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ABSTRACT

TOPOLOGICAL DATA ANALYSIS AND MACHINE LEARNING FRAMEWORK FOR
STUDYING TIME SERIES AND IMAGE DATA

By
Melih Can Yesilli

The recent advancements in signal acquisition and data mining have revealed the impor-
tance of data-driven tools for analyzing signals and images. The availability of large and
complex data has also highlighted the need for investigative tools that provide autonomy,
noise-robustness, and efficiently utilize data collected from different settings but pertaining
to the same phenomenon. State-of-the-art approaches include using tools such as Fourier
analysis, wavelets, and Empirical Mode Decomposition for extracting informative features
from the data. These features can then be combined with machine learning for clustering,
classification, and inference. However, these tools typically require human intervention for
feature extraction, and they are sensitive to the input parameters that the user chooses
during the laborious but often necessary manual data pre-processing. Therefore, this dis-
sertation was motivated by the need for automatic, adaptive, and noise-robust methods for
efficiently leveraging machine learning for studying images as well as time series of dynami-
cal systems. Specifically, this work investigates three application areas: chatter detection in
manufacturing processes, image analysis of manufactured surfaces, and tool wear detection
during titanium alloys machining. This work’s novel investigations are enabled by combining
machine learning with methods from Topological Data Analysis (TDA), a relatively recent
field of applied topology that encompasses a variety of mature tools for quantifying the shape
of data.

First, this study experimentally shows for the first time that persistent homology (or
persistence) from TDA can be used for chatter classification with accuracies that rival exist-
ing detection methods. Further, the efficient use of chatter data sets from different sources

is formulated and studied as a transfer learning problem using experimental turning and



milling vibration signals. Classification results are shown using comparisons between the
TDA pipeline developed in this dissertation and prominent methods for chatter detection.
Second, this work describes how to utilize TDA tools for extracting descriptive features
from simulated samples generated using different Hurst roughness exponents. The efficiency
of the feature extraction is tested by classifying the surfaces according to their roughness
level. The resulting accuracies show that TDA can outperform several traditional feature
extraction approaches in surface texture analysis. Further, as part of this work, adaptive
threshold selection algorithms are developed for Discrete Cosine Transform, and Discrete
Wavelet Transform to bypass the need for subjective operator input during surface roughness
analysis. Both experimental and synthetic data sets are used to test the effectiveness of these
two algorithms. This study also discusses a TDA-based framework that can potentially
provide a feasible approach for building an automatic surface finish monitoring system.
Finally, this work shows that persistence can be used for tool condition monitoring during
titanium alloys machining. Since, in these processes, the cutting tools typically fracture
catastrophically before the gradual tool wear reaches the maximum tool life criteria, the
industry uses very conservative criteria for replacing the tools. An extensive experiment is
described for relating wear markers in various sensor signals to the tool condition at different
stages of the tool life. This work shows how, in this setting, TDA provides significant
advantages in terms of robustness to noise and alleviating the need for an expert user to
extract the informative features. The obtained TDA-based features are compared to existing
state-of-the-art featurization tools using feature-level data fusion. The temporal location of
the most representative tool condition features is also studied in the signals by considering

a variety of window lengths preceding tool wear milestones.
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CHAPTER 1

INTRODUCTION

Machine learning has become of the trending areas during the last decades. One area
where machine learning has been especially useful is dynamical systems. Data-driven analysis
of dynamical systems has grown increasingly popular due to enhancements in measuring
devices and data mining. A wide variety of signal processing tools is combined with machine
learning to study dynamical systems. However, there is still a need to explore new approaches
because the-state-of-the art has some drawbacks specific to applications. This study aims
to combine machine learning with Topological Data Analysis (TDA) tools to create new
investigative methods to study dynamical systems.

One example of complex dynamical systems is machining processes, including nonlinear-
ities, time delays, and stochastic effects. One of the challenging problems is detecting the
occurrence of chatter characterized by a large amplitude of vibrations of the cutting tool.
Consequently, identification and mitigation of chatter have become prominent research top-
ics in recent decades. Some of the challenges associated with chatter identification are that
it depends on several factors, including the dynamic properties of the tool and the work-
piece. Therefore, as these properties vary during the cutting process, the results of predictive
models become invalid, thus necessitating a data-based approach for more reliable chatter
detection. Motivated by this goal, many studies in the literature have focused on extracting
chatter features from signals obtained using sensors mounted on the cutting center. Most of
these studies are based on analyzing the spectrum of force or acceleration signals, often in
combination with machine learning techniques [4, 5, 6, 7, 8]. The two most common methods
for analyzing cutting signals are the Wavelet Packet Transform (WPT) and the Empirical
Mode Decomposition (EMD). However, these methods have limitations that preclude them
from being adopted as general chatter detection tools. To elaborate, this study shows that

identifying appropriate feature vectors using these two methods is signal-dependent, and



it requires skilled operators [9]. In addition to the contribution to traditional approaches,
Topological Data Analysis (TDA) based approach is developed and used for both synthetic
and experimental cutting signals to identify chatter in time series |3, 10]. Another novel
approach based on similarities between time series has also developed in this study. This
approach combines the Dynamic Time Warping (DTW) algorithm and K-Nearest Neighbor
algorithm to diagnose chatter [11].

Another challenging problem in complex dynamical system analysis is data-driven model
identification. It provides a useful approach for comparing the performance of a device to
the simplified model used in the design phase. One of the modern and popular methods for
model identification is Sparse Identification of Nonlinear Dynamics (SINDy). Although this
approach has been widely investigated in the literature mainly using numerical models, its
applicability and performance with physical systems are still a topic of current research [12].
In Chapter 3, SINDy is extended to identify the mathematical model of a complicated
physical experiment of a chaotic pendulum with a varying potential interaction. It is also
tested using a simulated model of a nonlinear, simple pendulum. The input to the approach
is a time series and estimates of its derivatives. While the standard approach in SINDy
is to use the Total Variation Regularization (TVR) for derivative estimates, some caveats
for using this route are presented in this study. The performance of TVR is benchmarked
against other methods for derivative estimation.

In addition to chatter diagnosis and parameter identification, surface texture analysis is
also a challenging problem. Surface roughness determines many important surface properties
such as adhesion, friction, wear, as well as both thermal and electrical contact conductance
[13, 14]. Currently, the most prevalent approach for describing manufactured surfaces uses
statistical point summaries that contain a small fraction of the surface information. These
point summary representations are not robust (they are too dependent on the direction of
measurement and on noise). They are also not amenable to mathematically linking the

surface texture to the physics of the generating process. Therefore, there is a need for



alternative compact descriptions of the often complex and possibly fractal manufactured
surfaces [15, 16, 17, 18, 19, 20, 21]. The new objects used for describing these surfaces must
be easily visualized, robust to noise, have well-defined metrics, are capable of representing the
surface texture at multiple scales, and have the ability to leverage machine learning and other
computational and statistical tools. Therefore, Chapter 4 implements tools from TDA in
surface texture analysis to address the current limitations in surface texture representation;
however, the utility of these tools has never been explored in the context of surface texture
characterization and analysis.

The last application area investigated in this study is tool wear analysis. Signal decom-
position approaches are also widely adopted for tool wear identification and prediction in the
literature. However, these methods have similar problems stated in chatter diagnosis. The fi-
nal decomposition of the signals requires manual preprocessing and input parameters which
are dependent on human error. Therefore, building an automatic and adaptive machine
learning framework is the current area of research. In Chapter 5, persistence homology from
TDA is utilized to build a parameter-free machine learning framework to classify experimen-
tal cutting signals based on the wear amount of corresponding cutting tools. In addition to
implementing TDA in tool wear analysis, Chapter 5 modifies existing approaches to reduce

the number of parameters required from users.



CHAPTER 2

CHATTER DIAGNOSIS USING MACHINE LEARNING

2.1 Literature Review

Turning, boring, milling, and drilling operations constitute a major part of manufacturing
processes. One challenging problem that all these processes have in common is the occurrence
of large amplitude, and detrimental oscillations called chatter [22, 23, 24]. Since chatter leads
to increased tool wear, poor surface finish, and noise, it is extremely important to anticipate
and avoid its occurrence. Alternatively, several chatter mitigation techniques, including
increasing stiffness in machine tools and active and passive damping techniques, also exist
[25]. Efficient methods for the identification of the stability lobes that separate stable cutting
and chattering motion [26, 27| can help keep the machine away from chatter via selecting
parameters in the safe area below the stability lobes. However, these models often do not
account for the effect of the changing dynamics or for highly complex cutting operations.
This led to the emergence of in-situ methods for chatter detection based on instrumenting
the cutting center with sensors and analyzing the resulting signals |28, 29, 30, 31, 32, 33].

The majority of available in-process methods for chatter identification rely on extracting
certain features from the acoustic, vibration, or force signals and comparing them against
some predefined markers of chatter [34, 35, 36, 37, 30, 38, 39, 40, 41, 42, 43, 44|. They can
be broadly categorized into two groups as shown in Figure 2.1. The most prevailing methods
are Wavelet Packet Transforms (WPT) and Empirical Mode Decomposition (EMD) or the
Ensemble Empirical Mode Decomposition (EEMD). Generally, such decomposition-based
methods for analyzing the cutting signal follow the same procedure. First, the signal is
decomposed into different parts using some transformation. Then, the decomposed portions
or packets of the signal, which include the relevant information about machine tool chatter,

are selected to reconstruct a new signal. These packets are chosen by applying the Fast



Fourier Transform (FFT) to the different parts or packets and choosing the ones that overlap
with the known chatter frequencies of the system. Finally, various time and frequency domain
features are computed from these packets. In several papers, these features are ranked and
are utilized as the input for the machine learning classifiers. Support Vector Machine (SVM)
algorithm is the most common classifier used for chatter classification [32, 6, 45, 5, 8, 46, 47|.
Other less common classifiers include quadratic discrimination analysis [4], Hidden Markov
Model (HMM) [48], generalized HMM [49], and logistic regression [50] (see Figure 2.1).

Wavelet packet decomposition and wavelet transform are widely adopted in machining
state monitoring. Chen and Zheng [5] generated feature matrices for chatter classification
using wavelet packets whose frequency bands contain the chatter frequency. Yao et al. [32]
used the standard deviation and the energy of the decomposition obtained using the Discrete
Wavelet Transform and the WPT for chatter detection from acceleration signals in a boring
experiment. The energy of the wavelet packets was also utilized in turning experiments with
the comparison of different levels of WPT [51, 49]. Ding et al. [50] used wavelet packet
entropy as a feature for early chatter detection. In addition to WPT, EMD and EEMD are
also often utilized to featurize cutting signals. Ji et al. [6] proposed EMD to both eliminate
noise from milling vibration signals and to extract features from informative Intrinsic Mode
Functions (IMF). Chen et al. [45] used top-ranked features extracted from the IMFs obtained
from EEMD for machining state detection. Li et al. [52] used the energy spectrum of the
IMFs as features for chatter detection. The resulting features are ranked by using Fisher
Discriminant Ratio (FDR) [45] and, when the number of features is high, recursive feature
elimination (RFE) is used to reduce the number of features [5]. Although EMD/EEMD is
typically applied to vibration signals, Liu et al. [8] also used EMD to extract features from
the servo motor current time series.

In addition to WPT and EMD-based approaches, there are other methods for feature
extraction from metal removal processes. For example, Thaler et al. [4] used Short-Time

Fourier Transform to extract the frequency domain features of the feed force, acceleration,



and sound pressure signals in band sawing operation. Moreover, the Q-factor and the power
spectrum of the signal were used for chatter classification in milling [46]. Cao et al. [53]
applied the Hilbert Huang transform to signals reconstructed using only the informative
wavelet packets. Lamraoui et al. applied multi-band resonance filtering and envelope analy-
sis to milling vibration signals [54]. Yesilli and Khasawneh combined Fast Fourier Transform
(FFT), Power Spectral Density (PSD), and Auto-correlation Function (ACF) with super-
vised classification algorithms to detect chatter in turning signals. They used the coordinates
of the peaks of FFT, PSD, and ACF plots as features in classification algorithms [55]. Fourier
Transform is used in signal-based methods for chatter detection, and Liu et al. [56] combined
signal-based and model-based methods to build and hybrid method for chatter detection.
Variational Mode Decomposition (VMD) is another method for chatter detection. For exam-
ple, Liu et al. developed a method to automatically select the VMD parameters and extract
the corresponding features using signal energy entropy [57].

Chatter detection strategies based on WPT or EEMD require deciding on which infor-
mative parts of the signal to use. However, since searching for the informative parts of the
decomposition is a multi-step process, these approaches become impractically laborious. Al-
though the time required to obtain the needed WPT and EEMD decompositions is relatively
low, choosing the informative decompositions in WPT and EEMD is often not straightfor-
ward. This is because the featurization process involves looking into the Fourier spectra and
the energy ratio plots for each signal in order to determine the most informative parts of the
decomposition. Consequently, only a few cases are often analyzed, and the chosen packets
or decompositions are fixed and used for feature extraction for all the subsequent data sets.
For example, in the WPT-based approach, the standard procedure is to pick the packets
with the highest energy ratio as the most informative part of the decomposition. However,
these packets do not necessarily contain the chatter frequency bands, and thus they may not
be the most suitable markers for chatter detection [9].

There are also chatter classification methods that do not rely on signal decomposition.
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Figure 2.1: Categorization of feature extraction methods and classifiers used for chatter
detection.

For example, Tarng et al. utilized unsupervised neural networks with adaptive resonance
theory [58|. Tangjitsitcharoen et al. proposed three different parameters which are based on
the variance of the cutting force signals to diagnose different cutting states [59]. Fu et al. used
a deep belief network with an automatic feature construction model based on unsupervised
greedy layer-wise pre-training and supervised fine-tuning to monitor the state of milling
processes [60]. Cherukuri et al. used Artificial Neural Network (ANN) on synthetic turning
data for chatter classification [61]. However, using ANN (or other black-box machine learning
methods) requires large training sets. That amount of data may not always be available,
especially in small-batch production processes, which constitute a large portion of discrete
manufacturing.

Although prior studies on chatter detection have shown some success, these tools typically

share two main limitations: (1) training a classifier requires significant manual pre-processing



of the data, and (2) the trained classifier is sensitive to the differences between the training set
and the test set [9]. For example, in the WPT or EEMD method, the signal is decomposed
into wavelet packets or IMFs, respectively. The pre-processing requires the selection of
the informative wavelet packets or informative IMFs via choosing the packet or IMF that
falls within the range of the chatter frequency. These informative packets or informative
IMFs are used for extracting frequency and time features, which are often ranked with
the Recursive Feature Elimination (RFE) method. Then, an incoming data stream can be
classified based on these features and a classification algorithm such as SVM. This means that
there are fundamental limitations if the chatter frequencies change significantly, for example,
due to changing natural frequencies or changing process parameters. Specifically, Yesilli et
al. assessed the transfer learning performance of WPT and EEMD [9]. Further, these
methods require a level of skill for feature extraction and classifier training that precludes
their wide adoption in chatter detection settings. Therefore, there is a need for an accurate
machine learning algorithm for chatter diagnosis that can (1) be easily and automatically
applied, and (2) can be computed in a reasonable time. Therefore, this work proposes two
novel approaches for chatter detection. These are Topological Data Analysis (TDA) based
approach and the approach that utilizes the similarity between time series via Dynamic Time
Warping (DTW).

Topological Data Analysis (TDA) [62, 63, 64, 65] is a promising tool for generating fea-
ture vectors for chatter detection comes from a new field with many mature computational
tools. TDA, and more specifically persistent homology, provides a quantifiable way for de-
scribing the topological features in a signal [66]. Specifically, by embedding the sensory
signal into a point cloud, it is then possible to use persistent homology to produce a mul-
tiscale summary of the topological features of the signal, thus enabling the analysis of the
underlying dynamical system. The homology classes that correspond to the embedded signal
are often reported using a planar diagram that shows how long each topological feature per-

sisted. The application of TDA tools to machining dynamics has only been recently explored



[67, 68, 69]. Specifically, Reference [68] and [70] show that maximum persistence—a single
number from the persistence diagram—can be used to ascertain the stability of simulated
data from a stochastic turning model. Khasawneh et al. incorporated more information from
the persistence diagram by extracting 5 features, including Carlsson coordinates (|71]) and
the maximum persistence [69], see Section 2.6.4 for more details on featurizing persistence
diagrams. In combination with SVM, the resulting feature vector was used to train a chatter
classifier, and it was applied to simulated deterministic and stochastic turning data with
success rates as high as 97% in the deterministic case. In addition, Yesilli et al. utilized
Carlsoon Coordinates and Template Functions |72] to diagnose chatter in milling simulations
and show that these two featurization methods are noise-robust [3].

However, despite the active work in the literature on featurizing persistence diagrams,
all prior studies on chatter detection with TDA have utilized only a small fraction of the
persistence diagram for constructing a feature vector. Further, these publications only stud-
ied simulated signals, and no sensory signals from actual cutting tests have been tested.
Therefore, this work aims to collect and summarize state-of-the-art featurization tools for
persistence diagrams and apply them for the first time for chatter classification using actual
experimental signals obtained from an accelerometer mounted on the cutting tool during a
turning process. The methods that are investigated for featurizing the resulting persistence
diagrams and classifying chatter time series include persistence landscapes [73], Carlsson co-
ordinates [71], persistence images [74], an example kernel method [75], and path signatures
of persistence landscapes [76]. Moreover, the run time for each featurization method is pro-
vided, including the runtime for persistence diagram computation, which constitutes most
of the total computation time. To reduce the runtime for persistence diagram computation,
this study utilizes Bézier curve approximation method [77|, greedy permutation [78] and
parallel computing.

The second approach proposed in this study is based on combining the K-Nearest Neigh-

bor (KNN) classifier with time series similarity measure: Dynamic Time Warping (DTW)



and Approximate and Eliminate Search Algorithm (AESA). DTW has been used in many
application domains including speech recognition (|79, 80, 81, 82, 83|), time series classifica-
tion (|84, 85, 86]), and signature verification (|87, 88, 89, 90]). In this study, DTW is comp
with AESA algorithms to detect chatter in signals obtained from turning experiments.

In machining, natural frequencies of the system shift when cutting configuration param-
eters such as overhang distance is changed. The chatter frequency, where chatter takes place
in the frequency domain, also changes. Since training a classifier on a data set obtained from
each new configuration is cumbersome, this study is interested in how a trained classifier on
one cutting process can transfer knowledge to the different cutting processes. This general
idea is known as transfer learning in the literature. Within the context of machining, it
has the potential to provide a methodology for pooling data from different manufacturing
settings to more robustly detect chatter. In addition to traditional machine learning, this
study also tests the performance of transfer learning in each featurization approach. Clas-
sifiers were trained and tested from data gathered from milling and turning experiments.
Except for DTW, four different classification algorithms were used for all methods: Support
Vector Machine (SVM), Logistic Regression (LR), Random Forest classifier (RF), and Gra-
dient Boosting (GB). K-Nearest Neighbor was used for measuring the performance of the

similarity measure technique DTW.

2.1.1 Transfer Learning Approaches for Machining

Several studies focus on chatter detection using deep learning and transfer learning.
Cherukuri et al. use synthetic data to train an artificial neural network (ANN) to predict
chatter [61]. Postel et al. used a pre-trained Deep Neural Network to predict stability in
milling operation [91]. A synthetic data set is used to train the network, and then fine-
tuning is performed using the small size of an experimental data set. Unver and Sener used
a numerical simulation of milling operation to train AleXNet structure for Convolutional

Neural Networks, and they tested the same network on experimental milling data to detect
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chatter [92]. In addition to chatter detection, the majority of prior works that apply transfer
learning focus on fault detection and tool/machine conditioning instead of chatter detec-
tion. Further, these works utilize deep learning algorithms that require a large number of
observations [93] and do not provide insight into the signals’ most informative features for
chatter detection. For instance, Wu et al. used 1D Convolutional Neural Networks (CNN)
for fault detection in bearings and gears [94]. They applied two different transfer learning
approaches: 1) training and testing a classifier on samples from different working condi-
tions and 2) training on simulation data and testing on experimental data. Li and Liang
developed a CNN-based approach to diagnosing severe tool wear, tool breakage, and spindle
failure during machining processes [93]. They used two different CNC machines to train and
test a classifier in an experiment that took six months to collect the data needed to train
the CNN. Kim et al. used Support Vector Regressor to predict the machining power, and
they transferred knowledge from machining power models of steel and aluminum to predict
the power model of titanium [95]. Mamledesai et al. utilized CNN and transfer learning to
monitor tool conditions to help the machinist decide whether to keep using the same tool
or replace it [96]. Marei et al. used Convolution Neural Network-based transfer learning to
predict tool wear of the carbide cutting tool flank [97]. Another study that includes trans-
fer learning and deep learning is focused on the estimation of force in the milling process
using simulation data and experimental data as a source and target domain, respectively
[98]. Wang et al. use the pre-trained network VGG19 to identify machining fault types in
rolling bearings. They modified the final fully connected layer to reduce the number of net-
work parameters and implement the transfer learning between non-manufacturing data and
manufacturing data [99]. Kim et al. proposed another approach that converts cutting force
signals into images using a multi-layer recurrence plot (MRP) to estimate the machining
quality in laser-assisted micro-milling operation [100]. They used a pre-trained ResNet-18
CNN structure and tested it on the images generated from cutting signals.

Traditional machine learning approaches are also adopted in transfer learning approaches
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for machining applications. For instance, Gao et al. implemented extreme vector machines
and transfer learning to build a prediction model for remaining tool life [101]. Yesilli et al.
combined traditional signal decomposition tools and machine learning algorithms such as
support vector machines, random forest classifier, and gradient boosting to detect chatter
in experimental turning signals [9]. Fast Fourier Transform, Auto-correlation Function, and
Power Spectral Density are also combined with similar machine learning algorithms to iden-
tify unstable time series obtained from turning experiments [55]. Shen et al. combined the
TrAdaBoost transfer learning algorithm [102] and singular value decomposition-based fea-
ture extraction to identify different fault types in a bearing data set [103]. The TrAdaBoost

algorithm is also used in tool tip dynamics prediction [104].

2.1.2 Main Contribution

For WPT and EEMD approaches, the resulting informative packets or decompositions
may not contain chatter information, especially if the system parameters shift during op-
eration, e.g., due to the movement of the machining center, which may involve changing
the overhang distance of the tool and thus the flexibility of the cutting tool. Therefore,
in these situations, the classifier is required to categorize signals that may carry different
characteristics and chatter features than the ones it was trained on. In other words, the
ability of the classifier to achieve transfer learning is tested in these situations. However,
there have not been any studies on the transfer learning capabilities of WPT and EEMD.
Therefore, this study investigates the transfer learning performance of these two approaches
to the novel approaches proposed in this study. Further, the common approach for picking
the informative packets in WPT is to choose the packets with the highest energy. However,
these packets do not necessarily contain the chatter frequency bands, and thus they may not
be the most suitable markers for chatter detection [9].

State-of-the-art methods for chatter detection, WPT, and EEMD require intense manual

preprocessing and thus have low automation potential (|9, 55]). For example, the frequency
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spectrum of the signals obtained from wavelet packets and IMFs must be checked to choose
the informative wavelet packets or IMFs. In contrast, the proposed DT'W approach eliminates
the feature extraction step since it does not depend on signal decomposition but rather relies
on computing pairwise distances between time series. All the steps in the DTW approach can
be performed automatically. It only needs two input parameters: the number of neighbors
required for the KNN classifier and the looseness constant (H) for the AESA algorithm.

Although this study focuses on turning as a use case, the DTW approach is applicable to
other machining processes where the data stream is in the form of time series. A comparison
of the resulting chatter classification success rates between the DTW approach and other
widely used methods in the literature shows that the DTW approach has the highest average
accuracy or is within the error band of the highest accuracy in two out of the four cutting
configurations for turning experiments.

This study also shows how to drastically reduce the computation time by combining the
DTW approach with the Approximate and Eliminate Search Algorithm (AESA) or parallel
computing. Although AESA has been widely used in word recognition, pattern recognition,
and handwritten character recognition ([105, 106, 107, 108, 109]), it is believed that this work
is the first to combine AESA and DTW for analyzing engineering systems. In addition, the
results obtained with AESA and parallel computing show that after training a classifier
offline, an incoming time series can be labeled in less than two seconds. Therefore, the DTW
approach is very conducive to online chatter detection applications.

Previous studies on chatter detection with a TDA-based approach either utilize a small
subset of the available featurization methods of persistence diagrams, or they only consider
simulated data. Specifically, Reference [68| used maximum persistence lifetime on a simulated
stochastic turning model to visually show that persistence diagrams carry chatter informa-
tion. In Reference [69], the authors used Carlsson Coordinates (in addition to maximum
lifetime) as features and logistic regression classifier to distinguish chatter versus chatter-

free signals obtained from stochastic and deterministic turning simulations. Reference [70]
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used Persistent Homology to visually detect the changes in the behavior of a linearized turn-
ing model using a heat map of maximum persistence plotted on top of the spindle speed
and the depth of cut space. Reference [3] only used Carlsson Coordinates and Template
Functions, where the latter was introduced in [72], for chatter detection in simulated milling
signals. In contrast to previous studies on TDA, machine learning, and machining dynamics,
this study is the first to consider experimental data. Further, in contrast to the previous
studies that used one or two TDA featurization methods, this study compares for the first
time the most common featurization methods from TDA. Further, this study also focuses
on the classification results using four common classifiers: Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RF), and Gradient Boosting (GB). It is believed
that this study is the first to apply a variety of persistence diagram featurization techniques
to experimental machining data sets. Another distinguishing feature of this study is a focus
on speeding up persistence computations by leveraging several computational tools such as
greedy permutation, Bézier curve approximation, and parallel computing. The described
speedups significantly reduce the computational time, thus enabling utilizing the approach
described in this work for effective chatter detection.

Another main contribution of this work is to present the first study on using state-of-
the-art feature extraction tools to transfer chatter knowledge across turning and milling
operations using experimental data. The main goal is to automate chatter detection for
different cutting conditions and operations and to reduce the amount of data and time
needed to train a classifier [110]. Once a classifier is trained using a given data set, the gained
information can be utilized for different operations without needing large and completely new
training data sets from the target process.

In contrast to prior works on transfer learning for chatter detection, this work focuses on
a large number of feature extraction methods, including WPT, EEMD, FFT, ACF, PSD,
as well as two other novel methods that have been proposed in this study in the context of

machining: Topological Data Analysis (TDA) methods and similarity-based methods using
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Dynamic Time Warping (DTW).

This chapter is organized as follows. Section 2.2 gives the background information of four
different classification algorithms that have been widely adopted in this chapter. Section 2.3
explains the feature extraction from WPT and EEMD and presents the results obtained from
these approaches. Section 2.4 describes the traditional feature extraction approach using
FFT/PSD/ACF and provides the classification results. The first novel approach developed
in this study is explained in Section 2.5 and the resulting classification accuracies can be
found in the same section as well. The second novel approach developed by this study
and the results obtained using this approach are provided in Section 2.6. The third main
contribution of this study for chatter diagnosis is the application of transfer learning between
different machining operations using various featurization techniques. Section 2.7 provides
background information for transfer learning and the results obtained using experimental
turning and milling data sets. This chapter uses experimental data set obtained from turning
and milling experiments. One can refer to Section A.1 and A.2 for more details about data

collection and processing.

2.2 Supervised Classification Algorithms

This section gives background information on the different classifiers used to test the
performance of considered feature extraction methods, namely SVM, logistic regression,

random forest classification, and gradient boosting.

2.2.1 Support Vector Machine

A Support Vector Machine (SVM) is used to classify the time series by using feature
vectors. The Support Vector Machine algorithm is a supervised machine learning technique
for finding the optimal hyperplane separating two training data set classes. This hyperplane
can then be used to classify the test data. The two dimensional case of a linear SVM is

illustrated in Figure 2.2. The feature vectors corresponding to two different classes, e.g.,
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chatter (crosses) and no-chatter (circles), form two linearly separable data sets. The optimal
hyperplane is selected such that the perpendicular distances from the feature vectors, which
are closest to the hyperplane and also called support vectors, are equal. This means that
the optimal hyperplane has the largest margin [111]. In general, it can be described by the
set of points x satisfying

w-x+c=0, (2.1)

and the dashed lines where the support vectors lie on are defined according to
faux)=w-x+c==+1. (2.2)

Then, the margin of the optimal hyperplane can be denoted as 2/||w||. The two hyperplanes
with Equation 2.2, and therefore the optimal hyperplane from Equation (2.1), can be found

by maximizing the distance 2/||w|| or by minimizing ||w||> with the constraints

w-x+c>+1, and
(2.3)

w-x+c<—1.

The classification for a feature vector X of the test set can be made by checking the sign of
the expression W - Xies; + ¢, which defines the label for the two classes. For the theory behind
multi-class classification with SVM, one can refer to [112]. In some cases, the training data
are not separable by a linear hyperplane. In this case, the SVM can be extended to nonlinear

classification with the help of kernel functions [113].

2.2.2 Logistic Regression

Logistic regression is a supervised learning classification algorithm that computes the
probability of two class labels for a given dependent variables [114]. It is quite similar to
linear regression, but its output is divided into two categories [115]. Figure 2.3 illustrates
linear and logistic regression on a binary data set. In this figure, X = {z1,29,...,2,} is the

set of elements in the feature vector while Y € {0, 1} is the dichotomous outcome variable.
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Figure 2.3: Linear (a) and logistic (b) regression onto data set whose output is binary.

For dichotomous output, linear regression can be applied, but the model will not fit well,
as shown in Figure 2.3a. There are two main reasons why the linear equation does not
explain the relationship between the variables X and Y [116]: (1) the relationship between
the variables does not have a linear trend, and (2) the errors are not constant, or they are
not normally distributed. However, this problem can be solved by introducing the logit
transformation.

Let w(z) = E(Y|x) be the expected value of Y given the value of z. The regression
model g(x) and the logit transformation w(x), respectively, are defined according to [115]

in Equation 2.4, where 7(z) is defined as the sigmoid function for logistic regression in
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Equation 2.5. The regression model is expressed as a linear function. However, it is converted

into a nonlinear probability function with logit transformation.

7(x)

g(z) =In <1_—7T(x)

) =6+ Bz, (2.4)

eﬁO‘i’ﬁlw

Although Equation 2.4 is defined for only one independent input variable x, the model can be
further extended to a multivariate version. To assign labels for a given input x, the decision
boundary must first be formed. In Figure 2.3b this boundary is the sigmoid function that
splits tags 0 and 1. The x values which satisfy Sy + fix = 0 form the decision boundary
[114], and the probability at the boundary, per Equation (2.5), is 0.5. The parameters [,

and f; in the regression model can be identified using maximum likelihood estimators [114].

