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ABSTRACT

MACHINE LEARNING ON DRUG DISCOVERY: ALGORITHMS AND APPLICATIONS

By

Mengying Sun

Drug development is an expensive and time-consuming process where thousands of chemical

compounds are being tested and experiments being conducted in order to find out drugs that

are safe and effective. Modern drug development aims to speed up the intermediate steps and

reduce cost by leveraging machine learning techniques, typically at drug discovery and preclinical

research stages. Better identification of promising candidates can significantly reduce the load of

later processes, e.g., clinical trials, saving tons of resources as well as time.

In this dissertation, we explored and proposed novel machine learning algorithms for drug dis-

covery from the aspects of robustness, knowledge transfer, molecular generation and optimization.

First of all, labels from high-throughput experiments (e.g., biological profiling and chemical screen-

ing) often contain inevitable noise due to technical and biological variations. We proposed amethod

(RCL) that leverages both disagreement and agreement among deep neural networks to mitigate the

negative effect brought by noisy labels and better predict drug responses. Secondly, graph neural

networks (GNNs) has become popular for modeling graph-structured data (e.g., molecules). Graph

contrastive learning, by maximizing the mutual information between paired graph augmentations,

has been shown to be an effective strategy for pretraining GNNs. However, the existing graph con-

trastive learning methods have intrinsic limitations when adopted for molecular tasks. Therefore we

proposed a method (MoCL) that utilizes domain knowledge at both local- and global-level to assist

representation learning. The local-level domain knowledge guides the augmentation process such

that variation is introduced without changing graph semantics. The global-level knowledge encodes

the similarity information between graphs in the entire dataset and helps to learn representations

with richer semantics. Last but not least, we proposed a search-based approach (MolSearch) for

multi-objective molecular generation and optimization. We show that given proper design and suf-



ficient information, search-based methods can achieve performance comparable or even better than

deep learning methods while being computationally efficient. Specifically, the proposed method

starts with existing molecules and uses a two-stage search strategy to gradually modify them into

new ones, based on transformation rules derived from large compound libraries. We demonstrate

all the proposed methods with extensive experiments.

To sum up, RCL enables accurate prediction of drug-induced gene expression change which

lays the foundation of virtual drug screening based on reversing signatures of a given disease. Any

methods that utilizing graph neural networks for molecular tasks can utilize MoCL to improve

prediciton accuracy given insufficient data. MolSearch enables generation of molecules with

desired properties as well as optimizing targeted properties for better drug candidates.
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CHAPTER 1

INTRODUCTION

1.1 Robust Learning on Noisy Labels

Recent years have witnessed huge successes of supervised learning using deep neural networks in

various domains [39, 101, 29]. Moreover, investigations on network property and behavior have

further brought a better understanding of deep models, which in turn provides guidance on their

utilization [4, 92]. One decisive factor behind such successes is the availability of a sufficiently

large amount of training data [108].

In fact, improving generalization from limited labeled data has been an active research topic

for an extended period of time. For example, semi-supervised learning aims to help learning by

leveraging the unlabeled data [131, 16, 15]. On the other hand, in cases where obtaining accurate

labels is too expensive, practitioners could use affordable and alternative apparatuses to collect

less reliable noisy labels. For example, the online crowd-sourcing tools such as Mechanical Turk

1, in which although the labels come from humans, the quality of labels varies among different

annotators, and even within the same annotator across different time. Besides, labels from high-

throughput experiments (e.g., biological profiling and chemical screening) often contain inevitable

noise due to technical and biological variations.

Learning with noisy labels has imposed additional challenges. Sometimes the data quality is

known a priori [65, 97, 27], but a more common scenario is that the data available is a mixture of

samples with both clean and noisy labels and one does not know, or only has partial knowledge of

the underlying distribution of the noise [76, 66, 74, 118]. In this problem setting, a learning process

that is aware of noise in the labels and actively mitigates the negative impacts from the noisy labels,

is the key to improving the generalization of learned models.

Among the early studies, [12] showed that a proper arrangement of tasks can improve con-

1https://www.mturk.com/
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vergence and generalization when training a deep neural network. They proposed the concept of

curriculum, which defines the order of learning tasks, usually from easy to hard, to assist network

training. Recently, the memorization effect of neural networks has been identified and analyzed in

[4], showing that neural networks tend to fit informative information first, such as simple patterns,

and then the non-informative part, such as noise. Therefore, an appropriate ordering of data may

also improve the robustness of deep models. On the other hand, instead of manually grouping data,

[59] introduced a latent variable associated with each sample as the curriculum (sample weight)

and learns simultaneously with the model parameter. Several pre-defined curriculums have been

proposed later in [111, 64, 48, 49, 138] and such learning process is referred to as self-paced

learning (SPL).

Though slightly deviate from the initial motivation, learning with curriculums reveals its power

especially in dealing with noisy data. The reason is that noisy samples can be re-weighted or

even filtered out via the curriculum mechanism under proper designs. It has been proved by [73]

that the latent objective of self-paced learning is equivalent to a robust loss function, which also

sheds lights on the effectiveness of SPL on noisy data. The original optimization of SPL can be

done by alternatively optimizing model parameters and the curriculum, known as the majorization-

minimization (MM) algorithm [62]. However, such procedure is intractable for training very

large and deep neural networks via mini-batch stochastic gradients. Therefore, [50] modified the

algorithm such that it optimizes both the model parameter and curriculum stochastically over mini-

batches in a more elegant way. The authors also proposed to learn the curriculum rather than

pre-define and optimize it when auxiliary data is available.

A major drawback of determining curriculum based on the learner’s own ability without any

other supervision or feedback is the sample selection bias from the learner itself. The error made in

the early stage will be enhanced as training proceeds. Therefore, two or more networks have been

introduced in recent works to mitigate the selection bias [40, 63]. Nevertheless, these studies either

emphasize the disagreement or focus on the agreement between networks only without considering

the other.
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1.1.1 Our Contribution

In this paper, we first investigate the mechanism of how disagreement and agreement can help

filter out noisy samples. Then based on the insights, we propose a novel framework called Robust

Collaborative Learning (RCL) to deal with noisy labels. The main contributions of this paper are:

• We show that disagreement between networks can diversify the gradients of model weights

from noisy samples, which slows down the accumulation of noisy gradients.

• We show that under certain conditions, agreement from more than one network can improve

the quality of data selection, i.e., the label purity increases.

• Combining the above two findings, we propose RCL framework that consists of multiple

networks, where each network is an individual learner and exchanges knowledge with its Peer

system. The knowledge of the Peer system is fused from multiple networks, by adaptively

encouraging disagreement in the early stage and agreement in the later stage, which fully

boost the selection of clean samples for training.

We demonstrate the effectiveness of RCL on both synthetic and real data experiments. For

synthetic experiment, we use the benchmark image data [57] under different noise settings following

literature [40, 117]. We further validated our framework on cancer drug development using large-

scale genomic data from multiple sources [105, 124]. The proposed method achieves state-of-art

performance and significantly outperforms baselines in large noise settings, on both image and

bioinformatics data.

1.2 Graph Neural Networks and Pretraining Strategies

Graph neural networks (GNNs) has been demonstrated to achieve state-of-the-art performance on

graph-related tasks such as node classification [54, 119, 126], link prediction [142] and graph

classification [119, 35, 129]. It has also been frequently used in the biomedical domain recently

to tackle drug-related problems [104, 94, 75]. However, like most deep learning architectures, it
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requires a large amount of labeled data to train whereas task-specific labels in the real world are

often of limited size (e.g., in the biomedical domain, requiring labels such as drug responses from

biological experiments is always expensive and time-consuming). Therefore, pretraining schemes

on GNNs have been actively explored recently.

One line of works focuses on designing pretext tasks to learn node or graph representations

without labels. The predefined tasks include graph reconstruction [55, 44, 135] and context

prediction [83, 43]. The other line follows contrastive learning framework from the computer

vision domain [21, 127], in which two augmentations are generated for each data and then fed

into an encoder and a projection head. By maximizing the mutual information between the two

augmented views, the model is able to learn representations that are invariant to transformations.

In particular, [134] proposed four types of augmentations for general graphs and demonstrated that

contrastive learning on graphs can produce representations that are beneficial for downstream tasks.

However, unlike images, contrastive learning on graphs has its unique challenges. First, the

structural information and semantics of the graphs vary significantly across domains (e.g., social

network v.s. molecular graphs), thus it is difficult to design a universal augmentation scheme

that fits all scenarios. It has been shown that general augmentations can be harmful under a

specific domain context [134]. Second, most current graph contrastive learning frameworks learn

invariant representations while neglect the global structure of the entire data [5], e.g., some graphs

should be closer in the embedding space due to their structural similarity. Nevertheless, modeling

similarity between graphs itself is still a difficult problem [8]. Third, the contrast schemes are not

unique because graph tasks can happen at different levels, e.g., node-graph contrast [42], node-node

contrast [141], graph-graph contrast [134] are all possible contrast schemes.

Besides these unique challenges for graphs, contrastive learning itself also has unsolved prob-

lems. For example, accurately estimating mutual information in high dimension is difficult [84].

The connection between mutual information maximization and the success of contrastive learning

is still not clear. In fact, [114] found the connection is actually weak, while instead metric learning

shares some intrinsic connections with contrastive learning. These findings also motivate us to pay
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more attention to the role of augmentation schemes and global semantics of the data in order to

improve contrastive learning on graphs.

1.2.1 Our Contribution

In this paper, we aim to tackle the aforementioned challenges in the context of biomedical domain,

where molecular graphs are present. Our hypothesis is that better representations can be learned by

infusing domain knowledge into the augmentation and contrast schemes. We propose to leverage

both local-level and global-level domain knowledge to assist contrastive learning on molecular

graphs. In particular, unlike general augmentations in which nodes and edges in a graph are

randomly perturbed, we propose a new augmentation scheme called substructure substitution

such that a valid substructure in a molecule is replaced by a bioisostere which introduces variation

without altering the molecular properties too much. The substitution rules are derived from domain

resources and we regard it as local-level domain knowledge. The global-level domain knowledge

encodes the global similarities between graphs. We proposed to utilize such information to learn

richer representations via a double-contrast objective.

Leveraging domain knowledge to assist contrastive learning has rarely been explored in literature

and our work is the first to make this attempt. In summary, our contributions are as follows:

• We propose a new augmentation scheme for molecular graphs based on local-level domain

knowledge such that the semantics of graphs do not change in the augmentation process.

• We propose to encode the global structure of data into graph representations by adding a

global contrast loss utilizing the similarity information between molecular graphs.

• We provide theoretical justifications that the learning objective is connected with triplet loss

in metric learning which shed light on the effectiveness of the entire framework.

• We evaluate MoCL on various molecular datasets under both linear and semi-supervised

settings and demonstrate its superiority over the state-of-the-art methods.
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1.3 Search-based Molecular Generation and Property Optimization

Searching new compounds with desired properties is a routine task in early-stage drug discovery

[14]. Common examples include improving the binding activity against one or multiple therapeutic

targets while keeping the drug-likeness property; increasing drug solubility while minimizing the

change of ADME properties. However, a small change of chemical structures may lead to an

unwanted challenge of one property that even seasoned chemists cannot foresee. Moreover, the

virtually infinite chemical space and the diverse properties for consideration impose significant

challenges in practice [96]. Advanced machine learning models built upon historical biological

and medicinal chemistry data are poised to aid medicinal chemists in designing compounds with

multiple objectives efficiently and effectively.

Leveraging computational methods to facilitate and speed up the drug discovery process has

always been an active research area [102, 136]. In particular, using deep learning (DL) and rein-

forcement learning (RL) to generate and optimize molecules has recently received broad attentions

[51, 133, 128], which we will summarize in detail later in section ??. Despite the advances, such

methods either rely on the quality of latent space obtained by generative models [98], or suffer

from high variation, making it hard to train [112]. In reality, DL/RL methods consume large com-

putational resources while the generated molecules hardly synthesize. Methods combing multiple

objectives often do not work well [31].

In this paper, instead of leveraging DL, we propose a practical search-driven approach based

on Monte Carlo tree search (MCTS) to generate molecules. We show that under proper design,

search methods can achieve comparable or even better results to DL methods in terms of multi-

objective molecular generation and optimization, while being computationally muchmore efficient.

The efficiency and multi-objective nature allow it to be readily deployed in massive real-world

applications such as early-stage drug discovery.

In order to design an efficient and effective search framework for practical multi-objective

molecular generation and optimization, we need to answer the following questions. Q1: where to

start; Q2: what to search; and Q3: how to search. For Q1, prior works that use MCTS to generate
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molecules mostly start with empty molecules [130, 46]. Since most drug-like molecules have 10-40

atoms, the search tree can grow very deep and the search space grows exponentially with the depth,

which makes the search process less efficient and effective. Some work thus uses pre-trained RNN

as a simulator to expand the tree however it requires additional pretraining [130]. Moreover, real

optimization projects often have some candidates in place. For Q2, most prior works use atom-wise

actions for editing molecules, which makes it hard to improve target property while maintaining

drug-likeness and synthesis abilities [140, 133]. Fragment-wise actions tend to work better but

the editing rules are mostly heuristic [52, 128]. For Q3, most existing methods combine all the

objectives into one single score and optimize for that [78, 128]. However, the simple aggregation

of scores neither fully considers the differences of objective classes nor reflects real optimization

scenario.

We seek solutions to Q1-Q3 and proposeMolSearch, a simple and practicable search framework

for multi-objective molecular generation and optimization. In MolSearch, we start with existing

molecules and optimize them towards desired ones (Q1). Themodification is based on designmoves

[7], i.e., transformation rules that are chemically reasonable and derived from large compound

libraries (Q2). The property objectives are split into two groups with its rationale explained

in detail later. The first group contains all biological properties such as inhibition scores to

proteins, and the second group includes non-biological properties such as drug-likeness (QED)

and synthetic accessibility (SA). Correspondingly, the entire search process consists of two stages:

a HIT-MCTS stage that aims to improve biological properties, followed by a LEAD-MCTS stage

that focuses on non-biological properties while keeping biological ones above certain threshold.

Each stage contains a multi-objective Monte Carlo search tree where different property objectives

are considered separately rather than combined (Q3).

We evaluate MolSearch on benchmark tasks under different generation settings and compare

it with various baselines. The results show that MolSearch is on par with or even better than the

baselines based on evaluation metrics calculated from success rate, novelty and diversity, within

much less running time.
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1.3.1 Our Contribution

• MolSearch is among the first that make search-based approaches comparable to DL-based

methods in terms of multi-objective molecular generation and optimization.

• MolSearch combines mature components, e.g., tree search, design moves, multi-objective

optimization, in a novelway such that the generatedmolecules not only have desired properties

but also achieve a wide range of diversity.

• MolSearch is computationally very efficient and can be easily adopted into any real drug

discovery projects without additional knowledge beyond property targets.

