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ABSTRACT 

CHARACTERIZATION OF THE HUMAN GUT RESISTOME, MICROBIOME, AND 

METABOLOME DURING ENTERIC INFECTION 

By 

Zoe A. Hansen 

The human gut environment is replete with host-microbe and microbe-microbe 

interactions that shape human health. This system is also a known reservoir for antimicrobial 

resistance (AMR). The ubiquity of AMR is alarming, as greater than 2.8 million antibiotic-

resistant infections and 35,000 deaths occur annually in the United States. Multiple human 

pathogens have demonstrated reduced susceptibility to various antibiotics, including enteric 

pathogens such as Campylobacter, Salmonella, Shigella, and STEC, which cause millions of 

foodborne infections each year. The increasing incidence of antibiotic resistant enteric infections 

substantiates a need to further characterize these pathogens’ role in the curation and 

dissemination of AMR across environments.  

In this dissertation, a total of 223 human stools were assessed using shotgun 

metagenomics sequencing to investigate gut microbiome changes associated with enteric 

infection. Sixty-three stools were collected from patients suffering from enteric infection 

between 2011-2015 by the Michigan Department of Health and Human Services (MDHHS). 

Sixty-one of these patients submitted a follow-up sample between 1- and 29-weeks post-

infection, and 99 healthy household members also submitted stools to serve as controls.  

In Chapter 2, a subset of patients infected with Campylobacter spp. and their related 

controls were investigated to assess the gut resistome, or collection of all antimicrobial resistance 

genes (ARGs) and their genetic precursors, related to infection. This examination revealed 

significantly higher ARG diversity in infected patients compared to healthy controls. 



 

 

Specifically, levels of multi-drug resistance (MDR) were greatly increased during infection. 

Three case clusters with distinct resistomes were identified; two of these clusters had unique 

ARG profiles that differed from those of healthy family members.  

In Chapter 3, a larger subset of 120 paired samples (60 infected vs. 60 recovered) were 

investigated to further characterize resistome and microbiome fluctuations related to infection 

and recovery. Again, infected patients harbored greater resistome diversity; however, recovered 

individuals displayed higher diversity in their microbiota composition. Despite their lower 

overall microbial diversity, patients with acute infections showed an increase in the abundance of 

members of Enterobacteriaceae, with specific expansion of the genus Escherichia. Host-tracking 

analysis revealed that many Enterobacteriaceae carried ARGs related to MDR and biocide 

resistance, a finding with broad implications for the ecology of resistance during infection.  

The fourth chapter explored metabolic capacity of gut microbial communities. In addition 

to metabolic pathway prediction, untargeted metabolomics was performed via LC/MS for 122 

paired samples. Pathway annotation suggested that infected individuals contain greater microbial 

functional capacity, but metabolomics indicated greater overall metabolite diversity among 

recovered patients. Infection was associated with enhanced nitrogen and amino acid metabolism 

pathways. Although many metabolites remain uncharacterized, their presence or absence among 

individuals suggest their importance during and after infection.  

Altogether, the findings of this dissertation further characterize ecological consequences 

related to enteric infection in the human gut. Specifically, this research illustrates the importance 

of enteric infection in the dissemination and persistence of resistance determinants. Moreover, 

the expansion of Enterobacteriaceae and the evident increase in nitrogen- and amino acid-related 

metabolism during infection represent potential targets for future intervention practices. 
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MICROBIAL ECOLOGY OF THE HUMAN GUT 

Humans and microbes have been interacting for millennia. Microbes have come to 

colonize nearly every area of the human body and play key roles in shaping human health. 

Although previous work estimated the ratio of bacterial to human cells in the body to be 10:1, 

more refined recent research suggests that this ratio is closer to 1.3:1 (1, 2). These microbial 

symbionts compose the human microbiota; the comprehensive set of genomes belonging to the 

microbiota is termed the ‘microbiome’ and holds the key to various traits that broadly benefit 

human health (3). The human gut microbiome has been extensively explored in periods of health 

and disease (4). Yet, the complexities of this ornate relationship between the gut microbiota and 

their human host require ongoing exploration and elucidation.  

Community assembly of the early human gut microbiome 

Establishment of the gut microbiome begins very early in life. However, the composition 

of gut microbiota at birth differs immensely from that of adults, and the nuances of community 

assembly continue to be investigated (5, 6). From the perspective of ecological theory, various 

frameworks have been considered for assembly of the human gut microbiome. Neutral theory is 

an important model which assumes the only driving factor shaping microbial communities is 

random chance; it negates ecological forces such as dispersal, diversification, ecological drift, 

and selection while also dismissing any species-level differences (6, 7). This theory assumes that 

most species share the same general niche (also referred to as “ecological equivalence”), 

suggesting that multiple members of the community may be capable of fulfilling certain 

community functions, a phenomenon called “functional redundancy” (3, 8). Although this theory 

serves as an important null model and successfully captures many aspects of the human gut 

microbiome, dismissal of other ecological processes such as dispersal and selection can be 
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limiting. Another ecological theory which considers the dynamic nature of microbial populations 

in addition to community-level traits is metacommunity theory. This theory considers the 

ecological world to be comprised of habitable patches that are spatially distinct; dispersal of 

species among these separate patches or communities results in a metacommunity (6, 9). This 

framework is especially useful for characterizing host-associated communities such as the gut 

microbiota, as it considers dispersal among patches (host-to-host or host-to-environment) as well 

as environmental selection (such as diet, antibiotic use, or disease state) when identifying forces 

driving community assembly and maintenance (6, 10). Indeed, metacommunity theory enables 

researchers to explore and predict community trajectories during succession, whether this be 

related to initial community establishment, recovery from an environmental disturbance (e.g., 

antibiotics), or in response to a microbial invasion (e.g., influx of pathogens) (6).  

Empirically, many studies have been performed to explore the early stages of gut 

microbiome assembly during infancy. The initial composition of the infant gut microbiota has 

been found to depend on method of delivery, as vaginally delivered neonates were dominated by 

members of their mothers’ vaginal microbiota (including Lactobacillus and Prevotella), while 

those delivered via Caesarean section were primarily colonized by skin-related bacteria such as 

Staphylococcus, Corynebacterium, and Propionibacterium spp. (11). Multiple studies have gone 

on to further document the trajectories of gut microbiome composition during the ensuing years 

of infancy as well. Ongoing community assembly of the infant gut was found to be nonrandom, 

as this process appears to be punctuated by discrete developmental events related to the 

expansion of specific community members (12, 13). Notably, this process was observed for both 

preterm and full term neonates, although the pace of progression observed in preterm babies was 

slower (14). Additionally, maturation of the gut microbiota in preterm infants was shown to be 
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influenced by gestational age at time of birth (14), whereas delivery mode (vaginal vs. C-section) 

and feeding patterns (breastfed, bottle-fed, or solid food) had significant effects on gut 

microbiota assembly in term babies (13). This study also demonstrated that cessation of 

breastfeeding, rather than introduction of solid foods, was associated with the development of 

adult-like microbiota, suggesting that breastfeeding acts as a primer for the gut microbiota, 

which can influence other aspects of metabolic and immune health (13).  

Diversity and composition of the human gut microbiota 

 Although the composition of gut microbial communities is dynamic and fluctuates over 

time, general patterns of diversity define a healthy human gut. Most taxa identified in the gut 

belong to two bacterial phyla: Bacteroidetes and Firmicutes (3, 15, 16). Other key members 

include Actinobacteria, Proteobacteria, Fusobacteria and Verrucomicrobia, though these taxa 

are present in significantly smaller numbers with some variation depending on the source (15). A 

study using 16S rRNA sequencing, for instance, identified over 60 OTUs in stool samples from 

17 healthy adults that were prevalent in >50% of samples and included Faecalibacterium, 

Ruminococcus, Eubacterium, Dorea, Bacteroides, Alistipes, and Bifidobacterium (17). Indeed, 

another study investigating fecal samples from 124 individuals identified 75 taxa that were 

common to >50% of samples, and 57 that were present in >90% of samples (18). Turnbaugh et 

al. (2009) (19) also explored the microbiota of monozygotic and dizygotic twin pairs and 

demonstrated that the gut microbiome is shared among family members, though the specific 

bacterial lineages varied. Despite some of these similarities, the relative abundances of these 

microbial members vary significantly among different individuals and even within the same 

individual over time (16), trends that may be linked to diet and disease status (20). 
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 Numerous factors can influence the composition and diversity of the gut microbiota. Age, 

host genetics, diet, environment, and disease have all been found to impact the composition and 

functionality of the gut microbiome (16). Disease status, in particular, is an extensively explored 

area of the microbiome field, though most studies have focused on chronic versus acute 

conditions. People with conditions such as inflammatory bowel disease (IBD) (including 

ulcerative colitis (UC) and Crohn’s Disease (CD)), obesity, Type 2 diabetes, and others, for 

instance, were shown to have reduced diversity in their gut microbiome (4, 21). For example, 

obese individuals had markedly lower numbers of Bacteroidetes and overall higher levels of 

Firmicutes compared to lean counterparts (20). However, after practicing diet therapy, these 

individuals lost weight and developed microbiomes that more closely mirrored those of the lean 

cohort. Despite the finding that obese individuals display an increased Firmicutes:Bacteroidetes 

ratio (which has been corroborated in a handful of other studies), other groups have documented 

conflicting results. In fact, Walters et al. (2014) (22) deduced that signatures of obesity are not 

consistent between studies and demonstrated a lack of significance when performing a meta-

analysis of compositional differences. Nonetheless, this meta-analysis identified notable 

microbial signatures defining communities belonging to individuals with and without IBD. 

Specifically, patients with IBD had decreased abundances of Firmicutes and Bacteroidetes and 

increased proportions of Proteobacteria and Actinobacteria (22), which was also observed in a 

prior study (23). For patients with Type 2 diabetes, an increased abundance of 

Betaproteobacteria and decrease in Clostridia abundance was observed and the ratio of 

Bacteroidetes:Firmicutes correlated with higher blood glucose levels (24). These findings 

illustrate that disease state is intricately related to gut microbiota composition, which has broad 

implications for metabolic health.  
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 Although many studies have documented compositional variation across individuals, 

studies exploring functional diversity of the gut microbiome have demonstrated highly similar 

functional gene profiles (16, 19). Even among individuals with few genus- and phylum-level 

similarities, a majority of metabolic pathways are present in comparable proportions (18, 25). In 

a study of monozygotic and dizyogotic twins, for instance, a ‘core microbiome’ was uncovered 

at the gene level rather than organismal level, suggesting that redundancy of community function 

may be more important than community composition (19). Importantly, shifts in the overall 

functional capacity of the gut microbiome may be indicative of alterations in physiological state 

(16). It is clear that disease status influences and can be influenced by the metabolic health of the 

gut microbiome, a concept that will be explored extensively in subsequent sections.  

The gut microbiome during periods of ecological change 

 Although a healthy adult gut microbiome maintains a stable state of composition and 

function, this homeostatic state is not always resistant to disturbance. Microbial communities 

experiencing disturbance often lose a proportion of members, creating opportunities for new or 

remaining community members to increase in abundance (6). Those communities that can 

withstand the effects of disturbance and remain relatively unchanged are considered highly 

resistant (26). Whether a community can successfully return to its original pre-disturbance stable 

state after the onslaught of disturbance is indicative of its resilience (26, 27). Communities that 

fail to resist changes brought on by disturbance may still display high levels of resilience.  

 One of the most well-studied disturbances relevant to the human gut microbiome is the 

use of antibiotics. Although antibiotic treatment is designed to eliminate pathogenic bacteria, the 

systemic effects of antibiotics can also detrimentally impact beneficial commensals (6). Multiple 

studies have documented a marked decrease in microbial diversity in the gut during antibiotic 
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therapy, regardless of drug type (28-31). Each of these studies also observed partial recovery of 

the gut microbiota and a return to a stable state following antibiotic cessation. Despite this, 

certain microbial taxa failed to recover after multiple weeks even in the absence of antibiotics. 

Palleja et al. (2018) (31), for instance, showed that antibiotic treatment greatly reduced the 

number of butyrate-producing bacteria including multiple Faecalibacterium prasunitzii strains as 

well as Eubacterium and Coprococcus spp. Even at 180 days post-antibiotics, six of the eight F. 

prausnitzii strains were no longer detectable in the gut community. This partial reduction or 

long-term elimination of these beneficial bacteria can have a detrimental impact on gut health. 

For example, Young and Schmidt (2004) (30) characterized the onset of antibiotic-associated 

diarrhea (AAD), a condition that is linked to antibiotic use, which results in severe diarrhea 

without clear cause. Relatedly, it is widely understood that a reduction in gut richness and 

diversity following antibiotic exposure creates prime conditions for the expansion of pathogens 

such as Clostridium difficile, a known contributor to AAD (32, 33). C. difficile is a common 

nosocomial pathogen whose survival and transmissibility can be attributed to its ability to form 

spores (34). Importantly, approximately 30% of patients with C. difficile infection experience 

recurrence or reinfection (35). The severity of these infections can, at times, only be addressed 

with fecal microbiota transplant (FMT) in which stool from a healthy donor is used to seed the 

suffering patient’s gut community with beneficial microbes (36). Certainly, the negative 

consequences related to antibiotic use provide ample evidence that this treatment leads to 

widespread disturbance of the microbial gut environment.  

 Another ecological phenomenon relevant to the human gut is invasion. In microbial 

invasions, a foreign microbe, such as a pathogen, is introduced into a stable environment. If the 

pathogen is successful in establishing itself in this environment and overcoming colonization 
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resistance, it can uproot original community members (37). The ability of microbes to invade a 

given community depends upon that community’s “niche opportunity,” which refers to 

conditions that would promote microbial invasion (38). Examples include available resources, 

optimal abiotic conditions, interactions with resident microbiota, and relative flux within the 

community. In the human gut environment, the host, in conjunction with the resident commensal 

microbiota, dictate these niche opportunities (6). The role of the host and its associated gut 

microbiota in resistance to pathogen invasion is discussed in great detail in a later section.  

 Despite their relevance, microbial invasions are relatively understudied compared to 

macroorganisms. Even among studies that explore microbial invasion ecology, there are 

inconsistencies in how researchers study, execute, and interpret invasions (39). Kinnunen et al. 

(2016) (39), for instance, argues that microbial invasion, when viewed through the lens of 

community ecology, is biased towards selection with evident negation of other processes such as 

dispersal or drift. Vila et al. (2019) (40) sought to further characterize eco-evolutionary “rules” 

for microbial invasions that encapsulate some of these other ecological processes. Their 

simulation-based “nearly neutral” model identified five of these rules: 1) greater fitness increases 

the chance of persistence after invading, an attribute more often found in larger communities; 2) 

if invaders are relatively poor competitors, they are not likely to succeed in the community; 3) if 

invaders’ competitive capacity is somewhat neutral, propagule pressure can determine the 

outcome of invasion (i.e., a greater density of invaders is less likely to result in stochastic 

extinction); 4) increased diversity of invaders results in similar outcomes as having a higher 

density of invaders; 5) more diverse resident communities show greater success in resisting 

invasions, an attribute likely related to resource partitioning and competition. Indeed, previous 

findings appear to corroborate these rules. One such study sought to characterize the importance 
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of resident community structure, invader diversity, and stage of succession and found that co-

invasion by genotypically distinct bacteria resulted in greater persistence and alteration of 

resident community structure (41). These findings align well with Vila et al.’s Rule 4. Another 

study explored microbial invasions in vitro and determined that during the early stages of 

invasion, specifically, propagule pressure was the strongest explanatory variable for invasion 

success (42), a finding that has been corroborated in algal communities (43) and is in line with 

Rule 3. Importantly, later stages of invasion appeared to be more heavily dictated by community 

diversity and composition (42), suggesting that different ecological phenomena influence 

invasion success at different times during invasion.    

 Microbial invasion in the human gut is often explored in the context of dysbiosis or 

infection, as pathogens are non-resident microbes disrupting a resident community. Baumgartner 

et al. (2021) (44) used a gut microcosm system to elucidate which factors contributed to greater 

susceptibility and resistance to pathogen invasion. This study found that taxonomic composition 

played a crucial role in colonization resistance; the abundance of their invading strain was starkly 

reduced in microcosms containing human gut microbiota than their community-free control. 

These researchers also explored the role of abiotic factors. Notably, they found that changing 

abiotic conditions (e.g., nutrient type and availability) did not directly suppress the invading 

strain. However, altering nutrient status did impact the resident communities’ ability to resist and 

suppress invasion (44). Examples of microbial invasions within human hosts include various 

pathogens. Just as Clostridium difficile exploits the dysbiotic state of the human gut microbiota 

after an antibiotic-induced disturbance, this microbe is also an unwelcome invader. Although it 

can exist as a member of the resident microbiota in some individuals, C. difficile transforms into 

an opportunistic pathogen in the vacuum created by antibiotic therapy and is capable of rapidly 
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taking over niche space (45). True pathogens have also been explored for their role in gut 

invasion. In a prior study from our lab, the impacts of enteric infection were explored using 16S 

rRNA sequencing for patients infected with one of four enteric pathogens including 

Campylobacter, Salmonella, Shigella, and Shiga toxin-producing E. coli (STEC). This study 

demonstrated that patients with infection demonstrated markedly lower gut microbiota diversity 

than healthy controls with distinct microbiota profiles (46). Notably, infected patients had 

drastically increased abundances of Proteobacteria. The influence of various ecological 

processes on the trajectory, health, and overall function of the human gut microbiota is 

undoubtedly extensive.  

SIGNIFICANCE OF ENTERIC INFECTION AND NOTABLE REPERCUSSIONS 

RELATED TO ENTERIC PATHOGENS 

  Greater than 9.4 million foodborne infections caused by enteric pathogens occur each 

year in the United States (47). In 2020, the Centers for Disease Control and Prevention (CDC) 

reported increased incidence of infections caused by Campylobacter and Shiga toxin-producing 

Escherichia coli (STEC), among others; Salmonella and Shigella also maintained a high level of 

incidence (48). Each of these four pathogens is recognized as a leading cause of diarrheal disease 

among humans and has been implicated by their detection via culturing and nucleic acid 

amplification methods in the clinic (49). Importantly, the consequences of enteric infection go 

beyond experiencing symptoms; Singh et al. (2015) (46) found that gut microbiome composition 

changed drastically during infection compared to uninfected, healthy controls.  

 Although Campylobacter, Salmonella, Shigella, and STEC are all Gram-negative 

pathogens, each of these microbes behaves differently during infection. Nonetheless, all trigger 

inflammation in the gut during infection (50-53). While Salmonella, Shigella, and STEC are 

represented within the family Enterobacteriaceae, Campylobacter belongs to 
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Campylobacteraceae. Campylobacter jejuni, in particular, infects humans by penetrating the 

intestinal mucus barrier and invading epithelial cells, where it typically elicits a strong immune 

reaction (50). Most Campylobacter infections are self-limiting, however, some individuals can 

develop severe autoimmune disorders such as Guillain-Barré syndrome post-infection. This 

syndrome is classified as a neuropathological condition that results due to mimicry between the 

Campylobacter lipooligosaccharide (LOS) and human gangliosides (50).  

Non-typhoidal Salmonella also invade intestinal epithelial cells, specifically specialized 

microfold (M) cells, and can replicate intracellularly during infection (54). In fact, Salmonella 

are capable of transforming intestinal epithelial cells into M cells, thereby promoting their own 

colonization and invasion (55). Salmonella is known for its many pathogenicity islands found to 

be conserved among multiple serovars; these represent gene clusters that encode various 

virulence factors important for adhesion, invasion, intracellular survival, and immune evasion 

(56). Shigella can also invade the intestinal epithelium resulting in high levels of intestinal 

inflammation (57). Although Shigella can invade host cells, it does not enter the intestinal 

epithelium at the apical side, but rather invades M cells and enters epithelial cells from the 

basolateral side (58, 59). The ability to spread adjacently through the epithelium prevents 

exposing Shigella and other pathogens to extracellular immune components, which can prolong 

infection (57).  

By contrast, STEC behaves differently from these other enteric pathogens in that it does 

not invade the intestinal epithelium. This diverse group of pathogens is known for its severity of 

infection, as a minimal infectious dose can cause hemorrhagic colitis and hemolytic uremic 

syndrome (HUS) in some cases, which can lead to acute renal failure and death (60). The notable 

virulence trait of STEC is due to its production of one or more Shiga toxins, which are AB5 
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toxins that halt protein synthesis in host cells leading to cell death (61). Although STEC does not 

invade, it uses an adherence mechanism that contributes to massive rearrangements of the 

intestinal epithelium, resulting in inflammation, and Shiga toxin production has been linked to 

upregulation of host immune genes (62). While STEC is not invasive, the Shiga toxins are 

translocated across into the intestinal epithelium where they are trafficked to the ribosome to 

irreversibly inhibit host protein synthesis (63). Despite the differences in pathogenic 

mechanisms, these four enteric pathogens can result in similar conditions and alterations in the 

human gut. Moreover, the rising prevalence of each is of great concern and novel prevention and 

treatment strategies are needed. Defining how specific pathogens alter the composition and 

function of the gut microbiome may lead to the development of such strategies to impact 

gastrointestinal health.  

MECHANISMS OF COLONIZATION RESISTANCE PROTECT THE GUT FROM 

ENTERIC INFECTION 

The commensal gut microbiota use multiple mechanisms to control and counteract 

invading enteric pathogens (64). One of these mechanisms is direct interaction through which 

commensals secrete antimicrobial compounds, alter the gut environment, outcompete pathogenic 

bacteria for common nutrients, or produce compounds which downregulate pathogen virulence. 

Certain commensals produce bacteriocins, small peptides with bacteriostatic or bactericidal 

activity against a narrow range of species often related to the producing strain (65). For example, 

Enterococcus faecium mediates protective expression of mucin and antimicrobial peptides via a 

secreted peptidoglycan hydrolase, SagA, in mice (66), suggesting that similar mechanisms take 

place in humans. Additionally, various residential gut microbes can produce short-chain fatty 

acids (SCFAs) such as butyrate, propionate, and acetate, which alter the gut pH and have been 

shown to suppress proliferation of enterohemorrhagic Escherichia coli (EHEC) O157:H7 (67), a 
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more virulent form of STEC. Similarly, Fukuda et al. (2011) (68) found that Bifidobacterium 

spp. produced acetate that provided defense against cellular translocation of E. coli O157:H7 in 

mice, prolonging survival. Additionally, butyrate has been shown to down-regulate expression of 

pathogenicity island 1 (SPI1), which contains a set of genes necessary for epithelial invasion in 

Salmonella enterica (69). Commensal gut microbes will also outcompete invading pathogens for 

various nutrients; this has been shown in multiple studies involving E. coli O157:H7 through 

competition for proline (70), organic acids (71), as well as various carbohydrates (72). Resource 

competition was also implicated as an important factor in reducing S. enterica serovar 

Typhimurium colonization, as the commensal E. coli Nissle outcompeted this pathogen for iron, 

an important micronutrient (73). Perhaps one of the most sophisticated methods of colonization 

resistance is the ability of host commensals to mitigate virulence of enteric pathogens. For 

example, certain enteric pathogens such as Shigella flexneri are dependent on oxygenation in a 

predominantly anaerobic environment (74); hence, utilization of oxygen by commensal bacteria 

may contribute to reduced pathogenicity or survival of this pathogen.  

The commensal gut bacteria also indirectly counteract pathogens by priming and 

communicating with the host immune system. Vaishnava et al. (2008) (75) found that Paneth 

cells in the small intestine interact directly with the gut microbiota, specifically through MyD88-

dependent toll-like receptor (TLR) activation. This sensing triggers production of host-excreted 

antimicrobial peptides, such as α-defensins, which can influence the composition of the 

commensal gut microbiota, regulate the mucosal immune response (76), and stymie pathogen 

colonization (75). Furthermore, commensal bacteria condition the innate immune system’s 

production of natural killer (NK) cells that express the natural cytotoxicity receptor NKp46 and 

the transcription factor RORγt, which regulate production of the interleukin-22 (IL-22) cytokine 
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(77). These factors were found to be important for antimicrobial protein-mediated immune 

defense against Citrobacter rodentium infection in mice (78, 79), which mimics EHEC 

infections in humans. NOD2, or the nucleotide-binding oligomerization domain 2, is another 

important factor, as it senses components of the bacterial peptidoglycan and can interact with 

other immune machinery such as TLRs (80). Indeed, NOD2 and the commensal gut microbiota 

were previously shown to be involved in an intricate regulation feedback loop (81). This study 

demonstrated that commensals positively regulated NOD2 signaling, priming it for activation 

upon pathogen invasion, while this increased signaling also limited overgrowth of commensal 

microbes (81). In another study, intestinal mononuclear phagocytes (iMPs) differentially 

responded to commensal and pathogenic bacteria; specifically, they mediated NLRC4, a Nod-

like receptor (NLR)-containing inflammasome responsible for production of IL-1β, a key 

inflammatory cytokine (82). It is therefore evident that, in addition to direct antagonism against 

invading pathogens, commensal gut microbiota play important roles in readying the host immune 

response against these invaders.  

Despite the efforts of commensal microbes to reduce risk of infection, pathogenic isolates 

have developed methods to work around these defenses. For example, in causing intestinal 

inflammation, enteric pathogens alter the gut environment and shift the composition of 

microbiota, thereby altering available nutrients which can enable further colonization of 

pathogenic strains (83). Another notable example of nutrient pilfering is the ability of pathogenic 

Escherichia and Salmonella strains to uptake Fe(III) despite host-mediated iron sequestration 

methods designed to prevent such occurrences (84). More broadly, nutrient use among 

gastrointestinal pathogens enhances their ability to partition resources, outcompete commensal 

gut residents, evade immune responses, and increase cell-to-cell signaling which could promote 
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virulence (85). Some pathogens, such as S. enterica serovar Typhimurium, have evolved to 

thrive in an inflamed gut environment. Interestingly, this pathogen can use tetrathionate, a 

compound generated from host-produced reactive oxygen species during an inflammatory 

response, as an alternative electron acceptor during respiration (86). Despite the many 

mechanisms displayed by both commensal microbes and the human host to prevent infection, 

enteric pathogens continue to cause widespread foodborne disease.   

OTHER FACTORS INFLUENCING THE TRAJECTORY AND SEVERITY OF 

ENTERIC INFECTIONS 

Microbiome health at the time of infection also plays a role in determining the outcome 

of pathogen invasion. The ability of a community to return to its pre-disturbance state is 

indicative of its resilience. In fact, Moya and Ferrer (2016) (87) describe metabolic plasticity and 

functional redundancy as the greatest influencers of gut microbiome trajectories induced by 

differences in age, diet, and disease. Metabolic plasticity has been described as a change in 

single-cell properties that adjust depending on the needs of the overall community (88). 

Functional redundancy, on the other hand, refers to a community’s capacity for metabolic 

function regardless of taxonomic or genetic composition. In other words, different species have 

the capacity to complete the same function(s) within a community (89). Comte et al. (2013) (88) 

explored the interplay of metabolic plasticity and functional redundancy in aquatic microbial 

communities after transplantation to new nutrient sources. Their results suggest that these 

phenomena may not dictate community response to environmental factors, but rather modulate 

factors such as composition and diversity, which are likely playing key roles in this response. 

Indeed, functional redundancy among gut communities has been documented during and after 

antibiotic treatment, as original functionality was shown to be restored upon treatment cessation 

(90).  
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A gut environment that is already experiencing periods of distress or dysbiosis is at 

greater risk of further disruptions by pathogen presence, an occurrence which could have lasting 

effects on gut dysbiosis (27). Kampmann et al. (2016) (91), for instance, demonstrated that 

taxonomic diversity of the gut microbiota was lower among individuals who eventually became 

infected with Campylobacter compared to people who remained uninfected. A similar outcome 

was observed in mice as those with relative microbial imbalance prior to infection were more 

susceptible to infection by S. enterica (92). Even stressors external to the gut, such as those 

affecting organ health, can negatively influence the body’s ability to react to infection. 

Hyperglycemia, for example, which is caused by increased levels of glucose in the body, was 

found to disrupt gut epithelial integrity in mice, leading to weakened barrier function that 

increased susceptibility to enteric infection and pathogen spread (93). Interestingly, there are 

various markers that can indicate whether a human gut environment is trending towards 

dysbiosis. For example, one of the most documented taxonomic shifts related to dysbiosis is a 

substantial “bloom” in Proteobacteria (94). Although members of this phylum are normal 

residents of a healthy microbiome in relatively small numbers, increased proportions have been 

implicated in obesity and diabetes (95) in addition to more transient disturbances such as enteric 

infection (46). It is clear, however, that more comprehensive analytical methods such as shotgun 

metagenomic sequencing and metabolomics, are needed to fully understand how enteric 

pathogens impact gut communities. 

RELEVANCE OF ANTIBIOTIC RESISTANCE TO THE HUMAN GUT MICROBIOME 

AND ENTERIC PATHOGENS 

Antibiotic resistance among bacterial pathogens is an imminent global concern. While 

antibiotics have historically served as lifesaving treatments used to combat bacterial infections, 

resistance has been documented for nearly all antibiotics developed (96). The ubiquity of 
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resistance has arisen due to multiple factors including rampant overuse of antibiotics and 

improper use and prescription of these drugs in veterinary and human medicine as well as 

extensive application in the agricultural industry. Additionally, research into the development of 

new drugs is lacking, as is the funding (96). Despite recent decreases in the overall number of 

hospitalizations and deaths associated with resistant bacterial infections, the CDC emphasizes 

ongoing challenges in combatting resistance (97). The most recent estimates indicate that over 

2.8 million antibiotic-resistant infections occur annually in the United States, resulting in greater 

than 35,000 deaths (97). In addition, infections caused by resistant bacteria were estimated to 

result in significantly higher financial and physiological costs to the patient (98). Importantly, the 

burden of antibiotic resistance is more prevalent in low- and middle-income countries (LMICs) 

which, on average, have fewer regulations for antibiotic use, higher rates of infectious disease, 

and less programming that emphasizes the importance of antibiotic resistance monitoring and 

prevention (99).  

Antibiotics and Antibiotic Resistance 

Antibiotics have been referred to as “wonder drugs” for their ability to combat bacterial 

infection (100) and have greatly changed the trajectory of human health throughout history 

(101). Compounds which exert antibiotic activity are either naturally occurring or synthetically 

produced. While naturally occurring antibiotics are secondary metabolites produced by bacteria 

or fungi to combat other microbes sharing the same environment, synthetic antibiotics have been 

developed in the laboratory to optimize antimicrobial activity (102). Importantly, the most 

common mechanisms of antibiotic compounds include inhibition of cell wall synthesis, 

destruction of the cell membrane, inhibition of nucleic acid or protein synthesis, and disruption 

of crucial metabolic pathways (102, 103). These mechanisms have bacteriostatic effects, which 
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halt bacterial growth, or bactericidal effects that cause bacterial death; this range of mechanisms 

is relevant to clinical applications (104). Certainly, the development and application of 

antibiotics have substantially altered patient outcomes related to infectious disease. 

Despite the wide-reaching efficacy of antibiotics, resistance to these compounds has been 

documented for nearly every drug in circulation (96, 100). Antimicrobial resistance (AMR) is 

defined as the ability to withstand the molecular impacts of an antimicrobial or antibiotic, 

allowing continued survival and growth (100, 101). AMR is a natural evolutionary response to 

the selective pressure of antibiotic exposure; the presence of antibiotics in a microbial 

community will select for members with mutations and genetic components that promote 

survival (105). A recent study demonstrated that although selection is the predominant force at 

play in the development and maintenance of AMR, both history and chance also influenced 

resistance phenotypes, evolved resistance, and sensitivity networks (106).  

Antibiotic resistance can be innate or acquired. Innate resistance refers to a bacterium’s 

ability to withstand antibiotic exposure due to its natural genetic makeup or structure. For 

example, there is intrinsic resistance among Gram-positive pathogens to the drug aztreonam, a 

beta-lactam antibiotic that cannot bind sufficiently to Gram-positive cell wall components (107). 

Acquired resistance, however, refers to a bacterium acquiring the ability to resist antibiotics via 

genetic exchange with other microbes or spontaneous mutation (101). The most common 

mechanisms of AMR include limiting drug uptake, modifying the molecular target of the drug, 

directly inactivating the drug itself, and removing antibiotics from the cell via efflux (101). Drug 

uptake can be modulated by the lipopolysaccharide (LPS) layer in Gram-negative bacteria, 

thickening of the cell wall in Gram-positive bacteria, formation of biofilms (107, 108), or 

reduced production and activity of porin proteins, which is common for members of 
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Enterobacteriaceae (109, 110). Drug target modification is a resistance mechanism used to 

prevent antibiotic activity against biosynthetic pathways, in particular. For example, target 

modification can take place in the bacterial cell wall (preventing attack on cell wall synthesis 

pathways), the ribosome (protecting the cell’s protein synthesis capabilities), DNA gyrase 

(preventing binding of nucleic acid synthesis inhibitors) and metabolic intermediates (allowing 

reactions to continue, such as in the folate biosynthesis pathway) (107). Inactivation of the drug 

occurs by destroying the drug, as is the case with beta-lactamase proteins, which cleave the beta-

lactam ring rendering the antibiotic inviable (101, 107, 111). Drugs can also be inactivated 

through chemical modification, in which bacterial enzymes attach chemical groups to the 

antibiotic compound; these can include acetyl, adenyl, and phosphoryl groups, all of which have 

been shown to inactivate aminoglycosides via aminoglycoside-modifying enzymes, in addition 

to other antibiotic classes (101, 112).  

Drug efflux is a resistance mechanism that is particularly concerning as many efflux 

pumps can extrude multiple compounds, an ability that heightens the likelihood of multidrug 

resistance (MDR) in some organisms (107). There are five main families of bacterial efflux 

pumps including the ATP-binding cassette (ABC) family, the small multidrug resistance (SMR) 

family, the major facilitator superfamily (MFS), the multidrug and toxic compound extrusion 

(MATE) family, and the resistance-nodulation-cell division (RND) family (107, 113). While 

Gram-positive bacteria have single-component efflux pumps that span the cytoplasmic 

membrane, Gram-negative microbes employ multi-component pumps to traverse the inner 

membrane, periplasm, and outer membrane (114). The most common efflux pumps among 

Gram-negative bacteria are tripartite systems in the RND family that confer resistance to various 

biocides, detergents, and solvents in addition to many clinically-relevant antibiotics (114). 
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Although most antimicrobial resistance genes (ARGs) for MDR efflux systems are located on 

the bacterial chromosome, genes for specific efflux transporters (such as those relevant to 

macrolide, lincosamides, and streptogramins (MLS) or tetracyclines), have been associated with 

mobile genetic elements (MGEs), highlighting their ability for exchange among bacteria (115).  

Mobility of antibiotic resistance 

Many bacteria acquire antibiotic resistance genes or determinants through horizontal gene 

transfer (HGT), which results in resistance phenotypes faster than via the introduction of 

spontaneous mutations (116). HGT occurs through three main mechanisms: conjugation, 

transformation, and transduction. While transformation involves the uptake of exogenous DNA 

from the surrounding environment, conjugation and transduction require more machinery. In 

conjugation, a donor and a recipient cell are directly attached by a sex pilus through which 

genetic material is exchanged; this represents the most common form of HGT among enteric 

pathogens (117). Transduction, on the other hand, relies on bacteriophage infection to transfer 

genetic material from one bacterial cell to another. Indeed, bacteriophages can transfer ARGs 

across bacterial communities, which is important to consider when developing and applying 

therapeutics (118).  

ARGs are not the only important genetic components that can be transferred across 

bacterial populations via conjugation. Rather, a variety of MGEs including conjugative plasmids, 

conjugative transposons, and integrative and conjugative elements (ICEs) can all be passed from 

one cell to another through conjugation (119). Therefore, the capacity for drug resistance is 

enhanced because of the ease by which they spread among bacteria within and across species. 

Conjugative plasmids are specialized plasmids which contain the genetic information needed to 

induce conjugation (120). In addition to the genetic infrastructure enabling spread, conjugative 
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plasmids typically possess accessory genes, such as ARGs, which may confer an adaptive 

advantage to the host cell (120). Alarmingly, conjugative plasmids were shown to disseminate 

among microbial populations even in the absence of antibiotic-related selective pressures, 

suggesting that cessation of antibiotic treatment, even for extended periods, may not mitigate 

AMR in a population (121).  

Meanwhile, conjugative transposons, which are plasmid-like and transposon-like 

representing discrete genetic elements that can integrate into the bacterial genome, are also 

important. In conjugative transfer, the portions of DNA that contain ARGs are excised, nicked to 

form single strands (one of which is transferred to the recipient cell), constructed back to double-

stranded DNA, then integrated back into the bacterial genome (122). Finally, ICEs are self-

transmissible elements that combine features of transposons, plasmids, and even bacteriophages. 

Excision of these MGEs can be induced by certain conditions, after which ICEs circularize, 

replicate, are passed to a recipient cell via conjugation, and ultimately integrate back into each 

cell’s respective chromosome (119). The ubiquity and diversity of MGEs emphasize the 

heightened mobility of antibiotic resistance within and across microbial communities, which 

highly complicates the mitigation of AMR across environments.  

The ecology of antimicrobial resistance 

The mobility of ARGs is not confined within discrete environmental systems. Rather, 

AMR is highly prevalent in a variety of environments including soils, organic materials, aquatic 

systems, industrialized areas, wildlife, and the human gut (123). The antibiotic “resistome” is a 

collection of all ARGs and their genetic precursors in a community (124). While we may 

consider separate resistomes for different environments (such as human vs. soil vs. animal), these 

respective resistomes can shape each other (123). Forsberg et al. (2012) (125) identified multiple 
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genomic regions in environmental soil isolates that had >99% similarity to five relevant human 

pathogens. Importantly, each region contained one or more ARGs in addition to various MGEs, a 

finding that highlights the shared resistome across environments (125). Similarly, another study 

found that resistomes across habitats were primarily structured by bacterial phylogeny along an 

ecological gradient (126). However, an association between the proportion of antibiotic 

resistance contiguous genomic sequences (contigs) containing a MGE or multidrug resistance 

cluster (MDRC) and the number of habitats in which the ARG was found was observed, 

highlighting the importance of MGEs in facilitating transfer across environmental boundaries 

(126). 

Many studies have explored the resistomes of various environments to better understand 

ARG composition, affiliation with members of the microbiota, and potential for transmission 

across taxa and habitats (127). Most work on resistomes is separated into three overarching 

categories: environmental, animal, and human. Environmental resistomes include both natural 

(which can be subdivided into terrestrial and aquatic ecosystems) and built (such as agriculture, 

wastewater treatment, aquaculture, and hospitals), whereas animal and human resistomes 

primarily consider ARGs harbored by these reservoir hosts (127). 

Freshwater ecosystems such as rivers, were previously found to be an important reservoir 

and transmitter of ARGs. Multiple studies have identified the presence of ARGs in river systems 

and, importantly, have noted marked increases in ARG abundances within rivers under greater 

anthropogenic influence (e.g., urban rivers, greater contact with humans, industrialized areas, 

etc.) (128, 129). More specifically, Lee et al. (2020) (130) showed that anthropogenic fecal 

contamination resulted in a bloom of ARGs in the Han River in South Korea. This bloom was 

not attributed to the proliferation of drug resistant microbes, but rather an increased prevalence 
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of environmental microbes which had integrated ARGs due to high prevalence of MGEs in the 

contaminating matter (130). Notably, many ARGs found in freshwater systems subsist during 

water treatment and can be identified in drinking water. For instance, Ma et al. (2017) (131) 

identified ARGs conferring bacitracin, MDR, aminoglycoside, sulfonamide, and beta-lactam 

resistance. This study also characterized the microbial hosts harboring ARGs of interest. 

Strikingly, 80% of contigs carrying an ARG in Pseudomonas spp. were important for MDR, 

demonstrating the ubiquity of MDR even within our drinking water (131).  

Another relevant system that serves as a potent resistance reservoir is agriculture, 

including husbandry of livestock. One reason for the high frequencies of AMR in agricultural 

settings is due to the overuse of antibiotics in animal food production (132). Although exact 

amounts can vary by country, the average annual consumption of antibiotics per kilogram of 

animal produced was estimated to be highest in swine (172mg/kg) followed by cattle (148mg/kg) 

and chickens (45mg/kg) (133). Indeed, these antimicrobial additives were found to shift the gut 

microbiome of swine and significantly enhance the diversity of ARGs and MGEs identified 

(134). Application of metals such as copper or zinc, is also common in the livestock industry to 

promote growth and prevent disease (132). Notably, use of these compounds not only results in 

increased metal resistance among animals, but also enhanced AMR, as these two types of 

resistance have been found to co-occur (135). Increased levels of resistance in agricultural 

settings pose a risk for widespread transmission to humans directly through animal contact or 

indirectly through food consumption (99). In fact, Sun et al. (2020) (136) demonstrated that 

veterinary students working on swine farms experienced a shift in their gut microbiomes and 

resistomes. After three months of exposure, these individuals’ microbiomes and resistomes 

became more similar to those of resident farm workers and even environmental samples. These 
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data demonstrate that the agricultural industry has contributed to the persistence of resistance in 

different hosts and environments, emphasizing our need to address ARG spread.  

Similarly, the human gut is also an important reservoir for ARGs, a system that also has 

implications for human health (127, 137). In a prior study, Feng et al. (2018) (138) characterized 

the gut resistome for 180 healthy individuals from 11 different countries. They found ARGs for 

aminoglycosides, bacitracin, MLS, MDR, tetracylines, and vancomycin to be ubiquitous across 

all samples and subsequent network analyses identified 12 bacterial species to serve as hosts for 

58 distinct ARG subtypes (based on co-occurrence and correlation) (138). Furthermore, 

resistome composition appears to be dependent on geography since individuals residing in 

different countries registered distinct resistomes (138, 139), an outcome that was suggested to be 

linked to differences in antibiotic applications and usage (140).  

The resistome has also been explored in individuals whose microbiomes are in a state of 

flux. For example, antibiotic treatment drastically impacted the composition and diversity of the 

human gut microbiome in one study, which was linked to ARG composition (90). Specifically, 

an increase in members of Proteobacteria and associated ARGs was documented, a result that 

was replicated in this dissertation (141). Interestingly, Raymond et al. (2019) (142) performed 

culture-enrichment to explore associations between ARGs and lower abundance taxa in the 

human gut, specifically members of Enterobacteriaceae. It was found that E. coli had a large 

accessory genome composed of proximal ARGs and MGEs (142). These findings corroborate 

those described herein and of those presented by Perez-Cobas et al. (2013), as increases in the 

abundance of Escherichia would inherently increase the abundance of these associated accessory 

ARGs. Importantly, previous functional characterization of ARGs in the human gut resistome 

revealed that a large proportion of these genes were identical to those harbored by human 
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pathogens (143). It is important to note, however, that many ARGs identified with these methods 

had not yet been characterized, suggesting even greater diversity among human and pathogen 

resistomes than previously thought (143). The role of the human gut resistome in perpetuating 

the spread of AMR must be strongly considered when exploring methods of resistance 

mitigation.  

Antibiotic resistance among enteric pathogens 

 Of great importance to this research is the high prevalence of antibiotic resistance among 

enteric pathogens (144, 145) and the potential for transfer to commensals or opportunistic 

pathogens during infection. Each of the four enteric pathogens examined in this study 

(Campylobacter, Salmonella, Shigella, and E. coli) have been classified as serious antibiotic 

resistant threats (97). Antibiotic-resistant Campylobacter spp., for instance, were estimated to 

cause nearly 450,000 infections per year in the United States; this number accounts for ~30% of 

the total number of Campylobacter infections annually (97). Increasing levels of resistance to 

azithromycin, a macrolide often used to treat Campylobacter infections, and ciprofloxacin, a 

quinolone, have been reported in Campylobacter spp. (97, 146). Resistance to ciprofloxacin is 

more common, with about 28% of all Campylobacter isolates demonstrating reduced 

susceptibility to this drug in the last twenty years (97). Nonetheless, considerable variation in 

resistance frequencies has been reported across geographic locations (147). The mechanism of 

resistance to ciprofloxacin and other fluoroquinolones is due to point mutations in the quinolone-

resistance-determining regions of gyrA encoding the DNA gyrase (116, 148). Campylobacter is 

also naturally competent and can take up exogenous DNA from the surrounding environment, a 

feature that enhances its ability to acquire ARG-containing genetic material and subsequently 

survive in the presence of antibiotics (116, 149).  
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Nontyphoidal Salmonella (NTS) causes approximately 1.35 million infections each year, 

with ~15% (212,500) of these being caused by drug-resistant Salmonella (97). Since most 

Salmonella infections are self-limiting, it was suggested to avoid antibiotics for treating NTS 

infections, as treatment can result in prolonged shedding of drug-resistant pathogens (150). In 

fact, inappropriate application of antibiotics for NTS infection is a key driver of increased 

resistance, a development that has led to more adverse clinical outcomes (151) and an enhanced 

risk of hospitalization (152). Notably, nearly 10% of all Salmonella were shown to have 

resistance to ciprofloxacin, with documented increases in resistance to ceftriaxone (a third-

generation cephalosporin in the beta-lactam class) and azithromycin as well (97). Just as 

Salmonella is known for its pathogenicity islands, this pathogen also contains genomic islands 

capable of conferring antibiotic resistance. Specifically, Salmonella genomic island 1 (SGI1) 

contains a region called ACSSuT that confers resistance to ampicillin, chloramphenicol, 

streptomycin, sulfamethoxazole, and tetracyline (153). Similarly, another genomic island 

(Salmonella streptomycin and azithromycin resistance island (SASARI)), which contains ARGs 

for resistance to these antibiotics, was discovered (154). The identification of these genomic 

islands harboring ARGs for multiple antibiotic classes emphasizes the growing importance of 

MDR among pathogenic Salmonella isolates.  

Although Shigella spp. are responsible for fewer infections overall (n=450,000) in the 

United States, a high percentage of these infections are caused by antibiotic-resistant strains 

(77,000; 17%) (97). According to the CDC, ~25% of all Shigella isolates recovered from 

infected cases displayed reduced susceptibility to azithromycin, and at least 10% have 

demonstrated resistance to ciprofloxacin (97, 146). HGT is important for Shigella, which has 

been shown to acquire resistance to multiple antibiotic classes via the acquisition of plasmid-
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borne or mobilized ARGs (155). Similar to NTS, Shigella can harbor the ACSSuT genomic 

region conferring MDR, an important consideration when attempting to treat Shigella infection 

(156).  

Finally, resistance in STEC has been increasingly documented even though antibiotics 

are not recommended for treatment (157, 158). In 2019, the incidence of STEC was 6.3 per 

100,000 people, the third highest ranking for enteric pathogens behind Campylobacter and 

Salmonella (48). At the family level, members of Enterobacteriaceae, which include genera such 

as Escherichia, Salmonella, Klebsiella, and Shigella, often harbor clinically-relevant ARGs with 

phenotypic resistance. Indeed, the CDC has classified carbapenem-resistant Enterobacteriaceae 

as an urgent threat, while extended-spectrum beta-lactamase (ESBL) producing 

Enterobacteriaceae represent a serious threat to public health (97). Of great importance is the 

ability of different members of Enterobacteriaceae to share genetic material across genera, 

particularly on plasmids, via HGT (159). This realization becomes more important as we 

continue to identify the breadth of ARGs that can be transmitted horizontally; for example, 

ESBLs are highly mobilized across Enterobacteriaceae, posing a great threat to the efficacy of 

this antibiotic class in the clinic (160).  

Indeed, the increasing prevalence of drug resistance among enteric pathogens coupled 

with rising mobility of these ARGs throughout microbial communities is great cause for concern. 

In addition to acquiring resistance outside of the host, some enteric pathogens can acquire 

resistance from the reservoir of ARGs in human gut communities. The exchange of ARGs 

between pathogens and commensal bacteria via HGT was previously documented in the gut 

(116). Therefore, not only are the ARGs harbored by these enteric pathogens of great concern, 
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but the community-level impacts of invasion by drug-resistance pathogens appear to be 

widespread. 

ROLES OF THE GUT MICROBIOME AND RELATED METABOLIC CAPACITY IN 

SHAPING HUMAN HEALTH 

Interplay between the gut microbiome and metabolism 

Impacts of disease, both chronic and acute, on the human gut microbiome and 

metabolome have increasingly been characterized, with particular emphasis on the use of multi-

omics to better define host-microbiota metabolic interactions (161). Numerous studies have 

explored microbial differences between ‘healthy’ individuals and those with various health 

conditions including obesity, liver disease, metabolic disease, diabetes, and inflammatory bowel 

disease (IBD) (162-164). However, a standard definition for a “healthy gut” is flexible, as one’s 

microbial and metabolic profile can vary due to day-to-day diet, exercise, and even genetics 

(165). Diet is especially important in driving the composition of the gut. Although, diet-related 

shifts in the composition of gut microbiota are personalized, and even sustained intake of a 

monotonous diet does not result in a “standard” microbial profile (166). Despite this, another 

study of humanized mice documented that prolonged consumption of low-fiber diets resulted in 

the removal and eventual extinction of some beneficial microbes in the gut, primarily those in the 

order Bacteroidales (167). Altered nutrient load, a metric dictated by dietary intake, was found to 

influence changes in microbial composition, a consequence that also influenced the gut’s ability 

to absorb nutrients (168). Colonic transit time, a measure of how frequently the colon is cleared 

via defecation, is a potential indicator of gut microbiome health as well since transit times 

correlate with various forms of metabolism. Indeed, shorter transit times were linked to 
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carbohydrate fermentation, whereas longer times were associated with protein catabolism, a less 

preferred energy source (169). 

