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ABSTRACT

NOVEL DEPTH REPRESENTATIONS FOR DEPTH COMPLETION WITH
APPLICATION IN 3D OBJECT DETECTION

By

Saif Muhammad Imran

Depth completion refers to interpolating a dense, regular depth grid from sparse and irregularly

sampled depth values, often guided by high-resolution color imagery. The primary goal of depth

completion is to estimate depth. In practice methods are trained by minimizing an error between

predicted dense depth and groundtruth depth, and are evaluated by how well they minimize this

error. Here we identify a second goal which is to avoid smearing depth across depth discontinuities.

This second goal is important because it can improve downstream applications of depth completion

such as object detection and pose estimation. However, we also show that the goal of minimizing

error can conflict with the goal of eliminating depth smearing.

In this thesis, we propose two novel representations of depths that can encode depth discontinu-

ity across object surfaces by allowing multiple depth estimation in the spatial domain. In order to

learn these new representations, we propose carefully designed loss functions and show their effec-

tiveness in deep neural network learning. We show how our representations can avoid inter-object

depth mixing and also beat state of the art metrics for depth completion.

The quality of ground-truth depth in real-world depth completion problems is another key

challenge for learning and accurate evaluation of methods. Ground truth depth created from semi-

automatic methods suffers from sparse sampling and errors at object boundaries. We show that the

combination of these errors and the commonly used evaluation measure has promoted solutions

that mix depths across boundaries in current methods. The thesis proposes alternate depth comple-

tion performance measures that reduce preference for mixed depths and promote sharp boundaries.



The thesis also investigates whether additional points from depth completion methods can help

in a challenging and high-level perception problem; 3D object detection. It shows the effect of

different depth noises originated from depth estimates on detection performances and proposes

some effective ways to reduce noise in the estimate and overcome architecture limitations. The

method is demonstrated on both real-world and synthetic datasets.
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Chapter 1

Background and Motivation

1.1 Introduction

In 3D vision, depth perception is the visual ability to estimate the world in 3D dimensions and

gives us the physical distance of an object relative to a calibrated sensor. It is critical for 3D

scene understanding and is widely used in autonomous driving and navigation, high-definition

mapping and augmented reality. Accurate, dense and high-resolution depth is desired for 3D scene

reconstruction and accurate scene perception.

1.2 Depth Estimation using Multi-Modal Sensors: A Motiva-

tion

In the context of automotive sensing and perception, depth plays a large role in 3D object detection

[2, 14], classification, localization [15, 3], tracking [16], shape estimation [17], 3D reconstruction

[18] and modelling [19]. Depth is necessary to measure any 3D object dimensions and locate its

position with respect to the ego-vehicle, and reconstruct the 3D structure of the environment for

mapping, localization and even path-planning and collision avoidance in an autonomous driving

environment. There are several ways to estimate depth; estimation using active depth sensors

and passive sensors, or combination of these sensors. The following explains the methods of
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estimating depth on each of these types and the motivation of using depth estimation using multi-

modal sensors.

Active depth sensing involves transmitting a signal into the scene and measuring its impact in

real-time. These sensors can also be known as three-dimensional (3D) range finders, which means

they can acquire multi-point distance information across a Field-of-View (FoV). These sensors may

emit laser pulses (time-of-flight or ToF sensors), infra-red beams (active stereo) or structured light

patterns (fixed pattern or programmed patterns) on surrounding environments to measure depths.

Active stereo sensors (e.g. Intel RealSense D Series, Structure Core) work with an infrared pattern

projector in addition to the principle of triangulation by means of two cameras, separated by a

baseline distance to measure depth. The infrared (IR) projector helps to increase the fidelity and

reliability even in low-light conditions. However, the IR projectors on these sensors are limited in

range, and these relegates the sensors to near and mid-range applications, regardless of the baseline

distance. Structured light sensors (e.g. Zivid, Intel RealSense SR series, Kinect v1) combine low

cost with high-fidelity 3D data capture, as well as performance in a wide set of lighting conditions,

except for direct or indirect bright light. This is because infra-red light used by these sensors gets

overpowered by infra-red light in the same bandwidth that is naturally present in the environment.

Time of flight or TOF sensors (e.g. Velodyne, Ouster, Terabee) send out packets of modulated

or unmodulated infra-red or laser pulses, and record the time it takes for the signal to return.

They are less susceptible to interference from bright and indirect sunlight, but more susceptible to

absorption of transmitted signals on dark, rough, or specular surfaces. The accuracy, and range

of these sensors are based on the power consumption of the emitters, modulation and specific

technologies used (see Tab. 1.1). Normally, they have mm - cm level accuracy, but either they are

sparse, or have low resolution, or limited range capacity, or all of them. Amongst all the sensors,

ToF sensors like LiDARs are widely used for longer-range applications for automotive safety and
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navigation.

Passive depth sensing refers to depth estimation using passive camera sensors by leveraging

depth cues of the visible environment. This depth cues come in the form of relative object sizes

at different ranges from the camera, occlusions, texture gradients, shading, aerial perspective etc.

Depth estimation are typically done in regular 2D grids and thus offer high-resolution depth. Dif-

ferent types are possible; single-view monocular, multi-view monocular, motion-based monocular,

and stereo depths. The most accurate amongst them are the stereo depth sensors (e.g. StereoLabs

ZED, Ensenso), which operate on the principle of triangulation between two cameras with a base-

line distance to estimate depth from disparity. They come in a wide range of baseline distances,

and thus can operate at different depth ranges. However, their accuracy depends on matching

features between two images, image resolution, stereo calibration and their performance suffers

in low-light conditions, textureless, smooth or specular surfaces. Some more advanced learning

algorithms [20, 21, 22] leverage neural networks and novel loss functions to tackle those weak-

nesses, but computational and algorithm complexity makes them slow and less readily adaptable

for realtime applications. Depth estimation using single view [23, 24, 25] has been popular re-

search problem over the last decade and on due to availability of cheap and high-resolution sensors

like cameras. The learning algorithms often leverage availability of ground-truth depth [24, 26],

novel CNN architectures [27, 28], or loss functions [29, 30] to improve depth accuracy, but the

performance gap is still wide compared to existing active depth sensors (see Tab. 1.1). Multi-

view [31, 32] and motion-based [15, 33] monocular depth estimation are also widely researched to

leverage multiple viewpoints of the camera or motion-based cues, but depth errors are still in the

range of meters due to occlusions, moving objects, shadows or textureless surfaces and errors in

camera pose.

While performance in range and resolution are improving, the cost for higher-resolution Li-
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Property Active Sensing Passive Sensing
Active Stereo Structured Light ToF Single-view mono. Multi-view mono Passive Stereo

Light Property Infra-red
beam projector

Known pattern
of light

Known speed
of light N/A N/A N/A

Effective Range
in meters

< 10
med range
depends on
IR projector

< 3
very short to

med range, depending
on illum. power

< 100
Short to long

range depends on
laser power

and modulation

Theoretically
Infinite

Theoretically
Infinite

< 20
depends on

baseline
between cameras

Depth Accuracy

mm to cm
Gradually

diminishing
with distance,
difficulty with

smooth, textureless
surface

mm to cm
Rapid fall-off

beyond projection range

mm to cm
Rapid fall-off

beyond projection range

m
Specific
to Algo

m
Specific
to Algo

mm to cm
Specific
to Algo,

Gradually
diminishing

with distance

Low Light
performance Good Excellent Excellent Poor Poor Poor

Scanning Speed
Medium

Limited by
software complexity

Fast
Limited by camera speed

Fast
Limited by sensor speed N/A N/A N/A

Latency Medium Medium Low High High Medium
Software Complexity Medium Low/Middle Low High High High

Sensor Cost $ $$ $$ - $$$ $ $ $

Table 1.1: Comparisons of active and passive depth sensors

DARs remains prohibitive for numerous applications. As a result there is significant ongoing effort

into improving the resolution, while lowering the cost of 3D sensors [34, 35, 36]. Pixel level fusion

of multimodal sensors i.e. LiDAR and camera [3] or radars and camera [37], are recently being

explored to improve depth resolution. There are several motivations to attain pixel level association

of depth in image grid. One motivation is that depth sensors are pretty accurate and do not suffer

the problem of scale, but the depth measurements are sparse compared to color images in a scene,

which offer high-resolution imagery. Another motivation to obtain depth for each color pixel is

for the purpose of RGB-D applications such as scene modeling, colorizing pointclouds etc. The

idea of fusion is to backproject depth points from LiDARs into image plane given we know rela-

tive transformation between the two sensors. Once the sparse depth measurements are projected

into image, depth completion problems can then be defined as completing ’missing’ information

of depth in the full resolution image grid, aided by color image.

Early works on depth completion [38, 39, 35] started with Middlebury dataset [40] [41] where

generated depth map is sparsely sampled to simulate raw input depth. This dataset has mostly

synthetic and indoor scenes, and have controlled lighting conditions. Since then, research has
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moved on from the Middlebury dataset to larger datasets, NYU2 [4], SUN RGBD Dataset [42],

Scan-Net [43]. These are mostly possible after the advent of RGBD depth sensors like Kinect, Intel

RealSense etc. Some of the depth completion tasks using these datasets are [44, 45, 46, 47, 48].

But the datasets are mostly in indoor planar scenes, with more focus on detection, pose estimation

and semantics recovery of object rather than depth super-resolution tasks. Also, the depth-range

of the sensors were limited to few meters. It has been only in recent times that depth completion

in outdoor scenes have gained considerable attention, with the advent of LiDARs that can promise

both range and accuracy. Some of the pioneering works in the fields are [3, 49, 50].
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Figure 1.1: Performance comparison of depth completion method using different input sensor
modalities (raw depth, monocular and monocular + raw depth). A standard deep learning method
(Ma et al. [10]) is used in outdoor KITTI depth completion dataset for evaluation. The maximum
depth range available for evaluation is 85m. x-axis refers to the no. of LiDAR scanlines projected
to the image as raw depth, y-axis refers to the RMSE metric in cm. 0 scan-line resembles depth es-
timation using monocular camera only. It shows that monocular and sparse depth as input modality
can reduce the performance gap by around 5 times compared to monocular camera only just by
increasing the raw depth measurements. The performance gap between raw depth and multimodal
input (monocular + depth) decreases as the number of raw depth measurements increase.

We choose to tackle depth completion problem by seeking to maximize the resolution of 3D
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sensing and improve accuracy. We ask: given a 3D sensor, can we upgrade its depth resolution

by adding a higher resolution color camera, and fusing the sensor data? Often, accuracy of esti-

mation turns out to be a big issue depending on which input modalities we choose for estimating

high-resolution depth. To put accuracy into some perspective, consider the Fig. 1.1, where we

check the performance between raw depth, monocular and monocular + depth as multimodal input

to a standard learning network [10]. An outdoor depth completion dataset (KITTI [1]) is used

for evaluation. The maximum depth range available for evaluation is 85m. 0 scan-line refers to

depth estimation using monocular camera only. It shows the performance gap can be reduced

roughly by 5 times (480cm for monocular, 87cm for monocular + depth with 64 LiDAR scanlines)

if multimodal sensors are used as input modality.

In short, we tackle the problem of depth completion in this dissertation using multi-modal

fusion (depth sensors + monocular camera). We project sparse depth measurements from depth

sensors into color image provided we have accurate extrinsic calibration parameters i.e. rotation

and translation with respect to the other sensor; and estimate dense depth for each pixel in image

plane, aided by color image.

1.3 Depth Ambiguity

Although depth completion has been increasingly used in wide applications in both indoor [3, 50,

48] and outdoor scenes [10, 51], the usefulness is still limited since the solutions often fail to tackle

a very important problem in depth completion tasks: depth smearing across object boundaries. We

now introduce the problem of depth ambiguity across boundaries and how it creates depth smearing

at these discontinuous regions.

A key property of a 3D scene is it has step edges between two surfaces. These sharp disconti-
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nuities emerge at the occluding boundaries of objects in natural scenes [52, 53]. When depth points

from LiDARs are projected into uniform and dense 2D camera grid, missing pixels in the grid face

an ambiguity problem for pixels at object boundaries: do these pixels belong to the foreground

or background object? Failure to resolve depths at ambiguity would create depth mixing which

would smear object boundaries and cause distortion in object shapes. Using high-resolution infor-

mation from another modality (particularly from RGB) turns out to be useful in order to detect and

recover sharp depth discontinuities. But problems of depth mixing remain and it goes worse with

more sparsity. Some researches [52, 54] address the depth-mixing problem by putting regulariza-

tion constraints on estimated edgemaps/discontinuity maps in the cost function. But they do not

address the problem completely, since predicting the edgemaps/discontinuity maps is challenging

in the first place and often not readily available in indoor/outdoor scenes.

To understand ambiguity better, lets define some key terms first in depth completion. We would

like to learn model parameters θ that can fill in all the missing pixels in the 2D dense grid with

depth di given we have sparsely sampled depth and color image xi as input data. The learning task

is supervised by groundtruth data dgt. The data is defined by a probability distribution px. The aim

of the learning task is to learn θ that best predict depth di, given sparse depth and color image data

xi, with distribution px:

θ̂ = argmax
θ

Epdata [log pmodel(di|x; θ)] . (1.1)

Here the expectation is performed over training data with distribution pdata. The term pmodel is

the probability of estimating di given data x and parameters theta. Ideally, our model can learn

perfect depth given we have infinite training data.

Initially let’s consider that the data x consist only of sparse depth values and no color images.
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To simplify the problem, let us consider two flat surfaces perpendicular to the z axis and a depth

discontinuity at its boundary. Within a surface the method can exactly estimate depth, but close to

the boundary there is an ambiguity. Given sparse depth samples in both the surfaces, we can ask

whether a pixel near a depth discontinuity belongs to the foreground or background surface. If the

boundary is unknown, it will be ambiguous to decide whether it is foreground or background. What

this means in terms of Eq. 1.1 is that given the same data x, there are at least two compatible depths:

d(1) for foreground and d(2) for background. If a color image is available, it may be possible to

exactly infer the boundary between objects, and resolve this ambiguity. However, often this is

not the case; the boundary is not clear and hence the ambiguity persists. Most depth completion

methods often fail to resolve this ambiguity at those regions and as a result introduce depth mixing

at both the surface depths. In this dissertation we design our representations carefully to handle

this case. We show that the way we address this ambiguity has important implications for depth

completion problems.

1.4 Thesis Outline

The objective of the dissertation is to propose a novel depth completion method that can preserve

shape and boundary of objects for use in real-life perception applications like 3D object detection.

Chapter 2 provides a theory of existing depth representations and introduces our novel rep-

resentations of depth using multichannel (Depth Coefficients) and dual channel representations

(Twin Surface). We discuss several important properties of these two representations that helps to

encode ambiguity well across object surfaces or boundaries. We also propose some effective depth

completion performance metrics e.g TMAE and TRMSE that can reduce preference for mixed

depths and promotes sharp boundaries.
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Chapter 3 digs deeper into our proposed multi-channel (Depth Coefficients or DC) represen-

tation, and how it can be learned in neural network. It shows how DC can avoid depth mixing

during learning and depth reconstruction. We also propose an effective loss function that works

amazingly well in learning this representation.

Chapter 4 delves deeper into learning dual-channel (Twin Surface or TWISE) representation,

which also avoids issues with memory constraints in DC and improves computational efficiency

significantly. We also discuss the quality of ground-truth depth in real-world depth completion

problems and how accurate evaluation of methods is affected by the presence of its outliers. We

find some potential pitfalls of commonly used evaluation measure i.e. RMSE, how it promotes

mixed depth solutions and study the robustness of some common metrics (MAE and RMSE) in

presence of outliers in groundtruth data.

Chapter 5 shows an application of our depth completion solution in 3D object detection. This

chapter investigates whether estimated high-resolution depth from depth completion methods can

help in object detection. It shows the effect of different depth noises originated from depth esti-

mates on detection performances and proposes some effective ways to reduce noise in the estimate

and overcome architecture limitations. The proposed findings are run on both real-world and syn-

thetic datasets. Finally we conclude the thesis with Chapter 6 with our findings, limitations and

some possible future directions of depth completion problems.
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Chapter 2

Depth Representation

Depth representations are an integral component in depth completion problems and learning high-

resolution depth. In this chapter, we discuss different types of depth representations that exist in

literature and introduce our depth representation and the motivations behind these representations.

This chapter also explains two proposed metrics that promote fairer depth completion metric com-

parisons by discounting mixed depth evaluation across object boundaries. We use these metrics as

performance measures for evaluation of depth completion performance throughout the rest of the

thesis.

2.1 Introduction

Depth data provides rich 3D information about the geometry of an object, hence its adequate

representation is of significant importance in computer vision tasks. There are different types of

3D representations available, and some representations are efficient for each individual tasks like

acquisition, rendering, manipulation, data analysis and even animation. But a single representation

might not be effective for all tasks. We realize that representation also affects learning depth

completion. Hence we seek an effective depth representation that can facilitate learning depth

accurately both within objects, and across its boundaries.

Sparse depth points projected in the image plane is often called depth map, which is a single

channel representation of depth in image grid. Although it is the default choice in depth com-
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pletion tasks, we show that this representation fails to capture empty space between objects [55];

an interesting property of a 3D scene, and as a result, learning algorithms often smear depths of

foreground and background objects and fill in empty space between them. We propose two novel

depth representations that can model 3D scenes effectively, both at ambiguous and non-ambiguous

regions. We also study in this chapter that conventional metrics used to evaluate depth completion

algorithms are not often effective measures to evaluate depth at depth boundaries.

In summary, this chapter introduces our novel representations for depth completion; i.e. multi-

channel depth coefficients and dual channel twin surface depth representations. We elaborate some

interesting properties of these representations. We also propose a novel evaluation metric that

tends to address the performance, more strictly, on depth discontinuity or occlusion boundaries.

The uses of these representations in depth completion are also a contribution of the thesis and will

be discussed more in the subsequent chapters.

2.2 Representations of Depth

(a) (b) (c) (d)

Figure 2.1: An illustration of different representations of depth; (a) represents point-cloud data
(Courtesy of Caltech) (b) represents voxel grid data (courtesy of IIT Kharagpur), (c) represents
triangle mesh (Courtesy of UW), and (d) represents multiview representations of depth (Courtesy
of Stanford) by means of depth maps.

