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PUBLIC ABSTRACT

ABSTRACT HOMOMORPHISMS OF ALGEBRAIC GROUPS: RIGIDITY AND
GROUP ACTIONS

By

Joshua Ruiter

By way of analogy, an algebraic group is like a houseboat. A houseboat is both house

and boat, so construction involves solving engineering problems common to houses (e.g.

plumbing) and problems common to boats (e.g. floating). Additional complications emerge

from the interplay of the two structures – for instance, the presence of water may require

more safeguards in the electrical system.

An algebraic group is a mathematical object with two structures: it is both an algebraic

variety and a group. To study them, we use tools from from algebraic geometry and from

group theory, as well as tools related to the interplay between the two structures. Mathe-

maticians use group homomorphisms to describe relationships between different groups. To

study algebraic groups, we usually use algebraic group homomorphisms, group homomor-

phisms that are compatible with the algebraic structure. In the 1970’s, Armand Borel and

Jacques Tits discovered that sometimes the “algebraic” assumption is superfluous. They

proved that, in certain circumstances, an ordinary group homomorphism between two alge-

braic groups has to be almost algebraic.

After establishing their theorem, Borel and Tits conjectured that this was just one exam-

ple of a more general phenomenon. Since then, mathematicians have made partial progress

in confirming this, and this thesis extends that work by verifying the conjecture for a family

of algebraic groups called special unitary groups. We hope that the methods developed here

can later prove the conjecture for the larger family of quasi-split algebraic groups.



ABSTRACT

ABSTRACT HOMOMORPHISMS OF ALGEBRAIC GROUPS: RIGIDITY AND
GROUP ACTIONS

By

Joshua Ruiter

We investigate two related problems involving abstract homomorphisms between the

groups of rational points of algebraic groups. First, we show that under appropriate as-

sumptions, abstract representations of quasi-split special unitary groups associated with

quadratic extensions of the field of definition have standard descriptions, i.e. can be factored

as a group homomorphism induced by a morphism of algebras, followed by a homomorphism

arising from a morphism of algebraic groups. This establishes a new case of a longstanding

conjecture of Borel and Tits. In the second part, we apply existing results on standard de-

scriptions for abstract representations of Chevalley groups to study some rigidity properties

of actions of elementary subgroups on algebraic varieties.

The thesis is organized as follows. To provide context for the study of abstract homo-

morphisms, in §1 we give a historical overview of key developments going back to Cartan’s

work on homomorphisms of Lie groups. In §2, we prove our rigidity result for special unitary

groups, using a strategy inspired by [Rap11] which depends crucially on the construction

of certain algebraic rings associated to abstract representations. In §3, we apply existing

rigidity statements for representations of elementary subgroups of Chevalley groups to study

rigidity properties of these groups acting on affine algebraic varieties and projective surfaces.

We discuss some open questions and plans for future work in §4. In the appendices, we

collect some relevant background material on algebraic rings, and also provide details on the

computations of commutator relations needed for the constructions in §2.



ACKNOWLEDGMENTS

I am thankful to my advisor, Igor Rapinchuk, for advice in choosing a problem and guidance

while working on it, as well as very clear exposition in his courses. I am also thankful to

Rajesh Kulkarni for his excellent teaching in many courses and seminars, especially a summer

course on algebraic groups. Thanks to Anastasia Stavrova for several helpful discussions

about root systems and Steinberg groups. Finally, thanks to my parents, siblings, and

friends for their support throughout my years at Michigan State University.

iii



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

KEY TO SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Abstract homomorphisms of special unitary groups . . . . . . . 9
2.1 Special unitary group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Elementary subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Steinberg group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Algebraic ring associated to an abstract representation . . . . . . . . . . . . 29
2.5 Rationality of σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3 Group actions on varieties . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Elementary groups acting on affine varieties . . . . . . . . . . . . . . . . . . 47
3.2 Elementary groups acting on projective surfaces . . . . . . . . . . . . . . . . 57

Chapter 4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Algebraic rings associated to abstract representations . . . . . . . . . . . . . 63
4.2 Steinberg symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix A Algebraic rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix B Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Appendix C Logical dependency chart . . . . . . . . . . . . . . . . . . . . . . . . 104

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

iv



LIST OF FIGURES

Figure 2.1: The nontrivial automorphism of the A2n−1 Dynkin diagram . . . . . . . 14

Figure 2.2: Orbits in A2n−1 corresponding to nodes in Cn . . . . . . . . . . . . . . . 14

v



KEY TO SYMBOLS

A Algebraic ring associated to an abstract representation

Aα Algebraic ring associated to a particular root α

An Root system of type An

An Affine space of dimension n

AffAlgGpk Category of affine algebraic groups (representable functors Algk → Gp)

Algk Category of finitely-generated commutative k-algebras

αi Character which picks off the ith diagonal entry of the diagonal

α, β (Relative) roots, elements of Φk

(α, β) Positive integer linear combinations of roots α and β

Aut(X) Group of biregular automorphisms, identified with a subgroup of Bir(X)

Bα Algebraic variety from Lemma 2.4.2

Bir(X) Group of birational automorphisms of a variety X

C Complex numbers

cα(u, v) Unitary Steinberg symbol

cij 1 if i < j, −1 if i > j

Cn Root system of type Cn

conjϕ Conjugation by ϕ

√
d Primitive element of the quadratic extension L/k

∆ Finite-index subgroup of Γ

(Dn) True if dimK Derg(R,K) ≤ n for all g

Derg(R,K) Space of g-derivations of R into K

(−)δ Identity if δ = 1, conjugation if δ = −1

eij(x) Matrix with x in ij-th entry, ones on the diagonal, zeros elsewhere

Eij(x) Matrix with x in ij-th entry, zeros elsewhere

f Ring homomorphism k → A with Zariski-dense image

vi



fα Ring homomorphism k → Aα with Zariski-dense image

F Group homomorphism G(k)→ G(A) induced by f

F̃ Group homomorphism G̃(k)→ G̃(A) induced by f

G Special unitary group SU2n(L, h)

G̃ Steinberg group of G

G(k) Group of k-rational points of G

G0 Split subgroup of a group G

G0(k) Group of k-rational points of G0

GA Base change of G to A

G(R) Group of points of G = SU2n(L, h) over a k-algebra R

G̃(R) Steinberg group of G(R)

G(A, J) Congruence subgroup of G(A) for an ideal J ⊂ A

Gal(L/k) Galois group of L/k, order 2

Γ, G+, G(R)+ Classical elementary subgroup, generated by k-points of unipotent radicals
of k-defined parabolic subgroups

Γ.f Orbit of f for an action of the group Γ

Ga Additive group, Ga(k) = (k,+)

Gm Multiplicative group, Gm(k) = (k×,×)

GLn General linear group

GL(V ) General linear group of a vector space V

Gp Category of groups

h Skew-hermitian form on V with maximal Witt index

H H = ρ(G(k))

H Quotient group H/Z(H)

hα(v) Weyl-group element

h̃α(v) Lift of hα(v) to Steinberg group

inv Inversion map from a group to itself, G 7→ G, g 7→ g−1

vii



J Jacobson radical

k Field

k× Multiplicative group of a field k, k× = k \ {0}

k[x] Ring of polynomials in the variable x with coefficients in k

K Field, usually assumed charK = 0 and algebraically closed

K[X] Coordinate ring of a variety X

L Quadratic extension of k, L = k(
√
d)

LieGp Category of real Lie groups

Mn(R) n× n matrices with entries in a ring R

N
αβ
ij Homogeneous polynomial map arising in Steinberg commutator formula

Nice pair 2 ∈ R× if Φ contains a copy of B2, and 2, 3 ∈ R× if Φ is type G2

ν Inverse map to π in Lemma 2.4.2

Φ Absolute root system (with respect to a fixed maximal torus)

Φk Relative root system (with respect to a fixed maximal k-split torus)

π Compatibility isomorphism of Lemma 2.4.2

πR Canonical homomorphism G̃(R)→ G(R)

ψα Functions arising in Proposition 2.4.6

ρ Abstract representation G(k)→ GLm(K)

ρ0 Restriction of ρ to split subgroup G0(k)

r Group action r : Γ→ Aut(X)

r∗ Associated action on coordinate ring, r∗ : Γ→ Aut(K[X])

R Arbitrary k-algebra

RL Tensor product/extension of scalars R⊗k L

Ru(H) Unipotent radical of H

RA/k Weil restriction/restriction of scalars functor

rA/k Canonical isomorphism associated with RA/k

Ru Unipotent radical

viii



S Maximal k-split torus (contained in T )

SLn Special linear group

Sp2n Symplectic group

SU2n(L, h) Isometry group of hermitian form h

σ Map constructed in Theorem 2.5.6

σ Map constructed in Proposition 2.5.2

σ̃ Map constructed in Proposition 2.4.8

Sym(V ) Symmetric algebra on a vector space V

(T ) Kazhdan’s property (T)

T Maximal torus (containing S)

τ Unique nontrivial Galois automorphism in Gal(L/k)

TopGp Category of topological groups

Tr Field trace map L→ k, or the extension RL → R

Uα Root subgroup associated to α, Uα(R) = Xα(Vα(R))

V L2n, viewed as an L-vector space

Vα Vector space, dimension equal to dimension of root space for α

wαβ Reflection of β across the hyperplane perpendicular to α

wα(v) Weyl-group element

w̃α(v) Lift of wα(v) to Steinberg group

Xα Root subgroup embedding Vα(R)→ G(R)

X̃α(v) Generator of Steinberg group

X∗(S) Character group Hom(S,Gm)

[x, y] Commutator xyx−1y−1

(Z) True if Z(H) ∩ U = {e}

Z(H) Center of H

Convention: All rings are assumed to be unital, associative, and commutative.

ix



Chapter 1

Rigidity

In this chapter, we provide historical background on rigidity for algebraic groups, starting

with Cartan’s rigidity result for Lie groups and leading into the Borel-Tits conjecture. We

discuss partial results towards the Borel-Tits conjecture, and outline how the current work

fits into and extends known results.

One of the earliest forms of rigidity is Cartan’s theorem regarding continuous group

homomorphisms between Lie groups. In general, a continuous map f : M → N between

smooth manifolds cannot be expected to be smooth. However, Cartan’s theorem says that if

M,N are Lie groups and f is a group homomorphism, then continuity implies smoothness1.

In other words, group homomorphisms between Lie groups are much more rigid that they

first appear.

Following Cartan, there was a considerable amount of work on rigidity properties of

classical groups, by people including Schreier and van der Waerden [SVdW28], Dieudonné

[Die80], and O’Meara [HO89]. However, all of these results were obtained in a somewhat ad

hoc manner. The first organized approach was taken by Steinberg in [Ste16], who systemat-

ically studied all simply-connected Chevalley groups over fields, culminating in the rigidity

result [Ste16, Theorem 30], which gives a structured factorization description for any abstract

1This goes back to [Car30] and [vN29], though Cartan’s statement is not in these terms. Cartan proved
the closed-subgroup theorem, of which this is a corollary. See [Lee13, Theorem 20.12] for the closed-subgroup
theorem, and [Lee13, Exercise 20-11(b)] for the corollary as stated here.
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automorphism of the group of points of a Chevalley group over a perfect field. Later work

of Borel and Tits in [BT73] generalized Steinberg’s results and focused the subject around a

main conjecture. Before discussing this conjecture, we motivate the transition from Cartan’s

theorem to analogous statements about algebraic groups.

To translate Cartan’s theorem into a conjecture for algebraic groups, we first rephrase

it in more categorical terms: it is equivalent to the statement that the forgetful functor

LieGp → TopGp is full. We replace Lie groups with the category AffAlgGpk of affine

algebraic groups over a field k (viewed as representable functors Algk → Gp, where Algk is

the category of finitely generated commutative k-algebras), and replace topological groups

by the category Gp of abstract groups (groups with no additional structure). We replace

the forgetful functor LieGp→ TopGp with the functor

P : AffAlgGpk → Gp, G 7→ G(k)

We think of this as a parallel to the forgetful functor in the sense that G(k) “forgets” the

algebraic group structure of G. Then Cartan’s theorem suggests the question: is P full? We

introduce some additional terminology to rephrase this more concretely.

Definition 1.0.1. Let G,G′ be algebraic k-groups. An abstract group homomorphism

ρ : G(k) → G′(k) is algebraic if there is a morphism of algebraic groups σ : G → G′ such

that ρ coincides with the map induced by σ on k-points. In other words, ρ is algebraic if it

is in the image of the functor P : AffAlgGpk → Gp.

In the analogy between algebraic groups and Lie groups, algebraic group homomorphisms

correspond to smooth group homomorphisms and abstract homomorphisms correspond to

continuous homomorphisms. Our earlier question of whether AffAlgGpk → Gp is full can

2



now be rephrased as: is every abstract group homomorphism ρ : G(k) → G′(k) algebraic?

Unfortunately, the answer is no. We give some counterexamples.

Example 1.0.2. Let k = C and G = G′ = Ga be the additive group and let ρ : C→ C be

complex conjugation. All algebraic group homomorphisms Ga → Ga are given by (linear)

polynomials, which ρ is not, so ρ is not algebraic. A similar counterexample is obtained by

replacing Ga by Gm. More generally, let G = G′ be an algebraic subgroup of GLn and let

ρ : G(C)→ G(C) be complex conjugation on each matrix entry; this is not algebraic.

Example 1.0.3. Let k be a perfect field of characteristic p > 0, let G = G′ = Ga and let

ρ : k → k, x 7→ x1/p be the inverse of the Frobenius map. Then ρ : Ga(k) → Ga(k) is not

algebraic.

Example 1.0.4. Let k be a field, and let G = G′ = GLn over k. Let φ : k → k be a field

automorphism, which induces a map ρ : GLn(k)→ GLn(k) applying φ to each matrix entry.

If φ is not algebraic (as an abstract homomorphism Ga → Ga), then ρ is also not algebraic.

As these examples demonstrate, field automorphisms are a major source of non-algebraic

homomorphisms between linear algebraic groups. However, the general philosophy of rigidity

is that maps arising from field automorphisms (and more generally, morphisms of algebras)

are essentially the only obstruction to an abstract homomorphism being algebraic.

To explain the source of this philosophy, we formulate one of the main results of the

landmark 1973 paper of Borel and Tits [BT73]. Let k, k′ be infinite fields and let G,G′

be algebraic groups over k, k′ respectively. Suppose that G is absolutely almost simple k-

isotropic, and G′ is absolutely simple adjoint. Let G+ denote the elementary subgroup

of G(k), the group generated by the k-points of unipotent radicals of k-defined parabolic

subgroups, and let ρ : G+ → G′(k′) be an abstract homomorphism with Zariski-dense

3



image. Then there exists a field embedding f : k → k′ and a morphism of algebraic groups

σ : G → G′ such that ρ = σ ◦ F |G+ , where F : G(k) → G(k′) is the group homomorphism

induced by f . We depict this in the following commutative diagram.

G+ G′(k′)

G(k′)

ρ

F σ

A factorization of ρ as above is called a standard description. Borel and Tits also ex-

tended of this result in [BT73, Theorem 8.16], where, roughly speaking, the hypothesis on

G′ is replaced by assuming that G′ is reductive. Borel and Tits also gave the following

example, which illustrates two aspects of the subject: (1) more abstract homomorphisms

may have standard descriptions if we allow morphisms of algebras rather than just field

embeddings, and (2) the image of a reductive group under an abstract homomorphism need

not be reductive.

Example 1.0.5. Fix an infinite field k and let G ⊂ GLn be a simple linear algebraic k-

group, with Lie algebra g ⊂ Mn. Let δ : k → k be a nontrivial derivation, which induces

a map ∆ : G(k) → G(k) by applying δ on each matrix entry2. Let G′ = gnG, using the

adjoint representation of G on g. Define

ρ : G(k)→ G′(k) g 7→
(
g−1 ·∆(g), g

)
More conceptually, ρ can be described in the following way which explicitly shows how ρ

factors as predicted by the result of Borel and Tits. Let A = k[ε] with ε2 = 0, and note that

G(A) ∼= G′(k) via the algebraic isomorphism

σ : G(A)→ G′(k) X + Y ε 7→
(
X−1 · Y,X

)
2For concreteness, one can take G = SLn, g = sln, k = C(x), and δ = d

dx
to be the differentiation

operator.
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Define f : k → A by f(x) = x + δ(x)ε, which induces F : G(k) → G(A) by applying f to

each matrix entry. It is straightforward to verify ρ = σ ◦ F , i.e. ρ essentially arises from f .

G(k) G′(k)

G(A)
F

ρ

σ

To summarize, ρ is a non-algebraic morphism between groups of k-points which essentially

arises from a morphism of k-algebras f : k → k[ε]. Also, ρ has Zariski-dense image in gnG.

In particular, even if G is semisimple, the Zariski closure of the image ρ(G(k)) = G′(k) is not

reductive (it has nontrivial unipotent radical g). So in general, the image of a reductive group

under an abstract morphism need not be reductive. Furthermore, the example demonstrates

that in order to obtain a standard description for an abstract homomorphism, it may not be

possible to factor using a map induced by a field embedding; it may be necessary to use a

map induced by a morphism of k-algebras as F is in the example. This led them to formulate

the following conjecture [BT73, 8.19].

Conjecture 1.0.6 (BT). Let G and G′ be algebraic groups defined over infinite fields k

and k′, respectively. If ρ : G(k)→ G′(k′) is any abstract homomorphism such that ρ(G+) is

Zariski-dense in G′(k′), then there exists a commutative finite-dimensional k′-algebra A and

a ring homomorphism f : k → A such that

ρ = σ ◦ rA/k′ ◦ F

where F : G(k)→ GA(A) is induced by f , rA/k′ : GA(A)→ RA/k′(GA)(k′) is the canonical

isomorphism, and σ is a rational k′-morphism of RA/k′(GA) to G′.

In the conjecture, GA is the group obtained by base change from k to A, and RA/k′ is

the functor of Weil restriction of scalars. Generalizing our previous usage, if an abstract

5



homomorphism ρ : G(k)→ G′(k′) admits a factorization as in (BT), we will say that ρ has

a standard description. We think of (BT) as a generalized, algebraic version of Cartan’s

theorem. Notably, it explains our previous counterexamples.

Example 1.0.7. We return to the setting of Example 1.0.2. Let k = k′ = C and G =

G′ ⊂ GLn, and let ρ : G(C)→ G(C) be complex conjugation on each entry. Let A = C, let

f : C → C be complex conjugation, which induces F = ρ : G(C) → G(C), and let σ = Id.

This gives a (somewhat vacuous) standard description of ρ.

G(C) G′(C)

G(C)

ρ

F σ=Id

Around the time Conjecture 1.0.6 was formulated, Tits sketched an argument in [Tit71,

§4] for the case k = k′ = R. Later, Weisfeiler [Wei81] proved a case in which G is split by a

quadratic extension and ρ is an abstract isomorphism. Seitz [Sei97] obtained a result when

k is a perfect field of positive characteristic, and L. Lifschitz and A. Rapinchuk [LR01] gave

(essentially) a proof of (BT) in the case where G is an absolutely simple, simply-connected

Chevalley group, char k = 0, and G′ has commutative unipotent radical. Note that using

the results of [CGP15, Chapter 9] (particularly Proposition 9.9.1), it is possible to give

counterexamples to (BT) over any field k of characteristic 2 such that [k : k2] = 2, using

perfect and k-simple groups, so we do not expect (BT) to hold over fields of characteristic 2.

Most recently, I. Rapinchuk obtained significant results towards (BT) in [Rap11], [Rap13],

and [Rap19], essentially resolving the conjecture for all split groups (avoiding characteristic

2 and 3), including results for groups over more general commutative rings. In [Rap11],

he introduced a method for studying abstract representations of the elementary subgroups

of simply-connected Chevalley groups over commutative rings based on the construction
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and analysis of certain algebraic rings. These techniques led to a general result on abstract

representations that, in particular, yielded (BT) in the case where k is a field of characteristic

6= 2 or 3, k′ = K is an algebraically closed field of characteristic zero, and G is a split simply-

connected k-group. Subsequently, this approach was extended in [Rap13] to confirm (BT)

for abstract representations of groups of the form SLn,D, where D is a finite-dimensional

central division algebra over a field of characteristic zero. We refer the reader to [Rap15] for

a more extensive overview of work on (BT) and its connections to various classical forms of

rigidity.

Except for results concerning the groups SLn,D, essentially all existing progress on (BT)

has concerned split groups. Our main contribution is to extend the methods of [Rap11] to

prove (BT) for a class of quasi-split special unitary groups (see §2). The primary obstacle

in extending results to non-split groups is the fact that root spaces and root subgroups are

no longer necessarily 1-dimensional. In the split case, analysis of abstract representations is

aided by a construction involving SLn going back to Kassabov and Sapir [KS09], where they

put an algebraic ring structure on the closure of the image (under an abstract representation)

of a 1-dimensional root subgroup. The generalization of this construction to more general

Chevalley groups is the heart of the strategy of [Rap11] to prove (BT) for those groups.

We have managed to extend this construction to a quasi-split group with 2-dimensional

(relative) root subgroups. We hope that eventually the method can be further extended to

more quasi-split groups.

Our second contribution to the study of rigidity of a more geometric nature. In §3, we

apply rigidity statements in the vein of (BT) from [Rap19] to obtain rigidity statements for

elementary subgroups of Chevalley groups acting on varieties. We think of these results as

a kind of algebraic analog of the Zimmer program, where we replace diffeomorphism groups

7



of smooth manifolds by biregular or birational automorphism groups of varieties.
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Chapter 2

Abstract homomorphisms of special

unitary groups

In this chapter, we prove that the conjecture of Borel and Tits holds for abstract represen-

tations of certain even-dimensional quasi-split special unitary groups, modulo an additional

technical hypothesis on a certain unipotent radical. The precise statement is as follows.

Theorem 2.0.1. Let L = k(
√
d) be a quadratic extension of a field k of characteristic zero,

and for n ≥ 2, set G = SU2n(L, h) to be the special unitary group of a (skew-)hermitian

form h : L2n × L2n → L of maximal Witt index. Let K be an algebraically closed field of

characteristic zero and consider an abstract representation

ρ : G(k)→ GLm(K).

Set H = ρ(G(k)) to be the Zariski closure of the image of ρ. Then if the unipotent radical

U = Ru(H) of H is commutative, there exists a commutative finite-dimensional K-algebra

A, a ring homomorphism f : k → A with Zariski-dense image, and a morphism of algebraic

K-groups σ : G(A) → H such that ρ = σ ◦ F , where F : G(k) → G(A) is the group

homomorphism induced by f .

G(k) GLm(K)

G(A)

ρ

F σ

9



In the statement of the theorem, we are using the functor of restriction of scalars to view

G(A) as an algebraic K-group. Namely, denoting by GA the base change of G from k to A,

restriction of scalars gives a natural isomorphism rA/K : GA(A) → RA/K(GA)(K). Since

A is a finite-dimensional K-algebra, RA/K(GA)(K) is an affine algebraic K-group, and the

isomorphism rA/K allows us to endow G(A) = GA(A) with the structure of an algebraic

K-group. Note that the group H appearing in the theorem is connected by Lemma 2.5.1.

Also note that there is no meaningful difference between assuming h is hermitian or skew-

hermitian, see Remark 2.1.2.