Diet-related shifts in gut microbial composition also inherently impact metabolism since 

community members have a direct effect on host metabolic health (170). In a systematic review, 

Wolters et al. (2019) (171) explored the impact of dietary fat intake on gut metabolic health and 

found that diets rich in fats and monounsaturated and saturated fatty acids resulted in reduced 

bacterial richness and diversity, while diets high in polyunsaturated fatty acids did not exhibit 

this negative effect. Relatedly, Le Chatelier et al. (2013) (172) demonstrated that individuals 

with reduced gut richness and diversity are distinguished by greater adiposity, insulin resistance, 

and inflammation. Moreover, Cani et al. (2007) (173) showed that ingestion of long-term high-

fat diets selected for lipopolysaccharide (LPS)-producing bacteria, an effect contributing to 

endotoxemia-related inflammation that has been correlated with obesity and insulin resistance. 

Interestingly, intraspecies variation can have differential effects on host metabolism; indeed, 

genetic variation exhibited by these ‘structural variants’ results in differences of metabolic 

capacity of the microbiome (174).  

The importance of short-chain fatty acids (SCFAs) in gut health 

Many members of the commensal gut are responsible for breaking down complex 

carbohydrates after ingestion (175) or generating vitamins that are critical to human health (176). 

Complex carbohydrate degradation by gut microbes leads to generation of beneficial SCFAs, 

compounds composed of a carboxylic acid and small hydrocarbon chains, which influence the 

host’s inflammatory response and autoimmunity (177). In addition to diet, another factor found 

to influence SCFA production is place of residence; Jacobson et al. (2021) (178) found that 

individuals residing in non-industrial areas had greater SCFA-related resilience, whereas those 
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from industrial areas were at greater risk of disruption due to limited SCFA production by just a 

few genera. In particular, three SCFAs, acetate, butyrate, and propionate, which are synthesized 

by gut microbes, have been extensively studied and linked to gut health. Acetate is often the 

most abundant of these SCFAs and is primarily produced by members of the Firmicutes phylum 

(179); radioisotope analysis performed by Miller and Wolin (1996) (180) revealed that acetate 

production occurs most often via the Wood-Ljungdahl pathway (also called the reductive Acetyl-

CoA pathway) following glucose catabolism and conversion of acetyl-CoA to acetate. Butyrate 

is synthesized in the human colon by anaerobic Gram-positive bacteria, with the most prominent 

butyrate producers being Faecalibacterium prausnitzii, Eubacterium rectale, and Roseburia spp 

(181). Acetate has been shown to serve as a precursor for butyrate production in the gut (182), 

but butyrate is primarily produced via conversion of acetyl-CoA, glutarate, 4-aminobutarate, or 

lysine, with the acetyl-CoA pathway being most prevalent among butyrate producers (183). 

Propionate, on the other hand, is produced by multiple phylogenetic groups including 

Bacteroidetes, Verrucomicrobia, and Negativicutes via the succinate pathway, and 

Lachnospiraceae and Rumminococcaceae, which use the acrylate or propanediol pathways (184).  

These SCFAs continue to be explored for their specific impacts on human gut health. 

Because SCFAs are taken up from the lumen by intestinal epithelial cells (IECs), they are 

metabolized as a source of energy for these colonocytes while playing a vital role in fatty acid 

metabolism, glucose metabolism, and cholesterol metabolism (185). Once absorbed, these 

SCFAs also improve aspects of immune defense and development, contributing to homeostasis 

of the intestinal epithelium (186). It has been shown, for example, that SCFAs produced via 

fermentation of dietary fiber bind to the G-protein coupled receptors, GPR43 and GPR109A, to 

prime and activate the NLRP3 inflammasome in colonocytes. This activity facilitates recovery 
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from inflammation, overall gut homeostasis, and further protection from disease (187, 188). 

Butyrate, in particular, is the SCFA most frequently metabolized by IECs and directly influences 

the growth and apoptosis of healthy colonocytes while also demonstrating an ability to inhibit 

unregulated cancerous growth (189). Butyrate, in addition to acetate and propionate, has been 

documented to increase various defensive functions of the intestinal epithelium, including 

production of β-defensins and cathelicidins, which are host-secreted peptides that aid in 

antimicrobial defense (190).  

These SCFAs, along with the microbes that produce them, have also been implicated for 

their role in combating various metabolism-related diseases. For example, an increased 

Firmicutes:Bacteroidetes ratio as well as lower overall bacterial diversity has been associated 

with obesity (191). Nogal et al. (2021) (192) demonstrated that gut microbiome alpha diversity 

positively correlated with higher circulation of acetate, a SCFA that was negatively associated 

with the quantity of visceral fat. Acetate has also been explored for its therapeutic potential in 

counteracting obesity with promising results (193), while SCFAs have been shown to counteract 

decreased metabolic functions associated with Type 2 diabetes. Uptake of these molecules 

indirectly leads to secretion of GLP-1, a hormone that aids in maintaining glucose homeostasis, 

and promoting β-cell development that benefits insulin production (194). These beneficial 

outcomes, combined with the aforementioned management of intestinal inflammatory pathways, 

aid in combatting effects of Type 2 diabetes.  

Levels of SCFA production have also been linked to inflammatory bowel diseases (IBD) 

such as ulcerative colitis and Crohn’s disease; individuals experiencing IBD have shown reduced 

concentrations of SCFAs and SCFA-producing taxa in the gut (195). Relatedly, IBD patients 

contained different compositions of bile acids in their guts compared to healthy individuals 
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(196). These conditions likely influence how the host manages intestinal inflammation and may 

even exacerbate gut epithelial inflammation and decreased metabolic health. In another study, 

patients with colitis had reduced representation of the phylum Firmicutes, specifically the species 

Faecalibacterium prausnitzii (197), which is known for its role in SCFA generation in the gut 

(198). Together, these studies suggest that adequate levels of SCFAs can mediate metabolic 

conditions responsible for multiple conditions including obesity, Type 2 diabetes, and IBD. 

While SCFAs contribute greatly to the overall management of gut metabolic health, little is 

known about their role in or recovery from enteric infections.  

Other microbially-mediated metabolites of importance  

In addition to SCFAs, the gut microbiota synthesize and modulate other relevant 

metabolites like vitamins. Indeed, members of gut microbial communities were demonstrated to 

construct vitamin K and various B group vitamins, which have been implicated in human health 

(199). Magnusdottir et al. (2015) (200), for instance, explored 256 common gut bacteria for the 

presence of B-vitamin biosynthesis pathways. They found the distribution of these synthesis 

pathways to be diverse but noted evident exchange of vitamins among organisms whose vitamin 

pathways were complementary (200). Similarly, Soto-Martin et al. (2020) (201) used in silico 

methods supplemented by in vitro testing to characterize vitamin requirements among butyrate-

producing auxotrophs and prototrophs in the gut. They found evidence of cross-feeding among 

these groups, specifically for vitamins B1 and B9 (thiamine and folate, respectively), suggesting 

cooperation among beneficial commensal gut bacteria (201).  

Another group of compounds important for intestinal health is bile acids. While 

microbiota in the gut can modify the structure and chemical properties of bile acids, the latter 

also exert antimicrobial properties that can shape gut communities (199, 202). Bile acids are 
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normal gut metabolites that aid in the digestion and absorption of lipids; these molecules also 

promote homeostasis of the intestinal epithelium (203). In the liver, primary bile acids undergo 

conjugation, typically with glycine or taurine, and are subsequently stored in the gall bladder 

before release into the small intestine (203). While many conjugated bile acids are destined for 

enterohepatic circulation and are reabsorbed, a small fraction are metabolized by the gut 

microbiota (204). Function-based metagenomics was used to show how bacteria employ a 

widely conserved bile salt hydrolase (BSH) to catalyze deconjugation of many conjugated bile 

acids (CBAs) and liberate primary bile acids into the gut lumen (205). These primary bile acids 

can be used by other microbes in the gut to generate secondary or tertiary bile acids. The most 

common transformation among gut bacteria is the conversion of the primary acids, 

chenodeoxycholic acid (CDA) and cholic acid (CA), to the secondary acids, lithocholic acid 

(LCA) and deoxycholic acid (DA), respectively, via 7-dehydroxylation (206). Importantly, 

certain secondary bile acids such as DA can generate reactive oxygen species (ROS) and reactive 

nitrogen species (RNS), which can lead to DNA damage (207). These secondary bile acids have 

therefore been implicated for a role in colonic and liver cancers. Interestingly, these bile acids 

also have potent antimicrobial properties; for example, DCA is hydrophobic and acts as a strong 

detergent that can disrupt bacterial membranes, highlighting the importance of feedback between 

bile acids and gut microbes (208). In fact, the gut microbiota not only plays a role in generating 

secondary bile acids, but also influences bile acid pool size by regulating synthesis pathways in 

the liver (209). Certainly, maintaining a healthy balance between gut microbiota activity and bile 

acid production and cycling is crucial to human gut health.  
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COMPUTATIONAL METHODS FOR STUDYING THE HUMAN GUT MICROBIOME, 

RESISTOME, AND METABOLOME 

As discussed in previous sections, there are myriad aspects of the human gut microbiome 

that continue to be explored and studied. To glean information from this host-associated 

ecosystem, multiple tools have been developed to appropriately capture, condense, and 

characterize the complexity in the gut (210). Despite the rapid advancements in the fields of 

bioinformatics and computational biology, many tools in circulation can only detect associations 

between various microbiome features and not establish causation (210). Although these methods 

provide incredible insight into the genomic and metabolic landscape of the human gut 

microbiome, these computational methods require complementation with in vitro and in vivo 

studies to better define microbial interactions in the gut. Nevertheless, bioinformatic and 

computational analyses are invaluable resources for this crucial stage of microbiome research. 

Indeed, results from these computationally-based studies supply hypothesis-generating data from 

which more targeted and nuanced cause-and-effect studies can be designed.  

16S rRNA and ITS sequencing 

One of the most ubiquitous forms of sequencing analysis involves the 16S rRNA gene in 

bacteria and the internal transcribed spacer (ITS) region in fungi. These marker genes are highly 

conserved across microbial lineages, though taxa-specific divergence can promote differentiation 

(211). Importantly, many studies sequence only a specific portion of the gene, such as specific 

variable regions like V3-V4 in the 16S rRNA gene, because widely used sequencing platforms 

(e.g., Illumina) can only accommodate short sequences of ≤300 base pairs (212). Although 

targeting these sub-regions has allowed confident taxonomic identification at the genus-level or 

above, restricting one’s view to these regions cannot sufficiently discriminate between more 
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closely related taxa. Additionally, the 16S rRNA and ITS genes each contain hypervariable 

regions that can change over a relatively short time period (210); the variation in these regions 

can be detected in closely related taxa or even within a single genome, an aspect that greatly 

complicates sequence-based diversity analyses (213). Because the entire 16S rRNA gene is 

approximately 1,500 bp long, sequencing the entire gene (via long read technologies) provides 

much greater resolution at the species- and strain-level (212, 214). However, long-read 

sequencers currently display higher error rates and comprehensive databases for these full-length 

marker genes are limited (210). Therefore, the most common marker gene analyses still rely on 

short-read, sub-region sequencing. 

Due to the evident variation within and among marker genes across taxa, many 

investigators have adopted use of operational taxonomic units (OTUs). This method clusters bins 

of sequences based on pairwise alignment sequence dissimilarity (PSD), with a common 

similarity threshold of 97% (210, 215). A representative sequence is then selected for each OTU 

cluster. Although this method’s ability to simplify a complex sequencing dataset increases 

applicability, choosing a single sequence to represent an entire OTU cluster was suggested to be 

misleading, especially if OTUs are poorly clustered (215). After identifying a representative 

sequence, the sequence is annotated (usually with taxonomic information) using a naïve 

Bayesian classifier like the Ribosomal Database Project (RDP) Classifier (216) or extrapolating 

taxonomy via mapping to reference databases like Greengenes (217), SILVA (218), or UNITE 

(219). Any other sequences within the OTU cluster will inherit the annotations attributed to the 

representative sequence. Multiple analytical pipelines have been developed for 16S rRNA gene 

analysis including QIIME (220, 221), Mothur (222), and DADA2 (223), each of which provides 

information on taxonomic assignment and enables users to perform relevant diversity and 
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statistical analyses. Indeed, 16S rRNA and ITS sequencing analysis are powerful tools to explore 

microbiome composition and diversity. Despite some of their limitations, these methods have 

been optimized and are easy to use, an advantage that not all computational approaches yet 

share.  

Shotgun metagenomics sequencing 

 Despite their utility, marker gene analyses are restricted to a single aspect of the 

microbial genome, while shotgun metagenomics methods perform untargeted sequencing of all 

microbial genomes per sample (224). This method can be used to determine the taxonomic 

composition of a microbial community as well as its functional potential (210, 224). Prior to 

analysis, however, metagenome sequences must first undergo computational pre-processing in 

which adapters, poor quality sequences, and non-target DNA sequences are removed (225-227). 

There are two main analysis methods used to explore metagenomes: assembly-based profiling 

and read-based profiling. Each of these methods has advantages and pitfalls; hence, it is often 

recommended that a combination of these two approaches be used when investigating the 

microbiome (224).  

 Assembly-based profiling first requires construction of contiguous sequences or 

“contigs” from the raw sequencing reads. There are multiple algorithms that have been 

developed to construct these contigs, but the de Bruijn graph approach is currently most popular 

(224). A de Bruijn graph is a directed graph that shows overlaps between sequences. This 

assembly method breaks sequencing reads into overlapping sequences of a fixed length (k); these 

overlapping k-mers are then clarified to produce a directional graph with a single path that 

accurately reconstructs genomic regions (228). Some highly used assemblers that employ the de 

Bruijn graph method include IDBA-UD (229), MEGAHIT (230), metaSPAdes (231), 
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MetaVelvet (232), and Ray Meta (233). Multiple groups have sought to benchmark these 

different assembly methods to improve investigators’ ability to choose the best method to 

address their research questions (234-236).  

One notable advantage of assembly, if of sufficient sequence quality, is to have the ability 

to explore the genomic architecture of microbes in the community. For example, contig 

construction can assemble multiple short reads into a coherent section of the genome, allowing 

greater confidence when analyzing genomic regions that may exceed the length of short reads 

alone (237). Additionally, this insight into genomic architecture also has the power to associate 

functional genes with taxonomy, as genes of interest will likely co-occur on contigs that can be 

taxonomically annotated (237). Despite these advantages, there are notable limitations of 

metagenomic assembly. For example, the quality of assembly strongly depends on the number of 

sequences obtained, the quality of sequencing and library preparation, and the diversity of the 

community being sampled (238), although these aspects are also limitations relevant to read-

based analysis. Another potential limitation is the relatively high computational expense of 

assembly, as most assemblers require significant memory and computing power (234). It is also 

notable that different assembly tools can differ markedly in their usability, assembly method, and 

use of computational resources, aspects that can drastically influence assembly output and 

downstream interpretations (234). Assembly also reduces the complexity of the sampled 

microbial community since only a fraction of microbial genomes can typically be resolved; 

unfortunately, the genomes first excluded are usually those representing low-abundance taxa 

(224). Although metagenomic assembly is a powerful and evolving approach, researchers must 

consider which assembly methods are best suited for their system of interest and their research 

questions before performing this step in the analytical pipeline.  
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By contrast, read-based analyses use unassembled metagenomic sequencing reads to 

obtain taxonomic or functional profiles following alignment to publicly available reference 

databases (224, 237). This process determines the abundance of various taxa and/or functional 

genes based on sequence similarity between raw reads and reference genes in the chosen 

database. One advantage is that it can capture more complex communities if sequencing depth is 

adequate and the reference database is sufficiently large and well curated. Unlike assembly-

based methods, which may not be capable of resolving low-abundance reads, the read-based 

pipelines consider all sequencing data provided (224). Moreover, the use of reads is often less 

computationally taxing than performing assemblies, which require binning, read-mapping, and 

the generation of metagenome-assembled genomes (MAGs). Some limitations associated with a 

read-based analysis, however, are important to note. Although this method can provide insight 

into community structure and function, it can only capture information relevant to reads that 

successfully map to the reference database, limiting these analyses to known taxa or genes. 

Despite this, ongoing improvements are being made to reference databases as more and more 

microbes are cultivated and sequenced (239, 240). In contrast to read-based assessments, 

assembly-based methods can construct genomes of entirely novel organisms (224). Another 

limitation associated with read-based analysis is based on the truncated nature of short-read data 

(~250-300bp fragments), which can complicate annotation, particularly when attempting to 

elucidate function (237). Previously, short-read sequencing has failed to properly detect 

relatively distant homologs of bacterial and viral genes, especially in a plankton community that 

was presumably less characterized, though this study is now somewhat dated (241). More 

recently, Treiber et al. (2020) (242) sought to determine the influence of various parameters on 

proper functional annotation of human fecal microbiomes. They found that read length, E-value 
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threshold, and choice of protein database strongly influenced the outcome of functional 

annotation and recommended using short reads between 180-250 bp for more accurate 

annotation. Importantly, however, another study found conflicting evidence that precision and 

recall of functional annotation tools can decrease for longer (>200 bp) short reads (243). The 

inconsistencies across these studies may be attributed to choice of annotation tool or other pre-

processing steps. In any case, this incongruence emphasizes the importance of researchers 

choosing analysis tools that most appropriately align with their study system.  

In both assembly-based and read-based methods, the subsequent step(s) in a 

metagenomic pipeline is taxonomic or functional annotation. To date, many computational tools 

have been developed to estimate taxonomic or functional gene abundance. However, each of 

these tools present subtle nuances in how they assign annotations to sequencing data. Hence, it is 

critically important that investigators choose the method most appropriate for their study system 

(244). Taxonomic classifiers use one of three methods to assign taxonomy to sequencing data: 

DNA-based methods, translated protein methods, or marker gene methods. DNA-based methods 

assign taxonomy based on nucleotide sequence alignment and include tools such as Kraken 

(245), CLARK (246), and Centrifuge (247), among others. Protein-based methods have also 

been developed to address various shortcomings associated with DNA-based classification, such 

as increased computational burdens and reduced sensitivity for sequences that are evolutionary 

related but divergent (a situation in which the amino acid sequence may garner an assignment 

but a nucleotide sequence would not) (248). Examples of protein-based classifiers include Kaiju 

(248) and DIAMOND (249). Finally, marker-based taxonomic classification uses clade-specific 

marker genes to accurately assign taxonomy (250); a popular tool that employs this method is 

MetaPhlAn (250-252). As these tools continue to develop, multiple groups have sought to 
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benchmark methods, giving investigators some guidance regarding relative advantages and 

disadvantages of each (244, 253). However, direct comparison among different classification 

methods can be challenging, as these techniques often employ different considerations of 

abundance; some tools report relative sequence abundance while others report relative taxonomic 

abundance, an important distinction when integrating these numbers into downstream diversity 

and statistical analyses (254).  

Unlike taxonomic classification, functional annotation of metagenomic sequences first 

requires gene prediction (255). Predicted genes can then be searched against functionally 

characterized protein families to glean information related to metabolism, antibiotic resistance, 

or virulence (224). Popular protein family databases for functional annotation of metagenomes 

include the Kyoto Encyclopedia of Genes and Genomes (KEGG) (256), the Clusters of 

Orthologous Genes (COG) database (257), and UniProt (258). Additionally, pipelines such as 

HUMAnN (252, 259) have been developed to generate information on predicted metabolic 

pathways including pathway presence/absence, abundance, and taxonomic association. 

Antibiotic resistance capacity can also be explored by aligning metagenomes to resistance gene 

databases such as the Comprehensive Antibiotic Resistance Database (CARD) (260), MEGARes 

(261, 262), and Resfams (263), among others. Virulence capacity among members of microbial 

communities is also of great interest, and can be annotated via alignment to virulence gene 

databases such as the Virulence Factor Database (VFDB) (264). 

Shotgun metagenomics sequencing is an incredibly valuable tool that enables researchers 

to evaluate the entire genomic landscape of a microbial community. Computational tools 

continue to evolve rapidly in this sector of microbiology, and both taxonomic and functional 

annotation will continue to improve as developers refine their software. Notably, metagenomics 
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is a relatively young aspect of this field, and a key limitation is the current lack of a standardized 

pipeline. The sheer number of computational tools at researchers’ disposal can be overwhelming, 

especially for investigators who are new to the field. As previously discussed, choice of tool can 

greatly influence downstream interpretation, and therefore, decisions regarding correct tool 

choice can be quite daunting. Nevertheless, if approached with the correct study design, 

knowledge of computational tools, and insight on various parameters, shotgun metagenomics 

greatly augments our ability to explore the intricacies of microbial communities.  

Metabolomics and other ‘omics technologies 

In addition to metagenomics, there are other ‘omics technologies that can provide 

information on different aspects of the gut microbiome. These include metabolomics, 

metatranscriptomics, and metaproteomics. Metabolomics seeks to quantify small metabolic 

compounds derived from both microbes and the human host (265). Most often, these metabolites 

are identified and quantified using processes such as gas chromatography-mass spectrometry 

(GC-MS) or liquid chromatography-mass spectrometry (LC-MS) (210, 266, 267). 

Chromatography methods are used to separate metabolites within a given sample prior to passing 

them through a mass spectrometer, a tool which characterizes the specific mass-to-charge ratio 

(m/z) of each compound (266). MS spectra produced via GC- or LC-MS can then be used for 

feature detection and aligned to known compounds to extrapolate chemical identity and 

structure. Intensities associated with these spectra can also be normalized and used for 

downstream statistical analysis (266). Multiple pipelines have been developed to aid in 

processing metabolomics data. One incredibly useful tool is Global Natural Product Social 

Molecular Networking (GNPS), an online resource which facilitates small molecule-focused 

tandem mass spectrometry (MS2) data curation and analysis (268). Not only does GNPS capture 
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the molecular diversity present in metabolomics samples, it also streamlines compound 

annotation via alignment to known spectral libraries. Additionally, a valuable feature of GNPS is 

its implementation of molecular networking, a method which can identify similarities among 

found metabolites and extrapolate meaning for unknown metabolites through their relationship to 

known compounds (268, 269). Notably, metabolomics has previously been used to explore links 

between human gut microbial composition and metabolic output and health (267, 270) while 

enabling more comprehensive characterization of the human gut environment.  

Comparatively, metatranscriptomics characterizes RNA that has been transcribed in 

microbial cells, providing insight into which genes are being expressed in given conditions (210, 

271). RNA sequencing reads can be mapped to microbial genomes or metabolic pathways to 

deduce taxonomy and function, respectively (210). For example, Jorth et al. (2014) (272) used 

metatranscriptomics to assess which genes were up- or down-regulated in the oral microbiome 

during periods of health and periodontal disease. Metaproteomics can nicely complement both 

metatranscriptomics and metagenomics, as this method allows for an investigation of the protein 

composition of a sample (273). Importantly, this approach can detect relevant post-translational 

modifications of various proteins and enzymes in the gut space, which can be incredibly useful 

when elucidating function (273).  

In isolation, each of these ‘omics techniques can provide meaningful insight into the 

many workings of the gut environment from different perspectives. However, more recently, 

greater emphasis has been put upon integrating the analyses of multiple ‘omics technologies to 

more comprehensively assess changes within communities (274). Integration of these ‘omics 

datasets can occur after performing separate analyses (post-analysis data integration) or the data 

analysis itself can include all ‘omics outputs from the beginning (integrated data analysis) (275). 
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Despite the evident benefits that these integrated assessments can offer, use of multiple ‘omics 

datasets at one time comes with many challenges. Examples include high levels of variability 

among datasets, bias or lack of operability between analytical tools, limitations associated with 

annotation and visualization resources, and the potential for failing to justify the necessity of 

integrative techniques (275). In addition to these challenges, integrative ‘omics approaches can 

be quite daunting, as working with multiple sets of “Big Data” and having the knowledge needed 

to perform analyses properly takes time and practice. Advantageously, multiple groups have 

sought to recapitulate computational approaches, useful tools, common setbacks, and important 

considerations associated with multi-omics analyses (274-276). The ongoing curation of these 

‘omics technologies is exciting, as continued characterization of complex microbial systems will 

become more approachable, manageable, and interpretable as advancement progresses.  

Downstream interpretation and statistical analysis  

 Upon retrieving taxonomic or functional gene abundances, researchers can employ a host 

of analysis methods to further investigate and clarify patterns within sampled microbial 

communities. Studies that compare community composition between two or more groups will 

often investigate microbial diversity. Microbiome differences can be evaluated using both alpha 

and beta diversity metrics. Alpha diversity quantifies the level of within-sample diversity using 

metrics such as species richness (i.e., how many species are present in each sample), evenness 

(i.e., of the species present, how equally represented are they), and indices that measure both 

richness and evenness such as the Shannon or Simpson Index (210, 277). Statistical tests used to 

compare alpha diversity often include nonparametric univariate statistical methods such as the 

Wilcoxon rank-sum test for nonpaired samples (also called the Mann-Whitney U test) or the 

Wilcoxon signed-rank test for paired samples (278). Because microbiome analysis often involves 
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multiple comparisons among samples due to the inherent high dimensionality of the data, 

methods to adjust P values are needed. The most common p-value adjustment methods include 

Bonferroni adjustment (to control family-wise error rate) or Benjamini-Hochberg (which 

controls the false discovery rate (FDR) and is less conservative than Bonferroni) (278).  Beta 

diversity, on the other hand, compares between-sample diversity among groups; this is achieved 

by investigating dissimilarity between samples by generating a pairwise distance matrix in which 

samples with comparable compositions will be less dissimilar (210). Common metrics used for 

beta diversity analyses include Bray-Curtis dissimilarity, which accounts for taxa abundance 

among samples (277), and weighted and unweighted unique fraction (UniFrac) distances that 

consider phylogenetic relatedness in addition to taxonomic abundance (279). Beta diversity can 

be analyzed using multivariate statistics methods such as permutational analysis of variance 

(PERMANOVA), which is one of the most widely used multivariate methods. This method 

assesses differences in centroids (center point of a cluster of samples within a group) and 

dispersion (level of spread within a group) between samples groups in a study (278, 280). The 

Mantel test is similar to PERMANOVA in that it evaluates differences using permutations; 

however, this test is most often used to investigate associations between metadata or 

environmental factors and microbiome abundance data (278, 280). In addition to performing 

statistical analyses, beta diversity can also be visualized. Due to the high dimensionality and 

complexity of microbiome data, however, investigators often us dimension-reduction-based 

ordination methods for visualization (210). Common examples used in microbiome analyses are 

principal component analysis (PCA), principal coordinate analysis (PCoA), correspondence 

analysis (CA), and nonmetric multidimensional scaling (NMDS) (281, 282). Each of these 
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methods have their own respective assumptions about the data, and therefore investigators must 

consider the appropriateness of these techniques for their study system.  

In addition to diversity analyses and their related statistics, researchers often seek to 

characterize discrete differences in taxonomic or functional composition between study groups. 

One popular method is a differential abundance (DA) analysis, which identifies taxa that are 

more highly represented in one group versus another (277). Many DA algorithms use linear 

models with the relative abundance of taxa or functional genes (i.e., proportion of a sample 

attributed to a particular feature) to assess these differences (277, 283). Importantly, however, 

DA analysis methods differ in their algorithms, normalization methods, transformation methods, 

inclusion of covariates and random effects, as well as base hypothesis test (283). In fact, a 

handful of studies have assessed differences in the results output by various DA methods 

available. Each of these studies found high levels of discordance among these tools, with just a 

couple of methods demonstrating consistency across various datasets (283, 284). Limitations 

associated with these methods may be related to difficulties with the incorporation of zero-

inflated data; microbiome abundance data is inherently zero-inflated as many features (taxa or 

functional genes) appear in low or inconsistent abundance (277). These findings suggest that 

multiple DA methods should be used when assessing taxa or genes of interest and that greater 

work must be done to improve the accuracy of DA analyses for microbiome studies. 

Another popular approach to characterize the microbiome is via network analysis, which 

allows investigators to visualize interactions as they pertain to taxa, relevant genes, metabolites, 

environmental factors, and more (210, 282). Networks are often constructed using pairwise 

similarity to deduce correlations between microbial features. These networks can then be 

visualized using software such as Gephi (285) or Cytoscape (286), which allow users to highlight 
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or filter various aspects of their networks and obtain relevant network statistics. Importantly, 

correlation networks used to assess co-occurrence of various microbial features can be used to 

generate predictions that may be tested with more robust computational or laboratory methods. 

For example, Ma et al. (2017) (131)performed network analysis to investigate co-occurrence 

patterns between various taxa and ARG subtypes. Next, this group assessed actual associations 

between key taxa and ARGs by isolating ARG-carrying contigs (ACCs) and annotating these 

specific contigs with taxonomic information (131). Indeed, network analysis can be a powerful 

tool when attempting to interpret the myriad associations and patterns present in microbiome 

data.  

SUMMARY 

 In summary, the human gut is an environment replete with host-microbe and microbe-

microbe interactions. This system presents a unique opportunity for researchers to investigate 

various ecological processes on a relatively manageable scale. Notable phenomena such as 

community assembly, disturbance ecology, and community response to invasion as well as 

resource production, sharing, and use can all be assessed in the gut environment. Additionally, 

the human gut microbiota have been implicated for their role in promoting health via immune 

system priming and development, mediation of host metabolic health, and colonization 

resistance against invading pathogens. Although microbiota composition appears to fluctuate 

over time, the functional capacity of these microbial communities can be indicative of both 

health and disease.  

 The human gut microbiome is also widely regarded as a notable reservoir for harboring 

antimicrobial resistance. The ubiquity of resistance is alarming and multiple human pathogens 

have demonstrated reduced susceptibility to clinically relevant antibiotics in recent years, a trend 
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that is appearing globally. Widespread disease prevalence coupled with rising rates of resistance 

among these pathogens suggests that bacterial infections will become more severe and difficult 

to treat in the coming years with fewer treatment options. Among those microbes showing 

increasing levels of AMR are enteric pathogens such as Campylobacter, Salmonella, Shigella, 

and STEC, which are responsible for millions of foodborne infections every year. Increasing 

incidence of antibiotic resistant enteric infections substantiates the need to further characterize 

these pathogens’ role in the curation and dissemination of AMR across environments. 

Importantly, these pathogens interact directly with the resident microbiota of the human gut 

during infection, thereby presenting an interesting ecology that deserves further clarification.  

 Despite the incredible complexity of systems such as the human gut microbiome, many 

computational tools have been generated to allow investigation, characterization, and analysis of 

microbial communities. Shotgun metagenomics sequencing, in particular, allows researchers to 

capture the genetic diversity of all microbes present within a given sample. Coupling 

metagenomics with other ‘omics technologies such as metabolomics or metatranscriptomics, 

further enables investigators to identify informative connections between microbial taxa, 

community function, metabolic output, or enzymatic activity. Although challenges still exist in 

establishing a widely accepted, standardized analysis pipeline for these ‘omics approaches, their 

power in capturing the diversity of microbial systems is unmatched.  

 Given these considerations, the primary objective of this dissertation was to characterize 

community changes in the human gut microbiome associated with enteric infection. Specifically, 

this study used metagenomics sequencing and metabolomics methods to characterize the 

composition of microbial taxa, ARGs, and metabolites in the gut environment of healthy, 

infected, and recovered individuals. Overall, this study will improve understanding of the 
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ecological consequences related to enteric infection, specifically concerning antimicrobial 

resistance spread and host metabolic health.  
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CHAPTER 2 

Comparing gut resistome composition among patients with acute Campylobacter infections and 

healthy family members 
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ABSTRACT 

Campylobacter commonly causes foodborne infections and antibiotic resistance is an 

imminent concern. It is not clear, however, if Campylobacter affects the human gut ‘resistome’ 

during infection. Application of shotgun metagenomics on stools from 26 cases with 

Campylobacter infections and 44 healthy family members (controls) identified 406 unique 

antibiotic resistance genes (ARGs) representing 153 genes/operons, 40 mechanisms, and 18 

classes. Cases had greater ARG richness (p<0.0001) and Shannon diversity (p<0.0001) than 

controls with distinct compositions (p=0.000999; PERMANOVA). Cases were defined by 

multidrug resistance genes and dominated by Proteobacteria species (40.8%), specifically those 

in Escherichia (20.9%). Tetracycline resistance genes ARGs were most abundant in controls with 

Bacteroidetes (45.3%) and Firmicutes (44.4%) dominating. Hierarchical clustering of cases 

identified three clusters with distinct resistomes. Case clusters 1 and 3 differed from controls 

containing more urban and hospitalized patients. Relative to family members of the same 

household, ARG composition among matched cases was mostly distinct, though some familial 

controls had similar profiles that could be explained by a shorter time since exposure to the case. 

Together, these data indicate that Campylobacter infection is associated with an altered 

resistome composition and increased ARG diversity, raising concerns about the role of infection 

in the spread of resistance determinants. 
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INTRODUCTION 

Enteric pathogens are common causes of foodborne illness affecting 9.4 million 

individuals each year in the United States; 3.6 million of these enteric infections are caused by 

bacteria (1). In 2018, the Centers for Disease Control and Prevention (CDC) reported that the 

incidence of foodborne infection was highest for Campylobacter and Salmonella, with the 

incidence of both pathogens increasing relative to the frequencies reported in 2015-2017 (2). The 

pathogenesis and virulence of these enteric pathogens have been well characterized and, more 

recently, several studies have examined how enteric pathogens influence the gut microbiota. For 

example, our prior study showed that infection by one of four enteric pathogens resulted in 

decreased diversity of the gut microbiota, specifically resulting in an increase in the relative 

abundance of Proteobacteria (3). Thus, further consideration and characterization of the 

ecological consequences of enteric infection in the human gut microbiome is needed.  

In addition to their role in causing foodborne illness, Campylobacter spp., are 

progressively found to be drug-resistant, which has led to their classification as a serious public 

health threat by the CDC (4). The increasing prevalence of Campylobacter spp. linked to human 

infections plus their enhanced ability to evade modern antibiotics substantiate the need to further 

understand their total impact on health. Generally, antibiotic resistance increasingly results in 

adverse health and economic outcomes due to the growing prevalence and emergence of drug-

resistant infections (1, 5). Growing awareness of these burdens has led to a rise in the number of 

studies investigating the resistome, or the compilation of antimicrobial resistance genes (ARGs), 

within microbial communities (6). Several studies have investigated resistomes across different 

environments including the guts of humans, cattle, poultry, and swine (7-9). These environments 

do not exist in isolation; one study found similar genetic regions containing ARGs among 

environmental soil isolates and five relevant human pathogens (10), while another identified 
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ARGs that could cross habitat boundaries (11). Many of these genes are co-localized with mobile 

genetic elements and other ARGs, suggesting significant potential for transmission of multiple 

resistance genes via horizontal gene transfer. This spread of antimicrobial resistance across 

environments illuminates our need to further clarify the ecological mechanisms facilitating such 

exchange.  

As in other ecosystems, the human gut microbial community exhibits microbe-microbe 

and microbe-host interactions, temporal and spatial dynamics, and has varied community 

responses to disturbance or species invasion (12). Multiple studies have explored the ability of 

the human gut microbiota to recover after a disturbance such as antibiotic treatment (13, 14). 

One longitudinal study, for instance, investigated the effects of repeated antibiotic exposure in 

infants and found that antibiotic use contributed to a loss of species- and strain-level diversity 

(15). Just as disturbance has the capacity to uproot stable communities, so, too, does microbial 

invasion. Microbial invasion ecology involves the introduction of a foreign microbe to a stable 

environment and follows a trajectory from establishment to growth and spread, leading to 

downstream ecological consequences (16). Previous studies have examined the importance of 

microbial invasion in various environmental contexts such as soil, plant, and agricultural settings 

(17, 18). However, investigation of microbial invasion as it pertains to the human gut 

microbiome and resistome via infection has yet to be fully explored. Elucidating the impacts of 

ecological invasion on the composition and mobility of ARGs in the human gut is crucial to 

advancing our fight against the spread of drug resistance.  

Given the health and economic burden of foodborne pathogens and the ubiquity of 

antimicrobial resistance across environments, further understanding the impacts of infection on 

ARGs and their dissemination is needed. This study therefore aims to understand the impact of 
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enteric infection by a bacterial pathogen, Campylobacter, on the human gut resistome using 

shotgun metagenome analyses. 

MATERIALS AND METHODS 

Study population 

Between 2011 and 2015, 26 stools were obtained from patients with Campylobacter 

infections prior to treatment. Most infections were caused by C. jejuni, although one patient had 

C. coli and three isolates could not be classified. Samples were collected via the Michigan 

Department of Health and Human Services (MDHHS) as described (3). Briefly, stools were 

added to Cary-Blair transport media, cultured for Campylobacter spp., and transported to 

Michigan State University (MSU). Upon receipt at MSU, stool samples were homogenized, 

centrifuged and aliquoted for analysis and/or storage at -80°C. Metagenomic stool DNA was 

extracted using the QIAamp DNA Stool Mini Kit (QIAGEN; Valencia, CA) as described (19). 

Epidemiological data about demographics, exposures, hospitalization, and symptoms were 

extracted from the Michigan Disease Surveillance System (MDSS) and household members 

were contacted for inclusion as study controls. Forty-four healthy household family members 

submitted a stool 5-21 weeks after the cases’ infection and completed a questionnaire about 

exposures and symptoms. Sixteen families were included. While 10 cases and 7 controls were 

not matched to a shared household, they were included in the overall comparative case versus 

control analyses. County of residence was classified as ‘rural’ or ‘urban’ based on the 

classification scheme developed by the National Center for Health Statistics (NCHS) (20). These 

classifications were based upon 2010 census data while considering the 2013 county designation 

assigned by the Office of Management and Budget as metropolitan, micropolitan, or noncore, as 

well as the specific population sizes and city location for metropolitan areas.   
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Study protocols and consent procedures were performed as described (3) in accordance 

with the relevant guidelines and regulations. Approval to conduct the study was granted by the 

Institutional Review Boards at MSU (IRB #10-736SM), the MDHHS (842-PHALAB), and the 

four hospital laboratories. Each participant and/or their legal guardian was required to provide 

informed consent prior to enrollment and was given a monetary incentive after each sample was 

submitted. Data were stripped of all personal identifiable information prior to use. 

Sample preparation and sequencing analysis 

Metagenomic DNA from the 70 stools was extracted, sheared, and normalized as 

described (3). Library construction was completed using a TruSeq Nano library kit (Illumina, 

Inc., San Diego, CA, USA). Shotgun sequencing was performed in a series of four sequencing 

runs on an Illumina HiSeq 2500. Reads were demultiplexed at the MSU Research Technology 

Support Facility (RTSF). Sequencing run was investigated as a potential source of batch effects 

prior to analysis of the data; considerable overlap was observed across runs (Figure A.1).   

AmrPlusPlus v2.0 was used to perform quality control and align and annotate the 

metagenomic fragments using the MEGARes 1.0 database (21).  This database was chosen for its 

comprehensive, hand-curated compilation of ARGs and associated annotation structure 

containing three hierarchical levels that maximizes the number of representative sequences and 

lacks cycles or statistical dependencies. Trimmomatic (22) was used to remove adapters and 

poor-quality reads. Specifically, the reads were trimmed by removing the three leading and 

trailing nucleotides, followed by trimming of the 5’ end of the sequence until an average Phred 

score of >15 was attained in a sliding window of size four. Short sequences <36 nucleotides were 

discarded. If reads matched to adapter sequences with less than or equal to two mismatches, then 

they were eligible for clipping to ensure adapter removal; successful clipping was dependent on a 
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match score of ≥30 using a publicly-accessible adapters file provided on GitHub 

(https://github.com/BioInfoTools/BBMap/blob/master/resources/adapters.fa).  

Metagenomic reads were mapped to the human genome 

(GRCh38_latest_genomic.fna.gz, downloaded December 2020 from RefSeq) using Burrows-

Wheeler Aligner (BWA) (23); SAMTools (24) and BEDTools (25) were used to remove these 

human genomic sequences from each sample. Following trimming, quality filtering, and host 

genome removal, 176,686,501 of the 217,104,781 raw paired-end reads were used for 

downstream analyses. The number of paired-end reads used in the analysis did not significantly 

differ between cases and controls (p=0.051). The estimated and actual sequencing coverage were 

determined using Nonpareil (26); the average coverage was estimated to be 83.0% (Figure A.2). 

Average Genome Size (AGS) and the number of genome equivalents (GE) within each sample 

were quantified using MicrobeCensus (27). Because AGS analyses have been considered a 

potential source of bias in gene-based metagenomic comparisons (28), comparing communities 

across different sample types may be confounded by varying AGS. Additionally, AGS analyses 

may provide insight into the ecological capacity of samples; those with a larger AGS may 

represent generalist taxa, while those with a smaller AGS may represent more specialist species 

(29). In our study, AGS was higher in cases (4,406,749.57 bp) versus controls (4,004,525.52 bp) 

(p=0.02, Wilcoxon rank sum test; Figure A.3). Because no difference in the number of GE was 

observed between cases (n=238.1) and controls (n=273.5) (p=0.23, Wilcoxon rank sum test), raw 

ARG abundance counts were normalized across samples using GE metrics. 

Identification of antimicrobial resistance genes (ARGs) 

Non-host FASTQ files resulting from human genome removal were aligned to 

MEGARes 1.0 (21) using BWA (23) and SAMTools (24) with default parameters to classify 
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ARGs present in each sample. Reads were deduplicated and annotated using ResistomeAnalyzer 

with an identity threshold of ≥80% to quantify ARG abundance per sample. RarefactionAnalzyer 

was performed to obtain the data necessary to assess the adequacy of our sequencing depth. 

SNPs known to be important for antibiotic resistance were also extracted from the metagenomes 

using the AmrPlusPlus pipeline (30). These SNPs were analyzed with the Resistance Gene 

Identifier (RGI) created in conjunction with The Comprehensive Antibiotic Resistance Database 

(CARD) (31) to confirm or reject their presence in ARGs within our samples. In this analysis, 

however, all ARGs were considered, including those without confirmation of SNP presence. 

These ARGs were included because they were within a single point mutation and remain 

relevant even if they serve as a resistance precursor. In future studies, a more in-depth analysis 

including these SNP data may further illuminate differences between study groups. 

 Output at the gene level included the target gene, its sequence identity, and putative function; 

however, output at the group level, or the overall gene- or operon-level group for a given 

sequence was used. The mechanism level, which indicates the biological mechanism of 

resistance encoded by each sequence, was also provided as well as the class level representing 

the antibiotic class relevant to each ARG. 

Identification of microbial taxa  

 FASTQ reads with the human genome removed via AmrPlusPlus v2.0 were 

taxonomically annotated using the classifier Kaiju (32). The NCBI BLAST nr database including 

sequences for bacteria, archaea, viruses, fungi, and microbial eukaryotes was used as a reference. 

The alignment mode used in Kaiju was ‘greedy’, meaning that a maximum of three mismatches 

were allowed when identifying taxonomic signatures in sequences. A match length cutoff of 11 

nucleotides and the default match score of 65 was used when classifying sequences as well. Raw 



83 

 

abundances of reads assigned to taxa were normalized by the estimated number of genome 

equivalents calculated by MicrobeCensus (27).  

Ecological analyses 

Resistome composition was determined by investigating the identity and diversity of 

ARGs across samples at the gene, group, and class levels. The relative abundance of each ARG 

was determined per sample by dividing the number of GE-normalized reads for a specific ARG 

gene, group, or class by the total number of GE-normalized reads for that sample. Alpha and beta 

diversity metrics, including ordination plots (PCoA) based on Bray-Curtis dissimilarity at the 

gene level, were determined using the vegan package (33) in R (34). The Wilcoxon rank-sum 

test was used to test for statistical significance between case and control samples (alpha 

diversity), while PERMANOVA and PERMDISP were used to detect differences in the centroid 

(mean) and dispersion (degree of spread) across case and control groups (beta diversity).  

For the family case-control pairs, the ‘envfit’ function of the vegan package was used to 

fit environmental variables onto the ordination generated via the PCoA. MaAsLin2 (35) was 

used to generate log-transformed linear models exploring multivariate associations among 

resistome features and relevant metadata. Default values were used for all significance cutoffs as 

well as normalization (total sum scaling; TSS), transformation (log transform), and multiple 

hypothesis testing correction (Benjamini-Hochberg; BH) with a target False Discovery Rate of 

0.05.  

Hierarchical clustering and epidemiological analysis 

Case clusters were defined based on the Bray-Curtis dissimilarity among cases at the gene and 

group levels using the ‘ape’ package (36) in R and were examined using PCoA and plotted using 
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vegan. The Wilcoxon rank-sum test was used to test for statistical significance between case 

clusters (alpha diversity), while MaAsLin2 (35) was used to identify differentially abundant 

ARGs at the group and class level across clusters. For epidemiological analyses, Chi-square tests 

were used to detect significant differences in epidemiological variables (e.g., patient sex, age, 

residence (rural vs. urban), and symptoms) between cases and controls and identify associations 

with case clusters. 

RESULTS 

Characteristics of the study population  

Stools from 26 patients with acute campylobacteriosis (cases) and 44 related healthy 

family members (controls) from the same household were compared. Controls belonged to 16 

different families with two to eight participating members. Although 10 cases and seven controls 

were not matched to a family, they were included in the comparative case versus control 

analyses. Among cases, 17 (65.4%) were female with 13 (50%) between 19-64 years of age, 8 

(30.7%) between 0-9 years old, and 5 (19.2%) greater than 65 years (Table A.1). Controls had a 

slightly different demographic distribution in which 18 (40.9%) were female; 17 (38.7%) were 

between 0-9 years old, 4 (9.1%) were 10-18 years of age, 21 (47.7%) were 19-64 years, and 2 

(4.5%) were greater than 65 years old. No significant differences were observed in the age or sex 

distribution between groups. Although more controls resided in urban areas, the difference was 

not significant and is likely due to the recruitment of more than one control per case depending 

on the household. Most cases self-identified as Caucasian (n=22; 88.0%) and reported abdominal 

pain (n=21; 80.1%) and diarrhea (n=24; 92.3%). Nausea (n=9; 34.6%), vomiting (n=6; 23.1%), 

and bloody stool (n=10; 38.5%) were also reported with 20 cases (76.0%) receiving outpatient 

care and six (23%) requiring hospitalization. Among the latter, four (66.7%) were hospitalized 
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for two days, one for three days, and another for six. Three of the 26 cases (11.5%) and three of 

the 44 controls (6.8%) received antibiotics two weeks prior to sample collection.   

Number and diversity of ARGs vary depending on health status 

In total, 406 unique genes representing 153 ARG groups or operons for 18 antibiotic 

classes and 40 resistance mechanisms were detected. Three measures of alpha diversity (ARG 

richness, Shannon diversity, and evenness) differed significantly between groups (Figure 2.1). 

The mean richness, or unique ARGs per sample, was greater in cases (S=95.7; min=62, 

max=142) than controls (S=42.8; min=3, max=107; p<0.0001) as were the mean Shannon 

Diversity Index (cases=4.25 vs. controls=3.05; p<0.0001) and resistome evenness (J’=0.935 

(cases) vs. J’=0.869 (controls); p<0.0001).  

Principal Coordinate Analysis (PCoA) using Bray-Curtis dissimilarity also revealed 

separation between case and control resistomes (Figure 2.2). Indeed, health status, or identity as 

a case or control, had a significant effect on the centroid of each group as assessed using 

Permutational Analysis of Variance (PERMANOVA p=0.000999; F=14.083). The dispersion of 

points within each cluster evaluated using Permutational Analysis of Multivariate Dispersion, 

however, was not significantly different (PERMDISP p=0.115; F=2.6264), suggesting that the 

comparison between group centroids is valid. Participants reporting antibiotic use two weeks 

prior to sample collection did not cluster separately from other samples within each group.  

Specific ARGs define case and control samples 

At the antibiotic class level, ARGs for multidrug resistance (MDR), defined as 

phenotypic resistance to ≥1 antibiotic belonging to more than 3 drug classes, had the highest 

average relative abundance (42.6%) in cases followed by tetracycline (11.0%) and  
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Figure 2.1. Resistomes in cases are more diverse than resistomes of controls. 

