓 ∈ T } separate points. That is, for every pair of diagrams,

𝐷 and 𝐷′, there exists a function 𝑓 ∈ T such that 𝜈 𝑓 (𝐷) ≠ 𝜈 𝑓 (𝐷′). As a true template system

is infinite, vectorization is done by returning
(
𝜈 𝑓1 (𝐷), · · · , 𝜈 𝑓𝑘 (𝐷)

)
for functions in some subset

of the template system. This is well justified since any function on persistence diagrams can be

approximated by some reasonably chosen finite subset of a template system; see [1, Thm. 29].

In this paper, we will use two examples of template systems as given in [1]: tent functions and

interpolating polynomials.

4.1.1 Tent Functions

Tent functions are an example of template functions that are meant to probe small regions of the

persistence diagram. Again, recall everything is defined in the birth-lifetime plane. Given a point

a = (𝑎, 𝑏), and a radius 𝛿 ∈ R>0 with 0 < 𝛿 < 𝑏, the tent function is defined to be

𝑔a,𝛿 (𝑥, 𝑦) =
����1 − 1

𝛿
max{|𝑥 − 𝑎 |, |𝑦 − 𝑏 |}

����
+
,

where | · |+ denotes the positive value of the function, and 0 otherwise. This function is supported

on the compact box [𝑎 − 𝛿, 𝑎 + 𝛿] × [𝑏 − 𝛿, 𝑏 + 𝛿], evaluates to 1 at a, and decreases linearly to 0
1We will use birth-lifetime coordinates as described in Sec. 2.2 throughout this section, so all points in the

persistence diagram lie in the upper half plane, rather than above the diagonal.
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Figure 4.1: Example tent function, 𝑔(3,2),1, drawn in the birth-death plane and birth-lifetime plane
with 𝑑 = 5, 𝛿 = 1 and 𝜖 = 0. Plot adapted from [1, Fig.4].

on the boundary of the box. An example of a tent function is shown in Fig. 4.1. Note that since

the box must be compactly supported on persistence diagrams, the bottom edge of the box cannot

lie on or below the 𝑥-axis. Given a persistence diagram 𝐷 = {x = (𝑏𝑖, 𝑙𝑖)}, the tent function is the

sum of the evaluation of this function on all points in the diagram,

𝐺a,𝛿 (𝐷) =
∑︁
x∈𝐷

𝑔a,𝛿 (x).

The full template system consists of all tent functions 𝑔a,𝛿 which have compact support contained

inW. However, in practice, we work with the subset of these tent functions

G = {𝐺 (𝛿𝑖,𝛿 𝑗+𝜖),𝛿 | 0 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑑} (4.1)

by choosing the grid size, 𝑑, and a vertical shift, 𝜖 > 0, to ensure 𝐺 is compactly supported inside

W. This gives a 𝑑 × (𝑑 + 1) feature vector. In Fig. 4.1, the grid represents the mesh on which tent

functions can be centered and a single tent function, centered at (3, 2) with 𝛿 = 1 and 𝜖 = 0 is

shown.

4.1.2 Interpolating Polynomial Functions

The second template system we work with are interpolating polynomials. Unlike the localized tent

functions, interpolating polynomials have support that fills out the space, however to satisfy the

properties of template functions, they will be transformed to have compact support. Given a mesh
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Figure 4.2: Examples of interpolating polynomials for the meshes A = B = {1, 2, 3} where the
plot drawn at (𝑖, 𝑗) shows the polynomial, 𝑝𝑖, 𝑗 , where 𝑝𝑖, 𝑗 = 1 and 0 on all other mesh points. Plots
adapted from [1, Fig. 5].

A = {𝑎𝑖}𝑚𝑖=0 ⊂ R, the Lagrange polynomial ℓA
𝑗
(𝑥) corresponding to 𝑎 𝑗 is

ℓA𝑗 (𝑥) =
∏
𝑖≠ 𝑗

𝑥 − 𝑎𝑖
𝑎 𝑗 − 𝑎𝑖

.

This has the property that ℓA
𝑗
(𝑎𝑘 ) is 1 if 𝑗 = 𝑘 , and 0 otherwise. Then fixing meshes A ⊂ R,

B ⊂ R>0, and coordinates 𝑖′ and 𝑗 ′, the template function is

𝑓 (𝑥, 𝑦) = ℎ(𝑥, 𝑦) · |ℓA𝑖′ (𝑥)ℓ
B
𝑗 ′ (𝑦) |

where ℎ is a hill function forcing the resulting polynomial to have compact support inside a

designated box. In practice, the box for ℎ is a bounding box containing the mesh A × B where

both meshes A and B are chosen to have 𝑑 elements; if this box further encloses all points in all

diagrams, then its existence is implicit and need not be coded at all. Examples of these interpolating

polynomials are shown in Fig. 4.2.

4.2 Adaptive Template Functions

We develop a modification to the template function featurization method [28]. To test this method,

we apply it to synthetic shape data as well as time series data generated from the Rössler dynamical

system. Here we will describe our modifications to the method as well as the results in applications.
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Figure 4.3: The top left image is an example of a set of persistence diagrams from the manifold
experiment explained in 4.3 showing both the 0 and 1 dimensional diagrams in the birth-lifetime
plane. The top right is an example showing clustering on both 0 and 1 dimensional diagrams
together, which we call “combined partitioning,” and creating 5 partitions. The bottom left and
bottom right are examples showing 0 and 1 dimensional diagrams respectively, and clustering each
dimension separately, which we call “split partitioning,” creating 3 partitions per dimension. In all
except the first image, the black stars represent centers of clusters from k-means clustering while
the black boxes represent the partitions.

In the original template function method, a subset of a template system is selected based on a

grid over the persistence diagram. However, persistence diagrams often do not have points covering

the entire area of the grid. For example, in the top left plot in Fig. 4.3, the points are concentrated

in certain regions of the diagram. Thus, we develop our method to select the subset of a template

system based on localized information in the diagrams.

We provide an adaptive method for choosing a subset of a template system based on 𝑘-means

clustering [84]. The method consists of two steps: first, cluster the points in all diagrams in a

training set to find regions of interest, and second, construct localized template function systems

based on these clusters.

To get the clusters, points in the persistence diagrams in the training set are combined and input
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into the standard 𝑘-means clustering algorithm for a selected number of clusters 𝑘 . Then, for each

cluster, a covering box, which we call a partition2, is selected based on the bounding box of the

points assigned to that particular cluster. This results in one cover element per cluster; however,

notice that the partitions themselves can overlap each other so points from the diagrams could

land in the support of more than one partition. Because of this, the clusters themselves are not

particularly interesting, they are just used to select general regions where persistence points are

located. This method gives us a collection of partitions, each of which is a rectangular region in

the birth-lifetime plane. We then define a grid of template functions on each partition, creating a

collection of template functions for each partition. Additionally, we develop a method of adaptively

selecting parameters for the template functions to fit the localized partitions.

4.2.1 Adaptive Parameter Selection

We start by describing this process for the tent functions, which have parameters 𝑑, 𝛿, and 𝜖 . We

develop a method of adaptively selecting 𝑑 and 𝛿 based on each partition, allowing for a more

localized featurization. In our modified version of the method, 𝑑 does not need to be the same

in the 𝑥 and 𝑦 direction, thus we will write 𝑑𝑥 , 𝑑𝑦 to specify the 𝑑 parameter in each. Given a

particular partition, 𝑃 = [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥], we first choose an initial value of parameter

𝑑. From this, 𝛿 is calculated to be max{𝛿𝑥 , 𝛿𝑦} where 𝛿𝑥 = 𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑑
and 𝛿𝑦 is defined similarly. If

𝛿𝑥 > 𝛿𝑦, then 𝑑𝑥 = 𝑑 and 𝑑𝑦 = ⌈ 𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

𝛿
⌉. Similarly, if 𝛿𝑥 < 𝛿𝑦 then 𝑑𝑥 = ⌈ 𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝛿
⌉ and 𝑑𝑦 = 𝑑.

The top row of Fig. 4.4 shows an example of this adaptive parameter selection process. In this

example, we are using tent functions with 𝑑 = 2. The leftmost image, we calculate 𝛿𝑥 and 𝛿𝑦 and

choose 𝛿 to be the larger value. In the middle image, we select 𝑑𝑦 = 2, calculate 𝑑𝑥 as explained in

Sec. 4.2 which yields 𝑑𝑥 = 1, and apply a (𝑑𝑥 + 1) × (𝑑𝑦 + 1) grid (shown as the red points) where

tent functions will be centered. In the rightmost image, for the tent centers that lie along the bottom

of the partition (shown as a hollow blue square and solid green square), we check that the supports

(shown as dashed and dotted boxes colored corresponding to their center) remain above the 𝑥-axis.
2Note that this is not a partition in the mathematical sense as the covering boxes can overlap.
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Since they do, no further action is needed.

Note that by virtue of this notation, the support of the tent functions placed on the boundary of

the partition extends outside the box. This results in a grid of size (𝑑𝑥 +1) × (𝑑𝑦 +1) which reduces

the number of features used per cover element yet ensures that based on the selected 𝑑 value that 𝛿

is selected appropriately to cover all points.

Additional precautions are taken to ensure that the support of the tent functions did not cross

the 𝑥-axis (or the diagonal in the birth-death plane). Fix 𝜖 > 0, a parameter chosen by the user,

then if after this parameter selection 𝑦𝑚𝑖𝑛 − 𝛿 < 0, the grid of tent centers is shifted up to ensure

the support of all tent functions is at least 𝜖 above the 𝑥-axis. If in this shift, there are tent centers

that are greater than 𝛿/2 above the partition boundary, then they are removed and 𝑑𝑦 is reduced by

1. The bottom row of Fig. 4.4 shows a visual example of this special case. In this example, we are

using tent functions with 𝑑 = 2. The leftmost image, we apply the same process as in the standard

case but the tent supports cross the 𝑥-axis. In the middle image, we shift up the grid where tent

centers are placed so the tent support is at least a small 𝜖 > 0 above the 𝑥-axis. In the rightmost

image, since the top two tent centers are more than 𝛿/2 outside the partition, we remove them,

decreasing 𝑑𝑦 by 1.

When using the interpolating polynomials, the same process as above is used to select 𝑑𝑥 and

𝑑𝑦. We do not need a value of 𝛿 because the mesh is defined by a non-uniform Chebyshev mesh

rather than using a regular grid like is done with the tent functions. Note that for the tent functions,

we allow 𝑑𝑥 and 𝑑𝑦 to be zero, resulting in a grid consisting of a single, row or column of tent

centers, however for the interpolating polynomials we require at least a 2 × 2 grid.

Note that for applications using several dimensions of diagrams, for example 0 and 1 dimensional

diagrams, there are two possible options for clustering. The first is combining all diagrams in the

training set regardless of dimension; the second is to combine only training persistence diagrams of

like dimensions, and get a different set of clusters for each diagram dimension. Figure 4.3 shows an

example of a persistence diagram with both 0- and 1-dimensional persistence in the birth-lifetime

plane along with examples showing the two different methods for generating clusters when using
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Figure 4.4: Example of steps in adaptive parameter selection for a given partition, shown as the
black rectangle. The top row shows an example where the partition is far enough from the 𝑥-axis.
The bottom row shows the necessary modification when the partition is too close to the 𝑥-axis.

both 0 and 1 dimensional diagrams. For simplicity, we will label results using the first option as

“combined partitioning” while we will label results using the second option as “split partitioning.”

4.3 Results

Here we present two applications comparing the results of the original template function method

with our adaptive version. The first data set presented in Sec. 4.3.1 is a simple, proof-of-concept

experiment to ensure our adaptive method is able to classify point cloud data drawn from manifolds

which should be distinguishable using their topological structure. The second data set presented in

Sec. 4.3.2 is a common, but fairly challenging, benchmark data set used to test persistence diagram

featurization methods. The second data set presented in Sec. 4.3.3 is a collection of time series

generated from the Rössler dynamical system. In this data set, the goal is to classify between
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Figure 4.5: An example of each of the six types of point clouds generated for the manifold
experiment. From top left to bottom right: annulus, torus, 3 clusters, square, sphere, 3 clusters of
3 clusters. In the torus and sphere, color is used to represent the third dimension.

periodic and chaotic samples.

All experiments are done using the teaspoon python package which has an implementation of

both the original and modified template function featurization method [85].

4.3.1 Manifold Experiment

Replicating an experiment from [1, 73], we generated collections of point clouds drawn from

different manifolds. Each point cloud consists of 200 points drawn from the following manifolds3:

• Annulus: points drawn uniformly from an annulus with inner radius 1 and outer radius 2.

• Torus: points drawn uniformly from a torus created from a rotating circle of radius 1 in the

𝑥𝑧-plane centered at (2, 0) around the 𝑧-axis.

• Sphere: points drawn from a sphere in R3 of radius 1. Uniform noise in [−0.05, 0.05] was

added to the radius.
3These point clouds can be generated using the function MakeData.PointCloud.testSetManifolds in

teaspoon (https://github.com/lizliz/teaspoon)
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Tents
Num No Partitioning Partitioning
Dgms Train Test Train Test

10 99.8% ± 0.9 96.5% ± 3.2 100% ± 0.0 99.5% ± 1.5
25 99.9% ± 0.3 99.0% ± 1.0 99.9% ± 0.3 99.6% ± 0.8
50 99.9% ± 0.2 99.9% ± 0.3 100% ± 0.0 100% ± 0.0
100 99.8% ± 0.1 99.7% ± 0.4 99.9% ± 0.1 99.8% ± 0.2
200 99.5% ± 0.1 99.5% ± 0.3 99.6% ± 0.1 99.2% ± 0.3

Polynomials
Num No Partitioning Partitioning
Dgms Train Test Train Test

10 99.8% ± 0.9 95.0% ± 3.9 100% ± 0.0 97.5% ± 2.5
25 99.7% ± 0.5 97.6% ± 1.5 99.7% ± 0.5 99.4% ± 0.9
50 100% ± 0.0 99.2% ± 0.9 100% ± 0.1 99.5% ± 0.5
100 99.6% ± 0.2 99.3% ± 0.5 99.7% ± 0.2 99.6% ± 0.5
200 99.2% ± 0.2 98.9% ± 0.5 99.5% ± 0.2 99.4% ± 0.3

Table 4.1: Results of classification of manifold data using template functions with and without
partitioning for different numbers of examples drawn from each type of manifold. Ridge regression
is used for classification in both methods. Scores highlighted in green give the best average score
between the two methods.

• Square: points drawn uniformly from [0, 1]2 ⊂ R2.

• 3 Clusters: points drawn from one of three different normal distributions with means

(0, 0), (0, 2), (2, 0), each with standard deviation of 0.05.

• 3 Clusters of 3 Clusters: points drawn from normal distributions centered at (0,0), (0,1.5),

(1.5,0), (0,4), (1,3), (1,5), (3,4), (3,5.5), (4.5,5) each with standard deviation 0.05.

Figure 4.5 shows an example of each of these manifolds.

For our method we tested a variety of parameters and options. For all experiments, we reserve

33% of the data for testing while the remaining was used for training. All the classification results

are averaged over 10 runs of the experiment to control for outliers.