• Additional to molecular generation, MolSearch is more tailored for hit-to-lead optimization

given the nature of its design, which makes it very general and applicable.
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CHAPTER 2

RELATEDWORK

2.1 Robust Learning on Noisy Labels

Inspired by the fact that humans learn better when trained with a curriculum-like strategy, [12]

first proposed curriculum learning, which mimics the learning procedure of humans. Results on

both visual and language tasks have shown that training on easy task first and then hard tasks led

to faster convergence as well as better generalization. Instead of using a specified curriculum,

[59] incorporated a latent variable associated with each sample, and jointly optimized the model

parameters and the sample curriculum. Besides, a variety of approaches with different predefined

curriculumwere proposed and validated [111, 64, 48, 49, 138]. Further, instead of using predefined

curriculum, [50] proposed to learn a data-driven curriculum when auxiliary data is available. The

authors also designed an efficient algorithm for training very deep neural networks with curriculum.

Later, [40] proposed co-teaching framework, a system of two networks that exchange selected

samples to alleviate the sample selection bias brought by one network. Co-teaching [40] works

well empiricallywith several follow-upworks and applications [137, 122, 103]. [103] later proposed

to make use of the unselected samples by correcting their labels and combining them with selected

samples for training. Other very recent works also aggregated knowledge from multiple sources,

e.g., multiple networks or multiple training epochs of a single network to filter out noisy data

[63, 77].

Learning with corrupted labels also relates to weak supervised learning, and its recent advances

can be summarized into the following groups. A common way to leverage weak labels when the

quality of data is known a priori is to use the pre-train and fine-tune scheme based on the amount

of clean and weak data [28, 97, 65]. Another line of methods design surrogate loss functions

for robust learning [70, 66, 76]. Some approaches model the noise pattern or estimate the error

transition matrix [107, 74], and denoise by either adding an extra layer [36], or using generative
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models [88, 118]. Other methods utilize semi-supervised learning techniques [1, 24] to revise weak

labels for further training [41], or regularize the learning procedure [115]. Recently, learning-to-

learn methods have also been proposed to tackle such problems by manipulating gradient update

rules [3, 27]. Since our work mainly follows curriculum learning, we do not expose further details

for works mentioned in this paragraph and refer readers of interest to the original papers.

2.2 Graph Neural Networks and Pretraining

Self-supervised learning on graphs. A common strategy for learning node (graph) representation

in an unsupervised manner is to design pretext task on unlabled data. For node-level tasks, You

et al. [135] proposed three types of self-supervised tasks: node clustering, graph partition and

graph completion to learn node representations. Peng et al. [83] proposed to predict the contextual

position of a node relative to the other to encode the global topology into node representations. GPT-

GNN [44] designed generative task in which node attributes and edges are alternatively generated

such that the likelihood of a graph is maximized. After that, the pretrained GNN can be used for

any down-stream tasks. For graph level tasks, Hu et al. [43] first designed two tasks, predicting

neighborhood context and node attributes to learn meaningful node representations, then using

graph-level multi-task pretraining to refine the graph representation. Other works [99, 132, 110]

utilized similar strategies for either node or graph level pretrain in the context of a more specific

task or domain.

Contrastive learning on graphs. Contrastive learning on graphs can be categorized into two

groups. One group aims to encode structure information by contrasting local and global repre-

sentations. For example, DGI [120] proposed to maximize the mutual information between node

embedding and graph summary vector to learn node representations that capture the graph se-

mantics. InfoGraph [109] extended DGI to learn graph-level representations and further proposed

a variant for semi-supervised scenarios. Another group aims to learn representations that are

invariant to transformations, following the idea of contrastive learning on visual representations

[21, 127, 30], where two augmentations (views) of an image are generated and fed into an encoder
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and a projection head, after which their mutual information is maximized. Similarly, You et al.

[134] explored four types of augmentations for general graphs and demonstrated that the learned

representations can help down-streaming tasks. Instead of general corruption, [42] used graph dif-

fusion to generate the second view and performed contrast between node and graph from two views.

GCC [85] proposed to use random walk to generate subgraphs and contrast between them. GCA

[141] proposed adaptive augmentation such that only unimportant nodes and edges are perturbed.

However, GCA is focused on network data and not suitable for molecular graphs.

Evaluation protocols. Since our work focus on graph-level representation learning, and there

are various evaluation schemes for graph self-supervised learning, we summarize the evaluation

protocols that related works use. Most prior works [109, 43, 134] adopt the linear evaluation

protocol where a linear classifier is trained on top of the representations. [109, 134] also adopt the

semi-supervised protocol where only a small fraction of labels are available for downstream tasks.

[43, 134] explore the transfer learning setting in which the pretrained model is applied to other

datasets.

2.3 Molecular Generation and Optimization

In general, molecular property optimization comprises three components or less: representation,

generative model, and optimization model. The representation of molecules can be simplified

molecular-input line-entry system (SMILES) strings, circular fingerprints, and raw graphs, which

often corresponds to certain type of generative models. Grouping by each component can be too

detailed to capture the big picture, therefore we choose to categorize the related studies based on

optimization models.

The first group optimizes molecular via Bayesian optimization [37, 60, 25, 51]. These methods

first learn a latent space of molecules via generative models such as auto-encoders (AEs), then

optimize the property by navigating in that latent space, and generates molecules through the

decoding process. Most methods in this category only optimize for non-biological properties such
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as QED and penalized logP 1, and focus on metrics such as validity of generated molecules. They

heavily rely on the quality of learned latent spaces, which impose challenges for multi-objective

optimization.

Instead of manipulating latent representations, the second category utilizes reinforcement learn-

ing (RL) to optimize molecular property. One line of research applies policy gradient to finetune

generative models, e.g., GAN-based generator [95, 26], GNN-based generator [133], Flow-based

generator [100, 67] to generate molecules with better property scores. The other line of work

directly learns the value function of molecule states and optimizes for a given property via double

Q-learning [140].

Besides RL, the third category uses genetic algorithms (GAs) to generatemolecules with desired

properties [46, 2, 78]. The generation process of genetic algorithms usually follows mutation and

cross-over rules that are predefined from a reference compound library or domain expertise, which

are not easy to obtain in general. Some work [78] also combines deep learning, e.g., a discriminator

into GA generator to increase the diversity of molecules.

The last but least explored category aims to optimize molecular property using search methods,

e.g., Monte Carlo tree search (MCTS). The earliest work traces back to [130, 46] in which the

authors uses pre-trained RNNs or genetic mutation rules as the simulator for tree expansion and

simulation. [86] proposes atom-based MCTS method without predefined simulator. Again, all

the methods focus on single and non-biological properties and are not tailored for multi-objective

optimization. Not until recently RationaleRL [52] enables multi-objective molecular generation by

first searching property-related fragments using MCTS and then completing the molecular graph

using reinforcement learning.

There are also pioneering works that do not fall into any of the categories above, e.g., MARS

[128] proposes a Markov sampling process based on molecular fragments and graph neural net-

works (GNNs) and achieves state-of-the-art performance. In summary, we see a trend of utilizing

fragment-based actions and directly navigating in the chemical space (a.o.t. generative models) in

1water-octanol partition coefficient penalized by synthesis accessibility and number of cycles having more than 6
atoms, i.e., PlogP(m)=logP(m)-SA(m)-cycle(m)
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recent works. Interested readers are referred to [31, 139] for a comprehensive understanding of

advances in molecular generation and optimization.
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CHAPTER 3

ROBUST COLLABORATIVE LEARNINGWITH NOISY LABELS

3.1 A Revisit of Self-paced Learning (SPL)

Despite the promising evidence of curriculum in assisting learning, constructing an effective

curriculum is not easy for learning tasks. To tackle this challenge, SPL [59] introduces a latent

variable associated with each training sample, and solve them during training. After denoting the

latent variables in a vector v ∈ [0, 1]n, where n is the sample size, the objective function of SPL

can be written as:

min
w,v∈[0,1]n

E(w, v, λ) =
∑n

i=1
vi L

(
yi, f (xi,w)

)
+ g(vi, λ) (3.1)

where g(v, λ) serves as the curriculum function and regularizes the weight of a given sample, λ is

a control parameter. w and v are optimized alternatively while fixing the other [116]. A simple

example of the curriculum function can be g(v, λ) = −λv with closed-form solution for v at each

step:

v∗(λ; l) =


1, if l < λ

0, if l ≥ λ

where l is the loss for one sample. The design of g(v, λ) often satisfies conditions such as convexity

and monotonicity to ensure convergence [47, 49, 73]. Moreover, such design reveals the nature of

SPL, that the difficulty of a sample is determined by the learner’s ability, i.e., if a sample has large

loss on the current model, it is likely to be more difficult to learn or even an outlier. It has been

proved that the optimization of Eq. (3.1) is equivalent to minimizing a robust loss function, whose

underlying objective is Fλ(w) = 1
n
∑n

i=1

∫ li
0 v∗(λ, l)dl [73]. Therefore, SPL works well for problems

involving data with corrupted labels. Furthermore, the alternating minimization algorithm for

solving Eq. (3.1) can be modified to suit the mini-batch training for very deep neural networks [50].
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3.1.1 The power of Disagreement

A major drawback of SPL is the sample selection bias induced by the learner itself since it picks

samples based on its own knowledge. The error that takes place in the early stage will be reinforced

as training continues. In order to mitigate this, a second network is introduced in co-teaching [40],

where two networks first pick samples on their own and then exchange selected samples to train.

Such strategy works better than SPL in practice. However, the underlying mechanism has not been

well studied. Therefore, in this subsection, we show that exchanging data introduces disagreement

between two networks and such disagreement can diversify noisy gradients and thus leads to higher

gradient purity.

Recall that the algorithms of many machine learning models are based on gradient methods, in

which the model is updated iteratively by adding gradients computed from the samples. Therefore

the final learned model is additive w.r.t. the gradients. In the stochastic gradient procedure, the

gradient update for each mini-batch can be written as:

wt+1 = wt − ηt 1
nr

∑nr

j=1
∇l j(wt) = wt − ηt 1

nr
S∇,

where nr is the number of samples in a mini-batch, ηt is the step size, S∇ denotes the summation of

sample gradients.

Considering each of the two networks, with an oracle that provides the ground truth whether

a label is noisy or not, we can decompose the gradient S∇ into four disjoint components based on

data quality (clean or noisy) and network agreement (agree or not). Let I be a subset of indexes

such that 11={clean, agree}, 10={clean, disagree}, 01={noisy, agree}, 00={noisy, disagree}, then

the decomposition is given by:

S∇ = Σ j∈I11∇l j(wt)︸          ︷︷          ︸
agreed clean

+ Σ j∈I10∇l j(wt)︸          ︷︷          ︸
disagreed clean

+ Σ j∈I01∇l j(wt)︸          ︷︷          ︸
agreed noisy

+ Σ j∈I00∇l j(wt)︸          ︷︷          ︸
disagreed noisy

,

where an ideal algorithm should concentrate the learning clean data points I11 ∪ I10 and reduce the

impacts from noisy data points I01 ∪ I00. As SPL updates network parameters based on small loss

samples from itself, the network goes towards the small loss direction, thus the similarity of noisy
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Figure 3.1: Gradient norm (GN) of noisy data on CIFAR10. The gradient includes components I01
and I00 in Eq. (3.2). Co-teaching learning process has less impact from noisy data.

samples will concentrate and accumulate. In co-teaching, on the other hand, the set I00 (noisy,

disagree) are diversified by exchanging data points between the two networks. Such disagreement

is crucial and can cause several effects. First, the gradient norm of noisy data may diminish; second,

the diversification can take effect across time since gradients are eventually summed and applied

to network parameters; third, introducing disagreement is equivalent to adding small perturbations

on network parameters, which could increase the robustness of the network. We note that the noise

from I01 (noisy, agree) set of samples is inevitable since they are agreed by both two networks,

but such “bad” agreements may also suggest the usefulness of the samples and effectively prevent

overfitting.

We evaluate these effects in a small synthetic experiment. Given an image-classification

problem, e.g., CIFAR10, for each class, we manually flip 45% labels into the adjacent class. Then

we compare the gradients of noisy samples between SPL and co-teaching, i.e., Σ j∈I01∇l j(wt) +

Σ j∈I00∇l j(wt) in Eq. (3.2). The gradients are calculated from the last linear layer of a CNN model.

We use gradient norm here since gradient itself cannot be directly compared. Fig. 3.1a shows the

average gradient norm of noisy data at each epoch, and Fig. 3.1b shows the norm of accumulative

gradients of noisy data along time. We can see that disagreement from exchanging data helps

achieve smaller noisy gradient compared to SPL and it also slows down the accumulation of noisy
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gradients.

3.1.2 The power of Agreement

The training procedure is a dynamic process in which the leaner’s ability grows as training proceeds.

When the learners are mature, aggregating their knowledge can be beneficial as compared to only

exchanging them.

Lemma 1 Given two networks, the samples selected by either network can be decomposed into

two subsets: agreement (A = I11 ∪ I01) and disagreement (Ā = I01 ∪ I00) samples as compared

to the other. Define pI =
nc

nc+nc̄
as the purity of a subset I, nc = |I11 |, nc̄ = |I10 |. If pA > pĀ, then

pA > pA∪Ā.

pA > pĀ ⇔
n11

n11 + n01
>

n10

n10 + n00
(by definition)

⇔ n11n00 > n10n01 (simplify)

⇔ n11(n00 + n01) > (n10 + n11)n01 (add n11n01)

⇔
n11

n01
>

n10 + n11

n00 + n01
=

n1·

n0·
(re-arrange)

⇔
1

1 + n01
n11

>
1

1 + n0·
n1·

(reciprocal twice)

⇔
n11

n11 + n01
>

n1·

n1· + n0·
(simplify)

⇔ pA > pA∪Ā (by definition)

Lemma 1 implies that for two networks, when the purity of agreed samples is larger than that of

disagreed samples, the common samples selected by two networks is guaranteed to have higher

purity than those selected by a single network. The proof is straightforward using definition.

In fact, recent works [63, 77] propose to aggregate knowledge from multiple networks to

filter out noisy samples during training and show promising results. However, ensemble does not

guarantee higher purity especially in the early training stage since errors could also be magnified.
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Figure 3.2: Robust Collaborative Learning (RCL) framework. Left: one network’s view, A’ denotes
all the peer networks of A; Right: all networks in one mini batch. Knowledge fusion and update
can be done in parallel for all the networks.

Therefore, a common strategy is to train the entire data until certain epochs and then perform the

ensemble. The performance of such ensemble methods depends heavily on the warm-up procedure

in which the entire data is used to train, therefore, if the noise rate is large, these methods may not

be optimal.

3.2 The Proposed Method

The analysis of disagreement and agreement in previous section shows their advantages but also

reveals the fact that focusing on either one alone while ignoring the other may lead to suboptimal

results. Therefore, in this paper, we propose Robust Collaborative Learning (RCL), a framework

that combines the aforementioned ingredients in a coherent way. Fig. 3.2 shows the overall structure.

