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ABSTRACT 

 

EVALUATION OF OPERATIONAL PERFORMANCE AND ENVIRONMENTAL IMPACT 

OF A COMMERCIAL SCALE ANAEROBIC DIGESTER UTILIZING MULTIPLE 

FEEDSTOCKS 

 

By 

 

Fahmi Dwilaksono 

 

Food waste and livestock manure become some the of major sources that contribute to 

greenhouse gas (GHG) emissions in the U.S. Utilizing manure and food wastes as biogas 

feedstocks through the anaerobic digestion (AD) process can improve renewable energy 

production while reducing the impact of climate change due to GHG emission from untreated 

organic wastes. This study evaluated the operational performance of Michigan State University’s 

commercial South Campus Anaerobic Digester (SCAD) as well as the environmental impact 

during its operation from 2014 to 2020. Evaluation of feedstock supplies quantity and output 

parameters of SCAD was conducted to understand the operational performance of the digester. A 

life cycle assessment (LCA) was done to know the environmental impact of SCAD by comparing 

it to the conventional waste management methods. Technoeconomic analysis was conducted to 

know the financial feasibility of SCAD as a commercial digester. The result shows that during its 

operation from 2014 to 2020, SCAD has processed 159,145 metric tons of feedstock from 18 

different organic wastes to produce 15,165,156 kWh of electricity for the MSU community. LCA 

results show that the AD system possesses fewer environmental burdens in both global warming 

potential (GWP) and water eutrophication potential (WEP) compared to the conventional system. 

Technoeconomic analysis reveals that SCAD needs 21.5 years to accomplish its payback period, 

which is considered quite economically competitive. Economic sensitivity analysis shows that 

electricity becomes the most sensitive parameter to affect the payback period. 
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CHAPTER 1. INTRODUCTION 

 1.1 Problem Statement 

To address climate change issues and contribute to consuming more renewable energy, 

Michigan State University launched South Campus Anaerobic Digester (SCAD), a commercial 

anaerobic digester that produces biogas and renewable electricity from livestock manure and food 

waste from student’s hall to provide energy to south campus buildings. This facility operated 

starting in 2013 and is still running today.   

Throughout the food system, there is a significant loss of food due to spoilage, processing, 

and damage. The largest source of food waste in American waste occurs at the household level, 

where approximately 0.5 lb./d/person of food waste is generated (U.S. Environmental Protection 

Agency, 2018). Manure management is a significant source of methane (CH4) emissions and a 

contributor to the carbon footprint of food production. For one of gallon milk, manure management 

accounts for 24% of the carbon dioxide equivalent (CO2-e) emissions, which are largely related 

to CH4 emissions from long-term manure storage (Thoma et al., 2013).  Animal handling sectors 

such as farms contribute about 18% of GHG emissions when it is not responsibly managed 

(Esfandiari et al., 2011). Meanwhile in the United States itself, approximately 14% of ammonia 

emissions come from livestock manure management which is one component of acid rain (Eckert 

et al., 2018). Environmental impacts associated with food waste and manure management are 

important contributors to climate change. One of the solutions to address climate change is to 

produce and utilize more renewable energy sources, especially waste materials. Given the 

statement, the food system contributes to vast quantities of organic waste materials, such as 

livestock manure and food waste. These resources can be utilized to produce biogas and further to 

be renewable electricity (Hosseini & Wahid, 2014).   
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The SCAD system has not had a comprehensive evaluation of the operational performance 

or the environmental impact of its existence to date. These operational performances include 

feedstock supplies (livestock manure and food waste), digester performance, biogas quantity and 

quality, electricity production, and laboratory analysis of influent and effluent. A life cycle 

assessment (LCA) needs to be conducted to evaluate SCAD in reducing the negative impact on 

the environment, such as greenhouse gas (GHG) emissions. Evaluating these parameters will 

provide valuable information on whether SCAD has been operating in its best condition and 

provide further recommendations on improving SCAD performance to continue serving the MSU 

community. 

 

1.2 Goal and objectives 

The goal of this study is to evaluate the operational performance of Michigan State 

University’s commercial South Campus Anaerobic Digester (SCAD) as well as the environmental 

impact during its operation from 2014 to 2020. Additionally, this study aims to achieve these 

objectives:  

1. Evaluate the feedstocks supplies quantity that SCAD received during 2014-2020  

2. Evaluate output parameters of SCAD during 2014-2020  

3. Determine feedstocks that potentially have the most significant impact on biogas 

production  

4. Compare a life-cycle assessment of SCAD to the conventional waste management 

method  

5. Conduct a technoeconomic analysis to know the financial feasibility of SCAD as a 

commercial digester  

6. Summarize lessons learned and operational experiences 
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CHAPTER 2. LITERATURE REVIEW 

Chapter 2 provides a series of information related to this study. It starts with changes in the 

global community over several decades, which has eventually led to climate change. Some of these 

changes have come from the food system, such as food and manure waste from farming. This 

waste has disrupted the ecosystem balance. To overcome this situation, a series of policies have 

been implemented to reduce the rate of climate change. This chapter specifically discusses the 

efforts that the U.S. government has taken to mitigate the impact of climate change, narrowing 

down to the promotion and utilization of renewable energy sources. 

There are various types of renewable energy, including biogas that is produced from the 

anaerobic digestion (AD) process. The next step of this chapter talks about the AD and several 

factors that affect its performance. The advantage of this process led Michigan State University 

(MSU) to launch the South Campus Anaerobic Digester (SCAD), a commercial digester that 

provides electricity to power buildings on the south campus area. Furthermore, a life cycle 

assessment (LCA) was conducted to evaluate SCAD’s performance in mitigating environmental 

burdens. The revenue section concludes this chapter to showcase the profits gained by the digester. 

 

2.1 General introduction – global drivers 

2.1.1 Societal change 

Societal change is an alteration of social structure where social relationships become 

involved in the process. Relationship in this context refers to interactions, patterns, and processes 

that involve mutual activities of the various parts of society (Greenwood & Guner, 2008; Sharma, 

2007). For example, significant societal change has been experienced by many countries in recent 

decades as the result of economic restructuring, changes in societal value systems, the spread of 
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media technology, and changes in educational systems or population composition (Weichold & 

Barber, 2009). 

Societal changes are the result of many factors. One of the most significant factors in the 

recent era technological advancement. Technology exercises its vast influence by changing the 

environment that demands society to adapt by modifying social norms (Greenwood & Guner, 

2008). Endless new technological discoveries have created more machines and methods of 

communication which alter social interactions. For example, society is experiencing change due 

to the development and invention of electric, steam, and petrol driven machines for food 

production. This change cannot be avoided even for institutions like family and marriage. It affects 

the lives of children, adolescents, and adults throughout the family dynamic, resulting in a risk of 

emotional development, or less social control around neighborhoods. The obvious effects of 

technological advancement are labor organizations, specialization, high speed of life, and increase 

in production (Sharma, 2007; Weichold & Barber, 2009). 

Michigan State University Sustainability explains that the advancement of electronic 

devices such as the latest cell phones and televisions have altered the behavior of students at every 

corner of campus resulting in the consumption of more energy. During 1965, a student consumed 

66 watts of electricity for lighting and playing vinyl records in a student’s dorm room. By 1978, 

the number rose to 255 watts to turn on small fridge, television, light, and radio. Moving forward 

to 2013, the number significantly increased to 3,671 watts to power computers, television, audio 

speakers, microwaves, cell phones, and mini fridges. The increasing appetite for power from 

student in Residence Halls is causing the University to improve energy systems to support campus 

growth  (Michigan State University Sustainability, 2014). 
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Societal changes in technology have affected change in other related fields, such as 

agriculture, food, and the environment. Technology advancement has also improved crop 

production. Moreover, technology helps with food processing, prolonging expiration dates. 

Nevertheless, agriculture and food processing demand more resources. Agriculture has been 

correlated with land use changes from forest to farmland, as well as an increase in water demand. 

The food industry has increased the amount of food waste in landfills, creating new sources of 

diseases caused by rotten food. Eventually, these issues contribute to climate change which will 

be discussed in section 2.1.2. Various social movements were conducted to address climate change 

issues, such as reducing plastic bag use, saving electricity, and providing more mass transportation. 

Michigan State University enforced several breakthroughs to accomplish this mission, one of them 

is the establishment of SCAD in 2013 to address the needs of renewable energy sources and food 

waste management. SCAD will be discussed in section 2.3. 

 

2.1.2 Climate change 

Traditional energy sources that mostly consist of fossil fuels such as petroleum, coal, and 

natural gas consequently contribute to environmental pollution (Zhou et al., 2016). A consequence 

of fossil fuel use is the significant increase in greenhouse gas (GHG) in the atmosphere which has 

been observed since the late nineteenth century. GHG effect is a natural phenomenon where sun 

heat radiation on earth surface gets absorbed by gases in the atmosphere and re-emitted to all 

directions, increasing earth surface temperature as a result (Quinto et al., 2016). GHG, which 

includes compounds such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone 

(O3), have contributed to raising global temperature and potentially became the cause of climate 

change and global warming (Hosseini & Wahid, 2014).  
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The United Nations, through The Sustainable Development Goals Reports in 2019 reported 

that temperature is increasing globally at an average of 0.85 °C from 1880 to 2012. This increase 

has affected major crop yield, contributed to the melting of snow and ice which has caused an 

increase in sea level. If this trend continues, global temperature might exceed 1.5 °C causing a sea 

level rise of 40-63 cm by 2100. Not just causing environmental pollution, but traditional energy 

sources are also non-renewable. The increase of human activities, particularly in industry and 

economic sector, requires a larger energy supply. Increasing energy is demanded in industrialized 

countries while significant populations in developing regions lack reliable energy. Currently, 

approximately 3 billion people have limited access to clean-cooking solutions and 840 million 

people have restricted access to electricity. Therefore, increasing clean and renewable energy use 

is essential to create more resilience communities to face climate change (United Nations, 2019). 

   

2.1.3 Food waste diversion 

Food waste has become a global environmental issue over the past decade due to its 

environmental impact. Additionally, there are approximately 800 million people who suffer from 

hunger. A third of the food produced for global human consumption is lost or wasted every year, 

approximately 1.6 billion tons. This loss costs $2.6 trillion, of which $1 trillion is incurred from 

GHG emissions, water scarcity, biodiversity loss, increased conflicts, and loss of livelihood. 

Contributing factors are soil erosion, nutrient loss, reduced yields, wind erosion, and pesticides 

exposures. Moreover, food waste is responsible for 4.4 gigatons of CO2-e per year. That number 

represents 8% of the global anthropogenic GHG emissions  (World Biogas Association, 2018). 

The United States Environmental Protection Agency (U.S. EPA) reported in 2018 that over 

35 million tons of food were sent to landfills, which is the equivalent to half a pound per person 

per day. This waste costs the commercial food service industry about $100 billion annually. The 
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number significantly increased almost a decade later. The country spent $218 billion (about $670 

per person in the U.S.) to grow, process, transport, and dispose uneaten food. Each year, the 

number of foods dumped to the landfill is approximately 52.4 million tons. Meanwhile, there is an 

additional 10.1 million tons of unharvested food remaining on farms, thus the total of wasted food 

is roughly 63 million tons annually. From this number, the U.S. restaurant sector itself contributes 

11.4 million tons of food waste annually. This number consists of 7.3 million tons from full-service 

restaurants and 4.1 million tons from limited-services restaurants (ReFED, 2018; U.S. 

Environmental Protection Agency, 2018). 

According to the Michigan Recycling Coalition, of all municipal solid waste disposed in 

Michigan landfills, 13.6% is food waste. Food waste prevention is the most essential process to 

reduce the number of organic wastes going through the landfills, which is the top priority from 

environmental, social, and economic perspectives. The challenge is that the prevention efforts are 

difficult to quantify considering the diverse waste composition from each household. Therefore, 

the State of Michigan puts their effort into food surplus diversion by feeding hungry people and 

then animals. The Food Bank Council of Michigan cooperates with multiple partners such as 

farmers, individuals, non-profit organizations, corporations, and government to support 7 regional 

food banks and advance the access to healthy food for people in need in all 83 Michigan counties 

(O’Brien, 2017). 

The U.S EPA explained that food waste diversion should be considered seriously because 

of the environmental impact of food waste can be damaging. It starts with food waste rooting in 

landfills that create CH4, a greenhouse gas (GHG) 25 times stronger than carbon dioxide. Among 

GHG emissions in the United States, 13% results from the growth, manufacture, sale, transport, 
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and disposal of food. Not only that, wasted foods consumes more than a quarter of the total 

freshwater in the country (United States Environmental Protection Agency, 2014). 

Shifting the management system of food waste from linear to circular can be an option to 

optimize food waste as a valuable resource. For example, utilizing food waste for biogas 

production through anaerobic digestion can provide many benefits, such as generating renewable 

energy, reducing GHG emissions, protection of water bodies, additional revenue streams from sale 

of electricity and compost, creating more self-sufficient and resilient communities and sustainable 

industrialization (World Biogas Association, 2018). 

 

2.1.4 Manure management 

The existing waste treatment solutions for manure and slurries systems still have several 

drawbacks regarding soil contamination and negative environmental impacts, such the 

contamination of water streams and food crops with pathological entities (Goldstein, 2018). 

Animal handling sectors such as farms contribute about 18% of GHG emissions when not 

responsibly managed (Esfandiari et al., 2011). Meanwhile in the United States, approximately 14% 

of the ammonia emissions come from livestock manure management which is one component of 

acid rain (Eckert et al., 2018). 

The perspective of manure as a waste product should be changed, as manure has valuable 

benefits to save fertilizer cost with proper storage, handling, and application (Courneya, 2010). A 

critical aspect of sustainable manure management is by constructing housing and manure storage 

systems thus helping to conserve and maintain high concentrations of nutrients (International 

Atomic Energy Agency, 2008). To do so, animal manure should not be mixed with human waste 

to control disease and parasites (Lorimor & Powers, 2018). Moreover, improper manure 
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management can lead to environmental issues such as water pollution and source of odor, flies, 

and parasites (Bradley, 2019). Lorimor and Powers (2018) classified manure into four different 

solid contents, as explained in Table 2.1 below. 

Table 2.1 Manure treatments based on solid content 

Solid content Treatment 

4% or below Treated as a liquid with irrigation equipment, such as liquids which 

majority of solids have been removed or diluted manure 

4 to 10% • Handled as a slurry 

• It may require special pumps, for instance swine pit manure and dairy 

manure with milking parlor wash water added 

10 to 20% • This is typical of many dairy operations which are too thick to pump 

but too thin to scoop 

• Adding water to handle it as liquid and special pumps will be used to 

agitate and move the manure 

20% or more  Treated as a solid which can be stacked and picked up with a fork or 

bucket loader 

 

Bradley (2019) emphasizes that manure management and utilization plan must include 

these components: 1) Quantity of manure and bedding generated annually from all livestock on 

the farm; 2) Manure handling, collection methods, and equipment used. This includes the handling 

from barns, stalls, paddocks, and pastures; 3) Size and location of storage and/or composting 

facilities; 4) Methods used to prevent drainage into storage areas, paddocks, and pastures; 5) 

Nutrient analysis of manure prior to application (if applying to land); 6) Soil analysis for lands in 

which raw or composted manure will be applied; and 7) Utilization records: land application, 

compost monitoring, or off-sites uses. 
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2.1.5 Renewable energy 

Renewable energy is energy generated partially or entirely from natural resources which 

are available on a renewable basis and inexhaustible (naturally replenished), for instance 

hydropower, wind, solar, geothermal, and bioenergy (plant-based). Renewable energy can be 

utilized without transforming it into other forms, such as cooking gas. Otherwise, renewable 

energy would be processed for electricity generation (Gorjian, 2017; The U.S. Environmental 

Protection Agency (EPA) State and Local Energy and Environment Program, 2018). Renewable 

energy has received noticeable interest from many countries as a solution to limited energy 

resources and environmental issues related to fossil fuels consumption (Mohammadrezaei et al., 

2018). 

According to Abolhosseini et al. (2014), the development of renewable energy 

technologies was driven by three factors: energy security, economic impacts, and carbon dioxide 

emissions reduction. The Arab oil embargo in 1973 played a vital role in raising the awareness of 

energy supply security. This was supported by high oil prices, increasing dependency on oil 

imports, depletion of fossil fuels, increasing competition from emerging economies, political 

instability in major oil producers, a high impact due to any disruption in energy supply on 

developed, and rapidly developing countries. Moreover, energy security issues must address 

climate change concerns, which demands the diversification of energy sources. That means if 

energy security is fulfilled only by fossil fuels, it will significantly increase GHG emissions which 

will worsen climate change. Therefore, energy demand must be fulfilled by renewable energy to 

embody energy security while lowering GHG emissions. Shifting to economic impacts, renewable 

energy opens job creation opportunities, industrial innovation, and a balance of payment. 
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Additionally, renewable energy technologies should reduce CO2 emissions by substituting fossil 

fuels in the power generation industry and transportation sector.  

Biogas is one of renewable energy sources that has become an alternative fuel for 

transportation, industrial engines, and residential electricity and heat. Biogas as an alternative fuel 

has the capacity to reduce the impact of pollution. Additionally, biogas can be utilized further to 

produce electricity and/or heat through combustion by combining heat and power (CHP) 

generation systems. The efficiency could reach 34-40% by using large turbines and 25% using 

small generators (Hosseini and Wahid, 2014). In Chile, electricity generated from biogas could 

fulfill 50 megawatts (MW) of demand. Moreover, the slurry and residues could be used as fertilizer 

(Passos et al., 2017; Zhou et al., 2016). 

Biogas composition primarily consists of CH4 and CO2 with a small amount of hydrogen 

sulfide (H2S) and water vapor (H2O). Biogas typically contains 55-70% of CH4 that can be used 

as fuel in a variety of purity levels and efficiencies (Chynoweth et al., 2001; Somers et al., 2018). 

Biogas which contains high concentration of CO2 will lower its quality as cooking gas since CO2 

contributes to carbon monoxide (CO) formation which could weaken biogas combustion. 

Additionally, H2S reduction level (i.e., via desulphurization processes) must happen before biogas 

can be used as H2S is a toxic gas which poses safety concerns for people and may result in 

additional equipment maintenance (Hosseini & Wahid, 2014). Biogas is produced through 

anaerobic digestion (AD) which will be discussed further in section 2.2. 
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2.1.6 Policy drivers – focus in the U.S.  

2.1.6.1 Food waste diversion 

According to O’Brien (2017), an amendment of the Solid Waste Management Act in 1990 

attempted to minimize the hazardous landfill gases yield by banning the disposal of yard clippings. 

At the same time, this effort promoted the conversion of valuable organics into beneficial resources 

for municipalities, agriculture, and industry. The Michigan Legislature enacted Public Act 264 in 

1990 which define “yard clippings” as “leaves, grass clippings, vegetable or other garden debris, 

shrubbery, or bush or tree trimmings less than four feet in length and two inches in diameter that 

possibly to convert into compost humus.” Due to this amendment, the Natural Resources and 

Environmental Protection Act (NREPA) prohibited owners or operators of landfills and municipal 

solid waste incinerators from accepting solid waste if it was known that the solid waste included 

yard clippings generated or collected on land owned by a county, municipality, or a state facility. 

Granholm and Chester (2007) use the three principles of sustainability – economic vitality, 

ecological integrity, and improved quality of life – to guide solid waste management decision-

making. According to the Policy, Michigan’s preference is to first avoid waste generation, then to 

utilize generated waste for beneficial purposes, and properly dispose of what remains. 

According to EPA (2014), much of food waste that reaches landfills is still edible. Wasted 

food can be divided into three categories as explained in Table 2.2. 
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Table 2.2 Food waste classification 

Category Description Example 

Avoidable Food that can be easily prevented from 

going to waste. Reasons for waste include 

overpreparation, improper storage, or 

spoilage. Understanding the cause of this 

waste is key to preventing it. 

an entire tray of lasagna is 

left over every day at a 

buffet 

Possibly avoidable Food that may seem inedible but can be 

used or repurposed 

beet tops can be cooked 

similarly to collard greens or 

spinach instead of discarded. 

Also, slightly stale bread can 

be used for croutons or 

breadcrumbs 

Unavoidable Food that cannot be consumed by people 

and should be used for animal feed, 

compost, or anaerobic digestion 

banana peels or peach pits 

 

Moreover, EPA also created the Food Recovery Hierarchy to reduce wasted food. Based 

on this hierarchy, there are five stages to be considered when utilizing excess food: 

a. Source reduction: reduce the volume of food waste generated 

b. Feed people: donate extra food to food banks, soup kitchens and shelters 

c. Feed animals: provide food to farmers for animal feed 

d. Industrial uses: provide fat for rendering, biofuel, and food discards for animal feed 

production 

e. Composting/digesting: convert food scraps into a nutrient rich soil amendment 
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2.1.6.2 Renewable Portfolio Standard (RPS) 

A renewable portfolio standard (RPS) is a policy that demands that electricity providers 

include a minimum percentage of their electricity supplies from renewable energy sources, such 

as wind, solar, geothermal, and various forms of biomass and ocean energy. Electricity suppliers 

have two options to comply with this requirement. First, suppliers can own a renewable energy 

facility and produce their own electricity. Second, they can purchase renewable electricity from a 

renewable facility. Furthermore, RPS enables the market to choose any renewable energy 

resources to fulfill the mandate since renewable energy availability varies depending on the 

regional climate and geographies (Cory & Swezey, 2007; Rader & Hempling, 2001). 

From an environmental perspective, RPS promotes climate change mitigation by reducing 

air and carbon pollution, waste reduction, and conserving water and other valuable natural 

resources. Moreover, it can boost local economic development by creating more jobs, taxes, and 

revenues associated with renewable energy (Environmental Protection Agency, 2015). 

According to Lawrence Berkeley National Laboratory and U.S. Department of Energy, 29 

States have implemented RPS, including Michigan, California, Nevada, and Minnesota (Figure 

2.1). Additionally, Washington DC and 3 territories (Northern Mariana Island, Puerto Rico, and 

US Virgin Islands) have also had RPS. Meanwhile, 8 states (including Kansas, Oklahoma, and 

Indiana) and 1 territory (Guam) have established their renewable portfolio goals (Barbose, 2019; 

U.S. Department of Energy, 2016). 
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Figure 2.1 RPS Policies Established in the United States (Barbose, 2019)  

  RPS implementation’s most prominent mechanism is renewable energy certificates 

(RECs). RECs are payments that electricity suppliers offer to renewable energy companies for the 

renewable electricity they provide to the grid. One REC typically represents 1 megawatt-hour 

(MWh) of renewable electricity. The implementation of REC provides an accurate, durable record 

of electricity produced, also a fungible commodity that can be traded among providers to fulfill 

RPS (Cory & Swezey, 2007). 

 

2.1.6.3 Renewable fuel standard 

The United States is the biggest consumer of crude oil in the world. Consequently, the 

country is facing two major concerns which are low energy security and high greenhouse-gas 

emissions. Furthermore, the United States imported between 52 to 60% of oil consumed from 2005 

to 2009 with roughly 30% of CO2 emissions resulting from transportation fuels (The National 

Academy of Sciences, 2011). 

Biofuels emerge as an alternative to petroleum-based fuels due to its production from 

renewable domestic sources which has the potential to improve U.S. energy security. It also 
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provides life-cycle greenhouse-gas benefits when compared to fossil fuel. As a result, the U.S. 

Congress enacted the Energy Independence and Security Act (EISA) in 2007 to lead the country 

toward energy independence and security while improving clean renewable fuels production. 

EISA then resulted in the Renewable Fuel Standard (RFS) program which was created by Congress 

to address greenhouse gas emissions, broaden renewable fuel sector in the country, and dwindle 

the demand for imported oil (America’s Oil and Natural Gas Industry, 2017).  

RFS demands that U.S. transportation fuel contains a minimum volume of renewable fuel. 

It sets the target for consuming 35 billion gallons of ethanol-equivalent biofuel and 1 billion 

gallons of biomass-based diesel by 2022. The Environmental Protection Agency (EPA) holds 

statutory authority on volume amounts after 2022. There are four categories of renewable fuels 

according to RFS: total renewable, advanced, biomass-based diesel (BBD), and cellulosic. These 

categories are determined based on the reductions in life-cycle emissions of GHG, relative to 

petroleum, feedstock, and fuel characteristics (Congressional Research Service, 2020; Stock, 

2015). 

Nevertheless, many reports and studies are doubtful that the implementation of RFS will 

be successful and meet the target. First, there is a limit placed on car use of gasoline at 10% ethanol 

(E10) which is the maximum acceptance under the manufacturer’s warranty. This caused an E10 

plateau in the US fuel supply in 2013. Second, cellulosic biofuels experience policy uncertainty 

and high production costs that might hinder investors from supporting this initiative. Eventually, 

it depends on how biofuels are produced. There are many factors that can affect it that might be 

unpredictable. These factors include technical expertise, weather conditions, market stability, tax 

incentives, and trade disputes. These factors could impact the entire industry (Congressional 

Research Service, 2020; Stock, 2015). 
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To facilitate RFS compliance, Renewable Identification Number (RIN) systems were 

created by the U.S. EPA. A RIN is a 38-character numeric code that represents a volume of 

renewable fuel produced in or imported into the United States. One RIN is equivalent to one gallon 

of biofuel produced and reported to EPA. A RIN contains information about biofuel sources like, 

production year, biofuel producer, and the type of fuel (Table 2.3). At the end of the calendar year, 

fuel suppliers must fulfil minimum requirements of RINs to be compliant with RFS. Similar to 

REC, RIN also can be traded like other commodities. RINs are valid for use during its production 

year and the following year (Christensen et al., 2014; Cooper, 2018; McPhail et al., 2011; 

Yacobucci, 2013). 

 

Table 2.3 RIN code definitions (McPhail et al., 2011) 

38-character code: 

KYYYYCCCCFFFFFBBBBBRRDSSSSSSSSEEEEEEEE 

K RIN assignment code 

YYYY Year batch is produced/imported 

CCCC Company registration ID 

FFFFF Facility registration ID 

BBBBB Producer-assigned bath number 

RR Equivalence value for renewable fuel 

D Renewable type code1 

SSSSSSSS RIN block starting number 

EEEEEEEE RIN block ending number 
1Five separate RIN categories: D=3 for cellulosic biofuel; D=4 for biomass-based diesel; D=5 for advanced biofuel; 

D=6 for other renewable fuel; D=7 for cellulosic diesel 
 

2.1.6.4 California low carbon fuel standard 

The California Low Carbon Fuel Standard (LCFS) is a program created to reduce 

greenhouse gas emissions (GHG) and other air pollutants from the state’s transportation sector, 

diversify the State’s fuel mix, and decrease the dependence on petroleum. It is one of the policies 

in California that comes from the implementation of the Global Warming Act of 2006. LCFS 

evaluates the full life cycle emissions of transportation fuels and includes all GHG emissions that 
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are the result of production, distribution, and consumption expressed as grams of CO2e per 

megajoule (Renewable Fuels Association, 2021; Townsend & Havercroft, 2019). Recently, the 

transportation sector has contributed 50% of GHG emissions, 80% of nitrogen oxide emissions, 

and 95% of particulate matter emissions in California (Center for Law, 2019). 

LCFS reduces GHG emissions by establishing annual standards to be followed by fuel 

producers and distributors. It emphasizes the reduction of the average life-cycle carbon intensity 

(CI) of the fuels supplied to the market. Fuels that gain lower CI values regulated by California 

Air Resources Board (CARB) will get compliance credits. On the other hand, fuels with CI values 

higher than the standard will get compliance deficits (Renewable Fuels Association, 2021). 

Additionally, certain requirements might be needed to fulfill LCFS such as life cycle assessment 

(LCA) which accounts for the environmental impact of fuel production from feedstock production 

to end use stage (Congressional Research Service, 2021).  

The implementation of LCFS began in 2011. It was amended in 2015 to address fuel CI 

reduction standard adjustment and extension. Currently, LCFS requires a 10% reduction by 2022 

and a 20% reduction by 2030. Since its first implementation, LCFS has achieved more than 77 

million credits with each credit referencing a metric ton of GHG emissions reduction contra the 

annual standard (Renewable Fuels Association, 2021). It has helped to incentivize production of 

low-carbon fuels and generate additional revenue to encourage investment in statewide low-carbon 

transportation fuel infrastructure (Center for Law, 2019). 

Despite its merits LCFS has some implementation challenges. These challenges include 

determining the appropriate energy related to GHG target, developing a robust LCA, as well as 

constructing a transparent compliance system. Moreover, part of Congress opposed LCFS due to 

concerns about economic effects such as job loss, limited affordable lower carbon fuel options, 
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and increasing fuel price as an effect of fulfilling the certain standards required. Therefore, further 

improvement of the LCFS is essential (Center for Law, 2019; Congressional Research Service, 

2021). 

 

2.1.6.5 Carbon Intensity 

Carbon intensity (CI) is the number of GHG emission generated throughout production 

and use of life cycle energy sources, such as transportation fuel. CI is represented in units of grams 

of CO2 per megajoule of energy (gCO2e/MJ). CI calculation considers extraction, refinement, 

distribution, storage, and combustion of energy. Therefore, the calculation can be included in life 

cycle assessments (Ingram, 2015; United Nations Environment Programme, 2019). 

CI is calculated using the Greenhouse Gases, Regulated Emissions and Energy Use in 

Transportation (GREET) model which is developed by U.S. Department of Energy and Argonne 

National Laboratory. The current model is the CA-GREET 3.0 Model and Tier 1 Simplified 

Carbon Intensity calculators. The GREET model aims to evaluate and compare energy, 

environmental impacts of transportation fuels, and vehicle technologies on a life-cycle basis. Over 

100 alternative fuel pathways and over 80 vehicle technologies have been evaluated using this 

model: including aviation fuel, aircraft operation, marine fuels, and vessel operation. Furthermore, 

GREET evaluates total energy consumption, GHG emissions (CO2, N2O, CH4), air pollutants (SOx, 

NOx, VOC, CO, PM10, PM2.5), and water consumption (Argonne National Laboratory, 2014; M. 

Wang, 2007). 
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2.2 Anaerobic digestion 

2.2.1 Introduction 

The anaerobic digestion (AD) process is defined as a biological process in which a lack of 

O2 causes a degrade in carbon source materials through the help of various microorganism 

consortiums (Chynoweth et al., 2001). It transforms organic matters into CH4 gas, thus reducing 

odor and pathogen risks (R. Chen et al., 2016). AD does not only provide a renewable alternative 

energy source, but also an alternate pathway to process organic waste, reduce GHG emissions from 

landfills, and mitigate the demand of fossil fuel and chemical fertilizers (Li et al., 2018; Zou et al., 

2018). In terms of efficiency and costs, AD energy could compete with other biomass energy 

sources, such as heat, synthesis gases, and ethanol (Chynoweth et al., 2001). Moreover, AD could 

provide electricity storage via upgrading biogas to high purity of methane which might be stored 

and used for other purposes (Jürgensen et al., 2018). One factor that makes AD attractive is the 

technology used in AD is scalable (Hosseini & Wahid, 2014). This means AD technology can be 

applied in various digester capacities; thus, the digesters can be less costly to build, operate, and 

maintain. This scalability also opens the chance to implement AD technology for small scale farms 

or communities. For example, the small-scale AD project might be carried out starting from 100 

dairy cows or 200 cows or between 200 to 5,000 tons of organic waste per year which is expected 

to produce 80 kW electricity (Marjolaine, 2019). 

AD consists of four main stages: hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis. The first three stages are maintained by bacterial communities to yield acetate, 

hydrogen, and carbon dioxide, while the last stage is maintained by methanogenic archaea 

communities to produce methane from acetate, or from hydrogen and carbon dioxide as alternative 

sources (Z. Yu et al., 2018; Zhou et al., 2016). 
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In the hydrolysis process, organic materials such as cellulose and hemicellulose are 

hydrolyzed, becoming soluble sugars, alcohol, and other organic substances. The hydrolysis 

products process will be transformed by acid producing bacteria to yield volatile fatty acids that 

consist of formic, acetic, propionic, and butyric acid. Hydrolysis and acidification are continuous 

biochemical reactions. When these processes are performed ideally, high yields of organic acids 

are achieved, degradation or loss of the organic acids is avoided, fermentation inhibitors are 

minimized, and cellulose and hemicellulose degradation are improved (J. Yu et al., 2017). 

Methanogens utilize formic and acetic acid directly, whereas propionic and butyric acid need to 

be converted into acetic acid by acetic acid producing bacteria (Shen et al., 2018).  

Temperature and pH play key roles in developing appropriate AD systems. In most studies, 

AD can be developed in mesophilic and thermophilic temperatures. Mesophilic temperature is 

preferable if hydrolysis and acidification are done within high solid content condition, while 

thermophilic temperature is recommended for improving AD efficiency under low solid content 

in 3 days (J. Yu et al., 2017). An ideal digestion should have a pH range of 6.5-8.0 to provide a 

convenient environment for anaerobic microbes, especially for archaea in degrading organic 

compounds and producing methane (Zhong et al., 2015). Appropriate pH for hydrolysis and 

acidogenesis is 5.5 and 6.5, respectively (Zhou et al., 2016). 

 

2.2.2 Feedstock 

2.2.2.1 Manures 

Historically, manure has been utilized for many purposes, such as fertilizer, soil 

amendment, energy source, and even construction material. There are many recyclable 

components in manure, including solids, organic matter, nutrients, and fiber. The contents in 
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manure can be affected by several key factors such as species, digestibility, protein and fiber 

content, diet, age, housing, environment, and production stage. Moreover, manure contains 

nitrogen, phosphorus, and potassium which are critical nutrient sources for crops. In general, 

manure with higher solids concentrations have higher nutrition content (Kostic et al., 2020; 

Lorimor & Powers, 2018; U.S. Environmental Protection Agency, 2015). 

Nutrients in manure are available in soluble and insoluble forms. Soluble nutrients can be 

consumed by the crops right away, while insoluble nutrients take up to a year or more to be 

available. Each nutrient has a different characteristic. For example, phosphorus is typically 80% 

available in the settled solids of manure storage and insoluble. Meanwhile, potassium is typically 

80% found in the liquid and is highly soluble. Nitrogen is split almost evenly between liquid and 

solids (Lorimor & Powers, 2018). 

Among the various methods to utilize manure, anaerobic digestion is a technology that 

processes manure into biogas as source of heat or electricity. The energy produced can be used on 

the farm or sold to the local power grid (U.S. Environmental Protection Agency, 2015). Diverse 

types of manure contribute slightly different percentages of CH4 in biogas, as shown in Table 2.4. 

Table 2.4 Percentage composition of CH4 from anaerobic digestion of various manures 

(Anukam et al., 2019). 

Manure CH4 Composition (%) 

Cattle 50-60 

Pig 60 

Poultry 68 

Sheep 65 

Horse 66 

 

Manure’s characteristics are critical factors for biogas production and process stability 

during anaerobic digestion. These characteristics are moisture content, total solids (TS), volatile 
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solids (VS; organic compounds from plant or animal that lost when the dry solids are burnt at 550 

°C), biodegradability, particle size, pH, biological oxygen demand (BOD), chemical oxygen 

demand (COD), also carbon and nitrogen contents (L. Chen & Neibling, 2014). 

Additionally, manure contains variative nutrition contents as shown in Table 2.5. These 

contents are important for the digestate once it is land-applied. The anaerobic digestion process 

slightly changes the nutritional contents of manure. Most nitrogen is found in the form of organic 

N and NH4 in liquid phase of digester sludge. A negligible amount of nitrogen might be emitted as 

NH3. Therefore, digester sludge will have higher ammonium content than raw manure. Meanwhile, 

phosphorus content does not change significantly due to anaerobic digestion process. All the P 

present in the manure will still be present in the digester sludge. The difference is that the dissolved 

portion of P will be moved into bacteria bodies that perform anaerobic digestion. Additionally, C 

in the form of simple sugars, volatile fatty acids, and alcohol is converted to CO2 and CH4. As a 

result, effluent has less C or organic matter compared to raw manure (Manitoba, 2015; Natural 

Resource Conservation Services, 2007) . 

Table 2.5 Nutrition content of Manures (Chandra, 2005)  

Manure 
Percentage content 

Nitrogen (N) Phosphoric acid (P2O5) Potash (K2O) 

Cattle, fresh 0.4-0.5 0.3-0.4 0.3-0.4 

Horse, fresh 0.5 0.4-0.6 0.3-1.0 

Poultry, fresh 1.0-1.8 1.4-1.8 0.8-0.9 

 

2.2.2.2 Food waste 

In this case, material contents are essential as they provide nutrition for the microbial 

community in the digester. The carbon/nitrogen (C/N) ratio in slurry has a critical contribution in 

the AD process. If slurry contains high C/N ratio, microbe will consume nitrogen sources rapidly 
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thus decrease biogas productivity. On the other hand, methanogen bacteria reproduction and 

metabolism will be inhibited as carbon deficit, ammonia accumulation, and pH increase occur in 

low C/N ratio slurry. Typically, C/N ratio range for AD is 10-90, but 30 is the most common (H. 

Chen et al., 2016; X. Wang et al., 2012). 

To achieve an ideal C/N ratio, previous research combined several resources as AD 

materials what is known as co-digestion. The co-digestion of various substrates enhances methane 

yield, improves buffering capacity, and prevents acidification (Li et al., 2018; X. Wang et al., 

2018). Compared to animal manure only, applying the AD process to the co-digestion between 

animal manure and feedstock provides more stable operational performance and produces more 

methane. This happens because feedstock with a higher C/N ratio balance out with manure which 

has low C/N ratio achieving an ideal C/N ratio range (X. Wang et al., 2012). 

The mixture of food waste and dairy manure also attracts attention as this combination 

potentially has an ideal C/N achieving productive and efficient AD processes (H. Chen et al., 2016; 

X. Wang et al., 2012). Li et al. (2018) revealed that methane production could be improved by co-

digesting dairy manure and corn stover with tomato residues at 20-40% volatile solid based. 

However, this process will happen once tomato residue is added beyond 60% since it may trigger 

pH drop and over produce VFA (Volatile Fatty Acids). 