The proof of Theorem 2.0.1 spans this chapter, and proceeds as follows. First, since

G = SU2n(L, h) is a simply-connected k-group with relative root system Φk of type Cn, it

follows that G contains a k-split simply connected k-group G0 = Sp2n of type Cn (see [BT65,

Théorème 7.2] or [CGP15, Theorem C.2.30]). We describe one particular such split subgroup

in Definition 2.2.5. Given an abstract representation ρ : G(k) → GLm(K), we consider the

restriction of ρ to G0(k), and use the construction in [Rap11] to associate to ρ|G0(k) an

algebraic ring A, as well as a ring homomorphism f : k → A with Zariski-dense image. Since

k and K are both fields of characteristic zero, A is a finite-dimensional K-algebra by [Rap11,

Lemma 2.13(ii), Proposition 2.14]. See Appendix A for results we use concerning algebraic

rings.

In the methodology of [Rap11], the algebraic ring A plays a central role in proving that

ρ|G0(k) has a standard description. We show here that A also suffices for the analysis of

ρ. More precisely, following the general strategy of [Rap11] and [Rap13], we first show that

ρ lifts to a representation σ̃ : G̃(A) → GLm(K), where G̃(A) is the generalized Steinberg

group introduced by Stavrova [Sta20] (which builds on an earlier construction of Deodhar

[Deo78]). Then, using the fact that the kernel of the canonical map G̃(A)→ G(A) is central

10



(which extends a result of Stavrova to the present situation), together with our assumption

that the unipotent radical Ru(H) is commutative, we establish the existence of the required

algebraic representation σ : G(A)→ GLm(K).

The structure of this chapter is as follows. We begin by describing the special unitary

groups SU2n(L, h) (§2.1), their elementary subgroups (§2.2), and associated Steinberg groups

(§2.3). Then in §2.4 we describe an algebraic ring A associated with an abstract representa-

tion of SU2n(L, h), describe how it is a commutative finite-dimensional K-algebra as claimed

by the theorem, and show that ρ lifts to a representation σ̃ of G̃(A). Finally, in §2.5, we

descend σ̃ to obtain the morphism σ and finish the proof of the theorem. The main results

of this chapter also appear in more condensed form in the paper [RR22].

2.1 Special unitary group

We define the special unitary group SU2n(L, h). Let k be a field of characteristic zero and

let L/k be a quadratic extension, so L = k(
√
d) for some d ∈ k. We set τ : L→ L to be the

nontrivial element of Gal(L/k) and note that for any commutative k-algebra R, the action

of τ naturally extends to RL := R⊗k L via the second factor. More precisely, given a simple

tensor a⊗ b ∈ R⊗k L with a ∈ R and b ∈ L, τ acts by

τ(a⊗ b) = a⊗ τ(b)

We write τ(x) = x for x ∈ RL. Next, fix an integer n ≥ 2 and let V = L2n be a 2n-

dimensional L-vector space equipped with a (skew-)hermitian form h : V × V → L, and

assume that h has maximal Witt index. Because of the Witt index assumption, with respect

to a suitable basis of V the matrix of h is

11



H =


0 −1
1 0

. . .

0 −1
1 0



Definition 2.1.1. With k, L, h as above, let G = SU2n(L, h) be the isometry group of h.

Explicitly in terms of matrices, for a commutative k-algebra R, we have

G(R) = {X ∈ SL2n(RL) | X∗HX = H},

where for X = (aij), we let X∗ = (aji) denote the conjugate transpose matrix. Note in

particular that the group of k-points G(k) is a group of matrices with entries in L, not just

in k. For the rest of this chapter, G denotes the special unitary group SU2n(L, h). The

choice of basis (or equivalently the choice of matrix representation for h) only affects G up

to inner automorphism.

Remark 2.1.2. The special unitary groups considered here belong to a larger class of unitary

groups described in [Bor91, V.23.9] (also see [Mil17, Theorem 24.44, Remark 24.46] and

[PR94, Ch. 2, §2.3.3]). In a more general setting considered by Borel, L can be any division

algebra over k(
√
d), τ is an involution of the second kind on L, and the form h may have

arbitrary Witt index. As noted in [Bor91, V.23.8], “there is no essential difference” between

hermitian and skew-hermitian when dealing with an involution of the second kind, in the

sense that if the form h is τ -hermitian then a scalar multiple of h is τ -skew-hermitian. The

group G also belongs to the class of unitary groups studied by Hahn and O’Meara in [HO89,

Ch 5].

12



Remark 2.1.3. G is a k-form of SL2n. More precisely, G becomes isomorphic to SL2n over

L, as we now describe. Let R be an L-algebra. Then we have the following sequence of

group homomorphisms, all of which are functorial in R.

SU2n(R) ↪→ SL2n(RL)→ SL2n(R2)→ SL2n(R)2 → SL2n(R)

The first map is inclusion, and the second is induced by the following isomorphism of L-

algebras with involution1.

RL
∼= R2

a⊗ 1 + b⊗
√
d 7→

(
a+ b

√
d, a− b

√
d
)

a, b ∈ R

The third map takes matrices with ordered pair entries and turns it into an ordered pair

of matrices, and the final map is projection onto the first copy of SL2n(R). The entire

composition gives an isomorphism SU2n(R) ∼= SL2n(R) which is functorial in R.

Let G be any quasi-split k-group and let L be a splitting field for G, then extend if

necessary so that L/k is Galois. Let S ⊂ T ⊂ G with S a maximal k-split torus and T

a maximal torus (which splits over L). Let Φ = Φ(G, T ) be the absolute root system and

Φk = Φ(G, S) be the relative root system, viewing Φ as a subset of the character group

X∗(T ) and Φk as a subset of the character group X∗(S). The natural restriction map

X∗(T ) → X∗(S) takes Φ onto Φk, and the Galois group Gal(L/k) acts on Φ by inducing

automorphisms of the associated Dynkin diagram, and restriction of characters from T to S

gives a bijection

{Gal(L/k)-orbits in Φ} Φk
∼=

1The involution on R2 is (x, y) 7→ (y, x). In fact, this isomorphism the unique isomorphism RL
∼= R2 of

L-algebras with involution, up to multiplying by the scalar −1.
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That is, two absolute roots in Φ restrict to the same relative root if and only if they lie in

the same Gal(L/k)-orbit.

In the particular case of G = SU2n(L, h), Φ is type A2n−1 and Φk is type Cn. The Galois

group is Gal(L/k) ∼= Z/2Z 〈τ〉. The generator τ acts as on the An−1 Dynkin diagram by

reflection across the central node. This reflection is depicted in Figure 1 below.

· · · · · ·

Figure 2.1: The nontrivial automorphism of the A2n−1 Dynkin diagram

There are n orbits; one singleton orbit and (n − 1) orbits each containing two nodes. As

depicted below in Figure 2, the (n−1) orbits with two nodes correspond to the (n−1) short

roots in a base for Cn, and the lone singleton orbit corresponds to the long root in a base

for Cn.

· · ·

· · ·

A2n−1 orbits Cn

∼ · · · <

Figure 2.2: Orbits in A2n−1 corresponding to nodes in Cn

See §2.2 of [Deo78] and Table II of [Tit66] for more discussion on this correspondence for

general quasi-split groups.
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2.2 Elementary subgroup

We describe the elementary subgroup of SU2n(L, h), first by recalling some aspects of the

theory of elementary subgroups of isotropic reductive group schemes, developed by Petrov

and Stavrova [PS08]. Suppose G is a reductive group scheme over a ring R that is isotropic

of rank ≥ 1 (i.e. every semisimple normal R-subgroup of G contains a 1-dimensional split

R-torus). Then G contains a pair of opposite parabolic R-subgroups P and P− that inter-

sect properly every semisimple normal R-subgroup of G (such subgroups are called strictly

parabolic). In [PS08], the corresponding elementary subgroup EP (R) is then defined as the

subgroup of G(R) generated by UP (R) and UP−(R), where UP and UP− are the unipotent

radicals of P and P−, respectively (note that when R = k is a field, then EP (k) coincides

with the group G+ appearing in the Borel-Tits Conjecture 1.0.6). The main result of [PS08]

(see also [Sta14, Theorem 2.4]) is that if for any maximal ideal m ⊂ R, the group GRm is

isotropic of rank ≥ 2, then EP (R) does not depend on the choice of a strictly parabolic

subgroup P . This assumption is automatically satisfied in all situations considered here, so

to simplify notations, we will denote the elementary subgroup simply by E(R).

The elementary subgroup is functorial in R (i.e. a ring homomorphism R1 → R2 gives

rise to a group homomorphism E(R1) → E(R2)) and it is compatible with finite products

(i.e. E(R1×· · ·×Rn) = E(R1)×· · ·×E(Rn)). Furthermore, since G is a quasi-split simply-

connected k-group, this observation and [Sta20, Lemma 5.2] imply that G(R) = E(R) for

any ring R that is a finite product of local k-algebras. In particular G(k) = E(k), and

G(A) = E(A) where A is the ring constructed later in Proposition 2.4.6 (note that while A

may contain nontrivial idempotents, it is a product of local rings which do not).

In analogy with elementary subgroups of Chevalley groups, Petrov and Stavrova provide
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a description of E(R) in terms of generators that satisfy certain generalized Steinberg com-

mutator relations. The following statement collects the relevant parts of [PS08, Theorem 2]

and [Sta20, Lemma 2.14] in the case of G = SU2n(L, h) that will be needed for our analysis.

Theorem 2.2.1. Let G = SU2n(L, h), fix a maximal k-split torus S ⊂ G, and denote by

Φk the corresponding relative root system (of type Cn), viewed as a subset of the character

group X∗(S). Then for every α ∈ Φk, there exists a vector k-group scheme Vα and a closed

embedding of schemes Xα : Vα → G such that for any k-algebra R, we have the following:

(1) For any v, w ∈ Vα(R),

Xα(v) ·Xα(w) = Xα(v + w)

In particular, Xα(0) = 1.

(2) For any s ∈ S(R) and v ∈ Vα(R),

s ·Xα(v) · s−1 = Xα

(
α(s)v

)

(3) (Steinberg commutator formula) For any α, β ∈ Φk such that α 6= ±β, and for all

u ∈ Vα(R), v ∈ Vβ(R),

[
Xα(u), Xβ(v)

]
=

∏
i,j≥1

iα+jβ∈Φk

Xiα+jβ

(
N
αβ
ij (u, v)

)

for some polynomial maps N
αβ
ij : Vα(R) × Vβ(R) → Viα+jβ(R). The map N

αβ
ij is

homogeneous of degree i in the first variable and homogeneous of degree j in the second

variable.

(4) The elementary subgroup E(R) is generated by the elements Xα(v) for all α ∈ Φk and

all v ∈ Vα(R).
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Remark 2.2.2. We make some remarks on the theorem.

1. The more general formulas in [PS08, Theorem 2] and [Sta20, Lemma 2.14] include

complicated product terms in (1) and (2) above, but these terms are trivial in our case

because Φk is reduced.

2. In view of the structure of the root system Cn, the product on the right hand side

of (3) contains at most two terms with the possible values of i and j lying in {1, 2}.

Moreover, when there are two terms, these commute with each other. In fact, all

nontrivial commutator relations in Theorem 2.2.1 (3) arise from a copy of C2 or A2

sitting inside Cn. That is, if α, β ∈ Φk and α + β ∈ Φk so that the product on the

right side is nontrivial, then
{
iα + jβ ∈ Φk : i, j ∈ Z≥0

}
sits inside a copy of C2 or A2.

See Lemma B.1 for a more precise statement.

3. The dimension of Vα is the dimension of the relative root space associated to α. Thus

there are two possibilities, distinguished by the two root lengths in Cn: if α is a long

root, then Vα = Ga, so that Vα(R) = R for any k-algebra R. If α is a short root,

then Vα ∼= (Ga)2, and we have Vα(R) = R ⊗k L = RL (to make the identification

(Ga)2(R) = R2 ∼= RL, we use the fact that k2 ∼= L as a k-vector space).

For the calculations that we will carry out in subsequent sections, it will be useful to make

the statement of Theorem 2.2.1 more explicit, as follows. The full diagonal subgroup T ⊂ G

is a non-split maximal torus, which contains the maximal k-split subtorus S consisting of

elements of T fixed by conjugation.
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T (R) =




s1

s−1
1

. . .

sn
s−1
n

 : si ∈ R×L



S(R) =
{
X ∈ T (R) : X = X

}
=




s1

s−1
1

. . .

sn
s−1
n

 : si ∈ R×


Clearly T splits over L (this also follows from Remark 2.1.3). Let αi : T → Gm be the

character which picks off the ith diagonal entry. We abuse notation slightly and denote

the restriction αi|S by αi as well. The character group X∗(S) is free abelian with basis

{α1, α3, . . . , α2n−1}. A computation shows that the relative root spaces of G with respect

to S are

Φk = {±2αi : i odd} ∪
{
±αi ± αj : i 6= j, both odd

}
1 ≤ i, j,≤ 2n

Roots of the form±2αi are long, and roots of the form±αi±αj with i 6= j are short. The root

spaces for long roots are 1-dimensional, and root spaces for short roots are 2-dimensional.

Furthermore, the morphisms Xα of Theorem 2.2.1 look as follows. For a ring R, we

denote by Eij(x) ∈ M2n(R) the matrix with x in the ij-th entry and 0 in all other entries.

Recall that for a k-algebra R, the conjugation map τ(x) = x extends to RL. We denote

matrix transpose by Xt. Then the root group morphisms for the long roots are

X2αi
(R) : R→ G(R) x 7→ 1 + Ei,i+1(x)

X−2αi
(R) : R→ G(R) x 7→ X2αi

(x)t = 1 + Ei+1,i(x),
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and for the short roots, the morphisms are

Xαi−αj (R) : RL → G(R) x 7→ 1 + Eij(x)− Ej+1,i+1(x)

X−αi+αj (R) : RL → G(R) x 7→ Xαi−αj (x)t = 1 + Eji(x)− Ei+1,j+1(x),

Xαi+αj (R) : RL → G(R) x 7→ 1 + Ei′,j′+1(x) + Ej′,i′+1(x),

X−αi−αj (R) : RL → G(R) x 7→ Xαi+αj (x)t = 1 + Ej′+1,i′(x) + Ei′+1,j′(x),

where for a pair i, j, we set i′ = min(i, j) and j′ = max(i, j). Note that the definition of

X−αi+αj is redundant (and consistent) with the definition of Xαi−αj . One can check by

direct calculation that the maps Xα defined here have the properties asserted by Theorem

2.2.1. Immediately from the definitions, they have the additional property that negating a

root α corresponds to taking the matrix transpose of Xα(x).

X−α(x) = Xα(x)t ∀α ∈ Φk

Example 2.2.3. We write out the maps Xα in the case n = 2.

X2α1
(v) =


1 v

1
1

1

 X−2α1
(v) =


1
v 1

1
1



X2α3
(v) =


1

1
1 v

1

 X−2α3
(v) =


1

1
1
v 1



Xα1−α3(v) =


1 v

1
1

−v 1

 X−α1+α3(v) =


1

1 −v
v 1

1



Xα1+α3(v) =


1 v

1
v 1

1

 X−α1−α3(v) =


1

1 v
1

v 1


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By direct calculation, we can obtain explicit formulas for the polynomial maps N
αβ
ij

appearing in Theorem 2.2.1. To formulate the result, given a k-algebra R, we let

Tr : RL → R a 7→ a+ ā

denote the extension of the usual trace map TrL/k : L → k to RL. Also, for δ = ±1 and

v ∈ RL, we define

vδ =


v δ = 1

v δ = −1

(2.1)

The notation is chosen so that (
√
d)δ = δ

√
d. The following lemma makes use of this

notation to describe the maps N
αβ
ij arising in all nontrivial Steinberg commutator relations

for SU2n(L, h).

Lemma 2.2.4. Let α, β ∈ Φk be relative roots such that α+ β ∈ Φk, and let u ∈ Vα(R), v ∈

Vβ(R).

(1) Suppose α, β are both short and α + β is short. Then relabelling α, β if necessary we

have α = αi − αj , β = αj − α` for distinct indices i, j, `, and

N
αβ
11 (u, v) = uv N

βα
11 (v, u) = −uv

(2) Suppose α, β are both short and α + β is long. Then relabelling α, β if necessary we

have α = ε(αi − αj), β = ω(αi + αj) for some ε = ±1, ω = ±1, with i < j, and

N
αβ
11 (u, v) = ωTr(u−εωv) N

βα
11 (v, u) = −ωTr(u−εωv)

(3) Suppose α is short and β long. Then we have α = εαi +ωαj and β = −ε2αi for some
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ε = ±1, ω = ±1 and i 6= j, and

N
αβ
11 (u, v) = ωu−cijv N

βα
11 (v, u) = −ωu−cijv

N
αβ
21 (u, v) = −εωvuu N

βα
12 (v, u) = εωvuu

where

cij =


1 i < j

−1 i > j

In particular, whenever it is defined, the map N
αβ
11 is surjective.

Proof. See Appendix B, Lemma B.4.

A key step in the proof of Theorem 2.0.1 involves restricting a given representation

ρ : G(k)→ GLm(K) to a split subgroup G0(k) = Sp2n(k), so we now describe one such split

subgroup explicitly.

Definition 2.2.5. Let H be the matrix from Definition 2.1.1. Let

G0(k) = G(k) ∩GL2n(k) = {X ∈ SL2n(k) | XtHX = H} = Sp2n(k)

Recall that if β ∈ Φk is a short root, then Vβ(k) = L = k ⊕ k
√
d. Our calculation then

shows that G0(k) is the subgroup of G(k) = E(k) generated by the images of the maps

Xα(k) : Vα(k)→ G(k) for long roots α and by the images of the maps Xβ(k) : Vβ(k)→ G(k)

restricted to the first component for long roots β.

Definition 2.2.6. For later use, following Steinberg (see [Ste16, Ch. 3]) we define the

elements

wα(v) = Xα(v) ·X−α(−v−1) ·Xα(v)

hα(v) = wα(v) · wα(1)−1
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for α ∈ Φk and v ∈ Vα(k)×. Note that wα(1), hα(1) ∈ G0(k). We also have the following

analog of Steinberg’s relation (R7),

wα(1) ·Xβ(v) · wα(1)−1 = Xwαβ(ϕv), (2.2)

where ϕ(v) = ±v±1 (so that ϕ2 = Id) and wαβ denotes the action of the corresponding Weyl

group element wα on the root β. The element wα(v) normalizes the split torus S(k), and

wα(v)2 centralizes S(k), so wα(v) corresponds to an element of the Weyl group N(S)/Z(S) =

N(S)/T of order 2. In particular, wα(1) corresponds to the element of the Weyl group of

Φk which is reflection in the hyperplane orthogonal to α. In Appendix B, we do explicit

computations to verify a case of equation (2.2) on the level of the Steinberg group (see §2.3

for the definition of the Steinberg group).

Example 2.2.7. We write out the matrices wα(v) and hα(v) in the case n = 2.

w2α1
(v) =


v

−v−1

1
1

 h2α1
(v) =


v

v−1

1
1



w−2α1
(v) =


−v−1

v
1

1

 h−2α1
(v) =


v−1

v
1

1



w2α3
(v) =


1

1
v

−v−1

 h2α3
(v) =


1

1
v

v−1



w−2α3
(v) =


1

1

−v−1

v

 h−2α3
(v) =


1

1

v−1

v


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wα1−α3(v) =


v

v−1

−v−1

−v

 hα1−α3(v) =


v

v−1

v−1

v



w−α1+α3(v) =


−v−1

−v
v

v−1

 h−α1+α3(v) =


v−1

v
v

v−1



wα1+α3(v) =


v

−v−1

v

−v−1

 hα1+α3(v) =


v

v−1

v

v−1



w−α1−α3(v) =


−v−1

v

−v−1

v

 h−α1−α3(v) =


v−1

v

v−1

v


Lemma 2.2.8. Let R be a k-algebra, let α ∈ Φk, and let u, v ∈ Vα(R)×. Then hα(v) is a

diagonal matrix with diagonal entries from
{

1, v±1, v±1
}

, wα(v) is a monomial matrix with

nonzero entries from
{
±v±1,±v±1

}
, and

hα(v)−1 = hα(v−1) hα(u) · hα(v) · hα(uv)−1 = 1

Proof. Obvious for n = 2 by inspection of the tables in Example 2.2.7. The general n ≥ 2

case reduces to the n = 2 case because hα(v), wα(v) are contained in the subgroup generated

by Xα(v), X−α(v), which is contained in a copy of SU4(L, h) sitting inside SU2n(L, h),

corresponding to a copy of C2 sitting inside Cn. The relations follow immediately from the

description of hα(v) as a diagonal matrix.

The elements wα(v) correspond to similar elements described by Deodhar in [Deo78,

Lemma 1.3] and also more explicitly in §2.322. In particular, one can check that wα(v) =

2There is potential for confusion between the notation here and in Deodhar – in his notation, wα(u) is
defined for nontrivial u ∈ Uα(k), but our wα(v) is defined for v ∈ Vα(k)×. Since Xα : Vα(k) → Uα(k) is
an isomorphism, this is merely a notational difference.
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w−α
(
−v−1

)
, or more explicitly,

Xα(v) ·X−α
(
−v−1

)
·Xα(v) = X−α

(
−v−1

)
·Xα(v) ·X−α

(
−v−1

)
It follows from this and the uniqueness aspect of [Deo78, Lemma 1.3] that the element wα(v)

we have defined agrees with Deodhar’s definition of wα(v).

2.3 Steinberg group

Next we recall Stavrova’s generalization of the classical Steinberg group from [Sta20, Defi-

nition 3.1], noting that this is in turn inspired by a construction of Deodhar [Deo78, §1.9].

We establish a key centrality property for a unitary version of the group K2 from algebraic

K-theory (Proposition 2.3.2) which extends a centrality result of Stavrova [Sta20, Theorem

1.3]. Although Stavrova works in the general context of reductive group schemes, for the

sake of concreteness, we will restrict ourselves to the case G = SU2n(L, h).

As in the classical setting, for a k-algebra R, the generalized Steinberg group G̃(R) is

the abstract group generated by symbols X̃α(v), for α ∈ Φk and v ∈ Vα(R), subject to

the relations (1) and (3) of Theorem 2.2.1 but replacing Xα with X̃α. More precisely, it is

defined as follows.

Definition 2.3.1. Let R be a k-algebra. The Steinberg group G̃(R) is the group generated

by symbols X̃α(v), for all α ∈ Φk and all v ∈ Vα(R), subject to the relations

(R1) For α ∈ Φk and v, w ∈ Vα(R),

X̃α(v) · X̃α(w) = X̃α(v + w);

That is, X̃α is a group homomorphism Vα(R)→ G̃(R).
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(R2) For α, β ∈ Φk such that α 6= ±β, and for all u ∈ Vα(R), v ∈ Vβ(R),

[
X̃α(u), X̃β(v)

]
=

∏
i,j≥1

iα+jβ∈Φk

X̃iα+jβ

(
N
αβ
ij (u, v)

)
;

where N
αβ
ij are the same maps as in Theorem 2.2.1(3).

