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ABSTRACT 

 

STUDENTS’ TOOL USAGE, JUSTIFICATIONS, AND REPORTED CONFIDENCE WHEN 

USING DYNAMIC GEOMETRY ENVIRONMENTS 

 

By 

 

Timothy Scott Wegner 

Abstract: Dynamic Geometry Environments (DGEs) are popular tools in the exploration 

of geometry. This research is designed to explore the confidence of undergraduate mathematics 

students as they make mathematical statements when completing geometric tasks using DGEs. 

Students completed two series of tasks in both Euclidean and hyperbolic geometry. The first 

series of tasks asked students about properties of parallel transports and the second series of tasks 

asked students about the existence of regular polygons. The ten students in this research used 

Geometry Explorer, a DGE which they had previous experience using in Euclidean geometry, 

but minimal experience using in hyperbolic geometry. Hyperbolic geometry tasks were included 

in this study because features of that geometry (e.g. curved lines and unexpected length measure) 

were expected to pose challenges for students’ intuitive expectations. Because of this lack of 

intuition, students may use the features of DGEs (e.g. dragging and measurement) to make 

various justifications (e.g. authoritative, inductive, and deductive) of the mathematical claims 

they are making. Both the features of the DGE and students’ justifications affect their confidence 

in the claims they make. This research explored the interaction between these three factors.  

Analysis of the data showed that these two series of tasks elicited both dragging and 

measurement tool usage. During the parallel transport tasks, students used these tools in both in 

an exploratory mode looking for relationships and a validation mode confirming previous 

conjectures. During the regular polygon construction tasks, students mainly used the tools in a 

validation mode. Additionally, many students waited until the hyperbolic portion of the tasks to 



 

 

begin using these tools. The tasks elicited a range of justifications, though students generally 

used inductive arguments. Deductive justifications, when used, were mainly for familiar tasks 

that took place within Euclidean geometry. Reported confidence was high across both series of 

tasks as well as across both Euclidean and hyperbolic geometry when working with the DGE. 

Reported confidence dropped when working on conjecturing or proof validation prompts that did 

not use the DGE. 

This research suggests there is still much work to be done investigating how students use 

tools, make justifications, and report confidence when using DGEs in both Euclidean and non-

Euclidean geometries. The researcher recommends further study including the exploration of 

additional tools within DGEs, the dynamics of working in partners within DGEs, and how 

students’ expectations of justification affect their responses.  
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CHAPTER 1: INTRODUCTION 

As students study mathematics in the classroom, they use tools to assist in their learning. 

At the most basic, students are given paper and a writing implement. While these tools may seem 

simplistic, they were the tools available when Euclid wrote The Elements, when al-Khwarizmi 

began the development of algebra, and when Newton and Leibniz both developed calculus. 

These tools still have an important place in the classroom, yet as technology has progressed, 

these basic tools have been augmented with a wide range of digital tools. These digital tools 

include such items as tablets, graphing calculators, spreadsheets, the internet, and more. These 

tools have changed the way students learn and engage in mathematics. As Pea (1985) wrote, 

some of these tools amplify the way students think about mathematics and allow them to perform 

mathematics more efficiently, while other tools reorganize the way students fundamentally think 

about mathematics. 

One tool that has grown in popularity in the mathematics classroom is the Dynamic 

Geometry Environment (DGE). Dynamic geometry environments are specialized computer 

software that allow the user to create geometric constructions virtually, using a set of digital 

tools. Rather than having students use the traditional compass and straightedge, DGEs allow 

students to do all the same moves within a digital environment. At their core, DGEs provide 

tools that range from drawing circles (a compass) and straight lines (a straightedge) to more 

advanced tools that automatically construct perpendicular bisectors or construct circles given 

three points. Yet, those tools by themselves are just an amplification of what can be done by 

hand. Where DGEs shine is their ability to do things that are simply impossible by hand. For 

instance, DGEs allow students to measure any part of a figure quickly and accurately. While 

students could measure by hand, it is impossible to match the accuracy a computer is able to 
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produce. Perhaps the biggest change of using DGEs is not simply that the computer is providing 

exceedingly accurate figures, but that these figures are dynamic. When using paper and pencil, 

the figures created are static and unchanging. DGEs, on the other hand, create a dynamic figure 

that can be modified (dragged) in real time. Because of this, the software can be used to discover, 

test, or even refute various relationships among the parts of the construction (Hadas et al., 2000). 

This allows DGEs to fundamentally reorganize the way we think about doing geometry. This 

advantage is one reason that DGEs are specifically suggested within the Common Core State 

Standards for Mathematics (2010) as a tool to use in mathematics classrooms.  

Dynamic Geometry Environments 

 Dynamic Geometry Environments have been the focus of much research in the 

mathematics education community. Jones (2002) identified three main strands of research into 

the area of DGEs. The first strand is how students interact with the software. This can mostly be 

broken into two main categories. Some researchers look at the different ways that students use 

the measurement tool (Olivero & Robutti, 2007). Other researchers study how students interact 

with the dragging tools (Hölzl, 1996; Lopez-Real & Leung, 2006). The second strand identified 

by Jones is using DGEs to understand geometric concepts. For instance, researchers have looked 

at DGEs as a tool to learn about non-Euclidean geometries (Guven & Karatas, 2009; Hollebrands 

et al., 2010) or as a way to study geometric transformations (Denton, 2017). The third strand 

identified by Jones is how DGEs can be used to help students grasp the ideas of proof. For 

example, Leung & Lopez-Real (2002) showed how DGEs can be used to help students 

understand the role of contradiction in proof. Additionally, Mariotti (2012) shows how DGEs 

can be used to help students understand the structure and nature of theorems by making use of 

the dependencies that arise with DGEs. A decade later, Jones (2012) updated his original three 
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themes by adding three emerging themes including research into how learners interact with pre-

constructed DGE files, research into the challenges faced by teachers when learning DGEs, and 

research into the new developments within the software. 

Euclidean and Non-Euclidean Geometry 

 Students are exposed to geometry at all age levels. The Common Core State Standards 

for Mathematics (2010) devotes an entire domain to geometry, though most of this domain deals 

with what is commonly known as Euclidean geometry. Euclidean geometry is defined primarily 

by an axiom stating that given a line and a point, 𝑃, not on the line, there is a single parallel line 

through 𝑃 parallel to the original line (see Figure 1.1). In layman’s terms, this axiom defines a 

‘flat’ geometry - the geometry studied by Euclid around 300 BC when he published The 

Elements. The importance of this geometry cannot be overstated, and we continue to teach it in 

primary and secondary education. And yet, despite its importance and relevance, mathematicians 

came to realize that not all geometry is ‘Euclidean’. For instance, trying to describe the geometry 

of the Earth, an approximate sphere, proved impossible using Euclidean geometry. The basic 

axioms of Euclidean geometry no longer applied. On a sphere, the defining axiom of having 

exactly one parallel fails as there are no parallel lines on a sphere. All lines (defined as great 

circles) intersect (see Figure 1.1). This discrepancy eventually led to the development of non-

Euclidean geometries such as elliptic geometry (positive curvature such as the surface of a 

sphere) and hyperbolic geometry (negative curvature such as the curvature of sea coral). 

While most high school geometry curriculums cover Euclidean geometry in great detail, 

non-Euclidean geometries are noticeably missing (CCSSI, 2010). It is typically not until 

advanced geometry courses at the collegiate level that students are rigorously introduced to non-

Euclidean geometries. These courses tend to be theoretical math courses with a strong reliance 
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on proof. There is, of course, good reason for waiting to study non-Euclidean geometries until 

the post-secondary level. Non-Euclidean geometries use alternate axiomatic systems that 

students often struggle to understand. In the van Hiele model of geometric reasoning, non-

Euclidean geometries are at the very highest level (van Hiele, 1986). That is not to say students 

cannot study these alternate geometries in high school, but it is not commonplace. 

Whether in a high school class or in the post-secondary classroom, tools have been 

developed to help mathematicians and students study non-Euclidean geometries. For elliptical 

geometry, Lénárt introduced a toolset that allows geometers to do straightedge and compass 

constructions directly on the surface of a physical sphere (2003). This provides a direct non-

Euclidean analogue of the traditional straightedge and compass. For hyperbolic geometry, no 

such tools exist. In terms of physical models, one possible suggestion for hyperbolic geometry 

put forth by Taimiņa (2009) is the use of crocheted corals. But this crocheted model brings about 

its own set of difficulties as you cannot easily draw on the surface of crochet. Instead of physical 

models for hyperbolic geometry, most mathematicians tend to project the geometry onto flat 

surfaces. In so doing, one must either lose the appearance of straight lines (e.g. the Poincaré 

model) or lose the appearance of right angles (e.g. the Klein model), neither of which is ideal. 

Figure 1.1: 

Lines in Euclidean and non-Euclidean Geometry 

 

                  𝑃 

 

 

 

  Single Parallel in Euclidean Geometry               No Parallels in Elliptic Geometry 
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These projections may mathematically work as models, but they are exceedingly challenging for 

students to use and understand. When lines are no longer straight and angles are distorted, it is 

difficult to gain an intuitive sense of things. 

This difficulty is where DGEs can help. In their early days, DGEs were created 

specifically to model Euclidean geometry. Cabri Geometry (J. M. Laborde & Bellemain, 1995) 

and Geometer’s Sketchpad (Jackiw, 2001), two of the earliest pieces of software, are still used in 

some schools. They have now been joined by the newer software, GeoGebra, a free and open 

source piece of software that is gaining traction (Jones, 2002). All three of these pieces of 

software focus on Euclidean geometry - the main type of geometry taught in primary and 

secondary education. In contrast, Geometry Explorer is a newer DGE that allows students to 

explore both Euclidean and non-Euclidean geometries with the same interface and toolset 

(Hvidsten, 2015). That is, students can perform the same style of virtual straightedge and 

compass constructions they perform in Euclidean geometry, but with Geometry Explorer they 

can do those constructions in either elliptic or hyperbolic geometry. 

Proof and Argumentation 

In addition to being introduced to non-Euclidean geometries, undergraduate mathematics 

students are introduced to the idea of formal proof and argumentation. While proof and 

argumentation is typically presented in high school geometry courses as two-column proofs 

(CCSSI, 2010; Herbst, 2002), at the undergraduate level students begin the transition to 

paragraph style proofs. This transition is known to be difficult for students (Moore, 1994; Pajela 

et al., 2020; Weber, 2002). Pajela et al. (2020) showed how students, even after taking an 

introduction to proofs class, struggle with not just the mathematical content being proved, but 

also the structure of proof itself. It is because of this difficulty that much research has been done 



 

6 

into strategies designed to help students understand mathematical proof (e.g. Azrou & Khelladi, 

2019; Laamena et al., 2018; Morrow, 2004). 

Pajela et al. (2020) emphasized the importance of “sense-making” activities within the 

proving process. For instance, Pajela et al. (2020) showed how students considered similar, yet 

simpler activities or they created examples to explain things. Laamena (2018) also shows how 

examples are important to students as they can be used for exploration. These sense-making 

activities are important for understanding, but they do not always lead to proof. Indeed, as Azrou 

and Khelladi (2019) show, students struggle transitioning from the exploratory (sense-making) 

stage to the formal proof stage. Still, these sense making activities are an important part of the 

proving process. One such sense-making activity is the use of DGEs. As such, proof and DGEs 

have a long history of being studied in the literature (e.g. Kmetová et al., 2019; Mariotti, 2012; 

Unal & Hollebrands, 2021). As students in undergraduate mathematics begin their study of non-

Euclidean geometries, the use of DGEs as a tool to assist with proof has also been studied (e.g. 

Guven & Karatas, 2009; Hollebrands et al., 2010). 

Confidence When Using DGEs 

 As has been stated, proof in mathematics is a struggle for students (Moore, 1994). While 

DGEs have been shown to provide confidence for students in some situations (Guven & Karatas, 

2009; Hollebrands et al., 2010), when working on proof related activities, students can express 

uncertainty about their mathematical ability or about the claims they are making. These issues 

can largely be classified under the topic of confidence – though confidence can have multiple 

meanings. At times, confidence can refer to one’s self-efficacy, a students’ belief in their ability 

to perform the task to produce specified outcomes (Bandura, 1997). Generally, self-efficacy has 

been interpreted to mean a general sense of one’s ability, though some researchers such as 



 

7 

Parajes (1996) lament this generalized view of self-efficacy. Pajares (1996) writes that much 

educational literature “reflect[s] global or generalized attitudes about capabilities bearing slight 

or no resemblance to the criterial task with which they are compared” (p. 547). That is, while a 

student may indeed have a general mathematical self-efficacy, their belief in their ability to 

perform a specific task may relate to any number of current factors. For instance, a student may 

have a positive view of their ability to do mathematics until they are faced with doing a formal 

proof or a statistical analysis. Doing algebraic manipulation is different than doing logical 

deductions which is different than doing statistical analysis.  

 An alternative view of confidence is that of confidence as conviction (Segal, 1999). 

When students are working on proof related activities, they are often expected to make a 

conjecture and then justify that conjecture. When they do so, they do so with a certain amount of 

conviction – a sense their answer is correct (or incorrect). This view of confidence is not so much 

concerned about one’s overall mathematical ability, but about the specific task at hand and 

confidence that the claim being made is correct. This interpretation of confidence can be found 

within existing literature related to DGE use. For instance, when completing certain geometric 

tasks, Hollebrands et al. (2010) showed that DGEs can give students enough confidence in their 

claims they no longer feel the need to do deductive proof. Olivero & Robutti (2007) 

demonstrated instances where DGE gave students enough confidence the students dismissed 

valid proofs in favor of empirical evidence. The importance and role of deduction inside the 

math classroom can always be debated (e.g. Weber & Mejia-Ramos, 2015), but it is nevertheless 

important to understand how DGEs may affect the ways in which students gain confidence. Do 

students have confidence in their answer because of empirical methods, deductive methods, 

because an authority told them it was correct, or for a variety of other reasons?  
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Purpose 

One of the goals of geometry courses is to introduce students to proof (CCSSI, 2010). In 

high school geometry classrooms, that means proofs within the realm of Euclidean geometry. In 

collegiate classrooms, this can additionally mean proofs in non-Euclidean geometries. It is well 

documented that students struggle with proof in mathematics classrooms at all levels (e.g. 

Mariotti, 2012; Moore, 1994). Teachers are constantly looking for new tools and techniques to 

help their students create and understand proofs. While geometric constructions have historically 

been, and continue to be, an avenue to help understand proof, dynamic geometry environments 

are being explored to see how they can further students understanding of proof and deductive 

reasoning (Hollebrands, 2007; Jones, 2012). 

The use of non-Euclidean geometry at the collegiate level introduces students to 

geometric models with which they are typically unfamiliar. Taking students out of Euclidean 

geometry and having them explore geometry on a sphere or in a hyperbolic plane removes the 

intuition they have learned from living in a locally Euclidean world. Suddenly, the interior angles 

of triangles no longer sum to 180 degrees and rectangles no longer exist. Because of their lack of 

intuition about non-Euclidean geometry, students will often qualify the claims they make and 

rely heavily on software to give them confidence (Guven & Karatas, 2009; Hollebrands et al., 

2010). In short, by removing students from the familiarity of Euclidean geometry, student 

confidence when making mathematical claims in non-Euclidean geometry appears to be affected. 

 Geometry Explorer gives students a multitude of tools to use in non-Euclidean geometry 

that simply do not exist or are extremely cumbersome to use without software. While there have 

been studies dealing with non-Euclidean geometries and DGEs (e.g. Hollebrands et al., 2010), 

there is still much research to be done about what role DGEs play in student understanding and 
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confidence when exploring non-Euclidean geometries. This dissertation is designed to 

investigate how the use of DGEs affect students’ confidence when working both in Euclidean 

and non-Euclidean geometries. It will investigate how students are using specific features of 

DGEs such as dragging and measurement, and how those uses may directly interact with student 

confidence. It will also include a focus on the justifications students are using when making 

claims. Specifically, this research will attempt to answer the following four research questions. 

Research Questions 

1. What are the features of DGEs that college geometry students use when making 

mathematical claims while completing DGE related tasks in Euclidean and hyperbolic 

geometry? 

2. What are the justifications college geometry students use when making mathematical 

claims while completing DGE related tasks in Euclidean and hyperbolic geometry? 

3. How do college geometry students self-report their confidence when making mathematical 

claims while completing DGE related tasks in Euclidean and hyperbolic geometry? 

4. What are the relationships among the features of DGEs, the justifications students are 

making, and their confidence in making mathematical claims while completing DGE 

related tasks in Euclidean and hyperbolic geometry? 

The next chapter will provide a literature review covering DGEs, proof, justifications, 

and confidence as they will relate to the research questions. Chapter 3 will explain the design of 

the study and how participants were chosen. Chapter 4 will give detailed summaries of student 

activity as they complete two series of tasks. Chapter 5 will then give the results of the study 

with a focus both on the overarching trends among the students as well as a focus on individual 

student behavior. Chapter 6 will be a discussion of the results followed lastly by a concluding 
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chapter that will explore the implications and limitations of the study, as well as future directions 

for research.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter will outline several areas of research that are significant for understanding 

the purpose and objectives of this dissertation. The first area to be covered will be the use of 

DGEs, with a focus on their unique tools. The second area of research will focus on student 

proof schemes and justifications. The third area of research will focus on student confidence and 

what it means to be convinced of a claim. 

Dynamic Geometry Environments 

During the 1990s, as computers became more widespread in schools, more math 

classrooms were beginning to incorporate Dynamic Geometry Environments (DGEs) into their 

classrooms. Two of the more popular DGEs of the time were Geometers Sketchpad (Jackiw, 

2001) and Cabri Geometry (J. M. Laborde & Bellemain, 1995). Over the next two decades as the 

importance of DGE was quickly recognized, the number of DGEs on the market expanded 

greatly and research into how best to use DGEs quickly became an important focus of 

mathematics education research. 

Researchers have identified numerous advantages of using DGE within the classroom. 

These include increased student interest, ability to create complex constructions, and DGE’s 

ability to help students transition from description to explanation. Numerous studies have shown 

that students tend to have higher interest in using DGE than traditional paper and pencil 

constructions (Barcelos et al., 2011; Pandiscio, 2002).  Students have said using a DGE is “more 

interesting” and “more pleasant” (Barcelos et al., 2011, p. 260). Pre-service teachers have 

reported that DGE generates greater student interest and that even if students are struggling with 

an activity or trying to prove a conjecture, they are more willing to use a DGE (Pandiscio, 2002). 

DGEs also allow students to create and use much more complex constructions than they 



 

12 

otherwise would be able to by hand. In Euclidean geometry, students can use built-in 

construction tools as a time saving feature. Most modern DGEs have tools built in that allow 

students to create perpendiculars, midpoints, bisectors, etc. with the click of a button. Some 

modern DGEs also allow students to create their own custom tools (macros) to record 

construction sequences to use in the future (Pratt & Ainley, 1997). Lastly, DGEs can assist 

students in the transition from description to explanation. As Habre (2009) wrote, DGEs can 

“bring together the construction process and the verification, thus leading to a formal 

proof/explanation” (p. 163). Through well thought out activities, students can discover 

relationships that are difficult to see when the geometry is static. 

Because of the advantages DGEs have to offer, much research has been carried out 

regarding their use within mathematics education. In surveys of research on Dynamic Geometry 

Environments, Jones (2002, 2012) initially identified three strands of research into DGEs, later 

expanding these three strands into six. Jones’s (2002) original three strands included how 

students interacted with DGEs, how DGEs helped students understand geometry concepts, and 

how DGEs helped students to understand the concepts of proof. Jones (2012) later added three 

emerging themes, including research into how learners interact with pre-constructed DGE files, 

research into how teachers collaborate with researchers to learn how to use DGEs, and research 

into the new developments within DGEs. Many of these themes are also touched upon by 

Laborde et al. (2006) in their more general review of all geometric software. As an example, in 

connecting the theme of how students interact with DGEs and how they understand proof, 

Laborde et al. (2006) discuss the use of the drag feature and its connection to the idea of 

geometric dependencies. 
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Two important aspects of DGE use, foundational to all areas of research, are the 

differences between drawing and figures, as well as the theoretical differences between the 

geometry of the DGE and theoretical geometry. For the first, Laborde (1993) highlights the 

differences between a drawing and a figure. A drawing is a physical representation of a 

geometrical object. A student may draw a square with approximately right angles and equal 

segments, but there is an understanding that it is not a theoretical square. Even in a DGE, a 

student may draw a square and use the measurement tool to ensure the sides and angles are 

congruent, but it is still a physical (albeit digital) representation of a theoretical square. Figures, 

on the other hand, refer to the theoretical object. When a student constructs a right angle with a 

straightedge and compass (digitally or on paper), there is an understanding that the picture they 

see is a drawing, but by using a straightedge and compass, they are representing the theoretical 

figure. 

 It is also important to highlight that geometry within a DGE is not a strict representation 

of the purely theoretical geometry it is representing. Jones (2000) underscores some of these 

differences by emphasizing how segments and angles can have orientation depending on the 

order the vertices were created. Angle measurements are a common issue for students as the 

order in which the students click the three defining points for the angle will give the student 

either the angle they are seeking or 360 degrees minus the angle they are seeking. Measurement 

issues can occur as rounding errors or screen resolution can prevent accuracy (Olivero & 

Robutti, 2007). Screens only have so many pixels compared to the theoretically infinite number 

of points on the Euclidean plane. 

 Common to all DGEs are the dragging tool and the measurement tools. The dragging tool 

is what gives dynamic geometry environments their name. Students can drag their figures and 



 

14 

see the relationships that occur within those figures. Additionally, measurement has been added 

to modern DGEs to aid students in understanding their figures. With the click of a button, 

students can measure any angle or segment on their screen. These two features have 

fundamentally changed how students can interact with geometry. Understandably, much research 

has been carried out on these two tools. 

Dragging Tool 

The ability to drag points and see how these points affect other parts of a figure has been 

studied extensively in the literature (e.g. Baccaglini-Frank & Mariotti, 2010; Lopez-Real & 

Leung, 2006). Laborde et al. (2006) specifically list it as one of their strands of research into 

DGEs. This is a feature that simply cannot be done with paper and pencil. It allows students to 

see relationships, to generate infinite variations of a figure, to find the loci of figures, to trace 

objects, and more. One of the more immediate uses of the dragging tool is students’ ability to use 

dragging to test the robustness of a construction. Geometric constructions are a staple of the 

geometry classroom. When completing geometric constructions with paper and pencil, 

constructions can often appear correct when they may contain flaws. When switching to DGEs, 

however, the dragging ability gives the user an immediate way to test whether the figure was 

constructed correctly. By dragging parts of the figure, the user can test whether a right angle is 

properly constructed to 90 degrees or just happens to look close to 90 degrees. The developers of 

CARMetal (Hakenholz et al., 2019), a relatively unknown DGE, recognized the need to test the 

robustness of geometric figures and included a novel ‘Monkey’ button that ‘shakes’ the figure by 

automatically and randomly dragging the independent points of the construction. 

Moving beyond the basic ability to test the correctness of a construction, Baccaglini-

Frank and Mariotti (2010) identified four ways that students use the drag feature of a DGE when 
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doing construction based activities. The first of these four ways is wandering (random) dragging. 

Students using this method are dragging parts of their construction while looking for interesting 

features and relationships that may exist in their construction. Students in this modality are 

operating in a conjecturing mode. The second type of dragging is maintaining dragging where 

students drag a point along a perceived locus to test and see if the construction holds its 

properties. At this point, students are moving from conjecturing into testing a hypothesis. The 

third dragging modality is trace dragging which is when a student drags with the trace turned on 

to identify a locus by having it literally drawn (traced) on the screen. A student at this point is 

still in the conjecturing phase and may suspect a locus but may not know specifically what the 

locus is. Lastly, students can employ test dragging. If a student is convinced of a conjecture, they 

can drag to justify that a certain property holds.  

Along with the dragging modalities, Mariotti (2012) also argues that dragging can serve 

an important function in teaching students about the nature of mathematical theorems. In a DGE, 

constructions and figures are built using dependencies. For instance, when two lines cross, a 

point may be added at their intersection. This point is now dependent on the two lines and cannot 

move independently. To move the point, the two lines must be moved as they are the 

independent objects. As the construction becomes more complex, the user must keep track of 

how these dependencies are layered. Mariotti (2012) suggests that this idea of dependency can be 

used to help students develop an understanding of what a theorem is. Independent points (or 

lines) become the premises of an argument, and dependent points (or lines) serve as the 

conclusion. Just as dragging independent points changes the figures, by changing the premises 

of an argument, the conclusions may or may not be valid anymore. By having students create 
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dynamic figures with independent and dependent points, she showed students were able to better 

understand the principles of premises and conclusions. 

Measurement Tools 

A second major feature of DGEs is the measurement tool. The measurement tool is 

typically two seperate tools that allow students to measure lengths and angles. Some DGEs even 

have measurement tools that can check specifically for parallelism and congruency. While 

students can make measurements using paper, pencil, and a ruler, the ease and accuracy with 

which the software can do it makes this tool markedly different than just using a ruler. When 

students are working with paper and pencil, measurements are always approximated. For 

instance, if a student incorrectly constructs a square but is at least close to a square, they may still 

measure with a ruler and think they have been successful. Any error is easily attributed to the 

inherent impreciseness of the ruler and compass. In DGEs, however, when students measure, the 

software will always give a reliable measurement. Mistakes cannot easily be ignored. 

That is not to say that measurement within DGEs does not present its own potential 

issues. In Figure 2.1, we see a right triangle that has been constructed and measured in Geometry 

Explorer. If we attempt the Pythagorean Theorem, we get AB̅̅ ̅̅ 2 + AC̅̅̅̅ 2 = 5.362 + 2.862 =

36.9092 and BC̅̅̅̅ 2 = 6.082 = 36.9664. Note that these values are not the same when they should 

be. Measurement in DGEs is dependent on a multitude of factors. In this case, rounding is 

causing problems as Geometry Explorer is rounding to two decimals. While Geometry Explorer 

has the option for more decimals, it defaults to two. There is also the issue that the pixelated 

screen is not the equivalent of a piece of paper. Geometric points can only be dragged to the 

physical points on a screen. This creates a mismatch between the theoretical and the physical that 



 

17 

different DGEs handle in various ways. With that in mind, teachers need instruct their students 

that rounding errors and screen resolution affect the measurement tools. 

Both Jones (2002, 2012), in his surveys of DGEs, and Laborde et al. (2006), in their 

literature review of teaching with geometry software, failed to mention the measurement tool as 

an area of research involving DGEs. Yet, there is research being done on the measurement tool. 

Specifically, a study by Olivero and Robutti (2007) gives a basic framework for how students 

use the measurement tool. Using categories reminiscent of Baccaglini-Frank and Mariotti (2010), 

Olivero and Robutti (2007) identified various modalities of measurement. The first of these is 

wandering measurement which is when students take measurements of various components of a 

figure until an interesting property appears to them. The second modality is guided measuring. In 

this modality, students are using the tools to turn their construction into a given image. For 

instance, students may be trying to create a parallelogram, and so they measure angles, and then 

use the measurements to guide drag an otherwise generic quadrilateral into a parallelogram. The 

third modality is perceptual measuring where students measure elements of the figure that they 

recognize may be important. Perhaps students think they see matching angles, or they think they 

see that segments are congruent. These first three categories all exist during the conjecturing 

stage. Students are looking for relationships and trying to form conjectures. The fourth modality 

Figure 2.1: 

Example of a Right Triangle in Geometry Explorer 
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is validation measuring where students already have a conjecture and are returning to verify that 

their claim is true. Lastly, there is proof measuring, where students already convinced of the truth 

take measurements to help with the development of a proof of their claim. 

We see that there are four categories of dragging (Baccaglini-Frank & Mariotti, 2010) 

and five categories of measurement (Olivero & Robutti, 2007) that are outlined in the research. 

Hollebrands (2007) adds to this by defining two broad categories of strategies that can be applied 

to both measurement and dragging. Hollebrands (2007) differentiates between reactive and 

proactive strategies that students use. Reactive strategies refer to student use of DGEs when they 

do not quite know what to expect. Students are not “able to fully anticipate what will result in the 

action they perform prior to performing it” (Hollebrands, 2007, p. 184). Proactive strategies refer 

to strategies where students are expecting certain outcomes from the software. For instance, 

students may take validation measurements of angles because they want to confirm two angles 

are congruent. The various measurement and dragging modalities will fall into either of these 

two categories. For instance, wandering dragging, while primarily a reactive strategy, also has 

the potential to be used as a proactive strategy. A student who has formed a conjecture might 

start wandering dragging looking for an exception to the conjecture they formed. The student 

may not necessarily know what the exception is, but they know they should look for one and 

their wandering dragging is being done proactively.  

In summary, DGE has been shown to have many advantages within geometry 

classrooms. While there are numerous avenues of research into DGE use (Jones, 2002, 2012), 

this dissertation will focus on tool usage, specifically,  the use of dragging tools (Baccaglini-

Frank & Mariotti, 2010) and measurement tools (Olivero & Robutti, 2007). The classification 
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schemes presented in those studies will inform the framework for how student tool use is 

classified throughout this dissertation. 

Proof and Justification 

Mathematical proof is the process of using deductive arguments to connect a hypothesis 

to a conclusion. This definition of proof refers to using definitions, previous theorems, and logic 

to arrive at a conclusion. Proofs are traditionally introduced to students during their geometry 

course in high school, albeit in the style of a two-column proof (CCSSI, 2010; Herbst, 2002). At 

the post-secondary level, students pursuing the study of mathematics make the transition to the 

paragraph style proof of the professional mathematician (Moore, 1994). As students make this 

transition, proof remains a struggle for many students (Morrow, 2004; Senk, 1989; Weber, 

2002).  

Selden and Selden (2017) identified four related concepts in the literature about proof: 

proof comprehension, proof construction, proof validation, and proof evaluation. At the most 

basic level is proof comprehension. When students are presented with a proof, can they read the 

proof and understand what is being said? This involves knowing the key terms and definitions as 

well as understanding the structure of how proofs work. There is also the concept of proof 

construction. Can students successfully write a mathematically valid proof? The goal of many 

mathematics courses is to help students learn to deductively argue the truth of either a conjecture 

they have made themselves or a statement given to them by their instructor. The third related 

concept is that of proof validation. Students may be able to understand a proof, but can they 

verify that a given proof is correct? Rather than checking the “surface features” (Selden & 

Selden, 2017, p. 340) of the proof, mathematics educators are hoping students understand the 

actual argument being made. Last is the concept of proof evaluation. At this stage, proofs are 
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being evaluated, not for correctness, but for clarity, elegance, conciseness. This current study 

will be focused both on proof construction and on proof validation. It will focus on how students 

are justifying their claims (proof construction) as well as how students understand a proof that 

has been given to them (proof validation). 

Proof Schemes 

One of the challenges that arises as instructors teach proof and deductive argumentation 

is that students often hold to a variety of proof schemes (Harel & Sowder, 1998). A student’s 

proof scheme is “what constitutes ascertaining and persuading for that person” (Harel & Sowder, 

1998, p. 244). That is, a proof scheme is the method by which a student is persuaded of the truth 

of a statement. Harel and Sowder (1998) identified three main proof schemes students use: 

external schemes, empirical schemes, and analytical schemes. Each of these main branches are 

then broken into smaller subcategories. Harel and Sowder’s work, of course, is not the only way 

to categorize student thinking during the proof process. The same year Harel and Sowder 

published their proof schemes, DeVilliers (1998) offered a similar break down of student proof 

schemes that focused on positive versus negative justifications. However, for this study, the 

focus will be on Harel and Sowder’s proof schemes as their conceptualizations are more 

thoroughly studied in the literature (Hadas et al., 2000; Weber et al., 2014). 

In looking at the proof schemes of Harel and Sowder (1998), external schemes refer to 

students looking to outside sources like the teacher, the book, or even symbolic manipulation to 

give them a sense of certainty. With this conception, a claim is not true unless someone or 

something tells the student it is true. It is worth noting that Harel and Sowder (1998) include 

symbolic manipulation as an external proof scheme because performing a symbolic manipulation 

correctly can give students a sense of truth even if the students lack the understanding of what is 
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being manipulated. It is the act of doing the manipulation that imparts a truthfulness to the claim 

being justified. Empirical proof schemes refer to students believing that inductive arguments or 

perceptual arguments (based on how figures, symbols, or numbers may initially appear) can be 

used to convey the truth of a claim. When working in this proof scheme, students believe that a 

few specific examples of a property is enough to then be generalized to all similar things. Lastly, 

analytic proof schemes refer either to axiomatic proof schemes or transformational proof 

schemes. Axiomatic proof schemes refer to a student believing that formal axiomatic proofs are 

essential for the truth of a statement. Transformational proof schemes refer to when students can 

generalize an example to a broader class by using established relationships they know about the 

example. They are not generalizing based on measurements, but deductively based on the 

relationships that exist and how those relationships can transform objects into each other. Lastly, 

it is worth mentioning that Harel and Sowder (1998) recognize that often there is overlap among 

these schemes and that students can quickly move from one scheme to another. 

Harel and Sowder (1998) are careful not to present proof schemes as a hierarchy. That is, 

they do no present one proof scheme as necessarily better than any other. Context often plays an 

important role in what type of proof schemes students use. More recently, Weber et al. (2014) 

took a critical look at proof schemes and argued that it may not always be a correct goal to push 

students towards deductive proof in every situation. Historically, pushing students toward 

deductive reasoning has been a goal of mathematics instruction. This is one of the reasons that 

deduction is the highest level on the VanHiele levels of geometric reasoning (Senk, 1989). Part 

of the reason for this is the prevailing belief that all mathematicians operate under an axiomatic 

proof scheme and only accept deductive proof as convincing. Yet, Weber et al. (2014) present 

the case that, contrary to what many assume, practicing mathematicians often rely on proof 
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schemes other than just deductive argument. For instance, Weber et al. (2014) argue that 

practicing mathematicians often rely on proof by authority whenever they read new articles in 

mathematics journals. The authors argue that practicing mathematicians do not have the time, 

nor the interest, to always double check every result, and often become convinced based on the 

reputation of the author or the publication. Weber et al. (2014) are not making this argument to 

downplay the importance of deductive argument, but simply to point out that context is 

important when looking at proof schemes. There are times and places where empirical evidence 

and authority may be all that is needed and desired. 

Justifications 

At this point, there is a need to differentiate between the proof scheme under which a 

student is operating and the justification a student uses when supporting a claim. These two 

concepts do not necessarily have to coincide. Justifications do not always have to be a formal 

proof. Segal (1999) approaches this issue by highlighting the difference between conviction and 

validity. Conviction is of an individual nature. It operates similarly to a proof scheme and is 

concerned with what it takes for the individual to be convinced of the truth of a claim. If the 

student is operating under an empirical proof scheme, a few examples demonstrating the claim 

may convince that student. In short, a justification can be any evidence (empirical, deductive, or 

authoritative) that convinces a student of the truth of a claim. Validity refers to the community 

aspect of what mathematicians or mathematics educators consider correct justifications. This 

generally refers to deductive justifications or a full proof of the claim being made. The same 

student who is operating with an empirical proof scheme and is convinced by examples may 

understand that inductive justifications do not fit the formal requirement a teacher requires. Thus, 

even though a student is operating with an empirical proof scheme, they may still go on to 
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provide deductive justifications as they know that those justifications are what constitutes 

validity for the teacher. Because of this difference between conviction and validity, a given 

justification may or may not always match the proof scheme under which the student is 

operating. 

It is also the case that justifications and proof schemes can switch from situation to 

situation (Harel & Sowder, 1998). A student’s familiarity with a topic as well as the setting may 

have a strong influence on the type of proof schemes and justifications a student uses. That is, a 

student may choose to give deductive justifications within a geometry setting as they have had 

experience doing proofs in a previous course (e.g. high school geometry). That same student 

might also choose to give empirical evidence for a claim in number theory as they can see the 

claim is true for the first few values they check. Likewise, a student may give different 

justifications based on whether they are working on something for a course or investigating 

something on their own time. In summary, students will approach proof from different places 

and with different ideas of what proof means to them. 

In summary, proof and deductive arguments are a large part of mathematics education. 

Students operate and think about deductive argumentation using internal personal proof schemes 

but are often asked to give external justifications for why claims are true. These justifications are 

of interest as they can change from situation to situation depending on numerous factors, 

including expectations, previous experience, and internal proof schemes. As such, this research 

will investigate how students are choosing to justify their claims when using DGE. 

Confidence 

Confidence is a term that can take on many meanings. People can express confidence in 

themselves. They may be confident in a certain area of study or confident in their job. People can 
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express confidence in skills they possess. They can be confident in their ability to shoot a free 

throw or factor a quadratic equation. Confidence can also refer to one’s belief in something. A 

person can express confidence that something is true. Perhaps someone is confident it will rain 

tomorrow or confident that the Reimann hypothesis is true. Different aspects of confidence have 

been studied in the existing literature. 

Bandura (1997) coined the term self-efficacy. This refers to a person’s own judgements 

about their capabilities at a task. This is at times used interchangeably with the term self-

confidence. Bandura (1997) distinguished these concepts based on scope. Self-confidence refers 

to one’s overall confidence in themselves, where self-efficacy refers to one’s confidence in their 

ability at the task at hand. Yet even this smaller focus of self-efficacy is often not enough. 

Pajares (1996) argues that much mathematical education literature looking at self-efficacy is still 

too broadly focused. A student’s mathematical self-efficacy is still too broad as students’ 

confidence can change even from task to task within mathematics. A student may have strong 

self-efficacy with geometry, but weak self-efficacy within a calculus course. Or even within 

geometry, a student may have strong self-efficacy when working on discovering conjectures, but 

low self-efficacy when attempting to prove conjectures. 

Beyond this generalized view of confidence in oneself, the term confidence is also used 

to refer to ones’ belief in the truth of a statement. When students are asked how confident they 

are in an answer they just gave, or in a discovery they just made, they may express varying levels 

of confidence. This understanding of confidence is similar to the concept of conviction (Segal, 

1999). This is not a belief in oneself, but rather a belief about an external claim. Weber and 

Mejia-Ramos (2015) took a critical look at conviction and examined what it means for someone 

to have confidence (conviction) in a claim. As referenced earlier, a proof scheme may be how a 
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person becomes convinced of a claim, but it does not specifically say when a person becomes 

convinced of a claim. For some students operating under an empirical proof scheme, perhaps one 

example is enough to convince them. For others, perhaps three or five examples are needed for 

someone to be convinced. Likewise for students operating under an external proof scheme, they 

may be convinced of a claim because they saw an online video about the claim. Others, however, 

may want to read the claim in a book to be convinced. Perhaps not all types of authorities 

provide the same level of confidence (conviction) in a claim. 

