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ABSTRACT

SIMULTANEOUS MODEL SELECTION AND ESTIMATION OF GENERALIZED LINEAR
MODELS WITH HIGH DIMENSIONAL PREDICTORS

By

Alex Pĳyan

In the past couple of decades the progressive use of technology made the enormous amount of data

in different formats available and easily accessible. The size and volume of available data sets have

grown rapidly and the technological capacity of the world to store information has almost doubled

every 40 months since the 1980s [1]. As of 2020, every day 2.5 quintillion of data are generated.

Based on an International Data Group (IDG) report, the global data volume was predicted to grow

exponentially and by 2025, IDG predicts there will be 163 zettabytes of data [2].

This enormous amount of data is often characterized by its high dimensionality. Quite often, well-

known statistical methods fail to manage such data due to their limitations (e.g., in high-dimensional

settings they often encounter various issues such as no unique solution for the model parameters,

inflated standard errors, overfitted models, multicollinearity). This resulted in resurging interest

in the algorithms that are capable of handling massive quantities of data, extracting and analysing

information from it, and uncovering key insights that subsequently will lead to decision making.

Techniques used by these algorithms are tend to speed up and improve the quality of predictive

analysis, thus, they found their application in various fields. For instance, medicine becomes more

and more individualized nowadays and drugs or treatments can be designed to target small groups,

rather than big populations, based on characteristics such as medical history, genetic makeup etc.

This kind of treatment is referred to as precision medicine.

In the era of precision medicine, constructing interpretable and accurate predictive models, based

on patients’ demographic characteristics, clinical conditions, and molecular biomarkers, has been

crucial for disease prevention, early diagnosis and targeted therapy [3]. The models, for example,

can be used to predict patients’ susceptibility to disease [4], identify high risk groups [5], and guide

behavioral changes [6]. Therefore, predictive models play a central role in decision making.



Several well-known approaches can be used to solve the problem mentioned above. Penalized

regression approaches, such as least absolute shrinkage and selection operator (LASSO), have

been widely used to construct predictive models and explain the impacts of the selected predictors,

but the estimates are typically biased. Moreover, when data are ultrahigh-dimensional, penalized

regression is usable only after applying variable screening methods to downsize variables.

In this dissertation, we would like to propose a procedure for fitting generalized linear models

with ultrahigh-dimensional predictors. Our procedure can provide a final model, control both false

negatives and false positives, and yield consistent estimates, which are useful to gauge the actual

effect size of risk factors. In addition, under a sparsity assumption of the true model, the proposed

approach can discover all of the relevant predictors within a finite number of steps.

The thesis work is organized as follows. Chapter 1 highlights an importance of predictive models

and names several examples where these models can be implemented. The main focus of Chapter 2

is to describe all well-known and already existing in the theory methods that attempted to solve the

aforementioned problems, along with their shortcomings and disadvantages. Chapter 3 proposes

STEPWISE algorithm and introduces the model setup and its detailed description, followed by its

theoretical properties and proof of theorems and lemmas used throughout the thesis. Additional

lemmas used to construct the theory of the STEPWISE method are also stated.

Later it presents results obtained from various numerical studies such as simulations and real data

analysis. Simulation studies comprise seven examples and are aimed to compare STEPWISE

algorithm to other competing methods, and provide numerical evidence of its superiority. Real

data analysis involves studies of gene regulation in the mammalian eye, esophageal squamous cell

carcinoma, and neurobehavioral impairment from total sleep deprivation, and demonstrates the

utility of the proposed method in real life scenarios.

Chapter 4 proposes amulti-stage hybridmachine learning ensemblemethod that is aimed to enhance

STEPWISE’s performance. It also introduces a web application that employs the method. Finally,

Chapter 5 completes the thesis with final conclusion and discussions. Appendices include some

tables and figures used throughout the thesis.
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CHAPTER 1

INTRODUCTION

1.1 Predictive Models

In biomedical research and clinical studies predictive model are utilized for several purposes such

as risk management and prognosis. Consequently, the reliability of clinical data is directly related

to the quality of predictive analysis. Nowadays, electronic health records became more available

and contain rich information, which enables researchers to develop and deploy highly efficient clin-

ical predictive methods. These methods have potential to be key components in making decisions

related to patient treatments, drug development, and so on.

Over the last decade, the technological advances and explosion of information profounded the un-

derstanding of the molecular basis of tumor progression and identified numerous tumor biomarkers

[7]. A certain type of biomarkers, which posses predictive power, are capable of assessing the

benefit from clinical interventions and has a significant impact on clinical research. For instance, a

cancer screening biomarker is a prognostic biomarker that can be used to predict the development

of symptomatic cancer even in asymptomatic persons.

In practice, such screening biomarkers can be used as a cancer prediction model [8]. The main

purpose of building these models is discovering new cancer screening biomarkers and assessing

their effect on the disease. Insights and information obtained from these models can potentially

lead to early detection of disease in patients, early intervention and prevention from its further

development. Further, these predictive models can be feasibly used as cancer screening tests for

patients, including ones with no symptoms [9].

Technological advances have also made possible detailed genetic characterization of biological

specimens. High-throughput genomic technologies, including gene expression microarray, mi-

croRNA (micro Ribonucleic acid) array, RNA-seq, ChIP-seq (chromatin immunoprecipitation se-

quencing), and whole genome sequencing, have become powerful tools and dramatically changed
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the landscape of biological research. For instance, a gene expression profile can be extracted for

a specimen by simultaneously evaluating expression levels of thousands of genes on that single

specimen using complementary DNA (cDNA) microarray technology [10].

Single nucleotide polymorphisms (SNPs) are one form of natural sequence variation common to all

genomes [11]. These SNPs are highly abundant, and are estimated to occur at 1 out of every 1,000

bases in the human genome [12, 13]. SNPs are particularly useful as DNA markers for mapping

susceptibility genes for complex diseases and population genetics since they demonstrate the high

density and mutational stability [14, 15].

SNPs in the coding regions of genes that alter the function or structure of the encoded proteins can

be a necessary and sufficient cause of most of the known recessively or dominantly inherited mono-

genic disorders [16], and are analyzed for diagnostic purposes. Moreover, SNPs can be analysed

to assess the risk of an individual for a particular disease. For instance, the identification of SNPs

made possible to screen somatic (non-tumor) DNA for mutations that alter treatment response or

predispose to cancer [7].

In addition, a large number of profiles based on the abundance of micro-RNAs (miRNAs) have been

used to predict prognosis or treatment response in cancer [7]. For example, Genome-wide associa-

tion (GWA) have identified cancer-causing mutations in breast [17] and colon [18] tumors, somatic

genetic screens can also identify predictors of radiation sensitivity [19] and the pharmacodynamics

of anticancer drugs [20]. Moreover, sets of genes identified through mRNA profiling have been

used to classify tumors into oncogenic subtypes of breast cancer [21, 22]; many individual miRNAs

have been associated with patient survival and drug treatment response in a number of different

cancers [23, 24].

Clearly, the enormous interest in genomic data is determined by the hope of finding candidate

biomarkers and using them to identify genes that predispose individuals to common diseases. Al-

though genome data analysis has already made a significant impact on biological and biomedical

research, it is still accompanied by certain challenges that yet have to be overcome. Specifi-

cally, complex genomic data introduce substantial challenges for statistical data analysis as its
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high-dimensionality makes the classical statistical model framework no longer implementable. As

opposed to low-dimensional data when the number of observations is greater than the number

of explanatory features (also known as predictors), high- and ultrahigh-dimensional settings are

comprised of data in which number of predictors is greater than or is in the exponential order of

the sample size, respectively.

Most of the traditional statistical methods are developed around the concept of low-dimensional

data and are not aimed to accommodate high- or ultrahigh-dimensional data. Thus, high-

dimensionality has significantly challenged traditional statistical theory. Applying these meth-

ods to high-dimensional data leads to unstable, unreliable, biased, and inconsistent results which

demolishes the main purpose of predictive model development. The problems that arise while

analyzing such data are typically referred to as the ’curse of dimensionality’, a term introduced by

mathematician Richard Bellman. Some aspects of it are discussed further.

First, classical statistical models applied to high-dimensional data have no unique solution for their

parameters. In fact, these models will have infinitely many solutions. This is mainly induced by

ill-defined, uninvertible, and singular matrices involved in the computation of parameter estimates,

making the estimation process ill-posed. These models are also know as unidentifiable models.

Consequently, effect size estimation in predictive models will become meaningless.

Second, as the number of predictors increases and surpasses the number of observations in the

model, variances of the parameter estimates will become large (even infinitely large in some cases),

resulting in inflated standard errors. In other words, a wide range of values of parameter estimates

will be consistent with data, making the confidence intervals uncommonly wide. Hence, validating

a significance of the predictors included in the predictive model will be nearly impossible.

Third, employment of classical statistical models in high-dimensional settings can provide incon-

sistent estimates as a small corruption of data can result in very different estimated parameters.

Furthermore, these models tend to capture the artificial trends of measurement noise, also know as,

overfitting. Overfitted models fit training data too closely and normally capture trends in data that

are applicable to this particular data set only. This decays their ability to generalized results with
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new unseen data and results in poor predictive capability.

Lastly, using classical statistical methods with high-dimensional data often introduces multi-

collinearity issues that violate the underlying assumption of independent predictors in the model.

Multicollinearity implies the existence of highly correlated predictors among predictor features.

These structures are commonly observed in genomic data. Multicollinearity can create inaccurate

estimates of the model parameters; make insignificant predictors significant and vice versa, that is,

imposing false positives and false negatives in the predictive model; and, finally, it can degrade the

predictability of the model.

As it was shown, the traditional methods that perform well in low-dimensional settings run into

severe problems in analyzing high- or ultrahigh-dimensional data. They cannot cope with the

explosive growth of dimensionality of data. Therefore, in order to face the problem of high-

dimensionality, we must reshape the classical statistical thinking. These problems create signifi-

cant challenges, but, on the other hand, they create great opportunities for the development of new

statistical methodologies.

It is worth mentioning that developing predictive models along with feature selection and estima-

tion play crucial and fundamental role in knowledge discovery. As more amount of massive and

complex data become available, there is no doubt that high-dimensional data analysis will be one

of the most important and demanding research topics in our field.

In this thesis we propose a new method (introduced and described in Chapter 3) for model selection

and estimation that will overcome aforementioned limitations in high-dimensional problems. The

remaining sections of this chapter discuss a few problems from various research areas that will

illustrate challenges of high-dimensional data and to which the proposed method could be applied.

1.1.1 Gene Regulation in the Mammalian Eye

Human genetics has sparked a revolution in medical research on the basis of the seemingly unthink-

able notion that one can systematically discover the genes causing inherited diseases without any

prior biological knowledge as to how they function [25]. Most characteristics of medical pertinence
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do not follow simple Mendelian monogenic inheritance. Such complex traits include vulnerability

to heart disease, hypertension, diabetes, cancer, and infection. The genetic dissection of complex

traits is attracting many investigators with the promise of solving old problems and is generating a

variety of analytical methods.

Recent advancement in microarray technology and bioinformatics made it possible to examine the

expression of numerous genes in a large number of individuals and enabled researcher to identify

genetic elements that cause the gene expression to vary among individuals [26, 27, 28, 29]. Dis-

covering specific disease mechanics is a big challenge that biomedical researchers face nowadays.

These mechanics might potentially underlie heritable disorders that reveal complex inheritance,

for instance, Mendelian disorders [25, 30, 31]. In addition, these approaches can help identify

genes related to development of Mendelian forms of complex diseases such as obesity [32, 33, 34],

macular disease [35, 36, 37], hypertension [38], and glaucoma [39, 40].

Mutations that alter gene expression might play a significant role in complex disease. Transgenic

animal studies revealed that gene dosage of mutant genes can have a keen effect on phenotype [41].

It was shown that the cause of disease can become an improper regulation of structurally normal

genes and alterations in gene dosage [39]. For example, overexpression and haploinsufficiency of

the FOXC1 gene can lead to developmental defects of the anterior chamber of the eye [39].

Scheetz et al. [41] used expression quantitative trait locus mapping in the laboratory rat to gain a

broad perspective of gene regulation in the mammalian eye and to identify genetic variation relevant

to human eye disease. They analyzed data obtained from Rat Genome Database by using analy-

sis of variance (ANOVA) technique and identified significant genes based on their corresponding

p-values. Certainly, Scheetz’s results provide meaningful insights on how genetic variation can

be associated with specific diseases, but they do not estimate the magnitude of effects these genes

are having on the disease. In addition, they have not built a predictive model that will enable

researchers to link genes and assess their contribution toward developing diseases, and have not

evaluate its predictive power. We adopted their data and aimed to improve results achieved by

Scheetz et al. [41]. Data contained 120 observation profiling 31042 probes of genes, but due to a
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small variation in many of these probes, the number of probes was reduced to 5000.

A gene TRIM32 that has been found to cause Bardet-Biedl syndrome [42] was treated a response

variable, and the expression of 5000 genes as the predictors. Our predictive model has identified

three probes of genes (1376747_at, 1381902_at, 1382673_at) that can be potentially linked to

TRIM32. We achieved a high accuracy with the mean squared prediction error (MSPE) as low as

0.0012. Detailed description of the results can be found in Chapter 3.

1.1.2 An Esophageal Squamous Cell Carcinoma Study

Esophageal cancer is the 7th most common cancer among males and among both sexes combined

in the world and ranks 6th in terms of mortality overall because of the poor survival rate it confers

[43, 44]. Additionaly, incidence and mortality rates in males are 2- to 3-fold higher than the rates

in females [43]. Compared with more developed geographic regions, overall incidence rates are

2-fold higher in less-developed countries, with the highest rates occurring in Asia [43].

Esophageal squamous cell carcinoma (ESCC) is the predominant histologic type with the highest

incidence rate in populations within Southeastern and Central Asia [44]. There are two major

histological types of esophageal carcinoma: esophageal squamous cell carcinoma (ESCC) and

adenocarcinoma [45]. ESCC is the major type in China, where it accounts for more than 90% of

cases of esophageal carcinoma; whereas adenocarcinoma is more common in the United States and

in European countries [46]. ESCC is often diagnosed at a locally advanced stage and the outcomes

for affected patients are poor [45].

With various treatment methods employed in clinical practice after extensive research, the diagno-

sis and treatment of ESCC have been greatly improved [47]. Esophagectomy, chemotherapy, and

radiotherapy are currently the main treatments for ESCC [45]. However, the prognosis remains

poor, with 5-year survival proportions of 21% and 14% (2005–2011) in the United States for whites

and blacks, respectively, and 12% (2000–2007) in Europe [44], which is far below the estimated

effectiveness of the therapy [47].

An accurate clinical staging and prognostic information is essential to direct appropriate treatment
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strategies [45]. Accumulating evidence suggests that the prognosis is affected by several factors,

including the delayed diagnosis, high recurrence, and metastasis rate [47, 48]. Thus, identifying

the diagnostic and prognostic tumor markers and further elucidating their clinical implications

are urgently needed. To develop new diagnostic methods and treatment strategies, investigators

have focused on the potential of a particular class of microRNAs (miRNAs) to provide additional

information about the characteristics and survival prospects of patients with ESCC.

miRNAs are small (22-24 nucleotides), noncoding RNA molecules that play important roles in

regulating cell differentiation, proliferation, migration and apoptosis [44]. Altered miRNA expres-

sion in cancer tissue has been reported in most tumor types [49, 50]. There is increasing evidence

that miRNA expression in cancer tissue is a useful prognostic marker [51, 52, 53]. In addition, the

application of miRNA expression levels as a blood biomarker has been explored in various types

of cancer, including gastric, hepatocellular, and non-small cell lung cancer [54, 55, 56]. However,

whether miRNA levels in plasma are a useful biomarker for patients with ESCC remains largely

unexplored [45].

Sudo et al. [57] explored ways of developing a detection model for ESCC based on large-scale

miRNA profiling. For these purposes, they analyzed data submitted to the National Center for

Biotechnology Gene Expression Omnibus (NCBI GEO) database, available under accession num-

ber GSE122497. To establish a diagnostic model, they developed amodel based on the observations

obtained from 566 patients (283 with ESCC and 283 healthy controls) profiling 2565 miRNAs by

carrying out Fisher’s linear discriminant analysis with a greedy algorithm.

Although their model has achieved high predictive accuracy, it has some drawbacks. Given the

nature of the algorithm that has been employed, they developed a predictive model for the pre-

determined model size: they built models with model sizes ranging 2-8 and selected the one that

achieved higher accuracy with fewer variables (model size = 6). The disadvantage of this method is

that it might lead to false negatives and false positive in the final model. Moreover, the importance

of the miRNAs included in the model will also be determined by the model size. This might lead

to a wrong assessment of the effect sizes identified in the model.
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We adopted this dataset and demonstrated the utility of our proposed method (introduced and de-

scribed in Chapter 3) and its superiority over other methods. Our model achieved similar accuracy

by recruiting fewer variables (3 miRNAs were selected: miR - 4783 - 3p, miR - 320b, miR - 1225

- 3p). It is worth mentioning that our model overcomes the issues associated with the model

introduced by Sudo et al. as our model size was defined by scanning the entire feature space and

selecting features based on their significance. Detailed description of our results and methodology

is presented in Chapter 3.

1.1.3 Bladder Cancer Study

Bladder cancer is any of several types of cancer arising from the tissues of the urinary bladder and

has high prevalence and recurrence rates [58, 59, 60]. According to American Society of Clinical

Oncology, among men bladder cancer is the fourth most common cancer and men are 4 times more

likely to be diagnosed with the disease. In addition, incidence in white men is twice more than that

in black men.

The earlier bladder cancer is found, the better the chance for successful treatment and cure. Prog-

nosis varies inversely with higher tumor stage and lymph node involvement [61]. Typically, the 5-

and 10-year survival rates for patients with lymph node involvement are 31% and 23%, respectively

[62]. Combination platinum-based chemotherapy is an potion for patients with metastatic disease,

but the survival is only 15 months, with a 5-year survival rate of 15% [63]. Since there is not yet an

accurate test to screen the general population for bladder cancer, most people are diagnosed with

bladder cancer once they have developed symptoms. As a result, some people have more advanced

(later stage) disease when the cancer is found.

In the year 2000, the total expenditure for lower tract urothelial cancers in the United States sur-

passed one billion dollars [64]. Bladder cancer affected about 1.6 million people globally in 2020

with 549,000 new cases and 200,000 deaths, and the late stage disease is associated with poor

survival. The cost of bladder cancer per patient from diagnosis to death is the highest of all cancers

[65].
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Identifying the related biomarkers and predicting the disease at its early stage is crucial for better

prognosis. Discovery of diagnostic, prognostic, and predictive biomarkers in bladder cancer made

molecular markers an area of research. Potential biomarkers include the overexpression of mu-

tated genes, whole genome-wide array signatures, and microRNAs. For instance, microarray gene

expression profiling is studied in the blood of cancer patients in order to detect gene expression

patterns representing the cancer itself or a host’s reaction to the tumor [66, 67].

Recent studies have suggested that 70% of bladder cancer involve a specific mutation in genes [68],

therefore it can be potentially used as a biomarker in early detections of the disease and preventing

it from further development. Gene changes can also assist doctors in choosing the best treatment

possible or be useful in finding bladder cancers that can potentially come back after treatment.

Although recent progress made by scientists is significant, classification of bladder cancer patients

using gene expression data with regular statistical tools can become complicated and sometimes be

even impossible due to incapability of these methods to process data with a large scale, also known

as, high-dimensional data.

Usuba et al. [69] attempted to develop a predictive model for an early detection in bladder cancer.

They applied similar technique as described in Sudo et al. [57] via Fisher’s linear discriminant

analysis and recruited seven miRNAs in their final model. They achieved high accuracy in predic-

tion, but their model suffered from the same issues mentioned in Sudo et al. [57]. Specifically,

the method they employed might lead to false negatives and false positives in the final model, and

won’t be able to assess the effect sizes correctly due to pre-determined model size.

We aimed to improve given results and adopted data utilized in Usuba’s model. These data were

submitted to the NCBI GEO under accession number GSE113486. The predictive model was built

based on observations obtained from 768 patients (310 patients with bladder cancer and 468 healthy

controls) profiling 2565 miRNAs.

We demonstrated that our proposed multi-stage hybrid machine learning method (introduced and

described in Chapter 4) has achieved high prediction accuracy with sensitivity, specificity, and area

under the receiver operating curve (AUC) of 0.98, 0.98, and 0.99, respectively, and outperformed
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Usuba’s model. Detailed description of our results can be found in Chapter 4.

1.1.4 Neurobehavioral Impairment from Total Sleep Deprivation

Sleep plays a key role in health, performance, and cognition [70]. Sleep deprivation is common-

place in modern society and its effects on neurobehavioral function (e.g., vigilance and cognition)

are well studied and documented. Sleep deprivation can induce giddiness, child-like behaviors, and

silliness [71], as well as more widely recognized negative effects including dysphoria, increased

irritability, and lowered frustration tolerance.

The increased irritability that often accompanies sleep deprivation hints that sleep-deprived in-

dividuals are highly reactive to emotional signals. These effects on mood can lead to negative

consequences and impact functioning abilities [72]. For example, sleep duration is inversely asso-

ciated with interpersonal difficulties and even violence has been observed in medical residents [73],

and sleeping less than 8 hours is associated with increased risk for adolescent suicidal behavior

[74].

Interestingly, alertness and vigilance also appear to be the cognitive capacities most consistently

and dramatically impacted by insufficient sleep [75]. When the envelope of continuous wakeful-

ness is pushed beyond about 16 hours, most individuals begin to show a substantial slowing of

reaction time (RT) and worsening of performance accuracy on tests of psychomotor vigilance [76].

Moreover, neurobehavioral tests have revealed assorted forms of performance deficits from sleep

loss, including impairment of learning and of responses to feedback in decision making [77]. The

Psychomotor Vigilance Test (PVT) is one of the most commonly applied neurobehavioral assays

of performance impairment due to sleep loss [75]. This test assays stimulus-response time, with

failure to respond within 500 ms recorded as a lapse. Sleep deprivation is associated with increased

variability in stimulus-response times, and more lapses, on the PVT [78].

Besides neurobehavioral testing, efforts have been made to identify molecular biomarkers such as

differentially expressed genes or metabolites affected by sleep loss [79, 80]. A biomarker has been

defined as “a characteristic that is objectively measured and evaluated as an indicator of normal
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biological processes, pathogenic processes, or pharmacologic responses to a therapeutic interven-

tion” [81]. Many biomarkers such as differentially expressed genes can provide meaningful insights

including identification of a process or response. Humans are known to differ in their sensitivity

to sleep loss [82], and recent work has sought to identify biomarkers distinguishing individuals as

susceptible or resistant to sleep deprivation [83]. Yet surprisingly little effort has been made to

research molecular biomarkers with results from neurobehavioral assays.

Microarrays and bioinformatics analyses can be employed to explore candidate gene expression

biomarkers associated with total sleep deprivation (TSD), and more specifically, the phenotype of

neurobehavioral impairment from TSD. Uyhelji et al. [70] explored gene expression biomarker

candidates for neurobehavioral impairment from total sleep deprivation. They employed Weighted

Gene Co-expression Network Analysis (WGCNA) using data obtained from the NCBI GEO under

accession number GSE98582. Data contain 555 samples profiling 8284 gene features. In the

treatment effect analysis, they identified 212 genes that exhibited a significant difference between

TSD and control group, and 91 of them passed human blood biomarker filter.

Although Uyhelji et al. have done a great job in identifying important gene biomarkers associated

with TSD, effect sizes of these genes have not been estimated. Moreover, neither predictive power

of the diagnostic model was assessed. Thus, we employed our proposed method (discussed in

Chapter 3) to overcome the issues introduced in Uyhelji’s model. We have built a model based on

389 observations profiling 8284 gene features. Our model recruited five genes (PF4V1, USP32P1,

EMR1, NBR2, and DUSP23) and achieved high accuracy with sensitivity, specificity, and AUC of

0.99, 0.97, and 0.99, respectively.
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CHAPTER 2

LITERATURE REVIEW

When the number of predictors is moderate, penalized regression approaches such as least absolute

shrinkage and selection operator (LASSO) by Tibshirani [84] have been used to construct predictive

models and explain the impacts of the selected predictors. LASSO minimizes the residual sum

of squares subject to the sum of the absolute value of the coefficients being less than a constant.

Because of the nature of this constraint it tends to produce some coefficients that are exactly 0

and hence gives interpretable models. However, in ultrahigh-dimensional settings where a number

of predictors ? is in the exponential order of the sample size =, penalized methods may incur

computational challenges [85], may not reach globally optimal solutions, and often generate biased

estimates [86].

Sure independence screening (SIS) proposed by Fan and Lv [87] has emerged as a powerful tool

for modeling ultrahigh dimensional data. This method is based on correlation learning, which

filters out the features that have weak correlation with the response and reduces dimensionality

from high to a moderate that is below the sample size. Specifically, such correlation learning ranks

the importance of features according to their marginal correlation with the response variable and

eliminates the ones with weak marginal correlations.

