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ABSTRACT

SIMULTANEOUS MODEL SELECTION AND ESTIMATION OF GENERALIZED LINEAR
MODELS WITH HIGH DIMENSIONAL PREDICTORS

By
Alex Pijyan

In the past couple of decades the progressive use of technology made the enormous amount of data
in different formats available and easily accessible. The size and volume of available data sets have
grown rapidly and the technological capacity of the world to store information has almost doubled
every 40 months since the 1980s [1]. As of 2020, every day 2.5 quintillion of data are generated.
Based on an International Data Group (IDG) report, the global data volume was predicted to grow
exponentially and by 2025, IDG predicts there will be 163 zettabytes of data [2].

This enormous amount of data is often characterized by its high dimensionality. Quite often, well-
known statistical methods fail to manage such data due to their limitations (e.g., in high-dimensional
settings they often encounter various issues such as no unique solution for the model parameters,
inflated standard errors, overfitted models, multicollinearity). This resulted in resurging interest
in the algorithms that are capable of handling massive quantities of data, extracting and analysing
information from it, and uncovering key insights that subsequently will lead to decision making.
Techniques used by these algorithms are tend to speed up and improve the quality of predictive
analysis, thus, they found their application in various fields. For instance, medicine becomes more
and more individualized nowadays and drugs or treatments can be designed to target small groups,
rather than big populations, based on characteristics such as medical history, genetic makeup etc.
This kind of treatment is referred to as precision medicine.

In the era of precision medicine, constructing interpretable and accurate predictive models, based
on patients’ demographic characteristics, clinical conditions, and molecular biomarkers, has been
crucial for disease prevention, early diagnosis and targeted therapy [3]. The models, for example,
can be used to predict patients’ susceptibility to disease [4], identify high risk groups [5], and guide

behavioral changes [6]. Therefore, predictive models play a central role in decision making.



Several well-known approaches can be used to solve the problem mentioned above. Penalized
regression approaches, such as least absolute shrinkage and selection operator (LASSO), have
been widely used to construct predictive models and explain the impacts of the selected predictors,
but the estimates are typically biased. Moreover, when data are ultrahigh-dimensional, penalized
regression is usable only after applying variable screening methods to downsize variables.

In this dissertation, we would like to propose a procedure for fitting generalized linear models
with ultrahigh-dimensional predictors. Our procedure can provide a final model, control both false
negatives and false positives, and yield consistent estimates, which are useful to gauge the actual
effect size of risk factors. In addition, under a sparsity assumption of the true model, the proposed
approach can discover all of the relevant predictors within a finite number of steps.

The thesis work is organized as follows. Chapter 1 highlights an importance of predictive models
and names several examples where these models can be implemented. The main focus of Chapter 2
is to describe all well-known and already existing in the theory methods that attempted to solve the
aforementioned problems, along with their shortcomings and disadvantages. Chapter 3 proposes
STEPWISE algorithm and introduces the model setup and its detailed description, followed by its
theoretical properties and proof of theorems and lemmas used throughout the thesis. Additional
lemmas used to construct the theory of the STEPWISE method are also stated.

Later it presents results obtained from various numerical studies such as simulations and real data
analysis. Simulation studies comprise seven examples and are aimed to compare STEPWISE
algorithm to other competing methods, and provide numerical evidence of its superiority. Real
data analysis involves studies of gene regulation in the mammalian eye, esophageal squamous cell
carcinoma, and neurobehavioral impairment from total sleep deprivation, and demonstrates the
utility of the proposed method in real life scenarios.

Chapter 4 proposes a multi-stage hybrid machine learning ensemble method that is aimed to enhance
STEPWISE’s performance. It also introduces a web application that employs the method. Finally,
Chapter 5 completes the thesis with final conclusion and discussions. Appendices include some

tables and figures used throughout the thesis.
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CHAPTER 1

INTRODUCTION

1.1 Predictive Models

In biomedical research and clinical studies predictive model are utilized for several purposes such
as risk management and prognosis. Consequently, the reliability of clinical data is directly related
to the quality of predictive analysis. Nowadays, electronic health records became more available
and contain rich information, which enables researchers to develop and deploy highly efficient clin-
ical predictive methods. These methods have potential to be key components in making decisions
related to patient treatments, drug development, and so on.

Over the last decade, the technological advances and explosion of information profounded the un-
derstanding of the molecular basis of tumor progression and identified numerous tumor biomarkers
[7]. A certain type of biomarkers, which posses predictive power, are capable of assessing the
benefit from clinical interventions and has a significant impact on clinical research. For instance, a
cancer screening biomarker is a prognostic biomarker that can be used to predict the development
of symptomatic cancer even in asymptomatic persons.

In practice, such screening biomarkers can be used as a cancer prediction model [8]. The main
purpose of building these models is discovering new cancer screening biomarkers and assessing
their effect on the disease. Insights and information obtained from these models can potentially
lead to early detection of disease in patients, early intervention and prevention from its further
development. Further, these predictive models can be feasibly used as cancer screening tests for
patients, including ones with no symptoms [9].

Technological advances have also made possible detailed genetic characterization of biological
specimens. High-throughput genomic technologies, including gene expression microarray, mi-
croRNA (micro Ribonucleic acid) array, RNA-seq, ChIP-seq (chromatin immunoprecipitation se-

quencing), and whole genome sequencing, have become powerful tools and dramatically changed



the landscape of biological research. For instance, a gene expression profile can be extracted for
a specimen by simultaneously evaluating expression levels of thousands of genes on that single
specimen using complementary DNA (cDNA) microarray technology [10].

Single nucleotide polymorphisms (SNPs) are one form of natural sequence variation common to all
genomes [11]. These SNPs are highly abundant, and are estimated to occur at 1 out of every 1,000
bases in the human genome [12, 13]. SNPs are particularly useful as DNA markers for mapping
susceptibility genes for complex diseases and population genetics since they demonstrate the high
density and mutational stability [14, 15].

SNPs in the coding regions of genes that alter the function or structure of the encoded proteins can
be a necessary and sufficient cause of most of the known recessively or dominantly inherited mono-
genic disorders [16], and are analyzed for diagnostic purposes. Moreover, SNPs can be analysed
to assess the risk of an individual for a particular disease. For instance, the identification of SNPs
made possible to screen somatic (non-tumor) DNA for mutations that alter treatment response or
predispose to cancer [7].

In addition, a large number of profiles based on the abundance of micro-RNAs (miRNAs) have been
used to predict prognosis or treatment response in cancer [7]. For example, Genome-wide associa-
tion (GWA) have identified cancer-causing mutations in breast [17] and colon [18] tumors, somatic
genetic screens can also identify predictors of radiation sensitivity [19] and the pharmacodynamics
of anticancer drugs [20]. Moreover, sets of genes identified through mRNA profiling have been
used to classify tumors into oncogenic subtypes of breast cancer [21, 22]; many individual miRNAs
have been associated with patient survival and drug treatment response in a number of different
cancers [23, 24].

Clearly, the enormous interest in genomic data is determined by the hope of finding candidate
biomarkers and using them to identify genes that predispose individuals to common diseases. Al-
though genome data analysis has already made a significant impact on biological and biomedical
research, it is still accompanied by certain challenges that yet have to be overcome. Specifi-

cally, complex genomic data introduce substantial challenges for statistical data analysis as its



high-dimensionality makes the classical statistical model framework no longer implementable. As
opposed to low-dimensional data when the number of observations is greater than the number
of explanatory features (also known as predictors), high- and ultrahigh-dimensional settings are
comprised of data in which number of predictors is greater than or is in the exponential order of
the sample size, respectively.

Most of the traditional statistical methods are developed around the concept of low-dimensional
data and are not aimed to accommodate high- or ultrahigh-dimensional data. Thus, high-
dimensionality has significantly challenged traditional statistical theory. Applying these meth-
ods to high-dimensional data leads to unstable, unreliable, biased, and inconsistent results which
demolishes the main purpose of predictive model development. The problems that arise while
analyzing such data are typically referred to as the ’curse of dimensionality’, a term introduced by
mathematician Richard Bellman. Some aspects of it are discussed further.

First, classical statistical models applied to high-dimensional data have no unique solution for their
parameters. In fact, these models will have infinitely many solutions. This is mainly induced by
ill-defined, uninvertible, and singular matrices involved in the computation of parameter estimates,
making the estimation process ill-posed. These models are also know as unidentifiable models.
Consequently, effect size estimation in predictive models will become meaningless.

Second, as the number of predictors increases and surpasses the number of observations in the
model, variances of the parameter estimates will become large (even infinitely large in some cases),
resulting in inflated standard errors. In other words, a wide range of values of parameter estimates
will be consistent with data, making the confidence intervals uncommonly wide. Hence, validating
a significance of the predictors included in the predictive model will be nearly impossible.

Third, employment of classical statistical models in high-dimensional settings can provide incon-
sistent estimates as a small corruption of data can result in very different estimated parameters.
Furthermore, these models tend to capture the artificial trends of measurement noise, also know as,
overfitting. Overfitted models fit training data too closely and normally capture trends in data that

are applicable to this particular data set only. This decays their ability to generalized results with



new unseen data and results in poor predictive capability.

Lastly, using classical statistical methods with high-dimensional data often introduces multi-
collinearity issues that violate the underlying assumption of independent predictors in the model.
Multicollinearity implies the existence of highly correlated predictors among predictor features.
These structures are commonly observed in genomic data. Multicollinearity can create inaccurate
estimates of the model parameters; make insignificant predictors significant and vice versa, that is,
imposing false positives and false negatives in the predictive model; and, finally, it can degrade the
predictability of the model.

As it was shown, the traditional methods that perform well in low-dimensional settings run into
severe problems in analyzing high- or ultrahigh-dimensional data. They cannot cope with the
explosive growth of dimensionality of data. Therefore, in order to face the problem of high-
dimensionality, we must reshape the classical statistical thinking. These problems create signifi-
cant challenges, but, on the other hand, they create great opportunities for the development of new
statistical methodologies.

It is worth mentioning that developing predictive models along with feature selection and estima-
tion play crucial and fundamental role in knowledge discovery. As more amount of massive and
complex data become available, there is no doubt that high-dimensional data analysis will be one
of the most important and demanding research topics in our field.

In this thesis we propose a new method (introduced and described in Chapter 3) for model selection
and estimation that will overcome aforementioned limitations in high-dimensional problems. The
remaining sections of this chapter discuss a few problems from various research areas that will

illustrate challenges of high-dimensional data and to which the proposed method could be applied.

1.1.1 Gene Regulation in the Mammalian Eye

Human genetics has sparked a revolution in medical research on the basis of the seemingly unthink-
able notion that one can systematically discover the genes causing inherited diseases without any

prior biological knowledge as to how they function [25]. Most characteristics of medical pertinence



do not follow simple Mendelian monogenic inheritance. Such complex traits include vulnerability
to heart disease, hypertension, diabetes, cancer, and infection. The genetic dissection of complex
traits is attracting many investigators with the promise of solving old problems and is generating a
variety of analytical methods.

Recent advancement in microarray technology and bioinformatics made it possible to examine the
expression of numerous genes in a large number of individuals and enabled researcher to identify
genetic elements that cause the gene expression to vary among individuals [26, 27, 28, 29]. Dis-
covering specific disease mechanics is a big challenge that biomedical researchers face nowadays.
These mechanics might potentially underlie heritable disorders that reveal complex inheritance,
for instance, Mendelian disorders [25, 30, 31]. In addition, these approaches can help identify
genes related to development of Mendelian forms of complex diseases such as obesity [32, 33, 34],
macular disease [35, 36, 37], hypertension [38], and glaucoma [39, 40].

Mutations that alter gene expression might play a significant role in complex disease. Transgenic
animal studies revealed that gene dosage of mutant genes can have a keen effect on phenotype [41].
It was shown that the cause of disease can become an improper regulation of structurally normal
genes and alterations in gene dosage [39]. For example, overexpression and haploinsufficiency of
the FOXC1 gene can lead to developmental defects of the anterior chamber of the eye [39].
Scheetz et al. [41] used expression quantitative trait locus mapping in the laboratory rat to gain a
broad perspective of gene regulation in the mammalian eye and to identify genetic variation relevant
to human eye disease. They analyzed data obtained from Rat Genome Database by using analy-
sis of variance (ANOVA) technique and identified significant genes based on their corresponding
p-values. Certainly, Scheetz’s results provide meaningful insights on how genetic variation can
be associated with specific diseases, but they do not estimate the magnitude of effects these genes
are having on the disease. In addition, they have not built a predictive model that will enable
researchers to link genes and assess their contribution toward developing diseases, and have not
evaluate its predictive power. We adopted their data and aimed to improve results achieved by

Scheetz et al. [41]. Data contained 120 observation profiling 31042 probes of genes, but due to a



small variation in many of these probes, the number of probes was reduced to 5000.

A gene TRIM32 that has been found to cause Bardet-Biedl syndrome [42] was treated a response
variable, and the expression of 5000 genes as the predictors. Our predictive model has identified
three probes of genes (1376747_at, 1381902_at, 1382673_at) that can be potentially linked to
TRIM32. We achieved a high accuracy with the mean squared prediction error (MSPE) as low as

0.0012. Detailed description of the results can be found in Chapter 3.

1.1.2 An Esophageal Squamous Cell Carcinoma Study

Esophageal cancer is the 7th most common cancer among males and among both sexes combined
in the world and ranks 6th in terms of mortality overall because of the poor survival rate it confers
[43, 44]. Additionaly, incidence and mortality rates in males are 2- to 3-fold higher than the rates
in females [43]. Compared with more developed geographic regions, overall incidence rates are
2-fold higher in less-developed countries, with the highest rates occurring in Asia [43].
Esophageal squamous cell carcinoma (ESCC) is the predominant histologic type with the highest
incidence rate in populations within Southeastern and Central Asia [44]. There are two major
histological types of esophageal carcinoma: esophageal squamous cell carcinoma (ESCC) and
adenocarcinoma [45]. ESCC is the major type in China, where it accounts for more than 90% of
cases of esophageal carcinoma; whereas adenocarcinoma is more common in the United States and
in European countries [46]. ESCC is often diagnosed at a locally advanced stage and the outcomes
for affected patients are poor [45].

With various treatment methods employed in clinical practice after extensive research, the diagno-
sis and treatment of ESCC have been greatly improved [47]. Esophagectomy, chemotherapy, and
radiotherapy are currently the main treatments for ESCC [45]. However, the prognosis remains
poor, with 5-year survival proportions of 21% and 14% (2005-2011) in the United States for whites
and blacks, respectively, and 12% (2000-2007) in Europe [44], which is far below the estimated
effectiveness of the therapy [47].

An accurate clinical staging and prognostic information is essential to direct appropriate treatment



strategies [45]. Accumulating evidence suggests that the prognosis is affected by several factors,
including the delayed diagnosis, high recurrence, and metastasis rate [47, 48]. Thus, identifying
the diagnostic and prognostic tumor markers and further elucidating their clinical implications
are urgently needed. To develop new diagnostic methods and treatment strategies, investigators
have focused on the potential of a particular class of microRNAs (miRNAs) to provide additional
information about the characteristics and survival prospects of patients with ESCC.

miRNAs are small (22-24 nucleotides), noncoding RNA molecules that play important roles in
regulating cell differentiation, proliferation, migration and apoptosis [44]. Altered miRNA expres-
sion in cancer tissue has been reported in most tumor types [49, 50]. There is increasing evidence
that miRNA expression in cancer tissue is a useful prognostic marker [51, 52, 53]. In addition, the
application of miRNA expression levels as a blood biomarker has been explored in various types
of cancer, including gastric, hepatocellular, and non-small cell lung cancer [54, 55, 56]. However,
whether miRNA levels in plasma are a useful biomarker for patients with ESCC remains largely
unexplored [45].

Sudo et al. [57] explored ways of developing a detection model for ESCC based on large-scale
miRNA profiling. For these purposes, they analyzed data submitted to the National Center for
Biotechnology Gene Expression Omnibus (NCBI GEO) database, available under accession num-
ber GSE122497. To establish a diagnostic model, they developed a model based on the observations
obtained from 566 patients (283 with ESCC and 283 healthy controls) profiling 2565 miRNAs by
carrying out Fisher’s linear discriminant analysis with a greedy algorithm.

Although their model has achieved high predictive accuracy, it has some drawbacks. Given the
nature of the algorithm that has been employed, they developed a predictive model for the pre-
determined model size: they built models with model sizes ranging 2-8 and selected the one that
achieved higher accuracy with fewer variables (model size = 6). The disadvantage of this method is
that it might lead to false negatives and false positive in the final model. Moreover, the importance
of the miRNAs included in the model will also be determined by the model size. This might lead

to a wrong assessment of the effect sizes identified in the model.



We adopted this dataset and demonstrated the utility of our proposed method (introduced and de-
scribed in Chapter 3) and its superiority over other methods. Our model achieved similar accuracy
by recruiting fewer variables (3 miRNAs were selected: miR - 4783 - 3p, miR - 320b, miR - 1225
- 3p). It is worth mentioning that our model overcomes the issues associated with the model
introduced by Sudo et al. as our model size was defined by scanning the entire feature space and
selecting features based on their significance. Detailed description of our results and methodology

is presented in Chapter 3.

1.1.3 Bladder Cancer Study

Bladder cancer is any of several types of cancer arising from the tissues of the urinary bladder and
has high prevalence and recurrence rates [58, 59, 60]. According to American Society of Clinical
Oncology, among men bladder cancer is the fourth most common cancer and men are 4 times more
likely to be diagnosed with the disease. In addition, incidence in white men is twice more than that
in black men.

The earlier bladder cancer is found, the better the chance for successful treatment and cure. Prog-
nosis varies inversely with higher tumor stage and lymph node involvement [61]. Typically, the 5-
and 10-year survival rates for patients with lymph node involvement are 31% and 23%, respectively
[62]. Combination platinum-based chemotherapy is an potion for patients with metastatic disease,
but the survival is only 15 months, with a 5-year survival rate of 15% [63]. Since there is not yet an
accurate test to screen the general population for bladder cancer, most people are diagnosed with
bladder cancer once they have developed symptoms. As a result, some people have more advanced
(later stage) disease when the cancer is found.

In the year 2000, the total expenditure for lower tract urothelial cancers in the United States sur-
passed one billion dollars [64]. Bladder cancer affected about 1.6 million people globally in 2020
with 549,000 new cases and 200,000 deaths, and the late stage disease is associated with poor
survival. The cost of bladder cancer per patient from diagnosis to death is the highest of all cancers

[65].



Identifying the related biomarkers and predicting the disease at its early stage is crucial for better
prognosis. Discovery of diagnostic, prognostic, and predictive biomarkers in bladder cancer made
molecular markers an area of research. Potential biomarkers include the overexpression of mu-
tated genes, whole genome-wide array signatures, and microRNAs. For instance, microarray gene
expression profiling is studied in the blood of cancer patients in order to detect gene expression
patterns representing the cancer itself or a host’s reaction to the tumor [66, 67].

Recent studies have suggested that 70% of bladder cancer involve a specific mutation in genes [68],
therefore it can be potentially used as a biomarker in early detections of the disease and preventing
it from further development. Gene changes can also assist doctors in choosing the best treatment
possible or be useful in finding bladder cancers that can potentially come back after treatment.
Although recent progress made by scientists is significant, classification of bladder cancer patients
using gene expression data with regular statistical tools can become complicated and sometimes be
even impossible due to incapability of these methods to process data with a large scale, also known
as, high-dimensional data.

Usuba et al. [69] attempted to develop a predictive model for an early detection in bladder cancer.
They applied similar technique as described in Sudo et al. [57] via Fisher’s linear discriminant
analysis and recruited seven miRNAs in their final model. They achieved high accuracy in predic-
tion, but their model suffered from the same issues mentioned in Sudo er al. [57]. Specifically,
the method they employed might lead to false negatives and false positives in the final model, and
won’t be able to assess the effect sizes correctly due to pre-determined model size.

We aimed to improve given results and adopted data utilized in Usuba’s model. These data were
submitted to the NCBI GEO under accession number GSE113486. The predictive model was built
based on observations obtained from 768 patients (310 patients with bladder cancer and 468 healthy
controls) profiling 2565 miRNAs.

We demonstrated that our proposed multi-stage hybrid machine learning method (introduced and
described in Chapter 4) has achieved high prediction accuracy with sensitivity, specificity, and area

under the receiver operating curve (AUC) of 0.98, 0.98, and 0.99, respectively, and outperformed



Usuba’s model. Detailed description of our results can be found in Chapter 4.

1.1.4 Neurobehavioral Impairment from Total Sleep Deprivation

Sleep plays a key role in health, performance, and cognition [70]. Sleep deprivation is common-
place in modern society and its effects on neurobehavioral function (e.g., vigilance and cognition)
are well studied and documented. Sleep deprivation can induce giddiness, child-like behaviors, and
silliness [71], as well as more widely recognized negative effects including dysphoria, increased
irritability, and lowered frustration tolerance.

The increased irritability that often accompanies sleep deprivation hints that sleep-deprived in-
dividuals are highly reactive to emotional signals. These effects on mood can lead to negative
consequences and impact functioning abilities [72]. For example, sleep duration is inversely asso-
ciated with interpersonal difficulties and even violence has been observed in medical residents [73],
and sleeping less than 8 hours is associated with increased risk for adolescent suicidal behavior
[74].

Interestingly, alertness and vigilance also appear to be the cognitive capacities most consistently
and dramatically impacted by insufficient sleep [75]. When the envelope of continuous wakeful-
ness is pushed beyond about 16 hours, most individuals begin to show a substantial slowing of
reaction time (RT) and worsening of performance accuracy on tests of psychomotor vigilance [76].
Moreover, neurobehavioral tests have revealed assorted forms of performance deficits from sleep
loss, including impairment of learning and of responses to feedback in decision making [77]. The
Psychomotor Vigilance Test (PVT) is one of the most commonly applied neurobehavioral assays
of performance impairment due to sleep loss [75]. This test assays stimulus-response time, with
failure to respond within 500 ms recorded as a lapse. Sleep deprivation is associated with increased
variability in stimulus-response times, and more lapses, on the PVT [78].

Besides neurobehavioral testing, efforts have been made to identify molecular biomarkers such as
differentially expressed genes or metabolites affected by sleep loss [79, 80]. A biomarker has been

defined as “a characteristic that is objectively measured and evaluated as an indicator of normal
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biological processes, pathogenic processes, or pharmacologic responses to a therapeutic interven-
tion” [81]. Many biomarkers such as differentially expressed genes can provide meaningful insights
including identification of a process or response. Humans are known to differ in their sensitivity
to sleep loss [82], and recent work has sought to identify biomarkers distinguishing individuals as
susceptible or resistant to sleep deprivation [83]. Yet surprisingly little effort has been made to
research molecular biomarkers with results from neurobehavioral assays.

Microarrays and bioinformatics analyses can be employed to explore candidate gene expression
biomarkers associated with total sleep deprivation (TSD), and more specifically, the phenotype of
neurobehavioral impairment from TSD. Uyhelji ef al. [70] explored gene expression biomarker
candidates for neurobehavioral impairment from total sleep deprivation. They employed Weighted
Gene Co-expression Network Analysis (WGCNA) using data obtained from the NCBI GEO under
accession number GSE98582. Data contain 555 samples profiling 8284 gene features. In the
treatment effect analysis, they identified 212 genes that exhibited a significant difference between
TSD and control group, and 91 of them passed human blood biomarker filter.

Although Uyhelji et al. have done a great job in identifying important gene biomarkers associated
with TSD, effect sizes of these genes have not been estimated. Moreover, neither predictive power
of the diagnostic model was assessed. Thus, we employed our proposed method (discussed in
Chapter 3) to overcome the issues introduced in Uyhelji’s model. We have built a model based on
389 observations profiling 8284 gene features. Our model recruited five genes (PF4V1, USP32P1,
EMRI, NBR2, and DUSP23) and achieved high accuracy with sensitivity, specificity, and AUC of
0.99, 0.97, and 0.99, respectively.