Three measures of alpha diversity (Richness, Shannon diversity, and Pielou’s Evenness) are 

shown stratified by health status. The median of each measure is indicated by the thick black bar 

in each box and the first and third quartiles are represented by the bottom and top of the box, 

respectively; points (circles and triangles) show variation within each sample type. Outlying 

points within each group are indicated by the black dots associated with each boxplot. P-values 

were calculated using the Wilcoxon rank-sum test and are shown above the comparison bar 

within each plot. 

fluoroquinolone (9.5%) (Figure 2.3). For controls, tetracycline (54.4%) and beta-lactam (16.0%) 

ARGs were most represented. At the group level (i.e., gene or operon), tetQ encoding 

tetracycline resistance was most abundant in both cases (8.0%) and controls (33.0%). In cases, 

the next highest groups were mdtC (5.9%) encoding a MDR efflux pump subunit in MdtBC and 

rpoB (5.4%), the beta 30S RNA polymerase subunit gene important for rifampin, glycopeptide 

and lipopeptide resistance. Controls had a greater relative abundance of tetW (11.7%) encoding a 

ribosomal protection protein important for tetracycline resistance and the class A beta-lactamase 

cfx (11.1%). Among both sets of samples, the three respective predominant ARG groups  
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Figure 2.2. Resistomes of cases and controls are distinct. 

Principal Coordinates Analysis (PCoA) plot of case (cyan, circles) and control (orange, triangles) 

resistomes based on Bray-Curtis dissimilarity. The first and second coordinate are shown with 

their respective percentage of explained variance. Patients that self-reported use of antibiotics 

two weeks prior to sample collection are indicated by square data points. 

represented ~60% of ARGs in controls compared to <20% of the ARGs in case resistomes, 

further highlighting the increased resistome diversity within case communities.  

Normalizing by the number of genome equivalents per sample also detected differences 

in actual ARG abundance. Roughly 1,216 MDR genes were detected in cases versus 160 in 

controls. Cases also had more fluoroquinolone (n=254) and aminoglycoside (n=204) resistance 

genes than controls (n=26, n=31, respectively), while controls had more tetracycline ARGs 

(n=270) than cases (n=101). Moreover, clear differences in ARG abundance were observed 

across samples at the group level and hierarchical clustering revealed two distinct resistome 

clusters (Figure 2.4). Of these clusters, one is comprised entirely of controls (n=28) and the other 

contains samples from all 26 cases and 12 controls. 
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 MaAsLin2 (35) was used to generate log-transformed linear models to identify 

differentially abundant ARGs among cases and controls. These models used health status as a 

fixed effect and residence type, age, and sex as random effects. At the class level, tetracycline, 

MLS, and beta-lactam ARGs were significantly associated with controls (adjusted p-

values=2.2E-11; 0.004; 0.021, respectively). In cases, the greatest association was observed for 

MDR (C=-4.69; adjusted p-value=4.01E-11) and fluoroquinolone resistance (C=-4.37; adjusted 

p-value=2.3E-12) relative to controls. At the gene level, increased abundance of MDR and 

fluoroquinolone resistance genes such as cpxAR, mdtC, parE, and parC, was observed among 

cases after adjusting for demographic variables (Table A.2). 

 

Figure 2.3. Relative abundance of ARGs differs among cases and controls. 

The relative abundance of ARGs assigned to 18 different antibiotic classes is shown with each 

column representing the resistome from one individual. Relative abundances were determined 

using raw ARG abundances that had been normalized by the approximate number of genome 

equivalents in the sample as determined using MicrobeCensus. CAP = cationic antimicrobial 

peptides; MLS = Macrolide, Lincosamide, Streptogramin; MDR = Multidrug resistance. 
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Figure 2.4. Hierarchical clustering illustrates group level ARG abundance differences 

between cases and controls. 

The columns represent the resistome communities per sample, which are ordered based on 

similarity in the top X-axis dendrogram that displays two resistome clusters. Case and control 

samples are indicated by the color bar below the dendrogram (cases = cyan; controls = orange). 

The Y-axis shows the hierarchical clustering of ARG groups as they appear in sample 

resistomes; ARG group names are indicated in small print on the right. Those ARG groups with 

a cumulative normalized abundance value <5 across all samples were excluded from the 

analysis. Relative abundance is indicated by the color key; a value of 15 (deep purple) indicates 

that there are approximately 15 normalized copies of that ARG in a sample, while a value of 0 

(light blue/white) indicates a very low or negligible abundance.  

Comparatively, tetracycline (tetQ and tetW) and beta-lactam resistance genes (cfx and cbla) were 

associated with controls. Similar ARG classes (Figure A.4) and ARGs (Figure A.5) were also 

found to differentiate case and control samples using Linear Discriminant Analysis (LDA) Effect 

Size (LEfSe) (37). 
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Taxonomic diversity differs between cases and controls 

A total of 40,227 species were detected among the case and control samples including 

bacteria, archaea, fungi, and viruses. Mean taxonomic richness was significantly greater in 

controls (S=6,374; min=1,506, max=15,548) compared to cases (S=3,605; min=1,499, 

max=11,612; p<0.0001), a trend that was also observed for Shannon diversity (case=3.36, 

control=4.24; p=0.00014) (Figure A.6). Expectedly, taxonomic composition was also distinct 

among cases and controls (Figure 2.5). Cases were mostly comprised of Proteobacteria (average 

relative abundance = 40.8%) followed by Bacteroidetes (30.8%) represented primarily by the 

genera Escherichia (20.9%) and Bacteroides (18.1%), respectively. Conversely, controls were 

dominated by Bacteroidetes and Firmicutes with average relative abundances of 45.3% and 

44.4%, respectively. The most highly represented genera in controls were Bacteroides (15.5%) 

and Prevotella (12.8%), both members of the Bacteroidetes phylum. Notably, a single control 

sample contained a high proportion of Prevotella, which accounted for 78% of its taxonomic 

abundance; with this outlying sample removed, the average relative abundance across controls 

for Prevotella was 11.2%.  

The actual abundances of these bacterial groups also differed in taxonomic composition 

among cases and controls (Figure A.7). While cases had an average of 472 reads assigned to the 

genus Escherichia, controls had an average of just 37 Escherichia reads. Controls were 

dominated by Prevotella with an average of 1,626 reads; this incredibly high number was due to 

the outlier sample, which had a high abundance of Prevotella. With this sample removed, the 

average number of Prevotella reads across controls was 411. Conversely, cases had an average 

of 75 Prevotella reads per sample. Among all cases, Campylobacter only comprised an average 

relative abundance of 0.28% at the time of sample collection. When considering actual 

abundance, cases had an average of only 4.0 Campylobacter reads per sample.  
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Specific ARGs are not strongly associated with Campylobacter in the case samples 

An analysis exploring correlations between the genus Campylobacter and ARG groups 

was pursued to investigate the potential role of the invading pathogens in shaping case 

resistomes. Spearman rank correlations between ARG and taxonomic abundances in cases were 

taken with a cutoff value of ρ≥0.75. Although no significant correlations were observed between 

Campylobacter and other taxa or ARGs above this cutoff, statistically significant correlations 

with lower coefficients were detected. Namely, Campylobacter was positively correlated with 

 

Figure 2.5. Taxonomic relative abundance notably differs between cases and controls. 

The relative abundance of bacterial genera and phyla in each sample are displayed as columns 

for cases (A, C) and controls (B, D). Similar to ARG relative abundance, taxonomic relative 

abundances were determined using raw abundances that had been normalized by the approximate 

number of genome equivalents in the sample as determined using MicrobeCensus. For the 

phylum and genus levels, the top-10 phyla and genera were chosen, respectively, based on the 

highest average relative abundance assigned to a specific phylum or genus among cases or 

controls (which were considered separately). The remaining read abundances for phyla or genera 

in samples were summed and are shown in the category “Other.” Note: plots for cases (A, C) and 

controls (B, D) contain the same respective color schemes but that these refer to genera (A, B) 

and phyla (C, D), respectively. 
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cme, a gene encoding a class A beta-lactamase (coeff=0.585; p=0.00169), and cmeR that encodes 

a MDR efflux pump (coeff=0.505; p=0.00857). No other correlations with coefficients >0.50 

were observed between Campylobacter and ARGs in case samples.   

Intriguingly, ARGs that best defined case samples were correlated with other taxa 

identified in case and control metagenomes (Table A.3). For example, mdtC was highly abundant 

and positively correlated with Shigella (coeff=0.886; p<0.0001), Pseudoalteromonas 

(coeff=0.789; p<0.0001), Rhodococcus (coeff=0.785; p<0.0001), and Phytobacter (coeff=0.756; 

p<0.0001). Although most of these genera were not overly abundant in cases, Shigella was 

among the top-10 most abundant genera. In addition, cpxAR, which encodes a regulatory system 

for a MDR efflux pump and was highly abundant in cases, was positively correlated with 

Pseudoalteromonas (coeff=0.839; p<0.0001), Phytobacter (coeff=0.793; p<0.0001), and 

Siccibacter (coeff=0.784; p<0.0001); none of these were among the top-100 most abundant 

genera.  

Clusters 1 and 3 have more diverse resistomes than Cluster 2 

Hierarchical clustering of case resistomes at the gene level using Bray-Curtis 

dissimilarity identified three separate clusters among the 26 case samples (Figure A.8). The 

Cluster 1 cases had a significantly greater mean ARG richness (S=105) than Cluster 2 (S=85.1) 

and Cluster 3 (S=82.8) cases (p=0.01 and p=0.04, respectively; Wilcoxon rank-sum test) (Figure 

2.6). Cluster 1 resistomes also had a significantly greater Shannon Diversity Index than Clusters 

2 (p=0.006) and 3 (p=0.0007) and a greater Pielou’s evenness score than Cluster 3 (p=0.0007). 

Evenness did not differ between Clusters 1 and 2 (p=0.24). To visualize each case cluster in 

relation to controls, a PCoA was generated using Bray-Curtis dissimilarity (Figure 2.7). In this 

analysis, Cluster 2 resistomes were more similar to controls, whereas Cluster 1 resistomes 
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separated along the first and second coordinate with Cluster 3 oriented in between. The 

difference between the centroids of each case cluster was significant (PERMANOVA 

p=0.000999; F=8.7401).  

Case epidemiological data is linked to specific resistome profiles  

Among 25 of the 26 cases with data available, those residing in urban versus rural 

settings were significantly more likely to have resistome profiles belonging to Clusters 1 or 3 

than Cluster 2 (Fisher’s Exact test p=0.0007). While no significant differences were observed for 

any of the symptoms across the three clusters, eight of 10 (80.0%) cases reporting bloody stool 

and five of six (83.3%) cases requiring hospitalization had resistome profiles belonging to 

Clusters 1 or 3. In addition, 12 of the 17 (70.6%) cases with Cluster 1 or Cluster 3 profiles 

reported animal contact within one week of illness. 

To further explore associations between ARGs, case clusters and epidemiological data, 

MaAsLin2 was used with cluster and residence type as fixed effects and age and sex as random 

effects (Table A.4). Relative to Cluster 1, significant associations were identified between 

Cluster 2 profiles and MLS and tetracycline ARGs (C= 5.276026, 2.692487; adjusted p-

value=0.03564, 0.048547, respectively), whereas fosfomycin (C= 3.426063; adjusted p-value= 

8.61E-05), aminocoumarin (C= 1.481023; adjusted p-value= 0.001451), and elfamycin (C= 

1.303181; adjusted p-value= 0.000107) ARGs were associated with Cluster 3. By contrast, 

Cluster 1 communities were associated with aminoglycoside (C= -1.66939; adjusted p-

value=1.30E-09), cationic antimicrobial peptides (C= -5.03738; adjusted p-value= 1.60E-17) and 

MDR (C= -0.47969; adjusted p-value= 0.002346) classes relative to both Clusters 2 and 3. 

Similar results were determined when using an alternative method, LeFSe, for identifying  
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Figure 2.6. Case Cluster 1 resistomes are more diverse than resistomes of Clusters 2 and 3 

combined. 

Boxplot displaying alpha diversity metrics for resistomes of case Cluster 1 (red circles), Cluster 

2 (blue triangles) and Cluster 3 (green squares). Resistome richness, diversity (Shannon), and 

evenness are indicated. The median of each measure is shown by the black bar within each box 

and the first and third quartiles are indicated by the bottom and top of the box, respectively; 

points show variation within sample types. P-values were calculated using the Wilcoxon rank-

sum test and are shown above the comparison bar within each plot. 

differentially abundant ARGs among clusters at the class level (Figure A.9). Intriguingly, 

trimethoprim was the only ARG class associated with rural residence, while the group level 

analysis identified dfhR, which is important for trimethoprim resistance, to be more common in 

rural cases (Table A.5). Five additional ARGs including tetA and tetB (tetracycline), mphA 

(macrolides), aac3 (aminoglycoside), and ANT3-DPRIME (aminoglycoside), were also 

significantly more common in rural versus urban residents.  
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Figure 2.7. Case resistomes cluster separately and case Cluster 2 is more similar to control 

samples. 

Principal Coordinates Analysis (PCoA) plot of the three case clusters (red, blue, green; circles) 

compared to the control resistomes (black; triangles) based on Bray-Curtis dissimilarity at the 

gene level. The first and second coordinate are shown with their respective percentage of 

explained variance. Case Cluster 1 separates clearly from Clusters 2 and 3 along the first and 

second coordinate, while case Cluster 2 aligns with a handful of control samples. 

Family relation is less influential than health status in shaping the gut resistome during 

enteric infection 

An analysis of 16 families was pursued by comparing case samples to 1-7 family 

members (controls) who submitted stools 5-21 weeks following the case’s infection. Although 

no significant differences were observed for richness, evenness, and Shannon diversity by family 

(Figure 2.8), the resistome composition varied considerably. The latter result is supported by an 

examination of beta diversity metrics since a PCoA revealed little separation among the families 

with health status contributing to most of the separation (Figure 2.9). Some cases and controls 

within a family, however, were in closer proximity than expected, which is in line with the ARG 

distribution and abundances by family. With the exception of a few families, resistome 
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composition among cases was clearly distinct from those observed among their related controls 

(Figure A.10). 

To explain the variance observed among families, environmental factors and vectors were 

fit onto the ordination. These variables included gender, age in years, residence type, and number 

of days since exposure to the infected family member (controls only). There was a significant 

correlation between the number of days since exposure and the ordination values (p=0.001, 

R2=0.543). Interestingly, the directionality of this influence corresponds with controls that were 

less similar than their associated cases. In other words, the longer the time between a case being 

infected and a control submitting a stool sample, the less similar the control resistome appeared 

to its corresponding case. A significant correlation was also observed between residence type and 

the ordination values (p=0.019, R2=0.113).  

Next, we used MaAsLin2 to model family (fixed effect) with health status, residence type, sex, 

and age as random effects to identify ARG classes and groups associated with specific 

households while controlling for demographic factors. At the class level, fosfomycin ARGs were 

significantly associated with family #14 (C=4.2; adjusted-p=1.1E-07), while the group level 

analysis identified three ARGs to be associated with four different families. fosA and acrB, for 

example, were significantly associated with family #14 (C=4.3, 2.0; adjusted-p=1.1E-06, 9.2E-

05, respectively), whereas acrB was associated with family #15 (C=1.3; adjusted-p=0.007) and 

mel was linked to families #4 and #8 (C=5.6, 4.4; adjusted-p=1.8E-06, 5.7E-05, respectively). 

DISCUSSION 

Gastrointestinal dysbiosis has been shown to influence and be influenced by the gut 

microbiota (3, 38). Disease state as it pertains to dysbiosis not only impacts microbial taxa in the 

gut but can influence the functional composition of this environment as well (39). Herein, we 
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found that gut communities characterized from the stools of patients with Campylobacter 

infections (cases) had increased resistome diversity relative to healthy family members 

(controls). The differences observed between cases and controls in this metagenome analysis are 

consistent with our prior study which used 16S rRNA sequencing to demonstrate discrepancies 

in microbiota diversity between study groups (3). It is probable that fluctuations observed in the 

microbiome and resistome following enteric infection are linked, as changes in microbial 

composition will inherently shift the relative presence/absence of associated genes. Therefore, 

the role of enteric infection in driving these fluctuations is of great interest. 

The identification of multiple differentially abundant ARG classes and groups in case 

samples suggests that Campylobacter infection influences the composition and diversity of the 

resistome. Most notable is the relative increase in MDR and fluoroquinolone resistance genes in 

case samples. Campylobacter strains can often harbor these genes (40), highlighting the 

possibility that pathogens can transport them into the gut community. Our taxa analysis of case 

samples, however, estimated the relative abundance of the Campylobacter genus to be low 

(0.28%), while genera such as Escherichia were much more abundant.Interestingly, however, 

many of the MDR ARGs detected among cases were correlated with other taxa such as Shigella; 

for example, Shigella was highly correlated with the MDR gene mdtC. Multidrug efflux is a 

common resistance mechanism and therefore carriage of mdtC by Shigella spp. is consistent with 

previous findings (41). Nonetheless, detection of Shigella also raises questions regarding co- 

infections, which require confirmation via culture or other diagnostic tests. It is also important to 

note that we did not directly explore genetic architecture, a technique which would more clearly 

elucidate which microbes harbor specific ARGs of interest. Despite providing preliminary 

information regarding ARG-harboring taxa, this method assumes that ARGs and taxa co- 
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Figure 2.8. Diversity among different families is not significantly different. 
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Figure 2.8 (cont’d) 

The alpha diversity measures of richness, evenness, and Shannon diversity do not significantly 

differ by family. Notably, however, there are differing levels of variance among families, 

particularly when comparing families with one control sample vs. many. Each boxplot represents 

a single family (i.e., one case sample and one or more control samples). Each sample is 

designated by a point on the plot; cases are represented by cyan circles while controls are 

designated by orange triangles. The median value for each family is depicted as a thick black line 

within the boxplot; the first and third quartiles are indicated by the lower and upper ranges of the 

box, respectively. P-values were determined using the Wilcoxon rank-sum test; significant p-

values were not found and so are omitted from the plot. 

 

Figure 2.9. Beta diversity analyses do not reveal clear similarities among families. 

Principal coordinates analysis (PCoA) plot using Bray-Curtis dissimilarity of case and control 

samples shows clustering of 16 separate families. Case samples are depicted as circles and 

controls as triangles. Environmental factors with potential to influence this ordination were also 

examined; the variable exploring the number of days since exposure to the case was significantly 

correlated with the observed ordination. These data were fitted to the ordination using the 

‘envfit’ function in R and displayed with a labeled arrow below. The number of days since being 

exposed to an ill family member is correlated to more “normal” looking controls (i.e., controls 

that are most dissimilar from their corresponding infected cases).  

occurring in similar abundances indicate a correlation, potentially leading to inaccurate 

associations. Indeed, an association between ARGs and their microbial hosts was observed in a 

prior study using methods that measured both ARGs and taxa abundance (7). While fluctuations 
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in the abundance of specific taxa during infection likely change the abundance of ARGs 

harbored by these taxa, future work employing a more rigorous test assessing key taxa-associated 

ARGs is needed. It will also be important to examine these communities in a phylogenetic 

context using tools like UniFrac (42) when they become more readily available for use with 

metagenomics data. 

It is notable that cases with Campylobacter infections had three distinct clusters with 

differentially abundant ARG profiles. Resistomes belonging to Cluster 2 were more similar to 

control resistomes, a finding that could point to less perturbed gut communities with a greater 

initial resilience or partially recovered communities at the time of sampling. Cluster 1 and 

Cluster 3 resistomes, however, were either more perturbed by infection or were distinct at the 

start of the infection. Indeed, it is possible that the trajectory of an individual’s resistome during 

infection is contingent upon the microbiome composition before infection. Support for this 

possibility comes from a prior study of Campylobacter patients, who had significantly lower 

taxonomic diversity in their gut communities before infection (43), an outcome that could be 

related to varying levels of microbiome resilience (44). Indeed, studies in mice with varying 

degrees of microbial imbalance prior to infection demonstrated that disturbed gut communities 

were more susceptible to infection by Salmonella enterica serovar Typhimurium (45). Another 

study in chickens observed Campylobacter invasion of the cecal microbiome only after 

substantial changes to the metabolic profile were detected (46). Direct interactions between the 

normal gut microbiota and invading pathogens via resource competition, metabolite production, 

and direct antagonism, coupled with the complexity of pathogen-induced inflammation, have 

also been shown to influence enteric infections (47, 48). Variable perturbations among 
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individuals is consistent with prior studies showing distinct shifts in the gut microbiota and 

resistome following antibiotic treatment (49, 50).  

Because we could not evaluate patient communities prior to infection onset, an approach 

that would require a costly and lengthy longitudinal study of healthy individuals, we cannot rule 

out the possibility that the sampled communities were already distinct. We have utilized a single 

sample taken during infection (cases) and during a self-described “healthy” period (controls) and 

therefore, an assessment of microbiome changes over time could not be performed. Longitudinal 

studies are needed to define the trajectory of microbiome fluctuations in the gut and determine 

how Campylobacter impacts these alterations. Another limitation is the assumption that stool is 

representative of the human gut microbiome. Previous work has shown that microbial signatures 

in the stool differ from other gut-related samples from the same individual (51, 52). Since the 

abundance of different bacterial populations differs in stool, our findings likely represent an 

underestimate of the actual abundance of taxa and ARGs within the gut. Future studies should 

also examine additional sample types, such as mucosal tissues, to better define how the gut 

microbiome is impacted by Campylobacter.  

Specific factors responsible for observed differences between resistome profiles of cases 

remain elusive. It is possible, however, that geographic location as well as variable exposures 

and host responses play a role. For example, a prior study reported differences in ARG 

composition and abundance across land-use sites (rural, urban, and industrial), with ARGs 

fluctuating seasonally and in accordance with a relevant mobile genetic element (MGE), int1 

(53). Another study suggested that local anthropic activities, regardless of rural or urban identity, 

play a role in determining ARG profiles (54). These findings are consistent with our observation 

that urban residents were significantly more likely to have a resistome profile belonging to 
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Clusters 1 or 3 than Cluster 2, indicating that unique factors may be important for the expansion 

of specific ARGs during acute infection. Variation in host immune responses could offer another 

potential explanation for the observed differences among cases. Campylobacter infection elicits 

activation of NFΚ-B and the production of pro-inflammatory cytokines such as interleukin (IL)-8 

(55), though cytokine responses can vary among strains (56). This variation may contribute to 

dissimilar levels of inflammation that differentially influence the resident gut microbiota and, at 

times, benefit the invading pathogen (47, 57, 58). Of importance, too, is that specific pathogen 

features such as the lipooligosaccharide and polysaccharide capsule can impact virulence and 

host responses (59, 60) while repeated exposure to Campylobacter has been linked to local and 

systemic inflammation in children (61). Host responses and Campylobacter strain characteristics 

were not evaluated in our study and, hence, we cannot rule out the possibility that some of these 

factors impacted resistome profiles. Future studies should therefore utilize a larger sample size to 

further clarify factors that contribute to more perturbed or variable resistomes. 

Resistome profiles detected in control samples also provide important information about 

background levels of resistance due to the presence of specific ARGs and ARG classes. The 

finding that tetracycline, MLS, and beta-lactam ARGs were more abundant in controls is 

consistent with two global studies, though gene prevalence was somewhat impacted by 

geography (9, 62). In the United States, healthy individuals harbored MLS and beta-lactam 

resistance genes (63). While the reasons behind the increased abundance of these ARGs in 

healthy individuals is not clear, it is possible that historic circulation of these drugs in agriculture 

as well as veterinary and human health has had a long-term impact on the gut microbiome. 

Comparatively, historical use of tetracyclines in the medical field could also have long-term 

effects on gut microbes, which has been shown for group B Streptococcus (64), an opportunistic 
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pathogen that commonly resides in the gut. Because ARGs can be horizontally transferred to 

commensal gut bacteria and are stably maintained in this environment regardless of recent 

exposure or antibiotic use (65), detection in healthy control stools could be attributed to prior 

exposure to antibiotics or acquisition of antibiotic resistant bacteria. This suggestion is consistent 

with ARGs identified in other cohorts (9, 62, 63) and strengthens our assumption that uninfected 

control samples can be used as a baseline for comparison when analyzing resistomes following 

pathogen infection.  

It is important to note that directly comparing case and control samples presented some 

challenges herein. First, control samples were obtained weeks after the related patients had 

recovered, which prevented an assessment of other factors that may be linked to resistome 

differences. Indeed, some of the observed variation between cases and controls could be due to 

factors such as diet and exercise level, which were not measured in this study but have been 

shown to influence gut communities. Secondly, the sample size of our cases and controls 

differed. Multiple controls were associated with a single case in some circumstances, while other 

cases lacked corresponding controls. Regardless of these limitations, however, we were provided 

with a novel opportunity to conduct a family-based analysis to explore how familial relations 

may influence the resistome.  

Among all 16 families examined, family relation did not appear to outweigh the effect of 

disease state on the resistome as most cases had different profiles than the controls within each 

family. Variation in ARG distribution and abundance, however, was observed across families 

with four families having specific ARGs that were more likely to be shared among their family 

members. The mismatched number of controls per case, however, makes interpreting these data 

difficult, as more controls per case may have overestimated the importance of some ARGs. 
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Nonetheless, the analysis exploring environmental associations was notable. Specifically, time 

since exposure to the infected family member significantly influenced control resistomes; the 

longer the time period between a case being infected and a control submitting a stool sample, the 

less similar the resistomes are. Intuitively, this is expected since the longer the period following 

exposure to a case, the less likely a healthy family member will show signatures of potential 

infection/crossover.  

It is also possible that the level of social closeness among family members played a role 

in the similarity of their resistomes. A prior study, for instance, noted that the closer the social 

interaction between two family members (such as between married partners), the more similar 

their gut microbiome compositions were (66). Unfortunately, we did not consistently receive 

information about the relational status of each control, and hence, conclusions about these 

relationships could not be made. In addition, due to the differing number of household members 

available per family as well as our hesitancy to exclude samples on a nonrandom basis, the 

uneven distribution of controls:cases limits our interpretation of these data. Regardless, the 

provision of multiple control samples enables us to observe similarities/differences between 

healthy members of a family in relation to each other and their infected relative, a tenet of this 

study that may prove useful in future analyses when considering how pathogens impact the gut 

microbiome. 

Collectively, these data demonstrate that patients with Campylobacter infections 

have key differences in the human gut resistome relative to healthy, uninfected individuals. Of 

great interest, we observed an increase in specific taxa, the diversity of ARGs, and ARGs related 

to MDR in the patients. These findings substantiate the need for further characterizing the 

microbiome and resistome in response to perturbations such as those caused by enteric 
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pathogens. Future work should also involve examining bacterial genes found to be differentially 

abundant between groups or that possessed SNPs within genes linked to antibiotic resistance 

previously. Indeed, it is likely that periods of flux not only influence the composition 

of the microbiome, but also its capacity for horizontal gene transfer, which can play a role in the 

persistence and transmissibility of ARGs and emergence of resistant pathogens.  
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APPENDIX
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Table A.1. Characteristics of 26 patients with Campylobacter infections (cases) and 44 

healthy individuals (controls). 

  

 

 

 

 

 

 

 

 

 

 

 

Note: Not all variables in each column added up to the total number of individuals because of 

missing data for some variables. 

‡ p-values were calculated using the Chi-Square test or Fisher’s exact test for variables with n< 5 

in at least one cell. 

 

 

 

 

 

 

 

Characteristic 
Cases  

No (%) 

Controls 

No (%) 
p-value‡ 

Demographics    

Age   0.093 

     0-9 years 8 (30.7) 17 (38.7)  

     10-18 years 0 (0.0) 4 (9.1)  

     19-64 years 13 (50.1) 21 (47.7)  

     ≥65 years 5 (19.2) 2 (4.5)  

    

Sex   0.083 

     Male 9 (34.6) 26 (59.1)  

     Female 17 (65.4) 18 (40.9)  

    

Residence   0.378 

     Rural 11 (44.0) 11 (29.7)  

     Urban 14 (56.0) 26 (70.3)  
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Table A.2. Differentially abundant antimicrobial resistance genes (ARGs) detected in stool samples from cases and controls.   

Group 

(gene) Association Coefficient 

Standard 

Error p-value 

Adjusted 

p-value ARG class 

cpxAR Controls -4.2583446 0.513936708 1.01E-11 5.17E-11 Multidrug resistance 

mdtC Controls -3.8261348 0.439477581 1.15E-12 9.08E-12 Multidrug resistance 

parE Controls -3.1825883 0.361985735 8.02E-13 6.98E-12 Fluoroquinolone resistance 

parC Controls -3.014637 0.248540229 1.21E-18 1.06E-16 Fluoroquinolone resistance 

tetQ Controls 3.02600618 0.490406412 4.27E-08 8.65E-08 Tetracycline resistance 

cfx Controls 3.72226841 1.012164326 0.000466 0.000654 Class A beta-lactamase 

cbla Controls 4.17780963 0.686690753 6.06E-08 1.15E-07 Class A beta-lactamase 

tetW Controls 4.77784686 0.754448744 2.21E-08 5.49E-08 Tetracycline resistance 

Gene groups identified with a coefficient ≥|3.0| using MaAsLin2 (Mallick et al. bioRxiv 2021, doi:10.1101/2021.01.20.427420) with 

health status (case vs. control) included as a fixed effect and residence type, age, and sex as random effects. Genes with negative 

coefficients are more abundant in cases, while positive coefficients are more abundant in control samples. 

 

 

 

 



109 

 

Table A.3. Correlation values between highly abundant antimicrobial resistant genes 

(ARGs) and specific taxa detected in Campylobacter cases. 

ARG Target taxa Correlation P value 

mdtC Shigella 0.885812 1.79E-09 

parE Pseudoalteromonas 0.881176 2.82E-09 

gyrA Pseudoalteromonas 0.873312 5.82E-09 

gyrB Pseudoalteromonas 0.870085 7.74E-09 

gyrA Trabulsiella 0.851064 3.6E-08 

parC Pseudoalteromonas 0.85094 3.63E-08 

cpxAR Pseudoalteromonas 0.839316 8.4E-08 

parE Siccibacter 0.82492 2.17E-07 

gyrA Siccibacter 0.818727 3.19E-07 

pare Trabulsiella 0.813223 4.43E-07 

gyrB Kosakonia 0.812522 4.61E-07 

gyrA Phytobacter 0.811464 4.91E-07 

gyrB Phytobacter 0.809267 5.57E-07 

parC Siccibacter 0.80311 7.88E-07 

gyrB Siccibacter 0.796919 1.1E-06 

rpoB Trabulsiella 0.796432 1.13E-06 

pare Phytobacter 0.796024 1.16E-06 

gyrB Trabulsiella 0.795543 1.19E-06 

cpxAR Phytobacter 0.793487 1.32E-06 

mdtC Pseudoalteromonas 0.789402 1.64E-06 

gyrA Pluralibacter 0.789195 1.66E-06 

gyrA Klebsiella 0.787485 1.81E-06 

mdtC Rhodococcus 0.785091 2.04E-06 

cpxAR Siccibacter 0.784193 2.13E-06 

rpoB Siccibacter 0.783009 2.26E-06 

parC Phytobacter 0.781823 2.4E-06 

parC Trabulsiella 0.775251 3.3E-06 

parE Serratia 0.773807 3.54E-06 

gyrB Pluralibacter 0.766154 5.05E-06 

gyrB Pantoea 0.76547 5.21E-06 

gyrA Serratia 0.763207 5.77E-06 

parC Pseudescherichia 0.762122 6.06E-06 

parE Pluralibacter 0.761156 6.33E-06 

mdtC Phytobacter 0.755751 8.03E-06 

gyrB Klebsiella 0.755214 8.22E-06 

gyrA Lelliottia 0.755175 8.23E-06 

gyrA Yersinia 0.752949 9.06E-06 

parC Pluralibacter 0.751795 9.52E-06 
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Table A.4. Differentially abundant antimicrobial resistance gene (ARG) classes detected in 

25 cases with specific resistome profiles (clusters) determined by hierarchical clustering. 

ARG Class 
Association Coefficient 

Standard 

Error p-value 

Adjusted 

p-value 

MLS Cluster 2 5.276026 1.888096 0.011031 0.03564 

Tetracyclines Cluster 2 2.692487 1.027064 0.016182 0.048547 

Multidrug resistance Cluster 2 -0.45724 0.146904 0.005269 0.018441 

CAP Cluster 2 -0.48417 0.203713 0.027054 0.066838 

Aminoglycosides Cluster 2 -0.59723 0.172927 0.002378 0.009989 

Fluoroquinolones Cluster 2 -0.72234 0.206928 0.002273 0.009989 

Aminocoumarins Cluster 2 -0.98069 0.428388 0.032525 0.075891 

Rifampin Cluster 2 -1.03029 0.428546 0.025522 0.066838 

Sulfonamides Cluster 2 -1.59707 0.493373 0.004139 0.015803 

Fosfomycin Cluster 3 3.426063 0.691953 8.61E-05 0.001127 

Aminocoumarins Cluster 3 1.481023 0.404347 0.001451 0.009989 

Elfamycins Cluster 3 1.303181 0.274124 0.000107 0.001127 

Fluoroquinolones Cluster 3 0.682634 0.195489 0.002225 0.009989 

Multidrug resistance Cluster 3 -0.47969 0.13866 0.002346 0.009989 

Bacitracin Cluster 3 -0.93482 0.389323 0.026071 0.066838 

Aminoglycosides Cluster 3 -1.66939 0.163222 1.30E-09 2.74E-08 

CAP Cluster 3 -5.03738 0.19228 1.60E-17 6.72E-16 

Beta-lactams Urban 0.460124 0.233892 0.062505 0.135027 

Trimethoprim Urban -3.5159 0.905585 0.000912 0.007657 

ARG classes were identified using MaAsLin2 (Mallick et al. bioRxiv 2021, 

doi:10.1101/2021.01.20.427420) with case cluster and residence type as fixed effects and age 

and sex as random effects. Coefficients for the Cluster association were calculated using Cluster 

1 as the reference groups, while the urban association used rural residence as the reference. A 

negative coefficient for Cluster 3, for instance, indicates that Cluster 1 is positively associated 

with a given class (e.g., aminoglycosides). Some classes were negatively associated with both 

Clusters 2 and 3 indicating a positive association with Cluster 1. CAP = cationic antimicrobial 

peptides
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Table A.5. Differentially abundant genes detected among cases living in urban versus rural settings. 

Group (gene) Association Coefficient 
Standard 

Error 
p-value 

Adjusted  

p-value 
ARG class 

pbp4B Urban 1.44670 0.632259 0.033228 0.110403 Beta-lactam resistance 

tetA Urban -0.8197 0.29973 0.012413 0.049812 Tetracycline resistance 

tetB Urban -0.8725 0.305991 0.010208 0.04321 Tetracycline resistance 

mphA Urban -1.20645 0.341498 0.002378 0.013606 Macrolide resistance 

tetR Urban -1.55327 0.63068 0.02351 0.084223 Tetracycline resistance 

dhfR Urban -1.64111 0.425635 0.000917 0.006028 Trimethoprim resistance 

aac3 Urban -1.80729 0.517081 0.002157 0.012816 Aminoglycoside resistance 

ANT3-DPRIME Urban -1.95451 0.627014 0.005213 0.025979 Aminoglycoside resistance 

Gene groups identified using MaAsLin2 (Mallick et al. bioRxiv 2021, doi:10.1101/2021.01.20.427420) with Cluster and residence 

type included as fixed effects and age and sex as random effects. Rural residence is the reference group and hence, genes with 

negative coefficients are more abundant in rural cases, while positive coefficients are more abundant in urban cases.
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Figure A.1. Sequencing run does not appear to impact resistome similarity among cases 

and controls.  

A Principal Coordinates Analysis (PCoA) plot of case (circles) and control (triangles) resistomes 

based on Bray-Curtis dissimilarity at the ARG gene level. The first and second coordinate are 

shown with their respective percentage of explained variance. Sequencing run is denoted by 

color: Red=Run 1; Blue=Run 2; Green=Run 3; Yellow=Run 4, while patients reporting use of 

antibiotics are indicated by square data points. Notably, there is considerable overlap among all 

four sequencing runs. Although a test indicated that the centroids of each run were different 

(PERMANOVA p=0.000999; F=3.3029) as well as the dispersion of points within each run 

(PERMDISP p=0.001; F=10.152), this result is attributed to the unequal sample sizes across 

runs. Run 4, for instance, contains just one sample, whereas Runs 1-3 contain 25, 16, and 28 

samples, respectively. Therefore, the difference in centroid and dispersion is expected.  
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Figure A.2. Estimated sequencing coverage curves for cases and controls.  

The estimated coverage (S-curves) and actual coverage (open circles) for case (n=26) and control 

(n=44) samples evaluated in this study. Each colored S-curve represents a single sample. Arrows 

at the bottom of the graph represent the Nonpareil index of sequence diversity, which is a 

measure of community complexity in sequence space; the mean Nonpareil diversity was 17.32 

consistent with other stool samples documented with this tool. Dotted red lines represent 100% 

coverage and 95% coverage, respectively. The overall mean coverage for cases and controls was 

83.0%. 
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Figure A.3. Comparing the average genome size and number of genome equivalents among 

case and control samples.  

The median of each measure is shown by the black horizontal bar in each box. The first and third 

quartiles are indicated by the bottom and top of each box, respectively. Points (circles and 

triangles) are displayed to show variation within the sample types. Outliers within each group are 

indicated by the black dots.  P-values comparing the difference between cases and controls were 

calculated using a Wilcoxon rank sum test and are shown above the comparison bar for each 

metric. Cases = cyan; controls = orange. 
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Figure A.4. Linear discriminant analysis (LDA) scores showing differentially abundant 

antimicrobial resistance gene (ARG) classes by health status.  

The classes shown registered an LDA score >2.0. The bars shown in orange indicate ARG 

classes that were more abundant in controls, while green bars show ARG classes that were more 

abundant in cases. In controls, tetracycline ARGs had the greatest LDA score (5.3; p=8.34e-10) 

followed by beta-lactam and the Macrolide, Lincosamide, Streptogramin (MLS) ARG classes 

(LDA=4.6, 4.6; p=0.002, 0.0002, respectively). Ten classes were more abundant in cases, with 

MDR (LDA=5.2; p=1.68e-09), fluoroquinolones (LDA=4.6; p=8.18e-11), and rifampin ARGs 

(LDA=4.4; p=3.07e-10) having the highest scores. CAP = cationic antimicrobial peptides; MDR 

= multidrug resistance.  
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Figure A.5. Linear discriminant analysis (LDA) scores for differentially abundant 

antimicrobial resistance genes (ARGs) at the group (gene) level by health status.  

Each ARG gene included in this plot registered an LDA score >4.0. The orange bars show ARG 

genes that were more abundant in controls, whereas green bars show genes that were more 

abundant in cases. In all, 93 of 153 features were differentially abundant between cases and 

controls. Of these, 12 were more abundant in controls with tetQ, tetW, and cfx predominating, 

while 81 were more abundant in cases; rpoB, mdtC and DNA gyrase genes, gyrB and gyrA 

predominated in the latter. 
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Figure A.6. Controls display higher taxonomic diversity than cases.  

Three measures of alpha diversity (Richness, Shannon diversity, and Pielou’s Evenness, 

respectively) are shown for microbial taxonomy among samples. The median of each measure is 

indicated by the thick black bar in each box and the first and third quartiles are represented by 

the bottom and top of the box, respectively; jittered points (circles and triangles) show variation 

within each sample type. Outlying points within each group are indicated by the black dots 

associated with each boxplot. P-values were calculated using the Wilcoxon rank-sum test and are 

shown above the comparison bar within each plot. 
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Figure A.7. Actual abundances of bacterial taxa differ considerably between cases and 

controls. 

Rank abundance plots display the average number of reads assigned to bacterial genera and 

phyla for cases (A, C) and controls (B, D) in decreasing order. The top-10 genera and phyla were 

determined using the highest average number of reads assigned among cases or controls. All 

remaining genera or phyla were combined and summed to comprise the group “Other”, shown in 

the plots below. Note: the y-axis has different scales in each abundance plot.  
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Figure A.8. Hierarchical clustering reveals three distinct resistome profiles among the 

cases.  

Average linkage hierarchical clustering at the gene level was performed based on the Bray-Curtis 

dissimilarity. Two primary clusters, Cluster 1 and Cluster 2, were identified as well as one 

outgroup (Cluster 3). Case sample numbers are indicated and colored based on the resistome 

cluster. 
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Figure A.9. Linear discriminant analysis (LDA) showing differentially abundant 

antimicrobial resistance gene (ARG) classes between case clusters.  

The classes shown here each registered an LDA score >2.0. The bars shown in red indicate ARG 

classes that were more abundant in case Cluster 1; blue bars show ARG classes that were more 

abundant in case Cluster 2; green bars indicate ARG classes more abundant in Cluster 3. MLS = 

Macrolide, Lincosamide, Streptogramin; CAP = cationic antimicrobial peptides; MDR = 

multidrug resistance. 
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Figure A.10. Relative abundance of ARG classes varies across families but maintains the case versus control dichotomy in 

most circumstances.  

The relative abundance of ARGs assigned to 18 different antibiotic classes is shown with each column representing the resistome from 

one individual. Each set of numbered plots is faceted by family ID with the left-most column representing the infected individual 

(cases) in each family; the remaining columns in a family represent 1-7 healthy controls. Relative abundances were determined using 

raw ARG abundances normalized by the approximate number of genome equivalents in the sample. CAP = cationic antimicrobial 

peptides; MLS = Macrolide, Lincosamide, Streptogramin; MDR = Multidrug resistance.    
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CHAPTER 3 

Exploring recovery of the gut microbiome following enteric infection and the persistence of 

resistance genes in specific microbial hosts 
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ABSTRACT 

Enteric pathogens cause widespread foodborne illness and are increasingly found to 

harbor antimicrobial resistance. The ecological impact of these pathogens on the human gut 

microbiome and resistome, however, has yet to be fully elucidated. This study pursued shotgun 

metagenome analyses on stools collected from 60 patients during (cases) and after (follow-ups) 

infection caused by Campylobacter, Salmonella, Shigella, or Shiga toxin-producing E. coli 

(STEC). Overall, cases harbored more antimicrobial resistance genes (ARGs) and had greater 

resistome diversity than follow-ups (p<0.001). Conversely, follow-ups had much more diverse 

microbiomes (p<0.001). While cases were primarily defined by genera in Proteobacteria such as 

Escherichia, Salmonella, and Shigella and ARGs relevant to multi-compound and multi-drug 

resistance, follow-ups had much greater abundance of notoriously beneficial bacteria in the 

Bacteroidetes and Firmicutes phyla, with ARGs for tetracycline, MLS, and aminoglycoside 

resistance. Correlation networks were constructed to predict relevant ARG-taxa associations; 

these hypotheses were followed by a host-tracking analysis designed to investigate whether 

various ARGs were indeed affiliated with certain taxa. Host-tracking revealed that Escherichia 

was the primary carrier of ARGs in both cases and follow-ups, with greater abundance 

demonstrated during infection. Patterns relevant to extended spectrum beta-lactamases (ESBLs) 

and other clinically relevant beta-lactam resistance genes were also investigated, with findings 

suggesting the potential for transmission among microbes within the gut. Considered together, 

these data highlight the importance of further studying and understanding the impacts of enteric 

infection on human gut ecology, specifically as it pertains to antimicrobial resistance.  
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INTRODUCTION 

Foodborne illness caused by enteric pathogens impacts approximately 9.4 million people 

annually in the United States, with over one-third of these infections being bacterial in nature (1). 

In 2019, the Centers for Disease Control and Prevention (CDC) documented the marked increase 

in incidence of foodborne infection among various pathogens including Campylobacter and 

Shiga toxin-producing Escherichia coli (STEC), with the incidence of Salmonella and Shigella 

infections remaining relatively high but unchanged based on previous years (2). The 

consequences of enteric infection on the overall health of the human gut microbiome continues 

to be elucidated. Previously, studies conducted in our lab displayed a marked decrease in overall 

microbiome diversity attributed to enteric infection (3) as well as notable shifts in the gut 

resistome, or the compilation of antimicrobial resistance genes (ARGs) (4), of infected patients 

compared to healthy family members (5). Additional studies have demonstrated an increase in 

the proportion of Proteobacteria upon infection by Salmonella¸ Campylobacter, and Shigella, 

among other pathogens in a range of host organisms (6-9). However, the potential ecological 

repercussions relevant to recovery from enteric infection have yet to be explored.  

In addition to their roles in enteric disease, four bacterial culprits come to the forefront at 

the intersection of foodborne illness and antimicrobial resistance. In their 2019 AMR Report, the 

CDC classified Campylobacter, non-Typhoidal Salmonella, Shigella, and various members of 

Enterobacteriaceae (which includes Escherichia) as serious threats for harboring and transmitting 

antimicrobial resistance (10). Moreover, each of these pathogens has demonstrated capability for 

transmission of ARGs via horizontal gene transfer (HGT) not only intra-specifically but inter-

specifically as well (11). Transmission of antimicrobial resistance does not occur in a closed 

system, however. Rather, these genetic elements have been shown to cross environmental 

boundaries (12, 13). The increasing incidence of disease caused by these enteric pathogens, 
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coupled with their evolving role in harboring antimicrobial resistance and relatively high ability 

to transfer ARGs across communities justifies further examination of the repercussions of enteric 

infection on the human gut microbial community. 

Just as we consider the microbial signatures of waterways, soils, and plants through an 

ecological lens, so too can we perceive the human gut microbiome. Of primary relevance, here, 

is our cogitation of the ecological consequences of enteric pathogens unwelcomely invading a 

healthy gut environment. Previous work has shown that enteric infection can result in decreased 

diversity of the microbiome, a state which can result in reduction of beneficial microbially-

driven metabolism and potential increase in gut inflammation (14). In addition, we have 

previously documented differences in the composition of the resistome in cases with 

Campylobacter infections relative to healthy family members (5). If the microbiome 

demonstrates a certain degree of resilience, these impairments may not be felt with such 

amplitude and are typically resolved over time (15). Multiple studies, for example, have evinced 

the human microbiome’s trajectory of recovery following administration of antibiotics, a known 

disruptor of gut microbial community homeostasis (16-18). In the context of pathogen invasion, 

various ecological interactions must be considered including direct antagonism from commensal 

microbes, resource competition and competitive exclusion, as well as secondary metabolite 

production (19-22); each of these factors may influence the success of an enteric pathogen in the 

gut environment as well as the ability of the human host to recovery from infection.   

These interactions among gut microbiota comprise just one ecological facet regarding 

these pathogens’ introduction to the gut environment. Consideration must also be given to the 

potentiality of these invading pathogens to introduce various mechanisms of antimicrobial 

resistance to the gut community. It is possible that the pathogens themselves harbor ARGs which 
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can be spread to other gut microbes or vice versa, resulting in formation or maintenance of a 

resistance reservoir (23, 24). This reservoir is particularly concerning when considering the 

phenomenon of pathobionts in which common commensal microbes develop pathogenic 

properties (25); in the context of acquired antimicrobial resistance, these microbial players 

become much more sinister. Additionally, given that introduction of these pathogens appears to 

alter the overall relative abundance of various microbes (3), it is also probable that ARGs 

harbored by microbes that “bloom” during these infections will also increase in abundance. 

Various approaches have been developed to identify the microbial hosts of ARGs in different 

environments; these include both physical linking of genetic components to their host (26) as 

well as in silico analyses, such as co-occurrence correlation networks (27, 28) and ARG-carrying 

contig analysis (29), which use sequencing data to inform microbe-ARG relationships. The 

elucidation of microbial hosts harboring ARGs may provide useful information regarding 

potential spread of drug resistance both within the gut and among different environments.  

The ongoing plight of antimicrobial resistance, namely among enteric pathogens, is cause 

for great concern. Further understanding the impacts of these pathogens on the makeup and 

function of the human gut microbiome is necessary for our fight against continued dissemination 

of drug resistance. In addition to exploring how infection by and recovery from enteric 

pathogens influences the composition of the human gut resistome and microbiome, this study 

also aims to elucidate the roles of specific taxa in harboring ARGs both during and after 

infection using shotgun metagenome data.  
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METHODS 

Study population  

Between 2011 and 2015, 60 stool samples were obtained from patients with enteric 

bacterial infections prior to treatment (cases). Of these patients, 24 (40.0%) had infections caused 

by Campylobacter, 29 (48.3%) had Salmonella infections, and 4 (6.7%) and 3 (5.0%) 

experienced Shigella or Shiga toxin-producing E. coli (STEC) infections, respectively. Data from 

the Campylobacter patients were examined previously to examine differences in the resistome 

relative to healthy family members (5). Patient stools were collected by the Michigan 

Department of Health and Human Services (MDHHS) as described previously (3) and 

transported to Michigan State University (MSU) in Cary-Blair transport media following de-

identification and pathogen culture. Patients were interviewed about demographics, exposures, 

and symptoms for reporting through the Michigan Disease Surveillance System (MDSS). They 

also provided names of household members for inclusion as study controls. After providing 

informed consent, 125 healthy household members submitted a stool sample to MSU between 5 

and 29 weeks following the cases’ infection and completed a questionnaire about exposures and 

symptoms.  