However, the method relies on a partial faithfulness assumption, which stipulates that jointly im-

portant variables must be marginally important, an assumption that may not be always realistic. To

relieve this condition, some iterative procedures, such as ISIS [87], have been adopted to repeatedly

screen variables based on the residuals from the previous iterations, but with heavy computation

and unclear theoretical properties. Conditional screening approaches (see, e.g. [88]) have, to some

extent, addressed the challenge. However, screening methods do not directly generate a final model,

and post-screening regularization methods, such as LASSO, are recommended by Fan and Lv [87]

to produce a final model.

Closely related to forward selection is least angle regression (LARS) by Efron et al. [89], a widely

12



used model selection algorithm for high-dimensional models. In the LARS method, a multivariate

solution path is defined by using the geometrical theory of the linear regression model. The result-

ing method defines a continuous solution path for Generalized Linear Models (GLMs), with on the

extreme of the path the maximum likelihood estimate of the coefficient vector and on the other side

the intercept-only estimate. The LARS method is based on a recursive procedure selecting, at each

step, the covariates having largest absolute correlation with the response feature [89].

It is worth mentioning that a simple modification of the LARS algorithm implements the LASSO

method and calculates all possible LASSO estimates for a given problem. In addition, an approx-

imation for the degrees of freedom of a LARS estimate is available, from which Mallows’s �?

estimate of prediction error can be derived; this allows a principled choice among the range of

possible LARS estimates. Though LARS achieves impressive results in its performance, some

researches raised concerns in the following regards.

Ishwaran (see discussion section in Efron et al. [89]) suggests that the use of �? coupled with

LARS forward optimization procedure might raise some potential flags. Specifically, the use of �?

will encourage large models in LARS, especially in high-dimensional orthogonal problems, and

will have a negative impact on variable selection performance. The claim was supported with the

high-dimensional simulation examples. Moreover, Weisberg (see discussion section in Efron et al.

[89]) believes that multicollinearity problem among independent features and presence of noise

in the dependent variable will affect the performance of LARS in regards of variable selection,

specifically, reducing chances of selecting significant variables in the model. Examples supporting

the claim were provided.

In the GLM setting, Augugliaro et al. [90] and Pazira et al. [91] proposed differential geometrical

LARS (dgLARS) based on a differential geometrical extension of LARS. The dgLARS estimator

follows naturally from a differential geometric interpretation of a GLM, generalizing the LARS

method.

The subsequent section discusses sequential model selection techniques known to the literature.

Sequential model selection assumes including features into the final model sequentially with the
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entry order determined by their relative importance based on certain criteria. Although the methods

described in this section have achieved significant results and have been implemented in different

scenarios, lack of certain properties make them less reliable and more vulnerable against challenges

introduced by the size and volume of data available nowadays.

2.1 Sequential Model Selection

For generating a final predictive model in ultrahigh-dimensional settings, recent years have seen

a surging interest of performing forward regression, an old technique for model selection that has

been widely used for model building when the number of covariates is relatively low. But due to

its complicated computations and unknown theoretical properties, forward regression technique is

rarely used in high-dimensional settings.

Under some regularity conditions and with some proper stopping criteria, forward regression can

achieve screening consistency and sequentially select variables according to metrics such as Akaike

information criterion (AIC), Bayesian information criterion (BIC), or '2. Below are listed methods

that try to overcome limitations introduced by forward regression and utilize it for models with

high-dimensional predictors.

2.1.1 Feature Selection using BIC criteria

The problem of variable selection with an ultrahigh-dimensional predictor becomes a problem

of fundamental importance. The traditional method of best subset selection is computationally

infeasible for high dimensional data. As a result, various shrinkage methods have gain a lot of

popularity. All those methods are very useful and can be formulated as penalized optimization

problems, which could be selection consistent, if the sample size is much larger than the predictor

dimension. However, if the predictor dimension is much larger than the sample size, the story

changes drastically.

One frequently used assumption is the so-called sparsity condition which assumes that the effective
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contribution to a dependent variable rests on a much small number of regressors than the sample

size. The challenge then is to find those ‘true’ regressors from a much larger number of candidate

variables. This leads to a surging interest in newmethods and theory for regression model selection

with ? � =.

An et al. [92] revisited the classical forward and backward stepwise regression methods for model

selection and adapted them to the cases with the number of candidate variables p greater than the

number of observations n. In the noiseless case, they gave definite upper bounds for the number

of forward search steps to recover all relevant variables, given each step of the forward search is

approximately optimal in reduction of residual sum of squares, up to a fraction.

In the presence of noise, they proposed two information criteria BICP (BICmodified for a case with

large number of predictors) and BICC (BIC with an added constant) that overcome the difficulties

related to employing regular BIC and AIC. These criteria serve as a stopping rule in the stepwise

search: the BICP increases the penalty to overcome overfitting and the BICC controls the residuals

in the sense that it will stop the search before the residuals diminish to 0 as the number of selected

variables increases to n.

In addition, they proved that the BICP stops the forward search as soon as it recovers all relevant

variables and removes all extra variables in the backward deletion, which lead to the selection

consistency of the estimated models. The algorithm can be summarized as follows. Consider a

linear regression model

y = Xβ + ε, (2.1)

where y = (H1, . . . , H=)T is an n-vector of random responses, X = (G1, . . . , G?) is a = × ? design

matrix, β is a p-vector of regression coefficients, ε = (n1, . . . , n=)′ ∼ # (0, f2I), where f2 > 0 is

an unknown but fixed constant and I denotes an identity matrix. Let I= = {1 ≤ 8 ≤ ? : V=,8 ≠ 0}

and 3= = |�= | denote the number of elements in �=.

Further, for any subject � ⊂ {1, . . . , ?}, let X� denote the = × |� | matrix consisting of the columns

of X corresponding to the indices in J, and V� the |J|-vector consisting of the components V
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corresponding to the indices of J. Put

P� = X� (XT
�X�)−XT

� , P ⊥� = �= − P� , !D,E (�) = DTP ⊥� E, D, E ∈ R= (2.2)

P� is a projection matrix onto the linear space spanned by the columns of X� , !H,H (�) is the sum of

squared residuals resulted from the least square fitting ŷ = X�β̂� = P�y. The algorithm concerned

is based on a combined use of the standard stepwise addition and deletion with some adjusted

information criteria and can be described in the following steps:

Stage I - Forward Addition:

1. Let �1 = { 91}, where 91 = arg min1≤8≤? !H,H ({8}). Put

BICP1 = log
{
!H,H (�1)/=

}
+ 2log

{
?/=

}
2. Continue with k = 1, 2, 3, . . . , provided BICP: < BICP:−1, where

BICP: = log
{
!H,H (�: )/=

}
+ 2:log

{
?/=

}
In the above expression, �: = �:−1 ∪ { 9: }

3. For BICP: ≥ BICP:−1, let :̃ = : − 1, and �̂=,1 = �:̃

Stage II - Backward deletion:

1. Let BICP∗
:̃
= BICP:̃ and �∗

:̃
= �̂=,1

2. Continue with : = :̃ − 1, :̃ − 2, . . . , providing BICP∗
:
≤ BICP∗

:+1, where

BICP∗: = log
{
!H,H (�∗: )/=

}
+ 2:log

{
?/=

}
In the above expression, �∗

:
= �:+1\{ 9: }

3. BICP∗
:
> BICP∗

:+1, :̃ = : + 1, and �̂=,2 = �
∗
:̃

The drawback of the method is that it is unclear whether the results are applicable to high-

dimensional GLMs.
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2.1.2 Forward Regression with High-Dimensional Predictors

Consider, for example, those useful methods with non-convex objective functions (e.g., bridge

regression, the SCAD, etc). With the predictor dimension much larger than the sample size,

computationally how to optimize those non-convex objective functions remains a nontrivial task.

Efficient algorithms (e.g., LARS) do exist for LASSO-type methods, where the objective functions

are strictly convex. However, those methods are not selection consistent under a general design

condition. Another reasonable solution can be variable screening, such as very popular yet classical

method Forward Regression.

Motivated by SIS method [87], Wang [93] proposed a Forward Regression (FR) method for

ultrahigh-dimensional variable selection. It was showed that FR method can identify all relevant

predictors consistently, even if the number of predictors is significantly larger than the sample size.

Particularly, FR is capable of discovering all relevant predictors within a finite number of steps,

given that the dimension of the true model is finite. To select the final model from the set of

candidate models, Wang [93] makes use of BIC criteria introduced by Chen and Chen [94]. The

resulting model can then serve as an excellent starting point, from where many existing variable

selection methods can be applied directly.

FR algorithms can be summarized as follows. Suppose (X8,Y8) are observation from the 8th

subject (1 ≤ 8 ≤ =), Y8 ∈ R1 is the response variable, and X8 = (-81, . . . , -83)T ∈ R3 is

ultrahigh-dimensional predictor with 3 � =. The response and predictor features are linked as

Y8 = XT
8
β + σ8, where β = (V1, . . . , V3)T ∈ R3 and σ8 is a random noise. LetM = { 91, . . . , 93∗}

denote an arbitrary model with - 91 , . . . , - 93∗ as relevant predictors. Then the full model is defined

as � = {1, . . . , 3} and the true model as τ = { 9 : V 9 ≠ 0}. Additionally, X8(") = {-8 9 : 9 ∈ "}

denotes the subvector ofX8(") corresponding toM , Y = (.1, . . . , .=)T ∈ R= is the response vector,

and ξ" = (-1, . . . , -=) ∈ R=×3 is the sub-design matrix corresponding toM .

FR algorithm is implemented in three major steps:

1. (Initialization) It starts with initialization, that is, setting (0 = ∅.
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2. (Forward Regression) ((:−1) is given at the :th step. For every 9 ∈ �\((:−1) , it constructs a

candidate modelM (:−1)
9

= ((:−1) ∪ { 9}. Then it computes RSS(:−1)
9

= YT{�T − Ĥ (:−1)
9
}Y,

where

Ĥ (:−1)
9

= ξ
M (:−1)

9

{
ξT
M (:−1)

9

ξ
M (:−1)

9

}−1
ξT
M (:−1)

9

is a projectionmatrix. It finds 0: = arg max 9∈�\( (:−1) RSS(:−1)
9

and updates (: = ((:−1)∪{0: }

accordingly.

3. (Solution Path) Then FR algorithms iterates step 2 = times and generates total of = nested

candidate models and collects these models by a solution path S = {(: : 1 ≤ : ≤ =} with

(: = {01, . . . , 0: }.

Authors showed both theoretically and numerically that FR can discover all relevant predictors

consistently, even if the predictor dimension is substantially larger that the sample size. However,

the proposed method is limited to linear regression models in high-dimensional settings only .

2.1.3 A Stepwise Regression Algorithm for High-Dimensional Variable Selection

Hwang et al. [95] proposed a stepwise regression algorithm with a simple stopping rule for the

identification of significant predictors and interactions among a huge number of variables in various

statistical models. It improves the results of the Forward Regression method called paring-down

variation (SPV) algorithm, proposed by Hwang and Hu [96], which was limited to the analysis of

the variation model for continuous responses, and required independence between factor predic-

tors. The new stepwise regression algorithm, like ordinary stepwise regression, at each forward

selection step includes a variable in the current model if the test statistic of the enlarged model with

the predictor against the current model has the minimum p-value among all the candidates and is

smaller than a predetermined threshold. Instead of using conventional information types of criteria,

the threshold is determined by a lower percentile of the beta distribution. The proposed stopping

rule is based on the well-known theoretical properties that (1) the p-values of the test statistics are
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Unif (0, 1) distributed if the predictors are irrelevant to the responses and (2) the minimum of m

independent Unif (0, 1) random variables can be assumed to be beta distributed with parameters 1

and m approximately [97, 98]. The algorithm can be summarized as follows.

Suppose Y is an n-vector of responses and X = (-1, . . . , -?) is a = × ? design matix of variables

with ? � =. Let S be a subset of {0, 1, . . . , ?} and denote X( as the sub-matrix of X obtained by

extracting its columns corresponding to the indices in S. In addition letM( be the model relating

the distribution of Y to the predictors X( through a function of the linear predictor X(β( with

parameter vector β( of size |S|. Finally, let denote the vector of residuals from the fitted modelM(

is denoted byR(. Then the algorithm can be expressed in the following steps.

Forward Selection

Step 1: Start with the null modelM(, where S = ∅

Step 2: Let the step count be l = |( | + 1

Step 3: Calculate the correlation between R( and X 9 , denoted as A 9 , for 9 = 1, . . . , ?. Set

D = {1 ≤ 9 ≤ ? : |A 9 | is among the first d largest of all}, where 3 = [=/log{=}]

Step 4: Test the difference in the goodness-of-fit between eachM(∪{ 9} againstM( for all 9 ∈ �\(

Step 5: Replace S with ( ∪ { 9} when the test statistic of "(∪{ 9} against M( has the minimum

p-value, denote as p; , among the |�\( | competing models

Step 6: Stop forward selection and go to Step 7 when ?ℎ > the 10th percentile of Beta(1, ? − ℎ + 1)

for ℎ = ;, ; − 1, . . . , ; − 9; otherwise, go to Step 2

Backward Selection:

Step 7: Set c = 4G?(` − I × E) where ` and E are the sample mean and standard deviation of

log{?ℎ}

Step 8: Test the difference in the goodness-of-fit betweenM( and "(\{ 9}, for each 9 ∈ (

Step 9: Replace ( with (\{ 9(} and go to Step 8 if the test statistic ofM( againstM(\{ 9(} has the

largest ?-value e among all the reduced models and is larger than c; otherwise, stop and report the

set of remaining predictors {X 9 , 9 ∈ (} as final influential predictors
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The main drawback of this method is that it was not supported with theoretical properties on model

selection.

2.1.4 Generalized Linear Models with High-Dimensional Predictors via Forward Regres-
sion: offset approach

As the dimension of predictors defies any existing modeling approaches, feature screening has

been commonly used for dimension reduction. The most popular screening approach is marginal

screening [87], which selects variables based on their marginal associations with the response.

However, marginal screening may miss signals that are marginally unimportant but conditionally

important [88], resulting in biased predictive results.

Conditional screening methods have been known as an alternative to well-known marginal screen-

ing, as they identify marginally weak but conditionally important variables. Nevertheless, the initial

conditioning set need to be fixed for the most of existing conditional screening methods and if not

chosen properly, may produce false positives and false negatives, and the selected variable might

depend on the conditioning set. Moreover, screening approaches typically need to involve tuning

parameters and extra modeling steps in order to reach a final model.

Zheng et al. [99] proposed a sequential conditioning (SC) approach, wherein variables sequentially

enter the conditioning set according to the increment of likelihood. The procedure updates the

conditioning set at each iteration based on the extended Bayesian information criterion (EBIC), and

constructs an offset term based on the variables in this set. In essence, this offset summarizes the

information contained in the updated conditioning set, and it searches for a new variable that max-

imizes the likelihood given the offset term. The authors emphasize that the proposed SC approach

deviates fundamentally from the variable screening or selection approaches as it naturally leads to

a final model when the procedure terminates. The SC approach can be summarized as follows.

Suppose (X8, .8) are observations from the 8th subject (1 ≤ 8 ≤ =), .8 ∈ R1 is the response variable,

and X8 = (-80, -81, . . . , -8?)) is a collection of p+1 predictors for the ith sample and -80 = 1

corresponds to the intercept. SC modeling focuses on GLMs by assuming that the conditional
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density of .8 given -8 belongs to the linear exponential family

c(. | X) = exp{.XTβ − 1(XTβ) + A(. )}, (2.3)

where β = (V0, V1, . . . , V?)T is the vector of coefficients, V0 is the intercept, andA(·) and 1(·) are

known functions. Thismodelwith a canonical link function and a unit dispersion parameter, belongs

to a larger exponential family [100]. It also assumes that 1(·) is twice continuously differentiable

with a non-negative second derivative 1′′(·). In addition, it uses `(·) and f(·) to denote 1′(·) and

1′′(·), i.e. the mean and variance functions, respectively. For example, 1(\) = log(1 + exp(\)) in

a logistic distribution and 1(\) = exp(\) in a Poisson distribution. Let E={ 5 (b)} = =−1 ∑=
8=1 5 (b8)

denote the mean of { 5 (b8)}=8=1 for a sequence of i.i.d. random variables b8 (8 = 1, . . . , =) and a

non-random function 5 (·).

The loglikelihood function, apart from an additive constant is

=−1
=∑
8=1

! (XT
8 β, .8) = E={! (XTβ, . )} (2.4)

It uses β∗ = (V∗0, V∗1, . . . , V∗?)T to denote the true values of β. Then the true model isM = { 9 :

V∗ 9 ≠ 0, 9 ≥ 1} ∪ {0}, which consists of the intercept and all variables with nonzero effects. The

estimate ofM is denoted as M̂. It elaborate on the idea of building model with the proposed SC

approach. The key is to include an offset term which summarizes the information acquired from the

previous selection steps and to search for a new candidate variable that maximizes the likelihood

with such an offset.

An SC approach algorithm starts with initial index set, S0, and initial offset, O0. Having S0 = {0},

O0 = V̂S0 , where V̂S0 is estimated intercept without any covariates. First, with such O0, it computes

V̂
(1)
9
= arg maxβ ;O0, 9 (V) for j ∈ {0, 1, . . . , ?}, where ;O0, 9 (β) is the average log-likelihood of

the regression model. Then, 91 = arg max 9∈{0,1,...,?} ;O0, 9 ( V̂
(1)
9
), S1 = {0, 91}, and O1 = XT

S1
β̂S1 .

Iteratively, for k ≥ 1, given S: and O: , it computes V̂(:+1)
9

= arg maxV ;O: , 9 (β) for 9 ∈ (2: . Then,

9:+1 = arg max 9∈(2
:
;O: , 9 (β̂

(:+1)
9
), (:+1 = (: ∪{ 9:+1}, and O:+1 = XT

S:+1β̂S:+1 . To decide whether

it recruits another variable 9:+1 or stops procedure at :th step, it computed EBIC on set (:+1, where

EBIC((:+1) = −2ℓ(:+1 (β̂(:+1) + (: + 1) (log = + 2[ log ?)/=
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If EBIC((:+1)≥EBIC((: ), it stops and declares (: the final model.

The SC approach is computationally efficient as it maximizes the likelihood with respect to only

one covariate at each step given the offset, the property that was not observed in other methods.

The main drawback of SC approach is that it may be suboptimal compared to a full scale forward

optimization approach. Additionally, the consistency of the estimated model parameters has not

been addressed in related literature.

2.1.5 Cox Models with High-Dimensional Predictors via Forward Regression

Asmentioned, forward regression can consistently identify all relevant predictors in high-dimensional

linear regression settings by using EBIC stopping rule. However, existing results from recent works

are based on the sum of residual squares from linear models and it is not certain whether forward

regression can be applied to more general regression settings, such as Cox proportional hazards

models since the results are based on the sum of residual squares from linear models.

There has been active research in developing high-dimensional screening tools for survival data.

These works include principled sure screening [101], feature aberration at survival times screening

[102] and conditional screening [103], quantile adaptive sure independence screening [104], a

censored rank independence screening procedure [105], and integrated powered density screening

[106]. However, the screening methods require a threshold to dictate how many variables to retain,

for which unfortunately there are no clear rules.

Zhao and Li [101] did tie the threshold with false discoveries, but it still needs to prefix the number

of false positives that users are willing to tolerate. Recently, Li et al. [107] designed a model-free

measure, namely the survival impact index, that sensibly captures the overall influence of a covari-

ate on the survival outcome and can help guide selecting important variables. However, even this

method, like the other screening methods, does not directly lead to a final model, for which extra

modeling steps have to be implemented.

Hong et al. [108] introduced a new forward variable selection procedure for survival data based on

partial likelihood. It selects important variables sequentially according to the increment of partial
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likelihood, with a stopping rule based on EBIC. The algorithm for the proposed method is the

following.

Suppose n objects with ? covariates are observed, where ? � =. For subject 8, denote by -8 9 the

9 th covariate for subject 8, write X8 = (-81, . . . , -8?)T, and let )8 and �8 be the underlying survival

and censoring times. We only observe .8 = min()8, �8), and the event indicator X8 = � ()8 ≤ �8),

where � is the indicator function. We assume random censoring such that�8 and )8 are independent

given X. To link )8 to X8, for each 8 ∈ {1, . . . , =}, we consider the Cox proportional hazards model

_(C |X8) = _0(C) exp{βT
0 X8}, (2.5)

where _0 is the unspecified baseline hazard function and β0 = (V01, . . . , V0?)T is the vector of

regression coefficients. Additionally, let ( ⊂ {1, 2, . . . , ?} be an index set and |( | cardinality of (.

First, we initialize (0 = ∅ and sequentially select the sets of covariates such that (0 ⊂ (1 ⊂ · · · ⊂ (: .

At the (: + 1)th step the algorithm selects a new covariate not observed in (: and then decides

whether it includes the new variable into selection and proceeds to the next step or stops at the :th

step. The selection criteria is based on the partial likelihood. Given (: , for every 9 ∈ (2: , it fits a

Cox model on the variables indexed by (:, 9 , where (:, 9 = (: ∪ 9 . Then it computes an increment

of log partial likelihood for each 9 ∈ (2
:
, that is, ;(:, 9 (β̂(:, 9 ) − ;(: (β̂(: ), where ;( (β̂() is log partial

likelihood function given X(:

;( (β̂() =
=∑
8=1

∫ g

0

[
βT
(X8( − ;=

{
=∑
;=1
.̄; (C) expβT

(X;(

}]
3#8 (C), (2.6)

where #8 (C) = � (.8 ≤ C, X8 = 1) is the counting process, .̄; (C) = � (.8 ≥ C) is the at-risk process,

and g > 0 is the study duration such that %(. ≥ g) > 0. The candidate index is chosen as

9∗ = arg max 9∉(: ;(:, 9 (β̂(:, 9 ) − ;(: (β̂(: ) and the index set is updated (:+1 = (: ∪ { 9
∗}.

To decide whether to stop at the :th step or to include 9∗ in the selection and proceed to the next

step, the algorithm makes its decision based on EBIC criteria, which is defined as follows:
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EBIC((:+1) = −2;(:+1 (β̂(:+1) + (: + 1)
(
ln

{
3
}
+ 2[ln

{
?
})
, (2.7)

where 3 = X1 + · · · + X= is the number of events and [ some positive constant. If EBIC((:+1) >

EBIC((: ), the algorithm stops and declares (: the final model, otherwise it proceeds to the next

stop. They showed that if the dimension of the true model is finite, within a finite number of steps

forward regression can discover all relevant predictors, with the entry order determined by the size

of the likelihood increment.

The proposed model could potentially be the first work that investigated the partial likelihood-based

forward regression in survival models with high-dimensional predictors. Moreover, it represents

technical advances and a broadened scope compared to the existing forward regression (e.g., [109],

[110], [93]), and it improves the partial likelihood-based variable selection developed by [111],

[112] for survival data in low dimensional settings. The disadvantage of the proposed work is that

it does not address parameter estimation, which limits its usage in building predictive models.

2.1.6 A Stepwise Regression Method and Consistent Model Selection for High-Dimensional
Sparse Linear Models

Stepwise least squares regression is widely used in applied regression analysis to handle a large

number of input variables, which consists of forward selection of input variables in a ”greedy”

manner so that the selected variable at each step minimizes the residual sum of squares after least

squares regression is performed on it together with previously selected variables, a stopping rule to

terminate forward inclusion of variables, and stepwise backward elimination of variables according

to some criterion.

Ing et al. [113] developed an asymptotic theory for a version of stepwise regression in the context

of high-dimensional regression under certain sparsity assumptions. They introduced a fast stepwise

regression method, called the orthogonal greedy algorithm (OGA), that selects input variables to

enter a p-dimensional linear regression model (with ? � =, the sample size) sequentially so that the

selected variable at each step minimizes the residual sum squares. They derived the convergence
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rate of OGA and developed a consistent model selection procedure along the OGA path that

can adjust for potential spuriousness of the greedily chosen regressors among a large number of

candidate variables. The resultant regression estimate is shown to have the oracle property of being

equivalent to least squares regression on an asymptotically minimal set of relevant regressors under

a strong sparsity condition.

The forward stepwise component of the procedure is compressed sensing and approximation theory,

which focuses on approximations in noiselessmodels. They also developed a fast iterative procedure

for updating OGA that uses componentwise linear regression similar to the !2-boosting procedure

of Buhlmann and Yu [114] and does not require matrix inversion. Consider the linear regression

model

H8 = U +
?∑
9=1

V 9G8 9 + n8, 8 = 1, . . . , =, (2.8)

with ? predictors and G81, G82, . . . , G8? that are uncorrelated with the mean-zero random disturbances

n8. As mentioned, !2-boosting is an iterative procedure that generates a sequence of linear approx-

imations Ĥ: (G) of the regression function (with U = 0), by applying componentwise linear least

squares to the residuals obtained at each iteration.

Initializing with Ĥ0(·) = 0, it computes the residuals*:
8

:= H8 − Ĥ: (G8), 1 ≤ 8 ≤ =, at the end of the

:th iteration and chooses G8, 9̂:+1 on which the pseudo-responses*
(:)
8

are regressed, such that

9̂:+1 = arg min
1≤ 9≤?

=∑
8=1
(* (:)

8
− Ṽ(:)

9
G8 9 )2, (2.9)

where

Ṽ
(:)
9
=

=∑
8=1
*
(:)
8
G8 9

/
=∑
8=1

G2
8 9 .

