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ABSTRACT

PATIENT-SPECIFIC PREDICTION OF ABDOMINAL AORTIC ANEURYSM
EXPANSION USING EFFICIENT PHYSICS-BASED MACHINE LEARNING

APPROACHES

By

Zhenxiang Jiang

Computational vascular Growth and Remodeling (G&R) models have been developed to

capture key physiological and morphological features during the arterial disease progression

and have shown promise for aiding clinical diagnosis, prognosis prediction, and staging clas-

sification. However, the translation of computational G&R models into their applications

has yet to wait for clinical practice. Partly, due to the high complexity of the arterial adap-

tation mechanism, high-fidelity arterial G&R simulations typically require hours or even

days, which hinders its time-consuming applications such as patient-specific parameter es-

timation, disease prediction, verification, validation, and sensitivity analysis. Furthermore,

the typical Finite Element Method (FEM) based computational G&R model should be ex-

tended to provide the uncertainty quantification associated with simulation and prediction

results. Therefore, to enhance practicality of the G&R modeling, we develop a novel and

computationally efficient simulation framework that comprehensively combines physics-based

G&R simulations and data-driven machine learning methods using a Multi-Fidelity Surro-

gate (MFS) approach. This greatly enhances the computational efficiency of arterial G&R

simulations, enabling more time-consuming applications such as personalized parameter es-

timation. The proposed framework is then tested for a specific disease, Abdominal Aortic

Aneurysms (AAAs), by estimating G&R model parameters from follow-up CT images in 21

patients.

The physic-based machine learning simulation framework of G&R enables computationally

efficient personalized simulations that underlie the prediction of patient-specific progression

of AAAs within clinically relevant time frame (1∼2 hours). To the end, two different physics-

based machine learning techniques are developed to predict the evolution of AAA geometries.



First, by employing a cokriging method, a set of follow-up CT images from AAA patients

and the corresponding personalized G&R simulations are integrated to predict their patient-

specific evolutions. Second, G&R simulations are augmented into a massive in silico dataset

to capture variations in real patient AAA geometries. This massive in silico dataset, along

with a limited medical follow-up dataset, is used to train a Deep Belief Network (DBN) to

provide fast predictions of patient-specific AAA expansion. These efforts not only demon-

strate the vital role of physics-based machine learning methods and computational G&R

models in predictive medicine, but also provide insights into the creation of physics-based

digital twins of humans. Accordingly, at the end of this dissertation, the proposed frame-

work is further extended to generate Virtual Patient Cohort (VPC) of a targeted disease

population, which is illustrated for a simplified but representative model of mitral valve

regurgitation.
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Chapter 1

INTRODUCTION

1.1 Motivation

Arterial diseases, such as Abdominal Aortic Aneurysm (AAA) and thoracic aortic aneurysm,

are major risks to human health and pose a substantial social and economic burdens. These

diseases vary by arterial types and pathological mechanisms, but share similarities in irregu-

lar turnover of constituents and changes of mechanical and geometrical properties. Therefore,

capturing these pathological and morphological changes in advance is crucial for early diag-

nose and control of arterial disease progression, which requires both good understandings of

arterial diseases and sophisticated computational techniques.

To achieve this, we developed computational vascular Growth and Remodeling (G&R) mod-

els [Baek et al., 2006, Zeinali-Davarani et al., 2011], which enable patient-specific simulation

of arterial diseases progression by accounting for changes and adaptions in arterial tissue.

However, the translation of computational G&R models into their applications has yet to

wait for clinical practice. This is mainly because the high complexity of the arterial adap-

tation mechanism limits the computational efficiency of the computational G&R models
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and hinders its time-consuming applications such as patient-specific parameter estimation,

disease prediction, sensitivity analysis and validation. Therefore, in this study, we aim to

develop a computationally efficient simulation frameworks that combine physics-based G&R

simulations and data-driven machine learning methods for time-consuming clinical applica-

tions.

1.2 Arterial growth and remodeling models and limi-

tations

Cardiovascular models fueled by multifidelity data and fundamental laws of biomechanics

have been widely applied for clinical tasks [Borghi et al., 2008, Szafron et al., 2019, Taylor

et al., 1999]. Among these models, the stress-mediated arterial G&R model [Baek et al., 2006,

Cyron et al., 2016, Humphrey and Rajagopal, 2002] has been proposed as an essential tool for

capturing important features of anatomical, biological, and pathological changes, as well as

predicting disease progress, thus serving clinical applications such as diagnosis, stratification,

and disease treatment. Its potential has been demonstrated under various pathological

situations, such as AAAs [Zeinali-Davarani et al., 2011], thoracic aortic aneurysms [Mousavi

et al., 2019], cerebral aneurysms [Baek et al., 2005], stent implantation [Laubrie et al., 2019],

and pulmonary autografts [Famaey et al., 2018].

In this study, we test our new framework primarily for a specific arterial disease, abdominal

aortic aneurysm (AAA). An AAA is a localized enlargement of the abdominal aorta that

undergoes gradual dilation over years and can eventually lead to a fatal rupture[Klink et al.,

2011, Vardulaki et al., 1999]. Typically, abdominal aortas with maximum diameters larger

than 3 cm are considered as AAA, and the growth rate of AAA diameter ranges from 0.1

cm/year to 1.5 cm/year depending on the cohort groups [Bhak et al., 2015, Matsuda et al.,
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1992, Vega de Céniga et al., 2006]. Due to the high mortality (80%) of rupture [Thompson

et al., 2012] , effective factors for estimating rupture risk have been collected, including

growth rate [Brown et al., 2003, Limet et al., 1991], thrombus volume [Parr et al., 2010], aortic

volume [Martufi et al., 2013], asymmetry [Scotti et al., 2005] and tortuosity [Cappeller et al.,

1998]. In addition, recent studies (Akkoyun et al. [2020], Lee et al. [2017b], Siika et al. [2015])

suggested that the growth rate of AAA is the key predictor of AAA enlargements. These

findings motivated us to develop computational models which can capture the mechanical

properties of AAA and thus provide better predictions of longitudinal growth of AAA.

The arterial G&R model is able to capture the geometrical changes of AAAs in response

to external stimuli and changes of environment, and thus simulate the localized aortic wall

bulge, which is the most significant feature of AAAs. In addition, other geometrical and

biological features of AAAs such as asymmetry, tortuosity, accumulated thrombus, and lost

of elastin and smooth muscle, have been proved to play essential roles in AAA extension

[Akkoyun et al., 2020, He and Roach, 1994, Kwon et al., 2015]. For example, the reduction

of elastin and smooth muscle causes a compensatory mechanism by which a stress-mediated

collagen accumulation protects the aortic wall, but, on the other hand, the accumulated

collagen reduces the extensibility of aortic wall. As such a way, the comprehension of elastin

degradation, collagen turnover and their biomechanical properties such as production rate,

half-life, deposition stretch and stiffness are associated with the AAA growth and wall weak-

ening in predicting risk of rupture [Wilson et al., 2013]. These features of AAAs have

been successfully captured in recent studies of stress-mediated G&R models, and have been

successfully demonstrated in feasibility studies [Baek et al., 2006, Volokh and Vorp, 2008,

Watton and Hill, 2008, Zeinali-Davarani et al., 2011].

However, the potential of clinical oriented applications for such G&R models is still hindered

by various factors such as (1) the deterministic nature of physics-based G&R models that

restricts the use of uncertainty analysis, (2) the difficulties of taking inter-personal patholog-
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ical diversity into account, and (3) the low computational efficiency attributed by the high

complexity of arterial diseases. Especially, the third factor, i.e. low computational efficiency,

hampers the implementation of time-consuming applications of vascular G&R models such

as patient-specific parameter estimation, disease prediction, verification, validation, and sen-

sitivity analysis. Especially, Ambrosi et al. [2019] suggested that one of the next priority in

the biomedical engineering community should be significantly improving the computational

efficiency to enable personalized modeling. This can be done through reducing the high

complexity of fundamental laws of G&R and using methods such as data-driven machine

learning.

1.3 Data-driven predictions for arterial diseases

Data-driven approaches have been explored to enhance the prediction capability on the

progress of vascular diseases and their risk. Take aortic aneurysm as an example. Jordanski

et al. [2018] implemented multiple machine learning models to predict the wall shear stress

of AAAs . Hirata et al. [2020] utilized an eXtreme Gradient Boosting (XGBoost) approach

to predict the growth and classify fast growth of AAAs by selecting different features. Do

et al. [2019] developed the Dynamical Gaussian Process Implicit Surface (DGPIS) modeling

to predict AAA growth, using longitudinal computer tomography (CT) scans of AAAs that

are captured at different times in a patient-specific way. Zhang et al. [2019] developed a

G&R model based Bayesian calibration approach that predicted the AAA enlargement of

three patients.

Nevertheless, these models lack either sufficient computational efficiency or the implementa-

tion of fundamental biomechanical laws. In this study, we therefore aim to develop an inno-

vative strategy for a computational arterial G&R modeling framework that integrates both

physics-based simulations and data-driven machine learning approaches, i.e. a physics-based
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machine learning framework. This novel framework is expected to enhance the computational

efficiency while taking into account of both uncertainty and inter-personal variability, thus

providing effective and efficient predictions of arterial diseases within the clinical relevant

computational time frame (1-2 hours) [Taylor et al., 1999].

Furthermore, the proposed physics-based machine learning framework holds the potential to

generate digital twins of Virtual Patient Cohort (VPC), which generally allow the physics-

based simulations to capture the inter-patient variety in a targeted cardiovascular disease

[Niederer et al., 2020]. This mainly benefits from the high computational efficiency of the

proposed physics-based machine learning framework. In this study, therefore, we extend the

proposed framework to allow a fast workflow that can rapidly generate a large number of

approximate simulations and down-select them into a small number of models to represent

VPC. This workflow is considered a Virtual Patient Engine (VPE), and is illustrated for a

simplified but representative model of mitral valve regurgitation.

1.4 Objective

In general, this study aims to develop an efficient physics-based machine learning framework

that comprehensively combines G&R models and machine learning approaches to enable

time-consuming clincal applications. Toward this goal, specific aims are set as:

• Implement G&R theories on FEniCS to reproduce an efficient simulation framework

of AAA growth (Chapter 2).

• Create surrogate models to approximate time-consuming G&R simulations using ma-

chine learning (Chapter 3).

• Develop a computationally efficient framework to estimate patient-specific parameters

of AAAs using multi-fidelity surrogate (Chapter 4).
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• Develop a deep learning predictive tool to predict AAA growth using massive G&R in

silico data and a limited clinical longitudinal data (Chapter 5).

• Develop a physics-based machine learning approach to predict AAA enlargement from

patient-specific simulations and clinical data (Chapter 6).

• Extend the proposed physics-based machine learning framework to create a workflow

(virtual patient engine) that generates virtual patient cohort for a target disease popu-

lation (Chapter 7). This workflow is demonstrated by a cardiac disease, i.e., secondary

mitral regurgitation.
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Chapter 2

AN EFFICIENT REPRODUCTION

OF STRESS-MEDIATED

VASCULAR GROWTH AND

REMODELING MODELS

2.1 Introduction

The vascular G&R theory has been employed to model the stress-mediated adaptation of

vascular tissues to capture long-term changes of geometrical features in AAAs [Baek et al.,

2006, Volokh and Vorp, 2008, Watton and Hill, 2008]. More specifically, in our G&R models,

the aortic tissue is considered to be a pre-streched object that adapts to inner pressure and

undergoes material turnover [Holzapfel et al., 2012]. It contains multiple stress-bearing con-

stituents, including isotropic elastin-dominated matrix, circumferentially oriented Smooth

Muscle Cell (SMC) and collagen-dominated families of fibers with different orientations

7



[Zeinali-Davarani et al., 2011]. In addition, a method of constrained mixture model (CMM) is

utilized to homogenize constituents with different constituent-specific deposition pre-stretch.

The CMM method allows us to perform finite element simulations on modeling evolution of

arterial segments, given as mixtures where each constituent has with distinct residual stress.

As a result, there is no need to find a common arterial configuration at zero blood pressure,

knowing a fact that the configuration is not usually obtained in human clinical applications.

Elastin contributes resilience and elasticity to the aortic tissue, but it degenerates over time

and is irreplaceable. The degeneration in elastin causes a localized dilation of the aorta,

leading to the weakening of the aortic wall as well as the increase of aortic diameter and wall

stress [Ghorpade and Baxter, 1996, He and Roach, 1994, Rizzo et al., 1989]. In addition, the

collagen fiber family is suggested to be an important material in supporting the main aortic

wall [Choke et al., 2005]. It is continuously removed and produced throughout human life in

response to the change of aortic wall stress or strain, thus changing the mechanical properties

of the aorta. Given the initial degradation of elastin, the aortic wall stress increases, causing

a faster accumulation rate of collagen fiber, which plays a compensation role for the loss

of elastin. Therefore, in order to capture the long-term adaptation of blood vessels, we

further assume that some of the collagen fiber and SMC continuously generate and degrade

in order to restoring toward a value of homeostatic stress [Baek et al., 2006]. Along with the

assumption that an irregular elastin degradation initially induces the local dilation of AAA,

the proposed G&R model generates long-term changes of the AAA geometrical features,

which have been tested for patient-specific simulations [Zeinali-Davarani and Baek, 2012,

Zeinali-Davarani et al., 2011].

In this section, we introduce the vascular G&R models by describing its mathematical for-

mulations. Next, a pre-step toward the surrogate model is introduced to translate the G&R

theories by implementing two models of AAA with different fidelities, where a high-fidelity

model is implemented on FEniCS [Alnæs et al., 2015] and a low-fidelity model is imple-
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mented on MATLAB. A verification between two-fidelity models are provided at the end of

this section.

2.2 Mathematical modeling of vascular G&R

2.2.1 Kinematics and configurations

Consider a blood vessel as a mixture consisting multiple materials which undergo constant

changes including deformation, production and degradation. In CMM approach, we assume

that each newly produced constitute is deposited onto the existing vascular tissues with a

“deposition pre-stretch” at a homeostatic value. In particular, at the intermediate time τ

during the deposition (τ ∈ [0, t]), the natural stress-free configuration of the newly produced

kth constituent is denoted by κkn(τ), and the overall constrained mixture is denoted by κτ .

Accordingly, we use a deformation gradient Gk(τ) to map from the natural configuration

κkn(τ) to the current in-vivo configuration κτ of the kth constituent at time τ . All important

configurations and mappings are described in the schematic drawing, Figure 2.1 [Baek et al.,

2006, Farsad et al., 2015, Zeinali-Davarani et al., 2011].

For the computational purpose, a reference configuration κR is introduced to provide con-

venient mappings among multiple configurations. Note that it is not necessary to prescribe

a stress-free reference configuration κR due to the CMM. In this study, the κ0, the current

in vivo configuration at time = 0, is selected to be κR. The mapping from κR to κτ is de-

noted by F(τ). Notice that constituents turnover as time passes, which usually leads to the

changes of overall mass at the current configuration, κt. This implies that the mass changes

correspond to κR when its evolution is traced over the G&R duration time τ , while κR is

fixed in space.
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Figure 2.1: Important configurations of vascular G&R, including the current in-vivo con-
figurations κτ , the computational reference configuration κR, and the natural stress-free
configuration of the newly produced constituent κkn(τ), in which time τ ∈ [0, t]. The de-
formation gradient F(τ) maps from κR to κτ . Gk(τ) denotes the deposition pre-stretch
mapping from κkn(τ) to κτ .

As aforementioned, the CMM theory assumes that multiple constituents compose into a

continuous mixture and deform together. More specifically, a single particle of the mixture

is contributed by multiple characteristics, such as all types of constituents with different

mechanical properties and associated mass. Now we can derive the Fk
n(τ)(t), which represents

the deformation gradient for each constituent that maps from its natural configuration at

the produced time, i.e., κkn(τ), to the configuration of mixture at the current time t, i.e., κt.

As illustrated in Figure 2.1, Fk
n(τ)(t) is given by

Fk
n(τ)(t) = F(t)F−1(τ)Gk(τ). (2.1)

In the G&R theory, the arterial wall is considered as a homogenized mixture of three stress-

bearing constituents, including elastin, collagen fiber and SMC. For convenience, we use
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subscript i = e, 1, ..., k,m to represent different constituents. In particular, the elastin is

denoted by e; the four collagen fiber families are denoted by k = 1, ..., 4; the SMC is denoted

by m. Collagen fiber families and SMC are continuously produced and removed over time.

Following Figure 2.1, the newly synthesized collagen fibers and SMC are deposited into the

tissue with pre-stretch. For simplicity, we assume that all new-produced fibers share the

same homeostatic value pre-stretch: Gk
h for collagen fiber and Gm

h for SMC.

For collagen, the direction of kth fiber is represented by a unit vector mk(τ). The corre-

sponding unit vector in the reference configuration κR can be inversely found by

Mk(τ) =
F(τ)−1mk(τ)

|F(τ)−1mk(τ)|
. (2.2)

The stretch of collagen fiber (synthesized at time = τ) caused by the overall deformation of

blood vessel is expressed as

λk(t) =
√

F(t)Mk(τ) · F(t)Mk(τ). (2.3)

Thus, the stretch of collagen fiber maps from the natural stress-free configuration to the

current configuration given by

λkn(τ)(t) = Gk
h

λk(t)

λk(τ)
, (2.4)

where λk(t) and λk(τ) denote stretch of collagen fiber maps from the natural to the current

configuration at time = t and τ , respectively. The stretch of SMC can be derived in a similar

way. Given Equation 2.3, the stretch of SMC that maps from the natural configuration to

the current configuration is provided by

λmn(τ)(t) = Gm
h

λm(t)

λm(τ)
, (2.5)

in which the SMC is assumed to be distributed in the circumferential direction of the blood
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vessel.

As aforementioned, elastin is another main stress-bearing constituent in the blood vessel.

It is produced at a period of prenatal stage and degrades slowly over time compared to

the turnover rate of collagen fiber, so it is difficult to identify the deposition pre-stretch of

elastin [Langille, 1996]. Thus, a deformation gradient G̃e = F−1(τ)Ge
h is defined to represent

the mapping between the natural to the reference configuration of elastin. Accordingly, the

deformation gradient that maps the elastin from natural to the current configuration is

provided as

Fe
n(t) = F(t)G̃e, (2.6)

where G̃e is specified by

G̃e =


Ge

1 0 0

0 Ge
2 0

0 0 1
Ge1∗Ge2

 . (2.7)

2.2.2 Constitutive laws and constituent turnover

With the kinematic formulations of constituents, the strain energy for the elastin, collagen

fiber families (k =1,...,4) and passive SMC per unit mass are given as

Ψe(Ce
n(t)) =

c1

2

(
Ce

[11] + Ce
[22] +

1

Ce
[11]C

e
[22] − Ce

[12]
2 − 3

)
, (2.8)

Ψk(λkn(τ)(t)) =
c2

4c3

{
exp[c3(λk

n(τ)(t)
2 − 1)2]− 1

}
, (2.9)

Ψm(λmn(τ)(t)) =
c4

4c5

{
exp[c5(λm

n(τ)(t)
2 − 1)2]− 1

}
, (2.10)

where Ce
[11], C

e
[22] and Ce

[12] are components of Ce
n(t) = (Fe

n(t))TFe
n(t) which represents the

Green tensor of elastin mapping from its stress-free natural configuration to the current
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configuration.