11



CHAPTER 2

LITERATURE REVIEW

When the number of predictors is moderate, penalized regression approaches such as least absolute
shrinkage and selection operator (LASSO) by Tibshirani [84] have been used to construct predictive
models and explain the impacts of the selected predictors. LASSO minimizes the residual sum
of squares subject to the sum of the absolute value of the coefficients being less than a constant.
Because of the nature of this constraint it tends to produce some coefficients that are exactly 0
and hence gives interpretable models. However, in ultrahigh-dimensional settings where a number
of predictors p is in the exponential order of the sample size n, penalized methods may incur
computational challenges [85], may not reach globally optimal solutions, and often generate biased
estimates [86].

Sure independence screening (SIS) proposed by Fan and Lv [87] has emerged as a powerful tool
for modeling ultrahigh dimensional data. This method is based on correlation learning, which
filters out the features that have weak correlation with the response and reduces dimensionality
from high to a moderate that is below the sample size. Specifically, such correlation learning ranks
the importance of features according to their marginal correlation with the response variable and
eliminates the ones with weak marginal correlations.

However, the method relies on a partial faithfulness assumption, which stipulates that jointly im-
portant variables must be marginally important, an assumption that may not be always realistic. To
relieve this condition, some iterative procedures, such as ISIS [87], have been adopted to repeatedly
screen variables based on the residuals from the previous iterations, but with heavy computation
and unclear theoretical properties. Conditional screening approaches (see, e.g. [88]) have, to some
extent, addressed the challenge. However, screening methods do not directly generate a final model,
and post-screening regularization methods, such as LASSO, are recommended by Fan and Lv [87]
to produce a final model.

Closely related to forward selection is least angle regression (LARS) by Efron ez al. [89], a widely
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used model selection algorithm for high-dimensional models. In the LARS method, a multivariate
solution path is defined by using the geometrical theory of the linear regression model. The result-
ing method defines a continuous solution path for Generalized Linear Models (GLMs), with on the
extreme of the path the maximum likelihood estimate of the coefficient vector and on the other side
the intercept-only estimate. The LARS method is based on a recursive procedure selecting, at each
step, the covariates having largest absolute correlation with the response feature [89].

It is worth mentioning that a simple modification of the LARS algorithm implements the LASSO
method and calculates all possible LASSO estimates for a given problem. In addition, an approx-
imation for the degrees of freedom of a LARS estimate is available, from which Mallows’s C),
estimate of prediction error can be derived; this allows a principled choice among the range of
possible LARS estimates. Though LARS achieves impressive results in its performance, some
researches raised concerns in the following regards.

Ishwaran (see discussion section in Efron et al. [89]) suggests that the use of C,, coupled with
LARS forward optimization procedure might raise some potential flags. Specifically, the use of C),
will encourage large models in LARS, especially in high-dimensional orthogonal problems, and
will have a negative impact on variable selection performance. The claim was supported with the
high-dimensional simulation examples. Moreover, Weisberg (see discussion section in Efron et al.
[89]) believes that multicollinearity problem among independent features and presence of noise
in the dependent variable will affect the performance of LARS in regards of variable selection,
specifically, reducing chances of selecting significant variables in the model. Examples supporting
the claim were provided.

In the GLM setting, Augugliaro et al. [90] and Pazira et al. [91] proposed differential geometrical
LARS (dgLLARS) based on a differential geometrical extension of LARS. The dgLLARS estimator
follows naturally from a differential geometric interpretation of a GLM, generalizing the LARS
method.

The subsequent section discusses sequential model selection techniques known to the literature.

Sequential model selection assumes including features into the final model sequentially with the
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entry order determined by their relative importance based on certain criteria. Although the methods
described in this section have achieved significant results and have been implemented in different
scenarios, lack of certain properties make them less reliable and more vulnerable against challenges

introduced by the size and volume of data available nowadays.

2.1 Sequential Model Selection

For generating a final predictive model in ultrahigh-dimensional settings, recent years have seen
a surging interest of performing forward regression, an old technique for model selection that has
been widely used for model building when the number of covariates is relatively low. But due to
its complicated computations and unknown theoretical properties, forward regression technique is
rarely used in high-dimensional settings.

Under some regularity conditions and with some proper stopping criteria, forward regression can
achieve screening consistency and sequentially select variables according to metrics such as Akaike
information criterion (AIC), Bayesian information criterion (BIC), or R>. Below are listed methods
that try to overcome limitations introduced by forward regression and utilize it for models with

high-dimensional predictors.

2.1.1 Feature Selection using BIC criteria

The problem of variable selection with an ultrahigh-dimensional predictor becomes a problem
of fundamental importance. The traditional method of best subset selection is computationally
infeasible for high dimensional data. As a result, various shrinkage methods have gain a lot of
popularity. All those methods are very useful and can be formulated as penalized optimization
problems, which could be selection consistent, if the sample size is much larger than the predictor
dimension. However, if the predictor dimension is much larger than the sample size, the story
changes drastically.

One frequently used assumption is the so-called sparsity condition which assumes that the effective
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contribution to a dependent variable rests on a much small number of regressors than the sample
size. The challenge then is to find those ‘true’ regressors from a much larger number of candidate
variables. This leads to a surging interest in new methods and theory for regression model selection
with p > n.

An et al. [92] revisited the classical forward and backward stepwise regression methods for model
selection and adapted them to the cases with the number of candidate variables p greater than the
number of observations n. In the noiseless case, they gave definite upper bounds for the number
of forward search steps to recover all relevant variables, given each step of the forward search is
approximately optimal in reduction of residual sum of squares, up to a fraction.

In the presence of noise, they proposed two information criteria BICP (BIC modified for a case with
large number of predictors) and BICC (BIC with an added constant) that overcome the difficulties
related to employing regular BIC and AIC. These criteria serve as a stopping rule in the stepwise
search: the BICP increases the penalty to overcome overfitting and the BICC controls the residuals
in the sense that it will stop the search before the residuals diminish to O as the number of selected
variables increases to n.

In addition, they proved that the BICP stops the forward search as soon as it recovers all relevant
variables and removes all extra variables in the backward deletion, which lead to the selection
consistency of the estimated models. The algorithm can be summarized as follows. Consider a

linear regression model

y=XB+e, (2.1
where y = (y1,...,y,)" is an n-vector of random responses, X = (xp, ... ,Xp) is a n x p design
matrix, 3 is a p-vector of regression coefficients, € = (€1, ..., €,) ~ N(0,c>I), where 0% > 0 is

an unknown but fixed constant and I denotes an identity matrix. Let I, = {1 <i < p : B,; # 0}
and d,, = |I,,| denote the number of elements in 7,.
Further, for any subject J C {1,..., p}, let X; denote the n X |J| matrix consisting of the columns

of X corresponding to the indices in J, and S, the |J|-vector consisting of the components S
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corresponding to the indices of J. Put
P =X, X;X)X;, P}=1I1,-P;, L,(J)=u'P}v, uveR" (2.2)

P is a projection matrix onto the linear space spanned by the columns of X, Ly (/) is the sum of
squared residuals resulted from the least square fitting § = X;3; = Pyy. The algorithm concerned
is based on a combined use of the standard stepwise addition and deletion with some adjusted
information criteria and can be described in the following steps:

Stage I - Forward Addition:

1. Let Jy = {1}, where j; = argmin, .;,, Ly, ({i}). Put

BICP, = log{L,,(J1)/n} +2log{p/n}

2. Continue with k=1,2,3, ..., provided BICP; < BICP;_;, where

BICP; = log{L, ,(Jx)/n} + 2klog{p/n}

In the above expression, J; = Jr—1 U {jk}
3. For BICP; > BICP,_, letk =k -1, and [, = J;
Stage II - Backward deletion:
1. Let BICP} =BICP; and J7 =y

2. Continue withk =k -1,k -2,..., providing BICP;, < BICPZ +1» Where

BICP; =log{L,,(J;)/n} +2klog{p/n}

In the above expression, J; = Ji41\{Jjk }
3. BICP; > BICP;,,, k=k+1, and [, =7

The drawback of the method is that it is unclear whether the results are applicable to high-

dimensional GLM:s.
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2.1.2 Forward Regression with High-Dimensional Predictors

Consider, for example, those useful methods with non-convex objective functions (e.g., bridge
regression, the SCAD, etc). With the predictor dimension much larger than the sample size,
computationally how to optimize those non-convex objective functions remains a nontrivial task.
Efficient algorithms (e.g., LARS) do exist for LASSO-type methods, where the objective functions
are strictly convex. However, those methods are not selection consistent under a general design
condition. Another reasonable solution can be variable screening, such as very popular yet classical
method Forward Regression.

Motivated by SIS method [87], Wang [93] proposed a Forward Regression (FR) method for
ultrahigh-dimensional variable selection. It was showed that FR method can identify all relevant
predictors consistently, even if the number of predictors is significantly larger than the sample size.
Particularly, FR is capable of discovering all relevant predictors within a finite number of steps,
given that the dimension of the true model is finite. To select the final model from the set of
candidate models, Wang [93] makes use of BIC criteria introduced by Chen and Chen [94]. The
resulting model can then serve as an excellent starting point, from where many existing variable
selection methods can be applied directly.

FR algorithms can be summarized as follows. Suppose (X;, Y;) are observation from the ith
subject (1 < i < n), Y; € R! is the response variable, and X; = (Xji,..., Xiq)T € RY is
ultrahigh-dimensional predictor with d > n. The response and predictor features are linked as
Y = Xl.Tﬁ +0;, where B = (B1,...,B84)" € RY and o, is a random noise. Let M = {ji, ..., jz}

denote an arbitrary model with X, ..., X; .

as relevant predictors. Then the full model is defined
asI' = {1,...,d} and the true model as 7 = {j : §; # 0}. Additionally, X;»;) = {X;; : j € M}
denotes the subvector of X; () corresponding to M, Y = (Y1, .. ., Yn)T € R" is the response vector,
and £y = (X1,...,X,) € R™is the sub-design matrix corresponding to M.

FR algorithm is implemented in three major steps:

1. (Initialization) It starts with initialization, that is, setting S0 =0.
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2. (Forward Regression) S*~1) is given at the kth step. For every j € I'\S*~1 it constructs a
candidate model M;k_l) = §*=D U {j}. Then it computes Rssj-k_l) =Y'{IT - ﬂ;k_l)}Y,

where

-1
A (k=1) _ T T
Hj - EM]{k—l) {EM;k—l)gM;k_l)} £M;k—l)
is a projection matrix. Itfinds ax = arg max ;cp\ g RSS;k_l) and updates S¥ = S*~Du{a,}

accordingly.

3. (Solution Path) Then FR algorithms iterates step 2 n times and generates total of n nested
candidate models and collects these models by a solution path S = {S* : 1 < k < n} with

Sk = {al,...,ak}.

Authors showed both theoretically and numerically that FR can discover all relevant predictors
consistently, even if the predictor dimension is substantially larger that the sample size. However,

the proposed method is limited to linear regression models in high-dimensional settings only .

2.1.3 A Stepwise Regression Algorithm for High-Dimensional Variable Selection

Hwang et al. [95] proposed a stepwise regression algorithm with a simple stopping rule for the
identification of significant predictors and interactions among a huge number of variables in various
statistical models. It improves the results of the Forward Regression method called paring-down
variation (SPV) algorithm, proposed by Hwang and Hu [96], which was limited to the analysis of
the variation model for continuous responses, and required independence between factor predic-
tors. The new stepwise regression algorithm, like ordinary stepwise regression, at each forward
selection step includes a variable in the current model if the test statistic of the enlarged model with
the predictor against the current model has the minimum p-value among all the candidates and is
smaller than a predetermined threshold. Instead of using conventional information types of criteria,
the threshold is determined by a lower percentile of the beta distribution. The proposed stopping

rule is based on the well-known theoretical properties that (1) the p-values of the test statistics are
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Unif (0, 1) distributed if the predictors are irrelevant to the responses and (2) the minimum of m
independent Unif (0, 1) random variables can be assumed to be beta distributed with parameters 1
and m approximately [97, 98]. The algorithm can be summarized as follows.

Suppose Y is an n-vector of responses and X = (Xj, ..., X,) is an X p design matix of variables
with p > n. Let § be a subset of {0, 1,..., p} and denote X as the sub-matrix of X obtained by
extracting its columns corresponding to the indices in S. In addition let M be the model relating
the distribution of Y to the predictors Xg through a function of the linear predictor Xg3s with
parameter vector 3y of size |S|. Finally, let denote the vector of residuals from the fitted model My

is denoted by Rs. Then the algorithm can be expressed in the following steps.

Forward Selection

Step 1: Start with the null model Mg, where S = @

Step 2: Let the step count be [ = |S| + 1

Step 3: Calculate the correlation between Rg and X;, denoted as r;, for j = 1,...,p. Set
D ={1 < j < p:|rj|is among the first d largest of all}, where d = [n/log{n}]

Step 4: Test the difference in the goodness-of-fit between each My ;) against M for all j € D\S
Step 5: Replace S with S U {j} when the test statistic of Mgy, against My has the minimum
p-value, denote as p;, among the |D\S| competing models

Step 6: Stop forward selection and go to Step 7 when pj, > the 10th percentile of Beta(l, p —h+1)
forh=10,1-1,...,1—9;otherwise, go to Step 2

Backward Selection:

Step 7: Set 7 = exp(u — z X v) where u and v are the sample mean and standard deviation of
log{pn}

Step 8: Test the difference in the goodness-of-fit between Mg and My (), for each j € §

Step 9: Replace S with S\{js} and go to Step 8 if the test statistic of M against My ;) has the
largest p-value e among all the reduced models and is larger than 7; otherwise, stop and report the

set of remaining predictors {X;, j € S} as final influential predictors
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The main drawback of this method is that it was not supported with theoretical properties on model

selection.

2.14 Generalized Linear Models with High-Dimensional Predictors via Forward Regres-
sion: offset approach

As the dimension of predictors defies any existing modeling approaches, feature screening has
been commonly used for dimension reduction. The most popular screening approach is marginal
screening [87], which selects variables based on their marginal associations with the response.
However, marginal screening may miss signals that are marginally unimportant but conditionally
important [88], resulting in biased predictive results.

Conditional screening methods have been known as an alternative to well-known marginal screen-
ing, as they identify marginally weak but conditionally important variables. Nevertheless, the initial
conditioning set need to be fixed for the most of existing conditional screening methods and if not
chosen properly, may produce false positives and false negatives, and the selected variable might
depend on the conditioning set. Moreover, screening approaches typically need to involve tuning
parameters and extra modeling steps in order to reach a final model.

Zheng et al. [99] proposed a sequential conditioning (SC) approach, wherein variables sequentially
enter the conditioning set according to the increment of likelihood. The procedure updates the
conditioning set at each iteration based on the extended Bayesian information criterion (EBIC), and
constructs an offset term based on the variables in this set. In essence, this offset summarizes the
information contained in the updated conditioning set, and it searches for a new variable that max-
imizes the likelihood given the offset term. The authors emphasize that the proposed SC approach
deviates fundamentally from the variable screening or selection approaches as it naturally leads to
a final model when the procedure terminates. The SC approach can be summarized as follows.
Suppose (X;, Y;) are observations from the ith subject (1 < i < n),Y; € R! is the response variable,
and X; = (X0, Xi1, ... ,Xip)T is a collection of p+1 predictors for the ith sample and X;o = 1

corresponds to the intercept. SC modeling focuses on GLMs by assuming that the conditional
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density of ¥; given X; belongs to the linear exponential family
7Y | X) = exp{YX"B3 - b(X"B) + A(Y)}, (2.3)

where 3 = (B0, B1,.-.,8 p)T is the vector of coefficients, B is the intercept, and A(-) and b(-) are
known functions. This model with a canonical link function and a unit dispersion parameter, belongs
to a larger exponential family [100]. It also assumes that b(-) is twice continuously differentiable
with a non-negative second derivative »”(-). In addition, it uses u(-) and o (-) to denote b’(-) and
b”(+), i.e. the mean and variance functions, respectively. For example, b(6) = log(1 + exp(6)) in
a logistic distribution and b(6) = exp(6) in a Poisson distribution. Let E,{ (&)} = n~! L f(&)
denote the mean of {f (&)}, for a sequence of i.i.d. random variables &; (i = 1,...,n) and a
non-random function f(-).

The loglikelihood function, apart from an additive constant is
n' > LXTB,Y) = B {L(X"B,7)} (2.4)
i=1

It uses B = (B:0, Bx1s - - - ,ﬁ*p)T to denote the true values of 3. Then the true model is M = {j :
B« # 0,7 > 1} U {0}, which consists of the intercept and all variables with nonzero effects. The
estimate of M is denoted as M. It elaborate on the idea of building model with the proposed SC
approach. The key is to include an offset term which summarizes the information acquired from the
previous selection steps and to search for a new candidate variable that maximizes the likelihood
with such an offset.

An SC approach algorithm starts with initial index set, Sy, and initial offset, Og. Having Sy = {0},
Oy = ﬁs(), where ,@50 is estimated intercept without any covariates. First, with such Oy, it computes
,BAE.I) = argmaxglo,;(B) for j€ {0,1,...,p}, where lg, ;(B) is the average log-likelihood of
the regression model. Then, j; = argmax; ¢y Loy, (,BAE.I)), S1 =1{0,/1}, and Oy = Xgl Bs, .
Iteratively, for k > 1, given Sy and Oy, it computes ,8A§.k+1) = argmaxg lo,,; (B) for j € S}. Then,
Jk+1 = arg max e ge o, (BJ(.kH)), Skl = Sk U{Jr+1}, and Oy = XEkH BSH[- To decide whether

it recruits another variable ji.; or stops procedure at kth step, it computed EBIC on set Si., where

EBIC(Sys1) = =2Lsy,, (Bs,,,) + (k + 1) (log n +2nlog p) /n
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If EBIC(Sk+1)>EBIC(S%), it stops and declares Sj the final model.

The SC approach is computationally efficient as it maximizes the likelihood with respect to only
one covariate at each step given the offset, the property that was not observed in other methods.
The main drawback of SC approach is that it may be suboptimal compared to a full scale forward
optimization approach. Additionally, the consistency of the estimated model parameters has not

been addressed in related literature.

2.1.5 Cox Models with High-Dimensional Predictors via Forward Regression

As mentioned, forward regression can consistently identify all relevant predictors in high-dimensional
linear regression settings by using EBIC stopping rule. However, existing results from recent works
are based on the sum of residual squares from linear models and it is not certain whether forward
regression can be applied to more general regression settings, such as Cox proportional hazards
models since the results are based on the sum of residual squares from linear models.

There has been active research in developing high-dimensional screening tools for survival data.
These works include principled sure screening [101], feature aberration at survival times screening
[102] and conditional screening [103], quantile adaptive sure independence screening [104], a
censored rank independence screening procedure [105], and integrated powered density screening
[106]. However, the screening methods require a threshold to dictate how many variables to retain,
for which unfortunately there are no clear rules.

Zhao and Li [101] did tie the threshold with false discoveries, but it still needs to prefix the number
of false positives that users are willing to tolerate. Recently, Li ef al. [107] designed a model-free
measure, namely the survival impact index, that sensibly captures the overall influence of a covari-
ate on the survival outcome and can help guide selecting important variables. However, even this
method, like the other screening methods, does not directly lead to a final model, for which extra
modeling steps have to be implemented.

Hong et al. [108] introduced a new forward variable selection procedure for survival data based on

partial likelihood. It selects important variables sequentially according to the increment of partial
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likelihood, with a stopping rule based on EBIC. The algorithm for the proposed method is the
following.

Suppose n objects with p covariates are observed, where p > n. For subject i, denote by X;; the
Jjth covariate for subject i, write X; = (X;1, ..., X,-,,)T, and let 7; and C; be the underlying survival
and censoring times. We only observe ¥; = min(7;, C;), and the event indicator ¢; = I(T; < C;),

where [ is the indicator function. We assume random censoring such that C; and 7; are independent

given X. To link 7; to X, for each i € {1,...,n}, we consider the Cox proportional hazards model
A(t1X;) = o(1) exp{By Xi}, (2.5)
where A is the unspecified baseline hazard function and By = (Bo1,- . -, ,BOP)T is the vector of

regression coefficients. Additionally, let S c {1,2,..., p} be an index set and |S| cardinality of S.
First, we initialize So = () and sequentially select the sets of covariates such that Sg € §; € - -+ C S¢.
At the (k + 1)th step the algorithm selects a new covariate not observed in S; and then decides
whether it includes the new variable into selection and proceeds to the next step or stops at the kth
step. The selection criteria is based on the partial likelihood. Given Sk, for every j € §¢, it fits a
Cox model on the variables indexed by Sy ;, where Sy ; = §; U j. Then it computes an increment
of log partial likelihood for each j € S¢, that is, s, ,(Bs, ;) — Is, (Bs, ), where I5(8s) is log partial

likelihood function given Xg:

dN;(1), (2.6)

sB=Y [
i=1

where N;(t) = I(Y; < t,6; = 1) is the counting process, Y;(¢) = I(Y; > t) is the at-risk process,

BsXis — ln{ Z Y (1) exp ﬁgXlS}
=1

and 7 > 0 is the study duration such that P(Y > 7) > 0. The candidate index is chosen as
J* = argmax g, lgk’j(BSk’j) — s, (Bsk) and the index set is updated Sy = Sp U {j*}.
To decide whether to stop at the kth step or to include j* in the selection and proceed to the next

step, the algorithm makes its decision based on EBIC criteria, which is defined as follows:
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EBIC(Sy+1) = =25, (BSkH) +(k + 1)(11‘1{61} + 277111{]9})» (2.7)

where d = 01 + - - - + J, is the number of events and r some positive constant. If EBIC(Sy4;) >
EBIC(Sy), the algorithm stops and declares Sy the final model, otherwise it proceeds to the next
stop. They showed that if the dimension of the true model is finite, within a finite number of steps
forward regression can discover all relevant predictors, with the entry order determined by the size
of the likelihood increment.

The proposed model could potentially be the first work that investigated the partial likelihood-based
forward regression in survival models with high-dimensional predictors. Moreover, it represents
technical advances and a broadened scope compared to the existing forward regression (e.g., [109],
[110], [93]), and it improves the partial likelihood-based variable selection developed by [111],
[112] for survival data in low dimensional settings. The disadvantage of the proposed work is that

it does not address parameter estimation, which limits its usage in building predictive models.

2.1.6 A Stepwise Regression Method and Consistent Model Selection for High-Dimensional
Sparse Linear Models

Stepwise least squares regression is widely used in applied regression analysis to handle a large
number of input variables, which consists of forward selection of input variables in a ”greedy”
manner so that the selected variable at each step minimizes the residual sum of squares after least
squares regression is performed on it together with previously selected variables, a stopping rule to
terminate forward inclusion of variables, and stepwise backward elimination of variables according
to some criterion.

Ing et al. [113] developed an asymptotic theory for a version of stepwise regression in the context
of high-dimensional regression under certain sparsity assumptions. They introduced a fast stepwise
regression method, called the orthogonal greedy algorithm (OGA), that selects input variables to
enter a p-dimensional linear regression model (with p > n, the sample size) sequentially so that the

selected variable at each step minimizes the residual sum squares. They derived the convergence
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rate of OGA and developed a consistent model selection procedure along the OGA path that
can adjust for potential spuriousness of the greedily chosen regressors among a large number of
candidate variables. The resultant regression estimate is shown to have the oracle property of being
equivalent to least squares regression on an asymptotically minimal set of relevant regressors under
a strong sparsity condition.