2.2.3 Random Forest Classification

Ensemble learning uses multiple methods to get higher prediction rates for a given prob-
lem. For example, random forest is an ensemble learning method composed of decision trees
where the number of these trees is part of the user input to the algorithm [117]. Each decision
tree is composed of branch nodes with two branches emanating from each root node; hence,
they are called binary trees. The nodes that have no descendants are termed leaf nodes or
leafs. Assuming numeric inputs, each branch node corresponds to one variable and its split
point, while the leaf nodes correspond to output variables. Figure 2.4 illustrates decision
tree classification using two classes (0 and 1) and two input variables (z and y). The first
step is to partition the input space of the training set into rectangles (or hyper-rectangles in
higher dimensions), in this case, L; through Ls. Selecting the partitions is based on making
each subset of the training set purer, i.e., with fewer mixed labels, than the training set itself
[118]. An impurity function defines the goodness of each partition, see [118] for a discussion
on optimum splits. After defining the partitions for the training data set (left graph in

Figure 2.4), a tree is formed (right graph in Figure 2.4).
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Figure 2.5: Random Forest Classification (voteg:Final decision of the corresponding tree is
class 0. votep:Final decision of the corresponding tree is class 1.).

The branch nodes of the tree correspond to conditions, either on x or on ¥, such that the
samples L, through Ly can be placed in one of the leaf nodes. Each leaf node is then labeled
by following the plurality rule [118]: the most frequent labels in any node are assigned as
the label for that node. For example in Figure 2.5, leaf nodes L;, L3, and L4 are labeled as
class 0, while leafs L, and Ly are labeled as class 1. Given a new input, a tag is generated by
traversing the tree starting at the tree’s root node. The new input’s label is then matched
to the leaf node it ends up in within the tree.

In Random forest classification, there are N decisions trees, and each tree votes for a label
for a given test sample. The algorithm chooses a number of samples to generate the decision
trees, and this is iterated until the desired number of trees is obtained. The estimation for
the label of the sample is made with respect to the most frequent votes [119] as shown in

Figure 2.5.
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2.2.4 Gradient Boosting

Gradient boosting algorithm was introduced by Schapire to answer the question of
whether the performance of a single strong learner is equal to the set of weak learner perfor-
mance [120]. Gradient boosting was proposed as an algorithm that provides more accurate
predictions for regression and classification problems by generating new base models, which
can be linear models, smooth models, and decision trees [121|. Gradient Boosting aims to
correct the previous models by adding new base models to minimize the loss function. When
the decision trees are used as new base models, a new decision tree is added after computing
the loss function. The new decision tree is generated by parametrizing it so that it can
decrease the loss of the existing model. Specifically, the gradient descent is used to minimize
the loss function value, and it is applied in functional space since each tree (base learner) can
be represented as a function. Gradient boosting algorithm fits the new base models to the
negative gradient of the loss function, where the choice of the loss function is user-dependent,

to increase the accuracy of the overall model [122].

2.3 Signal Decomposition Based Approach

This section describes two signal decomposition approaches, Wavelet Packet Transform
(WPT) and Ensemble Empirical Mode Decomposition (EEMD). These approaches are widely
adopted in literature for chatter detection. Recursive Feature Elimination (RFE) is also
explained and used to rank features. The approach which utilizes WPT can be divided into
four steps, which are summarized in Figure 2.6. The first step is the decomposition of the
time series into wavelet packets. This technique from signal processing is especially useful for
a high-resolution time-frequency analysis. The motivation for an additional decomposition
of the signal is the increase of the signal-to-noise ratio and increasing sensitivity for chatter
features [5]. The output of the WPT is wavelet packets. The second step is the selection of
the informative packets based on the properties of the wavelet packets and the characteristics

of chatter in the considered process. The third step is the feature extraction and its automatic
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Figure 2.6: Overview of the Wavelet Packet Transform (WPT) method with Recursive Fea-
ture Elimination (WPT).

ranking with the RFE method, which is used to distinguish between chatter and chatter-free
motion. On the basis of the extracted features, the fourth step is the classification into
chatter/chatter-free cases via a Support Vector Machine (SVM), Logistic Regression (LR),
Random Forest (RF) classification, and Gradient Boosting (GB).

The structure of the method that employs EEMD is similar to the WPT-based approach.
However, in contrast to the WPT method, the EEMD is used for the decomposition of the
original time series, and the output of the EEMD is intrinsic mode functions (IMF) instead
of wavelet packets. After the decomposition, the informative IMF is selected, and various
features for chatter detection are extracted. The features are automatically ranked via the
RFE method, and supervised machine learning algorithms are used to classify them into

chatter/chatter-free cases.
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2.3.1 Wavelet Packet Transform

The methodology in Reference [5| was followed in this section, and WPT is applied to
the time series before feature extraction and classification. The WPT is an extension of the
discrete wavelet transform. One level of the discrete wavelet transform decomposes the signal
into a low and a high-frequency component by passing it simultaneously through a low and a
high pass filter. The properties of the two filters are related to each other and are determined
by the chosen wavelet basis. According to [5], the Daubechies orthogonal wavelet db10 is
used as the wavelet basis function. The outputs of the low and the high pass filter give
the approximation coefficients and detailed coefficients denoted by A; and D;, respectively,
where the subscript i specifies the level of the decomposition. The resulting signal after the
decomposition is called a wavelet packet and can be reconstructed from the approximation
or detailed coefficients by using the filter properties [5]. In the discrete wavelet transform,
only the output A; is passed again through both filters to generate two additional outputs
AA; 1 and AD;, in the next level.

In contrast, in the WPT approach the output A; of the low pass filter as well as as
the output D; of the high pass filter are both again low- and high-pass filtered to generate
the wavelet packets AA; 1, AD;y1, DA;11 and DD,y in the next level. This means that
the WPT generates 2% wavelet packets at the kth level, see Figure 2.7 for a schematic of
level 3 WPT. In Figure 2.7, for example, DAA3 denotes the packet in the third level, where
in the first and the second level, the low pass filter and in the third level, the high pass
filter have been applied. Before passing through the filters in the next level, the signal is
downsampled by a factor of two, which increases the frequency resolution. Moreover, since
the two resulting wavelet packets contain only one-half of the frequencies of the input data
after each decomposition, this downsampling is possible without losing information. As a
consequence, the resulting wavelet packets in one level contain only a frequency band, which
is mainly distinct from the bands of the other packets. Even if the frequency bands become

narrower at each level, the packets contain rich information about the original signal due to
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the increase in the frequency resolution. The location of the frequency band is determined by
the chronological order of the applied filters, which are used to generate the wavelet packet
(cf. Figure 2.7). In the following, the wavelet packets are labeled according to the order of
their frequency band, beginning with 1 for the packet with the lowest frequencies (A. .. Ay)
resulting only from low pass filtering to 2* for the packet containing the highest frequencies

(D ... Dy) resulting from a successive application of the high pass filter.

0
k=1
k=2

k=3 ((AAAs ) ( DAA;) ( ADAs) ( DDAy) (AADs ) ( DADs) (ADDs; ) ( DDDjy)
| | | |

| | | | |
| I | | | | | | |

0 1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2
Frequency (f)

Figure 2.7: 3 Level Wavelet Packet Transform.

2.3.1.1 Selection of Informative Wavelet Packets

The next step is the selection of the informative wavelet packets, which are best suited
to distinguish between stable cutting and chattering motion. The criteria for selecting the
informative wavelet packets are high signal energy compared to other packets for a good
signal-to-noise ratio and significant overlap of the frequency band of the packet with possi-
ble chatter frequencies. In this section, the selection of the informative wavelet packets is
described for the turning experiment explained in Section A.1.

The identification of the band of chatter frequencies is made by examining the FFT of the
signals tagged as stable, intermediate chatter, and chatter (see Section A.1 and A.1.1 for the
description of the experimental setup and the labeling of turning experiments). Figure 2.8

shows example time series and the corresponding Fourier spectra for three tagged signals for
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the case whose stickout length, rotational rpm, and depth of cut are 5.08 cm (2 inch), 320
rpm, and 0.127 mm (0.005 inch), respectively. The dominant frequencies are low for stable
cutting and correspond to the spindle rotation frequency. In addition, there is a significant
peak at 120 Hz, which can be found in all measurements and probably comes from an
external source. For intermediate chatter and chatter, a significant part of the energy in the
signal is contained at high frequencies near 1000 Hz, which is close to the eigenfrequency
of the lateral tool vibration. As a consequence, these chatter frequencies become larger for
increasing stickout length, and for each of the four different stickout lengths, a different range

of chatter frequencies has been identified.
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Figure 2.8: Time domain and frequency domain of stable (a,b), intermediate (c,d), and
chatter (e,f) regions for overhang distance of 5.08 cm (2 inch), 320 rpm, 0.002 inch depth of
cut case of turning experiments.

In order to analyze the properties of the wavelet packets, levels 1, 2, 3, and 4 WPT are
obtained from the experimental data. Figure 2.9 shows the resulting level 4 energy ratios
of the wavelet packets for two example cases. The energy ratios represent the fraction of

energy in each packet relative to the total energy in all the packets. It is obvious from the
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Figure 2.9: Energy ratios of wavelet packets for two cases of turning experiment: (top) 5.08
cm (2 inch) stickout, 320 rpm and 0.0127 cm (0.005 inch) DOC, and (bottom) 5.08 cm (2
inch) stickout, 570 rpm and 0.00508 cm (0.002 inch) DOC. Note the differences in the scale
of the vertical axis.

figure that most of the energy is concentrated in the first wavelet for stable cutting. In
contrast, the energy is concentrated mainly in the first, third, and fourth wavelet packets
for the intermediate chatter and the chatter regions. This is consistent with the behavior of
the frequency spectrum of the original data in Figure 2.8 since increasing the number of the
wavelet packets corresponds to a higher frequency band.

Upon identifying the wavelet packets whose energy ratios are relatively high with respect
to the other packets, the third step is to identify the packets whose spectrum has significant
peaks that overlap with the chatter frequencies given in Table 2.1 [5]. Specifically, a time
domain signal for each wavelet packet is reconstructed, and the corresponding FFT is ob-
tained for each of the reconstructed signals. For the two examples with stickout length 5.08
cm (2 inch), the frequency spectrum of the reconstructed signals obtained from the first four

wavelet packets for the intermediate chatter and chatter regions are provided in Figure 2.10.
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Table 2.1: The chatter frequency ranges, the informative wavelet packets, and the informative
IMFs corresponding to each overhang distance of the cutting tool for the turning experiments.

Stickout length Chatter frequency range Informative wavelet Informative
(cm (inch)) (Hz) packets IMF
5.08 (2) 900-1000 Level 1 :1, Level 2: 1, Level 3: 2, Level 4: 3 2
6.35 (2.5) 1200-1300 Level 1 :1, Level 2: 1, Level 3: 3, Level 4: 4 2
8.89 (3.5) 1600-1700 Level 1 :1, Level 2: 2, Level 3: 3, Level 4: 6 1
11.43 (4.5) 2900-3000 Level 1 :2, Level 2: 3, Level 3: 5, Level 4: 10 1

It can be seen that the peaks in the spectrum of the 3rd and 4th wavelet packet overlap
with the band of the previously identified chatter frequency (900-1000 Hz, see Table 2.1
and Figure 2.8). Since, for the stickout length 5.08 cm (2 inch), the energy ratios and the
amplitudes in the corresponding FFT (see Figure 2.10) are slightly higher in the 3rd wavelet
packet than in the 4th wavelet packet, the 3rd packet was chosen as the informative wavelet
for chatter detection at level 4 WPT. An overview of the selected informative wavelet packet
for each level of the WPT can be found in Table 2.1. For higher stickout length, the dom-
inant chatter frequencies increase, and therefore, in general, a wavelet packet with a higher
frequency band is selected as the informative wavelet packet.

Current literature attempted to automate the selection of the informative packets by
selecting the packets with the highest energy. However, this study showed that the informa-
tive wavelet packet is not necessarily the one with the highest energy because it is important
that the range of possible chatter frequencies are in the frequency band of the informative
wavelet packet [9]. In fact, often, the first packet has the highest energy ratio. However, its
frequency band does not overlap with the chatter frequencies, which are mainly contained
in packets with a higher index (cf. Table 2.1).

Since the frequency band of the wavelet packets can be predicted from the WPT tree
in Figure 2.7, it is also possible to predict the informative wavelet packet that contains
information about chatter frequencies. For example, from the sampling rate of 10 kHz, it
follows that the first wavelet packet in level 3 corresponds to the frequency band 0-625 Hz.

The upper frequency limits for other packets in level 3 are equal to the corresponding wavelet
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Figure 2.10: The spectrum of the first four wavelet packets of level 4 WPT for intermediate
chatter (a),(c) and chatter (b),(d) in the case with 5.08 cm (2 inch) overhang distance. The
spindle speed and depth of cut is 320 rpm and 0.0127 cm (0.005 inch) in (a), (b) and 570
rpm and 0.00508 cm (0.002 inch) in (c), (d), respectively.

Table 2.2: Comparison between predicted and selected informative wavelet packet number
for all overhang distances cases of the turning experiment. Predicted wavelet packets are
decided with by overlapping the chatter frequency with the wavelet packet frequency range
obtained from the WPT tree (Figure 2.7) for level 4.

Overhang (Stickout) Distance

Chatter frequency range

Informative wavelet

Informative wavelet

(cm (inch)) (Hz) packets (Predicted)  packets (Selected)
5.08 (2) 900-1000 Level 4: 3-4 Level 4: 3
6.35 (2.5) 1200-1300 Level 4: 4-5 Level 4: 4
8.89 (3.5) 1600-1700 Level 4: 6 Level 4: 6
11.43 (4.5) 2900-3000 Level 4: 10 Level 4: 10

packet number times the upper frequency level of the first wavelet packet (cf. Figure 2.7).

Table 2.2 provides the predicted and the selected informative wavelet packets for the level

4 WPT. The selected informative wavelet packets are consistent with the predicted ones for

all cases.
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2.3.1.2 Recursive Feature Elimination (RFE)

The reconstructed signal from the informative wavelet packet allows the extraction of
both frequency domain as well as time domain features for chatter identification. A collection
of frequency domain and time domain features, which are taken from Reference [5], are
provided in Table 2.3.

Python is used to train a supervised classification algorithm combined with Recursive
Feature Elimination (RFE), where in this case maximum of 14 features are available at the
level 4 WPT. Recursive feature elimination is an iterative process that eliminates one of
the features in each iteration until all the features are removed for classification [5], which
means that the number of iterations for RFE equals the number of the considered features.
Elimination of features is based on their influence on the classification: the feature with
the smallest effect is eliminated in each iteration [123]|. In the end, RFE returns a feature
ranking list corresponding to one specific training set.

The ranked features are used to generate feature vectors where the first vector contains
only the first ranked feature, while each consecutive feature vector adds the subsequent
feature in the ranking until all the features are included in the 14th vector at the fourth
level of WPT. The classification accuracy is calculated for all 14 feature vectors. In other
words, in the first step, only the top-ranked feature is used, and in each further step, the
next highest-ranked feature is added to the feature matrix, and the classification accuracy

is computed again.

2.3.2 Ensemble Empirical Mode Decomposition

EEMD is based on the Empirical Mode Decomposition (EMD), which is an elementary
step in the Hilbert-Huang transform [124]. Similar to WPT, EMD is useful for non-stationary
signals since the resulting IMFs contain the time and frequency information of the signal.
The main difference in contrast to WPT and other linear decomposition methods is that the

expansion bases of EMD are not fixed but are rather adaptive, and they are determined by
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Table 2.3: Time domain features (ai, ..., a;) and frequency domain features (a1, 14).
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the data. On the one hand, this means that EMD is a nonlinear decomposition and, on the
other hand, it is suitable for analyzing nonlinear and non-stationary data [124].

The algorithm for the decomposition of a given time series s(t) can be described as
follows. The first residue ro(t) is equivalent to the original data, i.e. ro(t) = s(¢). Then the
IMFs ¢;(t) with @ > 1 are generated from the residues r;_1(t) by repeated application of the

so-called sifting process described below. After extracting the ith IMF ¢;(), the next residue
is calculated by

ri(t) = ri1(t) — ¢i(t). (2.6)
This procedure is repeated until the result of Equation (2.6), that is, the ith residue r;(t),

becomes a monotonic function, and no more IMFs can be extracted. As a result, the decom-

position of the original data can be given by

s(t) =Y eilt) +rw, (2.7)

i=1



The sifting process for the generation of the ¢th IMF ¢; from the residue r;_; is done
via the following iterative scheme. Lower and upper envelopes of the data are generated by
using cubic splines for interpolation between the local minima and maxima of the residue,
respectively. The mean m(t) of the lower and upper envelope is calculated. The first guess
for the IMF is obtained by the difference between the residue r;_; and m(t). Then the first
guess for the IMF is treated as the new data, and the sifting process is repeated until a
given stoppage criterion is fulfilled. As a consequence of the iteration, the lower and the
upper envelopes of the final IMF ¢;(t) are nearly symmetric, and the mean of the latter is
approximately zero. Moreover, the number of extrema and the number of zero crossings are
equal or differ at most by one. IMFs with lower indices correspond to high-frequency bands,
while the ones with higher indices correspond to lower frequency bands. These properties of
the decomposition make it useful for further data analysis.

However, one major problem with the original EMD is the occurrence of mode mixing,
which means that one IMF contains two signals whose frequency bands are totally different,
or a signal of a similar scale is observed inside different IMFs whose frequency bands are
different [125]. EEMD was developed to solve the mode mixing problem in EMD [126].

Accordingly, Wu and Huang [125] proposed the following steps for EEMD:
1. Create an ensemble from the original data by adding white noise.
2. Decompose each member of the ensemble into IMFs.
3. Compute the ensemble means of the corresponding IMFs.

The added white noise amplitude must not exceed 20% of the standard deviation of the
original signal, while the ensemble size for the EEMD can be selected as 200 [45]. The Python
package PyEMD with the default stoppage criterion is used for the analysis [127, 128]. The

ensemble number and the noise width parameter are set to 200 and 0.2 (20%), respectively.

30


https://github.com/wmayner/pyemd

Original Time Series

0.025
0.000
—0.025

15.10 15.12 15.14 15.16 15.18 15.20

Amplitude (m/ )

Time (s)
: 0.025 2 0.0025
S 0000 o S 0.0000
T o002 T 00025
0.025
o L 00005
S 0000 S 00000
—_ —_
T 05 = —0.0005
o 00025 o 00005
2 0.0000 2 0.0000
= —0.0025 = —0.0005
< 00025 ©
= = 0.0055
S 0.0000 ,WWM/\/\/WM\/\/\N\[ s
—_ —_
v , , , , , —1 Y 0.0050 . . . . .
15.10 15.12 15.14 15.16 15.18 15.20 15.10 15.12 15.14 15.16 1518 15.20
Time (s) Time (s)

Figure 2.11: The original time series and the corresponding intrinsic mode functions (IMFs)
for the case of 5.08 cm (2 inch) stickout, 320 rpm, and 0.0127 cm (0.005 inch) DOC.

2.3.2.1 Selection of Informative Intrinsic Mode Function

In this section, the informative IMF selection is described using the experimental signals
from turning experiments explained in Section A.1. In order to obtain features for machine
learning from vibration signals using EEMD, the vibration signals are decomposed into IMfs,
see Figure 2.11 for an example. For long time series, the computation time is reduced for
this step by dividing the signal into shorter segments whose length is approximately 1000
points. The informative IMF selection process is very similar to its WPT counterparts (see
Section 2.3.1.1). Specifically, the power spectrum in Figure 2.12 shows that the first IMF
includes the high frequency vibrations while higher order IMFs include the low frequency
ones. For example, for the 5.08 cm (2 inch) stickout case, the FFT of the second IMF
matches the chatter frequency region (900-1000 Hz). Therefore, the second IMF is selected
as the informative IMF in this case. The informative IMFs for the other stickout cases are

summarized in Table 2.1.
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Figure 2.12: The spectrum of each intrinsic mode function (IMF) for the case of 5.08 cm (2
inch) stickout, 320 rpm and 0.0127 cm (0.005 inch) DOC.

2.3.2.2 Feature Extraction Using EEMD

Similar to Chen et al. [45], seven time domain features are extracted from the informative
IMF. These features are listed in Table 2.4, and they include the energy ratio, peak to peak
value, standard deviation, root mean square, crest factor, as well as skewness, and kurtosis
of the signals. The features are computed and then ranked using the Recursive Feature
Elimination (RFE) method, which was introduced in Reference [129] and is described in
Section 2.3.1.2. The feature matrix for classification is formed starting with the top-ranked
feature by itself and then by concatenating, in descending order, the rest of the features one
at a time. This results in seven combinations of features, which are then used for classification
into chatter and chatter-free cases via four different classifiers similar to the WPT approach

(see Section 2.2).

2.3.3 Results

This section shows the classification accuracy for the methods discussed in Section 2.3.1

and 2.3.2 for turning cutting experiments explained in Section A.l. Specifically, Sections
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Table 2.4: Time domain features for the intrinsic mode functions ¢;(tx). The parameters t;
and ¢; represent, respectively, the kth discrete time and the mean of ith IMF.

Feature Equation
> i (t)
Energy ratio fi= Ikzln—
22 2 i (te)
i=1k=1
Peak to Peak fo = maz(c;(ty)) — min(c;(ty))
Standard Deviation fs =o(ci(te))

Root Means Square (RMS) fi= /2 > c2(ty)

Crest Factor fs = max(fci(tk))

i (citr)—ci(tr))?

Skewness fe =

Kurtosis fr == -

2.3.3.1 and 2.3.3.2 show the WPT-based and the EEMD-based results, respectively. The
results are obtained by randomly splitting the data from each stickout case into 67% train-
ing and 33% testing sets. As described in Sections 2.3.1 and 2.3.2, the features from the
informative wavelet packet or informative IMF are extracted, and four different classifica-
tion algorithms are used for training. Then, each classifier is tested using the corresponding
test set. This split-train-test process is repeated 10 times, and the averages and standard

deviations of the resulting classification accuracy are tabulated.

2.3.3.1 Wavelet Packet Transform with RFE

In each realization of training data and test data, the feature ranking via RFE is repeated
as described in Section 2.3.1.2. Since the training and test sets are different in each real-
ization, ten different rankings of the features are obtained. Figure 2.13 shows the ranking

for the 10 iterations where each bar corresponds to a feature whose equation is provided in
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Table 4.1. The height of the bar in the figure shows the number of times each feature is
ranked for the corresponding rank number. For instance, feature ay4 (standard frequency)
is the feature with the most influence on the classification in all realizations. On the other
hand, features a1, a2 and ay3 are ranked second, respectively, in three, four, and three out
of ten split-train-test realizations. In general, the features based on the frequency domain

are higher ranked than the time domain features.
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Figure 2.13: Bar plot for feature ranking for 5.08 cm (2 inch) stickout case at level 4 WPT.

The mean and the standard deviation of the accuracy of the classification for the 10
realizations of training and test sets based on the level 4 WPT method are presented in
Figure 2.14 for all stickout cases. In this figure, it is seen that when the number of the
features is 8 or 10, adding lower ranked features into the feature vector does not affect the
result. This shows that RFE ranked the features properly and that lower ranked features do
not have an influence on the results.

One difference between the WPT-based approach that is described here and the one
described in [5] is that the accuracy of the classifier is investigated using informative wavelet
functions computed at each level of the WPT. On average, the level 1 and level 2 WPT leads

to better classification results in the test sets than the level 3 and level 4 WPT. This might be
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Figure 2.14: Level 4 Wavelet Packet Transform(WPT) feature extraction method results for
all stickout cases. (a) 5.08 cm (2 inch), (b) 6.35 cm (2.5 inch), (c) 8.89 c¢m (3.5 inch), and
(d) 11.43 cm (4.5 inch).

attributed to the fact that the lower level WPT contain information in a broader frequency
range than the higher level WPT, and for chatter detection, only the detection of chatter
frequencies in the spectrum is relevant but not their frequency value or the exact shape of
the peaks. The full classification results for each level of the WPT up to level 4 are tabulated
in Tables B.1-B.4 of the Appendix. Since the feature ranking is different for each realization
of the splitting into training and test data, the ith ranked feature is only denoted by r;.
Below in Table 2.5, the WPT results are reported with the highest average accuracy out of
all the different combinations of WPT levels and feature vectors, and they are compared to
the results of the EEMD method. The performance of both methods, WPT and EEMD, are
also tested with the classifiers explained in Section 2.2. Tables 2.6 2.7 provide the accuracies
obtained from Level 1 and Level 2 WPT and EEMD feature extraction methods with four

different classifiers and compare the methods to each other.
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Table 2.5: Comparison of the classification results obtained with SVM classifier and run
times for each chatter detection method. Given run times include feature computation and

classification for EEMD and level 4 WPT.

Classification Results Time Comparison (seconds)
Stickout Length WPT Level WPT EEMD WPT EEMD
5.08 cm (2 inch) 1 84.2% + 0.8% 14540.06
6.35 cm (2.5 inch) 2 78.6% £ 1.2% 3371.58
8.89 cm (3.5 inch) 1 84.0% + 15.0% 1583.38
11.43 cm (4.5 inch) 2 79.1% £ 1.2% 3096.07

Table 2.6: Results obtained by using Level 1 WPT and EEMD feature extraction methods
with four different classifiers.

WPT EEMD
Stickout VM Logistic =~ Random Gradient Logistic =~ Random Gradient
Length Regression  Forest  Boosting Regression  Forest  Boosting

.08 em oo g0 g4 6% 93.1%  90.0%  842%  93.5% 94.8%
(2 inch)

0.35em Feego  71.7% 78.6%  79.4% 80.1%  82.2%
(2.5 inch)
88Iem ol 0% 94.0% 90.7%  89.0% 93.5%  94.5%
(3.5 inch)
A3 em o0 gor g1 39 86.3% 791%  78.7% 81.6%  81.4%
(4.5 inch)

2.3.3.2 Ensemble Empirical Mode Decomposition with RFE

Similar to Section 2.3.3.1, EEMD is combined with RFE and utilizes four different clas-
sifiers in each realization of the splitting into test and train data sets. The classification
accuracy is on average better than the results from the level 3 and level 4 WPT and com-
parable to the accuracy of the lower level WPT. The combination with the best accuracies
in each cutting case is reported when comparing the different methods in Table 2.5. In this
table, the results highlighted with dark blue represent the highest accuracy across a given
row, while those highlighted in light blue have an average accuracy which is encapsulated by
the error bars of the method with the highest average accuracy.

Table 2.5 shows that features based on the WPT algorithm give the highest accuracy for
three stickout cases out of four cutting configurations. Specifically, feature extraction with

WPT and RFE is the most accurate for the 5.08 and 6.35 cm (2 2.5 and 4.5) stickout cases
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Table 2.7: Results obtained by using Level 2 WPT and EEMD feature extraction methods
with four different classifiers.

WPT EEMD
Stickout VM Logistic = Random Gradient M Logistic = Random Gradient
Length Regression  Forest  Boosting Regression  Forest  Boosting

.08 em o) w877y 93.8%  90.0%  84.2%  93.5%
(2 inch)

(gg‘r’lgﬁ)- 80.0%  95.0%  96.7% T86%  794%  80.1%  82.2%

8.89 cm
(3.5 inch)
11.43 cm
(4.5 inch)

78.0% 58.0% 78.0%  90.7% 89.0%
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Figure 2.15: Bar plot including the error bars of the classification results for Level 1 WPT,
Level 2 WPT and EEMD with four different classifier. a) 5.08 cm (2 inch) stickout size,

b)6.35 cm (2.5 inch) stickout size, ¢)8.89 cm (3.5 inch) stickout size, d) 11.43 cm (4.5 inch)
stickout size.
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scoring 93.9%, 100.0% and 87.5% respectively. While the results from EEMD give the highest
accuracies for 8.89 cm (3.5 inch) stickout cases, the WPT result for this case still lies within
the error bars of EEMD results. The results with different classifiers other than SVM are
also provided in Tables 2.6 and 2.7. In Table 2.6, the performance of Level 1 WPT is better
than EEMD since WPT has the highest accuracies in three cutting configuration cases and
EEMD results are in the error bars of WPT results. On the other hand, Table 2.7 indicates
that both methods have the highest accuracy for two cutting configurations. These two
tables also provide evidence that lower level (Level 1) WPT outperforms EEMD. Further,
100% accuracy is observed in Tables 2.6 and 2.7 for two different cutting configurations.
These cutting configurations have the lowest number of time series as experimental data.
Since time series are not split into smaller pieces for the WPT method, so the size of the
test set is quite small, and it is possible to get such high results.

The standard deviation of the WPT results is quite high, as seen from Table 2.5 and
Figure 2.15 since the computation time for this method does not require splitting a long
time series into smaller pieces. Therefore, the total number of samples for identical stickout
cases is smaller in comparison to the EEMD method, where long time series were split
into shorter ones of approximately 1000 points, thus increasing the number of samples and
resulting in tighter error bars. Therefore, the amount of deviation can be reduced, especially
for the WPT-based approach, by increasing the size and the number of the training sets. In
addition, Table 2.5 compares the run time in seconds for each of the different featurization
methods for chatter detection. These comparisons were performed using a Dell Optiplex
7050 desktop with Intel Core i7-7700 CPU and 16.0 GB RAM. It can be seen that feature
extraction with WPT and RFE is the fastest across all of the stickout cases. This study
points out that the built-in WPT package that is used is highly optimized, whereas, in
comparison, the EEMD does not enjoy the same level of code optimization. Moreover, for
EEMD, the EMD is performed for an ensemble of time series with an ensemble size 200,

which needs much higher computation effort and can be reduced by varying the ensemble
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parameters of the EEMD.

2.4 Traditional Time and Frequency Domain Features

2.4.1 Feature Extraction

This section describes feature extraction using three traditional signal processing ap-
proaches. These approaches are Fast Fourier Transform (FFT), Power Spectral Density
(PSD), and Autocorrelation Function(ACF). Features for FF'T, PSD, and ACF are obtained
by using their peaks’ coordinates. The x and y components of the first five peaks in each of
these three functions are used as features. Although there are some built-in commands for
peak finding in the most common scientific software tools, reliable peak selection remains
a challenging task. This is due to the large number of returned ‘bumps’ that correspond
to local maxima that are artifacts of noise and are not true features of the signal. There-
fore, some constraints are imposed to sift out the redundant peaks and capture the most
useful ones. The FFT, PSD, and ACF peaks are selected by defining the minimum peak
height (MPH) and the minimum distance between two consecutive peaks. The minimum
peak distance (MPD) was kept constant for all sequences, while the minimum peak height
was computed as a fraction of the difference between the 5th and the 95th percentile of the

peaks according to
MPH = ymin + &(Ymax — Ymin), Where o € [0, 1], (2.8)

and Y i, is the 5th percentile of the amplitude of the FFT/PSD/ACF, while y .y is the
95th percentile. Figure 2.16 provides the original cutting signals along with its spectrum
including the first five peaks. In Figure 2.16, two sets of the first five peaks are provided, and
the peaks shown in the figure are selected with respect to the minimum peak distance (MPD)
parameter. The figure shows that M PD = 500 chooses more points near the maximum
amplitude in comparison to M PD = 2500. However, some of the spectra of the cutting

signals do not contain five peaks if M PD = 2500 is used. Therefore, the MPD parameter
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Figure 2.16: First five peaks in the Fast Fourier Transform (FFT) plot of the time series of
acceleration signal collected from cutting configuration with 5.08 (2 in) cm overhang length,
320 rpm rotational speed of the spindle, and 0.0127 cm (0.005 inc) depth of cut. (Minimum
Peak Distance (MPD): 500 and 2500).

for FFT is set to 500 to consistently extract five peaks from the FF'T of all signals, but
MPD = 1000 is used with the auto-correlation function. Because the power spectral density
plots were smooth, the MPD parameter is not used as a constraint for them.