 

2.2.3 Testing and analysis – Operation data 

2.2.3.1 Operational parameters 

2.2.3.1.1 pH 

pH is a measure of acidity or basicity of a solution. Specifically, pH measures the hydrogen 

concentration, [H+] which the value ranges from 0 to 14. Additionally, pH 7 is called “neutral” 
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because it is the center of the measurement scale, where the ratio of [H+] and [OH-] (hydroxide ion 

concentration) is equal. A solution is determined to be acidic if the pH is below 7 because [H+] is 

greater than [OH-], while a solution with pH above 7 is grouped as basic or alkaline which means 

[OH-] is greater than [H+] (Hach, 2018). An anaerobic digester typically has a pH range between 

6.4 and 8.2 to maintain methanogens population. This can be achieved by maintaining the balance 

of acetogens and methanogens. Acetogens are needed to produce acids, while methanogens 

consume acids to yield methane gas and increase alkalinity. If acetogens surpass methanogens 

population, it will drop the pH which then inhibit methanogens performance, resulting in a “sour” 

digester (L. Chen & Neibling, 2014; MSU Anaerobic Digestion and Research Center, 2019).  

 

2.2.3.1.2 VFA 

Volatile Fatty Acids (VFAs) are intermediate products of anaerobic digestion process 

which emerge after polymer hydrolysis and acidogenesis prior to being degraded into acetic acid 

for methanogenesis stage. VFA belongs to carboxylate which has a low molecular weight 

consisting of 2 to 6 carbon atoms. VFAs are produced from various feedstocks, for example, 

agricultural waste, food waste, milk sewage, dairy whey effluent, municipal waste, and cellulose 

sewage (Mayer et al., 2010; Szacherska et al., 2021; Wainaina et al., 2019). VFA acts in the 

biopolymers of biofuels production such as methane and hydrogen. Other applications of VFA 

include carbon sources in biological denitrification, production of biodiesel, and electricity 

production through microbial fuel cells. Moreover, there are diverse types of microorganisms that 

contribute to VFA production as shown in Table 2.6 (Lukitawesa et al., 2020; Magdalena et al., 

2019). Several factors are crucial for VFA productivity, which are hydraulic retention time (HRT), 

organic loading rate (OLR), temperature, pH, and pretreatment (Wainaina et al., 2019). 
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Table 2.6 Production of volatile fatty acids by microorganisms (Szacherska et al., 2021; 

Wainaina et al., 2019) 
Volatile Fatty Acid Bacteria Substrate 

Acetic Acid 

Acetobacter aceti Cheese whey 

Clostridium acetium 
Mixed gas (4% H2:18% 

Argon:78% CO) 

Clostridium lentocellum SG6 Paddy straw 

Moorela thermoaceatica Sugarcane straw hydrolysate 

Saccharomyces cerevisiae + 

Acetobacter pasteurianus 
Glucose 

Propionic Acid 

Propionibacterium acidipropionici 

(ATCC 4965) 

Lactate 

Glycerol 

Sugarcane molasses 

Propionibacterium acidipropionici 

(CGMCC 1.223) 
Glycerol 

Propionibacterium acidipropionici 

(ATCC 4875) 

Hemicellulose hydrolysate 

Cheese whey 

Propionibacterium freudenreichii 

CCTCC M207015 
Glucose 

Pripionibacterium freudenreichii spp. 

shermanii 
Glycerol 

Butyric Acid 

Clostridium butyricum S21  Sucrose 

Clostridium butyricum ZJUCB Glucose 

Clostridium thermobutyricum 

JW171K 
Glucose 

Clostridium tyrobutyricum 

Corn husk hydrolysate 

Sugarcane bagasse 

hydrolysate 

 

VFA is expressed in equivalent milligrams of acetic acid per liter. VFA is accounted 

together with total alkalinity (TA), which is expressed in milligrams equivalent of calcium 
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carbonate per liter. VFA/TA ratio will determine the follow up action regarding feedstock supply 

into the digester, as explained in Table 2.7 (Lossie & Pütz, 2011; MSU Anaerobic Digestion and 

Research Center, 2019). 

Table 2.7 VFA/TA ratio and its correlation to feedstock supply into the digester 

VFA/TA Ratio Background Corrective Action 

>0.6 Highly excessive biomass input Stop adding biomass 

0.5-0.6 Excessive biomass input Add less biomass 

0.4-0.5 Plant is heavily loaded Monitor plant more closely 

0.3-0.4 Biogas production at a maximum Keep biomass input constant 

0.2-0.3 Biomass input is too low Slowly increase biomass input 

<0.2 Biomass input is far too low Rapidly increase biomass input 

 

There is a correlation between VFA and pH. If VFA level increases, that will decline pH, 

alkalinity, and biogas production. In a normal operating system, hydrogen and acetic acid formed 

by acidogenic and acetogenic bacteria is immediately converted into methane by methanogens. 

However, if VFA is increased, an unbalanced condition between acidogenic and methanogenic 

activities will reduce methanogens performance. The acceptable range for VFA is between 50 to 

300 mg/L as acetic, meanwhile the acceptable range for alkalinity is between 1,500 to 5,000 mg/L 

as CaCO3 (Krakat et al., 2017; MSU Anaerobic Digestion and Research Center, 2019; Schnaars, 

2012). 

 

2.2.3.1.3 Ammonia 

Anaerobic degradation of proteins or amino acids produces ammonia through the 

degradation of nitrogenous matter. Ammonia is present at elevated levels in certain feedstock, such 

as meat processing by-products, food waste, also swine and poultry manure. Free ammonia (NH3) 

form is more toxic to methanogens than the ionized form (NH4
+). Moreover, anaerobes are more 
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sensitive to ammonia toxicity at higher temperatures. Lowering digester pH will relieve NH3 

toxicity. Additionally, dilution may be needed to measure samples with extreme NH3 levels. The 

acceptable range for ammonia content is between 1,500 to 3,000 mg/L. Table 2.8 explains the 

effect of ammonia concentration on digester. In low concentration (between 50-200 mg), ammonia 

is beneficial for amino acids, proteins, and nucleic acids synthesis. Furthermore, ammonia 

maintains neutral pH conditions by neutralizing the organic acids yielded by fermentative bacteria. 

These conditions are essential for bacterial growth (Y. Jiang et al., 2019; MSU Anaerobic 

Digestion and Research Center, 2019; Walker et al., 2011). 

Table 2.8 Effect of Ammonia-N concentrations on digester 

Effects Ammonia-N (mg/L) 

Beneficial 50-100 

No adverse effect 200-1,000 

Inhibitory effect at higher pH values 1,500-3,000 

Toxic > 3,000 

 

Anaerobes, especially methanogens, are sensitive to ammonia toxicity due to ammonia can 

freely pass-through methanogens’ cell membranes hence cause a proton imbalance. Consequently, 

the intracellular pH of methanogenic bacteria changes then inhibits specific enzymatic reactions. 

Moreover, acetate degradation is hindered by high ammonia concentration, leading to acetate 

accumulation, buffer capacity depletion, methane yield decrease, VFA concentration increase, and 

pH drop. Digesters with high concentrations of ammonia will experience methanogenesis 

inhibition and lead to complete failure (H. Chen et al., 2016; Morozova et al., 2020). 
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 2.2.3.1.4 Organic Loading Rate 

Organic loading rate (OLR) is defined as the quantity of organics fed to a continuous 

digester per day (Meegoda et al., 2018). OLR data talks about digester health and space. It is 

important because OLR indicates the quantity of volatile solids to be fed into the digester each day 

(Babayee and Shayegan, 2011). OLR can be counted with formula (1) as follows (MSU Anaerobic 

Digestion and Research Center, 2019): 

OLR = mass of Volatile Solids (VS) / volume of reactor   (1) 

Material characteristics and operation conditions are key points to in determining OLR. In 

general, the biogas yield increase is in line with the OLR increase. If OLR is optimized, the 

processing efficiency of anaerobic digestion can be improved. Moreover, optimum OLR can 

reduce the plant capital cost, improve biogas yield, and ensure operation stability (J. Jiang et al., 

2020). However, excess OLR can contribute to biogas production inhibition (Musa et al., 2018). 

OLR is essential for AD operation since it is related to system stability, waste treatment 

ability, and biogas production. Ideal OLR is favorable for cell activity, thus contributing to 

increasing methane production and improving substrate degradation. Nevertheless, increasing 

OLR has a risk of creating excessive VFA production and lowering the pH that inhibits the entire 

process (Moguel-Castañeda et al., 2020). 

2.2.3.2 Performance indicators 

2.2.3.2.1 Mixing 

There are many aspects to consider in choosing a reactor type and mixing condition. For 

example, a conventional AD reactor is working for 20-30 days (about four and a half weeks) of 

hydraulic retention time, getting minimum once feeding per day with proper mixing at 35 °C 

(Chynoweth et al., 2001). Mixing in biogas digester aims to achieve balanced nutrient and heat 
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circulation, to minimize precipitation of materials by shaping an adequate mixture of solid particle 

and liquid suspension and facilitate gas lifting from fermentation substrates. The quality of mixing 

in AD plant will affect in choosing the mixer type (Eshkaftaki & Ebrahemi, 2019; Kress et al., 

2018; Naegele et al., 2014). Mixing also helps create homogenous temperature and bacteria-

nutrient composition in the digester. Currently, this process is considered to become an important 

stage in biomass-methane conversion (Mohammadrezaei et al., 2018).  

Nevertheless, mixing has also become a major challenge in AD field application since it 

consumes approximately 51% of total electricity needs in the complete process. It makes several 

research focused on analyzing whether mixing time and rate have a significant impact on methane 

production. A previous study demonstrated that reducing mixing time in a full-scale AD reactor 

fed with crops did not strongly affect the nutrient distribution that endangers biogas production 

(Kress et al., 2018). A moderate stirrer rate at 80 rpm is considered as the best condition of stirring 

process in AD since it provides appropriate mixing pattern. The low-level mixing rate causes high 

death species near reactor wall. On the other hand, a high mixing rate would affect microorganism 

structures in the reactor, thus declining biogas production (Mohammadrezaei et al., 2018). 

Moreover, appropriate mixing for digester with high solid content is beneficial but not to low solid 

content condition (J. Yu et al., 2017). Therefore, it is essential to determine the type of material 

that would be digested to choose an ideal reactor and mixing type. 

 

2.2.3.2.2 Economic Analysis 

Renewable energy production often faces challenges regarding its economic feasibility. 

There are several processes in AD that need attention in cost efficiency. First is pretreatment. The 

type of pretreatment method used, and materials condition are critical for economic feasibility 



31 

 

analysis (Fu et al., 2018). According to Passos et al. (2017), the costs that should be anticipated 

come from extra energy and chemical agent used for pretreatment. These costs might fluctuate 

depending on the market conditions and negotiation terms between the companies. In addressing 

this issue, reuse or energy recovery technologies during pretreatment process might be considered 

to improve the economic performance (Fu et al., 2018). Second, transportation of starting materials 

to the digester location can be accounted as energy consumption. Therefore, if the digester is 

placed near the livestock farms, it can eliminate the initial energy used and the cost of biogas 

production (Mohammadrezaei et al., 2018). 

Besides pretreatment and transportation, another method to reduce substantial costs is to 

improve the efficiency of process steps before feeding biogas, such as harvesting and collection. 

Simultaneous harvesting and mechanical pretreatment of biomass might become an efficient 

method to increase energy yield per hectare by selecting an appropriate harvesting machine 

(Tsapekos et al., 2017).  

  

2.3 Michigan State University South Campus Anaerobic Digester (MSU SCAD) 

Michigan State University’s South Campus Anaerobic Digester (MSU SCAD) is part of 

the “Keeping it Green, Recycling Waste to Resource” campus-based projects that concentrate on 

reducing and reusing waste. It is a single-tank complete mixed anaerobic digester which is 

projected to utilize approximately 17,000 tons of organic waste per year from MSU and the greater 

Lansing area to yield biogas than can be converted into more than 2.8 million kWh of electricity 

per year (Stuever, 2013). Approximately 10% of the energy powers the facility, then the rest offsets 

energy production in 10 south campus buildings, which is enough energy to power about 250-300 
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homes (MSU Sustainability). The total cost of the project is about $5 million, and it is expected to 

pay off itself in less than 15 years (Oswald, 2013). 

 
Figure 2.2 MSU South Campus Anaerobic Digester (personal documentation) 

Feedstock materials include dairy manure from MSU Dairy Teaching and Research Center, 

food waste from campus dining halls, food manufacturing waste from southern Michigan, also 

fats, oil, and grease (FOG) from local restaurants. The energy produced is used to power several 

buildings on South Campus (Michigan State University Sustainability, 2014). These feedstocks 

are received in two reception tanks, one is for manure, and the other one is for other materials. 

Relying on the delivery schedule and the target blend, feedstock is pumped from each reception 

tank into a central mix tank to be homogenized. Then, this blended material is pumped through a 

heat exchanger to raise up the temperature to 37.78 °C before entering the anaerobic digester. The 

digester is an aboveground steel tank with a liquid capacity of more than 1.7 million liters. Two 

hydraulically powered submersible mixers are used to keep the digester contents well blended for 

25-day hydraulic retention time (Oswald, 2013). 

The electricity is generated through powering a 450-kW combined heat and power (CHP) 

system using biogas yielded from the digester. Hot water produced by the CHP is used to maintain 
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the digester temperature to stay at 37.78 °C and to provide heat to the other buildings at the site. 

The digestate—remaining mixture of solids and liquid after digestion—is pumped to a solid-liquid 

separator. Separated solids will be composted while liquid will be transferred to digestate holding 

tank (DHT) which is an aboveground steel tank with a 7.6-million-liter capacity. An airtight 

membrane will allow the headspace—the space above the digestate—to be used as biogas storage 

and minimize odors from the systems. The digestate will be land-applied seasonally as carbon-rich 

fertilizer. This project provides many benefits, such as renewable energy, emissions reduction, 

landfill and wastewater diversion, and enhanced fertilizer with few weed seeds and first year-

available plant nutrients (Stuever, 2013). 

 

2.4 Life Cycle Assessment (LCA) 

2.4.1 What is it?  

Life Cycle Assessment (LCA) is a methodology to evaluate environmental loads of 

processes and products based on their whole life cycles. The assessment includes the extraction 

and processing of raw materials, manufacturing, transportation, distribution, use, reuse, 

maintenance, recycling, and final disposal of a product, process, or system. Therefore, LCA has 

been widely used due to its integrated way of managing the framework, impact assessment, and 

data quality. LCA is often called as a “cradle-to-grave" method which explains this process by 

starting with gathering of raw materials from the earth to create product and ends at a stage where 

all materials are returned to the earth (Khasreen et al., 2009; Odey et al., 2021; Ram & Sharma, 

2017). 

LCA has gained support from various institutions, including United Nations Environment 

Programme (UNEP) / Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle 
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Initiative, the Forum for Sustainability through Life Cycle Assessment (FLSCI), International 

reference Life Cycle Database System (ILCD), the European reference Life Cycle Database 

System (ELCD) (Odey et al., 2021). According to DEAT (Department of Environmental Affairs 

and Tourism) (2004), LCA is currently implemented by large groups of users, such as: 

• Industry and other commercial enterprises 

• National governments and local, national, and intergovernmental regulatory bodies 

• NGOs (consumer organizations and environmental groups) 

• Consumers (which includes governments as consumers) 

Nevertheless, LCA has several drawbacks to address, which are the absence of a perceived 

need for LCA, scarcity of LCA expertise, access to high-quality data, and incorrect perception of 

the application of LCA in relation to other tools (Department of Environmental Affairs and 

Tourism of South Africa, 2004). 

 

2.4.2 Process  

LCA implicates a thorough assessment of environmental aspects of a product system, 

including all stages of its life cycle, by three major processes: 1) collecting an inventory of relevant 

inputs and outputs of a system; 2) formulating a thorough evaluation of the potential environmental 

impacts correlated with those inputs and outputs; and 3) interpreting the results in correlation to 

objectives of the study (Jensen et al., 1997). LCA is conducted based on ISO 14040 which consists 

of four analytical stages (Khasreen et al., 2009): 

• Defining goal and scope 

• Creating the life-cycle inventory 

• Assessing the impact 
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• Interpreting the results 

2.4.3 Parameters 

2.4.3.1 Water 

The amount of freshwater on Earth is only about 2% of all water on the planet. In terms of 

access to water, approximately one out of six people on Earth lacks access to drinking water. A 

product’s life cycle, either directly or indirectly, has a strong correlation with water consumption. 

Based on LCA methodologies mentioned in ISO 14040:2006, water is a parameter assessed in 

water consumption potential (WCP) section, which is described as water that has been removed 

from the watershed and cannot be returned (Arosemena, 2021). 

2.4.3.2 Nutrients 

The primary concern about nutrients in the LCA study is the impact of excess nutrients that 

pollute the environment, such as land, water body, and air. This correlates nutrients with several 

impacts studied in LCA, which are Water Eutrophication Potential (WEP) and Air Acidification 

Potential (AAP).  

Eutrophication is a situation where a water body contains excessive nutrients that affect the 

dense growth of plant life and the death of water animals due to a lack of oxygen. It is due to 

nutrients runoff from the land, such as nitrogen and phosphorus, which then accumulate in the 

water. As the consequence, it creates a “dead zone” which is an area with low oxygen content that 

suffocates marine life (Mueller and Helsel, 1996). Water eutrophication potential (WEP) is the 

impacts resulting from excessive nutrient supplies on terrestrial and aquatic environments, 

particularly the most important substances such as nitrogen (N) and phosphorus (P). WEP can be 

presented as either mass of nitrogen equivalents (kg N-eq.) or phosphate equivalents (PO4-eq.) 

(Guinee, 2002). 
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According to the EPA, atmospheric acidification can be defined as: “the result of the 

oxidation of sulfur, nitrogen, and organic compounds to form their corresponding acids” (Durham 

& Demerjian, 1985). When absorbed by the atmosphere, these acids can lead to conditions such 

as acid rain. Air acidification potential (AAP) is an impact category used to convert processes or 

materials that form acid rain into common units of sulfur dioxide equivalents (SO2-eq.). 

2.4.3.3 Greenhouse Gases (GHG) 

Greenhouse gases is a parameter in LCA that is assessed into Global Warming Potential 

(GWP) which is the amount of GHG released during the life cycle of a process. Carbon dioxide is 

commonly used as a reference gas to compare the impact of various greenhouse (Shine, 2009). 

Fossil fuel consumption contributes approximately 65% of GHG emissions (Environmental 

Protection Agency (EPA), 2019). Therefore, renewable energy is expected to address this concern. 

 

2.5 Revenue Value  

As an emerging renewable energy source in the United States, anaerobic digestion provides 

various forms of revenues from renewable electricity, digestate, energy or fuel credits, and feeding 

fees. Nevertheless, the prices vary depending on location, operating procedures, and state 

regulations. One example is tipping fees, which are rates that a company should pay for disposing 

of waste materials as digester input. Tipping fees depend on the water content of materials. Fats, 

Oils, and Grease (FOG) have a monetary value of $0.10 per gallon due to high water content. 

However, the price can be about $0.05 per gallon if it has a lower water concentration or as dry 

material. On the other hand, digestate can be traded to farms or composting facilities for 

approximately $7.00 per ton (Dr. Dana Kirk, 2020). 
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Other potential revenues are RINs and RECs as mentioned previously. RIN price ranges 

between $0.01 and $3.50 depending on the biofuel source. RECs prices are various following 

changes in policy and the availability of RECs within the state. Currently, most RECs are fulfilled 

through sources such as wind and solar which creates a deviation in the market for prices.  

In Michigan itself, RPS increased from 10% in 2015 to 15% in 2021, while it has 

compliance requirements of 12.5% in 2019 and 2020 (Michigan Public Service Commission, 

2021). REC is regulated by The Michigan Renewable Energy Certification System (MIRECS) as 

a tracking and certification system. According to Consumers Energy, REC price is $0.014 per kWh 

or $14/MWh. Additionally, Michigan’s electric providers in total retired 12,812,152 RECs in 2019 

(Scripps et al., 2016). 
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CHAPTER 3. MATERIAL AND METHODS 

3.1 Manure Feedstock 

The South Campus Anaerobic Digester (SCAD) digester uses various kinds of feedstock, 

including dairy, beef, waste feed, poultry, and swine manure. Most feedstocks are from the 

Michigan State University dairy farm which is located adjacent to the SCAD. 

 

3.2 Food Waste Feedstock 

Food waste used in the digester included pineapple, pulp, FOG (fat, oil, and grease), and 

waste feed. A small portion of the food waste comes from Michigan State University dining halls, 

while the rest comes from off-campus food processors and manufacturers. Most of the food waste 

comes from southern Michigan, but a small portion of food waste was also gained from the 

neighboring states such as Indiana and Ohio. 

 

3.3 Real-time (commercial system) sampling methods 

The process flow diagram shown in Figure 3.1 provides a better view of the sampling 

locations. 

3.3.1 Gas quantity and quality, and electricity production 

Gas quantity was measured by using Endress Hausser Proline t-mass 65 flow meter in real 

time 24 hours as CHP (Combined Heat and Power) daily total in standard cubic foot (SCF) unit. 

Gas quality was measured by using AwiFLEX Cool+ gas analyzer every hour. Gas was taken from 

2 distinct locations which were before and after the carbon activator scrubber. Three gases were 

measured which were CH4 (%), O2 (%), and H2S (ppm). Electricity was measured as daily 

electrical power generated in kilowatts hour (kWh) unit by using SATEC PM172E. The 
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measurement was recorded by the software in the morning until May 2015, then it changed to be 

in the midnight afterwards. 

 
Figure 3.1. Sampling and measurement maps (Source: MSU Anaerobic Research and 

Education Center) 
(Notes: black line: feedstock; yellow line: separated solids; blue line: filtrate; green dashed 

line: biogas phase; orange line: sample collection and measurement) 

 

 

3.3.2 Digestate, filtrate, and solids sampling 

Digestate or effluent from the digester consists of a mix of cow manure from MSU Dairy 

Farms and food waste. The effluent was collected from a piping line that connects the digester to 

the solid separator. The effluent was taken before the slurry went through a solid separator. The 

ratio between cow manure and food waste changes daily based upon material received. The filtrate 

was collected after solid liquid separation from a line that connects the solid separator to the 

digestate holding tank (DHT). Solids were taken at the solid separator station. These samples were 

regularly sent to ADREC for laboratory analysis. The frequency of sampling varied depending on 
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the workforce availability in the laboratory. However, in general, the sampling was at least once a 

month. 

3.3.3 Temperature sampling 

The temperature of digester was measured continuously by using Endress Hausser T13 

RTD probe that is located about 3 feet off the floor on the southwest area of the digester. The 

measurement results were recorded by the Allen Bradley/Rockwell compact logix PLC processor 

every 10 minutes and put into a CSV file. The measurement results were also recorded by the 

digester manager twice a day in the morning and at the end of working hours.  

3.3.4 pH sampling 

The pH of slurry in the digester was measured continuously by using Endress Hauser 

Liquiline C CM42, which is in the pipe that goes through a heat exchanger. The measurement 

results were recorded by the Allen Bradley/Rockwell compact logix PLC processor every 10 

minutes and put into a CSV file. The measurement results were also recorded by the digester 

manager twice a day in the morning and at the end of working hours. 

 

3.4 Laboratory Analysis 

The laboratory analysis for SCAD samples was done at the MSU Anaerobic Digestion 

Research and Education Center (ADREC). 

 

3.4.1 Total Solids and Volatile Solids 

Total and volatile solids (TS and VS) are the fundamental feedstock and digestate measure 

for SCAD operational management. In addition to TS and VS, this test also yields information 

regarding the sample moisture content (MC) and fixed solids (FS). TS and VS analysis were 

performed following the EPA accepted Hach methods 8271 and 8276, respectively. The procedure 
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for TS was modified from a 6-hour oven holding time to 24 hours to ensure complete drying. The 

procedure for VS was also adjusted by increasing the time from 1 hour to 6 hours to ensure 

complete sample combustion.  

Materials and equipment needed for the test included the digester’s samples (filtrate, 

effluent, and solids), 50 mL glass beakers (3 per sample), laboratory analytical balances (Scientech 

SA 120), oven (Precision Scientific, Catalog No. 31578-10), furnace (Lindberg, Model No. 

CBFM516C), stir plate (Cole-Parmer Instrument Company, Catalog No. 03406-10), magnetic stir 

bar, desiccator (Boekel 1342), desiccant (Drierite 22001), syringe, spoon, marker, and white board.  

3.4.2 Chemical Oxygen Demand 

Chemical Oxygen Demand (COD) is used as a measure of pollutant in wastewater or 

effluent. The results indicate the concentration of pollutants in the sample. The higher COD 

content, the more polluted the sample. The test was performed following the EPA accepted Hach 

method 8000. Materials and equipment needed were diluted samples using DI water, HACH 

heated reactor DRB 200, HACH spectrophotometer DR 5000, HACH COD test vials (Catalog No. 

2125915), blank test vial, stir bar and stir plate (Cole-Parmer Instrument Company, Catalog No. 

03406-10), micropipette, microtips, and delicate wipes.  

3.4.3 Total Suspended Solids / Volatile Suspended Solids 

Total Suspended Solids / Volatile Suspended Solids (TSS/VSS) test is a method to 

determine the amount of total suspended solids and total volatile suspended solids found within a 

sample. TSS/VSS tests were performed following the EPA accepted Hach methods 8158 and 8164, 

respectively. Materials and equipment needed were laboratory analytical balances (Scientech SA 

120), desiccator, oven (Precision Scientific, Catalog No. 31578-10), furnace (Lindberg, Model No. 

CBFM516C), stir plate (Cole-Parmer Instrument Company, Catalog No. 03406-10), magnetic stir 
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bar, vacuum filtration system, glass-microfibre discs filter 47 mm (HACH, Catalog No. 253000), 

tweezers, watch glass, aluminum crucible, DI water, 1 ml syringe, and tongs.  

3.4.4 pH and Electrical Conductivity  

pH and electrical conductivity (EC) are key measurements to monitor the biological health 

of a digester hence liquid samples of the digester’s filtrate and effluent were evaluated weekly. 

The recommended range for pH is between 6.4 and 8.2 for a healthy digester (MSU ADREC 

Operator Training, 2019). Prior to use, the pH probe was calibrated using three calibration 

solutions at pH 4.01, 7.00, and 10.00. After calibration, pH, and electronic conductivity (EC) 

probes were rinsed with DI water and wiped using delicate wipes. Sample was stirred on the stir 

plate using magnetic stirrer; then, the probes were dipped into sample. Both probes were rinsed 

and wiped after use and the pH probe was stored in a storage solution.  

Materials and equipment needed were pH/Conductivity meter (Orion Star A215), pH probe 

(Orion 8157BNUMD), conductivity probe (Orion 013005MD), double ionized (DI) water, 

calibration solutions for pH 4.01 (Millipore Sigma BX1634), 7.00 (Millipore Sigma 7BX1635), 

and 10.00 (Millipore Sigma BX1642), delicate wipes, stir bar, stir plate (Cole-Parmer Instrument 

Company, Catalog No. 03406-10), magnetic collection stick, and empty beakers.  

3.4.5 Alkalinity and Volatile Fatty Acids 

Alkalinity and Volatile Fatty Acids (VFA) tests were conducted using the titration method 

to understand the susceptibility of the digester towards the change within its internal environment. 

Alkalinity and VFA tests were conducted by referencing O’Brien and Donlan (1977) methods, as 

follows: 

• Samples were centrifuged for 30-40 minutes 



43 

 

• After centrifugation, liquids were filtered using 23 µm then 11 µm filters to gain 

50 mL of liquids only 

• Filtered samples were then poured into 150 ml and stirred using stir bar on the stir 

plate 

• pH was measured using pH probe prior to titration to know the initial pH 

• Samples were gently stirred during titration using 1.0 N H2SO4 to a pH of 3.3, then 

the volume reading is noted. All processes up to this point were part of the alkalinity 

test 

• After the first titration, sample beaker was covered with 65 mm watch glass and 

then heated on the heated stir plate to a gentle boiling point for 3 minutes 

• The sample was then cooled down to room temperature. After that, the watch glass 

was rinsed into the beaker with DI water 

• Sample was then titrated again using 0.05 N NaOH to pH 4.0, then volume reading 

was noted 

• Lastly, sample was titrated again using 0.05 N NaOH to pH 5.1 without refilling 

the solution from the previous titration, then the volume reading is totaled with the 

second titration. This entire process was part of the VFA test 

Materials and equipment needed were centrifuge (Hermle Labnet Z 206 A), centrifuge vials 

50 mL, 150 ml sample beaker, empty beaker, 23 µm (Whatman, Catalog No. 1441-047) and 11 

µm filters (Whatman, Catalog No. 1001-047), filter flask (brand), tweezers, pH/Conductivity 

meter (Orion Star A215), pH probe (Orion 8157BNUMD), delicate wipes, stir bar, heated stir plate 

(Cole-Parmer Catalog No. EW-03407-36), cone hood, stir plate (Cole-Parmer Catalog No. 03406-

10), 65 mm watch glass, double ionized (DI) water, 1.0 N H2SO4, and 0.05 N NaOH.  
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3.4.6 Total Nitrogen 

Nitrogen is an important nutrient to both digester performance and fertilizer use of 

digestate. Total Nitrogen (TN) is a test to determine the total nitrogen by the per sulfate digestion 

method. The test was performed following the instructions available for the HACH TNT 827 test 

kit. Materials and equipment used were dilution of samples for range used, HACH heated reactor 

DRB 200, HACH nitrogen test kit high range (TNT 827), HACH spectrophotometer DR 5000, 20 

mm reaction tube, stir bar and stir plate (Cole-Parmer Instrument Company, Catalog No. 03406-

10), glass beakers, double ionized (DI water), delicate wipes, micropipette, and microtips.  

3.4.7 Ammonia 

Ammonia can cause toxicity in digesters if levels exceed 3,000 mg/L (MSU ADREC 

Operator Training, 2019). An ammonia test was conducted to analyze the ammonia content in the 

samples. The test was performed following the instructions available for the HACH TNT 832 test 

kit. Materials and equipment needed were diluted samples using DI water, HACH ammonia test 

kit high range (TNT 832), HACH spectrophotometer (DR 5000), stir bar and stir plate (Cole-

Parmer Instrument Company, Catalog No. 03406-10), micropipette, microtips, and delicate wipes. 

3.4.8 Total Phosphorus 

Phosphorus is the key limiting nutrient for land application of digestate as a fertilizer. In 

organic wastes, phosphates are present in organic and condensed inorganic forms. Phosphorus can 

be obtained from treating the samples with acid and heat providing conditions for hydrolysis of 

the condensed inorganic forms. Total Phosphorus (TP) test was conducted to measure the 

phosphorus content in filtrate and effluent samples. The test was performed following the 

instructions available for the HACH TNT 844 test kit. Materials and equipment needed were 

diluted samples using DI water, HACH heated reactor DRB 200, HACH phosphorus test kit high 
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range (TNT 844), HACH spectrophotometer DR 5000, stir bar and stir plate (Cole-Parmer 

Instrument Company, Catalog No. 03406-10), micropipette, microtips, and delicate wipes.  

3.4.9 Other laboratory tests 

There were several tests conducted outside of ADREC laboratory due to facilities 

availability. Those tests were conducted by A&L Great Lakes Laboratory (algreatlakes.com) in 

Fort Wayne, Indiana. The tests included manure nutrition analysis which were moisture, solids, 

Total Kjeldahl Nitrogen (TKN), phosphorus, potassium, sulfur, calcium, magnesium, sodium, 

iron, aluminum, manganese, copper, and zinc. All test methods were referred to Recommended 

Methods of Manure Analysis, UW A3769, summarized in Table 3.1 below. 

Table 3.1 List of test methods done by A&L Great Lakes Laboratory 

Parameter Method 

Moisture UW A3769 III.2 

Solids 
Solids were calculated from 

moisture 

Total Kjeldahl Nitrogen (TKN) UW A3769 III.3.2 

Phosphorus, Potassium, Sulfur, Magnesium, Calcium, 

Sodium, Aluminum, Copper, Iron, Manganese, Zinc 

UW A3769 III.6.3. All minerals ran 

on Thermo iCAP 6500. 

 

3.5 Statistical Analysis  

Three analyses were conducted for this research: mass and energy balance, life cycle 

impact assessment, and economic analysis. The original data from SCAD manager were 

reorganized to ease data calculation and further analysis. Data was organized in an Excel 

spreadsheet and used to calculate the descriptive analysis such as min, max, mean, average, 

standard deviation, number of samples, and coefficient of variation. Other spreadsheets were 

created from the reorganized spreadsheet to provide data sources for statistical analysis by using 

the R Studio programming software. 
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Multi linear regression (MLR) in R Studio programming software was used to determine 

the model for gas production from available feedstock combinations. The codes utilized for MLR 

analysis are provided in Appendix A. 

MLR formula is defined as equation below: 

   (2) 

Furthermore, R Studio programming software was also used to create radar and violin 

charts to check data distribution of each feedstock year to year. A radar chart, also known as a 

spider plot, is used to visualize the amount of feedstock received by the digester each month and 

year. Radar chart was created by using fmsb and ggradar packages in R software. The codes 

utilized for Radar chart are provided in Appendix B. 

A violin chart is used to visualize the distribution of individual feedstock amount year to 

year, also output parameters of the digester. Violin chart is created by using ggplot2 and 

geom_violin packages in R software. ANOVA (analysis of variance) Tukey multiple comparison 

was used to determine statistically significant differences between the various operational 

parameters via the R function TukeyHSD. The codes utilized for Violin chart and ANOVA Tukey 

multiple comparison are provided in Appendix C. 
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CHAPTER 4. ANALYSIS OF SCAD OPERATIONAL DATA 

4.1 Feedstock Amount 

During the operation period January 1, 2014, and ending December 31, 2020, the SCAD 

utilized 18 different feedstocks. Feedstocks were managed in two reception tanks, one for manure 

(low energy materials) and another for food waste (high energy materials). Table 4.1 summarizes 

the feedstocks and reception tank used to manage the inflow. The composition of feedstock 

received by the digester is variative each year. 

Table 4.1 Feedstocks in SCAD Manure Pit and Food Pit 

No Manure Pit Food Pit 

1 Digestate (recycle) Filtrate (recycle) 

2 Filtrate (recycle) Cart Food 

3 ANS Other Fat, Oil, and Grease (FOG) 

4 Beef Manure Other 

5 Dairy Gutter Manure (Dairy G.) Pineapple (P.A.) 

6 Dairy Freestall Manure (Parlor) Pulp 

7 Poultry Manure SLS Solids 

8 SLS Solids Waste Feed 

9 Swine Manure  

10 Waste Feed  

 

4.1.1 Yearly total 

The yearly total of feedstock processed in SCAD is shown in Table 4.2 for manure pit and 

Table 4.3 for food pit. Digestate is recycled directly from the digester effluent without solid-liquid 

separation. Filtrate is the liquid generated after coarse solids are separated from digestate. 

Digestate and filtrate are recycled to thin out pits and to dilute high TS feedstocks. SLS Solids are 
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Table 4.2 Total Feedstock in Manure Pit Year 2014-2020 

Year 

Feedstock (metric ton) 

Digestate Filtrate 
SLS 

Solids 

Dairy 

G. 
Parlor Beef 

Waste 

Feed 
Poultry Swine 

ANS 

Other 

2014   5,643    4,104   4,273   697   17    25   4  

2015  311   3,706   192   4,542   4,754   121   3    144   30  

2016  1,001   412   56   5,091   4,200   243   34   5    17  

2017  656   171   229   4,878   4,787   222   45   13   78   29  

2018  296   179   42   4,855   5,110   220     151   5  

2019   94   50   4,885   5,877   391   33   20    3  

2020 23 45 59 4,664 5,388 7 56 15  75 

Max  1,001   5,643   229   5,091   5,877   697   56   20   151   75  

Min  23   45   42   4,104   4,200   7   3   5   25   3  

Mean  268   380   82   4,707   4,882   160   23   12   81   13  

Average  457   1,465   105   4,717   4,913   272   31   13   100   23  

St. Dev  378   2,266   83   322   599   221   19   6   59   26  

Coefficient 

of Variation 
141% 597% 101% 7% 12% 139% 83% 54% 73% 191% 
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the coarse fiber separated from digestate via solid-liquid separation. SLS Solids are added solids 

back into the digester to thicken thin, low TS, feedstocks. ANS stands for animal science, meaning 

that there were research materials added into the digester in low quantities, for example eggs from 

research chickens. 

There were several years where the digester did not receive certain types of feedstocks. 

SLS Solids were not used in 2014. Poultry manure did not come to the digester in 2014, 2015, and 

2018. Furthermore, there was no swine manure in 2016, 2019, and 2020. Pineapple was only 

available until 2016. Waste feed was absent in 2018. 

Several feedstocks, Dairy Gutter, and Parlor as well as FOG, produced the largest annual 

mass; meanwhile, the others had significant changes in a certain period. Moreover, each feedstock 

has a different peak of receiving in the digester. According to manure pit data (Table 4.2), the 

digester received the highest amount of SLS Solids in 2017; Dairy G in 2016; Parlor in 2019; Beef 

in 2014; Waste Feed in 2020; Poultry in 2019; and Swine in 2018. The average of each feedstock 

received by SCAD during 2014-2020 is 105 metric tons for SLS Solids, 4,717 metric tons for 

Dairy Gutter, 4,913 metric tons for Parlor, 272 metric tons for Beef, 31 metric tons for Waste Feed, 

13 metric tons for Poultry, 100 metric tons for Swine, and 23 metric tons for ANS Other. 

Regarding the coefficient variation of feedstock, it showed that Dairy Gutter and 

Parlor had the most consistent amount that the digester received year by year. The coefficient 

variation for Dairy G and Parlor was 7% and 12% respectively, showing that the number did not 

significantly change year over year (Figure 4.1). These two feedstocks were also the major 

feedstocks in manure pit. Based on calculation of Dairy Gutter and Parlor in the total of feedstocks 

received in manure pit, the percentage of these feedstocks increased every year. Dairy G and Parlor 

contributed 57% of total feedstock in manure pit in 2014, 67% in 2015, 84% in 2016, 87% in 2017, 



50 

 

92% in 2018, 95% in 2019, and 97% in 2020. It shows that the digester improves the feedstock 

composition which affects gas production. On the other hand, Filtrate significantly decreased since 

2016 due to the conclusion of pineapples waste reception. The primary reason for the addition of 

filtrate and SLS Solids to the reception pits is to create suitable feedstock for pumping and mixing, 

TS less than 8%. In 2016 and prior, the digester received a vast amount of pineapples waste that 

required excessive amount of filtrate to dilute and breakdown the waste before pumped to the mix 

tank. 