In addition, 60 patients submitted a follow-up sample between 1 and 29 weeks after they 

recovered from their initial infection. Hence, a total of 120 paired samples from 60 patients 

during and after infection were available for analysis. Ninety-one household controls associated 

with 38 of the 60 patients were included for comparison in a subset of the analyses. For the 

epidemiological analysis, county of residence was classified as ‘rural’ or ‘urban’ based on 

the classification scheme developed by the National Center for Health Statistics (30). 
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Sample preparation and sequencing analysis  

Metagenomic DNA from the 120 fecal samples was extracted, sheared, and normalized 

as described previously (3). Library construction was completed using a TruSeq Nano library kit 

(Illumina, Inc., San Diego, CA, USA). Shotgun metagenomics sequencing was performed in a 

series of four sequencing runs on an Illumina HiSeq 2500. Reads were demultiplexed at the 

MSU Research Technology Support Facility (RTSF). Upon filtering poor quality or heavily 

contaminated sequences, certain samples were removed from analysis; if a case sample was 

removed from analysis, the corresponding control and follow-up samples (if present) were also 

removed to maintain pairedness of the data. 

AmrPlusPlus – Read-based pipeline 

The AmrPlusPlus v2.0 pipeline was used to perform quality control and align and 

annotate our metagenomic fragments directly using the MEGARes 2.0 database (31). Briefly, the 

pipeline employs Trimmomatic (32); parameters supplied to Trimmomatic were followed as 

described in (5). Metagenomic reads were mapped to the GRCh38 human genome in RefSeq 

(GRCh38_latest_genomic.fna.gz, downloaded December 2020) using Burrows-Wheeler Aligner 

(BWA) (33) and removed using SAMTools (34) and BEDTools (35). The non-host FASTQ files 

were stored and aligned to MEGARes 2.0 to identify the ARGs present in each sample using 

BWA and SAMTools with default values. Metagenomic reads were deduplicated and annotated 

using ResistomeAnalyzer with an identity threshold of ≥80% to obtain the ARG abundances in 

each sample, while RarefactionAnalzyer was used to estimate sequencing depth. The final step in 

the AmrPlusPlus pipeline extracted SNPs pertaining to those ARGs that require specific 

haplotypes to be classified as resistance genes. The pipeline was designed to confirm these SNPs 

using the Resistance Gene Identifier (RGI) created in conjunction with The Comprehensive 
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Antibiotic Resistance Database (CARD) (36). In this analysis, however, all ARGs were included 

regardless of SNP status as any ARG requiring SNP confirmation was within one point mutation 

of conferring resistance; therefore, its role as a resistance precursor is likely and relevant to this 

analysis.   

Following annotation and determination of ARG abundances, the average genome size 

(AGS) and number of genome equivalents (GE) was investigated per sample using 

MicrobeCensus (37) (Figure B.1). The number of GE was used to normalize ARG and 

taxonomic abundances. Nonpareil, an assembly- and database-independent tool used to estimate 

metagenomic coverage, (38) was used to assess the degree of coverage for our short paired end 

reads (Figure B.2).  

Identification of microbial taxa   

  Non-host paired end reads were taxonomically annotated using Kaiju (39). Kaiju is a 

protein-based classifier which provides taxonomic annotations by translating metagenomic reads 

to amino acid sequences and searching for maximum exact matches (MEMs) among microbial 

reference genomes (39). The reference database used was the NCBI BLAST nr database 

including sequences for bacteria, archaea, viruses, fungi, and microbial eukaryotes. Parameters 

used when running Kaiju were described previously (5). Raw abundances of reads assigned to 

taxa were normalized by the estimated number of GE calculated by MicrobeCensus (37).  

Ecological analyses  

Abundance and diversity analyses 

Resistome and microbiome composition were determined by investigating the identity 

and diversity of ARGs and taxa across infected cases and recovered follow-ups. For the 
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resistome, analyses were completed using the gene, group, mechanism, class, and type levels 

denoted by MEGARes v2.0 and the ResistomeAnalyzer tool in AmrPlusPlus v2.0 (31). Actual 

estimated abundance of ARGs and taxa was determined by normalizing raw abundance counts to 

the number of GE per sample. Relative abundance was calculated by dividing the number of GE-

normalized reads assigned to a specific feature by the total number of GE-normalized reads for 

that sample. Alpha diversity metrics such as richness estimates, Shannon diversity, and Pielou’s 

evenness score were obtained using the vegan package (40) in R (41). Nonparametric tests were 

used for alpha diversity significance testing because the data were presumed to be non-normal. 

To test for normality, the Shapiro-Wilk test was used to assess the metrics of richness, Shannon 

diversity, and evenness, each of which registered significant p-values for both the resistome and 

microbiome data (Table B.1) The Wilcoxon signed-rank test was used to detect significant 

differences between paired case and follow-up samples, while the Wilcoxon rank-sum test was 

applied to unpaired samples.  Beta diversity metrics and ordination plots (e.g., Principal 

Coordinate Analysis (PCoA)) based on Bray-Curtis dissimilarity at the gene and group (ARGs) 

or species and genus (taxa) levels were also determined using vegan. Upon generation of Bray-

Curtis dissimilarity matrices, the overall mean dissimilarity among cases and follow-ups was 

compared to the mean dissimilarity between all paired case-follow samples. A Welch’s t-test was 

used to determine whether these means were statistically significant; means were also plotted 

onto a histogram demonstrating the distribution of dissimilarity measures across samples (Figure 

B.3). A Permutational Analysis of Variance (PERMANOVA) was completed on the Bray-Curtis 

dissimilarities in R to assess differences in centroids (mean) between cases and follow-ups for 

resistome and microbiome composition; Permutational Analysis of Multivariate Dispersion 

(PERMDISP) was used to detect differences in dispersion (degree of spread) of these groups.  
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Differential abundance of taxa and ARGs 

To assess representative features in cases and follow-ups, MMUPHin was used to 

construct general linear models relating various sample features to microbiome and resistome 

relative abundances (42). First, MMUPHin was used to perform batch adjustment of relative 

abundance data based on sequencing run since this variable was significantly influencing the 

distribution of points in our microbiome ordination (Figure B.4). Next, a linear model was 

constructed to identify differentially abundant ARGs and taxa among cases and follow-ups; 

follow-ups were used as the reference for the fixed effect, while age in years, average genome 

size, number of genome equivalents, year of collection, and use of antibiotics were included as 

covariates. Significance values were adjusted using the Benjamini-Hochberg method of 

correction for multiple hypothesis testing (q-value representing False Discovery Rate (FDR)). 

Since a prior study showed that different abundance testing methods can result in skewed data 

interpretations (43), the Analysis of compositions of microbiomes with bias correction 

(ANCOM-BC) method (44) was also used for comparison. ANCOM-BC considers absolute 

abundances (which we included as GE-normalized counts) as input and cannot currently 

implement a mixed model in which fixed and random effects are considered. This lack of 

additional random effects or covariates may explain the variation observed. Nevertheless, 

ANCOM has been cited as one of the most reliable methods for differential abundance testing 

(43), and its overall concordance with the findings of MMUPHin increase our confidence of the 

respective findings.   

Identification of continuous population structure  

MMUPHin was also used to further characterize the intrinsic drivers of point 

distributions observed in our beta diversity analyses (ordination). To do this, the 
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‘continous_discover()’ function was applied to our microbiome and resistome abundance data. 

This function performs unsupervised continuous structure discovery using Principal Components 

Analysis (PCA); continuous structure scores (called “loadings”) that comprise the top principal 

components are compared across batches to identify “consensus” loadings assigned to certain 

microbial features. A parameter, ‘var_perc_cutoff()’, which instructs the method to filter out the 

top components accounting for at set proportion of the variability within the samples, was set to 

0.75 for phylum and ARG class levels and 0.50 for genus and ARG group levels. At the species 

level, ‘var_perc_cutoff()’ was set to 0.40. The different filters are needed because levels with 

broader characterization (e.g., phylum and ARG class) have fewer categories, and therefore, each 

category accounts for greater variability by default. Upon generation of these loadings, we 

constructed respective plots to visualize the main drivers of continuous data structure and 

overlaid the data onto ordination plots which displayed the Bray-Curtis dissimilarity of 

microbiome or resistome relative abundances. In nearly every comparison, the distribution of 

points could be attributed to a taxonomic and/or ARG tradeoff.  

Co-occurrence network construction 

Co-occurrence network analysis was completed on ARG and taxonomic data to explore 

feature associations among cases and follow-ups. Prior to network construction, a subset of ARG 

and taxonomic GE-normalized abundances was taken to obtain approximately 50% of the most 

prevalent features in each dataset (ARG groups = 251; genera = 2,282). This was pursued 

because network performance has been shown to decrease markedly with high sparsity of data 

(high proportion of zeroes, usually among rare taxa or genes), and removal of such data results in 

a higher true positive-to-false positive ratio (45). These subsets were used to calculate 

Spearman’s Rank correlation coefficients (ρ). Potential correlations were explored for ARG-
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ARG, ARG-taxa and taxa-taxa associations among cases and follow-ups. A more refined 

analysis was also performed to investigate whether there were differing trends in ARG-taxa co-

occurrence among pathogens during and after infection. The number of cases/follow-ups infected 

with Shigella (n=4/4) or STEC (n=3/3) were not included in analysis, however, since a Spearman 

Rank correlation matrix cannot be constructed with fewer than four observations. Since these 

networks are constructed separately for cases and follow-ups, there were not enough samples to 

use this approach for these two genera. However, correlation matrices and networks were 

successfully constructed for those infected by Salmonella and Campylobacter. 

A correlation between two features (called “nodes” in the network) was considered 

significant if ρ ≥ 0.80 and p ≤ 0.01. Spearman correlations were determined using the “rcorr” 

function from the Hmisc package v4.5-0 (46) in R. The output from Hmisc was formatted to 

compose a nodes file and an edges file, which were imported into Gephi for visualization (47); 

the Fruchterman-Reingold layout was chosen to display all associations among ARGs and taxa. 

Filters were applied so all nodes required a degree (e.g., number of connections) greater than 1. 

To detect associations between ARGs and specific taxa, the MASK setting was used to isolate 

the Partition Type “ARG”, meaning that the only connections displayed in the network involved 

ARGs directly (i.e., ARG-ARG or ARG-taxa associations only). Two separate analyses were 

performed: a global analysis and a targeted analysis exploring associations related to the beta-

lactam class. For each analysis, separate correlation networks were constructed for cases and 

follow-ups; the results of the correlation matrix construction as well as the visual network were 

compared as a method of prediction for taxa-associated ARGs.  
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Anvi’o – Assembly-based pipeline 

The non-host FASTQ files generated with AmrPlusPlus v2.0 were used for metagenome 

assembly. Prior to assembly, BBTools was used for paired end read merging using the ‘bbmerge-

auto.sh’ script; if reads initially failed merging they were error-corrected using Tadpole (48) and 

reexamined. If merging continued to fail, reads were extended 20bp and merging was iterated up 

to five additional times until complete. If merging failed, unmerged original reads were included. 

Assembly was performed with MEGAHIT (49) using the forward and reverse paired end reads in 

addition to the merged reads. The Quality Assessment Tool for Genome Assemblies (QUAST) 

(50) was used to assess assembly quality and coverage (Figure B.5).   

Following assembly, a custom workflow was composed using tools provided in anvi’o to 

analyze and visualize microbial genomes from metagenomes (51). First, assembled contigs were 

reformatted using ‘anvi-script-reformat-fasta’ to generate a contigs database for each sample 

using ‘anvi-gen-contigs-database’. The script ‘anvi-run-hmms’ was run to populate the contigs 

database with hits found using Hidden Markov Models, a strategy that can improve assembly 

annotation. Prodigal (52) was used in the script ‘anvi-get-sequences-for-gene-calls’ to obtain the 

amino acid sequences of genes present in our assemblies for use in the ARG-carrying contigs 

analysis.  

ARG-carrying contigs host-tracking analysis 

Gene calls obtained from anvi’o were used to identify ARG-carrying contigs (ACCs) by 

aligning our amino acid sequences to the HMD-ARG database (53) using DIAMOND (54). The 

resulting SAM files were filtered to identify contigs with a hit listed as “antibiotic”; these contig 

IDs were stored in a list. Seqtk (55) was used to extract these ARG-carrying contigs from the 

original list of gene calls and store them in a separate FASTA file. Finally, the resulting FASTA 
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files were aligned to the BLAST database v5.0 (56, 57) using blastp to identify microbial taxa 

represented by the ACCs and confirm the presence of ARGs; an E-value of 0.00001 was used as 

a cutoff with a maximum number of 50 target sequences (i.e., up to 50 matches were allowed per 

contig). 

Of the 60 case-follow-up pairs, one pair that had been infected with Campylobacter could 

not be properly annotated and was excluded from this analysis, resulting in 59 pairs (118 

samples). The output from our BLASTP alignment was used to identify the most likely taxon 

associated with each ARG identified on a contig. Since up to 50 matches (hsps) were allowed per 

contig, a custom Python script was composed to quantify the proportions of each genus 

comprising a contig. The script then determined the most prevalent genus (via maximum number 

of hits and highest calculated percentage) per contig. In other words, any taxon representing the 

greatest percentage of hits per contig was considered the most likely taxon to be present in 

association with that particular ARG. The custom Python script output two different types of 

files: one which quantified the average proportion of each genus per sample on the ACCs and 

one which quantified the average percentage of different ARGs per genus within each sample’s 

ACCs. The former was used to determine which genera, on average, most commonly harbor 

ACCs in our samples. The latter was used to identify which ARGs are found in these prominent 

genera and whether they differed among cases and follow-ups.  

RESULTS 

Study population characteristics 

The 60 cases were infected with one of four different enteric pathogens (Campylobacter 

(n=24), Salmonella (n=29), Shigella (n=4), or Shiga toxin-producing E. coli (n=3)). Stools were 

obtained from each case during acute infection as well as 8 to 205 days post-recovery (i.e., 
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“follow-ups”), yielding 120 stool samples in all. The average number of days to follow-up was 

107.9, though this information was absent for one individual. Most follow-up samples were 

submitted between 101-150 days after the initial sample (n=28; 47.5%), followed by 51-100 days 

(n=20; 33.9%). Fewer follow-up samples were taken ≤50 or >150 days after initial sample 

(n=4;6.78 and n=7;11.9%, respectively).  

Of the 60 individuals, 28 were male (46.7%) and 32 were female (53.3%). The age range 

in years was between 1.5 and 90, with many (n=16; 26.7%) representing 0-9 years, followed by 

10-18 years (n=6; 10.0%), 19-64 years (n=26; 43.3%), and ≥65 years (n=12; 20.0%). Forty-eight 

(80.0%) cases self-reported as Caucasian, whereas five (8.3%) self-identified as African 

American and 2 (3.3%) as Asian; one individual (1.7%) reported more than one race, and seven 

individuals (6.7%) failed to respond. No difference in the proportion of stool submissions was 

observed by year, though the lowest frequency (n=13.3%) was recovered in 2011. Sixteen were 

recovered (26.7%) in 2012, 22 (36.7%) in 2013, and 14 (23.3%) in 2014.  Fifty-nine of the cases 

responded to prompts regarding symptoms experienced during infection, with 50 (84.8%) 

reporting abdominal pain and 57 (96.6%) reporting diarrhea. Twenty (33.9%) and 28 (47.5%) 

patients reported vomiting or nausea, respectively, while 22 cases (37.3%) reported bloody stool. 

While infected, just two people (3.4%) described their stool as being “Solid”, while a majority 

described their stool as either “Loose” (n=8; 13.6%) or “Watery” (n=49; 83.0%). Fortunately, 

upon recovery from infection, most follow-ups described their stool as “Solid” (n=45; 75.0%). 

Most of the 60 cases received care in an outpatient setting (n=40; 66.7%); however, 17 people 

(28.3%) required hospitalization. While just two cases (3.3%) reported taking amoxicillin within 

two weeks of stool collection, five (8.3%) reported antibiotic use during their recovery. These 
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five cases had taken either amoxicillin (n=2), azithromycin (n=1), ciprofloxacin (n=1), or an 

unknown antibiotic (n=1) up to two weeks before sample collection.  

Thirty-three (55.0%) of the cases lived in rural areas and 26 (43.3%) lived in urban 

counties with one individual failing to respond. Most individuals had access to municipal water 

(n=38; 63.3%), though a subset reported well water (n=10; 16.7%), bottled water (n=4; 6.7%), or 

both municipal and bottled water (n=1; 1.67%) as their main water source; seven people did not 

respond. Fifty-eight people responded to prompts regarding recent travel. Nineteen cases 

(32.76%) reported traveling within the last month, with 12 (20.7%) indicating travel within the 

United States and 8 (13.8%) reporting non-domestic travel.   

Changes in the composition and diversity of the resistome and microbiome after recovery 

from enteric infection 

Resistome diversity 

Our resistome analysis identified 1,212 resistance genes among the 120 stool samples. 

These genes encode resistance to four different overarching types of compounds: biocides, 

antibiotic drugs, metals, and multi-compound substrates. Among the resistance genes, 474 

distinct gene groups or operons are represented that translate into 120 mechanisms conferring 

resistance to 44 different classes of compounds. Infected cases had significantly more diverse 

resistomes than follow-ups with a greater mean ARG richness (Scases=254 vs. Sfollow-ups=103, 

respectively; p=4.5e-10) (Figure 3.1). The Shannon diversity index was also greater in cases than 

follow-ups (Hcases=4.79 vs. Hfollow-ups=3.36; p=2.1e-10) as was the Pielou’s evenness index 

(J’cases=0.87 vs. J’follow-ups=0.80; p=8.1e-10). Notably, the family member controls did not 

significantly differ from follow-up samples, suggesting recovery to a relatively “normal” state 

following infection (Figure B.6A).  
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Beta-diversity analysis revealed that the composition of these paired case and follow-up 

resistomes also differed. Principal Coordinate Analysis (PCoA) was performed on the Bray-

Curtis dissimilarity of cases and follow-ups (Figure 3.2). PERMANOVA revealed notable 

separation of these two groups (p=0.000999; F=38.75). PERMDISP did not identify a significant 

difference in the level of dispersion among cases and follow-ups (p=0.52; F=0.468). Importantly, 

the five individuals who self-reported antibiotic use prior to sampling did not cluster separately  

 

Figure 3.1. Resistome diversity is greater during enteric infection than after recovery. 

Three alpha diversity measures are shown above (Richness, Shannon’s Diversity Index, 

and Pielou’s Evenness Index); these are stratified by health status, with samples represented by 

circles (cases=green; follow-ups=purple). Points are slightly offset from the vertical to allow 

interpretation of all samples. The median of each measure is indicated by the thick bar within 

each box (green for cases; purple for follow-ups) and the first and third quartiles are represented 

by the bottom and top of the box, respectively. The gray lines between points connect both of an 

individual’s samples: the sample taken during infection (case) and the sample taken during 

recovery (follow-up). P-values were calculated using the Wilcoxon signed-rank test for paired 

samples and are shown above the comparison bar within each plot. 

from those that did not receive antibiotics or did not disclose their antibiotic use.  Data for 

residence type, antibiotic use, gender, age, hospital, county of origin, stool type, sequencing run, 
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and number of days between the initial sampling and follow-up samples (“Follow-Up Days”) 

were fit to the ordination. Of these variables, age in years (p=0.013), and year of collection 

(p=0.043) were found to significantly and independently influence the distribution of points. 

However, residence location, hospital, and the number of days since infection trended toward 

significance (p=0.097, p=0.099, and p=0.092, respectively).  

 

Figure 3.2. Resistomes during infection differ significantly from those of recovered 

samples. 

A Principal Coordinates Analysis (PCoA) plot of case (green, circles) and follow-up (purple, 

squares) resistomes based on Bray-Curtis dissimilarity calculated from gene-level abundances. 

The first and second coordinate are shown and include the corresponding percentage of similarity 

explained. Patients that self-reported use of antibiotics two weeks prior to sample collection are 

indicated by triangular data points.  

We re-plotted the ordination using group-level data (which includes the gene- or operon-

level group) rather than gene-level data (which includes sequence-level gene information), for 

increased clarity due to fewer features. After fitting intrinsic variables (i.e., resistance gene 

information) to the ordination, 30 groups registered an R2-value >0.75 and a p-value ≤ 0.001. 

Those with the greatest R2 included bacA (bacitracin resistance), cpxAR (drug and biocide 

resistance), glpT (fosfomycin resistance), and copA (copper resistance). Based upon the 
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directionality of the fitted vectors in the ordination plot, these four ARG groups are primarily 

driving separation of cases and follow-ups along the first coordinate (Figure B.7). As was 

observed for alpha diversity, follow-ups had a similar resistome composition to controls in the 

ordination plot (Figure B.6B). Notably, the pathogen responsible for infection did not have a 

significant effect on alpha or beta diversity trends (Figure B.8). 

Microbiome diversity  

Among cases and follow-ups, a total of 40,022 species, 4,851 genera, 1,157 families, 537 

orders, 236 classes, and 224 phyla were found. The trends for microbiome diversity were 

opposite that of the resistomes; follow-ups had more diverse gut microbiomes than their 

corresponding cases (Figure 3.3). Not only was the mean species richness significantly greater 

after recovery from infection (Scases=3,426, Sfollow-ups=5,789; p=2.5e-08), but the recovered 

microbiomes had greater mean evenness (J’case=0.150, J’follow-up=0.190; p=9.8e-06) and a higher 

mean Shannon Diversity index (Hcases=1.21, Hfollow-ups=1.65; p=1.3e-06). When compared to 

controls, follow-ups had similar levels for Shannon Diversity and evenness, though the measure 

of richness (Sfollow-ups=5,789, Scontrols=6,872; p=0.012, Wilcoxon rank-sum test (unpaired)) 

differed significantly between the groups (Figure B.6C).    

Principal Coordinate Analysis (PCoA) of the Bray-Curtis dissimilarity among cases and 

follow-ups showed considerable overlap in the microbiome composition at the species level, yet 

significant differences between the groups were found (Figure 3.4; PERMANOVA (p=0.000999; 

F=7.31)). PERMDISP, however, did not detect a significant difference in the dispersion of points 

between cases and follow-ups (p=0.086; F=2.86). The same extrinsic covariates described prior 

were fitted to the PCoA and three significantly impacted the distribution of points (p≤0.01). 

These included age in years (p=0.008), sequencing run (p=0.001), average genome size 
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(p=0.001), number of genome equivalents (p=0.001), year of sampling (p=0.005), and antibiotic 

use (Yes vs. No; p=0.008). Notably, the number of follow-up days (p=0.013) and hospital 

(p=0.030) also met the significance cutoff of p=0.05. Intrinsic variables (e.g., species and genus) 

were also fitted. At the genus level, the R2-values were lower than those found in the resistome 

analysis. Of the genera that had an effect on the ordination, Cronobacter, Pseudoalteromonas, 

and Cedecea 

 

Figure 3.3. Microbiome diversity is greater after recovering from enteric infection. 

Three alpha diversity measures are shown above to represent microbiome diversity (Richness, 

Shannon’s Diversity Index, and Pielou’s Evenness Index); these are stratified by health status, 

with samples represented by circles (cases=green; follow-ups=purple). Points are slightly offset 

from the vertical to allow interpretation of all samples. The median of each measure is indicated 

by the thick bar within each box (green for cases; purple for follow-ups) and the first and third 

quartiles are represented by the bottom and top of the box, respectively. The gray lines between 

points connect both of an individual’s samples: the sample taken during infection (case) and the 

sample taken during recovery (follow-up). P-values were calculated using the Wilcoxon signed-

rank test for paired samples and are shown above the comparison bar within each plot. 

had the highest R2-values (p ≤0.001); these, along with a cluster of other genera including 

Escherichia, Salmonella, and Shigella, among others, were the key contributors to the separation 
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of cases from follow-ups. Bacteroides also demonstrated a significant R2-value of 0.547 

(p=0.001); contrary to the other genera explored, this genus directed points higher on the y-axis 

(Figure B.9). In all, the diversity metrics for cases and follow-ups did not differ after stratifying 

by infecting pathogen (Figure B.10).  

 

Figure 3.4. Compositional differences between case and follow-up microbiomes are 

nuanced. 

A Principal Coordinates Analysis (PCoA) plot of case (green, circles) and follow-up (purple, 

squares) microbiomes based on Bray-Curtis dissimilarity at the species level. A biplot was 

overlaid to display variables that were found to have a significant influence on the distribution of 

points in the ordination. Notably, Age-in-years and the number of follow-up days were 

influential vectors while the binary variable for receiving antibiotics (Yes/No) was an influential 

factor. The first and second coordinate are shown and include the corresponding percentage of 

similarity explained. Patients that self-reported use of antibiotics two weeks prior to sample 

collection are indicated by triangular data points. 

Exploring potential for continuous structure of resistome and microbiome compositions using 

MMUPHin 

In addition to its use in differential abundance testing, MMUPHin was used to identify 

continuous population structure from the microbiome and resistome abundance data. Continuous 
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structure discovery can be useful when attempting to identify taxonomic or, in this case, 

resistance gene tradeoffs that could be driving observed structure of data. For each level of 

investigation (e.g., phylum, genus, ARG class, ARG group), the top contributing features were 

determined and relevant continuous structure scores were overlaid onto ordination plots. As 

suggested by the results of the envfit() function, various taxonomic and resistance features were 

associated with point distribution. Namely, when considering taxonomy, we observed a notable 

tradeoff between the phyla Proteobacteria (primarily displayed by cases) and Bacteroides and 

Firmicutes (mostly in follow-ups and some overlapping cases) (Figure 3.5A). Additionally, there 

is a taxonomic tradeoff at the genus level, with an evident gradient between Escherichia-

Salmonella-Klebsiella-Shigella-Pseudomonas-containing samples vs. those dominated by 

Bacteroides and Alistipes (Figure 3.5B). Indeed, these differences are visible when overlaid onto 

ordination as a gradient relevant to loading score can be observed (Figure 3.5C/D). At the 

species level, which reveals gradients at the greatest resolution, we observed a tradeoff between 

harboring Escherichia coli, Klebsiella pneumoniae, and Shigella sonnei vs. many Bacteroides 

species (including B. fragilis, B. stercoris, B. uniformis, and more) and Phocaeicola species 

(namely P. vulgatus and P. plebeius) (Figure B.11).  

Tradeoffs were also observed among resistance genes. At the class level, there is a 

continuous gradient relative to tetracycline-, macrolide, lincosamide, and streptogramin (MLS)-

aminoglycoside-dominant resistomes vs. ARGs for multiple classes such as multi-metal 

resistance, drug and biocide resistance, and drug, metal, and biocide resistance (Figure 3.6A). . 

At the ARG group level, tetQ represents a dominant driver of continuous structure scoring for 

follow-ups while resistance genes such as rpoB, acrA, acrB, mdtC, and mdtB were defining for 

the opposite side of the PCoA axis (Figure 3.6B). Overlaying these loading scores onto 
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ordination further reveals the taxonomic gradients identified among cases and follow-ups (Figure 

3.6C/D). 

Resistome composition 

The relative abundance of ARGs comprising the resistome differed between cases and 

follow-up samples. Genes conferring drug resistance accounted for an average of 44.8% of the 

total genes annotated in cases but represented 84.9% of ARGs in follow-ups (Figure B.12). 

Nonetheless, the actual abundance (which considers the average number of reads assigned to a 

Type) was higher in cases (n=71.5 reads) than follow-ups (n=51.4). Interestingly, genes for 

multi-compound and metal resistance were more highly represented in cases, with a relative 

abundance of 24.8% and 22.0%, respectively; these types were far less prevalent in follow-ups, 

with respective relative abundances of 6.9% and 6.2%. These trends also hold true when 

considering actual abundances; cases had an average abundance of 47.6 and 42.3 reads for multi-

compound resistance and metal resistance, respectively, while follow-ups contained just 30.0 and 

27.4 reads for these respective Types. In both cases and follow-ups, genes relevant to biocide 

resistance were least represented with relative abundances of 8.4% and 2.0%, respectively. This 

was also reflected in their actual abundances (cases=15.8; follow-ups=10.3).  

At the Class level, the compositional differences were even more pronounced (Figure 

3.7). The resistance classes with the greatest relative abundance in cases were for drugs and 

biocides (15.1%), MLS (13.3%), and multi-metals (11.3%). These classes also have the greatest 

actual abundance among cases, registering average read counts of 46.4, 25.4, and 33.9, 

respectively. The top-three most relatively abundant classes in follow-ups were MLS (33.5%), 

tetracycline (22.0%), and aminoglycoside (15.5%) resistance, a trend also reflected in the actual 

abundances (read counts = 8.7, 5.4, 4.3, respectively). Notably, the top-three resistance classes in
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Figure 3.5. Continuous structure analysis reveals taxonomic gradients driving distribution of samples across the population.  
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Figure 3.5 (cont’d) 

MMUPHin was used to investigate potential continuous structure of the microbiome 

composition among cases and follow-ups. Phyla (A)and genera (B) determined to comprise top 

consensus loadings of the PCA are shown; colors have been assigned to the loadings based on 

primary health status affiliated with each loading (drawn from differential abundance analyses; 

cases (green) and follow-ups (purple)). The phylum (C) and genus (D) composition gradients are 

shown overlaid onto respective ordination plot based on Bray-Curtis dissimilarity of case and 

follow-up microbiomes at the phylum and genus level, respectively. Cases (circles), follow-ups 

(squares), and individuals who received antibiotics (triangles) are shown. The color gradient 

(“Score”) refers to the continuous structure score affiliated with Loading 1 for phyla and genera, 

respectively. Juxtaposition of (A)-(C) and (B)-(D) allow interpretation of phyla and genera 

tradeoffs, respectively, that occur within the samples. For example, at the phylum level, we see a 

stark tradeoff between Proteobacteria-dominant and Bacteroidetes/Firmicutes-dominant samples. 

At the genus level, tradeoffs between Escherichia, Salmonella, Klebsiella, Shigella, among other 

Proteobacteria and Bacteroides, Alistipes, and various Firmicutes are evident. 

cases account for just 39.8% of the total resistance genes, while in follow-ups, the top-three 

represent 71.0%, a trend that reiterates the greater resistome diversity of patients during 

infection. It is also important to consider the incredible difference in actual abundances of these 

classes; while cases register average read counts above 25, the average abundance of these genes 

is below 10 in follow-ups.  

Mechanistically, the macrolide-resistant 23S rRNA mutation was most abundant in both 

cases (n=24.0; 11.9%) and follow-ups (n=6.5; 24.4%), respectively. The next most abundant 

mechanisms in cases were Resistance-Nodulation-Division (RND) efflux pumps relevant to drug 

and biocide resistance and drug, metal, and biocide resistance (average n=19.6 and 17.2 reads, 

respectively) which, together, comprised 12.2% of all mechanisms detected in cases. As 

anticipated, the next most prevalent mechanisms in follow-ups related to tetracycline and 

aminoglycoside resistance; tetracycline resistant ribosomal protection proteins had an average 

abundance of 4.8 (19.9%) and the aminoglycoside resistant 16S ribosomal subunit protein 

averaged 3.5 reads per sample (12.6%).  
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Figure 3.6. Continuous structure analysis highlights ARG abundance gradients driving differences among cases and follow-

ups.  
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Figure 3.6 (cont’d) 

MMUPHin was used to investigate potential continuous structure of the resistome composition 

among cases and follow-ups. ARG class (A) and group (B) determined to comprise top 

consensus loadings of the PCA are shown; colors have been assigned to the loadings based on 

primary health status affiliated with each loading (drawn from differential abundance analyses; 

cases (green) and follow-ups (purple)). Class (C) and group (D) composition gradients are shown 

overlaid onto respective ordination plot based on Bray-Curtis dissimilarity of case and follow-up 

resistomes at the class and group level, respectively. Cases (circles), follow-ups (squares), and 

individuals who received antibiotics (triangles) are shown. The color gradient (“Score”) refers to 

the continuous structure score affiliated with Loading 1 for class and group, respectively. 

Juxtaposition of (A)-(C) and (B)-(D) allow interpretation of ARG class and group tradeoffs, 

respectively that occur within the samples. At the ARG class level, we observe tradeoffs between 

resistomes dominated by tetracyline and MLS ARGs and those containing primarily multi-

compound and multi-drug ARGs. At the group level, similar patterns are observed: we see 

tradeoffs between multi-compound resistance genes such as the acr and mdt gene families and 

those which confer tetracycline and MLS resistance (tetQ, mls23, etc.). 

 

Figure 3.7. Relative abundance of the Top-10 resistance gene classes notably differs 

between case and follow-up samples.  
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Figure 3.7 (cont’d) 

The relative abundance of resistance genes assigned to 44 different compound classes is shown for 

each health status, with each column representing the resistome from one individual. Columns are 

ordered by their sample pairing, meaning that the column position in each side of the plot refers to 

the same individual either during (Case; Left) or after (FollowUp; Right) enteric infection). 

Relative abundances were determined using raw gene abundances that had been normalized by the 

approximate number of genome equivalents in the sample as determined using MicrobeCensus. 

CAP = cationic antimicrobial peptides; MLS = Macrolide, Lincosamide, Streptogramin; MDR = 

Multidrug resistance; QACs = Quaternary Ammonium Compounds.  

Finally, when investigating the group level, the trends observed in other levels of 

annotation continue to show. The most abundant groups in cases were MLS23S (average n=24.0; 

11.9%), rpoB (n=7.2; 2.8%), and A16S (n=6.2; 3.8%). The groups which facilitate drug and 

biocide and drug, biocide, and metal resistance (mdtB and mdtC) identified prior registered 

average abundances of 4.2 (1.4%) and 3.9 (1.3%) in cases. In follow-ups, the most abundant 

groups were relevant to MLS, tetracyclines, and aminoglycosides; MLS23S (n=6.6; 24.3%), tetQ 

(n=4.0; 17.0%), and A16S (n=2.4; 9.5%) all dominate.  

Microbiome composition 

The composition of infected and recovered microbiomes differed markedly. Although 

both cases and follow-ups were dominated by Bacteria (relative abundance = 82.0% and 84.4%, 

respectively) with fewer Archaea or Eukarya, the members of this kingdom comprising the 

respective microbiomes were distinct. For example, during infection, cases contained a high 

proportion of members in Proteobacteria (37.1%) and displayed a starkly decreased relative 

abundance of phyla known to contain beneficial commensals such as Bacteroidetes (29.6%) and 

Firmicutes (13.7%) (Figure 3.8). Contrastingly, these beneficial phyla re-establish themselves 

during recovery, and are much more prevalent in follow-ups (Bacteroidetes, 49.3%; Firmicutes, 

26.9%). Notably, the relative abundance of Proteobacteria in follow-ups is much lower than in 

infected cases (3.9%).  
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Figure 3.8. Relative abundance of microbial phyla notably differs between cases and 

follow-ups.  

The top-10 microbial phylum with the greatest average relative abundance among cases or 

follow-ups is shown for each health status with each column representing the 

microbiome from one individual. Columns are ordered by their sample pairing, meaning that the 

column position for each facet of the plot refers to the same individual either during (Case; Top) 

or after (FollowUp; Bottom) enteric infection. Relative abundances were determined using raw 

gene abundances that had been normalized by the approximate number of genome equivalents in 

the sample as determined using MicrobeCensus. 

Unfortunately, for both cases and follow-ups, approximately 50% of the reads assigned to 

genera could not be fully classified at this level; these reads, rather, are likely accounted for at a 

higher taxonomic level (e.g., class or phylum), but were too ambiguous to assign. However, 

when we consider those that could be assigned to specific genera, key differences were noted 

among cases and follow-ups (Figure B.13). Interestingly, the most prevalent genus in both cases 
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and follow-ups was Bacteroides (14.5% and 18.7%, respectively). In cases, this was followed by 

two prominent members of the Enterobacteriaceae family within Proteobacteria: Salmonella 

(7.1%) and Escherichia (5.0%). The next highest relatively abundant genera in cases also 

belonged to Proteobacteria: Pseudomonas (2.8%). Follow-ups, on the other hand, contained 

larger proportions of beneficial genera from the Bacteroidetes phylum such as Alistipes (5.0%) 

and Prevotella (2.5%). They also had high signatures of Akkermansia (2.8%), a beneficial 

microbe within the phylum Verrucomicrobia.  

Covariate-controlled batch effect adjustment and differential abundance testing with MMUPHin  

Beginning with ARGs, multiple differentially abundant classes and groups were 

identified among cases and follow-ups (Figure B.14). Cases were primarily represented by ARGs 

conferring resistance to multiple classes such as multi-metal resistance (coef= -0.243; adjusted 

p=1.04e-04), drug and biocide resistance genes (coef= -0.243; adjusted p= 1.46e-03), and drug, 

metal, and biocide resistance ARGs (coef=-0.212; adjusted p=7.86e-09). Interestingly, at the 

group level, the most differentiating ARG group for cases was rpoB (coef= -0.123; adjusted 

p=6.30e-05), which confers resistance to rifampin, followed by mdtC (coef= -0.103; adjusted 

p=4.97e-09) for MDR. Fluoroquinolone resistance genes were also more common in cases, both 

at the class level (coef= -0.168; adjusted p= 8.19e-10) and via groups such as parC (coef= -

0.102; adjusted p= 3.90e-11) and gyrA (coef= -0.101; adjusted p=7.38e-08). Follow-ups, on the 

other hand, were defined by a different set of resistance genes. Specifically, tetracycline 

resistance genes were strongly represented at the class level (coef=0.352; adjusted p=2.26e-05), 

with much of this trend being driven by tetQ (coef=0.30; adjusted p=6.56e-05. MLS resistance 

genes were the next most representative class for follow-ups (coef=0.251; adjusted p=1.49e-25), 

with MLS groups such as MLS23S (coef=0.172; adjusted p=5.54e-06), mefE (coef=0.08; 
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adjusted p=3.54e-07) and ermF (coef=0.07; adjusted p=3.68e-08) serving as primary 

contributors. Lastly, aminoglycoside resistance differentiated follow-ups (coef=0.118; adjusted 

p= 7.86e-09) with genes such as ant(6) (coef= 0.103; adjusted p=5.23e-04) and A16S (coef= 

0.092; adjusted p=5.14e-04).  

Various taxa were also identified as defining features of cases or follow-ups (Figure 

B.15). Only one phylum defined the cases: Proteobacteria (coef= -0.461; adjusted p=9.35e-28). 

The connection between Proteobacteria and case status was strongest among all associations. At 

the genus level, for instance, Escherichia (coef= -0.156; adjusted p=0.0021) was dominant 

among cases, which is a trend driven primarily by Escherichia coli (coef=-0.146; adjusted 

p=0.0082). Escherichia was followed by multiple members of Proteobacteria such as Shigella 

(coef= -0.057; adjusted p=0.0059), which was represented by three species (Shigella sonnei, 

Shigella flexneri, and Shigella dysenteriae), as well as Enterobacter (coef= -0.020; adjusted p= 

1.10e-08), and Citrobacter (coef= -0.017; adjusted p= 8.07e-06). As expected, follow-ups had a 

greater number of taxa with higher abundance. At the phylum level, follow-ups were heavily 

defined by Bacteroidetes (coef=0.305; adjusted p=1.87e-05) and Firmicutes (coef=0.199; 

adjusted p= 4.61e-07). At the genus level, Firmicutes comprised the most differentially abundant 

taxa that included Roseburia (coef=0.050; adjusted p=6.28e-05), Dialister (coef=0.038; adjusted 

p=0.0036), and Ruminococcus (coef=0.037; adjusted p=2.83e-06). Phocaeicola, a member of 

Bacteroidetes, was also highly represented in the follow-ups (coef=0.037; adjusted p=1.82e-08) 

and was primarily represented by the species Phocaeicola vulgatus and Phocaeicola dorei. 

Akkermansia (coef=0.033; adjusted p= 0.0069), a member of the Verrucomicrobia phylum, was 

also a defining genus for follow-up samples. For the most part, the overarching patterns observed 

in MMUPHin were reflected by the ANCOM-BC method at each level of comparison (Phylum, 
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Genus, ARG Class, ARG Group) (Figure B.16) with observable differences in rank of 

correlation among various features (e.g., Salmonella was identified as a defining genus for cases 

in each method, but with differing status in comparison to Escherichia).  

Co-occurrence network analysis reveals connections between taxa and ARGs 

Global network construction 

First, a global network was constructed considering ARGs and taxa in cases and follow-

ups separately. Among cases, the network constructed of genera and ARG groups was first 

subset to include only nodes that had at least one connection (Degree ≥ 1); with this setting, there 

were a total of 587 nodes and 9,996 connections. Within the global network, multiple smaller, 

localized networks appeared, primarily among ARGs or genera, with various connections 

bridging these two features (Figure B.17A). Overall, the strongest correlations were observed 

among various ARG groups and just a handful of genera (indicated by warmer colored edges in 

the graph). To investigate the associations between ARGs and taxa in greater detail, a filter was 

applied in which all ARG-ARG and ARG-taxa connections were included (excluding taxa-taxa 

connections (Figure 3.9A). Specifically, Escherichia and Salmonella were of higher abundance 

(denoted by node size) with connections between multiple ARGs. The strongest ARG 

associations for Escherichia included multiple drug and biocide resistance genes such as mdtF, 

mdtN, mdtP, and gadX (Table B.2). Additionally, a handful of acid resistance (gadC and hdeB) 

and metal resistance genes (rcnB and rcnA) were also highly correlated with Escherichia. 

Salmonella displayed strong associations primarily with ARGs related to metal and biocide 

resistance; these included cueP, golT, sitA and sitD, and smvA. Another genus very relevant to 

cases, Shigella, was also a main player in the ARG-taxa connections. Similar to Escherichia, this 

genus was highly correlated with drug and biocide resistance genes such as mdtN, mdtF, and 



161 

 

mdtO. Various metal resistance genes were also highly correlated with Shigella including mntP, 

tehA, and ygiW. In fact, the co-occurrence of Escherichia and Shigella was also highly correlated 

(coef=0.946; adjusted-p < 0.0001). Other genera that were found to be associated with ARGs in 

this subsetted co-occurrence network among cases included Pseudoalteromonas, Lysobacter, 

Cronobacter, and Cedecea, all of which are also members of Proteobacteria.   

At the global level, follow-ups displayed somewhat different connections among ARGs 

and taxa. When considering the initial network with a degree cutoff ≥ 1, we observed fewer 

overall nodes and edges compared to cases (nodes=400; edges=7,914). In addition, there are 

fewer large sub-networks displayed among follow-up samples than cases (Figure B.17B), though 

these local networks between ARGs and taxa are still evident. In follow-ups, the strongest 

correlations were displayed among resistance genes. When isolating the sub-networks that are 

strictly relevant to ARG-ARG and ARG-taxa connections, the degree cutoff of 1 was sufficient 

to observe relevant connections. In follow-ups, three genera had ARG connections including 

Escherichia, Shigella, and Yokenella (Figure 3.9B). Escherichia displayed the most connections 

(Table B.3), the most highly correlated of which was Shigella (coef=0.937; adjusted-p < 0.0001). 

The ARGs with which Escherichia co-occurred included uhpT, a fosfomycin resistance gene, 

nikA, which confers nickel resistance, ychh and yhcn, both of which confer biocide and metal 

resistance, and mdtN, a drug and biocide resistance ARG that was also associated with 

Escherichia in cases. Shigella, in addition to its connection to Escherichia, also displayed 

notable correlations with nikA (coef=0.805; adjusted-p < 0.0001) and uhpT (coef=0.801; 

adjusted-p <0.0001). Intriguingly, network analysis classified just one connection between 

Yokenella and ARGs; copA, which plays a role in copper resistance, was found to co-occur with 

this genus.  



162 

 

Intriguingly, various patterns emerge for various ARG-ARG connections across both 

cases and follow-ups. For example, each group contains a subnetwork composed of pco cluster 

genes (e.g., pcoA, pcoB, pcoE, etc.) that confer copper resistance as well as sil cluster genes (e.g., 

silA, silB, silC, etc.), which have demonstrated multi-metal resistance. Additionally, both cases 

and follow-ups have a highly correlated sub-network containing ARGs for multiple classes (e.g., 

drug and biocide resistance, multi-metal resistance, biocide and metal resistance, etc.). In cases, 

this cluster is associated with Salmonella; conversely, in follow-ups, this cluster is not associated 

with any taxa but displays high levels of correlation between ARGs. Another important finding 

related to both networks is the lack of association attributed to the genus Bacteroides. Although 

members of this genus are quite prevalent in both the cases and follow-ups, no ARG-Bacteroides 

associations were identified in this analysis at the ρ ≥ 0.80 level of significance.  

Co-occurrence networks relevant to beta-lactam ARGs 

The widespread prevalence of beta-lactam resistance motivated our analysis of beta-

lactam resistance gene connections within our networks. For cases and follow-ups, all network 

nodes were subset based on their association with beta-lactam ARGs; any genera or other ARGs 

that correlated with beta-lactam resistance genes were thus included. For both cases and follow-

ups, a degree cutoff of 2 was established to clarify the most prominent connections among 

features. In cases, six beta-lactam ARGs contributed to the network, with four of these (blaEC, 

ompFB, pbp2, and ampH) demonstrating high levels of interconnectivity among ARGs and 

genera (Figure B.18A). Of these, ompFB, which encodes a mutant porin protein relevant to  
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Figure 3.9. Global network analysis highlighting ARG connections among cases and follow-ups.  

Correlation co-occurrence networks were constructed in Gephi 0.9.2 using Spearman’s Rank correlation coefficients generated with 

the R-package ‘Hmisc’ (v4.5-0) for cases (A) and follow-ups (B). These networks display all ARG-ARG and ARG-taxa connections; 

taxa-taxa connections were excluded for clarity. Correlations included in the network all passed a cutoff of ρ>0.80 and q-value < 0.05. 

Nodes are colored by their identity as a taxonomic genus (red) or ARG group (green). Nodes are sized based on their overall 

abundance among samples; the larger the node, the more abundant. Nodes with ≥ 1 connection were included (i.e. degree cutoff=1). 

The edge color displays the strength of correlation, with blue demonstrating relatively weaker correlations (yet still >0.80), yellow 

showing medium correlation, and red showing strong correlation. Nodes are labeled with their corresponding genus or ARG group. 
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beta-lactams, displayed the most connections (n=114) with the highest average correlation 

coefficient (0.926). pbp2 was next highest, with 98 total connections and an average correlation 

of 0.886 among its connections. Notably the non-beta-lactam ARGs associated with these genes 

ranged greatly in class, though it is noteworthy that ARGs resistant to multiple classes (mdt and 

acr gene clusters, for example) were included in the network. Two genera, Escherichia and 

Shigella, were also found to be correlated with blaEC, ompFB, and pbp2 and ompFB and ampH, 

respectively.  

A similar pattern was observed in the follow-ups as the same four beta-lactam ARGs are 

highly connected within the network (Figure B.18B). However, in this group, pbp2 contains the 

highest number of connections (n=127) and the greatest average correlation coefficient across 

connections (coef=0.883). Multiple ARGs relevant to different classes were also detected in 

addition to ARGs conferring resistance to different types of metals such as nickel resistance (e.g. 

nikA and nikC) and copper resistance (e.g. cutE and copA). Various multi-metal resistance genes 

are also prevalent (e.g., members of the cor and mnt gene clusters). Notably, the beta-lactam-

specific network did not identify any taxa with correlations that met the cutoff of 0.80, a finding 

that differs from that of cases.  

Investigating global co-occurrence networks related to infectious pathogen 

For patients infected with Salmonella, some interesting patterns of ARG-ARG and ARG-

taxa co-occurrence were observed. Notably, Salmonella itself was a prominent node within the 

network connected to multiple ARGs of interest (Figure B.19A). These ARGs spanned multiple 

classes including paraquat resistance (yddG, nmpC), gold resistance (golT, golS), copper 

resistance (cuiD, cueP), and multi-compound resistance which included resistance to biocides, 

metals, and drugs (ges and sit gene clusters, among others). The association of the pathogen with 



165 

 

these varied groups of ARGs is an interesting finding and may suggest a relatively involved role 

of the pathogenic microbe in resistance dissemination. Among Salmonella-infected cases, we 

also observed high connectivity for Escherichia and Shigella as well, each of which appeared 

highly associated with various multi-drug and multi-compound resistance genes. Another 

noteworthy finding among Salmonella cases is the prevalence of connections between tet genes 

and various taxa, a finding not as prominent in the overall global analysis.  