Additionally, due to the constant turnover of vascular tissue, the mass per area with respect

to the reference configuration, i.e., M(t), can be given by

M(t) =
∑
i

M i(t) =
∑
i

{
M i

R(0)Qi(t) +

∫ t

0

mi
R(τ)qi(t, τ)dτ

}
(2.11)

where Qi(t) and qi(t, τ) represent the survival functions, which are the survival fraction

(the part of material which has not degrade) of the initial mass and the mass produced

at time τ , respectively. M i
R(0) represents the initial mass of ith constituent at reference

configuration, and mi
R(τ) represents the stress-mediated mass production rate, which will

be further explained in Section 2.2.3. Now, given the mass per area, we can give the share

of thickness for each constituent with respect to both the reference configuration, H i(t), and

the current configuration, hi(t), by

H i(t) =
M i(t)

ρ
, hi(t) =

M i(t)

Jρ
, (2.12)

where J = detF(t) and ρ denotes the volume density of the vascular tissue. The total

thickness is then given by

H(t) =
∑
i

H i(t), h(t) =
∑
i

hi(t). (2.13)

Furthermore, the survival function qi(t, τ) is specified by

qi(t, τ) =

 exp(−
∫ τ
t
kiq(τ̃)dτ̃) t− τ ≤ aimax

0 t− τ > aimax

 , (2.14)

where kiq(τ̃) and aimax denote the rate of removal and maximum lifespan to ith constituent,

respectively.
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For each constituent, the energy per unit reference area of AAA is expressed as the summa-

tion of all strain energies contributed by various survival masses, i.e.,

we(t) = M e(t)Qe(t)Ψe(Ce
n(t)), (2.15)

wk(t) = Mk(0)Qk(t)Ψk(Ck
n(0)(t)) +

∫ t

0

mk(τ)qk(t, τ)Ψk(Ck
n(τ)(t))dτ, (2.16)

wm(t) = Mm(0)Qm(t)Ψm(Cm
n(0)(t)) +

∫ t

0

mm(τ)qm(t, τ)Ψm(Cm
n(τ)(t))dτ, (2.17)

where Ψ(Ci
n(τ)(t)), i = e, k,m, represents the stored energy of constituent i synthesized at

time τ , and the Green tensor Ci
n(τ)(t) = {Fk

n(τ)(t)}TFk
n(τ)(t). Therefore, the total strain

energy per unit reference area can be given by

w(t) = we(t) +
∑
k

wk(t) + wm(t). (2.18)

2.2.3 Homeostasis and stress-mediated adaption

The Cauchy stress of the mixture is provided by

t =
∑
i

ti, (2.19)

where for each constituent i, we have

ti =
2

J
F(t)

∂wi

∂C(t)
F(t)T . (2.20)

Then, the average value of the stress for kth collagen fiber that is measured by a scalar value

is provided by

σk(t) =
||tc(t)mk(t)||

hc(t)
, (2.21)
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where tc(t) and hc(t) are the summation of Cauchy stress tensor and the thickness for all

collagen fiber families combined. The scalar stress of SMC can be calculated in a similar

way.

In order to capture the stress-mediated adaption, we further assume that the mass production

rate of collagen fiber and SMC are proportional to the difference between scalar stress of

fiber and a homeostatic stress σih [Baek et al., 2006], i.e.,

mk
R(t) =

M c
R(t)

M c
R(0)

(Kk
g (σk(t)− σch) +mk

basal), (2.22)

mm
R (t) =

Mm
R (t)

Mm
R (0)

(Km
g (σm(t)− σmh ) +mm

basal), (2.23)

where M c
R(t) is the total mass density of the collagen fiber family in reference configuration,

and Ki
g is a scalar parameter which controls the magnitude of the stress-mediated mass

production rate. Accordingly, a larger Ki
g implies that the blood vessel is able to produce

more collagen fiber to maintain the stability of mechanical properties under the elevated

vascular stress from elastin degeneration. Therefore, Ki
g plays a decisive role in controlling

the self-repairing and evolutionary process of blood vessel.

2.2.4 Elastin degradation and smooth muscle active tone

The degeneration in elastin causes a localized dilation of the aorta, leading to the weakening

of the aortic wall as well as the increase of aortic diameter and wall stress. In this study,

the degradation in elastin is prescribed by a spatial damage function which is axisymmetric

to the vascular centerline. Specifically, the ratio of elastin degradation at different spatial

locations on the vascular centerline (s) is specified by a Gaussian form function:

dinit = exp

[
−(s− µdmg)2

2σ2
dmg

]
, (2.24)
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where µdmg represents the center of the Gaussian function with the maximum elastin degra-

dation; σdmg defines the standard deviation of the Gaussian function, which controls the area

of degraded elastin. µdmg and σdmg affect the initial loss of elastin, which could further lead to

the changes of stress-stretch and geometrical state of the AAA, causing various geometrical

features of the AAA.

The initial damage function of elastin in Equation 2.24 initializes the development of AAA

in its early stage. In addition, Wilson et al. [2012], Zeinali-Davarani et al. [2011] introduced

time-dependent degradation elastin, which assumes additional removal to elastin caused by

the damage of AAA when vascular tissue is under large stretch. This ‘stretch-induced’

damage of elastin is employed to capture the increase of expansion rate in the later stage of

AAA development. The over-stretch damage function of elastin is provided by

ddmg =


1 (Ie1 − 3) ≥ 4.48

1− sin
(
π(7.48−Ie1 )

2.96

)
3 ≤ 1(Ie1 − 3) < 4.48

0 (Ie1 − 3) < 3

 , (2.25)

where Ie1 is the first invariant of the Green tensor Ce
n. The overall survival elastin is expressed

by (1 − dinit)(1 − ddmg). Accordingly, the mass of elastin M e during G&R process in the

reference configuration is provided by

M e(t) = M e(0)(1− dinit)(1− ddmg), (2.26)

where M e(0) represents the initial mass of elastin. Furthermore, due to the intrinsic in-

terrelationship between elastin and SMC [Karnik et al., 2003, Li et al., 1998], the ratio of

removed SMC changes proportional to the ratio of degraded elastin. We take this effect into

account by reducing the associated energy and mass of SMC proportionally with the elastin

degradation.
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It is not enough to prescribe the mechanical properties of SMC by using its passive strain

energy. The active tone of SMC also plays an important role in adjusting the flow and

pressure under different environmental stimulus. Thus, an additional function is provided

by Baek et al. [2007], Zulliger [2004] to represent the stain energy of SMC active tone, i.e.,

Ψm
act(t) =

S

ρ

{
λ2(t) +

1

3

(λM − λ2(t))3

(λM − λ0)2

}
, (2.27)

where λM and λ0 represent the maximum and minimum value of SMC active tone, and S

denotes the maximum stress caused by active tone. Thus, considering the SMC active tone,

the total strain energy of the mixture per unit area with respect to reference configuration

is given by

w(t) = we(t) +
∑
k

wk(t) + wm(t) +Mm(t)Ψm
act(t). (2.28)

2.3 High-fidelity 3D membrane G&R model

The proposed vascular G&R has been demonstrated by computational models such as a 2D

asymmetrical model [Baek et al., 2006] and a 3D membrane model [Zeinali-Davarani and

Baek, 2012, Zeinali-Davarani et al., 2011] on MATLAB. However, they are either too simple

or too computational costly for practical uses. In this section, a 3D membrane G&R model is

established using FEniCS [Alnæs et al., 2015] (a finite element method software implemented

on Python) to enable fast G&R simulations.

17



2.3.1 Governing equations

In this section, we use the principle of virtual work [Kyriacou et al., 1996] to formulate the

weak form of the proposed strained energy, i.e.,

δI =

∫
S

δwdA−
∫
s

Pn · δxda = 0, (2.29)

where Pn denotes the inner pressure vector applied to a vascular wall; S and s correspond to

the surface of a blood vessel in reference and current configurations, respectively; δx denotes

the virtual changes in position. Note that the energy form changes with the current time

t, so Equation (2.29) needs to be solved at every time step. Next, the current location is

replaced by finite element approximation, i.e.,

δx = Φδxp, (2.30)

where xp is the nodal vector for the current position and Φ is the shape function matrix.

The governing equation defined on nodal points of local element is then formulated by

{F}eP =

∫
S

(
∂w

∂Cαβ

∂Cαβ
∂xpP

− P̃iΦiP

)
dA = 0, (2.31)

where xpP is the index notation of current position vector xp, and P̃i is given by

P̃ = PJF−TN, (2.32)

where N is the normal vector of element in the reference configuration.

To solve Equation (2.31), we use the Newton-Rahpson method which requires a tangent
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matrix defined by

[
K
]e
PQ

=
[ ∂F
∂xp

]e
PQ

=

∫
Se

(
∂2w

∂Cαβ∂Cγω

∂Cαβ
∂xpP

∂Cγω
∂xpQ

∂w

∂Cαβ

∂2Cαβ
∂xpP∂x

p
Q

− P̃i,QΦiP

)
dA = 0. (2.33)

Note that here we use a complex notation system in which i, j, k, l,m are three-dimensional

indexes of the global coordinate system; α, β, γ, ω are two-dimensional indexes of the local

coordinate system; A,B, P,Q are indexes of np-dimensional array in a local element (np is

the degree of freedom in each element).

2.3.2 Membrane element and local coordinate system

Given the global coordinate X = {X1, X2, X3} defined on the base vector {E1,E2,E3} in

the reference configuration, we can access to the nodal coordinates of each linear triangular

membrane element, i.e., {X(1),X(2),X(3)}, from a meshed geometry. In addition, the global

coordinates on the deformed geometry are defined on the same Cartesian coordinate system,

and represented by x = {x1, x2, x3} in the current configuration. The associated nodal points

are given by {x(1),x(2),x(3)}.

In addition to the general finite element formulation, the fiber orientations of anisotropic

constituents should be specified in each local element. In particular, the centroid Xc and the

outward normal vector Ne can be directly computed from the nodal coordinates of elements;

the local base Ee
1 is prescribed by the axial direction of the blood vessel; local base Ee

2, which

represents the circumferential direction of the fiber, is computed by

Ee
2 = Ne × Ee

1. (2.34)

Given the basis of the Cartesian coordinate of each local element {Ee
1,E

e
2,N

e}, the local

coordinate in the reference and current coordinates are denoted by Xe = {Xe
1 , X

e
2 , X

e
3} and
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Figure 2.2: X = {X1, X2, X3} are global Cartesian coordinates defined on base vector
{E1,E2,E3} in reference configuration. {Ee

1,E
e
2,N

e} are transformed base vectors that define
the local coordinates. The centroid Xc and nodal coordinates of elements {X(1),X(2),X(3)}
are defined by global coordinates. The associated nodal coordinates in current configuration
of G&R process are provided by {x(1),x(2),x(3)}.

xe = {xe1, xe2, xe3}, respectively.

2.3.3 Finite element formulations

In FEniCS, the shape functions {φi} of a linear triangular element is automatically prescribed

such that the values of shape functions on the local element follow

φi(X
(j)
1 , X

(j)
2 , X

(j)
3 ) = δij. (2.35)

Accordingly, the current location of any point of the geometry is approximated by

x = Φxp. (2.36)
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where xp denotes the nine-dimensional global nodal coordinates of the linear triangular

element

xp = {x(1)
1 , x

(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3 , x

(3)
1 , x

(3)
2 , x

(3)
3 }T , (2.37)

and Φ denotes the 9× 3 shape function matrix

Φ(X1, X2, X3) =


φ1 0 0 φ2 0 0 φ3 0 0

0 φ1 0 0 φ2 0 0 φ3 0

0 0 φ1 0 0 φ2 0 0 φ3

 . (2.38)

Now, given the global coordinates in the current configuration, i.e., x, enabled by FEniCS,

we need to formulate the local coordinates and all forms in Equation (2.31) and Equation

(2.33) to find the solution.

Given the base vectors of both global and local coordinate systems, i.e., {E1,E2,E3} and

{Ee
1,E

e
2,E

e
3} (let Ee

3 = Ne for convenience ), the transformation formula is defined as

Xe = Q(X−Xc), (2.39)

xe = Q(x−Xc), (2.40)

where the transformation matrix Q is defined by

Q =


Ee

1 · E1 Ee
1 · E2 Ee

1 · E3

Ee
2 · E1 Ee

2 · E2 Ee
2 · E3

Ee
3 · E1 Ee

3 · E2 Ee
3 · E3

 . (2.41)

Accordingly, the local coordinate can be presented by

xe = Q(x−Xc) = Q(Φxp −Xc), (2.42)
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i.e.,

xei = Qij(ΦjAx
p
A −X

c
j ). (2.43)

The spatial derivative of location position with respect to the local basis becomes

xei,α =
∂

∂Xe
α

[Qij(ΦjAx
p
A −X

C
j )]

=
∂

∂Xk

[Qij(ΦjAx
p
A −X

C
j )]

∂Xk

∂Xe
α

= QijΦjA,kx
p
A

∂Xk

∂Xe
α

= QijΦjA,kx
p
AQαk.

(2.44)

Next, the Gauchy green tensor is given by

C =

(
∂xe

∂sα
· ∂xe

∂sβ

)
Ee
α ⊗ Ee

β, (2.45)

which can be computed using FE formulation, and shown by

Cαβ = xei,αx
e
i,β = Φe

iA,αx
p
AΦe

iB,βx
p
B

= QijΦjA,kx
p
AQαkQilΦlB,mx

p
BQβm

= δjlΦjA,kx
p
AQαkΦlB,mx

p
BQβm

= ΦjA,kx
p
AQαkΦjB,mx

p
BQβm.

(2.46)

The Gauchy-Green tensor can also be simplified into a matrix notation that is directly

implemented in FEniCS, i.e.,

C = Q̄(∇x)T (∇x)Q̄T . (2.47)

Note that the Gauchy-Green tensor C here is a 2 × 2 matrix defined on local coordinate,
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and Q̄ is a 2× 3 matrix defined by

Q̄ =

 Ee
1 · E1 Ee

1 · E2 Ee
1 · E3

Ee
2 · E1 Ee

2 · E2 Ee
2 · E3

 . (2.48)

Next, we derive
∂Cαβ
∂xpP

and
∂2Cαβ
∂xpP ∂x

p
Q

defined in Equation (2.31) and Equation (2.33) to enable

the the solver.

∂Cαβ
∂xpP

=
∂

∂xpP
(ΦjA,kx

p
AQαkΦjB,mx

p
BQβm)

= δAPΦjA,kQαkΦjB,mx
p
BQβm + δBPΦjA,kx

p
AQαkΦjB,mQβm

= ΦjP,kQαkΦjB,mx
p
BQβm + ΦjA,kx

p
AQαkΦjP,mQβm

= Qαk(ΦjP,kΦjB,mx
p
B + ΦjA,kx

p
AΦjP,m)Qβm,

(2.49)

∂2Cαβ
∂xpP∂x

p
Q

=
∂

∂xpQ
(Qαk(ΦjP,kΦjB,mx

p
B + ΦjA,kx

p
AΦjP,m)Qβm)

=
∂

∂xpQ
(Qαk(δBQΦjP,kΦjB,m + δAQΦjA,kΦjP,m)Qβm)

= Qαk(ΦjP,kΦjQ,m + ΦjQ,kΦjP,m)Qβm.

(2.50)

The matrix notation leads to a concise form by

∂C

∂xpP
= Q̄

(
(∇Φ(P ))

T (∇x) + (∇x))T (∇Φ(P ))
)
Q̄T , (2.51)

∂2C

∂xpP∂x
p
Q

= Q̄
(

(∇Φ(P ))
T (∇Φ(Q))) + (∇Φ(Q)))

T (∇Φ(P ))
)
Q̄T , (2.52)

where Φ(P ) is the P th column of 3× 9 shape matrix Φ.
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Figure 2.3: A verification between two 3D membrane G&R simulations implemented on
FEniCS and MATLAB, respectively. The same simulation setup and input parameters are
used in two simulations.

2.3.4 Code verification

To verify the FEniCS code of 3D membrane AAA G&R model, another MATLAB-based 3D

membrane G&R simulation is introduced. A comparison between two simulations with the

same setup and input parameters are provided in Figure 2.3. The verification result shows

that two AAAs share the same size of geometries and similar stress distributions.

2.4 Low-fidelity axisymmetric G&R model and verifi-

cation

The axisymmetric G&R model uses a cylindrical polar coordinate system, wherein the refer-

ence and current coordinates are defined by X = (Xz, Xr) and x = (xz, xr), respectively. In

addition, the initial shape of artery is given by Xr = R(Xz) in the reference configuration.
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E1

E2

Local element

3D G&R model Axisymmetric G&R model

Local elementx = (x1,x2,x2)

x =
(xz, xr)

z

r

Figure 2.4: Two-fidelity G&R FEM models. The 3D G&R model is built on a three dimen-
sional geometry of artery with linear membrane elements. The axisymmetric G&R model is
built on an idealized axisymmetric geometry with quadratic membrane elements.

The comparison between two G&R models is illustrated in Fig. 2.4. A verification results of

AAA growth simulated by the high-fidelity and low-fidelity vascular G&R models are shown

in Fig. 2.5. The same input parameters are used in both models.

Accordingly, for axisymmetric G&R model, the governing equation is

F =

 2π
∫ L

0
( ∂w
∂xr

Φi + ∂w
∂x′r

Φ′i)R
√

1 + (R′)2 − Px′zxrΦidXz

2π
∫ L

0
( ∂w
∂xz

Φi + ∂w
∂x′z

Φ′i)R
√

1 + (R′)2 + Px′rxrΦidXz

 =

 0

0

 , (2.53)

where L is the max value of Xz.
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(a) Maximum Diameter against time (t) (b) Diameter against length(s)

Figure 2.5: Verification results of AAA growth between the FEniCS-based high-fidelity model
(represented by ‘FEniCS’) and the MATLAB-based low-fidelity model (represented by ‘Mat-
lab’). The maximum diameter (max. d) vs. time (t) for both simulations are plotted in
Figure a. The diameter curves (d) along the length of arterial centerline (s) for both simu-
lations at t = 2000 days and t = 3000 days are plotted in Figure b. Note that the crosses
and circles in Figure b represent the AAA diameters at nodal locations.
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Chapter 3

PHYSICS-BASED SURROGATE

MODELS

3.1 Introduction

Patient-specific applications of some computational vascular models, such as vascular G&R

models, are too computationally expensive for practice in clinical treatment and decision

making. This is mainly because the patient-specific modeling needs a series of time-consuming

operations, such as image segmentation, meshing, patient-specific parameter estimation and

model validation. In particular, the patient-specific parameter estimation1is particularly

computationally expensive because it is considered as a numerical inverse problem that re-

quires extensive forward simulations to solve [Marsden, 2013]. For an instance, it sometimes

takes days and even months to estimate the patient-specific parameters for a single patient.