For comparison, Table 4.1 shows the results from [1] using 0- and 1-dimensional diagrams with

ridge regression for classification along with our accuracies using our partitioning method where

partitions are selected based on both diagram dimensions simultaneously, referred to as “combined

partitioning.” For the results from [1], the authors used tent parameters of 𝑑 = 10, 𝜖 to be half the
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Figure 4.6: Results of classification of manifold data using template functions with and without
partitioning. For partitioning methods, classification is done using logistic regression. Note that
in all plots, the results without partitioning represent the accuracy using 0- and 1-dimensional
diagrams. Thus the same accuracy is shown in each plot in a row.

Figure 4.7: Average number of features used for the manifold experiment using template functions
with and without partitioning. These correspond to the classification accuracies shown in Fig. 4.6.

minimum lifetime over all training set diagrams, and 𝛿 to be chosen to ensure the bounding box

covered the training diagrams. For our results, we used 3 clusters resulting in 3 partitions and for

both template functions we set a starting value of 𝑑 = 3 and set 𝜖 to be machine precision, while

the additional parameters are selected as described in Sec. 4.2.1. Note that in all cases except one,

our partitioning method has a higher testing accuracy.

Figure 4.6 shows the results of using our partitioning method on only 0- or 1-dimensional

diagrams; on both dimensions using combined partitioning; and on both dimensions using split

partitioning. Here we still used 3 clusters resulting in 3 partitions, while starting with a value
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of 𝑑 = 3 and for both template functions. For these experiments we used logistic regression

for classification. It is important to note that in [1], only accuracies using both dimensions were

reported so the accuracies for no partitioning in all plots are from using both dimensions of diagrams

with classification done using ridge regression. This means that those results are the same across

all plots for a given template function.

Using both 0- and 1-dimensional diagrams with either split or combined partitioning, using

both tent functions and interpolating polynomials we get above 99% accuracy for most cases.

Using only 0-dimensional or only 1-dimensional diagrams, we still get very good accuracy, but

interestingly using 0-dimensional diagrams, the accuracies seem slightly better. Using only 0-

dimensional diagrams, we almost always outperform the template functions without partitioning

using both 0- and 1-dimensional diagrams. However, using tent functions with 1-dimensional

diagrams, our method under-performs. Additionally, Fig. 4.7 shows the average number of features

used for these experiments. The number of features used is dependent on which diagrams are being

used. For example, using only 0-dimensional diagrams, we need very few features as all points in

the diagrams fall on the 𝑦-axis for this experiment. Using both 0- and 1-dimensional diagrams will

require more features as we need to cover more of the diagram. However in all cases, we are using

significantly less features and still achieving comparable or higher accuracies.

4.3.2 Shape Dataset

Here we present another application of the adaptive template function method and compares the

results to the original template functions in [1] as well as the persistence diagram kernel method

developed in [2]. This data set, called the synthetic SHREC 2014 data set [86], consists of 3D

meshes of fifteen humans (five males, five females and five children) in 20 different poses, resulting

in 300 meshes in total. In [2], the authors define a function on each mesh using the heat kernel

signature for 10 different parameters and compute 0- and 1-dimensional diagrams. Using the 300

pairs of persistence diagrams for each 10 parameter values, we predict which of the 15 humans is

represented in each mesh.
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Figure 4.8: Results of classification of shape data using template functions with and without
partitioning. MSK gives the original results from [2]. Ridge regression is used for classification.

Figure 4.9: Average number of features used for shape data experiment using our partitioning
method. These correspond to the classification accuracies shown in Fig. 4.8.

Figure 4.8 show the results of these experiments using our partitioning method with tent

and interpolating polynomial functions as well as the results reported in [1] (labeled as “No

Partitioning”) and [2] (labeled as “MSK”). For clarity, tables showing these results are located in

Appendix A in Tables A.1 and A.2. For all experiments with partitioning, we use 𝑑 = 5 and 5

clusters for partitioning. For the experiments without partitioning, the authors use 𝑑 = 20 for both
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types of template functions. All accuracies with and without partitioning are averaged over 10 runs.

For three of the ten parameter values, using tent functions, our method achieves the highest

accuracy. Additionally, the confidence intervals intersect the highest accuracy for three additional

parameters using tent functions. Comparing tent functions with and without partitioning, it is

clear that partitioning drastically improves most of the accuracies. For example, using 0- or 1-

dimensional diagrams, the top left and middle left plot in Fig. 4.8, the green line representing

our testing accuracy is almost always higher than the orange line representing the testing accuracy

without partitioning.

Using interpolating polynomials, our method does not surpass the kernel method or the template

functions without partitioning to achieve the highest accuracy, however the confidence intervals

intersect the highest accuracy for seven of the ten parameters. Comparing our results to featurization

using interpolating polynomial functions without partitioning, our results are fairly comparable; for

some parameter values we achieve slightly higher accuracies, while for others we achieve slightly

lower accuracies. Without partitioning, the interpolating polynomials are not localized and may

be picking up more global structure in the diagrams that is missed using partitioning, which could

explain this lack of improvement.

Figure 4.9 shows the average number of features used for these experiments. It is clear that

we are using far less than the 420 and 441 features used in [1] with tent and polynomial functions

respectively, yet we still achieve good accuracies, particularly using tent functions. For example,

for the parameters where tent functions with partitioning achieve the highest accuracy, we use less

than 150 features.
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Figure 4.10: The bifurcation diagram for the Rössler system with 𝛼 as the bifurcation parameter.
The shaded windows indicate the regions that were tagged as periodic. The misclassified points
are superimposed with diamonds indicating the points that were incorrectly identified as chaotic,
while dots indicate that the algorithm incorrectly identified chaotic points as periodic.

4.3.3 Rössler System

We also test this method on time series simulated from the Rössler system [87]:

𝑑𝑥

𝑑𝑡
= −𝑦 − 𝑧,

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝛼𝑦, (4.2)

𝑑𝑧

𝑑𝑡
= 𝛽 + 𝑧(𝑥 − 𝛾).

The Rössler system is solved for 𝛽 = 2, 𝛾 = 4, and 1201 evenly spaced values of the bifurcation

parameter 𝛼, with 0.37 ≤ 𝛼 ≤ 0.43. For each of these parameter values, 2×104 points are sampled

using a time step of 0.2 seconds, and the first half of the points are discarded.

As described in [1, Sec.8.5], when the original template function featurization method is used

with tent functions, they get a training score of 98.9% and a testing score of 97.2%. They use

𝑑 = 10, which corresponds to 110 features. We test the adaptive method with tent functions using

3 partitions and 𝑑 = 3. Using random forest classifier, we achieve a training accuracy of 100% and

testing accuracy of 99.5% only using dimension 1 diagrams. This means we only misclassify two

values of 𝛼, Specifically, 𝛼 = 0.40220 is tagged as periodic, however our method classifies it as
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chaotic, while 𝛼 = 0.40915 is tagged as chaotic, while our method classifies it as periodic. Note

that both of these values of 𝛼 occur on transitions of the system behavior from periodic to chaotic

or vice versa. It is worth noting that the ground truth labels in this experiment are determined by

the Lyapunov exponent [88] which is a tool from dynamical systems that is often used to classify

periodic and chaotic behavior. While accurate, the Lyapunov exponent is not a perfect ground truth,

and thus it is possible that a misclassification is actually detecting an incorrect label determined by

the Lyapunov exponent.

For this classification, our method only uses 33 features. Therefore compared to the original

template function method, we can use less than a third the number of features while still achieving

slightly better accuracy. Overall, both the original template function featurization and our adaptive

version can successfully classify periodic versus chaotic behavior in this dynamical system.
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CHAPTER 5

TIME SERIES CLASSIFICATION VIA PERSISTENT HOMOLOGY OF DIRECTED
NETWORKS

The time delay embedding as described in Sec. 2.3 is a useful tool but the number of points in

the point cloud grows with the length of the time series, thus increasing the computation time for

persistent homology. In this chapter, we utilize an alternative method to instead transform a time

series into a network, which provides a coarser summary of the data but still captures important

features.

5.1 Basic Graph Definitions

A graph1, 𝐺 = (𝑉, 𝐸) is a collection of vertices, 𝑉 , with edges, 𝐸 = {𝑢𝑣} ⊆ 𝑉 × 𝑉 . Graphs can

also be directed where the edges have a direction. An example of an undirected and a directed

graph can be seen in Fig. 5.1. In general, we will denote an undirected edge between 𝑢, 𝑣 ∈ 𝑉 as

𝑢𝑣, and a directed edge from 𝑢 to 𝑣 as −→𝑢𝑣. Here we will allow self-loops, specifically edges of the

form −→𝑣𝑣, as well as multiedges going in opposite directions, i.e. −→𝑢𝑣,−→𝑣𝑢 ∈ 𝐸 . For the remainder of

this section, the definitions are the same in the directed and undirected case.

The complete graph on the vertex set 𝑉 = {𝑣1, . . . , 𝑣𝑛} is the graph with edge set 𝐸 =

{𝑣𝑖𝑣 𝑗 for all 𝑖, 𝑗}. We also consider weighted graphs, 𝐺 = (𝑉, 𝐸, 𝜔), where 𝜔 : 𝐸 → R+ specifies

the weight of each edge. For the remainder of this section we will give all definitions in terms of

weighted graphs since unweighted graphs can be thought of as weighted graphs where all edges

have a weight of 1. A graph can be represented as an adjacency matrix A, where, given an ordering

on the vertex set, 𝑉 = {𝑣0, . . . , 𝑣𝑛},

A[𝑖, 𝑗] =


𝜔(𝑣𝑖𝑣 𝑗 ) if 𝑣𝑖𝑣 𝑗 ∈ 𝐸

0 otherwise.

1Note that throughout this chapter we will often use the terms network and graph interchangeably.
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v0 0 1 1 0
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v2 1 1 0 1

v3 0 0 1 0

v0
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v3

v0 v1 v2 v3

v0 0 1 1 0

v1 0 1 1 0

v2 1 0 0 1

v3 0 0 1 0

Adjacency Matrix
Directed

Adjacency Matrix

Figure 5.1: Example of undirected (left) and directed (right) graphs with corresponding adjacency
matrices.

Note that for an undirected graph, the adjacency matrix is symmetric however for a directed graph

it is not. This is due to the fact that −−→𝑣𝑖𝑣 𝑗 and −−→𝑣 𝑗𝑣𝑖 are two different edges and the presence of one

does not imply the presence of the other. Figure 5.1 shows the adjacency matrices corresponding

to each graph.

In an undirected graph, the degree of a vertex is the number of edges connected to that vertex.

To summarize this information across an entire graph, one can consider the mean and standard

deviation of the degree of all vertices. In the undirected graph in Fig. 5.1, the degree of 𝑣2 is 3,

the degree of 𝑣0 and 𝑣1 is 2 and the degree of 𝑣3 is 1. In the case of a directed graph, instead one

can calculate the indegree and outdegree, counting the number of edges going into and out of the

vertex, respectively. In the directed graph in Fig. 5.1, the indegree of 𝑣2 is 3, while the outdegree

is 1. Again, one can summarize the information in these networks with the mean and standard

deviation of the in or outdegrees of all vertices in the network.

A path 𝛾 on a graph 𝐺 = (𝑉, 𝐸) is a sequence of vertices, 𝑢0𝑢1 . . . 𝑢𝑛, where 𝑢𝑖 ∈ 𝑉 and

𝑢𝑖𝑢𝑖+1 ∈ 𝐸 for all 𝑖. In the case of directed graphs, the edges must be followed along the direction

of the edge. For example, in the directed graph in Fig. 5.1, 𝑣0𝑣1𝑣2 is a path, but 𝑣0𝑣2𝑣1 is not since
−−−→𝑣2𝑣1 ∉ 𝐸 . The length of a path 𝛾, len(𝛾) is the sum of the weights of the edges used in the path,

len(𝛾) =
𝑛∑︁
𝑖=0

𝜔(𝑢𝑖𝑢𝑖+1).
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Figure 5.2: Example of a graph with its corresponding persistence diagrams, along with several
steps in the filtration generated from the clique complexes. In this example we assume each edge
has a weight of 1.

From this, we can define the geodesic distance between vertices 𝑢, 𝑣 ∈ 𝑉 in the graph,

𝑑 (𝑢, 𝑣) = min
𝛾∈Γ𝑢,𝑣

len(𝛾),

where Γ𝑢,𝑣 is the set of paths that start at 𝑢 and end at 𝑣. In an undirected graph, this distance is

symmetric (i.e. 𝑑 (𝑢, 𝑣) = 𝑑 (𝑣, 𝑢)) but not in the directed case. Given a (directed) weighted graph,

𝐺 = (𝑉, 𝐸, 𝜔) we can compute a (directed) weighted complete graph on𝑉 where 𝜔(𝑢𝑣) = 𝑑 (𝑢, 𝑣).

The adjacency matrix of this graph is then a pairwise distance matrix on all vertices in 𝑉 .

5.2 Persistent Homology on Graphs

For the undirected case, we can turn a graph into a simplicial complex using clique complexes.

Given a graph, 𝐺 = (𝑉, 𝐸), the clique complex of 𝐺 is defined as

K(𝐺) = {𝜎 ⊂ 𝑉 | 𝑢𝑣 ∈ 𝐸 for all 𝑢 ≠ 𝑣 ∈ 𝜎}.

Given a weighted graph 𝐺 = (𝑉, 𝐸, 𝜔), we can construct a filtration of clique complexes. Given

𝑟 ∈ R, the clique complex at scale 𝑟 is defined as

K𝑟 = {𝜎 ∈ 𝐾 (𝐺) | 𝜔(𝑢𝑣) ≤ 𝑟 for all 𝑢 ≠ 𝑣 ∈ 𝜎}.
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Then K𝑟0 ⊆ K𝑟1 for 𝑟0 ≤ 𝑟1, thus we can construct a filtration

K𝑟0 ⊆ K𝑟1 ⊆ . . . ⊆ K𝑟𝑛

for 𝑟0 ≤ 𝑟1 ≤ · · · ≤ 𝑟𝑛.

As described in Sec. 5.1, we can create a pairwise distance matrix using the shortest path

distance. This can then be viewed as a weighted, complete graph, and gives rise to a filtration of

clique complexes. For example, the top left in Fig. 5.2 shows a graph where we will assume every

edge has weight 1. The bottom row of Fig. 5.2 shows several steps in the filtration using various

values of threshold 𝑟. For each value of 𝑟 , you add an edge between every pair of vertices such

that there exists a path 𝛾 between the vertices with len(𝛾) ≤ 𝑟. Then a triangle is added when all

its pairwise edges are added. In this example, at 𝑟 = 0, all the vertices in the network are included,

then at 𝑟 = 1, all the edges in the graph are then added. At 𝑟 = 2 we start seeing triangles included

since there are now sets of three vertices with all pairwise edges included. The smaller loop fills in

at 𝑟 = 3 while the larger loop fills in at 𝑟 = 4; this is reflected in the points (1, 3) and (1, 4) in the

1-dimensional persistence diagram also shown in Fig. 5.2. In the case of undirected graphs where

all edges have weight 1, all 1-dimensional features are born at 1, and all death times are integer

valued.

Note that this section focused entirely on undirected graphs. We will address incorporating

directed information in Sec. 5.4.2.

5.3 Ordinal Partition Graph

There are many methods to transform a time series into a graph [89–94] and a survey of many of

them is presented in [95]. Here we will focus on one of these methods called the ordinal partition

graph (also called the ordinal partition network) [87, 96].