This yields the update

Ĥ:+1(G) = Ĥ: (G) + Ṽ(:)
9̂:+1
G 9̂:+1 . (2.10)
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The procedure is then repeated until a pre-specified upper bound < on the number of iterations is

reached. When the procedure stops at the <th iteration, H(G) is approximated by Ĥ< (G).

OGA uses the variable selector (2.9). Since
∑=
8=1(*

(:)
8
− Ṽ(:)

9
G8 9 )2/

∑=
8=1(*

(:)
8
)2 = 1−A2

9
, where A 9 is

the correlation coefficient between GC 9 and* (:)8 , (2.9) chooses the predictor that is most correlated

with * (:)
8

at the :th stage. However,the implementation of OGA updates (2.10) in another way

and also carries out an additional linear transformation of the vector X 9̂:+1
to form X⊥

9̂:+1
, where

X 9 = (G8 9 , . . . , G= 9 )T. The idea is to orthogonalize the predictor variables sequentially so that

OLS can be computed by componentwise linear regression, thereby circumventing difficulties with

inverting high-dimensional matrices in the usual implementation of OLS.

With the orthogonal vectors X 9̂1
,X⊥

9̂2
, . . . ,X⊥

9̂:
already computed in the previous stages, it can

compute the projection X̂ 9̂:+1
of X 9̂:+1

into the linear space by adding the : projections into the

respective one-dimensional linear spaces. This also yields the residual vector X⊥
9̂:+1

= X 9̂:+1
− X̂ 9̂:+1

.

OGA uses the following updates in lieu of (2.10):

Ĥ:+1(G) = Ĥ: (G) + V̂(:)
9̂:+1
G⊥
9̂:+1
, (2.11)

where

V̂
(:)
9̂:+1

=

=∑
8=1
*
(:)
8
G⊥
8, 9̂:+1

/
=∑
8=1
(G⊥
8, 9̂:+1
)2.

By sequentially orthogonalizing the input variables, OGA preserves the attractive computational

features of componentwise linear regression in PGA. However, unlike PGA for which the same

predictor variable can be entered repeatedly, OGA excludes variables that are already precluded

from further consideration in (2.9).

In addition, they developed a consistent model selection procedure along an OGA path under a

”strong sparsity” condition that the nonzero regression coefficients satisfying the weak sparsity

condition are not too small. Applying the convergence rate of OGA, they proved that, with

probability approaching 1 as = → ∞, the OGA path includes all relevant regressors when the
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number of iterations is large enough. They modified the model selection criteria like BIC and

called it high-dimensional information criterion (HDIC), which is defined as:

HDIC(�) = =log
{
f̂2
�

}
+ |� |F=log

{
?
}
, (2.12)

where � is a non-empty subset of {1, . . . , ?} and f̂2
�
= =−1 ∑=

8=1(H8 − Ĥ8;�)2. OGA+HDIC is shown

to select the smallest set of all relevant variables along the OGA path with probability approaching

1 (and is therefore variable-selection consistent).

2.2 Our Contribution

Although methods described in the previous sections brought novelty to the research area and made

a significant contribution to it, they still have some drawbacks. First, once a variable is identified by

the forward selection, it is not removable from the list of selected variables. Hence, false positives

are unavoidable without a systematic elimination procedure. Second, most of the existing works

focus on variable selection and are silent with respect to estimation accuracy.

To address the first issue, some works have been proposed to add backward elimination steps once

forward selection is accomplished, as backward elimination may further eliminate false positives

from the variables selected by forward selection. For example, An et al. [92] and Ing et al. [113]

proposed a stepwise selection for linear regression models in high-dimensional settings and proved

model selection consistency. However, it is unclear whether the results hold for high-dimensional

GLMs; Hwang et al. [95] proposed a similar stepwise algorithm in high-dimensional GLM settings,

but with no theoretical properties on model selection. Moreover, none of the relevant works have

touched upon the accuracy of estimation.

We extend a stepwise regression method to accommodate GLMs with high-dimensional predictors.

Our method, termed STEPWISE hereafter and introduced in Chapter 3, embraces both model

selection and estimation. It starts with an empty model or pre-specified predictors, scans all

features and sequentially selects features, and conducts backward elimination once forward selection

is completed. Our proposal controls both false negatives and false positives in high dimensional

27



settings: the forward selection steps recruit variables in an inclusive way by allowing some false

positives for the sake of avoiding false negatives, while the backward selection steps eliminate the

potential false positives from the recruited variables.

We use different stopping criteria in the forward and backward selection steps, to control the

numbers of false positives and false negatives. It is achieved by adding flexibility with two tuning

parameters in the stopping criteria, which strengthens our algorithm. Values of these parameters

define how many parameters will likely be included in the model. For instance, a small value of

the tuning parameter in the forward selection will include more variables, and a large value will

recruit too few features. In similar fashion, in the backward elimination step, a large value of the

parameter would eliminate more variables and vice versa for a small value. It is worth mentioning

that our method includes forward selection as a special case when the tuning parameter is equal to

0, making the algorithm more flexible.

Moreover, we prove that, under a sparsity assumption of the true model, the proposed approach can

discover all of the relevant predictors within a finite number of steps, and the estimated coefficients

are consistent, a property still unknown to the literature. Finally, our GLM framework enables our

work to accommodate a wide range of data types, such as binary, categorical and count data.

Extensive numerical studies have been conducted to compare STEPWISE procedure with the other

competing methods mentioned in previous subsections. Specifically, we compared our algorithm

with LASSO, dgLARS, forward regression (FR), the SC approach, and the screening methods

such as SIS. Our numerical studies included simulations: we compared the proposed method

with the other methods over comprehensive simulated studies covering different model structures

and variable dependencies. All these examples were tested over various model types, including

Normal, Binomial, and Poisson models. The obtained results have indicated that the STEPWISE

algorithm was able to detect all the true signals with nearly zero false positive rate. In addition, it

outperformed the other methods by selecting more true positives with fewer false positives.

Moreover, our numerical studies included real data analysis, which aimed to demonstrate the

utility of our method with real-life scenarios. We analyzed data obtained from studies about
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gene regulation in the mammalian eye, esophageal squamous cell carcinoma, and neurobehavioral

impairment from total sleep deprivation. We demonstrated that STEPWISE achieved comparable

prediction accuracy, specificity, sensitivity, and AUC by selecting fewer variables that the other

variable selection methods.

Finally, to enhance the predictive power of the proposed method, we developed a multi-stage

hybrid machine learning method. It incorporates a stacking technique and includes both model-

free and model-based methods. Specifically, it comprises Random Forest (RF), Extreme Gradient

Boosting Machine (XGBoost), Support Vector Machine (SVM), Artificial Neural Network (ANN),

and LASSO models along with the STEPWISE procedure. The numerical study has shown an

improvement in the predictive power of our method. Furthermore, we developed a web application

that enables users to utilize the aforementioned method in practice.

To recap, our proposed method distinguishes from the existing stepwise approaches in high-

dimensional settings. For example, it improves An et al. [92] and Ing et al. [113] by extending

the work to a more broad GLM setting and Hwang et al. [95] by establishing the theoretical

properties. Compared with the other variable selection and screening works, our method produces

a final model in ultrahigh-dimensional settings, without applying a pre-screening step which may

produce unintended false negatives.

Under some regularity conditions, the method identifies or includes the true model with probability

going to 1. Moreover, unlike the penalized approaches such as LASSO, the coefficients estimated

by our STEPWISE selection procedure in the final model will be consistent, which are useful for

gauging the real effect sizes of risk factors.
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CHAPTER 3

STEPWISE METHOD: THEORY AND APPLICATIONS

3.1 Model Setup

Let (X8, .8), 8 = 1, . . . , =, denote = independent and identically distributed (i.i.d.) copies of (X, . ).

Here, X = (1, -1, . . . , -?)T is a (? + 1)-dimensional predictor vector with -0 = 1 corresponding

to the intercept term, and . is an outcome. Suppose that the conditional density of . , given X,

belongs to a linear exponential family:

c(. | X) = exp{.XTβ − 1(XTβ) + A(. )}, (3.1)

where β = (V0, V1, . . . , V?)T is the vector of coefficients, V0 is the intercept, and A(·) and

1(·) are known functions. Model (3.1), with a canonical link function and a unit dispersion

parameter, belongs to a larger exponential family [100]. Further, 1(·) is assumed twice continuously

differentiable with a non-negative second derivative 1′′(·). We use `(·) and f(·) to denote 1′(·)

and 1′′(·), i.e. the mean and variance functions, respectively. For example, 1(\) = log(1 + exp(\))

in a logistic distribution and 1(\) = exp(\) in a Poisson distribution.

Let ! (D, E) = DE − 1(D) and E={ 5 (b)} = =−1 ∑=
8=1 5 (b8) denote the mean of { 5 (b8)}=8=1 for a

sequence of i.i.d. random variables b8 (8 = 1, . . . , =) and a non-random function 5 (·). Based on

the i.i.d. observations, the log-likelihood function is

ℓ(β) = =−1
=∑
8=1

! (XT
8 β, .8) = E={! (XTβ, . )}. (3.2)

We use β∗ = (V∗0, V∗1, . . . , V∗?)T to denote the true values of β. Then the true model is M =

{ 9 : V∗ 9 ≠ 0, 9 ≥ 1} ∪ {0}, which consists of the intercept and all variables with nonzero effects.

Overarching goals of ultrahigh-dimensional data analysis are to identifyM and estimate V∗ 9 for

9 ∈ M. While most of the relevant literature [99, 108] is on estimating M, this work is to

accomplish both identification ofM and estimation of V∗ 9 .
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When ? is in the exponential order of =, we aim to generate a predictive model that contains the true

model with high probability, and provide consistent estimates of regression coefficients. We further

introduce the following notation. For a generic index set ( ⊂ {0, 1, . . . , ?} and a (?+1)-dimensional

vector A, we use (2 to denote the complement of a set ( and A( = {� 9 : 9 ∈ (} to denote the

subvector of A corresponding to (. For instance, if ( = {2, 3, 4}, then X8( = (-82, -83, -84)T.

Moreover, denote by ℓ( (β() = E={! (XT
(
β(, . )} the log-likelihood of the regression model of .

on X( and denote by β̂( the maximizer of ℓ( (β(). Under model (3.1), we elaborate on the idea of

stepwise selection, consisting of the forward and backward stages.

Forward stage: We start with �0, a set of variables that need to be included according to some

a priori knowledge, such as clinically important factors and conditions. If no such information is

available, �0 is set to be {0}, corresponding to a null model. We sequentially add covariates as

follows:

�0 ⊂ �1 ⊂ �2 ⊂ · · · ⊂ �: ,

where �: ⊂ {0, 1, . . . , ?} is the index set of the selected covariates upon completion of the :th step,

with : ≥ 0. At the (: + 1)th step, we append new variables to �: one at a time and refit GLMs:

for every 9 ∈ �2
:
, we let �:, 9 = �: ∪ { 9}, obtain β̂�:, 9 by maximizing ℓ�:, 9 (β�:, 9 ), and compute the

increment of log-likelihood,

ℓ�:, 9 (β̂�:, 9 ) − ℓ�: (β̂�: ).

Then the index of a new candidate variable is determined to be

9:+1 = arg max
9∈�2

:

ℓ�:, 9 (β̂�:, 9 ) − ℓ�: (β̂�: ).

And we update �:+1 = �: ∪ { 9:+1}.We then need to decide whether to stop at the :th step or move

on to the (: + 1)th step with �:+1. To do so, we use the following EBIC criterion:

EBIC(�:+1) = −2ℓ�:+1 (β̂�:+1) + |�:+1 |=−1(log = + 2[1 log ?), (3.3)

where the second term is motivated by Chen and Chen [115] and |� | denotes the cardinality of a

set �.
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The forward selection stops if EBIC(�:+1) > EBIC(�: ). We denote the stopping step by :∗ and

the set of variables selected so far by �:∗ .

Backward stage: Upon the completion of forward stage, backward elimination, starting with

�0 = �:∗ , sequentially drops covariates as follows:

�0 ⊃ �1 ⊃ �2 ⊃ · · · ⊃ �: ,

where �: is the index set of the remaining covariates upon the completion of the :th step of

the backward stage, with : ≥ 0. At the (: + 1)th backward step and for every 9 ∈ �: , we

let �:/ 9 = �: \ { 9}, obtain β̂�:/ 9 by maximizing ℓ(β�:/ 9 ), and calculate the difference of the

log-likelihoods between these two nested models,

ℓ�: (β̂�: ) − ℓ�:/ 9 (β̂�:/ 9 ).

The variable that can be removed from the current set of variables is indexed by

9:+1 = arg min
9∈�:

ℓ�: (β̂�: ) − ℓ�:/ 9 (β̂�:/ 9 ).

Let �:+1 = �: \ { 9:+1}. We determine whether to stop at the :th step or move on to the (: + 1)th

step of the backward stage according to the following BIC criterion:

BIC(�:+1) = −2ℓ�:+1 (β̂�:+1) + [2=
−1 |�:+1 | log =. (3.4)

If BIC(�:+1) > BIC(�: ), we end the backward stage at the :th step. Let :∗∗ denote the stopping

step and we declare the selected model �:∗∗ to be the final model. Thus, M̂ = �:∗∗ is the estimate

ofM. As the backward stage starts with the :∗ variables selected by forward selection, :∗∗ cannot

exceed :∗.

A strength of our algorithm is the added flexibility with [1 and [2 in the stopping criteria for

controlling the false negatives and positives. For example, a smaller value of [1 close to zero in the

forward selection step will likely include more variables, thus incur more false positives and less

false negatives, whereas a larger value of [1 will recruit too few variables and cause too many false

negatives. Similarly, in the backward selection step, a large [2 would eliminate more variables and
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therefore further reduce more false positives, and vice versa for a small [2. While finding optimal

[1 and [2 is not trivial, our numerical experiences suggest a small [1 and a large [2 may well

balance the false negatives and positives. When [2 = 0, no variables can be dropped after forward

selection; hence, our proposal includes forward selection as a special case.

Moreover, Zheng et al. [99] proposed a sequentially conditioning approach based on offset terms

that absorb the prior information. However, our numerical experiments indicate that the offset

approach may be suboptimal compared to our full stepwise optimization approach, which will be

demonstrated in the simulation studies.

3.2 Theoretical Properties

With a column vector v, let ‖v‖@ denote the !@-norm for any @ ≥ 1. For simplicity, we denote the

!2-norm of v by ‖v‖, and denote vvT by v⊗2. We use �1, �2, . . . , to denote some generic constants

that do not depend on = and may change from line to line. The following regularity conditions are

set.

1. There exist a positive integer @ satisfying |M| ≤ @ and @ log ? = >(=1/3) and a constant

 > 0 such that sup|( |≤@ ‖β∗(‖1 ≤  , where β
∗
(
= arg maxβ( � [ℓ( (β()] is termed the least

false value of model (.

2. ‖X‖∞ ≤  . In addition, � (- 9 ) = 0 and � (-2
9
) = 1 for 9 ≥ 1.

3. Let n8 = .8 − `(βT
∗X8). There exists a positive constant " such that the Cramer condition

holds, i.e., � [|n8 |<] ≤ <!"< for all < ≥ 1.

4. |f(0) − f(1) | ≤  |0 − 1 | and fmin := inf |C |≤ 3 |1′′(C) | is bounded below.

5. There exist two positive constants, ^min and ^max such that 0 < ^min < Λ
(
�

(
X⊗2
(

))
< ^max <

∞, uniformly in ( ⊂ {0, 1, . . . , ?} satisfying |( | ≤ @, where Λ(A) is the collection of all

eigenvalues of a square matrix A.
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6. min(:M*(,|( |≤@ �( > �=
−U for some constants� > 0 andU > 0 that satisfies @=−1+4U log ? →

0, where �( = max 9∈S2∩M
���� [(

`(βT
∗X) − `(β∗T( X()

)
- 9

] ���.
Condition (1), as assumed in Buhlmann et al. [116] and Zheng et al. [99], is an alternative to the

Lipschitz assumption [117, 87]. The bound of the model size allowed in the selection procedure

or @ is often required in model-based screening methods (see, e.g. [94, 118, 109, 99]). The bound

should be large enough so that the correct model can be included, but not too large; otherwise,

excessive noise variables would be included, leading to unstable and inconsistent estimates. In-

deed, Conditions (1) and (6) reveal that the range of @ depends on the true model size |M|, the

minimum signal strength, =−U, and the total number of covariates, ?. The upper bound of @ is

>((=1−4U/log ?) ∧ (=1/3/log ?)), ensuring the consistency of EBIC [115].

Condition (1) also implies that the parameter space under consideration can be restricted to

B := {β ∈ R?+1 : ‖β‖1 ≤  2}, for any model ( with |( | ≤ @. Condition (2), as assumed

in Zhao et al. [101] and Kwemou et al. [119], reflects that data are often standardized at the

pre-processing stage. Condition (3) ensures that . has a light tail, and is satisfied by Gaussian and

discrete data, such as binary and count data [120]. Condition (4) is satisfied by common GLM

models, such as Gaussian, Binomial, Poisson and Gamma distributions.

Condition (5) represents the sparse Riesz condition [121] and Condition (6) is a strong "irrepre-

sentable" condition, suggesting thatM cannot be represented by a set of variables that does not

include the true model. It further implies that adding a signal variable to a mis-specified model

will increase the log-likelihood by a certain lower bound [99]. The signal rate is comparable to the

conditions required by the other sequential methods (see, e.g. [93, 109]).

Theorem 3.2.1 develops a lower bound of the increment of the log-likelihood if the true modelM

is not yet included in a selected model (.

Theorem 3.2.1. Suppose Conditions (1) – (6) hold. There exists some constant �1 such that with

probability at least 1 − 6 exp(−6@ log ?),

min
(:M*(,|( |<@

{
max
9∈(2

ℓ(∪{ 9} (β̂(∪{ 9}) − ℓ( (β̂()
}
≥ �1=

−2U .
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Theorem 3.2.1 shows that, before the true model is included in the selected model, we can

append a variable which will increase the log-likelihood by at least�1=
−2U with probability tending

to 1. This ensures that in the forward stage, our proposed STEPWISE approach will keep searching

for signal variables until the true model is contained. To see this, suppose at the :th step of the

forward stage that �: satisfies " * �: and |�: | < @, and let A be the index selected by Stepwise.

By Theorem 3.2.1, we obtain that, for any [1 > 0, when = is sufficiently large,

EBIC(�:,A) − EBIC(�: ) = −2ℓ�:,A (β̂�:,A ) + (|�: | + 1)=−1(log = + 2[1 log ?)

−
[
−2ℓ�: (β̂�: ) + |�: |=−1(log = + 2[1 log ?)

]
≤ −2�1=

−2U + =−1(log = + 2[1 log ?) < 0,

with probability at least 1 − 6 exp(−6@ log ?), where the last inequality is due to Condition (6).

Therefore, with high probability the forward stage of STEPWISE continues as long as M *

�: and |�: | < @. We next establish an upper bound of the number of steps in the forward stage

needed to include the true model.

Theorem 3.2.2. Under the same conditions as in Theorem 3.2.1 and if

max
(:|( |≤@

{
max

9∈S2∩M2

��� [{
. − `(β∗T( X()

}
- 9

] ��} = >(=−U),
then there exists some constant �2 > 2 such that M ⊂ �: , for some �: in the forward stage of

Stepwise and : ≤ �2 |M|, with probability at least 1 − 18 exp(−4@ log ?).

The "max" condition, as assumed in Section 5.3 of Fan et al. [122], relaxes the partial

orthogonality assumption that XM2 are independent of XM , and ensures that with probability

tending to 1, appending a signal variable increases log-likelihood more than adding a noise variable

does, uniformly over all possible models ( satisfyingM * (, |( | < @. This entails that the proposed

procedure is much more likely to select a signal variable, in lieu of a noise variable, at each step.

Since EBIC is a consistent model selection criterion [110, 123], the following theorem guarantees

termination of the proposed procedure withM ⊂ �: for some : .
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Theorem 3.2.3. Under the same conditions as in Theorem 3.2.2 and ifM ⊄ �:−1 andM ⊂ �: ,

the forward stage stops at the :th step with probability going to 1 − exp(−3@ log ?).

Theorem 3.2.3 ensures that the forward stage of STEPWISE will stop within a finite number

of steps and will cover the true model with probability at least 1 − @ exp(−3@ log ?) ≥ 1 −

exp(−2@ log ?). We next consider the backward stage and provide a probability bound of removing

a signal from a set in which the set of true signalsM is contained.

Theorem 3.2.4. Under the same conditions as in Theorem 3.2.2, BIC((\{A}) − BIC(() > 0

uniformly over A ∈ M and ( satisfying M ⊂ ( and |( | ≤ @, with probability at least 1 −

6 exp(−6@ log ?).

Theorem 3.2.4 indicates that with probability at 1 − 6 exp(−6@ log ?), BIC would decrease

when removing a signal variable from a model that contains the true model. That is, with high

probability, back elimination is to reduce false positives.

Recall that �:∗ denotes the model selected at the end of the forward selection stage. By Theorem

3.2.2, M ⊂ �:∗ with probability at least 1 − 18 exp(−4@ log ?). Then Theorem 3.2.4 implies

that at each step of the backward stage, a signal variable will not be removed from the model

with probability at least 1 − 6 exp(−6@ log ?). By Theorem 3.2.2, |�:∗ | ≤ �2 |M|. Thus, the

backward elimination will carry out at most (�2 − 1) |M| steps. Combining results from Theorems

3.2.2 and 3.2.3 yields that M ⊂ M̂ with probability at least 1 − 18 exp(−4@ log ?) − 6(�2 −

1) |M| exp(−6@ log ?). Let β̂ be the estimate ofβ∗ in model (3.1) at the termination of STEPWISE.

By convention, the estimates of the coefficients of the unselected covariates are 0.

Theorem 3.2.5. Under the same conditions as in Theorem 3.2.2, we have thatM ⊆ M̂ and

‖β̂ − β∗‖ → 0

in probability.
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The theorem warrants that the proposed STEPWISE yields consistent estimates, a property not

shared by many regularized methods, including LASSO. Our later simulations verified this. Proof

of main theorems and lemmas are provided in the following Chapter.

3.3 Proof of the Theorems

Since 1(·) is twice continuously differentiable with a nonnegative second derivative 1′′(·), 1max :=

max|C |≤ 3 |1(C) |, `max := max|C |≤ 3 |1′(C) |, and fmax := sup|C |≤ 3 |1′′(C) | are bounded above,

where ! and  are some constants from Conditions (1) and (2), respectively. Let G={ 5 (b)} =

=−1/2 ∑=
8=1( 5 (b8) − � [ 5 (b8)]) for a sequence of i.i.d. random variables b8 (8 = 1, . . . , =) and a

non-random function 5 (·).

Given any β(, when a variable -A , A ∈ (2 is added into the model (, we define the augmented

log-likelihood as

ℓ(∪{A} (β(+A) := E=
{
!

(
βT
(X( + VA-A , .

)}
. (3.1)

We use β̂(+A to denote the maximizer of (3.1). Thus, β̂(+A = β̂(∪{A}. In addition, denote the

maximizer of � [ℓ(∪{A} (β(+A)] by β∗(+A . Due to the concavity of the log-likelihood in GLMs with

the canonical link, β∗
(+A is unique.

Proof of Theorem 3.2.1. Given an index set ( and A ∈ (2, let B0
(
(3) = {β( : ‖β( − β∗(‖ ≤

3/( 
√
|( |)} where 3 = �2

√
@3 log ?/= with �2 defined in Lemma 3.4.6.

Let Ω be the event that{
sup

|( |≤@,β(∈B0
(
(3)

���G= [
!

(
βT
(X(, .

)
− !

(
β∗T( X(, .

)] ��� ≤ 20�13
√
@ log ? and

max
|( |≤@
|G=

[
! (β∗T( X(, . )

]
| ≤ 10(�1 

2 + 1max)
√
@ log ?

}
,

where �1 is some constant defined in Lemma 3.4.4. By Lemma 3.4.4, %(Ω) ≥ 1−6 exp(−6@ log ?).

Thus in the rest of the proof, we only consider the sample points in Ω.

In the proof of Lemma 3.4.6, we show that max|( |≤@ ‖β̂( − β∗(‖ ≤ �2 
−1(@2 log ?/=)1/2 under Ω.

Then given an index set ( and β( such that |( | < @, ‖β( − β∗(‖ ≤ �2 
−1(@2 log ?/=)1/2, and for
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any 9 ∈ (2,

ℓ(∪{ 9} (β∗(+ 9 ) − ℓ( (β̂() ≥ inf
‖β(−β∗( ‖≤�2 −1 (@2 log ?/=)1/2

ℓ(∪{ 9} (β∗(+ 9 ) − ℓ( (β() =

=−1/2G=
[
! (β∗T(+ 9X(∪{ 9}, . )

]
− =−1/2G=

[
! (β∗T( X(, . )

]
−

sup
‖β(−β∗( ‖≤�2 −1 (@2 log ?/=)1/2

���=−1/2G=
[
! (βT

(X(, . ) − ! (β∗T( X(, . )
] ���

+ �
[
! (β∗T(+ 9X(∪{ 9}, . )

]
− �

[
! (β∗T( X(, . )

]
≥

− 20(�1 
2 + 1max)

√
@ log ?/= − 20�1�2@

2 log ?/=+

fmin^min
2

‖β∗(+ 9 − (β
∗T
( , 0)

T‖2,

where the second inequality follows from the event Ω and Lemma 3.4.5.