Shapes and sizes of 3D objects can be measured using active and passive depth sensors. These
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3D measurements are typically stored in raw pointclouds, which can later be efficiently repre-

sented multiple ways depending on application scenarios, see 2.1. Some of these formats pose

new challenges to deep learning architecture models while also provide opportunity for novel and

efficient solutions. Some of the most common representations include:

2.2.1 3D Point Clouds

3D point clouds are a collection of unordered set of sampled points on surfaces of 3D objects. Each

point is encoded by its own set of X, Y, Z coordinates in 3D space. They are widely used in ob-

ject detection [2], segmentation [56] and surface normal estimation [57]. Their advantages include

registering precise locations of objects and are typically decoded directly from raw pulse signals

in ToF sensors. Also, it can be realized as a small set of Euclidean subsets that have global pa-

rameterization and common system of coordinates. But learning pointcloud is challenging due to

irregularly structured points and lack of connectivity information in-between points, which might

cause ambiguity on distinguishing multiple surfaces close to each other. Also, pointclouds are

memory intensive representation, so upsampling pointcloud of a 3D scene might come with mem-

ory and computational limitations.

2.2.2 Voxels

Voxels specify occupancy on a regularly spaced lattice in cartesian or polar coordinates. Each data

point can be single-dimensional specifying opacity, occupancy, or consist of multi-dimensional

information, such as color, probability of occupancy etc. in addition to opacity. Discrete and

quantized system of coordinates can also be used to define grid-structured representation like vox-

els. Viewpoint information about the 3D shape can be encoded by classifying voxels into visible,
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occluded, or empty regions. This regular grid can be used for object detection [58], object clas-

sification and orientation estimation [59]. Dense voxel grids can be memory intensive at high

resolutions, since this stores both occupied and non-occupied parts of the scene. However, sparse

voxel representations are also available to tackle memory issues. A more recent 3D volumetric

representation for effeciently finding neighborhood voxels is oct-tree based [60, 59] voxels, which

are typically varying-size voxels, and have the capacity to store high-resolution data by using hier-

archical data structure. However, none of these voxel-based representations preserve the shape of

3D objects precisely. Additionally there are issues with artifacts from discretizing the surface, as

well as high data and computational costs.

2.2.3 Polygon Meshes

Polygon meshes consist of a set of polygon facets with shared vertices that can approximate a ge-

ometric surface. The vertices are associated with a connectivity list which describes how these

vertices are connected to each other. Polygon meshes facilitate rendering because they represent

underlying geometric surfaces of objects. However, depending on the resolution, it is also mem-

ory intensive and requires high computational power for processing. Meshes can also be defined

directly on image grids; but there is possibility that this representation suffer from poor definition

of vertex connectivity due to ambiguous or missing information in the scene. Using regular con-

volutional neural networks (CNN) on raw mesh data might not be feasible because of irregular

representation, connectivity issues due to edge ambiguity, different resolution at different parts of

the scene and non-uniformity of data [61]. However, graph CNNs are applicable to meshes, where

meshes can be represented as graph data structures [62]. Such an approach gives promising new

direction over processing 3D data represented in meshes.
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2.2.4 SingleView and Multiview Depth Maps

Singleview depth maps are 2.5D representations of 3D data, and closely reflects raw depth data

in 2D grids captured from data acquisition devices e.g. ToF sensors. Multiview Depth Maps, are

combination of multiple singleview depth images, captured from different point of views of the

camera. Representing 3D data in this way allows learning multiple features to reduce the effect

of noise, incomplete data, occlusion and illumination problems. They have been used for RGBD

fusion and instance segmentation [63, 64]. This representation in regular grids can be processed

with CNN in an analogous way to color image super-resolution [65, 66]. This is the representation

of choice for colorization techniques and fusion [4] as well as depth completion. However the

question of how many views are sufficient to model the 3D shape is still open. Also, sparsity of

single-valued depth data in 2.5D representations might have adverse effects on dense convolutions

[34], and might lead to depth mixing and smearing problems at boundaries, see 3.3.

2.3 Multichannel Representation of Depth: Depth Coefficients

Depth completion algorithms typically take single channel depth representation as the default

choice for estimating missing depth pixels in regular 2D image grid. However, ambiguities can

exist around depth boundaries, and majority of depth completion algorithms suffer at these regions

by introducing smearing, i.e. mixing depth of multiple surfaces that are possible in that pixel loca-

tion. To tackle ambiguity, we deem it necessary to represent depth as multi-channel representation

to suggest possibilities of multiple depths.

In this section, we discuss why we opt for a multichannel depth representation to estimate

accurate depths at ambiguous regions, introduce Depth Coefficients (DC) and discuss the properties

of it. We also explained how to reconstruct depth from DC.
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2.3.1 Depth Representation

ෝ𝑐𝑥

ෞ𝑐𝑦

ෝ𝑐𝑧

Figure 2.2: Illustration of DC. The depth pixel (red circle) in the image plane is projected back to
the 3D space by a pixel ray. The depth bins are quantized along that pixel ray. Each bin is then
assigned a weight (depth coefficients) on few depth bins based on the proximity of the depth with
the depth bins.

We seek a depth representation that can model depth ambiguity in a 3D scene, and preferably be

used to resolve that ambiguity. So instead of representing depth as single value in that pixel, we use

a discrete set of weights or coefficients, called depth coefficients (DC) which represents a single

depth. Geometrically, DC represents depth along pixel rays. In simple terms, these coefficients

are weights of quantized depth bins 2.3 (b) existing along the trajectory of that ray, and sum of

product of these weights and the depth bins can give us depth in that pixel location. We now list

several interesting properties of depth coefficients that make it a useful representation for modelling

ambiguity.
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2.3.1.1 Discrete Representation

Depth coefficients are weights assigned to multiple depth bins along a pixel ray to preserve the

precision of a single depth value (see Fig. 2.2). With depth coefficients, depth is realized as sum

of weighted bins. However, spreading the weights into all available depth bins can be memory

intensive and make the learning task harder. So we seek only a finite number of coefficients that

makes it sparse and thus can preserve both precision and memory. In doing so, we make the signal

energy concentrated at possible depth bins; typically the main bin and its neighboring bins, see

Fig. 2.3. These kind of bin representations already exist in literature in several other applications

like tracking [67], bilateral filtering [68], channel smoothing [69], joint image alignment [70] etc.

But the way we use channels/bins to represent depth is novel and unique.

2.3.1.2 Probability Representation

Ambiguities and uncertainties can be modelled by probabilities. So we seek a probabilistic repre-

sentation of depth rather than single depth value in each pixel location. Depth coefficients offer dis-

crete probability representation in quantized depth bins on any pixel location in a 2D grid. This is

an important property since depth is ambiguous at depth discontinuities or object boundaries. Sin-

gle modal probability distribution can be used to model ambiguity by increasing the uncertainty or

standard deviation of depth. Although single modal distribution can model non-ambiguous region

quite well, it is preferable to suggest multiple depth scenario by using multi-modal distribution in

ambiguous regions. This is preferable since it gives the possibility to choose one depth over the

other without mixing the two possible depths. Mixture of gaussians can be used for multi-modal

representation, but which particular gaussian should be weighed more is not obvious. In that re-

spect, DC can be used to model both single-modal and multi-modal distributions respectively. It
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𝑑 ≈ 𝑑𝑖𝑑 = 7.25;

𝑑 = 

𝑖=𝑝 −1

𝑖=𝑝+1

𝑐𝑖𝑑𝑖 = 0.125 × 6 + 0.5 × 7 + 0.375 × 8 = 7.25

(a) (b)

Figure 2.3: Representing depth by means of multiple depth bins or depth coefficients to preserve
depth precision. In this toy example, we divide the depth range of 10m into 10 bins, each bin
spaced 1m apart from each other. (a) depth representation by a single bin, which loses precision
(b) depth representation by finite number of bins which preserve precision.

is noteworthy that although we use a single modal DC to represent depth, it is possible to estimate

both single modal and multi-modal DC. The higher weighted mode in the estimated DC can be

used to choose the final depth.

2.3.2 Mathematical Notations

Let us now represent a dense or sparse depth image by means of depth coefficients. We create

a multi-channel image, all of the same spatial resolution, with each channel centered at a pre-

determined uniformly spaced depth; D = {D1, . . . , DN}, where Dj refers to depth of whole

image at j-th channel. The depth values increase in uniform steps of size b. In choosing the number

of channels (or bins) we trade-off memory vs. precision. For our applications, we chose 80 bins to

cover the full range of depth up to 80m, and this determines the bin width, b; i.e. 1m apart. Thus

each pixel i has a vector of values, ci = [ci1, . . . , ciN ], which we call Depth Coefficients (DC), that

encodes its depth, di. We constrain these coefficient vector to be non-negative, sum of all elements

to 1, and give the depth as its inner product with the quantized channel depths:
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di =
∑
j

cijDj . (2.1)

Note this representation is not unique as many combinations of coefficients may produce the same

depth.

So we use the following simple representation with minimum number of non-zero coefficients

(in our case three) to represent depth. We select 3 to make the distribution of weights compact and

symmetric. It also facilitates learning since there are only 3 coefficients to learn compared to 5

or higher odd number. Let k be the index of the depth channel closest to pixel depth di, b is the

spacing between adjacent bin depths and δ = di−Dk
b be the fraction of residual depth with respect

to b. Dk−1 and Dk+1 bins can be expressed in terms of the center bin depth as Dk−1 = Dk − b

and Dk+1 = Dk + b respectively. With this substitution all the terms cancel on the right-hand side

of Eq. 2.2 leaving di. Considering the center bin depth has the maximum weight of 0.5, the other

neighboring weights depend on the residual δ. The DC vector for pixel i is:

ci =

[
0, . . . , 0,

0.5− δ
2

, 0.5,
0.5 + δ

2
, 0, . . . , 0

]
, (2.2)

where three non-zero terms are (ci(k−1), cik, ci(k+1)). This is unique for each di, satisfies Eq. (2.1),

and sums to 1.

2.3.3 Depth Reconstruction from True DC

To construct depth from true DC, for each pixel, we can just use the calculated coefficients from

DC and use the Eq. (2.1) as stated above. In an ideal DC with only three non-zero coefficients, it

is possible to have precise reconstruction of depth from DC. However, it is possible that estimated

DC has incorrect coefficients or more than three non-zero coefficients and still represent depth.
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This case is illustrated in 3.4.2.

2.4 Dual Channel Representation of Depth: Twin Surface

Multichannel representation (DC) requires multiple channels and thus more memory to preserve

depth precision than single channel depth. But DC has the advantage that it can represent depth

ambiguities for every pixel, and can present multiple ambiguities by using multiple peaks in the

form of multi-modal gaussian distribution. However, in real scenes most depth pixels have no

ambiguity since they are typically from the same surface, and those that typically are ambiguous

can only have two possibilities; depth from either foreground or background surface.

The phenomenon can be illustrated by Fig. 2.4 where dual peak DC suggest two possible

depths. It is also possible to represent ambiguity by a dual channel depth, i.e. foreground and back-

ground depth for each pixel, which can represent minimum and maximum depth for each pixel at

ambiguity. We call this a dual channel representation of depth, or twin depth. Ambiguity typically

exists around boundaries of objects since it is possible to be foreground or background depth at

the same pixel location. Sparse depth are likely to miss at or around boundaries, and interpolation

of foreground or background depth in a single channel can cause smearing. But it is possible to

model this ambiguity by using dual channel depth; each channel representing a foreground and

background depth respectively. This simplistic approach can save memory dramatically and can

model real-world scene in any depth without losing precision. Hence we propose a more memory

efficient representation that uses just dual channels per pixel, rather than multiple channels.
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Foreground Depth Background Depth

Figure 2.4: Dual Channel Representation

2.4.1 Depth Reconstruction from Foreground and Background Surfaces

Although a dual channel depth is used to model ambiguity, it is desired to reconstruct a final depth

from this representation. Let us define foreground depth and background depth by d1 and d2

respectively. At non-ambiguous regions, d1 and d2 represent the same surface, and at ambiguous

region, they can represent foreground and background surfaces respectively. The true depth can be

represented by using the following equation:

dt = σd1 + (1− σ)d2 (2.3)

where value of σ ranges between 0 - 1. By this representation, we allow σ to choose between

foreground and background surface when there is ambiguity, and can choose any value at non-

ambiguous region. This reconstruction also allows some level of interpolation, within object sur-

face by mixing the two depths.
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2.5 Proposed Evaluation Metrics

While RMSE and MAE are useful metrics for overall depth completion performance, they are not

effective measures of evaluating performance at sharp discontinuities across occlusion boundaries.

In this section, we show why RMSE and MAE are not good metrics to evaluate the sharpness at

depth discontinuity and propose a new metric to quantify it.

The two most common error metrics to evaluate depth completion tasks are MAE and RMSE

respectively. Both MAE and RMSE reflect the deviation of estimated depth from groundtruth

depth. While MAE calculates the mean of the absolute deviation, or error residuals of all the data,

RMSE calculates the mean of the squared error residual. Since the errors are squared before they

are averaged, RMSE gives a relatively high weight to large errors. This means RMSE should be

more useful when large errors are particularly undesirable. In the context of depth evaluation, both

these metrics are useful when depth is evaluated on the same surface, but this scenario changes

when multiple surfaces exist and there are equal probability for the estimated depth to reside on

any one surface.

In order to understand the implication of RMSE when multiple surfaces exist, let us consider

probability of depth pixel having either foreground (d(1)) or background surface d(2). The expec-

tation of the probability, or mean of this metric occurs at the midpoint (smeared pixel) of these two

depths since penalty of the estimated smeared pixel minimizes at the midpoint of the two surfaces.

MAE, although less severe, offers minimum penalty for any pixel between these two surfaces.

Nevertheless, mixed depth pixels are not sufficiently penalized in this metric either. The scenarios

can be best illustrated in Fig. 2.5 (c).

Thus we propose two complementary metrics that focus on depth surface accuracy and penalize

depth mixing equally to other large errors. These metrics are Root Mean Squared Thresholded
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Figure 2.5: Illustration why RMSE and MAE metric are not good at boundaries. x-axis shows the
(ŷi− ỹi) where ŷi and ỹi are estimated depth and groundtruth depth respectively, y-axis shows the
loss functions. (a) and (b) shows the metric for MSE and MAE, and TRMSE and TMAE of depth
and their characteristic loss curve respectively. (c) and (d) shows the expected MSE and MAE,
and expected TRMSE and TMAE when depth pixels are missing between (10m) and (13m) (see
text). From (a) and (b), both MSE and MAE and TMSE and TMAE shows perfect prediction/no
errors when it coincides with GT, but for MSE and MAE the errors continue to increase if the
depth estimates are far away from the GT. However, for TRMSE and TMAE, a fixed error occurs
for points beyond a threshold. From (c) and (d), the expected MSE and MAE favors estimates
in-between 10m and 13m, and thus, indirectly promote depth mixing. However, the TMSE and
TMAE favor either points (10m) or 13m. In a way, the TMSE and TMAE do not penalize depth
estimates when one surface/depth point (10m) is chosen instead of the other surface/depth point
(13m), and only account for intra-surface variations of depth estimates.
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Error (tRMSE) and Mean Absolute Thresholded Error (tMAE), defined as follows:

tRMSE =

√√√√ P∑
i=1

min((ỹi − ŷi)2, t2)
P

, (2.4)

tMAE =
P∑
i=1

min(|ỹi − ŷi|, t)
P

. (2.5)

Here P is the number of pixels, t the threshold distance distinguishing within-surface variation

from inter-object separation, ỹi the ground-truth value and ŷi the estimated value.

For TRMSE and TMAE, fixed error occurs for points beyond a threshold t, as illustrated in

Fig. 2.5 (b). Considering any inter-surface variation are not more than t, any error that goes

beyond t are equally penalized regardless of whether the estimated depth falls midway within the

two possible surfaces or falls at the incorrect surface. As a result, mixed depth pixel is not favored

more over depth pixel that estimates the incorrect surface. We argue that mixed depth pixel is

equally detrimental to estimated depth pixel on the wrong surface, if not worse. Thus this metric is

ideally suited for evaluation around boundaries since most of the mixed depth pixels reside around

boundaries.

To illustrate the idea mathematically, consider a single pixel with a density function defined

over its depth. Assume that this density is greater than zero for a set of points (corresponding to

probable surfaces) and zero elsewhere. The expectation of this density function is shown in Fig.2.5

(d). All depths, separated by at least t from any probable depth, will have a fixed expectation cost

of t which is greater than the cost of depths closer than t to a probable depth. Unlike RMSE, there

are no local minima at mixed-depth points (> t from a probable point). Unlike MAE, all mixed-

depth points have greater cost than points close to probable surfaces. Hence it does not favor any

mixed depth pixel over pixel that chooses the wrong surface.
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2.6 Conclusion

In this chapter we introduce two novel representation of depth; multichannel depth coefficients

(DC) and dual channel (twin surface), two depth representations that can model ambiguity of re-

alistic 3D scene. Multi-channel depth coefficients is a discrete probability distribution function

(discrete pdf) of depth. We show how to reconstruct depth from DC. In order to save memory

requirement, we also show how a dual channel representation can be used to model ambiguity and

propose a reconstruction method from these twin representation. Both these representation can po-

tentially avoid depth mixing around boundaries of objects. We also explained the problems of con-

ventional evaluation metrics on object boundaries and proposed a novel metric to deal with depth

evaluation on boundaries. Now that depth completion methods are producing high-quality dense

depths, our proposed metrics, tRMSE and tMAE, are preferable as they reward high-probable

depth estimates and give equal penalty to large errors, which are mostly mixed-depth pixels.

The next two chapters deal with how these two representations are used in a deep neural net-

work model for solving depth completion problems.
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Chapter 3

Depth Coefficients for Depth Completion

3.1 Introduction

This chapter focuses on using our proposed multichannel depth representation called Depth Coef-

ficients (DC) in a deep learning framework for estimating dense depth pixels. We show how DC

is able to avoid mixed depth pixels during learning. We also examine how loss functions, such

as MSE, favor mixed-depth pixels in certain cases. Using our proposed DC representation, we

leverage cross-entropy loss to avoid promoting depth mixing. Finally we show one utility of depth

estimation using DC in 3D object detection. We show resolving ambiguity across boundaries can

improve 3D object detection performance by recovering object shape and pose. Sample result is

shown in Fig. 4.1.

