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ABSTRACT

TOWARDS ACCURATE RANGING AND VERSATILE AUTHENTICATION FOR SMART
MOBILE DEVICES

By

Lingkun Li

Internet of Things (IoTs) was rapidly developed during past years. Smart devices, such as smart-

phones, smartwatches, and smart assistants, which are equipped with smart chips as well as sensors,

provide users with many easy used functions and lead them to a more convenient life. In this dis-

sertation, we carefully studied the birefringence of the transparent tape, the nonlinear effects of the

microphone, and the phase characteristic of the reflected ultrasound, and make use of such effects

to design three systems, RainbowLight, Patronus, and BreathPass, to provide users with accurate

localization, privacy protection, and authentication, respectively.

RainbowLight leverages observation direction-varied spectrum generated by a polarized light

passing through a birefringence material, i.e., transparent tape, to provide localization service. We

characterize the relationship between observe direction, light interference and the special spectrum,

and using it to calculate the direction to a chip after taking a photo containing the chip. With multiple

chips, RainbowLight designs a direction intersection based method to derive the location. In this

dissertation, we build the theoretical basis of using polarized light and birefringence phenomenon to

perform localization. Based on the theoretical model, we design and implement the RainbowLight

on the mobile device, and evaluate the performance of the system. The evaluation results show

that RainbowLight achieves 1.68 cm of the median error in the X-axis, 2 cm of the median error in

the Y-axis, 5.74 cm of the median error in Z-axis, and 7.04 cm of the median error with the whole

dimension. It is the first system that could only use the reflected lights in the space to perform

visible light positioning.

Patronus prevents unauthorized speech recording by leveraging the nonlinear effects of com-

mercial off-the-shelf microphones. The inaudible ultrasound scramble interferes recording of

unauthorized devices and can be canceled on authorized devices through an adaptive filter. In



this dissertation, we carefully studied the nonlinear effects of ultrasound on commercial micro-

phones. Based on the study, we proposed an optimized configuration to generate the scramble.

It would provide privacy protection againist unauthorized recordings that does not disturb normal

conversations. We designed, implemented a system including hardware and software components.

Experiments results show that only 19.7% of words protected by Patronus’ scramble can be rec-

ognized by unauthorized devices. Furthermore, authorized recordings have 1.6x higher perceptual

evaluation of speech quality (PESQ) score and, on average, 50% lower speech recognition error

rates than unauthorized recordings.

BreathPass uses speakers to emit ultrasound signals. The signals are reflected off the chest wall

and abdomen and then back to the microphone, which records the reflected signals. The system

then extracts the fingerprints from the breathing pattern, and use these fingerprints to perform

authentication. In this dissertation, we characterized the challenge of conducting authentication

with the breathing pattern. After addressing these challenges, we designed such a system and

implemented a proof-of-concept application on Android platform. We also conducted comprehen-

sive experiments to evaluate the performance under different scenarios. BreathPass achieves an

overall accuracy of 83%, a true positive rate of 73%, and a false positive rate of 5%, according to

performance evaluation results.

In general, this dissertation provides an enhanced ranging and versatile authentication systems

of Internet of Things.
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CHAPTER 1

INTRODUCTION

Internet of Things (IoTs) was rapidly developed during past years. Smart devices, such as smart-

phones, smartwatches, and smart assistants, which are equipped with smart chips as well as sensors,

provide users with many easy used functions and lead them to a more convenient life.

Many works make use of the device’s original function or extract features from them to design

systems to serve people, and may or may not avoid side effects of the device. Side effects are not

the main function of devices, which are sometimes avoided by users. Recently, there are some

applications [1, 2, 3] carefully study the side effects of the devices. For example, LiTell [1] found

that because of the manufacturing error, the flashing rates of fluorescent lights varies from one to

another. Then, it samples such flashing rates as the landmark and design a localization system.

Manufacturing errors are not wanted by people, and usually try to avoid. Before LiTell, many

Visible Light Positioning systems [4, 5, 6] either need to modulating landmarks by dynamically

changing the flash frequencies, brightness, or need user to perform certain actions and using

geometry to calculate the position of the camera. LiTell, however, make use of such errors and

regard the flashing frequencies from such errors as the landmark, hence requiring no modulation

or using requirement. It reduces both deployment costs and using costs.

Another example is LiShield [2], which exploits the rolling shutter effect of CMOS camera.

Rolling Shutter, comparing to Global Shutter, captures one column at a time instead of the whole

frame. It is a kind of side effect of cheap camera, whereas the expensive camera, e.g., SLR camera,

equipped with Global Shutter usually avoids. LiShield, however, exploits the Rolling Shutter

effect to design a visual privacy protection system. Specifically, LiShield designs a light bulb

which consists of three color bulbs. Three color bulbs illuminate alternatively with extremely high

frequency but can be distinguished by the rolling shutter. Although human eyes cannot sense the

color bulbs flicker, the camera with the rolling shutter, however, would capture the column with one

bulb illuminate at a time, thus generating a mask with multiple color stripes on the photo captured.
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Therefore, it is difficult for human to recognize the content of the photo and prevents unauthorized

device to take photos. It also designs a mechanism to remove such a mask on authorized devices,

hence allowing authorized devices to take photos.

The nonlinear effect of commercial off-the-shelf (COTS) microphones is another kind of side

effects. When a pair of ultrasond captured by the microphone, nonlinearity could generate a shadow

spectrum within the audible frequency range with a careful design of the ultrasond. Dolphin-

Attack [7] makes use of the nonlinear effect to break in the voice control system. Many works [8, 9]

aims to remove such spectrum in order to get rid of unexpected attacks. UPS+ [3], however,

carefully studies the pattern of the nonlinear effect of microphones, and designs a new ultrasonic

positioning system, which uses extremely high frequency of the sound to avoid disturbing pets and

infants.

In this dissertation, we carefully study two of the side effects, one is the birefringence of the

transparent tape, which could blur the underside image when we observe it hence people usually

want to avoid. Another is the nonlinearity of COTS microphones, which was discussed above.

Based on our carefully study, we propose two systems, RainbowLight and Patronus. RainbowLight

uses birefringence to localize a camera. Different from previous works, RainbowLight works even

when light bulbs is turned off, hence reducing the deploying and using costs. Patronus leverages

the nonlinearity to emit inaudible scramble to interfere unauthorized recordings. We also design

a mechanism to cancel out such scrambles with the scramble pattern giving to authorized devices,

hence preventing unauthorized recordings while allowing authorized recordings.

From 2019, COVID-19 pandemic brings people into an inconvenient life. COVID-19 virus

attacks human’s lung and make patients hard to breath. To cope with the COVID-19 pandemic,

existing effort [10] implements a mobile application that leverages ultrasound to capture user’s

breath, and then detects whether the user’s lung functionality is normal in a non-invasive manner. In

this dissertation, besides the two systems which leverage side effects to provide an enhanced ranging

and a privacy protection system, we propose BreathPass, an authentication system leveraging user’s

breath to cope with the problem that Face-ID is hard to use when a user wears a face cover and
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Fingerprint-ID is also hard to use when a user wears a pair of rubber gloves. Compare to existing

biometric authentication systems, BreathPass is more resilient to the replay attack and has a high

flexibility to mobile devices. In addition, with BreathPass, users are no need to take off their face

covers or gloves when they use the application that requires “who you are” authentication; e.g.,

Apple Pay. It brings users more safety towards the COVID-19 pandemic.

1.1 Proposed techniques and applications

1.1.1 Positioning with birefringence

Ubiquitous existence of lights makes Visible Light Positioning (VLP) become popular and has

attracted much research effort. Existing VLP approaches typically need to use a specially designed

light bulb as a transmitter or a specially designed receiver to collect light information, or requires

a strict user operation (e.g., capturing multiple light bulbs at a time with horizontally holding

the smartphone, or needs to keep the light bulb turning on). This results in high deployment,

maintenance, and using costs.

In Chapter 2, we present RainbowLight. RainbowLight uses birefringence material to generate

a spatial-characterized light pattern. A camera could capture different color pattens from different

positions, and achieves a low-cost, high-precision 3D positioning.

We implement RainbowLight and conduct comprehensive experiments. The evaluation results

show that RainbowLight achieves 1.68 cm of the median error in the X-axis, 2 cm of the median

error in the Y-axis, 5.74 cm of the median error in Z-axis, and 7.04 cm of the median error with

the whole dimension.

1.1.2 Audio privacy protection with nonlinearity of microphones

The widespread adoption and ubiquity of smart devices equipped with microphones (e.g., cell-

phones, smartwatches, etc.) unfortunately create many significant privacy risks. In recent years,

there have been several cases of people’s conversations being secretly recorded, sometimes initiated
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by the device itself. Although some manufacturers are trying to protect users’ privacy, to the best

of our knowledge, there is not any effective technical solution available.

In Chapter 3, we present Patronus, a system that can both prevent unauthorized devices from

making secret recordings while allowing authorized devices to record conversations. Patronus

prevents unauthorized speech recording by emitting what we call a scramble, a low-frequency

noise generated by inaudible ultrasonic waves. The scramble prevents unauthorized recordings

by leveraging the nonlinear effects of commercial off-the-shelf microphones. The frequency

components of the scramble are randomly determined and connected with linear chirps, and the

frequency period is fine-tuned so that the scramble pattern is hard to attack. Patronus allows

authorized speech recording by secretly delivering the scramble pattern to authorized devices,

which can use an adaptive filter to cancel out the scramble.

We implement a prototype system and conduct comprehensive experiments. Our results show

that only 19.7% of words protected by Patronus’ scramble can be recognized by unauthorized

devices. Furthermore, authorized recordings have 1.6x higher perceptual evaluation of speech

quality (PESQ) score and, on average, 50% lower speech recognition error rates than unauthorized

recordings.

1.1.3 Authentication with user’s breath

In Chapter 4, we propose BreathPass, a non-invasive authentication system that characterizes the

chest/abdomen movement incurred by human breath to enable unlocking smart devices while

wearing various types of face covers, clothing, and in different postures. To capture the breathing

pattern, BreathPass uses speakers to emit ultrasound signals. The signals are reflected off the chest

wall and abdomen and then back to the microphone, which records the reflected signals. The system

then extracts the breathing pattern from the reflected signals, and further extracts fingerprints from

the breathing pattern, and use these fingerprints to perform authentication. We carefully design a

Deep Neural Network model and explore its capacity for feature abstraction in order to address the

challenges associated with tiny position changes resulting in different breathing patterns and the
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extremely narrow bandwidth of breathing.

We implement a prototype and conduct extensive experiments. BreathPass achieves an overall

accuracy of 83%, a true positive rate of 73%, and a false positive rate of 5%, according to

performance evaluation results.

1.2 Organization

The reminder of this dissertation is as follows, in Chapter 2, we discuss visible light positioning with

birefringence; in Chapter 3, we discuss audio privacy protection with nonlinearity of microphone;

in Chapter 4, we discuss authentication with user’s breathing; in Chapter 5 we conclude this

dissertation.
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CHAPTER 2

RAINBOWLIGHT: ENABLING 3D AMBIENT LIGHT POSITIONING WITH MOBILE
PHONES AND BATTERY-FREE CHIPS

2.1 Overview

The rapid development of mobile and Internet of Things (IoTs) facilitates the development of a

smarter world. More and more smart robots and smart devices are used in different places, such

as factories, airports and even at home. Indoor localization significantly expands the capability of

these devices, and thus it attracts much research effort, e.g., a large collection of RF-based [11, 12,

13, 14, 15, 16] positioning approaches are proposed.

Visible Light Positioning (VLP) has recently been shown as a promising approach for indoor

localization, owing to its potential of high localization precision with ubiquitous existence of

light. The basic idea of VLP is to exploit features and information from received light to derive

the relative position to light. For example, many approaches use LED light with a controller

[17, 18, 19, 5, 20] to modulate the required features. Thus a receiver can use the modulated features

for localization. Further, instead of using a controller to actively modulate information in light,

many approaches [21, 1, 22, 23] resort to using intrinsic features of light or receiver. Meanwhile,

[24, 25, 26, 6, 27, 28] use geometrical relationships among lights for localization.

Existing VLP approaches exhibit high accuracy for indoor localization. However, there still

exist the following limitations that hinder their application: (1) Special designed LEDs with

controllers [17, 20] or the receiver with sensors [5, 28]. Such kinds of LED/receiver are still not

widely used in today’s buildings. (2) Pre-collected features for all lights[1, 22]. This introduces a

high overhead. It is difficult to ensure the features are stable over time and the system needs to keep

updated with all lights. (3) Strict usage requirement. For example, [1] requires to keep the mobile

phone horizontal and [24] requires to capture at least 3 lamps in a photo each time. (4) Do not

work when the light is turned off in the daytime. During the daytime, people often turn their lights
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off and use the ambient light, i.e., sunlight passing through the window, to meet the requirement of

illumination. Like DarkLight [29] in the field of visible light communication (VLC) realizes the

requirement of communication with extremely-low luminance, we think that perform localization

with the light turned off is non-trivial as well. Existing works could not work at all when the light

is switched off because they are depended on LEDs or receivers. Those limitations incur a high

deployment, maintenance and usage overhead.

To address those limitations, we propose RainbowLight, a low-cost 3D localization approach

which significantly reduces the deployment, maintenance, and usage overhead. Our key finding

for RainbowLight is that light through a chip containing polarizer and birefringence material will

produce different interference patterns and light spectrum in different directions. We go deep into

the birefringence principle to analyze the relationship between direction, light interference, and

spectrum and derive a model to characterize the relationship. The model builds the foundation of

obtaining the direction to a chip based on the received light spectrum. By calculating directions to

multiple chips, we can derive the 3D localization of the receiver theoretically.

In the practical design of RainbowLight, we find that the light spectrum is difficult to measure

on commercial off-the-shelf (COTS) mobile phones. We use the color extracted from photo to

approximate light spectrum and show its effectiveness. To derive light direction for localization,

the theoretical model requires various parameters, e.g., optic parameters and thickness of the

material, which are difficult to measure in practice. Instead of measuring those parameters, we

build a sparse initial mapping between hue value and direction by sampling. Further, we conduct

model-based interpolation on the sparse initial mapping to derive a fine-grained mapping. Such a

sparse sampling only needs to be performed once for the same type of polarizer and birefringence

material. After capturing a photo containing multiple chips, we extract the color pattern of those

chips and calculate directions to them. Finally, we leverage a direction based intersection method

to calculate the location.

In our implementation, we use transparent adhesive tape as birefringence material. We make

small transparent chips by sticking tape with a thin plastic polarizer. In localization, we only need
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to place multiple chips to a certain plane (e.g., lamp cover, a glass window) to enable it for 3D

localization (see Figure 2.10). It should be noted that RainbowLight does not actively modulate

information in the light, and thus it also works for light off scenario in the daytime. We can place

chips on a wall, table, or other flat surfaces. This significantly extends the application scenarios.

We evaluate the performance of RainbowLight in different scenarios for different types of light

as well as different types of surfaces. The evaluation results show that RainbowLight achieves a

high localization accuracy and low cost. It also works well even for light off scenario in the daytime.

The contributions of our work are as follows:

• We show that light through a chip made by polarizer and birefringence material will produce

different interference patterns and light spectrum in different directions. We analyze and

derive a model to characterize the direction, interference, and light spectrum as the foundation

for 3D localization.

• Based on the model, we propose RainbowLight, a low-cost ambient light 3D localization

approach with a low deployment, maintenance, and usage cost.

• We implement RainbowLight and evaluate its performance through extensive experiments.

RainbowLight achieves an average localization error of 3.3 cm in 2D and 9.6 cm in 3D, and

an error of 7.4 cm in 2D and 20.5 cm in 3D for light off scenario in the daytime.

The organization of the remainder is as follows. Section 2.2 introduces the background of our

work. Section 2.3 presents 3D localization model of RainbowLight. Section 2.4 and 2.5 introduce

the design and implementation of RainbowLight, respectively. Section 2.6 discusses the approach

of deploying RainbowLight to enable getting the absolute position in a large area. Section 2.7

presents evaluation results of RainbowLight. Section 2.8 introduces related work.
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Figure 2.1: Illustration of birefringence.

2.2 Background

2.2.1 Polarization

Polarization is a feature of the transverse wave to specify its oscillation in different directions.

Natural light, such as light from a lamp, has different oscillations. Polarizer for light is a kind of

device that allows light with the oscillation direction parallel to its transmission axis, and blocks

light with the oscillation direction perpendicular to its transmission axis. The polarizer is widely

used in various applications, e.g., each 3D glasses has two polarizers for two lenses with different

transmission axes allowing light with different oscillation to pass.

A polarizer with a single transmission axis is called linear polarizer. Light is polarized after

passing through a polarizer. The polarized light has an oscillation direction parallel with the

transmission axis of the polarizer. Denote the angle between the oscillation direction of light and

the transmission axis of a polarizer as 𝜙, according to Malus’s law[30], the intensity of the light

that passes through the polarizer, denoted by 𝐼𝜙, is given by

𝐼𝜙 = 𝐼𝑐𝑜𝑠2𝜙, (2.1)

where 𝐼 is the original intensity of light.

Natural light has oscillation in any direction. When natural light passes through a linear

polarizer, it becomes linearly polarized light, i.e., light with a single oscillation direction.
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2.2.2 Birefringence

Birefringence [31] is a feature for an optically anisotropic material such as plastics, calcite, and

quartz. When a ray of light passes through a birefringence material, two refracted rays can be

observed. As shown in Figure 2.1, the ray of light is split into two rays taking different paths

in the material. Meanwhile, those two rays have orthogonal polarization directions and different

refractive indices in the birefringence material. There is a special direction, namely optic axis,

for each certain type of birefringence material. One of the two rays, called ordinary ray, has a

polarization direction vertical with the optic axis. Its refractive index is called ordinary refractive

index and is denoted by 𝑛𝑜. Another ray, called extraordinary ray, has a polarization direction

along the optic axis. Its refractive index is called extraordinary refractive index and is denoted by

𝑛𝑒.

As shown in Figure 2.1, according to Snell’s Law [32], we have

𝑛𝑎𝑖𝑟 𝑠𝑖𝑛𝜃 = 𝑛𝑒𝑠𝑖𝑛𝜃𝑒 = 𝑛𝑜𝑠𝑖𝑛𝜃𝑜 (2.2)

where 𝑛𝑎𝑖𝑟 ≈ 1 is the refractive index in air, and 𝜃𝑜 and 𝜃𝑒 are the refractive angle of ordinary ray and

extraordinary ray, respectively. Usually, 𝑛𝑒 ≠ 𝑛𝑜, and the refractive angles and refractive indexes of

ordinary ray and extraordinary ray are different. Thus there is an optical path difference between the

two rays after the birefringence material. For a certain type of material, 𝑛𝑜 is fixed determined by

the material, while 𝑛𝑒 varies depending on the direction of the incident ray. As shown in Figure 2.1,

denote the incident angle as 𝜃 and the angle between the incident light projection on the incident

plane and optic axis as 𝛾. We will show how to obtain 𝑛𝑒 and 𝜃𝑒 using 𝜃 and 𝛾 in practice. Then

we can calculate the optical path for ordinary ray and extraordinary ray.

According to Snell’s Law, if the incident light 𝐿 is linearly polarized and the angle between

polarization direction and optic axis is 𝜙1, the intensity of ordinary ray 𝐼𝑜 and extraordinary ray 𝐼𝑒

can be calculated as

𝐼𝑜 = 𝐼 sin2 𝜙1

𝐼𝑒 = 𝐼 cos2 𝜙1.

(2.3)
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where 𝐼 is the intensity of 𝐿.

2.2.3 Interference

When two light beams 𝐿1 and 𝐿2 have the same frequency, stable phase difference 𝛿 and same

polarization direction, they can interfere with each other. For a different value of 𝛿, the two light

beams can have different interference results. The interference intensity can be calculated as:

𝐼𝑖 = 𝐼1 + 𝐼2 + 2
√︁
𝐼1𝐼2𝑐𝑜𝑠𝛿 (2.4)

where 𝐼𝑖 is the light intensity after interference, and 𝐼1 and 𝐼2 are the intensities of 𝐿1 and 𝐿2, and

𝛿 is the phase difference between 𝐿1 and 𝐿2 and often derived from the optical path difference.

2.3 Localization Basics

We aim to answer the question of why observing the chip made by polarizers and birefringence

material in different directions would get different color patterns. In this section, we firstly build
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a model from the background to show the principle of our 3D positioning approach. Then we

conduct an experiment to validate our model. Because some of the parameters are hard to measure,

it is difficult to directly use such a model to perform positioning directly. As a result, we show how

to address those challenges in our design in section 2.4. Therefore, readers who are not interested

in the detailed analysis of RainbowLight can skip this section directly.