By Lemma 3.4.1, ifM * (, there exists A ∈ (2 ∩M, such that

‖β∗T(+A − (β
∗T
( , 0)‖ ≥ �f

−1
max^

−1
max=

−U .

Thus, there exists some constant �1 that does not depend on = such that

max 9∈(2 ℓ(∪{ 9} (β̂(+ 9 ) − ℓ( (β̂() ≥ max 9∈(2 ℓ(∪{ 9} (β∗(+ 9 ) − ℓ( (β̂() ≥

ℓ(∪{A} (β∗(+A) − ℓ( (β̂() ≥ −20(�1 
2 + 1max)

√
@ log ?/= −

20�1�2@
2 log ?/= + �2fmin^min=

−2U

2f2
max^

2
max

≥ �1=
−2U, (3.2)

where the first inequality follows from β̂(+ 9 being the maximizer of (3.1) and the second inequality

follows from Conditions (1) and (6).

Withdrawing the restriction to Ω, we obtain that

%

(
min

|( |<@,M*(
max
9∈(2

ℓ(∪{ 9} (β̂(∪{ 9}) − ℓ( (β̂() ≥ �1=
−2U

)
≥ 1 − 6 exp(−6@ log ?).
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�

Proof of Theorem 3.2.2. Wehave shown that our forward stagewill not stopwhenM * ( and |( | <

@ with probability converging to 1.

For any A ∈ (2∩M2,β∗
(+A is the unique solution to the equation �

[{
.−`

(
βT
(+AX(∪{A}

)}
X(∪{A}

]
= 0.

By the mean value theorem,

�
[{
. − `

(
β∗T( X(

)}
-A

]
= �

[{
`
(
βT
∗X

)
− `

(
β∗T( X(

)}
-A

]
= �

[{
`
(
βT
∗X

)
− `

(
β∗T( X(

)}
-A

]
− �

[{
`
(
βT
∗X

)
− `

(
β∗T(+AX(∪{A}

)}
-A

]
=

(
β∗T(+A − (β

∗T
( , 0)

)
�

[
f

(
β̃T
(+AX(∪{A}

)
X⊗2
(∪{A}

]
eA ,

where β̃(+A is some point between β(+A and (β∗T( , 0)
T and eA is a vector of length ( |( | + 1) with the

Ath element being 1.

Since |β̃T
(+AX(∪{A} | ≤ |β∗T(+AX(∪{A} | + |(β∗T( , 0)X(∪{A} | ≤ 2 2 by Conditions (1) and (2),

|f(β̃T
(+AX(∪{A}) | ≥ fmin and

>(=−U) =
���� [{

. − `
(
β∗T( X(

)}
-A

] ��� ≥ fmin^min‖β∗T(+A − (β
∗T
( , 0)‖.

Therefore,

max
(:|( |≤@,A∈(2∩M2

‖β∗T(+A − (β
∗T
( , 0)‖ = >(=

−U).

Under Ω that is defined in Theorem 3.2.1, max|( |≤@ ‖β̂( − β∗(‖ ≤ �2 
−1(@2 log ?/=)1/2.
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For any 9 ∈ (2,

ℓ(∪{ 9} (β∗(+ 9 ) − ℓ( (β̂() ≤ sup
‖β(−β∗( ‖≤�2 −1 (@2 log ?/=)1/2

ℓ(∪{ 9} (β∗(+ 9 ) − ℓ( (β()

≤
���=−1/2G=

[
! (β∗T(+ 9X(∪{ 9}, . )

] ��� + ���=−1/2G=
[
! (β∗T( X(, . )

] ���
+ sup
‖β(−β∗( ‖≤�2 −1 (@2 log ?/=)1/2

���=−1/2G=
[
! (βT

(X(, . ) − ! (β∗T( X(, . )
] ���

+
���� [

! (β∗T(+ 9X(∪{ 9}, . )
]
− �

[
! (β∗T( X(, . )

] ��� ≤
20(�1 

2 + 1max)
√
@=−1 log ? + 20�1�2@

2=−1 log ?+

fmax^max‖β∗(+ 9 − (β
∗T
( , 0)

T‖2/2,

where the second inequality follows from the event Ω and Lemma 3.4.5. Since

max
(:|( |<@,A∈(2∩M2

‖β∗(+A − (β
∗T
( , 0)

T‖ = >(=−U) and @=−1+4U log ? → 0,

we have

max
(:|( |<@,A∈(2∩M2

ℓ(∪{A} (β∗(+A) − ℓ( (β̂() ≤ 20(�1 
2 + 1max)

√
@=−1 log ?+

20�1�2@
2=−1 log ? + fmax^max‖β∗(+ 9 − (β

∗T
( , 0)

T‖2/2 = >(=−2U),

with probability at least 1 − 6 exp(−6@ log ?). Then by Lemma 3.4.6,

max(:|( |<@,A∈(2∩M2 ℓ(∪{A} (β̂(+A) − ℓ( (β̂() ≤ max(:|( |<@,A∈(2∩M2 |ℓ(∪{A} (β̂(+A) −

ℓ(∪{A} (β∗(+A) | +max(:|( |<@,A∈(2∩M2

��ℓ(∪{A} (β∗(+A) − ℓ( (β̂()�� ≤
�3@

2=−1 log ? + >(=−2U) = >(=−2U), (3.3)

40



with probability at least 1 − 12 exp(−6@ log ?). By Theorem 3.2.1, ifM * (, the forward stage

would select a noise variable with probability less than 18 exp(−6@ log ?).

For : > |M|,M * (: implies that at least : − |M| noise variables are selected within the : steps.

Then for : = �2 |M| with �2 > 2,

% (M * (: ) ≤
:∑

9=:−|M|

(
:

9

) {
18 exp(−6@ log ?)

} 9 ≤ |M|: |M|{18 exp(−6@ log ?)
}:−|M|

≤ 18 exp(−6@ log ? + log |M| + |M| log :) ≤ 18 exp(−4@ log ?).

Therefore,M ⊂ (�2 |M| with probability at least 1 − 18 exp(−4@ log ?). �

Proof of Theorem 3.2.3. By Theorem 3.2.2, M will be included in �: for some : < @ with

probability going to 1. Therefore, the forward stage stops at the :th step if EBIC(�:+1) > EBIC(�: ).

On the other hand, that EBIC(�:+1) < EBIC(�: ) if and only if 2ℓ�:+1 (β̂�:+1) − 2ℓ�: (β̂�: ) ≥

(log = + 2[1 log ?)/=. Thus, to show the forward stage stops at the :th step, we only need to show

that with probability tending to 1,

2ℓ�:+1 (β̂�:+1) − 2ℓ�: (β̂�: ) < (log = + 2[1 log ?)/=, (3.4)

for all [1 > 0.

To prove (3.4), we first verify the conditions (A4) and (A5) in Chen and Chen [115]. Given any

index ( such thatM ⊆ ( and |( | ≤ @, let β∗( be the subvector of β∗ corresponding to (. We obtain

that

�
[
(. − `(βT

∗(X())X(

]
= �

[
�

[
(. − `(β)∗MXM)) |X(

]
X(

]
= 0.

This implies β∗
(
= β∗(.

Given any π ∈ R|( |, let H( :=
{
ℎ(π,β() = (fmax 

2 |( |)−1f
(
βT
(
X(

) (
πTX(

)2
, ‖π‖ = 1,β( ∈

B0
(
(3)

}
. By Conditions (1) and (2), ℎ(π,β() is bounded between −1 and 1 uniformly over ‖π‖ = 1

and β( ∈ B0
(
(3).

ByLemma2.6.15 in van derVaart et al. [124], theVC indices ofW := {( 
√
|( |)−1πTX(, ‖π‖ = 1}

and V := {βT
(
X(,β( ∈ B0

(
(3)} are bounded by |( | + 2. For the definitions of the VC index
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and covering numbers, we refer to pages 83 and 85 in van der Vaart et al. [124]. The VC

index of the class U := {( 2 |( |)−1(πTX()2, ‖π‖ = 1} is the VC index of the class of sets

{(X(, C) : ( 2 |( |)−1(πTX()2 ≤ C, ‖π‖ = 1, C ∈ R}.

Since {(X(, C) : ( 2 |( |)−1(πTX()2 ≤ C} = {(X(, C) : 0 < ( 
√
|( |)−1πTX( ≤

√
C} ∪ {(X(, C) :

−
√
C < ( 

√
|( |)−1πTX( ≤ 0}, each set of {(X(, C) : ( 2 |( |)−1(πTX()2 ≤ C, ‖π‖ = 1, C ∈ R}

is created by taking finite unions, intersections, and complements of of the basic sets {(X(, C) :

( 
√
|( |)−1πTX( < C}. Therefore, the VC index of {(X(, C) : ( 2 |( |)−1(πTX()2 ≤ C, ‖π‖ = 1, C ∈

R} is of the same order as the VC index of {(X(, C) : ( 
√
|( |)−1πTX( < C}, by Lemma 2.6.17 in

[124].

Then byTheorem2.6.7 in van derVaart et al. [124], for any probabilitymeasure&, there exists some

universal constant �3 such that # (n,U, !2(&)) ≤ (�3/n)2( |( |+1) . Likewise, # (3n,V, !2(&)) ≤

(�3/n)2( |( |+1) . Given a β(,0 ∈ B0
(
(3), for any β( in the ball {β( : supx |βT

(
x − βT

(,0x| < 3n}, we

have supx |f(βT
(
x) − f(βT

(,0x) | <  3n by Condition (4).LetV′ := {f−1
maxf(βT

(
X(),β( ∈ B0

(
(3)}.

By the definition of covering number, # ( 3n,V′, !2(&)) ≤ (�3/n)2( |( |+1)Given a f(βT
(,0x) and

πT
0x, for any f(βT

(
x) in the ball {f(βT

(
x) : supx |f(βT

(
x) − f(βT

(,0x) | ≤  3n} and π in the

ball {π : supx | (πTx)2 − (πT
0x)2 | < n}, (fmax 

2 |( |)−1 supx |f(βT
(
x) (πTx)2 − f(βT

(,0x) (πT
0x)2 | ≤

(f−1
max 3 + ( 2 |( |)−1)n . Thus, # ((f−1

max 3 + ( 2 |( |)−1)n,H(, !2(&)) ≤ (�3/n)4( |( |+1) , and

consequently # (n,H(, !2(&)) ≤ (�4/n)4( |( |+1) for some constant �4.

By Theorem 1.1 in Talagrand [125] and |( | ≤ @, we can find some constant �5 such that

%

(
sup

‖π‖=1,β(∈B0
(
(3)
|G= [ℎ(π,β()] | ≥ �5

√
@ log ?

)

≤
�′4

�5
√
@ log ?

(
�′4�

2
5@ log ?

4( |( | + 1)

)4( |( |+1)

exp(−2�2
5@ log ?)

≤ exp
(
4( |( | + 1) log(�′4�

2
5@ log ?) − 2�2

5@ log ?
)

≤ exp (−5@ log ?) ,
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where �′4 is some constant that depends on �4 only. Thus,

%

(
sup|( |≤@,‖π‖=1,β(∈B0

(
(3)

���E= {
f

(
XT
(
β(

) (
πTX(

)2
}
− �

[
f

(
XT
(
β(

) (
πTX(

)2
] ���

≥ �5 
2
√
@3 log ?/=

)
≤∑@

B=|M|
( 4?
B

) B exp (−5@ log ?) ≤ exp(−3@ log ?). (3.5)

By Condition (5), fmin^min ≤ Λ

(
�

[
f

(
XT
(
β(

)
X⊗2
(

] )
≤ fmax^max, for all β( ∈ B0

(
(3) and

( :M ⊆ (, |( | < @. Then, by (3.5),

fmin^min/2 ≤ Λ
(
E=

{
f

(
XT
(β∗(

)
X⊗2
(

})
≤ 2fmax^max

uniformly over all ( satisfyingM ⊆ ( and |( | ≤ @, with probability at least 1 − exp(−3@ log ?).

Hence, the condition (A4) in [115] is satisfied with probability at least 1 − exp(−3@ log ?).

Also for any β( ∈ B0
(
(3),���E={f (

XT
(β(

) (
πTX(

)2 }
− E=

{
f

(
XT
(β∗(

) (
πTX(

)2 }���
≤

���=−1/2G=
{
f

(
XT
(β(

) (
πTX(

)2 }��� + ���=−1/2G=
{
f

(
XT
(β∗(

) (
πTX(

)2 }���
+

���� [
f

(
XT
(β(

) (
πTX(

)2 ]
− �

[
f

(
XT
(β∗(

) (
πTX(

)2 ] ���
≤ 2�5 

2
√
@3 log ?/= + `max‖β( − β∗(‖

√
|( | _max.

Hence, the condition (A5) in Chen and Chen [115] is satisfied uniformly over all ( such thatM ⊆ (

and |( | ≤ @, with probability at least 1 − exp(−3@ log ?).

Then (3.4) can be shown by following the proof of Equation (3.2) in Chen and Chen [115]. Thus,

our forward stage stops at the :th step with probability at least 1 − exp(−3@ log ?). �

Proof of Theorem 3.2.4. Suppose that a covariate -A is removed from (. For any A ∈ M, since

M * (\{A} and A is the only element that is in ((\{A})2 ∩M, by Lemma 3.4.1 and (3.2)

ℓ( (β̂() − ℓ(\{A} (β̂(\{A}) ≥ ℓ( (β∗() − ℓ(\{A} (β̂(\{A})

= ℓ(\{A}∪{A} (β∗(\{A}+A) − ℓ(\{A} (β̂(\{A}) ≥ �1=
−2U,
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with probability at least 1 − 6 exp(−6@ log ?). From the proof of Theorem 3.2.1, we have for

any [2 > 0, BIC(() − BIC((\{A}) ≤ −2�1=
−2U + [2=

−1 log = < 0, uniformly over A ∈ M and (

satisfyingM ⊂ ( and |( | ≤ @, with probability at least 1 − 6 exp(−6@ log ?). �

Proof of Theorem 3.2.5. By Theorems 3.2.1, 3.2.2, and 3.2.3, we have that the event Ω1 :=

{|M̂ | ≤ @ andM ⊆ M̂} holds with probability at least 1 − 25 exp(−2@ log ?). Thus, in the rest of

the proof, we restrict our attention on Ω1.

As shown in the proof of Theorem 3.2.3, we obtain that β∗
M̂
= β∗M̂ . Then by Lemma 3.4.6, we

have ‖β̂M̂−β∗M̂ ‖ ≤ �2 
−1

√
@2 log ?/=with probability at least 1−6 exp(−6@ log ?). Withdrawing

the attention on Ω1, we obtain that

‖β̂ − β∗‖ = ‖β̂M̂ − β∗M̂ ‖ = ‖β̂M̂ − β
∗
M̂ ‖ ≤ �2 

−1
√
@2 log ?/=,

with probability at least 1 − 31 exp(−2@ log ?). �

3.4 Additional Lemmas

Lemma 3.4.1. Given a model ( such that |( | < @,M * (, under Condition (6),

(i): ∃A ∈ (2 ∩M, such that β∗
(+A ≠ (β

∗T
(
, 0)T.

(ii): Suppose Conditions (1), (2), and (6’) hold. ∃A ∈ (2 ∩ M, such that ‖β∗T
(+A − (β

∗T
(
, 0)‖ ≥

�f−1
max^

−1
max=

−U.

Proof. As β∗
(+ 9 is the maximizer of �

[
ℓ(∪{ 9} (β(+ 9 )

]
, by the concavity of �

[
ℓ(∪{ 9} (β(+ 9 )

]
, β∗

(+ 9

is the solution to the equation �
[(
. − `

(
β∗)
(

X( + V 9- 9
) )

X(∪{ 9}
]
= 0,

(8): Suppose that β∗
(+ 9 = (β

∗T
(
, 0)T,∀ 9 ∈ (2 ∩M. Then,

0 = �
[ (
. − `

(
β∗T( X(

) )
- 9

]
= �

[ (
`
(
βT
∗X

)
− `

(
β∗)( X(

) )
- 9

]
⇒ max

9∈(2∩M

��� [ (
`
(
βT
∗X

)
− `

(
β∗)( X(

) )
- 9

] �� = 0,

which violates the Condition (6). Therefore, we can find a A ∈ (2 ∩M, such that β∗
(+A ≠ (β

∗T
(
, 0)T.
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(88): Let A ∈ (2∩M satisfy that
��� [ (

`
(
βT
∗X

)
−`

(
β∗T
(

X(

) )
-A

] �� > �=−U. Without loss of generality,

we assume that -A is the last element of X(∪{A}. By the mean value theorem,

�
[ (
`
(
βT
∗X

)
− `

(
β∗T
(

X(

) )
-A

]
= �

[ (
`
(
βT
∗X

)
− `

(
β∗T
(

X(

) )
-A

]
− �

[ (
`
(
βT
∗X

)
− `

(
β∗T
(+AX(∪{A}

) )
-A

]
= �

[ (
`
(
β∗T
(+AX(∪{A}

)
− `

(
(β∗T

(
, 0)X(∪{A}

) )
-A

]
=

(
β∗T
(+A − (β

∗T
(
, 0)

)
�

[
f

(
β̃T
(+AX(∪{A}

)
X⊗2
(∪{A}

]
eA , (3.1)

where β̃(+A is some point between β∗
(+A and (β

∗T
(
, 0)T and eA is a vector of length ( |( | + 1) with the

Ath element being 1.

As β̃(+A is some point between β∗
(+A and (β

∗T
(
, 0)T,

|β̃T
(+AX(∪{A} | ≤ |β∗T(+AX(∪{A} | + |(β∗T( , 0)X(∪{A} | ≤ 2 2,

by Conditions (1) and (2). Thus, |f(β̃T
(+AX(∪{A}) | ≤ fmax. By (3.1) and Condition (5),

�=−U ≤
���� [(

`
(
βT
∗X

)
− `

(
β∗T( X(

) )
-A

] ���
≤ ‖β∗T(+A − (β

∗T
( , 0)‖fmax_max

(
�

[
X⊗2
(∪{A}

] )
‖eA ‖

≤ fmax^max‖β∗T(+A − (β
∗T
( , 0)‖.

Therefore, ‖β∗T
(+A − (β

∗T
(
, 0)‖ ≥ �f−1

max^
−1
max=

−U. �

Lemma 3.4.2. Let b8, 8 = 1, . . . , = be = i.i.d random variables such that |b8 | ≤ � for a constant

� > 0. Under Conditions (1) – (3), we have � [|.8b8 − � [.8b8] |<] ≤ <!(2�(
√

2" + `max))<, for

every < ≥ 1.

Proof. By Conditions (1) and (2), |βT
∗X8 | ≤  !, ∀8 ≥ 1 and consequently

��`(βT
∗X8)

�� ≤ `max. Then
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by Condition (3),

� [|.8 |<] = � [|n8 + `(βT
∗X8) |<] ≤

<∑
C=0

(
<

C

)
�

[
|n8 |C

]
`<−Cmax

≤
<∑
C=0

C!
(
<

C

)
" C`<−Cmax ≤ <!(" + `max)<,

for every < ≥ 1. By the same arguments, it can be shown that, for every < ≥ 1,

� [|.8b8 − � [.8b8] |<] ≤ � [( |.8b8 | + |� [.8b8] |)<] ≤ <!(2�(" + `max))< .

�

Lemma 3.4.3. Under Conditions (1) – (3), when = is sufficiently large such that 28
√
@ log ?/= < 1,

we have supβ∈B
��E= {

! (βTX, . )
}�� ≤ 2("+`max) 3+1max, with probability 1−2 exp(−10@ log ?).

Proof. By Conditions (2), supβ∈B
��βTX

�� ≤  3. Thus,

sup
β∈B

��E= {
! (βTX, . )

}�� ≤ sup
β∈B

��E= {��.βTX
��}�� + 1max

≤
(��E= {|. | − � [|. |]} �� + � [|. |])  3 + 1max

≤
(��E= {|. | − � [|. |]} ��)  3 + (" + `max) 3 + 1max,

where the last inequality follows from that � [|. |] ≤ " + `max as shown in the proof of Lemma

3.4.2.

Let b8 = 1{.8 > 0}−1{.8 < 0}. Thus |b8 | ≤ 1. ByLemma3.4.2, we have�
[��|.8 | − � [|.8 |] ��<]

≤

<!(2(" + `max))<. Applying Bernstein’s inequality (e.g., Lemma 2.2.11 in van der Vaart et al.

[124]) yields that

%

(
|E= {|. | − � [|. |]}| > 10(" + `max)

√
@ log ?/=

)
≤ 2 exp

(
−1

2
196@ log ?

4+20
√
@ log ?/=

)
≤ 2 exp(−10@ log ?), (3.2)
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when = is sufficiently large such that 20
√
@ log ?/= < 1. Since 10(" + `max)

√
@ log ?/= = >(1),

then

%

(
sup
β∈B

��E= {
! (βTX, . )

}�� ≥ 2(" + `max) 3 + 1max

)
≤ 2 exp(−10@ log ?).

�

Lemma 3.4.4. Given an index set ( and A ∈ (2, let B0
(
(3) = {β( : ‖β( − β∗(‖ ≤ 3/( 

√
|( |)}

and �1 := (" + 2`max). Under Conditions (1) – (3), when = is sufficiently large such that

10
√
@ log ?/= < 1, we have

1. |G=
[
!

(
βT
(
X(, .

)
− !

(
β∗T
(

X(, .

)]
| ≤ 20�13

√
@ log ?, uniformly over β( ∈ B0

(
(3) and

|( | ≤ @, with probability at least 1 − 4 exp(−6@ log ?).

2. |G=
[
! (β∗T

(
X(, . )

]
| ≤ 10(�1 

2 + 1max)
√
@ log ?, uniformly over |( | ≤ @, with probability

at least 1 − 2 exp(−8@ log ?).

Proof. : (1): Let R |( | (3) be a |( |-dimensional ball with center at 0 and radius 3/( 
√
|( |). Then

B0
(
(3) = R |( | (3)+β∗(. Let C|( | := {C(ξ: )} be a collection of cubes that cover the ball '|( | (3), where

C(ξ: ) is a cube containing ξ: with sides of length 3/( 
√
|( |=2) and ξ: is some point inR |( | (3). As

the volume of C(ξ: ) is
(
3/( 

√
|( |=2)

) |( | and the volume of R |( | (3) is less than (23/( 
√
|( |)) |( |,

we can select ξ: ’s so that no more than (4=2) |( | cubes are needed to cover R |( | (3). We thus assume

|C|( | | ≤ (4=2) |( |. For any ξ ∈ C(ξ: ), ‖ξ − ξ: ‖ ≤ 3/( =2). In addition, let )1( (ξ) := E=
[
.ξTX(

]
,

)2( (ξ) := E=
[
1
( (
β∗
(
+ ξ

)T
X(

)
− 1

(
β∗T
(

X(

) ]
, and )( (ξ) := )1( (ξ) − )2( (ξ).

Given any ξ ∈ R |( | (3), there exists C(ξ: ) ∈ C|( | such that ξ ∈ C(ξ: ). Then

|)( (ξ) − � [)( (ξ)] | ≤ |)( (ξ) − )( (ξ: ) | |)( (ξ: ) − � [)( (ξ: )] | + |� [)( (ξ)] − � [)( (ξ: )] |

=: � + � � + � � � .

We deal with � � � first. By the mean value theorem, there exists a ξ̃ between ξ and ξ: such that

|� [)( (ξ: )] − � [)( (ξ)] | =
���� [

. (ξ: − ξ)TX(

]
+ �

[
`

( (
β∗
(
+ ξ̃

)TX(

)
(ξ: − ξ)TX(

] ���
≤ � [|. |] ‖ξ: − ξ‖‖X(‖ + `max‖ξ: − ξ‖‖X(‖ ≤ (" + 2`max)3

√
|( |=−2 = �13

√
|( |=−2,(3.3)
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where the last inequality follows from Lemma 3.4.2 and �1 = " + 2`max.

Next, we evaluate � �. By Condition (2), |XT
8(
ξ | ≤ ‖X8(‖‖ξ‖ ≤ 3/( 

√
|( |)

√
|( | = 3, for all

ξ ∈ R |( | (3). Then by Lemma 3.4.2,

�

[��.ξT
:X( − �

[
.ξT

:X(

] ��<]
≤ <!(2(" + `max)3)< .

By Bernstein’s inequality, when = is sufficiently large such that 10
√
@ log ?/= ≤ 1.

%

(
|)1( (ξ: ) − � [)1( (ξ: )] | > 10(" + `max)3

√
@=−1 log ?

)
≤ 2 exp

(
−1

2
100@ log ?

4 + 20
√
@ log ?/=

)
≤ 2 exp(−10@ log ?). (3.4)

Since |1(
(
β∗
(
+ ξ:

)T
X() − 1(β∗T( X() | ≤ `max3, by the same arguments used for (3.4), we have

%

(
|)2( (ξ: ) − � [)2( (ξ: )] | > 10`max3

√
@=−1 log ?

)
≤ 2 exp(−10@ log ?). (3.5)

Combining (3.4) and (3.5) yields that uniformly over ξ:

|)( (ξ: ) − � [)( (ξ: )] | ≤ 10�13

√
@=−1 log ?, (3.6)

with probability at least 1 − 2(4=2) |( | exp(−10@ log ?).