Weber and Mejia-Ramos (2015) argue that the term ‘convinced’ contains an inherent 

ambiguity and should be broken into two categories. Specifically, they argue that mathematicians 

can be either absolutely or relatively convinced of a claim. Absolute conviction refers to when a 

person “has a stable psychological feeling of indubitability about that claim” (Weber & Mejia-

Ramos, 2015, p. 16). The authors give the example that they believe most mathematicians are 

absolutely convinced that 2 + 2 = 4. For the typical mathematician, there is no doubt this claim is 

true. 

In contrast, relative conviction refers to when the “subjective level of probability that one 

attributes to that claim being true exceeds a certain threshold to provide a warrant for some 

future actions” (Weber & Mejia-Ramos, 2015, p. 16). For instance, consider the four-color 

theorem. The initial proof was done in 1976 with the aid of a computer that evaluated a vast 

number of cases. This use of a computer, while relatively convincing, was not enough to 

absolutely convince the mathematical community (Gonthier, 2008). While many mathematicians 

believed the theorem to be true because they believed the software algorithms to be correctly 

implemented, there was still a hint of doubt until a formal proof without the aid of a computer 

could be accomplished. 



 

26 

In looking at proof schemes through the lens of absolute and relative certainty, Weber 

and Mejia-Ramos (2015) make the argument that students can operate within certain proof 

schemes while acknowledging that the proof scheme does not provide absolute conviction. 

Weber and Mejia-Ramos (2015) give an example of a student who operates within an empirical 

proof scheme and is convinced by such a scheme, but also acknowledges that there are 

potentially more convincing arguments available. In other words, Weber and Mejia-Ramos are 

claiming a student can make a mathematical claim using a proof scheme without being 

absolutely convinced of what they are claiming.  

Related to this concept of conviction is the distinction of who is being convinced. A 

student may be confident in a claim, and have justifications that correspond to their proof 

scheme, but still understand that the justifications they are giving are not mathematically valid 

justifications. That is, internally the student is convinced (conviction), but externally the 

justifications are not deemed valid. Segal (1999) clarifies this as the distinction between 

conviction and validity. In the previous example from Weber and Mejia-Ramos, the student with 

an empirical proof scheme is convinced by the empirical evidence but recognizes that the 

empirical evidence is not a valid mathematical proof. 

In summary, there seems to be two main ways confidence is used. A view of confidence 

based in self-efficacy (Bandura, 1997; Pajares, 1996) is confidence in oneself to perform certain 

tasks. A view of confidence based in conviction (Segal, 1999; Weber et al., 2014) is confidence 

in a claim that is being made. This study will mainly be looking at this second type of 

confidence. Students will be making claims, providing justifications for those claims, and then 

rating their confidence (conviction) in those claims. This confidence can come from several 

factors. These factors include the proof scheme under which they are operating (Harel & Sowder, 
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1998), their beliefs in their given justifications (Segal, 1999), the current situation in which they 

are working (Weber et al., 2014), and even their general mathematical self-efficacy (Bandura, 

1997). In short, there are many factors that can affect one’s confidence when making 

mathematical claims. For math educators, it is important to understand these factors so that 

supports can be put in place to give students confidence.  

Summary 

 This literature provides the background for the three research questions being asked. The 

first section examined the role of DGEs in the geometry classroom and the tool usage it affords. 

Specifically, it looked at two main tools – the dragging tool and the measurement tool. Both tools 

can affect the way students interact with geometry. Both these tools have been studied in the 

literature and have classifications for the different modalities in which students interact with the 

tools (Baccaglini-Frank & Mariotti, 2010; Olivero & Robutti, 2007). Additionally, research has 

been done showing that general tool usage within DGEs can be classified into proactive and 

reactive strategies (Hollebrands, 2007). This current research will build off this base to 

investigate how students are using these tools within DGEs. Euclidean and hyperbolic geometry 

behave differently, and this research will investigate if students use the tools the same in both 

geometries. This research will examine how students use the tools differently depending on the 

type of task they are given. For instance, tasks that focus on transformational geometry may 

generate different tool usage than tasks that focus on geometric constructions. Additionally, 

novel tasks may correspond to different tool usage than familiar tasks. 

 For the second question, this review discussed the proof schemes students hold when 

working in mathematics. Specifically, student proof schemes can be categorized into three broad 

categories of analytic, empirical, and external (Harel & Sowder, 1998). However, just because 
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students operate under a specific proof scheme does not necessarily mean their given 

justifications correspond to that proof scheme. That is, there is a difference between how a 

student is convinced internally of an argument, and the justifications they give externally for the 

sake of the teacher or their peers (Segal, 1999; Weber & Mejia-Ramos, 2015). Despite this 

distinction, the broad categorizations of proof schemes provide a framework for classifying the 

types of justifications students make. This research will explore what types of justifications (e.g. 

full/partial proof, inductive arguments, or appeals to authority) students give when completing 

tasks. Because students have more experience in Euclidean geometry than they do hyperbolic 

geometry, this research will examine if the justifications students provide are different in each 

geometry. Likewise, this research will also investigate how the justifications vary across 

different types of tasks. 

For the third research question, this review discussed the different interpretations of 

confidence. On one hand, confidence is often used to refer to a person’s self-efficacy (Bandura, 

1997; Pajares & Miller, 1994). On the other hand, confidence can refer to a person’s conviction 

in the truth of a statement (Segal, 1999; Weber & Mejia-Ramos, 2015). Research has shown that 

there are differences between being relatively convinced of a claim and absolutely convinced of 

a claim (Weber et al., 2014; Weber & Mejia-Ramos, 2015). When mathematicians or students 

make a claim, their confidence in that claim is on a scale and can be affected by many different 

factors. This research will investigate how confidence varies when working on a series of 

geometric tasks within two different geometries. It is expected that confidence in Euclidean 

geometry will be different than confidence in hyperbolic geometry. Confidence may also vary on 

different tasks. It is possible the nature of the tasks themselves may have an influence on the 

confidence of the students. 
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For the fourth research question, this study will explore the interactions between these 

three factors - tool usage, justifications, and confidence. For instance, we know student 

confidence can and will vary as students complete tasks. How do tool usage and types of 

justification affect that confidence? Are students more confident when they can provide 

numerous examples and make inductive justifications, or might having deductive justifications 

instill more confidence? As students are using DGEs, what role does the DGE play in those 

relationships? Hollebrands et al. (2010) and Guven and Karatas (2009) have both shown that 

students can gain confidence from the use of DGEs. But DGEs can provide confidence in 

multiple ways. DGEs can provide students with multiple examples leading to inductive 

arguments. DGEs can help students recognize relationships leading to deductive justifications. 

DGEs can also be a form of authority for students. 

Further, how are these relationships affected by the geometry in which a student is 

operating? Olivero and Robutti (2007) and Pandiscio (2002) both show instances of students 

dismissing deductive justifications because of evidence from a DGE. But this evidence is in 

Euclidean geometry where the evidence confirms pre-existing notions of how geometry behaves. 

In hyperbolic geometry, where geometry behaves in unanticipated ways, will students still give 

inductive justifications when the empirical evidence may appear to contract their pre-existing 

notions. Might the uncertainty prompt students to look for deductive justifications?  

Chapter 3 will provide a description of this study using the existing research to inform the 

study. Students will be given two different series of geometric tasks to complete within a DGE. 

As they complete these tasks, they will be making mathematical claims. As they make these 

claims, they will give justifications for their claims and rate their confidence in their claims. 

Additionally, the researcher will be observing their tool usage as they go about these tasks. 
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Narrative descriptions of this student activity will be presented in Chapter 4 focusing on pairs of 

students. Chapter 5 will present an analysis of the data focusing both on overarching trends 

among the students as well as individual observations about specific students and tasks. This will 

be followed by a discussion in Chapter 6, followed by the conclusions, limitations, and next 

plans in Chapter 7. 
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CHAPTER 3: METHODS 

 The purpose of this chapter is to describe the study. This chapter will start with a 

description of the site and the participants. A detailed account will also be given of the 

participants’ involvement in a previously taken geometry course. This will provide context about 

the experience students had in completing similar tasks, primarily in Euclidean and hyperbolic 

geometry. Following this will be a full description of the tasks the students were asked to 

complete and why those tasks were chosen. The data collection will then be described in detail, 

highlighting the procedures under which the data was collected. A section will then follow 

explaining the analysis of the data with subsections on each of the main factors of analysis. This 

study and its analysis should help to answer the following research questions: 

1. What are the features of DGEs that college geometry students are using when making 

mathematical claims while completing DGE related tasks in Euclidean and hyperbolic 

geometry? 

2. What are the justifications college geometry students are using when making mathematical 

claims while completing DGE related tasks in Euclidean and hyperbolic geometry? 

3. How do college geometry students self-report their confidence when making mathematical 

claims while completing DGE related tasks in Euclidean and hyperbolic geometry? 

4. What are the relationships among the features of DGEs, the justifications students are 

making, and their confidence in making mathematical claims while completing DGE 

related tasks in Euclidean and hyperbolic geometry? 

Site and Participants 

The participants for this study were ten students from a small liberal arts college in mid-

Michigan. Prior to this study, the researcher taught a course in Euclidean and non-Euclidean 
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geometry with thirteen students at this college. After the completion of the semester, a letter 

went out to the students of that class for volunteers to participate in this study. The students were 

told that participating in the study would involve working in pairs on geometry related tasks 

using a dynamic geometry environment (Geometry Explorer). The students in the class were also 

told the goal of the study was to better understand student justifications, student use of DGE 

features, and student confidence as students use DGEs. Lastly, the students were told that as 

compensation for participating in the study they would be gifted a $50 gift card. 

There are several reasons for choosing students at this college. First, the researcher had 

easy access to the students as the researcher had just finished teaching these students in a 

geometry course. Second, because of the familiarity with these students and the work they did 

for the course, the researcher had a general idea of what they did or did not know and their 

overall ability levels. This allowed the tasks to be tailored to these students in such a way that the 

tasks would be both familiar enough to be completed, but also present new challenges. Third, 

because these students had all taken the same geometry course, they were familiar with the DGE 

chosen for this research. These students used Geometry Explorer extensively throughout the 

semester working in both Euclidean and non-Euclidean geometry. 

The geometry course the students took was a mix of Euclidean and non-Euclidean 

geometry. Major topics included axiomatic systems, Euclidean geometry, constructions, analytic 

geometry, and non-Euclidean geometries. A weekly summary of the course can be found in 

Table 3.1. The coursework consisted of weekly homework sets with a focus on geometric proofs. 

Homework was completed individually, but students were encouraged to work on it in groups. 

Additionally, there were seven projects throughout the semester. These projects were done as 

partners and involved heavy DGE usage as well as writing short papers that explained what they 
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explored in the DGE for their project. Lastly, the students ended the course by working in pairs 

to present a geometric topic of interest to them that was not covered in the course. 

Even before the course, these students had many years of exposure to Euclidean 

geometry. In addition to their experience living in a locally Euclidean world, they all took high 

school geometry that focused primarily on Euclidean geometry. Hyperbolic geometry was less 

familiar to the students, having studied it for approximately three weeks during their college 

geometry course. Students were familiar with the axiomatic definition of hyperbolic geometry 

and had done some proofs and constructions in hyperbolic geometry. In general, this would not 

have been enough time in the geometry to gain an intuitive understanding of how hyperbolic 

geometry behaves. 

During the course, the students spent time doing standard constructions in Euclidean 

geometry, as well as specific constructions to help with more complicated proofs. They did a few 

constructions in hyperbolic geometry, but is was minimal. These students also spent time 

Table 3.1:    

    

Week-by-Week Summary of Students’ Geometry Course 

    

Week Topic 

Week 1 History of Geometry and Axiomatic Systems 

Week 2 Axiomatic Systems 

Week 3 Basics of Euclidean Geometry 

Week 4 Triangle Congruencies Theorems 

Week 5 Constructions and Constructability 

Week 6 Analytic and Vector Geometry 

Week 7 Intro to Transformational Geometry 

Week 8 Isometries and Transformations 

Week 9 Models of Non-Euclidean Geometry 

Week 10 Hyperbolic Geometry 

Week 11 Parallels, Omega Points, and Triangles 

Week 12 Hyperbolic Quadrilaterals 

Week 13 Fractal Geometry 

Week 14 Similarity and Dimension 

Week 15 Students Presentations on a Variety of Topics 

 

 

 
 



 

34 

studying Euclidean transformations. Specifically, as will relate to the first series of tasks, they 

studied translations, spending time in class and outside of class working with transformations 

both in Geometry Explorer and on paper doing proofs. The students had minimal experience 

doing translations in hyperbolic geometry. Their experience in translations in hyperbolic 

geometry was limited to a few proofs in their course that were dependent on translations. These 

proofs were done strictly on paper and the translations were sketched by hand as approximations.  

The targeted number of participants for this study was ten of the thirteen students in the 

geometry course. Of those thirteen students, exactly ten students volunteered to participate. A list 

of the ten students can be found in Table 3.2. These students were a mix of juniors and seniors, 

math majors and minors, and mostly teacher education students. The decision to partner students 

was made to foster communication between students so that their justifications were more easily 

identified (e.g. Hollebrands, 2007; Olivero & Robutti, 2007). That is, while students were 

encouraged to write justifications on their worksheets, it helped to have a verbal record that went 

into more detail than what they wrote. The students were paired based on previous experience 

working together throughout their geometry course. This gave the students familiarity with each 

other that encouraged conversation. 

Tasks 

 The students were asked to work in pairs to complete two series of tasks involving both 

Euclidean and hyperbolic geometry. The first series of tasks was to complete parallel transports 

in both Euclidean and hyperbolic geometry. This task was heavily focused on geometric 

transformations – how objects move within the geometry. The second series of tasks was a series 

of geometric constructions in both Euclidean and hyperbolic geometry. Each series of tasks was 
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broken into smaller pieces for the students. For these smaller pieces, the students were given a 

short task to complete within the DGE. They were then asked to make a claim, give a 

justification for their claim, rate their confidence in that claim, and provide a statement about 

what may have raised their confidence.  

 For these tasks, students were using a relatively new DGE called Geometry Explorer 

(Hvidsten, 2015). Geometry Explorer is a DGE that combines both Euclidean and non-Euclidean 

geometry into one single interface. Traditional DGEs such as Geometer’s Sketchpad (Jackiw, 

2001) and Cabri Geometry (J. M. Laborde & Bellemain, 1995) only focus on Euclidean 

geometry. Conversely, NonEuclid (Castellanos et al., 2009), which has been used for existing 

research (e.g. Hollebrands et al., 2010), is a DGE that focuses solely on non-Euclidean geometry. 

The advantage of Geometry Explorer is that it has multiple geometries built into it using the 

same interface. By having the same interface, students did not have to struggle to learn two 

pieces of software or try to remember which software does what. Within Geometry Explorer, the 

Table 3.2: 

 

List of Participants 

 

Student Junior/Senior Teacher Ed Major/Minor 

Ann Senior X Major 

Beth Senior X Major 

Carl Senior  Major 

Dan Junior X Minor 

Eve Senior X Major 

Fran Senior X Minor 

Gray Junior X Major 

Hal Senior X Major 

Ivy Senior X Minor 

John  Junior X Minor 

    

Note: Names have been changed for privacy reasons. 
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students completed the tasks both in both the Euclidean plane and the hyperbolic Poincaré disk. 

While Geometry Explorer supports multiple hyperbolic non-Euclidean models, including the 

Klein disc and the upper half-plane model, the students in this study were most familiar with the 

Poincaré disk.  

The decision to have two series of tasks was to provide multiple contexts in which the 

students could use the software and make justifications. The first series of tasks on parallel 

transports was heavily focused on geometric transformations. In particular, the focus was on 

translations. It was anticipated that this task would be routine in Euclidean geometry, but novel 

in hyperbolic geometry. As such, after students completed the parallel transport in Euclidean 

geometry, this series of tasks included a subtask asking students to predict what would happen in 

the hyperbolic case before they carried out the remainder of the task. This subtask was included 

to see how students would respond to making a conjecture without having the DGE readily 

available to them. Additionally, this series of tasks ended with a subtask asking students to read a 

proof. This subtask was unique in that students were validating a given proof. This subtask was 

included to see how students would respond to reading a proof of a conjecture they had just spent 

time exploring inductively. It was anticipated that many students would gloss over the proof and 

rely on the inductive justifications they had previously given.  

The second series of tasks was focused on traditional geometric construction. This series 

of tasks was included as it provided students a chance to make deductive justifications as they 

had commonly done throughout their geometry course. This series of tasks started with routine 

subtasks in Euclidean geometry, asking students to construct a regular triangle and quadrilateral. 

While it was expected that the construction would be completed correctly, it was anticipated that 

many students would forego the formal proof and instead use inductive justifications. After 
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completing the constructions in Euclidean geometry, the students were asked to complete the 

same constructions in hyperbolic geometry. This took a routine task and changed it to a non-

routine task. As such, it was anticipated that students would move from a more deductive 

approach in Euclidean geometry to a more inductive approach in hyperbolic geometry. 

In both series of tasks, the students worked in Euclidean and hyperbolic geometry. The 

students had more experience with Euclidean geometry and had an intuitive understanding of 

how Euclidean geometry behaves. On the other hand, the students had much less experience and 

minimal intuition regarding how hyperbolic geometry behaves. Because of these differences in 

experiences, it was anticipated that student confidence would decrease when working in 

hyperbolic geometry and that students would prefer to use inductive justifications. In both series 

of tasks, the students performed the tasks first in Euclidean geometry and then in hyperbolic 

geometry. This was done because performing the task in Euclidean geometry gave a baseline for 

how students would perform a routine task. I anticipated that most students would have a 

modicum of success in Euclidean geometry, that they would rate themselves with high 

confidence, that they would be more likely to use deductive justifications, and that their tool 

usage would be minimal. Repeating the same tasks, but in hyperbolic geometry, would then 

move students to a situation with which they had less familiarity. What was initially a routine 

task then become non-routine. 

The Parallel Transport Series of Tasks  

The first series of tasks examined parallel transport in both geometries. The students first 

completed a transport in Euclidean geometry. The first part of this task had students constructing 

a triangle of any configuration they wanted (acute, obtuse, etc.). They then added a segment 

protruding outward from vertex A of their triangle. Next, they were directed to transport, via the 
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translation tool, the segment from vertex 𝐴 to vertex 𝐵 (Figure 3.1). The students were then 

asked three questions: 

• What do you and your partner notice about the segment? 

• On a scale of 1 to 5, how confident are you in your response to the previous question? 

Why? 

• If you did not rate yourself a 5, what would it take to raise your confidence level to a 5? 

The first of these three questions is unique to this part of the task, while the second two follow-

up questions about confidence will be asked after every part of the task. In terms of the first 

question, the transported segment remains congruent and parallel to the original segment. It was 

anticipated that students would notice this and justify this either by using their knowledge of 

translations or by using the measurement tools within the software. 

The second part of this series of tasks had students complete the transport by transporting 

the segment around the triangle (Figure 3.1). Successful completion of this step resulted in a new 

segment (segment 𝐴𝐺̅̅ ̅̅ ) landing directly on top of the original segment (segment 𝐴𝐷̅̅ ̅̅ ). The 

students were then asked, “What do you and your partner notice about the final segment 

compared to the first segment?” This was followed up with the same two confidence questions as 

they saw previously. It was anticipated that students would notice the segments were coincident 

and justify it either purely visually or using their knowledge of how translations work. 

 For the third part, students were asked, “If we complete the same activity as before, but in 

hyperbolic geometry, what do you and your partner think will happen in terms of the final 

segment compared to the first segment?” This is the first of the conjecturing sub-tasks the 

students encountered. For this task, students were not able to use the DGE and were expected to 
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make arguments based on their knowledge of translations and hyperbolic geometry or based on 

the task they just completed. While students could not use the DGE, they did have paper and 

pencil available if they wanted to make sketches. Because of the switch to hyperbolic geometry, 

and because they no longer had access to the DGE, it was anticipated that confidence would 

decrease when students got to this sub-task. As is typical, the students were also asked the two 

follow-up questions about confidence. 

For the fourth part of the task, students were asked to complete the parallel transport in 

hyperbolic geometry (Figure 3.2). After completing the transport, students were asked, “What do 

you and your partner notice about the final segment compared to the first segment?” Again, this 

was followed by the two questions about confidence. As is noticeable in Figure 3.2, in 

hyperbolic geometry, the transported segment (segment 𝐴𝐺̅̅ ̅̅ ) will no longer be coincident with 

the original segment (segment 𝐴𝐷̅̅ ̅̅ ). The segments themselves are congruent with each other as 

they are translations, though the distances can appear distorted in hyperbolic geometry. While it 

was anticipated that students might argue deductively about segment lengths in Euclidean 

geometry, it was anticipated that students would measure these segments to test whether they 

stayed the same length. It was also anticipated that because of how hyperbolic geometry appears 

Figure 3.1: 

Euclidean Parallel Transport 
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to distort lengths and angles, students would drag the image to see if their triangle configuration 

had any effect on the segments. 

It turns out the angle between the first and final segment will always be equal to the 

defect of the triangle (180 degrees minus the sum of all the interior angles). While students were 

expected to notice the segments were not coincident, it was not anticipated that students would 

immediately realize the angle was equal to the defect of the triangle. Instead, it was anticipated 

that students would measure this angle and drag the image to investigate how that angle may or 

may not change. 

For the fifth part of the task, students were asked to find the defect of the triangle. 

Students could do this either by measuring individual angles and using a calculator (in the DGE), 

or by using the defect tool in the DGE. After finding the defect, students were asked, “What do 

you and your partner notice about the defect of the triangle?” Again, they were also asked the 

two confidence questions. As was mentioned previously, the defect of the triangle will match the 

angle between the original and transported segment. Students may or may not have measured 

this angle in the previous part of the task. Thus, this prompt had multiple expectations. It was 

feasible students had measured the angle between segments in the previous task and by 

measuring the defect, students would immediately see they match. If students had not previously 

Figure 3.2: 

Hyperbolic Parallel Transport 
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measured the angle, the expectation was that students would then use the measurement tools and 

the dragging tool to see if this angle had any relation to the rest of the figure. 

The sixth part of the task was quite different from the earlier parts. The sixth part of the 

task presented students with a proof that the difference in angles (or holonomy) of the triangle 

will always match the defect of the triangle. The proof had an accompanying diagram. Because 

of the diagram, it was not strictly necessary for students to use the DGE, but it remained an 

option if they wanted to use it for any reason. This part of the task did not have students make a 

claim, but rather to verify the proof and then rate their confidence in the claim being made by the 

proof. Specifically, the students were asked, “How confident are you that the defect of the 

triangle will always match the holonomy? Why?” This was followed up with the standard 

question asking what it would take to raise their confidence to a 5. As most students were 

expected to have found this claim inductively in the earlier step (via measurement), this part of 

the task was designed to see how validating a proof would have an impact on their confidence. It 

was also designed to see what type of justifications students would use after reading a proof.  

Lastly, this series of tasks ended by asking students to make a sketch of their confidence 

throughout all the sections of this series of tasks. This was designed to give students an 

opportunity to express their confidence in a cumulative manner after having finished the full 

series of tasks, rather than on individual tasks. A graph was provided with the axes labeled for 

the students (Figure 3.3). The horizontal axis measures their time within the activity and the 

vertical axis measures their confidence. 

The Regular Polygon Series of Tasks  

The second series of tasks examined regular polygons. The students were asked to 

construct regular triangles and regular quadrilaterals first in Euclidean geometry, and then in 
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hyperbolic geometry. The first part of this series of tasks asked students to construct a regular 

triangle in Euclidean geometry. This was a routine construction the students had previously done 

in their geometry course. It was expected the students would all use two circles to complete their 

construction as in Figure 3.4. The students were then asked, “Have you and your partner 

successfully constructed a regular triangle? Why?” This was followed by the two standard 

confidence questions. It was anticipated that students would be able to complete the construction 

and provide deductive justifications as they had previously done this in their geometry course. 

The second part of the task asked students to construct a regular quadrilateral in 

Euclidean geometry. While this is typically called a square in Euclidean geometry, the question 

referred to a regular quadrilateral so that it matched the upcoming question in hyperbolic 

geometry where a regular quadrilateral is not called a square. While this construction was not 

actually done in the students’ geometry course using a DGE, the general method was discussed 

during class. That method was to start with a segment and then add two perpendiculars at the end 

points (either using a perpendicular tool or by constructing them). You can then either use two 

circles to mark the heights on the perpendiculars for the last two points, or you can use a single 

circle and another perpendicular to mark the last two points (Figure 3.5). While these are not the 

Figure 3.3: 

Confidence Graph 
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only ways to construct a regular quadrilateral in Euclidean geometry, they are what was 

discussed during class. Students were then asked, “Have you and your partner successfully 

constructed a regular quadrilateral? Why?” Again, this was followed by the two confidence 

questions. While the students may not have actually done the construction during class, this was 

still considered a routine task and it was anticipated they would have a fair degree of confidence. 

It was also anticipated that students would have varied justifications for this construction. While 

it was expected that some may use deductive justifications, it was also anticipated that others 

would rely on inductive justifications. Dragging and measurement were also anticipated as tool 

usages to support the inductive justifications. 

The third part of the series of tasks asked students to construct a regular triangle in 

hyperbolic geometry. While this was a routine construction in Euclidean geometry, completing 

the triangle in hyperbolic geometry presents a new set of challenges. Despite being done in 

Figure 3.4: 

Construction of a Regular Triangle in Euclidean Geometry 

Figure 3.5: 

Two Options for Constructing a Euclidean Regular Quadrilateral 
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hyperbolic geometry, the construction is identical to the construction of a regular triangle in 

Euclidean geometry. However, the results may look distinctly different (Figure 3.6). The three 

angles will be congruent but will be an angle strictly between 0 and 60 degrees depending on 

location within the Poincaré disc and the triangle’s size. After completing the construction, the 

students were asked, “Have you and your partner correctly constructed a regular triangle? Why?” 

Again, this was followed by the two confidence questions. While it was anticipated the students 

would successfully construct the regular triangle, there was not an expectation that students 

would immediately trust their construction worked. Because of the odd way these triangles can 

appear, it was anticipated that students would either use measurements to justify the triangle was 

in fact regular or try to make a deductive argument to convince themselves. 

The fourth part of the task asked students if they believed regular quadrilaterals exist in 

hyperbolic geometry. This is the second of the conjecturing sub-tasks the students encountered. 

Specifically, they were asked, “Do you and your partner believe that regular quadrilaterals exist 

in hyperbolic geometry? Why or why not?” Again, this was followed by the two confidence 

questions. While students were not allowed to use the DGE, students could make the argument 

deductively, visually based on their previous activities, or they could use paper and pencil to 

make sketches. The students had just seen that regular triangles exist, so there was an expectation 

that some would build on this previous claim to argue that regular quadrilaterals exist as well. 

The fifth part of the task asked students to construct a regular quadrilateral in hyperbolic 

geometry. As compared to the regular triangle, the standard expected construction does not 

translate to hyperbolic geometry. The construction in Euclidean was dependent on right angles. 

However, in hyperbolic geometry, the regular quadrilateral will not have right angles. The four 

angles will be congruent but strictly between 0 and 90 degrees. See Figure 3.7 for an example of 
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a regular quadrilateral in hyperbolic geometry. Because of the ways distances and angles work in 

hyperbolic geometry, it may not appear regular to our Euclidean eyes, but it is in fact regular 

within the hyperbolic plane. Figure 3.8 shows what happens if the standard construction from 

Euclidean geometry is attempted. Notice the right angles at the base of the figure, but the acute 

angles at the top. It was anticipated that students would attempt the construction using the same 

method as in Euclidean geometry, but then use the measurement tools to realize that this method 

does not work. Two correct methods of construction are shown in Figure 3.9. While it was 

anticipated some students may not find success, it was anticipated that the first option would be 

the construction students used. It uses congruent triangles to get the angles and sides of the 

quadrilateral congruent. The second option is a more unusual option that uses a Lambert 

quadrilateral and reflections to construct the regular quadrilateral. While the students had studied 

Lambert quadrilaterals, it was not expected students would use them to answer this question. 

Figure 3.7: 

Regular Quadrilateral in Hyperbolic Geometry 

 

 

 

 

 

     

Figure 3.6: 

Regular Triangle in Hyperbolic Geometry 
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After working on their constructions, the students were asked, “Have you and your partner 

successfully constructed a regular quadrilateral? Why?” 

It was anticipated that students would approach this task very differently. As mentioned, 

it was expected some students would attempt the same construction as in the Euclidean case. On 

the other hand, it was also anticipated that students’ measurements in the previous task may have 

prevented students from completing this same construction. For students that measured and 

found the regular triangle had interior angles less than 60 degrees, it was anticipated some 

Figure 3.9: 

Two Options for Construction of a Regular Quadrilateral in Hyperbolic Geometry 

Option 1 
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Figure 3.8: 

Potential Construction of a Regular Quadrilateral in Hyperbolic Geometry 

 

 

 

 



 

47 

students may recognize the angles in the regular quadrilateral should be less than 90 degrees. 

This would have ruled out the traditional construction. It was also anticipated that some students 

would begin by attempting to ‘draw’ the figure in the DGE by just making arbitrary segments 

and dragging them into a ‘squarish’ shape just to see what a regular quadrilateral might look like. 

Lastly, as in the previous series of tasks, students were asked to make a graph of their 

confidence throughout all the sections of this series of tasks. A graph was provided with the axes 

labeled for the students (Figure 3.3). Again, this was designed to give students an opportunity to 

express their confidence cumulatively at the end of the series of tasks, rather than individually 

for all the subtasks. 

Summary 

The full series of tasks with student instructions can be found in Appendix A. The list of 

the prompts the students are responding to can be found in Table 3.3. For the parallel transport 

series of tasks, there were six prompts in total with two prompts in Euclidean geometry, and four 

prompts in hyperbolic geometry. For the regular polygon series of tasks, there were five prompts 

in total with two prompts in Euclidean geometry, and three prompts in hyperbolic geometry. For 

each prompt, students would finish by writing a claim, giving a justification for their claim, 

rating their confidence, and then writing what could have raised their confidence if they did not 

rate themselves highly on confidence. There was also a conjecturing prompt for each series of 

tasks asking students to make a conjecture about what might happen in hyperbolic geometry. 

Lastly, there was a prompt asking students to read a proof and comment on how confident they 

were after reading the proof. 

For the parallel transport series of tasks, it was expected that students would be able to 

predict what would happen in the Euclidean case. They had the most experience with Euclidean 
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geometry, and most of their study of transformational geometry had taken place within Euclidean 

geometry. For instance, students had learned that transformations preserve segment length and 

angles - two theorems that are directly applicable to a parallel transport. In hyperbolic geometry, 

it was not expected that students would predict what would happen to the final segment. The 

Table 3.3: 

 

Lists of Prompts to Which the Students Responded 

 

Prompt 

ID Prompt 

Euclidean or 

Hyperbolic 

P1 What do you and your partner notice about the segment? Euclidean 

P2 What do you and your partner notice about the final segment compared 

to the first segment? 

Euclidean 

P3 If we complete the same activity as Task 1, but in hyperbolic geometry, 

what do you and your partner think will happen in terms of the final 

segment compared to the first segment? 

Hyperbolic 

P4 What do you and your partner notice about the final segment compared 

to the first segment? 

Hyperbolic 

P5 What do you and your partner notice about the defect of the triangle? Hyperbolic 

P6 On a scale of 1 to 5, how confident are you that the defect of the 

triangle will always match the holonomy? Why? 

Hyperbolic 

R1 Have you and your partner successfully constructed a regular triangle? 

Why? 

Euclidean 

R2 Have you and your partner successfully constructed a regular 

quadrilateral? Why? 

Euclidean 

R3 Have you and your partner correctly constructed a regular triangle? 

Why? 

Hyperbolic 

R4 Do you and your partner believe that regular quadrilaterals exist in 

hyperbolic geometry? Why or why not? 

Hyperbolic 

R5 Have you and your partner successfully constructed a regular 

quadrilateral? Why? 

Hyperbolic 

Note: After every prompt except P6, the students were asked the following two confidence 

questions. For P6, the students were only additionally asked the second confidence question. 

• On a scale of 1 to 5, how confident are you in your response to the previous question? 

Why? 

• If you did not rate yourself a 5, what would it take to raise your confidence level to a 5? 



 

49 

students had learned about triangle defect and that the interior angles of a triangle sum to less 

than 180. They also knew that hyperbolic geometry has multiple parallels through a point. 

Lastly, they had experience seeing how segments can change in apparent curvature as they move 

from the center of the triangle (where the geometry appears more Euclidean) to the edge of the 

Poincaré disk (where the geometry appears dramatically more curvy). It was anticipated that 

there would be minimal deductive justifications being used during this series of tasks. Students 

had previously not had much experience doing proofs relying on Euclidean transformations. 

Because of this it was anticipated that students would make extensive use of the measurement 

tools as well as the dragging tools to provide inductive justifications.  

For the second series of tasks, the students were aware of regular polygons in Euclidean 

geometry. The students had frequently constructed regular triangles as the construction of regular 

triangles is instrumental in more complicated constructions. The construction of a square had 

been discussed as to the general procedure but not physically done in Geometry Explorer. In 

hyperbolic geometry, students had neither constructed regular triangles or regular quadrilaterals. 

Rather, by the end of the geometry course, students had spent some time constructing Saccheri 

and Lambert quadrilaterals, shapes unique to hyperbolic geometry. Saccheri quadrilaterals have 

two right angles at the base and two congruent and acute summit angles. Lambert quadrilaterals 

have three right angles and an acute fourth angle. In particular, Lambert quadrilaterals hint at the 

fact that if regular quadrilaterals exist, then regular quadrilaterals cannot have four 90 degree 

angles. Lambert quadrilaterals also had the potential to be useful in the construction of a regular 

quadrilateral. 

The construction of regular triangles and quadrilaterals in Euclidean geometry was 

expected to go smoothly for the students as these were routine tasks. The regular triangle in 
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hyperbolic was also expected to go well for students as the construction uses the same steps as in 

Euclidean geometry. Additionally, the justification for why the construction of the hyperbolic 

regular triangle works is the same argument that is made in Euclidean geometry. Because of this, 

it was anticipated students would provide deductive justifications. 

The regular quadrilateral in hyperbolic geometry, however, was expected to be a 

challenge. It was anticipated students would use the standard construction for a Euclidean 

square, only to realize, by using the measurement tools, that this construction does not work. 

Despite this construction not working, there are multiple constructions students could use to 

create a regular quadrilateral in hyperbolic geometry (Figure 3.9). Justifications were mostly 

anticipated to be inductive. 

Procedures 

 This next section will describe the procedures of the study. It will be broken into two 

pieces. First will be a short section on how the data was collected. The second, longer section, 

will be descriptions of the unit analysis. It will contain descriptions of how tool usages, 

justifications, and confidence were coded. It will also describe how the paired relationships were 

analyzed. 

Data Collection 

The participants participated in two sessions to complete two series of tasks. They 

worked in pairs for roughly 30-50 minutes on each series of tasks. The exact amount of time 

each pair worked on each series of tasks can be found in Table 3.4. In every pair except Gary and 

Hal, the students spent more time working on the parallel transport series of tasks than they did 

the regular polygon series of tasks. Also of note is that the pairs of Eve and Fran, and Ivy and 

John took considerably longer than the other three pairs.  
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The pairs were videotaped while they worked. This video allowed the audio to be 

transcribed and provided visual data for where the students were looking as they commented on 

their work. Additionally, screen-recording software captured their activity within Geometry 

Explorer. As the students completed the tasks, they recorded their claims on the given 

worksheets (Appendix A), giving their justifications and rating their confidence as they 

progressed. They also used the worksheets to occasionally make quick sketches to support their 

claims or as part of thinking about their justifications.  

The students worked with minimal interactions with the researcher. However, there were 

instances where the researcher stepped in and asked the students for clarification. Specifically, 

when students made general comments, the researcher stepped in and asked students to “think 

longer about what they might notice.” An example of a general response would a response like, 

“the segments are different.” While this may be true, it does not say very much. Are the 

segments different because they are a different length or at a different angle or in a different 

location? The goal of this additional question was not to get a correct answer, but rather a more 

detailed answer. The student could then respond by commenting on the segment’s length, angle, 

parallelism, position, etc. The researcher did not step in until after the student had finished 

writing their claim and rating their confidence. When answering this additional prompt, the 

Table 3.4: 

Time Spent by Each Pair on Each Series of Tasks 

 Time Spent on Each Task in Minutes  

 Parallel Transport Regular Polygons Total Time 

Ann and Beth 46 25 71 

Carl and Dan 43  31 74 

Eve and Fran 68 45 113 

Gary and Hal 39 51 90 

Ivy and John 78 52 130 
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students would write a new claim, and again rate their confidence. This extra prompt was only 

needed after prompts P4 and P5 of the parallel transport series of tasks. 

Data Analysis 

 The results of the study are presented in two chapters. Chapter 4 provides detailed 

descriptions of student activity. Focus is given in these descriptions to specific student activity 

that pertains to the research questions. Attention is given to shifts that occur between the 

subtasks, between the series of tasks, and between the two different geometries. Chapter 5 then 

highlights the important observations from Chapter 4, summarizing their relation to the four 

research questions.  

Analysis for Research Question 1 

 The first research question posed was, “What are the features of DGEs that college 

geometry students are using when making mathematical claims while completing DGE related 

tasks in Euclidean and hyperbolic geometry?” There are a multitude of tools available within 

Geometry Explorer. However, the three main tools as studied in the literature are the dragging 

tool and the two measurement tools that measure angle and length. As such, this analysis limited 

itself to looking at these three tools. As mentioned in Chapter 2, there are various modalities of 

using the dragging tools and the measurement tools (Baccaglini-Frank & Mariotti, 2010; Olivero 

& Robutti, 2007), though these modalities were not a one-to-one match between dragging and 

measurement. Likewise Hollebrands (2007) categorized general tool usage into the broad 

categories or proactive and reactive strategies. However, not every measuring or dragging 

modality fit nicely into one or the other of those general strategies. 