The forward stepwise component of the procedure is compressed sensing and approximation theory,
which focuses on approximations in noiseless models. They also developed a fast iterative procedure
for updating OGA that uses componentwise linear regression similar to the L;-boosting procedure
of Buhlmann and Yu [114] and does not require matrix inversion. Consider the linear regression

model

yi=a+ ﬁjx,-j+e,-, i=1,...,n, (28)
J=1

with p predictors and x;1, x;2, . . ., X;, that are uncorrelated with the mean-zero random disturbances
€. As mentioned, Ly-boosting is an iterative procedure that generates a sequence of linear approx-
imations y(x) of the regression function (with @ = 0), by applying componentwise linear least
squares to the residuals obtained at each iteration.

Initializing with $o(+) = 0, it computes the residuals Ul.k ==y — 9x(x;), 1 <i < n, at the end of the

kth iteration and chooses x; ;  on which the pseudo-responses Ul.(k) are regressed, such that
n
2 . k 5(k
Juwr = argmin > (U = B0, (2.9)
1<j<p i=1
where

n n
(k) _ (k) 2
Bi~ = Z Ui xij/ Xij-
i=1 i=1
This yields the update

a1 () = 9r () + B x5 . (2.10)
Jk+1
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The procedure is then repeated until a pre-specified upper bound m on the number of iterations is
reached. When the procedure stops at the mth iteration, y(x) is approximated by ¥,,(x).

OGA uses the variable selector (2.9). Since 37| (Ul.(k) —,@;k)xij)z/z]?zl (Ul.(k))2 =1 —rjz., where r; is
the correlation coefficient between x,; and Ul.(k), (2.9) chooses the predictor that is most correlated
with Ul.(k) at the kth stage. However,the implementation of OGA updates (2.10) in another way
and also carries out an additional linear transformation of the vector X foy O form XJLk v where
X; = (Xij,.. s Xy j)T. The idea is to orthogonalize the predictor variables sequentially so that
OLS can be computed by componentwise linear regression, thereby circumventing difficulties with
inverting high-dimensional matrices in the usual implementation of OLS.

With the orthogonal vectors X Jel,Xjfz y. . ,lek already computed in the previous stages, it can

compute the projection X 5oy of Xo into the linear space by adding the k projections into the

1

respective one-dimensional linear spaces. This also yields the residual vector X+ =X G X
k+1

OGA uses the following updates in lieu of (2.10):

a1 (x) = Fr(x) + ﬁﬁ’? xt @.11)

ke’

where

n n
p(k) (k) 1 TN
ﬁfkﬂ B Z}: Ui xivfkﬂ/ Z(xi,fku) ’

= l:1

By sequentially orthogonalizing the input variables, OGA preserves the attractive computational
features of componentwise linear regression in PGA. However, unlike PGA for which the same
predictor variable can be entered repeatedly, OGA excludes variables that are already precluded
from further consideration in (2.9).

In addition, they developed a consistent model selection procedure along an OGA path under a
’strong sparsity” condition that the nonzero regression coeflicients satisfying the weak sparsity
condition are not too small. Applying the convergence rate of OGA, they proved that, with

probability approaching 1 as n — oo, the OGA path includes all relevant regressors when the
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number of iterations is large enough. They modified the model selection criteria like BIC and

called it high-dimensional information criterion (HDIC), which is defined as:

HDIC(J) = nlog{67} + |J|walog{p}, (2.12)

where J is a non-empty subset of {1,..., p} and 6']2 =n! 2 (i — $i.7)%. OGA+HDIC is shown
to select the smallest set of all relevant variables along the OGA path with probability approaching

1 (and is therefore variable-selection consistent).

2.2  Our Contribution

Although methods described in the previous sections brought novelty to the research area and made
a significant contribution to it, they still have some drawbacks. First, once a variable is identified by
the forward selection, it is not removable from the list of selected variables. Hence, false positives
are unavoidable without a systematic elimination procedure. Second, most of the existing works
focus on variable selection and are silent with respect to estimation accuracy.

To address the first issue, some works have been proposed to add backward elimination steps once
forward selection is accomplished, as backward elimination may further eliminate false positives
from the variables selected by forward selection. For example, An et al. [92] and Ing ef al. [113]
proposed a stepwise selection for linear regression models in high-dimensional settings and proved
model selection consistency. However, it is unclear whether the results hold for high-dimensional
GLMs; Hwang et al. [95] proposed a similar stepwise algorithm in high-dimensional GLM settings,
but with no theoretical properties on model selection. Moreover, none of the relevant works have
touched upon the accuracy of estimation.

We extend a stepwise regression method to accommodate GLMs with high-dimensional predictors.
Our method, termed STEPWISE hereafter and introduced in Chapter 3, embraces both model
selection and estimation. It starts with an empty model or pre-specified predictors, scans all
features and sequentially selects features, and conducts backward elimination once forward selection

is completed. Our proposal controls both false negatives and false positives in high dimensional
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settings: the forward selection steps recruit variables in an inclusive way by allowing some false
positives for the sake of avoiding false negatives, while the backward selection steps eliminate the
potential false positives from the recruited variables.

We use different stopping criteria in the forward and backward selection steps, to control the
numbers of false positives and false negatives. It is achieved by adding flexibility with two tuning
parameters in the stopping criteria, which strengthens our algorithm. Values of these parameters
define how many parameters will likely be included in the model. For instance, a small value of
the tuning parameter in the forward selection will include more variables, and a large value will
recruit too few features. In similar fashion, in the backward elimination step, a large value of the
parameter would eliminate more variables and vice versa for a small value. It is worth mentioning
that our method includes forward selection as a special case when the tuning parameter is equal to
0, making the algorithm more flexible.

Moreover, we prove that, under a sparsity assumption of the true model, the proposed approach can
discover all of the relevant predictors within a finite number of steps, and the estimated coefficients
are consistent, a property still unknown to the literature. Finally, our GLM framework enables our
work to accommodate a wide range of data types, such as binary, categorical and count data.
Extensive numerical studies have been conducted to compare STEPWISE procedure with the other
competing methods mentioned in previous subsections. Specifically, we compared our algorithm
with LASSO, dgLLARS, forward regression (FR), the SC approach, and the screening methods
such as SIS. Our numerical studies included simulations: we compared the proposed method
with the other methods over comprehensive simulated studies covering different model structures
and variable dependencies. All these examples were tested over various model types, including
Normal, Binomial, and Poisson models. The obtained results have indicated that the STEPWISE
algorithm was able to detect all the true signals with nearly zero false positive rate. In addition, it
outperformed the other methods by selecting more true positives with fewer false positives.
Moreover, our numerical studies included real data analysis, which aimed to demonstrate the

utility of our method with real-life scenarios. We analyzed data obtained from studies about
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gene regulation in the mammalian eye, esophageal squamous cell carcinoma, and neurobehavioral
impairment from total sleep deprivation. We demonstrated that STEPWISE achieved comparable
prediction accuracy, specificity, sensitivity, and AUC by selecting fewer variables that the other
variable selection methods.

Finally, to enhance the predictive power of the proposed method, we developed a multi-stage
hybrid machine learning method. It incorporates a stacking technique and includes both model-
free and model-based methods. Specifically, it comprises Random Forest (RF), Extreme Gradient
Boosting Machine (XGBoost), Support Vector Machine (SVM), Artificial Neural Network (ANN),
and LASSO models along with the STEPWISE procedure. The numerical study has shown an
improvement in the predictive power of our method. Furthermore, we developed a web application
that enables users to utilize the aforementioned method in practice.

To recap, our proposed method distinguishes from the existing stepwise approaches in high-
dimensional settings. For example, it improves An ef al. [92] and Ing ef al. [113] by extending
the work to a more broad GLM setting and Hwang ef al. [95] by establishing the theoretical
properties. Compared with the other variable selection and screening works, our method produces
a final model in ultrahigh-dimensional settings, without applying a pre-screening step which may
produce unintended false negatives.

Under some regularity conditions, the method identifies or includes the true model with probability
going to 1. Moreover, unlike the penalized approaches such as LASSO, the coefficients estimated
by our STEPWISE selection procedure in the final model will be consistent, which are useful for

gauging the real effect sizes of risk factors.
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CHAPTER 3

STEPWISE METHOD: THEORY AND APPLICATIONS

3.1 Model Setup

Let (X;,Y;), i = 1,...,n, denote n independent and identically distributed (i.i.d.) copies of (X,Y).
Here, X = (1, X4, ..., Xp)T is a (p + 1)-dimensional predictor vector with Xy = 1 corresponding
to the intercept term, and Y is an outcome. Suppose that the conditional density of Y, given X,

belongs to a linear exponential family:
7Y | X) = exp{YX'8 - b(X'B3) + A(Y)}, (3.1

where 3 = (Bo,B1,- - - ,,81,,)T is the vector of coefficients, By is the intercept, and A(:) and
b(-) are known functions. Model (3.1), with a canonical link function and a unit dispersion
parameter, belongs to a larger exponential family [100]. Further, b(-) is assumed twice continuously
differentiable with a non-negative second derivative b”(-). We use u(-) and o (-) to denote b’(-)
and b”(-), i.e. the mean and variance functions, respectively. For example, b(0) = log(1 +exp(6))
in a logistic distribution and »(#) = exp(8) in a Poisson distribution.

Let L(u,v) = uv — b(u) and E,{f(¢)} = n”! iz f (&) denote the mean of {f (&)}, for a
sequence of i.i.d. random variables & (i = 1,...,n) and a non-random function f(-). Based on

the i.i.d. observations, the log-likelihood function is
n
(B)=n"' Y LXB.Y,) =E,{L(X"B.7)}. (3.2)
i=1

We use B = (840, Bels - - - ,ﬁ*p)T to denote the true values of 3. Then the true model is M =
{J : B+j #0,j > 1} U {0}, which consists of the intercept and all variables with nonzero effects.
Overarching goals of ultrahigh-dimensional data analysis are to identify M and estimate S.; for
Jj € M. While most of the relevant literature [99, 108] is on estimating M, this work is to

accomplish both identification of M and estimation of S, ;.
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When p is in the exponential order of n, we aim to generate a predictive model that contains the true
model with high probability, and provide consistent estimates of regression coefficients. We further
introduce the following notation. For a generic indexsetS c {0, 1, ..., p}anda (p+1)-dimensional
vector A, we use S¢ to denote the complement of a set S and Ag = {A; : j € S} to denote the
subvector of A corresponding to S. For instance, if S = {2,3,4}, then X;5 = (X,-Z,Xi3,X,-4)T.
Moreover, denote by €s(3s) = En{L(Xg,BS, Y)} the log-likelihood of the regression model of Y
on X and denote by ,@S the maximizer of £5(3s). Under model (3.1), we elaborate on the idea of

stepwise selection, consisting of the forward and backward stages.

Forward stage: We start with F{, a set of variables that need to be included according to some
a priori knowledge, such as clinically important factors and conditions. If no such information is
available, Fj is set to be {0}, corresponding to a null model. We sequentially add covariates as
follows:

FhcF cFk C---CFp,

where Fj, C {0, 1, ..., p}isthe index set of the selected covariates upon completion of the kth step,
with k > 0. At the (k + 1)th step, we append new variables to Fj one at a time and refit GLMs:
forevery j € F;, welet Fy j = F, U {j}, obtain Bp,w. by maximizing {r, ;(BF, ;). and compute the

increment of log-likelihood,
ng,j (BFk,j) - ka (BFk)'

Then the index of a new candidate variable is determined to be

Jkn = argmax €g,  (Br, ;) — Cr (Br)-
jeF,f

And we update Fy1 = Fr U {jr+1}. We then need to decide whether to stop at the kth step or move

on to the (k + 1)th step with Fi;. To do so, we use the following EBIC criterion:
EBIC(Fis1) = —26r,,, (Bry.,) + [Frr1ln™ (logn + 2571 log p), (3.3)

where the second term is motivated by Chen and Chen [115] and |F| denotes the cardinality of a

set F'.
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The forward selection stops if EBIC(F4;) > EBIC(F}). We denote the stopping step by k* and
the set of variables selected so far by Fy-.
Backward stage: Upon the completion of forward stage, backward elimination, starting with

By = Fy-, sequentially drops covariates as follows:
BQDB] DBZD"'DBk,

where By is the index set of the remaining covariates upon the completion of the kth step of
the backward stage, with k > 0. At the (k + 1)th backward step and for every j € By, we
let By/; = By \ {j}, obtain BBk ,; by maximizing {(8p,,;), and calculate the difference of the

log-likelihoods between these two nested models,

¢, (BB,) - t5,,,(Bs,,,)-

The variable that can be removed from the current set of variables is indexed by

jk+1 = arg I;linka (BBk) - ka/j(BBk/j)'
JEDK

Let By+1 = By \ {jk+1}. We determine whether to stop at the kth step or move on to the (k + 1)th

step of the backward stage according to the following BIC criterion:

BIC(Bi+1) = —2€3,,,(Ba,.,) + n2n~ ' |Bys1]logn. (3.4)

If BIC(By+1) > BIC(By), we end the backward stage at the kth step. Let £** denote the stopping
step and we declare the selected model By to be the final model. Thus, M= B+ is the estimate
of M. As the backward stage starts with the k* variables selected by forward selection, k** cannot
exceed k*.

A strength of our algorithm is the added flexibility with 7; and 7, in the stopping criteria for
controlling the false negatives and positives. For example, a smaller value of 7; close to zero in the
forward selection step will likely include more variables, thus incur more false positives and less
false negatives, whereas a larger value of n7; will recruit too few variables and cause too many false

negatives. Similarly, in the backward selection step, a large 7, would eliminate more variables and
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therefore further reduce more false positives, and vice versa for a small 77,. While finding optimal
n1 and 1 is not trivial, our numerical experiences suggest a small ; and a large 7, may well
balance the false negatives and positives. When 77, = 0, no variables can be dropped after forward
selection; hence, our proposal includes forward selection as a special case.

Moreover, Zheng et al. [99] proposed a sequentially conditioning approach based on offset terms
that absorb the prior information. However, our numerical experiments indicate that the offset
approach may be suboptimal compared to our full stepwise optimization approach, which will be

demonstrated in the simulation studies.

3.2 Theoretical Properties

With a column vector v, let ||v||, denote the L,-norm for any ¢ > 1. For simplicity, we denote the
L>-norm of v by ||v||, and denote vv! by v®2. We use Ci, C», . . ., to denote some generic constants
that do not depend on n and may change from line to line. The following regularity conditions are

set.

1. There exist a positive integer ¢ satisfying |M| < ¢ and glog p = o(n'/?) and a constant
K > 0 such that supg <, [|B5ll1 < K, where B = argmaxg, E [{s(8s)] is termed the least

false value of model S.
2. Xl < K. In addition, E(X;) = 0 and E(X?) = 1 for j > 1.

3. Let ¢ = Y; — u(BIX;). There exists a positive constant M such that the Cramer condition

holds, i.e., E[|€|"] < m!M™ for all m > 1.
4. |o(a) — o (b)| < Kl|a — b| and oin := inf}; g3 |b”(2)] is bounded below.

5. There exist two positive constants, Kmin and Kmax such that 0 < kpin < A (E (X?z)) < Kmax <
oo, uniformly in § € {0, 1,..., p} satisfying |S| < g, where A(A) is the collection of all

eigenvalues of a square matrix A.
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6. ming.p(¢s,51<g Ps > Cn~® for some constants C > 0and @ > O that satisfies gn~*og p —

0, where Ds = maxeseam [ [ (1(8TX) - u(87X9)) /||

Condition (1), as assumed in Buhlmann et al. [116] and Zheng et al. [99], is an alternative to the
Lipschitz assumption [117, 87]. The bound of the model size allowed in the selection procedure
or ¢ is often required in model-based screening methods (see, e.g. [94, 118, 109, 99]). The bound
should be large enough so that the correct model can be included, but not too large; otherwise,
excessive noise variables would be included, leading to unstable and inconsistent estimates. In-
deed, Conditions (1) and (6) reveal that the range of ¢ depends on the true model size | M|, the

minimum signal strength, n=¢

, and the total number of covariates, p. The upper bound of g is
o((n'=*/log p) A (n'/3/log p)), ensuring the consistency of EBIC [115].

Condition (1) also implies that the parameter space under consideration can be restricted to
B = {8 € R**! : ||B|l; < K?}, for any model S with |S| < ¢g. Condition (2), as assumed
in Zhao et al. [101] and Kwemou er al. [119], reflects that data are often standardized at the
pre-processing stage. Condition (3) ensures that Y has a light tail, and is satisfied by Gaussian and
discrete data, such as binary and count data [120]. Condition (4) is satisfied by common GLM
models, such as Gaussian, Binomial, Poisson and Gamma distributions.

Condition (5) represents the sparse Riesz condition [121] and Condition (6) is a strong "irrepre-
sentable" condition, suggesting that M cannot be represented by a set of variables that does not
include the true model. It further implies that adding a signal variable to a mis-specified model
will increase the log-likelihood by a certain lower bound [99]. The signal rate is comparable to the
conditions required by the other sequential methods (see, e.g. [93, 109]).

Theorem 3.2.1 develops a lower bound of the increment of the log-likelihood if the true model M

is not yet included in a selected model S.

Theorem 3.2.1. Suppose Conditions (1) — (6) hold. There exists some constant Cy such that with

probability at least 1 — 6 exp(—6¢ log p),

i tsuiin (Bsugiy) — €s(Bs) b = Cin2°.
S:Mrég,rlls|<q{rjrg§ st (Bsutz) S(BS)} "
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Theorem 3.2.1 shows that, before the true model is included in the selected model, we can

~2@ with probability tending

append a variable which will increase the log-likelihood by at least Cin
to 1. This ensures that in the forward stage, our proposed STEPWISE approach will keep searching
for signal variables until the true model is contained. To see this, suppose at the kth step of the

forward stage that F, satisfies M ¢ Fj and |Fj| < g, and let r be the index selected by Stepwise.

By Theorem 3.2.1, we obtain that, for any 7 > 0, when » is sufficiently large,

EBIC(Fy,) — EBIC(Fy) = =2¢F, . (Br.,) + (|IFe| + )n™' (log n + 21, log p)

— [<26r.(BF,) + | Filn™ ' (logn + 211 log p) |

< -2Cin % +n~(logn + 25 log p) < 0,

with probability at least 1 — 6 exp(—6¢ log p), where the last inequality is due to Condition (6).
Therefore, with high probability the forward stage of STEPWISE continues as long as M ¢
Fy and |F| < g. We next establish an upper bound of the number of steps in the forward stage

needed to include the true model.

Theorem 3.2.2. Under the same conditions as in Theorem 3.2.1 and if

E [{Y - u(B5"Xs)} Xj”} =o(n™),

max max
S:|S|<q | jeSenMe

then there exists some constant Cy > 2 such that M C Fy, for some Fy in the forward stage of

Stepwise and k < C| M|, with probability at least 1 — 18 exp(—4¢q log p).

The "max" condition, as assumed in Section 5.3 of Fan er al. [122], relaxes the partial
orthogonality assumption that X are independent of X, and ensures that with probability
tending to 1, appending a signal variable increases log-likelihood more than adding a noise variable
does, uniformly over all possible models S satisfying M ¢ S, |S| < ¢. This entails that the proposed
procedure is much more likely to select a signal variable, in lieu of a noise variable, at each step.
Since EBIC is a consistent model selection criterion [110, 123], the following theorem guarantees

termination of the proposed procedure with M C Fj for some k.
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Theorem 3.2.3. Under the same conditions as in Theorem 3.2.2 and if M ¢ Fy_; and M C Fy,

the forward stage stops at the kth step with probability going to 1 — exp(—3q log p).

Theorem 3.2.3 ensures that the forward stage of STEPWISE will stop within a finite number
of steps and will cover the true model with probability at least 1 — gexp(—3glogp) > 1 —
exp(—2q log p). We next consider the backward stage and provide a probability bound of removing

a signal from a set in which the set of true signals M is contained.

Theorem 3.2.4. Under the same conditions as in Theorem 3.2.2, BIC(S\{r}) — BIC(S) > 0

uniformly over r € M and S satisfying M C S and |S| < g, with probability at least 1 —

6 exp(—6q log p).

Theorem 3.2.4 indicates that with probability at 1 — 6 exp(—6¢ log p), BIC would decrease
when removing a signal variable from a model that contains the true model. That is, with high
probability, back elimination is to reduce false positives.

Recall that Fj- denotes the model selected at the end of the forward selection stage. By Theorem
3.2.2, M C F;- with probability at least 1 — 18 exp(—4¢glog p). Then Theorem 3.2.4 implies
that at each step of the backward stage, a signal variable will not be removed from the model
with probability at least 1 — 6exp(—6¢glog p). By Theorem 3.2.2, |F+| < C3|M|. Thus, the
backward elimination will carry out at most (C, — 1)| M| steps. Combining results from Theorems
3.2.2 and 3.2.3 yields that M c M with probability at least 1 — 18 exp(—4qlog p) — 6(C; —
1)| M| exp(=64 log p). Let B be the estimate of 3, in model (3.1) at the termination of STEPWISE.

By convention, the estimates of the coeflicients of the unselected covariates are 0.

Theorem 3.2.5. Under the same conditions as in Theorem 3.2.2, we have that M C M and

1B =Bl -0

in probability.
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The theorem warrants that the proposed STEPWISE yields consistent estimates, a property not
shared by many regularized methods, including LASSO. Our later simulations verified this. Proof

of main theorems and lemmas are provided in the following Chapter.

3.3 Proof of the Theorems

Since b(-) is twice continuously differentiable with a nonnegative second derivative b”(+), bpmax =
max,<x3 [b(1)], Hmax = maxj<gs [b(7)], and omax = supy <k [b”(7)| are bounded above,
where L and K are some constants from Conditions (1) and (2), respectively. Let G,{f(£)} =
n~1/2 21 (f(&) = E[f(&)]) for a sequence of i.i.d. random variables & (i = 1,...,n) and a
non-random function f(-).

Given any (g, when a variable X,,r € S¢ is added into the model S, we define the augmented

log-likelihood as
Lsotry (Bswr) =B {1 (81X + ,X, )| 3.

We use BSH to denote the maximizer of (3.1). Thus, Bg+r = BSU{,}. In addition, denote the
maximizer of E[lsy((Bs+)] by Bg,,. Due to the concavity of the log-likelihood in GLMs with

the canonical link, ,6; ., 1s unique.

Proof of Theorem 3.2.1. Given an index set S and r € S, let Bg(d) = {Bs : lIBs — Bsll <

d/(K+/|S])} where d = Ax+\/q3 log p/n with A; defined in Lemma 3.4.6.

Let Q be the event that

G, [L (ﬁgxs,y) _L (ﬁ;TXS, Y)” <20A1dyglogp and

sup
|S|<q.Bs€84(d)

max G, [L(B%" X5, Y)] | < 10(AK* + bmax)\/qlogp},
<q

where A is some constant defined in Lemma 3.4.4. By Lemma 3.4.4, P(Q) > 1-6exp(—6¢ log p).
Thus in the rest of the proof, we only consider the sample points in €.

In the proof of Lemma 3.4.6, we show that max|g<4 |Bs — Bell < A>K~ V(g log p/n)'/? under Q.

Then given an index set S and By such that |S| < g, ||Bs — B;ll < A2K~'(¢*log p/n)!/?, and for
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any j € S¢,

Csun (8L, ) — bs(Bs) > inf Csun (B ) =€ =
suj} (Bssj) = ts(Bs) 1858l <A o oy suj} (Bss;) = €s(Bs)

n~'2G, | L(B3  Xsuy ,-},Y>] -n~'?G, [L(B} X5, Y)] -

sup

w126, [L(BIXs, V) - L(B;"Xs, V)|
1Bs—B5lI<A2K~! (% log p/n)'/?

