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ABSTRACT

ROBUST MAXWELL SOLVERS FOR LARGE SCALE PARTICLE-IN-CELL SIMULATIONS

By

Zane Daniel Crawford

The design of modern devices is impacted heavily by the use and availability of

robust, accurate, and efficient computational tools. This includes modeling devices that

exploit plasma physics like particle accelerators, klystrons, ion thrusters, and micro-plasma

generators among many other applications. While there are a number of current and

emerging applications, the common thread between all is the need to accurately and

efficiently capture all the relevant physics in geometrically intricate structures. The holy

grail is to enable topology optimization to explore the design space. But all this requires

rigorous translation from the continuous to the discrete world, while capturing all the

underlying physics and not adding spurious artifacts due to discretization.

A common computational model to perform this analysis is the particle-in-cell (PIC)

method. It provides a straightforward paradigm to self-consistently solve for the distri-

bution of the plasma as a collection of particles. The prevailing approach to solve for the

fields in PIC is the finite difference time domain method (FDTD), or EM-FDTDPIC. But

this effort leaves much to be desired, given the leaps that have been made in the finite

element method; indeed, the latter is the method of choice for most commercial tools

that that have become the de-facto workhorse in RF design industry. As a result, in the

past decade, considerable effort has been expended in developing finite element (FEM)

based PIC schemes, EM-FEMPIC. But we are still not there. One major concern of utilizing

EM-FEMPIC over EM-FDTDPIC is the computational cost of FEM, which is greater than

FDTD, despite the advantages of field and geometry accuracy FEM affords.

This dissertation seeks to develop (i) a theoretically rigorous means to translate from

the continuous to the discrete world while ensuring that there are no spurious artifacts, (ii)



develops a higher order accurate method in both space and time, and (iii) overcomes cost

complexity by introducing a linear scaling domain decomposition scheme. In all of these,

the methods developed ensure that the necessary conservation properties are satisfied to

machine precision. Numerous examples developed demonstrate these claims.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Plasma is the most abundant state of matter in the universe, defined as ionized gas

of equal parts positively and negatively charged particles, namely electrons and ions.

Plasma is the bulk constituent of stars, solar winds, and natural phenomena such as

lightning. It is also the key component in television screens, neon signs, and nuclear

fusion. Understanding how plasma interacts with its environments informs the design of

novel accelerator technology and beam wave interaction devices. The volume of plasma

is approximately charge neutral, though regions may be more positively or negatively

charged. This has some interesting repercussions. The charges in plasma can radiate

when accelerating, causing self-interactions in the plasma, as well as be affected by other

electromagnetic sources. Plasma generally is a good electrical and thermal conductor

and even exhibit wave phenomena. The combination of all these features makes plasma

very difficult to predict through simple models for the vast number of complicated uses

and places it manifests. Thus, computational modeling is often used to study plasma

and gain insight into how these behaviors manifest themselves in nature and man-made

environments.

Many computational tools have been developed in order to accelerate the design of new

devices and better understand nature. This is not to say that modeling plasma is a simple

task, even after decades of research and development of these tools. Modeling plasma

requires one to solve a multiscale, multiphysics problem to simulate the behavior of many,

many particles interacting with themselves and potentially other outside sources. This is an

inherently nonlinear problem that has been an open area of research, with many paradigms

to solve it. This can be simplified by modeling plasma as the interaction of currents and

1



the resulting electromagnetic fields. This would require a robust electromagnetic solver at

a minimum to model plasma. It would also be wise to consider methods that can leverage

high performance computing architecture, considering that modeling electromagnetic

devices alone, without sources, can require vast amounts of computational resources. In

order to accomplish this feat of modeling plasma, it is necessary to improve and create

computational tools that specifically accommodate the physics one wishes to model. This

work specifically seeks to improve the state of the art for numerically finding dynamic

electromagnetic fields with charges.

1.2 Problem Statement

We begin by simplifying the physics of the problem by following a kinetic description

of the plasma. In this model, the representation of the particles in the system move as

result of electromagnetic forces, which may come from external forces or interactions

between particles. This work does not include the possibility of collisions between particles.

Consider a region in space Ω which contains the plasma of interest that is bounded by

%Ω with an outward pointing normal vector =̂ that points into a vacuum Ω+ . The plasma

Figure 1.1: Sample Volume Ωwith particles

is represented with particles described with a phase space distribution function 5 (C , r, v)

2



(PSDF) that satisfies the Vlasov equation

%C 5 (C , r, v) + v · ∇ 5 (C , r, v) + a · ∇E 5 (C , r, v) = 0, (1.1)

where v is the particle velocity and the particle acceleration is defined by the Lorentz force

a =
@

<
(E(C , r) + v × B(C , r)) . (1.2)

In general, the plasma can be composed of many species of particles, but for simplicity,

only a single species is considered in this description. The particles are used to define

electromagnetic sources, the charge density �(C , r) and current density J(C , r), which in

terms of the PSDF are defined as

�(C , r) = @
∫
Ω

5 (C , r, v)3v (1.3a)

J(C , r) = @
∫
Ω

v(C) 5 (C , r, v)3v (1.3b)

and are subject to Newton’s equations of motion

v(C) = %Cr(C) (1.4a)

a(C) = %Cv(C). (1.4b)

The electric field E(C , r) and magnetic flux density B(C , r) satisfy Maxwell’s equations

%CB(C , r) = ∇ × E(C , r) (1.5a)

%CD(C , r) = ∇ ×H(C , r) − J(C , r) (1.5b)

∇ · B(C , r) = 0 (1.5c)

∇ ·D(C , r) = �(C , r), (1.5d)

where the electric flux density D(C , r) and magnetic field H(C , r) are related to the electric

field and magnetic flux density through the the constitutive parameters

D(C , r) = �(C , r) ∗C E(C , r) (1.6a)
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B(C , r) = �(C , r) ∗C H(C , r) (1.6b)

where ∗C is a convolution in time. The permitivity �(C , r) = �0�A(C , r) and permeability

�(C , r) = �0�A(C , r). This work mostly has Ω composed of free space, implying �A(C , r) =

�A(C , r) = 1, with 1/√�0�0 = 2, 2 being the speed of light. At the boundary %Ω, the fields

obey the boundary conditions

=̂ × (EΩ+ (C , r) − EΩ(C , r)) = 0 (1.7a)

=̂ × (HΩ+ (C , r) −HΩ(C , r)) = JB(C , r) (1.7b)

=̂ · (DΩ+ (C , r) −DΩ(C , r)) = �B(C , r) (1.7c)

=̂ · (BΩ+ (C , r) − BΩ(C , r)) = 0 (1.7d)

where the subscript denotes whether it is within Ω or in Ω+ . Additionally, it is necessary

to also satisfy the continuity equation

%C�(C , r) = −∇ · J(C , r) (1.8)

which can be derived from (1.5) or from (1.1).

The fields which satisfy (1.5) do not have to be obtained directly from those equations.

At times, the wave equation is used instead

∇ × �−1
A (C , r) ∗C ∇ × E(C , r) + 2−2%2

C �A(C , r) ∗C E(C , r) = −%CJ(C , r) (1.9)

or

∇ × �−1
A (C , r) ∗C ∇ ×H(C , r) + 2−2%2

C�A(C , r) ∗C H(C , r) = ∇ × �−1
A (C , r) ∗C J(C , r). (1.10)

Either both equations can be used to obtain both the electric and magnetic fields, or use

one and then use one of the curl equations, Faraday’s law (1.5a) or Ampere’s law (1.5b), to

obtain the other field. Regardless of which equation or set of equations are used, the main

difficulty remains: to choose a scheme which self-consistently yields the fields and particle

positions and velocities that satisfies the Vlasov-Maxwell equation, Newton’s equations,

Maxwell’s equations, and the appropriate boundary conditions.
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1.2.1 Preliminaries

The first step in solving the proposed the problem is to discretize problem such that it

can be described numerically to be solved on computers. First, divide Ω in to a number

of non-overlapping cells, also referred to as elements. The shape of the cells are typically

hexahedra or tetrahedra in three dimensions, or rectangles or triangles in two dimensions.

The collection of these cells are called a mesh or grid. In some methods, the hexahedral

(rectangular) mesh will be made regular, such that it will be cubic (square), which is

called a structured mesh. Otherwise the mesh is called unstructured. The trade-off is

that structured grids allow one to take advantage of the orthogonality of the grid, but

lose potential accuracy to staircasing errors as the volume of interest Ω is not usually a

square or rectangular object. Regardless of the mesh style that is chosen, the mesh will

be composed of nodes, edges, faces, and cells. Associated with some feature of the mesh,

there is a basis set used to represent or reconstruct some quantity. The discretization of the

equations will require approximation of the vector quantities as

X(C , r) ≈
#�∑
8=1

G8(C)s8(r) (1.11)

where #� is number of nodes, edges, faces, or cells, and s(r) is some vector basis set.

Similarly, scalar quantities are approximated as

.(C , r) ≈
#�∑
8=1

H8(C)68(r) (1.12)

where 6(r) is a scalar basis set. Often, a shorthand will be used to collect the coefficients of

the basis sets, or degrees of freedom, into a single vector, e.g. x = [G1(C), G2(C), · · · , G#�(C)].

The choice of the basis sets depends on the quantity being discretized due to conditions

on that quantity. For example, a field quantity like the electric field does not require

normal continuity across an interface. In fact, in the presence of a surface charge or change

in material, the electric field will be normally discontinuous. However, the tangential

component of the electric field is always continuous (as we have discounted the possibility
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of a fictitious magnetic monopole or current). Furthermore, not every equation defined in

the previous section will be turned into an equation that will be solved. However, they still

must be satisfied. This will lead to particular choices of basis sets that is explained in detail

in Chapter 2.

There are many approaches to to obtain the values of the degrees of freedom that best

approximate the quantities of interest. The methods that will be presented later in this

chapter and in this work, the finite-difference time domain (FDTD), the finite element

method (FEM), and the mixed finite element method (MFEM), are all examples of the

method of weighted residuals. Consider a spatial linear operator ℒ◦ that operates on a

function X(C , r) such that

ℒ ◦ X(C , r) = U(C , r), ∀r ∈ Ω (1.13)

subject to boundary condition

ℒ%Ω ◦ X(C , r) = W(C , r), ∀r ∈ %Ω (1.14)

with boundary operator ℒ%Ω◦. The method of weighted residuals defines a residual

function from (1.13)

ℛ(C , r) = ℒ ◦ X(C , r) −U(C , r) (1.15)

which is has applied inner product, or tested, with a trial basis set s̃9(r) that has compact

support, typically over one cell on the mesh defined in Ω, Ω2 . Ideally, the residual would

be equal to zero. However, only an approximation is available through the measurement

of residual with a compact support basis set through an inner product that is set to zero∫
Ω2

3r̃ s̃(r̃) · ℛ(C , r̃) = 0. (1.16)

Provided the residual is defined using (1.11), a system of linear equations can be defined as

#�∑
9=1

G8(C)〈s̃8(r),ℒ ◦ s9(r)〉 = 〈s̃8(r),U(C , r)〉 (1.17)
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where 〈·, ·〉 denotes a standard inner product. This can be more simply written as a matrix

vector product

Ax = u (1.18)

where A ∈ R#�×#� with elements A8 9 = 〈s̃8(r),ℒ ◦ s9(r)〉 and u ∈ R#� with elements

u9 = 〈s̃9(r),U(C , r)〉. Often, the choice of s̃(r) is made to be the same as s(r), which would

result in a Galerkin method. It is stressed again that s(r) itself should satsify the differential

equations and boundary conditions [1]. It is also noted that (1.18) could have been derived

through other approaches, such as Rayleigh-Ritz method [2] or through the use of calculus

of variations [3]. In later sections and chapters, (1.5) and (1.7) will be used in place of (1.13)

and (1.14) to derive FDTD, FEM, and MFEM. Section 2 in particular demonstrates how

FDTD, FEM, and MFEM are all related through this framework.

1.3 Particle-in-Cell

One of the most used methods to model plasma is particle-in-cell (PIC). It follows

the kinetic approach to modeling plasma by tracking the motion of particles, as each

particle has a position and velocity with which it is associated. Often, the particles are

representative of groups of particles called macroparticles. Because the interest is most

often in the bulk behaviour of the particles, reducing the number of particles modeled

this way reduces computational burden without greatly changing the overall behaviour

of the plasma. This representation of the plasma then needs to be incorporated with the

discretization of the electromagnetic system, a process called mapping the plasma to the

mesh. Again, a plasma is a collection of charged particles, and is interpreted as charge and

current that is being included in the electromagnetic system. This provides a complete

description of the discretized electromagnetic system that can be solved for the fields,

which are self-consistent and can be used to accelerate the particles.

The PIC method is a cycle that repeats this process of mapping the position and velocity

of particles under the influence of the fields found through some field solver. The basic
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steps of the PIC method are as follows

1. Map charge and current to the mesh

2. Solve for the fields including the macroparticles

3. Interpolate the fields at the macroparticle positions

4. Push the macroparticles to new positions.

The motion of the macroparticles is determined by (1.4), typically discretized by staggered

finite differences in time such that

v=+
1
2 = v=−

1
2 +

@

<
(E= + v= × B=) (1.19a)

r=+1 = r= + ΔCv=+
1
2 . (1.19b)

The preceding equation is typically evolved using what is called the Boris push [4],

which preserves the phase of the system while being an explicit method. Other explicit

formulations tend to have errors in phase space and implicit methods are typically deemed

too expensive to calculate given the number of particles that are in the system at any

given time. Additionally, modifications have been made to the Boris push to be valid

in the relativistic range, where particles move close to the speed of light [5]. The fields

are obtained by any number of methods, depending on the relative physics. When the

particles are traveling much slower than the wave speed, one can solve Poisson’s equation

to yield an electrostatic PIC (ES-PIC) method [6, 7, 8, 9]. However, we focus on the more

general case of electromagnetic PIC (EM-PIC) formulations, where the magnetic field (or

flux) can be significant. Most commonly, FDTD is used as the field solver, a FDTD-PIC

formulation [10]. This formulation not only has been used to codify EM-PIC by the likes of

Birdsall, Langdon, Eastwood, and others [11, 12], but has continued to see extensive use

[13, 14, 15, 16, 17]. This is due to some of the benefits of FDTD which are highlighted in

the next section. However, there has been significant development of FEM-PIC which uses

FEM as the field solver in EM-PIC.
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1.4 Finite-Difference Time-Domain

The earliest approach of FDM was the finite-difference time-domain (FDTD) or Yee-

method, developed by Yee in 1966 [18]. In this method, finite differences are used to

approximate the time derivatives and curl operators of (1.5a) and (1.5b). The degrees

of freedom are the electric field and magnetic field defined on the edges of staggered

cubical or rectangular mesh, often called a structured grid. The two equations are also

staggered in time to make an explicit Leapfrog time marching scheme. The time step size is

limited by a Courant–Friedrichs–Lewy condition determined by the size of the mesh cells.

Unconditionally stable time marching schemes have been developed for FDTD, but most

commonly focus on the Leapfrog method. The simplicity of FDTD makes it a powerful

tool for analysis, implemented very simply with the recurrence formulations that define

the method using a simple stencil. Its popularity over the decades has created a wealth of

implementations, including on high performance architectures. It has been used to analyze

and model many problems including electromagnetic scattering, antennas, photonics, and

[19, 20, 21, 22]. It has also been used extensively to model kinetic plasmas, which will be

discussed at length in Section 2.

However, FDTD is not without its limitations. The structured grids used results in

geometric errors in representing more complex geometry. This can be remedied somewhat

by sub-cell and sub-grid formulations which increase the resolution of regions of the mesh,

sacrificing stability and control of the accuracy [23]. Higher order spatial representations

are typically limited to expanding the stencil and are not as accessible as other methods.

Therefore, often the solution is to increase the resolution of the mesh by creating more cells.

Furthermore, these approaches to improve geometric and field accuracy can exacerbate

another limitation: the time step size. As stated, the time step size is limited by the smallest

features in the mesh, making analyzing certain systems very time consuming from the

sheer number of time steps needed to observe the desired phenomena. Some of these

problems were remedied by the adaption of FEM for electromagnetics.
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1.5 Finite Element Method

The earliest works in FEM were outside of the electrical engineering discipline. It is

credited to the appendix of a paper by Courant [24] in 1943, but it would not be until the

late 1960s when Arlett, Bahrani, and Zienkiewicz [25] and Silvester [26] would apply the

method to electromagnetics examining waveguides and cavities. Despite studying the

time harmonic Helmholtz equation, the process for formulating the FEM system remains

much the same. Here, Ω can be subdivided with triangles or tetrahedra in addition to

rectangles/rectangular prisms where degrees of freedom and associated basis functions

are defined. This generates a sparse, but typically not diagonal, system of equations that

can be solved. Importantly, in the earliest works, scalar basis functions associated with

the nodes of the mesh were used. However, when extended to the vector wave equation,

spurious modes were found which were caused by not properly satisfying Gauss’ law

and the associated boundary conditions [27]. In order to overcome this problem, many

approaches were developed [28, 29, 30], but the most popular method is using vector

basis functions [31, 32]. Importantly, these basis sets, first proposed by [33], only have

tangential continuity at the element boundaries, which correctly satisfies the boundary

condition for fields (1.7a) without violating the boundary condition for fluxes (1.7d). With

this development, accurate results could be reported for not only the wave equation, but

Maxwell equations as well.

The introduction of vector basis functions for FEM allowed for the exploration of more

problems in EM. FEM for the wave equation has been used to model many electromagnetic

problems such as circuits, antennas, scattering, and other plasma-related phenomena

[34, 35, 36, 37, 38]. In order to do large scale analysis, different approaches have been

developed to avoid having to solve all the equations simultaneously. Some approaches

like discontinuous Galerkin [39, 40, 41, 42] or element level dual field [43] approaches

use flux or field continuity conditions to enable solving (1.9) on an element level. Other

domain decomposition methods (DDM) [44, 45] are designed to solve the problem in larger
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groupings of elements, and using various boundary conditions to ensure satisfaction of

boundary conditions. One drawback of solving (1.9) and (1.10) specifically is that it does

not implicitly constrain Gauss’ law. Therefore, some began solving (1.5a) and (1.5b), by

introducing another basis function with normal continuity across cell faces, to create a

mixed finite element method (MFEM) [46, 47, 48, 49]. This method is the primary focus of

this thesis.

1.6 Open Problems

The creation ofmore powerful EM-PICmethods requires advancing the underlying field

solver technology. EM-PIC is by no means new and has been thoroughly explored using

FDTD , as well has implementations in FEM [50], as well as MFEM [51, 52, 53]. However,

examining each case reveals deficiencies. The shortcomings of FDTD, namely greater

accuracy without greatly increasing spatial discretization, has driven the push toward

using FEM and MFEM. At the time of writing, FEM-PIC approaches cannot using exact

current mapping, instead relying on pseudocurrents to enforce the continuity equation

[54]. MFEM implementations have not utilized unconditionally stable time marching, nor

taken advantage of higher order spatial basis sets. Attempts to perform large scale analysis

have been restricted to FDTD-PIC and discontinuous Galerkin FEM-PIC methods which

still requires divergence cleaning to maintain charge conservation. The approach for large

scale analysis using MFEM (and by extension, MFEM-PIC) relies on performing a sparse

approximate inverse. However, as will be explored in Chapter 2, there are connections

between FDTD, FEM, and MFEM that can be explored to make more robust field solvers,

and by extension, better EM-PIC methods. This work uses improvements to MFEM as a

means to define and formalize the guiding principles to define robust EM-PIC methods.

Furthermore, the improvements and ideas presented here can be extended to modeling

other sources beyond kinetic plasmas.
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1.7 Goals and Outline

In this dissertation, I present methods to reduce the cost of MFEM-based EM-PIC. The

principle contributions of this work are as follows:

1. Apply various advances in FEM to MFEM, namely

• unconditionally stable time marching,

• higher order spatial basis sets,

• domain decomposition, and

2. Apply these advances to modeling plasmas and space charge with charge conserving

PIC schemes

3. Explore the uses and benefits of an underutilized variant of MFEM, DH-MFEM,

particularly with respect to DH-MFEM-PIC.

The outline of the dissertation is as follows.

Chapter 2 presents a rubric to develop charge conserving current mapping schemes

in FEM. It examines what properties are necessary to create a charge-conserving current

mapping scheme for EM-PIC. Comparisons are made between FDTD and two formulations

of MFEM. Chapter 3 presents a EM-MFEMPIC scheme using higher order spatial basis

functions. The use of higher order basis functions allows for a reduction of degrees of

freedom for a desired level of accuracy compared to previous lowest order descriptions. It

also presents a scheme to satisfy Gauss’ magnetic law that is valid for higher order schemes.