Meanwhile, on food pit data (Table 4.3), the digester received the highest amount of SLS 

Solids in 2019, Pineapple in 2014, Pulp in 2014, FOG in 2020, Waste Feed in 2015, Other 

Feedstock in 2015, and Cart Food in 2015. The average amount of feedstocks received by the 

digester in 2014-2020 was 152 metric tons for SLS Solids, 2,098 metric tons for Pineapple, 78 

metric tons for Pulp, 8,380 metric tons for FOG, 18 metric tons for Waste Feed, 388 metric tons 

for Other Feedstocks, and 145 metric tons for Cart Food. 

Regarding coefficients of variation, there was no feedstock in the food pit that was 

as consistent as Dairy G or Parlor in manure pit. FOG was the most consistent followed by Pulp 

and Pineapple, with coefficients of variation of 31%, 38% and 44%, respectively (Figure 4.2). 

Pulp feedstock which comes from Brody dining hall experienced a great reduction in 2020 due to 

COVID-19 pandemic that limited students' activities in the residence halls after March 15, 

2020. Moreover, the Pineapple contract with the digester was only until 2016. The 

supplier proceeded to compost the feedstock afterwards, hence there were no more supplies 

starting in 2017. Food carts also experienced a significant reduction starting in 2017 due to 

contamination with “debris.”  Overall, FOG dominated feedstock supplies in the food pit.  
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Table 4.3 Total Feedstock in Food Pit Year 2014-2020 

Year 

Feedstock (metric ton) 

Filtrate 
SLS 

Solids 
Pineapple Pulp FOG 

Waste 

Feed 
Other 

Cart 

Food 

2014  1,321    2,681   102   4,005   24   117   283  

2015  1,804   53   2,493   94   7,792   28   171   366  

2016  1,312   271   1,118   80   8,470    154   320  

2017  577   85    77   8,330    45   15  

2018  201   196    80   8,068   2   44   14  

2019  194   275    92   9,875    92   12  

2020 256  35    20   12,122    2,094   3  

Max  1,804   275   2,681   102   12,122   28   2,094   366  

Min  194   35   1,118   20   4,005   2   44   3  

Mean  564   115   1,955   71   8,016   10   142   43  

Average  809   152   2,098   78   8,380   18   388   145  

St. Dev  660   109   853   27   2,444   14   754   169  

Coefficient 

of Variation 
117% 94% 44% 38% 30% 138% 530% 396% 
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Figure 4.1 Comparison of feedstock received by SCAD in manure pit 

 
Figure 4.2 Comparison of feedstock received by SCAD in food pit 

A ratio of total feedstock between manure pit and food pit was calculated. Based on 

Table 4.4, the ratio of feedstock from food pit ranged from 37% to 58% with the highest percentage 

being in 2020. On average, SCAD has received 11,897 metric tons of feedstock in manure pit each 
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year and 10,838 metric ton of feedstock in food pit, for a total of 22,375 metric ton/year with the 

average ratio of feedstock in food pit was 47%.   

Table 4.4 Ratio of Manure Pit and Food Pit 

Year 

Manure Pit 

(Metric 

ton/year) 

Food Pit 

(Metric 

ton/year) 

Total 

(Metric 

ton/year) 

Food 

Pit 

(%) 

2014  14,763  8,533  23,297  37% 

2015  13,805  12,800  26,605  48% 

2016  11,059  11,726  22,785  51% 

2017  11,109  9,129  20,238  45% 

2018  10,859  8,605  19,464  44% 

2019  11,353  10,539  21,893  48% 

2020  10,332  14,531  24,863  58% 

Max  14,763   14,531   26,605  58% 

Min  10,332   8,533   19,464  37% 

Mean  11,802   10,637   22,618  47% 

Average  11,897   10,838   22,735  47% 

St. Dev  1,683   2,294   2,499  7% 

 

4.1.2 Monthly Average 

The monthly average of feedstock processed in SCAD is shown in Table 4.5 and 4.6. FOG, 

Parlor, and Dairy Gutter are three major feedstocks that the digester received each month during 

the years 2014-2020. Radar charts in Figure 4.3 to 4.9 also give a better picture of feedstock peaks 

for each month. In 2014 to 2016, Parlor, FOG, and Filtrate consistently had higher peaks compared 

to the rest of feedstocks. However, from 2017 to 2020, Parlor and FOG remained as the only 

feedstocks that have consistent peaks of supply. There were several outliers that happened during 

2014-2020, which were Digestate (July 2016), Swine (December 2017), Filtrate in manure pit 

(August 2017 and May 2018), Filtrate in food pit (July 2018), and FOG (October 2019). 
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Table 4.5 Average Mass Delivered to Digester Each Month (Manure Pit), 2014-2020 

Year 

Feedstock (kg) 

Digestate Filtrate 
SLS 

Solids 

Dairy 

G. 
Parlor Beef 

Waste 

Feed 
Poultry Swine 

ANS 

Other 

2014   25,840    11,463   25,466   6,354   4,069    12,645   179  

2015  20,592   21,259   2,916   12,647   27,034   4,784   1,069    4,537   741  

2016  18,979   12,123   3,263   13,844   21,659   3,914   3,426   568    441  

2017  15,338   14,884   3,187   13,307   20,612   2,394   1,451   1,071   25,682   919  

2018  16,210   15,258   2,749   13,205   23,907   2,878     17,275   688  

2019   10,184   3,159   13,287   21,993   3,432   1,847   1,935    1,562  

2020  11,259   12,507   3,637   12,678   21,269   3,053   3,159   1,950    3,022  

Max  20,592   25,840   3,637   13,844   27,034   6,354   4,069   1,950   25,682   3,022  

Min  11,259   10,184   2,749   11,463   20,612   2,394   1,069   568   4,537   179  

Mean  16,136   15,259   3,139   12,899   23,031   3,648   2,239   1,231   12,631   779  

Average  16,475   16,008   3,152   12,919   23,134   3,830   2,503   1,381   15,035   1,079  

St. Dev  3,218   5,173   279   705   2,222   1,255   1,105   589   7,653   888  

Coefficient 

of Variation 
20% 34% 9% 5% 10% 34% 49% 48% 61% 114% 
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Table 4.6 Average Mass Delivered to Digester Each Month (Food Pit), 2014-2020 

Year 

Feedstock (kg) 

Filtrate 
SLS 

Solids 
Pineapple Pulp FOG 

Waste 

Feed 
Other 

Cart 

Food 

2014  19,922    11,547   1,112   18,952   2,017   10,870   2,151  

2015  18,478   3,032   11,093   1,272   35,270   2,146   2,849   1,845  

2016  14,955   3,386   11,345   1,317   35,052    1,341   2,417  

2017  18,812   2,844    2,013   32,703    1,067   121  

2018  22,917   2,802    1,656   31,780   1,620   1,498   117  

2019  14,565   3,228    2,088   34,277    2,857   92  

2020  14,102   3,160    1,630   40,428    13,222   67  

Max  22,917   3,386   11,547   2,088   40,428   2,146   13,222   2,417  

Min  14,102   2,802   11,093   1,112   18,952   1,620   1,067   67  

Mean  17,424   3,069   11,326   1,546   31,917   1,914   3,059   364  

Average  17,679   3,076   11,328   1,584   32,637   1,928   4,815   973  

St. Dev  3,031   207   186   346   6,143   224   4,663   1,020  

Coefficient 

of Variation 
17% 7% 2% 22% 19% 12% 152% 280% 
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Figure 4.3 Radar chart for feedstock supplies receiveed by SCAD in 2020 

 

Figure 4.4 Radar chart for feedstock supplies receiveed by SCAD in 2019 
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Figure 4.5 Radar chart for feedstock supplies receiveed by SCAD in 2018 

 

Figure 4.6 Radar chart for feedstock supplies receiveed by SCAD in 2017 
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Figure 4.7 Radar chart for feedstock supplies receiveed by SCAD in 2016 

 

Figure 4.8 Radar chart for feedstock supplies receiveed by SCAD in 2015 
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Figure 4.9 Radar chart for feedstock supplies receiveed by SCAD in 2014 

 

4.1.3 Feedstock Distribution 

This study also observes the distribution of feedstock received by SCAD for each feedstock 

from 2014-to 2020. Violin charts were used to check the data distribution of each feedstock year 

to year. The violin chart consisted of a colored area, a white box, and a straight line with top and 

bottom points. The colored area represents data points that the parameter has. The more colored 

the area, the larger the data points. A large part of the colored area shows where most data 

is located. The white box is in the middle of the colored area. The top part of the box represents the 

third quartile of data points, a line inside the box represents the median, while the bottom 

part represents the first quartile. The straight line with top and bottom points represents the range 

of data with the highest and lowest value, respectively. ANOVA (analysis of variance) Tukey 

multiple comparisons were used to determine the significance of data compared year to year. 

4.1.3.1 Manure Pit 

From manure pit, Filtrate manure pit, Dairy Gutter and Parlor are three feedstocks with the 

largest data points. Figure 4.10 shows the violin chart for Filtrate manure pit. In general, the charts 
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in 2014, 2015, 2019, and 2020 have distinctive shapes which means the data in these years were 

distributed differently. Meanwhile, the chart shapes in 2016-2018 show were quite similar. There 

was a significant range of filtrate circulating into manure pit in 2015 with median and highest data 

point were about 23,000 kg/day and 40,000 kg/day, respectively. The range got smaller and more 

consistent in 2016-2018 which the medians were roughly 13,000 kg/day. In 2019 and 2020, data 

distribution for filtrate supplied to manure pit became more consistent with the range of data points 

was approximately 5,000 kg/day to 15,000. Lower supply of filtrate shows that digester received 

fewer solid feedstocks; thus, it did not need much dilution using the filtrate. 

 
Figure 4.10 Data distribution of Filtrate manure pit 

 

Table 4.7 shows the ANOVA Tukey multiple comparison performed for Filtrate manure 

pit data distribution. It shows that there was a significant difference in the quantity of Filtrate 

manure pit received by the digester at the p<0.05 level from year to year [F (6, 49) = 3.729, p = 

0.00392). 

Table 4.7 ANOVA Tukey Multiple Comparison results for Filtrate manure pit data 

distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 1.533e+09 258,810,814 3.729 0.00392 

Residuals 49 3.401e+09 69,412,500   
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The violin chart of Dairy Gutter (Figure 4.11) shows different shapes for each year. In 

2014, the chart shows an extensive range of data points with most data points located slightly 

below 12,500 kg/day, while the highest data point was about 16,000 kg/day. There was an outlier 

in 2017, with data points located around 8,000 kg/day. That means there was a moment where the 

digester received lower supplies of this feedstock. Meanwhile, feedstock supplies were typically 

stable in 2018-2020 which the median between 12,500 and 15,000 kg/day. 

  
Figure 4.11 Data distribution of Dairy Gutter 

 

Table 4.8 shows the ANOVA Tukey multiple comparison performed for Daily Gutter data 

distribution. It shows that there was a significant difference in the quantity of Dairy Gutter received 

by the digester at the p<0.05 level from year to year [F (6, 77) = 3.554, p = 0.00368). 

Table 4.8 ANOVA Tukey Multiple Comparison results for Dairy Gutter data distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 42,372,311 7,062,052 3.554 0.00368 

Residuals 77 152,983,389 1,986,797   

 

Figure 4.12 shows the data distribution for Parlor. The chart shape was significantly 

different from year to year. The chart in 2015 shows the most extensive range with the highest 

peak reaching 40,000 kg/day, becoming the highest data point of all years. Data median also shows 
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two different trends. Median in 2014, 2015, and 2018 were around 25,000 kg/day, while the rest 

have median around 20,000 kg/day. 

 
Figure 4.12 Data distribution of Parlor 

 

Table 4.9 shows the ANOVA Tukey multiple comparison performed for Parlor data 

distribution. It shows that there was a significant difference in the quantity of Parlor received by 

the digester at the p<0.05 level from year to year [F (6, 77) = 5.017, p = 0.000). 

Table 4.9 ANOVA Tukey Multiple Comparison results for Parlor data distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 4.214e+08 70,235,648 5.016 0.000 

Residuals 77 1.078e+09 14,000,917   

 

Figure 4.13 shows the data distribution for Total Manure Pit. The chart shows three 

different trends. Data distribution in 2014 and 2015 share a similar pattern where the curves have 

clear violin shapes. Data distribution in 2016, 2017, and 2018 share similar shapes where the 

curves look like a coke bottle. Data distribution in 2019 and 2020 look similar where the curves 

have shorter shapes, meaning that the data have more consistent ranges. Data median shows a 

constant slight decrease from 2014 to 2018. There was quite a significant decrease in data median 
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from 2018 to 2019, then a slight decrease in 2020. Data distribution in 2015 and 2016 shows the 

most extensive range, from 40,000 to 100,000 kg/day. Data distribution from 2019 to 2020 shows 

the most consistent data distribution, ranging from roughly 30,000 to 60,000 kg/day. 

 
Figure 4.13 Data distribution for total manure pit 

 

Table 4.10 shows the ANOVA Tukey multiple comparison performed for total manure pit 

data distribution. It shows that there was a significant difference in the quantity of total manure pit 

received by the digester at the p<0.05 level from year to year [F (6, 77) = 7.098, p = 0.000). 

Table 4.10 ANOVA Tukey Multiple Comparison results for Total Manure Pit data 

distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 8.058e+09 1.343e+09 7.098 0.000 

Residuals 77 1.457e+10 1.892e+08   

 

Data for other feedstocks in manure pit are provided in Appendix C.1. In general, some of 

the feedstocks in the manure pit did not have large enough data points, therefore they show little 

or no colored area around the white box (SLS Solids, Beef and ANS Other). Meanwhile, other 

feedstocks did not show a complete chart for each year due to the digester did not receiving them 

in certain years (Digestate, Waste Feed Manure, Poultry, and Swine). 
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4.1.3.2 Food Pit 

From the manure pit, Pulp and FOG were feedstocks with the largest data points. Figure 

4.14 shows data distribution for Pulp. The charts show different shapes each year with 2015 being 

the year with the most consistent data distribution, ranging from roughly 1,000 to 1,600 kg/day. 

The peak of pulp received by the digester happened in 2019 exceeding 3,000 kg/day. Data 

distribution in 2020 was typically consistent although the supply was disrupted by COVID-19 

pandemic. 

  
Figure 4.14 Data distribution for Pulp 

 

Table 4.11 shows the ANOVA Tukey multiple comparison performed for Pulp data 

distribution. It shows that there was a significant difference in the quantity of Pulp received by the 

digester at the p<0.05 level from year to year [F (6, 67) = 8.78, p = 0.000). 

 

Table 4.11 ANOVA Tukey Multiple Comparison results for Pulp data distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 10,479,022 1,746,504 8.78 0.000 

Residuals 67 13,326,784 198,907   
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Figure 4.15 shows the data distribution for FOG. Data distribution was typically consistent 

from 2015 to 2019. The data median in 2014 was the lowest at around 20,000 kg/day, while data 

median for 2020 was the highest which was slightly above 40,000 kg/day. As previously shown in 

the radar chart, the year 2019 had an outlier for the data peak which was around 80,000 kg/day, and 

outlier compared to the rest of data points which ranged from about 25,000 kg/day to 40,000 

kg/day.  

 
Figure 4.15 Data distribution for FOG 

 

Table 4.12 shows the ANOVA Tukey multiple comparison performed for FOG data 

distribution. It shows that there was a significant difference in the quantity of FOG received by the 

digester at the p<0.05 level from year to year [F (6, 77) = 8.095, p = 0.000). 

Table 4.12 ANOVA Tukey Multiple Comparison results for FOG data distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 3.215e+09 535,833,184 8.095 0.000 

Residuals 77 5.097e+09 66,195,896   

 

Figure 4.16 shows the data distribution for Total Food Pit. The chart in 2020 shows a 

perfect upside-down violin, while 2014 looks like a violin shape. Data distribution in 2015, 2016, 

and 2018 share similar chart shapes. The highest data point happened in 2019 which was around 
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90,000 kg/day, while the lowest data point happened in 2017 which was around 20,000 kg/day, 

associated with the engine outage. The data range from 2014 to 2016 was typically consistent from 

slightly above 40,000 kg/day to slightly above 80,000 kg/day, meanwhile the data range from 2018 

to 2020 was typically consistent with most data points were approximately between 30,000 kg/day 

and 80,000 kg/day.  

 
Figure 4.16 Data distribution for Total Food Pit 

 

Table 4.13 shows the ANOVA Tukey multiple comparison performed for Total Food Pit 

data distribution. It shows that there was a significant difference in the quantity of FOG received 

by the digester at the p<0.05 level from year to year [F (6, 77) = 3.641, p = 0.003). 

Table 4.13 ANOVA Tukey Multiple Comparison results for Total Food Pit data distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 4.559e+09 759,802,790 3.641 0.003 

Residuals 77 1.607e+10 208,668,601   

 

Data for other feedstocks in food pit are provided in Appendix C.2. In general, some of the 

feedstocks in the manure pit did not have large enough data points, therefore they show little or no 

colored area around the white box (Filtrate Food Pit, SLS Solids Food, Other, and Cart Food). 
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Meanwhile, other feedstocks did not show a complete curve for each year due to the digester did 

not receiving them in certain years (Pineapples and Waste Feed). 

4.1.3.3 Total Feedstock (Manure Pit and Food Pit) 

Figure 4.17 shows the data distribution for Total Feedstock. Data distribution charts in 

2015 and 2018 look similar but in a different data range, while the rest of the charts look quite 

distinctive in shape. Data distribution in 2014 and 2017 were typically similar, ranged 

approximately from 95,000 kg/day to 155,000 kg/day. The highest data point happened in 2016, 

while the lowest data point happened in 2019. Data curves in 2016 and 2019 show the most 

extensive distribution but in a different range. Data distribution in 2018-2020 shows quite a similar 

range, which means total feedstocks received by the digester were considered consistent in the last 

three years. 

 
Figure 4.17 Data distribution for Total Feedstock 

 

Table 4.14 shows the ANOVA Tukey multiple comparison performed for Total Feedstock 

data distribution. It shows that there was a significant difference in the quantity of Total Feedstock 

received by the digester at the p<0.05 level from year to year [F (6, 77) = 5.736, p = 0.000). 
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Table 4.14 ANOVA Tukey Multiple Comparison results for Total Feedstock data 

distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 1.47e+10 2.451e+09 5.736 0.000 

Residuals 77 3.29e+10 4.273e+08   

 

4.1.4 Feedstock Characterization 

Table 4.15 shows the characterization of feedstocks received by SCAD during 2014-2020. 

Based on the data available at the digester, there are only seven feedstocks that have laboratory 

results for characterization: Parlor Manure, Beef, Dairy Gutter, FOG, Food Other, Pineapple, and 

Pulp. Characteristics measured were total solids (TS), volatile solids (VS), pH, electron 

conductivity (EC), soluble COD (sCOD), total nitrogen (TN), total phosphorus (TP), and 

ammonia. The data on table represents average, standard deviation, and number of samples in the 

brackets. 

According to several samples, TS, VS, pH, and EC were the parameters which were 

measured the most for Parlor Manure, FOG, and Food Other feedstocks. For Parlor Manure, data 

collected was 11 for TS, VS, and pH, while it had 10 data for EC. They were taken from 2015 to 

2018. Characterization data of Parlor Manure were 63,844±20,998 mg/L, 52,742±18,966 mg/L, 

7.01±0.30, and 13.72±1.37 mS/cm for TS, VS, pH, and EC, respectively. Data collected for FOG 

were 28 for TS and VS, 27 for pH, and 23 for EC. They were taken from 2014 to 2019. 

Characterization data of FOG were 120,191±172,277 mg/L, 105,384±142,739 mg/L, 5.50±1.51, 

and 12.17±38.04 mS/cm for TS, VS, pH, and EC, respectively. Standard deviation for FOG 

samples was large due to the wide range of laboratory results. For example, TS ranged from 1,520 

to 689,323 mg/L, VS ranged from 532 to 542,778 mg/L, and EC ranged from 0.95 to 189.90 
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mS/cm. The sample variation is driven largely by the grease interceptor management and the 

material collection practices. 

Meanwhile, data collected for Food Other were 24 for TS and VS, 23 for pH, and 22 for 

EC. They were taken from 2014 to 2019. Characterization data of Food Other were 

219,447±286,460 mg/L, 193,795±265,043 mg/L, 5.41±1.45, and 8.52±6.03 mS/cm for TS, VS, 

pH, and EC, respectively. Similar to FOG, standard deviation of Food Other feedstock 

characterizations was large due to significant difference between each data point. For example, TS 

ranged from 24,072 to 950,355 mg/L, VS ranged from 18,045 to 933,805 mg/L, pH ranged from 

3.58 to 7.88, and EC ranged from 0.31 to 18.53 mS/cm. 

Other feedstocks and parameters were collected at a minimum data point. For example, the 

digester only has 1 data point for Dairy Gutter and Pulp, which was taken in 2016 and 2014, 

respectively. Beef has 3 data points for TS, VS, pH, and EC yet does not have any data for SCOD, 

TN, TP, and ammonia. These data points were collected in 2014, 2016, and 2018. Characterization 

data of Beef were 462,152±109,098 mg/L, 393,620±100,761 mg/L, 8.64±0.06, and 1.89±0.76 

mS/cm for TS, VS, pH, and EC, respectively. Pineapple has 2 data points for TS, VS, pH, and EC; 

one data point for TN, TP, and ammonia, while it does not have any data for SCOD. These data 

points were taken in 2014 and 2016. Characterization data of Pineapple were 127,389±14,312 

mg/L, 114,749±5,820 mg/L, 3.91±0.04, and 2.26±0.62 mS/cm for TS, VS, pH, and EC, 

respectively. The lack of workforce becomes the main reason for minimum characterization 

analysis for SCAD feedstocks. In general, feedstock received by SCAD has significant differences 

in terms of characterization results.
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Table 4.15 Characterization of SCAD Feedstock a  

Feedstock 
TS 

(mg/L) 

VS 

(mg/L) 
pH 

EC 

(mS/cm) 

Parlor Manure 63,844±20,998 (11) 52,742±18,966 (11) 7.01±0.30 (11) 13.72±1.37 (10) 

Beef 462,152±109,098 (3) 393,620±100,761 (3) 8.64±0.06 (3) 1.89±0.76 (3) 

Dairy Gutter 162,268 (1) 142,940 (1) 8.23 (1) 7.74 (1) 

FOG 120,191±172,277 (28) 105,384±142,739 (28) 5.50±1.51 (27) 12.17±38.04 (23) 

Food Other 219,447±286,460 (24) 193,795±265,043 (24) 5.41±1.45 (23) 8.52±6.03 (22) 

Pineapple 127,389±14,312 (2) 114,749±5,820 (2) 3.91±0.04 (2) 2.26±0.62 (2) 

Pulp 275,459 (1) 262,105 (1) 4.36 (1) 1.49 (1) 
a data including average ± standard deviation, and (number of sample) 

Table 4.15 

Feedstock SCOD 
TN 

(mg/L) 

TP 

(mg/L) 

NH3 

(mg/L) 

Parlor Manure 25,900 (1) 2,190±214 (2) 1,210 (1) 932 (1) 

Beef - - - - 

Dairy Gutter - 5,050 (1) 1,386 (1) 1,085 (1) 

FOG 109,380±167,383 (4) 15,250 (1) 300 (1) 253.75 (1) 

Food Other - 9,139±10,502 (4) 1,032±1,360 (7) 195±363 (7) 

Pineapple - 595 (1) 109 (1) 62.70 (1) 

Pulp - - - - 
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4.2 Biogas and Electricity Production 

Table 4.16 below shows the total amount of biogas produced by the digester in the year 

2014-2020, Methane (CH4) and Hydrogen Sulfide (H2S) average. The highest biogas production 

was in 2016, reaching 1,418,746 Standard Cubic Meter (SCM). In terms of CH4 percentage, the 

years 2018 and 2020 had the highest average which was 66%. The lowest H2S average was in 

2014 at 360 ppm. 

Table 4.16 Biogas production, methane and H2S average year 2014-2020 

Year 
Biogas Total 

CH4  

Average 

H2S  

Average 

Electricity 

production 

(SCM) (%) (ppm) (kWh) 

2014  846,232  63% 360 1,727,073 

2015  1,103,695  61% 433 2,118,966 

2016  1,418,746  62% 667 1,470,356 

2017  1,326,335  65% 421 2,169,693 

2018  1,348,024  66% 387 2,680,954 

2019  1,280,438  64% 520 2,333,449 

2020 1,340,179 66% 652 2,664,665 

 

The digester experienced an outage of the CHP engine twice. The first outage occurred 

from December 2015 to April 2016, when the engine had a rod bearing failure. Consequently, the 

engine was rebuilt and back to daily operation from May 2016 to November 2016. Furthermore, 

the engine experienced a second failure with a similar issue. Therefore, CHP was not operating 

from December 2016 to January 2017. To overcome this condition, the digester installed a new 

engine in February 2017; thus, the electricity production is running again on the fourth week of 

February 2017. Therefore, gas production in 2016, as shown in Figure 4.18, experienced a 

significant decrease compared to the other years. Additionally, biogas produced during the engine 
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failure solely went to flare to burn the methane and reduce GHG released to the atmosphere; and 

to the boiler to heat the slurry. Another disturbance happened in 2017 when the feed additive was 

added to the digester and affected biogas production. July had the lowest production compared to 

the other months. 

 
Figure 4.18 Correlation of SCAD biogas and electricity over the year 

            
 4.3 SCAD Output Data Distribution 

Data distribution analysis for SCAD output, including biogas production, CH4 content, 

H2S content, electricity production, and laboratory analysis of effluent (total solids, total nitrogen, 

total phosphorus, pH, and VFA). Like feedstock analysis, the violin chart was also used to check 

the data distribution of each parameter year to year.   

Data distribution for biogas production is shown in Figure 4.19. Among all years, biogas 

production in 2018 has the most consistent chart with a closed data range between 3,500 to 4,000 

m3/day, followed by 2020. Meanwhile, biogas production data distribution in 2015 has the largest 
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range between 700 to 4,700 m3/day. Biogas production in 2017 has an outlier due to feed additive 

added to the digester during summer. In terms of the median of data, biogas production in 2017, 

2018, and 2020 had a similar median of around 3,600 m3/day, while 2019 had a slightly lower 

median than those three years, which was around 3,400 m3/day. 

 
Figure 4.19 Data distribution for biogas production 

 

Table 4.17 shows the ANOVA Tukey multiple comparison performed for biogas 

production data distribution. It shows that there was a significant difference in the quantity of 

biogas produced by the digester at the p<0.05 level from year to year [F (6, 77) = 7.678, p = 0.000). 

Table 4.17 ANOVA Tukey Multiple Comparison results for biogas production distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 20,642,104 3,440,351 7.678 0.000 

Residuals 77 34,500,609 448,060   

 

Data distribution for CH4 content is shown in Figure 4.20. In general, methane content in 

biogas produced by SCAD ranged from 58% to 69%. Methane content in 2018 has the most 

consistent distribution, ranging from 64% to 67%. Meanwhile, methane content in 2014 has the 
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widest distribution, from 60% to 68%. Overall, the methane content is in a good range which 

biogas typically contains 55-70% of CH4 (Chynoweth et al., 2001; Somers et al., 2018). 

 
Figure 4.20 Data distribution for CH4 content 

 

Table 4.18 shows the ANOVA Tukey multiple comparison performed for CH4 content data 

distribution. It shows that there was a significant difference in the percentage of CH4 content at 

the p<0.05 level from year to year [F (6, 77) = 10.79, p = 0.000). 

Table 4.18 ANOVA Tukey Multiple Comparison results for CH4 content distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 268.5 44.75 10.79 0.000 

Residuals 77 319.3 4.15   

 

Figure 4.21 provides the data distribution for H2S content. H2S is a toxic gas which poses 

safety concerns for people and may result in additional equipment maintenance (Hosseini and 

Wahid, 2014). H2S can cause corrosion to stainless steel and copper and nickel alloys. It also can 

produce H2SO3 from reaction with water vapor and form sulfur dioxide (SO2) from its combustion, 

leading to metal pipe and engine corrosion and gas leaks. H2S concentration in biogas ranges 

between 50 and 10,000 parts per million (ppm), depending on the feedstocks (X. Wang et al., 
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2018). H2S content in SCAD biogas ranging from 3 to 2,251 ppm, which is still in an acceptable 

range. H2S content in 2016 has the most extensive range, followed by 2020 and 2019. Meanwhile, 

H2S content in 2017 shows the most stable data distribution, ranging from 98 to 799 ppm. 

 
Figure 4.21 Data distribution for H2S content 

 

Table 4.19 shows the ANOVA Tukey multiple comparison performed for H2S content data 

distribution. It shows that there was not any significant difference in H2S content (p value>0.05) 

from year to year [F (6, 77) = 0.979, p = 0.445). 

Table 4.19 ANOVA Tukey Multiple Comparison results for H2S content distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 1,130,830 188,472 0.979 0.445 

Residuals 77 14,823,077 192,507   

 

Figure 4.22 provides the data distribution for electricity production per day. In terms of 

chart shape, data in 2014 and 2018 have quite similar shape but in a different data range. Data 

distribution for electricity was typically consistent in 2016-2020 with data median ranging between 

6,500 to 7,600 kWh/day. Electricity production in 2015 had the highest peak but also the widest 
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range of all years, which the data ranges from 2,200 to 9,700 kWh/day. Meanwhile, violin curves 

in 2016 and 2017 show the time when SCAD did not produce electricity due to engine issues, 

showed by outliers happened in 2017.  

 
Figure 4.22 Data distribution for electricity production 

 

Table 4.20 shows the ANOVA Tukey multiple comparison performed for electricity 

production data distribution. It shows that there was a significant difference in electricity 

production at the p<0.05 level from year to year [F (6, 71) = 7.397, p = 0.000). 

Table 4.20 ANOVA Tukey Multiple Comparison results for electricity production 

distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 58,173,817 9,695,636 7.397 0.000 

Residuals 71 93,063,092 1,310,748   

 

Data distribution for effluent TS is shown in Figure 4.23. In general, TS content ranges 

40,000 to 85,000 mg/L. Data distribution in 2018 has the most consistent shape, ranging from 

53,000 to 65,000 mg/L. Meanwhile, there was an outlier that happened in 2016 where TS content 

was 85,000 mg/L. TS content in effluent had an increase trend from 2014 to 2017, then became 

more consistent in 2018-2020 with range from 50,000 to 73,000 mg/L. Data median also increased 
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from 2014 to 2017 from 50,000 to 68,000 mg/L, then became more consistent in 2018 to 2020 

which was around 60,000 mg/L.  

 
Figure 4.23 Data distribution for effluent TS 

 

Table 4.21 shows the ANOVA Tukey multiple comparison performed for effluent TS data 

distribution. It shows that there was a significant difference in effluent TS at the p<0.05 level from 

year to year [F (6, 64) = 10.62, p = 0.000). 

Table 4.21 ANOVA Tukey Multiple Comparison results for effluent TS distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 2.907e+09 484,541,468 10.62 0.000 

Residuals 64 2.919e+09 45,609,925   

 

Figure 4.24 shows the data distribution for effluent TN. TN data distribution ranges from 

1,400 to 5,000 mg/L. Data distribution fluctuated year by year, but it shows a constant decrease 

from 2016 to 2018. There was an outlier that happened in 2020 where TN was close to 5,000 mg/L. 

Data median in 2018-2020 were consistent around 3,000 mg/L. TN content in manure was not 

changed during anaerobic digestion. The process transforms protein and urea nitrogen into 

inorganic nitrogen such as ammonia gas (NH3) and ammonium ion (NH4
+) (Field et al., 1984). 
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Figure 4.24 Data distribution for effluent TN 

 

Table 4.22 shows the ANOVA Tukey multiple comparison performed for effluent TN data 

distribution. It shows that there was a significant difference in effluent TN at the p<0.05 level from 

year to year [F (5, 44) = 4.072, p = 0.004). 

Table 4.22 ANOVA Tukey Multiple Comparison results for effluent TN distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 5 9,543,738 1,908,748 4.072 0.004 

Residuals 44 20,623,980 468,727   

 

Figure 4.25 shows the data distribution for effluent TP. Data available for TP content was 

the least compared to the rest of the parameters. TP effluent content ranges from 200 to 2,100 

mg/L. There was a small data point in 2015 thus it did not show any charts. TP content was 

typically consistent in 2017-2019 with data median around 360 mg/L. TP content in manure was 

not changed during anaerobic digestion process. This process converts organic phosphorus (Org-

P) to phosphate (PO4
+) phosphorus. Most total P losses in digesters were related to solids 

accumulation in the reactor (Field et al., 1984). 
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Figure 4.25 Data distribution for effluent TP 

 

Table 4.23 shows the ANOVA Tukey multiple comparison performed for effluent TP data 

distribution. It shows that there was a significant difference in effluent TP at the p<0.05 level from 

year to year [F (6, 44) = 9.616, p = 0.000). 

Table 4.23 ANOVA Tukey Multiple Comparison results for effluent TP distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 4,015,385 669,231 9.616 0.000 

Residuals 44 3,062,221 69,596   

 

Data distribution for effluent pH is shown in Figure 4.26. In general, SCAD effluent pH 

ranges from 7.4 to 8.1. Effluent pH in 2017 and 2018 are the most consistent in the range of 7.7 to 

8, while pH in 2019 and 2020 are consistent in the range of 7.4 to 7.9. These values are in an 

acceptable range for pH which is between 6.4 and 8.2 for a healthy digester (MSU Anaerobic 

Digestion and Research Center, 2019). 
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Figure 4.26 Data distribution for effluent pH 

 

Table 4.24 shows the ANOVA Tukey multiple comparison performed for effluent pH data 

distribution. It shows that there was a significant difference in effluent pH at the p<0.05 level from 

year to year [F (6, 64) = 2.58, p = 0.0266). 

Table 4.24 ANOVA Tukey Multiple Comparison results for effluent pH distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 0.333 0.05550 2.58 0.0266 

Residuals 64 1.377 0.02151   

 

Data distribution for effluent VFA is shown in Figure 4.27. VFA acts in the biopolymers 

of biofuels production such as methane and hydrogen (Lukitawesa et al., 2020; Magdalena et al., 

2019). Several factors are crucial for VFA productivity, which are hydraulic retention time (HRT), 

organic loading rate (OLR), temperature, pH, and pretreatment (Wainaina et al., 2019). Data 

distribution of VFA in 2018-2020 was relatively in a consistent range, while VFA content in 2016 

has the widest range and highest peak, ranging from 2,300 to 7,400 mg/L. Some outliers happened 

in 2014 which the values were around 3,200 and 2,900 mg/L, while majority of the data were 

around 1,000 mg/L. 
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Figure 4.27 Data distribution for effluent VFA 

 

Table 4.25 shows the ANOVA Tukey multiple comparison performed for effluent VFA 

data distribution. It shows that there was a significant difference in effluent VFA at the p<0.05 

level from year to year [F (6, 63) = 7.911, p = 0.000). 

Table 4.25 ANOVA Tukey Multiple Comparison results for effluent VFA distribution 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 66,702,800 11,117,133 7.911 0.000 

Residuals 63 88,531,222 1,405,257   

 

The acceptable range for VFA is 50-300 mg/L (Schnaars, 2012). Based on the average 

result of SCAD effluent measurement, VFA content in SCAD effluent ranges from 817 to 3,785 

mg/L. These values are higher than the reference. However, VFA/TA ratio is also important to 

know whether the digester performed at its best ambience. Higher alkalinity values show that the 

digester has a better capacity to resist pH changes which is associated to the buffering capacity to 

maintain the digester stability. Alkalinity values in an anaerobic digester range between 1,500 and 

5,000 mg/L (Krakat et al., 2017; Schnaars, 2012).  

Table 4.26 provides effluent results for VFA and Alkalinity of SCAD during its operation 

from 2014 to 2020. Alkalinity ranges from 7.583 to 12,779 mg/L, which was higher than the 
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reference value. After calculating the ratio of VFA and Alkalinity, SCAD had VFA/TA ratio 

between 0.09 and 0.30. The ideal ratio is between 0.3 and 0.4 in the digester and would be 0.2 to 

0.3 in the post-digester (Lossie & Pütz, 2011). However, Schnaars (2012) puts a broader range for 

VFA/TA ratio between 0.1 and 0.35 to maintain a digester in a well-operated condition. 

Furthermore, it is always better to maintain the ratio to be below 0.35 for a proper digester 

operation. Therefore, SCAD performance, in general, is well-operated in terms of VFA/TA ratio. 

The ratio in 2016 was the only year where SCAD performed in its optimum condition based on 

both references, while the ratio in 2018 was a bit below standard. 

Table 4.26 SCAD effluent VFA and Alkalinity 

Year 
VFA 

(mg/L) 

Alkalinity 

(mg/L) 

VFA/TAC 

Ratio 

2014  1,301   11,007  0.12 

2015  1,580   10,477  0.15 

2016  3,785   12,779  0.30 

2017  1,834   10,413  0.18 

2018  817   9,524  0.09 

2019  1,187   8,880  0.13 

2020  1,378   7,583  0.18 

 

Data distribution for the digester temperature is available in Figure 4.28. Temperature is 

an important operational parameter as it provides a suitable ambience for microbial growth. 

Microbial colonies inside the digester are sensitive to temperature changes. Earlier studies found 

that digesters should not experience any temperature changes more than 2oC within 24 hours, 

otherwise the microbial colonies will be highly disturbed (Meegoda et al., 2018; Schnaars, 2012). 

Based on the temperature setting, an anaerobic digester can be divided into three temperature 

conditions: psychrophilic (15–23°C), mesophilic (35–41°C), and thermophilic (52–58°C). 

Based on data from the digester temperature, SCAD is operating in mesophilic 

temperature. Diverse studies presented in academics revealed that temperature in the mesophilic 
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range is considered as the ideal temperature to promote bacterial activity within the digester 

(Arosemena, 2021). As shown in the Figure 4.28, the digester temperature ranges from 32.5 to 

42.5 oC. The highest temperature recorded was in 2015, while the lowest temperature was in 2020. 

Moreover, the temperature range in 2015 and 2020 was the most significant, while temperature 

range in 2019 was the most stable. 

 

Figure 4.28 Data distribution for digester temperature 

 

Table 4.27 shows the ANOVA Tukey multiple comparison performed for digester 

temperature data distribution. It shows that there was a significant difference in digester 

temperature at the p<0.05 level from year to year [F (6, 77) = 3.277, p = 0.006). 