To generate the ordinal partition graph, one must first apply the delay embedding method

described in Sec. 2.3. Then for each x𝑖 = (𝑥1, . . . , 𝑥𝑑) ∈ X, the permutation 𝜋 of the set {1, . . . , 𝑑}

satisfying 𝑥𝜋(1) ≤ 𝑥𝜋(2) ≤ · · · ≤ 𝑥𝜋(𝑑) is associated to x𝑖. Thus, each vector is translated into its

associated permutation 𝜋 𝑗 to generate a collection of permutations where 𝑗 ∈ Z ∩ [1, 𝑛!]. The

46



(b)
<latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit><latexit sha1_base64="nvmtgWEx7qwPdQ+Ek+1IsFecZyE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQzU475crbs2dg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHluzbu/rNRv8jiKcAKnUAUPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGKMI1L</latexit>

(c)
<latexit sha1_base64="wRjF1YNS+iQEo080jDUCrfP6d/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQ5Wd98sVt+bOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCLtY1M</latexit><latexit sha1_base64="wRjF1YNS+iQEo080jDUCrfP6d/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQ5Wd98sVt+bOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCLtY1M</latexit><latexit sha1_base64="wRjF1YNS+iQEo080jDUCrfP6d/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQ5Wd98sVt+bOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCLtY1M</latexit><latexit sha1_base64="wRjF1YNS+iQEo080jDUCrfP6d/Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQ5Wd98sVt+bOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmld1Dy35t1fVuo3eRxFOIFTqIIHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCLtY1M</latexit>

Figure 5.3: Example ordinal partition network. (a) Time series showing three permutations; (b)
Adjacency matrix generated from time series; (c) Directed, weighted ordinal partition network.

permutations become the vertices in the graph, and an edge 𝜋𝜋′ is added whenever the permutations

associated to the ordered point cloud passes between 𝜋 and 𝜋′. This can also be modified to be a

directed graph, where the edges point in the direction of the transition, i.e.
−−→
𝜋𝜋′. Additionally, the

graph can be weighted by setting weight 𝜔(𝜋, 𝜋′) to be the number of times the transition occurs.

One benefit of this method over the time delay embedding is that an upper bound on the number

of vertices in the network is determined by the chosen embedding dimension. While in theory, an

ordinal partition network with dimension 𝑑 could have 𝑑! vertices, in practice we do not include

vertices associated to permutations that are not visited.

These networks have shown success in experiments on dynamical systems such as the Rössler

system as well as experimental data from ECG data [97] and a diode resonator circuit [87].

Statistics such as the number of vertices or mean and standard deviation of the vertex degrees (or in

the directed case, in or out degree) were found to be useful in characterizing the networks [87, 96].

There is also a lot of work going into exploring this method further. For example, [98] presents

an approach to generate ordinal partition networks from multivariate time series data, while [99]

explores whether a time series can be reconstructed from a given ordinal partition network.

5.3.1 Parameter Selection

As with the time delay embedding, the ordinal partition graphs require two parameters: the delay

𝜏 and the dimension 𝑑. In this chapter we describe one heuristic based on multi-scale permutation

entropy (MsPE) to select the delay [43].
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Permutation entropy is a tool to measure complexity in a time series [100]. It is defined on a

time series based on permutations as defined in Sec. 5.3. Given a time series, one can calculate the

probability of a permutation 𝑃(𝜋𝑖) by calculating at how many times permutation 𝜋𝑖 occurs divided

by the total number of permutations2. Using an embedding dimension of 𝑛, then permutation

entropy is defined as

𝐻 (𝑛) = −
∑︁
𝑖

𝑃(𝜋𝑖) log2 𝑃(𝜋𝑖). (5.1)

Further, it can be normalized by the maximum possible permutation entropy value which occurs

when all permutations are equally probable. The normalized permutation entropy is defined as

ℎ(𝑛) = − 1
log2 𝑛!

∑︁
𝑖

𝑃(𝜋𝑖) log2 𝑃(𝜋𝑖). (5.2)

The process to choose 𝜏 based on normalized permutation entropy is iterative. For each possible

𝜏 value, normalized permutation entropy can be recalculated, then the ideal value of 𝜏 should be

chosen to be the first peak in the normalized permutation entropy. An algorithm to calculate 𝜏

based on permutation entropy can be found in [43] and is implemented in teaspoon [85].

5.3.2 Examples and Existing Work

Figure 5.4 show examples of the ordinal partition networks from a periodic and chaotic time series

from both the Rössler and Lorenz systems. In both cases, the embedding dimension is selected to

be 𝑑 = 6 while the delay is selected for each time series individually using MsPE. These networks

look visually different when they are constructed from periodic or chaotic time series. Immediately

it is noticeable that the topological structure, specifically the number of loops and the size of the

loops, is different.

In [101], the authors use the topological structure of unweighted, undirected ordinal partition

networks to differentiate between chaotic and periodic behavior. They also showed that using

topological features were more effective than the previously used network based statistics such as
2Note we mean the total number of permutations including duplicates.
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Rössler
Periodic Chaotic

Lorenz
Periodic Chaotic

Figure 5.4: Examples of time series and the corresponding ordinal partition networks. Top row is
from the Rössler system, bottom row is from the Lorenz system.

mean degree or number of vertices. Their method is successful on several examples from dynamical

systems however the method does not perform as well when the time series have added noise.

5.4 Directed, Weighted Ordinal Partition Networks

Here we explore incorporating the weighted and directed information from the ordinal partition

networks to test if it can improve upon the results in [101]. In order to explore the topological

structure of weighted, directed ordinal partition networks, we need to take three steps. First, we

need to determine how to use the weights. We cannot use the weights as calculated because

a transition that occurs frequently will have a larger weight than a transition that occurs only a

few times. Because of the way we construct the filtration, we would like more highly used (thus

more important) edges to have a lower filtration value. Additionally, the weights on the edges

relate closely to the length and sampling rate of the time series, but these factors should not be

incorporated in the analysis. Thus the raw counts of the number of times a transition occurs is not

a useful weighting scheme, so we will instead calculate a new set of weights using these counts.
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Second, once we have a better weighting scheme, we need a way to compute persistent homology

of directed, weighted graphs. Thus far, we have not discussed any filtrations or methods to compute

persistent homology that would apply in the case of directed graphs. Lastly, we need to analyze

the resulting persistence diagrams. In [101], the authors use scores or statistics3 on persistence

diagrams, where you compute one number summarizing some feature of the diagram. We will test

three different statistics which will be introduced in Sec. 5.4.3.

Code implementing these methods are included in the teaspoon python library.

5.4.1 Step 1: Computing the weights

As mentioned, there are many flaws with using the raw counts between transitions, so instead we

use these counts to calculate a new set of weights based on inverse probability. For example,

the weight of an edge −−−→𝜋𝑖𝜋 𝑗 is 1 minus the probability that you transition to permutation 𝜋 𝑗 given

that you are standing at 𝜋𝑖. This can be computed from the adjacency matrix 𝐴 with the directed

transition counts as

𝜔(𝜋𝑖, 𝜋 𝑗 ) = 1 − 𝐴[𝑖, 𝑗]∑
𝑘 𝐴[𝑖, 𝑘]

. (5.3)

Note we use 1 minus the probability because we want edges used more often to have a lower weight,

thus appearing earlier in a sublevel set filtration. Note that as can be seen in Fig. 5.3, we also keep

track of the counts of how many steps the same permutation occurs, recorded on the diagonal of

the adjacency matrix. However this number is related to the sampling of the time series, so instead

we make a slight modification by assuming the probability of remaining in the same permutation is

50%. This makes it uniform across all permutations and ensures the spacing along the time series

is not influential. Thus, we modify our weighted scheme to be

𝜔(𝜋𝑖, 𝜋 𝑗 ) =


0.5 − 𝐴[𝑖, 𝑗]∑

𝑘!=𝑖 𝐴[𝑖,𝑘] if 𝑖 ≠ 𝑗

0.5 if 𝑖 = 𝑗 .

(5.4)

3We will use the terms score and statistic interchangeably.
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Figure 5.5: Example of a directed graph and the corresponding Dowker source and sink complexes.

Now using these weights, we can compute a shortest path distance matrix, which represents

a directed, weighted, complete graph. This approach is inspired by Markov chains and graph

diffusion distances [102, 103].

5.4.2 Step 2: Viewing a directed, weighted graph as a (filtered) simplicial complex

While weighted graphs naturally give rise to a filtration as described in Sec. 5.2, incorporating

directed information requires some additional thought. Here we will focus on one method of

transforming a directed graph into a simplicial complex called the Dowker complex [104]. Given

a directed graph 𝐺 = (𝑉, 𝐸) the Dowker source complex is defined as

𝔇𝑠𝑜 (𝐺) = {𝜎 = (𝑣0, 𝑣1, . . . , 𝑣𝑛) : ∃ 𝑣′ ∈ 𝑉 with
−−→
𝑣′𝑣𝑖 ∈ 𝐸 for 𝑖 = 1, . . . , 𝑛}

Intuitively, this means that for a given vertex 𝑣′, we add an edge between any two vertices 𝑣𝑖, 𝑣 𝑗

where there are edges
−−→
𝑣′𝑣𝑖 ∈ 𝐸 and

−−→
𝑣′𝑣 𝑗 ∈ 𝐸 . We add a triangle between any three vertices 𝑣𝑖, 𝑣 𝑗 , 𝑣𝑘

when
−−→
𝑣′𝑣𝑖,
−−→
𝑣′𝑣 𝑗 ,

−−→
𝑣′𝑣𝑘 ∈ 𝐸 , and so on for higher dimensional simplices. Similarly, the Dowker sink

complex is defined as

𝔇𝑠𝑖 (𝐺) = {𝜎 = (𝑣0, 𝑣1, . . . , 𝑣𝑛) : ∃ 𝑣′ ∈ 𝑉 with
−−→
𝑣𝑖𝑣
′ ∈ 𝐸 for 𝑖 = 1, . . . , 𝑛}

An example of a directed graph with the corresponding Dowker source and sink complexes are

shown in Fig. 5.5.
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<latexit sha1_base64="p4BImyviwJhQhHLgJNvTnDrfquY=">AAACFXicbVDLSsNAFJ34rPEVdelmsAgupCTd6LKooMsK9gFNKZPJbTt0MgkzE6GE/oQbf8WNC0XcCu78G6dpBG09MHA45x7u3BMknCntul/W0vLK6tp6acPe3Nre2XX29psqTiWFBo15LNsBUcCZgIZmmkM7kUCigEMrGF1O/dY9SMVicafHCXQjMhCszyjRRuo5p34AAyYyCkKDnNhXTALVEPo+vpYkGdo+iPDH7Tllt+LmwIvEK0gZFaj3nE8/jGkamTjlRKmO5ya6mxGpGeUwsf1UQULoiAygY6ggEahull81wcdGCXE/luYJjXP1dyIjkVLjKDCTEdFDNe9Nxf+8Tqr7592MiSTVIOhsUT/lWMd4WhEO8w742BBCJTN/xXRIJDG9SGWbErz5kxdJs1rx3Ip3Wy3XLoo6SugQHaET5KEzVEM3qI4aiKIH9IRe0Kv1aD1bb9b7bHTJKjIH6A+sj2/wUp9J</latexit><latexit sha1_base64="p4BImyviwJhQhHLgJNvTnDrfquY=">AAACFXicbVDLSsNAFJ34rPEVdelmsAgupCTd6LKooMsK9gFNKZPJbTt0MgkzE6GE/oQbf8WNC0XcCu78G6dpBG09MHA45x7u3BMknCntul/W0vLK6tp6acPe3Nre2XX29psqTiWFBo15LNsBUcCZgIZmmkM7kUCigEMrGF1O/dY9SMVicafHCXQjMhCszyjRRuo5p34AAyYyCkKDnNhXTALVEPo+vpYkGdo+iPDH7Tllt+LmwIvEK0gZFaj3nE8/jGkamTjlRKmO5ya6mxGpGeUwsf1UQULoiAygY6ggEahull81wcdGCXE/luYJjXP1dyIjkVLjKDCTEdFDNe9Nxf+8Tqr7592MiSTVIOhsUT/lWMd4WhEO8w742BBCJTN/xXRIJDG9SGWbErz5kxdJs1rx3Ip3Wy3XLoo6SugQHaET5KEzVEM3qI4aiKIH9IRe0Kv1aD1bb9b7bHTJKjIH6A+sj2/wUp9J</latexit><latexit sha1_base64="p4BImyviwJhQhHLgJNvTnDrfquY=">AAACFXicbVDLSsNAFJ34rPEVdelmsAgupCTd6LKooMsK9gFNKZPJbTt0MgkzE6GE/oQbf8WNC0XcCu78G6dpBG09MHA45x7u3BMknCntul/W0vLK6tp6acPe3Nre2XX29psqTiWFBo15LNsBUcCZgIZmmkM7kUCigEMrGF1O/dY9SMVicafHCXQjMhCszyjRRuo5p34AAyYyCkKDnNhXTALVEPo+vpYkGdo+iPDH7Tllt+LmwIvEK0gZFaj3nE8/jGkamTjlRKmO5ya6mxGpGeUwsf1UQULoiAygY6ggEahull81wcdGCXE/luYJjXP1dyIjkVLjKDCTEdFDNe9Nxf+8Tqr7592MiSTVIOhsUT/lWMd4WhEO8w742BBCJTN/xXRIJDG9SGWbErz5kxdJs1rx3Ip3Wy3XLoo6SugQHaET5KEzVEM3qI4aiKIH9IRe0Kv1aD1bb9b7bHTJKjIH6A+sj2/wUp9J</latexit><latexit sha1_base64="p4BImyviwJhQhHLgJNvTnDrfquY=">AAACFXicbVDLSsNAFJ34rPEVdelmsAgupCTd6LKooMsK9gFNKZPJbTt0MgkzE6GE/oQbf8WNC0XcCu78G6dpBG09MHA45x7u3BMknCntul/W0vLK6tp6acPe3Nre2XX29psqTiWFBo15LNsBUcCZgIZmmkM7kUCigEMrGF1O/dY9SMVicafHCXQjMhCszyjRRuo5p34AAyYyCkKDnNhXTALVEPo+vpYkGdo+iPDH7Tllt+LmwIvEK0gZFaj3nE8/jGkamTjlRKmO5ya6mxGpGeUwsf1UQULoiAygY6ggEahull81wcdGCXE/luYJjXP1dyIjkVLjKDCTEdFDNe9Nxf+8Tqr7592MiSTVIOhsUT/lWMd4WhEO8w742BBCJTN/xXRIJDG9SGWbErz5kxdJs1rx3Ip3Wy3XLoo6SugQHaET5KEzVEM3qI4aiKIH9IRe0Kv1aD1bb9b7bHTJKjIH6A+sj2/wUp9J</latexit>
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Figure 5.6: Example of a directed cycle graph without and with self-loops and the corresponding
Dowker source complexes.

Similarly, given a directed, weighted graph 𝐺 = (𝑉, 𝐸, 𝜔) we can define the Dowker source

and sink complex at scale 𝑟 ∈ R,

𝔇𝑠𝑜
𝑟 (𝐺) = {[𝑣0, 𝑣1, . . . , 𝑣𝑛] : ∃ 𝑣′ ∈ 𝑉 with

−−→
𝑣′𝑣𝑖 ∈ 𝐸 and 𝜔(

−−→
𝑣′𝑣𝑖) ≤ 𝛿 for 𝑖 = 1, . . . , 𝑛}

𝔇𝑠𝑖
𝑟 (𝐺) = {[𝑣0, 𝑣1, . . . , 𝑣𝑛] : ∃ 𝑣′ ∈ 𝑉 with

−−→
𝑣𝑖𝑣
′ ∈ 𝐸 and 𝜔(

−−→
𝑣𝑖𝑣
′) ≤ 𝛿 for 𝑖 = 1, . . . , 𝑛}.