In RCL, each network is an individual learner, while the rest networks form a Peer system. From

each network’s perspective, it exchanges knowledge with its Peer (Fig. 3.2 Left). The knowledge it

receives is fused from multiple networks in the Peer system, while the knowledge it offers will wait

for fusion when itself is served as a peer network (Fig. 3.2 Right). The pseudo code of the overall

algorithm is illustrated in Alg. 5.1. Next we introduce each component of RCL in detail.
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3.2.1 Self-Knowledge

During one mini-batch, each network first selects reliable samples on its own. The selection is

based on current loss such that top R × 100% ranked small-loss samples will be selected. Due to

the memorization effect in deep models [4], i.e., deep neural networks tend to learn easy patterns

first and then memorize noise at later epochs, the reserve rate R(T) is designed to be monotonically

decreasing with respect to epoch T from 100% until it reaches clean rate (1 − ε) × 100%, where ε

is the noise rate. Tcut is the switch epoch such that after this epoch, only (1− ε) × 100% percentage

of the data will be selected if we know the noise rate in priori, otherwise ε itself becomes a hyper-

parameter to tune. The selected samples are the self-knowledge of each individual network. After

each network generates its own knowledge, the knowledge will be used in knowledge fusion step.

Algorithm 3.1: Pseudo code for RCL Algorithm.
Input: K networks {Θ1..ΘK}, training data D, noise rate ε ; (Fixed) learning rate η, epoch Tmax
and iteration Nmax; (Hyper) epoch Tcut, fusion multiplier α, fusion exponent β.
Output: Updated network parameters {Θ′1..Θ

′
k}.

1: for T = 1 to Tmax do
2: Shuffle training set D
3: Update R(T) = 1 − ε ·min

{
T

Tcut
, 1

}
// remember rate

4: Update r(T) = 1 −min
{(

T
αTcut

) β
, 1

}
// fusion rate

5: for N = 1 to Nmax do
6: Fetch mini-batch D from D
7: for k = 1 to K do
8: Obtain Dk = arg minD:|D|≤R(T)|D | l( fΘk

,D)

9: for k = 1 to K do
10: Obtain D′k = Knowledge

(
D{1..K}\k, r(T)

)
Update Θ′k = Θk − η∇l( fΘk

,D′k)

11: Return Θ′ = {Θ′1..Θ
′
k};

3.2.2 Knowledge Fusion

For a given network k, it utilize the knowledge from its Peer system. The Peer system includes

all the rest networks except for network k. The knowledge of this system is fused from multiple

networks via a knowledge fusion function. Ideally, when the networks are trained well, the
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Figure 3.3: Knowledge fusion among peer networks.

knowledge of agreement, i.e., data points picked by all the peer networks can be used to update

network k. However, during the early stage, the networks have not learned well and are prone to

making mistakes. Therefore, disagreement is introduced to reduce the noise in gradients. There are

two parameters associated with it. The first one is α, which determines the switch epoch between

disagreement and agreement. Instead of setting a particular epoch, we design α as a parameter that

defines the lag of switch epoch compared to Tcut . The second one is fusion rate r , which controls

the strength of disagreement, i.e., the proportion of disagreed samples that will be included in

addition to the common samples. As epoch increases, less disagreed samples will be included until

only common ones are selected. Fig. 3.3a illustrates such procedure in the example of two peer

networks. The decay of strength of disagreement is controlled by a hyper-parameter β and different

decay patterns are shown in Fig. 3.3b. Small β corresponds to low disagreement strength and

quickly transit the state from disagreement to agreement while large β encourages disagreement

and slows down the transition. In summary, the fusion rate for each epoch can be calculated by the

following function:

r(T) =


1 − (T/(αTcut))β , if T < αTcut

0, if T ≥ αTcut

(3.2)

where T is epoch, Tcut is the threshold when reserve rate R reaches clean rate, α is the lag parameter

that controls the end point of disagreement decay compared to reserve rate. After calculating the
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fusion rate, disagreed samples are randomly picked and added to the agreed samples as the final

knowledge of the Peer system. Such randomness also introduce certain level of disagreement since

each network will receive different candidates to train even if the common samples are the same

within each Peer system. The pseudo code of knowledge fusion procedure for multiple networks is

illustrated in Alg. 4.2.

3.2.3 Knowledge Exchange

Network k receives the candidate samples from its Peer system and update parameters based on

them. The same procedure can be done in parallel for all the networks. Although it seems that

network k only receives knowledge in this round without giving out its own knowledge, but when

other networks is updating, each of them uses knowledge from network k. This procedure is

referred to as knowledge exchange. After all the networks have been updated, they enter the next

iteration and repeat the processes.

Algorithm 3.2: Knowledge Fusion Function.
Input: Given the k-th network, the knowledge of all other peer networks {D1..DK} \ Dk ;
Fusion rate r(T).
Output: Data for updating the k-th network D′k .

1: Dagree = Intersect
(
{D1..DK} \ Dk

)
2: Dpotential = Union

(
{D1..DK} \ Dk

)
3: if |Dagree | == |Dpotential | then
4: D′k = Dagree
5: else
6: Duncertain = Dpotential − Dagree
7: nin = r(T) · |Duncertain |

8: Din = random_sample
(
Duncertain, nin

)
9: D′k = Dagree + Din

10: Return D′k ;

In this section, we conduct both synthetic and real data experiments on various datasets to

validate the proposed method. The synthetic experiment follows the standard setting in literature

using the benchmark data from vision recognition problems [36, 82, 89]. The real data experiment
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Data # training # testing # class image size
CIFAR-10 50,000 10,000 10 32x32
CIFAR-100 50,000 10,000 100 32x32

Table 3.1: Description of datasets in synthetic experiment.
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Figure 3.4: Noise examples for a 5-class problem.

is focused on cancer drug discovery using large-scale bioinformatics data from multiple sources

[105, 124].

3.3 Experiment

3.3.1 Synthetic Experiment on Image Benchmark

We demonstrate the effectiveness of RCL from following aspects: the benefit brought by agreement

and disagreement, respectively; sensitivity analysis of vital hyper-parameters of RCL; a variant of

RCL that significantly reduces computational burden and time complexity.

Datasets. WeuseCIFAR-10 andCIFAR-100 datasets and the description is shown in Table 3.1. The

original data is clean, and we manually create corrupted labels following the strategy in [40, 117].

Two common noise scenarios are considered, symmetric flip (SYM) and pair flip (PF), as shown

in Fig. 3.4. For SYM, the label of each class is uniformly random flipped to the rest classes with

equal probability; for PF, the label of each class only flips to one different but similar class. The

noise rate ε quantifies the overall proportion of labels that are flipped for each class.

Network Architecture. We follow the same 9-layer CNN architecture as [40, 61] which is
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32 × 32 RGB Image
3 × 3 conv, 128 LReLU
3 × 3 conv, 128 LReLU
3 × 3 conv, 128 LReLU

2 × 2 max-pool, stride 2, dropout p = 0.25
3 × 3 conv, 256 LReLU
3 × 3 conv, 256 LReLU
3 × 3 conv, 256 LReLU

2 × 2 max-pool, stride 2, dropout p = 0.25
3 × 3 conv, 512 LReLU
3 × 3 conv, 256 LReLU
3 × 3 conv, 128 LReLU

avg-pool
dense 128→ 10

Table 3.2: CNN architecture. The negative slope for each LeakyReLU is set as 0.01.
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Figure 3.5: Episode curve (upper: test accuracy, lower: pure ratio) w.r.t. training epochs. The grey
lines are SPL (net_1) and co-teaching (net_2), and blue lines the RCL. The shaded area represents
the variation across 5 random seeds.

commonly used in weakly supervised learning (Table 3.2). We use Adam optimizer with a

momentum of 0.9 and an initial learning rate of 0.001. The batch size is set to 128 and the

maximum epoch is 200. We implemented the models using PyTorch and all the experiments are

conducted on NIVIDIA GPUs. We ensure that for the same dataset and noise scenario, different

comparison methods run on the same machine.
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Method Standard SPL De-CP Co-T K=3 K=5 K=7 K=9 K=11 K=13 +R p-val # nets
Data Noise Test Accuracy

CIFAR10 SYM 50% 48.52 70.92 45.53 73.45 75.72 77.44 78.01 78.47 78.91 78.91 7.43 2e-9 11
CIFAR10 PF 45% 48.65 56.08 49.24 72.77 74.59 76.28 77.28 78.25 78.70 79.15 8.77 <1e-9 13

CIFAR100 SYM 50% 21 36.21 17.51 38.14 40.05 41.83 42.43 42.96 43.77 43.14 14.75 4e-07 11
CIFAR100 PF 45% 29.57 28.63 26.17 30.44 32.51 34.90 36.86 37.85 39.02 39.15 28.58 4e-09 13

Data Noise Pure Ratio
CIFAR10 SYM 50% 50.31 84.22 40.48 83.95 86.96 88.82 89.47 89.86 90.11 90.33 7.33 <1e-9 11
CIFAR10 PF 45% 54.89 68.09 51.23 79.25 82.72 84.99 86.16 87.17 87.69 88.11 11.18 <1e-9 13

CIFAR100 SYM 50% 49.95 80.51 42.89 80.65 83.85 86.20 87.14 87.82 88.20 88.20 9.36 <1e-9 11
CIFAR100 PF 45% 54.84 58.66 53.42 59.03 61.07 63.94 66.97 68.65 69.36 69.99 18.57 <1e-9 13

Table 3.3: Performance of non-ensemble baselines and the proposed method RCL over different number of networks (K) on fixed noise
rates. Each method is repeated for 5 random seeds with average performance presented. Significance t-tests (one-side) are conducted
between RCL and the best baseline. A p-value less than 0.05 is considered as significant difference.
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Experimental Setup We keep the major hyper-parameter of co-teaching [40], i.e., Tcut shown in

Alg. 5.1, and fix those that have subtle effect on results in the original paper since RCL also induces

extra hyper-parameters, which are ourmain focus. In our experiments, wefirst tuneTcut = {5, 10, 15}

for one and two networks (i.e., SPL and Co-teaching). Then we use the best for further tuning

RCL. For other hyper-parameters, we fix α = 2 for all scenarios and use fixed β for a given noise

scenario, based on the sensitivity analysis using β = {0.0, 0.1, 0.3, 0.5, 1.0, 2.0, 8.0}. We test over

a range of number of networks K = {3, 5, 7, 9, 11, 13}, and noise rates ε = {0.25, 0.35, 0.45} for

pairflip noise and ε = {0.5, 0.6, 0.7, 0.8} for symmetric noise. For all the comparison methods, we

run 5 random seeds to get an average performance unless stated otherwise. And we found that the

variance of RCL is relatively small across different random seeds.

Baselines. We consider the following baselines. (1) Standard, a single network which is trained

on the entire dataset. (2) SPL [50], a single network that produces curriculum based on its own

knowledge. (3) Decoupling (De-CP) [68], a double-net system in which the networks only updates

parameters from data whose prediction label is disagreed between two networks. (4) Co-teaching

[40], a double-net system in which the two networks exchange curriculum at each iteration. (5)

Ensemble consensus [63], specifically the LNECvariant, amulti-net system that explores agreement

between multiple networks. (6) Self-ensemble (SELF) [77], which explores agreement between

consecutive epochs within a network. Note that for the ensemble baseline SELF, the original

implementation involves other hybrid components and the authors did not release the code, which

makes direct comparison difficult, so we adopt the core idea of their paper which is the temporal

ensemble and implement the method. Test accuracy and pure ratio serve as the evaluation metrics.

The test accuracy is evaluated on clean test set. The pure ratio measures the average proportion of

clean data that is selected by the algorithm across all mini-batches in one epoch during training. All

metrics are evaluated on one network. For methods that contain more than one network, we only

evaluate the performance of the 1st network for a fair comparison. We also find that the variation

among networks are small in the end.

Benefit of agreement. The benefit of agreement comes from ensemble of multiple networks on
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the selection of clean samples, which can be verified by adding number of networks while fixing

other components. Fig. 3.5 shows the episode curve for RCL over different number of networks for

a given noise rate. We can see that the test accuracy gradually improves as the number of networks

increases. For certain noisy scenarios, e.g., CIFAR100 symmetric 50%, the test accuracy reaches

plateau and starts to decrease at 13 networks. For other scenarios, it continues to increase as number

of network grows. Higher pure ratio generally leads to higher test accuracy. We calculate the final

performance as the average of last ten epochs following [40] and then average over multiple runs.

The results of RCL and baselines are shown in Table 3.3. Importantly, RCL selects significantly

more clean data compared to baselines which verifies the benefit of agreement during the learning

process.

Benefit of disagreement. The agreement strategy is relatively intuitive since it ensembles predic-

tions from multiple networks after each leaner has achieved certain accuracy, however, agreement

may not work when the noise rate is large since it also ensembles the error, especially during the

early training stage. In such situation, disagreement plays the role that reduces the noise in gradients

and helps pick out more clean samples. The disagreement takes place in terms of two levels: the

first level is to exchange data in a learn-from-the-other way such that each network receives different

data from the its Peer system, the second level is that the strength of disagreement varies along the

training procedure and can be controlled by a hyper-parameter. Both levels can improve the selec-

tion of clean samples as well as the generalization performance. To verify these, we compare RCL

with several ensemble methods [63, 77] which only explore agreement among multiple networks

(or multiple training epochs), and all the networks use the same set of candidates to train. Fig. 3.6

shows the test accuracy of the competing methods for different noise rates on CIFAR10. Pure ratio

reveals the exact same pattern and therefore is not shown in the figure. Complete results for all

the datasets and noise scenarios are presented in Table 3.4. First, we find that temporal ensemble

(SELF) does not work as good as network ensembles in the provided scenarios. Second, we can

see that when the noise rate is small, RCL reaches similar accuracy as the state-of-art ensemble

methods; when the noise rate is large, RCL yields significantly better performance compared to the
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Figure 3.6: Test accuracy of ensemble methods and RCL (K=9) over various noise rates on
CIFAR10. The shaded area represents variation across 3 random seeds.
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Figure 3.7: Improvement of RCL over ensemble method by each disagreement level on CIFAR10
pairflip 45% scenario (K=9). Average over 3 random seeds.

ensemble baselines, which demonstrates the power of introducing disagreement during the learning

process. We also find that the variations of baselines are much larger compared to RCL, which

indicates the robustness of the proposed method. One thing needs to point out here is that, although

LNEC and RCL both use 9 networks, RCL only use the knowledge of other 8 networks, therefore it

does not outperform LNEC in the easy tasks but still reaches equal goodness. Next, in order to see

the improvement brought by each level of disagreement, we add the data exchange step onto LNEC

baseline and compare it with pure LNEC and RCL (all use 9 networks). The result is shown in Fig.

3.7. We can see that the combination of agreement and data exchange, which makes each network

receive different candidates for training, performs better than pure ensemble based on agreement

(LNEC vs LNEC+Exchange). Moreover, encouraging disagreement in the early stage can further

improve the selection of clean samples, leading to higher accuracy (LNEC+Exchange vs RCL).