+E LB X, V)| - E [L(BTXs.1)] 2
—20(A1K? + bma) Vg log p/n — 20A1A2q* log p /n+

OminKmin T T2
T 52— (857, 0)"IP

where the second inequality follows from the event  and Lemma 3.4.5.

By Lemma 3.4.1, if M € S, there exists r € S N M, such that
1855, = (B, 0)|| > CopaxKimixn ™"

S+r max " max

Thus, there exists some constant C; that does not depend on n such that

max;ese Csugjy (Bs+7) = £s(Bs) = maxjese Loy (Bs,,) = €s(Bs) =

Csury (By,) — Cs(Bs) = —20(A1K? + bmnax) Vg log p/n —

20A1A2¢% log p/n + Eminkminn > =20

2
2O—max Kmax

(3.2)

where the first inequality follows from Bs. ; being the maximizer of (3.1) and the second inequality

follows from Conditions (1) and (6).

Withdrawing the restriction to €2, we obtain that

P i Looin(Beurn) —€s(Bs) > Cin 2| >1-6 —6g1 )
5 Min,  max su(j} (Bsugjy) — €s(Bs) = Cin™™ | 2 exp(—64 log p)
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Proof of Theorem 3.2.2. We have shown that our forward stage will not stop when M ¢ S and |S| <
g with probability converging to 1.
Forany r € S“NM¢, B, . is the unique solution to the equation £ [{Y—,u S+rXSU{r} }XSU{,}] 0.

By the mean value theorem,

E[{Y - u(85"Xs)} X, | = E[{n(8:X) - u(85'Xs) } X,
= E[{u(8:X) = u(B5Xs)} X, = E[{n(8:X) = n(B5;, Xsui) } X

= ( S+r (ﬁ 0))E[J(§§+rXSU{V})X?S{r}]eV’

where Bs., is some point between s, and (B;T, 0)T and e, is a vector of length (|S| + 1) with the
rth element being 1.

Since |55+,Xsu{r}| < |/65+rXSU{r}| + |(,3§T, 0) X503 < 2K? by Conditions (1) and (2),

|O-(B§+rXSU{r})| > Omin and

= O'mmKrmn”;@S.H - (IBET’ 0)1].

o(n™) = ‘E HY - ,u(ﬂ;TXS)}X ]
Therefore,

185, = (85", 0l = o(n™).

S: |S|<q reS‘ nM¢

Under Q that is defined in Theorem 3.2.1, max g|<, 185 — Bgll < ArK (g% log p/n)'/2.
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For any j € S¢,

Csuijy (B5,,) — Es(Bs) < sup Csu(jy(Bsyj) — €s(Bs)
1Bs=B5ll<A2K~"(q*log p/m)!/?

< |n712G, [ L(B5T Xsogjy, V]| + |26 [L(85Xs 1))

+ sup w26, [L(BYXs,¥) - L(BFTXs, V) |

1Bs-B3ll<A2K~1 (g log p/n)!/2
*«T *T
+|E [LB5T X551 1] - B [L(B™Xs, )] | <
20(A1K? + bmax)+/gn~" log p + 20A1 A2g*n~ " log p+

O-mameax”/gzurj - (/6§T’ O)T”2/2’

where the second inequality follows from the event Q and Lemma 3.4.5. Since

r S+r /6 O = Y —1+4a
’ o\n and n log p 0’
S:|S|<q,reScNM¢ ” ( S ) ” ( ) q

we have

Csuir) (Bsy,) = s(Bs) < 20(A1K? + bmax)/qn~" log p+
S;|S|<£}«2)§CQMC SU{ }(’BS+r) S(IBS) ( 1 ma) qn Qgp

20A142¢°n" " ogp  + Cmaxkmaxl|B5,; — (85 0)TI1/2 = 0(n™?%),

with probability at least 1 — 6 exp(—6¢ log p). Then by Lemma 3.4.6,

maxg; (s)<q.rescome Lsugry (Bser) — s (Bs) < maxg.si<gresenme [Csury (Bsar) —
Csugry (B%,,)| + maxssi<q reseame |Esupry (BE,,) — Es(Bs)| <

Asg*n~llog p + o(n72%) = o(n2%), (3.3)
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with probability at least 1 — 12 exp(—6¢ log p). By Theorem 3.2.1, if M ¢ S, the forward stage
would select a noise variable with probability less than 18 exp(—6¢ log p).
For k > | M|, M € S; implies that at least k — | M| noise variables are selected within the k steps.
Then for k = Cy| M| with C; > 2,
k
PIMES)< y

IM

J=

k ~ _
(j){lSexp(—6q logp)}J < |M|k|M|{186xp(—6qlogp)}k M|
|
< 18exp(—6¢log p + log | M| + |IM|logk) < 18exp(—4qlogp).

Therefore, M C Sc, m| with probability at least 1 — 18 exp(—4q log p). O

Proof of Theorem 3.2.3. By Theorem 3.2.2, M will be included in Fj for some k < g with
probability going to 1. Therefore, the forward stage stops at the kth step if EBIC(Fy41) > EBIC(Fy).
On the other hand, that EBIC(F.,;) < EBIC(F;) if and only if 20r.,(Br,.,) — 205, (Br,) =
(logn+2nlog p)/n. Thus, to show the forward stage stops at the kth step, we only need to show

that with probability tending to 1,

2r (Br,) = 205, (Br,) < (logn + 25, log p) /n, (3.4)

for all n; > 0.
To prove (3.4), we first verify the conditions (A4) and (AS) in Chen and Chen [115]. Given any
index S such that M C S and |S]| < ¢, let B.s be the subvector of 3, corresponding to S. We obtain

that

E[(Y - u(BYXs)Xs]| = E [E [(Y - (8], Xm))IXs] Xs] = 0.

This implies B¢ = B.s.

Given any 7 € RISI, let Hs := {h(,Bs) = (amaxK2|S|)—la(ﬁ§XS) (7TXs)?, 7]l = 1. 8s €
BI(d)}. By Conditions (1) and (2), h(7, Bs) is bounded between —1 and 1 uniformly over ||7r|| = 1
and 35 € BY(d).

By Lemma2.6.15 in van der Vaart et al. [124], the VC indices of W := {(K\/E)_IWTXS, |7c]| = 1}
and V = {BEXS, Bs € B(S)(d)} are bounded by |S| + 2. For the definitions of the VC index

41



and covering numbers, we refer to pages 83 and 85 in van der Vaart et al. [124]. The VC
index of the class U = {(K?|S|) "' (7wTXs)?, ||7|| = 1} is the VC index of the class of sets
{(Xs, 1)+ (K2S)™ (7" Xs)? < 1, ||m]| = 1,1 € R}.
Since {(Xs,7) @ (K?|S))""(7"X5)? < 1} = {(Xs,1) : 0 < (KA/IS) 7' Xs < Vi} U {(Xs,1) :
—Vi < (K/IS])"'7TXs < 0}, each set of {(Xs,7) : (K|S (n"Xs)? < t,||7|| = 1,1 € R}
is created by taking finite unions, intersections, and complements of of the basic sets {(Xgs,?) :
(K\/E)_IWTXS < t}. Therefore, the VC index of {(Xs, 1) : (K*|S|) "N (7™Xg)? < ¢, ||| = 1,1 €
R} is of the same order as the VC index of {(Xg,?) : (K\/E)_IWTXS < t}, by Lemma 2.6.17 in
[124].
Then by Theorem 2.6.7 in van der Vaart et al. [124], for any probability measure Q, there exists some
universal constant C3 such that N(e, U, L>(Q)) < (C3/e)*SH*V Likewise, N(de,V, L>(Q)) <
(C3/€)*SHD " Given a Bso € Bg(d), for any 3s in the ball {3s : sup, |Bx - ,3§’0x| < de}, we
have supy | (B5x) — 07 (8§ (X)| < Kde by Condition (4).Let V" := {00 (85 X5s), Bs € BY(d)}.
By the definition of covering number, N(Kde, V', L,(Q)) < (C3/€)*BHDGiven a O'(,@E’OX) and
mX, for any o (B¢x) in the ball {o(85x) : supy|o(B¢x) — J(,BE’OX)l < Kde} and 7 in the
ball {7 : supy |(7"%)* = (7(%)*| < €}, (TmaxK>|S]) ™" supy |0 (B5x) (77%)* = o (B y%) (7x)?| <
(K d + (K?|S)™e. Thus, N((o7aKd + (K*ISD™)e, Hs, L2(Q)) < (C3/€)* PV, and
consequently N (e, Hs, Lr(Q)) < (C4/€)* 5D for some constant Cy.
By Theorem 1.1 in Talagrand [125] and |S| < ¢, we can find some constant Cs such that
P( sup |G, [(m. Bs)]| 2 csm)
llll=1,8s €83 (d)
G

<
Cs+/qlogp

Cgcgqlogp
4181+ 1)

4(|S|+1)
) exp(—2C52q log p)

<exp (4(|S| + 1) log(C,C2qlog p) — 2C2q log p)

<exp(-5¢glogp),
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where C; is some constant that depends on C4 only. Thus,

P( SUB(si<qpmior poestia [Bn {o (XE8s) (77Xs)*} = E [or (XT8s) (x7Xs)?| |

> CsK>\J Tog p /n) 27 ()" exp (=5 log p) < exp(-3qlog p). (3.5)

By Condition (5), Gminkmin < A(E [0‘ (Xgﬁs) X?Z]) < Cmaxkmax for all @s € BY(d) and
S: MCS,|S| < gq. Then, by (3.5),

TminKmin/2 < A (En {0- (Xgﬁ*s) X?z}) < 20 maxKmax

uniformly over all S satisfying M C S and |S| < ¢, with probability at least 1 — exp(—3¢g log p).
Hence, the condition (A4) in [115] is satisfied with probability at least 1 — exp(—3¢ log p).
Also for any g € Bg(d),

= o ) (5 | -2 fo i) ()

<[r 176 (x5 (7)o 76 fr (3] (7]
e (x3) (") | - e (3] (s ||

< 2CsK?\/q3 log p/n + pmaxl|Bs — BislIVISIK Amax-

Hence, the condition (A5) in Chen and Chen [115] is satisfied uniformly over all S such that M C §
and |S| < ¢, with probability at least 1 — exp(—3¢g log p).
Then (3.4) can be shown by following the proof of Equation (3.2) in Chen and Chen [115]. Thus,

our forward stage stops at the kth step with probability at least 1 — exp(—3¢ log p). O

Proof of Theorem 3.2.4. Suppose that a covariate X, is removed from S. For any r € M, since

M ¢ S\{r} and r is the only element that is in (S\{r})¢ N M, by Lemma 3.4.1 and (3.2)

ts(Bs) = s\ (Bsviry) = Cs(B%) — L\ (ry (Bsyir})

a

= C5\(r10(r) (B3 ryar) — E5\(} (Bsvir)) 2 Cin™2,
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with probability at least 1 — 6 exp(—6¢glog p). From the proof of Theorem 3.2.1, we have for
any 1, > 0, BIC(S) — BIC(S\{r}) < —-2C1n~>* + pon~'logn < 0, uniformly over r € M and S

satisfying M C S and |S| < ¢, with probability at least 1 — 6 exp(—6¢q log p). O

Proof of Theorem 3.2.5. By Theorems 3.2.1, 3.2.2, and 3.2.3, we have that the event Q; :=
{IM| < g and M C M} holds with probability at least 1 — 25 exp(—2¢ log p). Thus, in the rest of
the proof, we restrict our attention on €.

As shown in the proof of Theorem 3.2.3, we obtain that Bj\;( =0, - Then by Lemma 3.4.6, we
have || 3 o ﬁj\;[ | < A,K~! \/W with probability at least 1 —6 exp(—6¢ log p). Withdrawing

the attention on €21, we obtain that

18 = Bull = 18— Boyall = 1B - B |l < AK™'\Jq?log p/n,

with probability at least 1 — 31 exp(—2¢ log p). O

3.4 Additional Lemmas

Lemma 3.4.1. Given a model S such that |S| < g, M € S, under Condition (6),
(i): Ir € SN M, such that Bg,, # (ﬁ;ﬁT, 0T,
(ii): Suppose Conditions (1), (2), and (6°) hold. 3r € S N M, such that ||3:L - (B;T,O)ll >

S+r

-1 -1 -«
Ca-mameaxn

Proof. As B;H. is the maximizer of E [fsu{j}(ﬁs+j)] , by the concavity of E [fsu{j}(,@5+j)] , B;ﬂ
is the solution to the equation E [(Y — u(B Xs + ﬁjXJ-))XSU{j}] =0,
(i): Suppose that 35, ; = (BT, 0)T,¥j € S°N M. Then,

0=E[(Y - u(8TXs))X,] = E[(u(87X) - u(8:Xs)) X;]

= max |E[(u(8X) - u(85Xs))X;]| =0,
jesenm

which violates the Condition (6). Therefore, we can find ar € SN M, such that 35, = # (B§T, 0)T.
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(ii): Letr € SN M satisty that |E [ (u(8TX) — (85" Xs)) X, || > Cn~. Without loss of generality,

we assume that X, is the last element of Xgy,}. By the mean value theorem,

E[(u(BYX) - u(B5™Xs)) X, |
= E[(1(BIX) - u(B5"Xs)) X, ] = E[(1(BIX) = u(85;, Xsuiry)) X ]
= E[(1(8%;,Xsury) = #((B5 0)Xs041)) Xr |

= (852, = (B5L. ) E[o (B, Xsur) X§5 . lers 3.1

where (s, is some point between Bs,, and (ﬁ;T, 0)T and e, is a vector of length (|S| + 1) with the

rth element being 1.

As Bs., is some point between Bs,, and (ﬁ;T, 07T,
185, Xsuiry| < 1853, Xsun] + 185", 0)Xsugr | < 2K,
by Conditions (1) and (2). Thus, |0'(B§+rXSU{,})| < Omax- By (3.1) and Condition (5),

cn <|E [(1(81X) - u(85™Xs) )X,

< 11857, = (BT, 0)lrmasmas (E[XE2,,]) le |

< O'mameaX”/B;l:r - (5§T’ 0)]].

Therefore, |35, — (3:1,0)|| > C okl e, m|
Lemma 3.4.2. Let &,i = 1,...,n be n i.i.d random variables such that |£;| < B for a constant

B > 0. Under Conditions (1) — (3), we have E [|Y;&; — E [Y;i&] "] < m!(2B(N2M + pmax))™, for

everym > 1.

Proof. By Conditions (1) and (2), |3X;| < KL, Vi > 1 and consequently |,u(,8;rX,-)| < Umax- Then
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by Condition (3),

EYI"] = Elle+u(8TX)I"] < (’:‘)E [lel']

=0

m
m
< t!(t )Mt:urr;ll;)i < m!(M"'/—lmax)m,
t=0

for every m > 1. By the same arguments, it can be shown that, for every m > 1,
E[lYi&i — E[Yi&i] "] < E[(1Vi&il + |E [Yi&i]l D™'] < mU(2B(M + pimax))™.
O

Lemma 3.4.3. Under Conditions (1) —(3), when n is sufficiently large such that 28+/qlog p/n < 1,

we have supgep [E, {L(BTX,Y)}| < 2(M + ptmax) K> +bimay, with probability 1 -2 exp(—10g log p).

Proof. By Conditions (2), supgeg |BTX| < K3. Thus,

sup [E, {L(BTX,Y)}| < sup [E, {|Y BTX|} + bimax
BeB B<B

< (B {IY1 = E[IYI}| + E [IY]]) K + brmax

< (Ba{IY1 = E[IYN}]) K* + (M + pmax) K> + Brax,

where the last inequality follows from that E[|Y|] < M + pumax as shown in the proof of Lemma

3.4.2.

Let&; = 1{Y; > 0}—1{Y; < 0}. Thus|¢;| < 1. By Lemma3.4.2, we have E [||Yl-| - E[|Y;i]] |m] <
m!(2(M + umax))™. Applying Bernstein’s inequality (e.g., Lemma 2.2.11 in van der Vaart et al.
[124]) yields that

P (I {1¥] = E[IY1}] > 10(M + tmar) g 0g p /)

_1_ 196qglogp _
< 2exp( 2—4+20m) < 2exp(—10glog p), (3.2)
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when 7 is sufficiently large such that 20+/g log p/n < 1. Since 10(M + pumax)v/qlog p/n = o(1),

then
P | sup |En {L(BTX, Y)}| > 2(M + pmax) K> + bmax | < 2exp(=10q log p).
BB
O

Lemma 3.4.4. Given an index set S and r € S¢, let B(S)(d) = {Bs : 11Bs — Bl < d/(K+IS])}
and Ay = (M + 2umax). Under Conditions (1) — (3), when n is sufficiently large such that

104/glogp/n < 1, we have

1. |G, [L (,BEXS,Y) - L (B;TXS,Y)] | < 20A1d+/qlog p, uniformly over Bs € Bg(a’) and

|S| < g, with probability at least 1 — 4 exp(—6q log p).

2. |G, [L(B{™Xs,Y) | | < 10(A K2 + bmax) Vg log p, uniformly over |S| < g, with probability

at least 1 — 2 exp(—8¢ log p).

Proof. : (1): Let R5/(d) be a |S|-dimensional ball with center at 0 and radius d/(K \/E). Then
Bg(d) = Rs(d)+85. Let Cis) := {C(&k)} be acollection of cubes that cover the ball Rs)(d), where
C (&) is a cube containing &; with sides of length d/(K\/mnz) and & is some point in R (d). As
the volume of C(&y) is (d/([(\/mnz))|S| and the volume of Rys|(d) is less than (2d/(K+/|S]),
we can select £ ’s so that no more than (4n2)!S! cubes are needed to cover R|s(d). We thus assume
ICisi| < (4n*)SI. For any & € C(&), |I€ — & || < d/(Kn?). In addition, let Tys(§) := E, [Y€TXs],
Trs(€) := B, [b( (5; + §)T Xs) — b(B:"Xs) |, and Ts (&) = Tis(€) — Tas(€).

Given any & € R|s|(d), there exists C(&x) € Cjs| such that § € C(&x). Then

Ts(€) - E [Ts(&)]]

IA

Ts(&) = Ts(&)l 1 T5(&x) — E [Ts(§)]] + |E [T5(8)] - E [Ts(&)]]

T+ 1T+ 111

We deal with 117 first. By the mean value theorem, there exists a € between & and &, such that

E [T5(60] - E [T5()]] = |E[¥ (& - ©Xs] + E[u (85 + €)'Xs) (& - ©)"Xs]|

< E[IY[11& = ENIXsll + pmax 1€k = Xl < (M + 2pmax)d/[SIn72 = A1d+/|SIn33.3)
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where the last inequality follows from Lemma 3.4.2 and A| = M + 2ppmax.
Next, we evaluate //. By Condition (2), |X££| < IXislll&ll < d/(KA/IS])VISIK = d, for all
£ € Ris/(d). Then by Lemma 3.4.2,

E [|Y§{XS — E[Y€TX] |’”] < m\2(M + i) d)"

By Bernstein’s inequality, when n is sufficiently large such that 104/g log p/n < 1.

P (|T1S(£k) = E [Tis(&)]] > 10(M + pmax)d+/qn™! IOgP)

1 100g1
<2exp|—z q408P < 2exp(—10glog p). (3.4)
24 +20+/qlog p/n

T
Since |b( (B; + Sk) Xs) — b(ﬁ;TXS)l < Umaxd, by the same arguments used for (3.4), we have

P (szs(Sk) — E [Tos(&)]] > 10maxd/gn™! 10gp) < 2exp(-10g log p). (3.5)

Combining (3.4) and (3.5) yields that uniformly over &

|Ts(&k) — E [T5(§0)]1 < 10A1d+/qn~" log p, (3.6)

with probability at least 1 — 2(4n2)8l exp(=10q log p).

We now assess /. Following the same arguments as in Lemma 3.4.3,

P(£ sup [15(6) = Ts(60)| > (201 + 3itman) ST 72) < 2exp(-8glog p). 3.7)

Since +/|S|n~% = 0(\/gn~!log p), combining (3.3), (3.6), and (3.7) together yields that

P( sup [T5(&) ~ E [T5(&)]] = 20A1dyJgn~"log p)

E£eRs((d)

< 2(4n*) exp(~10g log p) + 2 exp(—-8¢ log p) < 4exp(—84log p).

By the combinatoric inequality (?) < (ep/s)*, we obtain that

G, [L ( ;xs,y) ~L (ﬁ;TXS, Y)” > 204,d+/q log p)

P( sup
IS|<q.8s€B(d))

q
< Z(ep/s)s4 exp(—8qglog p) < 4exp(—6glogp).
s=1
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(2): We evaluate the mth moment of L(33Xs,Y).
> (”; )|Y|f1<2fb$;£
=0

m m ~
<), ( t )r!((M + fima ) K2) Dt < mU((M + i) K2 + b))
=0

E [(YB;Xs - b(8iXs))"| < E

- ~

Then, by Bernstein’s inequality,
P(1Ga[L(B{™X5. 1) ]| > 10(A1K? + bax) Vg Tog p) < 2exp(~10g log p).

By the same arguments used in (i), we obtain that

P( sup |G, [L (ﬁ;TXS, Y)” > 10(A1K? + bay) v 108 p)

IS|<q

q
< Z(ep/s)“2 exp(—10glog p) < 2exp(—8qglogp).

s=1

Lemma 3.4.5. Given a model S and r € S¢, under Conditions (1), (2), and (5), for any
1Bs — Bsll < K/+/IS],

TminkminllBs — Bsl1>/2 < E [£5(B5)] = E [£5(Bs)] < Omaxkmax|Bs = BlI* /2.

Proof. Due to the concavity of the log-likelihood in GLMs with the canonical link,

E [YX - u(B;7Xs)Xs] = 0. Then for any [|8s — 8| < K/+/S].

18"Xs] < 18 Xs| +1(8 - B)"Xs| < K* + K/V/|S| x K/|S| = 2K L.
Thus, by Taylor’s expansion,
E [65(85)] - E [65(85)] = —5(Bs - B)"E [or (B1Xs) X22] (85 - ),
where By is between 3y and Bg- By Condition (5),

TminkminllBs — B5112/2 < E [£s(B%)] = E [£s(Bs)] < Tmaxkmax|lBs — B5l1/2.
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Lemma 3.4.6. Under Conditions (1) — (6), there exist some constants Ay and Az that do not
depend on n, such that ||Bs — Bl < A2K~"\q*log p/n and |ts(Bs) — £s(B;)] < Asg®logp/n
hold uniformly over S : |S| < q, with probability at least 1 — 6 exp(—6¢ log p).
Proof. Define

Q(d) = { sup

1S1<q.B5€BY(d)

By Lemma 3.4.4, the event Q(d) holds with probability at least 1 — 4 exp(—6¢ log p). Thus,

Gu|L (81X, Y) - L (857Xs.¥) || < 2041d+/g10g p}.

in the proof of Lemma 3.4.6, we shall assume Q(d) hold with d = Ag\/m for some
Az > 20(Tminkmin) T K?Aj.

For any [|8s - B3|l = A2K~'/q2log p/n, since q*log p/n < g3 log p/n/+/IS], Bs € BY(d).
By Lemma 3.4.5,

ts(Bg) — ts(Bs)
= (&(ﬁ;) — E [€5(B9)] - (Ls(Bs) — E [£s(Bs)]) ) +(E [¢s(B9)] - E [£5(Bs)])

> Tiinkminll Bs — B511%/2 — 20A1d+/q log p/n

= O-minKminA%q2 log p/(Kzn) - 20AIAZq2 logp/n>0.