In contrast, the clinical practice requires the personalized suggestion to be provided within

the clinical relevant time frame (hours) [Taylor et al., 1999]. Thus, despite the existence of

many significant patient-specific vascular models [Caroli et al., 2013, Colombo et al., 2019,
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Kuhl et al., 2007, Long et al., 1998, Zambrano et al., 2017, Zeinali-Davarani and Baek, 2012],

direct access to rapid clinical recommendations remains challenging. Therefore, there is a

pressing need to design an efficient patient-specific simulation and prediction framework to

aid clinical treatments of vascular diseases.

To achieve this goal, some studies employed reduced-order models for parameter searching

[Itu et al., 2015, Spilker and Taylor, 2010, Zhang et al., 2019], establishing efficient opti-

mization processes, but with reduced accuracy. In particular, the Probabilistic Collocation

Method (PCM), a computationally efficient approximation approach, interpolates compu-

tationally expensive simulations sampled on collocation points and predicts intermediate

simulation results. PCM has been broadly used in climate research, energy system, hemo-

dynamics. In Section 3.2, we utilize PCM as a fast surrogate model to augment the dataset

simulated by AAA G&R model.

In addition, the Kriging-based surrogate model, a cheap-to-evaluate machine learning model

that approximates the original model, has been broadly applied for efficient optimization

[Dubourg et al., 2011, Li and Yang, 2019, Matheron, 1963, Sacks et al., 1989]. In the

field of arterial biomechanics, the Kriging method has been successfully demonstrated by

providing surrogates of physical models of cardiovascular systems in various studies including

the identification of design parameters of bypass graft [Sankaran and Marsden, 2010], scaffold

[Szafron et al., 2019] and baffle [Yang et al., 2010], homeostatic parameters in arterial growth

and remodeling [Sankaran et al., 2013], and geometrical parameters of arterial branches

[Marsden et al., 2008].

Although advanced approximation techniques such as Kriging accelerate the time-consuming

cardiovascular simulations, the creating of surrogate models needs a large number of training

data, i.e., a large set of forward vascular simulations. The generation of training data may

1In this study, the ‘patient-specific parameter estimation’ particularly refers to the process of estimat-
ing some parameters in a vascular model by minimizing the discrepancy between simulation outputs and
personalized clinical data.
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still be overwhelmed expensive due to the complexity of the vascular model. Fortunately,

cokriging, i.e., a multi-variable extension of kriging, can efficiently reduce the amount of

expensive sample data required for model training. In particular, cokriging is the multivariate

Gaussian Process (GP) regression that treats training samples as deterministic measurements

in the parameter space, and predicts the intermediate value and related error at any arbitrary

location [Fernandez et al., 2017, Kennedy and O’Hagan, 1998, Sacks et al., 1989]. Cokriging

provides an efficient metamodel approach of combining the simulations of High-Fidelity

Model (HFM) with Low-Fidelity Model (LFM) [Forrester et al., 2007]. In Section 3.3, we

consider HFM as the highly expensive computational model with an adequate accuracy,

which can be remedied by a large amount of efficient simulations from the less accurate

LFM via cokriging. By introducing HFM, LFM, and cokriging, we can construct an efficient

Multi-fidelity Surrogate (MFS) that plays as an important middle stage connecting the

vascular G&R simulations to the personalized parameter estimation and prediction.

In this chapter, the theories of PCM, kriging and cokriging are described to enable useful

surrogate models, which further lead to more complex operations such as patient-specific

parameter estimation (Chapter 4) and prediction (Chapter 5 and Chapter 6).

3.2 Probabilistic collocation method

3.2.1 Deterministic input

Assume the physics model takes a group of input parameters γ = {γ[1], γ[2], γ[3], ...} and

generates simulation output

y = η(γ), (3.1)
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where η(.) represents the physics-based computational model. To reduce the computational

cost, we shall approximate η(.) by utilizing a set of N basis functions {gi(γ)}, with i =

1, · · · , N , such that

ŷ =
N∑
i=0

βigi(γ), (3.2)

where βi represents the regression coefficient. Given a set of functions {gi(γ)}, the regression

coefficients {βi} can be solved as follow.

The residual between the truth and the approximation is defined as

R({βi}, γ) = ŷ(γ)− y(γ). (3.3)

By applying the ordinary least squares estimation to (3.2), the optimal set of coefficients βi

is formulated in

〈gi(γ), R({βi}, γ)〉 =

∫
γ

gi(γ)R({βi}, γ)dγ = 0, (3.4)

where i = 1, · · · , N and 〈., .〉 represents the dot product between two deterministic functions.

(3.4) can be solved by the idea of Gaussian quadrature [Stroud and Secrest, 1966], which

approximates the integral as

∫
γ

R({βi}, γ)gi(γ)dγ '
N∑
j=1

vjR({βi}, γ̃j)gi(γ̃j) = 0, (3.5)

where vj are weights and γ̃j are abscissas, respectively. If the weights and the basis functions

are chosen such that
∏

i,j vjgi(γ̃j) > 0 for all i and j, the summation in (3.5) can be further

approximated as

R({βi}, γ̃j) = 0, j = 0, · · · , N. (3.6)

Note that the quadrature points γ̃j are also the collocation points. (3.6) can be used to find

the coefficients {βi} by running tfhe model at N + 1 different collocation points and solving
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a system of N + 1 equations.

3.2.2 Stochastic input

Suppose that the input γ is a random vector with a known probability density function

(PDF) π(γ), (3.4) can be transformed into the probability space as

∫
γ

π(γ)R({βi}, γ)gi(γ)dγ = 0. (3.7)

Similarly, with the proper choice of vj and gi(γ), (3.6) becomes

π(γ)R({βi}, γ̃j) = 0, (3.8)

where j = 0, · · · , N . Since the PDF function π(γ) is always positive, (3.6) can be used to

find the coefficients in the stochastic case.

3.2.3 Selection of base functions and collocation points

Theorem 3.1

Consider a quadrature formula:

∫
γ

W (γ)F (γ)dγ '
N∑
j=1

wjF (γj), (3.9)

where wj are weights and γj are abscissas. Given a weight function W (γ) = γα(1− γ)β, an

optimal choice of N quadrature points can be found based on the correct integration using

the highest order of the polynomial expansion of F (γ). The optimal quadrature points are

the zeros of the polynomial of degree (N + 1), i.e., PN+1(γ), that satisfy the orthogonality
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condition ∫
γ

W (γ)γjPN+1(γ)dγ = 0, for j = 0, · · · , N. (3.10)

The detailed proof of Theorem 3.2.3 is provided in Chap 3 of [Villadsen and Michelsen,

1978]. In short, the choice of collocation points as the roots of the next order orthogonal

polynomial lets the collocation method approximation close to Galerkin’s method. As a

result, it outperforms other methods of weighted residual (MWR) [Villadsen and Michelsen,

1978].

Corollary 3.2 Consider the same quadrature formula in Theorem 3.2.3, and a set of N + 1

orthogonal polynomial functions {gi(γ)}, if the set of functions satisfy the condition

∫
γ

π(γ)gi(γ)gN+1(γ)dγ = 0, i = 1, · · · , N, (3.11)

they also satisfy condition (3.10), and the zeros of gN+1(γ) are the optimal quadrature points.

Proof of Corollary 3.2:

We illustrate the proof for N = 2, then the proof for an arbitrary N is straightforward. Let

g0 = 1,

g1 = ax+ b,

g2 = cx2 + dx+ e.
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So, applying 3.11, we have

∫
x

π(x)g0(x)g3(x)dx =

∫
x

π(x)g3(x)dx = 0,∫
x

π(x)g1(x)g3(x)dx =

∫
x

π(x)(ax+ b)g3(x)dx = 0,∫
x

π(x)g2(x)g3(x)dx =

∫
x

π(x)(cx2 + dx+ e)g3(x)dx = 0.

Rearrange the terms, we have an equivalent system of equations

(1 + b+ e)

∫
x

π(x)g3(x)dx = 0→
∫
x

π(x)g3(x)dx = 0,

(a+ d)

∫
x

π(x)xg3(x)dx = 0→
∫
x

π(x)xg3(x)dx = 0,

(c)

∫
x

π(x)x2gx(x)dx = 0→
∫
x

π(x)x2g3(x)dx = 0.

which is the condition 3.10.

If we choose the weight function to be the PDF of γ, i.e., W (γ) = π(γ), (3.11) can be used

to generate the set {gi(γ)} in a recursive manner as follows.

In practice, we define the initial conditions

g−1 = 0,

g0 = 1,

and the orthogonal polynomials can be obtained recursively by solving the equations

∫
γ

π(γ)gi(γ)gi+1(γ)dγ = 0, i = 1, · · · , N. (3.12)

However, solving for high order polynomials (3.11) is time-consuming and error-prone. Thus,

we use Favard theorem to compute the set of basis functions more efficiently.
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Theorem 3.2 (Favard Theorem) If a sequence of polynomials {Pi(γ)}, where i = 1, · · · , N ,

satisfies the recurrence relation

Pi(γ) = (γ − ci)Pi−1(γ)− diPi−2(γ),

P−1 = 0, P0 = 1,

(3.13)

where ci and di are real numbers, then {Pi(γ)} are orthogonal polynomials.

Algorithm 1 The Probabilistic Collocation Method (PCM) model
Part 1: Compute collocation points

1: Initialize g−1(γ) = G−1(γ) = 0 and g0(γ) = G0(γ) = 1.
2: for i = 1, · · · , N do
3: Gi(γ) = γgi−1(γ)− 〈γgi−1(γ), gi−1(γ)〉gi−1(γ)−

√
〈Gi−1(γ), Gi−1(γ)〉gi−2(γ)

4: gi(γ) =
Gi(γ)√

〈Gi(γ),Gi(γ)〉
5: end for
6: Find the zeros of gN+1(γ) = 0 as N collocation points.
7: Repeat steps 1-5 for other random variables. We denote three random variables2 and three sets of basis functions as

{γ[1]i , γ
[2]
i , γ

[3]
i } and {g[1]j (γ), g

[2]
j (γ), g

[3]
j (γ)}, respectively, where i = 1, · · · , N and j = 0, · · · , N − 1

8: Create a permutation of three groups of collocation points of 3 random variables, i.e., (γ
[1]
i , γ

[2]
j , γ

[3]
k ) where i = 1, · · · , N ,

j = 1, · · · , N , and k = 1, · · · , N .

Part 2: Run the computational code at the collocation points

1: for i = 1, · · · , N , j = 1, · · · , N , k = 1, · · · , N do

2: Run η(γ
[1]
i , γ

[2]
j , γ

[3]
k ).

3: end for

Part 3: Compute the coefficients β

1: Concatenate the computational outcomes: y =


η(γ

[1]
1 , γ

[2]
1 , γ

[3]
1 )

...

η(γ
[1]
N , γ

[2]
N , γ

[3]
N )

.

2: Arrange the matrix K =


g
[1]
N−1(γ

[1]
1 )g

[2]
N−1(γ

[2]
1 )g

[3]
N−1(γ

[3]
1 ) · · · g

[1]
0 (γ

[1]
1 )g

[2]
0 (γ

[2]
1 )g

[3]
0 (γ

[3]
1 )

...
. . .

...

g
[1]
N−1(γ

[1]
N )g

[2]
N−1(γ

[2]
N )g

[3]
N−1(γ

[3]
N ) · · · g

[1]
0 (γ

[1]
N )g

[2]
0 (γ

[2]
N )g

[3]
0 (γ

[3]
N )

.

3: Compute the coefficients:
β = K−1y. (3.14)

Part 4: Approximate the computational code

1: For any new set of random variable (γ
[1]
∗ , γ

[2]
∗ , γ

[3]
∗ ), the outcome can be approximated by:

η∗(γ
[1]
∗ , γ

[2]
∗ , γ

[3]
∗ ) =

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

βi,j,kg
[1]
i (γ

[1]
∗ )g

[2]
j (γ

[2]
∗ )g

[3]
k (γ

[3]
∗ ). (3.15)

In this study, we utilized ci = 〈γgi−1, gi−1〉 and di =
√
〈gi−1, gi−1〉 by referring the work

2For the sake of notational simplicity, we denote {Kg, σd, µd} as {γ[1], γ[2], γ[3]} in Algorithm 1.
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of [Zhou et al., 2014]. The overall PCM algorithm is shown in Algorithm 1. Furthermore,

though the PCM has been widely used to approximate a univariate prediction target, i.e., a

scalar value y, it is extended to be a multivariate approximation in this study.

3.3 Multi-fidelity surrogate

In general, high-fidelity computational vascular simulations are computationally expensive

due to high complexity of the arterial adaptation mechanism. For examples, using a 3.3

GHz CPU and a 64 GB RAM, a 3D G&R simulation of AAA implemented on MATLAB

takes around two days [Zeinali-Davarani and Baek, 2012]; a 3D hemodynamic simulation of

a blood vessel in a cardiovascular cycle takes approximately 6 hours on a 16 cores 2.67 GHs

GPU. As those examples shown, even the computational time of a single forward vascular

simulation is significantly larger than the clinical relevant time (1-2 hours). Consequently,

it becomes computationally impractical to perform more time-consuming applications, such

as personalized parameter estimation which could be considered as an inverse problem that

requires extensive forward vascular simulations to solve. To address this issue, we use a

surrogate model to approximate computationally expensive physics-based simulations, which

significantly reduces computational time.

A good option of creating surrogate model is to use kriging, i.e., Gaussian Process (GP)

regression, which treats a set of sample data as deterministic measurements, and predicts

the intermediate value and the associated variance at an arbitrary location in the parameter

space [Sacks et al., 1989]. The kriging method, however, is limited as a surrogate model

because it can only approximate a single computational model, whereas we can access to

multiple vascular models with different fidelities. Consequently, we employ cokriging, i.e.,

a multivariate extension of the single variate kriging3, to combine the information of multi-

3The kriging is particularly referred to the univariate GP regression in the context of this study.

35



fidelity models, and thereby further improving the computational efficiency. Here, we denote

the approximated model established by cokringing as MFS.

A cokriging-based MFS can be trained by a sufficient number of computationally cheap but

less accurate simulations and a limited number of expensive but accurate simulations, and

thus reaching a balance between accuracy and efficiency. We consider the creating of corking-

based MFS as a necessary intermediate process between the vascular simulations (Chapter

2) and the patient-specific parameter estimation (Chapter 4). For detailed derivations of

cokriging-based MFS, readers can refer to Forrester et al. [2007], Jones et al. [1998], Kennedy

and O’Hagan [1998].

3.3.1 Kriging

Kriging, the univariate version of GP regression, is introduced first to illustrate the basic

concepts in cokriging. Essentially, kriging is an approximation method which interpolates a

set of sample data. Consider a physical process, e.g., a vascular simulation, that generates

a target value y = f(x) under an input column vector of a sample x ∈ RNx . In a set

of Ne samples, the sample locations and corresponding target values are provided by X =

{x(1), ...,x(Ne)} and y = {y(1), ..., y(Ne)}T , respectively. Kriging treats each sample value y as

a realization of a stochastic process Y (x), which provides the best linear unbiased prediction

in a regression framework [Sacks et al., 1989]. For ordinary kriging, the stochastic process is

prescribed by

Y (x) = µ+ Z(x), (3.16)

which hypothesizes that the Y (x) is modeled as the summation of an unknown constant

hyperparameter µ and a GP term Z(x) with zero mean. Z(x) can be interpreted as the

local feature of the approximated stochastic process, i.e., the local deviation from the average

value µ. Moreover, if the approximated physical process f(x) is continuous and smooth, it
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is natural to suppose that the covariance of Z(x) is related to distance [Jones et al., 1998].

This idea of covariance is originally proposed in geostatistics to optimize the mining locations

[Matheron, 1963]. Accordingly, the covariance of Z(x) is specified by a Gaussian correlation

function defined purely on a weighted spatial distance,

cov{Z(x), Z(x∗)} = σ2ψ(x,x∗) = σ2exp

{
−

Nx∑
i=1

pi(xi − x∗i )2

}
, (3.17)

where hyperparameters include variance σ and the magnitude of variation in different dimen-

sions p = {p1, ..., pNx}. This covariance function guarantees that the correlation converges

to one when x and x∗ come close enough. The correlation function, denoted by ψ in (3.17),

is also used for constructing the Nx ×Nx correlation matrix

Ψ =


ψ(x(1),x(1)) ... ψ(x(1),x(Nx))

...
. . .

...

ψ(x(Nx),x(1)) ... ψ(x(Nx),x(Nx))

 , (3.18)

and correlation vector function ψ(x) = {ψ(x,x(1)), ..., ψ(x,x(Nx))}T , given a set of sample

points X.

In short, the stochastic process has been clearly defined, and parameterized by hyperparam-

eters, including µ, σ and p. In practice, those hyperparameters are required to be carefully

calibrated such that the conditional posterior probability of Y (x) is maximized given the

sample data, so the stochastic process can optimally approximate the physics-based model

at the sample points. In particular, the estimations of µ and σ are provided by

µ = 1TΨ−1y(1TΨ−11)−1, (3.19)

σ2 = (y − µ1T )Ψ−1(y − µ1)/Nx, (3.20)
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and the p can be computed by maximizing the concentrate ln-likelihood

−n
2

lnσ2 − 1

2
ln | det(Ψ)|. (3.21)

Now, with the hyperparameters calibrated by sample data, the best linear unbiased predic-

tion ŷ(x) and its variance σ2
y(x) are provided as

ŷ(x) = µ+ ψT (x)Ψ−1(y − µ1), (3.22)

σ2
y(x) = σ2

(
1− ψT (x)Ψ−1ψ(x) +

(1− 1TΨ−1ψ(x))2

1TΨ−11

)
, (3.23)

respectively, where 1 denotes a column vector with Nx ones. Note that the variance is given

in the form of standard deviation.

3.3.2 Cokriging

Cokriging is also called multivariate GP regression. It has been applied to many problems for

which multilevel analysis is available. Consider two physics-based models that simulate for

the same process. Models that are computationally expensive but more accurate are labeled

as High-fidelity models (HFMs); less expensive but more accurate are labeled as Low-fidelity

Models (LFMs). In practice, typical LFMs are cheaper because they are usually simplified

from HFMs. For example, compared to HFM, LFM may hold idealized geometry, smaller

mesh size, simpler physics assumption, reduced dimensionality, etc.