Sensitivity analysis The hyper-parameter β controls the strength of disagreement and is important

in RCL. Therefore, we would like to see (1) whether different values of this parameter will affect
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Data Noise Test accuracy Pure ratio
SELF LNEC CL SELF LNEC CL

CF10
SYM

50% 61.65 79.00 78.51 81.38 90.07 89.85
60% 42.97 74.32 72.65 64.89 86.15 85.14
70% 28.99 48.05 59.60 46.20 61.31 74.40
80% 17.04 22.45 30.20 29.13 31.65 42.04

CF10
PF

25% 72.97 83.23 83.18 88.34 93.13 92.75
35% 56.77 81.83 81.57 75.58 91.05 90.93
45% 37.21 63.09 78.34 57.61 72.22 87.28

CF100
SYM

50% 25.02 43.89 43.37 66.69 86.92 87.99
60% 15.82 32.07 36.12 52.60 78.06 82.20
70% 7.69 23.41 26.71 37.23 64.44 72.34
80% 3.29 11.99 14.79 24.02 40.20 49.96

CF100
PF

25% 38.23 52.83 51.03 82.21 92.04 87.94
35% 28.08 46.49 45.91 69.12 82.28 81.28
45% 19.28 31.48 38.38 53.99 61.16 69.17

Table 3.4: Final performance of ensemble methods and RCL over various noise rates (K=9). Bold
numbers indicates that the method is significantly better than the second best method.
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Figure 3.8: Test accuracy of RCL over various βs, average over 3 random seeds (K=3).

the performance of RCL, and (2) how does it affect. We test over a range of different values to study

its behavior on different tasks. Fig. 3.8 shows the results on CIFAR10 dataset. We can see the

test accuracy shows opposite patterns on the same range of β for the two different noise scenarios.

When the task is relatively easy (e.g., CIFAR10 symmetric 50%), small β yields better accuracy.

If the noise rate is large, i.e., the task is more difficult, it favors relatively large β which encourages

disagreement during the early stage. However, extreme large value of β is not beneficial. The

difference of accuracy can reach up to 2% for different values of β while fixing all other parameters.

Reduce time complexity While being effective, RCL (as well as other methods) that involves

multiple networks requires more computational power and running time compared tomethods using
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Figure 3.9: Revise and restart RCL on CIFAR10 PF 45% using K=3 networks. Left: the confusion
matrix after we revise the labels based on prediction. Numbers in cells denote percentages. Right:
test accuracy w.r.t epochs.

one or two networks. One way to reduce time complexity without deteriorating the performance is

to utilize the unselected samples during training. Therefore, we propose a revise-and-restart strategy

based on the current framework. When the training reaches certain epochs (usually plateau), we

first revise the labels of the unselected samples based on the current prediction of the network.

We still use the first network in the system for consistency purpose, other option such as using

the ensemble prediction of all networks is also applicable. Then we restart the training procedure,

i.e., first introduce disagreement and then agreement. The decay factor β is reduced by half every

time we restart the procedure because revising labels decreases the noise rate. Fig. 3.9 shows the

corresponding result on CIFAR10 by using only 3 networks. Originally, 45% of the ground-truth

labels are flipped to the adjacent class. After revising the labels of unselected samples at epoch 50,

the label precision for each class is shown in Fig. 3.9a. We can see that the percentage of correct

labels for each class increases significantly compared to 45%. Fig. 3.9b shows the episode curve

of revise and restart compared to the original 3 networks. The test accuracies of using 3 networks

are 74.1% vs 78.4% before and after. The performance of revise and restart strategy based on RCL

using 3 networks reaches as high as that of using 9 networks, which is a considerable reduction on

the computational burden.

In summary, we demonstrated the effectiveness of RCL on various aspects on the synthetic data.
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Cell Line VCAP MCF7 PC3 A549 A375 HT29
Unique DP 4760 5245 5238 4195 1311 961
HQ DP 463 881 347 1244 405 127

HQ DP Test 50 100 50 100 50 30
Test size 8100 16200 8100 16200 8100 4860
Train size 763K 833K 844K 663K 206K 151K

Table 3.5: DP=Drug Profile, HQ=High Quality (qdp > 0.7), K=1000. Small size (≈ 10%) of high
quality drug profiles are sampled as testing data, the rest are for training. For each cell line, a unique
drug profile is associated with 162 predictable genes, therefore, sample size is # drug profile × 162.

3.3.2 Drug-induced Gene-Expression Change Prediction

Previous studies on learning with noise labels are mostly focused on vision tasks in a synthetic

way. In this subsection, we apply RCL to a real-world problem in the bioinformatics domain,

where the noise naturally exists in experiments due to data generation process, and demonstrates

its effectiveness.

Cancer drug discovery is of high demand but also a tough problem because of low response

rates and severe side effects [125]. The emerging profiling technology enables measurements of

drug-induced gene-expression change (GE-change), i.e., whether the expression of a particular

gene increases or decreases given a certain drug treatment, making it possible to discover new

drugs and elucidate mechanism of action and toxicity of a drug candidate on the transcriptomic

level. Recent years have also witnessed an increasing number of public repositories providing

millions of transcriptome profiles, such as LINCS from Broad Institute [105], GEO from NCBI

[10] and TCGA from NIH [123], however, large-scale profiling of drug-induced gene expression

remains expensive. Therefore, there is a surging demand of computational methods for predicting

drug-induced gene-expression profiles. For example, [124] proposed a deep learning framework for

such tasks using drug and gene descriptors; however, due to technical and biological variations, the

quality of GE-change obtained from biological experiments varies among different experiments.

Due to the poor quality, half of the LINCS profiles that cost millions of dollars are discarded in

regular analyses. Therefore, to make use of the full dataset, the prediction model should also take

the quality of the data into consideration.
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Datasets. We use LINCS from Broad Institute [105] which contains 1.3 million normalized

profiles and 11,000 small molecule perturbagens covering more than 70 cell lines. For each cell

line, GE-change readings for 978 genes are available under different drug profiles.

Label Quality. Due to the common variation in biological experiments, in order to get reliable

readings, each drug profile is repeatedly tested on 978 genes for different number of times, which

results inmultiple GE-change readings for the same drug profile. Some drug profiles have consistent

readings while others do not, which means the label quality varies across different drug profiles. In

order to conduct the experiments, we need (1) unique GE-change reading for one drug profile, (2)

a rough quality measurement for generating the test set (high quality data). We do not have exact

information of which drug profile is correct. In fact, no drug profile has perfectly correct or wrong

GE-change readings. We can only estimate their quality through some statistical measurements.

We follow [105] to estimate the quality of a drug profile and calculate the corresponding unique

GE-change reading. The procedure is illustrated in Fig. 3.10. For a given drug profile (drug +

cell line + time + dose), an average GE-change reading is obtained across all replicates. Then we

calculate the correlation between each reading and the average reading, then take the mean, the

resulted average correlation is regarded as the quality of readings for this drug profile. The final

GE-change reading is obtained by weighted average of all replicates based on the correlation.
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Cell
Line

Standard SPL Decoupling Co-teaching SELF LNEC RCL p-val Best
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC K FR

VCAP 47.64 0.462 49.36 0.473 47.70 0.473 50.26 0.482 49.23 0.474 49.12 0.472 52.22 0.495 1e-3 4 0.3
MCF7 51.41 0.446 55.14 0.466 54.57 0.456 56.44 0.476 56.45 0.475 54.04 0.464 57.98 0.482 5e-4 4 0.2
PC3 47.90 0.474 47.92 0.473 45.32 0.467 48.22 0.477 48.42 0.478 48.18 0.475 49.04 0.484 8e-3 4 0.1
A549 50.73 0.403 53.52 0.417 53.38 0.422 52.15 0.414 53.67 0.421 53.63 0.417 54.00 0.421 0.25 3 0.1
A375 46.42 0.396 47.14 0.395 49.37 0.407 48.87 0.399 48.43 0.402 46.95 0.393 48.99 0.395 - 3 0.4
HT29 46.39 0.441 46.51 0.444 47.18 0.449 47.86 0.456 47.12 0.453 46.66 0.452 48.13 0.458 0.05 3 0.3

Table 3.6: Generalization performance of comparison methods for six cell lines. K = number of networks, FR = forget rate. Each method
is repeated for 5 random seeds. Significance t-tests (one-side) are conducted between RCL and the best baseline method. A p-value less
than 0.05 is considered as significant difference.
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Features and Label. A tuple of drug profile and gene (drug, gene) corresponds to a continuous

reading y(d,g) which measures how relatively the gene expression changes compared to reference

control. Therefore, we have two sets of features, drug features and gene features. In order to

obtain drug features, we download SMILES (simplified molecular-input line-entry system) strings

for each drug from PubChem platform1 and use the Python package RDKit2 to convert string

representations into molecular fingerprints. The molecular fingerprint is a 1 × 1024 binary-coded

feature where each position represent the existence or absence of a molecular substructure. For

gene features, we use the Gene Ontology (GO) features preprocessed by [124] which describes

the biological domain knowledge of a gene such as molecular functions and cellular components

with dimension 1107. We also discretize the target y(d,g) into 3 classes, i.e., y(d,g) < −1.5 (down

regulate), −1.5 ≤ y(d,g) ≤ −1.5 (no change), y(d,g) > 1.5 (up regulate). The overall task is to predict

the regulation effect of drug profiles on different genes.

Network Architecture. We use fully-connected layers in the shape of (2131, 128, 32, 3) neurons at

each layer as the overall structure. Leaky ReLu with 0.01 slope and 0.5 drop out rate are used. We

use Adam optimizer with 0.001 learning rate. The real data converges fast and we run 25 epochs

and use the average over last 5 epochs as the final performance.

Experiment Set-up. We regard drug profiles that have rdp > 0.7 as high quality. For each cell line,

to construct training and testing dataset, we randomly sample 10% drug profiles from high quality

data to serve as the testing drug profiles. The left-over mixed with remaining drug profiles are used

as training drug profiles. Each drug profile is originally associated with 978 genes, however, not

all genes are predictable. Therefore, we select 162 genes that are relatively predictable compared

to the rest genes based on permutation tests [38]. At last, each drug profile is associated with 162

genes, and training and testing size is shown in Table 3.5. We ensure that drug profiles appear

in the training set are not included in the testing set. Moreover, since a drug having significant

regulation effect is rare, the data is highly imbalanced. Therefore, we down-sample the dominant

class during training while keep test set unchanged. We also add macro-f1 score as an evaluation

1https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch.cgi
2https://www.rdkit.org/
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Figure 3.11: Virtual drug screening use RCL and RGES pipeline.

metric in addition to accuracy. In real experiments, we do not know the noise rate ε , therefore, it

becomes a hyper-parameter to tune. In order to ensure that all methods eventually include the same

number of data points, we first search across all possible noise (forget) rate {0.1, 0.2, 0.3, .., 0.9}

for SPL (one network) and pick the best and used for other methods. We tune K = {3, 4} for all

methods involving multiple networks and α = {2, 3, 4} and β = {2, 3, 4} for RCL. Each method

repeatedly run on 5 random seeds and the average is taken as the final performance.

Results. Table 3.6 shows the final performance on real data for different methods. We see that

for most cell lines, RCL achieves the best accuracy compared to competing baselines. The results

further confirm the effectiveness of proposed method in real-world settings, which largely broaden

the potential application of RCL beyond the computer vision domain. An real drug discovery

scenario is to use the RCL predictor to screen millions of compounds in the existing large library

and rank compounds based on Reverse Gene Expression Score (RGES) proposed in [20], for a

certain disease as illustrated in Figure 3.11.
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CHAPTER 4

CONTRASTIVE LEARNING ONMOLECULAR GRAPHS WITH MULTI-LEVEL
DOMAIN KNOWLEDGE

4.1 Problem Definition

A (molecular) graph can be represented as G = (V, E), whereV = {v1, v2, .., v|V |} and E = V ×V

denotes node and edge set respectively. Let X ∈ R|V |×d1 be the feature matrix for all nodes in a

graph, A ∈ R|V |×|V | the adjacency matrix and E ∈ R|E |×d2 the edge features, our goal is to learn a

graph encoder h = f (X,A,E) ∈ Rd ′ which maps an input graph to a vector representation without

the presence of any labels. The learned encoder and representations can be used for downstream

tasks directly or via finetune.

4.2 Contrastive Learning Framework

In a conventional contrastive learning framework (Fig. 5.1 left), for each graphGi, two augmentation

operators t1 and t2 are sampled from the family of all operators T , and applied to Gi to obtain two

correlated views G1
i = t1(Gi) and G2

i = t2(Gi). We use numbers in the superscript to represent

different views throughout the paper. The correlated views are fed into a graph encoder f , producing

graph representations h1
i and h2

i , which are then mapped into an embedding space by a projection

head g, yielding z1
i and z2

i . The goal is to maximize the mutual information between the two

correlated views in the embedding space via Eq (4.1).

Llocal =
1
n

∑n

i=1
Llocal

i , (4.1)

and the loss for each sample Llocal
i can be written as:
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Figure 4.1: Overall framework ofMoCL. First, two augmented views are generated from local-level
domain knowledge. Then, together with the original view, they are fed into the GNN encoder and
projection head. The local-level contrast maximizes the MI between two augmented views, while
the global-level contrast maximizes the MI between two similar graphs. The similarity information
is derived from global-level domain knowledge (MI: mutual information).

Llocal
i = L1

i + L
2
i

= − log
es(z1

i ,z
2
i )/τ∑n

j=1, j,i
es(z1

i ,z
2
j )/τ︸                 ︷︷                 ︸

view 1 contrast view 2

− log
es(z2

i ,z
1
i )/τ∑n

j=1, j,i
es(z2

i ,z
1
j )/τ︸                 ︷︷                 ︸

view 2 contrast view 1

, (4.2)

where n is the batch size, s(·, ·) is a function which measures the similarity of the two embeddings,

τ is a scale parameter. The two correlated views z1
i and z2

i are regarded as positive pair while the

rest pairs in the batch are regarded as negative pairs. The objective aims to increase the probability

of occurrences of positive pairs as opposed to negative ones. Note that the negative pairs can be

formed in two directions. If z1
i is the anchor, all z2

j in view 2 are contrasted; if z2
i is the anchor, all

z1
j in view 1 are contrasted. Thus the loss for each sample consists of two parts as showed in Eq

(4.2).
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(a) Drop Node (b) Perturb Edge

(c) Extract subgraph (d) Mask Attributes

(e) Substitute Substructure

Replace Functional Group Add (Drop) General Carbon

Figure 4.2: Augmentation comparison. Upper: conventional augmentations that may alter the
graph semantics. Lower: proposed augmentation in which valid substructures are replaced by
bioisosteres that share similar properties.

4.2.1 Local-level Domain Knowledge

Most existing approaches adopt random corruption during augmentation. For example, [141] pro-

posed four types of augmentations for general graphs (Fig. 4.2 upper). However, such random

corruption may alter the semantics of molecular graphs. For node dropping and edge perturbation,

the resulting molecule is rarely biologically proper (Fig. 4.2ab). For example, dropping a carbon

atom in the phenyl ring of aspirin breaks the aromatic system and results in an alkene chain (Fig.