Thus,

inf £5(83) — Cs(Bs) > 0.
1S1<q.18s-B%|l=A2K~"1Vq*log p/n

Then by the concavity of £(-), we obtain that max|s|<, ||,33 - ,3;” < A K~ '\g?n'log p.
On the other hand, for any ||3s — B¢l < A K~ '\q?log p/n,

|6s(B%) — £5(Bs))|
< )fs(ﬂfg) — E [65(B9)] - (£s(Bs) — E [£s(Bs)]) ‘ +|E [€s(B3)] - E [£5(Bs)]|
< OmaxKmax||Bs — /6;‘”2/2 +20A1d+/qlog p/n < A3(]2n_1 log p,
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where A3 := 40maxAmaxASK ™% + 204, A;. O

3.5 Simulations

We compared the proposal with the other competing methods, including the penalized methods
such as least absolute shrinkage and selection operator (LASSO), the differential geometric least
angle regression (dgLARS) [90, 91], the forward regression (FR) approach [93], the sequentially
conditioning (SC) approach [99], and the screening method such as sure independence screening
(SIS) [87], which is popular in practice. As SIS does not directly generate a predictive model,
we applied LASSO for the top [n/log(n)] variables chosen by SIS and denoted the procedure by
SIS+LASSO.

Asthe FR, SC and STEPWISE approaches involve forward searching and to make them comparable,
we applied the same stopping rule, for example, Equation (3.3) with the same 7, to their forward
steps. In particular, the STEPWISE approach, with 1 = y and 1, = 0, is equivalent to FR and
asymptotically equivalent to SC. By varying vy in FR and SC between y; and yy, we explored the
impact of y on inducing false positives and negatives. In our numerical studies, we fixed yy = 10
and set y; = 17y.

To choose n; and n, in (3.3) and (3.4) in STEPWISE, we performed 5-fold cross-validation to
minimize the mean squared prediction error (MSPE), and reported the results in Table 3.1. Since
the proposed STEPWISE algorithm uses the (E)BIC criterion, for a fair comparison we chose the
tuning parameter in dgLARS by using the BIC criterion as well, and coined the corresponding
approach as dgLARS(BIC).

The regularization parameter in LASSO was chosen via the following two approaches: 1) giving
the smallest BIC for the models on the LASSO path, denoted by LASSO(BIC); 2) using the one-
standard-error rule, denoted by LASSO(1SE), which chooses the most parsimonious model whose

error is no more than one standard error above the error of the best model in cross-validation [126].
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Table 3.1: The values of n7; and 775 used in the simulation studies

Normal Model Binomial Model Poisson Model

Example 1 (0.5, 3) (0.5, 3) (1, 3)
Example 2 (0.5, 3) (1,3) (1, 3)
Example 3 (1,3) (0.5, 3) 0.5,1)
Example 4 (1,3.5) ©, 1) (1, 3)
Example 5 (0.5, 3) (0.5,2) (0.5, 3)
Example 6 (0.5, 3) 0.5, 3) (1, 3)
Example 7 (0.5, 3) (0.5, 3) (0.5,4.5)

Note: Values for i7; and 1, were searched on the grid {0, 0.25,0.5, 1} and {1, 2, 3, 3.5, 4, 4.5, 5}, respectively.

Denote by X; = (Xi1,...,Xip)T and B = (B1,...,B,)T, the covariate vector for subject
i (1,...,n) and the true coefficient vector. The following five examples generated Xl.TB, the inner
product of the coefficient and covariate vectors for each individual, which were used to generate

outcomes from the Normal, Binomial, and Poisson models.

Example 1: For each i,

Po p
CX;FB:CX Zﬁ‘]XU-i- Z ﬁ]Xl] ) izl’-"7na
j=1

J=po+1

where 8; = (—1)Bi(4logn/yn + |Z;|), for j = 1,..., po and B; =0, otherwise; B, was a binary
random variable with P(B; = 1) = 0.4 and Z; was generated by a standard normal distribution;
po= 8; X;;’s were independently generated from a standardized exponential distribution, that is,

exp(1) — 1. Here and also in the other examples, ¢ (specified later) controls the signal strengths.

Example 2: This scenario is the same as Example 1 except that X;; was independently generated

from a standard normal distribution.

Example 3: For each i,

Po P

X[B=cx| D BiXy+ > BiXjy|. i=1....n,
j=1 Jj=po+l

where §; =2jfor 1 < j < pg and po=35. We simulated every component of Z; = (Z;;) € R” and W;

= (W;;) € R independently from a standard normal distribution. Next, we generated X; according

pPo
to Xij = (Z,'j +W,-]-)/\/§forl < j < poand X;;. = (Z,'j + > Z,'j/)/z for po < j < p.
J'=1
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Example 4: For each i,

500 p
Ta _ c
CX,-,@—CX Eﬁinj-'- E ﬁinj , i=1,...,n,
= j=501

where the first 500 X;;’s were generated from the multivariate normal distribution with mean 0
and a covariance matrix with all of the diagonal entries being 1 and cov(X;;, X;;7) = 0.5V=/'I for
1 < j,j’ < p. The remaining p — 500 X;;’s were generated through the autoregressive processes
with X; s01 ~ Unif(-2, 2), X;; =05 X; ;1 + 0.5 Xl?‘;., for j =502,..., p, where X;} ~ Unif (-2, 2)
were generated independently. The coefficients 8; for j = 1,...,7,501,...,507 were generated
from (—1)8/(4log n/\/n + |Z;|), where B; was a binary random variable with P(B; = 1) = 0.4 and

Z; was from a standard normal distribution. The remaining 5; were zeros.

Example S: For each i,
CX;FB =cX (—O.SXil + X;p + O.SXi,loo) , 1=1,...,n,

where X; were generated from a multivariate normal distribution with mean O and a covariance
matrix with all of the diagonal entries being 1 and cov(X;;, X;;/) = 0.9/l for 1 <j,j’ < p. All of

the coeflicients were zero except for X;i, X;» and X; j00.

Example 6: For each i,

q p
CX;FB:CX Zﬁ]XlJ-i- Z ﬁ]Xl] , izl,-"an’

J=1 J=q+1

where By = -+ =B, =0, (B1 =--- = By) =(3.75,4.5,5.25,6,6.75,7.5,8.25,9,9.75), and
g = 10. X;;’s were generated from the multivariate standard normal distribution for 1 < j < g and

q

Xij=dij+b Y Xu, i=1,...,n,

I=1
forqg+1 < j < p, where b = (3/4¢)"/? and (di(g+1)s - - - » dip) are generated from the multivariate
normal distribution with mean O and a covariance matrix with all of the diagonal entries being 1

and off-diagonal being 0.25, and are independent of X;; for 1 < j < ¢.
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Example 7: For each i,
P
X{B=cx| > piXy| i=1....n
j=1
where 8; = 0.2 for j = 1,...,7,501,...,508 and B; =0, otherwise. X;;’s were generated from
the multivariate normal distribution for 1 < j < 500 with mean 0 and a covariance matrix with all
of the diagonal entries being 1, cov(X;;, X;;/) = 0.9/ for 1 <Jj,j £ 15, and cov(X;;, X;j») =0
for 16 < j, j’ < 500. X;;’s were generated from the multivariate double exponential distribution for
501 < j < 508 with location parameter equal to 0 and a covariance matrix with all of the diagonal

entries being 1, and independent of X;; for 1 < j < 500.

Examples 1 and 3 were adopted from Wang [93], while Examples 2, 4, and 6 were borrowed
from Fan et al. [87], Hwang et al. [95], and Ing et al. [113], respectively. We then generated the

responses from the following three models.

Normal Model: ¥; = ¢cX'3 + ¢ with  ~ N(0, 1).
Binomial Model: Y; ~ Bernoulli( exp(cX!3)/{1 + exp(cX!8)}).

Poisson Model: Y; ~ Poisson( exp(ch.TB)).

Our simulated examples cover a wide range of models (Normal, Binomial, Poisson), having
their covariates generated from various distributions (multivariate normal, exponential, double
exponential, uniform, and mixture) with diverse set of complex covariance structures (independent,
compound symmetry, autoregressive, unstructured) and comprised of strong and weak signals
including hidden features.

We considered n = 400 and p = 1,000 throughout all of the examples. We specified the magnitude
of the coefficients in the GLMs with a constant multiplier, c. For Examples 1-7, this constant was
set, respectively for the Normal, Binomial and Poisson models, to be: (1, 1, 0.3), (1, 1.5,0.3), (1, 1,
0.1), (1, 1.5,0.3), (1, 3, 2), (1, 1, 1), and (1, 3, 2). For each parameter configuration, we simulated
500 independent data sets. We evaluated the performance of the methods by the criteria of true
positives (TP), false positives (FP), the estimated probability of including the true models (PIT),

the mean squared error (MSE) of B, and the mean squared prediction error (MSPE). To compute
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the MSPE, we randomly partitioned the samples into the training (75%) and testing (25%) sets.
The models obtained from the training datasets were used to predict the responses in the testing
datasets. Tables 3.2-3.4 report the average TP, FP, PIT, MSE, and MSPE over 500 datasets along
with the standard deviations. The findings are summarized below.

First, the proposed STEPWISE method was able to detect all the true signals with nearly zero FPs.
Specifically, in all of the Examples, STEPWISE outperformed the other methods by detecting more
TPs with fewer FPs, whereas LASSO, SIS+LASSO and dglLARS included much more FPs.
Second, though a smaller y in FR and SC led to the inclusion of all TPs with a PIT close to 1, it
incurred more FPs. On the other hand, a larger y may eliminate some TPs, resulting in a smaller
PIT and a larger MSPE.

Third, for the Normal model, the STEPWISE method yielded an MSE close to 0, the smallest
among all the competing methods. The Binary and Poisson data challenged all of the methods,
and the MSEs for all the methods were non-negligible. However, the STEPWISE method still
produced the lowest MSE. The results seemed to verify the consistency of 3, which distinguished
the proposed STEPWISE method from the other regularized methods and highlighted its ability to
provide a more accurate means to characterize the effects of high dimensional predictors.

Fourth, for all three models, STEPWISE procedure demonstrated a vivid advantage over other
competing methods: for the Poisson model, it outperformed all methods by selecting the highest
number of TP and keeping FP at the low rate. In fact, SIS+LASSO failed to detect any TP while
including an incomparably high number of FP. High FP rates were observed in dgLARS method as
well. Similarly, for the Binomial model, STEPWISE selected almost all TPs while including near
zero FPs. LASSO, SIS+LASSO, and dglLARS selected a learge number of FPs while selecting less

TPs than our proposed method.
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Table 3.2: Normal model

Example Method TP FP PIT MSE MSPE
(x107%)

1(po=8)  LASSO(ISE)  800(0.00)  548(6.61)  1.00(0.00) 245 1.148
LASSOBIC)  8.00(0.00)  2.55(248)  1.00(0.00)  2.58 1.172
SIS+LASSO(ISE)  8.00 (0.00) 6.59 (4.22) 1.00 (0.00) 1.49 1.042
SIS+LASSO(BIC)  8.00 (0.00)  6.04(3.33)  1.00(0.00) 137 1.025
dgLARS(BIC) 8.00 (0.00) 3.52(2.53) 1.00 (0.00) 2.25 1.130

SC (yL) 8.00 (0.00) 3.01 (1.85) 1.00 (0.00) 1.09 0.895

SC (yw) 7.60 (1.59) 0.00 (0.00) 0.94 (0.24) 14.56 5.081

FR (y.) 8.00(0.00)  296(2.04)  1.00(0.00) 1.08 0.896

FR (yq) 7.88 (0.84) 0.00 (0.00) 0.98 (0.14) 3.74 2.040

STEPWISE 8.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.21 0.972

2 (po=298) LASSO(ISE) 8.00 (0.00) 4.74 (4.24) 1.00 (0.00) 2.46 1.154
LASSOBIC)  8.00(0.00)  2.12(202)  1.00(0.00) 2.62 1.182

SIS+LASSO 7.99 (0.10) 6.84 (4.57) 0.99 (0.10) 1.65 1.058
SIS+LASSO(BIC)  7.99 (0.10)  6.11 (3.85  0.99(0.10)  1.56 1.041
dgLARS(BIC) 8.00 (0.00) 3.26(2.62) 1.00 (0.00) 2.28 1.138

SC (y1) 8.00(0.00)  273(1.53)  1.00(0.00) 0.8 0.901

SC (vyw) 7.30 (2.11) 0.00 (0.00) 0.90 (0.30) 23.70 6.397

FR (yr) 8.00 (0.00) 2.45 (1.65) 1.00 (0.00) 0.92 0.907

FR (yx) 7.94(0.60)  0.00(0.00) 099 (0.00)  2.69 2.062

STEPWISE 8.00 (0.00) 0.01 (0.10) 1.00 (0.00) 0.21 0.972

3(po=9) LASSO(1SE) 5.00 (0.00) 8.24 (2.63) 1.00 (0.00) 3.07 1.084
LASSOBIC)  5.00(0.00) 12.33(3.28)  1.00(0.00) 27.97 2398
SIS+LASSO(1SE)  0.97 (0.26) 15.94 (2.93) 0.00 (0.00) 1406.22 76.024
SIS+LASSO(BIC) 097 (0.26) 1620 (2.81)  0.00 (0.00) 1354.54 71.017
dgLARS(BIC) 5.00 (0.00) 53.91 (14.44)  1.00 (0.00) 6.63 0.979
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Table 3.2 (cont’d)

Example Method TP FP PIT MSE MSPE
(x107%)

SC (yL) 4.48 (0.50) 0.25 (0.44) 0.48 (0.50) 21.74 3.086

SC (yx) 448(0.50)  0.14(035)  0.48(0.50) 21.70 2.065

FR (yr) 5.00 (0.00) 0.23 (0.66) 1.00 (0.00) 0.27 0.973

FR (yx) 500(0.00)  0.14(0.35)  1.00(0.00) 0.15 0.074

STEPWISE 5.00 (0.00) 0.03 (0.22) 1.00 (0.00) 0.18 0.976

4 (po=14) LASSO(ISE) 14.00 (0.00)  29.84 (15.25)  1.00 (0.00) 13.97 1.148

LASSO(BIC) 13.94 (0.24) 4.92 (5.54) 0.94 (0.24) 38.69 1.995

SIS+LASSO(ISE) 11.44 (145)  15.19(729)  0.05(0.21)  133.38 4714

SIS+LASSO(BIC) 11.35(1.51) 10.98 (7.19) 0.05 (0.21) 137.06 4.940

deLARS(BIC)  14.00 (0.00) 13.93 (6.68)  1.00(0.00)  18.08 1.329

SC (yL) 13.68 (0.60) 0.86 (0.62) 0.75 (0.44) 11.80 1.148

SC (yx) 420(2.80)  0.03(0.17)  0.03(0.17) 407.86 6.567

FR (yL) 14.00 (0.00) 0.50 (0.76) 1.00 (0.00) 1.23 0.940

FR (vs1) 499(3.07)  0.00(0.00) 0.03(0.17) 360.65 6.640

STEPWISE 14.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.91 0.958

5(po=3)  LASSO(ISE)  3.00(0.00) 22.76(9.05) 1.00(0.00)  1.01 0.044

LASSO(BIC) 3.00 (0.00) 8.29 (3.23) 1.00 (0.00) 1.75 0.054

SIS+LASSO(ISE)  3.00 (0.00)  840(3.10)  1.00(0.00)  0.44 0.041

SIS+LASSO(BIC)  3.00 (0.00) 9.58 (3.36) 1.00 (0.00) 0.29 0.040

dgLARS(BIC)  3.00(0.00) 1339 (4.94)  1.00(0.00) 1.8 0.048

SC (yL) 3.00 (0.00) 1.47 (0.67) 1.00 (0.00) 0.03 0.038

SC (yn) 201(0.10)  0.01(0.10)  001(0.10) 451 0.008

FR (yL) 3.00 (0.00) 1.21 (1.01) 1.00 (0.00) 0.03 0.038

FR (yg) 3.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 0.003

STEPWISE 3.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 0.039
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Table 3.2 (cont’d)

Example Method TP FP PIT MSE MSPE
(x107%)
6(po=10)  LASSO(ISE)  10.00 (0.00) 4623 (6.61) 1.00(0.00) 37.70 1.50
LASSO(BIC) 9.86 (0.34) 59.05 (6.18) 0.86 (0.34)  698.70 13.82
SIS+LASSO(ISE)  0.00 (0.00)  37.53 (3.29)  0.00 (0.00) 4620.54 12751
SIS+LASSO(BIC)  0.00 (0.00) 38.05 (3.21) 1.00 (0.00) 4644.21 118.64
deLARS(BIC)  10.00 (0.00) 156.15(2647) 1.00 (0.00)  20.96 0.88
SC (yL) 2.99 (0.08) 1.41 (0.49) 0.00 (0.00) 2868.96 116.26
SC (yu) 096 (126)  1.06(023)  0.00(0.00) 477534 51.16
FR (y1) 745(0.08)  3.34(033)  0.00(0.00) 657.77 30.03
FR (yg) 1.48 (2.46) 2.00 (0.08) 0.00 (0.00) 4345.01 55.47
STEPWISE 7.45 (0.08) 2.11(0.33) 0.00 (0.00)  653.07 29.05
7(po=15)  LASSO(ISE)  1471(0.49)  8.64(488)  0.73(0.44) 077 1.16
LASSO(BIC) 14.67 (0.53) 6.57 (3.51) 0.71 (0.45) 0.76 1.16
SIS+LASSO(ISE) 1345(1.77)  10.16 (420) 038 (048) 132 1.07
SIS+LASSO(BIC) 13.44 (1.76) 9.55 (4.07) 0.36 (0.48) 1.34 1.05
dgLARS(BIC) 14.69 (0.51) 7.02 (3.54) 0.72 (0.45) 0.76 1.14
SC (yL) 11.12 (0.53) 3.01 (1.82) 0.00 (0.00) 3.34 0.94
SC (vyw) 3.19 (3.51) 0.06 (0.08) 0.00 (0.00) 5.97 14.17
FR (1) 1220 (0.60)  3.15(2.00)  0.00(0.00) 227 0.91
FR (yn) 6.64 (3.38) 0.01 (0.11) 0.00 (0.00) 6.49 12.43
STEPWISE 12.20 (0.08) 0.09 (0.29) 0.00 (0.00) 2.99 1.03
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Table 3.2 (cont’d)

Example Method TP FP PIT MSE MSPE
(x107%)

Note: TP, true positives; FP, false positives; PIT, probability of including all true predictors in the selected
predictors; MSE, mean squared error of ﬁ; MSPE, mean squared prediction error; numbers in the parentheses
are standard deviations; LASSO(BIC), LASSO with the tuning parameter chosen to give the smallest BIC for
the models on the LASSO path; LASSO(1SE), LASSO with the tuning parameter chosen by the one-standard
-error rule; SIS+LASSO(BIC), sure independence screening by [87] followed by LASSO(BIC);
SIS+LASSO(1SE), sure independence screening followed by LASSO(1SE); dgLARS(BIC), differential geo-
metric least angle regression by [90, 91] with the tuning parameter chosen to give the smallest BIC on the
dgLARS path; SC(y), sequentially conditioning approach by [99]; FR(y), forward regression by [93];
STEPWISE, the proposed method; In FR and SC, the smaller and large values of y are presented as y; and
vH, respectively; po denotes the number of true signals; LASSO(1SE), LASSO(BIC), SIS, and dgLARS

were conducted via R packages glmnet [127], ncvreg [128], screening [129], and dglars [130], respectively.

Table 3.3: Binomial model

Example Method TP FP PIT MSE MSPE

1(po=8)  LASSO(ISE)  7.99(0.10) 4.77(5.56) 0.99(0.10) 0.021 0.104
LASSO(BIC)  7.99(0.10)  3.19(2.34) 099 (0.10) 0.021 0.104
SIS+LASSO(ISE)  7.94 (0.24)  35.42(6.77) 0.94(0.24) 0.119 0.048
SIS+LASSO(BIC)  7.94 (0.24) 16.83 (21.60) 0.94 (0.24) 0.119  0.073
dgLARS(BIC)  8.00(0.00)  3.27(2.29)  1.00(0.00) 0.019 0.102

SC (y1) 8.00 (0.00)  2.81(1.47) 1.00(0.00) 0.009 0.073

SC (vx) 1.02(0.14)  0.00 (0.00)  0.00 (0.00) 0.030 0.028

Continued on next page
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Table 3.3 (cont’d)

Example Method TP FP PIT MSE MSPE
FR (yL) 8.00 (0.00) 3.90(2.36)  1.00 (0.00) 0.032 0.066

FR (yH) 2.00 (0.00)  0.00(0.00)  0.00(0.00) 0.025 0.027

STEPWISE 7.98 (0.14)  0.08 (0.53) 0.98(0.14) 0.002 0.094

2 (po=29) LASSO(1SE) 7.98 (0.14) 3.29(2.76) 098 (0.14) 0.054 0.073
LASSO(BIC) 7.99 (0.10) 3.84(2.72)  0.99(0.10) 0.052 0.067
SIS+LASSO(1SE) 7.92(0.27)  28.20(7.31) 0.92(0.27) 0.038 0.030
SIS+LASSO(BIC) 7.92(0.27) 9.60(12.92) 0.92(0.27) 0.051 0.058
dgLARS(BIC) 7.99 (0.10) 3.94(2.65) 0.99(0.10) 0.050 0.067

SC(yL) 7.72(0.45)  0.39(049) 0.72(0.45) 0.005 0.063

SC (ywu) 1.13(0.37)  0.00(0.00)  0.00(0.00) 0.069 0.044

FR (yL) 7.99 (0.10)  0.66(0.76)  0.99(0.10) 0.014 0.051

FR (yH) 2.10(0.30)  0.00 (0.00)  0.00(0.00) 0.061 0.033

STEPWISE 7.99 (0.10)  0.02(0.14)  0.99(0.10) 0.004 0.056

3(po=9) LASSO(1SE) 451(0.52)  7.36(2.57) 0.52(0.50) 0.155 0.051
LASSO(BIC) 498(0.14)  597(2.25) 0.98(0.14) 0.118 0.037
SIS+LASSO(1SE) 0.85(0.46)  10.66 (3.01) 0.00(0.00) 0.206 0.186
SIS+LASSO(BIC) 0.85(0.46)  12.10(3.13) 0.00 (0.00) 0.197 0.185
dgLARS(BIC) 4.92(0.27) 16.21(6.21) 0.92(0.27) 0.112 0.035

SC (yr) 432(0.49) 047(0.50) 0.33(0.47) 0.016 0.048

SC (yn) 2.62(1.34)  0.42(0.50) 0.00(0.00) 0.104 0.066

FR (yL) 498 (0.14)  0.67(0.79) 0.98(0.14) 0.020 0.033

FR (yn) 298(0.95)  0.40(0.49) 0.00(0.00) 0.087 0.043

STEPWISE 4.97(0.17)  0.04(0.28) 0.97(0.17) 0.014 0.034
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Table 3.3 (cont’d)