 For this research, the different modalities of measuring and dragging were condensed into 

two broad categories of wandering and validation tool usage. Wandering tool usage includes tool 
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usage where the student is unsure of the outcome or does not display a clear purpose or goal in 

their measuring or dragging. It includes such modalities as wander, maintaining, and trace 

dragging and wander and guided measuring. In all these modalities, students are looking for 

relationships and patterns. Validation tool usage includes tool usage where the student displays 

clear intention before they start using the tool. This includes such modalities as the dragging test 

as well as perception, validation, and proof measuring. In all these modalities, the students are 

validating conjectures they had already formed about the figures on the screen. In some cases, 

such as the dragging test or perception measurement, students are validating relationships they 

see on the screen before a conjecture is fully formed. In other cases, such as validation and proof 

measuring, students are validating fully formed conjectures. 

 Video analysis showed exactly when students were using each of the three tools. Each 

prompt acted as its own unit of analysis. For each prompt, a tally took place on which of the 

three tools was used to answer that prompt and how the tool was used by the student. Counts 

were not taken on how often the tool was used. That is, on any given prompt, if a student 

measured five angles, it was only recorded that the student used the angle measurement tool, not 

that the student used the tool five times. It was also recorded how the student used the 

measurement tool. One purpose of the pairs was to encourage discussion between the students so 

that how the tool was being used could more easily be determined. It was expected that during 

any given prompt, the tool usage may be used in either or both types of usage, for wandering and 

validation purposes. 

Anticipated Results for Research Question 1 

 It was anticipated that tool usage would be greater within hyperbolic geometry. That is, 

when students reached the hyperbolic portion of each series of tasks, there would be an expected 
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shift upward in the amount of tool usage. Because of the nature of how hyperbolic geometry 

appears and the perceived difficulty of hyperbolic geometry, it was anticipated that students 

would resort to more tool usage as they worked to answer the prompts related to hyperbolic 

geometry. Previous research has shown that uncertainty causes students to look for justification 

(C. Laborde, 2000) and the DGE tools are one way to provide justification. Conversely, because 

Euclidean geometry generally behaves in ways that students expect, it was anticipated that tool 

usage would be minimal (Olivero & Robutti, 2007; Weber & Mejia-Ramos, 2015). 

It was also anticipated there would be a shift from mixed tool usage (wandering and 

validation) to mostly validation tool usage when students began the regular polygon series of 

tasks. Specifically, when students were working on constructing the regular polygons, it was 

anticipated most of the tool usage would be validating whether their construction was either 

correct or incorrect. This shift was expected to continue even through the regular hyperbolic 

triangle. Despite how different a regular triangle could appear, it was anticipated that because of 

the relative simplicity of the construction students would still have an idea before they measured 

or dragged to test their constructions. It was when students began the regular quadrilateral that an 

anticipated shift back to mixed tool usage would occur. The regular quadrilateral construction is 

more complex, and it was expected students would switch between the two modes of tool usage.  

The reporting of data in Chapters 4 and 5 highlights how students used the tools. Chapter 

4 descriptively shows how individual students were using the tools to answer each prompt. A 

focus is given on how tool usage varied across the series of tasks, highlighting shifts that occur in 

how students used the tools. That is, special attention was given to instances where students 

switched between types of tool usage or where students used the tools in ways that were not 

anticipated. Chapter 5 provides counts of which tools were being used for each prompt and how 
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the tools were being used for each prompt. Additionally, Chapter 5 provides summaries of where 

shifts occurred in how the students used the tools. 

Analysis for Research Question 2  

The second research question posed was, “What are the justifications college geometry 

students are using when making mathematical claims while completing DGE related tasks in 

Euclidean and hyperbolic geometry?” As a framework for classifying justifications, this research 

categorizes justifications into five categories: comparison to Euclidean geometry, previous 

knowledge, single case inductive, multiple case inductive, and deductive justifications. These 

categories roughly parallel the proof schemes given by Harel and Sowder (1998). That is, 

comparison to Euclidean geometry and previous knowledge justifications parallel an external 

proof scheme. Single case inductive and multiple case inductive justifications parallel an 

empirical proof scheme. Lastly, deductive justifications parallel analytical proof schemes. Note 

that this research is specifically looking at the justifications the students gave and not the proof 

schemes under which they were operating. That is, while a student may give a deductive 

justification for a task, that same student may be operating under an inductive proof scheme and 

only giving a deductive justification because they believe that is what the researcher wants. 

The first two categories of justifications are comparison to Euclidean geometry and 

previous knowledge. A justification by comparison to Euclidean geometry is when a student 

claimed something was true in hyperbolic geometry because the analogue was true in Euclidean 

geometry. The second category is previous knowledge. This justification is when a student 

remembered a specific piece of knowledge that told them what they needed to know. In both 

cases, these arguments were being made by appealing to an authority. In the first case, the 
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authority was what the student knew about Euclidean geometry. In the second case, the authority 

was what they remembered from a previous class. 

 As an example of using a comparison to Euclidean geometry to justify a claim, when Carl 

justified his construction of a regular hyperbolic triangle, he wrote, “We did the same thing as 

Euclidean, but we measured all the lines and angles to be sure.” There were two justifications 

happening here. The first justification is that by repeating what he did in the Euclidean case, this 

gave him a correct construction. Despite this justification, the student also followed that 

justification with a second justification to offer more support to his claim. The second 

justification was an inductive justification based upon the specific triangle he constructed. 

As an example of using previous knowledge to justify a claim, John justified his 

construction of a regular Euclidean triangle by writing it was correct “because we used the two-

circle method.” This was the standard method the students used during their geometry course 

(Figure 3.4). Note that John did not get into the specifics of why this method works, but simply 

wrote that the method works. He was recalling previous knowledge about how to do this task. To 

contrast this, his partner Ivy justified the congruent sides of the triangle by mentioning that the 

circles share common radii. In this case, her justification was categorized as a deductive 

justification. 

  The next two categories are single case inductive and multiple case inductive 

justifications. Rather than grouping all empirical justifications together, the use of a DGE was 

good reason to split this category into two parts. Dragging is a key feature of DGE use and it 

easily allows one to see multiple examples of a figure. When a student constructed a figure with 

a certain property, dragging allowed them to see multiple versions of that figure and make a 

claim based not on a single static figure, but on a multitude of related figures. Dragging a figure, 
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therefore, led to multiple case inductive arguments by its very nature. That is not to say that all 

multiple case inductive arguments corresponded to dragging. There were some students who 

constructed multiple figures. There were also students who, as they were working in pairs, 

specifically used each other’s figures as evidence of multiple cases in their justifications. 

 Lastly, deductive justifications will refer to any justification that used deductive 

arguments, whether correct or incorrect. This justification did not need to be a complete proof, 

but rather that an attempt was made to justify their claim deductively.  

 Justifications were examined at the level of the prompt. While working on the activities, 

students made many claims and gave many justifications as they were working. For this research, 

only the students’ final written claim and the justifications given for that claim were counted. 

Note that there were instances where more than one type of justification was given. For instance, 

Carl used two justifications, a comparison to Euclidean as well as an inductive justification, 

when he justified his construction of a hyperbolic regular triangle. In that case, both justifications 

were recorded. Also, there were instances where justifications were not always written down. In 

those instances, video and transcript analysis was used to determine ambiguous justifications. 

For instance, when working on the Euclidean parallel transport, Carl and Dan were translating 

their first segment. During this translation, Carl specifically commented verbally he was going to 

construct his triangle differently than Dan. He also took noticeable time to look at Dan’s screen 

before writing his response that the original and transported segments were parallel. Because of 

his verbal comment and his purposeful look at Dan’s screen, Carl was recorded as using multiple 

inductive justification when he claimed the segments were parallel. On the other hand, as Dan 

had given no indication of paying attention to Carl’s screen either verbally or visually, Dan was 
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recorded as a single case inductive justification as he appeared to only use his screen when 

making the argument. 

Anticipated Results for Research Question 2 

It was anticipated that students would mostly be giving inductive justifications. Previous 

research has shown that if students have evidence from DGE, they are not always interested in 

continuing to find deductive justifications (Hollebrands et al., 2010; Olivero & Robutti, 2007). 

For the Euclidean tasks, these inductive justifications were anticipated to be based on a single 

case as dragging was expected to be minimum. It was the tasks in hyperbolic geometry where 

multiple case inductive justifications were anticipated as that is where students were expected to 

be dragging. Thus, in both series of tasks, there was an expected shift from single case to 

multiple case inductive justifications as students switched from the Euclidean to the hyperbolic 

tasks.  

Deductive justifications, if they occurred, were anticipated to appear most often in the 

Euclidean construction tasks as those were the most routine tasks for the students. While it was 

possible deductive justifications would continue to the hyperbolic constructions, this was not 

expected. 

There were also two conjecturing tasks, one in each series of tasks. As these conjecturing 

tasks mostly precluded the use of the DGE, inductive justifications were anticipated to be 

minimal as the students no longer had access to creating examples. It was anticipated that 

students answering the conjecture prompts would answer by using either a comparison to the 

Euclidean case they had just completed or by using previous knowledge they might remember 

from class.  
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Analysis for Research Question 3 

The third research question posed was, “How do college geometry students self-report 

their confidence when making mathematical claims while completing DGE related tasks in 

Euclidean and hyperbolic geometry?” The series of tasks included questions throughout that 

gave the students opportunities to make mathematical claims. Each question was followed by an 

opportunity for the student to rate their confidence level as they answered the question. Weber 

and Mejia-Ramos (2015) argued that mathematicians can have different levels of conviction. 

Mathematicians can be absolutely convinced or relatively convinced. That is, students were not 

expected to always be fully confident in the claims they were making. It was not a simple binary 

between confident and not confident. As such, students were asked to report their confidence on 

a Likert scale with 1 representing not confident, 2 representing somewhat not confident, 3 

representing neutral, 4 representing somewhat confident, and 5 representing very confident.  

In addition to rating their confidence, students were asked why they gave their specific 

confidence level. While this gave the students a chance to give a justification for their earlier 

claim, this question also provided insight on how students were thinking about confidence and 

how their interpretation of confidence changed throughout the tasks. There emerged two main 

interpretations of confidence. These two interpretations of confidence most closely align with 

Segel’s definition of conviction (1999) in that students were rating their confidence on whether 

they personally found their claim to be correct. The first interpretation of confidence was 

confidence that the student believed they recorded a correct (true) statement. A student would 

rate themselves high because they were convinced that what they wrote down was a true 

statement. The second interpretation of confidence was confidence that that the student believed 

they record the correct statement. A student would rate themselves high because they were 
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convinced they wrote down the ‘right’ answer to the question. In both interpretations, confidence 

was referring to confidence in the individual claims being made, and whether they were 

“correct.” In analyzing the data, a third interpretation of confidence appeared unique to Ivy. 

There are many instances where Ivy’s interpretation of confidence refers, not to the claim itself, 

but rather her overall confidence in her ability to do mathematics. Ivy’s interpretation can most 

closely be associated to the concept of self-efficacy (Bandura, 1997). These different 

interpretations will be explored more in Chapter 6. 

There were two other pieces of data gathered on confidence in this research. The first was 

a question for each prompt asking students what would raise their confidence to a 5 if their 

reported confidence was less than 5. It was anticipated students would not rate themselves as 

very confident on every prompt. This question was included to see from a student’s perspective 

what could be done to give them more confidence. Anticipated responses include such things as 

“being told I’m right”, “a formal proof”, “reading it in a book”, or “more examples.” However, 

due to the large number of prompts with a rating of 5, this question did not yield significant 

insight on what might raise their confidence. The exception was the prompt asking students to 

read a proof (P6). Due to the uniqueness of this prompt, it will be discussed in Chapter 6. 

The last piece of data gathered on confidence was a question at the end of each series of 

tasks asking students to draw a graph that represented their confidence throughout the series of 

tasks. Reporting on this data will not be given as it did not provide meaningful insights beyond 

the confidence already reported for the individual prompts. The reason for this is most students 

referred to their confidence ratings and simply graphed those ratings. This meant the graphs 

essentially gave a duplicate form of the data. 
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The reporting of data in Chapters 4 and 5 highlights the confidence being reported by 

students when responding to the prompts. Chapter 4 describes the confidence of individual 

students as they respond to each prompt. Special attention was given to instances where student 

confidence changed dramatically or was different from what was anticipated. Chapter 5 provides 

summarized data showing how confidence shifts throughout the series of tasks. A focus is given 

on how student confidence varied across the series of tasks highlighting specific instances where 

shifts happened in how students rated their confidence or where reported confidence was 

different than expected. 

Anticipated Results for Research Question 3 

It was anticipated that confidence during the parallel transport series of tasks would be 

lower than during the regular polygon series of tasks. Of the two series of tasks, the parallel 

transport was least routine. That is, students did not have as much experience doing translations 

as they had constructions. The students had even less experience doing proofs related to 

translations. Thus, there was an anticipated shift upward in reported confidence when students 

moved from the parallel transport series of tasks to the regular polygon series of tasks. 

It was also anticipated that reported student confidence would shift slightly downward as 

students moved from the Euclidean parts of the tasks to the hyperbolic parts of the tasks. We 

know hyperbolic geometry is generally more difficult for students (Senk, 1989) so reported 

confidence was expected to fall. However, we have also seen that DGE use can boost student 

confidence (Guven & Karatas, 2009; Hollebrands et al., 2010). Despite this gain, it was 

anticipated that students’ perceptions of hyperbolic geometry would still result in reporting lower 

confidences. It was anticipated that students would report their lowest confidence when 
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attempting to answer the conjecturing prompts in hyperbolic geometry as they did not have the 

DGE as a support. 

Lastly, with regard to the last prompt in the parallel transport series of tasks asking 

students to read a proof (P6), it was anticipated that reported confidence would shift upwards. 

That is, while we know that students do not always see proof as necessary when using a DGE 

(Olivero & Robutti, 2007; Weber & Mejia-Ramos, 2015), it was anticipated that seeing a proof 

of what they had discovered in the previous prompt would reinforce their claims and give the 

students greater confidence.  

The reporting of data in Chapters 4 and 5 highlights the different justifications the 

students used when responding to the prompts. Chapter 4 gives descriptions of which 

justifications individual students were using to respond to each prompt. Special attentional was 

given to instances where students switched between types of justifications or used justifications 

in ways that were not anticipated. Chapter 5 provides counts of which justifications were being 

used for each of the prompts. Additionally, summaries will be given highlighting instances 

where shifts happened in how students chose to justify their responses. 

Analysis for Research Question 4 

The fourth research question posed was, “What are the relationships among the features 

of DGEs, the justifications students are making, and their confidence in making mathematical 

claims while completing DGE related tasks in Euclidean and hyperbolic geometry?” This section 

focuses on relationships that occur among the three different factors being analyzed. Tool 

usages, justifications, and confidence are matched pairwise to highlight important relationships 

and correspondences between the three factors. Additionally, there will be a section that focuses 
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on relationships among all three factors. This analysis will be based on the anticipated 

relationships described below. 

In a quantitative approach, responses to individual prompts were categorized and grouped 

by both justifications and tool usages to investigate how they corresponded to reported 

confidence. Additionally, responses were categorized by justifications and by tool usage to see 

how these two factors interacted with each other bi-directionally. In a qualitative approach, 

instances were identified where students behaved in notable ways. Focus was given to areas of 

individual student movement as well as instances when students switched between Euclidean and 

hyperbolic geometry or when students switched from one series of tasks to the other series of 

tasks. These responses were then analyzed individually to see how shifts in tool usages or 

justification corresponded to shifts in confidence as well as how shifts in tool usage may 

corresponded with shifts in justifications and vice versa. 

Anticipated Results for Research Question 4 

 It was anticipated the relationship between tool usage and confidence would be a 

directional relationship (Figure 3.10). That is, it was expected that high tool usage would 

correspond with higher confidence. As students used the tools, they would be generating 

evidence for claims they make, and this evidence would provide confidence. We have seen this 

previously where higher tool usage is associated with higher confidences (Guven & Karatas, 

2009; Hollebrands et al., 2010). It was also anticipated that this relationship would be especially 

noticeable within hyperbolic geometry where students are otherwise known to struggle (Senk, 

1989).  

 It was anticipated the relationship between deductive arguments and confidence would 

also be a directional relationship (Figure 3.10). That is, it was expected that deductive 
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justifications would correspond to higher confidences. As students are known to struggle with 

proof (Mariotti, 2012; Weber, 2002), if a student felt comfortable giving a proof, it was 

anticipated they would also report higher confidence. However, it was also anticipated that there 

would be many instances of high confidence that do not involve deductive arguments. For 

instance, it was anticipated that many students would use the DGE to provide inductive 

justification that would also lead to high confidence (Hollebrands et al., 2010). 

 The last pairwise relationship was anticipated to be a bi-directional relationship between 

the justifications the students are using and the features of the DGE students are using (Figure 

3.10). That is, certain tool usages are strongly associated with certain types of justifications. For 

instance, dragging, by its very nature, is anticipated to be associated with multiple case inductive 

justification as dragging is useful for creating a multitude of examples. Conversely, certain types 

of justifications are anticipated to be strongly associated with certain types of tool usage. For 

instance, deductive justifications are anticipated to be associated with validation tool usage. 

Likewise, using previous knowledge or comparison to Euclidean geometry is anticipated to be 

associated with minimal tool usage. 

Figure 3.10: 

Relationships for Analysis 
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Lastly, it was anticipated that among all three relationships, the combination of deductive 

justifications and high tool usage will correspond to high confidences. As individually, it was 

anticipated that justifications and high tool usage would each correspond to high confidence, 

their combination is anticipated to gives students the most confidence. Alternatively, it is 

anticipated that when students report low confidence, there will be minimal tool usage and some 

form of non-deductive justification taking place. 

The reporting of data in Chapters 4 and 5 highlights these anticipated relationships that 

appear as students are responding to the prompts. Chapter 4 highlights these anticipated 

relationships as they occur among the individual students. Chapter 5 will summarize these 

relationships as they occurred for multiple students. Special attention will be given in Chapter 5 

to instances where these anticipated relationships did not occur, as well as to other relationships 

that were found during the analysis process. 
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CHAPTER 4: DESCRIPTIONS OF STUDENT ACTIVITY 

This chapter provides detailed descriptions of how each pair of students completed the 

two series of tasks. These descriptions cannot fully encapsulate all student activity, but they 

should provide insight into how students interpreted and carried out the tasks. Focus will be 

given in the descriptions to specific student activity that pertains to the research questions. 

Attention will also be given as students shift between the two different geometries as well as 

when students shift between the two series of tasks. Screenshots from Geometry Explorer and 

excerpts of dialogue will be presented as needed to help clarify student behavior. The chapter is 

broken into five sections with each section devoted to one pair of students. This chapter is 

presented as an introduction to Chapter 5. Chapter 5 will summarize this student activity, paying 

special attention to relationships anticipated relationships, as well as to other relationships that 

were found during the analysis process. 

Students Ann and Beth 

 The first two students to be discussed are Ann and Beth. Ann and Beth were both 

majoring in mathematics education and had worked together previously for multiple projects in 

their college geometry course. Ann earned an A in her geometry course and was a quiet student 

during class. Beth also earned an A in her geometry course, and was one of the more vocal 

students during class, both answering questions from the instructor and asking her own clarifying 

questions. 

Parallel Transport Series of Tasks  

Ann and Beth began with the parallel transport series of tasks in Euclidean geometry. 

They began by constructing a triangle, an initial segment, and then transporting that segment 

(segment AD) from point A to point B (Figure 4.1). As they were working on this, Ann noticed 
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that she and Beth had constructed their initial triangles and segments in roughly the same 

arrangement. Both students decided to leave their triangles in this arrangement. In response to 

Prompt P1, both students wrote they noticed the new segment was parallel to the original 

segment. Beth additionally wrote the segments were the same length, saying it out loud as she 

wrote it. Upon hearing it, Ann also decided to write down that observation. While thinking about 

how to justify their response, Ann suggested using a “parallel checking tool,” before 

remembering this software does not contain a parallel checking tool. The pair settled upon 

measuring the angles (Figure 4.1). Beth suggested that if the angles were supplementary, it 

would prove parallelism. When measuring the angles, both students measured angle BAD in 

reverse giving 240.4376 degrees rather than 119.5624 degrees, but they both quickly realized the 

mistake. They fixed their mistake when measuring the second angle. Doing a bit of mental 

arithmetic, the students decided the angles were supplementary, and therefore parallel. Both 

students rated themselves a 5 in terms of their confidence. Neither student offered a justification 

for why the segments would be the same length. 

 The students then finished transporting the segment around the triangle. Beth voiced the 

segments “were the same,” declaring she was “pretty confident they are the same.” Almost 

Figure 4.1: 

Ann and Beth – Parallel Segments 
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immediately, she hedged her answer as if she thought it may be a trick saying, “math is weird, 

maybe they’re a little off.” Despite this hesitation, both students wrote the segments were the 

“exact same” in response to Prompt P2. Both students gave themselves a 4 for confidence, a 

lower rating than their responses for Prompt P1. Beth indicated that she would have liked a way 

to quickly zoom in on the diagram to increase her confidence the segments were the same. Ann 

wrote she wanted to “know how to prove it” to raise her confidence. 

 For prompt P3, Ann and Beth were asked to predict what would happen for this same 

task when done in hyperbolic geometry. After a short discussion about the “weirdness” of 

hyperbolic geometry, Ann decided that the first and last segments will be the same, while Beth 

said they may be the same or they may be different. Ann commented specifically that it did work 

in Euclidean geometry, so it may also work in hyperbolic geometry. Neither student was 

confident, and they both gave themselves a 2. This is a noticeable shift in confidence from their 

previous responses with confidences of 4 (for P1) and 5 (for P2). To raise confidence, Ann wrote 

that she wanted to “see it done.” Beth wrote she wanted to “remember more about hyperbolic 

geometry.” 

 Ann and Beth then proceeded to repeat the transported segment in hyperbolic geometry. 

As Ann was drawing the first segment of the triangle, Ann suggested to Beth they make different 

triangles “so they can see if it works.” This is a shift in strategy from Euclidean geometry where 

the students noticed their triangle configurations essentially matched and decided to leave the 

triangles matching. This is possibly an indication Ann recognized a single example is not 

sufficient to prove mathematical claims. It is also possibly an indication Ann was less confident 

in hyperbolic geometry and sought more examples. Beth agreed and modified her triangle so it 

was significantly different (Figure 4.2). Ann was the first student to complete the transport, and, 
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in her case, the first three segments (segments AD, BE, and CF) were somewhat parallel looking, 

but the last segment (segment AG) was distinctly not parallel. After Beth finished hers, she 

expressed frustration saying she felt “like I’m doing it wrong.” Beth then began to drag her 

triangle, though the intent of this drag is unknown. It is worth noting this was the first time she 

dragged, and it followed a verbal expression of self-doubt. 

 When thinking about the angle between the first and last segment (angle GAD in Figure 

4.2), Ann wondered if her angle matched that of Beth’s. They both measured and found the 

angles to be different. Beth wondered if the angles would change when they dragged the image 

prompting Ann to reply, “that’s smart!” Beth tried proactively dragging her point A around the 

screen trying to get the first and last segments to “touch” (coincide). After failing to get the 

segments to coincide, Beth was ready to move on when Ann interrupted and suggested 

measuring the length of the segments. Ann proceeded to measure lengths, while Beth did not. 

Through a quirk of her construction, the software did not report Ann’s figure having equal 

Figure 4.2: 

Ann and Beth – Construction for a Hyperbolic Transport 

Ann Beth 
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segment lengths. When she had done the translation, she had translated just the segments, and 

not the endpoints. To measure the lengths, she put points on the ends of the segment and used 

these new points to take her measurement with the point distance tool. As Ann had attached her 

own points on the new segments, they were not truly at the end of the segments, so her lengths 

were slightly different. Just as Beth was starting to explain why the lengths ought to be the same 

theoretically, Ann declared “they are different.” This declaration prompted Beth to finally 

measure her segments. Beth, who also did not translate her points, measured her lengths using 

the segment length tool. This gave her exact measurements and Beth saw the lengths were the 

same. Beth declared that matching lengths make sense “since they’re all translated lines.” Ann 

still expressed hesitation questioning that perhaps she did it wrong. Ann briefly considered 

redoing her construction, but finally decided to use Beth’s construction. 

 In answering Prompt P4, Ann wrote that the segments were “the same length.” In rating 

her confidence to that answer, she wrote that she feels “like there’s something more we’re 

missing.” She rated herself a 3 on confidence and wrote that she needed to “know more about 

hyperbolic [geometry]”. Beth wrote the segments were “the same length and possibly parallel”. 

She justified the claim about length in two ways. First, she said verbally the lengths were the 

same because they are translations. Second, she wrote the lengths are the same “by the program 

telling me.” She gave no explicit justification for parallelism. Ann, who had previously rated 

herself a 2 for Prompt P3 and wanted to “see it done” rated her confidence only slightly higher 

with a 3. Beth, who had previously rated herself a 2 for Prompt P3 and wanted more information 

about hyperbolic geometry rated herself a 2 again. Note that the shift in confidence that occurred 

when responding to Prompt P3 continued for this prompt as their reported confidence levels 

remained low. 
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 Ann and Beth were then asked to find the defect of the triangle and to write down what 

they noticed about the defect. Both students found the defect by measuring the three internal 

angles and using the calculator tool to subtract the three angles from 180 degrees. They each had 

different defects as their triangles were different, and Ann immediately asked if the defect 

changes when you “move it [the triangle] around.” Prompted by that comment, Beth used a 

validation drag to verify this claim by dragging her figure around to check that the defect does 

change depending on the configuration of the triangle. Both students proceeded to write down 

their current triangle defect. 

 While Beth was still writing down her defect, Ann began to wander drag her image on 

the screen thinking there must be something to notice. The following transcript shows how Ann 

switched from a wander drag to a validation drag. 

 Ann: [Wander dragging her triangle on the screen.] 

 Beth: [Writing down her answer about defect.] 

 2 seconds pass while Ann wander drags her triangle. 

 Ann: “Oh wait, isn’t it something like… the closer you get to the center…” 

Beth: [Looking up at Ann for a second] “The closer you get to the sides, the smaller 

the…” 

 Ann: [Dragging points back to the center of the disc] 

 Ann: “The bigger the defect is. But the smaller you make it…” 

 Ann: [Looking towards Beth’s computers] “Can you make it super small?” 

 Beth proceeds to drag her triangle to the center of the disc making it small as well. 

At the beginning of the scenario, Ann was wander dragging her image. After 2 seconds, 

Ann made the claim “the closer you get to the center… the bigger the defect is.” As she made 
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this claim verbally, she dragged her triangle to the center to validate the claim. In the process, 

she noticed her triangle was getting smaller and that the defect was getting smaller. She then 

formed a new conjecture that defect is related to size and asked Beth to verify that a small 

triangle will have a small defect. Beth then used a validation drag to verify Ann’s conjecture. 

Both students wrote down this claim that smaller triangles will have smaller defects. 

 Beth gave herself a 3 for confidence. As justification, Beth wrote the angles “show this 

[defect] shrinking on the screen,” but Beth also wrote that she needs more hyperbolic 

knowledge. This is reflective of her previous statements. Beth remained consistent with a low 

confidence in hyperbolic repeatedly saying she wanted more information about hyperbolic 

geometry. Ann, however, gave herself a 5 for confidence. This was a shift in her confidence. 

Ann had written for Prompt P3 that she wanted to “see it done.” Yet, for this prompt she rated 

herself a 5 while for Prompt P4 she only rated herself a 3. One difference between her work to 

answer Prompt P4 and her work to answer Prompt P5 was the issue in Prompt P4 where the DGE 

did not report equal segments lengths based on how Ann had measured them. Ann had relied on 

Beth’s measurements for justification. For this prompt, Ann’s measurements were accurate, and 

Ann was able to use her own measurements to justify her answer.  

 Both students were then prompted to think longer about what they might notice, and 

specifically told to think about how defect might relate to the parallel transport activity they had 

just completed. The students began with a discussion before they returned to using the DGE. 

Beth began by talking about the angle sum in hyperbolic geometry versus angle sum in 

Euclidean. She stated angle sums are constant in Euclidean space and vary in hyperbolic space 

and that this difference can explain the change in defect based on the location of the triangle. 

While speaking, Beth began to validate drag her image around the screen to show that defect 
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does change based on location. While watching Beth, Ann suggested that if they move the 

triangle closer to the center (where they had previously conjectured the defect shrinks) the first 

and last transported segments will get closer together. Beth then dragged toward the middle and 

both observed how the segments became closer together. Ann, watching Beth, formalized this 

claim, writing it down, and rating herself a 4 because “it did it on Geometry Explorer.”  

 Again, both students were prompted to think longer about what they might notice. The 

students again began with a discussion while looking at their screens and talking through what 

they had already noticed. After 2 minutes, Ann took a guess that perhaps the defect and the angle 

between the segments might match. Beth then measured the angles, and they both saw the angles 

were the same. After seeing the angles matched, Ann and Beth went directly to writing their 

claim, not taking time to drag her image around the screen. Halfway through writing her claim, 

Ann paused and the following bit of dialogue took place: 

 Ann: Wait, can you move it around a little bit to see if it stays the same? 

 Beth: You think it’s just a random coincidence?  

 Both: [start laughing] 

Ann was concerned about basing a claim on a single image. To justify this claim, she 

wanted a multiple case inductive argument. The dragging they did was enough to give Ann a 5 

for confidence, but Beth only gave herself a 4 for confidence as she wrote she was “not confident 

that there aren’t exceptions.” 

 When reading the formal proof after the activity, there was a noticeable shift in 

confidence. For the previous prompt, Ann gave herself a 5 and Beth gave herself a 4. After 

reading the proof, Ann rated herself a 2 and Beth rated herself a 3. They both wrote that defect 

should match the holonomy, but that they did not fully understand the proof. 
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Regular Polygon Series of Tasks 

 For the regular polygon series of tasks, Ann and Beth were asked to construct a regular 

triangle within Euclidean geometry (Figure 4.3). Both students proceeded to create an equilateral 

triangle using two circles that share a radius. Though Beth did the construction from memory, 

she initially expressed doubt saying, “Is this equilateral?” Ann leaned over and walked Beth 

through how the radii all match so it must be equilateral. Despite Ann’s valid verbal proof, Beth 

asked “Should we measure it so we have high confidence?” Ann was ready to use a deductive 

justification, but Beth wanted to use the DGE to give her confidence. Both students proceeded to 

measure both the sides and the angles for validation. When reporting their confidence for Prompt 

R1, both students gave themselves a 5 and both students mentioned both the measurements and 

the deductive arguments in their justification. 

 The students were then asked to create a regular quadrilateral in Euclidean geometry. 

Ann proceeded to construct a square using three perpendiculars (using the perpendicular tool) 

and a circle (Figure 4.4). Beth struggled for a bit as she was convinced the construction was 

similar to the construction for the equilateral triangle (left image in Figure 4.5). After watching 

Beth struggle, Ann suggested that Beth may be thinking of how to construct a perpendicular, the 

first step of creating a square. Ann had skipped these steps as she used the perpendicular tool. 

Ann’s comment prompted Beth to add the perpendicular. After the perpendicular was added, 

both students stared at Beth’s screen for 10 seconds until Ann suggested using four existing 

points to make a square. After hearing the suggestion, Beth laughed saying, “it’s a sideways 

square.” Beth’s construction process can be seen in Figure 4.5. As Beth began to place the 

segments for the square, Ann questioned her own claim about Beth’s square, asking “do we 

know it’s a square, though?” 
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Ann proceeded to validate measure the side lengths of her own square. Beth, however, 

proceeded to drag her square so that it was oriented with a flat base. After rotating her square, 

Beth measured all the sides and the angles to validate her construction. Both students gave 

themselves a 5 for their confidence rating. They both justified it per the measurements, but Ann 

Figure 4.3: 

Ann and Beth – Construction for a Regular Euclidean Triangle 

Figure 4.5: 

Beth – Construction of a Regular Euclidean Quadrilateral 

Figure 4.4: 

Ann – Construction of a Regular Euclidean Quadrilateral 
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also gave some verbal deductive arguments about her perpendiculars being necessary for the 

square. 

 Ann and Beth were then asked to construct a regular triangle in hyperbolic geometry. 

Ann and Beth both started the same construction (Figure 4.6) as in Euclidean geometry with 

Beth finishing first. Beth declared, “I don’t know if it’s right” and Ann responded, “We could 

measure it.” Ann proceeded to measure just the lengths and Beth proceeded to measure the 

lengths and the angles. Both students gave themselves a 5 for their confidence referencing the 

software measurements. Neither student dragged their image and neither student made a 

deductive argument. This is a shift in justification from the Euclidean case where the students 

gave deductive arguments for both the triangle and the square. Also, note that in the parallel 

transport, Ann and Beth’s confidence dropped immediately when switching to hyperbolic. For 

the regular polygons, their confidence remained high after this initial hyperbolic task. 

 Ann and Beth were then asked if they believed regular quadrilaterals were possible in 

hyperbolic geometry. Both students said they do not exist. They recalled from their geometry 

course that if you have three right angles in a quadrilateral, the fourth angle will always be acute 

in hyperbolic geometry. While this is true, it presumes that regular quadrilaterals have 90-degree 

angles. Ann rated herself a 3 for confidence and Beth gave herself a 4. 

 For the last part of this series of tasks, the students were asked to construct a regular 

quadrilateral in hyperbolic geometry. After some brief discussion, they decided they would each 

use their construction method from Euclidean geometry. Their constructions can be seen in 

Figure 4.7. On the left is Ann’s diagram with three right angles and B, C, and D. Notice the 

perpendicular at D does not connect with A. Beth’s construction appears square, and she 

immediately measured all the angles and found they were the same, though they were less than 
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90 degrees. Ann looked over and saw Beth’s apparent success and asked Beth to move it around 

using a purposeful dragging. They both commented the angles were less than 90 and Beth argued 

that this makes sense since triangles have less than 180 degrees for their angle sum. Ann was still 

unconvinced and asked Beth to measure the sides as well. The sides all measured the same. 

Despite asking for a validation drag for the angles, Ann did not ask for a validation drag for the 

side lengths. Seeing that Beth’s method worked, Ann did not attempt to correct her figure. 

Rather, she erased her construction and recreated Beth’s construction with Beth’s help. She did 

not do any dragging or measurement of her own construction once it was complete. 

Figure 4.6: 

Ann and Beth - Construction of a Regular Hyperbolic Triangle 

Figure 4.7: 

Ann and Beth - Construction of a Regular Hyperbolic Quadrilateral 

Ann Beth 
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 Both students felt they created the regular quadrilateral successfully and rated themselves 

a 4 for confidence citing the measurements as their justifications. Beth did comment specifically 

that despite the measurements, she remained skeptical it was correct. When answering what it 

would take to raise her confidence to a 5, Beth wrote that it would take “better confidence in 

hyperbolic geometry” to raise her confidence. This is an indication that Beth’s lower confidence 

ratings for hyperbolic geometry, at least in part, stem from a lower general confidence in 

hyperbolic geometry, rather than a task specific lower confidence in geometry. 

Observed Shifts with Ann and Beth 

There was a noticeable drop in reported confidence when the two students moved from 

Euclidean geometry to hyperbolic geometry during the parallel transport task. This shift was 

noticed both in the reported confidences being lower as well as an increase in dragging that took 

place when working in hyperbolic geometry. Beth’s confidence remained low throughout the 

remainder of the parallel transport task demonstrated by repeatedly writing that she wished she 

knew more about hyperbolic geometry. Ann, who had written that she wanted to “see it done,” 

saw her confidence shift slightly higher when she was able to use the DGE to provide evidence 

for her claims. Ann’s confidence lowered again when she got to the proof task, as she was no 

longer able to “see” the activity. There was also a shift in how students were using the drag tool 

when switching from Euclidean to hyperbolic geometry. Neither student used the dragging tool 

in Euclidean geometry during the parallel transport, though they both used it extensively when 

working in hyperbolic geometry. Lastly, there was a shift in how Ann and Beth constructed their 

figures between Euclidean and hyperbolic geometry. In Euclidean geometry, the students made a 

conscious choice to keep their figures looking alike. However, in hyperbolic geometry, they very 

deliberately created different figures. 
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For the regular polygon task, both students again expressed high confidence during the 

Euclidean tasks. However, as compared to the parallel transport task, this confidence remained 

high when they began work in hyperbolic geometry making the hyperbolic regular triangle. 

There was, however, a shift in the justifications being made. In Euclidean geometry, the students, 

especially Ann, showed a willingness to make deductive arguments. When moving to hyperbolic 

geometry with the regular triangle, neither student gave deductive arguments. Rather, both 

students relied on inductive arguments supported by the measurement tools. This shift continued 

as they worked on the regular quadrilateral.  

In the parallel transport tasks, Ann and Beth used the tools in both wandering and 

validation modes. However, when switching to the regular polygon tasks, both students shifted to 

using the tools exclusively in a validation mode. Additionally, in the parallel transport task, we 

saw confidence vary between high and low confidences as they worked, especially in Ann’s 

case. This is different from when they were working on the regular polygon tasks where both 

students had high confidence (4 or 5) throughout the task. 

Students Carl and Dan  

The second pair of students in the study were Carl and Dan. Carl was a senior math major 

and was the only student in the study who was not in teacher education. Dan was a junior math 

minor in elementary education. Carl earned the highest grade in the geometry course and scored 

near perfect marks on almost every assignment. He excelled at making deductive arguments in 

his homework. Dan was also a good student, showing strong knowledge of geometry during 

class sessions. He excelled at making deductive arguments verbally in group settings during 

class, but often struggled when writing those arguments for his homework. Carl and Dan worked 

together frequently on projects throughout the course. 
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Parallel Transport Series of Tasks  

Carl and Dan started the first task of the parallel transport series of tasks by each creating 

a triangle. The instructions then asked the students to create the segment to be transported. Dan 

created his segment first and drew his segment pointing up (Figure 4.8). Two seconds later as 

Carl was adding his segment, Carl stated, “going up,” but as he drew the segment, he looked 

over to Dan’s screen and noticed Dan had already drawn his segment pointing up. He then said, 

“oh wait, gotta go down now” and changed his segment to point down (Figure 4.8). This 

indicates that Carl was looking to create multiple examples. Rather than duplicating Dan’s 

triangle and segment, Carl chose to create a new example. Both students then proceeded to 

transport the segment from vertex A to vertex B. For Prompt P1, both students wrote the 

segments were parallel and congruent. Additionally, Carl voiced that the segments were pointed 

in the same direction, and so they both decided to write that the new segment was oriented the 

same as the first. Carl rated himself a 4 and Dan rated himself a 5 for confidence. Neither wrote a 

justification, but Carl reiterated that while his observation was correct, he was “not sure if we’re 

missing any key information.” When responding to how to raise his confidence, Carl wrote that 

he would like a list of what to be looking for. 