4.2a); perturbing the connection of aspirin might introduce a five-membered lactone (Fig. 4.2b),

which may drastically change the molecular properties. For subgraph extraction, the resulting

structure is arbitrary and not representative for molecular functionality (Fig. 4.2c). For example,

methyl acetate is a sub group of aspirin (Fig. 4.2c), but also frequently shown in many other

compounds such as digitoxin and vitamin C etc. with diverse chemical structures and biological

effects. Enforcing high mutual information between such augmentation pairs may produce sub-

optimal representations for downstream tasks. This phenomenon has also been observed in [141]

that edge perturbation deteriorates the performance of certain molecular tasks. Among the general

augmentations, only attribute masking (Fig. 4.2d) does not violate the biological assumptions since
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it does not change the molecule, it only masks part of the atom and edge attributes.

Therefore, we aim to infuse domain knowledge to assist the augmentation process. We propose

a new augmentation operator called substructure substitution, in which a valid substructure in a

molecule is replaced by a bioisostere [71] which produces a new molecule with similar physical

or chemical properties as the original one (Fig. 4.2e). We compile 218 such rules from domain

resource 1. Each rule consists of a source substructure and a target substructure represented by

SMARTS string 2. A sample rule is as follows:

[#6:2][#6:1](=O)[O;-,H1] >> [*:2][c:1]1nn[nH]n1

indicating the transition from left substructure (carboxylic acid) to the right one (nitrogen hetero-

cycle). The substitution rules have 36 unique source substructures which can be categorized into

8 groups. We summarize the statistics of the rules in Table 4.1. Note that target substructures are

all unique and different. The original 218 substitution rules mostly happen at molecular positions

where heteroatoms (heavy atoms that are not C or H) and aromatic rings are presented, therefore

the variation for general carbon groups is limited. Under the common assumption that changing

a few general carbon atoms will not alter the molecular property too much, we add 12 additional

rules to subtract and add general carbon groups from and to a molecule. Some sample rules are:

[*:1][CH2][CH2][*:2] >> [*:1][*:2] (drop)

[*:1]-[*:2] >> [*:1]CC[*:2] (add)

Thus, MoCL consists of 230 rules in total to generatemolecule variants that share similar properties.

All the rules and code are available at https://github.com/illidanlab/MoCL-DK.

Moreover, since the source substructures in the rules are very common, a molecule may contain

multiple source substructures or multiple copies of the same substructure in the rule, the proposed

augmentation can be applied multiple times to generate variants with much more diversity. A

notable difference between proposed augmentation and general augmentation is that the proposed

1https://www.schrodinger.com/drug-discovery
2https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
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Group # source # target Formula
CA 1 68 RCOO
Ester 1 7 RCOOR’
Ketone 1 15 ROR’
Phenyl 22 36 Aromatic Rings
Tbutyl 1 10 C4
dsAmide 4 18 RONR’R”
msAmide 2 32 RONR’
nsAmide 4 32 RON
Total 36 218 -

Table 4.1: Source and target statistics for substitution rules. R/R’/R” represent arbitrary carbon-
containing groups.

rules are not guaranteed to be applicable to a molecule after it changes, therefore when applying

proposed augmentation multiple times, we need to update the rule availability accordingly at each

round. We summary the proposed augmentation procedure in Alg. 5.1.

4.2.2 Global-level Domain Knowledge

Maximizing mutual information between correlated views learns transformation-invariant repre-

sentations. However, it may neglect the global semantics of the data. For example, some graphs

should be closer in the embedding space since they share similar graph structures or semantics from

domain knowledge. For molecular graphs, such information can be derived from multiple sources.

For general graph structure, extended connectivity fingerprints (ECFPs) [91] encode the presence

of substructures for molecules and are widely used to measure the structural similarity between

molecular graphs. Drug-target networks [87] record the drug-protein interaction information which

is one of the most informative biological activity measures. In this section, we first define graph

similarity from general molecular graphs, then we propose two ways to incorporate the global

semantics into our learning framework.
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4.2.2.1 Similarity calculation

Given the ECFP of two molecules, e1, e2 ∈ {0, 1}m where m is the vector length and 1 indicates

the presence of certain substructures, the similarity of e1 and e2 can be calculated as the Tanimoto

coefficient [9]:

s(e1, e2) =
N12

N1 + N2 − N12
, (4.3)

where N1, N2 denotes the number of 1s in e1, e2 respectively, and N12 denotes the number of 1s in the

intersection of e1, e2. The resulted coefficient s(e1, e2) ∈ [0, 1] and a larger value indicates higher

structural similarity. Similarly, for drug-target network, e1, e2 ∈ {0, 1}m becomes the interaction

profile of a drug to all proteins where m is the total number of proteins. The drug similarity can be

calculated the same as Eq. (4.3).

Algorithm 4.1: Pseudocode of domain augmentation.
Input: Molecule graph G, repeat time R, rules T
Output: Augmented graph G′.
1: for r = 1 to R do
2: while T do
3: sample t ∼ T # one augmentation rule
4: {G1,G2, ..,Gk} = t(G) # all possible products
5: random choose G = Gi

6: update available T # rules may no longer be valid
7: break;
8: Return G′;

4.2.2.2 Global-level Objective

We propose two strategies for using the global similarity information. One strategy is to use it as

direct supervision. Given embeddings of two original graphs zi and z j , we measure the similarity

between them as θ(zi, z j) =
zTi zj
‖zi ‖‖zj ‖ . We optimize the similarity using least square loss as follows:

L
global
i =

∑
j,i
L

global
i j =

∑
j,i
‖θ(zi, z j) − si, j ‖

2
2,
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where si, j is the similarity from Eq. (4.3).

The second strategy is to utilize a contrastive objective in which similar graph pairs have higher

mutual information as compared to the background. The objective is written as:

L
global
i = − log

∑n
j=1, j∈Ni

es(zi,zj )/τ∑n
j=1, j<Ni

es(zi,zj )/τ
,

where Ni refers the neighbors of graph i. The neighbors can be derived from global similarity by

setting a threshold or a neighborhood size. The global loss for all graphs thus becomes:

Lglobal =
1
n

∑n

i=1
L

global
i . (4.4)

Finally, the full objective of the proposed MoCL can be written as:

L = Llocal + λLglobal, (4.5)

where λ is a tuning parameter that controls the emphasis between local loss and global loss. We

summarize the pseudo code of the entire framework in Alg. 4.2.

Algorithm 4.2: Pseudocode of proposed framework.
Input: Molecule graphs G, rules T , hyper parameter λ, number of epochs M .
Output: Graph encoder f .
1: for m = 1 to M do
2: for iter = 1 to max_iter do
3: G1 = Alg.1(G,T),G2 = Alg.1(G,T)
4: h1 = f (G1), h2 = f (G2), h = f (G)
5: z1 = g(h1), z2 = g(h2), z = g(h)
6: Calculate local loss by Eq. (4.1)
7: Calculate global loss by Eq. (4.4)
8: Optimize f and g using Eq. (4.5)
9: Return f ;

4.2.3 Connection to Metric Learning

It has been well studied that optimizing objective Eq. (4.1) is equivalent to maximizing a lower

bound of the mutual information between the correlated views, also a lower bound of the mutual

information between input and the hidden representations [80, 23]. Formally, denote Z1 and Z2
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as the random variables for the embeddings of augmentations, X the variable for original input

features:

Llocal ≤ I(Z1; Z2) ≤ I(X; Z1,Z2).

Beyond mutual information maximization, in this section, we provide additional justification

for the proposed method from the perspective of metric learning, which unifies the local and global

objectives. We show the following important result:

Lemma 2 Assume the projection head g is an identity mapping, i.e., z = g(h) = h, and the

similarity function s(·, ·) is inner product, i.e., s(zi, z j) = zT
i z j . Consider 1-nearest neighbor of each

graph in the batch for global structure information, and λ = 1, the objective Li is equivalent to the

following:

Li ∝
∑
j,i

‖z1
i − z2

i ‖
2 − ‖z1

i − z2
j ‖

2︸                        ︷︷                        ︸
local contrast view 1

+ ‖z2
i − z1

i ‖
2 − ‖z2

i − z1
j ‖

2︸                        ︷︷                        ︸
local contrast view 2

+
∑

j,k,k∈Ni

‖zi − zk ‖
2 − ‖zi − z j ‖

2︸                       ︷︷                       ︸
global contrast

+Const .

Proof:

Li = log
∑n

j,i es(z1
i ,z

2
j )

es(z1
i ,z

2
i )/τ

+ log
∑n

j,i es(z2
i ,z

1
j )/τ

es(z2
i ,z

1
i )/τ

+ log
∑n

j,k,k∈Ni
es(zi,zj )/τ

es(zi,zk )

= log
n∑

j,i

es(z1
i ,z

2
j )/τ−s(z1

i ,z
2
i )/τ + log

n∑
j,i

es(z2
i ,z

1
j )/τ−s(z2

i ,z
1
i )/τ + log

n∑
j,k,k∈Ni

es(zi,zj )/τ−s(zi,zk )/τ
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By applying first-order Taylor expansion we have:

Li ≈

n∑
j,i

es(z1
i ,z

2
j )/τ−s(z1

i ,z
2
i )/τ +

n∑
j,i

es(z2
i ,z

1
j )/τ−s(z2

i ,z
1
i )/τ +

n∑
j,k,k∈Ni

es(zi,zj )/τ−s(zi,zk )/τ − 3

≈
1
τ

[ n∑
j,i

s(z1
i , z

2
j ) − s(z1

i , z
2
i ) +

n∑
j,i

s(z2
i , z

1
j ) − s(z2

i , z
1
i ) +

n∑
j,k,k∈Ni

s(zi, z j) − s(zi, zk)
]
− 3

=
1
τ

[ n∑
j,i

z1T
i z2

j − z1T
i z2

i +

n∑
j,i

z2T
i z1

j − z2T
i z1

i +

n∑
j,k,k∈Ni

zT
i z j − zT

i zk
]
− 3

=
1

2τ
[ n∑

j,i

‖z1
i − z2

i ‖
2 − ‖z1

i − z2
j ‖

2 + ‖z2
i − z1

i ‖
2 − ‖z2

i − z1
j ‖

2

+

n∑
j,k,k∈Ni

‖zi − zk ‖
2 − ‖zi − z j ‖

2] − 3

∝
∑
j,i

‖z1
i − z2

i ‖
2 − ‖z1

i − z2
j ‖

2 + ‖z2
i − z1

i ‖
2 − ‖z2

i − z1
j ‖

2

+
∑

j,k,k∈Ni

‖zi − zk ‖
2 − ‖zi − z j ‖

2 − 6τ

The lemma above connects the objective design to the metric learning. The equation consists of

three triplet losses [19] which corresponds to the two local losses and the global loss respectively.

As such, the MoCL objective aims to pull close the positive pairs while pushing away the negative

pairs from both local and global perspective. Detailed proofs can be found in Appendix.

4.3 Experiment

In this section, we conduct extensive experiments to demonstrate the proposedmethod by answering

the following questions:

Q1. Does local-level domain knowledge (MoCL-DK) learns better representations than general

augmentations? How does combination of different augmentations behave?

Q2. Does global-level domain knowledge (MoCL-DK-G) further improves the learned repre-

sentations? Do the two proposed global losses perform the same?

Q3. How does the hyper-parameters (λ, neighbor size) involved in MoCL affect the model

performance?
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Dataset # Tasks Size Avg. Node Avg. Degree
bace 1 1513 34.1 36.9
bbbp 1 2050 23.9 25.8
clintox 2 1483 26.1 27.8
mutag 1 188 17.8 19.6
sider 27 1427 33.6 35.4
tox21 12 7831 18.6 19.3
toxcast 617 8597 18.7 19.2

Table 4.2: Basic statistics for all datasets
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Figure 4.3: Augmentation combination under linear evaluation protocol. Each cell represents the
performance difference between a vanilla GNN trained from scratch (upper-bound) and learned
representations (fixed) from a pretrained model plus a linear classifier under a given augmentation
combination. Each number is averaged from 5 runs. Blue represents negative value and red
positive. Higher value is better. MoCL-DK is the proposed augmentation with local-level domain
knowledge.

4.3.1 Evaluation Protocols

The evaluation process follows two steps, we first pretrain amodel based on any comparisonmethod,

and then evaluate the learned model on downstream tasks. We adopt two evaluation protocols:
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• Linear protocol: fix the representation from pretrained model and finetune a linear classifier

on top of it.

• Semi-supervised protocol: sample a small set of labels of the downstream task and use the

weights of learned graph encoder as initialization meanwhile finetune all the layers.

which are most commonly used in literature [109, 43, 134, 141].

4.3.2 Experimental Setup

Datasets and Features. We use 7 benchmark molecular datasets in the literature [43, 134, 109]

to perform the experiments, which covers a wide range of molecular tasks such as binding affinity,

response to bioassays, toxicity and adverse reactions:

• bace [106]: a dataset containing the binding results between molecules and human proteins .

• bbbp [69]: a dataset measuring the blood-brain barrier penetration property of molecules.

• mutag [93]: a dataset recording themutagenic effect of amolecule on a specific gram negative

bacterium.

• clintox & tox21 & toxcast [33, 79, 90]: datasets that contains the molecule toxicity from FDA

clinical trials (clintox) and in vitro high-throughput screening (tox21 and toxcast).

• sider [58]: a dataset containing the adverse drug reactions (ADR) of FDA approved drugs.

The basic statistics of the datasets (size, tasks, molecule statistics) are summarized in Table 4.2. In

this paper, we mainly focus on classification tasks as prior works [43, 134, 109], therefore we use

AUC [113] as the major evaluation metric.

For molecular graphs, we use both atom features and bond features as inputs. We use i) atomic

number and ii) chirality tag as features for atoms and i) bond type and ii) bond directions as features

for chemical bonds [43].
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Model Architectures. We use GIN [129] as our graph encoder f which has been shown to be the

most expressive graph neural network layer in prior works [43]. It also allows us to incorporate

edge features of molecules into the learning process. The update rule for each GIN layer can be

written as:

xl+1
i = MLPθ

(
xl

i +
∑

j∈Ni
ReLU

(
xl

j + e j,i

))
,

where xl
i is the node representation at l-th layer,Ni denotes the neighbor nodes of i-th node and e j,i

represents the edge feature between node i and j. MLPθ is a two-layer perceptron parameterized by

θ. Note that MLP here is for a single GIN layer in order to make the GIN layer the most expressive.

After obtaining the node representations for all atoms in a molecule, we average them to get the

graph representation h.

We use another two-layer perceptron for the projection head g in our framework following

literature [21, 134]. It has been shown that a projection head with nonlinear transformation is

necessary for a better representation of the layer before it due to information loss in the contrastive

learning loss [21]. After adding a projection head, the representations at previous layer, ie., h,

can benefit more for downstream tasks. We use cosine similarity for the critic function s(zi, z j) =

zT
i z j/‖zi‖‖z j ‖ [134].

Baselines For both linear and semi-supervised evaluation protocols, we adopt the following three

types of baselines for comparison:

• Vanilla GNN (Scratch): train a standard nonlinear GNN model on labeled data of the

downstream task.