As shown in Figure 2.2, a birefringence material 𝑆 is placed between two polarizers 𝑃1 and

𝑃2. Light from a source (e.g., a lamp) first passes through polarizer 𝑃1 and becomes a linearly

polarized light. Consider two rays of the polarized light 𝐿1 and 𝐿2 incident into 𝑆 at point 𝐴 and

𝐵, respectively. As introduced in Section 2.2, 𝐿1 is separated into two parts: 𝐿1𝑜 (the ordinary ray)

and 𝐿1𝑒 (the extraordinary ray). The refractive indices of the ordinary ray and the extraordinary

ray are 𝑛𝑜 and 𝑛𝑒, respectively. Similarly, 𝐿2 is separated into two parts: 𝐿2𝑜 (the ordinary ray)

and 𝐿2𝑒 (the extraordinary ray). After passing through another polarizer 𝑃2, the light 𝐿1𝑒 and 𝐿2𝑜

become 𝐿′1𝑒 and 𝐿′2𝑜. 𝐿
′
2𝑜 of 𝐿2 interferes with 𝐿′1𝑒 of 𝐿1. Then the interference result of light 𝐿′2𝑜

and 𝐿′1𝑒 is measured by a camera at 𝑄.

Next, in this section, we analyze the light spectrum of interference results and show its relation-

ship with the angle 𝜃.

2.3.1 Interference Analysis

From Eq. (2.4), we can know that the interference light intensity relies on the two coherent light

intensity and their phase difference. We analyze the intensity and phase difference of 𝐿′1𝑒 and 𝐿′2𝑜
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in the following part.

2.3.1.1 Intensity

Assume the angles between the optic axis of 𝑆 and the transmission axes of two polarizers 𝑃1 and

𝑃2 are 𝜙1 and 𝜙2, respectively. Denote the intensity of 𝐿1 as 𝐼1, and assume light rays 𝐿1 and 𝐿2

have equal intensity. According to Eq. (2.3), 𝐼1𝑜 = 𝐼1 sin2 𝜙1 and 𝐼1𝑒 = 𝐼1 cos2 𝜙1.

Denote the light intensities of 𝐿′1𝑒 and 𝐿′2𝑜 as 𝐼′1𝑒 and 𝐼′2𝑜, respectively. According to Eq. (2.1),

𝐼′1𝑒 and 𝐼′2𝑜 can be calculated as

𝐼′2𝑜 = 𝐼1𝑜𝑠𝑖𝑛
2𝜙2 = 𝐼1𝑠𝑖𝑛

2𝜙1𝑠𝑖𝑛
2𝜙2

𝐼′1𝑒 = 𝐼1𝑒𝑐𝑜𝑠
2𝜙2 = 𝐼1𝑐𝑜𝑠

2𝜙1𝑐𝑜𝑠
2𝜙2.

(2.5)

2.3.1.2 Phase Difference

As shown in Figure 2.2, the incident angles of 𝐿1 and 𝐿2 to 𝑆 are both 𝜃, the thickness of 𝑆 is 𝑑,

and the refraction angles of 𝐿1𝑒 and 𝐿2𝑜 are 𝜃𝑒 and 𝜃𝑜. The optical path difference Δ of 𝐿1𝑒 and

𝐿2𝑜 at point 𝑄 can be calculated as

Δ = 𝐹𝐴𝑛𝑎𝑖𝑟 + 𝐴𝐷𝑛𝑒 − 𝐵𝐷𝑛𝑜

= 𝑑 (𝑡𝑎𝑛𝜃𝑜 − 𝑡𝑎𝑛𝜃𝑒) (𝑠𝑖𝑛𝜃)𝑛𝑎𝑖𝑟 +
𝑑

𝑐𝑜𝑠𝜃𝑒
𝑛𝑒 −

𝑑

𝑐𝑜𝑠𝜃𝑜
𝑛𝑜

(2.6)

where 𝐹𝐴, 𝐴𝐷, and 𝐵𝐷 are the lengths from 𝐹 to 𝐴, from 𝐴 to 𝐷, and from 𝐵 to 𝐷, respectively.

Combining Eq. (2.2) and Eq. (2.6), we have

Δ = 𝑑 (𝑛𝑒𝑐𝑜𝑠𝜃𝑒 − 𝑛𝑜𝑐𝑜𝑠𝜃𝑜) (2.7)

As aforementioned, for a particular material, 𝑛𝑜 is usually fixed, 𝑛𝑒 and 𝜃𝑒 are related to the

incident angle. We put the details of calculating 𝑛𝑒, 𝜃𝑒 and Δ in Section 2.3.1.3. Therefore, we

have

Δ = 𝑑 (

√︄
𝑁2
𝑒 − 𝑠𝑖𝑛2𝜃 (𝑠𝑖𝑛2𝛾 + 𝑁2

𝑒

𝑁2
𝑜

𝑐𝑜𝑠2𝛾) −
√︃
𝑁2
𝑜 − 𝑠𝑖𝑛2𝜃) (2.8)
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Figure 2.4: Intensity of interference light for different wavelength with different incident angles.

where 𝑁𝑜 and 𝑁𝑒 are principal refractive indices of 𝑆, which are fixed given a certain type of

material, 𝜃 is the incident angle, and 𝛾 is the angle between the projection of incident light on the

incident plane and optic axis, which is shown in Figure 2.1.

The optical path difference is for two light beams, the phase difference is different for different

wavelength. For light with a specific wavelength 𝜆, we can calculate the phase difference 𝛿 of 𝐿1𝑒

and 𝐿2𝑜 at point 𝐷 as

𝛿𝐷 = Δ
2𝜋
𝜆
. (2.9)

Due to the phase difference of projection on 𝑃2, the phase difference between two coherent

lights 𝐿′1𝑒 and 𝐿′2𝑜 at point 𝑄 is

𝛿 = 𝛿𝐷 + 𝛿′

=


Δ

2𝜋
𝜆

(case 1)

Δ
2𝜋
𝜆
+ 𝜋 (case 2)

(2.10)

where case 1 means the vectors 𝐿′1𝑜 and 𝐿′1𝑒 are in the same direction on 𝑃2, and case 2 means they

have reverse directions.
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2.3.1.3 Calculation of 𝑛𝑒, 𝜃𝑒, and Δ

Inspired by [33], as shown in Figure 2.1, the directional vector of optical axis, ordinary ray, and

extraordinary ray in the birefringence are

𝑒𝑎 = (𝑐𝑜𝑠𝛾, 𝑠𝑖𝑛𝛾, 0) (2.11)

𝑒𝑘𝑜 = (𝑠𝑖𝑛𝜃𝑜, 0, 𝑐𝑜𝑠𝜃𝑜) (2.12)

𝑒𝑘𝑒 = (𝑠𝑖𝑛𝜃𝑒, 0, 𝑐𝑜𝑠𝜃𝑒) (2.13)

We assume the angle between optic axis and extraordinary ray is 𝛼, i.e. angle between 𝑒𝑎 and 𝑒𝑘𝑒.

So according to (2.11),(2.13), we have:

𝑐𝑜𝑠𝛼 = 𝑒𝑎 · 𝑒𝑘𝑒 = 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜃𝑒 (2.14)

Because the refractive index of extraordinary ray varies with different incident angles, according

to the relationship between 𝛼 and the refractive index of extraordinary ray 𝑛𝑒 in [34], we have

𝑛𝑒 =
𝑁𝑜𝑁𝑒√︁

𝑁2
𝑜 𝑠𝑖𝑛

2𝛼 + 𝑁2
𝑒 𝑐𝑜𝑠

2𝛼
=

𝑁𝑜𝑁𝑒√︁
𝑁2
𝑜 + (𝑁2

𝑒 − 𝑁2
𝑜)𝑐𝑜𝑠2𝛼

(2.15)

where 𝑁𝑜 and 𝑁𝑒 are principal refractive indices and are fixed for each type of material. According

to (2.14),(2.15), we have:

𝑛𝑒 =
𝑁𝑜𝑁𝑒√︁

𝑁2
𝑜 + (𝑁2

𝑒 − 𝑁2
𝑜)𝑐𝑜𝑠2𝛾𝑠𝑖𝑛2𝜃𝑒

(2.16)

According to Snell’s Law, we have:

𝑛𝑎𝑖𝑟 𝑠𝑖𝑛𝜃 = 𝑛𝑒𝑠𝑖𝑛𝜃𝑒 = 𝑛𝑜𝑠𝑖𝑛𝜃𝑜 (2.17)

where 𝑛𝑎𝑖𝑟 ≈ 1 is the refractive index in air. Then we have

𝑛𝑒 =
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃𝑒
. (2.18)

According to (2.16),(2.18), we have:

𝜃𝑒 = arcsin

√√√
𝑠𝑖𝑛2𝜃

𝑁2
𝑒 − 𝑠𝑖𝑛2𝜃 ( 𝑁

2
𝑒

𝑁2
𝑜
𝑐𝑜𝑠2𝛾 − 𝑐𝑜𝑠2𝛾)

(2.19)
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Figure 2.5: (a) Hue values on x-y plane by simulation, (b) Hue values measured by mobile phone
on x-y plane.

Finally, according to (2.18) and (2.19), we have:

𝑛𝑒 =

√︄
𝑁2
𝑒 − 𝑠𝑖𝑛2𝜃 (𝑁

2
𝑒

𝑁2
𝑜

𝑐𝑜𝑠2𝛾 − 𝑐𝑜𝑠2𝛾) (2.20)

Because the optical path difference is:

Δ = 𝑑 (𝑛𝑒𝑐𝑜𝑠𝜃𝑒 − 𝑛𝑜𝑐𝑜𝑠𝜃𝑜) (2.21)

We substitute 𝑛𝑒, 𝜃𝑒, and 𝑛𝑜, 𝜃𝑜 into Eq. (2.21), we can have the expression of Δ using known

parameters:

Δ = 𝑑 (

√︄
𝑁2
𝑒 − 𝑠𝑖𝑛2𝜃 (𝑠𝑖𝑛2𝛾 + 𝑁2

𝑒

𝑁2
𝑜

𝑐𝑜𝑠2𝛾) −
√︃
𝑁2
𝑜 − 𝑠𝑖𝑛2𝜃) (2.22)

2.3.1.4 Summary

According to Eq. (2.4), the intensity spectrum of the interference light at 𝑄 can be calculated as

𝐼𝑄 = 𝐼1𝑐𝑜𝑠
2𝜙1𝑐𝑜𝑠

2𝜙2 + 𝐼1𝑠𝑖𝑛2𝜙1𝑠𝑖𝑛
2𝜙2

+2𝐼1𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2𝑠𝑖𝑛𝜙1𝑠𝑖𝑛𝜙2𝑐𝑜𝑠𝛿.

(2.23)

where 𝛿 can be calculated according to Eq. (2.10).
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Figure 2.6: (a) Hue matrix sampled, (b) Hue matrix after interpolation.

According to Eq. (2.23), given the intensity spectrum on frequency domain of light source 𝐼1, the

angle 𝜙1 between optic axis of the birefringence material and the polarizer 𝑃1, the angle 𝜙2 between

optic axis of the birefringence material and the polarizer 𝑃2, the incident direction parameters 𝜃

and 𝛾, and birefringence material parameters principal refractive indices and thickness 𝑑, we can

calculate the value of the light intensity 𝐼𝑄 at 𝑄.

Figure 2.4 shows the light spectrum of interference for different parameters. Given the value

of 𝐼1, 𝜙1, 𝜙2 and 𝑑, different combinations of 𝜃 and 𝛾 result in different spectrum of 𝐼𝑄 . This

makes the foundation of obtaining light incident angles based on different interference results. As

long as we can get the incident angles from multiple points, we can use the AoA-based method for

localization.

2.3.2 Validation

2.3.2.1 Choose The Light Spectrum Feature

Mobile cameras usually do not have the capability of measuring the light spectrum directly. How-

ever, the direction is represented by the interference light spectrum, and we have to distinguish

different light spectrums to distinguish different directions. There is a challenge for us to find a

proper light feature, which satisfies two conditions in the meantime: it can be measured by the

COTS camera and can indicate the direction from the source to the chip. It is well-known that
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different light spectrums result in different colors of the mixed light. A straightforward approach

is to measure the RGB color and map RGB vectors to different directions. However, we find this is

not feasible in practice as the spectrum could not be effectively represented in RGB color. Instead,

we use the HSL (Hue, Saturation, Lightness) color space and find that the 𝐻 (i.e., Hue) component

from HSL is much more suitable for representing the color of mixtures of lights [35].

2.3.2.2 Measurement Result

We conduct an experiment to validate the model. We measure the hue value on different positions

after 𝑃2. Figure 2.5b shows the measurement hue values for different positions on a plane with a

certain distance to the light source. Then we compare the measurement result with the simulation

result based on Eq. (2.23). In our simulation, we use the parameters of quartz crystal (a type

of birefringence material) chip with thickness of 0.6 mm. We measure the intensity spectrum of

interference result on different direction. We leverage the color wheel [35] to approximate intensity

spectrum with hue value. Figure 2.5a shows the hue value with respect to positions on a surface

parallel with the birefringence chip. We can see that the color regularities of Figure 2.5a and

Figure 2.5b are very similar. This coincides with our analysis and Eq. (2.23). This also means that

hue value is effective for representing the intensity spectrum.

2.4 RainbowLight Design

2.4.1 Design Overview

Figure 2.7 illustrates the system overview of RainbowLight. The chips used in RainbowLight are

a combination of two polarizers and one birefringence chip as shown in Figure 2.2. With one chip,

we can calculate direction information. Combining the direction information from multiple chips,

we can derive the 3D location. The main design of RainbowLight consists of two parts. The first

part is mapping initialization. This part is to build an initial mapping between the direction and

hue value for a certain type of chip. The mapping initialization only needs to be performed once

for a certain type of chip. The second part is the 3D localization component. In this part, a mobile
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Figure 2.7: Overview of RainbowLight.

camera will take a photo containing multiple chips. Based on the hue value of the initial mapping,

the direction to those chips can be calculated. Then we also propose a direction intersection based

method to calculate the final 3D location.

2.4.2 Mapping Initialization

The mapping between light directions and hue values can be built by sampling in different positions.

We put a chip at the origin 𝑂 of the coordinate system, and the chip is parallel with the x-y plane.

A mobile phone moves in a grid at a certain plane (𝑧 = 1𝑚) and captures a photo containing the

chip at each position. For a sampling position 𝑟, it derives the hue value ℎ of the color for the chip

from the captured photo. It means that the hue values for all points on the ray
−→
𝑂𝑟, i.e., the ray with

the direction from the chip to the position on the plane in the space, are ℎ.

Therefore, we build a map 𝑅𝑆 → 𝐻𝑆 from sampling positions 𝑅𝑆 = (𝑟1, 𝑟2, . . . , 𝑟𝑛) to hue values

𝐻𝑆 =

(
ℎ1, ℎ2, · · · , ℎ𝑛

)
(2.24)

where ℎ𝑖 denotes the hue value observed by mobile phone from points on line
−−→
𝑂𝑟𝑖.

For a higher sampling density, the map should be more accurate. On the other hand, a higher

density also indicates a higher sampling overhead. To reduce the initial sampling overhead, we

propose an interpolation-based method to improve the granularity of initial map. We leverage

the color regularity to interpolate a coarse-grained sampling matrix 𝐻𝑆 and build a fine-grained

19



"�1G3)47'��?&�;> � CB

�

�




�

��&�	�$�
�

��&��
�6�3D8<�.

100cm

60cm

A B

C

!" !#
0cm

0C�����#71G5
D��5A(!" !#
+��2!�������7�@F1
������7F1=0-:�%E97F1=0
�2,��&�7/3&���

(%&", %&#) (%)", %)#)

(%)", %*#)

�� ��

�	�	�	���

�����	���

�
��
��	���

&��

�	�	�	���

Figure 2.8: Illustration of localization algorithm.

map 𝑅 → 𝐻. We examine the performance of interpolation under different sampling density in

Section 2.7.3.

As shown in Figure 2.5, the color gradually changes with the position. As the hue value ranges

from 0 to 360, in interpolation we should carefully deal with the hue value cross the hue range

boundary. More specifically, for two hue values ℎ1 and ℎ2 (ℎ1 > ℎ2) for two adjacent sampling

positions, we first calculate the hue value gap ℎΔ = ℎ1 − ℎ2. If ℎΔ is smaller than a pre-defined

threshold 𝑡ℎ𝑟 (e.g., 𝑡ℎ𝑟 = 350), the interpolation can be performed between ℎ1 and ℎ2. If ℎΔ is

larger than the pre-defined threshold 𝑡ℎ𝑟, we consider the hue value between those two sampling

positions crosses the hue value boundary. The interpolated hue value should be performed for ℎ1

and ℎ2 + 360. All the hue value should be calculated from the interpolation result modulo by 360

to guarantee the hue values are in [0, 360). Figure 2.6a shows the original hue matrix. Figure 2.6b

shows the interpolation result.

In practice for the same type of chip, we only need to build the initial map 𝑅 → 𝐻 once. This

could significantly reduce the initialization overhead for RainbowLight. Later, we will show how

to leverage the map for localization in 3D space.
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2.4.3 3D Localization

2.4.3.1 Localization Design

To enable 3D localization, we simply stick several chips on a transparent surface. Without loss of

generality, we assume three chips 𝑆1, 𝑆2 and 𝑆3 are used. Later, in Section 2.7, we will show the

impact of number of chips. Denote the position of the center of 𝑆1, 𝑆2, and 𝑆3 as 𝑝1, 𝑝2 and 𝑝3,

respectively. The position 𝑝1, 𝑝2 and 𝑝3, namely reference points, can be measured in advance.

A mobile phone with a camera at the position 𝑟𝑥 simply captures a photo containing 𝑆1, 𝑆2,

and 𝑆3. We calculate the hue values ℎ̃1, ℎ̃2 and ℎ̃3 from the photo for those three chips. Based

on the initial map between colors and directions, RainbowLight can obtain the possible directions

from 𝑝1, 𝑝2 and 𝑝3, respectively. Thus we have three groups of ray directions from three reference

points, respectively. Then we can obtain the position 𝑟𝑥 based on the intersection of those ray

directions.

2.4.3.2 Intersection Based Localization

The goal of localization is to calculate the position 𝑟𝑥 based on ℎ̃1, ℎ̃2 and ℎ̃3 and 𝑅 → 𝐻 .

Find line group candidates: The initial map is built using a chip at coordinate origin 𝑂. In

practical, chips are usually attached at other positions. In order to make the map 𝑅 → 𝐻 suitable

for the deployment of a specific chip, we need to do coordinate translation for the initial mapping.

The map becomes 𝑅 𝑗 → 𝐻 for 𝑗 = 1, 2, 3, where 𝑅 𝑗 = 𝑅 + 𝑝 𝑗 is the transformed sampling position

for 𝑆 𝑗 .

Due to the color error for the camera on a mobile phone, there may be multiple lines with hue

close to ℎ̃1, ℎ̃2, and ℎ̃3. Meanwhile, according to Eq. (2.23), we also find that there are multiple

combinations of 𝜃 and 𝛾 leading to the same hue value. It indicates that there may be multiple

directions of the same hue value. Therefore, for each chip, we can calculate a group of lines. Overall,

we obtain three groups of lines denoted by 𝐺1, 𝐺2, and 𝐺3. We have 𝐺 𝑗 = {
−−−→
𝑟
𝑗

𝑖
𝑝 𝑗 | |ℎ𝑖 − ℎ̃ 𝑗 | < 𝜖ℎ}

for 𝑗 = 1, 2, 3 where 𝑟 𝑗
𝑖
∈ 𝑅 𝑗 and 𝜖ℎ is the maximum allowed hue error.
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Polarizer (v)

Figure 2.9: Chips in RainbowLight.

Line intersection: The main idea is calculating the localization based on the intersection point

of those three sets of lines𝐺1, 𝐺2, and𝐺3 as the localization result 𝑟𝑥 . There should exist three lines

from 𝐺1, 𝐺2 and 𝐺3, respectively, that intersect at point 𝑟𝑥 . Due to hue value measurement error,

those three lines may be very close to each other but not directly intersect in practice. Therefore,

we could use an algorithm based on the contrary thinking. The idea is based on the principle that

light travels in a straight line. As shown in Figure 2.8, not without generality, suppose we want to

perform localization in a 2D plane. If we put two chips, namely 𝑆1 and 𝑆2, at localization 0 cm

and perform initialization at 100 cm, i.e. at point 𝐴 we observe 𝑆1 and 𝑆2 and get hue values 𝐶𝐴1

and 𝐶𝐴2 respectively, and at point 𝐵 we get hue values 𝐶𝐵1 and 𝐶𝐵2 , according to the principle, we

will get hue values 𝐶𝐵1 and 𝐶𝐴2 at point 𝐶 at 60 cm. Therefore, if we have sampled all points at

100 cm, hue values of nearly all points in the plane will be derived ideally. We regard all those

hue values as 2D coordinates. After that when we capture a photo contains those two chips, we

extract hue values, for example, (𝐶1, 𝐶2), then we can get the final positioning result by calculating

the minimum distance between (𝐶1, 𝐶2) and all coordinates we derived. We can easily extend the

algorithm above from 2D plane to 3D space.
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(i) (ii) (iii)

(iv)

Transparent adhesive tape
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Figure 2.10: Anchor with chips made by two polarizers and one transparent adhesive tape (i): near
to fluorescent (iii) on LED lamp cover, anchor with chips made by one polarizer and one transparent
adhesive tape(ii): near to fluorescent (iv): on LED lamp cover, (v): anchor on a glass window.