The feature matrices were given as input to four different supervised machine learn-
ing techniques: Support Vector Machine (SVM), Logistic Regression (LR), Random Forest
Classification (RF), and Gradient Boosting (GB). Vibration signals for each overhang size
were split into %67 training set and %33 test set. Recursive Feature Elimination (RFE)
was then used to rank the features. Splitting the data and performing classification were
performed ten times. The resulting mean accuracies and standard deviations are provided

in Section 2.4.2.
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2.4.2 Results
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Figure 2.17: Comparison of classification results of Level 4 WPT, EEMD, and FFT/PS-
D/ACF methods based on four classifiers with Recursive Feature Elimination (RFE). a)
5.08 cm (2 inch) overhang length b) 6.35 cm (2.5 inch) overhang length c) 8.89 cm (3.5 inch)
overhang length d) 11.43 ecm (4.5 inch) overhang length.

Table 2.8: Results obtained with the signal processing feature extraction method for four
overhang lengths with four different classifiers.

Without RFE

With RFE

5.08 cm (2 inch)

6.35 cm (2.5 inch)

5.08 cm (2 inch) 6.35 cm (2.5 inch)

Classifier Test Set Training Set Test Set Training Set Test Set Training Set Test Set Training Set
SVM 46.2% £6.0% 100.0% +0.0% 38.3% +13.0% 100.0% +0.0% 61.5% £9.7%  69.6% £8.3% T71.7% = 10.7% 86.0% £ 6.6%
LR 78.5% +12.8% 100.0% £ 0.0% 76.7% +8.2% 100.0% £ 0.0% 83.8% +8.0% 82.3% £58% 81.7% +13.8% 89.0% +8.3%
RF 100.0% + 0.0% 100.0% £+ 0.0%  94.6% £4.9%  98.5% £+ 1.9% 100.0% =+ 0.0%
GB 84.6% £ 6.9% 100.0% £ 0.0% 76.7% £+ 17.0% 100.0% =+ 0.0% [JOCRVIEEBOV 100.0% +0.0%  93.3% +8.2%  100.0% + 0.0%
Without RFE With RFE
8.89 cm (3.5 inch) 11.43 c¢m (4.5 inch) 8.89 cm (3.5 inch) 11.43 c¢m (4.5 inch)
SVM 62.0% +24.4% 100.0% £ 0.0% 43.8% +17.0% 100.0% £ 0.0% 82.0% +10.8% 95.6% £5.4% 61.3% £13.1% 68.6% +9.1%
LR 76.0% +12.0% 100.0% £ 0.0% 76.3% + 10.4% 100.0% £+ 0.0% 78.0% £+ 14.0% 88.9% £8.6% 70.0% +£16.0% 82.9% + 6.5%
RF 100.0% + 0.0% 100.0% =+ 0.0% 100.0% =+ 0.0% 99.3% + 2.1%
GB 86% £23.7%  100.0% £ 0.0% 83.8% £11.3% 100.0% £0.0% 86.0% £9.2% 100.0% £ 0.0% 88.8% £11.8% 100.0% % 0.0%

This section provides the results obtained for turning cutting experiments explained in

Section A.1 and compares traditional feature extraction results to WPT and EEMD ap-

proaches. Four different classifiers explained in Section 2.2 were utilized to compare tra-

ditional signal processing based feature extraction methods to the WPT/EEMD results
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Table 2.9: Cross validated results obtained with signal processing feature extraction method
for four overhang lengths with four different classifiers.

Without RFE With RFE
5.08 cm (2 inch) 6.35 cm (2.5 inch) 5.08 cm (2 inch) 6.35 cm (2.5 inch)
Classifier Test Set Training Set Test Set Training Set Test Set Training Set Test Set Training Set
SVM T4.2% £ 47% 948% £4.7% 583% x£31% 98.5% £3.1% 90.0%£1.9% 89.8% £1.9% T73.3% £6.5% 75.2% £6.5%
LR 74.2% £0.0% 100.0% +0.0% 71.7% +£0.0% 100.0+0.0% 79.2% +1.3% 89.5% +1.3%  73.3% +£6.7%  82.5% £6.7%
RF 89.2% £ 0.0% 100.0% =+ 0.0% 100.0% £ 0.0% 91.7% £ 1.3% 95.2% £ 1.3%  93.3% £+ 0.0% 100.0% =+ 0.0%
GB 100.0% =+ 0.0% 100.0% =+ 0.0% 100.0% =+ 0.0% 100.0% =+ 0.0%
Without RFE With RFE
8.89 cm (3.5 inch) 11.43 cm (4.5 inch) 8.89 cm (3.5 inch) 11.43 cm (4.5 inch)
SVM 86.7% £ 0.0% 100.0% £ 0.0% 41.7% +7.0% 83.4% +7.0% 80.0%=+58% 91.1%+£58% 83.3%+£23% 81.8% +2.3%
LR 100.0% £0.0% 46.7% £6.6% 94.0% £ 6.6% 86.7% £3.6% 92.9% £3.6% 78.3% +£3.2%  78.3% +3.2%
RF 100.0% = 0.0% |IOINTZ0EE00% 100.0% =+ 0.0% [OSBYEE00%N 100.0% + 0.0% |HOCNOEERBYN 95.5% + 1.5%
GB 73.3% £0.0% 100.0% +0.0% 85.0% +0.0% 100.0% £ 0.0% 80.0% £ 0.0% 100.0% £ 0.0% 91.7% £+ 0.0%  100.0% =+ 0.0%

obtained from Reference [9]. The results obtained using these classifiers for each cutting
configuration are provided in Table 2.8. The table shows that classifiers trained with the
traditional signal processing features have an overfitting problem (significantly higher ac-
curacy rates when training versus testing) when RFE is not utilized. Recursive feature
elimination was used to solve this problem (see Section 2.3.1.2). Table 2.8 only reports the
best results obtained from the classifiers for each overhang length. These results are also
compared to the ones obtained with WPT and EEMD in Figure 2.17. It is seen that the
FFT/PSD/ACF method has higher accuracies in Figure 2.17.

The feature extraction is explained in Section 2.4.1. Classification for this method has
been performed in the same way it is performed for WPT/EEMD. The left hand side of
Table 2.8 shows the classification results without using feature ranking. Note how the test
accuracy is significantly lower than the training accuracy. This is a typical symptom of over-
fitting, i.e., using too many (unnecessary) features for training. In contrast, the right hand
side of the same table shows that using feature ranking mitigated the overfitting problem. In
addition, if the results in Table 2.8 are compared, it is seen that the FFT/PSD/ACF based
feature extraction methods have better accuracies than WPT and EEMD. Another approach
to combat overfitting is to utilize Cross Validation (CV). Table 2.9 provides the results ob-
tained with CV where 10-fold CV was used for the 5.08 cm (2 inch) and 11.43 cm (2.5 inch)

cases, while 5-fold CV was used for the remaining cutting configurations. The results show
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that while CV somewhat mitigates the overfitting problem, it does not completely solve
it. For example, there is overfitting for the classification accuracy of SVM for the results
obtained without using RFE in Table 2.8. Although CV decreased the difference between
mean accuracies of test set and training set, there is still at least 20% accuracy difference
between training and test sets for overhand lengths 5.08, 6.35, and 11.43 cm (2, 2.5, and 4.5
inch). In addition, a decrease in the standard deviation of the results is observed in Table 2.9
in comparison to the ones in Table 2.8. Figure 2.17 provides bar plots for the classification
accuracy for each cutting configuration along with the associating error bars. Figure 2.18
shows how many times each feature was ranked for the traditional signal processing based
methods. This indicates where the most highly ranked features come from. The figure shows
that the most highly ranked features correspond to the FFT peaks, followed by PSD, then

ACF features.
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Figure 2.18: Bar plot for feature ranking obtained from SVM-RFE for 5.08 c¢cm (2 inch)
overhang case with FFT/PSD/ACF based method. (fi,..., f1), (f5,..., fs) and (fo, ..., fi2)
belong to features obtained from peaks of FFT, PSD and ACF respectively.

43



2.5 Similarity Measures of Time Series

2.5.1 Dynamic Time Warping (DTW)

Dynamic Time Warping is an algorithm that is capable of measuring distance or similarity
between two time series even if they have dissimilar lengths. Let 7'S; and T'S; be two time

series with elements x; and y; whose lengths are m and n as follows:

TS, =o1,%9,...,%4 ..., Tpy, (2.9)

TSQZyZay27"'7yj7"'7yn' (210)

Berndt and Clifford state that the warping path wy = (%), yj)) between two time series
can be represented by mapping the corresponding elements of the time series on m x n
matrix (see Figure 2.19 for warping path example) [130]. The warping path is composed
of the points wy, which indicate alignment between the elements ;) and y;q) of the time
series. The length L of the warping path fulfills the constraints m < L < n, where it is
assumed that n > m. For instance, ws in Figure 2.19b corresponds to the alignment of
ro and y3. In general, warping paths are not unique, and several warping paths can be
generated for the same two time series. For two different time series, the DTW algorithm
chooses the warping path that gives the minimum distance between the element pairs under
certain constraints. While there are several options for computing the distance between a
pair (x;,y;) of elements of the time series, in this implementation, the Manhattan distance
d(x;,y;) = ||z; — y;||; is used. The minimization of the distance between 7'S; and T'S; in

the DTW algorithm can then be written according to ([130]) such that

Drw(TSy,TSs) = min (Z d(wk)> . (2.11)

There are several restrictions to define the optimum warping path. These are monotonic-
ity, continuity, adjustment window condition, slope constraint, and boundary conditions.

These restrictions are applied to the alignment window to reduce the possible number of
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Figure 2.19: DTW alignment (a) and warping path(b) for two different time series.

Qo

Y

warping paths since there is an excessive number of possibilities for warping paths without

any constraint ([131]).

e Monotonicity : The indices ¢ and j should always either increase or stay the same such

that i(k) > i(k — 1) and j(k) > j(k —1).

e Continuity: The indices i and j can only increase at most by one such that i(k) —i(k —

1) <1and j(k) —j(k—1) < 1.

e Boundary condition: The warping paths should start where 2 and j are equal to 1 and

should end where : = n and j = m.

e Adjustment window condition: The warping path with minimum distance is searched
on a restricted area on the alignment window to avoid significant timing difference

between the two paths ([131]). The restricted area is given by i —r < j < i+ 7.

e Slope constraint: This condition avoids significant movement in one direction ([130]).
After a steps in horizontal or vertical direction, it cannot move in the same direction
without having b steps in the diagonal direction ([131]). The effective intensity of the
slope constraint can be defined as P = b/a. P is chosen as 1, which was reported as

an optimum value in an experiment on speech recognition ([131]).

In this work, the distances between the time series are computed using the cDTW pack-

age. There is another widely adopted algorithm named FastDTW [132]. The time complexity
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of FastDTW algorithm is given as N(8r 4 14), while cDTW package has time complexity
of rN [132, 133]. N is the number of points in the time series, and r is a parameter for the

adjustment window condition explained above. Both packages have similar time complexity,

which is O(N).

2.5.2 K-Nearest Neighbor (KNN)

In this approach, K-Nearest Neighbor (KNN) algorithm is used to train a classifier. KNN
is a supervised machine learning algorithm based on classifying objects with respect to labels
of nearest neighbors ([134]). The ‘K’ corresponds to the number of neighbors chosen to decide
the label of newly introduced samples. Figure 2.20 shows an example that illustrates the

classification process with KNN.

o
A | Designated
Class 1 * K-NN Class
® Class 2 ° - LNN
B New sample Y R
. RS .
k=5

Figure 2.20: K-Nearest Neighbor classification example for two-class classification.

Specifically, Figure 2.20 assumes that there are two different classes for a classification
problem denoted by pentagons and stars. Pentagons and stars belong to the training set,
and the red square belongs to a new sample from the test set. When a new sample is
encountered (the square in the figure), a tag is assigned based on the number of K nearest
neighbors to each class. For instance, for the 1-NN case, the closest neighbor is from the star
class; therefore, the test sample is tagged as a star class. On the other hand, for the 5-NN
case, the test sample has two neighbors from the star class and three neighbors from the

pentagon class. Consequently, the label for the test sample is set as pentagon since there are
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more neighbors from this class than there are from the star class. If the number of nearest
neighbors is the same for multiple classes, the class label is assigned randomly with equal

probability ([135]).

2.5.3 Similarity matrices and classification

DTW provides a measure of how different /similar any pair of time series 7'S; and TSy
is. By comparing N time series T'Sy,...,T'Sy with each other, similarity matrices whose
entries are the distance between the two corresponding time series can be generated. Since
DTW is commutative, the resulting matrices are symmetric. Consequently, the resulting
similarity matrix for DTW requires N(N — 1)/2 computations. The similarity matrices can
then be combined with a K-Nearest Neighbor classifier to inform us whether the time series
corresponds to chatter or chatter-free cutting. When chatter occurs in metal cutting, the
dominant frequencies of the vibrations at the tool and workpiece change from harmonics of
the spindle rotation period to chatter frequencies, which are close to some eigenfrequecies of
the mechanical structure. Moreover, the amplitude of the vibrations increases significantly.
This characteristic behavior can be used to distinguish between stable cutting and chatter
by comparing current time-domain signals (e.g. acceleration) with existing labeled signal
segments from a training phase. During classification, the data set is split into training
and test sets. Indices of the training set and test set samples are found, and then the
distance matrix for the training set and test set is generated by using the square distance
matrix that was computed in advance for all the cases. After obtaining these distances, the
nearest training set samples to the test sample are found based on the selected number of
nearest neighbors. Labels of each nearest neighbor are counted as shown in the illustration
in Figure 2.20. The label with the highest count is assigned to the test sample as the
predicted label. In this application, either chatter or chatter-free labels are assigned to the
test sample. After repeating these processes for each of the test samples, the predicted labels

are compared with the ground truth and define the accuracy of the D'TW method. Splitting
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data into training and test sets is repeated 10 times. The distances between new test sets and
training sets do not have to be computed since the pairwise distances between all samples
are already computed in the beginning. Finding the indices of the samples in each iteration
will be enough to generate new similarity matrices for training and test sets. The standard
deviation of the classification is also provided since the classification is repeated 10 times.
When a new test sample is introduced to a classifier, distance computations between all
training samples and the test sample is required, which can be computationally expensive.
Therefore, the Approximate and Eliminate Search Algorithm (AESA) (see Section 2.5.4) is

implemented to reduce the number of DTW computations per new test sample.

2.5.4 Approximate and Eliminate Search Algorithm (AESA)

Approximate and Eliminate Search Algorithm (AESA) is a method designed for reducing
the number of distance computations during the test phase of classification. Derivation of
the AESA starts with the question of whether DTW is a metric or not. There are four

requirements for a function to be a metric [136]:

1. D(x,y) > 0,
2. D(x,y)=0 <= x=y,
3. D(x,y) = D(yx),

4. D(x,2z) < D(x,y)+D(y,z).

Although DTW always satisfies the first two properties, the commutativity condition is only
satisfied when the DTW algorithm does not approximate the distance measure. Therefore,
if the exact DTW is computed, then the first three conditions will be satisfied. However, the
fourth condition may not be satisfied, and a combination of three time series that violate

the triangular inequality can be found in a data set. Consequently, DTW is not accepted
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as a metric. Depending on the data set, the fourth condition may or may not be satis-
fied; therefore, DTW can still be used by relaxing the strict triangular inequality condition.

Specifically, Ruiz et al. introduced the triangle inequality looseness in [105] as follows
H(x,y,z):D(x,y)—i-D(y,z)—D(x,z), (212>

where x,y and z represents the time series in a data set. Loose triangular inequality is also
defined as
D(z,y) + D(y,2) > D(x,2) + H. (2.13)

Algorithm 2.1: AESA

Input: P(set of training samples), Dy, (pairwise distance matrix between training set
samples), ¢ € P(pseudocenter of P), x € P(test sample), H € R(looseness constant),
Drw (¢cDTW function)

Output: Nearest sample (n) and assigned label count=0
while E## P do

if count=0 then
s=c¢
U = {c}
n=-c
E = {c} U{q | Drw(q,¢)>2Drw (z,c)-H or Dyw(q,c)< H, where q€ {P-{c}}}
else
s = ¢, such that min( >  |Drw(q,u) — Drw(z,u)|), where ¢ € {P — E}
YueU
Drw(z,8) = cDTW(z,3)
U=UU{s}
E=EU{s}
if DTw(QZ',S)< DTw(.’E,H) then
Q=U
n—=s
else
Q={s}
end if
for every q € Q do
E = E U {p| Drw(p,q)> Drw(z,q)+Drw(xn)-H or Drw(p,q)< Drw(x,q)-
Drw(xn)+H, where p € {P-E}}
end for
count=count+1
end if
end while
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Ruiz et al. call DTW distance a loose metric space when a data set does not violate
the triangular inequality [105]. All training samples are considered as potential candidates
for the nearest sample to a new test set. The main purpose of the algorithm is to eliminate
these training samples and approximate the nearest one correctly. In addition, the algorithm
performs the classification part and assigns the label of the nearest training sample to the
test sample. In other words, it applies 1-NN classification, where the classification step can
be part of the AESA algorithm. Results based on 1-NN classification will be presented in

this implementation.
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Figure 2.21: Illustration of elimination and approximation steps of AESA. Count refers to
the number of distance computations made in the algorithm.

The pseudo code for the algorithm is given in Algorithm 2.1 ([105]). Illustrations of

20



some steps are provided in Figure 2.21. Assume that training set is denoted as P and its
samples p; are shown in Figure 2.21a. A new test sample x is introduced to the classifier
(see Figure 2.21b). The aim of AESA is to classify x as accurately as possible with fewer
DTW distance computations. The first step of the algorithm is to select a first candidate
for the nearest training sample s to z. Reference [105] points out that using pseudo center
c of P as the first candidate improves the results; alternatively, s can be randomly selected.

The definition of the pseudo center is

PO(P) = {el Y- Drwle,p) = min( 3" Daw (a,1)} (2.14)

After this choice of s in Figure 2.21c, the distance between s and x is computed. That
distance is shown in Figure 2.21d) with ry, and the count number increases by one. The
nearest sample n to x is defined by comparing the distances made inside of the algorithm.
Since only one distance computation is performed so far, s is assigned as the nearest sample
n. The approximation step is completed in the first iteration, now the elimination should be
performed. Reference [105] defined the elimination criteria such that the training set samples

p; which do not satisfy Drw (z,p;) < Drw(z,n) are eliminated. Applying Equation (2.13)

Figure 2.22: Illustration for elimination criteria.

yields two elimination criteria such that

DTW(P;‘» S) < DTw(ZL', 8) + DT[/V(JZ,TL> — H
(2.15)
DTW(pia S) > DTw(l‘, S) — DTw({L‘,n) + H.
These two conditions correspond to the two circles shown in Figure 2.21e with r; and ry. In

Figure 2.21e, the region where we look for possible candidates for the nearest samples (n) is
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defined based on the elimination criteria. The training samples outside of the shaded, green
region are eliminated as shown in gray in Figure 2.21f thus completing the first iteration.
The set that includes the eliminated samples is called E. Iterations continue until P = E.
Only two samples are eliminated (see Figure 2.21g) so far in this example. Therefore, we
continue searching for new s in the second iteration. The new s = ¢ is selected for iterations

except the first one such that

min( Y " [Drw (g, u) — Dyw (2, u)]), (2.16)

YueU

where g € {P— E'} [105]. This choice makes p; the new s as shown in orange in Figure 2.21h.
Now, the distance between s and z is computed again, and the count is increased by one (see
Figure 2.21i). Then, circles that define the elimination criteria are drawn (see Figure 2.21j),
and it is seen that all remaining samples are outside of the defined region. Therefore, all
of them are eliminated (see Figure 2.21k). Since all training set samples are eliminated,
there will be no further iterations in the algorithm. In the last step, s is assigned as nearest
sample n to the test sample x if Dy (z,s) < Drw(x,n) (see Figure 2.211). This completes

the algorithm, and the label of n can be assigned to x.

2 byl

Figure 2.23: Effect of H on the elimination criteria and accuracy of the classification.

In traditional classification, it would be required to compute the distance between P and
x. This would be equal to six DTW computations for the example in Figure 2.21. However,
only two DTW computations were made with the AESA algorithm. This demonstrates how

AESA is capable of significantly reducing the number of DTW computations.
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The choice of the parameter H influences computation reduction and classification ac-
curacy. To show that, two illustrations that correspond to two H values are provided in
Figure 2.23. Figure 2.23 shows how the defined area is reduced when H is increased. The
decrease in the area increases the number of eliminated samples from the training set, and
P and F will be equal to each other in a small number of iterations. Thus, the algorithm
performs fewer DTW computations as H increases. In addition, increasing H can lead to
misclassification. Larger shaded area with low H can cover the nearest sample n in the re-
gion (see Figure 2.23 (left)), while smaller one can exclude n (see Figure 2.23 (right)). This
exclusion can lead to misclassification since the true n is eliminated. Therefore, a decrease
is expected in classification accuracy when H becomes too large. The process for choosing

H is described in more detail in Section 2.5.5.3.

2.5.5 Results

This section presents the results for the classification accuracy using the approach pro-
posed in Section 2.5.1 and 2.5.4 as well as current state-of-the-art methods in the literature.
The results presented in this section are obtained with turning cutting signals explained
in Section A.1. Specifically, Section 2.5.5.1 compares the classification accuracy using the
same data set for the similarity-based method to the WPT/EEMD methods [9], and the
TDA-based results [10]. Section 2.5.5.2 describes how parallel computing is employed with
DTW approach. Further, Section 2.5.5.3 provides the results obtained using Approximate

and Eliminate Search (AESA) explained in Section 2.5.4.

2.5.5.1 Classification Results for Dynamic Time Warping (DTW)

Table 2.10 provides classification accuracies and the time needed to compute the distance
between two time series. Although the same time series is used to find the time needed to
compute the distance between them, cDTW is faster compared to the FastDTW, as seen

from Table 2.10. As the larger r parameter is selected for FastDTW, its computational time
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increases. However, lower r values do not approximate the distance between two time series
well. In addition, the cDTW algorithm matched the accuracy obtained from FastDTW.

Therefore, cDTW algorithm is used to obtain results in this study.

Table 2.10: Comparison of classification accuracy and the time required to compute the
distance between two time series for cDTW and FastDTW packages.

cDTW FaStDTWT:21
Overhang Length . :
em (inch) Accuracy Time (seconds) Accuracy Time (seconds)
5-U8 98.34% 4+ 1.08% 1.5 99.24% + 0.73% 51.1

(2)

Table 2.11 compares the best classification scores obtained from WPT, EEMD, and the
TDA-based methods to the results from DTW. Results for K = 1,2,...,5 for the KNN
classifier are obtained, and the best accuracies are obtained for DTW in Table 2.11. The
cells highlighted in green are the ones with the highest overall classification score, while
those highlighted in blue represent results with error bands that overlap with the best overall
accuracy in the same row. A full list of the average classification scores and the corresponding
standard deviations can be found in Tables B.6 and B.7.

Table 2.11: Comparison of results for similarity-based methods with their counterparts avail-
able in the literature.

Similarity . . . .
Measure Topological Data Analysis (TDA) Signal Processing
Overhang
Length DTW* DTW Temphlate Carlgson Persistence WPT EEMD
cm Functions Coordinates Images
(inch)
5.08
() 94.5% | 98.3% 91.5% 93.6% 96.4% 93.9%  84.2%
(62'355) 86.9% 72.3% 89.3% 86.3% 85.8% 100.0% 78.6%
(8?;859) 92.9% 93.0% 83.9% 95.7% 93.0% 84.0%  90.7%
%ié? 70.9%  75.7% 65.1% 72.2% 72.5% 87.5%  79.1%

*Intermediate chatter cases are excluded.
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Table 2.11 shows that features based on WPT, Carlsson Coordinates, which is a TDA-
based method, and DTW give the highest accuracy for the different overhang cases. For the
5.08 and 8.89 cm (2 and 3.5 inch) overhang cases, DTW and Carlsson Coordinates have the
highest classification accuracies of 98.3% and 95.7%, respectively. However, the DTW is in
the error band of the highest accuracy for the 8.89 cm (3.5 inch) case. On the other hand,
feature extraction with WPT and RFE is the most accurate for the 6.35 and 11.43 cm (2.5
and 4.5 inch) overhang cases scoring 100% and 87.5%. While the results from other methods
are not the highest for any of the considered cases, some of them still lie within the error
bars for the 11.43 cm (4.5 inch) overhang cases. Specifically, EEMD is within one standard
deviation of the best results for the 11.43 cm (4.5 inch) case.

Note that the results provided in Table 2.11 are for two-class classification: chatter and
chatter-free. In the column named DTW*, the results excluding the intermediate chatter
cases are presented. In contrast, the DTW column shows the results when intermediate
chatter cases are assumed as chatter in classification. The reason why the intermediate
chatter cases are excluded in DTW is revealed in the heat maps of the similarity matrices.
The heatmaps of the average DTW distances between the three classes (chatter, intermediate
chatter, and no-chatter/stable) are given in Figures 2.24, 2.25, B.1, B.2. Each of the nine
regions in these figures shows the average DTW distance between all the cases marked
according to the row and the column labels in that region, e.g., the top right region reports
the average DTW distance between the time series tagged as no-chatter versus those tagged
as chatter. These heatmaps show us how the time series belonging to different classes are
similar to each other. Ideally, the average distance between time series with the same label
is expected to be small compared to the average distance between time series with different
labels. This can also be observed in Figure 2.24. The average distance between stable
cases is the lowest, while the one between stable and unstable (chatter) cases is the highest.
Therefore, the DTW algorithm can distinguish the signals with different labels. However,

this may not hold all the time. For instance, the heat map of the 6.35 cm (2.5 inch) case in
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Figure 2.25 indicates that the average distance between intermediate chatter and no-chatter
time series is almost identical to the average distance among intermediate chatter time series.
This explains the low accuracy when the intermediate chatter is included as a separate class
in Table 2.11. In this case, the classification algorithm can classify intermediate cases as
stable ones, although these cases are taken into account as chatter cases, thus reducing the
resulting accuracy. When the intermediate cases are excluded completely, the classification
score increases from 72.3% to 86.9% since there is a large difference between the average

distances of stable and chatter cases, as seen in Figure 2.25.

Stable Intermediate Chatter Chatter
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Stable 5760.55 6609.15

6500

-6000

Intermediate ~5500

Chatter
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-5000
-4500

4000
Chatter 6609.15 5347.66

3500

3000
Stable Intermediate Chatter Chatter

Figure 2.24: The heat map of averages DTW distances of time series belongs to three classes
for the 5.08 cm (2 inch) case.

In the 11.43 cm (4.5 inch) case, Figure B.2 indicates that there is no significant difference
in the average DTW distances. As a consequence, there might be errors in the classification of
the chatter cases, and this leads to low overall classification accuracy, as shown in Table 2.11.
When the intermediate chatter cases are not included, the classification score is 70.9%. Since
the difference between the average distance of intermediate-stable and intermediate-chatter
is small, the classification algorithm can still classify intermediate cases as chatter. This can
increase the classification accuracy when the intermediate cases are included, as shown in

Table 2.11. The score increases from 70.9% to 75.7%. For 5.08 and 8.89 c¢m (2 and 3.5 inch)
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Figure 2.25: The heat map of averages DTW distances of time series belongs to three classes
for the 6.35 cm (2.5 inch) case.

cases, the heatmaps (see Figure 2.24 and B.1) show clear differences between the three cases.
This explains the high classification accuracies for both cases.

However, there might be interest in identifying intermediate chatter as part of a predic-
tion algorithm that intervenes before the process develops into full chatter. Alternatively,
inducing or sustaining intermediate chatter might be desirable for surface texturing applica-
tions. Figures A.4b-d show that the power spectrum for chatter and intermediate chatter
is very similar, making the featurization in the frequency domain extremely challenging.
However, Figure A.4a shows a clear difference between the two chatter regimes in the time
domain. Therefore, it is more advantageous to extract features in the time domain for a
three-class classification (chatter, intermediate chatter, and no chatter).

For 5.04 and 8.89 cm (2 and 3.5 inch) overhang cases, Figure 2.24 and B.1 show that DTW
can differentiate between chatter and intermediate chatter as evidenced by the high average
distance between time series tagged as chatter and intermediate chatter. The regions that
list the distances between intermediate chatter and chatter cases show that the distances
between chatter-chatter and chatter-intermediate chatter cases are quite different. This

confirms the ability of the proposed approach to distinguish the differences between these two
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cases. However, the KNN algorithm may not differentiate these cases due to the similarities
between average distances in the case of 6.35 and 11.43 cm (2.5 and 4.5 inch) overhang
distances. As a concrete example for the three-class classification, the distance matrices are
computed for all overhang distances and fed to the KNN classification algorithm to obtain
the best 3-class classification accuracy. Table 2.12 provides the best results of corresponding
cases (the full classification results can be found in Table B.8). Table 2.12 shows that the
DTW approach successfully distinguishes the three different classes, and the success rates
are only slightly below the success rates of the two-class classification (cf. Table 2.11) for
5.04 and 8.89 cm (2 and 3.5 inch), while the low classification accuracy is observed for 6.35

and 11.43 cm (2.5 and 4.5 inch) cases as expected.

Table 2.12: The best accuracy results for three class classification with the DTW approach
and the corresponding number of nearest neighbors used in the KNN algorithm.

Overhang Length

. DTW K-NN algorithm
cm (inch)
5.08 (2) 97.7% + 1.1% 1-NN
6.35 (2.5) 71.4% + 7.0% 4-NN
8.89 (3.5) 95.5% + 5.4% 3-NN
11.43 (4.5) 73.9% + 4.6% 4-NN

2.5.5.2 Parallel Computing

In this section, parallel computing is utilized to expedite calculating the distance matrices.
In a parallelized way, multiple distances can be computed simultaneously, which reduces
the total run time. The High Performance Computing Center (HPCC) of Michigan State
University (MSU) is used, and all the distance matrices are computed to produce the results
shown in this section. HPCC is composed of several supercomputers, each with hundreds
of nodes. Each node can be thought of as a computer with a certain number of CPUs and
cores.

In parallel computing, 175, 82, 22 and 154 jobs are submitted at the same time for 5.08,
6.35,8.89, and 11.43 cm (2, 2.5, 3.5 and 4.5 inch) cases, respectively. For the 5.08 cm (2
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inch) case, the number of distance computations made in each job is 1000, while it is 100 for
other cases. One to five nodes, 5 CPU per job, and 2GB of RAM per CPU are requested.
Therefore, each job is run with 10 GB of RAM in total. It is also worth mentioning that
HPCC-MSU has a job submission policy, and this policy determines the queue time for a
user depending on the requested resources from HPCC-MSU. Each time a user requests a
large amount of resources, the queue time for the job submitted by that user gets higher. In
addition, the queue time depends on the current usage of HPCC-MSU since it is open to all
university members. Although all jobs are submitted simultaneously to HPCC-MSU, their
computation is not started at the same time due to queue time, which causes deviations
from the ideal time, which is equal to the runtime of a single job.