Given an increasing sequence of values 𝑟0 ≤ 𝑟1 ≤ · · · ≤ 𝑟𝑛 with 𝑟𝑖 ∈ R for all 𝑖, we get the Dowker

source and sink filtrations,

𝔇𝔬𝔴𝑠𝑜 = 𝔇𝑠𝑜
𝑟0 ⊂ 𝔇𝑠𝑜

𝑟1 ⊂ · · · ⊂ 𝔇𝑠𝑖
𝑟𝑛

(5.5)

𝔇𝔬𝔴𝑠𝑖 = 𝔇𝑠𝑖
𝑟0 ⊂ 𝔇𝑠𝑖

𝑟1 ⊂ · · · ⊂ 𝔇𝑠𝑖
𝑟𝑛
. (5.6)

While the Dowker source and sink complexes are not equal in general, it has been proven in [104]

that the 𝑘-dimensional persistence diagrams of the filtrations in Eqns. 5.5 and 5.6 are equal. That

is,

𝐷𝑔𝑚𝑘 (𝔇𝔬𝔴𝑠𝑜 (𝐺)) = 𝐷𝑔𝑚𝑘 (𝔇𝔬𝔴𝑠𝑖 (𝐺)) (5.7)

for all 𝑘 = 0, 1, 2, . . .. Thus, we can choose one and call it the Dowker filtration. In practice, we

use the source filtration.

Note that the Dowker complex is sensitive to the presence of self-loops. For example, the

Dowker complex of a directed cycle graph with no self-loops is only the disconnected vertices.
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On the other hand, the Dowker complex of the same graph with self-loops has edges connecting

adjacent vertices. Figure 5.6 shows an example of each case. This means that the weighting of

self-loops (which corresponds to staying in the same permutation) as defined in Sec. 5.4.1 is fairly

important as the lack of even one self-loop it can change the topological structure of the resulting

simplicial complex.

5.4.3 Step 3: Analyzing the Persistence Diagrams

The first two steps allow us to compute a persistence diagram from a directed, weighted ordinal

partition network. Specifically, we compute a persistence diagram using the Dowker filtration on

the weighted, directed, complete graph built from a shortest path distance matrix.

The next step is to determine how to analyze the persistence diagrams. While methods for

machine learning on persistence diagrams as described in Chapter 4 are very useful, they can

be computationally expensive and require a significant amount of data, thus a simpler method is

more useful in this case. For our experiments, we will calculate three different statistics on each

persistence diagram: (1) total persistence, (2) maximum persistence, and (3) persistent entropy.

We define total persistence to be the sum of the lifetimes of all points in a given diagram 𝐷,

TotalPers(𝐷) =
∑︁
(𝑏,𝑑)∈𝐷

𝑑 − 𝑏. (5.8)

Note that this is equal to the 1-Wasserstein distance as defined in Eqn. 2.4 (using 𝑝 = 𝑞 = 1) between

𝐷 and the empty diagram, TotalPers(𝐷) = 𝑑𝑊1 (𝐷, ∅). Maximum persistence was already defined

in Eqn. 2.6. Note that maximum persistence is also equivalent to computing twice the bottleneck

distance between a diagram 𝐷 and the empty diagram, MaxPers(𝐷) = 2𝑑𝑊∞ (𝐷, ∅). Persistent

entropy4 (PE), as defined in [105], calculates the entropy in a persistence diagram. Inspired by

Shannon entropy, it characterizes the differences in lifetimes of the persistence points. It is defined

as

𝐸 (𝐷) = −
∑︁
(𝑏,𝑑)∈𝐷

𝑑 − 𝑏
TotalPers(𝐷) log2

(
𝑑 − 𝑏

TotalPers(𝐷)

)
.

4Not to be confused with permutation entropy from Sec. 5.3.1.
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Rössler

Lorenz

Periodic Chaotic

Figure 5.7: Example of periodic and chaotic time series from two different systems (Rössler and
Lorenz) and the corresponding persistence diagrams.

Note that this value can vary based on the number of points in the persistence diagram, so one can

normalize persistent entropy as

𝑃𝐸 (𝐷) = 𝐸 (𝐷)
log2(L(𝐷)

. (5.9)

For the remainder of this chapter, when we refer to persistent entropy, we mean this normalized

version.

Persistent entropy was found to be a useful statistic on persistence diagrams generated from

unweighted, undirected ordinal partition networks in [101]. However, we note that persistent

entropy is not well grounded in theory as it is continuous but not stable [106]. We will compare

the effectiveness of each of these three statistics across a range of preliminary experiments.

5.5 Preliminary Results

Now using the steps provided in Sec. 5.4 we have a process to convert a directed, weighted ordinal

partition network into a persistence diagram. In order to test our method, we will perform several

experiments to find strengths and weaknesses of the methods.

In all our experiments, we will generate data using the Dynamical Systems Library in the

python teaspoon library [85], specifically the DynamicSystems function. Further, in all cases we
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TotalPers MaxPers PE
System Periodic Chaotic Periodic Chaotic Periodic Chaotic
Rössler 16.63 34.95 7.18 4.99 0.49 0.88
Lorenz 10.77 56.84 10.77 6.99 0.00 0.88

Table 5.1: Statistics calculated on the persistence diagrams in Fig. 5.7. Scores are rounded to two
decimal places.

use an embedding dimension of 𝑑 = 6 for the ordinal partition networks, and delay 𝜏 is selected

using multi-scale permutation entropy [43] as described in Sec. 2.3 implemented in teaspoon.

All the default parameters in teaspoon are used except the SampleSize parameter which dictates

how long the generated time series is. The function produces data from the full dynamical system,

however we only use the time series corresponding to the first variable. Documentation listing all

the systems used as well as the default parameters can be found in Appendix B.1.

5.5.1 Within a System

Within a given dynamical system, we can attempt to differentiate between chaotic and periodic

behavior. For a simple first experiment, we can look at one chaotic and one periodic time series

and compare the results of our method. To start we will look at the two dynamical systems already

introduced in earlier chapters, the Rössler system (defined in Eqn. 4.2) and the Lorenz system

(defined in Eqn. 2.7). Figure 5.7 shows examples of a periodic and chaotic time series from each

of these systems as well as the corresponding persistence diagrams. The three scores for each of

these examples are listed in Table 5.1. Note that in the periodic case for the Lorenz system, there

is one 1-dimensional persistence point so total persistence and maximum persistence are the same.

It is clear that the persistence diagrams from the chaotic time series have more points than those

from the periodic time series. This is reflected in the scores as the total persistence is higher in

the chaotic case than in the periodic case for both example systems. Maximum persistence and

persistent entropy have a same pattern where chaotic examples have higher scores than the periodic

case. However the chaotic Lorenz example has a similar maximum persistence score to the periodic

Rössler example.
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Rössler Lorenz

Figure 5.8: Total persistence, maximum persistence and persistent entropy vs. the length of the time
series for the Rössler and Lorenz systems. First and third columns are the results using unweighted,
undirected ordinal partition networks, while the second and fourth columns are using our weighted,
directed version.

5.5.2 Impact of the Length of the Time Series

In the examples shown in Fig. 5.7, all the time series are the same length. Increasing the length of a

periodic signal should not have a significant impact on the ordinal partition network or the resulting

persistence diagram as the same pattern in the time series will keep repeating. However in a chaotic

system where the pattern is not repeating, new permutations could appear causing new connections

and additional loops in the ordinal partition network, thus changing the persistence diagrams and

resulting statistics. We test these same systems computing all three statistics at a range of different

lengths to see how long of a time series is necessary to detect differences as well as ensure that

increasing the length will not cause the statistics to change too drastically. This is done by varying

the parameter SampleSize in the teaspoon dynamical systems library. We vary this parameter

between 200 and 5000 in increments of 100, at each step calculating all three scores. Here we also

compare how the unweighted, undirected method performs. Figure 5.8 shows the plots of each
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statistic in comparison to the length of the time series for the Rössler and Lorenz systems.

First looking at the Lorenz system, all three scores are fairly consistent for the periodic time

series, but the total persistence and persistent entropy increase as the length of the chaotic time

series increases. This is beneficial as it means increasing the length of the time series will only

further differentiate the scores between the two classes. In comparison, maximum persistence

does not appear to distinguish between the classes as clearly since at some lengths, the maximum

persistence of the chaotic example is higher than that of the periodic example, and at other lengths

the opposite is true. The Rössler system is slightly less clean. In the case of all three scores, the

values are similar for both the periodic and chaotic time series up until around length 2000. This

indicates a certain amount of time is needed before we can distinguish between the two behaviors.

After a length of 2000, the scores are consistently different between the two classes.

5.5.3 Across Systems

Further, we test our methods ability to distinguish periodic and chaotic behavior across different

systems. We generate one periodic and one chaotic time series from 28 different dynamical

systems using teaspoon. The full list of systems and parameters for those systems can be found in

Appendix B.1. For all systems, the SampleSize parameter is fixed at 2000 to ensure all time series

are the same length. Figure 5.9 shows a histogram of each score for both the unweighted, undirected

case, as well as the weighted, directed case. Ideally, we would like no overlap in the scores for

the periodic time series and the chaotic time series. Total persistence separates the two classes the

best, with only a few chaotic samples falling in bins with mostly periodic samples. However, the

maximum persistence and persistent entropy scores are much more mixed. This indicates that total

persistence is the best of the three scores for differentiating the classes. The exact scores from these

experiments are listed in Tables B.3, B.4 and B.5 in Appendix B.2.
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Figure 5.9: Histograms of total persistence, maximum persistence and persistent entropy for one
periodic and one chaotic sample from 28 different dynamical system.

5.5.4 Size of the Graphs

As mentioned in Sec. 5.3, the number of vertices in the network is at most 𝑑! for a given embedding

dimension 𝑑, however not all permutations appear in practice. Figure 5.10 shows a histogram of

how many vertices are in the networks from the experiment in Sec. 5.5.3. Note that while using

dimension 𝑑 = 6, there are 720 possible permutations, however in almost all cases less than 250

appear, and at most 264 appear. Thus the networks are significantly smaller than the worst case

scenario, so choosing a higher dimension is still very computationally feasible.
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Figure 5.10: Histogram of the number of vertices in each network.

5.5.5 Robustness to Noise

The last experiment is to test how well the methods work in the presence of noise. We perform the

same experiment as in Sec. 5.5.3 where we add noise to each time series at various levels.

Figure 5.11 shows the results at several signal-to-noise ratios (SNRs) for each of the three

scores. Note that a higher SNR is a lower noise level, so in this plot noise increases going from

left to right. Each point represents one sample, so all points above 50, for example, are from time

series with noise added at an SNR of 50. The solid lines represent the mean score at each noise

level, while the shaded region shows the standard deviation. Comparing each of the three scores,

it is immediately clear that maximum persistence performs very poorly. There is no differentiation

between the classes and the means are very similar. Looking at persistent entropy, as noise increases

the means become more similar and the standard deviation intervals overlap more and more. This

overlap indicates that with the addition of any amount of noise, PE is not a useful score.

The results of this experiment indicate total persistence is the most useful statistic. At SNR

levels up until 25, the means between the periodic and chaotic samples are different and the standard

deviations do not overlap. While there are some points visible that fall in the range of the opposite

class, it gives a better separation between the two classes than either other score.
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Figure 5.11: Plots of total persistence, maximum persistence and persistent entropy vs. noise level
for one periodic and one chaotic sample from 28 different dynamical system. Each point is one
sample, the solid line represents the mean and shaded region represents the standard deviation
within a given class across the various noise levels. Note that the results at “None” are the same as
those from Fig. 5.9.
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5.6 Future Work

Here we provided an introductory exploration of the idea of incorporating the directed, weighted

information into the topological analysis of ordinal partition networks. Thus far, it is unclear how

much added value incorporating this information provides. A more thorough investigation of these

ideas is needed, however this provides a jumping off point for future work. Here we outline some

of our next steps as we will continue this work going forward.

Through this method there were several choices made regarding how to incorporate the transition

counts and the directionality. The methods we chose worked well in our experiments, but in other

applications different choices may be more effective. A more exhaustive analysis of weighting

options would provide a more complete analysis of this method. For example, we set the weight

of self loops to be 0.5, indicating a 50% chance of remaining in a given permutation. This

choice worked the best in practice but was not theoretically grounded in any way. Additionally,

as mentioned above, our weighting method is inspired by the graph diffusion distance however

using a modification of this distance metric applied to directed graphs could provide a slightly

different weighting scheme. Further, the interpretation that edges used more frequently are more

important may not be entirely accurate, as noise could cause rapid changes back and forth between

two permutations, thus artificially increasing the count.

There are also other methods of incorporating directed information into a simplicial complex.

The Dowker complexes are well grounded theoretically as there is the duality in the source and sink

filtrations as defined in Eqn. 5.7, but there are many additional options [104, 107]. One method

developed specifically for applications in neuroscience is a directed flag complex [108, 109]. In this

method, simplices are defined to be directed; a directed 𝑝-simplex is a (𝑝 + 1)-tuple (𝑣0, . . . , 𝑣𝑝)

such that for each 0 ≤ 𝑖 < 𝑗 ≤ 𝑝 there is an edge from 𝑣𝑖 to 𝑣 𝑗 . A 𝑝-simplex is now characterized

by an ordered sequence of vertices, not just the collection of vertices it is built on. For example, the

2-simplices (𝑣0, 𝑣1, 𝑣2) and (𝑣1, 𝑣0, 𝑣2) are built on the same vertices but are distinct in the directed

flag complex. Using this method, the simplicial complexes are larger, meaning they have more

simplices, than those built using Dowker complexes since ordering of the vertices matters. There
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is existing code for computing persistent homology based on the directed flag complex [110, 111].

A similar method is defined in [112] however it allows for repeated vertices (i.e. (𝑣0, 𝑣0, 𝑣1) is a

2-simplex), but this is computationally infeasible as you can have infinite repeats creating infinite

possible simplices.

We tested three relatively simple scores to characterize persistence diagrams resulting from

these methods. However these methods lose a lot of detail by aggregating all the information into

one number. In the future, we will explore larger scale experiments such as the Rössler experiment

in Sec. 4.3.3. Larger data sets will allow for the use of machine learning approaches such as template

functions [1] and the many other persistence diagram featurization methods listed in Chapter 4.

We also plan to directly compare the ordinal partition network approach to a time delay embedding

approach to determine which performs better and which is more computationally feasible.

While periodic and chaotic behavior has been explored here as well as in other applications of

ordinal partition networks, as far as we are aware quasi-periodicity has never been examined. It has

been well studied in the context of using persistent homology and the time delay embedding [10],

but future work could explore how this behavior appears in the networks.
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CHAPTER 6

HOPF BIFURCATION DETECTION USING ZIGZAG PERSISTENCE

In existing methods, the standard process to analyze a collection of time series is by embedding each

one into a point cloud as described in Sec. 2.3, followed by the computation of persistent homology.

However, this requires an analysis of a collection of persistence diagrams. We develop a one-step

method to analyze a collection of ordered point clouds using a modified version of persistence. The

basic idea is to develop a filtration that utilizes the ordering of the point clouds. However, since we

may not have a way of naturally nesting complexes built on the sequence of point clouds, we will

use zigzag persistence. The work in this chapter was published in [29].