2.5 Implementation

RainbowLight consists of two components: anchor and receiver. In this section, we present the

details of those two components. We also discuss a variant of RainbowLight, which put polarizer

𝑃2 in front of the camera to eliminate color observed by human eyes. Since RainbowLight performs

relative localization for a given anchor, it needs to identify which anchor is captured by camera

hence can be used in a large region. We also discuss how to provide identifiers to anchors in this

section.

2.5.1 Anchor

The anchor of RainbowLight is composed of a group of chips. Each chip consists of two linear

polarizers and a thin birefringence material chip. We stick the birefringence material chip between

two linear polarizers. As shown in Figure 2.9, we use the everyday transparent adhesive tape as the

birefringence material. RainbowLight does not require to stick the anchors on a lamp. We can put

anchors on different surfaces as long as light can pass through the chips. For example, as shown in

Figure 2.10 (i), (iii) and (v), we put anchor near lamps or on a lamp cover or a window. As shown in

Figure 2.10(i) and (iii), despite chips display colors, each chip made by polarizers and transparent
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adhesive tape is very small. It would not disturb human eyes. To enable RainbowLight, we also

need to record the relative position for those chips.

2.5.2 Receiver

We use the smartphone as the receiver side. The camera can capture a photo containing the anchor.

We implement software on the mobile phone based on Android. While the camera is taking a

photo, RainbowLight launches automatic exposure to fit the luminance of the environment. After

obtaining the photo, we use the algorithm of white balance to eliminate color shift among different

camera models, then use OpenCV to localize the position of each chip in the image based on features

such as shapes and derive HSL information from the photo. To address hue value estimation error

in practice, we use the averaged hue value for each chip as the hue value for localization. Then we

use the 3D localization algorithm mentioned in section 2.4.3.2 to get the position of the camera.

Now we present a variant of RainbowLight to eliminate the color which can be observed by

human eyes directly. We put polarizer 𝑃2 in front of the camera. In such a case, human eyes cannot

observe the color displayed by chips directly as shown in Figure 2.10 (ii) and (iv), but cameras can

capture chips with different colors. However, if we put 𝑃2 in front of the camera, the camera’s

rotation would result in the change of color of the chips, thus color-direction map could not be used.

Fortunately, since the hue value instead of RGB represents color in RainbowLight, chips only show

two complementary hue values with the camera’s rotation as shown in Figure 2.11. Therefore, we

measure the camera’s rotation angle firstly, if it results in complementary hue values of initialization,

we can transform them into original hue values hence performing localization. Attaching polarizer

in front of the camera will bring in extra costs, and brings error of accuracy with the camera’s

rotation. We will present the accuracy in Section 2.7. Users who deploy the RainbowLight can

choose where to put the polarizer 𝑃2 according to their conditions and requirements.

We measure the latency of RainbowLight. In the measurement, we let RainbowLight process 10

photos to measure the average latency. The mobile phone we used is Huawei Nexus 6P. It takes 236

ms on average to find chips and extract hue values. It takes 503 ms on average for 3D localization
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Figure 2.11: Complementary hue observed as rotating mobile phone for different tape thickness (1
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Figure 2.12: RainbowLight anchor with identifier.

from hue values. We optimize RainbowLight 3D localization to parallel the processing in our

implementation of localization. With such an optimization, the time for 3D localization reduces to

123 ms on average. This would apply to most VLP based applications such as navigation. We also

use Power Monitor to measure the power consumption of RainbowLight with Nexus 5x, the result

shows that our algorithm takes 1.122J to process one photo and perform localization.

2.6 Apply RainbowLight to Localization in a Large Area

We have presented a novel relative localization approach, RainbowLight, which can derive the

camera’s relative position to an anchor. However, one small RainbowLight anchor only can be

25



captured by the camera in a small region, thus it is difficult to apply to localization in a large area

such as a shopping mall. To address this issue, we can use the idea similar to use multiple lamps

to illuminate an entire room, in other words, we give each anchor a unique identifier and extract

the identifier from the anchor firstly to get a coarse-grained area where camera located, then derive

precise relative location to the anchor. Therefore, we can use RainbowLight to get the camera’s

location in a large area.

2.6.1 Providing Identifier to RainbowLight Anchor

We can use the existing method such as iLAMP [22] to distinguish different light sources in a large

area if we put an anchor on the lamp. We can also attach the QR code on each anchor to identify

them. Considering iLAMP cannot be used with light-off, we also design a QR-code-like method

to use our localization chips for providing ID.

As shown in Figure 2.12, after modification, an anchor consists of 3 components. While

the Localization Points used to derive the relative position is made by polarizers and transparent

adhesive tape, Matching Points and Coding Area are only made by polarizer. We make them by

two perpendicular polarization directions. Similar to the QR code, 3 of matching points are in

the same direction, and another is not, therefore, it can be decoded even if the anchor is rotated

in the photo. We use those two directions to represent 0 or 1 in the coding area. Therefore, after

taking a photo behind another polarizer either covered on the anchor or put before the camera, we

can compare the brightness of each polarizer in the coding area to polarizers of matching point to

recognize each of them representing 0 or 1, hence decode the identifier. In this case, the anchor

can encode 212 = 4096 identifiers in the coding area.

2.6.2 Localization in a Large Area

As Figure 2.13 shown, without loss of generality, suppose we have 3 anchors in a large area, we can

store each anchor’s identifier and its real position in a database in advance. During the localization

process, for example, after a camera in area #3 which is a valid area of anchor #3 taking a photo
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Figure 2.13: Overview of localization in building.

containing anchor #3, the system firstly decodes the identifier of the anchor in the photo, then get

the real position of the anchor from the database. Combining with the relative position from the

camera to the anchor, we could get the camera’s real position.

2.7 Evaluation

We evaluate the performance of RainbowLight from the following aspects:

• Localization accuracy for different distances.

• The performance of mapping the position related to the landmark to the absolute position.

• The impact of system parameters on localization accuracy.

• System performance under different light sources (different manufacturers, color tempera-

tures, lamp types, and powers).

• System performance under different mobile phone models.

• System performance with the light on/off.

• System performance with different angles of mobile phone orientation.
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Figure 2.14: (a) Experiment environment. (b) Localization precision on different distance.

0 10 20 30 40 50 60 70 80 90 100
Localization Error (cm)

0

0.25

0.5

0.75

1

C
D

F

X-axis
Y-axis
Z-axis
Total

(a)
0∘ 10∘

20∘30
∘
40∘
50∘
60∘
70∘
80∘
90∘90∘

80∘

70∘
60∘
50∘

40∘
30∘20∘ 10∘

Anchor

(b)

Figure 2.15: (a) Localization precision map relative position to absolute position. (b) Capture in
different angles.

Through the evaluation, we aim to show the effectiveness of RainbowLight in practice. It should

be noted that for all experiments we use the same initial mapping unless otherwise specified. This

means that we only need to perform initialization once, which significantly reduces the initialization

overhead compared with existing approaches.

2.7.1 Localization Accuracy

Figure 2.14a shows the experiment environment. In the experiment, we move a transparent board

to different distances to the light source. For each distance, we move the mobile phone on the board

at different positions. We can measure the position of the mobile phone on the board as the ground

truth. Meanwhile, we also use RainbowLight to calculate the position of the mobile phone. We
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Figure 2.16: (a) Localization precision on different sampling density. (b) Localization precision
on different number of chips.

switch off other lamps during our experiment at night. Figure 2.14b shows the localization error

for the mobile phone moving on the board out of 230 random points. The x-axis denotes the range

of the distance between the board and the lamp. We can see that the localization error increases

as distance increases. This is mainly because hue value is less sensitive to the position for a larger

distance.

We can also observe that the error on 𝑧-axis is larger than that on 𝑥-𝑦 plane. The major reason is

that the angle from the chip to the mobile phone varies by a smaller value when we move the mobile

phone along the 𝑧-axis than that along the 𝑥-𝑦 plane. This phenomenon is more evident when chips

are close to each other. However, even when those chips are all in a circle with diameter less than

16 cm, the localization accuracy for different distance is still high. This indicates RainbowLight

can work for different distance with the lamp of small size.

Overall, in the 2m - 3m distance interval, the mean error of localization is 3.19 cm on 𝑥-axis,

2.74 cm on 𝑦-axis, and 23.65 cm on 𝑧-axis. This performance is better than SmartLight with a

localization error of about 60 cm on 𝑧-axis for distance from 1m - 3m. The localization accuracy

of RainbowLight is enough for most of today’s application scenarios such as navigation.
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Figure 2.17: Localization accuracy for different (a) power of lamp, (b) color temperature of lamp.
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Figure 2.18: Localization accuracy for different (a) types of lamp, (b) manufacturers of lamp.

2.7.2 Performance with Identifier

As discussed in section 2.6, we design an approach to map the position of a camera relative to the

anchor to the absolute position in an area by providing an identifier to each anchor. To evaluate

the performance of this approach, we randomly choose 190 points in an area of the meeting room,

and calculate the accuracy of localization. Figure 2.15a shows the performance. We can find that

RainbowLight achieves 1.68 cm of the median error in the X-axis, 2 cm of the median error in the

Y-axis, 5.74 cm of the median error in Z-axis, and 7.04 cm of the median error with the whole

dimension. It also achieves 7.37cm, 5 cm, 22.9 cm, 23.20 cm of the 90% error in X-axis, Y-axis,

Z-axis, and with the whole dimension, respectively. The localization accuracy is also enough for

most of today’s application scenarios.
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To evaluate the performance of decoding of the identifier on the anchor, we use the camera to

capture photos with different angles to the anchor. As shown in figure 2.15b, we put an anchor in a

plane, and use the camera to capture photos from 0◦ to 90◦, then try to decode the identifier on the

anchor. With the identifier we designed in section 2.6, it could not be decoded when the angle is

above to 60◦. Since the ceiling of a room is often with a height of 3 m, so users should deploy an

anchor in every 9.42 𝑚2 with the code we designed in section 2.6.

2.7.3 Impact of Sampling Density

We examine the impact of sampling density in building the initial map. Figure 2.16a shows the

localization accuracy with respect to different sampling densities. We build the initial map on

a plane parallel to 𝑥 − 𝑦 plane with 𝑧 = 100 cm. We examine the performance with different

inter-distance of sampling position, i.e., 5 cm, 10 cm, and 15 cm, respectively. It can be seen that

low sampling density still works well for RainbowLight. Even when the inter-distance is 15 cm, the

localization error is only around 10 cm. This is mainly because hue value distribution is smooth in

the 3D space and thus interpolation is effective in building initial mapping.

2.7.4 Impact of Number of Transparent Chips

As shown in Section 2.4, the hue value from a single chip determines a candidate group of rays

from the chip. With more chips, the localization accuracy will be improved as the intersection point

can be refined with more groups of rays. We explore the relationship between localization accuracy

and the number of chips. Figure 2.16b shows the CDF of 3D localization error while increasing

the number of chips from 2 to 6. It can be seen that the localization accuracy increases when the

number of chips increases from 2 to 4. Further, the performance becomes relatively stable when

the number increases from 4 to 6. This means 4 chips is enough in practice to achieve a good

localization accuracy.
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Figure 2.19: Different light sources.

2.7.5 Impact of Different Light Sources

We examine the performance of RainbowLight with different light sources. As shown in Figure 2.19,

we use lamps of different types, i.e fluorescent (FL), LED and incandescent bulb (IL), from different

manufacturers (A - E), with different color temperature (3000 K, 6000 K) and different power (5

W, 6.5 W, 12 W). In all the following experiments, we use a Philips (manufacturer A) 6.5 W LED

with the color temperature of 6000 K for initialization.

In our daily life, the power of LED mainly ranges from 5 W to 20 W. Figure 2.17a shows

localization error of LED (manufacturer A) of power 5 W (500 lm), 6.5 W (600 lm), and 12W

(1100 lm) out of 150 random points. There is no significant difference in terms of error for different

power. This is mainly because as long as 𝛾 and 𝜃 are fixed, our approach captures the major property

of light spectrum and also removes other noise such as brightness, as explained in Section 2.3.

There are mainly two different color temperatures (6000 K and 3000 K) for typical lamps in

our daily lives. Intuitively, 6000 K generates white color while 3000 K generates yellow. The light

spectrums from those two temperatures are slightly different. We initialize with a 6000 K lamp

and measure the localization error for 3000 K and 6000 K out of 100 random points. As shown in

Figure 2.17b, we can see that the localization error of 3000 K is slightly larger than that of 6000 K

32



because of spectrum difference. However, the accuracy of both color temperature is still acceptable.

In practical applications, we only need to build the initial map with one color temperature, and

RainbowLight performs well under other color temperatures.

We examine the performance of RainbowLight for the three most commonly used lamps, i.e.,

LED, fluorescent, and incandescent bulb out of 150 random points. As shown in Figure 2.18a, the

accuracy for fluorescent is high. The accuracy of the incandescent bulb is relatively low. This is

because those two types of lamps have different light spectrums. However, as long as we use the

incandescent bulb for initialization, the accuracy of RainbowLight remains high for incandescent

bulb.

We also examine the performance of RainbowLight among different brands of lamps. The

light spectrum emitted slightly varies for lamps from different manufacturers. We choose 5 LEDs

from 5 different popular manufacturers, marked as A-E. The power of all lamps is 5 W and the

lumens are 500 lm, 380 lm, 450 lm, 400 lm, 280 lm, respectively. The color temperature is 6000

K. Figure 2.18b shows that the error is small for all brands out of 250 random points and the

performance is similar for all brands. It also indicates we only need to initialize with a certain

brand, and the accuracy of RainbowLight is acceptable under other brands.

Summary. RainbowLight achieves a high accuracy under different circumstances with com-

monly used lamps. For most scenarios, RainbowLight only needs to be initialized once, and

almost can be used for all other lamps. This significantly reduces the deployment cost and makes

RainbowLight practical.

2.7.6 Impact of Different Mobile Phone Models

Because different cameras have different parameters of light sensors, so they might get different

hue values to the same light beam. We use the white balance algorithm to reduce the impact

from different parameters of sensors, and examine the impact of different mobile phones. We use

two branches of mobile phones, i.e., Huawei Nexus 6P and Vivo X7 to measure the accuracy of

RainbowLight. We randomly choose 10 points in the range of z-axis between 100 cm and 150 cm
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Figure 2.20: Localization accuracy for different (a) mobile phones, (b) lamp status.

for each mobile phone, the result is shown in figure 2.20a. We find that the error doesn’t change

much, so RainbowLight could be used on different mobile phone models.

2.7.7 Localization with Light Off

Most existing visible light positioning systems, e.g., LiTell[1], SmartLight[20], and CELLI[17],

only work when the light is turned on, as those systems require modulating information in the light

ray or measuring special features from the light ray. This significantly hinders their applications

in the daytime when light is usually switched off. RainbowLight can work even when light is

switched off during the daytime as it does not need to modulate information in light or measure

light features. Figure 2.20b shows the performance of RainbowLight out of 50 random points with

the light turned off. Similar to Section 2.7.1, we examine the accuracy in the environment as shown

in Fig. 2.14a. In the experiment, sunlight passes through the window and we switch all lamps off.

We can see that the error for the light turned off is still less than 20 cm. The error for the light

turned off is very small and is similar to the scenario of the light turned on. This is mainly because

RainbowLight can generate obvious features from different light sources, and can also effectively

extract those features. This significantly extends the application for visible light-based localization

and make it more practical in everyday life.
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Figure 2.21: Localization precision of different (a) pitch angles, (b) yaw angles.
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Figure 2.22: Localization precision of different roll angles of mobile phone.

2.7.8 Impact of Mobile Phone Orientation

To verify the influence of pitch and yaw, we measure error at distance 60 cm with different pitch

and yaw angles. Figure 2.21a and Figure 2.21b shows the result. We select range from −30◦ to 30◦

because the mobile cannot capture the lamp with pitch and yaw angle out of this range. We can see

that when we change pitch and yaw angle, error changes slightly. This is mainly because when we

change the pitch and yaw angle, 𝜙1, 𝜙2, 𝛾, and 𝜃 does not change.

If 𝑃2 is attached to the chip, mobile phone roll will have no impact on the hue value. If we put

the polarizer 𝑃2 in front of the camera, RainbowLight needs to confirm if chips on anchor show

complementary hue value and its impact on localization accuracy. We also examine the accuracy of

localization in this scenario. The error of different roll angles of camera as shown in Figure 2.22a.

Therefore, no matter which position we are, as long as we can capture the lamp with any 3D
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orientation, RainbowLight shows a high localization accuracy. This extends application scenarios

of today’s VLP systems.

2.8 Related Work

2.8.1 Visible Light Based Localization

The first category of work is to use a special designed LED light to generate identifiable features

[21, 18]. Those works usually need to use an MCU to control the lamp to modulate information

by change the frequency, voltage, etc. Spotlight [19] generates a sequence of on/off the pattern

and uses such a pattern as landmarks for localization. Spinlight [5] uses a hemispherical shade to

encode position information with holes. CELLI [17] designs a structure with LCD to modulate

polarization direction of emitting light. It generates two sweeping lines with special light properties

and uses sweeping lines for localization.

Recently, SmartLight [20] proposes an interesting idea to use a digital modulated LED array

with a lens to achieve single light 3D localization. It modulates different LED lights with different

frequency on the LED array. Then it emits the light through a lens to the 3D space. Then it

derives the location based on the frequency of received light. Pulsar [28] uses the inherent features

of photodiode diversity. It builds a map from angle to RSS. It designs a special receiver with

two photodiodes. Most of those approaches in this category require a specially designed lamp or

receiver. Thus it may not apply to most scenarios in our daily lives.

Further, many attempts are proposed to remove the requirements with specially controlled

light. Existing methods such as [6, 27] use geometrical relationships among lights with the known

position for triangulation based localization. PIXEL [24] leverages the inherent feature of optical

rotatory dispersion for localization. When a linearly polarized light passes through a disperser,

the color observed through a polarizer with different transmission directions should be different at

different locations. By fixing the orientation of a mobile phone, [24] derive the identifier by the

observed color, then calculates location with the geometrical relationship. It requires to capture

more than one light in one photo.
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LiTell [1] and iLAMP [22] use inherent features of fluorescent such as frequency and color

spectrum to identify each light. Given the position of the light, the location can be derived by

triangulation. Those two approaches are very nice as they do not need any extra modification to

the lamp. However, they require to sample the features for each light. It is also highly related to

the environment and cannot work when a lamp is changed. Recently, [36] proposes an interesting

method of using light to correct inertial measurement unit errors. As introduced in [36], it leverages

the property that a polarized light ray going through transparent tape is rotated by an amount related

to wavelength. Then it tries to derive the location change by sensing the color after a polarizer with

different directions. It detects color changes by edge crossing between four types of blocks hence

serve as landmarks to correct IMU drift errors.

Luxapose [6] localizes the relative position from lamps. The main idea is to build a geometrical

model and calculate the position based on the relationship between lamps’ positions both in the

real world and in the photo. Such a model is also used in iLAMP [22]. However, the model

needs extra-parameters, e.g., focal length or data from other sensors. Since different cameras hold

different parameters like the focal length, they are not easy to use. RainbowLight only uses the

color pattern to derive the relative position to the tag, which is more general. Travi-Navi [37] using

the computer vision-based approach to launch the navigation. It stores guider’s video and uses

sensors to calibrate the position, and those data can be further used for followers in navigation.

2.8.2 Other Localization Approaches

Localization has attracted many research efforts. Besides visible light based localization, there exist

a large collection of localization approaches using wireless signal, such as [11, 12, 13, 38, 14, 39, 40,

41, 42, 15, 16, 43], using acoustic signal [44, 45, 46], using environment information and cell tower

signal [47], FM signal [48], stride information [49], inertial sensors [50] etc. Those approaches

are usually based on a signal attenuation model or pre-collecting a large number of fingerprints.

Meanwhile, many wireless signal based approaches need to analyze signal properties such as CSI,

which further leads to a high computation overhead. Thus they usually require specially designed
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hardware at the receiver or sender, making it difficult to implement on the mobile phone. Multiple

path effect also affects the localization accuracy for many of those approaches. Our approach is

largely inspired by those approaches.
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CHAPTER 3

PATRONUS: PREVENTING UNAUTHORIZED SPEECH RECORDINGS WITH
SUPPORT FOR SELECTIVE UNSCRAMBLING

3.1 Overview

Human beings have long used acoustic signals to exchange information with each other. Human

beings now use acoustic signals, which is speech, to exchange information with ubiquitous smart

devices such as smartphones, smartwatches, and digital assistants that are equipped with embedded

microphones. While these speech detection and recognition capabilities make possible many

convenient features, they also introduce many privacy risks such as secret, unauthorized recordings

of our private speech [51, 52] that can have real world consequences. For example, the Ukrainian

prime minister offered his resignation after an unauthorized recording was leaked [53].