 After finishing the transport, Dan decided to drag point A declaring, “they [the segments] 

are the same.” Carl also dragged his image and agreed with Dan. Both students wrote down the 

segments were the same and they both rated themselves a 5 for confidence. In giving himself a 5, 

Dan wrote that he “expected the segments to be on top of the other, and that is what happened.” 

This indicates that his previous drag was a validation drag. He was confirming that the segments 

were behaving how he expected. Carl wrote as justification, “I moved some points around and 

the two segments lay on top of each other.” 
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 Carl and Dan were then asked to think about parallel transport in hyperbolic geometry. 

Carl suggested the intermediate steps would not “appear parallel,” but that the last segment 

would still be coincident with the first. Carl said he remembered that the triangle would curve 

inward and that this would affect angles, but he was “guessing” that they would be coincident 

once the segment completed the transport. After Carl brought up the notion of parallel being “a 

little different,” Dan mentioned that hyperbolic can be visualized in two different ways. 

Specifically, lines appear curvy and angles appear correct in the Poincare disc, and lines appear 

straight and angles appear distorted in the Klein disc. Dan decided to agree with Carl, and both 

wrote down that the last segment will coincide with the original. Carl, who first voiced the idea, 

gave himself a 2 for confidence, and Dan give himself a 3. This is a downward shift in 

confidence from both students as they had previously given themselves 4s and 5s for confidence. 

Carl wrote, “there’s logical justification,” but that he’s not positive of how “the hypothetical 

concept of translation translates to hyperbolic.” From his geometry course, Carl knew about 

Euclidean translations, but was unsure if the same theorems and rules applied to hyperbolic 

translations. Carl was looking for a theoretical justification, but recognized he lacked the 

necessary information. This was confirmed when he wrote that “learning more about the strict 

Figure 4.8: 

Dan and Carl – Initial Layout for the Euclidean Parallel Transport 

Dan Carl 
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definition of translation” would raise his confidence. Dan wrote that “doing the problem in 

Geometry Explorer and measuring the angles and distances” would allow him to feel more 

confident. This indicates that for hyperbolic geometry Dan was anticipating his confidence 

would come from visually seeing what would happen and making measurements rather than 

forming a deductive argument.  

 Carl and Dan then proceeded to do the parallel transport in hyperbolic geometry. They 

each constructed their triangles and added their segment to be transported. Again, like in 

Euclidean geometry, the students purposely added their initial segments going in opposite 

directions. As was the case in Euclidean, the students were planning to have multiple cases. After 

placing the first segment, Carl started thinking ahead to what the first transported segment would 

look like saying, “I know for sure this is going to look weird because if it looked exactly the 

same it would fall off the triangle.” He was anticipating one of the translations as shown in 

Figure 4.9. To keep the segment visually the same, it could no longer be attached at the point, or 

it would have to go outside the boundary of the circle. This was an instance of Carl using the 

accuracy of the software’s diagrams as a basis for his justification. 

 At the same time Carl was thinking about the segments not being congruent, Dan was 

transporting his first segment. Dan was surprised after doing the transport as the results were not 

what he was anticipating. His surprise was enough that he erased his segment and repeated this 

step getting the same result. Dan had created his triangle and segment in such a way that the 

transported segment landed perfectly on one side of the triangle (Figure 4.10). Dan’s segment 

AD was transported to segment BE which landed perfectly on segment BC. After seeing the 

result for a second time, and pondering out loud, “Why did it do that,” he decided to move on 

and continue the construction. This was an instance of the construction tools giving a student low 



 

83 

confidence. Dan’s confidence decreased when he the construction tool did something Dan was 

not expecting. This caused Dan to believe he had done something wrong, so he repeated it. But 

after redoing it, and getting the same result, he trusted the tool and moved on. 

Figure 4.9: 

Carl – Anticipation of a Hyperbolic Parallel Transport 

Figure 4.10: 

Dan - First Segment of Hyperbolic Parallel Transport 
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Dan was the first to complete the entire transport, and when he saw the final segment was 

different from the first, he again expressed doubt in his first transport. The final segment being 

different reinforced his doubt about the first segment. He went back one more time and 

transported the initial segment. It again landed on the edge of his triangle. After looking at Carl’s 

figure he saw none of Carl’s segments landed on the triangle. Dan then decided to drag his initial 

segment ending with a configuration in which none of the segments landed on the triangle. After 

seeing a figure that looked closer to his expectation, he then moved to answer the question on 

what he noticed about the new segment. 

 Carl and Dan both wrote, “The two segments are not coincident.” They both rated 

themselves a 5 and Carl specifically said he was confident because he “performed all the steps 

correctly.” He was acknowledging that he was trusting the translation tool to work correctly. His 

confidence was coming from both his skill in using the tool as well as the accuracy of the tool. 

Carl had not dragged his image at all. Dan dragged it enough to force his second segment not to 

be coincident with the triangle. We see a shift upward in confidence from the previous prompt 

after being able to use the software. 

 After writing their responses, the students were asked to think longer about what they 

might notice. The two students then began different strategies. Carl began by talking about how 

hyperbolic geometry is defined, going back to the definition of hyperbolic geometry. Dan began 

by measuring angles using a wandering technique. He was looking for a relationship or pattern 

but did not yet have a conjecture (Figure 4.11). Carl decided to shift from his theoretical 

discussion to using the software. Specifically, he began adding extra lines to his diagram. In 

adding these lines, he eventually became lost due to complexity and began anew with a new 

document. Starting again, Carl used hyperbolic lines, rather than hyperbolic segments when he 
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completed the parallel transport. His figure is shown in Figure 4.12 with his transported lines 

shown as dotted lines for clarity. Carl is the only student in the study who extended the segments 

into lines. As he created this new version, he said to Dan, “I don’t know if this is actually going 

to do anything, but you know…”  

After finishing the construction with the lines, Carl began wander dragging the original 

line (segment) attempting to get the lines coincident saying out loud, “Is there even a way to get 

those to be, like, kind of coincident?” He had a goal, but he remained unsure if it was possible to 

get the lines coincident. As he dragged, he noticed that the angle between the first and last line 

(segment) visually stayed the same. This caused him to make a conjecture the two angles would 

always be equal. To validate this conjecture, he decided to measure the angle between the first 

line and the last transported line. He then dragged the initial line again to validate the angle 

stayed constant and noticed that the angle remained constant at 36.1045 degrees (Figure 4.13). 

This caused Carl to decide the lines will never be coincident. Notice the progression here. He 

began with wander dragging, not having a clear goal in mind. From his wander dragging, he 

formed the conjecture the angle will stay the same. He then measured to test that conjecture. It 

was not enough to see visually the angle does not change, he needed to see numerically that the 

Figure 4.11: 

Dan – Initial Wandering Measurement of a Hyperbolic Parallel Transport 
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angle does not change. He needed to validate his conjecture via a measurement and a validation 

drag. Once he saw the number was constant, it was enough for him to declare the angle is 

constant. 

 After realizing the angle does not change, Carl conjectured that the angle between the 

segments was directly related to the interior angle sum of the triangle. He proceeded to measure 

and add the three interior angles to validate his conjecture (Figure 4.14). Carl saw that the angle 

sum and the previously measured angle between lines (segments) added to 180 degrees. He 

proceeded to write down this observation. As Carl wrote down this claim, he did stop and go 

back to the software to do a validation drag before rating his confidence level. For this validation 

drag, Carl decided to change the triangle itself and not just the initial line (segment). Seeing the 

Figure 4.12: 

Carl – Hyperbolic Transported Segment with Extended Lines 

Figure 4.13: 

Carl – Hyperbolic Transported Segment with Extended Lines and a Single Measurement 
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numbers matched, he proceeded to rate himself a 5 for his confidence. Dan, who had been 

watching Carl, measured his own angles and rated himself a 4 stating that “I don’t know why it 

works, but it seems to hold true.” Dan indicated that he trusted their conjecture even though he 

did not have a logical reason for it to be true. 

 For the next part of the activity, Carl and Dan were asked to find the defect of the triangle 

and write what they noticed. Carl, realizing he had essentially done this, joked saying, “Jokes on 

you, we already did so.” He proceeded to rewrite his previous claim, only changing the wording 

to include the concept of defect, rather than angle sum. He again rated himself a 5. Dan, 

meanwhile, proceeded to use the software to measure the defect and then proceeded to wander 

drag his triangle while watching the defect change. He appeared to be looking for something 

additional to notice about the defect. When writing his claim, he wrote only about how the defect 

changes as the size of the triangle changes and rated himself a 5 using the software measurement 

as justification. He did not repeat his previous claim. 

Figure 4.14: 

Carl – Hyperbolic Transported Segment with Extended Lines and Multiple Measurements 
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 Carl and Dan were then asked to read the proof that the angle between segments matched 

the transported segment. Carl rated himself a 5 after reading the proof but wrote his confidence 

came from “modeling it in the software and dragging the points around.” Dan gave himself a 4 

writing the “formula [at the end of the proof] inspired great confidence,” but that the proof was a 

little difficult to follow. 

Regular Polygon Series of Tasks 

 Carl and Dan then proceeded to the regular polygon activity. In the first task, the students 

constructed the equilateral triangles in Euclidean space. Neither student measured, though Carl 

did a quick validation drag after the construction. Both rated themselves a 5 on confidence. Both 

students referred to the use of circles as part of their justification, with Dan specifically 

mentioning the circles were responsible for the segment lengths being congruent. Additionally, 

both students mentioned having learned this construction in class. 

 When constructing the regular quadrilaterals, both students constructed it by making 

three right angles and a circle to keep the segment lengths congruent (the same way Ann did 

earlier). After Carl finished his construction, he looked over to Dan and saw Dan also had 

finished. Dan had finished first and had erased his circle. Carl expressed concerned about Dan’s 

lack of circles and asked Dan how he guaranteed his segment lengths were the same. Dan 

proceeded to reassure Carl that he had used a circle to have congruent sides. When they reported 

their confidences, both students rated themselves a 5 with Dan mentioning his circles guaranteed 

segments of equal lengths and perpendicular lines guaranteed congruent angles. Carl just 

referenced his construction steps. 

 When they switched to hyperbolic geometry, both Carl and Dan created a hyperbolic 

triangle using the same construction as they did in Euclidean geometry. As he was adding the 
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last segment, Carl said “Since I do not, um, you know what, we’re just going to do this” as he 

began to measure the angles in his triangle. Carl was expressing doubt about his construction, so 

he turned to measuring angles. At the same time, Dan was also measuring his angles. Carl 

finished after Dan and suggested to Dan that they also measure their lengths as well. Both 

students rated themselves a 4, and both referenced the measurements from the software. Carl 

noted he would have been less confidant than a 4, but measuring the lines and angles made him 

“feel better.” Carl stated that being told his construction was right would raise his confidence. 

Dan said having angles adding up to 180 degrees would make him feel more confident. There 

was a shift in this activity as the students began taking measurements. For the Euclidean triangle, 

neither student measured angles or lengths. But in hyperbolic geometry, both students measured 

both angles and lengths. 

 The students were then asked if regular quadrilaterals exist in hyperbolic geometry. After 

a discussion, both students claimed they do not exist. In his written response, Carl referenced his 

geometry course where he learned about Lambert quadrilaterals having 3 right angles and an 

acute angle. This told him that four right angles would be impossible, but Carl hedged his claim 

by making a verbal claim that if they did exist, they would not have right angles. Carl rated 

himself a 2 on confidence, stating that “testing it out” would raise his confidence. Dan rated 

himself a 3 because “parallel lines and perpendiculars” are “distorted” in hyperbolic geometry. 

Like Carl, Dan wrote that attempting a construction would raise his confidence. As expected 

their confidence shifted downward for this prompt. 

 Carl and Dan were then asked to create a regular quadrilateral in hyperbolic geometry. 

Carl began by stating they should not be using the perpendicular tool as the quadrilateral cannot 

have right angles. Dan agreed, and after thinking for a few moments, suggested making a regular 
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triangle and then stacking another on top of it. Carl informed him this would make a rhombus 

and Dan abandoned his idea. Both students started constructing some circles. Both students 

started with a segment AB and added two circles creating the construction as seen in the left side 

of Figure 4.15. They both then add segment CD by connecting the points (on the right in Figure 

4.15). Despite telling themselves not to use the perpendicular tools, they inadvertently created 

perpendiculars, though neither had verbalized that fact yet. Carl then decided to add a midpoint 

to segment CD. When the midpoint appeared, it lined up perfectly with the intersection of 

segment AB and segment CD and Carl exclaimed, “Woah… that’s not where I was expecting 

that to be.” He then used a circle tool with the center at the intersection E to check whether it 

really was a midpoint (Figure 4.16). Satisfied it was a midpoint, Carl thought for a bit, before 

stating he had an idea. He extended segment AB into a line, creating E and G at the same time. 

He gave himself four points (D,C,E, and G) that were equidistant from the circle center E. He did 

not say he knew this would work, but his construction became purposeful as it was based on his 

unverbalized idea. As he began connecting those points, he said, “that does not look equilateral, 

but you know, sometimes geometry is weird sometimes.”  

While Carl created his quadrilateral, Dan was working independently adding multiple 

circles and segments in a kind of wandering construction. Not making progress, he eventually 

reverted to just two circles and two segments as in Figure 4.15. Like Carl, but not knowing Carl 

had done it, Dan decided to add a midpoint to segment CD just as Carl had. They shared this 

exchange when the midpoint appeared a 

Dan: “What? That’s also the midpoint?” 

Carl: “I know that struck me to my core…” 

Dan: “Yeah? 



 

91 

Dan then proceeds differently than Carl. Carl, wanting to test the midpoint, had added a 

final circle to make sure segment ED was congruent to segment EC. Dan used a measurement 

tool to check they were the same. As Dan did not have this additional circle, Dan used the points 

A, C, B, and D to construct a quadrilateral. Both students recognized the importance of the 

midpoint and used if for their construction. This implies a deductive rationale for at least part of 

their construction. 

Figure 4.15: 

Carl and Dan – Beginning Attempt of a Regular Hyperbolic Quadrilateral 

Figure 4.16: 

Carl and Dan – Later Attempts of a Regular Hyperbolic Quadrilateral 
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As both students now had quadrilaterals, both students began to measure their 

constructions. Dan began with angles and quickly realized the angles were different. Carl leaned 

over and suggested Dan add in the final circle that Carl had previously added. Carl finished 

measuring all the angles and all the sides and then proceeded to drag the construction all around 

the Poincaré disc doing a validation drag. Dan finished his new quadrilateral, removed the extra 

lines, but did not measure anything else. Instead, he did a short drag until the construction landed 

in the middle of the Poincare disc where it looked relatively square. Carl and Dan had two 

different approaches to their drag test. Carl dragged his construction into just about every 

configuration possible while making sure the measures stayed equal. Dan, who had not 

measured, dragged his image into a single configuration that looked square.  

Both students gave themselves a 5 in their confidence. They both cited their measurments 

of both angles and segments as justification their construction was correct. Dan verbally 

acknowledged he was using Carl’s measurements. Carl mentioned the use of the midpoint as 

important to his construction, but did not write specifically about why that was important, just 

that it was. After writing his response, Carl returned to Geometry Explorer to attempt a new 

simpler construction knowing the midpoint appears to be the important piece of the construction. 

However, his hestitancy to use the perpendicular tool prevented him from discovering a simpler 

version of his construction (the version Beth had created). 

Observed Shifts with Carl and Dan 

Carl and Dan maintained high confidences throughout both series of tasks with the 

exception of prompts P3 and R4. These two prompts were the conjecturing questions. When Carl 

and Dan were asked to think about what might happen, both students reported low confidence. 
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However, as soon as the students were able to work within the DGE, they once again reported 

high confidence levels. 

Despite their reported high confidences, there is evidence that their confidences shifted 

throughout the individual tasks themselves. For instance, when responding to prompt P4, Dan 

rated himself a 5 for what he noticed about the last segment. However, it is evident he had 

instances of low confidence when working on the task. When Dan was transporting the initial 

segment, he had an idea in his head of where the segment should land, and the initial transport 

did not land there. Further, he had predicted when he finished the transport that the first and last 

segments would be coincident, and they were not. This caused Dan to question whether he was 

doing the construction correctly. Because of this doubt, Dan went back and repeated the 

construction twice. In all instances, the first transported segment landed on the side of his 

triangle, and he expressed verbal hesitation whether he was doing his construction correctly. 

That doubt was overcome once Dan started dragging his image. Dragging his original segment 

moved all the segments off the triangle into a figure that more closely matched his expectation. 

This dragging gave him the confidence to accept that the segments were not coincident, and his 

construction was correct. 

As with Ann and Beth, there was also a noticeable shift in the type of justifications given 

by Carl and Dan when working in Euclidean versus hyperbolic geometry. When working on the 

regular polygons, both students gave deductive justifications for both the triangle and the square 

when working in Euclidean geometry. Yet, when the students moved to hyperbolic geometry, 

neither student offered deductive justifications. Their arguments shifted to purely inductive 

arguments based on their measurements taken within the software. 
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Lastly, there was also a shift in when Carl and Dan chose to use the tools. When working 

on the parallel transport in hyperbolic geometry, the students were asked what they noticed about 

the final segment. In answering this question, neither student used a measurement tool. They 

wrote what they saw, and they saw the segments were not coincident. This seemed to satisfy the 

two students. However, they were asked to think longer about what they might notice. Only after 

being asked to think longer did the students begin to use the measurement tools. 

Students Eve and Fran  

The third pair of students in this study were Eve and Fran. Eve was a senior math major 

while Fran was a senior math minor. Both students were going into education and both students 

had worked together previously for multiple projects in their geometry course. Eve was a hard 

worker who asked lots of questions during class. She was always excited to be in class, but she 

struggled with writing proofs. Fran was the quietest student in the geometry course. She had 

good ideas when she felt confident to speak, but she often struggled getting those ideas written 

down. 

Parallel Transport Series of Tasks  

For the first task of the parallel transport activities, Eve and Fran created two differently 

configured triangles and attached their segments going in different directions (Figure 4.17). They 

were both looking at their own screens and there was no verbal indication the different triangles 

were created purposely. After translating the segment, Eve commented verbally that the 

transported segment and the original segment “looked parallel,” and Fran gave a verbal assent. 

When they wrote their answers, Eve did not write about parallelism, but did write the segments 

were the same length. Eve rated herself a 4 noting that “Geometry Explorer did the work for us 

with accuracy.” To raise her confidence, Eve wrote she wanted “the correct answer given.” Fran 
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wrote the transported segment was translated. She did not mention length or parallelism, only 

that it had moved. She rated herself a 5. 

For the second part of the parallel transport activity, after Eve and Fran finished 

translating the segment, they both wrote that the first and last segment “are the same.” As 

justification, Fran wrote they look the same and Eve wrote, “the directions were clear, and it 

seems right to me.” Eve gave herself a 5 for confidence, and Fran gave herself a 4. Fran wrote 

her confidence would increase if she had measured the “angles and lengths to make sure they 

were the same.” 

For the third task, Eve and Fran were asked to predict what would happen with a parallel 

transport in hyperbolic geometry. The following conversation took place: 

Eve: “I think they’ll be the same. Well, I remember that in class it would look different… 

It might not look like…. 

Fran: It would look different, but it would still be the same? 

Eve: Because like for that, you could tell right away because they look parallel. But in 

hyperbolic geometry… 

Fran: But do you think they will still overlap? Like they are exactly on top of each other 

here. [points to screen in Euclidean geometry] Will they still in hyperbolic? 

Eve: What do you think? 

Figure 4.17: 

Eve and Fran – Initial Layout for Euclidean Parallel Transport 
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Fran: I get nervous when I disagree with you, but I don’t think that they will still be in the 

same location. 

Eve: Well, I’m just trying… do you remember the activity we did in class similar to this? 

I think it will be the same. 

From this conversation, Eve used previous knowledge, an external justification, for her 

claim. Eve was convinced that an activity from class was similar enough to this activity and that 

she learned from this class activity that the segments would be the same, even though they might 

“look different.” Fran was convinced the segments would be different but does not specify a 

reason verbally. She did specify that she gets nervous disagreeing with Eve. When writing their 

claims, Eve rated herself a 4 for confidence and referred to the similar class activity that she 

remembered. Fran rated herself a 2 and wrote that “hyperbolic changes a lot.” She saw the 

segments matched in Euclidean geometry and used this to reason that they would then be 

different in hyperbolic as hyperbolic would change how the segments move. This indicates Fran 

was using previous knowledge and a comparison to Euclidean geometry, but then made the 

opposite claim Eve made. To raise her confidence, Eve wanted to go back and look at the 

activity she had previously done in class. Fran wanted to see the figure “drawn in hyperbolic.” 

While Fran’s confidence shifted to a lower confidence, Eve’s reported confidence stayed high 

with a 4. Eve was one of only two students whose confidence remained above a 3 when 

responding to this prompt. 

Even and Fran then completed the transport in hyperbolic geometry. After she completed 

the transport, Eve expressed frustration seeing the segments were not coincident saying, “Aww 

man….I should have known I was wrong. You know what, it’s probably trying to remember the 

activity in class, it was probably a different shape. I might be wrong.” She was still holding firm 
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to the external justification, just rationalizing that her memory of the shape was wrong. Fran 

finished after Eve and agreed the segments were not the same. When writing down what they 

noticed, both students wrote the segments were not the same. Eve mentioned specifically that 

they do not overlap “according to Geometry Explorer.” She is using the construction tools of the 

software as a justification. Both rated themselves a 5 on this observation. 

After they wrote their claims, the researcher stepped in and asked them if they could 

think longer about what they might notice. Both students sat for a full minute before Eve asked 

Fran if she had any ideas. Fran shrugged and they both returned to the DGE. Fran then decided to 

measure the segments in a wandering manner. Meanwhile, Eve started exploring the menu 

system looking for an idea of what to do. After another minute, Fran had measured the first and 

last segment. Eve expressed frustration to Fran that she wished she could change the system back 

to Euclidean. Fran mumbled an assent, “mmm..hmm,” but did not volunteer her measurements 

with Eve. Eve continued exploring the menu, choosing an option to display “All Models” which 

gave her three different hyperbolic models, none of which were the Euclidean model she wanted 

or was hoping for (Figure 4.18). She switched back to the standard model after 30 seconds. Fran, 

in the meantime, had wander dragged the vertices of the triangle around the screen but still had 

not expressed either verbally or in writing her observation that the segment lengths match. Eve 

finally said, “I know they are the same length, but that they don’t overlap.” They both proceeded 

to write this claim. Eve rated herself a 4 stating that Geometry Explorer shows they are the same 

length. It is worth noting that Eve did not measure her segments. She may have been relying on 

Fran’s measurements, but it is not clear. Fran rated herself a 5 writing that her justification was 

that she measured them in Geometry Explorer. 
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The students then moved on to the next task by finding the defect of the triangle. After 

using the software to measure the defect, they noted their defect numbers were different. They 

wrote this down, and Eve also commented her defect was a small number. She rated her 

confidence a 2 stating that she does not “know the purpose of it [the defect].” Fran rated herself a 

5 but did not verbalize any reasons. This is the first prompt where Eve gave herself a low 

confidence.  

The researcher stepped in and asked the students to think longer about the question and 

how it might relate to the previous question. The students spent the next few minutes in 

discussion with each other rather than using their computer. After four minutes they decided that 

if the triangle defect is zero, like in Euclidean space, then the segments will overlap. As Fran 

began to write this down, she decided to test the idea in Geometry Explorer. She returned to the 

DGE and dragged the triangle to make the defect close to zero. She dragged to validate a claim 

she had made. After dragging the triangle so the defect was almost zero, she saw the segments 

overlapping. She rated herself a 3 for confidence and specified that Geometry Explorer showed 

Figure 4.18: 

Eve and Fran – Multiple Models of a Parallel Transport 
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her the segments overlap. Eve made the same claim with the same confidence level but justified 

her answer by referring to prior knowledge.  

Both students continued thinking about this question for another 10 minutes. At this point 

the students had been working for over 50 minutes, longer than any other group up until that 

point. As this was the last prompt before students were shown a proof that the defect matches the 

angle between the segments, the researcher made the decision to direct the students to focus on 

the angles, and specifically the measurement of the angles. This prompted Eve to start wander 

measuring all the angles looking for any pattern she could find while Fran watched her. After 

measuring all the angles, Eve noticed the angle between the segments matched the defect. Eve 

rated herself a 3 without giving a specific justification, though it was clear her justification was 

the relationship she saw when measuring the angles. Fran rated herself a 4 referencing Eve’s 

measurements as justification. 

After reading the proof, Fran gave herself a 1 for confidence, writing that it was hard for 

her to visualize so she did not “really understand what the proof was saying.” Eve gave herself a 

4 writing that the proof told her “she was right” and that the “argument helps my confidence”. 

She wrote that doing it again in Geometry Explorer would raise her confidence. 

Regular Polygon Series of Tasks 

Eve and Fran then began the regular polygons series of tasks. The first task was to 

construct an equilateral triangle in Euclidean geometry. As has been mentioned, this is a 

construction that was done multiple times in their geometry course. Both Eve and Fran initially 

expressed frustration at forgetting how to do it. Eve expressed this frustration aloud saying, “I 

can’t believe that I forgot it.” Both students began with a segment, but then appeared to get 

stuck. After thinking for a full two minutes, Fran remembered, “Wait, is this the one where you 
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had to do the circles?” This prompted their memories, and both proceeded independently to 

construct their triangles correctly using two circles with matching radii (Figure 4.19). Once they 

saw what appeared to be a regular triangle, they both proceeded to record their responses. 

Eve rated herself a 5, writing that she constructed it “using circles, which is used as a 

proof for regular triangles.” She also stated she had “previous knowledge about constructing 

regular triangles.” Her justification was a combination of deductive proof and external authority 

(previous knowledge). Fran rated herself a 4 and wrote about using circles “like we learned in 

class.” She continued writing, “it’s been a long time since she’s done it.” Fran was also relying 

on external authority (previous knowledge). She noted that measuring the side and angles would 

have increased her confidence to a 5. 

Eve and Fran were then asked to construct a regular quadrilateral in Euclidean geometry. 

Both students began by repeating the beginning of the construction for the equilateral triangle 

(Figure 4.19). Eve added to this figure by starting a circle with center at A, but then never 

finished the new circle as she realized using B, C, or D as a radius point would just give her the 

same circle. She then decided to create segment CD, followed by a circle with center C and 

radius AB, finally shaking her head, and undoing the last circle (Figure 4.20). Meanwhile, Fran 

added a vertical segment, and then four additional segments to create a rhombus. As Fran 

finished her rhombus, Eve looked over and expressed excitement before realizing the angles in 

Fran’s figure were not all congruent. Fran agreed with Eve and then deleted the segments that 

made the rhombus. 

 Eve went back to work on her screen and had a thought that maybe she could rotate her 

original segment AB by 90 degrees. She then attempted this via the menu, but after a few 

minutes of trying could not figure out how to get the software to do what she wanted. This was 
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the only instance where the software hindered an intentional act of the student because the 

student could not figure out how to use the software. Because she never figured out how to use 

the tool, Eve leaned to Fran and told Fran she wished she could have had her book. 

 Despite Eve not using the tool correctly here, there was a shift in strategy that is unique 

among the students in the study. Despite this being a construction task, Eve was attempting to 

use transformational geometry to construct her square. That is, rather than using the equivalent of 

the straightedge and compass, Eve was trying to use a rotation tool. This was not a typical 

construction tool, but it was an affordance of the software one does not have when using paper 

and pencil. 

Figure 4.19: 

Eve and Fran – Beginnings of a Regular Euclidean Triangle 

Figure 4.20: 

Eve and Fran – Attempt at a Regular Euclidean Quadrilateral 
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 While Eve struggled with the rotation tool, Fran slowly added elements to her 

construction as shown in Figure 4.21. Eve looked over and started laughing, saying, “that’s not 

right. I remember we didn’t do anything like that.” Eve very specifically said it is “not right” 

because it was not like what she did in class. Eve did not mention the angles, which were clearly 

not 90 degrees, or even the side lengths, which were clearly not equal. To Eve, this image was 

more complicated than what she remembered, and therefore “not right”. It was a justification by 

authority. Fran then reverted her construction all the way back to the original two circles and a 

segment. 

 After she critiqued Fran’s figure, Eve looked back at her own screen, and moments later, 

declared, “Oooh, I have an idea. OK, I remember, do you remember, this line, and we can 

make…I’m so happy…I think I’m getting there.” As she said this, Eve used the perpendicular 

tool to add perpendiculars at A and B giving her the Figure 4.22. Eve then slowed down as she 

thought how to finish her square. She finally settled on making a segment though the top point 

parallel to AB declaring “Yes, I got it.” Hearing excitement, Fran looked over to see what Eve 

was doing. Upon seeing what she believed to be Eve’s success, Fran asked how she did it. Eve 

responded by saying she did not have a formal proof, but “Geometry Explorer helps.” Eve 

started measuring to convince both Eve and Fran that her construction worked. She began by 

measuring the segment lengths. She measured both the top segment and the left segment and 

realized they did not match. The top segment was just a bit longer than the sides.  

They decided to stop and move on. They both wrote down they had not been able to 

construct a regular quadrilateral, and both rated themselves a 5 for their confidence. Both gave 

the same reason that the software showed them the sides were different lengths. This is the first 

instance where students rated themselves a high confidence in a negative outcome. That is, the 
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students were asked to construct a regular quadrilateral and they were unable to do so. Their 5 

represents confidence that they knew their construction was not correct, and they were sure their 

construction is not correct. 

 Both students then moved to the construction of a hyperbolic regular triangle. As 

expected, they both decided to try the same construction as in the Euclidean regular triangle. As 

soon as they finished their constructions, they both measured the side lengths and angles to 

validate their constructions were correct. Eve rated herself a 5 referring to the measurements 

from Geometry Explorer. Fran rated herself a 4 stating she was unsure if the definition of 

“regular” is the same in hyperbolic geometry. She was confident the angles and sides matched, 

just unsure if she understood the terminology completely. 

 The students were then asked if they thought regular quadrilaterals exist in hyperbolic 

geometry. Eve mentioned “prior knowledge” specifically mentioning the parallel transport where 

Figure 4.21: 

Fran – Further Attempt at a Euclidean Regular Quadrilateral 

Figure 4.22: 

Eve – Further Attempt at a Euclidean Regular Quadrilateral 
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these two students had discussed triangles having angle sums less than 180 degrees. She then 

used that point to argue the interior angle sum of a regular quadrilateral would be less than 360 

degrees. Based on that, she concluded regular quadrilaterals could not exist. Fran suggested the 

angles could not be the same “because the lines are all curvy.” Both Eve and Fran rated 

themselves a 3, writing the same reasons they stated out loud. Eve wrote her confidence could be 

raised if she had “more prior knowledge.” Fran wrote her confidence could be raised by 

“working it out.” 

 Eve and Fran both then proceeded to attempt the construction. It should be noted this is 

the only group that proceeded to the construction of the hyperbolic regular quadrilateral without 

first having successfully constructed the Euclidean regular quadrilateral. Eve and Fran took two 

different approaches to this construction. Eve attempted to copy her construction from Euclidean 

geometry, even though, as she stated out loud, she “knows it’s wrong.” That is, she started with 

segment AB, and created two perpendicular lines at points A and B (Figure 4.23). She also used 

circles to guarantee her vertical segments matched the base. However, she did the last step 

slightly differently. Referring to the left side of Figure 4.23, she added her last segment across 

the top by connecting G and H. In the Euclidean version, she instead created a parallel to AB 

through point C. Interestingly, had Eve connected G and H in the Euclidean version, she would 

have successfully created a square. It is unknown if this change was purposeful or not. However, 

in the hyperbolic, this construction still did not work, which Eve learned when she measured the 

segment lengths. The top segment was longer than the sides.  

After accepting her construction did not work, Eve attempted a second construction, 

ending with the right side of Figure 4.23. She measured the angles CAB and ACD and saw that 

they were different. She then proceeded to proactively drag her figure to get matching angles by 
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moving the highlighted circle seen in Figure 4.24. Her figure started with A and B as free points. 

Had she dragged either of those points, the angles would have changed as she was intending. By 

dragging the circle, a dependent object, she moved her figure, but the angles stayed constant. 

After she saw the angle remain constant, she moved her image back to its starting position. She 

finished by measuring the sides and saw that they matched.  

 Fran went in a different direction. She shifted to a strategy that no other student had yet 

done. Rather than attempt a formal construction, Fran began by ‘constructing’ her regular 

quadrilateral by just drawing four segments in a rough quadrilateral shape (Figure 4.25). After 

making the quadrilateral, she dragged A toward the edge of the disc and back, but then erased 

her figure. It is unclear what she was looking for when she dragged A towards the edge of the 

circle. She quickly gave up on that approach and proceeded to construct a figure similar to what 

Eve eventually settled on in Figure 4.23. Unlike Eve, Fran did not measure any sides or angles.  

 At this point, the researcher stepped in and told them it was OK to not successfully 

construct the quadrilateral. The two students had again been working longer than any other pair 

up until that point. They wrote down they could not construct a regular quadrilateral. Fran rated 

herself a 5 that her construction is not correct writing, “I’m sure I don’t know how.” Eve rated 

Figure 4.23: 

Eve – Attempts at a Regular Hyperbolic Quadrilateral 
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herself a 3 writing that she could not get the lengths the same. To raise her confidence, Eve wrote 

that she wished she could remember from her geometry course how to do it. 

Observed Shifts with Eve and Fran 

 When working on the regular polygon task, we saw a shift in strategy from Fran as she 

attempted to construct the regular quadrilateral in hyperbolic. For the previous three 

constructions, she approached the tasks in a comparable manner. She used the construction tools 

to create a constructed figure. But with the regular quadrilateral, Fran spent a few minutes seeing 

if she could draw a quadrilateral rather than construct a quadrilateral. In other words, before 

Figure 4.25: 

Fran – Drawing of a Regular Hyperbolic Quadrilateral 

Figure 4.24: 

Eve – Attempts to Make Angles Match in a Regular Hyperbolic Quadrilateral 
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trying to construct the figure, Fran spent a few moments exploring what the figure might actually 

look like. This was an expected strategy for the students to try, but Fran was the only student 

who tried it. Despite measurement tools, Fran did not measure sides or angles, so it remains 

unclear exactly how Fran used her drawing to help her. 

There was also a shift in tool usage that occurred in the regular polygon series of tasks. 

For the first three constructions, neither student dragged their constructions. They either based 

their answers on looking at the static figure or measuring the static figure. Even in the case of the 

regular quadrilateral in Euclidean geometry, when they saw they had not been successful, neither 

student dragged their image. It was not until creating the hyperbolic regular quadrilateral that 

both students dragged. Eve, for instance, saw that her angles were not congruent and decided to 

drag her figure to see if she could get congruent angles. Comparatively, when her sides were not 

congruent in Euclidean geometry, she did not use the dragging tool. 

Throughout the regular transport task, Eve reported high confidences of 4 and 5 until she 

got to the last prompt asking what she noticed about the defect. Even when she responded to the 

prediction prompt (P3), Eve reported a high confidence. Yet when she reported on the defect 

(prompt P5), she reported a 2 for confidence. The claim Eve was making was that her triangle 

defect was different than Fran’s triangle defect. Having measured the defect, Eve observed this 

difference clearly, and she still rated herself quite low for confidence. This indicates her 

interpretation of confidence had shifted from her confidence in the correctness of what she wrote 

to an interpretation of confidence about whether what she wrote was what the question was 

looking for. 
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Students Gary and Hal  

The next pair of students was Gary and Hal. Gary was a senior and Hal was a junior. 

Both students were math majors going into education. This pair, more than any of the others, 

worked most closely together throughout the semester. They were athletes together, and so they 

spent much time studying together as well as working on projects together. Gary was typically 

quiet during class, whereas Hal was more willing to take risks and ask questions during class.  

Parallel Transport Series of Tasks  

Gary and Hal started with the parallel transport activity in Euclidean geometry. After they 

both translated the first segment, Gary read prompt P1 asking what the students noticed about the 

segment, and Hal responded, “They are parallel and the same length.” Gary rated himself a 4 

writing “the angles may be different.” To raise himself to a five, Gary suggested “extending the 

lines to see if they get any closer together.” In other words, Gary knew parallel lines should not 

cross, but the short segment did not present enough length to see if they would cross. That Gary 

wants to ‘see’ whether the lines cross implies that Gary is thinking inductively based on his 

single image. Hal rated himself a 5 writing, “It’s a perfect translation, so my answer would make 

sense.” Rather than Gary’s inductive approach, Hal is focused on translations and the properties 

they preserve – parallelism and length. 

After finishing the parallel transport around the triangle, both students wrote the 

segments were the same. Gary wrote, “They line up perfectly” and Hal wrote, the segment 

“moved right back to the original exactly.” Both rated themselves a 5. 

 Both students were then asked to think about what would happen to the transported 

segment in hyperbolic geometry. They both decided the new segment would look different from 

the original segment. Gary mentioned how segments look different depending on where the 
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segment is within the circle, and Hal followed by implying the length stays the same despite how 

it looked. Gary mentioned, “it’s different the further in [the circle] you go.” Gary was referring 

to how segments lengths appear to change size as you move them from the edge to the center of 

the Poincaré disc. Hal agreed, pointing to his Euclidean triangle saying, “This line here [the 

segment] would look different over here.” Gary, who first suggested the idea the segments will 

appear to change size, rated himself a 5. Hal rated himself a 2, writing, “There is a possibility the 

segment would revert back to its original shape and angle.” Hal decided that while the segment 

may appear to change size as it moves, there is a chance it will return completely to its original 

size once it is back where it started. Hal wrote that “doing it on the computer” would increase his 

confidence.  

 Both Gary and Hal then proceeded to complete the transport in hyperbolic geometry. 

After completing the transport, both noticed the segment was “different.” Gary added that the 

“angle has increased from the original segment and the new segment appears to be slightly 

longer.” As seen in Figure 4.26, the angles to which he was referring are angle BAD and angle 

BAG. Hal wrote that the new segment was in a different position. Both rated themselves a 5 and 

gave single case inductive justifications for their responses. Gary wrote that “when you look at 

them, they do not match up” and Hal wrote “I can see that it is different.” 

 The students were then asked to find the defect of the triangle and write down what they 

noticed. After measuring to find the defect, Gary’s triangle had a defect of 41 degrees and Hal’s 

triangle had a defect of 27 degrees. Hal commented verbally and wrote that this is a big defect 

for a triangle, though he also wrote, “I am not quite sure what would qualify as a ‘large’ defect.” 