6.1 Zigzag Persistence

In the case of standard persistent homology as defined in Sec. 2.2, we assume that given our starting

data, we can create a filtration that satisfies the inclusions as defined in Eqn. 2.1. These inclusions

then induce maps on the homology groups, as described in Eqn. 2.2. Zigzag persistence considers

the case where we have inclusions, but they do not all necessarily go in the same direction. These

inclusions still induce linear maps on the homology groups, where the direction of the maps matches

the direction of the inclusion. For example, given four simplicial complexes with inclusions as

follows,

K1 ↩→ K2 ←↪ K3 ←↪ K4

the induced maps on the homology groups are

𝐻𝑘 (K1) −→ 𝐻𝑘 (K2) ←− 𝐻𝑘 (K3) ←− 𝐻𝑘 (K4).

In this setting, standard persistent homology cannot be applied. This section will go over the basic

background of zigzag persistence, following closely the presentation given in [113].

To start, a zigzag module, V, of vector spaces is defined as a sequence of vector spaces and
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linear maps

𝑉1
𝑝1←→ 𝑉2

𝑝2←→ · · ·
𝑝𝑛−1←−−→ 𝑉𝑛

where
𝑝𝑖←→ is either a forward map

𝑓𝑖−→ or backward map
𝑔𝑖←−. Specifically, the vector spaces are the

homology groups in our application, and the linear maps are the induced maps.

A zigzag module’s length is defined as the number of vector spaces 𝑛 and the type 𝜏 is the

sequence of 𝑓 or 𝑔 symbols indicating the linear maps in order from left to right. For example, the

module

𝑉1
𝑓1−→ 𝑉2

𝑔2←− 𝑉3
𝑔3←− 𝑉4

has length 4 and is of type 𝜏 = 𝑓 𝑔𝑔. Note that persistent homology as described in Sec. 2.2 is just

a special case where the type is 𝜏 = 𝑓 𝑓 · · · 𝑓 .

A submoduleW of a 𝜏-module V is defined by subspaces 𝑊𝑖 ≤ 𝑉𝑖 such that 𝑓𝑖 (𝑊𝑖) ≤ 𝑊𝑖+1 or

𝑔𝑖 (𝑊𝑖+1) ≤ 𝑊𝑖 for all 𝑖. Note that this condition guarantees thatW is itself a 𝜏-module with maps

given by restrictions 𝑓𝑖 |𝑊𝑖
or 𝑔𝑖 |𝑊𝑖+1 . A submodule W is called a summand of V if there exists a

submodule X ≤ V where 𝑉𝑖 = 𝑊𝑖 ⊕ 𝑋𝑖 for all 𝑖. Then we say V = W ⊕ X. We also need to be

careful defining maps for the direct sum of two summands. Given a direct sum V ⊕W with spaces

𝑉𝑖 ⊕𝑊𝑖, the maps are defined as 𝑓𝑖 ⊕ ℎ𝑖 or 𝑔𝑖 ⊕ 𝑘𝑖, where 𝑓 and 𝑔 are forward and backward maps of

V respectively, and ℎ and 𝑘 are forward and backward maps ofW respectively. One type of module

is called an interval module. Let 𝜏 be a type of length 𝑛, 𝑏, 𝑑 be integers such that 1 ≤ 𝑏 ≤ 𝑑 ≤ 𝑛,

and k be a field1. The 𝜏-interval module with birth time 𝑏 and death time 𝑑, denoted I𝜏 (𝑏, 𝑑) is

defined with spaces

𝐼𝑖 =


k if 𝑏 ≤ 𝑖 ≤ 𝑑

0 otherwise.

with identity maps between adjacent copies of k and zero maps otherwise.

A 𝜏-module is decomposable if it can be written as a direct sum of nonzero submodules

in this way, and indecomposable otherwise. Any 𝜏-module V has a Remak decomposition, i.e.

V =W1 ⊕W2 ⊕ · · · ⊕W𝑁 where allW 𝑗 are indecomposable. Interval modules are in fact the only
1As with standard persistent homology, commonly k is chosen to be Z2.
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indecomposable modules. These decompositions are not unique, but the Krull-Schmidt principle

says the decompositions are unique up to reordering. Gabriel’s theorem [114, 115], stated in

Thm. 1, tells us that every 𝜏-module can be written as a direct sum of interval modules.

Theorem 1 (Gabriel’s Theorem) The indecomposible 𝜏-modules are precisely the intervals

I(𝑏, 𝑑) where 1 ≤ 𝑏 ≤ 𝑑 ≤ 𝑛 =length(𝜏). Equivalently, every 𝜏-module can be written as a

direct sum of intervals.

From this information we can extract the zigzag persistence diagram.

For a zigzag module V, the zigzag persistence diagram of V is the multiset

Pers(V) = {[𝑏 𝑗 , 𝑑 𝑗 ] ⊂ {1, . . . , 𝑛} | 𝑗 = 1, . . . 𝑁}

of integer intervals derived from a decomposition V � I(𝑏1, 𝑑1) ⊕ · · · ⊕ I(𝑏𝑁 , 𝑑𝑁 ). While this sets

up a framework for any type 𝜏, for the purposes of our work, we are going to limit ourselves to a

particular type, 𝜏 = 𝑓 𝑔 𝑓 · · · 𝑔 𝑓 𝑔, where we alternate forward and backward maps.

One benefit is zigzag persistence can be applied to capture changing shape through a collection

of point clouds by using their unions as intermediate steps. Given an ordered collection of point

clouds, 𝑋0, 𝑋1, . . . , 𝑋𝑛, we can define a set of inclusions,

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑛−1 𝑋𝑛.

𝑋0 ∪ 𝑋1 𝑋1 ∪ 𝑋2 𝑋𝑛−1 ∪ 𝑋𝑛

(6.1)

However, these are all still point clouds which have uninteresting homology since they are collections

of disconnected points. In order to add additional structure at each step, we can compute the Rips

complex (defined in Sec. 2.2.1) of each point cloud for a fixed threshold or radius, 𝑟 . This results

in the set of inclusions,

𝑅(𝑋0, 𝑟) 𝑅(𝑋1, 𝑟) 𝑅(𝑋2, 𝑟) · · · 𝑅(𝑋𝑛−1, 𝑟) 𝑅(𝑋𝑛, 𝑟).

𝑅(𝑋0 ∪ 𝑋1, 𝑟) 𝑅(𝑋1 ∪ 𝑋2, 𝑟) 𝑅(𝑋𝑛−1 ∪ 𝑋𝑛, 𝑟)

(6.2)
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Computing the 1-dimensional homology of each complex in Eqn. 6.2 will result in a zigzag diagram

of vector spaces and induced linear maps,

𝐻1(𝑅(𝑋0, 𝑟)) 𝐻1(𝑅(𝑋1, 𝑟)) · · · 𝐻1(𝑅(𝑋𝑛−1, 𝑟)) 𝐻1(𝑅(𝑋𝑛, 𝑟)).

𝐻1(𝑅(𝑋0 ∪ 𝑋1, 𝑟)) 𝐻1(𝑅(𝑋𝑛−1 ∪ 𝑋𝑛, 𝑟))

(6.3)

Computing zigzag persistence of this diagram will allow us to track loops that persist through the

zigzag of simplicial complexes. We can generalize this idea to use a different radius for each Rips

complex, 𝑅(𝑋𝑖, 𝑟𝑖). For the unions we choose the maximum radius between the two individual

point clouds, 𝑅(𝑋𝑖 ∪ 𝑋𝑖+1,max{𝑟𝑖, 𝑟𝑖+1}), to ensure the inclusions hold.

Zigzag persistence diagrams have a different interpretation than standard persistence diagrams.

In the case of the Vietoris-Rips filtration, the birth and death times represent the scale at which

features appear and disappear. However in zigzag persistence, they instead represent the portion of

the zigzag where a homologous feature appears and disappears. For example, in the top example

in Fig. 6.1,K0,K0 ∪K1 andK1 are all homologous. Thus, this zigzag of simplicial complexes has

a 1-dimensional feature born in K0, which dies in K1 ∪ K2. This corresponds to a 1-dimensional

zigzag persistence point (0, 1.5). However in the bottom example, the loops in K0 and K1 are

separate and not homologous, thus there is a 1-dimensional feature born in K0 that dies in K1,

and another that is born in K0 ∪ K1 that dies in K2. This example would have two points in

the 1-dimensional zigzag persistence diagram, (0, 1) corresponding to the blue loop and (0.5, 2)

corresponding to the orange loop.

6.2 Bifurcations using ZigZag (BuZZ)

We can now present our method, Bifurcations using ZigZag (BuZZ), for combining the above tools

to detect changes in dynamical systems, specifically changes that appear as a change in circular

structure in the solution. We will focus on Hopf bifurcations [116], which are seen when a fixed

point loses stability and a limit cycle is introduced. These types of bifurcations are particularly

topological in nature, since varying one parameter in the system can cause the solution to the

dynamical system to change from a small cluster, to a circular structure, and sometimes reduces
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Figure 6.1: Examples of two zigzags of simplicial complexes with their corresponding 1-
dimensional persistence diagrams.

back to a cluster. While persistent homology has been used to study Hopf bifurcations [117–120],

none of the previous work uses zigzag persistence.

The necessary data for our method is a collection of time series for a varying input parameter

value, as shown in Fig. 6.2(a). This particular example is a collection of time series given by

{𝑎 sin(𝑡)} for 𝑎 = 0.5, 1.0, 1.5, 2.0 (going from top to bottom). Each time series is then embedded

using the time delay embedding (shown in Fig. 6.2(b) using 𝑑 = 2 and 𝜏 = 3). While in general, the

67



Figure 6.2: Outline of BuZZ method. The input time series is converted to an embedded point
cloud via the time delay embedding. The Rips complexes are constructed for either a fixed 𝑟 or
a choice of 𝑟𝑖 for each point cloud. Then, the zigzag persistence diagram is computed for the
collection.

delay could be varied for each time series, the embedding dimension needs to be fixed so that each

time series is embedded in the same space. For the sake of interpretability and visualization, we

will use a dimension of 𝑑 = 2 throughout this chapter. Sorting the resulting point clouds based on

the input parameter value, the zigzag filtration can be formed from the collection of point clouds,

as shown in Fig. 6.2(c). Lastly, computing zigzag persistence gives a zigzag persistence diagram,

as shown in Fig. 6.2(d), encoding information about the structural changes moving through the

complexes.

With the right choices of parameters, the 1-dimensional persistence point with the longest

lifetime in the zigzag persistence diagram will have birth and death time corresponding to the

indices in the zigzag where the Hopf bifurcation appears and disappears. Mapping the birth and

death times back to the parameter values used to create the corresponding point clouds will give

the range of parameter values where the Hopf bifurcation occurs.

Note that there are several parameter choices that need to be selected during the course of the

BuZZ method. First, the dimension 𝑑 and delay 𝜏 for converting each time series into a point cloud.
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Fortunately, as mentioned in Sec. 2.3, there is a vast literature from the time series analysis for this,

which leads to standard heuristics, some of which are published in [37–42]. The second and more

difficult parameter to choose is the radius (or radii) for the Rips complexes. In this work, the given

examples are simple enough that the choice of radii in the BuZZ method can be tuned by the user.

In the tuning process, the user should select a radius that allows points in the circular structure to

be connected, but not so large that it fills in the circle, or makes the Rips complexes too large to be

computationally feasible.

6.3 Algorithms

While zigzag persistence has been in the literature for a decade, it has not often been used in

application, and thus the software that computes it is not as efficient as software to compute standard

persistent homology. A C++ package with python wrappers, Dionysus 22, has implemented

zigzag persistence, however, it requires significant preprocessing to create the inputs. We have

python code that, provided the collection of point clouds and radii, will perform all the necessary

preprocessing to set up the zigzag diagram as shown in Eqn. 6.2 to pass as inputs to Dionysus. This

code has been integrated into the python package teaspoon.

Dionysus requires two inputs, a list of simplices, simplex_list, and a list of lists, times_list,

where the times_list[i] consists of a list of indices in the zigzag where the simplex,

simplex_list[i], is added and removed. A small example is shown in Fig. 6.3. Looking

at that example, the two vertices and one edge in 𝑅(𝑋0) appear at time 0, and disappear at time

1. There are two edges and a triangle in 𝑅(𝑋0 ∪ 𝑋1) that appear there at time 0.5 (recalling that

𝑅(𝑋𝑖 ∪ 𝑋𝑖+1) is time 𝑖 +0.5) and disappear at time 1. Lastly, the one vertex in 𝑅(𝑋1) appears at time

0.5, and never disappears in the zigzag sequence, so by default we set death time to be 2, which

is the next index beyond the end of the zigzag sequence. This is done to avoid persistence points

of the form (𝑖,∞), as our zigzag sequences are always finite and these points have no additional

meaning. Note there are other special cases that can occur. If a simplex is added and removed
2https://www.mrzv.org/software/dionysus2/
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Algorithm 6.1: Algorithm for preparing inputs for Dionysus to compute zigzag persistence using a
fixed radius.
Input: X = [𝑋0, 𝑋1, . . . , 𝑋𝑛] # list of point clouds
Input: r # radius for Rips complexes
A = GetRipsCplx(X[0], r) # Handle special case of 𝑋0 first
simplex_list = A # Initialize simplex list
times_list = [ [0,1] for _ in range(len(A)) ]
for 𝑖 = 1, . . . , 𝑛 do

rips_complex = GetRipsCplx(X[i-1] ∪ X[i], r) # Compute Rips complex of union
B = GetVertsList(X[i]) # Initialize with vertices in X_i
M = [] # Initialize for simplices who have vertices in X[i-1], X[i]

for simplex in rips_complex do
if Get_0_Skeleton(simplex) ∩ A == Boundary(simplex) then

Continue # handled in the initialization or previous iteration
else if Get_0_Skeleton(simplex) ∩ B == Boundary(simplex) then

B.append(simplex) # Simplices who only have vertices in X[i]
else

M.append(simplex) # Simplices who have vertices in both X[i-1] and X[i]
end
# Update simplex_list, times_list for simplices who only have vertices in X[i]
simplex_list = simplex_list + B
times_list = [ [i-0.5, i+1] for _ in range(len(B)) ]

# Update simplex_list, times_list for simplices who have vertices in both X[i-1] and X[i]
simplex_list = simplex_list + M
times_list = [ [i-0.5, i] for _ in range(len(M)) ]

# Reinitialize for next iteration
verts = verts_next
A = B

end

multiple times, then the corresponding entry in times_list has more than two entries, where the

even entries in the list correspond to when it appears, and the odd entries correspond to when it

disappears. An example with this special case is shown in Fig. 6.4 and will be described in more

detail later.

If we are using a fixed radius across the whole zigzag, these inputs can be computed rather

easily. The algorithm is written more formally in Algorithm 6.1, however we will describe it

intuitively here.
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Figure 6.3: Example zigzag using fixed radius with computed inputs for Dionysus.