Table 4.27 ANOVA Tukey Multiple Comparison results for digester temperature 

 Df Sum Sq Mean Sq F Value Pr (>F) 

Year 6 55.9 9.317 3.277 0.006 

Residuals 77 218.9 2.843   

             

SCAD experienced a decrease in the digester temperature during winter months each year. 

Figure 4.29 shows the decrease in digester temperature occurring typically during the November 

to February timeframe. The digester should be maintained at temperature 35–41°C for mesophilic 

condition to optimize microbial performance during anaerobic digestion process. However, there 



84 

 

were some moments when SCAD temperature went down to be lower than 35 °C, which were in 

winter 2015, 2019, and 2020. It shows that the digester struggled to maintain the digester 

temperature in the last two years of this study. 

There are two lines added in the figure which represent the highest and lowest temperature 

in East Lansing to check the gap between air and digester temperatures. It shows that despite the 

digester experiencing an inconsistent operational temperature lately, it was still above the highest 

air temperature all the time. Moreover, it emphasizes that more power was needed to heat up the 

digester during winter since the temperature significantly dropped after September each year. 

Therefore, heating system is critical for SCAD operational to maintain the mesophilic condition 

for anaerobic digestion process. 

 
Figure 4.29 Digester temperature average in 2014-2020 

 

4.4 SCAD Laboratory Analysis 

This section compares SCAD laboratory analysis for influent and effluent of the digester. 

Influent samples were obtained from the mix tank before the mixture was pumped inside the 

digester. Effluent laboratory analysis was done more consistently than influent. Influent analysis 

was done only until 2018. The main reasons were due to the time and workforce constraints. 

Therefore, the digester decided to conduct laboratory analysis for filtrate, effluent, and solids only 

which were done once a month. Another reason to conclude the mix tank sampling was because 
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the digester received feedstocks that had not been changed tremendously from the previous years. 

Furthermore, other SCAD laboratory results will be provided in Appendix E. 

 

4.4.1 Solids 

Table 4.28 shows the comparison between total solids of influent and effluent. TS reduction 

ranged from 35% to 48%, with the highest reduction being in 2018. In average, SCAD TS for 

influent and effluent were 105,405 mg/L and 60,744 mg/L, respectively. Moreover, TS destroyed 

in average was 45,132 mg/L or 43%.  

Table 4.28 Comparison of total solids between influent and effluent a  

Year 

TS 
TS 

Destroyed 
 Reduction 

(mg/L) 
(mg/L) % 

Influent n Effluent n 

2014 93,359±12,280 12 49,085±5,709 11 44,274 47 

2015 107,615±4,216 4 57,082±8,282 10 50,533 47 

2016 104,673±20,115 7 65,928±7,110 12 38,745 37 

2017 107,881±17,283 3 70,359±5,929 9 37,522 35 

2018 113,498 1 58,913±3,944 12 54,585 48 

2019 -  59,702±6,768 10 - - 

2020 -  64,138±6,668 7 - - 

Max 113,498  70,359  54,585 48 

Min 93,359  49,085  37,522 35 

Mean 105,186  60,398  44,654 42 

Average 105,405  60,744  45,132 43 

St. Dev 6,666  6,377  6,603 6 
a average ± standard deviation 

 

Table 4.29 shows the comparison between volatile solids of influent and effluent. VS 

reduction ranged from 40% to 54%, with the highest reduction being in 2018. In average, SCAD 

VS for influent and effluent were 92,803 mg/L and 48,209 mg/L, respectively. Moreover, VS 

destroyed on average was 44,754 mg/L or 48%. 
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Table 4.29 Comparison of volatile solids between influent and effluent a 

Year 

VS 
VS 

Destroyed 
Reduction 

(mg/L) 
(mg/L) % 

Influent n Effluent n 

2014 80,623±10,397 12 38,018±4,767 11 42,605 53 

2015 93,101±3,727 4 43,803±7,684 10 49,298 53 

2016 90,718±17,274 7 52,485±6,158 12 37,873 42 

2017 96,555±16,237 3 58,056±4,682 9 38,499 40 

2018 103,020 1 47,524±3,339 12 55,496 54 

2019 -  47,354±6,291 10 - - 

2020 -  51,626±5,843 7 - - 

Max 103,020  58,056  55,496 54 

Min 80,623  38,018  37,873 40 

Mean 92,504  48,029  44,266 48 

Average 92,803  48,209  44,754 48 

St. Dev 7,366  5,989  6,740 6 
a average ± standard deviation 

 

4.4.2 pH and Electronic Conductivity 

Table 4.30 shows the comparison between influent and effluent. Influent had a more acidic 

pH with a range from 5.18 to 6.44. Anaerobic digestion process increased the mixture pH thus the 

effluent had pH between 7.70 and 7.90. Table 4.31 shows electron conductivity comparison 

between influent and effluent. Influent has a range of EC from 13.57 to 19.03, while effluent has 

a range of EC from 14.00 to 20.40. 
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Table 4.30 Comparison of pH between influent and effluent a 

Year 
pH pH 

Change 
Influent n Effluent n 

2014 6.44±0.32 12 7.90±0.1 11 1.46 

2015 5.82±0.84 4 7.86±0.14 10 2.04 

2016 5.18±0.67 7 7.80±0.2 12 2.62 

2017 5.74±0.51 3 7.80±0.1 9 2.06 

2018 5.27 1 7.80±0.1 12 2.53 

2019 - - 7.70±0.1 10 - 

2020 - - 7.70±0.2 7 - 

Max 6.44  7.90  2.62 

Min 5.18  7.70  1.46 

Mean 5.67  7.79  2.10 

Average 5.69  7.79  2.14 

St. Dev 0.45  0.07  0.42 
a average ± standard deviation 

 

Table 4.31 Comparison of electronic conductivity between influent and effluent a 

Year 

EC 

(mS/cm) 

Influent n Effluent n 

2014 13.86±2.07 12 20.00±0.9 6 

2015 13.57±3.63 3 17.00±1.74 10 

2016 15.55±2.01 7 20.40±3.1 9 

2017 19,03±5.86 3 18.00±3.3 9 

2018 9.52 1 17.00±0.8 12 

2019 - - 16.80±2.3 10 

2020 - - 14.00±3.3 6 

Max 19.03  20.40  

Min 9.52  14.00  

Mean 13.96  17.48  

Average 14.31  17.60  

St. Dev 3.45  2.00  
a average ± standard deviation 

 

4.4.3 Chemicals 

Table 4.32 shows the comparison of soluble COD (sCOD) results between influent and 

effluent. The digester did not do frequent tests for (sCOD) of influent since the results 

were relatively consistent in 2014. Based on data in 2014 and 2018 which the only 

years (sCOD) was conducted for influent, (sCOD) reduction in 2014 and 2018 were 29,556 mg/L 
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and 29,729 ml/L or 79.57% and 76.82%, respectively. It shows that the (sCOD) reduction was 

consistent.   

Table 4.32 Comparison of soluble COD between influent and effluent a 

Year 

sCOD 

(mg/L) 

Influent n Effluent n 

2014 37,144±7,692 8 7,588±763 2 

2015 - - - - 

2016 - - 15,418±3,812 10 

2017 - - 19,075±5,289 4 

2018 38,700 1 8,971±5,855 11 

2019 - - 6,816±1,525 7 

2020 - - - - 

Max 38,700  19,075  

Min 37,144  6,816  

Mean 37,914  10,641  

Average 37,922  11,574  

St. Dev 778  4,824  
a average ± standard deviation 

 

4.4.4 Fiber Results 

Table 4.33 shows the laboratory results for SCAD fiber. In average, total solids and volatile 

solids are 264,388 and 235,204, respectively with VS content in TS ranging from 87% to 90%. 

Table 4.33 Fiber laboratory results 

Year 
TS VS TS VS VS n 

(mg/L) (mg/L) % % % of TS  

2014 238,755 215,338 23.9 21.5 90% 4 

2015 264,328 236,833 26.4 23.6 89% 9 

2016 249,041 221,187 24.9 22.1 89% 12 

2017 277,084 248,754 27.7 24.9 90% 9 

2018 268,160 235,912 27.1 23.6 87% 12 

2019 268,436 238,752 26.9 23.9 89% 10 

2020 284,911 249,653 28.5 25.0 88% 7 

Max 284,911 249,653 28.5 25.0 90%  

Min 238,755 215,338 23.9 21.5 87%  

Mean 263,973 234,896 26.4 23.5 89%  

Average 264,388 235,204 26.5 23.5 89%  

St. Dev 14,666 11,948 1.5 1.2 1%  
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4.4.5 Other laboratory results 

Several laboratory analyses for different parameters were done outside of ADREC. The 

tests were conducted by A&L Great Lakes Laboratory in Fort Wayne, Indiana. The tests included 

manure nutrition analysis which were moisture, solids, Total Kjeldahl Nitrogen (TKN), 

phosphorus, potassium, sulfur, calcium, magnesium, sodium, iron, aluminum, manganese, copper, 

and zinc. Analysis of filtrate was done in 2017 and 2018; effluent was done in 2018; and solids 

were analyzed in all year except in 2017. The complete results of A&L Great Lakes Laboratory 

are provided in Appendix F. 

 

4.5 Discussions 

4.5.1 Correlation between feedstock and biogas production 

As mentioned in the beginning, SCAD was fed with 18 different feedstocks from 2014 to 

2020. Figure 4.30 shows a correlation between food waste amount and biogas production. There 

were different trends occurring years. Using 2014 as the starting point, 2015 and 2020 showed 

similar trends where the increase in food waste from the previous year is followed by an increase 

in biogas production. This trend also happened in 2016 but in the opposite direction. A different 

trend occurred in 2017 and 2018, where the decrease in food waste affected an increase in biogas 

production. Meanwhile, in 2019, the trend was reversed: an increase in food waste affected by a 

decrease in biogas production. The correlation between food waste and biogas production is not 

clear yet. Therefore, further analysis was done. 
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Figure 4.30 Correlation between food waste and biogas production 

 

Multi linear regression (MLR) was done to determine specific feedstock that has significant 

impact on biogas production. There are two steps in determining the most significant parameter. 

First is Stepwise Procedure which calculates the top list of feedstocks that significantly affects 

output among all feedstocks available. Second is the Final Model which calculates the most 

significant factor among the list of feedstocks from Stepwise Procedure.  

Among all feedstock, five feedstocks were included as the result of Stepwise Procedure, 

which are Filtrate in manure pit, Dairy Gutter, Parlor, ANS Other, and Pineapples (PA). The 

formula generated was Equation 2, while coefficients for each feedstock are provided in Table 

4.34. 

Biogas production = Filtrate_manure_pit + Dairy_G + Parlor + ANS_Other + P_A 

 (Equation 2) 
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Table 4.34 Coefficient of each parameter 

Parameter Coefficient 

Intercept 2330.91251 

Filtrate_manure_pit -0.01688 

Dairy_G 0.18163 

Parlor -0.04628 

ANS_Other 0.08850 

P_A -0.02158 

  
The final model was run to determine the key feedstocks in Equation 2 that influence gas 

production. As shown in Table 4.35, Filtrate in the manure pit, Dairy Gutter, and Parlor are 

feedstocks that have the most significant impact on biogas production, with a p-value<0.05. 

However, this statistical analysis result does not mean that the other feedstocks are not important, 

for example, FOG and other manures. Those are the baseline in building biogas production due to 

their vast amount in feedstock composition. However, Filtrate in the manure pit, Dairy Gutter, and 

Parlor provide a critical role in SCAD feedstock matrices in terms of biogas production variation 

during the operation years. Therefore, food waste and manure are important baselines for biogas 

production, and it will significantly change once those three feedstocks are added to the feedstock 

composition. 

This MLR result shows Multiple R-squared as 47.15%, and Adjusted R-squared as 43.75%. 

It means that the model was able to explain 43% to 47% of the data variance to predict the biogas 

production.  
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Table 4.35 MLR results for feedstock impact on the biogas production 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.331e+03 7.506e+02 3.105 0.002648** 

Filtrate_manure_pit -1.688e-02 7.464e-03 -2.261 0.026549* 

Dairy_G 1.816e-01 4.507e-02 4.030 0.000129*** 

Parlor -4.627e-02 1.748e-02 -2.648 0.009804** 

ANS_Other 8.850e-02 5.779e-02 1.531 0.129752 

P_A -2.158e-02 1.501e-02 -1.438 0.154510 

Residual standard error 611.3 on 78 degrees of freedom 

Multiple R-squared 0.4714 

Adjusted R-squared 0.4375 

F-statistic 13.91 on 5 and 78 DF 

p-value 1.03e-09 

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Table 4.36 presents the result of ANOVA Type II test to support the result of MLR test. 

Filtrate in manure pit, Dairy Gutter, and Parlor gave a significant impact on biogas production at 

the level of p<0.05. 

Table 4.36 ANOVA Type II Results for feedstock correlation with the biogas production 

 Sum Sq Df F value Pr(>F) 

Filtrate_manure_pit 1,910,236 1 5.1119 0.0265489* 

Dairy_G 6,069,859 1 16.2433 0.0001286*** 

Parlor 2,619,518 1 7.0100 0.0098044** 

ANS_Other 876,194 1 2.3488 0.1297516 

P_A 772,430 1 2.0671 0.1545103 

Residuals 29,147,290 78   

 

After the first MLR analysis, the data set was treated by using modelDFFITS to take out 

the data with high leverage or outliers to check whether the R-squared values can be improved. 

The result shows that Filtrate in manure pit, Dairy Gutter, Parlor, and FOG become four feedstocks 

that give the most significant impact in biogas production with a p-value<0.05, as shown in Table 

4.37. Furthermore, R-squared values improved to be 58.24% and 56.01% for Multiple R-squared 

and Adjusted R-squared values, respectively. It means that the model was able to explain 56% to 

58% of the data variance to predict the biogas production. 
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This percentage is understandable since SCAD received a wide variety of feedstock with 

uncertain frequency. Several feedstocks did not come every month; some of them were even only 

available in certain years. This uncertainty affects the R-squared values. Moreover, feedstock 

supplies are beyond the digester’s control. It depends on whether the supplier still produces the 

same food waste, for example. However, the study can still draw a conclusion since there are 

independent variables that are statistically significant to correlate the relationships between the 

variables. 

Table 4.37 MLR results for feedstock impact on the biogas production (after data treatment) 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 1.804e+03   6.544e+02    2.756 0.007333 ** 

Filtrate_manure_pit -2.207e-02   5.581e-03 -3.953 0.000173 *** 

Dairy_G   1.915e-01   3.994e-02    4.795 8.05e-06 *** 

Parlor -4.410e-02   1.520e-02   -2.901 0.004880 ** 

FOG 1.327e-02   6.526e-03    2.034 0.045470 * 

Residual standard error 509.4 on 75 degrees of freedom 

Multiple R-squared 0.5824 

Adjusted R-squared 0.5601 

F-statistic 26.15 on 4 and 75 DF 

p-value 1.372e-13 

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

4.5.2 The impact of OLR, HRT, and digester pH and temperature on biogas production and 

methane percentage 

OLR, HRT, and digester pH and temperatures are key parameters in determining optimum 

biogas production and methane percentage. Regarding OLR and HRT, SCAD data is organized 

based on daily numbers, an average of 7 days and an average of 30 days. The formula for 

determining OLR and HRT is provided in Appendix G. This section only includes data from 2018-

to 2020, as the digester performance in those years was considered settled.   

Table 4.38 shows data related to OLR in 2018-2020. It shows that data on 30 days average 

have the smallest standard deviation, which means that the data is the most stable, though the 
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difference between daily, 7 days average, and 30 days average are not significantly different. In 

general, the average OLR increased from 2018 to 2020. OLR average values in 2018 are 3.67, 

3.65, and 3.59 g VS/L-d for daily, 7 days average, and 30 days average, respectively. In 2019, the 

values were 3.75, 3.76, and 3.80 g VS/L-d for daily, 7 days average, and 30 days average, 

respectively. The values in 2020 are 4.16, 4.14, and 4.16 g VS/L-d for daily, 7 days average, and 

30 days average, respectively. Moreover, the table also shows that the standard deviation of OLR 

in 30 days average in 2018-2020 is very stable, which are 0.50 for 2018 and 2019, and 0.49 for 

2020. Therefore, OLR in 30 days average is chosen to represent SCAD OLR. Figure 4.31 shows 

the OLR in 30 days on average in 2018-2020. 

Table 4.38 Comparison of OLR in 2018-2020: daily, 7 days average, and 30 average 

Month 

OLR 

g VS/L-d 

2018 2019 2020 

Daily 
7 Days 

AVG 

30 

Days 

AVG 

Daily 

7 

Days 

AVG 

30 

Days 

AVG 

Daily 

7 

Days 

AVG 

30 

Days 

AVG 

January 3.37 3.38 3.28 4.41 4.70 4.89 4.36 4.26 4.01 

February 3.40 3.40 3.36 2.69 2.67 3.40 4.56 4.67 4.58 

March 3.67 3.69 3.54 4.10 3.88 3.30 3.94 3.89 4.07 

April 3.41 3.49 3.62 4.11 4.08 4.06 3.84 3.82 3.98 

May 2.85 2.84 3.13 4.33 4.30 4.26 4.09 4.22 4.13 

June 3.72 3.61 3.18 3.97 4.03 4.22 3.30 3.23 3.59 

July 2.97 3.09 3.49 3.63 3.72 3.69 3.88 3.67 3.34 

August 3.23 3.11 2.95 3.44 3.37 3.48 4.40 4.32 4.05 

September 3.75 3.76 3.44 4.11 4.05 3.95 5.04 5.06 4.82 

October 4.10 3.97 3.99 3.86 3.81 3.96 5.01 5.07 5.14 

November 4.53 4.48 4.37 2.86 3.06 3.09 4.12 4.11 4.47 

December 5.00 5.00 4.71 3.52 3.40 3.30 3.34 3.43 3.80 

Average 3.67 3.65 3.59 3.75 3.76 3.80 4.16 4.14 4.16 

St. Dev 0.60 0.58 0.50 0.52 0.53 0.50 0.53 0.56 0.49 
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Figure 4.31 OLR in 30 days average 2018-2020 

 

Table 4.39 shows data related to HRT in 2018-2020. It shows that data in 7 days average 

and 30 days average are relative stable, while daily data has a notable change from 2018 to 2019. 

HRT in 30 days average has the smallest standard deviation in 2018 and 2019, while HRT in 7 

days average has the smallest standard deviation in 2020. HRT average values in 2018 are 21.7, 

26.5, and 26.0 days for daily, 7 days average, and 30 days average, respectively. In 2019, the values 

are 31.2, 25.6, and 23.8 days for daily, 7 days average, and 30 days average, respectively. The 

values in 2020 are 27.3, 21.8, and 20.3 days for daily, 7 days average, and 30 days average, 

respectively. Moreover, the table also shows that the standard deviation of OLR in 30 days average 

in 2018-2020 is slightly more stable than 7 days average, which is 2.7 for 2018, 3.5 for 2019, and 

4.8 for 2020. Therefore, OLR in 30 days average is chosen to represent SCAD OLR. Figure 4.32 

shows the HRT in 30 days average in 2018-2020. 
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Table 4.39 Comparison of HRT in 2018-2020: daily, 7 days average, and 30 average 

Month 

HRT 

Day 

2018 2019 2020 

Daily 

7 

Days 

AVG 

30 

Days 

AVG 

Daily 

7 

Days 

AVG 

30 

Days 

AVG 

Daily 

7 

Days 

AVG 

30 

Days 

AVG 

January 24 24 24 29 21 21 20 20 20 

February 28 25 25 71 42 29 19 19 19 

March 23 23 23 26 25 30 30 24 22 

April 21 26 24 27 26 25 28 24 23 

May 20 28 25 18 19 21 20 22 22 

June 24 29 28 20 22 19 27 28 25 

July 20 28 29 28 25 24 28 21 24 

August 25 34 30 35 26 25 18 16 7 

September 18 27 31 20 24 20 25 19 19 

October 20 28 26 35 21 20 18 16 16 

November 21 24 25 40 31 27 27 26 21 

December 18 22 22 26 25 25 67 26 26 

Average 21.7 26.5 25.9 31.2 25.69 23.8 27.3 21.8 20.3 

St. Dev 2.8 3.1 2.7 13.6 5.9 3.5 12.6 3.8 4.8 

 

 
Figure 4.32 HRT in 30 days average 2018-2020 

 

MLR analysis was done to determine the operational parameter that has significant impact 

on the biogas production (Table 4.40) and the methane percentage (Table 4.41). The results show 
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that none of the parameters tested have a significant impact on both two dependent variables. R-

squared values for the biogas production analysis was 6.05% and -6.08% for Multiple R-squared 

and Adjusted R-squared, respectively. Meanwhile, R-squared values for the methane percentage 

analysis was 9.93% and -1.69% for Multiple R-squared and Adjusted R-squared, respectively. It 

means that the model was barely able to explain any of the data variance to predict the biogas 

production and the methane percentage.  

It might show an indication that in the commercial scale, the operational parameters have 

some impacts on the dependent variables. However, any changes in one parameter will not be 

significantly impactful since there are many parameters that influence the biogas production and 

the methane percentage. For example, previous study revealed that any temperature changes more 

than 2oC within 24 hours in the digester will negatively affect the microbial community in the 

digester (Meegoda et al., 2018; Schnaars, 2012). It certainly has any impact on the biogas 

production. Nevertheless, the other operational parameters can still backup the digester 

performance; therefore, it avoids the digester from a significant disturbance.  

A recent study conducted by Rossi et al. (2022) can be a good example on predicting the 

digester performance based on the operational parameters. The study was performed by 

considering 55 explanatory variables to predict the specific methane production (SMP) through 

the MLR model. The study eventually narrowed down the parameters to include only 9 out of 55. 

These parameters were included as the feedstock characteristics (total solids (TS), total volatile 

solids (TVS), C/N ratio, and lignin content), the operating parameters (volumetric flow of inlet 

(Qin), HRT, and OLR), and the inhibitory compounds (N-NH+
4 and total VFA concentration). 

Through this process, the study was able to gain R2 as 0.87 by including TVS, OLR, C/N ratio, 

and lignin as the predictors. Although this study might not be representative enough as the working 
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volume was only around 28 L capacity (SCAD working volume is roughly 74,000 L), this can be 

a reference for SCAD to better predict the impact of the operational parameters on the biogas 

production and the methane percentage for the future study. 

Table 4.40 MLR results for operational parameter impact on the biogas production 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 3085.543    1696.503    1.819    0.0786 . 

OLR -31.360     150.304   -0.209    0.8361 

HRT -23.090      19.758   -1.169    0.2515 

Temperature 3.676      41.488    0.089    0.9300 

pH 135.762     195.569    0.694    0.4927 

Residual standard error 365.4 on 31 degrees of freedom 

Multiple R-squared 0.06047 

Adjusted R-squared -0.06076 

F-statistic 0.4988 on 4 and 31 DF 

p-value 0.7367 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 4.41 MLR results for operational parameter impact on the methane percentage 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 63.23486     8.17748    7.733 1.01e-08 *** 

OLR 1.05067     0.72449    1.450     0.157 

HRT 0.10655     0.09524    1.119     0.272 

Temperature 0.07043     0.19998    0.352     0.727 

pH -0.91353     0.94268   -0.969     0.340 

Residual standard error 1.761 on 31 degrees of freedom 

Multiple R-squared 0.09931 

Adjusted R-squared -0.01691 

F-statistic 0.8545 on 4 and 31 DF 

p-value 0.5019 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

4.5.3 Digester performance from year to year 

Table 4.42 provides a summary of SCAD operation in terms of feedstock input and output 

production. In 2014, SCAD received 14,763 metric tons of manure feedstock and 8,533 metric 

tons of food feedstock, with a total of feedstock received 23,297 metric tons. This feedstock 

produced 846,232 SCM of biogas, 1,727,073 kWh of electricity, 11,273 metric tons of effluent, 

and 3,920 metric tons of wet fiber. In 2015, SCAD received 13,805 metric tons of manure 
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feedstock and 12,800 metric tons of food feedstock, with a total of 26,605 metric tons. This 

feedstock produced 1,103,695 SCM of biogas, 2,118,966 kWh of electricity, 14,100 metric tons 

of effluent, and 4,858 metric tons of wet fiber. In 2016, SCAD received 11,059 metric tons of 

manure feedstock and 11,726 metric tons of food feedstock, with a total of feedstock received was 

22,785 metric tons. This feedstock produced 1,418,746 SCM of biogas, 1,470,356 kWh of 

electricity, 14,007 metric tons of effluent, and 3,583 metric tons of wet fiber. In 2017, SCAD 

received 11,109 metric tons of manure feedstock and 9,129 metric tons of food feedstock, with a 

total of feedstock received 20,238 metric tons. This feedstock produced 1,326,335 SCM of biogas, 

2,169,693 kWh of electricity, 12,751 metric tons of effluent, and 2,779 metric tons of wet fiber. In 

2018, SCAD received 10,859 metric tons of manure feedstock and 8,605 metric tons of food 

feedstock, with a total of feedstock received was 19,464 metric tons. This feedstock produced 

1,348,024 SCM of biogas, 2,680,954 kWh of electricity, 14,857 metric tons of effluent, and 1,884 

metric tons of wet fiber. In 2019, SCAD received 11,353 metric tons of manure feedstock and 

10,539 metric tons of food feedstock, with the total feedstock receiving 21,893 metric tons. This 

feedstock produced 1,280,438 SCM of biogas, 2,333,449 kWh of electricity, 15,762 metric tons 

of effluent, and 2,758 metric tons of wet fiber. In 2020, SCAD received 10,332 metric tons of 

manure feedstock and 14,531 metric tons of food feedstock, with a total of feedstock received was 

24,863 metric tons. This feedstock produced 1,340,180 SCM of biogas, 2,664,665 kWh of 

electricity, 17,745 metric tons of effluent, and 3,082 tons of wet fiber.  

The range of input acquired by SCAD from 2014 to 2020 was 10,332 to 14,763 metric tons 

for manure feedstock, 8,533 to 14,531 metric tons for food feedstock, and 19,464 to 26,605 metric 

tons for a total of both manure and food feedstock. The range of output produced by SCAD from 

2014 to 2020 was 846,232 to 1,418,746 SCM of biogas, 1,470,356 to 2,680,954 kWh of electricity, 



100 

 

11,273 to 17,745 metric tons of effluent, and 1,884 to 4,858 metric tons of wet fiber. During seven 

years of operation, SCAD has processed 83,281 metric tons of manure feedstock and 75,864 metric 

tons of food feedstock with a total of 159,145 metric tons of organic materials to yield 8,663,649 

SCM of biogas, 15,165,156 kWh of electricity, 100,495 metric ton of effluent, and 22,864 metric 

ton of wet fiber. 

The range of input acquired by SCAD during 2014 to 2020 was 10,332 to 14,763 metric 

tons for manure feedstock, 8,533 to 14,531 metric tons for food feedstock, and 19,464 to 26,605 

metric tons for total of both manure and food feedstock. The range of output produced by SCAD 

during 2014 to 2020 was 846,232 to 1,418,746 SCM of biogas, 1,470,356 to 2,680,954 kWh of 

electricity, 11,273 to 17,745 metric ton of effluent, and 1,884 to 4,858 metric ton of wet fiber. 

During 7 years of operation, SCAD has processed 83,281 metric ton of manure feedstock and 

75,864 metric ton of food feedstock with total of 159,145 metric ton of organic materials to yield 

8,663,649 SCM of biogas, 15,165,156 kWh of electricity, 100,495 metric ton of effluent, and 

22,864 metric ton of wet fiber. 

In general, the operation of SCAD went through several trends. During 2014-2015, SCAD 

built good trends since its establishment in 2013 due to the output production increased from 2014 

to 2015. SCAD operation was disrupted during 2016 and 2017 in terms of electricity production 

due to the CHP engine outage that happened in those years. Moreover, the SCAD operation in 

2018-2020 was more consistent and settled. In summary, the operation of SCAD has been one of 

the waste management solutions at MSU by processing organic waste from farming and human 

consumption to provide renewable energy and fertilizer. Moreover, SCAD has provided emissions 

reduction, such as greenhouse gases and excess nutrients. To better understand the environmental 
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impact resulting by SCAD, a life cycle assessment was conducted, and the result will be provided 

in the next chapter.
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Table 4.42 Summary of SCAD performance 

Year 

Input Output 

Total Manure 

Pit 

Metric Ton 

Total Food 

Pit 

Metric Ton 

Total 

Feedstock 

Metric Ton 

Total 

Biogas 

SCM 

Total 

Electricity 

kWh 

Effluent 

Total 

Metric Ton 

Wet Fiber 

Total 

Metric Ton 

2014  14,763  8,533  23,297   846,232   1,727,073   11,273   3,920  

2015  13,805  12,800  26,605   1,103,695   2,118,966   14,100   4,858  

2016  11,059  11,726  22,785   1,418,746   1,470,356   14,007   3,583  

2017  11,109  9,129  20,238   1,326,335   2,169,693   12,751   2,779  

2018  10,859  8,605  19,464   1,348,024   2,680,954   14,857   1,884  

2019  11,353  10,539  21,893   1,280,438   2,333,449   15,762   2,758  

2020  10,332  14,531  24,863  1,340,179 2,664,665  17,745   3,082  

Total  83,281   75,864   159,145  8,663,649  15,165,156   100,495   22,864  

Average  11,897   10,838   22,735   1,237,664   2,680,954   14,356   3,266  

St. Deviation  1,683   2,294   2,499   198,468   1,470,356   2,081   958  
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CHAPTER 5. LIFE CYCLE ASSESSMENT 

5.1. Introduction 

Life Cycle Assessment (LCA) is a methodology that is developed to evaluate the 

environmental burdens of processes and products during the overall life cycle, which starts from 

raw materials handling and processing, manufacturing, transportation and distribution, 

consumption stage, recycling where needed, and final disposal. ISO 14040 defines this approach 

as a technique to determine the specific components of a product or process that create high 

environmental burdens and replace it with more sustainable and environmentally practices. LCA 

has been used by many institutions due to its integrated way of treating the framework, impact 

assessment, and data quality. Moreover, it enables the users to identify the potential environmental 

tradeoffs between stages by systematic analysis of the diverse impacts along the entire life cycle 

(Azapagic et al., 2006; Khasreen et al., 2009; Odey et al., 2021). 

This assessment will compare the commercial MSU South Campus Anaerobic Digester 

with the conventional approach of organic waste management system: landfilling the food waste 

and storing the manure in a long-term storage. The comparison will be based on global warming 

potential (GWP) and water eutrophication potential (WEP). The inputs and outputs represent the 

major variables that contribute to environmental impacts for both scenarios. 

5.2 Goal, Scope, and Functional Unit for Life Cycle Assessment 

The LCA study was conducted based on the standard methodology provided by ISO 14040 

series, Environmental Management Life-Cycle Assessment. The goal of this assessment was to 

evaluate the environmental impact of MSU SCAD which is an anaerobic co-digestion system using 

diverse types of manure and organic waste to produce electricity and agricultural coproducts. The 

objective was to determine how much the environmental impact of the co-digestion system 
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(Scenario 1) and to compare these impacts with the conventional reference method (Scenario 0) 

performance, which stored dairy manure in a long-term storage and landfilled food waste. This 

LCA only focused on the treatment of raw materials (Figure 5.1). Transportation and logistics of 

the waste to the treatment facility were not included in the assessment. The geographical scope 

occurred in the lower peninsula of Michigan. The temporal scope covers waste management for 

four years of SCAD operations between 2017-2020. The functional unit (FU) of this assessment 

was 10,913 metric tons of manure wastes and 10,701 metric tons of food wastes per year.  

 
Figure 5.1 System boundaries of Scenario 1 and 0 
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5.3 Life Cycle Data Inventory 

The life cycle inventory (LCI) provides all important information for life cycle impact 

assessment. In this study, LCI was divided into raw material and handling, anaerobic digestion and 

energy production, lagoon storage for manure, and food waste landfill. The raw material and 

handling section holds information regarding the material input into the system and processes 

before entering the digester. Additionally, this section also includes the emissions associated with 

manure storage if a digester was not in place. The anaerobic digestion and energy production 

section provides data regarding the process of anaerobic digestion and energy production from 

livestock manure and food waste. The third section provides data related to manure long-term 

storage in lagoon storage. The last section provides data related to the food waste landfill process.    

Data quality was evaluated using the Weidema method. It includes six indicators of 

evaluation: acquisition method, independence of data supplier, representativeness, data age, 

geographical correlation, and technological correlation. The score ranges from one to five, where 

one is the best quality and five is the most uncertain. Table 5.1 presents how to apply the indicators 

based on the pedigree matrix.  

Table 5.2 provides information about the inventory for this LCA study. This inventory is 

divided into raw materials, anaerobic digestion, and energy production, animal wastes lagoon 

storage and land application, and food wastes landfill inventory with landfill gas (LFG) 

combustion. 
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Table 5.1 Data Quality Evaluation Using the Weidema Method (Weidema et al., 2004)

 
 

The first part of the inventory holds information and values related to manure waste, food 

waste, and its chemical compositions. Manure waste is considered as low energy material, while 

food waste is high energy material. Therefore, co-digestion of manure with food waste potentially 

increases biogas production in the anaerobic digestion process (Chen et al., 2015). Data for organic 

waste quantity were the average of feedstock supplies in 2017-2020, which is considered the stable 

period of SCAD operation. Based on the data average, SCAD was fed with 10,913 metric tons of 

manure waste and 10,701 metric tons of food waste per year. One thing to put into consideration 

is that CO2 from manure wastes and food wastes is not counted in the calculation of greenhouse 

gas emissions because the CO2 is considered of biogenic origin and therefore is assumed to be 

offset by CO2 capture by regrowth of the plants. 

The second part of the inventory provides information and values related to anaerobic 

digestion and energy production from this process. Based on SCAD operational data, biogas 
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composition consists of 65% (v/v) of CH4 and 35% (v/v) of CO2. The remaining consist of a small 

percentage of H2S, NH3, and H2. Anaerobic digestion process in SCAD produced 1,323,757 

m3/year of biogas, which further converted biogas into 2,462,190 kWh-e/year of electricity and 

5,584,551 kWh-e/year of heat. The remaining material was effluent as much as 19,948 metric 

tons/year. This part also provides information associated with the chemical contents of the effluent, 

including TN, TP, and soluble COD. These values will contribute to water eutrophication potential 

calculation. Meanwhile, biogas combustion and land application of effluent will contribute to 

global warming potential calculation. 

The third part of Table 5.2 provides information and values related to animal waste lagoon 

storage and land applications. They would include CH4 and N2O emissions if animal wastes were 

only stored in lagoon storage. Furthermore, this section also includes values related to water 

eutrophication potential from TN, TP, and COD of animal waste land application. The fourth 

section provides information and values related to food waste landfills with landfill gas combustion 

(LFG). Like the third section, this section includes CH4 and N2O emissions if food wastes were 

only landfilled, also values related to water eutrophication potential from TN, TP, and COD of 

food wastes landfill. The moisture content of the typical food waste is about 70% (EPA, 2018). 
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Table 5.2 Inventory for the life cycle assessment a 

 Value Unit Source DQI 

Raw materials 

Manure wastes 10,913 Metric ton/year Operational data 1, 1, 2, 2, 1, 1 

Total solids of 

manure wastes 
11.4 % Operational data 1, 1, 2, 2, 1, 1 

Volatile solids of 

manure wastes 
10.0 % Operational data 1, 1, 2, 2, 1, 1 

TN of manure 

wastes 
4,143 mg/kg Operational data 1, 1, 2, 2, 1, 1 

TP of manure 

wastes 
413 mg/kg Operational data 1, 1, 2, 2, 1, 1 

sCOD of manure 

wastes 
59,446 mg/kg Operational data 1, 1, 2, 2, 1, 1 

Food wastes 10,701 Metric ton/year Operational data 1, 1, 2, 2, 1, 1 

Total solids of 

food wastes 
10.1 % Operational data 1, 1, 2, 2, 1, 1 

Volatile solids of 

food wastes 
9.3 % Operational data 1, 1, 2, 2, 1, 1 

TN of food 

wastes 
5,318 mg/kg Operational data 1, 1, 2, 2, 1, 1 

TP of food 

wastes 
449 mg/kg Operational data 1, 1, 2, 2, 1, 1 

sCOD of food 

wastes 
17,525 mg/kg Operational data 1, 1, 2, 2, 1, 1 

Anaerobic digestion and energy production inventory 

Biogas 

production 
1,323,757 m3/year Operational data 1, 1, 2, 2, 1, 1 

CH4 content in 

biogas 
65 % v/v Operational data 1, 1, 2, 2, 1, 1 

CO2 content in 

biogas 
34 % v/v Operational data 1, 1, 2, 2, 1, 1 

Electricity 

production from 

biogas 

2,462,190 kWh-e/year Operational data 1, 1, 2, 2, 1, 1 

Heat production 

from biogas 
5,584,551 kWh-e/year Operational data 1, 1, 2, 2, 1, 1 

Effluent 19,948 Metric ton/year Operational data 1, 1, 2, 2, 1, 1 

TS of effluent 6.3 % (w/w) Operational data 1, 1, 2, 2, 1, 1 

TN of effluent 3,246 mg/kg Operational data 1, 1, 2, 2, 1, 1 

TP of effluent 584 mg/kg Operational data 1, 1, 2, 2, 1, 1 

sCOD of effluent 7,894 mg/kg Operational data 1, 1, 2, 2, 1, 1 
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Table 5.2 (cont’d) 

N2O emission 

from the effluent 
0.005 

g N2O/g TN in 

the effluent 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

GWP of N2O 298 g CO2-e/g N2O 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

CH4 emission 

from effluent 
3.08×10-4 

Metric ton CO2-

e/metric ton TS 

in the effluent 

(Turnbull & 

Komthunzi, 

2004) 

2, 1, 1, 4, 2, 2 

Water 

eutrophication 

potential (WEP) 

of TN 

0.9864 
g N-e/kg TN in 

the effluent 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Water 

eutrophication 

potential (WEP) 

of TP 

7.29 
g N-e/kg TP in 

the effluent 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Water 

eutrophication 

potential (WEP) 

of COD 

0.05 
G N-e/kg COD 

in the effluent 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Animal wastes lagoon storage and land application inventory 

CH4 emission 0.127 

Metric ton 

CH4/metric ton 

VS 

(Owen & Silver, 

2015) 
2, 1, 1, 3, 2, 2 

N2O emission 0.005 
g N2O/g TN in 

the waste 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Water 

eutrophication 

potential (WEP) 

of TN 

0.9864 
g N-e/kg TN in 

the waste 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Water 

eutrophication 

potential (WEP) 

of TP 

7.29 
g N-e/kg TP in 

the waste 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Water 

eutrophication 

potential (WEP) 

of COD 

0.05 
g N-e/kg COD 

in the waste 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 
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Table 5.2 (cont’d) 

Food wastes landfill inventory with landfill gas (LFG) combustion 

CH4 emission, 

food wastes 

landfill 

2.3 

Metric ton CO2-

e/ton TS food 

waste 

(Environmental 

Protection 

Agency, 2020)b 

2, 1, 1, 1, 2, 2 

N2O emission 0.005 
g N2O/g TN in 

the waste 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Water 

eutrophication 

potential (WEP) 

of TN 

0.9864 
g N-e/kg TN in 

the waste 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Water 

eutrophication 

potential (WEP) 

of TP 

7.29 
g N-e/kg TP in 

the waste 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

Water 

eutrophication 

potential (WEP) 

of COD 

0.05 
G N-e/kg COD 

in the waste 

(RTI 

International, 

2010) 

2, 1, 1, 4, 1, 2 

a. CO2 from manure wastes and food wastes is not counted in the calculation of greenhouse gas 

emissions because the CO2 is considered of biogenic origin and therefore is assumed to be offset 

by CO2 capture by regrowth of the plants.  
b. The moisture content of the typical food wastes in the reference is set at 70%. 