Example Method TP FP PIT MSE MSPE
4 (po =14) LASSO(1SE) 9.96 (1.89)  6.78(7.92) 0.01(0.01) 0.112 0.107
LASSO(BIC) 9.33(1.86)  2.79(2.87)  0.00(0.00) 0.112 0.118
SIS+LASSO(1SE) 10.03 (1.62) 28.01 (9.54) 0.03(0.17) 0.098 0.070
SIS+LASSO(BIC) 8.90(1.99) 5.42(10.64) 0.01(0.10) 0.114 0.120
dgLARS(BIC) 9.31(1.85)  2.84(2.86) 0.00(0.00) 0.110 0.117
SC (yL) 9.48 (1.40)  2.35(2.14) 0.00(0.00) 0.043 0.070
SC (yn) 1.17 (0.40)  0.00 (0.00)  0.00(0.00) 0.125 0.049
FR (yr) 11.83(1.39) 1.58(1.60)  0.09 (0.29) 0.026 0.048
FR (yn) 2.06(0.24)  0.00 (0.00)  0.00(0.00) 0.119 0.032
STEPWISE 11.81 (1.42) 1.52(1.58) 0.09(0.29) 0.026 0.048
5(po=3) LASSO(1SE) 2.00 (0.00) 1.55(1.76)  0.00 (0.00) 0.008 0.215
LASSO(BIC) 2.00 (0.00) 1.86 (1.57)  0.00 (0.00) 0.008 0.213
SIS+LASSO(1SE) 2.23(0.42)  10.81 (6.45) 0.23(0.42) 0.007 0.192
SIS+LASSO(BIC)  2.10 (0.30) 3.60 (4.65) 0.10(0.30) 0.007 0.206
dgLARS(BIC) 2.00 (0.00) 1.64 (1.49) 0.00 (0.00) 0.008 0.213
SC (yr,) 227049) 7.16(3.20) 0.29(0.46) 0.060 0.166
SC (yu) 1.87(0.34)  0.03(0.17)  0.00(0.00) 0.005 0.030
FR (yL) 2.96 (0.20) 8.88(5.39) 0.96(0.20) 0.013 0.147
FR (ymH) 1.97 (0.17)  0.03(0.17)  0.00 (0.00) 0.005 0.019
STEPWISE 2.89(0.31) 0.76 (1.70)  0.89(0.31) 0.001 0.194
6 (po = 10) LASSO(1SE) 6.10 (1.08)  31.66 (4.63) 0.00 (0.00) 0.41 0.07
LASSO(BIC) 7.88 (0.97)  30.41(4.63) 0.02(0.16) 0.38 0.05
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Table 3.3 (cont’d)

Example Method TP FP PIT MSE MSPE
SIS+LASSO(1SE)  0.00 (0.00)  28.40 (3.61)  0.00 (0.00) 0.45 0.15
SIS+LASSO(BIC)  0.00 (0.00)  30.18 (3.24)  0.00 (0.00)  0.45 0.14

dgLARS(BIC) 4.12(2.29) 32.37(7.61) 0.00(0.000 042  0.09
SC (yr) 7.71 (0.58)  2.95(0.95) 0.00(0.00) 0.19  0.05

SC (yn) 0.00 (0.00) 1.00 (0.00)  0.00 (0.00) 0.45 0.02

FR (yL) 8.52 (0.89) 3.24(1.15) 0.00(0.00) 0.09 0.04

FR (ym) 0.12 (0.32) 1.88 (0.32)  0.00 (0.00) 0.45 0.01
STEPWISE 8.52(0.92) 0.58(0.77) 0.00(0.00) 0.09 0.04

7 (po =15) LASSO(1SE) 9.80(1.14)  5.60(4.29)  0.00 (0.00) 0.01 0.04
LASSO(BIC) 9.74 (1.11)  4.68 (2.63)  0.00 (0.00) 0.01 0.04
SIS+LASSO(1SE) 10.67 (1.39) 25.17(5.85) 0.00 (0.00) 0.04  0.02
SIS+LASSO(BIC) 10.62 (1.64) 24.02 (15.84) 0.00 (0.00) 0.01 0.01
dgLARS(BIC) 90.84(1.08)  4.58(2.45) 0.00(0.00) 0.01 0.04
SC(yr) 8.92 (0.53) 1.75(0.94)  0.00 (0.00) 0.01 0.02

SC (yu) 1.00 (0.00)  0.00 (0.00)  0.00 (0.00) 0.01 0.02

FR (yL) 9.56 (0.58) 1.52(0.92)  0.00 (0.00) 0.07 0.02

FR (yH) 2.00 (0.00)  0.00(0.00)  0.00(0.00) 0.01 0.02
STEPWISE 9.50 (0.54)  0.67(0.83) 0.00(0.00) 0.04 0.02

Note: Abbreviations are explained in the footnote of Table 3.2.
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Table 3.4: Poisson model

Example Method TP FP PIT MSE MSPE
1 (po=28) LASSO(1SE) 7.93(0.43) 4.64 (4.82) 096 (0.19) 0.001 4.236
LASSO(BIC) 7.99 (0.10) 14.37 (14.54) 0.99 (0.10) 0.001 3.133
SIS+LASSO(1SE) 7.89(0.37)  25.37(8.39) 0.91(0.29) 0.001 3.247
SIS+LASSO(BIC) 7.89(0.37) 17.77(11.70) 0.91(0.29) 0.001 3.078
dgLARS(BIC) 8.00 (0.00) 13.28 (14.31) 1.00(0.00) 0.001 3.183

SC(yL) 7.96 (0.20) 494 (3.46) 096 (0.20)0 0.001 2.874

SC (yw) 5.05 (1.70) 0.04 (0.24) 0.07(0.26) 0.001 3.902

FR (yL) 7.93 (0.26) 4.86(3.73) 0.93(0.26) 0.001 2.837

FR (yn) 5.13 (1.61) 0.06 (0.31) 0.07(0.26) 0.001 3.833

STEPWISE 7.91 (0.29) 277((291) 091(0.29) 0.001 3410

2 (po=28) LASSO(1SE) 8.00 (0.00) 2.23(3.52) 1.00(0.00) 0.001 3.981
LASSO(BIC) 8.00 (0.00) 8.98(8.92) 1.00(0.00) 0.001 3.107
SIS+LASSO(ISE) 7.98 (0.14)  22.85(7.08) 0.98 (0.14) 0.001 2.824
SIS+LASSO(BIC) 7.98 (0.14)  13.55(8.24) 0.98(0.14) 0.001 2.937
dgLLARS(BIC) 8.00 (0.00) 891(9.100 1.00(0.00) 0.001 3.099

SC (yr) 8.00 (0.00) 3.89(2.89) 1.00(0.00) 0.000 2.979

SC (yw) 5.68 (1.45) 0.00 (0.00)  0.12(0.33) 0.001 3.971

FR (yL) 8.00 (0.00) 3.60(2.80) 1.00(0.00) 0.000 3.032

FR (yn) 5.71(1.42) 0.00 (0.00)  0.10(0.30) 0.001 3.911

STEPWISE 7.98 (0.14) 2.00(2.23) 0.98(0.14) 0.000 3.589

3(po=9) LASSO(1SE) 4.37 (0.51) 6.88 (2.61)  0.38(0.48) 0.001 1.959
LASSO(BIC) 4.79 (0.41) 5.62(2.17)  0.79(0.41) 0.000 2.044
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Table 3.4 (cont’d)

Example Method TP FP PIT MSE MSPE
SIS+LASSO(1SE) 0.86 (0.47)  10.11 (2.55) 0.00 (0.00) 0.002 3.266
SIS+LASSO(BIC) 0.86(0.47) 11.86(2.99) 0.00(0.00) 0.002 3.160

dgLARS(BIC) 4.55(0.51) 18.29(6.13) 0.56(0.49) 0.001 1.877
SC (yr) 473 (0.45)  0.53(0.66) 0.73(0.45) 0.000 2.479

SC (yu) 2.84(0.63)  0.40(0.49) 0.00(0.00) 0.001 0.664

FR (yL) 4.54 (0.52) 1.98 (2.19)  0.55(0.50) 0.000 2.128

FR (yu) 271 (0.70)  0.43(0.50)  0.00 (0.00) 0.001 0.605
STEPWISE 4.54 (0.52) 1.77 (2.01)  0.55(0.50) 0.000 2.132

4 (po=14) LASSO(1SE) 10.01 (1.73)  3.91(6.03)  0.01(0.10) 0.003 15.582
LASSO(BIC) 12.11 (1.46) 36.56 (22.43) 0.19(0.39) 0.002  5.688
SIS+LASSO(1SE) 1042 (1.66) 21.41(8.87) 0.03(0.17) 0.003 11.316
SIS+LASSO(BIC) 10.73 (1.66) 32.67(8.92) 0.03(0.17) 0.003 8.545
dgLARS(BIC) 12.05 (1.52) 38.70(28.97) 0.18(0.38) 0.002 5.111
SC (yr) 10.33 (1.63) 10.48 (6.66) 0.02 (0.14) 0.002  4.499

SC (yn) 532(1.92)  0.52(1.37)  0.00(0.00) 0.003 14.005

FR (yL) 12.00 (1.71) 893 (6.36) 0.23(0.42) 0.001 4.503

FR (yH) 5.65(2.13)  0.38(1.15)  0.00(0.00) 0.003 13.802
STEPWISE 11.80(1.72)  597(5.37) 0.19(0.39) 0.001 5.809
5(po=3) LASSO(1SE) 2.00 (0.00) 1.13(2.85)  0.00 (0.00) 0.003 2.674
LASSO(BIC) 2.01(0.10)  2.82(2.52) 0.01(0.10) 0.003 2.583
SIS+LASSO(1SE) 2.87(0.34)  9.28(3.85)  0.87(0.34) 0.002  2.455
SIS+LASSO(BIC) 2.87(0.34)  9.88(4.29) 0.87(0.34) 0.002 2.355
dgLARS(BIC) 2.00(0.00)  2.88(2.38) 0.00(0.00) 0.003 2.562
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Table 3.4 (cont’d)

Example Method TP FP PIT MSE MSPE
SC(yL) 2.75 (0.44) 3.27(1.75) 0.75(0.44) 0.001 2.339

SC (yu) 2.00 (0.00)  0.00(0.00)  0.00(0.00) 0.003 1.086

FR (yL) 3.00(0.00) 2.80(1.73) 1.00(0.00) 0.001 2.326

FR (yH) 2.40(0.49)  0.00(0.00) 0.40(0.49) 0.002 0.981

STEPWISE 3.00 (0.00)  0.35(0.59) 1.00(0.00) 0.001 2.977

6 (po = 10) LASSO(1SE) 6.08 (1.16)  32.54 (4.83) 0.00(0.00) 0.01 7.64

LASSO(BIC) 8.15(0.94) 37.56 (7.96) 0.06 (0.23) 0.01 5.93
SIS+LASSO(1SE)  0.00 (0.00)  26.34 (3.87) 0.00(0.00) 0.01  12.27
SIS+LASSO(BIC)  0.00 (0.00)  28.03 (4.29) 0.00(0.00) 0.01 12.06

dgLARS(BIC) 8.42 (1.22) 75.21 (15.56) 0.21(0.41) 0.01 4.55

SC (yr) 9.45(0.72)  9.80(3.12) 0.76 (0.42) 0.00  4.77

SC (ynu) 3.73(1.73)  2.15(0.45) 0.00(0.00) 0.01 3.43

FR (y1) 9.54(1.05) 11.26(2.97) 0.55(0.50) 0.01 4.42

FR (yH) 2.85(1.85)  2.70(0.57)  0.00(0.00) 0.01 3.28

STEPWISE 9.54 (1.05)  4.30(2.03) 0.55(0.50) 0.01 6.01

7 (po =15) LASSO(1SE) 11.98 (2.20) 4.00(3.56) 0.12(0.32) 0.01 20.71

LASSO(BIC) 1493 (0.29) 51.44(11.68) 0.94(0.23) 0.00 7.17
SIS+LASSO(ISE) 12.51(1.20) 17.32(5.91) 0.03(0.18) 0.00 1524
SIS+LASSO(BIC) 12.50(1.29) 33.31(7.69) 0.05(0.23) 0.01 11.93

dgLARS(BIC) 14.94 (0.27) 56.10(17.38) 0.95(0.20) 0.00  6.58

SC (yr) 12.65 (1.43) 20.94 (4.47) 0.08 (0.28) 0.00 3.92

SC (yn) 6.55(1.98)  0.54(0.84) 0.00(0.00) 0.00 5.67

FR (yr) 13.60 (1.12)  19.11 (4.03) 0.21(0.41) 0.00 3.96
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Table 3.4 (cont’d)

Example Method TP FP PIT MSE MSPE

FR (yn) 7.13 (1.87) 0.31 (0.55) 0.00 (0.00) 0.00 6.54
STEPWISE 13.54 (1.31) 5.30(3.12) 0.21(0.39) 0.00 9.23

Note: Abbreviations are explained in the footnote of Table 3.2.

3.6 Applications: Real Data Analysis

3.6.1 A Study of Gene Regulation in the Mammalian Eye

To demonstrate the utility of our proposed method, we analyzed a microarray dataset from Scheetz
et al. [41] with 120 twelve-week male rats selected for eye tissue harvesting. The dataset contained
more than 31,042 different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array); see
Scheetz et al. [41] for a more detailed description of the data.

Although our method was applicable to the original 31,042 probe sets, many probes turned out to
have very small variances and were unlikely to be informative for correlative analyses. Therefore,
using variance as the screening criterion, we selected 5,000 genes with the largest variances in
expressions and correlated them with gene TRIM32 that has been found to cause Bardet-Biedl
syndrome, a genetically heterogeneous disease of multiple organ systems including the retina [42].
We applied the proposed STEPWISE method to the dataset with n = 120 and p = 5,000, and treated
the TRIM32 gene expression as the response variable and the expressions of 5,000 genes as the
predictors. With no prior biological information available, we started with the empty set. To choose
n1 and ny, we carried out 5-fold cross-validation to minimize the mean squared prediction error
(MSPE) by using the following grid search: n; = {0,0.25,0.5,1} and n, = {1, 2, 3,4, 5}, and set
n1 = 1 and 7, = 4. We also performed the same procedure to choose the y for FR and SC. The

regularization parameters in LASSO and dgLLARS were selected to minimize BIC values.
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In the forward step, STEPWISE selected the probes of 1376747 _at, 1381902_at, 1382673_at and
1375577 _at, and the backward step eliminated probe 1375577_at. The STEPWISE procedure
produced the following final predictive model:

TRIM32 = 4.6208 + 0.2310 x (1376747_at) + 0.1914 x (1381902_at) + 0.1263 x (1382673 _at).
Table A.1 in Appendix A presents the numbers of overlapping genes among competing methods.
It shows that the two out of three probes, 1381902_at and 1376747 _at, selected from our method
are also discovered by the other methods, except for dgLLARS.

Next, we performed Leave-One-Out Cross-Validation (LOOCV) to obtain the distribution of the
model size (MS) and MSPE for the competing methods. As reported in Table 3.5 and Figure 3.1,
LASSO, SIS+LASSO and dglLARS tended to select more variables than the forward approaches
and STEPWISE. Among all of the methods, STEPWISE selected the fewest variables but with

almost the same MSPE as the other methods.
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Figure 3.1: Box plot of model sizes for each method over 120 different training samples from the
mammalian eye data set. STEPWISE was performed with n7; = 1 and 77, = 4, and FR and SC were
conducted with y = 1.
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Table 3.5: Comparisons of MSPE between competing methods using the mammalian eye data set.

STEPWISE FR LASSO SIS+LASSO SC dgLARS
Training set 0.005 0.005 0.005 0.006 0.005 0.014
Testing set 0.011 0.012 0.010 0.009 0.014 0.020

Note: The mean squared prediction error (MSPE) was averaged over 120 splits. LASSO, least absolute
shrinkage and selection operator with regularization parameter that gives the smallest BIC; SIS+LASSO, sure
independence screening by [87] followed by LASSO; dgLLARS, differential geometric least angle regression
by [90, 91] that gives the smallest BIC; SC(y), sequentially conditioning approach by [99]; FR(y), forward
regression by [93]; STEPWISE, the proposed method. STEPWISE was performed with ;1 = 1 and 172 = 4,
FR and SC were performed with y = 1.

3.6.2 An Esophageal Squamous Cell Carcinoma Study

Esophageal squamous cell carcinoma (ESCC), the most common histological type of esophageal
cancer, is known to be associated with poor overall survival, making early diagnosis crucial for
treatment and disease management [47]. Several studies have investigated the roles of circulating
microRNAs (miRNAs) in diagnosis of ESCC [45].

Using a clinical study that investigated the roles of miRNAs on the ESCC [57], we aimed to
use miRNAs to predict ESCC risks and estimate their impacts on the development of ESCC.
Specifically, with a dataset of serum profiling of 2,565 miRNAs from 566 ESCC patients and
4,965 controls without cancer, we demonstrated the utility of the proposed STEPWISE method
in predicting ESCC with miRNAs. To proceed, we used a balance sampling scheme (283 cases
and 283 controls) in the training dataset. The design of yielding an equal number of cases and
controls in the training set has proved to be useful [57] for handling imbalanced outcomes as we
encountered here. To validate our findings, samples were randomly divided into a training (n; =
566, p =2,565) and testing set (np = 4,965, p = 2,565).

The training set consisted of 283 patients with ESCC (median age of 65 years, 799% male) and 283
control patients (median age of 68 years, 46.3% male), and the testing set consisted of 283 patients
with ESCC (median age of 67 years, 85.7% male) and 4,682 control patients (median age of 67.5

years, 44.5% male). Control patients without ESCC came from three sources: 323 individuals
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from National Cancer Center Biobank (NCCB); 2,670 individuals from the Biobank of the National
Center for Geriatrics and Gerontology (NCGG); and 1,972 individuals from Minoru Clinic (MC).
More detailed characteristics of cases and controls in the training and testing sets are given in Table
A4

We defined the binary outcome variable to be 1 if the subject was a case and O otherwise. As
age and gender (0 = female, 1 = male) are important risk factors for ESCC [131, 132] and it is
common to adjust for them in clinical models, we set the initial set in STEPWISE to be Fj = {age,
gender}. With ; =0 and 7, = 3.5 that were also chosen from 5-fold CV, our procedure recruited
three miRNAs. More specifically, miR-4783-3p, miR-320b, miR-1225-3p and miR-6789-5p were
selected among 2,565 miRNAs by the forward stage from the training set, and then the backward
stage eliminated miR-6789-5p. In comparison, with v = 0, both FR and SC selected four miRNAs,
miR-4783-3p, miR-320b, miR-1225-3p, and miR-6789-5p.

The list of selected miRNAs by different methods is given in Table A.2 in Appendix A. Our findings
were biologically meaningful, as the selected miRNAs had been identified by other cancer studies
as well. Specifically, miR-320b was found to promote colorectal cancer proliferation and invasion
by competing with its homologous miR-320a [133]. In addition, serum levels of miR-320 family
members were associated with clinical parameters and diagnosis in prostate cancer patients [134].
Mullany et al. [135] showed that miR-4783-3p was one of the miRNAs that could increase the risk
of colorectal cancer death among rectal cancer cases. Finally, miR-1225-5p inhibited proliferation
and metastasis of gastric carcinoma through repressing insulin receptor substrate-1 and activation
of -catenin signaling [136].

Aiming to identify a final model without resorting to a pre-screening procedure that may miss out
on important biomarkers, we applied STEPWISE to reach the following predictive model for ESCC
based on patients’ demographics and miRNAs:

logit™!(=35.70 + 1.41 x miR-4783-3p + 0.98 x miR-320b + 1.91 x miR-1225-3p + 0.10 x Age —
2.02 x Gender), where logit™! (x) = exp(x)/(1 + exp(x)).

In the testing dataset, the model had an area under the receiver operating curve (AUC) of 0.99 and
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achieved a high accuracy of 0.96, with a sensitivity and specificity of 0.97 and 0.95, respectively.
Also using the testing cohort, we evaluated the performance of the models sequentially selected
by STEPWISE. Starting with a model containing age and gender, STEPWISE selected miR-
4783-3p, miR-320b and miR-1225-3p in turn. Figure 3.3, showing the corresponding receiver
operating curves (ROC) for these sequential models, revealed the improvement by sequentially
adding predictors to the model and justified the importance of these variables in the final model. In
addition, Figure 3.3 (e) illustrated that adding an extra miRNA selected by FR and SC made little
improvement of the model’s predictive power.

Furthermore, we conducted subgroup analysis within the testing cohort to study how the sensitivity
of the final model differed by cancer stage, one of the most important risk factors. The sensitivity
for stages 0, i.e., non-invasive cancer, 9 (n = 27), 1 (n = 128), 2 (n = 57), 3 (n = 61), and 4
(n =10) was 1.00, 0.98, 0.97, 0.97, and 1.00, respectively. We next evaluated how the specificity
varied across controls coming from different data sources. The specificity for the various control
groups, namely, NCCB (n = 306), NCGG (n = 2,512), and MC (n = 1,864), was 0.99, 0.99, and
0.98, respectively. The results indicated the robust performance of the miRNA-based model toward
cancer stages as well as data sources.

Finally, to compare STEPWISE with the other competing methods, we repeatedly applied the
aforementioned balance sampling procedure and split the ESCC data into the training and testing
sets 100 times. We obtained MSPE and the average of accuracy, sensitivity, specificity, and
AUC. Figure 3.2 reported the model size of each method. Though STEPWISE selected fewer
variables compared to the other variable selection methods (for example, LASSO selected 11-
31 variables and dgLLARS selected 12-51 variables), it achieved comparable prediction accuracy,
specificity, sensitivity and AUC (see Table 3.6), evidencing the utility of STEPWISE for generating
parsimonious models while maintaining competitive predictability.

We used R software [137] to obtain the numerical results in Sections 4 and 5 with following

packages: ggplot2 [138], ncvreg [128], glmnet [127], dglars [130], and screening [129].
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Figure 3.2: Box plot of model sizes for each method based on 100 ESCC training datasets.
Performance of STEPWISE is reported with 71 = 0 and 1, = 3.5. Performance of SC and FR are
reported with y = 0.

Table 3.6: Comparisons of competing methods over 100 independent splits of the ESCC data into
training and testing sets

Training set MSPE Accuracy Sensitivity Specificity AUC

STEPWISE 0.02 0.97 0.98 0.97 1.00
SC 0.01 0.99 0.98 098 1.00
FR 0.02 0.99 0.97 0.97 1.00
LASSO 0.01 0.98 1.00 097 1.00
SIS+LASSO 0.01 0.99 1.00 0.99 1.00
dgLARS 0.04 0.96 0.99 094 1.00
Test set MSPE Accuracy Sensitivity Specificity AUC
STEPWISE 0.04 0.96 0.97 095 0.99
SC 0.03 0.96 0.97 0.96 0.99
FR 0.04 0.96 0.97 095 0.99
LASSO 0.03 0.96 0.99 0.95 1.00
SIS+LASSO 0.02 0.97 0.99 096 1.00
dgLLARS 0.05 0.94 0.98 0.94 1.00

Note: Values are averaged over 100 splits. STEPWISE was performed with ; = 0 and 7, = 1. SC and
FR were performed with y = 1. The regularization parameters in LASSO and dgLLARS were selected to
minimize the BIC.
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Figure 3.3: Comparisons of ROC curves for the selected models in the ESCC data set by the
sequentially selected order. Model 1 includes Age and Gender feature, and the following features
are sequnatially added to the model: miR-4783-3p, miR-320b, miR-1225-3p, miR-6789-5p.
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3.6.3 Neurobehavioral Impairment from Total Sleep Deprivation

In this study we aim to explore gene expression biomarker candidates for neurobehavioral impair-
ment from total sleep deprivation. Specifically, using a clinical study, we investigate the role of
genes on the Total Sleep Deprivation (TSD) and we use these biomarkers, that is, gene expressions,
to predict TSD and estimate their effect on the development of TSD.

To perform analysis, data was obtained from NCBI GEO online repository, accession GSE98582.
Blood samples were obtained from 17 healthy adults (ages 22-37, 7 females) who were not using
drugs. Subjects remained in the sleep laboratory at the Sleep and Performance Research Center
of Washington State University (Spokane, WA) for six consecutive nights. Meals were semi-
standardized with selection from among a limited number of menu options; blood draws were
performed immediately prior to meals. Blood samples were collected with an intravenous catheter
approximately every 4 h during time awake on days two, four, and six. At each of the 12 timepoints,
2.5 mL blood was collected in a PAXgene™ Blood RNA tube, and the number of lapses per test
bout was recorded from a 10 min PVT assay. Overall, the dataset contains 555 samples and 8284
gene features.