In our study, given an input column vector x ∈ RNx , the HFM produces a computational

expensive output ye = fe(x), while the LFM produces a cheap output yc = fc(x). Similar to

ordinary Kriging (3.16), cokriging also assumes that, for both HFM and LFM, the approx-

imated stochastic process is the sum of a constant and a GP with zero mean. In addition,
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the cokriging further prescribes the relation of GPs by

Ze(x) = ρZc(x) + Zd(x), (3.24)

where Ze(x) and Zc(x) denote the GPs of HFM and LFM, respectively; Zd(x) is defined

as a GP that is independent of Zc(x) and represents the difference; ρ is a hyperparameter.

Moreover, the covariance, correlation function, correlation matrix and correlation vector

function of Zc(x) and Zd(x), are defined in the same manner as their counterparts shown

in Section 3.3.1. For convenience, variables and parameters in different stochastic processes

are represented by different subscripts: e for the HFM related, c for the LFM related, and d

for Zd(x) related.

Suppose that we have a set of Ne High-fidelity (HF) sample simulations with inputs Xe =

{x(1)
e , ...,x

(Ne)
e } and outputs ye = {y(1)

e , ..., y
(Ne)
e }T , as well as a set of Nc Low-fidelity (LF)

sample simulations with inputs Xc = {x(1)
c , ...,x

(Nc)
c } and outputs yc = {y(1)

c , ..., y
(Nc)
c }T .

Based on these sample simulations, the hyperparameters {µc, σ2
c ,pc, µd, σ

2
d,pd, ρ} in cokriging

can be estimated using MLE in a similar way to (3.19), (3.20) and (3.21). The readers could

follow Kennedy and O’Hagan [1998] and Forrester et al. [2007] for detailed descriptions.

Therefore, given the complete form of covariance matrix

Ψ =

 σ2
cΨc(Xc, Xc) ρσ2

cΨc(Xc, Xe)

ρσ2
cΨc(Xe, Xc) ρ2σ2

cΨc(Xe, Xe) + σ2
dΨd(Xe, Xe)

 , (3.25)

and the complete covariance vector

ψ(x) =

 ρσ2
cψc(Xc,x)

ρ2σ2
cψc(Xe,x) + σ2

dψd(Xe,x)

 , (3.26)
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the cokriging-based best linear unbiased prediction and the associated variance are

ŷ(x) = µ+ ψT (x)Ψ−1(y − µ1), (3.27)

σ2
y(x) = ρ2σ2

c + σ2
d − ψ(x)TΨ−1ψ(x) +

(1− 1TΨ−1ψ(x))2

ψ(x)TΨ−1ψ(x)
, (3.28)

where µ = 1TΨ−1yT (1Ψ−11)−1, y = {yTc ,yTe }T .

3.4 Demonstrations of multi-fidelity surrogate

The efficiency and effectiveness of the proposed MFS framework is illustrated by approxi-

mating vascular G&R simulations of AAA expansion. Specifically, we first provide a demo

study using univariate vascular simulations of AAA growth, aiming to show the improve-

ments achieved by cokriging-based MFS compared to Kringing-based surrogate. Next, we

demonstrate the practical use of the proposed vascular MFS using multi-fidelity G&R com-

putational models.

In this study, we employ a 3D G&R model in Section 2.3 as the HFM and an axisymmet-

ric G&R model in Section 2.4 as the LFM. Dirichlet boundary conditions of both G&R

models are prescribed by fixing the displacement of lower and upper boundaries of arterial

geometries. A comparison between the two models are provided in Table. 3.1. Note that

the computation time of all simulations are recorded on the same workstation with 10 cores

i7-950 @3.3 GHz, 64GB RAM using the same sets of parameters. In addition, the time of

the simulated stress-mediated adaptation process are fixed as 5300 days for all simulations.

The cokriging method is implemented using a MATLAB toolbox ooDACE [Couckuyt et al.,

2014].
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Table 3.1: Comparison between two-fidelity G&R models.

3D membrane G&R model (HFM) Axisymmetric G&R model (LFM)
Software FEniCS MATLAB

# finite elements 2528 25
Element type Linear Lagrange triangular element 1D quadric element

Dimension 3D 2D (axisymmetry)
Computation time a 70-90 minutes 10-15 minutes
a The computation time denotes the estimated computational time of a G&R simulation

3.4.1 A univariate demonstration of MFS

To demonstrate the advantages of the cokriging-based MFS compared to the kriging-based

surrogate, we present an univariate demo of the AAA expansion. In particular, we take the

length along the AAA centerline s as the only input variable for both HFM (3D membrane

G&R) and LFM (axisymmetric G&R). All the other parameters are fixed by constant values

so that we could focus on studying the simulations output, i.e., maximum diameters along

the AAA centerline d, versus the input s. The simulated time is prescribed by t = 3000

days and the simulations are performed on an idealized geometry. Note that this demo is

for illustration only and is not directly related to the rest of this section.

In this demonstration, we randomly pick up a set of 6 HF sample points that is directly used

to train a kriging-based surrogate. As Fig. 3.1 shown, the kriging, which is represented by

the green dotted line, provides a smooth Gaussian shape approximation but is associated

with large error under the area of s where less samples are provided. In contrast, the

cokriging-based MFS is trained by 6 HF samples points as well as 50 cheap LF samples

points. The MFS approximation is represented by the dark solid line in Fig 3.1, which shows

a significantly improvement over kriging-based surrogate. This is because the GP term Zd()

in cokriging formula improves the approximation accuracy in these regions with less HF

samples.
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Figure 3.1: A simple demonstration to cokriging-based MFS. s and d denote the length
along the centerline and the associated diameter, respectively. The red and blue dashed
lines represent the physics-based simulation outputs from HFM and LFM, respectively. The
kriging-based surrogate is trained from 6 HF samples while the cokriging-based MFS is
trained from the same set of 6 HF samples as well as 50 additional LF samples.

3.4.2 A MFS-based approximation to the G&R models of AAA

growth

As illustrated before, we can collect HF and LF data that incorporate the target values d

under sets of four parameters, i.e., x = {θT , ξTs }T = {Kg, σdmg, s, t}T . Here, x can be divided

into two subsets including a patient-specific intrinsic parameter set θ = {Kg, σdmg}T and a

spatial-temporal parameter set ξs = {s, t}T . Essentially, θ includes the input parameters of

the physics-based simulations, while ξs can be considered as the spatial-temporal locations

in the output physical fields such as stress field and aortic diameters along centerline. Ac-

cordingly, a single vascular simulation can generate multiple samples with the same value of

θ but different values of ξs.

Given the different properties of θ and ξs, a two-step sampling approach is developed to
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(a) A contour plot of the approximated maxi-
mum diameters.
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(b) A contour plot of the uncertainties esti-
mated by MFS.

Figure 3.2: Contour plots of the approximated maximum diameter and the associated un-
certainty over the map of Kg and σdmg at t = 4000 days. The red dots represent the HF
samples. The unit of color bar is mm.

generate training data for MFS efficiently. First, we use a stratified sampling method to

randomly sample 20 values of θ, and then input these values of θ independently into the

HFM to collect HF simulation outputs. Second, we further randomly select 15 values of ξs

from each HF simulation output. overall, we collect a set of Ne = 300 HF samples to train

MFS. Meanwhile, the same approach is applied to the LFM to obtain a set of Nc = 1000 LF

samples.

HF and LF samples are used together to train the MFS. Fig. 3.2a shows a contour map

of approximated maximal diameter under different values of patient-specific parameters at

t = 4000 days, where the maximum diameter is defined as the maximal value of the diam-

eters with all possible values of s. Additionally, Fig. 3.2b provides the standard deviation

associated with the approximated maximal diameters. It shows that the uncertainty has

been successful minimized under regions with sufficient training data. In these plots, the HF

samples are represented by red dots, and each point on the map contains a set of 15 samples

with different values of ξs.
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Figure 3.3: The MFS approximations of diameters against independent input variables in
which irrelevant input parameters are fixed. The approximated error is indicated in blue
shades.

Now, given arbitrary values of input parameters x = {Kg, σdmg, s, t}T , the MFS is able to

predict the target output, i.e., d̂ = ŷ = fsm({Kg, σdmg}T , {s, t}T ), within 0.001 second. The

collection of all target outputs is denoted as in silico data. Fig. 3.3 includes the four univari-

ate plots that visually illustrate the relationship between the MFS-based approximations of

diameters and the four inputted parameter. The uncertainty associated with MFS approx-

imation is plotted by shaded confidence intervals. Note that the unrelated parameters are

fixed in each demonstration.

In the Fig. 3.3c and Fig. 3.3d, we notice that Kg strongly affects diameter d while σdmg
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has less effect on diameter d. This is because Kg directly changes the growth rate, while

σdmg mainly affects the shape of aneurysm. Furthermore, due to the low diameter-related

uncertainty (the 95% confidence interval is less than 5mm), we conclude that the cokriging-

based MFS is able to approximate the simulation with relatively small errors.

3.5 Discussion

The PCM method significantly improves the efficiency of data generation from physics mod-

els. In this study, it generates tens of thousands of IMDCs in 20 seconds, while computing a

LF vascular G&R simulation takes 30 minutes. This means that it would take more than a

year to provide the same amount of training data directly using a vascular G&R model. In

conclusion, PCM is a powerful data augmentation tool which provides a basis for training

data-driven models such as deep learning.

The cokriging-based MFS is developed to generate an efficient approximation to a HF G&R

model. The MFS can take advantages of multi-fidelity G&R models. In particular, a massive

amount of computational cheap data simulated by LF vascular model merits the approxi-

mation by greatly reducing the computational time of generating HF data. The success

of the proposed MFS provides a solid foundation for more complex and time-consuming

applications such as parameter estimation, validation, model reduction and patient-specific

prediction, which will be discussed in later Chapters (Chapter 4, Chapter 5 and Chapter

6). Additionally, since the proposed MFS is a general simulation tool, it holds promise to

approximate more types of cardiovascular disease simulations.
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Chapter 4

AN AUTOMATIC

PATIENT-SPECIFIC PARAMETER

ESTIMATION FRAMEWORK

USING MULTI-FIDELITY

SURROGATE

4.1 Introduction

The proposed MFS dramatically increases the efficiency of forward vascular simulations.

One of the most valuable applications of MFS is to enable efficient and accurate patient-

specific parameter estimation. Parameter estimation is generally considered to be an inverse

problem, in which the patient-specific parameters should be carefully selected to minimize

the discrepancy between simulation outputs and clinical observations. Nevertheless, this is
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hard task that requires a novel MFS-based optimization framework that can automatically

and efficiently solve the inverse problem of parameter estimation. Fortunately, optimization

techniques have been broadly used in vascular modelings [Abraham et al., 2005, Marsden,

2013, Marsden et al., 2004, 2007, Quarteroni and Rozza, 2011]. In particular, the opti-

mization approaches can be divided into two groups including gradient-based approach and

derivative-free approach. In this study, we use the MFM, which cannot provide derivative

information, to provide the basis for the parameter estimation, so we need to develop an

optimization framework based the derivative-free evaluations.

Recent studies have shown the promise for the derivative-free optimization using cokriging.

Forrester et al. [2007] combined cokriging with an additional optimization algorithm which

improves the accuracy of overall approximation by maximizing the improvements by re-

samplings. Perdikaris et al. [2015] proposed a recursive cokriging-based framework to perform

efficient design optimization under uncertainty. Additionally, a Bayesian optimization has

been proposed to estimate resistance parameters in a artery bifurcation model based on

cokriging [Perdikaris and Karniadakis, 2016]. Those studies provide illustrative results but

cannot be directly applied for vascular parameter estimation using patient-specific clinical

data. Therefore, inspired by those studies, we propose a new cokriging-based optimization

framework particularly suitable for patient-specific parameter estimation of vascular models.

However, there are two challenges remain to be addressed. First, the in silico and clinical

data are required to be matched and compared following an automatic algorithm to enable

the automatic parameter estimation framework. Second, approximation comes with uncer-

tainty (3.28), which reduces the accuracy of parameter estimation. To cope with this issue,

we propose an innovative algorithm to effectively search for the patient-specific parameters

and reduce the related uncertainty in an iterative manner. In step 1, the MFS-based data,

which denote the MFS approximations of G&R simulations, are assimilated with clinical

data, which denote the patient-specific data measured in clinic. In step 2, an algorithm
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of uncertainty quantification is developed to estimate the uncertainty associated with the

discrepancy between the MFS-based data and the clinical data. In step 3, a Bayesian op-

timization approach, i.e., Lower Confidence Bound (LCB) approach, is utilized to optimize

the locations of sampling by balancing the exploitation of the extreme value of discrepancy

and the exploration of the high uncertainty.

Here, the LCB method is inspired by an optimization algorithm that treats the task of

optimization as a multi-armed bandit problem [Srinivas et al., 2012]. Specifically, in Choi

et al. [2008], a searching strategy switching between the exploration, i.e, searching for the

sample location of with the largest uncertainty, and exploitation, i.e, searching for the sample

location of current extreme, was designed for global maximization problem of swarming

robot. Kahn et al. [2015] proposed a new sampling method, confidence bounding function,

for swarm to reach a trade-off between the exploration and exploitation. In Srinivas et al.

[2012], a intuitive Gaussian process upper confidence bound (GP-UCB) method was further

performed, which shown a superior convergence rate for global optimization. In this study,

inspired by these methods, the LCB approach is designed and implemented for solving our

global optimization problem.

The overall schematic flow of the iterative parameter estimation method is shown in the

Fig. 4.1, in which the MFS is created in Section 3.4.2. The detailed algorithm is illustrated

in the Algorithm 1. The method is implemented in MATLAB (Mathwork, Natick, USA).
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Figure 4.1: Schematic flow of the proposed MFS-based parameter estimation algorithm.
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Algorithm 2 MFS-based parameter estimation for arterial G&R models

1: Get clinical data.
2: while the convegence is not reached do
3: Train MFS using HF and LF data (the simulation outputs from HFM and LFM,

respectively).
4: Get MFS-based data by running MFS.
5: for ∀θ ∈ Ωθ do
6: Match MFS-based data and clinical data by using data assimilation algorithm.
7: Compute error associated with the MFS approximation.
8: Compute objective function Ĵ(θ) and related uncertainty σ2

J(θ) by using Monte-
Carlo approach.

9: end for
10: Compute LCB surface Clcb(θ) from Ĵ(θ) and σ2

J(θ).
11: Find optimal sampling location θ∗ through minimizing Clcb(θ).
12: Run HFM at θ∗ to get a new HF sample, and add it to HF data set.
13: end while
14: Let the optimal estimation of parameters θopt = θ∗ at the last iteration.

4.2 Patient-specific parameter estimation framework

4.2.1 Data assimilation

To facilitate direct matching between the simulation outputs and the clinical data, we design

a data assimilation approach that initializes spatial-temporal conditions [Balocco et al.,

2010, Sermesant et al., 2006]. Consider a surrogate with two sets of input parameters x =

{θT , ξT}T , where θ denotes a Nθ dimensional vector of model parameters that controls the

mechanical and geometrical features of a blood vessel, and ξ denotes a Nξ dimensional state

variable, such as spatial location s and time t.

The state variable in simulations and clinical measurements are defined in different coordinate

systems. Accordingly, we specify the state variables of MFS-based data and clinical data by

different notations, i.e., ξs and ξp, respectively. Given any model parameter θ, the MFS-based

data can be represented by ŷ = fsm(θ, ξs) that are simplified from Eq. (3.27). Meanwhile,

the clinical data are also expressed in a similar form by using function y = fp(ξp), illustrating
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that a scalar clinical measurement y, such as arterial diameter, is measured at certain spatial-

temporal locations represented by the state variable ξp.

A set of Ns clinical data consists of state variable Ξp = {ξ(1)
p , ..., ξ

(Ns)
p } and the associated

measurements {fp(ξ(1)
p ), ..., fp(ξ

(Ns)
p )}. For example, a set of clinical data may include a set

of arterial diameters measured at different times and positions for a patient. In addition, a

set of MFS-based data also consists of state variables Ξs = {ξ(1)
s , ..., ξ

(Ns)
s } and the associated

simulation outputs {fsm(θ, ξ
(1)
s ), ..., fsm(θ, ξ

(Ns)
s )}.

Although the state variables Ξp and Ξs are measured in different coordinate systems, their

elements should have the same interval values. For example, given two clinical measurements

with state variable ξ
(1)
p = 1 cm and ξ

(2)
p = 2 cm, we can compute the interval ∆ξ(1) = 1

cm, and specify the interval value of the state variables of MFS-based data as ξ
(2)
s − ξ(1)

s =

∆ξ(1) = 1 cm. Knowing the relative intervals of Ξs, we can anchor the value of an element

in Ξs to complete data assimilation. Particularly, we choose to estimate the first state

variable ξ
(1)
s out of the whole set of MFS-based data Ξs by comparing the MFS-based data

and clinical data. As a result, the data assimilation problem can be regarded as a simple

optimization problem, in which the ξ
(1)
s is estimated by minimizing this discrepancy between

the MFS-based data and the clinical data, i.e.,

ξ̂(1)
s (θ) = arg min

ξ
(1)
s ∈Ωξ

√√√√ 1

Ns

Ns∑
i=1

(
fp(ξ

(i)
p )− fsm(θ, ξ

(i)
s )
)2

, (4.1)

where Ωξ represents the constrained parameter space of ξ. Accordingly, the assimilated

MFS-based data represented by ξ̂s under any given θ is provided by

ξ̂s(θ) = ξ̂(1)
s (θ) + ξp − ξ(1)

p . (4.2)

51



4.2.2 Objective function and uncertainty quantification

The assimilated state variable of the MFS-based data ξ̂s(θ) is formulated by Eq. (4.2). Now,

we focus on estimating the model parameters θ through an optimization approach. The

objective function J(θ) of the optimization is quantified by

J(θ) =

√√√√ 1

Ns

Ns∑
i=1

(
fp
(
ξ

(i)
p

)
− fsm

(
θ, ξ̂

(i)
s (θ)

))2

, (4.3)

which represents the discrepancy between assimilated MFS-based data and clinical data

under the only independent variable θ.

Eq. (3.28) shows that MFS-based data have approximate error that brings uncertainty to

objective function J(θ). A Monte-Carlo method is used to quantify this uncertainty. Note

that we use index α to distinguish different Monte-Carlo samples while using index i to

represent different samples in clinical data set and MFS-based data set. Now, for any given

model parameter θ with assimilated state variable ξ̂s(θ), we can randomly sample a set of

Monte-Carlo samples from the Gaussian distribution with the mean value ŷ({θT , ξ̂Ts (θ)}T )

and the variance σ2
y({θT , ξ̂Ts (θ)}T ) provided by MFS referring the Eq. (3.27) and Eq. (3.28).