A morphism of k-algebras φ : R→ R′ induces an additive group homomorphism φ : Vα(R)→

Vα(R) which then induces a group homomorphism

G̃(R)→ G̃(R′) X̃α(v), 7→ X̃α
(
φ(v)

)
.

This process of inducing maps on the Steinberg group is functorial in R. Furthermore, for

every k-algebra R, we have a natural surjective homomorphism

πR : G̃(R)→ E(R), X̃α(v) 7→ Xα(v).

The kernel of πR is a unitary analog of the group K2(R) from classical algebraic K-theory.

The main result of this subsection is the following statement, which partially extends [Sta20,

Theorem 1.3].

Proposition 2.3.2. Suppose R is a k-algebra that is a finite product of local k-algebras.

Then kerπR is a central subgroup of G̃(R).

Before proving this, we prove some lemmas.

Lemma 2.3.3. Any generator X̃α(v) of G̃(R) can be written as a product of generators

X̃γi(ui) with γi 6= α and some ui ∈ Vγi(R). Furthermore, X̃α(v) is contained in the com-

mutator subgroup [G̃(R), G̃(R)]. In particular, G̃(R) and E(R) are perfect groups, i.e. they

coincide with their commutator subgroups3.

3See [LS11, Theorem 1] for a more general result on elementary subgroups of reductive groups being
perfect.
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Proof. First, suppose α is a long root. Then we can write α = γ1 + γ2 for appropriate short

roots γ1 and γ2, and it follows from (R2) that

[
X̃γ1(u1), X̃γ2(u2)

]
= X̃α

(
N
γ1γ2
11 (u1, u2)

)
Since N

γ1γ2
11 is surjective (Lemma 2.2.4), we can find u1 ∈ Vγ1(R) and u2 ∈ Vγ2(R) so that

N
γ1γ2
11 (u1, u2) = v, which yields our claim in this case.

Next, suppose α is short. Then we can write α = γ1 + γ2 for an appropriate long root

γ1 and short root γ2. Hence, by (R2) we have

[
X̃γ1(u1), X̃γ2(u2)

]
= X̃α

(
N
γ1γ2
11 (u1, u2)

)
· X̃γ1+2γ2

(
N
γ1γ2
12 (u1, u2)

)
Again by Lemma 2.2.4 we can choose u1, u2 so that N

γ1γ2
11 (u1, u2) = v. Multiplying both

sides by X̃γ1+2γ2

(
N
γ1γ2
12 (u1, u2)

)−1
then yields our first claim. Furthermore, since γ1 + 2γ2

is a long root, the preceding case shows that X̃γ1+2γ2

(
N
γ1γ2
12 (u1, u2)

)−1
is contained in the

commutator subgroup, and hence so is X̃α(v).

Thus, since all generators of G̃(R) are contained in [G̃(R), G̃(R)], it follows that G̃(R)

is perfect. Since the natural map π : G̃(R)→ E(R) is surjective, we conclude that E(R) is

perfect as well.

Lemma 2.3.4. The Steinberg group commutes with finite products. That is, for any k-

algebras R1, . . . , Rn, we have G̃(R1 × · · · ×Rn) = G̃(R1)× · · · × G̃(Rn).

Proof. By induction, it suffices to show that G̃(A × B) ∼= G̃(A) × G̃(B) for any k-algebras

A and B. We do this by mimicking an argument of Stein [Ste73, Lemma 2.12]; note that

our result is not a special case as Stein considers only split groups. First, we note that the

projections of A×B onto its components induce a surjective group homomorphism

p : G̃(A×B)→ G̃(A)× G̃(B), X̃α(v) = X̃α(v1, v2) 7→
(
X̃α(v1), X̃α(v2)

)
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Next we define a map in the reverse direction by

s : G̃(A)× G̃(B)→ G̃(A×B)(
X̃α(v1), 1

)
7→ X̃α(v1, 0)(

1, X̃α(v2)
)
7→ X̃α(0, v2)

(This defines s on a set of generators for G̃(A)× G̃(B), and we then extend it to the whole

group by multiplicativity.) It follows immediately from the definitions that p ◦ s and s ◦ p

are the respective identity maps on generating sets. Thus, it remains to show that s is a

homomorphism by verifying that s takes all the defining relations in G̃(A)×G̃(B) to relations

in G̃(A×B). We need to check that s preserves three kinds of relations:

(i) The defining relations of G̃(A) applied to the generators
(
X̃α(v1), 1

)
.

(ii) The defining relations of G̃(B) applied to the generators
(

1, X̃α(v2)
)

.

(iii)
[(
X̃α(a), 1

)
,
(

1, X̃β(b)
)]

= 1 for all α, β ∈ Φk and all a ∈ Vα(A), b ∈ Vβ(B).

It is clear that s preserves (i) and (ii), so it remains to show that s preserves (iii). First

consider the case α 6= −β. Let a ∈ Vα(A) and b ∈ Vβ . Then

s
[(
X̃α(a), 1

)
,
(

1, X̃β(b)
)]

=
[
X̃α(a, 0), X̃β(0, b)

]
=

∏
i,j≥1

iα+jβ∈Φk

Xiα+jβ

(
N
αβ
ij

(
(a, 0), (0, b)

))

Since N
αβ
ij is homogeneous of degree i in the first argument and of degree j in the second

argument, it is at least linear in each argument. So each term of N
αβ
ij

(
(a, 0), (0, b)

)
includes

a factor of (a, 0) · (0, b) = (0, 0) = 0 ∈ A×B. Hence N
αβ
ij

(
(a, 0), (0, b)

)
= 0 and the product

is trivial, so s preserves (iii) when α 6= −β.
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Now consider relation (iii) with α = −β. For any b ∈ B, by Lemma 2.3.3, the element

X̃−α(0, b) ∈ G̃(0×B) ⊂ G̃(A×B) can be written as a product

X̃−α(0, b) =
∏
i

X̃γi(0, ui)

where γi 6= −α for all i, with each ui ∈ B. Thus, we have

s
[(
X̃α(a), 1

)
,
(

1, X̃−α(b)
)]

=
[
X̃α(a, 0), X̃−α(0, b)

]
=

[
X̃α(a, 0),

∏
i

X̃γi(0, ui)

]

Since γi 6= −α, by the previous case, X̃α(a, 0) commutes with each factor X̃γi(0, ui). Con-

sequently, it commutes with the whole product, hence the last commutator vanishes. This

shows that s preserves (iii) when α = −β, completing the proof.

With the previous two lemmas in hand, we can proceed to the proof of Proposition 2.3.2.

Proof of Proposition 2.3.2. Suppose R = R1 × · · · × Rn, where R1, . . . , Rn are local k-

algebras. Since the elementary subgroup and the Steinberg group both commute with finite

products (Lemma 2.3.4), it follows that

πR =
n∏
i=1

πRi ,

and hence

kerπR =
n∏
i=1

kerπRi ⊂
n∏
i=1

G̃(Ri) ∼= G̃(R).

Applying [Sta20, Theorem 1.3] to each local factor Ri, we see that kerπRi is central in G̃(Ri).

Consequently, ker πR is central in G̃(R), as claimed. �

Our main application of Proposition 2.3.2 will be to the case where R = A is the algebra

obtained in Proposition 2.4.6. This application is used in Proposition 2.5.2.

28



2.4 Algebraic ring associated to an abstract represen-

tation

With our descriptions of the elementary and Steinberg groups of SU2n(L, h), we now embark

on the proof of Theorem 2.0.1, starting with the construction of A and f as in the statement

of the theorem. In this section, we describe an algebraic ring A associated to an abstract

represtation ρ : G(k) → GLm(K), then show how ρ can be lifted to a representation σ̃ of

the Steinberg group G̃(A). These techniques go back to a construction of Kassabov and

Sapir [KS09], and more importantly extend the methods introduced in [Rap11] and [Rap13]

to verify the Borel-Tits conjecure for split groups.

Let ρ : G(k) → GLm(K) be an abstract representation (with K an algebraically closed

field of characteristic zero). We set H = ρ(G(k)) to be the Zariski closure of the image of

ρ. Furthermore, we let ρ0 : G0(k)→ GLm(K) denote the restriction ρ|G0(k) (see Definition

2.2.5). By [Rap11, Theorem 3.1], we can associate to ρ0 an algebraic ring A, together with

a ring homomorphism f : k → A with Zariski-dense image, as follows. Recall that if α ∈ Φk

is a long root, then Vα(k) = k, whereas if α is short, then Vα(k) = L = k ⊕ k
√
d.

Definition 2.4.1. For α ∈ Φk, define Aα = ρ(Xα(k)) and

fα : k → Aα, u 7→ ρ0(Xα(u)).

Note that for α short, the root subgroup Xα(Vα(k)) has dimension 2 (over k), and in this

case, Aα is the closure of the image of the 1-dimensional subgroup Xα(k) ⊂ Xα(Vα(k)),

arising from the natural embedding k ↪→ L = Vα(k).

As shown in [Rap11, Theorem 3.1], each Aα has the structure of an algebraic ring (see

Appendix A for some background on algebraic rings) — we recall that the addition operation
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is obtained simply by restricting matrix multiplication inH to Aα, whereas the multiplication

operation is defined using the Steinberg commutator relations. Moreover, for any α, β ∈ Φk,

there exists an isomorphism παβ : Aα → Aβ of algebraic rings such that παβ ◦ fα = fβ

([Rap11, Lemma 3.3]). We denote this common algebraic ring by A, and, for each α ∈ Φk,

we fix an isomorphism of algebraic rings πα : A→ Aα such that παβ ◦ πα = πβ . So we have

a ring homomorphism f : k → A with Zariski-dense image such that πα ◦ f = fα for all

α ∈ Φk. The following commutative diagram depicts the situation.

k

A

Aα Aβ

ffα fβ

∼=
πα

πβ
∼=∼=

παβ

∼=

Also from [Rap11, Theorem 3.1], we have (injective) regular maps ψ1
α : A → H satisfying

(ψ1
α ◦ f)(u) = (ρ0 ◦Xα)(u) for all u ∈ k. In other words, the following diagram commutes.

k G0(k)

A H

f

Xα

ρ0
ψ1
α

The algebraic ring A plays a pivotal role in the proof of the main results of [Rap11], i.e.

obtaining a standard description of ρ0. It turns out that A also suffices for the analysis

of the representation ρ. The precise statement that is needed in our context will be given

in Proposition 2.4.6 below. First, we make the following construction. Given a short root

α ∈ Φk, let us define a subset Bα ⊂ GLm(K).

Bα = ρ
(
Xα

(
k
√
d
))

We also define the following map:

gα : k → Bα, u 7→ ρ
(
Xα

(
u
√
d
))

.
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Our next step is to give an isomorphism analogous to παβ to identify Aβ and Bα for some

relative roots α, β. Rapinchuk constructs παβ in [Rap11, Lemma 3.3] as follows: for a

particular pair of roots α, β ∈ B2 with α short, β long, and β − α ∈ Φk, παβ is given by

παβ(x) =

[
x, fβ−α

(
1

2

)]
(2.3)

After translating through an identification B2
∼= C2, for such a pair α, β as above, they

span a copy of C2 sitting inside Φk consisting of the roots {±α,±β,±(β − α),±(2α− β)},

where ±α and ±(β−α) are short and the others are long. All of the Steinberg commutator

relations in the following lemma involve only this copy of C2 inside Φk.

Lemma 2.4.2. Take the short root α = α1−α3 and the long root β = −2α3. Then there is

an isomorphism of algebraic varieties π : Bα → Aβ such that π ◦ gα = fβ.

Proof. We perform a similar computation to that in [Rap11, Lemma 3.3]. Define a regular

map π : Bα → H by

π(x) =

[
x, gβ−α

(
−1

2d

)]
.

(Compare with equation (2.3).) Note that 2d is invertible as char k = 0. This commutator

occurs inside GLm(K) and multiplication is regular, so π is regular. By Lemma 2.2.4 (2),

we have N
α,β−α
11 (u, v) = −Tr(uv). Now let s ∈ k. Then

π ◦ gα(s) =

[
ρ ◦Xα

(
s
√
d
)
, ρ ◦Xβ−α

(
−
√
d

2d

)]
= ρ

[
Xα

(
s
√
d
)
, Xβ−α

(
−1

2
√
d

)]
= ρ ◦Xβ

(
N
α,β−α
11

(
s
√
d,
−1

2
√
d

))
= ρ ◦Xβ

(
−Tr

(
−s
2

))
= ρ

(
Xβ(s)

)
= fβ(s)

This shows that π ◦ gα = fβ , and that π maps gα(k) into fβ(k). Since π is regular, it follows

that π(Bα) ⊂ Aβ . It remains to show that π is invertible. First, using Lemma 2.2.4 (3), we
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obtain

N
β,α−β
11 (v, u) = −uv

N
β,α−β
12 (v, u) = vuu

Let h = h2α−β(1/2) = h2α1
(1/2) be the element introduced in Definition 2.2.6 and define

ν : Aβ → Bα, ν(y) = ρ(h) ·
[
y, gα−β(−1)

]
·
[
y, gα−β(1)

]−1 · ρ(h)−1.

It is clear that ν is a regular map; we claim it is an inverse for π. Let t ∈ k. Using the

commutator relation in Theorem 2.2.1(3), we have

[
Xβ(t), Xα−β

(
−
√
d
)]

= Xα

(
N
β,α−β
11

(
t,−
√
d
))
·X2α−β

(
N
β,α−β
12

(
t,−
√
d
))

= Xα

(
t
√
d
)
·X2α−β

(
− td

)
.

Thus

[
Xβ(t), Xα−β

(
−
√
d
)]
·
[
Xβ(t), Xα−β

(√
d
)]−1

= Xα

(
t
√
d
)
·
��

���
���

�:
X2α−β

(
− td

)
·
��

���
���

��:

X2α−β
(
− td

)−1
·Xα

(
− t
√
d
)−1

= Xα

(
2t
√
d
)
.

We also have the relation

h ·Xα(2v) · h−1 = Xα (v)

for all v ∈ L. Putting everything together, we obtain

ν ◦ fβ(t) = ρ

(
h ·
[
Xβ(t), Xα−β

(
−
√
d
)]
·
[
Xβ(t), Xα−β

(√
d
)]−1

· h−1
)

= ρ
(
h ·Xα

(
2t
√
d
)
· h−1

)
= ρ

(
Xα

(
t
√
d
))

= gα(t).

Thus, ν ◦π and π ◦ ν are the respective identity maps on dense subsets of Aβ and Bα. Since

they are regular, it follows that they are the respective identities on the whole space, so ν is

the inverse of π as claimed.
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Remark 2.4.3. Although we fixed the roots α and β in the preceding argument for the

sake of concreteness, essentially the same calculations can be carried for any short root α

and long root β such that α− β is a root (with appropriate modifications to the definitions

of π and ν, depending on the signs arising in computing N11 and N12). We carry this out

in Lemma B.9.

Remark 2.4.4. In Appendix A, we describe an algebraic ring structure on Bα1−α3 and

show that π is not just an isomorphism of varieties, but an isomorphism of algebraic rings.

Next, we make the following observation, which will streamline the proof of Proposition

2.4.6 by allowing us to consider just a single root of each length. In the statement, we refer

to the group schemes Vα introduced in Theorem 2.2.1. Given a k-algebra homomorphism

f : k → A, we denote by Vα(f) : Vα(k)→ Vα(A) the associated group homomorphism. Note

that if α is a long root, then Vα(f) can be identified with f , and if α is short, then Vα(f) is

the map a + b
√
d 7→ f(a) + f(b)

√
d — in particular, if α and β have the same length, then

the homomorphisms Vα(f) and Vβ(f) coincide.

Lemma 2.4.5. Let α, β ∈ Φk be roots of the same length. Then

(1) There exists w ∈ E(k) such that for all v ∈ Vα(k), we have w ·Xα(v) ·w−1 = Xβ(ϕv),

where ϕv = ±v±1.

(2) Let f : k → A be a k-algebra homomorphism. Suppose there exists a regular map

ψα : Vα(A)→ H such that ψα ◦ Vα(f) = ρ ◦Xα. Let w,ϕ be as in part (1), and define

ψβ : Vβ(A)→ H by

ψβ(v) = ρ(w) · ψα(ϕv) · ρ(w)−1

Then ψβ is regular and satisfes ψβ ◦ Vβ(f) = ρ ◦Xβ.
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Proof. (1) It is well-known that the Weyl group W acts transitively on roots of the same

length, so there exists w̃ ∈ W such that w̃α = β. Write w̃ as a product of simple reflections,

w̃ = wγ1 · · ·wγn for roots γi ∈ Φk. Using the relation (2.2), we have

wγi(1) ·Xα(v) · wγi(1)−1 = Xwγiα
(ϕiv)

where ϕiv = ±v±1. Let w = wγ1(1) · · ·wγn(1) and ϕ = ϕ1 · · ·ϕn. Then repeatedly applying

the above relation yields

w ·Xα(v) · w−1 = Xwγ1 ···wγnα(ϕ1 · · ·ϕnv) = Xw̃α(ϕv) = Xβ(ϕv)

Since each ϕi is a composition of negation and conjugation, ϕv = ±v±1.

(2) This is proved by a direct calculation using the result of part (1), the fact that ϕ2 = Id,

and the assumption that ψα ◦ Vα(f) = ρ ◦Xα. Namely, let v ∈ Vβ(A). Then

ψβ ◦ Vβ(f)(v) = ρ(w) · ψα
(
ϕ ◦ Vβ(f)(v)

)
· ρ(w)−1

= ρ(w) ·
(
ψα ◦ Vα(f)(ϕv)

)
· ρ(w)−1

= ρ(w) ·
(
ρ ◦Xα(ϕv)

)
· ρ(w)−1

= ρ
(
w ·Xα(ϕv) · w−1

)
= ρ
(
Xβ(ϕ2v)

)
= ρ ◦Xβ(v)

We now come to one of the main statements of this section.

Proposition 2.4.6. Let G = SU2n(L, h) and let ρ : G(k) → GLm(K) be an abstract

representation, with K an algebraically closed field of characteristic zero. Set H = ρ(G(k)).
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There exists a finite-dimensional K-algebra A, a ring homomorphism f : k → A with Zariski-

dense image, and for each α ∈ Φk, a regular map ψα : Vα(A) → H such that ψα ◦ Vα(f) =

ρ ◦Xα.

Vα(k) G(k)

Vα(A) H

Vα(f)

Xα

ρ

ψα

Proof. We take A and f : k → A to be the algebraic ring and ring homomorphism constructed

from the restriction ρ|G0(k) using [Rap11, Theorem 3.1], as described at the beginning of

this section. Recall that for each α ∈ Φk, there is a regular map ψ1
α : Aα → H, and an

isomorphism πα : A→ Aα such that πα ◦ f = fα and ψ1
α ◦ Vα(f)|k = ρ ◦Xα|k. By Lemma

2.4.5, it suffices to construct ψα : Vα(A)→ H satisfying ψα ◦Vα(f) = ρ◦Xα for a single root

of each length. If α is a long root, then, since the corresponding root space is 1-dimensional,

we can simply set ψα = ψ1
α.

Now let us consider the short root α = α1 − α3. Then, taking β = −2α3, Lemma 2.4.2

yields an isomorphism of algebraic varieties π : Bα → Aβ such that π−1 ◦ fβ = gα. Define

ψ2
α : A→ H, ψ2

α = ιB ◦ π−1 ◦ πβ ,

where πβ : A→ Aβ is the previously fixed isomorphism satisfying fβ = πβ◦f , and ιB : Bα ↪→

H is the natural inclusion. Using the identification Vα(A) = AL ' A2, v = v1 + v2

√
d 7→

(v1, v2), we define

ψα : Vα(A)→ H, v = (v1, v2) 7→ ψ1
α(v1) · ψ2

α(v2).

Note that for any u ∈ k, we have

(ψ2
α ◦ f) (u) = (ιB ◦ π−1 ◦ πβ ◦ f) (u) = (ιB ◦ π−1 ◦ fβ)(u)

= (ιB ◦ gα)(u) = (ρ ◦Xα)
(
u
√
d
)
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Hence, for v = (v1, v2) ∈ Vα(k) = L = k ⊕ k
√
d, we have

(
ψα ◦ Vα(f)

)
(v) = ψα

(
f(v1), f(v2)

)
=
(
ψ1
α ◦ f(v1)

)
·
(
ψ2
α ◦ f(v2)

)
=

=
(
ρ ◦Xα(v1)

)
·
(
ρ ◦Xα

(
v1

√
d
))

=

= ρ ◦Xα
(
v1 + v2

√
d
)

= (ρ ◦Xα)(v)

Thus, ψα ◦ Vα(f) = ρ ◦Xα, as needed.

Remark 2.4.7. The algebraic ring A ∼= Aβ
∼= Bα above is a connected algebraic ring over

the algebraically closed field K of characteristic zero, so it is a finite-dimensional K-algebra

(see [Gre64, Proposition 5.1] or [Rap11, Lemma 2.13, Proposition 2.14], or Appendix A). By

[Rap11, Lemma 2.9], A is artinian so it is a finite product of local rings, and each of those

rings is a k-algebra. In particular, A is connected and satisfies the hypotheses of Proposition

2.3.2. This is a key input for Proposition 2.5.2.

Note that since f : k → A has Zariski-dense image in A, for any root α the map Vα(f) :

Vα(k) → Vα(A) has Zariski-dense image in Vα(A). If α is long this is vacuous, and if α is

short this just says that applying f to both components of k2 has dense image in A2.

To conclude this section, we show the representation ρ can be lifted to a representation

σ̃ of the Steinberg group G̃(A). The precise statement is as follows.

Proposition 2.4.8. Let ρ : G(k) → GLm(K) be an abstract representation, with K an

algebraically closed field of characteristic zero. Set H = ρ(G(k)), and let A, f, ψα be as in

Proposition 2.4.6. Let F̃ : G̃(k)→ G̃(A) be the homomorphism induced by f and πk : G̃(k)→

G(k) be the natural map. Then there exists a group homomorphism σ̃ : G̃(A) → H such

that σ̃ ◦ F̃ = ρ ◦ πk and σ̃ ◦ X̃α = ψα for all α ∈ Φk; i.e. σ̃ makes the following diagrams

commute.
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Vα(A) G̃(A) G̃(k) G(k)

H G̃(A) H

X̃α

ψα σ̃

πk

F̃ ρ

σ̃

Proof. In order for the relation σ̃ ◦ X̃α = ψα to hold, we must define σ̃ on the generators of

G̃(A) by

σ̃
(
X̃α(v)

)
:= ψα(v).

To show that σ̃ is well defined, we need to verify that the relations (R1) and (R2) hold,

replacing X̃α with ψα. For this, we imitate the proof of [Rap11, Proposition 4.2], starting

with (R1). To make the notation less burdensome, let us set f̃ = Vα(f). Let a, b ∈ f̃(Vα(k)),

and choose v, w ∈ Vα(k) such that f̃(v) = a and f̃(w) = b. Then

ψα(a) · ψα(b) =
(
ψα ◦ f̃

)
(v) ·

(
ψα ◦ f̃

)
(w) = (ρ ◦Xα)(v) · (ρ ◦Xα)(w)

= ρ
(
Xα(v) ·Xα(w)

)
= (ρ ◦Xα)(v + w) =

(
ψα ◦ f̃

)
(v + w)

= ψα

(
f̃(v) + f̃(w)

)
= ψα(a+ b).