Chapter 4 presents two domain decomposition schemes for MFEM and applies them to

EM-FEMPIC. The cost of solving large problems is reduced by solving a dual problem on

fictitious, non-overlapping boundaries. This allows for a speed up in computational time

while maintaining the required charge conservation properties.
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CHAPTER 2

RUBRICS FOR CHARGE CONSERVING CURRENTMAPPING IN FINITE
ELEMENT PARTICLE IN CELL METHODS

2.1 Introduction

Modeling plasmas and other charged media as sources is a needed capability to better

understand and design many real-world devices. Of the many techniques to model this

phenomena, the particle-in-cell (PIC) method has been a popular approach. A wide

variety of fields depend on PIC as a computational method, ranging from fundamental

science of space weather, nuclear fusion, atomic processes on one hand, to high technology

applications like particle accelerators, coherent electromagnetic radiation sources, and

plasma processing devices on the other. PIC, at a glance works as follows; charged media,

represented as a collection of particles, move in a domain under the influence of fields that

are due to motion of these particles. This calls for self consistent solution of Maxwell’s

equations in conjunction with equation of motion. Given application drivers stated earlier,

there has been extensive development of EM-PIC methods [55, 56, 57, 58]. Several of

these have been used extensively in the design of devices [59, 60, 61]. While traditional

application were electrically large albeit geometrically simple, there is burgeoning interest

in devices with significantly geometric complexity but smaller footprint. As a result, there

is need for EM-PIC methods with greater capabilities [50].

But before we delve extensively into nuances and needs of modern EM-PIC codes, it

helps to understand a bit of history of challenges that have been overcome in developing

EM-PIC methods. The principal challenge in EM-PIC modeling is self-consistency of

solving Maxwell’s equation together with equations of motion so as to actually capture

dynamics of the distribution function. Challenges lies in incorporation of sources (and

their variation over time) consistently into Maxwell’s equation. As a result, there has been
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extensive work in understanding how one may develop methods that conserve charge

[62, 63, 64]. Early development of EM-PIC methods largely relied on finite difference

time domain (FDTD-PIC), as did addressing many of the aforementioned challenges

[65, 66]. More recent PIC development has seen extensive development mixed finite

element methods (MFEM-PIC) and discontinuous-Galerkin (DG-PIC) as the EM field solver

[53, 67, 68].

These developments are specially pertinent as EM-PIC models that can more accurately

capture geometry and physics with greater computational efficiency would soon be neces-

sary to modeling physics ranging from novel accelerators to high frequency semiconductor

devices. As the complexity of system to be modeled increases one needs EM-PIC suites

that leverage advances in both finite element and particle methods. But as is to be expected,

integrating the two calls for ensuring that self-consistency is preserved. This implies

that discrete solutions of Maxwell’s equations together with Newton’s laws satisfy all of

Maxwell’s equations together with the equation of continuity at every time step. This is

easier said than done. Errors can manifest themselves as spurious charges and currents.

To overcome these, it is possible to use procedures such as divergence cleaning to correct

the erroneous fields that arise. Approaches to correct the fields include using Lagrange

multipliers [54], solving Poisson’s equation at multiple time steps [4, 66], or changing the

field solver [69]. However, there can be a significant computational cost to using these

methods. Of course, a more desirable alternative is to prescribe a rubric in which charge is

conserved as well as there is no space charge/current.

Developing computational methods that are inherently charge conserving has been

a topic of interest as long ago as there have been EM-PIC codes [70, 71]. The benefits of

having a charge conserving scheme are apparent; they avoid additional work necessary

to effect divergence cleaning. Unfortunately, their development has always been closely

tied to a particular EM-solution technique, be in FDTD-PIC [65, 72] or MFEM-PIC [51, 52].

The latter is novel in that it develops a method that relies on de-Rhammaps to define the
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proper basis sets for representing the electric field and magnetic flux density. In effect,

the primal quantities are defined based on Faraday’s laws. The current mapping schemes

demonstrate how they recover the results found in the early literature [65, 72]. As methods

developed have been solver specific, significant attention has not been paid to examining

the underlying mathematical structure and why that is necessary for charge conservation.

In this work, we seek to do just that.

While unusual, we start our analysis at the particle approximation of the distribution

function and develop a simple albeit rigorous approach to demonstrate charge continuity

relationships between charge density and currents. The exposition in this paper straight-

forward and uses the sifting property of the delta function. This is unlike that in presented

in [72] that relies on an discrete approximation. As an added benefit, this approach lays

the groundwork for developing conditions for mapping particles and fields on any discrete

grid, and consistently evolving their position and strength. In effect, we create a uniform

framework and criterion that is necessary to solve all of Maxwell’s equation consistently,

thereby satisfying charge conservation as well. The rubrics prescribed are in agnostic

to the method used to solve Maxwell’s equations. Indeed, we demonstrate how these

are applicable to FDTD and (M)FEM. We also use a these rubrics to develop a novel

MFEM-PIC scheme that uses electric flux density and the magnetic field (DH-MFEM-PIC)

and validate its properties including charge conservation, satisfaction of Gauss’ law as well

as comparison against quasi-analytic data.

The rest of the paper is organized as follows: After defining the EM-PIC problem in

Section 2.2 and its discetization using particle approaches, we define the three rules in

Section 2.3 in the context of preserving the spatial and temporal connections between

Gauss’ law and Ampere’s law. In Section 2.4, we provide examples on how FDTD and

two formulations of a variant of FEM, the mixed finite element method (MFEM), satisfy

the three conditions. One of these is novel in that it relies on the electric flux density

and the magnetic field (DH-MFEM). Next, in Section 2.5, we provide results that show
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what happens when the conditions are violated as well as affirm the correct behavior of

MFEM when the conditions are met. In addition, several results are provided for the

DH-MFEM-PIC that demonstrate necessary features for a number of examples (charge

conservation, satisfaction of Gauss’ laws, correctness against quasi-nalaytical data). In an

Appendix, we present details of the MFEM discretizations and other proofs.

2.2 Problem Statement and Formulation

Consider a domainΩwhose boundaries are denoted by %Ω. It is assumed that domain

comprises of charged species that exist in a background medium defined by �0 and

�0, the permittivity and permeability of free space; for simplicity of the exposition, we

consider only one species. It is also assumed that there exists an electromagnetic field,

both impressed and arising from motion of the charged species. Both the fields and the

charged species evolve in time. The evolution of the charged species is modeled via a fluid

approximation and those of fields using Maxwell’s equations. To this end, we assume that

the particle distribution function (PDF) 5 (C , r, v)must satisfy the Vlasov-Maxwell equation

%C 5 (C , r, v) + v · ∇ 5 (C , r, v) +
@

<
[E + v × B] · ∇E 5 (C , r, v) = 0. (2.1)

The electric field E(C , r) and magnetic flux density B(C , r) satisfy Maxwell’s equations

− %CB(C , r) = ∇ × E(C , r) (2.2a)

%CD(C , r) = ∇ ×H(C , r) − J(C , r) (2.2b)

∇ · B(C , r) = 0 (2.2c)

∇ ·D(C , r) = �(C , r), (2.2d)

where fields and fluxes are related through constitutive parameters

B(C , r) = �0H(C , r) (2.3a)

D(C , r) = �0E(C , r). (2.3b)
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The moments of the particle distribution function yield the the charge density �(C , r) and

current density J(C , r), defined as

�(C , r) = @
∫
Ω

5 (C , r, v)3v (2.4a)

J(C , r) = @
∫
Ω

v(C) 5 (C , r, v)3v. (2.4b)

It follows from the above equations that charge and current densities are related via the

equation of continuity

− %C�(C , r) = ∇ · J(C , r). (2.5)

Further, assume that these equations satisfy the initial conditions arising from

∇ ·D(0, r) = �(0, r) (2.6a)

and

∇ · B(0, r) = 0 (2.6b)

To complete the description of the problem, we will assume that the boundary of the

domain %Ωmay be partitioned into several subdomains, Γ8 , such that Γ := ∪8Γ8 . Each Γ8
has a boundary condition, either Dirichlet (Γ�), Neumann (Γ# ), or impedance (Γ�). The

boundary conditions are defined as

=̂ × E(C , r) =	�(C , r) on Γ� (2.7a)

=̂ × B(C , r)
�0

=	# (C , r) on Γ# (2.7b)

=̂ × B(C , r)
�0
− .=̂ × =̂ × E(C , r) =	�(C , r) on Γ� (2.7c)

where =̂ the vector normal to the surface %Ω, . is the surface admittance defined as
√
�0/�0,

andΨ�(r, C),Ψ# (r, C), andΨ�(r, C) represent some function. These equations describe a self

consistent set that must be solved numerically. In what follows, we describe the numerics

necessary to do so.
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Figure 2.1: Flow of typical EM-PIC simulation. © 2021 IEEE

2.3 Self consistent modeling framework

While we do not solve the Vlasov system directly, we follow the usual practice of

representing the particle distribution function using a collection of basis sets and then

evolving the trajectory of these in using Newton’s law in concert with Maxwell equations.

The basis sets are defined on a cell or simplical complex which discretizes a volume Ω

bounded by %Ω. The mesh consists of #6 nodes, #4 edges, # 5 faces, and #E volumes (in

three dimensions).

This process of modeling the charged media can be described as the EM-PIC cycle

as seen Fig. 2.1. It begins with mapping the charged particles on the grid, forming a

discretized representation of �(C , r) and J(C , r). These discretized currents and charges act

as sources in discretized Maxwell solvers, and are used to evolve the fields for one time

step. The “new” fields and flux densities are then used update the locations of the charges

and thereby obtain currents (and charges). The cycle then repeats. What is apparent from

the the above are the the nuances of what ensures self consistent modeling of Maxwell and

Vlasov systems discrete grids; this is the focus of this Section.

2.3.1 Sampling the distribution function, and equation of continuity

To begin, we start with representing the particle distribution function using

5 (C , r, v) =
#%∑
?=1

(
(
r − r?(C)

)
�
(
v − v?(C)

)
(2.8)
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where shape functions, ((r), represent the spatial support of particles. It follows from the

definitions in (2.4) that �(C , r) and J(C , r) can be represented as

�(C , r) = @
#?∑
?=1

((r − r?(C)) (2.9a)

J(C , r) = @
#?∑
?=1

v?(C)((r − r?(C)). (2.9b)

Given the discrete representation of the distribution function, it can be shown that the

equation of continuity is still holds in this discrete/particle setting. While this has been

proven by Eastwood [72], the approach we take is straightforward, and exploits the sifting

property of the delta function. Specifically, we use the definition r?(C) = r0?(C) +
∫ C

0 3�v?(�)

and the identity

�
(
r − r?(C)

)
= �

(
r − r0?(C)

)
★B �

(
r −

∫ C

0
3�v?(C)

)
(2.10)

Using this identity, it can be shown that (see Appendix)

%C�
(
r − r?(C)

)
= −∇ ·

[
v?(C)�

(
r − r?(C)

) ]
(2.11)

The equation of continuity follows via

−%C�(C , r) = −@
#?∑
?=1

%C((r − r?(C)) = −@
#?∑
?=1

((r)★ %C�
(
r − r?(C)

)
= ∇ ·

@
#?∑
?=1

v?(C)((r − r?(C))
 = ∇ · J(C , r).

(2.12)

Of course, this is not the only identity that can be derived. As shown in the Appendix,

another relationship pertinent to this paper that follows from the spectral representation

of (2.10) is

�(C , r) = �(0, r) − @∇ ·
#?∑
?=1

∫ r?(C)

r?(0)
3r̃( (r − r̃(C)) (2.13)

As shown in the Appendix, this can be transformed into a line integral along the path taken

by each particle. Our analysis, thus far, has dwelt on the representation of the distribution
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function and its moments, viz., the charge and current. As is evident from (2.12) that

the equation of continuity is satisfied when the distribution function is represented by

arbitrarily shaped particles. Next, we address mapping/measuring these charges and

currents on grid (and how they interact with Maxwell’s equations).

2.3.2 Self-consistent solution of Maxwell’s Equations with active sources

For self consistency, one needs to solve Maxwell’s equations with sources defined by

(2.9). In this pursuit, we discretize Maxwell’s equations in space with a collection of cells on

which we define basis functions to represent fields and sources. Additionally, a temporal

discretization is chosen such that a consistent solution for Newton’s laws is obtained to

update the position and trajectory of the particle. It is well known that de-Rham diagrams

[73, 74] provide appropriate map between fields, fluxes and sources in Maxwell’s equations.

In addition, one needs additional framework to ensure that charges and currents are

correctly measured and integrated in time. In what follows, we discuss each in turn.

2.3.2.1 de-Rham complex

To begin, de-Rham diagrams establish relations between field, fluxes and sources.

These diagrams replicate Maxwell’s equations in the discrete world; there exists extensive

literature on their use in developing finite elements [75, 76]. In a nutshell, these permit the

definition of Whitney spaces that can be used to represent primary quantities (), E,B) or

their duals (�,H,D). It should be noted that the choice of fields on the primal or dual grids

are not rigid; in other words, (�,H,D/J) can be defined on the primal grid and (), E,B) on

the dual grid. These relationships are shown in Figs. 2.2 and 2.3. Using Whitney spaces to

solve Maxwell’s equations has its antecedents in Bossavit’s seminal work [46] and those of

several others [49, 38, 47, 77, 78]; our presentation is along these lines. As has been shown

in these papers, these basis sets and their function spaces are defined as follows: the 0-form

defined on nodes, the 1-form defined on edges, the 2-form defined on faces, and the 3-form
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Figure 2.2: Diagram of electromagnetic quantities as differential forms. © 2021 IEEE

E, J

B

ρ

Figure 2.3: Two dimensional diagram of where field and source quantities are defined on a
simplical mesh. © 2021 IEEE

defined on volumes. In this work, we choose to use the Whitney basis sets that

0-form :=, (0) ∈ �1 (2.14a)

1-form := W(1)(r) ∈ �(2DA;) (2.14b)

2-form := W(2)(r) ∈ �(38E) (2.14c)

3-form :=, (3)(r) ∈ !2 (2.14d)

The Hodge operator relates the corresponding field and flux quantities using the correct

constitutive parameters, as well as provides a mapping between the primal and dual grids

[79, 80].
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2.3.2.2 Discrete and self consistent Gauss’ and Ampere’s Laws

In typical solutions to Maxwell equations, there is an implicit assumption that the

solution to the two curl equation enforces Gauss’ laws together with the equation of

continuity. While this is true in the continuous domain, one needs to handle things with

care in the discrete domain. Specifically, the basis functions used to represent or measure

the fields, fluxes, currents, and charges need to be consistent with each other. Let ℒ∇·◦

denote a discrete divergence operator and ℒ∇×◦ denote a discrete curl operator, whose

definitions are dependent on the basis functions. With no loss in generality, let’s denote

the basis functions, N8(r) and �8(r), used to represent and measure the fields and fluxes,

and charges, respectively. They belong to the appropriate space of functions depending on

which quantity is being measured as determined by (2.14) and have local support over a

simplex or cell. They also have relationships determined by the de-Rham complex shown

in figure 2.2. With no loss of generality, let us define the vectors of quantities that are

measured by our candidate basis functions. For instance, on can define

38(C) = 〈N8(r), �E(C , r)〉 (2.15a)

(ℒ∇× ◦ h(C))8 = 〈N8(r),∇ × �−1B(C , r)〉 (2.15b)

(ℒ∇· ◦ d(C))8 = 〈�8(r),∇ · �E(C , r)〉 (2.15c)

98(C) = 〈N8(r), J(C , r)〉 (2.15d)

Next, let us define d(C) = [31(C), 32(C), . . . , 3#�(C)], h(C) = [ℎ1(C), ℎ2(C), . . . , ℎ#
(C)], and

j(C) = [91(C), 92(C), . . . , 9#�(C)], which can be used to approximate the continuous functions,

such as D(C , r) = ∑#�

8=1 38(C)N8(r), where #� is the number of degrees of freedom; as we

will see, depending on the formulation it can either the number of edges or faces. This

definition is the same for #
 and #�. The degree of freedom vectors may require a Hodge

operator to represent the function in the correct space. For solutions to be consistent,

the systems of equations should be such that the divergence of Ampere’s law yields the
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time derivative of Gauss’ law, which together with initial conditions will yield Gauss’ law.

While this is simply stated, there are a number of subtle nuances. In the discrete world,

it follows that the same should be valid. Specifically, the spatial basis sets and the time

integrator used has to be such that these relationships are satisfied. Note, these conditions

must be satisfied exactly because only the curl equations, Faraday’s law and Ampere’s law,

are explicitly solved. Gauss’ law must be satisfied indirectly through the correct choice of

spatial basis sets and time integration.

As our goal is to ensure the bothGauss’ laws and the equation of continuity are satisfied,

it follows that there has to be a relationship between ∇�8(r) and N8(r). We begin by

considering the divergence of discrete Ampere’s law; specifically,

%Cℒ∇· ◦ d(C) = ℒ∇· ◦ ℒ∇× ◦ h(C) − ℒ∇· ◦ j(C) (2.16)

From the above, one can deduce the following:

Condition 1: Consistent spatial basis sets The basis sets should be such that the discrete

divergence of the discrete rotation of the magnetic field is zero. In effect, the discrete

differential operators should maintain the same properties as their continuous

counterpart. To serve as the link between Ampere’s law and the continuity equation,

ℒ∇· ◦ ℒ∇× ◦ h(C) = 0. (2.17)

Though the discrete differential operators can be defined using properties of the

mesh, they must be consistent with the discretized Faraday’s and Gauss’ law.

Condition 2: Discrete divergence Let �(r) denote functions used to measure the charge

on the mesh. Then ∇�8(r) should span the irrorational component of both D(C , r)

and J(C , r). In effect, span {∇�8(r)} = D(C , r) or J(C , r) for ∀C. In other words, this

representation is complete. The need for this condition arises from measuring both
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Gauss’ law and the equation of continuity. Consider measuring Gauss’ law via

(ℒ∇· ◦ d(C))8 =
∫
Ω

3r�8(r)�(r) =
∫
Ω

3r�8(r)∇ ·D(C , r)∫
Ω

3r�8(r)�(r) = −
∫
Ω

3r∇�8(r) ·D(C , r) +
∫
%Ω
3r�8(r)=̂ ·D(C , r).

(2.18)

The preceding equation mathematically exemplifies this condition. An almost

identical equation can be derived for the equation of continuity. It can be shown

boundary terms in vanish interior to the domain and provided the correct boundary

condition is imposed on =̂ ·D(C , r) on %Ω, Gauss’ law is implicitly satisfied together

with condition 3.

Condition 3: Discrete Time Integration Finally, discrete time time stepping used to up-

date the electric flux density in Ampere’s equation and the path integral to used to

evaluate the total current at any instant of time should be consistent with each other.

This will ensure that the solution to Ampere’s law agrees with Gauss’ law. To gain

more insight, we start by noting that when evolving Maxwell’s equations over-time,

we are in effect integrating the current; however, the time integral of the current is

obtained via a path integral in (2.13). It follows, that if one were to take a discrete

divergence of Ampere’s laws, Condition 1 would yield

%Cℒ∇· ◦ d(C) = −ℒ∇· ◦ j(C) (2.19)

Provided Condition 2 is satisfied, it follows that choosing a consistent rule for

integrating the charge along the particle path and integrating Ampere’s law will

ensure conservation of charge.

2.4 Satisfaction of Conditions with Various EM-PIC Methods

Next, we examine three different formulations of EM-PIC; FDTD-PIC, EB-MFEM-PIC,

and DH-MFEM-PIC in light of the conditions discussed thus far. While FDTD-PIC is well

known, EM-MFEM-PIC and DH-MFEM-PIC place dominant importance on Faraday’s and
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Ampere’s laws, respectively. As a result, the dominant variables are represented on the

primal grid, the others reside on dual grid. In what follows, we seek to show how each

formulation satisfies the three conditions.

2.4.1 FDTD-PIC

FDTD-PIC is the combination of the FDTD method [18] with PIC. It is discretized using

staggered, structured grids in time and space, as seen in Figure 2.4 for two dimensions.

For our discussion, the primal grid contains degrees of freedom for the electric field and

magnetic flux density. Likewise, the dual grid has the degrees of freedom defined for the

magnetic field and the electric flux density [73]. Particles are mapped to the grid using the

3-forms that measure the charge density. In what follows, we will show that the particle

weighting scheme defined by Langdon [66] maps trivially onto the three conditions defined

earlier.