Table 2.13 provides the times required to obtain classification results with DTW and its
counterparts. For DTW, two different run times are reported: traditional and parallel. In
traditional DTW, only one distance computed is performed at a time. Therefore, a significant
difference is observed between parallel and traditional computations in spite of the fact that
the times reported in Table 2.13 for DTW (Parallel) include the queue time. The times
reported for traditional computation are estimated based on the time required to complete
one distance computation on Dell Optilex 7050 desktop with Intel Core i7-7700 CPU and
16.0 GB RAM. In addition, the times reported for TDA-based feature extraction methods are
obtained by applying parallel computing only on persistence diagram computations, while
parallel computing is not involved in WPT and EEMD. Even though WPT and EEMD are
the fastest methods, parallel computing with DTW significantly reduces the total run time,
making the latter the third-fastest method.

It is pointed out that the classification based on WPT is optimized, whereas the classi-
fication based on DTW is far from optimal. Therefore, one of the aims of this chapter is
the introduction of DTW for chatter detection and the presentation of its general perfor-
mance. In fact, this includes the necessity for an optimization of the algorithm, as seen from

Table 2.13 even if parallel computing is used. However, the values reported in Table 2.13
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Table 2.13: Time (seconds) comparison between similarity measure method and its counter-
parts.

Similarity . . . .
Meastiro Topological Data Analysis (TDA) Signal Processing
Overhang
Length DTW DTW Template Carlsson Persistence
cm (Traditional) (Parallel) Functions Coordinates — Images wh - EEMD
(inch)
5.08 «
) 227500 7263 9495 9424 9454 116 309
6.35 «
(2.5) 10984 3192 3523 3452 3482 37 83
8.89 %
(3.5) 2896 1152 2148 2077 2107 5 47
11.43 «
(45) 20020 1932 4894 4823 4853 7 68

*These run times are rough estimations.

for WPT and EEMD do not include the time required for choosing the informative wavelet
packets or IMFs using manual preprocessing since the speed of manual preprocessing depends
on the skill of the user and is more difficult to track. It is expected that the overall time will
be much higher for WPT and EEMD after including the manual processing time. First, the
computing time can be decreased by decreasing the length and/or the number of time series.
At the moment, it is not clear how such a reduction affects the performance of the method.
For example, the success rates for the 8.89 cm (3.5 inch) case and the 5.08 c¢cm (2 inch)
case are comparable even though the available training data is much smaller for the former.
Second, the upper diagonal of the distance matrix, including pairwise distances between the
training data, is computed. Although Table 2.13 shows that DTW clocks the second-fastest
runtime, it is noted that this slowdown is mostly related to the training phase because of the
large number of necessary pairwise distance computations during the training/testing phase.
However, once the classifier is obtained, the necessary runtime for DTW will be significantly
reduced because any new data is classified upon computing its pairwise distance with the
training set, i.e., the only needed computation is equivalent to the evaluation of one row of

the training/testing similarity matrix (see Table2.14). Finally, it is possible that the code
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for calculating the DTW distance matrix can be further optimized. Many researchers have
published on DTW optimization, especially for data mining ([137]), including a speedup of
runtime for distance matrix computations between time series and its query. The resulting
algorithm allows performing fast queries on a single core machine in a very short time, thus
allowing using small consumer electronics to handle the data and possibly extract features
from it in real-time. However, the AESA algorithm explained in Section 2.5.4 and given Al-
gorithm 2.1 is applied to reduce the number of distance computations and the time required

for testing.

2.5.5.3 Approximate and Eliminate Search Algorithm Results

The run times for DTW methods with parallel computing given in Table 2.13 are for
training a classifier. When a new test sample is introduced, distances between the test
sample and all the training set samples need to be computed to identify the nearest neighbors.
However, computing these distances the traditional way can be too lengthy, especially when
considering DTW for online chatter detection applications. Therefore, the AESA algorithm is
employed to reduce the number of DTW computations for a test sample during classification.

The first step is to check if there is any violation of the loose triangular inequality given
in Equation (2.13). The looseness constants for all combinations of three different time series
are computed for turning cutting data set, and plots are provided in Fig. 2.26.

This figure shows that all combinations of three time series comply with the triangular
inequality since the frequencies are accumulated on positive looseness values. Then, a range
of looseness constant(H) is chosen between 0 and 10° with an increment of 100. Therefore,
101 different H values are used as input to the AESA algorithm. The data set of each
overhang distance is split into training (67%), and test (33%) sets. For every H, the number
of DTW distance computations made per test sample, and the predicted labels of test samples
are obtained as output. Then, these predicted labels are compared with the true labels of the

time series to determine the accuracy level, and the average number of distance computations
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Figure 2.26: Histograms for looseness constant of all combinations of three different time
series for all overhang distance.

made for the samples in the test set is computed. A plot is provided to show how the average
number of distance computations per test sample and classification accuracy change with
varying H in Figure 2.27. All of the results presented in Figure 2.27 are obtained with
HPCC-MSU and using 1NN implementation in the AESA. However, AESA can be modified
to perform classification with a larger number of nearest neighbors.

Figure 2.27 indicates that there is a decrease in the average number of distance compu-
tations and accuracy as the looseness constant increases. However, the average number of
distance computations decreases dramatically. Therefore, AESA algorithms can reduce the
number of DTW distance computations while keeping the accuracy as large as possible. One
can find a value of H with low distance computation and high accuracy value. Furthermore,
an increase in accuracy with increasing H is observed for 6.35, 8.89, and 11.43 cm (2.5, 3.5,
and 4.5 inch) overhang distances. However, 6.35 and 8.89 cm (2.5 and 3.5 inch) have fewer

samples in comparison to the other cases (see Table A.1). The fewer data samples in an
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Figure 2.27: Classification accuracy (%) (solid red line) and the average number of DTW
computations (green dashed line) for varying looseness constant (H).

overhang distance case cause bigger jumps in accuracy, as shown in Figure 2.27. In addition,
the plots shown in Figure 2.27 are only for one train-test split. One may obtain a smoother
decrease in accuracy plots by applying train-test split several times and taking the average.
Then, the accuracy values for small H will converge to the values which are obtained with
10 times train-test split and provided in Table 2.11.

Some H values are chosen, and their corresponding classification score and the average
number of distance computations are found for all overhang distance cases from Figure 2.27.
The time required to classify one test sample is estimated for the traditional and parallelized
way, and a comparison between traditional computing, parallel computing, and AESA al-
gorithm is provided in Table 2.14. Accuracy reported in Table 2.14 is the corresponding

accuracies shown in Figure 2.27 and Table 2.11.
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Table 2.14: Classification time of one test sample for traditional way, parallel computing,
and AESA algorithm and corresponding average accuracy obtained from Table 2.11 and
Figure 2.27.

Traditional AESA Parallel
Overhang Av
Distances Acc. Time(s) H  Acc. & Time(s) Acc. Time(s)
. count
cm (inch)

5.08 (2)  98.3 595.5% 6900 90.81 1.13 1.70 983 =15
6.35 (2.5) 72.3 130.5% 3300 74.42 20.04 30.06 723 =~15
8.89 (3.5) 92.9 66* 6300 86.96 1.09 1.64 929 =~1.5
1143 (4.5) 75.7 175.5% 5600 81.36 1.19 1.79 75.7 = 1.5

*These run times are rough estimates.

The H values chosen in Table 2.14 is an example. One can choose different values for H as
well. There is a trade-off between accuracy and the average number of distance computations.
Higher H values can be selected to have a small number of distance computations, but
this comes with a lower classification score. In the traditional way, the reported times are
estimated based on the time required to complete one distance computation. On the other
hand, parallel computing could be the fastest method among them. Ideally, if all distance
computations between the test set sample and the training set are sent to HPCC-MSU in
separate jobs, each job will take nearly 1.5 seconds to complete. However, there might
be some queue time which leads to a delay in time to obtain results. One can also use
the available workstations to perform parallel computing without needing the extravagant
supercomputers that HPCC-MSU has. Using parallel computing is optional and a viable
option if a high-performance computing cluster is available. Alternatively, the user can speed
up the computations by implementing the AESA algorithm on a workstation. Moreover,
AESA algorithm provide promising classification times as seen from Table 2.14. Classification
can be completed in less than two seconds with the chosen H values for all overhang distances
except the 6.35 cm (2.5 inch). One can choose another value of H for the 6.35 cm (2.5 inch)
case to obtain results faster, but this corresponds to a lower classification score. Table 2.14

shows us that AESA and parallel computing can enable in-process chatter detection on the
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cutting centers with the similarity measure approach using a classifier that is trained first
offline and then loaded to a controller attached to the manufacturing center. Moreover, the
implementation of AESA in an online manufacturing application is cheaper than buying
supercomputers or workstations to perform parallel computing.

The DTW-based approach operates directly on the time series, thus bypassing the pre-
processing step involved in the WPT and EEMD methods. Further, in contrast to deep
learning techniques, such as neural networks, using DTW does not necessitate a large num-
ber of datasets for training. The feasibility of implementing DTW in a real cutting center
is examined by investigating its transfer learning capabilities. Providing these results with
smaller deviation and eliminating the manual preprocessing are significant advantages for
the DTW approach that still enables it to achieve high classification accuracies even if the

system parameters (in this case, the eigenfrequencies) shift during the process.

2.6 Topological Data Analysis (TDA) Based Approach

2.6.1 Topological Data Analysis

Topological Data Analysis (TDA) extracts information by investigating the shape of
the data. In this study, persistent homology, which is a powerful tool of Topological Data
Analysis (TDA), is proposed to extract features from the persistence diagrams and use them
in supervised machine learning algorithms. Experimental data is embedded using Takens
embedding theorem [138|, and 1-D persistent homology is investigated for feature matrix
generation. In this section, persistent homology is briefly explained, and one can refer to
[62, 63, 64, 65, 139, 140] for detailed information about TDA and persistent homology.

Persistent homology provides a compact tool for studying the topology of data embedded
in a Euclidean space which is often called a point cloud. The resulting shape information
is represented by a two dimensional plot called the persistence diagram. A persistence
diagram can be obtained for different shape characteristics of interest. For instance, if the

main interest is in the connectivity of the points in the point cloud, then that information
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can be represented in a 0-dimensional (0-D) persistence diagram. Alternatively, the 1-D
persistence diagram is computed to investigate the loops in the point cloud. For voids, 2-
D persistence diagrams are computed, and so on. This study only focuses on extracting
features from the 0-D and 1-D persistence, so in the following, the basic idea for obtaining
the 1-D persistence will be explained, i.e., for representing loops that emerge and disappear
as the point cloud is thickened. The process for obtaining the 0-D persistence is similar, only
instead of considering loops, the connectivity of the points would need to be tracked as the
point cloud is uniformly thickened.

Consider the point cloud shown in Figure 2.29a. Then, the point cloud starts to thicken,
i.e., expand disks with radius € around each data point. As € is increased, disks can start
to intersect. The intersection of two disks forms an edge as shown by the two edges in
Figure 2.29b. Increasing e further can lead to three disks intersecting, thus forming a triangle
which is filled in as shown by the nine triangles in Figure 2.29¢. At some values of €, some
disk intersections will lead to cycles. The time (here, the € value) at which a cycle appears
is called the birth time of the cycle. Figure 2.29d shows three example cycles numbered 1,2
and 3 with birth time by = by = bs.

As the disks continue thickening in the point cloud, more disks will intersect, leading
to more triangles filling in, and at some point, some cycles may fill in. The time at which
a cycle disappears is called its death time. For example, Figs. 2.29e-g show the death
times of cycles 1-3, respectively. The information about the birth and death of cycles is
succinctly summarized in a persistence diagram. In this diagram, each point corresponds
to the paired birth and death times of a cycle. For example, Figure 2.29h shows the tuples
(b1,dy), (bg,dy), and (b3, ds) corresponding to the birth and death times of the cycles 1-3
shown in Figure 2.29d. The cycle that persists the longest is characterized by the highest
point above the diagonal and is called maximum persistence. In this example, cycle 3 leads

to the maximum persistence in the persistence diagram.
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2.6.1.1 Simplicial complexes

Let {ug,...,ux} € R? be a set of data points, and the vectors defined between these
data points (uj-ug,us-uo,. .. ,ur-ug) are linearly independent. A geometric k-simplex, o is
a set of all points in R? such that Zf:o Ajuj where 77 (A; = 1 and A; > 0 for all j.
Figure 2.28 provides illustrations for 0, 1, and 2—simplex. Each data point on a point cloud
is represented as 0-dimensional simplex and they are called vertices. When two vertices are
connected, an edge is formed and it is 1-dimensional simplex. Connection of three vertices
will form 2—simplex which is a triangle. Simplicies spanned by any subset of uq, ..., u; are
the faces of 0. In general, n—simplex contains n + 1 vertices, and the set of these simplices,
are called geometric simplicial complexes, K, if the following two conditions are satisfied
[139]: 1) If 0 € K, then faces of ¢ are also in K, 2) If two n—simplex, o1 and o, are in
K, then the intersection of them is either common face or empty. The dimension of the

simplicial complex, K, is equal to the largest dimension of its simplices.

A - :
. \
° L]
L ] L ] .
. . . . ¢
L ]
° L]
L ] L ]
. hd ° :
- O-dimensional 1-dimensional 2-dimensional
Point Cloud Simplex

Figure 2.28: Formation of simplicial complexes from a point cloud.

2.6.1.2 Persistent Homology

The simplicial complex K is used to compute homology H, (K) in a different dimension
to identify the shape of the data. 0 dimensional homology, Hy(K') represents connected
components and one dimensional homology, H;(K) represents loops, while two dimensional
homology Hy(K) represents voids. The simplicial complex K is not fixed in persistent

homology, and it varies over time.
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> birth time

b1 =ba=b3

Figure 2.29: Generation of persistence diagrams using The Rips Complex.

Disks centered at data points of the point cloud start to expand and let € be the radius of
these disks. As € increases, n-dimensional simplicies are formed, as shown in Figure 2.29. The
intersection of two disks forms an edge (1-simplex), while a triangle (2-simplex) is formed
when three disks intersect with each other (see Figure 2.28). Each e will result in different
simplicial complexes, and they can be approximated using filtration functions. This study
uses a Python package that employs the Rips complex. The definition of Rips complex is
given as

R.(K,d)={o C K|(max d(z,y) < €}, (2.17)
x,y)E0

Y)

where d is the distance between vertices of simplicial complex . Let {€; < €3 < ... <€ }

be the set of varying radius of the disk. These radii form Rips complexes such that
Ry CRyC...CRy (2.18)

where R; = R, (K,d). Then, a specific dimension n can be chosen to identify the shape
of the data along the simplicial complexes R;. For instance, if a loop is seen first in R;,
this is called birth time (b = ¢;). When it disappears in R;, this is denoted as death time
(d = €, where d > b). That allows one to generate persistence diagrams, D for a given point
cloud, and selected persistent homology dimension. Figure 2.29h provides an example of a

persistence diagram. The horizontal axis represents the birth time, while the vertical axis
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is for the death time, and all the points in the diagram are above the diagonal. The points
with larger lifetime (d —b) are farther away from the diagonal, and these points often include
important information about the overall shape and structure of the data. While it is possible
to generate a persistence diagram for each homology dimension, one dimensional persistent
homology is mostly focused on feature extraction since it can capture circular structure in

the data, which is often a characteristic of chatter in turning.

2.6.2 Method

The method proposed for chatter detection using topological features can be summarized
using Figure 2.30. The parts of the pipeline related to data collection, processing, and
labeling were described in Sections A.1-A.1.1, respectively. In this section, the rest of the
steps shown in Figure 2.30 is described.

Recall that the cutting tests are composed of four different overhang configurations. Each
configuration includes a different number of time series that correspond to different labels,
rotational speeds, and depths of cut. Therefore, the time series are grouped with respect to
these three parameters, and they are normalized to have zero mean and unit variance. This
normalization reduces the effect of large feature values on smaller ones ([141]).

The next step is to split long time series into smaller pieces to reduce the computation time
needed for finding the delay reconstruction parameters (see Section 2.6.3.1) and for obtaining
the persistence diagrams (see Section 2.6.1.2). Upon finding the appropriate embedding
parameters, the data is embedded using delay reconstruction, also known as Takens’ delay
embedding, see Section 2.6.3.1. The resulting point cloud is then used to compute the
corresponding persistence diagrams using two different approaches: 1)traditional way where
persistence diagrams are computed with Ripser package for Python, 2) approximating to
point cloud with Bezier curves and computing persistence diagrams using line segments
generated with Bézier curves ([77]). The second method is a different approach introduced

in [77], and it uses Bézier curves to approximate to reduce the time to compute persistence
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diagrams. Section 2.6.3 explains both approaches for persistence diagram computation,
and sections 2.6.4.1-2.6.4.5 describe different methods in the literature for featurizing the
resulting diagrams to obtain a feature vector in Euclidean space that can be used with
existing machine learning tools such as SVM. 1-dimensional persistent homology H; is mainly
utilized for feature extraction except when the template function approach is used. For

template functions, O-dimensional persistence Hy is also used ([72]).

4 N 4 ) T Y Y
Data Processing Data labelling o )
Data collection > |- filtering ) > |- C,hatter’fr?e . roupu‘lg > Normalization
- downsampling - (intermediate) chatter time series
- unknown L ) S )
4 N\ 4 N ) 4 N 4
Classification Persistence Del Splitting the
- chatter-free <|  TFoaturization S Diagram - cay << | time series into
- (intermediate) chatter Computation Reconstruction smaller pieces

N A N N N R NS

Figure 2.30: Pipeline for feature extraction using topological features of data.

2.6.3 Persistence Diagram Computation

In this section, the embedding of time series to a higher dimension and the persistence
diagram computation using the Bézier curve approximation method are explained briefly.

The steps for persistence diagram computation are summarized as shown in Figure 2.31.

Data preprocessing —_— Traditional N Obtain persistence
+ diagrams using
Embedding Ripser
\ Bézier curve approximation /
Fitting Bézier e i Computing pairwise
curves > er;ggﬁller;gtslne —> | distance matrix of

line segments

Figure 2.31: Persistence diagram computation steps.

2.6.3.1 Delay Reconstruction

Takens’ theorem lays a theoretical framework for studying deterministic dynamical sys-

tems ([138]). It states that, in general, embedding of the attractor of a deterministic dynam-
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ical system can be obtained from a one-dimensional recording of a corresponding trajectory.
This embedding is a smooth map ¥ : M — N between the manifolds M and N that
diffeomorphically maps M to N.

Specifically, assume an observation function 5(x) : M — R, where for any time ¢t € R
the point x lies on an m-dimensional manifold M C R¢. While in practice the flow of the
system is not available for a time ¢ € R given by ¢f(x) : M x R — M, the observation
function implicitly captures the time evolution information according to 8(¢!(z)), typically
in the form of the one-dimensional, discrete and equi-spaced time series {5, }nen.

Takens’ theorem states that by choosing an embedding dimension d > 2m+1, where m is
the dimension of a compact manifold M, and a time lag 7 > 0, then the map @45 : M — R4

given by

Q5 = (B(x). B(9(x)),- .., (6" (x)))
= (B(x¢), B(Xpsrs B(Xpyor, - - - ,5(Xt+(d—1)7)))a

(2.19)

is an embedding of M, where ¢?~! is the composition of ¢ d — 1 times and x; is the value of
X at time .

For noise-free data of infinite precision, any time lag 7 can be used; however, in practice,
the choice of 7 can influence the resulting embedding. In this study, 7 was found by using the
method of Least Median of Squares (LMS) ([142]) combined with the magnitude of the Fast
Fourier Transform (FFT) of the signal. Specifically, the FFT spectrum is obtained, and the
maximum significant frequency is identified in the signal using LMS [143]. Then Nyquist’s
sampling criterion is used to choose the delay value according to the inequality described in
[144]. This approach yielded reasonable delay values in comparison to the standard mutual
information function approach (|145]), where the mutual information function is plotted for
several values of 7, and the first dip in the plot indicates the 7 value to use. This is because
(1) the mutual information function is not guaranteed to have a minimum, thus leading to
a failed selection of 7 and, (2) the identification of the first true dip, if it exists, is not easy

to automate especially in non-smooth plots.
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The embedding dimension d € N is computed by using the False Nearest Neighbor
(FNN) approach ([146, 147]). In the FNN approach, the delay reconstruction is applied to
the time series using increasing dimensions. The distances between neighboring points in one
dimension are re-computed when the points are embedded into the next higher dimension.
Keeping track of the percent of points that appear to be neighbors in a low dimension but
are farther apart in a higher dimension (termed false neighbors) makes it possible to identify
a threshold that indicates that the attractor has been sufficiently unfolded. Applying FNN
to all of the time series yielded the values in the range d € {1,2,...,10}, depending on
the time series being reconstructed. Upon identifying 7 and d for each time series, delay
reconstruction was used to embed the signal into a point cloud P C R? The shape of
the resulting point cloud was then quantified using persistence, as described in Section 2.6.1.
Five different methods are studied to extract features from the resulting persistence diagrams

as shown in Sections 2.6.4.1-2.6.4.5.

2.6.3.2 Persistence Diagram Computation with Bézier Curve Approximation

Bézier curves were introduced by Pierre Bézier, and they have been widely used in com-
puter aided design software and path planning applications for robots (|148, 149, 150, 151]).
Recently, [77] utilized Bézier curves to speed up the persistence diagram computation. In
this approach, the first step is to divide the point cloud into groups. The user defines the
number of samples per group (spg), then a Bézier curve is individually fitted to each group.
Line segments are then generated using these curves according to the number of line seg-
ments per curve r selected by the user. Pairwise distance matrix between the line segments
is computed, and it is given to Ripser as input, and it will provide the persistence diagrams
as output based on the selected maximum number of homology dimensions. This section
explains two of three main steps, which are fitting a Bézier curve and computing the dis-
tance matrix between the line segments, and the effect of spg and r on the approximation

of persistence diagrams.
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Fitting a Bezier Curve: In this implementation, the cubic Bézier curve is used, and

its expression is defined as

pt)=> (1—t)*tp, 0<t<1, (2.20)

where t is the parametrization variable and p; is called the control points of the curve. For
cubic Bézier curves, there are four different control points. The first one and the last one
should match with the first and last point of the group of samples where the Bézier curve
is fit, respectively. Solution for these control points is obtained by using the least squares

error method, and the expression is given as

!
L(po, p1,p2; p3) = Z Ip(t:) — =il (2.:21)
i=1

where x; is the data points of the point cloud. Solution of VL = 0 provides the control

points. The expression for VL = 0 can be rewritten such that

l 3
ZQ(Z ( ) (1 —t.)* "t — a:k> (87;;’“)) =0 (2.22)
k=1 =0 v

= (1 —t)%e1 +3(1 — tg)*trés + 3(1 — ty)tés + théy = 0, (2.23)

Ip(tr)
Op;

where t, represents varying parametrization variable along a Bézier curve. The above ex-

pression can also be written in matrix form as

! l
(Z Ak>p = Z by or Ap=hb. (2.24)
k=1 k=1

The equations for A, p and b, are defined as
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Figure 2.32: Tllustration showing Bézier curve fit and generation of line segments.
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where d is the dimension of the data set. To illustrate the Bézier curve fitting, a sinusoidal
signal is embedded to dimension two. Then, the samples are divided into groups, and bezier
curves are fit. Figure 2.32 represents the control points and fitted lines on the groups.
Computing pairwise distance matrix: Bézier curves are split into intervals, and the
number of intervals (r) is selected by the user. The endpoints of the intervals are connected
to each other, and line segments are generated. The next step is to compute the distance

— y
matrix between the line segments. Lets assume that [yl; and mgm represent two lines. The
distance between these two lines is defined as follows

_>
d(lply, mgmi) = min d(l,m), 2.27
(0 1 0 1) lelo_lf,meer{ ( ) ( )
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Figure 2.33: Comparison of persistence diagrams computed with the approximation for
varying r to true diagrams obtained with Ripser. All diagrams belong to time series number
51 of the 8.89 cm (3.5 inch) case, and they are computed in H;.

where [y, l1, mg and m; are the end points of the two lines. The distance is computed by

minimizing the function given as

Fl,m) = d(I(s), m(t))* = |li(s) — m()]I*, (2.28)

where s and ¢ are parametrization variables. [77| solved this problem using a gradient
descent algorithm. However, simplicial homology global optimization (SHGO) is employed
in this study ([152]). After finding the parameters making function f minimum, their values
are used to compute the distance between two lines. This is repeated for all combinations
between line segments. Only the upper diagonal of the distance matrix is computed since it is

symmetric. Then, it is given to the Ripser package as input to obtain persistence diagrams.

Effect of parameter selection: The parameters sample per group (spg) and the num-
ber of line segments () define how well persistence diagrams of a time series are approxi-
mated. A time series belonging to the 8.89 cm (3.5 inch) overhang distance is chosen, and
persistence diagrams of that time series are computed with r = 1,3,5,7 and spg = 100.
In Figure 2.33, both diagrams computed with Ripser in blue and approximated diagrams
in green color are provided. All diagrams represent the first-dimensional persistence (Hj),
and they belong 51" time series in the 8.89 ¢cm (3.5 inch) case. Figure 2.33 shows that
approximated diagrams converge to the diagram obtained from Ripser as the number of

line segments (r) increases. Each line segments have only two points, so this means that
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Figure 2.34: The Bottleneck distance between the diagram with blue color in Figure 2.33
and the approximated diagrams with green color in Figure 2.33.

the Bézier curve approximation uses only 2r points instead of using all 100 points for the
examples provided in Figure 2.33. To show the effect of selection r, Bottleneck distances are

computed. The definition of Bottleneck Distance is given as ([153]),

Weo(X1,X5) = inf  sup ||lz1 — n(x1)||co, (2.29)

n:X1—=X2 g1 X,
where X; and X represent two different diagrams and 7 is the bijections between the points
of the diagrams. Figure 2.34 shows the Bottleneck distances between the diagrams, and it
is seen that increasing r results in smaller distances for the 8.89 cm (3.5 inch) case, which
means that larger values of r approximate to blue one better. In addition, this type of
behavior can be observed when the spg decreases since it will lead to a larger number of

groups and line segments.

2.6.4 Feature Extraction Using Persistence Diagrams

In this section, feature extraction from persistence diagrams is explained. Five different
featurization techniques are described in this section, and these are persistence landscapes,
persistence images, Carlsson Coordinates, the kernel for persistence diagrams, and the signa-
ture path of persistence path’s signatures. The source code for these featurization techniques

are available in Teaspoon package of Python [154].
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Figure 2.35: A schematic showing the process of obtaining the landscape functions from a
persistence diagram.

2.6.4.1 Persistence Landscapes

Persistence landscapes are functional summaries of persistence diagrams [155]. They
are obtained by rotating persistence diagrams by 45° clockwise and drawing isosceles right
triangles for each point in the rotated diagram [156], see Figure 2.35 where the landscape
functions are represented by A\;. Given a persistence diagram, the piecewise linear functions

are defined as [155]

p

0 if 2 & (b, d)

Joa @) =Yz —b  ifze (b L (2:30)

\—erd if z € (%4, d)
where b and d correspond to birth and death times, respectively. Figure 2.35 shows that there
are several landscape functions \x(z) indexed by the subscript k£ € N. For example, the first
landscape function A;(x) is obtained by connecting the topmost values of all the functions
Gvs.ds)(x) [155]. If the second topmost components of g q)(z) are connected, the second
landscape function \; is obtained. The other landscape functions are obtained similarly.
Note that the landscape functions are also piecewise linear functions.

Featurization of persistence landscapes: The persistence landscapes—A\(x) where

x corresponds to the birth time—were computed using the persistence diagrams obtained
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from each of the embedded acceleration signals. Although these persistence landscapes can
be utilized to featurize the persistence diagram, there is no one way to define these features.
In this work, a feature vector from the persistence landscapes is extracted by defining (a) a
set of length |K| of the landscapes {A;}rex where K C N to work with, and (b) for the kth
landscape, a mesh of non-empty, distinct birth times by = {x; € R} where the corresponding
values of the death times dy = {A\x(z;) | ; € by} constitute the entries of the feature vector
for the kth landscape. Then features from all |K| landscapes are combined to obtain the full
feature vector d = {d }xex that can be used with the machine learning algorithms.

Although the choice of K, the set of landscapes to use, can be optimized using cross
validation, for example, in this study, K = {1,2,...,5} is used since it gives good results for
the turning data. Similarly, the mesh may also be optimized in a similar way; however, this
is a more difficult task due to the infinite domain of b, so the mesh can be defined as follows
and as shown in Figure 2.36.

Let A; ; be the ith landscape corresponding to the jth persistence diagram from a train-
ing set in a supervised learning setting. Fix ¢ and overlay the chosen landscape functions
corresponding to all of the persistence diagrams in the training set. Figure 2.36 provides an
example of this process, and it selects second landscapes to extract features. Now project all
the points that define the linear pieces of each of the landscape functions onto the birth axis.
The red dots in Figure 2.36 represents these projected points. Sort the projected points in
ascending order and remove duplicates. The resulting set of points is a mesh b; with length
|b;| for the ith landscape. The same process can be repeated to get the feature vector for
all the |K| landscapes and construct the overall feature vector b. It is emphasized that a
separate mesh is computed for each selected landscape number and that the number of fea-
tures will generally vary for each landscape function. Now to pull the features out of a given
landscape function, it is evaluated at the mesh points. Computationally, this is efficiently
accomplished using piecewise linear interpolation functions.

Upon extracting the features from the persistence landscapes, a feature matrix is con-
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structed, and it represents all the tagged feature vectors. For instance, Table 2.15 shows an
example feature matrix obtained from the first and second landscapes corresponding to each
of the n persistence diagrams in the training set. This table shows data with two labels: 0
for no chatter and 1 for chatter. It also denotes each feature with yz i where i € {1,3} is the
landscape number, j € {1,2,...,n} is the corresponding persistence diagram number, while
the superscript b; € {1,2, ..., |b;|} is the feature number corresponding to the ith landscape.
These feature matrices can then be used with supervised machine learning algorithms, for

example, to train a classifier.
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Figure 2.36: Persistence landscape feature extraction.

Table 2.15: Feature matrix for persistence landscapes A\; and A3 corresponding to persistence
diagrams X; through X,,. The entries in the cells are the values of each of the features.

Persistence Diagrams Label A1 A3
b b
Xi Loy i y:lﬁf Ysi Yii - y%ﬁf:
Xo 0 yiz ?J%,z 1,21 931,,2 y§72 y3,23
b b
X L v, Yia u o, Yoo
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For turning cutting data (see Section A.1), the persistence diagrams and the correspond-
ing first five persistence landscapes for each overhang case are computed. Then the resulting
landscapes are split into a training set (67%) and a test set (33%), and feature matrices
are created for each of the first five landscapes separately. SVM with 'rbf’ kernel, Logistic
Regression and Random Forest and Gradient Boosting algorithms are used as a classifier.
The split-train-test process is repeated 10 times, and every time new meshes were computed
from the training sets, and these same meshes were used with the corresponding test sets.
The mean accuracy and the standard deviation of the classification computed from 10 iter-
ations individually using each of the first 5 landscapes can be found in Tables B.9-B.11 in
the appendix. In the results section, the results with the highest accuracy for each of the
overhang cases are utilized from Tables B.9-B.11 when comparing the different TDA-based

featurization methods.