For follow-ups recovering from Salmonella infection, ARG connections appear more 

diffuse and, overall, less prevalent (Figure B.19B). Another noticeable deviation from the 

network observed among cases is the lack of the Salmonella-centered subnetwork; in fact, 

Salmonella does not appear as a genus in the follow-up network at all. Interestingly, many of the 

ARGs that had previously been associated with Salmonella are still present and highly correlated 

to one another. Additionally, Escherichia and Shigella still appear as genera connected to various 

ARGs, though the strength and number of correlations is notably lower than in that of cases.  

Among cases who were infected with Campylobacter, we observed a dense network with 

an even more dense subnetwork composed primarily of ARGs (Figure B.20A). Some important 

patterns include the presence of Escherichia and Shigella in this tightly packed network of 

resistance. The ARGs in this subnetwork, again, are primarily associated with multi-drug or 

multi-compound resistance, with many belonging to the mdt family of genes, among others. Also 

of note is the prevalence, again, of various tetracycline resistance genes such as tetW, tet32, and 

tet40, each of which displayed many connections to various taxa in the network. A prominent 

deviation from the network of Salmonella-infected cases is the absence of Salmonella in this 

network, again suggesting that the pathogen was playing a more involved role in those cases.  
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Similar to those recovering from Salmonella infections, follow-ups recovering from 

Campylobacter infections displayed a more diffuse correlation network among taxa and ARGs 

than cases (Figure B.20B). Follow-ups still contained a very dense inner network composed of 

mostly ARGs, with zur, a zinc resistance gene, appearing to serve as a hub. Interestingly, 

Escherichia is still present and connected to various ARGs, but in lower numbers and reduced 

correlation compared to cases. Shigella, on the other hand, is absent from the follow-ups’ 

network.  

Host-tracking analysis  

ARG-harboring microbial hosts detected in cases vs. follow-ups 

In cases, ACCs, on average, were primarily attributed to Escherichia (38.05% of case-

associated ACCs) followed by Salmonella (18.31%) and Klebsiella (9.92%) (Figure 3.10). 

Interestingly, the most prominent genus represented in follow-up ACCs was also Escherichia 

(19.81%); however, the next most prevalent genera were Bacteroides (15.12%) and 

Faecalibacterium (5.99%) (Figure 3.11).  

Following the identification of genera on the ACCs among cases and follow-ups, the 

most prevalent ARG classes attributed to these genera were determined. Of all ARGs assigned to 

Escherichia in cases, 27.4% were assigned to MDR on average. Escherichia also harbored ARGs 

relevant to drug and biocide resistance (8.12%), fluoroquinolone resistance (7.06%), and 

aminoglycoside resistance (6.21%). Of the ARGs on Salmonella-associated ACCs, MDR and 

drug and biocide resistance were most highly represented (16.5% and 11.7%, respectively). 

Klebsiella harbored an array of fosfomycin resistance genes (13.3%) followed by relevant 

transposase genes in the IS5 family (12.6%). This high representation of transposases suggests 
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increased potential for ARG mobility to and from this genus. In addition to these ARGs, 

Klebsiella contained ARGs for elfamycin resistance (10.4%) and MDR (9.08%).   

Although, similar to cases, ACCs among follow-ups were primarily attributed to Escherichia 

(19.81%), the other genera harboring ARGs in recovered patients were more divergent. For 

example, Bacteroides contained 15.12% of all identified ACCs, carrying ARGs related to MLS, 

beta-lactam, and tetracycline resistance. Faecalibacterium harbored 5.99% of all ACCs, with an 

“Uncultured” taxon holding 5.21%. In Escherichia-associated ACCs among follow-ups, the 

array of ARGs harbored was nearly identical to cases; MDR genes predominated (25.1%), 

followed by resistance to drugs and biocides (4.71%), fluoroquinolones (4.70%), and 

aminoglycosides (3.84%).  

Comparing across enteric pathogens 

When considering these results in the context of infecting pathogen, some interesting 

trends were observed. Among the cases infected with Campylobacter (n=23), the genera 

comprising the greatest proportion of ACCs were Escherichia (42.84%), Klebsiella (10.01%), 

and Salmonella (7.09%). Upon recovery, however, these proportions changed markedly. Among 

Campylobacter follow-ups, Bacteroides was most highly represented on ACCs (18.34%), 

followed by Escherichia (17.31%) and Faecalibacterium (6.76%). Interestingly, both Klebsiella 

and Salmonella remained in the top-20 genera comprising ACCs in follow-ups, but their average 

proportion was markedly reduced (3.59% and 1.28%, respectively). It is notable, too, that 

Campylobacter registered in the top-20 genera represented on ACCs as well, with proportions of 

1.96% and 3.81% in cases and follow-ups, respectively. In cases, the ARGs harbored by 

Campylobacter were primarily tetracycline resistance genes (27.6%) followed by genes for 

aminoglycoside (9.92%) and rifampin resistance (8.31%). In the follow-ups, tetracycline  
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Figure 3.10. Host-tracking via investigation of ARG-carrying contigs reveals genera responsible for harboring ARGs among 

cases.  

The top-10 genera assigned to ACCs for cases are indicated in the respective pie charts. The percentages associated with each genus 

name indicate the percent of ACCs that were assigned to that genus. For example, Escherichia (38.04%) indicates that 38.04% of all 

ACCs among cases were annotated as Escherichia. Each bar chart associated with a genus displays the top-5 or top-3 ARG classes 

affiliated with that particular genus on the ACCs. E.g., nearly 30% of all ARGs attributed to Escherichia ACCs in cases were 

classified as multi-drug resistance genes or “MDR”. 
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Figure 3.11. Host-tracking via investigation of ARG-carrying contigs reveals genera responsible for harboring ARGs among 

follow-ups.  

The top-10 genera assigned to ACCs follow-ups are indicated in the respective pie charts. The percentages associated with each genus 

name indicate the percent of ACCs that were assigned to that genus. For example, Escherichia (19.81%) indicates that 19.81% of all 

ACCs among follow-ups were annotated as Escherichia. Each bar chart associated with a genus displays the top-5 or top-3 ARG 

classes affiliated with that particular genus on the ACCs. E.g., about 25% of all ARGs attributed to Escherichia ACCs in follow-ups 

were classified as multi-drug resistance genes or “MDR”.
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resistance genes (29.0%) predominated on Campylobacter-associated ACCs, followed by genes 

for aminoglycoside resistance (27.0%). The third most prevalent class of ARGs were linked to 

MLS resistance (10.3%), representing a notable shift from cases. Of note, too, is the relative 

increase in resistance to aminoglycosides among Campylobacter ACCs in follow-ups; this class 

experienced a 172% increase throughout the duration of recovery. 

In people infected by Salmonella (n=29), the most highly represented genera on ACCs 

included Escherichia (32.39%), Salmonella (30.96%), and Klebsiella (7.89%). The ACCs in 

follow-ups indicated a similar trend as patients recovering from Campylobacter infection mostly 

had Escherichia (20.66%), Bacteroides (14.16%), and Faecalibacterium (6.29%), which were 

the top three most prominent genera. As noted, the genus relevant to the infecting pathogen, 

Salmonella, was prominent among ACCs in the sample taken during infection. In cases, the 

ARGs found in Salmonella represented multiple classes relevant to multi-compound resistance: 

drug and biocide resistance (14.1%), MFS transporters (13.1%), which can have MDR effects or 

high specificity to certain classes as well as drug, biocide, and metal resistance (7.61%). Among 

follow-ups, the most prevalent class harbored by Salmonella-associated ACCs was RND efflux 

transporters (9.29%), which, like MFS, can either confer resistance to multiple classes or a 

specific antibiotic class. MFS transporters (6.84%) and fluoroquinolone resistance genes (6.31%) 

were also prevalent. 

Patients with Shigella infections (n=4) displayed a comparable list of the most 

represented taxa; ACCs in cases were dominated by Escherichia (60.5%), with less prevalent 

signatures of Klebsiella (17.43%) and Bacteroides (4.77%). By contrast, the follow-ups (n=4) 

had more similar proportions of Escherichia (16.84%), Bacteroides (13.57%) and Citrobacter 
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(7.31%). Shigella made up just 0.50% of genera attributed to ACCs in cases and was not found 

among ACCs in follow-ups (0%).  

Finally, among the individuals infected with STEC (n=3), Escherichia predominated 

among ACCs (25.93%), followed by Klebsiella (18.78%) and Pseudomonas (14.34%). In 

follow-up samples, Escherichia and Klebsiella were also among the most common ACCs, 

registering proportions of 28.07% and 17.20%, respectively. Unlike the case samples, 

Bacteroides was the third most represented genus among the follow-up ACCs (7.23%).  

Investigating the potential persistence of clinically relevant ESBLs post-recovery  

The host-tracking analysis enabled us to investigate various genes of interest across 

paired cases and follow-ups. Of paramount concern are the extended-spectrum beta-lactamases 

(ESBLs), which are highly mobile ARGs conferring resistance to a broad range of beta-lactam 

antibiotics (58). Our analysis detected multiple beta-lactamase genes (n=37), some of which 

were classified as ESBLs (n=14; 37.8%). In some cases, unfortunately, the resolution of 

identification for the specific beta-lactamase was inadequate, resulting in general hits entitled, 

simply “beta-lactamase.” In other instances, the particular class of beta-lactamase was provided, 

but with no further information about the ARG detected in the contig (e.g. “class A beta-

lactamase”). Regardless of this irregular resolution among genes, comparisons were pursued 

between paired case and follow-up samples to explore the potential transmission and persistence 

of these genes among different taxa and identify patterns relating to type of infection (i.e., 

connecting pathogen type to beta-lactamases).  

Among the 14 ESBL genes detected, one was classified as the TEM-1 variant, which was 

linked to Escherichia but was found in just a single sample from a case infected with Salmonella. 

Over the course of recovery, this gene was “lost” (meaning it only appeared in the case sample 
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but was not present in the paired follow-up). In addition, the gene encoding an ADC family of 

class C ESBL was harbored and subsequently lost by two cases. Among all samples, the gene 

encoding a CepA family ESBL, which was highly prevalent in 19 cases and 13 follow-up 

samples, was linked to Bacteroides. Of these 19 cases, 9 lost the gene by follow-up, 10 

maintained it as it was detected in both paired samples, and 3 individuals acquired it during the 

recovery period (present in follow-up sample but not case).  

Moreover, genes representing the OXY family of class A ESBLs were detected in 

Klebsiella among four cases; this gene family was not found in any follow-up samples, 

indicating that it was “lost” during recovery. While multiple OXA genes were detected, the 

family of OXA genes varied substantially and each was attributed to a different microbial host. 

For example, the gene encoding an OXA-1 class D beta-lactamase was carried by Klebsiella in 

two cases, both of which lost this gene during recovery. The OXA-50 family of genes, however, 

was detected in Pseudomonas that was present in two cases but was lost in the paired follow-up 

samples. Two different cases harbored genes for the OXA-51 family of carbapenem-hydrolyzing 

class D beta-lactamases, which were also lost. Notably, the OXA-61 family of class D beta-

lactamases was harbored by Campylobacter but was only found in two cases with infections 

caused by Campylobacter, insinuating the pathogens role in harboring ARGs. Finally, Klebsiella 

was also observed to possess genes for the SHV family of class A beta-lactamases, which were 

found in eight cases and two unpaired follow-ups, indicating that all eight cases lost the gene and 

two follow-ups acquired it. Of the ESBLs explored, there was not enough evidence to infer 

transmission of these genes between various taxa. Since many of the ESBLs were present in 

cases but not follow-ups (i.e., “lost”), we could not assess whether these ESBLs were 

transferring among bacteria during recovery from infection.  
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In addition to the observed ESBLs, other relevant beta-lactamases were also identified 

among our samples (Table B.4). A prevalent beta-lactamase gene belonging to the BlaEC family 

of class C beta-lactamases, for instance, were primarily attributed to the genus Escherichia. A 

total of 49 cases and 19 follow-ups harbored this ARG; the ARG was lost in 35 cases, 

maintained in 14, and acquired in 5 follow-ups. The BlaEC family was found in samples from 

patients with all four enteric pathogens; 28 were detected in Campylobacter cases and 30 were 

found in cases with Salmonella infections along with 5 in Shigella and 5 in STEC case samples. 

This gene family was also detected in Shigella in one case which was infected by Shigella; 

however, this gene was lost during recovery, providing no evidence of inter-genus transmission.  

Another prominent beta-lactamase of clinical importance was the CfxA family of class A 

broad-spectrum beta-lactamases. These genes were primarily harbored by Bacteroides, but also 

appeared in Prevotella. Among these Bacteroides-associated ARGs, 46 were found in cases and 

48 in follow-ups. Although only 7 of these genes were lost by cases, 39 were maintained and 9 

were acquired during recovery. Most samples related to each of the infecting pathogens 

contained this gene: 37 for Campylobacter, 45 for Salmonella, and 6 for both Shigella and STEC 

infections. A somewhat similar trend was found for the CfxA genes harbored by Prevotella, 

though at a smaller scale. In this case, 5 cases contained these ARGs compared to 9 follow-ups. 

Three of the cases lost these genes while 2 maintained them; meanwhile, 7 follow-ups acquired 

these ARGs during recovery. Seven of these were attributed to Campylobacter infections, 6 to 

Salmonella, and one to Shigella. Interestingly, there is evidence of potential transmission of these 

CfxA genes between Bacteroides and Prevotella. For example, there are 6 separate case-follow-

up pairs in which the CfxA gene(s) appear as “acquired” by Prevotella in follow-up samples and 

also maintained by Bacteroides in follow-up samples, suggesting potential Bacteroides-to-
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Prevotella transmission. There are also two case-follow-up pairs in which these CfxA genes are 

maintained in both Bacteroides and Prevotella during recovery, which may or may not suggest 

potential transfer. Interestingly, there are also three instances in which the Prevotella-harbored 

ARG is “lost” and the Bacteroides-harbored CfxA is maintained during recovery, also showing 

potential of Prevotella-to-Bacteroides transmission.  

The CMY-2 family of class C beta-lactamases was also identified and was harbored by 

Citrobacter and Salmonella. Among these ARGs harbored by Citrobacter, 8 were found in cases 

and 3 in follow-ups; 6 cases lost the gene while 2 maintained it and 1 follow-up acquired it. Five 

of these instances were related to Campylobacter infection, 5 to Salmonella, and one to STEC. 

Of the CMY-2 ARGs harbored by Salmonella, 2 were found in cases (each of which were lost) 

and 1 was acquired in a follow-up sample. One of these cases was infected with Campylobacter 

while the other two individuals had Salmonella infections. Our findings do not suggest 

transmission of the CMY-2 beta-lactamases between Citrobacter and Salmonella, as these 

occurred in separate case-follow-up pairs. However, the more broadly defined CMY-family of 

class C betalactamase was also identified and was assigned to Salmonella in 3 cases (all lost) and 

2 follow-ups (both acquired). Although the CMY family is a broader category than the CMY-2 

family of beta-lactamases, it is possible that the CMY family defined in our study contains 

CMY-2 genes relevant to this analysis. For example, there is one case-follow-up pair in which 

the CMY-2 family was maintained in Citrobacter and the CMY family was acquired in 

Salmonella; yet another case-follow-up pair indicated loss of the CMY family of beta-lactamases 

in Salmonella but maintenance and noted increase of the CMY-2 family in Citrobacter. 

Although loosely inferred, these data indicate the potential for transmission of CMY-family 

genes across genera.  
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Finally, genes for the general subclass A2 of class A beta-lactamases were found in 

Bacteroides among a majority of cases (n=45) and follow-ups (n=47); 7 cases lost the gene 

during recovery, while 38 maintained it and 9 follow-ups acquired it. In all, 39 were related to 

Campylobacter infections, 44 to Salmonella, 5 to Shigella, and 4 to STEC. The more general 

“class A beta-lactamase” gene was also found in nine other genera including Atlantibacter, 

Bacillus, Burkholderia, Clostridium, Proteus, Salmonella, Yersinia, Escherichia, and Klebsiella. 

Although there is a slight difference in resolution of these identified features, it is still interesting 

to consider the potential for transmission across genera. For example, 8 paired samples 

demonstrated potential transmission of class A beta-lactamase genes; six of these pairs indicate 

transfer between two different genera, 4 of which had Campylobacter infections and 2 had 

Salmonella infections. The remaining 3 showed acquisition of class A beta-lactamase genes in 

Clostridium, while the subclass A2 genes were maintained in Bacteroides. Of the other three, 

one contains an Escherichia-acquired ARG and a Bacteroides-maintained ARG, one has a 

Burkholderia-acquired beta-lactamase and a Bacteroides-maintained gene, and the last holds a 

Proteus-lost gene and a Bacteroides-maintained gene. The final two case-follow-up pairs, each 

of which had a Salmonella infection, had loss-maintained-acquisition patterns that involve 

multiple genera. One pair demonstrates loss of class A beta-lactamase genes from Atlantibacter 

and Salmonella, with acquisition in Escherichia and maintenance by Bacteroides. The other 

case-follow-up pair shows loss of the class A betalactamase in Klebsiella and Clostriudium, with 

acquisition by Bacillus and maintenance by Bacteroides.  

DISCUSSION 

The human gut microbiome, when disrupted by an infectious pathogen, can drastically 

change in its composition taxonomically, genetically, and even functionally (59). In most 
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instances, pathogen invasion leads to a state of dysbiosis in which the infected individual 

experiences a state of gastrointestinal distress linked to a dramatic decrease in gut microbiota 

diversity (3, 60). The findings of our present study confirm this, as stools of patients infected 

with an enteric pathogen (Campylobacter, Salmonella, Shigella, or STEC; ‘cases’) displayed 

markedly lower microbiome diversity than stools of these same individuals after recovery from 

infection (follow-ups). However, this study also sought to characterize the inverse impact of 

enteric infection on the gut resistome, as infected cases showed much greater diversity of 

resistance genes compared to recovered follow-ups. These findings were presumed to be linked, 

as shifts in microbial composition inherently influence the presence and abundance of ARGs 

harbored by microbes within the gut. As our later analyses exploring microbial hosts of ARGs 

demonstrate, this hypothesis was indeed correct.  

In concordance with our previous findings that investigated the impact of Campylobacter 

infections on the human gut resistome (5), this study displayed noticeable shifts in the 

microbiome and resistome during enteric infection and after recovery. Namely, cases had more 

multi-compound and multi-drug resistance genes than follow-ups, who, in general, had more 

tetracycline, MLS, and aminoglycoside resistance genes. This range of resistance observed 

among follow-ups is consistent with patterns of resistance documented in individuals deemed 

“healthy” across a range of studies (5, 28, 61), suggesting that, on average, these follow-up 

samples demonstrated a return or near-return to pre-infection gut health. The observed shifts in 

microbiome composition, too, suggest that most follow-ups were well on their way to recovery. 

This was evidenced by the dramatic decrease in microbiome diversity among cases during 

infection, and the demonstrated increase in diversity during or after recovery. Some specific 

taxonomic signatures also suggested that follow-ups were returning to pre-infection health, as 
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these individuals contained higher abundances of notoriously beneficial commensals in the 

Bacteroidetes and Firmicutes phyla, namely Bacteroides, Prevotella, and Phocaeicola and 

Faecalibacterium, Roseburia, and Ruminococcus, respectively. These microbes have been 

shown to play influential roles in maintaining gut homeostasis and metabolic health (62-64). 

Conversely, cases were defined primarily by members of Proteobacteria such as Escherichia, 

Salmonella, Shigella, and Klebsiella which have been associated not only with acute enteric 

disturbance but also prolonged dysbiosis and disease (20, 65, 66).  

Intriguingly, several follow-up samples (n~5) clustered more closely with cases based on 

both the resistome and microbiome composition analyses (Figures 3.2 & 3.4). Although number 

of follow-days was explored as a potential driver of these clustering patterns, the average number 

of days since infection among these five samples (n=110) was very similar to the overall mean 

(n=108). Additionally, notable trends were not observed when stratifying by sex, age, pathogen, 

residence type, and care status (e.g., hospitalized vs. outpatient); however, two of the five 

individuals were 10 years of age or under and two were ≥53 years or older. As these populations, 

historically, can be considered at higher risk of more severe disease (67-69), it is likely that these 

patients were predisposed to experiencing longer effects of infection than other members of the 

sample cohort. In addition, two of these 5 follow-up samples were from cases who were 

hospitalized at the time of their acute infection, suggesting they may have had more severe 

disease, which could contribute to a longer recovery time. It is also not clear whether most 

follow-up samples came from patients after a full recovery, as we were unable to evaluate the gut 

composition of patients prior to infection. It is likely that the state of the microbiome prior to 

infection, in addition to its resilience to disturbances, will greatly impact the trajectory of disease 

and subsequent recovery among individuals (70). Indeed, implementation of a more rigorous 
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longitudinal study is needed to further understand the intricacies of recovery from enteric 

infection.  

When first attempting to understand the interplay between microbes and ARGs within the 

gut environment, co-occurrence networks served as a useful predictive tool. There were many 

significant correlations with taxa-taxa associations dominating. This can partially be explained 

by the level of resolution which was used in our analysis; we considered taxonomic genus with 

ARG group; since there are far more taxa than ARGs, these global networks appeared skewed. 

Although our focus on the most prevalent ARGs and taxa may not fully represent the co-

occurrences among samples, especially among rare microbial features, these analyses provided 

useful insight into ARG-taxa co-occurrence. Indeed, our correlation networks suggested that 

these microbial features shift together. Of particular interest are the increased levels of taxa-ARG 

connections observed among cases during enteric infection; although some of these connections 

were conserved in the follow-up samples, it is intriguing that fewer of these correlations were 

identified overall. Some of this result may be due to the inherently higher abundance of specific 

taxa within cases such as Escherichia, Salmonella, and Shigella, each of which appear to play 

significant roles in the global network. These members of Proteobacteria, for example, harbored 

resistance genes to separate classes including beta-lactams, trimethoprim, tetracyclines, 

fluoroquinolones, and aminoglycosides, among others, but have also been documented to harbor 

MDR genes (71-75). Of utmost concern is the widespread presence and spread of ESBL genes, 

which are commonly found in members of Proteobacteria, especially in the family 

Enterobacteriaceae (76, 77). Many ARGs harbored by genera such as Escherichia, Klebsiella, 

and Shigella are commonly found on multiple plasmid families specific to Enterobacteriaceae 

(78). Escherichia, specifically, serves as an important carrier of resistance to multiple classes of 
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antibiotics in a variety of organisms (79-82). Despite the role of Escherichia as a commensal in 

the gut that blooms after enteric pathogen invasion, its potential to acquire clinically important 

ARGs and emerge as a resistant pathobiont is concerning (11, 25).  

An interesting aspect of the global network constructed for cases was the presence of a 

Salmonella-specific subnetwork comprised of multiple metal, biocide, and multi-drug resistance 

genes (Figure B.19). To investigate whether these Salmonella signatures could be evidence of 

the pathogen itself, separate networks were constructed for individuals infected with Salmonella 

and Campylobacter, respectively; unfortunately, there were not enough samples relevant to 

Shigella or STEC infections to generate correlations matrices (n=4, n=3, respectively). Notably, 

Salmonella was only a prominent contributor to the network associated with Salmonella-infected 

cases; this subnetwork did not appear in the Campylobacter-infected group, suggesting the 

pathogen itself was at play in harboring and potentially disseminating ARGs. Previously, 

pathogenic Salmonella was indeed detectable via metagenome analyses (6), and so the detection 

of pathogenic Salmonella among these individuals is precedented. Additionally, Salmonella has 

previously been shown to harbor resistance genes for antibiotics, disinfectants, and heavy metals 

(83). Unfortunately, Salmonella is not alone; in fact, previous documentation has indicated co-

selection for resistance to these three compound types (antibiotics, metals, and biocides) across 

many genera (84) including multiple foodborne pathogens (85), a trend which we see within our 

own networks as well. There is also evidence that this broad array of resistance likely develops 

in the environment, where metal pollution is most common, and subsequently spreads to human 

pathogens via HGT (86).  Indeed, the relevant co-occurrence of such resistance with pathogens 

or potentially pathogenic pathobionts among our samples raises concerns regarding the role of 

enteric infection in furthering the spread of these resistance genes.  



180 

 

A noteworthy result of our co-occurrence networks was the absence of some of the most 

abundant taxa among our samples, namely members of Bacteroidetes and Firmicutes such as 

Bacteroides, Prevotella and Alistipes and Faecalibacterium and Roseburia, respectively. These 

microbes were more abundant in follow-up samples, yet still had measurable signatures within 

our cases. Historically, members of Bacteroidetes and Firmicutes have been associated with high 

levels of tetracycline and erythromycin resistance, carrying resistance genes tetQ, tetO, tetW, and 

ermF and ermT (87, 88). The trends observed in our relative and differential abundance analyses 

would suggest that we would observe co-occurrence of these ARGs and taxonomic groups as 

well. Interestingly, we do observe Bacteroides to be connected to tetQ in the network of cases 

infected with Salmonella (Figure B.19A). This network, too, contains the most connections 

relevant to tetracycline resistance genes like tetO and tet16S as well; the tetracycline resistance 

genes tetW and tet32 were also observed in the network of cases infected with Campylobacter 

(Figure B.20A). It is odd, however, that these ARG-taxa connections are not present in our 

global networks considering cases and follow-ups, particularly in follow-ups where their 

abundance is relatively much higher. This notable absence may highlight some of the limitations 

of correlation co-occurrence analysis. For example, our correlations were based upon 

abundances normalized by the number of genome equivalents. However, increasing attention is 

being paid to the inherent compositionality of high-throughput sequencing data, an artifact which 

can taint interpretation of various statistical methods if not accounted for correctly (89). 

However, various methods, including data transformations, can be used to correct for 

compositionality (90). Although we sought to normalize our abundances by the number of 

genome equivalents per sample, thereby accounting for any discrepancies in microbial richness, 

further measures to enact data transformations and thus protect against compositional artifacts 
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were not taken. However, such methods similar to ours have been previously used to characterize 

co-occurrence of ARGs and taxa without such consideration for compositionality (27-29).  

Additionally, the results observed in our co-occurrence network analysis were designed 

to be hypothesis-generating, rather than conclusive. By no means do we presume to state that all 

ARGs connected to taxa within the networks are indeed harbored by such taxa. Rather, the 

simple correlation between various ARGs and taxa is of interest given the ecological complexity 

of enteric infection. In any case, however, it is reassuring to note that various methods have been 

developed to perform more robust network analyses (91). Sparse Correlations for Compositional 

data (SparCC), for example, uses a log-transform approach to infer correlations between 

components in a dataset (92) and would be a sensical next-step if we were to follow up our 

present network analysis. Another potential explanation for the unexpected absence of 

Bacteroidetes and Firmicutes microbes in our networks is that the abundances of these taxa were 

not found to correlate with ARGs or other taxa that met our network cutoff. Again, these 

networks were constructed after first excluding 50% of the most sparse features, thereby 

removing genes and taxa that were not present in 10% and 20% of samples, respectively. This is 

a relatively low cutoff, compared to other studies which include more stringent thresholds for 

inclusion in their networks (28, 29). Therefore, it is possible that some of these less abundant 

genes co-occur with Bacteroidetes and Firmicutes but were not observed due to exclusion. 

Finally, it is also possible that comparison of abundances across ARGs and taxa is inherently 

skewed. For example, even after excluding sparse features, the number of genera was nearly one 

order of magnitude higher than that of ARG groups (ARG groups = 251; genera = 2,282). 

Although our interpretation of the networks focused on ARG-taxa connections and so reduced 

the “noise” associated with many potential nodes, it is likely that the distribution of abundance 
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across ARG and taxonomic features was quite different. Therefore, any associations observed in 

this correlation network analysis must be considered with caution. As mentioned before, these 

networks were designed to serve as hypothesis-generating practices, the results of which were 

further investigated via ARG-carrying contig analysis.  

Host-tracking analysis was pursued with the goal of more concretely capturing 

connections among taxa and ARGs observed in the co-occurrence networks. This method of 

identifying ARG-carrying contigs (ACCs) and annotating them with taxonomic information has 

been used in multiple studies (29, 93-95). Our findings suggest that many of the associations 

observed in the co-occurrence network analysis were indeed relevant. For example, Escherichia 

was found to be a prominent host to ARGs in the infected cases, comprising an average of 38% 

of all ACCs among samples. As suggested by our network analysis, a large proportion of these 

resistance genes were relevant to multi-drug resistance and multi-compound resistance. Indeed, 

as stated prior, Escherichia have historically been found to harbor multi-drug resistance. The 

development of such resistance has often been attributed to high potential for HGT in the human 

gut as well as continued application of antibiotics (96). Recently, it was also found that multi-

drug resistance among Escherichia may also be linked to non-antibiotic pharmaceutical use in 

addition to antibiotics (97). Alarmingly, it has been found that as the level of multi-drug 

resistance increases, so too does the number of integrons, highlighting Escherichia’s role in the 

increasing mobility of multi-drug resistance (98, 99).  

The prominence of Salmonella as an ARG-carrying microbe also aligns with our network 

findings. Intriguingly, Salmonella was once again most represented among patients who were 

infected with Salmonella, accounting for approximately 31% of all ACCs in these individuals 

compared to the overall case average of 18.3%; however, there was also evidence of Salmonella 
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being in the top-10 most abundant microbial hosts to ARGs within cases infected with each of 

the four enteric pathogens (data not shown). A noticeable deviation from our network findings 

was the identification of Klebsiella as a prominent ARG carrier among cases (9.92% of all 

ACCs) and even follow-ups (4.58%). Of great interest is the relatively high occurrence of the IS5 

family of transposases in Klebsiella. Although the role of this family of transposases in 

disseminating resistance genes has not yet been fully characterized (100), the identification of a 

genomic element with the potential to transfer ARGs among members of the gut microbial 

community is quite relevant. This is especially true as we increasingly consider the human gut to 

be a reservoir for antimicrobial resistance, a status that has only been exacerbated by the wide 

array of MGEs present in this environment (101, 102).  

The trends observed among follow-ups in the ACC analysis are also quite interesting. It 

is meaningful, for example, that Escherichia still accounts for nearly 20% of all ARG-carrying 

contigs among recovered patients. Contrary to the pattern seen in cases, Bacteroides was next 

most represented on ACCs, comprising approximately 15%. Of interest are the ARGs harbored 

by Bacteroides which included genes conferring MLS, beta-lactam, and tetracycline resistance, 

primarily. Resistance of this kind has previously been documented in Bacteroides (103, 104). 

More broadly, resistance to these three classes in addition to aminoglycoside resistance was 

previously characterized among healthy individuals across various countries, suggesting that 

resistance to these antibiotics is increasingly ubiquitous regardless of disease status or geography 

(28, 105).  

When investigating beta-lactam resistance genes and ESBLs, in particular, certain 

findings were of greater concern than others. The documentation of 14 different ESBLs among 

cases, for example, was alarming. Although many of these were found in just one or two samples 
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of the cohort, the diversity of ESBLs among patients with enteric infection is concerning, 

especially considering the relatively high abundance of various members of Enterobacteriaceae 

for which ESBL carriage and dissemination is a grave concern (10). A handful of these 

resistance genes were prevalent across our sample set, with CepA and SHV families occurring in 

19 and 8 cases, respectively. The OXA genes were also widely present in our samples, though 

there was little consensus within this grouping. In most cases except for the CepA family genes, 

the signatures for these ESBLs were “lost” during recovery. Levels of persistence and acquisition 

have been measured for various ESBLs, with certain CTX and SHV being more easily lost, 

though this was found to depend on the identity of the bacterial host (106). The noted roles of 

Klebsiella and Escherichia in carrying ESBLs among our samples calls attention to the 

documented capacity of these genera to horizontally transfer such genes despite being of 

different species or clonal lineages (107, 108). Indeed, great attention must be paid to the 

trajectory of such genes during and after enteric infection. 

Patterns observed among non-ESBL beta-lactam resistance genes were also illuminating. 

One of the most prevalent beta-lactam resistance genes was represented by the CfxA family, 

harbored by Bacteroides and Prevotella. In a handful of paired case-follow samples, the 

occurrence of CfxA appeared as though it may have undergone a transfer from one genus to the 

other; indeed, the exchange of genetic components has been documented between Bacteroides 

and Prevotella (109). However, the confidence with which we weight these speculations must 

remain in check, as our assertion of “transfer” in this circumstance relies solely on the 

appearance of a gene type in two different genera at two different time points. Much more 

rigorous methods, such as characterizing the sequence-level similarity of the gene(s) in question 

in both the case and follow-up samples, would be required to confirm such a statement. 
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However, observation of this beta-lactamase family among two different genera still holds great 

interest as is.  

We also observed widespread prevalence of the BlaEC family among cases, which were 

primarily harbored by Escherichia. Other members of Enterobacteriacae also harbored non-

ESBL beta-lactam ARGs such as the CMY family, which was carried by Salmonella, and class 

A and D beta-lactamases, which were assigned to multiple members of this family. The marked 

increase observed in these genera as well as genes they were presumed to harbor (beta-lactam 

ARGs in addition to other multi-compound and multi-drug resistance genes) may be explained 

by a phenomenon in which gut inflammation creates an environment conducive for the growth of 

Enterobacteriaceae (110). These conditions have also been shown to augment levels of HGT 

between both commensal and pathogenic members of this family (111). 

Despite our extended interest in the findings of the ARG-carrying contig analysis, one 

noteworthy limitation of this pipeline is the potential for ARGs to be located on plasmids. While 

many resistance genes occur on plasmids and are spread via HGT, these genomic entities can 

still contain taxonomic information regarding their microbe of origin (112). It is possible, 

therefore, that various ARGs identified in our ACC analysis are indeed associated with plasmids. 

However, it has been found that assembly, especially of short-read sequencing, can fall short 

when it comes to characterizing plasmids and other mobile genetic elements (MGEs) (113). 

Additionally, it is possible that limitations related to sequencing depth, incomplete assemblies, 

redundancy, or other sequencing-based concerns do present an inaccurate representation of 

microbial hosts in our study. To address these types of limitations, a tool, PlasFlow, has been 

designed to specifically extract plasmid sequences from metagenome assemblies, allowing direct 

taxonomic classification of the plasmids themselves (114).  A more direct method, which 
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employs physical isolation of plasmids from metagenomic DNA is called high-throughput 

transposon-aided capture (TRACA); this protocol is designed to extract circular plasmids from 

metagenomic DNA and subsequently maintain and select for these plasmids after transferring to 

an E. coli host (115).  

Another limitation of our ACC analysis is that it is strictly reliant on inferring microbial 

hosts from ARG-taxa co-occurrence on the same contig. Alternative methods, rather, are better 

able to confirm whether microbes harbor ARGs by using more targeted protocols when 

extracting and isolating metagenomic DNA. One example of this is Single-molecule Real-time 

(SMRT) sequencing, which is a sequencing method that bins metagenomic reads based on the 

methylation status (116). Since methylation of both chromosomal and plasmid-based nucleotides 

are consistent within a microbe, these motifs can confidently be assigned to a taxon. A second 

lab-based technique for linking various genomic components to their microbial host is high-

throughput chromosomal conformation capture, dubbed “Hi-C.” Hi-C is a method in which DNA 

molecules which are proximal to each other will be covalently bonded together and subsequently 

ligated to form a contiguous DNA strand (26). The Hi-C method has been used in multiple 

human gut microbiome studies, particularly to explore the linkages between ARGs, various 

mobile genetic elements, and host microbes within the gut (117, 118). Future studies of this 

dataset should consider usage of these laboratory techniques to more accurately portray which 

members of the human gut microbiome are responsible for harboring ARGs of interest.  

In conclusion, enteric infection has been shown to severely alter the human gut 

environment, both taxonomically and genetically. Importantly, we have shown that invasion by 

an enteric pathogen can result in notable shifts of certain microbiota and their associated ARGs. 

The findings included here aid in further elucidating the interplay between microbes and ARGs 
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in an infected gut environment. However, much work is needed to advance our understanding of 

the trajectory of recovery from enteric infection as it pertains to the presence and dissemination 

of drug resistance. Future work should indeed focus on characterizing the interaction of 

microbial hosts, ARGs, and mobile genetic elements during recovery. Illuminating these 

interactions will help to facilitate our growing understanding of this unique intersection between 

microbial ecology, antimicrobial resistance, and enteric disease.   
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Table B.1. Shapiro-Wilk Test results for case and follow-up samples in the microbiome and 

resistome datasets. 

Dataset 

Alpha Diversity 

Metric 

Test Statistic 

(W) p-value 

Microbiome 

Richness 0.936 2.35E-05 

Shannon Diversity 0.933 1.45E-05 

Pielou's Evenness 0.940 4.25E-05 

Resistome 

Richness 0.940 4.18E-05 

Shannon Diversity 0.905 3.63E-07 

Pielou's Evenness 0.885 3.68E-08 

 

 

Table B.2. Top-25 co-occurrence associations between Escherichia and ARG groups in 

cases.  

Label Target Correlation q-value (FDR) 

Escherichia MDTF 0.981353998 0 

Escherichia MDTN 0.980327032 0 

Escherichia MDTP 0.979157357 0 

Escherichia GADX 0.978488971 0 

Escherichia TEHA 0.978403813 0 

Escherichia MDTO 0.978377574 0 

ACRE Escherichia 0.978126929 0 

Escherichia GADC 0.977336127 0 

Escherichia HDEB 0.976927668 0 

Escherichia RCNB 0.976595211 0 

Escherichia RCNA 0.976428115 0 

Escherichia HDEA 0.975493044 0 

Escherichia MDTE 0.974363553 0 

Escherichia YGIW 0.974229023 0 

CUTF Escherichia 0.974062032 0 

Escherichia GADA 0.973949518 0 

CUSB Escherichia 0.97252408 0 

Escherichia GADE 0.97244565 0 

Escherichia OMPFB 0.971793253 0 

DSBB Escherichia 0.969242968 0 

Escherichia MNTP 0.968538549 0 

Escherichia YODB 0.968272989 0 

Escherichia NFSA 0.967404907 0 

Escherichia NIKA 0.967132266 0 

Escherichia GADW 0.966947253 0 
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Table B.3. Co-occurrence associations between Escherichia and other taxa and ARGs in 

follow-ups.  

Label Target Correlation 

q-value 

(FDR) 

Escherichia Shigella 0.936649069 0 

Escherichia UHPT 0.833315741 0 

Escherichia NIKA 0.831335752 1.50E-13 

Escherichia YCHH 0.822717477 5.29E-13 

Escherichia YHCN 0.819259584 7.67E-13 

Escherichia MDTN 0.816175487 9.98E-13 

Escherichia FIEF 0.814374059 1.34E-12 

Escherichia ZRAR 0.813508268 1.44E-12 

Escherichia ZNTA 0.810051112 2.30E-12 

EPTA Escherichia 0.808197735 2.91E-12 

Escherichia NHAA 0.80771521 3.12E-12 

Escherichia IBPA 0.806446575 3.72E-12 

Escherichia PITA 0.806047925 3.92E-12 

Escherichia MDTH 0.80594996 3.92E-12 

Escherichia GYRBA 0.803715593 5.09E-12 

Escherichia ZITB 0.802731572 5.75E-12 

CUTE Escherichia 0.800860986 7.17E-12 
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Table B.4A. Summary of beta-lactamase genes and their corresponding microbial hosts in cases and follow-ups.  

This table includes information about the prevalence of these resistance genes in cases vs. follow-ups (A), the number of genes “lost” 

(i.e., present in the case sample but absent in the follow-up sample), “maintained” (i.e., present in both samples), or “acquired” (absent 

in case sample, present in follow-up sample) (B), as well as the number of each gene found among people infected by each enteric 

pathogen (C).  

*identified as an extended-spectrum beta-lactamase (ESBL) 

Host Beta-lactamase Cases Follow-ups 

uncultured ACI family class A beta-lactamase  0 0 

Enterobacter ACT family cephalosporin-hydrolyzing class C beta-lactamase  5 0 

Acinetobacter ADC family extended-spectrum class C beta-lactamase*  2 0 

Escherichia beta-lactamase  3 6 

Klebsiella Beta-lactamase  0 1 

Klebsiella beta-lactamase  4 0 

Salmonella beta-lactamase  0 0 

uncultured beta-lactamase  0 1 

Enterobacter Beta-lactamase class C and other penicillin binding proteins  0 0 

Escherichia beta-lactamase TEM-1 variant*  1 0 

synthetic beta-lactamase TEM-1 variant*  19 4 

Klebsiella beta-lactamase, partial  3 0 

Escherichia BlaEC family class C beta-lactamase  49 19 

Shigella BlaEC family class C beta-lactamase  1 0 

Bacteroides CepA family class A extended-spectrum beta-lactamase*  19 13 

Bacteroides CfxA family class A broad-spectrum beta-lactamase  46 48 

Prevotella CfxA family class A broad-spectrum beta-lactamase  5 9 

Atlantibacter class A beta-lactamase  1 0 

Bacillus class A beta-lactamase  1 1 

Burkholderia class A beta-lactamase  0 1 

Clostridium class A beta-lactamase  1 3 

Proteus class A beta-lactamase  1 0 

Salmonella class A beta-lactamase  1 0 

Yersinia class A beta-lactamase  0 1 

Escherichia class A beta-lactamase, partial  0 2 
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Table B.4A (cont’d)    

Klebsiella class A beta-lactamase, partial  1 0 

Bacteroides class A beta-lactamase, subclass A2  45 47 

Escherichia class A broad-spectrum beta-lactamase TEM-1, partial*  0 0 

Acinetobacter class C beta-lactamase  0 0 

Hafnia class C beta-lactamase  3 0 

Providencia class C beta-lactamase  1 0 

Pseudomonas class C beta-lactamase  7 0 

Achromobacter class D beta-lactamase  0 0 

Acinetobacter class D beta-lactamase  0 0 

Flavobacterium class D beta-lactamase  4 6 

Klebsiella class D beta-lactamase, partial  1 0 

Salmonella CMY family class C beta-lactamase  3 2 

Citrobacter CMY-2 family class C beta-lactamase  8 3 

Salmonella CMY-2 family class C beta-lactamase  2 1 

Cronobacter CSA family class C beta-lactamase  0 0 

Escherichia CTX-M family class A extended-spectrum beta-lactamase*  0 0 

Morganella DHA family class C beta-lactamase  1 0 

uncultured extended spectrum beta-lactamase CTX-M* 0 0 

Escherichia extended-spectrum beta-lactamase CTX-M-2, partial* 0 0 

Stenotrophomonas L1 family subclass B3 metallo-beta-lactamase  0 0 

Klebsiella LEN family class A beta-lactamase  1 2 

Bacteroides metallo-beta-lactamase, partial  0 0 

Enterobacter MIR family cephalosporin-hydrolyzing class C beta-lactamase  1 0 

Klebsiella 

MULTISPECIES: OXY family class A extended-spectrum 

beta-lactamase*  2 0 

Alistipes MULTISPECIES: subclass B1 metallo-beta-lactamase  0 0 

Klebsiella OXA-1 family class D beta-lactamase*  2 0 

Acinetobacter 

OXA-134 family carbapenem-hydrolyzing class D beta-

lactamase*  0 0 

Acinetobacter 

OXA-211 family carbapenem-hydrolyzing class D beta-

lactamase*  0 0 
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Table B.4A (cont’d)    

Pseudomonas OXA-50 family oxacillin-hydrolyzing class D beta-lactamase*  2 0 

Acinetobacter 

OXA-51 family carbapenem-hydrolyzing class D beta-

lactamase*  2 0 

Campylobacter OXA-61 family class D beta-lactamase* 2 0 

Klebsiella OXY family class A extended-spectrum beta-lactamase* 2 0 

Pseudomonas PDC family class C beta-lactamase  2 0 

Burkholderia PenA family class A beta-lactamase  1 0 

Raoultella PLA/ORN/TER family class A beta-lactamase  2 0 

Citrobacter SED family class A beta-lactamase  4 3 

Klebsiella SHV family class A beta-lactamase* 8 2 

Serratia SRT/SST family class C beta-lactamase  0 0 

Bacteroides subclass B1 metallo-beta-lactamase  8 14 

Desulfovibrio subclass B1 metallo-beta-lactamase  0 1 

Myxococcus subclass B1 metallo-beta-lactamase  1 0 
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Table B.4B. Summary of beta-lactamase genes and their corresponding microbial hosts in cases and follow-ups.  

This table includes information about the prevalence of these resistance genes in cases vs. follow-ups (A), the number of genes “lost” 

(i.e., present in the case sample but absent in the follow-up sample), “maintained” (i.e., present in both samples), or “acquired” (absent 

in case sample, present in follow-up sample) (B), as well as the number of each gene found among people infected by each enteric 

pathogen (C). 

*identified as an extended-spectrum beta-lactamase (ESBL) 

Host Beta-lactamase Lost Maintained Acquired 

uncultured ACI family class A beta-lactamase  0 0 0 

Enterobacter ACT family cephalosporin-hydrolyzing class C beta-lactamase  5 0 0 

Acinetobacter ADC family extended-spectrum class C beta-lactamase*  3 0 6 

Escherichia beta-lactamase  0 0 1 

Klebsiella Beta-lactamase  4 0 0 

Klebsiella beta-lactamase  0 0 0 

Salmonella beta-lactamase  0 0 1 

uncultured beta-lactamase  0 0 0 

Enterobacter Beta-lactamase class C and other penicillin binding proteins  3 0 0 

Escherichia beta-lactamase TEM-1 variant*  35 14 5 

synthetic beta-lactamase TEM-1 variant*  1 0 0 

Klebsiella beta-lactamase, partial  7 39 9 

Escherichia BlaEC family class C beta-lactamase  3 2 7 

Shigella BlaEC family class C beta-lactamase  1 0 0 

Bacteroides CepA family class A extended-spectrum beta-lactamase*  1 0 1 

Bacteroides CfxA family class A broad-spectrum beta-lactamase  0 0 1 

Prevotella CfxA family class A broad-spectrum beta-lactamase  1 0 3 

Atlantibacter class A beta-lactamase  1 0 0 

Bacillus class A beta-lactamase  1 0 0 

Burkholderia class A beta-lactamase  0 0 1 

Clostridium class A beta-lactamase  0 0 2 

Proteus class A beta-lactamase  1 0 0 

Salmonella class A beta-lactamase  7 38 9 
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Table B.4B (cont’d) 

Yersinia class A beta-lactamase  0 0 0 

Escherichia class A beta-lactamase, partial  3 0 0 

Klebsiella class A beta-lactamase, partial  1 0 0 

Bacteroides class A beta-lactamase, subclass A2  7 0 0 

Escherichia class A broad-spectrum beta-lactamase TEM-1, partial*  0 0 0 

Acinetobacter class C beta-lactamase  0 0 0 

Hafnia class C beta-lactamase  0 4 2 

Providencia class C beta-lactamase  1 0 0 

Pseudomonas class C beta-lactamase  3 0 2 

Achromobacter class D beta-lactamase  6 2 1 

Acinetobacter class D beta-lactamase  2 0 1 

Flavobacterium class D beta-lactamase  0 0 0 

Klebsiella class D beta-lactamase, partial  1 0 0 

Salmonella CMY family class C beta-lactamase  0 0 0 

Citrobacter CMY-2 family class C beta-lactamase  1 0 2 

Salmonella CMY-2 family class C beta-lactamase  0 0 0 

Cronobacter CSA family class C beta-lactamase  1 0 0 

Escherichia CTX-M family class A extended-spectrum beta-lactamase*  0 0 0 

Morganella DHA family class C beta-lactamase  2 0 0 

uncultured extended spectrum beta-lactamase CTX-M* 1 0 0 

Escherichia extended-spectrum beta-lactamase CTX-M-2, partial* 2 0 0 

Stenotrophomonas L1 family subclass B3 metallo-beta-lactamase  4 0 3 

Klebsiella LEN family class A beta-lactamase  0 0 0 

Bacteroides metallo-beta-lactamase, partial  3 5 9 

Enterobacter MIR family cephalosporin-hydrolyzing class C beta-lactamase  0 0 1 

Klebsiella 

MULTISPECIES: OXY family class A extended-spectrum beta-

lactamase*  1 0 0 

Alistipes MULTISPECIES: subclass B1 metallo-beta-lactamase  2 0 0 

Klebsiella OXA-1 family class D beta-lactamase*  1 0 0 

Acinetobacter 

OXA-134 family carbapenem-hydrolyzing class D beta-

lactamase*  18 1 3 
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Table B.4B (cont’d)     

Acinetobacter 

OXA-211 family carbapenem-hydrolyzing class D beta-

lactamase*  9 10 3 

Pseudomonas OXA-50 family oxacillin-hydrolyzing class D beta-lactamase*  0 0 0 

Acinetobacter 

OXA-51 family carbapenem-hydrolyzing class D beta-

lactamase*  0 0 0 

Campylobacter OXA-61 family class D beta-lactamase* 0 0 0 

Klebsiella OXY family class A extended-spectrum beta-lactamase* 0 0 0 

Pseudomonas PDC family class C beta-lactamase  2 0 0 

Burkholderia PenA family class A beta-lactamase  2 0 0 

Raoultella PLA/ORN/TER family class A beta-lactamase  0 0 0 

Citrobacter SED family class A beta-lactamase  0 0 0 

Klebsiella SHV family class A beta-lactamase* 2 0 0 

Serratia SRT/SST family class C beta-lactamase  2 0 0 

Bacteroides subclass B1 metallo-beta-lactamase  2 0 0 

Desulfovibrio subclass B1 metallo-beta-lactamase  2 0 0 

Myxococcus subclass B1 metallo-beta-lactamase  8 0 2 

 

 

 

 

 

 

 

 



197 

 

Table B.4C. Summary of beta-lactamase genes and their corresponding microbial hosts in cases and follow-ups.  