2.4.1.1 Satisfaction of Condition 1

The discrete differential operators ℒ∇×◦ and ℒ∇·◦ on the dual grid are defined as

ℒ∇×◦ =


±1 if =̂ 9 × ;̂8 points into (out of) the face

0 otherwise
(2.20)

and

ℒ∇·◦ =


±1 if =̂ 9 points out of (into) cell 28

0 otherwise
(2.21)

The operator ℒ∇×◦ ∈ R# 5×#4 , where # 5 is the number of faces and #4 is the number of

edges. The operator ℒ∇·◦ ∈ R#2×# 5 where #2 is the number of volumes.

Consider an example mesh in Figure 2.5. Assume the edge on the corners of the cell all

point out of the page and the normal to the edges point out of the cell. The corresponding
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Figure 2.4: FDTD 2D grid. Solid cell is the primal grid. Dotted cells are the dual grid. ©
2021 IEEE

curl matrix definition would be

[ℒ∇×◦] =



1 −1 0 0

−1 0 1 0

0 1 0 −1

0 0 −1 1


, (2.22)

The divergence matrix would be

[ℒ∇·◦] =
[
1 1 1 1

]
(2.23)

It is evident that in ℒ∇· ◦ ℒ∇×◦, each entry in the resulting vector is zero, satisfying (2.17).
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Figure 2.5: Discrete curl and divergence on the dual grid. The curl is defined using the
edges ;̂8 that come out of the page. The divergence is defined using the face normals =̂8 . ©
2021 IEEE

2.4.1.2 Satisfaction of Condition 2

The basis function �(r) in (2.18) is a 3-form, a constant in this formulation. Using the

properties of 3-forms, (2.18) reduces to∫
Ω

3r�(r)∇ · X(r) =
∫
%Ω
3r=̂ · X(r)�(r). (2.24)

Consider the matrix form of ℒ38E◦ based on Figure 2.5

ℒ∇·◦ =

1 0 1 1 0 1 0

0 1 0 −1 1 0 1

 . (2.25)

A volume integral would be a summation over the cells of a mesh,

#E∑
8=1
[ℒ∇·◦]8 9 =

[
1 1 1 0 1 1 1

]
(2.26)

This would effect the surface integral in (2.24). Therefore, the discrete continuity equation

is satisfied exactly and consistency condition is fully satisfied.
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Figure 2.6: FDTD 2D particle current mapping with particles of finite size. © 2021 IEEE

2.4.1.3 Satisfaction of Condition 3

Consider (2.24) in conjunction with (2.19). Using a leapfrog time marching scheme, the

discrete continuity equation would be

[ℒ∇·]
d=+1 − d=

ΔC
= −

@

ΔC
[ℒ∇·]

∫
%Ω
3r

∫ r=+1

r=
3r̃=̂ · p(r̃), (2.27)

where ΔC is the time step size, p(r̃) is the path of the particle. The integral computes

the amount of charge that passes through a face. The divergence operator collects the

contributions of each face, giving the net change of charge in each cell, as demonstrated in

figure 2.6. This is equivalent to the current mapping in [65] for particles with finite shape.

If the particle shape is infinitesimally small, it is equivalent to nearest-grid-point particle

weighting.

2.4.2 EB-MFEM-PIC Formulation

Next, we analyze EB-MFEM-PIC as defined in [46]. This finite element method can be

seen as a generalization of FDTD. Like FDTD, it discretizes Maxwell’s equations using a

primal-dual grid system, with the field and flux quantities defined in the same manner.

However, the grid itself can be unstructured, using non-cubic cells. The formulation for
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EB-MFEM can be found in appendix A.0.3.2. We have chosen to demonstrate the validity

of the arguments in Section 2.3 using brick elements as it is akin to FDTD-PIC. We defer

the discussion on tetrahedral elements to the next section.

2.4.2.1 Satisfaction of Condition 1

The discrete differential operators ℒ∇×◦ and ℒ∇·◦ are defined on the primal grid as

ℒ∇×◦ =


±1 if =̂ 9 × ;̂8 points into (out of) the face

0 otherwise
(2.28)

and

ℒ∇·◦ =


±1 if edge 9 points into (out of) node 8

0 otherwise
(2.29)

The operator ℒ∇×◦ ∈ R#4×# 5 . The operator ℒ∇·◦ ∈ R#=×#4 where #= is the number of

nodes. Consider the example mesh in Figure 2.7. The corresponding curl matrix definition

would be

ℒ∇×◦ =
[
−1 1 −1 1

])
. (2.30)

The divergence matrix would be

ℒ∇·◦ =



1 1 0 0

−1 0 1 0

0 −1 0 1

0 0 −1 −1


(2.31)

It is apparent that each entry in the resulting ℒ∇· ◦ ℒ∇×◦ is zero, satisfying (2.17).

2.4.2.2 Satisfaction of Condition 2

The basis function for the current density spans the gradient of the basis function for

the charge density. The divergence operator ℒ∇·◦ sums the edges connected to a node to
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Figure 2.7: FEM 2D curl and divergence mesh. The curl is defined using the edges ;̂8 around
face center =̂8 . The divergence is defined with edges that point into node 68 . © 2021 IEEE

satisfy (2.18). For PEC boundary conditions, the current density normal to the face is zero,

eliminating the surface integral term. This can be seen by summing the rows of (2.31). For

non-PEC boundaries, the domain is padded with ghost cells where the boundary nodes

are not included. The non-terminating edges then make up the surface integral term when

ℒ∇·◦ is applied. Therefore, (2.18) is satisfied.

2.4.2.3 Satisfaction of Condition 3

For each cell a particle visits, the corresponding current density is projected onto the

edges of that cell. Using (2.18), the discretized continuity equation that satisfies (2.19) is

[ℒ∇·]
d=+1 − d=

ΔC
= −

@

�C
[ℒ∇·]

∫
Ω

3r
∫ r=+1

r=
3r̃∇,0 · p(r̃). (2.32)

This is equivalent to particle-in-cell area weighting in FDTD and themethod used in [72, 51].

Due to the relationship between the 0-form on the primal grid and the 3-form on the dual

grid, this is also equivalent to the approach defined in [65] for finite particle shapes.
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Figure 2.8: FEM 2D particle current mapping with point particles. The particle current is
mapped to each edge that encloses a cell along the particle path. © 2021 IEEE

2.4.3 DH-MFEM-PIC Formulation

The EB-MFEM-PIC formulation defined in 2.4.2 can be reformulated to such that the

primal grid has the degrees of freedom associated with the magnetic field and electric

flux density. The dual grid contains the degrees of freedom for the electric field and

magnetic flux density, still defined using the edges and faces, respectively. The sources are

represented on the primal grid using 3-forms for the charge density and 2-forms for the

current density. The arguments for this formulation satisfying the three conditions are

similar to that presented in section 2.4.1. Note, the principal ramification of this approach

is that it is a natural framework for modeling sources as both the currents and electric

flux density are modeled using the same function space, and the fields, currents and

charges lie in the primal grid. This si unlike EM-MFEM-PIC formulation where one needs

transformations between primal and dual spaces. The ramification of these mappings

become more consequential in higher order schemes–a topic that will be visited in a later

paper.
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Figure 2.9: Discrete curl mesh on the dual grid. The curl is defined with the outward
pointing edge ;̂8 . © 2021 IEEE

2.4.3.1 Satisfaction of Condition 1

The discrete differential operators ℒ∇×◦ and ℒ∇·◦ are defined on the primal grid, but

have the same definitions as (2.20) and (2.21). Consider the example mesh in Figure 2.9.

Assume the edge on the corners of the cell all point out of the page and the normal to

the edges point out of the cell. The corresponding curl matrix definition for lowest order

would be

[ℒ∇×◦] =


−1 1 0

1 0 −1

0 −1 1


, (2.33)

The lowest order divergence matrix would be

[ℒ∇·◦] =
[
1 1 1

]
(2.34)

Analyzing ℒ∇· ◦ ℒ∇×◦, each entry in the resulting vector is zero, satisfying (2.17).

2.4.3.2 Satisfaction of Condition 2

For lowest order, the continuity equation reduces to (2.24).

Consider the matrix form of ℒ∇·◦ based on figure 2.10
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Figure 2.10: FEM divergence mesh. The divergence is defined using face normals =̂8 that
point out of cell 28 . © 2021 IEEE

ℒ∇·◦ =

0 1 1 0 1

1 0 −1 1 0

 . (2.35)

A volume integral would be a summation over the cells of a mesh,

#E∑
8=1
[ℒ∇·◦]8 9 =

[
1 1 0 1 1

]
(2.36)

This would effect the surface integral in (2.24). Therefore, the discrete continuity equation

is satisfied exactly and consistency condition is fully satisfied.

2.4.3.3 Satisfaction of Condition 3

Again, the satisfaction of condition three relies on the correct definition of current

density on the faces of each cell. For consistency of the change of charge density in cells,

the amount of charge that passes through the face must be measured exactly. This is

equivalent to what is effectively done in [81, 82] through different techniques. Consider

the mapping of current defined by the particle in Figure 2.11. Here, though the particle

moves at an angle with respect to the face, the current density as seen by the mesh moves
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Figure 2.11: FEM particle mapping with finite shape particles. The particle is mapped to
cell 24 and 23 at first and ends in cell 21 with current mapped at on the marked faces. The
particle shape does not affect the conservation properties of this method. © 2021 IEEE

in the direction of the face normal. The solver in effect sees a charge density move from

cell 24 to 23 and the total charge density in 23 moves to 21 by time step = + 1.

2.5 Consequences of Inconsistency

In the previous sections, the three rule framework was defined and applied to different

formulations of EM-PIC. The references to previous works show how these rules encom-

passes well known EM-PIC formulations. Next, we will examine ramifications of violating

these three rules. By examining potential pitfalls and how it manifests in results, one can

more easily diagnose errors in new EM-PIC schemes.

2.5.1 Violation of Condition 1

First, consider violations of the first condition. Failing to satisfy (2.17) can arise from

choosing the wrong basis sets to discretize (2.2). One way to do so is to choose basis sets

that do not obey the de-Rahm complex. For example, if one solves both Ampere’s law and

Faraday’s law on the same grid, staggered in time. Like in FDTD, we consider representing

the electric field and magnetic field; however, this time it is on the same grid. Assume the
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fields are represented by 1-forms and test (2.2a) and (2.2b) with the same basis functions.

The discretized system is

h=+
1
2 = h=+

1
2 − ΔC[ℒ′∇×◦]e= (2.37a)

e=+1 = e=+1 + ΔC([ℒ′∇×◦]h=+
1
2 − j=+

1
2 ), (2.37b)

where ℒ′
∇×
◦ is a modified curl operator, as the previously defined operator has the wrong

dimensions. If this scheme is done with a structured mesh in FDTD, one would have a

higher error as the curl would be represented using forward or backward difference rather

than a central difference. Instead of the recurrence scheme found in (A.10b), one would

have

�=+1
G,(8+ 1

2 , 9 ,:)
= �=

G,(8+ 1
2 , 9 ,:)
+ ΔC

�ΔH
(�=+ 1

2
I,(8+ 1

2 , 9+1,:) − �
=+ 1

2
I,(8+ 1

2 , 9 ,:)
)

− ΔC

�ΔI
(�=+ 1

2
H,(8+ 1

2 , 9 ,:+1) − �
=+ 1

2
H,(8+ 1

2 , 9 ,:)
)

− ΔC
�
�
=+1/2
G,(8+ 1

2 , 9 ,:)

(2.38)

if a forward difference was used.

The effects of this are more clear from an FEM perspective. Consider trying to find

modes of a perfect electric conductor rectangular cavity using the generalized eigenvalue

problem formed by the time harmonic form of (2.39)
0 [ℒ∗

∇×
◦]

−[ℒ∗
∇×
◦])[★�−1] 0



b

e

 = Λ

[I] 0

0 [★�]



b

e

 (2.39)

where the eigenvalues in Λ = 9$. The dimensions of the cavity are 0.6 m×0.4 m×1 m. In

a consistent scheme, [ℒ∗
∇×
◦] = [ℒ∇×◦] and [★�−1] is as defined in (??). However, in the

inconsistent scheme we have defined,

[ℒ∗
∇×
◦]8 , 9 =

∫
3ΩW(1)

8
· ∇ ×W(1)

9
(2.40)

and [★�−1] = [★�]. When the inconsistent scheme is used, spurious modes are found that do

not correspond to the true modes of the cavity as seen in table 2.1. Using this inconsistent

scheme could permit incorrect solutions into the field solver, invalidating results.
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Table 2.1: First four rectangular cavity modes for consistent and inconsistent FEM solver in
MHz

5true 5consistent 5inconsistent
291.346 290.829 0.280
390.242 389.157 1.036
403.608 402.697 1.841
450.382 449.654 2.451

2.5.2 Violation of Condition 2

Next, we consider the repercussions of violating Condition 2. Consider the linear

mapping scheme typically found in early PIC literature where the weighting function is

defined as

,
(
r − r?(C)

)
=

∏
=∈{G,H,I}

1 −
|A=,6 − A=,? |

Δ=
. (2.41)

When the particle ismapped to the nodes as the charge density, A=,6 is the G, H, I− coordinate

of the node. Whenmapped to the edges as the current density, A=,6 is the G, H, I− coordinate

of the center of the edge. It is well known that this mapping does not satisfy the continuity

equation. For example, consider the particle motion in Figure 2.8 where the particle moves

from (.3, .4) to (.7, .6). Table 2.2 shows the error in the continuity equation using this

mapping. The result is an inconsistency in the solved Ampere’s law and measured Gauss’

law due to spurious charge seen by the field solver as the next mapping is done. This

mapping scheme does not appropriately satisfy (2.18), as the combination of basis functions

for the current density at the node is not exactly equal to the gradient of the charge density

basis function. Despite being in the same direction, the basis function defined by the linear

mapping for the current density is different than the basis functions used to measure the

fields. Therefore, the de-Rham complex is not truly satisfied and the spatial link between

Gauss’ law and Ampere’s law is no longer preserved.
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Table 2.2: Continuity equation error for linear mapping

%C� ∇ · J %� + ∇ · J
node 1 -0.100 -0.050 -0.150
node 2 0.300 -0.850 -0.550
node 3 -0.300 0.850 0.550
node 4 0.100 0.050 0.150

Table 2.3: Error of Analytic Integration vs Quadrature Rule for Linear Path

Analytic 1 pt Quad Error
Edge 1 1.248 1.248 -4.441e-16
Edge 2 0.505 0.505 0.000
Edge 3 0.248 0.248 0.000

Table 2.4: Continuity Equation Error for Linear Path

&=+1 &= &=+1−&=

ΔC
∇ · J &=+1−&=

ΔC
+ ∇ · J

Node 1 0.284 0.459 -1.753 1.753 0.000
Node 2 0.550 0.450 1.000 -1.000 -4.440e-16
Node 3 0.166 0.091 0.753 -0.753 0.000

2.5.3 Violation of Condition 3

Next, we examine how failing to correctly integrate the spatial integral in (2.19) results

in a violation of Gauss’ law and the continuity equation due to spurious charge on the grid.

Consider the movement of a particle on a linear path that remains in a single cell using a

0-form basis set to measure the charge density. For a linear path, the path integral can be

exactly computed either using an analytic scheme [52] or an one point integration rule, as

seen in Table 2.3. This translates to machine precision error in the continuity equation in

Table 2.4.

Similarly, consider the case when a particle crosses at least one face on its path. When

the path is in multiple cells, an error occurs when the path integral is not calculated in

each cell, as seen in Table 2.5. This is an inconsistency in (2.19) as though the time integral

may be computed correctly, parts of the path integral are missing.
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Table 2.5: Continuity Equation Error for Multiple Cells

&=+1−&=

ΔC
+ ∇ · j=+1/2

=2
&=+1−&=+


ΔC2
+ &=+
−&=

ΔC1
+ ∇ · j=+1/2

22

Node 1 1.008 0.000
Node 2 0.394 -4.441e-16
Node 3 -0.008 2.220e-16
Node 4 -1.394 -4.441e-16

Table 2.6: Error of Analytic Integration vs Quadrature Rule for Quadratic Path

Analytic 1 pt Quad 1 pt error 2 pt Quad 2 pt error
Edge 1 1.253 1.250 -0.003 1.253 -6.661e-16
Edge 2 0.500 0.500 0.000 0.500 2.220e-16
Edge 3 0.253 0.250 0.003 0.253 0.000

2.5.4 Results for Consistent DH-MFEM-PIC

Finally, we examine results when all three conditions are satisfied. We have chosen to

illustrate these using DH-MFEM-PIC as results for EB-MFEM-PIC are available [51, 52, ?].

First, we consider a particle beam in a 0.1 m PEC cylindrical cavity with a radius of 0.02 m.

The particle beam has a voltage of 7.107 kV and current of 0.25A, simulated by inserting ten

particles per time step. The starting velocity of the particles entering the tube is 5×104 km/s

with a beamwidth of 0.008 m. In this test, when the three conditions are satisfied, the beam

will spread as it progresses through the tube with a uniform distribution of particles. Using

a DH-based EM-PIC formulation and point particles for particle shape, by following section

2.4.3, a self-consistent charge conserving EM-PIC scheme was created. Point particles are

used because without introducing errors, it removes the need to compute the volume of

a particle passing through a face, which can be extremely difficult in three dimensions,

The error in the continuity equation and Gauss law is found in Figure 2.13, showing that

satisfying conditions two and three is possible with a nearest grid point algorithm in FEM.

The trend of the spreading beam is compared to that of an EB-MFEM-PIC and a FDTD

based EM-PIC formulation in Figure 2.14.

Lastly, we examine the expansion of a plasma ball. A spherical plasma ball is given

a Gaussian distribution of ions and electrons in a geometry with first order absorbing
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Figure 2.12: Particle beam comparison of DH-MFEM-PIC and FDTD-PIC. © 2021 IEEE

(a) (b)

Figure 2.13: Error in the continuity equation (2.13a) and Gauss’ law (2.13b) for the particle
beam case. © 2021 IEEE

boundary conditions. The experiment was simulated with the DH-FEM formulation with

a point particle shape. A combination of (A+ ions at 1K and electrons at 100K are placed at

a density of 5× 108 particles per cubic meter such that the system is initially charge neutral.

Further details on the experiment setup can be found in [?] and derivations of the analytic

results in [83]. As is evident from Figure 2.15, we achieve excellent agreement with the

analytic results. Again, because all the conditions are satisfied, the continuity equation

and errors in Gauss’ law are kept to machine precision.
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Figure 2.14: Particle Beam for FDTD, ��, and �� formulation © 2021 IEEE

Figure 2.15: Electron density of expanding adiabatic plasma ball using DH-MFEM-PIC
compared to analytic expected densities. © 2021 IEEE
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2.6 Summary and conclusions

In this work, we have presented a framework to define self-consistent EM-PIC schemes.

By considering the space of functions used to represent fields, fluxes, and sources, one

can ensure that all the relationships between Maxwell’s equations are preserved in a

consistent manner. This has been demonstrated for FDTD and two formulations of FEM,

and shown how it generalizes and relates to well known previous work. The framework

is easily related to other field solvers not mentioned directly provided one considers the

relationship of the basis functions. Future work will apply this framework to higher order

basis functions and particle paths.

© 2021 IEEE. Reprinted, with permission, from Crawford, Zane D., Scott O’Connor,

John Luginsland, and B. Shanker. "Rubrics for Charge Conserving Current Mapping in

Finite Element Electromagnetic Particle in Cell Methods." IEEE Transactions on Plasma

Science (2021).
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CHAPTER 3

HIGHER ORDER CHARGE CONSERVING ELECTROMAGNETIC FINITE
ELEMENT PARTICLE IN CELL METHOD

3.1 Introduction

Modeling novel beam-wave interaction devices, such as accelerators, vacuumelectronics,

and directed energy devices [84, 85, 86] relies on robust numerical tools capable of self-

consistent analysis of the interaction of a plasma with electromagnetic fields. This is

typically done using an electromagnetic particle-in-cell (EM-PIC) method to evolve a given

plasma distribution in time and space [11]. It consists of a method that discretizes both the

Newton’s equations of motion and a Maxwell’s field solver. The coupling between the two

is effected through the Lorentz force due to the electric field and magnetic flux density.

Given the range of applications, there has been extensive interest in developing PIC solvers;

a majority of those used in field are based on finite difference time domain (FDTD) methods

[50]. The simplicity of the formulation, ease of particle position updates, and readily

available parallelization algorithms make this approach an attractive workhorse for PIC.

In what follows, we will use the a concatenation of abbreviations to denote regime and

method to solve PIC. For instance, EM-FDTDPIC denotes an electromagnetic PIC using

FDTD.

While EM-FDTDPIC has a number of advantages, there has been significant recent

effort to explore the advantages offered by finite element methods to solving PIC problems.