2.6.4.2 Persistence Images

Persistence images are another functional summary of persistence diagrams [74, 156].
The first step in converting a persistence diagram X = {(b;,d;) | i € {1,2,...,|X]|}} to

persistence images is to define the linear transformation
T'(b;, d;) = (bi, di — b;) = (bi, i), (2.31)

which transforms the persistence diagram from the birth-death coordinates to birth-
lifetime coordinates (see Figure 2.37a-b). Let Dy(x,y) : R*> — R be the normalized symmet-

ric Gaussian centered at (by, pr) with standard deviation ¢ according to (see Figure 2.37c)

1

2o

Dy(z,y) = o~ L@=bk)*+(y—pr)?]/20% (2.32)

It was shown in [157] that the persistence images method is not very sensitive to o,

which is set to 0.1 in this study. A weighting function is also defined for the points in the
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Figure 2.37: Steps for persistence image computation.

persistence diagram W (k) = W (bg, pr) : (b, pr) € T(X) — R according to

(
0 if pp <0;
W(k) = Wbk, pr) = 4 B if 0 < pj, < b (2.33)
1 if pr > 0.
\

Note that this is not the only possible weighting function, but it satisfies the requirements
needed to guarantee the stability of persistence images [74]: it vanishes along the horizontal
axis, is continuous, and is piecewise differentiable. Now define the integrable persistence

surface

S(z,y) = > W(k) Di(x,y). (2.34)

keT(X)

The surface S can be reduced to a finite dimensional vector by defining a grid over its domain
and then assigning to each box (or pixel) in this grid the integral of the surface over that

pixel. For example, the value over the 7, j pixel in the grid is given by

Ii;(8) = / / S dudy, (2.35)

where the integral is performed over that entire pixel. The persistence image corresponding
to the underlying persistence diagram X is the collection of all of the resulting pixels (see

Figure 2.37d).
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Featurization of persistence images: Persistence images can be used for support
vector machine classification [158]. The corresponding feature vector is obtained from per-
sistence images by concatenating the pixel values, typically either row-wise or column-wise.
The dimension of the resulting vector depends on the choice of the pixel size, i.e., the res-
olution of the persistence image. For example, let I; ; be a pixel in the persistence image,

then a persistence image of size 100 x 100 pixels is represented by the matrix

Ly La ... Tiaoo

, (2.36)
IlOO,l 1100,100

and a typical feature vector is obtained by concatenating the entries of this matrix row-wise
as shown by the rows in Table 2.16. The table shows a feature matrix where each persistence
diagram is labeled either 0 or 1, and the corresponding feature vector is shown using entries

of the form I¥

i» where k € {1,2,...,n} is the persistence diagram index while 7, j are row

and column numbers, respectively, in the image.

Table 2.16: Feature matrix for persistence images.

Persistence Diagrams Label Persistence Image
1 1 1 1 1 1
X1 1 11,1 e [1,100 [2,1 e [2,100 e 1100,1 e 1100,100
2 2 2 2 2 2
Xo 0 1171 . 11,100 —]2,1 e ]2,100 e [100,1 e 11007100
P P p p p P
Xn 1 11,1 e 11,100 [2,1 e [2,100 e [100,1 e 1100,100

Python’s Persistencelmages package is used to featurize the cutting signals, and then the
resulting images are randomly split into 67%-33% train-test sets. The persistence images
have boundaries depending on lifetime and birth time ranges. Therefore, the maximum
lifetime and maximum birth time are found by checking all diagrams of a data set. These
maximum values can correspond to a point with a significant lifetime, and significant features
can be lost if the boundaries of the image are set to those values exactly. Accordingly, each

value is summed with 1 to be able to capture all important features nearby them. A classifier
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is trained using SVM and the ‘rbf’ kernel, Logistic Regression, Random Forest, and Gradient
Boosting classifiers for two different pixel sizes: 0.05 and 0.1. The training and testing results
for each different overhang case are available in Tables B.12-B.13 of the appendix. When the
classification accuracy is compared for persistence images to the other featurization methods,

the best results are chosen from these tables for each cutting configuration.

2.6.4.3 Carlsson Coordinates

Another method for featurizing persistence diagrams is Carlsson’s four Coordinates [71]
with the addition of the maximum persistence [69], i.e., the highest off-diagonal point in the
persistence diagram. The basic idea of Carlsson’s coordinates is to utilize polynomials that
(1) respect the inherent structure of the persistence diagram and (2) that are defined on the
persistence diagrams’ off-diagonal points. Specifically, these polynomials must be able to
accommodate persistence diagrams with different numbers of off-diagonal points since the
persistence diagrams can vary in size even if the original datasets are of equal size. Further,
the output of the coordinates must not depend on the order in which the off-diagonal points
of a persistence diagram were stored. The resulting features can be computed directly from

a persistence diagram X according to

(X)) =32bildi = bi),
fo(X) =27 (dmax — di)(di — bi),
f3(X) =220 (di — b)), (2:37)
(X) =3 (dax — di)?(di — b))*,

(X)

f5(X) =max{(d; — b))}
where d.x is the maximum death time, b; and d; are, respectively, the ith birth and death
times, and the summations and maximum are each taken over all the points in X.

In order to utilize Carlsson coordinates, the persistence diagrams are computed from the

embedded accelerometer signals and randomly split the data into training (67%), and testing

(33%) sets. Then all five coordinates are calculated for each diagram, and SVM, Logistic
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Regression, Random Forest, and Gradient Boosting are utilized to train a classifier. The
feature vectors tested in this study were all 25: (f) combinations of these coordinates, where
the term inside the summation is 5 choose ZzilThis revealed which combination of features
yielded the highest accuracy in each iteration. The classification results for all of the different
feature vectors are reported in Table B.14 in the appendix. However, in the results section,

the feature vectors that yielded the highest accuracy are utilized when the classification

results of Carlsson coordinates are compared to the other featurization methods.

2.6.4.4 Kernels for Persistence Diagrams

In addition to featurization methods, many kernel methods have also been developed for
machine learning on persistence diagrams |75, 159, 160, 161, 162, 163, 164]. As an example,
the kernel introduced by [75] is chosen, and it is defined for two persistence diagrams X and
Y according to

2 5 112
Re(X,Y) = %ZIE;ZQGY exp (_@) — exp (—%) , (2.38)
where if z = (x,y), then Z = (y,z), and o is a scale parameter for the kernel that can be
used to tune the approach. For this study, two values are investigated for this parameter:
o0 =0.2 and o = 0.25.
Given either a training or a testing set {X;}¥, of labeled persistence diagrams, and using

Equation (2.38), the kernel matrix can be defined as
Ro(X1,X1) Ro(X1,X2) ... Ko(X1, Xn)
Ko = : . (2.39)
Ko (XN, X1) Ko(Xn, Xn)
Note that given two persistence diagrams X and Y whose number of points is |X| and
Y|, respectively, then the corresponding kernel x,(X,Y") can be computed in O(|X]| - |Y])

time [75|. Therefore, the computation time for kernel methods is generally high, and this can

complicate optimizing the tuning parameter o. To emphasize the effect of the computational
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complexity, in this study, the long runtime for the 5.08 cm (2 inch) overhang case caused
by its large number of samples has led to reporting the corresponding classification results
for a smaller number of iterations than the other overhang cases and the other featurization
approaches.

For turning data (see Section A.1), a 67%/33% train/test split is performed for the
labeled persistence diagrams. For each of the training and testing sets, the corresponding
kernel matrices are precomputed, and Python’s LibSVM [165] is used for classification. For
almost all but the 5.08 cm (2 inch) overhang case where only 1 iteration was used, the
split-train-test process is repeated 10 times. The average and the standard deviation of
the resulting accuracies are recorded. The resulting classification accuracies are reported
in Table 2.23. Note that [75] describes another approach for training a classifier based on
measuring the distances between two kernels in combination with a k-Nearest Neighbor (k-
NN) algorithm. However, this alternative method is not explored in this work, and only the

computations using the kernel matrix and the LibSVM library are performed.

2.6.4.5 Persistence Paths’ Signatures

Persistence paths’ signatures are a recent addition to featurization tools for persistence

diagrams [76]. Let v : [a,b] — R? be the piecewise differentiable path given by

V&) =% = [, (2.40)

where each i = ~'(t) is a continuous function with ¢ € [a,b]. The first, second, and third

signatures, respectively, can be defined according to the iterated integrals [166]
. t . . .
S(Var = / dve =" —"., (a <s<t); (2.41a)
S(y );]t = / asd’ys / / dyldy? (a<r<s<t); (2.41b)

Yirdyeeob /S Yirrk ldyfz/.../ dyy, .. dvyy, (a<t; <ty<..<t).
(2.41c)
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Other signatures are defined similarly, although the computational cost significantly increases
beyond the third level of signatures. The resulting path signatures can be used in classifi-
cation algorithms as features. Looking back at persistence landscape functions in Section
2.6.4.1, it is seen that the kth landscape function A\ (t) can be written as a two-dimensional

path

Ye(Ak(t)) = [t Ak(D)]- (2.42)

Therefore, signatures can be obtained from persistence landscapes and used as features
in machine learning algorithms [76]. In this study, path signatures are used up to the
second level. Specifically, let \,; be the rth persistence landscape corresponding to the ith
persistence diagram. Then the signatures used from the rth landscape function are given by

S(ve (M (1)) =[S}, 52, Sh g2 g2l

8 M Mrg oo Mrg oo Mrg o

522,

Table 2.17: Feature matrix for path signatures for n persistence diagrams and using the first
A1 and second A, persistence landscapes.

Diagrams Label A Ao
1 9 1,1 1,2 2,1 2,2 1 2 1,1 1,2 2,1 2,2
s e e e Gl S O i R (e
1 2 , , \ \ 1 2 , \ \ \
Xo 0 Sia Sia Sz Sz Stz Sin Sia Sia Syh Sy S35 S53%
1 9 1,1 1,2 2,1 2,2 1 9 1,1 1,2 2,1 2,2
Xn 1 Sl,n Sl,n Sl,n Sl,n Sl,n Sln SQn SQn S2n S2n S2n S2,n

By incorporating higher order signatures or signatures from more landscape functions, a
longer feature vector can be constructed for classification. For example, Table 2.17 shows
the second level feature vectors computed using the first and second landscape functions for
n persistence diagrams.

In the experiment, a classifier is trained using 75% of the data and tested using the
remaining 25%. A feature vector is constructed for each of the first five landscape functions.
Table B.16 shows the classification accuracies for each configuration and for each landscape
function. The best results in this table were used to compare the path signatures method to

the other featurization procedures in Table 2.23.
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2.6.4.6 Template Functions

Template functions are introduced in Reference. [72]. Given a persistence diagram D, its
coordinate system is converted into birth-lifetime diagram.
A template function for a persistence diagram is defined as
v(D)= > fbp), (2.43)
(b,p)eD
where b and p represent the birth time and lifetime, respectively. The set of template func-
tions forms a template system 7. For more details about template functions and template
systems, one can refer to Reference [72]. Here a template system of Chebyshev polynomials
is defined using f(x,y) = B(z,y) - |l{4(2)IB(y)|, where [ and [P are the Lagrangian functions
[72] computed on mesh A and B which are defined to include all points in the persistence

diagram.

2.6.5 Modeling of Milling Process

This section explains how to generate time series using an analytical model of the milling
process. A milling operation is considered with straight edge cutters as shown in Figure 2.38.
A single degree of freedom model in the x direction for the tool oscillations is used as shown
in Figure 2.38a, and both upmilling and downmilling processes are considered in the analysis.

The equation of motion that describes the tool oscillations is
. . 9 1
F+ 2Cwnt + wrr = —F(t), (2.44)
m

where m, w,, ( and F(t) represent the modal mass, natural frequency, damping ratio and
the cutting force in the = direction, respectively. 7 is the time delay given by 7 = 27/NQ
where w is the spindle’s rotational speed in rad/s, while N is the number of cutting edges or

teeth. The expression for the cutting force is given by [167, 168]

F = Z [— bKgn(t)(cos b, (t) + tan vy sin 6, (t)) sin Gn(t)] [(f +x(t) — z(t — 7'))], (2.45)
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where 6,, is the angle between the vertical line and the leading tooth of the cutting tool as
shown in Figure 2.38. The constant K, is the linearized cutting coefficient in the tangential
direction and tan~y = K, /K; where K, (t) is the cutting coefficient in the normal direction.
The screening function g, (t) is either 0 or 1 depending on whether the nth tooth is engaged
in the cut or not, respectively, and f represents the feed per tooth of the cutting tool. The

expression for angular position of the nth tooth 6,(t) is given by [168]
0,(t) = (2m2/60)t 4 2m(n — 1)/ z, (2.46)

where 2z is the total number of cutting teeth while € is the rotational speed given in revolu-
tions per minute (rpm).

One of the important cutting parameters is the radial immersion ratio (RI) which is de-
fined as the ratio of the radial depth of cut to the diameter of the cutting tool. Smaller radial
immersions indicate shallower cuts and thus more intermittent contact between the tool and
the workpiece, while higher radial immersions indicate deeper cuts with more continuous
contact. In the simulations for both downmilling and upmilling, R is set to 0.25.

Inserting Equation (2.45) into Equation (2.44) results in
_bh(?)

)y — = ) , (2.47)

B(t) + 2wn ()3 (1) + wpz(t) = - m

where b is the nominal depth of cut and h(t) is the 7-periodic function

h(t) = Z K19, (t) [ cos 0, (t) + tan~ysin 6, (t)] sin6,(t), (2.48)

88



and fo(t) = h(t) f. The term fy(t) does not affect the stability analysis, so it is dropped in
the subsequent equations; however, it is kept in the simulation.
After dropping fo(t), the equations of motion can be written in state space form according
to
dg(t)

g = AE)+B(t)Et — 1), (2.49)

where A and B are T-periodic with 7" = 7. Then, using the spectral element method [2],

the state space is discretized. Then a dynamic map is obtained such that

&1 = Uy, (2.50)

where U is the finite dimensional monodromy operator. The eigenvalues of U approximate
the eigenvalues of the infinite dimensional monodromy operator of the equation of motion. If
the modulus of the largest eigenvalue is smaller than 1, then the corresponding spindle speed
and depth of cut pair lead to a chatter-free process; otherwise, chatter occurs. Therefore,
the stability of the milling model and the bifurcation associated with the loss of stability
(chatter) can be obtained by examining these eigenvalues, see Figure 2.39.

In this study, 10000 time series were generated corresponding to a 100 x 100 grid in the
plane of the spindle speeds and depths of cut. Each time series is tagged using the largest

eigenvalue of the monodromy matrix corresponding to the same grid point.

2.6.6 Simulation Results

In this section, classification accuracies for each featurization method are provided for
noisy and non-noisy time series of up milling and down milling processes with 4 teeth (N = 4).
The details of the simulation can be found in Section 2.6.5. Ranges of rotational speed and
depth of cut parameters for the simulations are chosen with respect to the stability diagrams
given for both processes in [168]. The 1- and 2-dimensional persistence diagrams were used
with the methods described in Section 2.6.4. Feature matrices were computed for 1D and

2D persistence diagrams individually, and the features were concatenated when using both
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Figure 2.39: Stability criteria used in this study based on the eigenvalues of the monodromy
matrix U.

dimensions. 0D persistence has been omitted in this study due to its poor performance on
noisy data sets, as evidenced by a reduction in the classification accuracy by 10% in some
cases. Data sets are randomly split, using 67% for training and 33% for testing. The split-
train-test is performed 10 times, and the mean accuracies with the corresponding standard
deviations are reported in this section.

This data can be used for both a two-class and three-class classification problem. The
first is classifying either chatter-free or chatter, while the second further divides chatter
into two types: Hopf-unstable and period2-unstable. Classification for both two and three
class problems is done using four different algorithms: support vector machines, logistic
regression, random forests, and gradient boosting. Default parameters have been used for
all classification algorithms except random forest classification (n_estimator = 100 and
maz_depth = 2). These two types of chatter are based on Hopf and period doubling
bifurcation behaviors as described in Fig. 2.39.

Two class classification results for downmilling and upmilling simulations with N = 4
are provided in Tables 2.18 and 2.19, respectively. For each data set, the highest accuracy
is highlighted in blue. For instance, 95.5% accuracy is obtained as the best classification
accuracy for non-noisy data sets when gradient boosting classifiers are trained with combined

1D, and 2D persistence features based on Template Functions method in Table 2.18. In most
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Table 2.18: 2 Class classification results for noisy (SNR:20,25,30 dB) and non-noisy data sets
which belong to downmilling process with N = 4 (N: Teeth Number, CC: Carlsson Coor-
dinates, TF: Template Functions, SVM: Support Vector Machine, LR: Logistic Regression,
Hi: 1D persistence, Hy: 2D persistence).

Down Milling Without Noise SNR: 20 dB

N=4 cc TF cc TF
Classifier H1 HQ Hl—HQ H1 H2 Hl—HQ H1 H2 Hl—Hz H1 HQ Hl—HQ
SVM 94.3% 85.1% 94.6% 92.9% 94.4% 93.7% 942% 92.5% 94.6% 94.3% 94.8% 94.7%
LR 92.4% 84.3% 92.8% 93.9% 91.6% 94.5% 78.5% 78.3% 91.1% 93.8% 93.5% 94.5%
RF 93.6% 90.9% 93.8% 95.0% 94.1% 95.7% 92.4% 92.3% 93.0% 94.3% 94.4% 94.6%
GB 95.0% 935% 95.2% 94.7% 94.2% OBV 94.2% 93.7% [OMOTN 94.7% 944% 94.7%
Down Milling SNR: 25 dB SNR: 30 dB

N=4 cc TF cc TF
Classifier Hl H2 Hl—H2 Hl Hg Hl—Hz H1 H2 Hl—HQ Hl HQ Hl—HQ
SVM 80.8% 772% 831% 89.4% 83.2% [O0BUN 81.0% 77.4% 82.8% 89.2% 83.4%

LR 76.0% 722% T754% 83.7% T75% 85.7% T62% 72.3% T751% 83.8% T7.2% 85.6%
RF 76.9% T75.0% T7.5% 88.9% 824% 89.6% T76.6% T751% T7.1% 88.7% 82.2% 89.9%
GB 88.3% 79.1% 89.5% 89.0% 82.7% 90.2% 88.5% 79.0% 89.5% 88.7% 83.0% 90.5%

of the cases for downmilling and upmilling, it is seen that the highest accuracies are obtained
when 1D and 2D persistence diagrams features are combined.

Some of the time series embeddings, especially in the chatter-free regime, do not have
any 2 dimensional topological features, thus giving an empty H, diagram. If a specific
cutting configuration has a lot of time series with empty H,, feature matrices for these time
series have a lot of zeros when either featurization method is used. Because of the lack of 2
dimensional information for many of the time series, classifications using only H, have lower
accuracies than only using H; as is shown in Tables 2.18 and 2.19.

When comparing persistence diagram featurizations, the template function method has
the best results for all data sets, with the exception of two: the noisy data set with an
SNR value of 20 dB for downmilling and the one without noise for upmilling. However, for
those two data sets, template functions’ results are very close to those provided by Carlsson
coordinates. When comparing classification algorithms, SVM yields the highest accuracy
for five of the eight data sets, while gradient boosting yields the highest accuracy for the
remaining three data sets.

To compare the results of different levels of noise and different dimensions of persistence

91



a) 5 No N01se H1 2Class-GB-4 Teeth b) . No Noise, ,-2Class-GB-4 Teeth C) No N01se H1 H,-2Class- GB 4 Teeth
2 . o T 5

£ T

x Fa;luu‘ x Fallmc

2000 4000 6000 2000 4000 6000 2000 4000 6000
Q (rev/min) Q (rev/min) Q (rev/min)

d) SNR:25dB, H)-2Class-GB-4 Teeth e) SNR 25B, Hy-2Class- GB 4 Teeth f) . SNR:25B, H;-Hy-2Class GB- 4 Teeth
PR A

%i e x Fdllure

Succt

EA T3
x  Failure
- Success

2000 4000 6000 2000 4000 6000 2000 4000 6000
Q (rev/min) Q (rev/min) Q (rev/min)

Figure 2.40: Success and failure of two class classifications performed with Template Function
feature matrices and Gradient Boosting algorithm for test set of data set without noise and
with SNR value of 25 dB. a) Classification with 1D persistence features for non-noisy data set,
b) Classification with 2D persistence features for non-noisy data set, ¢)Classification with 1D-
2D persistence combined features for non-noisy data set, d) Classification with 1D persistence
features for noisy data set with SNR:25 dB, e) Classification with 2D persistence features for
noisy data set with SNR:25 dB, f) Classification with 1D-2D persistence combined features
for noisy data set with SNR:25 dB.

diagrams, classification results are plotted on the 100 x 100 grid of the stability diagram for
the milling process. Figure 2.40 presents the stability diagrams belonging to teeth number
N = 4 of down milling process for noisy data with SNR value of 25 dB and non-noisy data
sets. Figures on the first and second columns belong to the classifications performed with
only H, and H, features, respectively, while the ones in the third column represent the results
of combinations of H; and H, features. Red crosses on the stability diagrams denote the case
that the prediction of the classifier does not match with the true label of the corresponding
time series while blue dots show matching between predictions and true labels. From the
figures, it is clear that the number of misclassifications increases slightly when the noise is
introduced into the simulation data. This is also reflected in Table 2.18 in the decrease in

accuracies for different levels of noise, especially the noisy data sets with SNR values of 25
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Table 2.19: 2 Class classification results for noisy (SNR:20,25,30 dB) and non-noisy data sets
which belong to upmilling process with N = 4 (N: Teeth Number, CC: Carlsson Coordinates,
TF: Template Functions, SVM: Support Vector Machine, LR: Logistic Regression, Hy: 1D
persistence, Hy: 2D persistence).

UpMilling Without Noise SNR: 20 dB

N=4 cc TF cc TF
Classiﬁer H1 HQ Hl—H2 H1 H2 Hl—H2 H1 H2 Hl—HQ H1 H2 Hl—HQ
SVM 86.0% 78.5% 85.8% 86.1% 80.4% 86.0% 768% 80.7% 82.1% 84.6% 84.0% [ISEMYN
LR 85.3% 77.8% 85.3% 86.2% 81.3% 85.8% 69.4% 80.4% 80.9% 82.7% 813% 84.1%
RF 84.9% 80.3% 84.9% 85.9% 81.2% 85.7% 755% 80.7% 81.1% 82.8% 81.8% 83.2%
GB PB6RA 30.9% 86.0% 85.6% 81.3% 86.0% 80.6% 82.2% 82.5% 84.1% 83.4% 84.6%
Upmilling SNR: 25 dB SNR: 30 dB

N=4 cc TF cc TF
Classifier H1 H2 Hl—HQ H1 H2 Hl—HQ H1 H2 Hl—HQ H1 HQ Hl—HQ
SVM 85.3% 83.4% 84.8% [S50YaN 34.4% [BBBYN 83.2% 71.6% 83.1% 85.9% T75.0%

LR 79.2% 84.0% 84.1% 842% 84.5% 845% T794% T723% T79.5% 84.1% T753% 85.0%
RF 83.8% 84.1% 84.5% 83.5% 82.6% 83.0% 84.3% T75.0% 84.4% 83.9% 753% 83.8%
GB 852% 84.3% 84.8% 85.1% 84.5% 84.9% 851% T74.6% 85.1% 85.7% T5.7% 85.2%
and 30 db.

In addition, there is a small accuracy difference which is at most 5% between noisy
(SNR:25, 30 dB) and non-noisy data set for downmilling cases, while this difference is less
for upmilling results presented in Table 2.19 This suggests that the featurization methods
used yield promising results even with noisy data. Persistent homology is known to be
very robust against noise, as noise only adds points close to the diagonal, which have short
lifetimes. Thus, these points do not contribute significantly to the Carlsson coordinate or
template function methods, making both featurizations robust against noise as well.

Figure 2.41 shows a comparison of the results obtained for up and downmilling with
respect to different noise levels. Since the deviations of accuracies for both featurization
methods are relatively low, the classification accuracies can be considered reliable. This
trend is noticeable for both up and downmilling and for all levels of noise. However, the
classification results for upmilling are noticeably lower than those for downmilling. Addition-
ally, it is clear that H, features do not perform as well due to the lack of higher dimensional
topological structure, as was explained earlier. Figure 2.41 also presents the classification

results on the stability diagrams for upmilling and downmilling for noisy data sets. It is
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Figure 2.41: Mean accuracies of downmilling process (a,b) and upmilling process (f,g) ob-
tained for two class and three class classification performed with Carlsson Coordinates and
Template Functions for non-noisy and noisy data sets where teeth number is 4. Two class(c)
and three class (d) classification results obtained with Gradient Boosting algorithm is shown
on the stability diagram for downmilling simulation data set whose SNR is 25 dB. Two
class(e) and three class (h) classification results obtained with Gradient Boosting algorithm
are shown on the stability diagram for upmilling simulation data set whose SNR is 25 dB.

seen that many misclassifications occur nearby the boundary of the stability diagram, espe-
cially for the upmilling process. This boundary separates the unstable (above the boundary
curve) and stable (under the boundary curve) cases, so misclassifications on this boundary
are likely. It is also clear that when increasing to the three-class problem, there are an in-
creased number of misclassification. However, the overall accuracy difference between both
implementations, two and three-class classification, does not exceed 5% at their maximum
accuracies.

The findings of this study indicate that topological features of data are appropriate
descriptors for chatter recognition in milling. One advantage of the described approach is

its ability to provide promising results without the need for manual preprocessing not only
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for non-noisy data sets but also for time series with noise.

2.6.7 Experimental Data Results

2.6.7.1 Runtime Comparison

Runtime is a criterion for comparing the different feature extraction methods. For the
TDA-based methods, the total runtime required for classification is split among three main
computations: (1) obtaining the persistence diagrams, (2) obtaining features or computing
kernels, and (3) training and testing the corresponding classifier. However, obtaining re-
sults with serial computing takes significantly larger runtime. Therefore, parallel computing
is implemented to improve the runtime. High Performance Computing Center (HPCC) of
Michigan State University is utilized for parallel computing. It includes several supercom-
puters, which are composed of hundreds of nodes. Each node represents a computer with a
certain number of processors and RAM capacity. Users are allowed to submit multiple jobs
at the same time to HPCC, and they can define the number of CPUs per job and memory
per CPU. 10 CPUs per job and 2GB of memory per CPU are requested to compute the
embedding parameters and persistence diagrams in parallel. The number of jobs submitted
to HPCC changes depending on the number of time series of the overhang distance.

Embedded time series are subsampled such that every 10" point is taken into account to
compute persistence diagrams. The times to complete persistence diagram computation of
all overhang cases are recorded, and they are reported in Table 2.20. It also includes times for
serial computing, where one persistence diagram is computed at a time. It is seen that parallel
computing reduces the computation time significantly, although most part of the runtimes for
parallel computing is the queue time. Parallel computing can also be performed with some
workstations available in the market without having the need for expensive supercomputers
that HPCC has. Entry-level workstations with a CPU having 64 cores and 512 GB of RAM

can be afforded by small workshops.
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Table 2.20: Comparison of runtimes (seconds) for embedding parameters and persistence
diagram computation of all overhang cases with parallel and serial computing.

5.08 cm 6.35 cm 8.89 cm 11.43 cm
(2 inch) (2.5 inch ) (3.5 inch) (4.5 inch)

Parallel Serial Parallel Serial Parallel Serial Parallel Serial

9420 84346 3448 23570 2073 11319 4819 37617

Persistence
Diagram

Despite the long computation time for persistence-based methods, it is noted that af-
ter obtaining the persistence diagrams, they can be saved and used in multiple TDA-based
classification methods. In addition, it was observed that delay and embedding dimension
parameters do not change significantly for changing time series of the same cutting config-
uration. Parameters for embedding can be computed in the training phase of a classifier,
and they will be used in the test phase. Therefore, once these diagrams are computed, the
time required for featurization and classification would be a fraction of the ones reported in
Table 2.20. It is worth mentioning that the most computationally expensive step is that of
training a classifier. Once a classifier is trained, which can be done offline, the effort in clas-
sifying incoming streams of data is much smaller because a much smaller set of persistence
diagrams and features are needed. Therefore, the runtimes needed for a single time series are
compared with different methods. Table 2.21 provide runtimes for embedding parameters
computations and persistence diagram computation with different methods.

First column in Table 2.21 represent the runtimes of computing embedding dimension
and delay parameter. When these parameters are computed, they can be saved and used in
embedding time series In the second column of Table 2.21, the runtime of persistence diagram
computation of subsampled point cloud is given. In this way, nearly 1000 points are used from
the embedded time series to compute persistence diagrams. However, the computation time
for persistence diagrams of a point cloud with that size is still high, as seen from Table 2.21.
Therefore, greedy permutation subsampling and the Bézier curve approximation technique

are also employed. The greedy permutation option of the Ripser package is utilized, and it
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Table 2.21: Runtime (seconds) for embedding parameter computation and persistence dia-
gram computation of a single time series with different methods.

Fmbedding Persistence Diagram
Parameters
Number of . .
points~ 1000 Number of points~ 100 Number of pointsx 300
Groed Bézier Bézier Greed Bézier Bézier
Overhang Delay and  Subsampled reedy r=1 r=1 reedy r=3 r=3
. . . . Permutation Permutation
Distances Dimension  Point Cloud — 100 SP9= 100  spg = 100 _300 SPI= 100 spg = 100
Mperm = (Serial)  (Parallel) "'P™ = (Serial)  (Parallel)
5.08 cm
. 242.63 266.95 0.2 106.00 0.93 3.62 569.78 6.21
(2 inch)
685 cm g1 19 208.95 0.29 106.15 0.85 3.79 538.98 6.19
(2.5 inch)
8'89, o 166.79 296.21 0.18 96.00 0.72 3.87 541.62 6.48
(3.5 inch)
A3 em g0 5 276.38 0.17 113.86 0.77 3.53 600.29 6.99

(4.5 inch)

is a method that subsamples the point cloud and computes the persistence diagrams with
less number of points. 7,¢m, i a parameter that defines the number of points selected by the
greedy permutation algorithm. 100 and 300 points are chosen for this option, and runtimes
are reported for the resulting persistence diagrams. In Table 2.21, the runtimes are grouped
with respect to the number of points used in the corresponding method. It is seen that the
Bézier curve approximation with » = 1 and r = 3 uses approximately 100 and 300 points
as in the case of greedy permutation. Runtime for both serial and parallel computing are
provided in Table 2.21. Parallel computing can only be applied to Bézier curve approximation
among the methods of persistence diagram computation given in Table 2.21. The reason is
that persistence diagrams are obtained directly from the Ripser package for other methods.
However, the steps of the Bézier curve approximation method, computation of coefficients
for the line segments, and the distance matrix between these line segments can be performed
in parallel. In these two steps, a job can only compute coefficients of the lines in a single
group or a distance between two lines. The number of the jobs will be equal to the group
number and number of combinations between lines for coefficient computation and distance
matrix computation, respectively. Ideally, all jobs for a step can be computed simultaneously

if there is no queue time. Therefore, runtimes are recorded for computation of coefficients
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of the line segments in a single group, computation of a distance between two line segments,
and persistence diagram from a distance matrix individually. Then, they are summed up and
reported in Table 2.21. Combining parallel computing with the Bézier curve approximation
reduces the runtime significantly. Moreover, it is seen that the fastest method is the greedy
permutation with 7n,e, = 100 and Bézier curve approximation computed in parallel places
second. Both methods are able to complete the diagram computation in less than a second,
while runtime gets larger with increasing npe,n, and r parameters.