The contributions of this section are: (1) First use of DC in a neural network (2) a new use

of cross entropy as a depth loss function, (3) demonstration of improved object detection from

super-resolved depth.

3.2 Related Works in Depth Completion

Evolution of Depth Completion problems with Datasets: The substantially lower resolution of

depth sensors compared to color cameras has been a motivator for depth completion. Early work

by Diebel and Thrun [38] used markov random fields to guide upsampling, and this was followed
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(a)

(b)

(c) (e)

(f) (g) (h)

(d)

Figure 3.1: Our depth completion uses (a) a color image and the subsampled (16-row) Lidar points
projected into image plane to estimate (b), a dense depth image. (c-e) are zoomed-in view of input
color image, super-resolved depth of Ma et al. [3] and ours respectively. (f -h) are bird’s eye view
of input sparse Lidar data, (d), and (e), respectively. Colors in the bird’s eye view show the number
of height pixels in each cell/pixel. So a smeared object shape has height pixels spread out around
the object boundary. Notice the smearing of height at the object boundaries in (g) compared to
(h). These depth-mixing pixels impact qualitative appearance as well as subsequent tasks, such as
object detection and pose estimation.

by a variety of improvements including bilateral filters [39], robust regularization [35, 71], hand-

crafted filters [72] and image segmentation [73]. But most of the evaluation results were done on

Middlebury dataset [41]. They are mostly synthetic and indoor scenes, have controlled lighting
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conditions, and donot have ample data for training in deep neural networks. More recently deep

convolutional neural networks (CNNs) have taken the lead and research has moved on from the

Middlebury dataset [40] to larger datasets, NYU2 [4], SUN RGBD Dataset [42], Scan-Net [43].

These are mostly possible after the advent of accurate of RGBD depth sensors like Kinect, Intel

RealSense etc. Some of the depth completion tasks using these datasets are [45, 46, 47, 48], and

all of them used deep learning networks since there are now more training data available. But the

datasets are mostly in indoor planar scenes, with more focus on detection, pose estimation and

semantics recovery of object rather than depth super-resolution tasks. Also, the depth-range of the

sensors were limited to few meters.

It has been only in recent times when depth completion in outdoor scenes were dealt with

tremendous interest for improving 3D perception algorithms, mostly for autonomous driving. But

mostly synthetic datasets [74, 75, 76] have dense depth maps that is exactly colocated with color

imagery, and questions remain on the photo-realisticity of the scenes and different subsampling

tools researchers use to downsample the dense depth maps, and thus cannot replace real world

datasets [77, 78, 79]. But unfortunately all these datasets focus on 3D object detection, segmen-

tation and tracking applications. The only realistic dataset to-date that focus on dense depth esti-

mation tasks is KITTI [34]. Even though GT data provided by this dataset is semi-sparse, one of

the main advantages of this dataset is it being realistic, outdoor scene, and enough data to train on

neural networks. Most of the recent outdoor depth completion tasks [36, 3, 51] use this dataset for

benchmarking. Our work uses a similar network as [3], but with focus on the depth representation

and loss function, instead of the architecture.

Loss function for depth completion: A key component of depth completion is the choice

of loss function. Recent work has explored loss functions including L2 [48, 3], L1 [47], inverse-

L1 [36], and softmax losses on depth [50]. While these loss functions can achieve low error
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on measures including RMSE, MAE, iMAE, often it comes at the cost of smoothing out depth

estimate at object boundaries. In this way, the sharp boundaries are lost/smeared and object shapes

are distorted. We propose to impose cross-entropy on our probabilistic representation, and show

this gives both high performance and sharp boundaries.

3.3 Avoiding Depth Mixing by Convolution

In order to define depth mixing, we first define some necessary terminologies. If the closest depth

pixels of an interest point are separated by a given distance, we say there is depth discontinuity

across the interest point. The foreground and background modes are defined by whether the interest

point is closer (foreground mode) or further away (background mode) than each other from the

sensor. It is possible that the modes have intra-surface variations due to noise or roughness of

the surface (foliage, potholes in the road etc), but we claim that in order to separate between two

modes/surfaces, the intra-mode depth variation should have maximum threshold t. In this section,

for outdoor scenes, the t is 1m, and for indoor scenes, it is 0.1m.

We define mixed depth pixels as estimated depth pixels which are in between the two depths

of foreground and background mode. Mixed depth pixels occur at empty spaces across mode

boundaries. The phenomenon is best illustrated by Fig. 3.2. The consequence of depth mixing is

smeared shape of the objects.

Now that we have explained depth coefficients and its representation in 2.3 and depth mixing,

the question comes to how to incorporate DC in a deep neural network with an effective loss

function that would avoid depth mixing and smearing across object boundaries. Ideally, we would

like to get no depth mixing across object boundaries throughout the 3D scene, but this phenomena

is often limited by the resolution of channel gaps in DC. Let us consider we uniformly set tm
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Figure 3.2: Illustration of Depth Mixing. (a) shows sparse measurements (red) in color image,
(b) shows estimated depth map [10], (c) shows pointcloud generated from the depthmap (b). The
black crosses in (c) are the sparse measurements. The red 3D box indicates the position of the
car. Between the foreground mode (car) and the background mode (walls of the building), the 3D
points floating in between are the mixed depth pixels. We say the car is smeared along its boundary.
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spacing between DC channels. So our aim is to minimize depth mixing across two object depths

separated by atleast tm away from each other. This section explains the motivation how DC can

avoid depth mixing during convolutions; discusses further that by using DC, we can apply cross-

entropy as an effective loss function to resolve depth both with-in and across object surfaces. The

section then goes on to give an overview of the deep learning architecture.

3.3.1 Motivation

The fact that dense convolutions with DC can avoid depth mixing can be explained by a motivating

example (see Fig. 3.3). Consider two planar depths in a depth image, separated by 5tm away from

each other. We take a slice of the depth image, and sparsely subsample the 1D depth signal.

Now if we run a 1D convolving FIR filter on this signal, it will mix the depth of two planar depths

across depth discontinuity. Now consider the case when the sparse depth signal is converted to DC.

This time the DC channels are spatially separated by tm in depth. This time we run the 1D FIR

filter on DC along DC bins; now the missing weights/coefficients are interpolated only between

neighboring bins and as a result, there is no mixing between weights of spatially separated channels

more than tm away from each other.

Similarly, the first step of a CNN is typically an image convolution with Nin input channels.

For sparse depth input, Nin = 1, and so all convolutions apply equally to all depths, resulting

mixing right from the start. For DC input, depths are divided over Nin = N input channels,

resulting in two important capabilities. First, CNNs can learn to avoid mixing depths in different

channels as needed. This is similar to voxel-based convolutions [80, 81] which avoid mixing

spatially-distant voxels. This effect is illustrated in Fig. 3.3(e-f), where a multi-channel input

representation, (e), allows convolutions to avoid mixing widely spaced depths. Second, since

convolutions apply to all channels simultaneously, depth dependencies, like occlusion effects, can

30



(a) Mid-pix
0

5

10

15

20

D
ep

th

(b)
0

5

10

15

20

D
ep

th

(c) Mid-pix
0

5

10

15

20

D
ep

th

(d)

-1 0 1
-0.5

0

0.5

1

1.5

(e)
0

5

10

15

20
D

ep
th

(f ) Mid-pix
0

5

10

15

20

D
ep

th
Figure 3.3: An example of depth mixing, and how DC avoids it. (a) A slice through a depth image showing
a depth discontinuity between two objects. (b) An example sparse depth representation: each pixel either
has a depth value or a zero. (c) The result of a 1D convolution, shown in (d), applied to the sparse depth.
This estimates the missing pixel, but generates a mixed-depth pixel between the two objects. (e) A DC
representation of the sparse depth. Each pixel with a depth measurement has three non-negative coefficients
that sum to 1 (shown column-wise). (f) The result of applying the same filter (d) to DC in (e). Missing
depths are interpolated and notably there is no depth mixing between the objects.

be modeled and learned by neural networks.

3.3.2 Proposed Loss Function

Once we are motivated that dense convolutions can avoid depth smearing on DC channels, we

explore some of the loss functions to optimize our neural network parameters. We found that

designing an optimization loss over GT DC rather than GT depth is also vital for avoiding depth

smearing across boundaries. We discuss in this section why some of the conventional loss functions

used for depth estimation encourage depth smearing across boundaries. We then propose cross-
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entropy loss to address this phenomena.

3.3.2.1 Depth Loss Functions with Ambiguity

One of the more popular loss functions in depth completion tasks is Mean Squared Error (MSE). In

part this is because the MSE gives the maximum likelihood solution to Eq. 1.1 when pmodel(di|x; θ)

is gaussian. We consider the simple case when data is gaussian. The maximum likelihood opti-

mizer gives an optimum estimator that is close to the mean of data x.

Now we consider the implications of using MSE when there are depth ambiguities. We define

ambiguity as regions across depth discontinuity when there are probability of a depth pixel having

either foreground and background mode as defined in 1.3. Given there are two modes from data x,

the foreground mode having depth d(1) and the background mode having d(2). Given multi-modal

density function from data x, the MSE loss for depth di at pixel i is:

MSE(di) =
1

2

(
||d− d(1)||2 + ||d− d(2)||2

)
, (3.1)

which is minimum when

d̂i =
1

2
(d(1) + d(2)). (3.2)

And so the estimated depth pixel is a mean of the foreground and background depths. An il-

lustration of this is in Fig. 3.4(b). This solution is only good when the foreground and back-

ground depth are coming from within the same surface (e.g. road surface, walls etc) since regres-

sion/interpolation is desirable within same surface, but the solution is undesirable when the depths

are coming from different surfaces.

Mean Absolute Error (MAE), has a similar issue, yet not as severe. As in Fig. 3.4, in the

pairwise ambiguity case, the MAE loss of mixed-depth pixels is equal to the loss at the actual
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Figure 3.4: (a) shows MSE and MAE loss functions. These perform an expectation over the prob-
ability of the data. Now consider an ambiguous case where a pixel’s depth has equal probability
being d(1) or d(2), shown as black squares in (b). Minimum MSE estimate, d̂, is the mid-point,
while MAE has equal loss for all points between these two depths. This illustrates why MSE
prefers mixed-depth pixels, and MAE fails to penalize them.

values. Thus while MAE loss does not prefer mixed-depth pixels like MSE, nevertheless mixed-

depth solutions may not be sufficiently penalized to avoid them.

3.3.2.2 Cross Entropy as Loss Measure

As shown in Sec. 3.3.2.1, minimizing MSE leads to depth mixing when there is depth ambiguity

(note that ambiguity only exists at inference when we estimate depths on each pixel given sparse

depth measurements, and possibly, color). One way to avoid this is, rather than estimating depth

directly, we can estimate a more general probabilistic representation of depth. Now DC can provide

a probabilistic depth model, both for pdata and pmodel in Eq. 1.1. Minimizing the cross entropy of

the predicted output c̃, representing pdata(d̃i|xi; θ), is equivalent to minimizing the KL divergence

with c. In this way, we can learn to estimate pmodel(di|xi; θ) parameterized with DC rather than

learn to estimate di, Our cross-entropy loss for pixel i is defined as:

Lcei (cij) = −
N∑
j=1

cij log c̃ij , (3.3)
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Figure 3.5: An illustration of Pdata modeled as the sum of the DC of the two points from Fig. 3.4.
The estimated ĉij with minimum cross-entropy loss, Eq. 3.3, will exactly match Pdata, providing
a multi-modal density. A pixel depth estimate using Eq. 3.4 will find the depth of one of the peaks,
and not a mixed-depth value.

where cij terms are the DC elements of the ground truth obtained using Eq. 2.2. Training a network

to predict c̃ij that minimizes Lcei is equivalent to maximizing Eq. 1.1.

Use of cross-entropy loss has two main advantages. The first is that depth ambiguities no

longer result in a preference for mixed-depth pixels. As illustrated in Fig. 3.5, DC models multi-

modal densities, and as we show in the next section our depth estimate will find the location of

the maximum peak at one of the depths. Second, optimizing cross entropy leads to much faster

convergence than MSE, which suffers from gradients going to zero near the solution.

3.4 Learning by Deep Neural Network

Now that we are certain that we need to inject sparse DC and estimate dense DC in and out of a deep

learning model, we set our sight as to what is a good network architecture that can incorporate DC

naturally. Also we need a model to recover dense depth from estimated DC. This section describes

in detail our deep learning framework to estimate depth from DC. The first part gives an overview

of the model, the second part explains the neural network architecture of our model, and the third

part explains how we recover depth from estimated DC.

The three major blocks in our deep learning framework are (a) Sparse Depth 2 DC block (b)
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Figure 3.6: An overview of our method. Sparse depth is converted into Depth Coefficients with
multiple channels, each channel holding information of a certain depth range. This, along with
color, is input to the neural network. The output is a multi-channel dense depth density that is
optimized using cross entropy with a ground-truth DC. The final depth is reconstructed based on
the predicted density.

Neural Network block (c) Dense DC to Depth block as shown in Fig. 3.6. The sparse depth

measurements are first converted to sparse DC. This operation is non-differentiable though. The

deep network estimates DC, and we optimize the solution on GT DC converted from ground-truth

depth based on cross-entropy loss. Finally, we convert dense DC estimate to dense depth estimate.
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3.4.1 Neural Network Architecture
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Figure 3.7: Our CNN architecture modified from [3] with 80-channel DC at the input, and 80-
channel cross-entropy loss. The residual blocks are defined in the dashed red region, and the top
branch consists of ResNet 34 [11].

We selected a standard network for depth completion [3], and modified the input and output.

Single channel depth is first converted to 80C DC. On the input, 80/48 channels of DC and color

were then fed into the initial convolutions respectively and then concatenated for further propaga-

tion into the network. On the output, 80 channels are predicted (rather than a single channel) using

a 1× 1 convolution. It is straightforward to convert a depth network into a DC network using this

strategy. The downside, though, is feeding in more channels (80 in our case), creates more memory

requirements. The estimated DC output of the network is trained using cross entropy loss on a DC

representation of semi-dense depth.

3.4.2 Depth Reconstruction

Since we optimize the neural network parameters based on GT DC, it is possible that the estimated

DC infers mulimodal density functions at ambiguous pixels. The case is best illustrated in Fig.

3.5. The question is then how to recover depth from estimated DC.

There are a number of options for depth reconstruction from DC. We can use Eq. 2.1, and

substitute ĉij for cij for pixel i. However, the predicted coefficients may be multi-modal as in

Fig. 3.5, and it may be preferable to estimate the maximum likelihood solution. We now show that

representing depth in depth coefficients is guaranteed to avoid depth mixing if we only select the
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main bin (peak of the probability vector) and its two closest bins (far and near bin) to construct

the depth. This step is key to cut off interactions with far away bins and avoid depth mixing. We

found out that near object boundaries, the DC vector of that pixel has estimated weights typically

spanned over large number of bins (large uncertainty along boundaries). So to avoid depth mixing,

we detect the peak bin and its associated nearby bins to reconstruct the depth.

We can estimate the depth for the peak via the maximum coefficient cik ∈ ci and its two

neighbors. This gives us:

d̂i =
ĉi(k−1)D(k−1) + ĉikDk + ĉi(k+1)D(k+1)

ĉi(k−1) + ĉik + ĉi(k+1)
. (3.4)

3.5 Experiments and Results

3.5.1 Experimental Protocols

We evaluate DC representation by means of two publicly available datasets: KITTI (outdoor

scenes) and NYU2 (indoor scenes) respectively to demonstrate the performance of our algorithm.

We use KITTI depth completion dataset [34] for both training and testing. The dataset is created by

aggregating Lidar scans from 11 consecutive frames into one, producing a semi-dense ground truth

with roughly 30% annotated pixels. The dataset consists of 85, 898 training data, 1, 000 selected

validation data, and 1, 000 test data without ground truth. We truncate the top 90 rows of the image

during training since it contains no Lidar measurements.

The NYU-Depth v2 dataset consists of RGB and depth images collected from 464 different

scenes. We use the official split of data, where 249 scenes are used for training and we sample 50K

images out of the training similar to [47]. For testing, the standard labelled set of 654 images is

used. The original image size is first downsampled to half, and then center-cropped, producing a
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network input spatial dimension of 304 × 208. For comparison purposes, we choose the state of

the arts in both outdoor [3] and indoor scenes [47, 51] using RGBD depth sensors.
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Figure 3.8: Depth completion with 16-row Lidar. (a) scene, (b, e) show Ma et al. [3] with signifi-
cant mixed pixels. (c, f ) show our 3-coefficient estimation, demonstrating very little depth mixing.
(d, g) show our estimation with all coefficients.

(a) (b) (c) (d)

(e) (f ) (g)

Figure 3.9: Another depth completion example with 16-row Lidar, where all subfigures are defined
the same as Fig. 3.8. Interestingly, higher RMSE is reported on 3-coefficient estimation as opposed
to all-coefficient estimation.

3.5.1.0.1 Sub-Sampling Another application of depth completion is to improve on object de-

tection. While it might seem intuitive that at higher resolution, estimated dense depth could give

better vehicle detection, often this is not the case, and we are not aware of other past literature
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Method RMSE MAE REL tMAE tRMSE δ1 δ2 δ3 δ4 δ5
Ma [47] 0.236 0.13 0.046 0.068 0.075 52.3 82.3 92.6 97.1 99.4

Bilateral [82] 0.479 - 0.084 - - 29.9 58.0 77.3 92.4 97.6
SPN [83] 0.172 - 0.031 - - 61.1 84.9 93.5 98.3 99.7
Unet [51] 0.137 0.051 0.020 - - 78.1 91.6 96.2 98.9 99.8

CSPN [51] 0.162 - 0.028 - - 64.6 87.7 94.9 98.6 99.7
CSPN+UNet [51] 0.117 - 0.016 - - 83.2 93.4 97.1 99.2 99.9

Ours-all 0.118 0.038 0.013 0.042 0.053 86.3 95.0 97.8 99.4 99.9
Ours-3coeff 0.131 0.038 0.013 0.040 0.054 86.8 95.4 97.9 99.3 99.8

Table 3.1: Quantitative results of NYU2 (Done on Uniform-500 Samples + RGB) (units in m).