Manufacturers claim that they are trying their best to protect users’ privacy, but there is no

effective and user-friendly technical anti-recording solution available despite the fact that anti-

recording is not a new problem. One existing anti-recording solution is to talk near a white noise

source, e.g., near an FM radio tuned to unused frequencies, so that the conversation cannot be clearly

recorded. This approach is not user-friendly because the people having the conversation must put

up with the white noise that interferes with their normal communication. A similar solution [54]

emits high frequency noise near the upper bound of human sensitivity; most people do not notice

the interference, but pets and infants may notice it [3], so this solution is not environment-friendly.

Electromagnetic interference was an effective anti-recording solution [55] in the past, but modern

microphones are immune to electromagnetic interference. Moreover, all of these traditional anti-

recording approaches cannot allow authorized devices to clearly record conversations.

Any effective anti-recording solution must provide the following three key properties: (1) normal

human conversation should be unaffected by the anti-recording solution meaning the anti-recording

solution should not change what humans hear while having a conversation; (2) unauthorized devices
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should not be able to make a clear recording of any conversation protected by the anti-recording

solution; (3) authorized devices should be able to make a clear recording of any conversation

protected by the anti-recording solution.

One potential solution that can satisfy all three properties is to generate multiple ultrasonic

frequency sound waves because of the following two properties of ultrasonic waves. First, humans

cannot hear ultrasonic sound waves. Second, commercial off-the-shelf (COTS) microphones

exhibit nonlinear effects, which means that when these microphones receive multiple ultrasonic

sound waves, they generate low-frequency sound waves that can be heard by humans and thus

interfere with the clarity of recordings made with those microphones [8, 56, 7, 57, 58, 3, 59]. There

are three main challenges that must be overcome in order to develop an ultrasonic anti-recording

solutions that satisfies the three key properties:

(1) First, any ultrasonic anti-recording solution must defend against potential attacks such as using

Short-time Fourier transform (STFT) to analyze unauthorized recordings and using filters to

cancel out the low-frequency sound waves that interfere with recording clarity.

(2) Second, ultrasound travels along a straight line [60], which means a single ultrasonic wave

generator can only interfere with recording devices within a limited range of angles from the

generator. In practice, it is difficult to design an ultrasonic anti-recording solution that can

neutralize all recording devices within a large coverage area.

(3) Finally, the performance of authorized devices could be affected by the ringing effect due

to electronic behaviors. Such ringing impulses are hard to be canceled and may remain in

authorized recordings, severely downgrading the quality of the descrambled recordings.

In this chapter, we present Patronus, an ultrasonic anti-recording system that satisfies the three

key properties. Patronus has two key components: the scramble that is the pseudo-noise generated

at all microphones, and descrambling that is the process to remove the scramble for authorized

devices. We form the scramble by randomly picking frequencies from the human voice frequency

band and then shifting them to the ultrasonic band. To thwart STFT attacks, we further fine-tune
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Figure 3.1: Using chirps to smooth the frequency changing components of the scramble.

the period of the scramble so that it cannot be easily analyzed and canceled. We add a reflection

layer with a curved surface to create a reflected ultrasonic wave that can cover a wider area. Finally,

to mitigate ringing effects, i.e., sudden hardware impulses due to discrete frequency changes of

current waves, we use chirps to smooth the frequency changing components of the scramble, as

shown in Figure 3.1.

Patronus lets authorized devices clearly record audio conversations by sending them the scram-

ble pattern. With scramble pattern, the authorized device applies the Normalized Least-Mean-

Square (NLMS) adaptive filter [61] to cancel the scramble and thus produce a clear audio recording

of the conversation.

We implement a prototype of Patronus and conduct comprehensive experiments to evaluate

its performance. We use the Perceptual Evaluation of Speech Quality (PESQ) [62], the Speech

Recognition Vocabulary Accuracy (SRVA, see Section 3.6), and speech recognition error rates

(1 - SRVA) to evaluate the performance of Patronus. Our results show that only 19.7% of the

words protected by Patronus’ scramble can be recognized by unauthorized devices. Furthermore,

authorized recordings have 1.6x higher PESQ and, on average, 50% lower speech recognition error

rates than unauthorized recordings.

In this chapter, we provide several unique technical contributions when compared to existing

works. First, to the best of our knowledge, Patronus is the first system to leverage the nonlinear effect

41



Scramble Transmitter
Scramble Generator

Scramble Pattern
(Key)

Frequency Shifter

Constant Cosine
Wave Generator

Unauthorized
Device

Authorized
Device

Speech with 
Scramble

Speech with 
Scramble
Scramble 
Pattern

Wi-Fi / Bluetooth / etc.

A
daptive 
Filter

Speech

Descramble Receiver

Figure 3.2: System Overview.

of COTS microphones to prevent unauthorized recordings while allowing authorized recordings.

Second, we perform a thorough study of the nonlinear effects of ultrasound frequencies including

the effects of higher orders whereas recent works[8, 7, 56, 9] only consider the order up to 2. This

is critical for descrambling when the signal components with order higher than 2 will likely lie in

the human voice frequency band, which means simply cutting off the high frequency components

will result in message loss. Instead, our descrambling solution carefully removes these higher

order frequencies using an NLMS filter. Third, we mitigate ringing effects by connecting scramble

segments with chirps. This simplifies learning the coefficients of impulse response in existing

work [8], especially when we deploy multiple ultrasonic transducers in a large space. In general,

our contributions are as follows:

• We propose a novel ultrasound modulation approach to provide privacy protection against

unauthorized recordings that does not disturb normal conversation.

• We do a thorough study around the nonlinear effect of ultrasound on commercial microphones

and propose an optimized configuration to generate the scramble.

• To overcome the fact that ultrasound travels in a straight line, we design a low cost reflection

layer to effectively enlarge the coverage area of Patronus in a cost-effective way.

• We present Speech Recognition Vocabulary Accuracy, a new metric to measure the recording
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quality. Our experimental results with both PESQ and SRVA show that Patronus effectively

prevents unauthorized devices from making secret recordings.

The organization of the rest of this chapter is as follows. Section 3.2 introduces related work.

Section 3.3 introduces the nonlinear effect of common microphones, which we analyze more

thoroughly than existing works. Section 3.4 presents the design of Patronus. Section 3.5 presents

the prototype implementation of Patronus. Section 3.6 presents our evaluation results of Patronus.

Section 3.7 discusses the limitations of Patronus and future work.

3.2 Related Works

3.2.1 Nonlinear Effect of Microphones

There has been a lot of research into the nonlinear effect of microphones. For many years, the

development of ultrasonic systems on smartphones was restricted due to being limited to a roughly

4 kHz range of frequencies between the high end of human hearing to the cutoff frequency of

typical microphones. Furthermore, some infants and pets can actually perceive frequencies within

this small band. Roy et.al. [8] performed detailed research on the nonlinear effects of microphones

to break through these limitations and expand the working frequency band for ultrasonic systems

on smartphones. DolphinAttack [7] leverages the nonlinear effect to generate audio commands

that are inaudible to humans. After being recorded by the microphone, the input ultrasonic

signals would generate a shadow signal that could be recognized by VCS. Therefore, attackers can

perform unauthorized commands without being discovered. SurfingAttack [59] uses oscillation

of a surface such as a table to transmit inaudible commands. With this modality, attackers can

deploy their speakers in hidden spots such as the back of the surface being used to transmit the

secret commands. LipRead [56] extends the attack range by leveraging characteristics of human

hearing. It also puts forward a model to filter out such commands generated by the nonlinear effect.

Metamorph [57] injects inaudible commands into human-made commands to achieve unauthorized

actions. AIC [9] presents a mechanism that fundamentally cancels inaudible commands against
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VCS, which we will discuss as an attack model in Section 3.4.2. NAuth [58] uses the nonlinear

effect to authenticate devices. Unlike most of these methods, Patronus aims to preserve privacy

by adding a removable scramble generated by ultrasonic signals to the recorded human speech.

From a technical perspective, Patronus is unique in that it takes into account third and higher order

terms from the nonlinear effect. Our experiments show those high order terms can affect recordings

whereas most existing methods (e.g., AIC) only consider the second order term and assume the

higher order sub-band of the microphone is clean.

3.2.2 Dual Channel Applications

Some applications leverage the difference between humans and devices. For example, human

eyes and devices have different perceptions of flicker frequency. Technologies exist that use

this phenomena to communicate between the screen and the camera without affecting human

vision [63, 64, 65, 66]. Likewise, some technologies modulate acoustic signals in ways that no

human can detect to communicate between devices [67, 68].

The difference between the sensitivity of humans and devices is also used in privacy protection.

Kaleido [69] protects a movie’s copyright by adding a flashing distractor with very high frequency

into movie frames that cannot be seen by human eyes. If such a protected movie is subsequently

recorded by an unauthorized camera equipped with a rolling shutter, the distractor will be visible

on the unauthorized recording because of its high sample rates making the pirated recording a low

quality recording. LiShield [2] also uses the Rolling Shutter effect to reduce the quality of photos.

Lights with different colors are set to flash in alternating high frequencies that provide normal

lighting because human eyes cannot sense the flashing. However, cameras are influenced because

the Rolling Shutter samples column by column meaning unexpected color stripes will appear on

the photo. In the end, it prevents unauthorized cameras from taking photos. Although Patronus has

a similar motivation to prevent unauthorized recordings, Patronus is different from the two papers

as it targets acoustics rather than visuals.
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3.3 Nonlinear Behavior of Common Microphones

In this section, we provide a brief primer about nonlinearity of common microphones; a more

comprehensive introduction can be found in recent papers [8, 56]. Ideally, COTS microphones

are linear systems. Given the input signal 𝑠(𝑡), the output signal 𝑦(𝑡) is expected to be linear

combinations of the input signal, i.e., 𝑦(𝑡) = 𝐴1𝑠(𝑡) where 𝐴1 is the complex gain quantifying

the change of the phase and amplitude. Due to the physical properties of materials and variations

in manufacturing, the components of a common microphone, such as the diaphragm and the

pre-amplifier, are imperfect and typically do not constitute a linear system. As a result, COTS

microphones, which are widely equipped on smartphones and smartwatches, typically exhibit

nonlinear behavior. Specifically, the output signal 𝑦(𝑡) is under nonlinear effect, where 𝑦(𝑡) =

𝐴1𝑠(𝑡)+𝐴2𝑠
2(𝑡)+𝐴3𝑠

3(𝑡)+· · · , and the power gains of each component satisfy |𝐴𝑚 | > |𝐴𝑛 | (𝑚 < 𝑛).

When the input signals are composed of two different ultrasonic frequencies, the output from a

nonlinear microphone would contain several new shadow sounds with frequencies that are a linear

combination of the two input frequencies. Assuming that the input signal is 𝑠(𝑡) = cos(2𝜋 𝑓1𝑡) +

cos(2𝜋 𝑓2𝑡) where 𝑓1 and 𝑓2 are the ultrasonic frequencies, the output signal would be 𝑦(𝑡) =∑+∞
𝑖=1 𝐴𝑖𝑠

𝑖 (𝑡). Without loss of generality, we assume 𝑓1 > 𝑓2 in the following discussion. For each

component 𝐴𝑖𝑠
𝑖 (𝑡),

𝑠𝑖 (𝑡) = (cos(2𝜋 𝑓1𝑡) + cos(2𝜋 𝑓2𝑡))𝑖

= 𝜇 +
𝑖∑︁
𝑗=1
[𝛼 𝑗 cos(2𝜋 𝑗 𝑓1𝑡) + 𝛽 𝑗 cos(2𝜋 𝑗 𝑓2𝑡)]

+
𝑖−1∑︁
𝑗=1
[𝜆 𝑗 cos(2𝜋( 𝑗 𝑓1 − (𝑖 − 𝑗) 𝑓2)𝑡) + 𝛾 𝑗𝑐𝑜𝑠(2𝜋( 𝑗 𝑓1 + (𝑖 − 𝑗) 𝑓2)𝑡)],

where 𝛼 𝑗 , 𝛽 𝑗 , 𝜆 𝑗 and 𝛾 are coefficients of the polynomial expansion, and 𝜇 is the consequent

constant.

After the pre-amplifer, the signals would pass through an embedded low-pass filter whose

cut-off frequency is usually 24 kHz. Since 𝑓1 and 𝑓2 are both ultrasonic frequencies, 𝑗 𝑓1 and

𝑗 𝑓2 are all ultrasonic frequencies. However, if 𝑖 = 2 𝑗 , 𝑗 𝑓1 − (𝑖 − 𝑗) 𝑓2 = 𝑗 ( 𝑓1 − 𝑓2) may be
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a non-ultrasonic frequency when 𝑗 is small enough. Therefore, when the input signal is 𝑠(𝑡) =

cos(2𝜋 𝑓1𝑡)+cos(2𝜋 𝑓2𝑡), new audible cosine waves cos(2𝜋 𝑗 ( 𝑓1− 𝑓2)𝑡) appear, where 𝑗 = 1, 2, . . . , 𝑘 ,

𝑘 ≤ 𝑖, and 𝑘 ( 𝑓1 − 𝑓2) ≤ 24 kHz. Existing works like BackDoor[8] and DolphinAttack[7] make

use of 𝐴2𝑠
2(𝑡) but ignore higher-order components; they essentially assume that for 𝑖 > 2, |𝐴𝑖 | is

relatively small and has little effect on the output signal. However, in our experiments, we find that

more high-order components should be taken into consideration as they do affect the output signal.

3.4 Design

3.4.1 Overview

As shown in Figure 3.2, there are three parties involved in Patronus: the Scramble Transmitter,

authorized devices with descramble receivers, and unauthorized devices.

The Scramble Transmitter sends a series of scramble signals with randomly varying frequencies.

To ensure that unauthorized voice recordings will be affected, the frequencies of the recorded

scrambles should be located in the human voice band. Therefore, we use the Scramble Generator

to generate random frequencies in the target range, store them as a secret key, and send them to the

Descramble Receivers through Wi-Fi, Bluetooth, or other media. The Scramble Generator then

generates cosine wave segments according to these frequencies. The generated segments are then

sent to the Frequency Shifter and their frequencies will be increased by 𝑓0, which is an ultrasonic

frequency. To ensure the scramble signal is picked up by microphones of unauthorized devices

because of the nonlinear effect, we design a Constant Cosine Wave Generator to transmit a cosine

wave with a constant ultrasonic frequency of 𝑓0.

During human talking protected by Patronus, the actual human conversation plus two ultrasonic

signals will arrive essentially simultaneously at recorders (both authorized and unauthorized)

and human ears. Human ears will not detect the ultrasonic signals and thus receive the human

conversation with no additional noise. As discussed in Section 3.3, the two ultrasonic signals

will generate a shadow audible signal that will be included in any recording made by a COTS

microphone due to nonlinear effects. This applies to both authorized and unauthorized devices.
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Authorized devices, which receive a secret key from the Scrambling Transmitter, can generate

the scramble waveform. They can then feed the scramble waveform along with the scrambled

recording into an adaptive filter to extract clear speech from the scrambled speech. The details of

descrambling will be discussed in Section 3.4.5.

We must overcome three challenges in order to design Patronus. First, we must design a system

whose working area is as large as possible. This is difficult because a sound wave of high frequency

typically travels along a straight line meaning a straightforward implementation of ultrasonic

generators will only cover a small area defined by a limited range of angles. Second, there is a

trade-off between a shorter and a longer period of scramble frequencies. As the period increases, the

system is more vulnerable to unauthorized recordings using STFT attacks. As the period decreases,

the difficulty of descrambling increases. Our goal is to maximize the information recovered by

authorized devices over unauthorized ones without exposing the scramble pattern to STFT. These

details are discussed in Section 3.4.3.4. Third, when frequency changes frequently, a severe ringing

effect (Section 3.4.3) occurs in the scrambled recording, which affects even the recordings made

by authorized devices after descrambling. We use chirps to connect each frequency component of

the scramble to eliminate the sudden change of the input to ultrasonic speakers, hence minimizing

the ringing effect and enhancing the quality of the recovered speech by authorized devices.

3.4.2 Attack Model

Based on common acoustic processing technologies and known properties of nonlinearity effects,

we consider the following types of attacks:

3.4.2.1 Short-Time Fourier Transform (STFT)

One natural way for an unauthorized device to try to extract a useful recording from its scrambled

recording is to analyze the scrambled recording with STFT and filter out suspicious frequencies.

We address this attack model by changing the scramble frequency according to a finely-tuned period

model, making it impossible for the attacker to obtain each exact scramble frequency along with its
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start and end time. Detailed analysis is provided in Section 3.4.3.4. Even with the correct scramble

frequencies available, bandpass filters will not work because the scramble frequencies are selected

from the human voice band. The frequencies from chirps and those from human speaking are mixed

together. To prove Patronus can defeat this attack model, we simulate the attack scenario when (1)

the attacker is aware that our scramble pattern is varying continuous waves smoothed by chirps (2)

the attacker calculates approximate scramble frequencies with STFT (3) the attacker applies NLMS

adaptive filter (Section 3.4.5.4) to remove the scramble with the approximate scramble frequencies

they obtained from STFT. Our simulated attack experiments, provided in Section 3.6.8, show that

this attack will fail because the approximate scramble frequencies are not accurate enough.

3.4.2.2 Extra Ultrasonic Transmitter Attack

After DolphinAttack[7] proposes to inject malicious commands into ultrasound, AIC [9] adds

three more ultrasonic transmitters to cancel the malicious commands and protect Voice Control

Systems (VCS). AIC assumes the legitimate as well as malicious commands are within the lower

sub-band of the microphone sensible frequency band. Their added ultrasonic transmitters project

only the malicious commands onto the higher sub-band, which can be used to filter the malicious

commands in the low sub-band. With a fast changing of scramble frequencies, we can cover the

whole frequency band, and make sure no clean band is left for attackers.

3.4.2.3 Wi-Fi/Bluetooth Snifing

Attackers can sniffer the Wi-Fi or Bluetooth channel to get the scramble pattern transmitted from the

Scramble Transmitter to the authorized device. However, there are many cryptographic approaches

to prevent attackers from sniffing channels. For example, we can encrypt the scramble pattern by

AES-CTR using a pre-shared key and then directly send it to authorized devices.
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3.4.2.4 Physical Attacking

There are also some physical attack models. First, attackers can place an obstacle before the

Scramble Transmitter. However, attackers cannot do it secretly and nobody would like to do so.

Second, attackers may just wrap a cover on their microphones. However, the cover itself may

defeat the attackers objective of making a good recording. Although Patronus cannot perfectly

handle such attack models, it enhances the difficulty of making an unauthorized recording. Finally,

attackers may conduct experiments to discover where Patronus fails. This can be fixed by enlarging

the working area through some methods that we will discuss later.

3.4.3 Ultrasonic Scramble Modulation

Two ultrasonic signals will be superimposed at the recorders to create the desired low-frequency

component. In the design of the scramble using ultrasonic signals, we mainly consider the following

issues:

3.4.3.1 Range of Frequency

The first issue is how to make it hard to cancel out the scramble without the key. Basically, the range

of human speech frequency is from 85 Hz to 255 Hz [70, 71]. If the scramble consists of multiple

random frequencies from this range, it is hard for attackers to cancel the scramble using linear

filters. The application of a linear filter, e.g., highpass filter, will not only cancel the scramble,

it will also change the original human speech. To ensure the scramble covers all human speech

frequencies in practice, we modulate the scramble with a wider frequency band than [85, 255] Hz.

3.4.3.2 Random Frequencies

If we always use specific frequencies to generate the scramble, attackers could analyze the frequency

spectrum of their recordings to infer the scramble frequencies; with those, they could then recover

the original audio signals. To address this issue, we choose scramble frequencies randomly. We
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Figure 3.3: Illustration of how linear chirps mitigate the ringing effect.

also periodically change the scramble frequencies over time. The sequence of scramble frequencies

can be thought of as a one-time pad key. Without the sequence, it would be difficult for attackers

to remove the scramble.

3.4.3.3 Ringing Effect

Frequent changing of the scramble frequencies produces a ringing effect [8] that makes it challenging

for authorized devices to produce a high-quality descrambled recording. Specifically, the ringing

effects incur heavy-tailed impulse responses that will remain in descrambled recordings as shown

in Figure 3.3 (a) and (b). Since the ringing effect occurs when the input changes suddenly, we use a

chirp signal to connect two adjacent segments with different frequencies in the scramble to smooth

such a sudden change. Specifically, when the scramble changes from frequency 𝐴 to frequency 𝐵,

we add a transition signal that starts at frequency 𝐴 and moves linearly to end with frequency 𝐵.