He rated himself a 2 and wrote that he would like more info on hyperbolic geometry. This is a 

shift in Hal’s reported confidence. For the previous prompt in hyperbolic geometry, Hal reported 
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a 5 for confidence. Yet, his confidence dropped dramatically on this prompt. It is especially 

noticeable as his partner’s confidence did not drop. Gary wrote that the “big” defect shows the 

“triangle is much different than its Euclidean counterpart.” Gary rated himself a 4 writing that he 

wanted to “prove what the defect means” in relation to this problem. 

 Before moving onto the proof, the researcher asked the students to think longer about 

what they might notice, and specifically to think about how the defect might relate to the parallel 

transport activity they had just completed. Hal, within a few seconds of the being asked to think 

longer, said, “I have a guess. I’m gonna see if, like, this angle [angle GAD] (Figure 4.27) is the 

same as the defect. It looks like it might be 27 degrees.” Hal then proceeded to validate measure 

his diagram. Gary watched him measure, saw the conjecture was correct, and then proceeded to 

measure his own diagram. Other than measuring the defect, this was the first instance that either 

of these students used the measurement tool. They had previously made their claims visually 

based on how the figure looked. Both students rated themselves a 5 for confidence writing that 

they measured their figures and the angles were equal. 

 Gary and Hal then proceeded to read the proof. After reading, they both rated their 

confidence a 4. Gary commented the proof is “full of information” but that parts “seem a little 

Figure 4.26: 

Gary – Hyperbolic Parallel Transport 
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confusing.” He wrote that his confidence would be raised if it was “dumbed down” and the 

“algebra explained more.” Hal wrote that “it seemed correct, but that there might be exceptions.” 

He wrote his confidence would be raised by “seeing a formal proof” and “more examples.” 

Regular Polygon Series of Tasks 

Gary and Hal then proceeded to the regular polygon series of tasks. As they were starting 

the regular triangle in Euclidean, Hal declared, “I remember how to do this,” and proceeded to 

construct an equilateral triangle. After watching Hal construct his first circle, Gary turned to his 

own computer and completed the construction as he remembered it. Hal finished first and started 

dragging the vertices of his construction to make it repeatedly bigger and smaller saying, “Here’s 

how we know. You know how we make these bigger?” He was doing validation drags to verify 

that it was indeed a correct construction. Gary finished and immediately measured his three sides 

as well as a single interior angle. His sides were congruent, and his measured angle was 60 

degrees. Hal leaned over and asked Gary, “Does yours do that?” This prompted Gary to do a 

drag test as well. When they wrote their responses, Gary mentioned his measurements of the 

lengths and angle. He also gave a partial deductive justification as well, mentioning the 

Figure 4.27: 

Hal – Hyperbolic Parallel Transport 
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“overlapping circles which shared the same length [radii]”. Gary mentioned his measurements as 

well as his memory of doing the construction in their geometry course. Both rated themselves a 5 

for confidence. 

 Gary and Hal then began constructing a regular quadrilateral. Both students started by 

creating a segment and placing circles at the end of the segments. Hal said verbally that he 

“needs to drop a perpendicular”, but he could not recall how. That verbal prompt caused Gary to 

erase his circles and use the perpendicular tools to create two perpendicular lines at the end of his 

segment. Hal looked over and saw the perpendiculars, causing him to ask Gary for help making 

the perpendiculars. After Gary helped him, Hal said, “Now we make the circles,” and proceeded 

to make circles at the ends of his segments (Figure 4.28). Hal then finished his regular 

quadrilateral with a segment across the top and did a verification drag to test his construction. 

Gary followed Hal’s lead and finished his construction though Gary chose to measure the left 

and top segments of his square to see that they were equal. He also did a verification drag. Gary 

rated himself a 5, writing a deductive justification that they used circle radii for equal sides and 

perpendiculars for right angles. Hal rated himself a 5 as well. Hal referred to both deductive 

justifications (common radii and constructing perpendiculars) as well as previous knowledge that 

he remembered from constructing the square in his geometry course. 

 Both students then proceeded to the construction of the regular triangle in hyperbolic 

geometry. As expected, both students used the same construction from Euclidean geometry. 

Gary then proceeded to measure his construction by measuring two sides and two angles, 

whereas Hal decided to drag his image around the screen. This was similar to the Euclidean case 

where Gary measured and Hal dragged. After he dragged, Hal mentioned he was not sure of the 

interior angles. He had used congruent radii for congruent lengths so he knew the sides were 
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congruent, but he was unsure equal side lengths implied equal angles. This was a shift for Hal. 

When doing the same construction for Euclidean, Hal did not mention the angles even though the 

construction steps were the same. Hal was about to return to the worksheet to check the 

definition of regular shapes, but as he reached for his packet he noticed Gary has measured his 

angles and this confirmed for Hal the angles were congruent. Hal stopped looking for the 

definition of regular polygons and proceeded to measure his own three angles to verify they were 

the same. Both students rated themselves a 5 mentioning the use of circles to create congruent 

segments and their measurements as justification for the angles. 

 The students were then asked about whether regular quadrilaterals exist in hyperbolic 

geometry. After a brief discussion, they both decided that regular quadrilaterals would not exist. 

Hal led the conversation making the argument that if you have two perpendiculars to the bottom, 

the top angles would be “way different.” As he made this argument, he did not use the software, 

but he did point at the screen and draw with his finger what he thought it may look like. Figure 

4.29 is an approximate representation of what he drew with his finger. His mental image 

convinced him it was impossible. Gary agreed with him. Hal rated himself a 4 writing down as 

his justification that the top angles would be less than 90 degrees. To raise his confidence, he 

Figure 4.28: 

Gary and Hal – Beginning of Regular Quadrilateral in Euclidean Geometry 
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wrote he would either like to try the construction or see a formal proof. Gary rated himself a 2 

for confidence writing that he was “unsure if this is correct.” Like Hal, he wrote that he would 

like to be able to prove or disprove it. 

 Gary and Hal then started on the construction of a regular quadrilateral. They began by 

repeating the construction they had used in the Euclidean case. Hal declared, “Woah, that’s wild” 

after adding his top line, clearly not expecting the top line to look the way it did (Figure 4.30). 

He immediately began to drag his image. Gary finished up, and he began to drag his image 

around as well. While Hal’s dragging had no discernable pattern, Gary seemed specifically 

trying to “square up” his image. He was trying to visually get all four sides to have the same 

length. This resulted in him ‘centering’ his image in the Poincaré disc. Gary was interrupted 

when Hal declared they should measure their figures. Gary then measured all the sides and all 

the angles of his figure. Hal proceeded to measure just the sides. In both bases, their 

measurements told them the sides and angles were not congruent. Rather than undo steps of their 

construction, they both decided to start a new document. 

 Hal’s second construction was based on an alternate idea for constructing the square. 

Rather than using two perpendiculars and two circles as they had just done. Hal decided to start 

Figure 4.29: 

Hal – Mental Image of What a Regular Quadrilateral Looks Like in Hyperbolic Geometry 

 

 



 

115 

with three perpendiculars and a single circle. Right before he constructed his third perpendicular 

(left side of Figure 4.31), he said out loud, “I don’t think they’re gonna touch.” He saw his 

prediction was correct after constructing the third perpendicular (right side of Figure 4.31). As 

with his previous attempt, this would have been a correct construction in Euclidean geometry, 

but in hyperbolic it does not work. Hal did begin to wander drag and found that by moving point 

B he was able to close his quadrilateral (Figure 4.32). However, he immediately recognized the 

new angle was less than 90 degrees. He used this to make the claim that you can only have three 

90 degree angles. Before writing this down, he did check this with a purposeful drag to see if he 

could make the fourth angle 90 degrees. He found that shrinking his figure got the angle close 

but not equal to 90 degrees. 

 Meanwhile Gary had been working on his second attempt. He eventually ended with a 

construction equivalent to his first construction but rotated 90 degrees. It is unclear if Gary 

realized his new figure was the same construction as his last. After two attempts, they agreed to 

write down that they had not constructed a regular quadrilateral, citing their measurements as 

Figure 4.30: 

Hal – Attempted Hyperbolic Regular Quadrilateral 
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justification their figures were not regular. They both rated themselves a 5 knowing their 

quadrilaterals were not regular. 

Observed Shifts with Gary and Hal 

 Gary had a noticeable shift between the two tasks in how he used the tools. When 

working on the parallel transport series of tasks, Gary did not use either of the measurement tools 

or the dragging tool. Gary made claims about lengths and angles, but these claims, in both 

Euclidean and hyperbolic, were either all made visually based on perception or made 

Figure 4.31: 

Hal – Second Attempted Hyperbolic Regular Quadrilateral 
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Figure 4.32: 

Hal – Closing His Hyperbolic Quadrilateral 
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deductively. This changed when Gary started the regular transport task. For the regular transport, 

Gary measured and dragged more than any other student except for Beth. Even if Gary made an 

initial conjecture deductively or based on perception, Gary chose to measure before he wrote 

down his final claim. 

 Hal had a noticeable shift in confidence between the two tasks. When working on the 

parallel transport tasks, there were two tasks where he reported low confidence. He reported low 

confidence when making a predication and then when he was asked to notice something about 

the defect. In the second instance, he made a claim, but his confidence reflected unsureness about 

whether it was the correct claim to be making. For the regular polygon series of tasks, however, 

Hal reported high confidence throughout the task. Even when he was not able to construct a 

regular polygon in hyperbolic geometry, Hal still reported a high confidence. He knew the 

answer was wrong, but he was confident it was wrong. 

Also, when working on the regular polygon series of tasks, there was a noticeable shift in 

how Hal justified his claims. In Euclidean geometry, Hal did validation drags of each of his 

shapes, but he did not take any measurements. It was not until Hal was working in hyperbolic 

geometry that he began taking measurements. It is worth noticing what Hal chose to measure. As 

per his written response, Hal knew the sides were correct as he used congruent radii. Because of 

that, he did not measure the sides. Rather he only measured the angles. This shift is more 

noticeable as his partner Gary was careful to take measurements of both sides and angles, even in 

the Euclidean constructions.  

Students Ivy and John 

The last pair of students were Ivy and John. This was the only pair where both students 

were math minors. Ivy was a senior and John was a junior and both students were going into 
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elementary education. John struggled throughout the geometry course but was a hard worker and 

would often come for help. Ivy was always a strong participant in class, though she also 

struggled. These students had worked together previously. 

Parallel Transport Series of Tasks  

Ivy and John began the first part of the parallel transport task by creating two triangles in 

Euclidean geometry. As John added the segment to be transported, he leaned over to Ivy asking 

“Which direction do you want to go?” John was ensuring their on-screen figures were roughly 

similar. Ivy agreed with this and made her figure in a similar manner (Figure 4.33). Both 

students wrote the segments were the same length and the angle was the same as well. John rated 

himself a 5 writing that “translations do not change the length or shape of something” and that “it 

just moves the object in a direction.” Ivy rated herself a 5 stating she was confident because 

“there’s no right or wrong answer about your noticings.” 

 Both students then proceeded to the next part of the task which was to finish the parallel 

transport. After seeing the segment return to its original position, both students commented the 

first and last segments were the exact same. John wrote the segments were the same length and 

angle, rating himself a 5, and again commenting that translations do not change shapes or angles. 

Ivy did not write about length or angle, only writing they were “the exact same.” She rated 

herself a 5 writing she was very confident because she “wrote what I saw.” 

 Ivy and John were then asked what they thought would happen to the transported 

segment in hyperbolic geometry. John began by discussing how the transported segments would 

be curvy. Ivy reminded him the triangle segments would be curvy as well. John “drew” the 

image on the screen with his finger to visualize what might happen. Ivy leaned over and added to 
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his image talking about how the curves might change direction as they transport. John eventually 

drew their combined mental image onto his worksheet (Figure 4.34). 

Both students wrote the transported image would not “land on itself” and that it would 

“curve in the opposite direction.” They both rated themselves a 3. Ivy wrote her confidence was 

low because it had been a while since she had done hyperbolic geometry and her confidence 

could have increased with “more practice.” John also rated himself a 3 writing he thought he 

“had the concepts of hyperbolic geometry down”, but that he would “have a hard time picturing 

which way the segment will curve.” He wrote his confidence would be raised by working with 

the software. 

 John and Ivy then were asked to try the parallel transport in hyperbolic geometry. As 

compared to the Euclidean case where John and Ivy purposely created similar triangles, this time 

there was no evidence they attempted to create similar figures. Ivy finished first, and while John 

was finishing his figure, Ivy began to drag her figure. She quickly tried making a bigger triangle, 

placing the three vertices near the edges. As she did this, John finished up and looked over to see 

what Ivy was doing. Ivy had her figure arranged as in Figure 4.35. She commented that the first 

and last segment were in fact curving in the same direction. John surmised that if the “triangle is 

Figure 4.33: 

Ivy and John – Similar Triangles for Parallel Transport 
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the same distance from the ends, it’s gonna change the angle and distance.” He saw that AD and 

AG looked like very different lengths. Ivy commented that this still does not explain why they 

are curving in the same direction. They then wrote down that their “prediction is wrong.” Before 

writing though, John made one more observation based on his image (Figure 4.36). Their short 

discussion is below: 

John: “Mine is at this weird point where mine looked like the same length, but if I move 

this point (A) they’re gonna change.”  

Ivy: “But they are, like, technically the same length.” 

John: “It just looks like they’re not the same length cuz hyperbolic is weird.” 

Figure 4.34: 

Ivy and John – Prediction of Hyperbolic Parallel Transport 

 

Figure 4.35: 

Ivy – Hyperbolic Parallel Transport 
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John saw in his image that the first and last segment appeared to be the same length. But 

he had also seen earlier that if the triangle vertices are near the edge of the disc, their lengths 

appear differently. Ivy reassured him that length stays the same and John accepted this. Ivy’s 

knowledge that transformations do not change length overrode John’s initial thought that length 

would change. Both students wrote that the segment stayed the same length, though the curve 

switched direction. They also both rated themselves a 5 with John mentioning his figure in 

Geometry Explorer and Ivy mentioning “it’s what she saw.” 

 The students were then asked to find the defect of the triangle. They both used the 

‘Defect’ menu option to measure the defect. John noticed and commented they have different 

defects, but also explained that was because they have different triangles. Ivy then started to 

measure the individual angles in the triangle and John asked, “Wait, are you going to do them all 

separate?” Ivy responded, “I kind of want to”. She was hesitant about using the ‘Defect’ menu 

option. This was likely because during her geometry course when discussing defect, we had 

measured the angles individually rather than using the tool. She was validating that the ‘Defect’ 

Figure 4.36: 

John – Hyperbolic Parallel Transport 
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menu tool does what she thought it would. Both she and John proceeded to measure the 

individual angles and computed the defect by hand.  

After checking that the measurement from the ‘Defect’ menu option matched their 

computation, John asked Ivy what they noticed. Ivy suggested that if you flatten the triangle, the 

defect goes to zero showing John how this worked in a validation drag. She noted that she cannot 

shrink the defect past 0.02 as the software will not let her make the triangle completely flat. They 

both wrote how the defect got closer to zero as the triangle got closer to a line. Both rated 

themselves 3. Ivy wrote that her confidence was lower because she did not remember much 

about defect. John wrote that he had “little knowledge of why the defect would go down.” To 

raise their confidence, both wrote they would like to learn more about defect. 

 Before the students read the proof, the researcher asked the students to think longer about 

what they might notice, and specifically about how defect might relate to the parallel transport 

activity they had just completed. John began to wander measure various angles around the 

outside of the triangle. He started by measuring angles clockwise around the triangle (Figure 

4.37). He eventually measured angle GAD and exclaimed, “Woah! That’s cool” as he noticed the 

angle matches the defect. He shared that info with Ivy saying, “See what all that measuring did!” 

Ivy then measured her angle to verify that the relation held true for her figure as well. Both 

proceeded to write down that observation. Trying to relate her answer to her previous claim, in 

addition to writing the defect matches the angle, Ivy also pointed out how the segments coincide 

as the defect goes to 0. Both also drew images of their triangles on the paper labeling the defect 

and the angle measurement. They both rated themselves a 4 citing their measurements, and they 

both wrote they need to learn more about defects to raise their confidence. 
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 John and Ivy then proceeded to read the proof. John read the entire proof out loud. When 

he was done, John decided to substitute his specific angles into the equations at the end of the 

proof to see if those equations held true. When he rated his confidence, he rated himself a 4 

citing that plugging the numbers into the formula and seeing it ‘work’ gave him confidence. Ivy 

rated herself a 1 writing that “parts of the proof are confusing to me” and that it “would help if I 

got to practice the proof on my own.” 

Regular Polygon Series of Tasks 

 John and Ivy then started the series of regular polygon tasks. The first activity in this task 

was to create a regular triangle in Euclidean geometry. Ivy remembered the “circle trick” from 

her geometry course and quickly created the construction. John heard her mention the circle trick 

and then constructed his own equilateral triangle. They both wrote that they successfully created 

the regular triangle using the circle method. They also both rated themselves a 5 writing that they 

had used that technique in class. 

 The two students then proceeded to start the construction of a regular quadrilateral in 

Euclidean geometry. Ivy used a construction with two perpendicular lines and two circles so that 

Figure 4.37: 

John – Wander Measures on Hyperbolic Parallel Transport 
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each side of the square would match the base (left side of Figure 4.38). After she finished her 

construction, Ivy measured the two top angles to ensure they were 90 degrees. She did not 

measure the bottom angles, indicating she trusted they were perpendicular as she used the 

perpendicular tool. She also measured the side lengths and the top to ensure they were equal. 

This indicates she already knew that the sides matched the base. Meanwhile, John constructed 

his figure (right side of Figure 4.38). John constructed point C as the midpoint of A and B. Then 

perpendiculars were created at A, B and C. Finally, he placed point D on the perpendicular 

through A guessing on the vertical distance. When Ivy finished her construction, she saw what 

John was doing and suggested he start over. Before he started over, he claimed he was “close.” 

She then walked him through the construction she made. On the worksheet, they both claimed 

their constructions were correct. John mentioned using the perpendicular tool and circles. Ivy 

mentioned the measurements that she took. They both rated themselves a 5. John mentioned they 

“practiced with this in class” and Ivy wrote that she was confident “because this is fun to me.” 

 John and Ivy were then asked to create a regular triangle in hyperbolic geometry. As 

expected, both students recreated their construction from Euclidean geometry. Without 

discussing it, John immediately measured the three side lengths and Ivy immediately measured 

the three angles. Ivy then wrote that she was able to construct a regular triangle, rating her 

confidence a 5 stating she was confident because she measured. John was about to write his 

answer, but then decided to also measure two of the three angles to be sure. He also rated himself 

a 5. He wrote he measured to “double check” the angles and segments were the same – a clear 

indication it was validation measurement. 

 The two students were then asked about whether regular quadrilaterals exist in hyperbolic 

geometry. Ivy initially responded verbally that she vaguely remembered this from her geometry 
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course. John agreed and claimed to remember writing about it for one of his projects. Though 

these students did not study regular quadrilaterals in their course, this mistaken memory was 

enough to give them confidence that regular quadrilaterals exist. John rated himself a 5 and Ivy 

rated herself a 4. 

 Both students then attempted to recreate their construction from Euclidean geometry. In 

doing so, they both inadvertently created Saccheri quadrilaterals, rather than regular 

quadrilaterals (Figure 4.39). They had three sides that matched and two perpendiculars at the 

base, but the top angles were not right angles, and the top segment was longer. After they made 

their figures, both students measured all four sides, after which Ivy declared it “didn’t work.” 

John tried dragging different vertices of his figure to see if that would have any effect on the side 

lengths, and while the numbers changed, it was always three equal sides and one that was 

different. While John dragged, Ivy decided to measure a single base angle, one of the 

perpendiculars she had constructed. Both of their measurements and John’s dragging were 

enough for the students to decide hyperbolic regular quadrilaterals do not exist. John wrote that 

only three sides were equal, rating himself a 5 that they do not exist. Ivy wrote that “all the 

Figure 4.38: 

Ivy and John – Constructions of Regular Euclidean Quadrilaterals 
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angles were the same, but one of the lines was longer than the other three.” She also rated herself 

a 5. 

 The researcher then prompted the students to think longer about the question, suggesting 

they go back to the previous activity about regular triangles to see if there was something they 

might learn from that. Ivy went back to the triangle she had constructed and stated, “there is 

nothing left to measure.” She asked John, “What’s interesting?” Not giving John a chance to 

answer, she answered her own question stating, “Is it that the angles don’t add up to 180 

degrees? Because we already knew that.” She then realized that the regular quadrilateral “might 

not be 360.” John then agreed the angle sum cannot be 360 and points out this means they cannot 

use perpendiculars. They both then try to think back to class, convinced they had previously 

done this during their class with John saying, “There was a way to do it, and we learned it in 

class.”  

Ivy’s next attempt was to create two regular triangles on top of each other as in Figure 

4.40. After she saw her construction, she validated measured all four sides and proudly declared, 

“I figured it out!” Despite her declaration, she proceeded to measure the angles and realized the 

Figure 4.39: 

Ivy – First Attempt at Regular Hyperbolic Quadrilateral 
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angles did not match. John, meanwhile, decided to keep adding circles and segments until he 

found something that looked roughly like a regular quadrilateral (Figure 4.41). At various times, 

he measured sides and angles to check, but he remained unsuccessful. Eventually, John and Ivy 

decided to maintain their original written claim that regular quadrilaterals do not exist. 

Observed Shifts with Ivy and John 

Ivy was unique among the students with her interpretation of confidence. For the parallel 

transport activity, when Ivy was in Euclidean geometry, she rated herself 5 for confidence and 

wrote she was confident “because there is no right or wrong answer about your noticings.” She 

also wrote she was confident because she “wrote what she saw.” However, when she switched to 

a hyperbolic parallel transport, her confidence and comments shifted. Now she started reporting 

2s and 3s writing, “I haven’t done anything in hyperbolic geometry” and “I just learned what a 

defect is.” Despite her earlier writings that there is no right or wrong answer when “noticing”, in 

hyperbolic she rated herself lower even when the question asked her to notice. 

 When working on the parallel transport task, Ivy’s reported confidence remained 

relatively high with 4s and 5s, but there was a shift in the type of written comments she made. 

When working in Euclidean geometry, she wrote statements saying she was confident because “I 

Figure 4.40: 

Ivy – Second Attempt at Hyperbolic Regular Quadrilateral 
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like to make triangles” and “this is fun to me.” Once Ivy switched to hyperbolic geometry, 

however, she wrote she was confident because “I measured” and because “I know the definition 

of a regular shape.” Her reasons for confidence shifted from a more general self-efficacy to 

specific confidence about the claim itself that she was making. 

 John had a noticeable shift in the types of justifications he made between the two tasks. 

When working on the parallel transport, John made the most deductive arguments of all the 

students in the study. This is especially noticeable as this series of tasks had the least number of 

deductive arguments being made. However, when John switched to the regular polygon series of 

tasks, John’s arguments switched away from deductive. This is opposite from most other 

students. When working on the regular polygons, John did not give any deductive justifications 

either verbally or on paper. Rather his deductions were mainly single case inductive arguments 

or arguments based on previous knowledge. This is not to say John did not know any deductive 

justifications, only that he did not express those justifications.  

  

Figure 4.41: 

John – Continued Attempts at Hyperbolic Regular Quadrilateral 
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CHAPTER 5: RESULTS 

 This chapter presents on the findings from the data as they relate to the research 

questions. The first half of the chapter presents the data in a tabular method as it relates to the 

research questions. The second half of the chapter presents individual and pairwise observations 

that focus on the individual students. In both halves, focus will be given to what features of the 

DGE students are using, what justifications students are using, and how students are self-

reporting their confidence when completing DGE related tasks in Euclidean and hyperbolic 

geometry. Additionally, these three factors are matched pairwise to answer the fourth research 

question about relationships that exist among the three factors being studied. 

The students responded to a series of 11 prompts across two series of tasks. Six of those 

prompts were from the parallel transport task and five of those prompts were from the regular 

polygons task. For two of these prompts (P4 and P5), some of the pairs were asked to think 

longer about the questions, and to provide an additional, secondary response to the original 

prompt. This occurred when the students recorded a basic response to the question. As an 

example of what might be considered a basic response, consider the response given by Eve and 

Fran in the parallel transport task, responding to what they noticed about the transported segment 

in hyperbolic geometry (prompt P5). Eve and Fran both responded that the transported segment 

is “not the same” as the original segment. After Eve and Fran wrote their response for this 

prompt, they were asked to think longer about this question so that they might give a more 

specific answer. Because of these interventions, this resulted in some pairs responding to a total 

of 13 prompts, compared to the original 11. When counting total responses (including the 

additional responses), this resulted in the 10 students giving a total of 120 responses.  
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Research Question One - Tool Usage of DGE When Completing DGE Related Tasks 

 The three main features of DGE observed in this study include the dragging tool, the 

angle measurement tool, and the length measurement tool. While DGE has a wide variety of 

available tools, the two measurement tools and dragging tool are the three main tools that 

distinguish DGE use from that of traditional paper-based geometrical activities. These tools 

reorganize, rather than amplify, what students can do on paper (Pea, 1987). Of the thirteen total 

prompts, there were ten prompts, including the two ‘think longer’ prompts, (P4.5 and P5.5) that 

reasonably allowed for students to make use of the measurement and dragging tools. Of the 

original ten prompts, there were two prompts that asked students to make a conjecture about 

what they think might happen when they use the software. As such, these questions did not 

warrant the use of the DGE. Additionally, there was one prompt asking students to read a proof. 

This prompt also did not immediately warrant the use of DGE, though it did not specifically rule 

it out. Removing those three prompts, and including the two ‘think longer’ prompts, the prompts 

provided 90 responses where students had potential reason to use the tools of the DGE. Fifty of 

those responses were for the parallel transport task and forty were for the regular polygon task.  

For the following counts, the number of times a student used a given tool was not taken 

into consideration. Rather it was whether the student used the tool at least once when responding 

to the prompt. If a student measured one or five lengths, it was still only counted once to indicate 

the student used that tool. Likewise, if a student was dragging, the number of drags was not 

being counted. Rather it was recorded that dragging took place. 

For the parallel transport task, the results showed the angle measurement tool was used to 

help answer 12 of the 50 responses, and the length measurement tool was used to help answer 3 

of the 50 responses (Table 5.1). From this, we saw that during this task students more often used  
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the angle measurement tool than they did the length measurement tool. There are two reasons for 

this. The first reason for greater angle measurement was the nature of the task itself. By the end 

of the task, students were being asked to find the defect of the triangle and see what they noticed. 

As defect is related to angles, this prompted the students to turn their attention to the angles in 

the figures which naturally caused the students to measure the angles more.  

Table 5.1: 

 

Number of Responses in Which Students Used the Measurement Tools 

 

Angle Measurement in Parallel Transport Task 

 Wandering Validation Wandering & Validation Total 

Euclidean 0 2 0 2 

Hyperbolic 5 5 0 10 

 

Angle Measurement in Regular Polygon Task 

 Wandering Validation Wandering & Validation Total 

Euclidean 0 6 0 6 

Hyperbolic 0 16 1 17 

 

Length Measurement in Parallel Transport Task 

 Wandering Validation Wandering & Validation Total 

Euclidean 0 0 0 0 

Hyperbolic 0 3 0 3 

 

Length Measurement in Regular Polygon Task 

 Wandering Validation Wandering & Validation Total 

Euclidean 0 8 0 8 

Hyperbolic 1 12 3 16 

 

Note: ‘Wandering’, ‘Validation’, and ‘Wandering & Validation’ are distinct categories. In 

other words, ‘Wandering’ would mean the student in that response only used a wandering 

measurement, whereas ‘Wandering & Validation’ would mean the student used both types of 

usage.  
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The second reason for the greater number of angle measurements was students’ 

understanding of how transformations work. Students learned in their geometry class that 

transformations in Euclidean geometry preserve lengths and angles. When completing the task, 

students saw they were transporting a single segment. As such, some students correctly assumed 

the length of the segment would be a preserved property and did not have incentive to measure 

the length of the transported segment. As an example, when Ivy was asked what she noticed 

about the final segment in hyperbolic geometry (prompt P4), she argued that even though the 

lengths looked different, translations preserved length. Because she knew this, Ivy did not have a 

need to measure. Thus, even before students were later asked about defect, these students were 

measuring angles at a greater rate than lengths. 

For the regular polygon task, the results showed the angle measurement tool was used to 

help answer 23 of the 40 responses and the length measurement tool was used to help answer 24 

of the 40 responses (Table 5.1). Despite fewer prompts, the regular polygon series of tasks had 

more prompts with instances of measurement tool usage than the parallel transport series of 

tasks. The angle and length measurement tools were roughly equivalent in their usage. There 

was, however, a large difference between Euclidean geometry and hyperbolic geometry in the 

number of prompts where students used measurement tools. Of the responses where students 

were using a measurement tool, 33 of the instances were in hyperbolic geometry, while only 14 

were in Euclidean geometry. This difference was to be expected based on how hyperbolic 

geometry appears to distort angles and distances causing uncertainty within the students. 

From Table 5.2, the results showed the dragging tool was used to help answer 15 of the 

50 prompts in the parallel transport task and 18 of the 40 prompts in the regular polygon task. 

Consistent with the measurement tools, there were more prompts in the regular polygon series of  
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tasks where students dragged, despite the regular polygon series of tasks having fewer prompts 

than the parallel transport task. Also consistent with the measurement tools, of the 33 responses 

where students used dragging, 27 of those responses occurred within hyperbolic geometry, with 

only six responses in Euclidean geometry. 

 In addition to looking at how often students used the three tools, tallies were also 

completed to see how the students used the three tools. While research has been done dividing 

dragging and measurement modalities into a multitude of smaller categories (Baccaglini-Frank & 

Mariotti, 2010; Olivero & Robutti, 2007), this research simplified those categories into two 

broad categories of wandering and validation usage. While there were instances of students using 

the tools in both types of usage, the results showed most tool usages were for validation purposes 

(Table 5.3). This was especially true in Euclidean geometry where there were no instances of 

Table 5.2: 

 

Number of Responses in Which Students Used the Dragging Tool 

 

Dragging in Parallel Transport Task 

 Wandering Validation Wandering & Validation Total 

Euclidean 0 1 0 1 

Hyperbolic 5 3 6 14 

 

Dragging in Regular Polygon Task 

 Wandering Validation Wandering & Validation Total 

Euclidean 0 5 0 5 

Hyperbolic 6 7 0 13 

 

Note: ‘Wandering’, ‘Validation’, and ‘Wandering & Validation’ are distinct categories. In 

other words, ‘Wandering’ would mean the student in that response only used a wandering 

measurement, whereas ‘Wandering & Validation’ would mean the student used both types of 

usage.  
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wandering tool usage. As students were more familiar with Euclidean geometry, it was expected 

wandering tool usage would be minimal. Another factor for validation tool usages to outnumber 

wandering tool usages was due to the follow-up nature of wandering dragging. In the instances 

where students did wandering dragging, this was often followed up with validation 

measurements or drags to validate their conjecture. Because most wandering drags were paired 

with a validation tool usage, this follow-up approach contributed to a high number of validation 

usages.  

 In summary, the results showed that students used all three tools for both series of tasks, 

but that students used the three tools to answer more prompts in the regular polygon series of 

tasks than they did the parallel transport series of tasks. The data also showed, as expected, 

students used the three tools to answer more prompts in hyperbolic geometry than they did 

Euclidean geometry. Lastly, for these series of tasks, students were using the three tools more 

often in a validation mode as compared to a wandering mode.  

 

Table 5.3: 

 

Number of Responses in Which Students Used Validation and Wandering Tool Usages 

 

All Tool Usage 

 Wandering Validation Wandering & Validation Total 

Euclidean 0 22 0 22 

Hyperbolic 17 46 10 73 

Total 17 68 10 95 

 

Note: ‘Wandering’, ‘Validation’, and ‘Wandering & Validation’ are distinct categories. In 

other words, ‘Wandering’ would mean the student in that response only used a wandering 

measurement, whereas ‘Wandering & Validation’ would mean the student used both types of 

usage.  

 

 



 

135 

Research Question Two – Justifications Used When Completing DGE Related Tasks 

Of the eleven initial prompts that were posed to students, one of them did not require a 

justification. Specifically, the parallel transport task P6 asked students how confident they were 

after reading a proof. As the task had students reading a proof as justification, students would not 

be giving their own justification. Removing that prompt gives 100 responses where students 

were asked to give a justification for the claims they were making. Additionally, there were two 

of these eleven prompts that asked students to make a prediction about what may happen. 

Specifically, prompt P3 asked students what they thought would happen to the final segment in a 

hyperbolic parallel transport and prompt R4 asked students if they thought a regular quadrilateral 

was possible in hyperbolic geometry. By the nature of these two questions, students were not 

using the DGE and would not have provided inductive justifications. As such, these questions 

were removed from the analysis. Taking out these two prompts leaves 80 prompts where 

students could have reasonably given any of the five justifications. Lastly, there were instances 

where students’ original responses to a prompt were either overly general or did not ready the 

student for the next part of the task. For instance, in the parallel transport task, when responding 

to prompt P4 asking what they noticed after a hyperbolic parallel transport, Eve responded by 

noting “the first and last segment are not the same line.” This prompted the researcher to ask the 

students to think longer about the question. With additional prompts by the researcher, there 

were a total of 90 responses.  

As specified in Chapter 3, justifications were coded into five categories: previous 

knowledge, Euclidean comparison, single case inductive, multiple case inductive, and deductive 

arguments. Many of the responses contained more than one type of justification, either written or 

given orally as students discussed their work. From Table 5.4, of the justifications given for the  
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90 responses, 80 of those responses contained inductive justifications, with 48 single case 

inductive justifications and 32 multiple case inductive justifications. Because students were using 

a DGE, the high number of inductive justifications was expected. However, since students had 

the dragging tool available, it was not expected to see single case inductive arguments more 

prevalent than multiple case inductive arguments. Of the 80 responses with inductive arguments, 

12 of those responses also included a deductive justification, 5 referenced previous knowledge, 

and 1 response had a specific Euclidean comparison. So, while there were some instances of 

multiple justifications when making inductive arguments, most inductive arguments were made 

in isolation. 

There were 10 responses that did not include inductive justifications. Of those 10 

responses, 4 included only deductive justifications, 1 referenced previous knowledge, and 5 were 

Table 5.4: 

 

Justifications Given by Students for Each Prompt 

 

Prompt Geometry 

Single Case 

Inductive 

Multiple 

Case 

Inductive Deductive 

Compare to 

Euclidean 

Previous 

Knowledge 

P1 Euclidean 8 2 4 0 0 

P2 Euclidean 9 1 1 0 0 

P4 Hyperbolic 4 6 2 0 0 

P4.5 Hyperbolic 2 2 0 0 0 

P5 Hyperbolic 3 5 0 0 1 

P5.5 Hyperbolic 7 1 0 0 0 

R1 Euclidean 2 2 8 0 8 

R2 Euclidean 5 1 5 0 2 

R3 Hyperbolic 7 3 1 1 0 

R5 Hyperbolic 1 9 0 0 0 

Total  48 32 21 1 11 

 

Note: There are more justifications than responses as some responses included multiple 

justifications. 
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a combination of deductive justifications while also referencing previous knowledge. Overall, 21 

of the responses included a deductive argument of some sort. Of those 21 responses, 18 of those 

deductive justifications occurred within Euclidean geometry. Moreover, 13 of these 21 deductive 

arguments occurred when constructing both the regular triangle and regular quadrilateral in 

Euclidean geometry. In hyperbolic geometry, the construction for the regular triangle is the same 

and the deductive reasoning is the same, yet only one student mentioned a deductive justification 

for their construction. While it is possible students may not have recognized the similarity and 

not determined any deductive justifications, it is also possible students thought the similar 

reasoning was not worth repeating from the Euclidean case.  

In summary, these students overwhelmingly used inductive arguments when completing 

DGE related tasks. We also saw that even with dragging as a tool, students more often relied on 

single case inductive arguments. There were also very few comparisons to Euclidean geometry 

or references to previous knowledge. Lastly, students gave more deductive justifications in 

Euclidean geometry than they did in hyperbolic geometry. 

Research Question Three – Students’ Self-Reported Confidence When Completing DGE 

Related Tasks 

 When responding to each prompt, students were asked how confident they were in their 

response to the prompt by rating themselves on a five-point Likert scale with 1 = “not 

confident,” 2 = “somewhat not confident,” 3 = “neutral,” 4 = “somewhat confident” and 5 = 

“very confident.” As in the previous sections, the prompts discussed here are limited to the 

prompts that involve DGE use. In total, that narrows the list to the 90 prompts where students 

reported confidence related to their justification when using DGE. Of the 10 students, one 

student, Ivy, had a unique interpretation of confidence. She interpreted confidence to mean her 
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general confidence about mathematics rather than confidence about the specific prompt to which 

she was responding. For instance, when working on the regular triangle, she rated herself a 5 on 

one prompt because “it is fun to me” and a 5 on a different prompt because “I like to make 

triangles”. While her interpretation was interesting, these responses did not fall in line with the 

other 9 students who were rating their confidence in relation to their answer and their 

justification for that answer. Removing Ivy’s responses gave 81 responses for which this analysis 

will be based. 

 Of these remaining responses, the raw numbers are reported in Table 5.5. The results 

showed that 90% of responses were “somewhat” and “very” confident. In Euclidean geometry, 

100% of response were either “somewhat” or “very” confident. In hyperbolic geometry, the 

results showed that confidence had decreased slightly. Only 82% of responses were “somewhat” 

or “very” confident. There was also a difference between the two tasks themselves. In the 

parallel transport task, 84% of the responses were “somewhat” or “very” confident compared to 

97% of responses being “somewhat” or “very” confident in the regular polygon task. 

 The difference between Euclidean and non-Euclidean geometry was not surprising. As 

has been mentioned, we know from the VanHiele levels (Burger & Shaughnessy, 1986) that 

students struggle with reasoning in non-Euclidean axiomatic systems. We also know that the 

nature of non-Euclidean geometry provides its own challenges in how angles and segments 

appear. Because of this, there was a general hesitancy among students when in hyperbolic 

geometry. For instance, when working on the parallel transport task in hyperbolic geometry, Ann 

used the software and measured the initial and final segment, noting they were the same per the 

measurements given by the software. Yet, when rating her confidence, she rated herself a 3 
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writing that “she thinks [emphasis added] they are the same.” Comparatively, in Euclidean 

geometry, after transporting the initial segment and without measuring, Ann wrote they were the 

same length, and rated herself a 5 without measuring. In hyperbolic, Ann had software telling her 

they were the same and her confidence was reported as a 3. In Euclidean, without software 

confirming her response, she rated herself a 5. Furthermore, when working on her hyperbolic 

regular quadrilateral, Ann even said specifically, “the numbers tell me it is correct, but I am 

skeptical.”  