Thus, we have two regular maps Vα(A)× Vα(A)→ H given by

(a, b) 7→ ψα(a) · ψα(b) and (a, b) 7→ ψα(a+ b)

that agree on the Zariski-dense subset f̃(Vα(k)) ⊂ Vα(A). So, they must coincide on all of

Vα(A). This verifies (R1). By a similar calculation, for any α, β ∈ Φk with α 6= ±β, we have

two regular maps Vα(A)× Vβ(A)→ H given by

(a, b) 7→
[
ψα(a), ψβ(b)

]
and (a, b) 7→

∏
i,j>0

ψiα+jβ

(
N
αβ
ij (a, b)

)
that agree on the Zariski-dense subset f̃(Vα(k)), and hence on all of Vα(A). Thus, (R2)

holds as well. This shows that σ̃ is well defined, and, by construction, satisfies σ̃ ◦ X̃α = ψα
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for all α ∈ Φk. Finally, for any α ∈ Φk and v ∈ Vα(k), we have

(σ̃ ◦ F̃ )
(
X̃α(v)

)
= σ̃

(
X̃α

(
f̃(v)

))
= ψα

(
f̃(v)

)
= (ρ ◦Xα)(v) = (ρ ◦ πk)

(
X̃α(v)

)
,

from which it follows that σ̃ ◦ F̃ = ρ ◦ πk.

2.5 Rationality of σ

We retain the notations of the previous section. Namely, we let G = SU2n(L, h), consider

an abstract representation ρ : G(k) → GLm(K), with K an algebraically closed field of

characteristic zero, and set H = ρ(G(k)). By Proposition 2.4.6, one can associate to ρ an

algebraic ring A together with a ring homomorphism f : k → A with Zariski-dense image.

Then in Proposition 2.4.8, we constructed a group homomorphism σ̃ : G̃(A) → H that lifts

ρ to a representation of the Steinberg group G̃(A). More precisely, the diagrams formed by

the solid arrows below commute.

G̃(k) G̃(A)

G(k) G(A)

H

F̃

πk
σ̃

πA

F

ρ

σ

(2.4)

(Here F and F̃ denote the group homomorphisms induced by f .) To complete the proof of

Theorem 2.0.1, it remains to show the existence, under the assumptions of the theorem, of a

morphism of algebraic groups σ : G(A) → H as indicated in the diagram. Note that before

this section, we have not made use of the assumption that RuH is commutative; it appears

in Lemma 2.5.5. Before addressing the algebraicity of σ, we show that H is connected and

perfect. In the following lemma, H◦ denotes the connected component of the identity of H.
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Lemma 2.5.1. The homomorphism σ̃ : G̃(A)→ H is surjective and the algebraic group H

is connected and perfect. That is, H = H◦ = σ̃
(
G̃(A)

)
= [H◦, H◦] = [H,H].

Proof. Let H ⊂ H be the (abstract) subgroup generated by the elements ψα(v) = σ̃ ◦ X̃α(v)

for all α ∈ Φk and v ∈ Vα(A), where ψα : Vα(A) → H are the regular maps introduced in

Proposition 2.4.6.

H = 〈ψα(v) : v ∈ Vα(A), α ∈ Φk〉

Since, by definition, the X̃α(v) generate G̃(A), their images generate σ̃
(
G̃(A)

)
, so H =

σ̃(G̃(A)). Now, A is connected by Remark 2.4.7, so Vα(A) is connected, and hence ψα(Vα(A))

is connected. Thus, it follows from [Bor91, Proposition 2.2] that H is Zariski-closed and

connected, so H ⊂ H◦. On the other hand, H contains ρ(E(k)), which is Zariski-dense in

H. So, H is Zariski-dense in H, and since H is closed, we see that H = H. This shows that

H = H = H◦. Furthermore, by Lemma 2.3.3, G̃(A) is equal to its commutator subgroup, so

the same is true for H = σ̃(G̃(A)).

In the remainder of the this section, we will complete the proof of Theorem 2.0.1 using

a strategy inspired by that of [Rap11, §5.6]. Namely, let Z(H) be the center of H, set

H = H/Z(H), and denote by ν : H → H the corresponding quotient map. We first show

that σ̃ gives rise to a group homomorphism σ : G(A) → H satisfying σ ◦ πA = ν ◦ σ̃, and

verify that σ is in fact a morphism of algebraic groups. Then, using the assumption that the

unipotent radical U = Ru(H) is commutative (together with our standing hypothesis that

char K = 0), we lift σ to the required morphism of algebraic groups σ : G(A)→ H.

Proposition 2.5.2. There exists a group homomorphism σ : G(A)→ H such that σ ◦ πA =

ν ◦ σ̃, where πA : G̃(A)→ G(A) is the canonical map.
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G̃(A) G(A)

H H

πA

σ̃ σ

ν

Proof. First, it follows from Remark 2.4.7 that G(A) = E(A). Moreover, since πA is sur-

jective, we have E(A) ∼= G̃(A)/ kerπA. Now, according to Proposition 2.3.2, ker πA is

central in G̃(A), and by Lemma 2.5.1, σ̃ : G̃(A) → H is surjective. Consequently, we have

σ̃(kerπA) ⊂ Z(H), and hence σ̃ induces a map σ : G(A) → H on the quotients satisfying

σ ◦ πA = ν ◦ σ̃. The following commutative diagram with exact rows depicts the situation.

1 kerπA G̃(A) G(A) 1

1 Z(H) H H 1

σ̃

πA

σ̃ σ

ν

Next we show that σ is algebraic.

Proposition 2.5.3. The group homomorphism σ : G(A) → H from Proposition 2.5.2 is a

morphism of algebraic groups.

Proof. Using [Bor91, Proposition 2.2] or [Sta20, Lemma 2.14(iv)], we can write G(A) = E(A)

as a product

G(A) =
∏
α∈Φk

Ueαα =
m∏
i=1

U
ei
αi

for some sequence of roots {α1, . . . , αm} ⊂ Φk, where Uαi = Xαi(Vαi(A)) is the root sub-

group associated with α ∈ Φk and each ei = ±1. Let X =
m∏
i=1

Aαi be a product of copies of

A indexed by the αi, and define a regular map s : X → G(A) by

s(a1, . . . , am) = Xα1(a1)e1 · · ·Xαm(am)em .
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The maps Xαi are all regular, so s is regular. Let us also define a regular map t′ : X → H

by

t′(a1, . . . , am) = ψα1(a1)e1 · · ·ψαm(am)em ,

where the ψαi are the morphisms from Proposition 2.4.6. Since each ψαi is regular, t′ is

regular. Set t = ν ◦ t′. One easily checks that σ ◦s = t. In particular, for any x1, x2 ∈ X, the

condition s(x1) = s(x2) implies t(x1) = t(x2). So, by [Rap13, Lemma 3.10], σ is a rational

map. Hence, there is an open subset of G(A) on which σ is regular. Then, applying [Rap13,

Lemma 3.12], we conclude that σ is a morphism of algebraic groups.

To conclude the argument, we will show that σ can be lifted to a morphism σ : G(A)→ H.

For this, we first discuss several preliminary statements, which are analogues in the present

setting of results established in [Rap11, §§5,6].

Let A be the algebraic ring associated with the representation ρ, and let J ⊂ A be

its Jacobson radical. As previously noted, A is a finite-dimensional K-algebra; in partic-

ular, A is artinian, and hence Jd = {0} for some d ≥ 1 (see [AM16, Proposition 8.4]).

Moreover, by the Wedderburn-Malcev theorem (see [Pie82, Theorem 11.6]), there exists a

semisimple subalgebra A ⊂ A such that A = A ⊕ J as K-vector spaces and A ∼= A/J as

K-algebras. We note that [Rap11, Proposition 2.20] implies that A ' K×· · ·×K (r copies).

Since G = SU2n(L, h) is K-isomorphic to SL2n, it follows that G(A) is a connected, simply

connected, semisimple algebraic group. For the next statement, we consider the canonical

homomorphism A→ A/J and set

G(A, J) = ker(G(A)→ G(A/J))

to be the corresponding congruence subgroup. We then have the following.

Lemma 2.5.4. Retain the notation above.
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(1) The congruence subgroup G(A, J) is nilpotent.

(2) We have a Levi decomposition G(A) = G(A, J)nG(A).

Proof. (1) Fixing an embedding G(A) ↪→ GL2n(AL), it is straightforward to show that

[
G(A, Ja), G(A, Jb)

]
⊂ G(A, Ja+b)

for any a, b ∈ Z≥1. Since J is a nilpotent ideal, our claim follows.

(2) Using the fact that G(A) is perfect (see Lemma 2.3.3), this statement is proved by the

same argument as [Rap11, Proposition 6.5].

Next, we note the following analogue of [Rap11, Proposition 5.5] — this result is proved

exactly as in that context, employing Lemma 2.5.1 in place of the corresponding statements

in loc. cit.. Following the discussion there, we say that H satisfies condition (Z) if

Z(H) ∩ U = {e}. As previously noted, the following lemma is is the first and only place

where the assumption on the commutativity of the unipotent radical U = Ru(H) is used.

Lemma 2.5.5. Let ρ,H be as above, and let U be the unipotent radical of H.

(1) If U = Ru(H) is commutative and charK = 0, then H satisfies (Z).

(2) If H satisfies (Z), then Z(H) is finite. If additionally charK = 0, then Z(H) is

contained in any Levi subgroup of H.

Proof. (1) Let H = U nS be a Levi decomposition of H. Since charK = 0, by [Bor91,

Remark II.7.3] U ∼= (Km,+) where m = dimU , and the action of S on U gives a ra-

tional representation of S on Km. By Weyl’s Theorem, this representation is completely

reducible (see [Hum72, Theorem 6.3] and [Hum75, Theorem 13.2], and note that these rely on
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charK = 0). Since H = [H,H] (Lemma 2.5.1) the representation cannot contain the trivial

representation, so U has no nonzero elements fixed by the S-action, so Z(H) ∩ U = {e}.

(2) Consider the quotient H/U , which is a reductive algebraic group that coincides with

its commutator. So by [Bor91, Corollary 14.2], Z(H/U) is finite. Since Z(H)∩U = {e}, the

restriction of the quotient map H → H/U is injective, so Z(H) is finite.

Now suppose charK = 0. Let S be a Levi subgroup of H, so H = U nS. Since Z(H) is

a finite abelian group, it is reductive, so some conjugate of it is contained in S (see [Mos56]).

Since Z(H) is central, it is itself contained in S.

The next statement completes the proof of Theorem 2.0.1.

Theorem 2.5.6. Assume that U = Ru(H) is commutative and charK = 0. Then there

exists a morphism of algebraic groups σ : G(A) → H making the diagram below (same as

2.4) commute.

G̃(k) G̃(A)

G(k) G(A)

H

F̃

πk
σ̃

πA

F

ρ

σ

(2.5)

Proof. (cf. [Rap11, Proposition 6.6]) Let G(A) = G(A, J)nG(A) be the Levi decomposition

from Lemma 2.5.4, and set

U = σ(G(A, J)), S = σ(G(A)), and S = (ν−1(S))◦,

where ν : H → H is the quotient map. Then H = U nS and H = U nS are also Levi

decompositions. By Lemma 2.5.5, we have Z(H) ⊂ S. Consequently, S = S/Z(H) and the

restriction ν|U : U → U is an isomorphism.
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Now, since the quotient map ν : H → H is a central isogeny, and, as we observed above,

G(A) is simply connected, it follows from [BT72, Proposition 2.24(i)] that there exists a

morphism of algebraic groups σS : G(A)→ S such that ν|S ◦ σS = σ|G(A).

S ⊂ H

G(A) S ⊂ H

ν|S
σS

σ

Define σU = ν|−1
U ◦

(
σ|G(A,J)

)
. Then

σ = (σU , σS) : G(A)→ H

is a morphism of algebraic groups such that ν ◦ σ = σ. It remains to show that σ makes the

diagram (2.4) commute. Define

χ : G̃(A)→ H, g 7→ σ̃(g)−1 · (σ ◦ πA)(g).

Since σ̃ and σ ◦ πA are group homomorphisms, so is χ. Also, by Proposition 2.5.2, we have

σ ◦ πA = ν ◦ σ̃, which yields ν ◦ σ ◦ πA = ν ◦ σ̃. Thus, the image of χ is contained in

ker ν = Z(H). Since G̃(A) coincides with its commutator subgroup, if the image is central

in H then we conclude that χ is trivial, and hence σ◦πA = σ̃. Finally, the equality σ◦F = ρ

follows from the commutativity of the rest of the diagram and the surjectivity of πk.
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Chapter 3

Group actions on varieties

In this chapter, we discuss applications of rigidity statements for Chevalley groups to obtain

rigidity statements for actions of elementary groups on algebraic varieties. We think of this

as an algebraic analog of the Zimmer program (see [Fis11]). Throughout the chapter, K

will denote an algebraically closed field of characteristic zero, and all algebraic groups and

varieties will be assumed to be K-defined. As in the preceeding chapter, we take a classical

approach of identifying algebraic groups and varieties with their K-points. An overline

such as H denotes the Zariski closure of H. For a quasi-projective variety X, we denote

by Bir (X) the group of birational morphisms X 99K X, and Aut (X) the subgroup of

biregular maps. For a K-algebra A, Aut (A) is its group of automorphisms. If X is affine,

the groups Aut(K[X]) and Aut(X) are naturally (anti-)isomorphic (see §3.1).

Definition 3.0.1. Let Γ be an abstract group and X an affine variety. An abstract action

of Γ on X is given by a group homomorphism ρ : G→ Aut(X). Equivalently, there is a map

Γ×X → X such that for every γ ∈ Γ, the map X → X, x 7→ ρ(γ)(x) is biregular.

Definition 3.0.2. Let G be an algebraic group and X an affine variety. An abstract action

of G on X is algebraic if the map G × X → X is a morphism of varieties (G × X is the

product variety)1. An action is almost algebraic if G contains a finite-index subgroup ∆

1It is tempting to characterize an algebraic action as one in which the associated group homomorphism
ρ : G → Aut(X) is algebraic, but this does not work because the automorphism group Aut(X) is “too big”
to be an algebraic group. Instead, Aut(X) has the structure of an ind-group, see [Sha81].
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such that ρ|∆ gives an algebraic action of ∆ on X.

In this chapter, we study a different but related form of ridigity to that in Conjecture

1.0.6. We prove rigidity statements of the form: under some hypotheses, an abstract action

of Γ on X agrees with an algebraic action of some algebraic group G on X, at least on

a finite-index subgroup ∆ ⊂ Γ and after passing through some abstract homomorphism

F : Γ → G, which may or may not be an embedding. We obtain two main results of this

type, both of which rely critically on [Rap19, Theorem 1.1], a rigidity result for Chevalley

groups over commutative rings in the spirit of the Borel-Tits conjecture.

We set some notation and terminology. Let Φ be a reduced irreducible root system of

rank ≥ 2 and let R be a commutative ring. The pair (Φ, R) is nice if 2 ∈ R× whenever Φ

contains a subsystem of type B2 and 2, 3 ∈ R× if Φ is of type G2. Let G be the corresponding

universal Chevalley-Demazure group scheme over Z, and let Γ = G(R)+ be the elementary

subgroup of G, the group generated by R-points of unipotent radicals of R-defined parabolic

subgroups. Let g : R → K be a ring homomorphism. A g-derivation is map δ : R → K

such that for any a, b ∈ R we have

δ(a+ b) = δ(a) + δ(b) δ(ab) = δ(a)g(b) + g(a)δ(b)

The set of all g-derivations is denoted Derg(R,K), and has a natural K-vector space struc-

ture. We say that R has property (Dn) if dimK Derg(R,K) ≤ n for every ring homorphism

g : R→ K. We focus on the case n = 1.

Example 3.0.3. A ring R of S-integers in a number field has (D1). See [Rap19, Lemma

6.1] and [Rap13, Lemma 4.7] for more general statements.

We recall and rephrase the notion of a standard description from §1. Let ρ : Γ →

GLm(K) be an abstract representation, where Γ = G(R)+ as above. We say ρ has a
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standard description if there exists a finite-dimensional commutative K-algebra A, a

ring homomorphism f : R → A with Zariski-dense image, a morphism of algebraic groups

σ : G(A)→ GLm(K), and a finite-index subgroup ∆ ⊂ Γ such that ρ|∆ = (σ ◦ F )|∆, where

F : G(R)→ G(A) is induced by f . Using this terminology, [Rap19, Theorem 1.1] says that

if G is the universal Chevalley group of a reduced irreducible root system Φ of rank ≥ 2, R

is a commutative ring with (D1), (Φ, R) is a nice pair, and Γ = G(R)+ then any abstract

homomorphism ρ : Γ→ GLm(K) has a standard description.

3.1 Elementary groups acting on affine varieties

In this section we give two closely related rigidity results for elementary subgroups of Cheval-

ley groups acting on affine varieties. We begin by recalling the correspondence between

actions on a variety and on its coordinate ring. For an affine variety X defined over K,

there is a natural anti-automorphism ηX : Aut(X) ∼= Aut(K[X]) which takes φ ∈ Aut(X)

to φ∗ ∈ Aut(K[X]), where φ∗(f) = f ◦φ. Let Γ be a group acting on X via r : Γ→ Aut(X).

Note that r induces an action r∗ : Γ→ Aut(K[X]) of Γ on Aut(K[X]) characterized by(
r∗(γ)f

)
x = f

(
r
(
γ−1)x)

for all x ∈ X and f ∈ K[X]. That is, r∗ = ηX ◦ r ◦ inv, where inv is the inversion

map γ 7→ γ−1. We will refer to r∗ as the associated action on K[X], or the coaction

induced by r. If we suppress r from the notation (as in e.g. Springer [Spr09, 2.3.5]) and

denote r(γ)x = γx and r∗(γ)x = γ∗x, this can be rewritten as (γ∗f)(x) = f(γ−1x). For

a comorphism ψ ∈ Aut(K[X]), denote the associated morphism by ψ∨ = η−1
X (ψ). Clearly

(φ∗)∨ = φ and (ψ∨)∗ = ψ. Given an action ρ : Γ→ Aut(K[X]), we define ρ∨ = η−1
X ◦ρ◦ inv

to obtain an action ρ∨ : Γ → Aut(X), given explicitly by ρ∨(γ) =
(
ρ
(
γ−1

))∨
. It is clear
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that (r∗)∨ = r and (ρ∨)∗ = ρ.

For a group Γ acting on a K-algebra A, we will say the action is locally finite-

dimensional if the orbit of any single element spans a finite-dimensional K-subspace of

A. Recall the following classical result (see [Spr09, Proposition 2.3.6] or [Bor91, Proposition

I.1.9]).

Proposition 3.1.1. If G is an affine algebraic group acting algebraically on an affine variety

X, the associated action on K[X] is locally finite-dimensional.

We think of the main rigidity statements from this section as a partial converses to this

statement. To formulate them, we set some notation. Let K be an algebraically closed field

of characteristic zero. Let Φ be a reduced, irreducible root system of rank ≥ 2 and G be the

corresponding universal Chevalley-Demazure group scheme over Z. Let R be a commutative

ring with (D1), such that (Φ, R) is a nice pair. Let Γ = G(R)+ be the elementary subgroup

of G.

Theorem 3.1.2. Let K,Φ, G,R,Γ be as above. Let X be an affine K-variety, and let Γ act

abstractly on X via r : Γ→ Aut(X), such that the associated action on K[X] is locally finite-

dimensional. Then there exists an algebraic group G, an algebraic action r̃ : G → Aut(X),

and a finite-index subgroup ∆ ⊂ Γ such that r|∆ = (r̃ ◦ F )|∆, where F : G(R) → G(A)

is an abstract group homomorphism arising from a ring homomorphism f : R → A with

Zariski-dense image.

Note that in the proof we will define G = F (Γ), so the composition r̃ ◦ F is well-defined.

Conceptually, the theorem describes how the abstract action of Γ is rigidified by agreeing

with an algebraic action of G. More precisely, the equality r|∆ = (r̃ ◦ F )|∆ says that the
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abstract action of Γ on X agrees with the algebraic action of G on X, after passing through

F and restricting to the finite-index subgroup ∆.

We explain how the theorem is a partial converse to Proposition 3.1.1. Suppose an

abstract group Γ acts abstractly on an affine K-variety X via r, an algebraic group G

acts algebraically on X via r̃, and there is a group homomorphism F : Γ → G such that

r|∆ = (r̃◦F )|∆ for some finite-index subgroup ∆ ⊂ Γ. By Proposition 3.1.1, the coaction of G

on K[X] is locally finite-dimensional; we claim it follows that that the coaction of Γ on K[X]

is also locally finite-dimensional. Indeed, fix a set {γ1, . . . , γn} of left coset representatives

for ∆ in Γ. Then for any f ∈ K[X] the orbit Γ.f can be written

Γ.f =
n⋃
i=1

{r(γ)f : γ ∈ γi∆} =
n⋃
i=1

{r(γiδ)f : δ ∈ ∆}

=
n⋃
i=1

r(γi) {r(δ)f : δ ∈ ∆} =
n⋃
i=1

r(γi) {r̃ (F (δ)) f : δ ∈ ∆}

Observe that {r̃ (F (δ)) f : δ ∈ Γ} ⊂ {r̃(g)f : g ∈ G} and the right hand set is finite-dimensional.

Thus the orbit Γ.f is a finite union of translations (via K-linear automorphisms r(γi)) of

these finite-dimensional subsets, so it is finite-dimensional.

Because of Example 3.0.3, Theorem 3.1.2 applies when R is a ring of S-integers in a

number field. However, we can also obtain this case more directly with stronger conclusions,

as detailed in the next theorem.

Theorem 3.1.3. Under the same hypotheses as Theorem 3.1.2, assume in addition that R is

a ring of S-integers in a number field. Then there exists an algebraic group G containing Γ,

an algebraic action r̃ : G → Aut(X), and a finite-index subgroup ∆ ⊂ Γ such that r̃|∆ = r|∆.

The remainder of this section is occupied with proving Theorems 3.1.2 and 3.1.3. We

begin with some remarks and lemmas.
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Remark 3.1.4. Let A be a finitely generated K-algebra with a locally finite-dimensional

action of a group Γ. Then A contains a finite-dimensional Γ-invariant subspace V which

generates A as a K-algebra. Concretely, take a finite generating set {f1, . . . , fn} of A and

let V be the sum of the K-spans of the orbits of the fi. By assumption each orbit is finite-

dimensional, so V has the desired properties. In particular, this implies that if X is an affine

variety and Γ acts on X via r such that the coaction r∗ on K[X] is locally finite-dimensional,

then the image r∗(Γ) ⊂ Aut(K[X]) is contained in GL(V ). As previously noted, Aut(X) and

Aut(K[X]) are not algebraic groups, but we avoid complications of ind-groups by ensuring

that everything happens inside the algebraic group GL(V ).

Remark 3.1.5. Let Γ be a group and V a finite-dimensional K-vector space. In this

situation, an action of Γ on V via ρ : Γ → GL(V ) is called a representation, and the

coaction is called the corepresentation. Every K-linear automorphism of V extends uniquely

to a K-algebra automorphism of the symmetric algebra Sym(V ); this gives an embedding

GL(V ) ↪→ Aut(Sym(V )). Hence an abstract representation ρ : Γ→ GL(V ) uniquely extends

to an abstract representation ρ : Γ→ Aut(Sym(V )) making the following diagram commute.