 

5.4 Data Quality Evaluation 

This LCA study was supplied by legitimate sources, such as daily operational data from 

SCAD, research publications, and government annual reports. Table 5.3 provides the data quality 

evaluation for the life cycle inventory. Acquisition method, independence of data supplier, 

geographical correlation, and technological correlation were scored 1. Additionally, 

representativeness and data age were scored 2 and 3, respectively. 

Majority of data were from SCAD operational data which are primary data for the study. 

Furthermore, the study acquired data from verified institutions including EPA and RTI 

International. For data age, there was one source from RTI International which is less than 20 years 
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old. This data was used because the recent study related to this topic still refers to the data set in 

this publication. All data included in the study is geographically in the US.  

Table 5.3 Data Quality Evaluation Summary for LCI 

Indicator 
DQI 

Score 
Discussion 

Acquisition Method 1 Measured data 

Independence of Data Supplier 1 
Verified data, information from public or other 

independent source 

Representativeness 2 
Representative data from smaller number of 

sites but for adequate periods 

Data Age 3 Less than 10 years 

Geographical Correlation 1 Data from area under study 

Technological Correlation 1 
Data from enterprises, processes, and materials 

under study 

 

5.5 Mass and Energy Balance of the process at different months and years 

Mass and energy balance analysis was carried out based on the operational data from 2017 

to 2020. The energy inputs for the digestion operation include heat (Wheat, kWh-e/year) to maintain 

the digestion temperature as well as electricity (Welectricity, kWh-e/year) to power pumps, mixers, 

and other accessary equipment. The energy inputs were calculated using the following equations 

modified from a previous study (Bustamante and Liao, 2017):   

 

𝑊ℎ𝑒𝑎𝑡 = 𝑚 × 𝐶𝑝 × (𝑇𝑅 − 𝑇𝑂) × (1 + 20%) × 0.0002778    (3) 

𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 𝑚 × 0.00788        (4) 

Where m is the amount of the wet weight of the feedstock per year (kg); Cp is the heat 

capacity of the wet FM (4.12 kJ/(kg K)); TR is the reactor temperature (313 K); TO is the 

temperature of the wet feedstock based on the average environmental temperature in East Lansing, 

MI (288 K); 20% is the percentage of the additional heat needed to maintain the digestion 

temperature; 0.0002778 is the conversion factor of KJ to kWh; and 0.00788 is the average 

electricity demand unit of the digester operation (kWh/kg wet FM).  
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Figure 5.2 provides mass balance scheme that happened in SCAD. In general, the input 

comes from the feedstock then be processed in the digester to produce biogas and effluent. 

Furthermore, the effluent is divided into wet solid digestate and filtrate. These numbers represent 

the average values of each parameter in 2017-2020. 

From feedstock input, the amount of feedstock processed in the digester was 21,614 metric 

tons per year, which combined both manure pit and food pit. The amount of feedstock from manure 

pit and food pit were 10,913 metric ton and 10,701 metric ton per year, respectively. Furthermore, 

these feedstocks contain 10.6% (w/w) of total solids and 10.0% (w/w) of volatile solids. In terms 

of the nutrient contents, the amount of total nitrogen, total phosphorus, and soluble COD in the 

feedstock were 4,690 mg/kg, 633 mg/kg, and 38,700 mg/kg, respectively. These numbers were 

gained from a single measurement that happened in 2017, as the only measurement for feedstock 

during this period. 

Anaerobic digestion process transformed the raw materials to produce biogas and effluent. 

Biogas production was 1,323,757 m3/year with CH4, CO2, and H2S contents were 65% (v/v), 34% 

(v/v), and 495 ppm, respectively. Effluent yielded from anaerobic digestion process was 19,948 

metric ton/year. The effluent contained 6.3% of total solids (w/w) and 5.1% of volatile solids 

(w/w). In terms of the nutrient contents, the amount of total nitrogen, total phosphorus, and soluble 

COD in the effluent were 3,246 mg/kg, 584 mg/kg, and 7,894 mg/kg, respectively. 

Through the separation process, effluent became wet solid digestate and filtrate for further 

application. The amount of filtrate produced was 17,081 metric ton/year with total solids and 

volatile solids contents were 4.5% (w/w) and 3.0% (w/w), respectively. Filtrate also contained 

3,293 mg/kg of total nitrogen and 509 mg/kg of total phosphorus. For wet solid digestate, the yield 

was 2,867 metric ton/year with total solids and volatile solids contents were 27.6% (w/w) and 
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24.4% (w/w), respectively. Digestate also contained 529 mg/kg of total nitrogen and 171 mg/kg 

total phosphorus. 

 
Figure 5.2 Mass balance of the anaerobic digestion process 

*: Data are from a single measurement in 2017 

 

Table 5.4 provides information about energy balance of anaerobic digestion process that 

happened in SCAD. The energy balance includes energy input, energy output, and net energy 

output coming from heat and electricity. SCAD consumed 742,090 kWh-e/year of heat to maintain 

the digester operational temperature and 170,320 kWh-e/year of electricity to power pumps, 

mixers, and other equipment on the site. Anaerobic digestion process yielded heat and electricity 

as much as 5,584,551 kWh-e/year and 2,462,190 kWh-e/year, respectively. Net energy output was 

gained from subtracting energy produced with energy consumed. The net energy output yielded 

by SCAD in the form of heat and electricity were 4,842,461 kWh-e/year and 2,291,870 kWh-

e/year, respectively. Furthermore, from energy output values, the efficiency of electricity 

generation was calculated which was 29%. 
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Table 5.4 Energy balance of the anaerobic digestion process a 

  Anaerobic digester 

Energy input  

Heat input (Wheat, kWh-e/year) b -742,090 

Electricity input (Welectricity, kWh-e/year) c -170,320 

Energy output  

Energy output as heat (Eheat, kWh-e/year) d 5,584,551 

Energy output as electricity (Eelectricity, kWh-e/year) e 2,462,190 

Net energy output  

Net heat output (kWh-e/year) f 4,842,461 

Net electricity output (kWh-e/year) g 2,291,870 

a. Negative numbers mean energy inputs, and positive numbers mean energy outputs. 

b. Eq. 1 was used to calculate the heat input. 

c. Eq. 2 was used to calculate the electricity input.  

d. The annual biogas production of 1,323,757 m3 with 65% (v/v) of methane was used to 

calculate the energy content of the biogas. The low heating value of methane is 35.8 

MJ/m3 methane. The thermal conversion efficiency of the CHP unit is 65%.   

e. The electricity output is the metered number of the digestion operation. 

f. The net heat output = Eheat - Wheat 

g. The net electricity output = Eelectricity - Welectricity  

 

5.6 Impact Assessment 

Two impact categories were chosen for Life Cycle Impact Assessment: Global Warming 

Potential (GWP) and Water Eutrophication Potential (WEP). The classification of each category 

is defined by the US Environmental Protection Agency (EPA). The LCIA provides an analysis of 

environmental impacts on both scenarios as a comparison to the emissions of waste management 

methods for animal wastes and food wastes. This could be done by calculating the environmental 

impacts yielded from processes or products associated with the proposed systems. 

 

5.6.1 Global Warming Potential (GWP) 

Global warming is defined as the raising of Earth’s temperature due to GHG emissions 

globally, which mainly coming from human activities. The main GHGs are CO2, CH4, and N2O. 
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Currently, the main energy supplies are still from fossil fuels such as oil and coal, which contribute 

roughly 65% of GHG emissions (EPA, 2019). Therefore, renewable energy is expected to address 

this concern. Anaerobic digestion has been promoted as a renewable energy system that potentially 

lower the global warming potential by reducing emissions from manure and food waste. 

Global Warming Potential (GWP) is the amount of GHG released during the life cycle of 

a process. Carbon dioxide is commonly used as a reference gas to compare the impact of various 

greenhouse (Shine, 2009). For this LCA study, data were collected for CH4, and N2O emissions. 

They were normalized to 1 ton of CO2 equivalent (CO2-e) based on the following conversions: 1 

kg CH4 = 25 kg CO2-e; and 1 kg N2O = 298 kg CO2-e (RTI International, 2010). CO2 from manure 

wastes and food wastes is not counted in the calculation of greenhouse gas emissions because the 

CO2 is considered of biogenic origin and therefore is assumed to be offset by CO2 capture by 

regrowth of the plants. 

Figure 5.3 provides information related to GWP contribution analysis for each scenario. 

According to the impact assessment, the AD system has an overall GWP of 1,842-ton CO2-e/year, 

while the land applications system produces 6,190-ton CO2-e/year. This result shows that the AD 

system can reduce GWP up to 70% lower than the landfills system.  

Furthermore, biogas and AD effluent were the only parameters to be considered for 

calculating GWP. Electricity, heat utilization, digestate, and filtrate were not calculated as they are 

outside of the system boundaries. For the AD scenario, biogas combustion contributed 92% of the 

total GWP, while land application of effluent only contributed 8%. For the landfill scenario, biogas 

production was counted as CH4 and N2O emissions from manure land application with lagoon 

storage and food wastes land application with landfill gas combustion. Lagoon storage contributed 
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58% of the total GWP, followed by landfill gas combustion with 42% of contribution towards the 

total GWP. 

The result of this study was supported by previous result from Chen et al. (2015), where a 

co-digestion of dairy manure and bakery wastes in the AD system was compared to the AD system 

with dairy manure only and landfilling the bakery waste. The study revealed that co-digestion of 

7,147-ton dairy manure and 2,382-ton food waste had an overall GWP of 1.6x104 ton CO2-e, while 

another scenario yielded an overall GWP of 2.7x104 ton CO2-e, which means that AD scenario 

resulted in a 42% reduction in GWP. This could be evidence that the anaerobic co-digestion system 

has a capability to mitigate the global climate change rather than the conservative methods such 

as landfilling the food waste or digestion of manure only. 

 
Figure 5.3 GWP contribution analysis of the anaerobic digestion process and land 

applications 

 

 

5.6.2 Water Eutrophication Potential (WEP) 

Eutrophication is a situation where a water body contains excessive nutrients that affect to 

a dense growth of plant life and death of water animals due to lack of oxygen. It is due to nutrients 
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runoff from the land, such as nitrogen and phosphorus, which then accumulate in the water. 

Consequently, it creates a “dead zone,” which is an area with low oxygen content that suffocates 

marine life (Mueller & Helsel, 1996). Water eutrophication potential (WEP) is the impact resulting 

from excessive nutrient supplies on terrestrial and aquatic environments, particularly the most 

important substances such as nitrogen (N) and phosphorus (P). WEP can be presented as either 

nitrogen equivalents (N-eq.) or phosphate equivalents (PO4-eq.) (Guinee, 2002). 

A kilogram of nitrogen equivalents (kg N-eq.) units was used to assess WEP in this study. 

TN, TP, and COD were the three parameters used for WEP assessment. All values related to TN, 

TP, and COD contents were measured as SCAD operational data, except for COD concentration 

of manure which was back calculated. WEP conversion values for TN, TP, and COD are 0.9864 

g N-e/kg TN in the waste, 7.29 g N-e/kg TP in the waste, and 0.05 g N-e/kg COD in the waste, 

respectively (RTI International, 2010). 

Figure 5.4 provides information related to WEP contribution analysis for each scenario. 

According to the impact assessment, the AD system has an overall WEP of 173 kg N-e/year, while 

the land applications system produces 232 kg N-e/year. This result shows that the AD system can 

reduce WEP up to 25% lower than the landfills system. 

WEP from the AD system came from three parameters, which were TN, TP, and COD of 

AD effluent. TP became the most significant WEP contributor in the AD system, which was 54% 

of the total WEP, followed by TN, which contributed 41% of the total WEP. Meanwhile, COD 

only contributed 9% of the total WEP. In the landfills system, the chemical content was divided 

into manure waste and food waste. Both wastes have TN as the most significant contributor in 

WEP. Food waste TN became the highest contributor of WEP in landfills system, which was 27%, 

followed by Manure TN at 21%. Food waste TP, manure TP, and manure COD were closed 
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together, which were 17%, 16%, and 15% of WEP contribution, respectively. Food waste COD 

was the least contributor of WEP with 4% of contribution. 

AD system does not contribute much to reducing the nutrient content in the organic 

materials. WEP in AD is more correlated to feedstock quality and the digester’s HRT. It barely 

had any correlation to biogas productivity. Therefore, nutrient content in the feedstock did not 

significantly alter. Nevertheless, AD transformed the elemental nitrogen and phosphorus to 

become ammonia and phosphate, respectively. Compared to elemental nitrogen and phosphorus, 

ammonia and phosphate are more beneficial for soil conversions and plant adsorption (Arosemena, 

2021; R. Chen et al., 2015; Field et al., 1984).  

 
Figure 5.4 WEP contribution analysis of the anaerobic digestion process and land 

applications 

 

5.7 Interpretation 

5.7.1 Sensitivity Analysis 

Sensitivity analysis is a method to measure any changes in a certain impact by simulating 

any changes in key parameters that influence the model. This method can report which parameters 
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greatly affect any changes in each impact category. By doing a sensitivity analysis with LCA, a 

study can depict further actions to conduct to lower the environmental burdens of a product or a 

system. 

5.7.1.1 Global Warming Potential (GWP) 

The sensitivity analysis for the anaerobic digestion and the land applications systems were 

performed by modifying ±25% of each variable of interest while keeping the other variables 

constant for the base case. The parameters analyzed for the anaerobic digestion were biogas 

combustion and AD effluent, while the parameters analyzed for the land applications were NO2 

and CH4 emissions from manure and food waste. The sensitivity analysis result for the anaerobic 

digestion system, as presented in Figure 5.5, shows that biogas combustion becomes the most 

sensitive parameter towards the impact category value, while effluent becomes the least sensitive 

parameter. The change in biogas combustion (±25%) resulted the highest change in GWP values 

at 29.44%. It is due to biogas combustion is the main process in converting methane into electricity. 

Meanwhile, the change in AD effluent only resulted 2.31% change in GWP values. 

The sensitivity analysis result for the land application system, as presented in Figure 5.6, 

shows that CH4 emission from manure becomes the most sensitive parameter towards the GWP 

value, followed by CH4 emission from food waste. The change in CH4 emissions from manure 

resulted 14% change in GWP value, while the change in CH4 emission from food waste resulted 

10% change in GWP value. The emissions of NO2 from food waste and manure become the least 

sensitive parameters, which only affect 0.54% and 0.43% of change in GWP value, respectively. 
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Figure 5.5 Anaerobic digestion sensitivity analysis for GWP 

 

Figure 5.6 Land applications sensitivity analysis for GWP 
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5.7.1.2 Water Eutrophication Potential (WEP) 

The sensitivity analysis for the anaerobic digestion and the land applications systems were 

performed by modifying ±25% of each variable of interest while keeping the other variables 

constant for the base case. The parameters analyzed for the anaerobic digestion were TN, TP, and 

COD of the effluent. Meanwhile, the parameters analyzed for the land applications were TN, TP, 

and COD of both manure and food waste. The sensitivity analysis result for the anaerobic digestion 

system, as presented in Figure 5.7, shows that effluent TP becomes the most sensitive parameter 

towards the impact category value, while effluent COD becomes the least sensitive parameter. The 

change in effluent TP (±25%) resulted the highest change in GWP values, at 13.5%, followed by 

effluent TN at 10.2%. Meanwhile, the change in effluent COD only resulted 1.25% change in 

GWP values. 

The sensitivity analysis result for the land application system, as presented in Figure 5.8, 

does not show significant difference between most of parameters. Food waste TN becomes the 

most sensitive parameter, followed by manure TN and food waste TP. These three parameters 

resulted 6.7%, 5.3%, and 4.1% change in WEP value, respectively. On the other hand, food waste 

COD becomes the least sensitive parameter with only 1.1% change in the WEP value. Manure TP 

and COD contribute similar impact to WEP value, which are 3.9%. 



122 

 

 

Figure 5.7 Anaerobic digestion sensitivity analysis for WEP 

 

 

Figure 5.8 Land applications sensitivity analysis for WEP 
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5.7.2 Consistency and Completeness Check 

The consistency check aims to demonstrate that assumptions, methods, and data used 

throughout the LCA process are aligned with the goal and scope of the study. It can show where 

the data consistency can be improved to compare systems to one another. The consistency check 

and explanations of inconsistency are explained within Table 5.5.  The overall data adequately 

shows consistency to support the goal and scope of the study.  

Table 5.5 Checklist and Inconsistencies based on Data Quality 

Category Checklist and Inconsistencies 

Data Source 
Both scenarios have most data based on operational data and 

legitimate sources 

Data Accuracy 
Both scenarios are supplied with accurate data from measurement or 

calculation based on previous studies 

Technological 

Representation 
Both scenarios have data available for conducting the study 

Temporal 

Representation 
Both technologies are utilized up to date 

Geographical 

Representation 
Both technologies include data from the United States 

System Boundary, 

Assumption and Model 
Both systems serve as a waste management system 

 

A completeness check ensures that the study has complete available sources for data 

interpretation. In case there are some gaps in the completeness of the data, it should be verified 

whether the incompleteness will affect the goal and scope of the study. Table 5.6 provides a 

completeness check for the AD system, while Table 5.7 provides a completeness check for the 

landfill system. In general, all data required for the study was completed. SCAD operational data 

contains most parameters needed for the study, even though there were several parameters that 

rely on a single measurement and one parameter needed a back-calculation. Manure storage and 

food waste landfill are two common methods for waste management in the US, therefore providing 
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legitimate sources for the impact assessment. There might be potential data gaps if the system 

boundary is extended since this study only focused on the waste treatment. 

Table 5.6 Completeness check for AD system 

Life cycle 

stage 
AD Complete Required Actions 

Raw 

materials 
X Yes - 

AD and 

energy 

production 

X Yes - 

Output: 

Effluent 
X Yes - 

X: data available n.a.: not applicable 

 

Table 5.7 Completeness check for landfills system 

Life cycle 

stage 
Landfill Complete Required Actions 

Raw 

materials 
X Yes - 

Manure 

storage 
X Yes - 

Food waste 

landfill 
X Yes - 

X: data available n.a.: not applicable 

 

5.8 Technoeconomic Analysis 

Technoeconomic analysis is conducted to evaluate whether renewable energy production 

can also attract investors based on its financial benefits of it. One of the significant issues in 

producing renewable energy on a large scale is the large investment for capital and/or operational 

costs, which makes renewable energy seems environmentally favorable but less economically 

competitive (Carneiro and Ferreira, 2012; Fersi et al., 2012). This section will analyze the cost and 

profit analysis of SCAD as a commercial digester, including capital expenditures (CapEX), 

operational expenditures (OpEX), and revenues. The payback period was calculated according to 

capex and total net profit.  
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Table 5.8 provides information for the whole performance of technoeconomic analysis. 

The first section holds information about CapEX. Digester construction cost became the highest 

expense in this section, contributing 40.21% to the total CapEX. Feedstock receiving and 

combined heating and power (CHP) costs were the other major expenses with relatively similar 

values, contributing 20.29% and 21.71% to total CapEX, respectively. The total system CapEX 

was $3,586,861.  

The second section of Table 5.8 provides information about the OpEX, which is calculated 

per year. In this study, OpEX was taken from operational data in 2019-2020 as the recent years of 

the study. Among 12 items described in OpEX, labor cost became the highest expense which 

contributed roughly 41.5% to total OpEX. CHP engine service became the second-highest 

expense, contributing about 25% to total OpEX. DHT transport means that every gallon of food 

waste brought to the digester has to be exported to maintain nutrient balance on campus. It became 

the third-largest expense, contributing about 17.75% to total OpEX. The total system OpEX was 

$298,156.  

The third section belongs to revenue. Tipping fees and electricity were the two revenue 

sources of SCAD. Both commodities had similar values during 2019-2020, which were $237,746 

for electricity and $217,854 for tipping fees. The total system revenue was $455,600.  

SCAD has experienced volatile revenue from electricity due to some changes in electricity 

pricing. The model was proposed to the board of trustees at the price of $0.123/kWh. Prior to 2018, 

the price was between $0.04 and $0.06/kWh due to the standby charge implemented by Consumers 

Energy. Standby charge is a measurement of energy production in a 15-minute interval and during 

peak time from 09:00 AM to 06:00 PM. If the digester does not produce power during that 15 

minute, the digester gets the lower rate, and it is for the entire month, not only for that 15 minute. 
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In 2018, SCAD was directly connected to the campus power supply, which resulted in a flat rate 

of $0.1017/kWh.  

Total net revenue was calculated by subtracting total revenue from total OPEX. The net 

revenue value of SCAD was $157,444. The payback period was then calculated by considering 5-

year average local inflation of 3.2% in the U.S. as the inflation rate and 20 years of depreciation 

period on CapEx. The annual depreciation rates from Modified Accelerated Cost Recovery System 

(MARCRS) are: 0.100, 0.188, 0.144, 0.115, 0.092, 0.074, 0.066, 0.066, 0.065, 0.065, and 0.033 

(after 10 years). Based on cash flow calculation, the payback period will be in 21.5 years; then, 

the digester will start to gain profit afterward. This can be considered a quite promising payback 

time and economically competitive. An economic sensitivity analysis would be strongly 

recommended to be conducted to know which parameter is the most sensitive; thus, it can shorten 

the length of the payback period. 

Table 5.8. Economic performance of the digestion process a 

Capital expenditure (CapEX) Cost Reference 

Feedstock Receiving $727,927  Data 

Digester $1,442,140  Data 

CHP $778,651  Data 

Bond $38,143  Data 

Interconnection $300,000  Data 

Site improvements & excavation $300,000  Data 

Total CapEX $3,586,861  

 

OpEX (per year)    

AD Repairs  $28,373  Data 

ADMIN Fee  $2,948  Data 

Bio Analysis  $2,827  Data 

CHPS  $74,226  Data 

Labor  $123,616  Data 

Laundry  $378  Data 

Maintenance and Repair  $6,482  Data 

MISC  $4,064  Data 

Motor Pool / Vehicle  $1,165  Data 

Supplies  $396  Data 

Telephone  $772  Data 
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Table 5.8 (cont’d) 

Transport (DHT)  $52,910  Data 

Total OpEX (per year) $298,156  

Revenue (per year)   

Electricity   $237,746  Data 

Tipping  $217,854  Data 

Total revenue (per year) $455,600  

Total net revenue (per year) b  $157,444  

Payback time (Years) c 21.5  

a. The OpEX and revenue are the operational data from 2019-2020.  

b. The net revenue = Total revenue – Total OpEx 

c. The 5-year average local inflation of 3.2% in the U.S. is used as the inflation rate. The 

depreciation period is set at 20 years. The depreciation is just on CapEx. The annual 

depreciation rates from MARCRS (Modified Accelerated Cost Recovery System) are: 

0.100, 0.188, 0.144, 0.115, 0.092, 0.074, 0.066, 0.066, 0.065, 0.065, and 0.033 (after 10 

years). 

 

 
Figure 5.9 Total net cash flow and payback period of SCAD 

 

There are three basic scenarios that can be considered to shorten the payback period. The 

first scenario would be fixing the electricity price; the second scenario would include digestate as 

part of revenue, while the third scenario would be the combination of the first and the second 

scenario.  

As mentioned earlier, the proposed electricity price for SCAD to the board of trustees was 

$0.123/kWh, while the current price for electricity is $0.1017/kWh. That means there is a price 

gap of as much as $0.0213/kWh. If the proposed price can be achieved, the revenue from electricity 
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would be $307,713. Because of it, the total net revenue will be increased to $227,412, and it will 

lower the payback period to be in 15 years.  

The second scenario would be including digestate as part of the revenue. As per the current 

study, digestate is still part of OpEX, which is DHT transport. Digestate is a source of nutrients 

for the soil. If the digester can manage the digestate to be part of the revenue, then the DHT 

transport cost will be excluded from OpEX. Furthermore, the digestate price is assumed to be 

$7.00 per metric ton. The average digestate production in 2019-2020 was about 18,471 metric 

tons. Therefore, the revenue from selling the digestate can be up to $129,297. This additional 

revenue will increase the total revenue to $584,897 and the total net revenue to $339,652. It will 

also reduce the total OpEX to $245,246. These changes can reduce the payback period to be in 

10.5 years.  

The third scenario would be the best scenario that SCAD can afford. With electricity price 

fixed and digested becoming part of the revenue, the total revenue will become $654,865, total net 

revenue will be $409,619, and the payback period will be in 9 years. Regardless of which scenario 

seems to be the most feasible, it shows that SCAD has a competitive economic advantage as a 

commercial-scale anaerobic digester.  

 

5.8.1 Sensitivity Analysis 

Sensitivity analysis was done to check which parameters significantly affect the payback 

period. Nine variables – feedstock receiving, digester, CHP, interconnections, site improvements, 

CHP maintenance, labor, electricity, and tipping fees – were taken into consideration for the 

economic sensitivity analysis of this study. The analysis was done by modifying each variable of 

interest by ± 25% while keeping the other variables constant for the baseline scenario. The number 
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changed represents how much each variable affects the increasing or decreasing of the payback 

period compared to the baseline scenario.  

The result (Figure 5.6) shows that electricity was the most sensitive among all variables, 

followed by tipping fees and labor costs as the second and third most sensitive variables. Increasing 

the revenue from electricity by 25% helps to decrease the payback period by 11.41 years, while 

the decrease in this parameter by 25% contributes to increasing the payback period by 26.06 years. 

The increasing of tipping fees by 25% reduces the payback period by 10.69 years while decreasing 

the tipping fees by 25% increases the payback period by 22.67 years. Meanwhile, the increase of 

labor cost by 25% increases the payback period by 17.61 years, while reducing the cost by 25% 

lowers the payback period by 9.44 years. Interconnections, site improvements, and feedstock 

receiving become the least sensitive among all parameters. 

 
Figure. 5.10 Sensitivity analysis chart for SCAD payback period 
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CHAPTER 6. OVERALL CONCLUSION AND RECOMMENDATIONS 

6.1 SCAD operational performance 

The goal of this study is to evaluate the operational performance of Michigan State 

University’s South Campus Anaerobic Digester (SCAD) as a commercial digester, as well as the 

environmental impact during its operation from 2014-to 2020. This study concluded that SCAD 

received a total of 18 different feedstocks throughout its operation thus far. Among all feedstocks, 

Dairy Gutter, Parlor, and FOG become the major feedstocks for the digester. Multilinear regression 

was conducted to determine feedstocks that have the most significant impact on biogas production. 

The filtrate in the manure pit, Dairy Gutter, Parlor, and FOG are feedstocks that have the most 

significant impact on biogas production, with a p-value<0.05. The Multiple R-squared was 

58.24%, and the Adjusted R-squared was 56.01%, showing that the model was able to explain 

56% to 58% of the data variance to predict the biogas production. It is due to SCAD receiving a 

wide variety of feedstock with an uncertain frequency which affects the R-squared values. 

However, the study can still draw a conclusion since there are independent variables that are 

statistically significant to correlate the relationships between the variables.  

In general, the operation of SCAD went through several trends. From 2014 to 2015, SCAD 

built good trends since its establishment in 2013 due to the output production increased from 2014 

to 2015. SCAD operation was disrupted from 2016 to 2017 in terms of electricity production due 

to the CHP engine outage that happened in those years. Moreover, the SCAD operation from 2018 

to 2020 was more consistent and settled.  

In summary, the operation of SCAD has been one of the waste management solutions at 

MSU by processing organic waste from farming and human consumption to provide renewable 

energy and fertilizer. During its operation years from 2014 to 2020, SCAD has processed 159,145 
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metric tons of feedstock that consist of 83,281 metric tons of manure wastes and 75,864 metric 

tons of food waste to produce 8,663,649 SCM of biogas, 15,165,156 kWh of electricity, 100,495 

metric tons of effluent, and 22,864 metric tons of wet fiber. 

 

6.2 Life Cycle Assessment and Technoeconomic Analysis 

A life cycle assessment was conducted to compare the environmental impact of the AD 

system with a conventional system that combines lagoon storage for manure wastes and landfills 

for food wastes. This LCA study was supplied by legitimate sources, such as daily operational data 

from SCAD, research publications, and annual government reports. Acquisition method, 

independence of data supplier, geographical correlation, and technological correlation were scored 

1. Additionally, representativeness and data age were scored 2 and 3, respectively.  

The result showed that the AD system possesses fewer environmental burdens in both 

GWP and WEP compared to the conventional system. AD system has an overall GWP of 1,842-

ton CO2-e/year, while the land applications system produces 6,190-ton CO2-e/year. This result 

shows that the AD system can reduce GWP up to 70% lower than the landfills system. AD system 

has an overall WEP of 157 kg N-e/year, while the land applications system produces 210 kg N-

e/year. This result shows that the AD system has a WEP 26% lower than the landfills system.  

Sensitivity analysis was conducted to determine parameters that give the most significant 

impact on the LCA study. From GWP, biogas combustion became the most sensitive parameter 

on the AD system. Meanwhile, CH4 emissions from manure became the most sensitive parameter 

on the land application system. From WEP, effluent TP became the most sensitive parameter on 

the AD system. Meanwhile, food waste TN became the most sensitive parameter on the land 

application system. 
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Technoeconomic analysis was conducted to understand the financial feasibility of SCAD 

as a commercial digester. The result showed that SCAD needs 21.5 years to accomplish its payback 

time, which is considered quite economically competitive. Three basic scenarios can be done to 

gain a better payback time for up to 9 years. Economic sensitivity analysis shows that the revenue 

from electricity is the most sensitive parameter to affect the payback period, followed by tipping 

fees and labor costs. Increasing the revenue from electricity can lower the payback period by 11.41 

years. Meanwhile, interconnections, site improvements, and feedstock receiving are the least 

sensitive parameters. 

 

6.3 Further recommendations 

Future work for LCA study can include more impact parameters for the study, such as air 

acidification potential and smog potential. Since the current study has a system boundary that only 

includes organic waste treatment at the site, it would be interesting to know the dynamics in the 

LCA study once the system boundary is extended, such as including digestate land application or 

transportation to the treatment site.  

As for technoeconomic analysis, digestate is not included in the revenue as per the current 

study. Including digestate as an organic fertilizer can be additional revenue that can shorten the 

payback time of the digester. Moreover, electricity prices are critical to maintaining SCAD 

revenue. Getting an ideal price as proposed will be another improvement for SCAD, although it 

depends on the policy implementation for renewable electricity pricing.  

Data availability can be another aspect to improve, especially laboratory chemical analysis. 

The current study revealed that SCAD has fewer laboratory results for influent chemical analysis 

and several chemical analyses for effluent due to workforce constraints. If this challenge can be 
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addressed and future work can provide more frequent chemical analysis for the digester influent 

and effluent, it will help to provide more accurate results for mass balance analysis and life cycle 

impact assessment.  
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A. MLR Codes 

## Statistical analysis - Multiple regression analysis 

## SCAD operation 

## Wei Liao, October 23, 2021 

## Fahmi Nov 23, 2021 

## Fahmi Dec 9, 2021 

## Fahmi Dec 14, 2021 

 

# Load libraries ----- 

library(dplyr) 

library(FSA) 

library(psych) 

library(car) 

library(rcompanion) 

 

# Choose data file of "BiogasProduction_v3.txt" ----- 

con <-file.choose(new = FALSE) 

metadata <- read.table(con, header = T, row.names = 1, fill = TRUE) 

head(metadata) 

 

############################# 

# select data 

data.num = select(metadata, Digestate, Filtrate_manure_pit, SLS_Solids, Dairy_G, 

                  Parlor, Beef, W_Feed_manure, Poultry, Swine, ANS_Other, Filtrate_food_pit, 

                  SLS_Solids_food, P_A, Pulp,FOG, W_Feed, 

                  Other, Cart_Food, Biogas_production, CH4_production, H2S_content, Electricity, 

Effluent_TS, Effluent_TN, Effluent_TP, Effluent_pH, Effluent_VFA) 

 

data.num 

 

# corr.test(data.num, use = "pairwise", method="pearson", adjust="none", alpha="0.05") 

 

############################ 

# Stepwise procedure 

model.null = lm(Biogas_production~1, data=data.num) 

model.full = lm(Biogas_production ~ Digestate + Filtrate_manure_pit + SLS_Solids+Dairy_G + 

                  Parlor + Beef + W_Feed_manure + Poultry + Swine + ANS_Other+ 

                  SLS_Solids_food + P_A + Pulp + FOG + W_Feed + 

                  Other + Cart_Food, data=data.num) 

 

step(model.null, scope = list(upper=model.full), direction="both", data=data.num)    

 

 

# Define the final model from the results of the stepwise procedure 

model.final = lm(Biogas_production ~ Filtrate_manure_pit + Dairy_G + Parlor + ANS_Other + 

P_A, 
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                 data=data.num) 

summary(model.final) 

 

# Analysis of variance for individual feed components 

Anova(model.final, Type="II") 

 

# Simple plot of predicted values with 1-to-1 line 

data.num$predy = predict(model.final) 

 

plot(predy ~ Biogas_production, data=data.num, pch = 16, 

     xlab="Actual response value", 

     ylab="Predicted response value") 

 

abline(0,1, col="blue", lwd=2) 

 

# Checking assumptions of the model 

hist(residuals(model.final), col="darkgray") 

 

plot(fitted(model.final),residuals(model.final)) 

 

RESULTS 

Call: 

lm(formula = Biogas_production ~ Filtrate_manure_pit + Dairy_G +  

    Parlor + ANS_Other + P_A, data = data.num) 

 

Coefficients: 

        (Intercept)  Filtrate_manure_pit              Dairy_G   

         2330.91251             -0.01688              0.18163   

             Parlor            ANS_Other                  P_A   

           -0.04628              0.08850             -0.02158   

 

> # Define the final model from the results of the stepwise procedure 

> model.final = lm(Biogas_production ~ Filtrate_manure_pit + Dairy_G + Parlor + ANS_Other 

+ P_A, 

+                  data=data.num) 

> summary(model.final) 

 

Call: 

lm(formula = Biogas_production ~ Filtrate_manure_pit + Dairy_G +  

    Parlor + ANS_Other + P_A, data = data.num) 

 

 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-2064.80  -335.13   -26.08   292.74  1659.95  
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Coefficients: 

                      Estimate Std. Error t value Pr(>|t|)     

(Intercept)          2.331e+03  7.506e+02   3.105 0.002648 **  

Filtrate_manure_pit -1.688e-02  7.464e-03  -2.261 0.026549 *   

Dairy_G              1.816e-01  4.507e-02   4.030 0.000129 *** 

Parlor              -4.627e-02  1.748e-02  -2.648 0.009804 **  

ANS_Other            8.850e-02  5.779e-02   1.531 0.129752     

P_A                 -2.158e-02  1.501e-02  -1.438 0.154510     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 611.3 on 78 degrees of freedom 

Multiple R-squared:  0.4714, Adjusted R-squared:  0.4375  

F-statistic: 13.91 on 5 and 78 DF,  p-value: 1.03e-09 

 

> # Analysis of variance for individual feed components 

> Anova(model.final, Type="II") 

Anova Table (Type II tests) 

 

Response: Biogas_production 

                      Sum Sq Df F value    Pr(>F)     

Filtrate_manure_pit  1910236  1  5.1119 0.0265489 *   

Dairy_G              6069859  1 16.2433 0.0001286 *** 

Parlor               2619518  1  7.0100 0.0098044 **  

ANS_Other             876194  1  2.3448 0.1297516     

P_A                   772430  1  2.0671 0.1545103     

Residuals           29147290 78                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure A.1 Final model of MLR for biogas production 

 

 
Figure A.2 Residual model of MLR for biogas production 

 

B. Radar Chart Codes 

## Feed amount - Radar analysis 

## SCAD operation 

## Wei Liao, October 23, 2021 

## Fahmi, Noveberm 5, 2021 updated 

## Wei Liao, December 9, 2021 updated 

 

# Load libraries ----- 

library(fmsb) 
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# Choose data file of "FeedAmount_Radar.txt" ----- 

con <-file.choose(new = FALSE) 

metadata <- read.table(con, header = T, row.names = 1, fill = TRUE) 

head(metadata) 

 

 

### Set up the bound for the radargraph 

data0<-metadata[,c(3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21)] 

data0 

 

maxmin <-data.frame(Digestate=c(max(data0), min(data0)), 

                     Filtrate_manure_pit=c(max(data0), min(data0)), 

                     SLS_Solids=c(max(data0), min(data0)), 

                     Dairy_G=c(max(data0), min(data0)), 

                     Parlor=c(max(data0), min(data0)), 

                     Beef=c(max(data0), min(data0)), 

                     W_Feed_manure=c(max(data0), min(data0)), 

                     Poultry=c(max(data0), min(data0)), 

                     Swine=c(max(data0), min(data0)), 

                     ANS_Other=c(max(data0), min(data0)), 

                     #Total_manure_pit=c(max(data0), min(data0)), 

                     Filtrate_food_pit=c(max(data0), min(data0)), 

                     SLS_Solids_food=c(max(data0), min(data0)), 

                     P_A=c(max(data0), min(data0)), 

                     Pulp=c(max(data0), min(data0)), 

                     FOG=c(max(data0), min(data0)), 

                     W_Feed=c(max(data0), min(data0)), 

                     Other=c(max(data0), min(data0)), 

                     Cart_Food=c(max(data0), min(data0)) 