We now assess �. Following the same arguments as in Lemma 3.4.3,

%

(
sup

ξ∈C(ξ: )
|)( (ξ) − )( (ξ: ) | > (2" + 3`max)3

√
|( |=−2

)
≤ 2 exp(−8@ log ?). (3.7)

Since
√
|( |=−2 = >(

√
@=−1 log ?), combining (3.3), (3.6), and (3.7) together yields that

%

(
sup

ξ∈R |( | (3)
|)( (ξ) − � [)( (ξ)] | ≥ 20�13

√
@=−1 log ?

)
≤ 2(4=2) |( | exp(−10@ log ?) + 2 exp(−8@ log ?) ≤ 4 exp(−8@ log ?).

By the combinatoric inequality
(?
B

)
≤ (4?/B)B, we obtain that

%

(
sup

|( |≤@,β(∈B0
(
(31)

���G= [
!

(
βT
(X(, .

)
− !

(
β∗T( X(, .

)] ��� ≥ 20�13
√
@ log ?

)
≤

@∑
B=1
(4?/B)B4 exp(−8@ log ?) ≤ 4 exp(−6@ log ?).
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(2): We evaluate the <th moment of ! (β∗
(
X(, . ).

�
[ (
.β∗(X( − 1(β∗(X()

)<]
≤ �

[
<∑
C=0

(
<

C

)
|. |C 2C1<−Cmax

]
≤

<∑
C=0

(
<

C

)
C!
(
(" + `max) 2) C1<−Cmax ≤ <!((" + `max) 2 + 1max)< .

Then, by Bernstein’s inequality,

%

(
|G=

[
! (β∗T( X(, . )

]
| > 10(�1 

2 + 1max)
√
@ log ?

)
≤ 2 exp(−10@ log ?).

By the same arguments used in (i), we obtain that

%

(
sup
|( |≤@

���G= [
!

(
β∗T( X(, .

)] ��� ≥ 10(�1 
2 + 1max)

√
@ log ?

)
≤

@∑
B=1
(4?/B)B2 exp(−10@ log ?) ≤ 2 exp(−8@ log ?).

�

Lemma 3.4.5. Given a model ( and A ∈ (2, under Conditions (1), (2), and (5), for any

‖β( − β∗(‖ ≤  /
√
|( |,

fmin^min‖β( − β∗(‖
2/2 ≤ �

[
ℓ( (β∗()

]
− � [ℓ( (β()] ≤ fmax^max‖β( − β∗(‖

2/2.

Proof. Due to the concavity of the log-likelihood in GLMs with the canonical link,

�
[
.X( − `(β∗T( X()X(

]
= 0. Then for any ‖β( − β∗(‖ ≤  /

√
|( |,

|βTX( | ≤ |β∗TX( | + |(β − β∗)TX( | ≤  2 +  /
√
|( | ×  

√
|( | = 2 !.

Thus, by Taylor’s expansion,

� [ℓ( (β()] − �
[
ℓ( (β∗()

]
= −1

2
(β( − β∗()

T�
[
f

(
β̃T
(X(

)
X⊗2
(

]
(β( − β∗(),

where β̃( is between β( and β∗(. By Condition (5),

fmin^min‖β( − β∗(‖
2/2 ≤ �

[
ℓ( (β∗()

]
− � [ℓ( (β()] ≤ fmax^max‖β( − β∗(‖

2/2.

�
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Lemma 3.4.6. Under Conditions (1) – (6), there exist some constants �2 and �3 that do not

depend on =, such that ‖β̂( − β∗(‖ ≤ �2 
−1

√
@2 log ?/= and |ℓ( (β̂() − ℓ( (β∗() | ≤ �3@

2 log ?/=

hold uniformly over ( : |( | ≤ @, with probability at least 1 − 6 exp(−6@ log ?).

Proof. Define

Ω(3) :=
{

sup
|( |≤@,β(∈B0

(
(3)

���G= [! (
βT
(X(, .

)
− !

(
β∗T( X(, .

) ] ��� < 20�13
√
@ log ?

}
.

By Lemma 3.4.4, the event Ω(3) holds with probability at least 1 − 4 exp(−6@ log ?). Thus,

in the proof of Lemma 3.4.6, we shall assume Ω(3) hold with 3 = �2
√
@3 log ?/= for some

�2 > 20(fmin^min)−1 2�1.

For any ‖β( − β∗(‖ = �2 
−1

√
@2 log ?/=, since

√
@2 log ?/= ≤

√
@3 log ?/=/

√
|( |, β( ∈ B0

(
(3).

By Lemma 3.4.5,

ℓ( (β∗() − ℓ( (β()

=

(
ℓ( (β∗() − �

[
ℓ( (β∗()

]
− (ℓ( (β() − � [ℓ( (β()])

)
+

(
�

[
ℓ( (β∗()

]
− � [ℓ( (β()]

)
≥ fmin^min‖β( − β∗(‖

2/2 − 20�13
√
@ log ?/=

= fmin^min�
2
2@

2 log ?/( 2=) − 20�1�2@
2 log ?/= > 0.

Thus,

inf
|( |≤@,‖β(−β∗( ‖=�2 −1

√
@2 log ?/=

ℓ( (β∗() − ℓ( (β() > 0.

Then by the concavity of ℓ( (·), we obtain that max|( |≤@


β̂( − β∗(

 ≤ �2 

−1
√
@2=−1 log ?.

On the other hand, for any ‖β( − β∗(‖ ≤ �2 
−1

√
@2 log ?/=,��ℓ( (β∗() − ℓ( (β()��

≤
���ℓ( (β∗() − � [

ℓ( (β∗()
]
− (ℓ( (β() − � [ℓ( (β()])

��� + ��� [
ℓ( (β∗()

]
− � [ℓ( (β()]

��
≤ fmax^max‖β( − β∗(‖

2/2 + 20�13
√
@ log ?/= ≤ �3@

2=−1 log ?,
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where �3 := 4fmax_max�
2
2 
−2 + 20�1�2. �

3.5 Simulations

We compared the proposal with the other competing methods, including the penalized methods

such as least absolute shrinkage and selection operator (LASSO), the differential geometric least

angle regression (dgLARS) [90, 91], the forward regression (FR) approach [93], the sequentially

conditioning (SC) approach [99], and the screening method such as sure independence screening

(SIS) [87], which is popular in practice. As SIS does not directly generate a predictive model,

we applied LASSO for the top [=/log(=)] variables chosen by SIS and denoted the procedure by

SIS+LASSO.

As the FR, SC and STEPWISE approaches involve forward searching and tomake them comparable,

we applied the same stopping rule, for example, Equation (3.3) with the same W, to their forward

steps. In particular, the STEPWISE approach, with [1 = W and [2 = 0, is equivalent to FR and

asymptotically equivalent to SC. By varying W in FR and SC between W! and W� , we explored the

impact of W on inducing false positives and negatives. In our numerical studies, we fixed W� = 10

and set W! = [1.

To choose [1 and [2 in (3.3) and (3.4) in STEPWISE, we performed 5-fold cross-validation to

minimize the mean squared prediction error (MSPE), and reported the results in Table 3.1. Since

the proposed STEPWISE algorithm uses the (E)BIC criterion, for a fair comparison we chose the

tuning parameter in dgLARS by using the BIC criterion as well, and coined the corresponding

approach as dgLARS(BIC).

The regularization parameter in LASSO was chosen via the following two approaches: 1) giving

the smallest BIC for the models on the LASSO path, denoted by LASSO(BIC); 2) using the one-

standard-error rule, denoted by LASSO(1SE), which chooses the most parsimonious model whose

error is no more than one standard error above the error of the best model in cross-validation [126].
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Table 3.1: The values of [1 and [2 used in the simulation studies

Normal Model Binomial Model Poisson Model
Example 1 (0.5, 3) (0.5, 3) (1, 3)
Example 2 (0.5, 3) (1, 3) (1, 3)
Example 3 (1, 3) (0.5, 3) (0.5, 1)
Example 4 (1, 3.5) (0, 1) (1, 3)
Example 5 (0.5, 3) (0.5, 2) (0.5, 3)
Example 6 (0.5, 3) (0.5, 3) (1, 3)
Example 7 (0.5, 3) (0.5, 3) (0.5, 4.5)

Note: Values for [1 and [2 were searched on the grid {0, 0.25, 0.5, 1} and {1, 2, 3, 3.5, 4, 4.5, 5}, respectively.

Denote by X8 = (-81, . . . , -8?)T and β = (V1, . . . , V?)T, the covariate vector for subject

8 (1, . . . , =) and the true coefficient vector. The following five examples generated XT
8
β, the inner

product of the coefficient and covariate vectors for each individual, which were used to generate

outcomes from the Normal, Binomial, and Poisson models.

Example 1: For each 8,

2XT
8 β = 2 ×

©­«
?0∑
9=1

V 9-8 9 +
?∑

9=?0+1
V 9-8 9

ª®¬ , 8 = 1, . . . , =,

where V 9 = (−1)� 9 (4log =/
√
= + |/ 9 |), for 9 = 1, . . . , ?0 and V 9 =0, otherwise; � 9 was a binary

random variable with %(� 9 = 1) = 0.4 and / 9 was generated by a standard normal distribution;

?0= 8; -8 9 ’s were independently generated from a standardized exponential distribution, that is,

exp(1) − 1. Here and also in the other examples, 2 (specified later) controls the signal strengths.

Example 2: This scenario is the same as Example 1 except that -8 9 was independently generated

from a standard normal distribution.

Example 3: For each 8,

2XT
8 β = 2 ×

©­«
?0∑
9=1

V 9-8 9 +
?∑

9=?0+1
V 9-

∗
8 9

ª®¬ , 8 = 1, . . . , =,

where V 9 = 2j for 1 ≤ 9 ≤ ?0 and ?0= 5. We simulated every component of Z8 = (/8 9 ) ∈ '? and W8

= (,8 9 ) ∈ '? independently from a standard normal distribution. Next, we generated X8 according

to -8 9 = (/8 9 +,8 9 )/
√

2 for 1 ≤ 9 ≤ ?0 and -∗8 9 = (/8 9 +
?0∑
9 ′=1

/8 9 ′)/2 for ?0 < 9 ≤ ?.
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Example 4: For each 8,

2XT
8 β = 2 ×

©­«
500∑
9=1

V 9-8 9 +
?∑

9=501
V 9-8 9

ª®¬ , 8 = 1, . . . , =,

where the first 500 -8 9 ’s were generated from the multivariate normal distribution with mean 0

and a covariance matrix with all of the diagonal entries being 1 and cov(-8 9 , -8 9 ′) = 0.5| 9− 9 ′ | for

1 ≤ 9 , 9 ′ ≤ ?. The remaining ? − 500 -8 9 ’s were generated through the autoregressive processes

with -8,501 ∼ Unif (-2, 2), -8 9 = 0.5 -8, 9−1 + 0.5 -∗
8 9
, for 9 = 502, . . . , ?, where -∗

8 9
∼ Unif (-2, 2)

were generated independently. The coefficients V 9 for 9 = 1, . . . , 7, 501, . . . , 507 were generated

from (−1)� 9 (4log =/
√
= + |/ 9 |), where � 9 was a binary random variable with %(� 9 = 1) = 0.4 and

/ 9 was from a standard normal distribution. The remaining V 9 were zeros.

Example 5: For each 8,

2XT
8 β = 2 ×

(
−0.5-81 + -82 + 0.5-8,100

)
, 8 = 1, . . . , =,

where X8 were generated from a multivariate normal distribution with mean 0 and a covariance

matrix with all of the diagonal entries being 1 and cov(-8 9 , -8 9 ′) = 0.9| 9− 9 ′ | for 1 ≤ j, j’ ≤ p. All of

the coefficients were zero except for -81, -82 and -8,100.

Example 6: For each 8,

2XT
8 β = 2 ×

©­«
@∑
9=1

V 9-8 9 +
?∑

9=@+1
V 9-8 9

ª®¬ , 8 = 1, . . . , =,

where V@+1 = · · · = V? = 0, (V1 = · · · = V@) = (3.75, 4.5, 5.25, 6, 6.75, 7.5, 8.25, 9, 9.75), and

@ = 10. -8 9 ’s were generated from the multivariate standard normal distribution for 1 ≤ 9 ≤ @ and

-8 9 = 38 9 + 1
@∑
;=1

-8; , 8 = 1, . . . , =,

for @ + 1 ≤ 9 ≤ ?, where 1 = (3/4@)1/2 and (38(@+1) , . . . , 38?) are generated from the multivariate

normal distribution with mean 0 and a covariance matrix with all of the diagonal entries being 1

and off-diagonal being 0.25, and are independent of -8 9 for 1 ≤ 9 ≤ @.
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Example 7: For each 8,

2XT
8 β = 2 ×

©­«
?∑
9=1

V 9-8 9
ª®¬ , 8 = 1, . . . , =,

where V 9 = 0.2 for 9 = 1, . . . , 7, 501, . . . , 508 and V 9 =0, otherwise. -8 9 ’s were generated from

the multivariate normal distribution for 1 ≤ 9 ≤ 500 with mean 0 and a covariance matrix with all

of the diagonal entries being 1, cov(-8 9 , -8 9 ′) = 0.9| 9− 9 ′ | for 1 ≤ j, j’ ≤ 15, and cov(-8 9 , -8 9 ′) = 0

for 16 ≤ j, j’ ≤ 500. -8 9 ’s were generated from the multivariate double exponential distribution for

501 ≤ 9 ≤ 508 with location parameter equal to 0 and a covariance matrix with all of the diagonal

entries being 1, and independent of -8 9 for 1 ≤ 9 ≤ 500.

Examples 1 and 3 were adopted from Wang [93], while Examples 2, 4, and 6 were borrowed

from Fan et al. [87], Hwang et al. [95], and Ing et al. [113], respectively. We then generated the

responses from the following three models.

Normal Model: .8 = 2XT
8
β + n8 with n8 ∼ # (0, 1).

Binomial Model: .8 ∼ Bernoulli( exp(2XT
8
β)/{1 + exp(2XT

8
β)}).

Poisson Model: .8 ∼ Poisson( exp(2XT
8
β)).

Our simulated examples cover a wide range of models (Normal, Binomial, Poisson), having

their covariates generated from various distributions (multivariate normal, exponential, double

exponential, uniform, and mixture) with diverse set of complex covariance structures (independent,

compound symmetry, autoregressive, unstructured) and comprised of strong and weak signals

including hidden features.

We considered = = 400 and ? = 1,000 throughout all of the examples. We specified the magnitude

of the coefficients in the GLMs with a constant multiplier, c. For Examples 1-7, this constant was

set, respectively for the Normal, Binomial and Poisson models, to be: (1, 1, 0.3), (1, 1.5, 0.3), (1, 1,

0.1), (1, 1.5, 0.3), (1, 3, 2), (1, 1, 1), and (1, 3, 2). For each parameter configuration, we simulated

500 independent data sets. We evaluated the performance of the methods by the criteria of true

positives (TP), false positives (FP), the estimated probability of including the true models (PIT),

the mean squared error (MSE) of β̂, and the mean squared prediction error (MSPE). To compute
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the MSPE, we randomly partitioned the samples into the training (75%) and testing (25%) sets.

The models obtained from the training datasets were used to predict the responses in the testing

datasets. Tables 3.2–3.4 report the average TP, FP, PIT, MSE, and MSPE over 500 datasets along

with the standard deviations. The findings are summarized below.

First, the proposed STEPWISE method was able to detect all the true signals with nearly zero FPs.

Specifically, in all of the Examples, STEPWISE outperformed the other methods by detecting more

TPs with fewer FPs, whereas LASSO, SIS+LASSO and dgLARS included much more FPs.

Second, though a smaller W in FR and SC led to the inclusion of all TPs with a PIT close to 1, it

incurred more FPs. On the other hand, a larger W may eliminate some TPs, resulting in a smaller

PIT and a larger MSPE.

Third, for the Normal model, the STEPWISE method yielded an MSE close to 0, the smallest

among all the competing methods. The Binary and Poisson data challenged all of the methods,

and the MSEs for all the methods were non-negligible. However, the STEPWISE method still

produced the lowest MSE. The results seemed to verify the consistency of β̂, which distinguished

the proposed STEPWISE method from the other regularized methods and highlighted its ability to

provide a more accurate means to characterize the effects of high dimensional predictors.

Fourth, for all three models, STEPWISE procedure demonstrated a vivid advantage over other

competing methods: for the Poisson model, it outperformed all methods by selecting the highest

number of TP and keeping FP at the low rate. In fact, SIS+LASSO failed to detect any TP while

including an incomparably high number of FP. High FP rates were observed in dgLARS method as

well. Similarly, for the Binomial model, STEPWISE selected almost all TPs while including near

zero FPs. LASSO, SIS+LASSO, and dgLARS selected a learge number of FPs while selecting less

TPs than our proposed method.
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Table 3.2: Normal model

Example Method TP FP PIT MSE MSPE

(×10−4)

1 (?0 = 8) LASSO(1SE) 8.00 (0.00) 5.48 (6.61) 1.00 (0.00) 2.45 1.148

LASSO(BIC) 8.00 (0.00) 2.55 (2.48) 1.00 (0.00) 2.58 1.172

SIS+LASSO(1SE) 8.00 (0.00) 6.59 (4.22) 1.00 (0.00) 1.49 1.042

SIS+LASSO(BIC) 8.00 (0.00) 6.04 (3.33) 1.00 (0.00) 1.37 1.025

dgLARS(BIC) 8.00 (0.00) 3.52(2.53) 1.00 (0.00) 2.25 1.130

SC (W!) 8.00 (0.00) 3.01 (1.85) 1.00 (0.00) 1.09 0.895

SC (W� ) 7.60 (1.59) 0.00 (0.00) 0.94 (0.24) 14.56 5.081

FR (W!) 8.00 (0.00) 2.96 (2.04) 1.00 (0.00) 1.08 0.896

FR (W� ) 7.88 (0.84) 0.00 (0.00) 0.98 (0.14) 3.74 2.040

STEPWISE 8.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.21 0.972

2 (?0 = 8) LASSO(1SE) 8.00 (0.00) 4.74 (4.24) 1.00 (0.00) 2.46 1.154

LASSO(BIC) 8.00 (0.00) 2.12 (2.02) 1.00 (0.00) 2.62 1.182

SIS+LASSO 7.99 (0.10) 6.84 (4.57) 0.99 (0.10) 1.65 1.058

SIS+LASSO(BIC) 7.99 (0.10) 6.11 (3.85) 0.99 (0.10) 1.56 1.041

dgLARS(BIC) 8.00 (0.00) 3.26(2.62) 1.00 (0.00) 2.28 1.138

SC (W!) 8.00 (0.00) 2.73 (1.53) 1.00 (0.00) 0.98 0.901

SC (W� ) 7.30 (2.11) 0.00 (0.00) 0.90 (0.30) 23.70 6.397

FR (W!) 8.00 (0.00) 2.45 (1.65) 1.00 (0.00) 0.92 0.907

FR (W� ) 7.94 (0.60) 0.00 (0.00) 0.99 (0.00) 2.69 2.062

STEPWISE 8.00 (0.00) 0.01 (0.10) 1.00 (0.00) 0.21 0.972

3 (?0 = 5) LASSO(1SE) 5.00 (0.00) 8.24 (2.63) 1.00 (0.00) 3.07 1.084

LASSO(BIC) 5.00 (0.00) 12.33 (3.28) 1.00 (0.00) 27.97 2.398

SIS+LASSO(1SE) 0.97 (0.26) 15.94 (2.93) 0.00 (0.00) 1406.22 76.024

SIS+LASSO(BIC) 0.97 (0.26) 16.20 (2.81) 0.00 (0.00) 1354.54 71.017

dgLARS(BIC) 5.00 (0.00) 53.91 (14.44) 1.00 (0.00) 6.63 0.979
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Table 3.2 (cont’d)

Example Method TP FP PIT MSE MSPE

(×10−4)

SC (W!) 4.48 (0.50) 0.25 (0.44) 0.48 (0.50) 21.74 3.086

SC (W� ) 4.48 (0.50) 0.14 (0.35) 0.48 (0.50) 21.70 2.065

FR (W!) 5.00 (0.00) 0.23 (0.66) 1.00 (0.00) 0.27 0.973

FR (W� ) 5.00 (0.00) 0.14 (0.35) 1.00 (0.00) 0.15 0.074

STEPWISE 5.00 (0.00) 0.03 (0.22) 1.00 (0.00) 0.18 0.976

4 (?0 = 14) LASSO(1SE) 14.00 (0.00) 29.84 (15.25) 1.00 (0.00) 13.97 1.148

LASSO(BIC) 13.94 (0.24) 4.92 (5.54) 0.94 (0.24) 38.69 1.995

SIS+LASSO(1SE) 11.44 (1.45) 15.19 (7.29) 0.05 (0.21) 133.38 4.714

SIS+LASSO(BIC) 11.35 (1.51) 10.98 (7.19) 0.05 (0.21) 137.06 4.940

dgLARS(BIC) 14.00 (0.00) 13.93 (6.68) 1.00 (0.00) 18.08 1.329

SC (W!) 13.68 (0.60) 0.86 (0.62) 0.75 (0.44) 11.80 1.148

SC (W� ) 4.20 (2.80) 0.03 (0.17) 0.03 (0.17) 407.86 6.567

FR (W!) 14.00 (0.00) 0.50 (0.76) 1.00 (0.00) 1.23 0.940

FR (W� ) 4.99 (3.07) 0.00 (0.00) 0.03 (0.17) 360.65 6.640

STEPWISE 14.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.91 0.958

5 (?0 = 3) LASSO(1SE) 3.00 (0.00) 22.76 (9.05) 1.00 (0.00) 1.01 0.044

LASSO(BIC) 3.00 (0.00) 8.29 (3.23) 1.00 (0.00) 1.75 0.054

SIS+LASSO(1SE) 3.00 (0.00) 8.40 (3.10) 1.00 (0.00) 0.44 0.041

SIS+LASSO(BIC) 3.00 (0.00) 9.58 (3.36) 1.00 (0.00) 0.29 0.040

dgLARS(BIC) 3.00 (0.00) 13.39 (4.94) 1.00 (0.00) 1.28 0.048

SC (W!) 3.00 (0.00) 1.47 (0.67) 1.00 (0.00) 0.03 0.038

SC (W� ) 2.01 (0.10) 0.01 (0.10) 0.01 (0.10) 4.51 0.008

FR (W!) 3.00 (0.00) 1.21 (1.01) 1.00 (0.00) 0.03 0.038

FR ( W� ) 3.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 0.003

STEPWISE 3.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 0.039
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Table 3.2 (cont’d)

Example Method TP FP PIT MSE MSPE

(×10−4)

6 (?0 = 10) LASSO(1SE) 10.00 (0.00) 46.23 (6.61) 1.00 (0.00) 37.70 1.50

LASSO(BIC) 9.86 (0.34) 59.05 (6.18) 0.86 (0.34) 698.70 13.82

SIS+LASSO(1SE) 0.00 (0.00) 37.53 (3.29) 0.00 (0.00) 4620.54 127.51

SIS+LASSO(BIC) 0.00 (0.00) 38.05 (3.21) 1.00 (0.00) 4644.21 118.64

dgLARS(BIC) 10.00 (0.00) 156.15 (26.47) 1.00 (0.00) 20.96 0.88

SC (W!) 2.99 (0.08) 1.41 (0.49) 0.00 (0.00) 2868.96 116.26

SC (W� ) 0.96 (1.26) 1.06 (0.23) 0.00 (0.00) 4775.34 51.16

FR (W!) 7.45 (0.08) 3.34 (0.33) 0.00 (0.00) 657.77 30.03

FR ( W� ) 1.48 (2.46) 2.00 (0.08) 0.00 (0.00) 4345.01 55.47

STEPWISE 7.45 (0.08) 2.11 (0.33) 0.00 (0.00) 653.07 29.05

7 (?0 = 15) LASSO(1SE) 14.71 (0.49) 8.64 (4.88) 0.73 (0.44) 0.77 1.16

LASSO(BIC) 14.67 (0.53) 6.57 (3.51) 0.71 (0.45) 0.76 1.16

SIS+LASSO(1SE) 13.45 (1.77) 10.16 (4.20) 0.38 (0.48) 1.32 1.07

SIS+LASSO(BIC) 13.44 (1.76) 9.55 (4.07) 0.36 (0.48) 1.34 1.05

dgLARS(BIC) 14.69 (0.51) 7.02 (3.54) 0.72 (0.45) 0.76 1.14

SC (W!) 11.12 (0.53) 3.01 (1.82) 0.00 (0.00) 3.34 0.94

SC (W� ) 3.19 (3.51) 0.06 (0.08) 0.00 (0.00) 5.97 14.17

FR (W!) 12.20 (0.60) 3.15 (2.00) 0.00 (0.00) 2.27 0.91

FR ( W� ) 6.64 (3.38) 0.01 (0.11) 0.00 (0.00) 6.49 12.43

STEPWISE 12.20 (0.08) 0.09 (0.29) 0.00 (0.00) 2.99 1.03
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Table 3.2 (cont’d)

Example Method TP FP PIT MSE MSPE

(×10−4)

Note: TP, true positives; FP, false positives; PIT, probability of including all true predictors in the selected

predictors; MSE, mean squared error of β̂; MSPE, mean squared prediction error; numbers in the parentheses

are standard deviations; LASSO(BIC), LASSO with the tuning parameter chosen to give the smallest BIC for

the models on the LASSO path; LASSO(1SE), LASSO with the tuning parameter chosen by the one-standard

-error rule; SIS+LASSO(BIC), sure independence screening by [87] followed by LASSO(BIC);

SIS+LASSO(1SE), sure independence screening followed by LASSO(1SE); dgLARS(BIC), differential geo-

metric least angle regression by [90, 91] with the tuning parameter chosen to give the smallest BIC on the

dgLARS path; SC(W), sequentially conditioning approach by [99]; FR(W), forward regression by [93];

STEPWISE, the proposed method; In FR and SC, the smaller and large values of W are presented as W! and

W� , respectively; ?0 denotes the number of true signals; LASSO(1SE), LASSO(BIC), SIS, and dgLARS

were conducted via R packages glmnet [127], ncvreg [128], screening [129], and dglars [130], respectively.