We define the binary outcome variable to be 1 if a sample corresponds to the case when TSD is
observed and O otherwise. Total, 342 samples with TSD and 213 controls (without TSD) were
taken. Further, we split the dataset into training and testing sets in order to perform the data analysis.
To preserve the underlying distribution of the response variable, a stratified sampling technique
was implemented. We kept 70% of data in the training set (389 samples with 8284 features) and
the remaining 30% (166 samples with 8284 features) was used for model validation.

With 71 = 0.5 and 1, = 3 that were chosen from 5-fold cross-validation, the STEPWISE procedure
recruited five genes. Particularly, PF4V1, USP32P1, EMRI, NBR2, and DUSP23 were selected
among 8284 genes. In addition, our procedure was applied to identify a final model for predicting
TSD based on gene biomarkers. As a result, the following model was produced:

logit™' (=322.02 + 13.01 X PF4V1 — 9.96 x USP32P1 +15.17 x EMRI + 17.66 x NBR2 + 15.34 x

DUSP23), where logit™! (x) = exp(x)/(1 + exp(x)).
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In the testing dataset, the final model had an area under the receiver operating curve (AUC) of
0.997 and achieved an accuracy of 0.983, with a sensitivity and specificity of 0.991 and 0.972,
respectively. To compare STEPWISE with other competing methods, we repeatedly applied the
aforementioned sampling procedure and split the dataset into training and testing sets 100 times.
We obtained MSPE, the average of accuracy, sensitivity, specificity, and AUC. Figure 3.4 reports the
model size of each method. Again, we observe that although STEPWISE procedure selects fewer
variables that other methods, it achieves comparable prediction accuracy, specificity, sensitivity,

and AUC. The results are presented in the Table 3.7.
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Figure 3.4: Box plot of model sizes for each method based on 100 total sleep deprivation training
datasets. Performance of STEPWISE is reported with ; = 0.5 and 7, = 3. Performance of SC and
FR are reported with y = 0.5
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Table 3.7: Comparisons of competing methods over 100 independent splits of the Total Sleep
Deprivation data into training and testing sets

Training set MSPE Accuracy Sensitivity Specificity AUC

STEPWISE 0.02 0.98 0.98 097 099
SC 0.01 0.98 0.98 098 1.00
FR 0.02 0.98 0.98 097 0.99
LASSO 0.00 1.00 1.00 1.00  1.00
SIS+LASSO 0.00 1.00 1.00 1.00  1.00
dgLARS 0.07 0.91 0.92 0.89 0.95
Test set MSPE Accuracy Sensitivity Specificity AUC
STEPWISE 0.04 0.97 0.96 094 098
SC 0.03 0.96 0.97 095 0.99
FR 0.04 0.97 0.96 094 098
LASSO 0.01 0.98 0.98 0.99 1.00
SIS+LASSO 0.01 0.99 0.99 098 1.00
dgLARS 0.08 0.88 0.90 0.86 0.95

Note: Values are averaged over 100 splits. STEPWISE was performed with ; = 0.5 and 1, = 3. SC and
FR were performed with vy = 0.5. The regularization parameters in LASSO and dglLARS were selected to
minimize the BIC.
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CHAPTER 4

MULTI-STAGE HYBRID MACHINE LEARNING METHOD

4.1 Machine Learning Ensemble Methods: Categories and Types

In Machine Learning, ensemble methods are used to achieve better predictive performance by
combining predictions from multiple models instead of using a single model [139]. These methods
tend to provide better results when the models used in ensemble methods are significantly diverse
[140, 141]. Ensemble methods are mainly divided into two categories: sequential ensemble
techniques and parallel ensemble techniques. Former generates base-learners (each method used
in the model) in a sequence making them dependent on one another. The model performance
tends to improve by assigning higher weights to previously misrepresented learners. In contrast,
parallel ensemble techniques generate base learners in a parallel. This is done in order to introduce
independence among base learners, which significantly reduces the error due to averaging the
results obtained from base learner models.

Besides being divided into categories, ensemble methods can be distinguished by their types.
The most popular and well-known types are Bagging, Boosting, and Stacking methods. Bagging
methods train each base learner on a different sample of a training dataset (normally, these are
bootstrap samples taken from the original training dataset). Predictions made by each of ensemble
members are then combined by averaging the results, which is done to incorporate all possible
outcomes of the prediction and randomize the outcome [142]. In order to improve the predictive
power of the model, boosting ensemble technique learns from mistakes made by previous predictors.
It adds predictors to the model sequentially, where successor predictors correct mistakes of the
preceding predictors [143]. The gradient decent algorithm is used to identify points that need
improvement the most.

Finally, Stacking technique (also known as stacked generalization) trains a learning algorithm to

combine predictions of multiple other learning algorithms. It makes a final prediction by using
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the predictions made by other algorithms, that is, output values of these methods become the input
values of the stacked model. In this chapter, we will utilize parallel ensemble techniques and
improve the performance of the STEPWISE algorithm. All methods used in the final model are

discussed in subsequent sections.

4.2 A Review on Existing Methods

In this section we propose and describe methods included in the multi-stage hybrid machine learning
model. They can be divided into two groups: model-based and model-free methods. Model-based
methods specifically define the relationship between the response and explanatory variables (also
known as predictors) via a certain link function. These models are considered to have a math-
ematical structure and involve various parameters that need to be estimated based on observed
data. In addition, these models are accompanied by a set of statistical assumptions such as an
underlying distribution of the response variable, relationship among predictors (mainly concerning
their independence), variability of data, and etc.

It becomes crucial to satisfy those assumptions as it guarantees the reliability of results. Thus,
implementation of model-based methods should be done by carefully examining and confirming
validity of the model assumptions and choosing the appropriate link function. Due to straightfor-
ward interpretation and relatively small model complexity, model-based methods gained popularity
among practitioners. We selected least absolute shrinkage and selection operator (LASSO) and our
proposed STEPWISE method to represent model-based methods in the model.

In contrast, model-free methods do not make any assumptions on the parametric form of the under-
lying model explicitly. In other words, they adapt to the data characteristics without pre-specified
model structure. Model-free algorithms are designed to automatically learn, adjust their actions
and improve results with minimal or no human intervention. These algorithms help to gain some
insights from data and enable to build right predictions and minimize chances of making any kind
of errors. Given complex data, model-free methods are able to construct non-parametric repre-

sentations (also known as non-parametric models). These methods develop their models based on
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constant learning and retraining.

Normally, model-free methods are used in problems where mathematical models are unavailable
or hard to construct. Therefore, almost all model-free methods have some optimization techniques
at their core. For instance, gradient decent optimization algorithm is commonly used in many
non-parametric methods. As a result, model-free methods tend to achieve high accuracy in their
predictions and are successfully used with complex data. We selected several such methods to
include in our model. Specifically, random forest (RF), support vector machine (SVM), extreme
gradient boosting machine (XGBoost), and artificial neural network(ANN).

These methods are just selective examples of many other methods that are currently available. We
decided to include this particular set of methods in our model because it is diverse in its nature and
these methods are applicable in various real-life scenarios. For instance, random forest reduces
drawback of large variance and is not prone to overfit the model; extreme gradient boosting machine
provide lots of flexibility, can optimize on different loss functions and applicable to case with low
variance and high bias; support vector machine is more effective in high dimensional spaces and
relatively memory efficient; least absolute shrinkage and selection operator performs both auto-
mated variable selection and regularization, and helps minimize the impact of multicollinearity
among predictors; artificial neural network can handle comprehensive data structures due to its

complexity. All these methods are described in subsequent sections.

4.2.1 Random Forest (RF)

Random forests combine tree predictors that depend on values of a random vector sampled inde-
pendently and identically for all trees in the forest. This methodology was proposed by Breiman
[144] and quickly gained popularity among researchers and practitioners due to its simplicity and
high accuracy.

Random Forest is a generic method, but mostly has been used with classification trees. Random
Forests grow multiple classification trees, and classify a new object from an input vector by putting

it down each of the trees in the forest. Then each tree gives a classification, and the majority of
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"votes" determines a class of a prediction. More specifically, each tree in random forest grows as
follows. If a number of observations in the training set is n, it takes a sample of n observations
at random with replacement, from the original data. This creates a training set for growing the
tree. Then, if there are M input predictors, a number m < M is specified such that at each node, m
variables are selected at random out of the M and the best split on these m divides the node. The
value of m is being held constant during the forest growing. Then each tree grows to the largest
extent possible with no pruning applied.

Mainly, an error rate produced by random forests depends on two factors: First, increasing a corre-
lation between any two trees in the forest increases the error rate. Second, increasing the strength
of the individual trees decreases the forest error rate. Additionally, the error rate can be controlled
by manipulating an m parameter. Reducing m reduces both the correlation and the strength and
increasing it increases both. The advantages of using Random Forest is the ability to cope with
thousands of features without variable deletion, provide variable importance assessment in the
classification, generate an internal unbiased estimate of the generalization error, and have methods

for balancing error in class population unbalanced data sets.

4.2.2 Support Vector Machines (SVM)

In essence, the Support Vector Machine is a method proposed by Vapnik [145] that conceptually
implements the following idea: it takes input vectors and maps them non-linearly to a very high
dimension feature space. Then in this feature space it constructs a linear decision surface. Special
properties of the decision surface guarantees high generalization ability of the learning method.
SVMs can handle any number of classes, as well as observations of any dimension and can take
almost any shape including linear, radial, and polynomial, among others. Particularly, SVMs
construct a hyperplane or a set of hyperplanes, that is decision boundaries, in a high- or infinite-
dimensional space, which can be used for classification, regression, and other type of problems.
Good separation is achieved by the hyperplane that has the largest distance to the nearest training

data point of any class, also known as support vectors.
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If classes are linearly separable, Hard Margin Classifier (HMC) can be implemented. HMC finds an
optimal hyperplane, that separates classes while maximazing the distance to the closest points from
the classes. The maximized distance is referred to as the Margin. HMC estimates the coefficients
of hyperplanes by solving a quadratic programming problem with linear inequality constrains. If
a perfect linear separation is not achievable or desirable, a Soft Margin Classifier (SMC) can be
considered. While the data can be still linearly separable, the decision boundaries obtained using
the HMC might not generalize well to new data and accuracy will suffer. To solve this issue, SMC
loosens the constrains and allows some points to be wrongly classified. The set of points is called
allowable budget.

Finally, if classes are not linearly separable, Support Vector Machine projects data to higher
dimensions, where they are linearly separable and constructs a hyperplane. Then it transforms this
hyperplane back to the initial space and obtains a non-linear decision boundary. It is achieved
by using a kernel trick that computes a dot product in some feature space without even knowing
what the space is and what is a mapping function. Most commonly employed kernel functions
are linear, polynomial, and radial basis functions. The advantages of Support Vector Machine are
that it always guarantees to find a global optimum as it just solves convex optimization problem,
relatively robust to outliers (soft margin), and is flexible (implements various kernel functions). The
main drawback of SVM is that it slows down the training process as data become taller (when the
number of observations is significantly greater than the number of predictors) as it has to estimate

parameters for each row.

4.2.3 Gradient Boosting Machine (GBM)

Gradient Boosting Machines, proposed by Friedman [146], quickly gained popularity due to their
high accuracy and effectiveness in solving complex problems. Typically, it is hard for other
methods to outperform the performance of GBMs and it is the algorithm of choice for many teams
of machine learning competitions. GBMs build an ensemble of shallow trees in sequence where

each tree learns and improves on the previous one. Even though shallow trees by themselves are
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more of weak predictive models, they are able to boost and produce a powerful committee.

The main idea of boosting algorithms is to add new models to the ensemble sequentially. It starts
with a weak tree and sequentially continues to build new trees, where each new tree in the sequence
fixes up where the previous one made the mistakes (for instance, each new tree in the sequence
focuses on the training rows where the previous tree had the largest prediction errors). Specifically,
at any instant the model outcomes are weighed according to the outcomes of the previous instant.
The outcomes that are predicted correctly are given a lower weight and the ones that are miss-
classified are given higher weights.

Gradient Boosting Machines are considered a gradient decent algorithm. Gradient descent is a
generic optimization algorithm that is capable of finding optimal solutions to a wide range of
problems and can be used on any loss function that is differentiable. The fundamental idea of
gradient descent is to search parameter values iteratively that will minimize a loss function. Here
it is used to estimate the weights assigned to correctly and incorrectly predicted outcomes. Unlike
bagging algorithms, GBM deals with bias variance trade-off by controlling both bias and variance
and is proven to be more effective when applied to models with high bias and low variance.

There are various versions of Gradient Boosting Machine. Particularly useful are Stochastic GBM
and Extreme GBM. Stochastic GBM takes a random subsample of the training dataset that offers
additional reduction in tree correlation which improves a prediction accuracy. Extreme GBM is
an optimized distributed gradient boosting machine that improves the accuracy and speed of the
method by employing parallelism in its algorithm and adding regularization parameters to the
model. The main disadvantage of GBM method is that it is a complex and less intuitive algorithms.

In addition, it is time and computationally expensive method.

4.2.4 Artificial Neural Network (ANN)

An important subfield of Machine Learning is Deep Learning, which focuses on building predictive
models based on artificial neural networks with two or more hidden layers. Artificial Neural

Networks (ANN), first proposed by McCullough and Pitts [147], a model structure used in most
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of the Deep Learning models, is inspired by the biological neural networks and mimics the way
humans gain certain types of information through a combination of data inputs, weights, and bias.
Like other machine learning algorithms, neural networks perform learning by mapping features to
targets through a process of simple data transformations and feedback signals. Fundamental to most
of the deep learning methods is the feedforward ANN. Feedforward ANNs are densely connected
layers where inputs influence each successive layer which then influences the final output layer.
Basic neural networks have three layers: an input layer, a hidden layer, and an output layer.

The input layer consists of all of the original input features. Most of the learning happens in the
hidden layer, and the output layer produces the final predictions. The layers and nodes are the
building blocks of our ANN and they decide how complex the network will be. Layers are called
dense if all the nodes in successive layer are connected. Consequently, the more layers and nodes
you add the more opportunities you create for new features to be learned.

There is no unique approach for determining the number of hidden layers and nodes; basically,
these are the first hyperparameters among many others to tune. Mainly, features in your data largely
determine the number of nodes you define in these hidden layers. The modeling task drives the
choice of output layer. For regression problems, the output layer contains just one node that outputs
the final prediction. If you are predicting a binary output, your output layer will still contain only
one node and that node will predict the probability of success. Finally, if you predict an output with
several classes, the output layer will contain the same number of nodes as the number of classes.
A crucial component of artificial neural networks is activation. Each node in ANN is connected
to all the nodes in the previous layer. Each connection gets a weight and then that node adds
all the incoming inputs multiplied by its corresponding connection weight plus an extra bias
parameter. This summation becomes an input to an activation function. The activation function is
a mathematical function that determines whether to fire a signal to the next layer.

On the forward pass, the ANN will select a batch of observations, randomly assign weights across
all the node connections, and predict the output. Then, it assesses its own accuracy and adjusts the

weights across all the node connections in order to improve the accuracy. This process is called
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backpropagation. To carry out backpropagation, first, you need to establish an objective (loss)
function to measure performance. On each forward pass the ANN will measure its performance
based on the loss function chosen. The ANN will then work backwards through the layers,
compute the gradient of the loss with regards to the network weights, adjust the weights a little in
the opposite direction of the gradient, grab another batch of observations to run through the model,
and repeat until the loss function is minimized. The performance of ANN can be optimized by
tuning its hyperparameters. It can be done through adjusting model capacity (layers and modes),
adding batch normalization, adjusting learning rate, trying out different activation functions and so
on. Another possible way of improving ANN’s performance is placing constraints on a model’s

complexity with regularization, also referred to as dropout implementation.

4.2.5 Least Absolute Shrinkage and Selection Operator (LASSO)

Nowadays, data sets typically contain a large number of features. As the number of features grows,
certain assumptions required by traditional methods (e.g., linear models) break down and these
models tend to overfit the data, causing the out of sample error to increase and making the results
unreliable. One possible solution is to use Regularization methods, which constrain or regularize
the estimated coefficients and can reduce the variance and uncertainty in the estimation.

As it was mentioned, having a large number of features invites various issues in using classic
regression models. For instance, the model becomes much less interpretable, there could be
infinite number of estimates for the model coefficients, and the predictors are likely to be highly
correlated, which can invite multicollinearity issues. The regularized techniques constrain the
total size of all the coeflicient estimates that helps to reduce the magnitude and fluctuations of the
coefficients and will reduce the variance of the model.

Arguably, one of the most well-known and frequently used regularized method is the Least Absolute
Shrinkage and Selection Operator (LASSO). The method was poroposed by Tibshirani [84] and it
minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients

being less than a constant. Because of the nature of this constraint, it pushes coefficients all the way
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to zero and produces some coeflicients that are exactly 0, which eventually provides interpretable
models. The LASSO method can be summarized as follows

Suppose we have data (X;,y;), i = 1,2,...,N, where X; = (Xj1, ... ,X,~p)T are the predictors
and y; is the response variable. We assume that either the observations are independent or the
responses are conditionally independent of the predictors. Finally, we assume that all predictors

are standardized. Letting 8 = (81, ..., BP)T, the LASSO estimate (&, 3) is defined as

N 2
(&,,5’):argmin{Z(yi—a—Zﬁinj) }, Zlﬁjl <A,
1 J J

i=

where 4 > 0 is a tuning parameter that controls the amount of shrinkage applied to the estimates.
The LASSO method provides properties of both automated feature selection and ridge regression,
and it exhibits the stability of the latter one. The main disadvantage of the technique is that it

achieves these results at the cost of producing biased estimates.

4.2.6 STEPWISE Method

STEPWISE method is a procedure proposed in this thesis and described in Chapter 3. The
proposed method fits GLMs with ultrahigh-dimensional predictors. It starts with an empty set or
pre-specified predictors, scans all features and sequentially selects features, and conducts backward
elimination once the forward selection is completed. The forward selection steps recruit variables
in an inclusive way by allowing some false positives for the sake of avoiding false negatives, while
backward selection steps eliminate the potential false positives from the recruited variables.

STEPWISE algorithm embraces model selection and estimation, controls both false negatives and
positives by using different stopping criteria in the forward and backward selection steps, yields
consistent estimates, and accommodates a wide range of data types, such as binary, categorical,
and count data. In addition, under a sparsity assumption of the true model, it can discover all of
the relevant predictors within a finite number of steps, and can produce a final model in ultrahigh
dimensional settings without applying a pre-screening step which may introduce unintended false

negatives.
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4.3 Multi-Stage Hybrid Machine Learning Method

4.3.1 Introduction

The proposed multi-stage hybrid machine learning method carries out a stacking technique. Stack-
ing method is designed to boost predictive accuracy by blending the predictions of multiple machine
learning models. Stacked generalization or stacked was proposed by Wolpert [148] and is widely
used by other researchers and practitioners, [149, 150, 151].

Stacking is a technique in which the predictions produced by a collection of models are given as
inputs to a second-level learning algorithm. This second-level algorithm is trained optimally to
combine the model predictions and form a final set of predictions. Specifically, stacking method
trains a new learning algorithm to combine predictions of several base-learners, also known as,
individual models. First, base-learners are trained using the training data, then a combiner, called
a super learner, is trained to make a final prediction based on the predictions of the base learners.
It is important that the dataset collected for the stacked model consists of out-of-sample model
predictions. In other words, to obtain the prediction for a certain data point in the data set, the
model parameters should be estimated on a training set which does not include that particular data
point. This is normally achieved via K-fold cross-validation. The training data is split into almost
equal K subsets and K versions of the model are trained, each on the data with a different subset
removed. Thus, model predictions for the kth subset are produced from the model trained on a set
that did not include that subset.

To set up a multi-stage hybrid machine learning method, the following steps are being completed.
First, we specify a list of base learners and a super learner, also know as, a meta algorithm. We
select Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting Machine
(XGBoost), Least Absolute Shrinkage and Selection Operator (LASSO), Artificial Neural Network
(ANN), and STEPWISE method as the base learners. Linear weighted summation combiner is
being used as a super learner. Next, we train each of these base learners on the training data.

Specifically, we employ K-fold cross-validation for each of the base learners and collect the cross-
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validated class probabilities from them. The cross-validated class probabilities are combined to
create a new feature matrix.

Finally, we use this new feature matrix to train the meta learning algorithm, which can be used
to generate predictions on new data. In other words, output values of each base learner become
input values for the super learner. To generate ensemble predictions, first we have to generate class
probabilities for each of the base learners. Then feed these class probabilities into the super learner,
which will generate the ensemble prediction. Algorithm 1 summarizes the proposed method and

provides a high-level explanation.

Algorithm 1 MULTI-STAGE HYBRID MACHINE LEARNING METHOD

1. Set up the stacked model

* Specify a list of M base learners with a determined set of model parameters

* Specify a super learner algorithm
2. Train the model

* Train each of the M base learners on the training set

* Perform cross-validation technique on each of the base-learners and collect cross-validated class
probabilities from each (denoted as py, ..., par)

* Combine the N (the number of observations in the training set) cross-validated class probability
values from each of the M base-learners into a new N X M feature matrix. This matrix, along
with the original response vector (y), is called level - one data

* Train the super learner on level - one data
3. Predict on new data

» To generate stacked predictions, first generate class probabilities from the base-learners

* Feed those class probabilities to a super learner and produce new final predictions

Our method is called hybrid, because it employs both model-free and model-based methods.
And we call it multi-stage, because it consists of two stages: setting up and training base-learners,
and training the super learner and generating class probabilities based on it. It is worth to mention

that the stacked model works the best when a diverse set of methods is selected as base learners.

86



Therefore, our model includes both types of methods.

4.3.2 Algorithm

Define D = {(X;,Y;), i = 1,...,n} a dataset (D is also referred to as level-0 data) consisting of a
vector X; representing the attribute values of the i-th instance, and Y; representing the class value.
Let A;, j = 1,...,J, be a base-learner algorithm, also known as, level-O estimator. Given D
dataset, we randomly split it into K almost equal parts, D,...,Dg. Let Dy, k = 1,...,K, and
DR = D\ Dy be the test and training sets for the kth fold of K-fold cross-validation. Given
J base-learner algorithms, we separately invoke the jth algorithm on the data in the training set
DR to induce a model MJ(._k) for j = 1,...,J. For each instance (X;,Y;) € Dy, let g;(X;)
denote the class probability estimated by the model M](._k) for X;. At the end of the cross-validation
process, after applying the testing dataset Dy foreach k = 1, ..., K to each M](._k) forj=1,...,J,
the base-learner model class probabilities form a meta-instance (g 1(X)), ..., g7(X)), Y,-) with the

output variable for the original instance. A new dataset

D¢y = {(gl(xi),---agJ(Xi)aYi)ai: 1,~-~,N}

is assembled, also known as, level-1 data. Note that the original X; is replaced with the correspond-
ing level-0 output vectors {gl (X, ... ,gJ(Xi)}.
Now, at the second stage, referred to as level-1 learning stage, we derive our final level-1 model,

M, from Dcy. The level-1 model will be constructed of the following form:

J
M(X) = Za’j x g;(X),
j=1
where g;(X) is the jth level-0 class probability and «; is its corresponding weight. Values for o’s

are computed based on corresponding level-0 model performances and are derived as

J
2 § 2
j=1
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where K is a Kappa coeflicient defined as

accuracy — expected accuracy

1 — expected accuracy

where

TP+TN
TP+TN+FP+FN’

accuracy =

and

TP+FPXTP+FN
N N

expected accuracy = N X N )

(TN+FP TN + FN

where TP, FP, TN, and FN are True Positives, False Positives, True Negatives, and False Negatives,
respectively. Breiman, [152], suggests that non-negative constraint ; > 0 provides consistently
good results. Now, to make the final prediction we use the models M for j = 1, ..., Jin conjunction
with M. Given a new instance, X; models M ; produce a vector (g1(X;),...,gs(X;)). Then this
vector is used as an input value to the level-1 model, M, whose output is the final prediction for

that instance.