This table includes information about the prevalence of these resistance genes in cases vs. follow-ups (A), the number of genes “lost” 

(i.e., present in the case sample but absent in the follow-up sample), “maintained” (i.e., present in both samples), or “acquired” (absent 

in case sample, present in follow-up sample) (B), as well as the number of each gene found among people infected by each enteric 

pathogen (C). 

*identified as an extended-spectrum beta-lactamase (ESBL) 

Host Beta-lactamase Campylobacter Salmonella Shigella STEC 

uncultured ACI family class A beta-lactamase  0 0 0 0 

Enterobacter 

ACT family cephalosporin-hydrolyzing class C beta-

lactamase  1 4 0 0 

Acinetobacter 

ADC family extended-spectrum class C beta-

lactamase*  3 6 0 0 

Escherichia beta-lactamase  0 0 0 1 

Klebsiella Beta-lactamase  2 1 0 1 

Klebsiella beta-lactamase  0 0 0 0 

Salmonella beta-lactamase  0 0 1 0 

uncultured beta-lactamase  0 0 0 0 

Enterobacter 

Beta-lactamase class C and other penicillin binding 

proteins  1 1 0 1 

Escherichia beta-lactamase TEM-1 variant*  28 30 5 5 

synthetic beta-lactamase TEM-1 variant*  0 0 1 0 

Klebsiella beta-lactamase, partial  37 45 6 6 

Escherichia BlaEC family class C beta-lactamase  7 6 1 0 

Shigella BlaEC family class C beta-lactamase  0 1 0 0 

Bacteroides 

CepA family class A extended-spectrum beta-

lactamase*  0 1 1 0 

Bacteroides CfxA family class A broad-spectrum beta-lactamase  1 0 0 0 

Prevotella CfxA family class A broad-spectrum beta-lactamase  2 2 0 0 

Atlantibacter class A beta-lactamase  1 0 0 0 

Bacillus class A beta-lactamase  0 1 0 0 

Burkholderia class A beta-lactamase  0 0 1 0 
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Table B.4C (cont’d) 

Clostridium class A beta-lactamase  0 2 0 0 

Proteus class A beta-lactamase  0 1 0 0 

Salmonella class A beta-lactamase  39 44 5 4 

Yersinia class A beta-lactamase  0 0 0 0 

Escherichia class A beta-lactamase, partial  3 0 0 0 

Klebsiella class A beta-lactamase, partial  1 0 0 0 

Bacteroides class A beta-lactamase, subclass A2  2 3 1 1 

Escherichia 

class A broad-spectrum beta-lactamase TEM-1, 

partial*  0 0 0 0 

Acinetobacter class C beta-lactamase  0 0 0 0 

Hafnia class C beta-lactamase  3 5 0 2 

Providencia class C beta-lactamase  0 0 1 0 

Pseudomonas class C beta-lactamase  1 3 0 1 

Achromobacter class D beta-lactamase  5 5 0 1 

Acinetobacter class D beta-lactamase  1 2 0 0 

Flavobacterium class D beta-lactamase  0 0 0 0 

Klebsiella class D beta-lactamase, partial  1 0 0 0 

Salmonella CMY family class C beta-lactamase  0 0 0 0 

Citrobacter CMY-2 family class C beta-lactamase  0 3 0 0 

Salmonella CMY-2 family class C beta-lactamase  0 0 0 0 

Cronobacter CSA family class C beta-lactamase  0 1 0 0 

Escherichia 

CTX-M family class A extended-spectrum beta-

lactamase*  0 0 0 0 

Morganella DHA family class C beta-lactamase  0 1 0 1 

uncultured extended spectrum beta-lactamase CTX-M* 1 0 0 0 

Escherichia extended-spectrum beta-lactamase CTX-M-2, partial* 1 1 0 0 

Stenotrophomonas L1 family subclass B3 metallo-beta-lactamase  3 4 0 0 

Klebsiella LEN family class A beta-lactamase  0 0 0 0 

Bacteroides metallo-beta-lactamase, partial  9 10 2 1 

Enterobacter 

MIR family cephalosporin-hydrolyzing class C beta-

lactamase  0 1 0 0 
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Table B.4C (cont’d)      

Klebsiella 

MULTISPECIES: OXY family class A extended-

spectrum beta-lactamase*  0 1 0 0 

Alistipes MULTISPECIES: subclass B1 metallo-beta-lactamase  1 1 0 0 

Klebsiella OXA-1 family class D beta-lactamase*  0 1 0 0 

Acinetobacter 

OXA-134 family carbapenem-hydrolyzing class D 

beta-lactamase*  8 10 3 2 

Acinetobacter 

OXA-211 family carbapenem-hydrolyzing class D 

beta-lactamase*  14 12 3 4 

Pseudomonas 

OXA-50 family oxacillin-hydrolyzing class D beta-

lactamase*  0 0 0 0 

Acinetobacter 

OXA-51 family carbapenem-hydrolyzing class D 

beta-lactamase*  0 0 0 0 

Campylobacter OXA-61 family class D beta-lactamase* 0 0 0 0 

Klebsiella 

OXY family class A extended-spectrum beta-

lactamase* 0 0 0 0 

Pseudomonas PDC family class C beta-lactamase  1 1 0 0 

Burkholderia PenA family class A beta-lactamase  1 0 1 0 

Raoultella PLA/ORN/TER family class A beta-lactamase  0 0 0 0 

Citrobacter SED family class A beta-lactamase  0 0 0 0 

Klebsiella SHV family class A beta-lactamase* 0 1 0 1 

Serratia SRT/SST family class C beta-lactamase  1 1 0 0 

Bacteroides subclass B1 metallo-beta-lactamase  2 0 0 0 

Desulfovibrio subclass B1 metallo-beta-lactamase  2 0 0 0 

Myxococcus subclass B1 metallo-beta-lactamase  3 4 2 1 
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Figure B.1. Average Genome Size (AGS) and estimated number of Genome Equivalents 

(GE) for paired case and follow-up samples.  

AGS (left) and GE (right) are displayed and stratified by health status, with samples represented 

by circles (cases, green) or squares (follow-ups, purple). Points are offset from the vertical to 

allow interpretation of all samples. The median of each measure is shown as a thick bar within 

the box (green for cases; purple for follow-ups) and the first and third quartiles are represented 

by the bottom and top of the box, respectively. P-values were calculated using the Wilcoxon 

signed-rank test for paired samples and are shown above the comparison bar within each plot. 
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Figure B.2. Metagenomic sequencing coverage of short paired-end reads was determined 

using Nonpareil.  

The estimated sequencing coverage at increasing sequencing effort (s-curves) and actual 

coverage of each sample (open circles) for case (n=60) and follow-up (n=60) samples. Each s-

curve represents a single sample Arrows aligned on the x-axis represent the Nonpareil index of 

sequence diversity, a metric capturing the complexity of microbial communities in sequencing 

space. The box bordered by dotted red lines encapsulated coverage ranging from 95-100%. The 

overall mean coverage among cases and follow-ups was 86.27%, with a Nonpareil diversity 

score of 17.0. Additionally, the estimated sequencing effort among all cases and follow-ups was 

4.77e+08 base pairs. 
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Figure B.3. Pairwise comparison of Bray-Curtis dissimilarity among cases and follow-ups. 

 Bray-Curtis dissimilarity was calculated for A) the microbiome (species-level) and B) resistome 

(gene-level) for cases and follow-ups. Upon construction of the dissimilarity matrix, pairwise 

dissimilarity scores were output into two separate data-frames: one which contained all pairwise 

comparisons and a second which contained only pairwise comparisons among relevant case-

follow paired samples. The mean pairwise dissimilarity was calculated across all samples, then 

subsequently across paired samples only. Histograms were generated for dissimilarity measures  

A 

B 
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Figure B.3 (cont’d) 

for the microbiome (top) and resistome (bottom). In each plot, the overall mean dissimilarity 

across all samples is displayed as a red line with the value of the mean oriented above the line 

(microbiome=0.335; resistome=0.751). The mean among paired samples is shown as a purple 

line in each respective plot (microbiome=0.271; resistome=0.811). A Welch’s t-test was 

performed to test whether these means were significantly different; indeed, the dissimilarity 

among paired samples was significantly lower than the overall mean in regards to microbiome 

composition (p=2.58e-05; two-sided) and significantly higher than the overall mean in regards to 

the resistome (p=0.013; two-sided). 

 

 

 

 

 

Figure B.4. Exploring potential batch effects related to sequencing run using principal 

coordinate analysis of cases and follow-ups. 

 Principal Coordinates Analysis (PCoA) plot shows the distribution of cases (circles) and follow-

ups (squares) based on Bray-Curtis dissimilarity calculated from species-level abundances of the 

gut microbiota. The first and second coordinate display the percentage of similarity 

explained. Samples sequenced in Run 1 appear to cluster separately from those in Runs 2, 3, and 

4 along the first axis. Patients that self-reported use of antibiotics two weeks prior to sample 

collection are indicated by triangles. Points are colored by their corresponding sequencing run: 

Run 1 (green), Run 2 (purple), Run 3 (yellow), and Run 4 (orange).  
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Figure B.5. Assembly coverage statistics quantified by the Quality Assessment Tool for 

Genome Assemblies (QUAST).  

Six different assembly statistics are shown stratified by health status, with samples represented 

by circles (cases, green) or squares (follow-ups, purple). The six statistics indicated include 

(clockwise from top-left) average depth of coverage, percent of GC base pairs among samples, 

percentage of reads mapped to contigs, total contig length, number of contigs, and N50 value. In 

each plot, points are offset from the vertical to allow interpretation of all samples. The median of 

each measure is shown as a thick bar within the box (green for cases; purple for follow-ups) 

and the first and third quartiles are represented by the bottom and top of the box, respectively. P-

values were calculated using the Wilcoxon signed-rank test for paired samples and are shown 

above the comparison bar within each plot. 
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Figure B.6. Resistome and microbiome diversity analyses between cases, healthy household member (controls) and recovered 

cases (FollowUp).  
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Figure B.6 (cont’d) 

A and C) Three alpha diversity measures are shown (Richness, Shannon’s Diversity Index, 

and Pielou’s Evenness Index) for the resistome (A) and microbiome (C); these are stratified by 

health status, with samples represented by circles (cases, green), squares (follow-ups, purple), or 

triangles (controls, orange). Points are slightly offset from the vertical to allow interpretation of 

all samples. The median is indicated by the thick bar (green for cases; purple for follow-ups) 

and the first and third quartiles are represented by the bottom and top of the box, respectively. P-

values were calculated using the Wilcoxon signed-rank test for paired samples and are shown 

above the comparison bar within each plot. B and D) Beta-diversity is displayed via a Principal 

Coordinates Analysis (PCoA) plot of cases (green, circles), follow-ups (purple, squares), and 

controls (orange, diamonds) for the resistome (B) and microbiome (D) based on Bray-Curtis 

dissimilarity calculated from gene-level (resistome) or species-level (microbiome) abundances. 

The first and second coordinate are shown and include the corresponding percentage of 

similarity explained. Patients that self-reported use of antibiotics two weeks prior to sample 

collection are indicated by triangular data points. 
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Figure B.7. Various intrinsic factors influence case and follow-up resistomes.  

Principal Coordinates Analysis (PCoA) plot shows the distribution of case (green, circles) and 

follow-up (purple, squares) resistomes based on Bray-Curtis dissimilarity calculated from group-

level abundances. The first and second coordinate are shown and include the corresponding 

percentage of similarity explained. Patients that self-reported use of antibiotics two weeks prior 

to sample collection are indicated by triangular data points. Intrinsic and extrinsic environmental 

factors were fitted to the ordination using the ‘envfit()’ function from the R-package ‘vegan’ (see 

Methods). The intrinsic factors displayed on the plot include the ARG groups bacA, cpxAR, glpT, 

and copA, all of which had R2 ≥ 0.82 and p ≤ 0.001.  
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Figure B.8. Alpha and beta diversity of the resistome do not appear to differ across the four 

different enteric pathogens.  

 

A 

B 
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Figure B.8 (cont’d) 

(A) Three alpha diversity measures are shown (Richness, Shannon’s Diversity Index, 

and Pielou’s Evenness Index) for the resistome of cases and follow-ups. These are stratified by 

infectious pathogen: Campylobacter (blue circles), Salmonella (red triangles), Shigella (yellow 

squares), and STEC (purple pluses). Points are slightly offset from the vertical to allow 

interpretation of all samples. In the boxplots, the median of each measure is indicated by the 

thick bar and the first and third quartiles are represented by the bottom and top of the box, 

respectively. P-values comparing Campylobacter and Salmonella were calculated using 

the Wilcoxon rank-sum test and are shown above the comparison bar within each plot; statistical 

test involving individuals infected with Shigella and STEC were not pursued due to low N (n=4, 

n=3, respectively). (B) Beta-diversity is displayed via a Principal Coordinates Analysis (PCoA) 

plot of case (circles) and follow-up (squares) resistome compositions based on Bray-Curtis 

dissimilarity calculated from gene-level abundances. Patients that self-reported use of 

antibiotics two weeks prior to sample collection are indicated by triangular data points. Points 

are colored by the infecting pathogen: Campylobacter (blue), Salmonella (red), Shigella 

(yellow), STEC (purple). The first and second coordinate are shown and include the 

corresponding percentage of similarity explained.  
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Figure B.9. Multiple intrinsic factors influence case and follow-up microbiomes.  

Principal Coordinates Analysis (PCoA) plot shows the distribution of case (green, circles) and 

follow-up (purple, squares) microbiomes based on Bray-Curtis dissimilarity calculated from 

genus-level taxonomic abundances. The first and second coordinate are shown and include the 

corresponding percentage of similarity explained. Patients that self-reported use of 

antibiotics two weeks prior to sample collection are indicated by triangular data points. Intrinsic 

and extrinsic environmental factors were fitted to the ordination using the ‘envfit()’ function 

from the R-package ‘vegan’ (see Methods). The intrinsic factors displayed on the plot include 

the genera Bacteroides, Cronobacter, Pseudoalteromonas, and Cedecea, among others.  
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Figure B.10. Alpha and beta diversity of the microbiome do not appear to differ across the 

four different enteric pathogens.  

A 

B 
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Figure B.10 (cont’d) 

(A) Three alpha diversity measures are shown (Richness, Shannon’s Diversity Index, 

and Pielou’s Evenness Index) for the microbiome of cases and follow-ups. These are stratified by 

infectious pathogen: Campylobacter (blue circles), Salmonella (red triangles), Shigella (yellow 

squares), and STEC (purple pluses). Points are slightly offset from the vertical to allow 

interpretation of all samples. In the boxplots, the median of each measure is indicated by the 

thick bar and the first and third quartiles are represented by the bottom and top of the box, 

respectively. P-values comparing Campylobacter and Salmonella were calculated using 

the Wilcoxon rank-sum test and are shown above the comparison bar within each plot; statistical 

test involving individuals infected with Shigella and STEC were not pursued due to low N (n=4, 

n=3, respectively). (B) Beta-diversity is displayed via a Principal Coordinates Analysis (PCoA) 

plot of case (circles) and follow-up (squares) microbiome compositions based on Bray-Curtis 

dissimilarity calculated from species-level abundances. Patients that self-reported use of 

antibiotics two weeks prior to sample collection are indicated by triangular data points. Points 

are colored by the infecting pathogen: Campylobacter (blue), Salmonella (red), Shigella 

(yellow), STEC (purple). The first and second coordinate are shown and include the 

corresponding percentage of similarity explained. 
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Figure B.11. Continuous structure analysis reveals species gradients among cases and 

follow-ups.  

MMUPHin was used to investigate potential continuous structure among the microbiome 

composition of cases and follow-ups at the species level. (A) Species determined to comprise the 

top consensus loadings are shown; colors have been assigned to the loadings based on primary  
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Figure B.11 (cont’d) 

health status affiliated with each loading (drawn from differential abundance analyses; cases 

(green) and follow-ups (purple)). (B) The species composition gradient is shown overlaid onto an 

ordination plot based on Bray-Curtis dissimilarity of case and follow-up microbiomes at the 

species level. Cases (circles), follow-ups (squares), and individuals who received antibiotics 

(triangles) are shown. The color gradient (“Score”) refers to the continuous structure score 

affiliated with Loading 1. Juxtaposition of (A) and (B) allow interpretation of species tradeoffs 

that occur within the sample set (e.g., many cases contain higher levels of Escherichia coli at the 

expense of more beneficial bacteria such as Bacteroides species associated with the opposite 

direction).   
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Figure B.12. Relative abundance of resistance gene types and classes among cases and 

follow-ups.  

The relative abundance of resistance genes assigned to 4 different compound types (A) and 44 

resistance classes (B) is shown for each health status, with each column representing the 

resistome from one individual. Columns are ordered by their sample pairing, meaning that the 

column position in each side of the plot refers to the same individual either during (Case; Left) or 

after (FollowUp; Right) enteric infection. Relative abundances were determined using raw gene 

abundances that had been normalized by the estimated number of genome equivalents in the 

sample as determined using MicrobeCensus.  

 

A 

B 
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Figure B.13. Relative abundance of microbial genera notably differ between cases and 

follow-ups.  

The top-10 microbial genus with the greatest average relative abundance among cases or follow-

ups is shown for each health status with each column representing the 

microbiome from one individual. Columns are ordered by their sample pairing, meaning that the 

column position for each facet of the plot refers to the same individual either during (Case; Top) 

or after (FollowUp; Bottom) enteric infection. Relative abundances were determined using raw 

gene abundances that had been normalized by the approximate number of genome equivalents in 

the sample as determined using MicrobeCensus.  
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Figure B.14. Differentially abundant ARG classes and groups among cases and follow-ups. 

MMUPHin was used to identify ARG features of differential abundance. Coefficients for each 

ARG class (A) or ARG group (B) are shown on the x-axis with a cutoff of absolute value = 0.05; 

positive coefficients indicate ARG features which were more abundant among follow-ups, while 

those with negative coefficients were more prominent in cases. The specific ARG features are 

displayed on the y-axis. The bars in the plot are colored by health status with which that 

particular feature is associated (cases=green, follow-ups=purple).    
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Figure B.15. Differential abundance of phyla, genera, and species among cases and follow-ups.  

MMUPHin was used to identify microbial features of differential abundance. Coefficients for each phylum (A) genus (B) or species 

(C) are shown on the x-axis with a cutoff of absolute value=0.05, 0.008, and 0.008, respectively; positive coefficients indicate features 

which were more abundant among follow-ups, while those with negative coefficients were more prominent in cases. The specific 

taxonomic features are displayed on the y-axis. Bars in the plot are colored by health status with which that particular feature is 

associated (cases=green, follow-ups=purple). 
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Figure B.16. Differential abundance of taxonomic and resistance gene features for cases and follow-ups with ANCOM-BC. 

ANCOM-BC was used as a secondary method to compare and confirm the findings from our differential abundance analysis using 

MMUPHin. Differentially abundance ARG classes (A), ARG groups (B), taxonomic phyla (C) and genera (D) are shown. The x-axis 

displays the range of coefficients associated with each feature, which is shown on the y-axis. In each sub-plot, purple bars designate 

resistome or microbiome features that were found to be more abundant in follow-ups and green bars show those that were more 

represented in cases 
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Figure B.17. Global co-occurrence network analysis reveals interesting patterns among cases and follow-ups.  

Correlation co-occurrence networks were constructed in Gephi 0.9.2 using Spearman’s Rank correlation coefficients generated with 

the R-package ‘Hmisc’ (v4.5-0) for cases (A) and follow-ups (B). Correlations included in the network all passed a cutoff of ρ>0.80 

and q-value < 0.05. Nodes are colored by their identity as a taxonomic genus (red) or ARG group (green). Nodes are sized based on 

their overall abundance among samples; the larger the node, the more abundant. Nodes with ≥ 1 connection were included (i.e. degree 

cutoff=1). The edge color displays the strength of correlation, with blue demonstrating relatively weaker correlations (yet still >0.80), 

yellow showing medium correlation, and red showing strong correlation. 
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Figure B.18. Co-occurrence of Beta-lactam ARGs with other ARGs and taxa varies between cases and follow-ups. 

Correlation co-occurrence networks were constructed in Gephi 0.9.2 using Spearman’s Rank correlation coefficients generated with the 

R-package ‘Hmisc’ (v4.5-0) for cases (A) and follow-ups (B). These networks display all relevant ARG-ARG and ARG-taxa 

connections for beta-lactam ARGs, specifically. Correlations included in the network all passed a cutoff of ρ>0.80 and q-value < 0.05. 

Nodes are colored by their identity as a taxonomic genus (red) or ARG group (green). Nodes are sized based on their overall abundance 

among samples; the larger the node, the more abundant. Nodes with ≥ 2 connection were included (i.e. degree cutoff=2). The edge color 

displays the strength of correlation, with blue demonstrating relatively weaker correlations (yet still >0.80), yellow showing medium 

correlation, and red showing strong correlation. Nodes are labeled with their corresponding genus or ARG group. 
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Figure B.19. ARG-ARG and ARG-taxa connections are different for individuals infected with and recovering from 

Salmonella.  

Correlation co-occurrence networks were constructed in Gephi 0.9.2 using Spearman’s Rank correlation coefficients generated with 

the R-package ‘Hmisc’ (v4.5-0) for cases infected with Salmonella (A) or recovering (follow-ups) (B). These networks display all 

ARG-ARG and ARG-taxa connections; taxa-taxa connections were excluded for clarity. Correlations included in the network all 

passed a cutoff of ρ>0.80 and q-value < 0.05. Nodes are colored by their identity as a taxonomic genus (red) or ARG group (green). 

Nodes are sized based on their overall abundance among samples; the larger the node, the more abundant. Nodes with ≥ 1 connection 

were included (i.e. degree cutoff=1). The edge color displays the strength of correlation, with blue demonstrating relatively weaker 

correlations (yet still >0.80), yellow showing medium correlation, and red showing strong correlation. Nodes are labeled with their 

corresponding genus or ARG group.  
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Figure B.20. ARG-ARG and ARG-taxa connections are different for individuals infected with and recovering from 

Campylobacter.  

Correlation co-occurrence networks were constructed in Gephi 0.9.2 using Spearman’s Rank correlation coefficients generated with 

the R-package ‘Hmisc’ (v4.5-0) for cases infected with Campylobacter (A) and recovering follow-ups (B). These networks display all 

ARG-ARG and ARG-taxa connections; taxa-taxa connections were excluded for clarity. Correlations included in the network all 

passed a cutoff of ρ>0.80 and q-value < 0.05. Nodes are colored by their identity as a taxonomic genus (red) or ARG group (green). 

Nodes are sized based on their overall abundance among samples; the larger the node, the more abundant. Nodes with ≥ 2 connections 

were included (i.e. degree cutoff=2). The edge color displays the strength of correlation, with blue demonstrating relatively weaker 

correlations (yet still >0.80), yellow showing medium correlation, and red showing strong correlation. Nodes are labeled with their 

corresponding genus or ARG group.  
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CHAPTER 4 

Recovery from enteric infection demonstrates a shift in functional capacity and metabolite 

composition 
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ABSTRACT 

While enteric pathogens have been widely studied for their roles in causing foodborne 

infection, their impacts on the gut microbial community have yet to be fully characterized. 

Previous work has identified notable changes in the gut microbiome related to pathogen 

invasion, both taxonomically and genetically. However, characterization of the metabolic 

landscape during and after enteric infection has not yet been broadly explored. In this study, we 

investigated the metabolome of paired stools recovered from 60 patients during (cases) and after 

(follow-ups) enteric infection. To do this, we performed functional pathway prediction of 

metagenomes and untargeted metametabolomics. Pathway prediction methods indicated that 

cases had a greater overall microbially-mediated metabolic capacity, as these individuals 

demonstrated significantly higher pathway richness and evenness relative to the follow-up 

samples (p<0.05). Metabolic pathways more highly represented in cases included variations to 

central carbon metabolism, amino acid metabolism, lipid and fatty acid biosynthesis, as well as 

distinct signatures of menaquinone production. Follow-up samples, however, showed greater 

diversity of the actual metabolic landscape; untargeted metabolomics resulted in significantly 

greater richness of polar metabolites (p<0.0001) as well as significantly greater richness, 

evenness, and overall diversity among nonpolar metabolites (p<0.0001). Many of the metabolites 

identified in this analysis were unknown and unable to be annotated with existing databases. 

Despite this limitation, we observed marked increases in certain clusters of metabolites among 

recovered vs. infected patients, implicating their importance in gut health and recovery. 

Collectively, these data aid in further understanding metabolic fluctuations important to the 

ecology of the gut during enteric infection.  
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INTRODUCTION 

Microbes in the human gut have long been understood to contribute to host metabolic 

health. Generally, gut microbiota are critical for breaking down complex carbohydrates and 

converting various compounds into forms usable by the body (1). More specifically, these 

microorganisms generate beneficial short-chain fatty acids (SCFAs) such as butyrate, acetate, 

and propionate which play crucial roles in counteracting inflammation and immune disorders (2). 

Butyrate, for example, influences gut epithelial health and can be derived from acetate, another 

SCFA (3). Acetate has also been identified as a potential therapeutic that may counteract the 

detrimental effects of obesity (4). Notably, however, the successful production of these 

compounds relies on specific members of the gut community, namely microbes in the 

Bacteroidetes and Firmicutes phyla (5, 6), whose abundance can change with diet (7) and other 

perturbations.  

Indeed, gut microbial composition is associated with disease state. Impacts of disease, 

both chronic and acute, on the human gut microbiome and metabolome have increasingly been 

characterized, with particular emphasis on the use of multi-omics approaches to identify 

differences in host-microbiota metabolic interactions (8). Interestingly, defining a “healthy gut” 

is not straightforward; even within individuals, there is considerable variation in microbial and 

metabolic profiles due to changes in diet and exercise, for instance, as well as host genetics (9). 

Jumpertz et al. (2011) (10) demonstrated that altered nutrient load resulted in compositional 

changes to the gut microbiota that yielded a shift in nutrient absorption capacity. Colonic transit 

time, too, has been studied as a potential indicator of gut microbiome health, as transit times 

were correlated with various metabolic products (11). Adding to the complexity of analyzing 

these systems is the strong influence of the gut microbiota on host metabolic health (12), with 

more diverse microbiomes demonstrating a reduced risk of metabolism-related disease (13). 
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However, even members of the same microbial groups can have varying effects on human 

metabolism. For example, a previous study explored the impacts of ‘structural variants’ among 

microbes of the same species and found that genetic variation among these organisms can lead to 

differences in metabolic capacity and, thus, host health (14). Indeed, the interplay between the 

fluctuating human gut microbiome and related metabolic consequences is of continued interest in 

the context of disease.  

Numerous studies have explored microbial differences between ‘healthy’ individuals and 

those with various health conditions including obesity, liver disease, metabolic disease, diabetes, 

and inflammatory bowel disease (IBD) (15-17). For example, obesity has been found to be 

associated with an increased Firmicutes:Bacteroidetes ratio and lower overall bacterial diversity 

(18). As noted, diet can play a crucial role in developing certain disease states such as obesity or 

Type 2 diabetes; in fact, prolonged consumption of foods low in dietary fiber was linked to the 

extinction of beneficial microbes (19). Additionally, another study demonstrated that long-term 

high-fat diets selected for microbes that produce lipopolysaccharide (LPS), an endotoxin that 

contributes to inflammation linked to obesity and insulin resistance (20). Sokol et al. (2009) (21) 

found that patients experiencing different forms of colitis harbored fewer members of the 

phylum Firmicutes, with notable underrepresentation of the species Faecalibacterium 

prausnitzii; this species is known to contribute heavily to SCFA generation in the gut (6). 

Moreover, IBD patients were found to contain different compositions of gut-derived bile acids 

compared to healthy individuals, a difference that may directly influence the host response to 

intestinal inflammation (22). Indeed, the intersection of gut microbiota and metabolism and their 

impact on human health is of great relevance.  
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Of particular interest to this study are metabolic shifts due to enteric disease. Indeed, it is 

estimated that enteric pathogens cause more than 9.4 million foodborne infections in the United 

States each year (23). The Centers for Disease Control and Prevention (CDC) has recently 

reported increased incidence of infections caused by Campylobacter and Shiga toxin-producing 

Escherichia coli (STEC), while pathogens such as Salmonella and Shigella maintained a high 

level of incidence (24). While extensive work continues to explore the intersection of chronic 

disease, the gut microbiome, and metabolic consequences, few works have explored the impact 

of acute enteric infection on metabolic shifts within the gut. Indeed, further exploration of the 

human gut microbiome and its influence on host metabolic health during periods of acute 

infection is needed. Because previous studies in our lab have documented shifts in microbial 

composition using 16S rRNA sequencing (25) and metagenomics (Chapter 3) as well as changes 

in resistance gene composition and diversity (26) following enteric infections, an examination of 

metabolic dynamics is also warranted. This study, therefore, aims to characterize metabolic 

trajectories of individuals during and after enteric infection using metagenome analysis and 

untargeted metabolomics.  

METHODS 

Study population   

Between 2011 and 2015, 61 stool samples were obtained from patients experiencing 

enteric bacterial infections prior to treatment and designated for metagenome analyses. Of these 

patients, 25 (41.0%) had infections caused by Campylobacter, 29 (47.5%) had Salmonella 

infections, and 4 (6.6%) and 3 (4.9%) experienced Shigella or Shiga toxin-producing E. coli 

(STEC) infections, respectively. Stools from these patients were collected through the Michigan 

Department of Health and Human Services (MDHHS) as described previously (25). Follow-up 
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samples (n=61) were also collected by each patient after they recovered from the infection and 

provided informed consent; these samples were sent directly to Michigan State University 

(MSU). Patients reported information about demographics, exposures, hospitalization, and 

symptoms through the Michigan Disease Surveillance System (MDSS) and answered a follow-

up questionnaire at the time the post-recovery sample was submitted. County of residence 

was classified as ‘rural’ or ‘urban’ based on the classification scheme developed by the National 

Center for Health Statistics (27).  

Sample preparation and metagenome sequencing analysis 

Metagenomic DNA from the 122 fecal samples was extracted, sheared, and normalized as 

described previously (25). Briefly, libraries were constructed using a TruSeq Nano library kit 

(Illumina, Inc., San Diego, CA, USA) and shotgun metagenomics sequencing was performed in a 

series of four runs on an Illumina HiSeq 2500. Reads were demultiplexed at the MSU Research 

Technology Support Facility (RTSF). Metagenomic sequencing reads were processed using the 

AmrPlusPlus v2.0 pipeline as described in our previous work (Chapter 3). Non-host FASTQ files 

generated in this workflow were used for metagenome assembly and input to the HUMAnN 3.0 

program to characterize metabolic profiles. Of note, two samples (a case and follow-up pair) 

were removed from the metagenomics pipeline due to poor annotation and assembly resulting in 

a total of 118 samples. However, metabolomics was completed on all samples (n=122), 

explaining the small discrepancy in sample numbers between these two methods.  

Metagenome assembly and metabolic prediction profiling with Anvi’o 

Pre-assembly processing, metagenome assembly with MEGAHIT, and generation of 

contig databases with Anvi’o (28) was performed as described previously (Chapter 3). To begin 



241 

 

metabolic profiling with Anvi’o, the function ‘anvi-run-kegg-kofams’ was used to annotate the 

contig databases with HMM hits from the KOfam database which houses KEGG Orthologs 

(KOs). Then, ‘anvi-estimate-metabolism’ was run; this program uses the annotated contig 

databases to determine which metabolic enzymes are present, thus defining the metabolic 

functions within each sample in addition to module completeness. Two output files were 

generated per sample, one which contained specific KOfam hits and their assignment to relevant 

KEGG modules (if applicable) and one which contained KEGG module names, subcategories, 

categories, and completeness scores. A custom Python script was constructed to filter KEGG 

modules based on a module completeness cutoff of 0.70. The resulting data tables for each 

sample were merged to form a comprehensive dataset. Subsequently, frequency of module 

occurrence was determined by summing the number of contigs to which a module was assigned. 

For example, if a module was found on 50 different contigs within a sample, that module 

registered a frequency of 50. The metric of frequency was used in place of abundance for these 

analyses. Prior to statistical analysis, module frequencies were normalized by the number of 

genome equivalents (GE) per sample as determined by MicrobeCensus (29). Notably, these 

module frequencies were used as hypothesis-generating observations which were followed by 

more rigorous metabolic prediction analyses and untargeted metabolomics.  

Metabolic prediction profiling with HUMAnN 3.0  

The third iteration of the HMP Unified Metabolic Analysis Network (HUMAnN 3.0) was 

used to profile the abundance of microbial metabolic pathways and other relevant functions from 

our 120 metagenome samples (30). Non-host paired end reads were first merged for input into 

HUMAnN 3.0, which was run using the UniRef90 database. The program generates three output 

files for each sample: gene family abundances, pathway abundances, and pathway coverage 
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estimates. The gene families file for each sample was fed into the program 

‘humann_infer_taxonomy’, which retrieves approximate taxonomic information for translated 

search results that had prior to been assigned “unclassified.” This function was run at the genus 

level.  

Upon inference of genera associated with gene families and pathways, the resulting files 

were re-run through HUMAnN 3.0 to compute pathway abundances and coverage affiliated with 

these newly inferred taxonomic assignments. The resulting gene families and pathway 

abundance files, which inherently report reads-per-kilobase (RPK) values, were normalized to 

relative abundances using the ‘humann_renorm_table’ function. Separate sample tables were 

then joined to create a comprehensive dataset. The ‘humann_regroup_table’ function was used to 

modify the gene family abundance table to display gene families with MetaCyc reaction 

annotations rather than UniRef90 (the default output based on our earlier parameters). Next, 

‘humann_rename_table’ was used to assign MetaCyc pathway names to the pathway abundance 

and coverage files for easier interpretation; the modified pathways abundance file was used for 

downstream interpretation and analysis. The ‘humann_barplot’ function was used to produce 

plots of stratified metabolic features; these plots displayed taxa abundances assigned to a specific 

MetaCyc pathway. Various parameters were used to sort by other variables (namely case status 

and pathogen type) and scale the data (original vs. logstack scaling). Plots were sorted in two 

different ways, either by metadata assignment or Bray-Curtis dissimilarity.  

Ecological analyses of metagenome and metabolome data 

Abundance and diversity analyses  

The diversity of predicted metabolic profiles was determined by investigating the 

composition of metabolic pathways across infected cases and recovered follow-ups. Abundances 
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for KEGG modules (Anvi’o pipeline) or MetaCyc pathways (HUMAnN 3.0 pipeline) were used 

as input for diversity analyses. Alpha and beta diversity metrics were calculated and plotted in R 

(31) as described in previous work (26). When comparing diversity metrics across infecting 

pathogen, only comparisons between individuals infected with Campylobacter and Salmonella 

were included, as the samples sizes associated with Shigella and STEC infections were markedly 

smaller.  

Differential abundance of metabolic pathways  

To assess representative features in cases and follow-ups, the R-package Meta-analysis 

Methods with Uniform Pipeline for Heterogeneity in Microbiome Studies (MMUPHin) was used 

to construct general linear models exploring module and pathway abundances (32). MMUPHin 

required relative abundance as input. First, we performed batch adjustment of relative abundance 

data based on sequencing run since this variable was previously identified as driving a degree of 

stratification among samples. Next, a linear model was constructed to identify differentially 

abundant pathways among cases and follow-ups; follow-ups were used as the reference for the 

fixed effect, while age in years, number of genome equivalents, gender, and use of antibiotics 

were included as covariates in the model. Significance values were adjusted using the Benjamini-

Hochberg method of correction for multiple hypothesis testing (q-value representing False 

Discovery Rate (FDR)). 

Identification of continuous population structure   

MMUPHin was also used to further characterize intrinsic drivers of point distributions 

observed in beta diversity analyses (ordination). A gradient of module and pathway abundance 

was suspected due to the distribution of points observed in our PCoA plots. To classify this 
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potential gradient, the ‘continous_discover()’ function was applied to our metabolic profile 

abundance data. This function performs unsupervised continuous structure discovery using 

Principal Components Analysis (PCA). Upon generation of these continuous structure scores 

(called “loadings”), we constructed respective plots to visualize the main drivers of continuous 

data structure. Loadings that comprise the top principal components were compared across 

batches to identify “consensus” loadings assigned to certain microbial features. These data were 

overlaid onto ordination plots which displayed the Bray-Curtis dissimilarity. Continuous 

structure scores were indicated by a color gradient and cases and follow-ups were shown as 

differently shaped points. In nearly every comparison, the distribution of points could be 

attributed to metabolic tradeoff identified in the loadings scores.   

Metabolite extraction 

Metabolite extractions were performed for 122 human stool samples (cases=61; follow-

ups=61). Prior to extraction, the following five internal standard solutions were prepared for 

downstream quality control and normalization: 1) 13C-labeled short-chain fatty acids (SCFAs) 

(10 uM each of [13C]sodium formate, [13C2]sodium acetate, [13C3]sodium propionate, and 

[13C4]sodium butyrate in 50:50 (v/v) methanol/water); 2) phenylalanine-d7 (10 uM in 50:50 

methanol/water); 3) succinic acid-d4 (10 uM in 50:50 methanol/water; 4) [13C16]palmitic acid (10 

uM in 100% isopropanol); and 5) labeled bile acids (10 uM each of glycocholic acid-d4 and 

glycoursodeoxycholic acid-d4 in 50:50 methanol/water). 20mg of each fecal specimen was 

aliquoted into microcentrifuge tubes for metabolite extraction and stored on ice. Next, 350μl of 

methanol containing 0.1% BHT was added to the fecal sample and mixed. 10μl of each internal 

standard solution (50ul total) was added to each sample tube and mixed. Samples were then 

centrifuged at 10,000 x g at 4°C for 10 minutes. The resulting supernatant was transferred to a 
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clean microcentrifuge tube; the pellet was washed with 200μl of HPLC-grade isopropanol then 

centrifuged at 10,000 x g at 4°C for 10 minutes. The supernatant was removed and combined 

with the previously collected supernatant to form the ‘Total Extract’ (TE). 100 ul aliquots of the 

TE for each sample was aliquoted into amber glass autosampler vials in preparation for liquid 

chromatography-mass spectrometry. A separate microcentrifuge tube was designated for long-

term storage of the remaining TE. All extracts were stored at -80°C until further use.    

Liquid Chromatography Mass Spectrometry (LC/MS) 

Each sample was analyzed using separate reverse phase and hydrophilic interaction liquid 

chromatography (HILIC) methods to cover a wider range of metabolite space in the study. A 

Thermo Q-Exactive and Vanquish Ultra High-Performance Liquid Chromatography (UHPLC) 

system was used for the analysis. For the reverse phase separation, 10uL of sample was injected 

onto a Waters Acquity Ethylene Bridged Hybrid (BEH)-C18 UPLC column (2.1x100mm) held 

at 60°C. Compounds were separated using the following gradient with a 0.4 ml/min flow rate: 

initial conditions were 98% mobile phase A (water + 0.1% formic acid) and 2% mobile phase B 

(acetonitrile + 0.1% formic acid), hold at 2% B until 1 min, ramp to 100% B at 8 min, hold at 

100% B until 10 min, return to 2% B at 10.01 min and hold at 2% B until 12 min. For the HILIC 

separation, 10 uL of sample was injected onto a Waters BEH-Amide UPLC column 

(2.1x100mm) held at 60°C. The following gradient run at 0.4 ml/min was used: initial conditions 

were 100% mobile phase B (10 mM ammonium formate/10 mM ammonium hydroxide in 95:5 

acetonitrile/water (v/v) and 0% mobile phase A (10 mM ammonium formate/10 mM ammonium 

hydroxide in water), hold until 1 min at 100% B, ramp to 40% B at 8 min, hold at 40% B until 10 

min, return to 100% B at 10.01 min and hold at 100% B until 12 min.  
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Mass spectra were acquired for both chromatography methods using the same MS settings. 

Compounds were ionized by electrospray ionization operating in positive ion mode with a 

capillary voltage of 3.5 kV, transfer capillary temp at 262.5°C, sheath gas at 50, auxiliary gas at 

12.5, probe heater at 425°C, and S-lens RF level at 50. A data-dependent MS/MS method was 

used to acquire spectra with survey scan settings of 35,000 resolution, AGC target 1e6, 

maximum inject time 100 ms, and m/z range 100-1500. MS/MS spectra were acquired for the 

top 5 ions at a resolution setting of 17,500, AGC target 1e5, minimum AGC 5e3, maximum 

inject time 50 ms, isolation window of 1.5, and fixed first mass at m/z 50, dynamic exclusion 

setting of 3 s and stepped normalized collision energy settings of 20, 40 and 60.  

Feature-based Molecular Networking (FBMN) of metabolites 

A molecular network was created with the Feature-Based Molecular Networking 

(FBMN) workflow (33) on the Global Natural Product Social Molecular Networking (GNPS) 

site (34). The MS data were first processed with MZMINE2 (35, 36) and the results were 

exported to GNPS for FBMN analysis. The data were filtered by removing all MS/MS fragment 

ions within +/- 17 Da of the precursor m/z. MS/MS spectra were window filtered by choosing 

only the top 6 fragment ions in the +/- 50 Da window throughout the spectrum. The precursor 

ion mass tolerance was set to 0.02 Da and the MS/MS fragment ion tolerance to 0.02 Da. A 

molecular network was then created where edges were filtered to have a cosine score above 0.7 

(nonpolar metabolites) or 0.65 (polar metabolites) and > 4 matched peaks. Further, edges 

between two nodes were kept in the network if and only if each of the nodes appeared in both of 

the top-10 most similar nodes. Finally, the maximum size of a molecular family was set to 100, 

and the lowest scoring edges were removed from molecular families until the size was below this 

threshold. The spectra in the network were then searched against GNPS spectral libraries (34, 



247 

 

37). The library spectra were filtered in the same manner as the input data. All matches kept 

between network spectra and library spectra were required to have a score above 0.7 and at least 

4 matched peaks. The DEREPLICATOR was used to annotate MS/MS spectra (38). The 

molecular networks were visualized internally in GNPS (39) and externally using Cytoscape 

software (40). 

Intensity normalization and Random Forest in R 

Metabolic intensities output by FBMN through GNPS were used for downstream 

analysis. The cluster index assigned by GNPS was used to associate peak intensities with known 

metadata. Prior to use in statistical comparisons, all metabolites identified in blank samples were 

removed from the dataset. Additionally, peak intensities were normalized via sum-scaling.  

To identify the most important polar and nonpolar metabolites, the random forest method was 

used; this is a classification algorithm that combines multiple decision trees into an ensemble, 

thereby reducing error and increasing accuracy of assignments (41). Random forest was 

completed using the randomForest package (version 4.6-14) in R (42). The algorithm was fed 

information about the dichotomous variable “health status” and subsequently classified samples 

based on intensities generated with GNPS; 5,000 decision trees were generated to enhance 

classification accuracy. For clusters that distinguish the case vs. follow-up samples, molecular 

networks and structures were explored. In many cases, the compound was uncharacterized and 

did not have a library ID; in this situation, other clusters in the related molecular network (if 

existent) were explored for annotation. If one of these other clusters contained compound 

characterization, the unnamed cluster of interest was discussed in reference to this known 

compound.  
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Statistical analysis of metabolites using MetaboAnalyst 5.0 

Normalized peak intensity tables for polar and nonpolar metabolites were used as input to 

complete statistical analysis with MetaboAnalyst 5.0 (43). No further filtering or normalization 

was pursued in MetaboAnalyst; the sum-scaled intensities were used. The ‘Statistical Analysis 

[one factor]’ approach was used to complete paired analysis for paired Case-Follow-up samples. 

First, a paired fold-change (FC) analysis was completed with a FC cutoff of 5.0. A volcano plot 

exploring nonparametric paired fold-change was generated using a FC cutoff of 5.0 and a false-

discovery rate threshold of 0.05 with an assumption of equal variance among groups. 

Correlations between features were explored to infer potential co-occurrence. Spearman rank 

correlation was used with a correlation cutoff of 0.5; a correlation heatmap was also generated 

using these values. A heatmap displaying the distribution of feature intensity across samples was 

also generated. Hierarchical clustering of samples was performed by using Euclidean distance 

with the Ward clustering method and was fitted to the heatmap. A filtered heatmap was 

constructed to highlight features of importance, displaying the top-50 features based on t-test 

results.  

The ‘Statistical Analysis [metadata table]’ was used for more detailed analysis with 

consideration of multiple covariates. Correlations between various metabolic features and 

metadata were explored; health status was used as the primary metadata of interest while 

controlling for the covariates of Pair ID, infecting pathogen, sequencing run, age, sex, residence 

type (urban vs. rural), average genome size among microbes in the sample, and number of 

microbial genome equivalents per sample. The correlation metric used was Spearman Rank 

correlation. Heatmaps were generated using Euclidean distance and the Ward clustering method 

for features which were scaled for viewing. Health status and pathogen were plotted on the 
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heatmap to view distributions of features across these variables. A subset of the top-50 features 

based on average intensity value was generated.  

RESULTS 

Characteristics of the study population 

Our study analyzed stools from 61 patients presenting with enteric infection. The same 61 

patients (cases) also submitted stools after they recovered from their acute infection (i.e., 

“follow-ups”). While all samples were included when performing untargeted metabolomics, one 

case-follow-up pair (which was originally infected with Campylobacter) was removed from the 

metagenome analyses due to poor sequencing quality. The remaining 60 cases were infected with 

one of the following enteric pathogens: Salmonella (n=29), Campylobacter (n=24), Shigella 

(n=4), or STEC (n=3). The follow-up period ranged from 8-205 days after the initial infection 

with an average of 107.9 days; the follow-up period was not known for one case. As described in 

our prior analysis (Chapter 3), 28 (46.7%) of the cases were male and most were between 19-64 

years (n=26; 43.3%), self-identified as Caucasian (n=48; 80.0%) and lived in urban areas (n=33; 

55%). Most cases also reported abdominal pain (n=50; 84.8%) and/or diarrhea (n=57; 96.6%) 

with 17 (28.3%) requiring hospitalization. Only two cases (3.3%) reported antibiotic use within 

the two weeks prior to stool submission, while five (8.3%) reported using antibiotics within two 

weeks of submitting their follow-up sample. Moreover, 18 (32.8%) of the 58 cases with data 

available reported traveling in the month prior to their infection. 

Variation in the metabolic potential of the gut during and after enteric infection  

When assessing metabolic diversity based on the metagenomics data, one sample was an 

obvious outlier; this sample and its paired counterpart were removed from the analysis, resulting 
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in 59 pairs (118 samples). Based on KEGG module frequency predicted with Anvi’o, 338 

modules within 41 subcategories and 12 categories were identified among case and follow-up 

samples. Results generated with HUMAnN exhibit a comparable degree of annotation, and 389 

MetaCyc pathways were identified at the community level (i.e., pathways not explicitly assigned 

to a specific genus). Case samples contained significantly more metabolic pathway signatures 

than those from follow-ups (Scase=272, Sfollow=230 p=1.212e-07; Wilcoxon signed-rank test). 

Cases also demonstrated more diverse and even metabolic pathways (H’case=2.25, H’follow=1.41; 

p=7.49e-10 and J’case=0.402, J’follow=0.260; p=1.67e-09, respectively) (Figure 4.1A), a trend that 

was reflected in the Anvi’o analysis as well (Figure C.1A). Beta-diversity analysis showed a 

significant difference in the pathway compositions between cases and follow-ups 

(PERMANOVA, F=62.73; p=0.000999); however, the level of dispersion within these groups 

was also significantly different (PERMDISP, F=20.10; p=0.001), an indicator that the 

PERMANOVA results may not be reliable. This nuance is observable when metabolic module 

composition is captured through ordination, as generous overlap was observed among the two 

sample types (Figure 4.1B). The KEGG module prediction with Anvi’o produced similar results, 

with significant differences identified for group centroids and dispersion (Figure C.1B).  