Table 3.3: Binomial model

Example Method TP FP PIT MSE MSPE

1 (?0 = 8) LASSO(1SE) 7.99 (0.10) 4.77 (5.56) 0.99 (0.10) 0.021 0.104

LASSO(BIC) 7.99 (0.10) 3.19 (2.34) 0.99 (0.10) 0.021 0.104

SIS+LASSO(1SE) 7.94 (0.24) 35.42 (6.77) 0.94 (0.24) 0.119 0.048

SIS+LASSO(BIC) 7.94 (0.24) 16.83 (21.60) 0.94 (0.24) 0.119 0.073

dgLARS(BIC) 8.00 (0.00) 3.27 (2.29) 1.00 (0.00) 0.019 0.102

SC (W!) 8.00 (0.00) 2.81 (1.47) 1.00 (0.00) 0.009 0.073

SC (W� ) 1.02 (0.14) 0.00 (0.00) 0.00 (0.00) 0.030 0.028
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Table 3.3 (cont’d)

Example Method TP FP PIT MSE MSPE

FR (W!) 8.00 (0.00) 3.90 (2.36) 1.00 (0.00) 0.032 0.066

FR (W� ) 2.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.025 0.027

STEPWISE 7.98 (0.14) 0.08 (0.53) 0.98 (0.14) 0.002 0.094

2 (?0 = 8) LASSO(1SE) 7.98 (0.14) 3.29 (2.76) 0.98 (0.14) 0.054 0.073

LASSO(BIC) 7.99 (0.10) 3.84 (2.72) 0.99 (0.10) 0.052 0.067

SIS+LASSO(1SE) 7.92 (0.27) 28.20 (7.31) 0.92 (0.27) 0.038 0.030

SIS+LASSO(BIC) 7.92 (0.27) 9.60 (12.92) 0.92 (0.27) 0.051 0.058

dgLARS(BIC) 7.99 (0.10) 3.94 (2.65) 0.99 (0.10) 0.050 0.067

SC (W!) 7.72 (0.45) 0.39 (0.49) 0.72 (0.45) 0.005 0.063

SC (W� ) 1.13 (0.37) 0.00 (0.00) 0.00 (0.00) 0.069 0.044

FR (W!) 7.99 (0.10) 0.66 (0.76) 0.99 (0.10) 0.014 0.051

FR (W� ) 2.10 (0.30) 0.00 (0.00) 0.00 (0.00) 0.061 0.033

STEPWISE 7.99 (0.10) 0.02 (0.14) 0.99 (0.10) 0.004 0.056

3 (?0 = 5) LASSO(1SE) 4.51 (0.52) 7.36 (2.57) 0.52 (0.50) 0.155 0.051

LASSO(BIC) 4.98 (0.14) 5.97 (2.25) 0.98 (0.14) 0.118 0.037

SIS+LASSO(1SE) 0.85 (0.46) 10.66 (3.01) 0.00 (0.00) 0.206 0.186

SIS+LASSO(BIC) 0.85 (0.46) 12.10 (3.13) 0.00 (0.00) 0.197 0.185

dgLARS(BIC) 4.92 (0.27) 16.21 (6.21) 0.92 (0.27) 0.112 0.035

SC (W!) 4.32 (0.49) 0.47 (0.50) 0.33 (0.47) 0.016 0.048

SC (W� ) 2.62 (1.34) 0.42 (0.50) 0.00 (0.00) 0.104 0.066

FR (W!) 4.98 (0.14) 0.67 (0.79) 0.98 (0.14) 0.020 0.033

FR (W� ) 2.98 (0.95) 0.40 (0.49) 0.00 (0.00) 0.087 0.043

STEPWISE 4.97 (0.17) 0.04 (0.28) 0.97 (0.17) 0.014 0.034
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Table 3.3 (cont’d)

Example Method TP FP PIT MSE MSPE

4 (?0 = 14) LASSO(1SE) 9.96 (1.89) 6.78 (7.92) 0.01 (0.01) 0.112 0.107

LASSO(BIC) 9.33 (1.86) 2.79 (2.87) 0.00 (0.00) 0.112 0.118

SIS+LASSO(1SE) 10.03 (1.62) 28.01 (9.54) 0.03 (0.17) 0.098 0.070

SIS+LASSO(BIC) 8.90 (1.99) 5.42 (10.64) 0.01 (0.10) 0.114 0.120

dgLARS(BIC) 9.31 (1.85) 2.84 (2.86) 0.00 (0.00) 0.110 0.117

SC (W!) 9.48 (1.40) 2.35 (2.14) 0.00 (0.00) 0.043 0.070

SC (W� ) 1.17 (0.40) 0.00 (0.00) 0.00 (0.00) 0.125 0.049

FR (W!) 11.83 (1.39) 1.58 (1.60) 0.09 (0.29) 0.026 0.048

FR (W� ) 2.06 (0.24) 0.00 (0.00) 0.00 (0.00) 0.119 0.032

STEPWISE 11.81 (1.42) 1.52 (1.58) 0.09 (0.29) 0.026 0.048

5 (?0 = 3) LASSO(1SE) 2.00 (0.00) 1.55 (1.76) 0.00 (0.00) 0.008 0.215

LASSO(BIC) 2.00 (0.00) 1.86 (1.57) 0.00 (0.00) 0.008 0.213

SIS+LASSO(1SE) 2.23 (0.42) 10.81 (6.45) 0.23 (0.42) 0.007 0.192

SIS+LASSO(BIC) 2.10 (0.30) 3.60 (4.65) 0.10 (0.30) 0.007 0.206

dgLARS(BIC) 2.00 (0.00) 1.64 (1.49) 0.00 (0.00) 0.008 0.213

SC (W! ) 2.27 (0.49) 7.16 (3.20) 0.29 (0.46) 0.060 0.166

SC (W� ) 1.87 (0.34) 0.03 (0.17) 0.00 (0.00) 0.005 0.030

FR (W!) 2.96 (0.20) 8.88 (5.39) 0.96 (0.20) 0.013 0.147

FR ( W� ) 1.97 (0.17) 0.03 (0.17) 0.00 (0.00) 0.005 0.019

STEPWISE 2.89 (0.31) 0.76 (1.70) 0.89 (0.31) 0.001 0.194

6 (?0 = 10) LASSO(1SE) 6.10 (1.08) 31.66 (4.63) 0.00 (0.00) 0.41 0.07

LASSO(BIC) 7.88 (0.97) 30.41 (4.63) 0.02 (0.16) 0.38 0.05
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Table 3.3 (cont’d)

Example Method TP FP PIT MSE MSPE

SIS+LASSO(1SE) 0.00 (0.00) 28.40 (3.61) 0.00 (0.00) 0.45 0.15

SIS+LASSO(BIC) 0.00 (0.00) 30.18 (3.24) 0.00 (0.00) 0.45 0.14

dgLARS(BIC) 4.12 (2.29) 32.37 (7.61) 0.00 (0.00) 0.42 0.09

SC (W! ) 7.71 (0.58) 2.95 (0.95) 0.00 (0.00) 0.19 0.05

SC (W� ) 0.00 (0.00) 1.00 (0.00) 0.00 (0.00) 0.45 0.02

FR (W!) 8.52 (0.89) 3.24 (1.15) 0.00 (0.00) 0.09 0.04

FR ( W� ) 0.12 (0.32) 1.88 (0.32) 0.00 (0.00) 0.45 0.01

STEPWISE 8.52 (0.92) 0.58 (0.77) 0.00 (0.00) 0.09 0.04

7 (?0 = 15) LASSO(1SE) 9.80 (1.14) 5.60 (4.29) 0.00 (0.00) 0.01 0.04

LASSO(BIC) 9.74 (1.11) 4.68 (2.63) 0.00 (0.00) 0.01 0.04

SIS+LASSO(1SE) 10.67 (1.39) 25.17 (5.85) 0.00 (0.00) 0.04 0.02

SIS+LASSO(BIC) 10.62 (1.64) 24.02 (15.84) 0.00 (0.00) 0.01 0.01

dgLARS(BIC) 9.84 (1.08) 4.58 (2.45) 0.00 (0.00) 0.01 0.04

SC (W! ) 8.92 (0.53) 1.75 (0.94) 0.00 (0.00) 0.01 0.02

SC (W� ) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 0.02

FR (W!) 9.56 (0.58) 1.52 (0.92) 0.00 (0.00) 0.07 0.02

FR ( W� ) 2.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 0.02

STEPWISE 9.50 (0.54) 0.67 (0.83) 0.00 (0.00) 0.04 0.02

Note: Abbreviations are explained in the footnote of Table 3.2.
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Table 3.4: Poisson model

Example Method TP FP PIT MSE MSPE

1 (?0 = 8) LASSO(1SE) 7.93 (0.43) 4.64 (4.82) 0.96 (0.19) 0.001 4.236

LASSO(BIC) 7.99 (0.10) 14.37 (14.54) 0.99 (0.10) 0.001 3.133

SIS+LASSO(1SE) 7.89 (0.37) 25.37 (8.39) 0.91 (0.29) 0.001 3.247

SIS+LASSO(BIC) 7.89 (0.37) 17.77 (11.70) 0.91 (0.29) 0.001 3.078

dgLARS(BIC) 8.00 (0.00) 13.28 (14.31) 1.00 (0.00) 0.001 3.183

SC (W!) 7.96 (0.20) 4.94 (3.46) 0.96 (0.20) 0.001 2.874

SC (W� ) 5.05 (1.70) 0.04 (0.24) 0.07 (0.26) 0.001 3.902

FR (W!) 7.93 (0.26) 4.86 (3.73) 0.93 (0.26) 0.001 2.837

FR (W� ) 5.13 (1.61) 0.06 (0.31) 0.07 (0.26) 0.001 3.833

STEPWISE 7.91 (0.29) 2.77 (2.91) 0.91 (0.29) 0.001 3.410

2 (?0 = 8) LASSO(1SE) 8.00 (0.00) 2.23 (3.52) 1.00 (0.00) 0.001 3.981

LASSO(BIC) 8.00 (0.00) 8.98 (8.92) 1.00 (0.00) 0.001 3.107

SIS+LASSO(1SE) 7.98 (0.14) 22.85 (7.08) 0.98 (0.14) 0.001 2.824

SIS+LASSO(BIC) 7.98 (0.14) 13.55 (8.24) 0.98 (0.14) 0.001 2.937

dgLARS(BIC) 8.00 (0.00) 8.91 (9.10) 1.00 (0.00) 0.001 3.099

SC (W!) 8.00 (0.00) 3.89 (2.89) 1.00 (0.00) 0.000 2.979

SC (W� ) 5.68 (1.45) 0.00 (0.00) 0.12 (0.33) 0.001 3.971

FR (W!) 8.00 (0.00) 3.60 (2.80) 1.00 (0.00) 0.000 3.032

FR (W� ) 5.71 (1.42) 0.00 (0.00) 0.10 (0.30) 0.001 3.911

STEPWISE 7.98 (0.14) 2.00 (2.23) 0.98 (0.14) 0.000 3.589

3 (?0 = 5) LASSO(1SE) 4.37 (0.51) 6.88 (2.61) 0.38(0.48) 0.001 1.959

LASSO(BIC) 4.79 (0.41) 5.62 (2.17) 0.79 (0.41) 0.000 2.044
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Table 3.4 (cont’d)

Example Method TP FP PIT MSE MSPE

SIS+LASSO(1SE) 0.86 (0.47) 10.11 (2.55) 0.00 (0.00) 0.002 3.266

SIS+LASSO(BIC) 0.86 (0.47) 11.86 (2.99) 0.00 (0.00) 0.002 3.160

dgLARS(BIC) 4.55 (0.51) 18.29 (6.13) 0.56 (0.49) 0.001 1.877

SC (W!) 4.73 (0.45) 0.53 (0.66) 0.73 (0.45) 0.000 2.479

SC (W� ) 2.84 (0.63) 0.40 (0.49) 0.00 (0.00) 0.001 0.664

FR (W!) 4.54 (0.52) 1.98 (2.19) 0.55 (0.50) 0.000 2.128

FR (W� ) 2.71 (0.70) 0.43 (0.50) 0.00 (0.00) 0.001 0.605

STEPWISE 4.54 (0.52) 1.77 (2.01) 0.55 (0.50) 0.000 2.132

4 (?0 = 14) LASSO(1SE) 10.01 (1.73) 3.91 (6.03) 0.01 (0.10) 0.003 15.582

LASSO(BIC) 12.11 (1.46) 36.56 (22.43) 0.19 (0.39) 0.002 5.688

SIS+LASSO(1SE) 10.42 (1.66) 21.41 (8.87) 0.03 (0.17) 0.003 11.316

SIS+LASSO(BIC) 10.73 (1.66) 32.67 (8.92) 0.03 (0.17) 0.003 8.545

dgLARS(BIC) 12.05 (1.52) 38.70 (28.97) 0.18 (0.38) 0.002 5.111

SC (W!) 10.33 (1.63) 10.48 (6.66) 0.02 (0.14) 0.002 4.499

SC (W� ) 5.32 (1.92) 0.52 (1.37) 0.00 (0.00) 0.003 14.005

FR (W!) 12.00 (1.71) 8.93 (6.36) 0.23 (0.42) 0.001 4.503

FR (W� ) 5.65 (2.13) 0.38 (1.15) 0.00 (0.00) 0.003 13.802

STEPWISE 11.80 (1.72) 5.97 (5.37) 0.19 (0.39) 0.001 5.809

5 (?0 = 3) LASSO(1SE) 2.00 (0.00) 1.13 (2.85) 0.00 (0.00) 0.003 2.674

LASSO(BIC) 2.01 (0.10) 2.82 (2.52) 0.01 (0.10) 0.003 2.583

SIS+LASSO(1SE) 2.87 (0.34) 9.28 (3.85) 0.87 (0.34) 0.002 2.455

SIS+LASSO(BIC) 2.87 (0.34) 9.88 (4.29) 0.87 (0.34) 0.002 2.355

dgLARS(BIC) 2.00 (0.00) 2.88 (2.38) 0.00 (0.00) 0.003 2.562

Continued on next page
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Table 3.4 (cont’d)

Example Method TP FP PIT MSE MSPE

SC (W!) 2.75 (0.44) 3.27 (1.75) 0.75 (0.44) 0.001 2.339

SC (W� ) 2.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.003 1.086

FR (W!) 3.00 (0.00) 2.80 (1.73) 1.00 (0.00) 0.001 2.326

FR (W� ) 2.40 (0.49) 0.00 (0.00) 0.40 (0.49) 0.002 0.981

STEPWISE 3.00 (0.00) 0.35 (0.59) 1.00 (0.00) 0.001 2.977

6 (?0 = 10) LASSO(1SE) 6.08 (1.16) 32.54 (4.83) 0.00 (0.00) 0.01 7.64

LASSO(BIC) 8.15 (0.94) 37.56 (7.96) 0.06 (0.23) 0.01 5.93

SIS+LASSO(1SE) 0.00 (0.00) 26.34 (3.87) 0.00 (0.00) 0.01 12.27

SIS+LASSO(BIC) 0.00 (0.00) 28.03 (4.29) 0.00 (0.00) 0.01 12.06

dgLARS(BIC) 8.42 (1.22) 75.21 (15.56) 0.21 (0.41) 0.01 4.55

SC (W!) 9.45 (0.72) 9.80 (3.12) 0.76 (0.42) 0.00 4.77

SC (W� ) 3.73 (1.73) 2.15 (0.45) 0.00 (0.00) 0.01 3.43

FR (W!) 9.54 (1.05) 11.26 (2.97) 0.55 (0.50) 0.01 4.42

FR (W� ) 2.85 (1.85) 2.70 (0.57) 0.00 (0.00) 0.01 3.28

STEPWISE 9.54 (1.05) 4.30 (2.03) 0.55 (0.50) 0.01 6.01

7 (?0 = 15) LASSO(1SE) 11.98 (2.20) 4.00 (3.56) 0.12 (0.32) 0.01 20.71

LASSO(BIC) 14.93 (0.29) 51.44 (11.68) 0.94 (0.23) 0.00 7.17

SIS+LASSO(1SE) 12.51 (1.20) 17.32 (5.91) 0.03 (0.18) 0.00 15.24

SIS+LASSO(BIC) 12.50 (1.29) 33.31 (7.69) 0.05 (0.23) 0.01 11.93

dgLARS(BIC) 14.94 (0.27) 56.10 (17.38) 0.95 (0.20) 0.00 6.58

SC (W!) 12.65 (1.43) 20.94 (4.47) 0.08 (0.28) 0.00 3.92

SC (W� ) 6.55 (1.98) 0.54 (0.84) 0.00 (0.00) 0.00 5.67

FR (W!) 13.60 (1.12) 19.11 (4.03) 0.21 (0.41) 0.00 3.96

Continued on next page
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Table 3.4 (cont’d)

Example Method TP FP PIT MSE MSPE

FR (W� ) 7.13 (1.87) 0.31 (0.55) 0.00 (0.00) 0.00 6.54

STEPWISE 13.54 (1.31) 5.30 (3.12) 0.21 (0.39) 0.00 9.23

Note: Abbreviations are explained in the footnote of Table 3.2.

3.6 Applications: Real Data Analysis

3.6.1 A Study of Gene Regulation in the Mammalian Eye

To demonstrate the utility of our proposed method, we analyzed a microarray dataset from Scheetz

et al. [41] with 120 twelve-week male rats selected for eye tissue harvesting. The dataset contained

more than 31,042 different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array); see

Scheetz et al. [41] for a more detailed description of the data.

Although our method was applicable to the original 31,042 probe sets, many probes turned out to

have very small variances and were unlikely to be informative for correlative analyses. Therefore,

using variance as the screening criterion, we selected 5,000 genes with the largest variances in

expressions and correlated them with gene TRIM32 that has been found to cause Bardet-Biedl

syndrome, a genetically heterogeneous disease of multiple organ systems including the retina [42].

We applied the proposed STEPWISE method to the dataset with n = 120 and p = 5,000, and treated

the TRIM32 gene expression as the response variable and the expressions of 5,000 genes as the

predictors. With no prior biological information available, we started with the empty set. To choose

[1 and [2, we carried out 5-fold cross-validation to minimize the mean squared prediction error

(MSPE) by using the following grid search: [1 = {0, 0.25, 0.5, 1} and [2 = {1, 2, 3, 4, 5}, and set

[1 = 1 and [2 = 4. We also performed the same procedure to choose the W for FR and SC. The

regularization parameters in LASSO and dgLARS were selected to minimize BIC values.
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In the forward step, STEPWISE selected the probes of 1376747_at, 1381902_at, 1382673_at and

1375577_at, and the backward step eliminated probe 1375577_at. The STEPWISE procedure

produced the following final predictive model:

TRIM32 = 4.6208 + 0.2310 × (1376747_at) + 0.1914 × (1381902_at) + 0.1263 × (1382673_at).

Table A.1 in Appendix A presents the numbers of overlapping genes among competing methods.

It shows that the two out of three probes, 1381902_at and 1376747_at, selected from our method

are also discovered by the other methods, except for dgLARS.

Next, we performed Leave-One-Out Cross-Validation (LOOCV) to obtain the distribution of the

model size (MS) and MSPE for the competing methods. As reported in Table 3.5 and Figure 3.1,

LASSO, SIS+LASSO and dgLARS tended to select more variables than the forward approaches

and STEPWISE. Among all of the methods, STEPWISE selected the fewest variables but with

almost the same MSPE as the other methods.
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Figure 3.1: Box plot of model sizes for each method over 120 different training samples from the
mammalian eye data set. STEPWISE was performed with [1 = 1 and [2 = 4, and FR and SC were
conducted with W = 1.
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Table 3.5: Comparisons of MSPE between competing methods using the mammalian eye data set.

STEPWISE FR LASSO SIS+LASSO SC dgLARS
Training set 0.005 0.005 0.005 0.006 0.005 0.014
Testing set 0.011 0.012 0.010 0.009 0.014 0.020

Note: The mean squared prediction error (MSPE) was averaged over 120 splits. LASSO, least absolute
shrinkage and selection operator with regularization parameter that gives the smallest BIC; SIS+LASSO, sure
independence screening by [87] followed by LASSO; dgLARS, differential geometric least angle regression
by [90, 91] that gives the smallest BIC; SC(W), sequentially conditioning approach by [99]; FR(W), forward
regression by [93]; STEPWISE, the proposed method. STEPWISE was performed with [1 = 1 and [2 = 4,
FR and SC were performed with W = 1.

3.6.2 An Esophageal Squamous Cell Carcinoma Study

Esophageal squamous cell carcinoma (ESCC), the most common histological type of esophageal

cancer, is known to be associated with poor overall survival, making early diagnosis crucial for

treatment and disease management [47]. Several studies have investigated the roles of circulating

microRNAs (miRNAs) in diagnosis of ESCC [45].

Using a clinical study that investigated the roles of miRNAs on the ESCC [57], we aimed to

use miRNAs to predict ESCC risks and estimate their impacts on the development of ESCC.

Specifically, with a dataset of serum profiling of 2,565 miRNAs from 566 ESCC patients and

4,965 controls without cancer, we demonstrated the utility of the proposed STEPWISE method

in predicting ESCC with miRNAs. To proceed, we used a balance sampling scheme (283 cases

and 283 controls) in the training dataset. The design of yielding an equal number of cases and

controls in the training set has proved to be useful [57] for handling imbalanced outcomes as we

encountered here. To validate our findings, samples were randomly divided into a training (=1 =

566, ? = 2,565) and testing set (=2 = 4,965, ? = 2,565).

The training set consisted of 283 patients with ESCC (median age of 65 years, 79% male) and 283

control patients (median age of 68 years, 46.3% male), and the testing set consisted of 283 patients

with ESCC (median age of 67 years, 85.7% male) and 4,682 control patients (median age of 67.5

years, 44.5% male). Control patients without ESCC came from three sources: 323 individuals
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fromNational Cancer Center Biobank (NCCB); 2,670 individuals from the Biobank of the National

Center for Geriatrics and Gerontology (NCGG); and 1,972 individuals from Minoru Clinic (MC).

More detailed characteristics of cases and controls in the training and testing sets are given in Table

A.4.

We defined the binary outcome variable to be 1 if the subject was a case and 0 otherwise. As

age and gender (0 = female, 1 = male) are important risk factors for ESCC [131, 132] and it is

common to adjust for them in clinical models, we set the initial set in STEPWISE to be �0 = {age,

gender}. With [1 = 0 and [2 = 3.5 that were also chosen from 5-fold CV, our procedure recruited

three miRNAs. More specifically, miR-4783-3p, miR-320b, miR-1225-3p and miR-6789-5p were

selected among 2,565 miRNAs by the forward stage from the training set, and then the backward

stage eliminated miR-6789-5p. In comparison, with W = 0, both FR and SC selected four miRNAs,

miR-4783-3p, miR-320b, miR-1225-3p, and miR-6789-5p.

The list of selected miRNAs by different methods is given in Table A.2 in Appendix A. Our findings

were biologically meaningful, as the selected miRNAs had been identified by other cancer studies

as well. Specifically, miR-320b was found to promote colorectal cancer proliferation and invasion

by competing with its homologous miR-320a [133]. In addition, serum levels of miR-320 family

members were associated with clinical parameters and diagnosis in prostate cancer patients [134].

Mullany et al. [135] showed that miR-4783-3p was one of the miRNAs that could increase the risk

of colorectal cancer death among rectal cancer cases. Finally, miR-1225-5p inhibited proliferation

and metastasis of gastric carcinoma through repressing insulin receptor substrate-1 and activation

of V-catenin signaling [136].

Aiming to identify a final model without resorting to a pre-screening procedure that may miss out

on important biomarkers, we applied STEPWISE to reach the following predictive model for ESCC

based on patients’ demographics and miRNAs:

logit−1(−35.70 + 1.41 × miR-4783-3p + 0.98 × miR-320b + 1.91 × miR-1225-3p + 0.10 × Age −

2.02 × Gender), where logit−1(G) = exp(G)/(1 + exp(G)).

In the testing dataset, the model had an area under the receiver operating curve (AUC) of 0.99 and
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achieved a high accuracy of 0.96, with a sensitivity and specificity of 0.97 and 0.95, respectively.