• General GNN self-supervised learning or pretraining baselines: i) InfoGraph [109], which

maximizes the mutual information between nodes and graph; ii) Edge Pred & Context Pred

[43]: which uses the node embeddings to predict graph edge and neighbor context in order to

learn meaningful node representations; iii) Masking [43]: which masks the atom attributes

and tries to predict them.
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• Graph contrastive learning baselines: we adopt the four types of general augmentations for

graph in [134]: i) node dropping; ii) edge perturbation; iii) subgraph extraction; iv) attribute

masking for comparison.
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Protocol Linear Protocol Semi-supervised Protocol
Method | Dataset bace bbbp clintox mutag sider tox21 toxcast bace bbbp clintox mutag sider tox21 toxcast

scratch 0.785 0.861 0.647 0.918 0.606 0.820 0.710 0.525 0.695 0.494 0.803 0.552 0.670 0.530
graphInfomax 0.594 0.611 0.458 0.771 0.502 0.615 0.562 0.614 0.735 0.487 0.887 0.523 0.589 0.535
contextpred 0.522 0.724 0.506 0.819 0.498 0.554 0.542 0.566 0.731 0.502 0.846 0.525 0.659 0.514
edgepred 0.662 0.592 0.504 0.622 0.502 0.500 0.501 0.604 0.694 0.486 0.915 0.545 0.615 0.529
masking 0.678 0.764 0.581 0.826 0.566 0.722 0.617 0.621 0.776 0.585 0.879 0.551 0.640 0.538
drop_node 0.746 0.843 0.635 0.775 0.577 0.728 0.633 0.603 0.767 0.492 0.836 0.542 0.656 0.525
perturb_edge 0.657 0.833 0.630 0.799 0.605 0.715 0.619 0.527 0.748 0.516 0.938 0.547 0.629 0.516
subgraph 0.629 0.815 0.603 0.914 0.583 0.727 0.625 0.565 0.769 0.539 0.918 0.548 0.656 0.514

mask_attributes 0.796 0.826 0.671 0.916 0.621 0.726 0.623 0.622 0.710 0.478 0.897 0.549 0.666 0.543
MoCL-DK 0.801 0.870 0.727 0.950 0.615 0.740 0.636 0.650 0.765 0.588 0.903 0.546 0.645 0.539

MoCL+AttrMask 0.831 0.892 0.695 0.947 0.623 0.768 0.653 0.630 0.748 0.549 0.909 0.536 0.661 0.536
MoCL-DK-G(LS) 0.831 0.892 0.724 0.958 0.623 0.777* 0.659* 0.662 0.766 0.623 0.907 0.558 0.666 0.547*
MoCL-DK-G(CL) 0.845* 0.905 0.750* 0.969* 0.628* 0.768 0.653 0.706* 0.809* 0.623* 0.916 0.565 0.686 0.546

MoCL+AttrMask-G(CL) 0.833 0.911* 0.747 0.962 0.625 0.774 0.654 0.695 0.806 0.618 0.913 0.567* 0.687* 0.544

Table 4.3: Averaged test AUC of comparison methods under linear and semi-supervised protocol (5 runs). Bold number denotes the
best performance for local-level (augmentation) comparison. Bold* number denotes the best performance after incorporating global
similarity information (MoCL-G). LS and CL represents least-square and contrastive global loss, respectively.
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ImplementationDetails. Weuse 3 layers of GIN for all methods since 3-hops neighborhood covers

most aromatic rings and is usually sufficient for molecular structure learning [91]. The dimensions

for GIN layer and embedding layer are 512 and 128 respectively. We use Adam as optimizer with

initial learning rate of 0.001 for all methods. We use dropout ratio 0.5 for GIN layers and default

settings for baselines. The batch size is 32 across all scenarios. For pretraining models, the running

epoch is fixed to 100. For downstream tasks, we use early stop via validation set. We implement

all models using Pytorch [81] and run them on Tesla K80 GPUs.

The variation of results for a dataset comes from two sources, the pretrained model and the

downstream task. By comparing them, we find the variation of pretrained model (by applying

different seeds) is much smaller than the variation of downstream task (by different training-testing

splits). Therefore, for each dataset, we use its molecular graphs to pretrain a model (1 seed) and then

apply it to downstream task on the same dataset using different splits (5 seeds). We do not evaluate

transfer learning setting in this paper where a pretrained model is applied to another dataset. During

downstream task, we split the dataset into training (0.8), validation (0.1) and testing (0.1) set, we

use validation set for early stop and evaluate the AUC on testing set. For semi-supervised protocol

where only a small fraction of labels is used to train, since the data sizes are different, the ratio is

picked from {0.01, 0.05, 0.5} such that around 100 molecules being selected for each dataset. For

local-level domain knowledge, we use augmentation ratio 0.2 for general augmentations as prior

work [134] and different augmentation times {1, 2, 3, 5} for the proposed method. For example,

MoCL-DK3 denotes applying domain augmentation 3 times. For global-level domain knowledge

part, we try λ = {0.5, 1.0, 5.0, 10.0} and 4 different nearest neighbor sizes for each dataset based

on its size. We use ECFP with dimension 1024 to calculate the global similarity.

Table 4.4 shows the detailed parameter settings for all datasets. Semi-ratio depends on the data

size such that around 100 molecule labels are sampled from each dataset. The neighbor size also

depends on the data size such that the number of clusters is between 5 and 30 for all datasets. The

parameter λ which controls the weight between local and global loss, and augmentation time for

MoCL-DK are all set to the same set of values for all datasets.
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Dataset Size Semi-ratio Neigbor Size λ DK
bace 1513 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}
bbbp 2050 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}
clintox 1483 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}
mutag 188 0.5 {10, 20, 30, 40} {0.5, 1, 5, 10} {1,2,3,5}
sider 1427 0.05 {50, 100, 150, 300} {0.5, 1, 5, 10} {1,2,3,5}
tox21 7831 0.01 (600, 800, 1000} {0.5, 1, 5, 10} {1,2,3,5}
toxcast 8597 0.01 {600, 800, 1000} {0.5, 1, 5, 10} {1,2,3,5}

Table 4.4: Detailed experimental settings for each dataset.

Unlike prior work [134] in which only node, node features and connectivity information are

used as input, our GNN incorporates edge features, therefore, the implementation of general

augmentation is slightly different from [134]. We list the operations for both node (features) and

edge (features) in Table 4.5.

Augmentation Node Node features Edge Edge features
Drop Node removed removed removed removed
Perturb Edge - - permuted permuted
Subgraph subsample subsample keep keep

Mask Attributes mask mask mask mask

Table 4.5: Implementation details for general augmentation. Edge refers all edges that reach out
from the corresponding node. - denotes no change.

4.3.3 Local-level domain knowledge (Q1)

We first examine whether the proposed augmentation helps learn a better representation. Figure 4.4

shows the distribution of number of augmentations that can be generated by applying MoCL-DK1

(left: from rules of substituting functional groups; right: from rules of adding/dropping general

carbons). Other datasets reveal the same pattern therefore we do not include them due to space limit.

We see that MoCL-DK1 can generate considerable number of augmentations for the molecules. If

we apply MoCL-DK multiple times (MoCL-DK3, MoCL-DK5), the number of possible products

can further increase drastically.

Since the contrastive framework involves two correlated views, different augmentation schemes

can be applied to each view. Figure 4.3 shows the results of different augmentation combinations
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Figure 4.4: Distribution of augmentations that can be generated by proposed augmentation rules
(dataset: bace).

under linear protocol for all datasets (the results of toxcast is similar as tox21 therefore we remove

it due to space limit). MoCL-DK represent applying domain augmentation by only once. We can

see that i) the representations from MoCL-DK (diagonals) plus a linear classifier yield prediction

accuracies which are on-par with a deep learning model train from scratch (bace, bbbp, sider),

or even better than it (clintox, mutag). ii) the proposed augmentation MoCL-DK combined with

other augmentations almost always produce better results compared to other combinations (rows

and columns that contain MoCL-DK is usually higher). iii) Attribute masking and MoCL-DK

are generally effective across all scenarios, combining them often yields even better performance.

This verifies our previous assumption that MoCL-DK and attribute masking does not violate

the biological assumption and thus works better than other augmentation. Moreover, harder

contrast, e.g., combination of different augmentation schemes benefits more as compared to one

augmentation schemes (MoCL-DK + AttrMask often produce the best results). This phenomenon

is reasonable and also observed in prior works [134].

For semi-supervised protocol, the results are weaker, we did not include the augmentation

combination figure due to space limit. But the complete results for all comparison methods for

both linear and semi-supervised protocol can be found in Table 4.3. The fourth block of methods

in Table 4.3 represents results for proposed augmentation. Table 4.3 also presents global results

which we will mention in the next subsection.
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Figure 4.5: Average test AUC of MoCL-Local across different augmentation strengths (repeat
times) for all datasets.
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Figure 4.6: Average test AUC gain from global domain knowledge for different augmentations
across all datasets.

The proposed augmentation MoCL-DK can be applied multiple times to generate more compli-

cated views. We tried over a range of different augmentation strengths and report the corresponding

results for all datasets in Figure 4.5. We can see that for most datasets, as we apply more times the

proposed augmentation, the performance first increases and then decreases. MoCL-DK3 usually

achieves better results than others. For certain datasets (clintox, toxcast) the trend is not very clear

between the two evaluation protocols.

4.3.4 Global-level domain knowledge (Q2)

We next study the role of global-level domain knowledge by examining the following sub-questions:
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• Does global similarity helps general (baseline) augmentations? Does it helps the proposed

augmentation? Are the effectiveness the same?

• How does different global losses behave, i.e., direct supervision as least square loss v.s.

contrastive loss, across all datasets, which one is better?

Figure 4.6 shows the performance gain by incorporating global similarity information for general

(baseline) augmentations and the proposed augmentation. Each bar represents the median gain

across all 7 datasets for a particular augmentation scheme. we can see that global information

generally improves all augmentation schemes (the bars are positive). Interestingly, the gain for

proposed domain augmentation (MoCL-DK1 and MoCL-DK3) are much higher as compared to

other augmentations schemes. Note that we used the same set of global-level hyper-parameters for

all augmentations for fair comparison. Table 4.6 shows the performance for different global losses

under both evaluation protocol. We can see that contrastive loss (CL) for the global similarity

achieves better results than directly using it as supervision by least-square loss (LS).

We summarize the complete results for all comparison method in Table 4.3. We can see that i)

contrastive learning works generally better than traditional graph pretraining methods, especially in

linear protocol; ii) The proposed augmentation outperforms general augmentations. By combining

MoCL augmentation and attribute masking, the results are even better for some datasets; iii)

The global similarity information further improves the learned representations. Moreover, without

combining with attribute masking, MoCL augmentation only already achieves the best performance

under most scenarios after adding global information. The learned representations plus a linear

classifier can achieve higher accuracy than a well-trained deep learning model. In summary, the

proposed method is demonstrated to be effective for various molecular tasks.

4.3.5 Sensitivity Analysis (Q3)

Finally we check the sensitivity of global-level hyper-parameters, ie., the neighbor size and λ that

controls the weight between local and global loss. Figure 4.7 shows the performance surface under
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Protocol Linear Semi-supervised
Dataset LS CL LS CL
bace 0.831 0.845 0.662 0.701
bbbp 0.891 0.903 0.766 0.809
clintox 0.724 0.750 0.608 0.619
mutag 0.954 0.963 0.895 0.907
clintox 0.623 0.628 0.551 0.563
tox21 0.774 0.768 0.655 0.686
toxcast 0.659 0.653 0.547 0.546

Table 4.6: Comparison between different global losses under MoCL-DK1 augmentation. LS:
directly using global similarity and optimize by least-square loss; CL: contrastive loss using nearest
neighbor derived from global similarity.

Figure 4.7: Average test AUC of different neighbor size and λ for MoCL-DK1-G under linear
protocol (dataset: bbbp).

different hyper-parameter combination of the proposed method for bbbp dataset. We can see that

a relatively smaller neighbor size (not too small) and larger weights (not too large) for the global

loss leads to a best result. Other datasets also show the similar pattern.

4.3.6 Discussion

We provide additional observations and discussion in this subsection. First, we observe that

representations which perform well under linear evaluation do not guarantee to be better in the

semi-supervised setting. Since we finetune all the layers in semi-supervised learning, an overly

delicate representation as initialization may not produce the best results in a fully nonlinear setting.

Second, the effectiveness of contrastive learning also depends on the property of the dataset as
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well as the nature of the task. For example, single property prediction (mutag, bbbp) benefits more

from pretraining as compared to toxicity prediction (tox21, toxcast) since it not only depends on

the compound structure, but also the cellular environment. Therefore, incorporating drug-target

network information may be more helpful to these datasets, which is our future direction.
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CHAPTER 5

SEARCH-BASED MULTI-OBJECTIVE MOLECULAR GENERATION AND
PROPERTY OPTIMIZATION

The proposed framework MolSearch as shown in Figure 5.1 consists of two search stages: a HIT-

MCTS stage and a LEAD-MCTS stage. HIT-MCTS aims to modify molecules for better biological

properties while LEAD-MCTS stage seeks molecules with better non-biological properties. Each

stage utilizes a multi-objective Monte Carlo search tree to search for desired molecules.

5.1 Problem Definition

Molecule modification can be mathematically formulated as a Markov decision process (MDP)

[11] given that the generated molecule only depends on the molecule being modified. The MDP

can be written as M = (S, A, f , R)where S denotes the set of states (molecules), A denotes the set of

actions (modifications), f : S × A→ S is the state transition function. For molecule modification,

Start Molecule HIT-MCTS LEAD-MCTS

1.0

GSK3β JNK3

1.0

QED

1.0

(𝑛 = 1) (𝑛 ≈ 10) (𝑛 ≈ 10!)

GSK3β JNK3 QED GSK3β JNK3 QED

Figure 5.1: Overall framework of MolSearch. For a given start molecule, it first goes through a
HIT-MCTS stage which aims to improve the biological properties, e.g., GSK3β and JNK3, followed
by a LEAD-MCTS stage where non-biological properties such as QED are optimized. n refers to
number of generated molecules and y-axis reflects the normalized scores.
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…
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Paret
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New best score found?

Y N
𝑟! = 1 𝑟! = 0

Termination node

Pareto nodes Valid child nodes

Global Pareto nodes

Figure 5.2: Multi-objective Monte Carlo tree search procedure. Each node represents an interme-
diate molecule which has a reward vector associated with it. A search iteration consists of selection,
expansion, simulation, and backpropagation. For MolSearch, HIT-MCTS and LEAD-MCTS differ
in the expansion and simulation policy (blue boxes).

the state transition is deterministic, i.e., p(st+1 |st, at) = 1 for a given state-action pair. That is

to say, by taking a modification action, the current molecule reaches the next molecule with that

modification with probability 1. R : S → Rd is the reward received for a given state, where d > 1

if multiple reward objectives are considered. The goal is to take the action that maximizes the

expected reward, which can be approximated as Eq (5.1) under repeated simulations [34]:

Q(s, a) =
1

N(s, a)

∑N(s)

i=1
Ii(s, a)zi, (5.1)

where N(s) denotes the simulation times starting from state s and N(s, a) is the times that action

a has been taken from state s. Ii(s, a) is an indicator function with value 1 if action a is selected

from state s at i-th round, 0 otherwise. zi is the final reward for i-th simulation round starting from

state s. A larger value of Q(s, a) indicates higher expected reward by taking action a from state s.