The extensive overlap and presence of an arch effect in each ordination plot suggests a 

gradient of metabolic pathway abundance across cases and follow-ups. To explore this potential 

continuous structure, MMUPHin was used to correct for batch effects relevant to sequencing run; 

although this factor had not appeared as an influential driver of sample separation, previous work 

with these data required batch adjustment (Chapter 3). Unfortunately, the most significant feature 

was “UNMAPPED”, which is a category assigned by HUMAnN to all reads that failed to map to 

known sequences. This feature was primarily observed in follow-up samples, however,  
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Figure 4.1. Predicted MetaCyc pathways identified via HUMAnN 3.0 indicate significant 

differences in metabolic potential between cases and follow-ups.  

(A) Three measures of alpha diversity (Richness, Shannon Diversity, and Pielou’s Evenness) are 

displayed. Each boxplot is stratified by health status with samples represented by circles (cases, 

green) or triangles (follow-ups, purple). Data points are offset from the vertical to allow for clear 

interpretation of all samples. Within each box, the median is displayed as the thick black bar; the  
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Figure 4.1 (cont’d) 

first and third quartiles are shown by the bottom and the top of each box, respectively. P-values 

displayed on the plot were calculated using the Wilcoxon signed-rank test for paired samples; 

these values are indicated above the comparison bar within each boxplot. (B) Principal 

coordinates analysis (PCoA) was performed and plotted for cases (green, circles) and follow-ups 

(purple, squares) based on Bray-Curtis dissimilarity of community level pathway abundances. 

The first and second coordinate are displayed with their respective percentage of variance 

explained. Individuals who reported use of antibiotics ≥2 weeks prior to sample collection are 

shown as triangular data points. 

suggesting that other non-microbially-mediated pathways are potentially at play in recovering 

individuals. To investigate differences in annotated pathways more comprehensively, the 

UNMAPPED category was omitted. In this analysis, rhamnose biosynthesis and histidine 

degradation were at odds with a superpathway for glycolysis, TCA, and glyoxylate bypass, 

palmitate biosynthesis, and ornithine degradation (Figure C.2A). Indeed, the continuous structure 

scores assigned to various features aid in interpreting the distribution of case and follow-up 

samples within the ordination (Figure C.2B). The KEGG modules identified by Anvi’o also 

demonstrate notable tradeoffs, with the most striking divergence appearing between 

subcategories for glycosaminoglycan, cofactor and vitamin metabolism and nitrogen metabolism 

versus polyamine biosynthesis (Figure C.3A&B). At the KEGG module level, a distinct tradeoff 

between several nitrogen metabolism pathways such as denitrification and dissimilatory nitrate 

reduction, and vancomycin resistance pathways were identified (Figure C.3C&D).  

Functional differences in metabolic pathways during and after infection 

Differential abundance of various MetaCyc pathways identified via HUMAnN was 

explored among cases and follow-ups to further assess differences in metabolic potential. As 

noted, follow-ups were defined by a high abundance of UNMAPPED reads (coef=0.13; q-

value=3.78e-14). No other affiliated features registered a coefficient above 0.01; however, when 

the UNMAPPED feature was removed, pathway differences were observed between the groups. 
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Cases, for instance, had a high abundance of multiple menaquinol biosynthesis pathways 

including menquinol-10, -6, and -7 (Figure 4.2; Table C.1) as well as palmitate biosynthesis 

(coef= -0.048; q-value= 0.0061) and glycolysis, TCA, and glyoxylate bypass (coeff= -0.047; q-

value= 1.76e-07). Follow-ups, on the other hand, had a high abundance of the L-rhamnose 

biosynthesis pathway (coeff= 0.041; q-value=2.12e-10) and UMP biosynthesis (coef= 0.036; q-

value=8.06e-08). 

Differentially abundant KEGG pathway subcategories and modules were also explored (Figure 

C.4). At the subcategory level, cases registered greater frequency of nitrogen metabolism (coef= 

-0.032 (relative to follow-ups); q-value=1.35e-12), lipopolysaccharide metabolism (coef= -

0.021; q-value=0.0015), and “Other” amino acid metabolism (coef= -0.016; q-value=0.00018). 

Interestingly, beta-lactam biosynthesis was also a defining subcategory among cases (coef= -

0.0066; q-value=0.030). Follow-ups, on the other hand, contained a higher frequency of cysteine 

and methionine metabolism (coef= 0.016; q-value=0.00116), purine metabolism (coef=0.010; q-

value=0.020), and central carbohydrate metabolism (coef=0.010; q-value=7.79e-07). The 

subcategory “Biosynthesis of other antibiotics” was also observed in follow-ups, suggesting 

residual antibiotic resistance functions upon recovery from infection (coef=0.0070; q-

value=0.046). Information specific to subcategories is discussed in Figure C.4. Additionally, 

relative abundance information for KEGG pathways is explored in Figures C.5, C.6, C.7. At the 

KEGG module level, cases were heavily represented by the denitrification pathway which 

reduces nitrate to nitrogen gas (coef= -0.024; q-value=1.22e-11). Nitrate assimilation was also 

more common in cases (coef= -0.022; q-value=5.11e-09), in addition to dissimilatory nitrate 

reduction (nitrate → ammonia) (coef= -0.022; q-value=7.25e-08). Notably, three drug resistance 

pathways (imipenem resistance via OprD, multi-drug resistance via BpeEF-OprC and MexPQ-
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OpmE) were also significantly more abundant in cases, a finding in concordance with our earlier 

work (Chapter 3). At the module level, follow-ups contained higher frequency of vancomycin 

resistance pathways, specifically the D-Ala-D-Lac type (coef=0.016; q-value=4.82e-07). They 

also demonstrated increased frequency of trehalose biosynthesis (D-glucose-1P → trehalose) 

(coef=0.015; q-value=0.0011) and beta-lactam resistance via the Bla system (coef=0.013; q-

value=9.95e-06).  

Specific metabolic pathways differ between sample groups 

As SCFA production has been indicated to play a role in host metabolic health, various 

MetaCyc pathways related to SCFA production or degradation were explored. Compounds 

relevant to butyrate, propionate, and acetate were prioritized since these have been implicated as 

beneficial compounds contributing to host health. Although the MetaCyc PWY-5100: pyruvate 

fermentation to acetate and lactate II pathway was most abundant in both sample types, it was 

associated primarily with cases (Figure 4.3; coef= -0.0069; q-value=0.027). The overall relative 

abundance was comparably low (cases=1.68e-04; follow-ups=1.22e-04); notably, though, these 

values are consistent with other relative abundance analyses completed with HUMAnN 3.0. 

Another pathway potentially involved in acetate synthesis was PWY-7254: TCA cycle VII 

(acetate-producers), which was associated with cases (Figure C.8; coef= -0.029; q-value= 

0.00069). By contrast, P163-PWY: L-lysine fermentation to acetate and butanoate, which is 

relevant to butyrate production, was associated with follow-ups (Figure C.9; coeff=0.0032; q-

value=0.022) despite the low abundance in both sample types (cases=1.27e-06; follow-

ups=3.14e-06). Other butyrate-specific pathways included PWY-5676: acetyl-CoA fermentation 
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Figure 4.2. Differentially abundant MetaCyc pathways among cases and follow-ups with UNMAPPED reads removed.  
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Figure 4.2 (cont’d) 

Using MMUPHin, differentially abundant metabolic features were detected in cases and follow-

ups. Coefficients for each MetaCyc pathway, which are shown on the y-axis, are displayed on 

the x-axis with an absolute value cutoff of >0.030. Positive coefficients indicate metabolic 

pathways with higher abundances in follow-ups (purple) while negative coefficients show 

pathways more represented among cases (green). 

to butanoate II, CENTFERM-PWY: pyruvate fermentation to butanoate, and PWY-5677: 

succinate fermentation to butanoate (Figure C.10). Although these pathways registered low 

relative abundance and were not differentially abundant between cases and follow-ups, the 

distribution of pathways among samples suggests various patterns cannot be captured by 

statistical analysis alone. Propionate production, for instance, was only identified in one 

pathway, P108-PWY: pyruvate fermentation to propanoate I, but was not associated with either 

sample type based on differential abundance. Nonetheless, some interesting patterns in 

distribution were observed for this pathway among samples and taxa (Figure C.11). All other 

pathways related to butyrate, acetate, and propionate involved degradation of these compounds. 

In agreement with our earlier results, a pathway involved in the production of palmitate, another 

relevant fatty acid in the human body, (PWY-5971: palmitate biosynthesis (type II fatty acid 

synthase)) was prevalent primarily among cases (Figure C.12).  

Various metabolites that have been linked to gut dysbiosis were also explored. For 

example, the production of lipopolysaccharide (LPS) historically connects to health issues 

related to this endotoxin. In our samples, we observed the LPSSYN-PWY: superpathway of LPS 

biosynthesis to be more abundant in cases (coef= -0.021; q-value=2.95e-14), which was 

somewhat expected due to the activity of gram-negative pathogens. When stratifying by 

pathogen linked to the acute infections, interesting differences in taxa associated with this 

pathway were observed (Figure C.13). Presence of p-Cresol, a derivative of toluene that has 

carcinogenic properties, has also been linked to reduced health in the gut. One pathway related to  
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Figure 4.3. Relative abundances of PWY-5100: pyruvate fermentation to acetate and 

lactate II among cases and follow-ups.  

Barplots show the A) relative abundance of PWY-5100 calculated by HUMAnN 3.0, and B) the 

relative abundance clustered by Bray-Curtis dissimilarity to explore clustering relevant to 

specific genera associations and abundance. The horizontal color bar on the bottom designates 

case (green) vs. follow-up (purple) samples. The ‘Contributions’ section displays genera found to 

be associated with the pathway of interest as determined by MetaPhlan 3.0; colors in the stacked 

barplots show the proportion of relative abundances for PWY-5100 attributed to that specific 

genus.  

A 

B 
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p-Cresol production, PWY-5181: toluene degradation III (aerobic) (via p-cresol) was found 

(Figure C.14). This pathway demonstrated very low abundances, however, (case=2.09e-05; 

follow-up=2.50e-06) and had a slight affiliation with cases (coef= -0.0093; q-value=0.0055). 

Untargeted metabolomics of polar metabolites reveal crucial differences between samples  

After filtering and normalization, a total of 7,916 polar features were identified among 

our infected and recovered samples. Overall, follow-ups displayed significantly greater richness 

of polar metabolites than cases (Scase=875, Sfollow=1024 p=2.28e-07; Wilcoxon signed-rank test), 

though no significant difference in Shannon diversity was observed (H’case=5.00, H’follow=5.07; 

p=0.8971). Intriguingly, cases showed greater metabolite evenness (J’case=0.739, J’follow=0.731; 

p=0.008211, respectively) (Figure C.15A). No significant differences in diversity of polar 

metabolites were observed when samples were stratified by the two predominant pathogens 

(Campylobacter and Salmonella) linked to the acute infection (Figure C.16A). PCoA based on 

Bray-Curtis dissimilarity revealed distinct clustering of polar metabolites between case and 

follow-up samples (PERMANOVA F-value=26.27; p-value=0.000999; Figure C.15B), with 

greater dispersion among cases (PERMDISP p-value=0.026). Additionally, no distinction was 

observed between the four pathogens (PERMANOVA F-value=1.260; p-value=0.1209 | 

PERMDISP p-value=0.013; Figure C.16B).  

Random forest of normalized peak intensities for polar metabolites identified various 

features that could distinguish between case and follow-up sample types (Figure C.17). The top-

30 clusters most important to health status classification are shown in Table C.2 with library IDs 

(if found). The out-of-bag estimate of error rate for our random forest classification was 5.74%, 

suggesting high accuracy in assigning health status to our sample based on metabolite 

composition (Table C.3). Cluster 313 was deemed most important in distinguishing cases from 
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follow-ups and registered a mean decrease in accuracy (MDA) score of 13.86; this compound 

was found to be elevated among cases, specifically, but did not appear to be affiliated with a 

specific pathogen (Figure C.18). The next most important compound was Cluster 2705 

(MDA=13.27), which was elevated among follow-ups with no differences in the abundances 

after stratifying by the pathogen linked to the initial infection (Figure C.19).  

Investigation of paired statistical analysis using MetaboAnalyst v5.0 further characterized 

associations between different polar features and health status. A fold-change (FC) analysis 

detected metabolites present in one group or the other (Figure 4.4; Table C.4). Of the polar 

metabolites considered, 497 were increased in follow-ups relative to cases (i.e., a positive log2FC 

value). Fewer (n=242) experienced a negative log2FC with regards to follow-ups, suggesting that 

these polar compounds play a role primarily during infection only. Notably, there were three 

clusters in the top-10 most positive FC values (associated with follow-ups) that were located in a 

molecular network with tomatidine (Figure C.20). These included Cluster 326 (log2FC=8.95; p-

value=2.42e-07), Cluster 7558 (log2FC=8.32; p-value=6.33e-07), and Cluster 1593 

(log2FC=6.93; p-value=3.76e-07). Another cluster increased in follow-ups, Cluster 2113 

(log2FC=7.72; p-value=2.27e-08), was part of a dense molecular network including the 

annotated compounds desmethylenylnocardamine and a spectral match to Nonaethylene glycol 

(Figure C.21). Cluster 2666 was also elevated in follow-ups (log2FC=6.51; p-value=3.14e-09) 

and was annotated as 1-(1Z-Hexadecenyl)-sn-glycero-3-phosphocholine (Figure C.22). Of the 

clusters displaying a negative log2FC (i.e., affiliated with cases), the strongest signals were from 

Clusters 970 (log2FC= -8.72; p-value=6.22e-09) and 221 (log2FC= -8.65; p-value=5.56e-09), 

which were located in the same molecular network. This network contained multiple annotated 

compounds, but Clusters 970 (Figure C.23) and 221 (Figure 4.5) were both directly connected to  
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Figure 4.4. Volcano plot demonstrating fold-change of polar metabolites in cases and 

follow-ups.  

Fold-change (FC) analysis was performed to explore differentially abundant metabolites among 

samples. A FC cutoff of 5.0 and false discovery rate (FDR) threshold of 0.05 were set to identify 

the strongest signals. The volcano plot displays metabolites that were significantly more 

represented in follow-ups (“Sig.Up”, red, positive log2FC) and those in cases (“Sig.Down”, blue; 

negative log2FC). The x-axis indicates the log2FC value; the y-axis shows the -log10(P) value. 

Metabolites that lacked significant associations with either group are shown as gray dots 

(“Unsig.”). The legend at the top of the plot indicates the number of metabolites in each 

category. 

Cluster 318, which was a spectral match for 1-(1Z-Octadecenyl)-sn-glycero-3-phosphocholine. 

Cluster 221 also had connections to four other nodes annotated as variations of 

glycerophosphocholine compounds including Cluster 227 (Lyso-PAF C-18), Cluster 1337 (1-

Heptadecanoyl-sn-glycero-3-phosphocholine), Cluster 6245 (1-Hexadecyl-sn-glycero-3-

phosphocholine), and Cluster 259 (sn-glycero-3-phosphocholine). Notably, each of these clusters 

were also in the top-30 most important features identified in the Random Forest classification. 

Cluster 806 (log2FC=-8.47; p-value=3.14e-09) was also case-related, and was annotated as 3-

hydroxy-2-(tetracosa-11.13.15-trienamido)octadecyl (2-(trimethylammonio)ethyl) phosphate 

(Figure C.24). Another annotated cluster strongly affiliated with cases was Cluster 313 (log2FC= 

-7.29; p-value=3.14e-09), which represented [2-hexadecanamido-3-hydroxyoctadec-4-en-1- 
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Figure 4.5. Molecular network and MS2 spectra for polar Cluster 221 and related clusters 

in case samples.  
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Figure 4.5 (cont’d) 

A molecular network constructed in GNPS (top, left) shows the interrelatedness of multiple 

metabolite clusters. Nodes are labeled with their cluster index (black) and edges are labeled with 

the associated mass difference between two connected nodes (blue). Pie-charts on each node 

indicate the proportion of that node that was found in cases (red) and follow-ups (blue). The MS2 

spectra Cluster 221 and related clusters 227, 1337, 6245, and 259 are shown (right). Four of 

these clusters were successfully annotated as a series of phosphocholines; structures for these 

compounds were generated in ChemDraw 20.1 and are shown (left).  

yl]oxy[2-(trimethylazaniumyl)ethoxy]phosphinic acid (Figure C.25). Cluster 313 was the 

strongest feature to distinguish between cases and follow-ups in the random forest model, 

highlighting the congruency between methods. However, no associations were observed between 

these clusters and relevant epidemiological data (such as hospitalization or bloody stool) using a 

Chi-square test (data not shown). 

Following FC analysis, heatmaps were generated to view not only the distribution of peak 

intensities across samples, but also clustering based on the polar metabolite compositions. 

Among the top-50 metabolic features, distinct differences in polar metabolite composition were 

observed among cases and follow-ups (Figure 4.6). Of note, too, is the clustering and separation 

of follow-ups and cases based on their metabolic composition. Importantly, there is agreement 

between the clusters affiliated with cases or follow-ups across statistical measures. For example, 

many metabolites with a high fold-change relevant to follow-ups were in high abundance in the 

follow-up cluster on the heatmap, while those with negative log2FC (case-affiliated) were in 

higher abundance among the case cluster.  

Nonpolar metabolites are distinct between infected and recovered metabolomes 

A total of 13,940 nonpolar metabolites were identified among all samples after filtering 

and normalization. In contrast to the polar compounds, nonpolar metabolites had significantly 

greater diversity across all three metrics of alpha diversity (Figure C.26A; Scase=1790,  
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Figure 4.6. Heatmap displaying abundance of the top-50 polar metabolites based on 

significance determined by paired Wilcoxon tests in cases and follow-ups.  

A heatmap generated in MetaboAnalyst 5.0 indicates the abundance of the top-50 metabolites 

among cases and follow-ups. Intensity values were scaled by feature (metabolite). The color of 

each cell represents the abundance; the darker the red, the more abundant the metabolite. Each 

column represents one sample; the color bar at the top of the heatmap designates cases (1; green) 

and follow-ups (0; red). A dendrogram was generated using the Ward algorithm to display 

sample clustering based on Euclidean distance. Rows represent metabolic features or “clusters” 

which are named on the right y-axis. A dendrogram was generated for these clusters based on 

their distribution across samples and is shown on the left y-axis. 

Sfollow=2832, p=1.53e-11; H’case=4.89, H’follow=5.96, p=1.48e-10; J’case=0.656, J’follow=0.750, 

p=6.49e-09) in the follow-up samples. No difference, however, was observed between cases 

infected with Campylobacter relative to Salmonella (Figure C.27A; SC=2021, SS=1627, p=0.032; 
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H’C=5.18, H’S=4.64, p=0.0085; J’C=0.683, J’S=0.631, p=0.024). Similar to the polar metabolites, 

the nonpolar metabolite composition was distinct for cases and follow-ups based on Bray-Curtis 

dissimilarity (PERMANOVA F-value=19.607; p-value=0.000999; Figure C.26B), and 

PERMDISP indicated a significant difference in the dispersion of points (F-value=14.903; p-

value=0.001). No clear clustering of nonpolar metabolite composition was observed after 

stratifying by pathogen (Figure C.27B; PERMANOVA F-value=1.2301, p-value=0.1189; 

PERMDISP F-value=3.263, p-value=0.019).  

The random forest analysis on filtered, normalized intensities for nonpolar metabolites 

indicated an out-of-bag estimation of error rate of 4.92% with a confusion matrix similar to polar 

compounds (Tables C.5 and C.6). Based on the mean decrease in accuracy metric (Figure C.28), 

Cluster 2659 was most important in distinguishing between cases and follow-ups during 

classification (MDA=12.34) and was more abundant in cases (Figure C.29). The next most 

important compounds were clusters 321 (MDA=11.70) and 299 (MDA=11.58), both of which 

were more highly represented in cases (Figure C.30 and C.31). Because nonpolar metabolite 

diversity differed by pathogen, a random forest analysis was also used to explore accuracy of 

metabolite classification. Notably, the out-of-bag estimation of error rate was much higher for 

this model (41.8%), which may be partially explained by the difference in sample sizes among 

all 60 cases infected with the different pathogens. Nevertheless, various metabolites could 

distinguish among infectious agents (Figure C.32). For example, Cluster 2964 had the highest 

mean decrease in accuracy (6.05) and was elevated among cases infected with Salmonella 

(Figure C.33). Clusters 6581 and 8369 also had relatively high MDA scores for this model (6.02 

and 5.69, respectively) and were each more abundant in cases infected with Campylobacter 

(Figure C.34).  
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Fold-change (FC) analysis in MetaboAnalyst v5.0 identified multiple nonpolar 

metabolites to be affiliated with cases or follow-ups (Figure 4.7; Table C.7). Of the nonpolar 

metabolites included in our FC analysis, 1,698 were increased in the recovered gut metabolomes 

(follow-ups) relative to the cases. Contrastingly, just 187 nonpolar metabolites demonstrated a 

negative log2FC, suggesting their presence solely during acute infection. The strongest 

association was for Cluster 321 (Figure C.35; log2FC= -8.46; p-value=1.38e-08), which was 

affiliated with case samples, similar to our findings generated by random forest. Interestingly, 

Cluster 321 was a singleton without a molecular network; this singularity, coupled with its lack 

of annotation, suggests it may be an important, novel metabolite connected to infection. The next 

strongest signals were for Cluster 1618 (log2FC= -7.36; p-value=4.97e-07) and Cluster 244 

(log2FC= -7.11; p-value=1.38e-08), each of which was also represented among cases. Cluster 

1618 contributed to a small molecular network of four compounds, though Cluster 244 was also 

a singleton (Figure C.36 and C.37).  

The clusters with the highest positive log2FC values, which were more abundant in 

follow-ups, included Clusters 2756 (log2FC=7.03; p-value=3.23e-07), 4470 (log2FC=6.91; p-

value=1.38e-09), and 5193 (log2FC=6.59; p-value=7.41e-08). Cluster 2756 was a part of an 

extensive molecular network comprising ten different connections. Two of these connections, 

Clusters 2739 and 4512, were annotated as chenodeoxycholic acid, suggesting that Cluster 2756 

may be involved in the metabolism of this primary bile acid (Figure 4.8). Clusters 4470 and 5193 

each had less connectivity in their respective networks (Figure C.38); additionally, none of the 

compounds in these networks could be annotated, making inference of the roles of these 

metabolites difficult.  
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Figure 4.7. Volcano plot demonstrating fold-change of nonpolar metabolites in cases and 

follow-ups.  

Fold-change (FC) analysis was performed to explore differentially abundant metabolites among 

samples. A FC cutoff of 5.0 and FDR threshold of 0.05 were set to identify the strongest signals. 

The volcano plot shows metabolites that were significantly more represented in follow-ups 

(“Sig.Up”, red, positive log2FC) and those in cases (“Sig.Down”, blue; negative log2FC).The x-

axis indicates the log2FC value; the y-axis shows the -log10(P) value. Metabolites that lacked 

significance with these parameter cutoffs are shown as gray dots (“Unsig.”). The legend at the 

top of the plot indicates the number of metabolites in each category.  

Molecular networks for the metabolites suggested to be associated with specific enteric 

infections were also explored. Cluster 2964, which was affiliated with Salmonella infections, is 

part of a small molecular network containing similarly related compounds (Figure C.39). 

Comparatively, Clusters 6581 and 8369 were elevated in Campylobacter cases and are part of an 

extensive molecular network (Figure C.40). Interestingly, a subnetwork that is more distantly 

related to these compounds was present almost exclusively in Shigella patients, though only 4 

cases were included in this analysis.  

Construction of a heatmap highlighted the most striking differences in peak intensity 

among nonpolar metabolic features in cases and follow-ups (Figure 4.9). Notably, the clustering 

of samples based on nonpolar metabolite composition nearly perfectly separates cases and  
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Figure 4.8. Molecular network and MS2 spectra for Cluster 2756 and related cluster (2739), 

which were greatly increased in follow-ups.  

A molecular network constructed in GNPS (top, left) shows the interrelatedness of multiple 

metabolite clusters. Nodes are labeled with their cluster index (black) and edges are labeled with 

the associated mass difference between two connected nodes (blue). Pie-charts on each node 

indicate the proportion of that node that was found in cases (red) and follow-ups (blue). The MS2 

spectra Cluster 2756 and a closely related cluster, 2739, are shown (right). Clusters 2739 and 

4512 (spectra not shown) were successfully annotated in GNPS as chenodeoxycholic acid; the 

structure for this compound was generated in ChemDraw 20.1 and is also shown (bottom, left).  

follow-ups with minimal overlap. The distribution of metabolic features, too, indicates a stark 

difference in composition among these sample groups. Among the metabolites included in the 

heatmap, there was only moderate agreement with the important metabolites detected via the 

random forest and FC analyses. These findings suggest that it may be difficult to attribute 

ubiquitous importance to a handful of metabolites related to recovery and intestinal health. For  
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those metabolites associated with cases, however, there was more agreement across analytical 

methods. 

 

Figure 4.9. Heatmap displaying abundance of the top-50 nonpolar metabolites based on 

significance determined by paired Wilcoxon tests in cases and follow-ups.  

A heatmap generated in MetaboAnalyst 5.0 indicates the abundance of the top-50 metabolites 

among cases and follow-ups. Intensity values were scaled by feature (metabolite). The color of 

each cell represents the abundance; the darker the red, the more abundant the metabolite. Each 

column represents one sample; the color bar at the top of the heatmap designates cases (1; green) 

and follow-ups (0; red). A dendrogram was generated using the Ward algorithm to display 

sample clustering based on Euclidean distance. Rows represent metabolic features or “clusters” 

which are named on the right y-axis. A dendrogram, which was generated for these clusters 

based on their distribution across samples, is shown on the left y-axis.  
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DISCUSSION 

Metabolic health of the human gut is undoubtedly linked to the microbiome. 

Additionally, environmental flux of the human gut related to disease state, diet, antibiotic use, or 

exercise can also greatly influence the composition of microbially-mediated metabolic pathways 

(44). It is known that gut communities demonstrating greater taxonomic diversity, which 

typically represents a healthy, homeostatic gut environment (45), would have greater metabolic 

functionality than a community with fewer members. In our analysis, functional prediction of 

microbial metabolic pathways using metagenomics data examined using two methods showed 

that patients with acute enteric infections had greater metabolic capacity during infection than 

post-recovery. This finding differs from our hypothesis that the overall metabolic capacity, or 

number of pathways, would be similar or lower during an infection. Similarly, Dash et al. (2021) 

(46) showed that individuals with Type 2 diabetes mellitus displayed significantly higher 

metabolic pathway richness than healthy people, though the connection between disease state, 

microbiota composition, and pathway abundance was not clear. Our corresponding LC/MS 

analysis of actual metabolite profiles on the same set of samples, however, showed increased 

metabolic diversity among the recovered follow-up samples, which is opposite the trend shown 

in our pathway prediction data. In addition to these discrepancies, the overlap among predicted 

microbial metabolic pathways and the identified metabolites was relatively scant, which is 

somewhat expected. While functional prediction of microbial metagenomes allows us to 

visualize metabolic capacities among gut microbes, untargeted metabolomics captures the entire 

metabolic chemistry of the gut environment, microbially-related or not. Because untargeted 

metabolomics picks up human-, drug- and food-derived compounds along with microbial-

derived molecules, this method will inherently provide differing results than our metagenome 

analysis, which is solely based on microbial composition. Yet, the comparison of functional 
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prediction with known metabolite signatures enables us to further characterize the importance (or 

lack thereof) of these microbial functions in the gut metabolome. In addition to highlighting the 

importance of comparing multiple characterization methods, these observed differences also 

indicate that enhanced diversity of host-derived metabolites is important for human health. 

It is likely that the change in microbial composition during infection influences the 

abundance of metabolic pathway genes detected as was demonstrated through our predictive 

search. For example, we previously showed that individuals with enteric infection exhibit a 

marked increase in ARGs harbored by members of Enterobacteriaceae such as Escherichia and 

Klebsiella (Chapter 3). Moreover, this increase was correlated with enhanced abundance of these 

genera during infection regardless of the pathogen (25, 26). The overgrowth of 

Enterobacteriaceae and E. coli, in particular, has previously been documented as a result of the 

host-mediated inflammatory response (47). In fact, Winter et al. (2013) (48) demonstrated that 

nitrate, which is host-generated during inflammation, confers a growth advantage to members of 

Enterobacteriaceae, which are capable of degrading non-fermentable substrates unlike many 

commensal anaerobes. Indeed, many pathways elevated among cases include signatures of 

nitrogen metabolism related to nitrate reduction (Figure C.41), amino acid regulation, and amino 

acid biosynthesis. For instance, multiple arginine and ornithine pathways were detected (Figure 

C.42 and C.43); these compounds are precursors for nitric oxide (NO) and polyamines (such as 

putrescine), respectively (49). Both nitric oxide and ornithine have been implicated for their role 

in altering gut microbiota composition as well as gut metabolism in a prior study (50). 

Specifically, the presence of NO was shown to favor the overgrowth of Enterobacteriaceae and 

modified amino acid composition and concentration; NO also led to decreased abundance of 

beneficial SCFA-producing bacteria such as F. prausnitzii (50). In concordance with these 
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findings, the overrepresentation of metabolic pathways related to enhanced Enterobacteriaceae 

growth in case samples highlights the importance of these pathways during infection.  

Some other notable pathways among infected cases included multiple menaquinol 

synthesis pathways. Menaquinols are the reduced form of menaquinones, which play crucial 

roles in the bacterial cell membrane to facilitate electron transfer and oxidative phosphorylation 

(51). Menaquinones are synonymous with vitamin K2, an essential nutrient in humans. Despite 

its importance in human health, increased levels of vitamin K have been implicated in various 

disease states such as Type 2 diabetes (46). Other studies have explored the association of 

elevated menaquinone synthesis to intestinal inflammation, particularly related to obesity (52, 

53); however, these studies failed to find a connection between increased menaquinol 

concentrations and inflammation. It has been shown that protein families involved in vitamin K 

synthesis are noticeably reduced in patients with IBD (54). This lack of consensus regarding the 

myriad roles of menaquinone in the gut environment make interpretation of our results difficult. 

However, from a microbial perspective rather than through the lens of human health, the increase 

in menaquinol synthesis during enteric infection seems plausible. As mentioned prior, 

menaquinones enable respiration via electron transfer. It has also been found that these 

molecules can serve as antioxidants and may protect bacterial cell membranes from harmful 

oxidation (55). Given that enteric infection typically results in inflammation that can lead to 

increased luminal oxygen (56), the enhanced prevalence of pathways producing compounds to 

assist in survival of such conditions is comprehensible. 

Another interesting finding among cases was the increased prevalence of the glycolysis, 

pyruvate dehydrogenase, tricarboxylic acid cycle, and glyoxylate bypass superpathways, which 

were detected using both predictive methods. Accordingly, Perez-Cobas et al. (2013) (57) found 
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that proteins for these metabolic pathways were enhanced in individuals who had recently 

received antibiotics; they hypothesized that this enhancement was due to a community response 

to fluctuating nutrient supply and stress, resulting in an overcompensation in carbohydrate 

metabolism. In particular, the increased prevalence of glyoxylate bypass is of great relevance, as 

this pathway enables microbes to use a variety of substrates for central carbon metabolism 

including fatty acids, alcohols, esters, alkenes, and other compounds (51). Given that antibiotic 

treatment is a known factor causing disturbance in the gut community, it is plausible that 

disruption caused by an infectious pathogen would result in a similar effect. Indeed, our 

metabolic pathway prediction harbored many results in line with previous findings relevant to a 

disrupted gut environment. 

Compared to the metabolic pathway prediction analyses, our untargeted metabolomics on 

polar and nonpolar metabolites uncovered distinct metabolic profiles among cases and follow-

ups. One prevalent group of compounds identified was a series of glycerophosphocholines, 

which were assigned to at least six annotated molecules (e.g., Clusters 806, 318, 227, 259, 1337, 

and 6245). Although these compounds were detected in all samples regardless of health status, 1-

(1Z-Hexadecenyl)-sn-glycero-3-phosphocholine was found primarily in follow-ups. Others 

including 1-(1Z-Octadecenyl)-sn-glycero-3-phosphocholine, Lyso-PAF C-18, 1-Heptadecanoyl-

sn-glycero-3-phosphocholine, 1-Hexadecyl-sn-glycero-3-phosphocholine, and sn-glycero-3-

phosphocholine, were more highly represented among cases. In support of these findings, our 

metagenomics pathway prediction pipeline also identified a phosphatidyl choline acyl editing 

pathway, PWY-6803, to be more abundant in cases along with an overall enhanced capacity for 

lipid and fatty acid metabolism (Figure C.44). Indeed, glycerophosphocholines are required in 

the synthesis of phosphatidylcholine, an abundant phospholipid that plays an important role in 
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lipid metabolism throughout the body (58); hence, enhanced abundance of these factors during 

infection is plausible. While choline is an essential nutrient that assists with healthy brain 

function, cell signaling, lipid movement, and metabolism (59), it can also be metabolized by 

anaerobic bacteria in the gut, resulting in the generation of trimethylamine (TMA) (60). TMA 

can subsequently be metabolized by the host to form trimethylamine N-oxide (TMAO), a 

compound linked to various human pathologies such as cardiovascular disease (61). Although 

TMA or TMAO were not detected, two trimethyl-ammonium-related products were identified in 

the polar metabolite analysis. One of these compounds, 3-hydroxy-2-(tetracosa-

11.13.15)octadecyl (2-(trimethylammonio)ethyl) phosphate, represented by Cluster 806, was 

elevated in cases. The other compound, [2-hexadecanamido-3-hydroxyoctadec-4-en-1-yl]oxy[2-

(trimethylazaniumyl)ethoxy]phosphinic acid, assigned as Cluster 313, was important for 

differentiating cases from follow-ups, suggesting its significance in the infected gut. Since 

Cluster 313 was found in virtually all (n=58; 95.1%) samples, no associations were observed for 

markers of disease severity (e.g., presence of bloody stool or hospitalization) as well as 

demographic variation (e.g., age, sex, residence type). Although further characterization of these 

compounds is needed to define a potential role in TMA(O) metabolism, their presence in most 

cases and in only 19 of the follow-ups highlights an association with acute infection that requires 

investigation in the future.  

Other notable findings in sample metabolomes include Clusters 326, 7558, and 5193, 

which contributed to an overlapping molecular network that included a distant cluster with the 

annotation for tomatidine. Each of these clusters, including the annotated cluster, were found 

predominantly in follow-ups and may be indicators for a healthy gut. Specifically, tomatidine 

was found in a majority of recovered patients (66%) with elevated average relative intensity 
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compared to cases (0.048% vs. 0.0017%, respectively). Tomatidine is a glycoalkaloid compound 

produced by members of the Solanaceae family which includes tomatoes. Tomatidine is 

notorious for its benefits to human health and has widely been studied for its role in inhibiting 

atrophy of skeletal muscle (62, 63). However, this compound has also been implicated for its 

antimicrobial effects, particularly against Staphylococcus aureus (64-66). Moreover, Guthrie et 

al. (2019) (67) determined that tomatidine is structurally similar to taurochenodeoxycholic acid 

(TCDCA), a conjugated bile acid with antimicrobial activity in the gut, and hence, they 

hypothesized that the antimicrobial nature of tomatidine may include acidification of bacterial 

cells. Although the impact of tomatidine in the gut is not known, its presence in a majority of 

recovered patients is intriguing and may indicate that this compound is a facet of a healthy, 

homeostatic gut environment, a hypothesis that requires further investigation.  

The identification of Cluster 2113, which was related to desmethylenylnocardamine, was 

also found primarily among follow-up samples. This compound is a cyclic peptide that was 

originally isolated from marine species of Streptomyces and found to demonstrate slight 

inhibition of sortase B, an enzyme responsible for modifying cell surface proteins (68). Another 

study by Shaaban et al. (2014) (69) isolated desmethylenylnocardamine from a different 

Streptomyces strain while searching for large antifungal macrolide compounds known as 

venturicidins. Isolation of this compound in conjunction with known macrolides potentially 

implicates its use as an antimicrobial secondary metabolite in the gut. Although Streptomyces is 

primarily recognized as a soil bacterium, the presence of this microbe in the human gut is not 

unprecedented; in fact, Streptomyces have been shown to benefit the human host through 

production of immune-related regulatory metabolites (70). Therefore, our finding of 
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desmethylenylnocardamine among follow-ups suggests that production of various antimicrobial 

secondary metabolites could also be a facet of a recovered, healthy gut.  

The prevalence of Cluster 2756 among follow-ups is also intriguing. Although this 

cluster could not be annotated, our analysis showed connections to Clusters 2739 and 4512, 

which represent chenodeoxycholic acid (CDCA), a naturally occurring bile acid (BA) produced 

in the liver that assists with cholesterol breakdown (71). Microbes in the gut are known to 

facilitate important biotransformations of bile acids, among other molecules (72). Specifically, 

members of Eubacterium and Clostridium can perform 7α-dehyrdoxylation, the process that 

converts CDCA to the secondary bile acid lithocholic acid (73). Duboc et al. (2012) (22) found 

that individuals experiencing diarrhea-predominant irritable bowel syndrome (IBS) had 

significantly more primary BAs than their healthy counterparts, emphasizing the importance of 

microbial conversion of primary to secondary BAs. In our analysis, Clusters 2756, 2739, and 

4512 were all elevated among recovered patients, a finding that is somewhat contradictory to the 

results of Duboc et al. (2012); indeed, Cluster 2756 was present in most follow-ups (n=58; 

95.1%) with a much higher average relative intensity than cases (3.0% vs. 0.62%). Additionally, 

the number of days between infection and follow-up was investigated to determine if timing was 

associated with the observed intensity of this compound. A relative intensity threshold of 0.05 

was established; ten follow-ups contained Cluster 2756 with intensities at or above this value. Of 

these 11 individuals, the average number of follow-up days was 93.5, whereas the average for 

the remaining 50 follow-ups (relative intensity < 0.05) was 110 days. Although this association 

was not explored statistically, these trends provide interesting connections worth greater 

investigation. Furthermore, lithocholic acid, the secondary BA produced from CDCA, was also 

more commonly detected among follow-ups, albeit modestly (data not shown). Therefore, it is 
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possible that the entirety of this biotransformation pathway is more prevalent among follow-ups 

relative to cases may be related to time since infection. Future work is required to determine the 

relationship between these compounds and recovery from enteric infection. 

It is important to note that this study along with other studies that utilize untargeted 

metabolomics via LC/MS are limited in that many polar and nonpolar compounds identified are 

unknown and have yet to be characterized (74). While this lack of annotation limits our ability to 

make biologically sound conclusions, particularly about infected vs. recovered gut states, 

observing the compositional differences among infected and recovered metabolomes still holds 

meaning. For example, each compound isolated through this study registered unique MS2 

spectra, and hence, they may be characterized in the future. Even without structural 

characterization, these unknown compounds’ relationship to known metabolites via molecular 

networking analysis enables us to infer their contribution to the human gut metabolome, possibly 

serving as precursors or intermediates in known pathways. And, more abstractly, comparing 

metabolite compositions from a birds-eye view further enhances our understanding of how 

enteric infection can influence the gut microbial community; though we may not know 

specifically which metabolites are changing in abundance, we can confidently assert that 

infection does play an important role in dictating the gut’s metabolic capacity.  

 While this study focuses primarily on exploring potential functions of the gut microbiota 

and characterizing the overall gut metabolome, further investigation of these data is encouraged. 

A plausible future direction for this work is to integrate microbiome data such as taxonomic 

classification or gene annotation with the metabolomics data described. Previous work has 

demonstrated that integration of these two ‘omics techniques (metagenomics and metabolomics) 

can provide a much more comprehensive understanding of the human gut environment. For 
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example, The Human Microbiome Consortium (2012) (75) demonstrated that individuals with 

differing microbiome compositions shared a majority of metabolic pathways identified. 

Similarly, Visconti et al. (2019) (76) captured metabolic similarities among people while also 

characterizing associations between various microbial taxa, predicted pathways, and fecal 

metabolite frequency. Further clarifying these links between microbial composition, metabolic 

pathway prediction, and metabolite abundance will be an important addition to advance our 

understanding of changes in the gut environment related to enteric infection.  

Indeed, gut microbial communities are known to undergo notable change after 

experiencing a disturbance such as antibiotic treatment, modified diet, or enteric infection. 

Previously, we demonstrated that enteric infection is associated with severe changes in both 

taxonomic and resistance gene composition. In this study, we have shown that stools of patients 

during enteric infection not only display different functional potential via pathway prediction, 

but also contain markedly different metabolites than stools collected from the same patients upon 

recovery. While cases registered higher diversity of metabolic pathways, recovered communities 

appeared to have greater overall diversity of metabolites. Our use of functional prediction via 

metagenome analyses coupled with untargeted LC/MS metabolomics strengthens our ability to 

comprehensively define the impacts of enteric infection on microbiota within the human gut. 

While interpretation of metabolites identified via untargeted metabolomics is currently difficult 

due to limited compound annotation, observing patterns of diversity as well as abundance and 

intensity among infected and recovering individuals is quite meaningful. Indeed, future work 

with these data should consider integrating other ‘omics techniques, as connecting specific 

microbial features to metabolite composition will further our comprehension of this complex 

interplay between pathogens, resident gut microbiota, and the human host.  
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Table C.1. Differentially abundant metabolic pathways in cases and follow-ups predicted by HUMAnN 3.0. 

Feature Class Coefficient STD_error p_value q_value 

DTDPRHAMSYN-PWY: dTDP-&beta;-L-rhamnose 

biosynthesis FollowUp 0.041156056 0.006211572 3.46E-11 2.12E-10 

PWY-5686: UMP biosynthesis I FollowUp 0.035655917 0.006356094 2.03E-08 8.06E-08 

PWY-7219: adenosine ribonucleotides de novo 

biosynthesis FollowUp 0.034887861 0.003781554 2.81E-20 7.24E-19 

PWY-5030: L-histidine degradation III FollowUp 0.033188933 0.005492083 1.51E-09 7.48E-09 

NONMEVIPP-PWY: methylerythritol phosphate 

pathway I FollowUp 0.032789846 0.004873582 1.72E-11 1.09E-10 

COA-PWY-1: superpathway of coenzyme A 

biosynthesis III (mammals) FollowUp 0.032567147 0.002940853 1.68E-28 2.16E-26 

HISTSYN-PWY: L-histidine biosynthesis FollowUp 0.031755177 0.003809123 7.64E-17 1.13E-15 

COA-PWY: coenzyme A biosynthesis I (prokaryotic) FollowUp 0.031638381 0.004681204 1.39E-11 9.12E-11 

PWY-4242 FollowUp 0.031355838 0.003948359 2.00E-15 2.08E-14 

PWY-7221: guanosine ribonucleotides de novo 

biosynthesis FollowUp 0.031225219 0.004598069 1.11E-11 7.41E-11 

PWY0-781: aspartate superpathway Case 

-

0.043439605 0.006944825 3.98E-10 2.10E-09 

PWY-5675: nitrate reduction V (assimilatory) Case 

-

0.044108903 0.008529998 2.33E-07 7.62E-07 

TCA-GLYOX-BYPASS: superpathway of glyoxylate 

bypass and TCA Case 

-

0.044534629 0.007730492 8.37E-09 3.51E-08 

PWY-6285: superpathway of fatty acids biosynthesis 

(E. coli) Case 

-

0.045517033 0.01202773 0.000154116 0.000345866 

PWY-5860: superpathway of demethylmenaquinol-6 

biosynthesis I Case 

-

0.045902337 0.005512658 8.31E-17 1.19E-15 

GLYCOLYSIS-TCA-GLYOX-BYPASS: superpathway 

of glycolysis, pyruvate dehydrogenase, TCA, and 

glyoxylate bypass Case 

-

0.047280305 0.008658842 4.75E-08 1.76E-07 

PWY-5840: superpathway of menaquinol-7 

biosynthesis Case -0.04744992 0.007936726 2.25E-09 1.06E-08 
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Table C.1. (cont’d)      

PWY-5971: palmitate biosynthesis (type II fatty acid 

synthase) Case -0.04757056 0.016197457 0.003314946 0.006151775 

PWY-5850: superpathway of menaquinol-6 

biosynthesis Case -0.05010986 0.006165949 4.41E-16 5.00E-15 

PWY-5896: superpathway of menaquinol-10 

biosynthesis Case -0.05010986 0.006165949 4.41E-16 5.00E-15 
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Table C.2. Top-30 polar clusters most important to health status classification via random forest.  

Cluster Library ID RT MZ 

Mean Decrease 

Accuracy 

Cluster313 

{[2-hexadecanamido-3-hydroxyoctadec-4-en-1-yl]oxy}[2-

(trimethylazaniumyl)ethoxy]phosphinic acid 3.9226 725.5561 13.86255853 

Cluster2705 N/A 4.4761 480.3523 13.26895851 

Cluster6376 N/A 4.638 321.1442 12.89567889 

Cluster830 N/A 3.9304 701.5587 12.86589776 

Cluster7812 N/A 1.6002 289.1178 12.76648721 

Cluster221 N/A 4.056 592.4691 12.24319532 

Cluster2762 N/A 3.7288 299.1246 11.87208286 

Cluster2587 N/A 4.4918 480.3526 11.28914703 

Cluster2666 

Spectral Match to 1-(1Z-Hexadecenyl)-sn-glycero-3-

phosphocholine from NIST14 4.4685 480.3522 11.09808904 

Cluster6701 N/A 4.1263 336.1561 11.08651731 

Cluster5083 N/A 3.7115 299.1246 11.05404386 

Cluster970 N/A 4.0823 564.4384 10.72343845 

Cluster6130 N/A 4.5821 313.186 10.71071175 

Cluster5571 N/A 7.7265 626.6993 10.61969179 

Cluster7788 

Spectral Match to N-Tetracosenoyl-4-sphingenyl-1-O-

phosphorylcholine from NIST14 3.7916 813.6829 10.03043212 

Cluster3575 N/A 1.8936 972.7333 9.172266376 

Cluster7753 N/A 1.1968 354.1845 9.041261073 

Cluster2039 N/A 1.7524 720.5929 8.924073237 

Cluster224 

Spectral Match to N-Tetracosenoyl-4-sphingenyl-1-O-

phosphorylcholine from NIST14 3.781 813.6829 8.911454958 

Cluster252 Sphingomyelin (18:1/14:0) 3.9588 675.5429 8.766568483 

Cluster4192 N/A 5.1719 335.178 8.762194276 

Cluster6762 N/A 3.9427 689.5583 8.738426824 

Cluster442 N/A 4.0508 618.4853 8.572093642 

Cluster393 N/A 7.6641 310.8303 8.527643158 

Cluster337 N/A 3.9406 689.5582 8.463004595 
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Table C.2 (cont’d)     

Cluster956 

3-hydroxy-2-(tetracosa-11.13.15-trienamido)octadecyl (2-

(trimethylammonio)ethyl) phosphate 3.7938 811.6677 8.416119788 

Cluster4775 N/A 1.1349 294.0923 8.375957668 

Cluster5399 N/A 7.7335 264.8498 8.186101641 

Cluster2700 N/A 4.8821 286.1401 8.04330702 

Cluster1988 N/A 4.8702 296.0985 8.028849738 

     

 

 

 

 

Table C.3. Confusion matrix for classification of samples by health status generated by random forest on polar metabolites.  

OOB estimate of error rate: 

5.74%  

    

  CASE FOLLOW Class Error 

CASE 56 5 0.08196721 

FOLLOW 2 59 0.03278689 
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Table C.4. Output generated by fold-change analysis exploring differentially abundant 

polar metabolites among cases and follow-ups.  

Fifty clusters displaying the most positive (n=25) and most negative (n=25) FC are displayed.  