To a large part, this is driven by success of this methodology in microwave and millimeter

frequency regimes wherein the success of this method has been demonstrated in analysis

and design of complex topologies and electrically large objects. The foray of FEM into PIC

is not without challenges, the principal of which is charge conservation. To understand

this, note that in evolving the fields, we only solve the two curl equations (Faraday’s and
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Ampere’s laws) and need a framework wherein Gauss’ law are satisfied as well. This

implies that discretization in space and time should be such that these laws are satisfied.

Ref. [87] rigorously develops the conditions that should be satisfied, and demonstrates

how current EM-PIC formulations satisfy these conditions. For instance, the spatial and

temporal basis sets used in an explicit FDTD time-stepping scheme, together with an

appropriate integration of the path, satisfies these constraints. Developing such a method

for for FEM was a long standing challenge.

This was solved recently; see pioneering papers by [88, 51, 89, 90]. The methods

introduced here were based on explicit updates of field solution and particle position, and

on the proper representation of quantities on the underlying discrete mesh. In the same

vein, a Poisson bracket approach that utilizes Whitney forms defined by B-spline FEM

formulations [91] to define a structure-preserving EM-PIC scheme [53, 92], with several of

these methods using higher order basis sets. Note, in manner akin to FDTD, one solves all

of Maxwell’s equations. In an explicit setting, this approach avoids exciting null spaces

(and corruption of Gauss’ law due to these null spaces) [93, 94, 95].

But restriction of field solve to an explicit field update has challenges; it is only

conditionally stable and the smallest time step is governed by the finest feature in the

model and not the physics. Overcoming this bottleneck has a well known remedy. Indeed,

Newmark-Beta methods are unconditionally stable and the constraint on time comes from

the physics that one needs to captures. But implicit field solve implies the need to rethink

PIC solves such that the Gauss’ laws are satisfied. A problem that is unstated is that

implicit solves introduce a null space; for Maxwell solvers, this null space is of the form

∇)(r) and for the wave equation, this null space is of the form C∇)(r). It is apparent that

the null space will corrupt the satisfaction Gauss’ laws in addition to other challenges. This

problem was solved recently [96, 97]. Specifically, imposition of Coulomb Gauge using a

quasi-Helmholtz decomposition (in simply connected systems) in [97] enables satisfying

Gauss’ law to machine precision for both the Maxwell solver and the wave equations. This
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implies that the infrastructure that is already in place to solve the vector wave equation can

readily used for PIC analysis.

As we build this line of progress, the next ingredient that is missing is higher order basis

sets for field, current and particle representation within a PIC framework. Hierarchical and

interpolatory basis functions are known for FEM field solvers [98, 99, 100]. For smoothly

varying geometries, higher order bases provide more accurate fields while utilizing fewer

degrees of freedom. Furthermore, these higher order formulations satisfy the relationships

of the de-Rahm complex [101, 102, 103, 104]. Developing a higher order EM-FEMPIC

framework will be the key contribution of this paper. Specifically, we will present an

unconditionally stable, exact current mapping FEM EM-PIC scheme that uses higher order

basis functions on tetrahedral meshes.

The rest of this paper is organized as follows: In Section 4.2 provide a brief problem

statement. Next, in Section 3.3, we define the spatial and temporal discretization of the

problem. Section 3.3.2 describes the current mapping scheme used to conserve charge

regardless of the time marching scheme. In Section 4.4, we present results that demonstrate

the use of the higher order FEM-PIC scheme. Finally, we conclude this paper in Section 4.5

outlining future directions of research.

3.2 Problem Statement

Consider a region of free space Ω containing charged species that is bounded by %Ω.

For simplicity we consider only a single species. The permittivity and permeability of free

space are denoted as �0 and �0, and the speed of light denoted using 2 = 1/√�0�0. There

also exists a time-varying electromagnetic field due to moving charges and potentially an

impressed electromagnetic field. The distribution of the charge species can be represented

by a phase space distribution function (PSDF) 5 (C , r, v) that satisfies the Vlasov equation

%C 5 (C , r, v) + v · ∇ 5 (C , r, v)+ (3.1)
@

<
[E(C , r) + v × B(C , r)] · ∇E 5 (C , r, v) = 0.
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Next, will describe how the equations to be solved and how the problem is discretized in

space and time.

3.3 Overview of Discrete Solutions

To solve the above equations, we start with defining charge and current density in

terms of the PSDF, �(C , r) = @
∫
Ω
5 (C , r, v)3v and J(C , r) = @

∫
Ω

v 5 (C , r, v)3v. Using a particle

approximation using #? samples with shape functions ((r), one obtains

�(C , r) = @
#?∑
?=1

((r − r?(C)) (3.2a)

J(C , r) = @
#?∑
?=1

v(C)((r − r?(C)) (3.2b)

where r?(C) and v?(C) are the position and velocity of particle ?. In this work the shape

functions are chose to eb Dirac delta functions, though generalization to other shape

functions is possible [87]. The particular choice shape function is immaterial to the results

of this paper. The electromagnetic fields, E(C , r) and B(C , r), are solutions to Maxwell’s curl

equations

− %B(C , r)
%C

= ∇ × E(C , r) (3.3a)

%D(C , r)
%C

= ∇ ×H(C , r) − J(C , r) (3.3b)

and satisfy Gauss’ laws

∇ · B(C , r) = 0 (3.4a)

∇ ·D(C , r) = �(C , r). (3.4b)

The fields are also subject to boundary conditions which are either Dirichlet, Neumann, or

impedance boundary conditions on %Ω� , %Ω# , or %Ω� which bound the domain as

=̂ × E(C , r) = Ψ�(C , r) on %Ω� , (3.5a)

=̂ ×H(C , r) = Ψ# (C , r) on %Ω# , (3.5b)
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=̂ × B(C , r)
�
− .=̂ × =̂ × E(C , r) = Ψ�(C , r) on %Ω� . (3.5c)

The fields, which are defined with respect to the free space background medium, are

related to the fluxes through constitutive relations

D(C , r) = �0E(C , r) (3.6a)

H(C , r) = �−1
0 B(C , r). (3.6b)

The source definitions are used to evolve the particle positions using Newton’s equations

of motion and Lorentz force, viz., F(C , r) = @(C , r)(E(C , r) + v(C , r) × B(C , r)). The simulation

follows the usual PIC cycle: particles are mapped to a discretized space to solve for the

electric field and magnetic flux density, which are in turn used to push the particles,

defining a new current and particle positions, restarting the cycle. Though the PSDF is

sampled with particles, the total description of the electromagnetic problem is continuous,

and must be discretized in space and time.

3.3.1 Discretization in Space

Assume that the domain Ω is represented using a collection of finite elements K =

{N , ℰ , ℱ ,T } defined using #= nodes, #4 edges, # 5 faces and #C tetrahedron. Each

tetrahedron contains basis functions to represent fields, fluxes, and sources that follow

the de-Rham sequence as seen in Fig. 3.1[99, 100]. This sequence preserves the differential

relations between the quantities of interest, such that the curl of a field is a flux, the

divergence of a flux is a charge. The Hodge star operator★maps a field to a flux on a dual

mesh.It is well known that Whitney basis functions can be used to represent the electric

field and magnetic flux [105, 106, 51].

For a :th order interpolatory basis functions, the electric field is represented using

#1 higher order Whitney edge basis functions, E(C , r) = ∑#1
8=1 48(C)W

(1)
8
(r), where there are

6(: + 1) degrees of freedom associated with edges, 4:(: + 1) degrees of freedom associated

with faces, and :(:2 − 1)/2 associated with the cell volumes. The magnetic flux density is
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Figure 3.1: Relationship of fields and fluxes with respect to the de-Rham complex.

represented using #2 Whitney face basis function, B(C , r) = ∑#2
8=1 18(C)W

(2)
8
(r)where there

are (:+1)(:+2)/2 degrees of freedom associated with faces and :(:+1)(:+2)/2 associated

with the cell volumes. A more complete description of these basis functions is provided in

the Appendix.

We have chosen to define the problem such that Faraday’s law (3.3a), E(C , r), and B(C , r)

are defined on the primal grid. Therefore, Ampere’s law (3.3b), H(C , r), D(C , r), as well

as J(C , r),and �(C , r) are defined in the dual space on the corresponding dual grid. This

means that while the electric field and magnetic flux can be directly represented using a

Whitney basis on the primal mesh, the sources �(C , r), J(C , r) cannot. On structured grids it

is straightforward to define dual basis function spaces to represent dual quantities, however,

on an unstructured FEM mesh the dual fields are only indirectly accessible via Hodge

operators. Therefore the source distribution �(C , r) cannot be directly represented, and is

instead measured with higher order nodal basis functions on the primal mesh, which are

defined in the Appendix. The current density J(C , r), which lies in the same space as D(C , r),

is measured by the the electric field basis, the higher order Whitney edge functions.

Before we proceed with prescribing the discrete framework, consider an auxillary

function

G(C , r) =
∫ C

0
J(�, r)3� (3.7)

such that Ampere’s law is rewritten as

%D(C , r)
%C

= ∇ ×H(C , r) − %G(C , r)
%C

. (3.8)

Using (3.8) and Faraday’s law and spatial basis functions defined earlier, one may write the
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discrete system as 
[★�−1] 0

0 [★&0]

︸            ︷︷            ︸
¯̄"


%C �̄(C)

%C�̄(C)


+


0 [∇̃×]

−[∇̃×]) [★�]

︸               ︷︷               ︸
¯̄(


�̄(C)

�̄(C)

 =


0

−%C �̄(C)
&

︸    ︷︷    ︸
¯̄�

(3.9)

where thedegreeof freedomvectors �̄(C) = [41(C), 42(C), . . . , 4#4 (C)], �̄(C) = [11(C), 12(C), . . . , 1# 5
(C)],

and �̄(C) = [61(C), 62(C), ...6#4 (C)] with 68(C) = 〈W(1)8 (r),G(C , r)〉.The coupled system matrix

is composed of discrete Hodge matrix operators

[★&]8 , 9 = 〈W(1)8 (r), � ·W
(1)
9
(r)〉 (3.10)

[★�−1]8 , 9 = 〈W(2)8 (r), �
−1 ·W(2)

9
(r)〉, (3.11)

the surface impedance matrix

[★�]8 , 9 = 〈=̂8 ×W(1)
8
(r), �−1=̂ 9 ×W(1)

9
(r)〉%Ω (3.12)

and a discrete curl matrix

[∇̃×]8 , 9 = 〈W(2)8 ,∇ ×W(1)
9
(r)〉. (3.13)

The operator 〈·, ·〉 and 〈·, ·〉%Ω define a volume and surface integral, respectively, over the

support of the basis functions, which is either a tetrahedron or face. The curl matrix [∇̃×]

includes the metric information, unlike the definition usually obtained through discrete

exterior calculus [∇×], which has entries of only 0,+1, or -1. For lowest order : = 1, this

definition can be obtained as

[∇×] = [★�−1]−1["2]; (3.14)

however, the simplicity of defining the matrix by inspection is lost for : > 1.
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3.3.2 Evolution of Particle Path and Current Mapping

The fields are evolved in time using an unconditionally stable Newmark-beta time

marching scheme [107]. This allows larger time steps than would be afforded by a leapfrog

method. In this framework, the current mapping (or evolution of charge) has to be

consistent with that used for evolution of fields. Unfortunately, a naive approach to

incorporate the particle current as the forcing function will violate conservation of charge.

The method presented in [96] is agnostic to any time stepping method used for a field solve,

and overcomes this bottleneck. In this paper, a similar method is used, but adapted to a

higher order basis function in space. Using the definition of the particle current density in

(3.7), the Newmark-beta time marching scheme is defined as

(� ¯̄" + �ΔC ¯̄()-̄=+1 − �ΔC ¯̄(-̄= + (� ¯̄" + �ΔC ¯̄(")-̄=−1

+ �ΔC ¯̄�=+1 + �ΔC ¯̄�=−1 = 0
(3.15)

where -̄< = [�̄)(C<) �̄)(C<)] and ¯̄�< = [0 − �−1�̄)(C<)]. The degree of freedom vector

�̄ = [61(C), 62(C), · · · , 6#4 (C)] with 68(C) = 〈W(1)8 ,G(C , r)〉. The parameters � and � are used

to change the stability of the scheme, often choosing � = .5 and � = .25. To define the

forcing function �̃, it is necessary to use an integration rule appropriate for the product

of the higher order edge basis function and the particle path, which may also be a higher

order polynomial. A key point that should be noted is the de-linking of the time stepping

algorithm used for particle push and field updates. Consistency is ensured by proper

inclusion in the right hand side of (4.3). Note, that this assumes non-relavistic motion. In

this work, a fourth order Adams-Bashforth push is used, making the particle path a fourth

order Lagrange polynomial.

3.3.3 Satisfaction of Gauss’s Magnetic Law

While the above equation can be used, as shown [97] one would need to impose a

Coulomb gauge to ensure that the null spaces do not corrupt the solution. The level
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of the null space that is excited depends on the accuracy of the solution at every time

step; which in turn, is related to how well the initial conditions are remembered in a

time marching system. While [97] used a topological framework, here we investigate an

alternate approach. Our goal is more modest and targeted. We seek to examine particle

motion due to impressed magnetic lenses, we want to ensure the discrete representation of

impressed magnetic flux density is divergence free when represented using Whitney basis.

To that end, consider reconstructing an impressed magnetic flux density B8(C , r) which

satisfies (3.4a). The usual approach to obtain the coefficients to approximate B8(C , r) would

be to use Galerkin testing with the divergence-conforming basis set

[★�−1]b = f (3.16)

where f8 = 〈W(2)8 (r),B8(C , r)〉. However, this construction of B̃8(C , r) will not satisfy Gauss’s

law unless B̃8(C , r) = B8(C , r). This is accomplished by solving an optimization problem

where Gauss’s magnetic law is the constraint.


[★�−1] [∇·])

[∇·] 0



b

�

 =

ℬ

0

 (3.17)

For the lowest order spatial basis functions, the discrete divergence operator [∇·] can be

written by inspection. The discrete divergence operator for higher orders, like the discrete

curl operator, cannot be written as easily. It can be written as

[∇·] = [★3]−1[∇̃·] (3.18)

where

[★3]8 9 = 〈, (3)8 (r),,
(3)
9
(r)〉 (3.19)

and

[∇̃·]8 9 = 〈, (3)8 (r),∇ ·W
(2)
9
(r)〉 (3.20)
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Table 3.1: Satisfaction of Gauss’ Magnetic Law for Linear Field

< err in B err in ∇ · B err in B err in ∇ · B
1 1.0604 × 10−1 2.9681 × 10−5 1.1367 × 10−1 4.5062 × 10−19

2 1.1049 × 10−15 6.1606 × 10−19 1.2201 × 10−15 4.4173 × 10−19

3 3.8299 × 10−15 1.9566 × 10−18 9.8539 × 10−15 3.9481 × 10−18

Table 3.2: Satisfaction of Gauss’ Magnetic Law for Sinusoidal Field

< err in B err in ∇ · B err in B err in ∇ · B
1 1.3198 × 10−2 1.6310 × 10−5 1.5048 × 10−2 1.1404 × 10−18

2 6.1965 × 10−4 3.1300 × 10−7 5.8211 × 10−4 1.2061 × 10−18

3 6.3122 × 10−6 2.7822 × 10−9 7.0793 × 10−6 1.0762 × 10−17

with, (3)(r) as the higher order volumetric basis function, which is defined in theAppendix.

This allows the reconstructed field, regardless of the error in the representation of the

original function, to still satisfy (3.4a).

Consider the tests done in Table 3.1 and 3.2. In this test, a divergence free function

was reconstructed in a volume 50 cm × 15 cm × 20 cm, for several orders of spatial basis

functions. In Table 3.1, the function B(r) = HĜ + GĤ can be reconstructed exactly with

second order and higher basis functions. Therefore, once the function was modeled

correctly to machine precision, the divergence free nature of the reconstructed field is

seen in both the constrained and non-constrained formulation. However, in Table 3.2, the

function was B(r) = sin
(
H
)
Ĝ + cos(G)Ĥ), which cannot be represented exactly by a finite

set of polynomials. Despite having similar accuracy, only the constrained formulation

satisfies (3.4a). It is evident that the formulation has the desired properties with respect to

representation of fields. As alluded to earlier, we will use this only for representing only

the impressed field. A topological approach, akin to [97], is being developed an will be

presented in later papers.

3.4 Results

In this section, we present several numerical tests using higher order FEM-PIC. Particle

free results are provided here to demonstrate correctness of our implementation. We
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demonstrate that the higher order basis functions presented satisfies the continuity equation

and Gauss’ law for a number of cases using the stated particle mapping scheme.

3.4.1 Higher Order Cost

Here we present the error in computed fields with respect to number of unknowns

and basis function order. The relative error in a field propagating through a region of

free space is shown in Fig. 3.2. The region is 0.25 m × 0.2 m × 0.5 m in size. The normally

incident electric field is defined as

�̄(Ā , C) = Ĥ cos
(
2� 50�

)
4−(�−8�)2/2�2 (V/m), (3.21)

where where � = C − Ā · Î/2, � = 3/[2( 5max − 50)] with the center 50 = and maximum

frequency denoted 5max = 195"�I. The relative error is defined as

relative error =
| |E(A)

8
− E(0)

8
| |2

| |E(0) | |2
(3.22)

. It take several orders of magnitude more unknowns for a first order basis function to reach

the same level of accuracy as a second order basis function. The trade off is the condition

number of the system increases by roughly an order of magnitude as the order increases

which effects the rate at which an iterative solver will converge. Therefore, consideration

can be taken in balancing the size of the problem and simulation time for a given error.

3.4.2 Higher Order Particle Motion

The first examplewith particles is the orbit of a single particle around a nucleus. This test

demonstrates when higher order bases give more accurate particle trajectories. At a certain

distance, a particle with initial velocity perpendicular to the radial electric field will result

in a circular orbit in a plane. In this test, a particle with initial velocity v = 3 × 106)̂m/s

is set .25m from the centroid of a cylindrical ring geometry. The geometry has an inner

radius of .2m and outer radius of .3m. Five meshes were generated to compare refinement
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Figure 3.2: Relative Error in EC ,r for field propagating through free space.

in the edge length to basis function order. The electric field due to a nucleus with a charge

of &= = 1.423=� is reconstructed using the higher order interpolatory Whitney edge basis

set and used to push the electron in the geometry. The analytic definition of the electric

field is

E(r) = &= Â

4��r · r (3.23)

which, unlike the constant magnetic field used for cyclotron motion experiments, can be

improved by using higher order spatial basis functions. The experiment was run for 6000

time steps with ΔC =0.4ns, which corresponds to approximately 4 cycles. The effect of the

higher order basis functions can be seen in 3.3 and 3.4 where the relative error is defined in

(3.22).

For both the Î and �̂ components of the electric field, the error in the fields converges.

The improvement of the field error translates to an improvement of the particle trajectory. In

3.5, the relative error is shown for the Î component of the particle position. A key takeaway

is that using a higher order basis function leads to more accurate particle trajectories than

simply refining the mesh.
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Figure 3.3: Relative Error in E� for orbital motion

Figure 3.4: Relative Error in EI for orbital motion.

3.4.3 Plasma Ball

In this example, we simulate an adiabatic expansion of a plasma ball. This example has

both approximate analytic solutions [108] as well as experimental data [109]. A Gaussian

distribution of 12000 (A+ ions and electrons a placed at the center of a spherical geometry

that enclosed with a first order absorbing boundary condition. The initial temperature

of (A+ ions is 1K and electrons are 100K placed at a density of 5 × 108 particles per cubic

meter such that the particles are and will remain sufficiently away from the boundary.
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Figure 3.5: Relative Error in r for orbital motion.

Here, we use three geometries; the first with a radius of 6 cm with an avergae edge length

of 1.02 cm, the second 12 cm with average edge length of 2.04 cm, and the third 18 cm

with average edge length of 3.06 cm. The experiment was run with first and second order

basis functions, with a comparison to the analytic solution in Table 3.3. Though there is

good agreement between all of the experimental and analytic data, there is not a clear

improvement as order increases. This is due to the fields being well behaved enough in

this example that they are approximated well enough by the first order basis functions.

3.4.4 Expanding Particle Beam

In this test, we demonstrate an expanding plasma beam in the PEC cavity. This test is a

standard test to confirm charge conservation as errors will accumulate and cause striations

in the beam. Additionally, quasi-analytic solutions and comparisons to this method and

other discretization schemes can be found in [110]. Macroparticles are injected into the

cavity at an initial velocity and are allowed to repel each other as they progress down the

cavity. The parameters used in this experiment are included in Table 3.4.