Then we can represent the αth Monte-Carlo sample in a function form, i.e., f̂
(α)
sm

(
θ, ξ̂

(i)
s (θ)

)
,

where α = 1, ..., Nm. The value of the objective function that corresponds to the αth Monte-

Carlo sample is then provided by

J (α)(θ) =

√√√√ 1

Ns

Ns∑
i=1

(
fp
(
ξ

(i)
p

)
− f̂ (α)

sm

(
θ, ξ̂

(i)
s (θ)

))2

. (4.4)

By collecting all J (α)(θ) of Monte-Carlo samples, the objective function and the associated
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uncertainty can be approximated as

Ĵ(θ) =
1

Nm

Nm∑
α=1

(
J (α)(θ)

)
, (4.5)

σ2
J(θ) =

1

Nm − 1

Nm∑
α=1

(
J (α)(θ)− Ĵ(θ)

)2

, (4.6)

respectively.

In practice, we divide the domain Ωθ into grids, and then estimate the objective functions

and the associated uncertainty at the grid points. Although this algorithm requires a large

number of forward simulations, the overall computational efficiency is still high due to the

use of MFS. In particular, the cokriging-based MFS is capable of generating a random field

by performing 1000 approximations at different values of θ within 0.2 seconds in a 3.3 GHz

CPU core.

4.2.3 Lower confidence bound-based optimal sampling

The estimated discrepancy formulated in Eq. (4.5) provides a solid foundation for optimal

parameter sampling. Nevertheless, during the parameter searching, the uncertainty in the

parameter space shown in Eq. (4.6) can be large and a direct minimization of discrepancy

could lead to large error. We therefore need a sampling method that iteratively update the

MFS by adding new samples to find the best estimated parameters.

To achieve this goal, we adopted a combined strategy that balances both exploitation and

exploration. In particular, we seek a new measurement that samples point by trading off

between exploiting the local minima and exploring the high-uncertainty in the global field.

This strategy is based on a Bayesian optimization approach, i.e., Gaussian Process Upper

Confidence Bound (GP-UCB), in which an intuitive upper bound of the possible maximum

over the field was developed [Choi et al., 2008, Kahn et al., 2015, Srinivas et al., 2012]. In
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this study, we replace the upper bound with a lower bound denoted by LCB surface Clcb(θ),

and the optimal sampling location is given by

θ∗ = arg min
θ∈Ωθ

Clcb(θ) = arg min
θ∈Ωθ

Ĵ(θ)−
√
βσJ(θ), (4.7)

where the coefficient β is chosen according to the structure of the problem to ensure the

convergence. The LCB surface Clcb provides a reasonable lower bound that balances both

effects of small mean value Ĵ(θ) and large uncertainty σJ(θ). Srinivas et al. [2012] showed

that this algorithm is promised to be globally converged if it operates on a function with a

high level of smoothness.

Up to this point, we have formulated the framework from the MFS training to the optimal

sampling. Next, the MFS should be iteratively trained using the augmented HF sample data

Xe, which contains both original HF data set and the additional data samples found by the

LCB sampling algorithm. The whole process is repeated until the convergence criterion is

met. The optimal fitted patient-specific parameter is denoted by θopt.

4.3 Case study setup and clinical data

In Section 4.3.1, we explain the details of the clinical data of AAAs. In Section 4.3.2, the

G&R and MFS are set up to capture AAA expansions efficiently.

4.3.1 Clinical data of AAAs

82 follow-up CT images of AAAs from 21 patients are retrospectively obtained at Seoul Na-

tional University Hospital. Table. 4.1 summarizes the demographic information of patients,

the number of follow-up scans, the time of follow-up scans, and the maximum diameters of
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AAAs during each scan. The average and median age of patients are 66.9 and 67 years old,

respectively. The average number of CT scans is 3.9.

Table 4.1: Demographic data and CT scan information of individual patients.

Patient ID # Scans Gender Age Time of scans (days) Max. diameters (mm)a

P01 3 Male 71 0, 203, 733 42.9, 44.8, 51.1
P02 2 Male 71 0, 632 37, 39.1
P03 3 Female 64 0, 494, 1357 47.9, 54.4, 65
P04 5 Male 65 0, 182, 361, 538, 728 41.7, 42.8, 45.7, 48.7, 51.1
P05 5 Male 74 0, 347, 702, 1054, 1223 48.1, 50.2, 52.2, 57, 58.4
P06 5 Male 66 0, 374, 1074, 1438, 2136 30, 31.7, 33.2, 33.9, 34.8
P07 5 Male 54 0, 386, 757, 1121, 1290 38.9, 40.6, 42.5, 44.9, 46.8
P08 5 Male 62 0, 227, 674, 1049, 1403 38.9, 41.3, 43.4, 46.8, 54.5
P09 3 Male 73 0, 97, 266 40.5, 41.6, 44.4
P10 4 Male 59 0, 522, 922, 1344 39.6, 41.5, 43.4, 46.9
P11 4 Male 54 0, 399, 774, 1152 40, 43.4, 46.2, 50.6
P12 3 Male 78 0, 523, 873 41.7, 44.8, 46.6
P13 4 Male 68 0, 543, 691, 874 39.2, 44.9, 46.9, 48.9
P14 3 Male 71 0, 349, 714 43, 45.2, 51.5
P15 5 Male 67 0, 183, 366, 534, 709 44.9, 46.2, 47.7, 49.7, 52.3
P16 3 Male 72 0, 189, 526 45.4, 46.7, 48.2
P17 5 Male 72 0, 246, 421, 587, 783 37.2, 41.8, 41.8, 45.2, 47.4
P18 4 Female 65 0, 613, 1048, 1515 32.3, 39.2, 45, 50.7
P19 4 Male 78 0, 309, 1976, 2310 34.7, 36.9, 54.2, 60.8
P20 4 Male 64 0, 729, 922, 2359 36.4, 40.4, 41.6, 50.9
P21 3 Male 57 0, 440, 999 38.7, 43.2, 54.2

a Max. diameters includes the maximum diameters of AAAs during each scan.

To compare the morphological data from patients and the MFS simulation results, we utilize

an Inscribed Maximal Diameter Curve (IMDC) Method [Gharahi et al., 2015] that can

compute the aortic diameter along its centerline. The IMDC approach first selects the part

of an AAA image ranging from the iliac bifurcation to the renal branches, and then measures

the inscribed sphere diameters by moving the inscribed maximal sphere through the aorta

from the bottom to the top. Accordingly, a curve of maximum diameter (d) against the axial

location along the arterial centerline (s) can be generated for every CT scan image using the

IMDC method. In addition, each patient has multiple CT scans captured at different times

from a follow-up study, so each set of morphological data is labeled at a given time point (t).
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As a result, the morphological data of patients can be transformed and rearranged into a

function d = fp(ξp) that represents the diameters measured at the state variable ξp = {s, t}T .

This is consistent with the corresponding content shown in Section 4.2.

4.3.2 G&R models and MFS setup

Computational vascular G&R models (Chapter 2) are employed to simulate the morpho-

logical changes of AAAs by capturing elastin degradation and collagen adaptation in the

aortic wall. Elastin is a main load-bearing elastic constituent in arterial tissue, but worn or

damaged structural elastin cannot be reproduced in adulthood. A large portion of elastin

degradation causes an increase in local stress that may lead to dilation of the aorta [Wilson

et al., 2012]. Also, Rizzo et al. [1989] found that elastin degradation is a key feature that

is ubiquitous in AAAs. Therefore, we choose the parameter σdmg, which determines the

shape of elastin degradation function, as one of the model parameters to be estimated. More

details of elastin degradation are introduced in Section 2.2.4.

In the constrained mixture model, the parameter Kg, which affects the turnover rate of

collagen fibers, has a major impact on the growth rate of AAA expansion (Section 2.2.3).

Thus, Kg is selected as the second model parameter to be estimated. In summary, we employ

two key model parameters, i.e., θ = [θ1, θ2] = [Kg, σdmg], to simulate AAA enlargement,

whereas the other parameters in G&R models are fixed by population-based values, as given

in Seyedsalehi et al. [2015], Zeinali-Davarani et al. [2011].

Now, given four parameters including two model parameters and two state variables x =

{θT , ξTs }T = {Kg, σdmg, s, t}T , we can obtain two values of d from HFM and LFM, respec-

tively. As aforementioned in Section 3.4, a FEniCS based 3D G&R model and a MATLAB

based 2D axisymmetric G&R model introduced in Section 2 are employed as the HFM and

the LFM, respectively. The same IMDC technique presented in Section 4.3.1 is used to con-
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vert the 3D G&R simulation outputs into morphological curves that can be directly matched

with the axisymmetric G&R simulation outputs.

4.4 Results

We use a two-step sampling approach to obtain a set of Ne = 300 HF samples a set of

Nc = 1000 LF samples. The MFS is then trained by using both HF and LF samples. The

details of MFS results are described in Section 3.4.2. In summary, given arbitrary values of

input parameters x = {Kg, σdmg, s, t}T , the MFS is able to predict the aortic diameter, i.e.,

d̂ = fsm({Kg, σdmg}T , {s, t}T ), within 0.001 second.

The clinical data of AAAs are introduced in Section 4.3.1. The patient-specific model pa-

rameters of G&R models are estimated by using the optimization framework shown in Sec-

tion 4.2. Fig. 4.2 provides an example (Patient 18) of the iterative sampling, in which the

LCB surface Clcb(θ) at the final iteration is plotted over a local domain of θ. Each red dot

represents a set of newly added HF samples that are used to update MFS. The black arrows

indicate the order of the added sample points, illustrating how the LCB approach greedily

searches for the best-fit parameters. The LCB approach finally converges to the region with

low values of Ĵ near the upper left corner. Meanwhile, it also explored the points near the

lower right corner to minimize large uncertainties. The re-sampling and updating of MFS

have been repeated 10 times prior to the convergence.

A MFS-based personalized G&R simulation of AAA is obtained by imposing the best-fitted

patient-specific parameters into MFS. Fig. 4.3 shows the AAA curves of Patient 18 obtained

from the individual G&R simulation and clinical data. Red dashed lines with circles repre-

sent the clinical data with different values of state variable. Black curved lines represent the

patient-specific simulation outputs. Blue shaded regions represent the estimated approxi-
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Figure 4.2: A contour plot that provides the LCB surface Clcb(θ) at the final iteration of
optimization. The unit of color bar is mm. The red dots denote the additional samples used
to iteratively update the MFS. The black arrows indicate the order of additional samples.
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Figure 4.3: Diameter (d) versus length along centerline (s) of the AAA of Patient 18. The
red dashed lines with circles represent the clinical data measured from follow-up CT images
captured at t = [0, 1.68, 2.87, 4.15] years. The black curves represent MFS-based patient-
specific G&R simulation outputs. The uncertainty related to MFS approximation is indicated
by 95% confidence interval and is shown by blue shades.

mation error between the MFS and original high-fidelity G&R. The region of approximation

error is, however, too small to be visible in the figure.

The entire process of parameter estimation is repetitively conducted for each of the 21 pa-

tients. Table. 4.2 records the estimated parameters, computational time and number of

iterations used in the optimization for each patient. Note that the overall computational

time includes the time spent on MFS model training, data assimilation, the generation of

random fields and the LCB searches. The generation of HF and LF data has been done all

at once before parameter estimation. In addition, the final objective function Ĵ(θopt), which

represents the discrepancy between the personalized simulation outputs and clinical data, is
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small (less that 2 mm) compared to AAA diameters (ranges from 20 mm to 70 mm). This

illustrates that the proposed patient-specific simulations are capable of fitting the follow-up

images of AAAs. The associated uncertainty, i.e., σJ(θopt), for each of the 21 patients is

successfully minimized to less than 5% of Ĵ(θopt), indicating that the proposed framework is

robust in estimating the patient-specific parameters among different patients. The compu-

tational time for each parameter estimation, which ranges from 5.1 to 64.3 minutes, is less

than the clinical-relevant time (1 -2 hours) [Taylor et al., 1999]. The computational time

has no significant correlation with variables such as the number of CT scans and the growth

rate of AAAs.

Table 4.2: Information of patient-specific parameter optimization.

Patient ID Kg σdmg Ĵ(θopt) σJ(θopt) #I a t b

P01 0.0696 0.9331 0.5589 0.0123 6 11.9
P02 0.0815 1.0364 0.4543 0.0168 15 33.5
P03 0.0688 0.9962 1.6192 0.0472 7 17.0
P04 0.0676 1.0974 0.6816 0.0221 2 4.0
P05 0.0699 1.1446 1.4582 0.0128 13 42.8
P06 0.0823 0.4154 1.1580 0.0503 7 23.6
P07 0.0774 0.7769 0.8491 0.0130 6 22.4
P08 0.0697 1.0846 1.4228 0.0095 19 64.3
P09 0.0605 0.9667 0.9239 0.0396 4 12.1
P10 0.0792 0.4513 1.0106 0.0440 4 11.6
P11 0.0743 0.9385 0.6057 0.0094 6 18.4
P12 0.0778 0.9744 0.5712 0.0134 12 37.5
P13 0.0701 1.2372 0.8478 0.0175 13 49.4
P14 0.0701 0.8654 1.2773 0.0101 5 16.5
P15 0.0699 1.1962 0.7903 0.0361 9 32.2
P16 0.0787 0.7744 0.5394 0.0224 12 36.6
P17 0.0693 0.9154 0.9867 0.0140 2 5.1
P18 0.0673 0.6359 0.9742 0.0301 10 28.0
P19 0.0697 1.0769 1.1565 0.0382 7 23.8
P20 0.0759 1.0154 1.1671 0.0370 6 21.5
P21 0.0694 0.4615 0.9649 0.0207 15 51.5

a #I is number of iteration. b t with unit of minutes is the computation
time of parameter optimization.

The population-based values of Kg and σdmg are collected from the 21 patients. The sample

mean and the standard deviation of Kg is 0.0723 and 0.0055, respectively; and the sample
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mean and the standard deviation of σdmg are 0.9045 and 0.0575, respectively. This informa-

tion can be employed as prior distributions of parameters in future studies.

4.5 Discussion

This study has made contributions to the vascular G&R modeling field by establishing a new

physics-based machine learning framework, capsulized as (1) improving the computational

efficiency of arterial G&R simulation, and (2) providing an efficient G&R-based optimiza-

tion workflow to estimate personalized parameters from clinical data. The computational

efficiency of the overall simulation framework is significantly improved without compromis-

ing on accuracy and a good balance is achieved between fundamental laws of physics and

computational efficiency. The new framework is demonstrated by using clinical CT images

of AAAs from 21 patients. Significant contributions of this work are discussed here.

The primary contribution of this work is to greatly improve the computational efficiency

in G&R based simulations, hence providing fast estimations of patient-specific parameters

and individual predictions of arterial disease progression. The significant improvement in

computational efficiency is mainly attributed to a variety of novel techniques. First, the

computational time of a high-fidelity simulation (a three dimensional finite element G&R

simulation) is reduced from roughly one week [Zeinali-Davarani et al., 2011] to 70 -90 minutes

by implementing the FEniCS [Alnæs et al., 2015]. Second, a large number of cheap simula-

tions (axisymmetric finite element G&R model [Baek et al., 2006]) are conducted to remedy

time-consuming high-fidelity simulations. Third, a cokriging-based MFS is constructed as

an important intermediate stage connecting the forward arterial simulation to the inverse

problem of personalized parameter estimation, and each simulation of the MFS only takes

around 0.0002 seconds. Finally, the LCB optimal sampling approach based on the Bayesian

optimization [Choi et al., 2008, Kahn et al., 2015, Srinivas et al., 2012] is developed to further
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improve the efficiency of estimating the personalized values of intrinsic parameters so that

each parameter estimation can be conducted within the clinically relevant time frame (1-2

hours) [Taylor et al., 1999]. Therefore, the above techniques enable us to effectively overcome

the current challenge of the inefficiency in the computational G&R modeling [Ambrosi et al.,

2019], thus laying a foundation for further expanding the applications of G&R models.

Another major contribution of this work is to develop a novel iterative multisteps optimiza-

tion algorithm that enables personalized parameter estimation of G&R models (illustrated in

Fig. 4.1). The proposed optimization algorithm consists of three main steps, including data

assimilation, uncertainty quantification, and a Bayesian optimization based sampling. By

performing these three steps iteratively, the discrepancy between G&R simulation outputs

and clinical data can be effectively minimized while avoiding local minima. Particularly, the

first step allows us to assimilate G&R simulation outputs and clinical CT images following

an objective standard, and the second step allows us to quantify the uncertainty associated

with the discrepancy between the assimilated MFS data and clinical data via a Monte-Carlo

approach. These two steps together provide an important basis for the third step, i.e., the

optimal sampling via the LCB algorithm, that aims to balance the exploitation of extreme

and exploration of the high uncertainty. This ensures a fast global convergence with a high

degree of smoothness. The proposed optimization is similar to other kriging-based optimiza-

tion methods such as Efficient Global Optimization (EGO) that has been broadly applied

to find the global extreme by balancing the local and global searching [Forrester et al., 2007,

Perdikaris and Karniadakis, 2016], as well as the surrogate management framework [Booker

et al., 1998] that contains two distinct steps, i.e., search and poll, for a fast convergence.

These two optimization methods, however, cannot be applied to this study, because they re-

quire the optimization target to follow GP random field and only guarantee the convergence

to a local minimum, respectively.

As far as we know, this is the first study that systematically estimates the patient-specific
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values of parameters Kg and σdmg from follow-up CT images. Here, Kg and σdmg are two

significant intrinsic parameters that control the progression of AAAs. Although there exists a

large number of studies on parameter estimation [Marsden et al., 2008, Sankaran et al., 2013,

Szafron et al., 2019], most do not estimate personalized intrinsic parameters by using clinical

data. In our previous studies [Jiang et al., 2020, Zhang et al., 2019], where these intrinsic

parameters were adjusted to generate in silico data for training the predictive models, the

limited knowledge of these intrinsic parameters confined the accuracy of the prediction.

However, with the estimated values of Kg and σdmg that can take personalized variability into

account, the simulation results will become more realistic and thus enhance predictability.

The predicted diameters for 17 out of 20 patients fell within the tolerance interval. The

average prediction error of the diameter and the maximum diameter along centerline are

1.39 mm and 1.67 mm, respectively, which are smaller than the prediction error obtained

by previous studies [Akkoyun et al., 2020, Jiang et al., 2020, Lee et al., 2018]. In summary,

the successful parameter estimation and prediction of AAA expansion demonstrate that the

MFS holds promise for effective parameter estimations and predictive medicine.