In this setting, we only need to compute the Rips complex of the unions, 𝑅(𝑋𝑖 ∪ 𝑋𝑖+1, 𝑟), which

can be done using the Dionysus package, and the list of simplices can be created by combining

lists of simplices for all 𝑖, removing duplicates. Next, we will outline how to construct the times

list. Starting with the set of simplices in 𝑅(𝑋𝑖 ∪ 𝑋𝑖+1, 𝑟), we can split them into three groups: (a)

simplices for which all vertices are in 𝑋𝑖, (b) simplices for which all vertices are in 𝑋𝑖+1, or (c)

simplices for which some vertices are in 𝑋𝑖 and some are in 𝑋𝑖+1. Because of the construction of

the zigzag, all simplices in group (a) appear at time 𝑖 − 0.5 (since 𝑅(𝑋𝑖, 𝑟) also includes backwards

into 𝑅(𝑋𝑖−1 ∪ 𝑋𝑖, 𝑟)) and disappear at time 𝑖 + 1 (since the union 𝑅(𝑋𝑖 ∪ 𝑋𝑖+1, 𝑟) is the last time

simplices in 𝑋𝑖 are included). Similarly, all simplices in group (b) appear at time 𝑖+0.5 (since this is

the first time simplices 𝑋𝑖+1 are included) and disappear at time 𝑖 + 2 (since 𝑅(𝑋𝑖+1, 𝑟) also includes

forward into 𝑅(𝑋𝑖+1 ∪ 𝑋𝑖+2, 𝑟)). Lastly, all simplices in group (c) exist only at 𝑅(𝑋𝑖 ∪ 𝑋𝑖+1, 𝑟), so

they appear at time 𝑖 + 0.5 and disappear at 𝑖 + 1. Note that the first union of simplicial complexes,

𝑅(𝑋0 ∪ 𝑋1, 𝑟), needs to be treated separately, since all vertices in group (a) will appear at 0, not

𝑖 − 0.5 as is the case for 𝑖 > 0.

One important note when looking at Algorithm 6.1 is that all vertices have to have a unique

label. Thus the vertices in 𝑅(𝑋0) are numbered 0, . . . , |𝑋0 | − 1, where |𝑋0 | denotes the number of

points in 𝑋0. Next, the vertices in 𝑅(𝑋1) are numbered |𝑋0 |, . . . , |𝑋0 | + |𝑋1 |, and so on. Since higher

dimensional simplices are represented as lists of the vertices the simplex is built on, ensuring a

consistent labeling is essential. Hence, in Lines 10 and 13 of the algorithm, the labeling of vertices

(and thus the labeling of higher dimensional simplices) must be adjusted.
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Figure 6.4: Example zigzag using a changing radius with computed inputs for Dionysus. In this
example 𝑟0 > 𝑟1 and 𝑟2 > 𝑟1.

Using a varied radius, as described in Sec. 6.1, complicates the above procedure. Using the

same radius, we are guaranteed all simplices in group (a) are in both 𝑅(𝑋𝑖, 𝑟) and 𝑅(𝑋𝑖 ∪ 𝑋𝑖+1, 𝑟),

and similarly for group (b), thus we only need to compute 𝑅(𝑋𝑖 ∪ 𝑋𝑖+1, 𝑟). However, with a

changing radius this is no longer true. In the example shown in Fig. 6.4, the edge 𝑒1,2 appears in

both 𝑅(𝑋0 ∪ 𝑋1, 𝑟0) and 𝑅(𝑋1 ∪ 𝑋2, 𝑟2) since 𝑟2 > 𝑟1 and 𝑟0 > 𝑟1, but it is not in 𝑅(𝑋1, 𝑟1). Thus,

its corresponding list in times_list is [0.5, 1, 1.5, 2]. The inputs to Dionysus can be computed

using the same method as above, except the Rips complex needs to be computed for each point

cloud, not just the unions, and additional checks need to be done to make sure a simplex being

added did not already appear and disappear once before. If it did, the entry in times_list needs

to be extended to account for the newest appearance and disappearance.

Because of the additional Rips complex computations, and the checks for the special case, the

case of a changing radius is significantly more computationally expensive than the case of a fixed

radius. In both cases, there is the computational cost of the zigzag persistence computation as well.

The computational complexity of zigzag persistence is𝑂 (𝑛𝑚2) where 𝑛 is the number of simplices

in the entire filtration and 𝑚 is the number of simplices in the largest single complex [121].

To alleviate this, a radius for the Rips complexes should be selected so that it is as small as

possible without breaking the circular structure and thus breaking the topology. Additionally, it

needs to be chosen so that in the union of point clouds, no small circles are created in the region

between the ring like structures, which would cause the larger circular structures to no longer be

homologically equivalent. We acknowledge that choosing one radius value is fairly counter intuitive
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since the standard Vietoris-Rips filtration is designed to avoid exactly this choice. In one of our

experiments we test how sensitive the method is to the choice of 𝑟 and in Sec. 6.5 we address a

possible modification to the method to avoid choosing the radius 𝑟 all together.

6.4 Results

We will test the BuZZ method on three different examples. The first example is not based on time

series data, but is instead a simple proof-of-concept example to test our method’s ability to detect

changing circular behavior. The second example is based on synthetic time series data generated

from noisy sine waves of varying amplitude. This lets us fully utilize the BuZZ method, including

the time delay embedding, as well as test resiliency to noise. The last example is detecting a Hopf

bifurcation in the Sel’kov model of glycolysis [122]. This is a well studied dynamical system and

the range of parameter values for which a Hopf bifurcation occurs is known.

6.4.1 Synthetic Point Cloud Example

To start, we will consider a small, synthetic example generating point cloud circles of varying size

as shown in Fig. 6.5. Note, because we are starting with point clouds, we skip the time delay

embedding step for this example. While each point cloud is sampled from a circle, the first and

last point clouds consist of relatively small circles. So the strongest circular structure we can see

visually starts with 𝑋1 and ends with 𝑋3. This is the range we would like to detect using zigzag

persistence.

For this example, we will use the generalized version of the zigzag filtration in Eqn. 6.2 using

a changing radii. Computing zigzag persistence gives the persistence diagram shown in Fig. 6.5.

Recall that birth and death times are assigned based on the location in the zigzag that a feature

appears and disappears. Thus, the one-dimensional point (1, 3.5) in the persistence diagram

corresponds to a feature that first appears at 𝑅(𝑋1) and last appears in 𝑅(𝑋3). Thus, using the

zigzag persistence diagram we can detect the appearance and disappearance of the circular feature.

This is clearly an overly simplified situation as each point cloud is sampled from a perfect circle.
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Figure 6.5: Top: Example zigzag of point clouds with unions considered in Sec. 6.4.2. Middle:
Zigzag filtration applied to point clouds using the Rips complex with specified radii. Note that
2-simplices are not shown in the complexes. Bottom: The resulting zigzag persistence diagram.

Next, we will look at a more realistic example.

6.4.2 Synthetic Time Series Example

For the second example, we generate synthetic time series data and apply the full method described

in Sec. 6.2. We start by generating sine waves of varying amplitudes and add noise drawn from

uniformly from [−0.1, 0.1]. The time series are then each embedded using the time delay embedding

with dimension 𝑑 = 2, for the purpose of easy visualization, and delay 𝜏 = 4. The time series and

corresponding time delay embeddings are shown in Fig. 6.6. Looking at the time series, in the first

and last time series any signal is mostly obscured by noise, resulting in a small clustered time delay

embedding. However, for the other time series, the time delay embedding is still circular, picking
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Figure 6.6: First and second rows: Generated time series data and corresponding time delay
embeddings. Bottom left: The zigzag filtration using Rips complex with fixed radius of 0.72.
Note that 2-simplices are not shown in the complexes. Bottom middle: The corresponding zigzag
persistence diagram. Bottom right: Persistence diagram showing how the 1-dimensional off
diagonal point varies depending on the Rips complex radius parameter choice.

up the periodic behavior even with the noise.

Next we compute zigzag persistence, resulting in the zigzag of Rips complexes and zigzag

persistence diagram shown in Fig. 6.6. The zigzag persistence diagram has a one-dimensional

point with coordinates (1, 7.5), indicating the circular feature appears in 𝑅(𝑋1), and disappears

going into 𝑅(𝑋8). This is the region that we visually see a circular feature, so the results match our

intuition.

In this experiment, we also test the variation in the zigzag persistence diagram based on the

choice of radius parameter. For this particular example, choosing too small of a radius (𝑟 < 0.70)

introduces noisy circular features in between the circular structures in the union, causing the circles

to no longer be homologically equivalent, and thus we do not get the desired one-dimensional

persistence point. Choosing a radius 0.70 ≤ 𝑟 ≤ 0.75 resulted in the same zigzag persistence

diagram shown in Fig. 6.6. However, increasing the radius into the range 0.76 ≤ 𝑟 ≤ 0.77, the

one dimensional persistence point shifts to coordinates (1, 6.5), thus we are not detecting the small
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circular structure in 𝑋7. Increasing the radius further into the range 0.78 ≤ 𝑟 ≤ 1.66, the one

dimensional persistence point shifts to coordinates (2, 6.5), thus we are not detecting the small

circular structure in 𝑋1 or 𝑋7. This is visualized in the bottom right plot in Fig. 6.6. Continuing

to increase the radius 𝑟 > 1.66, will cause more of the circular structures to fill in, detecting a

smaller and smaller range where the circular feature is detected. Thus, without careful selection of

the radius parameter, smaller circular features may not be detected, however detection of the larger

circular features is much more robust to parameter choices.

6.4.3 Sel’kov Model

Our last experiment aims to detect a bifurcation in the Sel’kov model [122], a model for glycolysis

which is a process of breaking down sugar for energy. This model is defined by the system of

differential equations,

𝑑𝑥

𝑑𝑡
= −𝑥 + 𝑎𝑦 + 𝑥2𝑦,

𝑑𝑦

𝑑𝑡
= 𝑏 − 𝑎𝑦 − 𝑥2𝑦.

In this system, 𝑥 and 𝑦 represent the concentration of ADP (adenosine diphosphate) and F6P

(fructose-6-phosphate), respectively. This system has a Hopf bifurcation for select choices of

parameters 𝑎 and 𝑏. This limit cycle behavior corresponds to the oscillatory rise and fall of the

chemical compounds through the glycolysis process.

For our experiments, we will fix 𝑎 = 0.1 and vary the parameter 𝑏. We generate data using

odeint in python, with time values {0, . . . , 499} and initial conditions (0, 0). We also remove the

first 50 points to remove transients at the beginning of the model (this is sometimes referred to as

a “burn-in period”). The resulting data is shown in Fig. 6.7. This data is constructed using full

knowledge of the model, however, in practice, typically only one measurement function is obtained

through an experiment, and then the time-delay embedding is used to reconstruct the underlying

system. To mimic this setup, we will only use the time series corresponding to the 𝑥-coordinates

from the model and use the delay embedding. The time series corresponding to the 𝑥-coordinates
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Figure 6.7: Top: Examples of samplings of the state space of the Sel’kov model for varying
parameter value 𝑏. Bottom: Time series corresponding to only retaining the 𝑥-coordinates of the
solutions shown in top figure.

are shown in Fig. 6.7. These time series are then embedded using the time delay embedding with

dimension 𝑑 = 2, for the purpose of easy visualization, and delay 𝜏 = 3.

The next step would be to compute zigzag persistence as described in Sec. 6.1, however due to

the large number of points in the time delay embeddings, this becomes computationally expensive.

In order to reduce the computation time, we subsample these point clouds using the furthest point

sampling method (also called a greedy permutation) [123]. This method works by iteratively

selecting points to be included in the subsampled point cloud. It begins by selecting one starting

point in the point cloud (by default we select the first point), then the next point added is the furthest

point away from the starting point. The third point added is the furthest point away from both the

first and second points, and so on. This process is iterated until the desired number of points is

reached.
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Figure 6.8: Top: zigzag filtration using Rips complex of the reconstruction with fixed radius of
0.25. Note that 2-simplices are not shown in the complexes. Bottom: resulting zigzag persistence
diagram.

We subsample down to only 20 points in each point cloud, compute the Rips complex zigzag

for a fixed radius value of 0.25, and then compute the zigzag persistence. Figure 6.8 shows the

zigzag filtration of Rips complexes along with the resulting zigzag persistence diagram. In the

zigzag persistence diagram, the point with the longest lifetime has coordinates (2, 8.5). Again,

since these coordinates correspond to the index in the zigzag sequence, this point corresponds to

a feature appearing at 𝑅(𝑋2) and disappearing at 𝑅(𝑋8 ∪ 𝑋9). Looking back at which values of 𝑏

were used to generate these point clouds, we see this corresponds to a feature appearing at 𝑏 = 0.45

and disappearing at 𝑏 = 0.8. For the fixed parameter value of 𝑎 = 0.1, the Sel’kov model has a

limit cycle approximately between the parameter values 0.4 ≤ 𝑏 ≤ 0.8 [88]. Our method is picking
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up approximately that same range. These results use the 𝑥-coordinates of the model, however the

same results can be obtained using the 𝑦-coordinates and a slightly larger radius value.

6.5 Future Work

The results for the BuZZ method are promising, and there are several future directions for this

project. First we will present a more idealistic idea that currently cannot be implemented due to

computational challenges, followed by a second approach that incorporates some of the methods

from Chapter 5.

6.5.1 Multiparameter Zigzag Persistence

In the BuZZ method, when computing the Rips complexes, one has to make a choice of the radius

parameter (or parameters). For the experiments shown, this parameter was hand selected. While

in practice it was not difficult to choose a radius that worked, choosing one parameter value feels

counter-intuitive in the context of persistent homology where in the Vietoris-Rips filtration where a

range of parameter values is used. One method of incorporating this parameter into the framework

is to use multiparameter persistence [124]. Standard persistence as defined in Sec. 2.2 captures

changing topological structure over one varying parameter. If you have two changing parameters,

you can define a bi-filtration,

K𝑎0,𝑏𝑚 K𝑎1,𝑏𝑚 K𝑎2,𝑏𝑚 · · · K𝑎𝑛,𝑏𝑚

...
...

... . .
. ...

K𝑎0,𝑏1 K𝑎1,𝑏1 K𝑎2,𝑏1 · · · K𝑎𝑛,𝑏1

K𝑎0,𝑏0 K𝑎1,𝑏0 K𝑎2,𝑏0 · · · K𝑎𝑛,𝑏0

(6.4)

where 𝑎0 ≤ 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑛 and 𝑏0 ≤ 𝑏1 ≤ 𝑏2 ≤ · · · ≤ 𝑏𝑚.

One downside of multiparameter persistence is that there are not well behaved summaries (like

the persistence diagram for single parameter persistence), making it more challenging to use in
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application; however, there are statistics on multiparameter persistence modules that can be useful

in practice [124].

To incorporate this into our framework, we could use multiparameter zigzag persistence as in

Eqn. 6.5 where 𝑟0 ≤ 𝑟1 ≤ 𝑟2 ≤ · · · . In this example, each row is a zigzag complex as in Eqn. 6.2,

while each column is a standard Vietoris-Rips filtration as in Eqn. 2.3.

...
...

...
...

𝑅(𝑋0, 𝑟2) 𝑅(𝑋0 ∪ 𝑋1, 𝑟2) 𝑅(𝑋1, 𝑟2) 𝑅(𝑋1 ∪ 𝑋2, 𝑟2) · · ·

𝑅(𝑋0, 𝑟1) 𝑅(𝑋0 ∪ 𝑋1, 𝑟1) 𝑅(𝑋1, 𝑟1) 𝑅(𝑋1 ∪ 𝑋2, 𝑟1) · · ·

𝑅(𝑋0, 𝑟0) 𝑅(𝑋0 ∪ 𝑋1, 𝑟0) 𝑅(𝑋1, 𝑟0) 𝑅(𝑋1 ∪ 𝑋2, 𝑟0) · · ·

(6.5)

While there is software available to compute multiparameter persistent homology [125], it currently

cannot compute multiparameter zigzag persistence to our knowledge. Thus, this type of framework

is not feasible computationally given the current software available, it would provide useful insight

if it becomes feasible in the future.