Key here is that the higher order basis functions are defined such that the differential

relations between the basis functions for the electric field and magnetic flux are preserved.
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Table 3.3: Plasma Ball expansion for different basis function orders and geometry radii

: 1 2

Radius

6 cm

12 cm

18 cm

Table 3.4: Expanding Particle Beam Parameters

Parameter Value
Cavity Radius 20 mm
Cavity Length 100 mm

Boundary Conditions PEC
E0 1.02 · 107 m/s
E0/2 0.16678

beam radius A1 8.00 mm
Number particles per time step 10

species electrons
Turn on time 2 ns
beam current 5 mA

macro-particle size 103921.12
min edge length 3.89 mm
max edge length 13.5 mm

ΔC 33.3 ps
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Figure 3.6: Relative Error of �̃(C , r) vs −[∇]G(C , r) for particle beam.

Table 3.5: Error in impressed Quadrupole Fields

basis order 1 basis order 2 basis order 3
#2 error #2 error #2 error

140629 9.835 × 10−2 89502 1.143 × 10−2 28488 1.726 × 10−2

597623 3.8299 × 10−2 343812 3.803 × 10−3 103876 3.9481 × 10−3

637050 2.424 × 10−3 240270 6.932 × 10−4

First, consider the error in the measured charge density as defined by (3.22) shown in

3.6. Here, the error is small and saturates as the total number of particles in the cavity

stabilizes. The increase of error as the basis function order increases can be attributed to

the increase of the condition number of the mass matrix that is inverted to compute the

divergence of the integrated current. The error between the divergence of the electric flux

and integrated current is shown in 3.7. The error is near machine precision, demonstrating

the higher order divergence operator acting on the curl of the magnetic field does go to

zero. Lastly, different time marching schemes can be taken by varying the values of � and

� in (4.4) using first order spatial basis functions. The error in Gauss’ law for three different

time marching schemes is shown in 3.8, where average acceleration has � = .5, � = .25,

backward difference has � = 1.5, � = 1„ and galerkin has � = 1.5, � = .8. The error remains

at machine precision as expected. In total, this shows that the representation of the particle

in the simulation is correct and that Gauss’ law is satisfied.
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Figure 3.7: Relative Error of [∇·]D(C , r) vs−[∇]G(C , r) for particle beam.

Figure 3.8: Relative Error of [∇·]D(C , r) vs−[∇]G(C , r) for particle beam with different time
marching schemes.
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Figure 3.9: Schematic for perfect electrical conducting box with Pafonsky quadrapole
(shaded).

3.4.5 Pafonsky Quadrupole

In this example, the Panofsky quadrupole used in [111] is modeled. This example uses

higher order basis functions to get more accurate impressed fields using fewer degrees

of freedom than a lower order method. From Table 3.5, a mesh with more than several

million degrees of freedom would be needed to obtain a result with similar error in the

impressed fields. This would significantly effect the time needed to simulate the result.

The quadrupole is 13.4 cm in width, 5.6cm in height, and .044 cm in height, shown in Fig.

3.9. We define a rectangular PEC cavity with the quadrupole .011cm from the xy-plane.

The fields due to the quadrapole are calculated by evaluating Bio-Savart’s law using the

defined current density. It would be too expensive to recalculate the fields as particles

pass through the system, therefore the coeffiecients needed to reconstruct the fields are

obtained through (3.17), which also enforces (3.4a). Particles are emitted from the xy-plane

at I = 0, passing through the fields generated by the quadrupole. The beam is emitted

such that the beam will focus in the H-dimension and defocus in the G-dimension. The

iterative solver tolerance for both the fields and the divergence enforcement was set to

1e-5. A snapshot of the particle positions at 35.7 ns is shown in Fig 3.10 and 3.11, where

the background magnetic flux density BH(C , r) and BG(C , r) are plotted, respectively. The

particle beam smoothly expands in the G-dimension and compresses in the H-dimension

which is a sign that charge is being conserved correctly.
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Figure 3.10: Particle beam traveling in G− I plane in Pafonsky quadrapole with background
BH(C , r).

Figure 3.11: Particle beam traveling in H− I plane in Pafonsky quadrapole with background
BG(C , r).

3.5 Summary

In this work, we have presented a higher order, exact current mapped FEM-based

EM-PIC with unconditionally stable time marching. When higher order fields dominate

the physics being modeled, higher order basis functions can reduce the number of degrees

of freedom needed to model it while also getting more accurate fields. A method was

also provided to ensure that Gauss’ magnetic law is satisfied, which can occur when time

marching schemes other than leap frog are used. Future work will create quasi-Helmholtz

decomposition for higher order basis sets which will further increase the efficiency of using

higher order basis while also allowing fields obtained by the vector wave equation to be

used. Even with the use of higher order basis, there is a limit to the size of problem that

can fit on a single node. To handle this challenge, domain decomposition approaches for

Maxwell solvers will be developed.
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CHAPTER 4

DOMAIN DECOMPOSITION FRAMEWORK FORMAXWELL FINITE ELEMENT
SOLVERS AND APPLICATION TO PIC

4.1 Introduction

The design of novel accelerator and vacuum devices require computational tools

capable of simulating self-consistent interactions between plasma and electromagnetic

fields [85, 112, 113, 114]. This is commonly done by evolving a particle distribution in time

due to the Lorentz force defined by an electric field and magnetic flux density; this includes

both external/impressed and those generated by the acceleration of charged species. The

predominant approach is the finite difference time domain based particle in cell method

(EM-FDTDPIC) [11]. This method has seen decades of use and advancement, primarily

due its ease of use and efficiency, as the fields can be determined from a simple recurrence

formula rather than matrix inversion. Furthermore, parallel implementations and fast

techniques have enabled EM-FDTDPIC to simulate large problems [115, 116, 117, 118].

However, there has been interest in exploring alternatives to EM-FDTDPIC. To a large

extent, this is motivated by the higher order fidelity that one can obtain in terms of both

geometry as well as physics.

In response to this need, the past decade has seen extensive effort to create an electro-

magnetic particle in cell method based around the finite element method (EM-FEMPIC);

see [50, 51] and papers therein. It has been shown that by choosing proper basis sets for

the fields and currents, it is possible to obtain charge conserving EM-FEMPIC schemes

through exact current mapping [119, 90, 51]. Unfortunately, these methods use explicit

time stepping with first order basis functions to represent both the fields, paticles, currents,

and time. More recent work has utilized higher order spatial basis better represent fields,

but the error in representation is still constrained by the representation for time [120];
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note, the moniker “structure-preserving” is used when referring to a method that uses

Whitney basis/ensures that the de-Rham relations hold. The downside of using explicit time

stepping is that it is conditionally stable, and the time step to ensure stability is determined

by the smallest feature size. Obviously, this is a challenge when analyzing plasma in

geometrically complex in structures.

More recent work provided a general framework for charge conservation to be satisfied,

irrespective of time stepping scheme [87]. A practical demonstration of satisfaction of

conservation laws for implicit unconditionally stable finite element scheme for Maxwell

equation was shown for a set of test problems in [96]. It was also shown in this paper, that

the proposedmethodologywas valid for awave equation FEM solver aswell. Unfortunately,

it is well known that there exists a null space that grows as C∇)(r) for the wave equation

solvers and a null space that varies as ∇)(r) for implicit Maxwell solvers, where )(r) is a

scalar field. While it may be possible to control the magnitude of the null space excited in

Maxwell solvers, the one for the wave equation unfortunately rears its head with time. The

development of a discrete Coulomb gauge in [97] shows how one may obtain a method that

satisfies Gauss’ laws for bothwave equation and Maxwell equation solvers. Despite this

progress, a fundamental bottleneck remains. All EM-FEMPIC methods are more expensive

than EM-FDTDPIC methods.

The reason for the efficiency of FDTD schemes fairly simple; there is no inversion

thanks to the structure of the method [121]. Unfortunately, FEM methods typically involve

inversion of matrices. As is well known, a naive direct inversion would cost O(#3
3> 5
)

per time step where #3> 5 is the number of degrees of freedom. This can be reduced to

O(#3> 5 log#3> 5 ) if a multifrontal sparse solver is used [?, 122] with O(#�
3> 5
?>;H;>6(#3> 5 ))

for factorization where � < 2 [123]. Alternatively, one typically uses an iterative solver

whose cost scales as O(#8C4A#3> 5 ), where #8C4A is the number of iterations which depends

on the error threshold. As a result, one takes recourse to preconditioners. But it has

been shown that the most computationally effective approach has been to use domain
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decomposition [124, 125]. A bulk of the effort has been applying this technique to amortize

the cost of wave equations and largely in the Fourier domain [126, 127, 128, 129], with

some scant papers in the time domain [130, 131]. The primary benefit of this approach is

to reduce the complexity of the problem by effectively reducing the size of #3> 5 that needs

to be inverted.

The domain decomposition approach in this work is the finite element tearing and

interconnecting (FETI) framework. Here, the domain is partitioned into multiple regions/-

subdomains. For each subdomain, the unknowns are divided into interior and boundary

quantities. The quantities on the boundary are shared between multiple subdomains, and

are related via appropriate transmission conditions. Via manipulations, one only solves for

unknowns on the boundary of the subdomains which is far fewer that the overall number

of unknowns. All interior unknowns can be related to the ones on the boundary. Note,

this differs from the domain decomposition approaches currently used for FDTD, which

takes a Schwarz approach which uses overlapping subdomains, requiring iteration of each

subdomain to get a converged solution[132].

Thus, the main contributions of this paper are as follows: (a) we derive two FETI

schemes for time domainMaxwell equation solvers, (b) these methods are then used within

an unconditionally stable EM-FEMPIC framework using an exact current mapping scheme,

and (c) we present a number of results that demonstrate the efficacy of the proposed

technique.

The rest of this paper is organized as follows. Section 4.2 will define the problem setup.

Section 4.2.1 will briefly review particle mapping approach used followed by the field

discretization in space and time in Section 4.2.2. Section 4.3 will define the two domain

decomposition formulations. Results using both of these methods will be presented in

Section 4.4 followed by conclusions and future work in Section 4.5.
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4.2 Preliminaries

Let a regionΩ ∈ R3 be bounded by surface %Ω and contain at least one charged species.

The charges are represented by a phase space distribution function (PSDF) that is subject

to the Maxwell-Vlasov equation

%C 5 (C , r, v) + v · ∇ 5 (C , r, v)+ (4.1)
@

<
[E(C , r) + v × B(C , r)] · ∇E 5 (C , r, v) = 0.

The electric field E(C , r) and magnetic flux density B(C , r) are obtained through the mixed

finite element method, which discretizes Faraday’s law and Ampere’s law. The PSDF is

evolved through the PIC cycle, which consists of:

1. Gathering the particles onto the mesh to be mapped into the field solve,

2. Solving for the fields due to the current from the particle motion,

3. Interpolating the fields at the particle positions,

4. Pushing the particles to new positions.

The following subsections will describe how Maxwell’s equations are discretized in space

and time, and how the particles are mapped into the field solver.

4.2.1 Current Mapping

The charge and current density is defined using the PSDF conventional definition,

�(C , r) = @
∫
Ω
5 (C , r, v)3v and J�(C , r) = @

∫
Ω

v 5 (C , r, v)3v. The PSDF is approximated by

using #? samples, or particles, with shape ((r) such that the charge and current density

are defined as �(C , r) = @∑#?

?=1 ((r − r?(C)) and J�(C , r) = @
∑#?

?=1 v(C)((r − r?(C))where r?(C)

and v?(C) are the position and velocity of particle ?. In this work, the shape functions are

delta functions, though other shape functions are also valid and can be used to improve

noise quality. The proper function to measure the charge density is the 0-form and the
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1-form for the current density. Different schemes to evolve Newton’s equations can be used

to preserve certain quantities like phase. In this work, to maintain accuracy of the time

evolution at larger time step sizes, the Adams-Bashforth scheme is used. Lastly, the time

integral of the current density

G(C , r) =
∫ C

0
3�J�(�, r) (4.2)

is used to allow the particle current to evolve consistently with the fields. Otherwise, there

is a disconnect between the continuity equation and Gauss’ law.

4.2.2 Field discretization

4.2.2.1 Spatial Discretization

The FEM formulation used in this work is the mixed finite element method. The basis

functions used are the 1-form W(1)(r) ∈ �(2DA;;Ω)which allows for tangential continuity of

fields, and the 2-form W(2)(r) ∈ �(38E;Ω)which allows for normal continuity of fluxes. The

reconstructed fields used to accelerate the particles are defined as E(C , r) = ∑#4

8=1 48(C)W(1)(r)

and B(C , r) = ∑# 5

8=1 18(C)W(2)(r)where #4 are the number of edges and # 5 are the number

of faces. Testing Faraday’s law with the 2-form and Ampere’s law with the 1-form leads to

the semidiscrete Maxwell system
[★�−1] 0

0 [★&0]

︸            ︷︷            ︸
¯̄�1


%C �̄

%C�̄


+


0 ["2]

−22["2]) 2[★�]

︸                  ︷︷                  ︸
¯̄�0


�̄

�̄

 =

0
!̄
�

︸︷︷︸
¯̄�

(4.3)

where thedegreeof freedomvectors �̄ = [41(C), 42(C), . . . , 4#4 (C)], �̄ = [11(C), 12(C), . . . , 1# 5
(C)],

and !̄ = [;1(C), ;2(C), ...;#4 (C)]with ;8(C) = 〈W(1)8 (r), JB(C , r) − %CG(C , r)〉. The surface currents
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JB(C , r) exist on %Ω due to a Neumann or Robin boundary condition. The integrated particle

current is chosen to satisfy charge conservation for arbitrary time marching schemes.

4.2.2.2 Temporal Discretization

This work utilizes the Newmark-� time marching scheme to evolve the fields in time

with parameters � and �, which creates an unconditionally stable time marching scheme

when � = .5 and � = .25. Other choices can lead to different stability conditions. The

parameter choices effect the definition of a temporal basis function #(C) that is tested by a

function,(C) [133]. When (4.3) is discretized with Newmark-� with � = 0.5 and � = 0.25,

the fully discretized system becomes

(0.5 ¯̄�1 + 0.25ΔC ¯̄�0)-̄=+1 − .5ΔC ¯̄�0-̄
=

+ (0.5 ¯̄�1 + .25ΔC ¯̄�0)-̄=−1 + 0.5ΔC�̃=+1 + 0.5ΔC�̃=−1

+ 0.25ΔC �̃=+1 − 0.5ΔC �̃= + 0.25�̃=−1 = 0.

(4.4)

Here, -̄< = [�̄< �̄<]) , �̃< = [0 �−1�̄]<,) , and �̃< = [0 �−1 �̄<B ] at time step<. The boundary

current �̄<B is tangential to a surface. As it has no normal component, it does not contribute

to Gauss’ law and therefore does violate charge conservation.

4.3 Domain Decomposition

Consider the region Ω depicted in Fig. 4.1 that is divided into #E non-overlapping

subdomains where subdomain Ω8 and Ω9 are separated by boundary Γ8 9 . The junction of

more than two volumes is a "corner" denoted by Γ2 . In each subdomainΩ8 , (4.4) is defined

and is assumed to be a self contained “primal" problem that has fictitious excitations from

"dual" unknowns. The dual unknowns, the Lagrange multipliers denoted by Λ, effect

either Neumann or Robin boundary conditions such that the equivalence theorem can be

applied for each Ω8 with respect to Ω using the external currents on %Ω8 , the fictitious

boundary current fromΛ, and the particle current inΩ8 . By solving for the dual unknowns
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Figure 4.1: Region Ω partitioned into #E subdomains.

and a small subset of the primal unknowns, the overall computational cost of solving the

original monolithic system in (4.4) is reduced.

4.3.1 MFEM-DP 1

The first formulation presented uses a Neumann-like boundary condition to enforce

the continuity conditions of the fields at the interior boundaries,

=̂ × E8(C , r) = =̂ × E9(C , r) r ∈ Γ8 9 (4.5a)

=̂ · B8(C , r) = =̂ · B9(C , r) r ∈ Γ8 9 . (4.5b)

This is accomplished by ensuring x=
8
= x=

9
|Γ8 9 and defining

=̂ ×H8(C , r) = Λ(C , r) r ∈ Γ8 9 . (4.6)

The system of equations to be solved in each sub-region(
0.5 ¯̄�(8)1 + 0.25ΔC ¯̄�(8)0

)
-̄(8),=+1 = ℒ(8) −Λ(8) (4.7)
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where

ℒ(8) = 0.5ΔC ¯̄�0-̄
(8),=

−
(
0.5 ¯̄�(8)1 + .25ΔC ¯̄�(8)0

)
-̄(8),=−1 − 0.5ΔC�̃(8),=+1

− 0.5ΔC�̃(8),=−1 − 0.25ΔC �̃(8),=+1 + 0.5ΔC �̃(8),=

− 0.25�̃(8),=−1.

(4.8)

It is noted that the time history of the Lagrange multiplier is not explicitly stored, unlike the

other currents in the system. Let the unknowns defined on Γ2 be denoted by the subscript

2 and all other unknowns in Ω8 denoted by subscript A, such that (4.7) can be written as
¯̄�(8)AA ¯̄�(8)A2
¯̄�(8)2A ¯̄�(8)22



-̄
(8),=+1
A

-̄
(8),=+1
2

 =

ℒ(8)A
ℒ(8)2

 −

Λ̄
(8)
A

Λ̄
(8)
2

 (4.9)

where ¯̄� = .5 ¯̄�1 + .25ΔC ¯̄�0. The first set of equations can be rewritten as

-̄
(8),=+1
A =

¯̄�(8),−1
AA (ℒ(8)A − ¯̄�(8),−1

A2 -̄
(8),=+1
2 − Λ̄(8)A ) (4.10)

which can be substituted into the second set of equations( ¯̄�(8)22 − ¯̄�(8),−1
2A

¯̄�(8),−1
AA

¯̄�(8)A2
)
-̄
(8),=+1
2 = ℒ(8)2

− ¯̄�(8)2A ¯̄�(8),−1
AA

(
ℒ(8)A − Λ̄(8)A

)
− Λ̄(8)2 .

(4.11)

Define a signed Boolean matrix ¯̄�(8)A that maps unknowns in Ω8 , excluding those on

Γ2 , to a set of unique global unknowns defined on ∪Γ8 9 . The definition of ¯̄�(8)A is such that∑#E
8=1
¯̄�(8)A Ḡ(8) = 0, which enforces (4.5a) and (4.5b). Furthermore, the transpose ¯̄�(8),)A forms

a map from the global set of boundary unknowns to those of a particular volume. A

similar unsigned Boolean matrix can be defined for unknowns that lie on Γ2 within Ω8 , ¯̄�2 ,

which maps to a set of unique global unknowns. Using ¯̄�A on (4.10) and summing over all

volumes results in
¯̄ AAΛA = ℒ̄A − ¯̄ A2-̄2 (4.12)
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where
¯̄ AA =

#E∑
8=1

¯̄�A ¯̄�(8)AA ¯̄�(8),)A (4.13a)

¯̄ AA =
#E∑
8=1

¯̄�A ¯̄�(8)AA ¯̄�(8)A2 ¯̄�(8),)2 (4.13b)

ℒ̄A =
#E∑
8=1

¯̄�(8)A ¯̄�(8),−1
AA ℒ(8)A (4.13c)

and -̄2 the degree of freedom vector for corner unknowns.