For the sake of computational efficiency, this study has to limit the number of parameters.

In particular, we focus on estimating four key parameters which are acceptable in capturing

the time-dependent morphological features of AAA growth. In the future, we plan to uti-

lize high-dimensional optimization techniques, such as Sarkar et al. [2019], to include more

parameters that can affect AAA growth, such as arterial tortuosity [Akkoyun et al., 2020]

and hemodynamics-related parameters [Zambrano et al., 2015], thus ensuring higher inter-

personal variability. Another limiting factor is that we only quantify the modeling error

between in silico data and the clinical data during the model training while the clinical mea-

surement error is not taken into account. This is because this study primarily focuses on the

application of physics-based machine learning. The measurement error can be conveniently

integrated with the clinical measurement error in the future works (e.g., using the previous

work of Bayesian calibration [Zhang et al., 2019]). Moreover, a set of 21 follow-up data may
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limit the prediction performance, we plan to collect more high-resolution follow-up data to

further improve the prediction performance in the future.

The proposed framework holds promise for being extended to more applications. This is not

only because of its high efficiency, but also because it is a general framework consisting of

multiple submodels that can be easily replaced to enable different applications. For example,

the arterial G&R models in the proposed framework can be replaced by cardiac G&R models

[Klepach et al., 2012] to enable the fast surrogate and personalized parameter estimation of

a cardiac problem. Besides, the fidelity of the framework can also be further improved by

using alternative physical models and machine learning models. For example, a shell element

G&R model [Laubrie et al., 2019] can be used to improve the fidelity of MFS simulation.
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Chapter 5

A PHYSICS-BASED DEEP

LEARNING APPROACH TO

PREDICT ABDOMINAL AORTIC

ANEURYSM ENLARGEMENT

5.1 Introduction

In recent years, notable advances in statistical tools have been implemented to predict the

maximum diameter with longitudinal AAA scanning data. Sweeting and Thompson [2012]

developed a hierarchical linear growth model utilizing a zero-mean Gaussian distributed

random-effects term to simulate the growth effects of aneurysms. Others have used linear

and quadratic hierarchical growth models to make predictions of the evolution of aneurysms

[Brady et al., 2004, Eriksson et al., 2005]. Do et al. [2019] tested a method of dynamic

Gaussian process to predict three-dimensional surface evolution and its uncertainty using
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patient follow-up images. Nevertheless, due to the limited sample size and large measurement

error of longitudinal data from patients, all these statistical predictive tools are not accurate

enough to aid in clinical treatment. To cope with this problem, in this study, a novel

predictive tool is designed using a deep learning algorithm, which holds promise for clinical

treatment and recommendation.

Deep learning and deep architectures in general have been applied in an enormous number

of research areas, with the majority being in computer vision [Memisevic and Hinton, 2007]

and natural language processing [Collobert and Weston, 2008]. Deep learning has also been

widely applied in risk prediction based on electronic health records [Cheng et al., 2016], image

labeling [He et al., 2004], traffic flow prediction [Huang et al., 2014], image segmentation

[Long et al., 2015], medical image segmentation [Lai, 2015], stress estimation [Liang et al.,

2018], and many other fields. Deep architecture has been investigated since 1980 [Fukushima,

1980] and proved to be more effective and requires fewer resources than a shallow structure of

the same size, i.e., same number of nodes. The merits of deep structure come from its ability

to improve efficiency by distributing different kinds of tasks through different layers [Lai,

2015]. For instance, the low layers can perform low level tasks like gradients computation or

edge detection while the higher layers can perform classification or regression. However, as

the networks are constructed in deeper layers, the training becomes prohibitively slow due

to the problem of ‘vanishing gradients’ [Bengio et al., 1994]. In particular, when the error is

back-propagated from the output layer, it is multiplied by the derivatives of the activation

function, which is near zero for those saturation nodes. Consequently, the error, as the

driving force for the gradient decent algorithm, is dramatically dissipated which results in

an extremely slow training rate for those nodes behind the saturated node.

The training problem remained until 2007 when Hinton proposed a two-stage learning scheme

based on the Restricted Boltzmann Machine (RBM) [Hinton, 2007]. After that, other meth-

ods, such as Rectifier Networks [Glorot et al., 2011], drop out technique[Hinton et al., 2012],
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and Convolutional Neural Network [Meng et al., 2015] have been further developed and

improved to solve the training problem. Research has shown that deep structure yields a

high level of generalization and a low test error only when it is trained on a large training

set. For instance, LeCun et al. [1998a] utilized a MNIST [LeCun et al., 1998b] dataset of

hand-written numbers with 60, 000 samples to train a 3-layer deep network. Unfortunately,

such a large dataset of longitudinal AAA images is unavailable. Therefore, the applications

of deep structure in medical data are limited to medical image segmentation.

The two main contributions of this work are as follows. First, to address the fundamental

problem of the limited longitudinal data size, a massive in silico dataset is generated using

a physics-based computational model and an approximation algorithm. Second, a novel

predictive tool using a deep learning algorithm is established to combine both in silico and

measured longitudinal data.

To achieve these contributions, we employ a Deep Belief Network (DBN) to predict the AAA

shape in a regression framework. To cope with the limited dataset, a small in silico dataset

is generated by a computational Growth and Remodeling (G&R) model that can simulate

the evolutionary process of AAAs. In the previous Section 3.2, the Probability Collocation

Method (PCM) was introduced as an approximation method to reproduce a large amount

of in silico data based on the G&R simulation outputs, which enables a computationally

efficient data generation process. In Section 5.2, inspired by Hinton [Hinton, 2007], a two-

stage learning scheme is employed to train the DBN. Briefly, the network is first pre-trained

with the in silico data by the RBM in an unsupervised manner. The network is then fine-

tuned with the labeled patient data. The data processing and model testing results are shown

in Section 5.3, which is followed by the discussion and conclusion in Section 5.6. A basic

schematic drawing of the overall flow is shown in Figure 5.1. To the best of our knowledge,

this is the first effort to adapt a deep structure coupled with a G&R computational model

to predict AAA enlargement.
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Figure 5.1: Diagram of overall methodology. A massive number of in silico data and a small
number of patient data are collected, which is followed by a two-stage model training and a
model testing.

5.2 Deep neural network algorithm

In this section, we introduce the constructing and training of DBN. A standard structure of

the DBN Hinton et al. [2006] with two layers of RBM [Hinton, 2010] is utilized as shown in

Figure 5.2.

Assume that we have two types of variables: the visible unit (x) and the hidden unit (h).

The two variables are governed by an energy function E(x,h). Given that both visible and

hidden units follow binomial distribution, a Boltzmann Machine is defined as an energy-based

model using a second-order polynomial [Bengio, 2009]

E(x,h|θ) = −bTx− cTh− hTWx− xTUx− hTV h,

where θ is the collection of b, c, W , U , and V . Thus, any probability density function (PDF)

of visible layer P (x), as well as joint and conditional PDFs, can be easily represented by a
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Figure 5.2: The deep architecture of the DBN. Two layers of RBM are trained in an unsu-
pervised manner (pre-trained) using CD-1 algorithm. The top layer utilizes a neural network
sigmoid regression for the prediction.

normalized form of the energy function. For instance, the PDF of x can be computed as

P (x) =
∑
h

e−E(x,h)

Z
, (5.1)

where Z =
∑

x̃

∑
h e
−E(x̃,h) is the normalization factor and x̃ can be all possible values of

the visible vector x. The realization of x̃ can be considered as reconstructed visible units.

The parameter θ is estimated using the maximum likelihood estimation. However, the

energy-based PDF in this study requires sampling of two conditional probabilities: P (h|x)

and P (x,h). Although this can be done via the Markov chain Monte Carlo (MCMC) sam-

pling [Hinton et al., 1984], it is highly computationally expensive. Therefore, contrastive

divergence (CD), an alternative way of finding the log-likelihood, is utilized to provide a

more efficient solution.
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The RBM is introduced by posting an additional restriction: U = 0 and V = 0. In other

words, there is no connection between the units in the same layer, either visible or hidden.

Note that there is no link among units in the same layer in Figure 5.2. Furthermore, to

incorporate the real-valued values, we specifically assume that the visible units follow Gaus-

sian distribution, i.e., xi ∼ N (ai, σi), and the hidden units follow binomial distribution, i.e.,

hj ∈ {0, 1}. Thus, the modified energy function is defined as [Hinton, 2010]

E(x,h|θ) = −
V∑
i=1

(xi − ai)2

2σ2
i

−
H∑
j=1

cjhj −
V∑
i=1

H∑
j=1

wij
xi
σi
hj (5.2)

The conditional PDF of the visible units given the hidden units can be computed as

P (x|h, θ) =
e−E(x,h|θ)∑
x e
−E(x,h|θ) .

Note that P (h|x, θ) can be computed in the same manner. Using E(x,h|θ) in (5.2), we have

P (hj = 1|x, θ) = sigm

(
V∑
i=1

wijxi + cj

)
,

P (xi = x|h, θ) = N

(
ai + σi

H∑
j=1

hjwij, σ
2
i

)
,

(5.3)

where sigm(x) = 1
1+exp(−x)

is the sigmoid function.

The likelihood gradient can be computed by taking the derivative of P (x) in (5.1) with
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respect to θ, and we have

logP (x)

∂θ

= − 1∑
h e
−E(x,h)

∑
h

e−E(x,h)∂E(x,h)

∂θ

+
1

Z

∑
x̃

∑
h

e−E(x̃,h)∂E(x̃,h)

∂θ

= −
∑
h

P (h|x)
∂E(x,h)

∂θ
+
∑
x̃

∑
h

P (x̃,h)
∂E(x̃,h)

∂θ

= −EP (h|x)

[
∂E(x,h)

∂θ

]
+ EP (x̃,h)

[
∂E(x̃,h)

∂θ

]
.

(5.4)

The expectation EP (h|x)[.] is also called positive phase distribution or data distribution while

the other expectation EP (x̃,h)[.] is called negative phase or model distribution [Bengio, 2009].

Optimization of (5.4) involves sampling from P (x̃,h) and it can be realized by running a

Gibbs sampling until it reaches equilibrium, which is extremely time consuming. Alterna-

tively, Hinton [2002] suggested the CD learning which minimizes the difference between the

data distribution and the one-step reconstructed distribution rather than directly minimizing

the difference between the data and the model distribution. Empirical studies have shown

that the CD method is efficient and effective enough to make the DBN unsupervised learning

practical.

Given the approximation to the derivative of P (x), we can pre-train the DBN by updating

the weights iteratively using the in silico data in an unsupervised manner. The training is

performed throughout the DBN structure shown in Figure 5.2. We consider this step, i.e.,

the pre-training of the DBN, as the first step of the two-stage learning scheme, enabling

the DBN to capture the changes of geometrical features simulated by the G&R of AAA

expansion.

After the pre-training, the DBN is unfolded into a Neural Network (NN), which is further
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trained in a supervised manner. This supervised learning, i.e., fine-tuning, is considered the

second step of the two-stage learning scheme. Specifically, during the fine-tuning, the pre-

trained weights of the unfolded DBN are properly adjusted for a better ability in capturing

patient-specific features of aortic enlargement from the patient data.

Our proposed two-step training model could be interpreted as a deep learning version of

the Bayesian approach, where computer-generated data act as a prior distribution and the

patient data for fine-tuning can be viewed as new measurements to compute the posteriori

distribution for prediction [Lee et al., 2017a, Neal, 1996, Williams, 1996]. We also would like

to remind that the Bayesian approach is normally used for prediction with the limited sized

data (by leveraging the prior distribution), which is well suited for our case.

5.3 Data processing and results

In this section, we introduce the data processing step and demonstrate the effectiveness of

our proposed predictive model using observations of patient-specific CT images.

5.3.1 Data processing

Given CT images of AAAs taken from a patient, we can obtain IMDCs with regular time

intervals. Let ft,i be an IMDC of the ith AAA obtained at certain scan time noted as t.

A collection of f generated at different times, i.e, t − 2, t − 1, t, and t + 1, provides us a

timeline growth of the AAA. Note that the time intervals between IMDCs are fixed as the

same constant. For each data point, we choose the feature vector xi as the collection of the

three adjacent IMDCs, and the prediction target yi as the IMDC at the next time step in
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the future,

xi = [ft−2,i, ft−1,i, ft,i] ,

yi = ft+1,i.

Following Table 5.1, however, we realize that the time intervals between patient follow-up

CT scans are not constants. To address this problem, a fixed-time interval of 270 days is

chosen and all patient data are linearly interpolated by this fixed-time interval. Generally,

we obtain 55 sets of interpolated patient data as collections of {xi, yi} from 20 patients.

Specifically, 6 sets of the patient data from 6 different patients are randomly selected as

testing data while the others are employed for pre-training.

Table 5.1: Demographic data of patients

Patient ID # Scans Gender Age Time of scans (days)

P01 3 Male 71 [0, 203, 733]
P02 3 Female 64 [0, 494, 1357]
P03 5 Male 65 [0, 182, 361, 538, 728]
P04 5 Male 74 [0, 347, 702, 1054, 1223]
P05 5 Male 66 [0, 374, 1074, 1438, 2136]
P06 5 Male 54 [0, 386, 757, 1121, 1290]
P07 5 Male 62 [0, 227, 674, 1049, 1403]
P08 3 Male 73 [0, 97, 564]
P09 4 Male 59 [0, 522, 922, 1344]
P10 4 Male 54 [0, 399, 774, 1152]
P11 3 Male 78 [0, 523, 873]
P12 4 Male 68 [0, 543, 691, 874]
P13 3 Male 71 [0, 349, 714]
P14 5 Male 67 [0, 183, 366, 534, 709]
P15 3 Male 72 [0, 189, 526]
P16 5 Male 72 [0, 246, 421, 587, 783]
P17 4 Female 65 [0, 613, 1048, 1515]
P18 4 Male 78 [0, 309, 1976, 2310]
P19 4 Male 64 [0, 729, 922, 2359]
P20 3 Male 57 [0, 440, 999]

Given the multiple sets of G&R input parameters γ = [Kg, σd, µd], the G&R model associated

with the PCM approximation can produce a large number of longitudinal 2D profile curves
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to capture the enlargement of AAAs during a time span, which can be transformed into the

in silico data, i.e., artificially generated collections of {xi, yi}. In this study, we focus on

predicting the aneurysm growth; hence, only those in silico data with maximum diameters

ranging from 3 to 8.5 cm are accepted into the training dataset. After random samplings

and rejections, 32900 sets of in silico data {xi, yi} are collected in the training dataset.

In order to assimilate patient data and in silicon data together with the same dimensionality

of data, we trim all both patient data and in silicon data into regions where the coordinate

along the centerline ranges 0 to 8 cm. Next, each shape curve is discretized by a grid size

of 81, meaning that the dimension of xi and yi are 243 and 81, respectively. Additionally,

it has been shown that it is much simpler to train the RBM by the data with a zero mean

and unit variance. [Hinton, 2010]. Thus, we normalize the training data before training the

deep learning model. Specifically, a scale factor of 8.5 cm is selected for the normalization,

based on the fact that the largest diameters of all our patient data are significantly smaller

than 8.5 cm (also immediately recommended for surgical options [Brady et al., 2004]). As

a result, all diameters obtained from both the patient data and the simulated results are

normalized into the range [0, 1] before the training.

As described in Section 5.2, the 32900 sets of normalized in silico data are utilized to pre-

train the DBN in an unsupervised manner. Next, the selected patient data are employed to

further update the deep structure in a supervised manner. Finally, during the model testing,

we can collect the predicted IMDCs, which are then transformed back to the normal scale

as the final prediction results. The overall method is depicted in Figure 5.3.
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Figure 5.3: Diagram of the model training. The DBN is pre-trained by in silico data in an
unsupervised manner, and is unfolded into a neural network. Next, the neural network is
fine-tuned with the patient data in a supervised manner to predict the AAA expansion.

5.3.2 Test set-up

For a deep structure, parameters, such as the number of hidden units and the number of

epochs1, are important factors in determining the model performance. To avoid over-fitting,

as a rule of thumb for the generative models using the high-dimensional data, the number

of parameters is constrained [Hinton, 2010]. In our case, the data dimensionality (243) is

1Epochs are the number of times that the model is trained through the whole training set.
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significantly lower than the size of training samples (32900). In order to test the effect of the

number of nodes within each layer, we construct a number of 2-layer DBNs with different

sets of hidden nodes in each layer. In particular, since there is a remarkable difference in

the dimensions of the data and the label, i.e., 243 versus 81, we test the DBNs of three

structures: increasing width, decreasing width and equal width. As shown in Table 5.2, as

the number of input or output layer nodes decreases, it becomes harder for the model to

capture the representative features in the data. Note that in Table 5.2, the prediction error

is quantified by the discrepancy between the predicted IMDC and the patient IMDC using

the standard root mean squared error (RMSE), and the average RMSE is calculated from

of 6 test samples. We then conclude from the test set-up that 300 nodes in each layer leads

to the smallest prediction error among all tested configurations.

Table 5.2: Effect of the number of nodes in a 2-layer DBN on the model testing.

Number of nodes Training time Average
RBM-1 RBM-2 (seconds) RMSE (cm)

1000 50 31 0.264
500 100 21 0.186
300 300 24 0.180
100 500 18 0.192
50 1000 23 0.2

As aforementioned, one of the problems in the DBN approach is that the pre-training gen-

erates a large in silico dataset (32900 samples), while the patient data for fine-tuning are

limited (49 samples). To better employ both datasets, we fix the epoch of the pre-training

process to be 1 while changing the number of epochs of the fine-tuning process. The RMSE

and training time for different epochs (ranged from 1 to 1000) is shown in Figure 5.4. As the

number of epochs reaches 400, the error is not reduced any more as the model-fitting shows

the over-fitting of the fine-tuning data and eventually the generalization capacity is reduced.

Mixed-effect model: The performance of our proposed method is compared to the nonlinear

mixed-effects model, which has been used extensively as a powerful growth hierarchical model
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Figure 5.4: Effect of the number of epochs on the prediction error. The RMSE and the fine-
tuning training time are plotted in solid blue and dashed red lines, respectively. The training
time increases linearly with the number of epochs, while the RMSE rapidly decreases at the
beginning but converges at around 400 epochs.

over the decades [Brady et al., 2004, Eriksson et al., 2005, Sweeting and Thompson, 2012].

For the mixed-effects model, a basic form of the growth function is selected as:

yi,j = α0 + (α1 + b1)ti,j + (α2 + b2)t2i,j + εi,j,

where yi,j and ti,j are the diameter and the associated time at the jth measurement of ith

patient, b = [b1, b2] is the random-effects terms and b ∼ N (0,Σb), α = [α0, · · · , α2] is the

parameters vector, and εi,j is the independent error term, i.e., εi,j ∼ N (0, σ2
w). b and α are

fitted to the data via the fminsearch function in MATLAB.
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5.4 Test prediction results

As it is shown in Table 5.2, a DBN with 300 nodes in both layers is selected for model testing.