Also using the testing cohort, we evaluated the performance of the models sequentially selected

by STEPWISE. Starting with a model containing age and gender, STEPWISE selected miR-

4783-3p, miR-320b and miR-1225-3p in turn. Figure 3.3, showing the corresponding receiver

operating curves (ROC) for these sequential models, revealed the improvement by sequentially

adding predictors to the model and justified the importance of these variables in the final model. In

addition, Figure 3.3 (e) illustrated that adding an extra miRNA selected by FR and SC made little

improvement of the model’s predictive power.

Furthermore, we conducted subgroup analysis within the testing cohort to study how the sensitivity

of the final model differed by cancer stage, one of the most important risk factors. The sensitivity

for stages 0, i.e., non-invasive cancer, 9 (= = 27), 1 (= = 128), 2 (= = 57), 3 (= = 61), and 4

(= = 10) was 1.00, 0.98, 0.97, 0.97, and 1.00, respectively. We next evaluated how the specificity

varied across controls coming from different data sources. The specificity for the various control

groups, namely, NCCB (= = 306), NCGG (= = 2,512), and MC (= = 1,864), was 0.99, 0.99, and

0.98, respectively. The results indicated the robust performance of the miRNA-based model toward

cancer stages as well as data sources.

Finally, to compare STEPWISE with the other competing methods, we repeatedly applied the

aforementioned balance sampling procedure and split the ESCC data into the training and testing

sets 100 times. We obtained MSPE and the average of accuracy, sensitivity, specificity, and

AUC. Figure 3.2 reported the model size of each method. Though STEPWISE selected fewer

variables compared to the other variable selection methods (for example, LASSO selected 11-

31 variables and dgLARS selected 12-51 variables), it achieved comparable prediction accuracy,

specificity, sensitivity and AUC (see Table 3.6), evidencing the utility of STEPWISE for generating

parsimonious models while maintaining competitive predictability.

We used R software [137] to obtain the numerical results in Sections 4 and 5 with following

packages: ggplot2 [138], ncvreg [128], glmnet [127], dglars [130], and screening [129].
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Figure 3.2: Box plot of model sizes for each method based on 100 ESCC training datasets.
Performance of STEPWISE is reported with [1 = 0 and [2 = 3.5. Performance of SC and FR are
reported with W = 0.

Table 3.6: Comparisons of competing methods over 100 independent splits of the ESCC data into
training and testing sets

Training set MSPE Accuracy Sensitivity Specificity AUC
STEPWISE 0.02 0.97 0.98 0.97 1.00
SC 0.01 0.99 0.98 0.98 1.00
FR 0.02 0.99 0.97 0.97 1.00
LASSO 0.01 0.98 1.00 0.97 1.00
SIS+LASSO 0.01 0.99 1.00 0.99 1.00
dgLARS 0.04 0.96 0.99 0.94 1.00
Test set MSPE Accuracy Sensitivity Specificity AUC
STEPWISE 0.04 0.96 0.97 0.95 0.99
SC 0.03 0.96 0.97 0.96 0.99
FR 0.04 0.96 0.97 0.95 0.99
LASSO 0.03 0.96 0.99 0.95 1.00
SIS+LASSO 0.02 0.97 0.99 0.96 1.00
dgLARS 0.05 0.94 0.98 0.94 1.00

Note: Values are averaged over 100 splits. STEPWISE was performed with [1 = 0 and [2 = 1. SC and
FR were performed with W = 1. The regularization parameters in LASSO and dgLARS were selected to
minimize the BIC.
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(a) Model 1, AUC= 0.71 (b) Model 2, AUC=0.97

(c) Model 3, AUC=0.98 (d) Model 4, AUC=0.99

(e) Model 5, AUC=0.99

Figure 3.3: Comparisons of ROC curves for the selected models in the ESCC data set by the
sequentially selected order. Model 1 includes Age and Gender feature, and the following features
are sequnatially added to the model: miR-4783-3p, miR-320b, miR-1225-3p, miR-6789-5p.
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3.6.3 Neurobehavioral Impairment from Total Sleep Deprivation

In this study we aim to explore gene expression biomarker candidates for neurobehavioral impair-

ment from total sleep deprivation. Specifically, using a clinical study, we investigate the role of

genes on the Total Sleep Deprivation (TSD) and we use these biomarkers, that is, gene expressions,

to predict TSD and estimate their effect on the development of TSD.

To perform analysis, data was obtained from NCBI GEO online repository, accession GSE98582.

Blood samples were obtained from 17 healthy adults (ages 22–37, 7 females) who were not using

drugs. Subjects remained in the sleep laboratory at the Sleep and Performance Research Center

of Washington State University (Spokane, WA) for six consecutive nights. Meals were semi-

standardized with selection from among a limited number of menu options; blood draws were

performed immediately prior to meals. Blood samples were collected with an intravenous catheter

approximately every 4 h during time awake on days two, four, and six. At each of the 12 timepoints,

2.5 mL blood was collected in a PAXgene™ Blood RNA tube, and the number of lapses per test

bout was recorded from a 10 min PVT assay. Overall, the dataset contains 555 samples and 8284

gene features.

We define the binary outcome variable to be 1 if a sample corresponds to the case when TSD is

observed and 0 otherwise. Total, 342 samples with TSD and 213 controls (without TSD) were

taken. Further, we split the dataset into training and testing sets in order to perform the data analysis.

To preserve the underlying distribution of the response variable, a stratified sampling technique

was implemented. We kept 70% of data in the training set (389 samples with 8284 features) and

the remaining 30% (166 samples with 8284 features) was used for model validation.

With [1 = 0.5 and [2 = 3 that were chosen from 5-fold cross-validation, the STEPWISE procedure

recruited five genes. Particularly, PF4V1, USP32P1, EMR1, NBR2, and DUSP23 were selected

among 8284 genes. In addition, our procedure was applied to identify a final model for predicting

TSD based on gene biomarkers. As a result, the following model was produced:

logit−1(−322.02 + 13.01 × PF4V1 − 9.96 ×USP32P1 + 15.17 × EMR1 + 17.66 × NBR2 + 15.34 ×

DUSP23), where logit−1(G) = exp(G)/(1 + exp(G)).
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In the testing dataset, the final model had an area under the receiver operating curve (AUC) of

0.997 and achieved an accuracy of 0.983, with a sensitivity and specificity of 0.991 and 0.972,

respectively. To compare STEPWISE with other competing methods, we repeatedly applied the

aforementioned sampling procedure and split the dataset into training and testing sets 100 times.

We obtainedMSPE, the average of accuracy, sensitivity, specificity, andAUC. Figure 3.4 reports the

model size of each method. Again, we observe that although STEPWISE procedure selects fewer

variables that other methods, it achieves comparable prediction accuracy, specificity, sensitivity,

and AUC. The results are presented in the Table 3.7.

Figure 3.4: Box plot of model sizes for each method based on 100 total sleep deprivation training
datasets. Performance of STEPWISE is reported with [1 = 0.5 and [2 = 3. Performance of SC and
FR are reported with W = 0.5
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Table 3.7: Comparisons of competing methods over 100 independent splits of the Total Sleep
Deprivation data into training and testing sets

Training set MSPE Accuracy Sensitivity Specificity AUC
STEPWISE 0.02 0.98 0.98 0.97 0.99
SC 0.01 0.98 0.98 0.98 1.00
FR 0.02 0.98 0.98 0.97 0.99
LASSO 0.00 1.00 1.00 1.00 1.00
SIS+LASSO 0.00 1.00 1.00 1.00 1.00
dgLARS 0.07 0.91 0.92 0.89 0.95
Test set MSPE Accuracy Sensitivity Specificity AUC
STEPWISE 0.04 0.97 0.96 0.94 0.98
SC 0.03 0.96 0.97 0.95 0.99
FR 0.04 0.97 0.96 0.94 0.98
LASSO 0.01 0.98 0.98 0.99 1.00
SIS+LASSO 0.01 0.99 0.99 0.98 1.00
dgLARS 0.08 0.88 0.90 0.86 0.95

Note: Values are averaged over 100 splits. STEPWISE was performed with [1 = 0.5 and [2 = 3. SC and
FR were performed with W = 0.5. The regularization parameters in LASSO and dgLARS were selected to
minimize the BIC.
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CHAPTER 4

MULTI-STAGE HYBRID MACHINE LEARNING METHOD

4.1 Machine Learning Ensemble Methods: Categories and Types

In Machine Learning, ensemble methods are used to achieve better predictive performance by

combining predictions from multiple models instead of using a single model [139]. These methods

tend to provide better results when the models used in ensemble methods are significantly diverse

[140, 141]. Ensemble methods are mainly divided into two categories: sequential ensemble

techniques and parallel ensemble techniques. Former generates base-learners (each method used

in the model) in a sequence making them dependent on one another. The model performance

tends to improve by assigning higher weights to previously misrepresented learners. In contrast,

parallel ensemble techniques generate base learners in a parallel. This is done in order to introduce

independence among base learners, which significantly reduces the error due to averaging the

results obtained from base learner models.

Besides being divided into categories, ensemble methods can be distinguished by their types.

The most popular and well-known types are Bagging, Boosting, and Stacking methods. Bagging

methods train each base learner on a different sample of a training dataset (normally, these are

bootstrap samples taken from the original training dataset). Predictions made by each of ensemble

members are then combined by averaging the results, which is done to incorporate all possible

outcomes of the prediction and randomize the outcome [142]. In order to improve the predictive

power of themodel, boosting ensemble technique learns frommistakesmade by previous predictors.

It adds predictors to the model sequentially, where successor predictors correct mistakes of the

preceding predictors [143]. The gradient decent algorithm is used to identify points that need

improvement the most.

Finally, Stacking technique (also known as stacked generalization) trains a learning algorithm to

combine predictions of multiple other learning algorithms. It makes a final prediction by using

76



the predictions made by other algorithms, that is, output values of these methods become the input

values of the stacked model. In this chapter, we will utilize parallel ensemble techniques and

improve the performance of the STEPWISE algorithm. All methods used in the final model are

discussed in subsequent sections.

4.2 A Review on Existing Methods

In this sectionwe propose and describemethods included in themulti-stage hybridmachine learning

model. They can be divided into two groups: model-based and model-free methods. Model-based

methods specifically define the relationship between the response and explanatory variables (also

known as predictors) via a certain link function. These models are considered to have a math-

ematical structure and involve various parameters that need to be estimated based on observed

data. In addition, these models are accompanied by a set of statistical assumptions such as an

underlying distribution of the response variable, relationship among predictors (mainly concerning

their independence), variability of data, and etc.

It becomes crucial to satisfy those assumptions as it guarantees the reliability of results. Thus,

implementation of model-based methods should be done by carefully examining and confirming

validity of the model assumptions and choosing the appropriate link function. Due to straightfor-

ward interpretation and relatively small model complexity, model-based methods gained popularity

among practitioners. We selected least absolute shrinkage and selection operator (LASSO) and our

proposed STEPWISE method to represent model-based methods in the model.

In contrast, model-free methods do not make any assumptions on the parametric form of the under-

lying model explicitly. In other words, they adapt to the data characteristics without pre-specified

model structure. Model-free algorithms are designed to automatically learn, adjust their actions

and improve results with minimal or no human intervention. These algorithms help to gain some

insights from data and enable to build right predictions and minimize chances of making any kind

of errors. Given complex data, model-free methods are able to construct non-parametric repre-

sentations (also known as non-parametric models). These methods develop their models based on
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constant learning and retraining.

Normally, model-free methods are used in problems where mathematical models are unavailable

or hard to construct. Therefore, almost all model-free methods have some optimization techniques

at their core. For instance, gradient decent optimization algorithm is commonly used in many

non-parametric methods. As a result, model-free methods tend to achieve high accuracy in their

predictions and are successfully used with complex data. We selected several such methods to

include in our model. Specifically, random forest (RF), support vector machine (SVM), extreme

gradient boosting machine (XGBoost), and artificial neural network(ANN).

These methods are just selective examples of many other methods that are currently available. We

decided to include this particular set of methods in our model because it is diverse in its nature and

these methods are applicable in various real-life scenarios. For instance, random forest reduces

drawback of large variance and is not prone to overfit the model; extreme gradient boosting machine

provide lots of flexibility, can optimize on different loss functions and applicable to case with low

variance and high bias; support vector machine is more effective in high dimensional spaces and

relatively memory efficient; least absolute shrinkage and selection operator performs both auto-

mated variable selection and regularization, and helps minimize the impact of multicollinearity

among predictors; artificial neural network can handle comprehensive data structures due to its

complexity. All these methods are described in subsequent sections.

4.2.1 Random Forest (RF)

Random forests combine tree predictors that depend on values of a random vector sampled inde-

pendently and identically for all trees in the forest. This methodology was proposed by Breiman

[144] and quickly gained popularity among researchers and practitioners due to its simplicity and

high accuracy.

Random Forest is a generic method, but mostly has been used with classification trees. Random

Forests grow multiple classification trees, and classify a new object from an input vector by putting

it down each of the trees in the forest. Then each tree gives a classification, and the majority of
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"votes" determines a class of a prediction. More specifically, each tree in random forest grows as

follows. If a number of observations in the training set is n, it takes a sample of n observations

at random with replacement, from the original data. This creates a training set for growing the

tree. Then, if there are M input predictors, a number m < M is specified such that at each node, m

variables are selected at random out of the M and the best split on these m divides the node. The

value of m is being held constant during the forest growing. Then each tree grows to the largest

extent possible with no pruning applied.

Mainly, an error rate produced by random forests depends on two factors: First, increasing a corre-

lation between any two trees in the forest increases the error rate. Second, increasing the strength

of the individual trees decreases the forest error rate. Additionally, the error rate can be controlled

by manipulating an m parameter. Reducing m reduces both the correlation and the strength and

increasing it increases both. The advantages of using Random Forest is the ability to cope with

thousands of features without variable deletion, provide variable importance assessment in the

classification, generate an internal unbiased estimate of the generalization error, and have methods

for balancing error in class population unbalanced data sets.

4.2.2 Support Vector Machines (SVM)

In essence, the Support Vector Machine is a method proposed by Vapnik [145] that conceptually

implements the following idea: it takes input vectors and maps them non-linearly to a very high

dimension feature space. Then in this feature space it constructs a linear decision surface. Special

properties of the decision surface guarantees high generalization ability of the learning method.

SVMs can handle any number of classes, as well as observations of any dimension and can take

almost any shape including linear, radial, and polynomial, among others. Particularly, SVMs

construct a hyperplane or a set of hyperplanes, that is decision boundaries, in a high- or infinite-

dimensional space, which can be used for classification, regression, and other type of problems.

Good separation is achieved by the hyperplane that has the largest distance to the nearest training

data point of any class, also known as support vectors.
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If classes are linearly separable, HardMargin Classifier (HMC) can be implemented. HMC finds an

optimal hyperplane, that separates classes while maximazing the distance to the closest points from

the classes. The maximized distance is referred to as the Margin. HMC estimates the coefficients

of hyperplanes by solving a quadratic programming problem with linear inequality constrains. If

a perfect linear separation is not achievable or desirable, a Soft Margin Classifier (SMC) can be

considered. While the data can be still linearly separable, the decision boundaries obtained using

the HMC might not generalize well to new data and accuracy will suffer. To solve this issue, SMC

loosens the constrains and allows some points to be wrongly classified. The set of points is called

allowable budget.

Finally, if classes are not linearly separable, Support Vector Machine projects data to higher

dimensions, where they are linearly separable and constructs a hyperplane. Then it transforms this

hyperplane back to the initial space and obtains a non-linear decision boundary. It is achieved

by using a kernel trick that computes a dot product in some feature space without even knowing

what the space is and what is a mapping function. Most commonly employed kernel functions

are linear, polynomial, and radial basis functions. The advantages of Support Vector Machine are

that it always guarantees to find a global optimum as it just solves convex optimization problem,

relatively robust to outliers (soft margin), and is flexible (implements various kernel functions). The

main drawback of SVM is that it slows down the training process as data become taller (when the

number of observations is significantly greater than the number of predictors) as it has to estimate

parameters for each row.

4.2.3 Gradient Boosting Machine (GBM)

Gradient Boosting Machines, proposed by Friedman [146], quickly gained popularity due to their

high accuracy and effectiveness in solving complex problems. Typically, it is hard for other

methods to outperform the performance of GBMs and it is the algorithm of choice for many teams

of machine learning competitions. GBMs build an ensemble of shallow trees in sequence where

each tree learns and improves on the previous one. Even though shallow trees by themselves are
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more of weak predictive models, they are able to boost and produce a powerful committee.

The main idea of boosting algorithms is to add new models to the ensemble sequentially. It starts

with a weak tree and sequentially continues to build new trees, where each new tree in the sequence

fixes up where the previous one made the mistakes (for instance, each new tree in the sequence

focuses on the training rows where the previous tree had the largest prediction errors). Specifically,

at any instant the model outcomes are weighed according to the outcomes of the previous instant.

The outcomes that are predicted correctly are given a lower weight and the ones that are miss-

classified are given higher weights.

Gradient Boosting Machines are considered a gradient decent algorithm. Gradient descent is a

generic optimization algorithm that is capable of finding optimal solutions to a wide range of

problems and can be used on any loss function that is differentiable. The fundamental idea of

gradient descent is to search parameter values iteratively that will minimize a loss function. Here

it is used to estimate the weights assigned to correctly and incorrectly predicted outcomes. Unlike

bagging algorithms, GBM deals with bias variance trade-off by controlling both bias and variance

and is proven to be more effective when applied to models with high bias and low variance.

There are various versions of Gradient Boosting Machine. Particularly useful are Stochastic GBM

and Extreme GBM. Stochastic GBM takes a random subsample of the training dataset that offers

additional reduction in tree correlation which improves a prediction accuracy. Extreme GBM is

an optimized distributed gradient boosting machine that improves the accuracy and speed of the

method by employing parallelism in its algorithm and adding regularization parameters to the

model. The main disadvantage of GBMmethod is that it is a complex and less intuitive algorithms.

In addition, it is time and computationally expensive method.

4.2.4 Artificial Neural Network (ANN)

An important subfield of Machine Learning is Deep Learning, which focuses on building predictive

models based on artificial neural networks with two or more hidden layers. Artificial Neural

Networks (ANN), first proposed by McCullough and Pitts [147], a model structure used in most
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of the Deep Learning models, is inspired by the biological neural networks and mimics the way

humans gain certain types of information through a combination of data inputs, weights, and bias.

Like other machine learning algorithms, neural networks perform learning by mapping features to

targets through a process of simple data transformations and feedback signals. Fundamental to most

of the deep learning methods is the feedforward ANN. Feedforward ANNs are densely connected

layers where inputs influence each successive layer which then influences the final output layer.

Basic neural networks have three layers: an input layer, a hidden layer, and an output layer.

The input layer consists of all of the original input features. Most of the learning happens in the

hidden layer, and the output layer produces the final predictions. The layers and nodes are the

building blocks of our ANN and they decide how complex the network will be. Layers are called

dense if all the nodes in successive layer are connected. Consequently, the more layers and nodes

you add the more opportunities you create for new features to be learned.

There is no unique approach for determining the number of hidden layers and nodes; basically,

these are the first hyperparameters among many others to tune. Mainly, features in your data largely

determine the number of nodes you define in these hidden layers. The modeling task drives the

choice of output layer. For regression problems, the output layer contains just one node that outputs

the final prediction. If you are predicting a binary output, your output layer will still contain only

one node and that node will predict the probability of success. Finally, if you predict an output with

several classes, the output layer will contain the same number of nodes as the number of classes.

A crucial component of artificial neural networks is activation. Each node in ANN is connected

to all the nodes in the previous layer. Each connection gets a weight and then that node adds

all the incoming inputs multiplied by its corresponding connection weight plus an extra bias

parameter. This summation becomes an input to an activation function. The activation function is

a mathematical function that determines whether to fire a signal to the next layer.

On the forward pass, the ANN will select a batch of observations, randomly assign weights across

all the node connections, and predict the output. Then, it assesses its own accuracy and adjusts the

weights across all the node connections in order to improve the accuracy. This process is called

82



backpropagation. To carry out backpropagation, first, you need to establish an objective (loss)

function to measure performance. On each forward pass the ANN will measure its performance

based on the loss function chosen. The ANN will then work backwards through the layers,

compute the gradient of the loss with regards to the network weights, adjust the weights a little in

the opposite direction of the gradient, grab another batch of observations to run through the model,

and repeat until the loss function is minimized. The performance of ANN can be optimized by

tuning its hyperparameters. It can be done through adjusting model capacity (layers and modes),

adding batch normalization, adjusting learning rate, trying out different activation functions and so

on. Another possible way of improving ANN’s performance is placing constraints on a model’s

complexity with regularization, also referred to as dropout implementation.

4.2.5 Least Absolute Shrinkage and Selection Operator (LASSO)

Nowadays, data sets typically contain a large number of features. As the number of features grows,

certain assumptions required by traditional methods (e.g., linear models) break down and these

models tend to overfit the data, causing the out of sample error to increase and making the results

unreliable. One possible solution is to use Regularization methods, which constrain or regularize

the estimated coefficients and can reduce the variance and uncertainty in the estimation.

As it was mentioned, having a large number of features invites various issues in using classic

regression models. For instance, the model becomes much less interpretable, there could be

infinite number of estimates for the model coefficients, and the predictors are likely to be highly

correlated, which can invite multicollinearity issues. The regularized techniques constrain the

total size of all the coefficient estimates that helps to reduce the magnitude and fluctuations of the

coefficients and will reduce the variance of the model.

Arguably, one of the most well-known and frequently used regularizedmethod is the Least Absolute

Shrinkage and Selection Operator (LASSO). The method was poroposed by Tibshirani [84] and it

minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients

being less than a constant. Because of the nature of this constraint, it pushes coefficients all the way
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to zero and produces some coefficients that are exactly 0, which eventually provides interpretable

models. The LASSO method can be summarized as follows

Suppose we have data (X8, H8), 8 = 1, 2, . . . , # , where X8 = (-81, . . . , -8?)T are the predictors

and H8 is the response variable. We assume that either the observations are independent or the

responses are conditionally independent of the predictors. Finally, we assume that all predictors

are standardized. Letting β̂ = ( V̂1, . . . , V̂?)T, the LASSO estimate (Û, β̂) is defined as

(Û, V̂) = argmin

{
#∑
8=1

(
H8 − U −

∑
9

V 9-8 9

)2
}
,

∑
9

|V 9 | ≤ _,

where _ ≥ 0 is a tuning parameter that controls the amount of shrinkage applied to the estimates.

The LASSO method provides properties of both automated feature selection and ridge regression,

and it exhibits the stability of the latter one. The main disadvantage of the technique is that it

achieves these results at the cost of producing biased estimates.

4.2.6 STEPWISE Method

STEPWISE method is a procedure proposed in this thesis and described in Chapter 3. The

proposed method fits GLMs with ultrahigh-dimensional predictors. It starts with an empty set or

pre-specified predictors, scans all features and sequentially selects features, and conducts backward

elimination once the forward selection is completed. The forward selection steps recruit variables

in an inclusive way by allowing some false positives for the sake of avoiding false negatives, while

backward selection steps eliminate the potential false positives from the recruited variables.

STEPWISE algorithm embraces model selection and estimation, controls both false negatives and

positives by using different stopping criteria in the forward and backward selection steps, yields

consistent estimates, and accommodates a wide range of data types, such as binary, categorical,

and count data. In addition, under a sparsity assumption of the true model, it can discover all of

the relevant predictors within a finite number of steps, and can produce a final model in ultrahigh

dimensional settings without applying a pre-screening step which may introduce unintended false

negatives.
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4.3 Multi-Stage Hybrid Machine Learning Method

4.3.1 Introduction

The proposed multi-stage hybrid machine learning method carries out a stacking technique. Stack-

ingmethod is designed to boost predictive accuracy by blending the predictions of multiple machine

learning models. Stacked generalization or stacked was proposed by Wolpert [148] and is widely

used by other researchers and practitioners, [149, 150, 151].

Stacking is a technique in which the predictions produced by a collection of models are given as

inputs to a second-level learning algorithm. This second-level algorithm is trained optimally to

combine the model predictions and form a final set of predictions. Specifically, stacking method

trains a new learning algorithm to combine predictions of several base-learners, also known as,

individual models. First, base-learners are trained using the training data, then a combiner, called

a super learner, is trained to make a final prediction based on the predictions of the base learners.

It is important that the dataset collected for the stacked model consists of out-of-sample model

predictions. In other words, to obtain the prediction for a certain data point in the data set, the

model parameters should be estimated on a training set which does not include that particular data

point. This is normally achieved via  -fold cross-validation. The training data is split into almost

equal  subsets and  versions of the model are trained, each on the data with a different subset

removed. Thus, model predictions for the :th subset are produced from the model trained on a set

that did not include that subset.

To set up a multi-stage hybrid machine learning method, the following steps are being completed.

First, we specify a list of base learners and a super learner, also know as, a meta algorithm. We

select Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting Machine

(XGBoost), Least Absolute Shrinkage and Selection Operator (LASSO), Artificial Neural Network

(ANN), and STEPWISE method as the base learners. Linear weighted summation combiner is

being used as a super learner. Next, we train each of these base learners on the training data.

Specifically, we employ  -fold cross-validation for each of the base learners and collect the cross-
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validated class probabilities from them. The cross-validated class probabilities are combined to

create a new feature matrix.