The boundary condition (4.5a) is enforced at the corners of Ω8 as ¯̄�(8)2 is defined so that∑#E
8=1
¯̄�(8),)2 �(8)2 = 0. Using that definition, (4.11) becomes

¯̄ 22-̄=+1
2 = ℒ̄2 + ¯̄ 2AΛA . (4.14)

where
¯̄ 22 =

#E∑
8=1

¯̄�(8)2 ( ¯̄�(8)22 − ¯̄�(8),−1
2A

¯̄�(8),−1
AA

¯̄�(8),−1
A2 ) ¯̄�(8),)2 (4.15a)

¯̄ 2A =
#E∑
8=1

¯̄�(8)2 ¯̄�(8)2A ¯̄�(8),−1
AA
¯̄�(8),)A (4.15b)

ℒ̄2 =
#E∑
8=1

¯̄�(8)2 (ℒ(8)2 − ¯̄�(8)2A ¯̄�(8),−1
AA ℒ(8)A ). (4.15c)

As in the vector wave equation domain decomposition formulations, ¯̄ 22 is sparse and

generally much smaller than ¯̄ AA . Therefore, if solving the boundary problem directly, it is

possible to define

-̄=+1
2 =

¯̄ −1
22

(
ℒ̄2 + ¯̄ 2AΛA

)
(4.16)

and then use substitution into (4.12) to yield

¯̄KAAΛA = ℒ̄A − ¯̄ A2 ¯̄ −1
22 ℒ̄2 (4.17)

where ¯̄KAA =
( ¯̄ AA + ¯̄ A2 ¯̄ −1

22
¯̄ 2A

)
. If using an iterative solver, (4.12) and (4.14) can be solved

as a coupled system instead.
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4.3.2 MFETI-DP2

In the previous formulation, a unique Lagrange multiplier was defined for each edge

and face on Γ. This formulation enforces field continuity though a Neumann-like boundary

condition. A more robust enforcement of field continuity is to use a Robin boundary

condition [106]. The boundaries between Ω8 and Ω9 , Γ8 9 and Γ98 , are distinct and have a

unique Lagrange multiplier defined for each subdomain. Instead of (4.6), the boundary

condition on the Lagrange multipliers becomes

Λ(8)(C , r) = =̂8 ×H(C , r) − �−1=̂8 × =̂8 × E(C , r) ∈ Γ8 9 . (4.18)

The edges on Γ8 9 , as well as the interior unknowns and unknowns on %Ω8 are included

in a vector -̄(8)
�
. The Lagrange multipliers for the corner edges remain the same, with a

unique Lagrange multiplier for each feature. The faces on an Γ8 9 are grouped together with

the corner edges, which we will denote as -̄# . The system of equations solved in each

subdomain is 
¯̄�(8)
��

¯̄�(8)
�#

¯̄�(8)
#�
¯̄�(8)
##



-̄
(8),=+1
�

-̄
(8),=+1
#

 =

ℛ(8)
�

ℛ(8)
#

 −

.5ΔCΛ̄(8),=+1

�

Λ̄
(8)
#

 ∈ Ω8 (4.19)

where given

ℛ = .5ΔC ¯̄�0-̄
=

− (.5 ¯̄�1 + .25ΔC ¯̄�0)-̄=−1 − .5ΔC�̃=+1 − .5ΔC�̃=−1

− .25ΔC �̃=+1 + .5ΔC �̃= − .25�̃=−1 − .5ΔCΛ= + .25Λ=−1,

(4.20)

ℛ(8)
�

contains ℛ associated with interior unknowns, external unknowns, and unknowns of

edges on Γ8 9 and ℛ(8)# contain the remaining unknowns in subdomain Ω8 . To derive the set

of equations to solve for the dual unknowns, first consider the summation of (4.18) for two

volumes

Λ(8)(C , r) +Λ(9)(C , r) + (.8 + .9)=̂8 × =̂8 × E(C , r). (4.21)

Define an unsigned Boolean matrix such that ¯̄�(8)
�
-̄� = 4̄

(8)
�
, the unknowns for the electric

field on Γ8 9 . Also, define the map from the boundary edges on Γ8 9 to its counterpart on Γ98 ,
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)̄8 9 . Testing (4.21) with curl-conforming basis functions W4 , generalizing the case to any

number of subdomains, and using ¯̄�(8)
�

and ¯̄)98 restrict and map the unknowns of Ω9 to Ω8

yields

Λ(8) +
∑
9∈�(8)

¯̄)8 9(Λ(9) − (.8 + .9) ¯̄"(9))
¯̄�(9)
�
-̄
(9)
�
) = 0 (4.22)

where �(8) are all subdomains Ω9 which share a boundary with Ω8 and the matrix
¯̄"(8)
)
〈=̂ ×W4 , =̂ ×W4〉|Γ8 9 .

Rewrite the first set of equations in (4.19) as

-̄
(8),=+1
�

=
¯̄�(8),−1
��
(ℛ(8)

�
− .5ΔCΛ̄(8),=+1

�
− ¯̄�(8)

�#
-̄
(8),=+1
#

) (4.23)

Now, (4.23) can be plugged into (4.22) to yield

Λ(8)+
∑
9∈�(8)

)8 9( ¯̄�(9) − (.8 + .9) ¯̄"(9))
¯̄�(9)
�
¯̄�(9),−1
��
¯̄�(9),)
�
)Λ(9)

=

∑
9∈�(8)

)8 9
¯̄�(9)
�
¯̄�(9),−1
��
( ¯̄�(9)

�#
¯̄�(9)
#
-̄# − ℛ(9)� ).

(4.24)

In order to complete the definition of the equation to solve for Λ� over ∪Γ8 9 , we first define

the equation for -̄# , the unknowns associated with faces on Γ8 9 and edges on Γ2 .

The derivation of the equation to solve for -̄# follows a similar path as -̄2 from

MFET-DP1. First, substitute (4.23) into the second set of equations in (4.22) to yield( ¯̄�(8)
##
− ¯̄�(8),−1

#�
¯̄�(8),−1
��

¯̄�(8)
�#

)
-̄
(8),=+1
#

= ℛ(8)
#

− ¯̄�(8)
#�
¯̄�(8),−1
��

(
ℛ(8)
�
− Λ̄(8)

�

)
− Λ̄(8)

#
.

(4.25)

The Boolean matrix ¯̄�(8)
#

is defined as

¯̄�(8)
#
=


¯̄�(8)
A, 5

0

0 ¯̄�(8)2

 (4.26)

to enforce (4.5b) for the faces onΩ8 and (4.5a) edges on corners where ¯̄�(8)
A, 5

is the portion of
¯̄�(8)A that acts on the face degrees of freedom. Using a similar process as (4.14), the equation

for
¯̄ ## -̄=+1

# = ℛ̄# + ¯̄ #�Λ� . (4.27)
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where
¯̄ ## =

#E∑
8=1

¯̄�(8)
#
( ¯̄�(8)

##
− ¯̄�(8),

#�
¯̄�(8),−1
��

¯̄�(8),−1
�#
) ¯̄�(8),)

#
(4.28a)

¯̄ #� =
#E∑
8=1

¯̄�(8)
#
¯̄�(8)
#�
¯̄�(8),−1
��
¯̄�(8),)
�
¯̄�(8),)
!

(4.28b)

ℛ̄# =
#E∑
8=1

¯̄�(8)
#
(ℛ(8)

#
− ¯̄�(8)

#�
¯̄�(8),−1
��
ℛ(8)
�
). (4.28c)

The global system of equations for the edge Lagrange multipliers Define a Boolean

matrix ¯̄�(8)
!

that maps the local Lagrange multipliers to a global vector. The Boolean matrix

is applied to (4.24) and discretized in time to define the equation

¯̄ ��Λ� = ℛ̄� − ¯̄ �# #̄=+1
# (4.29)

where

¯̄ �� = � +
#E∑
8=1

�
(8)
!∑

9∈�(8)

¯̄)8 9( ¯̄�(9) −"(9))
¯̄�(9)
�
¯̄�(9),−1
��
) ¯̄�(9),)

�
�
(9),)
!

(4.30a)

¯̄ �# = −
#E∑
8=1

�
(8)
!

∑
9∈�(8)

) 98"
(9)
)
�
(9)
�
¯̄�(9),−1
��

¯̄�(9)
�#
�
(9),)
#

(4.30b)

ℛ̄� = −
#E∑
8=1

�
(9)
!

∑
9∈�(8)

) 98
¯̄"(9)
)
�
(9)
�
¯̄�(9),−1
��
ℛ(8)
�
) (4.30c)

It can be solved as a coupled system with (4.27) or in a Schur complement system similar

to (4.17) using
¯̄K��Λ� = ℒ̄� − ¯̄ �# ¯̄ −1

## ℒ̄# . (4.31)

where ¯̄K�� =
( ¯̄ �� − ¯̄ �# ¯̄ −1

##
¯̄ #�

)
. However, ¯̄ ## is much larger than its MFETI-DP1

counterpart ¯̄ 22 and will take more time and memory to compute and store its inverse.
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Table 4.1: Average number of unknowns per volume and ratio of interior to boundary
unknowns for different decompositions of ΩA42C .

MFETI-DP1 MFETI-DP2
#E avg unk. 
 avg unk. 

2 1815 N/A 1755 6.75
5 776 1.71 705 1.00
10 404 0.60 351 0.34
25 170 0.15 133 0.08
50 89 0.05 60 0.03

4.3.3 Discussion

The proposed domain decomposition formulations reduces the cost of solving for the

fields by defining a set of equations on fictitious interior boundaries of the true problem.

The definitions of these equations uses small matrix inverses, and therefore are generally

not sparse. Furthermore, those matrix inverses have to be stored in memory. At the

very least, one matrix inverse for each subdomain is needed, making the memory storage

more than solving for the original system. However, it is expected that for direct inverses,

inverting either the coupled equations of (4.12) and (4.14) or (4.29) and (4.27) would bemore

efficient than solving the original problem. If storing the inverse of the matrix associated

with Γ2 is possible, (4.17) and (4.31) are even smaller in size. The following discussion

uses a sample problem to further probe properties of MFETI-DP1 and MFETI-DP2. In

particular, we examine the performance of themethodwith a sample geometry with several

configurations of subdivision.

Define ΩA42C as a rectangular region in free space with dimension .25 m × .2 m × .3 m

discretized with average edge length of 5.5 cm. The region is the split into subdomains

in several configurations listed in Table 4.1 so that MFETI-DP1 and MFETI-DP2 can be

applied, where 
 is the ratio of interior unknowns to the number of boundary unknowns.

This table is provided to provide the connection between the number of subdomains and 


for the test example, as 
 will be more extensible to other geometries than a set number of

subdomains. Figure 4.2 shows the condition number of the matrix formed by the coupled
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equations (4.12) and (4.14) for MFETI-DP1, (4.29) and (4.27) for MFETI-DP2, as well as the

Schur complement forms ¯̄KAA and ¯̄K�� with different numbers of subdivisions compared to

the condition number of of the monolithic system matrix ¯̄�. Solving the coupled equations

results in condition number that are generally at or worse than the monolithic solve. Using

the Schur complement results in condition numbers comparable to the monolithic solve

for MFETI-DP1 and several orders of magnitude smaller for MFETI-DP2.

Typically, MFETI-DP1 and MFETI-DP2 when used with iterative solvers converge faster

than the monolithic solve. Consider a domain ΩA42C is illuminated by an incident field

defined by

�̄(Ā , C) = Ĥ cos
(
2� 50�

)
4−(�−8�)2/2�2 (V/m). (4.32)

The bandwidth of the modulated Gaussian is � = 3(� 51F , where the bandwidth 51F =

5<0G − 50 with maximum frequency 5<0G = 500MHz and center frequency 50 = 300MHz.

The time step size is 0.333 ns which is ten times larger than what could be taken by a similar

FDTD solver or leapfrog method for MFEM. Figure 4.3 shows the iteration counts for the

coupled solves for MFETI-DP1 and MFETI-DP2 compared to the monolithic solve using

GMRESwith a tolerance of 10−6 and restarted after 20 iterationswhenΩA42C is illuminated by

an incident field. With a diagonal preconditioner, both domain decomposition approaches

perform better than the monolithic solve, with MFETI-DP2 performing best overall.

Next, as alluded to earlier, the principal advantage of Newmark-� schemes is the

unconditional stability. As a result, it is important to verify that the both MFETI-DP1

and MFETI-DP2 retain this feature. To ascertain this, we examine the eigenspectra of

these formulations to understand the stability of the time marching scheme. For the time

marching scheme used in this work to be stable, the matrix used to evolve the system

in time must have eigenvalues Re(�) >= 0 for the system to be unconditionally stable.

Figure 4.4 shows that for solving both the coupled system and using the Schur complement

approach, the domain decomposition methods will be stable. From the insert in Figure 4.4,

the effect of using the schur complement shifts the eigenvalues of ¯̄KAA and ¯̄K�� away from
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Figure 4.2: Condition number of system matrix.

Figure 4.3: Convergence of history of GMRES for monolithic, MFETI-DP1, andMFETI-DP2.

the imaginary axis, though MFETI-DP2 is shifted further away than MFETI-DP1.

4.4 Results

In this section, we present numerical results that show how the proposed algorithms

perform compared to a non-DDM approach. Additionally, we will demonstrate that as the
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(a) MFETI-DP matrix eigenvalues.
(b) MFETI-DP matrix eigenvalues using Schur
complement.

Figure 4.4: System matrix eigenvalues.

fields are almost identical to machine precision, the overall trajectory of the particles are the

identical to machine precision as well, i.e., the approach does not induce additional error.

4.4.1 Field Comparison

The first example shows performance of the methods and difference in the fields. In

this example, a 0.25< × 0.2< × 1< box is illuminated an incident field defined by

�̄(Ā , C) = Ĥ cos
(
2� 50�

)
4−(�−8�)2/2�2 (V/m). (4.33)

The bandwidth of the modulated Gaussian is � = 3(� 51F , where the bandwidth 51F =

5<0G − 50 with maximum frequency 5<0G = 595MHz and center frequency 50 = 295MHz.

The time step size �C = (150 50)−1 and the experiment is run for 1500 time steps. The

boundary conditions on the external boundaries are robin boundary conditions. Three

approaches are compared: monolithic (no DDM), MFETI-DP1, and MFETI-DP2 using

three levels of discretization with average edge lengths of ℎ1 = 5.20cm, ℎ2 = 3.63cm, and

ℎ3 = 2.59cm. The DDM meshes were split using METIS, such that no volumes have a

regular shape. Figure 4.5, shows that the fields obtained through domain decomposition

for edge lengths ℎ1, ℎ2, and ℎ3 respectively. Regardless of the number of subdivisions,
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Table 4.2: Ratio of interior to boundary unknowns for different decompositions for particle
beam test.

MFETI-DP1 MFETI-DP2
#E 
 runtime (s) 
 runtime (s)
5 3.000 571.4 1.893 694.1
10 0.955 614.8 0.652 711.9
25 0.257 466.7 0.181 488.6
50 0.094 562.5 0.077 507.6

the methods remain accurate to near machine precision with respect to the monolithic

solve. This implies that using either domain decomposition formulation would cause the

same acceleration on particles as the fields that are similar to each other within machine

precision.

The next result demonstrates the effect of MFETI-DP on simulation time. As seen in

Figure 4.6, both formulations are faster than the original monolithic solve for any number of

subdivisions. However, there is an optimal ratio of interior volume unknowns to boundary

unknowns for the fastest runtime. For each case, there is a crossover point at which further

subdividing Ω incurs a cost in solving the boundary problem that is greater than the

savings by reducing the unknowns in each volume.

4.4.2 Particle Beam

The next two examples demonstrate MFETI-DP1 and MFETI-DP2 with particles. In

these experiments, the fields that are obtained through domain decomposition are used to

push the particles, which are not subject to any decomposition scheme. The first example

is a particle beam traveling through a cylindrical PEC cavity. This case is a standard test to

show charge conservation as errors readily appear as striations in the particle distribution.

Furthermore, approximate solutions can be used to further verify the result. The first test is

done on a cavity that is 10 cm in length and 0.02 cm in radius disctretized with an average

edge length of 5 mm resulting in roughly 21,000 unknowns. The ten particles at each time

step enter at the bottom face of the cavity with a radius of 8 mm. The beam voltage and
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(a) Geometry with average edge length ℎ1.

(b) Geometry with average edge length ℎ2.

(c) Geometry with average edge length ℎ3.

Figure 4.5: Relative error in electric field for MFETI-DP.
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(a) Geometry with average edge length ℎ1.

(b) Geometry with average edge length ℎ2.

(c) Geometry with average edge length ℎ3.

Figure 4.6: Timing data for MFETI-DP.
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current are 500 V and 50 mA respectively, causing the an initial velocity 1.326 × 104 km/s.

The geometry was subdivided in four configurations, the details of which are listed in Table

4.2. The experiment was run for 1000 time steps at a time step size of 1 ns, which for the

monolithic case took 1,342 seconds. As shown in figure 4.7, all the simulations maintained

charge conservation over the course of the run. There is no notable difference in the

simulations, regardless of the number of subdivisions used. Seven particles were tracked

over the course of the run to track the particle trajectories with the domain decomposition.

Because the fields are virtually equivalent, the particle trajectories are consistent across the

different geometries. Figure 4.8 shows the error in the tracked particles’ path with rep sect

to the path in the monolithic solve.

The next result was a particle beam in a larger PEC cavity. In this case, the PEC cylinder

was 40 cm in length and 10 cm in radius. The geometry has an average edge length of

7.38 mm and a total of 218,059 unknowns. The beam voltage and current are 3.2 kV and

50 mA respectively, resulting in an initial velocity of 3.35 × 104 km/s. The experiment

was run for both MFETI-DP1 and MFETI-DP2 using the iterative solver GMRES using a

tolerance of 10−6. The particle distribution is compared to a well-validated axialsymmetric

EM-FDTDPIC code, XOOPIC [134] and shows good agreement in Figure 4.9.

4.4.3 Plasma Ball

The last example presented is the case of an adiabatic expansion of a plasma ball

using MFETI-DP2. This example takes a considerable number or degrees of freedom to

resolve the debye length and allow the particles to expand for an extended period of time.

However, this can be made more tractable by using either domain decomposition schemes

and unconditionally stable timemarching to evolve the systemwith larger time steps than a

similar EM-FDTDPIC formulation would allow. Additionally, this experiment has analytic

solutions [108] that can be used for validation. A charge neutral, Gaussian distribution of

24000 particles is set at the center of a spherical region 24 cm in diameter. The (A+ ions are
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(a) MFETI-DP1

(b) MFETI-DP2

Figure 4.7: Error in Gauss’ law for particle beam.

at 1K and the electrons are at 100K with a density of 5 × 108 particles per cubic meter. The

outer boundary has an impedance boundary condition and the boundary is sufficiently

far from the particles that none leave during the simulation. The average edge length is 1

cm with a total of 681,214 unknowns. Figure 4.10 shows good agreement of the particle

distribution with the analytic result at 150 ns, 300 ns, and 800 ns.

4.5 Summary

In this work, we presented two formulations for domain decomposition using non-

overlapping subdomains for the mixed finite element method. The methods were used to
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(a) Difference in particle path for MFETI-DP1.

(b) Difference in particle path for MFETI-DP2.

Figure 4.8: Error in tracked particle positions.

create a MFETI-PIC scheme which allows for computing the fields due to particle motion

for larger problems. For sufficiently large problems, this results in time savings without loss

of accuracy. All the results shown were computed on a single node; however, the method

can be made parallel to take full advantage of high performance computing resources.

Doing so suggest creating a domain decomposition framework for particle mapping and

pushing consistent with the field solver.

Future work will focus on creating a qausi-helmholtz decomposition for the FETI-

framework. This ensures that the nullspace of the field solver does not corrupt the

satisfaction of charge conservation. This is a key issue for using the time domain vector
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(a) XOOPIC vs MFETI-DP1.

(b) XOOPIC vs MFETI-DP2.

Figure 4.9: Particle beam expansion for enlarged PEC cavity.
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Figure 4.10: Adiabatic plasma ball expansion after 150, 300, and 800 ns.
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wave equation approachwhich has a nullspace that grows linearly in time. The combination

of domain decomposition and qausi-Helmholtz decomposition will allow for solving even

larger problems as the number of degrees of freedom is reduced to those associated with

edges, rather than have both edges and faces as presented here.
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CHAPTER 5

CONCLUSION AND FUTUREWORK

The focus of this work is to define what is needed to create charge conserving EM-

FEMPIC schemes that are accurate and efficiently simulate large problems. These capabili-

ties are needed to simulate real problems in a reasonable time frame.

The mathematics needed to conserve charge in an electromagnetic finite element

particle-in-cell method were examined first. The rubrics provide a rationale behind the

particular choice of basis functions in this work and the literature, as well as the needed

insight to use other time marching schemes while satisfying all of Maxwell’s equations. A

connection was drawn between three Maxwell solver approaches: FDTD, EB-MFEM, and

DH-MFEM. The insight provided by the rubrics has been applied throughout this thesis,

as well as in related works. Counterexamples were provided to show the consequences

of failing to follow the rubrics. Examples also showed that the DH-based method yields

results comparable to FDTD and EB-based EM-FEMPIC schemes.

Next, a charge conserving higher order EM-FEMPIC scheme was demonstrated. Whit-

ney basis functions for nodes, edges, faces, and volumes were used to ensure both of

Gauss’ laws were satisfied. This is possible because they satisfy the de-Rham complex. The

number of degrees of freedom needed to obtain a certain level of accuracy was shown to

be reduced for higher order approaches. The results showed that the increased accuracy of

the fields improved the accuracy of the particle trajectories.

Finally, two domain decomposition methods for Maxwell solvers were presented

and applied to EM-FEMPIC. The two methods followed the finite element tearing and

interconnect approach, utilizing both Neumann and Robin boundary conditions for the

interior boundaries. The fields obtained by both approaches were shown to give the same

fields as solving the system without the fictitious divisions. It was also demonstrated

that both approaches decreased simulation time compared to the standard monolithic
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approach. Results with particles showed that introducing the domain decomposition did

not affect the satisfaction of Gauss’ laws. Furthermore, as the fields obtained were the

same as the original method, the particle trajectories remained unchanged while obtained

in a shorter period of time.