Sparsity MAE RMSE tMAE tRMSE
64R-3coeff 24.1 121.2 20.3 34.4
64R-all 25.2 106.1 23.9 37.4

32R-3coeff 31.0 132.2 24.4 39.5
32R-all 31.1 115.8 27.6 42.2

16R-3coeff 37.8 160.6 33.4 47.2
16R-all 38.6 142.3 36.1 50.5

Table 3.2: Performance evaluation at different levels of Lidar sparsity (KITTI dataset). 64R, 32R
and 16R refers to 64-row, 32-row, 16-row respectively. Units in cm.

Input Loss MAE RMSE tMAE tRMSE
SP MSE 6.63 15.28 5.96 6.97
DC MSE 6.10 15.32 5.72 6.73
SP CE 9.53 17.81 6.75 7.56
DC CE 3.82 11.85 4.24 5.37

Table 3.3: A comparison whether DC on the input or DC with cross entropy (CE) on output has
the dominant effect. It turns out that individually their effect is small, but together have a large
impact (NYU2 dataset). Units in cm.

reporting this. Likely mixed-depth pixels have a large negative impact on object detection. Indeed,

Tab. 3.4 shows worse car detection on Ma’s output than on the raw 16-row sparse data. However,

our method is able to outperform sparse depth, an important step towards improving Lidar-based

object detection.
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3D Bounding Box Bird’s Eye View Box
Upsample: Easy Med. Hard Easy Med. Hard
Raw 16R 54.4 36.2 31.3 73.6 58.1 50.4
Ma [3] 36.7 23.0 18.5 56.2 33.8 29.7

DC-3coeff 64.9 41.9 34.7 78.1 54.0 45.6

Table 3.4: Average precision (%) for 3D detection and pose estimation of cars on KITTI [1] using
Frustum PointNet [2]. The baseline, Raw-16R, uses 16 rows from the Lidar, while Ma’s method [3]
and our method start by densely upsampling these 16-row data. In each case, the method is trained
on 3, 712 frames and evaluated on 3, 769 frames, of the KITTI 3D object detection benchmark [1]
using an intersection of union (IOU) measure of 0.7. Only our method improves on the baseline,
and this is the most significant for 3D bounding boxes.

3.6 Conclusion

In this chapter, we introduce depth coefficients (DC) in a neural network model. On the input,

DC represents depth without loss in accuracy (unlike binning) while separating pixels by depth so

that it is simple for convolutions to avoid depth mixing. On the output side, instead of directly

predicting depth, we predict a depth density using cross entropy on the Depth Coefficients. This is

a richer representation that avoids depth mixing and can enable deeper levels of fusion and object

detection. Also using a similar strategy (using a depth-to-DC and DC-to-depth converter), it is

possible to incorporate DC in any neural network architecture. Indeed we show that, unlike other

upsampling methods, our dense depth estimates can improve object detection compared to sparse

depth.
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Chapter 4

Depth Completion Using TWIN Surface

Extrapolation at Occlusion Boundaries

4.1 Introduction

In the previous chapter, we show how multi-channel depth representation can be used to model

depth ambiguity at object boundaries or step-like discontinuities. It is important to maintain depth

discontinuities to facilitate object shape and pose estimation. However, it has high computational

and memory demand for accommodating many channels at high resolution. Instead of using mul-

tiple channels with binning, our method, named TWIn-Surface Estimation (TWISE), uses a two-

surface representation which is much more efficient and can explicitly model ambiguity by finding

difference between the twin surface depths. We believe that naturally encoding the foreground and

background pixels at the boundary would enable the effective learning of the step-wise discontinu-

ity with lower memory and computational requirement.

In order to train a twin-surface estimator, we propose a pair of asymmetric loss functions that

naturally bias estimates toward foreground and background depth surfaces. The asymmetry in

the losses are key to separation of foreground and background depths at ambiguous pixels. We

also incorporate a fusion channel that automatically combines the foreground and background

depths into a final depth estimate for each pixel, by selecting a foreground/background depth at the

ambiguous regions and mixing the two depths at non-ambiguous regions.
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Of particular concern is the lack of dense and reliable ground-truth depth data in outdoor scenes

needed for accurate evaluation of depth estimates. KITTI, a realistic outdoor scene dataset, offers

semi-dense ground-truth, created by accumulating LiDAR points but suffers from noisy depth

samples (outliers) at boundaries and dynamic objects [49]. Indoor dataset like NYU2 provides

dense GT only by using some colorization techniques that can cause smoothing at object bound-

aries. Currently the preferred evaluation metric of choice for ranking depth completion methods is

RMSE. In this paper, we study the effects of outlier noise present in ground-truth data on RMSE

and note that MAE is a more consistent metric for both cases of noisy and clean ground-truth, as

validated on the synthetic VKITTI dataset.

In summary, this chapter focuses on a twin-surface representation that can estimate foreground,

background and fused depth. We also design a pair of assymmetric loss functions that can explicitly

predict foreground-background object surfaces that can be used in any neural network learning

paradigm. We discuss further that in presence of outliers in ground-truth, MAE is a more consistent

metric to rank methods compared to RMSE, and we validate this claim with extensive experiments

in VKITTI, a synthetic dataset for urban driving scenario. Finally we show the effectiveness and

superiority of our method by comparing with SoTA method on both challenging outdoor and indoor

scenarios.

4.2 Related Works

4.2.1 Depth Completion

Deep neural networks (DNNs) have been applied to the depth completion problem, in works such

as Sparse-to-Dense [10], DDP [84], and Spade RGBsD [36]. These works show that by using

standard encoder-decoder architecture (ResNet and MobileNet), it is possible to improve depth
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Figure 4.1: Our depth completion algorithm can input LiDAR data and image (a), and extrapolate the
estimates of foreground depth d1 (b) and background depth d2 (c), along with a weight σ (e). Fusing all
three leads to the completed depth (d). The foreground-background depth difference (f) d2 − d1 is small
except at depth discontinuities.

estimation accuracy via regression losses like L2, L1 and inverse L1 losses. Deep-Lidar [85] esti-

mates surface normal and dense depth using multiple DNNs to assist in further fine-tuning dense

depth. Both [85] and [84] rely on synthetic data and various labels for learning depth represen-

tations. Recently, works have opted to optimize depth using 3D geometric constraints like depth-

normal consistency [86, 87] to improve depth completion. Xu et al. create geometric consistency

between the surface normal and depth in 3D, but use another refinement network for improved

depth estimation [87]. Another recent trend is to learn spatial propagation of pixels in 2D depth

space for depth completion problems in fixed [88] or variable receptive field [13, 89]. Although re-
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sults are highly encouraging, these methods suffer from poor inference times and generalizability

on variable sparsity. Researchers have also looked into learning 3D features for depth comple-

tion using continuous convolution in 3D space [90], point cloud completion [91], 3D graph neural

networks [92] for dynamic construction of local neighborhood regions.

4.2.2 Depth Representations

Depth maps, as 2.5D representations, have been used for RGBD fusion and instance segmenta-

tion [63, 64]. They naturally encode sensor viewing rays and adjacency between points. They are

compact representations and their regular grids can be processed with CNNs in an analogous way

to image super-resolution [93, 94]. This is the representation of choice for colorization techniques

and fusion [4] as well as depth completion.

We propose a 2-layered representation of depth to model occlusion boundaries. The concept

of layered representation of depth has been well known in graphics community. LDIs (Layered

Depth Images) are first proposed by Shade et al. [95] as intermediate representation for efficient

image-based rendering. These are gathered by accumulating depth values via z-buffering from

multiple depth images of nearby view points. Tulsiani et al. [96] infer 2-layered depth represen-

tation (recovering depth of visible and non-visible scene) from a single input image by learning

view-synthesis from multiview camera guided supervision. Hedman et al. [97] propose a 3D photo

reconstruction algorithm that builds multi-layered geometric representation of the scene by warp-

ing several depth maps and stitching color and depth panoramas for front and back-scene surfaces.

In all these cases, multi-layered representation is constructed/learned from multi-camera view-

points/depthmaps of the scene. In our case, we estimate these 2-layered representation on a single

camera viewpoint with our proposed loss functions.
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4.2.3 Loss Functions in Depth Completion

A key component of depth completion is the choice of loss functions. Recent work has explored

loss functions including L2 [48, 10], L1 [47], inverse-L1 [36], Huber loss [90] and Softmax loss

on depth [50]. Another elegant way is to use combination of L1 + L2 [13], which can leverage the

benefits of both L1 and L2 losses. While these loss functions can achieve low error on metrics in-

cluding RMSE, MAE, iMAE, often it comes at the cost of smoothing depth estimates across object

boundaries. In addition to the aforementioned losses, people increasingly use Chamfer distance on

point cloud [91], depth-normal constraint [87], Cosine loss [85], in a multi-learning framework to

improve depth completion accuracy. Nevertheless, smoothing across sharp boundaries remains a

concern in many of these methods. Imran et al. [12] show that cross-entropy (CE) loss can generate

sharp boundaries, although performs worse in the RMSE metric.

We learn foreground and background depth by proposing two assymetric loss functions, and

the final depth using a fusion loss. The assymetric loss function has been used in Vogel et al. [98],

for the different purpose of denoising input images. We propose to use assymetric loss functions to

learn biased estimators of FG/BG surface, and learn to select/blend (fusion loss) between FG/BG

surface, and that, we claim, helps to recover depth discontinuity.

4.3 Ambiguities and Expected Loss

Depth completion involves two quite different challenges which can be at odds. The first is to

interpolate missing pixel depths within objects leveraging nearby sparse depths. The second is to

accurately find the occlusion boundaries of objects and ensure that interpolated pixels belong to

either the foreground or background object. We propose a method that aims to perform both tasks

well.
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Figure 4.2: Depth smearing across boundaries. We show the ground truth depth (colored red) overlaid on
an image (a), depths estimated by the SoTA method [6] (b), our fused depths (c), our estimated weights
σ (d), a depth slice of [6] (e), fused depth and σ slices (f), and foreground and background slice (g). Our
extrapolation ability in (g) results in the sharp depth boundary in (f), rather than the smeared depth in (e).

Our approach divides depth completion into two simpler problems, each of which can be more

easily learned by a network. The first problem is depth interpolation without boundary determi-

nation. Rather than estimating a single surface which must model step functions at depth dis-

continuities, Our key novelty is to estimate twin surfaces. A foreground surface extrapolates the

foreground object depth up to and beyond boundaries, while a background surface extrapolates the

background depth up to and behind the occluding object. Then the second problem is to find the

boundary and determine a single depth by fusing these two surfaces. We find the color image is

particularly useful in aiding surface fusion. Both of these components are illustrated in Fig. 4.2.

4.4 Methodology

Depth completion involves two quite different challenges which can be at odds. The first is to

interpolate missing pixel depths within objects leveraging nearby sparse depths. The second is to

accurately find the occlusion boundaries of objects and ensure that interpolated pixels belong to

either the foreground or background object. We propose a method that aims to perform both tasks
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well.

Our approach divides depth completion into two simpler problems, each of which can be more

easily learned by a network. The first problem is depth interpolation without boundary determi-

nation. Rather than estimating a single surface which must model step functions at depth dis-

continuities, Our key novelty is to estimate twin surfaces. A foreground surface extrapolates the

foreground object depth up to and beyond boundaries, while a background surface extrapolates the

background depth up to and behind the occluding object. Then the second problem is to find the

boundary and determine a single depth by fusing these two surfaces. We find the color image is

particularly useful in aiding surface fusion. Both of these components are illustrated in Fig. 4.2.

4.4.1 Ambiguities and Expected Loss

Ambiguities have a significant impact on depth completion, and it is useful to have a quantitative

way to assess their impact. Here we propose using the expected loss to predict and explain the

impact of ambiguities on trained networks.

By an ambiguity we mean, not that there isn’t a unique true solution, but rather that from a

measurement it is difficult for the algorithm and/or human to decide between two or more dis-

tinct solutions. Ambiguity can be more formally defined as follows. Given measurement data

that sparsely samples the scene, the number of ambiguities is equal to the number of different true

scenes, i.e. true depth maps in our case, that could have generated the sparse measurement. This

number depends on what variations occur in actual data. For simplicity we treat each pixel ambi-

guity independently of other pixels, and so the ambiguities for a pixel are the possible depth values

it could take that are consistent with the measurement.

We anticipate the level of ambiguity to vary across a scene. For example, pixels on flat surfaces

will be well-constrained by nearby pixels and have low ambiguity. In contrast, pixels near depth
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discontinuities may have large depth ambiguity. There is often insufficient data from the depth

image to decide whether the pixel is on the foreground or background.

A corresponding color image can help resolve ambiguities as to which object a pixel belongs.

However, exactly how to leverage color images to resolve ambiguities in CNNs is one of the open

challenges in depth completion. Our work aims to offer a solution to this problem by explicitly

estimating ambiguities and resolving them within the network.

Our work aims to offer a solution to this problem by explicitly estimating ambiguities and

resolving them within the network.

To assess the impact of ambiguities on our network, we build a quantitative model. Consider a

single pixel whose depth, d, we seek to estimate. Next assume that the pixel has a set of ambigui-

ties, di, each with probability pi. This probability measures of how likely it is that the ground truth

will take the corresponding depth, given our modeled scene assumptions. Now consider a loss

function on the error for each pixel, L(d − dt), where dt is the ground truth depth. The expected

loss as a function of depth is:

E{L(d)} =
∑
i

piL(d− di). (4.1)

This expected loss is important because if a network is trained on representative data then it will

be trained to minimize the expected loss. Thus by examining the expected loss we can predict the

behavior of our network at ambiguities, and so justify the design of our method.
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Figure 4.3: (a) The ALE from Eq. (4.2) is asymmetric around its minimum at the origin. (b) The RALE from
Eq. (4.3) is a reflection of the ALE. We use the ALE for foreground surface estimation and the RALE for
background estimation. (c) A pixel depth is shown with two ambiguities at depths d1 and d2 and probabilities
p1 and p1 respectively. The black line shows the expected ALE which is the probability-weighted sum of
two ALE functions, see Eq. (4.1). The expected ALE will have a minimum at one of the marked corners
occurring at d1 and d2. The minimum will be at d1 if Eq. (4.4) is satisfied, as it is in this case with p1 = p2,
and so acts as a foreground depth estimator.

4.4.2 Asymmetric Linear Error

Our method uses a pair of error functions which we call the Asymmetric Linear Error (ALE), and

its twin, the Reflected Asymmetric Linear Error (RALE), defined as:

ALEγ(ε) = max
(
−1

γ
ε, γε

)
, (4.2)

RALEγ(ε) = max
(
1

γ
ε,−γε

)
. (4.3)

Here ε is the difference between the measurement and the ground truth, γ is a parameter, and

max(a, b) returns the larger of a and b. The ALE and RALE are generalizations of the absolute

error, and are identical to the absolute error when γ = 1. The difference is that the negative side

of ALE is weighted by 1
γ and the positive weighted by γ. The RALE is simply the reflection of the

ALE over the ε = 0 line. Both are illustrated in Fig. 4.3 (a,b).

Note that if γ is replaced by 1
γ , both the ALE and RALE are reflected. Thus, without loss of

generality, in this work we restrict γ ≥ 1.
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4.4.3 Foreground and Background Estimators

We make a further simplifying assumption in our analysis that there are at most binary ambiguities

per pixel. A binary ambiguity is described by a pixel having probabilities p1 and p2 of depths d1

and d2 respectively. When d1 < d2 we call d1 the foreground depth and d2 the background depth.

Such a binary ambiguity is likely to occur near object-boundary depth discontinuities.

To estimate the foreground depth we propose minimizing the mean ALE over all pixels to obtain

d̂1, the estimated foreground surface. To predict the characteristics of d̂1 from a trained network

at ambiguous pixels, we examine the expected ALE, as shown in Fig. 4.3 (c). This is piecewise

linear and has two corners, one at d1 and the other at d2. The lower of these will determine the

minimum expected loss, and hence what an ideal network will predict. Using Eqs. (4.2) and (4.1),

we obtain expected losses: L(d1) = p2(d2 − d1)/γ, and L(d2) = p1(d2 − d1)γ. From this it is

straightforward to see L(d1) < L(d2) when:

γ >

√
p2
p1
. (4.4)

This equation shows the sensitivity of the foreground estimator to γ; the higher γ, the lower the

probability on foreground p1 needed for the minimum to be at the foreground depth d1.

To estimate the background depth, d̂2, at boundaries we propose minimizing the expected

RALE. The same analysis will apply to this as to the ALE, and we obtain the same constraint on γ

as in Eq. (4.4), except that the probability ratio is inverted.

Fig. 4.1 (b) shows an example foreground depth estimate, (c) the background depth and (f) the

depth difference. We observe that at pixels far from depth discontinuities, as well as the sparse

input-depth pixels, the foreground depth is very close to the background depth indicating no ambi-

guity.

50



4.4.4 Fused Depth Estimator

We desire to have a fused depth predictor that can do both interpolation and extrapolation at sur-

faces depending on ambiguous and non-ambiguous regions. The foreground and background depth

estimates provide lower and upper bounds on the depth for each pixel. We express the final fused

depth estimator d̂t for the true depth dt as a weighted combination of the two depths:

d̂t = σd̂1 + (1− σ)d̂2. (4.5)

where σ is an estimated value between 0 and 1. We use a mean absolute error as part of the fusion

loss:

F (σ) = |d̂t − dt| = |σd̂1 + (1− σ)d̂2 − dt|. (4.6)

The expected loss for this is

Le(σ) =E{F (σ)} = p|σd̂1 + (1− σ)d̂2 − d1|+

(1− p)|σd̂1 + (1− σ)d̂2 − d2|.
(4.7)

Here, p = p1, and p2 = 1 − p. This has a minimum at σ = 1 when p > 0.5 and a minimum at

σ = 0 when p < 0.5. Of course this assumes that depth is either d1 or d2.

Depth fusion occurs by optimizing the loss of Eq. (4.7) to predict a separate σ for each pixel. In

this way our fusion step is an explicit determination of whether a pixel is foreground or background

or a combination. An example estimated σ is shown in Fig. 4.1 (e).
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4.4.5 Depth Surface Representation

We have developed three separate loss functions whose individual optimizations give us three

separate components of a final depth estimate for each pixel. Based on the characterization of our

losses, we require a network to produce a 3-channel output. Then for simplicity we combine all

loss functions into a single loss:

L(c1, c2, c3) =
1

N

N∑
j

(ALEγ
(
c1j
)
+RALEγ

(
c2j
)

+ Le(s(c3j))).