Finally, we use this new feature matrix to train the meta learning algorithm, which can be used

to generate predictions on new data. In other words, output values of each base learner become

input values for the super learner. To generate ensemble predictions, first we have to generate class

probabilities for each of the base learners. Then feed these class probabilities into the super learner,

which will generate the ensemble prediction. Algorithm 1 summarizes the proposed method and

provides a high-level explanation.

Algorithm 1MULTI-STAGE HYBRID MACHINE LEARNING METHOD

1. Set up the stacked model

• Specify a list of M base learners with a determined set of model parameters

• Specify a super learner algorithm

2. Train the model

• Train each of the M base learners on the training set

• Perform cross-validation technique on each of the base-learners and collect cross-validated class
probabilities from each (denoted as ?1, ..., ?" )

• Combine the N (the number of observations in the training set) cross-validated class probability
values from each of the M base-learners into a new N × M feature matrix. This matrix, along
with the original response vector (y), is called level - one data

• Train the super learner on level - one data

3. Predict on new data

• To generate stacked predictions, first generate class probabilities from the base-learners

• Feed those class probabilities to a super learner and produce new final predictions

Our method is called hybrid, because it employs both model-free and model-based methods.

And we call it multi-stage, because it consists of two stages: setting up and training base-learners,

and training the super learner and generating class probabilities based on it. It is worth to mention

that the stacked model works the best when a diverse set of methods is selected as base learners.
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Therefore, our model includes both types of methods.

4.3.2 Algorithm

Define � = {(X8, .8), 8 = 1, . . . , =} a dataset (� is also referred to as level-0 data) consisting of a

vector X8 representing the attribute values of the 8-th instance, and .8 representing the class value.

Let � 9 , 9 = 1, . . . , �, be a base-learner algorithm, also known as, level-0 estimator. Given �

dataset, we randomly split it into  almost equal parts, �1, . . . , � . Let �: , : = 1, . . . ,  , and

� (−:) = � \ �: be the test and training sets for the :th fold of  -fold cross-validation. Given

� base-learner algorithms, we separately invoke the 9 th algorithm on the data in the training set

� (−:) to induce a model " (−:)
9

for 9 = 1, . . . , �. For each instance (X8, .8) ∈ �: , let 6 9 (X8)

denote the class probability estimated by the model " (−:)
9

for X8. At the end of the cross-validation

process, after applying the testing dataset �: for each : = 1, . . . ,  to each " (−:)
9

for 9 = 1, . . . , �,

the base-learner model class probabilities form a meta-instance
(
61(X8), . . . , 6� (X8), .8

)
with the

output variable for the original instance. A new dataset

��+ =

{(
61(X8), . . . , 6� (X8), .8

)
, 8 = 1, . . . , #

}
is assembled, also known as, level-1 data. Note that the original X8 is replaced with the correspond-

ing level-0 output vectors
{
61(X8), . . . , 6� (X8)

}
.

Now, at the second stage, referred to as level-1 learning stage, we derive our final level-1 model,

"̃ , from ��+ . The level-1 model will be constructed of the following form:

"̃ (X) =
�∑
9=1
U 9 × 6 9 (X),

where 6 9 (X) is the 9 th level-0 class probability and U 9 is its corresponding weight. Values for U’s

are computed based on corresponding level-0 model performances and are derived as

U 9 =  
2
9

/
�∑
9=1
 2
9 ,

87



where K is a Kappa coefficient defined as

 =
accuracy − expected accuracy

1 − expected accuracy
,

where

accuracy =
)% + )#

)% + )# + �% + �# ,

and

expected accuracy =

(
)% + �%

#
× )% + �#

#

)
+

(
)# + �%

#
× )# + �#

#

)
,

where TP, FP, TN, and FN are True Positives, False Positives, True Negatives, and False Negatives,

respectively. Breiman, [152], suggests that non-negative constraint U 9 ≥ 0 provides consistently

good results. Now, tomake the final predictionwe use themodels" 9 for 9 = 1, . . . , � in conjunction

with "̃ . Given a new instance, X; models " 9 produce a vector (61(X;), . . . , 6� (X;)). Then this

vector is used as an input value to the level-1 model, "̃ , whose output is the final prediction for

that instance.

4.4 Application: Bladder Cancer Prediction

4.4.1 Data Description

To utilize the aforementioned method we obtained data from Usuba et al. [69]. The goal of

building this model is to identify important miRNA biomarkers that have an impact on bladder

cancer development and can help in early detection of the disease. Moreover, ensemble method

will enhance the predictive power of the proposed STEPWISE method taken separately.

Data consists of 972 samples profiling 2565 miRNAs. Specifically, 392 serum samples were

obtained from bladder cancer patients who were admitted or referred to the National Cancer

Center Hospital (NCCH) between 2008 and 2016. A total of 580 serum samples from non-cancer

individuals were collected from 2 independent cohorts: the first cohort included individuals whose
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serum samples were collected and stored by the National Center for Geriatrics and Gerontology

(NCGG) Biobank between 2010 and 2012 and the second cohort included volunteers aged over 35

years who were recruited from the Yokohama Minoru Clinic in 2015.

We defined the binary outcome variable to be 1 if the subject was a case and 0 otherwise. To

proceed, we randomly divided samples into training and testing sets. Training set consists of 80

% of original data (310 samples with bladder cancer and 468 non-cancer controls) and the testing

set consists of the remaining 20 % (82 samples with bladder cancer and 112 non-cancer controls).

Table A.3 summarises characteristics of the samples used in the study.

4.4.2 Results

We perform data analysis in two parts. First, we employ STEPWISE procedure separately and eval-

uate its performance based on obtained results. Then, we implement multi-stage hybrid machine

learning method and demonstrate its advantages over the former model. To begin with, we further

split the training set into training and validation sets by using 5-fold cross-validation technique in

order to identify the best configuration of [1 and [2 parameters. Specifically, we use a greed search

approach and specify a set of values for each of these two parameters: [1 is being searched on the

grid {0, 0.25, 0.5, 0.75, 1} and [2 on {1, 2, 3, 3.5, 4, 4.5, 5}. The results from the cross-validation

procedure are presented in Table 4.1. It shows that STEPWISE method with [1 = 0.5 and [2 = 3

performed the best, so this pair of values will be used further in analysis.

Next, we applied the proposed STEPWISE method to the training set with = = 778 and ? =

2565. With no prior biological information available, we started with an empty set. In the forward

step, STEPWISE selectedmir-6087,mir-5100,mir-1914-3p,mir-6831-5p,mir-2110,mir-6717-5p,

mir-1343-3p, mir-6069, mir-6780b-5p, mir-1343-5p miRNAs, and the backward step eliminated

mir-6780b-5p, mir-1343-5p miRNAs. The STEPWISE procedure produced the following final

predictive model:

logit−1(88.33− 8.08×miR-6087+ 2.53×miR-5100− 3.54×miR-1914-3p+ 1.22×miR-6831-5p−

1.57×miR-2110+2.26×miR-6717-5p−2.51×miR-1343-3p+0.75×miR-6069, where logit−1(G) =
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exp(G)/(1 + exp(G)).

Table 4.1: Results of the 5-fold cross-validation procedure for the STEPWISE method

[2
1 2 3 3.5 4 4.5 5

0 0.885 0.893 0.893 0.895 0.895 0.905 0.905
0.25 0.885 0.893 0.893 0.895 0.895 0.905 0.905

[1 0.5 0.917 0.917 0.931 0.925 0.925 0.911 0.911
0.75 0.900 0.900 0.895 0.895 0.883 0.879 0.879

1 0.875 0.870 0.870 0.863 0.861 0.861 0.859

Values for [1 and [2 were searched on the grid {0, 0.25, 0.5, 0.75, 1} and {1, 2, 3, 3.5, 4, 4.5, 5}, respectively.
The optimal configuration of the parameters was discovered by comparing AUC-ROCs (area under the
receiver operating curve). The pair of parameter values that maximized the AUC value was selected for
further analysis.

In the testing dataset, the model had AUC of 0.92 and achieved an accuracy of 0.91, with sensi-

tivity, specificity, and precision of 0.93, 0.86, and 0.90, respectively. Finally, we repeatedly applied

the sampling procedure and split the data into the training and testing sets 100 times. We obtained

the average accuracy, sensitivity, specificity, precision, and AUC. The results are presented in the

Table 4.2.

Table 4.2: Assessment of the proposed STEPWISE procedure using the bladder cancer data set

Accuracy Sensitivity Specificity Precision AUC
Training set 0.92 0.94 0.92 0.92 0.94
Testing set 0.91 0.93 0.90 0.89 0.92

Note: values of accuracy, sensitivity, specificity, precision, and AUC were averaged over 100 splits.

In order to develop the final multi-stage hybrid machine learning model, we first built the other

base-learner models included in the stacked method. Specifically, RF, SVM, XGBoost, LASSO,

and ANN. After carrying out 5-fold cross-validation procedure, the following sets of hyperparame-

ters have been identified for each of these methods: 600 trees were selected for RFmodel along with
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5 instances in the terminal nodes and 250 randomly selected predictors in each tree; SVM achieved

its best results with parameter � = 0.01 and polynomial structure of the second order; XGBoost

performed the best with 300 trees, tree depth and learning rate equal to 8 and 0.1, respectively,

and minimum 5 samples in the terminal nodes; ANN constructed its model with two hidden layers

having 70% and 35% of predictors on its layers, respectively, learning rate equal to 0.1 and dropout

rate to be 0.6; LASSO picked its penalty parameter to be 0.0361. Results of their performances

over training and testing sets are summarized in Table 4.3.

Weights, U’s, for the super learner combiner are computed based on base-learners’ performance

achieved during the first stage of modeling. Particularly, 0.17, 0.17, 0.14, 0.18, 0.18, and 0.16 are

weights assigned to STEPWISE, RF, SVM, XGBosst, ANN, and LASSO, respectively. Table 4.4

presents results obtained from evaluating the multi-stage hybrid machine learning model. It can

be observed that hybrid model significantly improved the performance of STEPWISE method. In

addition, it also outperformed other methods included in the model.

Finally, we performed sensitivity analysis to quantify the relationship between the model perfor-

mance and the weights assigned to the base-learners. Mainly, we tried out 7 model settings with

different weight configurations and compared them with our existing model. Specifically, we de-

veloped a model with equal weights assigned to each method and the remaining 6 models have

a high weight of 0.8 assigned to one of the base-learners while keeping other weights equal to

0.04. The results are summarized in the Table 4.5 and illustrate the advantage of our model over

other competing model settings. The proposed multi-stage hybrid model outperformed Models 2-7

in all evaluation metrics; Model 1 achieved comparable results as it was expected since assigned

weighted were similar to ours.
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Table 4.3: Comparison of base-learnermethods included in themulti-stage hybridmachine learning
model over 100 independent splits of the bladder cancer data into training and testing sets

Training set Accuracy Sensitivity Specificity Precision AUC
RF 0.95 0.95 0.96 0.94 0.95
SVM 0.91 0.93 0.92 0.93 0.92
XGBoost 0.95 0.94 0.96 0.97 0.96
ANN 0.95 0.96 0.94 0.97 0.96
LASSO 0.94 0.93 0.95 0.94 0.95
Test set Accuracy Sensitivity Specificity Precision AUC
RF 0.93 0.94 0.93 0.92 0.93
SVM 0.89 0.92 0.90 0.87 0.89
XGBoost 0.94 0.93 0.95 0.93 0.95
ANN 0.94 0.95 0.93 0.91 0.95
LASSO 0.92 0.91 0.92 0.89 0.94

Note: values of accuracy, sensitivity, specificity, precision, and AUC were averaged over 100 splits; RF -
Random Forest; SVM - Support Vector Machine; XGBoost - Extreme Gradient Boosting Machine; ANN -
Artificial Neural Network; LASSO - Least Absolute Shrinkage and Selector Operator

Table 4.4: Evaluation of the proposed multi-stage hybrid machine learning model with the bladder
cancer data set

Accuracy Sensitivity Specificity Precision AUC
Training set 0.99 1.00 0.99 0.99 1.00
Testing set 0.98 0.98 0.98 0.97 0.99

Note: values of accuracy, sensitivity, specificity, precision, and AUC were averaged over 100 splits.
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Table 4.5: Comparison of various model configurations included in the sensitivity analysis

Training set Accuracy Sensitivity Specificity Precision AUC
Model 1 0.98 0.98 0.97 0.96 0.97
Model 2 0.96 0.96 0.96 0.95 0.95
Model 3 0.93 0.94 0.94 0.92 0.93
Model 4 0.97 0.98 0.97 0.97 0.95
Model 5 0.97 0.97 0.96 0.97 0.95
Model 6 0.94 0.95 0.93 0.94 0.93
Model 7 0.94 0.94 0.93 0.94 0.93

Note: values of accuracy, sensitivity, specificity, precision, and AUC were averaged over 100 splits; Model
1 corresponds to the equal-weights scenario; the Model 2-7 correspond to the scenarios with a high weight
of 0.8 assigned to one of the base-learners while keeping other weights equal to 0.04; a high weight was
assigned to methods in the following order: Random Forest (RF), Support Vector Machine (SVM), Extreme
Gradient Boosting machine (XGBoost), Artificial Neural Network (ANN), least absolute shrinkage and
selector Operator (LASSO), STEPWISE procedure

4.5 Web Application

An R-Shiny web application was developed to enable users employ the proposed multi-stage hybrid

machine learning method in practice. The main goal of this app is to help users analyze their own

data and build predictive models according to our algorithm. The web application can be accessed

online at Multi-Stage_Hybrid_ML_Method. Specifically, it is aimed to solve classification prob-

lems and has the following features.

First, users will have an option to either upload their own data sets or use pre-built sets. Pre-built

option includes two well-known data sets: Iris and Abalone. Once the data is uploaded/selected

from the given options, users can split the data into training and testing sets. For instance, spec-

ifying validation split to be 0.8 will split data into train and test sets with 4:1 ratio. In addition,

one can apply pre-processing steps to the data, which is an important part of data analysis. As

of now, there are three options available: standardizing numerical features (making features have

mean equal to zero and variance equal to 1), imputing missing values via K-Nearest Neighbor tech-

nique (a method that takes into account the relationship among predictors), and removing Zero and

Near-zero variance variables (removes feature that have no effect/ minimal effect on the response
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feature). Figure A.1 illustrates this step.

Next, users are offered to tune hyperparameters of the base learner methods. Almost all Machine

learning methods have hyper-parameters that can be tuned. Tuning them will potentially improve

the model performance and reduce chances of overfiting the model. In order to accomplish this

task, the web application employs greed search technique: users will specify a set of values for each

of the hyper-parameters provided in the menu bar. Two resampling methods are available: :-fold

cross-validation and repeated :-fold cross-validation. Once all necessary items are selected, the

web applicationwill tune these parameters andwill display numeric and visual results in "Numerical

Results" and "Visualize Results" tabs respectively. Figure A.2 illustrates a tuning hyperparameters

procedure for a Random Forest method.

Lastly, after the tuning hyperparameters step is complete and a set of values for these parameters is

selected, users can proceed further and start building their final predictive model. At this step, they

can indicate parameter values for each base-learner obtained from the previous step and set weights

for them. The app will train the model and display the results, which include model performance

metrics (computed for both training and testing sets), feature importance, and final predictions.

Figure A.3 illustrates an output results for the final predictive model including model evaluations

for both training and testing sets.
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CHAPTER 5

CONCLUSIONS, DISCUSSION, AND DIRECTIONS FOR FUTURE RESEARCH

In this thesis we have proposed to apply STEPWISE to produce final models in ultrahigh-

dimensional settings, without resorting to a pre-screening step. We have shown that the method

identifies or includes the true model with probability going to 1, and produces consistent coefficient

estimates, which are useful for properly interpreting the actual impacts of risk factors. The theoret-

ical properties of STEPWISE are established under mild conditions, which are worth discussing.

Because in practice covariates are often standardized for various reasons, Condition (2) is assumed

without loss of generality.

Conditions (3) and (4) are generally satisfied under common GLM models, including Gaussian,

Binomial, Poisson, and Gamma distributions. Condition (5) is also often satisfied in practice.

Proposition 2 in Zhang et al. [121] may be used as a tool to verify Condition (5) as well. Con-

ditions (1) and (6) are in good faith with the unknown true model size |M| and minimum signal

strength =−U in practice. The "irrepresentable" condition (6) is strong and may not hold in some

real datasets (see, e.g. [153, 154]). However, the condition holds under some commonly used

covariance structures, including AR(1) and compound symmetry structure [153].

As shown in simulation studies and real data analyses, STEPWISE tends to generate models as pre-

dictive as the other well-known methods, with fewer variables (Figure 3.2). Parsimonious models

are useful for biomedical studies as they explain data with a small number of important predictors,

and offer practitioners a realistic list of biomarkers to investigate. With categorical outcome data

frequently observed in biomedical studies (e.g. histology types of cancer), STEPWISE can be ex-

tended to accommodate multinomial classification, with more involved notation and computation.

We will pursue this elsewhere.

As it was shown and discussed in the previous chapters of the thesis, STEPWISE procedure controls

both false positives and false negatives in high-dimensional settings. It is achieved by employing

different stopping criteria in the forward and backward selection steps that adds flexibility to our
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algorithm. Mainly, versatility of the stopping criterion in the forward selection step allows to

avoid false negatives by including some false positives in the early stages of the model building.

While, using stopping criterion in the backward elimination step allows removing the potential

false positives from the selected variables.

In addition, two extra parameters [1 and [2 involved in computing the stopping criteria determine

how restrictive the variable screening process should be. Specifically, large values of [1 in the

forward selection step will recruit less variables and vice versa. Similarly, large [2 values of the

stopping criterion in the backward elimination step will remove more features. Thus, this frame-

work can address different needs. For instance, if controlling false positives is the priority, then

we recommend applying large values for parameters, and if it is more meaningful to control false

negatives, then small values must be used. It is worth noting that our method includes forward

selection as a special case when the parameter value is equal to 0, making it even more flexible.

Moreover, in this thesis we prove that, under a sparsity assumption of the true model, the proposed

STEPWISE approach can discover all of the relevant predictors within a finite number of steps.

Sparse models are common in high-dimensional settings. Among hundreds or thousands predic-

tors involved in the model development, only a handful number of predictors have a significant

relationship with the response variable. Including too many predictors in the model may result

in overfitting, while keeping a few variables may lead to high bias and low predictive accuracy.

Thus, identifying true signals and significant predictors correctly and including them in the final

predictive model is a crucial step in a model building process.

Finally, we developed a multi-stage hybrid machine learning method to boost a predictive accuracy

and improve a performance of the proposed method. It carries out stacking technique and com-

bines model-free and model-based methods including the proposed STEPWISE method. Ting and

Witten [155] suggested that the users of stacking method have a free choice of base-learner models.

Therefore, we have selected heterogeneous machine learning methods (e.g., boosting, bagging,

neural nets, and model-based methods) that have different strengths and disadvantages. Having a

diverse set of base-learners makes our method applicable in various scenarios. In addition, they
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claimed and demonstrated that successful stacked generalization implies using class probabilities

rather than class predictions, and supported their claim with empirical examples. We also adopted

this technique in our model.

Ueda [149] defined several combination types that can be used to combine base-learner outputs

via weighted sum (WS), class-dependent weighted sum (CSW), and linear stacked generalization

(LSG). Erdogan and Sen [156] showed that none of these methods is superior than others and

the performance is data-driven and data-dependent. We have selected WS technique to be imple-

mented in the super-learner method. A Kappa statistic ( ) was used to estimate and assign weights

to the individual base-learner outputs, which is considered to be more accurate metric for model

evaluation [157, 158]. These weights reflect their performance on level-0 data: greater weights

are assigned to base-learners with stronger performance and vice versa. This weights assignment

method is believed to be more effective as it incorporates significance of each method included in

the model [159]. Finally, Breiman [152] reported that non-negative constraint over the assigned

weights will provide consistently good results. This constraint was added to our model as well.

The numerical examples we provided have vividly demonstrated an improved predictive power of

the proposed method. Moreover, we performed sensitivity analysis to illustrate the superiority of

the weight assignment technique used in the model over the other competing techniques. Lastly,

we proposed and developed a web application that enables users employ the proposed multi-stage

hybrid machine learning method in practice.

There are several open questions. First, in our numerical experiments, we used cross-validation

to choose values for [1 and [2, which seemed to work well. However, more in-depth research is

needed to find their optimal values to strike a balance between false positives and false negatives.

Second, despite our consistent estimates, drawing inference based on them remains challenging.

Statistical inference, which accounts for uncertainty in estimation, is key for properly interpreting

analysis results and drawing appropriate conclusions. Our asymptotic results, nevertheless, are a

stepping stone toward this important problem. Third, although the proposed STEPWISE procedure

is designed to deal with the binary classification, it can be extended to accommodate multinomial
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classification, a commonly observed problem in biological or biomedical research. Most multi-

nomial classification methods rely on sequential binary classification by way of one-versus-all or

direct pairwise comparison [160], which requires selecting a reduction method from multiclass to

binary. Further investigation will be needed to identify such methods as it is not a trivial task and

is on a case-by-case basis.
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APPENDIX A

SUPPLEMENT MATERIALS

A.1 Supplementary Materials

AnRpackage, STEPWISE,was developed and is available athttps://github.com/AlexPijyan/

STEPWISE, along with the examples shown in the dissertation.

A.2 Additional Results in the Real Data Analysis

Table A.1: Comparison of genes selected by each competing method from the mammalian eye data
set

STEPWISE FR LASSO SIS+LASSO SC dgLARS
STEPWISE 3 3 2 2 2 0
FR 4 2 2 2 0
LASSO 16 5 2 0
SIS+LASSO 9 2 0
SC 4 0
dgLARS 7

Note: Diagonal and off-diagonal elements of the table represent the model sizes for each method and the
number of overlapping genes selected by the twomethods corresponding to the row and column, respectively.
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Table A.2: Selected miRNAs for ESCC training dataset

Methods selected miRNAs
STEPWISE miR-4783-3p; miR-320b; miR-1225-3p

FR miR-4783-3p; miR-320b; miR-1225-3p; 6789-5p

SC miR-4783-3p; miR-320b; miR-1225-3p; 6789-5p

LASSO miR-6789-5p; miR-6781-5p; miR-1225-3p; miR-1238-5p; miR-320b;
miR-6794-5p; miR-6877-5p; miR-6785-5p; miR-718; miR-195-5p

SIS+LASSO miR-6785-5p; miR-1238-5p; miR-1225-3p; miR-6789-5p; miR-320b;
miR-6875-5p; miR-6127; miR-1268b; miR-6781-5p; miR-125a-3p

dgLARS miR-891b; miR-6127; miR-151a-5p; miR-195-5p; ; miR-3688-5p
miR-125b-1-3p; miR-1273c; miR-6501-5p; miR-4666a-5p; miR-514a-3p

Note: LASSO, SIS+LASSO, dgLARS selected 20, 17, and 33 miRNAs, respectively, and we only reported
top 10 miRNAs.

Table A.3: Clinicopathologic characteristics of participants in bladder cancer study

Covariates Training Set Testing set
=1 (%) =2 (%)

Bladder Cancer patients
Total number of patients 310 82
Age, median (range) 68 (32-90) 70 (34-93)
Gender:
Male 233 (74.9%) 54 (65.8%)
Female 77 (25.1%) 28 (34.2%)
Tumor Stage (%):
<pT2 239 (77.09%) 62 (75.21%)
≥ pT2 71 (22.55%) 20 (23.93%)
Healthy Control patients
Total number of patients 468 112
Age, median (range) 66.5 (35-90) 68.5 (41-92)
Gender:
Male 241 (51.43%) 45 (40.17%)
Female 227 (48.57%) 67 (59.83%)
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Table A.4: Clinicopathologic characteristics of study participants of the ESCC data set

Covariates Training Set Testing set
=1 (%) =2 (%)

Esophageal squamous cell carcinoma (ESCC) patients
Total number of patients 283 283
Age, median (range) 65 [40, 86] 67 [37, 90]
Gender:
Male 224 (79.0%) 247 (87.3%)
Female 59 (21.0%) 36 (12.7%)
Stage:
0 24 (8.5%) 27 (9.5%)
1 127 (44.9%) 128 (45.2%)
2 58 (20.5%) 57 (20.1%)
3 67 (23.7%) 61 (21.6%)
4 7 (2.4%) 10 (3.6%)
Non-ESCC Controls
Total number of patients 283 4,682
Age, median (range) 68 [27, 92] 67.5 [20, 100]
Gender:
Male 131 (46.3%) 2,086 (44.5%)
Female 152 (53.7%) 2,596 (55.5%)
Data sources of the controls:
National Cancer Center Biobank (NCCB) 17 (6.0%) 306 (6.5%)
National Center for Geriatrics and Gerontology (NCGG) 158 (55.8%) 2,512 (53.7%)
Minoru clinic (MC) 108 (38.2%) 1,864 (39.8%)
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Figure A.1: R-Shiny Web Application for solving classification problems. The plot illustrates
uploading and splitting a dataset into training and testing sets.
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Figure A.2: R-ShinyWeb Application for solving classification problems. The plot depicts a tuning
parameters step for a Random Forest method.
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Figure A.3: R-Shiny Web Application for solving classification problems. The plot depicts an
output of the final predictive model developed by the web application.
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