Several challenges and advances remain with the work presented within this thesis.

First, the techniques applied in the latter chapters for EB-based Maxwell solvers can be

similarly applied for DH-based solvers. More work can be done to better understand the

benefits and drawbacks between the two approaches. The impact of different particle shape

functions on the methods presented in this work also remains an open topic. Though it

does not affect charge conservation, other factors such as noise would be impacted which

may influence the performance of designed devices.

However, the bulk of future work is built upon expanding on the domain decomposition

techniques presented. The nullspaces of the proposed approaches should be studied more

in depth. Furthermore, it inherently creates a multiply connected system that would benefit

from an appropriate qausi-Helmholtz decomposition. Not only would it ensure that Gauss’

law is satisfied exactly and not corrupted by any nullspace, it also enables using the vector

wave equation as a field solver. This would further reduce the computational cost as the

system of equations would no longer need to solve for the magnetic flux and it could be

obtained through a forward calculation instead. Other preconditioning schemes and direct

methods for domain decomposition are also highly desirable.
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APPENDIX A

SUPPLEMENTARY INFORMATION FOR "RUBRICS FOR CHARGE CONSERVING
CURRENTMAPPING IN FINITE ELEMENT PARTICLE IN CELL METHODS"

A.0.1 Calculus on Distribution functions

The followingmust be understood in the sense of distributions. Specifically, we consider

derivatives and integral of the delta function. These appear in (2.8) onwards where one

represents the spatial variation of PDF using ((r− r?(C)) = ((r)★B �
(
r − r?(C)

)
. Calculus on

delta function is critical for developing insight into implementing equations of continuity

and Gauss’ law on the grid. To do so, we start with a transform to k-space to prove (2.11)

and (2.13).

A.0.1.1 Time derivatives

Using r?(C) = r0? +
∫ C

0 3�v?(�), the time derivative of �
(
r − r?(C)

)
can be written as

%C�
(
r − r?(C)

)
= %C�(r − r0?)★ �

(
r −

∫ C

0
3�v?(�)

)
= �(r − r0?)★ %C�

(
r −

∫ C

0
3�v?(�)

) (A.1)

Next, we expliot

�(r − a) = 1
(2�)3

∫ ∞

−∞
33k4 9k·(r−a) (A.2)

to yield

%C�

(
r −

∫ C

0
3�v?(�)

)
=

1
(2�)3

∫ ∞

−∞
33k%C4

9k·
(
r−

∫ C

0 3�v?(�)
)

= −∇ · v?(C)�
(
r −

∫ C

0
3�v?(�)

)
.

(A.3)

Therefore

%C�(r − r?(C)) = −�(r − r>8)★∇ · v?(C)�
(
r −

∫ C

0
3�v?(C)

)
= −∇ ·

[
v?(C)�

(
r − r?(C)

) ] (A.4)
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A.0.2 Time integrals

Next, starting from the time integral of (2.11) and using the definition of current density

in equation (2.9b),∫ C

0
3�∇ · v?(�)((r − r?(�)) = ((r)★B

∫ C

0
3�∇ · v?(�)�

(
r −

∫ �

0
3�′v?(�′)

)
(A.5)

Again, using (A.2) and %C r̃?(C) = v?(C),∫ C

0
3�∇ · v?(�)�

(
r −

∫ �

0
3�′v?(�′)

)
=

∫ C

0

3�

(2�)3∇ ·
∫ ∞

−∞
33kv?(�)4 9k·(r−

∫ �

0 3�′v?(�′))

= ∇ ·
1
(2�)3

∫ ∞

−∞
33k4 9k·r

∫ C

0
3�v?(�)4−9k·

∫ �

0 3�′v?(�′)

= ∇ ·
1
(2�)3

∫ ∞

−∞
33k4 9k·r

∫ r?(C)

r?(0)
3r̃?4−9k·r̃?

(A.6)

Interchanging the order of the integrals in the above equation results in∫ C

0
3�∇ · v?(�)((r − r?(�)) = ∇ ·

∫ r?(C)

r?(0)
3r̃( (r − r̃) (A.7)

This equation can be used to define the charge density in terms of the particle’s path; it can

also be used to define the time integral of the current density.

A.0.3 Maxwell Solvers

The following sections are presented purely for completeness and to conform with

material presented earlier. We present details of the three Maxwell solvers used here;

FDTD, EB-MFEM, and DH-MFEM.

A.0.3.1 FDTD

Define the rooftop function Λ8(r)

Λ8(r) =


1 − | 8̂·r|

Δ8
0 < | 8̂ · r| ≤ Δ8

0 o.w.
(A.8)
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where 8 = G, H, I. The basis functions to discretize Maxwell’s equations for FDTD are

1-form := u8Λ8+1(r − l<)Λ8+2(r − l<) (A.9a)

2-form := u8Λ8(r − f<) (A.9b)

with u8 = Ĝ , Ĥ , Î, l< is the midpoint of each edge, and f< is the midpoint of each face.

Testing Faraday’s law with the normal to cell faces and Ampere’s law is with the edge unit

vectors yields

〈u8�((r − f<) · 8̂), %C�H(C , r)〉 = −〈u8�((r − f<) · 8̂),∇ × E(C , r)〉

%CH8(C , f<) = −�−1
0 u8 · ∇ × E(C , f<)

= �−1
0 %8+1E8+2(C , f<) − �−1

0 %8+2E8+1(C , f<)

(A.10a)

〈u8�((r − f<) · 8̂), %C�E(C , r)〉 = −〈u8�((r − l<) · 8̂),∇ ×H(C , r)〉

− 〈u8�((r − l<) · 8̂), J(C , r)〉

%CE8(l<) = −�−1
0 u8 · ∇ ×H(C , l<) − �−1

0 u8 · J(C , l<)

= �−1
0 %8+1H8+2(C , l<) − �−1

0 %8+2H8+1(C , l<) − �−1
0 J8(C , l<).

(A.10b)

The addition on index 8 follows cycle {G, H, I}. This testing is equivalent to the usual

presentation of the FDTD recurrence relation. For example, consider 8 = G in (A.10a) would

yield

�
=+ 1

2
G,(8 , 9+ 1

2 ,:+ 1
2 )
= �

=− 1
2

G,(8 , 9+ 1
2 ,:+ 1

2 )
− ΔC

�ΔH
(�=

I,(8 , 9+1,:+ 1
2 )
− �=

I,(8 , 9 ,:+ 1
2 )
)

+ ΔC

�ΔI
(�=

H,(8 , 9+ 1
2 ,:+1) − �

=

H,(8 , 9+ 1
2 ,:)
).

(A.11)

Likewise, 8 = G in (A.10b) would yield

�=+1
G,(8+ 1

2 , 9 ,:)
= �=

G,(8+ 1
2 , 9 ,:)
+ ΔC

�ΔH
(�=+ 1

2
I,(8+ 1

2 , 9+ 1
2 ,:)
− �=+ 1

2
I,(8+ 1

2 , 9− 1
2 ,:)
)

− ΔC

�ΔI
(�=+ 1

2
H,(8+ 1

2 , 9 ,:+ 1
2 )
− �=+ 1

2
H,(8+ 1

2 , 9 ,:− 1
2 )
)

− ΔC
�
�
=+1/2
G,(8+ 1

2 , 9 ,:)
.

(A.12)
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A.0.3.2 EB-MFEM Formulation

In this formulation, E(C , r) ≈ ∑#4

8=1 48(C)W
(1)
8
(r) and and B(C , r) ≈ ∑# 5

8=1 18(C)W
(2)
8
(r). Fara-

day’s law is measured with the 2-form basis function and Ampere’s law with the 1-form

basis function to yield

%Cb = [ℒ∇×◦]e (A.13a)

%Ce = 22[ℒ∇×◦])[★�−1]b − �−1j (A.13b)

assuming the domain is freespace with the speed of light 2 = √�0�0
−1. The Hodge operator

matrix is defined as

[★�−1]8 9 =
∫
Ω

3ΩW(2)
8
(r) ·W(2)

9
(r). (A.14)

The degrees of freedom for the current are defined as

j8 =
#?∑
==1

@=

ΔC

∫ r=+1

r=
3p= ·W(1)8 (r) (A.15)

where p= is the particle path for the =-th particle.

A.0.3.3 DH-MFEM Formulation

In this formulation, H(C , r) ≈ ∑#4

8=1 ℎ8(C)W
(1)
8
(r) and D(C , r) ≈ ∑# 5

8=1 38(C)W
(2)
8
(r). Ampere’s

law is measured with the 2-form basis function and Faraday’s law with the 1-form basis

function to yield

%Ch = 22[ℒ∇×◦][★�−1]d (A.16a)

%Cd = [ℒ∇×◦]h − j. (A.16b)

The Hodge operator matrix is defined as

[★�−1]8 9 =
∫
Ω

3ΩW(2)
8
(r) ·W(2)

9
(r). (A.17)

The degrees of freedom for the current are defined as

j8 =
#?∑
==1

@=

ΔC

∫ r=+1

r=
3p= =̂8 · J=(r) (A.18)
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where the particle path for the =-th particle and is only evaluated on the surface.

© 2021 IEEE. Reprinted, with permission, from Crawford, Zane D., Scott O’Connor,

John Luginsland, and B. Shanker. "Rubrics for Charge Conserving Current Mapping in

Finite Element Electromagnetic Particle in Cell Methods." IEEE Transactions on Plasma

Science (2021).

93



APPENDIX B

HIGHER ORDER BASIS DEFINITIONS

In this appendix, we define the higher order interpolatory basis functions. The basis

functions are formed bymultiplying the lowest orderWhitney elements by an interpolatory

Lagrange polynomial. We use the definition by Silvester [?]

%8(�) =


1
8!
∏8−1

<=0(:� − <), 1 ≤ 8 ≤ :

1, 8 = 0
(B.1)

and the shifted Silvester Polynomial

%̂8(�) =


1
(8−1)!

∏8−1
<=1(:� − <), 2 ≤ 8 ≤ : + 1

1, 8 = 1
(B.2)

B.0.1 Node Basis Function

The k-th order nodal basis function, (0)B (r) ∈ �1 is defined as

,
(0)
8
(r) = &(0),̃8(r) (B.3)

where

,̃
(0)
B (r) = �B (B.4)

and

&(0) = %̂B(�B)%C(�C)%D(�D)%E(�E). (B.5)

There are a total of (: + 1)(: + 2)(: + 3)/6 degrees of freedom in each tetrahedron with 4

associated with nodes, : − 1 for each edge, (: − 1)(: − 2) for each face, and :(: − 1)(: − 2)/6

internal to each tetrahedron.
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B.0.2 Whitney Edge Basis Function

The k-th order edge basis function W(1)B (r) ∈ �(∇×) is defined as

W(1)B (r) = &(1)W̃(1)BC (r) (B.6)

where

W̃(1)B (r) = �B∇�C − �C∇�B (B.7)

and

&(1) = %̂B(�B)%̂C(�C)%D(�D)%E(�E). (B.8)

There are a total of :(:+2)(:+3)/2 degrees of freedom in each tetrahedronwith : associated

with each edge, :(: − 1)/2 with each face, and :(: − 1)(: − 2)/6 internal to each tetrahedron.

B.0.3 Whitney Face Basis Function

The k-th order face basis function W(2)B (r) ∈ �(∇·) is defined as

W(2)B (r) = &(2)W̃(2)B (r) (B.9)

where

W̃(2)B (r) = �B∇�C × ∇�D + �C∇�D × ∇�E + �D∇�B × ∇�C (B.10)

and

&(2) = %̂B(�B)%̂C(�C)%̂D(�D)%E(�E). (B.11)

There are a total of :(: + 1)(: + 3)/2 degrees of freedom in each tetrahedron with :(: + 1)/2

with each face and :(: − 1)(: + 1)/6 internal to each tetrahedron.

B.0.4 Volume Basis Function

The k-th order volume basis function ,̃ (3)(r) ∈ !2 is defined as

,
(3)
B (r) = &(3),̃ (3)(r) (B.12)
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where

,̃ (3)(r) = �B∇�C · ∇�D × �E + �C∇�D · ∇�E × �B

+ �D∇�E · ∇�B × �C + �E∇�B · ∇�C × �D
(B.13)

and

&(3) = %̂B(�B)%̂C(�C)%̂D(�D)%̂E(�E). (B.14)

The function is associated with tetrahedra with :(: + 1)(: + 2)/6 unknowns in each

tetrahedron, all of which are internal to the cell.
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APPENDIX C

UNCONDITIONALLY STABLE TIME STEPPINGMETHOD FORMIXED FINITE
ELEMENTMAXWELL SOLVERS

C.1 Introduction

Efficient solutions to Maxwell’s equations is of significant interest to problems in fields

ranging frommicrowave engineering to optics to radar to remote sensing to plasma physics

[135, 136, 137, 138, 139]. As a result, it has seen extensive development over the past four

decades. So much so that there exist reliable commercial simulators that are trusted for

design and analysis; to wit, most microwave engineering and antenna design is carried out

on a laptop before being fabricated and tested. Despite these advances, there are a number

of open problems and challenges, largely brought on by our desire to improve the fidelity

of simulation for increasingly complex geometric and material layouts. Adding temporal

dimension to the analysis increases the challenges as well. The methods used for solution

to Maxwell’s equations are based either on differential or integral equations; this paper

will focus on the former.

Over the years, differential equation based methods have become the mainstay of

computational electromagnetic tools; starting with the classical Yee-algorithm for direct

discretization of Maxwell’s equations [18] to finite element methods (FEMs) [32, 38]. A

number of challenges had to be overcome to make FEMs robust and viable for use in

design and analysis of systems [77, 106]. Over the years, research on FEM has focused on

developing methods so as to increase the accuracy and reduce computational costs; these

include higher order interpolatory basis functions [99], higher order hierarchical basis sets

[?], and domain decomposition methods [140]. These techniques have largely been applied

to solving the vector wave equation in the frequency domain. In the time domain, the
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temporal discretization follows a Newmark-Beta prescription [141, 142]. With the right

choice of parameters, it has been shown that this prescription is unconditionally stable.

The time step size is not intimately tied to the smallest mesh feature, but chosen to capture

the physics to a prescribed order. However, the solutions to the vector wave equation are

prone to inaccuracies arising from a non-trivial null space that corresponds to a function of

the form C∇)(Ā), where )(Ā) is a scalar function of space.

There has been an effort to use finite elements to directly solve Maxwell’s equations

[46, 143, 144], albeit less so than vector wave formulations. These methods follow the

prescription of the Yee-algorithm. Faraday’s and Ampere’s law are staggered in time

leading to a leap frog time stepping. As a result, they do not have a time-growing null

space, are conditionally stable, and energy conserving. Unfortunately, the time step size

depends on the size of the features of the mesh and materials defined within it. The

resulting time step sizes are very small, significantly more so than needed to represent

content at the highest frequency. This is in contrast to the state of the art of solving the

vector wave equation.

It would be ideal if one could render TD-MFEM provably unconditionally stable (it

would enable reaping the advances made for vector wave equation FEM solvers). Earlier

work has analyzed the stability for leapfrog time stepping in TD-MFEM [145]. Likewise,

unconditionally stable time stepping schemes have been used in TD-MFEM, butwithout any

rigorous analysis to prove stability [146]. In this work, we will prove that using Newmark-

Beta method for TD-MFEM can produce unconditionally stable time stepping schemes that

are up to second order accurate in time. With the correct choice in parameters, the time

stepping schemes are shown to be energy conserving and non-dissipative. Furthermore,

these properties hold for higher-order spatial basis functions used to discretize TD-MFEM.

Thus, the specific contributions of this work are (i) a general framework for creating time

stepping schemes of up to second order for the TD-MFEM of arbitrary spatial order, (ii)

proof of stability for different boundary conditions and error analysis for the time stepping
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scheme, (iii) analysis of the null space of the discrete system, and (iv) numerical results

that verifying the analytic proofs.

The rest of the paper is organized as follows: Section C.2 describes the general problem.

Section C.3 presents the spatial and temporal discretization of Maxwell’s equations. The

section contrasts the Newmark-Beta method to the leapfrog method and provides stability

and error analysis of the Newmark-Beta method applied to the MFEM. Section C.4 presents

several numerical results verifying properties discussed in previous sections and the overall

efficacy of the method. Finally, conclusion and other remarks are provided in Section C.5.

C.2 Problem Statement

Consider the volumeΩ ∈ R3 bounded by Γ shown in figure C.1. In this domain, assume

the region has homogeneous, isotropic, and time-independent constitutive parameters,

denoted by � (F/m) for the permittivity and � (H/m) for the permeability. Assume that

x

y

z
Figure C.1: Sample Volume Ω with Different Boundary Conditions. Reproduced courtesy
of The Electromagnetics Academy

the volume is source free, being free of impressed charges or currents. The magnetic

field �̄(Ā , C) (A/m) and electric flux density �̄(Ā , C) (C/m2) are defined in terms of the

magnetic flux density �̄(Ā , C) (Wb/m2) and electric field �̄(Ā , C) (V/m), respectively, through
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the constitutive parameters such that

�̄(Ā , C) = �−1�̄(Ā , C) (C.1a)

�̄(Ā , C) = ��̄(Ā , C). (C.1b)

The electric field and magnetic flux density are governed by Maxwell’s equations

%�̄(Ā , C)
%C

= −∇ × �̄(Ā , C)

%��̄(Ā , C)
%C

= ∇ ×
�̄(Ā , C)
�

∇·(��̄(Ā , C)) = 0

∇·�̄(Ā , C) = 0.

(C.2)

The boundary Γmay be partitioned into several subdomains, Γ8 , such that Γ := ∪8Γ8 . Each

Γ8 has a boundary condition, either Dirichlet (Γ�), Neumann (Γ# ), or impedance (Γ�) [106].

The boundary conditions are defined as

=̂ × �̄(Ā , C) =	�(Ā , C) on Γ� (C.3a)

=̂ × �̄(Ā , C)
�

=	# (Ā , C) on Γ# (C.3b)

=̂ × �̄(Ā , C)
�
− .=̂ × =̂ × �̄(Ā , C) =	�(Ā , C) on Γ� (C.3c)

where . =
√
�/� (0) is the surface admittance. The functions Ψ�(Ā , C), Ψ# (Ā , C), and

Ψ�(Ā , C) represent some arbitrary function that is defined by the user. Additionally, we

assume initial conditions on the fields, �̄(r, 0) and �̄(r, 0), satisfy (C.2).

C.3 MFEM Formulation

C.3.1 Variational Formulation

Solutions to (C.2) are found by creating variational equations with appropriate function

spaces. The suitable function space for the electric field is the Hilbert space

�(2DA;;Ω) = {D̄ ∈ !̄2(Ω);∇ × D̄ ∈ !̄2(Ω)}, (C.4)
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which ensures that the tangential component of the field are continuous across tetrahedral

faces. Likewise, the Hilbert space

�(38E;Ω) = {D̄ ∈ !̄2(Ω);∇ · D̄ ∈ !2(Ω)} (C.5)

is used for the magnetic flux density, which permits functions that have normal continuity

across tetrahedral faces. The Whitney edge basis function and Whitney face basis function

reside in �(2DA;;Ω) and �(38E;Ω), respectively, and can be used to discretize the fields

[46]. The variational equations are formed by taking inner products of Faraday’s law with

the Whitney face basis function �̄∗ and Ampere’s law with the Whitney edge basis function

�̄∗ such that ∫
3Ω

1
�
%

%C
�̄ · �̄∗ = −

∫
3Ω

1
�
∇ × �̄ · �̄∗, (C.6a)∫

3Ω�
%

%C
�̄ · �̄∗ =

∫
3Ω∇ ×

1
�
�̄ · �̄∗. (C.6b)

C.3.2 Spatial Discretization

The spatial discretization is obtained by applying Galerkin’s method to the variational

equations. As previously stated, Whitney edge and face elements as seen in [46] define the

lowest order representation of �̄∗ and �̄∗. The electric field is represented using Whitney

edge elements and the magnetic flux using Whitney face elements such that

�̄(Ā , C) =
#4∑
8=1

48(C),̄1
8 (Ā), �̄(Ā , C) =

# 5∑
8=1

18(C),̄2
8 (Ā), (C.7)

where #4 is the number of edges and # 5 is the number of faces. It is natural to use

higher order basis function for more accuracy. We use the interpolatory higher order basis

functions defined in [99] for Whitney edge elements and for Whitney face elements defined

in [?]. We define vectors 4̄ = [41(C), 42(C), ..., 4#4 (C)]) and 1̄ = [11(C), 12(C), ..., 1# 5
(C)]) that

have the degrees of freedom 48(C) and 18(C) as elements. Using the defined expansion for

the field and flux quantities, applying the Galerkin method to (C.6) yields the semi-discrete
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Maxwell’s equations

%M�−1 1̄

3C
= −M2 4̄

%M� 4̄

3C
= M)

2 1̄ −M� 4̄ + 9̄# + 9̄� .
(C.8)

Here matrices are defined as

[M�]8 , 9 =
∫
Ω

3Ω�,̄1
8 (Ā) · ,̄

1
9 (Ā), (C.9a)

[M�−1]8 , 9 =
∫
Ω

3Ω
1
�
,̄2
8 (Ā) · ,̄

2
9 (Ā), (C.9b)

[M2]8 , 9 =
∫
Ω

3Ω
1
�
,̄2
8 (Ā) · ∇ × ,̄

1
9 (Ā), (C.9c)

[M)
2 ]8 , 9 =

∫
Ω

3Ω
1
�
,̄2
9 (Ā) · ∇ × ,̄

1
8 (Ā), (C.9d)

[M�]8 , 9 =
∫
Γ�

3Γ.=̂ × ,̄1
8 (Ā) · =̂ × ,̄

1
9 (Ā). (C.9e)

The elements of the coefficient vectors 9̄# and 9̄� defined as

[ 9̄#]8(C) =
∫
Γ#

3Γ#,̄
1
8 (Ā) ·Ψ# (Ā , C)

[ 9̄�]8(C) =
∫
Γ�

3Γ�,̄
1
8 (Ā) ·Ψ�(Ā , C)

(C.10)

and represent the boundary current due to Neumann and impedance boundary conditions.