Table 2.22 provides the times required to complete classification of a single time series.
To be fair in comparison between the runtime of WPT/EEMD and TDA-based methods,
it is assumed that the classifier is already trained and required parameters for all methods
are selected. It is seen that WPT is the fastest method, and EEMD places second. The
runtime for the TDA-based method is comparable to the ones for EEMD. Further, the WPT
and EEMD methods use codes that have been highly optimized, whereas the TDA-based
methods are still under active research with huge future potential for improved optimization.
It is believed that the runtimes for the TDA-based method can be further decreased with
optimization.

Table 2.22: Runtime (seconds) for performing classification with a single time series for
TDA-based methods and signal decomposition-based ones.

Topological Data Analysis Signal Decomposition

Overhang Persistence Template Carlsson  Persistence WPT EEMD

Distances Landscapes Functions Coordinates Images

508 cm 1.01 0.97 0.97 0.97 0.03 0.52
(2 inch)

6.35 cm

(2.5 inch) 0.92 0.90 0.90 0.87 0.08 0.65
8.89 cm

(3.5 inch) 0.81 0.81 0.76 0.76 0.09 0.70
11.43 cm

(4.5 inch) 0.87 0.81 0.81 0.81 0.06 0.52
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2.6.7.2 Classification Scores

This section presents the classification accuracies for all the methods that are introduced
in Section 4.2.2 and compares them to the results in Reference [9], which uses the Wavelet
Packet Transform (WPT) and the Ensemble Empirical Mode Decomposition (EEMD). The
latter two methods are used for comparison since they are some of the currently most promi-
nent methods for chatter identification using supervised learning. For persistence images,
Template Functions, and Carlsson Coordinates, four different classifiers are applied, and
these are Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF),
and Gradient Boosting (GB) algorithms. All of these classifiers except Gradient Boosting are
used in the Persistence Landscape method, while the Kernel method and Persistence Paths
results are obtained with LibSVM and SVM classifiers, respectively. The classification re-
sults are summarized in Table 2.23 where for each cutting configuration, the best results
of the classification algorithms for each method are included. Table 2.23 also includes the
classification results obtained using a new TDA approach, which is not included in Section
4.2.2, based on template functions [72]|. In this table, the best accuracy for each dataset is
highlighted in green. Further, methods whose accuracy is within one standard deviation of
the best result in the same category are highlighted in blue.

Table 2.23: Comparison of results for each method where WPT is the Wavelet Packet Transform, and EEMD
stand for Ensemble Empirical Mode Decomposition.

Overhang
Length  Persistence Persistence Template Carlsson Kernel Persistence
cm Landscapes Images Functions Coordinates Method Paths WPT  EEMD
(inch)
5(3)8 96.8% 96.4% 91.5% 93.6% 74.5%* 83.0% 93.9%  84.2%
(62'3; 88.6% 85.8% 89.3% 86.3% 58.9% 84.2% 100.0% 78.6%
(8?;859) 92.2% 93.0% 83.9% 95.7% 87.0% 85.9% 84.0%  90.7%
ﬁg? 68.6% 72.5% 65.1% 72.2% 59.3% 70.0% 87.5% 79.1%

*This result belongs to only the first iteration for the 5.08 cm (2 inch) overhang case.

Table 2.23 shows that the WPT approach yields the highest classification accuracy for
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the 6.35 cm (2.5 inch) and the 11.43 ¢cm (4.5 inch) overhang cases. However, it is also seen
that for the 5.08 cm (2 inch) and the 8.89 cm (3.5 inch) case, persistence landscape, and
Carlsson Coordinates yield the highest accuracy, respectively. For the 6.35 cm (2.5 inch)
overhang case, it is worth noting that the number of time series is small. Specifically, for
this case, less than 10 time series were divided into small pieces and used as the test set,
see Table A.1. Therefore, the 100% classification accuracy using WPT for this case does not
represent a robust result. Nevertheless, for the same case Table 2.23 shows that the TDA
methods based on persistence landscapes, persistence images, template functions, Carlsson
coordinates, and persistence paths yield better results than EEMD—a leading approach for
chatter detection. For the 8.89 cm (3.5 inch) case, Carlsson coordinates method yields the
highest mean accuracy of 95.7%, placing ahead of both WPT and EEMD. Further, the other
TDA-based method for this cutting configuration score classification accuracies of at least
83.9%. For the last case, the TDA-based approaches underperform in comparison to WPT.
To investigate the reason of this result, persistence diagram plots belonging to some of the
time series from each overhang distance are provided in Figure 2.42. For the first three
cases (5.08, 6.35, and 8.89 cm), it is seen that persistence diagrams of stable time series
show a single significant feature with a high persistence value, which indicates the existence
of a loop i.e., periodic behavior, in reconstructed state space. However, this single high
persistence point is not observed in the persistence diagrams of unstable (chatter) time series.
This significant difference between persistence diagrams enables classification algorithms to
distinguish chatter and chatter-free time series. For the last case (11.43 cm), it is seen that
all persistence diagrams look similar, thus making blurring the signature of chatter in a time
series. Persistence Images and Carlsson Coordinates depend on the persistence value of the
features obtained from the persistence diagrams. Since all persistence diagrams have features
with similar persistence values in the 11.43 cm (4.5 inch) case, classifiers can not distinguish
the two classes. This leads to reduced accuracy, as shown in Table 2.23. Nevertheless, WPT

and EEMD methods for chatter detection necessitate manual preprocessing by well-trained
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expert users, thus requiring significant extra time and advanced expertise [9]. Therefore, the

automation of these processes is not straightforward with WPT and EEMD, while all the

steps in TDA-based feature extraction can be fully automatized.
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Figure 2.42: Sample persistence diagrams for each overhang distance.

The performance of different persistence diagram computation methods is compared,
and their runtime is compared in Section2.6.7.1. Figure 2.43 shows you the mean classifi-

cation accuracies and error for the persistence diagrams obtained with the ways shown in
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Table 2.21. Subsampling the point cloud at every 10" point is the first method to compute
persistence diagrams. Table 2.21 shows that the Bézier curve approximation has a slightly
larger computation time compared to the greedy permutation subsampling method when it
is computed in parallel. However, it is seen that for all overhang cases Bézier curve approxi-
mation method results in higher accuracy compared to greedy permutation. Also, its results

are the closest results to the ones obtained from subsampled point cloud.
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Figure 2.43: Classification performance of persistence diagrams obtained with different meth-
ods for all overhang cases.

Increasing the number of points in greedy permutation or increasing the number of line
segments () generated for a group does not always yield higher accuracy, as seen from
Figure 2.43. The reason could be that increasing the number of points or the number of line
segments can cause more topological noise on persistence diagrams. For example, Figure 2.33
shows that the new point appears closed to a significant feature, which is the point with the
highest lifetime, as r increases from 5 to 7. Therefore, this could cause small drops in

accuracy for some overhang cases, as seen from Figure 2.43.
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Greedy permutation and Bézier curve approximation method can provide persistence
diagrams in less than 1 second without optimization. For the greedy permutation method,
optimization can not be applied. However, coefficient computation for the line segments in
the Bézier curve approximation method can be optimized. This could further decrease the
runtimes and opens the possibility for exploring in-situ chatter detection using TDA-based

methods, especially with properly optimized algorithms.

2.7 'Transfer Learning

In traditional machine learning, a classifier is trained and tested on a data set originating
from the same source. However, real-life applications, such as chatter or fault detection
in machining, can experience a shift in the parameters between the time the classifier was
trained and the time the system is put into operation. This means that the data collected
from these applications may no longer have the same feature space as the training set. There-
fore, traditional machine learning can require data collection for each parameter combination,
thus leading to increased cost and low automation potential. As another motivating exam-
ple, some experiments are expensive to set up and perform. This includes chatter studies
which result in long downtime for production machines and personnel during the data col-
lection phase. Besides the cost, some sensor data may be collected during machining one-off
products and, therefore, may be considered of limited use in traditional machine learning
settings. Therefore, it is extremely beneficial to leverage extracted features related to similar
phenomena across different settings and operations. In this case, Transfer Learning presents
a useful machine learning framework that allows training and testing on data sets from dif-
ferent sources. As an example, Figure 2.44 shows a transfer learning application where a
chatter classifier was trained using a turning process, and the gained information is then
transferred for detecting chatter in a milling operation.

Transfer learning is categorized according to the similarity between tasks and the domain

of each source and target. The source is the system used to train a classifier, while the
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Figure 2.44: An example of transfer learning where training for chatter detection is performed
using a turning process (the source) and the gained knowledge is imported via transfer
learning to a milling operation (the target).

target is the system where the classifier is tested. There are two main terms in the definition
of transfer learning, and these are domain and task. A domain can be described as the
combination of a feature space F and the marginal probability of the feature space P(F),
while the task contains a label space £ and the conditional probability (P(l|f)) [169]. F
represents the space of feature vectors, x;, and F' is the an instance set such that F' =
{f|fie F,i=1,...,n} [170]. For a given domain, D = (F, P(F)), a task is defined as
T = (L,P(l|f)). P(l|f) is also considered as a predictive function f which estimates the
label for a given feature space.

Based on the differences between domains and tasks of the source and the target, several
transfer learning settings can be obtained (see Figure 2.45). The interested reader is referred
to [169, 171, 172] for more details on transfer learning. In this study, the machine learning
framework is included under inductive transfer learning category because the same sets of
features are used for the source and the target. The main purpose of inductive transfer
learning is to improve the performance of the target prediction function fr using the in-
formation in the domain and task of the source Dg and Tg, respectively [169]. There are
several approaches to transfer learning. These include instance-transfer, feature represen-
tation transfer, parameter-transfer, and relational knowledge transfer [170]. In this study,
the knowledge of parameters is transferred by using the same trained classifier in the testing

phase. The same set of features is used for training and testing. However, the distribution
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of the features is different in each domain since the source, and the target is represented by
two different machining processes: turning and milling. More details about the application

of inductive transfer learning are available in Section 2.7.2.

source relation target  setting
|domain|| is same as ||domain| Traditional

| task || is same as || task | ML
[domain || is same as | |[domain | [Transfer Learning
| task |[different but related || task | (Inductive)

|d0main| | different but related | |domain| Transfer Learning
[ task [|different but related || task | (Unsupervised)

[domain || different but related ||domain || Transfer Learning

| task || is same as || task | (Transductive)

Figure 2.45: Categorization of transfer learning.

2.7.1 Methods

This section provides a brief description of feature extraction for the milling data set
explained in Section A.2. The preprocessing for commonly adopted approaches, WPT and
EEMD, and the traditional feature extraction approaches are explained in this section. In
addition, Figure 2.46 provides a block diagram that explains the procedure followed in this
study. Specifically, the leftmost block shows the experimental setup and the data collection
process. This is followed by the middle block, which lists the featurization methods used and
the similarity-based approach using DTW. The rightmost block shows the pairwise distance
matrices and feature matrices obtained from the similarity-based approach and the feature
extraction approaches, respectively. Figure 2.47 provides a cartoon of the transfer learning
framework whereby classifiers trained on the turning data are used to detect chatter in

milling and vice versa.
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Transfer Learning for Autonomous Chatter Detection in Machining
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Figure 2.46: Outline of the general procedure and the featurization methods used in this
study.
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Figure 2.47: Transfer learning approach used in this chapter for feature extraction and
similarity measure-based approaches.
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2.7.1.1 Wavelet Packet Transform (WPT)

This section describes the salient details of the Wavelet Packet Transform (WPT) method.
One can refer to Section 2.3.1 for more information. The WPT method decomposes a signal
into approximation and detail coefficients at each level of the transform. Figure 2.7 provides
the decomposition of a time series into three levels of WPT and shows the corresponding
frequency content for each wavelet packet. Detail and approximation coefficients are obtained
after applying the high-pass and low-pass filters, respectively. They are denoted as D; and
A; as shown in Figure 2.7. At each level of the transform, additional letters A or D are added
to the left side of the previous notation, and the indices change with respect to the level of
the transform. For example, in the second level of transform, the approximation coefficient
A; passes through the high pass filter and becomes DA, (see Figure 2.7). In addition, the
number of wavelet packets at level k of the transform is 2.

Milling data set: The procedure followed in this study is the same as the one described
in Reference [9]. Level 4 WPT is applied to downsampled time series for both the milling
and turning data sets. The first step was to define the chatter frequency by checking the
spectrum of the downsampled data. Figure 2.48 provides FF'T plots of three different time
series from the milling data set. It can be seen that the chatter frequency is around 850 Hz
which is close to the resonant frequency of 728.7 Hz; this leads us to look for wavelet packets
that also have a frequency content near this frequency. Time series were decomposed into
wavelet packets, and the energy ratio of each wavelet packet was computed. The energy
ratio plots and the Fast Fourier Transform (FFT) of the signals, reconstructed from the
packets, have been provided in Figure 2.49 and 2.50. Figure 2.49 shows that most of the
energy belongs to the third wavelet packet for the unstable time series. It is also seen that
the spectrum of the third wavelet packet, the unstable time series, has a frequency content
of around 1000 Hz. Thus the third wavelet packet can be selected as the informative packet

for feature extraction.
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Figure 2.48: The spectrum of three different time series from milling experiment: (left) 13227
rpm, 2.54 mm depth of cut (doc), unstable,(mid) 16861 rpm, 1.905 mm doc, stable, (right)
27285 rpm, 1.905 doc, unstable.
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Figure 2.49: Energy ratio of the wavelet packets obtained from decomposition of the three
time series whose spectrum is provided in Figure 2.48. (Blue bars) Milling - Unstable -
RPM=13227 - DOC = 2.54mm. (Red bars) Milling - Stable - RPM=16861 - DOC = 0.38
mm. (Orange bars) Milling - Unstable - RPM=27285 - DOC = 3.556 mm.

2.7.1.2 Ensemble Empirical Mode Decomposition (EEMD)

This section provides the preprocessing of experimental milling signals using the EEMD
approach explained in Section 2.3.2. The experimental signal was decomposed into IMFs,
and the informative IMFs were selected to generate a feature matrix. The spectrum from
the original signal and the IMFs was then compared to determine the overlap between them.
The IMF with the largest overlap was selected as the informative IMF. Figure 2.51 provides
an example for the selection of the informative IMF. The original time series has frequency
content of around 1000 Hz, and the first two IMF' are the candidates to be informative IMF.

Since the spectrum of the first IMF overlaps with the original signal’s spectrum, it is selected
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Figure 2.50: The spectrum of reconstructed signals from the first four wavelet packets of
three different time series whose spectrum is shown in Figure 2.48. (First row) Milling,
13300 rpm, 2.54 mm depth of cut (doc), unstable, (second row) milling, 17300 rpm, 0.3810
mm doc, stable, and (last row) milling, 28000 rpm, 3.5560 mm doc, unstable.

as an informative IMF. Ideally, the spectrum of all signals and their decomposition should
be checked to determine the informative IMF. However, this is a manually intensive and
time-consuming process. Therefore, this process is repeated only for a couple of time series,
and chose an informative IMF to use for all time series. Then, the selected informative IMF
was used to compute the features given in Table. 2.4, and a feature matrix was generated as

an input for a supervised classification algorithm.

2.7.1.3 Fast Fourier Transform (FFT), Power Spectral Density (PSD) and Auto-
correlation Function (ACF)

This method computes the Fast Fourier Transform (FFT), Power Spectral Density (PSD),
and Auto-correlation (ACF) for each downsampled data set. The next step was to find
the significant peaks in these plots and use their x and y coordinates as a feature in the

classification algorithm. Since built-in functions in computing software for peak finding can
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Figure 2.51: Intrinsic mode functions and their spectrum for the time series with 11210 rpm
and 3.556 mm depth of cut from milling experiments.

result in incorrect peaks, two restriction parameters are used for peak selection that enabled
us to find the true peaks. These parameters are minimum peak height (MPH) and minimum
peak distance (MPD). The definition for minimum peak height is provided in Reference [55]
as

MPH = Ymin + a(ymax - ymin)7 (251)

where a € [0,1], Ymin and Yma, correspond to 5% and 95" percentile of the amplitude
of FFT/PSD/ACF plots. The o parameter is defined with respect to the peak amplitudes.
Since auto-correlation function has negative amplitudes, the choice for « is chosen separately,
while the same a value is used for FFT and PSD plots. In this implementation, respectively,
a was 0.1 and 0.5 for FFT/PSD and ACF plots.

The second parameter, MPD, was defined by visual inspection on FFT/PSD/ACF plots
of several time series. An example is provided in Figure 2.52. This figure shows the effect of
the chosen MPD value on detecting the peaks in the FFT and ACF plots. The first two plots

provide the spectrum of a time series and the peaks found by a peak detection algorithm
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Figure 2.52: Effect of different MPD values on selected peaks in FFT and ACF plots of time
series with RPM=13300 and DOC=2.54 mm from milling experiments. (Top) FFT plot and
selected peaks with MPD=2500 (top) and MPD=500 (middle). Auto-correlation function
with MPD=500 (bottom). Orange lines represent the MPH.

with two MPD values. It is seen that a smaller MPD value brings the selected peaks closer
to each other and results in the detection of the true peaks. Therefore, MPD was chosen
for FF'T and PSD plots as 500. The same value was also used in the ACF function. After
defining the two constraints for peak detection, MPD and MPH, the number of peaks to use
to generate feature matrices is selected. In this implementation, coordinates of the first two

peaks are used as features, and they were given to supervised classification algorithms.

2.7.2 Transfer Learning Results

This section describes the classification approach and the transfer learning details. As
mentioned in Section A.1 and A.2, the turning data set contains four different cases, and

the milling data does not have categorization. Therefore, the total number of combinations
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between the cases of turning data and the milling data is 20. Classification is performed for
all 20 combinations. Section 2.7.2.1 provides the results for the combination between cases of
the turning data set, while Section 2.7.2.2 discusses the results for the combinations between
turning and milling data set. In addition, the mild chatter cases are taken into account in
turning data set as unstable while performing the classification. This is performed since the
turning data is labeled in three classes (see Section A.1). All results provided in this section

belong to two-class classification for both milling and turning data sets.

2.7.2.1 Results of Transfer Learning Applications Between the Overhang Dis-
tance Cases of Turning Data Set

The classification was performed with 10 realizations of training and test sets for each
method. 67% of the training set and 70% of the test set were used to train and test the
classifier, respectively. To be fair in comparing methods, the same training and test sets
were used; they were generated with a set of predefined random state parameters. Support
vector machine (SVM) with rbf kernel, logistic regression, random forest classifier with 100
estimators and a maximum depth of two for the trees, and gradient boosting algorithm were
used to train and test a classifier. In addition to these classifiers, similarity measure based
approach, DTW can only be used with the K-Nearest Neighbor (KNN) classifier since it uses
a pairwise distance matrix between the time series. KNN is only used with the similarity-
based approach. Predicted labels were used to compute the average and standard deviation
of the accuracy and Fl-score for training and test set separately. In addition to this, the
methods are categorized into three groups: 1) Time-Frequency based approaches (WPT,
EEMD, and FFT/PSD/ACF (FPA)), 2) TDA-based approach, and 3) Similarity measure
(DTW). The results of these groups are compared. Features and classifiers used for each
approach are given in Table 2.24. For more details about the features, one can refer to
Refs. [3, 11, 9].

For each combination of the cases between turning data sets, figures which show the
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Table 2.24: Features and classifiers used for three main category of approaches. SVM: Sup-
port Vector Machine, LR: Logistic Regression, RF: Random Forest, GB: Gradient Boosting.

Category Features Classifiers
WPT: Mean, Standard Deviation, Root Mean Square (RMS), Peak,
Skewness, Kurtosis, Crest Factor, Clearance Factor, Shape Factor,
Impulse Factor, Mean Square Frequency, Standard Frequency,

Time-Frequency-based One Step Auto-Correlation Function, Frequency Center SVM, LR, RF, GB
EEMD: Energy Ratio, Peak to Peak, Standard Deviation,
RMS, Crest Factor, Skewness, Kurtosis
FF/PSD/ACF (FPA): The coordinates of the peaks
Carlsson Coordinates, Persistence Landscapes, Persistence Images
Template Functions
Similarity measure (DTW) Pairwise Distance Matrix K-Nearest Neighbor

TDA-Based SVM, LR, RF, GB

accuracy of each feature extraction method have been provided for the classifiers mentioned
above. These plots are provided in Figs. B.3-B.7 in the Appendix. However, these plots can
only compare the methods within the same application of transfer learning. Therefore, a
summary plot is provided in Figure 2.53. It provides the highest accuracies obtained out of
four classifiers for all methods except DTW, while it shows the highest score out of all KNN,
where K=(1,...,5), for DTW. It can be seen that the time-frequency-based methods, such
as WPT, EEMD, and FPA, are the methods that give the highest score when training and
testing are performed between the overhang cases of the turning data set. However, WPT
outperforms other approaches in most of the applications in the group of time-frequency-
based approaches. On the other hand, the TDA-based approach and DTW have the highest
accuracy in a few applications. For TDA-based approaches, Carlsson Coordinates (TDA-
CC) performs better than other featurization techniques within the group. It is not easy to
distinguish each result in Figure 2.53. Therefore, WPT, TDA-CC, and DTW are selected to
summarize their results for different applications of transfer learning between turning data
set cases and presented the results in Figure 2.54.

Figure 2.54 contains only the highest scores of the selected approaches and the ones that
are in the error band of the highest score. Each color represents a method; the best results
and the ones in the error band are represented with two different hatches on the bar plots.
The bars with the ‘o’ hatch are the methods with the highest accuracy, and the ¢/’ hatch

shows the methods that are in the error band. Using Figure 2.54, we can define how many

113



Time -Frequency-Based TDA-Based Similarity Measure

[ 'wpT EEMD FPA | [ TDA-CC TDA-PI TDA-TF TDAPL | [ DIW |
TfTaeiS';f ggg R 0.892 = 0.135 JOIGIEEE0006N 0.392 + 0.053 0.815 + 0.021 (OISOSEEOSAY 0.710 £ 0.164 0.758 £ 0.141 0.765 £ 0.019

Tfo;;f ggg AR 0.860 + 0.162 0.763 £0.007 0.920 + 0.040 0970+ 0.020 0.894 +0.043 0.894+0.034 0.945 +0.020 0.904 + 0.030

gasi:ﬁ:gg R 0.863 = 0.145 0.718 +0.007 0.769 +0.137 0.703 £0.026 0.646 £ 0.027 0.665 £ 0.033 0.644 £0.020 0.709 £ 0.025

Tfo;;f ggg AR 0.904 -+ 0.036 0.914 +0.003 0.889 +0.052 0.828 + 0.033 QURRZEIPZENKICEIR I RIEICES LY 0.956 + 0.008

Tfl%isrtf ggg 22 0.880 £ 0.075 0.779 £ 0.013 0.870 £ 0.078 0.913 £ 0.050 JURYGIE=AIWLTRNIMVOE NP IRNICEAv/ZY 0.931 £+ 0.021

Eas',f“l?ig 22 0.894 £ 0.056 [0.697 &= 0.011 0.787 £ 0.070 [0:644 == 0.025 NOXZ7 % X2 BN R Cv4= AN SRV V4= SRR 0.681 £ 0.029

Tﬁf:; g‘gg Ez 0.832 £ 0.078 0.908 £ 0.004 0.771 £ 0.126 0.879 4 0.013 0.808 &= 0.025 0.762 = 0.044 0.873 £ 0.050 0.893 £ 0.013

T"f‘:sr; g'gg 2: 0.767 + 0.117 1 0.658 £ 0.009 0.767 &= 0.138 0.811 £ 0.022 | 0.671 £ 0.083 0.780 & 0.064 JEY(IE=HINt7M 0.709 £ 0.030
0.548 & 0.086

gf;it'jﬁg iR 0894 + 0.049 0.671+0.005 0.613+0.145 0.669 +0.027 0.635 £ 0.029 0.642 +0.027 0.722 + 0.034

Tfa;:;t?;-gg g 0.818 +0.095 0.918 +0.003 0.832+0.096 0.787 +0.015 0.793 +0.010 0.761 +0.016 0.830 +0.023 0.814 + 0.008

Tf;gt?é-gg g 0.850 + 0.097 |0.619 £ 0.005 | 0.808 +0.112 0.735+0.089 |0.630 +0.027 0.632 +0.030 0.633 +0.027 0.666 + 0.031

T“‘Tie“;t?;-gg g 0.930 +0.100 0.765+0.009 0.830 +0.078 0.868 + 0.056 0.815+0.037 0.821 +0.059 0.862 +0.029 0.836 + 0.039

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 2.53: The highest accuracy out of four different classifiers (or out of selected num-
bers of nearest neighbor for DTW) for each approach used in transfer learning applications
between overhang distance cases of turning experiments.

times a group of methods is the best method (BM) or the method in the error band (MIEB),
and these numbers are given in Table 2.25. It is seen that the frequency-based approach
(WPT) has the highest score in 7 out of 12 transfer learning applications between the cases
of turning data set, and it is not in the error band when the TDA-based approach and DTW
provide the highest score. On the other hand, the TDA based-approach and DTW provide
the highest score two times and three times, respectively. The TDA-based method is in
the error band of the highest accuracy in 4 out 12 applications, while this number is three
for DTW. It is also worth noting that WPT results provided in Figure2.54 have a larger
deviation compared to DTW and TDA-based approaches, even though WPT provides the
highest accuracies in most of the applications.

Another criterion to compare the performance of the methods is to check the F1 score.
The Fl-score is computed for all transfer learning applications and each method. Then,
the highest F1 scores out of all classifiers were chosen, and the summary plots are given in

Figure 2.55 and 2.56. In addition, the counting is performed for the number of best methods
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Figure 2.54: The classification results are obtained from the selected methods when training
and testing are performed between the overhang distance cases of the turning data set. The
selected methods that give the highest accuracy are represented with the 'o’ bar hatch, and
the ones that are in the error band of the highest accuracy are shown with the ¢/’ bar hatch.
One approach is selected from each category of the methods, and these are Wavelet Packet
Transform (WPT), Carlsson Coordinates (TDA-CC), and Dynamic Time Warping (DTW).

Table 2.25: The number of times when a selected method gives the highest accuracy out
of 12 different applications between the cases of turning data set is denoted with BM. The
number of times when a method is in the error band of the highest accuracy is denoted with
MIEB. These two numbers are provided for accuracy and F1l-score.

Accuracy F1-Score

Method BM | MIEB | BM | MIEB
Time - Frequency-based (WPT) | 7 0 9 1
TDA-based (TDA-CC) o | 4 | 3| o0
Similarity Measure (DTW) 3 3 0 0
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Figure 2.55: The highest F1-Score out of four different classifiers (or out of selected num-
bers of nearest neighbor for DTW) for each approach used in transfer learning applications
between overhang distance cases of turning experiments.

and the methods that are in the error band as in the case of accuracy, and these numbers
are reported in Table 2.25. It is seen that the performance of the time-frequency-based
approach is better since it has the highest F1 score in 9 out of 12 cases of the applications.
The TDA-based approach provides the best F1 score three times. WPT again provides the

best results with larger deviations compared to the TDA-based approach (see Figure 2.56).

2.7.2.2 Results of Transfer Learning Applications Between Turning and Milling
Data Sets

There are eight different permutations when transfer learning is applied between the
turning and milling operations. The classification scores for four different classifiers are pro-
vided in Figure B.8- B.10. However, these plots include detailed results within the same
application of transfer learning. Therefore, summary plots are provided for these permu-
tations in Figure 2.57. It is seen that FFT/PSD/ACF (FPA) gives the highest accuracies

between time-frequency-based approaches in most transfer learning applications. The results
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Figure 2.56: F1 scores obtained from the selected methods when training and testing are

performed between the overhang distance cases of the turning data set. The selected methods
that give the highest accuracy are represented with the o’ bar hatch, and the ones that are
in the error band of the highest accuracy are shown with the ¢/’ bar hatch. One approach is

selected from each category of the methods, and these are Wavelet Packet Transform (WPT),
Carlsson Coordinates (TDA-CC), and Dynamic Time Warping (DTW).

obtained with TDA-based approaches are similar to each other, especially for Carlsson Co-
ordinates (TDA-CC) and Template Functions (TDA-TF). Since the TDA-CC provides the
highest accuracy when training is performed on a 6.35 cm overhang distance of the turning
data set and testing is performed on the milling data set, TDA-CC is chosen to represent
the TDA-based approaches. Accordingly, FPA, TDA-CC, and DTW are compared with
respect to classification scores in Figure 2.58. Similar figures for F1-Score can also be found
in Figure B.11 and B.12.
In Reference |9, 55|, the authors mentioned several drawbacks of the time-frequency-
based approaches. One of the main drawbacks of these methods is that they require checking

the frequency spectrum of each time series manually to decide informative decomposition
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for WPT and EEMD or the restriction parameters for FPA. In this study, this manual
preprocessing is performed only for a couple of time series. This process gets cumbersome
as the size of the data set increases. In a real-time application, when a new time series
is introduced to a classifier, the frequency spectrum of it and its reconstructed time series
obtained from the wavelet packets need to be investigated to find the decomposition whose
spectrum has the largest overlap with the signal’s spectrum. On the other hand, the processes
for the TDA-based approach and the DTW do not require any parameter selection, and all
steps can be completed autonomously.

Based on Figure 2.58 and B.12, Table 2.26 is generated and it shows the number of times
when a selected method gives the highest accuracy (BM) or it is in the error band of the
highest accuracy (MIEB). If the accuracy is considered as the main criterion, the DTW
method provides the highest accuracy in three out of eight applications, and it is in the error
band of the highest accuracy in two applications. In addition, the results of the TDA-based
approach are in the error band in two out of eight applications. Considering the drawbacks of
the frequency-based approach and deviations of the results of the frequency-based approach,
DTW and TDA-based approaches can be preferred when transfer learning is applied between

different machining operations.

Table 2.26: The number of times when a selected method gives the highest accuracy out
of 8 different applications between the cases of turning data set and the milling data set is
denoted with BM. The number of times when a method is in the error band of the highest
accuracy is denoted with MIEB. These two numbers are provided for accuracy and F1-score.

Accuracy F1-Score

Method BM | MIEB | BM | MIEB
Time - Frequency-based (FPA) | 4 1 6 0
TDA-based (TDA-CC) 1 2 0| 4
Similarity Measure (DTW) 3 2 2 1
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Figure 2.57: The highest accuracy out of four different classifiers (or out of selected num-
bers of nearest neighbor for DTW) for each approach used in transfer learning applications
between overhang distance cases of turning and milling experiments.