Aut(Sym(V ))

Γ GL(V )ρ

ρ

Next we prove a lemma which establishes that the corepresentation of an algebraic repre-

sentation is algebraic.

Lemma 3.1.6. Let G be an algebraic group, V a K-vector space of dimension d <∞, and

σ : G → GL(V ) an algebraic representation. Extend σ to a representation σ : G → Aut(B),

where B = Sym(V ) = K[Y ] and Y = AdK . Then the associated representation σ∨ : G →

Aut(Y ) is algebraic.
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Proof. Remark 3.1.5 ensures that such an extension of σ exists. Fix an isomorphism of

varieties φ : Y = AdK → V , and consider the following diagram.

G × Y Y

G × V V

σ∨

inv×φ φ

σ

We have abused notation slightly by having σ, σ∨ refer to maps G → GL(V ),G → Aut(Y )

and also to the associated maps G × V → V,G × Y → Y . For (g, y) ∈ G × Y we have

σ(g−1)(φ(y)) =
(
σ∨(g)

)∗
(φ(y)) = φ

(
σ∨(g)(y)

)
so the diagram commutes. Since σ is algebraic, G × V σ−→ V is regular, so we have written

σ∨ as the composition φ−1 ◦ σ ◦ (inv× φ) of three regular maps, so it is regular, i.e. G acts

algebraically on Y .

Lemma 3.1.7. Let Γ be an abstract group acting on affine varieties X, Y , and let θ : X → Y

be regular. Then θ is Γ-equivariant if and only if the comorphism θ∗ is Γ-equivariant. More

precisely, let Γ act on X via rX and on Y via rY , and fix γ ∈ Γ. Then one of the following

diagrams commutes if and only if the other also commutes.

X Y K[X] K[Y ]

X Y K[X] K[Y ]

rX

(
γ−1

) θ

rY

(
γ−1

)
r∗X (γ)

θ∗

r∗Y (γ)

θ θ∗

In the diagram on the right, r∗X , r
∗
Y are the respective coactions of rX , rY .

Proof. Straightforward calculation utilizing separatedness of X and Y .

Remark 3.1.8. Suppose G is an algebraic group with an abstract subgroup H and H ′ is a

finite-index abstract subgroup of H. Then H (Zariski closure) is an algebraic subgroup of
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G, and H ′ is a finite-index2 algebraic subgroup of H. Furthermore, if G is connected and

H = G, then H
′

= G (use [Bor91, Proposition I.1.2]).

We are now ready to prove Theorem 3.1.2. We start with an overview. First, we use

[Rap19, Theorem 1.1] to obtain A, f, F, σ,∆ as in the theorem, and define G = F (Γ). Then

we construct an algebraic action r̃ = σ∗ : G → Aut(Y ), where Y = AdK . Then we describe

a closed Γ-equivariant embedding θ : X ↪→ Y , and use it to show that r|∆ = (r̃ ◦ F )|∆.

Finally, we show that r̃ : G → Aut(Y ) leaves X invariant, so that we can think of r̃ as an

algebraic action r̃ : G → Aut(X).

Proof. Let V ⊂ K[X] be a finite-dimensional Γ-invariant K-subspace (Remark 3.1.4), let

d = dimK V , and let ρ be the restriction of the corepresentation r∗ to V .

ρ : Γ→ GL(V ) ρ(γ) = r∗(γ)

By [Rap19, Theorem 1.1], ρ has a standard description. That is, there exists a finite-

dimensional K-algebra A, a ring homomorphism f : R → A with Zariski-dense image, an

algebraic representation σ : G(A) → GL(V ), and a finite-index subgroup ∆ ⊂ Γ such that

ρ|∆ = (σ ◦ F )|∆, where F : G(R)→ G(A) is the (abstract) homomorphism induced by f .

Define G = F (Γ) (Zariski closure) and ρ̃ = σ|G . The diagrams below depict the situation.

The left diagram is commutative, and the outer triangle of the right diagram commutes.

G(R) G(A) GL(V ) G(R) G(A) GL(V )

Γ G Γ

∆ ∆

F σ F σ

F
ρ̃ ρ=r∗

ρ|∆ ρ|∆=(σ◦F )|∆=(ρ̃◦F )|∆

2H is the union (not necessarily disjoint) of closures of cosets of H′ in H, so
[
H : H′

]
≤
[
H : H′

]
.
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Let Y = AdK and B = Sym(V ) = K[Y ]. Next we construct an algebraic action r̃ : G →

Aut(Y ). Using Remark 3.1.5, the abstract action ρ : Γ → GL(V ) and algebraic action

ρ̃ : G → GL(V ) extend to actions on B.

ρ : Γ→ Aut(B)

ρ̃ : G → Aut(B)

These actions on the coordinate ring B = K[Y ] induce associated actions on Y .

ρ∨ : Γ→ Aut(Y )

(ρ̃)∨ : G → Aut(Y )

We set r̃ = (ρ̃)∨ : G → Aut(Y ). Because ρ̃ = σ is algebraic, r̃ is also algebraic by Lemma

3.1.6. Next we describe a Γ-equivariant closed embedding θ : X ↪→ Y . The inclusion V ↪→ B

induces a K-algebra homomorphism θ∗ : B → K[X] as follows. Fix a K-basis {t1, . . . , td}

of V , and set θ∗ to be the map

θ∗ : B → K[X] ti 7→ ti

Since B is generated as a K-algebra by the ti, this defines a K-algebra homomorphism. We

claim that θ∗ is Γ-equivariant; that is, the follow diagram commutes for all γ ∈ Γ.

B K[X]

B K[X]

θ∗

ρ(γ) r∗(γ)

θ∗

It is clear that this commutes starting with a generator ti ∈ B, since by definition ρ(γ) just

acts as r∗(γ) on V , and then since all the maps in the diagram areK-algebra homomorphisms,

they agree on all of B. As θ∗ is a surjective K-algebra homomorphism K[Y ] → K[X], it

is the comorphism of a closed embedding θ : X ↪→ Y . Since θ∗ is Γ-equivariant, so is θ by
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Lemma 3.1.7. Note that Γ acts on θ(X) ⊂ Y via ρ∨ = (r∗)∨ = r, so after identifying X

with its image θ(X) this is just the original action of Γ on X via r. In particular, ρ∨ = r as

maps Γ→ Aut(X)3.

Next, we show that r|∆ = (r̃ ◦ F )|∆. We have ρ|∆ = (ρ̃ ◦ F )|∆, so taking coactions we

obtain r|∆ = ρ∨|∆ = (ρ̃ ◦ F )∨|∆. Working through the definitions and a short calculation

shows that for all γ ∈ Γ, y ∈ Y, and α ∈ K[Y ],

α
([

(ρ̃ ◦ F )∨(γ)
]
(y)
)

= α
([

(r̃ ◦ F ) (γ)
]
(y)
)

Since Y is separated, it follows that (ρ̃ ◦ F )∨|∆ = (r̃ ◦ F )|∆, so we obtain r|∆ = (r̃ ◦ F )|∆

as desired.

We are not quite done, because r̃ maps G to Aut(Y ), not to Aut(X) as claimed. To

finish the proof, we need to show that G acting on Y via r̃ leaves X invariant. Consider the

restriction of the action of G on Y using r̃ to X.

G ×X → Y (g, x) 7→ r̃(g)(x)

We need to verify that r̃(g)(x) ∈ X. We know that if g ∈ F (∆) so that g = F (δ) for some

δ ∈ ∆, then r̃(g) = r(δ), and when ∆ acts on X via r, the image lands back in X. For a

fixed x ∈ X, since G acts algebraically, we get a regular (hence continuous) map

`x : G → Y g 7→ r̃(g)(x)

Note that G is connected by [Bor91, Proposition I.2.2], and since [F (Γ) : F (∆)] < [Γ : ∆] <

∞, it follows from Remark 3.1.8 that F (∆) is dense in G. Consider the image of G under

`x. Since `x is continuous, `x(G) = `x

(
F (∆)

)
= `x(F (∆)). Then because ∆ acting on X

3A potential point of confusion here is that ρ∨ can be either a map Γ→ Aut(X) or a map Γ→ Aut(Y ).
These are really the same map; the alternative interpretations just come from the fact that Γ leaves X
(identified with θ(X)) invariant inside Y .
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via r̃ ◦ F = r leaves X invariant, `x(G) = `x(F (∆)) ⊂ X = X. Thus G acting on Y via r̃

leaves X invariant, so we can view r̃ as a map G → Aut(X).

Using a very similar argument, we now prove Theorem 3.1.3. The only significant differ-

ence is that we substitute the use of [Rap19, Theorem 1.1] by the refined statement [Rap13,

Proposition 5.1] which gives more detailed information about the algebraic ring A and ring

homomorphism f obtained in the standard description of ρ, coming from the fact that R is

a ring of S-integers.

Proof. Let V ⊂ K[X] be a finite-dimensional Γ-invariant subspace, let d = dimK V , and let

ρ be the restriction of the corepresentation r∗ to V . Fix a K-basis {t1, . . . , td} of V , and

with it fix an isomorphism GL(V ) ∼= GLd(K) in the usual way, so we think of ρ as a map

Γ→ GLd(K).

By [Rap13, Proposition 5.1], ρ has a special standard description, where A is a product

of copies of K, and the ring homomorphism f : R → A has the form f = (f (1), . . . , f (m))

with each f (i) : R → K is the restriction of a (distinct) embedding L ↪→ K, and we

have ρ|∆ = σ|∆ where σ : G(A) → GLd(K) is a morphism of algebraic groups and ∆

is a finite-index subgroup of Γ. In particular, each f (i) is injective, so the induced map

F : G(R)→ G(A) is injective, allowing us to identify Γ with its image in G(A). Let G = Γ

(technically F (Γ)), which is an algebraic subgroup of G(A) (Remark 3.1.8).

From this point, the same arguments as in the proof of Theorem 3.1.2 suffice to complete

the proof. We let Y = AdK and B = Sym(V ) = K[Y ], and let r̃ : G → Aut(Y ) be the

coaction of σ|G , which is algebraic because σ is algebraic (Lemma 3.1.6). The obvious map

θ∗ : B = K[Y ]→ K[X] is a Γ-equivariant surjection of K-algebras, so it is the comorphism

of a closed Γ-equivariant embedding of affine varieties θ : X ↪→ Y (Lemma 3.1.7). Then
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one can show that r|∆ = r̃|∆, and that r̃ leaves (the image under θ of) X invariant in

the same way as in the proof of Theorem 3.1.2, so r̃ can be viewed as an algebraic action

r̃ : G → Aut(X).

The following diagram depicts the situation of Theorem 3.1.3.

G

Γ Aut(X)

∆

r̃

r̃|Γ

r

r|∆=r̃|∆

The upper and lower triangles obviously commute (simply function restriction), as does the

triangle involving r̃|Γ and r̃|∆. The content of Theorem 3.1.3 is that the outer triangle

commutes, though we note that the theorem makes no claim regarding equality of r̃|Γ and r

as maps on Γ, only that they agree on the subgroup ∆.

Example 3.1.9. We give a somewhat trivial example in which the locally finite-dimensional

hypothesis of Theorem 3.1.2 and Theorem 3.1.3 holds. Let X = A1
K be the affine line, whose

coordinate ring is the polynomial ring in one variable K[x]. Any K-algebra automorphism

of K[x] is a linear transformation, i.e. of the form x 7→ ax + b for some nonzero a ∈ K×

and some b ∈ K. Hence for any abstract group Γ acting on K[x], the Γ-orbits are finite-

dimensional. Then we can apply Theorem 3.1.3 with Γ = SLn(Z) (n ≥ 3) and conclude that

any action of SLn(Z) on A1
K coincides on a finite-index subgroup ∆ with an algebraic action

of an algebraic group G containing Γ.

Remark 3.1.10. It was pointed out to us by Friedrich Knop that in general, an action of

any abstract group Γ on an affine variety X which has locally finite-dimensional coaction is

close to being algebraic in the following sense. As in the arguments above, let V ⊂ K[X] be

56



a finite-dimensional Γ-invariant subspace which generates K[X] as an algebra, and consider

the corresponding closed embedding θ : X ↪→ V ∗. Then G = {g ∈ GL(V ∗) : g(X) = X} is a

Zariski-closed subgroup of GL(V ∗) acting algebraically on V ∗, leaving X invariant, and in

particular the action on X agrees with the original action of Γ on X.

3.2 Elementary groups acting on projective surfaces

Let Γ be an abstract group and X be a projective variety with Bir(X) the group of birational

automorphisms. In this section we study abstract homomorphisms α : Γ→ Bir(X). Because

an element of Bir(X) generally has an indeterminacy locus, such a map does not give a true

action of Γ on X; nevertheless, in such a situation we say that Γ acts birationally on X.

Let d ≥ 2 be an integer which is not a perfect square. In [CdC19, Theorem 9.1], Cantat

and de Cornulier give a rigidity result for SL2

(
Z[
√
d]
)

acting by birational maps on projec-

tive surfaces, showing that such an action is in some sense close to being an algebraic action

by biregular maps. More precisely, they prove that if

� Γ is a finite-index subgroup of SL2

(
Z[
√
d]
)

, and

� X is an irreducible projective surface over an algebraically closed field K, and

� α : Γ→ Bir(X) is an (abstract) group homomorphism with infinite image,

then charK = 0 and there exists a finite-index subgroup ∆ ⊂ Γ and a birational map

ϕ : Y 99K X such that

� Y is one of P2, the ruled surface Fm, or C × P1 for some curve C, and

� conjϕ maps α(Γ) into Aut(Y ), where conjϕ is the group isomorphism

conjϕ : Bir(X)→ Bir(Y ) ψ 7→ ϕ−1 ◦ ψ ◦ ϕ
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� There is a (unique) algebraic homomorphism β : G → Aut(Y ) such that β ◦ j|∆ =

conjϕ ◦α|∆, where G = SL2(K)×SL2(K) and j : SL2

(
Z[
√
d]
)
↪→ G is the embedding

arising from the two distinct embeddings Q(
√
d) ↪→ K. That is, the following diagram

commutes.

∆ G

α(Γ) Aut(Y )

α

j

β

conjϕ

(3.1)

We focus on the rigidity implications of the second and third points. The second says that,

after replacing X by a birational equivalent Y and conjugating by an appropriate ϕ, the

(abstract) birational action of Γ is actually an (abstract) biregular action. The third says

that this action by biregular maps is essentially algebraic, after passing to a finite index

subgroup ∆.

Cantant and de Cornulier’s proof has two main ingredients: [CdC19, Theorem 2] which

gives a criterion for the image of conjϕ to land in Aut(Y ), and [CdC19, Lemma 9.2] which

is a ridigity statement based on Margulis’ superrigidity. More precisely, the criterion in

Theorem 2 is the so-called property (FW); for our purposes, it is sufficient that Kazhdan’s

property (T) implies property (FW) ([CdC19, Remark 3.2]). In this section, we prove a

result parallel to the above rigidity result. Our approach combines the (FW) criterion with

a more algebraic rigidity statement, namely [Rap19, Theorem 1.1].

We also replace the ring Z[
√
d] with the class of rings R with property (D1) (note that

Z[
√
d] is such a ring by Example 3.0.3), and replace the group SL2

(
Z[
√
d]
)

with the elemen-

tary subgroup Γ = G(R)+ of a universal Chevalley group with root system Φ of rank ≥ 2

(SL2(R) is the elementary subgroup of the Chevalley group SL2 with root system Φ = A1

of rank 1). Ours is not a generalization, since we assume charK = 0, and more importantly

we require rankΦ ≥ 2 which excludes SL2. Our new result is as follows.
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Theorem 3.2.1. Let K,Φ, R,G,Γ be as in Theorem 3.1.2, and assume R is finitely generated

as a ring. Let X be an irreducible projective surface over K, and let α : Γ → Bir(X) be an

abstract homomorphism with infinite image. Then there exists a birational map ϕ : Y 99K X,

a finite-dimensional K-algebra A, a ring homomorphism f : R → A with Zariski-dense

image, a morphism of algebraic groups σ : G(A) → GLm(K), and a finite-index subgroup

∆ ⊂ Γ such that

� Y is one of P2, the ruled surface Fm, or C × P1 for some curve C, and

� conjϕ maps α(Γ) into Aut(Y ), and

� (conjϕ ◦α)|∆ = (σ ◦ F )|∆, where F : G(R)→ G(A) is induced by f : R→ A. That is,

the following diagram commutes (compare with diagram (3.1).).

∆ G(A)+

α(Γ) Aut(Y ) GLm(K)

F

α σ

conjϕ

Conceptually, Γ acts abstractly on X by birational maps, but if we replace X with

a suitable birational equivalent Y , then the abstract action of Γ on Y coincides with an

algebraic action of an algebraic group G, after restricting to a finite-index subgroup ∆ and

passing through an abstract homomorphism F .

Proof. Since R is finitely generated, Γ has Kazhdan’s property (T) (by [EJZK17, Theorem

1.1]), so Γ′ = α(Γ) also has (T), so Γ′ has (FW). Thus we can apply [CdC19, Theorem 2]

to Γ′ ⊂ Bir(X). This gives a birational map ϕ : Y 99K X where Y is one of P2,Fm, C × P1,

and conjϕ ◦α(Γ) ⊂ Aut(Y ). Because the possibilities for Y are sufficiently limited, Aut(Y )

is a linear algebraic K-group (see the discussion following [CdC19, Theorem 9.1]). Now we
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have an abstract group action

r := conjϕ ◦α : Γ→ Aut(Y ) γ 7→ r(γ) = ϕ−1 ◦ α(γ) ◦ ϕ

Since Aut(Y ) is linear, composing with an inclusion map we get a linear (abstract) repre-

sentation r : Γ→ GLm(K). Then using [Rap19, Theorem 1.1], r has a standard description,

so there is a finite dimensional K-algebra A, a ring homomorphism f : R→ A with Zariski-

dense image, a morphism of algebraic groups σ : G(A) → GLm(K), and a finite-index

subgroup ∆ ⊂ Γ such that (conjϕ ◦α)|∆ = (σ ◦ F )|∆, where F : Γ → G(A) is the map

induced by f .

We depict the resulting equality of the previous result some commutative diagrams. Philo-

sophically, we would like to factor the abstract homomorphism α as a composition σ ◦ F .

Γ Bir(X)

G(A)

α

F ?

However, we cannot quite do this. Instead, we pass to a birational equivalent Y via conju-

gation by ϕ, and restrict to the finite-index subgroup ∆, extending the above picture.

∆ Γ Bir(X) Aut(Y ) GLm(K)

G(A)
F |∆

α

F

conjϕ

?
σ

We can also depict this with the diagrams below. All arrows are group homomorphisms,

though only σ is algebraic.

∆ G(A)+ GLm(K)

Γ Aut(Y )

Bir(X) Bir(Y )

F σ

r

α

conjϕ
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∆ Γ G(A) GLm(K)

Γ Bir(X) Bir(Y ) Aut(Y )

F σ

α conjϕ

To emphasize, the composition (σ ◦F )|∆ lands in the subgroup Aut(Y ) ⊂ GLm(K), and the

composition r|∆ = (conjϕ ◦α)|∆ also lands the subgroup Aut(Y ) ⊂ Bir(Y ), so the equality

r|∆ = (σ ◦ F )|∆ is an equality of maps ∆→ Aut(Y ).
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Chapter 4

Future directions

In this chapter, we discuss future directions for extending the methods of §2 and their

potential as related to the Borel-Tits conjecture. In particular, we hope that eventually our

techniques can resolve the Borel-Tits conjecture for all quasi-split groups of isotropic rank

≥ 2.

In §4.1, we discuss the history and generalizations of a foundational aspect of the methods

of §2, namely the construction of the algebraic ring A associated to an abstract representation

and its role in the analysis of the abstract representation. The main difficulty, we which have

resolved for the special unitary groups considered in §2, is how to handle multi-dimensional

root subgroups.

In §4.2, we revisit the ideas of §2.3, especially those related to centrality of the kernel

kerπA and generalizations of Proposition 2.3.2. We describe an approach to establishing

rationality of σ via different methods than that in §2.5. In particular, we bypass the technical

hypothesis on Ru(H) required for Lemma 2.5.5, but replace it by the conjectural hypothesis

that G̃(A) is generated by Steinberg symbols, so we also discuss reasons to expect that G̃(A)

is generated by symbols.
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4.1 Algebraic rings associated to abstract representa-

tions

In this section, we discuss future research directions for algebraic rings associated to abstract

representations. In §2.4, we described an algebraic ring associated to an abstract represe-

tation ρ : SU2n(L, h)(k) → GLm(K), essentially by imitating the methods of [Rap11] for

associating an algebraic ring to an abstract representation of a Chevalley group. We pro-

vide more historical background on this construction and discuss aspects of this construction

which may generalize to other groups.

The earliest form of this construction appeared in a 2009 note of Kassabov and Sapir

[KS09]. Let R be an associative ring with unity, and ELn(R) the classical elementary sub-

group of GLn(R) with n ≥ 3. Let ρ : ELn(R) → GLm(K) be an abstract representation,

where K is an algebraically closed field. Let xij(r) ∈ ELn(R) be the elementary matrix

with r in the (i, j) entry, 1’s on the diagonal, and zeros elsewhere. Then consider the root

subgroup U13 = x13(R), and let V = ρ(U13) be the Zariski closure of ρ(U13). It is clear that

V is an abelian group under matrix multiplication. Less obviously, one can put an algebraic

ring structure on V , with the multiplication defined by

u1 × u2 :=
[
w23u1w

−1
23 , w12u2w

−1
12

]
where w12, w23 are the following matrices representing elements of the Weyl group of GLn(R)

(if n ≥ 3 extend w12, w23 with 1’s on the diagonal as needed).

w12 =

0 −1 0
1 0 0
0 0 1

 w23 =

1 0 0
0 0 1
0 −1 0


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Verifying that the multiplication as defined above gives a map V × V → V utilizes the

Steinberg commutator relation [x12(r), x23(s)] = x13(rs) and additional relations describ-

ing how one can conjugate by wij to move between root subgroups, such as the relation

w12x13(r)w−1
12 = x23(r).

We summarize this construction more conceptually. Given an abstract representation

ρ of ELn(R), consider the 1-parameter subgroup ρ(U13) inside GLm(K). After taking the

Zariski closure to obtain V , we put an algebraic ring structure on V in which addition is

matrix multiplication, and multiplication is obtained by the action of the Weyl group and

the Steinberg commutator relations.

Later, Igor Rapinchuk generalized this construction by replacing ELn(R) with the ele-

mentary subgroup of any simply-connected Chevalley group. Let Φ be a reduced, irreducible

root system and G be the associated simply-connected Chevalley group, and let G+ ⊂ G(R)

be the elementary subgroup. Assume that (Φ, R) is a nice pair, and let ρ : G+ → GLm(K)

be an abstract representation. Then one can associate an algebraic ring to ρ in much the

same way as the construction of Kassabov and Sapir: choose a root α1, take the root sub-

group Uα ⊂ G+, and let A = ρ(Uα) be the Zariski closure of ρ(Uα). As before, addition

in A is given by matrix multiplication in GLm(K). Then define multiplication in A using

Steinberg commutator relations and Weyl group conjugations in G+. If Φ is a type A root

system, the same relations used by Kassabov and Sapir suffice. If Φ is type B or C, the

assumption that (Φ, R) is a nice pair allows for use of 2 as a denominator in the relevant

calculations2, and similarly if Φ is type G2 both 2 and 3 appear as denominators. After

analyzing abstract representations of split groups, Rapinchuk further extended this method

1The construction appears to depend on an arbitrary choice of root α, but the symmetry of Φ implies
that the computations should work equally well for any choice of root.