The absolute prediction error and relative prediction error for selected samples are shown

in Table 5.3, and are compared with those from a mixed-effect model. A comparison of

prediction results is shown in Figure 5.5. The proposed method outperforms the mix-effects

method with a 65% reduction in RMSE. The overall prediction is relatively accurate because

the relative error of each prediction only ranges from 2.3% to 4.3%, which is negligible.

Table 5.3: The absolute and relative prediction errors of 6 testing samples under DBN and
Mix-effects model.

Sample ID RMSE (cm) Relative error*
DBN Mix-effects DBN Mix-effects

P1 0.224 0.393 4.3% 7.6%
P2 0.181 0.645 3.1% 11.2%
P3 0.168 0.535 2.8% 8.8%
P4 0.147 0.655 2.3% 10.2%
P5 0.197 0.406 2.9% 6.2%
P6 0.165 0.494 3.1% 7.3%

Mean value 0.180 0.521 3.1% 8.6%
*The relative error is defined by the ratio between the absolute RMSE and the

largest diameter in the objective IMDC, e.g, if the RMSE is 0.18 cm and the

largest diameter is 5.8 cm, the relative error should be 0.18/5.8 = 3.1%.

The deep learning model, which is implemented on the MATLAB, can be trained within 30

seconds on a PC with a 3.3 GHz 10-core CPU and a 64 GB RAM (Table 5.2). This period

of time is short enough to provide insight in aiding clinicians to make surgical decision of

AAAs.
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Figure 5.5: The true value, the DBN model prediction and mixed-effects model prediction
of IMDCs are shown in dotted dashed black (‘true’), solid red(‘DL prediction’), and dashed
green lines(‘ME prediction’), respectively. s denotes the coordinate of location along the
centerline of AAA and d represents the associated maximum diameter measured by inscribed
sphere method.

5.5 Monte-Carlo cross-validation

A Monte-Carlo cross-validation method is performed to show the robustness of the proposed

deep learning model. As the first step, 13 sets of eligible testing data, i.e, {xi, yi}, are

collected from 20 patients’ CT images. There are two criteria for choosing eligible data from

a patient. The first criterion is that the eligible {xi, yi} should be the last set of data of the

patient. The second criterion is that the number of raw CT images of the patient is at least

four. As the second step, the cross-validation trials are independently performed 100 times

under the deep structure of 2-layers DBN with 300 nodes on each layer. In each trial, we

randomly choose 3 sets of test data out of the whole eligible dataset and leave the other sets

of eligible data as training data to be used in the fine-tuning step. As a result of the Monte-

Carlo cross-validation, 100 prediction errors (RMSEs) are independently collected, of which
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the mean and the standard deviation are 0.196 cm and 0.051 cm. The standard deviation

is so small relative to the mean that it guarantees the robustness of the proposed method.

Moreover, as a comparison, the average testing RMSE (0.18 cm) falls into the range of the

standard deviation of the cross-validation result, thus supporting the test results shown in

Table.5.3.

5.6 Discussion

This study utilized a physical G&R computational model combined with follow-up image

data from 20 patients to predict the shape evolution of AAAs represented by IMDCs. To

our knowledge, this is the first study that utilizes the deep learning technique to predict the

shapes of AAAs in an evolutionary scheme based on a small dataset of follow-up images. The

main difficulty in applying deep learning to predict AAA enlargement is the limited size of

the training dataset, i.e, follow-up images of AAAs. In this study, we overcame this difficulty

by proposing a work-flow, in which the DBN is pre-trained by massive in silico data. The

accurate predictions demonstrate that deep learning holds promise for capturing evolutionary

features of individual soft tissue with numerical simulations. It gives deep learning techniques

a new application in biomedical engineering, other than surrogates [Liang et al., 2018], image

segmentation [Lai, 2015], etc.

Besides combining deep learning and AAA prediction, the proposed study also contributes

by making fast and accurate predictions of AAA enlargement. Following Table 5.2, the

model training time takes approximately 24 seconds, which is significantly faster than other

statistical models [Do et al., 2019] [Zhang et al., 2019]. Additionally, the efficiency of data

generation is significantly improved by the PCM approximation, which generates tens of

thousands of IMDCs in 20 seconds. As a comparison, the G&R computational model takes

30 minutes to generate one set of data, meaning that it would take more than one year to
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provide the same amount of training data.

Additionally, due to the high complexity of physics in patient-specific predictions of AAA,

even high-fidelity physical models cannot promise to make accurate predictions. To enable

accurate predictions, in this study, we proposed a two-stage training approach: first, we

pre-train our deep learning model with a computationally generated sizable dataset; second,

we fine-tune the deep structure with the patient data for patient-specific predictions. In this

study, the average prediction error is 0.180 cm, which is significantly small compared to the

AAA diameters (3 cm to 8.5 cm). The results shown in Fig.5.5 and Table.5.3 also indicate

that the proposed method indeed provides effective predictions, which outperform the clas-

sical mixed-effect model [Brady et al., 2004, Eriksson et al., 2005, Sweeting and Thompson,

2012] by 65% in terms of the average relative error. Also, a Monte-Carlo cross-validation,

which is a standard and widely recognized validating approach commonly used in machine

learning studies, also provides similar prediction results compared with the test results, thus

showing the effectiveness and robustness of the proposed study. Therefore, though the in sil-

ico data are limited by the G&R which cannot capture all marginal situations, the two-stage

DBN method still shows its promise in predicting patient-specific geometries.
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Chapter 6

A PHYSICS-BASED MACHINE

LEARNING APPROACH TO

PREDICT ABDOMINAL AORTIC

ANEURYSM ENLARGEMENT

6.1 Introduction

Our motivation is to make an efficient patient-specific predictive tool, aiding in clinical treat-

ment as a tool for predictive medicine. Nonetheless, a personalized simulation by its own

is not capable of providing effective prediction. This is because the physical simulation

is considered a deterministic approximation to the real patient data, which contains error

compared with clinical measurements and cannot provide reliable confidence interval. Thus,

given an accurate patient-specific simulation, developing a stochastic model, which com-

bines both real-patient data and simulation outputs, is essential to enable patient-specific
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prediction. Related methods that applied in vascular modeling include Bayesian calibration

[Zhang et al., 2019], deep learning (Chapter 5) and machining learning [Liang et al., 2017].

Inspired by these studies, a novel physics-based machine learning approach is developed to

extrapolate the limited set of clinical data (expensive data) and then further improve the

accuracy of predictions by accommodating the patient-specific simulation outputs (cheap

data). Other studies that combine the data from both experiments and simulations have

shown the feasibility of prediction using the cokriging method [Fidkowski, 2014, Forrester,

2010, Kuya et al., 2011]. Therefore, cokriging method, as an efficient machine learning

method, is perfectly qualified for this work because of it high efficiency and accuracy. In

this section, we employ the cokriging approach, which is established in Section 3.3 for MFS,

to enable another application, i.e., personalized prediction of AAA growth. The uncertainty

analysis to the prediction is formulated by Equation 3.28.

6.2 Personalized prediction of AAA extension

In this section, we employ cokriging as a data-driven predictive tool to predict AAA growth.

In Section 4.2, we have developed an efficient parameter estimation algorithm that enables

fast G&R simulations of individual patients. These simulations provide valuable information

that supplements the clinical data at unmeasured spatial-temporal locations. For conve-

nience, the G&R simulation results and clinical data of individual patients are denoted by

‘in silico data’ and ‘clinical data’, respectively. The in silico data and clinical data of each

patient can be considered as the LF data and the HF data for training the cokriging based

predictive tool.

For each patient, a set of Ne HF sample points with state variables Xe = {ξ(1)
p , ..., ξ

(Ne)
p }

is selected from the clinical observations, where the locations Xe are limited to the re-

gion with available clinical observations. In addition, a set of Nc state variables Xc =
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Figure 6.1: Overall schematic flow of the proposed framework. A MFS is approximated from
G&R models using a cokriging method. The in silico data of patient-specific simulations are
obtained from both the MFS and the clinical data using a parameter estimation algorithm.
The clinical and the in silico data are combined to predict the progression of arterial disease.

{ξ̂(1)
s (θopt), ..., ξ̂

(Nc)
s (θopt)} can be sampled and substituted into the MFS of G&R to get the

a set of Nc LF samples. In this case, the MFS is trained from the last LCB iteration during

the parameter optimization, θopt represents the optimized patient-specific parameter, and

ξ̂s(θ
opt)) is the assimilated state variable estimated by Eq. (4.1). HF data and LF data are

then combined to train a physics-based machine learning predictive tool of individual AAA

expansion using cokriging (shown in Fig. 6.1).

In the current setting of cokriging, the individualized simulation outputs can be regarded

as the low-fidelity information that improves the limited high-fidelity data measured from

real patients. According to the Eq. (3.24), if we let Ze(x) and Zc(x) represent the GPs of

clinical data and the patient-specific in silico data, respectively, the GP of the correction

term Zd(x) can be interpreted as an error term between them. All the hyperparameters can

be trained using MLE. The final patient-specific prediction is expressed in the Eq. (3.27),

and an explicit uncertainty analysis of the prediction error is expressed in Eq. (3.28).
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Figure 6.2: Two examples that compare prediction results with the ground truth of AAA
shape curve, where diameter (d) is plotted against the length along center line (s). The blue
shades represent the 95% confidence interval of AAA growth prediction. The black circles
and red crosses represent the ground truth of aneurysmal diameters that locate within and
outside the confidence range, respectively.

6.3 Results of AAA expansion prediction

Given best-fitted patient-specific parameters, we design a personalized data-driven predictive

tool to predict the future growth of AAAs by combining both simulation outputs and clinical

information (Section 6.2). For each patient whose number of CT images is greater than or

equal to 3, we select the last CT image out of the follow-up CT images dataset as test

data, and keep the remaining follow-up CT images as training data. Fig. 6.2 provides two

examples of simulation results. Fig. 6.2(a) shows an example with a good prediction result,

in which 9 out of 11 points are within 95% confidence interval. The average prediction error

of diameter d = 0.24 mm is significantly smaller than 2σd = 0.96 mm, where σd represents

the standard deviation associated with prediction. In Fig. 6.2(b), 7 out of 11 points locate

within 95% confidence interval. Although the points on the right side of the AAA curve are

not within the tolerance range, the overall prediction is acceptable. The average prediction

error of diameter d = 1.28mm is less than 2σd = 1.78mm.
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Table. 6.1 collects all prediction results and the associated uncertainty that can be directly

compared with the ground truth. Note that Patient 2 only has 1 training CT scan that is

not enough for parameter estimation, so we collect a total of 20 prediction results in the

table. The computational time of each prediction is negligible (less than 1 minute) and has

little effect on the overall computational time so the computational time of prediction is not

recorded in the table.

Table 6.1: Prediction results of personalized AAA expansion.

Patient # Scans # Points Avg. Avg. σd Ground Predicted
ID for within Prediction of truth of max. d

training tolerance a error of d b predictionc max. d
P01 2 9 0.29 0.45 51.26 51.10
P02 1 N/A N/A N/A N/A N/A
P03 2 7 1.08 0.86 65.10 66.35
P04 4 11 0.47 0.67 51.02 50.35
P05 4 7 2.13 1.26 58.09 56.71
P06 4 9 0.83 1.22 34.74 37.33
P07 4 8 0.52 0.34 46.83 46.14
P08 4 2 3.23 0.78 55.09 50.76
P09 2 10 0.84 0.79 44.44 43.42
P10 3 7 1.28 0.89 46.91 48.49
P11 3 9 0.65 0.57 50.58 49.13
P12 2 8 0.09 0.17 46.61 46.35
P13 3 10 0.23 0.59 48.38 47.74
P14 2 0 5.05 0.51 51.54 46.48
P15 4 9 1.11 0.58 51.76 50.64
P16 2 9 0.24 0.48 48.07 49.21
P17 4 9 1.00 0.75 47.82 47.06
P18 3 9 0.12 0.66 51.50 52.70
P19 3 9 1.76 1.13 60.73 59.55
P20 3 6 1.84 0.86 51.11 48.66
P21 2 0 2.24 0.34 54.25 49.79

a The total number of data points is 11 for each patient. b Unit of d is mm.
c σd represents the standard deviation of the prediction given by Eq. (3.28).

We achieved satisfactory predictions for most patients. The mean value of average prediction

error of arterial diameter among all patients is 1.39 mm, which is more accurate than the

prediction in Chapter 5 where the average prediction error was 1.80 mm. The prediction
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results of Patient 8, Patient 14 and Patient 21 are outside the tolerance range. It is partly

because of the small number of scan images that limits the prediction performance. The

longitudinal datasets of Patient 14 and Patient 21 only contain two CT images for MFS

training, thereby reducing the accuracy of the parameter estimation and the prediction.

Maximum diameter is an important indicator to assess the risk of AAAs [Paraskevas et al.,

2010]. In this study, the average prediction error of the maximum diameter is 1.67 mm

that is significantly small compared to AAA diameter (30 − 85 mm). In comparison, the

prediction error of maximum diameter was 2.61 mm by using the patient-specific prediction

from Akkoyun et al. [2020]; and Lee et al. [2018] can predict the maximum diameter within

2 mm error in 85% and 71% of patients at 12 and 24 months.

In Chapter 5, we have developed a DBN with a two-stage training scheme that combines

both a small amount of patient-specific data and a large amount of in silico data to predict

AAA expansion. This DBN, however, only utilized the low-fidelity model, and the prediction

capability of DBN can be improved by including a higher fidelity model. Accordingly, this

study, which can provide more realistic high-fidelity G&R simulations, holds a great potential

to be combined with our previous study of DBN to further improve the effectiveness of

prediction. Therefore, we consider the proposed framework as a primary step towards a

more sophisticated patient-specific simulation and prediction tool that will be capable of

(1) integrating the information of physics-based modeling with big data, and (2) providing

personalized clinical suggestions of arterial diseases within the clinically relevant time frame

(1-2 hours) [Taylor et al., 1999].
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Chapter 7

A VIRTUAL PATIENT ENGINE

FOR THE CREATION OF A

MITRAL VALVE REGURGITATION

PATIENT COHORT

7.1 Introduction

Recent advances in biomechanics have led to an increasing trend of applying physics-based

cardiovascular models to clinical-relevant applications, such as patient-specific simulations,

testing medical treatments, and patient-specific disease progression prediction. However,

limitations of computational models prevent the application of creating a cohort of in silico

virtual patients as a testing environment for a specific clinical trial, i.e., In Silico Clinical

Trial (ISCT). Main challenges in creating and analyzing a virtual patient population include

• Computationally expensive 3D modeling
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• Defining the salient characteristics (parameters) of each patient

• Representing large patient variations

• Obtaining anatomically plausible patients

• Understanding the relationships between model parameters

• Down selection to a specific targeted patient population

• Etc.

So as to overcome these challenges and generate in silico Virtual Patients Cohort (VPC)

for a specific targeted patient population efficiently, we extend the proposed physics-based

machine learning framework to create an innovative and general framework & strategy called

Virtual Patient Engine (VPE). In particular, the VPE is built upon credential simulations

of a parameterized physics-based model of the cardiovascular system. Next, the VPE uses

machine learning (e.g., surrogate model) and statistical methods to efficiently down select

cardiovascular simulations into a specific target population following empirical information

of the targeted patients’ cohort such as geometrical ranges and mechanical characteristics.

Finally, the VPE outputs a physics-based VPC containing a small set of physics-based Virtual

Patients (VPs). Each VP includes a unique 3D finite element analysis of regurgitate mitral

valve with desired characteristics.

In this study, the VPE framework is demonstrated with an example problem of Secondary

Mitral Regurgitation (SMR). This VPE employs a Mitral Valve Apparatus (MVA) model

extracted from the Living Heart Human Model (LHHM) built on ABAQUS Explicit, and

aim to generate VPs with physiologically feasible anatomy and a limited range of regurgitate

MV opening size during systole. Here, the LHHM is a sophisticated platform supported by

the Living Heart Project at Dassault Systèmes, which enables users to simulate different
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heart diseases by adjusting features such as 3D geometries, coupled electrical-mechanical

physics, hemodynamic parameters, and material parameters.

This section is organized as followed. Section 7.2 and Section 7.3 describe the procedures

for estimating the material parameter ranges and prescribing the parameterized geometry

for mitral valves, respectively. An automatic simulation framework is developed in Section

7.4 to run simulations in batches. A Design of Experiment (DoE) is setup in Section 7.5 to

generate MVA simulations. A machine learning powered VPE is developed in Section 7.6 to

generate the VPC for SMR patients. Results and discussion are provided in Section 7.7 and

7.8, respectively.

This chapter is the author’s research results during his internship at Dassault Systèmes.

Ownership of the researches in this chapter fully resides with Dassault Systèmes.

7.2 Material parameter calibration

Characterization of the values and ranges of mitral valve leaflet material parameters is a

fundamental step towards the mitral valve simulations that covers large patient variations.

To achieve this goal, we design the following workflow to calibrate the range of material

parameters from experimental data:

1. Understand the stress-strain relationships (e.g. extensibility and stiffness) of leaflet

tissue in both axial and circumferential directions from the uniaxial or biaxial tests in

the literature [Grande-Allen et al., 2005, Pham and Sun, 2014].

2. Convert the stress-strain relationships and their ranges into stress-strain data curves

with uncertainty ranges.

3. Adjust the material parameters in the MVA constitutive model to match the stress-
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strain data curve.

4. Collect the mean, lower limit and upper limit of material parameters.

Two sets of material parameters are obtained by matching the data of two studies, including

a biaxial testing from Pham and Sun [2014] and a uniaxial testing from Grande-Allen et al.

[2005]. The summarized results are provided in Table 7.1.

Table 7.1: Results of MVA material parameter estimation.

Literature Attributes bf bs sf as
Pham and Best fit 250 45 0.08 0.017
Sun [2014] range 250 (fixed) 45 (fixed) [0.04,0.15] [0.005,0.07]

Grande-Allen Best fit 20 16 0.005 0.005
et al. [2005] range [6, 100] [4.8, 80] 0.005 (fixed) 0.005 (fixed)

In this project, we perform VPE using the ranges of material parameters calibrated from the

both references. The results show that the material parameters calibrated from Pham and

Sun [2014] are too stiff to enable feasible mitral valve deformation. Thus, in this study, the

range of material parameters is calibrated from data of Grande-Allen et al. [2005], which is

marked in bold in Table 7.1.

7.3 Parameterization of mitral valve apparatus geom-

etry

In order to generate the virtual patient cohort that covers large inter-patient variability,

each virtual patient in the cohort should contain a unique set of parameters and anatomy.