The impulse incurred by ringing effects can have a very high amplitude or power. It will

suppress other signals due to the microphone Passive Gain Suppression [8]. Figure 3.3 confirms
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that the ringing effect is mitigated by chirps. Figure 3.3 (a) shows a scrambled recording with

no chirp, the resulting descrambled recording in Figure 3.3 (b) has many areas where most of the

signal is suppressed. In contrast, Figure 3.3 (c) exhibits a scrambled recording with chirp signals,

the resulting descrambled recording in Figure 3.3 (d) does not have the peak signals corresponding

to the ringing effect and the rest of the signal is not suppressed.

3.4.3.4 Duration of each frequency

The next challenge is choosing the proper duration for each frequency in the sequence of scramble

frequencies. Intuitively, if we give each frequency a long duration, unauthorized devices could

easily split the record into multiple segments where each segment is only protected by a constant

frequency scramble. They could then apply simple techniques such as using a linear bandpass filter

to the scrambled recording to extract a clear speech recording.

More generally, there are two competing issues in choosing the duration of each scramble

frequency, namely, defending against STFT attacks that are discussed in Section 3.4.2.1, and

ensuring that authorized devices can obtain high-quality descrambled recordings. We first consider

defending against STFT attacks. An STFT attack can successfully remove the scramble waveform

if it can both accurately infer the frequencies and time periods for each scramble frequency in

the sequence of frequencies. When the window length is 𝑛, the frequency resolution would be

Δ 𝑓 =
𝑓𝑠
𝑛
=

𝑓𝑠
𝑓𝑠×𝑡 =

1
𝑡

where 𝑓𝑠 is the sampling rate and 𝑡 is the duration of the window. Taking 0.1s

as an example, the offset of STFT can reach 10Hz. If the attacker tries to improve the frequency

resolution by lengthening the window, the accuracy of the estimated time periods for the given

scramble frequency will diminish. If the scramble frequency duration is long, scramble frequency

will exhibit fewer changes within any given window, thus STFT attacks can use longer windows

to accurately estimate the frequency with exact estimates of the frequency time period. Therefore,

to thwart STFT attacks, we should make the frequency duration as short as possible. However, a

too-short duration may misshape the scrambled recording due to imperfect hardware. A typical

microphone and speaker use a diaphragm to sense and generate the vibration; this diaphragm moves
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continuously and can not change its position instantaneously. Circuit latency also makes it hard for

the system to respond to frequent and instant changes. As a result, the scrambled waveform would

be slightly distorted. This means the NLMS adaptive filter at authorized devices may not correctly

descramble the scrambled waveform because it does not expect the distortion caused by frequent

frequency changes. Therefore, the frequency duration cannot be too short. In summary, to balance

these competing concerns, we must find a frequency duration that maximizes the information

recovered by authorized devices compared to the information recovered by unauthorized devices.

To identify a good frequency duration, we measure the descrambling performance with different

frequency durations in Section 3.6.8.

3.4.3.5 Key Construction

We have two choices to construct the key for granting the privilege of recording the audio to

authorized devices. One is directly using the scramble waveform generated by the Scramble

Generator as the key. After getting the scramble waveform, authorized devices remove the scramble

from the recorded audio. But there are some issues we need to consider. First, the sampling

rate of authorized devices may vary from one to another. It means that in terms of the digital

signal, devices having different sampling rates will get different presentations of the same scramble

waveform. To grant the privilege to devices, the Scramble Transmitter should generate different

digital scramble waveforms according to different sampling rates of authorized devices. This results

in high computational overheads. Second, in addition to different sampling rates from different

authorized devices, the sampling rates of the Scramble Generator and an authorized device may be

also different. As a result, the scramble that the speaker emitted might have a different presentation

of the recorded waveform.

In Patronus, we choose another way to construct the key. We select the frequency sequence used

to generate the scramble as the key. After receiving the frequency sequence, an authorized device

can reconstruct the scramble waveform with their sampling rates, which we discuss in more detail

later. After that, an authorized device can use the reconstructed scramble waveform to remove the
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scramble from the recording and get the clear speech.

With the discussion above, we formally describe the scramble generation. We set one speaker

to transmit an ultrasonic continuous wave 𝑆1(𝑡) = cos(2𝜋 𝑓0𝑡), while the other speaker transmits

continuous waves linked by chirps 𝑆2(𝑡) = cos(2𝜋 𝑓 (𝑡)𝑡), where

𝑓 (𝑡) =


𝑓𝑖, (2𝑖 − 2)Δ𝑡 ≤ 𝑡 < (2𝑖 − 1)Δ𝑡,

𝑓𝑖 + 𝑓𝑖+1− 𝑓𝑖
Δ𝑡

𝑡, (2𝑖 − 1)Δ𝑡 ≤ 𝑡 < 2𝑖Δ𝑡,
(3.1)

and 𝑓𝑖(𝑖 = 1, . . . , 𝑛) are randomly generated constant frequencies. Δ𝑡 is the duration of a single sine

wave or a chirp. The induced low-frequency noise will be

𝑅(𝑡) = cos(2𝜋( 𝑓 (𝑡) − 𝑓0)𝑡). (3.2)

To ensure 𝑅(𝑡) covers human voice, 𝑓𝑖(𝑖 = 1, . . . , 𝑛) are sampled from [ 𝑓𝑙𝑜𝑤 + 𝑓0, 𝑓ℎ𝑖𝑔ℎ + 𝑓0]

where [ 𝑓𝑙𝑜𝑤, 𝑓ℎ𝑖𝑔ℎ] covers the human voice band.

3.4.4 Enlarge Scramble Working Area

The scramble signal is generated by two ultrasonic signals, which incurs another issue as the

ultrasonic wave typically propagates in a straight line. In other words, if you want to prevent a

certain device from recording, the ultrasonic speaker should be pointed directly towards that device.

This results in a limited coverage area for ultrasonic anti-recording solutions.
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Inspired by lamps that often use a bow-shaped cover to reflect the light beam in many directions,

we build a reflection layer that reflects the ultrasonic wave in many directions. As Figure 3.4 shows,

we put ultrasonic speakers near the center of the reflection layer and place the devices (authorized

and unauthorized) in the working area. When the ultrasonic wave hits the reflection layer, it gets

reflected in many directions leading to a much larger cover area.

3.4.5 Grant Recording Privilege

The goal of Patronus is not only to block unauthorized devices from recording audio, but also to

provide authorized devices with a mechanism to recover speech. Patronus achieves this by creating

a way for authorized devices to remove the scramble from the scrambled recording. Specifically,

Patronus grants the clear recording privilege to authorized devices using the following steps.

3.4.5.1 Key Transmission

The Descramble Receiver needs the waveform of the scramble generated by the Scramble Generator

before it can remove the scramble. Intuitively, if it had the pure scramble waveform, it could remove

the scramble from the recorded audio by subtracting the scramble waveform from the recorded audio

waveform. The scramble waveform here acts as the key for deciphering the recorded audio. We send

the key through non-acoustic channels such as Wi-Fi or Bluetooth with cryptographic protection to

prevent eavesdroppers from getting the key. Additionally, because of the randomness of scramble

frequencies, they cannot get a usable scramble waveform by listening to the acoustic channel.

Instead, they can get either the combination of interfered speech with scramble, or get the scramble

without speech but independent of the successive scramble waveform.

3.4.5.2 Scramble Reconstruction

As discussed in Section 3.4.3, the Scramble Transmitter sends the random frequency sequence

instead of the scramble waveform to authorized devices as the key. Patronus needs to use these
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frequencies to reconstruct the scramble waveform before removing the scramble. An authorized

device uses Equation (3.2) and its recording sampling rate to generate the scramble waveform.

3.4.5.3 Synchronization

We need to synchronize the reconstructed scramble with the recorded scramble before removing

it from recordings. Specifically, we choose a segment from the reconstructed scramble as the

template, e.g., the beginning segment. Then we use cross-correlation to find the segment that is

the most similar to the template. We then synchronize the recorded scramble and the reconstructed

scramble by aligning the two segments.

3.4.5.4 Adaptive Filtering

Now we have the waveform of the scramble. The next task is to remove the scramble from the

recorded audio with the known waveform of the scramble. Practically, we cannot directly subtract

the scramble from the recorded audio because when the sound propagates through the air, it will be

distorted due to reflection and attenuation. We use adaptive filter to remove the waveform-known

scramble.

Adaptive filter is widely used in Active Noise Cancellation (ANC) headsets. Technically, there

is a reference microphone outside the headset. The reference microphone captures the noise, and

the digital signal processor (DSP) generates the anti-noise wave according to the captured noise.

When the noise wave and the anti-noise wave arrive at the ear, they eliminate each other. In

Patronus, we denote the speech as 𝑥1. It propagates through the acoustic channel ℎ1, arrives at the

authorized device and becomes ℎ1 ∗ 𝑥1, where the operator ∗ denotes the convolution operation.

Additionally, we denote the scramble waveform that is generated by non-linear effects and recorded

by the authorized device as 𝑥2. It propagates through another channel ℎ2, arrives at the authorized

device and becomes ℎ2 ∗ 𝑥2. Therefore, the audio recorded by the authorized device is

𝑦 = ℎ1 ∗ 𝑥1 + ℎ2 ∗ 𝑥2. (3.3)
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Similar to ANC headsets, here we see the scramble 𝑥2 as the noise in ANC headsets. Different

from ANC headsets, the noise here is generated from the key as we discussed in Section 3.4.5.2.

Therefore, we can use the Normalized Least-Mean-Square (NLMS) Adaptive Filter [61] to remove

the scramble. Formally, we are trying to find a channel vector ℎ′2 to solve the optimization problem

min 𝐸 [(𝑦 − ℎ′2 ∗ 𝑥2)2] . (3.4)

When the expectation in Equation (3.4) is minimized, ℎ2 ≈ ℎ′2. Therefore, ℎ1 ∗ 𝑥1 ≈ 𝑦 − ℎ′2 ∗ 𝑥2,

and it can be regarded as the speech without the scramble. Stochastic gradient descent is usually

adopted to solve the optimization problem defined by Equation (3.4), but it is hard to derive the

gradient of the expectation. Researchers thus use (𝑦 − ℎ′2 ∗ 𝑥2)2 instead of the expectation to solve

the problem. In this way, the noise gets canceled [72].

Following this design, we can develop a mechanism that prevents unauthorized recording

while supporting authorized recording. The mechanism also prevents attackers from descrambling

without authorization. Figure 3.7 gives an example. A piece of VOA news audio is used as the

original record, the attack result has severe scramble effects just like the unauthorized record, but

the authorized record removes almost all scrambles.

3.5 Implementation

This section discusses the details of the implementation of Patronus, which contains two parts, the

Scramble Transmitter and the Descramble Receiver for authorized devices. We use an ordinary
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smartphone with its built-in audio recorder as the Unauthorized Device or Authorized Device.

3.5.1 Scramble Transmitter

3.5.1.1 Hardware Implementation

As Figure 3.5 shows, we use eight TCT40-16R/T 16 mm ultrasonic transducers. Half of them

play the frequency-shifted scramble and they are connected in parallel. The other half play the

fixed-frequency cosine wave and are connected in parallel as well. We utilize an AOSHIKE

DC12V-24V 2.1 Channel TPA3116 Subwoofer Amplifier Board to enhance the power of output

ultrasonic signals. The two waveforms are played through a stereo channel. The frequency-shifted

scramble uses the left channel, and the constant-frequency cosine wave uses the right channel.

As we have discussed in Section 3.4.4, we use a reflection layer to enlarge the working area. In

this prototype, we use an iron wok as the reflection layer. The opening diameter of the iron wok

is 30 cm, and the depth is 10 cm. As shown in Figure 3.6, the ultrasonic transducers are placed

towards the center of the iron wok.

3.5.1.2 Format of Key

As we have mentioned in Section 3.4, Patronus uses the frequency sequence as the key. This key

must include the duration of each frequency in addition to the frequency itself in order for the

Descramble Receiver to generate the scramble waveform. Thus, our key file includes the frequency

sequence plus the sample rate of the Scramble Transmitter and the number of samples of each

frequency.

3.5.2 Descramble Receiver for Authorized Devices

We use an ordinary smartphone as an authorized device. The authorized device receives the

key from the Scramble Transmitter. After the audio is recorded, the smartphone reconstructs the

57



0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

Unauthorized Record

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

Authorized Record

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

Attacker Result(a) Original waveform

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

Attacker Result

(b) Authorized waveform

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

Authorized Record

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

Attacker Result(c) Unauthorized waveform

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

0 10 20 30
time (s)

-1

-0.5

0

0.5

1

am
pl

itu
de

(d) Descrambled by STFT attack

Figure 3.7: Illustration of original waveform, authorized waveform, unauthorized waveform, and
descrambled waveform by STFT attack.

scramble waveform with the given key and leverages NLMS Adaptive filter to cancel the scramble.

Formally, it takes the following steps:

3.5.2.1 Reconstruct Scramble Waveform

As we mentioned, in addition to the frequency sequence, the received key also contains the sampling

rate of the Scramble Transmitter, which is denoted by 𝑓𝑠𝑡 , as well as the number of samples of

each frequency 𝑛𝑡 . With the known sampling rate of the authorized device 𝑓𝑠𝑟 , the number of its

recovered samples for each scramble frequency component can be calculated through the equation

𝑛𝑟 =
𝑓𝑠𝑟𝑛𝑡

𝑓𝑠𝑡
, (3.5)

After getting 𝑛𝑟 , the authorized device uses the same process as the Scramble Transmitter to

generate the scramble, i.e., generating the discrete cosine signal with the frequency 𝑓𝑖 and 𝑓𝑖+1, and
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connecting them by a chirp signal with start frequency 𝑓𝑖 and end frequency 𝑓𝑖+1, where 𝑓𝑖 and 𝑓𝑖+1

are from the frequency sequence in the key.

3.5.2.2 Normalized Least-Mean-Square (NLMS) Adaptive Filter

After reconstructing the scramble waveform, we can use the Normalized Least-Mean-Square Adap-

tive Filter to cancel the scramble from the scrambled record. Specifically, we put the scrambled

record 𝑟𝑒𝑐𝑠 and the scramble waveform 𝑠 into the NLMS Adaptive Filter to get the descrambled

waveform 𝑒 by removing 𝑠 from 𝑟𝑒𝑐𝑠. According to the discussion in Section 3.3, the scramble

wave is not only generated by frequencies in the given frequency sequence but also generated

by high-order frequencies that are multiples of the target frequencies. Therefore, after getting 𝑒

from the NLMS Adaptive filter, we still need to iteratively remove the multiples of the frequency

sequence scramble by NLMS Adaptive filter. It means that we iteratively put 𝑒 and the scramble

waveform generated by 𝑘-times multiple of the frequency sequence into NLMS Adaptive Filter,

where 𝑘 = 2, 3, 4, 5, 6 in our prototype.

In summary, the procedure of authorized devices for removing the scramble from the record is

shown in Algorithm 3.1.

Input: 𝑟𝑒𝑐𝑠, 𝑓𝑠𝑟 , 𝑓𝑠𝑡 , 𝑛𝑡 ,
the frequency sequence 𝑓 [1..𝑛]

Output: Speech Record without Scramble 𝑒

1: 𝑛𝑟 ← 𝑓𝑠𝑟𝑛𝑡/ 𝑓𝑠𝑡
2: 𝑒← 𝑟𝑒𝑐𝑠
3: for 𝑘 = 1 to 6 do
4: 𝑠← ScrambleGenerator(𝑘 × 𝑓 [1..𝑛], 𝑛𝑟).
5: 𝑒 ← NLMS-Adaptive-Filter(𝑒, 𝑠)
6: end for
7: return 𝑒

Algorithm 3.1: Remove Scramble from the record.

The NLMS-Adaptive-Filter can be found in many open-source libraries, e.g., MATLAB, Python,

etc. Due to the selective frequency response of different smart devices, each model has its own

parameter setting. In the implementation, we choose 500 as the number of taps and 0.005 as the
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Figure 3.8: PESQ of recordings captured by unauthorized and authorized devices, and PESQ of
recordings without scrambling by turning off Patronus as the baseline.

step size for an iPhone, 100 as the number of taps and 0.003 as the step size for a Pixel, and 300 as

the number of taps and 0.005 as the step size for a Galaxy S9.

3.5.3 Simulated STFT Attacker

We also simulate an STFT attacker to verify whether or not Patronus can prevent such an attack.

Specifically, as discussed in Section 3.4.2.1, we apply STFT to the scrambled recording using the

MATLAB function stft to infer its frequency sequence. We then feed the frequency sequence

to an NLMS adaptive filter to get the descrambled recording. Experiment results are shown in

Section 3.6.8. Here, we illustrate an example, which contains the original waveform, authorized

waveform, unauthorized waveform and the waveform descrambled by STFT, in Figure 3.7. As

illustrated by the figure, we observe that the authorized waveform is similar to the original waveform,

the unauthorized waveform is different from the original one, and the unauthorized waveform is

similar to the waveform descrambled by STFT attack. Therefore, our prototype proves that Patronus

can block the unauthorized recording while allowing authorized recording, and it can prevent STFT

attacks.
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Figure 3.9: (a) Upper half: The CDF of SRVA Error of scrambled recordings from the unauthorized
device. Lower half: The ratio of SRVA between scrambled recordings and original waveforms.
(b) Upper half: The CDF of SRVA Error of descrambled recordings from the authorized device.
Lower half: The ratio of SRVA between descrambled recordings and original waveforms.

3.6 Evaluation

3.6.1 Overview

To evaluate the performance of Patronus, we select six news speech waveforms from Voice of

America (VOA) and note these waveforms as A - F. The news speeches are read by a male, a

female, or both alternatively, sometimes with background music.

A normal speaker (shown in Figure 3.6) is set to play these news waveforms, and we also read

the news ourselves. While the news waveforms are played under different conditions, we start

Patronus to interfere with the unauthorized recording device. Meanwhile, an authorized device

is recording too. Later we apply scramble cancellation to recordings from the authorized device.

After getting the scrambled recordings and scramble-canceled recordings, the following metrics

are adopted to measure the performance of Patronus.

3.6.1.1 Perceptual Evaluation of Speech Quality (PESQ)

PESQ is a common-used metric of speech quality [62]. It is widely adopted by phone manufacturers,

network equipment vendors, and telecom operators. Technically, the inputs include a clear speech

signal as the reference and a signal that needs to be measured. The output is a Mean Opinion
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Figure 3.10: (a) Compare SRVA between before and after descrambling for the human voice. (b)
Compare SRVA between before and after descrambling for human recognition.

Score (MOS) [73] ranging from −0.5 to 4.5. A high PESQ score means that the corresponding

speech has a high hearing quality and vice versa. Typically, PESQ values ranging from 1.00 to 1.99

means “No meaning understood with any feasible effort” while those ranging from 3.80 to 4.50

meaning “Complete relaxation possible; no effort required” [74]. However, we cannot regard the

audio recording as strict as lossless communication. To fit PESQ to characterize the performance

of Patronus, we measure the PESQ of recordings without scrambling by turning off Patronus, and

use that result as the baseline. As shown in Figure 3.8, such recordings have PESQ between 2.2

and 2.7. We regard them as the upper bound of both unauthorized and authorized recordings. In

the following experiments, we use the PESQ implementation written in MATLAB [75] to compute

the PESQ score.

3.6.1.2 Speech Recognition Vocabulary Accuracy (SRVA)

We also use a Speech Recognition service to measure the effectiveness of scrambling and descram-

bling. Specifically, we apply Google’s Speech To Text (STT) service to transform the acoustic

signals to text. We first use the STT service to recognize the original speech without interference

and treat the recognized word sequence 𝑤𝑐 as the ground truth. Then we use the STT service to

recognize the scrambled speech and descrambled speech, and use 𝑤𝑠 and 𝑤𝑑 to denote their results,

respectively. We name
∑

𝑖∈𝑤𝑠

𝑖𝑠𝑇𝑟𝑢𝑒(𝑖∈𝑤𝑐)

|𝑤𝑐 | (or

∑
𝑖∈𝑤𝑑

𝑖𝑠𝑇𝑟𝑢𝑒(𝑖∈𝑤𝑐)

|𝑤𝑐 | ) as the Speech Vocabulary Recognition
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Accuracy (SRVA) and use it to quantify the effectiveness of scrambling and descrambling. Note

that 𝑖𝑠𝑇𝑟𝑢𝑒(𝑖 ∈ 𝑤𝑐) returns 1 when 𝑖 is a word from 𝑤𝑐, and 0 when 𝑖 is not a word from 𝑤𝑐. We

define SRVA Error as 1−SRVA which indicates the error rates of recognition with the STT service.

Using the above metrics, we try to answer the following questions:

• Can Patronus effectively scramble the unauthorized speech recordings?

• Can Patronus permit authorized devices to record the speech?

• Can Patronus work on different mobile devices?

• What is the impact of the distance between Patronus and a recorder?

• What is the impact of the reflection layer?

• What is the impact of the frequency switching time?