                     #Total_food_pit=c(max(data0), min(data0)) 

                    ) 

maxmin 

 

############################# 

## 2020 data 

# select data 

data1<-

metadata[which(metadata$Year=="2020"),c(3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21)] 

data1 

 

data1 <- rbind(maxmin, data1) 

 

# Create the radar chart 

# Set up the font 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

op <- par(family = "A", font =1) 



140 

 

 

# Provide the names of columns 

colnames(data1) <-c("Digestate", "Filtrate in manure pit", "SLS solids", "Dairy G",  

                    "Parlor", "Beef", "Feed wastes", "Poultry", "Swine", "Other animal wastes",  

                    "Filtrate in food pit", "SLS food solids", "P & A",  

                    "Food pulp", "FOG", "Food feed wastes", "Others", "Cart food wastes") 

 

 

radarchart(data1, axistype=2, pty=32, plty=1, axislabcol="grey", na.itp=FALSE, 

           title="", vlcex=1) 

 

legend(x=1.5, y=1, legend = unique(metadata$Month), title="Months of 2020", bty = "n",  

       pch=20, col=unique(metadata$Month), cex=1, pt.cex=2) 

 

############################# 

## 2019 data 

# select data 

data2<-

metadata[which(metadata$Year=="2019"),c(3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21)] 

data2 

 

data2 <- rbind(maxmin, data2) 

 

# Create the radar chart 

# Set up the font 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

op <- par(family = "A", font =1) 

 

# Provide the names of columns 

colnames(data2) <-c("Digestate", "Filtrate in manure pit", "SLS solids", "Dairy G",  

                    "Parlor", "Beef", "Feed wastes", "Poultry", "Swine", "Other animal wastes",  

                    "Filtrate in food pit", "SLS food solids", "P & A",  

                    "Food pulp", "FOG", "Food feed wastes", "Others", "Cart food wastes") 

 

radarchart(data2, axistype=2, pty=32, plty=1, axislabcol="grey", na.itp=FALSE, 

           title="", vlcex=1) 

 

legend(x=1.5, y=1, legend = unique(metadata$Month), title="Months of 2019", bty = "n",  

       pch=20, col=unique(metadata$Month), cex=1, pt.cex=2) 

 

############################# 

## 2018 data 

# select data 

data3<-

metadata[which(metadata$Year=="2018"),c(3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21)] 

data3 
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data3 <- rbind(maxmin, data3) 

 

# Create the radar chart 

# Set up the font 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

op <- par(family = "A", font =1) 

 

# Provide the names of columns 

colnames(data3) <-c("Digestate", "Filtrate in manure pit", "SLS solids", "Dairy G",  

                    "Parlor", "Beef", "Feed wastes", "Poultry", "Swine", "Other animal wastes",  

                    "Filtrate in food pit", "SLS food solids", "P & A",  

                    "Food pulp", "FOG", "Food feed wastes", "Others", "Cart food wastes") 

 

 

radarchart(data3, axistype=2, pty=32, plty=1, axislabcol="grey", na.itp=FALSE, 

           title="", vlcex=1) 

 

legend(x=1.5, y=1, legend = unique(metadata$Month), title="Months of 2018", bty = "n",  

       pch=20, col=unique(metadata$Month), cex=1, pt.cex=2) 

 

############################# 

## 2017 data 

# select data 

data4<-

metadata[which(metadata$Year=="2017"),c(3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21)] 

data4 

 

data4 <- rbind(maxmin, data4) 

 

# Create the radar chart 

# Set up the font 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

op <- par(family = "A", font =1) 

 

# Provide the names of columns 

colnames(data4) <-c("Digestate", "Filtrate in manure pit", "SLS solids", "Dairy G",  

                    "Parlor", "Beef", "Feed wastes", "Poultry", "Swine", "Other animal wastes",  

                    "Filtrate in food pit", "SLS food solids", "P & A",  

                    "Food pulp", "FOG", "Food feed wastes", "Others", "Cart food wastes") 

 

 

radarchart(data4, axistype=2, pty=32, plty=1, axislabcol="grey", na.itp=FALSE, 

           title="", vlcex=1) 

 

legend(x=1.5, y=1, legend = unique(metadata$Month), title="Months of 2017", bty = "n",  
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       pch=20, col=unique(metadata$Month), cex=1, pt.cex=2) 

 

############################# 

## 2016 data 

# select data 

data5<-

metadata[which(metadata$Year=="2016"),c(3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21)] 

data5 

 

data5 <- rbind(maxmin, data5) 

 

# Create the radar chart 

# Set up the font 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

op <- par(family = "A", font =1) 

 

# Provide the names of columns 

colnames(data5) <-c("Digestate", "Filtrate in manure pit", "SLS solids", "Dairy G",  

                    "Parlor", "Beef", "Feed wastes", "Poultry", "Swine", "Other animal wastes",  

                    "Filtrate in food pit", "SLS food solids", "P & A",  

                    "Food pulp", "FOG", "Food feed wastes", "Others", "Cart food wastes") 

 

radarchart(data5, axistype=2, pty=32, plty=1, axislabcol="grey", na.itp=FALSE, 

           title="", vlcex=1) 

 

legend(x=1.5, y=1, legend = unique(metadata$Month), title="Months of 2016", bty = "n",  

       pch=20, col=unique(metadata$Month), cex=1, pt.cex=2) 

 

############################# 

## 2015 data 

# select data 

data6<-

metadata[which(metadata$Year=="2015"),c(3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21)] 

data6 

 

data6 <- rbind(maxmin, data6) 

 

# Create the radar chart 

# Set up the font 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

op <- par(family = "A", font =1) 

 

# Provide the names of columns 

colnames(data6) <-c("Digestate", "Filtrate in manure pit", "SLS solids", "Dairy G",  

                    "Parlor", "Beef", "Feed wastes", "Poultry", "Swine", "Other animal wastes",  

                    "Filtrate in food pit", "SLS food solids", "P & A",  
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                    "Food pulp", "FOG", "Food feed wastes", "Others", "Cart food wastes") 

 

 

radarchart(data6, axistype=2, pty=32, plty=1, axislabcol="grey", na.itp=FALSE, 

           title="", vlcex=1) 

 

legend(x=1.5, y=1, legend = unique(metadata$Month), title="Months of 2015", bty = "n",  

       pch=20, col=unique(metadata$Month), cex=1, pt.cex=2) 

 

############################# 

## 2014 data 

# select data 

data7<-

metadata[which(metadata$Year=="2014"),c(3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21)] 

data7 

 

data7 <- rbind(maxmin, data7) 

 

# Create the radar chart 

# Set up the font 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

op <- par(family = "A", font =1) 

 

# Provide the names of columns 

colnames(data7) <-c("Digestate", "Filtrate in manure pit", "SLS solids", "Dairy G",  

                    "Parlor", "Beef", "Feed wastes", "Poultry", "Swine", "Other animal wastes",  

                    "Filtrate in food pit", "SLS food solids", "P & A",  

                    "Food pulp", "FOG", "Food feed wastes", "Others", "Cart food wastes") 

 

 

radarchart(data7, axistype=2, pty=32, plty=1, axislabcol="grey", na.itp=FALSE, 

           title="", vlcex=1) 

 

legend(x=1.5, y=1, legend = unique(metadata$Month), title="Months of 2014", bty = "n",  

       pch=20, col=unique(metadata$Month), cex=1, pt.cex=2) 

 

####### 

 

C. Violin Chart and ANOVA Tukey Multiple Comparison Codes for Feedstock 

FULL CODES 

## Feed amount - Violin analysis 

## SCAD operation 

## Wei Liao, December 9, 2021 

## Fahmi Dwilaksono, December 12, 2021 Updated 

## Fahmi, Jan 4,2022 
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# Load libraries ----- 

  library (MASS) 

  library(ggplot2)  

  library(grid) 

  library(gridExtra) 

  library(ggpubr) 

  library(plyr) 

  library(inferr) 

   

# Plot bar chart with standard deviation ----- 

  #data : a data frame 

  #varname : the name of a column containing the variable to be summarized 

  #groupnames : vector of column names to be used as 

  #grouping variables 

  data_summary <- function(data, varname, groupnames){ 

    require(plyr) 

    summary_func <- function(x, col){ 

      c(mean = mean(x[[col]], na.rm=TRUE), 

        sd = sd(x[[col]], na.rm=TRUE)) 

    } 

    data_sum<-ddply(data, groupnames, .fun=summary_func, 

                    varname) 

    data_sum <- rename(data_sum, c("mean" = varname)) 

    return(data_sum) 

  } 

 

# Choose data file FeedAmount_Violin.txt ----- 

con <-file.choose(new = FALSE) 

metadata <- read.table(con, header = T, row.names = 1, fill = TRUE) 

head(metadata) 

 

# Define factors for metadata ----- 

metadata$Feed_type <- factor(metadata$Feed_type) 

metadata$Year<- factor(metadata$Year) 

metadata$Month <- factor(metadata$Month) 

 

#Anova 

 

#1. Digstate 

 

##Data selection 

data1<-metadata[which(metadata$Feed_type=="Digestate"),] 

data1 

 

## Anova 

fit1 <- aov(Daily_Feed~Year, data1) 
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summary(fit1) 

Tukey1 <- TukeyHSD(fit1, conf.level=0.95) #Tukey multiple comparison 

Tukey1 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_1 <- ggplot(data1, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Digestate", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_1 

box_1_1 <- box_1 + geom_boxplot(width=0.2) # Add median and quartile 

box_1_1  

 

## Mean and standard deviation 

box_1_data <- data_summary(data1, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_1_data 

 

#2. Filtrate manure pit 

 

##Data selection 

data2<-metadata[which(metadata$Feed_type=="Filtrate_manure_pit"),] 

data2 

 

## Anova 

fit2 <- aov(Daily_Feed~Year, data2) 

summary(fit2) 

Tukey2 <- TukeyHSD(fit2, conf.level=0.95) #Tukey multiple comparison 

Tukey2 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_2 <- ggplot(data2, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Filtrate manure pit", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  
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        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_2 

box_2_1 <- box_2 + geom_boxplot(width=0.2) # Add median and quartile 

box_2_1  

 

## Mean and standard deviation 

box_2_data <- data_summary(data2, varname="Daily_Feed",  

                           groupnames=c("Year")) 

box_2_data 

 

#3. SLS Solids 

 

##Data selection 

data3<-metadata[which(metadata$Feed_type=="SLS_Solids"),] 

data3 

 

## Anova 

fit3 <- aov(Daily_Feed~Year, data3) 

summary(fit3) 

Tukey3 <- TukeyHSD(fit3, conf.level=0.95) #Tukey multiple comparison 

Tukey3 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_3 <- ggplot(data3, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "SLS Solids", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_3 

box_3_1 <- box_3 + geom_boxplot(width=0.2) # Add median and quartile 

box_3_1  

 

## Mean and standard deviation 

box_3_data <- data_summary(data3, varname="Daily_Feed",  

                           groupnames=c("Year")) 

box_3_data 
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#4. Dairy G 

 

##Data selection 

data4<-metadata[which(metadata$Feed_type=="Dairy_G"),] 

data4 

 

## Anova 

fit4 <- aov(Daily_Feed~Year, data4) 

summary(fit4) 

Tukey4 <- TukeyHSD(fit4, conf.level=0.95) #Tukey multiple comparison 

Tukey4 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_4 <- ggplot(data4, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Dairy G", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_4 

box_4_1 <- box_4 + geom_boxplot(width=0.2) # Add median and quartile 

box_4_1  

 

## Mean and standard deviation 

box_4_data <- data_summary(data4, varname="Daily_Feed",  

                           groupnames=c("Year")) 

box_4_data 

 

#5. Parlor 

 

##Data selection 

data5<-metadata[which(metadata$Feed_type=="Parlor"),] 

data5 

 

## Anova 

fit5 <- aov(Daily_Feed~Year, data5) 

summary(fit5) 

Tukey5 <- TukeyHSD(fit5, conf.level=0.95) #Tukey multiple comparison 

Tukey5 #Output Tukey results 

 

## Plot 



148 

 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_5 <- ggplot(data5, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Parlor", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_5 

box_5_1 <- box_5 + geom_boxplot(width=0.2) # Add median and quartile 

box_5_1  

 

## Mean and standard deviation 

box_5_data <- data_summary(data5, varname="Daily_Feed",  

                           groupnames=c("Year")) 

box_5_data 

 

#6. Beef 

 

##Data selection 

data6<-metadata[which(metadata$Feed_type=="Beef"),] 

data6 

 

## Anova 

fit6 <- aov(Daily_Feed~Year, data6) 

summary(fit6) 

Tukey6 <- TukeyHSD(fit6, conf.level=0.95) #Tukey multiple comparison 

Tukey6 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_6 <- ggplot(data6, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Beef", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_6 

box_6_1 <- box_6 + geom_boxplot(width=0.2) # Add median and quartile 
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box_6_1  

 

## Mean and standard deviation 

box_6_data <- data_summary(data6, varname="Daily_Feed",  

                           groupnames=c("Year")) 

box_6_data 

 

#7. Waste Feed_Manure 

 

##Data selection 

data7<-metadata[which(metadata$Feed_type=="W_Feed_manure"),] 

data7 

 

## Anova 

fit7 <- aov(Daily_Feed~Year, data7) 

summary(fit7) 

Tukey7 <- TukeyHSD(fit7, conf.level=0.95) #Tukey multiple comparison 

Tukey7 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_7 <- ggplot(data7, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "W Feed Manure", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_7 

box_7_1 <- box_7 + geom_boxplot(width=0.2) # Add median and quartile 

box_7_1  

 

## Mean and standard deviation 

box_7_data <- data_summary(data7, varname="Daily_Feed",  

                           groupnames=c("Year")) 

box_7_data 

 

#8. Poultry 

 

##Data selection 

data8<-metadata[which(metadata$Feed_type=="Poultry"),] 

data8 
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## Anova 

fit8 <- aov(Daily_Feed~Year, data8) 

summary(fit8) 

Tukey8 <- TukeyHSD(fit8, conf.level=0.95) #Tukey multiple comparison 

Tukey8 #Output Tukey results 

 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_8 <- ggplot(data8, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Poultry", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_8 

box_8_1 <- box_8 + geom_boxplot(width=0.2) # Add median and quartile 

box_8_1  

 

## Mean and standard deviation 

box_8_data <- data_summary(data8, varname="Daily_Feed",  

                           groupnames=c("Year")) 

box_8_data 

 

#9. Swine 

 

##Data selection 

data9<-metadata[which(metadata$Feed_type=="Swine"),] 

data9 

 

## Anova 

fit9 <- aov(Daily_Feed~Year, data9) 

summary(fit9) 

Tukey9 <- TukeyHSD(fit9, conf.level=0.95) #Tukey multiple comparison 

Tukey9 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_9 <- ggplot(data9, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Swine", subtitle=NULL) +  
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  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_9 

box_9_1 <- box_9 + geom_boxplot(width=0.2) # Add median and quartile 

box_9_1  

 

## Mean and standard deviation 

box_9_data <- data_summary(data9, varname="Daily_Feed",  

                           groupnames=c("Year")) 

box_9_data 

 

#10. ANS Other 

 

##Data selection 

data10<-metadata[which(metadata$Feed_type=="ANS_Other"),] 

data10 

 

## Anova 

fit10 <- aov(Daily_Feed~Year, data10) 

summary(fit10) 

Tukey10 <- TukeyHSD(fit10, conf.level=0.95) #Tukey multiple comparison 

Tukey10 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_10 <- ggplot(data10, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "ANS Other", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_10 

box_10_1 <- box_10 + geom_boxplot(width=0.2) # Add median and quartile 

box_10_1  

 

## Mean and standard deviation 

box_10_data <- data_summary(data10, varname="Daily_Feed",  

                           groupnames=c("Year")) 
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box_10_data 

 

#11. Total Manure Pit 

 

##Data selection 

data11<-metadata[which(metadata$Feed_type=="Total_manure_pit"),] 

data11 

 

## Anova 

fit11 <- aov(Daily_Feed~Year, data11) 

summary(fit11) 

Tukey11 <- TukeyHSD(fit11, conf.level=0.95) #Tukey multiple comparison 

Tukey11 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_11 <- ggplot(data11, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Total Manure Pit", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_11 

box_11_1 <- box_11 + geom_boxplot(width=0.2) # Add median and quartile 

box_11_1  

 

## Mean and standard deviation 

box_11_data <- data_summary(data11, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_11_data 

 

#12. Filtrate Food Pit 

 

##Data selection 

data12<-metadata[which(metadata$Feed_type=="Filtrate_food_pit"),] 

data12 

 

## Anova 

fit12 <- aov(Daily_Feed~Year, data12) 

summary(fit12) 

Tukey12 <- TukeyHSD(fit12, conf.level=0.95) #Tukey multiple comparison 

Tukey12 #Output Tukey results 
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## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_12 <- ggplot(data12, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Filtrate Food Pit", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_12 

box_12_1 <- box_12 + geom_boxplot(width=0.2) # Add median and quartile 

box_12_1  

 

## Mean and standard deviation 

box_12_data <- data_summary(data12, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_12_data 

 

#13. SLS Solids Food 

 

##Data selection 

data13<-metadata[which(metadata$Feed_type=="SLS_Solids_food"),] 

data13 

 

## Anova 

fit13 <- aov(Daily_Feed~Year, data13) 

summary(fit13) 

Tukey13 <- TukeyHSD(fit13, conf.level=0.95) #Tukey multiple comparison 

Tukey13 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_13 <- ggplot(data13, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "SLS Solids Food", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  
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box_13 

box_13_1 <- box_13 + geom_boxplot(width=0.2) # Add median and quartile 

box_13_1  

 

## Mean and standard deviation 

box_13_data <- data_summary(data13, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_13_data 

 

#14. P_A 

 

##Data selection 

data14<-metadata[which(metadata$Feed_type=="P_A"),] 

data14 

 

## Anova 

fit14 <- aov(Daily_Feed~Year, data14) 

summary(fit14) 

Tukey14 <- TukeyHSD(fit14, conf.level=0.95) #Tukey multiple comparison 

Tukey14 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_14 <- ggplot(data14, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Pinnapples", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_14 

box_14_1 <- box_14 + geom_boxplot(width=0.2) # Add median and quartile 

box_14_1  

 

## Mean and standard deviation 

box_14_data <- data_summary(data14, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_14_data 
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#15. Pulp 

 

##Data selection 

data15<-metadata[which(metadata$Feed_type=="Pulp"),] 

data15 

 

## Anova 

fit15 <- aov(Daily_Feed~Year, data15) 

summary(fit15) 

Tukey15 <- TukeyHSD(fit15, conf.level=0.95) #Tukey multiple comparison 

Tukey15 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_15 <- ggplot(data15, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Pulp", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_15 

box_15_1 <- box_15 + geom_boxplot(width=0.2) # Add median and quartile 

box_15_1  

 

## Mean and standard deviation 

box_15_data <- data_summary(data15, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_15_data 

 

#16. FOG 

 

##Data selection 

data16<-metadata[which(metadata$Feed_type=="FOG"),] 

data16 

 

## Anova 

fit16 <- aov(Daily_Feed~Year, data16) 

summary(fit16) 

Tukey16 <- TukeyHSD(fit16, conf.level=0.95) #Tukey multiple comparison 

Tukey16 #Output Tukey results 

 

## Plot 
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windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_16 <- ggplot(data16, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "FOG", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_16 

box_16_1 <- box_16 + geom_boxplot(width=0.2) # Add median and quartile 

box_16_1  

 

## Mean and standard deviation 

box_16_data <- data_summary(data16, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_16_data 

 

#17. Waste Feed 

 

##Data selection 

data17<-metadata[which(metadata$Feed_type=="W_Feed"),] 

data17 

 

## Anova 

fit17 <- aov(Daily_Feed~Year, data17) 

summary(fit17) 

Tukey17 <- TukeyHSD(fit17, conf.level=0.95) #Tukey multiple comparison 

Tukey17 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_17 <- ggplot(data17, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Waste Feed", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_17 

box_17_1 <- box_17 + geom_boxplot(width=0.2) # Add median and quartile 



157 

 

box_17_1  

 

## Mean and standard deviation 

box_17_data <- data_summary(data17, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_17_data 

 

#18. Other 

 

##Data selection 

data18<-metadata[which(metadata$Feed_type=="Other"),] 

data18 

 

## Anova 

fit18 <- aov(Daily_Feed~Year, data18) 

summary(fit18) 

Tukey18 <- TukeyHSD(fit18, conf.level=0.95) #Tukey multiple comparison 

Tukey18 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_18 <- ggplot(data18, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Other", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_18 

box_18_1 <- box_18 + geom_boxplot(width=0.2) # Add median and quartile 

box_18_1  

 

## Mean and standard deviation 

box_18_data <- data_summary(data18, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_18_data 

 

#19. Cart Food 

 

##Data selection 

data19<-metadata[which(metadata$Feed_type=="Cart_Food"),] 

data19 
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## Anova 

fit19 <- aov(Daily_Feed~Year, data19) 

summary(fit19) 

Tukey19 <- TukeyHSD(fit19, conf.level=0.95) #Tukey multiple comparison 

Tukey19 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_19 <- ggplot(data19, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Cart Food", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_19 

box_19_1 <- box_19 + geom_boxplot(width=0.2) # Add median and quartile 

box_19_1  

 

## Mean and standard deviation 

box_19_data <- data_summary(data19, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_19_data 

 

#20. Total Food Pit 

 

##Data selection 

data20<-metadata[which(metadata$Feed_type=="Total_food_pit"),] 

data20 

 

## Anova 

fit20 <- aov(Daily_Feed~Year, data20) 

summary(fit20) 

Tukey20 <- TukeyHSD(fit20, conf.level=0.95) #Tukey multiple comparison 

Tukey20 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_20 <- ggplot(data20, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Total Food Pit", subtitle=NULL) +  

  theme_classic() + 
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  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_20 

box_20_1 <- box_20 + geom_boxplot(width=0.2) # Add median and quartile 

box_20_1  

 

## Mean and standard deviation 

box_20_data <- data_summary(data20, varname="Daily_Feed",  

                            groupnames=c("Year")) 

box_20_data 

 

#21. Total Feedstock 

 

##Data selection 

data21<-metadata[which(metadata$Feed_type=="Total_feedstock"),] 

data21 

 

## Anova 

fit21 <- aov(Daily_Feed~Year, data21) 

summary(fit21) 

Tukey21 <- TukeyHSD(fit21, conf.level=0.95) #Tukey multiple comparison 

Tukey21 #Output Tukey results 

 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_21 <- ggplot(data21, aes(x=Year, y=Daily_Feed)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Daily feed (kg/day)") + labs(title = "Total Feedstock", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_21 

box_21_1 <- box_21 + geom_boxplot(width=0.2) # Add median and quartile 

box_21_1  

 

## Mean and standard deviation 

box_21_data <- data_summary(data21, varname="Daily_Feed",  

                            groupnames=c("Year")) 
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box_21_data 

 

### 

 

RESULTS 

C.1 Violin Chart of Feedstock in Manure Pit 

C.1.1 Digestate 

> ## Anova 

> fit1 <- aov(Daily_Feed~Year, data1) 

> summary(fit1) 

            Df    Sum Sq  Mean Sq F value Pr(>F) 

Year         4 145459560 36364890   0.906  0.476 

Residuals   24 963661949 40152581                

> Tukey1 <- TukeyHSD(fit1, conf.level=0.95) #Tukey multiple comparison 

> Tukey1 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data1) 

 

$Year 

                diff        lwr       upr     p adj 

2016-2015 -1625.8753 -21303.490 18051.740 0.9991656 

2017-2015 -5303.0678 -24800.975 14194.839 0.9276618 

2018-2015 -4567.2934 -24730.849 15596.262 0.9615453 

2020-2015 -9407.0445 -32270.367 13456.278 0.7445301 

2017-2016 -3677.1925 -12067.756  4713.371 0.6989719 

2018-2016 -2941.4181 -12780.226  6897.389 0.9011895 

2020-2016 -7781.1692 -22374.479  6812.141 0.5291867 

2018-2017   735.7743  -8738.506 10210.054 0.9993463 

2020-2017 -4103.9767 -18454.048 10246.094 0.9145118 

2020-2018 -4839.7510 -20081.966 10402.464 0.8802393 
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Figure C.1 Feedstock distribution for Digestate 

Year Daily_Feed       sd 

1 2015   20755.92       NA 

2 2016   19130.04 7853.040 

3 2017   15452.85 5927.523 

4 2018   16188.62 4250.253 

5 2020   11348.87 5349.909 

 

C.1.2 Filtrate Manure Pit 

> ## Anova 

> fit2 <- aov(Daily_Feed~Year, data2) 

> summary(fit2) 

            Df    Sum Sq   Mean Sq F value  Pr(>F)    

Year         6 1.553e+09 258810814   3.729 0.00392 ** 

Residuals   49 3.401e+09  69412500                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey2 <- TukeyHSD(fit2, conf.level=0.95) #Tukey multiple comparison 

> Tukey2 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data2) 

 

$Year 

                 diff       lwr        upr     p adj 

2015-2014  -3603.9396 -14059.61  6851.7330 0.9367379 

2016-2014 -11798.0489 -22764.05  -832.0469 0.0274157 

2017-2014 -10023.4382 -21713.24  1666.3592 0.1376290 

2018-2014  -9645.7095 -24432.26  5140.8446 0.4245674 

2019-2014 -14760.8341 -26941.32 -2580.3440 0.0085485 
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2020-2014 -12419.0466 -28950.92  4112.8235 0.2604355 

2016-2015  -8194.1092 -19160.11  2771.8928 0.2661668 

2017-2015  -6419.4986 -18109.30  5270.2988 0.6269482 

2018-2015  -6041.7698 -20828.32  8744.7843 0.8681169 

2019-2015 -11156.8944 -23337.38  1023.5956 0.0926584 

2020-2015  -8815.1069 -25346.98  7716.7631 0.6582698 

2017-2016   1774.6107 -10373.78 13923.0045 0.9993180 

2018-2016   2152.3394 -12999.37 17304.0486 0.9994188 

2019-2016  -2962.7852 -15584.05  9658.4844 0.9905911 

2020-2016   -620.9977 -17480.26 16238.2679 0.9999998 

2018-2017    377.7287 -15305.78 16061.2377 1.0000000 

2019-2017  -4737.3958 -17992.38  8517.5885 0.9255114 

2020-2017  -2395.6084 -19734.38 14943.1632 0.9995043 

2019-2018  -5115.1246 -21167.71 10937.4587 0.9561045 

2020-2018  -2773.3371 -22334.11 16787.4354 0.9994251 

2020-2019   2341.7875 -15331.52 20015.1000 0.9996104 

Year Daily_Feed        sd 

1 2014   25025.88  7210.635 

2 2015   21421.94 12445.617 

3 2016   13227.83  5988.434 

4 2017   15002.44  6870.595 

5 2018   15380.17 10625.096 

6 2019   10265.05  3988.524 

7 2020   12606.83  4367.135 

 

C.1.3 SLS Solids 

> ## Anova 

> fit3 <- aov(Daily_Feed~Year, data3) 

> summary(fit3) 

            Df   Sum Sq Mean Sq F value Pr(>F) 

Year         5  1589309  317862   0.187  0.965 

Residuals   27 45912828 1700475                

> Tukey3 <- TukeyHSD(fit3, conf.level=0.95) #Tukey multiple comparison 

> Tukey3 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data3) 

 

$Year 

                diff       lwr      upr     p adj 

2016-2015  349.67407 -2280.370 2979.718 0.9983908 

2017-2015  274.02501 -1561.700 2109.750 0.9972077 

2018-2015 -168.21459 -2531.880 2195.451 0.9999236 

2019-2015  244.98504 -1943.344 2433.314 0.9992972 

2020-2015  727.06262 -2367.702 3821.827 0.9777973 
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2017-2016  -75.64907 -2739.198 2587.900 0.9999992 

2018-2016 -517.88867 -3569.368 2533.590 0.9948985 

2019-2016 -104.68903 -3022.461 2813.083 0.9999975 

2020-2016  377.38854 -3269.827 4024.604 0.9995207 

2018-2017 -442.23960 -2843.131 1958.651 0.9925485 

2019-2017  -29.03997 -2257.525 2199.445 1.0000000 

2020-2017  453.03761 -2670.251 3576.326 0.9975627 

2019-2018  413.19963 -2266.945 3093.344 0.9967478 

2020-2018  895.27721 -2564.775 4355.329 0.9663717 

2020-2019  482.07758 -2860.650 3824.805 0.9976286 

 

 
Figure C.2 Feedstock distribution for SLS Solids 

Year Daily_Feed        sd 

1 2015   2938.868 1252.5055 

2 2016   3288.542 1312.8727 

3 2017   3212.893 1673.5432 

4 2018   2770.653  474.1477 

5 2019   3183.853  949.3934 

6 2020   3665.931 1288.7252 

 

C.1.4 Dairy Gutter 

> ## Anova 

> fit4 <- aov(Daily_Feed~Year, data4) 

> summary(fit4) 

            Df    Sum Sq Mean Sq F value  Pr(>F)    

Year         6  42372311 7062052   3.554 0.00368 ** 

Residuals   77 152983389 1986797                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey4 <- TukeyHSD(fit4, conf.level=0.95) #Tukey multiple comparison 

> Tukey4 #Output Tukey results 
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  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data4) 

 

$Year 

                 diff         lwr       upr     p adj 

2015-2014  1192.79576  -549.44637 2935.0379 0.3790328 

2016-2014  2400.10647   657.86433 4142.3486 0.0014801 

2017-2014  1858.36642   116.12429 3600.6086 0.0289095 

2018-2014  1755.51444    13.27230 3497.7566 0.0470523 

2019-2014  1838.33278    96.09064 3580.5749 0.0318566 

2020-2014  1224.58500  -517.65714 2966.8271 0.3470729 

2016-2015  1207.31071  -534.93143 2949.5528 0.3642678 

2017-2015   665.57066 -1076.67147 2407.8128 0.9078985 

2018-2015   562.71868 -1179.52346 2304.9608 0.9573103 

2019-2015   645.53702 -1096.70512 2387.7792 0.9194903 

2020-2015    31.78924 -1710.45290 1774.0314 1.0000000 

2017-2016  -541.74005 -2283.98218 1200.5021 0.9644623 

2018-2016  -644.59203 -2386.83417 1097.6501 0.9200129 

2019-2016  -561.77369 -2304.01583 1180.4684 0.9576524 

2020-2016 -1175.52147 -2917.76361  566.7207 0.3969598 

2018-2017  -102.85199 -1845.09412 1639.3901 0.9999971 

2019-2017   -20.03365 -1762.27578 1722.2085 1.0000000 

2020-2017  -633.78142 -2376.02356 1108.4607 0.9258387 

2019-2018    82.81834 -1659.42380 1825.0605 0.9999992 

2020-2018  -530.92944 -2273.17157 1211.3127 0.9677964 

2020-2019  -613.74778 -2355.98991 1128.4944 0.9358943 

 

Year Daily_Feed        sd 

1 2014   11554.80 2239.1947 

2 2015   12747.60 1283.0903 

3 2016   13954.91 1216.0525 

4 2017   13413.17 1876.9954 

5 2018   13310.32  837.6477 

6 2019   13393.14  809.3594 

7 2020   12779.39  942.6853 

 

 

C.1.5 Parlor 

> ## Anova 

> fit5 <- aov(Daily_Feed~Year, data5) 

> summary(fit5) 

            Df    Sum Sq  Mean Sq F value   Pr(>F)     

Year         6 4.214e+08 70235648   5.017 0.000219 *** 

Residuals   77 1.078e+09 14000917                      
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey5 <- TukeyHSD(fit5, conf.level=0.95) #Tukey multiple comparison 

> Tukey5 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data5) 

 

$Year 

                diff        lwr        upr     p adj 

2015-2014  1580.2767  -3044.705  6205.2580 0.9443209 

2016-2014 -3837.9931  -8462.974   786.9881 0.1693431 

2017-2014 -4892.8213  -9517.803  -267.8401 0.0311264 

2018-2014 -1571.4695  -6196.451  3053.5118 0.9457526 

2019-2014 -3500.9365  -8125.918  1124.0448 0.2613178 

2020-2014 -4230.8038  -8855.785   394.1775 0.0953095 

2016-2015 -5418.2698 -10043.251  -793.2886 0.0113920 

2017-2015 -6473.0980 -11098.079 -1848.1168 0.0011735 

2018-2015 -3151.7462  -7776.727  1473.2350 0.3847257 

2019-2015 -5081.2132  -9706.194  -456.2319 0.0219480 

2020-2015 -5811.0805 -10436.062 -1186.0993 0.0050681 

2017-2016 -1054.8282  -5679.809  3570.1530 0.9927745 

2018-2016  2266.5236  -2358.458  6891.5049 0.7534924 

2019-2016   337.0567  -4287.925  4962.0379 0.9999897 

2020-2016  -392.8107  -5017.792  4232.1706 0.9999746 

2018-2017  3321.3518  -1303.629  7946.3331 0.3214669 

2019-2017  1391.8848  -3233.096  6016.8661 0.9697196 

2020-2017   662.0175  -3962.964  5286.9988 0.9994637 

2019-2018 -1929.4670  -6554.448  2695.5143 0.8663878 

2020-2018 -2659.3343  -7284.316  1965.6469 0.5912253 

2020-2019  -729.8673  -5354.849  3895.1139 0.9990631 

 

Year Daily_Feed       sd 

1 2014   25669.45 3318.805 

2 2015   27249.73 5947.718 

3 2016   21831.46 3686.228 

4 2017   20776.63 3026.019 

5 2018   24097.98 4252.452 

6 2019   22168.52 2156.050 

7 2020   21438.65 2477.829 

 

C.1.6 Beef 

> ## Anova 

> fit6 <- aov(Daily_Feed~Year, data6) 

> summary(fit6) 
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            Df    Sum Sq  Mean Sq F value   Pr(>F)     

Year         6 100115286 16685881   5.879 8.31e-05 *** 

Residuals   56 158938879  2838194                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey6 <- TukeyHSD(fit6, conf.level=0.95) #Tukey multiple comparison 

> Tukey6 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data6) 

$Year 

                diff       lwr         upr     p adj 

2015-2014 -1583.1873 -5017.726  1851.35126 0.7943863 

2016-2014 -2459.4665 -4826.559   -92.37421 0.0367349 

2017-2014 -3991.3828 -6263.117 -1719.64909 0.0000309 

2018-2014 -3503.7920 -5819.357 -1188.22661 0.0004279 

2019-2014 -2945.2863 -5217.020  -673.55254 0.0037558 

2020-2014 -3327.0973 -6042.338  -611.85619 0.0073262 

2016-2015  -876.2793 -4267.614  2515.05581 0.9850225 

2017-2015 -2408.1955 -5733.673   917.28212 0.3045062 

2018-2015 -1920.6047 -5276.178  1434.96833 0.5861362 

2019-2015 -1362.0990 -4687.577  1963.37867 0.8700467 

2020-2015 -1743.9100 -5386.788  1898.96820 0.7644217 

2017-2016 -1531.9163 -3737.789   673.95606 0.3534888 

2018-2016 -1044.3255 -3295.312  1206.66137 0.7894796 

2019-2016  -485.8197 -2691.692  1720.05261 0.9935552 

2020-2016  -867.6308 -3528.013  1792.75134 0.9525220 

2018-2017   487.5908 -1662.895  2638.07671 0.9924675 

2019-2017  1046.0965 -1057.120  3149.31328 0.7311977 

2020-2017   664.2855 -1911.618  3240.18939 0.9851726 

2019-2018   558.5058 -1591.980  2708.99170 0.9846223 

2020-2018   176.6947 -2437.947  2791.33618 0.9999928 

2020-2019  -381.8111 -2957.715  2194.09284 0.9992895 
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Figure C.3 Feedstock distribution for Beef 

Year Daily_Feed        sd 

1 2014   6404.719 3618.6704 

2 2015   4821.532 2269.4265 

3 2016   3945.252 1348.7279 

4 2017   2413.336  770.9569 

5 2018   2900.927 1055.3299 

6 2019   3459.433  929.5379 

7 2020   3077.622  256.3979 

 

C.1.7 Waste Feed Manure 

> ## Anova 

> fit7 <- aov(Daily_Feed~Year, data7) 

> summary(fit7) 

            Df   Sum Sq Mean Sq F value Pr(>F)   

Year         5 23261394 4652279   2.906 0.0472 * 

Residuals   16 25618186 1601137                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey7 <- TukeyHSD(fit7, conf.level=0.95) #Tukey multiple comparison 

> Tukey7 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data7) 

 

$Year 

                diff        lwr       upr     p adj 

2015-2014 -3023.9467 -6745.8869  697.9935 0.1491613 

2016-2014  -648.2586 -4370.1988 3073.6816 0.9922582 

2017-2014 -2638.3935 -5615.9456  339.1587 0.0985172 
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2019-2014 -2239.7768 -5217.3290  737.7753 0.2056048 

2020-2014  -916.8304 -3894.3825 2060.7218 0.9138622 

2016-2015  2375.6881 -1701.4931 6452.8693 0.4489565 

2017-2015   385.5532 -3025.6613 3796.7677 0.9989874 

2019-2015   784.1698 -2627.0447 4195.3844 0.9735442 

2020-2015  2107.1163 -1304.0983 5518.3308 0.3888309 

2017-2016 -1990.1349 -5401.3494 1421.0796 0.4476599 

2019-2016 -1591.5183 -5002.7328 1819.6963 0.6671881 

2020-2016  -268.5718 -3679.7864 3142.6427 0.9998256 

2019-2017   398.6166 -2180.0192 2977.2525 0.9955334 

2020-2017  1721.5631  -857.0727 4300.1989 0.3114649 

2020-2019  1322.9464 -1255.6894 3901.5822 0.5784162 

 

 
Figure C.4 Feedstock distribution for Waste Feed Manure 

Year Daily_Feed        sd 

1 2014   4101.228 2328.1781 

2 2015   1077.281  208.4797 

3 2016   3452.969  152.3505 

4 2017   1462.834  425.8712 

5 2019   1861.451  597.4175 

6 2020   3184.397 1771.8344 

 