According to Niederer et al. [2020], there are three strategies for generating virtual cohorts,

including (1) 1:1 mapping virtual cohorts, (2) sampling from inferred distributions, and

(3) random variation with acceptance criteria. The proposed VPE is based on the third

strategy, i.e., random variation with acceptance criteria. This strategy requests to generate
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VPs by randomly varying parameters and then include only these VPs that fall within

the specific physiological bounds into the VPC. This means that the physics-based models

used to generate VP simulations must cover various patient characteristics, such as the

anatomic geometries and material characteristics, through changes in parameters. More

details on VPC generation are discussed in later sections. In this section, we focus on the

parameterization of the MVA model, which allows the geometrical parameters to capture

anatomic geometries of mitral valve.

A patient-specific MVA model is extracted from a patient-specific Living Heart Human

Model (LHHM) as the basis for VPE creation. However, it is difficult to morph mitral valve

geometry in a patient-specific MVA model to generate a large amount of VPs capturing inter-

patient variety. Thus, in this section, we aim to extend the patient-specific MVA model into

a more general parametric MVA model that can be easily morphed.

A two-step strategy is implemented to achieve this goal. First, we analyze a large num-

ber of mitral valve images and then summarize them into a couple of designs of mitral valve

apparatus, including the annulus geometry, leaflet geometry, chordae insertion pattern, chor-

dae origin pattern and papillary muscle locations. Second, these designs are automatically

and efficiently translated into different geometries and meshes of MVA on the 3DExperience

platform from Dassault Systèmes. This two-step parameterization is enabled by referring to

anatomical literature, especially Oliveira et al. [2020].

Due to confidentiality issues, the detailed design is not provided in this dissertation. A demo

simulation is performed and illustrated in Figure 7.1.
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Figure 7.1: A demo simulation of parameterized mitral valve apparatus model.
.

7.4 Automatic simulation framework

An automatic simulation framework is developed to efficiently generate a large number of

simulations to create a surrogate model and a virtual patient cohort. This framework can

be executed on a server installed with ABAQUS or on the 3DS Experience platform. The

process of the automatic simulation framework is described as follows:

1. Generate geometries and mesh files for parameterized MVA models with different input

parameters.

2. Assemble mesh files and other parameters to produce simulation input files of ABAQUS.

3. Submit simulation input files to a server installed with ABAQUS to run simulations

in batches and obtain simulation output files.

4. Post-process the simulation output files to obtain output target quantities.

In this simulation framework, Python scripts automatically assemble meshes, produce sim-

ulation input files, submit input files to server, and perform post-processing. Thus, this
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Figure 7.2: A diagram of the automatic simulation framework for parameterized MVA model.
.

working is considered to be fully automatic, which provides a basis to create the VPE. A di-

agram of the automatic simulation framework is shown in Figure 7.2. The input and output

parameters will be automatically saved in a table after completing executing the simulation

framework. As indicated in Figure 7.2, post-processing scripts are developed to extract sev-

eral target quantities from the simulation output files. In this study, four main anatomic

quantities are selected as target quantities, including anatomic mitral valve regurgitate ori-

fice area, tenting angle of leaflets, tenting length of leaflets and coaptation length of leaflets.

These geometrical quantities are selected because they are salient features for surgeons to

capture the individual characteristics and severity of the mitral valve orifice area.

7.5 Design of experiment setup

We created an automatic simulation framework for parameterized MVA model. Next, to

cover the inter-patient variety with various physiology, anatomy, mechanics, etc., we need

to produce a large number of simulations of VPs with different values of input parameters.

Specifically, we need to carefully select input parameters to satisfy four requirements. First,

most of the parameters that strongly affect target outputs are included. Second, the def-

inition of input parameters should be specified by leveraging available experimental data,

clinical information, and modeling experiences to ensure that the simulations are physiolog-

ically feasible. Third, the ranges of input parameters should be determined by the literature

related to the targeted patient cohort as well as engineering experiences. Last, the values of
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less important parameters are fixed with population mean of the targeted population after

sensitivity analysis.

In this study, we select 10 parameters to propagate inter-patient variations into VPs, includ-

ing 8 geometrical parameters and 2 material parameters, as provided in Table 7.2. Their

ranges are determined by anatomic literature of secondary mitral valve regurgitation [Kun-

zelman et al., 1994, Oliveira et al., 2020, Veronesi et al., 2008]. Note that the LLR, leaflet

length ration, is define by

LLR =
LengthofLeaflet(u)

BaselineLengthofLeaflet(u)
× BaslineAPdiameter

APdiameter
. (7.1)

Table 7.2: List of input parameters and their ranges.

List of Range Definition of parameters
parameters
APD [32.4, 45.2] mm AP diameter of annulus
ADR [0.94,1.24] Ratio between AP and ALPM diameter of annulus
LLR [0.8,1.2] Leaflet length ratio
AH [4,7.2] mm Annulus height
APM [27.5,44.5] mm The vertical distance between annulus plane and

anterior papillary muscle
PPM [28.7,46.5] mm The vertical distance between annulus plane and

posterior papillary muscle
Phi [85, 135] degree The angular position of papillary muscles relative

to mitral valve
RP [2,8] mm The radius of C-Shape chordae origin points
Pre-stretch [-0.1,0.1] Chordae pre-stretch
Bf [6, 100] Leaflet tissue stiffness

In order to reduce the computational time of creating a surrogate model and to generate a

VPC within a small amount of time, e.g., one day, the input parameters of MVA simulations

should be selected from the 10-dimensional parameter space through an optimized strategy.

In this study, we employed the Latin Hypercube Sampling (LHS) method which has the

advantage in sampling from high-dimensional distributions. Typically, the number of samples

required to train the Kriging surrogate model (Section 3.3.1) should be equal to 10∼20 times
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the number of dimensions, thus we use LHS to select 250 samples, of which 200 samples are

used for and 50 samples are used for testing.

Next, MVA simulations are performed on 14-core computational nodes on an LSF serve.

Each simulation takes between 25 to 40 minutes. Thus, if all 250 simulations were performed

in a pipeline, it would take about 140 hours to complete all simulations. Fortunately, we

submitted simulations to the LSF server altogether and multiple simulations ran in parallel.

Therefore, in practice, it takes 10 hours to complete all simulations. Moreover, the results

show the robustness of the proposed the simulation framework. All simulations and the

post-processing are fully automated with a 100% successful rate. A demonstration of the

simulation results is shown in Table 7.3, where 12 out of 250 samples are provided in the

rows, and the input parameters and the target output (orifice area) are shown in the columns.

Table 7.3: A demonstration of LHS samples with the values of input parameters and targeted
outputs.

Input parameters Output
In- APD ADR LLR AH Pre- APM PPM Phi RP Bf Orifice
dex stretch area

(mm2)
1 40.9 0.976 1.04 6.92 -0.0211 34.98 32.24 95.8 6.05 53.39 143.8
2 41.0 0.987 1.09 4.58 0.0283 31.27 45.45 125.2 3.66 55.05 54.3
3 39.1 1.105 1.16 6.12 -0.0217 38.08 40.49 108.2 2.67 8.81 1.3
4 32.9 1.10 1.19 5.43 0.0888 33.01 41.00 88.9 7.77 34.01 10.9
5 42.3 1.167 1.19 6.63 0.0414 35.76 43.33 89.7 5.44 68.31 120.2
6 42.6 0.970 0.99 4.03 0.0925 34.42 35.90 123.5 3.17 9.36 24.8
7 43.1 1.163 0.994 5.36 0.0871 33.17 33.09 90.7 3.37 61.20 191.2
8 37.9 1.087 0.81 5.25 -0.0651 27.64 35.27 134.1 2.38 50.63 231.5
9 37.6 1.071 0.91 4.13 0.0316 33.99 46.13 109.6 6.13 12.43 66.5
10 37.1 1.108 1.17 6.90 -0.0839 40.03 32.94 120.8 7.69 37.15 2.4
11 41.6 1.236 1.07 7.06 0.0981 37.02 36.16 102.3 2.78 21.05 46.3
12 38.0 1.039 0.91 4.66 0.0518 43.14 29.24 89.4 5.96 10.87 95.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 7.3: Simulation outputs vs. surrogate outputs of different surrogate models.
.

7.6 Virtual patient engine

In this section, we describe the workflow for creating a VPE from DoE simulations.

7.6.1 Create surrogate model

In order to create a surrogate model, 250 samples from DoE are divided into two sub-

datasets, including a training dataset and a testing dataset. In the training of the surrogate,

we further split the training dataset into different folds of data for k times following the rules

of k-fold cross-validation, and then implement a Bayesian auto-tuning algorithm to find the

best-estimated hyper-parameters of surrogate.

Next, we perform model testing to the surrogates by matching the simulation results from

the original testing dataset with the approximated simulation results from the surrogate

model (surrogate outputs). We train and test different surrogates created by different types

of machine learning methods, such as kriging, kernel ridge and XGBoost, from a Python

package, scikit-learn [Buitinck et al., 2013]. The model testing results are listed in Table 7.4.

The surrogate with the best performance, i.e. the kriging with Matern kernel and hyper-

parameters auto-tuned by Bayesian optimization, gives a mean absolute error of 12.9 mm2

of orifice area and an R2 of 0.959.
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Table 7.4: Performance of different surrogate approaches in predicting anatomic orifice area
(mm2).

Method Kernel Mean absolute Mean squared R2
error (mm2) error

Kriging Default 13.4 421 0.946
Kriging Matern (1000,1) 13.1 329 0.958
Kriging Rational Quadratic (10,0.005) 14.7 406 0.950
Kriging Matern (auto-tuned) 12.9 322 0.959
Kernel ridge Kernel Ridge (0.001) 27.9 1388 0.821
XGBoost Default 23.8 993 0.862
XGBoost Auto-tuned 23.6 949 0.868

Figure 7.4: Simulation outputs vs. surrogate output of other target quantities, including
tenting angle of the anterior leaflet, the tenting angle of posterior leaflet and the tenting
height.

.

Figure 7.3 provides four plots comparing the performance of four surrogate approaches in

predicting orifice area, including an XGBoost, a kernel ridge, a kriging with the default setup

and a kriging with the hyper-parameters auto-tuned. In addition, Figure 7.4 shows modeling

testing results to the other target quantities, including the tenting angle of anterior leaflet,

the tenting angle of posterior leaflet and the tenting height. Note that all surrogate models

shown in Figure 7.4 are trained by kriging.

7.6.2 Generate surrogate-based VPC

Given a well-trained surrogate, we are able to generate a large amount of surrogate-based

VPs with various characteristics. In order to constrain the variation of simulation results to
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Figure 7.5: Histogram of orifice area for surrogate-based VPs.
.

a reasonable range and produce VPs with feasible physiological and mechanical properties,

the input parameters are assumed to be independent and following the Gaussian distribution

with a mean of 0.5 and a standard deviation of 0.33 after normalizing each parameter into

the range [0, 1]. Next, Monte-Carlo sampling is implemented to sample 100,000 sets of input

parameters as input parameters of the surrogate-based VPC.

Next, those input parameters are substituted into the surrogate to generate the surrogate

outputs, i.e., 100,000 outputs of orifice area simulated by the surrogate. Figure 7.5 gives a

histogram of orifice area for all surrogate-based VPs, showing that most VPs have orifice

areas between 0 ∼ 150 mm2 which is consistent with the reference values of mitral valve

regurgitation.

7.6.3 Down select VPC for a targeted population

As indicated by literature [Baumgartner et al., 2017, Otto et al., 2021], patients with re-

gurgitate orifice areas between 30 and 100 mm2 may exhibit moderate to severe mitral
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Figure 7.6: Histogram of orifice area for surrogate-based VPs and the down selection crite-
rion.

.

regurgitation and can be considered for repair through clipping. Note that this criterion is

a simple and temporary inclusion criterion designed for demonstrating the VPE. It does not

guarantee a VPC that the physiology and mechanics features are exactly same as a real pa-

tient cohort. In the future, the inclusion criteria can be further refined as additional evidence

becomes available. Figure 7.6 illustrates how inclusion criterion performs down selection to

the surrogate-based samples.

As indicated in Figure 7.7, about 40,000 out of 100,000 Monte-Carlo samples are selected

in the down selection. Although the input parameters associated with the Monte-Carlo

samples are specified to be independent of each other, correlations may arise in the samples

after performing the down selection. For example, Figure 7.7 gives a demo with 200 Monte-

Carlo samples, in which the included samples marked by red show a clear trend of diagonal

distribution. More specifically, the samples in the upper-left region are likely to correspond

to the MVs with extremely large orifices, while the samples on the lower-right region are

likely to correspond to the MVs with closed orifices.
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Figure 7.7: A demonstration figure with 200 Monte-Carlo samples displayed on a two-
dimensional parameter space of Bf vs. leaflet ratio (LLR). Included samples are indicated
by red dots, and the excluded samples are indicated by blue circles.

.

7.6.4 Find representative VPs using a clustering algorithm

As aforementioned, the primary goal of VPE is to select some sets of input parameters, which

could cover the inter-patient variety of desired characteristics after being imposed into the

physics-based model. This requires us to select a small number of samples (50 samples in this

study) that are representative of different variations of the target population. In contrast,

there are around 40,000 surrogate-based samples included through the down selection. Thus,

another down sampling should be performed to further select 50 representative VP samples

from 40,000 down selected samples, and we can run physics-based simulations with the input

parameter sets of these 50 VP samples.

To achieve this goal, in this study, a computationally efficient machine learning method, i.e.

clustering, is used. Clustering is an unsupervised machine learning task which automatically
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classify data points according to their natural patterns. A large number of clustering meth-

ods, such as k-mean, mean shift and spectral clustering, can be easily to be implemented

using a Python package, scikit-learn [Buitinck et al., 2013]. However, most of these clustering

methods cannot provide good results due to the ‘high-dimensional curse’.

Fortunately, after studying many alternative approaches, we find that the affinity propaga-

tion approach is able to address the ‘high-dimensional curse’. It can select cluster centers

that evenly cover the whole parameter space. Along with another method, a factor-2 approx-

imation method, which allows to extract 50 VP samples from cluster centers by maximizing

relative distance between cluster centers, the affinity propagation approach produces input

parameters of 50 VP samples that cover a large inter-patient variety and many worst-case

scenarios. Figure 7.8 shows a 3D representation of parameter space, in which 50 VP samples

are represented by the red dots and a sub-group of the included Monte-Carlo samples are

represented by green circles. This figure is shown in a 3D parameter space (APD vs. LLR

vs. Bf) projected from a 10-dimensional parameter space.

7.7 Results: physics-based VPC and statistical analy-

sis

After collecting all the input parameter values of 50 VP samples, we could substitute these

values into the physics-based parameterized MVA model to obtain the physics-based VPC

with desired characteristics.

Some results for physics-based VPC are shown in Figure 7.9, in which we can observe top-

down and A2-P2 cut views of mitral valve. Figure 7.9 shows the main target quantities

including the coaptation length, tenting angle and orifice area. In general, we see a long

valley-shaped gap or double orifice. Figure 7.9 also indicates the values of gap size and
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Figure 7.8: Included Monte-Carlo samples and 50 VP samples in a 3D parameter space.
.
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Figure 7.9: Top-down view and A2P2 cut view of 12 VPs in the VPC.

orifice area for VP 9 which is about the maximum.

As a first sanity check on the plausibility of this cohort, we see that our outputs are fairly

consistent with those reported in the literature for patients with SMR. For more details, Table

7 provides the target quantities extracted from the physics-based VPC. Figure 7.10 provides

a histogram of the orifice area extracted from the physics-based VPC. As a comparison,

Nishimura et al. [2014] and Baumgartner et al. [2017] cite that an EROA ≥ 20mm2 is an

indicator of severe SMR, and Oliveira et al. [2020] reports an average tenting height of

9.7 ± 3.2 mm and average posterior leaflet tenting angles of 44.4 ± 11.9◦ for severe MR

patients.

7.8 Discussion

In summary, by integrating FEA and Machine learning, this study creates a novel general

framework and strategy of VPE which holds the potential to efficiently reproduce the VPC
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Figure 7.10: A histogram of the orifice area extracted from 50 virtual patients in the physics-
based VPC.

of the targeted population with a variety of characteristics. This study is demonstrated by

generating the VPs with SMR. It takes 10 hours to run 250 finite element simulations of

MVA to provide input of VPE, and takes around 3 hours to execute VPE to generate 50 VP

cohorts of the targeted population.

The proposed VPE holds promise for many applications. Firstly and most importantly, the

VPC generated by VPE can be used to provide a testing environment for medical treatments

as an ISCT. Secondly, the VPE allows to prescribe the inter-patient variety among cohort

members, which enables the analysis between the parameters, disease characteristics and

the performance of clinical trials. Thirdly, the VPE enables a data augmentation workflow

that efficiently reproduces a massive amount (N > 100,000) of surrogate-based simulation

outputs. These surrogate-based simulations allow to analyze the correlations among dif-

ferent factors of diseases such as material properties of biological tissue, anatomy, clinical

measurable information. Fourthly, the VPE can efficiently correlate input parameters and

the simulation outputs so that it holds the potential to propagate uncertainties of inputs,

clinical measurements and modeling error into an estimation of targeted simulation outputs.

Fifthly, VPE can be further extended to generate big data to train deep learning predictive

models to better capture the disease progression. Lastly, the surrogate model in VPE con-
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tributes by providing a fast inference between input parameters (e.g., material properties

and geometry of organ) and measurable and unmeasurable clinical outputs.

Though a lot of progress has been made by the proposed VPC, we are keenly aware that

limitations exist in this preliminary study. First, it is not sufficient to claim it’s a plausible

cohort. And as such one of our next tasks will be focusing on how to do a thorough assessment

of the VPC in order to confidently state that it is representative of the real world. Second,

even if the VPC is representative, it’s quite possible that the VPC corresponds to only a

subset of the overall population. In the future, more input parameters may need to be

defined and more variation in the existing parameters may be necessary to broaden the

scope of the cohort to represent a larger sample of the overall MVR population. We will

use the same VPE framework to adapt to the DoE of physics-based simulations with more

varied parameters. Third, this study focuses on a simplified MVA model which is too simple

to represent the human physiology of mitral valve with complex interactions with blood

circulation, left ventricle, etc. In the future, models with higher fidelity should be introduced

to further demonstrate that the VPC can be applied for the clinical practice of ISCTs. Last,

in this study, we lack sufficient patient data to support the parameterization of mitral valve

geometry, ranges of parameters, and correlation among parameters. In the future, if rich

clinical data are collected, we could create multiple one-to-one mapping patient-specific

models to build better-parameterized models and use patient-specific data to fine-tune the

values, ranges, and correlations among parameters by using statistical methods such as

Bayesian calibration.

All of these works remain to be done before using the cohort in a predictive iSCT.
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