4.4 Application: Bladder Cancer Prediction

4.4.1 Data Description

To utilize the aforementioned method we obtained data from Usuba et al. [69]. The goal of
building this model is to identify important miRNA biomarkers that have an impact on bladder
cancer development and can help in early detection of the disease. Moreover, ensemble method
will enhance the predictive power of the proposed STEPWISE method taken separately.

Data consists of 972 samples profiling 2565 miRNAs. Specifically, 392 serum samples were
obtained from bladder cancer patients who were admitted or referred to the National Cancer
Center Hospital (NCCH) between 2008 and 2016. A total of 580 serum samples from non-cancer

individuals were collected from 2 independent cohorts: the first cohort included individuals whose
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serum samples were collected and stored by the National Center for Geriatrics and Gerontology
(NCGG) Biobank between 2010 and 2012 and the second cohort included volunteers aged over 35
years who were recruited from the Yokohama Minoru Clinic in 2015.

We defined the binary outcome variable to be 1 if the subject was a case and 0 otherwise. To
proceed, we randomly divided samples into training and testing sets. Training set consists of 80
% of original data (310 samples with bladder cancer and 468 non-cancer controls) and the testing
set consists of the remaining 20 % (82 samples with bladder cancer and 112 non-cancer controls).

Table A.3 summarises characteristics of the samples used in the study.

4.4.2 Results

We perform data analysis in two parts. First, we employ STEPWISE procedure separately and eval-
uate its performance based on obtained results. Then, we implement multi-stage hybrid machine
learning method and demonstrate its advantages over the former model. To begin with, we further
split the training set into training and validation sets by using 5-fold cross-validation technique in
order to identify the best configuration of 77; and 7, parameters. Specifically, we use a greed search
approach and specify a set of values for each of these two parameters: 7 is being searched on the
grid {0, 0.25, 0.5,0.75, 1} and p on {1, 2, 3, 3.5, 4, 4.5, 5}. The results from the cross-validation
procedure are presented in Table 4.1. It shows that STEPWISE method with ; = 0.5 and 7, = 3
performed the best, so this pair of values will be used further in analysis.

Next, we applied the proposed STEPWISE method to the training set with n = 778 and p =
2565. With no prior biological information available, we started with an empty set. In the forward
step, STEPWISE selected mir-6087, mir-5100, mir-1914-3p, mir-6831-5p, mir-2110, mir-6717-5p,
mir-1343-3p, mir-6069, mir-6780b-5p, mir-1343-5p miRNAs, and the backward step eliminated
mir-6780b-5p, mir-1343-5p miRNAs. The STEPWISE procedure produced the following final
predictive model:

logit™" (88.33 — 8.08 X miR-6087 +2.53 x miR-5100 — 3.54 x miR-1914-3p + 1.22 X miR-6831-5p —
1.57 xmiR-2110+2.26 X miR-6717-5p —2.51 x miR-1343-3p +0.75 x miR-6069, where logit™! (x) =
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exp(x)/(1 +exp(x)).

Table 4.1: Results of the 5-fold cross-validation procedure for the STEPWISE method

2
1 2 3 3.5 4 4.5 5

0 0.885 0.893 0.893 0.895 0.895 0.905 0.905

0.25 0.885 0.893 0.893 0.895 0.895 0.905 0.905

m 05 0917 0917 0931 0925 0.925 0911 00911
0.75 0.900 0900 0.895 0.895 0.883 0.879 0.879

1 0875 0.870 0.870 0.863 0.861 0.861 0.859

Values for r7; and 17, were searched on the grid {0, 0.25,0.5,0.75, 1} and {1, 2, 3, 3.5, 4,4.5, 5}, respectively.
The optimal configuration of the parameters was discovered by comparing AUC-ROCs (area under the
receiver operating curve). The pair of parameter values that maximized the AUC value was selected for
further analysis.

In the testing dataset, the model had AUC of 0.92 and achieved an accuracy of 0.91, with sensi-
tivity, specificity, and precision of 0.93, 0.86, and 0.90, respectively. Finally, we repeatedly applied
the sampling procedure and split the data into the training and testing sets 100 times. We obtained
the average accuracy, sensitivity, specificity, precision, and AUC. The results are presented in the

Table 4.2.

Table 4.2: Assessment of the proposed STEPWISE procedure using the bladder cancer data set

Accuracy Sensitivity  Specificity Precision AUC
Training set 0.92 0.94 0.92 092 094
Testing set 0.91 0.93 0.90 0.89 092

Note: values of accuracy, sensitivity, specificity, precision, and AUC were averaged over 100 splits.

In order to develop the final multi-stage hybrid machine learning model, we first built the other
base-learner models included in the stacked method. Specifically, RF, SVM, XGBoost, LASSO,
and ANN. After carrying out 5-fold cross-validation procedure, the following sets of hyperparame-

ters have been identified for each of these methods: 600 trees were selected for RF model along with
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5 instances in the terminal nodes and 250 randomly selected predictors in each tree; SVM achieved
its best results with parameter C = 0.01 and polynomial structure of the second order; XGBoost
performed the best with 300 trees, tree depth and learning rate equal to 8 and 0.1, respectively,
and minimum 5 samples in the terminal nodes; ANN constructed its model with two hidden layers
having 70% and 35% of predictors on its layers, respectively, learning rate equal to 0.1 and dropout
rate to be 0.6; LASSO picked its penalty parameter to be 0.0361. Results of their performances
over training and testing sets are summarized in Table 4.3.

Weights, a’s, for the super learner combiner are computed based on base-learners’ performance
achieved during the first stage of modeling. Particularly, 0.17, 0.17, 0.14, 0.18, 0.18, and 0.16 are
weights assigned to STEPWISE, RF, SVM, XGBosst, ANN, and LASSO, respectively. Table 4.4
presents results obtained from evaluating the multi-stage hybrid machine learning model. It can
be observed that hybrid model significantly improved the performance of STEPWISE method. In
addition, it also outperformed other methods included in the model.

Finally, we performed sensitivity analysis to quantify the relationship between the model perfor-
mance and the weights assigned to the base-learners. Mainly, we tried out 7 model settings with
different weight configurations and compared them with our existing model. Specifically, we de-
veloped a model with equal weights assigned to each method and the remaining 6 models have
a high weight of 0.8 assigned to one of the base-learners while keeping other weights equal to
0.04. The results are summarized in the Table 4.5 and illustrate the advantage of our model over
other competing model settings. The proposed multi-stage hybrid model outperformed Models 2-7
in all evaluation metrics; Model 1 achieved comparable results as it was expected since assigned

weighted were similar to ours.
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Table 4.3: Comparison of base-learner methods included in the multi-stage hybrid machine learning
model over 100 independent splits of the bladder cancer data into training and testing sets

Training set Accuracy Sensitivity Specificity Precision AUC

RF 0.95 0.95 0.96 094 095
SVM 0.91 0.93 0.92 093 092
XGBoost 0.95 0.94 0.96 097 0.96
ANN 0.95 0.96 0.94 097 0.96
LASSO 0.94 0.93 0.95 094 095
Test set Accuracy Sensitivity Specificity Precision AUC
RF 0.93 0.94 0.93 092 093
SVM 0.89 0.92 0.90 0.87 0.89
XGBoost 0.94 0.93 0.95 093 0.95
ANN 0.94 0.95 0.93 091 095
LASSO 0.92 0.91 0.92 0.89 0.94

Note: values of accuracy, sensitivity, specificity, precision, and AUC were averaged over 100 splits; RF -
Random Forest; SVM - Support Vector Machine; XGBoost - Extreme Gradient Boosting Machine; ANN -
Artificial Neural Network; LASSO - Least Absolute Shrinkage and Selector Operator

Table 4.4: Evaluation of the proposed multi-stage hybrid machine learning model with the bladder
cancer data set

Accuracy Sensitivity Specificity Precision AUC
Training set 0.99 1.00 0.99 0.99 1.00
Testing set 0.98 0.98 0.98 0.97 0.99

Note: values of accuracy, sensitivity, specificity, precision, and AUC were averaged over 100 splits.
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Table 4.5: Comparison of various model configurations included in the sensitivity analysis

Training set Accuracy Sensitivity Specificity Precision AUC

Model 1 0.98 0.98 0.97 096 097
Model 2 0.96 0.96 0.96 095 0.95
Model 3 0.93 0.94 0.94 092 093
Model 4 0.97 0.98 0.97 0.97 0.95
Model 5 0.97 0.97 0.96 097 0.95
Model 6 0.94 0.95 0.93 094 093
Model 7 0.94 0.94 0.93 094 093

Note: values of accuracy, sensitivity, specificity, precision, and AUC were averaged over 100 splits; Model
1 corresponds to the equal-weights scenario; the Model 2-7 correspond to the scenarios with a high weight
of 0.8 assigned to one of the base-learners while keeping other weights equal to 0.04; a high weight was
assigned to methods in the following order: Random Forest (RF), Support Vector Machine (SVM), Extreme
Gradient Boosting machine (XGBoost), Artificial Neural Network (ANN), least absolute shrinkage and
selector Operator (LASSO), STEPWISE procedure

4.5 Web Application

An R-Shiny web application was developed to enable users employ the proposed multi-stage hybrid
machine learning method in practice. The main goal of this app is to help users analyze their own
data and build predictive models according to our algorithm. The web application can be accessed
online at Multi-Stage_ Hybrid_ML_Method. Specifically, it is aimed to solve classification prob-
lems and has the following features.

First, users will have an option to either upload their own data sets or use pre-built sets. Pre-built
option includes two well-known data sets: Iris and Abalone. Once the data is uploaded/selected
from the given options, users can split the data into training and testing sets. For instance, spec-
ifying validation split to be 0.8 will split data into train and test sets with 4:1 ratio. In addition,
one can apply pre-processing steps to the data, which is an important part of data analysis. As
of now, there are three options available: standardizing numerical features (making features have
mean equal to zero and variance equal to 1), imputing missing values via K-Nearest Neighbor tech-
nique (a method that takes into account the relationship among predictors), and removing Zero and

Near-zero variance variables (removes feature that have no effect/ minimal effect on the response
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feature). Figure A.1 illustrates this step.

Next, users are offered to tune hyperparameters of the base learner methods. Almost all Machine
learning methods have hyper-parameters that can be tuned. Tuning them will potentially improve
the model performance and reduce chances of overfiting the model. In order to accomplish this
task, the web application employs greed search technique: users will specify a set of values for each
of the hyper-parameters provided in the menu bar. Two resampling methods are available: k-fold
cross-validation and repeated k-fold cross-validation. Once all necessary items are selected, the
web application will tune these parameters and will display numeric and visual results in "Numerical
Results" and "Visualize Results" tabs respectively. Figure A.2 illustrates a tuning hyperparameters
procedure for a Random Forest method.

Lastly, after the tuning hyperparameters step is complete and a set of values for these parameters is
selected, users can proceed further and start building their final predictive model. At this step, they
can indicate parameter values for each base-learner obtained from the previous step and set weights
for them. The app will train the model and display the results, which include model performance
metrics (computed for both training and testing sets), feature importance, and final predictions.
Figure A.3 illustrates an output results for the final predictive model including model evaluations

for both training and testing sets.
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CHAPTER 5

CONCLUSIONS, DISCUSSION, AND DIRECTIONS FOR FUTURE RESEARCH

In this thesis we have proposed to apply STEPWISE to produce final models in ultrahigh-
dimensional settings, without resorting to a pre-screening step. We have shown that the method
identifies or includes the true model with probability going to 1, and produces consistent coefficient
estimates, which are useful for properly interpreting the actual impacts of risk factors. The theoret-
ical properties of STEPWISE are established under mild conditions, which are worth discussing.
Because in practice covariates are often standardized for various reasons, Condition (2) is assumed
without loss of generality.

Conditions (3) and (4) are generally satisfied under common GLM models, including Gaussian,
Binomial, Poisson, and Gamma distributions. Condition (5) is also often satisfied in practice.
Proposition 2 in Zhang et al. [121] may be used as a tool to verify Condition (5) as well. Con-
ditions (1) and (6) are in good faith with the unknown true model size | M| and minimum signal
strength n~% in practice. The "irrepresentable" condition (6) is strong and may not hold in some
real datasets (see, e.g. [153, 154]). However, the condition holds under some commonly used
covariance structures, including AR(1) and compound symmetry structure [153].

As shown in simulation studies and real data analyses, STEPWISE tends to generate models as pre-
dictive as the other well-known methods, with fewer variables (Figure 3.2). Parsimonious models
are useful for biomedical studies as they explain data with a small number of important predictors,
and offer practitioners a realistic list of biomarkers to investigate. With categorical outcome data
frequently observed in biomedical studies (e.g. histology types of cancer), STEPWISE can be ex-
tended to accommodate multinomial classification, with more involved notation and computation.
We will pursue this elsewhere.

As it was shown and discussed in the previous chapters of the thesis, STEPWISE procedure controls
both false positives and false negatives in high-dimensional settings. It is achieved by employing

different stopping criteria in the forward and backward selection steps that adds flexibility to our
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algorithm. Mainly, versatility of the stopping criterion in the forward selection step allows to
avoid false negatives by including some false positives in the early stages of the model building.
While, using stopping criterion in the backward elimination step allows removing the potential
false positives from the selected variables.

In addition, two extra parameters 7, and 77, involved in computing the stopping criteria determine
how restrictive the variable screening process should be. Specifically, large values of n; in the
forward selection step will recruit less variables and vice versa. Similarly, large n, values of the
stopping criterion in the backward elimination step will remove more features. Thus, this frame-
work can address different needs. For instance, if controlling false positives is the priority, then
we recommend applying large values for parameters, and if it is more meaningful to control false
negatives, then small values must be used. It is worth noting that our method includes forward
selection as a special case when the parameter value is equal to 0, making it even more flexible.
Moreover, in this thesis we prove that, under a sparsity assumption of the true model, the proposed
STEPWISE approach can discover all of the relevant predictors within a finite number of steps.
Sparse models are common in high-dimensional settings. Among hundreds or thousands predic-
tors involved in the model development, only a handful number of predictors have a significant
relationship with the response variable. Including too many predictors in the model may result
in overfitting, while keeping a few variables may lead to high bias and low predictive accuracy.
Thus, identifying true signals and significant predictors correctly and including them in the final
predictive model is a crucial step in a model building process.

Finally, we developed a multi-stage hybrid machine learning method to boost a predictive accuracy
and improve a performance of the proposed method. It carries out stacking technique and com-
bines model-free and model-based methods including the proposed STEPWISE method. Ting and
Witten [155] suggested that the users of stacking method have a free choice of base-learner models.
Therefore, we have selected heterogeneous machine learning methods (e.g., boosting, bagging,
neural nets, and model-based methods) that have different strengths and disadvantages. Having a

diverse set of base-learners makes our method applicable in various scenarios. In addition, they
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claimed and demonstrated that successful stacked generalization implies using class probabilities
rather than class predictions, and supported their claim with empirical examples. We also adopted
this technique in our model.

Ueda [149] defined several combination types that can be used to combine base-learner outputs
via weighted sum (WS), class-dependent weighted sum (CSW), and linear stacked generalization
(LSG). Erdogan and Sen [156] showed that none of these methods is superior than others and
the performance is data-driven and data-dependent. We have selected WS technique to be imple-
mented in the super-learner method. A Kappa statistic (K) was used to estimate and assign weights
to the individual base-learner outputs, which is considered to be more accurate metric for model
evaluation [157, 158]. These weights reflect their performance on level-0 data: greater weights
are assigned to base-learners with stronger performance and vice versa. This weights assignment
method is believed to be more effective as it incorporates significance of each method included in
the model [159]. Finally, Breiman [152] reported that non-negative constraint over the assigned
weights will provide consistently good results. This constraint was added to our model as well.
The numerical examples we provided have vividly demonstrated an improved predictive power of
the proposed method. Moreover, we performed sensitivity analysis to illustrate the superiority of
the weight assignment technique used in the model over the other competing techniques. Lastly,
we proposed and developed a web application that enables users employ the proposed multi-stage
hybrid machine learning method in practice.

There are several open questions. First, in our numerical experiments, we used cross-validation
to choose values for n7; and 77, which seemed to work well. However, more in-depth research is
needed to find their optimal values to strike a balance between false positives and false negatives.
Second, despite our consistent estimates, drawing inference based on them remains challenging.
Statistical inference, which accounts for uncertainty in estimation, is key for properly interpreting
analysis results and drawing appropriate conclusions. Our asymptotic results, nevertheless, are a
stepping stone toward this important problem. Third, although the proposed STEPWISE procedure

is designed to deal with the binary classification, it can be extended to accommodate multinomial
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classification, a commonly observed problem in biological or biomedical research. Most multi-
nomial classification methods rely on sequential binary classification by way of one-versus-all or
direct pairwise comparison [160], which requires selecting a reduction method from multiclass to
binary. Further investigation will be needed to identify such methods as it is not a trivial task and

is on a case-by-case basis.
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APPENDIX A

SUPPLEMENT MATERIALS

A.1 Supplementary Materials

AnRpackage, STEPWISE, was developed and is available athttps://github.com/AlexPijyan/

STEPWISE, along with the examples shown in the dissertation.

A.2 Additional Results in the Real Data Analysis

Table A.1: Comparison of genes selected by each competing method from the mammalian eye data
set

STEPWISE FR LASSO SIS+LASSO SC dgLARS

STEPWISE 3 3 2 2 2 0
FR 4 2 2 2 0
LASSO 16 5 2 0
SIS+LASSO 9 2 0
e 4 0
dgLARS 7

Note: Diagonal and off-diagonal elements of the table represent the model sizes for each method and the
number of overlapping genes selected by the two methods corresponding to the row and column, respectively.
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Table A.2: Selected miRNAs for ESCC training dataset

Methods selected miRNAs

STEPWISE  miR-4783-3p; miR-320b; miR-1225-3p

FR miR-4783-3p; miR-320b; miR-1225-3p; 6789-5p

SC miR-4783-3p; miR-320b; miR-1225-3p; 6789-5p

LASSO miR-6789-5p; miR-6781-5p; miR-1225-3p; miR-1238-5p; miR-320b;
miR-6794-5p; miR-6877-5p; miR-6785-5p; miR-718; miR-195-5p

SIS+LASSO  miR-6785-5p; miR-1238-5p; miR-1225-3p; miR-6789-5p; miR-320b;
miR-6875-5p; miR-6127; miR-1268b; miR-6781-5p; miR-125a-3p

dglLARS miR-891b; miR-6127;, miR-151a-5p; miR-195-5p; ; miR-3688-5p

miR-125b-1-3p; miR-1273c; miR-6501-5p; miR-4666a-5p; miR-514a-3p

Note: LASSO, SIS+LASSO, dgLLARS selected 20, 17, and 33 miRNAs, respectively, and we only reported
top 10 miRNAs.

Table A.3: Clinicopathologic characteristics of participants in bladder cancer study

Covariates Training Set  Testing set

ny (%) ny (%)
Bladder Cancer patients
Total number of patients 310 82
Age, median (range) 68 (32-90) 70 (34-93)
Gender:
Male 233 (74.9%) 54 (65.8%)
Female 77 (25.1%) 28 (34.2%)
Tumor Stage (%):
<pT2 239 (77.09%) 62 (75.21%)
> pT2 71 (22.55%) 20 (23.93%)
Healthy Control patients
Total number of patients 468 112
Age, median (range) 66.5 (35-90)  68.5 (41-92)

Gender:
Male
Female

241 (51.43%)
227 (48.57%)

45 (40.17%)
67 (59.83%)
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Table A.4: Clinicopathologic characteristics of study participants of the ESCC data set

Covariates Training Set Testing set

ny (%) ny (%)

Esophageal squamous cell carcinoma (ESCC) patients

Total number of patients 283 283

Age, median (range) 65 [40, 86] 67 [37, 90]

Gender:

Male 224 (79.0%) 247 (87.3%)

Female 59 (21.0%) 36 (12.7%)

Stage

0 24 (8.5%) 27 (9.5%)

1 127 (44.9%) 128 (45.2%)

2 58 (20.5%) 57 (20.1%)

3 67 (23.7%) 61 (21.6%)

4 7 (2.4%) 10 (3.6%)

Non-ESCC Controls

Total number of patients 283 4,682

Age, median (range) 68 [27, 92] 67.5 [20, 100]

Gender:

Male 131 (46.3%) 2,086 (44.5%)

Female 152 (53.7%) 2,596 (55.5%)

Data sources of the controls:

National Cancer Center Biobank (NCCB) 17 (6.0%) 306 (6.5%)

National Center for Geriatrics and Gerontology (NCGG)
Minoru clinic (MC)

158 (55.8%)
108 (38.2%)

2,512 (53.7%)
1,864 (39.8%)

102



Solving Classification Problems via ML Algorithms

Classification g ind Preprocess Data % Tune Para 2 Build Models

Uploading and Transforming Data

Dataset: Training Set
Abalone dataset - ShowEIenmes Search: '7
Tyoe Longestshell Diameter Height ShelWeight ~ Rings
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1 1 M 0455 0.365 0.095 0514 02245 0.101 015 15
Select Validation Split: 2 M 035 0.265 0.09 0.2255 00995 0.0485 007 7
08 3 F 053 042 0.135 0.677 0.2565 0.1415 021 9
P 044 03es 0125 ost6 0215 o114 o155 10
s 038 0255 008 0205 00895 00395 0055 7
7k 0s3 0415 015 07775 0287 01015 033 2
DiSandaiztetbn 8 F 0545 0425 0125 0768 0294 01495 026 16
O Impte mising values via K-Nearest Nelghbors - s oo ias . oot oii2s ores s
Dlenos Sotes it BoagZer babee 10 F 055 044 0.15 0.8945 03145 0.151 0.32 19
1 F 0.525 038 0.14 0.6065 0.194 0.1475 021 14
Showing 1 to 10 of 3,343 entries Previoss [ 1| 2 3 4 5 335 Next
Testing Set
Show[10_ Jentries sarch:[ ]
Type LongestShell Diameter Height i i i i ShellWeight Rings
(3 I 0425 03 0.095 0.3515 0.141 00775 0.12 8
6 M 0s 04 013 08645 0258 0133 024 2

Figure A.1: R-Shiny Web Application for solving classification problems. The plot illustrates
uploading and splitting a dataset into training and testing sets.
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ML:Classification ~ @ Overview B Upload and PreprocessData 3 Tune Parameters

2 Build Models

Tuning Parameters and Model Optimization

Method:

Random forest (RF) -

Select resampling method:
v -

Note: Number of folds cannot exceed a number of observations in the Training st

Selecta number of folds in K-fold Cross Validation:

5

Note: Tocreate a grid of values for model optimization, select a single value for the number of
trees and a set of values for each of the remaining parameters

Number of trees:

10

Number of randomly selected predictors for each tree:

34567

Minimum number of samples in terminal nodes:

3456

s VisualizeResults & Numes

Aceursey (Crose-Vaision)

#Randomy Selected Predicors
AUC (Cross-Validation)

Figure A.2: R-Shiny Web Application for solving classification problems. The plot depicts a tuning
parameters step for a Random Forest method.
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Solving Classification Problems via ML Algorithms

ML: Classification ~ @ Overview B Uploadand PreprocessData 3§ Tune Parameters ka2 Build Models

Developing Predictive Models

Method: B Numeric Results

Weighted Ensemble Method (WEM) - Confusion Matrix a

Would you ke to specify values for model parameters? If No, default values will be used  oo1s

O Specify Parameter Values

Figure A.3: R-Shiny Web Application for solving classification problems. The plot depicts an
output of the final predictive model developed by the web application.
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