6.5.2 BuZZ-Net

As mentioned, the most significant bottleneck in the BuZZ pipeline is computation time. Longer

time series lead to larger point clouds, which drives up the computational cost of computing Rips

complexes and zigzag persistence. To combat this issue, we propose replacing the time delay

embedding step with the ordinal partition networks. Thus, we would create a zigzag of networks,

each of which can be turned into a simplicial complex using the clique complex. The number of

nodes in the ordinal partition networks is fixed based on the chosen embedding dimension 𝑑, with

up to 𝑑! possible permutations, however we showed in Sec. 5.5.4 that when using 𝑑 = 6, not even

half the possible permutations are actually used in each network. Replacing Rips complexes with

clique complexes of the ordinal partition networks would solve the issue with longer time series.
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Further, we can make a slight modification to the method to speed up computation time. In

Sec. 6.1, we introduce the zigzag of Rips complexes in Eqn. 6.2 using the union of the point clouds

as intermediate steps. However, using a different choice we can leverage some additional theory of

zigzag persistence.

First we must introduce some theoretical concepts needed. We will present these as in [113,

Sec. 5.3]. For simplicity, starting with a zigzag of simplicial complexes, we can consider the

following sequence,

𝐴 ∪ 𝐵

𝑋0 · · · 𝑋𝑘−2 𝐴 𝐵 𝑋𝑘+2 · · · 𝑋𝑛

𝐴 ∩ 𝐵

(6.6)

where ←→ are arbitrary maps. Let X+ be the upper zigzag diagram going up through 𝐴 ∪ 𝐵 and

X− be the lower zigzag diagram going down through 𝐴 ∩ 𝐵. Then the following theorem gives a

complete bijection between points in the persistence diagram.

Theorem 2 (The Strong Diamond Principle) Given X+ and X− as above, there is a complete

bijection between the points in the persistence diagrams {𝐷𝑘 (X+) | 𝑘 = 0, 1, . . .} and the points in

the persistence diagrams {𝐷𝑘 (X−) | 𝑘 = 0, 1, . . .}. The matching is defined by the following rules.

First there are matchings across different dimension diagrams:

• (𝑘, 𝑘) ∈ 𝐷ℓ+1(X+) is matched with (𝑘, 𝑘) ∈ 𝐷ℓ (X−).

The rest of the matchings remain within a given homological dimension:

• Type (𝑏, 𝑘) is matched with type (𝑏, 𝑘 − 1) and vice versa, for 𝑏 ≤ 𝑘 − 1.

• Type (𝑘, 𝑑) is matched with type (𝑘 + 1, 𝑑) and vice versa, for 𝑑 ≥ 𝑘 + 1.

• Type (𝑏, 𝑑) is matched with type (𝑏, 𝑑) in all other cases.
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Theorem 2 can then be used iteratively to map between points in the zigzag persistence diagrams

of two different zigzag complexes, one using the unions and one using the intersections. If we have

a sequence of simplicial complexes, (K0,K1, . . . ,K𝑛), that are all built from the same vertex set

then we can define the union zigzag as

K0 K1 K2 · · · K𝑛−1 K𝑛.

K0 ∪ K1 K1 ∪ K2 K𝑛−1 ∪ K𝑛

(6.7)

Similarly, we can define the intersection zigzag as

K0 K1 K2 · · · K𝑛−1 K𝑛.

K0 ∩ K1 K1 ∩ K2 K𝑛−1 ∩ K𝑛

(6.8)

We can index the zigzag complexes by {0, 1
2 , 1, 1

1
2 , . . . , 𝑛}, which is the same approach taken in

Sec. 6.2. Given persistence diagrams, 𝐷∩
𝑘

and 𝐷∪
𝑘
, we can map points between them via the

following rules:

• If 𝑏, 𝑑 ∈ Z, then (𝑏, 𝑑) ∈ 𝐷∩
𝑘

maps to (𝑏, 𝑑) ∈ 𝐷∪
𝑘
.

• Points of type
(
𝑐 1

2 , 𝑐
1
2

)
∈ 𝐷∩

𝑘
maps to

(
𝑐 1

2 , 𝑐
1
2

)
∈ 𝐷∪

𝑘+1.

• Otherwise, (𝑏, 𝑑) ←→ (𝑏′𝑑′) where {𝑏, 𝑏′} is an unordered pair of the type
{
𝑐 1

2 , 𝑐 + 1
}

and

{𝑑, 𝑑′} is an unordered pair of the type
{
𝑐, 𝑐 1

2
}

and homological dimension remains fixed.

The ordinal partition networks as defined in Sec. 5.3 have vertices corresponding to permutations

of the set {1, . . . , 𝑑} for a chosen dimension 𝑑. Thus a collection of ordinal partition networks

with the same chosen dimension all have the same vertex set3. As described in Sec. 5.2, we can

build a simplicial complex from an ordinal partition network using clique complexes. Returning to

the beginning of the BuZZ framework where we have a sequence of time series, we can compute

the ordinal partition network of each, then transform each into a simplicial complex. This results
3While not every time series uses the same set of permutations, each network is built from the same collection of

possible permutations.
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in a sequence of simplicial complexes built on a common vertex set, from which we can compute

zigzag persistence of the intersection zigzag. This will be computationally easier and can be used

to determine the zigzag persistence of the union zigzag, if needed. This would improve the BuZZ

method by removing choices such as the radius (or radii) of the Rips complexes and it would

speed up computation time. We call this combination of methods Bifurcations using ZigZags and

Networks, or BuZZ-Net.

Further, we can consider how to incorporate the modifications to the ordinal partition networks

presented in Chapter 5. It is not immediately obvious how to incorporate directed and weighted

information in the zigzag persistence framework, however it may provide useful additional infor-

mation.
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CHAPTER 7

CONCLUSION

In this dissertation, we present four projects, each of which address an application of or method

for topological time series analysis. We have shown that persistent homology is a useful tool in

detecting a daily cycle in hurricanes, and maximum persistence, a simple statistic on persistence

diagrams, is all that is needed to quantify it. Our approach has shown success across two different

hurricanes and is robust to variations in temporal and spatial resolution. Further, it is fairly robust

to the type of noise that is usually detrimental in persistent homology based approaches.

More complex approaches of quantifying structure in persistence diagrams can be done thorough

machine learning methods. We modify the template function featurization method to use local

regions in the persistence diagrams, reducing the overall number of features needed to capture the

structure in the diagrams. The modified approach improves results on basic experiments as well as

classifying periodic and chaotic behavior in time series data.

While the time delay embedding is a well studied and useful tool, the ordinal partition networks

provide a complimentary summary of the underlying structure in a more compact data structure.

They are also rich with detail as weighted, directed networks, so we explore incorporating additional

features in the topological analysis. We conduct a range of preliminary experiments showing

robustness of our approach both within a given dynamical system as well as across 28 different

systems. Further we show that the methods are robust to the length of the time series and the

addition of noise.

Lastly, we develop a data-driven approach to detecting Hopf bifurcations using zigzag persis-

tence. While persistent homology has shown success in numerous application areas, thus far zigzag

persistence is fairly underused. However, we show that it is well suited in the application to Hopf

bifurcation detection and provide several examples where it works in practice.

There is significant work that can build off of the methods presented in this dissertation. We

provide several directions for future work in the last two chapters to modify and improve upon the
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methods developed here.

We also aim to make our methods accessible to the research community. The approaches

developed in the last three chapters (the modified approaches to the template function featurization

and the ordinal partition network, as well as the BuZZ method) are all implemented in the teaspoon

open source python package [85]. This package contains numerous methods for topological signal

processing, making our results more easily reproducible.
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APPENDIX A

TABLES OF RESULTS FROM ADAPTIVE TEMPLATE SYSTEMS

This appendix has the tables with the accuracies corresponding to Figure 4.8. Tables A.1 and

A.2 have the results using tent functions and interpolating polynomial functions, respectively.

The scores highlighted in green give the best average score across all testing columns; the scores

highlighted in blue have overlapping intervals of standard deviation with the best score. A more

thorough explanation and interpretation of these results is presented in 4.3.2.
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Dgm0 Dgm1 Dgm0 & Dgm1 Dgm0 & Dgm1
(Combined Partitioning) (Split Partitioning)

Freq MSK Train Test Train Test Train Test Train Test
1 94.7 ± 5.1 97.1 ± 1.8 81.2 ± 4.2 93.9 ± 2.9 70.8 ± 4.4 99.4 ± 0.4 84.7 ± 2.2 100.0 ± 0.0 92.5 ± 2.0
2 99.3 ± 0.9 91.2 ± 0.9 74.8 ± 4.3 97.5 ± 0.8 73.2 ± 4.3 97.7 ± 0.7 79.0 ± 3.6 100.0 ± 0.0 91.8 ± 1.8
3 96.3 ± 2.2 80.4 ± 1.7 57.3 ± 6.7 94.9 ± 3.4 71.3 ± 4.0 97.4 ± 0.8 81.6 ± 2.4 98.8 ± 0.5 86.9 ± 3.3
4 97.3 ± 1.9 62.9 ± 2.5 39.5 ± 5.5 94.8 ± 1.4 83.5 ± 2.6 96.6 ± 1.0 86.8 ± 3.0 98.1 ± 0.8 86.5 ± 3.7
5 96.3 ± 2.5 58.4 ± 2.9 41.5 ± 2.8 96.2 ± 1.7 87.5 ± 1.9 97.6 ± 1.1 91.9 ± 2.3 96.9 ± 1.7 88.3 ± 3.8
6 93.7 ± 3.2 42.3 ± 2.3 35.6 ± 5.0 97.5 ± 0.9 93.1 ± 1.8 97.3 ± 0.9 93.4 ± 2.6 97.3 ± 1.0 91.9 ± 2.5
7 88.0 ± 4.5 48.6 ± 2.6 43.7 ± 3.0 97.4 ± 0.7 92.9 ± 2.0 97.1 ± 0.8 93.3 ± 2.4 97.9 ± 0.9 94.2 ± 2.3
8 88.3 ± 6.0 47.4 ± 3.6 36.6 ± 7.0 95.9 ± 1.0 89.9 ± 2.3 94.6 ± 1.8 92.6 ± 2.0 96.2 ± 0.8 90.4 ± 3.0
9 88.0 ± 5.8 35.9 ± 11.8 25.8 ± 10.8 94.5 ± 1.9 88.9 ± 3.0 95.8 ± 1.0 88.7 ± 1.9 95.6 ± 1.4 88.1 ± 2.5
10 91.0 ± 4.0 11.3 ± 4.8 5.2 ± 3.4 72.4 ± 4.4 67.3 ± 3.6 73.1 ± 3.8 65.8 ± 5.0 73.6 ± 5.4 66.3 ± 5.4

Dgm0 Dgm1 Dgm0 & Dgm1
Freq Train Test Train Test Train Test

1 8.3 ± 0.5 3.4 ± 1.1 8.1 ± 0.2 3.7 ± 0.5 8.2 ± 0.3 3.5 ± 0.5
2 8.3 ± 0.3 3.4 ± 0.7 8.2 ± 0.5 3.5 ± 1.1 8.6 ± 0.4 3.0 ± 1.0
3 66.5 ± 2.7 31.8 ± 4.8 50.6 ± 2.1 31.1 ± 4.0 80.5 ± 1.3 44.4 ± 4.3
4 46.2 ± 2.5 27.0 ± 3.8 83.1 ± 1.6 63.5 ± 4.6 89.1 ± 1.5 69.0 ± 4.9
5 28.5 ± 1.4 18.9 ± 4.0 75.2 ± 2.6 58.3 ± 4.6 76.8 ± 2.7 58.4 ± 7.9
6 25.4 ± 1.8 19.0 ± 2.4 96.5 ± 1.1 88.7 ± 2.4 96.8 ± 0.7 89.9 ± 1.7
7 19.4 ± 2.6 10.0 ± 3.4 98.2 ± 0.5 93.6 ± 1.9 98.3 ± 0.6 94.1 ± 2.5
8 10.8 ± 2.6 3.6 ± 2.4 91.9 ± 0.9 88.8 ± 2.7 91.9 ± 1.2 89.7 ± 3.3
9 10.6 ± 2.7 4.3 ± 2.2 63.8 ± 2.7 53.3 ± 5.9 64.9 ± 2.3 53.7 ± 3.8
10 9.2 ± 2.3 3.6 ± 1.7 27.0 ± 3.9 16.2 ± 3.2 27.3 ± 3.4 18.6 ± 5.6

Table A.1: Results of classification of shape data as explained in Sec. 4.3.2 using tent functions, with partitioning (top table) and without
partitioning (bottom table - copied from [1]). The MSK column gives the original results from [2]. Scores highlighted in green give the
best average score across all testing columns; scores highlighted in blue have overlapping intervals of standard deviation with the best
score.
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Dgm0 Dgm1 Dgm0 & Dgm1 Dgm0 & Dgm1
(Combined Partitioning) (Split Partitioning)

Freq MSK Train Test Train Test Train Test Train Test
1 94.7 ± 5.1 96.6 ± 1.0 75.3 ± 5.2 96.5 ± 2.2 80.6 ± 2.1 98.8 ± 1.2 83.8 ± 2.8 100.0 ± 0.0 90.4 ± 2.4
2 99.3 ± 0.9 94.4 ± 0.6 72.4 ± 4.2 99.2 ± 1.2 86.0 ± 4.4 99.9 ± 0.2 92.2 ± 1.9 100.0 ± 0.0 94.8 ± 1.4
3 96.3 ± 2.2 84.8 ± 1.4 57.4 ± 4.2 98.8 ± 0.7 90.6 ± 2.5 98.7 ± 0.9 91.9 ± 2.7 100.0 ± 0.1 92.0 ± 2.7
4 97.3 ± 1.9 73.8 ± 2.8 44.1 ± 5.5 96.2 ± 1.9 86.0 ± 2.8 96.0 ± 1.9 83.1 ± 3.2 97.9 ± 0.9 82.7 ± 4.3
5 96.3 ± 2.5 66.4 ± 4.7 37.4 ± 4.8 95.8 ± 2.0 89.8 ± 3.1 99.3 ± 0.5 91.0 ± 3.1 96.4 ± 1.2 84.8 ± 3.0
6 93.7 ± 3.2 57.9 ± 4.0 37.0 ± 5.8 97.9 ± 0.7 91.8 ± 2.3 97.8 ± 0.8 89.6 ± 2.3 98.6 ± 0.4 90.5 ± 3.2
7 88.0 ± 4.5 61.9 ± 2.2 39.5 ± 5.4 97.2 ± 1.0 90.5 ± 2.3 97.5 ± 0.8 93.9 ± 1.6 98.3 ± 0.5 92.9 ± 1.7
8 88.3 ± 6.0 69.0 ± 2.9 50.8 ± 4.5 98.2 ± 0.7 91.4 ± 2.0 98.1 ± 0.9 91.0 ± 3.2 99.4 ± 0.5 92.6 ± 1.8
9 88.0 ± 5.8 68.7 ± 6.1 52.5 ± 6.1 94.5 ± 1.5 88.1 ± 2.0 95.2 ± 1.3 86.3 ± 2.7 95.7 ± 2.2 88.9 ± 3.5
10 91.0 ± 4.0 61.5 ± 5.1 46.3 ± 4.0 96.2 ± 1.1 88.7 ± 3.0 96.8 ± 1.2 90.1 ± 2.5 97.9 ± 1.0 88.8 ± 2.6