(4.8)

Here cij refers to pixel j of channel i, s() is a Sigmoid function, and the mean is taken over all N

pixels. We interpret the output of these three channels for a trained network as c1 → d̂1, c2 → d̂2

and s(c3)→ σ, and combine them as in Eq. (4.5) to obtain a depth estimator d̂t for each pixel.

4.4.6 Implementation Details

4.4.6.1 Architecture

Hour Glass Network

S𝐷𝑛

𝐹𝐷𝑛

𝜎𝑛−1
𝐵𝐺𝑛−1
𝐹𝐺𝑛−1

Figure 4.4: Incorporating 3-channel at the output of the Hour-glass network used in [6]. SDn and
FDn are the sparse inputs and fused depth obtained from FGn, BGn, and σn at multi resolution
scale n respectively.

This work presents novel loss functions linked to a multi-channel depth representation. These
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can be easily incorporated into a variety of network architectures with minimal change to the

network. Specifically we selected the multistack network [6], with the author-provided code. The

only modification we made are at the last layer of the network, where we used three channels

representing d1 (foreground estimate), d2 (background estimate), and σ (see 4.4). We repeat this

strategy in the hourglass networks in all the three multi-resolution levels. Please see [6] for more

details of the network. We choose this network due to its fast inference time, lower number of

parameters than [10], and its near-SoTA performance. The changes we made were three output

channels and instead of one at each stacked hourglass network, and we use our loss function for

the optimization. We used 64 channels in the encoder-decoder network as that provided their

highest performing results. More details are shared in the supplementary material.

4.4.6.2 Training and Inference

We followed the training protocol in [6] with multi-scale supervision on our 3 channels. The total

loss is a weighted sum of the multiple resolution lossesLi, whereL1 is the full resolution 3-channel

loss in Eq. (4.8), L2 is half-resolution and L3 quarter resolution: L = ω1L1 + ω2L2 + ω3L3. The

multiscale stage training protocol sets ω1 = ω2 = ω3 = 1 during the first 10 epochs, reduces

ω2 = ω3 = 0.1, and continues to train for another 10 epochs. For the last 10 epochs we set

ω2 = ω3 = 0 and complete training after 30 epochs. Using Adam optimizer with an initial

learning rate of 10e − 3 and decrease to half every 5 epochs, we train a full sized image with

gradient accumulated every 4 samples in a batch. We use PyTorch [99] for our implementation.
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Method MAE RMSE iMAE iRMSE TMAE [12] TRMSE [12] Infer. time (sec.)
Ma et al. [10] 249.95/269.2 814.73/878.5 1.21/1.34 2.80/3.25 –/190.15 –/297.48 0.081

Depth-Normal [87] 235.17/236.67 777.05/811.07 1.79/1.11 2.42/2.45 –/– –/– –
DeepLidar [85] 226.50/215.38 758.40/687.0 1.15/1.10 2.56/2.51 –/162.75 –/266.79 0.097
3DepthNet [91] 226.2/208.96 798.40/693.23 1.02/0.98 2.36/2.37 –/– –/– –

Uber-FuseNet [90] 221.19/217.0 752.88/785.0 1.14/1.08 2.34/2.36 –/– –/– –
MultiStack [6] 220.41/223.40 762.20/798.80 0.98/1.0 2.30/2.57 –/157.90 –/270.15 0.018
DC-3co [12] 215.75/215.04 965.87/1011.3 0.98/0.94 2.43/2.50 –/141.67 –/238.5 0.112
CSPN++ [88] 209.28/– 743.69/– 0.90/– 2.07/– –/– –/– 0.200

DDP [84] 205.40/– 836.00/– 0.86/– 2.12/– –/– –/– –
NLSPN [13] 199.59/198.64 741.68/7f71.8 0.84/0.83 1.99/2.03 –/138.81 –/248.88 0.225

TWISE 195.58/193.40 840.20/879.40 0.82/0.81 2.08/2.19 –/131.60 –/239.80 0.022

Table 4.1: Depth completion on the Test/Validation sets of KITTI, with 64R LiDAR and RGB input (units
in mm).

((a))

((b))

((c))

((d))

((e))
Figure 4.5: Comparison of our method with SoTA methods with whole and zoom in views (a) showing
Color Images (b) DC [12], (c) MultiStack [6] (d) NLSPN [13] and our method (e). Four different regions of
the image from two different instants are selected to show depth quality from diverse areas.

4.5 Experimental Results

4.5.1 Dataset

We evaluate the proposed algorithm on the standard KITTI Depth Completion dataset [1], a real-

world outdoor scene, NYU2, with indoor scenes [4], and Virtual KITTI [100], a synthetic dataset

with photo-realistic images and dense ground-truth depth. KITTI depth is created by aggregating

LiDAR scans from 11 consecutive frames into one, producing a semi-dense ground truth (GT) with

30% annotated depth pixels. The sparsity of GT makes depth estimation more challenging. Note

that we do not require any synthetic depth data for pre-training as used by [84, 85] to improve
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performance. The dataset consists of 85K, 1K, and 1K samples for training, validation, and testing

respectively. Although the training set has different image sizes, the test and validation sets are

cropped to a uniform size of 352× 1, 216.

Although created in a real world scenario, the semi-dense GT produced by Uhrig et al. [49]

has far fewer depth points on object boundaries (see Fig. 4.2 (a)), and is susceptible to outliers.

As we claim our method works well on boundaries, we also evaluate on VKITTI 2.0, a synthetic

dataset with clean and dense GT depth at depth discontinuities. The VKITTI 2.0, created by the

Unity game engine, contains 5 different camera locations (15o left, 15o right, 30o left, 30o right,

clone) in addition to 5 different driving sequences. Additionally, there are stereo image pairs for

each camera location. For training and testing, we only use the clone (forward facing camera) with

stereo image pairs. For VKITTI training, 2k training images were created from driving sequences

01, 02, 06, and 018 respectively. For testing, we use sequence 020 at the left stereo camera, and

choose every other frames, with total 420 images. We subsample the dense GT depth in azimuth-

elevation space to simulate LiDAR-like pattern as sparse inputs. Further, we create the pseudo GT

following [49] to study the effects of outlier noise on training and evaluation. More details are

shared in the supplementary.

To show the generalizibility of our method, we also evaluate on NYU-Depth v2 dataset [4],

which consists of RGB and depth images obtained from Kinect in 464 scenes. We use the official

split of data, where 249 scenes are used for training and we sample 50K images out of the training

similar to [85, 13]. For testing, the standard labelled set of 654 images is used. The original image

size is first downsampled to half, and then center-cropped, producing a network input dimension

of 304× 208. Unlike [13], we use the same loss function for all the datasets.
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4.5.2 Metrics

The standard metrics used by KITTI include RMSE, MAE, iMAE and iRMSE. Since RMSE is

used as the preferred metric for depth completion, most SoTA methods on the KITTI leaderboard

use MSE as their primary loss. We also include tMAE and tRMSE metrics proposed in [12] since

it can discount outlier depth pixels (i.e., floating depth pixels around boundary regions) and give a

better evaluation of depth pixels at and within object boundaries.

4.5.3 Results

4.5.3.1 Quantitative Results

Tab. 4.1 compares the performance on KITTI’s test/validation sets, with a 64-row LiDAR and

color image as input. We list the SoTA methods with performance quoted from their papers. The

inference times are calculated on a single GPU of GTX 1080 Ti. The method [13] with lowest

RMSE achieves this at the expense of inference time. We outperform the SoTA methods in other

metrics including MAE, and iMAE. The exception is RMSE, by which the methods are ranked in

the KITTI leaderboard. That leads us to investigate in which areas are our method perform better

and worse, which we examine next.

4.5.3.2 Qualitative Results

Fig. 4.5 shows our depth estimation quality compared to baselines. We choose three best SoTA

methods: MultiStack [6], NLSPN [13], and DC [12]. Different local regions including poles,

trees, cars, and traffic signs, illustrate the depth quality of close- and long-range depth pixels. The

zoomed-in view shows the substantial improvement of our depth map over SoTA, especially along

sharp object boundaries. [6] has a more blurred estimation around boundaries leading to mixed
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Figure 4.6: Input image (a), its zoom-in views (d), our estimation on foreground depth (b), background
depth (c), fused depth (e), and the depth difference between foreground and background depth (f).

depth pixels and holes within objects, such as on the traffic poles and van. Although [13] has

reduced mixed depths and more tighter boundary, depth mixing still exists (blurriness at object

boundaries), additionally it suffers from jagged boundary edges and streaking artifacts.
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4.5.3.3 Qualitative Parsing

Fig. 4.6 offers a more detailed analysis of our method by showing different estimation at fore-

ground, background depths and fused depth respectively. We choose five zoom-in views from

diverse objects, e.g., tree, poles, car, and even pixels at far-away depth pixels. It shows that our

fused depth estimator can learn to choose foreground and background regions well, resulting in

a clear shape estimation of objects. We note that it is biased to choose the foreground surface as

ambiguity increases, e.g., relatively large depth gap between foreground and background surfaces

(see depth difference in Fig. 4.6 (f)). This can be explained by the fact that there are more supervi-

sion at the close-up region than the far-away region on account of uneven distribution of GT depth

pixels.

4.5.3.4 Relative Error Maps

It is worthwhile to examine where our method has lower errors in comparison with our baseline

method [6] which uses MSE. Two types of errors are examined: the absolute difference between

estimated depth and GT, and its squared version, which are referred as AE and SE respectively.

Errors are evaluated on semi-dense GT data. We calculate relative error maps by the difference of

error maps of Absolute Error, A(i), and Squared Error, S(i), of two methods respectively to show

the gains of our method over MultiStack [6]. The error differences are calculated by the following

equation:

A(i) = |d̂M (i)− dt(i)| − |d̂T (i)− dt(i)|, (4.9)

S(i) = |d̂M (i)− dt(i)|2 − |d̂T (i)− dt(i)|2, (4.10)

where d̂M and d̂T are depth estimates of MultiStack [6] and TWISE respectively. A(i) and S(i)

are Absolute Error Difference and Squared Error Difference of pixel i on two competing methods
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(a)

(b)

Figure 4.7: Difference of TWISE vs MultiStack [6] in (a) Absolute Error (AE) and (b) Squared Error (SE)
respectively. The red indicates the most gain of ours over [6], marked by ’o’; while the blue is vice-versa,
marked by ’x’. Zoom in for details.

respectively. For a particular pixel, when A(i) and S(i) is (+)ve, TWISE is performing better then

MultiStack and vice-versa for (−)ve values. We note that the errors are evaluated only where there

are valid ground-truth pixels.

As shown in Fig. 4.7, our method wins in substantially more pixels than losing. Errors in our

method often comes from few pixels at boundary regions, when a FG depth is erroneously chosen

over a BG depth/vice versa; we term them as outliers e.g., see depth error at the traffic sign pixels,

edge of tree-trunk etc close to/at the boundary. These outliers with large depth errors are strongly

weighted by the RMSE metric, leading to our worse performance on that metric.

To further our analysis, we do a statistical evaluation 4.8 on 200 samples of the validation set

(chosen every 5 samples from KITTI’s 1, 000 validation set).

For the statistical analysis, we do a histogram binning of A(i) for pixels where A(i) > 0

(Multistack > TWISE is equivalent to performance gain of TWISE over MultiStack) and of |A(i)|

for pixels where A(i) < 0 (TWISE > MultiStack is equivalent to performance gain of MultiStack
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Figure 4.8: (a) Magenta is a histogram of absolute error differences A(i) for A(i) > 0 (where
MultiStack errors> TWISE errors) and green is a histogram of |A(i)| forA(i) < 0 (where TWISE
errors>MultiStack errors). (b) Corresponding histograms for squared pixel error differences S(i).

over TWISE). There histograms are plotted together in Fig. 4.8(a). Analogous histograms are

plotted for the squared error difference, S(i), in Fig. 4.8(b). These histograms show that TWISE

has less error than Multi-Stack [6] for most pixels (∼ 2.70∗106) compared to just (∼ 6, 100) pixels

where Multi-stack bests TWISE. The average image in this set has 13, 500 pixels where TWISE is

better versus 31 pixels where MultiStack is better.

The reason for large RMSE errors in TWISE is believed to be caused by the outliers (erroneous

FG/BG depth selection by TWISE) closer to object boundaries. The outliers are penalized heavily

by RMSE metric as opposed to floating depth pixels estimated by MultiStack; as a result, our

depth estimate suffers in that metric. As representative examples in Fig. 4.9, the error maps show

depth errors around the boundary, and missing thin objects like poles. The reasoning can be further

enhanced by the Tab. 4.2. In this analysis, we leverage GT semantics provided by KITTI semantic

segmentation dataset. In 140 images, FG objects are poles, boundaries, traffic signs, vehicle,

person and the rest as background. For each image, we label all pixels where distances to object

boundaries less than 3 pixels are referred as edge pixels and the remaining as inside object pixels.

60



Figure 4.9: Color images (top) and depth error maps in 0− 5m (bottom).

Area MAE RMSE TMAE TRMSE
Inside Object 196.1 752.3 138.6 327.3
Edge Pixels 731.6 2396.9 304.4 454.6

Whole Image 215.1 880.9 144.6 254.3

Table 4.2: Error metrics for different image regions on TWISE.

Tab. 4.2 validates substantial larger errors are around boundary.

4.5.3.5 Outlier Errors and Analysis on KITTI Semi-Dense GT

While outliers can be caused by wrong estimation of foreground/background depth, another im-

portant source of outliers is incorrect labelling of ground-truth depths in KITTI. As a result, loss

functions that are more sensitive to outliers (i.e. MSE loss) can be negatively influenced by the

presence of noise. We highlight the noisy ground-truth labels in KITTI in the next section. In this

section we show some evidence of outliers (noisy ground-truth depth) on boundaries of objects in

KITTI’s semi-dense GT.

Uhrig [49] proposed an approach to generate large-scale semi-dense GT data (85k training
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(a) (b)

Figure 4.10: Semi-dense GT depths overlaid on color images. Zoom-in views show fore-
ground/background depths are incorrectly spread (dilated/constricted) across boundaries of poles,
traffic signs etc. visible in color images.

images) on realistic outdoor scenes suitable for neural network training. Although the approach

is scalable on any dataset, it creates noisy ground-truth depth. Uhrig’s analysis shows that the

semi-dense GT has larger errors on dynamic objects and large-range pixels. Additionally, we show

that it also contains incorrect depth labels on some boundaries of objects. In both (a) and (b) of

Fig. 4.10, we show zoomed in views of how foreground and background depths that are incorrectly

spread across the boundaries of the poles, traffic signs, trees etc. of color images.

Our analysis shows that the outliers in the semi-dense GT are caused by a variety of reasons;

• Noisy rotation R, and translation t obtained from the IMU sensor

• Timing synchronization between camera trigger and time taken to spin one lidar revolution

• Consistency Check on Stereo-Global Matching algorithm which introduce boundary artifacts

• Accumulation of lidar points from dynamic objects.

MAE
(in pixel)

RMSE
(in pixel)

KITTI
Outliers*

MAE
(in cm)

RMSE
(in cm)

0.35 0.84 0.31 38.6 94.1

Table 4.3: Relation between Disparity Error and Depth Error in metric units (cm). Note that KITTI
Outliers are defined by: > 3 pix disparity error and 5% error.
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Method RMSE (m) REL δ1.25 δ21.25 δ31.25
DC-3co [12] 0.118 0.013 99.4 99.9 100.0

DeepLidar [85] 0.115 0.022 99.3 99.9 100.0
DepthNormal [87] 0.112 0.018 99.5 99.9 100.0

GNN [92] 0.106 0.016 99.6 99.9 100.0
TWISE 0.097 0.013 99.6 99.9 100.0

NLSPN [13] 0.092 0.012 99.6 99.9 100.0

Table 4.4: Depth completion results on NYU2 [4].

In order to evaluate the depth quality of semi-dense GT, Uhrig [49] used the manually cleaned

training set of 2015 KITTI stereo benchmark as reference data. The depth evaluation is done

in pixel units. We realize that it is equally important to evaluate the semi-dense ground-truth

depths in metric units to notice the effect of boundary outliers on semi-dense ground-truth depth

metric performance. We translate the error in pixel units to error in metric units in Tab. 4.3, by

converting the ground-truth disparity to depth using KITTI’s provided intrinsics. It shows the noisy

semi-dense ground-truth depths suffering from boundary noise and dynamic objects can also have

significant errors in metric units. It is also a possible indication that lowering the RMSE error in

semi-dense GT might result in learning the noise inherent in semi-dense ground-truth.

4.5.3.6 Quantitative Results on NYU2

: Results on NYU2 are shown in Tab. 4.4, based on its standard metrics. We are currently ranked

the second in all standard metrics. Note that compared to NLSPN [13], ours is 10× faster in

inference on KITTI. The results also show that TWISE is equally generalizable to indoor scenes.

4.5.4 Ablation Studies

In this section, we conduct extensive ablation studies to investigate the effect of different param-

eters of our proposed loss. We train with 1/6 data (∼12K training samples) due to resource con-

straints, and maintain this protocol for all ablations unless otherwise noted.
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Res-18 [10] MultiStack [6]
Loss MAE RMSE TMAE TRMSE MAE RMSE TMAE TRMSE
L1 [47] 282.6 110.6 181.8 295.6 211.0 950.0 138.6 246.0
L2 [10] 341.2 987.8 244.6 349.5 247.4 880.0 170.3 285.0

L2+L1 [13] 298.8 972.2 206.5 316.7 231.8 887.5 156.9 271.2
Huber [90] 288.6 1039.6 198.0 302.1 222.6 927.1 153.9 256.0

CE [12] 279.1 1125.1 184.3 239.1 – – – –
TWISE 275.5 1045.1 181.1 294.0 201.3 927.6 134.1 240.1

Table 4.5: Effect of different loss functions. Compared to single channel losses, CE requires 80 channel,
while TWISE requires 3 channel.

Options MAE RMSE TMAE TRMSE
d̂t = d̂1 (σ = 1) 306.9 1109.9 204.4 314.8

d̂t = d̂2 (σ = 0) 295.4 1092.9 193.9 306.1

d̂t = 0.5 ∗ (d̂1 + d̂2) (σ = 0.5) 220.7 854.8 148.2 262.4

d̂t = d̂1/d̂2|σ > 0.5 261.0 1008.0 180.4 287.9
No color 222.4 1067.5 139.2 247.8

d̂t = σd̂1 + (1− σ)d̂2 193.4 879.4 131.1 236.0

Table 4.6: Effect of learned σ in TWISE, evaluated by our best model.