• Is it possible to perform real-time descrambling?

3.6.2 Effectiveness of Scrambling and Descrambling

We split the 6 news speech waveforms into 55 segments (1650 seconds in total), each 30 seconds

long. Both the authorized and unauthorized device are Apple iPhone X in this experiment, so do

the following experiments except that of Section 3.6.5. As shown in Figure 3.8, with Patronus’s

scrambling, the hearing qualities of most segments are extremely low. Specifically, 44 out of 55

(80.0%) segments have PESQ scores lower than 1.5. For SRVA, overall, only 551 out of 2796

(19.7%) words are recognized correctly. More detailed results are shown in Figure 3.9a. The upper

half shows the CDF of the SRVA Error. We can know that 50% of the recordings have SRVA

Error lower than 0.84, and 80% of the recordings have SRVA Error lower than 0.98. The lower

half shows the ratio of SRVA between scrambled recordings and original waveforms. The results

show that all of the news waveforms having a recognition rate lower than 0.3. Here we want to

mention that if a word appears multiple times in a speech, SRVA would result in a high value or
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a low value compared to the actual word recognition rate. However, duplicated words have little

impact because the duplicate rates of every segment, i.e., the ratio between the count of a specific

word and the total count of words in the segment, are lower than 5%.

To evaluate the effectiveness of descrambling, an authorized device records the speech under

the scrambling from Patronus. The authorized device then cancels the scramble using the received

key. As shown in Figure 3.8, after descrambling, only 9 out of 55 (16.3%) segments having PESQ

scores lower than 1.5. On average, descrambled recordings have 1.6x higher PESQ scores than

their corresponding scrambled recordings. As for SRVA, we show the CDF of the SRVA Error in

the upper half of Figure 3.9b. These results show that 50% of the descrambled recordings have

SRVA Error lower than 0.43, which is 49% lower than scrambled recordings. Moreover, 80% of

the descrambled recordings have SRVA Error lower than 0.64, which is 35% lower than scrambled

recordings. As shown in the lower half of Figure 3.9b, ratios of SRVA between descrambled

recordings and original waveforms are higher than 0.4 and lower than 0.8. They are at least 2x

better than the scrambled recordings. The quality of the descrambled recordings is not as good as

the original ones because there are residual components of the scramble after applying the NLMS

adaptive filter. Moreover, background music and the volume of the original waveform also affects

the quality of the descrambled recordings. For example, news C has a lower ratio after being

descrambled by the authorized device compared to the other news clips because it has background

music that could affect the performance of authorized devices. It also affects the SRVA of the

record without scrambling, i.e., only 223 words are recognized from 295 in total. The reader of

news E reads the news in a lower volume compared to others, so it has a lower ratio after being

descrambled by the authorized device compared to the other news clips.

3.6.3 Effectiveness of Human Voice Scrambling and Descrambling

To verify whether Patronus works for real human speaking other than a sound player, we read

the news and calculate SRVA. As shown in Figure 3.10a, Patronus can effectively scramble and

descramble the human voice. Specifically, for the scrambled recordings, the median of SRVA Error

64



is 0.74, and 80% of scrambled recordings have SRVA Error lower than 0.83. For the descrambled

recordings, the median of SRVA Error is 0.27, and 80% of the descrambled recordings have SRVA

Error lower than 0.4. The descrambling effectiveness of the human speaker is better than that of

recorded sounds because recorded sounds from VOA sometimes play background music.

3.6.4 Effectiveness of Human Recognition to Scrambled Recordings and Descrambled
Recordings

Because there might exist differences between machine learning-based speech recognition and

human speech recognition, we invite 11 volunteers to write down words after listening to the 55

scrambled recordings and 55 descrambled ones. The results are shown in Figure 3.10b. People

react differently to noise. Some people are very sensitive and the scrambled noise make them

very uncomfortable. Note, the noise is generated by ultrasound speakers and only captured by

the nonlinear effects of microphones, so it will not disturb the people in the original conversation.

It will only be heard after getting recorded by unauthorized devices. Further, authorized devices

will be able to filter out such noises eliminating the discomfort for those listeners. The recovered

information from humans listening to descrambled recordings is still better than that of humans

listening to scrambled ones. 50% of the scrambled recordings have SRVA Error lower than 0.63,

and 80% of the scrambled recordings have SRVA Error lower than 0.86. As a comparison, 50%

of the descrambled recordings have SRVA Error lower than 0.34, and 80% of the descrambled

recordings have SRVA Error lower than 0.63.

3.6.5 Effectiveness on Different Mobile Models

To verify whether Patronus works on different mobile models, we test it on three devices, an Apple

iPhone X, a Samsung Galaxy S9, and a Google Pixel. We play all 55 segments using the normal

speaker, and calculate average PESQs and SRVAs.

As shown in Figure 3.11a, less than 30% of words can be recognized by the STT service for

all the unauthorized devices, and around 65% of words can be recognized for all the authorized

65



iPhone X Galaxy S9 Pixel
Model

0
0.5

1
1.5

2

A
vg

 P
E

SQ

Unauthorized Authorized

iPhone X Galaxy S9 Pixel
Model

0
0.2
0.4
0.6

SR
V

A

Unauthorized Authorized

(a) Different models

25 30 35 40 45 50 55 60 65 70
Distance (cm)

0
0.5

1
1.5

2
2.5

PE
SQ

Unauthorized Authorized

25 30 35 40 45 50 55 60 65 70
Distance (cm)

0
0.2
0.4
0.6
0.8

1

SR
V

A

Unauthorized Authorized

(b) Different distances
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Figure 3.12: (a) Illustration of the reflection layer experiment. (b) Compare PESQ and SRVA with
different frequency switching times.

devices. When the mobile devices are unauthorized, the average PESQ of iPhone X is 1.06, and the

average PESQ of the other two models are even lower, roughly 0.5. When the mobile devices are

authorized, they all achieve an average PESQ around 1.85. This demonstrates that Patronus works

well for all devices; namely, it prevents all models from making good unauthorized recordings and

allows all models to make acceptable authorized recordings.

3.6.6 Impact of the Distance

We also characterize the impact of the distance between Patronus and the recording devices (both

authorized and unauthorized). We put the Scramble Transmitter at the origin. A randomly-picked
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speech segment (which has 43 words) is played by a normal speaker, which simulates the talker.

The authorized device and an unauthorized device are recording at the same time. Their distance

to the Scramble Transmitter varies from 25 cm to 70 cm. Results of SRVA and PESQ between

two devices are shown in Figure 3.11b. Overall, as the distance increases, the ultrasound would

attenuate more. Therefore, the strength of the scramble decreases as the distance from the scramble

transmitter increases. As a result, when the device is far enough away, both the authorized and

unauthorized device can both record a clear speech. On the other hand, when devices are close

enough, unauthorized devices produce recordings that are severely scrambled whereas authorized

devices can recover much clearer speech using the secret key. The working area can be extended

by using high power ultrasonic speakers, which we will discuss later. Here we want to mention

that although there is a bump in Figure 3.11b at 55 cm with the SRVA, PESQs of 55cm and 60cm

are close. This means that humans cannot see much difference between these two recordings,

something we confirmed in person by listening to these recordings with this objective in mind.

Thus, the SRVA bump at 55cm might be due to an error-correction mechanism of the Google

STT engine; of course, since this is proprietary technology, we do not know how or why this

error-correction would produce such a performance bump for this recording.

3.6.7 Impact of the Reflection Layer

As we mentioned before, the ultrasound wave often propagates along a straight line. To enlarge

the range of Patronus scrambling, we design a reflection layer. In this experiment, we apply the

common speaker to play the chosen speech segment (43 words). As shown in Figure 3.12a, we

point the ultrasonic speakers towards the reflection layer and change angles of both authorized

and unauthorized devices to the ultrasonic speakers and measure Patronus’ performance; in other

experiments, the devices are always put at the 90◦ angle. We also measure the performance without

using the reflection layer. We turn the ultrasonic speakers around so they face in the same direction

as the normal speaker when we remove the reflection layer. The results when using the reflection

layer are shown in Figure 3.13a and 3.13b, and the results without using the reflection layer are
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Figure 3.13: (a) and (b): Compare PESQ and SRVA with the using of the reflection layer. (c) and
(d): Compare PESQ and SRVA without the using of the reflection layer.

shown in Figure 3.13c and 3.13d. From the results, we see that with the reflection layer, Patronus

can successfully scramble the unauthorized device when the angle is more than 15◦, which is

signficantly larger than the angle of more than 45◦ needed by Patronus without the reflection layer.

Therefore, the reflection layer does significantly enlarge the scramble range of Patronus.

3.6.8 Impact of the Frequency Duration

We also measure the impact of the frequency duration. As we discussed in Section 3.4, we would

like to make the duration of each frequency as short as possible. However, the shorter the frequency

duration is, the harder it is for authorized devices to descramble. To verify this feature, we put

an authorized and an unauthorized device at 40 cm to Patronus and play the chosen segment (43

words) using the normal speaker. Both devices record the speech under Patronus using 5 different

frequency durations: 0.1 s, 0.2 s, 0.3 s, 0.4 s and 0.5 s. We calculate PESQs and SRVAs for each
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RT (s)

DT (ms) MSO
1 2 3 4 5 6

1 51 96 159 209 265 328
2 73 145 218 291 373 454
5 161 322 487 634 798 954
10 290 582 851 1108 1389 1653
20 548 1094 1653 2165 2695 3298
30 822 1617 2348 3088 3830 4563

Table 3.1: Descramble time (DT) of different record times (RT) with different max scramble orders
(MSO, the upper bound of 𝑘 in Algorithm 1).

duration. Moreover, we implement the attack model from Section 3.4.2, which first calculates

approximate scramble frequencies using STFT and then attempts to cancel the scramble using an

NLMS adaptive filter. We calculate PESQs and SRVAs for each duration and all devices including

the attack model.

As shown in Figure 3.12b, for all durations, SRVAs of the unauthorized device are lower than

0.1, and PESQs are lower than 0.5. The authorized device has higher SRVAs and PESQs than the

unauthorized device. Specifically, when the duration comes to 0.3 s, the SRVA reaches roughly 0.8

and PESQ exceeds 2.0. This verifies our claim that authorized devices can successfully descramble

when the frequency duration is long enough.

A shorter duration also makes it harder for attackers to crack the scrambled record, e.g., SRVAs

for the attacker also increase as the duration increases. Although both SRVAs and PESQs are

higher than those of the unauthorized device, they are still too low to extract useful information.

The reason why the NLMS adaptive filter fails is that the attacker cannot identify the scramble

frequencies with enough accuracy. NLMS adaptive filter solves the optimization problem defined

by Equation (3.4), which estimates the weight vector ℎ′2. Since convolution does not change the

frequency of the signal, the attacker cannot make up for any offset existing between the correct

frequency and the result from STFT. According to the frequency resolution problem of STFT as

discussed in Section 3.4.3.4, the simulated attacker in our experiment gets an average frequency

offset around 3 Hz, which makes it hard to descramble the recording.
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3.6.9 Descramble Time

Sometimes when we grant recording permission to a specific speaker, the speaker would like to

perform real-time descrambling. Patronus can achieve this working with real-time smart devices

such as Amazon Alexa. To prove this, we measure the descramble time for records with different

durations on a laptop with an Intel Core i7-4870HQ 2.5 GHz CPU. Since different high-order

scramble waves (second-order component, third-order component, ...) may exist in a record

simultaneously, we measure descramble time as a function of different max scramble orders, i.e.,

the upper bound of 𝑘 in Algorithm 1. As shown in Table 3.1, Patronus can descramble the record

quickly. Specifically, when the record time is 1 s, Patronus can finish descrambling in 328 ms, even

when the max scramble order is 6. This means that Patronus supports real-time descrambling.

3.7 Limitations and Future Works

Range: In our implementation, we use cheap and low power ultrasonic transducers to build the

Scramble Transmitter. The result is a short working distance, i.e., less than 70 cm. To enlarge

the working area to a wider range of angles, we designed a reflection layer and verified that it

could enlarge the working area by using an iron wok in our prototype. We can also use a high

power ultrasonic speaker to protect a larger area. Some commercial off-the-shelf devices can emit

ultrasound which could be sensed in a larger area. For example, UPS+ [3] uses an ultrasonic

speaker with a working area of 50m × 50m. However, it is expensive. We can reduce the cost by

deploying one expensive speaker and multiple transducers like UPS+[3]. Here we provide users

with three options to deploy Patronus according to their requirements such as working area and

budget. The first option is to use cheap transducers and a reflection layer to protect a small area.

The second is combining an expensive speaker and multiple transducers to protect a larger area.

The third is using multiple expensive speakers to protect the largest area.

Volume: In our implementation, we assume the talker uses a normal volume, i.e., not too loud or

too quiet. However, the performance of Patronus does vary as a function of the speaker volume. For

example, if the talker speaks too loudly, the scramble cannot mess up the recording; in the opposite
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extreme, a quiet talker cannot be recovered using descrambling. To adapt to different volumes, we

can add a microphone to measure the talker’s volume. With multiple deployed ultrasonic speakers

or transducers, we can first detect the position of recording devices and then adjust the power

of ultrasound emitted from the nearest speakers according to the talker’s volume. There are two

challenges that need to be solved. First, the microphone we use to measure the talker’s volume can

also be scrambled. Second, we need to localize recording devices before emitting scrambles. We

leave these challenges as future work.
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CHAPTER 4

BREATHPASS: ULTRASOUNIC AUTHENTICATION BY CHEST AND ABDOMEN
MOVEMENT WHILE BREATHING

4.1 Introduction

With the advancement of modern smart devices, unlocking methods have shifted away from the

“what you know” schema and toward the “who you are” schema. With the “what you know”

method, a user is needed to pre-configure some information such as PINs and secret questions,

and the device will then challenge the user to verify that she or he actually owns the device. Such

a PIN is often complex to ensure security and makes it difficult for individuals to remember to

some level. In addition, these passcodes or answers are vulnerable facing blindly replay-attack

since the devices do not care who is entering the information. With “who you are” tactics, the user

no longer needs to type in the complex PIN, thus simplifying and speeding up unlocking. These

approaches are quite popular with users because of their non-invasive nature and ease of use; e.g.,

Apple employs Face-ID to unlock the iPhone and iPad via facial recognition [76]. Apart from facial

recognition, fingerprint identification is a frequently used method for unlocking smart gadgets [77].

In addition, voiceprint recognition [78], iris recognition [79], heartbeat recognition [80], breathing

voice recognition [81], gaze gesture [82], and tooth-edge recognition [83] also plays a key role in

biometric recognition approaches.

These approaches, however, have drawbacks in two different aspects.

Vulnerable to Replay-attack: Some of them are still compromised by replay-attacks, e.g., many

research efforts [84, 85, 86, 87, 88, 89, 90] focus on resolving the replay-attack among voiceprint-

based, fingerprint-based, gaze-based, or face-based authentication. For example, we could spoof

others’ face and voice with masks and recording.

Lack of Mobility and Flexibility: Other approaches using iris, tooth-edge, heartbeat, and human

breath are not sufficiently flexible on mobile devices, e.g., iris-based authentication requires the
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Figure 4.1: Comparasion of existing biometric authentication methods.

device to equip specific designed components such as inferred cameras, meanwhile, it needs users

to look at a specific area to make sure that the inferred camera could capture a clear iris. Heartbeat-

based authentication such as Cardiac Scan [80] requires the deployment of two radar sensors, which

are not standard hardware and so have a high operating cost. BreathPrint [81] is a novel approach

that doesn’t need to equip specific designed components and can significantly defend against replay

attacks, however, it cannot work in some scenarios including some people choose to wear a mask

to protect themself from being infected by COVID-19 as the breathing voice that is needed by the

system could be blocked by the face cover. The face cover also makes Smileauth [83] infeasible

since it requires an image of the tooth-edge which is blocked by the face mask.

In this chapter, we propose BreathPass, a new non-invasive breath-based “who you are” au-

thentication technique. BreathPass detects users’ breath in a non-invasive manner, extracts features

from their breath, and then verifies that the user is permitted. As shown in Figure 4.1, BreathPass is

a novel approach that is hard to be compromised by replay attacks because breath pattern is hard to

be spoofed and imitated. In addition, BreathPass is flexible enough since it only uses commercial

off-the-shelf (COTS) components equipped on almost every devices, and can be used in a wider

scenarios such as wearing different kinds of face covers and clothes, in different postures, and in

different dynamic status such as walking or running. BreathPass faces the following challenges in

order to implement it and achieve all of the aforementioned requirements:

1) As with BreathPrint, face covers may obstruct the voice of the user’s breath. To overcome this

challenge, BreathPass should avoid using a microphone to record users’ breathing voices; instead,

we employ an ultrasound-based chest wall and abdomen motion-sensing technology to characterize
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users’ breathing patterns. Specifically, BreathPass works by initially emitting ultrasonic waves

through the speaker of a smart device, such as a smartphone. The ultrasonic waves then travel to

the user’s chest wall and abdomen, where they are reflected back to the smart device’s microphone.

The motion of the chest wall and abdomen, which characterizes human breath, alters the phase of

the reflected signal, and such phase shifts are used to authenticate;

2) Unlike the speaker verification [91, 92] which normally converts the speech signal to a

spectrogram in order to extract features, the motion of the chest wall and abdomen typically has an

extremely low frequency of less than 1 Hz. As a result, features derived from spectrograms such

as Mel Frequency Cepstral Coefficients (MFCC) or Gammatone Frequency Cepstral Coefficients

(GFCC) [93] cannot be used to identify the breath. To address this issue, we implement the

authentication mechanism using a one-dimensional Convolutional and Siamese Neural Network.

Specifically, the neural network takes two raw chest wall and abdominal motion waveforms as the

input. One of these two inputs is the template input collected from the enrollment stage, while

the other is the matching input collected from the authentication stage. During training the neural

network, it learns the breathing pattern and generates a vector of features, saying fingerprint, which

can be used to calculate the distance between two inputs. Finally, BreathPass uses the distance

between the two inputs to determine if they originate from the same person or not;

3) Unlike mechanical vibration, which typically has a stable frequency [94], breathing patterns

between individuals do not share the same prior knowledge as mechanical vibration. Additionally,

even when people are in the same posture, their breathing patterns may vary. In other words,

small movements result in different breathing patterns. As a result, denoising the motion of the

chest wall and abdomen requires developing a model that can suppress the moving-dependent noise

while retaining the user-dependent difference. To address this issue, we introduce a technique

called average fingerprinting. With such a technique, the template input is composed of multiple

chest wall and abdomen motion signals that might come from different tiny postures. BreathPass

generates multiple fingerprints from template signals using a neural network. Following that, the

system computes the average of those fingerprints and then uses that average fingerprint to determine
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the distance to the fingerprint obtained during the authentication stage. Finally, it calculates the

authentication result using that distance.

Our contributions are listed as follows:

• We design a novel mechanism for sensing human breathing patterns and build a DNN to

determine whether the breathing pattern provided by the user is authorized.

• By using the breath sensing mechanism and the DNN we built, we create BreathPass, which

enables smart devices to perform authentication via the human breath. We also implement a

proof-of-concept software to evaluate BreathPass’s performance.

• On the basis of our implementation, we conduct extensive experiments. BreathPass achieves

an 83% accuracy, a 73% true-positive rate (TPR), and a 5% false-positive rate (FPR) in

general, according to the experiment results. The BreathPass system is stable when the user

is wearing a variety of different face covers, clothing, and postures. We believe that in the

future, it may be a candidate for a “who you are” unlocking mechanism, or it may serve as a

complement to other untrustworthy mechanisms, such as eye recognition, in order to provide

authentication services jointly.

The organization of the remainder of this chapter is as follows: In section 4.2, we illustrate

the human breath preliminary and our system overview. In section 4.3, we introduce the design

of BreathPass. In section 4.4, we introduce the implementation of BreathPass. In section 4.5, we

present the results of our extensive experiments. In section 4.6, we summarize related works. In

section 4.7, we discuss the limitation and the future work.

4.2 Preliminary

In this section, we illustrate the human breath process in detail and show the breath characteristics

represented by chest/abdomen movement are diverse enough to be used for user authentication. In

addition, we describe the overview of BreathPass.
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Figure 4.2: Illustration of chest/abdomen in the inhale step of a human breath process.

4.2.1 Human Breath Preliminary

As shown in Figure 4.2, multiple human body parts are involved in breathing. A respiration cycle

is comprised of two steps: inhalation and exhalation. During the inhale step, air enters the body

via the nose or mouth and travels to the lung. As a result of the chest wall expansion, the lung fills

with air and expands; at the same time, the diaphragm at the bottom of the lung and at the top of the

abdomen contracts. During this process, from the outside view, the chest wall expands, resulting

in a larger chest cavity; at the same time, the abdomen expands as the diaphragm contracts. During

the exhale step, on the contrary, the air will flow out the body from the nose or mouth. Because the

human body is devoid of air, the chest wall contracts. Meanwhile, the diaphragm relaxes, resulting

in a smaller chest cavity and abdomen.