The results also showed the reported confidence was much higher in the regular polygon 

task than it was in the parallel transport task. This most likely stems from the tasks themselves. 

The construction tasks had very clear goals – that of making a figure. It was straightforward for 

students to verify whether their construction was regular or not – especially when having tools 

available to make measurements. As such, students were able to report their confidence in both 

the positive and the negative based on those measurements. For instance, Fran reported a 

Table 5.5: 

 

Reported Student Confidence Categorized by Type of Geometry and by Task 

 

 

Overall 

(n = 81) 

Euclidean 

(n = 36) 

Hyperbolic 

(n = 45) 

Parallel 

Transport 

(n = 45) 

Regular 

Polygon 

(n = 36) 

Very Confident (5) 67% 81% 56% 56% 81% 

Somewhat Confident (4) 24% 19% 27% 29% 17% 

Neutral (3) 6% 0% 11% 9% 3% 

Somewhat Not Confident (2) 4% 0% 7% 7% 0% 

Not Confident (1) 0% 0% 0% 0% 0% 

Note: These 81 responses do not include Ivy’s responses.  
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confidence level of 5 on constructing the regular polygon in hyperbolic geometry noting 

specifically that she did not create one. On the other hand, the parallel transport task was more 

open ended. When asking students “What do you notice about…,” students often gave a 

statement that was justified through software measurement and/or dragging but was 

accompanied with a low rating for confidence. For instance, when looking at defect in hyperbolic 

geometry, John noticed that as the defect approaches 0, the first and last segment “fall onto each 

other” (i.e., the triangle collapse) and he rated himself a 3. It is not clear from his written 

response or his conversation whether his rating was due to hesitancy about the correctness of his 

observation itself or hesitancy about whether it was the correct observation. This issue of two 

interpretations of confidence will be discussed further in Chapter 6. 

In summary, students generally reported high confidence throughout both activities. 

However, their reported confidences were higher when working in Euclidean geometry as well 

as when they were working on the regular polygon task. Additionally, there are instances where 

students appeared to be using slightly different interpretations of what confidence means. 

Research Question Four - Relationships 

 This next section addresses the fourth research question – the relationships that exist 

among the three previously discussed factors. This section is broken into three sub-sections 

which will match the factors pairwise. There will also be a final section where all three factors 

will be considered at one time. 

Justification and Confidence 

 The first relationship to be addressed is that of confidence and justifications. As stated in 

the previous section on confidence, Ivy had a unique misinterpretation of confidence, so for this 

section as well, her results will be omitted. It was reported in the previous section that students 
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overwhelmingly gave inductive justifications. In particular, 80 out of 90 justifications as 

originally reported included inductive justifications, or 72 out of 81 once Ivy is removed. For 

these 72 remaining inductive justifications, the average reported confidence was a 4.4. In 

comparison, the overall average confidence across all responses was a 4.5. Students’ use of 

inductive justifications corresponded to a slightly lower confidence rating. 

In contrast to the inductive justifications, when students made deductive or partial 

deductive arguments, those corresponded to slightly higher confidence levels being reported. Of 

the 19 instances (out of 81 prompts) where students gave deductive or partial deductive 

responses, the average confidence rating was a 4.8, slightly higher than the overall average of 

4.5. To be specific, of the 19 instances with deductive justifications, students rated themselves a 

5 in 17 of those responses. Though this data sample is small, there is some directionality in this 

correlation. While students making a deductive argument corresponds with a higher confidence, 

a high confidence did not always correspond to making deductive arguments. Also, for 

discussion in Chapter 6, students making their own deductive argument corresponded to higher 

confidence, but when reading a supplied deductive argument, their confidence was much lower. 

 As stated earlier, out of the 81 responses, 90% of the responses included a 4 or 5 rating 

for confidence. Of the other 10% of responses, those with ratings of 1, 2, or 3, there were 4 

students who used a multiple case inductive justification, 1 student who used both a multiple 

case inductive justification and a partial deductive justification, and 3 students who used a single 

case inductive argument. In this small sub-sample of low confidence ratings, multiple case 

inducive justifications were most common. This was contrary to the overall justifications where 

single case inductive arguments were more common. Overall, 53% (43 of 81) of responses had 

single case inductive justifications while 36% (29 of 81) of responses had multiple case inductive 
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justifications. In the small sub-sample of low confidence responses, 63% (5 of 8) had multiple 

case inductive arguments, while 38% (3 of 8) had single case inductive arguments. This result 

was opposite of what would be expected. In general, more cases would seem to imply students 

should have stronger confidence, not less confidence. A potential reason for this apparent 

discrepancy (beyond the small sample size) was the nature of the task itself. Seven of the 8 

responses were in the parallel transport task in hyperbolic geometry, with 5 responses all for the 

same prompt (P5). This prompt was an open-ended question, with students spending much time 

dragging looking for a relationship. This gave them evidence for multiple case inductive 

justifications, but the open-ended nature of the question still gave them hesitancy and they scored 

themselves low. These low prompts, and this disparity, will be discussed in more detail in 

Chapter 6. 

Tool Usage and Confidence 

The next set of relationships is between confidence and tool usage. As shown in Table 5.6, the 

results showed the prompts with the two highest observed tool usages were the regular polygon 

tasks in hyperbolic geometry (R5 and R3). These two prompts had average reported confidence 

levels of 4.6 and 4.7. This put them in the upper mid-range of average confidence levels reported 

for all the prompts. It is also worth noting that these two prompts had over twice the observed 

tool usage as any other prompt. The prompts with the two lowest observed tool usages were the 

prompts asking what students noticed about the segments in a Euclidean parallel transport (P1 

and P2). These had average reported confidence levels of 4.7 for both. Again, this put them in 

the upper mid-range of the confidence levels reported. 

While overall tool usage did not correspond in a direct relationship with confidence 

levels, there was a relationship once the prompts were split into each geometry. Looking at Table  
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5.7, the results showed that within each geometry, higher tool usage generally, though not 

perfectly, corresponded with higher reported confidence levels. That is, just looking at the 

Euclidean tasks, higher tool usage corresponded to higher reported confidence levels. The two 

prompts with most tool usage corresponded to the two prompts with highest average reported 

confidence. The relationship was not quite as defined in hyperbolic geometry. The results did 

show the two prompts with the highest tool usage corresponded to the highest reported 

confidence. Additionally, the prompt with the lowest tool usage corresponded with the lowest 

reported confidence. While this was a small sample, it is worth exploring in a future study to see 

if this holds for larger samples. 

In addition to looking at total tool usage, this section will also look at how the tools were 

being used. As stated, tool usages (dragging, angle measurements, and length measurements) 

Table 5.6: 

 

Observed Tool Usages and Average Reported Confidence Levels Sorted by Total Usages 

 

Prompt 

ID Prompt 

Tool 

Usages 

Observed 

Average 

Reported 

Confidence 

Levels 

(n=9) 

R5 Did you create a regular quadrilateral (hyper)? 22 4.6 

R3 Did you create a regular triangle (hyper)? 19 4.7 

R1 Did you create a regular triangle? 9 4.9 

P5.5 Think longer about this question (defect). 8 4.1 

R2 Did you create a regular quad? 8 5.0 

P4 

What did you notice happens to final segment in 

hyperbolic? 7 4.4 

P4.5 Think longer about this question (final segment). 6 4.5 

P5 What do you notice about defect? 3 3.4 

P1 What do you and your partner notice about first segment? 2 4.7 

P2 What do you and your partner notice about final segment? 1 4.7 

 

Note: This table does not include Ivy’s responses.  
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were categorized into wandering usages and validation usages. From Table 5.8, for any prompt 

where the average confidence was above 4.6, the observed tool usages were 100% validation 

usages. This occurred in 5 of the 10 prompts. Once average confidence fell below 4.6, validation 

usages dropped substantially, and wandering usages became more common. This was to be 

expected. If students were only using validation usages, this validation measurement or dragging 

confirmed their conjecture and gave them confidence. If students were wandering, this implied 

they were unsure of their conjecture and the students’ reported confidence confirmed this. 

It is also worth highlighting that of the five prompts with 100% validation measurement, 

four of those prompts were the four prompts in Euclidean geometry. That is, in Euclidean 

Table 5.7: 

 

Observed Tool Usages and Average Reported Confidence Levels Split by Type of Geometry 

 

Prompt 

ID Prompt 

Tool 

Usages 

Observed 

Average 

Reported 

Confidence 

Levels 

    

 Euclidean Geometry   

R1 Did you create a regular triangle? 9 4.89 

R2 Did you create a regular quadrilateral? 8 5 

P1 What do you and your partner notice about first segment? 2 4.67 

P2 What do you and your partner notice about final segment? 1 4.67 

    

 Hyperbolic Geometry   

R5 Did you create a regular quadrilateral? 22 4.56 

R3 Did you create a regular triangle? 19 4.67 

P5.5 Think longer about this question (defect). 8 4.14 

P4 What did you notice happens to final segment in 

hyperbolic? 

7 4.44 

P4.5 Think longer about this question (final segment). 6 4.5 

P5 What do you notice about defect? 3 3.43 

 

Note: This table does not include Ivy’s responses.  
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geometry, students were only using the tools to validate what they had done. For instance, even 

though the parallel transport task was a new task to the students, because the students were 

operating in Euclidean geometry, they were still able to predict the outcomes and use the tool to 

Table 5.8: 

 

Students’ Reported Confidence Paired with Validation and Wandering Tool Usage 

 

Prompt 

ID Prompt 

Average 

Confidence 

(n = 81) 

Number of 

Validation 

Usages 

Number of 

Wandering 

Usages 

Percent of 

usages that 

were 

Validation 

Usages 

P1 What do you and your partner 

notice about first segment? 

4.67 2 0 100% 

P2 What do you and your partner 

notice about final segment? 

4.67 1 0 100% 

P4 What did you notice happens 

to final segment in 

hyperbolic? 

4.44 4 4 50% 

P4.5 Think longer about this 

question. 

4.5 3 4 43% 

P5 What do you notice about 

defect? 

3.43 2 3 40% 

P5.5 Think longer about this 

question. 

4.14 6 3 67% 

R1 Did you create a regular 

Euclidean triangle? 

4.89 9 0 100% 

R2 Did you create a regular 

Euclidean quadrilateral? 

5 8 0 100% 

R3 Did you create a regular 

hyperbolic triangle? 

4.67 19 0 100% 

R5 Did you create a regular 

hyperbolic quadrilateral? 

4.56 16 9 64% 

 

Note: This table does not include Ivy’s responses.  

Note: Because this table differentiates between validation and wandering usages, usage tallies 

appear higher in this table than in Tables 5.6 and 5.7 which did not differentiate between uses. 
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validate those predictions. The conjecturing and exploring with wandering tool usage were not 

needed. The exception to this was the construction of the regular triangle in hyperbolic geometry. 

That was the sole prompt where students were in hyperbolic geometry, had a high confidence, 

and only used validation measurements. This is attributable to the fact that the regular triangle 

construction in hyperbolic geometry is virtually identical to the regular triangle construction in 

Euclidean geometry. Because of this, students did not need to use the tools in a wandering 

method. 

Tool Usage and Justification 

 When looking at tool usage and justification, each series of tasks will be looked at 

individually. In Table 5.9, the results showed that for both tasks, low tool usage corresponded 

with higher levels of deductive justifications. For the parallel transport series of tasks, the results 

showed the prompts with the lowest tool usages, P1 and P2, contain five of the seven instances 

of deductive justifications for that task. Likewise, for the regular polygon task, the results 

showed the prompts with the lowest tool usages, R1 and R2, contain thirteen of the fourteen 

deductive justifications for that task. However, it was also noticeable that all the prompts with 

low tool usage and high deductive arguments (P1, P2, R1, and R2) also happened to be based in 

Euclidean geometry rather than hyperbolic geometry. Thus, this relationship between low tool 

usage and high rate of deductive justification may in fact be more indicative of the differences 

between Euclidean and hyperbolic geometry. If all the Euclidean prompts are grouped together 

and sorted by tool usage or all the hyperbolic prompts are grouped together and sorted by tool 

usage, the correspondence all but disappeared. Also, if all the prompts are grouped as one group 

and sorted by tool usage, this relationship again disappeared. Thus, this research can only say 

that when working in Euclidean geometry, these students had low tool usage and a higher rate of 
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making deductive justifications.  

 Switching to looking at justifications, the results showed that when making multiple case 

inductive justifications, the students were using the widest variety of tool usages (Table 5.10). 

There were 32 responses with students making multiple case inductive justifications which 

correspond with 66 instances of tool usage. This does not imply students were using the tools 

more, but rather that they were using a wider variety of tools. Recall the number of usages is not 

how many times a tool is used, but the number of distinct types of usages being recorded. These 

numbers mean that on average, these students were using two different tools when making 

multiple case inductive justification. Because multiple case inductive justifications typically 

involved dragging, it was not surprising to see the higher variety of tool usage. Comparatively, in 

Table 5.9: 

 

Tool Usage Paired with Student Justifications 

 

Prompt 

Total 

Tool 

Usage Geometry 

Single 

Case 

Inductive 

Multiple 

Case 

Inductive Deductive 

Compare 

to 

Euclidean 

Previous 

Knowledge 

Parallel Transport Task  

P1 2 Euclidean 8 2 4 0 0 

P2 1 Euclidean 9 1 1 0 0 

P4 8 Hyperbolic 4 6 2 0 0 

P4.5 6 Hyperbolic 2 2 0 0 0 

P5 4 Hyperbolic 3 5 0 0 1 

P5.5 9 Hyperbolic 7 1 0 0 0 

Regular Polygon Task 

R1 9 Euclidean 2 2 8 0 8 

R2 10 Euclidean 5 1 5 0 2 

R3 21 Hyperbolic 7 3 1 1 0 

R5 25 Hyperbolic 1 9 0 0 0 

Total 95  48 32 21 1 11 

 

Note: This includes Ivy’s responses. 
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the 48 instances where students gave single case inductive justifications, there were only 36 

observed tool usages. Also, note that for single case inductive justification, for 26 of the 48 

responses, students did not use any of the three tools. Taking that into consideration, this implies 

that when students gave single case inductive justifications, they were either not using the tools 

or using multiple tools.  

 A second aspect of Table 5.10 worth mentioning is the difference between validation and 

wandering tool usage. Single case inductive, deductive, and previous knowledge justifications 

corresponded with high validation usage compared to wandering usage (8 times as much, 5 times 

as much, and 9 times as much, respectively). When making multiple case inductive arguments, 

students still favored validation usages, but not by the same margin. Note, however, it was not 

that validation usages were less for multiple case inductive arguments, but rather multiple case 

inductive arguments corresponded to an increase of wandering measurements. Much of this can 

Table 5.10: 

 

Justifications Paired with Tool Usages (Wandering or Validation) 

 

Justification Number of 

Responses with 

Justification 

Number of 

Validation 

Usages 

Number of 

Wandering 

Usages 

Total 

Observed 

Tool Usages 

No tool 

Usage 

Single Case 

Inductive 
48 32 4 36 26 

Multiple Case 

Inductive 
32 43 23 66 5 

Deductive 21 17 3 20 10 

Comparison to 

Euclidean 
1 2 0 2 0 

Previous 

Knowledge 
11 9 1 10 5 

 

Note: This table includes Ivy’s responses. The numbers in the first column represent how 

many responses used that type of justification. The numbers in the next two columns represent 

how many of each type of tool usages were observed with that type of justification. 
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be explained when looking at how the students used the tools in a wandering manner. Of the 27 

instances where wandering usage occurred, 17 of those instances were dragging. This increase in 

dragging correlated with a larger number of students using multiple case inductive arguments 

than they would have without dragging. 

The justifications were also broken down by the type of tool usage observed (Table 5.11). 

One noticeable relationship was the large number of instances of dragging associated with 

multiple case induction. This was not a surprise. One of the main features of DGE is the ability 

to drag and provide students with multiple cases to observe. Not every multiple case justification 

was because of dragging, however. As an example, there were two instances where Carl looked 

at Dan’s screen in the beginning stages of a construction and commented to Dan that he was 

going to construct his figure in a different arrangement than Dan. There was recognition from 

Carl that certain figure arrangements can imply relationships that do not exist. 

Additionally, multiple case inductive justifications correspond to high tool usage with 

angle and length measurement tools as well. Note in Table 5.11 how multiple case inductive 

justification had a low number of non-tool usages. Of the 32 responses, only 5 responses did not 

use a tool. When making multiple case inductive arguments, students were overwhelmingly 

relying on tool usage. As has already been stated, much of that tool usage came about because of 

dragging; but from Table 5.11, angle measures and length measures also appeared frequently as 

well.  

Summary of Pairwise Relationships 

In summary, the results showed many pairwise relationships. In looking at confidence 

and justifications, deductive justifications corresponded to slightly higher confidence levels, but 

a high confidence did not always mean a deductive justification. In other words, if students were 
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making an inductive argument, they were confident in their answer, more so than just with the 

software itself as their evidence. We also saw that when students reported low confidence, they 

were most often using multiple case inductive arguments. As multiple cases give one more 

evidence of the truth of a claim, this relationship was somewhat surprising.  

 In looking at confidence and tool usage, the results showed that within each geometry, 

higher tool usage corresponded with higher confidence. This was to be expected as the DGE can 

provide strong empirical evidence for the truth of a claim. The results also showed that high 

confidence corresponded with a high percentage of validation tool usages, while low confidence 

corresponded with a more balanced split of validation and wandering tool usages. 

 Lastly, in looking at tool usage and justifications, the results showed that in Euclidean 

geometry, students had low tool usage and gave a high number of deductive justifications. The 

results also showed that multiple case inductive arguments, as expected, corresponded to a wide 

range of tool usage. This was expected due to the dragging often associated with multiple case 

inductive arguments, but also to the corresponding measurements students make that inform the 

Table 5.11: 

 

Justifications Paired with Type of Tool Usage 

 

 Number of 

occurrences 

of 

Justification 

Number of Responses with: 

  

Dragging 

Angle 

Measure 

Length 

Measure 

No Tool 

Usage 

Single Case Inductive 48 4 19 13 26 

Multiple Case Inductive 32 33 17 16 5 

Deductive 21 8 7 5 10 

Comparison to 

Euclidean 

1 0 1 1 0 

Previous Knowledge 11 4 3 3 5 

 

Note: This table includes Ivy’s responses. 
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multiple cases. Also, due to dragging, multiple case inductive arguments corresponded to a 

balance of validation and wandering tool usages.  

Confidence, Justifications, and Tool Usage 

With this set of activities and prompts, the two prompts with the highest average reported 

confidence were the Euclidean construction of the triangle (R1) and the Euclidean construction 

of the square (R2), with confidence levels of 4.9 and 5 respectively. In responding to these two 

prompts, students used the tools in a strictly validation usage rather than wandering usage. These 

prompts also had the widest range of types of justifications used given that each of these prompts 

had four different types of justifications used. In summary, in this small set of activities, the two 

prompts with the highest confidence corresponded to responses with only validation tool usage 

and responses with the widest range of justifications.  

However, these two prompts also happened to be the Euclidean constructions – the 

prompts the students are the most familiar with. Removing either the Euclidean aspect of those 

tasks or the construction aspect of the tasks, the data shows the average reported confidence and 

the average number of types of justification decreases, though the percent of validation 

measurement remains consistently high. In particular, prompts R3 and R5 were constructions, 

but were in hyperbolic geometry rather than Euclidean geometry. Prompts P1 and P2 were 

Euclidean, but they were parallel transports. From Table 5.12, the results showed the confidence 

for these four tasks decreased from the Euclidean constructions which were 4.9 and 5. The 

results also showed the number of types of justifications given in the prompts decreased from the 

Euclidean constructions prompts which each had 4 types. Lastly from the table, the results 

showed validation usages remained high with three of the prompts at 100% validation usages. 

Euclidean constructions then appeared to be unique in their combination of high confidence, 
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wide use of justifications, and exclusive use of validation measurements.  

Individual and Pairwise Observations Organized by Research Question 

This portion of the analysis will take a qualitative look at the data highlighting instances 

where students behaved in notable ways. It will emphasize instances that inform the research 

questions. Focus will be given on areas of movement. That is, special attention will be given to 

instances where students are moving from Euclidean tasks to non-Euclidean tasks and when 

students are switching from the parallel transport series of tasks to the regular polygon series of 

tasks. Additionally, special attention will be given to the two conjecturing tasks (P3 and R4), as 

well as the proof task (P6). The results are organized around which research question the 

observation will inform. Summaries of the observations can be found in the tables that follow 

each section. 

Observations Related to Research Question 1 – Tool Usage Tool  

Tool usage was an essential part of completing the tasks. As was anticipated, the students 

were comfortable using the three main tools (dragging, angle measurement, and length 

Table 5.12: 

 

Non-Euclidean Constructions and Euclidean Parallel Transport 

 

Prompt 

ID 

Prompt Average 

Confidence 

(n=9) 

Percent of 

Usages that 

were Validation 

Types of 

Justifications 

Given 

P1 What do you and your partner 

notice about first segment? 

4.67 100% 3 

P2 What do you and your partner 

notice about final segment? 

4.67 100% 3 

R3 Did you create a regular triangle 

(hyper)? 

4.67 100% 4 

R5 Did you create a regular quad 

(hyper)? 

4.56 64% 2 

 

Note: This table does not include data from Ivy. 
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measurement) within the DGE and the tasks were designed to give students varied approaches in 

how they incorporated the tools to respond to the prompts. For both series of tasks, it was 

observed that tool usage increased when switching from Euclidean to hyperbolic geometry. This 

was most apparent when students were completing the parallel transport series of tasks. Three 

students (Ann, Beth, and Dan) used the tools throughout both the Euclidean and hyperbolic 

portions of the parallel transport. In Euclidean, they used the tools in a validation mode, but in 

hyperbolic these students increased their tool usage by using the tools in a combination of 

validation and wandering. For the parallel transport series of tasks, seven of the students did not 

use the tools at all in responding to the prompts in Euclidean geometry, but when working on the 

parallel transport in hyperbolic geometry, those same seven students started using the tools. Ivy, 

for instance, did not use the tools at all when working on the Euclidean parallel transport 

(prompts P1 and P2), but while was working on the hyperbolic parallel transport (P4 and P5), Ivy 

began to both drag her image and measure angles as she was looking for a relationship. This was 

not something she had done during the Euclidean portion of the series of tasks. Similarly, Fran 

also did not begin dragging her figure until she started working in hyperbolic geometry. Fran, 

however, measured lengths and not angles.  

For the regular polygon series of tasks, the increase in tool usage when students switched 

from Euclidean to hyperbolic geometry was not as noticeable, but still occurred. On this series of 

tasks, seven students used the tools throughout both types of geometry. But again, there was a 

shift when students were working in hyperbolic geometry. For the last prompt in hyperbolic 

geometry, constructing the hyperbolic quadrilateral, students began using the tools in a 

wandering fashion. Gary, for instance, validated measured angles and segments for both the 

Euclidean and hyperbolic regular triangle, and validated measured the segments for the 
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Euclidean regular quadrilateral. However, when working on the hyperbolic regular quadrilateral, 

Gary began both wander dragging and wander measurement of segments. 

There were also three students (Dan, Fran, and John) who did not use the dragging or 

measurement tools for the Euclidean portion of the regular polygon series of tasks. However, 

these three students did begin to use those tools when they began the hyperbolic constructions, 

first in validation modes for the hyperbolic triangle and then in a combination of wandering and 

validation for the hyperbolic quadrilateral. 

For both series of tasks, there were some students who did not begin to use the tools until 

the hyperbolic portions of the tasks and there were some students who used the tools throughout 

and then added wandering tool usage when they were working in hyperbolic geometry. Despite 

this difference, it is clear that the students were able to make use of the tools to help them 

complete the tasks. 

There were also instances where students wanted additional types of tool usage that the 

DGE did not provide. Ann, for instance, wanted a parallel checking tool to check for parallelism 

when working on the parallel transport. It is not clear if she thought this tool existed in Geometry 

Explorer and she could not find it, or if it was just a wish for a tool that she would find useful. 

Beth also desired a tool that Geometry Explorer lacks. When working on the Euclidean parallel 

transport, Beth wanted to be able to zoom in on the first and last segment to visually check if 

they really were perfectly coincident. Many other modern DGEs offer zooming via the scroll 

wheel. However, Geometry Explorer only offers zooming via a menu where you enter a scale 

factor. Because of that, Beth was unable to zoom in and check as she wanted.  

Lastly, when working on the construction tasks, Eve looked for a way to rotate a segment 

around a point. This, in fact, is possible in Geometry Explorer, though Eve could not recall how 
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to accomplish the rotation. In all three instances, students were finding the three main tools 

(dragging, measuring sides, and measuring angles) insufficient and wanting a wider range of 

tools within the DGE. 

There is one last instance of tool usage that is worth highlighting. Fran used the tools in a 

unique way that no other student in the study did. When Fran began working on the regular 

polygon task, Fran did not immediately begin by doing a construction. Fran took a few moments 

and drew an approximate quadrilateral just using four segments. Fran spent a few minutes 

dragging this figure to see what a quadrilateral might look like. She quickly abandoned this 

strategy, however, as she saw her partner working with the normal construction tools (e.g. circles 

and perpendiculars). In addition to noting Fran’s unique tool usage, this observation fits with the 

theme that tool usage became essential within the hyperbolic tasks. Whether it was a general 

increase in tool usage, or the addition of wandering tool usage, or Fran’s drawing, there was a 

shift to additional tool usage within hyperbolic geometry. 

 

Table 5.13: 

 

Observations Related to Research Question 1 – Tool Usage 

 

Behaviors Exhibited by Multiple Individuals: 

• During the parallel transport series of tasks, seven students did not begin to use the 

tools until the hyperbolic tasks (P4 and P5) 

• During the regular polygon series of tasks, three students did not begin to use the 

tools until the hyperbolic tasks (R3 and R5). 

 

Behaviors Exhibited by Single Individuals: 

• In working on the regular hyperbolic quadrilateral (R5), Fran displayed the only 

instance of a student using the tools to draw rather than construct a figure. 

• There were instances of individual students wanting additional tools. Beth wanted to 

be able to zoom (P2). Ann wanted a parallel checking tool (P1). Eve wanted a 

rotation tool. 
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Observations Related to Research Question 2 – Justifications 

From the data it was clear that inductive arguments (single case and multiple case) were 

essential to students as they were responding to the prompts. Yet, despite the heavy reliance on 

inductive arguments, there are many instances where students chose to give other types of 

arguments. In particular, there were two locations in the series of tasks where students were seen 

introducing other types of arguments. The first location, as discussed below, were the Euclidean 

constructions (R1 and R2) as evidenced by students including a large number of deductive 

justifications. The second location was the conjecturing tasks (P3 and R4). For the conjecturing 

tasks, as was expected, we saw multiple students referring both to previous knowledge and 

comparison to Euclidean. 

As students worked on the Euclidean regular constructions, there was an increased 

number of deductive arguments being made. That is not to say these deductive arguments 

replaced inductive arguments, but rather these deductive arguments supplemented inductive 

arguments. Eight students gave deductive justifications for at least one of the constructions in 

Euclidean geometry. Of those eight students, seven students no longer gave deductive arguments 

when they switched to hyperbolic geometry. Ann, for instance, argued deductively about why 

her Euclidean regular triangle and quadrilateral constructions were correct. As was typical with 

most students in this study, she argued deductively exclusively about the side lengths, ignoring 

the angles. When she switched to hyperbolic, however, her justifications switched to exclusive 

multiple case inductive justification. The eighth student who started with deductive justifications 

for his Euclidean constructions was Hal. Unlike the other seven, Hal continued to give deductive 

justifications for his hyperbolic regular triangle. It was only when Hal began working on the 

hyperbolic regular quadrilateral he ceased giving deductive justifications. This was due mainly to 
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not being able to correctly construct the quadrilateral. Instead, he offered a counter example to 

say that it could not be done. 

In both series of tasks, after the students finished the Euclidean portion of the tasks, there 

was a conjecturing task asking the students to conjecture about what might happen if they 

repeated the tasks in hyperbolic geometry. As these conjecturing tasks did not involve the use of 

DGE, students did not use inductive justifications to answer these prompts. As students had just 

previously completed the task in Euclidean geometry, it was anticipated that students would use 

the Euclidean case to argue for what might happen in the hyperbolic case. Of the ten students, 

however, there were only two instances during the conjecturing tasks where students specifically 

referred to what they had just done in the Euclidean case. Both Ann and Fran referred to the 

Euclidean parallel transport when they conjectured about the hyperbolic parallel transport 

(prompt P3). Ann used the Euclidean transport to argue the hyperbolic transport would behave 

similarly, while Fran used the Euclidean transport to argue the hyperbolic transport would act 

differently. It is noteworthy that both of these students used comparison to Euclidean during the 

parallel transport and not the regular polygon conjecturing task (R4). The only other comparison 

to Euclidean justification in both series of tasks was given by Carl when he justified his 

hyperbolic regular triangle. He made a claim that the construction was correct because it was a 

repeat of what they did in the Euclidean case. While all the other students copied the Euclidean 

triangle construction for the hyperbolic triangle construction, only Carl made an explicit claim 

relating to the Euclidean case.  

Additionally, during the conjecturing tasks, students made use of previous knowledge to 

justify their constructions. Ann and Beth, for instance, both argued that regular quadrilaterals 

cannot exist in hyperbolic geometry because they recalled you cannot have four right angles in a 
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quadrilateral. Carl used the same piece of previous knowledge, but then went one step further to 

argue that if regular quadrilaterals did exist in hyperbolic geometry, they would not have right 

angles. Eve used previous knowledge on her conjecture about the hyperbolic parallel transport 

arguing the segments “would be the same” as she remembered doing a similar activity in class, 

though it remains unclear what activity she was referring to. 

In summary, we have seen the use of inductive justifications was essential to students 

throughout both series of tasks, though students were seen to include additional justifications as 

they were able. In particular, students included deductive justifications when working the regular 

constructions and included previous knowledge and comparisons to Euclidean when they 

responding to the conjecturing subtasks. 

Observations Related to Research Question 3 – Confidence 

As we saw earlier in the chapter, students reported high confidence throughout both 

series of tasks. Even as students were working on the hyperbolic portions of the tasks, the 

students still reported relatively high confidence. That is not to say all students maintained high 

confidence. Beth, for instance, reported a large drop in confidence as she switched from the 

Table 5.14: 

 

Observations Related to Research Question 2 – Justifications 

Behaviors Exhibited by Multiple Individuals: 

• During the regular polygon series of tasks, eight students included deductive 

justifications in addition to inductive justifications when justifying Euclidean regular 

polygons (R1 and R2). Of those eight, seven of them shifted to purely inductive 

arguments for hyperbolic regular polygons (R3 and R5). 

• When responding to the hyperbolic conjecturing tasks, students made frequent use of 

comparison to Euclidean justifications and previous knowledge. 

 

Behaviors Exhibited by Single Individuals: 

• Hal was the only student to give a deductive argument for correctness of the regular 

hyperbolic triangle. 
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Euclidean hyperbolic parallel transport to the Euclidean hyperbolic parallel transport. When 

reporting her confidence for the Euclidean parallel prompts (P1 and P2), Beth rated her 

confidence a 5 and 4, respectively. Once she switched to the hyperbolic case, Beth reported a 2 

for P3, a 2 for P4, and a 3 for P5. For the very first hyperbolic prompt (P3), Beth mentioned the 

“weirdness” of hyperbolic geometry. As she began to use the software to respond to prompt P4, 

Ann and Beth purposely made distinct figures and Beth used all three tools for the first time. 

When responding to how to raise her confidence, Beth repeatedly wrote that she wished she 

knew and remembered more information about hyperbolic geometry. Beth did report a slightly 

higher confidence after thinking longer about what relationship might exist. Beth’s increased tool 

usage eventually helped her find the relationship between defect and the angle, and having that 

relationship, Beth reported a 4 for confidence. Interestingly, as Beth worked on the regular 

polygon series of tasks, there was not a noticeable drop in reported confidence as she switched to 

the hyperbolic portion of the series of tasks. Beth reported 4s and 5s throughout that entire series 

of tasks.  

The first of two places the loss of confidence was most apparent for the majority of 

students was when students were working on the conjecturing tasks. For the conjecturing tasks, 

students were not using the DGE to answer the questions. When responding to the conjecturing 

task for the parallel transport, seven students reported at least two levels lower in their 

confidence than in the Euclidean tasks. Beth, for instance, reported a 2 for prompt P3 as 

compared to a 4 for prompt P2 writing that she wished she knew more about hyperbolic 

geometry. Carl, as another example, reported a 5 on the two Euclidean prompts, but then 

reported a 2 for confidence when conjecturing. He wrote that he was not sure how translations 

work in hyperbolic geometry. When responding to the conjecturing task for regular polygons, 
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only three students reported at least two levels lower in their confidence. Carl reported a 4 for 

confidence on his regular polygon, but then dropped to a 2 when answering prompt R4. Carl 

remembered from class that you cannot have four right angles but expressed doubt about whether 

this precludes their existence. Gary also reported a drop in confidence when answering prompt 

P4. Gary reported a confidence of 2 for this prompt whereas he reported a confidence of 4 or 5 

for every other prompt in both series of tasks. When thinking about whether hyperbolic regular 

quadrilaterals exist, his partner Hal traced a potential shape on the screen using his finger. Gary 

used this undrawn figure to convince himself it was impossible, but wrote he was “unsure if this 

is correct” and that he wanted to be able to prove it (as he had for the regular Euclidean 

polygons). 

The second of two places where students reported loss of confidence was as they 

completed the proof task. Students were asked to read a proof that the defect matched the angle 

between segments of a hyperbolic parallel transport. They then had to rate their confidence in 

that statement. Every pair found the relationship during the previous prompt, and at least one 

partner in each pair verified the relationship using the angle measurement tool. As students 

responded to the given proof, some students reported how the given proof helped validate their 

previous claims. For instance, Eve wrote, “Now I know that I was right, and the argument helps 

my confidence.” After reading the prompt, her confidence increased from a 3 when she made the 

claim on the previous prompt, to a 4 having now had her claim verified. For three students (Ann, 

Fran, and Ivy), their reported confidence showed a change from somewhat confident or very 

confident to somewhat not or not confident. From the previous prompt where they had validated 

measured to responding to the proof, Ann dropped from a reported 5 to a 2, Fran from a 4 to a 1, 
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and Ivy from a 4 to a 1. Ann and Ivy both wrote they did not fully understand the proof. Fran 

wrote that it was difficult to understand the proof “without actually doing it.” 

This drop in confidence highlights an important aspect of the analysis. Confidence took 

on different meanings to students as they worked on the tasks. For instance, when Fran reported 

a 1 after reading the proof, did that 1 signify she was not confident about the relationship she 

found and which the proof confirmed, or did her reporting of a 1 represent something different? 

It is feasible the 1 simply represented her general understanding of hyperbolic geometry at that 

moment. As she did not “really understand what this page [was] saying”, it may not be that she 

lacked confidence in the claim, but rather she lacked confidence in her understanding of 

hyperbolic geometry. In a similar manner, Ivy rated her confidence at times, not because of her 

justifications, but “because this is fun to me.” That is, Ivy’s confidence was not because she 

could deductive prove something, or because she had measurements to back up her claim, but 

rather she felt good about it. It was making sense. Yet, at times, these interpretations of 

confidence switched. For instance, Ivy wrote about her confidence being based on fun on prompt 

R2 when she constructed a Euclidean square. On the very next prompt, she rated herself a 5, 

saying, “I’m confident because I measured.” From one prompt to the next, her interpretation of 

confidence changed. 

In summary, while students generally reported high confidence, there were instances 

throughout both series of tasks where students reported drops in confidence. Notably, these 

instances occurred most when students did not have access to the DGE. In particular, this 

occurred most often during the conjecturing task as well as the proof validation task. 

Additionally, there was evidence that the term “confidence” was being interpreted by the 
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students differently from task to task. These different interpretations will be discussed in Chapter 

6. 

Observations Related to Research Question 4 – Relationships 

 The last part of this section will look at observations that inform the relationships that 

occur between the three factors being considered. The first relationship to be considered is that of 

justifications and tool usage. As students were working in hyperbolic geometry, students can be 

seen making more inductive arguments, and with those inductive arguments came an increased 

use of multiple figures. Many of these inductive arguments became multiple case inductive 

arguments because of students’ increased usage of the dragging tool within hyperbolic geometry. 

Yet, dragging was not the only way that these students were able to argue inductively with 

multiple cases. As these students were working with partners, they also had their partner’s 

figures upon which to rely. For instance, when working on the Euclidean parallel transport (P1 

and P2), Ann and Beth purposely made the figures in roughly the same layout. They made 

similar triangles and began with the first segment angled approximately the same as each other. 

Table 5.15: 

 

Observations Related to Research Question 3 – Confidence 

Behaviors Exhibited by Multiple Individuals: 

• Seven students reported a drop in confidence on the parallel transport conjecture 

prompt (P3). Three students reported a drop in confidence for regular polygon 

conjecture prompt (R4). 

• Three students showed a drop in confidence after the proof task (P6). 

Behaviors Exhibited by Single Individuals: 

• Students had different interpretations of confidence – Eve and Fran confidence in 

incorrect construction. Ivy – Confidence based on fun. 

• Gary reported high confidence for every prompt, except the conjecturing task for 

regular hyperbolic quadrilaterals (R4)  

• Beth reported a drop in confidence when she began the hyperbolic parallel transport. 
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However, when they began working on their hyperbolic transport, Ann told Beth that she was 

going to specifically make her figure distinct from Beth’s figure so they would have multiple 

figures to examine. In the Euclidean case, Ann and Beth, who did not drag, were content making 

their argument based on a single inductive case. However, switching to hyperbolic, Ann felt the 

need to begin with multiple cases. In a similar fashion, Carl and Dan also made different figures 

so they would have multiple cases to consider. As compared to Ann and Beth, Carl and Dan 

created different figures for both Euclidean and hyperbolic geometry.  

 Also, with regards to justification and tool usage, it is worth noting there were times 

where students already had a justification but chose to use the tools to confirm their previous 

justification. When working on the Euclidean triangle (R1 and R2), both Ann and Beth were able 

to quickly construct the regular triangle. Ann then began explaining this construction to Beth 

going into detail about how the radii match as they used congruent circles. However, Beth (and 

eventually Ann) still chose to measure the segments to confirm that they matched. Ann had 

provided a deductive justification, but they both decided to use the tools to add an inductive 

justification to go along with it.  