γ MAE RMSE TMAE TRMSE
1.0 223.1 950.1 145.8 257.0
1.5 207.8 947.9 138.1 245.1
2.0 201.3 927.6 134.1 240.1
2.5 204.4 932.5 136.1 242.5
5.0 207.1 923.4 138.7 246.1
10 216.1 922.8 146.7 255.4

Table 4.7: Effect of γ on depth completion performance.

4.5.4.1 Effect of Loss Functions

We show that performance of our loss function is network agnostic. Tab. 4.5 refers to different

loss functions typically used in SoTA depth estimation works. Although L2 is a widely used loss

for estimating depth [10, 6, 48], L1 loss [47], Huber loss [90], L1 + L2 [13] are some of the

widely used losses for depth completion. We compare our TWISE loss with all others, including

the CE loss [12]. Top performances on MAE and TMAE show the positive side effect of our

loss addressing the smearing problem at the boundary. We particularly note that TWISE performs

better than a standard L1 loss on both the backbone networks, leading to believe that TWISE offers

more benefit than a mere trade-off between MAE and RMSE.
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Supervision Noisy Semi-Dense GT Clean GT
Backbone Method MAE RMSE TMAE TRMSE MAE RMSE TMAE TRMSE

MultiStack
[6]

L1 8.79 49.9 7.09 16.02 14.43 130.62 6.16 18.28
L2 10.40 45.35 8.61 17.89 17.75 127.14 8.45 20.18

L1 + L2 9.42 44.90 8.23 16.82 15.45 126.20 7.14 19.30
TWISE 7.98 47.5 6.25 15.35 12.71 126.4 5.22 16.67

ResNet-18
[10]

CE 10.50 58.67 8.64 16.57 19.03 155.24 8.26 18.29
L1 12.95 62.97 14.68 19.25 23.52 147.42 12.51 29.33
L2 17.45 50.48 17.48 21.26 27.48 133.21 15.57 36.73

L1 + L2 14.21 48.25 15.80 20.10 25.40 132.6 14.35 32.47
TWISE 10.24 52.37 8.42 16.77 18.88 132.94 9.45 18.17
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Figure 4.11: (a) Results on Virtual KITTI experiments trained on clean GT and synthesized semi-dense
respectively (units in cm). (b) MAE and (c) RMSE curves of scatter plots (Semi-Dense vs Clean GT) for
different loss functions (colored symbols) and two backbone networks (MultiStack [6] and ResNet-18 [10]).
Methods trained with the same backbone network are connected.

4.5.4.2 Effect of σ on Estimated Surfaces

Another interesting evaluation is the importance of learned σ on different estimated surfaces. In

Tab. 4.6, we evaluate estimated depths for different combinations of σ and compare individually

its depth completion metrics. The performance is evaluated on our best model in Tab. 4.1, except

for the row with “no color”, where we train without color input on the same network of our best

model. From Tab. 4.6, foreground and background depth surface estimates, as usual, have higher

error metric, since they are individually a biased estimate of depth. If we fix σ at 0.5, we see it

is possible to achieve decent performance on MAE and RMSE on account of averaging (interpo-

lation) between the two surfaces. We make a binary choice between foreground and background

surface if σ > 0.5 and the results are worse than averaging. In addition, we see σ does not learn

effectively without color input. So high-resolution imagery helps to learn effective σ and resolve

ambiguities at the boundaries.

4.5.4.3 Effect of γ on Performance

Since γ impacts the separation of foreground and background surfaces, we perform an ablation to

assess its impact on TWISE. Tab. 4.7 shows depth completion performance with several γ values.

With γ = 1, the loss is equivalent to MAE. As γ increases, the gap between foreground and
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background surface increases. At small γ values, the interpolation benefits, thus leading to lower

MAE, TMAE, TRMSE, since it is easier to interpolate between two nearby surfaces; however, in

the meantime extrapolation suffers, thus leading to higher RMSE. At larger γ, the slope between

two surfaces increase, and interpolation becomes harder. We choose γ = 2.0 in our experiment as

a compromise between interpolation and extrapolation.

4.5.4.4 Effect of Sparsity on Depth Performance

We also ran an extensive ablation study on generalization of SoTA methods due to sparsity. Spar-

sity is created by subsampling LiDAR-points in azimuth-elevation space to simulate LiDAR-like

structured patterns. We simulate lower resolution LiDARs by subsampling 32R, 16R, 8R rows

from 64R lidar (depth acquisition sensor used by KITTI). The different sparse patterns can be seen

in Fig. 4.12. We subsample the points based on selecting a subset of evenly spaced rows of 64R

raw data provided by KITTI (split based on the azimuth angle in the lidar space) and then pro-

jecting the points into the image. All the SoTA methods compared have been retrained using the

author provided code with variable sparse input patterns. Tab. 4.8 shows that TWISE has better

generalization and exhibits significantly less errors in all the metrics compared to SoTA methods.

With more sparsity, TWISE is able to beat the RMSE metrics of methods supervised by standard

losses. Particularly interesting is the fact that TWISE can be used for monocular depth estimation

with no sparse depth input.

4.5.4.5 Synthetic Experiments with VKITTI

Using both semi-dense GT and clean GT of VKITTI, we ran experiments on different loss func-

tions using two different backbone networks. The conclusion is drawn by training and evaluation

on noisy semi-dense and clean GT respectively. The results are shown in Fig. 4.11 (a). Several
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(a)

(b)

(c)

(d)

Figure 4.12: KITTI sparse patterns of (a) 64R, (b) 32R, (c) 16R, and (d) 8R subsampled LiDAR
respectively overlaid on a color image.

inferences can be drawn from the scatter plot of Fig. 4.11 (b) and (c). Firstly, the MAE score is

smooth and monotonic as opposed RMSE which zigzags. This implies that given a MAE score on

semi-dense, we are able to predict its score on the clean dataset as well. Additionally, the rank-
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Sparsity Method MAE RMSE TMAE TRMSE

64R

DC [12] 279.1 1125.1 183.1 292.3
MultiStack [6] 229.4 889.7 156.8 265.0
NLSPN [13] 219.1 868.0 147.7 263.4

TWISE 201.3 927.6 134.1 240.1

32R

DC 392.7 1456.2 232.1 350.7
MultiStack 439.2 1288.8 275.4 402.3

NLSPN 392.4 1229.2 248.2 373.8
TWISE 327.9 1242.6 204.9 324.3

16R

DC 477.7 1777.3 259.5 382.9
MultiStack 528.4 1504.3 308.6 439.5

NLSPN 497.1 1483.1 286.8 419.2
TWISE 414.0 1481.1 237.3 365.1

8R

DC 634.7 2311.9 288.5 420.6
MultiStack 672.58 1841.6 353.2 486.8

NLSPN 669.05 1869.5 340.3 475.2
TWISE 532.1 1782.5 275.6 409.4

RGB

DC 2423.8 4433.6 715.4 797.2
MultiStack 2070.4 4185.1 635.7 735.4

NLSPN 2192.9 4362.35 646.0 743.6
TWISE 1964.1 4078.8 612.0 716.5

Table 4.8: Row sparsity impact on SoTA depth completion methods.

ing of the methods in both the datasets is the same for MAE but not RMSE. As a result, we can

conclude that MAE is a superior metric to RMSE for comparing and ranking depth completion

methods.

Secondly, TWISE is more than a trade-off between MAE and RMSE. One of the objective

of TWISE is to improve depth points at discontinuity regions. But KITTI semi-dense GT lacks

dense ground-truth depth points, and contains more outliers in the boundary regions owing to

methodology adopted in creating the GT. In presence of outliers, RMSE in TWISE suffers the

most, but when clean GT can be provided, RMSE in TWISE performs as well as those methods

with the L2 loss.

4.6 Conclusion

In this chapter we propose TWISE, a new twin-surface representation and estimation method for

depth images. Our proposed asymmetric loss functions, ALE and RALE, bias these twin surface

estimates towards the foreground and background at pixels with depth ambiguity. A third channel
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of our output fuses these estimates to achieve a single surface estimate. This solution simplifies the

task of learning depth discontinuities, and as a result better maintains step-wise depth discontinu-

ities across boundaries, and generates SOTA depth estimates. We also compared the robustness of

MAE and RMSE as metrics for ranking depth completion methods and our analysis suggests that

MAE is a superior metric in presence of noisy GT datasets.

69



Chapter 5

3D Object Detection from Noisy Depth

5.1 Introduction

In autonomous driving, active depth acquisition sensors like LiDARs and radars are paramount

in scene understanding and perception problems like 3D object detection and localization [101,

9, 102, 103], 3D semantic segmentation [104, 105, 106] and navigation problems [107, 108],

but they become expensive with high-resolution, long-range depth and accuracy of the sensors.

Depth sensors, typically have cm level accuracy and record raw depth measurements in 3D point-

clouds, which are irregular sampled points of object surfaces. Recovering 3D structure and shapes

from pointclouds is important for perception and 3D surface reconstruction, but challenging due

to sparseness of data, missing depth points on objects due to occlusions and surface proper-

ties. As a result, high density pointclouds are often desired. Since high-density and long-range

depth sensors are expensive 1, there has been active research problems in estimating high-density

depth using cheap sensors like stereo [109, 21, 23] (stereo depth estimation), monocular camera

[110, 29] (monocular depth estimation), or jointly using low-resolution LiDARs or radars with

high-resolution color imagery (depth completion) [37, 7, 13]. Unfortunately, former methods for

estimated depth often results in inaccurate 3D pointcloud. The question we are trying to answer in

this chapter is whether additional but depth points with lower accuracy from depth completion can

help in perception problems like 3D object detection and pose estimation. Extensive experiments

1https://arstechnica.com/cars/2018/05/why-bulky-spinning-lidar-sensors-might-be-around-for-another-decade/
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with synthetic (Virtual KITTI) and real datasets (KITTI dataset) have been performed using SoTA

architectures to validate the findings.

There are different ways of densifying sparse depth points or pointclouds; upsampling onto a

2D regular grid or 3D irregular (pointcloud) structures. Each of these methods is fundamentally

different from the other. The idea of upsampling an irregular pointcloud in 3D [111, 112, 113] is

interesting since the sparse depth points are already in real metric space, scale and empty space

between objects are well captured in this space, and no artifacts are created from perspective dis-

tortion and occlusions. Also the densification of points can be made uniform althroughout the 3D

space. However, these upsampling methods are still limited to a single surface or multiple sur-

faces from the same object and require 3D models of objects for supervision. In real-world scenes,

multiple discontinuous surfaces and disconnected regions can exist. In this chapter, we focus on

depth completion which performs depth upsampling in a 2D regular grid from LiDAR pointclouds

projected into the image plane. In this way, high-resolution color imagery can be leveraged more

readily for filling incomplete depth pixels in a 2D grid.

A big difference with doing upsampling in 2D space as opposed to 3D space is that depth-

completed map is non-uniformly dense. Close-range points are dense while long-range points

are sparse in 3D. Also, only visible surfaces can be readily upsampled in the image grid. As a

result, artifacts can be created by interpolation, erosion or dilation of available depth pixels in

the grid. Common artifacts are floating depth pixels between objects, holes in occluded objects,

suppression of thin and small structures by foreground objects. However, one key reason of doing

upsampling in 2D space is that a depth image samples the environment in a similar fashion to a

data source (LiDAR and video) with density of points falling off with range; while 3D grids do not

naturally sample the environment in this way. Also, traditional 2D convolutional neural networks

(CNNs) can be readily applied on image grids, and it requires far-less computational and memory
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footprints compared to point-based, voxel-based or mesh-based architectures. Thus 2D grids are

still a preferred choice for upsampling depth-maps.

(a)

Groundtruth Box

Predicted Box

LiDAR Points

(b)

LiDAR Points
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(c)

Groundtruth Box

Predicted Box

Figure 5.1: Object detection from a SOTA architecture [5] trained with dense inaccurate pointclouds back-
projected from a depth image by SOTA depth completion method i.e. TWISE [7]. The figure showing (a)
several false positive detections (red 3D cuboids) on the estimated high-density pointcloud. Estimated (col-
ored) and LiDAR (white) pointclouds also shown in 3D space (b) Estimated depth map in 2D space from
where the estimated pointcloud in (a) is originated from. The LiDAR points are also shown in white dots,
and (c) shows the estimated and groundtruth 3D bounding boxes projected to a 2D image space of the scene.
Red and blue boxes are predicted and groundtruth 3D bounding boxes respectively. It shows that bush and
phone booth are being wrongly classified as cars.
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Several estimation errors can arise by upsampling depth maps. The errors can change with

long-range depths, boundary ambiguity, highly sparse or non-existing LiDAR points on thin and

small structures and far-away objects. We note that raw LiDAR points also have errors, but they

are typically in cm-level accuracy. Compared to LiDAR points, the scale of estimation errors

can still range from few cms to few meters depending on the distance of the objects from the

camera, ambiguous surfaces or boundaries etc. We model some of these errors as noise with

certain characteristics (see sec. 5.3.2) and would like to use the two terms interchangeably.

We show in this chapter that SoTA object detection performances often suffer from depth error

from estimated dense depths (see Fig. 5.1). We discover different types of these estimation errors

that typically exist in depth completion results. Similar detection performance drops are also ev-

ident when we simulate the error as noise with certain characteristics in Virtual KITTI (VKITTI)

[100], a synthetic dataset with a similar setup to the KITTI [1] dataset. Interestingly, our exper-

iment reveals that high-resolution depths do contribute to better object detection performance if

depth-maps are noiseless and free of artifacts, as is the case for VKITTI. That leads us to design

simple, yet elegant noise filtering techniques to tackle depth error from estimated depth maps.

We conclude that reducing depth error and sampling depth points from relevant areas are keys to

improvement in detection performances with high-density but noisy depth points.

The main contributions of the chapter are summarized as follows:

• We investigate the effect of high-resolution but noisy depth on 3D object detection with

SoTA point-based and voxel-based neural network architectures.

• We study the effect of noise-free and noisy depth on a synthetic dataset on 3D object detec-

tion.

• We propose an effective way to leverage estimated depth from depth completion for better

73



object detection performance.

5.2 Related Works

5.2.1 Depth Completion and Depth Prediction

While depth completion involves the use of LiDAR and high-resolution color imagery to com-

plete the remaining missing depth pixels, depth prediction involves estimating depth from color

image only. Quite naturally, depth completion has a lower depth error metric compared to monoc-

ular/stereo depth estimation since LiDAR depth measurements are additionally used as input sig-

nals. Deep Neural Networks (DNNs) are applied to both sets of problems. Both these problems are

relying more on geometric and semantic constraints like depth-normal consistency [86, 87, 110] to

improve depth completion and monocular depth prediction performances. Some methods devise

novel depth representations [12, 7, 27, 114] for improving depth metric performances.

5.2.2 3D Object Detection with Multi-Modal Sensors

3D object detection is a widely researched and challenging perception problem in vision and a wide

variety of sensors are used for this purpose. Some of the most common sensors in a typical sensor

suite of autonomous vehicles are LiDARs, cameras, radars, GPS and even ultrasonics. Based on

the different types of sensors, detection performance varies widely. We will focus our discussion

to LiDARs and camera, as these are broadly used to develop perception algorithms.

The widest and most commonly used sensors are LiDARs, which generate unordered and ir-

regular pointclouds in 3D with cm level accuracy. The depth-based 3D object detector networks

encode these point clouds with point-based [101, 115, 116, 117] and voxel-based neural networks
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[9, 118, 119] to represent the geometry of a scene. Both 2-stage RPN networks and single-stage

networks are ubiquitously used. 2-stage networks have a region proposal network followed by a

refinement network to finetune the regression parameters of the bounding boxes. Typically, 2 stage

networks have better detection performance compared to single-stage detectors, although SSDs

are more suitable for real-time scenarios. Some of the recent researches [120, 121] prefer bird

eye view (BEV) representations of these pointclouds as input to traditional image-based CNNs to

improve efficiency of these 3D detections.

A comparatively much cheaper sensor in the sensor suite is a camera, where researches explore

ways to infer 3D bounding box parameters like physical size and orientation from predicted 2D

bounding boxes in image space [122, 123, 124], under the assumption that perspective projection

of 3D bounding boxes fit tightly with its respective 2D detection window. Strong prior shapes of

3D objects [125], shape and geometry of the objects [126], spatial context of the scene [127], and

even temporal information [128] are all taken into account for improving monocular 3D detec-

tions. However, due to a lack of direct depth measurements, the performance gap between LiDAR

based detection and camera only detection is still wide. Recent trends estimate depth [129, 130]

or leverage network pre-trained on depth [131] to estimate 3D bounding box parameters from a

monocular image which boosts up accuracy to some extent, but performance still suffers due to

erroneous depth estimation.

To improve the robustness and accuracy of 3D detection algorithms, several existing studies

propose to fuse multiple sensors (LiDARs, camera, radars etc) to take advantage of their com-

plementary characteristics; raw LiDARs having depth measurements to cm level accuracy, color

images having dense appearance features of a specific field of view of the scene, radars having

velocity information of objects and more robust to adverse weather conditions etc. Fusion is nec-

essary to transform the sensor modalities to a common coordinate space since different modalities
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have different viewpoint locations. Amongst all the sensors, LiDARs and cameras are the most

common sensors widely researched for multimodal fusion [132] to improve perception algorithms.

Early-level or pixel-level fusion [2, 133], mid-level or intermediate-feature level [14, 5, 134, 135],

and late-level or detection-level fusion [136] all exist in literatures with advantages and disadvan-

tages. But in all these methods, LiDARs with high-quality depth measurements play a big role

in detection performances [132] due to measuring precise localization of objects in the 3D scene,

robustness to different lighting conditions etc.