2.7.2.3 Transfer Learning Using Deep Learning

In addition to traditional machine learning algorithms, Artificial Neural Networks(ANNs)
are also utilized to test the performance of several approaches. Deep learning frameworks
can learn from raw data sets without the need for feature extraction. However, Zhoa et. al
state that inadequate size of data set, noisy raw signal, and complex machining operations
make it necessary to preprocess data before feeding it into deep learning algoritms [160].
Therefore, some of the features extracted from TDA-based approaches are used to apply
deep learning in transfer learning. Some of the studies in the literature (see Refs. [92, 91])
trained the deep learning algorithms using the simulation data set to eliminate the need for
an extensive amount of experimental data set to train the classifier. However, in this work,
only the existing experimental data and the features extracted from them are only used
to train deep learning algorithms to compare the results to traditional machine learning
algorithms. One should be aware of the fact that more observation is needed to have a fair

comparison between deep learning-based transfer learning and traditional machine learning-
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Figure 2.58: The classification results obtained from the selected methods when training and
testing are performed between the overhang distance cases of the turning data set and the
milling data set. The selected methods that give the highest accuracy are represented with
the 'o” bar hatch, and the ones that are in the error band of the highest accuracy are shown

with the ‘/” bar hatch. One approach is selected from each category of the methods, and
these are FPA, TDA-CC, and DTW.

based transfer learning. Since the raw experimental signals are not split into small pieces
for Time-Frequency based approaches, there are fewer observations for these approaches.
Hence, the features extracted using Time-Frequency based approaches are not utilized for
training deep learning algorithms.

The ANN structure used in this work has one input, three hidden, and one output layer.
The number of inputs fed into the input layer is based on the number of features extracted
from TDA-based approaches. For instance, Carlsson Coordinates can provide five features
for each persistence diagram, so the number of inputs will be five for this approach. The

first and last hidden layers have 25 neurons, while the second hidden layer has 12 neurons.
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Figure 2.59: The classification accuracies obtained using Carlsson Coordinates and Persis-
tence Images features with ANN algorithms for the transfer learning between the cases of
turning experiments.

The hyperbolic tangent function is used as an activation function in all layers except the
output layer. Since the classification output is binary, the sigmoid function is chosen as
the activation function in the output layer. Adam optimization algorithm and binary cross-
entropy loss functions are used to compile the ANN. Epoch number and the batch size to
update the weights of the fully connected layers are selected as 100 and 5, respectively.
There are 12 permutations between the overhang distance cases of the turning data set and
eight permutations between the turning and milling data set. 67% of the training data
set is used as the training set, and 70% of the test set data set is used to test the ANNs.
Train-test split is repeated for 10 different pre-defined random state numbers, and the mean
accuracy and standard deviation are computed out of these 10 realizations. The results for
transfer learning applications between the overhang distance cases of the turning data set
are provided in Figure 2.59, while Figure 2.60 provides the accuracies with error bands for
the transfer learning between the milling and turning data set.

From Figure 2.59 and 2.53, it is seen that traditional machine learning algorithms pro-

vide better accuracies compared to deep learning in 11 out of 12 different transfer learning
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Figure 2.60: The classification accuracies obtained using Carlsson Coordinates and Persis-
tence Images features with ANN algorithms for the transfer learning between the milling
and turning experiments.

applications for Carlsson Coordinates, while deep learning is outperformed in 9 out of 12
applications of transfer learning between the Looking into Figure 2.60 and 2.57, traditional
machine learning algorithms outperform deep Learning in all applications of transfer learning
for Carlsson Coordinates. However, deep learning outperforms traditional machine learning
in 4 out of 8 applications of transfer learning between the milling and turning data set using
persistence images. Overall, it is obvious that the amount of experimental data set fed to
deep learning is insufficient, and this leads to poor performance against the traditional ma-
chine learning algorithms. In addition, hyperparameter tuning is not performed for ANNs

in this study. This could also be another reason for the poor performance of deep learning.

2.8 Conclusion

This chapter studied two advanced chatter detection methods, i.e., the Wavelet Packet
Transform (WPT) and the Ensemble Empirical Mode Decomposition (EEMD) with Recur-

sive Feature Elimination (RFE) and traditional feature extraction using FFT/PSA/ACF,
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and presented the DTW and TDA-based approaches for chatter diagnosis. These approaches
have been used for the classification of recorded acceleration signals from a turning process
into chatter-free cutting or chattering motion. They are not used only to classify measured
test data with the same cutting conditions as used in the training phase but also for transfer
learning, which means that the test data originates from a cutting process with different
cutting conditions. In particular, the chatter frequencies between the training data and the
test data differ significantly.

For WPT and EEMD approaches, the results in Table 2.5 show that WPT has the high-
est accuracies for three cutting configurations when the classifier is trained and tested on
the same data set, while EEMD provides the best results for one cutting configuration. In
addition, training different classifiers other than SVM leads to increase in mean accuracies
for both method as shown in Table 2.6 and 2.7. These two tables are evidence that WPT
performance decreases as the level of transform increases. In addition to accuracy compar-
isons, the overall runtime of each method is also recorded. Table 2.5 shows that WPT has
the fastest runtime, while the EEMD method clocks the longest runtime. This slowdown is
mostly related to the computation of the ensemble of IMFs and can be reduced by changing
the ensemble parameters and optimizing the code.

There are two main drawbacks of these two methods. 1) the WPT featurization process
is cumbersome since it requires taking the WPT of the signal, investigating the packets that
contain the chatter frequencies, and then choosing the packet that has a considerably high
energy ratio, and that includes chatter frequency. Once these packets are found, they are
fixed for the investigated process and are used for chatter classification. However, inherent
to this process is the a priori identification of chatter frequency and the assumption that
the chosen packets (referred to as the informative packets) will always contain it. This is
a limitation since (a) it requires highly skilled users for analyzing the signal and extracting
the informative packets, and (b) the chatter frequency band can move during the cutting

process, which will yield the informative packets ineffective for chatter classification. Further,
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Section 2.3.1 points out that the informative packets are not necessarily the ones with the
higher energy ratio. This makes automating the feature selection process more difficult in
the WPT approach. The EEMD also suffers some of these drawbacks since the process for
choosing the informative IMFs and the informative packets in WPT is quite similar. The
second drawback is that 2) it is not always possible to differentiate between intermediate and
full chatter. Specifically, although the intermediate chatter time series (Figure 2.8¢c) and the
chatter time series (Figure 2.8e) are visually very different in the time domain, their energy
content shown in the top graph of Figure 2.9 can be too close to distinguish between the two
cases.

In this study, traditional signal processing tools (FFT, PSD, and ACF) are also applied
for feature extraction from cutting signals obtained from a turning experiment. The results
are compared to the ones obtained from two widely used chatter detection methods: WPT
and EEMD. The results show that the classification results for FF'T/PSD/ACF with feature
ranking can provide higher test set accuracies for some of the classifiers, namely Random
Forest Classification and Gradient Boosting. If the overall best score for each overhang
length distance of the turning data set is compared, it is seen that the FF'T /PSD/ACF based
methods provide the best results. Despite their shortcomings, traditional signal processing
methods can yield highly-tuned classifiers with superior accuracy. This makes these methods
suitable for manufacturing processes whose parameters are not expected to drift too much
in comparison to the training data. In contrast, if the parameters of the underlying process
are expected to shift significantly, then features based on FFT/PSD/ACF should be used
with caution.

The first novel method presented in this chapter for chatter detection combines similar-
ity measures of time series via Dynamic Time Warping (DTW) with machine learning. In
this approach, the similarity of different time series is measured using their DTW distance,
and any incoming data stream is then classified using the KNN algorithm. The classifica-

tion accuracy of the DT'W approach is tested using a set of turning experiments with four
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different tool overhang lengths, and the resulting accuracy is compared to two widely used
methods: the Wavelet Packet Transform (WPT) and the Empirical Mode Decomposition,
as well as to the second novel method based on Topological Data Analysis (TDA). The re-
sults in Table 2.11 show that the DTW’s classification accuracy matches or exceeds those
of existing methods for two out of four different overhang cases. This indicates that tem-
poral features extracted using DTW are effective markers for detecting chatter in cutting
processes. Topological Data Analysis (TDA) methods results are also close to the ones for
similarity measures; however, one advantage of the DTW approach in comparison to TDA-
based tools is that it does not require embedding the data into a point cloud, hence avoiding
the complications associated with choosing appropriate embedding parameters.

The DTW approach can distinguish stable and unstable cases from each as evidenced
by the heat map of the average distances between time series with different labels (see
Figure 2.24), 2.25 and B.1. The DTW approach also successfully distinguishes between
chatter and intermediate chatter, as shown in Table 2.12. These comparisons are difficult or
impossible using only frequency domain features because the frequency content in these two
cases is too similar while the time domain signals are different, as evidenced by Figure A .4
and the heat maps shown in Figure 2.24 and B.1.

In addition, the combination of the DTW approach with the AESA algorithm provides
a significant decrease in the number of DTW computations, thus reducing the classification
time of a single test sample to less than two seconds for three out of four overhang distances.
Depending on the user choice of H, one can obtain the results even faster with the cost
of loss in classification accuracy as seen from Figure2.27. Therefore, there is a trade-off
between reduction in the number of distance computation and classification performance.
In contrast to the AESA algorithm, parallel computing has the capability of completing the
classification of single time series in about 1.5 seconds if ideal conditions such as zero queue
time and enough resources-the number of processors/cores and RAM capacity—are obtained

to be able to run all jobs simultaneously. Therefore, it is observed that both AESA and
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parallel computing can be combined with similarity measures for real-time online chatter
detection applications. It is also noted that Table 2.13 does not include the time required for
the manual preprocessing in the WPT and EEMD methods for choosing informative packets
or decompositions. The actual time for these two methods is larger than the ones provided
in the table, depending on the number of the investigated time series and the skill of the
person performing the preprocessing. This is because WPT and EEMD require a process for
checking the frequency spectrum of the times series and examining the energy ratio of the
wavelet packets of the time series. Furthermore, whereas the WPT algorithms are highly
optimized, the Python scripts that are used in this study for computing the DTW have little
to no optimization. This study hypothesizes that further optimization using, for example,
the ideas in [137] and combining the DTW approach with AESA and parallel computing will
speed up the runtime for the similarity measures making them a viable option for on-machine
chatter detection.

In this study, another novel approach is presented for chatter identification and classifica-
tion based on featurizing the time series of the cutting process using its topological features.
In contrast to the WPT and EEMD methods, this study uses persistent homology—the
most prominent analysis tool from TDA—to obtain a summary of the persistent topological
features of the data. These are based on the global structure of the point cloud embedding
of the acceleration signals in a turning experiment; therefore, upon obtaining a persistence
diagram, there is no manual work involved in selecting the features from the persistence dia-
gram. Since working directly with the resulting persistence diagrams is difficult, the leading
tools are investigated for feature extraction from persistence diagrams. The featurization
methods are based on persistence landscapes, persistence images, Carlsson Coordinates, a
kernel method, template functions, and persistence paths’ signatures. The resulting features
are then combined with several classification algorithms for training a classifier. The classi-
fication results are then computed from multiple split-train-test sets, and the resulting mean

accuracies as well as the corresponding standard deviation are recorded for each featurization
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method and for each cutting configuration of the turning data set.

Tables 2.23 summarizes the classification accuracy of all the TDA-based tools as well as
their WPT and EEMD counterparts. In terms of the classification accuracy across the differ-
ent cutting configurations, the Carlsson coordinates and persistence landscapes approaches
yield the best accuracies for two cases, and the former has the smallest runtime in compar-
ison to the other TDA tools. On the other hand, in the remaining cases, WPT yielded the
best accuracies. Table 2.23 shows that WPT yields an accuracy of 100% (with a standard
deviation of zero) for the 6.35 cm (2.5 inch) overhang case; however, as pointed out in Sec-
tion 2.6.7.2 and Table A.1, the size of the test set for this cutting configuration is too small
which casts some doubts about the robustness of this result. Nevertheless, for this case, both
template functions and Carlsson coordinates still yield at least 86% classification accuracy.
Specifically, Table 2.23 shows that for the 6.35 cm (2.5 inch) case, persistence landscapes
and Carlsson coordinates yield accuracies that are off by 13.7%, and 10.7%, respectively,
from the WPT result. Similarly, for the 11.43 cm (4.5 inch) case, Carlsson Coordinates
and persistence images are within 13.3% and 13% of the EEMD result. As mentioned in
Section 2.6.7.2, persistence diagrams of stable and unstable time series of 11.43 cm (4.5 inch)
case are similar in contrast to other overhang distance cases, and this is why there is a large
accuracy difference between the results of TDA-based approaches and the WPT approach.
For the 5.08 cm (2 inch) and 8.89 cm (3.5 inch) overhang case, persistence landscapes and
Carlsson Coordinates yield the highest accuracy scoring 96.8% and 95.7%, respectively, with
tight error bounds that do not enclose the WPT accuracies.

Runtime comparisons in Table 2.20 show a dramatic decrease in persistence diagrams
computation by at least 82% when they are computed in parallel. Table 2.22 shows that WPT
is the fastest followed by EEMD; however, the reported time for the TDA-based approach
is comparable to the ones of EEMD. The runtime can be reduced for computing persistence
diagrams for a single time series to less than 1 seconds using Greedy permutation and the

Bézier curve approximation method in combination with parallel computing. Figure2.43 also
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shows that the Bézier curve approximation method results in larger accuracies compared
to Greedy permutation. Therefore, the combination of parallel computing and the Bézier
curve approximation makes the TDA-based approaches a feasible option for online chatter
detection.

This study shows that persistence features are appropriate for chatter detection in cutting
processes. These features have the potential to lower the barrier to entry when tagging
cutting signals as chatter or chatter-free because no manual preprocessing is needed before
extracting and using the features in the persistence diagram. It is also noted that after
obtaining a classifier, the time required for the classification of new incoming data will be
greatly reduced, thus opening the door for future implementation of TDA methods in-situ
for chatter detection and mitigation.

Another main contribution of this chapter is to analyze the performance of the traditional
and novel chatter diagnosis approach between two different cutting operations. The features
extracted from turning and milling cutting signals are used to transfer knowledge from
turning experiments to milling experiments or vice versa. The highest scores obtained from
the transfer learning applications, between the cases of the turning data, were between 80%
and 100%, while that drops to 60% when the classifier is trained on turning data and tested
on the milling data. A period-doubling bifurcation was observed in 19 out of 318 time series
of milling data, and a Hopf bifurcation was observed in the rest of the unstable cases of
milling data. On the other hand, the turning data only contains the Hopf bifurcation. When
the classifier is trained on the turning data set, the model is not trained to recognize the
descriptors of period-doubling bifurcation, so it performs poorly when it is tested on milling
data. On the other hand, a classifier is trained with both features of Hopf and period-
doubling when the milling data is used as the training set. This explains why training on
milling data and testing on turning data sets perform better. In addition, the mathematical
model for the milling process has time-varying coefficients, while the turning process has

an autonomous system. Since the coefficients are constant in turning processes, this can
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lead to misclassification when the classifier is tested on milling processes with time-varying
coefficients.

This study compared the performance of feature extraction methods from established
methods alongside those recently proposed in the literature. Turning and milling data sets
were used to evaluate the performance of each method. The size of the training sets and the
test sets were kept the same for each method. Since the training set data and test data are
different from each other, 67% and 70% of the training set and test data are used to train
and test a classifier, respectively. Ten random state numbers were used to generate training
and test splits, and these were used to train and test a classifier for each method. The
average and standard deviation of the 10 realizations were computed, and the final results
were reported. This has been repeated for all 20 combinations between the milling data and
overhang cases of turning data.

Two types of figures are provided for each comparison criterion to compare the results.
Figure 2.53, 2.54, 2.57, and 2.58 were obtained when the criterion was accuracy, while Fig-
ure 2.55, 2.56, B.11, and B.12 were given for the Fl-score. It can be seen that the time-
frequency-based approaches give the highest accuracy in most of the applications of trans-
fer learning with larger deviations in comparison to the TDA-based approach and DTW.
When only the transfer learning between the milling and turning data sets is considered,
it is seen that the accuracies obtained from DTW can be as high as 96% while the time-
frequency-based approaches can be up to 86% (see Figure 2.57). For the same cases of
transfer learning, the highest score obtained from TDA is 73% (see Figure 2.57). For the
transfer learning applications where the classifier is trained and tested between the cases of
turning, the time-frequency-based approach has the highest accuracy of 93%; the best score
for the TDA approach and DTW are 97% and 96%, respectively (see Figure 2.53). The
results of traditional machine learning algorithms are also compared to the ones obtained
from ANNs. It is seen that insufficient experimental data set leads to poor results against

traditional machine learning approaches. The small size of the experimental data set also
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prevents comparing different techniques to each other using deep learning algorithms. In
this work, only several TDA-based approaches are compared to each other. Using synthetic
data sets generated using the analytical model of milling and turning operations can allow
one to further extend the comparison of more approaches using deep learning frameworks in
the future.

In summary, the TDA-based and DTW approaches can provide accuracies and F1 scores
as high as the time-frequency-based methods. DTW outperforms all other methods when
training on the milling data set and testing on the turning data set. In addition, the TDA-
based approach and DTW can be applied without needing manual preprocessing. All of
the steps in their pipeline can be completed automatically. Therefore, these approaches
may be preferred over the time-frequency-based approaches in either real-time or in fully
automated chatter detection schemes. It is worth noting that this study does not perform
any optimization on hyperparameters of the traditional machine learning and deep learning

algorithms. Thus future studies should also consider the effect of hyperparameter tuning.
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CHAPTER 3

DATA DRIVEN PARAMETER IDENTIFICATION FOR A CHAOTIC
PENDULUM WITH VARIABLE INTERACTION POTENTIAL

3.1 Introduction

Machine learning has led to many advances in the estimation of governing equations of
physical systems from sensor signals. This is useful in the engineering processes where in the
design phase, an abstraction of the physical system is used to write the governing differential
equations. However, the validity of the assumptions used in these models is not tested
until the part is manufactured and utilized in applications. This necessitates a data-driven
approach for studying the true underlying model of the system versus the idealized model
utilized in the design phase.

There are many studies based on data-driven model identification including eigensystem
realization [173|, equation-free modeling [174], empirical dynamic modeling [175], modeling
emergent behavior [176], automated inference of dynamics [177, 178, 179], nonlinear Lapla-
cian spectral analysis [180], symbolic regression [181, 182, 183], Kalman Filter [184], neural
networks [185, 186, 187] and time series [188] for model identification. These methods have
some drawbacks. For example, the symbolic regression is computationally expensive, and
it suffers from overfitting problems as the system complexity increases [189]. Furthermore,
neural network-based methods act as a black box and require large amount of data. It is
also difficult to assign a physical meaning to these black boxes.

Another widely used method is sparse regression. The most commonly used sparse regres-
sion algorithms are LASSO [190, 191] and Ridge regression [191]. Schaffer et al. employed
sparse regression to approximate coefficients of nonlinear differential equations [192]. Tran
and Ward used sparse regression, splitting optimization, and compressed sensing to identify

governing equations [193]. Other recent studies on the sparsity of nonlinear systems can be
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found in [194, 195, 196]. In addition, Rey et al. implemented time-delay embedding for model
identification when measurements for some state variables are not available [197]. Wang et
al. provided an overview of the methods for data-driven identification of complex nonlinear
systems [198].

Brunton et al. introduced SINDy for the identification of model parameters of nonlinear
systems [189]. SINDy is composed of three parts: 1) a feature library that includes a complete
basis of possible terms in the system equation. Since the feature library is composed of all
combinations of the functions, its size can become significantly large even if the number of the
chosen candidate functions is small. 2) An estimate of the derivatives from the experimental
measurements, and 3) application of sparse regression to determine the coefficients of the
governing equations. To reduce the size of the feature library, Rudy et al. [199] and Schmidt
et al. [182] used Pareto Front analysis [200] to reduce the number of candidate models.

Other extensions of SINDy include using it for feedback control [201], and Model Predic-
tive Control (MPC) [202]. The latter work showed that SINDy-MPC outperforms neural-
network-based methods in terms of robustness and performance. Recently, SINDy was fur-
ther extended to stochastic dynamical systems [203].

Most of the nonlinear models to which SINDy applies are composed of polynomial,
trigonometric, and rational expressions. Generally, a combination of various polynomial
functions and sinusoidal functions is used in the feature library. However, one of the limi-
tations of SINDy is that it performs poorly when using polynomial and sinusoidal terms to
approximate rational expressions in the governing equations [189]. Despite the large number
of publications on SINDy, its applicability to experimental data from nonlinear mechanical
systems has not been widely studied (see Refs. [204, 205] for some examples). Therefore,
more testing is needed before this method can be reliably used as part of the engineering
design cycle. This study takes a step in that direction and highlights some admonitions
that need to be considered when using SINDy on actual systems with unknown models. For

example, this study reveals the sensitivity of SINDy to the derivative approximation and
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shows that there is a limit on the time horizon over which the model yields a good fit. It
is also shown that the fitted model matches for the whole time range if the exact derivative
is known, further illuminating the important role of an accurate derivative estimation in
SINDy.

There are many methods for derivative estimation from noisy signals [206], and SINDy
utilizes the Total Variation Regularization (TVR) method [207, 208|. However, TVR is
highly dependent on the selection of two parameters, a and €, whose values are positive
real numbers, thus making TVR difficult to tune. This chapter shows that the resulting
coefficients obtained with SINDy for two example nonlinear systems are quite sensitive to
the selection of these two parameters. TVR is replaced by several methods which are com-
paratively easier to tune, such as cubic spline approximation, Savitzky-Golay smoothing,
Gaussian moving average approximation, and convolution smoothing. Other sparse regres-
sion algorithms such as LASSO and ridge regression are also used. SINDy is applied to
two simulated systems: the simple nonlinear pendulum and a model of a more complicated
chaotic pendulum with varying interaction potential. The latter model is based on an ex-
periment that Mork et al. [209] designed and built. In addition to numerical simulation, the
rotational angle from the chaotic physical pendulum is used as input to SINDy to see if the
identified model is similar to the theoretical one used during the design stage.

The results show that the estimated nonzero coefficients grow rapidly as the TVR param-
eter a varies while keeping its other parameter ¢ constant. In fact, due to the large support
of a and e, it is very difficult to find a parameter combination that yields the most accurate
derivative estimate. Therefore, this chapter examines and suggests several other derivative
estimation methods whose parameters can be more easily tuned. This study shows that
some of these methods can outperform TVR in terms of coefficient estimation and fit the
response data. However, even if the estimated response matches the actual response, the
results show that the estimated coefficients can significantly differ from the true model. The

robustness of all methods to noise is also compared, and an open repository for replicating
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the experiment [209] is provided.

This chapter is organized as follows. Section 3.2 explains the modeling and the exper-
imental setup for the chaotic pendulum. Section 3.3 explains the SINDy algorithm with
detailed information on sparse regression. The results are provided in Section 3.4, while the

concluding remarks are included in Section 3.5.

3.2 Modeling and Experimental Setup

This section describes the model and the experimental setup for the chaotic pendulum.
This experiment is for a complicated nonlinear pendulum whose interaction potential and
initial conditions could be accurately controlled. While the idea for the experimental ap-
paratus was inspired by the work in [210], the details in that work were not sufficient to
reproduce the original design. Therefore, the apparatus is re-designed and built, keeping
the main outline of the original design—see [209] for the design documentation and CAD
files. Specifically, the setup is composed of two towers: right and left. The right tower is
placed on a mini labjack (Table 3.1-No 1). A DC motor (Table 3.1-No 3) is connected on
top of a non-magnetic linear ball slider (Table 3.1-No 2). A disk with a radius of 4.445 cm
(1.75 in.) is connected to the DC motor via a coupler and a shaft. Magnets (Table 3.1-No 4)
with alternating polarity are attached to the circumference of the disk. A stepper motor (Ta-
ble 3.1-No 5) drives the DC motor and the disk with magnets on the slider with a scotch yoke
mechanism. The DC motor rotates at high speed, thus causing the rotating and translating
magnets to apply an eddy force to the aluminum disk on the left tower. The aluminum disk
is connected to an aluminum shaft of 6.096 cm (2.4 in) diameter. This shaft is fixed to the
left tower with two bearings (Table 3.1-No 7) and is connected to a simple pendulum with
an end magnet (Table 3.1-No 4). A photo-interrupter (Table 3.1-No 6) checks the speed of
the stepper motor. Another magnet (3.1-No 4) can be placed under the single pendulum as
an option. The rotational speed of the aluminum disk is measured with an optical encoder

(Table 3.1-No 8) and a rotary disk (Table 3.1-No 9). Figure 3.1 shows each part with labels
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that match Table 3.1.

Table 3.1: Part list for the experimental setup.

Item Number Part Name
THORLABS L200 - 10.16 ¢cm x 7.62 cm (4 in. x 3 in.)
Lab jack, 2.62 cm (1.03 in.) vertical
Deltron Non-Magnetic Linear Ball Slides- S2-3
TSINY TRS-775W 12000 rpm DC motor
0.635 cm (0.25 in.) dia. x 0.635 cm thick
K& J cylinder magnets
SparkFun ROB-09238 Bipolar stepper motor with 200 steps
Panasonic PM-L45 Photointerrupter
Bone Swiss Bearings 8mm (0.315 in.)
US Digital EM2-2-10000-1 Optical encoder module
HUBDISK-2-10000-315-IE Transmissive rotary disk
NI USB-6356 Data acquisition box

© 00 O Tt = W =

—
o

Figure 3.1: Experimental Setup. See Table3.1 for parts 1-9. A: Photo-interrupter blocker,
B:Optional Magnet hole, C:Scotch Yoke.

A safety polycarbonate cage was built with a thickness of 0.64 cm (0.25 in.) to protect
against the possibility of dislodged magnets. The speed of the DC motor and the stepper
motor is kept constant during the experiments, and they are controlled with an L298N motor
driver. An NI USB 6356 data acquisition box was used to collect data. In this study, both

the simulation from the experiment’s model as well as the resulting experimental data are
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used. For the simulation, the equation of motion is

s MGTemsing b, bcsgn(é) TrCoS(0)  Taipole
0= 7 7 7 + 7 + 7 (3.1)

where mg is the weight of the pendulum and r,, is the distance between rotation axis and
the center of mass of the pendulum. b, is the magnetic damping and viscous drag coeffi-
cient. b. is the Coulomb damping coefficient, I is the moment of inertia for the pendulum,
7 is the driving torque provided by the rotating magnets at high speed, and 74 is in-
cluded in the equation of motion when the optional magnet (Figure 3.1-B) is used in the
experimental setup. The derivation of the expression for the dipole moment can be found
in Reference [210]. In addition, there is a phase difference ¢ between the disk with magnets
and the aluminum disk given by ¢ = wgt + 9, where wp = 27 fr, fr is the driving frequency

of the stepper motor, and ¢ is the initial position of the disk with magnets.

3.3 Sparse Identification of Nonlinear Dynamics (SINDy)

There are two main components in SINDy: sparse representation and sparse regression.

Each of these components is described below.

Sparse representation: A nonlinear system can be represented according to &(t) =
A(x)S, where @, ., contains the state variables of the system and &,,x,, is the time deriva-
tive of the state variables while n and m are the numbers of samples and state variables,
respectively. State space representation of the nonlinear system can be composed of a com-
bination of many nonlinear functions of the state variables. Possible combinations of these
nonlinear functions are stacked into a matrix A(x),«, called a feature library where each col-
umn represents one possible nonlinear function. There is a coefficient corresponding to each

candidate function in the f3,.,, matrix where p is the number of these nonlinear functions.
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x(t) = A(x)p can be expanded into the matrix form

P1(t) o e dn(t)

=11 = = ... % sin(x) cos(x) ...|D5, (32)

B1(tn) oo e Eml(te)

where f* represents the kth order nonlinearities in the system such that

ab(t) DTNt as(t) . ah(t) ... 2R (1)

_x’f(tn) eV () wa(t,) .. ah(t,) ... a:fn(tn)_
The sin(x) and cos(x) terms represent the sinusoidal nonlinear candidate functions, and this
provides the flexibility to choose the type of nonlinear functions to be used in this feature
library A(x) depending on the system whose parameters are investigated [189]. While gen-
erating the feature matrix, the different combinations of state variables and their kth order
polynomial versions are used. The number of the functions p can increase dramatically when
the maximum order k for the polynomial functions increases slightly. Since the equation of
motion of the system contains several terms among these candidate functions, the coefficients
of most of them will be zero. Therefore, 3 is a sparse matrix. The nonzero coefficients in

[ can be found using sparse regression, and they describe the governing equations of the

system.

Sparse regression: Let us assume there is a model y; = [y + Z§:1 B;Xj, where p repre-
sents the number of predictors for the model, n is the number of samples with 1 < i < n,
and f contains the coefficients for each predictor. Generally, this model can be solved using
the linear regression method when the number of samples is larger than the number of pre-
dictors (n > p). The intercept term [y can be removed by normalizing the columns of the

X,; matrix to zero mean and unit variance. Therefore, the optimization problem becomes
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greuRr}) ly —>"%_, B; Xi;|[>. However, for the case where p > n, overfitting can occur [211, 212].
Therefore, the coefficients for each predictor are more accurately obtained by training data
samples. Nevertheless, when these coefficients are validated on the test set, the test set and
the model obtained with the coefficients found in the training set will not match. It has
been discovered that the algorithm finds non-zero coefficients for some predictors which ac-
tually do not exist in the actual system. Therefore, sparse regression is used to decrease the
number of predictors with non-zero coefficients during regression. In sparse regression, most
of the predictors will have zero coefficients, and the weight matrix § will be sparse. There
are several ways to decrease the number of predictors, and these are called best-subset selec-
tion, forward, and backward-step wise selection, forward-stage wise regression, and shrinkage
methods such as ridge classifier and LASSO [190, 191].

An alternative method for sparse regression is used in Reference [189]: an initial guess
for the coefficients in the S matrix is found by linear regression. Then, a threshold value
for all the coeflicients is selected. The coefficients under this threshold value are set to zero,
and the indices of non-zero coefficients are defined. A new feature library(A(x)) is generated
by eliminating the columns with zero coefficients. Finally, least squares is again applied to
this feature library, and the coefficients with values below the threshold are eliminated. This

procedure is iterated 10 times resulting in a sparse coefficients’ matrix (.

3.4 Results and Discussion

In this section, the results for simulated and experimental data are explained. This study
also shows the effect of the regularization parameter of TVR on the estimated coefficients

and compares TVR to other derivative estimation methods.

3.4.1 Total Variation Regularization (TVR)

SINDy requires the derivatives of the state variables as input, and when these derivatives

are not available, an estimate is obtained using TVR. TVR has two different parameters
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that affect the approximation quality: the regularization parameter o and a constant e.
Despite the large influence of these parameters on the derivative estimates, they are difficult
to optimize. Some guidance on choosing o was provided in Reference [208] when the noise
amount in the measurement is known. However, this can be challenging in practice due to
unknown levels of noise. Therefore, trial and error approach is used for selecting the TVR
parameters. For simulated data, the ground truth for the derivatives is known, so TVR’s
accuracy can be checked. However, for experimental data, it is extremely difficult to judge

how well TVR approximates the true derivatives.

3.4.1.1 Noise-free Case

One of the nonlinear systems to which SINDy is applied is the simple pendulum governed
by the equation of motion

. . —_g 3 _ £ .
0= 7 sin(6) m@, (3.4)

where m is the mass of the pendulum, L is the length of the rod of the pendulum and ¢
is the damping coefficient. Figure 3.2 shows the computed TVR derivatives using o« = 10
and € = 10'2. Polynomial order up to 4 and the usesine option of the code provided
in Reference [189] are used for sparse regression. This code applies sparse regression by
iteratively thresholding the least square coefficients. For all applications presented in this
section, the threshold value A = 0.1 was chosen for sparse regression. Figure 3.2 shows that
the estimated and the simulated derivatives match well for both state variables. However,
the aim of SINDy is to predict the underlying model, so the coefficients found by sparse
regression need to be checked. The number of nonzero coefficients in the coefficient matrix
B is higher than the number of terms in the equation of motion (see Table 3.2). Further,
most of the nonlinear terms whose coefficients are not supposed to appear in the matrix
have large coefficients. To pinpoint the reason for this mismatch, the simulation derivatives

were injected directly into the sparse regression algorithm, and an exact model match was
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t (seconds)

Figure 3.2: Simple pendulum simulation vs SINDy approximation based on TVR derivatives.
(¢ =0.5 Ns/m, m =2 kg and L=1).
obtained. This highlights the importance of the derivative estimate and cautions that even

though the estimated derivative may look good, the model identification can still fail.