2See Equation 2.3 and the map π in Lemma 2.4.2 for an example of 2 appearing as a denominator.
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to analyze groups of the form SLn,D where D is a division algebra ([Rap13]), essentially

reusing the construction for type A root systems.

Our main contribution in extending this construction is to consider abstract represen-

tations of a group with 2-dimensional root subgroups. In particular, we have analyzed

G = SU2n(L, h) which has a mix of 1-dimensional and 2-dimensional root subgroups, and

described how to associate an algebraic ring to an abstract representation of G(k). Our

construction is based on the following general idea: according to the structure theory of

reductive groups, a group G contains a split subgroup G0 whose root system has the same

type as the relative root system of G ([CGP15, Theorem C.2.30]). For our arguments, we

exhibited such a subgroup G0(k) explicitly (2.2.5). Restricting an abstract representation

ρ : G(k) → GLm(K) to G0(k), we then associate an algebraic ring A to ρ|G0(k) using the

construction summarized above. Through explicit computations, we are then able to in-

corporate the additional components in the 2-dimensional root subgroups into the picture,

which ultimately shows that A is sufficient for the analysis of the representation ρ on the

whole group G(k).

This strategy naturally leads to the following question, whose resolution will significantly

expand the scope of the techniques developed in this thesis: given a k-isotropic group G

of k-rank ≥ 2 and an abstract representation ρ : G(k) → GLm(K), can the additional

components in the root groups of dimension ≥ 2 be incorporated in such a way that the

algebraic ring A constructed from the restriction ρ|G0(k) to a split subgroup suffice for the

analysis of ρ?
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4.2 Steinberg symbols

Let G = SU2n(L, h) as in §2, and let R be a k-algebra. We discuss the Steinberg group

G̃(R) in more detail, particularly the canonical map πR : G̃(R) → G(R) and its kernel.

We showed in Proposition 2.3.2 that under suitable hypotheses on R, the kernel is central

in G̃(R). Although the argument depended on certain specific features of the Steinberg

commutator relations of SU2n(L, h), we are confident that this argument can be carried out

in more generality, or at least in many other specific cases. In particular, we conjecture that

if G is an isotropic quasi-split reductive group with associated Steinberg group G̃ (defined

by Stavrova [Sta20]), and R is a product of local rings, then kerπR is central in G̃(R). We

anticipate this being relevant for future analysis of rigidity for other quasi-split groups.

Knowing that kerπR is central was enough for §2, but we would like to understand

kerπR in terms of generators. For split groups over fields, the answer is given by Matsumoto’s

theorem, which says that the kernel, known as K2(R) in this context, is generated by symbols

with only a short list of relations needed to give a presentation. This generating set is critical

for the methods of [Rap11], [Rap19] in verifying the Borel-Tits conjecture for split groups.

The work of Deodhar [Deo78] extends the ideas of Matsumoto’s theorem to quasi-split groups

over fields; that is, Deodhar shows that the general quasi-split version of ker πR is generated

by symbols for a field R. We believe methods of Deodhar may extend to show that kerπR

is generated by symbols when G is quasi-split and R is a local ring (or product of local

rings). In particular, if Deodhar’s main result on generation of ker πR could be extended

from fields to products of local rings, then we could obtain Theorem 2.0.1 in a more direct

way, bypassing the hypothesis on commutativity of the unipotent radical. We describe this

more direct method in the remainder of this section.
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We begin by explicitly describing Steinberg symbols for SU2n(L, h). Let R be a k-algebra.

For α ∈ Φk, we have a vector k-group scheme Vα, so Vα(R) has the structure of an additive

group. Furthermore, we know the dimension is one for long roots and two for short roots.

Recall that L = k(
√
d) and write Vα(R) as

Vα(R) =

R α short

R⊕R
√
d α long

This allows us to view Vα(R) as not just an additive group, but as ring. This agrees with

our previous identification of Vα(k) ∼= k ⊕ k
√
d ∼= L in the case where R = k and α is long.

Now that we have a ring structure on Vα(R), we can consider its group of units Vα(R)×,

and define

wα(v) = Xα(v) ·X−α
(
−v−1

)
·Xα(v)

hα(v) = wα(v) · wα(1)−1

for v ∈ Vα(R)×. Note that Lemma 2.2.8 still applies to these more generally defined wα(v)

and hα(v) by the same arguments. We also generalize these elements to the Steinberg group

G̃(R) by setting

w̃α(v) = X̃α(v) · X̃−α
(
−v−1

)
· X̃α(v)

h̃α(v) = w̃α(v) · w̃α(1)−1

Let πR : G̃(R)→ G(R) be the canonical map, and let α ∈ Φk. It is clear that πR
(
w̃α(v)

)
=

wα(v) and πR

(
h̃α(v)

)
= hα(v). It is immediate from the definitions that

w̃α(v) · w̃α(−v) = 1 w̃α(v)−1 = w̃α(−v) h̃α(1) = 1

Applying πR, versions of the above equations also hold in G(R). Finally, we define

cα(u, v) = h̃α(u) · h̃α(v) · h̃α(uv)−1
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for u, v ∈ Vα(R)×. The elements cα(u, v) are called Steinberg symbols. As an immediate

consequence of Lemma 2.2.8, cα(u, v) ∈ kerπR. Our definition of Steinberg symbols agrees

with Deodhar’s description of elements bβ(λ, µ) in [Deo78, §2.32]. One can also compare

with the unitary Steinberg symbols in Hahn and O’Meara in [HO89, §5.5A, §5.5F, §5.6A].

Deodhar [Deo78] shows that, in the case where R = k is a field (and G is any quasi-split

group), πk : G̃(k) → G(k) is the universal central extension (Theorem 1.9) and the kernel

of πk is generated by symbols cα(u, v) where α is a single fixed long root and u, v ∈ k×

(Theorem 2.1). Also see [HO89, 5.6.4] for a result of similar flavor, regarding generation

of a unitary Steinberg group by unitary Steinberg symbols. This leads us to formulate the

following conjecture concerning the Steinberg group of SU2n(L, h).

Conjecture 4.2.1. Let R be a k-algebra which is a product of local rings (e.g. the ring A

from 2.4.6). Then kerπR is generated by symbols cα(u, v) for α ∈ Φk and u, v ∈ Vα(R)×.

A stronger version of the conjecture might assert that ker πR is generated by symbols

cα(u, v) for some particular fixed long root α, but this stronger statement is unnecessary for

our applications. More generally, one might conjecture that for G a quasi-split group and R

as in the conjecture that kerπR is generated by Steinberg symbols. In the remainder of this

section, we show how to obtain a similar result to Theorem 2.0.1 in which we remove the

technical hypothesis on commutativity of the unipotent radical Ru(H) but replace it by the

assumption that ker πR is generated by symbols. The result is as follows.

Theorem 4.2.2. Let L = k(
√
d) be a quadratic extension of a field k of characteristic zero,

and for n ≥ 2, set G = SU2n(L, h) to be the special unitary group of a (skew-)hermitian

form h : L2n × L2n → L of maximal Witt index. Let K be an algebraically closed field of
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characteristic zero and consider an abstract representation

ρ : G(k)→ GLm(K).

Set H = ρ(G(k)) to be the Zariski closure of the image of ρ. If Conjecture 4.2.1 holds, then

there exists a commutative finite-dimensional K-algebra A, a ring homomorphism f : k → A

with Zariski-dense image, and a morphism of algebraic K-groups σ : G(A) → H such that

ρ = σ ◦ F , where F : G(k)→ G(A) is the group homomorphism induced by f .

To prove Theorem 4.2.2, we reuse results used for Theorem 2.0.1 through the end of

§2.4. Then we use Conjecture 4.2.1 to descend σ̃ to a map on G(A). The arguments for

rationality of σ are essentially the same as in Proposition 2.5.3. We recall the notation and

setup of §2.1-§2.4. We have the special unitary group G = SU2n(L, h) with root subgroup

maps Xα, an algebraically closed field K of characteristic zero, an abstract homomorphism

ρ : G(k)→ GLm(K), and set H = ρ(G(k)). Associated to G is the Steinberg group G̃ and its

generators X̃α(v). In Proposition 2.4.6, we constructed a K-algebra A, a ring homomorphism

f : k → A, and regular maps ψα : Vα(A) → H, and in Proposition 2.4.8 we constructed a

group homomorphism σ̃ : G̃(A)→ H making the following diagram commute.

G̃(k) G(k)

G̃(A) H

πk

F̃ ρ

σ̃

(4.1)

The map F̃ is induced by f ; explicitly F̃ is given by X̃α(v) 7→ X̃α(f(v)).

Lemma 4.2.3. Retain the notation above and let a, b ∈ Vα(A)×. Then cα(a, b) ∈ ker σ̃.

Proof. As in the proof of Proposition 2.4.8, we denote Vα(f) = f̃ . Consider u, v ∈ Vα(k)×,

and write out cα

(
f̃u, f̃v

)
as a product of factors of the form X̃α

(
f̃u
)
, X̃α

(
f̃v
)

, then apply
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the definition of F̃ to obtain cα

(
f̃u, f̃v

)
= F̃ (cα(u, v)). Applying the commutative square

(4.1), we obtain

σ̃
(
cα(fu, fv)

)
= τ̃ ◦ F̃

(
cα(u, v)

)
= ρ ◦ πk

(
cα(u, v)

)
= ρ(1) = 1

Thus cα

(
f̃u, f̃v

)
∈ ker σ̃. Now consider the regular map

θ : Vα(A×)× Vα(A×)→ H (a, b) 7→ σ̃
(
cα(a, b)

)
Since θ vanishes on the dense open subset f(Vα(k)×) × f(Vα(k)×) ⊂ Vα(A)× × Vα(A)×

and is regular, θ vanishes everywhere, hence σ̃ vanishes on symbols cα(a, b) for all a, b ∈

Vα(A×).

Note that the previous lemma does not depend on Conjecture 4.2.1. However, combined

with the conjecture, it allows us to prove the following, which we view as a unitary version

of [Rap13, Proposition 3.7].

Proposition 4.2.4. Retain the setup above, and assume Conjecture 4.2.1 holds. Then there

exists an abstract group homomorphism σ : G(A)→ H making the diagram commute.

G̃(k) G̃(A)

G(k) G(A)

H

F̃

πk
σ̃

πA

F

ρ

σ

Proof. By Lemma 4.2.3, σ̃ vanishes on unitary Steinberg symbols cα(u, v) and by Conjecture

4.2.1, these symbols generate G̃(A). So σ̃ vanishes on all of kerπA, and hence induces a map

on the quotient G̃(A)/ kerπA → H. Since πA is surjective, the quotient is exactly G(A), and

we obtain the claimed map σ. Commutativity of the lower triangle is a consequence of the
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fact that the rest of the diagram commutes and that πk is surjective, just as in the proof of

Theorem 2.5.6.

To complete the proof of Theorem 4.2.2, we use similar arguments as in Proposition 2.5.3

to show that σ is algebraic.

Proposition 4.2.5. The map σ of Proposition 4.2.4 is a morphism of algebraic groups.

Proof. We write G(A) as a product of root subgroups

G(A) =
m∏
i=1

U
ei
i

with ei = ±1, and let

X =
m∏
i=1

Ai

Then define s exactly as in Proposition 2.5.3, and define

t : X → H t(a1, . . . , am) = ψα1(a1)e1 · · ·ψαm(am)em

where ψαi are the maps from Proposition 2.4.6. It is easy to verify that σ ◦s = t; then apply

[Rap11, Lemma 3.10] with Y = G(A), Z = H to conclude that σ is rational. Finally, apply

[Rap11, Lemma 3.12] to conclude that σ is a morphism of algebraic groups.
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Appendix A

Algebraic rings

In this appendix, we briefly summarize the theory of algebraic rings necessary for our analysis

in §2.4 and §2.5. We also include some material expanding the discussion of the algebraic

ring Bα introduced in §2.4. Historically, algebraic rings were first studied systematically

by Greenberg [Gre64]. Much of the notation and terminology here draws from the later

development by I. Rapinchuk [Rap11, §2]. For this whole section, K denotes an algebraically

closed field.

An algebraic ring is an affine K-variety A with a ring structure, such that addition and

multiplication are regular maps1. In particular, (A,+) is a commutative algebraic group.

A homomorphism of algebraic rings is a ring homomorphism which is also a regular

morphism of varieties. If the source and target are algebraic rings with identity, we require

a homomorphism to send the identity to the identity.

Example A.1. Let B be a finite-dimensional K-algebra. Giving B the Zariski topology on

Kn (where n = dimK B), addition and multiplication in B are regular so B is an algebraic

ring. (One culmination of the theory is that in characteristic zero that all connected algebraic

rings are of this form.)

An algebraic ring is commutative if multiplication is commutative. When we want to

emphasize that a particular ring lacks an algebraic ring structure or we wish to temporarily

1The affine assumption can be omitted, but this adds very little to the theory, since by [Rap11, Theorem
2.21] any irreducible variety with a regular ring structure must be affine.
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ignore the algebraic structure on a given algebraic ring, we will call it an abstract ring. By

[Rap11, Lemma 2.8], every commutative algebraic ring is semilocal as an abstract ring.

A commutative algebraic ring A is connected if it is connected as a variety2. By [Rap11,

Lemma 2.9], in a connected algebraic ring A, every right and left ideal is connected and

Zariski-closed, hence A is artinian as an abstract ring. We denote the connected component

of 0 ∈ A by A◦, and note that this is an ideal of A. Following [Rap11], we denote the

following property by (FG).

(FG) A◦ is finitely generated as an ideal of A

If A satisfies (FG), then A◦ is an artinian algebraic ring with identity, and A decomposes as a

direct sum of algebraic rings A = A◦⊕C where C is a finite ring isomorphic to A/A◦ ([Rap11,

Lemma 2.12]). We also have the following criterion not depending on the characteristic: if

R is an abstract Noetherian ring and f : R → A is an abstract ring homomorphism such

that f(R) = A, then A satisfies (FG). In the same situation, if R is not only a Noetherian

ring but an infinite field, then the finite ring C in the decomposition of A must be trivial;

in other words, if R is an infinite field then A = A◦ is connected.

We also have a more general decomposition statement, not depending on (FG). Any

algebraic ring A is a direct sum A′ ⊕ C, where A′ is an algebraic subring of A consisting

of all unipotent elements in (A,+) and C is a finite ring consisting of semisimple elements

([Rap11, Lemma 2.15]). In particular, this decomposition shows that if A is connected, it

consists entirely of unipotent elements.

We already mentioned the simplest examples of algebraic rings – finite dimensional K-

algebras with the usual Zariski topology on Kn. An algebraic ring A is said to come from

2Note that in some contexts, a ring A is called connected if specA with the Zariski topology is connected,
or equivalently A contains no nontrivial idempotents. This notion of connectedness is not equivalent to the
one we use.
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an algebra if there exists a finite-dimensional K-algebra B and an isomorphism of algebraic

rings A ∼= B. More generally, an algebraic ring A virtually comes from an algebra if

there is a finite-dimensional K-algebra B and a finite ring C such that A ∼= B ⊕ C. If

charK = 0 (as always, algebraically closed), then every algebraic ring A virtually comes

from an algebra ([Rap11, Proposition 2.14]).

Let A be a connected algebraic ring over an algebraically closed field K of characteristic

zero, so A virtually comes from an algebra. Since A is connected, the finite ring summand

C in the decomposition A ∼= A′ ⊕C must be trivial, so in fact A comes from an algebra. In

other words, there is a equivalence of categories
Obj : connected algebraic rings over K

Mor : homomorphisms of algebraic rings

 ∼=


Obj : finite-dimensional K-algebras

Mor : K-algebra homomorphisms


This categorical description is due to Greenberg [Gre64, Proposition 5.1].

To finish this discussion, we mention another statement which uses an abstract ring

homomorphism f : R→ A to gain information about A, coming from [Rap11, Lemma 3.2].

Let A be an affine variety with two regular maps α : A× A→ A and µ : A× A→ U , such

that (A,α) is a commutative algebraic group. Let R be an abstract commutative unital ring

and f : R→ A a map such that f(R) = A and

f(t1 + t2) = α
(
f(t1), f(t2)

)
f(t1t2) = µ

(
f(t1), f(t2)

)
for all t1, t2 ∈ R. In other words, f is an additive group homomorphism (R,+) → (A,α)

and a multiplicative map (R,×)→ (A, µ). If such f exists, then (A,α, µ) is a commutative

algebraic ring with identity.

75



Agreement of algebraic ring structures

In the remainder of this section, we return to the situation of §2.4, immediately following

Lemma 2.4.2. We describe an algebraic ring structure on Bα1−α3 and verify that the map

π from the lemma is an isomorphism of algebraic rings.

The setup is as follows: L/k = k(
√
d)/k is a quadratic extension, G is the special unitary

group SU2n(L, h) with relative root system Φk = Cn, and ρ : G(k)→ GLm(K) is an abstract

representation with K algebraically closed of characteristic zero. Let H = ρ(G(k)) be the

Zariski closure. For a short root α ∈ Φk, the root space is Vα(k) = k2 ∼= k ⊕ k
√
d ∼= L and

the root subgroup Xα(Vα(k)) is 2-dimensional (over k). We define

Bα = ρ(Xα(k
√
d))

and a map gα : k → Bα by gα(u) = ρ(Xα(u
√
d)). We focus on the particular short root

α = α1 − α3 and denote B = Bα. Let β = −2α3, and recall that in Lemma 2.4.2 we gave

an isomorphism of varieties π : B → Aβ such that π ◦ gα = fβ . We wish to make B into

an algebraic ring. Addition in B is straightforward to define; it is just matrix multiplication

inside GLm(K). More precisely, define

add : B ×B → H add(x, y) = xy

where xy is matrix multiplication, and note that for all s, t ∈ k we have

add
(
gα(s), gα(t)

)
= gα(s+ t)

Since gα(k) is Zariski-dense in B, this shows that add(B × B) ⊂ B hence (B, add) is an

abelian algebraic group. It remains to describe multiplication in B. Let

h = h2α−β

(
1

2

)
h′ = h2α−β

(
− 1

2d

)
w = w2α−β(1)
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For b ∈ B, set

b′ = ρ(h′) · b · ρ(h′)−1

b′′ = ρ(w) · b′ · ρ(w)−1

Then define

mult : B ×B → H mult(a, b) = ν
( [
a, b′′

] )
where ν = π−1 is the inverse map of π from Lemma 2.4.2.

ν : Aβ → B, ν(y) = ρ(h) ·
[
y, gα−β(−1)

]
·
[
y, gα−β(1)

]−1 · ρ(h)−1

We claim that for all s, t ∈ k,

mult
(
gα(s), gα(t)

)
= gα(st) (A.1)

Assuming this holds, it follows that mult(gα(k)× gα(k)) ⊂ gα(k), and since gα(k) is Zariski-

dense in Bα, it further follows that mult(B×B) ⊂ B, so mult is a regular map B×B → B.

Then applying [Rap11, Lemma 3.2] to gα : k → B makes (B, add,mult) into an algebraic

ring. So to complete the description of the algebraic ring structure on B, it suffices to verify

equation (A.1).

Let s, t ∈ k and u, v ∈ L. We want to simplify mult
(
gα(s), gα(t)

)
= ν

( [
gα(s), gα(t)′′

] )
,

so we begin with gα(t)′′. We have the following relation, which appeared in a less general

form in the proof of Lemma 2.4.2.

h2α−β(u) ·Xα(2v) · h2α−β(u)−1 = Xα(2vu)

In that lemma, we used the case u = 1 which gives

h ·Xα(2v) · h−1 = Xα (v) (A.2)
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We will need this relation again, and also the case u = − 1
2d which gives

h′ ·Xα
(
t
√
d
)
· (h′)−1 = Xα

(
−t
√
d

2d

)
(A.3)

One particular instance of equation (2.2) is

w ·Xα(v) · w−1 = Xβ−α(−v) (A.4)

Combining equations (A.3) and (A.4), we obtain

gα(t)′′ = ρ(w) · ρ(h′) · ρ
(
Xα(t

√
d)
)
· ρ(h′)−1 · ρ(w)−1

= ρ
(
w · h′ ·Xα(t

√
d) · (h′)−1 · w−1

)
= ρ

(
Xβ−α

(
−t
√
d

2d

))

Our next goal is to simplify the commutator
[
gα(s), gα(t)′′

]
. From Lemma 2.2.4 (2), we have

the commutator relation

[
Xα(u), Xβ−α(v)

]
= Xβ

(
− Tr(uv)

)
for u, v ∈ L. Note that

Tr

(
s
√
d,−t

√
d

2d

)
= −st

so [
Xα

(
s
√
d
)
, Xβ−α

(
−t
√
d

2d

)]
= Xβ(st) (A.5)

Using equation (A.5), we can simplify
[
gα(s), gα(t)′′

]
.

[
gα(s), gα(t)′′

]
=

[
ρ
(
Xα

(
s
√
d
))

, ρ

(
Xβ−α

(
−t
√
d

2d

))]

= ρ

[
Xα

(
s
√
d
)
, Xβ−α

(
−t
√
d

2d

)]

= ρ
(
Xβ(st)

)
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Using the above expression for
[
gα(s), gα(t)′′

]
, we can write mult

(
gα(s), gα(t)

)
as

= ν
( [
gα(s), gα(t)′′

] )
= ν

(
ρ
(
Xβ(st)

) )
= ρ(h) ·

[
ρ
(
Xβ(st)

)
, gα−β(−1)

]
·
[
ρ
(
Xβ(st)

)
, gα−β(1)

]−1 · ρ(h)−1

= ρ (h) ·
[
ρ
(
Xβ(st)

)
, ρ
(
Xα−β(−

√
d)
)]
·
[
ρ
(
Xβ(st)

)
, ρ
(
Xα−β(

√
d)
)]−1

· ρ
(
h−1

)
= ρ
(
h ·
[
Xβ(st), Xα−β(−

√
d)
]
·
[
Xβ(st), Xα−β(

√
d)
]−1
· h−1

)
The product of two commutators appearing in this expression simplifies via the following

relation from the proof of Lemma 2.4.2.

[
Xβ(st), Xα−β

(
−
√
d
)]
·
[
Xβ(st), Xα−β

(√
d
)]−1

= Xα

(
2st
√
d
)

(A.6)

Using equations (A.6) and (A.2) we can complete the calculation.

mult
(
gα(s), gα(t)

)
= ρ

(
h ·Xα(2st

√
d) · h−1

)
= ρ
(
Xα(st

√
d)
)

= gα(st)

This completes the description of the algebraic ring structure on B = Bα = Bα1−α3 .