5.2.3 3D Object Detection from Estimated Depth

Since high-resolution LiDARs are expensive, some recent research endeavors propose to esti-

mate 3D object detections using estimated depth from monocular [137], stereo [138] or even

low-resolution LiDARs [139] instead of using high-resolution raw depth measurements. Some

of the pioneering works in this field are [138, 139], which create LiDAR-like representation from

estimated depths by sampling depth in azimuth-elevation space. Qian et al. [140] use end-to-end

learning on both depth and object detection networks. Weng et al. [137] use instance segmentation

mask on estimated depth map to reduce the effect of smeared/floating depth pixels for monocular

3D object detection. Although all the above methods create a 64R pseudo-LiDAR representation,

little study is done on the effect of high-resolution depth points estimated in 2D dense grid on

object detection performance. In this chapter, we study the effect of depth points on detection per-

formance using estimated depth from a depth completion perspective. In our approach, the input

to our depth network is a color image and raw LiDAR measurements, we use estimated depth as

input to 3D object detection network. The aim is to see whether high-density but estimated point-

cloud, when applied over SoTA object detection neural networks, can help in improving 3D object

detection compared to raw LiDAR pointcloud.
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Figure 5.2: 3D detections from high-density pointcloud. The color image and sparse depth is fed
into a depth completion network, and dense depth estimate is obtained. The high-density depthmap
is then converted to pointcloud in 3D, and trained with a SOTA object detection network, the end-
result is 3D detections (red 3D bounding boxes) in pointcloud.

Our preliminary investigation suggests that additional depth points from raw depth completion

result do not help in improving 3D object detection as shown in Fig.5.1 and Tab. 5.1. Our next

section investigates the root cause of the problem and proposes some effective strategies to improve

detection with high-density depth points.

5.3 Impact of Noisy Depth on Object Detection

In this section, we show several key insights of using raw dense depth completion results for 3D

object detection. We show the effect of depth errors on detection problems, architecture bottlenecks

present in existing SoTA architectures when handling high-density depth points, and ways to tackle

these depth errors to improve depth completion performance.
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5.3.1 Baseline Results

We start with a 2-stage SoTA architecture for pointcloud and apply standard loss functions typically

present in 3D object detection problems. The only change is at the data input of the network, where

instead of using 64R LiDAR points, we backproject the dense depth estimate in 2D to pointcloud

input as 3D using camera intrinsics (see Fig. 5.2). To facilitate batch training, we keep the initial

number of depth points fixed at 50k points. The results are as shown in Tab 5.1.

Network Input Car 3D AP Car BEV AP
Easy Med. Hard Easy Med. Hard

Object Raw 89.0 78.69 76.68 93.08 87.12 85.0
Object Semi-Dense GT 75.82 60.09 59.02 82.31 67.85 67.22

Depth +
Object MultiHourGlass 40.21 25.2 20.65 51.8 31.64 26.7

Depth +
Object TWISE 82.04 59.79 52.80 89.42 68.30 61.0

Table 5.1: 3D Object Detection results (3D and Bird-eye view (BEV) average precision respec-
tively) with different depth resolutions. Object refers to object detection [5] and Depth refers to
depth completion [6] network. Raw refers to 64R LiDAR, Semi-Dense GT refers to the GT cre-
ated by accumulating LiDAR points used for supervision of depth completion network in KITTI.
We use the results of two depth completion networks (MultiHourGlass [6] and TWISE [7]) for
comparison purposes.

From Tab. 5.1, we compare two depth completion methods, and TWISE still gives the best

performance owing to less smearing point [7] (refer to Sec. 4.5.3.4) at the boundaries. How-

ever, it is still not enough to help improve object detection performance using raw 64R LiDAR,

which has, on average ≈ 18k points at the input, compared to ≈ 200k high-density depth points.

Most interestingly, object detection with semi-dense KITTI groundtruth gives worse performance

than TWISE. The possible factors are non-uniform distribution of close and far points, pruning

of LiDAR points when there are inconsistencies with stereo depth, and depth noise in the form of

outliers (refer to Sec. 4.5.3.5 on creating semi-dense groundtruth) indicating that semi-dense depth

can also contribute to deteriorating performance in 3D object detection.
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We further evaluate the object detection at two different ranges of depth; 0 − 30m and 30 −

70m 5.2 and compare the performance on different categories of objects; easy, medium, and hard

based on object size and level of occlusions. We see that the performance gap between sparse

and dense pointcloud increases at moderate or hard categories of objects and far-away objects. It

indicates that at high occlusions and far-away objects, limited visibility in camera plane and limited

groundtruth supervision at far-away depth also result in more noise/ambiguous depth estimate

leading to erroneous 3D object detections.

Range Depth Density 3D AP BEV AP
in meters Easy Medium Hard Easy Medium Hard

0− 30
Raw 94.32 92.67 89.51 95.85 96.1 95.19

Dense 89.52 87.88 77.61 95.94 93.87 81.40

30− 70
Raw 45.62 55.75 54.27 53.65 70.56 68.94

Dense 39.38 42.35 36.83 54.07 58.37 51.56

Table 5.2: AP Comparison of raw (64R LiDAR) and dense depth (TWISE) at different depth ranges
in meters. Numerical results also show dense depth performs worse compared to raw LiDAR at all
categories; with the gap increasing at higher depth range and more difficult categories respectively.

5.3.2 Noise Modelling

From the previous section, we notice degradation of object detection performances due to erro-

neous high-density depth estimates. In this section, we model this error with some noise charac-

teristics that is consistent with these depth estimates. Assume there is an underlying GT surface

to be estimated at each pixel. The LiDAR samples a subset of these pixels exactly or with small

noise. The depth completion method estimates all the pixels with some error. These estimated pixel

depths generate a point cloud with a noise term that models the errors in the depth for each pixel.

For notational convenience, we the terms D and D̂ for original and estimated depth respectively.

We consider two kinds of errors in these estimates; errors coming from mixed depth and depth

misalignment error respectively. Mixed depth, or floating depth pixels between foreground and
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background can be introduced by using a spatial gaussian blur. The gaussian blur function is a 2D

spatial filter kernel given by:

G(x, y) =
1√
2πρ2

exp−x
2 + y2

2ρ2
(5.1)

where x and y are the spatial positions in the grid and ρ is the standard deviation of this filter. The

estimated depth can be obtained by convolution of original depth with this kernel as:

D̂ = D ∗G(x, y)

=
a∑

s=−a

b∑
t=−b

G(s, t)D(x+ s, y + t)

where s and t defines the kernel size of the filter. Depth Misalignment Error replicates larger

errors in depth as distance increases. We model an additive noise model for this error. The noise

η comes from a zero mean gaussian distribution with standard deviation ν such that η ∼ M(0, ν),

whose uncertainty (standard deviation) increases linearly with distance. The linear relationship of

uncertainty vs distance is given by:

ν = 0.05 + aD (5.2)

where a is the slope of the linear function. The additive noise model is then defined by:

D̂ = D + η (5.3)

Although other errors are possible, the above-mentioned errors are most prevalent in depth
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completion methods. In the context of 3D object detection, these errors can be further classified

as three different types as seen in Fig.5.3.

• Noisy depth points within foreground; Depth points on the foreground object can spread

out within and around the 3D bounding box, as a result, object shapes and size can appear

distorted (see Fig. 5.3(c)), we can label it as noise-fg.

• Smeared depth points inbetween FG and BG; Floating depth points between foreground and

background; we can label it as noise-inbet.

• Noise from Background clutter; There can be structures in the background that can resemble

similar objects; e.g. bushes, telephone boxes, es, etc which might look alike to objects’

surface as shown in Fig. 5.3(i). We can label it as noise-bg.
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(a) (b) (c)

(g) (h) (i)

(d) (e) (f)

Figure 5.3: Different types of depth noise on estimated depth; the first column shows color images, the second column
shows depth images, and the third column shows 3D pointclouds; (a), (b) and (c) show noise-fg, indicating smeared
points within the car resulting in misalignment of the predicted and GT bounding boxes as shown in red and blue
respectively; (d), (e) and (f ) show noise-inbet, indicating smeared pointcloud between two objects resulting in the
wrong orientation of the 2nd car; and (g), (h) and (i) show noise-bg, the background points (phone-booth) wrongly
classified as a car since its outer surface looks similar to a car shape.

Note that noisy pointclouds also arise due to the limitation of acquisition equipments. How-

ever, the properties of noise from estimated depth are very different from the noise that can come

from acquisition equipments [141, 142]. Sensor noise typically comes in the form of sensor im-

perfections, temperature noise, etc and the sensors are typically in cm level accuracy, which is

an order of magnitude lower than noise from estimated depth. In addition to noisy dense depth

estimate, SoTA backbone networks of 3D detection are not conducive to high-density noisy depth

points which we describe next.
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5.3.3 Architectures

Voxel-net and point-net based architectures are increasingly used as backbones in 3D object de-

tection problems. All these architectures rely on subsampling depth points. Voxel-net based ar-

chitectures divide the 3D space into voxels and subsample depth points based on voxel regions.

Voxelized pointclouds are either projected to different views such as bird-eye views (BEV), range

view (RV) to be processed by 2D convolution, or kept in 3D coordinates to be processed by sparse

3D convolutions. The point-based method can preserve precision in localization and detailed 3D

structure information, while voxel-based methods are fast due to aggressive subsampling of points

in defined grids.

Deng et al. [9] argue that the 3D structure is of significant importance for object detections.

Although time-consuming and memory-intensive, point-based methods have the potential to en-

code detailed 3D information quite well. However, these methods also rely on the downsampling

of pointclouds at each encoder layer for efficiency and enlarged receptive field. A very important

component of the point-based architecture is the furthest point sampling (FPS) which uniformly

samples depth points from low-density (far-away pixels) and high-density regions (close-by pixels)

in 3D. It ensures diversity in the selection of points. However, it also promotes noisy pixels and

outliers which we describe next.

5.3.3.1 Promotion of Noisy Pixels using FPS

FPS is used to select representative points at each encoding layer of point-net architectures. Down-

sampling pointcloud is essential for the efficient encoding of points. However, by preferentially

selecting points that are spatially far apart from others, it promotes background points and outlier

points more compared to relevant object pixels. Fig. 5.4 shows FPS selecting background (trees
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and vegetation) and outlier points (at boundaries) from the dense depth estimate of TWISE.

(a)

(b)

Figure 5.4: Selecting 4096 points from (a) 64R raw LiDAR and (b) dense depth (noisy environments) of TWISE. FPS
samples more background and outlier points at boundaries of tree trunks and buildings from noisy dense depth.

5.3.3.2 Downsampling in Point-Based Architecture
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Figure 5.5: Subsampling in point-based architecture. The dense depth points get subsampled to 64 encoded points at
the final encoder level.

Downsampling is essential for encoding the points and making memory and computation rea-

sonable. A typical backbone architecture of pointnet downsamples N (input) points into 4096,

1024, 256, 64 points at each encoder stage respectively, see Fig. 5.5. This architecture bottleneck

and FPS constrict relevant object points to move deep into the encoder layers.

Having studied the architecture limitations of the point-based 3D backbone network, we now

explore some remedial steps that can be used to filter out noisy pixels from the estimated depth and
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bypass some architecture limitations of 3D object detection networks. The next section describes

these phenomena.

5.3.4 Remedies to Tackle Noisy Depth

We investigate some potential ways to filter out noisy depth from dense depth estimates and bypass

architecture limitations of the backbone networks. This section explains the analysis.

5.3.4.1 Filtering Smeared Points

(a) (b) (c)

Figure 5.6: Removing smeared points by TWISE. (a) shows the rectangular region 0.2 < σ < 0.8 and depth difference
(difference between BG and FG in TWISE) >= 3m as smeared depth points. The σ parameter refers to σ parameter
learned in TWISE. (b) and (c) show the unfiltered and filtered depth points in 3D space respectively. As shown, most
of the floating depth pixels at the scene in (b) is filtered out at (c).

Although TWISE can reduce depth smearing considerably, the σ parameter can still allow

depth mixing at regions which are ambiguous. These floating/smeared depth pixels along depth

discontinuity and far-away depth can trouble object detection algorithms. Qiu et al. [85] liken

smeared points as salt and pepper noise and rely on traditional 2D median filtering to remove this

noise. Another way to remove it is by checking consistent depth points between estimated depth

and depth points created by morphological filtering on sparse depth [143]. However, the ability of

morphological filtering decreases as input raw LiDAR points become more and more sparse at far-

away regions. There are some natural ways to filter out floating depth pixels between foreground

and background based on TWISE estimate. We realize that hard ambiguous regions in TWISE
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are often characterized by higher depth discrepancies between foreground and background depth

channel. Depth mixing typically occurs at these regions when the σ parameter of TWISE does a

soft averaging of the FG and BG estimates instead of selecting either of the depth. This motivates

us to design an effective filter for removing smeared points. We use a depth difference threshold

between foreground and background depth and sigma threshold to design the filter (see 5.6 (a)).

It shows that by pruning out depth from this rectangular band region, it is possible to get rid of

floating depth pixels or noise-inbet around boundaries and long-range depth to a great extent. We

name it sigma filter for the ease of explanation in the next sections.

5.3.4.2 Filtering Background Clutter

We use grid sampling on 3D to downsample dense depth uniformly on close and far away points.

Grid sampling prunes points that fall within t m (in our case, 0.2m) of a grid and replaces it with

a representative point. Additionally, we use semantic map information of objects (e.g. vehicles,

pedestrians, cyclists) generated from the SoTA method [8] to filter out most of the background

depth clutter. It ensures that only relevant object pixels are used for subsampling the pointcloud.

Some background context of the object can still be gathered by collecting points that fall within

the r m (in our case, 0.3m) radius of any relevant car pixels (see Fig 5.7). Using this strategy,

it is possible to reduce the number of points significantly by ensuring relevant pixels are always

considered as input to the network. It is also possible to bypass the architecture limitations of

point-based architecture.

5.3.4.3 Filtering Pixels within r distance from raw LiDAR

Instead of using the estimated depth, we can also leverage the presence of raw LiDAR which is

available as input to any depth completion problem. The LiDAR points select from the dense depth
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(a)

(b)

(c)

(d)

Figure 5.7: Sampling to select relevant pixels from dense depth. (a) ≈ 315k with dense depth, (b) ≈ 200k after
pruning ambiguous pixels based on sigma filter 5.3.4.1, (c) ≈ 35k after grid sampling at 0.2m, (d) ≈ 15k points after
using object level semantic mask and gathering neighboring points 0.3m from the semantic pixels in 3D.

any points that fall within the r m radius from them. In this way, it is possible to avoid smeared

points and gather only meaningful background points for context. Due to perspective distortion,

closer and far away depth points are unevenly distributed in the image plane. Any depth points

that are within d m from the camera are termed as close pixels and pixels beyond d m are far-away

pixels. We can use two different r values; r1 and r2 for depths <= d and > d respectively. This
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new depth can be termed as augmented LiDAR since LiDAR is now augmented with dense depth

estimate.

5.4 Experiments and Results

We evaluate the proposed algorithm on the standard KITTI Depth Completion dataset [1], a real-

world outdoor scene, and Virtual KITTI [100], a synthetic dataset with photo-realistic images and

dense ground-truth depth.

5.4.1 Dataset

5.4.1.1 KITTI

KITTI’s 3D/BEV object detection framework contains 7481 training samples and 7518 testing

samples. The training set is further divided into a training set (3712 samples), and validation

samples (3769 samples). The dataset has difficulty levels (easy, medium, and hard) based on the

object size, occlusion, and truncation level respectively. There are three major object categories;

car, pedestrian, and cyclists respectively. We use the ’Cars’ category for training and evaluation.

5.4.1.2 Virtual KITTI

we evaluate VKITTI 2.0, a synthetic dataset with noise-free and dense GT depth at depth discon-

tinuities, accurate 3D object bounding boxes, and noise-free semantic labels. The VKITTI 2.0,

created by the Unity game engine, contains 5 different camera locations (15o left, 15o right, 30o

left, 30o right, clone) in addition to 5 different driving sequences. Additionally, there are stereo im-

age pairs for each camera location. For training and testing, we only use the clone (forward-facing

camera) with stereo image pairs. For VKITTI training, 2k training images were created from driv-
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ing sequences 01, 02, 06, and 018 respectively. For testing, we use sequence 020 of both the left

and right stereo cameras, and choose all other frames, with a total of 1.6k images. We subsample

the dense GT depth in azimuth-elevation space to simulate a LiDAR-like pattern as sparse inputs.

We found out that, unlike KITTI, VKITTI does not label easy, medium, and hard categories on its

own. We have to label the raw VKITTI 3D object detection boxes into easy, medium, and hard

cases depending on the truncation and occlusion levels provided. Object categories are classified

as easy if the height of 2D bounding boxes are greater than 40 pixels, truncation, and occlusion

level is less than 0.1. Similarly, medium categories are referred as objects with height ≥ 20 and

(0.1 ≤ truncation ≤ 0.5 or and 0.1 ≤ occlusion ≤ 0.6) respectively. Similarly, for hard categories,

height ≥ 15, and (0.5 ≤ truncation ≤ 0.9, or occlusion ≥ 0.6) respectively.

5.4.2 Metrics

We use average precision as the common metric to evaluate 3D object detections. Recently, the

KITTI dataset applies a new evaluation protocol that uses 40 recall positions instead of 11 recall

positions to make a fairer evaluation. All the methods are compared with the new evaluation metric.

5.4.3 Architecture

We use various backbone architectures (i.e. point-based, voxel-based, or mix of points and voxels)

for our study. We choose a variant of PointRCNN (see [5]) architecture as our backbone architec-

ture in all ablation studies unless noted.
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5.4.4 Implementation Details

Our implementation of PointRCNN2 is similar to the implementation of EPNet [5], except no

color fusion network is used. This is done to eliminate the contribution of the color fusion network

and investigate the effect of noisy pointcloud on object detection. The range of the pointcloud is

restricted to [−40, 40], [−1, 3], and [0, 70.4]m along X (right), Y (down) and Z (forward) axis

in camera coordinate respectively. And the orientation of theta is in the range of [−π, π]. The

number of input pointcloud is fixed at 16384 for raw LiDAR to facilitate batch training. For dense

depth, we randomly subsample 50k points as input to the network. Afterward, FPS sampling

is used to subsample points to 4096, 1024, 256, 64 respectively similar to point CNN. We keep

focal loss for foreground/background classification and consistency loss between localization and

classification confidence as proposed by the paper. During inference, the top 8000 proposal boxes

generated by RPN are selected based on classification confidence. NMS threshold of 0.8 is then

used to filter out redundant boxes and obtain 64 positive candidate boxes refined by the refinement

network.

Throughout the whole training process, no data augmentation is used, and we kept the training

epochs to 50 unless otherwise noted. For all the other networks, we use the public implementation

of OpenPcDet [144] and stick to their training protocol unless otherwise noted.