C.1.8 Poultry 

> ## Anova 

> fit8 <- aov(Daily_Feed~Year, data8) 

> summary(fit8) 

            Df  Sum Sq Mean Sq F value   Pr(>F)     

Year         3 4476064 1492021   27.26 3.96e-05 *** 

Residuals   10  547330   54733                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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> Tukey8 <- TukeyHSD(fit8, conf.level=0.95) #Tukey multiple comparison 

> Tukey8 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data8) 

 

$Year 

                diff        lwr       upr     p adj 

2017-2016  507.16122   27.02892  987.2935 0.0380139 

2019-2016 1377.78570  831.13103 1924.4404 0.0000800 

2020-2016 1392.98103  773.13290 2012.8292 0.0002110 

2019-2017  870.62448  347.92265 1393.3263 0.0021976 

2020-2017  885.81982  286.98963 1484.6500 0.0050653 

2020-2019   15.19533 -638.18197  668.5726 0.9998615 

 

 
Figure C.5 Feedstock distribution for Poultry 

Year Daily_Feed       sd 

1 2016   572.6599 315.0070 

2 2017  1079.8211 225.7625 

3 2019  1950.4456   0.0000 

4 2020  1965.6409 213.9322 

 

C.1.9 Swine 

## Anova 

> fit9 <- aov(Daily_Feed~Year, data9) 

> summary(fit9) 

            Df    Sum Sq   Mean Sq F value Pr(>F)   

Year         3 471835620 157278540   6.639  0.034 * 

Residuals    5 118459221  23691844                  

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey9 <- TukeyHSD(fit9, conf.level=0.95) #Tukey multiple comparison 

> Tukey9 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data9) 

 

$Year 

               diff        lwr       upr     p adj 

2015-2014 -8172.480 -23726.627  7381.666 0.3207542 

2017-2014 13141.467  -8855.417 35138.352 0.2408659 

2018-2014  4667.462 -13292.920 22627.843 0.7773253 

2017-2015 21313.948   1233.631 41394.264 0.0400869 

2018-2015 12839.942  -2714.204 28394.089 0.0967451 

2018-2017 -8474.006 -30470.890 13522.879 0.5388782 

 

 
Figure C.6 Feedstock distribution for Swine 

Year Daily_Feed       sd 

1 2014  12745.482 7762.501 

2 2015   4573.001 3664.656 

3 2017  25886.949       NA 

4 2018  17412.943 4232.458 

 

 

C.1.10 ANS Other 

## Anova 

> fit10 <- aov(Daily_Feed~Year, data10) 

> summary(fit10) 

            Df   Sum Sq Mean Sq F value  Pr(>F)    

Year         6 39084480 6514080   4.285 0.00281 ** 
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Residuals   32 48650416 1520325                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey10 <- TukeyHSD(fit10, conf.level=0.95) #Tukey multiple comparison 

> Tukey10 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data10) 

 

$Year 

                diff        lwr      upr     p adj 

2015-2014  589.27271 -1784.0243 2962.570 0.9852771 

2016-2014  286.21655 -2087.0805 2659.514 0.9997286 

2017-2014  768.33625 -1660.8107 3197.483 0.9516286 

2018-2014  534.89837 -2821.4505 3891.247 0.9986656 

2019-2014 1416.00083 -1940.3480 4772.350 0.8347201 

2020-2014 2887.73677   514.4398 5261.034 0.0092548 

2016-2015 -303.05615 -2240.8451 1634.733 0.9988001 

2017-2015  179.06354 -1826.7385 2184.866 0.9999531 

2018-2015  -54.37434 -3118.2876 3009.539 1.0000000 

2019-2015  826.72812 -2237.1851 3890.641 0.9775607 

2020-2015 2298.46406   360.6752 4236.253 0.0118835 

2017-2016  482.11970 -1523.6824 2487.922 0.9875485 

2018-2016  248.68181 -2815.2315 3312.595 0.9999732 

2019-2016 1129.78427 -1934.1290 4193.698 0.9040714 

2020-2016 2601.52022   663.7313 4539.309 0.0032201 

2018-2017 -233.43788 -3340.8131 2873.937 0.9999831 

2019-2017  647.66458 -2459.7106 3755.040 0.9941396 

2020-2017 2119.40052   113.5985 4125.203 0.0328451 

2019-2018  881.10246 -2994.4753 4756.680 0.9906926 

2020-2018 2352.83840  -711.0749 5416.752 0.2259142 

2020-2019 1471.73594 -1592.1773 4535.649 0.7370542 

 



172 

 

 
Figure C.7 Feedstock distribution for ANS Other 

Year Daily_Feed         sd 

1 2014   157.9634   99.61785 

2 2015   747.2361  709.21161 

3 2016   444.1800  562.77269 

4 2017   926.2997 1015.13921 

5 2018   692.8618  736.09366 

6 2019  1573.9642  147.53947 

7 2020  3045.7002 2272.07072 

 

C.1.11 Total Manure Pit 

## Anova 

> fit11 <- aov(Daily_Feed~Year, data11) 

> summary(fit11) 

            Df    Sum Sq   Mean Sq F value   Pr(>F)     

Year         6 8.058e+09 1.343e+09   7.098 4.84e-06 *** 

Residuals   77 1.457e+10 1.892e+08                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey11 <- TukeyHSD(fit11, conf.level=0.95) #Tukey multiple comparison 

> Tukey11 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data11) 

 

$Year 

                 diff       lwr       upr     p adj 

2015-2014  -2271.4375 -19272.71 14729.840 0.9996395 

2016-2014  -4954.4342 -21955.71 12046.843 0.9741916 

2017-2014  -4340.4218 -21341.70 12660.855 0.9868731 
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2018-2014 -13978.4959 -30979.77  3022.781 0.1776912 

2019-2014 -23422.4703 -40423.75 -6421.193 0.0014787 

2020-2014 -26187.7939 -43189.07 -9186.517 0.0002514 

2016-2015  -2682.9967 -19684.27 14318.281 0.9990631 

2017-2015  -2068.9843 -19070.26 14932.293 0.9997901 

2018-2015 -11707.0583 -28708.34  5294.219 0.3719687 

2019-2015 -21151.0328 -38152.31 -4149.756 0.0057191 

2020-2015 -23916.3564 -40917.63 -6915.079 0.0010877 

2017-2016    614.0124 -16387.26 17615.290 0.9999998 

2018-2016  -9024.0616 -26025.34  7977.216 0.6782326 

2019-2016 -18468.0361 -35469.31 -1466.759 0.0244380 

2020-2016 -21233.3597 -38234.64 -4232.083 0.0054555 

2018-2017  -9638.0740 -26639.35  7363.203 0.6073685 

2019-2017 -19082.0485 -36083.33 -2080.771 0.0178006 

2020-2017 -21847.3721 -38848.65 -4846.095 0.0038195 

2019-2018  -9443.9744 -26445.25  7557.303 0.6300296 

2020-2018 -12209.2981 -29210.58  4791.979 0.3214553 

2020-2019  -2765.3236 -19766.60 14235.954 0.9988876 

 

Year Daily_Feed        sd 

1 2014   71283.72 11368.291 

2 2015   69012.28 17246.236 

3 2016   66329.29 18413.578 

4 2017   66943.30 15397.431 

5 2018   57305.23 14024.063 

6 2019   47861.25  8318.581 

7 2020   45095.93  7459.882 

 

C.2 Violin Chart of Feedstock in Food Pit 

C.2.1 Filtrate Food Pit 

## Anova 

> fit12 <- aov(Daily_Feed~Year, data12) 

> summary(fit12) 

            Df    Sum Sq  Mean Sq F value Pr(>F)   

Year         6 5.047e+08 84113595   2.001 0.0802 . 

Residuals   58 2.438e+09 42039631                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey12 <- TukeyHSD(fit12, conf.level=0.95) #Tukey multiple comparison 

> Tukey12 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data12) 

 

$Year 
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                diff        lwr       upr     p adj 

2015-2014  -178.2101  -8444.244  8087.824 1.0000000 

2016-2014 -3729.6602 -11814.001  4354.680 0.7947930 

2017-2014   158.3603  -8880.207  9196.928 1.0000000 

2018-2014  4296.0265  -4742.541 13334.594 0.7714169 

2019-2014 -4123.0379 -14024.292  5778.217 0.8618493 

2020-2014 -4589.5006 -13628.068  4449.067 0.7132479 

2016-2015 -3551.4501 -11817.484  4714.584 0.8435061 

2017-2015   336.5704  -8864.867  9538.008 0.9999998 

2018-2015  4474.2366  -4727.201 13675.674 0.7523395 

2019-2015 -3944.8278 -13994.982  6105.326 0.8918034 

2020-2015 -4411.2904 -13612.728  4790.147 0.7643244 

2017-2016  3888.0205  -5150.547 12926.588 0.8427671 

2018-2016  8025.6868  -1012.881 17064.254 0.1135614 

2019-2016  -393.3777 -10294.632  9507.877 0.9999997 

2020-2016  -859.8403  -9898.408  8178.727 0.9999465 

2018-2017  4137.6662  -5763.588 14038.921 0.8598617 

2019-2017 -4281.3982 -14975.975  6413.179 0.8824651 

2020-2017 -4747.8609 -14649.115  5153.394 0.7641371 

2019-2018 -8419.0644 -19113.642  2275.513 0.2154937 

2020-2018 -8885.5271 -18786.782  1015.727 0.1063931 

2020-2019  -466.4627 -11161.040 10228.115 0.9999995 

 

 
Figure C.8 Feedstock distribution for Filtrate Food Pit 

Year Daily_Feed       sd 

1 2014   18804.22 6936.435 

2 2015   18626.01 6325.763 

3 2016   15074.56 5643.998 

4 2017   18962.58 6082.968 

5 2018   23100.25 9488.308 

6 2019   14681.19 4057.150 
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7 2020   14214.72 5168.211 

 

C.2.2 SLS Solids Food 

> ## Anova 

> fit13 <- aov(Daily_Feed~Year, data13) 

> summary(fit13) 

            Df   Sum Sq Mean Sq F value Pr(>F) 

Year         5  2340050  468010   0.472  0.795 

Residuals   38 37707433  992301                

> Tukey13 <- TukeyHSD(fit13, conf.level=0.95) #Tukey multiple comparison 

> Tukey13 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data13) 

 

$Year 

                diff        lwr       upr     p adj 

2016-2015  357.09030 -2005.4356 2719.6162 0.9974016 

2017-2015 -189.04707 -2525.1752 2147.0811 0.9998748 

2018-2015 -231.78551 -2546.5787 2083.0077 0.9996439 

2019-2015  197.65271 -2084.7641 2480.0696 0.9998253 

2020-2015  129.42492 -2598.5850 2857.4348 0.9999911 

2017-2016 -546.13737 -1998.2315  905.9568 0.8665252 

2018-2016 -588.87581 -2006.3913  828.6397 0.8112956 

2019-2016 -159.43759 -1523.4425 1204.5674 0.9992436 

2020-2016 -227.66538 -2250.8117 1795.4809 0.9993710 

2018-2017  -42.73845 -1415.8067 1330.3298 0.9999989 

2019-2017  386.69978  -931.0542 1704.4538 0.9489365 

2020-2017  318.47198 -1673.7848 2310.7287 0.9966128 

2019-2018  429.43823  -850.1118 1708.9883 0.9127921 

2020-2018  361.21043 -1605.9855 2328.4064 0.9935241 

2020-2019  -68.22780 -1997.2221 1860.7665 0.9999979 
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Figure C.9 Feedstock distribution for SLS Solids Food 

Year Daily_Feed        sd 

1 2015   3056.303  516.3881 

2 2016   3413.393 1016.5215 

3 2017   2867.256  930.6221 

4 2018   2824.517 1268.9409 

5 2019   3253.956  888.4573 

6 2020   3185.728  228.3480 

 

C.2.3 Pineapple (PA) 

> ## Anova 

> fit14 <- aov(Daily_Feed~Year, data14) 

> summary(fit14) 

            Df    Sum Sq Mean Sq F value Pr(>F) 

Year         2   1362345  681173    0.14   0.87 

Residuals   26 126273793 4856684                

> Tukey14 <- TukeyHSD(fit14, conf.level=0.95) #Tukey multiple comparison 

> Tukey14 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data14) 

 

$Year 

               diff       lwr      upr     p adj 

2015-2014 -476.3094 -2711.951 1759.332 0.8576849 

2016-2014 -221.6931 -3136.613 2693.227 0.9805173 

2016-2015  254.6163 -2660.303 3169.536 0.9743880 
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Figure C.10 Feedstock distribution for Pineapple 

Year Daily_Feed       sd 

1 2014   11657.20 2206.999 

2 2015   11180.89 2370.419 

3 2016   11435.51 1649.753 

 

C.2.4 Pulp 

 

## Anova 

> fit15 <- aov(Daily_Feed~Year, data15) 

> summary(fit15) 

            Df   Sum Sq Mean Sq F value   Pr(>F)     

Year         6 10479022 1746504    8.78 4.63e-07 *** 

Residuals   67 13326784  198907                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey15 <- TukeyHSD(fit15, conf.level=0.95) #Tukey multiple comparison 

> Tukey15 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data15) 

 

$Year 

                diff         lwr       upr     p adj 

2015-2014  203.13362  -350.31903  756.5863 0.9211267 

2016-2014  249.21100  -304.24164  802.6637 0.8161929 

2017-2014  950.72196   384.83062 1516.6133 0.0000582 

2018-2014  590.38779    36.93514 1143.8404 0.0290603 

2019-2014 1026.10070   472.64805 1579.5534 0.0000077 

2020-2014  564.94884  -310.13664 1440.0343 0.4477754 
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2016-2015   46.07739  -507.37526  599.5300 0.9999766 

2017-2015  747.58834   181.69700 1313.4797 0.0027771 

2018-2015  387.25417  -166.19848  940.7068 0.3493295 

2019-2015  822.96709   269.51444 1376.4197 0.0004964 

2020-2015  361.81522  -513.27025 1236.9007 0.8687476 

2017-2016  701.51095   135.61961 1267.4023 0.0061482 

2018-2016  341.17678  -212.27587  894.6294 0.5044607 

2019-2016  776.88970   223.43705 1330.3423 0.0011967 

2020-2016  315.73783  -559.34764 1190.8233 0.9269321 

2018-2017 -360.33417  -926.22551  205.5572 0.4647631 

2019-2017   75.37874  -490.51260  641.2701 0.9996339 

2020-2017 -385.77312 -1268.77808  497.2318 0.8363818 

2019-2018  435.71292  -117.73973  989.1656 0.2177536 

2020-2018  -25.43895  -900.52442  849.6465 1.0000000 

2020-2019 -461.15187 -1336.23734  413.9336 0.6815731 

 

Year Daily_Feed       sd 

1 2014   1078.566 332.9565 

2 2015   1281.700 167.5954 

3 2016   1327.777 440.1656 

4 2017   2029.288 466.0263 

5 2018   1668.954 574.3428 

6 2019   2104.667 558.1254 

7 2020   1643.515 469.1668 

 

C.2.5 FOG 

## Anova 

> fit16 <- aov(Daily_Feed~Year, data16) 

> summary(fit16) 

            Df    Sum Sq   Mean Sq F value   Pr(>F)     

Year         6 3.215e+09 535831329   8.095 8.63e-07 *** 

Residuals   77 5.097e+09  66195940                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey16 <- TukeyHSD(fit16, conf.level=0.95) #Tukey multiple comparison 

> Tukey16 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data16) 

 

$Year 

                diff        lwr       upr     p adj 

2015-2014 16422.8276   6366.315 26479.340 0.0000869 

2016-2014 16203.2890   6146.776 26259.802 0.0001120 

2017-2014 13835.6144   3779.102 23892.127 0.0015085 
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2018-2014 12791.7480   2735.235 22848.261 0.0043489 

2019-2014 15421.9768   5365.464 25478.490 0.0002714 

2020-2014 21622.0881  11565.575 31678.601 0.0000001 

2016-2015  -219.5385 -10276.051  9836.974 1.0000000 

2017-2015 -2587.2132 -12643.726  7469.300 0.9863374 

2018-2015 -3631.0796 -13687.592  6425.433 0.9282912 

2019-2015 -1000.8507 -11057.364  9055.662 0.9999353 

2020-2015  5199.2605  -4857.252 15255.773 0.7044122 

2017-2016 -2367.6746 -12424.188  7688.838 0.9914359 

2018-2016 -3411.5410 -13468.054  6644.972 0.9461552 

2019-2016  -781.3122 -10837.825  9275.201 0.9999850 

2020-2016  5418.7990  -4637.714 15475.312 0.6626833 

2018-2017 -1043.8664 -11100.379  9012.646 0.9999171 

2019-2017  1586.3624  -8470.150 11642.875 0.9990653 

2020-2017  7786.4737  -2270.039 17842.987 0.2369671 

2019-2018  2630.2288  -7426.284 12686.742 0.9851162 

2020-2018  8830.3401  -1226.173 18886.853 0.1232539 

2020-2019  6200.1113  -3856.402 16256.624 0.5083279 

 

Year Daily_Feed        sd 

1 2014   19128.24  2959.616 

2 2015   35551.07  8151.082 

3 2016   35331.53  8097.009 

4 2017   32963.85  7527.845 

5 2018   31919.99  4847.275 

6 2019   34550.22 14652.833 

7 2020   40750.33  5266.926 

 

C.2.6 Waste Feed 

## Anova 

> fit17 <- aov(Daily_Feed~Year, data17) 

> summary(fit17) 

            Df  Sum Sq Mean Sq F value Pr(>F) 

Year         2  162532   81266   0.123  0.891 

Residuals    2 1326492  663246                

> Tukey17 <- TukeyHSD(fit17, conf.level=0.95) #Tukey multiple comparison 

> Tukey17 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data17) 

 

$Year 

               diff       lwr      upr     p adj 

2015-2014  129.8785 -5409.711 5669.468 0.9895938 

2018-2014 -400.3705 -5939.960 5139.219 0.9092011 
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2018-2015 -530.2490 -7314.833 6254.335 0.8954420 

 

 
Figure C.11 Feedstock distribution for Waste Feed 

Year Daily_Feed       sd 

1 2014   2033.302 814.3993 

2 2015   2163.180       NA 

3 2018   1632.931       NA 

 

C.2.7 Other 

## Anova 

> fit18 <- aov(Daily_Feed~Year, data18) 

> summary(fit18) 

            Df    Sum Sq   Mean Sq F value   Pr(>F)     

Year         6 1.515e+09 252446057   17.69 1.34e-11 *** 

Residuals   59 8.421e+08  14272946                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey18 <- TukeyHSD(fit18, conf.level=0.95) #Tukey multiple comparison 

> Tukey18 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data18) 

 

$Year 

                   diff        lwr       upr     p adj 

2015-2014 -10337.815271 -17781.398 -2894.233 0.0014831 

2016-2014 -11858.180056 -19301.762 -4414.598 0.0001748 

2017-2014 -12134.719979 -20288.756 -3980.684 0.0005340 

2018-2014 -11700.216642 -19143.799 -4256.634 0.0002197 

2019-2014 -10330.305803 -18018.005 -2642.607 0.0023257 
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2020-2014    118.311914  -7325.270  7561.894 1.0000000 

2016-2015  -1520.364785  -6228.100  3187.370 0.9551763 

2017-2015  -1796.904708  -7562.679  3968.869 0.9622032 

2018-2015  -1362.401371  -6070.136  3345.333 0.9737142 

2019-2015      7.509468  -5077.425  5092.444 1.0000000 

2020-2015  10456.127185   5748.392 15163.862 0.0000001 

2017-2016   -276.539923  -6042.314  5489.234 0.9999991 

2018-2016    157.963414  -4549.771  4865.698 0.9999999 

2019-2016   1527.874253  -3557.060  6612.809 0.9683570 

2020-2016  11976.491970   7268.757 16684.227 0.0000000 

2018-2017    434.503337  -5331.271  6200.277 0.9999866 

2019-2017   1804.414176  -4273.245  7882.074 0.9701660 

2020-2017  12253.031893   6487.258 18018.806 0.0000004 

2019-2018   1369.910839  -3715.024  6454.846 0.9816758 

2020-2018  11818.528556   7110.794 16526.263 0.0000000 

2020-2019  10448.617717   5363.683 15533.552 0.0000009 

 

 
Figure C.12 Feedstock distribution for Other 

Year Daily_Feed         sd 

1 2014  13209.657 10452.4314 

2 2015   2871.842  5042.0168 

3 2016   1351.477   853.5117 

4 2017   1074.937   216.1485 

5 2018   1509.441   996.2938 

6 2019   2879.352  1944.4467 

7 2020  13327.969  5174.6180 
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C.2.8 Cart Food 

## Anova 

> fit19 <- aov(Daily_Feed~Year, data19) 

> summary(fit19) 

            Df   Sum Sq  Mean Sq F value Pr(>F)     

Year         6 91209454 15201576   29.92 <2e-16 *** 

Residuals   77 39124552   508111                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey19 <- TukeyHSD(fit19, conf.level=0.95) #Tukey multiple comparison 

> Tukey19 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data19) 

$Year 

                  diff        lwr        upr     p adj 

2015-2014  -388.577147 -1269.6485   492.4942 0.8331802 

2016-2014   187.560292  -693.5110  1068.6316 0.9950230 

2017-2014 -2126.439296 -3007.5106 -1245.3680 0.0000000 

2018-2014 -2130.332627 -3011.4039 -1249.2613 0.0000000 

2019-2014 -2155.620381 -3036.6917 -1274.5491 0.0000000 

2020-2014 -2180.945935 -3062.0172 -1299.8746 0.0000000 

2016-2015   576.137439  -304.9339  1457.2088 0.4357217 

2017-2015 -1737.862149 -2618.9335  -856.7908 0.0000014 

2018-2015 -1741.755481 -2622.8268  -860.6842 0.0000013 

2019-2015 -1767.043235 -2648.1145  -885.9719 0.0000009 

2020-2015 -1792.368788 -2673.4401  -911.2975 0.0000006 

2017-2016 -2313.999588 -3195.0709 -1432.9283 0.0000000 

2018-2016 -2317.892919 -3198.9642 -1436.8216 0.0000000 

2019-2016 -2343.180673 -3224.2520 -1462.1094 0.0000000 

2020-2016 -2368.506227 -3249.5775 -1487.4349 0.0000000 

2018-2017    -3.893331  -884.9646   877.1780 1.0000000 

2019-2017   -29.181085  -910.2524   851.8902 0.9999999 

2020-2017   -54.506639  -935.5780   826.5647 0.9999961 

2019-2018   -25.287754  -906.3591   855.7836 1.0000000 

2020-2018   -50.613307  -931.6846   830.4580 0.9999975 

2020-2019   -25.325553  -906.3969   855.7458 1.0000000 
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Figure C.13 Feedstock distribution for Cart Food 

Year Daily_Feed         sd 

1 2014 2248.64454  949.06204 

2 2015 1860.06739 1201.71795 

3 2016 2436.20483 1097.05343 

4 2017  122.20524   57.59513 

5 2018  118.31191   59.13605 

6 2019   93.02416   32.70010 

7 2020   67.69861   22.86615 

 

C.2.9 Total Food Pit 

## Anova 

> fit20 <- aov(Daily_Feed~Year, data20) 

> summary(fit20) 

            Df    Sum Sq   Mean Sq F value  Pr(>F)    

Year         6 4.559e+09 759802970   3.641 0.00311 ** 

Residuals   77 1.607e+10 208668601                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey20 <- TukeyHSD(fit20, conf.level=0.95) #Tukey multiple comparison 

> Tukey20 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data20) 

 

$Year 

                 diff        lwr        upr     p adj 

2015-2014  13781.6369  -4073.381 31636.6548 0.2402617 

2016-2014   5834.7051 -12020.313 23689.7229 0.9548619 

2017-2014  -6451.4390 -24306.457 11403.5788 0.9280614 
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2018-2014  -3507.1355 -21362.153 14347.8823 0.9967990 

2019-2014  -7225.5316 -25080.549 10629.4863 0.8821913 

2020-2014   8102.4005  -9752.617 25957.4184 0.8138326 

2016-2015  -7946.9318 -25801.950  9908.0860 0.8271496 

2017-2015 -20233.0759 -38088.094 -2378.0581 0.0161612 

2018-2015 -17288.7725 -35143.790   566.2454 0.0640479 

2019-2015 -21007.1685 -38862.186 -3152.1506 0.0108739 

2020-2015  -5679.2364 -23534.254 12175.7814 0.9603379 

2017-2016 -12286.1441 -30141.162  5568.8737 0.3728430 

2018-2016  -9341.8406 -27196.858  8513.1772 0.6927108 

2019-2016 -13060.2367 -30915.255  4794.7812 0.2999843 

2020-2016   2267.6954 -15587.322 20122.7133 0.9997311 

2018-2017   2944.3035 -14910.714 20799.3213 0.9987976 

2019-2017   -774.0925 -18629.110 17080.9253 0.9999995 

2020-2017  14553.8395  -3301.178 32408.8574 0.1857086 

2019-2018  -3718.3960 -21573.414 14136.6218 0.9955849 

2020-2018  11609.5360  -6245.482 29464.5539 0.4427454 

2020-2019  15327.9321  -2527.086 33182.9499 0.1406406 

 

Year Daily_Feed       sd 

1 2014   56727.27 13338.33 

2 2015   70508.91 11747.97 

3 2016   62561.98 15610.50 

4 2017   50275.83 14544.59 

5 2018   53220.14 14366.86 

6 2019   49501.74 19066.94 

7 2020   64829.67 10934.65 

 

C.2.10 Total Feedstock 

## Anova 

> fit21 <- aov(Daily_Feed~Year, data21) 

> summary(fit21) 

            Df   Sum Sq   Mean Sq F value   Pr(>F)     

Year         6 1.47e+10 2.451e+09   5.736 5.68e-05 *** 

Residuals   77 3.29e+10 4.273e+08                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey21 <- TukeyHSD(fit21, conf.level=0.95) #Tukey multiple comparison 

> Tukey21 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Daily_Feed ~ Year, data = data21) 

 

$Year 

                 diff       lwr        upr     p adj 
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2015-2014  11511.2200 -14038.03  37060.475 0.8188421 

2016-2014    881.2536 -24668.00  26430.509 0.9999999 

2017-2014 -10790.8025 -36340.06  14758.452 0.8595263 

2018-2014 -17484.5730 -43033.83   8064.682 0.3795427 

2019-2014 -30647.0569 -56196.31  -5097.802 0.0087674 

2020-2014 -18084.4862 -43633.74   7464.769 0.3386491 

2016-2015 -10629.9663 -36179.22  14919.289 0.8678570 

2017-2015 -22302.0224 -47851.28   3247.232 0.1276646 

2018-2015 -28995.7930 -54545.05  -3446.538 0.0159145 

2019-2015 -42158.2768 -67707.53 -16609.022 0.0000713 

2020-2015 -29595.7062 -55144.96  -4046.451 0.0128581 

2017-2016 -11672.0561 -37221.31  13877.199 0.8090433 

2018-2016 -18365.8267 -43915.08   7183.428 0.3203061 

2019-2016 -31528.3105 -57077.57  -5979.056 0.0063055 

2020-2016 -18965.7399 -44514.99   6583.515 0.2831181 

2018-2017  -6693.7706 -32243.03  18855.484 0.9849832 

2019-2017 -19856.2544 -45405.51   5693.000 0.2330349 

2020-2017  -7293.6838 -32842.94  18255.571 0.9767234 

2019-2018 -13162.4838 -38711.74  12386.771 0.7078275 

2020-2018   -599.9132 -26149.17  24949.342 1.0000000 

2020-2019  12562.5706 -12986.68  38111.826 0.7505992 

 

Year Daily_Feed       sd 

1 2014  128010.01 16625.39 

2 2015  139521.23 22888.56 

3 2016  128891.27 25993.66 

4 2017  117219.21 16957.01 

5 2018  110525.44 21605.39 

6 2019   97362.96 23159.83 

7 2020  109925.53 14971.79 

 

D. Violin Chart and ANOVA Tukey Multiple Comparison Codes for Digester Output 

Parameters 

FULL CODES 

## Biogas - Violin analysis 

## SCAD operation 

## Wei Liao, December 9, 2021 

## Fahmi Dwilaksono, December 12, 2021 

# Load libraries ----- 

  library (MASS) 

  library(ggplot2)  

  library(grid) 

  library(gridExtra) 

  library(ggpubr) 

  library(plyr) 

  library(inferr) 
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# Plot bar chart with standard deviation ----- 

  #data : a data frame 

  #varname : the name of a column containing the variable to be summarized 

  #groupnames : vector of column names to be used as 

  #grouping variables 

  data_summary <- function(data, varname, groupnames){ 

    require(plyr) 

    summary_func <- function(x, col){ 

      c(mean = mean(x[[col]], na.rm=TRUE), 

        sd = sd(x[[col]], na.rm=TRUE)) 

    } 

    data_sum<-ddply(data, groupnames, .fun=summary_func, 

                    varname) 

    data_sum <- rename(data_sum, c("mean" = varname)) 

    return(data_sum) 

  } 

 

# Choose data file Biogas_Violin.txt ----- 

con <-file.choose(new = FALSE) 

metadata <- read.table(con, header = T, row.names = 1, fill = TRUE) 

head(metadata) 

 

# Define factors for metadata ----- 

metadata$Year<- factor(metadata$Year) 

metadata$Month <- factor(metadata$Month) 

 

#Anova 

#1. Biogas produciton 

 

## Anova 

fit1 <- aov(Biogas_production~Year, metadata) 

summary(fit1) 

Tukey1 <- TukeyHSD(fit1, conf.level=0.95) #Tukey multiple comparison 

Tukey1 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_1 <- ggplot(metadata, aes(x=Year, y=Biogas_production)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Biogas production (m3/day)") + labs(title = "Biogas production", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  
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        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_1 

box_1_1 <- box_1 + geom_boxplot(width=0.2) # Add median and quartile 

box_1_1  

 

## Mean and standard deviation 

box_1_data <- data_summary(metadata, varname="Biogas_production",  

                            groupnames=c("Year")) 

box_1_data 

 

 

#2. Methane content 

## Anova 

fit2 <- aov(Methane_content~Year, metadata) 

summary(fit2) 

Tukey2 <- TukeyHSD(fit2, conf.level=0.95) #Tukey multiple comparison 

Tukey2 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_2 <- ggplot(metadata, aes(x=Year, y=Methane_content)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Methane content (%)") + labs(title = "Methane content", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_2 

box_2_1 <- box_2 + geom_boxplot(width=0.2) # Add median and quartile 

box_2_1  

 

## Mean and standard deviation 

box_2_data <- data_summary(metadata, varname="Methane_content",  

                           groupnames=c("Year")) 

box_2_data 

 

#3. H2S 

 

## Anova 

fit3 <- aov(H2S_content~Year, metadata) 

summary(fit3) 

Tukey3 <- TukeyHSD(fit3, conf.level=0.95) #Tukey multiple comparison 
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Tukey3 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_3 <- ggplot(metadata, aes(x=Year, y=H2S_content)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("H2S content (ppmv)") + labs(title = "H2S content", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_3 

box_3_1 <- box_3 + geom_boxplot(width=0.2) # Add median and quartile 

box_3_1  

 

## Mean and standard deviation 

box_3_data <- data_summary(metadata, varname="H2S_content",  

                           groupnames=c("Year")) 

box_3_data 

 

#4. Electricity 

 

## Anova 

fit4 <- aov(Electricity~Year, metadata) 

summary(fit4) 

Tukey4 <- TukeyHSD(fit4, conf.level=0.95) #Tukey multiple comparison 

Tukey4 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_4 <- ggplot(metadata, aes(x=Year, y=Electricity)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Electricity (kWh)") + labs(title = "Electricity", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_4 

box_4_1 <- box_4 + geom_boxplot(width=0.2) # Add median and quartile 

box_4_1  
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## Mean and standard deviation 

box_4_data <- data_summary(metadata, varname="Electricity",  

                           groupnames=c("Year")) 

box_4_data 

 

#5. Effluent_TS 

 

## Anova 

fit5 <- aov(Effluent_TS~Year, metadata) 

summary(fit5) 

Tukey5 <- TukeyHSD(fit5, conf.level=0.95) #Tukey multiple comparison 

Tukey5 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_5 <- ggplot(metadata, aes(x=Year, y=Effluent_TS)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Effluent_TS (mg/L)") + labs(title = "Effluent_TS", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_5 

box_5_1 <- box_5 + geom_boxplot(width=0.2) # Add median and quartile 

box_5_1  

 

## Mean and standard deviation 

box_5_data <- data_summary(metadata, varname="Effluent_TS",  

                           groupnames=c("Year")) 

box_5_data 

 

#6. Effluent_TN 

 

## Anova 

fit6 <- aov(Effluent_TN~Year, metadata) 

summary(fit6) 

Tukey6 <- TukeyHSD(fit6, conf.level=0.95) #Tukey multiple comparison 

Tukey6 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_6 <- ggplot(metadata, aes(x=Year, y=Effluent_TN)) + 
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  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Effluent_TN (mg/L)") + labs(title = "Effluent_TN", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_6 

box_6_1 <- box_6 + geom_boxplot(width=0.2) # Add median and quartile 

box_6_1  

 

## Mean and standard deviation 

box_6_data <- data_summary(metadata, varname="Effluent_TN",  

                           groupnames=c("Year")) 

box_6_data 

 

#7. Effluent_TP 

 

## Anova 

fit7 <- aov(Effluent_TP~Year, metadata) 

summary(fit7) 

Tukey7 <- TukeyHSD(fit7, conf.level=0.95) #Tukey multiple comparison 

Tukey7 #Output Tukey results 

 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_7 <- ggplot(metadata, aes(x=Year, y=Effluent_TP)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Effluent_TP (mg/L)") + labs(title = "Effluent_TP", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_7 

box_7_1 <- box_7 + geom_boxplot(width=0.2) # Add median and quartile 

box_7_1  

 

## Mean and standard deviation 

box_7_data <- data_summary(metadata, varname="Effluent_TP",  

                           groupnames=c("Year")) 
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box_7_data 

 

#8. Effluent_pH 

 

## Anova 

fit8 <- aov(Effluent_pH~Year, metadata) 

summary(fit8) 

Tukey8 <- TukeyHSD(fit8, conf.level=0.95) #Tukey multiple comparison 

Tukey8 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_8 <- ggplot(metadata, aes(x=Year, y=Effluent_pH)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Effluent_pH") + labs(title = "Effluent_pH", subtitle=NULL) +  

  theme_classic() + 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_8 

box_8_1 <- box_8 + geom_boxplot(width=0.2) # Add median and quartile 

box_8_1  

 

## Mean and standard deviation 

box_8_data <- data_summary(metadata, varname="Effluent_TP",  

                           groupnames=c("Year")) 

box_8_data 

 

#9. Effluent_VFA 

 

## Anova 

fit9 <- aov(Effluent_VFA~Year, metadata) 

summary(fit9) 

Tukey9 <- TukeyHSD(fit9, conf.level=0.95) #Tukey multiple comparison 

Tukey9 #Output Tukey results 

 

## Plot 

windowsFonts(A=windowsFont("Times New Roman")) #Import font 

box_9 <- ggplot(metadata, aes(x=Year, y=Effluent_VFA)) + 

  geom_violin(trim=TRUE, fill="green") +  

  xlab("Year")+ 

  ylab("Effluent_VFA (mg/L)") + labs(title = "Effluent_VFA", subtitle=NULL) +  

  theme_classic() + 



192 

 

  theme(title=element_text(size=20, family="A"),  

        axis.text.x = element_text(size=20, family="A"),  

        axis.text.y=element_text(size=20, family="A"),  

        axis.title.y = element_text(size = 20, family="A"),  

        axis.title.x=element_text(size=20, family="A"), legend.position = "top")  

box_9 

box_9_1 <- box_9 + geom_boxplot(width=0.2) # Add median and quartile 

box_9_1  

 

## Mean and standard deviation 

box_9_data <- data_summary(metadata, varname="Effluent_TP",  

                           groupnames=c("Year")) 

box_9_data 

 

RESULTS 

D.1 Biogas Production 

Year         6 20642104 3440351   7.678 1.76e-06 *** 

Residuals   77 34500609  448060                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey1 <- TukeyHSD(fit1, conf.level=0.95) #Tukey multiple comparison 

> Tukey1 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Biogas_production ~ Year, data = metadata) 

 

$Year 

                diff         lwr       upr     p adj 

2015-2014  694.00000  -133.36997 1521.3700 0.1599213 

2016-2014 1541.66667   714.29669 2369.0366 0.0000055 

2017-2014 1308.91667   481.54669 2136.2866 0.0001566 

2018-2014 1358.50000   531.13003 2185.8700 0.0000784 

2019-2014 1128.33333   300.96336 1955.7033 0.0017106 

2020-2014 1334.41667   507.04669 2161.7866 0.0001099 

2016-2015  847.66667    20.29669 1675.0366 0.0410426 

2017-2015  614.91667  -212.45331 1442.2866 0.2817500 

2018-2015  664.50000  -162.86997 1491.8700 0.1998249 

2019-2015  434.33333  -393.03664 1261.7033 0.6893826 

2020-2015  640.41667  -186.95331 1467.7866 0.2372841 

2017-2016 -232.75000 -1060.11997  594.6200 0.9783861 

2018-2016 -183.16667 -1010.53664  644.2033 0.9938444 

2019-2016 -413.33333 -1240.70331  414.0366 0.7365206 

2020-2016 -207.25000 -1034.61997  620.1200 0.9881153 

2018-2017   49.58333  -777.78664  876.9533 0.9999968 

2019-2017 -180.58333 -1007.95331  646.7866 0.9942997 
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2020-2017   25.50000  -801.86997  852.8700 0.9999999 

2019-2018 -230.16667 -1057.53664  597.2033 0.9795748 

2020-2018  -24.08333  -851.45331  803.2866 1.0000000 

2020-2019  206.08333  -621.28664 1033.4533 0.9884622 

 

Year Biogas_production        sd 

1 2014          2330.500  553.7258 

2 2015          3024.500 1143.9877 

3 2016          3872.167  794.9921 

4 2017          3639.417  702.3386 

5 2018          3689.000  199.2326 

6 2019          3458.833  523.6508 

7 2020          3664.917  286.1870 

 

D.2 Methane Content 

            Df Sum Sq Mean Sq F value   Pr(>F)     