Remark A.2. In §2.4, we used the results of [Rap11] for the split group G0(k) to put an

algebraic ring structure on Aβ = A−2α1
, and the ring structure on Bα was not relevant

for any of the results of that section. However, this raises the natural question: what is

the relationship between the ring structures on Aβ and Bα, in view of the isomorphism of

varieties in Lemma 2.4.2?

Denote addition and multiplication in Bα by +
Bα
, ×
Bα

respectively and similarly denote

the operations in Aβ by +
Aβ

, ×
Aβ

. We claim that π is, in fact, an isomorphism of algebraic
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rings π :

(
Bα, +

Bα
, ×
Bα

)
→

(
Aβ , +

Aβ

, ×
Aβ

)
. Recall that for s, t ∈ k,

gα(s) +
Bα

gα(t) = gα(s+ t) fβ(s) +
Aβ

fβ(t) = fβ(s+ t)

gα(s) ×
Bα

gα(t) = gα(st) fβ(s) ×
Aβ

fβ(t) = fβ(st)

Also recall that π(gα(s)) = fβ(s) for all s ∈ k. Consider the following two regular maps.

σ1 : Bα ×Bα → Aβ σ1(x, y) = π(x +
Bα

y)

σ2 : Bα ×Bα → Aβ σ2(x, y) = π(x) +
Aβ

π(y)

Then

σ1

(
gα(s), gα(t)

)
= π

(
gα(s) +

Bα
gα(t)

)
= π

(
gα(s+ t)

)
= fβ(s+ t)

σ2

(
gα(s), gα(t)

)
= π

(
gα(s)

)
+
Aβ

π
(
gα(t)

)
= fβ(s) +

Aβ

fβ(t) = fβ(s+ t)

Thus σ1 and σ2 coincide on gα(k)× gα(k), which is a dense subset of Bα ×Bα, so σ1 = σ2.

In other words, π is compatible with the addition operations. Similarly, consider regular

maps

θ1 : Bα ×Bα → Aβ θ1(x, y) = π(x ×
Bα

y)

θ2 : Bα ×Bα → Aβ θ2(x, y) = π(x) ×
Aβ

π(y)

Then

θ1

(
gα(s), gα(t)

)
= π

(
gα(s) ×

Bα
gα(t)

)
= π

(
gα(st)

)
= fβ(st)

θ2

(
gα(s), gα(t)

)
= π

(
gα(s)

)
×
Aβ

π
(
gα(t)

)
= fβ(s) ×

Aβ

fβ(t) = fβ(st)
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So θ1, θ2 coincide on the dense subset gα(k) × gα(k) ⊂ Bα × Bα and we conclude that

θ1 = θ2, so π is compatible with the multiplication operations. Hence π is an isomorphism

of algebraic rings.
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Appendix B

Computations

This appendix contains various technical computations involving the group SU2n(L, h) and

its Steinberg group.

Commutator coefficients Nαβ
ij (u, v)

This section contains the computations for Lemma 2.2.4. Throughout, Φk is the root system

of type Cn and R is a fixed k-algebra. Given two roots α, β ∈ Φk, following [PS08] we denote

by (α, β) the set of all roots consisting of positive integral linear combinations of α and β.

(α, β) =
{
iα + jβ ∈ Φk : i, j ∈ Z≥0

}
This set serves as the indexing set for the right hand side of the Steinberg commutator

relation given in Theorem 2.2.1(3), i.e. for α 6= ±β,

[
Xα(u), Xβ(v)

]
=
∏

(α,β)

Xiα+jβ

(
N
αβ
ij (u, v)

)

We wish to describe the maps N
αβ
ij (u, v) as concretely as possible. First, we begin with a

lemma which completely describes the possibilities for (α, β) in the Cn root system. In any

reduced root system, (α, β) = ∅ if α = ±β, so we ignore this case (the commutator formula

does not apply when α = ±β anyway).

Lemma B.1. Let α, β ∈ Φk and assume α 6= ±β.
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(1) If α, β are both long roots, then (α, β) = ∅.

(2) Suppose α, β are short roots.

(2a) If α+β is a short root, then {α, β} =
{
αi − αj , αj − α`

}
for three distinct indices

i, j, `.

(2b) If α + β is a long root, then {α, β} =
{
ε(αi + αj), ω(αi − αj)

}
for some i < j

and signs ε = ±1, ω = ±1.

In particular, if α + β ∈ Φk, then (α, β) = {α + β}.

(3) Suppose α is a short root and β a long root. The following are equivalent.

(3a) α + β is a root.

(3b) α + β is a short root.

(3c) 2α + β is a root.

(3d) 2α + β is a long root.

(3e) (α, β) = {α + β, 2α + β}

(3f) α = εαi +ωαj and β = −ε2αi with i 6= j and independent signs ε = ±1, ω = ±1.

Proof.

(1) It’s clear that if α, β are long roots, then α+β is not a root, nor is any linear combination

with larger coefficients.

(2) Part (a) is clear from structure of the type An root system. For part (b), if two short

roots ±αi ± αj and ±αk ± α` add up to a long root ±2αm, then there cannot be three

distinct indices, so {i, j} = {k, `} and then α 6= ±β forces {α, β} to be as claimed.

(3) The following implications are immediate.
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(3d) (3f) (3b)

(3c) (3e) (3a)

To complete the equivalence it suffices to show (3a) =⇒ (3f) and (3c) =⇒ (3f).

(3a) =⇒ (3f) We can write α = εαi + ωαj and β = δ2αk with ε = ±1, ω = ±1, δ = ±1.

Since α + β ∈ Φk, we must have k ∈ {i, j}. The sign δ must be −ε or −ω since otherwise

α+ β would have a 3αk term, so relabelling if necessary we can make k = i and β = −ε2αi.

(3c) =⇒ (3f) Again write α = εαi + ωαj and β = δ2αk. Since 2α + β ∈ Φk, as before

k ∈ {i, j}. Again δ must be −ε or −ω, since otherwise 2α + β would have a 4αk term, and

we can relabel to write α, β as claimed.

Let α, β ∈ Φk and u ∈ Vα(R), v ∈ Vβ(R). Lemma B.1 tells us what the commutator formula

looks like in all possible cases.

1. If α, β are both long, then [Xα(u), Xβ(v)] = 1.

2. If α, β are both short and α + β ∈ Φk, then[
Xα(u), Xβ(v)

]
= Xα+β

(
N
αβ
11 (u, v)

)
3. If α, β are different lengths, assume α is short by relabelling if necessary, and then[

Xα(u), Xβ(v)
]

= Xα+β

(
N
αβ
11 (u, v)

)
·X2α+β

(
N
αβ
21 (u, v)

)
Note that the two factors on the right hand side commute because (α+β, 2α+β) = ∅.

Lemma B.2. Let α, β ∈ Φk be short roots such that α + β ∈ Φk, and let u ∈ Vα(R), v ∈

Vβ(R).

(1) Interchanging α, β changes N11 by a sign1. That is, N
βα
11 (v, u) = −Nαβ

11 (u, v).

1This interchange also reverses the order of the arguments, but eventually we show that N11 is symmetric
so this is irrelevant.
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(2) Negating both roots changes N11 by a sign. That is, N
−α,−β
11 (u, v) = −Nαβ

11 (u, v).

Proof.

(1) We compute the commutator of Xβ(v) and Xα(u) two different ways.

[Xβ(v), Xα(u)] = Xα+β

(
N
βα
11 (v, u)

)
[Xβ(v), Xα(u)] = [Xα(u), Xβ(v)]−1 = Xα+β

(
N
αβ
11 (u, v)

)−1
= Xα+β

(
−Nαβ

11 (u, v)
)

Since Xα+β is injective, the claimed equality follows.

(2) Recall that X−α(u) = Xα(u)t by 2.2. We have the relation [xt, yt] = [y−1, x−1]t. Now

we calculate the commutator of X−α(u) and X−β(v) in two different ways.

[X−α(u), X−β(v)] = X−α−β
(
N
−α,−β
11 (u, v)

)
[X−α(u), X−β(v)] = [Xα(u)t, Xβ(v)t] = [Xβ(v)−1, Xα(u)−1]t

= [Xβ(−v), Xα(−u)]t = Xα+β

(
N
βα
11 (−v,−u)

)t
= X−α−β

(
N
βα
11 (−v,−u)

)
By injectivity of X−α−β , we get N

−α,−β
11 (u, v) = N

βα
11 (−v,−u). Since N11 is linear in both

variables, N
βα
11 (−v,−u) = N

βα
11 (v, u), and from part (1) we have N

βα
11 (v, u) = −Nαβ

11 (u, v).

Combining these we get the claimed equality.

Lemma B.3. Let α, β ∈ Φk be roots with α short, β long, and α + β ∈ Φk, and let

u ∈ Vα(R), v ∈ Vβ(R).

1. Interchanging α, β changes N11 and N21 by a sign.

N
βα
11 (v, u) = −Nαβ

11 (u, v)

N
βα
12 (v, u) = −Nαβ

21 (u, v)
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2. Negating both α, β changes N11 by a sign and does not change N21.

N
−α,−β
11 (u, v) = −Nαβ

11 (u, v)

N
−α,−β
21 (u, v) = N

αβ
21 (u, v)

Proof.

(1) This is the same as the argument as for Lemma B.2(1). We compute the commutator of

Xα(u) and Xβ(v) two different ways.

[Xα(u), Xβ(v)] = Xα+β

(
N
αβ
11 (u, v)

)
·X2α+β

(
N
αβ
21 (u, v)

)
[Xα(u), Xβ(v)] = [Xβ(v), Xα(u)]−1 =

(
Xα+β

(
N
βα
11 (v, u)

)
·X2α+β

(
N
βα
12 (v, u)

))−1

= X2α+β

(
N
βα
12 (v, u)

)−1
·Xα+β

(
N
βα
11 (v, u)

)−1

= X2α+β

(
−Nβα

12 (v, u)
)
·Xα+β

(
−Nβα

11 (v, u)
)

= Xα+β

(
−Nβα

11 (v, u)
)
·X2α+β

(
−Nβα

12 (v, u)
)

So we conclude that

Xα+β

(
N
αβ
11 (u, v)

)
·X2α+β

(
N
αβ
21 (u, v)

)
= Xα+β

(
−Nβα

11 (v, u)
)
·X2α+β

(
−Nβα

12 (v, u)
)

We can rearrange this to

Xα+β

(
N
αβ
11 (u, v) +N

βα
11 (v, u)

)
= X2α+β

(
−Nαβ

21 (u, v)−Nβα
12 (v, u)

)
Since α + β and 2α + β are distinct roots, these lie in distinct root subgroups, so equality

is only possible if both are the identity. Since both Xα+β , X2α+β are injective, this implies

that both inputs are zero. Hence

N
βα
11 (v, u) = −Nαβ

11 (u, v)

N
βα
21 (v, u) = −Nαβ

12 (u, v)
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(2) This is the same argument as for Lemma B.2(2). We compute the commutator of X−α(u)

and X−β(v) two different ways.

[X−α(u), X−β(v)] = X−α−β
(
N
−α,−β
11 (u, v)

)
·X−2α−β

(
N
−α,−β
21 (u, v)

)
[X−α(u), X−β(v)] =

[
Xα(u)t, Xβ(v)t

]
=
[
Xβ(v)−1, Xα(u)−1

]t
=
[
Xβ(−v), Xα(−u)

]t
=

(
Xα+β

(
N
βα
11 (−v,−u)

)
·X2α+β

(
N
βα
12 (−v,−u)

))t
= X2α+β

(
N
βα
12 (−v,−u)

)t
·Xα+β

(
N
βα
11 (−v,−u)

)t
= X−2α−β

(
N
βα
12 (−v,−u)

)
·X−α−β

(
N
βα
11 (−v,−u)

)
= X−α−β

(
N
βα
11 (−v,−u)

)
·X−2α−β

(
N
βα
12 (−v,−u)

)
so we conclude

X−α−β
(
N
−α,−β
11 (u, v)

)
·X−2α−β

(
N
−α,−β
21 (u, v)

)
= X−α−β

(
N
βα
11 (−v,−u)

)
·X−2α−β

(
N
βα
12 (−v,−u)

)
By the same kind of argument in (1), we can conclude that the respective inputs are equal.

N
−α,−β
11 (u, v) = N

βα
11 (−v,−u)

N
−α,−β
21 (u, v) = N

βα
12 (−v,−u)

Finally, we do some rearranging using part (1), along with the fact that N11 is linear in both

arguments while N12 is linear in the first argument and quadratic in the second.

N
−α,−β
11 (u, v) = N

βα
11 (−v,−u) = N

βα
11 (v, u) = −Nαβ

11 (u, v)

N
−α,−β
21 (u, v) = N

βα
12 (−v,−u) = −Nβα

12 (v, u) = N
αβ
21 (u, v)
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Lemma B.4 (Repeat of Lemma 2.2.4). Let α, β ∈ Φk be relative roots such that α+β ∈ Φk,

and let u ∈ Vα(R), v ∈ Vβ(R).

(1) Suppose α, β are both short and α + β is short. Then by Lemma B.1 (2a) we have

α = αi − αj , β = αj − α` for distinct indices i, j, ` (relabelling α, β if necessary), and

N
αβ
11 (u, v) = uv N

βα
11 (u, v) = −uv

(2) Suppose α, β are both short and α + β is long. Then by Lemma B.1 (2b), relabelling

α, β if necessary we have α = ε(αi − αj), β = ω(αi + αj) for some ε = ±1, ω = ±1,

with i < j, and

N
αβ
11 (u, v) = ωTr(u−εωv) N

βα
11 (v, u) = −ωTr(u−εωv)

(3) Suppose α is short and β long. Then by Lemma B.1 (3) we have α = εαi + ωαj and

β = −ε2αi for some ε = ±1, ω = ±1 and i 6= j, and

N
αβ
11 (u, v) = ωu−cijv N

βα
11 (v, u) = −ωu−cijv

N
αβ
21 (u, v) = −εωvuu N

βα
12 (v, u) = εωvuu

where

cij =


1 i < j

−1 i > j

In particular, whenever it is defined, the map N
αβ
11 is surjective.

Proof.

(1) This is known from the classical Steinberg relations for type An.

(2) The second equation follows from the first using Lemma B.2 (1), so we only need to prove

the formula for N
αβ
11 . By part (2) of the same lemma, it suffices to verify the formula for
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N
αβ
11 (u, v) in the two cases ε = ω = 1 and ε = 1, ω = −1. First we verify the case ε = ω = 1.

By a direct computation (Example B.5) we verify that

[Xαi−αj (u), Xαi+αj (v)] = X2αi
(uv + uv)

so N
αβ
11 (u, v) = uv + uv = ωTr(uv) = ωTr(u−εωv) as claimed in the first case. Now we

verify the case ε = 1, ω = −1, again by direct computation verifying that

[Xαi+αj (u), X−αi−αj (v)] = X−2αi
(−uv − uv)

so N
αβ
11 (u, v) = −uv − uv = −Tr(uv) = ωTr(u−εωv) as claimed.

(3) The strategy is similar to that in part (1). By Lemma B.3(2), it suffices to verify just

the formulas for N
αβ
11 and N

αβ
21 in the following four cases.

(a) ε = ω = cij = 1

(b) ε = cij = 1 and ω = −1

(c) ε = ω = 1 and cij = −1

(d) ε = 1 and ω = cij = −1

Each of these cases is verified by direct computation. For example, case (a) requires verifying

that when i < j we have

[Xαi+αj (u), X−2αi
(v)] = X−αi+αj (uv) ·X2αj

(−vuu)

Example B.5. To illustrate, we work through one of the direct computations asserted in

part (2) of the previous lemma. We will verify the relation

[Xαi−αj (u), Xαi+αj (v)] = X2αi
(uv + uv)
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in the case i < j. The relevant root subgroup maps are

Xαi−αj (u) = 1 + Eij(u)− Ej+1,i+1(u)

Xαi+αj (v) = 1 + Ei,j+1(v)− Ej,i+1(v)

Using Xα(u)−1 = Xα(−u), we expand the commutator bracket.

[Xαi−αj (u), Xαi+αj (v)] =
(

1 + Eij(u)− Ej+1,i+1(u)
)
·
(

1 + Ei,j+1(v)− Ej,i+1(v)
)

·
(

1− Eij(u) + Ej+1,i+1(u)
)
·
(

1− Ei,j+1(v) + Ej,i+1(v)
)

Recall the identity Eij(x)Ek`(y) = δjkEi`(xy) (δjk is the Kronecker delta function). In

partilar, whenever j = k, the product vanishes. So when we distribute the products on the

right side, multiple terms vanish.

=
(

1 + Ei,j+1(v)− Ej,i+1(v) + Eij(u) +
���

���
���:

Eij(u)Ei,j+1(v)− Eij(u)Ej,i+1(v)

− Ej+1,i+1(u)−
���

���
���

���:

Ej+1,i+1(u)Ei,j+1(v) +
���

���
���

���:

Ej+1,i+1(u)Ej,i+1(v)
)
·

·
(

1− Ei,j+1(v) + Ej,i+1(v)− Eij(u)−
��

���
���

�:
Eij(u)Ei,j+1(v) + Eij(u)Ej,i+1(v)

+ Ej+1,i+1(u)−
��
���

���
���

�:

Ej+1,i+1(u)Ei,j+1(v)−
���

���
���

���:

Ej+1,i+1(u)Ej,i+1(v)
)

=
(

1 + Ei,j+1(v)− Ej,i+1(v) + Eij(u)− Ei,i+1(uv)− Ej+1,i+1(u)
)

·
(

1− Ei,j+1(v) + Ej,i+1(v)− Eij(u) + Ei,i+1(uv) + Ej+1,i+1(u)
)
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Then we distribute again, and again many terms vanish.

=
(

1− Ei,j+1(v) + Ej,i+1(v)− Eij(u) + Ei,i+1(uv) + Ej+1,i+1(u)
)

+ Ei,j+1(v)
(

1−����
��:Ei,j+1(v) +���

���:Ej,i+1(v)−
�
��
�*

Eij(u) +���
���:Ei,i+1(uv) + Ej+1,i+1(u)

)
− Ej,i+1(v)

(
1−����

��:Ei,j+1(v) +���
���:Ej,i+1(v)−

��
��*Eij(u) +���

���:Ei,i+1(uv) +
��

���
��:

Ej+1,i+1(u)
)

+ Eij(u)
(

1−����
��:Ei,j+1(v) + Ej,i+1(v)−

��
��*Eij(u) +���

���:Ei,i+1(uv) +
��

���
��:

Ej+1,i+1(u)
)

− Ei,i+1(uv)
(

1−����
��:Ei,j+1(v) +���

���:Ej,i+1(v)−
��

��*Eij(u) +���
���:Ei,i+1(uv) +

���
���

�:
Ej+1,i+1(u)

)
− Ej+1,i+1(u)

(
1−����

��:Ei,j+1(v) +���
���:Ej,i+1(v)−

�
��
�*

Eij(u) +���
���:Ei,i+1(uv) +

���
���

�:
Ej+1,i+1(u)

)
= 1− Ei,j+1(v) + Ej,i+1(v)− Eij(u) + Ei,i+1(uv) + Ej+1,i+1(u)

+ Ei,j+1(v) + Ei,j+1(v)Ej+1,i+1(u)− Ej,i+1(v)

+ Eij(u) + Eij(u)Ej,i+1(v)− Ei,i+1(uv)− Ej+1,i+1(u)

From here, it is just a matter of reorganizing the terms and recognizing various cancellations

in pairs.

= 1−����
��:Ei,j+1(v) +���

���:Ej,i+1(v)−
��

��*Eij(u) + Ei,i+1(uv) +
��

���
��:

Ej+1,i+1(u)

+���
���:Ei,j+1(v) + Ei,i+1(vu)−����

��:Ej,i+1(v)

+
��

��*Eij(u) +���
���:Ei,i+1(uv)−����

��:Ei,i+1(uv)−
���

���
�:

Ej+1,i+1(u)

= 1 + Ei,i+1(uv + uv)

= X2αi
(uv + uv)

Thus we have the claimed equality.

[Xαi−αj (u), Xαi+αj (v)] = X2αi
(uv + uv)
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Conjugation by w̃α(1)

As in §2, let L/k be a quadratic extension in characteristic zero, with nontrivial Galois

automorphism τ(x) = x. We denote

vδ =

v δ = 1

v δ = −1

Let R be a k-algebra, and denote RL = R ⊗k L, and extend τ to RL by acting on the L

part. Let Φk be the root system of type Cn, which we write as

Φk =
{
±βi ± βj : 1 ≤ i, j ≤ n

}
\ {0}

For α, β ∈ Φk, let

(α, β) =
{
iα + jβ ∈ Φk : i, j ∈ Z≥1

}
We believe that the relation (2.2) from §2.2 should lift to the Steinberg group, and that this

should be possible to prove directly using the Steinberg relations and Lemma 2.2.4. However,

we have not yet worked this out. More precisely, our conjecture is the following.

Conjecture B.6. Let α, β ∈ Φk such that α + β ∈ Φk. Let v ∈ Vα(R). Then

w̃β(1) · X̃α(v) · w̃β(1)−1 = X̃wβα(ϕv)

where ϕ : RL → RL is a function of the form v 7→ ±v±1.

It is not clear exactly what relationship this bears to [Deo78, Proposition 1.11, Corollary

1.12]. It is possible we have misunderstood Deodhar, but Deodhar’s result does not appear

imply the above. Regardless, we have the following computation which covers at least one

case of the conjecture above. Note that in the situation of the next lemma, wβα = α + β.
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Lemma B.7. Let α, β ∈ Φk with α short and β long, such that α+β ∈ Φk. Let v ∈ Vα(R).

Then

w̃β(1) · X̃α(v) · w̃β(1)−1 = X̃α+β(ϕv)

where ϕ : RL → RL is a function of the form v 7→ ±v±1.