 With regard to the second relationship justification and confidence, the first observation 

to be highlighted is the proof task (P6) asking students to rate their confidence after reading a 

proof. As was mentioned earlier, three of the students reported a large drop in confidence after 

reading the proof. All three of these students (Ann, Fran, and Ivy) had previously made 

deductive arguments themselves and reported high confidence as they made their deductive 

arguments. One key difference here is that for this prompt, they were given the deductive proof 

rather than constructing their own deductive proof. 
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 A second observation regarding justification and confidence is Eve’s and John’s use of 

previous knowledge and the confidence it provides them. They are not the only students to use 

previous knowledge, but they are unique in that their recollection of previous knowledge 

appeared to refer to course activities the researcher has no recollection of. When Eve was 

responding to the parallel transport hyperbolic conjecture, Eve was convinced the segments 

would be the same because she remembered an “activity in class similar to this.” This memory 

was strong enough that Eve was one of only two people to express confidence in her answer for 

this prompt. Likewise, when responding to the regular quadrilateral conjecture task, John 

claimed they existed because he remembered writing about them for his geometry course. Like 

Eve, the researcher found no evidence of John writing about regular quadrilaterals. It remains 

unclear what their recollections are based on, but in both cases, these perceived memories 

allowed the students to argue based on previous knowledge and provided them the confidence to 

do so. 

 For tool usage and confidence, the first two observations relate to how tool usage can 

negatively affect student confidence. There were many instances, as expected, where students 

were able to gain confidence, but at times tool usage was seen to lower students’ confidence. The 

first instance was when Dan worked on the hyperbolic parallel transport (P4). When Dan 

transported his first segment, it happened to land almost perfectly on one edge of his triangle. 

This caught Dan off guard and made him question whether he did the task correctly. He repeated 

the initial transport. Upon seeing the same result, he continued and completed the transport. Yet, 

when the transport was done, Dan again expressed doubt in whether he did the task correctly. 

This doubt was strong enough, he started over and repeated the entire parallel transport. In both 

cases, the software caused Dan to lose confidence.  
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 Beth also had an interesting incident where the software appeared to cause her to lose 

confidence. When Beth was working in Euclidean geometry on the parallel transport (P1), she 

saw the first two segments were parallel and measured angles to double check. This gave her 

confidence and she rated herself a 5. On the next part of the task when she completed the 

transport (P2), Beth saw the segments were on top of each other, but then expressed doubt. 

Despite saying she was confident they were the same, she also said, “math is weird, maybe they 

are a little off.” She then rated herself a 4 and expressed a desire to zoom in on her image. Her 

comment and her rating showed that she doubted whether the two segments really were 

coincident. This had nothing to do with the DGE’s ability to render the figure, but rather that 

Beth had no easy way to verify the two segments were coincident. Because of this, her 

confidence was lower than on the previous task where she could measure. Thus, like Dan, her 

confidence faltered because of the DGE. 

 The last observation related to tool usage and confidence is an observation about the 

importance of the DGEs’ figures in giving students confidence. When the students were working 

on the conjecturing tasks, students did not have the DGE available for them to use. Because of 

this, the students commented repeatedly about their desire for the DGE to help with justification. 

For instance, when answering the conjecturing prompt for the parallel transport (P3), many 

students wrote about how they wished they could “see” the transport in the DGE. John resorted 

to drawing sketches on their worksheets to help with their conjecture and John wrote that he 

wanted to “work it out on the software.” It is interesting to note that often it was the figure itself 

that gave students confidence and not the tool usage. Gary, for instance, rated himself somewhat 

or very confident for every prompt in the parallel transport series of tasks having not dragged or 
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measured for any prompt. Having an accurate figure was enough to provide him confidence for 

the claims he was making. 

Summary 

In this chapter, I have presented the data in both a tabular and qualitative manner as it 

relates to the four research questions. It has been observed that students made extensive use of 

the tools to complete the activities, but that tool usage varied between Euclidean and hyperbolic 

tasks, and between the regular polygon series of tasks and the parallel transport series of tasks. It 

has also been observed that students used inductive justifications for the majority of the prompts, 

but that there were specific instances where students chose to use other types of justifications 

(e.g. during the conjecturing prompts or the Euclidean constructions). Additionally, the students 

reported high confidence throughout both series of tasks, but there were specific instances where 

Table 5.16: 

  
Observations Related to Research Question 4 – Relationships 

Tool Usage and Justification 

• Two pairs of students specifically used different figures rather than just dragging to 

give themselves multiple cases for multiple case inductive justifications.  

• Ann and Beth gave deductive justifications for the Euclidean constructions but 

additionally chose to measure their figures. 

 

Justification and Confidence 

• Multiple students reported a drop in confidence after reading the proof. 

• Eve and John both reported high confidence because of previous knowledge, though 

the knowledge to which they refer was not covered in their geometry course. 

 

Tool Usage and Confidence 

• Though the Euclidean parallel transport (P2) behaved as Beth expected, Beth’s 

confidence dropped as she did not have a way to use the DGE to confirm her 

conjecture. 

• Dan’s hyperbolic parallel transport (P4) caused him to lose confidence as it did not 

behave as expected.  

• When conjecturing for prompt P4, John attempted to draw the figure using paper and 

pencil as the DGE was not available. 
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students chose to report a lower confidence. Additionally, it was observed students have multiple 

and changing views of what the term confidence means. Additionally, individual and pairwise 

observations were presented in the second half of this chapter (Tables 5.13, 5.14, 5.15, and 5.16). 

These observations will be further discussed in Chapter 6 as they relate to the existing research 

base.  
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CHAPTER 6: DISCUSSION OF FINDINGS 

 This chapter will take a closer look at the findings from Chapter 5. This chapter will be 

broken into three sections related to confidence, justifications, and tool usage. The section on 

confidence will focus on the different interpretations of confidence that we saw from the students 

as well as highlighting specific instances of high and low confidence. The section on justification 

will look at individual instances where students did or did not use specific types of justifications 

and potential reasons they may have used the justifications they chose. The third section will 

focus on issues related to tool usage. Time will be spent looking at individual instances of tool 

usage where students used or attempted to use the tools in novel ways that were not expected. 

Confidence 

 This section will begin with different interpretations of confidence. As we saw in Chapter 

5, students used different interpretations of confidence, and would even change their 

interpretation from prompt to prompt. The second part of this section will highlight where 

individual students displayed instances of high confidence and low confidence and the potential 

reasons for this. 

Confidence as Self-Efficacy 

 The first area worthy of discussion is the students’ interpretation of confidence. As 

reported in the previous chapter, students reported they were ‘somewhat confident’ or ‘very 

confident’ in over 90% of responses when using the DGE. Even narrowing this to prompts 

related to hyperbolic geometry, students reported they were ‘somewhat confident’ or ‘very 

confident’ in 82% of responses when using the DGE. These were much higher numbers than 

were expected. We know from previous research that students struggle when making deductive 

arguments in non-Euclidean geometries (Guven & Karatas, 2009; Hollebrands et al., 2010) and 
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that deduction in non-Euclidean geometries is rated as the highest level of geometric thinking 

(van Hiele, 1986). Because of this, it was surprising to see such high confidence numbers.  

 As such, a discussion on how students interpreted the term “confidence” is warranted. 

Every prompt in both series of tasks asked students, “how confident are you in your response to 

the previous question?” As discussed in Chapter 2, the term confidence is a term that already has 

many interpretations. On one hand, confidence can be closely associated with self-efficacy 

(Bandura, 1997; Pajares & Miller, 1994). That is, confidence refers to a student’s feelings about 

themselves, either their overall confidence or topic level confidence (Pajares & Miller, 1994; 

Parsons et al., 2009). On the other hand, confidence is also closely associated with the concept of 

conviction (Weber & Mejia-Ramos, 2015). That is, a person is confident (convinced) of a certain 

outcome or belief. 

 In looking at students’ responses to the confidence prompt, the students generally 

responded based on how confident they were in their previous claim based on a conviction view 

of confidence rather than a self-efficacy view of confidence. Hal, as a typical response, wrote he 

was confident in his construction of the regular triangle in Euclidean geometry because he 

“measured the angles and side lengths.” It is clear he was referencing this specific task. He felt 

he answered the prompt correctly, he had evidence for it, and he gave himself a high confidence.  

Ivy, however, often interpreted confidence through a self-efficacy viewpoint. Ivy 

consistently reported confidences of 5 with reasons such as “because this is fun to me” and 

“because I like to make triangles.” This interpretation of confidence is closely related to the 

concept of mathematical self-efficacy (Bandura, 1997; Pajares & Miller, 1994). She was not 

reporting her confidence in the correctness of her answer. In some cases, she does not even 

reference her previous answer. Rather, she was reporting a high confidence because she felt good 



 

170 

either about math in general (overall confidence) or at least the current task she was working on 

(topic level confidence) (Parsons et al., 2009). It was making sense to her, and because of that 

she had high confidence. 

 There were times, however, where Ivy’s interpretation of confidence appeared to switch 

to the conviction interpretation of confidence. For instance, when Ivy began her first hyperbolic 

regular construction, she still reported she was “very confident,” but her reasoning changed. 

Rather than writing about her enjoyment, she wrote that she was confident because she measured 

the angles and segments of her construction. This is a stark contrast from her earlier comments. It 

is worth noting this was not the first time Ivy measured. When working on the construction of 

the Euclidean quadrilateral, Ivy measured the angles and lengths as well. In that instance, her 

confidence was “because it was fun.” Yet in this case, doing a similar activity and making 

similar measurements, her reason for her confidence was “because I measured.” 

 A key difference was the switch from Euclidean geometry to hyperbolic geometry. One 

possible reason for this switch of interpretation is that in Euclidean geometry, Ivy may have 

perceived the construction and its correctness as obvious. The diagram itself on the screen served 

as her warrant (Hollebrands et al., 2010) and so there was no reason to think about and then give 

a detailed justification. In this case, the measurements she made may have been done for external 

validity rather than internal conviction (Segal, 1999; Weber & Mejia-Ramos, 2015). That is, she 

measured because she felt that is what she ought to do even if she felt it unnecessary. Then when 

she was asked to give a reason for her confidence, she commented on her self-efficacy in that she 

was having fun. The measurements did not actually serve a purpose in giving her confidence. 

Then in hyperbolic, when the shape did not look as expected, Ivy felt a justification was 

necessary both for external validity and for her internal conviction (Hollebrands et al., 2010). 
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This led her to change her interpretation of confidence from the self-efficacy interpretation to the 

interpretation of conviction. 

 Another possible reason for Ivy’s switched confidence interpretation is that rather than a 

shift from an “obvious” answer to a “not obvious” answer, the task in hyperbolic geometry 

suddenly became “not fun” to Ivy. We know reasoning in hyperbolic geometry can be difficult 

for students (van Hiele, 1986), and perhaps when switching from Euclidean to hyperbolic 

geometry, Ivy really did stop having “fun.” However, this seems unlikely as video evidence 

showed she and her partner were still enjoying themselves. 

 It is not clear from Ivy that she was conscious of her different interpretations as she 

switched between them. Despite the confidence prompt remaining the same, we see Ivy 

switching between a conviction view of confidence and a self-efficacy view of confidence. In 

short, confidence was being interpreted by the student in ways not originally intended by the 

researcher. So when claims are made about DGE giving confidence to students, consideration 

must be given to how students are interpreting confidence. Is the DGE giving confidence to the 

claims students are making in the moment (conviction view) or is the DGE giving confidence to 

a student’s self-efficacy? 

Confidence as Conviction 

 While Ivy may have interpreted confidence using a self-efficacy view, the other students 

tended to interpret confidence as conviction - as confidence in the claims they were making 

(Weber et al., 2014; Weber & Mejia-Ramos, 2015). Students were responding to the confidence 

prompts giving reasons that directly related to the answer they gave. Students reported being 

confident because they had measured angles, or because they dragged, or because they had a 

deductive argument, etc. Notice that these responses refer to the statements the students 
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themselves made and not a statement provided by a teacher or researcher. Because of this, there 

are two further interpretations of confidence that are worth exploring. 

 Researchers have previously drawn a distinction between conviction and validity (Segal, 

1999). That is, students can be personally convinced of a statement (internally), but not have 

valid (external) reasons. Or perhaps they do have mathematically valid external reasons (such as 

a deductive proof), but find they are convinced by empirical evidence. Weber et al. (2014) 

showed that even professional mathematicians do not always rely on “valid” mathematical 

deduction to become convinced of the truth of a statement. That is, even mathematicians may be 

confident of a statement because of overwhelming inductive evidence, rather than deductive 

justifications. One important point in the work of Weber and Meija-Ramos (2015), Weber et al. 

(2014), and Segal (1999) is that conviction and validity generally reference statements given by 

the researchers. That is, when subjects were responding how confident they were, it was in 

reference to a specific statement and the justifications for that statement. 

For this current study, however, there was an added dimension. The students themselves 

were providing their own claims. Because of this, when students were rating their confidence, 

there were instances where confidence responses were not specifically referring to students’ 

confidence in the mathematical correctness of a statement, but rather whether the statement being 

made was the statement the question was looking for.  

This first interpretation to the question was for students to rate how confident they were 

in whether they reported a mathematically accurate answer. That is, students using this view of 

confidence ratted how confident they were the statement they wrote down was true. This most 

closely aligns with previous research on conviction (Segal, 1999; Weber et al., 2014). In this 

view of confidence, students were concerned with either their internal conviction a statement was 
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true or an external justification for why the statement was true. In other words, a student with 

this view was not necessarily concerned about getting the right answer or completing the task 

correctly, but rather that they were confident they reported a true statement. 

The second interpretation of confidence is when students rated how confident they were 

in the correctness of the claim they just made. That is, students using this view rated how 

confident they were that their answer was what they thought the prompt was ‘looking for’. For 

the regular polygon series of tasks, this was if the student successfully constructed regular 

polygons. For the parallel transport series of tasks, this was if the student noticed what they 

thought the question wanted them to notice.  

 As an example of this difference between these views, we will look at the difference in 

how partners Eve and Fran responded to prompt R5 asking them to construct a regular 

quadrilateral in hyperbolic geometry. Neither student was ultimately successful in their attempts 

and they both answered ‘No’ indicating they did not construct a regular quadrilateral. But in 

rating their confidence for that answer, they gave very different ratings. Eve reported a 3 for her 

confidence and Fran reported a 5 for her confidence. 

In rating herself a 3, Eve commented that she could not get the lengths to be the same. 

She had measured the lengths and the DGE showed they were clearly different lengths. Having 

been told by the DGE that the lengths were different, it would seem clear she knew her 

construction was not completed correctly. In responding that her construction was not correct, 

what was the reason Eve gave herself a 3 for confidence? Using the correctness view of 

confidence, Eve knew from the DGE she did not successfully complete the construction and was 

therefore rating herself a 3 as her answer was “wrong”. She was not concerned with the 

truthfulness of her claim, or about whether she believed her claim. Rather her confidence was in 
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response to her belief that she did not successfully complete the construction. Because she could 

not give the “correct” answer, she gave herself a low confidence. 

Is it possible Eve rated herself a 3 because she thought her construction was correct and 

the DGE was wrong? This view implies that she did not view the DGE as an authority. While 

this is a possibility, her previous comments discount this possibility. In the parallel transport 

task, she wrote comments such as “Geometry Explorer did the work for us with accuracy 

[emphasis added]”, “Geometry Explorer helps a lot [emphasis added]”, and “According to 

[emphasis added] Geometry Explorer….”. Then for this task, she specifically said “I’m just 

doing the same thing [as a previous attempt], even though I know it’s wrong”. It is clear she 

trusted the DGE and recognized she had not constructed a regular polygon. Her trust of the DGE 

matched previous research showing students view DGE with authority (Guven & Karatas, 2009; 

Hollebrands et al., 2010). 

 To contrast Eve’s view of confidence in correctness, consider her partner Fran. Fran rated 

herself a 5 and wrote “My confidence that I don’t know how to make a regular quadrilateral is 

high because I’m sure I don’t know how to make it.” Fran’s view of confidence was confidence 

in her reporting. Fran went through the steps of making a construction and then she and her 

partner measured and dragged their constructions. The measurement tool in the DGE showed the 

line segments were different lengths. Because of this, Fran recognized she was unable to figure 

out the correct construction and was confidently acknowledging that her construction was 

incorrect. Her rating of 5 was not a rating that she did the construction correctly, but rather that 

she was confident of the statement that she recorded. That is, Fran knew her statement was true. 

It was not what the question was looking for (a correct construction), but it was at least a true 

statement. Both students recognized their construction was incorrect, but their response to it was 
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different. These differences in interpretation highlight that in future research, when students 

make their own claims, a distinction will need to be made of the difference between confidence 

in the correctness of a claim and confidence in the reporting of the answer. 

 In summary, classifying confidence between conviction (Weber & Mejia-Ramos, 2015) 

and self-efficacy (Bandura, 1997; Pajares & Miller, 1994) is not enough to distinguish types of 

confidence students have. When students create claims themselves, the conviction view of 

confidence can be broken into a correctness view of confidence and a reporting view of 

confidence.  

Low Confidence When Using a DGE 

 Regardless of which of the interpretations of confidence students were using, the students 

reported overwhelming high confidences when completing the tasks using the DGE. They were 

either extremely confident in their correctness, in their reporting, or in the case of Ivy, confident 

in her overall mathematical ability. As noted in the results section, excluding Ivy, 90% of the 

responses for confidence were a 4 or a 5. Because of this large percentage of high confidence 

levels, it is worth investigating specific incidents when students rated themselves lower.  

 When looking at low confidence ratings, none of the students reported a 1 for confidence 

for any prompt that involved the DGE. This is not terribly surprising as DGE has been shown to 

provide confidence (Guven et al., 2010; Hollebrands et al., 2010; Weber et al., 2014). Knowing 

there were no 1’s reported for confidence when using the software, we will investigate where the 

2’s and 3’s were reported. As reported in Chapter 5, there were eight instances of students using 

the software where their reported confidence level was either a 2 or 3. Of those eight responses, 

five of them occurred on one specific question: Prompt P5 asking what students notice about the 

defect of the triangle in hyperbolic geometry. There were at least two potential aspects of this 
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question that led to it having such low confidence levels. The first aspect of the question was the 

open-ended nature of the question (Silver, 1995). The second aspect of the question was its focus 

on a singular feature of the diagram. 

In terms of the question being open-ended, Prompt P5 asked students, ‘what do you 

notice?’ The students knew they were looking for a relationship, but they were unsure of what a 

‘correct’ relationship would be or if there even is a ‘correct’ relationship. There were multiple 

acceptable (true) answers, and there were multiple ways of discovering these answers (Silver, 

1995). John, for instance, wrote about how if you collapse the triangle by moving the third point, 

C, onto segment AB, the defect goes to 0 (see Figure 6.1). He was correct that the defect goes to 

zero, and he used the DGE to measure the defect to confirm that it goes to zero. And yet, despite 

writing down a true statement that is confirmed by the DGE, he only rated himself a 3. He wrote 

that he is unsure “what its purpose is or why it does what it does.” After completing multiple 

tasks related to parallel transport, he may have recognized that his response about the defect 

going to zero is unrelated to what came before. Therefore, while he may have been confident the 

defect went to zero, he was not confident this response is what the question was asking. This 

caused a drop in confidence for two potential reasons. It is possible he was responding to 

confidence using a correctness interpretation of confidence, and he was not confident his 

observation was the ‘correct’ observation. It is also possible that because he did not know if it 

was the correct observation, he was responding using a self-efficacy interpretation of confidence 

(Bandura, 1997; Pajares & Miller, 1994). 

Prompt P5 was not the only open-ended question that was asked. Prompt P4 was also an 

open-ended question asking students what they noticed about the first and last segment. 

However, as compared to the five students that rated themselves substantially lower for P5, only 
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one student, Beth, rated herself substantially lower for prompt P4. This implies that there was a 

second aspect of P5 causing low confidence other than just the open-ended nature of the 

question. This second aspect of prompt P5, the triangle defect question, that potentially led to 

low scores was its focus on a single feature of the diagram.  

Prompt P4 very specifically asked students to compare two parts of a diagram. When 

students were able to make a comparison, regardless of the implied importance, they reported 

higher confidence as their answer connected the two parts the question referenced. So even 

though they had switched to hyperbolic geometry where students are known to have less 

confidence (Hollebrands et al., 2010), the relationship gave them confidence their answer was 

the ‘correct’ answer. Prompt P5, however, only asked students to write what they notice about 

the defect of the triangle. This put a focus on a single aspect of the diagram with nothing to 

compare it too. As such, students appeared unsure how to answer that prompt. The expectation of 

the researcher was that students would engage in wandering angle measurements looking for a 

relationship to what they had previously been doing. However, none of the pairs used the 

measurement tool to measure any angles beyond what was needed for the defect. Three of the 

groups engaged in dragging to see how the defect changes, but given the nature of hyperbolic 

Figure 6.1: 

John Showing Defect Going to Zero 
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geometry, none of the students visually saw that the defect matched the angle between the 

segments. 

It is possible that P5 had a lower reported confidence simply because students were 

unsure of the concept of defect. John, for instance, had written he was unsure of its purpose. It is 

feasible that the lower scores reported for P5 were simply a result of students’ feelings of 

confusion about defect as a concept. That is, the lower reported confidences could have resulted 

as students’ general self-efficacy (Pajares, 1996) lowered because of their perceived lack of 

understanding of defect or its purpose. However, after writing their response, the researcher 

stepped in asking each group how this prompt might relate to the previous prompts and to think 

longer about their answer. By encouraging the students to think how it related to the previous 

prompts, it gave the students a second focus. They had an implied relationship to look for at this 

point. After students found that relationship, they showed an increase in their confidence. 

Focusing on John again, his reported confidence increased from a 3 to a 4. He did not suddenly 

understand defect, but he found a relationship that was most likely not a coincidence. This 

allowed him to increase his reported confidence. From his comments, this confidence is 

confidence in his correctness that he found the “right” answer. That is, his self-efficacy about his 

knowledge of hyperbolic geometry or defect did not increase. It was not suddenly making more 

sense. He even wrote that he still did not have a “specific why” and that he would still “need a 

lesson” on defect. Rather, he was confident he found he found the answer the question was 

looking for. 

In summary, there appears to be at least two factors that corresponded with low 

confidence when using DGEs. First, students reported low confidence on the open-ended 
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questions. Second, students also reported low confidence when the question only had one focus, 

rather than asking students to look for a relationship. 

Low Confidence Without Using a DGE 

As mentioned earlier, reported confidence was generally high throughout the tasks when 

using the DGEs (Guven et al., 2010; Hollebrands et al., 2010). However, when students did not 

have access to the DGE, confidence was noticeably lower. Specifically, this occurred during the 

proof prompt (P6) as well as the conjecturing prompts (P3 and R4). 

The Proof Prompt 

The proof prompt saw noticeable decreases in reported confidence from the students. 

This was the only prompt in the whole study where any student reported a 1 for confidence. 

Specifically, Fran and Ivy both reported 1’s with Fran saying, “I can’t picture what this would 

look like without actually doing it.” In other words, Fran was indicating that at least part of the 

confidence she has been reporting was due to ‘doing it’ in the software. The abstract nature of 

the proof was not convincing for her. When Ivy rated herself a 1, she wrote “It would help if I 

could practice the proof.” It is unclear what ‘practice’ means. Does ‘practice’ mean to read and 

write the proof multiple times? It could be that Ivy is working on proof comprehension (Selden 

& Selden, 2017) and simply trying to understand the proof. Does it mean to work through the 

proof in software? This aligns with previous research on proof validation (Selden & Selden, 

2003) that suggests students like to check the surface features (e.g. diagrams and equations) of 

the proof to see if it works. 

Notice that either interpretation shows Ivy’s confidence switched from rating her 

confidence in the statement to her confidence in the proof itself. She does not appear to be rating 

whether she was confident that the statement was true or false, but rather how confident she was 
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in the proof itself. This appears to show that Ivy was still using a self-efficacy mode of 

confidence. Her low confidence was caused by a lack of understanding, rather than a lack of 

belief. That would match much of her previous interpretations. 

It should also be noted that it was not just Fran and Ivy who rated the proof low. From 

Chapter 5, Ann also reported a drop in confidence when she worked on the proof task. She had 

rated herself a 5 on confidence when she discovered the relationship in the previous prompt, but 

only rated herself a 2 on confidence when she read the proof. While these three students saw the 

biggest drop in confidence, three other students reported small decreases in confidence after 

reading the proof. These low ratings are especially interesting as students had reported high 

ratings on other prompts involving deductive proof (notably the Euclidean constructions). A key 

difference with the constructions is that students were constructing their own arguments. For this 

proof, students were attempting to read and understand a given argument. Students were 

approaching this either as proof comprehension or as proof validation (Selden & Selden, 2017). 

When students were constructing their own proofs for the Euclidean constructions, students were 

engaging in proof construction (Selden & Selden, 2017). 

We know from research, such as Knuth (2014), that students do not find proofs infallible. 

Knuth showed that even when students read and understand a proof, they still expressed doubt 

about the conclusion or thought there might still be counterexamples. For this research, while it 

was to be expected that some students may not fully understand the presented proof or doubt the 

generality of proofs (as Knuth showed), it was somewhat surprising that for six of ten students in 

this study, their reported confidences decreased after reading the proof. 

 The expectation for this prompt was perhaps best illustrated by Eve. In using the software 

on the previous prompts, Eve discovered the relationship between the defect and the angle and 
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reported a 3 for confidence after having used the software to measure the angles and see that they 

matched. Upon reading the proof, Eve then reported a confidence of 4 writing that “now I know 

that I was right, and the argument helps my confidence.” Eve was showing that having a 

deductive argument strengthened her confidence. It is unclear whether Eve was arguing based on 

an axiomatic proof scheme (Harel & Sowder, 1998) and found the argument convincing or an 

authoritarian proof scheme where the very existence of a proof from an authority figure (the 

researcher) implied correctness. She started with “now I know that I was right” which initially 

points to a belief that simply having a proof constitutes authority, but then followed it with “and 

the argument helps my confidence” which points to the actual argument itself doing the 

convincing. Either interpretation was an expected interpretation for the task. 

 To contrast this, consider Beth. On the previous prompt, Beth correctly concluded that 

the defect of the triangle matched the angle between segments. She gave herself a 4 for 

confidence and wrote that “it looks to be correct everywhere we move it [the figure], but I am 

not confident there are not exceptions.” Beth measured the angles, and then dragged her figure 

around testing various configurations. Despite her testing, Beth still expressed doubt in her 

answer. Upon reading the proof, she wrote she “doesn’t totally follow it” but “it seems like it 

[the angles] should [match] based on the proof.” She then gave herself a 3 for confidence, a 

lower score than she previously reported. 

 Beth was not an isolated incident. Six of the ten students had similar responses to the 

proof. Why then are students’ reported confidences decreasing? The most likely explanation is 

that students switched their interpretations of confidence. It is feasible that students interpreted 

the question as “How confident are you in the proof you just read that the defect matches the 

holonomy?” as compared to “How confident are you that the defect matches the holonomy?” If 
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students interpreted the question in the first way, then confusion on the logic or interpretation of 

the proof would naturally cause their confidence to decrease. Put another way, by engaging in 

proof comprehension and validation, these students also switched from a conviction 

interpretation of confidence to a self-efficacy view of confidence. Fran, for instance, was quite 

explicit writing “I don’t really understand what this page is saying” implying her confidence 

decreased because of a lack of understanding the proof, rather than her hesitancy about the claim 

itself. 

 Having seen their confidence decrease, it was worth looking at the follow-up question to 

see what students reported as to what would raise their confidence. Of the nine students who did 

not rate themselves a 5 for this prompt, four students reported a general sense of wanting to 

better understand the proof with one student specifically asking for a better diagram. These four 

students responded to the prompt with proof comprehension (Selden & Selden, 2017). Three 

students thought ‘doing the proof’ in Geometry Explorer would raise their confidence. Lastly 

two students wanted some way to see if it worked ‘in all cases.’ The first case of students 

wanting a better understanding was expected. Students came into this project with different 

levels of understanding proof. There were going to be some who struggled to understand the 

proof or were not interested in taking the time to understand the proof.  

The last two types of responses to the proof validation question show how software can 

potentially aid students with deductive reasoning. ‘Doing the proof’ in Geometry Explorer 

suggests either these students were wanting to use the software to aid in their understanding of 

the proof or to use the software to confirm various aspects of the proof. John, for instance, wrote 

specifically, that he substituted his angle measures into some of the equations in the proof to 

“confirm” the proof. For him, it appeared the proof was valid because the proof aligned with the 
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measurements the software provided him. This is similar to how Selden and Selden (2017) 

describe students checking “surface level features” of a proof to validate a proof (p. 340). The 

second type of response asking if the proof worked “in all cases” implies that students may not 

fully accept the proof as covering all cases. Students may still feel that a proof, while potentially 

correct, has exceptions. Again, this falls into a type of proof validation because often students do 

not believe that proofs are infallible (Knuth, 2014; Weber & Mejia-Ramos, 2015). 

The Conjecturing Prompts 

The second area where students showed low confidence were the two conjecturing 

prompts. As reported in Chapter 5, seven students reported a decrease in confidence when 

responding to the parallel transport conjecture prompt (P3) and three students reported a drop in 

confidence when responding to the regular polygon conjecture prompt (R4). As students did not 

have access to the DGE to work on this prompt, their lower confidence was not unexpected. It 

was interesting, however, to see the difference between the two prompts. For the parallel 

transport conjecturing prompt, there were many more students who expressed a lower confidence 

than for the regular polygon prompt. 

There are several potential reasons for this. The first is task familiarity. The parallel 

transport task was a novel task for these students. However, students previously had some 

experience with constructions. This difference is noticeable in the comments made by students. 

When responding to prompt R4, many students referenced doing similar constructions in class. 

Having done similar constructions in class, their general self-efficacy was most likely higher and 

this may have influenced their confidence if they were responding with a self-efficacy 

interpretation of confidence. In some instances (such as John), students claimed to remember this 

exact question from class. This allowed those students to answer the question confidently using a 
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conviction interpretation of confidence. On the other hand, the parallel transport task was novel. 

Students made comments such as Ann writing, “It’s mostly a prediction” or Beth writing, “I’m 

not knowledgeable about hyperbolic geometry.” As it was a novel task, these students were 

highlighting their hesitancy in making a claim. As such it appears their confidence rating 

switched at least partly from a conviction view in their previous prompts to a general self-

efficacy view in their later prompts. 

A second reason for the lower confidences reported for the parallel transport task is that 

the parallel transport task was an open question (Silver, 1995). As we saw earlier, students 

reported lower confidences when working on open ended questions. A similar thing may have 

happenned here. The parallel transport question asked students what they thought would “happen 

in terms of the final segment compared to the first.” There were numerous potential answers to 

this prompt. Thus, in addition to confidence in the truthfulness of their conjecture, students may 

also have been rating confidence in whether their conjecture was the ‘correct’ conjecture. In 

comparison, the regular polygon conjecturing task was a closed question. It was either yes or no. 

Summary of Confidence Discussion 

 In summary, student confidence can be classified by either conviction in the statements 

they made (Weber & Mejia-Ramos, 2015) or by their general self-efficacy (Bandura, 1997; 

Pajares & Miller, 1994). The results indicate students’ interpretation of confidence switched as 

they moved from task to task. Additionally, when students created claims themselves, the 

conviction view of confidence was broken into a correctness view of confidence and a reporting 

view of confidence. In general, students had high confidence throughout this study, but there 

were instances of low confidence both when using the DGE and when not using the DGE. When 

using the DGE, students showed low confidence on open-ended questions and especially when 
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those open-ended questions only had a single focus. When students were not using the DGE (the 

conjecturing tasks and the proof validation tasks), students reported lower confidences, with the 

proof validation task being the only task where any students reported a 1 for their confidence. 

Justifications 

 As was reported in Chapter 5, students overwhelmingly used inductive arguments to 

justify their statements. Previous research already suggested students tend to rely on inductive 

argumentation when working with DGE. For instance, Hollebrands, Conner, and Smith (2010) 

wrote students using DGE “reduced their uncertainty to the point at which they did not see a 

need for a formal proof” (p. 348). When framing the tasks, I specifically did not use the word 

“proof.” I wanted students to have the option to choose whether to attempt a proof. Students in 

this study all had experience writing proofs. They had all taken courses involving mathematical 

proofs (a proofs course, a geometry course, and an abstract algebra course). Moreover, the 

students had all taken these courses with the researcher as the instructor. As is typical of those 

courses, much of their homework was proof based so the students were used to turning in proofs. 

For this study, however, these students participated in these tasks outside of any class and any 

final grades had been turned in. As such, the students knew they did not necessarily have the 

same expectation for justifications as they did in a classroom. This may have had an impact on 

the overwhelming number of inductive arguments being made. As such, this section will be 

looking at instances where students did not make inductive justifications and examining the 

reasons why these other justifications may have occurred. 

Deductive Justifications 

Per the results in Chapter 5, when using the DGE the students only gave deductive 

justifications, either partial or full, in 21 of the 90 prompts to which they responded. Much like 
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Hollebrands, Conner, and Smith (2010) found, the software appeared to negate the students’ 

need for a proof. The software generally provided students with enough evidence to be confident 

in their responses. What then was the reason why students gave deductive justifications? Two 

potential reasons are given below. The first reason is familiarity with the task and the second is 

lack of measurements. 

As has been stated, the students in this project had previously taken a geometry course 

from the researcher. During this course, students completed many constructions, including the 

Euclidean regular triangle. The regular triangle was used as a foundational move for more 

advanced construction techniques as the same steps to make a right triangle are also useful for 

making perpendicular lines. In the students’ geometry class, this basic construction of making 

perpendicular lines was referred to as the ‘two circle trick.’ Because of this familiarity, it was no 

surprise when all the students were able to complete the Euclidean regular triangle construction. 

It was also no surprise that eight students gave at least a partial deductive proof for why their 

construction worked.  Likewise, the Euclidean regular quadrilateral (square) was a familiar shape 

to the students. While the students had not formally done a proof of its construction during the 

course, the general method had at least been discussed. This familiarity was likely one of the 

reasons that another five of the deductive arguments occurred during this task. 

 It is worth noting that for these tasks, students were not required to give a proof. They 

simply had to “justify” their answer. And yet, for the Euclidean constructions, students were 

choosing to justify their answers at least partially with deductive justifications. This is some 

indication that students are aware of the importance of public validity (Segal, 1999). That is, 

while students may have been internally convinced their constructions were correct (either by 

measurement or remembrance), they recognized that “justify” has a public aspect to it. It is not 



 

187 

simply to justify to themselves it is correct (conviction), but to justify it to others. In this case the 

public aspect was that of the researcher (their former instructor). 

 When giving these deductive arguments, there was tension in what the students decided 

to write down. None of the students wrote down formal proofs. Two students gave full verbal 

proofs, but their written responses often resorted to inductive justifications. For instance, Ann 

gave a full verbal proof to her partner that the triangle was regular, but then proceeded to write 

that it was regular because “the measurements are equal.” In this case, she knew deductively how 

to do it, but still referred to the measurements in her written response to the question. Again, this 

highlights the difference between conviction and validity (Segal, 1999). While Ann may have 

recognized that a proof is considered a “valid” justification, she also demonstrated in her final 

written answer that the measurements were more personally convincing. It was a familiar task, 

and the measurements supported her answer, so writing the full proof was unnecessary. It is also 

possible as Hollebrands, Conner, and Smith (2010) found that Ann simply did not see the need as 

the software showed them it was correct. 

 Comparing this to the construction of the regular triangle in hyperbolic geometry, only 

one student gave deductive justifications. Unlike the regular triangle in Euclidean geometry, the 

students had not previously constructed a regular triangle in hyperbolic geometry. However, both 

the construction and the proof are exactly the same as in Euclidean. Yet, for this task, there was 

much less deduction taking place. It could be that students did not know how to justify their 

construction deductively. Seeing as the proof was the same as they had just done minutes earlier 

in Euclidean geometry, this seems unlikely. It could also be that students simply did not feel the 

need to do a proof they had previously done. They may have found it redundant. A third 

possibility could be the difference in how students measured between the two tasks. 
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This difference in measurement arises in part because of the difference between 

Euclidean and hyperbolic regular triangles. For the Euclidean construction of a triangle, students 

were able to complete the construction and visually tell whether their construction was correct. 

Students knew what a Euclidean regular triangle looked like. Because of that, not all students 

chose to take measurements. Overall, there were 9 tool usages recorded for this task in Euclidean 

geometry. If we contrast that to the hyperbolic triangle, there were 21 recorded tool usages in 

hyperbolic. Students were able to correctly construct a regular hyperbolic triangle, but due to the 

nature of hyperbolic geometry, they were unsure if their construction was correct. As we can see 

in Figure 6.2, hyperbolic regular triangles can look drastically different. Because of these 

differences, students used the measurement tools more. These measurements then provided 

students with data they were able to use when making their justifications. They did not have a 

reason to use a deductive justification as the software already told them it was correct 

(Hollebrands et al., 2010; Olivero & Robutti, 2007). Students were convinced; they had 

evidence; and they no longer felt the need to give deductive justifications.  

 In summary, it appears at least two factors came together for students to give deductive 

justifications for the regular triangle. First, students were more likely to use a deductive 

argument when they had a familiarity with the task. Even if students were unsure of the 

deductive argument, they were used to the type of arguments being made and were more willing 

to attempt that type of argument. Second, if students had not used the tools extensively, they 

were more likely to turn to a deductive argument as they otherwise had no data with which to 

base their argument. 
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Other Justifications 

 When using the DGE, there were very few instances of justifications that were not 

inductive or deductive.  There were eleven instances of justification by previous knowledge and 

one instance of comparison to Euclidean. Of the eleven instances of justification using previous 

knowledge, they mostly occurred during the Euclidean constructions. Students had a memory of 

performing the constructions and reiterated they had done the construction during their previous 

class, so they knew it was correct. However, with only one exception, previous knowledge was 

partnered with at least one other type of justification. When justifying her Euclidean regular 

triangle, Eve, for instance, wrote about how she used “prior knowledge by taking Modern 

Geometry class,” but then followed that with some deductive justifications. There is a 

recognition that claiming previous knowledge is not enough of a justification. Again, this 

highlights the concept of validity (Segal, 1999). While Eve may have been convinced by her 

previous knowledge, she recognized the need to go further than that as she recognizes her 

personal conviction is not necessarily mathematically valid. 

 For comparison to Euclidean, there was only one instance of a student using the software 

and making a direct comparison to Euclidean geometry. When making his hyperbolic regular 

Figure 6.2: 

Variety of Regular Triangles in Hyperbolic Geometry. 
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triangle, Carl specifically mentioned his construction was correct as it had worked in the 

Euclidean case. However, Carl, also measured the lines and angles “just to make sure.” That is, 

in the one instance where a student used a comparison to Euclidean, the student still expressed 

hesitation and measured to double check. 