Certain clinical studies indicate that individuals’ breathing patterns vary. Kaneko et al. [95],

in particular, conducted an experiment in which three sensors were placed on the thorax and

abdomen and a vector of three-dimensional movement was measured during breathing. The

observed breathing movements were found to be related to the effects of age, sex, and posture.

Raganarsdottir et al. [96] discovered that women have fewer abdominal movements than men do

during deep breathing. Additionally, the previous study [81] cites some clinical studies [97, 98] to

demonstrate that individual signatures of breath composition do exist.

Remark: We believe that by fully characterizing the movements of the chest wall and abdomen,

distinct signatures for individual recognition can be extracted.
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Figure 4.3: Overview of BreathPass system that consists of an enrollment stage and an authentication
stage.

4.2.2 System Overview

As shown in Figure 4.3, BreathPass enables authentication in two stages: the enrollment stage and

the authentication stage. The enrollment stage’s objective is to sample the user’s breath waveforms

in a variety of different states (called tiny postures) using a breath sampler (Section 4.3.1) that

emits a harmonic ultrasound signal. The different tiny gestures for BreathPass are just like the

different edge parts of a fingerprint. To ensure robustness at all common circumstances, we sample

breath waveform multiple times at the enrollment stage. Following that, the enrollment stage

utilizes a DNN-based fingerprint extractor (Section 4.3.2) to extract n feature vectors, referred to

as fingerprints, and then calculates the average of those fingerprints, referred to as the template

fingerprint, and stores it in the local storage.

The authentication stage is similar to the enrollment stage, except that the breath sampler

samples only one breath waveform. Following that, it uses the same fingerprint extractor as in the

enrollment stage to extract the input fingerprint. The template fingerprint is then fetched from local

storage and combined with the input fingerprint in the comparator (Section 4.3.3) to determine

whether the sampled breath is from an authorized user.

4.3 Design

We begin this section by analyzing the properties of ultrasonic signals in order to provide guidelines

for the chest/abdomen movement tracking design (§4.3.1). Then we go into detail about how we
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extract the fingerprint of the breathing pattern (§4.3.2), how we determine whether an authentication

fingerprint matches the enrolled one (§4.3.3), and finally about the BreathPass design workflow

(§4.3.4).

4.3.1 Ultrasound-based Breath Sampler

Breathing Pattern Extraction: We use the speakers on smart devices, such as a smartphone, to

play a stereo ultrasound signal. As shown in Figure 4.3, the speaker is perpendicular to and close to

the chest wall. The left channel plays an ultrasound signal at an 18 kHz frequency, while the right

channel plays one at a 22 kHz frequency. The ultrasound signals are reflected off the chest wall

and abdomen and are picked up by the smartphone’s microphone, which is also positioned near the

chest wall. Formally, the signal emitted is denoted as follows:

𝑠(𝑡) = cos(2𝜋 𝑓1𝑡) + cos(2𝜋 𝑓2𝑡), (4.1)

where 𝑓1 = 18, 000 and 𝑓2 = 22, 000. After the microphone records the reflected signal 𝑚(𝑡),

the breath sampler first employs a high pass filter to eliminate components below 16 kHz. Then,

inspired by the previous efforts [99, 10], the breathing pattern can be regarded as the signal 𝑥(𝑡)

modulated into 𝑚(𝑡) by the carrier of 𝑠(𝑡). Therefore, we have

𝑚(𝑡) = 𝑥(𝑡)𝑠(𝑡). (4.2)

To demodulate the breathing pattern 𝑥(𝑡), we need to multiply 𝑚(𝑡) by 𝑠(𝑡) and let the result pass

through a low pass filter with an extremely low cutoff frequency, e.g., 200 Hz. From Equation (4.1)

and (4.2), we have

𝑚(𝑡)𝑠(𝑡) = 𝑥(𝑡)𝑠2(𝑡) = 𝑥(𝑡) [cos(2𝜋 𝑓1𝑡) + cos(2𝜋 𝑓2𝑡)]2

= 𝑥(𝑡) [cos2(2𝜋 𝑓1𝑡) + 2 cos(2𝜋 𝑓 1𝑡) cos(2𝜋 𝑓2𝑡)

+ cos2(2𝜋 𝑓2𝑡)]

= 𝑥(𝑡){1
2
[1 + cos(2𝜋2 𝑓1𝑡)] + cos(2𝜋( 𝑓1 + 𝑓2)𝑡)

+ cos(2𝜋( 𝑓2 − 𝑓1)𝑡) +
1
2
[1 + cos(2𝜋2 𝑓2𝑡)]}.

(4.3)
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Figure 4.4: A controlled experiment verifying our ultrasound frequency selection. The board
movement to mimic the chest wall and abdomen motion during breathing.

After a low pass filter with a 200 Hz cutoff frequency, the components cos(2𝜋2 𝑓1𝑡), cos(2𝜋2 𝑓2𝑡),

cos(2𝜋( 𝑓1 + 𝑓2)𝑡), and cos(2𝜋( 𝑓1 − 𝑓2)𝑡) all disappear. Therefore, we have

𝑚(𝑡)𝑠(𝑡) =⇒ 𝑥(𝑡) (1
2
+ 1

2
) = 𝑥(𝑡). (4.4)

We use the extracted 𝑥(𝑡) as the breathing pattern to perform authentication.

Ultrasound Frequency Selection: We want to emphasize why we use a pair of ultrasound signals

with two frequencies rather than a single frequency wave. Because the higher frequency signal is

more easily attenuated with distance than the lower frequency signal. If we place an ultrasound

speaker perpendicular to the chest wall and play a pair of ultrasound signals, the lower frequency

signal is more likely to reach the abdomen, whereas the higher frequency signal can only reach the

chest.

To verify this, we conduct the experiment depicted in Figure 4.4. We place two boards

perpendicular to the y-axis and place a smartphone where its speaker towards the upper board.

The distance between the upper board and the speaker is 10 cm. The speaker plays the ultrasound

signal with the frequency of 18 kHz and 22 kHz, alternatively. When the speaker plays a particular

frequency ultrasound, we move the upper and the lower board back and forth along the y-axis at a

time to simulate only the chest wall moving, or only the abdomen moving, and extract the motion

waveform similar to Equation (4.4). We calculate the power under each scenario, and denote 𝑃18𝑢

as the power of the sensed motion waveform of the upper board by using the 18 kHz ultrasound,

and denote 𝑃18𝑙 as the power of the sensed motion waveform of the lower board by using the 18

kHz ultrasound. Similarly, we denote 𝑃22𝑢 as the power of the sensed motion waveform of the
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upper board by using the 22 kHz ultrasound and denote 𝑃22𝑙 as the power of the sensed motion

waveform of the lower board by using the 22 kHz ultrasound.

To determine the sensitivity, we must compare 𝑄𝑙 =
𝑃18𝑙
𝑃22𝑙

with 𝑄𝑢 =
𝑃18𝑢
𝑃22𝑢

. 𝑄𝑙 and 𝑄𝑢 indicate

how much power the 18 kHz ultrasound can sense when the 22 kHz ultrasound can sense 1 unit

power of the lower and upper board movement, respectively. In our experiment, 𝑄𝑙

𝑄𝑢
≈ 1.61 > 1,

indicating that 18 kHz is more sensitive to lower board movement than 22 kHz. Similarly, 22 kHz

is more sensitive to upper board movement than 18 kHz. As a result of the fact that ultrasound at 22

kHz is more sensitive to chest wall motion than ultrasound at 18 kHz, we use a pair of ultrasound

signals to fully characterize the motion of the chest wall and abdomen.

4.3.2 Fingerprint Extractor Design

Design Issues: After sampling the breathing pattern, both the enrollment stage and the authentica-

tion stage all send their samples to the fingerprint extractor. In order to get a feasible fingerprint that
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can be used to perform authentication, the design of fingerprint extractor should take the following

challenges into consideration:

1) Denoise. Previous works [94, 10, 100] proposed multiple approaches to denoise the vibration

waveform or the breathing waveform for machine damage or human disease detection. For example,

mmVib [94] reports the machine error when an abnormal vibration is detected. The system collects

the vibration waveform with noises and leverages a model to denoise the signal. After that, the

system will measure the distance between the sampled signal and the normal status signal. If the

distance is within a threshold, then the system classifies the machine works normally. Otherwise,

the system reports the machine in an abnormal status. To build such a denoise model, the system

usually collects vibration waveform with noises when the machine works normally and use a series

of transformation and processes, e.g., matching arc on the I-Q plane [94], to match the noise

waveform with the standard vibration waveform as precise as possible. After matching, it fixes the

processes and parameters to denoise future signals. If the machine works in abnormal status, the

signal after being processed by the same model with the same parameters is far from the standard

one. Such an idea was also adopted by SpiroSonic [10] and BreathListener [100] to detect if

human breathes normally. The common point of these works is to find the identical pattern when

the machine or the lung works normally. In BreathPass, however, the goal is to characterize the

difference in the breathing pattern among different people instead of finding the typical pattern

from different peoples’ breaths. Therefore, it is hard for us to build a denoise model by extracting

the common pattern.

2) Stability. The chest wall and the abdomen motion are not as stable as a machine. A different

breathing pattern may be extracted even the user stays in the same posture, but after a tiny movement;

e.g., when a user leans back on a chair from the straight waist, a different breathing pattern will

be extracted. Therefore, the design of the fingerprint extractor must take such a stability issue into

consideration.

3) Feature selection. The most similar task to BreathPass is speaker verification. The speaker

verification task first uses a microphone to record the user who is saying a predefined sentence
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or any other sentence. The system then verifies if the recorded voice comes from the authorized

users. Existing speaker verification solutions typically first transform the voice signal into the

spectrogram, then extract spectrogram-based features such as Mel Frequency Cepstral Coefficients

(MFCC) or Gammatone Frequency Cepstral Coefficients (GFCC) [93]. After that, such solutions

leverages the Gaussian Mixture Model (GMM) or build a Deep Neural Network (DNN)-based

model to verify the speaker.

BreathPrint [81] adopts a similar idea. Different from the speaker verification task is that it

uses a microphone to record the user’s breathing voice, then extracts GFCC features and leverages

the GMM model to verify if the breathing voice comes from the authorized user.

To extract spectrogram-based features, the system needs to get a signal with a reasonable

wide bandwidth; e.g., speaker verification and BreathPrint [81] are both capable of leveraging

spectrogram-based features since the spectrogram of a speech “OK, Google!" could reach up to 6

kHz as shown in Figure 4.5a, and the spectrogram of a breath sound can reach up to 10 kHz as

shown in Figure 4.5b. Therefore, there is a sufficient area to embed information in the spectrogram

so that these systems are able to use photo verification-liked models to perform authentication.

In BreathPass, however, we cannot use spectrogram-based features since the bandwidth of a

breathing pattern is extremely narrow. An adult typically finishes a breathing cycle in 2 to 3

seconds. We plot the result of the Fast Fourier Transform (FFT) of a breathing pattern that we

sampled with the method described in Section 4.3.1 as shown in Figure 4.5c. We can find that the

majority of the power is under 1 Hz (90% of power is below 0.89 Hz). Therefore, the bandwidth of

a breathing pattern in the spectrogram is too narrow as shown in Figure 4.5d to provide sufficient

information that can be used to perform authentication.

Our Solution: To address the first challenge that we cannot build a denoise model based on

observation, we, therefore, build a DNN-based model to learn how to denoise the signal and extract

the fingerprint itself. To cope with the third challenge, we use the raw breathing pattern waveform

as the input instead of extracting spectrogram-based features.

As shown in Figure 4.6, the fingerprint extractor is consists of a series of convolutional layers
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Figure 4.6: The structure of our DNN model for fingerprint extractor.

followed by some fully connected layers. Each layer uses the ReLU function to activate, and there

is a max-pooling layer with a length of 4 after the first and the last convolutional layers. Each fully

connected layer except the last one adopts dropout with the parameter 0.2 to avoid overfitting. We

also adopt the idea of ResNet [101] of adding a skip link between convolutional layers to avoid

gradient vanishing. The fingerprint extractor takes a breathing pattern waveform sampled by the

method described in Section 4.3.1 as the input. After the last fully connected layer of the extractor,

it outputs a vector of 512 floating-point numbers as the fingerprint.

The second challenge about stability requires us to remove moving-dependent noises while

reserving the user-dependent difference among different users’ breathing patterns. To cope with this

issue, we introduce the average fingerprint technique. Specifically, instead of using the fingerprint

that comes from a single breathing pattern waveform as the result of the enrollment stage, we sample

multiple breathing patterns in the enrollment stage and get multiple fingerprints correspondingly.

We calculate the average of these fingerprints as the result of the enrollment stage.

The idea behind the average fingerprint is that if we focus on the same user, moving-dependent

noises are unstable while the user-dependent difference is stable, therefore, if we take the average

of multiple fingerprints, unstable moving-dependent noises will be smoothed while the stable

user-dependent difference is reserved. We show the effectiveness of the average fingerprint in

Section 4.5.10.

4.3.3 Comparator Design

After getting fingerprints from both the enrollment stage and the authentication stage, we need to

build a comparator to measure the distance between two fingerprints.
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In general, there are two approaches to building such a comparator. The first one is applying

triplet loss [102] while training the feature extractor. With this approach, we need to provide a

triplet (𝐴, 𝑃, 𝑁) as the training data, where A and P are the breathing patterns from the same

person, while N is from another person. The goal of triplet loss is to find a DNN parameter that

outputs fingerprints (𝐴′, 𝑃′, 𝑁′) satisfies 𝑑 (𝐴′, 𝑃′) + 𝛼 ≤ 𝑑 (𝐴′, 𝑁′), where 𝑑 (·) is the euclidean

distance or the cosine similarity.

In our practice, however, it is hard to train the fingerprint extractor with the triplet loss. Therefore

we adopt another idea [103]. After getting the fingerprints, instead of building a comparator with

the triplet loss, we build the comparator by applying logistic regression. Specifically, we have the

target function

𝑓 (𝑥, 𝑦) = 𝜎(𝑤𝑇 ∥𝑥 − 𝑦∥2 + 𝑏), (4.5)

where 𝜎(·) is the sigmoid function, 𝑤 is the vector of parameters of the comparator, 𝑏 is the bias,

and 𝑥 and 𝑦 are the fingerprints from the enrollment stage and the authentication stage, respectively.

During training the comparator, the target output 𝑓 (𝑥, 𝑦) is set to 1 if the 𝑥 and 𝑦 are from the same

user, otherwise, the target output is set to 0.
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4.3.4 Combine the Fingerprint Extractor with the Comparator

As shown in Figure 4.7, we put these components together. The fingerprint extractor and comparator

are combined into a single neural network. During the training process, we randomly choose n

breathing patterns from the same volunteer in the training dataset and choose another breathing

pattern from a random volunteer in the training dataset. If these two volunteers are the same one,

then the final result, i.e., Pass?, is set to 1; otherwise, it is set to 0.

As for the deployment of these components, the left lower side of the figure, i.e., n breathing

patterns, comes from the enrollment stage. We store the average fingerprint in advance as shown

in Figure 4.3. During the authentication stage, the system samples a breathing pattern as shown

on the right lower side of the Figure 4.7. If the output of the comparator is greater than 0.5, we

denote the final result, i.e., Pass?, as 1, indicating that authentication was successful; otherwise, we

denote the final result as 0, indicating that authentication failed. If authentication fails, BreathPass

prompts the user to sample his breathing pattern and attempt authentication again; if authentication

continues to fail, BreathPass will prevent the user from sampling his breathing pattern until the user

enters the correct PIN number.

4.4 Implementation

4.4.1 Breathing Pattern Sampler and Data Collection

We develop the breathing pattern sampler on Android smartphones, as shown in Figure 4.8a. We

use the native Android library AAudio [104] to generate, emit, and record the ultrasound waves.

With the approval of our IRB under expedited review, we use our sampler to collect data and extract

the breathing patterns of 20 volunteers. Each volunteer is continuously sampled for 60 seconds

and five times (i.e., 300s in total). The 20 volunteers cover people of different gender and age that

may frequently use smart devices. We use a Google Pixel 3a smartphone running Android 11 to

perform sampling. The sampling rate is set as 48 kHz. During sampling, we place the smartphone

on a desk and let the speaker towards a volunteer’s chest. The distance between the smartphone and
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Figure 4.8: The UI of BreathPass implementation on a smartphone. (a) the breathing pattern
sampler for general data collection; (b)-(e) the pages of our proof-of-concept application.
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the volunteer is between 5 and 10 cm. An interval separates two consecutive samplings to allow

the volunteer to adjust their tiny posture. Once the microphone samples the reflected ultrasound

signals, we leverage Apache Commons Math package [105] to build a high pass filter that eliminates

all components below 16 kHz, leaving only the ultrasound signals and then extracts the breathing

pattern using the design described in Section 4.3.1. The extracted breathing patterns are indexed by

number, as shown in Figure 4.8a. Specifically, 1 to 5 represent the first volunteer, 6 to 10 represent

the second volunteer, and so on.

4.4.2 Training the Feature Extractor and Comparator

After getting the dataset from 20 volunteers, we build the feature extractor and comparator using

PyTorch on a desktop equipped with an NVIDIA GeForce RTX 3090 GPU, as discussed in

Section 4.3.2 and Section 4.3.3. We randomly select 10 volunteers’ data for the training set and

the remaining volunteers’ data for the test set. During each iteration of the training and testing,

we first randomly select a volunteer, then we randomly choose a 60s long breathing pattern from

the indexed volunteer dataset, and finally, we randomly crop a segment of the 60s long breathing

pattern ranging from 1s to 5s. This process is repeated 10 times to create the template inputs.

Then we get another segment of breathing pattern but alternatively choose the same volunteer and

a different volunteer as the authentication input. If we have chosen the same volunteer, the target

of the DNN output is set to 1; otherwise, we set it to 0. We also add some fake breathing patterns

which are collected by the breathing pattern sampler with the smartphone speaker towards the wall

or towards nothing to enhance the classification accuracy. We always set the target of the DNN

output to 0 if any of these fake patterns are chosen.

4.4.3 Proof-of-concept Application

To explore the efficiency of the system on different smart devices in practice (see Section 4.5.11),

we develop a proof-of-concept Android application as shown in Figure 4.8b, 4.8c, 4.8d, and 4.8e.

We port our PyTorch model built in Section 4.4.2 with TorchScript [106] and load it into our
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application. As shown in Figure 4.8b, our application provides the enrollment stage and the

authentication stage. The enrollment stage (Figure 4.8c) integrates the breathing pattern sampler

discussed in Section 4.4.1, but we only sample 1 second long each time. Here we choose the

1-second segment because experiment results indicate that this segment length provides the best

performance. After sampling the breathing patterns, by clicking ADD TO PROFILE button, our

app launches the DNN-based fingerprints extractor to obtain the fingerprint, and stores a copy into a

directory named PROFILENAME.profile. The app will display a segment of the breathing pattern

to ensure that it is correctly extracted.

As shown in Figure 4.8d and 4.8e, during the authentication stage, the user first samples his

breathing pattern, then chooses which template profile is going to be authenticated. After hitting

the AUTHENTICATE button, the app will fetch the corresponding fingerprints from the directory

PROFILENAME.profile and calculate their average. Then the app launches the fingerprint extractor

model to generate the fingerprint of sampled breathing patterns. Finally, it launches the comparator

to perform an authentication process and displays whether the authentication is successful.

4.5 Evaluation

4.5.1 Overview

To evaluate BreathPass, we use the data collected in section 4.4 to train and test BreathPass. In

general, we use the following metrics to evaluate the performance of BreathPass:

Accuracy: We use accuracy to determine whether BreathPass can correctly identify the authorized

user whose fingerprints are stored during the enrollment stage. The accuracy is calculated as

Accuracy =

∑𝑁
𝑖=1 𝐼 (𝑦𝑖 = 𝑦𝑖)

𝑁
, (4.6)

where 𝑁 is number of test cases, 𝐼 is the indicator function, 𝑦𝑖 is the output given by BreathPass,

and 𝑦𝑖 is the correct label. In general, the greater the accuracy, the better.

True positive rates (TPR) and false positive rates (FPR): Besides the accuracy, we also focus

on two metrics, i.e., true positive rates (TPR) and false positive rates (FPR). We calculate the TPR
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Figure 4.9: (a) General performance of BreathPass (b) Performance of different mobile models.

by using the equation

TPR =

∑𝑁
𝑖=1 𝐼 (𝑦𝑖 = 1 and 𝑦𝑖 = 1)∑𝑁

𝑖=1 𝐼 (𝑦𝑖 = 1)
, (4.7)

and the FPR is calculated by

FPR =

∑𝑁
𝑖=1 𝐼 (𝑦𝑖 = 1 and 𝑦𝑖 = 0)∑𝑁

𝑖=1 𝐼 (𝑦𝑖 = 0)
, (4.8)

where 𝑁 is the number of test cases, 𝐼 is the indicator function, 𝑦𝑖 is the output given by BreathPass,

and 𝑦𝑖 is the correct label.