Dgm0 Dgm1 Dgm0 & Dgm1
Freq Train Test Train Test Train Test

1 94.3 ± 0.5 67.1 ± 4.7 99.1 ± 0.3 85.4 ± 3.0 99.8 ± 0.3 90.4 ± 5.3
2 92.1 ± 1.4 60.8 ± 6.3 99.9 ± 0.3 89.9 ± 1.5 100.0 ± 0.0 95.1 ± 2.4
3 83.4 ± 2.4 45.1 ± 2.9 99.6 ± 0.5 88.9 ± 3.0 99.7 ± 0.5 90.0 ± 2.0
4 74.7 ± 2.0 37.4 ± 4.7 99.1 ± 0.7 85.2 ± 2.5 98.6 ± 0.9 84.8 ± 3.9
5 65.3 ± 2.9 27.8 ± 5.0 99.2 ± 0.7 93.0 ± 2.2 99.7 ± 0.4 93.3 ± 2.2
6 67.2 ± 2.5 36.5 ± 3.6 99.2 ± 0.5 93.4 ± 2.8 98.8 ± 0.5 92.9 ± 1.8
7 71.5 ± 2.8 40.9 ± 4.1 98.3 ± 0.7 96.6 ± 0.7 99.0 ± 0.4 95.6 ± 1.4
8 84.2 ± 3.3 63.0 ± 4.5 99.0 ± 0.5 93.0 ± 1.8 99.6 ± 0.4 94.0 ± 2.2
9 83.5 ± 2.7 62.4 ± 5.0 98.4 ± 1.2 92.9 ± 1.5 98.5 ± 1.3 92.6 ± 2.1
10 79.8 ± 2.7 59.0 ± 4.6 96.9 ± 0.6 92.1 ± 1.7 97.7 ± 1.1 89.5 ± 4.6

Table A.2: Results of classification of shape data as explained in Sec. 4.3.2 using interpolating polynomial functions with partitioning
(top table) and without partitioning (bottom table - copied from [1]). The MSK column gives the original results from [2]. Scores
highlighted in green give the best average score across all testing columns; scores highlighted in blue have overlapping intervals of
standard deviation with the best score.
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APPENDIX B

TABLES OF RESULTS AND PARAMETERS FROM DIRECTED ORDINAL
PARTITION NETWORKS

B.1 Dynamical Systems and Parameters List

List of all dynamical systems and the default parameters from teaspoon used in Sec. 5.5. Table B.1

gives the parameter values for the dynamical systems while Table B.2 gives the frequency, length

and initial conditions. All systems are defined and default parameters included here originate

from a document on the teaspoon website [126]. At the time of writing this dissertation, the

documentation of the available systems is linked at the top of this page: https://lizliz.github.io/

teaspoon/DynSysLib.html.

Specifically, the function in teaspoon called DynamicSystems is used. The input for system is

listed in the first column of both tables, the input for parameters for that particular system are in

Table B.1, and the input for fs, L, and InitialConditions are in Table B.2. These are the default

parameters if dynamic_state is specified to be ’periodic’ or ’chaotic’.

B.2 Persistence Scores

Tables B.3, B.4, and B.5 give the calculated scores which are plotted in histograms in Fig. 5.9.

Note that since in the unweighted, undirected case all edges are assumed to have weight 1, then all

birth and death times are integer valued. Thus, total persistence and maximum persistence are all

integer valued.
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parameters
Dynamical System Periodic Chaotic
base_excited_magnetic_pendulum [0.1038, 0.208, 9.81, [0.1038, 0.208, 9.81,

0.18775, 1.91e-5, 0.18775, 1.91e-5,
0.022, 3𝜋, 0.003, 1.2, 0.021, 3𝜋, 0.003, 1.2,

0.032, 1.257e-6] 0.032, 1.257e-6]
burke_shaw_attractor [12, 4] [10, 4]
chua [10.8, 27.0, 1.0,, [12.8, 27.0, 1.0,

−3
7 ,

3
7 ] −3

7 ,
3
7 ]

coupled_lorenz_rossler [0.25, 8
3 , 0.2, 5.7, [0.51, 8

3 , 0.2, 5.7,
0.1, 0.1, 0.1, 28, 10] 0.1, 0.1, 0.1, 28, 10]

coupled_rossler_rossler [0.25, 0.99, 0.95] [0.3, 0.99, 0.95]
diffusionless_lorenz_attractor [0.25] [0.40]
double_pendulum [0.4, 0.6, 1, 1] [1, 0, 0, 0]
double_scroll [1.0] [0.8]
driven_pendulum [1, 9.81, 1, 0.1, 5, 1] [1, 9.81, 1, 0.1, 5, 2]
driven_van_der_pol_oscillator [2.9, 5.1.788] [2, 5, 1.788]
duffing_van_der_pol_oscillator [0.2, 8, 0.35, 1.3] [0.2, 8, 0.38, 1.2]
forced_brusselator [0.4, 1.2, 0.05, 1.1] [0.4, 1.2, 0.05, 1.0]
hadley_circulation [0.3, 4, 8, 1] [0.25, 4, 8, 1]
halvorsens_cyclically_symmetric_attractor [1.85, 4, 4] [1.45, 4, 4]
linear_feedback_rigid_body_motion_system [5.3,−10,−3.8] [5.0,−10,−3.8]
lorenz [100, 10, 8

3 ] [105, 10, 8
3 ]

moore_spiegel_oscillator [7.8, 20] [7.0, 20]
nose_hoover_oscillator [6] [1]
rabinovich_frabrikant_attractor [1.16, 0.87] [1.13, 0.87]
rayleigh_duffing_oscillator [0.2, 4, 0.3, 1.4] [0.2, 4, 0.3, 1.2]
rossler [0.1, 0.2, 14] [0.15, 0.2, 14]
rucklidge_attractor [1.1, 6.7] [1.6, 6.7]
shaw_van_der_pol_oscillator [1, 5, 1.4] [1, 5, 1.8]
simplest_cubic_chaotic_flow [2.11, 2.5] [2.05, 2.5]
simplest_piecewise_linear_chaotic_flow [0.7] [0.6]
thomas_cyclically_symmetric_attractor [0.17] [0.18]
ueda_oscillator [0.05, 7.5, 1.2] [0.05, 7.5, 1.0]
WINDMI [0.9, 2.5] [0.8, 2.5]

Table B.1: Input for input parameters in DynamicSystems function in teaspoon.
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Dynamical System Parameters
fs L InitialConditions

base_excited_magnetic_pendulum 200 100 [0.0, 0.0]
burke_shaw_attractor 200 500 [0.6, 0, 0]
chua 50 200 [1.0, 0.0, 0.0]
coupled_lorenz_rossler 50 500 [0.1, 0.1, 0.1, 0, 0, 0]
coupled_rossler_rossler 10 1000 [-0.4, 0.6, 5.8, 0.8, -2, -4]
diffusionless_lorenz_attractor 40 1000 [1, -1, 0.01]
double_pendulum 100 100 ‘periodic’: [0.4, 0.6, 1, 1]

‘chaotic’: [0.0, 3, 0, 0]
double_scroll 20 1000 [0.01, 0.01, 0]
driven_pendulum 50 300 [0, 0]
driven_van_der_pol_oscillator 40 300 [-1.9, 0]
duffing_van_der_pol_oscillator 20 500 [0.2, -0.2]
forced_brusselator 20 500 [0.3, 2]
hadley_circulation 50 500 [-10, 0, 37]
halvorsens_cyclically_symmetric_attractor 200 200 [-5, 0, 0]
linear_feedback_rigid_body_motion_system 100 500 [0.2, 0.2, 0.2]
lorenz 100 100 [10.0−10.0, 0.0, 1.0]
moore_spiegel_oscillator 100 500 [0.2, 0.2, 0.2]
nose_hoover_oscillator 20 500 [0, 5, 0]
rabinovich_frabrikant_attractor 30 500 [-1, 0, 0.5]
rayleigh_duffing_oscillator 20 500 [0.3, 0.0]
rossler 15 1000 [-0.4, 0.6, 1]
rucklidge_attractor 50 1000 [1, 0, 4.5]
shaw_van_der_pol_oscillator 25 500 [1.3, 0]
simplest_cubic_chaotic_flow 20 1000 [0, 0.96, 0]
simplest_piecewise_linear_chaotic_flow 40 1000 [0, -0.7, 0]
thomas_cyclically_symmetric_attractor 10 1000 [0.1, 0, 0]
ueda_oscillator 50 500 [2.5, 0.0]
WINDMI 20 1000 [1, 0, 4.5]

Table B.2: Input for inputs fs, L, and InitialConditions in DynamicSystems function in teaspoon.
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Weighted, Unweighted,
Directed Undirected

Dynamical System Periodic Chaotic Periodic Chaotic
base_excited_magnetic_pendulum 17.58 45.73 23.0 66.0
burke_shaw_attractor 5.06 25.58 7.0 41.0
chua 9.67 47.68 12.0 70.0
coupled_lorenz_rossler 7.57 98.1 13.0 155.0
coupled_rossler_rossler 17.51 25.1 22.0 37.0
diffusionless_lorenz_attractor 7.0 20.5 9.0 30.0
double_pendulum 14.83 28.49 20.0 49.0
double_scroll 1.35 14.03 1.0 24.0
driven_pendulum 11.4 37.33 15.0 60.0
driven_van_der_pol_oscillator 2.94 67.33 3.0 103.0
duffing_van_der_pol_oscillator 7.83 66.8 10.0 91.0
forced_brusselator 11.5 68.13 15.0 98.0
hadley_circulation 6.88 89.13 9.0 139.0
halvorsens_cyclically_symmetric_attractor 19.75 60.5 26.0 87.0
linear_feedback_rigid_body_motion_system 3.72 53.04 3.0 80.0
lorenz 10.77 56.84 13.0 87.0
moore_spiegel_oscillator 6.4 11.28 8.0 17.0
nose_hoover_oscillator 5.95 50.8 11.0 77.0
rabinovich_frabrikant_attractor 11.57 83.16 13.0 117.0
rayleigh_duffing_oscillator 5.88 72.33 6.0 107.0
rossler 16.63 34.95 21.0 51.0
rucklidge_attractor 10.32 75.25 13.0 111.0
shaw_van_der_pol_oscillator 7.56 80.42 13.0 113.0
simplest_cubic_chaotic_flow 5.5 27.75 7.0 37.0
simplest_piecewise_linear_chaotic_flow 12.33 28.25 16.0 43.0
thomas_cyclically_symmetric_attractor 11.5 53.71 15.0 86.0
ueda_oscillator 7.65 51.28 9.0 77.0
WINDMI 20.6 30.0 28.0 40.0

Table B.3: Total persistence for all systems with no noise added. Scores are rounded to two decimal
places.
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Weighted, Unweighted,
Directed Undirected

Dynamical System Periodic Chaotic Periodic Chaotic
base_excited_magnetic_pendulum 10.58 11.33 13.0 15.0
burke_shaw_attractor 4.31 5.0 5.0 6.0
chua 9.67 9.32 12.0 14.0
coupled_lorenz_rossler 3.33 3.35 3.0 3.0
coupled_rossler_rossler 6.96 4.25 10.0 4.0
diffusionless_lorenz_attractor 7.0 10.0 9.0 12.0
double_pendulum 5.02 6.35 5.0 8.0
double_scroll 1.35 6.81 1.0 13.0
driven_pendulum 11.4 7.75 15.0 14.0
driven_van_der_pol_oscillator 2.94 8.67 3.0 14.0
duffing_van_der_pol_oscillator 6.33 8.51 7.0 9.0
forced_brusselator 11.5 9.25 15.0 14.0
hadley_circulation 6.88 7.25 9.0 10.0
halvorsens_cyclically_symmetric_attractor 19.25 8.17 25.0 10.0
linear_feedback_rigid_body_motion_system 3.43 5.78 3.0 6.0
lorenz 10.77 6.99 13.0 10.0
moore_spiegel_oscillator 6.4 7.29 8.0 8.0
nose_hoover_oscillator 3.27 10.0 3.0 17.0
rabinovich_frabrikant_attractor 11.57 5.67 13.0 6.0
rayleigh_duffing_oscillator 5.88 6.17 6.0 7.0
rossler 7.18 4.99 10.0 5.0
rucklidge_attractor 10.32 6.5 13.0 8.0
shaw_van_der_pol_oscillator 4.33 6.83 5.0 9.0
simplest_cubic_chaotic_flow 5.5 14.75 7.0 19.0
simplest_piecewise_linear_chaotic_flow 12.33 8.25 16.0 14.0
thomas_cyclically_symmetric_attractor 11.5 6.16 15.0 11.0
ueda_oscillator 7.54 7.5 9.0 9.0
WINDMI 11.98 12.78 14.0 14.0

Table B.4: Maximum persistence for all systems with no noise added. Scores are rounded to two
decimal places.
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Weighted, Unweighted,
Directed Undirected

Dynamical System Periodic Chaotic Periodic Chaotic
base_excited_magnetic_pendulum 0.27 0.57 0.26 0.55
burke_shaw_attractor 0.32 0.73 0.41 0.65
chua 0.0 0.6 0.0 0.56
coupled_lorenz_rossler 1.03 1.02 0.9 0.95
coupled_rossler_rossler 0.52 0.89 0.47 0.87
diffusionless_lorenz_attractor 0.0 0.51 0.0 0.5
double_pendulum 0.84 0.96 0.82 0.87
double_scroll 0.0 0.33 0.0 0.3
driven_pendulum 0.0 0.66 0.0 0.57
driven_van_der_pol_oscillator 0.0 0.78 0.0 0.73
duffing_van_der_pol_oscillator 0.34 0.81 0.41 0.79
forced_brusselator 0.0 0.73 0.0 0.68
hadley_circulation 0.0 0.78 0.0 0.71
halvorsens_cyclically_symmetric_attractor 0.04 0.72 0.05 0.68
linear_feedback_rigid_body_motion_system 0.27 0.8 0.0 0.76
lorenz 0.0 0.88 0.0 0.82
moore_spiegel_oscillator 0.0 0.58 0.0 0.65
nose_hoover_oscillator 0.89 0.72 0.88 0.66
rabinovich_frabrikant_attractor 0.0 0.91 0.0 0.87
rayleigh_duffing_oscillator 0.0 0.84 0.0 0.78
rossler 0.49 0.88 0.47 0.82
rucklidge_attractor 0.0 0.73 0.0 0.68
shaw_van_der_pol_oscillator 0.77 0.75 0.76 0.7
simplest_cubic_chaotic_flow 0.0 0.49 0.0 0.48
simplest_piecewise_linear_chaotic_flow 0.0 0.58 0.0 0.53
thomas_cyclically_symmetric_attractor 0.0 0.82 0.0 0.75
ueda_oscillator 0.04 0.84 0.0 0.77
WINDMI 0.47 0.54 0.48 0.57

Table B.5: Persistent entropy for all systems with no noise added. Scores are rounded to two
decimal places.
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