Feature FC log2(FC) q-value Log(10)P 

Cluster326 494.41 8.9496 2.42E-07 6.6165 

Cluster3942 321.24 8.3275 5.77E-08 7.2391 

Cluster7558 320.2 8.3228 6.33E-07 6.1989 

Cluster2113 211.01 7.7211 2.27E-08 7.6435 

Cluster2762 186.29 7.5414 3.14E-09 8.5037 

Cluster5083 164.61 7.3629 5.17E-09 8.2865 

Cluster6871 145.09 7.1808 2.11E-08 7.6765 

Cluster7362 129.9 7.0213 5.62E-09 8.2506 

Cluster2700 128.7 7.0079 3.14E-09 8.5037 

Cluster1593 121.81 6.9285 3.76E-07 6.4248 

Cluster7597 119.53 6.9012 4.35E-08 7.3612 

Cluster2705 96.772 6.5965 3.14E-09 8.5037 

Cluster2587 94.185 6.5574 3.14E-09 8.5037 

Cluster2666 91.314 6.5128 3.14E-09 8.5037 

Cluster1988 90.051 6.4927 8.29E-08 7.0813 

Cluster4096 82.075 6.3589 1.63E-08 7.7877 

Cluster7716 81.402 6.347 3.95E-09 8.4029 

Cluster4682 78.59 6.2963 1.72E-08 7.7649 

Cluster6067 75.364 6.2358 2.11E-08 7.6765 

Cluster7753 72.902 6.1879 5.11E-09 8.2918 

Cluster6879 71.764 6.1652 2.50E-08 7.6013 

Cluster6679 70.057 6.1304 2.65E-08 7.5768 

Cluster6208 69.231 6.1133 8.29E-08 7.0814 

Cluster4872 67.704 6.0812 2.26E-08 7.645 

Cluster6696 66.263 6.0501 2.77E-08 7.5572 

Cluster5651 0.013454 -6.2158 7.19E-09 8.1432 

Cluster548 0.013009 -6.2644 0.00032363 3.49 

Cluster662 0.012686 -6.3006 2.48E-08 7.605 

Cluster3566 0.011898 -6.3932 2.32E-07 6.6339 

Cluster1265 0.01167 -6.421 1.45E-08 7.8386 

Cluster442 0.011572 -6.4332 2.94E-08 7.5313 

Cluster7788 0.011335 -6.4631 5.98E-09 8.223 

Cluster224 0.01124 -6.4752 5.17E-09 8.2865 

Cluster336 0.010857 -6.5252 6.66E-09 8.1764 

Cluster278 0.010694 -6.547 5.17E-09 8.2865 

Cluster4329 0.010688 -6.5479 7.19E-09 8.1432 

Cluster294 0.010484 -6.5756 7.19E-09 8.1432 

Cluster307 0.009564 -6.7082 2.39E-08 7.6218 

Cluster393 0.008196 -6.9309 5.47E-09 8.2623 

Cluster3575 0.007853 -6.9926 7.19E-09 8.1432 
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Table C.4 (cont’d)     

Cluster2039 0.007502 -7.0586 4.13E-08 7.3845 

Cluster1882 0.006402 -7.2873 4.15E-09 8.3823 

Cluster313 0.006393 -7.2892 3.14E-09 8.5037 

Cluster830 0.006279 -7.3153 3.14E-09 8.5037 

Cluster1770 0.00586 -7.4149 3.14E-09 8.5037 

Cluster956 0.0049 -7.673 5.17E-09 8.2865 

Cluster500 0.004843 -7.6898 7.19E-09 8.1432 

Cluster806 0.002829 -8.4656 3.14E-09 8.5037 

Cluster221 0.002491 -8.6493 5.56E-09 8.2551 

Cluster970 0.002375 -8.7177 6.22E-09 8.206 
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Table C.5. Top-30 nonpolar clusters most important to health status classification via 

random forest. 

Cluster LibraryID RT MZ MeanDecreaseAccuracy 

Cluster2659 N/A 4.5341 400.1219 12.34109358 

Cluster321 N/A 1.1114 398.0681 11.69941273 

Cluster299 N/A 2.8292 419.8553 11.58190455 

Cluster244 N/A 5.2053 273.0909 11.26608259 

Cluster70 N/A 4.5345 356.0663 10.9058924 

Cluster11528 N/A 3.6763 327.0995 10.75545454 

Cluster2634 N/A 6.2441 355.063 10.67215235 

Cluster1615 384 4.5333 355.0632 10.6557956 

Cluster420 N/A 4.5342 471.9906 10.33994613 

Cluster13515 N/A 2.8299 419.8553 9.504268644 

Cluster4470 N/A 4.3358 353.2064 8.74183389 

Cluster4988 384 4.7124 355.0633 8.661024763 

Cluster4596 N/A 5.5299 450.3426 8.563009156 

Cluster10112 N/A 6.2456 372.0897 8.357792042 

Cluster1795 N/A 2.8266 322.9212 8.351389966 

Cluster2430 N/A 7.5465 598.2675 7.876945288 

Cluster1244 N/A 9.1037 520.3754 7.84221535 

Cluster6467 N/A 5.0792 417.2017 7.77855293 

Cluster4492 N/A 3.7583 327.13 7.720679607 

Cluster8559 N/A 2.6672 507.9757 7.71737409 

Cluster10787 N/A 3.3183 341.1744 7.679961302 

Cluster12515 N/A 2.8462 285.1079 7.610383406 

Cluster7782 N/A 4.5287 321.2899 7.594279345 

Cluster3630 N/A 4.661 337.1754 7.574973534 

Cluster1711 N/A 8.2844 626.2965 7.498791559 

Cluster2683 N/A 3.7665 429.9303 7.403677586 

Cluster2673 N/A 3.7657 215.9474 7.193631343 

Cluster11359 N/A 7.6155 542.403 7.088795545 

Cluster4287 N/A 5.1179 470.2282 7.064229725 

Cluster9063 N/A 4.662 337.1755 7.035665411 



286 

 

Table C.6. Confusion matrix for classification of samples by health status generated by 

random forest on nonpolar metabolites.  

OOB estimate of  error rate: 

4.92%  

    

  CASE FOLLOW Class Error 

CASE 56 5 0.08196721 

FOLLOW 1 60 0.01639344 

 

 

 

 

Table C.7. Output generated by fold-change analysis exploring differentially abundant 

nonpolar metabolites among cases and follow-ups.  

Fifty clusters displaying the most positive (n=25) and most negative (n=25) FC are displayed.  

Feature FC log2(FC) q-value Log(10)P 

Cluster2756 130.7 7.0301 3.23E-07 6.4908 

Cluster4470 120.25 6.9098 1.38E-08 7.8587 

Cluster5193 96.167 6.5875 7.41E-08 7.1304 

Cluster9173 89.224 6.4794 1.74E-08 7.7582 

Cluster9161 86.561 6.4357 1.65E-08 7.7834 

Cluster9433 86.488 6.4344 2.12E-08 7.6734 

Cluster4097 83.748 6.388 1.71E-08 7.7683 

Cluster12321 76.312 6.2538 1.63E-08 7.787 

Cluster3182 76.29 6.2534 2.48E-08 7.6061 

Cluster4146 75.869 6.2454 1.74E-08 7.7582 

Cluster3981 72.755 6.185 1.89E-08 7.7235 

Cluster10015 71.128 6.1524 2.93E-08 7.5338 

Cluster4104 70.555 6.1407 2.17E-05 4.6637 

Cluster4268 68.718 6.1026 1.38E-08 7.8587 

Cluster8854 67.822 6.0837 2.05E-08 7.6888 

Cluster3975 66.808 6.062 3.68E-08 7.4343 

Cluster6467 65.861 6.0414 2.16E-08 7.666 

Cluster5095 65.406 6.0313 1.09E-07 6.9621 

Cluster5140 64.994 6.0222 1.41E-08 7.85 

Cluster4360 64.12 6.0027 7.90E-06 5.1024 

Cluster9185 62.779 5.9722 1.98E-08 7.7041 

Cluster13564 60.809 5.9262 9.94E-08 7.0028 

Cluster6841 58.589 5.8726 1.38E-08 7.8587 

Cluster4438 57.866 5.8546 2.48E-08 7.6061 

Cluster8582 56.592 5.8225 4.97E-08 7.3034 
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Table C.7 (cont’d) 

Cluster10112 0.019187 -5.7037 1.38E-08 7.8587 

Cluster70 0.018407 -5.7636 1.38E-08 7.8587 

Cluster2134 0.018401 -5.7641 2.16E-08 7.666 

Cluster1966 0.016446 -5.9261 2.41E-08 7.6188 

Cluster2248 0.015764 -5.9872 5.07E-08 7.2947 

Cluster7969 0.014679 -6.0901 2.37E-07 6.6255 

Cluster6701 0.014623 -6.0956 1.80E-08 7.7438 

Cluster4203 0.014186 -6.1394 3.48E-07 6.4587 

Cluster2659 0.013127 -6.2514 1.38E-08 7.8587 

Cluster1229 0.011217 -6.4781 1.64E-08 7.786 

Cluster1377 0.010914 -6.5177 1.38E-08 7.8587 

Cluster2683 0.009897 -6.6588 1.72E-08 7.7633 

Cluster1756 0.008984 -6.7984 3.55E-08 7.4504 

Cluster2137 0.008848 -6.8205 1.13E-07 6.9454 

Cluster11997 0.008789 -6.8301 9.72E-08 7.0123 

Cluster1232 0.008342 -6.9054 1.44E-07 6.8412 

Cluster420 0.00821 -6.9283 1.38E-08 7.8587 

Cluster1279 0.008205 -6.9293 3.17E-08 7.4986 

Cluster2029 0.007836 -6.9956 2.16E-07 6.6658 

Cluster1711 0.007814 -6.9998 1.38E-08 7.8587 

Cluster1244 0.007526 -7.054 1.38E-08 7.8587 

Cluster4988 0.007483 -7.0622 1.38E-08 7.8587 

Cluster244 0.007219 -7.114 1.38E-08 7.8587 

Cluster1618 0.00609 -7.3593 4.97E-07 6.304 

Cluster321 0.002848 -8.4558 1.38E-08 7.8587 
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Figure C.1. Metabolic diversity of KEGG modules significantly differs among patients 

during infection and after recovery.  

(A)Three measures of alpha diversity (Richness, Shannon Diversity, and Pielou’s Evenness) are 

displayed. The total number of metabolic modules was significantly greater in cases than follow-

ups (Scase=231, Sfollow=224 p=0.0124; Wilcoxon signed-rank test), with cases displaying a more 

diverse and even metabolic capacity (H’case=5.02, H’follow-up=4.96; p=2.41e-09 and J’case=0.923, 

J’follow-up=0.918; p=0.0049, respectively). Each boxplot is stratified by health status with samples 

represented by circles (cases, green) or triangles (follow-ups, purple). Data points are offset from 

the vertical to allow for clear interpretation of all samples. Within each box, the median is 

displayed as the thick black bar; the first and third quartiles are shown by the bottom and the top  
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Figure C.1 (cont’d) 

of each box, respectively. P-values displayed on the plot were calculated using the Wilcoxon 

signed-rank test for paired samples; these values are indicated above the comparison bar within 

each boxplot. (B) Principal coordinates analysis (PCoA) was performed and plotted for cases 

(green, circles) and follow-ups (purple, squares) based on Bray-Curtis dissimilarity of KEGG 

module frequencies. A difference in the metabolic module composition (beta-diversity) was 

observed (PERMANOVA, F=9.33; p=0.000999) but the level of dispersion was also 

significantly different between case and follow-up samples (PERMDISP, F=29.52; p=0.001). 

The first and second coordinate of the PCoA are displayed with their respective percentage of 

variance explained. Individuals who reported use of antibiotics ≥2 weeks prior to sample 

collection are shown as triangular data points. 
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Figure C.2. Investigation of continuous structure within pathways identified by HUMAnN 

3.0 reveals metabolic tradeoffs.   

MMUPHin was used to identify metabolic features contributing to continuous structure among 

cases and follow-ups. (A) MetaCyc pathways determined to comprise the top consensus loadings 

of the multidimensional scaling plot are shown; colors have been assigned to the loadings based 

on their presumed “likeness” related to findings via differential abundance analysis (case-

like=dark grey; follow-up-like=light grey). (B) Composition gradients are shown overlaid on 

ordination plots based on Bray-Curtis dissimilarity of pathway relative abundances among cases 

and follow-ups. Cases (circles) and follow-ups (squares) are shown in addition to individuals 

reporting use of antibiotics (triangles). The color gradient (“Score”) indicates the continuous 

structure score related to “Loading 1”, the top loading affiliated with the PCA. Considering the 

top loadings plots with the gradient-labeled ordination plots enable interpretation of metabolic  
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Figure C.2 (cont’d) 

tradeoffs driving the observed distribution of points. For example, we observe a notable tradeoff 

between metabolic profiles dominated by rhamnose biosynthesis and histidine degradation and 

those with heavy signatures of glycolysis and glyoxylate bypass, ornithine degradation, and 

palmitate synthesis. 
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Figure C.3. Investigation of continuous structure within module compositions reveals metabolic tradeoffs.   
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Figure C.3 (cont’d) 

MMUPHin was used to identify metabolic features influencing the distribution of points 

observed in the earlier ordination plots. KEGG subcategories (A) and modules (C) determined to 

comprise the top consensus loadings of the multidimensional scaling plot are shown; colors have 

been assigned to the loadings based on their presumed “likeness” related to findings via 

differential abundance analysis (case-like=green; follow-up-like=purple). Composition gradients 

for subcategory (B) and module (D) are shown overlaid on ordination plots based on Bray-Curtis 

dissimilarity at the subcategory or module level, respectively. Cases (circles) and follow-ups 

(squares) are shown in addition to individuals reporting use of antibiotics (triangles). The color 

gradient (“Score”) indicates the continuous structure score related to “Loading 1”, the top 

loading affiliated with the PCA. Considering the top loadings plots with the gradient-labeled 

ordination plots enable interpretation of metabolic tradeoffs driving the observed distribution of 

points. For example, at the subcategory level, we observe a notable tradeoff between metabolic 

profiles dominated by glycosaminoglycan metabolism and those dominated by nitrogen 

metabolism. 
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Figure C.4. Metabolic subcategories and modules demonstrate different frequencies among 

cases and follow-ups.   

Differentially frequent metabolic features were defined using MMUPHin. Coefficients for 

KEGG subcategories (A) or modules (B) are displayed on the x-axis with an absolute value 

cutoff of >0.012. Positive coefficients indicate metabolic pathways with higher frequencies in 

follow-ups (purple) while negative coefficients show pathways more represented among cases 

(green). The metabolic subcategory or module is shown on the y-axis.  
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Figure C.5. Relative abundance of KEGG metabolic categories is consistent across cases 

and follow-ups.  

Twelve metabolic categories are depicted in the relative abundance plots for cases (top) and 

follow-ups (bottom). Metabolic categories were consistent among the two sample types, with 

carbohydrate metabolism displaying the highest relative abundance (cases=22.1%; follow-

ups=22.7%), followed by metabolism of cofactors and vitamins (19.4% and 18.9%, 

respectively). Each column represents one sample; columns are ordered by their sample pairing, 

meaning that the same column position within each facet represents the same individual at two 

different time points. Relative abundances were determined using category frequencies (i.e., 

number of contigs containing the relevant category) normalized by number of genome 

equivalents for each sample. 
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Figure C.6. Relative abundance of KEGG metabolic subcategories also demonstrate 

consistency among cases and follow-ups.  

The top-ten metabolic subcategories are depicted in the relative abundance plots for cases (top) 

and follow-ups (bottom); notably, each health status contained the same top-ten subcategories 

overall. The highest relative frequencies were assigned to cofactor and vitamin metabolism 

(cases=19.4%; follow-ups=8.9%), central carbohydrate metabolism (12.8%; 13.4%), and “other 

carbohydrate metabolism” (9.3%; 9.3%). Each column represents one sample; columns are 

ordered by their sample pairing, meaning that the same column position within each facet 

represents the same individual at two different time points. Relative abundances were determined 

using subcategory frequencies (i.e., number of contigs containing the relevant subcategory) 

normalized by number of genome equivalents for each sample. 
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Figure C.7. Investigating relative abundance of KEGG metabolic modules reveals slight 

discrepancies between cases and follow-ups.  

The top-ten metabolic modules are depicted in the relative abundance plots for cases (top) and 

follow-ups (bottom). Glycolysis was most frequent among both health statuses (cases=2.7%; 

follow-ups=2.9%) along with gluconeogenesis (2.1%; 2.3%). Each column represents one 

sample; columns are ordered by their sample pairing, meaning that the same column position 

within each facet represents the same individual at two different time points. Relative 

abundances were determined using subcategory frequencies (i.e., number of contigs containing 

the relevant subcategory) normalized by number of genome equivalents for each sample. 

 

 

 

 

 

 



298 

 

 

Figure C.8. Relative abundances of PWY-7254: TCA cycle VII (acetate-producers). 

Barplots show the relative abundance of PWY-7254 calculated by HUMAnN 3.0 stratified by 

health status (A). Samples were also stratified by infecting pathogen to observe potential genera-

related associations affiliated with type of infection (B). The horizontal color bar on the bottom 

designates case (green) vs. follow-up (purple) samples when stratified by health status; for 

infecting pathogen, samples are grouped by Campylobacter (blue), Salmonella (green), Shigella 

(red), or STEC (orange). The ‘Contributions’ section displays genera found to be associated with 

the pathway of interest; colors in the stacked barplots show the proportion of relative abundances 

for PWY-7254 attributed to that specific genus. 

 

B 
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Figure C.9. Relative abundances of P163-PWY: L-lysine fermentation to acetate and 

butanoate.  

Barplots show the relative abundance of P163-PWY calculated by HUMAnN 3.0. The horizontal 

color bar on the bottom designates case (green) vs. follow-up (purple) samples. The 

‘Contributions’ section displays genera found to be associated with the pathway of interest; 

colors in the stacked barplots show the proportion of relative abundances for P163-PWY 

attributed to that specific genus.  
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Figure C.10. Relative abundances of three butanoate production pathways.  

Barplots show the relative abundance of relevant butanoate calculated by HUMAnN 3.0. PWY-5676: acetyl-CoA fermentation to 

butanoate II (A) was the most widely distributed of these pathways and appeared primarily in follow-ups. CENTFERM-PWY: 

pyruvate fermentation to butanoate (B) was most abundant, though was only sporadic among samples and assigned solely to 

‘unclassified’ bacteria. PWY-5677: succinate fermentation to butanoate (C) was also found. The horizontal color bar on the bottom 

designates case (green) vs. follow-up (purple) samples. The ‘Contributions’ section displays genera found to be associated with the 

pathway of interest; colors in the stacked barplots show the proportion of relative abundances attributed to that specific genus. 

Samples were also stratified by infecting pathogen to observe potential genera-related associations affiliated with type of infection 

(bottom). 
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Figure C.11. Relative abundances of P108-PWY: pyruvate fermentation to propanoate I. 

Barplots show the relative abundance of P108-PWY calculated by HUMAnN 3.0 (A). The 

horizontal color bar on the bottom designates case (green) vs. follow-up (purple) samples. The 

‘Contributions’ section displays genera found to be associated with the pathway of interest; 

colors in the stacked barplots show the proportion of relative abundances for P108-PWY 

attributed to that specific genus. Samples were also clustered by Bray-Curtis dissimilarity to 

explore clustering relevant to specific genera associations and abundance (B).  

 

 

 

A 
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Figure C.12. Relative abundances of PWY-5971: palmitate biosynthesis (type II fatty acid 

synthase).  

Barplots show the relative abundance of PWY-5971 calculated by HUMAnN 3.0 (A). The 

horizontal color bar on the bottom designates case (green) vs. follow-up (purple) samples. The 

‘Contributions’ section displays genera found to be associated with the pathway of interest; 

colors in the stacked barplots show the proportion of relative abundances for PWY-5971 

attributed to that specific genus. Samples were also clustered by Bray-Curtis dissimilarity to 

explore clustering relevant to specific genera associations and abundance (B). 

B 

A 
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Figure C.13. Relative abundances of lipopolysaccharide (LPS) biosynthesis among cases and follow-ups.  

Barplots show the relative abundance of the LPSSYN-PWY: superpathway of lipopolysaccharide biosynthesis calculated by 

HUMAnN 3.0 stratified by health status (A) and infecting pathogen (B). The horizontal color bar on the bottom designates case 

(green) vs. follow-up (purple) samples when stratified by health status; for infecting pathogen, samples are grouped by Campylobacter 

(blue), Salmonella (green), Shigella (red), or STEC (orange). The ‘Contributions’ section displays genera found to be associated with 

the pathway of interest; colors in the stacked barplots show the proportion of relative abundances for LPSSYN-PWY attributed to that 

specific genus. Samples were also clustered by Bray-Curtis dissimilarity to explore clustering relevant to specific genera associations 

and abundance (C and D). 
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Figure C.14. Relative abundances of toluene degradation via p-cresol among cases and follow-ups.  

Barplots show the relative abundance of the PWY-5181: toluene degradation III (aerobic) (via p-cresol) calculated by HUMAnN 3.0 

stratified by health status (A) and infecting pathogen (B). The horizontal color bar on the bottom designates case (green) vs. follow-up 

(purple) samples when stratified by health status; for infecting pathogen, samples are grouped by Campylobacter (blue), Salmonella 

(green), Shigella (red), or STEC (orange). The ‘Contributions’ section displays genera found to be associated with the pathway of 

interest; colors in the stacked barplots show the proportion of relative abundances for PWY-5181 attributed to that specific genus. 

Samples were also clustered by Bray-Curtis dissimilarity to explore clustering relevant to specific genera associations and abundance 

(C and D). 
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Figure C.15. Richness and composition of polar metabolites significantly differs among patients during infection and after 

recovery. 

(A) Three measures of alpha diversity (Richness, Shannon Diversity, and Pielou’s Evenness) are displayed. Each box-plot is stratified 

by health status with samples represented by circles (cases, green) or triangles (follow-ups, purple). Data points are offset from the 

vertical to allow for clear interpretation of all samples. Within each box, the median is displayed as the thick black bar; the first and 

third quartiles are shown by the bottom and the top of each box, respectively. P-values displayed on the plot were calculated using the 

Wilcoxon signed-rank test for paired samples; these values are indicated above the comparison bar within each boxplot. (B) Principal 

coordinates analysis (PCoA) was performed and plotted for cases (green, circles) and follow-ups (purple, squares) based on Bray-

Curtis dissimilarity of polar metabolite quantification. The first and second coordinate are displayed with their respective percentage 

of variance explained.  
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Figure C.16. Richness and composition of polar metabolites does not appear to be 

influenced by infecting pathogen.  

(A) Three measures of alpha diversity (Richness, Shannon Diversity, and Pielou’s Evenness) are 

displayed. Each box-plot is stratified by infecting pathogen with samples represented by circles 

(Campylobacter, blue), triangles (Salmonella, red), squares (Shigella, yellow), or crosses (STEC, 

violet). Data points are offset from the vertical to allow for clear interpretation of all samples. 

Within each box, the median is displayed as the thick black bar; the first and third quartiles are 

shown by the bottom and the top of each box, respectively. P-values displayed on the plot were 

calculated using the Wilcoxon signed-rank test for paired samples; these values are indicated 

above the comparison bar within each boxplot. (B) Principal coordinates analysis (PCoA) was 

performed and plotted for cases (circles) and follow-ups (squares)  based on Bray-Curtis 

dissimilarity of polar metabolite quantification. Points were colored based on the source of 

enteric infection (Campylobacter, blue; Salmonella, red; Shigella, yellow; or STEC, violet) The 

first and second coordinate are displayed with their respective percentage of variance explained. 

 

  

 

 



307 

 

 

Figure C.17. Mean decrease in accuracy plot from random forest analysis of polar 

metabolites.  

Random forest was run on polar metabolite intensities and set to classify samples by health 

status. The dot plot displays the top-30 clusters (metabolites) which were found to be of highest 

importance when distinguishing cases and follow-ups. Cluster index is noted on the y-axis, while 

mean decrease in accuracy is plotted on the x-axis. A higher mean decrease in accuracy metric 

indicates greater importance in the classifying algorithm. 
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Figure C.18. Normalized abundance of Cluster 313 among cases and follow-ups separated 

by infecting pathogen.  

Normalized abundances of Cluster 313 are displayed. The box-plot is faceted by infecting 

pathogen and stratified by health status, with samples represented by circles (cases, green) or 

triangles (follow-ups, purple). Data points are offset from the vertical to allow for clear 

interpretation of all samples. Within each box, the median is displayed as the thick black bar; the 

first and third quartiles are shown by the bottom and the top of each box, respectively. P-values 

displayed on the plot were calculated using the Wilcoxon signed-rank test for paired samples. P-

values are indicated at the top of the plot for case-follow-up comparisons within each infecting 

pathogen group.   
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Figure C.19. Normalized abundance of Cluster 2705 among cases and follow-ups separated 

by infecting pathogen.  

Normalized abundances of Cluster 2705 are displayed. The box-plot is faceted by infecting 

pathogen and stratified by health status, with samples represented by circles (cases, green) or 

triangles (follow-ups, purple). Data points are offset from the vertical to allow for clear 

interpretation of all samples. Within each box, the median is displayed as the thick black bar; the 

first and third quartiles are shown by the bottom and the top of each box, respectively. P-values 

displayed on the plot were calculated using the Wilcoxon signed-rank test for paired samples. P-

values are indicated at the top of the plot for case-follow-up comparisons within each infecting 

pathogen group.   
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Figure C.20. Molecular network and MS2 spectra for three related clusters prevalent in 

follow-ups.  

A molecular network constructed in GNPS (top, left) shows the interrelatedness of multiple 

metabolite clusters. Nodes are labeled with their cluster index (black) and edges are labeled with 

the associated mass difference between two connected nodes (blue). Pie-charts on each node 

indicate the proportion of that node that was found in cases (red) and follow-ups (blue). The MS2 

spectra for clusters found to be important indicators of follow-ups (Clusters 326, 7558, and 5193) 

are shown. Notably, this molecular network contained metabolites related to tomatidine, which is 

the cluster designated with a star.  
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Figure C.21. Molecular network and MS2 spectra for Cluster 2113, which was highly 

represented in follow-ups.  

A molecular network constructed in GNPS (top, left) shows the interrelatedness of multiple 

metabolite clusters. Nodes are labeled with their cluster index (black) and edges are labeled with 

the associated mass difference between two connected nodes (blue). Pie-charts on each node 

indicate the proportion of that node that was found in cases (red) and follow-ups (blue). The MS2 

spectra Cluster 2113 and a closely related cluster, 5170, are shown. Cluster 5170 was 

successfully annotated in GNPS as desmethylenylnocardamine; the structure for this compound 

was generated in ChemDraw 20.1 and is also shown (bottom, left).  
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Figure C.22. Molecular network and MS2 spectra for Cluster 2666, which was prevalent in 

follow-ups.  

A molecular network constructed in GNPS (top, left) shows the interrelatedness of multiple 

metabolite clusters. Nodes are labeled with their cluster index (black) and edges are labeled with 

the associated mass difference between two connected nodes (blue). Pie-charts on each node 

indicate the proportion of that node that was found in cases (red) and follow-ups (blue). The MS2 

spectra Cluster 2666 is shown. This cluster was successfully annotated in GNPS as 1-(1Z-

Hexadecenyl)-sn-glycero-3-phosphocholine; the structure was generated in ChemDraw 20.1 and 

is included (bottom).  
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Figure C.23. Molecular network and MS2 spectra for Cluster 970 and related Cluster 318 

which were present primarily in cases.  

A molecular network constructed in GNPS (right) shows the interrelatedness of multiple 

metabolite clusters. Nodes are labeled with their cluster index (black) and edges are labeled with 

the associated mass difference between two connected nodes (blue). Pie-charts on each node 

indicate the proportion of that node that was found in cases (red) and follow-ups (blue). The MS2 

spectra Cluster 970 and related Cluster 318 is shown. Cluster 318 was successfully annotated in 

GNPS as 1-(1Z-Octadecenyl)-sn-glycero-3-phosphocholine; the structure was generated in 

ChemDraw 20.1 and is included (bottom).  
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Figure C.24. Molecular network and MS2 spectra for Cluster 806, which was abundant in 

cases.  

The MS2 spectra Cluster 806 is shown (top). This cluster was successfully annotated as 3-

hydroxy-2(tetracosa-11.13.15-trienamido)octadecyl (2-(trimethylammonio)ethyl) phosphate; the 

chemical structure was generated in ChemDraw 20.1 and is shown (bottom).  
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Figure C.25. Molecular network and MS2 spectra for Cluster 313, which was abundant in 

cases.  

The MS2 spectra Cluster 313 is shown (top). This cluster was successfully annotated as {[2-

hexadecanamido-3-hydroxyoctadec-4-en-1-yl]oxy}[2-(trimethylazaniumyl)ethoxy]phosphinic 

acid; the chemical structure was generated in ChemDraw 20.1 and is shown (bottom). 
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Figure C.26. Richness and composition of nonpolar metabolites significantly differs among patients during infection and after 

recovery.  

(A) Three measures of alpha diversity (Richness, Shannon Diversity, and Pielou’s Evenness) are displayed. Each box-plot is stratified 

by health status with samples represented by circles (cases, green) or triangles (follow-ups, purple). Data points are offset from the 

vertical to allow for clear interpretation of all samples. Within each box, the median is displayed as the thick black bar; the first and 

third quartiles are shown by the bottom and the top of each box, respectively. P-values displayed on the plot were calculated using the 

Wilcoxon signed-rank test for paired samples; these values are indicated above the comparison bar within each boxplot. (B) Principal 

coordinates analysis (PCoA) was performed and plotted for cases (green, circles) and follow-ups (purple, squares) based on Bray-

Curtis dissimilarity of nonpolar metabolite quantification. The first and second coordinate are displayed with their respective 

percentage of variance explained.  
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Figure C.27. Richness and composition of nonpolar metabolites does not appear to be 

influenced by infecting pathogen.  

(A) Three measures of alpha diversity (Richness, Shannon Diversity, and Pielou’s Evenness) are 

displayed. Each box-plot is stratified by infecting pathogen with samples represented by circles 

(Campylobacter, blue), triangles (Salmonella, red), squares (Shigella, yellow), or crosses (STEC, 

violet). Data points are offset from the vertical to allow for clear interpretation of all samples. 

Within each box, the median is displayed as the thick black bar; the first and third quartiles are 

shown by the bottom and the top of each box, respectively. P-values displayed on the plot were 

calculated using the Wilcoxon signed-rank test for paired samples; these values are indicated 

above the comparison bar within each boxplot. (B) Principal coordinates analysis (PCoA) was 

performed and plotted for cases (circles) and follow-ups (squares)  based on Bray-Curtis 

dissimilarity of polar metabolite quantification. Points were colored based on the source of 

enteric infection (Campylobacter, blue; Salmonella, red; Shigella, yellow; or STEC, violet) The 

first and second coordinate are displayed with their respective percentage of variance explained.  
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Figure C.28. Mean decrease in accuracy plot from random forest analysis of nonpolar 

metabolites.  

Random forest was run on nonpolar metabolite intensities and set to classify samples by health 

status. The dot plot displays the top-30 clusters (metabolites) which were found to be of highest 

importance when distinguishing cases and follow-ups. Cluster index is noted on the y-axis, while 

mean decrease in accuracy is plotted on the x-axis. A higher mean decrease in accuracy metric 

indicates greater importance in the classifying algorithm. 
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Figure C.29. Normalized abundance of Cluster 2659 among cases and follow-ups separated 

by infecting pathogen.  

Normalized abundances of Cluster 2659 are displayed. The box-plot is faceted by infecting 

pathogen and stratified by health status, with samples represented by circles (cases, green) or 

triangles (follow-ups, purple). Data points are offset from the vertical to allow for clear 

interpretation of all samples. Within each box, the median is displayed as the thick black bar; the 

first and third quartiles are shown by the bottom and the top of each box, respectively. P-values 

displayed on the plot were calculated using the Wilcoxon signed-rank test for paired samples. P-

values are indicated at the top of the plot for case-follow-up comparisons within each infecting 

pathogen group.   
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Figure C.30. Normalized abundance of Cluster 321 among cases and follow-ups separated 

by infecting pathogen.  

Normalized abundances of Cluster 321 are displayed. The box-plot is faceted by infecting 

pathogen and stratified by health status, with samples represented by circles (cases, green) or 

triangles (follow-ups, purple). Data points are offset from the vertical to allow for clear 

interpretation of all samples. Within each box, the median is displayed as the thick black bar; the 

first and third quartiles are shown by the bottom and the top of each box, respectively. P-values 

displayed on the plot were calculated using the Wilcoxon signed-rank test for paired samples. P-

values are indicated at the top of the plot for case-follow-up comparisons within each infecting 

pathogen group.   
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Figure C.31. Normalized abundance of Cluster 299 among cases and follow-ups separated 

by infecting pathogen.  

Normalized abundances of Cluster 299 are displayed. The box-plot is faceted by infecting 

pathogen and stratified by health status, with samples represented by circles (cases, green) or 

triangles (follow-ups, purple). Data points are offset from the vertical to allow for clear 

interpretation of all samples. Within each box, the median is displayed as the thick black bar; the 

first and third quartiles are shown by the bottom and the top of each box, respectively. P-values 

displayed on the plot were calculated using the Wilcoxon signed-rank test for paired samples. P-

values are indicated at the top of the plot for case-follow-up comparisons within each infecting 

pathogen group. 
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Figure C.32. Mean decrease in accuracy plot from random forest analysis of nonpolar 

metabolites stratified by infecting pathogen.  

Random forest was run on nonpolar metabolite intensities and set to classify samples by 

infecting pathogen. The dot plot displays the top-30 clusters (metabolites) which were found to 

be of highest importance when distinguishing infections among different pathogens. Cluster 

index is noted on the y-axis, while mean decrease in accuracy is plotted on the x-axis. A higher 

mean decrease in accuracy metric indicates greater importance in the classifying algorithm. 

 

 

 

 

 

 

 



323 

 

 

Figure C.33. Normalized abundance of Cluster 2964 among cases and follow-ups separated 

by infecting pathogen.  

Normalized abundances of Cluster 2964 are displayed. The box-plot is faceted by infecting 

pathogen and stratified by health status, with samples represented by circles (cases, green) or 

triangles (follow-ups, purple). Data points are offset from the vertical to allow for clear 

interpretation of all samples. Within each box, the median is displayed as the thick black bar; the 

first and third quartiles are shown by the bottom and the top of each box, respectively. P-values 

displayed on the plot were calculated using the Wilcoxon signed-rank test for paired samples. P-

values are indicated at the top of the plot for case-follow-up comparisons within each infecting 

pathogen group.   
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Figure C.34. Normalized abundance of Clusters 6581 and 8369 among cases and follow-ups separated by infecting pathogen. 

Normalized abundances of each cluster are displayed. The box-plots are faceted by infecting pathogen and stratified by health status, 

with samples represented by circles (cases, green) or triangles (follow-ups, purple). Data points are offset from the vertical to allow for 

clear interpretation of all samples. Within each box, the median is displayed as the thick black bar; the first and third quartiles are 

shown by the bottom and the top of each box, respectively. P-values displayed on the plot were calculated using the Wilcoxon signed-

rank test for paired samples. P-values are indicated at the top of the plot for case-follow-up comparisons within each infecting 

pathogen group.  
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Figure C.35. MS2 spectra for Cluster 321, which was a prevalent nonpolar metabolite in 

cases.  

The MS2 spectra Cluster 321 is shown. This cluster was a singleton (i.e., not affiliated with a 

molecular network) and was not assigned an annotation in GNPS.   

 

 

Figure C.36. Molecular network and MS2 spectra for Cluster 1618, which was prevalent 

among cases.  

A molecular network constructed in GNPS (left) shows the interrelatedness of multiple 

metabolite clusters. Nodes are labeled with their cluster index (black) and edges are labeled with 

the associated mass difference between two connected nodes (blue). Pie-charts on each node 

indicate the proportion of that node that was found in cases (red) and follow-ups (blue). The MS2 

spectra Cluster 1618 is shown (right). 

Cluster 321 
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Figure C.37. MS2 spectra for Cluster 244, which was prevalent among cases.  

The MS2 spectra Cluster 244 is shown. This cluster was a singleton (i.e., not affiliated with a 

molecular network) and was not assigned an annotation in GNPS.   

 

 

 

 

 

 

Cluster 244 
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Figure C.38. Molecular networks and MS2 spectra for Clusters 4470 and 5193, metabolites found more consistently among 

follow-ups.  

Molecular networks constructed in GNPS (left) show the interrelatedness of multiple metabolite clusters for Cluster 4470 and 5193. 

Nodes are labeled with their cluster index (black) and edges are labeled with the associated mass difference between two connected 

nodes (blue). Pie-charts on each node indicate the proportion of that node that was found in cases (red) and follow-ups (blue). The 

MS2 spectra for these clusters are shown (right).  
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Figure C.39. The molecular network and MS2 spectra for Cluster 2964, which was 

indicated to be more abundant among people with Salmonella infection.  

Molecular networks constructed in GNPS (left) show the interrelatedness of multiple metabolite 

clusters for Cluster 2964. Nodes are labeled with their cluster index (black) and edges are labeled 

with the associated mass difference between two connected nodes (blue). Pie-charts on each 

node indicate the proportion of that node that was found in patients with different types of 

infection; Campylobacter (green), Salmonella (orange), Shigella (yellow), or STEC (gray). The 

MS2 spectra for Cluster 2964 is also shown (right).  
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Figure C.40. The molecular network and MS2 spectra for Clusters 6581 and 8369, which were indicated to be more abundant 

among people with Campylobacter infection.  

Molecular networks constructed in GNPS (left) show the interrelatedness of multiple metabolite clusters. Nodes are labeled with their 

cluster index (black) and edges are labeled with the associated mass difference between two connected nodes (blue). Pie-charts on 

each node indicate the proportion of that node that was found in patients with different types of infection; Campylobacter (green), 

Salmonella (orange), Shigella (yellow), or STEC (gray). The MS2 spectra for Clusters 6581 and 8369 are also shown (right).  
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Figure C.41. Relative abundances of PWY-5675: nitrate reduction V among infected and recovered patients.  

Barplots show the relative abundance of PWY-5675 calculated by HUMAnN 3.0 stratified by health status (A, C) and infecting 

pathogen (B, D). The horizontal color bar on the bottom designates case (green) vs. follow-up (purple) samples when stratified by 

health status; for infecting pathogen, samples are grouped by Campylobacter (blue), Salmonella (green), Shigella (red), or STEC 

(orange). The ‘Contributions’ section displays genera found to be associated with the pathway of interest; colors in the stacked 

barplots show the proportion of relative abundances for each pathway attributed to that specific genus. Sample relative abundances 

were first plotted (A, B) and also clustered by Bray-Curtis dissimilarity to explore clustering relevant to specific genera associations 

and abundance (C, D).  
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Figure C.42. Relative abundances of various arginine metabolism pathways among infected 

and recovered patients.  

Barplots show the relative abundance of four relevant arginine biosynthesis or degradation 

pathways calculated by HUMAnN 3.0 stratified by health status. The horizontal color bar on the 

bottom designates case (green) vs. follow-up (purple) samples. The ‘Contributions’ section 

displays genera found to be associated with the pathway of interest; colors in the stacked barplots 

show the proportion of relative abundances for each pathway attributed to that specific genus.  
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Figure C.42 (cont’d) 

Sample relative abundances were first plotted (A, B, E, F) and also clustered by Bray-Curtis 

dissimilarity to explore clustering relevant to specific genera associations and abundance (C, D, 

G, H).



333 

 

 

Figure C.43. Relative abundances of various ornithine metabolism pathways among infected and recovered patients.  

Barplots show the relative abundance of two relevant ornithine biosynthesis or degradation pathways calculated by HUMAnN 3.0 

stratified by health status. The horizontal color bar on the bottom designates case (green) vs. follow-up (purple) samples. The 

‘Contributions’ section displays genera found to be associated with the pathway of interest; colors in the stacked barplots show the 

proportion of relative abundances for each pathway attributed to that specific genus. Sample relative abundances were first plotted (A, 

B) and also clustered by Bray-Curtis dissimilarity to explore clustering relevant to specific genera associations and abundance (C, D). 
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Figure C.44. Relative abundances of PWY-6803: phosphatidylcholine acyl editing among infected and recovered patients. 

Barplots show the relative abundance of PWY-6803calculated by HUMAnN 3.0 stratified by health status (A, C) and infecting 

pathogen (B, D). The horizontal color bar on the bottom designates case (green) vs. follow-up (purple) samples when stratified by 

health status; for infecting pathogen, samples are grouped by Campylobacter (blue), Salmonella (green), Shigella (red), or STEC 

(orange). The ‘Contributions’ section displays genera found to be associated with the pathway of interest; colors in the stacked 

barplots show the proportion of relative abundances for each pathway attributed to that specific genus. Sample relative abundances 

were first plotted (A, B) and also clustered by Bray-Curtis dissimilarity to explore clustering relevant to specific genera associations 

and abundance (C, D). 
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The human gut microbiome is important for shaping human health and is involved in 

immune system homeostasis, protection against foreign microbes, and production and 

modification of key metabolites (1-3). However, even healthy gut microbial communities 

undergo periods of ecological change such as disturbance or invasion (4). In the context of 

human hosts, microbial invasion in the gut environment is typically associated with entry of 

foreign pathogens, specifically those that cause enteric disease. Enteric pathogens are responsible 

for greater than 9.4 million foodborne infections every year (5). Specifically, the CDC has 

reported consistently high incidence of infections caused by Campylobacter, Salmonella, 

Shigella, and STEC (6). In addition to their virulence, these pathogens have also been implicated 

for their ability to harbor and disseminate antimicrobial resistance (7, 8). Indeed, each of the four 

enteric pathogens included in this study is listed as a serious threat for causing antibiotic resistant 

infection (9). Considering that the human gut microbiome is a notable reservoir for AMR (10) 

and these pathogens interact with the resident microbiota during infection, an interesting ecology 

of AMR spread emerges which warrants further characterization (11). Additionally, it has been 

demonstrated that host- and microbe-mediated metabolism differs between healthy and diseased 

states (12, 13). Although these metabolic discrepancies have been widely explored for multiple 

chronic diseases, our understanding of metabolic fluctuations related to acute enteric infection is 

scant. Therefore, these studies were undertaken to elucidate community changes in the human 

gut microbiome, resistome, and metabolome associated with enteric infection.  

Overall, the findings presented in this dissertation describe important changes within 

human gut microbial communities during and after infection. Herein, we examined stools from 

patients infected with an enteric pathogen (cases) and a subset of follow-up samples from the 

same patients submitted after they recovered from the initial infection. Additionally, members of 
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these patients’ households also supplied stool samples for comparison. In the first analysis 

(Chapter 2), which was limited to patients with Campylobacter infections, we documented a 

distinct change in the diversity and composition of ARGs among infected cases compared to 

healthy controls. Importantly, these cases displayed increased abundance of MDR genes and 

were dominated by members of Proteobacteria, a phylum whose enrichment has previously been 

connected to gut disruption and inflammation (14, 15). Controls, on the other hand, displayed 

high relative abundance of ARGs related to tetracyclines and MLS, signatures that are in line 

with other studies that have explored resistance among healthy individuals (16, 17). Similar 

findings were reflected in Chapter 3 in which we sought to characterize both the microbiome and 

resistome composition in infected and recovered gut communities. Infected communities 

displayed higher resistome diversity; however, taxonomic diversity was significantly lower 

during infection than after recovery, and cases had an expansion of Proteobacteria, specifically 

among members of Enterobacteriaceae. This expansion was consistently observed regardless of 

the pathogen causing each infection, which is likely due to enhanced inflammation in the gut 

during infection. Indeed, the abundance decreased in the recovered samples to levels that were 

similar to those observed in healthy controls. Support for these findings comes from a prior study 

showing that expansion of Enterobacteriaceae is linked to host-mediated inflammatory 

responses (15). Developing new treatments that limit the overgrowth of specific microbial 

populations during infection should be explored to decrease the burden of disease, particularly in 

the most susceptible populations.   

Chapter 3 also involved exploration of specific associations between ARGs and relevant 

taxa among cases and follow-ups. Correlation network analyses revealed notable connections 

between Escherichia and Shigella and multiple mdt genes, which are relevant to the MdtABC-
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TolC MDR efflux system (18). Salmonella registered significant connections to many metal and 

biocide resistance genes that were only detected in individuals with Salmonella infection, 

suggesting the pathogen was directly associated with expansion of these genes. Host-tracking 

analysis, which was performed to examine these network associations, demonstrated similar 

results. Specifically, Escherichia comprised the largest portion of ARG-carrying contigs among 

cases, with nearly 30% of its ARGs being relevant to MDR. Other Enterobacteriaceae, such as 

Salmonella and Klebsiella, were also primary hosts to ARGs in infected guts. Importantly, the 

distribution of ACCs among genera did not appear to shift substantially upon recovery from 

infection, though there were overall fewer ACCs attributed to the top genera compared to cases. 

These findings suggest that even as the gut microbiome recovers and demonstrates taxonomic 

shifts, key members of the community maintain their resistance capacity establishing the human 

gut as a critical reservoir of ARGs. Indeed, the observed abundance of ARGs attributed to 

members of Enterobacteriaceae during and even after infection is alarming, as these pathobionts 

are capable of transferring resistance to other pathogens in the gut (11). The mobility of 

resistance genes among Enterobacteriaceae is incredibly high (19), and horizontal gene transfer 

rates are enhanced in the gut during inflammation (20).  

While these findings shed some light on compositional trends associated with enteric 

infection, further characterization of the mechanisms behind these shifts is needed. One method 

which could help address this need is consideration of different sample types. For example, due 

to their varied binding affinities and niche habitation, microbes present in the mucosal layer of 

gastrointestinal tract have been found to differ from those isolated from stool (21) and these 

microbes may differentially interact with the host and other microbes (22). Additionally, 

consideration of stool alone does not allow direct investigation of host-mediated changes such as 
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inflammation during infection. Rather, collection of serum or blood samples enables direct 

measurement of immune-modulated features such as inflammatory cytokines, which have been 

found to vary in response to different microbial stimuli (23). Indeed, inclusion of multiple 

sample types would provide a much more comprehensive view of the ecological changes we 

have documented during enteric infection.  

Another consideration that should be taken into account in future work is the 

implementation of longitudinal sampling. Although this dissertation has captured relevant 

information for microbial gut communities during and after infection, the minutiae of recovery 

cannot be captured. Additionally, approaches that further explore the mobility of ARGs among 

members of gut microbial communities should be applied. Previous work has demonstrated that 

certain groups of bacteria, primarily belonging to Enterobacteriaceae, are capable of 

disseminating resistance among different genera through shared plasmids (19, 24). As members 

of this family are overrepresented during infection, the potential repercussions of increased ARG 

transmission are concerning. Therefore, employing computational methods that capture plasmids 

and other relevant MGEs within gut communities is of great importance. Future studies should 

also consider exploring plasmids and their microbial hosts through laboratory techniques such as 

the Hi-C method (25) or SMRT sequencing (26). 

Following characterization of the resistome and microbiome of paired cases and follow-

ups in Chapter 3, we sought to define the functional capacity of these samples during and after 

infection. Therefore, Chapter 4 included computational prediction of metabolic pathways as well 

as metabolite analysis via untargeted metabolomics. This investigation revealed that patient 

stools during enteric infection not only display different functional potential via pathway 

prediction, but also contain markedly different metabolites than stools collected from the same 
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patients upon recovery. Enteric infection was associated with more diverse metabolic pathways, 

including those relevant to enhanced nitrogen and amino acid metabolism. Because infection was 

associated with an increased abundance of Escherichia and other members of 

Enterobacteriaceae (Chapter 3), the observed increase in these metabolic pathways is consistent 

with previous studies showing a link between inflammation-associated nitrate production and 

overgrowth of Enterobacteriaceae (27). Examination of gut metabolites indicated that recovered 

patients contained greater metabolic diversity for both polar and nonpolar metabolites. Since 

computational pathway prediction only considers microbially-derived metabolic capacity, this 

discrepancy is not unexpected. In fact, the incongruence between these methods suggests that 

host-derived metabolites are also critically important for human health.  

Our exploration of metabolic shifts associated with enteric infection furthers our 

understanding of these nuanced gut community changes. While a majority of metabolites 

quantified via untargeted metabolomics are currently unidentifiable due to limited compound 

annotation, descriptions concerning patterns of intensity, presence/absence, and diversity 

associated with infection still hold significant meaning. To assist in addressing some of the 

limitations of this work, future studies should consider integrating multiple ‘omics techniques to 

more comprehensively characterize the gut environment. Previous studies have combined 

methods such as metagenomics, metatranscriptomics, and metametabolomics to thoroughly 

characterize changes in gut microbiota relevant to antibiotic treatment (28) and fatty liver disease 

(29). Indeed, establishing connections between specific microbial features and metabolite 

composition may help explain pieces of this complex ecology. Another relevant approach could 

apply targeted metabolomics of SCFAs to our samples. These compounds are known to benefit 

the human host through maintenance of metabolic homeostasis (30); additionally, their absence 
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has been implicated in multiple states of dysbiosis (31). Examining levels of SCFA production, 

particularly through use of multiple ‘omics techniques, would enhance our understanding of 

more detailed metabolic alterations taking place during enteric infection.  

Altogether, the findings described in this dissertation capture key changes in the human 

gut resistome, microbiome, and metabolome related to enteric infection. Indeed, these 

documented shifts substantiate the need for further characterization of microbial responses to 

perturbations such as those caused by invading pathogens. Given the increased prevalence of 

antimicrobial resistance genes observed during infection in our study, particular attention should 

be paid to the ubiquity and transmission of resistance during periods of ecological change. 

Additionally, greater work is required to define the ecological mechanisms at play during these 

periods of flux and future studies should incorporate methods that comprehensively measure 

both microbial- and host-related responses. To be sure, the ecology of enteric infection and its 

impacts on the human gut microbiome warrant continued study.  
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