Table 3.2: Coefficients found by sparse regression for the simple pendulum based on TVR
derivative estimations.

Term 1 T To

T 0 0 1

T2 8.2693x10°  1.8066x10° -0.2506
Term sin(xq) cos(xy) sin(xz)

T 0 0 0

Ty -2.1477x10° 0 -8.6466x 10°

3.4.1.2 Regression Overfitting Check

In addition, since the time series of the estimated model matches that of the exact
model—despite estimating significant superfluous coefficients, this suggests the possibility
of overfitting in the regression. In order to check this possibility, the simulation data is
split into a training set (70%) and a test set (30%). Specifically, the training set is used to
predict the model of the system over the first part of the signal, which was 7 seconds of the

pendulum simulation. The last part of the simulation—which is 3 seconds for the pendulum
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example—was assigned as the test set, and the predicted model was solved for the test set
time span. Figure 3.3 shows that the estimated model matches the simulation; therefore,
although the possibility of overfitting is eliminated for this data, a similar check is needed

for other data sets.

6 I \
—0(t) = 6(t) (SINDy-training)
4l —0(t) = 0(t) (SINDy-test)
6(t) (SINDy-training) = 6(t) (SINDy-test)

t (seconds)

Figure 3.3: Simple pendulum training and test set predictions.

To further test the performance of SINDy, it is applied for the estimation of the model of
a chaotic pendulum with varying interaction potential, see Section 3.2. This study forgoes
the optional stationary magnet that repels the rotating pendulum magnet, see part B in
Figure 3.1. Using this magnet in the experimental setup results in a dipole torque term in
the equation of motion. Since this nonlinear torque term includes rational expressions and
SINDy does not perform well in the presence of rational terms [189], the optional magnet
was omitted. The system was simulated with zero initial conditions, and its derivatives
were predicted with TVR. The coefficients for each term in Eq. (3.1) are obtained from

Reference [210], and the state space form of the nonlinear system reads

i =0
iy = —73.698sin(6) — 0.373460 — 0.423sgn () + 46.596 cos(¢), (3.5)
iy = 6.4717

where #1 = 0, 5 = 6, 23 = ¢, and o = 2 x 107° and € = 10'2 was set. Note that since the
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Figure 3.4: Estimation of the chaotic pendulum response with SINDy when TVR deriva-
tives (top) and simulation derivatives (middle) are used. The bottom panel compares the
derivatives of the simulation to their TVR counterpart. (TVR parameters: o = 2 x 107 and
e =10").

signum function appears in Eq. (3.1), it is added to the feature library. For the polynomial
function candidates, a maximum degree k = 3 was selected, and trigonometric function terms
were also included in the feature library. Figure 3.4 shows the resulting estimated model
and derivatives. The top panel shows that SINDy was able to estimate nearly the first four
seconds of the simulation even though the bottom panel shows that the TVR-estimated and
the simulated derivatives match for the full 10-second time horizon. The middle panel shows
that when using the simulated derivatives in SINDy, the estimated system response matches
the simulation throughout the time horizon.

Table 3.3 compares the estimated model coefficients and the ones used for the simula-
tion. The left part shows that using the ‘exact’ derivatives correctly identifies the model
coefficients. On the other hand, the right part shows that estimating the derivatives using
TVR leads to correctly estimating four different coefficients; however, some of the candidate
functions which should vanish have nonzero coefficients leading to a mismatch between the

estimated and the simulated models.
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Table 3.3: Coeflicients used in the simulation versus those estimated by SINDy. Shaded cells
highlight the matching coefficients.

Simulation Coefficients Estimated Coefficients
Term 1 x To sin(zy) cos(zz) sgn(za) sgn(xs) 1 1 To sin(z1)  cos(zs) sgn(ws) sgn(zs)
it 0 0 1 0 0 0 0 0 0 1 0 0 0 0
T 0 0 -0.3734 -73.698 46.596 -0.423 0 -19.386 0 -0.3706 -73.8088 46.5961 -0.4216 19.3841
3 64717 0 0 0 0 0 0 3.6638 0 0 0 0 0 2.8073

T

t (seconds)

Figure 3.5: Estimation of the simple pendulum response based on SINDy and simulation
data with SNR = 20 dB.

3.4.1.3 Noise Effects

To investigate the effect of noise on model estimation, SINDy was applied to the simple
pendulum simulation data with additive Gaussian noise with SNR = 20 dB. Figure 3.5
shows the predicted model response and the derivatives estimated with TVR. It is seen
that SINDy is able to match the simulation response despite a large amount of noise in the
simple pendulum simulation. However, Table 3.2 shows that there is a mismatch between
the coefficients of the estimated and simulated models. Similar to the noise-free case, most of
the nonlinear terms in the feature library of the noisy system have large coefficients. While
SINDy correctly estimated the system response for this numerical example, this may not be
the case for other systems.

In addition, Gaussian white noise with SNR = 35 dB has been added to the chaotic
pendulum simulation (an SNR of 20 dB did not produce meaningful results). a = 100 is

used for TVR to have a smooth derivative. Figure 3.6 provides the estimated model response
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where it is seen that SINDy can estimate only the first three seconds. This further shows
that a and € need to be carefully tuned; however, these two parameters can be any positive
real number which makes them hard to optimize. The number of the estimated nonzero
coefficients is larger than the ones in Eq. (3.5). Some of the terms in the feature library
which are supposed to have zero coefficients have nonzero coefficients due to estimating the
derivative. Therefore, the sensitivity of the model estimation to TVR parameters is once

again confirmed.

20+ N I\ n ) 4
\
0/
=2
8
0L Y |
—0(t) (Simulation) — 6(t) (SINDy)
0 —0(t) (Simulation) = 6(¢) (SINDy)

0 2 4 6 8 10
t (seconds)

Figure 3.6: Estimated response of the chaotic pendulum using TVR derivatives with a = 100,
e = 102, and SNR = 35 dB.

3.4.1.4 Parameter Sensitivity in TVR via an Example

Next this study focuses on the search for suitable o and e parameters using a Lorenz
system with the parameters listed in the caption of Figure 3.7, whose model contains N =7
nonzero terms. Lorenz system example given in the original SINDy paper [189] was used
since it was an example where the actual model was correctly predicted. The Lorenz system
simulation contained zero mean Gaussian noise with a variance of 0.01. Figure 3.7 shows
the influence of varying a and € on the number of significant nonzero terms. Two different
€ values are used, and for each value of €, « is varied, and the number of nonzero terms is
plotted.

Figure 3.7 shows the sensitivity of the model prediction to the TVR parameter values.

Specifically, focusing on the left plot in Figure 3.7 for ¢ = 10'2, large jumps are observed
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Figure 3.7: Number of nonzero coefficients estimated by SINDy for Lorenz system with
parameters: ¢ = 10, § = 2.667, p = 28. Initial conditions: xqg = —8, yp = 8 and zy = 27.
e = 10" (left), e = 103 (right). The correct number of nonzero terms is N = 7.

in the number of nonzero coefficients for small variations in the a value with the number
of coefficients ranging in 7-13 for € = 10'2. The right plot shows even more radical values
for N when ¢ = 1073: varying «, in this case, results in large and scattered values of N.
Although the correct total number of nonzero coefficients N = 7 can be achieved when the
regularization parameter is too small—(as seen in Figure 3.7(right) for € = 1073)—N jumps
to 80 when « is slightly increased. These two plots show that SINDy is unstable with regard

to the TVR parameters o and e.

3.4.2 Alternative Derivative Estimation Methods

The limitations of using TVR led us to seek other methods for estimating derivatives of
noisy signals [213]. Among the methods in Reference [213|, Savitzky-Golay approximation
was investigated, cubic splines, Gaussian moving average, and convolution smoothing to
estimate the derivative. The following paragraphs briefly describe the tuning parameters for

each method.

Savitzky-Golay: Savitzky-Golay filter is used to smooth noisy data and based on linear
least squares [214]. It has two parameters defined on the natural numbers: the window

length and the polynomial order. There are certain limitations on the window length: it
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must be an odd natural number and cannot be less than the chosen polynomial order or
greater than the signal length. The Savitzky-Golay Python built-in function has a derivative

option.

Cubic smoothing splines: These splines depend only on the smoothing parameter vary-

ing between 0 and 1.

Gaussian weighted moving averages: This method has only one positive integer pa-

rameter: the window length.

Convolution smoothing: This method smooths noisy signals, and the derivative can
then be computed using centered difference or the function derivative option of MATLAB.
Its parameters are the window length and the window type, where for the latter, a Hanning
window was chosen. The window length must be an odd, natural number similar to Savitzky-
Golay. Arguably, these methods can be more easily tuned than the TVR approach.

This study uses all four, in addition to TVR, for the chaotic pendulum simulation and
compares the resulting performance of SINDy in terms of the response match and the esti-
mated coefficients. Figure 3.8 compares the ground-truth response to the estimated model
responses corresponding to the different derivative estimates as well as the simulated deriva-
tive. It is seen that the estimated response matches the simulation when the ‘true’ derivatives
are used in SINDy. In this case, the estimated coefficients also match the true model. More-
over, it is seen that Savitzky-Golay performs the best for both state variables. The deviations
of the different methods from the true response can be explained by either their extraneous
estimated terms or by errors in the nonzero coefficients. With the exception of the Gaussian
moving average, all the methods resulted in more nonzero coefficients than the true model.
The deviation of the Gaussian moving average method can be attributed to the error in the
estimated coefficients.

The effect of noise on the performance of the derivative estimation methods was tested
by adding white noise with SNR= 35 dB to the chaotic pendulum simulation. Figure 3.9

shows that with noise at best the methods can estimate roughly the first 3 seconds of 6(t),
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Figure 3.8: Estimated responses for the simulated chaotic pendulum.

but they all perform poorly for Q(t) Responses obtained with Savitzky-Golay, convolution
smoothing, and TVR-based derivatives deviate from the simulation around ¢ = 3 for 6(¢).
However, in contrast to TVR, Savitzky-Golay and convolution smoothing are easier to tune
than TVR, which gives them an advantage. Further, the estimated coefficients for Savitzky-
Golay and the convolution smoothing are closer than TVR to the true model. Nevertheless,
all derivative estimation methods resulted in spurious nonzero terms in comparison to the

true model.

3.4.3 Experimental Results

Experimental data is collected from the setup explained in Section 3.2. Similar to the nu-
merical simulation, the optional magnet B was not included. Position data of the pendulum
was collected using an incremental encoder. The data contains A and B quadrature signals,
and the raw data is collected on analog channels of a data acquisition box with a sampling
frequency of 10° Hz per channel. The analog signals were digitized by hard-thresholding at

4V, and by tracking the A and B signals at each time step, the pendulum’s angular position
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Figure 3.9: Estimated responses for the simulated chaotic pendulum with noise (SNR=35
dB).
in radians is obtained.

In contrast to numerical data where both #(t) and its derivative are known, only 6(t)
can be observed in the experimental setting. In this case, [189] suggests using delay recon-
struction of the time series combined with Singular Value decomposition (SVD) to obtain
the remaining state variables. Therefore, this study used Taken’s embedding with embed-
ding dimension 10 and delay parameter 1 and the first three columns of the right singular
matrix V' to compute the derivatives. However, this approach led to nearly zero response,
so we proceeded by estimating the derivative of #(t) using TVR as well as the methods of
Section 3.4.2.

The results for estimating the response using the experimental data are plotted in Fig-
ure 3.10. The figure shows that none of the derivative estimation methods fits the exper-
imental data, and while they all have large errors, the error in TVR, in particular, grows
rapidly beyond ¢t = 20. In contrast, Savitzky-Golay derivatives result in the closest fit to the

experimental data.
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Figure 3.10: Estimated model responses for experimental data of chaotic pendulum (Top)
and a zoomed-in version (bottom).

3.5 Conclusion

This study investigated the performance of SINDy, a data-driven tool for model iden-
tification from numerical and experimental data. Specifically, SINDy was applied to two
nonlinear systems: a simple pendulum and a chaotic pendulum with variable interaction
potential. The time series for the former was obtained only via simulation, while the time
series for the latter originated from both simulation and experiments. The performance
was assessed based on the estimated model’s fit to the data and the estimated coefficients’
correctness— when the true model is known. It is found that when the derivatives of the
states of the system are precisely known, SINDy yielded the correct response and the correct
model. However, sparse representation often requires estimating derivatives from the time
series in practice. So TVR, the standard tool in SINDy, was compared to other available
tools for derivative estimation with noisy and noise-free data.

The results show that TVR is hard to tune due to the unbounded support of its param-
eters and that even if it is well-tuned, it can result in a good fit for a limited time duration

that seems to depend on the system complexity. Further, even when TVR fits the data, the
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resulting coefficients can be incorrect. Among the other derivative estimation methods, the
Savitzky-Golay filter showed promising results for both simulation and experimental data,
despite choosing its parameters using trial and error. Convolution smoothing is another
method that results in a good fit for simulation data.

One reason for adopting TVR in SINDy is its noise robustness. However, it is shown that
for the examples shown in this study, Savitzky-Golay provided nearly the same performance
as TVR, see Figure 3.6. It may be possible to obtain better results for both nonlinear
systems by judiciously tuning the parameters. Nevertheless, even if the fit with any given
data is perfect, it is still possible that the identified model will be incorrect. This is a
crucial drawback when dealing with experimental data where the ground truth is unknown.
Therefore, more work is needed to generate error bounds on the model identified by SINDy,

and guide the parameter choices in derivative estimation.
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CHAPTER 4

ANALYSIS OF ENGINEERING SURFACES USING TOPOLOGICAL DATA
ANALYSIS

4.1 Introduction

Surface texture analysis is a prominent field of research with many applications, including
tribology [215], metrology, remote sensing [216|, medical imaging [217], and the marine in-
dustry [218]. One specific active area of research is the fast and automatic feature extraction
from image data that reduces the need for the input of expert users. In addition to the need
for reliable, automatic feature extraction, other challenges in surface texture analysis include
the size of the data, which significantly increases with increasing the resolution. Therefore,
there is a need for adaptive and automatic tools for feature extraction from surface images.

The majority of the tools proposed for roughness analysis of engineering surfaces are
based on decomposing the image data using a set of basis functions that can be grouped
into three main components: form, waviness, and roughness. Form contains the lowest
frequencies, while waviness is composed of sinusoidal waves in the middle frequency range.
Larger frequencies are included in the roughness component. Generally, most surface analysis
tools focus on finding the reference surface or profile. Depending on the feature extraction
tool used, the reference surface (profile) is composed of form, or it is the combination of both
form and waviness. The surface roughness can then be obtained by subtracting the form
and the waviness from the original surface.

For surface profile analysis, the Gaussian filter is one of the most commonly used filters
in the literature 219, 220, 221, 222, 223|. It is used as a low-pass filter to obtain a smoother
surface, and the roughness profile is then obtained by subtracting the filtered profile from the
original one. Raja et al. used a Gaussian filter to obtain an approximation to surface profiles,

and they compared this approximation with the ones obtained from the 2RC filter, one of
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the earliest filters used for surface metrology [220]. Hendarto et al. focus on the roughness
analysis of wood surface using Gaussian filter [222]. However, the main drawback of the
Gaussian filtering approach is the boundary distortion, where the mean of the end parts of
a surface profile cannot be used [220]. Raja et al. suggested that the end parts of the mean
line should be ignored for evaluation [220], while this is not feasible for profiles with shorter
lengths. Therefore, Janecki proposed a solution that extrapolates both ends of profiles with
polynomial functions to eliminate the edge effect [223]. Fast Fourier Transform (FFT) is
also another widely adopted filtering approach for feature extraction from 1D signals [55]
including surface profiles. For example, Raja and Radhakrishnan used FFT to denoise 1D
surface data and obtain the corresponding roughness profiles [224|. For surface areal data,
two dimensional implementations of FFT and Gaussian filter can be utilized [225, 226].
Dong et al. provide an extensive understanding of two-dimensional FFT (2D-FFT) analysis
on engineering surfaces [227]. Peng and Kirk applied 2D-FFT to surface images of three
different wear particles and used spectral intensity values in angular and radial spectra to
identify the type of wear particle [226]. Empirical Mode Decomposition (EMD), one of the
most commonly adopted signal decomposition tools, is another approach used for the analysis
of engineering surfaces. Several versions of EMD are proposed to analyze surfaces such as
Bidimensional EMD (BEMD) [228], Image EMD (IEMD)[229|, Bidimensional Multivariate
EMD (BMEMD) [230]. However, the computation of EMD in 2D is slow compared to other
approaches.

Discrete Cosine Transform (DCT) is another widely used approach for decomposing a sur-
face scan into its form, waviness, and roughness components [231, 232, 233, 234|. Lecompte
et al. developed an approach to identify the form and the contribution of classical defects
such as positioning error and tool deflection [232]. They used only a certain percentage of
the DCT coefficients to obtain a filtered surface. However, when there are a large number of
images, each image may require the usage of a different percentage of the DCT coefficients

to generate the form. In general, DCT requires selecting two threshold values for delineating

152



the three different components of the surface.

Discrete Wavelet Transform (DWT) is another approach used extensively for surface
texture analysis [235, 236, 220, 234, 237, 238, 239, 240, 241]. Chen et al. introduced DWT
for surface profiles [235]. Liu et al. obtained a threshold that isolates the form of the surface
by computing all possible approximations that can be obtained using the coefficients at
each level. Another example of this approach is seen in Reference [220, 237| where the
separation of the three components of a profile is performed using multi-resolution analysis
approximations. The common procedure is to apply the DWT at a certain level and obtain
the approximation and detail coefficients, and then use the approximation coefficients for
the reconstruction of the form component [242|. The detail coefficients are then used to
reconstruct waviness and roughness. Nevertheless, there is a need for a guideline on how to
automatically choose the threshold that separates the mid-frequency content from the higher
ones in the DWT approach. In addition, the selection of the mother wavelet function can
also affect the resulting components. Stkepien et al. used autocorrelation, cross-correlation,
and entropy-based test to evaluate the performance of different wavelet functions used in
surface texture analysis [243].

It is believed that there is no approach for automatically separating the form, waviness,
and roughness components for DCT and DWT, and the current practice is to manually select
them using the user’s experience and judgment call [244]. Therefore, the first contribution
of this study is to propose an automatic, data-driven approach for identifying the needed
thresholds for DCT and DWT. For DW'T, this study utilizes the energy of the reconstructed
signals to separate the waviness and roughness from each other, while for DCT, this study
leverage the surface entropy to define the form and waviness components. Roughness is then
found by subtracting the filtered surface from the original one.

In addition to this study’s contributions to the automatic threshold selection in DCT and
DWT, the machining processes through which surface samples are generated are identified.

Most studies in the literature are focused on small patch processes with few samples where
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human interpretation is heavily used to identify and compute profile or surface roughness.
In contrast, the proposed approach is validated for a large data set obtained from simulated
surfaces and experimental surface scans. The roughness components of surfaces and profiles
are obtained using proposed automatic threshold algorithms, and the 1D and 2D features
introduced in the ISO standards [245, 246] are extracted. Machine learning is then utilized
to assess the accuracy of the automatic thresholds. Specifically, the obtained features are
used in supervised classification algorithms to classify surfaces labeled with respect to the
generating surface parameter for the simulated surfaces and the generating machining process
for the experimental data.

The second contribution of this study is to use persistent homology, which is a tool
from TDA for quantifying the roughness of surfaces. Specifically, 0D and 1D sublevel set
persistence are used on surface profiles and surface images to compute the sublevel set
persistence diagrams [247]. Then, Carlsson Coordinates |71, 69|, persistence images 74|,
and template functions |72] are utilized to extract features from these diagrams. The TDA-
based approach is used on synthetic data sets to identify the level of roughness, and its
performance is compared to features extracted using traditional image analysis.

The final contribution of this study is to develop an approach for real-time surface tex-
ture analysis. Investigation of surface scans can be performed using the traditional signal
processing approaches mentioned above. A combination of automatic threshold selection
algorithms and High Performance Computing tools can make these approaches viable for
real-time surface texture analysis. Since TDA-based tools show promising results for sur-
face roughness analysis, this study proposes an alternative approach for real-time surface
texture analysis using topological simplification tools from TDA. Specifically, the proposed
framework takes the physical surface images as input and utilizes topological saliency [1]
from TDA. The proposed pipeline provides clusters of the surface images to identify the
regions where additional machining is required. It is hypothesized that this framework can

significantly reduce material waste and time for obtaining a smooth surface finish.
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Figure 4.1: The roughest and smoothest surface in the synthetic data set obtained with
H =0 and H = 1, respectively.

This chapter is organized as follows. Section 4.2 explains how the synthetic data set was
obtained and analyzed using traditional tools and the TDA-based approach. It also compares
traditional feature extraction approaches to the TDA-based method. In Section 4.3, prepro-
cessing of experimental data and the automatic threshold selection algorithms are described.
In addition, the results of heuristic threshold selection and proposed automatic threshold se-
lection algorithms are compared. Section 4.4 explains the topological simplification approach

based on topological saliency and provides the resulting surface clustering.

4.2 Data-driven and Automatic Surface Texture Analysis Using
Persistent Homology

4.2.1 Simulation

Synthetic surfaces are used to test the proposed approach, and they are generated using
the model provided in Reference [248]. The surface roughness of the resulting surfaces is
controlled by Hurst roughness parameter H € [0,1]. As the value of H varies from 0 to 1,
the generated surface gets smoother and smoother, see the example surfaces in Figure 4.1.

The [0, 1] range is divided into 200 intervals, and 201 roughness parameters are obtained.
Each roughness parameter was then used to generate synthetic surfaces. Then, the resulting

surfaces are categorized according to their roughness parameter value into three classes. The
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first and last 67 surfaces are categorized as rough and smooth surfaces, respectively. The
surfaces in between these two cases were tagged as somewhat rough.

In addition to the generated surface data, surface profiles are also investigated in this
study. Six surface profiles are extracted in two perpendicular directions of surfaces. There-
fore, there are totally 1206 surface profiles whose labels match the underlying generated

surfaces.

4.2.2 Methodology

This section briefly explains the feature extraction methods from surfaces and surface
profiles. The methods used in this study are categorized into two groups: 1) traditional
image/signal processing methods and 2) TDA-based approach. For the first one, the general
idea is to find a reference surface or a profile and subtract it from the original measurement
to obtain the roughness surface or profile. Then, height parameters, spatial parameters, and
hybrid parameters provided in Sections 4.1-4.3 of Reference [246| are computed for roughness
profiles. While working with roughness surfaces, height and hybrid parameters are used as
features, and they are provided in Secs. 4.2 and 4.4 of Reference [245]. For the 1D peak
selection method of FF'T, the coordinates of the peaks of FF'T and PSD plots are used. The
angular spectral densities are used as features in the case of the two-dimensional FFT.

For the TDA based approach, three featurization techniques are used to generate feature
vectors for persistence diagrams: Carlsson Coordinates |71, 69|, persistence images|74|, and

template functions|72].

4.2.2.1 Gaussian Filtering

1D-Implementation Gaussian filtering is one of the most commonly used tools for profile

filtering [220|. Gaussian filtering is implemented in 1D and 2D to analyze surface profiles
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and areas, respectively. The 1D kernel definition is given as [219],

G(z) = Ozlexp(—ﬂ(aicy), (4.1)

where a = /In2/7, and . is the roughness long wavelet cutoff [220]. Cutoff selection is

performed with respect to the iterative procedure provided in Reference [249|. First, the

surface roughness parameter, R, is estimated for surface profiles using the expression [246],

1
R, = Z/L | z(x) | de, (4.2)

where L represents the measurement length of the profile. A cutoff value is chosen from
Table 3-3.20.2-1 provided in Reference [249]. Then, R, is measured for the roughness profile
after applying the filter using the chosen cutoff value. If the new R, is outside of the range
of the old R,, a new cutoff is selected with respect to new R,. However, if it is larger than
the measurement length, the algorithm automatically picks the first chosen value as cutoff.
This procedure is for nonperiodic profiles, and one can refer to [249] for more details.

After setting the cuttoff value and applying the Gaussian filter, a filtered profile is ob-
tained. This profile is also called the roughness mean line. The roughness profile is obtained
by subtracting the mean line from the original surface profile. Then, the profile features
provided in Reference [246] are computed to generate the feature matrix for supervised clas-

sification.

2D-Implementation The 2D Gaussian kernel expression is given as

1 _l,2_ 2
G(z,y) = Ugexp< 202@’), (4.3)

2T

where o is the standard deviation. After the kernel in 2D is computed, the surface mea-
surement is convoluted with the kernel to obtain the filtered surface. The convolution is

performed using
wow

Mgl = 3 > Gluelfli—u.j—v) (14)

u=—W v=—W

157



Kernel Size:5 Kernel Size:11 Kernel Size:21

o oooee
SIS S RO N

Figure 4.2: Filtered surfaces obtained using kernel sizes 5, 11 and 21.

where 2 X W + 1 equals the kernel size K, f is the surface measurement, and [ is the filtered
surface. The standard deviation o is defined using the expression, o = K /6.

Gaussian filtering is applied in 2D to the roughest surface in the synthetic data set with
three different kernel sizes. The resulting surfaces are provided in Figure 4.2. It is seen that
larger kernel sizes provide smoother filtered surfaces. The roughness surface is obtained by
subtracting the filtered surface from the original surface. Smoother filtered surfaces allow
having higher frequency components in the roughness surface. Therefore, a kernel size of
21 is selected and kept constant in all filtering operations. Then, areal parameters obtained
from Reference [245| are computed on roughness surfaces obtained after filtering. These

parameters constitute the features for supervised classification.

4.2.2.2 Fast Fourier Transform (FFT)

1D - Denoising Fast Fourier Transform is one of the most adopted signal and image
processing tools. It was employed to analyze surface profiles in Reference [224|. The main
idea is to manipulate the spectrum and then apply inverse FFT to obtain a filtered profile.
FFT was applied on the surface profiles, and their normalized spectra were obtained. A
cutoff value is selected between zero and one. The amplitudes below that cutoff are set to
zero, thus eliminating the corresponding frequencies from the data. Inverse FFT is then
applied to the modified spectrum to yield a mean line profile. Subtracting the filtered profile

from the original one gives the roughness profile.
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Figure 4.3: (Left) The spectrum of the plots. Filtered profiles obtained from two cutoff
values, 0.2 (middle) and 0.4 (right).

An example of a filtered profile is provided in Figure 4.3. The figure shows that larger
cutoff values provide smoother profiles. Therefore, a cutoff value of 0.4 is chosen to eliminate
high frequencies in the filtered profile. Profile parameters are computed for each roughness

profile, and a feature matrix is generated.

1D - Peak Selection The peaks’ coordinates in Fast Fourier Transform, Power Spectral
Density (PSD), and Autocorrelation (ACF) plots can be used as features in 1D signals [55],
and that is the approach implemented here for identifying the level of roughness in the
synthetic data set. However, ACF plots were excluded since no peaks were detected in the
ACF plots (see Figure 4.4).

First, the FFT and the PSD spectra are computed from the surface profiles. Then,
peak selection is performed with respect to two restriction parameters to locate the true
peaks of the spectrum. These parameters are minimum peak height (MPH) and minimum
peak distance (MPD). MPD is the minimum sample number between two consecutive peaks.
MPD is selected as 7 and 10 for PSD and FFT plots, respectively. The expression for MPH
is

MPH = Ymin + &(Ymax — Ymin), (4.5)
where ymin and ymax are 40th and 50th percentile of the amplitudes in the spectrum, respec-
tively, and « is set to 0.5.

MPD and the parameters in the MPH expression can be adjusted depending on the
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Figure 4.4: Selected peaks for FFT and PSD plots with respect to MPH and chosen MPD
values. Red horizontal lines represent the MPH.

data set by wisually inspecting the selected peaks. This parameter tuning was performed
for three different surface profiles obtained from the roughest surface in the data set. After
several adjustments, some meaningful peaks are obtained for both spectra, as shown with
an example in Figure 4.4. Since manually inspecting all the spectra is time-consuming, this
parameter tuning for MPD and MPH is performed for only three profiles, and the tuned
parameters are fixed for all the other profiles. After selecting the peaks, their coordinates
are used as features for classification. The user can control the size of the feature matrix by

specifying the number of peaks.

2D - Implementation FFT can also be applied to images. Two-dimensional FFT is
applied to gray scale synthetic surfaces. Areal power spectral density is computed with
respect to the formula [226]

1
G(n/NTy,m/MT,) = 3 | Hn/NTy, m/MT,) %, (4.6)
aly

where n = 0,1,..., N—1land m =0,1,...,M — 1. M and N are the size of the image,
while T, and 7, are the sampling intervals in  and y directions. H(n/NT,,m/MT,) is the

2D Discrete Fourier Transform obtained by using

M—-1N-1
H(n/NT,,m/MT,) = h(pTy, qT,)e 2T P/N emi2mma/it (4.7)
q=0 p=0

where h(pT;, ¢T,) represents the surface measurement, p =0,1,...,N—land¢=0,1,...,M—
1.
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Areal power spectral density (APSD) plots are analyzed using polar coordinates. In this
study, Polar FFT [250] is computed to obtain angular and radial spectrums, similar to [226].
In addition, Dong and Stout applied 2D FFT directly to the roughness surface obtained
after subtracting the reference surface from the original measurement. In this study, this
approach is also employed, and the Gaussian filtering explained in Section 4.2.2.1 is combined
with it. APSD plots, as well as radial and angular spectra for two surfaces, are provided

in Figure 4.5. Since there are fewer peaks in the radial spectra, only the angular spectra
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Figure 4.5: APSD plots, radial and angular spectrum of roughest (first row, H = 0) and
smoothest (second row, H = 1) surfaces. APSDs are obtained after applying the 2D FFT

on roughness surfaces.

is taken into account. Density values of the five peaks in the angular spectrum are used as
features in addition to (¢,, and (2, , given in Reference [226.

4.2.2.3 Topological Data Analysis (TDA)

In addition to standard signal processing tools used in Secs. 4.2.2.1 and 4.2.2.2, this study
uses persistent homology from TDA to extract features from synthetic surfaces. Persistent
homology is the flagship tool from TDA, and it analyzes the shape of the data. This section

briefly explains persistent homology, and one can refer to Refs. [140, 139, 62| for more details.
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Background The sublevel sets of the images (see Figure 4.6a and 4.6b) and of surface
profiles are used. Let f be a function that represents data set such that f : X — R. The
domain of surface profiles or surfaces is denoted as X. Then, the sublevel sets of f are

defined as

Ly={z: f(z) <A} = f([=00,A)), (4.8)

where A is a threshold [251]. The sorted set of threshold values, A\ < Ay < ... < \; forms an

ordered collection <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>