5.1.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) adopts a tree structure to perform simulations and estimate

the value of actions. Meanwhile it also uses the previously estimated action values to guide the

search process towards higher rewards [17]. The basic MCTS procedure consists of four steps per

iteration:

57



a) Selection. Starting from the root node, a best child is recursively selected until a leaf node,

i.e., a node that has not been expanded or terminated, is reached.

b) Expansion. The selected leaf node is expanded based on a policy until the maximum number

of child nodes is reached.

c) Simulation. From each child node, recursively generate the next state until termination and

get the final reward.

d) Backpropagation. The reward is backpropagated along the visited nodes to update their

statistics until the root node.

The process is repeated until a certain computational budget is met. The most important step of

MCTS is the selection step where a criterion needs to be determined to compare different child

nodes. The most commonly used criteria is the upper confidence bound (UCB1) [6, 56] in which

a child node is selected to maximize:

UCB1 = X̄ j +
√

2 ln n
nj
,

where X̄ j is the averaged reward obtained so far for node j, n j denotes times of node j being selected

and n is the total times of iteration. The first term X̄ j favors exploitation, i.e., choose the node with

greater average performance; while the second term
√

2 ln n
nj

votes for exploration, i.e., choose nodes

that have not been visited so far. UCB1 balances between exploitation and exploration to avoid

being trapped in local optimums.

For single-objective MCTS, UCB1 is a scalar and maximization picks the node with largest

value. For multi-objective MCTS, the reward becomes a vector and the comparison is no longer

straightforward. Next we formally define each component for multi-objective MCTS under the

context of molecular generation.

5.1.2 Multi-objective Monte Carlo Tree Search

For molecular generation, each node of the tree (e.g., v j) represents an intermediate molecule. It is

associated with a molecule state s j , number of visits n j , and a reward vector X j = (x1, .., xd) ∈ R
d
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Algorithm 5.1: UCT algorithm for MO-MCTS.
Input: root node v0 with state s0, computation budge N , maximum number of child K ,
exploration scalar λ.
1: function SEARCH(v0)
2: for i = 1, .., N do
3: vl = SELECTION(v0) // vl = vleaf
4: vc = EXPAND(vl) // vc = vchild
5: rc = SIMULATION(vc)
6: BACKPROP(vc, rc)
7: return v′0;
8: function SELECTION(v)
9: while v is fully expanded do
10: for k = 1, ..,K child node do
11: Uk =

Xk

nk
+ λ

√
4 ln n+ln d

2nk

12: Vp = ParetoNodeSet(U1, ..,Uk)
13: return Vp

where d is the number of objectives. Without loss of generality, we assume that each objective is

to be maximized. Before presenting how the reward is calculated, we first introduce the following

definitions regarding comparisons between vectors:

Definition 1. Pareto Dominate. Given two points X = (x1, .., xd) and X′ = (x′1, .., x′d) , X is said

to dominate X′, i.e., X � X′ if and only if xi ≥ x′i, ∀i = 1, .., d. X is said to strictly dominate X′,

i.e., X � X′ if and only if X � X′ and ∃i such that xi > x′i .

Definition 2. Pareto Front. Given a set of vectors A ⊂ Rd , the non-dominant set PA in A is

defined as:

PA = {X ∈ A : @X′ ∈ A s.t. X′ > X}

The Pareto front consists of all non-dominated points [121].

For a Monte Carlo search tree, we maintain a global pool of all the Pareto molecules found

so far. At each simulation round, given a termination state (molecule) with property score S =

(s1, .., sd) ∈ R
d , by comparing it with all Pareto molecules in the global pool, the reward vector

R = (r1, .., xd) ∈ R
d of this state is defined as:

ri =
1

Np

∑Np

l=1
I[si > sl

i ], ∀i = 1, . . . , d

59



where Np is the number of Pareto molecules and sl
i is the i-th property value of Pareto molecule

l. We also update the global Pareto pool by adding new Pareto molecules if found and removing

invalid ones based on the comparison result. The reward R will be used for backpropagation with

the update formula:

nv ← nv + 1, Xv ← Xv + R, v ← parent of v,

which concludes the backward part of MCTS.

Next we present the forward part. Starting from the root node, we recursively select the best

child to proceed. To determine the best child for a given parent, we calculate the utility for each

child:

Uk =
Xk

nk
+ λ

√
4 ln n + ln d

2nk
,

where Xk is the average reward obtained so far, nk and n is the times child node k being visited and

the total iterations. d is the reward dimension. Based on Definition 5.1.2 and 5.1.2, we compute

the Pareto node set given statistics of all child nodes. Once the set is computed, we randomly select

one child in the set to proceed. Once the selection step is done, we reach a node that has never

expanded before. Then we expand the leaf node and start simulations from its children, get reward

and backpropagate again. The overall MCTS procedure is illustrated in Figure 5.2 and Algorithm

1. Due to space limit, we do not present the procedure of expansion and simulation in Algorithm 1

since they are the same as classic single-objective MCTS and can be found in many places such as

[17]. The key component in expansion and simulation step is the policy that used to generate the

next state. In MolSearch, within each search tree, expansion and simulation share the same policy

to produce actions:

Av = actions(sv),

for each node v given current state sv. The possible actions are obtained using transformations we

will mention in the next section. Due to the large chemical space, usually there are thousands of
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Figure 5.3: Example of design moves. A transformation is only valid conditional on the existence
of certain environments.

count_stat n freq_stat rule env
# fragments 236,827 min 1 1

# environment 55,599 max 20,075 2,480
# rules 1,048,575 median 1 1

# unique rules 672,117 mean 1.78 1.56
Atom Types C, N, O, Cl, F, P, Br, I, S

# augment rules 436,532
# trim rules 443,995

Table 5.1: Statistics of rules extracted from ChEMBL on environment radius r = 3. # denotes
"number of".

possible actions for a given state and not all of them are promising, therefore a subset of actions

are selected and served as a candidate pool for both expansion and simulation.

HIT-MCTS vs LEAD-MCTS. The two search stages inMolSearch differ in how the candidates are

picked given the original possible actions. In HIT-MCTS, the candidate actions are those yielding

states with better property scores as compared to the current parent state. In LEAD-MCTS, the

candidate actions are those producing states with better property scores than a constant threshold.

Theoretical Analysis. The theoretical analysis of multi-objective MCTS has been presented in

previous work following classic concentration inequalities and union bound. Interested readers are

referred to [6, 121, 22].
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5.2 Design Moves

A key challenge in MolSearch is the actions to take when searching for new molecules. The

modification rules should be chemically reasonable, covering a variety of modification directions,

and being large in size in order to successfully navigate in the chemical space. Design moves,

proposed in [7], is such an approach. It extracts transformations amongmolecules based onmatched

molecular pair (MMP) [45] and outputs a collection of rules that systematically summarize the

modification of molecules that exist and chemically valid in the current large compound database

such as ChEMBL [72]. The transformation rules contain both atom-wise and fragment-wise

modification and for the purpose of simplicity, we refer all of them as fragments.

Each rule consists of three major components, a left-hand-side fragment (lhs_frag), an environ-

ment, and a right-hand-side fragment (rhs_frag), and can be written as follows:

lhs_frag + environment >> rhs_frag

An example of design move transformation is shown in Figure 5.3. Each matched molecular

pair has three parts. The constant part denotes the places that remain the same before and after

transformation. The variable part denotes the fragment to be replaced. The environment is the

most important part in design move which characterizes the context of a transformation. The range

of the context is determined by the radius r and contains all the atoms that can be reached from the

fragment to be replaced within step size r . Such constraint ensures the transformation is chemically

reasonable and the larger the radius r , the more likely the assumption holds true [7]. In Figure

5.3, we see that even for the same lhs_frag and rhs_frag, due to that environments are different, the

transformations are treated as different transformations rules.

We summarized the statistics of all the design move rules extracted from ChEMBL based on

radius r = 3 in Table 5.1. We see that it contains more than 1 million transformation rules with

more than 600K unique pairs of fragments to be replaced. There are also more than 200K fragments

and 50K environments in the total rules. For a transformation rule, the frequency it happens in the

database ranges from 1 to 20K, which covers both common and rare transformations. The number
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of environments for the same rule also ranges from 1 to 2.5K. Given ChEMBL is one of the largest

chemical databases, the rules are expected to cover all the possible moves of commonly designed

molecules. Moreover, unlike most prior works which only allow atom or fragment addition, design

moves contain modifications that can either increase or decrease the molecular size (436,532 vs

443,995), making it more flexible to find better modification directions.

5.2.1 Rationale of MolSearch

The last important question regarding MolSearch framework is the two-stage design in which

biological properties are first optimized and then followed by non-biological properties. The

reason is two-folded. First, we observe that lower non-biological property (e.g., QED and SA)

values are often due to large size or large number of rings of molecules since the fragments are

already chemically valid. That is to say, reducing the size of generated molecules can achieve

better QED and SA scores in general. However, design move requires valid environment in order

to perform modification, the larger the molecules are, the more actions could be found. Therefore,

optimizing QED/SA has to come after optimizing biological properties. Second, such design is

also inspired by real-world drug discovery routine that we first find drugs that are biologically active

and then optimize them regarding other properties.

Another interesting property of such design is that, in general, molecules from HIT-MCTS

stage are quite large, due to that HIT-MCTS modifies molecules into hits by adding property-

related fragments repeatedly; However, it is fine because LEAD-MCTS will trim the molecules for

a higher QED/SA score by dropping property-unrelated fragments. The entire process will ensure

that the final molecules satisfies all the property requirements.

We conduct extensive experiments on benchmark tasks following [52, 128] to demonstrate the

effectiveness of MolSearch. The results show that search methods can achieve comparable and

sometimes superior performance compared to advanced deep learning methods given sufficient

information and proper design of the algorithm.
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5.3 Experiment

5.3.1 Experiment Setup

Property Objectives. We consider two biological properties that measure the inhibition of proteins

related to Alzheimer disease:

• GSK3β, score of inhibiting glycogen synthase kinase-3β

• JNK3, score of inhibiting c-Jun N-terminal kinase-3

The scores are predicted probabilities of inhibition by pretrained random forest models from [52].

For non-biological properties, we follow [52, 128] and also consider drug-likeness (QED) [13]

and synthesis accessibility (SA) [32] scores. The SA score (originally between [1, 10]) is reversely

normalized to [0, 1]. For all scores, the higher the better. The ultimate goal is to find compounds

that mostly inhibit two essential proteins in Alzheimer’s such that their potency is maximized while

achieving favorable medicinal chemistry properties.

Multi-objective generation setting. We consider 6 different generation settings as in [52, 128]:

• GSK3β/JNK3: inhibit GSK3β or JNK3 without constraints on QED and SA scores.

• GSK3β+JNK3: jointly inhibit GSK3β and JNK3 without constraints on QED and SA scores.

• GSK3β/JNK3+QED+SA: inhibit GSK3β or JNK3 while being druglike and easy to synthe-

size.

• GSK3β+JNK3+QED+SA: jointly inhibiting GSK3β and JNK3 while being druglike and

easy to synthesize.

Baselines. We compare MolSearch with state-of-the-art methods from each category summarized

in section 2: 1) JT-VAE [51], a method uses Bayesian optimization based on hidden representations

from a VAE based on molecule fragments. 2) GCPN [133], a method uses policy gradient to

finetune a pre-trained molecule generator based on GNN. 3) MolDQN [140], a method directly
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Objectives GSK3β JNK3 GSK3β+JNK3
Method SR Nov Div PM SR Nov Div PM SR Nov Div PM
JT-VAE 0.322 0.118 0.901 0.030 0.235 0.029 0.882 0.006 0.033 0.079 0.883 0.002
GCPN 0.424 0.116 0.904 0.040 0.323 0.044 0.884 0.013 0.035 0.080 0.874 0.002

RationaleRL 0.939 0.457 0.890 0.381 0.880 0.419 0.872 0.321 0.842 0.981 0.831 0.686
GA+D 0.85 1.00 0.71 0.60 0.53 0.98 0.73 0.38 0.85 1.00 0.42 0.36
MARS 1.000 0.840 0.718 0.603 0.988 0.889 0.748 0.657 0.995 0.753 0.691 0.518

MolDQN-emtpy 0.000 0.038 0.204 0.000 0.000 0.019 0.116 0.000 0.000 0.025 0.126 0.000
MolDQN-nonemtpy 0.341 0.304 0.856 0.089 0.175 0.288 0.857 0.043 0.050 0.421 0.858 0.018

MolSearch 1.000 0.739 0.862 0.637 ± 0.009 1.000 0.728 0.846 0.616 ± 0.015 1.000 0.787 0.826 0.650 ± 0.009
MolSearch-5000 1.000 0.706 0.850 0.601 ± 0.023 1.000 0.685 0.845 0.579 ± 0.027 1.000 0.756 0.836 0.632 ± 0.030

Ranking 1st 2nd 2nd

Table 5.2: Overall performance of comparison methods on bio-activity objectives. Results of
RationaleRL, MolDQN are obtained by running their open source code. Results of JT-VAE,
GCPN, GA+D and MARS are taken from [52, 128]. For MolSearch, we repeat the experiments for
10 times and report the mean and standard deviation.

Objectives GSK3β+QED+SA JNK3+QED+SA GSK3β+JNK3+QED+SA
Method SR Nov Div PM SR Nov Div PM SR Nov Div PM
JT-VAE 0.096 0.958 0.680 0.063 0.218 1.000 0.600 0.131 0.054 1.000 0.277 0.015
GCPN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RationaleRL 0.750 0.555 0.706 0.294 0.787 0.190 0.874 0.131 0.750 0.555 0.706 0.294
GA+D 0.89 1.00 0.68 0.61 0.86 1.00 0.50 0.43 0.86 1.00 0.36 0.31
MARS 0.995 0.950 0.719 0.680 0.913 0.948 0.779 0.674 0.923 0.824 0.719 0.547

MolDQN-empty 0.000 0.224 0.331 0.000 0.000 0.089 0.245 0.000 0.000 0.046 0.166 0.000
MolDQN-nonempty 0.000 0.431 0.850 0.000 0.000 0.525 0.856 0.000 0.000 0.499 0.857 0.000

MolSearch 1.000 0.821 0.856 0.702 ± 0.005 1.000 0.783 0.831 0.651 ± 0.009 1.000 0.818 0.811 0.664 ± 0.007
MolSearch-5000 1.000 0.810 0.869 0.704 ± 0.009 1.000 0.743 0.843 0.626 ± 0.012 1.000 0.797 0.827 0.660 ± 0.009

Ranking 1st 2nd 1st

Table 5.3: Overall performance of comparison methods on bio-activity plus non-bioactivity objec-
tives. Results of RationaleRL, MolDQN are obtained by running their open source code. Results of
JT-VAE,GCPN,GA+DandMARS are taken from [128]. ForMolSearch, we repeat the experiments
for 10 times and report the mean and standard deviation.

learns the values of actions for target properties via double Q-learning and generate molecules

based on that. 4) GA+D [78], a method utilizes genetic algorithm for molecule generation paired

with an adversarial module to increase diversity. 5) RationaleRL [52], a method uses MCTS to

find property-related fragments and then complete the graph using RL. 6) MARS [128], a method

utilizes Markov sampling based on GNN and molecule fragments.