When an enrolled user attempts to unlock the device, the TPR determines the likelihood that the

system will successfully authenticate. When an unauthorized user attempts to unlock the device,

the FPR determines the possibility that the system will pass the authentication by mistake. The

higher the TPR, the better, while the lower the FPR, the better.

Apart from the TPR and FPR, two additional metrics are used to characterize the authentication

system’s performance: true negative rates (TNR) and false negative rates (FNR), which indicate

the likelihood of an unauthorized user being successfully blocked by the system and the likelihood

of an authorized user failing the authentication, respectively. However, we are unconcerned with

these two values because an attacker cannot do anything if the device cannot be unlocked.

With these three metrics, we would like to answer the following questions:

• Is it possible that the breathing pattern we sampled could be used to perform authentication

and can BreathPass become a candidate of “who you are” scheme under the COVID-19
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Figure 4.10: Performance of BreathPass with different kinds of clothes.

scenario?

• Is BreathPass performing well to the same user but wearing different kinds of face covers,

clothes, with different postures, with dynamic status, under different environments, and on

different mobile models?

• Can BreathPass defend against replay attacks?

• What’s the impact if we use the single template breathing pattern to generate the fingerprint

rather than using the average fingerprint?

• Can BreathPass finish the authentication within a reasonable time limit?

4.5.2 General Evaluation

Setup: To determine whether the extracted breathing pattern can be used for authentication, we

train and test the fingerprint extractor and comparator using the dataset collected in Section 4.4.

We have formed the training dataset by randomly choosing 10 volunteers from the whole dataset.

In this experiment, we use the remaining 10 volunteers as well as the fake breathing patterns to

perform testing. We perform 1000 iterations of testing. During each iteration, we randomly choose

1s to 5s breathing pattern segments as described in Section 4.4.1 to form the test datasets with

mini-batches of 32, resulting in a total of 32 × 1000 = 32000 test cases. The output of the sigmoid
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function in Equation (4.5) is in the range of [0, 1]. If the output is greater than or equal to 0.5, the

result is considered passed; otherwise, the result is considered failed.

Results: As shown in Figure 4.9a, BreathPass achieves over 80% accuracies, over 70% TPRs, and

less than 10% FPRs for any segment length of the input breathing pattern. BreathPass achieves an

accuracy of 83%, a TPR of 73%, and an FPR of 5% when the input breathing pattern is segmented

for 1 second, which is the best segment length. As a result, we assert that the breathing pattern

we sampled can be used for authentication and that when combined with the TPR and the FPR,

BreathPass can serve as a candidate for a “who you are” scheme, either alone or in conjunction

with eye recognition in the COVID-19 scenario.

4.5.3 Effectiveness on Different Mobile Models

Setup: To verify whether BreathPass is able to work on different mobile models, we launch

BreathPass on three different mobile phones, i.e., Google Pixel 3a, Huawei Mate 9, and Google

Pixel. In this experiment, we use these three mobile models to collect a volunteer’s breathing

pattern respectively. Then we form the positive test cases by selecting pairs of 1s breathing patterns

from the collected breathing pattern. After that, we make pairs of the breathing patterns from a

given mobile model and the test datasets as discussed in Section 4.5.2 as the negative cases.

Results: As shown in Figure 4.9b, there is little difference between accuracies, TPRs, and FPRs

among different mobile models. Therefore, BreathPass can work on different mobile models.

4.5.4 Influence of Different Kinds of Face Covers

Wearing a face cover may obstruct airflow into the user’s nose or mouth, thereby altering the

user’s breathing pattern. To characterize the effect of various types of face covers on users, we

prepared four types of commonly used face covers, i.e., surgical, fabric, KN95, and N95, as shown

in Figure 4.10a. There are almost no blocks when wearing the surgical mask, while the remaining

makes breathing harder than wearing the surgical mask or not wearing a face cover. We would like

to characterize the performance across different kinds of face covers. In this experiment we only
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Figure 4.11: Performance of BreathPass with different kinds of clothes.

care about TPRs, which means the possibility of successfully authenticated while wearing different

face covers.

Setup without grouping: In this experiment, we invite a volunteer to wear each of the four types

of face covers separately and evaluate the BreathPass’s performance. We ask the volunteer to enroll

his breathing pattern with no face cover, and perform authentication with wearing different kinds

of face covers.

Results without grouping: As shown in figure 4.10b, TPRs decrease while wearing the masks

which blocks the airflow, but almost all of them are over 40%, which means that the extracted

breathing pattern is still feasible while wearing different kinds of face covers.

Setup with grouping: To further improve the TPRs while wearing the face covers that blocks the

airflow, we can split the face covers into two groups, i.e., no airflow blocked (no face covers and

surgical) and airflow blocked (fabric, KN95 and N95). We ask the volunteer to enroll with one of

them in a group and perform authentication with wearing another one in that group. Specifically,

we firstly use breathing patterns collected without a face cover to generate the template fingerprint

and use breathing patterns collected with the surgical mask as the input of the authentication stage.

Then we use the KN95 dataset to generate the template fingerprint and use breathing patterns from

the fabric, and the N95 dataset, respectively, as the input of the authentication stage. Finally, we

generate the template fingerprint using breathing patterns from the N95 dataset and use it to evaluate
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Figure 4.12: (a) TPR of BreathPass with different postures. (b) Performance with or without
average fingerprint technique.

performance when wearing the KN95 mask. This is reasonable, as the user could enroll in both

groups separately and choose one manually or automatically before performing the authentication.

We use datasets of the volunteers that form the test datasets in Section 4.4.2 to test negative cases.

The volunteer in this experiment is not one of the volunteers in Section 4.4.2.

Results with grouping: As shown in figure 4.10c, compare to the TPRs without face cover, all

TPRs with a face cover are decreased, but most of the TPRs are higher than 70%, and in particular,

for 1s, the TPRs are all higher than 80%. Therefore, BreathPass is feasible across different face

covers.

4.5.5 Influence of Different Clothes

Setup: Since BreathPass extracts breathing patterns from the motion of the chest wall and the

abdomen, the breathing pattern collected might be influenced by different clothes because different

wearings might have different effects of blocking ultrasound signals. In this experiment, we

choose the most common used four kinds of clothes, i.e., T-shirt, hoodie, sweater, and jacket, as

shown in Figure 4.11a, and invite a volunteer to sample his breathing patterns while wearing these

clothes, correspondingly. We then use the dataset collected with wearing the T-shirt to generate

the template fingerprint, and use the breathing pattern from datasets with wearing all four clothes

correspondingly as the input of the authentication stage. The volunteer in this experiment is not
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one of the volunteers in Section 4.4.2.

Results: As shown in figure 4.11b, the TPRs are almost higher than 65%, and in particular, for 1s,

the TPRs are all over 75%. Therefore, BreathPass is feasible across different kinds of clothes.

4.5.6 Influence of Different Postures

Setup: As discussed in Section 4.3.1, different postures result in different breathing patterns.

Therefore, to characterize the influence of different postures, we invite a volunteer to provide

breathing patterns by the method discussed in Section 4.4.1 with the three most common postures,

i.e., sitting, standing, and laying down. We use breathing patterns extracted from sitting posture to

generate the template fingerprint, and use breathing patterns extracted from all these three postures

respectively as inputs of the authentication stage. The volunteer in this experiment is not one of the

volunteers in Section 4.4.2.

Results: As shown in figure 4.12a, the sitting and standing posture have higher TPRs than laying

down. The TPRs for sitting and standing are almost higher than 60%, and in particular, for 1s, the

TPRs are all over 70%. Therefore, BreathPass is feasible across different postures.

4.5.7 Influence of Dynamic Status

Setup: Some dynamic status such as walking or after running may result in different breathing

pattern, to verify if BreathPass could still successfully authenticate the user under these dynamic

status. We ask a volunteer to enroll his breathing pattern while sitting in a quiet room at rest, and

perform authentication while sitting in a quiet room at rest (marked baseline), during walking, and

after running 500m, respectively. We choose 1s as the segment length because, from the previous

experiments, we find that 1s segment length works well for most cases. The volunteer in this

experiment is not one of the volunteers in Section 4.4.2.

Results: As shown in table 4.1, walking has almost no effect to authentication. Authentication

after running has a bigger effect as it significantly changes the breathing pattern, however, it still
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Class Baseline Walking Running Outside TV
TPR 97% 94% 78% 78% 80%

Table 4.1: TPRs of different dynamic status and environments.

achieves 78% of the TPR, which means that BreathPass is feasible when the user is under dynamic

status.

4.5.8 Influence of Different Environments

Setup: To verify if BreathPass could still successfully authenticate under different environments.

We ask a volunteer to enroll his breathing pattern while sitting in a quiet room at rest, and perform

authentication while sitting in a quiet room at rest (marked baseline), outside while raining (lower

noise), and near a TV set playing a concert with a high volume (higher noise), respectively. We

choose 1s as the segment length because, from the previous experiments, we find that 1s segment

length works well for most cases. The volunteer in this experiment is not one of the volunteers in

Section 4.4.2.

Results: As shown in table 4.1, compare to baseline, authentication outside while raining and near

the TV set decrease the TPR. It probably because the raining falling down between the speaker and

the chest wall affects the transmition and reflection of the ultrasound signals, and suppression effects

of the microphone [8] affects the recording quality when background noise is huge. The TPRs

however, are around 80%, which means that BreathPass is feasible under different environments.

4.5.9 Defend Replay Attacks

Setup: It is unlikely to replay a breathing pattern by recoding other’s breath like voice recording

does. In addition, we cannot spoof our authentication system with an easy way just like making

face/fingerprint/iris masks. The best way we can issue a replay attack is to make an attacker to

observe and imitate users’ breath pattern. To verify whether BreathPass could defend against replay

attacks, we ask four groups of volunteers (each contains two volunteers) to sit in the same room at

the same seat. In each group, two volunteers are similar in terms of gender, age, height and weight.
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In each group, a volunteer acts as an attacker to imitate the other’s breath by controlling the pace

of breathing and get the same times of breathing cycle in a minute. Then we use the non-attacker

volunteer’s breathing pattern in a group to enroll the BreathPass and use the breathing pattern from

the attacker in that group to perform authentication. The segment of breathing pattern is 1 s in the

experiments. We only care about FPRs here to see if such a replay attack can break in the system.

Results: We get four FPRs, 3.6%, 3.8%, 9%, and 31% for each of the groups. We can see the

FPRs of the first three groups are lower than 10% which is impossible to be used to attack the

authentication process. For the forth group, the FPR becomes higher to 31%. The reason is that

the volunteers are more like “twins” than other groups. Their body shape, habit, and exercise-level

are similar as well. Therefore, the imitated breathing pattern may be similar with the original one.

Even though the FPR is 31% which is far less than our overall TPR 73%. Saying that, we can

sacrifice the computation efficiency (e.g., continuous two successful authentication) to improve the

security if the user wants.

4.5.10 Effectiveness of the Average Fingerprint

Setup: During our experiment, we found that even all volunteers in Section 4.4.1 are sitting while

sampling their breathing patterns, the DNN-based model also cannot get a good performance. This

is because even a tiny move within the same posture could result in different breathing patterns that

affect the overall performance. As discussed in Section 4.3.2, we introduce an average fingerprint

technique to eliminate moving-dependent noises while reserving user-dependent differences. In

this experiment, we build another model of the same DNN architecture as discussed in Section 4.3

but without the average fingerprint technique. We choose 1s as the segment length because, from

the previous experiments, we find that 1s segment length works well for most cases. We compare

the performance between models with and without the average fingerprint technique to show the

effectiveness of the average fingerprint technique. Specifically, we use the same training dataset to

train the same model without the average fingerprint technique. After the model converges, we use

the same test dataset as Section 4.5.2 to test the performance.
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Results: As shown Figure 4.12b, we can find that the accuracy without the average technique is

lower than the model with the average technique. We can further find that although they have

close TPRs, the FPR without the average technique is much higher than the model with the average

technique, which is unacceptable. The reason why the model without the average technique has

a high FPR is because the model cannot eliminate moving-dependent noises, thus taking them as

the feature to construct the fingerprint. Therefore, it is necessary to apply the average fingerprint

technique so that the model could successfully eliminate moving-dependent noises while reserving

user-dependent differences.

4.5.11 Efficiency on Mobile Phones

Setup: To make BreathPass practical, the DNN-model needs to finish the inference on a mobile

device within a reasonable time limit after a user samples his breathing pattern. To test the

efficiency of BreathPass, we port our model on a Google Pixel 3a Android mobile phone as

discussed in Section 4.4.3. The application shows the time used by the DNN-model along with

the authentication results. We perform 10 times of authentication. The configuration is the same

as the previous experiments, and we use 1s segment length of breathing patterns as the inputs.

Specifically, we enroll 10 breathing signals that each of them is 1s long, and extract 10 fingerprints,

respectively, and store them on the smartphone. During the authentication stage, after the user

samples his 1s breathing pattern, we first calculate the average of 10 fingerprints, then take the

result of the average and sampled breathing pattern as the input to the model. The model extracts

the fingerprint of the sampled breathing pattern and runs the comparator to give the result of the

authentication.

Results: We calculate the average running time, and the result is 855.7 ms, which shows that

BreathPass can be used practically.
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4.6 Related Works

Ultrasound Sensing: Ultrasound sensing has been a popular area of research in recent years.

Ultrasound sensing is based on distance measurement and positioning. After getting the objects’

trajectory, systems may employ classifiers or construct a model to detect the objects’ actions.

Numerous techniques have been proposed to localize or track objects, e.g., the technique based

on time-of-arrival (ToA) or time-difference-of-arrival (TDoA) [107, 108, 109, 110, 111], Doppler

frequency shift (DFS) [112, 113, 114], or phase-based technique [99, 115, 116]. In particular,

Liu et al. [107] achieves ultrasound positioning accuracy of tens of centimeters using the time-

of-arrival (ToA) technique. It modulates some signals emitted from several anchor nodes with

known positions. When a microphone receives these signals, it first calculates the time difference

between emitting and receiving, then calculates the distance between the microphone to each

anchor. Finally, it uses trilateration to determine the microphone’s position. LLAP [99] extracts

the phase difference generated by the object’s moving and achieves a 1-D tracking accuracy of

3.5 mm and a 2-D tracking accuracy of 4.6 mm. Vernier [115], on the other hand, leverages the

vernier principle to improve tracking accuracy and achieves a 3D tracking error of less than 4

mm. Although all of these techniques claim to be inaudible to humans, pets and infants can hear

ultrasound with a frequency close to that of audible sounds. Therefore, UPS+ [3] leverages the

nonlinearity effects of commercial off-the-shelf (COTS) microphones that have been extensively

studied by Backdoor [8] and proposed a new ultrasound positioning system. This system employs

ultrasound at a frequency that is inaudible to pets and infants, making the ultrasound positioning

system more environmentally friendly.

Additionally, ultrasound sensing systems can be used to complete a variety of sophisticated

tasks. For example, existing research efforts [117, 118] employ ultrasound signals to detect sleep

apnea. Specifically, these works emit modulated ultrasound, i.e., FMCW chirp or pseudo-white

noise signal, and then use a classification algorithm to determine whether an apnea symptom

exists. Moreover, SpiroSonic [10] uses reflected ultrasonic signals to detect whether the user’s

pulmonary function is normal. BreathListener [100] also uses reflected ultrasonic signals to
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quantify the driver’s breathing status, thereby determining whether or not the driver is driving

safely. AcuTe [119] measures ambient temperature via ultrasonic sensing by utilizing the linear

relationship between temperature and sound speed.

Wireless Authentication: Recent research efforts have primarily concentrated on device-to-

device [120, 121, 122, 123] and human-to-device authentication [124, 125, 126, 81, 80, 127].

For example, in the case of device-to-device authentication, GeneWave [120] derives the ini-

tial acoustic channel response and creates a coding scheme for key agreement and exchange.

DeMiCPU [123] finds that different CPUs generate distinct magnetic induction signal-based fin-

gerprints, then designed a DeMiCPU sensor to read the fingerprint and classify it using ExtraTrees,

thereby performing authentication.

As for the human-to-device authentication, Cardiac Scan [80] puts two radar sensors in front

of and behind the user, respectively. During authentication, these two radar sensors first capture

the user’s cardiac motion, then extracts Fiducial-based invariant identity descriptors, and use them

to match with the owner template captured in advance to perform authentication. It requires the

target device to be equipped with radar sensors, which increases the cost of operation and precludes

widespread use. Wang et al. [126] measure the heartbeat using the built-in accelerometer of

smartphones, then extract features using wavelet transform and apply the SVM model to determine

whether the captured heartbeat was from an authorized user. WiHF [127] uses a WiFi signal to

deduce the user’s identified gesture and then performs user identification using DNN. This method

requires a WiFi connection and operates exclusively on the server side, making it unsuitable for

client-side outdoor scenarios. BreathPrint [81] conducted a comprehensive and careful survey

on existing clinical studies [128, 129, 130, 131, 132, 133] and summarizes that different people

have distinct breathe sounds, then it designed a system that requires the user to initiate breathing

gestures (e.g., sniff, normal, deep breath) towards a microphone. Then, it extracts GFCC features

and uses a GMM model to determine whether or not the recorded breathing sounds originated from

the authorized user. While this is a non-invasive solution, it requires users to place a microphone

near their nose, which adds to the cost of operation. Meanwhile, during the COVID-19 pandemic,
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people typically wear a face cover, which prevents the microphone from recording the sound of

breathing.

4.7 Discussion and Future Work

Although BreathPass can become a candidate of “who you are” unlocking mechanism, it is still

challenging to make it practical because of the following aspects, and we leave them as the future

work:

Sampling position: In our experiment, all of the volunteers are strictly limited to the position

where they put the mobile phone, i.e., 5 to 10 cm before and perpendicular to their chest wall. In

practice, however, users could hold their smartphone at any distance and any orientation, which

significantly affects the sampled breathing pattern. Therefore, to make BreathPass practical, we

need to make the user hold their smartphone freely.

Lower FPR: The authentication system should provide an extremely low FPR in order to keep

security. Although BreathPass achieves 5% FPR in general, it is still far from the authentication

systems that can be used in practice. Getting a lower FPR while keeping a reasonable TPR before

using BreathPass in practice is needed.
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CHAPTER 5

CONCLUSION

This dissertation shows various unconventional ways to exploit the side effect of devices.

In Chapter 2, we present RainbowLight, a high-precision 3D visible light based localization

system. Compared with existing approaches, RainbowLight does not require special hardware

design and pre-collected light features. RainbowLight works on COTS mobile phones without

strict user holding requirement. It works well for different types of lamps as well as light off

scenario. Those features significantly reduce the deployment, maintenance and using overhead.

The evaluation results show that RainbowLight achieves an average localization error of 3.3 cm in

2D and 9.6 cm in 3D. We believe RainbowLight can be applied to today’s buildings with a very

small overhead to enable many visible light based applications.

Acoustic privacy protection has always been an important topic. In Chapter 3, we study

the nonlinear effects on commercial off-the-shelf microphones. Based on our study, we propose

Patronus, which leverages the nonlinear effects to disrupt unauthorized devices from recording

the speech while simultaneously allowing authorized devices to record clear speech audio. We

implement and evaluate Patronus in a wide variety of representative scenarios. Results show that

Patronus effectively blocks unauthorized devices from making secret recordings while allowing

authorized devices to successfully make clear recordings.

In Chapter 4, we propose BreathPass, a novel biometric authentication method that is more

resilience to replay-attack and has a high flexibility to mobile devices. It samples breathing patterns

from users and extracts fingerprints from them to achieve authentication. We believe that BreathPass

can become a candidate of “who you are” unlocking mechanism, or become complementary to

another untrustable mechanism such as eye recognition to provide authentication service together,

and with wearing different kinds of face covers, clothes, with different postures, dynamic status,

and under different environments.

We believe with careful study and exploitation of side effects of devices, and carefully utilize

101



ultrasound signals, smart devices can sufficiently take advantage of their power and resource and

achieve more powerful functionalities.

There are still many directions along with this dissertation and generatres multiple future

works which are remained to be addressed. Regarding visible light positioning, existing works

mostly focus on active positioning, i.e., the target either needs to be equipped with a camera, or

needs to attach an anchor on it. How to achieve a passive visible light positioning with a low

deploying and using cost is still a problem. Regarding ultrasounic privacy protection, because of

the capacity of NLMS filter, the metrics of PESQ and SRVA are limited and still have a capacity to

improve. Many research efforts employed artificial intelligence methods such as autoencoder, or

generative adversarial network, to improve the performance of denoising, which could also be used

for descrambling. In addition, many security architectures on the chipset such as Intel SGX, ARM

TrustZone, or RISC-V KeyStone provide highly effective methods to protect memory physically. It

opens a new door to enhance the security level of IoT devices and applications.
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