Proof. This is simply a long calculation involving the Steinberg relations (R1), (R2) from

Definition 2.3.1, followed by application of Lemma 2.2.4. First, for α short and β long with

α + β ∈ Φk,

(α, β) = {β + α, β + 2α}

(−β, β + α) = {α, β + 2α}

(α, β + α) = {β + 2α}

We repeatedly apply (R1) and (R2) in a long calculation, the end result of which is

w̃β(1) · X̃α(v) · w̃β(1)−1 = X̃β+2α(N6 +N7 +N4 + 2N2) · X̃β+α(N5 + 2N1) · X̃α(N3 + v)

where Ni are various commutator coefficients that arise along the way. To complete the

proof, we show that

N6 +N7 +N4 + 2N2 = 0

N5 + 2N1 = ±v±1

N3 + v = 0

Now we do the calculation. Let w = w̃β(1) and X = X̃α(v). First we expand the left hand

side.

wXw−1 = X̃β(1) · X̃−β(−1) · X̃β(1) · X̃α(v) · X̃β(−1) · X̃−β(1) · X̃β(−1)
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Apply the commutator formula for X̃β(1) and X̃α(v). There are two new terms because

(β, α) = {β + α, β + 2α}.

wXw−1 = X̃β(1) · X̃−β(−1) · X̃β(1) · X̃α(v) · X̃β(−1) · X̃−β(1) · X̃β(−1)

= X̃β(1) · X̃−β(−1) · X̃β+α(N1) · X̃β+2α(N2) · X̃α(v) · X̃β(1)

· X̃β(−1) · X̃−β(1) · X̃β(−1)

where

N1 = N
β,α
1,1 (1, v)

N2 = N
β,α
1,2 (1, v)

The adjacent factors X̃β(1) and X̃β(−1) cancel.

wXw−1 = X̃β(1) · X̃−β(−1) · X̃β+α(N1) · X̃β+2α(N2)

· X̃α(v) ·
��

���
���

�:
X̃β(1) · X̃β(−1) · X̃−β(1) · X̃β(−1)

= X̃β(1) · X̃−β(−1) · X̃β+α(N1) · X̃β+2α(N2) · X̃α(v) · X̃−β(1) · X̃β(−1)

Apply the commutator formula for X̃−β(−1) and X̃β+α(N1). There are two new terms

because (−β, β + α) = {α, β + 2α}.

wXw−1 = X̃β(1) · X̃−β(−1) · X̃β+α(N1) · X̃β+2α(N2) · X̃α(v) · X̃−β(1) · X̃β(−1)

= X̃β(1) · X̃α(N3) · X̃β+2α(N4) · X̃β+α(N1) · X̃−β(−1)

· X̃β+2α(N2) · X̃α(v) · X̃−β(1) · X̃β(−1)

where

N3 = N
−β,β+α
1,1 (−1, N1)

N4 = N
−β,β+α
1,2 (−1, N1)
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Both −β and β + 2α are long roots so X̃−β(−1) and X̃β+2α(N1) commute. Also −β + α is

not a root, so X̃−β(−1) also commutes with X̃α(v).

wXw−1 = X̃β(1) · X̃α(N3) · X̃β+2α(N4) · X̃β+α(N1)

· X̃−β(−1) · X̃β+2α(N2) · X̃α(v) · X̃−β(1) · X̃β(−1)

= X̃β(1) · X̃α(N3) · X̃β+2α(N4) · X̃β+α(N1)

· X̃β+2α(N2) · X̃α(v) · X̃−β(−1) · X̃−β(1) · X̃β(−1)

The adjacent factors X̃−β(−1) and X̃−β(1) cancel.

wXw−1 = X̃β(1) · X̃α(N3) · X̃β+2α(N4) · X̃β+α(N1)

· X̃β+2α(N2) · X̃α(v) ·
���

���
���

��:

X̃−β(−1) · X̃−β(1) · X̃β(−1)

= X̃β(1) · X̃α(N3) · X̃β+2α(N4) · X̃β+α(N1) · X̃β+2α(N2) · X̃α(v) · X̃β(−1)

Since (β + 2α) + (β + α) = 2β + 3α is not a root, the X̃β+α(N1) and X̃β+2α(N4) terms

commute.

wXw−1 = X̃β(1) · X̃α(N3) · X̃β+2α(N4) · X̃β+α(N1) · X̃β+2α(N2) · X̃α(v) · X̃β(−1)

= X̃β(1) · X̃α(N3) · X̃β+α(N1) · X̃β+2α(N4) · X̃β+2α(N2) · X̃α(v) · X̃β(−1)

We can combine the adjacent X̃β+2α terms.

wXw−1 = X̃β(1) · X̃α(N3) · X̃β+α(N1) · X̃β+2α(N4) · X̃β+2α(N2) · X̃α(v) · X̃β(−1)

= X̃β(1) · X̃α(N3) · X̃β+α(N1) · X̃β+2α(N4 +N2) · X̃α(v) · X̃β(−1)

Apply the commutator formula for X̃β(1) and X̃α(N3). There are two factors introduced
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because (β, α) = {β + α, β + 2α}.

wXw−1 = X̃β(1) · X̃α(N3) · X̃β+α(N1) · X̃β+2α(N4 +N2) · X̃α(v) · X̃β(−1)

= X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β(1)

· X̃β+α(N1) · X̃β+2α(N4 +N2) · X̃α(v) · X̃β(−1)

where

N5 = N
β,α
1,1 (1, N3)

N6 = N
β,α
1,2 (1, N3)

Since 2β + α and 2β + 2α are not roots, X̃β(1) commutes with X̃β+α(N1) and

X̃β+2α(N4 +N2).

wXw−1 = X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β(1)

· X̃β+α(N1) · X̃β+2α(N4 +N2) · X̃α(v) · X̃β(−1)

= X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3)

· X̃β+α(N1) · X̃β+2α(N4 +N2) · X̃β(1) · X̃α(v) · X̃β(−1)

Apply the commutator lemma again for X̃β(1) and X̃α(v). We get the same commutator

coefficients N1, N2 as before.

wX̃w−1 = X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(N1)

· X̃β+2α(N4 +N2) · X̃β(1) · X̃α(v) · X̃β(−1)

= X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(N1) · X̃β+2α(N4 +N2)

·X̃β+α(N1) · X̃β+2α(N2) · X̃α(v) · X̃β(1) · X̃β(−1)
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Then the X̃β terms cancel.

wXw−1 = X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(N1) · X̃β+2α(N4 +N2)

· X̃β+α(N1) · X̃β+2α(N2) · X̃α(v) ·
���

���
���:

X̃β(1) · X̃β(−1)

= X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(N1)

· X̃β+2α(N4 +N2) · X̃β+α(N1) · X̃β+2α(N2) · X̃α(v)

Since (β + α) + (β + 2α) = 2β + 3α is not a root, we can commute these terms.

wXw−1 = X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(N1)

· X̃β+2α(N4 +N2) · X̃β+α(N1) · X̃β+2α(N2) · X̃α(v)

= X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(N1)

· X̃β+α(N1) · X̃β+2α(N4 +N2) · X̃β+2α(N2) · X̃α(v)

We can combine the adjacent X̃β+α terms. Similarly, we can combine the adjacent X̃β+2α

terms.

wXw−1 = X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(N1) · X̃β+α(N1)

· X̃β+2α(N4 +N2) · X̃β+2α(N2) · X̃α(v)

= X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(2N1) · X̃β+2α(N4 + 2N2) · X̃α(v)

Since (β + 2α) + α = β + 3α is not a root, we can commute the last two terms.

wXw−1 = X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(2N1) · X̃β+2α(N4 + 2N2) · X̃α(v)

= X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(2N1) · X̃α(v) · X̃β+2α(N4 + 2N2)

Now (α, β + α) = (β + 2α), so when we apply the commutator formula for X̃α(v) and
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X̃β+α(2N1) there is one new factor introduced.

wXw−1 = X̃β+α(N5) · X̃β+2α(N6) · X̃α(N3) · X̃β+α(2N1) · X̃α(v) · X̃β+2α(N4 + 2N2)

= X̃β+α(N5) · X̃β+2α(N6) · X̃β+2α(N7) · X̃β+α(2N1) · X̃α(N3)

· X̃α(v) · X̃β+2α(N4 + 2N2)

where

N7 = N
α,β+α
1,1 (N3, 2N1)

We combine the adjacent X̃α terms into a single term. Similarly, we combine the adjacent

X̃β+2α terms.

wXw−1 = X̃β+α(N5) · X̃β+2α(N6) · X̃β+2α(N7) · X̃β+α(2N1)

· X̃α(N3) · X̃α(v) · X̃β+2α(N4 + 2N2)

= X̃β+α(N5) · X̃β+2α(N6 +N7) · X̃β+α(2N1) · X̃α(N3 + v) · X̃β+2α(N4 + 2N2)

Since (β + α) + (β + 2α) is not a root, we can commute these terms.

wXw−1 = X̃β+α(N5) · X̃β+2α(N6 +N7) · X̃β+α(2N1) · X̃α(N3 + v) · X̃β+2α(N4 + 2N2)

= X̃β+2α(N6 +N7) · X̃β+α(N5) · X̃β+α(2N1) · X̃α(N3 + v) · X̃β+2α(N4 + 2N2)

We combine the adjacent X̃β+α terms.

wXw−1 = X̃β+2α(N6 +N7) · X̃β+α(N5) · X̃β+α(2N1) · X̃α(N3 + v) · X̃β+2α(N4 + 2N2)

= X̃β+2α(N6 +N7) · X̃β+α(N5 + 2N1) · X̃α(N3 + v) · X̃β+2α(N4 + 2N2)

Since (β+2α)+α and (β+2α)+(β+α) are both not roots, we can move the X̃β+2α(N4+2N2)

term on the far right through the two terms to its left.

wXw−1 = X̃β+2α(N6 +N7) · X̃β+α(N5 + 2N1) · X̃α(N3 + v) · X̃β+2α(N4 + 2N2)

= X̃β+2α(N6 +N7) · X̃β+2α(N4 + 2N2) · X̃β+α(N5 + 2N1) · X̃α(N3 + v)
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We combine the adjacent X̃β+2α terms.

wXw−1 = X̃β+2α(N6 +N7) · X̃β+2α(N4 + 2N2) · X̃β+α(N5 + 2N1) · X̃α(N3 + v)

= X̃β+2α(N6 +N7 +N4 + 2N2) · X̃β+α(N5 + 2N1) · X̃α(N3 + v)

In summary, we showed that

w̃β(1) · X̃α(v) · w̃β(1)−1 = X̃β+2α(N6 +N7 +N4 + 2N2) · X̃β+α(N5 + 2N1) · X̃α(N3 + v)

To complete the proof, we need to show that

N6 +N7 +N4 + 2N2 = 0

N5 + 2N1 = ±v±1

N3 + v = 0

This is done in Lemma B.8 below.

Lemma B.8. Let α, β ∈ Φk with α a short root and β a long root, such that α+β ∈ Φk. Let

v ∈ Vα(R) = RL. Using Lemma 2.2.4 as β = ε2βi and α = −εβi + ωβj using independent

signs ε, ω, and let cij be as in Lemma 2.2.4. Then

N1 = N
β,α
1,1 (1, v) = −ωvcij

N2 = N
β,α
1,2 (1, v) = −εωvv

N3 = N
−β,β+α
1,1 (−1, N1) = −v

N4 = N
−β,β+α
1,2 (−1, N1) = −εωvv

N5 = N
β,α
1,1 (1, N3) = ωvcij

N6 = N
β,α
1,2 (1, N3) = −εωvv

N7 = N
α,β+α
1,1 (N3, 2N1) = 4εωvv
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In particular,

N6 +N7 +N4 + 2N2 = 0

N5 + 2N1 = −ωvδ ∈ {±v,±v}

N3 + v = 0

Proof. Using Lemma 2.2.4 we can write the N1 through N6 in terms of ε, ω, δ and vδ.

N1 = N
β,α
1,1 (1, v) = −ωvδ

N2 = N
β,α
1,2 (1, v) = −εωvv

To calculate N3 and N4, temporarily denote

β′ = −β = ε′2βi α′ = β + α = −ε′βi + ω′βj

To calculate N3 and N4 using the corollary, we use the signs ε′ = −ε, ω′ = ω, δ′ = δ. We get

(N1)δ′ = (−ωvδ)δ = −ωv

N1N1 = (−ωvδ)(−ωvδ) = vδvδ = vv

N3 = N
−β,β+α
1,1 (−1, N1) = N

β′,α′
1,1 (−1, N1) = −ω(−1)(−ωv) = −ω2v = −v

N4 = N
−β,β+α
1,2 (−1, N1) = N

β′,α′
1,2 (−1, N1) = −ε′ω′(−1)N1N1 = −εωvv

Now we calculate N5 and N6.

N5 = N
β,α
1,1 (1, N3) = −ω(N3)δ = −ω(−v)δ = ωvδ

N6 = N
β,α
1,2 (1, N3) = −εωN3N3 = −εω(−v)(−v) = −εωvv

To calculate N7, we use Lemma 2.2.4. The roots in question are

α = −εβi + ωβj β + α = εβi + ωβj
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To apply the lemma, we need to know which one of these roots has the form ±(βi + βj)

and which has the form ±(βi − βj), but these depend on whether ε = ω or ε = −ω. So we

consider these cases separately.

(Case 1, ω = ε) Let α = β + α = ε(βi + βj) = ε′(βi + βj), and let β = α = −ε(βi − βj) =

ω′(βi − βj). So our signs are ε′ = ε and ω′ = −ε. We still have δ′ = δ = δij . By Lemma

2.2.4 (2),

N7 = N
α,β+α
1,1 (N3, 2N1) = N

β,α
1,1 (N3, 2N1) = −Nα,β

1,1 (N3, 2N1) = ε′Tr
(

(N3)ε′ω′δ′ · 2N1

)
= εTr

(
(−v)−ε2δ · (−2ωvδ)

)
= εωTr

(
2v−δvδ

)
= 2εωTr(vv) = 4εωvv

(Case 2, ω = −ε) Let α = α = −ε(βi + βj) = ε′(βi + βj) and let β = β + α = ε(βi − βj) =

ω′(βi − βj), so our signs are ε′ = −ε and ω′ = ε. We still use the same δ′ = δ = δij . By

Lemma 2.2.4 (2),

N7 = N
α,β+α
1,1 (N3, 2N1) = N

α,β
1,1 (N3, 2N1) = −ε′Tr

(
(N3)ε′ω′δ′ · 2N1

)
= εTr

(
(−v)−ε2δ · (−2ωvδ)

)
= 2εωTr

(
v−δvδ

)
= 2εωTr(vv) = 4εωvv

So in both cases we can write N7 as 4εωvv. This completes our calculation of the N values.

The relations follow immediately.

Generalization of Lemma 2.4.2

In Remark 2.4.3, we noted that the calculations in Lemma 2.4.2 can be done in slightly more

generality, so we do this here.

Lemma B.9. Let α, β ∈ Φk with α short, β long, and such that β − α ∈ Φk. Then there is

an isomorphism of algebraic varieties π : Bα → Aβ such that π ◦ gα = fβ.

101



Proof. This is just a slight generalization of the computation for Lemma 2.4.2. By Lemma

2.2.4 (2), we can write α and β − α as

α = ε(αi − αj) β − α = ω(αi + αj)

for some signs ε = ±1, ω = ±1 and indicies i, j with i < j, and futhermore

N
α,β−α
11 (u, v) = ωTr (u−εωv)

Now define π : Bα → H by

π(x) =
[
x, gβ−α

( ω
2d

)]
Note that 2d is invertible because char k = 0. This commutator occurs inside GLm(K) and

multiplication is regular, so π is regular. Now let s ∈ k. Then

π
(
gα(s)

)
=

[
ρ
(
Xα

(
s
√
d
))

, ρ

(
Xβ−α

(
ω
√
d

2d

))]
= ρ

([
Xα

(
s
√
d
)
, Xβ−α

(
ω

2
√
d

)])
= ρ

(
Xβ

(
N
α,β−α
11

(
s
√
d,

ω

2
√
d

)))
= ρ

(
Xβ

(
ωTr

(ωs
2

)))
= ρ

(
Xβ(s)

)
= fβ(s)

This shows that π ◦ gα = fβ , and that π maps gα(k) into fβ(k). Since π is regular, it follows

that π(Bα) ⊂ Aβ . It remains to show that π is invertible (with regular inverse). By Lemma

2.2.4(3), we can write

α− β = ε′αi′ + ω′αj′ β = −ε′2αi′

for some signs ε′ = ±1, ω′ = ±1, and indices i′, j′, and furthermore

N
β,α−β
11 (v, u) = −ω′u−c

i′j′v N
β,α−β
12 (v, u) = ε′ω′vuu

Let c = −ci′j′ and let h = h2α−β(1/2) be the element introduced in Definition 2.2.6. Then

define

ν : Aβ → Bα, ν(y) = ρ(h) ·
[
y, gα−β(−ω′c)

]
·
[
y, gα−β(ω′c)

]−1 · ρ(h)−1,
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It is clear that ν is a regular map; we claim it is an inverse for π. Let s, t ∈ k, and note that(√
d
)
c

= c
√
d. Using the commutator relation from Theorem 2.2.1, we have

[
Xβ(t), Xα−β

(
s
√
d
)]

= Xα

(
N
β,α−β
11

(
t, s
√
d
))
·X2α−β

(
N
β,α−β
12

(
t, s
√
d
))

= Xα

(
− ω′t

(
s
√
d
)
c

)
·X2α−β

(
ε′ω′t

(
s
√
d
)(

s
√
d
))

= Xα

(
− ω′cts

√
d
)
·X2α−β

(
− ε′ω′ts2d

)
.

Specializing the above to the case s = −ω′c and noting that (ω′c)2 = 1, we get

[
Xβ(t), Xα−β

(
−ω′c

√
d
)]
·
[
Xβ(t), Xα−β

(
ω′c
√
d
)]−1

= Xα

(
t
√
d
)
·
���

���
���

��:

X2α−β
(
− ε′ω′td

)
·
��

���
���

���
�:

X2α−β
(
− ε′ω′td

)−1
·Xα

(
− t
√
d
)−1

= Xα

(
2t
√
d
)
.

We also have the relation

h ·Xα(2v) · h−1 = Xα (v)

for all v ∈ L. Putting everything together, we obtain

ν
(
fβ(t)

)
= ρ

(
h ·
[
Xβ(t), Xα−β

(
−ω′c

√
d
)]
·
[
Xβ(t), Xα−β

(
ω′c
√
d
)]−1

· h−1
)

= ρ
(
h ·Xα

(
2t
√
d
)
· h−1

)
= ρ

(
Xα

(
t
√
d
))

= gα(t).

Thus, ν ◦π and π ◦ ν are the respective identity maps on dense subsets of Aβ and Bα. Since

they are regular, it follows that they are the identity on the whole space, so ν is the inverse

of π as claimed.

Lemma 2.4.2 is the special case of Lemma B.9 where α = α1 − α3 and β = −2α3. In this

case, the various signs and indices are

i = 1 j = 3 ε = 1 ω = −1

i′ = 3 j′ = 1 ε′ = 1 ω′ = 1
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Appendix C

Logical dependency chart

In this appendix we depict logical dependencies among various lemmas, propositions, and

theorems from this document. Arrows in these diagrams do not indicate logical implication,

only that the proof of the target depends on the source. Key results from outside sources

are included as well.

Section 2.2 and Appendix B

Theorem 2 [PS08]

Relative root subschemes

Theorem 2.2.1
Relative root subgroups for SU2n(L, h)

Lemmas B.1, B.2, B.3, B.5

Various properties of maps N
αβ
ij

Lemma 2.2.4/B.4

Explicit formula for N
αβ
ij

Lemma 2.3.3 Lemma 2.4.2

G̃(R) is perfect Bα ∼= Aβ
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Section 2.3

Theorem 1.3 [Sta20]

kerπA is central for local A

Lemma 2.3.3 Lemma 2.3.4 Proposition 2.3.2

G̃(R) is perfect G̃ respects products kerπA is central for semilocal A

Proposition 2.5.2

Existence of σ
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Section 2.4

Lemma 2.2.4

Explicit formula for N
αβ
ij

Lemma 2.4.5 Lemma 2.4.2 Theorem 3.1 [Rap11]

Reduction step Bα ∼= Aβ Algebraic ring associated to

an abstract representation

of a Chevalley group

Proposition 2.4.6

Existence of ψα

Lemma 2.3.3 Proposition 2.4.8 Proposition 5.1 [Gre64]

G̃(R) is perfect Existence of σ̃ Connected algebraic rings

in characteristic zero are
equivalent to algebras

Proposition 2.3.2 Lemma 2.5.1 Remark 2.4.7

kerπA is central H is connected A is a K-algebra

Proposition 2.5.2

Existence of σ

Proposition 2.5.3

σ is algebraic
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Section 2.5

Proposition 2.4.6

Existence of ψα

Proposition 2.3.2 Lemma 2.5.1

kerπA is central H is connected

Lemma 3.10 [Rap13] Proposition 2.5.2 Theorem 6.3 [Hum72] Lemma 2.3.3

Lemma 3.12 [Rap13] Existence of σ Weyl’s theorem G̃(R) is perfect

Proposition 2.5.3 Lemma 2.5.5 Lemma 2.5.4

σ is algebraic Property (Z) Levi decomposition

of G(A)

Theorem 2.0.1/2.5.6

(BT) conjecture

for SU2n(L, h)

Section 3.1

Theorem 1.1 [Rap19] Proposition 5.1[Rap13]

(BT) conjecture for Remarks 3.1.4, 3.1.5, 3.1.8 Refined (BT) conjecture for

elementary groups Lemmas 3.1.6, 3.1.7 elementary groups

over rings with (D1) over rings of S-integers

Theorem 3.1.2 Theorem 3.1.3
Rigidity for biregular action Rigidity for biregular action

of elementary groups of elementary groups

over rings with (D1) over rings of S-integers

on affine varieties on affine varieties
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Section 3.2

Theorem 2 [CdC19] Theorem 1.1 [EJZK17] Theorem 1.1 [Rap19]

Criterion for Elementary group has (BT) conjecture for

conjϕ(Γ) ⊂ Aut(Y ) Kazhdan’s property (T) elementary groups

over rings with (D1)

Theorem 3.2.1
Rigidity for birational action

of elementary groups

over rings with (D1)

on projective surfaces

Section 4.2

Lemma 2.2.8 Proposition 2.4.8

Symbols in kerπA Existence of σ̃

Conjecture 4.2.1 Lemma 4.2.3

kerπA generated by symbols Symbols in ker σ̃

Lemma 3.10 [Rap13] Proposition 4.2.4

Lemma 3.12 [Rap13] Existence of σ

Proposition 4.2.5

σ is algebraic

Theorem 4.2.2
(BT) conjecture

for SU2n(L, h)
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Springer-Verlag, Berlin, 2005. Collected works. Vol. 3, Edited and with a
preface by P. Cartier, with the collaboration of Cartier, A. Grothendieck and
M. Lazard.

110



[CX18] Serge Cantat and Junyi Xie. Algebraic actions of discrete groups: the p-adic
method. Acta Math., 220(2):239–295, 2018.

[Deo78] Vinay V. Deodhar. On central extensions of rational points of algebraic groups.
Amer. J. Math., 100(2):303–386, 1978.
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Birkhäuser Boston, Inc., Boston, MA, second edition, 2009.

[Sta14] A. Stavrova. Homotopy invariance of non-stable K1-functors. J. K-Theory,
13(2):199–248, 2014.

[Sta20] A. Stavrova. On the congruence kernel of isotropic groups over rings. Trans.
Amer. Math. Soc., 373(7):4585–4626, 2020.

[Ste73] Michael R. Stein. Surjective stability in dimension 0 for K2 and related
functors. Trans. Amer. Math. Soc., 178:165–191, 1973.

[Ste16] Robert Steinberg. Lectures on Chevalley groups, volume 66 of University
Lecture Series. American Mathematical Society, Providence, RI, 2016. Notes
prepared by John Faulkner and Robert Wilson, revised and corrected edition of
the 1968 original, with a foreword by Robert R. Snapp.

[SVdW28] O. Schreier and B. L. Van der Waerden. Die Automorphismon der projektiven
Gruppen. Abh. Math. Sem. Univ. Hamburg, 6(1):303–322, 1928.

[Tit66] J. Tits. Classification of algebraic semisimple groups. In Algebraic Groups and
Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965),
pages 33–62. Amer. Math. Soc., Providence, R.I., 1966, 1966.

113



[Tit71] J. Tits. Homomorphismes et automorphismes “abstraits” de groupes
algébriques et arithmétiques. In Actes du Congrès International des
Mathématiciens (Nice, 1970), Tome 2, pages 349–355. 1971.
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