Year         6  268.5   44.75   10.79 1.11e-08 *** 

Residuals   77  319.3    4.15                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey2 <- TukeyHSD(fit2, conf.level=0.95) #Tukey multiple comparison 

> Tukey2 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Methane_content ~ Year, data = metadata) 

 

$Year 

                diff         lwr        upr     p adj 

2015-2014 -2.7500000 -5.26714655 -0.2328534 0.0231534 

2016-2014 -1.1666667 -3.68381322  1.3504799 0.7984379 

2017-2014  1.6666667 -0.85047989  4.1838132 0.4202415 

2018-2014  2.2500000 -0.26714655  4.7671466 0.1105162 

2019-2014  0.6666667 -1.85047989  3.1838132 0.9841179 

2020-2014  2.5833333  0.06618678  5.1004799 0.0404567 

2016-2015  1.5833333 -0.93381322  4.1004799 0.4837268 

2017-2015  4.4166667  1.89952011  6.9338132 0.0000206 

2018-2015  5.0000000  2.48285345  7.5171466 0.0000012 

2019-2015  3.4166667  0.89952011  5.9338132 0.0018285 

2020-2015  5.3333333  2.81618678  7.8504799 0.0000002 

2017-2016  2.8333333  0.31618678  5.3504799 0.0172959 

2018-2016  3.4166667  0.89952011  5.9338132 0.0018285 

2019-2016  1.8333333 -0.68381322  4.3504799 0.3049407 

2020-2016  3.7500000  1.23285345  6.2671466 0.0004418 

2018-2017  0.5833333 -1.93381322  3.1004799 0.9921290 

2019-2017 -1.0000000 -3.51714655  1.5171466 0.8910075 
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2020-2017  0.9166667 -1.60047989  3.4338132 0.9254758 

2019-2018 -1.5833333 -4.10047989  0.9338132 0.4837268 

2020-2018  0.3333333 -2.18381322  2.8504799 0.9996575 

2020-2019  1.9166667 -0.60047989  4.4338132 0.2548637 

 
  Year Methane_content        sd 

1 2014        63.58333 2.9374799 

2 2015        60.83333 2.3290003 

3 2016        62.41667 2.2746961 

4 2017        65.25000 1.5447860 

5 2018        65.83333 0.9374369 

6 2019        64.25000 0.9653073 

7 2020        66.16667 2.3677121 

 

D.3 H2S Content 

           Df   Sum Sq Mean Sq F value Pr(>F) 

Year         6  1130830  188472   0.979  0.445 

Residuals   77 14823077  192507                

> Tukey3 <- TukeyHSD(fit3, conf.level=0.95) #Tukey multiple comparison 

> Tukey3 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = H2S_content ~ Year, data = metadata) 

 

$Year 

                diff       lwr      upr     p adj 

2015-2014   71.83333 -470.4866 614.1532 0.9996570 

2016-2014  307.66667 -234.6532 849.9866 0.6065461 

2017-2014   61.16667 -481.1532 603.4866 0.9998653 

2018-2014   27.66667 -514.6532 569.9866 0.9999988 

2019-2014  160.83333 -381.4866 703.1532 0.9718399 

2020-2014  292.00000 -250.3199 834.3199 0.6634742 

2016-2015  235.83333 -306.4866 778.1532 0.8421465 

2017-2015  -10.66667 -552.9866 531.6532 1.0000000 

2018-2015  -44.16667 -586.4866 498.1532 0.9999802 

2019-2015   89.00000 -453.3199 631.3199 0.9988299 

2020-2015  220.16667 -322.1532 762.4866 0.8806089 

2017-2016 -246.50000 -788.8199 295.8199 0.8126780 

2018-2016 -280.00000 -822.3199 262.3199 0.7057319 

2019-2016 -146.83333 -689.1532 395.4866 0.9822128 

2020-2016  -15.66667 -557.9866 526.6532 1.0000000 

2018-2017  -33.50000 -575.8199 508.8199 0.9999962 

2019-2017   99.66667 -442.6532 641.9866 0.9977881 

2020-2017  230.83333 -311.4866 773.1532 0.8550638 

2019-2018  133.16667 -409.1532 675.4866 0.9892975 
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2020-2018  264.33333 -277.9866 806.6532 0.7581408 

2020-2019  131.16667 -411.1532 673.4866 0.9901197 

 
  Year H2S_content       sd 

1 2014    359.8333 273.7334 

2 2015    431.6667 291.7634 

3 2016    667.5000 614.5482 

4 2017    421.0000 214.4625 

5 2018    387.5000 290.1907 

6 2019    520.6667 512.9892 

7 2020    651.8333 645.3405 

 

D.4 Electricity 

> ## Anova 

> fit4 <- aov(Electricity~Year, metadata) 

> summary(fit4) 

            Df   Sum Sq Mean Sq F value   Pr(>F)     

Year         6 58173817 9695636   7.397 3.61e-06 *** 

Residuals   71 93063092 1310748                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey4 <- TukeyHSD(fit4, conf.level=0.95) #Tukey multiple comparison 

> Tukey4 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Electricity ~ Year, data = metadata) 

 

$Year 

                diff        lwr       upr     p adj 

2015-2014 1550.33333   132.0368 2968.6299 0.0231496 

2016-2014 2526.72619   874.4607 4178.9917 0.0003011 

2017-2014 2114.03788   663.8655 3564.2102 0.0006559 

2018-2014 2462.00000  1043.7035 3880.2965 0.0000284 

2019-2014 1706.41667   288.1201 3124.7132 0.0085860 

2020-2014 2637.08333  1218.7868 4055.3799 0.0000065 

2016-2015  976.39286  -675.8726 2628.6583 0.5569849 

2017-2015  563.70455  -886.4678 2013.8769 0.8995423 

2018-2015  911.66667  -506.6299 2329.9632 0.4547983 

2019-2015  156.08333 -1262.2132 1574.3799 0.9998810 

2020-2015 1086.75000  -331.5465 2505.0465 0.2467925 

2017-2016 -412.68831 -2092.3954 1267.0188 0.9890915 

2018-2016  -64.72619 -1716.9917 1587.5393 0.9999997 

2019-2016 -820.30952 -2472.5750  831.9559 0.7400160 

2020-2016  110.35714 -1541.9083 1762.6226 0.9999938 

2018-2017  347.96212 -1102.2102 1798.1345 0.9903727 
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2019-2017 -407.62121 -1857.7936 1042.5511 0.9781490 

2020-2017  523.04545  -927.1269 1973.2178 0.9277426 

2019-2018 -755.58333 -2173.8799  662.7132 0.6722154 

2020-2018  175.08333 -1243.2132 1593.3799 0.9997677 

2020-2019  930.66667  -487.6299 2348.9632 0.4293029 

 

Year Electricity        sd 

1 2014    4880.417  728.5998 

2 2015    6430.750 2041.8703 

3 2016    7407.143 1080.8314 

4 2017    6994.455 1037.2193 

5 2018    7342.417  692.6983 

6 2019    6586.833  952.5799 

7 2020    7517.500  870.4768 

 

D.5 Effluent TS 

> ## Anova 

> fit5 <- aov(Effluent_TS~Year, metadata) 

> summary(fit5) 

            Df    Sum Sq   Mean Sq F value   Pr(>F)     

Year         6 2.907e+09 484541468   10.62 3.69e-08 *** 

Residuals   64 2.919e+09  45609925                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey5 <- TukeyHSD(fit5, conf.level=0.95) #Tukey multiple comparison 

> Tukey5 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Effluent_TS ~ Year, data = metadata) 

 

$Year 

                diff          lwr       upr     p adj 

2015-2014   7997.682   -984.79256 16980.156 0.1122739 

2016-2014  16843.182   8261.75241 25424.611 0.0000023 

2017-2014  21274.293  12034.12035 30514.466 0.0000000 

2018-2014   9827.932   1246.50241 18409.361 0.0147911 

2019-2014  10598.882   1616.40744 19581.356 0.0108218 

2020-2014  15052.896   5113.18934 24992.603 0.0003813 

2016-2015   8845.500     43.05339 17647.947 0.0481143 

2017-2015  13276.611   3830.82238 22722.400 0.0012007 

2018-2015   1830.250  -6972.19661 10632.697 0.9954403 

2019-2015   2601.200  -6592.65563 11795.056 0.9769386 

2020-2015   7055.214  -3075.92119 17186.350 0.3538760 

2017-2016   4431.111  -4634.15279 13496.375 0.7508227 

2018-2016  -7015.250 -15408.05353  1377.554 0.1611800 
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2019-2016  -6244.300 -15046.74661  2558.147 0.3318569 

2020-2016  -1790.286 -11567.60594  7987.035 0.9977393 

2018-2017 -11446.361 -20511.62502 -2381.097 0.0049887 

2019-2017 -10675.411 -20121.19984 -1229.622 0.0169013 

2020-2017  -6221.397 -16581.69843  4138.905 0.5346432 

2019-2018    770.950  -8031.49661  9573.397 0.9999681 

2020-2018   5224.964  -4552.35594 15002.285 0.6658345 

2020-2019   4454.014  -5677.12119 14585.150 0.8312859 

 

Year Effluent_TS       sd 

1 2014    49084.82 5988.019 

2 2015    57082.50 8729.659 

3 2016    65928.00 7426.269 

4 2017    70359.11 6288.440 

5 2018    58912.75 4119.301 

6 2019    59683.70 7100.303 

7 2020    64137.71 7202.142 

 

D.6 Effluent TN 

> ## Anova 

> fit6 <- aov(Effluent_TN~Year, metadata) 

> summary(fit6) 

            Df   Sum Sq Mean Sq F value Pr(>F)    

Year         5  9543738 1908748   4.072  0.004 ** 

Residuals   44 20623980  468727                   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey6 <- TukeyHSD(fit6, conf.level=0.95) #Tukey multiple comparison 

> Tukey6 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Effluent_TN ~ Year, data = metadata) 

 

$Year 

                  diff        lwr       upr     p adj 

2016-2014   497.666667  -844.8832 1840.2166 0.8769966 

2017-2014     9.777778 -1349.8754 1369.4309 1.0000000 

2018-2014  -560.000000 -1876.4785  756.4785 0.8008652 

2019-2014  -698.033333 -2040.5832  644.5166 0.6354059 

2020-2014  -350.333333 -1792.4633 1091.7966 0.9779748 

2017-2016  -487.888889 -1424.9651  449.1874 0.6340520 

2018-2016 -1057.666667 -1930.9197 -184.4136 0.0095733 

2019-2016 -1195.700000 -2107.7830 -283.6170 0.0040739 

2020-2016  -848.000000 -1901.1828  205.1828 0.1790566 

2018-2017  -569.777778 -1469.1038  329.5482 0.4232430 
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2019-2017  -707.811111 -1644.8874  229.2651 0.2364522 

2020-2017  -360.111111 -1435.0113  714.7891 0.9161162 

2019-2018  -138.033333 -1011.2864  735.2197 0.9969255 

2020-2018   209.666667  -810.0732 1229.4065 0.9895575 

2020-2019   347.700000  -705.4828 1400.8828 0.9207828 

 

Year Effluent_TN       sd 

1 2014    3645.333 258.6220 

2 2016    4143.000 653.1854 

3 2017    3655.111 577.1333 

4 2018    3085.333 581.5000 

5 2019    2947.300 876.2909 

6 2020    3295.000 819.1642 

 

D.7 Effluent TP 

> ## Anova 

> fit7 <- aov(Effluent_TP~Year, metadata) 

> summary(fit7) 

            Df  Sum Sq Mean Sq F value   Pr(>F)     

Year         6 4015385  669231   9.616 9.39e-07 *** 

Residuals   44 3062221   69596                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey7 <- TukeyHSD(fit7, conf.level=0.95) #Tukey multiple comparison 

> Tukey7 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Effluent_TP ~ Year, data = metadata) 

 

$Year 

                 diff        lwr        upr     p adj 

2015-2014 -352.333333 -1293.2144  588.54775 0.9062776 

2016-2014 -628.033333 -1164.4181  -91.64859 0.0125302 

2017-2014 -792.000000 -1335.2179 -248.78205 0.0009006 

2018-2014 -724.250000 -1250.2185 -198.28149 0.0019504 

2019-2014 -794.733333 -1331.1181 -258.34859 0.0007161 

2020-2014  -27.000000  -603.1696  549.16964 0.9999991 

2016-2015 -275.700000 -1130.2977  578.89768 0.9521294 

2017-2015 -439.666667 -1298.5697  419.23632 0.6946584 

2018-2015 -371.916667 -1220.0154  476.18208 0.8221838 

2019-2015 -442.400000 -1296.9977  412.19768 0.6836316 

2020-2015  325.333333  -554.7803 1205.44699 0.9113842 

2017-2016 -163.966667  -538.3538  210.42047 0.8230582 

2018-2016  -96.216667  -445.1047  252.67138 0.9776756 

2019-2016 -166.700000  -531.1017  197.70168 0.7919737 
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2020-2016  601.033333   180.2585 1021.80814 0.0011970 

2018-2017   67.750000  -291.5549  427.05490 0.9970225 

2019-2017   -2.733333  -377.1205  371.65380 1.0000000 

2020-2017  765.000000   335.5485 1194.45149 0.0000356 

2019-2018  -70.483333  -419.3714  278.40471 0.9956522 

2020-2018  697.250000   289.8365 1104.66346 0.0000726 

2020-2019  767.733333   346.9585 1188.50814 0.0000228 

 

Year Effluent_TP        sd 

1 2014   1168.3333  51.98397 

2 2015    816.0000        NA 

3 2016    540.3000 129.16918 

4 2017    376.3333  78.57640 

5 2018    444.0833 325.76915 

6 2019    373.6000  77.72916 

7 2020   1141.3333 571.92715 

 

*group with fewer than 2 data points will be deleted. 2015 only has 1 data point so it was 

removed 

 

D.8 Effluent pH 

> ## Anova 

> fit8 <- aov(Effluent_pH~Year, metadata) 

> summary(fit8) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Year         6  0.333 0.05550    2.58 0.0266 * 

Residuals   64  1.377 0.02151                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey8 <- TukeyHSD(fit8, conf.level=0.95) #Tukey multiple comparison 

> Tukey8 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Effluent_pH ~ Year, data = metadata) 

 

$Year 

                  diff        lwr         upr     p adj 

2015-2014 -0.031818182 -0.2269049 0.163268578 0.9988202 

2016-2014 -0.056818182 -0.2431948 0.129558443 0.9666104 

2017-2014 -0.048484848 -0.2491685 0.152198755 0.9897882 

2018-2014 -0.065151515 -0.2515281 0.121225110 0.9361855 

2019-2014 -0.191818182 -0.3869049 0.003268578 0.0569543 

2020-2014 -0.197532468 -0.4134090 0.018344039 0.0944586 

2016-2015 -0.025000000 -0.2161768 0.166176809 0.9996669 

2017-2015 -0.016666667 -0.2218160 0.188482632 0.9999795 
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2018-2015 -0.033333333 -0.2245101 0.157843476 0.9982809 

2019-2015 -0.160000000 -0.3596777 0.039677665 0.1996821 

2020-2015 -0.165714286 -0.3857484 0.054319784 0.2635888 

2017-2016  0.008333333 -0.1885515 0.205218166 0.9999996 

2018-2016 -0.008333333 -0.1906133 0.173946602 0.9999993 

2019-2016 -0.135000000 -0.3261768 0.056176809 0.3372597 

2020-2016 -0.140714286 -0.3530640 0.071635413 0.4143088 

2018-2017 -0.016666667 -0.2135515 0.180218166 0.9999739 

2019-2017 -0.143333333 -0.3484826 0.061815965 0.3499429 

2020-2017 -0.149047619 -0.3740589 0.075963618 0.4147777 

2019-2018 -0.126666667 -0.3178435 0.064510142 0.4144769 

2020-2018 -0.132380952 -0.3447307 0.079968746 0.4893366 

2020-2019 -0.005714286 -0.2257484 0.214319784 1.0000000 

 

Year Effluent_pH        sd 

1 2014    7.881818 0.1250454 

2 2015    7.850000 0.1269296 

3 2016    7.825000 0.1959824 

4 2017    7.833333 0.1000000 

5 2018    7.816667 0.1267304 

6 2019    7.690000 0.1523884 

7 2020    7.684286 0.1767161 

 

D.9 Effluent VFA 

> ## Anova 

> fit9 <- aov(Effluent_VFA~Year, metadata) 

> summary(fit9) 

            Df   Sum Sq  Mean Sq F value   Pr(>F)     

Year         6 66702800 11117133   7.911 2.26e-06 *** 

Residuals   63 88531222  1405257                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> Tukey9 <- TukeyHSD(fit9, conf.level=0.95) #Tukey multiple comparison 

> Tukey9 #Output Tukey results 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = Effluent_VFA ~ Year, data = metadata) 

 

$Year 

                 diff        lwr        upr     p adj 

2015-2014   278.85455 -1298.6290  1856.3381 0.9981357 

2016-2014  2483.37121   976.3183  3990.4241 0.0000896 

2017-2014   532.89899 -1089.8410  2155.6390 0.9521232 

2018-2014  -484.87879 -1991.9317  1022.1741 0.9565537 

2019-2014  -114.54545 -1692.0290  1462.9381 0.9999894 
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2020-2014    76.78788 -1755.5436  1909.1193 0.9999996 

2016-2015  2204.51667   658.6492  3750.3841 0.0009793 

2017-2015   254.04444 -1404.8055  1912.8943 0.9991716 

2018-2015  -763.73333 -2309.6008   782.1341 0.7409955 

2019-2015  -393.40000 -2008.0059  1221.2059 0.9892838 

2020-2015  -202.06667 -2066.4530  1662.3197 0.9998878 

2017-2016 -1950.47222 -3542.4951  -358.4493 0.0071468 

2018-2016 -2968.25000 -4442.1768 -1494.3232 0.0000013 

2019-2016 -2597.91667 -4143.7841 -1052.0492 0.0000621 

2020-2016 -2406.58333 -4211.7676  -601.3990 0.0025172 

2018-2017 -1017.77778 -2609.8007   574.2451 0.4579787 

2019-2017  -647.44444 -2306.2943  1011.4055 0.8958544 

2020-2017  -456.11111 -2358.9424  1446.7202 0.9901690 

2019-2018   370.33333 -1175.5341  1916.2008 0.9901989 

2020-2018   561.66667 -1243.5176  2366.8510 0.9630106 

2020-2019   191.33333 -1673.0530  2055.7197 0.9999185 

 

Year Effluent_VFA        sd 

1 2014    1301.5455  918.1749 

2 2015    1580.4000 1312.9674 

3 2016    3784.9167 1859.0623 

4 2017    1834.4444 1103.4844 

5 2018     816.6667  597.9409 

6 2019    1187.0000 1039.4021 

7 2020    1378.3333  796.3772 

 

E. Other SCAD laboratory results 

E.1 Total Suspended Solids (TSS) 

Table E.1 Summary of TSS results 

Year 
Filtrate 

(mg/L) 

Effluent 

(mg/L) 

2014 22,972 33,604 

2015   39,000 

2016 23,862 35,556 

2017 26,633 33,378 

2018 33,172 32,819 

2019 26,995 33,328 

2020 49,236 48,833 

Max 49,236 48,833 

Min 22,972 32,819 

Mean  29,384   36,302  

Average 30,478 36,645 

St. Dev  9,001   5,356  
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E.2 Volatile Suspended Solids (VSS) 

Table E.2 Summary of VSS results 

Year 
Filtrate 

(mg/L) 

Effluent 

(mg/L) 

2014 18,556 27,247 

2015   33,333 

2016 19,795 30,828 

2017 20,567 28,311 

2018 22,901 27,587 

2019 22,858 29,650 

2020 34,542 42,389 

Max 34,542 42,389 

Min 18,556 27,247 

Mean  22,694   30,995  

Average 23,203 31,335 

St. Dev  5,306   4,916  

 

E.3 Ammonia 

Table E.3 Summary of ammonia results 

Year 
Filtrate 

(mg/L) 

Effluent 

(mg/L) 

2014 1,942 1,850 

2015 1,825 1,566 

2016 2,368 2,493 

2017 1,917 2,029 

2018 1,829 1,845 

2019 1,875 1,755 

2020 1,609 1,547 

Max 2,368 2,493 

Min 1,609 1,547 

Mean  1,898   1,847  

Average 1,909 1,869 

St. Dev  213   299  
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E.4 Alkalinity 

Table E.4 Summary of alkalinity results 

Year 
Filtrate 

(mg/L) 

Effluent 

(mg/L) 

2014 1,942 1,850 

2015 1,825 1,566 

2016 2,368 2,493 

2017 1,917 2,029 

2018 1,829 1,845 

2019 1,875 1,755 

2020 1,609 1,547 

Max 2,368 2,493 

Min 1,609 1,547 

Mean  1,898   1,847  

Average 1,909 1,869 

St. Dev  213   299  

 

 

E.5 Total Dissolved Solids (TDS) 

Table E.5 Summary of TDS results 

Year 
Filtrate 

(mg/L) 

Effluent 

(mg/L) 

2014 17,667 17,653 

2015   20,317 

2016 17,535 30,988 

2017 14,070 34,948 

2018 11,299 26,094 

2019 13,515 26,374 

2020 6,379 16,871 

Max 17,667 34,948 

Min 6,379 16,871 

Mean  12,725   23,942  

Average 13,411 24,749 

St. Dev  3,862   6,318  
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F. A&L Great Lakes Laboratory Results 

F.1 Solids 

Table F.1 Summary of Solids results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

Solids 

(%) 

2014   24.74 

2015   39.35 

2016   26.23 

2017 3.87   

2018 5.24 3.87 27.48 

2019   28.25 

2020   31.25 

Max  5.24   3.87   39.35  

Min  3.87   3.87   24.74  

Mean  4.50   3.87   29.20  

Average  4.56   3.87   29.55  

St. Dev  0.69   -     4.81  

 

F.2 Total Kjeldahl Nitrogen (TKN) 

Table F.2 Summary of TKN results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

Solids 

(%) 

2014   0.43 

2015   0.72 

2016   0.63 

2017 0.29   

2018 0.311 0.311 0.45 

2019   0.55 

2020   0.59 

Max  0.31   0.31   0.72  

Min  0.29   0.31   0.43  

Mean  0.30   0.31   0.55  

Average  0.30   0.31   0.56  

St. Dev  0.01   -     0.10  
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F.3 Phosphorus (P) 

Table F.3 Summary of Phosphorus results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

Solids 

(%) 

2014   0.14 

2015   0.35 

2016   0.23 

2017 0.03   

2018 0.037 0.033 0.147 

2019   0.19 

2020   0.18 

Max  0.04   0.03   0.35  

Min  0.03   0.03   0.14  

Mean  0.03   0.03   0.20  

Average  0.03   0.03   0.21  

St. Dev  0.00   -     0.07  

 

F.4 Potassium (K) 

Table F.4 Summary of Potassium results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

Solids 

(%) 

2014   0.26 

2015   0.65 

2016   0.31 

2017 0.14   

2018 0.144 0.159 0.143 

2019   0.22 

2020   0.19 

Max  0.14   0.16   0.65  

Min  0.14   0.16   0.14  

Mean  0.14   0.16   0.26  

Average  0.14   0.16   0.30  

St. Dev  0.00   -     0.17  
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F.5 Moisture 

Table F.5 Summary of Moisture results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

2017 96.13  

2018 94.76 0.159 

Max  96.13   0.16  

Min  94.76   0.16  

Mean  95.44   0.16  

Average  95.45   0.16  

St. Dev  0.68   -    

 

F.6 Sulphur (S) 

Table F.6 Summary of Sulphur results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

2017 0.03  

2018 0.03 0.02 

Max  0.03   0.02  

Min  0.03   0.02  

Mean  0.03   0.02  

Average  0.03   0.02  

St. Dev  -     -    

 

F.7 Magnesium (Mg) 

Table F.7 Summary of Magnesium results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

2017 0.05  

2018 0.05 0.07 

Max  0.05   0.07  

Min  0.05   0.07  

Mean  0.05   0.07  

Average  0.05   0.07  

St. Dev  -     -    
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F.8 Calcium (Ca) 

Table F.8 Summary of Calcium results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

2017 0.11  

2018 0.12 0.13 

Max  0.12   0.13  

Min  0.11   0.13  

Mean  0.11   0.13  

Average  0.12   0.13  

St. Dev  0.01   -    

 

F.9 Natrium (Na) 

Table F.9 Summary of Natrium results 

Year 
Filtrate  

(%) 

Effluent 

(%) 

2017 0.07  

2018 0.08 0.09 

Max  0.08   0.09  

Min  0.07   0.09  

Mean  0.07   0.09  

Average  0.08   0.09  

St. Dev  0.01   -    

 

F.10 Aluminum (Al) 

Table F.10 Summary of Aluminum results 

Year 
Filtrate  

(ppm) 

Effluent 

(ppm) 

2017 48.5  

2018 44 67 

Max  48.50   67.00  

Min  44.00   67.00  

Mean  46.20   67.00  

Average  46.25   67.00  

St. Dev  2.25   -    
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F.11 Copper (Cu) 

Table F.11 Summary of Copper results 

Year 
Filtrate  

(ppm) 

Effluent 

(ppm) 

2017 4.35  

2018 4.3 4.9 

Max  4.35   4.90  

Min  4.30   4.90  

Mean  4.32   4.90  

Average  4.33   4.90  

St. Dev  0.02   -    

 

F.12 Iron (Fe) 

Table F.12 Summary of Iron results 

Year 
Filtrate  

(ppm) 

Effluent 

(ppm) 

2017 90.5  

2018 106 162 

Max  106.00   162.00  

Min  90.50   162.00  

Mean  97.94   162.00  

Average  98.25   162.00  

St. Dev  7.75   -    

 

F.13 Manganese (Mn) 

Table F.13 Summary of Manganese results 

Year 
Filtrate  

(ppm) 

Effluent 

(ppm) 

2017 9.65  

2018 11 12 

Max  11.00   12.00  

Min  9.65   12.00  

Mean  10.30   12.00  

Average  10.33   12.00  

St. Dev  0.68   -    
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F.14 Zinc (Zn) 

Table F.14 Summary of Zinc results 

Year 
Filtrate  

(ppm) 

Effluent 

(ppm) 

2017 61  

2018 53 57 

Max  61.00   57.00  

Min  53.00   57.00  

Mean  56.86   57.00  

Average  57.00   57.00  

St. Dev  4.00   -    

 

F.15 Nitrogen (N) 

Table F.15 Summary of Nitrogen results 

Year 
Solids  

(%) 

2017 0.28 

2018 0.45 

Max  0.45  

Min  0.28  

Mean  0.35  

Average  0.37  

St. Dev  0.09  

 

F.16 Ammonia (NH3) 

Table F.16 Summary of Ammonia results 

Year 
Solids  

(%) 

2017 0.18 

2018 0.14 

Max  0.18  

Min  0.14  

Mean  0.16  

Average  0.16  

St. Dev  0.02  
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G. Formula for OLR and HRT Calculation 

G.1 OLR Formula 

OLR = IF (Total VS g=0, “”, (Total VS g / (Working Volume Liters*Days))) 

G.2 HRT Formula 

HRT = IF (Volume of Digestate Wasted=0, “”, ((Working Volume Gallons/Volume of Digestate 

Wasted)) * Days) 

 

H. R-Code of MLR for feedstock impact on biogas production (after data treated) 

RegressionData1 <- read.table("C:/BIOGAS-AHAY/MLR_ORIGINAL DATA - 

REGRESSION.csv", header = TRUE, sep=',') 

validationData <- read.table("C:/BIOGAS-AHAY/MLR_ORIGINAL DATA - 

VALIDATION.csv", header = TRUE, sep=',') 

#BL2020a <- read.table("C:/MSU/Biogas data/BiogasProduction_REMOVED.csv", header = 

TRUE, sep=',') 

names(RegressionData1) =  

c('row.name','Year','Mon','Digestate','FMP','SLSS','DG','Parlor','Beef','WFM','Poultry','Swine','A

NS','TMP','FFP','SLSSF','PA','Pulp','FOG','WFEED','Other','CartF','TFP','TFS','BiogasP','CH4P','

MethaneC','H2SC','Elec','TS','TN','TP','pH','VFA') 

summary(RegressionData1) 

 

RegressionData <- RegressionData1 

#BL2020[138,] 

RegressionData$Year = as.factor(RegressionData$Year) 

RegressionData$Mon = as.factor(RegressionData$Mon) 

 

row.name <- RegressionData[1] 

Year <- RegressionData[2] 

MoN <- RegressionData[3] 

Digestate <- RegressionData[4] 

FMP <- RegressionData[5] 

SLSS <- RegressionData[6] 

DG <- RegressionData[7] 

Parlor <- RegressionData[8] 

Beef <- RegressionData[9] 

WFM <- RegressionData[10] 

Poultry <- RegressionData[11] 

Swine <- RegressionData[12] 

ANS <- RegressionData[13] 
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TMP <- RegressionData[14] 

FFP <- RegressionData[15] 

SLSSF <- RegressionData[16] 

PA <- RegressionData[17] 

Pulp <- RegressionData[18] 

FOG <- RegressionData[19] 

WFEED <- RegressionData[20] 

Other <- RegressionData[21] 

CartF <- RegressionData[22] 

TFP <- RegressionData[23] 

TFS <- RegressionData[24] 

BiogasP <- RegressionData[25] 

CH4 <- RegressionData[26] 

MethaneC <- RegressionData[27] 

H2SC <- RegressionData[28] 

Elec <- RegressionData[29] 

TS <- RegressionData[30] 

TN <- RegressionData[31] 

TP <- RegressionData[32] 

pH <- RegressionData[33] 

VFA <- RegressionData[34] 

 

library(tidyverse) 

library(GGally) 

 

# prints first set of rows showing works as a visual check if data were read correctly 

head(RegressionData) 

 

#shows the data type and sample of the data 

str(RegressionData) 

 

##############################################################################

########################## 

# Standardize variables in a dataset 

RegressionData_std <- 

data.frame(scale(RegressionData[,c('Digestate','FMP','SLSS','DG','Parlor','Beef','WFM','Poultry','

Swine','ANS','TMP','FFP','SLSSF','PA','Pulp','FOG','WFEED','Other','CartF','TFP','TFS','BiogasP

','CH4P','MethaneC','H2SC','Elec','TS','TN','TP','pH','VFA')])) 

RegressionData_std["Year"] <- RegressionData[,"Year"] 

RegressionData_std["Month"] <- RegressionData[,"Mon"] 

head(RegressionData_std) 

##############################################################################

########################## 

#outliers testing 

install.packages("e1071") 

install.packages("outliers") 
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library(e1071) 

library(outliers) 

 

#histograms of weights 

hist(RegressionData$FMP, breaks= 12, freq = F, xlab = 'FMP', main="") 

hist(sqrt(RegressionData$FMP), breaks= 12, freq = F, xlab = 'SQRT(FMP)', main="") 

 

ggpairs(columns = c('FMP','DG','Parlor','Beef','TMP','Pulp','FOG','Other','CartF'), data = 

RegressionData, upper = list(continuous = wrap('cor', size = 8))) 

ggpairs(columns = c('FFP','Pulp','FOG','Other','CartF','TFP','TFS'), data = RegressionData, upper 

= list(continuous = wrap('cor', size = 8))) 

 

ggpairs(columns = c('BiogasP','CH4P','MethaneC','H2SC','Elec','TS','TN','TP','pH','VFA'), data = 

RegressionData, upper = list(continuous = wrap('cor', size = 8))) 

 

ggpairs(columns = c('BiogasP','TMP','TFP','FMP','MethaneC','H2SC','TS','TN','TP','pH','VFA'), 

data = RegressionData, upper = list(continuous = wrap('cor', size = 8))) 

 

ggpairs(columns = c('BiogasP', 'sqrtFMP'), data = RegressionData, upper = list(continuous = 

wrap('cor', size = 8))) 

 

ggpairs(columns = c('BiogasP', 'TFP'), data = RegressionData, upper = list(continuous = 

wrap('cor', size = 8)),aes(color = Mon, alpha = 0.5)) 

 

ggpairs(columns = c('BiogasP', 'TMP'), data = RegressionData, upper = list(continuous = 

wrap('cor', size = 8)),aes(color = Mon, alpha = 0.5)) 

 

ggpairs(columns = c('BiogasP', 'TFS'), data = RegressionData, upper = list(continuous = 

wrap('cor', size = 8)),aes(color = Mon, alpha = 0.5)) 

 

ggpairs(columns = c('BiogasP', 'TFS'), data = RegressionData, upper = list(continuous = 

wrap('cor', size = 8)),aes(color = Year, alpha = 0.5)) 

 

ggpairs(columns = c('BiogasP', 'TMP'), data = RegressionData, upper = list(continuous = 

wrap('cor', size = 8)),aes(color = Year, alpha = 0.5)) 

 

ggpairs(columns = c('BiogasP', 'TFP'), data = RegressionData, upper = list(continuous = 

wrap('cor', size = 8)),aes(color = Year, alpha = 0.5)) 

 

#Comparisons between the different Months 

boxplot(RegressionData$BiogasP ~RegressionData$Mon, ylab ="Biogas Production", xlab 

="Mon") 

boxplot(RegressionData$BiogasP ~RegressionData$Year, ylab ="Biogas Production", xlab 

="Year") 

#Analysis of variance 
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#Conduct H0 : Mean Biogas production is the same for Months 

# Ha: at least one Month is different 

aov_Months <- aov(RegressionData$BiogasP~RegressionData$Mon) 

summary(aov_Months) 

#attributes(aov_species) 

aov_Months$coefficients 

 

TukeyHSD(aov_Months) 

plot(TukeyHSD(aov_Months), las=1) 

 

 

##############################################################################

########################## 

#Specifying the preliminary full model / parameters we wish to investigate  

#Full model for original data 

#'Year','Mon','Digestate','FMP','SLSS','DG','Parlor','Beef','WFM','Poultry','Swine','ANS','TMP','F

FP','SLSSF','PA','Pulp','FOG','WFEED','Other','CartF','TFP','TFS','BiogasP','CH4P','MethaneC','

H2SC','Elec','TS','TN','TP','pH','VFA' 

full_model <- lm(BiogasP ~ FMP + DG + Digestate + SLSS + SLSSF + WFM + Poultry + 

                   Parlor + Beef + FFP + Swine + ANS + PA + WFEED + 

                   Pulp + FOG +  

                   Other + CartF, data=RegressionData) 

 

#Full model for standardized data 

full_model_std <- lm(BiogasP ~ FMP + DG + PA + Beef + FFP + 

                   Pulp + FOG +  

                   Other + CartF , data=RegressionData_std) 

 

modelDFFITS <- dffits(multiple.regression) 

 

DFITTSThreshold <- sqrt(4*nparameters/ndata) # not a statistical test but to provide a general 

judgment 

 

which(abs(modelDFFITS)>DFITTSThreshold) 

RegressionData[index(RegressionData)==62,] 

 

RegressionData_noinfluence <- RegressionData[-c(49,50,71,72),] 

 

full_model <- lm(BiogasP ~ FMP + DG + Digestate + SLSS + SLSSF + WFM + Poultry + 

                   Parlor + Beef + FFP + Swine + ANS + PA + WFEED + 

                   Pulp + FOG +  

                   Other + CartF, data=RegressionData_noinfluence) 

 

Bothfit.p <- ols_step_both_p(full_model, pent = .01, prem = .05, details = TRUE) 

Bothfit.p 
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multiple.regression <- lm(BiogasP ~ FMP + DG + Parlor + FOG, 

data=RegressionData_noinfluence) 

summary(multiple.regression) 

 

RESULT 

 
Figure H.1 Correlation plot between the parameters part 1 

(Note: FMP = filtrate manure pit, DG = Dairy Gutter, TMP = Total Manure Pit, CartF = 

Cart Food) 
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Figure H.2 Correlation plot between the parameters part 2 

(Note: FFP = Filtrate Food Pit, TFP = Total Food Pit, TFS = Total Feedstock) 

 

 
Figure H.3 Correlation plot between the operational parameters 

(Note: BiogasP = Biogas Production, CH4P = Methane production, MethaneC = Methane 

Concentration, H2SC = hydrogen sulfide concentration, Elec = Electricity) 
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Figure H.4 Correlation plot between the total feedstock and the operational parameters 

 

 
Figure H.5 Correlation plot between the total manure pit and the biogas production 
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Figure H.6 Correlation plot between the total food pit and the biogas production 

 

 
Figure H.7 Correlation plot between the total feedstock and the biogas production 
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Figure H.8 The data distribution of the biogas production from 2014 to 2020 

 

 
Figure H.9 Linear model plot of biogas production (residuals vs fitted) 
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I. R-Code of MLR for operational parameters impact on biogas production 

# Load libraries ----- 

library(dplyr) 

library(FSA) 

library(psych) 

library(car) 

library(rcompanion) 

 

# Choose data file of "MLR_operational_parameters.txt" ----- 

con <-file.choose(new = FALSE) 

metadata <- read.table(con, header = T, row.names = 1, fill = TRUE) 

head(metadata) 

 

############################# 

# select data 

data.num = select(metadata, OLR, HRT, Temperature, pH, Biogas, 

                  Methane) 

head(data.num) 

 

# corr.test(data.num, use = "pairwise", method="pearson", adjust="none", alpha="0.05") 

 

 

########################################### 

#         Correlations                    # 

########################################### 

 

 

library(psych) 

 

pairs.panels(data.num,  

             method = "pearson", # correlation method 

             hist.col = "#00AFBB", 

             density = TRUE,  # show density plots 

             ellipses = TRUE # show correlation ellipses 

) 

 

summary(data.num$Methane) 

plot(data.num$Methane) 

hist(data.num$Methane) 

 

 

model1<-lm(Methane~OLR+HRT+Temperature+pH,data=data.num) 

summary(model1) 

 

model2<-lm(Biogas~OLR+HRT+Temperature+pH,data=data.num) 

summary(model2) 
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# Scatterplots of variables 

# regression line : Green 

# non-parametric mean : Red 

# non-parametric variance: Blue 

scatterplotMatrix(data.num, 

                  diagonal=FALSE, 

                  regLine = list(col="green",lwd=3), 

                  smooth=list(col.smooth="red", 

                              col.spread="blue") 

) 

 

 

RESULTS 

 
Figure I.1 Correlation plot between the operational parameters and the dependent 

variables (biogas production and methane concentration) 
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Figure I.2 Scatter plots of variables 

(Note: green = regression line, red = non-parametric mean, blue = non-parametric 

variance) 
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