 It was somewhat surprising that only one student used a comparison to Euclidean 

justification. Having designed the series of tasks such that the hyperbolic tasks mirror the 

Euclidean tasks, it was expected that more students would have answered as Carl did. Even 

including the non-DGE tasks, only Ann and Fran used comparison to Euclidean once each in 

answering the prompts for task P3, predicting what would happen for the hyperbolic parallel 

transport. It is possible that students disassociated the Euclidean tasks from the hyperbolic tasks 

such that any comparison was unwarranted. As we saw in Chapter 4, multiple pairs had 

discussions about how “weird” hyperbolic geometry is. Thus, even when completing such 

similar tasks as the Euclidean regular triangle compared to the hyperbolic regular triangle, the 

stark difference between geometries prevented any type of comparison. Per many of the written 

comments for P3, the hyperbolic parallel transport conjecture, students know hyperbolic 

geometry is bound to be different, but they are unsure in what way. 

Summary of Justification Discussion 

As stated in chapter 5, students overwhelmingly used inductive justifications. Deductive 

justifications occurred when students were previously familiar with the activity or when students 

did not take any measurements. Prior knowledge and comparisons to Euclidean geometry were 

relatively rare. When justifications of prior knowledge were made, they were almost always 

accompanied by other justifications implying that students felt justification by previous 

knowledge was not sufficient by itself. Lastly, comparisons to Euclidean geometry were only 
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made three times highlighting the distinction students made between Euclidean and hyperbolic 

geometry. 

Tool Usage 

As was reported in Chapter 5, tool usage (dragging and measurement) was much more 

prominent when students were working in hyperbolic geometry. This was to be expected based 

on previous research (Guven & Karatas, 2009; Hollebrands et al., 2010).  As hyperbolic 

geometry is known to be more difficult for students (van Hiele, 1986), it was expected that 

students would look to the DGE to provide evidence for them as deductive justifications would 

be more difficult to use (Guven & Karatas, 2009; Olivero & Robutti, 2007). In many instances, 

students did not use the dragging or measurement tools at all until hyperbolic geometry. That is 

not to say students did not use the DGE in Euclidean geometry. Much of the tool usage in 

Euclidean geometry was using the DGE as an accurate way to construct figures (C. Laborde, 

1993). That is, the perceived accuracy of the construction done by the DGE was enough 

evidence for students to make claims. For instance, on the Euclidean parallel transport, the 

transported segment by the DGE appeared parallel and the students trusted the DGE to be 

displaying it properly. Hollebrands et al. (2010) described this phenomenon as students finding 

the software “reliable.” Hollebrands et al. (2010) found that students trust the software to display 

accurate images and will base their arguments on those images. 

When switching to hyperbolic, students still found the software reliable, but used the 

measurement and dragging tools to either check their own work or to look for relationships. For 

the parallel transport, students used the tools to find relationships to respond to the prompts. 

Measurement tools were used to find those relationships, and then dragging often followed to 

show those relationships held for multiple configurations of the figure. That is, wandering 
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measurement and dragging increased in hyperbolic geometry as students were looking for 

relationships that were difficult to see due to the nature of hyperbolic geometry. For the 

Euclidean constructions, validation measurement and dragging increased as students were using 

the measurement tools to verify they had constructed their figures correctly. They were not 

necessarily doubting whether the DGE had drawn their figure correctly, but rather, they needed 

the measurement tools to verify that they had constructed their figure properly. Seeing a figure 

was not enough justification. Having measurements was a necessity for having confidence in 

their constructions. 

Novel Instances of Tool Usage 

 While this study primarily examined where students were using the dragging and 

measurement tools (Baccaglini-Frank & Mariotti, 2010; Olivero & Robutti, 2007), there were a 

few instances where students used the tools in ways fundamental ways that were not originally 

expected or looked for when designing the study. This section will highlight a few of those 

instances. 

 The first instance to be highlighted is Fran’s use of the DGE to draw a figure. Fran began 

her construction of a hyperbolic regular quadrilateral, not by starting with a construction, but by 

exploring what a hyperbolic regular quadrilateral might look like. That is, Fran put four segments 

on the screen and began dragging them into a shape that looked roughly regular (Figure 4.25). 

This is the difference between drawing and figure (C. Laborde, 1993). As this shape was new to 

Fran, she was drawing a proposed version of the figure that may later point her to what the actual 

figure looks like. Perhaps unfortunately, Fran did not pursue this avenue very long as she got 

sidetracked by her partner into attempting direct constructions of the figure. It is worth 

highlighting the potential importance of what Fran initially attempted. If Fran had added 
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measurements to her angles and sides, it is feasible Fran could have discovered the crucial 

property that hyperbolic regular quadrilaterals do not use 90 degree angles; they must only have 

congruent acute angles. This type of proactive guided measurement (Hollebrands, 2007; Olivero 

& Robutti, 2007) is a use of the measurement and dragging tools that could have helped many of 

the pairs. 

 The other instances of novel tool usages are actually instances where students attempted 

to use the tools but were hampered either by software limitations or lack of how to use the 

software. When working on the Euclidean parallel transport, Beth commented specifically that 

she wanted to have a way to zoom in on the figure. Beth was concerned that the first and last 

segments were not perfectly coincident. While the figure may look coincident, Beth seemed 

concerned about the difference between the graphical representation and the theoretical objects 

(C. Laborde et al., 2006). Beth supposed that if she could zoom in further, she could test whether 

the segments truly were coincident. While the Geometry Explorer does have a zoom function, it 

is difficult to use and these students did not have much experience using it. This lack of zooming 

was a reason Beth only rated herself a 4 for confidence. 

 When working on her construction of the Euclidean regular quadrilateral, Eve attempted 

to make use of a rotation to give herself a right angle. Eve had initially struggled to construct 

right angles in a way that preserved segment lengths. That is, Eve had a segment representing the 

base of her regular quadrilateral but was struggling with how to construct the sides. Eve decided 

one approach would be using the rotation tool. These students spent a week during their course 

on Euclidean transformations, so deciding to use the rotation tool was an understandable option 

for Eve to try. Unfortunately, Eve struggled with remembering how to use the rotation tool. In 
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this case, Eve’s difficulty in using the software directly hampered a valid approach to 

constructing a square. 

 In both of these instances, Eve and Fran had strategies for using the tools that would have 

helped them both, but they were hindered by the DGE itself. This points to the importance of 

both knowledge of the software and design of the software itself. In both cases, it was 

theoretically possible to do what the students wanted. Yet, the design of the software hampered 

both students. Had the researcher stepped in, it is possible Beth would have gained her 

confidence and Eve would have constructed a regular quadrilateral. This points to the importance 

of mediation as students are using DGE (Barcelos et al., 2011). Dynamic Geometry 

Environments are only useful if students know how to use them in productive ways (Olivero & 

Robutti, 2007). 

Summary of Tool Usage Discussion 

As expected, student tool usage was increased during hyperbolic geometry. For the 

parallel transport series of tasks, students found wandering measurement and dragging an 

important aspect of finding relationships in hyperbolic geometry that were otherwise difficult to 

see. For the regular polygon series of tasks, students found validation measurement and dragging 

an important aspect of showing their constructions were made correctly. There were also 

instances throughout the study of students using, or attempting to use, tools in ways that were not 

originally considered. This includes using the DGE as a tool to draw as compared to construct, 

using the zoom features to validate conjectures, and using the rotational tool as a type of 

construction tool. 
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Task Design 

 One important consideration of this research is the tasks themselves. There were two 

main series of tasks. The first of these series of tasks was the parallel transport series of tasks. 

This series of tasks consisted of open-ended prompts with which the students were less familiar. 

The second series of task was the regular polygon task. This series of tasks consisted of prompts 

which were not open-ended and with which the students had some familiarity. Additionally, the 

tasks included both a Euclidean geometry component and a hyperbolic geometry component. As 

is the case with research, the results are entirely dependent on the tasks chosen. Because of this, 

it is worth discussing how the tasks may have impacted the data. 

 The regular polygon task was the most familiar to the students. They had done numerous 

construction-based activities during their geometry class - many of which included a proof 

component. As a result of this, the students were familiar with making construction-related 

arguments using such theorems as the triangle congruence theorems. On the other hand, the 

parallel transport task was unfamiliar to students. They had done transformations in their 

geometry course, and had studied the theoretical underpinnings of transformational geometry, 

but they had minimal experience doing proofs on their own. Most of the proofs involving 

transformational geometry had been done together as a class either during lecture or during in-

class group work time. 

 A second difference was the type of question being asked. The parallel transport task 

included open-ended prompts (Silver, 1995) asking what students noticed. Because of the open-

ended nature of the question, there was a wide range of answers that students could write down. 

For instance, on the very first prompt asking what students noticed about the transported 

segment, some students commented on the segment’s length, others talked the segment being 
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parallel to the original segment, and others talked about angles. From the students’ perspective, 

there was not necessarily a “right” answer. This is a defining feature of open questions (Silver, 

1995). On the other hand, the regular polygon task included closed prompts asking students 

whether they were successful in constructing a given shape. Students were able to judge whether 

they were successful. This relates to the multiple interpretations of confidence. For the open-

ended questions, students switched between confidence in writing down a true statement or in 

giving the “correct” answer. Comparatively, for the closed questions of the construction, this 

distinction was mostly removed by virtue of the fact that students either did or did not create the 

construction correctly. This meant while the construction process and the justifications varied 

greatly, the actual answers themselves were standard with either a yes or no. 

 These two differences (familiarity and open-endedness) undoubtably accounted for some 

of the disparities that have been reported so far. For instance, both familiarity and closed 

questions may have contributed to the disparity between the reported confidence for the two 

series of tasks. While both tasks reported high confidence, the more familiar task, the regular 

polygon task, had much higher reported confidences. Is it a result of familiarity or a result of the 

type of confidence they were reporting? Likewise, these differences may also account for some 

of the disparity in the use of deductive arguments between the tasks. There were many more 

deductive justifications given during the regular polygon series of tasks. This is likely the result 

of students’ familiarity with the tasks.  

 Additionally, the difference between open and closed questions may have contributed to 

how students used the tools during the tasks. During the regular polygon task, students used the 

tools overwhelmingly for validation and during the parallel transport task the students were  
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much more balanced between wandering and validation. This disparity is seen in the Table 6.1. 

When Olivero and Roberto originally defined wandering measurement, the very first phrase they 

used was “When students do not have any precise ideas….” (2007, p. 141). This idea lends itself 

to open-ended questions. The students do not necessarily know what they are looking for, and so 

they begin to wander. Then, once they find something, they can use the tools to verify what they 

found. Comparatively, when working on the regular polygon task, students were using the tools 

to confirm they constructed the polygon correctly or to confirm they did not. By using the 

software, the students had an accurate picture and they were typically able to judge before they 

measured whether their regular polygon was regular. Because of this, we see most tool usages as 

validation usages. 

 Within the tasks themselves, there were also individual aspects that could have affected 

the outcomes. For instance, in the parallel transport task, the first four prompts asked students 

what they noticed about “the segment”. It was not until the fifth prompt asking about the defect 

that students were told to start thinking about angles. That is not to say that students waited until 

the fifth prompt to think about angles, but the task itself did not ask students to specifically think 

about the angles until prompt five. To be precise, 8 of the 10 students wrote about parallelism for 

the first prompt in the parallel transport, though only two used the angle measurement tool. 

Notice the focus in their response is on parallelism, and not the angles themselves. The two 

students who did not mention parallelism, Eve and Fran, only commented on the segment staying 

Table 6.1: 

 

Number of Instances of Wandering and Validation Tool Usages for Each Task 

 

 Wandering Validation Both  

Parallel Transport Task 10 14 6  

Regular Polygon Task 7 54 4  
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the same length. They made no mention of parallelism or angles. Continuing with this task, Eve 

and Fran used the angle measurement tool the least, as did Gary and Hal who used it the same 

amount as Eve and Fran. This suggests that had Eve and Fran thought about parallelism or angles 

during the first prompt, as did the other groups, they may have been more inclined to use the 

angle measurement tools throughout the remainder of that task. To summarize, just because tools 

were available did not mean students chose to make use of them. If a teacher or researcher wants 

students to make use of DGE tools, the language they use may influence whether the students 

actually use the tools (Barcelos et al., 2011). 

Summary 

 This discussion took a deeper look at confidence. Did confidence measure what it was 

proposed to measure? There seems to be two main interpretations students had for confidence. 

Students either were using a conviction view of confidence (Weber & Mejia-Ramos, 2015) or a 

self-efficacy view of confidence (Bandura, 1997; Pajares & Miller, 1994). Further, this study 

identified that when dealing with a conviction view of confidence, there were two types of 

confidence being reported. At times, confidence referred to the correctness of students’ answers 

and whether they felt they gave the “right” answer. At other times, confidence referred to their 

reporting of a true statement. Additionally, this study confirmed that students generally report 

high confidence when using DGE, though there were instances of low confidence reported. 

When using a DGE, students reported lower confidence when answering open-ended questions, 

and even more so, when the open-ended questions only had a single focus. 

 This discussion also highlighted the times that students used non-inductive arguments 

when using the DGE. This study found that deductive justifications occurred when students were 

previously familiar with the activity and when students did not use any measurements. 
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Justification by prior knowledge was extremely rare and happened almost exclusively in 

conjunction with other justifications.  Lastly, justifications by comparison to Euclidean geometry 

happened extremely rarely highlighting the distinction students are making between the two 

types of geometry. 

 Tool usage increased as expected during the hyperbolic portion of the tasks. In particular, 

students used both the measurement and dragging tools in a wandering aspect during the parallel 

transport series of tasks. This was mainly due to the challenge of finding difficult to see 

relationships within hyperbolic geometry. For the regular polygon series of tasks, students 

increased their validation use of the tools as they were mainly using the tools to verify whether 

they had successfully completed the constructions. There were also instances where students 

were attempting to use the tools in novel ways that were not originally considered. This 

highlights the importance of the lesser studied features of DGE. 

Lastly, this discussion looked at task design. The regular polygon series of tasks was both 

familiar and open-ended, and it corresponded to having a much higher confidence level with 

much more frequent use of deductive justifications. Additionally, because of the open-ended 

nature of the parallel transport task, we also saw that students tended to have a more balanced 

usage of validation and wandering tool usages. 
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CHAPTER 7: CONCLUSIONS, LIMITATIONS, AND FURTHER STUDY 

The key findings from Chapter 5 and 6 related to the research questions are as follows: 

• The tasks elicited substantial measurement and dragging tool usage across both series of 

tasks.  However, many students only began using these tools during the hyperbolic 

portion of the tasks. 

• The tasks elicited multiple types of justifications, though students generally used 

inductive justifications throughout both series of tasks.  Deductive justifications, when 

they occurred, most often accompanied tasks that were in both Euclidean geometry and 

familiar to students. 

• Reported confidence was generally high across both Euclidean and non-Euclidean tasks 

when using the DGE. The lowest reported confidences occurred for prompts not 

involving the DGE (e.g. the conjecturing prompts). 

Recommendations 

This study has implications for at least three groups. First, this study can inform further 

research as it relates to confidence, justification, and tool usages. Second, this study has 

implications for educators. As this was a task-based research project, how students completed the 

tasks and how they justified their response can inform how teachers create tasks in the future. 

Lastly, this study can inform software developers as they continue to develop DGEs for students 

to use. 

Recommendations for Researchers as Related to the Research Questions 

 As was seen, reported confidence when using a DGE was generally high - across both 

Euclidean and hyperbolic geometry. Previous research has generally focused on only one type of 

geometry. For instance, Hollebrands et al. (2010) describe instances where DGEs can help 



 

201 

provide confidence as conviction when students are working in hyperbolic geometry. Similarly, 

Guven and Karatas (2009) described instances of students gaining confidence as conviction 

within elliptic geometry. This dissertation furthers that by showing that confidence when using 

DGE remained relatively high as students completed similar tasks across different geometries. 

There were instances in this study, however, where students did report low confidence 

when using the DGE. These mostly occurred in hyperbolic geometry for open-ended questions 

that lacked multiple foci. As the visual nature of hyperbolic geometry tends to obscure 

relationships, is it common for students to report low confidence when questions are open-ended 

in hyperbolic geometry or was the low confidence because of this specific task? Due to the 

limited research that has taken place within non-Euclidean geometries, further research is 

necessary to explore a wider variety of tasks within hyperbolic geometry - including tasks with 

both open and closed questions and tasks that can be replicated within both geometries. 

Additionally, though confidence has currently been looked at from both a conviction 

view (Weber et al., 2014) and a self-efficacy view (Bandura, 1997; Pajares & Miller, 1994), 

there is room to expand on how students interpret the term confidence. As we saw, even within 

the conviction view of confidence students held two different views. At times, their confidence 

referred to the correctness of the answer (what the instructor was looking for) and at other times 

their confidence referred to reporting a mathematically true statement (and not necessarily what 

the instructor was looking for). Note that this is only an issue when a student on their own is 

making a conjecture. Existing research on confidence as conviction (Segal, 1999; Weber et al., 

2014) give participants claims and justifications to decide on their confidence in the existing 

claim or justification. Yet in this study, students were rating their own conjectures. More 

research is needed on confidence as conviction when students are reporting confidence on the 
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claim they are making. Is confidence higher when justifying an existing conjecture or when 

creating and justifying one’s own conjecture? 

As was expected, this study saw an overwhelming number of inductive justifications 

being made. This was not unexpected as previous research has shown that students will often use 

the evidence the DGEs provides as justification (Hollebrands et al., 2010; Olivero & Robutti, 

2007). Yet, there is also research showing that DGEs can be a motivation for students to pursue 

deductive justifications (Guven & Karatas, 2009). Additionally, Kmetová et al. (2019) shows 

students using DGEs to form conjectures, but acknowledging that inductive arguments are not 

sufficient. Why then do some students, such as those in this study, primarily use inductive 

justifications, while other studies show that DGEs can provide motivations to reach for deductive 

justifications? For this study, students gave deductive justifications when completing the 

Euclidean constructions for regular triangles and quadrilaterals but did not give deductive 

justifications when completing the hyperbolic constructions – even when the justifications were 

identical. If students had started with the hyperbolic constructions before Euclidean 

constructions, would they have given deductive justifications for the hyperbolic constructions? 

As deductive reasoning is often a goal of mathematics education, more research is needed 

into how to implement DGEs in ways that can lead students toward deductive justification. 

Hadas et al. (2000) showed how contradiction and uncertainty can be used to guide students 

toward deductive justification. Their study involved students working in Euclidean geometry. 

Moving away from Euclidean into hyperbolic, as was done in this dissertation, would seem to 

introduce uncertainty and yet the students in this dissertation still reported high confidence 

without feeling the need to move to deductive justifications. If deduction is a goal, then more 

research is needed to explore what types of tasks, be they Euclidean or non-Euclidean, lead 
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students toward deductive justification. For instance, these tasks took place after the semester 

had ended. Might repeating the tasks during the semester as students are in the midst of studying 

hyperbolic geometry make a difference? 

Additionally, as Kmetová et al. (2019) discussed, expectations may have contributed to 

when students chose to give deductive justifications. This study purposefully did not specify to 

students how they had to justify their statements. Repeating these same series of tasks with 

language implying students should “justify” or “prove” would undoubtably lead to an increase in 

deductive justifications. But would students’ confidence remain as high as the ten students in this 

study? That is, research is needed investing how requiring certain justifications may impact 

student confidence. 

 In this study, there were situations where students used the tools in wandering modes and 

in validation modes. Much of the research into tool usage modalities (Baccaglini-Frank & 

Mariotti, 2010; Olivero & Robutti, 2007) has focused on activities within Euclidean geometry. 

Making the switch to hyperbolic geometry was expected to result in a greater amount of 

wandering tool usage as students were unfamiliar with that type of geometry. While that 

occurred, it was mainly seen as students worked on the hyperbolic parallel transport. This task 

was both open-ended and novel. Were these two aspects of the tasks the reasons for the increase 

of wandering measurements? Research into task design within non-Euclidean geometry is 

needed to see how varying the types of tasks affects how students are using the tools. 

 In summary, this research points to a multitude of opportunities for future research. This 

study showed differences in how students used tools, made justifications, and reported 

confidence as they moved not only across the tasks, but within the tasks. How might different 

tasks affect the results? How does task design (e.g. open-ended questions, novel questions, 
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singular focus questions) affect how students interact with DGE? How are students interpreting 

confidence? In this study, students interpreted confidence in several ways. Specifically, 

confidence as conviction was interpreted two different ways. Further study can explore why 

students switch between these two different views. 

Other Recommendations for Researchers 

 An area of interest not directly related to any one research question is the need to study 

the impact of partner work when studying tool usages, justifications, and confidence as students 

complete activities involving DGEs. Pairs were chosen specifically to foster dialogue between 

the students. This is a common procedure used in numerous studies (e.g., Baccaglini-Frank & 

Mariotti, 2010; Hollebrands, 2007). The expectation was that this choice would lead to sustained 

dialogue between students because they would be comfortable with each other. While this 

worked well for some pairs, for other pairs (e.g. Eve and Fran), there were long gaps where 

students worked independently with minimal interaction.  

 Research into the effects of partner work is one avenue that can be explored. For 

instance, the issue of dominant partners. Beth and Ann were a prime example of this imbalance 

between the partners. Beth directed much of the conversation and activity within their work. 

Beth, as a dominant partner, was often able to steer Ann away from deductive justifications 

toward inductive justifications. There were several instances where Ann appeared ready to 

attempt deductive justification, but Beth jumped in and sidetracked Ann with inductive evidence 

Beth had gained from the software. Including partners in this study, influenced how students 

justified their claims. Ann may have given many more deductive justifications had Beth not been 

there.  
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These two issues related to partner work are at odds. On the one hand, partners generally 

encouraged discussion between the students. There were many instances of partners working in 

tandem to complete tasks or create justifications. On the other hand, having partners led to power 

imbalances where one partner had strong influence over the other. There is some research 

exploring issues of students working in pairs (Evens & Houssart, 2007; Wilson et al., 2016). Yet, 

the use of DGEs alongside paired activities undoubtedly plays a large part of how students 

interact and think about the geometry. For instance, there were instances where partners like Carl 

and Dan specifically used their separate machines to make different examples. There were other 

instances where one student discovered a construction, and the other student deferred to that 

construction. In the case of Eve and Fran, Fran began a productive approach using drawing 

rather than construction but was pulled away by Eve’s constructions. When working with DGEs 

and partners, how might only using one computer affect tool usage? 

A last area of research that needs exploring is a look at other tools of the DGE beyond the 

dragging and measurement tools. As we saw, students used, or attempted to use, tools beyond 

just the dragging and measurement tools. For instance, Beth, wanted an easy way to zoom in on 

an image. When working on the parallel transport in Euclidean geometry, Beth did not trust that 

the segments really were on top of each other. Being able to zoom would have alleviated her 

concerns. Much like the dragging tool, zooming is a fundamental difference between the 

physical world of paper and pencil and the digital domain of DGEs.  

Recommendations for Educators 

As was seen in this study, students made overwhelmingly inductive justifications. If an 

educator is wanting their students to make deductive arguments, the teacher must be conscious 

about teaching students how to use DGE in a way that supports deductive argument. Educators 
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need to focus on the exploration and discovery aspects of DGE (DeVilliers, 1998), and leverage 

those aspects to the students’ advantage. While the DGE may be enough to give students data to 

justify their conjectures and give them confidence, it does not always translate to students 

constructing a proof. Some of this does relate to how students are taught about what is or is not a 

valid justification (Segal, 1999). Kmetová et al. (2019) give examples of students using DGE to 

explore and investigate, but also recognize that even though they may be convinced, the DGE 

does not mathematically justify their conjectures. 

This reaffirms the suggestion from Olivero and Robutti (2007) that educators need to 

teach students “how to use them [the tools] in a productive way” (p. 154). For instance, in the 

regular polygon series of tasks, we saw students verify that they had successfully created regular 

polygons, but those validation measurements rarely translated to deductive justifications. In 

hyperbolic geometry, only Hal gave a deductive justification for the regular triangle. Others 

undoubtably could have but may not have felt the need. Olivero and Robutti (2007) suggest this 

is where instruction in the tool use itself can become important because tool usage can be used to 

lead students towards deduction. Teaching students productive tool usages can also give students 

reassurance that they can spend time on the exploration phase without feeling the pressure of 

getting an answer right away. 

A good example of how to use the DGE productively can be seen by looking at Fran. She 

was the only student in the study to use the tools to draw, rather than to construct. Rather than 

begin with a construction, Fran put four segments on the screen as a drawing in an approximate 

square shape and attempted to drag it into what she thought was a regular polygon. She was 

attempting to see if they even existed; and if so, what they may look like. Had Fran been taught 

how to use the tools in a guided wandering method (Olivero & Robutti, 2007), she may have 
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taken the next steps to measure the sides and angles and noticed the crucial detail that the corner 

angles were not right angles. This is a crucial understanding that is needed to be productive in the 

construction. This example reinforces how students need to be taught the various modalities and 

how they can be used both for exploration and as a guide toward deduction. 

Another recommendation for educators is to teach students how to use DGE to support  

proof comprehension, validation, and evaluation (Selden & Selden, 2017). When reading the 

proof for the parallel transport task, reported student confidence decreased. A common comment 

regarding how to raise their confidence was to “do the proof” in Geometry Explorer and to see if 

it worked in all cases. The students all had access to Geometry Explorer while they read the 

proof, but none made use of it despite thinking it might raise their confidence. This suggests that 

although they want to use DGE to help support their proof, they may not know how DGE can be 

used to support the proof. 

We know that students do not always gain conviction from reading proofs (Knuth, 2014) 

and so teachers can help students use proof for explanation and discovery (DeVilliers, 1998). 

The proof in the parallel transport series of tasks was a good example of how this could be done. 

In basic terms, the proof follows an angle as it makes its’ way around a triangle. This gives 

students an opportunity to ‘do’ the proof in DGE by constructing the angle and following it along 

with measurements as the proof proceeds. Students can then see the proof step by step. But if 

students think of DGE and proof as separate activities, this link may not occur. Thus, both 

teachers and students should be encouraged to use a DGE to help clarify and explain the 

individual steps of a proof as they are being taken. 

A last recommendation for teachers is to discuss appropriate use of justifications. We 

know mathematics instructors often will espouse a belief in the importance of deduction. We 
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also know mathematics instructors will use DGEs because they increase student interest 

(Barcelos et al., 2011; Pandiscio, 2002). However, we see that use of a DGE, while giving 

students confidence and increased student interest, can lead students away from deductive 

arguments in favor of inductive arguments. Students who otherwise may have given deductive 

arguments for such proofs as the construction of a square, instead gave inductive arguments. 

Educators must be clear about what expectations are for students. That is, educators can focus on 

the distinction of validity and conviction (Segal, 1999) and how DGE can support both. 

Recommendations for Software Developers 

Geometry Explorer was used during this research because it was available software that 

could model hyperbolic geometry using the same interface as Euclidean geometry. This is not an 

endorsement of Geometry Explorer, only a recognition that it succeeds in giving users a unified 

experience across geometries. There are other DGE available that have many features that 

exceed Geometry Explorer at the expense of only focusing on one type of geometry. GeoGebra 

is a DGE that has emerged over the last decade that is quickly becoming a standard in high 

school classrooms, and is starting to find its way into newer research involving DGE (e.g. 

Albaladejo et al., 2015; Kutluca, 2013). As a newer piece of software with an active 

development team, it offers many features that Geometry Explorer does not offer. For instance, 

GeoGebra offers easy zooming via the mouse, automatic labeling of points, and angle symbols 

any time an angle measurement is taken.  

As developers keep creating software, it is important to include as many of these little 

features as possible. For instance, the GeoGebra angle symbols are an important feature that may 

affect how students use the angle measurement tool in hyperbolic geometry. In Figure 7.1, we 

see two 30-degree angles. On the left is a hyperbolic 30-degree angle as measured in Geometry 
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Explorer and on the right is a Euclidean 30-degree angle in GeoGebra. While both DGEs show 

the same information, in Geometry Explorer the angle measurement is placed far from the angle, 

and the angle has no indication it is the specific angle being measured. On the right in GeoGebra, 

we see the measurement next to the angle with a shaded area to highlight the angle. As diagrams 

move beyond a single angle and as they get dragged around, it becomes easy to lose track of the 

30-degree angle in Geometry Explorer. Putting measurements next to the angles, using angle 

symbols, and automatically labeling points has the potential to make the tool much more useful 

to the student. When students are engaging in wandering dragging, these small things may have a 

big difference in what students notice. 

This is not meant to be an attack on the developers of Geometry Explorer. Being 

designed specifically to support non-Euclidean geometry, which is typically only studied at the 

collegiate level, guarantees the user base and the development team are much smaller than 

software such as GeoGebra. Developers only have so much time and effort they can devote. My 

critique is simply to point out to developers that small decisions may have large impacts on how 

students use the tools. One thing Geometry Explorer does well is that it allows for tabbed 

windows within the program itself. This was noticeable in this study as students had the ability to 

Figure 7.1: 

Differences Between Angle Measurements in Geometry Explorer and GeoGebra 
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easily reference previous work. When completing similar tasks, students were not forced to save, 

close, and reopen previous work. Rather, the students could simply switch to the previous tab to 

find what they were working on. 

Limitations 

 As with any research study, there were limitations to the study. Some of those limitations 

were known ahead of time, while others arose as the research was being analyzed. Student 

population, limited questions, and how tool usage was counted were all limitations that were 

expected and planned for. Students’ interpretations of confidence and their brief responses, 

however, were not planned for. 

Student Population 

 As this is a small study consisting of only ten students, the claims being made are only 

directly applicable to those ten students. Additionally, those ten students were all from the same 

school and took multiple math classes together, including the same collegiate geometry course. 

Because of this, it is to be expected that there is some homogeneity with how students 

approached the tasks. For instance, only one student, Fran, ever used the DGE to draw as 

compared to construct. The other nine students all began directly with construction. With a larger 

group of students from a more diverse mathematical background, it is likely more students would 

have engaged in that type of behavior. This is an area where a course instructor may find it 

useful to model such a skill to their students. Because of this small sample size and the similarity 

of the students, these results should not be generalized to larger groups of students. Instead, 

future research can explore whether the trends seen with these students generalize to more 

diverse populations.  
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Limited Student Activity  

 A second limitation of this study is the variety and number of prompts to which students 

responded. The first series of tasks involved transformational geometry and parallel transports. 

The second series involved geometric constructions. These two tasks are limited in scope. There 

are a wide range of other types of questions that can be asked and should be asked of students. 

For instance, questions from analytic geometry or vector geometry could expand on the type of 

problems. Might measurement tools become an even greater source of justification in analytic 

geometry because of analytic geometry’s greater focus on numbers and coordinates? Including a 

wider variety of constructions beyond regular polygons or other types of transformations could 

also show if the increased validation tool usage we saw with these students carries over to other 

constructions. This study took place after students had taken a course in geometry. Having 

students complete a variety of tasks throughout a geometry course could provide a wider range 

of tasks. Completing tasks throughout a course could also bring insight into if students learn 

wider varieties of tool usage as they proceed through a geometry course.  

Counting of Instances of Tool Usage Versus Counting of Tool Usage Types 

 Another limitation of this research is how tool usage was being counted. For this study, 

tool usage counts were based on whether the student used the tool in a given modality at least 

once during each prompt. A student may have made multiple validation measurements, but it 

would only have been counted once. There are both advantages and disadvantages to this 

approach. By only counting a tool usage once, the amount of wandering tool usages was more 

balanced with validation tool usages. By the nature of wandering usages, there is an expectation 

that wandering usages will far outnumber validation usages. For instance, a student validating a 

conjecture only needs to measure once. Comparatively, a student who is making wandering 
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measurements may make numerous measurements until they find a relationship.  Counting only 

whether a tool had been used allowed for a greater focus on how the tool was used rather than 

how often the tool was used. 

With that said, only counting types of tool usages has its drawbacks. First, it limits some 

types of comparisons among the prompts. While two prompts may be listed as having the same 

amount of wandering measurement, this research does not report on how many instances of 

wandering measurement took place. This is a potentially useful piece of information; not simply 

to know that two prompts both had wandering dragging, but to know which prompt had more 

wandering dragging. 

Various Understandings of Confidence 

 Another limitation of this study is how students chose to understand the term confidence. 

As discussed in Chapter 6, students used multiple interpretations of confidence – confidence as 

self-efficacy and confidence as conviction. More so, confidence as conviction was also broken 

into two types of confidence. At times it was clear that students were rating their confidence in 

the correctness of their answer, and at times it was clear students were rating their confidence in 

the accurate reporting of their answer. It is feasible that these multiple ways of understanding 

confidence influenced how confidence was reported. Having a unified understanding of 

confidence, using either understanding, will certainly change the results. 

Brevity of Students Responses 

 One last limitation of the study was the brevity of student responses. There were 

instances throughout the study where students’ justifications were short and non-descriptive. 

Having video evidence to support those justifications proved essential. At times, students 

verbalized their justification, and then only provided a short summary of that justification. Ann, 
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for instance, gave a verbal proof that her Euclidean regular triangle was correct, but only wrote a 

few brief comments. In future studies, using these same tasks but with differently worded 

prompts may encourage students to spend more time on their written responses yielding more 

accurate reporting of justifications and allowing for a more precise categorization of those 

justifications. 

Next Plans 

 This section will discuss future plans for this research and changes that can be made in 

future research for greater clarity. First, this research would benefit from taking place over an 

extended period of time with a wider variety of questions. Conducting this research throughout a 

semester course would allow the researcher to see how tool use changes in a wider variety of 

activities. As the current results are highly dependent on the two series of tasks, it would be an 

interesting question to see how the results change when the tasks change. For instance, in both 

series of tasks, students were asked to create their own diagrams. In the parallel transport series 

of tasks, the diagram creation was guided. In the construction tasks, students were left to create 

their own diagrams. Recently, Unal and Hollebrands (2021) investigated how diagrams affect 

student interactions. They found that providing diagrams led students to be more likely to find 

solutions to the given geometric problems, but also corresponded to mostly empirical 

justification. Kmetová et al. (2019) conducted a small survey to see in what parts of a task 

students found DGE use to be most helpful. The most popular answer was the use of DGE in 

finding relationships. If that is indeed how students see the use of DGE, can we design tasks 

around finding relationships? Or can tasks be designed to show students other important features 

of DGE such as finding locus of points or using it to help construct proofs. 
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Second, this research would also benefit from a broader range of students completing the 

activities. The participants in this study were a relatively homogenous group of students. 

Recruiting students from multiple mathematics programs would predictably change the results. 

Students who have used different textbooks or have different instructors would naturally 

approach these tasks in different ways. It is possible more students would have approached the 

regular polygons as Fran did by beginning with a drawing rather than a figure. It is also possible 

that based on classroom norms, students would have given different justifications based on what 

had been considered appropriate justifications. 

Third, repeating some of these same activities but with different word choice may also 

prove enlightening. In the activities for this dissertation, the prompts avoided using the words 

“justify” and “prove”. Rather, the prompts asked the students, “why?”, allowing students to 

justify their responses as they wished. Future studies could experiment with word choice to see 

how word choice affects student responses. The differences between these words may impact 

whether students are responding based on what convinces them compared to what they know to 

be a valid deductive argument (Segal, 1999). 

Fourth, for this current dissertation, students completed the series of tasks with minimal 

interaction from the researcher. Repeating this study in the future with greater researcher 

interaction could prove beneficial. Incorporating ideas from current research on paired interviews 

(e.g. Wilson et al., 2016) could lead to greater clarity in student responses. For instance, greater 

interaction from the researcher could provide clarification of student justifications and reasoning. 

Asking questions such as “Can you expand on that justification?” or “Can you clarify what you 

mean?” may prompt students to think more deeply about their responses. Likewise, interaction 

from the researcher may help to alleviate power imbalances among partners. Issues that arose in 
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this study where one partner deferred to the other could have been alleviated by researcher 

interaction.  

In summary, there are at least four avenues for future research. First, a wider variety of 

tasks can provide additional insight into how students use the tools, justify their conjectures, and 

rate their confidence. Secondly, and similar to the first, a wider variety of students would 

introduce a wider range of tool usage and justifications. Third, word choice within the tasks 

themselves may lead to certain types of justifications and tool usage. Repeating the study with 

different choices of words may impact how students are thinking about the tasks. Lastly, the 

amount of researcher interaction has the potential to dig deeper into how students are thinking as 

well as affect how students interact with each other. 

Future Questions 

 As with all research, questions arise from the analysis and conclusions. Specific questions 

include: 

• Beyond the major tools of DGEs (dragging and measurement), how do other tools aid 

in student understanding and student confidence? This research focused on the major 

tools (dragging and measurement), but there are tools like zooming that may affect 

how students use the software.  

• What is the role of previous expectations as students complete DGE activities? How 

do students’ previous understandings of what it means to be mathematically valid 

affect the justifications they provide or the confidence they report? 

• How does the language of the prompts affect the justifications students use when 

completing similar activities using DGEs? 
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• How do partner dynamics affect how students think about geometry while completing 

activities using a DGE?  

• How is confidence affected by being given a statement to justify compared to having 

to conjecture and then justify one’s own statement? 
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APPENDIX A: DESIGNED TASKS - PARALLEL TRANSPORTS 

Figure A.1: 

Geometry Tasks – Parallel Transports – Page 1 
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Figure A.2: 

Geometry Tasks – Parallel Transports – Page 2 
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Figure A.3: 

Geometry Tasks – Parallel Transports – Page 3 
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Figure A.4: 

Geometry Tasks – Parallel Transports – Page 4 
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Figure A.5: 

Geometry Tasks – Parallel Transports – Page 5 
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Figure A.6: 

Geometry Tasks – Parallel Transports – Page 6 
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Figure A.7: 

Geometry Tasks – Parallel Transports – Page 7 
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APPENDIX B: DESIGNED TASKS - PARALLEL TRANSPORTS 

Figure B.1: 

Geometry Tasks – Regular Polygons – Page 1 
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Figure B.2: 

Geometry Tasks – Regular Polygons – Page 2 
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Figure B.3: 

Geometry Tasks – Regular Polygons – Page 3 
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Figure B.4: 

Geometry Tasks – Regular Polygons – Page 4 
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Figure B.5: 

Geometry Tasks – Regular Polygons – Page 5 
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Figure B.6: 

Geometry Tasks – Regular Polygons – Page 6 
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