Another interpretation of the TD-MFEM is through discrete exterior calculus. The Galerkin

discrete Hodge matrices M� and M�−1 are defined as [80]. The discrete curl operator D2 is

defined as

D2 =
1
�

M−1
�−1M2 . (C.11)

The discrete curl operator and its transpose for the lowest ordermaps edges of a tetrahedron

to the faces it bounds, as well as preserves the direction of the curl on that face [79]. This

follows from the concept of the exterior derivative in the generalized Stokes theorem from

exterior calculus. Equation (C.11) holds for all orders, however only has a simple mapping

of faces to edges for the lowest order.
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C.3.3 Temporal Discretization

The semi-discrete Maxwell’s equations, derived in the previous section, are fully

discretized by choosing an appropriate temporal discretization. Discretization schemes

exist that solve the electric field and magnetic flux density concurrently or in a staggered

fashion. In a staggered scheme, the solutions to Faraday’s law and Ampere’s law lie at

different time steps, which allows a different time stepping method for each equation. A

concurrent time stepping scheme couples the equations into a single system, written in the

form 
I 0

0 M�



%C 1̄

%C 4̄

 +


0 D2

−D)
2 M�−1 M�



1̄

4̄

 =


0

9̄# + 9̄�

 , (C.12)

where I is the identity matrix. The single time derivative allows for the choice of a single

time stepping scheme and implies the solved quantities lie at the same time step. The

following subsections discuss the leapfrog method (for sake of completeness) and the

Newmark-Beta method and their applications to finding solutions to the semi-discrete

Maxwell’s equations. Note, that time step sizes for leapfrog (ΔC ,!�) and Newmark-Beta

(ΔC ,#�) will be different.

C.3.3.1 Leapfrog Method

In the leapfrog method, the time derivatives in Faraday’s law and Ampere’s law are

discretized using central finite differences staggered at half-time step intervals. Applying

this to (C.8) yields

1̄=+
1
2 = 1̄=−

1
2 − ΔC ,!�D2 4̄

= (C.13a)

(M� +M�)4̄=+1 = M� 4̄
= + ΔC ,!�D)

2 M�−1 1̄=+
1
2 + ΔC ,!�( 9̄

=+ 1
2

#
+ 9̄=+

1
2

�
). (C.13b)

The time stepping scheme consists of an explicit update in Faraday’s law and a matrix

inversion in Ampere’s law as the Galerkin Hodge matrix is sparse, but not diagonal. It is
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conditionally stable [147, 148] provided time step size satisfies

ΔC ,!� ≤
2√

�(M−1
� D)

2 M�−1D2)
. (C.14)

When the time step size satisfies the stability requirement, the time stepping scheme also

conserves energy. The mesh that discretizes the volume Ω determines the maximum time

step size. The spectral radius of the matrices tends to grow as elements in the mesh shrink,

limiting the time step size in relation to the maximum frequency the mesh could resolve.

C.3.3.2 Spectral radius

One drawback of this time-stepping scheme is that its stability is tied to the discretization

of the mesh and the dielectric and magnetic material within Ω. As the electrical size of the

elements shrink, so does the maximum time step size, regardless of coarser features of the

mesh.

Table C.1: Leapfrog maximum time-step vs mesh edge lengths

�<0G 2ΔC ,!� ℎ<0G ℎ0E6 ℎ<8=
1.0587E+03 6.1468E-02 5.0000E-01 3.2400E-01 1.9376E-01
2.5661E+03 3.9481E-02 3.2773E-01 2.1477E-01 1.3689E-01
6.4293E+03 2.4943E-02 2.2165E-01 1.4365E-01 7.8437E-02
9.8165E+03 2.0186E-02 1.6865E-01 1.0925E-01 5.7826E-02
1.2769E+02 1.7699E-01 1.4142E+00 1.0424E+00 8.5782E-01
2.3979E+02 1.2916E-01 1.5326E+00 8.8836E-01 4.2409E-01
1.4249E+03 5.2983E-02 1.4142E+00 5.6001E-01 1.8142E-01
1.1535E+04 1.8622E-02 1.4142E+00 2.2648E-01 6.2023E-02

In Table C.1, the relationship between the edge lengths ℎ, spectral radius �<0G , and

time step sizes ΔC ,!� for the leapfrog scheme are presented. The spectral radius increases as

the edge lengths shrink, resulting in a smaller maximum time step. Instead, it is preferred

that time step is dictated by the bandwidth of the signals present in the simulation. In the

results, it will show that the spatial errors tend to dominate error far more than temporal

error, especially for the lowest order spatial basis functions.
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C.3.3.3 Newmark-Beta

The Newmark-Beta method is a concurrent time stepping method to solve second order

differential equations [149, 150], and is a popular method of choice for solving TD-FEM. To

begin, the first order differential equation from (C.12) is recast as a second order differential

equation,

A2%
2
C D̄ +A1%C D̄ +A0D̄ + 5̄ = 0, (C.15)

where

D̄ =


1̄

4̄

 , 5̄ =


0

−( 9̄� + 9̄# )

 ,
A2 = 0, A1 =


I 0

0 M�

 , A0 =


0 D2

−D)
2 M�−1 M�

 .
(C.16)

Applying a 1-dimensional finite element method in time and identifying particular

weights in the formulation results in a three-step recurrence relation that uses two

parameters to yield different accuracy and stability properties [151]. The three-step

recurrence relation for (C.16) is defined as

[�A1 + �ΔC ,#�A0]D̄=+1

+ [(1 − 2�)A1 + (
1
2 + � − 2�)ΔC ,#�A0]D̄=

+ [(� − 1)A1 + (
1
2 − � + �)ΔC ,#�A0]D̄=−1

+ (�ΔC ,#�) 5̄ =+1 + (12 + � − 2�)ΔC ,#� 5̄
= + (12 − � + �)ΔC ,#� 5̄

=−1 = 0

(C.17)

which has the degrees of freedom for the electric field and magnetic flux density at the

same timestep. The parameters � and � affect the accuracy and stability properties. The

following sections prove and demonstrate that with appropriate choice of parameters, the

TD-MFEM system with Dirichlet, Neumann, and impedance boundary conditions is not

only unconditionally stable, but also energy conserving.
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C.3.4 Stability Analysis

In order to determine the stability of the Newmark-Beta time-stepping scheme, the

zero-input response of the system is examined using a z-transform. For the system to

be stable, the roots of the z-transformed scheme must lie on or within the unit circle in

the complex plane. The spectral theorem is used on (C.17) such that the matrix A−1
1 A0

is replaced by its eigenvalue � [106, 152]. Taking the z-transform yields the quadratic

equation (
[� + �ΔC ,#��]I2 + [(1 − 2�) + (12 + � − 2�)ΔC ,#��]I

+ [(� − 1) + (12 − � + �)ΔC ,#��]
)
D̄(I) = 0

(C.18)

with zeros

I =
1 − 2� + (1/2 + � − 2�)ΔC ,#��

2� + 2�ΔC ,#��
±

√
1 + (1 − 2�)ΔC ,#�� + [(1/2 + �)2 − 4�](ΔC ,#��)2

2� + 2�ΔC ,#��
.

(C.19)

The parameters � and � must be chosen to have the desired accuracy and stability

characteristics for a given time step of size ΔC ,#�. For a time stepping scheme to be

unconditionally stable, |I | ≤ 1 for all ΔC ,#�. This leaves the characterization of the

eigenvalue � of the coupled Maxwell system, which will be shown to have a nonnegative

real part.

C.3.4.1 Eigenanalysis of System with Dirichlet and Impedance Boundary Conditions

The zeros of the stability equation values depend on the parameters � and �, the time

step size ΔC ,#�, and the eigenvalues of the matrix system. First, consider a system with

no impedance boundary conditions. The coupled Maxwell system can be analyzed by

forming the generalized eigenvalue system

A−1
1 A0


1̄

4̄

 =


0 D2

−M−1
� D)

2 M�−1 0



1̄

4̄

 = �


1̄

4̄

 , (C.20)
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which leads to

D2 4̄ = �1̄ , (C.21a)

−M−1
� D)

2 M�−1 1̄ = �4̄ . (C.21b)

It follows that

D2M−1
� D)

2 M�−1 1̄ = −�21̄ = Λ1̄ (C.22a)

M−1
� D)

2 M�−1D2 4̄ = −�2 4̄ = Λ4̄ . (C.22b)

The eigenvalues � of the system matrix A−1
1 A0 are purely imaginary when there are no

impedance boundary conditions. This fact can be used to simplify (C.19) to find values �

and � that will result in a stable time stepping scheme.

The eigenvalues of the system change when impedance boundary conditions are

imposed. The eigenvalues of A−1
1 A0 have nonnegative real parts with impedance boundary

conditions. First, the matrices in (C.16) are redefined in a more general form,

A1 =


M�−1 0

0 M�

 , A0 =


0 �−1

0 M2

−�−1
0 M)

2 M�

 (C.23)

where the basis functions can be of any order. To determine the behaviour of A−1
1 A0, we

create a similar matrix A( = FA(F−1, where F = A−1
1 , leading to

AB =


0 −�−1

0 M
−1
2
�−1M2M

−1
2
�

�−1
0 M

−1
2
� M)

2 M
−1
2
�−1 M

−1
2
� M�M

−1
2
�

 . (C.24)

This matrix is a non-symmetric saddle point matrix, whose properties are discussed in

Theorem 3.6 in [153]. The matrix AB can be proven to be positive semi-definite because the

matrix M� is positive semi-definite. Therefore, the eigenvalues of AB , and by the properties

of similar matrices A−1
1 A0, have nonnegative real parts. This is demonstrated for the

zeroth and second order vector basis function for both Dirichlet and impedance boundary

conditions in figure C.2. The eigenvalues for the Dirichlet case lie on the imaginary axis,

while the impedance boundary condition case is symmetric about the real axis in right

half plane. Knowing that the eigenvalues have nonnegative real parts, it is possible to find
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Figure C.2: Eigenvalues of A−1
1 A0. Reproduced courtesy of The Electromagnetics Academy

general regions of stability and conditions for which the Newmark-Beta time-stepping

scheme is nondissipative. The scheme is unconditionally stable for � ≥ 0.5 and � ≥ �/2.

When � = 0.5, � ≥ 0.25, |I | = 1 for all the possible eigenvalues of A−1
1 A0, (C.17) forms

a nondissipative time-stepping scheme, which is essential in many applications. When

� = 0.5 and � = 0.25 or � = 0.5, we obtain a Crank-Nicholson scheme, which is known to

be unconditionally stable and second order. Other choices of � and � lead to disippative,

yet still stable time stepping schemes.

C.4 Results

In this Section, we demonstrate numerically the utility of using the Newmark-Beta

time stepping scheme with TD-MFEM. In particular, the resulting time stepping scheme is

unconditionally stable while maintaining the convergence and accuracy properties of the

more common leapfrog method.

C.4.1 Field Convergence

To numerically demonstrate convergence, a TEM plane wave is simulated propagating

in free space normally incident through a 0.5 m x 0.5 m x 0.5 m cube. The electric field is
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defined as

�̄(Ā , C) = Ĥ cos
(
2� 50(C − Ā · Î/2 − 8�)

)
4−(C−Ā·Î/2−8�)2/2�2 (V/m), (C.25)

where � = 3/[2( 5max − 50)] with the center and maximum frequency denoted as 50 and

5max, respectively. The relative error is defined as

Relative Error =
| |
∫
3Ω()̄4G?(Ā , C) − )̄0=0(Ā , C))| |2
| |
∫
3Ω)̄0=0(Ā , C)| |2

(C.26)

where )̄(Ā , C) can be either the electric field or magnetic flux density. The speed of

propagation is the speed of light 2 = 1/√�� = 1/√�0�0 (m/s). Dirichlet boundary

conditions as defined in (C.3) are used on each face of the volume, where �̄(Ā , C) is defined

in (C.25) and �̄(Ā , C) follows from Maxwell’s equations.

For the spatial convergence tests, the center frequency is 11 MHz, maximum frequency

21 MHz. Figure C.3 shows the convergence properties of the fields with respect to space

and basis function order. The convergence rate is the same between the two time stepping

schemes, with similar errors as well. This is expected as the spatial discretization is the

same. It is also noted that increasing the order of the basis function yields a greater

improvement in accuracy than simply decreasing the element sizes.
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Figure C.3: Space Convergence. Reproduced courtesy of The Electromagnetics Academy

Figure C.4 shows the relative error in the electric field and magnetic flux as the time

step size is changed using the Newmark-Beta time stepping scheme with � = .5 and � = .25
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Figure C.4: Time Convergence. Reproduced courtesy of The Electromagnetics Academy

for different orders of vector basis functions. The domain Ω is a 0.5 m x 0.5 m x 0.5 m

cube partitioned into 439 tetrahedra with an average edge length ℎavg = 143.7 mm. As the

order of the Newmark-Beta time stepping scheme is the same as the Leapfrog scheme,

it behaves similarly as the Newmark-Beta , but only for time step sizes smaller than the

maximum time step size that is marked. Increasing the order of basis functions results in a

smaller maximum time step size, whereas the unconditionally stable method allows for

much larger time step sizes while maintaining the advantages of using higher order basis

functions.

C.4.2 Computational Cost Comparison

In the previous section, the spatial and temporal convergence of the Newmark-Beta time

stepping scheme was compared to the leapfrog method. Here we compare the cost of using

the Newmark-Beta time marching scheme. The leapfrog method requires requires matrix

inversion for (C.13b). The Newmark-Beta method in (C.17) requires matrix inversion as

well. The matrices in both (C.13b) and (C.17) are sparse, having O(#4) and O(#4 + # 5 )

nonzero elements, respectively. For practical problems, direct inversion is expensive and

iterative solvers are used instead. We assume that a Krylov subspace based method like

GMRES converges in #8C4A steps for both leapfrog and Newmark-Beta. Assuming that the
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duration of analysis is ) gives #C ,; 5 and #C ,#� as the number of time steps for leapfrog and

Newmark-Beta, respectively. It follows that runtime scales as O(#C ,; 5#8C4A#4) for leapfrog

and O
(
#C ,#�#8C4A(#4 + # 5 )

)
for Newmark-Beta. It is apparent that the increased degrees

of freedom required for a Newmark system could lead to higher costs; however, the time

step sizes can be vastly different. Indeed, depending on the geometry (especially when

discretization is driven by the need to capture feature sizes), the cost of the increased

degrees of freedom can be counterbalanced by the number of time steps taken when there

is flexibility in the time step size. Thus, as the ceiling of ΔC ,!� is fixed by the mesh, so is

the number of time steps for a fixed duration of time. However, this is not the case for

Newmark-Beta. The numerical experiment conducted next illustrates the cost tradeoff.

This experiment is shown in figure C.5 and is conducted using three 1 m x 1 m x

1 m cubes with Dirichlet boundary conditions. A normally-incident TEM plane wave is

simulated propagating in free space. The electric field is defined in (C.25) with a center

frequency of 110 MHz and a maximum frequency of 210 MHz. The Newmark-Beta time

stepping scheme was run three times for the same amount of simulated time. Once at the

maximum time step size for leapfrog, once at half that time step size, and once with a time

step size of 1/20 5<0G ≈ 238 ps. GMRES was used with a diagonal preconditioner and a

tolerance of 10−4. When ΔC ,#� = 1/20 5<0G , the runtime for Newmark-Beta was equal to
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Figure C.5: Runtime Comparison. Reproduced courtesy of The Electromagnetics Academy

or faster than leapfrog. While this was a simple example, we expect to reap significant
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benefits as the model representation drives discretization.

C.4.3 Eigenvalues of Space-time matrix

In this test, we further verify the stability of the proposed Newmark-Beta time-marching

scheme. To determine the stability of a time stepping schemes, we analyze the eigenvalues

of a space-time matrix A that satisfies

D̄=+1 = AD̄= (C.27)

for some input vector D̄= . The space-time matrix is an amplification matrix for some input

and for it to have a bounded output, the absolute value of the eigenvalues must lie on or

within the unit circle in the complex domain. For an energy-conserving system, all the

eigenvalues lie on the unit circle, signifying that there is no numerical loss in the system.

In this example, two different meshes discretize the same 1 m cube. The first mesh is nearly

uniformly discretized, with a ratio of ℎmax/ℎmin ≈ 1.5, where ℎ is edge length. The second

mesh is not uniformly discretized, in which the edges become smaller near one face. The

ratio of the largest edge to smallest edge in the nonuniform mesh is ≈ 8. Figures C.6, C.7,

and C.8 compare the eigenvalues of the space-time matrices for both the leapfrog and

Newmark-Beta time stepping schemes for varying time step size. The reference time step

size ΔC = 1/(30 5max).

When the time step size of the leapfrog method satisfies the stability criterion, the

eigenvalues all lie on the unit circle. However, when the time step size no longer satisfies

the stability criterion, the eigenvalues close to −1 leave the unit circle and head toward 0

and −∞.

Figure C.7 and C.8 show that the space-time eigenvalues of the Newmark-Beta time

stepping scheme with � = .5 and � = .25 always lie on the unit circle for a wide range of

time step sizes, lending credence to it unconditionally stable nature. The eigenvalues of

the system when these particular values are chosen are analytically ±1. Figure C.7 uses the

uniformly discretized volume and figure C.8 uses the nonuniformly discretized volume,
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Figure C.6: Leapfrog Eigenvalues. Reproduced courtesy of The Electromagnetics Academy

Figure C.7: Newmark-Beta Eigenvalues for Uniform Airbox. Reproduced courtesy of The
Electromagnetics Academy

with both showing the behavior with Dirichlet boundary conditions and impedance

boundary conditions. As the overall eigenvalue behavior holds as the basis function order

increases, similar results are seen in figures C.9 and C.10, which shows the space-time

eigenvalues of the same uniform airbox with Dirichlet boundary conditions, but with first

and second order basis functions. Closer inspection of the eigenvalues show that there is

an error, as the eigenvalues lie outside the unit circle, but it is strictly numerical in nature

and related to the condition number of the matrix A−1
1 A0.

Finally, to numerically confirm late-time stability, figure C.11 shows the electric field

and magnetic flux density run for 100,000 time steps at a time step size of ΔC ,#� = 1/10 5<0G
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Figure C.8: Newmark-Beta Eigenvalues for Nonuniform Airbox. Reproduced courtesy of
The Electromagnetics Academy

or 4.762 ns. There is a noise floor that corresponds to a DC null space. However, the

noise does not grow over time, indicating the nullspace does not contain C∇)(Ā) present in

TD-FEM.

C.5 Summary

In this work, it was proven that the Newmark-Beta algorithm can be used to create an

unconditionally stable time stepping framework for solving TD-MFEM.We proved stability

for systems arising from different boundary conditions, as well as showed convergence and

energy conservation. The benefit of being able to use different time step sizes is apparent.

In future work, this method will be applied to simulating plasmas. Utilizing higher order

basis sets with optimal particle pushing strategies will be investigated. Preconditioning

strategies will also be developed to improve the use of iterative solvers for TD-MFEMs.
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Figure C.9: Newmark-Beta Eigenvalues for UniformAirboxwith First Order Basis functions.
Reproduced courtesy of The Electromagnetics Academy

finite element maxwell solvers." Progress In Electromagnetics Research C 103 (2020): 17-30.
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