Evaluation Metrics. We evaluate the generated molecules using metrics similar to prior works

[128, 52]: 1) success rate (SR): the proportion of resulted molecules that satisfy all the targeted

objectives, i.e., QED ≥ 0.6, SA ≥ 0.67, GSK3β ≥ 0.5, and JNK3 ≥ 0.5. 2) Novelty (Nov): the

proportion of molecules that has similarity less than 0.4 compared to the nearest neighbor xSNN in

the reference dataset, i.e., Nov = 1
N

∑N
i=1 I[sim(xi, xSNN) < 0.4] where the similarity is calculated
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as the Tanimoto coefficient [9] between two Morgan fingerprints [91] of molecules. The reference

dataset in prior works is training data while in our work, the reference data becomes the start

molecules. 3) Diversity (Div): the pair-wise dissimilarity among the generated molecules, i.e., Div

= 2
N(N−1)

∑N
i, j=1;i, j[1 − sim(xi, x j)]. 4) PM: the product of SR, Nov and Div metrics, representing

the possibility of generated molecules being simultaneously active, novel and diverse [128].

Start Molecules. A critical step in MolSearch is to pick the start molecules. We first download

dataset from the Repurposing Hub 1, which consists of 6,758 FDA-approved and clinical trail drugs.

We then cluster all the drugs based on their Tanimoto similarity using Butina algorithm [18] with

threshold 0.4, a commonly used cutoff to quantify the structural similarity between molecules. It

results in 5,727 small clusters, indicating that most molecules are not similar to each other. We

select the centroid of each cluster, i.e., 5,727 dissimilar molecules, as the pre-processed dataset

and construct start molecules from it. For benchmark objectives, to avoid making the task easier,

we remove 1) all successful molecules, i.e., GSK3β ≥ 0.5, JNK3 ≥ 0.5, QED ≥ 0.6, SA ≥ 0.67;

2) top molecules with either GSK3β or JNK3 score larger than 0.8 in the dataset. That is to say,

no start molecules has biological score higher than 0.8. We then choose the remaining molecules

with GSK3β and JNK3 score no less than 0.3 as the start molecules. Such selection strategy aligns

with molecular optimization in reality that starts with molecules having some signals towards the

desired property. There are in total 96 molecules satisfying the starting criteria.

Implementation Details. ForMCTS, we set the maximum level of tree depth as 5 and test different

values of maximum child nodes K = [3, 5, 7] and the number of simulations N = [5, 10, 20]. For

design move, we utilize rules derived from environmental radius r = 3 and do not impose frequency

constraint on the actions, i.e., any action with frequency ≥ 1 will be considered in each modification

step. All MolSearch experiments are done on AMD EPYC CPU cores. Baselines requiring deep

learning libraries are done on TITAN RTX GPUs with 24GB Memory.

Running Time. In the GSK3β+JNK3+QED+SA setting, RationaleRL takes 6 hours to finetune

the model; GA+D takes 300 steps and 4 hours to reach its best performance; MARS takes 10

1https://clue.io/repurposing
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Figure 5.4: Property dynamics across MolSearch stages. (a)(b): average scores over 10 runs at
each stage. (c): distribution of bioactivity scores during Start and HIT-MCTS stage. (d): QED
distribution between HIT-MCTS and LEAD-MCTS stage.

hours to converge; MolDQN takes 5 and 10 hours to finish for empty and non-empty variants

respectively. MolSearch takes on average 0.4-1.0 hours per molecule in both search stages (Table

5.4). Each molecule only occupies very small amount of memory and computational resources,

making MolSearch much more efficient than deep learning methods regardless of computation

constraints.

n_child n_sim Avg Median STD
3 10 0.4h 0.38h 0.19h
5 20 1.02h 0.87h 0.93h

Table 5.4: Running time per molecule for MolSearch.
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5.3.2 Benchmark Results

We perform the entire process of MolSearch, i.e., start molecules→ HIT MCTS→ LEAD MCTS

for 10 times for each of the generation settings. During each search stage, we keep track of

valid molecules and add them to the final set. Because the number of generated molecules is

not controllable in MolSearch, we calculated the metrics for two sets of generated molecules: 1)

MolSearch: all the molecules generated by MolSearch; 2) MolSearch-5000: top 5000 molecules

generated by MolSearch, ranked by the average score of all properties considered in one setting, to

match the number of molecules generated by other baseline methods.

Overall Performance. We summarize all the results in Table 5.2 and Table 5.3. We see

that MolSearch outperforms all baselines on 3 generation settings and always rank high (1st or

2nd) in terms of PM. Specifically, for settings that considering non-bioactivity objectives, i.e.,

GSK3β+JNK3+QED+SA, MolSearch significantly outperforms the best baseline by 21.4% on the

PM metric. Among all the metrics, MolSearch falls short on the novelty metric since it starts from

known molecules and modify them into new ones. However, the novelty still ranks good via the

two-stage design of MolSearch such that the generated molecules are not too similar as the original

ones. The diversity of molecules generated by MolSearch always ranks high, possibly due to 1)

dissimilarity of start molecules, 2) separation of different property objectives and 3) Pareto search

on all objective directions.

Moreover, we conduct extensive experiments for the baseline MolDQN because it is the deep

learning version of MCTS that tries to learn the values of all the actions and generate molecules

that maximize the values. The differences between MolDQN and MolSearch can help verify the

motivation and effectiveness ofMolSearch. First, MolDQN-empty starts with emptymolecules and

uses atom-wise actions, and the SR of generated molecules are extreme low (≈ 0.00) in all settings.

Start Molecule GSK3β JNK3 QED SA
Empty 0.262 0.083 0.870 0.603

Non-empty 0.334 0.216 0.217 0.586

Table 5.5: Average scores of generatedmolecules byMolDQN inGSK3β+JNK3+QED+SA setting.
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Figure 5.5: Number of generated molecules across MolSearch stages and different generation
settings (10 runs).

When we look into the scores of generated molecules, as shown in Table 5.5, we find the QED and

SA score of generated molecules are relatively high while GSK3β and JNK3 scores are very low.

This means that QED and SA are easier to optimize than biological objectives when starting from

empty molecules and using atom-wise actions. However, in most real applications, optimizing

biological objectives are the major focus before one considers drug-likeness and synthesis abilities.

Second, MolDQN-nonempty starts from the same molecules we used in MolSearch, however, the

success rates are still low although improved compared to MolDQN-empty. This is due to that

MolDQN only allows addition actions thus cannot reduce the size of molecules, making QED and

SA drops significantly. Third, the low performances of bothMolDQNvariants imply that atom-wise

actions generally works less effective compared to fragment-based actions for improving biological

properties. For MolSearch, the search trees can find desired molecules with relatively small depth

and width, therefore it is not necessary to use Deep Q-learning to approximate the action values.

All the above observations echo the rationale of MolSearch’s design.

MolSearch Dynamics. We next verify whether the change of property scores across stages aligns

with designmotivation ofMolSearch. HIT-MCTS aims to improve biological properties and Figure

5.4a confirms a significant elevation for GSK3β and JNK3 scores. LEAD-MCTS aims to improve

non-biological properties and Figure 5.4b reflects such improvement especially for QED (Figure

5.4d). Figure 5.4c demonstrates that, even if we remove all successful molecules and top molecules
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Figure 5.6: t-SNE visualization of generated molecules and positive molecules in the reference
(training) dataset.

at start (0.3-0.8 dashed box with grey points), MolSearch is still able to find molecules with both

score larger than 0.8 (red region outside dashed box), demonstrating its power. Figure 5.5a shows

the number of molecules generated in each stage for three settings where both biological and non-

biological objectives are considered. We observe an exponential increase from start molecules to

the later two stages. GSK3β is easier to optimize as compared to JNK3. Figure 5.5b shows the

number of final molecules generated by MolSearch for all settings. As the number of objectives

increases, less valid molecules are found, which is reasonable.

Visualization. We compare the molecules generated under setting GSK3β+JNK3+QED+SA by
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Figure 5.7: Sample molecules generated by MolSearch in the GSK3β+JNK3+QED+SA setting
with associated scores.

different methods using t-SNE plots shown in Figure 5.6 (a)-(c). The red crosses are the molecules

that satisfy all the requirements in reference (training) dataset, while grey dots are molecules

generated by eachmethod. ForMolSearch, there are no successful molecules in the start (reference)

dataset, instead we plot the successful ones in HIT-MCTS stage. The start molecules of MolSearch

are also plotted for reference (Figure 5.6c). We observe that baseline methods such as GA+D

and RationaleRL generate molecules with large clusters, indicating relatively low diversity. The

molecules generated by MolSearch evenly span the entire embedding space and also cover some

novel regions compared to start molecules. MARS is very similar to MolSearch whose generated

molecules enjoy both diversity and novelty, therefore we seek other comparison between MARS

and MolSearch. As shown in Figure 5.6d, MolSearch is able to find more dominant molecules in

terms of biological properties as compared to MARS (5 runs). We visualize the structure of several

molecules generated by MolSearch with high property scores in Figure 5.7. Additional top ranked

molecules can be found in Figure 5.9. We can see that the scaffold of highly active molecules are

similar, while the non-scaffold parts are novel and enjoys a wide of range of diversity.

Figure 5.8 shows an example trajectory of MolSearch under the generation setting GSK3β +

JNK3 + QED + SA. The property scores for the start molecule are relatively low. After HIT-

MCTS stage, the generated molecules obtain higher GSK3β and JNK3 score by replacing certain

substructures of the original molecule while also keeping certain original substructures. As we

also can see, the QED score for HIT molecules are extremely low due to their large size. After

LEAD-MCTS stage, the QED scores of the final molecules are elevated by dropping fragments

that are less property related. The scaffold of the final molecules are not simply substructure of

start molecules but rather a combination of fragments from start molecules and new fragments
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Start Molecule HIT-MCTS Molecule LEAD-MCTS Molecule
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with hit molecules

Figure 5.8: MolSearch path for generation setting GSK3β + JNK3 + QED + SA.

Setting GSK3β+JNK3 GSK3β+JNK3+QED+SA
K, N SR Nov Div PM SR Nov Div PM
3, 5 1.00 0.72 0.83 0.60 1.00 0.77 0.82 0.63
3, 10 1.00 0.78 0.83 0.65 1.00 0.82 0.81 0.67
3, 20 1.00 0.77 0.83 0.64 1.00 0.80 0.81 0.65
5, 5 1.00 0.76 0.83 0.63 1.00 0.79 0.82 0.65
5, 10 1.00 0.77 0.83 0.64 1.00 0.81 0.81 0.66
5, 20 1.00 0.80 0.83 0.66 1.00 0.82 0.81 0.67
7, 5 1.00 0.76 0.83 0.63 1.00 0.79 0.81 0.64
7, 10 1.00 0.78 0.83 0.65 1.00 0.84 0.81 0.68
7, 20 1.00 0.80 0.83 0.66 1.00 0.82 0.81 0.67

Table 5.6: Performance of MolSearch under different hyper-parameters for two generation settings.

from transformation rules. Also, the replacement is not completed in one round because the added

fragments are relatively large, indicating the states are reached by multiple search steps instead of

one.

SensitivityAnalysisWeperformMolSearch under different combination ofmajor hyper-parameters.

Table 5.6 shows the overall performance of MolSearch under different combination of hyper-

parameters for two generation settings. Table 5.7 shows the number of valid molecules corre-
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Setting GSK3β+JNK3 GSK3β+JNK3+QED+SA
N/K 3 5 7 3 5 7
5 9,373 14,776 18,077 3,543 5,463 6,773
10 13,960 21,982 28,659 5,499 7,772 10,295
20 16,085 29,912 43,778 6,233 10,406 13,884

Table 5.7: Number of generated molecules by MolSearch under different hyper-parameters for two
generation settings.

sponding to Table 5.6. We observe that the performance is not very different regarding different

hyper-parameters, but rather the number of generated molecules are highly affected by these hyper-

parameters. Because maximum number of child nodes and simulations rounds actually increases

the search range such that more molecules can be found along the way.

5.3.3 Discussion

The extensive experiments of MolSearch demonstrated that given proper design and sufficient

information, search-based method is also able to find molecules that satisfy multiple property re-

quirements simultaneously with performance comparable to advanced methods using deep learning

and reinforcement learning, while being much more time efficient. For MolSearch, the benefits

comes from several aspects. For example, the two-stage design increases the novelty of generated

molecules; Treating different objectives separately improve the diversity of the generatedmolecules;

Fragment-based actions and starting from existing molecules maintain the synthesis abilities and

drug-likeness of generated molecules.

Additional to properties in benchmark tasks, MolSearch can be easily adopted into real drug

discovery projects targeting other objectives. For example, replacing GSK3β and JNK3 scoring

models with COVID related predictors [53] may lead to the identification of novel and synthesizable

compounds. Properties other than QED/SA, such as solubility and ADMET properties can also be

included to search for more promising candidates.

MolSearch also has its own limitations. First, the bioactivity scores drop in LEAD-MCTS

compared to HIT-MCTS although it is still significantly higher than start molecules (Figure 5.4a).

It is because the child nodes only need to maintain bioacitivity score above 0.5 threshold in LEAD-
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MCTS in exchange of higher non-bioacitvity scores. It is possible to improve the situation by

setting more strict constraint during LEAD-MCTS. Second, the evaluation metrics are calculated

based on unique molecules found in the search process, however, we do observe the molecules

generated in LEAD-MCTS often contains many duplicates and thus causes redundancy. Third, for

objectives that has relatively clear structural requirement, e.g., binding to a specific protein target,

MolSearch is able to find desired molecules. However, if the objective is not sensitive to structure

changes, i.e., regulation effects of multiple genes, then MolSearch, or any other related methods

works less effectively. Last but not least, the scoring models are not perfect in reality since they

also come form machine learning models, which may affect the quality of generation results.
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Figure 5.9: Top 40 molecules generated by MolSearch base on average score for GSK3β + JNK3
+ QED + SA.
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CHAPTER 6

CONCLUSION

In this dissertation, we explored and proposed novel machine learning algorithms for drug discovery

from the aspects of robustness, prior knowledge and molecular design. First, we were able to better

predict gene expression change, which serves as a building block in discovering therapeutic drug

candidates for almost any kind of disease, via a robust learning framework. Such a framework

effectively mitigates the negative effect of noisy labels due to variations in the high-throughput

screening procedures. Second, by leveraging domain knowledge, we designed a novel contrastive

pretraining framework for graph neural networks that can help relevant downstream tasks in the

drug discovery domain. The proposed method is able to speed up training significantly under most

conditions. Last, we proposed a search-based framework formolecular generation and optimization,

which generates molecules with desired properties while being computationally very efficient. We

demonstrated all the proposed methods through comprehensive experiments. The results indicate

great potential of utilizing machine learning algorithms in improving the modern drug discovery

process.
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