5.4.5 Results

Tab.5.3 refers to object detection results in the KITTI dataset. All the architecture uses LIDAR

only for 3D object detection, and the improvement results with dense depth are shown with

PointRCNN2 as backbone architecture. Filtering floating pixels by sigma filter 5.3.4.1improves

performance significantly compared with baseline (D). In D and SF in this table, we first grid
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sample dense depth similar to 5.7, and then semantic mask generated by [8] is used for filtering

background points. Some background context is captured by gathering r m depth pixels around

the semantic depth pixels. Finally, we find the dense depth estimate gives the best results when

augmented with raw LiDAR (L and D and SF) filtered by semantic mask and sigma filter.

Archi. Res. Car 3D AP Car BEV AP
Easy Medium Hard Easy Medium Hard

PointRCNN L 88.4 76.5 74.4 87.3 85.3 83.3
PointPillars L 86.0 76.6 70.1 89.8 86.7 83.1

Second L 88.8 78.4 76.9 90.3 87.7 79.7
PVRCNN L 89.2 79.1 78.4 90.2 87.8 87.3

VoxelRCNN L 89.6 79.4 78.7 90.4 88.2 87.8

PointRCNN2

L 90.0 78.7 76.7 93.1 87.1 85.0
D 82.0 59.8 52.8 89.4 68.3 61.0

D and F 86.6 69.9 60.8 92.8 78.3 69.0
D and SF 88.9 75.3 70.3 95.3 84.3 79.4

L and D and SF 92.5 79.5 73.2 96.3 88.5 82.3

Table 5.3: 3D Object Detection with augmented LiDAR. L refers to 64R LiDAR, D refers to Dense
Depth with TWISE, F refers to sigma filter 5.3.4.1, SF refers to filter used with semantic mask, and
Aug.F refers to LiDAR augmented with dense depth estimate using the semantic mask and filter.

We evaluate dense depth estimates on different 3D-based architectures (point-based and voxel-

based) and realize that in all these architectures, dense depth estimate reduces detection perfor-

mance, more significantly in moderate and hard cases (see Tab. 5.4). This indicates that at moder-

ate to heavy occlusions depth estimate is noisier. Although point-based methods are more heavily

affected by noise and outliers, sigma filtering recovers performance in medium and hard cases and

outbeat voxel-based method.

In order to analyze the 3D detection performance on KITTI (real-world dataset) using noisy

depth estimate. The figure shows a bird-eye view of predictions and ground truth for different

configurations of depth points. Bird-eye views are chosen to show a number of false positives

which affect detection performance.

We ablate the effect of several remedial measures to mitigate depth noise on 3D object de-
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Catgry Archi. Res. Car 3D AP Car BEV AP

Point-Based

Easy Medium Hard Easy Medium Hard
PointRCNN D 74.4 51.9 43.5 80.2 61.2 52.3
PointPillars D 74.7 57.5 54.4 83.4 71.4 68.1

PointRCNN2
D 82.0 59.8 52.8 89.4 68.3 61.0

D and F 86.6 69.9 60.8 92.8 78.3 69.0

Voxel-Based
Second D 71.2 55.7 53.2 79.5 67.5 65.8

Voxel-RCNN
D 72.8 58.4 56.7 84.0 68.9 67.7

D and F 79.3 61.6 58.7 87.8 72.8 70.3
Mix PVRCNN D 73.5 57.8 54.1 83.0 68.5 66.3

Table 5.4: Performance evaluation of different architectures on a validation set of KITTI with
dense depth from TWISE. D refers to Dense Depth with TWISE, F refers to sigma filter 5.3.4.1. It
shows the filter designed with TWISE output can improve detection performance significantly by
pruning floating and ambiguous depth pixels.

tection performance. In Tab 5.5, we show how local region proposals in the form of estimated

semantic maps can help improve object detection by reducing background clutters and bypassing

architecture bottlenecks. We also try sampling on dense depth in azimuth and elevation space sim-

ilar to [138, 140] to make pseudo-LiDAR representation. However, the key is to select relevant

object pixels as input to the network. To remove redundancy and increase relevant object pixels,

we apply grid sampling and semantic mask on the dense depth. Additionally, floating depth pix-

els are reduced by the sigma filter. The results show all these steps are crucial in improving 3D

object detection by reducing background clutter, floating depth noise, and bypassing architecture

limitations. To gather some background context, pixels around r = 0.3m are gathered around the

relevant object pixels.

In Tab 5.6, we ablate on different ways of gathering background context by gathering neigh-

boring pixels around the relevant object pixels. Due to uneven distribution of depth pixels at close

and far-away regions, we use two different r values for gathering neighboring pixels. The conclu-

sion is that raw LiDAR augmented with dense depth estimate improves object detection accuracy

considerably, although at hard regions, the raw LiDAR performance still performs the best.
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Figure 5.8: Object detection performance comparison in bird eye view with different depth inputs. (a) show color im-
age, and BEV detection on (b) sparse depth, (c) dense depth, (d) depth filterd with sigma filter (5.3.4.1), (e) augmented
LiDAR with variable radius respectively. (f ), (g), (h), and (i) show another example of a scene with color image
and bird eye view of all the methods subsequently. In both the examples, augmented LiDAR has best performance
compared to all other methods.

Does high-resolution depth really help in object detection? We set up VKITTI experiments

to determine the effect of whether high-resolution 3D pointcloud helps in object detection. In
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Archi. Input Sampling Region Car 3D AP Car BEV AP
Easy Med. Hard Easy Med. Hard

PointRCNN2 Lidar N/A 89.0 78.69 76.68 93.08 87.12 85.0

MultiStack +
PointRCNN2 Filtered Depth N/A 86.6 69.9 60.82 92.77 78.34 68.97

MultiStack +
PointRCNN2 64R Filtered Depth azimuth and

elevation space 87.85 73.59 69.14 92.27 82.44 79.49

MultiStack +
PointRCNN2 128R Filtered Depth azimuth and

elevation space 88.91 74.45 67.41 92.95 83.11 75.90

MultiStack +
PointRCNN2 Sem Filtered Depth Grid Sampling 0.1m 88.91 75.10 70.26 95.30 84.3 79.44

Table 5.5: 3D Object detection results with defined sampling regions to reduce background clutter
and bypass architecture limitations. Filtered depth refers to the TWISE filter 5.3.4.1, 64R and
128R are depth sampled in azimuth and elevation space to simulate a LiDAR, while semantic
filtered depth refers to the estimated semantic mask created by [8], and used to filter dense depth in
image plane based on vehicle pixels. The dense depth pixels are reduced further by grid sampling
in 3D at grid spacing 0.1m.

Table 5.7, we classify pixels as All (foreground and background pixels), and Semantic (foreground)

pixels which are selected using ground truth semantic masks. We use only noise-free depth points

in this setting to understand the effect of high-resolution on 3D object detection. We use two types

of architectures (point-based and voxel-based) to understand its effect.

For PointRCNN2, We see that when ’All’ pixels are considered, the 3D detection performance

tops at 256R resolution, but falls down with higher resolution (512R, Alldep). This indicates that

at higher resolution, the FPS component in the architecture selects more non-relevant pixels and

hurts the performance. If relevant object pixels (’Semantic’) are selected as input to the network,

performance improves for all resolutions significantly. The plateauing out at ’AllDep’ could be

due to memory constraints or the architecture bottleneck of the pointnet structure.

For VoxelRCNN, the findings are interestingly different. We see the performance steadily

increases for higher resolution for ’All’ pixels, with ’Alldep’ giving the best performance. Since

no FPS is present in its pipeline, it ensures that relevant object pixels are not thrown away in

preference of background pixels. Providing target-relevant pixels improves the performance only
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Train Strat. Archi. Input Dep Sampling Region Car 3D AP Car BEV AP
Easy Med. Hard Easy Med. Hard

1-stage PointNet Lidar N/A 89.0 78.69 76.68 93.08 87.12 85.0

1-stage PointNet Sem. Lidar N/A 90.53 79.33 77.02 95.1 88.2 86.22

2-stage MultiStack &
PointNet Sem Filtered Grid Sampling,

r = 0.3m around sampled pts 88.91 75.10 70.26 95.30 84.30 79.44

2-stage MultiStack &
PointNet Sem Filtered Grid Sampling

r = 1m around sampled pts 89.28 76.88 71.56 93.2 83.82 80.53

2-stage MultiStack &
PointNet Sem Filtered

Grid Sampling
r = 0.3m around sampled pts < 40m,
r = 1.5m around sampled pts >= 40m

92.34 78.08 73.14 95.95 84.85 81.93

2-stage MultiStack &
PointNet

Sem Filtered &
Sem-Mask

Grid Sampling
r = 0.3m around sampled pts < 40m,
r = 1.5m around sampled pts >= 40m

92.51 79.50 73.20 96.25 88.5 82.25

Table 5.6: 3D Object Detection results with the apriori sampling region and different radius config-
urations used to gather background pixels around the relevant object pixels. Sem filtered refers to
sigma filter and semantic map used to filter out background and floating depth points. Sem-Mask
in last row refers to binary semantic information which is concatenated with the input pointcloud
as additional information to the detection network.

Res. Type 3D Bounding Box Bird’s Eye View Box
PixelType Resol. Easy Med. Hard Easy Med. Hard

All

64R 81.4/80.5 80.1/71.0 71.8/69.0 89.7/90.1 81.6/80.9 72.6/71.7
128R 85.5/80.8 79.7/75.0 71.8/70.2 90.6/90.2 83.4/81.0 75.7/75.9
256R 89.9/81.3 81.4/80.0 79.7/70.8 90.8/90.4 81.6/81.2 81.3/80.01
512R 89.9/81.2 80.7/80.4 72.0/71.4 90.6/90.4 81.4/81.5 78.3/80.2
Alldep 81.7/89.7 81.4/80.7 72.4/79.7 90.6/90.4 81.7/89.8 72.6/81.5

Semantic

64R 88.1/– 82.0/– 74.1/– 91.5/– 88.3/– 80.7/–
128R 88.8/– 85.4/– 77.9 91.7 88.8 81.3/–
256R 89.9/– 88.3/– 80.7/– 92.0/– 89.3/– 84.0/–
512R 90.1/– 88.5/– 80.9/– 92.1/– 89.5/– 84.1/–
Alldep 90.2/89.9 88.5/80.5 81.0/79.3 92.1/90.5 89.5/89.3 84.2/80.0

Table 5.7: Average precision (%) for 3D detection and pose estimation of cars on VirtualKITTI
using PointRCNN2[[5]]/VoxelRCNN[9]. Alldep refers to depth pixels grid sampled at 0.1m, while
semantic pixel refers to selected pixels using GT semantic masks. Note that pixels within r = 0.3m
radius of semantics are also taken into consideration.

slightly, indicating that selecting the relevant pixels apriori has no major impact on the performance

in this kind of architecture.

In Tab. 5.8, we show the effect of noise on object detection performance on PointRCNN2 by

simulating different kinds of noise; Gaussian Blur refers to the gaussian smoothing along the depth

discontinuities and simulating floating points along the boundary. Depth Misalignment refers to

the depth noise along the optical ray. We simulate this noise by increasing gaussian noise linearly

with distance on the valid pixels. The results substantiate the claim that noisy pointcloud decreases
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3D Bounding Box Bird’s Eye View Box
Noise: Easy Med. Hard Easy Med. Hard

64R + Noise-free 81.4 80.1 71.8 89.7 81.6 72.6
64R + Gaussian Blur 67.4 54.4 47.1 73.4 62.4 54.8
64R + Depth Misalign. 70.9 56.3 47.4 77.4 63.6 55.9

Table 5.8: 3D detection and pose estima-
tion of cars on VirtualKITTI [1] using dif-
ferent types of depth noises. Gaussian Blur
smooths depth along boundaries and simu-
late smeared depth; Depth Misalign. simu-
lates depth error along the optical ray.

3D Bounding Box Bird’s Eye View Box
Target Pix. Easy Med. Hard Easy Med. Hard

All 81.4 80.1 71.8 89.7 81.6 72.6
2DBounding Box 82.0 79.1 71.4 84.8 82.1 76.9

Semantic 88.1 82.0 74.1 91.5 88.3 80.7

Table 5.9: Average precision (%) for 3D
detection and pose estimation of cars on
VirtualKITTI [1] using PointRCNN2. 2D
Bounding box refers to the GT bounding
boxes within which depth pixels are sam-
pled, while Semantic refers to GT seman-
tics. Note that pixels within r = 0.3m ra-
dius of semantic pixels are also taken into
consideration.

object detection performance significantly.

In Tab.5.9, We also experimented on finding an effective sampling region to select relevant

object pixels; it shows that semantic regions, compared to 2D bounding boxes are most effective

in improving the object detection performance in point-based backbone networks.

5.5 Conclusion
Existing 3D architectures for object detection are sensitive to noise from the pointclouds generated

from depth estimates in image plane. Learning accurate depth in image plane is non-trivial since

often real-life groundtruth data is noisy. We design a sigma filter from TWISE that can minimize

the noise-inbet pixels to a great extent. We also found out that estimated semantic masks from an

external CNN network can suppress noise-bg pixels significantly. These filters can prune out noise

from dense depth estimate quite effectively. We conclude that raw LiDAR, once augmented with

pruned dense depth estimate, can contribute to improving object detection by gathering important

details and context of relevant object pixels. In our future work, we plan to improve detection

accuracy on foreground objects by designing a 3D pointcloud loss constraint, introducing 3D priors

i.e. shapes and geometry knowledge of the scene.
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Chapter 6

Conclusion and Future Works

6.1 Conclusions

Depth completion aims to recover dense depth maps from sparse depth measurements, guided by

color image because of its high-resolution imagery. We introduce two novel representation of

depth called multi-channel and dual channel representation; which, when incorporated effectively

into a learning framework, are capable of improving depth completion performance significantly

by recovering depth discontinuities. We also study an application of high-resolution depth in 3D

object detection problem and show some potential advantages and pitfalls in using high-resolution

depth estimates using SoTA 3D object detection problems. We conclude the thesis with our con-

tributions, and possible avenues of future work in depth completion problems.

6.1.1 Contributions

In this section we list several contributions from the thesis.

6.1.1.1 Multi-Channel and Dual Channel Representation

We propose two novel representations of depth; multi-channel and dual channel representation

that can model ambiguity at object boundaries. Multichannel representation can be expressed by

probability distribution of each depth which can model ambiguity by multiple peaks. By using fi-

nite number of coefficients for depth reconstruction, it is possible to prevent floating pixels around
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boundary completely. However, it needs to accommodate many channels for wide range of depths

to preserve depth precision, resulting in high memory and computational requirements. We then

introduce a new dual representation of depth, called twin surface, that learns a foreground and

background depth for each pixel. Ideally, the foreground and background depth only differ around

object boundaries when there is ambiguity and are same at object surfaces. It is possible to re-

construct depth by selecting foreground and background at object boundaries and select or mix

any depths within object surfaces. Although some mixed depth pixels can still be present due to

incorrect learning, it can drastically reduce memory requirement compared to depth coefficients.

Both representation can be learned using standard neural network architectures.

6.1.1.2 Loss Functions

We propose some effective loss functions to learn the multichannel and dual channel representa-

tions. We showed that the cross-entropy loss is an effective measure to learn multichannel depth

(DC), which is also a discrete probability distribution of depth. In order to learn DC estimate by

cross-entropy loss, the groundtruth depth also needs to be converted to groundtruth DC. To learn

dual channel representation, we designed two asymmetric loss functions; ALE and RALE, that can

be used as biased estimator of foreground (FG) and background (BG) depth respectively. Addi-

tionally, we learn a sigma that is a weighted combination of FG and BG depth. It is possible to

select a FG and BG depth at ambiguous region by adopting this strategy, and as a result, the final

depth map can still preserve depth discontinuity at ambiguous regions.

6.1.1.3 Noisy GT and Metrics

RMSE is the standard and most common metric to evaluate depth completion methods since it

favors far-away depth pixel errors compared to close-by depth pixels. With clean GT depth, it is
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an effective mechanism to evaluate depth pixels at all ranges. However, real-life world has noisy

GT due to different approaches in creating GT. For example, accumulation of lidar points from

multiple frames causes depth noise in moving objects, and depth inconsistency from stereo depth

cause several long-range depth pixels to omit in ground-truth. For indoor scenes, colorization

techniques create smeared points in NYU2 groundtruth. We discovered in our analysis that MAE

is the least susceptible metric to use in presence of GT outliers. We also propose two evaluation

measures, TMAE and TRMSE metrics, which can reward better solutions at boundaries and within

object surfaces by reducing the preference of outlier points and mixed depth pixel errors in GT and

estimated depths respectively.

6.1.1.4 3D Object Detection from Noisy Depth

We apply depth estimates from depth completion in perception problems like 3D object detection

and study how high-resolution noisy depth extended to pointcloud can affect object detection per-

formances. Our analysis showed several depth noise and architecture limitations in SoTA method

that are potential factors in degraded object detection performances. We propose a sigma filter,

and some additional remedies to handle noises common in depth estimate and conclude that depth

estimates can be leveraged more effectively if it augments the sparse lidar by gathering dense depth

points around local regions.

6.1.2 Future Improvements

Even though our proposed representation and learning framework can reduce significant smear-

ing at object boundaries, we realize some potential limitations of our depth completion methods.

Mixed depth pixels and depth noise still remain a concern for long-range depth where GT su-

pervision is sparse and for heavily occluded regions which are not visible by the camera. Also
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real-world GT like KITTI and NYU2 contains enough outlier noise resulting in noisy supervi-

sion. We also realize that since supervision is done in image plane, there are very few pixels that

represent long-range depth compared to close-range pixels as a result of perspective distortion.

Creating clean high-resolution depth is paramount for quality depth completion and depth es-

timation. There are number of avenues that can be explored for improving depth completion.

Weaker labels like 3D bounding boxes, pointcloud supervision by chamfer distance or 3D geo-

metric constraints can also be used for additional supervision to tackle errors in long-range depth

and highly occluded regions in image plane. We also realize that SoTA architectures do not nec-

essarily support some high-resolution dense depth due to large number of depth points at high

resolution. So our work can be extended to designing a more conducive network architecture for

supporting dense depth. There are opportunities to develop applications of dense depth estimates in

perception, navigation, generation of high-definition mapping problem to utilize the true potential

of high-resolution depth.
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